Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains

I. Mukha,1 L.V. Grigorenko,2,3,4 D. Kostyleva,5,6 L. Acosta,7,8 E. Casarejos,9 A.A. Ciemny,10 W. Dominik,10 J.A. Dueñas,11 V. Dunin,12 J. M. Espino,13 A. Estrade,14 F. Farinon,6 A. Fomichev,2 H. Geissel,6,5 A. Gorshkov,2 Z. Janas,10 G. Kamiński,15,2 O. Kiselev,6 R. Knöbel,6,5 S. Krupko,2 M. Kuich,16,10 Yu.A. Litvinov,6 G. Marquín-Durán,17 I. Martel,17 C. Mazzocchi,10 C. Nociforo,6 A. K. Ordz,17 M. Pfützner,6,5 S. Pietri,10 M. Pomorski,10 A. Prochazka,6 S. Rymzhanoval,2 A.M. Sánchez-Benítez,18 C. Scheidenberger,6,5 P. Sharov,2 H. Simon,6 B. Sitar,19 R. Slepnev,2 M. Stanoiu,20 P. Strmen,19 I. Szarka,19 M. Takechi,9 Y.K. Tanaka,6,21 H. Weick,6 M. Winkler,6 J.S. Winfield,6 X. Xu,22,5,6 and M.V. Zhukov23

(for the Super-FRS Experiment Collaboration)

1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
2 Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
3 National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
4 National Research Centre “Kurchatov Institute”, Kurchatov sq. 1, 123182 Moscow, Russia
5 II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
6 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
7 INFN, Laboratori Nazionali del Sud, Via S. Sofia, 95123 Catania, Italy
8 Instituto de Física, Universidad Nacional Autónoma de México, México, D.F. 01000, Mexico
9 University of Vigo, 36310 Vigo, Spain
10 Faculty of Physics, University of Warsaw, 02-093 Warszawa, Poland
11 Depto. de Ingeniería Electrónica y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, 21071 Huelva, Spain
12 Veksler and Baldin Laboratory of High Energy Physics, JINR, 141980 Dubna, Russia
13 Department of Atomic, Molecular and Nuclear Physics, University of Seville, 41012 Seville, Spain
14 University of Edinburgh, EH1 1HJ Edinburgh, United Kingdom
15 Heavy Ion Laboratory, University of Warsaw, 00-093 Warszawa, Poland
16 Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa, Poland
17 Department of Applied Physics, University of Huelva, 21071 Huelva, Spain
18 Centro de Estudios Avanzados en Física, Matemáticas y Computación (CEAFMC), Department of Integrated Sciences, University of Huelva, 21071 Huelva, Spain
19 Faculty of Mathematics and Physics, Comenius University, 84248 Bratislava, Slovakia
20 IFIN-HH, Post Office Box MG-6, Bucharest, Romania
21 University of Tokyo, 113-0033 Tokyo, Japan
22 School of Physics and Nuclear Energy Engineering, Beihang University, 100191 Beijing, China
23 Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

(Dated: September 7, 2018. File: ar-cl-excur-f1-9.tex)

The proton-unbound argon and chlorine isotopes have been studied by measuring trajectories of their decay-in-flight products by using a tracking technique with micro-strip detectors. The proton (1p) and two-proton (2p) emission processes have been detected in the measured angular correlations “heavy-fragment”+p and “heavy-fragment”+p+p, respectively. The ground states of the previously unknown isotopes 31Cl and 33Cl have been observed for the first time, providing the 1p separation energy S1p of −0.48(2) and −1.60(8) MeV, respectively. The relevant systematics of 1p and 2p separation energies have been studied theoretically in the core+p and core+p+p cluster models. The first-time observed excited states of 31Ar allow to infer the 2p-separation energy S2p of 6(34) keV for its ground state. The first-time observed state in 29Ar with S2p = −5.50(18) MeV can be identified either as a ground or an excited state according to different systematics.

I. INTRODUCTION

The location of the driplines — the borderslines separating particle-stable and particle-unstable isotopes — is one of the fundamental questions of nuclear science. The unbound states with small decay energy can have lifetimes which are long enough to be treated as quasistationary states. Thus they may be considered as stationary states in many theoretical applications. This naturally leads us to the question: what are the limits of nuclear structure existence? In other words, how far beyond the driplines the nuclear structure phenomena fade and are completely replaced by the continuum dynamics? This question represents a motivation for studies of nuclear systems far beyond the driplines.

The proton and neutron driplines have been accessed for nuclides in broad ranges of Z (number of protons) and N (number of neutrons) of the nuclear chart. However, even in these regions the information about the nearest to the dripline unbound isotopes is scarce and often miss-
ing. Thus the fundamental question about the limits of the nuclear structure existence remains poorly investigated. For example, if we consider the proton dripline within Z ≤ 20 (p- and sd-shell nuclei), the most extensively investigated case in that region is the fluoride isotope chain. Here our knowledge extends three mass units beyond the proton dripline: the 15F and 16F nuclides are well studied, and considerable spectroscopic information is available now for 14F [1] in addition.

This paper continues our analysis of the data on reactions with a relativistic 31Ar beam populating particle-unstable states [2, 4]. The article [2] was focused on 30Ar and 29Cl isotopes which were reported for the first time. It was also found that the decay mechanism of 30Ar is likely to belong to a transition region between true 2p and sequential 2p decay mechanisms. Such a “transition regime” exhibits strong sensitivity of observed kinematic variables to the values of parameters defining the decay mechanism: 2p-decay energy E_γ, ground state (g.s.) resonance energy in the core-\(p\)-subsystem E_γ, and its width Γ_γ. The practical implementations of this fact, including opportunity of a precise determination of Γ_γ, from the 2p correlation data, were recently elaborated in Ref. [2]. In paper [4] a detailed consideration of the data from [2] was given.

In present work we report on the byproduct data of the same experiment which resulted in Refs. [2, 4], which include observation of 28Cl and 30Cl ground states and several (presumably excited) states in 29Ar and 31Ar. In order to clarify the situation with the observed states, we have performed systematic studies of separation energies in the chlorine and argon isotope chains. The depth of the performed “excursion beyond the proton dripline” in the argon and chlorine isotope chains is similar now in extent to that for the fluorine isotope chain, the best-studied case in the whole Z ≤ 20 nuclei region.

II. EXPERIMENT

In the experiment, described in detail in Refs. [2, 4], the 31Ar beam was obtained by the fragmentation of a primary 885 AMeV 36Ar beam at the SIS-FRS facility at GSI (Germany). The prime objective of the experiment was study of 2p decays of 30Ar isotopes. The scheme of the measurements is shown in Fig. 1(a). We briefly repeat the general description of the experiment and the detector performance given in Ref. [1] in detail.

The FRS was operated with an ion-optical settings in a separator-spectrometer mode, when the first half of the FRS was set for separation and focusing of the radioactive beams on a secondary target in the middle of the FRS, and the second half of FRS was set for detection of heavy-ion decay products. The 620 AMeV 31Ar ions with the intensity of 50 ions s$^{-1}$ were transported by the first half of the FRS in order to bombard a 9Be secondary target located at the middle focal plane S2. At the first focal plane S1 of the FRS, an aluminum wedge degrader was installed in order to achieve an achromatic focusing of 31Ar at the secondary target. In the previously reported data [4] the 30Ar nuclei were produced via one-neutron (−1n) knockout from the 31Ar ions. The decay products of unbound 30Ar were tracked by a double-sided silicon micro-strip detector array placed just downstream of the secondary target, see Fig. 1(b). The projectile-like particles, outgoing from the secondary target, were analyzed by the second half of the FRS, which was operated as a magnetic spectrometer. The magnet settings between the S2 and S4 focal planes were tuned for the transmission of the targeted heavy ion (HI) fragments (e.g., 28S) down to S4, the last focal plane. In addition to 30Ar, the studies of decay properties of the stopped 31Ar ions were performed by using the OTPC detector at S4 [5].

A double-sided silicon micro-strip detector (DSSD) array consisted out of four large-area DSSDs [2] was employed to measure hit coordinates of the two protons and the recoil heavy ions, resulting from the in-flight decays of the studied 2p precursors. The high-precision position measurement by DSSDs allowed for reconstruction of all fragment trajectories, which let us to derive the decay vertex together with an angular HI-p and HI-p-p correlations. For example, the trajectories of measured 28S+p+p+p coincidences were a basis for the analysis and the concluded spectroscopic information on 30Ar [4].
nuclei involved in a 1p or 2p decay can be obtained by measuring only the trajectories of the decay products, without measuring their kinetic energies. This approach has been successfully tested in analyses of 1p, 2p decays of the known states in 19Na, 16Ne and has been described in details in Ref. 7.

A. How nuclear-structure information can be obtained from proton-ion angular correlations

Before the data analysis presentation, we remind the reader, how nuclear-structure information concerning the nuclei involved in a 1p or 2p decay can be obtained from measured 2p decays of 31Ar excited states. The shaded arc labeled by the Roman numerals point to four selected areas where the 2p-decay events have the same decay energy. The data symmetry respective proton permutations is illustrated by the 45°-tilted diagonal dash-dot line.

However, a number of by-product results were obtained in a similar way from the data recorded in the same experiment. Namely, excited states of 31Ar were populated by various inelastic mechanisms, and 29Ar spectrum was populated in two-neutron (−2n) knockout reaction. The unbound 31Ar and 29Ar states were detected in triple 20S+p+p and 27S+p+p coincidences, respectively, see the respective angular correlation plots in Figs. 2 and 3. The relative angles there and everywhere below are presented in milliradian units (mrad). Also the states of 28Cl and 30Cl can be populated both in the fragmentation of 31Ar and as the result of proton emission from the corresponding 31,29Ar isotopes. These mechanisms have lower cross sections, and the obtained results have less statistics, see the respective angular p−HI correlation plots in Figs. 4 and 6. In spite of poor statistics with few events registered, we have obtained several nuclear-structure conclusions from the experimental data.

For the discussion of 2p decays given below, let us consider three different mechanisms. These cases are illustrated in Fig. 4. The upper panels schematically show the nuclear states involved in 2p decay of nucleus with mass number A, the lower panels show the corresponding momentum correlations $k_{p_1\cdot HI} - k_{p_2\cdot HI}$, where HI corresponds to the A−2 nucleus. In the first case (a) of prompt 2p decay, sequential 2p emission should be energetically forbidden. As both emitted protons should share 2p-
decay energy Q_{2p}, their energy spectra are broad and centered around the value of $Q_{2p}/2$; consequently, the 2p momentum-correlation plot should have the shape of an arc, with a radius corresponding to the Q_{2p} value and with most of the counts lying in the peak indicated by the dark spot in the lower panel of Fig. 3 (a). Note that all momentum-correlation plots in Fig. 3 are symmetric with the respect to the 45° line since the protons p_1 and p_2 are indistinguishable.

The case (b) represents the sequential emission of two protons through a narrow resonance in the intermediate nucleus with $A - 1$. The proton energies are fixed here, and the $k_{p_1-HI} - k_{p_2-HI}$ correlation plot should yield two peaks as indicated by the black dots in the lower panel of Fig. 3 (b).

The third 2p-decay mechanism is 2p emission from several broad continuum parent states via a low-lying state in $A - 1$, see Fig. 3 (c). This mechanism should reveal a peak in the p-HI energy with the corresponding broad distribution along the narrow “slice” as shown in the lower part of Fig. 3 (c).

In the present method, we measure only total HI momentum and relative p-HI angles in the transverse direction. We register trajectories of all decay products directly downstream from the secondary-reaction target. Fig. 4 (b) shows the kinematics plot for the simple case of isotropic and mono-energetic single-proton emission from a high-energy heavy ion. Fig. 4 (c) shows the corresponding distribution of laboratory p-HI opening angles, θ_{p-HI}. The angular spectrum exhibits a sharp peak corresponding to the proton emitted almost orthogonal to the HI momentum vector. Thus the maximum value of θ_{p-HI} is directly related to the decay energy Q_p of the emitted proton. In the same way, the $k_{p_1-HI} - k_{p_2-HI}$ momentum correlations for 2p decays (Fig. 5) can be replaced by the corresponding $\theta_{p_1-HI} - \theta_{p_2-HI}$ correlations. If the initial and final states of p emission are narrow, the width of a peak in the angular distribution is governed mostly by the angular straggling of the proton in the secondary-reaction target. If those states are broad, the width results from a convolution of the state’s width with the proton angular straggling.

The cases, sketched in Figs. 4 and 5 represent ideal cases. In reality, several proton branches may be present, representing more than one of the cases, shown schematically in Fig. 4 (a), and leading to a complicated spectra with several peaks. One can, however, clean up the spectra and enhance e.g. transitions with the small Q_{2p}-values by gating on the small angles of $\theta_{p_{1-HI}}$ and plotting the spectrum of $\theta_{p_{2-HI}}$ under this condition.

Another tool of data analysis is a kinematic variable

$$\rho_0 = \sqrt{\theta_{p_1-HI}^2 + \theta_{p_2-HI}^2},$$

describing 3-body HI+p+p angular correlations. Since ρ_0 is related to the energy sum of both emitted protons and, therefore, to the Q_{2p} of the parent state by the relation $Q_{2p} \sim \rho_0^2$ [8], one can obtain an indication of the parent state and its 2p-decay energy by studying the distribution of ρ_0. In a case of the decay from the same state, two protons share Q_{2p}, and such events should be located along a root-mean-square arc in an angular correlation plot $\theta_{p_{1-HI}} - \theta_{p_{2-HI}}$. By gating on a particular ρ_0 arc, the decay events from a certain 2p-precursor can be selected. The ρ_0 distributions are very useful in the analysis of 2p-decay data since they produce the spectra with less peaks and allow to gate on a specific excitation-energy regions.

In all cases, detailed Monte-Carlo simulations are required in order to interpret the angular spectra quantitatively by taking into account the corresponding response of the experimental setup. For example, the angular correlation for fixed energy decay must be first calculated. This predicted angular correlation is then compared to the measured one. The resonance energy is obtained by the best-fit where the probability that the two distributions are identical has maximum value. In the same way, limits for the width of a resonance can be obtained.

The above-described analysis procedure, where the states observed in a 2p-precursor were investigated by comparing the measured angular θ and ρ_0 correlations.
FIG. 6. The angular correlation plot $\theta - \rho_\theta$ (angles are in mradians) for 29Ar decay via 27S+$p+p$ channel is shown in (b). The hatched area highlights events from the decay of a 27S+p resonance assigned as the 28Cl ground state. The dotted lines guide the eye for the regions corresponding to assumed 29Ar states. (a) shows the angular correlations $\theta_{p,27S}$ (shaded histogram) obtained as projection on the θ axis from the 27S+$p+p$ channel of (b). The $\theta_{p,27S}$ “inclusive” angular correlations obtained from the measured $p-$decay coincident events are shown by the black hollow histogram. The labeled (1)-(4) arrows highlight the events inspected for the possible 28Cl resonance states. The upper axis shows the corresponding p-decay energies Q_p. The 45°-tilted dotted line in (b) shows the kinematical limit.

with the Monte Carlo (MC) simulations of the respective detector response, has been published in Refs. [7, 8]. We follow this procedure in the present work, and the applied detector calibrations are taken from the previous 30Ar analysis of the same experiment [1].

B. The data analysis: unknown states in 29Ar and 28Cl

We begin from the analysis of the relatively simple case of the measured 27S+$p+p$ correlations presented by the $\theta_{p,27S} - \theta_{p,27S}$ and $\theta - \rho_\theta$ plots in Figs. 5 and 6(b), respectively. These 29Ar-related correlations comprise just seven $2p$-decay events, each being measured in triple 27S+$p+p$ coincidence. Each detected event provides two $\theta_{p,27S}$ and one ρ_θ values. Most of them are very well focused around the locations at $\theta = 44$ mrad or $\rho_\theta = 84$ mrad. These values correspond to the $1p$-decay of the 28Cl state with E_r of about 1.6 MeV and to the $2p$-decay of the 29Ar state with Q_{2p} of about 5.5 MeV. A cross-check of this conclusion is illustrated in Fig. 6(a) where the angular correlations $\theta_{p,27S}$ projected from the 27S+$p+p$ correlation plot [in Fig. 6(b)] are compared with the “inclusive” $\theta_{p,27S}$ distribution obtained from the measured $p-$decay double-coincidence events. One may see that the “inclusive” spectrum consists of relatively enhanced peaks (1–3). The peaks (1) and (2) have the best-fits at the $1p$-decay energies E_r of 1.60(8) and 3.9(1) MeV, respectively. They have been assigned as the first- and second-emitted protons from the 5.5 MeV state in 29Ar, and their sum decay energy gives the total $2p$-decay energy of 5.50(18) MeV.

The data-fitting procedure is illustrated on the example of the (1) peak at $\theta = 44$ mrad in the $p-$decay correlation in Fig. 6. This is the same procedure described in details in Refs. [1, 6]. The best-fit simulations obtained for the in-flight decay of 28Cl with the $1p$-decay energy of 1.60 MeV describe the data quantitatively, and the figure inset shows that the probability of the data matching simulations is about 1. The full width at half maximum of the probability distribution provides the evaluation of the E_r uncertainty.

There are two additional events in the decay pattern of the 5.5 MeV state in 29Ar [Fig. 7(b) corresponding to the inclusive peaks (3) and (4) in Fig. 6(a)]. As the inclusive peak (3) is much enhanced, we may speculate that it may be an evidence on the second state in 28Cl, which is also fed by the other unspecified reaction channels, illustrated in Fig. 4(c). The best-fit $1p$-decay energy of the peak (3)
is 3.20(6) MeV.

In addition, there are indications on $^{27}\text{S}+p+p$ correlations at ρ_θ of 97 and 112 mrad, which may correspond to the 2p-decays of ^{29}Ar with Q_{2p} of about 7.2 and 9.5 MeV, respectively. Both of the indicated states have the second-emitted proton energy of 1.6 MeV, which corresponds to the lowest assigned state in ^{28}Cl.

The derived decay scheme and levels of ^{29}Ar and ^{28}Cl are shown in Fig. 8.

We argue below in Section III, that our empirical assignments are backed by the isobaric mirror symmetry systematics and that the most probable interpretation of the measured decay-product correlations is the observation of ^{28}Cl ground state with $S_p = -1.60(8)$ MeV and the ^{29}Ar excited state with $S_{2p} = -5.50(18)$ MeV.

C. The data analysis: unknown states in ^{31}Ar and ^{30}Cl

The $2p$-decay pattern of ^{31}Ar, derived from the $^{28}\text{S}+p+p$ data, is more complicated. Several separated regions with events, corresponding to the same $2p$-decay energy, can be distinguished at the low angles in Fig. 9, which indicate different states in ^{31}Ar. The tentatively selected arcs are labeled by the Roman numerals (i)-(v). The same event groups can be found in the angular $\theta-\rho_\theta$ correlation plot in Fig. 9(c) derived for the assumed ^{31}Ar $2p$-decays. Its projections on the θ and ρ_θ axes are shown in the panels (b) and (a) in Fig. 9, respectively. The $\theta^{(28}\text{S}-p)$ projection indicates some structures centered at the angles $\theta = \{26, 37, 43\}$ mrad, which point to possible low-energy states in ^{30}Cl. The ρ_θ projection indicates several $2p$-decay patterns in ^{31}Ar with the centre-of-gravity values at $\rho_\theta = \{45, 53, 61\}$ mrad.

The obtained statistics of the measured triple coincidences is low, and the non-selective projections do not
allow for a quantitative analysis. Thus we have used the slice \(\theta \) projections gated by the \(\rho \theta \) selected areas (i-v) in Fig. 11 (a). These gated projections are shown in Fig. 11 in the panels (i-v), respectively. Two additional projections gated at very large \(\rho \) values are shown in the panels (vi,vii). In analogy to the \(^{29}\text{Ar} \) analysis, the “inclusive” \(\theta_{p,^{29}\text{S}} \) distribution obtained from the measured \(p,^{29}\text{S} \) double-coincidence events is shown in the lowest panel of Fig. 11. This inclusive distribution display the same low-energy peak (1) at around 26 mrad as well as the peaks (4,5), though evidence on the Fig. 9(c)-indicated peaks at 37 and 43 mrad (marked as (2) and (3), respectively) is weak.

Similarly to the \(^{28}\text{Cl} \) case, the MC simulations of the well-distinguished peaks (1,4,5) in the lowest panel of Fig. 11 by the experimental-setup response have resulted in assigning of the unknown \(^{30}\text{Cl} \) states with the 1-\(p \)-decay energies \(E_r \) of 0.48(2), 2.00(5) and 3.0(2) MeV, respectively. On the basis of the performed analysis, the 0.48(2) MeV peak is assumed to be the ground state of \(^{30}\text{Cl} \). Such an assignment is supported by the observed \(^{29}\text{S}+p+p \) correlations where one of the emitted protons has relatively large energy and another proton’s energy is peaked at around 0.5 MeV, see Fig. 11(vii). This is a typical situation for a final-state interaction due to the \(^{30}\text{Cl} \) g.s. resonance, see illustration in Fig. 11(c).

By using the parameters of the \(^{30}\text{Cl} \) g.s. one may obtain the 2-\(p \)-decay energy of the lowest-energy state in \(^{31}\text{Ar} \) observed in the \(^{29}\text{S}+p+p \) correlations, see Fig. 11(i). We have fitted the \(\theta \) projection (i) by a sequential proton decay of \(^{31}\text{Ar} \) via the g.s. of \(^{30}\text{Cl} \), and the obtained value of 2-\(p \)-decay energy is 0.95(5) MeV. Though the pattern centered at \(\rho \theta = 35 \) mrad has low statistics, it is very important for an overall interpretation of the data, as it highly likely corresponds to the \(^{31}\text{Ar} \) first excited state. Thus we may lay the first piece into the puzzle of the \(^{31}\text{Ar} \) excitation spectrum and its 2-\(p \)-decay scheme whose complete reconstruction is shown in Fig. 11 and which is explained in a step-by-step way below.

- Namely, the gated \(\theta \) projections in Fig. 11 (ii) and (iii) exhibit the same peak (3) at 43 mrad, which point to the sequential 2-\(p \) decays of these \(^{31}\text{Ar} \) states via the same state in \(^{30}\text{Cl} \). The peak (3) is best-fitted by assuming the 1-\(p \) decay of the \(^{30}\text{Cl} \) state with \(E_r=1.35(5) \) MeV. Then the \(^{31}\text{Ar} \) states corresponding to the complementary bumps in the structures (ii) and (iii) have the fitted 2-\(p \)-decay energies of 1.58(6) and 2.12(7) MeV, respectively. One should note that the projection (ii) provides very broad and statistically poor signal from the corresponding \(^{31}\text{Ar} \) state, which makes the assignment very tentative, see Fig. 11.

- Next, the gated \(\theta \) projections in Fig. 11 (iv) and (v) reveal events matching the same 2.00 MeV peak (4) in the inclusive distribution in the lowest panel in Fig. 11. They point to the sequential 2-\(p \) decays of two more states in \(^{31}\text{Ar} \) via the 2.00 MeV state in

![FIG. 10. The “gated” angular correlations \(\theta_{p,^{29}\text{S}} \) derived from the measured \(^{29}\text{S}+p+p \) triple-coincidence events, which are selected by choosing the gate conditions within the \(\rho \theta \) ranges corresponding to the highlighted arcs in Fig. 2. The panels (i)–(iv) correspond to the selection gates labeled in Fig. 2 by the same Roman numerals. The additional panels (v)–(vii) present the similar \(\theta_{p,^{29}\text{S}} \) correlations selected by the larger \(\rho \theta \) values shown in their upper-left corners. The panel (viii) shows the “inclusive” angular \(\theta_{p,^{29}\text{S}} \) correlations obtained from the measured \(^{29}\text{S}+p \) double coincident events (the hollow histogram). The upper axes show the corresponding energies in the \(^{29}\text{S}+p \) system. The arrows (1)–(5) point to the events inspected for possible resonances in \(^{30}\text{Cl} \) as well as the vertical across-panel lines.](image-url)
projection (v) yields its energy of 1.56(10) MeV, and together they allow for assignment of the new 31Ar state with the 2p-decay energy of 3.56(15) MeV, see Fig. 11. Interpretation of the θ projections in Fig. 10 (iv) is more complicated, because it has the additional components, and one of them matches the peak (2) at 37 mrad due to a suspected state in 30Cl.

- The contribution of such a state can be spotted also in the θ projection (vi) in Fig. 10 as well as in the “inclusive” θ distribution labeled as (2). The corresponding fits provide the 1p-decay energy of 0.97(3) MeV assigned to the 30Cl state. Then the whole structure of the θ distribution (iv) in Fig. 10 may be explained by a sequential 2p-decay of one state in 31Ar by two branches via the intermediate 0.97 and 2.00 states in 30Cl. The respective fits provide two independent evaluations of the 2p-decay energy of the 31Ar state of 0.97(3)+1.65(10)=2.62(13) and 2.00(5)+0.45(3)=2.45(8) MeV, respectively. They agree within the statistical uncertainties. One may note that the assigned 2p-decay branch via the 2.00 MeV state in 30Cl has the first-emitted proton energy of 0.45(3) MeV, which coincides with the 1p-decay energy of the g.s. of 30Cl. Therefore the sequential 2p decay may proceed also via the g.s. of 30Cl. These two assignments indistinguishable in our experiment are shown in Fig. 11 by the dotted arrows. Due to this uncertainty, we accept the 31Ar state to be at 2.62(13) MeV.

- Finally, the gated θ projection in Fig. 11 (vi) with the assumed peak (2) due to the 0.97 MeV state in 30Cl allows for identification of the highest state observed in 31Ar with the 2p-decay energy of 0.97(3)+3.2(2)=4.2(2) MeV.

- The only undiscussed peak (5) at about 65 mrad in the “inclusive” θ distribution in the lowest panel of Fig. 10 is also detected in the observed 29S-p-p correlations, see Fig. 11(b). However, energy of another emitted proton is distributed in a broad range of energy, which points to a continuum region of 31Ar excitations above 5 MeV. Therefore the peak (5) can not be assigned to an individual 31Ar state. We may speculate that it probably belongs to the 3.0(2) MeV state in 30Cl which is strongly populated by de-excitation of high-energy continuum in 31Ar.

Summarizing the above considerations, we have assigned the 30Cl states with the decay energies E_r of 0.48(2), 0.97(3), 1.35(5), 2.00(5) and 3.0(2) MeV. There is also some indication that the structure around $\theta = 26$ mrad may consist of two sub-structures at about 24 and 28 mrad (corresponding to the E_r values of 0.48 and 0.55 MeV, respectively), which we will discuss below. The newly prescribed states in 31Ar have the 2p-decay energies of 0.95(5), 1.58(6), 2.12(7), 2.62(13), 3.56(15) and 4.2(2) MeV. All derived levels in 31Ar and 30Cl and their decay transitions are shown in Fig. 11.

III. SYSTEMATICS FOR CHLORINE ISOTOPES

As a first step in the interpretation of the data, we would like to evaluate the energies of the states in proton-rich chlorine isotopes systematically by using the known information about their isobaric mirror partners. The obstacle here is the Thomas-Ehman shift (TES) effect [9,10], especially pronounced in the s-d shell nuclei. The systematics of orbital size variations for s- and d-wave configurations are different when approaching the proton dripline and beyond it. This leads to a significant relative shift of the s-wave and d-wave dominated states distorting the expected (due to isobaric symmetry) nuclear level ordering in isotopes near the proton dripline. The core+p cluster model is a reasonable tool for consideration of this effect.

The Coulomb displacement energies in the core+p cluster model depend on two parameters: the orbital radius, which is mainly controlled by the potential radius, and the charge radius of the core. We use the potential with a Woods-Saxon formfactor and with a conventional dif-
the whole isotope chain. With the data. However, the general trend is well repro-

chlorine isotopes fuseness parameter \(a = 0.65 \) fm. The radius value is provided by the standard parameterizations

\[
r_0 = 1.2(A_{\text{core}} + 1)^{1/3}. \tag{1}
\]

The charge radii of sulphur isotopes are poorly studied \[11], so we use the extrapolation shown in Fig. 12. Here we use two limits, corresponding to either ascending or descending trend near the dripline (both trends are not excluded by the available systematics of the charge radii). One should note that the \(^{26}\text{S} \) case is already uncertain. This particle-unstable nuclide (expected to be a \(2p \)-precursor \[12] \) has the valence-proton wave function expected to well penetrate into the sub-barrier region.

Then the Coulomb potential of the charged sphere is used with the radius parameter \(r_{\text{sph}} \),

\[
r_{\text{ch}}^2 = \left(\frac{5}{3}\right)[r_{\text{ch}}^2(A_{\text{core}}) + r_{\text{ch}}(p)], \tag{2}
\]

where \(r_{\text{ch}}(p) = 0.8 \) fm. The potential parameters are collected in Table 1. The results of the calculations are collected in Fig. 13. Below, we study the chain of five chlorine isotopes \(^{32}–^{38}\text{Cl} \).

A. \(^{31}\text{Cl} \) and \(^{32}\text{Cl} \) cases

One can see in Fig. 13(a,b), that for known isotopes \(^{31}\text{Cl} \) and \(^{32}\text{Cl} \) the used systematics of potential parameters given by Eqs. (1) and (2) provides level energies which are overbound a bit (by \(\sim 150 \) keV) in comparison with the data. However, the general trend is well reproduced, thus the standard set of the parameters could be the good starting point for the systematic evaluation of the whole isotope chain.

B. \(^{30}\text{Cl} \) and \(^{39}\text{Cl} \) cases

Spectrum of \(^{29}\text{Cl} \) was discussed in details in \[2,4\], see Fig. 13(d). The data on \(^{30}\text{Cl} \) spectrum is reported in this work for the first time. The spectra of these isotopes can be reasonably interpreted only on the bases of the strong TES effect for some states. The calculated levels shown in Fig. 13(c) present evidence that two low-lying structures in the spectrum of \(^{30}\text{Cl} \) (at \(0.48(2) \) and \(0.97(3) \) MeV) can be associated with nearly-overlapping doublets \(2^+–3^+ \) and \(1^+–3^+ \). We assume that the \(3^+ \) g.s. in \(^{30}\text{Al} \) has a \(d \)-wave structure. Then its doublet partner, the \(2^+ \) state is expected to be strongly shifted down by TES, and therefore to become the \(^{30}\text{Cl} \) g.s. There is a hint in the data shown in Figs. 9 and 10 that the “ground state peak” in \(^{30}\text{Cl} \) at \(\theta = 26 \) mrad actually consists of two substructures, differently populated in the decays of several \(^{31}\text{Ar} \) states. In this work, the \(^{30}\text{Cl} \) g.s. prescription is based on the lower substructure with the corresponding proton emission energy \(E_p = 0.48 \) MeV.

Why the above-mentioned prescription is reliable? The Thomas-Ehman shift for the \(^{30}\text{Al}–^{30}\text{Cl} \) g.s. pair is about 330 keV. If we assume that the \(3^+ \) g.s. in \(^{30}\text{Al} \) has an \(s \)-wave structure, then the Thomas-Ehman shift leads to the evaluated energies \(E_r = 50 – 150 \) keV of the \(3^+ \) g.s. in \(^{30}\text{Cl} \). For such low decay energies, the \(^{30}\text{Cl} \) g.s. should live sufficiently long time in order to “survive” the flight through the second achronmatic stage of the FRS fragment separator (of \(\sim 150 \) ns). We don’t report such an experimental observation. We may also assume a \(d \)-wave structure of the \(2^+ \) and second \(3^+ \) states. However such an assumption practically does not change the predicted \(S_p \) energy of \(^{30}\text{Cl} \), but it requires the existence of peaks which are not seen in our data.

C. \(^{28}\text{Cl} \) case

A doublet of low-lying states can be found in the bottom of \(^{28}\text{Na} \) spectrum, see Fig. 13(e). Presumably, the \(2^+ \) and \(1^+ \) states are separated by just of \(\sim 50 \) keV. The \(1^+ \) state can be only \(d \)-wave dominated, while \(2^+ \) can be either \(s \)-wave or \(d \)-wave dominated. If both states have

\(A \)	\(r_0 \)	\(r_{\text{sph}}(\min) \)	\(r_{\text{sph}}(\max) \)	\(V_s \) (MeV)	\(V_d \) (MeV)
32	3.81	4.31	4.32	−46.80	
31	3.77	4.29	4.31	−45.00	−45.38
30	3.73	4.26	4.31	−45.10	−44.76
29	3.69	4.23	4.33	−41.87	−41.85
28	3.64	4.20	4.38	−42.52	−42.69
27	3.60	4.16	4.45	−34.85	−39.51
26	3.56	4.12	4.55	−32.80	−38.86

FIG. 12. Charge radii of sulphur isotopes used in the cluster core\(+p \) model for chlorine states. The dependence for sulphur isotopes is aligned with the much better studied dependence for argon isotopes to substantiate the provided extrapolation.
a d-wave structure, then the 28Cl g.s. should be found at about 2.4 MeV. In contrast, the observation of decay events corresponding to $E_r = 1.60(8)$ MeV can be easily interpreted as the s-wave g.s. of 28Cl with the predicted energy of $1.77 - 1.84$ MeV.

IV. SYSTEMATICS LOOK ON ARGON ISOTOPES

After we have systematically investigated the behavior of $1p$ separation energies for the chlorine isotopic chain, we can turn to the systematic studies of the corresponding argon isotopic chain, which is based on the obtained information. Namely, we apply the systematics of odd-even staggering (OES) energies which were shown to be a very helpful indicator concerning the dripline systems in our previous works 21213. The OES energy is defined as

$$2E_{\text{OES}} = S_{2p} - 2S_p.$$

The systematics of E_{OES} is presented in Fig. 14. One can see that the systematic trends are very similar for the all considered isotopic chains. The E_{OES} is always smaller for the proton-rich systematics compared to the neutron-rich one. The difference of 0.5 MeV is practically the same value for all three cases, see the gray line in Fig. 14. E_{OES} also systematically decreases with an increase of mass number, which indicates a borderline of nuclear stability. The E_{OES} for 30Ar was found to be smaller than the corresponding systematic expectation 2. It was argued in this work that such a deviation is typical for systems beyond the dripline, which is confirmed by the examples of well studied $2p$ emitters 12O, 16Ne and 19Mg. Theoretical basis for such an effect is provided by the three-body mechanism of TES 14, which was recently validated by the high-precision data and theoretical calculations in Ref. 15. When extrapolating this trend to the nearby isotopes, one may expect that 31Ar should reside on the E_{OES} systematics curve or slightly below, while the 29Ar could be considerably below.

The excitation spectrum of 31Ar obtained in this work demonstrates a very high level of isobaric symmetry in respect to its mirror 31Al, see Fig. 14. Based on the isobaric symmetry assumption, we can infer very small value of the $2p$ threshold $S_{2p} = -3(50)$ keV for the g.s. of 31Ar. This value is obtained by a comparison of the $2p$-decay energy of 950(50) keV and the literature value of $946.7(3)$ keV of the excitation energy of the first excited state in 31Ar and its mirror 31Al 16, respectively. The S_{2p} value of 31Ar g.s. may be also obtained by a comparison of the aligned low-energy exited states in 31Ar and 31Al. Namely, the states in 31Ar with $2p$-decay energy of 1.580(60), 2.120(70) and 2.620(130) MeV match the known excited states in 31Al 16 at excitation energy of 1.613(0.24), 2.090(11) and 2.676(28) MeV, respectively. By assuming the same energy between the g.s. and the respective excited state both in 31Ar and 31Al, we obtain more estimations of the g.s. of 31Ar: at $S_{2p} = +33(60), -30(81), +56(158)$ keV, respectively.

The weighted mean of all four pairs provides the averaged S_{2p} value of $+6(34)$ keV which we finally accept for the g.s. of 31Ar. Our evaluation agrees within the experimental uncertainties with the previously-estimated S_{2p} value of $-3(110)$ keV obtained in beta-decay studies of 31Ar 17, and precision of the present result is improved by the factor of 3. Our conclusion is that the 31Ar g.s. is rather bound than not.

With the known value $S_p(^{30}$Cl) = $-0.48(2)$ MeV, we can estimate the value $2E_{\text{OES}} = 0.966(74)$ MeV for 31Ar, which is in a good agreement with the extrapolated OES energy trend in Fig. 14 (a), which gives $2E_{\text{OES}} = 0.915$ MeV. This is an additional argument in favor of the isobaric symmetry (or very close to that) of the 31Ar and 31Al ground states.

So, the 31Ar g.s. is evaluated to be likely bound with the $2p$ separation energy of less than 40 keV. Even if it is $2p$-unbound (which can not be excluded by our results), its decay status is not affected: for such a small decay energy the $2p$ partial-lifetime of 31Ar is incomparably longer than its β-decay lifetime. Then the g.s. of 31Ar can still be considered as a quasi-stable state in many theoretical applications. An interesting issue here could be the possible existence of the $2p$-halo in such an extremely lousy-bound proton-rich nuclide.

Now let us turn to the 29Ar system. As discussed above, we expect the chlorine isotopes to be overbound in comparison with their mirror isobars (relative to the isobaric symmetry expectations) in a region beyond the dripline because of the TES. For the argon isobars far beyond the dripline, there should be a competition of two trends. One is the overbinding because of TES (the Coulomb displacement energy decreases because of the increase of the valence orbital size). An opposite trend is underbinding due to E_{OES} reductions (the $p-p$ pairing energy decreases because of the increase of the valence-proton orbital size). One must note that the absolute value of extrapolated OES energy is quite low, $2E_{\text{OES}} = 0.361$ MeV [see Fig. 14 (c)]. As the negative or extremely small value of paring energy seems to be unrealistic assumptions, we accept the following values $\{E_{\text{OES}}, 2E_{\text{OES}}\} = \{0.155, 0.361\}$ MeV as the limits of an OES energy variation. Then we obtain the value $S_{2p} = -2.93(25)$ MeV for the g.s. of 29Ar by accepting $S_p = -1.60(8)$. According to this estimate, the state observed in 29Ar at $S_{2p} = -5.50(18)$ MeV can not be assigned as its ground state, and therefore it should be one of the excited states in 29Ar. However, one should note that this prediction based on the OES systematics is not in accord with the other systematics and the results of theoretical calculations available in the literature, see Table 3 reviewing the published results on 29Ar. So, further studies of the 29Ar system are required in order to clarify the issue.
FIG. 13. Energy levels of chlorine isotopes. Vertical axes show excitation energies E^*. The level legend gives spin-parity J^π and energies relative to the $1p$-emission threshold for the chlorine chain members or $1n$-emission threshold for their isobaric mirror partners.
TABLE II. Separation energies (in MeV) S_{2p} for 29Ar and S_{p} for 28Cl according to different systematics and theoretical predictions.

Work	This, exp.	This, sys.
S_{2p}	$-5.50(18)$	$-2.93(25)$
S_{p}	$-1.60(8)$	$-1.80(4)$

V. CONCLUSION

The new isotopes 29Cl and 30Ar were recently discovered [2] and the spectroscopy of these two nuclei was performed [4] with the reactions of 31Ar exotic beam at 620 AMeV energy on light target. In this work, we investigated the additional inelastic excitation and particle knockout channels of those reactions. The main results of this work are:

(i) Two previously-unknown isotopes, 28Cl and 30Cl, which are unbound respective to the $1p$ emission have been observed. The ground state energies of 28Cl and 30Cl have been derived by using angular 27,29S+p correlations. In addition, four excited states of 30Cl have been identified as the sub-systems of the previously-unknown excited states of 31Ar. These states were populated by inelastic excitation of secondary 31Ar beam and identified by registering 29S+p+p correlations.

(ii) The first-time observed excitation spectrum of 31Ar matches very well the excitation spectrum of its isobaric partner 31Al. The registered isobaric symmetry is used in order to infer the position of the 31Ar ground state at the $2p$ separation energy $S_{2p}=0.006(34)$ MeV. The high level of isobaric symmetry of these mirror nuclei is confirmed by the systematics of OES energies. The near-zero value of S_{2p} of 31Ar suggests speculations about the possibility of $2p$ halo in this nuclide.

(iii) First evidence on a state in a previously-unobserved isotope 29Ar has been obtained by detecting 27S+p+p correlations. The state was found to be $2p$-unbound with $S_{2p}=-5.50(18)$ MeV. The results of the different energy systematics do not allow to clarify the status of the observed state. It may be either an excited at $\sim 1-2$ MeV above the ground state (as estimated in this work) or it may be a ground state of 29Ar according to Refs. [18,20]. This situation calls for further measurements.

ACKNOWLEDGMENTS

This work was supported in part by the Helmholtz International Center for FAIR (HIC for FAIR), the Helmholtz Association (grant IK-RU-002), the Russian Science Foundation (grant No. 17-12-01367), the Polish National Science Center (Contract No. UMO-2015/17/B/ST2/00581), the Polish Ministry of Science and Higher Education (Grant No. 0079/DIA/2014/43, Grant Diamentowy), the Helmholtz-CAS Joint Research Group (grant HCJRG-108), the FPA2016-77689-C2-1-R contract (MEC, Spain), the MEYS Projects LTT17003 and LM2015049 (Czech Republic), the Justus-Liebig-Universität Giessen (JLU) and GSI under the JLU-GSI strategic Helmholtz partnership agreement.

[1] V. Goldberg, B. Roeder, G. Rogachev, G. Chubar-ian, E. Johnson, C. Fu, A. Alharbi, M. Avila, A. Bann, M. McCleskey, J. Mitchell, E. Simmons, G. Tabacaru, L. Trache, and R. Tribble, [2] I. Mukha, L. V. Grigorenko, X. Xu, L. Acosta, E. Casarejos, A. A. Ciemy, W. Dominik, J. Duñas-Díaz, V. Dunin, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko,
M. Kuich, Y. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sánchez-Benítez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, J. S. Winfield, and M. V. Zhukov, Phys. Rev. Lett. 115, 202501 (2015).

[3] T. Golubkova, X.-D. Xu, L. Grigorenko, I. Mukha, C. Scheidenberger, and M. Zhukov, Physics Letters B 762, 263 (2016).

[4] X.-D. Xu, I. Mukha, L. V. Grigorenko, C. Scheidenberger, L. Acosta, E. Casarejos, V. Chudoba, A. A. Ciennny, W. Dominik, J. Duéñas-Díaz, V. Dunin, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Y. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sánchez-Benítez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, and J. S. Winfield, Phys. Rev. C 97, 034305 (2018).

[5] A. A. Lis, C. Mazzocchi, W. Dominik, Z. Janas, M. Pfützner, M. Pomorski, L. Acosta, S. Baraeva, E. Casarejos, J. Duéñas-Díaz, V. Dunin, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Y. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sánchez-Benítez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, and J. S. Winfield, Phys. Rev. C 91, 064309 (2015).

[6] M. Stanoiu, K. Summerer, I. Mukha, A. Chatillon, E. C. Gil, M. Heil, J. Hoffman, O. Kiselev, N. Kurz, and W. Ott, Nucl. Instr. Meth. in Phys. Res., B 266, 4625 (2008).

[7] I. Mukha, K. Summerer, L. Acosta, M. A. G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, I. A. Egorova, J. M. Espino, A. Fomichev, J. E. García-Ramos, H. Geissel, I. Angeli, and K. Marinova, Atomic Data and Nuclear Data Tables 99, 69 (2013).

[8] T. Golubkova, X.-D. Xu, L. Grigorenko, I. Mukha, C. Scheidenberger, and M. Zhukov, Physics Letters B 762, 263 (2016).

[9] X.-D. Xu, I. Mukha, L. V. Grigorenko, C. Scheidenberger, L. Acosta, E. Casarejos, V. Chudoba, A. A. Ciennny, W. Dominik, J. Duéñas-Díaz, V. Dunin, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, T. A. Golubkova, A. Gorshkov, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Y. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sánchez-Benítez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, and J. S. Winfield, Phys. Rev. C 97, 034305 (2018).

[10] A. A. Lis, C. Mazzocchi, W. Dominik, Z. Janas, M. Pfützner, M. Pomorski, L. Acosta, S. Baraeva, E. Casarejos, J. Duéñas-Díaz, V. Dunin, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, G. Kamiński, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Y. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A. M. Sánchez-Benítez, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, M. Winkler, and J. S. Winfield, Phys. Rev. C 91, 064309 (2015).

[11] M. Stanoiu, K. Summerer, I. Mukha, A. Chatillon, E. C. Gil, M. Heil, J. Hoffman, O. Kiselev, N. Kurz, and W. Ott, Nucl. Instr. Meth. in Phys. Res., B 266, 4625 (2008).

[12] L. V. Grigorenko, T. A. Golubkova, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 95, 021601 (2017).

[13] L. V. Grigorenko, T. A. Golubkova, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 92, 024325 (2015).

[14] L. V. Grigorenko, I. G. Mukha, I. J. Thompson, and M. V. Zhukov, Phys. Rev. Lett. 88, 042502 (2002).

[15] L. V. Grigorenko, T. A. Golubkova, and M. V. Zhukov, Phys. Rev. C 91, 024325 (2015).

[16] C. Ouellet and B. Singh, Nuclear Data Sheets 114, 209 (2013).

[17] L. Axelsson, J. Aysto, U. Bergmann, M. Borge, L. Fraile, H. Fynbo, A. Honkanen, P. Hornshøj, A. Jokinen, B. Jonsson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M. Smedberg, and O. Tengblad, Nuclear Physics A 628, 345 (1998).

[18] B. J. Cole, Phys. Rev. C 58, 2831 (1998).

[19] J. Tian, N. Wang, C. Li, and J. Li, Phys. Rev. C 87, 014313 (2013).

[20] J. Simonis, K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Phys. Rev. C 93, 011302 (2016).