Abstract: Aging-related loss of resilience associated with the lack of evidence regarding the therapeutic efficacy of medicines can prompt a lack of efficacy of treatments and multiple prescriptions. This work aims to characterize the medication profile of Portuguese older adult inpatients and explore the relationship between hospitalization days and the consumption of medicines. A retrospective data analysis study in older patients who were admitted to a medical internal medicine ward during 2019. The median age of the 616 patients included was 85 years. During the hospitalized period, patients took on average 18.08 medicines. The most prescribed drugs belong to the subgroup of (a) anti-thrombotic agents (6.7%), with enoxaparin being the most prescribed, (b) other analgesics and antipyretics (6.6%), paracetamol being the most frequent, and (c) the Angiotensin Conversion Enzyme Inhibitor (ACE) (6.5%), captopril being the most frequent. The high number of prescriptions in older adults during their hospitalization suggests the need of changing therapeutics to achieve a better efficacy of treatment, which corroborates the hypothesis that the lack of scientific evidence concerning the risk/benefits of many medical therapies in older adults can make it difficult to achieve good clinical outcomes and promote the wastage of health resources.

Keywords: older adults; polypharmacy; internal medicine ward

1. Introduction

In the last century, the development of health technologies and the improvement in socio-economic conditions have enhanced health and improved life expectancy, which in association with the decrease in fertility has contributed to an aging population [1,2]. Aging is characterized by progressive alterations in psychological, biological (with drug pharmacodynamics and pharmacokinetics alterations), and even social functions and greater susceptibility to disease [3]. Such alterations can cause a decrease in the ability to recover from unhealthy conditions and consequently can increase the consumption of health resources, which includes medicines [4,5]. Recently, it was reported that about four out of 10 older adults consume five or more medicines (polypharmacy) [6]. Pharmacotherapy can improve quality of life, cure, prevent, or relieve symptoms, but in the older population, special care must be taken with the occurrence of adverse drug reactions (ADR) [7]. The increased prevalence of ADR in older adults is not only related to aging-related increases in susceptibility but also the lack of scientific evidence concerning the risk/benefits of many medical therapies of the older adults [8]. Across history, older adults have been systematically excluded from clinical trials [9], and even when they were included, they are younger than the mean age of older adults’ population [8]. As a result, sometimes, prescription can occur without adequate clinical data, which can compromise clinical outcomes and the well-being of the patients [8,9].

For this reason, new approaches are needed to improve the therapeutic efficacy of older adults as well as their quality of life. In this context, the knowledge medication...
profile of older adults is preponderant. This work aims to characterize the medication consumption profile of inpatient older adults, as well as attempt to establish a correlation between the medication profile and the diseases and hospitalization days.

2. Materials and Methods

A retrospective study was performed to characterize the medication profile among older inpatients of a general internal medicine service of a first-level hospital located in the inner center region of Portugal. All older patients (aged ≥ 65) hospitalized in the internal medicine service for at least 4 days during 2019 were eligible to participate in the study. Older patients hospitalized for less than 4 days were excluded. For patients hospitalized more than once in the internal medicine service, the number of days hospitalized was obtained through the sum of the days of each hospitalization. Data were retrospectively collected from the hospital’s electronic medical record and included patient age, patient gender (male/female), patient diagnoses, hospitalization days, and drugs prescribed. The list of all medication, extracted from the electronic records, was converted to the corresponding Anatomical Therapeutic Classification (ATC) code, using the WHO Collaborating Centre for Drug Statistics Methodology’s web [10], and patient’s diagnoses were classified according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). Statistical and descriptive analysis was conducted using the IBM SPSS software version 25.0 and Microsoft Excel. Spearman’s test was used to examine the relationship between age, gender, hospitalization days, the most prescribed pharmacological subgroups, and the number of simultaneous prescribed medicines. Numerical and ordinal data were analyzed using descriptive statistics and presented in frequency and percentage and using mean, median, and quartile values.

3. Results

A total of 616 participants were included in the study (median age = 85.0, Min 65, Max 100). Most of the participants were male (51.84%), and 90.2% had been hospitalized only one time (median of hospitalized days = 12). The most frequent diagnosis of the 616 inpatients in the study were as follows: (a) I00-I99-Diseases of the circulatory system (21.40%, N = 829), (b) E00-E89-Endocrine, nutritional, and metabolic diseases (N = 636, 16.40%), and (c) J00-J99-Diseases of the respiratory system (10.70%, N = 415) (Table 1). During the hospitalized period, patients took a median of 17.0 medicines (Min 5, Max 50), and the median of simultaneous medicines per day was 12 medicines (Min 3, Max 27) (Table 1).

Table 1. Study population characteristics.

| Study Population Characteristics | N = 616 |
|----------------------------------|---------|
| Age (years)                      |         |
| Median (Q1–Q3)                   | 85.0 (78.0–89.0) |
| 65–74                            | 98 (15.9%) |
| 75–84                            | 206 (33.4%) |
| ≥85                              | 312 (50.7%) |
| Gender                           |         |
| Female                           | 298 (48.4%) |
| Male                             | 318 (51.6%) |
Table 1. Cont.

| Study Population Characteristics | N = 616 |
|----------------------------------|---------|
| **Hospitalization days**         |         |
| Median (Q1–Q3)                   | 12 (8–20) |
| Range (minimum and maximum)      | 4–90    |
| No. of hospitalizations          |         |
| 1 hospitalization                | 556 (90.2%) |
| 2 hospitalizations               | 54 (8.8%) |
| 3 hospitalizations               | 6 (1.0%)  |
| **No. of prescribed medicines** |         |
| Median (Q1–Q3)                   | 17 (13–22) |
| Range (minimum and maximum)      | 4–50    |
| **No. of simultaneous medicines prescribed per day** |         |
| Median (Q1–Q3)                   | 12 (10–14) |
| Range (minimum and maximum)      | 3–27    |
| **ICD-10 diagnostics**          | N = 3873 |
| A00-B99—Certain infectious and parasitic diseases | 96 (2.50%) |
| C00-D49—Neoplasms                | 79 (2.00%) |
| D50-D89—Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism | 220 (5.70%) |
| E00-E89—Endocrine, nutritional and metabolic diseases | 636 (16.40%) |
| F0-F99—Mental, Behavioral, and Neurodevelopmental disorders | 140 (3.60%) |
| G00-G99—Diseases of the nervous system | 82 (2.10%) |
| H00-H59—Diseases of the eye and adnexa | 11 (0.30%) |
| H60-H95—Diseases of the ear and mastoid process | 14 (0.40%) |
| I00-J99—Diseases of the circulatory system | 829 (21.40%) |
| J00-J99—Diseases of the respiratory system | 415 (10.70%) |
| K00-K55—Diseases of the digestive system | 125 (3.20%) |
| L00-L99—Diseases of the skin and subcutaneous tissue | 50 (1.30%) |
| M00-M99—Diseases of the musculoskeletal system and connective tissue | 80 (2.10%) |
| N00-N99—Diseases of the genitourinary system | 396 (10.20%) |
| Q00-Q99—Congenital malformations, deformations, and chromosomal abnormalities | 1 (0.00%) |
| R00-R99—Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified | 278 (7.20%) |
| S00-T88—Injury, poisoning, and certain other consequences of external causes | 53 (1.40%) |
| V00-Y99—External causes of morbidity | 32 (0.80%) |
| Z00-Z99—Factors influencing health status and contact with health services | 336 (8.70%) |

Within the 11,159 prescribed medications, 285 were different medicines, 137 were dietary supplements, and 28 were enteral or parenteral nutrition. The most prescribed medicines belong to the ATC groups blood and blood-forming organs (23.4%), cardiovascular system (20.5%), nervous system (17.1%), and tract alimentary and metabolism (17.0%) (Appendix A, Table A1). The most prescribed drugs belong to the subgroup of (a) anti-thrombotic agents (6.7%), with enoxaparin being the most prescribed, (b) other analgesics and antipyretics (6.6%), paracetamol being the most frequent, (c) the Angiotensin Conversion Enzyme Inhibitor (ACE) (6.5%), captopril being the most frequent, and (e) irrigation solutions (6.3%), with sodium chloride solutions being the most used (Table 2).
### Table 2. Most prescribed medicines, third level, pharmacological subgroup.

| Most Prescribed Medicines (3rd Level, Pharmacological Subgroup) | Frequency | %  |
|---------------------------------------------------------------|-----------|----|
| A02B—Drugs for Peptic Ulcer and Gastro-esophageal Reflux Disease (GORD) | 489       | 4.4% |
| A06A—Drugs for Constipation                                    | 381       | 3.4% |
| A10A—Insulins and Analogues                                    | 489       | 4.4% |
| B01A—Antithrombotic Agents                                     | 746       | 6.7% |
| B05B—I.V. Solutions (I.V. solutions used in parenteral administration of fluids, electrolytes and nutrients) | 385       | 3.5% |
| B05C—Irrigating Solutions (products used for bladder irrigation, surgical irrigation, incl. instruments) | 707       | 6.3% |
| B05X—I.V. Solution Additives (I.V. solution additives are concentrated preparations containing substances used for correcting fluid and electrolyte balance and nutritional status) | 377       | 3.4% |
| C03C—High-Ceiling Diuretics                                    | 437       | 3.9% |
| C07A—Beta Blocking Agents                                      | 334       | 3.0% |
| C09A—ACE Inhibitors                                            | 723       | 6.5% |
| J01C—Beta-Lactam Antibacterials, Penicillins                   | 356       | 3.2% |
| N02B—Other Analgesics and Antipyretics                         | 739       | 6.6% |
| N05A—Antipsychotics                                           | 320       | 2.9% |
| N05B—Anxiolytics                                               | 298       | 2.7% |
| R03A—Adrenergics, Inhalants                                    | 314       | 2.8% |

We observed a positive correlation between the hospitalization days and the ICD-10 diagnosis: R00-R99—Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified (R = 0.103, p = 0.010) and S00-T88—Injury, poisoning, and certain other consequences of external causes (R = 0.106, p = 0.009) (Table 3).

### Table 3. Spearman correlation between hospitalization days and ICD-10 diagnosis.

| Coefficient Value | p Value |
|-------------------|---------|
| Hospitalization days | R00-R99—Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified | 0.103 | 0.010 |
|                   | S00-T88—Injury, poisoning, and certain other consequences of external causes | 0.106 | 0.009 |

A negative association between age and the medicines belonging to the subgroups A10A (R = −0.111, p = 0.006) and N05B (R = −0.110, p = 0.006). It was also observed a positive association between age and the medicines belonging to the subgroups B05C (R = 0.165, p < 0.0001), C03C (R = 0.171, p < 0.0001), J01C (R = 0.119, p = 0.003) and R03A (R = 0.106 and p = 0.009) (Table 4).

### Table 4. Spearman correlation between age and medicines prescribed (third level, pharmacological subgroup).

| Coefficient Value | p Value |
|-------------------|---------|
| Age               | A10A—Insulins and Analogues | −0.111 | 0.006 |
|                   | N05B—Anxiolytics | −0.110 | 0.006 |
|                   | B05C—Irrigating Solutions (products used for bladder irrigation, surgical irrigation, incl. instruments) | 0.165 | <0.0001 |
|                   | C03C—High-Ceiling Diuretics | 0.171 | <0.0001 |
|                   | J01C—Beta-Lactam Antibacterials, Penicillins | 0.119 | 0.003 |
|                   | R03A—Adrenergics, Inhalants | 0.106 | 0.009 |

We also observed a positive correlation between the number of hospitalization days and the number of simultaneous prescribed medicines per day (Table 5).

### Table 5. Spearman correlation between the variables of hospitalization days and simultaneous medication per day.

| Coefficient Value | p Value |
|-------------------|---------|
| Hospitalization days | simultaneous medicines per day | 0.089 | 0.045 |
4. Discussion

This study analyzed the medication profile of Portuguese inpatients at an internal medicine service and concluded that during hospitalization, the inpatients consumed a high number of medicines, suggesting that the high frailty of older adults associated with the lack of prescription guidelines for older adults made it difficult to achieve clinical outcomes and increased the time of hospitalization.

The high average age of the participants included in this study is not surprising, since according to Eurostat, Portuguese have an average life expectancy of 81.5, which is higher than the mean of 27 European Union countries (81.0). However, the increase in life expectancy is not accompanied by health quality; indeed, only 9% of Portuguese older adults are considered healthy, which is a lower number when compared with Austria (58.0%), Germany (38.0%), and France (37%) [11]. This unhealthy state and aging-related loss of resilience and pharmacokinetic and pharmacodynamics alterations that occur in older adults [12] can be a major contribution to the high average number of hospitalized days [13] as well as to the fact that almost 10% of the participants had more than one hospitalization during 2019.

On average, the participants consumed 18.08 medicines during their hospitalization, suggesting a high complexity of the therapeutic treatment that perhaps results from the multiple comorbidities presented by the participants. Similar results were observed by other studies in a long-term care hospitalization setting [14]. There is a lack of evidence for the use of certain medicines in older adults, which greatly limits knowledge about the effectiveness of medication [15] in this age group and leads to the need for a frequent change in medication. The drugs that act on the nervous system are one of the most frequently prescribed drugs among our patients [16]. Indeed, according to the literature, the consumption of these medicines is frequent not only in hospitalized patients but also in nursing home residents [17–19]. In our study, we observed a decrease in the consumed anxiolytics with aging, suggesting an attempt to deprescribe it with increasing ages [5,20,21].

Although the relevant information is provided, the data of this study are not representative of all populations, and they cannot be generalized to all hospitalized older adults; the information collected in this study reinforces the need for more scientific knowledge concerning the risk/benefits of polypharmacy in older adults.

5. Conclusions

The association between a high number of prescribed medicines and the number of hospitalization days observed suggests the need for more scientific evidence regarding therapeutic efficacy in older adults.

Author Contributions: All authors listed have made substantial, direct contributions to the work and approved it for publication. Conceptualization, F.R. and M.T.H.; methodology F.R. and M.T.H.; software, C.P. and A.I.P.; validation, F.R., M.T.H. and J.A.; formal analysis, C.P. and A.I.P.; investigation, C.P.; resources, C.P.; data curation, J.A., C.P. and A.I.P.; writing—A.I.P. and C.P.; writing—review and editing, J.A., F.R. and M.T.H.; visualization, F.R. and M.T.H.; supervision, F.R. and M.T.H.; project administration, F.R. and M.T.H.; funding acquisition F.R. and M.T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the APIMedOlder project [PTDC/MED-FAR/31598/2017], funded by the Operational Programme of Competitiveness and Internationalization (POCI), in its FEDER/FNR component POCI-01-0145-FEDER-031598, and the Foundation for Science and Technology (FCT).

Institutional Review Board Statement: This study obtained the ethical approval (01167) of the hospital on 7 of February 2020 and was carried out according to the European union (EU) general data protection regulation (GDPR).

Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A

Table A1. Most prescribed medicines.

| Anatomical Main Group                        | Frequency | %    |
|---------------------------------------------|-----------|------|
| N                                          | 11,159    |      |
| A Alimentary Tract and Metabolism           | 1901      | 17%  |
| B Blood and Blood Forming Organs            | 2666      | 23.4%|
| C Cardiovascular System                      | 2283      | 20.5%|
| D Dermatologicals                            | 28        | 0.3% |
| G Genito Urinary System and Sex Hormones    | 144       | 1.3% |
| H Systemic Hormonal Preparations, excl. Sex Hormones and Insulins | 220 | 2.0% |
| J Anti-Infectives for Systemic Use          | 1043      | 9.3% |
| L Antineoplastic and Immunomodulating Agents| 17        | 0.2% |
| M Musculo-Skeletal System                    | 151       | 1.4% |
| N Nervous System                             | 1913      | 17.1%|
| P Antiparasitic Products, Insecticides, and Repellents | 2   | 0%   |
| R Respiratory System                         | 800       | 7.2% |
| S Sensory Organs                             | 27        | 0.2% |
| V Various                                    | 24        | 0.2% |

References

1. United Nations. World Population Ageing 2019 Highlights; United Nations: New York, NY, USA, 2019.
2. Divo, M.J.; Martinez, C.H.; Mannino, D.M. Ageing and the epidemiology of multimorbidity. Eur. Respir. J. 2014, 44, 1055–1068. [CrossRef] [PubMed]
3. Grina, D.; Briedis, V. The use of potentially inappropriate medications among the Lithuanian elderly according to Beers and EU (7)-PIM list—A nationwide cross-sectional study on reimbursement claims data. J. Clin. Pharm. Ther. 2017, 42, 195–200. [CrossRef] [PubMed]
4. Stegemann, S.; Ecker, F.; Maio, M.; Kraahs, P.; Wohlfart, R.; Breitkreutz, J.; Zimmer, A.; Bar-Shalom, D.; Hettrich, P.; Broegmann, B. Geriatric drug therapy: Neglecting the inevitable majority. Ageing Res. Rev. 2010, 9, 384–398. [CrossRef]
5. Martins, I.D.S. Deprescribing no idoso. Rev. Port. Clinica Geral 2013, 29, 66–69. [CrossRef]
6. Lee, E.A.; Brettler, J.W.; Kanter, M.H.; Steinberg, S.G.; Khang, P.; Distasio, C.C.; Martin, J.; Dreiskin, M.; Thompson, N.H.; Cotter, T.M.; et al. Refining the Definition of Polypharmacy and Its Link to Disability in Older Adults: Conceptualizing Necessary Polypharmacy, Unnecessary Polypharmacy, and Polypharmacy of Unclear Benefit. Perm. J. 2020, 24. [CrossRef]
7. Davies, E.A.; O’Mahony, M.S. Adverse drug reactions in special populations—The elderly. Br. J. Clin. Pharm. 2015, 80, 796–807. [CrossRef] [PubMed]
8. Gurwitz, J.H. Polypharmacy: A new paradigm for quality drug therapy in the elderly? Arch. Intern. Med. 2004, 164, 1957–1959. [CrossRef] [PubMed]
9. Thake, M.; Lowry, A. A systematic review of trends in the selective exclusion of older participant from randomised clinical trials. Arch. Gerontol. Geriatr. 2017, 72, 99–102. [CrossRef] [PubMed]
10. WHO Collaborating Centre for Drug Statistics Methodology—ATC/DDD. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 2 February 2021).
11. Chocano-Bedoya, P.O.; Bischoff-Ferrari, H.A. DO-HEALTH: Vitamin D3-Omega-3-Home Exercise-Healthy Aging and Longevity Trial—Dietary Patterns in Five European Countries; Springer: Cham, Switzerland, 2019.
12. Gutierrez Valencia, M.; Martinez Velilla, N.; Lalacile Fabo, E.; Beobide Telleria, I.; Larayoz Sola, B.; Tosato, M. Interventions to optimize pharmacologic treatment in hospitalized older adults: A systematic review. Rev. Clin. Esp. 2016, 216, 205–221. [CrossRef] [PubMed]
13. Abegaz, T.M.; Birru, E.M.; Mekonnen, G.B. Potentially inappropriate prescribing in Ethiopian geriatric patients hospitalized with cardiovascular disorders using START/STOPP criteria. PLoS ONE 2018, 13, e0199549. [CrossRef] [PubMed]
14. Hernandez Martin, J.; Merino-sanjuan, V.; Peris-marti, J.; Correa-ballester, M.; Vial-escolano, R.; Merino-sanjuan, M. Applicability of the STOPP/START criteria to older polyphathological patients in a long-term care hospital. Eur. J. Hosp. Pharm. 2018, 25, 310–316. [CrossRef] [PubMed]
15. Renom-Guiteras, A.; Meyer, G.; Thurmann, P.A. The EU(7)-PIM list: A list of potentially inappropriate medications for older people consented by experts from seven European countries. Eur. J. Clin. Pharm. 2015, 71, 861–875. [CrossRef]
16. Fahrni, M.L.; Azmy, M.T.; Usir, E.; Aziz, N.A.; Hassan, Y. Inappropriate prescribing defined by STOPP and START criteria and its association with adverse drug events among hospitalized older patients: A multicentre, prospective study. *PLoS ONE* **2019**, *14*, e0219898. [CrossRef] [PubMed]

17. O'Connor, M.N.; Gallagher, P.; Byrne, S.; O'Mahony, D. Adverse drug reactions in older patients during hospitalisation: Are they predictable? *Age Ageing* **2012**, *41*, 771–776. [CrossRef] [PubMed]

18. Blanc, A.L.; Spasojevic, S.; Leszek, A.; Théodoloz, M.; Bonnabry, P.; Fumeaux, T.; Schaad, N. A comparison of two tools to screen potentially inappropriate medication in internal medicine patients. *J. Clin. Pharm. Ther.* **2018**, *43*, 232–239. [CrossRef] [PubMed]

19. Ma, Z.; Zhang, C.; Cui, X.; Liu, L. Comparison of three criteria for potentially inappropriate medications in chinese older adults. *Clin. Interv. Aging* **2019**, *14*, 65–72. [CrossRef] [PubMed]

20. Roller-Wirnsberger, R.; Thurner, B.; Pucher, C.; Lindner, S.; Wirnsberger, G.H. The clinical and therapeutic challenge of treating older patients in clinical practice. *Br. J. Clin. Pharmacol.* **2020**, *86*, 1904–1911. [CrossRef] [PubMed]

21. Reeve, E.; Gnjidic, D.; Long, J.; Hilmer, S. A systematic review of the emerging definition of ‘deprescribing’ with network analysis: Implications for future research and clinical practice. *Br. J. Clin. Pharmacol.* **2015**, *80*, 1254–1268. [CrossRef] [PubMed]