Membranous rupture in relation to c-reactive protein

Dr. Entesar Mahmood Amer and Dr. Ahlam Mahdi Mousa

DOI: https://doi.org/10.33545/surgery.2020.v4.i1g.361

Abstract
The aim of the study was to predict sub rupture of membranes (PPROM) and preterm labour. Maternal and cord blood for C (CRP) sensitivity as a confirmative test for sub with PPROM as study group and 30 pregnant of same gestat in labour. All submitted to CRP test, high vaginal swab, placental swab for C/S and cord blood for CRP. CRP positive in study group 18 cases (60%) and control group 8 cases (36.6%) for urine C/S in study group was 11 positive in study group 8 cases (27.3%) and in control group 3 cases (10%), CRP test, urine for C/S and high the vag. for C/S were statistically not significant CRP test sensitivity was 78% and specificity was 62.5% So CRP test can used as screening test for infection.

Introduction: Preterm pre labour rupture of membranes (PPROM) mean rupture of fetal membranes after 24 weeks gestation and before 37 completed weeks or 259 completed days of gestation.

Preterm birth: mean birth occurs before 37 completed weeks or 259 completed days of gestation. It is a leading cause of infant death and several contributing mechanisms to this morbidity have been identified over the past 10 years Macdonald Gant, 2000). It is obvious that severe involved in the pathogenesis of preterm birth, which may explain why it has proved so difficult to predict and prevent, the too early activation of the fetal hypothalamic adrenal axis may result from maternal psychosocial or fetal physiological stress. Such physiological fetal stress may in turn be a consequence of microbial invasion of fetal membranes, amniotic fluid and the fetus itself. The critical mediator of stress-induced preterm birth appear to be corticotrophin releasing hormone. It stimulates the production of prostaglandins by cells in the amnion, placenta, chorion and utrine deciduas (Staffan Bergstrom, 2003). membranes "chorioamnionitis" is a cause of preterm labour in 10-20% of cases with intact membranes, this figure is higher if labour fallows preterm pre labour rupture of Membranes.

Pathophysiology: Preterm parturition due to infection is initiated by security products resulting from monocyte activation cytokines including interleukin I.

Keywords: Infection, CRP, Screening

Introduction
sub-clinical infection as a cause of preterm estimation as screening test and urine, high vaginal swab and placental swabs for culture and sub-clinical infection. Thirty pregnant of (24 gestation age with intact fetal membranes but cases (36.6%) and in control group 2 cases (6.6%) for high the vaginal swab swab for C/S all were statistically significant. Cord blood C is an open access article distributed under the Creative Commons At provided the original work is properly cited. entify (Cunningham). Several pathways are hypothalamic- pituitary adrenal fetal. Corticotrophin the). Local infection of branes, Tumour necrosis factors (TNF) and interleukin implicated in preterm labour. TNF and matrix. metalloproteinase also promote programmed death of amniotic cells, the combined effect of these mechanisms may provoke preterm birth (Lok Wood and Kuczynski, 1999 [4] access for bacteria with intact membranes is unclear but Escherichia coli can permeate living chorio membranes thus intact fetal membranes at the cervix are not necessarily a barrier to ascending bacterial l amniotic fluid and figure (Cunningham Macdonald Gant, 2000 [1] shows pathway for bacterial initiation of preten labour which may not required colonization of the amniotic fluid e.g. the cytokine net work of cell mediated immunity can be active locally in decidual tissue that line the fore bag fetal membranes (Cunningham Macdonald Gant, 2000 [1] have shown a correlation between preterm labour and asymptomatic bacteria and lower genital tract infection reactive Oxygen species which are generated by the body's response to diverse insults such as infection have also attracted attention, such insult activate collagenolytic enzymes and impair fetal membrane integrity and this impairment is then inhibited by antioxidants like vit. E 2001).
Other Causes of PPROM
1. Placental abruption.
2. Dynamic uterine dysfunction, uterine a toy or uterine inertia. preterm- pre labour C-reactive protein 24-37) weeks gestation ion CRP and placental swab Attribution License, which permits interleukin-6 are such secretary products 1999). The rout of chorio-amniotic invasion of the 2000) activated 2000). A number of studies infection species e and vit. C. (Woods et al.,)
3. Anemia. Recent evidence indicates that signs of inflammation or infection are prevalent in women with anemia. Ther is increased CRP concentration in more than 50% of anemic women means anemia is a sign of maternal morbidity indicating inflammation or infection of unknown origin (Svigo et al., 1999) [10]. Recent literature shows that detection and estimation of surrogate marker such as CRP (C-reactive protein) cytokines and fetal fibronectin help in diagnosing intramniotic infection and in predicting and diagnosing early onset neonatal infections (Lu et al., 2000) [8].

Diagnosis of PPROM
1. History: Women feeling agush of fluid vaginally.
2. A sterile speculum examination to confirm the diagnosis if no liquor is apparent.
3. Reduce fetal movement
4. Ultra-sound should not used as primary means of diagnosis of

PPROM
Laboratory Test for Diagnosis of PPROM:
1. Notarize test for vaginal PH.
2. Fern test: result from drying out of salts containing amniotic fluid.
3. Intra amniotic fluorescein and amnioscopy invasive method, and may enhance the infection.
4. Fetal fibronectin it confirm the rupture membranes and predicted for preterm labour. But it increase perinatal infection (Svigo, 1999) [10].

Complication of PPROM
1. Maternal complication:
 a. Chorioamnionitis.
 b. Endomyometritis.
 c. Abruptio placenta.
 d. Psycho-social sequale particular maternal hospitalization,
 e. Induction of labour may lead to prolonged latent stage 16-20 hours which increased the likelihood of operative delivery (Svigo, 1999) [10].
2. Fetal complication:
 a. Fetal pulmonary hypoplasia,
 b. Skeletal deformities "talipes".
 c. Amniotic adhesion and bands of fibrous tissue between the fetus and amnion which may cause auto-amputation, c. Cord compression or prolaps, e- Fetal infection and neonatal sepsis.
 d. Fetal intrapartum hypoxia and birth trauma associated with preterm labour involving the very low birth weight infant, whether birth is by the vaginal or abdominal rout with contribute to the perinatal risk (Svigo, 1999) [10].

C-Reactive Protein "CRP": The CRP is a plasma protein molecule consisting of a pentamer of non-glycosylated polypeptide sub-unit that is produced by hepatocytes. This plasma protein normally is found in plasma of healthy persons in trace amounts "< 1 mg/dl" within hours of an acute injury as well as the onset of most types of inflammation or infection, the rate of production of CRP increases markedly with up to 3,000 fold increases in plasma concentration. For this reason, CRP is considered an "acute phase" protein, the plasma level of CRP rapidly decreases toward the normal range (Narinder, 1997) [7], and CRP increased and decreased more quickly than the red sedimentation rate (ESR), and the value of the CRP in the potentially infected patient exceeds Leukocyte indices. CRP production is stimulated by interleukin 6 (IL-6), therefore IL-6 is an early and sensitive marker of infection or inflammation, so that the IL-6 should rise before CRP level rise. Median CRP values during pregnancy are higher than values for non pregnant individuals. These values are elevated further in labour. In woman not in labour 95% of values were 1.5 mg/dl or less and gestational age didn't affect serum level. In true infection the test for CRP become positive after 12 hours, so estimation of CRP at presentation may not be much value in prediction. So serial determination may be required and have better predictive value than single estimation (Staffan Bergstrom, 2003) [9]. Mild CRP elevation "within normal, non acute-phase rang" is emerging as a valuable marker of cardiovascular risk (Jam Coli, 2003) [10].

Method of CRP Test: C-reactive protein test "slide agglutination method". In this test using latex reagent which is a polystyrene latex particles of uniform size coated with the IgG fraction of an anti-human CRP specific serum. Visual observation of Ag-AgB reaction "CRP-IgG anti CRP" if reaction takes place due to presence of CRP in the serum a clear agglutination become evident. A clear agglutination will appear if the serum contains more than 6 mg/L of CRP and if no agglutination mean serum contains less than 6 mg/L of CRP which is normal range.

Reagents
a. Latex reagent: Suspension of polystyrene latex particles coated with IgG anti-CRP in a buffer.

b. Positive control: Diluted human serum containing more than 10 mg/L of CRP ready to use.

c. Negative control: Diluted human serum containing less than 1 mg/L of CRP. All latex reagent positive, control, and negative contain <0.1% Sodium azid. C-reactive protein assay by using Laser nephelometry measurement of serum CRP concentrations by rate nephelometry using a Beckman Array system protein analyzer, "which is not available here" A double antibody sandwich enzyme immunoassay for C.R.P. which is high sensitivity CRP test (Saunders, 2003) [8]. Aim of the Study: To evaluation C-reactive protein as a predictor of sub-clinical infection in preterm-prelabour rupture of fetal membranes and in preterm labour with intact fetal membranes.

Patient and Methods: Present study was carried out in Maternity and Childhood Teaching Hospital in Najaf, from June to October during a year 2003. Selection of Patient: The study consist of 30 cases selected with PPROM beyond 24 weeks of gestation up to 37 incomplete weeks of gestation, "case group". A second group "control group", 30 cases without rupture of fetal membranes but in labour, with same gestational age. Both groups were subjected to various investigation "urine and high vaginal swab for culture and sensitivity and placental swab for culture and sensitivity" as a confirmative tests for sub-clinical
infection, patient who are excluded from study were:
1. Evidence of systemic infection.
2. M A presentation.
3. Twin pregnancy.
4. Polyhydramnios.
5. Connective tissue disease. Investigation: L Evaluation of
 CRP by slide agglutination method of mother at admission,
 as mentioned above.
1. High vaginal swab for culture and sensitivity.
2. Urine for culture and sensitivity.
3. Cord blood for CRP estimation.
4. Placental swab for culture and sensitivity. Parameter of
 Infection after delivery The mother was followed after delivery
 for evidence of:
 1. Maternal fever during 24 hours after delivery.
 2. Un healthy lochia "offensive discharge". Neonatal requiring
 for neonatal intensive care unit admission. Each new born
 was admitted after delivery immediately to NICU for
 observation apgar scor for the first and five minutes of
 delivery and follow up of the baby during period of
 admission.

Statistical Analysis: Using Chi-square test "x2". The P value
for positive cases <0.05 which mean statistically significant.

Results
In this study 30 patients with PPROM as study cases and 30
patients with preterm labour and intact fetal membranes, as
control cases. Both groups, Maternal and cord blood CRP
estimation as a screening test for sub-clinical infection as a
cause of PPROM and preterm labour. Both mother and neonates
were observed post delivery for evidence of infection like
maternal fever "unhealthy lochia" and neonate admission in
NICU.

Urine culture
- Six cases isolated M.O were E-coli.
- Two cases the M.O were staphylococcus.
- Three cases klebsella.

Vaginal swab cultures isolate
- One cases enterobacter.
- Four cases E-coli.
- Two cases staphylococcus aureus.
- One case klebsella.
- Three cases monilial infection

Discussion
The hypothesis that infection is the cause of PPROM stands
proved. Levels of CRP rise when there is a microbial infection
or an inflammation without microbes. This is supported by
obtaining statistically significant maternal CRP values in
patients with PPROM, which is good predictor of sub-clinical
infection specially those patients who were PPROM and not in
labour.
- In this study the sensitivity of CRP is 78% and specificity is
 62.5% while B.R dalil got 79% sensitivity and 80% specificity in predictive effectiveness of CRP as a marker of
 infection (Desai et al., 1997) [2].
- The difference in the specificity of the test may be due to
 using another confirmative method such as placental and
 fetal membranes histopathological study for presence of
 evidence of inflammation or infection. And may be we have
 no culture media or absence of other media for vaginal
 infection.

- Melee holds that urinary tract infection is the likely focus
 predisposing to PPROM (Malee, 1992) [6] while in this study
 the urinary tract infection and lower genital tract
 infection have correlation with PPROM as demonstrated in
 table 2 and 3. Cervical swab in this study not performed due
 to deficiency in our laboratory facilities, placental swab for
 culture revealed 5 cases out of 30 cases showed +ve growth
 (16.5%) in study group and no cases in control group. And
 the microorganism
 - which were grown in the vaginal swabs are defer from that
 micro-organisms which grown in the
 placenta or urinary tract. In the same patient, that mean
 there were poly microbial infection may cause the condition
 (Staffan Bergstrom, 2003) [8].
- Rising of maternal CRP was not are liable predictor of
 prenatal neonatal infectious morbidity intensive care unit
 NICU this due to pre-maturity problems and not due to
 neonatal infection.

However maternal post-delivery infection, only 2 cases (6.6%)
were developed genital tract infection this low percentage it may
be due to administration of parantar antibiotics pre and post
delivery as a routine role in our labour room management for
each case with PPROM. Comparison with study have done in
Jawaherialnehru study at 1997 they have no post delivery
maternal infection (Desa et al., 1997) [2].

Conclusion
The conclusion of this study is that CRP test can be used a
screening test for sub-clinical infection in PPROM. CRP test has
sensitivity of 78% and will specificity 62.5%. This test is cheap,
easy performed and available and within a short period by
agglutination test which take 10 minutes in getting a results.
So that, it can be used as a first line for prediction of subclinical
infection for both maternal and neonatal infection.

References
1. Cunningham Macdonald Gant, Preterm Birth William's,
 Obstetrics, 2nd edition. 2000; 2:202-203
2. Desai BR, Shobhana S patted, Richa. A one year case
 control study to evaluate the incidence of infection as a
 cause of preterm rupture of membranes. The journal of
 obstet. And gyn. 1997, 590-610.
3. Jam Coli. Cardio-CRP test. Cardiol. 2003; 41(8):1358-1363.
4. Lok Wood CJ, Kuczynski E. Markers of risk preterm
 delivery. J. perinat Med. 1999; 27:5-20.
5. Lu GC, Golden Bery RL. Current preterm birth. Clin.
 Perinatal. 2000; 27:263-284.
6. Malee P, Maureen. Urinary tract infection. OBG clinics of
 north America, 1992; 19(2):310.
7. Narinder MK. The use of the erythrocyte sedimentation
 rate. The C-reactive protein assay and procalcitonin
 concentration in the assessment of potentially infected
 patient. AM. Infect. Dis., 1997; 16(3):21-24.
8. Saunders WB. The role of CRP in the evaluation and
 management of infants with sepsis. Advance-Neonatal care.
 2003; 3(1):3-13.
9. Staffan Bergstrom. Infection-Related morbidities in the
 mother, fetus and neonate. The American society for
 nutritional sciences, 2003; 133:1656s-1660s.
10. Svigol JM, robinson JSR. Vignes Waran. Prelabour rupture
 of membranes. High risk, 2nd edition: 1999, 1015-1021.
11. Woods JR, Jr Plessinger MA, Miller RK. Vitamin C and E.
 missing links in preventing preterm prelabour rupture of
 membranes. AM. 5 obstet. Gy necol. 2001, 5-10