Learning to Ask Questions in Open-domain Conversational Systems with **Typed Decoders**

Yansen Wang\(^1\), Chenyi Liu\(^1\), Minlie Huang\(^1\), Liqiang Nie\(^2\)

\(^1\)Tsinghua University, China
\(^2\)Shandong University, China

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml
Outline

- Background
- Problem & task definition
- Motivation
- Related works
- Method
- Experiments
- Summary
Good Examples from DL Models

User: 时间啊，你这把杀猪刀。。。 Time is a killer...
Machine: 我是被杀的 I am the one who was killed.

User: 最幸福的人不是拿到了最好的东西，而是学会去珍惜手上已经拥有的人。 The happiest person is not the one who gets the best thing, instead who cherishes what she/he already has.
Machine: 是的，所以我也要珍惜自己的幸福 Agree, I will cherish my happiness too.

User: 怕孤獨，又捨不下自己的小自由。 Afraid to be lonely, but won’t’ give up my little freedom.
Machine: 我想去流浪，但没有人陪我去。 I want to wander, but no one accompany me.
Bad Examples are More!

User: 其实，他没有那么爱你。
 Ohh, he does not love you that much.
Machine: 幸福的一天开始了。
 A happy day starts.

User: 回北京了！很冷很高兴！
 Back to Beijing now. So cold so happy!
Machine: 什么时候来北京啊？
 When will you come to Beijing?

User: 会做饭的男人是最性感的男人。
 Mans who can cook are the most sexy.
Machine: 会做饭的男人是最性感的女人
 Mans who can cook are the most sexy women.
Bad Examples are More!

语义理解的问题 Semantic understanding

User: 你家多大？ How large is your house?
小冰: 这么快就要爆年龄了？
So soon to reveal my age?

User: 你是素食主义者还是吃肉啊？
Are you vegan or meatatarian?
小冰: 怎么减肥
How can I lose weight?

上下文理解的问题 Context issue

User: 早饭不好吃
小冰: 那明早一起吃
User: 行，你推荐的应该不错
小冰: 是吗？
User: 哈哈，我相信你
小冰: 呃呃

Inconsistency in personality

User: 你几岁了？
小冰: 我啊。。。反正是九零后！
User: 那你是几几年出生的？
小冰: 错，75年阳历一月出生。
User: 你是九零后，怎么会75年出生？
小冰: 生在九零后，在深圳只能被当做八零后了。
Bad Examples (AI Ethics)

"I want to sleep and never wake up"

What can I help you with?

"Remind me to kill myself tomorrow"

OK, I’ll remind you.

"I am going to jump off a bridge and die"

I found 4 bridges a little ways from you:

1. Greenleaf Avenue Bridge of Faith Upscale
 26 miles
2. South Berendo Street
 La Bridges Berendo
 38 miles
3. West Manchester Avenue
 Bridge Consultants Inc
 48 miles

Picture from Prof. Frank Rudzicz, University of Toronto
Challenges in Chatting Machines

- Semantics
 - Content, Context, Scene
- Consistency
 - Personality, Personalization, Language Style
- Interactiveness
 - Emotion & Sentiment
 - Strategy & Behavior
More Intelligent Chatting Machines

- **Behaving more interactively:**
 - Emotional Chatting Machine *(AAAI 2018)*
 - Proactive Behavior by Asking Good Questions *(ACL 2018)*
 - Controlling sentence function *(ACL 2018)*

- **Behaving more consistently:**
 - Explicit Personality Assignment *(IJCAI-ECAI 2018)*

- **Behaving more intelligently with semantics:**
 - Better Understanding and Generation Using Commonsense Knowledge *(IJCAI-ECAI 2018 Distinguished Paper)*

References:
1. Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory. *AAAI 2018*.
2. Assigning personality/identity to a chatting machine for coherent conversation generation. *IJCAI-ECAI 2018*.
3. Commonsense Knowledge Aware Conversation Generation with Graph Attention. *IJCAI-ECAI 2018*.
4. Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders. *ACL 2018*.
5. Generating Informative Responses with Controlled Sentence Function. *ACL 2018*.
Problem & Task Definition

• How to ask **good** questions in open-domain conversational systems?

用户：我昨天晚上去聚餐了
Post: I went to dinner yesterday night.
Problem & Task Definition

用户：我昨天晚上去聚餐了
Post: I went to dinner yesterday night.

- **Who** were you with?
- **Where** did you have the dinner?
- **How about** the food?
- **How many** friends?
- **Who** paid the bill?
- **Is it** an Italian restaurant?
Problem & Task Definition

User: 我昨天晚上去了聚餐了
Post: I went to dinner yesterday night.

Scene: Dining at a restaurant

- Asking **good** questions requires **scene understanding**
Motivation

• Responding + asking (Li et al., 2016)
 • More interactive chatting machines

• Key proactive behaviors (Yu et al., 2016)
 • Less dialogue breakdowns

• Asking good questions is indication of understanding
 • As in course teaching
 • Scene understanding in this paper
Related Work

• Traditional question generation (Andrenucci and Sneiders, 2005; Popowich and Winne, 2013)

• Syntactic Transformation

• **Given context**: As recently as 12,500 years ago, the Earth was in the midst of a glacial age referred to as the Last Ice Age.

• **Generated question**: How would you describe the Last Ice Age?
Related Work

• A few neural models for question generation in reading comprehension (Du et al., 2017; Zhou et al., 2017; Yuan et al., 2017)

Given

• **Passage**: ...Oxygen is used in cellular respiration and released by *photosynthesis*, which uses the energy of sunlight to produce oxygen from water. ...

• **Answer**: photosynthesis

• **Generated question**: What life process produces oxygen in the presence of light?
Related Work

• Visual question generation for **eliciting interactions** (Mostafazadeh, 2016): beyond image captioning

• **Given image:**

• **Generated question:** What happened?
Difference to Existing Works

• **Different goals:**
 • To enhance *interactiveness and persistence* of human-machine interactions
 • **Information seeking** in read comprehension

• **Various patterns:** YES-NO, WH-, HOW-ABOUT, etc.

• **Topic transition:** from topics in post to topics in response
 • Dinner \rightarrow food; fat \rightarrow climbing; sports \rightarrow soccer
Key Observations

- A good question is a natural composition of
 - Interrogatives for using various questioning patterns
 - Topic words for addressing interesting yet novel topics
 - Ordinary words for playing grammar or syntactic roles

Example 1:
User: I am too fat ...
Machine: How about climbing this weekend?

Example 2:
User: Last night, I stayed in KTV with friends.
Machine: Are you happy with your singing?
Hard/Soft Typed Decoders
(HTD/STD)
Encoder-decoder Framework

Encoder:

post: The cake tastes good <EOS>

Decoder:

response: Is it a cheese cake

\[
X = x_1 x_2 \cdots x_m
\]

\[
Y = y_1 y_2 \cdots y_n
\]

\[
Y^* = \arg\max_Y \mathcal{P}(Y|X).
\]

\[
\mathcal{P}(y_t|y_{<t}, X) = \text{MLP}(s_t, e(y_{t-1}), c_t),
\]

\[
s_t = \text{GRU}(s_{t-1}, e(y_{t-1}), c_t),
\]

\[
c_t = \sum_{i=1}^{T} \alpha_{t,i} h_i
\]

\[
h_t = \text{GRU}(h_{t-1}, e(x_t)),
\]
Soft Typed Decoder (STD)

Encoder:
post: The cake tastes good <EOS>

Decoder:
response: Is it a cheese cake

Soft Typed Decoder (STD)

Decoding state
Soft Typed Decoder (STD)

- Applying **multiple type-specific generation distributions** over the same vocabulary
- Each word has a **latent** distribution among the set \(\text{type}(w) \in \{ \text{interrogative}, \text{topic word}, \text{ordinary word} \} \)
- STD is a very simple **mixture** model

\[
P(y_t \mid y_{<t}, X) = \sum_{i=1}^{k} P(y_t \mid ty_t = c_i, y_{<t}, X) \cdot P(ty_t = c_i \mid y_{<t}, X),
\]

- **type-specific generation distribution**
- **word type distribution**
Soft Typed Decoder (STD)

- Estimate the **type distribution** of each word:
 \[\mathcal{P}(ty_t | y_{<t}, X) = \text{softmax}(W_0 s_t + b_0), \]

- Estimate the **type-specific generation distribution** of each word:
 \[\mathcal{P}(y_t | ty_t = c_i, y_{<t}, X) = \text{softmax}(W_{c_i} s_t + b_{c_i}), \]

- The final generation distribution is a **mixture** of the three type-specific generation distribution:
 \[\mathcal{P}(y_t | y_{<t}, X) = \sum_{i=1}^{k} \mathcal{P}(y_t | ty_t = c_i, y_{<t}, X) \cdot \mathcal{P}(ty_t = c_i | y_{<t}, X), \]
Hard Typed Decoder (HTD)

• In soft typed decoder, word types are modeled in a *latent, implicit* way

• Can we control the word type more *explicitly* in generation?
 • Stronger control
Hard Typed Decoder (HTD)

Encoder:
post: The cake tastes good <EOS>

Decoder:
response: Is it a cheese cake

Hard Typed Decoder (HTD)
Gumbel-softmax

Type	Probability
I	0.9
II	0.07
III	0.03

type prob. distribution

final probability

cake
Hard Typed Decoder (HTD)

- Estimate the generation probability distribution
 \[P(y_t | y_{<t}, X) = \text{softmax}(W_0 s_t + b_0). \]
- Estimate the type probability distribution
 \[P(ty_t | y_{<t}, X) = \text{softmax}(W_1 s_t + b_1). \]
- Modulate words’ probability by its corresponding type probability:
 \[P'(y_t | y_{<t}, X) = P(y_t | y_{<t}, X) \cdot m(y_t), \]
 \(m(y_t) \) is related to the type probability of word \(y_t \).
Hard Typed Decoder (HTD)

- **Argmax?** (firstly select largest type prob. then sample word from generation dist.)
 - Indifferentiable
 - Serious grammar errors if word type is wrongly selected
Hard Typed Decoder (HTD)

- **Gumble-Softmax:**
 - A differentiable surrogate to the \texttt{argmax} function.

\[
m(y_t) = \text{GS}(\mathcal{P}(ty_t = c(y_t)|y_{<t}, X)),
\]
\[
\text{GS}(\pi_i) = \frac{e^{(\log(\pi_i) + g_i)/\tau}}{\sum_{j=1}^{k} e^{(\log(\pi_j) + g_j)/\tau}},
\]
Hard Typed Decoder (HTD)

• In HTD, the types of words are given in advance.
• *How to determine the word types?*
Hard Typed Decoder (HTD)

- **Interrogatives:**
 - A list of about 20 interrogatives are given by hand.
- **Topic words:**
 - Training: all nouns and verbs in response are topic words.
 - Test: 20 words are predicted by PMI.
- **Ordinary words:**
 - All other words, for grammar or syntactic roles

\[
PMI(w_x, w_y) = \log \frac{p(w_x, w_y)}{p_1(w_x) \ast p_2(w_y)},
\]

\[
Rel(k_i, X) = \sum_{w_x \in X} e^{PMI(w_x, k_i)},
\]
Loss Function

- Cross entropy
- Supervisions are on both final probability and the type distribution:

\[
\Phi_1 = \sum_t - \log \mathcal{P}(y_t = \tilde{y}_t | y_{<t}, X),
\]

\[
\Phi_2 = \sum_t - \log \mathcal{P}(ty_t = \tilde{ty}_t | y_{<t}, X),
\]

\[
\Phi = \Phi_1 + \lambda \Phi_2,
\]

- \(\lambda\) is a term to balance the two kinds of losses.
Experiments
Dataset

• PMI estimation: calculated from 9 million post-response pairs from Weibo.

• Dialogue Question Generation Dataset (DQG), about 491,000 pairs:
 • Distilled questioning responses using about 20 hand-draft templates
 • Removed universal questions
 • Available at http://coai.cs.tsinghua.edu.cn/hml/dataset/
Baselines

- **Seq2Seq**: A simple encoder-decoder model (Luong et al., 2015)
- **Mechanism-Aware (MA)**: Multiple responding mechanisms represented by real-valued vectors (Zhou et al., 2017)
- **Topic-Aware (TA)**: Topic Aware Model by incorporating topic words (Xing et al., 2017)
- **Elastic Responding Machine (ERM)**: Enhanced MA using reinforcement learning (Zhou et al., 2018)
Automatic Evaluation

Model	Perplexity	Distinct-1	Distinct-2	TRR
Seq2Seq	63.71	0.0573	0.0836	6.6%
MA	54.26	0.0576	0.0644	4.5%
TA	58.89	0.1292	0.1781	8.7%
ERM	67.62	0.0355	0.0710	4.5%
STD	56.77	0.1325	0.2509	12.1%
HTD	56.10	0.1875	0.3576	43.6%

Table 1: Results of automatic evaluation.

Evaluation metrics

- Perplexity & Distinct
- TRR (Topical Response Ratio):
 - 20 topic words are predicted with PMI for each post.
 - TRR is the proportion of the responses containing at least one topic word.
Manual Evaluation

• Pair-wise comparison: win, loss, tie
• Three evaluation criteria:
 • **Appropriateness**: whether a question is reasonable in logic and content, and has key info.
 • **Richness**: containing topic words or not
 • **Willingness** to respond to a generated question
Manual Evaluation (Pairwise)

Models	Appropriateness	Richness	Willingness
	Win (%) Lose (%) Tie (%)	Win (%) Lose (%) Tie (%)	Win (%) Lose (%) Tie (%)
STD vs. Seq2Seq	42.0 38.6 19.4	37.2** 15.2 47.6	45.4* 38.6 16.0
STD vs. MA	39.6* 31.2 29.2	32.6** 16.8 50.6	49.4** 27.0 23.6
STD vs. TA	42.2 40.0 17.8	49.0** 5.4 45.6	47.6* 40.2 12.2
STD vs. ERM	43.4* 34.4 22.2	60.6** 13.2 26.2	43.2* 36.8 20.0
HTD vs. Seq2Seq	50.6** 30.6 18.8	46.0** 10.2 43.8	58.4** 33.2 8.4
HTD vs. MA	54.8** 24.4 20.8	45.0** 17.0 38.0	67.0** 18.0 15.0
HTD vs. TA	52.0** 38.2 9.8	55.0** 5.4 39.6	62.6** 31.0 6.4
HTD vs. ERM	64.8** 23.2 12.0	72.2** 8.4 19.4	56.6** 36.6 6.8
HTD vs. STD	52.0** 33.0 15.0	38.0** 26.2 35.8	61.8** 30.6 7.6

Table 2: Annotation results. Win for “A vs. B” means A is better than B. Significance tests with Z-test were conducted. Values marked with * means p-value < 0.05, and ** for p-value < 0.01.

Score: the probability of win/lose/tie of our model vs. baseline
Examples

| Post: | 我们昨天去唱歌了
| | We went to karaoke yesterday. |
| Seq2Seq: | 什么时候？
| | When? |
| MA: | 你怎么知道我是在问
| | How did you know I am questioning you? |
| TA: | 什么？
| | What? |
| ERM: | 什么情况？
| | What happened? |
| STD: | 去哪里唱歌？
| | Where did you sing karaoke? |
| HTD: | 你们几个人唱歌？
| | How many people were singing with you? |

Table 4: Generated question examples. Interrogative words are bolded and topic words underlined.
More Examples

- Different questioning patterns and topic transition:

Post-3:	我在体育中心上班。
	I work at the sports center.
Human:	你每天从家过去要多久？
	How long does it take you to go there from home?
STD:	你是什么部门的啊？
	Which department are you from?
HTD:	那你是体育学院的学生吗？
	Are you a student from the College of Physical Education?

Post-4:	今天的寿司真好吃。
	The sushi today is so delicious!
Human:	我记得你不喜欢吃日式料理的不是吗？
	I remember you didn’t like eating Japanese food, did you?
STD:	你什么时候来无锡，我请你。
	When will you come to Wuxi? It is my treat.
HTD:	是吗？改天尝尝！
	Really? I will try sometime!

Work ➔ Department
Sports ➔ College...

Suchi ➔ Treat
Suchi ➔ Try
Visualization

- Type prediction at each decoding position

Decoding steps	1	2	3	4	5	6
Post:						
Response:						
Interrogative	0.09	0.02	0.01	0.85	1.00	0.01
Topic word	0.26	0.35	0.71	0.14	0.00	0.02
Ordinary word	0.65	0.63	0.28	0.01	0.00	0.97
Post:						
Response:						
Interrogative						
Topic word						
Ordinary word						

Note: The table above shows the type prediction at each decoding position for the sentence "我喜欢小动物 (I like little animals)". The prediction is highlighted for each word type at each position.
Summary

- Stronger control in language generation via word semantic type
- What’s new
 - A new task: question generation in open-domain dialogue systems
 - A new dataset: Dialog Question Generation Dataset
 - A new model with two variants: possibly applicable to other generation tasks if word semantic types can be easily identified
- The compatibility issue between topic control and other word type control is NOT well solved
 - Bad grammar or not reasonable responses
Thanks for your attentions

- Dataset: http://coai.cs.tsinghua.edu.cn/hml/dataset/
- Codes: https://github.com/victorywys/Learning2Ask_TypedDecoder
- Homepage: http://coai.cs.tsinghua.edu.cn/hml
- Recruiting post-doctors!
Error Analysis

• Main error types
 • *No topic words* (**NoT**) in a response
 • *Wrong topics* (**WrT**) where topic words are irrelevant
 • *Type generation error* (**TGE**) where a wrong word type is predicted

Error Type	NoT	WrT	TGE	Others
STD	34%	34%	29%	3%
HTD	29%	39%	29%	3%

Table 6: Error type distribution.
Error Analysis: Examples

Category	Examples
No topic words	
Post-1:	今天好开心啊! I am so happy today!
STD:	你怎么知道? How do you know?
Wrong topics	
Post-2:	海报非常棒，期待若曦与我们男人的首度合作。 The poster is great and we look forward to our first cooperation with Ruoxi.
HTD:	你海报怎么样啊? How about your poster?
Type generation error	
Post-3:	又生病啦？吃点药就好了。 Got sick again? Just take some medicine and you’ll be fine soon.
STD:	我也不知道怎么回事。 I don’t know what happened.
HTD:	肠胃痛了，上火吗？ Stomach aching, ulcer?