The structure of the title complex, [Ag₂(NO₃)₂(C₁₉H₁₇P)₂]ₙ, reveals a chain emanating from the coordination of one phosphine ligand to each silver(I) cation, as well as the bis-monodentate coordination of a bridging nitrato ligand (per Ag atom) and the bis-bidentate coordination of another bridging nitrato ligand (per Ag atom). The distorted four-coordinate Ag atoms are characterized by bonding angles that notably deviate from the ideal tetrahedral shape.
nitrato groups are observed to fall within shorter [2.295 (7)–2.406 (7) Å] and longer [2.460 (6)–2.635 (7) Å] ranges.

The inorganic polymer packs in three dimensions as layers of one-dimensional ribbons when viewed along the b axis (Fig. 2); the chain has glide symmetry. Furthermore, the aromatic rings of the phosphine ligands then overlap in an adjacent layer to form a hydrophobic layer in between Ag—NO₃-containing layers.

Synthesis and crystallization

Benzyldiphenylphosphine (1 mmol) was dissolved in acetonitrile (10 ml). Silver nitrate (1 mmol) was dissolved in acetonitrile (10 ml). In order to obtain the given 1:1 molar ratio, the solutions were mixed. The resulting solution was heated to 353 K for approximately 2 h. The solution was removed from the heat and left to slowly cool. During the process of the slow evaporation of the solvent, clear colorless crystals started to form.

Refinement

Experimental details including crystal data, data collection and structure refinement details are summarized in Table 1. The highest calculated residual electron density peak is 2.51 e Å⁻³ and is located 0.99 Å from Ag₂, which is attributed to the presence of the strong absorber (Ag), as well as imperfections in the absorption correction process.

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the University of Pretoria (UP) and the University of Johannesburg (UJ) is gratefully acknowledged.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to Frederick P. Malan).

Table 1

Crystal data	Chemical formula	\([Ag_2(NO_3)_2(C_9H_17P)_2]\)
\(M_r\)	892.35	
Crystal system, space group	Orthorhombic, \(Pna_2_1\)	
Temperature (K)	150	
\(a, b, c\) (Å)	18.0126 (3), 10.6251 (2), 19.2597 (3)	
\(V\) (Å³)	3682.20 (11)	
\(Z\)	4	
Radiation type	Cu \(K\alpha\)	
\(\mu\) (mm⁻¹)	9.75	
Crystal size (mm)	0.21 × 0.15 × 0.12	

Data collection

Diffractometer XtaLAB Synergy R, DW system, HyPix

Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)

\(T_{\text{min}}, T_{\text{max}}\) 0.665, 1.000

No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections 53360, 7741, 7352

\(R_{\text{int}}\) 0.068

\(R_{\text{I}}\), \(wR_{\text{I}}\), \(S\) 0.044, 0.120, 1.05

No. of reflections 7741

No. of parameters 451

No. of restraints 1

H-atom treatment H-atom parameters constrained

\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}\) (e Å⁻³) 2.51, −0.73

Absolute structure Flack x determined using 3276 quotients \([I/(I)]/[I/(I)]\) (Parsons et al., 2013)

Absolute structure parameter −0.009 (4)

Figure 1

The molecular structure of the asymmetric unit in the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 2

Perspective views along the (a) \(a\) and (b) \(b\) axes of the molecular packing of the title compound.

Note:

-The molecular structure and packing were visualized using Mercury (version 3.7) (Groom et al., 2016).

Figure 2

Perspective views along the (a) \(a\) and (b) \(b\) axes of the molecular packing of the title compound.

Note:

-The molecular structure and packing were visualized using Mercury (version 3.7) (Groom et al., 2016).
References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
full crystallographic data

IUCrData (2022). 7, x220772 [https://doi.org/10.1107/S2414314622007726]

catena-Poly[[((benzylidiphenylphosphine-κP)silver(I)]-μ-nitrato-κ²O:O’-[(benzyl-
diphenylphosphine-κP)silver(I)]-μ-nitrato-κ⁴O,O’:O’,O’’]

Kariska Potgieter, Frederick P. Malan and Reinout Meijboom

catena-Poly[[((benzylidiphenylphosphine-κP)silver(I)]-μ-nitrato-κ²O:O’-[(benzylidiphenylphosphine-κP)silver(I)]-μ-nitrato-κ⁴O,O’:O’,O’’]

Crystal data

[Ag₂(NO₃)₂(C₁₉H₁₇P)₂]
Mr = 892.35
Orthorhombic, Pna₂₁
a = 18.0126 (3) Å
b = 10.6251 (2) Å
c = 19.2397 (3) Å
V = 3682.20 (11) Å³
Z = 4
F(000) = 1792

Data collection

XtaLAB Synergy R, DW system, HyPix
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source
Detector resolution: 10.0000 pixels mm⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.044
wR(F²) = 0.120
S = 1.05
7741 reflections
451 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ²(Fo²) + (0.0747P)² + 4.1236P]
where P = (Fo² + 2Fc²)/3
(Δ/σ)max < 0.001
Δρmax = 2.51 e Å⁻³
Δρmin = −0.73 e Å⁻³
Absolute structure: Flack x determined using
3276 quotients [(I⁺)−(I⁻)]/[(I⁺)+(I⁻)] (Parsons et al., 2013)
Absolute structure parameter: −0.009 (4)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso*/Ueq					
Ag1	0.20763 (3)	0.67285 (6)	0.57043 (3)	0.04561 (16)					
Ag2	0.49695 (3)	0.61627 (5)	0.44110 (5)	0.04420 (16)					
P1	0.20175 (9)	0.65229 (16)	0.69195 (10)	0.0293 (3)					
P2	0.52210 (9)	0.42137 (17)	0.38704 (10)	0.0337 (4)					
O1	0.1529 (4)	0.5950 (6)	0.4155 (4)	0.0321 (13)					
O3	0.0623 (3)	0.6720 (6)	0.4045 (3)	0.0487 (14)					
O2	0.0958 (4)	0.7638 (5)	0.4994 (3)	0.0461 (13)					
N1	0.1028 (4)	0.6746 (6)	0.4568 (3)	0.0374 (13)					
C26	0.4647 (3)	0.2889 (7)	0.4155 (4)	0.0321 (13)					
N2	0.3496 (4)	0.7223 (7)	0.4926 (4)	0.0487 (17)					
O5	0.3505 (5)	0.6175 (7)	0.5180 (4)	0.067 (2)					
O4	0.2935 (4)	0.7904 (7)	0.5001 (5)	0.068 (2)					
N1	0.4046 (4)	0.7612 (7)	0.4599 (6)	0.092 (3)					
C1	0.2459 (4)	0.5121 (6)	0.7253 (4)	0.0372 (15)					
C14	0.0614 (3)	0.5503 (8)	0.6926 (4)	0.0365 (15)					
C31	0.4020 (4)	0.3152 (7)	0.4557 (4)	0.0384 (15)					
H31	0.3917	0.3989	0.4701	0.046*					
C27	0.4797 (4)	0.1673 (7)	0.3947 (4)	0.0355 (14)					
H27	0.5217	0.1503	0.3665	0.043*					
C19	0.0502 (4)	0.4320 (8)	0.7222 (5)	0.0465 (19)					
H19	0.0705	0.4135	0.7666	0.056*					
C37	0.6669 (5)	0.2182 (9)	0.5650 (6)	0.0526 (19)					
H37	0.6626	0.1396	0.5883	0.063*					
C9	0.3472 (5)	0.9341 (9)	0.7401 (5)	0.054 (2)					
H9	0.3865	0.9766	0.7170	0.065*					
C11	0.2715 (5)	0.9051 (8)	0.8408 (5)	0.0471 (18)					
H11	0.2592	0.9286	0.8871	0.057*					
C28	0.4326 (4)	0.0685 (7)	0.4153 (4)	0.0395 (16)					
H28	0.4436	−0.0157	0.4023	0.047*					
C35	0.7050 (5)	0.4361 (9)	0.5645 (6)	0.052 (2)					
H35	0.7282	0.5052	0.5871	0.062*					
C13	0.1073 (4)	0.6497 (7)	0.7280 (4)	0.0360 (14)					
H13A	0.1096	0.6322	0.7785	0.043*					
H13B	0.0837	0.7330	0.7215	0.043*					
C33	0.6447 (4)	0.3482 (7)	0.4637 (4)	0.0355 (15)					
C10	0.3299 (6)	0.9636 (8)	0.8070 (6)	0.055 (2)					
H10	0.3583	1.0253	0.8308	0.066*					
C7	0.2484 (4)	0.7797 (7)	0.7387 (4)	0.0337 (14)					
Atom	x	y	z	U11	U22	U33	U12	U13	U23
------	-----	-----	-----	-----	-----	-----	-----	-----	-----
C12	0.2310 (5)	0.8122 (8)	0.8074 (4)	0.0411 (16)					
H12	0.1917	0.7707	0.8309	0.049*					
C34	0.6760 (4)	0.4487 (8)	0.4988 (4)	0.0402 (16)					
H34	0.6774	0.5288	0.4768	0.048*					
C15	0.0299 (5)	0.5748 (11)	0.6288 (5)	0.054 (2)					
H15	0.0366	0.6554	0.6084	0.065*					
C38	0.6402 (4)	0.2314 (9)	0.4981 (5)	0.0477 (19)					
H38	0.6186	0.1612	0.4751	0.057*					
C36	0.6994 (5)	0.3173 (10)	0.5976 (5)	0.057 (2)					
H36	0.7186	0.3070	0.6432	0.069*					
C18	0.0010 (5)	0.3420 (10)	0.6875 (8)	0.062 (3)					
H18	0.0025	0.2619	0.7082	0.074*					
C30	0.3549 (4)	0.2173 (9)	0.4743 (5)	0.0460 (18)					
H30	0.3116	0.2347	0.5008	0.055*					
C6	0.2349 (5)	0.4681 (8)	0.7926 (5)	0.051 (2)					
H6	0.2010	0.5080	0.8233	0.061*					
C29	0.3703 (4)	0.0948 (8)	0.4548 (4)	0.0440 (18)					
H29	0.3380	0.0286	0.4685	0.053*					
C8	0.3063 (5)	0.8403 (8)	0.7055 (5)	0.0463 (19)					
H8	0.3186	0.8184	0.6590	0.056*					
C23	0.4602 (7)	0.4667 (12)	0.1562 (6)	0.072 (3)					
H23	0.4468	0.4801	0.1091	0.086*					
C20	0.5020 (4)	0.4340 (7)	0.2941 (4)	0.0406 (17)					
C2	0.2970 (5)	0.4527 (9)	0.6817 (6)	0.055 (2)					
H2	0.3046	0.4832	0.6358	0.066*					
C24	0.4162 (8)	0.5068 (11)	0.2077 (6)	0.074 (3)					
H24	0.3699	0.5445	0.1967	0.088*					
C22	0.5270 (7)	0.4042 (15)	0.1732 (6)	0.074 (4)					
H22	0.5583	0.3733	0.1374	0.089*					
C32	0.6180 (4)	0.3627 (7)	0.3912 (4)	0.0366 (14)					
H32A	0.6208	0.2803	0.3673	0.044*					
H32B	0.6510	0.4220	0.3662	0.044*					
C25	0.4366 (6)	0.4945 (10)	0.2755 (5)	0.061 (2)					
H25	0.4054	0.5280	0.3109	0.073*					
C4	0.3264 (8)	0.3052 (9)	0.7701 (9)	0.084 (4)					
H4	0.3540	0.2345	0.7857	0.101*					
C21	0.5468 (5)	0.3881 (11)	0.2420 (5)	0.056 (2)					
H21	0.5915	0.3452	0.2534	0.067*					
C17	−0.0197 (6)	0.3671 (14)	0.6222 (7)	0.075 (4)					
H17	−0.0458	0.3038	0.5973	0.090*					
C3	0.3366 (7)	0.3495 (11)	0.7051 (9)	0.081 (4)					
H3	0.3713	0.3096	0.6751	0.097*					
C16	−0.0106 (6)	0.4861 (17)	0.5941 (6)	0.079 (4)					
H16	−0.0326	0.5062	0.5506	0.095*					
C5	0.2766 (8)	0.3612 (10)	0.8135 (8)	0.075 (4)					
H5	0.2696	0.3279	0.8589	0.090*					
Atomic displacement parameters (Å²)

	\(U^{11} \)	\(U^{22} \)	\(U^{33} \)	\(U^{12} \)	\(U^{13} \)	\(U^{23} \)
Ag1	0.0474 (3)	0.0544 (3)	0.0350 (2)	−0.0033 (2)	0.0018 (2)	0.0002 (3)
Ag2	0.0444 (3)	0.0335 (3)	0.0547 (3)	−0.0016 (2)	0.0037 (2)	−0.0057 (3)
P1	0.0242 (7)	0.0301 (8)	0.0335 (8)	0.0013 (6)	−0.0005 (6)	−0.0039 (7)
P2	0.0254 (7)	0.0310 (8)	0.0448 (9)	−0.0035 (7)	0.0029 (7)	−0.0018 (7)
O1	0.059 (4)	0.049 (3)	0.045 (3)	0.016 (3)	0.001 (3)	−0.004 (3)
O2	0.041 (3)	0.058 (4)	0.048 (3)	0.002 (3)	−0.002 (2)	−0.010 (3)
N1	0.061 (3)	0.034 (3)	0.044 (3)	0.005 (2)	0.002 (2)	−0.003 (2)
O3	0.039 (3)	0.034 (3)	0.041 (3)	0.004 (2)	0.002 (2)	0.006 (2)
N2	0.038 (3)	0.038 (4)	0.069 (5)	−0.001 (3)	0.020 (3)	−0.004 (3)
O5	0.072 (5)	0.054 (4)	0.074 (5)	−0.006 (3)	0.000 (3)	0.006 (3)
O4	0.060 (4)	0.050 (4)	0.092 (6)	0.016 (3)	0.035 (4)	0.017 (4)
O6	0.068 (5)	0.045 (4)	0.163 (10)	−0.003 (3)	0.071 (6)	0.003 (5)
C1	0.030 (3)	0.023 (3)	0.058 (4)	−0.001 (2)	−0.012 (3)	−0.008 (3)
C14	0.054 (4)	0.042 (4)	0.067 (6)	−0.020 (4)	−0.004 (4)	−0.003 (4)
C31	0.032 (3)	0.038 (4)	0.045 (4)	0.001 (3)	−0.001 (3)	0.002 (3)
C11	0.060 (5)	0.037 (4)	0.039 (4)	−0.006 (3)	0.000 (3)	0.006 (3)
C19	0.031 (3)	0.045 (4)	0.063 (5)	−0.002 (3)	−0.004 (3)	−0.009 (4)
C37	0.044 (4)	0.058 (5)	0.055 (5)	0.010 (4)	0.005 (4)	0.011 (5)
C9	0.054 (5)	0.042 (4)	0.067 (6)	−0.020 (4)	−0.004 (4)	−0.003 (4)
C10	0.062 (5)	0.036 (4)	0.068 (6)	−0.011 (4)	−0.020 (5)	0.000 (4)
C7	0.034 (3)	0.026 (3)	0.041 (4)	0.002 (2)	−0.006 (3)	0.001 (3)
C28	0.039 (4)	0.034 (4)	0.046 (4)	−0.011 (3)	−0.010 (3)	0.005 (3)
C35	0.043 (4)	0.053 (5)	0.059 (5)	0.010 (4)	0.001 (4)	−0.019 (5)
C13	0.030 (3)	0.035 (4)	0.042 (4)	0.001 (3)	−0.001 (3)	0.000 (3)
C33	0.023 (3)	0.037 (3)	0.047 (4)	−0.002 (3)	0.003 (3)	−0.002 (3)
C18	0.062 (5)	0.036 (4)	0.068 (6)	−0.011 (4)	−0.020 (5)	0.000 (4)
C38	0.036 (4)	0.044 (4)	0.063 (5)	−0.005 (3)	0.003 (3)	0.009 (4)
C36	0.051 (5)	0.077 (7)	0.044 (4)	0.028 (5)	0.003 (4)	0.002 (4)
C12	0.046 (4)	0.043 (4)	0.035 (4)	−0.001 (3)	−0.009 (3)	−0.004 (3)
C34	0.031 (3)	0.038 (4)	0.052 (4)	0.005 (3)	−0.003 (3)	−0.002 (3)
C15	0.036 (4)	0.082 (6)	0.043 (4)	−0.018 (4)	0.002 (3)	−0.004 (5)
C38	0.036 (4)	0.044 (4)	0.063 (5)	−0.005 (3)	0.003 (3)	0.009 (4)
C6	0.055 (5)	0.032 (4)	0.066 (5)	−0.013 (3)	−0.026 (4)	0.007 (4)
C29	0.037 (4)	0.045 (4)	0.050 (5)	−0.011 (3)	−0.010 (3)	0.015 (3)
C8	0.045 (4)	0.037 (4)	0.057 (5)	−0.009 (3)	0.003 (4)	0.001 (4)
C23	0.078 (7)	0.079 (8)	0.059 (6)	−0.022 (6)	−0.022 (5)	0.029 (6)
C20	0.046 (4)	0.028 (4)	0.048 (4)	−0.019 (3)	−0.005 (3)	0.006 (3)
C22	0.038 (4)	0.048 (5)	0.079 (7)	0.011 (3)	−0.015 (4)	−0.021 (5)
C4	0.088 (8)	0.030 (4)	0.135 (12)	0.019 (5)	−0.056 (8)	−0.012 (6)
	(Å)		(Å)			(Å)
-------	---------	-------	---------	-------	-------	---------
C21	0.036 (4)	0.084 (7)	0.049 (5)	−0.008 (4)	0.001 (4)	0.003 (4)
C17	0.046 (5)	0.111 (10)	0.070 (7)	−0.025 (6)	0.002 (5)	−0.047 (7)
C3	0.069 (7)	0.050 (6)	0.125 (12)	0.029 (5)	−0.033 (7)	−0.022 (7)
C16	0.052 (5)	0.138 (13)	0.048 (5)	−0.043 (7)	−0.001 (4)	−0.021 (7)
C5	0.092 (8)	0.044 (5)	0.090 (9)	−0.019 (5)	−0.047 (7)	0.022 (6)

Geometric parameters (Å, °)

Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)
Ag1—P1	2.3506 (19)	C37—C38	1.381 (14)	Ag1—O1	2.380 (6)
Ag1—O1	2.406 (7)	C37—C36	1.358 (15)	Ag1—O4	2.3612 (19)
Ag1—O4	2.460 (6)	C9—C10	1.360 (15)	Ag2—P2	1.806 (7)
Ag2—P2	2.95 (7)	C9—C8	1.407 (12)	Ag2—O2i	2.830 (7)
Ag2—O2i	2.295 (7)	C11—C10	1.384 (14)	P1—C1	1.838 (8)
P1—C1	2.32 (7)	C11—C12	1.386 (12)	P1—C13	1.830 (7)
P1—C13	1.390 (7)	C35—C34	1.375 (14)	P1—C7	1.380 (7)
P1—C7	1.830 (7)	C35—C36	1.417 (15)	P2—C26	1.383 (11)
P2—C26	1.830 (7)	C33—C34	1.383 (11)	P2—C20	1.389 (9)
P2—C20	1.829 (9)	C33—C38	1.409 (11)	P2—C32	1.384 (11)
P2—C32	1.838 (7)	C33—C32	1.484 (11)	O1—N1	1.251 (9)
O1—N1	1.243 (9)	C7—C12	1.400 (11)	O3—N1	1.243 (9)
O3—N1	2.460 (6)	C15—C16	1.366 (15)	O2—Ag2ii	1.260 (8)
O2—Ag2ii	1.260 (8)	C18—C17	1.39 (2)	C26—C31	1.398 (10)
C26—C31	1.379 (11)	C6—C5	1.420 (14)	N2—O5	1.216 (10)
C26—C27	1.394 (12)	C24—C25	1.362 (15)	N2—O4	1.249 (10)
C26—C27	1.504 (10)	C22—C21	1.381 (15)	N2—O6	1.245 (10)
C26—C27	1.377 (12)	C4—C3	1.35 (2)	C1—C6	1.391 (13)
C1—C6	1.396 (12)	C2—C3	1.383 (15)	C1—C2	1.394 (12)
C1—C2	1.394 (12)	C24—C25	1.362 (15)	C14—C19	1.504 (10)
C14—C19	1.396 (12)	C22—C21	1.381 (15)	C14—C13	1.377 (12)
C14—C13	1.379 (11)	C4—C3	1.35 (2)	C31—C30	1.389 (11)
C31—C30	1.406 (10)	C17—C16	1.38 (2)	C27—C28	1.372 (13)

IUCrData (2022). 7, x220772 data-5
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
C7—P1—Ag1	113.5 (2)	C9—C10—C11	121.1 (8)		
C7—P1—C13	104.5 (3)	C12—C7—P1	122.9 (6)		
C6—P2—Ag2	115.7 (2)	C8—C7—P1	117.6 (6)		
C6—P2—C32	104.9 (3)	C8—C7—C12	119.3 (7)		
C20—P2—Ag2	109.2 (3)	C11—C12—C7	119.7 (8)		
C20—P2—C26	103.7 (3)	C35—C34—C33	121.8 (8)		
C20—P2—C32	104.7 (4)	C16—C15—C14	121.7 (11)		
C2—P2—Ag2	117.3 (3)	C37—C38—C33	120.5 (8)		
N1—O1—Ag1	100.8 (5)	C37—C36—C35	120.9 (10)		
N1—O2—Ag2ii	99.5 (4)	C19—C18—C17	120.6 (12)		
O1—N1—O2	119.0 (7)	C29—C30—C31	120.9 (7)		
O3—N1—O1	121.9 (7)	C1—C6—C5	117.2 (11)		
O3—N1—O2	119.0 (6)	C30—C29—C28	120.1 (7)		
C31—C26—P2	117.9 (5)	C7—C8—C9	120.4 (9)		
C27—C26—P2	121.6 (5)	C24—C23—C22	118.9 (10)		
C27—C26—C31	120.4 (6)	C25—C20—P2	117.0 (7)		
O5—N2—O4	119.6 (7)	C21—C20—P2	124.8 (7)		
O5—N2—O6	119.7 (7)	C21—C20—C25	118.3 (9)		
O6—N2—O4	120.6 (8)	C3—C2—C1	120.2 (12)		
N2—O4—Ag1	106.5 (5)	C23—C24—C25	121.3 (11)		
N2—O6—Ag2	115.7 (6)	C21—C22—C23	120.0 (11)		
C6—C1—P1	123.0 (6)	C33—C32—P2	112.4 (5)		
C6—C1—C2	120.1 (8)	C24—C25—C20	121.3 (11)		
C2—C1—P1	116.7 (7)	C3—C4—C5	120.4 (10)		
C19—C14—C13	121.8 (7)	C20—C21—C22	120.2 (10)		
C15—C14—C19	118.3 (8)	C16—C17—C18	118.8 (9)		
C15—C14—C13	119.8 (8)	C4—C3—C2	120.5 (13)		
C30—C31—C26	119.1 (7)	C15—C16—C17	120.1 (11)		
C26—C27—C28	120.0 (7)	C4—C5—C6	121.6 (13)		

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+3/2, z.