The Menger and projective Menger properties of function spaces with the set-open topology

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Yekaterinburg, Russia

Abstract
For a Tychonoff space X and a family λ of subsets of X, we denote by $C_\lambda(X)$ the space of all real-valued continuous functions on X with the set-open topology. In this paper, we study the Menger and projective Menger properties of a Hausdorff space $C_\lambda(X)$. Our main results state that if λ is a π-network of X, then

1. $C_\lambda(X)$ is Menger space, if and only, if $C_\lambda(X)$ is σ-compact,
and, if Y is a dense subset of X, then

2. $C_p(Y|X)$ is projective Menger space, if and only, if $C_p(Y|X)$ is σ-pseudocompact.

Keywords: Menger, projective Menger, set-open topology, σ-compact, σ-pseudocompact, σ-bounded, basically disconnected space, function space

2010 MSC: 54C25, 54C35, 54C40, 54D20

1. Introduction

Throughout this paper X will be a Tychonoff space. Let λ be a family non-empty subsets of X, $C(X)$ the set of all continuous real-valued function on X. Denote by $C_\lambda(X)$ the set $C(X)$ is endowed with the λ-open topology. The elements of the standard subbases of the λ-open topology will be denoted as follows: $[F, U] = \{f \in C(X) : f(F) \subseteq U\}$, where $F \in \lambda$, U is an open subset of \mathbb{R}. Note that if λ consists of all finite subsets of X then the λ-open topology is equal to the topology of pointwise convergence, that...

Email address: OAB@list.ru (Alexander V. Osipov)
is $C_\lambda(X) = C_p(X)$. Denote be $C_p(Y|X) = \{ h \in C_p(Y) : h = f|_Y \text{ for } f \in C(X) \}$ for $Y \subset X$.

Recall that, if X is a space and \mathcal{P} a topological property, we say that X is σ-\mathcal{P} if X is the countable union of subspaces with the property \mathcal{P}.

So a space X is called σ-compact (σ-pseudocompact, σ-bounded), if $X = \bigcup_{i=1}^{\infty} X_i$, where X_i is a compact (pseudocompact, bounded) for every $i \in \mathbb{N}$.

N.V. Velichko proved that $C_p(X)$ is σ-compact, if and only, if X is finite. In [20], V.V. Tkachuk clarified when $C_p(X)$ is σ-pseudocompact and when $C_p(X)$ is σ-bounded, and considered similar questions for the space $C^*_p(X)$ of bounded continuous functions on X.

A space X is said to be Menger [9] (or, [17]) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite subfamilies $V_n \subset U_n$ such that $\bigcup\{V_n : n \in \omega\}$ is a cover of X.

Every σ-compact space is Menger, and a Menger space is Lindelöf. The Menger property is closed hereditary, and it is preserved by continuous maps. It is well known that the Baire space \mathbb{N}^ω (hence, \mathbb{R}^ω) is not Menger.

In [2], A.V. Arhangel’skii proved that $C_p(X)$ is Menger, if and only, if X is finite.

Let \mathcal{P} be a topological property. A.V. Arhangel’skii calls X projectively \mathcal{P} if every second countable image of X is \mathcal{P}. Arhangel’skii consider projective \mathcal{P} for $\mathcal{P} = \sigma$-compact, analytic [3], and other properties.

Lj.D.R. Kočinac characterized the classical covering properties of Menger, Rothberger, Hurewicz and Gerlits-Nagy in term of continuous images in \mathbb{R}^ω. The projective selection principles were introduced and first time considered in [11].

Every Menger space is projectively Menger. It is known (Theorem 2.2 in [11]) that a space is Menger, if and only, if it is Lindelöf and projectively Menger.

Characterizations of projectively Menger spaces X in terms a selection principle restricted to countable covers by cozero sets are given in [3].

In [16], M. Sakai proved that $C_p(X)$ is projectively Menger, if and only, if X is pseudocompact and b-discrete.

In this paper we study the Menger property of Hausdorff space $C_\lambda(X)$, and the projective Menger property of $C_p(Y|X)$ where Y is dense subset of X.

2
2. Main definitions and notation

Recall that a family \(\lambda \) of non-empty subsets of a topological space \((X, \tau)\) is called a \(\pi \)-network for \(X \) if for any nonempty open set \(U \in \tau \) there exists \(A \in \lambda \) such that \(A \subset U \).

Throughout this paper, a family \(\lambda \) of nonempty subsets of the set \(X \) is a \(\pi \)-network. This condition is equivalent to the space \(C_\lambda(X) \) being a Hausdorff space \([12]\).

We will also need the following assertion \([1], [4]\).

Proposition 2.1. If \(\mathbb{I}_\alpha = \mathbb{I} = [0, 1] \) for \(\alpha \in A \) and \(Y \) is a subspace of the Tychonoff cube \(\mathbb{I}^A = \prod \{ \mathbb{I}_\alpha : \alpha \in A \} \) which, whatever the countable set \(B \subset A \), projects under the canonical projection \(\pi_B : \mathbb{I}^A \mapsto \mathbb{I}^B \) onto the whole cube \(\mathbb{I}^B = \prod \{ \mathbb{I}_\alpha : \alpha \in B \} \) of \(\mathbb{I}^A \), then \(Y \) is pseudocompact.

Theorem 2.2. (Nokhrin \([12]\)) For a Tychonoff space \(X \) the following statements are equivalent:

1. \(C_\lambda(X) \) is a \(\sigma \)-compact;
2. \(X \) is a pseudocompact, \(D(X) \) is a dense \(C^* \)-embedded set in \(X \) and family \(\lambda \) consists of all finite subsets of \(D(X) \), where \(D(X) \) is an isolated points of \(X \).

The closure of a set \(A \) will be denoted by \(\overline{A} \) (or \(cl(A) \)); the symbol \(\emptyset \) stands for the empty set. As usual, \(f(A) \) and \(f^{-1}(A) \) are the image and the complete preimage of the set \(A \) under the mapping \(f \), respectively.

A subset \(A \) of a space \(X \) is said to be bounded in \(X \) if for every continuous function \(f : X \mapsto \mathbb{R} \), \(f|A : A \mapsto \mathbb{R} \) is a bounded function. Every \(\sigma \)-bounded space is projectively Menger (Proposition 1.1 in \([3]\)).

3. Main results

In order to prove the main theorem we need to prove some statements that we call Lemmas, but note their self-importance.

Recall that a space \(X \) is called basically disconnected \([8]\), if every cozero-set has an open closure. Clearly, every basically disconnected (Tychonoff) space is zero-dimensional space.

Lemma 3.1. If \(C_\lambda(X) \) is Menger, then \(X \) is a basically disconnected space.
Proof. Let $U \subseteq X$ be a cozero set in X. Claim that $\overline{U} = \text{Int} \overline{U}$. Suppose that $\overline{U} \setminus \text{Int} \overline{U} \neq \emptyset$. Since U is a cozero set, there are open sets U_n of X such that for each $n \in \mathbb{N}$, $\overline{U}_n \subseteq U_{n+1}$ and $\bigcup_{n=1}^{\infty} U_n = U$. For each $n,m \in \mathbb{N}$, we put

$$Z_{n,m} = \{ f \in C(X, [0,1]) : f(\overline{U}) \equiv 0 \text{ and } f(U_n) \subset [\frac{1}{2^m}, 1] \}.$$

Note that $Z_{n,m}$ is closed subset of $C(X)$ for each $n, m \in \mathbb{N}$. Let $h \notin Z_{n,m}$.

If $x \in X \setminus \text{Int} \overline{U}$ such that $h(x) \neq 0$. Since λ is π-network of X, there is $A \in \lambda$ such that $A \subset h^{-1}(h(x) - \frac{|h(x)|}{2}, h(x) + \frac{|h(x)|}{2}) \cap \text{Int} (X \setminus \text{Int} \overline{U})$. Then $h \in [A, (h(x) - \frac{|h(x)|}{2}, h(x) + \frac{|h(x)|}{2})]$ and $[A, (h(x) - \frac{|h(x)|}{2}, h(x) + \frac{|h(x)|}{2})] \cap Z_{n,m} = \emptyset$.

If $x \in U_n$ and $h(x) \notin [\frac{1}{2^m}, 1]$. Let $d = \frac{\text{diam}(h(x), [\frac{1}{2^m}, 1])}{2}$. Since λ is a π-network of X, there is $A \in \lambda$ such that $A \subset h^{-1}((h(x) - d, h(x) + d) \cap U_n$. Then $h \in [A, (h(x) - d, h(x) + d)]$ and $[A, (h(x) - d, h(x) + d)] \cap Z_{n,m} = \emptyset$.

Assume that $\bigcap\{Z_{n,m} : n \in \mathbb{N}\} = \emptyset$ for all $m \in \mathbb{N}$. Using the Menger property of $C(X)$, we can take some $\varphi \in \mathbb{N}^\mathbb{N}$ such that $\bigcap\{Z_{\varphi(m),m} : m \in \mathbb{N}\} = \emptyset$. For each $m \in \mathbb{N}$, take any $g_m \in C(X)$ satisfying $g_m(X \setminus \text{Int} \overline{U}) \equiv 0$ and $g_m(U_{\varphi(m)}) = \{1\}$. Let $g = \sum_{j=1}^{\infty} 2^{-j} g_j$. Then, $g \in C(X)$ and $g(X \setminus \text{Int} \overline{U}) \equiv 0$. Fix any $m \in \mathbb{N}$, $1 \leq k \leq \varphi(m)$ and $x \in U_k$. Then we have $g(x) = \sum_{j=1}^{\infty} 2^{-j} g_j(x) \geq 2^{-m} g_m(x) = 2^{-m}$.

Hence, $g \in \bigcap\{Z_{\varphi(m),m} : m \in \mathbb{N}\}$. This is a contradiction. Thus, there is some $m \in \mathbb{N}$ such that $\bigcap\{Z_{n,m} : n \in \mathbb{N}\} \neq \emptyset$. Let $p \in \bigcap\{Z_{n,m} : n \in \mathbb{N}\}$. Then $p(U) \subset [\frac{1}{2^m}, 1]$ and $p((X \setminus \text{Int} \overline{U})) \equiv 0$. It follows that $\overline{U} \setminus \text{Int} \overline{U} = \emptyset$.

A subset $G \subset \omega^\omega$ is dominating if for every $f \in \omega^\omega$ there is a $g \in G$ such that $f(n) \leq g(n)$ for all but finitely many n.

Theorem 3.2. (Hurewicz [10]) A second countable space X is Menger iff for every continuous mapping $f : X \mapsto \mathbb{R}^\omega$, $f(X)$ is not dominating.

"Second countable" can be extended to "Lindelöf":

Theorem 3.3. (Kočinac [11], Theorem 2.2) A Lindelöf space X is Menger iff for every continuous mapping $f : X \mapsto \mathbb{R}^\omega$, $f(X)$ is not dominating.

Lemma 3.4. If $C(X)$ is Menger. Then X is pseudocompact.

Proof. Assume that X is not pseudocompact and $f \in C(X)$ is not bounded function. Without loss of generality we can assume that $\mathbb{N} \subset f(X)$. For each $n \in \mathbb{N}$ we choose $A_n \in \lambda$ such that $A_n \subset f^{-1}((n - \frac{1}{3}, n + \frac{1}{3}))$. By
Lemma 3.1. \(F_n = \overline{f^{-1}\left((n - \frac{1}{2}, n + \frac{1}{2})\right)} \) is clopen set for each \(n \in \mathbb{N} \). Let \(K = \{ f \in C(X) : f|F_n = s_{f,n} \text{ for each } n \in \mathbb{N} \text{ and } s_{f,n} \in \mathbb{R} \} \). Then \(K \) is closed subset of \(C_\lambda(X) \) and, hence, it is Menger. Fix \(a_n \in A_n \) for every \(n \in \mathbb{N} \). Note that \(D = \{a_n : n \in \mathbb{N}\} \) is a \(C \)-embedded copy of \(\mathbb{N} \) (3L (1) in [8]). So we have a continuous mapping \(F : K \mapsto \mathbb{R}^D \) the space \(K \) onto \(\mathbb{R}^D \). But \(F(K) = \mathbb{R}^D = \mathbb{R}^\omega \) is dominating, contrary to the Theorem 3.3. \[\square \]

Lemma 3.5. If \(C_\lambda(X) \) is Menger, then \(\mu = \{ A \in \lambda : A \text{ is finite subset of } X \} \) is a \(\pi \)-network of \(X \).

Proof. Assume that there exist an open set \(U \) of \(X \) such that \(B \not\subset U \) for every \(B \in \mu \). Fix a family \(\{V_n : n \in \mathbb{N}\} \) of open subsets of \(X \) such that \(V_n \subset U \) for every \(n \in \mathbb{N} \) and \(V_n \cap V_{n'} = \emptyset \) for \(n \neq n' \). Fix \(x_n \in V_n \) and \(\epsilon > 0 \). For every \(f \in C_\lambda(X) \) and \(n \in \mathbb{N} \) consider \(B_{f,n} \subset \lambda \) such that \(B_{f,n} \subset f^{-1}\left((f(x_n) - \epsilon, f(x_n) + \epsilon)\right) \cap V_n \). Then \(U_n = \{[B_{f,n}, (f(x_n) - \epsilon, f(x_n) + \epsilon)] : f \in C_\lambda(X)\} \) is an open cover of \(C_\lambda(X) \) for every \(n \in \mathbb{N} \). Using the Menger property of \(C_\lambda(X) \), for sequence \(\{U_n : n \in \omega\} \) of open covers of \(C_\lambda(X) \), there are finite subfamilies \(S_n \subset U_n \) such that \(\bigcup S_n \in \omega \) is a cover of \(C_\lambda(X) \). Let \(S_n = \{ [B_{f_1,n}, (f_{1,n}(x_n) - \epsilon, f_{1,n}(x_n) + \epsilon)], ..., [B_{f_{k(n),n}}, (f_{k(n),n}(x_n) - \epsilon, f_{k(n),n}(x_n) + \epsilon)] \} \) for every \(n \in \mathbb{N} \). Since \(B_{f_{s,n}} \) is an infinite subset of \(X \), we fix \(z_{s,n} \in B_{f_{s,n}} \) for every \(s \in 1, k(n) \) and \(n \in \mathbb{N} \) such that \(z_{s',n} \neq z_{s'',n} \) for \(s' \neq s'' \). Let \(Z = \{ z_{s,n} : s \in 1, k(n) \text{ and } n \in \mathbb{N} \} \).

Define the function \(q : Z \mapsto \mathbb{R} \) such that \(q(z_{s,n}) = 0 \) if \(0 \notin (f_{s,n}(x_n) - \epsilon, f_{s,n}(x_n) + \epsilon) \), else \(q(z_{s,n}) = 2\epsilon \) for \(s \in 1, k(n) \) and \(n \in \mathbb{N} \). By Lemma 3.1, \(X \) is a basically disconnected space.

Recall that (14N p.215 in [8]) every countable set in a basically disconnected space is \(C^* \)-embedded.

Hence, there is \(t \in C_\lambda(X) \) such that \(t|Z = q \). But \(t \notin \bigcup S_n : n \in \omega \}. \) This is a contradiction. \[\square \]

Denote \(D(X) \) a set of isolated points of \(X \).

Lemma 3.6. If \(C_\lambda(X) \) is Menger, then \(D(X) \) is dense set in \(X \).

Proof. Assume that there exist an open set \(W \neq \emptyset \) such that \(W \cap D(X) = \emptyset \). By Lemma 3.5, \(\mu \) is \(\pi \)-network of \(X \), hence, there is \(A \in \mu \) such that \(A \subset W \). Note that \(X \setminus A \) is dense set in \(X \). The constant zero function defined on
Assume that V is an open cover of C that $\bigcup V = X \setminus A$. Let $\epsilon > 0$. Then $V = \{B_f, (f(x_f) - \frac{|f(x_f)|}{2}, f(x_f) + \frac{|f(x_f)|}{2}) : f \in C(X) \setminus \{f_0\} \cup A, (-\epsilon, \epsilon]\}$ is an open cover of $C(X)$. Since $C(X)$ is Menger and, hence, $C(X)$ is Lindelöf, there is a countable subcover $V' = \{B_{f_n}, (f_n(x_f) - \frac{|f_n(x_f)|}{2}, f_n(x_f) + \frac{|f_n(x_f)|}{2}) : n \in \mathbb{N}\} \cup A, (-\epsilon, \epsilon]\subset V$ of $C(X)$. Since X is a basically disconnected space and every countable set in a basically disconnected space is C^*-embedded, there is $h \in C(X)$ such that $h|_{\bigcup_{n \in \mathbb{N}} B_{f_n} = 0}$ and $h(a) = \epsilon$ for some $a \in A$. Note that $h \notin \bigcup V'$, to contradiction.

Lemma 3.7. If $C(X)$ is Menger, then $D(X)$ is C^*-embedded.

Proof. Let f be a bounded continuous function from $D(X)$ into \mathbb{R}, and $F_A = \{g \in C(X) : g|A = f|A\}$ for $A \in D(X)^\omega$. Note that F_A is closed subset of $C(X)$ and, by Lemma 3.1, $F_A \neq \emptyset$. So $\xi = \{F_A : A \in D(X)^\omega\}$ is family of closed subspaces with the countable intersection property. Since $C(X)$ is Menger, hence, it is Lindelöf, and every family of closed subspaces of with the countable intersection property has non-empty intersection. It follows that $\bigcap \xi \neq \emptyset$. We thus get that $\tilde{f} \in \bigcap \xi$ such that $\tilde{f} \in C(X)$ and $\tilde{f}|D(X) = f$.

Proposition 3.8. Let $X = \mathbb{N}$ and let $\lambda = \{X\} \bigcup \{\{x\} : x \in X\}$. Then $C^*_\lambda(X)$ is not Menger.

Proof. Assume that $C^*_\lambda(X)$ is Menger. For every $i \in \mathbb{N}$ consider an open cover $\mathcal{V}_i = \{[N, (-2 + \frac{1}{i+1}, 2 - \frac{1}{i+1})] \cup \{(x, (-\infty, -2 + \frac{2i+1}{2(i+1)}, +\infty)) : x \in X\}$ of $C^*_\lambda(X)$. Using the Menger property of $C^*_\lambda(X)$, for sequence $\{\mathcal{V}_i : i \in \mathbb{N}\}$ of open covers of $C^*_\lambda(X)$, there are finite subfamilies $\mathcal{S}_i \subset \mathcal{V}_i$ such that $\bigcup \{\mathcal{S}_i : i \in \mathbb{N}\}$ is a cover of $C^*_\lambda(X)$.

Without loss of generality we can assume that $[N, (-2 + \frac{1}{i+1}, 2 - \frac{1}{i+1})] \in \mathcal{S}_i$ for each $i \in \mathbb{N}$.

By using induction, for each $i \in \mathbb{N}$, determine the values of the function f at some points, depending on the \mathcal{S}_i, as follows:

For $i = 1$ and

$\mathcal{S}_1 = \{[N, (-2 + \frac{1}{2}, 2 - \frac{1}{2})], [x_1, (-\infty, -2 + \frac{3}{4}) \cup (2 - \frac{3}{4}, +\infty)], ..., [x_k, (-\infty, -2 + \frac{3}{4}) \cup (2 - \frac{3}{4}, +\infty)]\}$, define
Proof. Suppose that A if A is a countable set in a basically disconnected space is C (note that either $z \in C$). Then a space C with $A = \bigcup \{x_n : n \in \mathbb{N}\}$, where $P = \bigcup \{x_n : n \in \mathbb{N}\}$ for $i = m$.

$$S_m = \{[\mathbb{N}, (-2 + \frac{1}{m+1}, 2 - \frac{1}{m+1})], [x^m_1, (-\infty, -2 + \frac{2m+1}{2m(m+1)} \cup (2 - \frac{2m+1}{2m(m+1)}, +\infty)], \ldots, [x^m_{k(m)}, (-\infty, -2 + \frac{2m+1}{2m(m+1)} \cup (2 - \frac{2m+1}{2m(m+1)}, +\infty)]\},$$

$$f(x^m_n) = 0 \text{ where } x^m_n \notin P_{m-1} \text{ for } n \in 1, k(m) \text{ and }$$

$$f(s_m) = p_m \text{ where } p_m \in [-2 + \frac{2m+1}{2m(m+1)}, 2 - \frac{2m+1}{2m(m+1)+2}] \cup (2 + \frac{m+1}{1}, 2 - \frac{1}{m+1}) \text{ for some } s_m \in X \setminus P_{m-1}. \text{ Denote } P_m = \bigcup \{x^m_n \cup s_m \cup P_{m-1} \text{ and }$$

$$P = \bigcup_{m \in \mathbb{N}} P_m.$$ If $X \setminus P \neq \emptyset$, then let $f(x) = 1$ for $x \in X \setminus P$.

By construction of f, $f \notin S_i$ for every $i \in \mathbb{N}$, to contradiction. \hfill \square

Lemma 3.9. If $C_\lambda(X)$ is Menger, then each $A \in \lambda$ is a finite subset of $D(X)$.

Proof. Suppose that $C_\lambda(X)$ is Menger, $\tilde{X} = \{A\} \bigcup \{\{x\}, x \in D(X)\}$ and $A \in \lambda$ is an infinite subset of X. Then $C_\lambda(X)$ is Menger, too. Note that if A is countable and $A \subset D(X)$, then we have a continuous mapping $g : C_\lambda(X) \rightarrow C^*_p \cup \{N\}$. Hence, $C^*_p \cup \{N\}$ is Menger, contrary to Proposition 3.8.

Let $V = (-1, 1) \cup [\mathbb{R} \setminus [-4, 4]]$. Consider $U = \{[A, V] \cup \{[x, \mathbb{R} \setminus [-\frac{2}{3}, \frac{2}{3}]] : x \in D(X)\}$. Since $D(X)$ is dense subset of $C_\lambda(X)$ (Lemma 3.6), U is an open cover of $C_\lambda(X)$ and, hence, there is a countable subcover $U' \subset U$ of $C_\lambda(X)$. Let $U' = \{[A, V], [x_1, \mathbb{R} \setminus [-\frac{2}{3}, \frac{2}{3}]], \ldots, [x_n, \mathbb{R} \setminus [-\frac{2}{3}, \frac{2}{3}]], \ldots\}$. Let $z \in A \setminus \bigcup_n \{x_n\}$ (note that either $z \in A \setminus D(X)$ or $A \subset D(X)$ and $|A| > \aleph_0$). Since every countable set in a basically disconnected space is C^*-embedded, there is $h \in C_\lambda(X)$ such that $h \bigcup \{x_n\} = 0$ and $h(z) = 2$. It follows that $h \notin U'$, to contradiction. It follows that A is finite subset of $D(X)$. \hfill \square

Theorem 3.10. Let X be a Tychonoff space and let λ be a π-network of X. Then a space $C_\lambda(X)$ is Menger, if and only if, $C_\lambda(X)$ is σ-compact.

Proof. By Lemma 3.4, X is pseudocompact. By Lemmas 3.5 and 3.9 the family λ consists of all finite subsets of $D(X)$, where $D(X)$ is an isolated
By Lemma 3.7, $D(X)$ is a dense C^*-embedded set in X. It follows that $C_\lambda(X)$ is σ-compact (Theorem 2.2).

Various properties between σ-compactness and Menger are investigated in the papers [19, 6]. We can summarize the relationships between considered notions in ([19], see Figure 1), Theorems 3.10 and 2.2. Then we have the next

Theorem 3.11. For a Tychonoff space X and a π-network λ of X, the following statements are equivalent:

1. $C_\lambda(X)$ is σ-compact;
2. $C_\lambda(X)$ is Alster;
3. (CH) $C_\lambda(X)$ is productively Lindelöf;
4. "TWO wins M-game" for $C_\lambda(X)$;
5. $C_\lambda(X)$ is projectively σ-compact and Lindelöf;
6. $C_\lambda(X)$ is Hurewicz;
7. $C_\lambda(X)$ is Menger;
8. X is a pseudocompact, $D(X)$ is a dense C^*-embedded set in X and family λ consists of all finite subsets of $D(X)$, where $D(X)$ is an isolated points of X.

4. Projectively Menger space

According to Tkačuk [20], a space X said to be b-discrete if every countable subset of X is closed (equivalently, closed and discrete) and C^*-embedded in X.

Lemma 4.1. (Lemma 2.1 in [16]) The following are equivalent for a space X:

1. X is b-discrete;
2. For any disjoint countable subsets A and B in X, there are disjoint zero-sets Z_A and Z_B in X such that $A \subseteq Z_A$ and $B \subseteq Z_B$;
3. For any disjoint countably subsets A and B in X such that A is closed in X, there are disjoint zero-sets Z_A and Z_B in X such that $A \subseteq Z_A$ and $B \subseteq Z_B$.

8
Definition 4.2. For \(A \subset X \), a space \(X \) will be called \(b_A \)-discrete if every countable subset of \(A \) is closed in \(A \) and \(C^* \)-embedded in \(X \).

Lemma 4.3. The following are equivalent for a space \(X \) and \(A \subset X \):

1. \(X \) is \(b_A \)-discrete;
2. For any disjoint countable subsets \(D \) and \(B \) in \(A \), there are disjoint zero-sets \(Z_D \) and \(Z_B \) in \(X \) such that \(D \subset Z_D \) and \(B \subset Z_B \);
3. For any disjoint countably subsets \(D \) and \(B \) in \(A \) such that \(D \) is closed in \(A \), there are disjoint zero-sets \(Z_A \) and \(Z_B \) in \(X \) such that \(D \subset Z_D \) and \(B \subset Z_B \).

Similarly to the proof of implication \((C_p(X, \mathbb{I}) \) is projectively Menger \(\Rightarrow \) \(X \) is \(b \)-discrete) of Theorem 2.4 in [16], we claim the next

Lemma 4.4. Let \(C_\lambda(X) \) be a projectively Menger space, then \(X \) is \(b_A \)-discrete where \(A = \bigcup \lambda \).

Proof. Let \(C_\lambda(X) \) be a projectively Menger. We show the statement (3) in Lemma 4.3. Let \(D \) and \(B \) be a disjoint countable subsets in \(A \) such that \(D \) is closed in \(A \). Let \(B = \{b_n : n \in \mathbb{N}\} \), and let \(B_n = \{b_1, ..., b_n\} \).

For each \(n, m \in \mathbb{N} \), we put \(Z_{n,m} = \{f \in C_\lambda(X) : f(D) = \{0\} \text{ and } f(B_m) \subset [\frac{1}{2^m}, 1]\} \). Since \(D \) and \(B_m \) are countable and \(\lambda \) is a \(\pi \)-network of \(X \), each \(Z_{n,m} \) is a zero-set in \(C_\lambda(X) \). Assume that \(\bigcap\{Z_{n,m} : m \in \mathbb{N}\} = \emptyset \) for all \(n \in \mathbb{N} \). Using the projective Menger property of \(C_\lambda(X) \), Theorem 6 in [5], we can take some \(\varphi \in \mathbb{N}^\mathbb{N} \) such that \(\bigcap\{Z_{n,\varphi(n)} : n \in \mathbb{N}\} = \emptyset \). For each \(n \in \mathbb{N} \), take any \(g_n \in C_\lambda(X) \) satisfying \(g_n(D) = \{0\} \) and \(g_n(B_{\varphi(n)}) = \{1\} \).

Let \(g = \sum_{j=1}^\infty 2^{-j}g_j \). Then, \(g \in C_\lambda(X) \) and \(g(D) \equiv 0 \). Fix any \(n \in \mathbb{N} \), \(1 \leq k \leq \varphi(m) \). Then we have

\[
g(b_k) = \sum_{j=1}^\infty 2^{-j}g_j(b_k) \geq 2^{-n}g_n(b_k) = 2^{-n}.
\]

Hence, \(g \in \bigcap\{Z_{n,\varphi(n)} : n \in \mathbb{N}\} \). This is a contradiction. Thus, there is some \(n \in \mathbb{N} \) such that \(\bigcap\{Z_{n,m} : m \in \mathbb{N}\} \neq \emptyset \). Let \(h \in \bigcap\{Z_{n,m} : m \in \mathbb{N}\} \). Then \(D \subset Z_A = h^{-1}(0) \) and \(B \subset Z_B = h^{-1}(\frac{1}{2m}, 1] \).

\[\square \]

Theorem 4.5. Let \(X \) be a Tychonoff space and let \(Y \) be a dense subset of \(X \). Then the following statements are equivalent:

1. \(C_p(Y|X) \) is projectively Menger;

\[\]
2. $C_p(Y|X)$ is σ-bounded;
3. $C_p(Y|X)$ is σ-pseudocompact;
4. X is pseudocompact and b_Y-discrete.

Proof. Note that $C_p(Y|X)$ is homeomorphic to $C_\lambda(X)$ for $\lambda = [Y]^{<\omega}$.

(1) \Rightarrow (4). By Lemma 4.4, X is b_Y-discrete. Assume that X is not pseudocompact and $f \in C(X)$ is not bounded function. Without loss of generality we can assume that $\mathbb{N} \subseteq f(X)$. For each $n \in \mathbb{N}$ we choose $a_n \in Y$ such that $a_n \in f^{-1}((n - \frac{1}{3}, n + \frac{1}{3}))$. Note that $D = \{a_n : n \in \mathbb{N}\}$ is a C-embedded copy of \mathbb{N} (3L (1) in [8]). So we have a continuous mapping $F : C_p(Y|X) \mapsto \mathbb{R}^D$ the Menger space $C_p(Y|X)$ onto \mathbb{R}^D. But $F(C_p(Y|X)) = \mathbb{R}^D = \mathbb{R}^\omega$ is dominating, contrary to the Theorem 3.3.

(4) \Rightarrow (3). Since $C_p(Y,X,\mathbb{I})$ is a dense subset of \mathbb{I}^Y and X is b_Y-discrete, by Proposition 2.1, $C_p(Y|X,\mathbb{I})$ is pseudocompact. Hence, $C_p(Y|X)$ is σ-pseudocompact.

Note that every σ-pseudocompact space is σ-bounded, and every σ-bounded space is projectively Menger (Proposition 1.1 in [3]).

5. Examples

Using Theorem 3.10 and Theorem 4.5 we can construct example of projective Menger topological group $C_\lambda(X)$ such that it is not Menger.

Note that if $\lambda = \bigcup\lambda^{<\omega}$, then $C_\lambda(X)$ is a topological group (locally convex topological vector space, topological algebra) ([14], [15]).

Example 5.1. (Example 1 in [13]) Let T be a P-space without isolated points, $X = \beta(T)$ and let λ be a family of all finite subsets of T. Then $C_\lambda(X)$ is σ-countably compact (Theorem 1.2 in [13]), hence, the topological group $C_\lambda(X)$ is projective Menger. But the space X does not contain isolated points, hence, $C_\lambda(X)$ is not Menger.

Example 5.2. (Example 2 in [13]) Let D be an uncountable discrete space and $\lambda = D^{<\omega}$. Consider $F = \beta(D) \setminus \bigcup\{S : S \subseteq D, \text{and} S \text{ countable}\}$. Denote by $b(D)$ a quotient space obtained from $\beta(D)$ by identifying the set F with the point $\{F\}$. Then the topological group $C_\lambda(b(D))$ is projective Menger (σ-countably compact), but is not Menger.

Example 5.3. (14) D.B.Shahmatov has constructed for an arbitrary cardinal $\tau \geq 2^{\aleph_0}$ an everywhere dense pseudocompact space X_τ in \mathbb{I}^τ such that
X_τ is a b-discrete. Hence, the topological group $C_p(X_\tau)$ is projective Menger (σ-pseudocompact and is not σ-countably compact), but is not Menger for an arbitrary cardinal $\tau \geq 2^{\aleph_0}$.

Remark 5.4. By Theorems 2.2 and 3.10 if X is compact, λ is a π-network of X and $C_\lambda(X)$ is Menger, then X is homeomorphic to $\beta(D)$, where $\beta(D)$ is Stone-\check{C}ech compactification of a discrete space D, and $\lambda = [D]^{<\omega}$.

References

[1] A.V. Arhangel’skii, *Continuous maps, factorization theorems, and function spaces*, Trudy Moskovsk. Mat. Obshch., 47, (1984), 3–21.

[2] A.V. Arhangel’skii, *Hurewicz spaces, analytic sets and fan tightness of function spaces*, Sov. Math. Dokl., 33, (1986), 396–399.

[3] A.V. Arhangel’skii, *Projective σ-compactness, ω_1-caliber, and C_p-spaces*, Topology and its Applications, 157, (2000), 874–893.

[4] A.V. Arhangel’skii, V.I. Ponomarev, *Fundamentals of general topology: problems and exercises*, Reidel, 1984. (Translated from the Russian.)

[5] M. Bonanzinga, F. Cammaroto, M. Matveev, *Projective versions of selection principles*, Topology and its Applications, 157, (2010), 874–893.

[6] H. Duanmu, F.D. Tall, L. Zdomskyy, *Productively Lindelöf and indestructibly Lindelöf spaces*, Topology and its Applications 160:18 (2013), 2443-2453.

[7] R. Engelking, *General Topology*, PWN, Warsaw, (1977); Mir, Moscow, (1986).

[8] L. Gillman, M. Jerison, *Rings of continuous functions*, The University Series in Higher Mathematics. Princeton, New Jersey: D. Van Nostrand Co., Inc., 1960. 300 p.

[9] W. Hurewicz, *Über eine verallgemeinerung des Borelschen Theorems*, Math. Z. 24 (1925) 401-421.

[10] W. Hurewicz, *Über folger stetiger funktionen*, Fund. Math. 9 (1927) 193-204.
[11] Lj.D.R. Kočinac, *Selection principles and continuous images*, Cubo Math. J. 8 (2) (2006) 23–31.

[12] S.E. Nokhrin, *Some properties of set-open topologies*, Jurnal of Mathematical Sciences, issue 144, n 3, (2007) 4123–4151.

[13] A.V. Osipov, E.G. Pytkeev, *On the σ-countable compactness of spaces of continuous functions with the set-open topology*, Proceedings of the Steklov Institute of Mathematics, issue 285, n. S1, (2014) 153–162.

[14] A.V. Osipov, *Topological-algebraic properties of function spaces with set-open topologies*, Topology and its Applications, issue 3, n. 159, (2012) 800–805.

[15] A.V. Osipov, *Group structures of a function spaces with the set-open topology*, Sib. Èlektron. Mat. Izv., 14, (2017) 1440-1446.

[16] M. Sakai, *The projective Menger property and an embedding of S_ω into function spaces*, Topology and its Applications, Vol. 220 (2017) 118–130.

[17] M. Sakai, M. Scheepers, *The combinatorics of open covers* in: K.P. Hart, J. van Mill, P.Simon (Eds.), Recent Progress in General Topology III, Atlantic Press, 2014, pp. 751–799.

[18] D.B. Shahmatov, *A pseudocompact Tychonoff space all countable subsets of which are closed and C^*-embedded*, Topology and its Applications, 22:2, (1986), 139–144.

[19] F.D. Tall, *Productively Lindelöf spaces may all be D*, Canadian Mathematical Bulletin 56:1 (2013), 203–212.

[20] V.V. Tkačuk, *The spaces $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties*, Topology and its Applications, n 22, (1986), 241–253.