Altered Thymic Function during Interferon Therapy in HCV-Infected Patients

Stephanie Beq¹, Sandra Rozlan¹, Sandy Pelletier²,³, Bernard Willem²,⁴, Julie Bruneau²,⁵, Jean-Daniel Lelièvre⁶, Yves Levy⁶, Naglaa H. Shoukry²,⁴, Rémi Cheynier¹,⁷,⁸,⁹,*

¹ Département de Virologie, Institut Pasteur, Paris, France, ² Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada, ³ Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada, ⁴ Département de médecine, Université de Montréal, Montréal, Québec, Canada, ⁵ Département de médecine familiale, Université de Montréal, Montréal, Québec, Canada, ⁶ Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Henri-Mondor Albert-Chenevier, Immunologie Clinique, INSERM, U955, Université Paris 12, Créteil, France, ⁷ Inserm U1016, Département Immunologie-Hématologie, Institut Cochin, Paris, France, ⁸ CHRIS, UMR 8104, Paris, France, ⁹ Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, France

Abstract

Interferon alpha (IFNα) therapy, despite good efficacy in curing HCV infection, leads to major side effects, in particular inducement of a strong peripheral T-cell lymphocytopenia. We here analyze the early consequences of IFNα therapy on both thymic function and peripheral T-cell homeostasis in patients in the acute or chronic phase of HCV-infection as well as in HIV/HCV co-infected patients. The evolution of T-cell subsets and T-cell homeostasis were estimated by flow cytometry while thymic function was measured through quantification of T-cell receptor excision circles (TREC) and estimation of intrathymic precursor T-cell proliferation during the first four months following the initiation of IFNα therapy. Beginning with the first month of therapy, a profound lymphocytopenia was observed for all T-cell subsets, including naïve T-cells and recent thymic emigrants (RTE), associated with inhibition of intrathymic precursor T-cell proliferation. Interleukin (IL)-7 plasma concentration rapidly dropped while lymphocytopenia progressed. This was neither a consequence of higher consumption of the cytokine nor due to its neutralization by soluble CD127. Decrease in IL-7 plasma concentration under IFNα therapy correlated with the decline in HCV viral load, thymic activity and RTE concentration in blood. These data demonstrate that IFNα-based therapy rapidly impacts on thymopoiesis and, consequently, perturbs T-cell homeostasis. Such a side effect might be detrimental for the continuation of IFNα therapy and may lead to an increased level of infectious risk, in particular in HIV/HCV co-infected patients. Altogether, this study suggests the therapeutic potential of IL-7 in the maintenance of peripheral T-cell homeostasis in IFNα-treated patients.

Introduction

The hepatitis C virus (HCV) causes persistent infection in approximately two thirds of cases leading to chronic liver disease, liver failure, and, eventually, hepatocellular carcinoma in a substantial proportion of infected individuals. The most common therapy for chronic hepatitis C consists of pegylated interferon-α (IFNα) and ribavirin administration which results in viral clearance in 43–46% (genotype 1) to 80%, (genotype 3) of treated patients [1]. Interferon will continue to be a major component of new direct acting antivirals for treatment of HCV [2].

IFNα is produced in large amounts during the acute phase of many viral infections [3,4,5,6]. Direct activation of interferon-stimulated genes enhances naïve T-cell survival through increased Bcl-2 and reduced Bax activation [7] and contributes to clonal expansion of antigen-specific T-cells [9]. Recent data suggest that early therapeutic intervention with pegylated IFNα rescues polyfunctional memory T-cells expressing high levels of the IL-7 receptor alpha chain (CD127) and Bcl-2, allowing a higher rate of sustained viral response [9]. However, despite good efficacy, IFNα-based therapies lead to sustained anemia, thrombocytopenia, neutropenia and lymphocytopenia [10,11,12,13,14]. Moreover, pegylated IFNα therapy enhances the risk of infection in older HCV-infected patients and HIV-infected individuals, independently from neutropenia [15,16,17].

The mechanisms of action of IFNα include inhibition of different hematopoietic growth factors [18,19], possibly affecting lymphoid differentiation at an early stage [20], and modifications in cell homing [12,21,22]. The mechanisms involved in IFNα therapy-associated leukocyte depletion remain poorly understood.

Others and we have documented a strong reduction in the ability of HIV-infected patients to sustain thymic production as a direct consequence of a drop in intrathymic precursor T-cell proliferation [23,24,25]. Similar thymic impact was also seen during early SIV-infection in the rhesus macaque model [26]. The capacity of the thymus to produce recent thymic emigrants (RTEs) is, in large part, dependent on thymocyte proliferation [27]. Indeed, extensive thymocyte proliferation occurs between T-cell
receptor beta (TCRB) and alpha (TCRA) chain rearrangements. The extent of this proliferation directly correlates with thymic export [20]. The extent of cell proliferation in the thymus can be measured in patients through estimating, in peripheral blood cells, the ratio (sj/BTREC) ratio between the frequency of signal joint T-cell receptor excision circles (sjTREC), produced during the excision of the TCRδ locus prior to TCRα chain rearrangement, and that of Dβ[β]TREC T-cell receptor excision circles (TRECβ) produced during TCRβD to TCRβ rearrangement [29]. These by-products of TCR rearrangement processes are generated by the cyclin-dependent kinase inhibitor P27/Kip1 [36,37], the cyclin-dependent kinase inhibitor P27/Kip1 is negatively regulated by IL-7 [38], allowing ISP and early DP development of naive T-cell diversity [35]. While up regulated by DP cells [31,32,33,34]. This proliferation participates in the development of naive T-cell diversity [35]. While up regulated by IFNα and ribavirin treatment induces a substantial reduction of circulating sjTREC[s in HIV/HCV co-infected patients, accompanied by sustained naive CD4+ T-cell defect, suggesting thymic dysfunction [10]. Similarly, in the SIV-infected rhesus macaque model, we showed that IFNα therapy induced a strong decrease of circulating RTE numbers as defined either by sjTREC frequency and numbers or by CD31hi expression on naive T-cells [30]. Interestingly, in these animals, recombinant interleukin (IL)-7 therapy more than abrogated the deleterious effects of IFNα therapy [30].

IL-7 is a key cytokine implicated at various levels of thymocytes differentiation. It allows cell survival during the rearrangement processes, and is implicated in the extensive thymocyte proliferation, in particular in intermediate single positive (ISP) and early DP cells [31,32,33,34]. This proliferation participates in the development of naive T-cell diversity [35]. While up regulated by IFNα [36,37], the cyclin-dependent kinase inhibitor P27/Kip1 is negatively regulated by IL-7 [38], allowing ISP and early DP thymocytes to proliferate. Moreover, IFNα also inhibit IL-7 dependent proliferation through down modulation of the common γ chain, that participates, together with CD127 to the IL-7 receptor [39]. We have investigated the early impact of IFNα therapy on thymic function and naive T-cell homeostasis in both HCV-infected and HIV/HCV co-infected patients who started IFNα therapy.

Results
IFNα treatment alters circulating naive T-cell subsets
We first evaluated the evolution of naive T-cell subsets in three groups of HCV infected individuals: 1) Acute HCV infection (n = 5), defined as <6 months post estimated date of infection; 2) chronic HCV infection (n = 8), defined as >6 months post estimated date of infection; and 3) HIV/HCV co-infected individuals (n = 10). In all groups, patients were enrolled at the beginning of IFNα therapy and were followed for a total of 4 months. While, for any group of patient’s, naive CD4+ and CD8+ T-cell counts were not significantly different from healthy individuals (figure 1A), as early as one month following treatment initiation, naive CD4+ T-cell counts were significantly reduced in chronically HCV-infected patients (39%, 58%, 46% and 35% decrease at M1, M2, M3 and M4 respectively; p<0.05; Figure 1B, top central panel). A similar trend was also observed in the CD8 compartment (40%, 39%, 33% and 33% decrease; Figure 1B, bottom central panel). A comparable effect was also observed in most co-infected patients (mean cell count declines were 19%, 32%, 52% and 43% at M1, M2, M3 and M4 in the CD4+ T-cell compartment and 9%, 21%, 41% and 42% in CD8+ T-cell subset; p<0.05 by M2–M3; Figure 1B, right panels). In contrast, naive T-cell counts were only barely affected in acutely-HCV infected patients under IFNα therapy (Figure 1B, left panels). Similarly, central memory CD4+ T-cells (CD45 RA-CCR7+; TCM) demonstrated 38% and 28% decrease in HCV and HIV/HCV patients respectively (59% and 60% in CD8+ TCM) while effector memory (CD45RA−CCR7−; TEM) CD4+ T-cell counts declined by 45% and 10% in the same groups (61% and 65% in CD8+ TEM) (Figure 1S).

Within CD4+ naive T-cells, RTEs can be identified by their higher expression of the platelet endothelial cell adhesion molecule-1 (PCAM-1 or CD31) [40]. While the number of RTEs was similar in HIV-infected patients at study entry and healthy individuals (Figure 2A, top panel), the proportion of CD31hi cells in naive CD4+ (CD45RA−CCR7+; TCM) was significantly reduced by M1 in acutely-HCV-infected patients (p<0.05 at all time points). Together with the decline in naive T-cell counts, this translated into reduced numbers of circulating RTE (p<0.05 by M2; Figure 2B, top left panel). Similarly, chronically-HCV-infected patients demonstrated lower absolute numbers of CD31hi naive T-cells by M1 (p<0.05; Figure 2B; central panel). In the co-infected patients group, despite more limited variations in the percentage of RTEs in naive T-cells (p<0.05 at M1 and M4), the absolute RTE counts also declined with time under therapy (p<0.05 at M1 and M3; M4; Figure 2B, right panel).

RTE concentration in blood can also be estimated through quantification of the sjTREC content (sjTREC/mL, Figure 2, bottom panels). sjTREC content was in the range of age matched healthy individuals at baseline (figure 2A) but declined significantly in both subgroups of HCV-infected patients by one month following initiation of IFNα therapy (median = 5034, 4104, 2980, 2805 and 3076 sjTREC/mL at M0, M1, M2, M3 and M4 respectively in acutely-HCV-infected patients; p<0.05 and median = 3879, 1895, 2018, 1511 and 1040 sjTREC/mL at M0, M1, M2, M3 and M4 respectively in chronically HCV-infected patients; p<0.05; Figure 2B, left and central bottom panels). In contrast, HIV/HCV infected patients demonstrated more stable sjTREC/mL values that eventually declined at M4 (median = 4192, 5215, 4420, 3871 and 1597 sjTREC/mL at M0, M1, M2, M3 and M4 respectively (p=0.046 at M4; Figure 2B, right bottom panel).

These data demonstrate that, as early as one month following treatment initiation, IFNα induces stronger alterations of naive T-cell subsets, and more specifically in the RTE compartment than in any other T-cell subset, suggesting a specific effect on thymopoiesis. We thus analyzed the evolution of intrathymic precursor T-cell proliferation, peripheral T-cell cycling, IL-7 plasma concentration and IL-7 receptor alpha chain (CD127) expression, different factors affecting naive T-cell homeostasis.

IFNα therapy affects thymic function
Despite differences between the 3 groups at study entry, RTE cycling rate, as estimated through measurement of Ki-67 expression, did not change significantly during the follow-up period (Figure 3A). These data demonstrate that the observed changes in sjTREC frequencies were not a consequence of
variations of RTE proliferation during IFNα therapy but more probably due to reduced thymic production.

We thus estimated thymic output through quantification of the sj/bTREC ratio in all groups of patients (Figure 3B). The sj/bTREC ratio estimates the extent of thymocyte proliferation between TCRB rearrangement and the excision of the T-cell receptor delta (TCRD) locus [23]. This parameter directly reflects the extent of thymic production and, contrarily to sjTREC values, is independent from peripheral RTE proliferation or survival capacity [28]. The sj/bTREC ratio was already low in HIV-infected patients (p < 0.005 as compared to healthy control donors; Figure 3B bottom left panel) and did not evolve further under IFNα therapy in co-infected patients (Figure 3B, bottom right panel). In contrast, acutely HCV-infected patients demonstrated higher than normal sj/bTREC ratio at baseline (p < 0.05 as compared to aged matched healthy controls), showed a significant reduction in sj/bTREC ratio at M1 (p = 0.014) and M2 (p = 0.001; Figure 3B, top panel). Finally, a similar decline in the sj/bTREC ratio was observed during IFNα therapy in chronically HCV-infected patients (p < 0.02 at M1, M2 and M3; Figure 3B, central panel).

Reduction of IL-7 plasma levels under IFNα treatment

Precursor T-cell proliferation in the thymus is, at least in part, dependent upon IL-7. We thus quantified plasma IL-7 concentration in all groups of patients. At study entry, HCV- and HIV/HCV-infected patients presented with elevated plasma IL-7 (median = 10.3 pg/mL, range (6.7–12.9) in acutely HCV-infected patients; 8.3 pg/mL (6.3–10.5) in chronic HCV-infected patients and 7.15 pg/mL (4.3–13.5) in co-infected subjects), as compared to that observed in healthy control individuals (p < 0.001 for any patients’ group; Figure 4A). Surprisingly, while lymphocytopenia established, IL-7 plasma concentrations significantly decreased in both groups of HCV-infected patients (30, 54, 18 and 29% decrease at M1 to M4 in acute infection, p < 0.05; 25, 46, 26 and 16% decrease at M1 to M4 in chronic infection, p < 0.05; Figure 4B left and central panels). In contrast, IL-7 plasma levels did not significantly evolve in co-infected individuals during the first month of IFNα therapy (Figure 4B right panel). Only patients with the highest IL-7 plasma levels showed a reduction in the concentration of this cytokine.

Decreased plasma IL-7 concentrations could be a consequence of reduced IL-7 production, increased consumption by T-cells or sequestration by soluble IL-7 receptor (sCD127). In both HCV-infected and HIV/HCV co-infected patients, neither sCD127
plasma concentration (Figure 4C) nor CD127 expression by CD4+ or CD8+ T-cells (Figure 4D) significantly changed during IFNα therapy.

Evolution of Thymic function parallels IL-7 plasma levels

Considering the variations in all the parameters we used to evaluate thymic function, we then sought to evaluate the impact of changes in IL-7 plasma levels on de novo production from the thymus and on the number of both sjTREC and circulating CD4+ RTEs.

In a majority of patients, IL-7 plasma level, sj/bTREC ratio, sjTREC/ml and blood RTE concentration fluctuated in parallel (Figure S2). Variation of IL-7 plasma concentration (ΔIL-7) during the first month of therapy correlated with variations in naive T-cell counts (CD4+ or CD8+ T-cells) and RTE CD4+ T-cell counts (ARTE T-cell counts) in both HCV (r = 0.521, p = 0.039 and r = 0.595, p = 0.025; Figure 5A and 5B, left panels) and, to a lesser extent, HIV/HCV co-infected patients (r = 0.636, p = 0.048 and r = 0.539, p = 0.108; Figure 5A and 5B, right panels). Moreover, in HCV-infected patients, ΔIL-7 also correlated with variations in intrathymic precursor T-cell proliferation (Δsj/bTREC ratio; r = 0.601, p = 0.020; Figure 5C).

Variations in plasma IL-7 levels also correlated with changes in the proportions (Δ%Ki-67+ in CD4+RTEs; r = 0.806, p = 0.0002; Figure 5D, left panel) and numbers (ΔKi-67+RTEs; r = 0.706, p = 0.002; Figure 5E, left panel) of cycling RTEs in acute and chronic HCV infected patients and with Δ%Ki-67+RTE counts in co-infected patients (r = 0.709, p = 0.022; Figure 5E, right panel). Overall, IL-7 concentration was associated with reduced thymopoiesis and RTE proliferation, lower consequently leading to limited circulating RTE and naive T-cell counts. These data strongly suggest that changes in IL-7 plasma levels during IFNα therapy directly impact the homeostasis of RTEs.

Discussion

We herein demonstrated that IFNα-based therapy leads to major lymphocytopenia in naive T-cell compartments, in particular in the RTE subset. Several mechanisms could be implicated in the establishment of such a lymphocytopenia [41]. Among these, enhanced apoptosis [42,43], cell sequestration in lymphoid or non-lymphoid organs [12,21,22] and regulation of peripheral T-cell homeostasis [20]. In our study, no major change in cell survival (Bcl-2 expression) or T-cell activation (CD25 and CD69 expression) was observed during the follow-up period (data not shown). Moreover, we did not observe any significant modification in Ki-67 expression in any T-cell subset during the first month of therapy (data not shown and Figure 3). Finally,
IFNα-induced T-cell homing, although rapid and massive, is only a transient process [22] suggesting that this mechanism marginally contributes to the observed long lasting lymphocytopenia.

Interestingly, both sjTREC quantification (sjTREC/mL) and intrathymic precursor T-cell proliferation (sj/ßTREC ratio) were affected very early on after initiation of therapy (Figures 2B and 3B). While sjTREC frequency and concentration in peripheral blood can be affected by modifications of parameters that impact on peripheral T-cell homeostasis (cycling, survival/apoptosis, homing), the sj/ßTREC ratio is a marker of the intrathymic proliferation history of RTEs. Indeed, this parameter is generated by cell proliferation that occurs between TCRß chain rearrangement and the excision of TCRα locus. Further cell cycling after TCRα chain rearrangement does not modify the sj/ßTREC ratio as both type of TRECs are similarly diluted upon cell proliferation. Accordingly, while exported to the periphery, the sj/ßTREC ratio of mature T-cells cannot be modified. Therefore, while the observed decrease in sjTREC concentration (figure 2) can be a consequence of modifications of circulating T-cell homeostasis, the decline of the sj/ßTREC ratio observed during the first months of IFNα therapy (figure 3) defines changes in thymocyte proliferation, thus in thymic output [28]. Acutely infected patients demonstrated a higher sj/ßTREC ratio at baseline than patients in the chronic phase. However, this group was younger (Median = 31.5 (26–47)) versus Median = 53.5 (37–61)) than the chronic group (p<0.01; data not shown) and demonstrated normal sj/ßTREC ratio for their age. Similar evolution of thymic function and circulating T-cell subsets were observed in both groups of HCV-infected patients, irrespective of the development stage of HCV pathology. The lack of effect of IFNα therapy in HIV/HCV co-infected patients might be due to the fact that, as expected for chronically HIV-infected individuals, these patients already had a low thymic function at study entry. The impairment of thymopoiesis in HCV-infected patients under IFNα therapy is reminiscent of that observed during the acute phase of HIV-1 infection [23] which suggested that long term production of IFNα, as part of the anti-HIV innate immune response, may play a role in the observed thymic defect.

Figure 3. IFNα therapy leads to major impairment of thymic function. (A) The frequency of Ki-67 expressing cells in the CD4+ RTE subset (CD31 naïve T-cells) was measured in acutely HCV-infected (grey symbols, top panel), chronically HCV-infected (white symbols, top panel) and HIV/HCV co-infected (bottom panel) patients (central panels) and HIV/HCV co-infected (right panels) patients. Each line represents data from an individual patient. Statistical significances of the differences to baseline values (time 0), calculated on the absolute sj/ßTREC ratio in each individual sample (Wilcoxon matched-pairs signed-ranks test) are shown on top. The horizontal bars represent median values.

doi:10.1371/journal.pone.0034326.g003
correlation between decline in IL-7 plasma levels under IFNα therapy and both thymic dysfunction and reduced T-cell counts, in particular in the naïve and RTE compartments (Figures 5A and 5B), confirms this hypothesis. Finally, in a recent study, we showed that IFNα treatment leads to decreased sjTREC frequency as well as reduced naïve T-cell and RTE counts in SIV-infected rhesus macaques [30]. Such an effect was accompanied by a 30–40% decrease in IL-7 plasma levels in these animals and could be counteracted by injection of recombinant simian IL-7 [30]. One could expect that such an effect of type I IFNs is not restricted to HIV-infection as many viral infections induce IFNα responses and cause transient lymphocytopenia in the infected hosts [3,4,5,6]. Moreover, the IFNα-induced reduction of thymic function and its probable consequences on naïve T-cell diversity may contribute to the higher infectious risk associated with IFNα therapy, in particular observed in older patients [15,16,44]. There are multiple sources for circulating IL-7 during viral infections including lymphoid organs, epithelial cells and recently the liver was identified as a major source of IL-7. Moreover, increased plasma IL-7 levels can also be observed during viral infection in non-lymphopenic individuals ([33] and unpublished data), suggesting a role in the development of immune responses. Indeed, this cytokine participates to T-cell homing in various lymphoid and non-lymphoid tissues through stimulation of local chemokine
Figure 5. Variations in IL-7 plasma levels correlate with evolution of RTE production. Correlations between variations in IL-7 plasma levels (ΔIL-7) and either variations in (A) total (CD4+ + CD8+) naive T-cell counts (Δnaïve T-cell counts), (B) RTE defined as CD31hi naïve CD4 T-cells (ΔRTE CD4 counts), (C) the sj/TREC ratio (Δsj/TREC ratio), (D) the frequency of Ki-67+ cells in the RTE CD4+ T-cell subset (ΔKi-67+ in CD4+ RTEs) or (E) the number of circulating Ki-67+ in CD4+ RTEs (ΔKi-67+ in CD4+ RTEs) between study entry and month 1 of therapy were calculated for acutely (black symbols) and chronically (white symbols) HCV-infected patients (left panels) and HIV/HCV co-infected patients (right panels). Correlation coefficients (Spearman’s r) and the associated probabilities (p) are shown. doi:10.1371/journal.pone.0034326.g005

Patients and Methods

Patients characteristics

Sixteen HCV-infected patients (C-1 to C-16) and ten HIV/HCV co-infected patients (I-1 to I-10) naïve to IFNα therapy were enrolled in this study. A summary of the virological and immunological status of patients at baseline is shown in table 1. All the HIV/HCV co-infected patients but one were under HAART with undetectable viremia (<40 HIV copies/mL). Chronically infected patients (C-9 to C-16 and I-1 to I-10) initiated pegylated IFNα/ribavirin treatment (IFNα-2a: Pegasys, 180 μg weekly, Ribavirin: Copegus, 800 mg to 1000 μg daily) and were followed over a 4 months period. Patients included in the acute phase of HCV infection (C-1 to C-8) were treated with pegylated IFNα (IFNα-2a: Pegasys, Roche, 180 μg weekly) [51,52]. Blood samples were taken monthly on EDTA. Two milliliters of total blood were 2-fold diluted in FCS/20%DMSO and conserved in liquid nitrogen. These total blood samples were subsequently used for flow cytometry analyses.

Plasma was separated from the remaining eight milliliters and frozen for further analyses. Patients included in the acute phase of HCV infection (C-1 to C-8) were treated with pegylated IFNα (IFNα-2a: Pegasys, Roche, 180 μg weekly) [51,52]. Blood samples were taken monthly on EDTA. Two milliliters of total blood were 2-fold diluted in FCS/20%DMSO and conserved in liquid nitrogen. These total blood samples were subsequently used for flow cytometry analyses. Plasma was separated from the remaining eight milliliters and mononuclear cells were purified on Ficoll Hypaque (Eurobio, Courtaboeuf, France) and frozen for further analyses. Patients from the HCV mono-infection group were followed at the Centre de Recherche du CHUM, Hôpital Saint Luc, Montreal, QC, Canada and its collaborators as previously described [9,53]. Patients from the HCV-HCV co-infected patients (I-1 to I-10) naïve to IFNα therapy were enrolled at the Hôpital Henri Mondor, Créteil, France. Clinical protocols conformed to...
ethical guidelines of the authors’ institutions and the US
Department of Health and Human Services’ human experimen-
tation guidelines. This study was approved by both the Ethical
committee of Centre Hospitalier de l’Université de Montreal
(CHUM) and the ethical committee of Hôpital Henri Mondor,
 Créteil, France. Samples were obtained with the written subjects’
informed consent.

Immunophenotyping and flow cytometry analysis

FACS analyses were performed on cryopreserved samples. After
thawing blood cells were incubated for 15 minutes at 4°C with
conjugated monoclonal antibodies (mAbs). For intracellular
labeling, cells were permeabilized with the Cytofix/Cytoperm
Kit (Becton Dickinson) before incubation with specific mAbs
according to the manufacturer’s instructions. Samples were then
washed, fixed in 2% paraformaldehyde phosphate-buffered saline
(PBS/PFA 2%) and acquired using a Cyan cytofluorometer (Dako)
and analyzed with FlowJo 8.7 software.

The monoclonal antibodies used in this study were: CD3-pacific
blue (PB) (clone UCHT-1; Dako, Trappes, France), CD4-peridin
chlorophyll protein-cyanine 5.5 (PerCP-Cy5.5) (clone L200; BD,
Le-Pont-de-ClaiX, France), CD45RA-phycoerythrin (PE) (clone
HI100; BD), CCR7-allophycocyanin (APC) (clone 150503; R&D
Systems Europe, Lille, France); CD6-phycoerythrin-cyanine 7
(PE-Cy7) (RPA-T8; BD), CD31-biotin (clone WM59; AbDSer-
totec, Düsseldorf, Germany); Ki-67-fluorescein isothiocyanate
(FITC) (clone MIB-1; Dako), Bcl-2-FITC (clone 124; Dako) and
streptavidin-PE-Texas-RED (BD).

IL-7 plasma quantification

IL-7 was quantified in the plasma using the IL-7 Quantikine HS
kit according to the manufacturer’s instructions (R&D Systems
Europe). Plasma soluble-CD127 quantification Soluble plasma IL-
7 receptor (sCD127) quantification was performed as previously
described [54].

TREC quantifications

Parallel quantification of the sjTREC and the 13 DJβTRECs,
together with CD3γ gene (used as a housekeeping gene) was
performed for each sample using LightCyclerTM technology
(Roche Diagnostics) with a technique adapted from [29].

Table 1. Patients’ characteristics.

Patient Code	Gender	Age at Tx start	HCV genotype	HCV stage	Baseline Viral load**b	12 weeks Viral load
C-1	F	33	3a	Acute	2.4E+4	<50
C-2	M→>F	30	1	Acute	2.8E+4	<50
C-3	M	39	2b	Acute	<1000	<50
C-4	M	26	3a	Acute	4.78E+6	<50
C-5	M	26	1a	Acute	<600	<50
C-6	M	31	1b	Acute	<600	<50
C-7	M	46	3a	Acute	1.56E+4	<50
C-8	M	45	1a	Acute	1.21E+06	<50
C-9	M	36	1b	Chronic	8.50E+06	<50
C-10	M	39	1a	Chronic	1.28E+07	<50
C-11	F	46	1a	Chronic	8.26E+06	<50
C-12	M	52	1b	Chronic	2.70E+06	<50
C-13	M	55	1a	Chronic	4.79E+06	4.69E+03
C-14	M	58	1a	Chronic	1.73E+07	<50
C-15	M	61	1a	Chronic	3.70E+05	<50
C-16	M	61	1b	Chronic	3.00E+06	3.47E+04
I-1	M	42	3	Chronic	NA	<12
I-2	M	48	3a	Chronic	1.51E+6	<12
I-3	M	39	3	Chronic	7.6E+5	<12
I-4	M	48	3a	Chronic	6.4E+4	<12
I-5	F	53	2a/2c	Chronic	3.0E+6	<12
I-6	M	43	2a/2c	Chronic	4.3E+6	<12
I-7	M	41	1	Chronic	6.6E+5	2.4E+5
I-8	M	43	1	Chronic	1.8E+6	<12
I-9	M	41	4	Chronic	6.6E+5	1.6E+5
I-10	M	39	1	Chronic	7.7E+5	1.6E+4

**cCOBAS Amplicor HCV Monitor test, Version 2.0 (sensitivity 600 IU/ml).

bIn house real time quantitative PCR assay (sensitivity 1000 IU/ml).

°Qualitative COBAS Ampiprep/COBAS Amplicor HCV test, version 2.0 (sensitivity 50 IU/ml).

Abbott RealTime HCV assay (sensitivity 12 IU/ml).

NA: Not available.

doi:10.1371/journal.pone.0034326.t001
Intrathymic precursor T-cell proliferation was evaluated through calculation of the sj/TREC ratio as described [23].

HCV RNA quantification

HCV RNA quantification was performed using an in-house quantitative real-time reverse transcription-PCR assay as previously described [9], COBAS AmpliCord HCV Monitor testTM, Version 2.0 (sensitivity 600 IU/ml), qualitative COBAS AmpliPrep/COBAS AmpliCord HCV testTM, version 2.0 (sensitivity 50 IU/ml) or Abbott RealTime HCV assayTM (sensitivity 12 IU/ml).

Statistical analysis

Statistical analyses (Spearman rank correlations and Wilcoxon matched -paired signed-rank tests) were performed using the Stat-a/IC 10.0 (Stata corporation, College Station, TX, U.S.A.). Due to the exploratory nature of the study there was no correction for multiple comparisons, and calculated p values are reported herein.

Supporting information

Figure S1 IFNα therapy leads to T-cell lymphopenia in memory compartments. Evolution of (A) CD4+ TCM (top panels) and CD4+ TEM (bottom panels) T-cell numbers, as well as (B) CD8+ TCM (top panels) and CD8+ TEM T-cell counts (bottom panels), quantified in peripheral blood cells from acutely and chronically HCV-infected (left panels white and grey symbols respectively) and HIV-HCV co-infected (right panels) patients under IFNα therapy. Horizontal bars represent median values. Statistical significance (Wilcoxon matched-pairs signed-ranks test) to baseline values (M0) are shown on top. (TIF)

Figure S2 IL-7 plasma levels parallels RTE concentration and thymic function. IL-7 plasma levels (grey squares), RTE (CD31HI naive CD4+ T-cell blood counts; open diamonds), thymic function (sj/TREC ratio; close diamonds) and sj/TREC concentrations (sj/TREC/µl; grey diamonds) were longitudinally quantified in IFNα-treated HCV and HIV-HCV infected patients over a 4 month period. Representative examples of HCV-infected (A) and HIV-HCV co-infected (B) patients are shown. (TIF)

Acknowledgments

The authors acknowledge the subjects who participated in this study. We also thank C. Chesnel for clinical and logistical support.

Author Contributions

Conceived and designed the experiments: RG SB. Performed the experiments: SB SR SP. Analyzed the data: RC NHS SB. Contributed reagents/materials/analysis tools: BW JB JDL YL. Wrote the paper: RC SB.

References

1. Feld JJ, Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436: 967–972.
2. Hofmann WP, Zeuzem S (2011) A new standard of care for the treatment of chronic hepatitis C virus infection. Nat Rev Gastroenterol Hepatol 8: 257–264.
3. Diaz-San Segundo F, Salguero FJ, de Avila A, de Marco MM, Sanchez-Martín MA, et al. (2006) Selective lymphocyte depletion during the early stage of the immune response to foot-and-mouth disease virus infection in swine. J Virol 80: 2369–2379.
4. Fadlallah SA, Sahrir S, Raymond AA, Cheng SK, Azia JA, et al. (1999) Quantitation of T lymphocyte subsets helps to distinguish dengue hemorrhagic fever from classic dengue fever during the acute febrile stage. Southeast Asian J Trop Med Public Health 30: 710–717.
5. He Z, Zhao G, Dong Q, Zhanga H, Song S, et al. (2005) Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int J Infect Dis 9: 323–330.
6. Okada H, Kobune F, Sato TA, Kohama T, Takeuchi Y, et al. (2000) Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145: 905–920.
7. Dondi E, Roue G, Yuste VJ, Susin SA, Pellegrini S (2004) A dual role of IFN-β on cell death of B and T lymphocytes and their subsets. Int J Infect Dis 9: 323–330.
8. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K (2005) Early interferon therapy for hepatitis C virus infection rescues polyfunctional, memory formation in response to viral infection. J Exp Med 202: 637–650.
9. Badr G, Bedard N, Aldbi-Hakeem MS, Trautmann L, Willems B, et al. (2008) Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J Exp Med 202: 1007–10031.
10. Arizcurreta A, Marquez M, Fernandez-Gutierrez C, Guzman EP, Brun F, et al. (2006) T cell receptor excision circles (TRECs), CD4+, CD8+, and their CD4+CD8+ and CD4+CD8+ subpopulations in hepatitis C virus (HCV)-HIV-co-infected patients during treatment with interferon alpha plus ribavirin: an analysis in a population on effective antiretroviral therapy. Clin Exp Immunol 146: 270–277.
11. Landau A, Batise D, Van Huyen JP, Pietryk G, Bloch F, et al. (2000) Efficacy and safety of combination therapy with interferon-alpha2b and ribavirin for chronic hepatitis C in HIV-infected patients. Hepatitis A Virus Spanish Study Group. J Infect Dis 131: 9–13.
12. McHutchison JG, Dev AT (2004) Future trends in managing hepatitis C. Gastroenterol Clin North Am 33: 851–61.
13. Dieterich DT (2002) Treatment of hepatitis C and anemia in human immunodeficiency virus-infected patients. J Infect Dis 185 Suppl 2: S128–137.
14. Puoti M, Babudieri S, Rezza G, Viale P, Antonini MG, et al. (2004) Use of pegylated interferons is associated with an increased incidence of infections during combination treatment of chronic hepatitis C: a side effect of pegylation? Antivir Ther 9: 627–630.
15. Antonini MG, Babudieri S, Maida I, Baiguera C, Zanini B, et al. (2008) Incidence of neutropenia and infections during combination treatment of chronic hepatitis C with pegylated interferon alfa-2a or alfa-2b plus ribavirin. J Infect Dis 200: 250–255.
16. Pesce A, Taillan B, Rosenthal E, Garnier G, Vini H, et al. (1993) Opportunistic infections and CD4 lymphocytopenia with interferon treatment in HIV-1 infected patients. Lancet 341: 1597.
17. Aman MJ, Keller U, Derigs G, Mohamadzadeh M, Huber C, et al. (1994) Regulation of cytokine expression by interferon-alpha in human bone marrow stromal cells: inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist. Blood 84: 4142–4150.
18. Carlo-Stella C, Cazzola M, Gasner A, Barosi G, Dezza L, et al. (1987) Effects of recombinant alpha and gamma interferons on the in vitro growth of circulating hematopoietic progenitor cells (CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM) from patients with myelofibrosis with myeloid metaplasia. Blood 70: 1014–1019.
19. Lin Q, Dong C, Cooper MD (1998) Impairment of T and B cell development by treatment with a type I interferon. J Exp Med 187: 79–87.
20. Soriano V, Bravo R, Samaniego JG, Gonzalez J, Odrizola PM, et al. (1994) CD4+ T-lymphocytopenia in HIV-infected patients receiving interferon therapy for chronic hepatitis C. HIV-Hepatitis Spanish Study Group. Aids 8: 1621–1622.
21. Kamphans E, Junt T, Wahler Z, Forster R, Kalinke U (2006) Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood 108: 2523–2526.
22. Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, et al. (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21: 757–768.
23. Deuche DC, McFarland RD, Keiser PH, Gage EA, Massey JM, et al. (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396: 690–693.
24. Dion ML, Bordi R, Zedian J, Assaad R, Bouladre ML, et al. (2007) Slow disease progression and robust therapy-mediated CD4+ T-cell recovery are associated with efficient thymopoiesis during HIV-1 infection. Blood 109: 2912–2920.
25. Beq S, Nugeyre MT, Fang RH, Gautier D, Legrand R, et al. (2006) IL-7 induces immunological improvement in HIV-infected rhesus macaques under antiviral therapy. J Immunol 176: 914–922.
26. Almeida AR, Borghans JA, Freitas AA (2001) T cell homeostasis: thymus and thymic function.
29. Dion ML, Sekaly RP, Cheynier R (2007) Estimating thymic function through quantification of T-cell receptor excision circles. Methods Mol Biol 380: 197–213.

30. Parker R, Dutruche J, Beq S, Lemeniere B, Rouzan S, et al. (2010) Interleukin-7 treatment counteracts IFN-alfa therapy-induced lymphopenia and stimulates SI-cytotoxic T lymphocyte responses in SIV-infected rhesus macaques. Blood 116: 5389–5399.

31. Barata JT, Cardoso AA, Nadler LM, Boussiotis VA (2001) Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27kip1. Blood 98: 1524–1531.

32. Schlans KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1: 426–432.

33. Napolitano LA, Grant RM, Deeks SG, Schmidt D, De Rosa SC, et al. (2001) Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med 7: 73–79.

34. Officer F, Plum J (1998) The role of interleukin-7 in early T-cell development. Leuk Lymphoma 30: 87–99.

35. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, et al. (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286: 958–961.

36. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67: 227–264.

37. Eguchi H, Nagano H, Yamamoto H, Miyamoto A, Kondo M, et al. (2000) Augmentation of antitumor activity of 5-fluorouracil by interferon alpha is associated with up-regulation of p27Kip1 in human hepatocellular carcinoma cells. Clin Cancer Res 6: 2881–2890.

38. Tsukiyama T, Ishida N, Shirane M, Minamishima YA, Hatakeyama S, et al. (2001) Down-regulation of p27kip1 expression is required for development and function of T cells. J Immunol 166: 304–312.

39. Bonder CS, Davies KV, Liu X, Hertzog PJ, Woodcock JM, et al. (2002) Endogenous interferon-alpha production by differentiating human monocytes regulates expression and function of the IL-2/IL-4 receptor gamma chain. J Exp Med 195: 789–794.

40. Neau D, Galperine T, Legrand E, Pitard Y, Neau-Cransac M, et al. (2003) T-lymphocyte populations in hepatitis C and HIV co-infected patients treated with interferon-alpha-2a and ribavirin. HIV Med 4: 120–126.

41. Kaser A, Nagata S, Tilg H (1999) Interferon alpha augments activation-induced T cell death by upregulation of Fas (CD95/APO-1) and Fas ligand expression. Cytokine 11: 736–743.

42. Mannu SK, Mukhopadhyay A, Aggarwal BB (2000) IFN-alpha suppresses activation of nuclear transcription factors NF-kappa B and activator protein 1 and potentiates TNF-induced apoptosis. J Immunol 165: 4927–4934.

43. Vento S, Di Perri G, Cruciani M, Garofano T, Concia E, et al. (1993) Rapid decline of CD4+ cells after IFN alpha therapy in HIV-1 infection. Lancet 341: 938–939.

44. Beq S, Rozlan S, Gauthier D, Parker R, Mersseman V, et al. (2009) Injection of glycosylated recombinant simian IL-7 provokes rapid and massive T-cell homing in rhesus macaques. Blood.

45. Guimond M, Vernstra RG, Grindler DJ, Zhang H, Cui Y, et al. (2009) Interleukin-7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10: 149–157.

46. Savva Y, Arima Y, Ogura H, Kitabayashi C, Jiang J, et al. (2009) Hepatic interleukin-7 expression regulates T cell responses. Immunity 30: 447–457.

47. Golden-Mason L, Burton JR Jr, Castellano L, Klarquist J, Brdicka S, et al. (2006) Loss of IL-7 receptor alpha-chain (CD127) expression in acute HCV infection associated with viral persistence. Hepatology 44: 1088–1109.

48. Mazucchielli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7: 14154.

49. Chevaliez S, Bouvier-Alias M, Brillet R, Pawlotsky JM (2009) Hepatitis C virus (HCV) genotype 1 subtype identification in new HCV drug development and future clinical practice. PLoS ONE 4: e8209.

50. Moirand R, Bilodeau M, Brissette S, Bruneau J (2007) Determinants of antiviral treatment initiation in a hepatitis C-infected population benefiting from universal health care coverage. Can J Gastroenterol 21: 355–361.

51. Shire NJ, Welge JA, Sherman KE (2007) Response rates to pegylated interferon and ribavirin in HCV/HIV coinfection: a research synthesis. J Viral Hepat 14: 239–248.

52. Cox AL, Page K, Bruneau J, Shoukry NH, Lauer GM, et al. (2009) Rare birds in North America: acute hepatitis C cohorts. Gastroenterology 136: 26–31.

53. Janot-Sardet C, Assouline B, Cheynier R, Morre M, Beq S (2009) A validated assay to measure soluble IL-7 receptor shows minimal impact of IL-7 treatment. J Immunol Methods.