Seven dimensional flat manifolds with cyclic holonomy

Rafał Lutowski∗ Institute of Mathematics
University of Gdańsk
ul. Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: rlutowski@mat.ug.edu.pl

October 20, 2011

Abstract
We classify (up to affine equivalence) all 7-dimensional flat manifolds with cyclic holonomy group.

1 Introduction
Let M^n be a closed Riemannian manifold of dimension n. We shall call M^n flat if, at any point, sectional curvature is equal to zero. Equivalently, M^n is isometric to the orbit space \mathbb{R}^n/Γ, where Γ is a discrete, torsion-free and co-compact subgroup of $O(n) \ltimes \mathbb{R}^n = \text{Isom}(\mathbb{R}^n)$. From the first Bieberbach theorem (see [1], [6], [8]) Γ defines a short exact sequence of groups

$$0 \to \mathbb{Z}^n \to \Gamma \xrightarrow{\rho} G \to 0,$$

(1)

where G is a finite group. Γ is called a Bieberbach group and G its holonomy group. Moreover, from second and third Bieberbach theorems (see [1], [6], [8]) there are only finite number of the isomorphism classes of Bieberbach

∗Supported by University of Gdańsk grant number BW - 5107-5-0345-0
groups of dimension \(n \) and two Bieberbach groups are isomorphic if and only if they are conjugate in the group \(\mathrm{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^n \).

With support of a computer system CARAT ([5]) it is possible to give a complete list of all isomorphism classes of Bieberbach groups up to dimension 6. Moreover for a finite group \(G \) and a number \(n \), CARAT gives possibility for a classification (up to isomorphism) of all Bieberbach groups of a dimension \(n \) with a holonomy group \(G \). In this article the CARAT system is used to calculate a list of all isomorphism classes of 7-dimensional Bieberbach groups with cyclic holonomy group. The final list of 316 groups is presented on the www page (see [4]), where the method of exposition is borrowed from [3]. Our main motivation was a paper [7] about \(\eta \)-invariants of flat manifolds, where our results are applied.

A holonomy representation \(\phi : G \to \mathrm{GL}(n, \mathbb{Z}) \) of the Bieberbach group \(\Gamma \) (cf. [1]) is defined by the formula:

\[
\forall g \in G, \phi(g)(e_i) = \tilde{g} e_i \tilde{g}^{-1},
\]

(2)

where \(e_i \in \Gamma \) are generators of \(\mathbb{Z}^n \) for \(i = 1, 2, ..., n \), and \(\tilde{g} \) is an element of \(\Gamma \), such that \(p(\tilde{g}) = g \).

2 \(\mathbb{Q} \)-classes of holonomy representation

By [3], the possible orders of cyclic groups, that can be realized as holonomy groups of crystallographic groups in dimension 7 are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30. By [3, Lemma 2.1], the degree of a matrix with \(n \)-th primitive root of 1 is not less than \(\varphi(n) \), where \(\varphi \) is the Euler’s function. Since for \(n = 15, 20, 24, 30 \) \(\varphi(n) > 7 \), then any matrix of order \(n \) and degree 7 must be taken as a direct sum of matrices, which orders are proper divisors of \(n \).

Let \(n \in \mathbb{N}, n > 1 \) and

\[
\Phi_n(x) = x^{\varphi(n)} + a_{\varphi(n)-1} x^{\varphi(n)-1} + \ldots + a_1 x + a_0
\]

be the cyclotomic polynomial of order \(n \) (see [2, page 137]). Since the char-
acteristic polynomial of the matrix

\[
A_n = \begin{bmatrix}
0 & 0 & \ldots & 0 & -a_0 \\
1 & 0 & \ldots & 0 & -a_1 \\
0 & 1 & \ldots & 0 & -a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{\varphi(n)-1}
\end{bmatrix}
\]

is equal to \(\pm \Phi_n(x) \), then eigenvalues of \(A_n \) are primitive \(n \)-th roots of the unity.

Let \(G \) be a cyclic group of order \(n \), generated by an element \(g \). Then for each \(d \mid n \), \(\rho_d : G \to GL(\varphi(d), \mathbb{Z}) \), given by

\[
\rho_n(g) = A_d
\]

is an integral representation of \(G \), which is irreducible over \(\mathbb{Q} \). Moreover, by \cite{2} Corollary 39.5], these are all, up to equivalence, rational irreducible representation of \(G \).

From the above remarks, rational representations of a cyclic group of order \(n \) in dimension 7 are of the form

\[
\rho = \bigoplus_{d \mid n, d \leq 18} a_d \rho_d,
\]

where \(a_i \in \mathbb{N} \) and

\[
\sum_{d \mid n, d \leq 18} a_d \varphi(d) = 7,
\]

and \(\rho \) is faithful, if

\[
\text{LCM}\{d \mid n; a_d \neq 0\} = n.
\]

In the Table 1 we give a list of cyclotomic polynomials for given \(n \) and some remarks about the matrices \(A_n \). The relation \(\sim \) means "the same conjugacy class in \(\text{GL}(\varphi(n), \mathbb{Q}) \)".

3 Determination of Bieberbach groups

Let \(G \) be a cyclic group of order \(n \). From (3) we know, how to determine all equivalence classes of seven dimensional rational representation of \(G \). We
want to classify all Bieberbach groups with a holonomy group G. There are three steps:

1. Determine, up to equivalence, all faithful representations $\rho: G \to \text{GL}(7, \mathbb{Q})$;

2. Determine all integral representations (up to equivalence) of G equivalent over \mathbb{Q} to ρ;

3. For each representation $\tau: G \to \text{GL}(7, \mathbb{Z})$ from the previous point, determine all Bieberbach groups (up to isomorphism) with holonomy representation τ.

To determine \mathbb{Z}-classes of faithful representations of cyclic group of prime order, we use [2, Theorem 74.3].

As mentioned before, the complete list of seven dimensional Bieberbach groups with a cyclic holonomy group is given in [4]. Let us give a short dictionary of tables. If a Bieberbach group Γ has a name of the form

$$\frac{n}{n.a_1.f_1-b_1+\ldots+a_1.f_1-b_1.p.q.r},$$

then n is the order of the holonomy group G, the \mathbb{Q}-class of a holonomy representation of G is given by the representation

$$a_1\rho_{b_1} \oplus \ldots \oplus a_l\rho_{b_l}$$

n	$\varphi(n)$	$\Phi_n(x)$	Remarks
2	1	$x - 1$	
3	2	$x^2 + x + 1$	
4	2	$x^2 + 1$	
5	4	$x^4 + x^3 + x^2 + x + 1$	
6	2	$x^2 - x + 1$	$A_6 \sim -A_3$
7	6	$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$	
8	4	$x^4 + 1$	
9	6	$x^6 + x^3 + 1$	
10	4	$x^4 - x^3 + x^2 - 1$	$A_{10} \sim -A_5$
12	4	$x^4 - x^2 + 1$	
14	6	$x^6 - x^5 + x^4 - x^3 + x^2 - 1$	$A_{14} \sim -A_7$
18	6	$x^6 - x^3 + 1$	$A_{18} \sim -A_9$

Table 1: Cyclotomic polynomials for given numbers
(cf. (3)). Moreover \(f_i = \varphi(b_i) \), for \(i = 1, \ldots, l \); \(p,q \) is a symbol of the \(\mathbb{Z} \)-class of a holonomy representation and \(r \) is a number of the group \(\Gamma \). The numbers \(p, q, r \) are assigned by CARAT.

References

[1] L. S. Charlap, *Bieberbach Groups and Flat Manifolds*, Universitext, Springer-Verlag, New York, 1986

[2] C.W. Curtis, I. Reiner, *Representation theory of finite groups and associative algebras*. Pure and Applied Mathematics, Vol. XI Interscience Publishers, a division of John Wiley & Sons, New York-London 1962

[3] H. Hiller, *The Crystallographic Restriction in Higher Dimensions*, Acta Cryst. (1985), A41, 541–544

[4] R. Lutowski, *A list of 7-dimensional Bieberbach groups with cyclic holonomy*, available online, http://rlutowsk.mat.ug.edu.pl/flat7cyclic/

[5] J. Opgenorth, W. Plesken, T. Schulz, *CARAT – Crystallographic algorithms and tables*, Version 2.0, 2003, http://wwwb.math.rwth-aachen.de/carat

[6] A. Szczepański, *Geometry of the crystallographic groups*, book in preparation available on web http://www.mat.ug.edu.pl/aszczepsa

[7] A. Szczepański, *Eta invariants for flat manifolds*, preprint 2010, submitted

[8] J. Wolf, *Spaces of constant curvature*, MacGraw Hill, New York-London-Sydney, 1967