Spectral analysis of bone tissue of rats exposed to hyperthermia and mineral bone component injection

E V Timchenko¹, P E Timchenko¹, E V Pisareva¹, M Y Vlasov², L T Volova³, O O Frolov¹, Y V Fedorova¹, M Y Gorchenkova¹, M A Daniel¹ and E F Yagofarova¹

¹Samara National Research University, 443086, Russia, Samara, Moscow highway, 34
²Experimental Medicine and Biotechnologies Institute of the Samara State Medical University, 443099, Russia, Samara, Chapaevskaya Street, 89

E-mail: laser-optics.timchenko@mail.ru

Abstract. Using the method of Raman spectroscopy the study of bone tissue of rats has been made in this work after hyperthermia and injection of allogenic hydroxyapatite. It has been established that the process of thermal treatment of bone material up to 70°C for 15 minutes allows preserving organic components of biomaterials.

1. Introduction

The motor system diseases are one of the most widespread pathologies and often lead to disability, decline in the quality of life and untimely death. The progression of the diseases is based on imbalance of proportion of mineral and organic components of bone tissue, imbalance of phosphor-calcium proportion, micronutrient deficiency and hormonal imbalance of functioning of endocrine glands. In particular, the result of the changes is a bone resorption causing its density reduction, loss of strength and, finally, braking.

Finding the mechanisms of metabolic disorders causing bone resorption is an urgent task of practical medicine. The use of several models of bone resorption in experiments: glucocorticoid, hypoestrogenic, hyperthermal and others [1-4] is known at the preclinical stage for studying bone protective properties of different medicines, bioimplants, such as mineral bone component (MBC). The choice of the thermal model in this research was first of all due to high proven efficiency of bone resorption development, simplicity and convenience of setting the experiment. The previous experiments have also shown that hyperthermia leads to endogenous increase of the level of steroids causing bone resorption [1].

According to studies high temperature can influence metabolic processes in bone and cartilage tissues [5-6]. In view of the above it is necessary to evaluate the efficiency of using bone plasty materials of allogenic origin for correction of bone resorption. One of the methods for such assessment is a Raman spectroscopy method.

The spectroscopy methods are the newest methods for studying biotissues. One of the promising methods is a Raman spectroscopy [7-9]. It is a simple to use, noninvasive, nondestructive method.

The aim of this work is spectral analysis of bone tissue of rats after hyperthermia and MBC injection.
2. Materials and methods of research
The experiment was made on mature rats. The first group included control intact rats. The rats of the second group were daily exposed to short-term hyperthermia (70°C) for 28 days, ones, 12 minutes a day. The rats of the third group had the similar exposure with additional intramuscular injection of MBC suspension in a dose of 100 mg/kg body weight on the 14th day after thermal exposure. The forth group included the placebo rats (hyperthermia in the above described manner with injection of saline solution instead of MBC). The results of the placebo group were similar to the results of the group of thermal exposure. Therefore, these groups were further combined. The MBC (hydroxyapatite) was received on original patented method [10]. On the 28th day the rats were withdrawn from the experiment according to bioethical standards.

The materials of the study were the samples of rat humeri that were taken after decapitation, cleared from soft tissues and the spectroscopy of their surface was made.

The method of the study was Raman spectroscopy method, implemented using the stand described in details in [7-9].

3. Results
Figure 1 shows the typical average Raman spectra of the tree groups of bone tissue samples in the area of wave numbers of 750 –1800 cm⁻¹. The main differences are seen in the Raman lines of 956 cm⁻¹, 1068 - 1274 cm⁻¹, 1407 - 1443 cm⁻¹, 1557 cm⁻¹, 1660 cm⁻¹ and 1738 cm⁻¹. The analysis of the Raman spectra is shown in Table 1.

![Figure 1](image-url)

Figure 1. Average normalized Raman spectra of bone tissue samples: 1 –control, 2 – heating with oup HAp, 3 – heating with HAp.
Table 1. The table of Raman spectral lines, characteristic for bone tissue samples.

Raman shift (cm\(^{-1}\))	Assignments
815	Phosphodiester bands in RNA / DNA (C’',O-P-O-C, stretching) (α-form helix, Phosphpate)
850, 870	Benzene ring of proline and hydroxyproline (collagen assignment) (C-C stretching)
956	PO\(_3\)^{2-} (ν1) (P-O valence symmetrical)
1000	Aromatic ring breathing of phenylalanine ν(C–C), (collagen assignment)
1031	Phenylalanine (CH\(_2\)CH\(_3\) bending modes (protein assignment))
1068	CO\(_3\)^{2-} (ν1) B-type substitution (C–O planar valence)
1106	CO\(_3\)^{2-} (ν1) A-type substitution (C–O planar valence)
1138	Phospholipids, fatty acid (protein assignment)
1167	GAGs, CSPGs
1200	Tyrosine (collagen assignment)
1230-1280	Amide III random coil (disordered) and α-helix
1407	CH\(_3\)in-phase deformation T, A, G of DNA
1429	Deoxyribose, (B.Z-marker)
1443	Lipids and fatty acids, CH\(_2\) scissoring & CH\(_3\) bending (collagen assignment)
1557	Amide II (Parallel / Antiparallel β-sheet structure)
1666	Amide I (C=O stretching) Unordered or random structure, Collagen IV, I
1734	Phospholipids, fattyacid (C=O ester group)

The relative coefficients were introduced for relative quantitative assessment of component composition of bioimplant surface. Amide II related to the wave number of 1557 cm\(^{-1}\) is a relatively constant component in the studied samples, therefore the amplitude of this divided line has been used as a denominator \(I_{1557}\) in the introduced coefficients \((k)\):

\[
k_i = \frac{I_i}{I_{1557}},
\]

where \(I_i\) – intensities at wave numbers of the analyzed components.

The mineral components of bone tissue related to the lines of 956 cm\(^{-1}\) and 1068 cm\(^{-1}\) provide the bone quality and strength [11]. Introducing the hydroxyapatite to bone tissue composition leads to improving its physico-mechanical properties: tensile strength in bending, modulus of elasticity and firmness increase. The line of 1068 cm\(^{-1}\) in Raman spectra corresponds to substitution of carbonate component of hydroxyapatite in the apatite lattice, known as B-type carbonate substitution [12]. The increase of the degree of B-type carbonate substitution in bone resorption causes the increase of bone fragility and vice versa its decrease characterizes younger bone tissue [13].

Amide III and amide I, presented by the main lines of 1238 cm\(^{-1}\) and 1272 cm\(^{-1}\) and 1666 cm\(^{-1}\), are correspondingly attributed to collagen structures that change significantly when comparing the samples of the first and the second group with the samples after HAp treatment.

The analysis of amplitudes of the divided lines normalized to the intensity of the line of 1557 cm\(^{-1}\) (Amide II) using the method of linear discriminant analysis (LDA) was made. This method was implemented in the software SPSS Statistics 23. The results of analysis of difference between the groups of samples of bone tissue are presented as a set of data: the chart of scores (Figure 2) and the chart of the most informative variables of the structural matrix (Figure 3).

The analysis of relationship between the groups of samples on the basis of thermal treatment of bone materials up to 70°C for 15 minutes is shown in Figure 2. It is shown that the main differences between the three groups of samples are described by discriminant function LD-1 (81,9 % of explained dispersion). A sampling is 42 Raman spectra. The positive values of LD-1 characterize mainly the Raman spectra of the samples after thermal treatment, and vice versa, the negative values...
characterize the Raman spectra of control samples without treatment. The remaining 18.1% of explained dispersion are described by the function LD-2, which negative values characterize the samples without additional dose of hydroxyapatite. The areas of the groups do not have significant intersections.

Figure 2. The chart of scores of linear discriminant functions of bone tissue samples.

Figure 3. The chart of loads for differentiation of the samples on the basis of influence of thermal treatment.
The most significant differences between the groups of samples are described by the Raman lines shown in Figure 3 and having the highest value of linear discriminat functions LD–1 and LD–2 on module.

The higher is the value LD-1 for a variable, the more it influences the observed difference of component composition, e.g. it can be seen in the value of coefficient k960, that corresponds to P-O symmetrical valence fluctuations of PO₄³⁻(ν₁) hydroxyapatite, which value is higher for the samples of the group after thermal treatment.

4. Conclusion
The comparative spectral analysis of the samples of humeri was made. Using the spectral analysis, we have shown that relative intensities of the lines of 957 and 1068 cm⁻¹, that correspond to mineral components of the studied samples, are higher in the samples after heating than in control group. We have also established the increase of relative intensity of the lines of 1666 cm⁻¹ (amide I) and the lines of 1000 and 1031 cm⁻¹ (phenylalanine) and decrease of relative intensities of the lines, corresponding to glycosaminoglycans, tyrosine and lipids in the process of thermal treatment.

Therefore, it was established that in the process of thermal treatment of bone materials up to 70°C for 15 minutes the organic components of biomaterials are preserved.

Acknowledgments
The research was carried out with support of Russian Foundation of Basic Research, project number 18-315-20017\18.

References
[1] Pisareva E V, Sokolovskaya A B and Vlasov M Y 2012 Modelling of steroid induced bone resorption in the experiment against a background of allogen hydroxyapatite injections J Vestnik of SSU 3 37–44
[2] Romanova D A and Pisareva E V 2018 The research of the level of alkaline phosphatase in animals in modelling glucocorticoid resorption against a background of allogenic hydroxyapatite J Synergy of Sciences 20 551–9
[3] Sheikh Z et al 2019 In vivo bone effects of a novel bisphosphonate-EP44 conjugate drug (C3) for reversing osteoporotic bone loss in an ovarietomized rat model JBM R Plus 9 10237
[4] Wang et al 2020 Osthole-loaded N-octyl-O-sulfonyl chitosan micelles (NSC-OST) inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in rats Journal of Cellular and Molecular Medicine 24 4105-17
[5] Lavrukova O S and Aleksina L A 2014 Features of articular (epyphyseal) cartilage of the humeral head after the influence of high temperature J Studies of SPSMU I.P.Pavlov 21 44–6.
[6] Reznik L B, Rozhkov K Y, Erofeev S A, Dziuba G G and Kotov D V 2015 Using phisical factors for optimization of bone regeneration (literaturu review) Journal of Clonical and Experimental Orthopaedics 1 90
[7] Timchenko P E et al 2018 Optical analysis of the osteoporotic bone tissue and evaluation of its prevention using allogenic hydroxyapatite J. Phys.: Conf. Ser.1135 012066
[8] Timchenko P E, Timchenko E V, Volova L T and Frolov O O 2019 Spectral Analysis of Organic Components of Deminer alized Bone Biografts J Optics and Spectroscopy 126 769–75
[9] Timchenko E V, Timchenko P E, Frolov O O, Yagofarova E F, Cherny-Tkach K B, Zybin M A and Dolgushov G G 2019 Optical Methods for Periodontitis Early Rapid Diagnosis J Electrical Engineering and Photonics 298–300
[10] Volova L T and Podkovkin V G The method of allogenic hydroxyapatite producing (Patent for invention 216899814.02.2000)
[11] Fonseca H et al 2014 Bone Quality: The Determinants of Bone Strength and Fragility J Sports Med, Review article 44 37-53
[12] Landi E et al 2005 Influence of Synthesis and Sintering Parameters on the Characteristics of Calcium Phosphate J Biomaterials 26 2835
[13] Wehrmeister U et al 2011 Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials J Raman Spectrosc 42 926–35