Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Case report

Aspergillus detection in airways of ICU COVID-19 patients: To treat or not to treat?

Agathe Bounhiola, Grégoire Pasquier, Ana Novara, Marie-Elisabeth Bougnoux, Eric Dannaoui

A B S T R A C T

It is now well known that patients with severe COVID-19 are at risk for developing invasive pulmonary aspergillosis (IPA). Nevertheless, the symptomatology of IPA is often atypical in mechanically ventilated patients and the radiological aspects of SARS-CoV-2 pneumonia and IPA are difficult to differentiate. In this context, the significance of the presence of Aspergillus in respiratory tract samples (detected by culture, galactomannan antigen, or specific PCR) is not yet fully understood. Here we report two cases of intubated and mechanically ventilated ICU patients with SARS-CoV-2 pneumonia, in whom Aspergillus was detected in respiratory samples, who had a favorable outcome in the absence of antifungal treatment. These two cases highlight the difficulty of using the new definitions of COVID-19 associated pulmonary aspergillosis for routine management of patients.

Introduction

After more than one year of the pandemic, secondary Aspergillus infections have emerged as a frequent complication of severe COVID-19 in ICU [1–3]. COVID-19 associated invasive pulmonary aspergillosis (CAPA) is associated with longer hospital stay [4] and increased mortality [5,6]. However, in ICU patients, the presence of Aspergillus in the airways remains difficult to interpret because the symptomatology is often atypical and radiological imaging is nonspecific [7,8], despite the new definitions of CAPA recently available [9]. Here we report two cases of patients with SARS-CoV-2 pneumonia, mechanically ventilated in ICU, in whom Aspergillus has been detected in respiratory samples, and who did not receive antifungal treatment and were alive at discharge. These cases raise the question of the significance of Aspergillus detection (by culture, galactomannan antigen, or specific PCR) in intubated COVID-19 patients (colonization or IPA) and thus the indication for antifungal treatment.

Case presentation

Case 1

A 75-year-old man with a history of ischemic heart disease, insulin-requiring diabetes complicated with diabetic nephropathy with moderate creatinine elevation (179 µmol/l) and overweight (BMI = 27) had a positive nasopharyngeal PCR for SARS-CoV-2 on March 23, while hospitalized for Charcot’s foot surgery, without any symptomatology. He was discharged from the hospital on March 27. Four days later, on March 31st, he presented to the emergency department with febrile dyspnea. No serious underlying chronic lung disease was known, nor was long-term corticosteroids treatment or immunosuppression. In the emergency room, the patient was hypoxic at 77 mmHg on arterial blood gases despite oxygenation of 9 liters/min, C-reactive protein was elevated at 203 mg/L, and he developed acute renal failure. Chest CT revealed bilateral ground-glass opacities with a crazy paving pattern suggestive of COVID-19 pneumonia. His-condition rapidly deteriorated, requiring transfer to the ICU the next day due to progression of ARDS. Due to increased oxygen requirements, the patient was intubated on April 2.

Evolution was marked by several ventilator-acquired bacterial pneumonias caused by Staphylococcus aureus and Escherichia coli,
both of which resolved after antibiotic treatments. Respiratory samples (5 broncho-alveolar lavages [BAL] and 2 bronchial aspirates [BA] between April 4 and 30) remained sterile for fungi at that time (Fig. 1, Table 1). On May 5 (day 33), a BA culture on Sabouraud agar grew Aspergillus fumigatus, and a positive Aspergillus culture was confirmed on a second BA, on May 7 (day 35) (Fig. 1). However, PCR for Aspergillus fumigatus on these respiratory samples remained negative [10]. Galactomannan testing was not performed on respiratory samples (including BAL) due to biosafety issues [11]. Investigations were completed by determination of the galactomannan index in blood on May 12 and 21, and by blood PCR for A. fumigatus, both of which were negative. Unexpectedly, the patient improved his ventilatory parameters, and no antifungal treatment was initiated. An initial extubation was attempted on May 10 with success, but later, on June 1, the patient was re-intubated due to new nosocomial bacterial pneumonia, which quickly regressed, allowing final extubation on June 4.

Subsequent BA cultures as well as PCR for A. fumigatus and fungal markers remained negative until discharge from the ICU. Of note, due to multiple nocturnal desaturations, the patient was subsequently explored and diagnosed with sleep apnea syndrome, ultimately demonstrating an underlying pulmonary pathology. Eventually, the patient was discharged to a rehabilitation unit on July 8.

Case 2

A 66-year-old man, with insulin-requiring diabetes and class 1 obesity (BMI= 33), was brought to the emergency department on April 2 for rapidly worsening febrile dyspnea with major hypoxemia, requiring 12 L/min oxygen therapy with high concentration mask and signs of acute respiratory distress. Nasopharyngeal PCR was positive for SARS-CoV-2 and CT scan showed bilateral ground-glass opacities with subpleural linear opacities strongly suggestive of COVID-19 pneumonia. The patient’s condition rapidly worsened, and he was transferred directly to ICU and intubated due to hemodynamic failure and severe hypoxemia refractory to oxygen therapy. The patient then presented several septic shocks due to ventilator-acquired pneumonias on April 12 (oropharyngeal flora), again on April 23 (Staphylococcus aureus and Pseudomonas aeruginosa) and finally on May 5 (Pseudomonas aeruginosa), all of which were treated with antibiotics.

From April 23 (day 21) to May 15 (day 43) 4 BAs and 2 BALs revealed the presence of A. fumigatus by direct examination and/or culture on April 23. Galactomannan testing was not performed on respiratory samples (including BAL) due to biosafety issues [11]. Galactomannan testing was not performed on respiratory samples (including BAL) due to biosafety issues [11]. Investigations were completed by determination of the galactomannan index in blood on May 12 and 21, and by blood PCR for A. fumigatus, both of which were negative. Unexpectedly, the patient improved his ventilatory parameters, and no antifungal treatment was initiated. An initial extubation was attempted on May 10 with success, but later, on June 1, the patient was re-intubated due to new nosocomial bacterial pneumonia, which quickly regressed, allowing final extubation on June 4.

Subsequent BA cultures as well as PCR for A. fumigatus and fungal markers remained negative until discharge from the ICU. Of note, due to multiple nocturnal desaturations, the patient was subsequently explored and diagnosed with sleep apnea syndrome, ultimately demonstrating an underlying pulmonary pathology. Eventually, the patient was discharged to a rehabilitation unit on July 8.

Case 2

A 66-year-old man, with insulin-requiring diabetes and class 1 obesity (BMI= 33), was brought to the emergency department on April 2 for rapidly worsening febrile dyspnea with major hypoxemia, requiring 12 L/min oxygen therapy with high concentration mask and signs of acute respiratory distress. Nasopharyngeal PCR was positive for SARS-CoV-2 and CT scan showed bilateral ground-glass opacities with subpleural linear opacities strongly suggestive of COVID-19 pneumonia. The patient’s condition rapidly worsened, and he was transferred directly to ICU and intubated due to hemodynamic failure and severe hypoxemia refractory to oxygen therapy. The patient then presented several septic shocks due to ventilator-acquired pneumonias on April 12 (oropharyngeal flora), again on April 23 (Staphylococcus aureus and Pseudomonas aeruginosa) and finally on May 5 (Pseudomonas aeruginosa), all of which were treated with antibiotics.

From April 23 (day 21) to May 15 (day 43) 4 BAs and 2 BALs revealed the presence of A. fumigatus by direct examination and/or culture (Fig. 1). Only two PCR for A. fumigatus were positive on day 21 (CT: 34.5) and on day 43 (CT: 33.6) (Table 1). Of note, GM assay on BA and BALs were not performed. However, PCR for A. fumigatus on blood and serum GM antigen remained negative on May 10 and 17. No antifungal treatment was initiated. The patient had no concomitant respiratory or hemodynamic degradation and was extubated on May 15. He was transferred to an internal medicine unit on May 17 and then transferred to rehabilitation a few days later.

These two clinical observations questioned the positive predictive value of Aspergillus detection in respiratory samples.

Discussion

Here we report two interesting and yet different cases that highlight the difficulty of interpretation of a positive culture for Aspergillus in respiratory samples from COVID-19 patients, as previously reported [12]. Indeed, the first case illustrates a probable transient colonization of the respiratory tract by A. fumigatus (identified on BA only), while the second case shows sustained colonization (on BA and BAL) with two positive A. fumigatus PCR on BAL. None of them...
had a positive blood biomarker for IPA (A. fumigatus PCR or GM). The observed discrepancies between the results of culture and PCR on respiratory samples may be explained by the used of small volume for the PCR, as the PCR was performed on remaining samples that were primarily used for cultures. Therefore, the volume used for PCR (100 μl) was probably not optimal.

Patient 2 would have been classified as putative IPA according the (modified) AspICU classification [13]. Therefore, an antifungal treatment could have been introduced. However, the patient’s outcome was favorable in the absence of antifungal treatment. In the most recent definitions [9], new criteria such as PCR and the possibility to use non-BAL respiratory samples have been introduced to help diagnose CAPA in ICU patients.

Using this new classification, Patient #1 would have been classified with possible CAPA (two BAs with positive A. fumigatus culture) and Patient #2 with probable CAPA (two BALs and 4 BAs with positive A. fumigatus culture or PCR). Given the favorable outcome without antifungal treatment, we could assume that these two patients were more likely colonized with Aspergillus, but did not develop an invasive pulmonary infection. It should be highlighted that guidelines for definition of cases are primarily intended for clinical trials and epidemiological studies but not to direct or guide patient care [14].

The presence of Aspergillus in the respiratory tract may not be sufficient to diagnose IPA in a COVID-19 patient with a non-specific pulmonary imaging. Nevertheless, isolation of Aspergillus from a non-sterile respiratory specimen cannot be disregarded and should be used as a trigger to further evaluate patients for invasive pulmonary aspergillosis. In this context, the detection of GM in BAL in these non-neutropenic patients is important. A lung biopsy (CT guided/ transbronchial) to reach a diagnosis of proven CAPA in such clinical situation may also be of interest, also there are currently few data that evaluate this procedure [15]. The difficulty to differentiate colonization from invasive infection among putative CAPA cases has been reviewed previously [7,8]. Absence of fever and typical radiology of IA should make one think of colonization rather than infection. Moreover, routine detection of Aspergillus markers (culture, GM, or PCR) from BAL/BA may not be helpful and may confuse clinicians as in described cases. Ideally, such tests should be performed in patients with high pre-test probability for invasive fungal infection (CAPA) as suspected because of appropriate clinical scenario like new onset fever, or progressive worsening respiratory status despite adequate antibiotic treatment.

In the case of Aspergillus tracheobronchitis in COVID-19 patients, it has been proposed that different factors contribute to the progression from Aspergillus colonization to invasive infection and local angioinvasion [16]. A similar pathophysiology can be hypothesized for invasive pulmonary aspergillosis. The thresholds between the different stages of disease progression are important but difficult to assess during the management of the patients. In this context, a management on a case-by-case basis seems necessary. If antifungal treatment is not started at this stage, close monitoring of the patient should be performed. Starting an antifungal prophylaxis could be an option as it has been proposed for influenza associated invasive aspergillosis [17]. Nevertheless, there are currently no data available to support this choice in COVID-19 patients. Clinical studies are urgently needed to address these issues. In summary, the presence of Aspergillus in a respiratory sample in a severe COVID-19 patient with ARDS and non-specific pulmonary imaging remains difficult to interpret despite the new CAPA definitions.

Declarations

Funding: No funding

Authors’ contributions

Conceptualization, ED, MEB; data curation, GP and AB; Formal analysis, GP and AB; writing - original draft , GP, AB, ED, MEB; writing - review and editing, all authors.

Consent to participate

Informed consent has been obtained

Declaration of Competing Interest

During the past 5 years, Eric Dannaoui has received research grants from MSD and Gilead, travel grants from Gilead, MSD, Pfizer, and Astellas, and speaker’s fee from Gilead, MSD, and Astellas. Marie-Elisabeth Bougnoux has received research grants from Astellas, and speaker’s fee from Pfizer, MSD, Astellas, and Gilead. Other authors have no conflict of interests.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.mycmed.2022.101290.

Table 1

Characteristics of two COVID-19 patients in ICU for whom presence of Aspergillus has been detected.

Characteristics	Patient 1	Patient 2
Gender	Male	Male
Age (years)	75	65
Comorbidities	Insulin-requiring diabetes, overweight (BMI=27), chronic kidney disease	Insulin-requiring diabetes, obesity (BMI=33)
Host factors	None	None
Chest CT scan	Typical COVID-19 pneumonia moderate to severe	Typical COVID-19 pneumonia
Days on invasive mechanical ventilation prior to detection of Aspergillus	34 days	21 days
Culture of A. fumigatus in respiratory samples, n/N	BAL 0/4, BA 2/5	BAL 2/3, BA 4/4
positive serum sample (PCR or GM), n/N	0/2	0/5
clinical outcome	Improvement	Stability
Antifungal therapy	None	None
Total days of intubation	70 days	43 days
Total days in ICU	69 days	53 days
Final outcome	Discharged (rehabilitation)	Discharged (rehabilitation)
EORTC definition [14]	Colonization	Colonization
AspICU definition [16]	Colonization	Putative IPA
Modified AspICU definition [13]	Colonization	Putative IPA
ECM/ISHAM definition [9]	Possible CAPA	Probable CAPA

BAL: bronchoalveolar lavage, **BA:** bronchial aspiration, **GM:** galactomannan.
References

[1] Bassetti M, Kollef MH, Timsit JF. Bacterial and fungal superinfections in critically ill patients with COVID-19. Intensive Care Med 2020;46(11):2071–4.

[2] Marr KA, Platt A, Tornheim JA, Zhang SX, Datta K, Cardozo C, et al. Aspergillosis complicating severe coronavirus disease. Emer Infect Dis 2021;27(1):18–25.

[3] Gangneux JP, Dannaoui E, Fedorka C, Luyt CE, Botterel F, De Prost N, et al. Fungal infections in mechanically ventilated patients with COVID-19 during the first week: the French multicentre MYCOVID study. Lancet Respir Med 2022;10(2):180–90.

[4] Permpalung N, Chiang TP, Massie AB, Zhang SX, Avery RK, Nematollahi S, et al. COVID-19 associated pulmonary aspergillosis in mechanically ventilated patients. Clin Infect Dis 2021.

[5] Bartoletti M, Pascale R, Cricca M, Rinaldi M, Maccaro A, Bussini L, et al. Epidemiology of invasive pulmonary aspergillosis among COVID-19 intubated patients: a prospective study. Clin Infect Dis 2020.

[6] Singh S, Verma N, Kanaujia R, Chakrabarti A, Rudramurthy SM. Mortality in critically ill patients with coronavirus disease 2019-associated pulmonary aspergillosis: a systematic review and meta-analysis. Mycoses 2021.

[7] Lamoth F, Glampedakis E, Boillat-Blanco N, Oddo M, Pagani JL. Incidence of invasive pulmonary aspergillosis among COVID-19 intubated patients: a systematic review and meta-analysis. Mycoses 2021.

[8] Pasquier G, Bounhiol A, Robert Gangneux F, Zahar JR, Gangneux JP, Novara A, et al. A review of significance of Aspergillus detection in airways of ICU COVID-19 patients. Mycoses 2021;64(9):580–8.

[9] Koehler P, Bassetti M, Chakrabarti A, Chen SCA, Colombo AI, Hoenigl M, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis 2021;21(8):e149–e62.

[10] Suarez F, Lorcholary O, Buland S, Rubio MT, Ghez D, Mahe V, et al. Detection of circulating Aspergillus fumigatus DNA by real-time PCR assay of large serum volumes improves early diagnosis of invasive aspergillosis in high-risk adult patients under hematologic surveillance. J Clin Microbiol 2008;46(11):3772–7.

[11] Hogardt M, Besier S, Vorbeck L, Gottig S, Wichelhaus TA, Villerling D, et al. Management of bacteriological specimens of patients suffering from coronavirus disease 2019 (COVID-19). Clin Microbiol Infect 2021;27(3):325–30.

[12] Fedor A, Poignan C, Blaize M, Lampros A. Fungal Infection during COVID-19: does aspergillus mean secondary invasive aspergillosis? Am J Respir Crit Care Med 2020;202(6):902–3.

[13] Schauvelvliegh F, Rijnjers BJA, Philips N, Warwji R, Vanderbeke L, Van Tienen C, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med 2018;6(10):782–92.

[14] Donnelly JP, Chen SC, Kaufman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2020;71(5):1367–76.

[15] Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J. Hospital Infect. 2021;113:115–29.

[16] van de Veerdenok FL, Bruggemann RJM, Vos S, De Hertogh G, Wauters J, Reijers MHE, et al. COVID-19-associated Aspergillus tracheobronchitis: the interplay between viral tropism, host defence, and fungal invasion. Lancet Respir Med 2021.

[17] Verweij PE, Rijnjers BJA, Bruggemann RJM, Azoulay E, Bassetti M, Blot S, et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion. Intensive Care Med 2020;46(8):1524–35.

[18] Blot SI, Taccone FS, Van den Abeele AM, Bulpa P, Meersseman W, Brusselaeis N, et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am J Respir Crit Care Med 2012;186(1):56–64.