Identification and conformational analysis of putative microRNAs in *Maruca vitrata* (Lepidoptera: Pyralidae)

C. Shruthi Sureshan, S.K.M. Habeeb *

Department of Bioinformatics, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India

Abstract

MicroRNAs (miRNAs) are a class of small RNAs, evolutionarily conserved endogenous non-coding RNAs that regulate their target mRNA expression by either inactivating or degrading mRNA genes; thus playing an important role in the growth and development of an organism. *Maruca vitrata* is an insect pest of leguminous plants like pigeon pea, cowpea and mung bean and is pantropical. In this study, we perform BLAST on all known miRNAs against the transcriptome data of *M. vitrata* and thirteen miRNAs were identified. These miRNAs were characterised and their target genes were identified using TargetScan and were functionally annotated using Flybase. The importance of the structure of pre-miRNA in the Drosha activity led to study the backbone torsion angles of predicted pre-miRNAs (mvi-miR-9751, mvi-miR-649-3p, mvi-miR-4057 and mvi-miR-1271) to identify various nucleotide triplets that contribute to the variation of torsion angle values at various structural motifs of a pre-miRNA.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Insect infestation on a crop leads to loss in yield and quality, and then the insect becomes agricultural pest. The legume pod borer, *Maruca vitrata* (lepidopteran) is one of the serious pest of grain legumes in the tropics and sub-tropics (Sharma, 1998); and they are known to affect overall production by causing damage to pigeon pea (Gopali et al., 2001), mung bean (Zahid et al., 2008) and cowpea (Asante et al., 2010), which in turn depends on the structural motifs like terminal loop, internal loops, and bulges present in the pre-miRNA Terminal loop plays a major role in the cleaving action of Drosha and Dicer on the pre-miRNA (Starega-Roslan et al., 2011). As the Dicer cleaves it to generate mature miRNA (pre-miRNA). The pre-miRNA is transported to cytoplasm where RNase III enzyme called Dicer cleaves it to generate mature miRNA (pre-miRNA).

Keywords: MicroRNA, Transcriptome, Precursor microRNA, Torsion angle

*Corresponding author.
E-mail address: habeeb_skm@yahoo.co.in (S.K.M. Habeeb).
angle χ and there is a correlation between the angles — $\alpha \leftrightarrow \gamma$ and $\epsilon \leftrightarrow \zeta$ (Saenger, 1983). The torsion angle studies had been applied to DNA Holliday Junction structure (Eichman et al., 2002), α/γ transitions in B-DNA backbone (Djurinovic et al., 2002), conformational classification of RNA (Schneider et al., 2004) and structural modifications in histones (Sanli et al., 2011). Analysis of torsion angles determines the irregularities in a structure. Every backbone torsion angle consists of certain range of values that maintains the integrity of the structure. Deviation from these values distorts the structure and hence its function (Temiz et al., 2012). In this study, we have investigated the fluctuations imposed on torsion angles with the variations observed in the sequence of miRNAs (Svozil et al., 2008).

Existing transcriptome data were used to identify and characterise the putative miRNAs in *M. vitrata*; in order to predict target genes for the predicted miRNA and functionally annotate them using TargetScan and FlyBase respectively; and also to study the sequence dependant variations in backbone torsion angles in predicted miRNAs.

2. Materials and method

2.1. Data collection and identification of putative miRNA and their precursor

The transcriptome data of *M. vitrata* was retrieved from Sequence Read Archive, NCBI. The complete collection of miRNAs was downloaded from miRBase (Griffiths-Jones et al., 2006). The transcriptome data was processed to generate contigs and remove redundant sequences, and only the non-homologue sequences were used for further analysis.

![Fig. 1. The secondary structures of putative miRNAs: The secondary structure consists of a stem and loop structures. The highlighted regions represent the mature microRNA in the hairpin structure.](image-url)
The collected miRNA sequences were used as query for homologous
search against the transcriptome data, using standalone BLAST + 2.2.28
programme (Altschul et al., 1997). The hits obtained were considered as
the candidates for finding precursor miRNAs. These sequences were
submitted to Mfold to predict the secondary structures of precursor
miRNAs (Zuker, 2003). The secondary structures were predicted based
on criteria determined by Zhang et al. (2006):

1. The pre-miRNA could be able to fold into a typical hairpin secondary
structure.
2. The mature miRNA should be located in the stem region of the hairpin structure.
3. miRNA has less than seven mismatches with the complementary sequence in the opposite arm.
4. No loops or breaks are allowed in the miRNA or miRNA*duplex.
5. The negative MFE of the miRNA should be greater than -18 kcal/mol and the $(A + U)$ content must be in the range of 40–70%.

The predicted miRNAs were named in accordance with the rules determined in the miRBase (Griffiths-Jones et al., 2006).

2.2. Predicting targets of miRNA

The target genes of the predicted miRNAs were identified using TargetScan (Lewis et al., 2003). TargetScan predict targets of miRNAs by searching for the presence of conserved sites that match the seed region of miRNA. The target genes obtained are then directed to the FlyBase database (Dos Santos et al., 2014), which assist in the functional annotation.

2.3. Predicting three dimensional structure of miRNA and torsion angle analysis

The three dimensional structure of mvi-miR-9751, mvi-miR-6497-3p, mvi-miR-4057 and mvi-miR-1271 was constructed using MC-Sym (Parisien and Major, 2008), which provides a fully automated 3D structure from the user defined secondary structure (in Vienna format) and the sequence of microRNA in study. The PDB files created for the four predicted miRNAs were used to generate the torsion angle data using Curves + (Lavery et al., 2009). Graphs were generated to analyse torsion angle data (.lis file).

3. Results and discussion

In this study, 13 miRNAs were identified in the insect M. vitrata from the transcriptome data.

3.1. Characterisation of miRNA

All the predicted miRNAs have a typical stem-loop structure. The mature miRNAs were located either in 5′ arm (62%) or the 3′ arm (38%) of the stem loop structure. The secondary structures of all the predicted miRNAs are given in Fig. 1.

The length of mature miRNAs varies from 19 to 22 nucleotides and the length of pre-miRNAs varied from 55 to 96 nucleotides. Tables 1 and 2 show the details of precursor miRNAs and predicted mature miRNAs respectively.

Minimum free energy (MFE) calculated for the predicted miRNAs varied from -51.2 to -16 kcal/mol (Das, 2010). The A + U content for the predicted pre-miRNA varied from 24 to 80% (Asokan et al., 2013).

3.2. Identification of miRNA targets

In animals, the miRNA and microRNA Response Element (MRE) are almost never completely complementary to each other. The “seed” region which constitutes roughly 6–8 nucleotides of the 5′-end generally suffices the functional RISC formation (Brennecke et al., 2005). But recent

Table 1
Details of predicted precursor miRNAs.

miRNA	miRNA sequence	MFE	E value	A + U content
mvi-miR-6497-3p*	CGAAGGC CGGAA CGC GGUGCUG CAUUUC	-38.5	0.001	24.44
mvi-miR-6497-3p	AGCGGA AGCGG CGC GCC GCCGCA UGGG	-51.2	0.001	26.08
mvi-miR-4171-5p	GUAUCAU GAUAGU GACGGG GCCAAGG GAAGC	-16.7	0.003	56.75
mvi-miR-466m-3p	UGACUAU AUAAGC CCACGG CAAUGAUA	-19.4	0.004	61.11
mvi-miR-4057	UGACUCAU CAUAGU GUAUAGU UGUAGU	-17.9	0.004	43.85
mvi-miR-1271	GACGUCAU CAUAGU GUAUAGU UGUAGU	-21.7	0.004	40
mvi-miR-15b-3p	UGACGUA CGCGG CGCGG CGCGG CGCGG	-20.8	0.004	53.01
mvi-miR-414	UGACGUA CGCGG CGCGG CGCGG CGCGG	-25.4	0.004	47.91
mvi-miR-33b-3p	GCCAACCU UACCGU GCCGGG GCCGGG GCCGGG	-17.4	0.004	48.61
mvi-miR-6497-5p	UGACGUA CGCGG CGCGG CGCGG CGCGG	-24.2	2.00E-05	46.8
mvi-miR-2966	GCCGCCG CGCGG CGCGG CGCGG CGCGG	-26.3	2.00E-04	38.09
mvi-miR-9751	GCCGCCG CGCGG CGCGG CGCGG CGCGG	-16	4.00E-04	80
mvi-miR-4968-3p	UGUUGA CGCGG CGCGG CGCGG CGCGG	-22.8	8.00E-04	56.32
studies prove that seed target regions at the 3’-end are conserved and thus demonstrating the predominant regulatory functions of miRNAs through 3’ UTRs (Gu et al., 2007; Friedman et al., 2009). In the current study, we have used 3’ UTR sequence data of Drosophila melanogaster in the TargetScan to confirm our targets (Table 3).

3.3. Functional annotation

A total of 141 targets were obtained for 13 miRNAs encoding for metamorphosis, cell signalling, transcription regulation, structural constituents, metabolism, and transmembrane transportation. Thus it proves the multi-level functioning of miRNAs in various molecular and cellular processes.

miRNAs targeted by mvi-miR-466m-3p and mvi-miR-1271 are associated with Hedgehog receptor activity and Ecdysis-triggering hormone receptor activity which are linked to metamorphosis. mvi-miR-9751 was seen to target genes mainly associated with transcription regulation, which is accomplished by sequence specific DNA binding proteins, RNA polymerase II transcription cofactor and histone methyltransferase activity. Further, mvi-miR-9751 also controlled the genes specific to GTPase activity and serotonin activity, which are integral to various signalling pathways. Similarly mvi-miR-4968-3p was found to be associated with transcription regulating proteins as well as signalling molecules (Ras GTPase binding).

mvi-miR-6497-3p* targets miRNAs linked to structural constituents of chorion (the outer shell of the insect egg) along with the protein serine/threonine phosphatase activity. Apart from mvi-miR-6497-3p*, structural constituents of chorion are also targeted by mvi-miR-414 and mvi-miR-35b-3p. mvi-miR-1271 and mvi-miR-4968-3p regulate the genes related to structural constituents of cytoskeleton.

3.4. Target multiplicity and cooperativity

Multiplicity is one of the common characteristics of miRNA regulation, such that one 3’ UTR has more than one MREs and thus assisting miRNA in having multiple targets (Ghosh et al., 2007). In our study we identified mvi-miR-9751 to have maximum plausible target miRNAs responsible for transcription regulation and signalling pathways.

Cooperativity is another feature shown by miRNA, where more than one miRNAs regulate a target mRNA, thus establishing an effective silencing (Ghosh et al., 2007). In our study we found that mvi-miR-6497-3p* and mvi-miR-35b-3p participate in the regulation of the gene FBgn0000359 (structure of chorion).

3.5. Torsion angle analysis

In order to study the fluctuations observed in torsion angle with respect to the variation in sequences, the structure of mvi-miR-9751 was divided into one loop, three stem sections and one internal loop. Similarly, one loop, five stem sections, one bulge and one internal loop in mvi-miR-649-3p; two stem sections and one internal loop for mvi-miR-4057; one external loop, two stem sections, one bulge and one loop for mvi-miR-1271 were noted down for the analysis. The four torsion angles, α, γ, ϵ and ζ have shown deviation from their usual range of values. Similar to DNA sequences, miRNA has relationship between the torsion angles (Saenger, 1983):

1. α and γ
2. ϵ and ζ

Figs. 2, 3, 4, 5 shows the relationships and deviations observed in the torsion angles in mvi-miR-9751, mvi-miR-649-3p, mvi-miR-4057 and mvi-miR-1271 respectively. Tables 4 and 5 shows the maximum and minimum values of α, γ, ϵ and ζ torsion angles in the stems, loops, internal loops and bulge regions of the two miRNAs.

3.5.1. Deviation of alpha and gamma torsion angles

In general the values of α torsion angles for RNA is specific to the γ (30° to 90°) of the Klyne and Prelog cycle. Most of the nucleotides have been found to be in this region, with few exceptions. There were deviations from the γ region too. Our study showed deviations from this region, the γ region, similarly, due to C3′ exo-puckering respectively. It was noted that most of the nucleotides in our miRNAs had γ torsion angles that have occupied a different region other than γ. The epsilon values were found to be in similar ranges with γ regions.

3.5.2. Deviation of epsilon and zeta torsion angles

The usual range of γ torsion angles for RNA is γ (30° to 90°) of the Klyne and Prelog cycle. All the four microRNA sequences have shown a predominant deviation to γ, ϵ, γ, ϵ and ζ regions. Overall, both α and γ values were found to be in similar ranges with respect to various studies (Schneider et al., 2004).

Table 2
Details of predicted mature miRNAs.

miRNA	Contig/singlet	Start position	End position	Strand	miRNA sequence
mvi-miR-6497-3p*	1768	475	495	3'	AGGCCGCCAGCCGCCGCCAGC
mvi-miR-6497-3p	524	133	153	5'	GAUGCCGCCAGGCUGCUGC
mvi-miR-4171-3p	5676	3	22	5'	UACACUGCUUUAGUGUAGC
mvi-miR-466m-3p	5130	450	471	5'	UACAUCAACAUCACAUCAGUA
mvi-miR-4057	4013	332	311	5'	UUGCCUGCACUCACCAACAGAU
mvi-miR-1271	1271	568	547	5'	CUUGGACCCUGCUUAACAGA
mvi-miR-15b-3p	3546	95	134	3'	AAGCAUAGUGUGCUUGU
mvi-miR-414	3442	746	727	5'	CAUCUCAUCAUCAUCAG
mvi-miR-35b-3p	4714	347	327	5'	UCACCGGGAACGUAUAGUU
mvi-miR-6497-5p	367	388	375	5'	GCCUCUGACGACCGGCGUUGCC
mvi-miR-2966	570	551	541	5'	CCCUCCGCGGCUGCCGC
mvi-miR-9751	290	271	261	5'	UELUUAACCAUCAUACCCUAAA
mvi-miR-4968-3p	161	179	173	3'	AGCAAACUGACCGACACAG

Table 1

miRNAs through three studies prove that seed target regions at the 3’-end are conserved and thus demonstrating the predominant regulatory functions of miRNAs.
miRNA	Target gene	Symbol	Function
mvi-miR-6497-3p*	FBgn0035746	CG17742	Identical protein binding
		CG1478	Structural constituent of chorion
		CG7109	Serine/threonine phosphatase activity
mvi-miR-6497-3p	FBgn0034100	CG15709	Intracellular cyclic nucleotide activated cation channel activity
mvi-miR-4171-5p	FBgn0003031	CG5119	mRNA 3'-UTR binding
		CG11280	Unknown
mvi-miR-466m-3p	FBgn0013974	CG42636	Guanylate cyclase activity
		CG2411	Hedgehog receptor activity
mvi-miR-466m-3p	FBgn001234	CG15709	Intracellular cyclic nucleotide activated cation channel activity
		CG18076	Protein binding
mvi-miR-4057	FBgn0000286	CG11924	DNA binding
		CG33135	Voltage-gated cation channel activity
mvi-miR-4057	FBgn0003892	CG17941	Cadherin binding; calcium ion binding
		CG13248	Voltage-gated cation channel activity
mvi-miR-4057	FBgn0003520	CG5753	mRNA 3'-UTR binding
mvi-miR-1271	FBgn0052062	CG32062	Transcription factor binding
		CG11312	Cytoskeletal adaptor activity
mvi-miR-1271	FBgn001235	CG1478	Structural constituent of chorion
		CG5119	G-protein coupled acetylcholine receptor activity
mvi-miR-15b-3p	FBgn0001145	CG1743	Glutamate-ammonia ligase activity
		CG32555	Rho GTPase activating activity
mvi-miR-15b-3p	FBgn00266616	CG17027	Actin-dependent ATPase activity; protein homodimerization activity; structural constituent of muscle
		CG17697	Wnt-activated receptor activity
mvi-miR-15b-3p	FBgn0003525	CG1395	Protein tyrosine phosphatase activity
mvi-miR-15b-3p	FBgn0003502	CG1395	Protein tyrosine kinase activity
mvi-miR-15b-3p	FBgn0003710	CG1395	Sodium channel regulator activity
mvi-miR-15b-3p	FBgn0004103	CG5630	Myosin phosphatase activity
mvi-miR-414	FBgn0000359	CG1478	Structural constituent of chorion
mvi-miR-35b-3p	FBgn00021764	CG5227	Unknown
mvi-miR-35b-3p	FBgn0000360	CG11213	Structural constituent of chorion
mvi-miR-6497-5p	FBgn0046636	CG1956	GTPase activity
mvi-miR-2966	FBgn0013995	CG3254	Polypeptide N-acetylglalactosaminyltransferase activity
mvi-miR-9751	FBgn0003415	CG9936	RNA polymerase II transcription cofactor activity
mvi-miR-9751	FBgn0037351	CG1475	Structural constituent of ribosome

(continued on next page)
Table 3 (continued)

mRNA	Target gene	Symbol	Function
mvi-miR-9751			
Fh00037834	CG555	Histone methyltransferase activity [H4-R3 specific]; protein-arginine omega-N asymmetric methyltransferase activity	
Fh0000448	CG2183	Ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity; protein binding	
Fh00015806	CG1039	Ribosomal protein S6 kinase activity	
Fh0002480	CG5682	Unfolded protein binding	
Fh00063499	CG17522	Glutathione transferase activity	
Fh00010280	CG5444	RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity involved in preinitiation complex assembly	
Fh00041092	CG13109	Ligand-dependent nuclear receptor transcription coactivator; steroid hormone receptor binding	
Fh00000907	CG3166	Protein binding; RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity	
Fh00000247	CG13037	Rab GTPase binding; Rab guanyl-nucleotide exchange factor activity	
Fh00002525	CG6842	Calcium ion binding; myosin heavy chain binding; myosin V binding	
Fh00002823	CG6384	Chromatin insulator sequence binding; DNA binding; microtubule binding; POZ domain binding; SNARE binding	
Fh00003137	CG33103	Extracellular matrix structural constituent	
Fh00003410	CG9949	Protein binding; protein self-association	
Fh00003892	CG2411	Hedgehog receptor activity; lipoprotein particle receptor activity	
Fh00003944	CG10388	DNA binding; protein binding; protein domain specific binding; RNA polymerase II distal enhancer sequence-specific DNA binding	
Fh00004168	CG16720	Serotonin receptor activity	
Fh00004242	CG3139	Calcium-dependent phospholipid binding; phosphatidylycerine binding; protein homodimerization activity; SNARE binding	
Fh00005631	CG13521	Heparin binding; protein binding	
Fh00011217	CG5425	Ubiquitin conjugating enzyme activity; ubiquitin protein ligase activity; ubiquitin protein ligase binding	
Fh00015790	CG5771	GTPase activity; protein binding; protein complex binding	
Fh00262872	CG43227	Myosin binding	
Fh00026391	CG10961	Olfactory receptor activity	
Fh00028675	CG32975	Acetylcholine binding	
Fh00028996	CG1922	RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription	
Fh00264386	CG15899	Low voltage-gated calcium channel activity	
Fh00034691	CG6562	Inositol-polyphosphate 5-phosphatase activity	
Fh00036373	CG10741	Transcription coactivator binding; transcription factor binding	
Fh00037050	CG14723	Histamine-gated chloride channel activity	
Fh00001233	CG124	Unfolded protein binding	
Fh00002917	CG1517	Cation channel activity	
Fh00261606	CG15442	Structural constituent of ribosome	
Fh00011224	CG31000	miRNA 3′-UTR binding; translation repressor activity, nucleic acid binding	
Fh00011225	CG5695	Actin binding; actin filament binding; calmodulin binding; microtubule binding; myosin light chain binding	
Fh00013467	CG18285	Calmodulin binding	
Fh00001122	CG2204	GTP binding	
Fh00003721	CG4898	Actin filament binding	
Fh00011656	CG1429	RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription	
Fh00259162	CG42267	ATP binding	
Fh00042083	CG3267	CoA carboxylase activity	
Fh00259227	CG42327	Protein tyrosine phosphatase activity	
Fh00002441	CG5954	Chromatin insulator sequence binding	
Fh00002932	CG19888	Phosphatidylinositol phosphate binding; protein binding; ubiquitin protein ligase activity	
Fh00261873	CG32717	Protein binding	
Fh00004364	CG8896	Transmembrane signalling receptor activity	
Fh00003423	CG1417	Proline dehydrogenase activity	
Fh00004656	CG1956	GTPase activity; protein binding	
Fh00001016	CG8996	Electron carrier activity; flavin adenine dinucleotide binding	
Fh00264855	CG4260	Protein transporter activity	
Fh00020309	CG14938	Metal ion binding; nucleic acid binding	
Fh00027844	CG7820	Carbonate dehydratase activity; zinc ion binding	
Fh00031432	CG9964	Electron carrier activity	
Fh000264815	CG44007	3′,5′-Cyclic-AMP phosphodiesterase activity	
Fh000033095	CG3409	Monocarboxylic acid transmembrane transporter activity	
Fh00003317	CG8635	Metal ion binding	
Fh00033460	CG1472	Signal sequence binding; transporter activity; zinc ion binding	
Fh00003309	CG13213	SAM domain binding	
Fh00034967	CG3186	Ribosome binding	
Fh00035357	CG1244	Chromatin binding; nucleosome-dependent ATPase activity; protein binding	
Fh000035914	CG6282	Oxidoreductase activity, acting on the CH-CH group of donors	
Fh00036005	CG3428	Contributes to ubiquitin–protein transferase activity	
Fh00036816	CG3597	Citrate transmembrane transporter activity; succinate transmembrane transporter activity	
Fh00050286	CG30286	Serine-type endopeptidase activity	
Fh00025176	CG42281	Protein homodimerization activity; sequence-specific DNA binding transcription factor activity	
Fh00038153	CG14376	Ligand-gated ion channel activity	
Fh00052654	CG32654	Ras GTPase binding	

3.5.3. Nucleotides showing deviation in torsion angles

The torsion angle values under the study have shown to deviate with respect to changes in nucleotide sequence (Svozil et al., 2008). Among all the four nucleotide, G and C have induced the most deviation in torsion angle (Arrigo et al., 2012). The values of torsion angles fluctuated with respect to certain patterns of nucleotide
Fig. 2. Variation in α, γ, ϵ and ζ of mvi-miR-9751.

Fig. 3. Variation in α, γ, ϵ and ζ of mvi-miR-6497-3p.

Fig. 4. Variation in α, γ, ϵ and ζ of mvi-miR-4057.

Fig. 5. Variation in α, γ, ϵ and ζ of mvi-miR-1271.
sequence and these patterns were termed as “nucleotide triplets” (Table 6).

Also, when a bulge occurs in the stem region of a miRNA, it leads to variation in torsion angle (Kumar et al., 2012; Popenda et al., 2008).

Hence it is concluded that sequence composition can affect various structural motifs present in a pre-miRNA. This can help in understanding the sequence dependant modulations occurring in the cleaving of pri-miRNA by Drosha to synthesis pre-miRNA (Krol and Krzyzosiak,

miRNA	R	POS	ALPHA	GAMMA				
			MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
			BASE	BASE	BASE	BASE	BASE	BASE
			θ	3plet	θ	3plet	θ	3plet
mvr–miR–9751	S1	1–3	G2	-131.4	CGU	U3	-129.5	GUU
	S2	4–23	U12	-145.5	UUU	G16	86.6	GUU
	S3	54–74	A72	-178.8	AAA	A59	174.7	AAA
		26–34	U26	-141.4	GGU	G32	138.9	AGU
		40–48	U46	-156.6	UUA	A48	-68.6	AAA
IL1	L	49–53	A52	-173.7	AUA	U53	-39.8	AUA
mvi–miR–6497–3p	S1	1–4	C3	-122.1	GCG	A1	0	AGC
	S2	5–25	G22	-150.5	GCC	C9	-11.6	GCC
	S3	69–70	C69	-146.6	UCC	C70	-97.5	CCC
	S4	33–39	C35	-143	CCA	C37	-34.2	AGG
	S5	57–63	G57	-171.4	UGC	G60	111.7	GGG
IL1	L	64–68	A66	-131.1	GAA	G65	77.1	AGA
mvi–miR–4057	S1	1–6	U6	-130.8	GUG	G16	0	CUC
	S2	53–57	C54	-153.4	UGC	A57	7.7	UGA
	IL1	31–48	U47	-150.7	CUG	C44	143.7	CCC
mvi–miR–1271	S1	1–6	U6	-130.8	GUG	G16	0	CUC
	S2	53–57	C54	-153.4	UGC	A57	7.7	UGA
	IL1	31–48	U47	-150.7	CUG	C44	143.7	CCC

R—region; S—stem; IL—internal loop; B—bulge; EL—external loop; L—loop; POS—base position; θ—torsion angle value; 3plet—triplets. The coloured cells represent the torsion angle values that have deviated from the Klyne and Prelog cycle. Violet colour represents the highest deviation value and the orange colour represents the lowest deviation value.
2004; Starega-Roslan et al., 2011). Studies have shown that the size, location and the distribution of terminal loops and internal loops can affect the cleavage by Dicer. Therefore a shift in the cleavage sites of the enzymes Drosha and Dicer can result in the formation of isomiRs (isoforms of mature miRNAs) (Fernandez-Valverde et al., 2010; Neilsen et al., 2012).

mRNA	R	POS	Epsilon	Zeta										
			MINIMUM	MAXIMUM										
	BASE	φ	3plet	BASE	φ	3plet								
	BASE	φ	3plet	BASE	φ	3plet								
mvi-miR	-9751	1–3	G2	-164.8	CGU	U3	-142.7	GUU	U3	-48	GUU	C1	-38	CGU
S1	75–77	G77	-142.7	CGU	A75	-126.1	AAC	G77	-51	CGU	C76	-43.2	ACG	
S2	4–23	U18	-159.6	UUU	A7	0	UAG	U17	-107.2	GUU	A7	0	UAG	
S3	54–74	A71	-161.2	AAA	C68	55	CCG	C68	-128.7	CCG	A70	118.8	GAA	
S3	26–34	U34	-172.3	UUA	U27	-131.3	UUA	A29	-77.1	AAA	U34	130.7	UUA	
S4	40–48	U42	-153.3	AUU	C68	81.6	AAA	A40	-75.2	AAA	A48	126.1	AAA	
IL1	24–25	G25	-146.2	GGU	U2	0	GGU	U2	-131.3	UUA	A29	-77.1	AAA	
L	49–53	A5	-169.3	AAA	A52	0	AAU	A51	-42.3	AAA	A50	128.2	AAA	
L	35–39	A37	-171.7	AAA	A35	0	UAA	A37	-98.8	AAA	A36	87.1	AAA	
mvi-miR	-6497-3p	1–4	A1	-146.1	AGC	G2	-140.9	AGC	C3	-65.1	GCG	G4	-37.6	GGA
S1	91–92	C91	-128.7	CGG	G92	0	CCG	C91	-59.5	CCG	G92	0	CCG	
S2	5–25	G17	-168.9	UGC	G22	-102.9	GGC	G8	-115.8	UGC	G22	-20.5	GGC	
S3	71–90	C78	-167.2	GCG	G72	-105.9	GGA	U88	-101.3	GUU	U80	-14.1	GUU	
S4	26–27	G26	-149.7	UGG	G27	-146.1	GGU	G27	-79	GCU	G26	-73.7	UGC	
S5	69–70	C70	-155.6	CGG	C69	-124.2	UGC	C69	-36.3	UCC	C70	-23	CCG	
S4	33–39	C39	-160.8	UGG	G35	-116	CCG	G35	-98	GGU	G38	-35.4	CCG	
S4	57–63	G59	-161.1	CGG	C63	-116	GGU	G60	-98	GGU	G58	-35.4	CCG	
S4	41–45	U45	-168.5	CUC	U43	-124.8	GUC	C41	-98.5	UGC	G44	-36.4	UCU	
S4	50–54	A52	-153.5	GAC	G50	160	GGG	G51	-44.4	GGA	G54	0	GGU	
IL1	28–32	G30	-161.6	CGG	C32	-127.1	ACG	G30	-94.3	GGA	G29	-50.3	UGC	
B	40	U40	-153.9	CUC	U40	-68.7	CUC	U40	-68.7	CUC	U40	-68.7	CUC	
L	55–56	U55	0	GUU	U56	179.6	UUG	U56	-47	UUG	U55	0	GUU	
L	46–49	U47	-159.9	CUC	C48	-130.5	UGC	C46	-87.7	UCU	G49	-55.3	CAG	
mvi-miR	-4057	1–6	GA	-164.9	CGG	G5	-138.8	GGU	G5	-60.2	GGU	G4	-8.4	CGG
S1	53–57	G56	-161	UGA	A57	0	UGA	G56	-85.7	UGA	A57	0	UGA	
S2	31–48	C39	-163.1	GCC	G43	174.3	GCC	G46	-81	CCG	G48	159.3	UGC	
IL1	1	G7	-141.3	UGC	G7	-68.1	UGC	G7	-68.1	UGC	G7	-68.1	UGC	
B	49–52	A50	-162.6	GAG	G52	-122.8	GGA	G50	-120.5	GAG	G52	122.4	GGA	
L	2–4	C2	-138.9	GCC	A4	0	CAC	C3	-66	CCA	A4	0	CAC	
S2	51–53	G52	-147.3	CUG	U55	0	GGU	G52	-60.7	UGC	G53	-50.9	GGG	
S2	6–26	A20	-170.4	CAG	G13	-48.8	UGC	G13	-151.8	UGC	C26	84.5	CCA	
S2	32–50	C44	-169.4	ACA	C41	0	CCG	G35	-107.7	CCG	G41	0	CCG	
EL	1	G1	-140	GCC	G13	-50.9	GCC	G13	-50.9	GCC	G13	-50.9	GCC	
B	5	C5	-81.9	ACG	G5	-48.9	ACG	C5	-48.9	ACG	G5	-48.9	ACG	
L	27–31	G29	-159.3	AGG	A27	-124.8	AAA	G29	-85.4	AGG	G30	-32.3	GGA	

R—region; S—stem; IL—internal loop; B—bulge; EL—external loop; L—loop; POS—base position; φ—torsion angle value; 3plet—triplets. The coloured cells represent the torsion angle values that have deviated from the Klyne and Prelog cycle. Violet colour represents the highest deviation value and the orange colour represents the lowest deviation value.
The outcome of this study can be implemented to investigate the effect of sequence variation in miRNAs and the resulting conformational changes observed during the binding of miRNAs to the RISC.

4. Conclusion

In the current study we identified thirteen putative miRNAs from *M. vitrata*. These miRNAs regulate miRNAs related to metamorphosis, cell signalling, transcription regulation, structural constituents, metabolism, and transmembrane transportation. miRNAs identified in the pest *M. vitrata* can be the initial step for an effective pest management programme.

Backbone torsion angles of precursor structures of mvi-miR-9751, mvi-miR-6497-3p, mvi-miR-4057 and mvi-miR-1271 show that secondary structure programme.

The outcome of this study can be implemented to investigate the effect of sequence variation in miRNAs and the resulting conformational changes observed during the binding of miRNAs to the RISC.

Triplet(s)	Region	Alpha	Gamma	Epsilon	Zeta
CCG	Stem	–97.5	93.5	–155.6	–23
GGU	Stem	86.6	–142.5	–157.2	–17.5
GGU	Stem	–131.4	119.0	–122.8	–91.8
GCG	Stem	133.3	–91.4	160.0	–2.1
CCA	Stem	–127.3	112.7	–129.5	84.5
UCC	Internal loop	166.3	159.2	–141.3	–68.1
GUA	Internal loop	–49.1	52.1	–161.6	–94.3
AUA	Loop	33.0	–166.4	–171.7	98.8
AGG	Loop	127.8	–153.0	–159.3	–85.4
AGG	Bulge	82.0	7.4	–81.9	–48.9

Dos Santos, C., Schroeder, A.J., Goodman, J.L., Strelets, V.B., Crosby, M.A., Thurmond, J., et al., 2014. Flybase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 43, 680–697.

Drummond, M.J., McCarthy, J.J., Sinha, M., Spratt, H.M., Volpi, E., Esser, K.A., et al., 2011. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol. Genomics 43, 595–603.

Eichaman, B.F., Ortiz-Lombardia, M., Ayamuni, J., Colli, M., Ho, P.S., 2002. The inherent properties of DNA four-way junctions: comparing the crystal structures of Holliday junctions. J. Mol. Biol. 320, 1037–1051.

Fernandez-Valverde, S.L., Taft, R.J., Mattick, J.S., 2010. Dynamic isoMIR regulation in Drosophila development. RNA 16, 1881–1888.

Flores-jasso, C.F., Aenas-huerto, C., Reyes, J.L., Contreras-cubas, C., Covarrubias, A., Yaca, L., 2009. First step in pre-miRNAs processing by human Dicer. Acta Pharmacol. Sin. 30, 1177–1185.

Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P., 2009. Most mammalian miRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.

Ghosh, Z., Chakrabarti, J., Mallik, B., 2007. miRNomics—the bioinformatics of microRNA genes. Biochem. Biophys. Res. Commun. 363, 6–11.

Gong, M., Ma, J., Li, M., Zhou, M., Hock, J.M., Yu, X., 2012. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro-Oncology 14, 1607–1617.

Gopali, J.R., Teggli, R., Mannur, D.M., Selbeyth, S., 2010. Web-forming lepidopteran, *Morcu vitrata* (Geyer): an emerging and destructive pest in pigeonpea. Karnataka J. Agric. Sci. 23, 35–38.

Griffith-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J., 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, 140–144.

Gu, J., Fu, H., Zhang, X., Li, Y., 2007. Identifications of conserved 7-mers in 3′-UTRs and microRNAs in Drosophila. BMC Biol. 8.

K.D., M.Z., M.A., 1989. Ecological studies on cowpea borers. 1. Evaluation of yield loss of cowpea due to the pod borers. Annu Rev Res Gazipur (Bangladesh) (29 Jan).

Krol, J., Krzyzosiak, W.J., 2004. Structural aspects of microRNA biogenesis. IUBMB Life 56, 95–100.

Kumar, P., Lehmann, J., Libchaber, A., 2012. Kinetics of bulge bases in small RNA and the effect of pressure on its. PLoS One 7, 2–9.

Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., Zakrewska, K., 2009. Conformational analysis of micro RNAs revisited: Curves +. Nucleic Acids Res. 37, 5917–5929.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al., 2003. The nuclear RNome I Drosophila initiates microRNA processing. Nature 425, 415–419.

Lewis, B.P., Shih, I., Jones-rhoades, M.W., Bartel, D., Burge, C.B., 2003. Prediction of mammalian microRNA targets. Cell 115, 787–798.

Liao, C.T., Lin, C.S., 2000. Occurrence of the legume pod borers, Maruca testulalis Geyer (Lepidoptera: Pyralidae) on cowpea (Vigna unguiculata) and its insecticides application trial. Plant Prot. Bull. 42, 213–222.

Mehiho, J.T., Atachi, P., Kobi, O., Kpindou, D., Tamô, M., 2014. Pathogenicity of entomopathogenic fungi *Metarhizium anisopliae* and *Beauveria bassiana* on larvae of the legume pod borer Maruca vitrata (Lepidoptera : Crambidae). ARPN J. Agric. Biol. Sci. 9, 55–64.

Neilson, C.T., Goodall, G.J., Bracken, C.P., 2012. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549.

Parisen, M., Major, F., 2008. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55.

Popenel, L., Adamia, R.W., Gehrke, Z., 2008. Bulged adenosine influence on the RNA duplex conformation in solution. Biochemistry 47, 5059–5067.

Saenger, W., 1983. Principles of Nucleic Acid Structures. Springer, New York.

Sanli, D., Keskin, O., Gursoy, A., Erman, B., 2011. Structural cooperativity in histone H3 tail modifications. Protein Sci. 20, 1982–1990.

Schneider, B., Moravek, Z., Berman, H.M., 2004. RNA conformational classes. Nucleic Acids Res. 32, 1666–1677.

Sharma, H.C., 1998. Bioinformatics, host plant resistance, and management of the legume pod borers, *Maruca vitrata*—a review. Crop. Prot. 17, 373–388.

Shivdasani, R.A., 2006. MicroRNAs: regulators of gene expression and cell differentiation. Blood 108, 3646–3653.

Stark, B., Kostijanski, E., Kozlowski, P., Krzyzosiak, W.J., 2011. The role of the precursor structure in the biogenesis of microRNA. Cell. Mol. Life Sci. 68, 2859–2871.

Sovizol, D., Kalina, J., Omelka, M., Schneider, B., 2008. DNA conformations and their sequence preferences. Nucleic Acids Res. 36, 3650–3706.

Temiz, N.A., Donohue, D.E., Bacolla, A., Luke, B.T., Collins, J.R., 2012. The role of methylation in the intrinsic dynamics of S- and Z-DNA. PLoS One 7, 1–9.

Tiwari, M., Sharma, D., Trivedi, P.K., 2014. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol. Biol. 86, 1–18.

Zahid, M.A., Islam, M.M., Begum, M.R., 2008. Determination of economic injury levels of *Maruca vitrata* in mungbean. J. Agric. Rural. Dev. 6, 91–97.

Zhang, B., Pan, X., Anderson, T.A., 2006. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett. 580, 3753–3762.

Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.