A Case Report of Metastatic Castration-Resistant Prostate Cancer Harboring a PTEN Loss

Zin W. Myint1,2*, Derek B. Allison2,3,4 and Carleton S. Ellis2,5

1 Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, United States,
2 Markey Cancer Center, University of Kentucky, Lexington, KY, United States, 3 Department of Urology, University of Kentucky, Lexington, KY, United States, 4 Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, United States, 5 Department of Pharmacy, University of Kentucky, Lexington KY, United States

The treatment landscape of metastatic castration-resistant prostate cancer (mCRPC) has dramatically improved over the last decade; however, patients with visceral metastases are still faced with poor outcomes. Phosphatase and tensin homolog (PTEN) loss is observed in 40%–60% of mCRPC patients and is also associated with a poor prognosis. Several PI3K/AKT/mTOR pathway inhibitors have been studied, with disappointing anti-tumor activity. Here, we present a case of a patient with heavily treated mCRPC who had a modest tumor response to concurrent carboplatin, abiraterone acetate/prednisone, and liver-directed radiation therapy. We discuss the potential rationale supporting the use of this combination therapy and its safety in mCRPC. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, we suggest that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population of patients with pre-treated mCRPC and PTEN loss.

Keywords: metastatic castration refractory prostate cancer, PI3K/AKT pathway, carboplatin, abiraterone acetate, ATM/Chk2/p53 signal pathway

INTRODUCTION

Visceral metastases in men with metastatic castration-resistant prostate cancer (mCRPC) occur at a very late stage of disease. One retrospective study showed that the rate of radiologically detected visceral metastases before death from prostate cancer was 32% (1). In the vast majority of patients with visceral metastases, there are also detectable metastases at other sites such as bone and regional lymph nodes (1). The site of metastases impacts the expected survival of a patient. A prior meta-analysis showed that the poorest overall survival is seen in men with liver metastases (13.5 months) followed by lung metastases (19.4 months), non-visceral bone metastases (21.3 months), and lymph node-only metastases (31.6 months) (2).

The treatment landscape of mCRPC has dramatically improved over the last decade. The development of potent androgen synthesis and receptor inhibitors (3, 4); chemotherapy with taxanes alone or in combination with a platinum (5–8); poly (ADP-ribose) polymerase (PARP) inhibitors in patients who carry DNA homologous recombination repair gene-mutations (9); immunotherapy in men with high microsatellite instability (10); and prostate-specific membrane antigen (PSMA) targeted radiopharmaceutical agents (11) have significantly prolonged overall survival and progression-free
survival in mCRPC. Still, the disease is incurable and patients with visceral metastases have a limited expected survival.

Loss of the tumor suppressor gene phosphatase and tensin homolog (PTEN) is identified in 15%–20% of primary prostate tumor samples. Upon progression to castrate-resistant disease, the incidence increases to 40%–60% (12). Loss of function of PTEN leads to an activation of the PI3K/AKT/mTOR pathway precipitating cell proliferation, growth, and survival. PTEN loss is associated with a poor prognosis and is an independent prognostic indicator of prostate-cancer-specific death (12). While several PI3K/AKT/mTOR pathway inhibitors have been studied in mCRPC, the majority of outcomes have been disappointing, with no significant anti-neoplastic activity (13–19). However, early-phase studies show that ipatasertib, a new oral small-molecule inhibitor of AKT (protein kinase B), has promising anti-tumor activity when combined with novel hormonal agents; the activity appears to be significantly increased in mCRPC patients with PTEN loss (20). A Phase III randomized study of ipatasertib plus abiraterone is currently ongoing (21). Currently, treatment of mCRPC patients with PTEN loss is challenging.

Here, we present the case of a patient with PTEN loss castration-resistant prostate cancer with liver-only metastases who failed multiple lines of treatment but demonstrated some modest response to the combination of abiraterone acetate/prednisone plus carboplatin and liver-directed radiation therapy.

CASE PRESENTATION

A 62-year-old gentleman with a family history of prostate cancer and a personal history of stage II chronic lymphocytic leukemia (CLL) under observation (not required any treatment) and a right nephrectomy for stage I clear cell renal cell carcinoma (not required any systemic treatment) was diagnosed with a high-risk prostate adenocarcinoma with a Gleason score of 4+5 = 9 in all prostate biopsy cores. He underwent a radical prostatectomy with bilateral pelvic lymphadenectomy in September 2016. Final pathology confirmed prostate adenocarcinoma with a Gleason score of 4 + 5 = 9 with invasion of periprostatic fat and the seminal vesicle as well as perineural invasion: pT3bN0. The pathology also revealed positive surgical margins. Post-surgery PSA was 19.7 ng/ml, and he had a Gleason score of 4 + 5 = 9 in all prostate biopsy cores. He received bicalutamide and androgen deprivation therapy (ADT) with leuprolide for 6 months from his local urologist but did not receive salvage radiation. His PSA became undetectable with ADT. Germline genetic testing was performed using the Ambry test and was negative. We initiated abiraterone acetate/prednisone regimen throughout his first cycles of abiraterone from March 2020 to June 2020 and tolerated the treatment well with no major treatment-related side effects except some mild fatigue. PSA trends shown in Figure 1. Repeat CT scans after three cycles of abiraterone showed stable disease; however, the scans repeated after six cycles showed disease progression in the liver (Figures 3A, B). Ar-V7 testing was sent and was negative. We initiated abiraterone acetate 1000 mg daily/prednisone 5 mg twice daily combined with carboplatin AUC 5 every 3 weeks in November 2020 given PTEN loss. He also underwent Y-90 embolization of the right lobe of his liver in December 2020 (Figure 3E) and a second Y-90 embolization of the left lobe of his liver in January 2021 (Figure 3F). He was instructed to continue his abiraterone acetate/prednisone regimen throughout his Yttrium-90 (Y-90) embolization. Y-90 embolization is a type of radiation using resin or glass microspheres containing ⁹⁰Y administered directly into the hepatic arteries. However, the carboplatin was held 2 weeks prior and 2 weeks after Y-90 embolization. He received continuous ADT as backbone. He
tolerated the treatment well without having any major side effects except grade 2 fatigue and grade 2 nausea/vomiting. His PSA slowly trended down and became stable, as shown in Figure 2. Repeat CT scans showed a partial response in the liver. He remains on the same chemotherapy/hormonal therapy combination at the time of writing with stable response (Figure 3G).

FIGURE 1 | Histopathology of liver biopsy. (A) Metastatic prostate adenocarcinoma displaying significant nuclear enlargement and pleomorphism, prominent nucleoli, mitotic figures, and comedo-type central necrosis in this representative field. Note the absence in neuroendocrine features and the surrounding benign hepatocytes [H&E stain, 40× magnification]. (B) Diffuse nuclear positivity with NKX3.1 in tumor cells [NKX3.1 stain, 40× magnification]. (C) Diffuse cytoplasmic positivity with PSA in tumor cells. (D) No cytoplasmic staining with chromogranin in tumor cells [chromogranin, 40× magnification].

FIGURE 2 | Trends of treatment, prostate serum antigen, and tumor size across patient’s treatment course. *Right inferior lobe lesion and †segment 7 lesion.

DISCUSSION

To our knowledge, abiraterone acetate/carboplatin/radiation combination therapy has never been studied in mCRPC patients; we report the first case on this chemotherapy/hormonal therapy/radiation therapy combination. This case
demonstrates the clinical utility of the above combination therapy in patients with metastatic CRPC with PTEN loss.

Prostate cancer is a heterogenous disease and a small subset of the prostate adenocarcinoma population can present with aggressive clinical features like neuroendocrine origin. This subpopulation frequently carries some driver molecular alterations in retinoblastoma-associated protein 1 (RB1), tumor protein 53 (TP53), and/or PTEN (22). These alterations have been associated with abnormal cell proliferation and increased DNA damage response defects through activation of Akt signaling (23).

Loss of PTEN by mono- and biallelic deletions or mutations is among the most frequently observed molecular aberrations in localized and metastatic prostate cancer. PTEN loss is identified in 15%–20% of primary prostate tumor samples (12). Upon progression to castrate-resistant disease, the incidence increases to 40%–60% (12). PTEN loss is known to be associated with a poor prognosis (12). PTEN plays a crucial role as a tumor suppressor in cell cycle by controlling both G1/S and G2/M transitions (24). Loss of PTEN promotes activation of the PI3K/AKT/mTOR signaling pathway, which modulates several downstream pathways. This signaling pathway also causes abnormal cell proliferation and survival (25–27). PTEN regulates p53 by modulating its DNA binding activity. PTEN and p53 both regulate the DNA damage response pathway by promoting nucleotide excision repair (NER) following ionizing radiation damage (28). When PTEN function is lost, Akt signaling pathways are activated through inappropriate activation of Chk1 (29) and, thus, impairs DNA damage repair and the DNA damage response pathway (28).

Platinum compounds as monotherapy or combination therapy have shown promising activity in mCRPC (7, 8). Platinum-based agents cause mono-, inter-, or intra-strand crosslinking of DNA triggering DNA damage, which activates ATM/Chk2/p53 signaling, inducing apoptosis and cell cycle arrest (30). Interestingly, androgen receptor signaling also regulates DNA repair genes of both non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways (31). Preclinical studies (both in vitro and in vivo models) have demonstrated the synergistic combinations of radiation and novel androgen synthesis inhibitors (abiraterone acetate or enzalutamide) in both androgen-dependent and androgen-independent prostate cancer (31, 32). The rationale is that the ionizing radiation enhances DNA damage, which then activates the ATM/Chk2/p53 signaling pathway promoting cell cycle arrest (33, 34). Anti-androgen therapy further augments by decreasing DNA repair genes and, thus, inducing synthetic lethality and causing apoptosis of prostate cancer cells (31, 35). Recent early-phase studies further confirmed the clinical efficacy data of these synergistic combinations (36–38). Phase III studies are ongoing.

We hypothesize that a response was seen in this case because carboplatin and radiation both induce DNA damage through the...
ATM/Chk2/p53 pathway, and the loss of PTEN activates the PI3K/AKT pathway and causes DNA damage repair, which is further augmented by adding anti-androgen therapy. Therefore, the combination has some synergistic or additive benefits. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, our case highlights the possible benefit and safety of combination carboplatin/abiraterone acetate/radiation in treated mCRPC and suggests that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

ZM and CE: drafting of the article, acquisition of data, and final approval of the manuscript. DA: providing histopathology pictures and final approval of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This funding is supporting the University of Kentucky Markey Cancer Center’s Research Communications Office. They assisted with preparation of this manuscript.

ACKNOWLEDGMENTS

We thank the patient for allowing us to share his medical history and clinical course. The content is solely the responsibility of the authors. The University of Kentucky Markey Cancer Center’s Research Communications Office assisted with preparation of this manuscript. This research was supported by the Biospecimen Procurement & Translational Pathology Shared Resource Facility of the University of Kentucky Markey Cancer Center, NCI Cancer Center Support Grant (P30 CA177558).
Localized Prostate Cancer. Int J Radiat Oncol Biol Phys (2021) 109(5):1271–8. doi: 10.1016/j.ijrobp.2020.11.059

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Myint, Allison and Ellis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.