Colliding black holes: The close limit

Richard H. Price
Department of Physics, University of Utah, Salt Lake City, UT 84112-1195

Jorge Pullin
Center for Gravitational Physics and Geometry, The Pennsylvania State University, University Park, PA 16802

(February 22, 1994)

The problem of the mutual attraction and joining of two black holes is of importance as both a source of gravitational waves and as a testbed of numerical relativity. If the holes start out close enough that they are initially surrounded by a common horizon, the problem can be viewed as a perturbation of a single black hole. We take initial data due to Misner for close black holes, apply perturbation theory and evolve the data with the Zerilli equation. The computed gravitational radiation agrees with and extends the results of full numerical computations.

The collision of two black holes is, in principle, one of the most efficient mechanisms for generation of gravitational waves. In view of the fact that the LIGO and VIRGO detectors may be detecting events in the coming years, the theoretical determination of possible waveforms has become of great importance. The fact that data may be well below the noise level of the detectors may require pattern-matching techniques which require accurate knowledge of radiation waveforms.

The problem of the gravitational radiation generated by colliding black holes is not only of great importance to gravitational wave astrophysics, it has also been one of the earliest applications of numerical general relativity. Smarr and Eppley, more than 15 years ago, computed the radiation waveforms for the axisymmetric problem of two holes, starting from rest and falling into each other in a head-on collision. The importance of this problem has motivated a recent reconsideration, both numerical and analytical, by Anninos et al. The numerical work is difficult, especially when the holes are initially close together. In that case the radiation is dominated by horizon processes. In addition, for initially close holes the radiation generated is relatively small and the numerical errors in its computation can be particularly troublesome. The purpose of this paper is to provide a method of computing the radiated power generated when the holes start off close together. Our method is based on perturbation theory and is considerably more economical than a full numerical simulation. It can also be viewed as a benchmark against which numerical codes can be checked.

For a full numerical computation of the problem, data used are those for the two throats of a momentarily static “wormhole,” for which an analytic solution was given by Misner. The initial data has a parameter \(\mu_0 \) which can be adjusted so that the initial conditions correspond to different values of \(L/M \), where \(L \) is the initial separation of the throats, and \(M \) is the mass of the spacetime.

For values of \(\mu_0 \) corresponding to large and moderate starting values of \(L/M \) the motion of the “particles,” not their black hole nature, is crucial to the generation of gravitational radiation. In this case the amount of radiation emitted can be understood with a quasi-newtonian approximation that starts with the known radiation for a point mass falling into a hole. For values above around \(\mu_0 \approx 2 \), this quasi-newtonian approximation is in remarkably good agreement with the results of numerical relativity. For smaller values of \(\mu_0 \), however, the approximation seriously overestimates the radiation. When the throats start off at small separation their “internal” structure cannot be ignored.

It should be understood that our small-\(\mu_0 \) result does not have the same robust connection with a simple physical picture as the quasi-newtonian approximation has with the mutual in-fall of two holes from large distance. In the large distance limits the details of the choice of initial data to represent the individual holes is unimportant; it is their particle-like motion toward each other that dominates the radiation. For the initially close limit the Misner data is one possible choice for momentarily static initial conditions, but it is singled out by mathematical convenience, not
by any claim that it represents the most natural, instantaneously stationary, initial distortion of the participating throats.

In terms of bispherical coordinates \(\mu, \eta, \phi \), the Misner initial data take the form

\[
ds^2_{\text{Misner}} = a^2 \varphi_{\text{Misner}}^4 \left[d\mu^2 + d\eta^2 + \sin^2 \eta \, d\phi^2 \right],
\]

where \(a \) is a constant with the dimension of length, and

\[
\varphi_{\text{Misner}} = \sum_{n=\infty}^{n=-\infty} \frac{1}{\sqrt{\cosh(\mu + 2n\mu_0) - \cos \eta}}.
\]

We now change from bispherical to spherical coordinates \(R, \theta, \phi \) and introduce a Schwarzschild radial coordinate \(r \) through

\[
R = \left(\frac{r^{1/2} + \sqrt{r - 2M}}{2} \right)^2
\]

to arrive at a line element of the form

\[
ds^2_{\text{Misner}} = F(r, \theta; \mu_0) \left[\frac{dr^2}{1 - 2M/r} + r^2 d\Omega^2 \right],
\]

with \(d\Omega^2 = d\theta^2 + \sin^2 \theta \, d\phi^2 \), and with

\[
F = \left(1 - \frac{M}{2R} \right)^{-4} \left(1 + \frac{a}{R} \sum_{n=0}^{\infty} \frac{1}{\sinh n\mu_0 \sqrt{1 + 2a/R \coth n\mu_0 \cos \theta + a^2/R^2 \coth^2 n\mu_0}} \right)^4.
\]

The square root in the summation has the form of the generating function for the Legendre functions \(P_\ell(\cos \theta) \), so that \(F \) can be expressed as

\[
F = \left(1 + \frac{2}{1 + M/2R} \sum_{\ell=2,4,\ldots} \kappa_\ell \left(\frac{M}{R} \right)^\ell P_\ell(\cos \theta) \right)^4,
\]

with

\[
\kappa_\ell \equiv \frac{1}{[4 \Sigma_1(\mu_0)]^{\ell+1}} \sum_{n=1}^{\infty} \frac{(\coth n\mu_0)^\ell}{\sinh n\mu_0}.
\]

Here, and below, we use the notation:

\[
\Sigma_\ell(\mu_0) \equiv \sum_{n=1}^{\infty} (\sinh n\mu_0)^{-k}.
\]

Since the Misner geometry satisfies the initial value equations of general relativity, and is momentarily stationary, there exists a coordinate choice \(T, r, \theta, \phi \) such that the initial data generates a 4-geometry at \(T = 0 \) of the form

\[
ds^2 = -dT^2 + ds^2_{\text{Misner}},
\]

and for which \(\partial g_{\mu\nu}/\partial T = 0 \) at \(T = 0 \). One can make a transformation such that the 4-geometry takes the form

\[
ds^2 = -\left(1 - \frac{2M}{r} \right) dt^2 + F(r, \theta; \mu_0) \left[\frac{dr^2}{1 - 2M/r} + r^2 d\Omega^2 \right] + \mathcal{O}(t^2).
\]

For a constant \(t \) slice of the Schwarzschild geometry \(F \) is unity. The difference between unity and the Misner form of \(F \) is the extent to which the geometry in (5) initially deviates from a spherically symmetric black hole.

We have therefore cast Misner’s initial data in Schwarzschild coordinates. We now need to explore the limit in which the two black holes are “close.” When \(\mu_0 < 1.36 \) an apparent horizon at \(R \approx 2M \) surrounds both throats. As \(\mu_0 \) decreases further, the value of \(L/M \) decreases, and hence the ratio of \(L \) to the horizon radius decreases. As pointed out by Smarr the horizon, and the geometry outside it, should then be nearly spherical, and it is only the geometry outside the horizon that influences the radiation sent outward to infinity. Linearized perturbation theory should therefore give a good description of the generation of radiation (though not of the highly non-spherical geometry inside the horizon).

To give this picture a mathematical realization we note that the coefficients in (5) then have the small-\(\mu_0 \) limit
linear perturbation theory. This argument easily generalizes to arbitrary
we keep only the leading term in ϵ for each ℓ we get

$$ds^2_{\text{MISNER}} \approx \left[1 + \frac{8}{1 + M/2R} \sum_{\ell=2,4,\ldots} \infty \kappa_\ell \left(\frac{M}{R} \right)^{\ell+1} P_\ell(\cos \theta) \right] \left[\frac{dr^2}{1 - 2M/r} + r^2 d\Omega^2 \right].$$ (10)

We now argue that each multipole term can be treated individually by linearized perturbation theory. This is clearly true for the $\ell = 2$ case. To lowest order in ϵ, that is to order ϵ^3, the field equations contain only terms linear in the perturbation (i.e., linear in $1 - F$), and those terms are pure $\ell = 2$. Next consider, for example, expansion to order ϵ^5. This would contain $\ell = 6$ terms linearly, but would also contain nonlinear terms, e.g., from the square of the $\ell = 2$ term (with higher order corrections to (11) included). But the nonlinear contributions can have no $\ell = 6$ part. (To get an $\ell = 6$ term requires a cube of an $\ell = 2$ term, or a product of $\ell = 2$ and $\ell = 4$, both of which are higher order in ϵ.) This shows that the $\ell = 6$ part of the vacuum Einstein equations is linear in $1 - F$, and hence can be treated by linear perturbation theory. This argument easily generalizes to arbitrary ℓ.

Though each of the ℓ-poles in (11) satisfies the linearized source-less Einstein equations, they are not all the same order in ϵ. We take up here only the dominant term at small initial separation, the pure quadrupole $\ell = 2$ term. To treat this as a perturbation problem, we use the notation and formalism of Cunningham et al. [4] except that we will omit the tildes over variables; equations from that paper will be cited as “CPM.” It is important to note that the formulas in that paper, based on the work of Moncrief [5], are gauge invariant, so we need pay no attention to the coordinate gauge of (12).

From CPM (II-25), (II-26), we find that the only non-vanishing metric perturbation functions are $H_2 = K = g(r)p(\mu_0)$ where (with the notation of (11))

$$g(r) \equiv \frac{M^3}{8R^3(1 + M/2R)} \quad p(\mu_0) \equiv \frac{\Sigma_1(\mu_0) + \Sigma_3(\mu_0)}{(\Sigma_1(\mu_0))^3},$$ (11)

From CPM (II-27), (II-28) we next find

$$Q_1 = 2r \left(1 - \frac{2M}{r} \right)^2 \left[g \frac{1}{1 - 2M/2} - \frac{1}{\sqrt{1 - 2M/r}} \frac{d}{dr} \left(\frac{rg}{\sqrt{1 - 2M/r}} \right) \right] + 6g,$$ (12)

and, following CPM (II-31), we define

$$\psi \equiv \sqrt{\frac{4\pi}{5}} Q_1 \lambda,$$ (13)

where $\lambda \equiv 1 + \frac{3M}{2r}$. The function ψ then satisfies the $\ell = 2$ Zerilli equation (12)

$$\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial r_*^2} + \left(1 - \frac{2M}{r} \right) \left\{ \frac{1}{\lambda^2} \left[\frac{9M^3}{2r^3} - 3M^3 \left(1 - \frac{3M}{r} \right) \right] + \frac{6}{r^2} \right\} = 0.$$ (14)

where $r_* \equiv r + 2M \ln \left(\frac{r}{2M} - 1 \right)$. It is worth noting that the function Q_2 of CPM (II-28), calculated from our perturbations (13), explicitly solves the initial value constraint $Q_2 = 0$ as given in CPM (II-29)].

The form of ψ given by (13)-(14) is now taken as initial data along with the initial condition $\partial \psi / \partial t = 0$ at $t = 0$. The problem is greatly simplified by the fact that the only μ_0 dependence is contained in the multiplicative factor $p(\mu_0)$. Since the initial data are proportional to $p(\mu_0)$, it follows that the evolved waveform ψ is proportional to $p(\mu_0)$, and the radiated power and energy are proportional to $|p(\mu_0)|^2$. It is only necessary, therefore, to do one computation of the evolved waveform and radiated power. The μ_0 dependence is known at the outset.

The initial form of ψ (with $p(\mu_0)$ set to unity) is shown in figure 1. We evolved these data numerically with the Zerilli equation (14). The resulting waveform, at $r^* = 200$ (we use units in which $2M = 1$), as a function of t, is shown in figure 2. It clearly exhibits quasinormal ringing and power-law tails corresponding to a quadrupolar perturbation. The values of the quasinormal frequencies (14) and power-law exponents (14) are in excellent agreement with theoretical values. From the evolved data we compute the radiated power, which is given by CPM (III-28),
\[
\text{Power} = \left. \frac{1}{348\pi} \left| \frac{\partial}{\partial t} \psi \right|^2 \right. .
\] (15)

If \(p(\mu_0) \) is set to unity, this procedure gives a computed energy of \(3.07 \times 10^{-6} \). The result energy, as a function of \(\mu_0 \), is therefore

\[
\text{Energy}/2M = 3.07 \times 10^{-6} p(\mu_0)^2 .
\] (16)

This result is displayed in figure 2, where it is compared with the numerical results reported by Anninos et al. [5]. It is intriguing that the remarkable agreement extends considerably beyond the small-\(\mu_0 \) region in which our approximation is expected to be applicable.

The general method is suited to a fairly wide variety of initial data. This paper only concentrated on the aesthetically elegant Misner data as an example. The method can also be applied to initial data which are known only in numerical form and which represent perturbations of a black hole. To do this would require considerably more numerical analysis than for the Misner initial data but, when applicable, would be much quicker and less expensive than the fully numerical methods for integrating the nonlinear field equations.

This work was initiated as the result of a suggestion by Larry Smarr at a conference. We wish to thank Larry Smarr, Ed Seidel and Wai-Mo Suen for discussions. This work was supported by grants NSF-PHY93-96246, NSF-PHY-92-07225, by research funds of the University of Utah and Penn State University and Penn State’s Minority Faculty Development Program.

[1] A. A. Abramovici et al., Science 256, 325 (1992), and references therein.
[2] C. Cutler et al., Phys. Rev. Lett. 70, 2984 (1993).
[3] L. L. Smarr, Ph.D. dissertation, University of Texas at Austin, unpublished (1975); K. R. Eppley, Ph.D. dissertation, Princeton University, unpublished (1977).
[4] L. L. Smarr, in Sources of Gravitational Radiation, ed. L. L. Smarr (Cambridge University Press, Cambridge, 1979).
[5] P. Anninos, D. Hobill, E. Seidel, L. Smarr, W.-M. Suen, Phys. Rev. Lett. 71, 2851 (1993).
[6] C. Misner, Phys. Rev. 118, 1110 (1960).
[7] C. Cunningham, R. Price, V. Moncrief, Ap. J. 230, 870 (1979).
[8] V. Moncrief, Ann. Phys. (NY). 88, 323 (1974).
[9] F. Zerilli, Phys. Rev. Lett. 24, 737 (1970).
[10] E. W. Leaver, Proc. R. Soc. London A402, 285 (1985).
[11] C. Gundlach, R. H. Price and J. Pullin, Phys. Rev. D49, 883 (1994).

FIG. 1. The function \(\psi \) of the Cunningham-Price-Moncrief perturbation scheme for Misner’s initial data. The values shown are for \(p(\mu_0) = 1 \), and for units in which \(2M = 1 \). For the \(r^* \) coordinate the horizon is at \(r^* = -\infty \) and \(r^* \sim r \) for large positive values.

FIG. 2. Time evolution of the Misner initial data (with \(p(\mu_0) = 1, \ 2M = 1 \), from the point of view of an observer fixed at \(r^* = 200 \). We see the appearance of quasinormal ringing with the predicted period of 8.4. In the inset we display in a log-log plot the late time behavior of the field, which clearly exhibits a power-law tail form with exponent \(-6 \) as predicted by theory.

FIG. 3. The solid curve is the prediction for the radiated energy, as a function of \(\mu_0 \), based on linearized perturbation theory. The black dots correspond to the values of numerical relativity results reported by Anninos et al. [5].
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/gr-qc/9402039v1
FIG. 1. The function ψ of the Cunningham-Price-Moncrief perturbation scheme for Misner’s initial data. The function is perfectly smooth, although it varies rapidly around $r^* = 0$. In this coordinate the horizon is at $r^* = -\infty$ and $r^* \sim r$ for large positive values.

FIG. 2. Time evolution of Misner’s initial data, from the point of view of a static observer at $r^* = 200$. We see the appearance of quasinormal ringing with the predicted period of 8.4. In the inset we display in a log-log plot the late time behavior of the field, which clearly exhibits a power law tail form with exponent -6 as predicted by theory.

FIG. 3. The solid curve is the prediction of our calculations for the radiated power. The power radiated is composed of two factors, one of them a simple analytic function of μ and the other a coefficient determined by numerically evolving the perturbation. The coefficient is the same for all values of μ. The black dots correspond to the values of Anninos et al.