Research Article

Xuefei Wang*, Lingling Wu, Haiwen Yu, Tongliang Xiao, Huaming Li, and Jun Yang

Analysis of effect of modification of silica and carbon black co-filled rubber composite on mechanical properties

https://doi.org/10.1515/epoly-2021-0034
received February 27, 2021; accepted April 07, 2021

Abstract: Silica and carbon black (CB) co-filled rubber composite was widely used for tire tread and other rubber products because of combined advantages of binary fillers, such as low hysteresis, good abrasion resistance, and reinforcement. Numerous studies have been focused on the filler–rubber interaction with the aim of obtaining optimum performances. To investigate the effect of modification on properties of rubber composite, modified silica and CB co-filled rubber composite was prepared with a multi-functional silane coupling agent, 2-aminoethyl-2-(3-triethoxysilylpropyl)aminoethyl disulfide (ATD). Such modification significantly enhanced the filler–rubber interaction and improved the filler dispersion. For the modified composites, the state of cure, hardness, tensile strength before and after aging, stress at 300% elongation, tear strength, abrasion resistance, rebound resilience, compression set, temperature rise, and the value of dynamic loss coefficient ranging from -20°C to 80°C were significantly improved, especially with low ATD dosage (3.0 phr). This modification provides an effective route to prepare silica and CB co-filled rubber composites with improved mechanical properties and dynamic mechanical properties.

Keywords: multi-functional silane coupling agent, silica/carbon black co-filled rubber composite, filler–rubber interaction, mechanical properties, dynamic mechanical properties

1 Introduction

Silica and carbon black (CB) co-filled composite receives much attention because of its combined advantages of silica and CB, such as low hysteresis, good wet skid resistance, and reinforcement, especially suitable for tire tread (1–10). Because of poor compatibility between silica and hydrocarbon rubber (11–13), a great effort has been made to improve the filler–rubber interaction with the aim of obtaining optimum performances (14–21). Three main directions have been developed to enhance the interaction between filler and rubber, i.e., addition of coupling agent (22–29), surface modification of filler (30–39), and chemical modification of rubber (40,41).

Considerable research effort continues to be directed toward the enhancement of filler–rubber interaction in combination with silane coupling agent because of its suitability for industrial production. Previous research has been mostly focused on the effect of filler composition of silica and CB on the properties of rubber composites in the presence of bis(3-triethoxysilylpropyl)tetrasulfane (Si69) (40,42–57). In addition, Hartomy and coworkers demonstrated the effect of silica/CB reinforcing filler upon the curing characteristics and mechanical and dynamic properties of natural rubber composites in the presence of bis(3-triethoxysilylpropyl)disulfane (58). Kim and Vander-Kooi investigated the moisture effects on styrene-butadiene rubber composites filled with silica and CB in the presence of bis(3-triethoxysilylpropyl)disulfane (59). Zhang et al. reported the effect of (3-aminopropyl)-triethoxysilane, γ-(2,3-epoxypropoxy)-propyltriethoxysilane, γ-methacryloxy-propyltrimethoxysilane, and Si69 on the dynamic properties and heat buildup of silica/CB filled natural rubber vulcanizates (60). However, the aforementioned silanes could not give rise to strong interactions between...
CB and rubber. This paper focuses on a multi-functional silane coupling agent, 2-aminoethyl-2-(3-triethoxysilylpropyl)aminoethyl disulfide (ATD), which bears ethoxysilyl group, amino group, and disulfide group (61). The ethoxysilyl group and amino group could interact with silanol group of silica surface and also with oxygen-containing functional groups of CB surface during mixing and vulcanization. It gives rise to the formation of covalent bonds, ionic bonds, and hydrogen bonds between ATD and silica as well as CB (61,62). The disulfide group could react with rubber during vulcanization and give rise to the formation of covalent bonds between ATD and rubber. Thus, strong interactions could be achieved not only between silica and rubber but also between CB and rubber. This would result in improvements in the dispersion of silica and CB and thus in the properties of such binary fillers-based rubber composites.

In this paper, we investigate the in situ modification of silica and CB co-filled isoprene rubber (IR) composite with ATD, and we further analyze the effect of such modification on mechanical properties and dynamic mechanical properties of vulcanized composites.

2 Materials and methods

2.1 Materials

Synthetic cis-IR (JSC Sterlitamak Petrochemical Plant, SKI-3), CB (China Carbon Black Institute, N330), and silica (Evonik Company, ULTRASIL VN3 GR) were used as received. ATD (Scheme 1) was synthesized using cystamine and 3-chloropropyltriethoxysilane (61). The other analytical reagents were purchased from Sinopharm Chemical Reagent Company and used as received.

2.2 Preparation of modified IR/silica/CB compounds and vulcanizates with ATD

Modified IR/silica/CB compounds and vulcanizates were prepared according to the formulation listed in Table 1. IR was masticated in a QINGDAO laboratory banbury mixer (1.5 L, 50–55 rpm) and then mixed with silica, CB, and ATD. The compounds were mixed at 145°C for 5 min, followed by cooling down to 70–80°C. Then the rest of reagents were added into the mixer and mixed with the aforementioned compounds at 90–100°C. The compounds obtained above were vulcanized by compression molding at 150°C for 20 min to prepare test pieces.

Scheme 1: Chemical structure of 2-aminoethyl-2-(3-triethoxysilylpropyl)aminoethyl disulfide.

2.3 Measurements

Vulcanization characteristic of modified silica/CB/IR compound was obtained using a GOTECH rotorless cure meter (frequency 1.7 Hz, amplitude ±0.5°, vulcanization condition 150°C for 30 min) in accordance with ISO 6502. Bound rubber content was determined by extracting unbound rubber with toluene for 3 days and drying in a vacuum oven at room temperature to constant weight. Weights before extraction and after extraction were measured and bound rubber content was calculated (19). Shore hardness of modified silica/CB/IR vulcanizate was determined using a BAREISS digital hardness tester based on ISO 7619. Tensile stress-strain, tear strength, and accelerated aging resistance were measured on a SUNS electron tensile tester (tensile rate 500 mm/min) according to ISO 37, ISO 34-1 (method B procedure (a)) and ISO 188, respectively. State of cure was determined by swelling in toluene at 30°C for 4 h, namely swelling test. Weights before and after swelling were measured and swelling index was calculated by weight ratios after swelling and before swelling based on HG/T 3870.

The dispersion of filler was examined using a scanning electronic microscopy (SEM, JEOL JSM-7500 F) at an acceleration voltage of 5 kV. Vulcanizate (2 mm in thickness) was fractured in liquid N₂, and the fracture surface was covered with a layer of gold by sputtering treatment before SEM observation.

Abrasion resistances were measured on a MINGZHU rotating cylindrical drum device and a XINZHENWEI Akron abrasion machine in accordance with ISO 4649 and BS 903 A9, respectively. Compression set and rebound resilience were determined using a GOTECH compression machine (type A test piece, compressed to a 25% strain and maintained at 70°C for 72 h) and a GOTECH resiliometer (23°C) according to ISO 815 and ISO 4662, respectively.

Dynamic mechanical measurement was carried out on a GABO dynamic mechanical thermal analyzer EPLEXOR 500 N operating in tensile mode at the frequency of 2 Hz.
The range of temperature sweep was -80°C to 80°C (heating rate 2°C/min) with 6% static load strain and 5% dynamic load strain. Temperature rise was tested using a YOUSHEN compression flexometer at 55°C for 25 min (constant-strain type, pre-stress 1 MPa, cyclic strain amplitude 4.45 mm, frequency 30 Hz) according to ISO 4666-3.

Samples	SC-1	SC-2	SC-3	SC-4	SC-5	SC-6
IR	100	100	100	100	100	100
Silica	30	30	30	30	30	30
CB	20	20	20	20	20	20
ATD	0	1.5	3.0	4.5	6.0	7.5
Zinc oxide	4	4	4	4	4	4
Stearic acid	1.5	1.5	1.5	1.5	1.5	1.5
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine	1.5	1.5	1.5	1.5	1.5	1.5
N-Cyclohexyl-2-benzoiazole sulenamide	1.3	1.3	1.3	1.3	1.3	1.3
Tetrabenzylthiuram disulfide	0.5	0.5	0.5	0.5	0.5	0.5
Sulfur	1.4	1.4	1.4	1.4	1.4	1.4

Figure 1: Postulated reactions of ATD toward rubber and fillers of silica and CB.
3 Results and discussion

3.1 Modification of IR/silica/CB composites with ATD

The results shown in Supplementary material indicate that the modification of IR and silica as well as CB with ATD as coupling agent took place. This modification gave rise to the formation of ionic bonds, covalent bonds, and hydrogen bonds between IR and silica as well as CB, as illustrated in Figure 1. These bonds enhanced the filler–rubber interaction and improved the filler dispersion (63). It was also supported by the results of bond rubber contents of modified IR/silica/CB compounds (see Table 2) and the SEM images of modified IR/silica/CB vulcanizates (in Figure 2) (16,18).

Table 2: Vulcanization characteristics and bound rubber content of modified IR/silica/CB compounds with ATD

Samples	\(t_{s2}^a \) (s)	\(t_{c90}^b \) (s)	\(M_c^c \) (dNm)	\(M_n^d \) (dNm)	\(M_n^e-M_c^c \) (dNm)	CRI\(^f \)	Bound rubber content (g/g)
SC-1	239	983	2.99	28.64	25.6	7.72	0.216
SC-2	233	775	2.59	28.77	26.2	10.47	0.310
SC-3	192	658	2.48	30.03	27.6	12.17	0.391
SC-4	137	567	2.62	32.07	29.4	13.19	0.404
SC-5	94	497	2.50	33.36	30.9	14.20	0.424
SC-6	54	455	2.65	34.62	32.0	14.58	0.447

\(^a\) Scorch time denoting the time required for the torque to increase by 2 units from minimum torque. \(^b\) Time to a percentage 90 of full cure from minimum torque denoting the optimum curing time. \(^c\) Minimum torque. \(^d\) Maximum torque attained after the specified time. \(^e\) Torque denoting full cure at a specified time. \(^f\) Cure rate index.

Figure 2: SEM micrographs of IR/silica/CB vulcanizates: 0 phr ATD for SC-1 (a and d), 1.5 phr ATD for SC-2 (b and e), and 3.0 phr ATD for SC-3 (c and f).

Table 3: Mechanical properties of modified IR/silica/CB vulcanizates with ATD

Samples	Hardness (Shore A)	Tensile strength (MPa)	Elongation at break (%)	Stress at 300% elongation (MPa)	Tear strength (kN/m)	Swelling index
SC-1	58	27.9	628	7.3	60	3.18
SC-2	59	30.3	485	13.2	67	2.86
SC-3	61	32.2	479	16.7	71	2.75
SC-4	63	28.9	405	17.5	72	2.64
SC-5	64	28.4	396	18.2	73	2.62
SC-6	66	28.1	384	18.4	73	2.60
3.2 Effect on vulcanization characteristics

The effect of modification with ATD as coupling agent on vulcanization characteristics of modified IR/silica/CB compounds was investigated, as shown in Table 2. It demonstrates that this modification provides faster cure rate and enhanced state of cure (the difference between maximum torque and minimum torque). This general trend is consistent with Si69 system previously reported (42). With increasing ATD dosage, both scorch time t_{sk} and optimum curing time $t_{c}(90)$ decreased; while cure rate index and state of cure increased. These observations are probably attributed to the modification of filler with ATD. There are amounts of silanol groups on the silica surface and oxygen-containing functional groups on the CB surface (64). A portion of cure activator (Zn complex) and accelerators would be trapped by those reactive groups in the absence of silane coupling agent. The vulcanization is therefore somewhat retarded. With ATD as coupling agent, the ethoxysilyl group and amino group of ATD could interact with silanol group of silica surface and also with oxygen-containing functional groups of CB surface during mixing and vulcanization. It reduces the surface chemical reactivity of silica and CB. Thus, the amounts of Zn complex and accelerators adsorbed on the filler surface decrease. Therefore, shorter cure time and higher state of cure are obtained. In addition, the amine group and disulfide group of ATD might give rise to faster cure rate.

3.3 Effect on mechanical properties

The effect of such modification on mechanical properties of modified IR/silica/CB vulcanizates was investigated. The corresponding results are presented in Table 3. This modification imparts significant improvement in tensile strength at low ATD dosage (3.0 phr, SC-3, in Table 3). It might be because of enhanced filler–rubber interaction and better filler dispersion (18,65). At high ATD dosage (up to 7.5 phr), the tensile strength decreased, probably because of excessive cross-link density and softening action of ATD. The hardness, stress at 300% elongation, and tear strength increased with increasing ATD dosage, while elongation at break decreased. These results are in good agreement with the results of state of cure (see Table 2) and swelling index (see Table 3). These above trends are consistent with Si69 system (42).
3.4 Effect on aging resistance

The accelerated aging tests were designed to estimate the resistance of modified IR/silica/CB vulcanizates to deterioration with the passage of time, as shown in Figure 3. With increasing ATD dosage, the hardness after aging increased whereas elongation at break decreased continuously for modified IR/silica/CB vulcanizates, arising from further enhancement of state of cure after thermal aging (60). Tensile strength after aging increased with low ATD dosage (up to 3.0 phr). This observation is in contrast to that of Si69 system (66). Such improvement in tensile strength after aging is mainly attributed to the less effect of sulfur contribution of ATD. That is, ATD possesses two sulfur atoms per molecule, less than Si69 which bears four sulfur atoms. Therefore, ATD could contribute less sulfur atom to the matrix rubber to carry on sulfur vulcanization reaction during thermal aging, which would result in less increase in cross-link density.

3.5 Effect on abrasion resistance, rebound resilience, and compression properties

The effects of modification on abrasion resistance, rebound resilience, and compression properties of modified IR/silica/CB vulcanizates were studied and the results are illustrated in Figure 4. As seen in Figure 4a, relative volume loss measured by rotating cylindrical drum device and volume loss measured by Akron machine both decreased pronouncedly as the ATD dosage increased (up to 3.0 phr) and tended to level off afterward (up to 7.5 phr). With
increasing ATD dosage, compression set decreased noticeably followed by a rise, whereas rebound resilience increased with a peak value (see Figure 4b). These observations are in good agreement with Si69 system (66) and probably because of the combined effects of strong filler–rubber interaction and thus better filler dispersion as well as enhanced state of cure (24). The rise of compression set at high ATD dosage might arise from the effect of sulfur contribution of ATD, resulting in the formation of polysulfidic bonds between rubber molecules. These polysulfidic bonds are weaker than mono- or disulfidic bonds and thus more susceptible to cleavage during thermal aging (66).

3.6 Effect on dynamic mechanical properties

DMA curves and relevant data of modified IR/silica/CB vulcanizates are shown in Figure 5 and Table 4. The modification resulted in an increase in storage modulus (E') and decreases both in loss modulus (E'') and dynamic loss coefficient ($\tan \delta$) in the range of −20°C to 80°C, consistent with the trend reported in literature (60). An increase in the maximum value of $\tan \delta$ was also observed in the presence of ATD. With increasing ATD dosage up to 3.0 phr, the values of $\tan \delta$ ranging from −20°C to 80°C significantly decreased. For the modified vulcanizate with 3.0 phr ATD (SC-3, in Table 4), the values of $\tan \delta$ ranging from −20°C to 80°C reduced about 20–50% in comparison with that without ATD (SC-1, in Table 4). With further increasing ATD dosage up to 7.5 phr, the values of $\tan \delta$ slightly increased. The DMA analysis was consistent with the results of temperature rise test (see Table 4). The temperature rise of modified vulcanizates gradually decreased with low ATD dosage (up to 3.0 phr) and slightly increased with high ATD dosage (up to 7.5 phr). These observations are probably because of strong interactions between filler and rubber in the presence of ATD. Such strong interactions reduce the filler–filler interaction (24), improve the filler dispersion, and bound more rubber (see Figure 2 and Table 2). Therefore, the friction between filler and filler as well as the mobility of rubber molecular chains reduce, resulting in low hysteresis and less temperature rise; while the much more bound rubber contributes to the rebound in hysteresis (67,68).

4 Conclusion

In summary, multi-functional silane ATD could react with IR and silica as well as CB to prepare rubber composites containing finely dispersed filler. At low ATD dosage such as 3.0 phr, the resulting composites exhibited significant improvement in state of cure, hardness, tensile strength before and after aging, stress at 300% elongation, tear strength, abrasion resistance, rebound resilience, compression set, temperature rise, and the value of $\tan \delta$ ranging from −20°C to 80°C. This modification with ATD as coupling agent imparts low hysteresis and improved mechanical properties, especially applicable for the preparation of high-performance tire tread and other rubber products as well as hybrid composites (69–82).

Funding information: The authors state no funding involved.

Author contributions: Xuefei Wang: writing – original draft, writing – review and editing, methodology, formal analysis; Lingling Wu: writing – review and editing, methodology, formal analysis; Haiwen Yu: formal analysis, visualization; Tongliang Xiao: formal analysis, project administration; Huaming Li: conceptualization; Jun Yang: resources.

Samples	Maximum value $\tan \delta$ \degree C	-20 0 23 60 80	Temperature rise \degree C				
SC-1	1.35	0.312	0.183	0.145	0.122	0.119	22.7
SC-2	1.45	0.261	0.134	0.098	0.076	0.074	20.1
SC-3	1.57	0.250	0.114	0.077	0.062	0.059	18.8
SC-4	1.37	0.252	0.118	0.085	0.072	0.071	19.0
SC-5	1.42	0.256	0.123	0.094	0.080	0.079	19.4
SC-6	1.41	0.260	0.134	0.099	0.088	0.086	20.2
Conflict of interest: The authors state no conflict of interest.

References

(1) Wang MJ, Zhang P, Mahmud K. Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: part IX. Application to truck tire tread compound. Rubber Chem Technol. 2001;74(1):124–37. doi: 10.5254/1.3547633.
(2) Wolff S. Chemical aspects of rubber reinforcement by fillers. Rubber Chem Technol. 1996;69(3):325–46. doi: 10.5254/1.3538376.
(3) Llauw CM, Lees GC, McMahon AW, Rothan RN, Rego CA, McLaughlin PJ. Surface activity studies on carbon-silica dual phase fillers using flow microcalorimetry and multiple probe temperature programmed inverse gas chromatography. Compos Interfaces. 2005;12(3–4):201. doi: 10.1163/1568554057971579.
(4) Sridhar V, Chaudhary RNP, Tripathy DK. Relaxation behavior of carbon silica dual phase filler reinforced chlorobutyl vulcanizates. J Appl Polym Sci. 2006;101(6):4320–7. doi: 10.1002/app.23930.
(5) Senthivel K, Vishvanathperumal S, Prabu B, John Baruch L. Studies on the morphology, cure characteristics and mechanical properties of acrylonitrile-butadiene rubber with hybrid filler (carbon black/silica) composite. Polym Compos. 2016;24(7):473–80. doi: 10.1177/096739111602400705.
(6) Feng WJ, Tang ZH, Weng PJ, Guo BC. Correlation of filler networking with reinforcement and dynamical properties of SSSR/carbon black/silica composites. Rubber Chem Technol. 2015;88(4):676–89. doi: 10.5254/rct.15.84881.
(7) Ward AA, Khalaf AI, Cairo D. Electrical and mechanical properties of SBR filled with carbon black-silica blends. Kautsch Gummi Kunstst. 2007;60:623–30.
(8) Ghamdi AAAL, Hartomy OAAL, Solamy FRAAL, Dishovsky N, Mihaylov M, Malinova P, et al. Natural rubber based composites comprising different types of carbon-silica hybrid fillers. Comparative study on their electric, dielectric and microwave properties, and possible applications. Mater Sci Appl. 2016;7(6):295–306. doi: 10.4236/msa.2016.76027.
(9) Ghamdi AAAL, Hartomy OAAL, Solamy FRAAL, Dishovsky N, Mihaylov M, Malinova P, et al. Dielectric and microwave properties of elastomer composites loaded with carbon-silica hybrid fillers. J Appl Polym Sci. 2016;133(7):42978. doi: 10.1002/app.42978.
(10) Ghamdi AAAL, Hartomy OAAL, Solamy FRAAL, Dishovsky NT, Atanasov NT, Atanasova GL. Enhancing antenna performance and SAR reduction by a conductive composite loaded with carbon-silica hybrid filler. Int J Electron Commun (AEU). 2017;72:184–91. doi: 10.1016/j.i.euee.2016.12.013.
(11) Byers JT. Fillers for balancing passenger tire tread properties. Rubber Chem Technol. 2002;75(3):527–48. doi: 10.5254/1.3547681.
(12) Choi SS, Park BH, Song H. Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica. Polym Adv Technol. 2004;15(3):122–27. doi: 10.1002/pat.421.
(13) Hassan HI, Atela E, Darwish NA, Halim SF, El-Aziz AKAbd. Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber. Mater Des. 2012;34:533–40. doi: 10.1016/j.matdes.2011.05.005.
(14) Wolff S, Wang MJ. Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement. Rubber Chem Technol. 1992;65(2):329–42. doi: 10.5254/1.3538615.
(15) Wang MJ. Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol. 1998;71(3):520–89. doi: 10.5254/1.3538492.
(16) Choi SS. Influence of silane coupling agent on properties of filled styrene-butadiene rubber compounds. Korea Polym J. 2000;8(6):285–91.
(17) Choi SS. Influence of the silica content on rheological behavior and cure characteristics of silica-filled styrene-butadiene rubber compounds. Polym Int. 2001;50(5):524–30. doi: 10.1002/pi.660.
(18) Choi SS. Influence of storage time and temperature and silane coupling agent on bound rubber formation in filled styrene-butadiene rubber compounds. Polym Test. 2002;21(2):201–8. doi: 10.1016/S0142-9416(01)00071-X.
(19) Choi SS, Kim IS. Filler-polymer interactions in filled polybutadiene compounds. Eur Polym J. 2002;38(6):1265–9. doi: 10.1016/S0010-3571(02)00070-7.
(20) Choi SS, Nah C, Jo BW. Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion. Polym Int. 2003;52(8):1382–9. doi: 10.1002/pi.1232.
(21) Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A. 2005;36(4):449–60. doi: 10.1016/j.compositesa.2004.10.004.
(22) González L, Rodríguez A, De Benito JL, Marcos A. A new carbon black-rubber coupling agent to improve wet grip and rolling resistance of tires. Rubber Chem Technol. 1996;69(2):266–72. doi: 10.5254/1.3538371.
(23) Wang MJ. The role of filler networking in dynamic properties of filled rubber. Rubber Chem Technol. 1999;72(4):430–8. doi: 10.5254/1.3538812.
(24) Wang MJ, Kutovsky Y, Zhang P, Mehos G, Murphy LJ, Mahmud K. Using carbon-silica dual phase filler improve global compromise between rolling resistance, wear resistance and wet skid resistance for tires. Kautsch Gummi Kunstst. 2002;55(1–2):33–40.
(25) Wang MJ, Kutovsky Y, Zhang P, Murphy LJ, Laube S, Mahmud K. New generation carbon-silica dual phase filler Part I. Characterization and application to passenger tire. Rubber Chem Technol. 2002;75(2):247–63. doi: 10.5254/1.3544975.
(26) Ma JH, Zhao SH, Zhang LQ, Wu YP. Comparison of structure and properties of two styrene-butadiene rubbers filled with carbon black, carbon-silica dual-phase filler, and silica. Rubber Chem Technol. 2013;86(4):664–78. doi: 10.5254/rct.13.87956.
(27) Xiong X, Wang JY, Jia HB, Ding LF, Dai X, Fei X. Synergistic effect of carbon black and carbon-silica dual phase filler in natural rubber matrix. Polym Compos. 2014;35(8):1466–72. doi: 10.1002/pc.22800.
Shanmugharaj AM, Ray S, Bandyopadhyay S, Bhowmick AK. Rheological properties of carbon-silica dual phase filler/natural rubber. Polym Adv Technol. 2015;26(9):1168–75. doi: 10.1002/pat.3550.

Hartomy OAAL, Ghamdi AAAL, Said SAFAL, Dishovsky NT, Mihaylov M, Malinova P. Comparative study of the dynamic properties of natural rubber based composites, containing carbon-silica dual phase fillers obtained by different methods. J Chem Technol Metall. 2015;50(5):567–76.

Wang MJ, Mahmud K, Murphy LJ, Patterson WJ. Carbon-silica dual phase filler, a new generation reinforcing agent for rubber. Part I. Characterization. Kautsch Gummi Kunstst. 1998;51(5):348–58.

Liauw CM, Allen NS, Edge M, Lucchese L. The role of silica and carbon-silica dual phase filler in a novel approach to the high temperature stabilization of natural rubber based composites. Polym Degrad Stab. 2001;74(1):159–66. doi: 10.1016/S0969-0927(00)00149-5.

Shanmugharaj AM, Bhowmick AK. Modification of dual phase filler by electron beam irradiation Physical characterization. Rubber Chem Technol. 2002;75(4):605–16. doi: 10.5254/1.3544987.

Shanmugharaj AM, Ray S, Bandyopadhyay S, Bhowmick AK. Surface morphology of styrene-butadiene rubber vulcanize filled with novel electron beam modified dual phase filler by atomic force microscopy. J Adhesion Sci Technol. 2003;17(9):1167–86. doi: 10.1163/156856103322114525.

Shanmugharaj AM, Bhowmick AK. Influence of novel electron beam modified surface treated dual phase filler on rheometric and mechanical properties of styrene butadiene rubber vulcanizes. Rubber Chem Technol. 2003;76(2):299–317. doi: 10.5254/1.3547744.

Shanmugharaj AM, Bhowmick AK. Dynamic mechanical properties of styrene-butadiene rubber vulcanize filled with electron beam modified surface-treated dual-phase filler. J Appl Polym Sci. 2003;88(13):2992–3004. doi: 10.1002/app.12067.

Shanmugharaj AM, Bhowmick AK. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers. Radiat Phys Chem. 2004;69(1):91–8. doi: 10.1016/S0969-806X(03)00331-1.

Wang JY, Jia HB, Ding LF, Xiong X, Gong XD. The mechanism of carbon-silica dual phase filler modified by ionic liquid and its reinforcing on natural rubber. Polym Compos. 2015;36(9):1721–30. doi: 10.1002/pc.23083.

Hartomy OAAL, Ghamdi AAAL, Said SAFAL, Dishovsky NT, Malinova PA, Nikolov RN. Effect of carbon-silica dual phase filler obtained by impregnation method on the properties of SBR-based. J Mater Des Appl. 2016;230(1):116–20. doi: 10.1177/1664420714548449.

Ghamdi AAAL, Hartomy OAAL, Solamy FRAL, Dishovsky N, Zaimova D, Malinova P. Effect of silica phase on certain properties of natural rubber based composites reinforced by carbon black/silica hybrid fillers. Prog Rubber Plast Recycl Technol. 2017;33(4):221–42. doi: 10.1177/147776061730300402.

Zaeimoedin TZ, Kamal MM. Processability behaviour of dual filler systems reinforced epoxyised natural rubber. Adv Mater Res. 2014;974:195–8. doi: 10.4028/www.scientific.net/AMR.974.195.

Sarkawi SS, Aziz AKC, Rahim RA, Ghani RA, Kamaruddin AN. Properties of epoxidized natural rubber tread compound: The hybrid reinforcing effect of silica and silane system. Polym Polym Compos. 2016;24(9):775–82. doi: 10.1177/096739111662400914.

Stewart EJ. The reinforcement effects on tirewear of silane modified silica vs carbon black in various blends in SBR passenger tire tread compounds. J Elastomers Plast. 1977;9(4):439–49. doi: 10.1177/009524437700900407.

Choi SS. Filler-polymer interactions in both silica and carbon black-filled styrene-butadiene rubber compounds. J Polym Sci Part B Polym Phys. 2001;39(4):439–5. doi: 10.1002/1099-0488(20010215).

Choi SS. Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol. 2002;13(6):466–74. doi: 10.1002/pat.211.

Choi SS, Nah C, Lee SG, Joo CW. Effect of filler-filler interaction on rheological behavior of natural rubber compounds filled with both carbon black and silica. Polym Int. 2003;52(1):23–8. doi: 10.1002/pi.975.

Choi SS. Influence of polymer-filler interactions on retraction behaviors of natural rubber vulcanizes reinforced with silica and carbon black. J Appl Polym Sci. 2006;99(3):691–6. doi: 10.1002/app.22562.

Rattanason N, Saoawapark T, Deepprasertkual C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test. 2007;26(3):369–77. doi: 10.1016/j.polymertesting.2006.12.003.

Barrantes IM, Ibarra L, Rodrigoa A, Gonzalez L, Valentin JL. Elastomer composites based on improved fumed silica and carbon black. Advantages of mixed reinforcing systems. J Mater Chem. 2011;21(4):1752–33. doi: 10.1039/C1JM12106E.

Noriman NZ, Ismail H. Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBR) blends: The effects of carbon black/silica (CB/Sil) hybrid filler and silica coupling agent, Si69. J Appl Polym Sci. 2012;124(1):19–27. doi: 10.1002/app.34961.

Zafarmehrabian R, Gangali ST, Ghoreishy MHR, Davallu M. The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. J Chem. 2012;9:1102–12. doi: 10.1155/2012/571957.

Noriman NZ, Ismail H. Effect of carbon black/silica hybrid filler on thermal properties, fatigue life, and natural weathering of SBR/recycled NBR blends. Int J Polym Mater Polym Biomater. 2013;62(5):252–9. doi: 10.1080/00914037.2011.641692.

Ghoreishy MHR, Alimardani M, Mehrabian RG, Gangali ST. Modeling the hyperviscoelastic behavior of a tire tread compound reinforced by silica and carbon black. J Appl Polym Sci. 2013;128(3):1725–31. doi: 10.1002/app.38242.

Zaeimoedin TZ, Aziz AKC, Kamal MM. Improving filler dispersion and physical properties of epoxidised natural rubber/silica compound by using dual fillers and coupling agent in mixing process. Malays J Anal Sci. 2014;18(3):604–11.

Song YH, Zeng LB, Zheng Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. Chin J Polym Sci. 2017;35:1436–46. doi: 10.1007/s10118-017-1987-5.

Wongwilatnarak S, Tuampoonsab S, Dangtunee R. Prototype of geocell from natural rubber: effect of dual-phase fillers on physical properties of rubber compounds reinforced with silica.
and carbon black. Key Eng Mater. 2017;737:572–7. doi: 10.4028/www.scientific.net/KEM.737.572.

(56) Yadollahi S, Ramezani M, Kashani MR, Bahramian AR. Nonlinear viscoelastic dissipation in vulcanizates containing carbon black and silanized silica hybrid fillers. Rubber Chem Technol. 2018;91(3):537–47. doi: 10.5254/rtc.18.82611.

(57) Thespawan U, Sae-ou P, Sirisinha C, Thaplong P. Influence of halloysite nanotube on properties of tire tread compounds filled with silica and carbon black hybrid filler. J Appl Polym Sci. 2019;136(4):46987. doi: 10.1002/app.46987.

(58) Hartomy OAAL, Ghamdi AAAL, Said SAFAL, Dishovskiy N, Mihiylov M, Ivanov M. Effect of the carbon-silica reinforcing filler obtained from the pyrolysis-cum-water vapour of waste green tyres upon the properties of natural rubber based composites. Prog Rubber Plast Recycl Technol. 2015;31(1):25–41. doi: 10.1177/147776061503100102.

(59) Kim KJ, VanderKooi J. Moisture effects on TESP-D silica/CB/SBR composites. Rubber Chem Technol. 2005;78(1):84–104. doi: 10.5254/1.3547785.

(60) Zhang H, Gao Y, Li F, Zhang Z, Liu Y, Zhao G. Influence of silane coupling agents on vulcanized natural rubber: dynamic properties and heat buildup. Plast Rubber Compos. 2016;45(1):9–15. doi: 10.1080/146568011.2015.1112518.

(61) Wang XF, Wu LL, Yu HW, Xiao TL, Li HM, Yang J. Modified silica-based isoprene rubber composite by a multi-functional silica: preparation and its mechanical and dynamic mechanical properties. Polym Test. 2020;91:106840. doi: 10.1016/j.polymertesting.2020.106840.

(62) Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994;32(5):759–69. doi: 10.1016/0008-6223(94)90031-0.

(63) Torbati-Fard N, Hosseini SM, Razzaghi-Kashani M. Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polym J. 2020;52:1223–34. doi: 10.1038/s41428-020-0378-x.

(64) Meera AP, Said S, Grohens Y, Thomas S. Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C. 2009;113(42):17997–8002. doi: 10.1021/jp902018h.

(65) Choi SS, Nah C, Jo BW. Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion. Polym Int. 2003;52(8):1382–9. doi: 10.1002/pi.1232.

(66) Sae-ou P, Sirisinha C, Hatthapanit K, Thespawan U. Comparison of reinforcing efficiency between Si-69 and Si-264 in an efficient vulcanization system. Polym Test. 2005;24(4):439–6. doi: 10.1016/polymertesting.2005.01.008.

(67) Medalia AI. Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol. 1978;51(3):437–523. doi: 10.5254/1.3533748.

(68) Ranney MW, Pagano CA. Silane coupling agent effects in ethylene propylene diene terpolymer. Rubber Chem Technol. 1971;44(4):1080–92. doi: 10.5254/1.3547384.

(69) Jose JP, Thomas S. XLP-based Al2O3/clay binary and ternary hybrid nanocomposites: Nanoscale hybrid filler self-assembly, polymer chain confinement and transport characteristics. Phys Chem Chem Phys. 2014;16(37):20190–20201. doi: 10.1039/C4CP03403A.

(70) Jose JP, Chazeau L, Cavaillé JY, Varughese KT, Thomas S. Nucleation and nonisothermal crystallization kinetics in cross-linked polyethylene/zinc oxide nanocomposites. RSC Adv. 2014;4(60):31643–51. doi: 10.1039/C4RA03731F.

(71) Mohanty F, Swain SK. Nano silver embedded starch hybrid graphene oxide sandwiched poly(ethylmethacrylate) for packaging application. Nano-Struct Nano-Objects. 2019;18:100300. doi: 10.1016/j.nanoso.2019.100300.

(72) Sarkar N, Sahoo G, Swain SK. Nanoclay sandwiched reduced graphene oxide filled macroporous polyacrylamide-agar hybrid hydrogel as an adsorbent for dye decontamination. Nano-Struct Nano-Objects. 2020;23:100507. doi: 10.1016/j.nanoso.2020.100507.

(73) Kavil J, Alshahrie A, Periyat P.-Cds sensitized TiO2 nano heterostructures as sunlight driven photocatalyst. Nano-Struct Nano-Objects. 2018;16:24–30. doi: 10.1016/j.nanoso.2018.03.011.

(74) Kavil J, Pliathottathil S, Thayyil MS, Periyat P. Development of 2D nano heterostructures based on γ-C3N4 and flower shaped MoS2 as electrode in symmetric supercapacitor device. Nano-Struct Nano-Objects. 2019;18:100317. doi: 10.1016/j.nanoso.2019.100317.

(75) Sreenath PR, Mandal S, Panigrahi H, Das P, Kumar KD. Carbon dots: Fluorescence active, covalently conjugated and strongly reinforcing nanofiller for polymer latex. Nano-Struct Nano-Objects. 2020;23:100477. doi: 10.1016/j.nanoso.2020.100477.

(76) Remanana S, Ghosh S, Das TK, Das NC. Nano to microblend formation in poly(ethylene-co-methyl acrylate)/poly(vinylidine fluoride) blend and investigation of its anomalies in rheological properties. Nano-Struct Nano-Objects. 2020;23:100487. doi: 10.1016/j.nanoso.2020.100487.

(77) Deeraj BDS, Harikrishnan R, Jayan JS, Saritha A, Joseph K. Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polypimide nanofiber. Nano-Struct Nano-Objects. 2020;21:100421. doi: 10.1016/j.nanoso.2019.100421.

(78) Ponnambama D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y. Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 2013;3(36):16068–79. doi: 10.1039/C3RA1395K.

(79) Méelé P, Angellier-Coussy H, Molina-Boisseau S, Dufresne A. Reinforcing mechanisms of starch nanocrystals in a non-vulcanized natural rubber matrix. Biomacromolecules. 2011;12(5):1487–93. doi: 10.1021/bm101143a.

(80) Bindu P, Thomas S. Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B. 2013;117(41):12632–48. doi: 10.1021/jp4039489.

(81) Kalivathan AV, Rane AV, Hussik M, Kunaver M, Kalarikkal N, Rouxel D, et al. Carbon black distribution in natural rubber/butadiene blend composites: distribution driven by morphology. Compos Sci Technol. 2020;200(10):10848. doi: 10.1016/j.compscitech.2020.10848.

(82) Basheer BV, George JJ, Siengchin S, Parameswarapillai J. Polymer grafted carbon nanotubes-synthesis, properties, and applications: a review. Nano-Struct Nano-Objects. 2020;22:100429. doi: 10.1016/j.nanoso.2020.100429.