Ewa Juźwik, Artur Moskała, Krzysztof Woźniak, Paweł Kopacz

Ocena przydatności pośmiertnej tomografii komputerowej w diagnostyce obrażeń narządów miąższowych jamy brzusznej w odniesieniu do sądowo-lekarskiej sekcji zwłok

Evaluation of usefulness of post-mortem computed tomography in the diagnosis of abdominal parenchymal organ injuries compared to medicolegal autopsy findings

Katedra i Zakład Medycyny Sądowej, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków, Polska
Chair and Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland

Streszczenie

Wstęp: Pośmiertna tomografia komputerowa (PMCT) jest badaniem szczególnie przydatnym przy ocenie zmian urazowych w praktyce sądowo-lekarskiej. Jej użyteczność w diagnostyce struktur miąższowych ciała ludzkiego nie jest jednak oczywista.

Cel pracy: Badanie miało na celu ocenę przydatności PMCT w rozpoznawaniu uszkodzeń narządów miąższowych (wątroby, trzustki, śledziony i nerek) oraz obecności krwi w jamie brzusznej.

Materiał i metody: Badaniem objęto populację osób zmarłych, których sądowo-lekarską sekcję zwłok przeprowadzono w Katedrze i Zakładzie Medycyny Sądowej Collegium Medicum Uniwersytetu Jagiellońskiego w Krakowie. Zakwalifikowano do niego przypadki zgonów gwałtownych z obecnością tępych urazów. We wszystkich przypadkach badanie sekcyjne poprzedzano badaniem PMCT. Za pomocą obu metod poszukiwano objawów uszkodzenia narządów miąższowych oraz obecności krwi w jamie brzusznej. Obserwacje poczynione podczas autopsji traktowano jako „złoty standard”, do którego porównywano wyniki badań PMCT.

Wyniki: Uzyskane dane opracowano statystycznie, określając takie parametry, jak czułość, swoistość, wartość predykcyjna dodatnia i ujemna oraz wiarygodność. Wartości te ujęto w formie tabelarycznej.

Wnioski: Ocena przydatności PMCT w wykrywaniu obrażeń narządów miąższowych jamy brzusznej oraz obecności krwi w jamie brzusznej nie dała zadowalających rezultatów w zakresie wykorzystania PMCT w praktyce medyczno-sądowej jako narzędzia diagnostycznego porównywalnego z sekcją zwłok. Metoda ta wydaje się jednak obiecująca jako test przesiewowy wykluczający obecność rzeczonych obrażeń.

Słowa kluczowe: medycyna sądowa, pośmiertna tomografia komputerowa, PMCT, uraz tępy brzucha.

Abstract

Introduction: Post-mortem computed tomography (PMCT) is an examination technique which provides particular benefits in forensic medical practice in the evaluation of traumatic injuries. However, the usefulness of PMCT in the diagnosis of parenchymal structures in the human body is not obvious.

Aim of the study: To evaluate the usefulness of PMCT in the diagnosis of parenchymal organ injuries (liver, pancreas, spleen and kidneys) and the presence of blood in the abdominal cavity.
Material and methods: The study was conducted on a population of deceased persons who underwent medicolegal autopsy in the Chair and Department of Forensic Medicine, Jagiellonian University Medical College in Krakow. The study included cases of violent death with the presence of blunt-force trauma. In all cases studied, the autopsy examination was preceded by PMCT. Both methods were employed to identify signs of injury to parenchymal organs and the presence of blood in the abdominal cavity. Observations made during the autopsies were considered in this study as the gold standard to which the PMCT findings were compared.

Results: The data obtained in the study was analyzed statistically to determine a range of parameters including sensitivity, specificity, positive and negative predictive values, and reliability. The values were presented in a tabulated form.

Conclusions: The evaluation of usefulness of PMCT in the detection of abdominal parenchymal organ injuries and the presence of blood in the abdominal cavity failed to yield satisfactory results that would justify the application of PMCT in medicolegal practice as a diagnostic tool comparable to autopsy. However, promising results were obtained with respect to the suitability of PMCT as a screening test to exclude the presence of such injuries.

Key words: forensic medicine, post-mortem computed tomography, PMCT, blunt-force abdominal injury.

Material and methods: The study was conducted on the population of deceased persons who underwent medicolegal autopsy in the Chair and Department of Forensic Medicine, Jagiellonian University Medical College in Krakow. The study included cases of violent death with the presence of blunt-force trauma. In all cases studied, the autopsy examination was preceded by PMCT. Both methods were employed to identify signs of injury to parenchymal organs and the presence of blood in the abdominal cavity. Observations made during the autopsies were considered in this study as the gold standard to which the PMCT findings were compared.

Results: The data obtained in the study was analyzed statistically to determine a range of parameters including sensitivity, specificity, positive and negative predictive values, and reliability. The values were presented in a tabulated form.

Conclusions: The evaluation of usefulness of PMCT in the detection of abdominal parenchymal organ injuries and the presence of blood in the abdominal cavity failed to yield satisfactory results that would justify the application of PMCT in medicolegal practice as a diagnostic tool comparable to autopsy. However, promising results were obtained with respect to the suitability of PMCT as a screening test to exclude the presence of such injuries.

Key words: forensic medicine, post-mortem computed tomography, PMCT, blunt-force abdominal injury.
We wszystkich przypadkach badanie sekcjonowe poprzedzono badaniem PMCT na aparacie Somatom Emotion 16 (Siemens AG, Niemcy). Parametry badania: 130 kV, 50 i 240 mA, koliżacja 16 × 0,6, pitch 0,85 i 0,55. Badanie wykonywane w trzech serii: 1) głowa i szyja, 2) od szyi (powyżej poziomu barków) do miednicy (poniżej kośćń łożownych), 3) miednica i kończyny dolne. Z każdej z nich wykonywano rekonstrukcje na oknie miękkim i kostnym oraz dodatkowe okno płucne dla klatki pierwotnej. Grubość warstwy dla głowy i szyi wynosiła 0,75 mm, a dla tułowia i kończyn – 1,5 mm. Ewaluację w darmowym programie Osirix (Pixmeo SARL, Szwajcaria, ver. 5.0.2) przeprowadzili specjalista medyczny sądowy z ok. ośmioletnim doświadczeniem w wykonywaniu i ocenie pośmiertnych badań obrazowych CT oraz lekarz rezydent. Ocenie poddano rekonstrukcje obejmujące jamę brzuszną w oknie kostnym i miękkim.

W badaniach tomograficznych poszukiwano bezpośrednich objawów uszkodzenia narządów miąższowych (wątroby, śledziony, trzustki i nerek) – szczelin pęknięcia, miejscowej zmiany cieniowania miąższu, cech krwawienia do miąższu, fragmentacji, odłamków kostnych wbytnych w miąższ, przeemieszenia i wytrzewienia narządów oraz obszarów koagulacji powstałych uszkodzeń. Szukano też obrazów pośrednich: krwi, krwistego płynu, wylewów krwi lub krwistego płynu w jamie brzusznjej, w sąsiedztwie narządów miąższowych, jak między pętlami jelitowymi oraz w miednicy mniejszej. Za krew uznawano skupiska płynowe o cieniowaniu w zakresie 40–60 HU.

Ocena przydatności badania pośmiertną tomografią komputerową w diagnostyce obrażeń narządów miąższowych jamy brzusznej w odniesieniu do sądowo-lekarskiej sekcji zwłok

Ewa Juźwik, Artur Moskała, Krzysztof Woźniak, Paweł Kopacz

Collegium Medicum Uniwersytetu Jagiellońskiego w Krakowie w okresie od 1 stycznia 2016 r. do 30 marca 2016 r. oraz od 23 listopada 2016 r. do 29 maja 2018 r. Wstępnie do badania zakwalifikowano przypadki zgonów gwałtownych, w których uraz był spowodowany tępym narzędziem. Powyższe kryteria obejmowały śmierć w wyniku: wypadku drogowego (injury caused by injury caused by traffic accident including individuals hit or run over by a road vehicle, persons inside vehicles involved in traffic accidents), fall from a height, body crushing, being hit or run over by a train, and beating.

In all study cases, the autopsy was preceded by the post-mortem computed tomography (PMCT) examination performed using a Somatom Emotion 16 CT scanner (Siemens AG, Germany). The parameters of the examination included 130 kV, 50 and 240 mA, collimation 16 × 0.6, pitch 0.85 and 0.55. The examination was conducted in three series: 1) head and neck, 2) from the neck (above the shoulders) to the pelvis (below the pubic bones), 3) pelvis and lower limbs. Each of the areas scanned was reconstructed in both soft and bone windows, and additionally in the lung window for the thorax. The slice thickness used in head and neck scanning was 0.75 mm, and in trunk and limb scanning – 1.5 mm. The evaluation was performed using the Osirix freeware (Pixmeo SARL, Switzerland, version 5.0.2) by a forensic specialist with 8 years of experience in performing and evaluating post-mortem CT examinations, and a resident doctor. The evaluation was conducted for abdominal reconstructions in the bone and soft windows.

The CT examinations were focused on identifying direct signs of injury to parenchymal organs (liver, spleen, pancreas and kidneys) including fissures consistent with laceration, local changes in parenchymal shadowing, features of intraparenchymal haemorrhage, fragmentation, bone splinters driven into the parenchyma, organ displacement and evetration, and areas of post-injury coagulation. Indirect manifestations were also considered, including blood, bloody fluid, blood effusions around the organs, free air bubbles within the parenchyma, and organ contour abnormalities. In addition, cases involving the removal of a given organ were examined on the assumption that it had been damaged. In such cases, however, the severity of injury was not determined. Also, the presence of blood/bloody fluid in the abdominal cavity was assessed both in the vicinity of parenchymal organs and between the intestinal loops, and in the pelvis minor.

Blood was
Badania sekcyjne odbywały się tego samego dnia co badania tomograficzne, do 6 godzin od przeswietlenia zwłok. Wykorzystano klasyczną technikę sekcyjną: najpierw oceniano narządy i obecność krwi w jamie brzusznej in situ, następnie wątrobę i trzustkę wypreparowano w bloku oraz osobno śledzionę i nerki oglądano i nacinano poprzeznie w celu dokonania dalszej diagnostyki. Obserwacje z autopsji traktowano jako „złoty standard”, do którego odnoszono pozostałe porównania i obliczenia czułości, swoistości, wartości predykwencyjnej dodatniej i ujemnej oraz wiarygodności (dokładności) PMCT.
Ze względu na dużą różnorodność opisów uszkodzeń w protokołach sekcyjnych konieczne było ujednolicenie i usystematyzowanie stwierdzanych zmian pourazowych. Na potrzeby niniejszej pracy autorzy opracowali pięciostopniową skalę oraz dodatkowy szósty stopień dla podbiegnięć krwawych torebek nerek (tab. I).
Aby umożliwić porównanie obserwacji poczynionych podczas badania sekcyjnego, które uznano za „złoty standard”, oraz badania PMCT, objawy stwierdzane w badaniu tomograficznym podzielono w zależności od stopnia ciężkości. W tym celu również posłużyło się pięciostopniową skalą dla wątrob, śledziona oraz nerek oraz trzystalową skalą dla trzustki (tab. II i III).
Dodatkowo zestawiono dane odnoszące się do obecności krwi w jamie brzusznej. W zależności od ilości wymaczonej krwi dla sekcji zwłok przyjęto podział poniżej i powyżej 50 ml (tab. IV). Z kolei dla badania PMCT przyjęto dwa stopnie: brak lub obecność krwi (tab. V).

Tabela I. Stopnie uszkodzenia narządów miąższowych jamy brzusznej stwierdzone w badaniu sekcyjnym

Stopień/Grade	Uszkodzenie/Injury
0	Brak uszkodzeń/No injuries
I	Lekkie uszkodzenia – płytkie/pojedyncze pęknięcia/pęknięcia miąższu lub wnęki narządu Mild injuries – shallow lacerations/single laceration of the parenchyma or hilus
II	Uszkodzenia średniego stopnia – liczne/głębokie/rozległe pęknięcia Moderate injuries – multiple/deep/extensive lacerations
III	Ciężkie uszkodzenia – rozerwanie, rozkawałkowanie/wytrzewienie Severe injuries – rupture, fragmentation/eventration
IV	Brak narządu / Absence of organ
V*	Podbiegnięcia/wylewy krwawe torebek tłuszczowych / Contusions/blood effusions in the fatty capsules

*Jedynie dla nerek / Only for the kidneys
Zebrane dane poddano następującej analizie statystycznej:

- Obrażenia widoczne jednocześnie w badaniu PMCT i odnotowane podczas badania sekcyjnego traktowano jako prawdziwie pozytywne (TP).
- Obraz odpowiadający obrażeniom widocznym w badaniu PMCT, ale niepotwierdzony badaniem sekcyjnym traktowano jako fałszywie pozytywne (FP).

of extravasated blood (below and above 50 ml) was adopted (Table IV). For the PMCT examination, two options were considered: presence or absence of blood (Table V).

The data thus collected was analyzed statistically as follows:

- The injuries which were both seen on PMCT and identified by autopsy were interpreted as true positive (TP).
• Brak odnotowanych obrażeń zarówno w badaniu PMCT, jak i podczas sekcji traktowano jako prawdziwie negatywne (TN).
• Brak jednoznacznych cech obrażeń widocznych w badaniu PMCT przy jednoczesnym ich stwierdzeniu w badaniu sekcjnym klasyfikowano jako fałszywie negatywne (FN).

Zestawiając poszczególne przypadki w tabelach, obliczono następujące parametry dla zastosowania PMCT w ocenie poszczególnych narządów oraz obecności krwi w jamie brzusznej:
• czułość (Se) – jaki procent obrażeń danego narządu został prawidłowo zdiagnozowany przez PMCT,
• swoistość (Sp) – jaki procent obrażeń danego narządu został prawidłowo wykluczony przez PMCT,
• wartość predykcyjna dodatnia (PPV) – procent, w jakim rozpoznanie obrażeń narządu w PMCT będzie miało odzwierciedlenie w rzeczywistości,
• wartość predykcyjna ujemna (NPV) – procent, w jakim wykluczenie obrażeń w PMCT będzie miało odzwierciedlenie w rzeczywistości,
• wiarygodność (W) – procent przypadków z prawidłowo rozpoznanim obrażeniem lub jego brakiem.

Na pierwszym etapie obliczeń wszystkich powyższych parametrów dokonano łącznie dla wszystkich stopni. W drugim etapie obliczenia wykonano dla lekkich obrażeń i łącznie dla średnich oraz ciężkich obrażeń. Stosunkowo niewielkie grupy przypadków wymusiły ograniczenie obliczeń statystycznych na tym etapie.

 Wyniki

Badana populacja liczyła 457 przypadków. Z tego zbioru na podstawie danych zgromadzonych w protokołach sekcjynych wyodrębniono 166 (36,3%) przypadków, w których rozpoznało obrażenia co najmniej jednego z narządów: wątroby, nerki, śledziony bądź trzustki. Z powodu stanu zwłok niepozwalającego na odnalezienie ww. narządów w badaniu tomograficznym wykluczono 4 przypadki. Następnie dokonano oceny badań CT pozostałych przypadków. Finalnie uzyskano populację 162 (30,7%) zmarłych poddanych badaniu sekcjynemu i PMCT. Składała się ona w 77,8% z mężczyzn i 22,2% z kobiet w wieku od 5 do 87 lat. Średnia wieku wynosiła 45 lat.
Otrzymane wartości czułości (Se), swoistości (Sp), wartości predykcyjnej dodatniej (PPV), wartości predykcyjnej ujemnej (NPV) i wiarygodności (W) przedstawiono w tabeli VI.

Obrażenia wątroby zdiagnozowano w 77 (47.5%) badaniach PMCT oraz w 122 (75.3%) badaniach sekcjowych. Obliczona czułość wynosiła 54.9%, swoistość 75%, wartość predykcyjna dodatnia 87%, wartość predykcyjna ujemna 35.3% i wiarygodność testu 59.9%.

Obrażenia śledziony zdiagnozowano w 51 (31.5%) badaniach PMCT oraz w 64 (39.5%) badaniach sekcjowych. Obliczona czułość wynosiła 60.9%, swoistość 87.8%, wartość predykcyjna dodatnia 76.5%, wartość predykcyjna ujemna 77.5% i wiarygodność testu 77.2%.

Obrażenia nerek zdiagnozowano w 55 (33.9%) badaniach PMCT oraz w 67 (41.4%) badaniach sekcjowych. Obliczona czułość wynosiła 62.7%, swoistość 86.3%, wartość predykcyjna dodatnia 76.3%, wartość predykcyjna ujemna 76.6% i wiarygodność testu 76.5%.

Obrażenia trzustki zdiagnozowano w 11 (6.8%) badaniach PMCT oraz w 7 (4.3%) badaniach sekcjowych. Obliczona czułość wynosiła 71.4%, swoistość 96.1%, wartość predykcyjna dodatnia 45.4%, wartość predykcyjna ujemna 98.7% i wiarygodność testu 95.1%.

Krew w jamie brzusznej zdiagnozowano w 56 (34.6%) badaniach PMCT oraz w 107 (66%) badaniach sekcyjnych. Obliczona czułość wynosiła 45.8%, swoistość 87.3%, wartość predykcyjna dodatnia 45.3% i wiarygodność testu 59.9%.

The determined values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and reliability (R) are shown in Table VI.

Hepatic injuries were diagnosed in 77 (47.5%) PMCT examinations and in 122 (75.3%) autopsies. The calculated sensitivity was 54.9%, specificity 75%, positive predictive value 87%, negative predictive value 35.3%, and test reliability 59.9%.

Splenic injuries were diagnosed in 51 (31.5%) PMCT examinations and in 64 (39.5%) autopsies. The calculated sensitivity was 60.9%, specificity 87.8%, positive predictive value 76.5%, negative predictive value 77.5%, and test reliability 77.2%.

Renal injuries were diagnosed in 55 (33.9%) PMCT examinations and in 67 (41.4%) autopsies. The calculated sensitivity was 62.7%, specificity 86.3%, positive predictive value 76.3%, negative predictive value 76.6%, and test reliability 76.5%.

Pancreatic injuries were diagnosed in 11 (6.8%) PMCT examinations and in 7 (4.3%) autopsies. The calculated sensitivity was 71.4%, specificity 96.1%, positive predictive value 45.4%, negative predictive value 98.7%, and test reliability 95.1%.

Blood in the abdominal cavity was diagnosed in 56 (34.6%) PMCT examinations and in 107 (66%) badaniach.

Tabela VI. Obliczenia statystyczne dla poszczególnych narządów jamy brzusznej oraz krwi wynaczynionej do jamy brzusznej (n = 162)
Table VI. Comparison of statistical calculations for individual abdominal organs and blood extravasated into the abdominal cavity (n = 162)

Obrażenia Injuries	PMCT (%)	Sekcja Autopsy (%)	TP	FP	FN	TN	Se	Sp	PPV	NPV	W
Wątroba (Liver)	77 (47.5%)	122 (75.3%)	67	10	55	30	54.9%	75%	87%	35.3%	59.9%
Śledziona (Spleen)	51 (31.5%)	64 (39.5%)	39	12	25	86	60.9%	87.8%	76.5%	77.5%	77.2%
Nerki (Kidneys)	55 (33.9%)	67 (41.4%)	42	13	25	82	62.7%	86.3%	76.3%	76.6%	76.5%
Trzustka (Pancreas)	11 (6.8%)	7 (4.3%)	5	6	2	149	71.4%	96.1%	45.4%	98.7%	95.1%
Krew (Blood)	56 (34.6%)	107 (66%)	49	7	58	48	45.8%	87.3%	87.5%	45.3%	59.9%

PMCT – pośmiertna tomografia komputerowa / post-mortem computed tomography, TP – obraz prawdziwie pozytywny / true positive finding, FP – obraz fałszywie pozytywny / false positive finding, FN – obraz fałszywie negatywny / false negative finding, TN – obraz prawdziwie negatywny / true negative finding, Se – czułość / sensitivity, Sp – swoistość / specificity, PPV – wartość predykcyjna dodatnia / positive predictive value, NPV – wartość predykcyjna ujemna / negative predictive value, W – wiarygodność / reliability
daniach sekcyjnych. Obliczona czułość wynosiła 45,8%, swoistość 87,3%, wartość predykcjonalna dodatnia 87,5%, wartość predykcjonalna ujemna 45,3% i wiarygodność testu 59,9%.

Następnie zestawiono ze sobą stopnie uszkodzenia narządów z badania sekcyjnego. Wyniki przedstawiono w tabelach VII–XI. Wiersze odnoszą się do badania PMCT, a kolumny do badania sekcyjnego.

Następnie obliczono wartości parametrów statystycznych dla poszczególnych stopni uszkodzenia narządów i obecności krwi w jamie brzusznej. Jako najistotniejsze z punktu widzenia sądowo-lekarskiego przyjęto stopnie 2 i 3 dla wątroby, śledziony oraz nerek (które ujęto łącznie) oraz stopień 2 dla trzustki. Poziomy te odnosiły się do średniego i ciężkiego stopnia uszkodzenia narządów miąższowych (poziomy II i III). Wynik przedstawiono w tabeli XII.

Tabela VII. Zestawienie stopni uszkodzenia narządów z badania sekcyjnego (kolumny) i PMCT (wiersze) dla wątroby (n = 162, w tym 4 przypadki braku narządu) (ryc. 1 i 2)

	0	I	II	III
0	31 (19.1%)	40 (24.7%)	14 (8.6%)	0 (0%)
1	10 (6.1%)	7 (4.3%)	29 (17.9%)	6 (3.7%)
2	0 (0%)	3 (1.8%)	3 (1.8%)	5 (3.1%)
3	0 (0%)	0 (0%)	2 (1.2%)	7 (4.3%)

Ryc. 1. Głębokie szczeliny pęknięć wątroby. Rekonstrukcja 2D, przekrój poprzeczny
Fig. 1. Deep fissures consistent with liver lacerations. 2D reconstruction, cross-section

Ryc. 2. Śródmiaższowe rozerwania miąższu wątroby oraz żebra wbiête w miąższ wątroby. Rekonstrukcja 2D, przekrój poprzeczny
Fig. 2. Intraparenchymal ruptures within the hepatic parenchyma, ribs driven into the hepatic parenchyma. 2D reconstruction, cross-section
Dyskusja

Powyższe wyniki pokazują, jak duża jest rozpiętość wartości poszczególnych parametrów opisujących wykonane testy.

W niniejszym badaniu uzyskane wartości czułości badania tomograficznego dla obrażeń poszczególnych narządów nie były zadowalające. Najwyższa wartość dla obrażeń trzustki (71.4%), a następnie...

Discussion

The above findings demonstrate that the values of different parameters describing the examinations span a wide range.

Sensitivity determined for the tomographic examination of injuries present in individual organs in this study was not satisfactory. The highest values obtained for injuries to the pancreas (71.4%), followed...
nerek (62,7%) i śledziony (60,9%) nie są poziomami wystarczającymi, aby uznać PMCT za badanie przesiewowe w medycynie sądowej w zakresie obrażeń jamy brzusznej. Wiarygodność testu dla nerek i śledziony również kształtowała się na poziomie 75%, co daje zgodność z rzeczywistością prezentowaną w populacji rzędu 3/4. Wiarygodność testu dla obytych śledziony (62.7%) and the spleen (60.9%) are not sufficient to recognize PMCT as a useful forensic screening test for abdominal injuries. The reliability of the PMCT examination for the kidneys and spleen was also at the level of 75%, which translates into consistency with the reality in 3/4 cases of the population. The reliability determined for the exami-

Tabela X.
Zestawienie stopni uszkodzenia narządów z badania sekcjnego (kolumny) i PMCT (wiersze) dla trzustki (n = 162, w tym 1 przypadek braku narządu)

	0	I	II	III
0	149 (91.9%)	2 (1.2%)	0 (0%)	0 (0%)
1	5 (3.1%)	2 (1.2%)	0 (0%)	0 (0%)
2	1 (0.6%)	0 (0%)	2 (1.2%)	0 (0%)

Tabela XI.
Obecność krwi w jamie brzusznej wykazana w badaniu sekcjnym (kolumny) i PMCT (wiersze) (n = 162) (ryc. 6)

	0	I	II
0	49 (30.2%)	32 (19.8%)	27 (16.7%)
1	7 (4.3%)	12 (7.4%)	35 (21.6%)
Ewa Juźwik, Artur Moskała, Krzysztof Woźniak, Paweł Kopacz
Ocena przydatności badania pośmiertną tomografią komputerową w diagnostyce obrażeń narządów miąższowych jamy brzusznej w odniesieniu do sądowo-lekarskiej sekcji zwłok

Ryc. 6. Krew w jamie brzusznej. Rekonstrukcja MPR, przekrój poprzeczny
Fig. 6. Blood accumulation in the abdominal cavity. MPR reconstruction, cross-section

Tabela XII. Zestawienie obliczeń statystycznych dla poszczególnych narządów jamy brzusznej oraz wynaczy- nionej do jamy brzusznej krwi w zależności od stopni
Table XII. Comparison of statistical calculations for individual abdominal organs and blood extravasated into the abdominal cavity depending on injury grades

Obrażenia Injuries	PMCT	Sekcja Autopsy	TP	FP	FN	TN	Se	Sp	PPV	NPV	W
Wątroba, stopień 0	85	41	31	44	10	62	75.6%	58.5%	41.3%	86.1%	63.3%
Liver, grade 0											
Wątroba, stopień 1	52	50	7	45	43	62	14%	57.9%	13.5%	59.0%	43.9%
Liver, grade 1											
Wątroba, stopień 2 + 3	20	66	17	3	49	88	25.8%	96.7%	85.0%	64.2%	66.9%
Liver, grades 2 + 3											
Śledziona, stopień 0	111	100	88	23	12	26	88.0%	53.1%	79.3%	68.4%	76.5%
Spleen, grade 0											
Śledziona, stopień 1	24	20	6	18	14	111	30%	86.0%	25.0%	88.8%	78.5%
Spleen, grade 1											
Śledziona, stopień 2 + 3	14	28	12	2	16	118	42.9%	98.3%	85.7%	88.1%	87.8%
Spleen, grades 2 + 3											
Nerki, stopień 0	105	93	81	24	12	36	87.1%	60.0%	77.1%	75.0%	76.5%
Kidney, grade 0											
Nerki, stopień 1	40	47	25	15	22	91	53.2%	85.8%	62.5%	80.5%	75.8%
Kidney, grade 1											
Nerki, stopień 2 + 3	7	13	4	3	9	126	30.8%	97.7%	57.1%	93.3%	91.5%
Kidneys, grades 2 + 3											
Trzustka, stopień 0	151	155	149	2	6	4	96.1%	66.7%	98.7%	40.0%	95.0%
Pancreas, grade 0											
Trzustka, stopień 1	7	4	2	5	2	150	50.0%	96.8%	28.6%	98.7%	95.6%
Pancreas, grade 1											
Trzustka, stopień 2	3	2	2	1	0	158	100%	99.4%	66.7%	100%	99.4%
Pancreas, grade 2											
Krew, stopień 0	108	56	49	59	7	47	87.5%	44.3%	45.4%	87.0%	59.3%
Blood, grade 0											
Krew, stopień 1/I	54	44	12	42	32	76	27.3%	64.4%	22.2%	70.4%	54.3%
Blood, grade 1/I											
Krew, stopień 2/II	54	62	35	19	27	81	56.5%	81.0%	64.8%	75.0%	71.6%
rażeń trzustki była natomiast bardzo zadowalająca (95,1%), należy jednak mieć na uwadze, przy tych i następnych rozważaniach, że w badanej próbie obrażenia trzustki były tak nieliczne, że wynik ten może być zafalszowany.

Uzyskane wartości czułości dla poszczególnych stopni obrażeń badanych narządów mięsowych pokazały jeszcze większą rozpiętość tego parametru. Na wstępie należy podkreślić, że w prezentowanym w tabeli XII zestawieniu stopień zerowy obrażeń poszczególnych narządów należy interpretować niejako odwrotnie do pozostałych: jego czułość i wartość predykcyjna dodatnia odnoszą się tak naprawdę do zdolności PMCT do wykluczenia danych obrażeń. Czułość dla stopni 1 i 2 + 3 poszczególnych narządów i obecności krwi w jamie brzusznej osiągnęła jedynie zadowalającą wartość dla stopnia 2 obrażeń trzustki – co, jak wspomniano wyżej, jest niediagnostyczne. Rozpiętość pozostałych wyników wahała się od 14% dla stopnia 1 obrażeń wątroby do 56,5% dla stopnia 1/II obrażeń krwi w jamie brzusznej.

Wyniki otrzymane dla swoistości zastosowania PMCT wyglądają już bardziej obiecująco. Ogólnie dla narządów najwyższą swoistość otrzymano dla obrażeń trzustki – 96,1%, następnie dla nerek, trzustki i obecności krwi w jamie brzusznej – na poziomie powyżej 85%, a najniższą dla obrażeń wątroby – 75%. W zestawieniu ich z wynikami wartości predykyjnej ujemnej i wiarygodnością zadowalały tylko w przypadku wykluczania obrażeń trzustki (NPV 98,7%, W 95,1%), a graniczne poziomy dla obrażeń nerek i śledziony (niewiele powyżej 75%).

W analizie zestawienia przypadków dla poszcze
gólnych stopni obrażeń (Tabela XII) zwraca uwagę wzrost parametrów dla rozpatrywanego poziomu 2 i 3 wątroby i śledziony. Wskazuje to, iż badanie PMCT jest bardziej przydatne do wykrywania cięższych obrażeń niż lekkich uszkodzeń tych narządów. Podobną tendencję można zaobserwować dla trzustki, ale, jak już wspomniano powyżej, z uwagi na niewielką liczbę przypadków wynik ten należy traktować z ostrożnością. Dla 2 i 3 stopnia obrażeń nerek wyniki nie są już tak jednoznaczne. Obserwowano również znaczny wzrost swoistości i wartości predykyjnej ujemnej dla średnich i ciężkich obrażeń wszystkich narządów oprócz wątroby, co potencjalnie wskazuje na dużą zdolność PMCT do wykluczania poważnych obrażeń narządów mięsowych.
Evaluation of usefulness of post-mortem computed tomography in the diagnosis of abdominal parenchymal organ injuries compared to medicolegal autopsy findings

Ewa Juźwik, Artur Moskała, Krzysztof Woźniak, Paweł Kopacz

Evaluation of usefulness of post-mortem computed tomography in the diagnosis of abdominal parenchymal organ injuries compared to medicolegal autopsy findings

Archives of Forensic Medicine and Criminology

obrażenia nerek (prawej i lewej): 37,5% i 47,6%,
obrażenia trzustki: 11,8%, 98,2%, 73,2%;
obrażenia śledziony: 68,8%, 76,9%, 71%, 75%, 73,2%;
obrażenia żołądka: 11,8%, 80,3%;
obrażenia wątroby: 71,1%, 96,2%, 97%, 65,8%, 80,3%;
obrażenia śledziony: 71,1%, 96,2%, 97%, 75%, 73,2%;
obrażenia jamy brzusznej: 79,6%, 94,1%, 97,7%, 59,3%, 83,1%;
obrażenia wątroby: 71,1%, 96,2%, 97%, 65,8%, 80,3%;
obrażenia śledziony: 68,8%, 76,9%, 71%, 75%, 73,2%;
obrażenia trzustki: 11,8%, 98,2%, 66,7%, 77,9%, 77,5%;
obrażenia nerek (prawej i lewej): 37,5% i 47,6%, 95,7% i 90%, 81,8% i 66,7%, 75% i 80,4%, 76,1% i 77,5%;
obrażenia jamy otrzewnej: 62,5%, 100%, 100%, 76,5%, 83,1%.

Końcowym wnioskiem tego badania było, że otrzymane wyniki nie popierają użycia PMCT jako pełnoprawnej alternatywy dla badania sekcyjnego, może być ono jednak pomyślnym narzędziem pozwalającym na wykrycie krwi w jamie otrzewnej i wykluczenie obecności krwiaków okołowątrobowych.

Następne badanie 34 ofiar wypadków samochołowych i upadków z wysokości [8] określało czułość i swoistość dla poszczególnych obrażeń jamy brzusznej w badaniu zarówno tomografii komputerowej, jak i rezonansu magnetycznego. Uzyskano następujące wartości czułości i swoistości dla obrażeń poszczególnych narządów: wątroba 53% i 84%, śledziona 33% i 93%, nerki 25% i 100%, trzustka 0% i 97%, krwotok zaotrzewnowy 40% i 62%, krwawienie do krewki 67% i 58%. We wnioskowaniu położono nacisk na zdolność badań obrazowych do wykrywania złamań kości oraz na większych możliwościach diagnozy renchymal organ injuries – with a high likelihood of the exclusion being confirmed both by autopsy and in the wider population. A significant difference became evident in the analysis of cases involving blood accumulation in the abdominal cavity. A comparison of the presence of blood in the abdominal cavity determined by PMCT and the volume of blood exceeding 50 ml found on autopsy shows a clear increase in statistical parameters with respect to cases involving small blood volumes.

Publications addressing similar topics include two thematically overlapping studies [7, 8] and another two studies concerned only with liver and spleen injuries [9, 10]. In all of them, however, divergent results were obtained in the study samples.

In one of the studies [7], conducted on a population of 71 deceased persons who died of traumatic causes, the parameters obtained by the authors were as follows (sensitivity, specificity, PPV, NPV, and accuracy, respectively):

- abdominal injuries: 79.6%, 94.1%, 97.7%, 59.3%, 83.1%;
- hepatic injuries: 71.1%, 96.2%, 97%, 65.8%, 80.3%;
- splenic injuries: 68.8%, 76.9%, 71%, 75%, 73.2%;
- pancreatic injuries: 11.8%, 98.2%, 66.7%, 77.9%, 77.5%;
- renal injuries (right and left kidneys): 37.5% and 47.6%, 95.7% and 90%, 81.8% and 66.7%, 75% and 80.4%, 76.1% and 77.5%;
- blood in the peritoneal cavity: 62.5%, 100%, 100%, 76.5%, 83.1%.

The final conclusion of the study was that the findings did not support the application of PMCT as a full-fledged alternative to autopsy, but PMCT could be a helpful modality for detecting blood in the peritoneal cavity and excluding the presence of perihepatic haematomas.

The next study, comprising 34 victims of car accidents and falls from a height [8], determined the sensitivity and specificity of different abdominal injuries both by computed tomography and magnetic resonance imaging. The following sensitivity and specificity values were obtained for injuries identified in different organs under study: liver 53% and 84%, spleen 33% and 93%, kidneys 25% and 100%, pancreas 0% and 97%, retroperitoneal haemorrhage 40% and 62%, mesenteric bleeding 67% and 58%. The conclusions focused primarily on the ability of
gnostycznych, jakie dają badania z wykorzystaniem kontrastu wewntrznaczyniowego.

W trzecim badaniu dotyczącym obrażeń wątroby i śledziony u 61 ofiar wypadków samochodowych [9] zanotowano dokładność oceny tych obrażeń na poziomie 79% oraz interesujące nas parametry kolejno dla wątroby i śledziony: 71%, 82%, 68%, 85% i 73%, 80%, 55%, 90%. Wysnuto wniosek, że pola poziome czułości przy takiej dokładności nie są wystarczające, aby wykorzystywać tomografię komputerową jako jedynie badanie wykonane w celu znalezienia tych obrażeń.

Ostatnie z analizowanych badań przeprowadzone zostało na populacji 113 osób zmarłych z pryczyn urazowych [10]. W 78 przypadkach wykonano skan klatki piersiowej, jamy brzusznej lub miednicy. Dla sprawdzanych m.in. obrażeń wątroby i śledziony uzyskano następujące wartości czułości, swoistości, PPV i NPV: 75%, 90,3%, 50%, 96,6% oraz 50%, 86,2%, 42,9%, 89,3%. Niestety nie przedstawiono dokładności (wiarygodności) tych testów. Ogólne wnioski płynące z badania podkreślają wielorakie niedociągnięcia PMCT jako jedynego potencjalnego badania wykonywanego post mortem.

Jak można zauważyć na podstawie przedstawionej analizy, istnieją bardzo duże różnice w otrzymywanych poszczególnych wartościach czułości, swoistości, wartości predykwacyjnej dodatniej i ujemnej oraz wiarygodności PMCT jako testu przesiewowego do wykrywania obrażeń miąższowych jamy brzusznej. Jedynie dla obrażeń śledziony można wskazać zbliżone wartości parametrów statystycznych. Zwraca również uwagę pewna tendencja uzyskana zarówno w niewyżej badaniu, jak i w trzech pozostałych [8–10]: otrzymany wynik w wielu przypadkach dla obrażeń poszczególnych narządów są wyraźnie wyższe niż czułość i PPV. Wskazuje to na zauważalne kilkukrotnie zwiększona zdolność PMCT do wykluczania obecności obrażeń narządów miąższowych.

Ponadto ze względu na niewielką liczbę przeprowadzonych badań oraz różnorakich dobór ich metodyki nie jest możliwe jednoznaczne wytłumaczenie przyczyny tak dużej różnorodności wyników. Można jedynie przypuszczać, że częściowy wpływ na to mogły mieć wielkość badanej populacji, doświadczenie specjalistów oceniających badania PMCT oraz występowanie artefaktów związanych np. z ułożeniem zwłok.

imaging examinations to detect bone fractures and on the greater diagnostic capabilities associated with intravascular contrast examinations.

In the third study, investigating liver and spleen injuries in 61 car accident victims [9], the accuracy of injury evaluation reached 79%, while relevant parameters determined for the liver and spleen were 71%, 82%, 68%, 85% and 73%, 80%, 55%, 90%, respectively. It was thus concluded that the above levels of sensitivity at such accuracy were not sufficient to justify the application of computed tomography as the sole examination performed to identify such injuries.

The last of the studies considered was carried out on a population of 113 people who died of traumatic causes [10]. In a total of 78 cases, scans of the thorax, abdominal cavity or pelvis were obtained. The following sensitivity, specificity, PPV and NPV values were determined in the examinations including liver and spleen injuries: 75%, 90,3%, 50%, 96,6% and 50%, 86,2%, 42,9%, 89,3%. Unfortunately, the accuracy (reliability) of the tests was not specified. However, the general conclusion of the study was that PMCT as the potential sole post-mortem examination exhibited a number of shortcomings.

As can be seen from the analysis presented above, very significant differences are noted in the individual values of sensitivity, specificity, positive and negative predictive value, and reliability of PMCT as a screening test for detecting abdominal parenchymal organ injuries. Similar values of statistical parameters can only be observed for splenic injuries. Also, a certain tendency noted both in this study and in the three prior studies [8–10] should be highlighted. The values of specificity and negative predictive value obtained for individual organ injuries are markedly higher than sensitivity and PPV. This indicates an observable several-fold higher ability of PMCT to exclude the presence of parenchymal organ injuries.

Also, in view of the small number of studies carried out and their diverse methodologies, it is not possible to unambiguously account for the observed high variability of results. It can only be hypothesized that the variability might be partially due to the size of the study population and the experience of specialists evaluating PMCT findings, as well as the presence of artefacts related to factors such as the position of the corpse.
Im większa badana populacja, tym otrzymane wyniki mają większą istotność statystyczną. Niniejsze badanie obejmowało największą z dotychczasowych prób, jednakże wskazane byłoby przeprowadzenie badań na jeszcze większych populacjach, w szczególności ze względu na uzyskane niskie wartości wiarygodności w części wyników. Znaczącym czynnikiem jest występowanie artefaktów w badaniu PMCT wynikających z ułożenia zwłok: zaburzeń cieniowania obrazu z powodu sąsiedztwa kości kończyn górnych. Takie zaburzenia odbijają się głównie na ocenie stanu miąższu wątroby i śledziony. W niniejszym badaniu starano się niwelować rzeczone artefakty, modyfikując obraz tomograficzny co do jego kontrastu, redukując szumy oraz oceniając obraz w trzech płaszczyznach. W celu lepszej wizualizacji narządów jamy brzusznej zdecydowanie należy zlecić ułożenie zwłok do badania z kończynami górnymi uniesionymi ponad poziom stawów barkowych.

Podsumowanie i wnioski

Przeprowadzone badanie oceny przydatności PMCT w wykrywaniu obrażeń narządów miążsowych jamy brzusznej oraz obecności krwi w jamie brzusznej nie dało zadowalających rezultatów w zakresie wykorzystania badania PMCT jako narzędzia diagnostycznego porównywalnego z sekcją zwłok w praktyce medycyno-sądowej.

Można wskazać, że badanie PMCT w większym stopniu pozwala na wykazanie braku uszkodzenia narządu lub braku obecności krwi niż na wykrycie obecności patologicznych zmian pourazowych. Jednocześnie jednak należy podkreślić, iż w zakresie poważniejszych obrażeń narządów miążsowych jamy brzusznej i większej ilości wynaczynionej krwi skuteczność badania PMCT znacząco wzrasta. Może to potencjalnie wskazywać rolę techniki PMCT jako pierwszego w kolejności badania przesiewowego w zakresie obrażeń narządów jamy brzusznej, po przedzającego badanie sekcjne, pozwalającego na wstępne ukierunkowanie i dostosowanie techniki sekcjnej do rozległości stwierdzanych obrażeń lub ich braku.

Autorzy deklarują brak konfliktu interesów.

Summary and conclusions

The study performed to evaluate the usefulness of PMCT in the detection of abdominal parenchymal organ injuries and the presence of blood in the abdominal cavity failed to produce satisfactory results that would justify PMCT applications in medicolegal practice as a diagnostic tool comparable to autopsy.

It can be indicated that PMCT is more effective at demonstrating the lack of organ injury or the absence of blood than at detecting the presence of pathological post-traumatic lesions. At the same time, however, it should be stressed that the efficacy of PMCT increases significantly in the examinations of more severe injuries to parenchymal organs of the abdominal cavity, and greater volumes of extravasated blood. This observation may point to the potential role of PMCT as the first screening test for abdominal organ injuries, preceding the post-mortem examination and facilitating the initial orientation and adjustment of the autopsy technique to the extent of detected injuries or their absence.

The authors declare no conflict of interest.
Piśmiennictwo

References

1. Grabherr S, Egger C, Vilarino R, Campana L, Jotterand M, Dedouit F. Modern post-mortem imaging: an update on recent developments. Forensic Sci Res 2017; 2: 52-64.
2. Scholing M, Saltzherr TP, Fung Kon Jin PHP, Ponsen KJ, Reitsma JB, Lameris JS, Goslings JC. The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review. Eur Radiol 2009; 19: 2333-2341.
3. Thali MJ, Yen K, Schweitzer W. Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) – a feasibility study. J Forensic Sci 2003; 48: 386-403.
4. Roberts IS, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, Mallett S, Patankar T, Peebles C, Roobottom C, Traill ZC. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 2012; 379: 136-142.
5. Poulsen K, Simonsen J. Computed tomography as a routine connection with medico-legal autopsies. Forensic Sci Int 2007; 171: 190-197.
6. Weustink AC, Hunink MGM, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology 2009; 50: 897-904.
7. Carballeira Alvarez A, Mancini J, Tuchtan-Torrents L, Gach P, Bartoli C, Desfeux J, Pierrecchi MD, Gorincour G. Diagnostic value of unenhanced postmortem computed tomography in the detection of traumatic abdominal injuries. Diagn Interv Imaging 2018; 99: 397-402.
8. Christie A, Ross S, Oesterhelweg L, Spendlove D, Bolliger S, Vock P, Thali MJ. Abdominal trauma – Sensitivity and specificity of postmortem noncontrast imaging findings compared with autopsy findings. J Trauma 2009; 66: 1302-1307.
9. Norzailin AB, Noor Azman S, Mohd Helme MN, Khairul Anuar Z. The sensitivity, specificity and predictive values of postmortem computed tomography in detecting liver and splenic injury due to road traffic accident. Med J Malaysia 2016; 71: 1-7.
10. Monila DK, Nicholas JJ, Dimaio VJ. The sensitivity of CT scans in detecting trauma: are CT scans reliable enough for courtroom testimony? J Trauma 2007; 63: 625-629.

Adres do korespondencji

Ewa Juźwik
Katedra i Zakład Medycyny Sądowej
Collegium Medicum Uniwersytetu Jagiellońskiego
ul. Grzegórzecka 16
31-531 Krakow, Polska
e-mail: ewa.juzwik@op.pl

Nadesłano: 3.02.2019
Zaakceptowano: 21.02.2019

Address for correspondence

Ewa Juźwik
Chair and Department of Forensic Medicine
Jagiellonian University Medical College
16 Grzegórzecka St.
31-531 Krakow, Poland
e-mail: ewa.juzwik@op.pl

Submitted: 3.02.2019
Accepted: 21.02.2019