Role of nuclear factor (erythroid-derived 2)-like 2 in metabolic homeostasis and insulin action: A novel opportunity for diabetes treatment?

Zhi-Wen Yu, Dan Li, Wen-Hua Ling, Tian-Ru Jin

Zhi-Wen Yu, Dan Li, Wen-Hua Ling, Tian-Ru Jin, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, Public Health Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
Tian-Ru Jin, Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto M5G 1L7, Canada

Author contributions: Yu ZW performed the literature survey, writing, referencing and final review of the manuscript; Li D was responsible for the literature survey and revising the manuscript; Ling WH and Jin TR were responsible for the editing and review of the manuscript.

Supported by An operating grant from Canadian Institutes of Health Research, No. 89887 to Jin TR; a NSFC grant, No. 81072300 to Jin TR and Yu ZW; a NSFC grant, No. 30730079 to Ling WH in part

Correspondence to: Zhi-Wen Yu, Associate Professor, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Room 517, 74 Zhongshan 2nd Road, Guangzhou 510080, Guangdong Province, China. yuzhiwen@yahoo.com

Telephone: +86-20-87330625 Fax: +86-20-87330446

Received: September 1, 2011 Revised: November 18, 2011 Accepted: January 9, 2012 Published online: January 15, 2012

Abstract

Redox balance is fundamentally important for physiological homeostasis. Pathological factors that disturb this dedicated balance may result in oxidative stress, leading to the development or aggravation of a variety of diseases, including diabetes mellitus, cardiovascular diseases, metabolic syndrome as well as inflammation, aging and cancer. Thus, the capacity of endogenous free radical clearance can be of patho-physiological importance; in this regard, the major reactive oxygen species defense machinery, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system needs to be precisely modulated in response to pathological alterations. While oxidative stress is among the early events that lead to the development of insulin resistance, the activation of Nrf2 scavenging capacity leads to insulin sensitization. Furthermore, Nrf2 is evidently involved in regulating lipid metabolism. Here we summarize recent findings that link the Nrf2 system to metabolic homeostasis and insulin action and present our view that Nrf2 may serve as a novel drug target for diabetes and its complications.

© 2012 Baishideng. All rights reserved.

Key words: Nuclear factor (erythroid-derived 2)-like 2; Oxidative stress; Insulin resistance; Metabolism; Diabetic drug

INTRODUCTION

The association between oxidative stress and insulin resistance has been recognized for more than a decade[1,2]. While the initial interpretation of this phenomenon was that oxidative stress was among the consequences of
impaired insulin action during hyperglycemia\textsuperscript{[1,2]}, further studies have revealed the causative role of oxidative stress in insulin resistance\textsuperscript{[3,4]}. More recently, the initiation of oxidative stress in inducing insulin resistance has been more specifically linked to the elevated mitochondrial reactive oxidative species (ROS) production\textsuperscript{[5]}. The progress in the research on the etiological role of oxidative stress in insulin resistance has deepened our knowledge of the patho-physiological alterations in metabolic disorders, including type 2 diabetes mellitus (T2D).

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system was originally discovered as one of the important antioxidant machineries\textsuperscript{[6,7]}. In the middle of the 1990s, two teams independently isolated the cDNA that encodes Nrf2\textsuperscript{[6,8]}. The function of Nrf2 in regulating redox balance was identified following the discovery of Nrf2 in up-regulating genes encoding antioxidant enzymes\textsuperscript{[9]}. In addition, another major function of the Nrf2 system in detoxification was revealed\textsuperscript{[10,11]}. The function of this system as a master regulator of redox balance in cellular cytoprotective response is now widely accepted\textsuperscript{[12]}. From practical point of view, Nrf2 has drawn our attention as a promising drug target. Several Nrf2 activators have already been developed for treating diseases, including tumors and inflammatory diseases\textsuperscript{[13,14]}. Interestingly, Nrf2 activators have been shown to modulate insulin action\textsuperscript{[15]}. In addition, certain natural chemicals, including those in the category of Chinese herbal medicine, were shown to both up-regulate Nrf2 action and sensitize insulin action\textsuperscript{[16]}. Further exploration of mechanisms underlying the function of Nrf2 will not only help the proper utilization of traditional medicines in treating metabolic diseases, but also lead to the discovery of novel therapeutic targets for various diseases.

In the past few years, a number of excellent reviews have updated our knowledge about the molecular basis of the Nrf2 system, the crosstalk between Nrf2 and other cell signaling pathways, as well as its capability in repressing inflammation, tumorigenesis and promoting longevity\textsuperscript{[17-20]}. Here we review recent findings which link the Nrf2 system to metabolic homeostasis and insulin action. In addition, we present our view that Nrf2 may serve as a metabolic regulator of insulin resistance.

OXIDATIVE STRESS MAY LEAD TO THE DEVELOPMENT OF INSULIN RESISTANCE

Insulin resistance, i.e., impaired insulin action in its sensitive tissues (muscles, liver and adipose tissue), was recognized as a common feature of obesity and diabetes more than half a century ago\textsuperscript{[21]}. This abnormality is also associated with other prevalent metabolic diseases, including hypertension, dyslipidemia and cardiovascular disorders\textsuperscript{[22]}. The spectrum of insulin resistant syndrome causes a broad health hazard and enormous financial burden, which make the pharmacological combat of insulin resistance an urgent task.

For effective drug intervention of insulin resistance and related diseases, the first important task is to identify a proper drug target. This is based on our understanding of the molecular mechanisms underlying insulin insensitivity. Great efforts have been made in the exploration of the cellular aberrant related to insulin resistance. Early observations suggested that the defect in insulin signaling, including insulin receptor substrate-1 (IRS-1), is apparently involved\textsuperscript{[23]}. We have then gradually recognized that the impairment in IRS-1 signaling is not primary but secondary to other alterations\textsuperscript{[24]}, including the inflammatory responses (kinase complex IKK-β activation)\textsuperscript{[25]}, endoplasmic reticulum (ER) stress\textsuperscript{[26]} and mitochondrial dysfunction\textsuperscript{[27]}. These abnormalities can blunt IRS-1 tyrosine phosphorylation and subsequent insulin signaling transduction\textsuperscript{[28]}. Currently, it is still not known which pathological factor initiates insulin resistance. Several pioneer studies indicated that an apparent impairment of insulin signaling is not prerequisite for the occurrence of insulin resistance in the early stage. A study by Dr. Hoehn et al\textsuperscript{[29]} found that treatment of insulin sensitive cells with a variety of insulin resistance inducers, such as tumor necrosis factor-α (TNF-α), oxidative stressor and dexamethasone, did not always impair the insulin signaling transduction, but still produced the impairment in insulin action. Moreover, in mice fed with a high fat diet, leading eventually to initial insulin resistance, there was no insulin signaling alteration involved\textsuperscript{[29]}. This is reinforced by a recent study showing that mitochondrial derived oxidative stress is tightly linked to impaired insulin action, while the traditionally defined insulin signaling transduction appears to be intact\textsuperscript{[29]}. Moreover, in high fat-induced insulin resistance, oxidative stress is evident in adipose tissue at the initial stage of insulin resistance\textsuperscript{[30,31]}. Thus, oxidative stress derived from mitochondrial ROS overproduction after excessive nutrient uptake is likely to be the early aberrance that causes insulin resistance\textsuperscript{[31]}. Furthermore, antioxidants were shown to ameliorate insulin resistance\textsuperscript{[31]}. These findings collectively support the notion that oxidative stress plays an initial role in the development of insulin resistance. This theory also makes sense if considering that insulin resistance is actually an adaptive response to block energy over supply and the mitochondria is a major energy producer responding to energy overwhelming by producing ROS, causing a negative feedback to block insulin action.

Although at this stage we do not fully understand mechanistically how oxidative stress causes insulin resistance, existing scientific evidence has indicated a few potential pathways by which oxidative stress interferes with insulin action. Experimental data indicate that oxidative stress may lead to a direct impairment of insulin signaling molecules via modifying their oxidative status\textsuperscript{[32]}. More importantly, oxidative stress can interact with inflammation, ER stress and mitochondrial dysfunction, which are among the causative factors of insulin resistance\textsuperscript{[22,27]}.
While over-nutrition may promote mitochondrial oxidant production and oxidative stress, inflammatory signals can be activated by oxidative stress. ER is an initial stress sensing organelle. Responding to oxidative stress, it can also promote the oxidant production by an unfold protein reaction which produces ROS, leading to activation of redox sensitive kinases, such as NF-κB, to initial inflammatory responses. NF-κB-regulated cytokine production in turn negatively affects the function of ER via various routes including the increase of TNF-α. One of the fundamental consequences of ER stress response is the inhibition of protein synthesis, which will ultimately affect mitochondrial biogenesis and function. Furthermore, oxidative stress may damage mitochondrial DNA directly and further impair its function. Therefore, oxidative stress is linked to a variety of pathological factors that are important for impairing insulin action.

**Figure 1 Oxidative stress promotes anti-oxidative gene expression via nuclear factor (erythroid-derived 2)-like 2 activation.** In a basal state, free Nrf2 level is very low because it forms a complex with Keap1 and the E3 ligase Cul3-Rbx1, leading to its proteasome degradation. Under the stimulation of oxidative stress, the level of free Nrf2 increases as it is dissociated with Keap1. Free Nrf2 molecules will then enter the nuclei, bind to the cis-element ARE and stimulate the expression of Nrf2 target genes. ARE: Antioxidant response element; Cul3: Cullin 3; E3: Ubiquitin ligase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; Rbx-1: RING box protein 1.

**NRF2 IS AN IMPORTANT ANTIOXIDANT SYSTEM IN EUKARYOTIC ORGANISMS**

One of the most important antioxidant machineries is the Nrf2 system, with the transcription factor Nrf2 as the central component. Nrf2 binds to the nucleotide sequence, namely antioxidant response element (ARE), in the promoter region of a battery of genes that encode antioxidant enzymes. The major Nrf2 regulated antioxidant enzymes include heme oxygenase-1, Mn-superoxide dismutase, sequestosome 1, NAD(P)H quinone oxidoreductase 1, glutathione peroxidase, glutathione S-transferase A1 and glutamate-cysteine ligase. Without stimulation, Nrf2 molecules mainly reside in the cytoplasm, anchored with Kelch-like ECH-associated protein 1 (Keap1). The association between Nrf2 and Keap1 may trigger Nrf2 ubiquitination and subsequent proteasome degradation. In response to oxidative stress, certain lysine residues in Keap1 are modified, resulting in the disruption of the complex and the increase of free Nrf2 molecules. Nrf2 free molecules will then be translocated into the nucleus to stimulate gene transcription (Figure 1). Nrf2 nuclear translocation can also be triggered by other signaling kinases. For example, an early study found that ARE-directed transcription was activated by the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate, while the PKC catalytic subunit was also able to phosphorylate Nrf2 directly in vitro, indicating a direct regulation of PKC on Nrf2 translocation and activation. Several other protein kinases, including MARK, PERK and Akt, may also be able to phosphorylate Nrf2 and stimulate its nuclear translocation and action.

The Nrf2 system is evolutionally conserved and ubiquitously expressed in a variety of cell lineages and systems. This, along with the large spectrum of Nrf2 regulated enzymes, renders it with a great capacity to prevent oxidative stress-induced damage. In addition to its role in regulating redox balance, recent evidence suggests that the Nrf2 system is involved in certain other important functions, including regulating lipid metabolism and insulin action, which will be detailed in the following sections.

**ROLE OF THE NRF2 SYSTEM IN REGULATING INSULIN SIGNALING AND METABOLIC HOMEOSTASIS**

The interaction of the Nrf2 system with insulin action is an emerging research theme. In one way, insulin and its effector Akt/PKB were shown to modulate the...
function of Nrf2. In Caenorhabditis elegans (C. elegans), it was shown that Nrf2 (SKN-1, a synonyms in C. elegans) can be directly phosphorylated by Akt, leading to the repression of its nuclear translocation\[43\]. Furthermore, Nrf2 may directly enhance insulin signaling by an unidentified mechanism\[15\]. On the other hand, insulin signaling components, such as GSK-3 or mTOR, can promote Nrf2 function by regulating its content and nuclear location\[49,50\]. The Nrf2 activation, particularly the Nrf2-targeted gene products, heme oxygenase-1 and Mn-SOD, protects from oxidative stress-induced abnormalities and exerts a sensitizing action on insulin signaling\[51,52\]. ARE: Antioxidant response element; ER: Endoplasmic reticulum; GSK: Glycogen synthesis kinase; GST: Glutathione S-transferase; HO-1: Heme oxygenase-1; iNOS: Inducible nitric oxide synthase; IKK: Inhibitor of κB kinase; IRS: Insulin receptor substrate; JNK: C-Jun N-terminal kinase; mTOR: Mammalian target of rapamycin; Mn-SOD: Mn-superoxide dismutase; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; PKB: Protein kinase B; PKC: Protein kinase C; TNFα: Tumor necrosis factor-α.

On the other hand, the modulation of the Nrf2 system to insulin signaling in mammals has just been recognized recently, particularly in conditions of insulin resistance. In fact, oxidants are not always detrimental and a certain amount of ROS is important to maintain normal insulin signaling transduction as redox balance is dedicatedly regulated in physiological conditions\[48\]. However, ROS overproduction will destroy this balance, resulting in oxidative stress and impaired insulin action. To combat oxidative stress, the Nrf2 system may directly or indirectly interact with insulin signaling via several potential pathways to sensitize insulin action (Figure 2). It has been demonstrated that in high fat diet (HFD) fed mouse models, Nrf2 activation was shown to repress oxidative...
As Nrf2 affects insulin signaling and lipid metabolism, it is anticipated that Nrf2 would also modulate glucose metabolism. Following STZ treatment, compared with the wild type mice, Nrf2-null mice had a higher blood glucose level, accompanied by enhanced hepatic gluconeogenesis. In the high fat diet-fed C57BL/6J mouse model, the administration of Nrf2 activator oltipraz significantly attenuated glucose intolerance, accompanied by the blockage of the development of obesity and dyslipidemia. Table 1 summarizes the recent findings of the Nrf2 system on metabolic regulation.

NRF2 SYSTEM AS A POTENTIAL DRUG TARGET FOR DIABETES TREATMENT

With the causal link of oxidative stress with insulin re-

TABLE 1  Nrf2 system in the regulation of metabolic homeostasis

| Effect                         | Model                                      | Ref. |
|--------------------------------|--------------------------------------------|------|
| Preadipocyte differentiation [*]  | Carnosic acid and carnosol stimulated Nrf2 activation in 3T3-L1 adipocytes | [54] |
| Preadipocyte differentiation [*]  | Nrf2 deficient 3T3-L1 adipocytes          | [56] |
| Adipocyte differentiation [*]    | The Nrf2 activator CDDO-Im-treated mouse embryonic fibroblasts from C57BL/6 Nrf2-/- mice | [62] |
| Obesity [*]                     | HFD-induced obesity in C57BL/6 Nrf2-/- mice fed with the Nrf2 activator oltipraz | [15] |
| Obesity [*]                     | HFD-induced obesity in C57BL/6 Nrf2-/- mice fed with the Nrf2 activator CDDO-Im | [57] |
| Hepatic lipogenesis [*]         | Nrf2 mice deficient mice                   | [58] |
| Hepatic steatosis [*]           | MCD diet-induced hepatic steatosis in Nrf2 null mice | [59] |
| Hepatic steatosis [*]           | Nrf2-/- mice                             | [60] |
| Hepatic gluconeogenesis [*]     | STZ-induced diabetes in Nrf2 null mice    | [61] |
| Blood glucose, serum lipid [*]  | STZ-induced diabetes in Nrf2 null mice    | [61] |
| Blood glucose, serum lipid [*]  | HFD-induced obesity in C57BL/6 Nrf2-/- mice fed with the Nrf2 activator oltipraz | [15] |
| Blood glucose, serum lipid [*]  | HFD-induced obesity in C57BL/6 Nrf2-/- mice fed with the Nrf2 activator oltipraz | [15] |
| Insulin signaling [*]           | Oltipraz treated mice with partial hepatectomy | [63] |
| Insulin signaling [*]           | Hepatocyte in Nrf2-/- mice                 | [53] |
| Insulin signaling [*]           | Nrf2 knockdown in human liver cell line HepG2 cells | [15] |
| AMPK signaling [*]              | Oltipraz treated HepG2 cells              | [64] |
| Pancreatic β-cell damage [*]    | Cytochrome or STZ-induced RIN β-cell damage with the Nrf2 activator, sulforaphane | [65] |
| Mitochondria damage [*]         | ROS-induced mitochondrial damage in HepG2 cell with oltipraz | [64] |

* Increase; † Decrease. Nrf2: Nuclear factor (erythroid-derived 2)-like 2; CDDO-Im: Oleandric triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oxy]-imidazole; HFD: High fat diet; MCD: Methionine- and choline-deficient; STZ: Streptozotocin; ROS: Reactive oxidative species. AMPK: AMP-dependent kinase.
As the major cellular defense machinery against oxidative stress, the Nrf2 system has drawn extensive attention. However, its functional alteration in metabolic diseases has been realized recently and needs to be explored further. Impaired Nrf2 function is evident in several pathological conditions, such as aging, neurodegeneration diseases and insulin resistance, that are mechanistically linked to oxidative stress, while Nrf2 activation reverses the functional abnormality of these diseases. Therefore, the malfunction of the Nrf2 system is anticipated to contribute to the pathological development of these diseases. The characterization of this system in the regulation of glucose and lipid metabolism would evoke more studies to determine if it is a promising drug target. The capability of Nrf2 activation in preventing obesity, protecting pancreatic β-cells and enhancing insulin action makes Nrf2 activators a novel category in diabetic therapeutics. Particularly, natural compounds have been proven to be effective in insulin sensitization and preventing diabetic complications in animal and pre-clinical human studies. Further clinical trials are needed to confirm their benefits for diabetics and possible usefulness in clinical treatment. In order to develop Nrf2 activators as therapeutic agents in T2D, we suggest that several tasks need to be carried out for further exploration of the beneficial effects of Nrf2 activation on insulin signaling, as well as glucose and lipid homeostasis: (1) Further investigations are needed to clarify whether and how Nrf2 activation leads to insulin sensitization. Obviously, these investigations may lead to the recognition of novel targets of the Nrf2 system. Nrf2-null mice as well as the in vitro Nrf2 knockdown approach are essential tools for this purpose; (2) The Nrf2 system has been shown to be activated by mitochondrial ROS production and when activated can protect mitochondrial function by eliminating ROS. Whether this effect is related to its beneficial action in insulin resistance requires further studies; (3) Many natural compounds, such as resveratrol, curcumin and epigallocatechin-3-gallate, have been shown to activate Nrf2 by reducing oxidative stress, as well as glucose and lipid homeostasis: (1) Further investigations are needed to clarify whether and how Nrf2 activation leads to insulin sensitization. Obviously, these investigations may lead to the recognition of novel targets of the Nrf2 system. Nrf2-null mice as well as the in vitro Nrf2 knockdown approach are essential tools for this purpose; (2) The Nrf2 system has been shown to be activated by mitochondrial ROS production and when activated can protect mitochondrial function by eliminating ROS. Whether this effect is related to its beneficial action in insulin resistance requires further studies; (3) Many natural compounds, such as resveratrol, curcumin and epigallocatechin-3-gallate, have been shown to activate Nrf2, along with improved insulin sensitization. It is essential to determine whether their stimulatory effect on insulin signaling is dependent on Nrf2 activity. Again, the Nrf2 null mice will be the asset for these studies; (4) The AMP-dependent kinase activator metformin, PPARγ agonists and α-folic acid were shown to improve glucose control and also to attenuate oxidative stress. Whether these existing drugs exert these effects via Nrf2 activation requires further investigations; and (5) Nrf2 can upregulate CD36 expression involved in lipid uptake. However, this effect promotes lipid accumulation in blood vessels and accelerates atherosclerosis. While Nrf2 activation can be beneficial to insulin action, these potential side effects must be carefully evaluated.

CONCLUSION
As the major cellular defense machinery against oxidative resistance, it is reasonable to expect that Nrf2 activation can be the potential drug target for diabetes treatment. Based on existing studies, several aspects of Nrf2 activation can benefit diabetic patients: (1) Nrf2 activation protects pancreatic β-cells from damage and subsequently prevents the onset of diabetes; (2) The sensitizing action of Nrf2 on insulin may bring benefit for diabetic patients with better glucose control; (3) In addition, hyperglycemia-induced endothelial dysfunction, vascular complications and cardiomyocyte damage may be prevented by Nrf2 activation by reducing oxidative stress; and (4) A protective role of the Nrf2 system in diabetic nephropathy and neuropathy is another potential function for a Nrf2 modulating drug. Certainly, to further explore its in vivo efficacy, clinical trials are required to prove its usefulness on glucose control and prevention of diabetic complications.

One should note that applying an anti-oxidative stress strategy to treat diabetes was raised a long time ago. However, this approach is questionable because of the experimental observation that exogenous supplement antioxidants, such as vitamin C, do not generate effective and consistent results for the control of glucose level and diabetic complications. A potential problem of long-term vitamin C administration with its suppressing effect on the endogenous Nrf2 system, therefore, is unable to produce sufficient antioxidant function. The utilization of Nrf2 activator may provide additional advantages compared with external antioxidant intake to treat oxidative stress and prove the effectiveness of this strategy.

Natural compounds may provide a rich resource for the pharmacist to explore Nrf2 activators with sufficient safety. Substantial evidence indicates that many natural compounds or nutraceuticals can activate Nrf2. Notably, resveratrol, curcumin and epigallocatechin-3-gallate are all reported to act as insulin sensitizing agents, reverse hyperglycemia, hyperlipidemia and other symptoms linked to obesity. These natural compounds may initially cause a depolarization of mitochondrial membrane potential and ROS production, then activate the Nrf2 system to exert subsequent protective responses. Furthermore, these plant-derived polyphenols are electrophilic and can modulate the reactive cysteine residues in Keap1 molecules, leading to a dissociation of Nrf2 from the Nrf2-Keap complex and increasing the free Nrf2 level. Therefore, released Nrf2 together with the inhibition of Keap1-mediated Nrf2 degradation increases the free Nrf2 level, resulting in its translocation to the nucleus and action (Figure 1). It can be expected that further exploring more potent natural compounds or synthetic derivatives that activate Nrf2 to sensitize insulin action could lead to a new drug generation for diabetes treatment.

REFERENCES
1. Ishara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y. Hyperglycemia causes ox-
ative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. *Diabetes* 1999; 48: 927-932
2 Ceriello A, Taboga C, Tonutti L, Quagliaro L, Picoli L, Bais D, Da Ros R, Motz E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. *Circulation* 2002; 106: 1211-1218
3 Houston N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. *Nature* 2006; 440: 944-948
4 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. *J Clin Invest* 2004; 114: 1752-1761
5 Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane RK, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance through Nrf2/antioxidant response element pathway: a target for cancer chemoprevention by natural compounds. *Cancer Biol Ther* 2006; 5: 262-270
6 Moi P, Chan K, Asmis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/ API repeat of the beta-globin locus control region. *Proc Natl Acad Sci USA* 1994; 91: 9926-9930
7 Kaspar JW, Niture SK, Jaiswal AK. Nrf2: INrf2 (Keap1) signaling in oxidative stress. *Free Radic Biol Med* 2009; 47: 1304-1309
8 Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. *Mol Cell Biol* 1995; 15: 4184-4193
9 Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H: quinone oxidoreductase1 gene. *Proc Natl Acad Sci USA* 1996; 93: 14960-14965
10 Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. *Oncogene* 1998; 17: 3145-3156
11 Numazawa S, Yoshida T. Nrf2-dependent gene expressions: a molecular toxicological aspect. *J Toxicol Sci* 2004; 29: 81-89
12 Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. *Planta Med* 2006; 74: 1526-1539
13 Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do we stand? *Mol Cancer Ther* 2008; 7: 3470-3479
14 Yu X, Kessler T. Nrf2 as a target for cancer chemoprevention. *Mutat Res* 2005; 591: 93-102
15 Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, Fantus IG, Jin T. Oltipraz upregulates the nuclear factor (erythroid-derived 2-like 2 [corrected][NRF2] antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6j mice. *Diabetologia* 2011; 54: 922-934
16 Jeong WS, Jun M, Kong AN. Nrf2, a potential molecular target for cancer chemoprevention by natural compounds. *Antioxid Redox Signal* 2006; 8: 99-106
17 Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. *Carr Pharm Dos* 2004; 10: 879-891
18 Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. *Pharmacol Res* 2008; 58: 262-270
19 Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Scapira T, Dinkova-Kostova AT, Rizzarelli E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. *Neurochem Res* 2008; 33: 2444-2471
20 Giudice A, Montella M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. *Bioessays* 2006; 28: 169-181
21 Reaven GM. Resistance to insulin-stimulated glucose uptake and hyperinsulinemia: role in non-insulin-dependent diabetes, high blood pressure, dyslipidemia and coronary heart disease. *Diabetes Metab* 1991; 17: 78-86
22 Bruce KD, Byrne CD. The metabolic syndrome: common origins of a multifactorial disorder. *Postgrad Med J* 2009; 85: 614-621
23 Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. *Nature* 1991; 352: 73-77
24 Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. *Nat Rev Mol Cell Biol* 2006; 7: 85-96
25 Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoedson SE. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption ofikkbeta. *Science* 2001; 293: 1673-1677
26 Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. *Science* 2004; 306: 457-461
27 Morino K, Petersen KE, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. *Diabetes* 2006; 55 Suppl 2: S9-S15
28 Hoehn KL, Hohne-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE. IRS1-independent defects define major nodes of insulin resistance. *Cell Metab* 2008; 7: 421-433
29 Bonnard C, Durand A, Peyrol S, Chanseume A, Chauvin MA, Morio B, Vidal H, Rieuasset J. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. *J Clin Invest* 2008; 118: 789-800
30 Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K, Kaneko S. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. *Metabolism* 2008; 57: 1071-1077
31 Yasukawa T, Tokunaga E, Ota H, Sugita H, Marty JA, Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. *J Biol Chem* 2005; 280: 7511-7518
32 Reuter S, Gupta Q, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? *Free Radic Biol Med* 2010; 49: 1603-1616
33 Kitamura M. Control of NF-kB and inflammation by the unfolded protein response. *Int Rev Immunol* 2010; 30: 4-15
34 Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, Yagita H, Oikawa K, Harding H, Nakano H. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)- dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. *J Biol Chem* 2005; 280: 33917-33925
35 Bouman L, Schlief A, Lutz AK, Shan J, Deinlein A, Kast J, Galehdar Z, Palmisano V, Patenge N, Berg D, Gasser T, Augustin R, Trümbach D, Ircher I, Park DS, Wurst W, Kilberg MS, Tatolest J, Winkhofer KF. Parkin is transcriptionally regulated by ATF4, evidence for an interconnection between

Yu ZW et al. *Metabolic regulation by Nrf2 activation*
Yu ZW et al. Metabolic regulation by Nrf2 activation

mitochondrial stress and ER stress. Cell Death Differ 2011; 18: 769-782

36 Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med 2003; 41: 1281-1288

37 Nguyen T, Nivo P, Pickett CB. The antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009; 284: 13291-13295

38 Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci USA 2000; 97: 12475-12480

39 Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W, Ma J, Kang AN. Mechanism of action of isocitrate dehydrogenase: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 2006; 5: 1918-1926

40 Brunt KR, Fenrich KK, Kiani G, Tse MY, Pang SC, Ward CA, Melo LG. Protection of human vascular smooth muscle cells from H2O2-induced apoptosis through functional codependence between HO-1 and AKT. Arterioscler Thromb Vasc Biol 2006; 26: 2027-2034

41 Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 2003; 23: 7198-7209

42 Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 2008; 14: 76-85

43 Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Bohmann D. Keap1/Nrf2 signaling regulates the transcription of phase 2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 2009; 362: 549-554

44 Ducluzeau PH, Prior M, Weilheimer M, Flamment D, Duluc L, Iacobazzi F, Soletti R, Simard G, Durand A, Rieusset J, Andriantsitohaina R, Malthiéry Y. Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J Physiol Biochem 2011; 67: 285-296

45 Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D, Yehuda-Shaulaiman E, Lee C, Lau J, Kuritz TW, Chan JY. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem 2010; 285: 9292-9300

46 Kitteringham NR, Abdullah A, Walsh J, Randile L, Jenkins RE, Sisson R, Goldring CE, Powell H, Sanderson C, Williams S, Higgins L, Yamamoto M, Hayes J, Park BK. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteomics 2010; 73: 1612-1631

47 Zhang YK, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol 2010; 245: 326-334

48 Huong J, Tabibi-Ameni I, Gunda V, Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol 2009; 299: G1211-G1221

49 Aleksunes LM, Reisman SA, Yeager RL, Goedken MJ, Klaassen CD. Nuclear factor erythroid 2-related factor 2 deletion impairs glucose tolerance and exacerbates hyperglycemia in type 1 diabetic mice. J Pharmacol Exp Ther 2010; 333: 140-151

50 Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, Liby KT, Sporn MB, Yamamoto M, Kessler TW. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol 2009; 620: 138-144

51 Bashan N, Kovsan J, Kakicho I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89: 277-291

52 Salazar M, Rojo AI, Velasco D, de Sagarraga RM, Cuadrado A. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 2006; 281: 14841-14851

53 Shibata T, Saito S, Kobukuro A, Suzuki K, Yamamoto M, Hirahashi S. Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res 2010; 70: 9095-9105

54 Ndisang JF, Lane N, Jadhav A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 2009; 296: E1029-E1041

55 Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghザl GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009; 106: 17767-17772

56 Beyer TA, Xu W, Tournier D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 2008; 27: 212-223

57 Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 2009; 362: 549-554

58 Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, Park R, Kwon KB, Park BH. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol 2009; 235: 57-67

59 Li M, Fukagawa NK. Age-related changes in redox signaling and VSMC function. Antioxid Redox Signal 2010; 12:
Yu ZW et al. Metabolic regulation by Nrf2 activation

61-152
62 Kim J, Cha YN, Surh YJ. A protective role of nuclear factor erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res Rev 2010; 690: 12-23
63 Maher J, Yamamoto M. The rise of antioxidant signalling - the evolution and hormeric actions of Nrf2. Toxicol Appl Pharmacol 2010; 244: 4-15
64 de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarck B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 2008; 45: 1375-1383
65 Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H, Yamamoto M. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res 2004; 64: 6424-6431
66 Surh YJ, Kundu JK, Na HK, Lee JS. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidant phytochemicals. J Nutr 2005; 135: 2993S-3001S
67 He X, Kan H, Cai L, Ma Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 2009; 46: 47-58
68 Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thor nalley PJ. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 2008; 57: 2809-2817
69 He M, Sio w RC., Sugden D, Gao L, Cheng X, Mann GE. Induction of HO-1 and redox signaling in endothelial cells by advanced glycation end products: a role for Nrf2 in vascular protection in diabetes. Nutr Metab Cardiovasc Dis 2011; 21: 277-285
70 Cheng X, Sio w RC., Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor-2 Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14: 469-487
71 Li J, Ichikawa T, Janicki JS, Cui T. Targeting the Nrf2 pathway against cardiovascular disease. Expert Opin Ther Targets 2009; 13: 785-794
72 Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE, Pearson K, de Cabo R, Ciszlar A. Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol 2011; 300: H1133-H1140
73 Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittere J, Warnock DG. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 2011; 365: 327-336
74 Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 2011; 1812: 719-731
75 Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi S, Morito N, Nakano T, Ojima M, Shimohata H, Itoh K, Takahashi S, Yamamoto M. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Ymr2-deficient mice. Genes Cells 2008; 13: 1159-1170
76 Negi G, Kumar A, Joshi RP, Sharma SS. Oxidative stress and Nrf2 in the pathophysiology of diabetic nephropathy: old perspective with a new angle. Biochim Biophys Acta 2011; 1812: 1-5
77 Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 2011; 7: 106-125
78 McGrewder D, Ragoobarsingh D, Dasgupta T. The enhancement of the hyperglycemic effect of S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine by vitamin C in an animal model. BMC Pharmacol 2002; 2: 18
79 Wagner AE, Boesch-Saadaatmandi C, Brockwellk D, Schrad C, Schmelzer C, Döring F, Hashkadi K, Hor I, Matsugo S, Rimbach G. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2. BMC Complement Altern Med 2011; 11: 1
80 Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72: 1439-1452
81 Wu CC, Hsieh CW, Lin JB, Lai PH, Wung BS. Up-regulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sci 2006; 78: 2889-2897
82 Kim JA. Mechanisms underlying beneficial health effects of tea catechins to improve insulin resistance and endothelial dysfunction. Endocr Metab Immune Disord Drug Targets 2008; 8: 82-88
83 Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem 2002; 50: 7182-7186
84 Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Piritell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramswamy S, Fishein KEW, Spencer GC, Lakatga EG, Le Couteur D, Shaw RJ, Nanvas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444: 337-342
85 Kang ES, Woo J, Kim HJ, Eun SY, Paik KS, Kim HJ, Chang KC, Lee JH, Lee HT, Kim JH, Nishinaka T, Yabe-Nishimura C, Seo HG. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med 2007; 43: 535-545
86 Noda C, He J, Takano T, Tanaka K, Kondo T, Tohyama K, Yamamura H, Tohyama Y. Induction of apoptosis by epigallocatechin-3-gallate in human lymphoblastoid B cells. Biochem Biophys Res Commun 2007; 362: 951-957
87 Wang CT, Chang HH, Hsiiao CH, Lee MJ, Ku HC, Hu YJ, Yao HY. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 2009; 53: 349-360
88 Juan ME, Wenzel U, Daniel H, Planas JM. Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J Agric Food Chem 2008; 56: 4813-4818
89 Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371: 887-895
90 McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 2007; 19: 165-172
91 Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Ciszars A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010; 299: H118-H124
92 Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30: 173-199
93 Imhoff BR, Hansen MJ. Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. Biochem 2009; 424: 491-500
Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 2005; 280: 22925-22936

Kowaltowski AJ, de Souza-Pinto NC, Castillo RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med 2009; 47: 333-343

Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 2010; 5: e8758

Habeos IG, Ziros PG, Chartoumpekis D, Psyrogiannis A, Kyriazopoulou V, Papavassiliou AG. Simvastatin activates Keap1/Nrf2 signaling in rat liver. J Mol Med (Berl) 2008; 86: 1279-1285

Ogborne RM, Rushworth SA, O’Connell MA. Alpha-lipoic acid-induced heme oxygenase-1 expression is mediated by nuclear factor erythroid 2-related factor 2 and p38 mitogen-activated protein kinase in human monocytic cells. Arterioscler Thromb Vasc Biol 2005; 25: 2100-2105

Wang X, Wang Z, Liu JZ, Hu JX, Chen HL, Li WL, Hai CX. Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol In Vitro 2011; 25: 839-847

Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL, Polotsky VY, Biswal S. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One 2008; 3: e3791

Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, Yamamoto M, Mann GE. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 2004; 94: 609-616