Lytic transglycosylases RlpA and MltC assist in *Vibrio cholerae* daughter cell separation

Anna I. Weaver, Valeria Jiménez-Ruiz, Srikar R. Tallavajhala, Brett P. Ransegona, Kimberly Q. Wong and Tobias Dörr

Summary

The cell wall is a crucial structural feature in the vast majority of bacteria and comprises a covalently closed network of peptidoglycan (PG) strands. While PG synthesis is important for survival under many conditions, the cell wall is also a dynamic structure, undergoing degradation and remodeling by ‘autolysins’, enzymes that break down PG. Cell division, for example, requires extensive PG remodeling, especially during separation of daughter cells, which depends heavily upon the activity of amidases. However, in *Vibrio cholerae*, we demonstrate that amidase activity alone is insufficient for daughter cell separation and that lytic transglycosylases RlpA and MltC both contribute to this process. MltC and RlpA both localize to the septum and are functionally redundant under normal laboratory conditions; however, only RlpA can support normal cell separation in low-salt media. The division-specific activity of lytic transglycosylases has implications for the local structure of septal PG, suggesting that there may be glycan bridges between daughter cells that cannot be resolved by amidases. We propose that lytic transglycosylases at the septum cleave PG strands that are crosslinked beyond the reach of the highly regulated activity of the amidase and clear PG debris that may block the completion of outer membrane invagination.

Introduction

The cell wall is a crucial structural feature for the vast majority of bacteria and is mainly composed of a rigid, yet elastic, covalently-bound network of peptidoglycan (PG) strands. PG has an oligomeric glycan backbone that is assembled by glycosyltransferases (GTs, RodA/FtsW and class A Penicillin Binding Proteins [aPBPs]) through the polymerization of *N*-acetylated glucosamine (NAG)-*N*-acetylmuramic acid (NAM) heterodimers. These PG strands are crosslinked to adjacent strands primarily by the transpeptidase domains of aPBPs and bPBPs via short peptides attached to the NAM residues, resulting in the strong, mesh-like sacculus. While the rigidity functions to resist bacterial cells’ high internal pressure (Osawa and Erickson, 2018), it restricts processes such as cell growth, division and insertion of multiprotein trans-envelope complexes such as the flagellum and secretion systems (Nambu et al., 1999; Santin and Cascales, 2017). The cell wall must therefore be a dynamic structure, and indeed undergoes constant remodeling and recycling by PG degradation enzymes collectively known as ‘autolysins’ (Lee and Huang, 2013).

Autolysins are numerous and diverse, in part owing to the complexity of the substrate on which they act. Many of the different covalent bonds that are found within PG can be cleaved by autolysins in the periplasm, and many of these enzymes are functionally redundant under standard laboratory growth conditions. Functional redundancy has stymied the elucidation of the physiological role of many autolysins, as it makes them inaccessible to many traditional means of assessing gene–phenotype associations, such as analysis of single gene knockouts. The lytic transglycosylases (LTGs), for example, have been exceptionally well-characterized biochemically (Dik et al., 2017), but still relatively little is known about their individual physiological functions. LTGs target PG at the glycosidic bond between NAG and NAM residues and the primary mechanism for this cleavage is a non-hydrolytic, intramolecular cyclization of NAM to form 1,6-anhydroMurNac (anhNAM) (Höltje et al., 1975; Dik et al., 2017; Williams et al., 2018). At least in well-understood model organisms, this signature anhydro ‘cap’ is assumed to be at
the end of almost all peptidoglycan strands in vivo (Kraft et al., 1998; Heidrich et al., 2002). Members of the LTG class have been implicated in many cellular processes, including the termination of GT-mediated PG polymerization (Tsui et al., 2016), insertion of secretory apparatuses and flagella (Herlihey and Clarke, 2017; Santin and Cascales, 2017), pathogenesis (Chan et al., 2012), cell envelope integrity (Lamers et al., 2015; Ragland et al., 2017; Crépin et al., 2018) and PG recycling (Cloud and Dillard, 2002).

One process where PG remodeling is particularly important is cell division. Our current understanding of bacterial cell division includes a step in which lateral PG must be remodeled to allow for insertion of a septal wall between daughter cells, followed by cleavage of that septal wall to facilitate daughter cell separation (Potluri et al., 2012; Egan and Vollmer, 2013). Septal PG cleavage by amidases, which cleave off the dipeptide side stem from the NAM residue, is tightly controlled spatiotemporally to ensure that PG degradation is exclusively localized to where it is needed. The amidases are generally assumed to be the main enzymes mediating daughter cell separation, though there is evidence that other autolysins, including LTGs, are pleiotropically involved (Heidrich et al., 2001; 2002; Priyadarshini et al., 2006). E. coli strains lacking LTGs MltABCDE and Slt70, for example, have mild cell separation defects (Heidrich et al., 2002). In addition, Jorgenson et al. identified a highly conserved LTG, RlpA, which exhibits septum-specific cleavage activity in Pseudomonas aeruginosa. RlpA is required under low-salt conditions, but not during growth in standard laboratory media, suggesting P. aeruginosa encodes at least one redundant septal LTG (Jorgenson et al., 2014). Salmonella enterica similarly appears to require LTGs MltC and MltE for proper daughter cell separation in low-salt conditions (Monteiro et al., 2011) and in Neisseria gonorrhoeae, mutating the LTGs LtgA or LtgC result in daughter cell separation defects (Cloud and Dillard, 2004; Williams et al., 2019). Thus, LTGs appear to play important and often redundant, but poorly understood roles in septal cleavage in diverse bacteria. In particular, it is unclear whether the separation defects observed in LTG mutants are due to the lack of a septum-specific function of these autolysins, or a general consequence of pleiotropic cell wall damage.

Here, we show that in the cholera pathogen, Vibrio cholerae, the two LTGs MltC and RlpA are collectively required for daughter cell separation. Their inactivation results in the generation of cell chains reminiscent of amidase mutants and additional deletion of V. cholerae’s sole amidase exacerbates this chaining defect. Our data suggest that these LTGs fulfill specialized roles in daughter cell separation and have important implications for septal PG architecture in the cholera pathogen.

Results

Simultaneous inactivation of seven LTGs induces a lethal cell separation defect

Autolysins are often functionally redundant. V. cholerae, for example, can tolerate the inactivation of its sole amidase or simultaneous deletion of five out of its six M23 family endopeptidases (Dörr et al., 2013; Dörr, Davis, et al., 2015), suggesting that redundant autolysins can substitute for each other to sustain at least basic growth processes. In addition to the amidase and the endopeptidases, V. cholerae’s genome encodes eight predicted LTGs that were identified based on their homology to E. coli LTGs. Whether these enzymes fulfill unique or redundant roles within V. cholerae’s life cycle is unknown. To find new phenotypes associated with LTG deficiency, we endeavored to make sequential deletions in all eight genes. Interestingly, we were able to inactivate six LTGs (mltA, mltB, mltC, mltD, mltF and slit70, leaving only rlpA and mltG intact) with the resulting strain exhibiting only slight morphological aberrations, such as a mild division defect with a corresponding increase in cell length (Figs 1A and S1A). Thus, in V. cholerae, RlpA and MltG are cumulatively capable of performing all potentially essential functions of LTGs, at least under laboratory conditions.

Though single knockouts of mltG and rlpA could be readily obtained in a wild-type (WT) background, (Fig. S1B) we were unable to further delete mltG or rlpA from the Δ6 LTG strain, suggesting that these two represent a minimal set of LTG functions required for viability. To test the phenotypic consequences of loss of RlpA in the Δ6 LTG background, we constructed a strain that placed the native copy of rlpA under control of an arabinose-inducible promoter. Growing this strain in the absence of arabinose, thus depleting RlpA, resulted in the formation of long chains of unseparated cells, many of which had lysed (Fig. 1B). This lysis was also evident in the ~105-fold reduction in plating efficiency after RlpA depletion and dramatic color change when plated on the cell-impermeable β-galactosidase substrate, chlorophenol red-β-O-galactopyranoside (CPRG) (Fig. 1C and D), an established readout of cell lysis and inner membrane permeabilization (Paradis-Bleau et al., 2014). The lethal chaining defect seen in the Δ6 LTG strain depleted of RlpA suggests that at least one of the roles of LTGs is an essential function related to septal PG remodeling and/or daughter cell separation that cannot be adequately fulfilled by other autolysins under native conditions. Since a similar depletion strain for MltG did not exhibit a phenotype, we here focused on RlpA for further study; the reason for MltG’s essentiality in the Δ6 background is the subject of future work.
Simultaneous inactivation of RlpA and MltC results in a cell separation defect

Since cell separation defects are not lethal in other *V. cholerae* autolysin mutants (e.g. amidase mutants [Möll et al., 2014]), we hypothesized that the lethal phenotype of the Δ6 LTG/rlpA depletion strain was in principle separable from the chaining defect. To dissect this further, we assayed different combinations of LTG mutants for cell morphology defects (Fig. S2A). LTGs were generally inactivated by replacing their open reading frame with a scar sequence. However, the gene for RlpA is located within a genomic region containing other important cell wall factors, including *rodA* and *dacA*, and so we instead inserted a premature stop codon in position 133 to reduce potential polar effects. Visual inspection of different mutant combinations revealed that a strain carrying both ΔmltC and rlpA::stop (Δ2 LTG) exhibited a pronounced cell separation defect, manifest as long chains in a culture grown to -OD600 0.8 (Fig. 2A). Imaging these chains expressing cytoplasmic GFP from a constitutive promoter revealed clearly separated cytoplasmic spaces. This observation is consistent with photo-bleaching and fluorescent recovery assays done in *E. coli* septal autolysin mutants which indicated that cytokinesis was complete in cell chains (Priyadarshini et al., 2007). In contrast to the Δ2 LTG chaining phenotype, the rlpA::stop and ΔmltC single mutants exhibited no morphological differences from the WT in either LB or minimal medium (Fig. S2B). Therefore, MltC and RlpA collectively fulfill a crucial role in daughter cell separation. Despite visible chaining, the Δ2 LTG mutant grew as well as the WT in batch culture (Fig. S2C); however, we did observe a strong, additive motility defect of simultaneous RlpA and MltC inactivation (Fig. S2D). Strong motility defects have been previously associated with other chain-forming mutants, resulting in reduced virulence (Chaput et al., 2016).

It has been previously reported that a mutant *P. aeruginosa* lacking RlpA forms unseparated chains of cells when grown in media with low osmolarity (Jorgenson et al., 2014). Similarly, the *V. cholerae* rlpA::stop single mutant, but not the ΔmltC single mutant, formed chains of cells when grown in low-salt LB medium and exhibited a 1000-fold plating defect on low-salt LB plates (Fig. 2B and C). Interestingly, none of these phenotypes were replicated in *Escherichia coli*. An *E. coli* ΔrlpA mutant exhibits no obvious morphological defects in LB or low-salt medium (Jorgenson et al., 2014). This was somewhat expected as *E. coli* RlpA, despite being well conserved, is predicted to be nonfunctional as a LTG due to a mutation to a conserved aspartate in the active site as determined by previous alignment with the well-characterized LTG MltA (Fig. S3A) (van Straaten et al., 2005, 2007; Powell et al., 2006; Jorgenson, 2014). Informed by our *V. cholerae* Δ2 LTG mutant and the *S. enterica* ΔmltC ΔmltE mutant phenotypes (Monteiro et al., 2011), we made additional, simultaneous mutations in *E. coli* mltC and mltE, but still observed only a very mild morphological defect (Fig. S3B and C). Thus, there are species-specific differences in the utilization of these autolysin homologs.

Δ2 LTG mutations result in outer membrane perturbations

Given that daughter cell separation-defective chains are sensitive to osmotic stress, we also hypothesized that the outer membrane (OM) may be compromised in the Δ2 LTG mutant, as the OM is an important structural
and load-bearing component of Gram-negative bacteria (Rojas et al., 2018). Lysozyme typically cannot permeate the OM in sufficient quantities to cause damage to the Gram-negative cell wall. Consistent with this, WT V. cholerae tolerated exposure to 5 mg ml$^{-1}$ lysozyme without exhibiting signs of morphological defects (Fig. 3A). In contrast, a significant portion of Δ2 LTG mutant cells exhibited a loss of rod shape after just a brief exposure to the same concentration of lysozyme (Fig. 3A). Additionally, Δ2 LTG exhibits a strong plating defect compared to WT on both, LB plates containing sodium dodecyl sulfate (SDS) and MacConkey agar, which contains bile salts (Fig. 3B and C). While neither ripA::stop nor ΔmltC single mutants appeared sensitive to lysozyme or bile salts (Fig. S4A and C), ripA::stop was more sensitive to SDS than the WT, though less sensitive than the Δ2 LTG indicating an additive effect of the ripA and mltC on OM integrity (Fig. S4B). This OM defect suggests that delayed cell separation may present a barrier to proper OM invagination that results in cell envelope perturbations and OM permeabilization.

Δ2 LTG and ΔamiB chaining phenotypes are growth phase dependent

The Δ2 LTG chaining phenotype is reminiscent of a mutant deleted in V. cholerae’s sole amidase, AmiB, which also exhibits chain formation (Möll et al., 2014) due to a well-described daughter cell separation defect (Heidrich et al., 2001, 2002; Priyadarshini et al., 2007; Uehara et al., 2009, 2010). We thus explored other similarities between the two mutants. During our imaging experiments, we noticed that overnight cultures of Δ2 LTG and ΔamiB mutants were devoid of any cell chains, suggesting that chaining was a growth phase-specific phenotype. Single cells of stationary phase Δ2 LTG and ΔamiB were not spontaneous suppressor mutants arising at a high frequency, as redilution into exponential phase always resulted in renewed chain formation and subsequent resolution in stationary phase (Fig. S5). To more precisely define the growth stage that promotes cell chain resolution in these mutants, we imaged the mutant strains versus WT over their growth cycle and quantified the cells per chain at each time point (Fig. 4A). Both Δ2 LTG and ΔamiB exhibited peak chain lengths in mid- to late exponential phase ($\text{OD}_{600} \sim 0.8$, median chain length of 8 cells for Δ2 LTG and 24 cells for ΔamiB), followed by a gradual decline in chain length as the cells entered stationary phase.

The recurring shift between an enrichment of chains in exponential phase and single cells in stationary phase could be explained by stationary phase-specific events, e.g. growth-phase-specific lysis cycles or the induction of stationary phase-specific PG remodeling pathways.
Alternatively, cell separation could be due to a stochastic process, i.e. reduced septal cleavage activity is initially outpaced by septal PG synthesis during rapid growth, but becomes sufficient for daughter cell separation as division rates slow in stationary phase. Growth phase-dependent chaining has been previously reported for *E. coli* amidase mutants and it was postulated that single cells were likely generated by lysis of cells within a chain (Heidrich et al., 2001). We tested this hypothesis in *V. cholerae* by plating autolysin mutants on CPRG. The Δ2 LTG mutant failed to indicate a significant CPRG degradation (Fig. 4A), suggesting that lytic elimination of long chains, either by mechanical sheering or cell death, is an unlikely explanation for stationary phase cell separation. The absence of excessive cell debris in microscope images corroborated this observation, as did the WT-equivalent growth rate of this mutant (Fig. S2C). In contrast, the ΔamiB mutant did exhibit a slight color change on CPRG, indicative of higher background lysis, which is consistent with previous observations in *E. coli* amidase mutants (Heidrich et al., 2001; Priyadarshini et al., 2007). Additionally, this mutant in *V. cholerae* suffers a slight defect in growth rate when compared to WT (Möll et al., 2014) and Δ2 LTG, suggesting that at least some of the chain resolution of the ΔamiB mutant may depend on lysis (Figs 4A and S2C). Thus, while cell lysis may somewhat contribute to apparent

Fig. 3. A mutant defective in *rlpA* and *mltC* exhibits an outer membrane defect.
A. Exponential phase cultures of WT and Δ2 LTG were exposed to 5 mg ml⁻¹ lysozyme for 10 min. Scale bars = 25 µm. Insert shows an enhanced field demonstrating partial lysis.
B–C. Overnight cultures of WT and Δ2 LTG grown in LB were diluted in LB and spot-plated in 10-fold serial dilutions on LB containing SDS (B) or MacConkey agar and incubated at 18 h at 30°C (C). All data are representative of at least two biological replicates.
chain ‘resolution’ in the amidase mutant, it is unlikely to facilitate the same in the Δ2 LTG mutant.

Δ2 LTG chain resolution is stochastic

We conducted several experiments to help distinguish between chain resolution by stationary phase-induced PG remodeling and stochastic activity of other hydrolases.

First, we performed a chemostat-like experiment where Δ2 LTG cells were kept in prolonged exponential phase through periodic back-dilution to maintain an OD_{600} < 0.6. In a simple scenario, if chain resolution were mediated by a stationary phase-exclusive factor, chains would be expected to elongate ad infinitum when kept in perpetual

© 2019 John Wiley & Sons Ltd, Molecular Microbiology, 112, 1100–1115
exponential phase and single cells would no longer be present in the population. However, if other autolysins could stochastically resolve shared septal PG, albeit with a lower efficiency, we would expect an increase in the variation of chain lengths rather than infinite chains. What we observed was more indicative of stochastic resolution. There was some increase in maximum chain length (Fig. 4B), but chains must also have achieved some degree of resolution, as short chains and single cells were still present even after five back-dilutions. These results tentatively suggest that an equilibrium between division and subsequent separation can be achieved in a Δ2 LTG mutant without entering stationary phase.

To test this further, we also surveyed other possible stationary phase-specific factors that could affect cell separation. Culturing Δ2 LTG in the filter-sterilized supernatant of a saturated WT culture failed to promote stationary phase levels of chain resolution (Fig. S6A) as would have been expected should chain resolution be modulated by a secreted compound, for example, d-amino acids, which in V. cholerae are exclusively produced in stationary phase (Cava et al., 2011a; 2011b). We also reactivated the global stationary phase transcriptional regulator, RpoS, in the Δ2 LTG background and found that chain formation during exponential phase and chain resolution during stationary phase were unaffected (Fig. S6B). Finally, we blocked all new protein synthesis in Δ2 LTG grown to exponential phase (OD600 ∼ 0.4) with chloramphenicol (10μg ml⁻¹, ~15 × minimum inhibitory concentration [MIC]). The majority of chloramphenicol-treated Δ2 LTG chains resolved to single or double cells within an hour of chloramphenicol treatment, while untreated chains elongated in this time (Fig. 4C). This indicates that the cells have already translated the necessary enzymes for chain resolution by OD600 0.4 and adds further support that chain resolution in Δ2 LTG can be achieved by reducing the division rate.

These experiments collectively indicate that the enzymes responsible for septal resolution in the absence of MltC and RlpA are expressed in exponential phase and do not depend on stationary phase-specific signals or factors. Therefore, it is likely that redundant housekeeping PG hydrolases or LTGs can mediate daughter cell separation, albeit at a lower efficiency, when the main separation systems are inactivated. We thus hypothesize that chain resolution during transition into stationary phase is the consequence of reduced division rate at this growth stage, which allows other, less efficient, autolysins to ‘catch up’ and separate daughter cells.

Alternative septal resolution factors are insufficient in the cumulative absence of RlpA, MltC and AmiB

Given the similarities between the Δ2 LTG and ΔamiB mutants and the established dependence of cell separation on the tight spatiotemporal regulation of AmiB (Priyadarshini et al., 2006; 2007; Uehara et al., 2010; Peters et al., 2011; Yang et al., 2011; Möll et al., 2014), we tested the formal hypothesis that RlpA and MltC directly or indirectly contributed to AmiB recruitment and that the Δ2 LTG chaining defect might thus be due to lack of AmiB localization. A functional AmiB-mCherry fusion localized to septal rings in Δ2 LTG chains, suggesting that this cell separation defect occurs despite proper AmiB localization (Fig. S7A and B).

We then investigated the possibly redundant autolytic roles of AmiB, RlpA and MltC by generating a Δ2 LTG ΔamiB triple mutant and quantifying growth phase-dependent chaining. While this strain was viable, it exhibited a much longer lag phase than the Δ2 LTG or ΔamiB mutants (Fig. S2C) and perhaps more strikingly, chain resolution was incomplete even after 24 h and gave visual evidence of strong lysis under the microscope as well as on CPRG plates (Figs 4D and S5). This increased lysis and failure to completely resolve chains suggest that the amidase and septal LTGs are the principle daughter cell separation systems.

We were interested to learn whether the additive, deleterious effects of the Δ2 LTG and ΔamiB mutations were due to the unique potential functions of LTGs versus amidases at the septum, or if over-expression of AmiB, or other classes autolysins for that matter, could complement the Δ2 LTG chaining defect. Overexpression of V. cholerae’s primary housekeeping endopeptidases, ShyA or ShyC (Dörr et al., 2013), was unable to appreciably reduce chaining in the Δ2 LTG mutant (Fig. 5A) (functional expression of these constructs was validated by their ability to complement a mutant defective in multiple endopeptidases [Dörr et al., 2015]). Similarly, overexpression of V. cholerae’s only amidase, AmiB (co-overexpressed with its activators NlpD and EnvC [Uehara et al., 2009; Yang et al., 2011; Möll et al., 2014]), demonstrated functionality by complementing the ΔamiB mutant (Fig. S7B), but could not prevent chaining in the Δ2 LTG mutant. Thus, daughter cell separation likely specifically requires LTG glycosidic bond cleavage, rather than general PG hydrolysis by other classes of autolysins.

Interestingly, we found that heterologous expression of the E. coli LTG MltE was highly effective at facilitating septal resolution in the Δ2 LTG mutant (Fig. 5A). Addition of 0.2% glucose could not phenotypically suppress MltE complementation of the Δ2 LTG mutant chaining defect (data not shown), suggesting that perhaps leaky expression from Plac (Rosano and Ceccarelli, 2014) is sufficient for supporting cell separation. MltE has a relatively broad spectrum of PG substrate specificity, shown in vitro to generate products indicative of both endo- and exolytic cleavage on denuded or un-crosslinked muropeptides (Lee et al., 2013; Dik et al.,...
with fluorescent fusions of FtsZ, the highly conserved cytoskeletal element that initiates assembly of the division complex and FtsN, the late stage division protein shown to trigger cytokinesis (Egan and Vollmer, 2013). Both RlpA-mCherry and MltC-mCherry clearly localized to the midcell and co-expression of FtsZ-YFP or YFP-FtsN further revealed that both LTGs arrive closer to or after FtsN recruitment to the septum, indicating that RlpA and MltC are likely late division proteins (Fig. 6A–D). RlpA midcell localization is consistent with the published roles of its highly conserved homologues in *E. coli* and *P. aeruginosa* (Gerding et al., 2009; Jorgenson et al., 2014; Yahashiri et al., 2015); however, the subcellular localization pattern of MltC homologs in any organism has not been previously reported.

Outer membrane insertion is not required for MltC and RlpA LTG activities

Both LTGs are predicted OM proteins with well-conserved OM target lipoboxes LXGC (Fig. S10A) (Babu et al., 2006), so we postulated that this localization may be important for either their recruitment to the midcell or for their function as septal cleavage enzymes. To test this, we substituted the OM targeting signal sequences of MltC and RlpA N-terminal mCherry fusions with the periplasmic signal sequence of thiol disulfide oxidoreductase, DsbA. Surprisingly, these soluble versions of both proteins were able to complement the ∆2 LTG chaining phenotype in LB (Fig. 7A) yet did so with what appeared to be reduced localization to the midcell (Fig. S10B). Thus, direct OM attachment via lipidation is not essential to the function of RlpA nor MltC in LB, though this does not preclude indirect association via interactions with other OM proteins. However, the functionality of DsbA^{SS}-RlpA₁₈₋₂₆₃ was not absolute under all conditions; expression of this construct in a ∆2 LTG background during growth in low-salt LB resulted in the formation of severe morphological aberrations in ~12% of cells (n > 400), including short filaments and bulging at the midcell (Fig. 7B). Induction of this defect was not dominant as the DsbAss-RlpA₁₈₋₂₆₃ mutant did not affect the morphology of WT in low-salt LB, nor did over-expression of RlpA-mCherry retaining its native signal sequence affect the morphology of the ∆2 LTG mutant in low-salt LB (Fig. S10C and D). Despite the apparent division defect induced by soluble DsbA^{SS}-RlpA₁₈₋₂₆₃ expression, the mis-localized protein could still restore growth of the ∆2 LTG mutant on low-salt LB (Fig. S10C and D). The phenotype induced by the DsbA^{SS}-RlpA₁₈₋₂₆₃ mutant in low-salt medium was more similar to filamentous division mutants than to other chaining autolysin mutants. Though we did not explore this further, we thus suspect that RlpA may have conserved roles in division other than septal resolution, roles that may explain why *E. coli* retains an LTG-deficient homologue of RlpA.

RlpA and MltC are late division proteins

Division proteins are often recruited specifically to midcell. We generated stable, functional (Fig. S9A and B) translational C-terminal fusions of MltC and RlpA to mCherry to track localization throughout growth and division. To determine when these LTGs are recruited to the septum, we co-expressed the LTG-mCherry fusions with fluorescent fusions of FtsZ, the highly conserved cytoskeletal element that initiates assembly of the division complex and FtsN, the late stage division protein shown to trigger cytokinesis (Egan and Vollmer, 2013). Both RlpA-mCherry and MltC-mCherry clearly localized to the midcell and co-expression of FtsZ-YFP or YFP-FtsN further revealed that both LTGs arrive closer to or after FtsN recruitment to the septum, indicating that RlpA and MltC are likely late division proteins (Fig. 6A–D). RlpA midcell localization is consistent with the published roles of its highly conserved homologues in *E. coli* and *P. aeruginosa* (Gerding et al., 2009; Jorgenson et al., 2014; Yahashiri et al., 2015); however, the subcellular localization pattern of MltC homologs in any organism has not been previously reported.

Outer membrane insertion is not required for MltC and RlpA LTG activities

Both LTGs are predicted OM proteins with well-conserved OM target lipoboxes LXGC (Fig. S10A) (Babu et al., 2006), so we postulated that this localization may be important for either their recruitment to the midcell or for their function as septal cleavage enzymes. To test this, we substituted the OM targeting signal sequences of MltC and RlpA N-terminal mCherry fusions with the periplasmic signal sequence of thiol disulfide oxidoreductase, DsbA. Surprisingly, these soluble versions of both proteins were able to complement the ∆2 LTG chaining phenotype in LB (Fig. 7A) yet did so with what appeared to be reduced localization to the midcell (Fig. S10B). Thus, direct OM attachment via lipidation is not essential to the function of RlpA nor MltC in LB, though this does not preclude indirect association via interactions with other OM proteins. However, the functionality of DsbA^{SS}-RlpA₁₈₋₂₆₃ was not absolute under all conditions; expression of this construct in a ∆2 LTG background during growth in low-salt LB resulted in the formation of severe morphological aberrations in ~12% of cells (n > 400), including short filaments and bulging at the midcell (Fig. 7B). Induction of this defect was not dominant as the DsbAss-RlpA₁₈₋₂₆₃ mutant did not affect the morphology of WT in low-salt LB, nor did over-expression of RlpA-mCherry retaining its native signal sequence affect the morphology of the ∆2 LTG mutant in low-salt LB (Fig. S10C and D). Despite the apparent division defect induced by soluble DsbA^{SS}-RlpA₁₈₋₂₆₃ expression, the mis-localized protein could still restore growth of the ∆2 LTG mutant on low-salt LB (Fig. S10C and D). The phenotype induced by the DsbA^{SS}-RlpA₁₈₋₂₆₃ mutant in low-salt medium was more similar to filamentous division mutants than to other chaining autolysin mutants. Though we did not explore this further, we thus suspect that RlpA may have conserved roles in division other than septal resolution, roles that may explain why *E. coli* retains an LTG-deficient homologue of RlpA.

© 2019 John Wiley & Sons Ltd, *Molecular Microbiology, 112*, 1100–1115

Fig. 5. Lytic transglycosylase activity is required for septal PG resolution.

A. Expression of chromosomal Ptac: shyC, Ptac: shyA, Ptac: amIB nlpD envC or Ptac: mltE Ec was induced with 1 mM IPTG in a ∆2 LTG background, grown in LB at 37°C to ~OD₆₀₀ 0.6 and imaged on agarose pads. Analysis was conducted as described for Fig. 4A.

B. An overnight culture of ∆2 LTG Ptac: mltE Ec was induced with 1 mM IPTG in a ∆2 LTG mutant (Fig. S8) and incubated for 18 h at 30°C. All data are representative of at least two biological replicates.

2017; Byun et al., 2018), and has no known homolog in *V. cholerae*. Overexpression of mltE was not toxic in a WT background, suggesting that it primarily digests septal PG in the *V. cholerae* ∆2 LTG mutant (Fig. S8). MltE has a strong preference for uncrosslinked PG (Lee et al., 2013; Dik et al., 2017; Byun et al., 2018), providing a possible explanation for its lack of general toxicity, since the main body of the cell’s PG is generally crosslinked (Desmarais et al., 2015). Incidentally, this also suggests that septal PG in ∆2 LTG is largely uncrosslinked; which would be consistent with completed or concurrent amidase or endopeptidase activity. MltE was also able to rescue ∆2 LTG growth in low-salt media (Fig. 5B). In combination, these observations suggest that some characteristic of the division septum requires the activity of LTGs over other autolysins to allow for septal resolution and daughter cell separation.

RlpA and MltC are late division proteins

Division proteins are often recruited specifically to midcell. We generated stable, functional (Fig. S9A and B) translational C-terminal fusions of MltC and RlpA to mCherry to track localization throughout growth and division. To determine when these LTGs are recruited to the septum, we co-expressed the LTG-mCherry fusions with fluorescent fusions of FtsZ, the highly conserved cytoskeletal element that initiates assembly of the division complex and FtsN, the late stage division protein shown to trigger cytokinesis (Egan and Vollmer, 2013). Both RlpA-mCherry and MltC-mCherry clearly localized to the midcell and co-expression of FtsZ-YFP or YFP-FtsN further revealed that both LTGs arrive closer to or after FtsN recruitment to the septum, indicating that RlpA and MltC are likely late division proteins (Fig. 6A–D). RlpA midcell localization is consistent with the published roles of its highly conserved homologues in *E. coli* and *P. aeruginosa* (Gerding et al., 2009; Jorgenson et al., 2014; Yahashiri et al., 2015); however, the subcellular localization pattern of MltC homologs in any organism has not been previously reported.
Discussion

LTG activity plays a conserved role in septal PG resolution

We report here that two LTGs, RlpA and MltC, are septum-specific enzymes with crucial roles in daughter cell separation in *V. cholerae*. To our knowledge, this is the first report of a physiological role for any housekeeping LTG in the cholera pathogen and the second direct report of a physiological role for MltC (Monteiro *et al.*, 2011). Follow-up studies will be required to determine how septal LTGs interact with the divisome and the PG structural reasons for why MltC and RlpA specifically contribute so significantly to the separation of daughter cells. RlpA and MltC are well conserved among proteobacteria (Artola-Recols *et al.*, 2014; Yahashiri *et al.*, 2015) yet despite this conservation, mutations in either RlpA (Jorgenson *et al.*, 2014), MltC, or both fail to produce phenotypes in the classic model system *E. coli*. This study serves to highlight the importance of variety in microbial perspective to understand key processes in bacterial physiology. At the same time, the high conservation of RlpA, especially among Gram-negatives (Yunck *et al.*, 2016), and the aberrant morphology of a Δ2 LTG mutant overexpressing dsbA^α-rlpA in low salt suggests that septal LTGs may also have other underappreciated roles in bacterial cell division and daughter cell separation in other Gram-negative pathogens.

A ‘Cleave and Clear’ LTG-dependent model of daughter cell separation

With the addition of RlpA and MltC to the division complex, we can add more detail to the molecular landscape of the septal cell wall. We observed that the chaining defect of the ΔamiB mutant was slightly more severe than the Δ2 LTG mutant, suggesting that the majority
of PG shared between daughter cells at the septum is connected by peptide crosslinks that can be removed by amidase activity. However, the chaining phenotype of the Δ2 LTG mutant implies that there is shared septal PG that cannot be resolved by amidase activity. It is ideally expected, from the close association of septal PG synthesis with rotating FtsZ filaments, that PG strands are inserted perpendicular to the long cell axis (Daniel and Errington, 2003; Bisson-Filho et al., 2017; Yang et al., 2017). Our findings lead us to speculate that the cell division machinery stochastically generates PG strands that are deposited and/or elongated at a nonideal angle such that they transect the septal plane to create a bridge between daughter cells (Fig. 8). The PG synthesis machinery may only need to slip from one side of the leading edge of cytokinesis to the other to generate such a strand that is incorporated into both daughter cell sacculi. Since amidase activity is precisely controlled by activators NlpD and EnvC (Möll et al., 2014), the radius of amidase activity is likely highly restricted. Some aberrantly deposited glycan strands might then be crosslinked outside of the range of amidase activity, requiring LTGs as backup enzymes to cleave connecting PG left behind after amidase activity is complete. Consistent with this idea, RlpA in P. aeruginosa acts endolytically on denuded glycan strands (Jorgenson et al., 2014; Lee et al., 2017) and has been proposed to follow AmiB to cleave remaining bridging strands. MltC may function to resolve septal PG in two ways. It might also perform a similar function to RlpA, as some endolytic activity has been attributed E. coli MltC (Artola-Recolons et al., 2014). One might also envision that long PG strands between daughter cells, even those that are no longer covalently linked to the PG network, might still present an obstacle to OM invagination. MltC, which in E. coli has been shown to also be processive and exolytic, but inactive on cross-linked PG strands (Artola-Recolons et al., 2014), could be responsible for clearing such debris from the path of OM invagination.

We suggest that a function to remove aberrant septal PG strands would be particularly important for V. cholerae, which completes the final stages of cell division with astonishing speed (Galli et al., 2017). While the model bacteria E. coli, B. subtilis and C. crescentus have mature divisomes by 50% of the cell cycle (Aarsman et al., 2005; Gamba et al., 2009; Goley et al., 2011) and E. coli and B. subtilis both encode multiple amidases to assist in daughter cell separation (Heidrich et al., 2001; Firiczuk and Bochtler, 2007), V. cholerae encodes a single amidase (Möll et al., 2014) and septation occurs only in the final 10% of its cell cycle (Galli et al., 2017). This is likely to increase the chance for errors to occur, which would create a need to efficiently remove spatial obstructions, including PG aberrantly crosslinked or uncrosslinked PG debris. The absence of a strong chaining phenotype in E. coli ΔmltC ΔrlpA ΔmitE (and the need to delete further LTGs to elicit a weak version of such a phenotype) may indeed reflect this species’ slower division process, resulting in fewer errors. It should also be noted that repression of P_lac is somewhat leaky (Rosano and Ceccarelli, 2014) and that complementation of either the Δ2 LTG or ΔamiB chaining phenotype suggests that little autolytic activity is actually required for separation.

The exponential phase-dependent manner of the ΔamiB and Δ2 LTG chaining phenotype suggests that AmiB and RlpA/MltC functions are redundant with at least one other autolysin whose activity alone is insufficient to sustain daughter cell separation at the fast rate...
imposed by exponential growth. We hypothesize that RlpA/MltC and AmiB maintain separate functions and that chain resolution in stationary phase is a reflection of each system requiring a distinct autolytic substitute (or group of autolysins) to mediate chain resolution in its absence. For the amidase, this substitute could be D,D or L,D endopeptidases, for LTGs the substitute could be other remaining LTGs. Thus, RlpA, MltC and AmiB compose the primary group of autolysins responsible for septal resolution and other LTGs or endopeptidases that are secondary to RlpA/MltC or AmiB, respectively, cannot support daughter cell separation in the absence of all three primary septal autolysins. Future work will address the intricate redundancy relationships between these diverse groups of autolysins.

Experimental procedures

Strains, media and growth conditions

All *V. cholerae* strains in this study are derivatives of *V. cholerae* WT El Tor strain N16961 (Heidelberg et al., 2000) and *E. coli* strains are derivatives of *E. coli* K-12 strain MG1655 (Blattner et al., 1997).

Strains were grown at 30°C or 37°C in Luria–Bertani (LB, Fisher BioReagents #BP1425) broth with or without 1.5% NaCl, or in M9 medium containing 0.2% glucose (‘M9 Salts,’ 2006; ‘M9 minimal medium (standard),’ 2010, 2010). When required for selection or plasmid retention, growth media were supplemented with 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal, 40 µg ml⁻¹), streptomycin (200 µg ml⁻¹), kanamycin (5 µg ml⁻¹), carbenicillin (100 µg ml⁻¹) and/or chloramphenicol (5 µg ml⁻¹ for *V. cholerae* and 20 µg ml⁻¹ for *E. coli*).

Sucrose counterselection was performed on 10% sucrose LB medium without NaCl. Genes under P_tac or P_BAD control were induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) or 0.2% l-arabinose respectively. For lysis and envelope integrity assays, LB was supplemented with chlorophenol red-β-D-galactopyranoside (CPRG, 20 µg ml⁻¹, Sigma Aldrich # 10884308001), or sodium dodecyl sulfate (SDS), or strains were grown MacConkey Agar (Actero #FCM-133).

At least two replicates were completed per strain and condition for growth curves and growth dependent chaining experiments. For growth curves, strains were inoculated 1:100 into 200 µl of medium from an overnight culture and grown in a Bioscreen growth plate reader (Growth Curves America) at 37°C with random shaking of medium amplitude, and OD 600 readings at 5-min intervals. For chaining experiments with more than three time points, overnight cultures were diluted 1:100 into 200 ml of medium in a 500 ml non-baffled flask and incubated at 37°C with shaking. For experiments with three or fewer time points, overnight cultures were diluted 1:100 into 5 ml of medium in culture tubes.

Construction of plasmids and strains

All strains are derivatives of *V. cholerae* El Tor N16961 or *E. coli* MG1655. Strains, plasmids and primers are summarized in Table S1–S4. *E. coli* DH5α λpir was used for general cloning, while *E. coli* SM10 λpir or MFD λpir (Ferrières et al.,...
2010) were used for conjugation into *V. cholerae*. Plasmids were constructed using Gibson assembly (Gibson *et al.*, 2009).

V. cholerae chromosomal in-frame deletions were generated by amplifying 500bp up- and downstream of the gene of interest by PCR, cloning into vector pCVD442 (Donnenberg and Kaper, 1991) and conjugating into *V. cholerae* N16961 followed by sucrose counterselection. Briefly, conjugation was performed by mixing and pelleting equal volumes LB overnight culture of plasmid donor *E. coli* SM10 λpir or MFD λpir strains with recipient *V. cholerae*, spotting mixed pellet onto an LB (+600 µM diaminopimelic acid for MFD λpir), and incubating at 37°C for 3 h. Single colonies were first selected for on LB + sm200 + vector selection, followed by counterselection on salt-free LB + 10% sucrose and PCR verification of the deletion.

Ectopic, inducible chromosomal expression of proteins was achieved by cloning the gene(s) of interest open reading frame with either the native 20bp upstream sequence, a strong, consensus ribosome binding site (RBS) or no ribosome binding site into pTD101, a derivative of pJL1 (Miyata *et al.*, 2013) engineered to carry the lac promoter, lacIq, and a multiple cloning site for integration of expression constructs at the native lacZ locus. In particular, pAW51 for polycistronic co-expression *amiB*, nlpD and envC, was designed such that *amiB* was translated from a strong consensus RBS and the 20bp upstream regions containing the native RBS's of nlpD and envC gene were included between *amiB* and nlpD or nlpD and envC, respectively, to generate a three-gene transcriptional fusion under Ptac regulation. pTD101 derivatives were conjugated into *V. cholerae* as described above for pCVD442.

Depletion of RlpA was accomplished by using suicide vector pAM299 (Möll *et al.*, 2015) to place rlpA under Pbad control at its native locus. pAM299 was conjugated into *V. cholerae* as a single crossover, without counterselection. For fluorescent localization or detection of proteins by western blot, genes were cloned into pBAD33 (Guzman *et al.*, 1995) or pH100 (Dörr, Alvarez, *et al.*, 2015).

E. coli chromosomal in-frame deletions were generated using a combination of λ Red and FLP recombinase systems as previously described (Cherepanov and Wackernagel, 1995; Datsenko and Wanner, 2000; Murphy and Campellone, 2003). Briefly, plasmids pKD3 and pKD4 were used as templates for amplifying cmR and kanR cassette flanked by FLP recombinase sites with 50bp homology to the up- and downstream regions of the gene of interest. Electrocompetent MG1655 carrying the λ Red recombinase system on pKM208 was transformed with the PCR product amplified from pKD3/4 and recombinants selected for on LB + kan50 or cm20. The gene replacements were moved into a clean MG1655 background by P1 phage transduction (Thomason *et al.*, 2007) and the resulting strain transformed with pCP20 carrying the FLP recombinase. Finally, pCP20 was induced and cured at 37°C and candidates screened for loss of antibiotic resistance and PCR verification of the chromosomal gene deletion.

Microscopy

Cells from liquid culture were imaged without fixation on 0.8% agarose pads containing the same medium from the relevant experiment using a Leica DMI8 inverted microscope. Phase-contrast images of chaining mutants were analyzed manually to calculate the number of cells per chain in >100 chains. Raw phase and fluorescent images were analyzed in Oufti (Paintdakhi *et al.*, 2016) using the preset *E. coli* M9 subpixel parameters for calculation of cell width and length and for generation of fluorescent signal localization ‘demographs’.

Western blot analysis

Expression of translational mCherry fusions was induced in WT *V. cholerae* with 0.2% arabinose for pBAD33 or 1 mM IPTG for pH100 and lacZ::Ptac in LB and grown to OD~0.6. Cells were harvested by centrifugation (9500 g, 15 min) at room temperature and resuspended in 1% SDS + 10 mM dithiothreitol (DTT) lysis buffer. Resuspended cells were incubated at 95°C for 3 min, then sonicated 4 × 5 s at 20% amplitude. Standard western blots against mCherry were performed using polyclonal mCherry antibody (Genetex #GTX59788) and detection by IRDye 800CW secondary antibody (Li-cor #926-32211). After imaging for mCherry, the same blots were then re-incubated with monoclonal RpoA antibody (BioLegend # 663104) detected by IRDye 800CW secondary antibody on an Odyssey CLx Imaging device (Li-cor).

Acknowledgements

We thank Matthew Jorgenson (University of Arkansas for Medical Sciences) and all members of the Dörr lab for helpful discussion. We also thank the Waldor lab for sharing plasmids pBAD33 yfp-ftsN and pBAD33 yfp-ftsZ as well as the faculty, staff and students at the Weill Institute for Cell and Molecular Biology (WICMB) for sharing equipment and resources. Research in the Dörr lab is supported by the NIH/ NIAID (1R01 AI143704-01).

Author contributions

AIW and TD have made major contributions to the design of the study, the collection, analysis and interpretation of data and writing of the manuscript. VJR, ST and BR have made major contributions to the collection and analysis of data. KW has made major contributions to the analysis of data. Authors declare no conflict of interest.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Aarsman, M.E.G., Piette, A., Fraipont, C., Vinkenvleugel, T.M.F., Nguyen-Dístèche, M. and den Blaauwen, T. (2005)
Maturation of the *Escherichia coli* divisome occurs in two steps. *Molecular Microbiology*, 55, 1631–1645. https://doi.org/10.1111/j.1365-2958.2005.04502.x

Artola-Recols, C., Lee, M., Bernardo-García, N., Blázquez, B., Hesek, D., Burtal, S.G., et al. (2014) Structure and cell wall cleavage by modular lytic transglycosylase MltC of *Escherichia coli*. *ACS Chemical Biology*, 9, 2058–2066. https://doi.org/10.1021/cb50439c

Babu, M.M., Priya, M.L., Selvan, A.T., Madera, M., Gough, J., Aravind, L., et al. (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. *Journal of Bacteriology*, 188, 2761–2773. https://doi.org/10.1128/JB.188.8.2761-2773.2006

Bisson-Filho, A.W., Hsu, Y.-P., Squire, G.R., Kuru, E., Wu, F., Jukes, C., et al. (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. *Science*, 355, 739–743. https://doi.org/10.1126/science.aak9973

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., et al. (1997) The complete genome sequence of *Escherichia coli* K-12. *Science*, 277, 1453–1462. https://doi.org/10.1126/science.277.5331.1453

Byun, B., Mahasenan, K.V., Dix, D.A., Marous, D.R., Speri, E., Kumarasiri, M., et al. (2018) Mechanism of the *Escherichia coli* MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly. *Scientific Reports*, 8, 4110. https://doi.org/10.1038/s41598-018-22527-y

Cava, F., de Pedro, M.A., Lam, H., Davis, B.M. and Waldor, M.K. (2011) Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. *The EMBO Journal*, 30, 3442–3453. https://doi.org/10.1038/emboj.2011.246

Cava, F., Lam, H., de Pedro, M.A. and Waldor, M.K. (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. *Cellular and Molecular Life Sciences*, 68, 817–831. https://doi.org/10.1007/s00018-010-0571-8

Chan, Y.A., Hackett, K.T. and Dillard, J.P. (2012) The lytic transglycosylases of *Neisseria gonorrhoeae*. *Microbial Drug Resistance*, 18, 271–279. https://doi.org/10.1089/mdr.2012.0001

Chaput, C., Ecobichon, C., Pouradier, N., Rousselle, J.-C., Namane, A. and Boneca, I.G. (2016) Role of the N-Acetlymuramoyl-l-Alanyl Amidase, AmiA, of *Helicobacter pylori* in peptidoglycan metabolism, daughter cell separation, and virulence. *Microbial Drug Resistance*, 22, 477–486. https://doi.org/10.1089/mdr.2016.0070

Cherepanov, P.P. and Wackernagel, W. (1995) Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene*, 158, 9–14. https://doi.org/10.1016/0378-1119(95)00193-A

Cho, H., Vivagg, C.N., Kapoor, M., Barry, Z., Rohs, P.D.A., Suh, H., et al. (2016) Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. *Nature Microbiology*, 1, 16172. https://doi.org/10.1038/nmicrobiol.2016.172

Cloud, K.A. and Dillard, J.P. (2002) A lytic transglycosylase of *Neisseria gonorrhoeae* is involved in peptidoglycan-derived cytotoxin production. *Infection and Immunity*, 70, 2752–2757. https://doi.org/10.1128/IAI.70.6.2752

Cloud, K.A. and Dillard, J.P. (2004) Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of *Neisseria gonorrhoeae*. *Journal of Bacteriology*, 186, 7811–7814. https://doi.org/10.1128/JB.186.22.7811-7814.2004

Crépin, S., Ottosen, E.N., Peters, K., Smith, S.N., Himpsl, S.D., Vollmer, W., et al. (2018) The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of *Acinetobacter baumannii*. *Molecular Microbiology*, 109, 745–762. https://doi.org/10.1111/mmi.14000

Daniel, R.A. and Errington, J. (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. *Cell*, 113, 767–776. https://doi.org/10.1016/S0092-8674(03)00421-5

Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proceedings of the National Academy of Sciences*, 97, 6640–6645. https://doi.org/10.1073/pnas.120163297

Desmarais, S.M., Tropini, C., Miguel, A., Cava, F., Mondes, R.D., de Pedro, M.A., et al. (2015) High-throughput, highly sensitive analyses of bacterial morphogenesis using ultra performance liquid chromatography. *Journal of Biological Chemistry*, 290, 31090–31100. https://doi.org/10.1074/jbc.M115.661660

Dik, D.A., Marous, D.R., Fisher, J.F. and Mobashery, S. (2017) Lytic transglycosylases: concinnity in concision of the bacterial cell wall. *Critical Reviews in Biochemistry and Molecular Biology*, 52, 503–542. https://doi.org/10.1080/10409238.2017.1337705

Donnenberg, M.S. and Kaper, J.B. (1991) Construction of an eae deletion mutant of enteropathogenic *Escherichia coli* by using a positive-selection suicide vector. *Infection and Immunity*, 59, 4310–4317. URL https://www.ncbi.nlm.nih.gov/pubmed/1937792

Dörr, T., Cava, F., Lam, H., Davis, B.M. and Waldor, M.K. (2013) Substrate specificity of an elongation-specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of *Vibrio cholerae*. *Molecular Microbiology*, 89, 949–962. https://doi.org/10.1111/mmi.12323

Dörr, T., Alvarez, L., Delgado, F., Davis, B.M., Cava, F. and Waldor, M.K. (2015) A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. *Proceedings of the National Academy of Sciences*, 113, 404–409. https://doi.org/10.1073/pnas.152033113

Egan, A.J.F. and Vollmer, W. (2013) The physiology of bacterial cell division. *Annals of the New York Academy of Sciences*, 1277, 8–28. https://doi.org/10.1111/j.1749-6632.2012.06818.x

Ferrière, L., Hémery, G., Nham, T., Guérout, A.-M., Mazel, D., Beloin, C., et al. (2010) Silent mischief: bacteriophage mu insertions contaminate products of *Escherichia coli* random mutagenesis performed using suicidal transposon
delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. *Journal of Bacteriology*, **192**, 6418–6427. https://doi.org/10.1128/JB.00621-10

Firczuk, M. and Bochtler, M. (2007) Folds and activities of peptidoglycan amidases. *FEMS Microbiology Reviews*, **31**, 676–691. https://doi.org/10.1111/j.1574-6976.2007.00084.x

Galli, E., Paly, E. and Barre, F.-X. (2017) Late assembly of the *Vibrio cholerae* cell division machinery postseparation to the last 10% of the cell cycle. *Scientific Reports*, **7**, 1–11. https://doi.org/10.1038/srep44505

Gamba, P., Veening, J.-W., Saunders, N.J., Hamoen, L.W. and Daniel, R.A. (2009) Two-step assembly dynamics of the *Bacillus subtilis* divisome. *Journal of Bacteriology*, **191**, 4186–4194. https://doi.org/10.1128/JB.01758-08

Gerdig, M.A., Liu, B., Bendezú, F.O., Hale, C.A., Bernhardt, T.G. and de Boer, P.A.J. (2009) Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in *Escherichia coli* cell constriction. *Journal of Bacteriology*, **191**, 7383–7401. https://doi.org/10.1128/JB.00811-09

Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutcheson, C.A., Ill and Smith, H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods*, **6**, 343–345. https://doi.org/10.1038/nmeth.1318

Goley, E.D., Yeh, Y.-C., Hong, S.-H., Fero, M.J., Abeliuk, E., McAdams, H.H., et al. (2011) Assembly of the Caulobacter cell division machine. *Molecular Microbiology*, **80**, 1680–1698. https://doi.org/10.1111/j.1365-2958.2011.07677.x

Guzman, L.M., Belin, D., Carson, M.J. and Beckwith, J. (2012) Novel type of murein transglycosylase in *Pseudomonas aeruginosa*. *Molecular Microbiology*, **93**, 113–128. https://doi.org/10.1111/mmi.12643

Guilder, J.V., Mirelman, D., Sharon, N. and Schwarz, U. (1975) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *Cell*, **67**, 759–768. https://doi.org/10.1128/jb.asm.org/content/180/13/3441.abstract

Gutierrez, J.V., Ibrahim, H., Alm, E.J. and Valdes, M. (2009) Folds and activities of the *Bacillus subtilis* divisome. *Journal of Bacteriology*, **191**, 4186–4194. https://doi.org/10.1128/JB.01758-08

Höltje, J.V., Mirelman, D., Sharon, N. and Schwarz, U. (1975) Membrane-bound lytic endotransglycosylase in *Escherichia coli*. *Journal of Bacteriology*, **180**, 3441–3447. URL http://jb.asm.org/content/180/13/3441.abstract

Hale, C.A., Bernhardt, G., Gabb, A., Gabb, A., et al. (2014) Cell separation in *Vibrio cholerae* is mediated by a single amidase whose action is modulated by two nonredundant activators. *Journal of Bacteriology*, **196**, 3937–3948. https://doi.org/10.1128/JB.02094-14

Lee, M., Hesek, D., Larrull, L.I., Lastochkin, E., Pi, H., Boggs, B., et al. (2013) Reactions of all *Escherichia coli* lytic transglycosylases with bacterial cell wall. *Journal of the American Chemical Society*, **135**, 3311–3314. https://doi.org/10.1021/ja309036q

Lee, M., Hesek, D., Dik, D.A., Fishovitz, J., Lastochkin, E., Boggs, B., et al. (2017) From genome to proteome to elucidation of reactions for all eleven known lytic transglycosylases from *Pseudomonas aeruginosa*. *Angewandte Chemie International Edition*, **56**, 2735–2739. https://doi.org/10.1002/anie.201611279

M9 Minimal Medium (Standard). (2010). *Cold Spring Harbor Protocols*. 2010. https://doi.org/10.1101/pdb.rec12295

M9 Salts. (2006). *Cold Spring Harbor Protocols*, **2006**. https://doi.org/10.1101/pdb.rec614

Miyata, S.T., Unterweger, D., Rudko, S.P. and Pukatzki, S. (2013) Dual expression profile of type VI secretion system immunity genes protects pandemic *Vibrio cholerae*. *PLoS Pathog.*, **9**, e1003752. https://doi.org/10.1371/journal.ppat.1003752

Möll, A., Dörr, T., Alvarez, L., Chao, M.C., Davis, B.M., Cava, F., et al. (2014) Cell separation in *Vibrio cholerae* is mediated by a single amidase whose action is modulated by two nonredundant activators. *Journal of Bacteriology*, **196**, 3937–3948. https://doi.org/10.1128/JB.02094-14

Möll, A., Dörr, T., Alvarez, L., Davis, B.M., Cava, F. and Waldor, M.K. (2015) A D, D-carboxypeptidase is required for β-lactam sensitivity in *Vibrio cholerae* halotolerance. *Environmental Microbiology*, **17**, 527–540. https://doi.org/10.1111/1462-2920.12779

Monteiro, C., Fang, X., Ahmad, I., Gomelsky, M. and Romling, U. (2011) Regulation of biofilm components in *Salmonella enterica* serovar typhimurium by lytic transglycosylases involved in cell wall turnover. *Journal of Bacteriology*, **193**, 6443–6451. https://doi.org/10.1128/JB.00425-11

Murphy, K.C. and Campellone, K.G. (2003) Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic *E. coli*. *BMC Molecular Biology*, **4**, 1–12. https://doi.org/10.1186/1471-2199-4-11

© 2019 John Wiley & Sons Ltd, *Molecular Microbiology*, **112**, 1100–1115
Nambu, T., Minamino, T., Macnab, R.M. and Kutsukake, K. (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. Journal of Bacteriology, 181(5), 1555–1561. URL http://jb.asm.org/content/181/5/1555.abstract

Osawa, M. and Erickson, H.P. (2018) Turgor pressure and possible constriction mechanisms in bacterial division. Frontiers in Microbiology, 9, 111. https://doi.org/10.3389/fmicb.2018.00111

Paintdakhi, A., Parry, B., Campos, M., Irron, I., Elf, J., Surovtsev, I., et al. (2016) Oufti: an integrated software package for high-accuracy, high-throughput quantitative. Molecular Microbiology, 99, 767–777. https://doi.org/10.1111/mmi.13264

Paradis-Bleau, C., Kritikos, G., Orlova, K., Tysas, A. and Bernhardt, T.G. (2014) A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLOS Genetics, 10, e1004056. https://doi.org/10.1371/journal.pgen.1004056

Peters, N.T., Dinh, T. and Bernhardt, T.G. (2011) A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidas and their activators. Journal of Bacteriology, 193, 4973–4983. https://doi.org/10.1128/JB.00316-11

Potturi, L.-P., Kannan, S. and Young, K.D. (2012) ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. Journal of Bacteriology, 194, 5334–5342. https://doi.org/10.1128/JB.00859-12

Powell, A.J., Liu, Z.-J., Nicholas, R.A. and Davies, C. (2006) Crystal structures of the lytic transglycosylase MltA from N. gonorrhoeae and E. coli: insights into interdomain movements and substrate binding. Journal of Molecular Biology, 359, 122–136. https://doi.org/10.1016/j.jmb.2006.03.023

Priyadarshini, R., Popham, D.L. and Young, K.D. (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidasides in Escherichia coli. Journal of Bacteriology, 188, 5345–5355. https://doi.org/10.1128/JB.00476-06

Priyadarshini, R., de Pedro, M.A. and Young, K.D. (2007) Role of peptidoglycan amidasides in the development and morphology of the division septum in Escherichia coli. Journal of Bacteriology, 189, 5334–5347. https://doi.org/10.1128/JB.00415-07

Ragland, S.A., Schaub, R.E., Hackett, K.T., Dillard, J.P. and Criss, A.K. (2017) Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cellular Microbiology, 19, e12662. https://doi.org/10.1111/cmi.12662

Rojas, E.R., Billings, G., Odermatt, P.D., Auer, G.K., Zhu, L., Miguel, A., et al. (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature, 559, 617–621. https://doi.org/10.1038/s41586-018-0344-3

Rosano, G.L. and Ceccarelli, E.A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172

Santín, Y.G. and Cascales, E. (2017) Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Reports, 18, 138–149. https://doi.org/10.15252/embr.201643206

van Straaten, K.E., Dijkstra, B.W., Vollmer, W. and Thunnissen, A.-M.W.H. (2005) Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. Journal of Molecular Biology, 352, 1068–1080. https://doi.org/10.1016/j.jmb.2005.07.067

van Straaten, K.E., Barends, T.R.M., Dijkstra, B.W. and Thunnissen, A.-M.W.H. (2007) Structure of Escherichia coli lysytransglycosylase MltA with bound chitoheptosamine: implications for peptidoglycan binding and cleavage. Journal of Biological Chemistry, 282, 21197–21205. https://doi.org/10.1074/jbc.M701818200

Taguchi, A., Welsh, M.A., Marmont, L.S., Lee, W., Sjödt, M., Kruse, A.C., et al. (2019) FtsW is a peptidoglycan polymer that is functional only in complex with its cognate penicillin-binding protein. Nature Microbiology, 4, 587–594. https://doi.org/10.1038/s41564-018-0345-x

Thomason, L.C., Costantino, N. and Court, D.L. (2007) E. coli genome manipulation by P1 transduction. Current Protocols in Molecular Biology, 79, 1.171–1.17.8. https://doi.org/10.1002/0471142727.mb0117s79

Tsui, H.-C.T., Zheng, J.J., Magallon, A.N., Ryan, J.D., Yunck, R., Rued, B.E., et al. (2016) Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Molecular Microbiology, 100, 1039–1065. https://doi.org/10.1111/mmi.13366

Uehara, T., Dinh, T. and Bernhardt, T.G. (2009) LtyM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. Journal of Bacteriology, 191, 5094–5107. https://doi.org/10.1128/JB.00505-09

Uehara, T., Parzych, K.R., Dinh, T. and Bernhardt, T.G. (2010). Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. The EMBO Journal, 29, 1412–1422. https://doi.org/10.1038/emboj.2010.36

Williams, A.H., Wheeler, R., Rateau, L., Malosse, C., Chamot-Rooke, J., Haouz, A., et al. (2018) A step-by-step in crystallo guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptido-glycan-degrading lytic transglycosylase. Journal of Biological Chemistry, 293, 6000–6010. https://doi.org/10.1074/jbc.RA117.001095

Williams, A.H., Wheeler, R., Deghmeh, A.-E., Santecchia, I., Impens, F., Bastos, P.A.D., et al. (2019) Crippling the bacterial cell wall molecular machinery. BioRxiv, 607697. https://doi.org/10.1101/607697

Yahashiri, A., Jorgenson, M.A. and Weiss, D.S. (2015) Bacterial SPOR domains are recruited to septal peptido-glycan by binding to glycan strands that lack stem peptides. Proceedings of the National Academy of Sciences, 112, 11347–11352. https://doi.org/10.1073/pnas.1508536112

Yang, D.C., Peters, N.T., Parzych, K.R., Uehara, T., Markovski, M. and Bernhardt, T.G. (2011) An ATP-binding cassette transporter-like complex governs cell-wall
hydrolysis at the bacterial cytokinetic ring. *Proceedings of the National Academy of Sciences*, **108**, 18209–18210.

Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K.C. and Xiao, J. (2017). GTPase activity–coupled treadmill- ing of the bacterial tubulin FtsZ organizes septal cell wall synthesis. *Science*, **355**, 744–747. https://doi.org/10.1126/science.aak9995

Yunck, R., Cho, H. and Bernhardt, T.G. (2016) Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. *Molecular Microbiology*, **99**, 700–718. https://doi.org/10.1111/mmi.13258

Zhao, H., Patel, V., Helmann, J.D. and Dörr, T. (2017) Don’t let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. *Molecular Microbiology*, **106**, 847–860. https://doi.org/10.1111/mmi.13853

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.