The glucagon-like peptide-1 (GLP-1) receptor is a validated drug target for metabolic disorders. Ago-allosteric modulators are capable of acting both as agonists on their own and as efficacy enhancers of orthosteric ligands. However, the molecular details of ago-allosterism remain elusive. Here, we report three cryo-electron microscopy structures of GLP-1R bound to (i) compound 2 (an ago-allosteric modulator); (ii) compound 2 and GLP-1; and (iii) compound 2 and LY3502970 (a small molecule agonist), all in complex with heterotrimeric Gs. The structures reveal that compound 2 is covalently bonded to C347 at the cytoplasmic end of TM6 and triggers its outward movement in cooperation with the ECD whose N terminus penetrates into the GLP-1 binding site. This allows compound 2 to execute positive allosteric modulation through enhancement of both agonist binding and G protein coupling. Our findings offer insights into the structural basis of ago-allosterism at GLP-1R and may aid the design of better therapeutics.
A

s one of the most well-known class B1 G-protein-coupled receptors (GPCRs), the glucagon-like peptide-1 receptor (GLP-1R) is a clinically validated drug target for type 2 diabetes and obesity. Despite the therapeutic success, currently available GLP-1R agonists are suboptimal due to poor patient compliance caused by subcutaneous injections and several side effects such as nausea and vomiting. Oral delivery of GLP-1 mimetics has been pursued for many years, with semaglutide being the first and only one in the clinic albeit its low bioavailability and frequent gastrointestinal complaints. Thus, the development of orally active small molecule GLP-1R modulators remains an attractive strategy and a few compounds have progressed to clinical trials.

The scientific advances in GPCR structural biology, fueled by tremendous interests from both academia and industry, led to 16 solved GLP-1R structures. In 2017, two inactive structures bound to negative allosteric modulators (NAMs), one intermediate structure bound to a truncated peptide agonist, and one active structure in complex with GLP-1 and heterotrimetric G\(_i\) were reported. This was followed by high resolution ECL-bound structures in complex with peptides (GLP-1 and exendin-5)\(^{12,13}\), non-peptidic agonists (TT-OAD2, PF-06882961, CHU-128, RGT1383, and LY3502970)\(^{13}\), and a positive allosteric modulator (PAM) LSN31604417, as well as a peptide-free apo state\(^{18}\) and three thermal-stabilized transmembrane domain (TMD)\(^{9}\) structures. They display diversified conformations and reveal key information on ligand recognition and GLP-1R activation. Integrated with the functional, pharmacological, and computational data, these studies demonstrate distinct locations and different conformations of the orthosteric binding pocket between small molecule and peptidic ligands.

Allosteric modulation by PAMs that bind anywhere distinct from the orthosteric site of endogenous ligands and enhance the activity of agonists in an uncompetitive way is an alternative approach to peptide therapy\(^{19–22}\). Previous studies showed that several PAMs of GLP-1R, such as the most characterized electrophilic chemotype compound BETP\(^{23,24}\) and the substituted quinoxaline compound 2 (6,7-dichloro-3-methanesulfonyl-2-tert-butylamino-quinoxaline)\(^{25,26}\), were able to initiate or promote receptor activation\(^{9,27}\). Apart from increasing the binding affinity of GLP-1, compound 2 also acts as an agonist on its own, thereby being classified as an ago-allosteric modulator (ago-PAM) of GLP-1R\(^{25,28}\). Specifically, in the absence of an orthosteric ligand, compound 2 displayed a strong partial agonism in cAMP response (80% \(E_{\text{max}}\) of GLP-1), a weak partial agonism in pERK1/2, and no detectable calcium mobilization response\(^{29,30}\). It also caused less GLP-1R internalization than GLP-1, due to the weaker \(\beta\)-arrestin recruitment (30–50% \(E_{\text{max}}\) of GLP-1)\(^{30}\). As a PAM, compound 2 caused a concentration-dependent increase in the affinity of GLP-1 and oxyntomodulin\(^{31}\) and induced biased signaling in a probe-dependent manner\(^{31,32}\). In addition, compound 2 was also reported to modulate CAMP responses elicited by small molecule agonists including Boc5, BMS21, and TT15\(^{39}\). Although structurally and functionally unique, this compound has poor pharmacokinetic properties due to its electrophilic nature that preclude potential clinical development. Interestingly, like BETP, compound 2 interacts with cysteine 3476.36 via covalent modification at the cytoplasmic side of GLP-1R, consistent with our previous observation that an intact extracellular domain (ECD) is required for the activity of BETP and compound 2\(^{24}\) albeit the basis for such a requirement remains unknown. This distinct feature prompts us to use compound 2 as a tool to study the structural basis of its ago-allosterism in the context of both peptidic and non-peptidic ligands.

Here we report high-resolution cryo-electron microscopy (cryo-EM) structures of human GLP-1R–G\(_i\) in complex with compound 2 alone, with both compound 2 and endogenous peptidic agonist GLP-1, or with compound 2 and a small molecule agonist (LY3502970). The structural information obtained from this study provides valuable insights into molecular mechanisms by which compound 2 exerts the ago-allosteric action and its relevance to drug discovery.

Results

Structure determination. To understand activation and allostery of compound 2 on GLP-1R, we determined the structures of GLP-1R–G\(_i\) complexes bound to compound 2 alone and in the presence of GLP-1 or LY3502970 (Fig. 1). The NanoBt tethering strategy and Nb35 were used to stabilize the protein complexes\(^{35,36}\) (Supplementary Fig. 1a). These protein complexes were then purified, resolved as monodispersed peaks on size-exclusion chromatography (SEC), and verified by SDS gel and negative staining to ascertain all the expected components (Supplementary Fig. 1c–e). Vitrified complexes were imaged by cryo-EM. After sorting by constitutive 2D and 3D classifications, 3D consensus density maps were reconstructed with global resolutions of 2.5 Å (without ECD) or 3.3 Å (with ECD) for compound 2 alone, 2.5 Å for compound 2 plus GLP-1, and 2.9 Å for compound 2 plus LY3502970, respectively (Supplementary Fig. 2 and Supplementary Table 1). The cryo-EM maps allowed us to build an unambiguous model for most regions of the complexes except for the flexible a-helical domain (AHD) of G\(_i\) and the stalk between transmembrane helices 1 (TM1) and ECD, which were poorly resolved in most cryo-EM structures of GPCR–G\(_i\) complex (Supplementary Fig. 3). In addition, residues N338 to T343 in the intracellular loop 3 (ICL3) of the compound 2–GLP-1–GLP-1R–G\(_i\) and compound 2–LY3502970–GLP-1R–G\(_i\) complexes, F369 to R376 in the extracellular loop 3 (ECL3) of the compound 2–GLP-1R–G\(_i\) and compound 2–LY3502970–GLP-1R–G\(_i\) complexes, and P56 to F61 in the ECD of the compound 2–GLP-1R–G\(_i\) complex were also poorly resolved and thus omitted from the corresponding final model. The ECD in the GLP-1 and compound 2-bound complexes was clear enough to enable modeling of the backbone and a majority of side-chains using the ECD and TMD-refined maps (Fig. 1).

Binding of compound 2. The compound 2–GLP-1–GLP-1R–G\(_i\) complex has a typical active assembly close to that of GLP-1–GLP-1R–G\(_i\) with Ca root mean square deviation (RMSD) of 0.71 Å for the whole complex (Fig. 2a). Compared with the peptide-free apo and intermediate state structures, compound 2 rendered the TM bundle and the ECD of GLP-1R undergo extensive conformational transitions (Supplementary Figs. 4 and 5). Specifically, starting from a closed conformation in apo state, the ECD of GLP-1R bound by either compound 2 or truncated peptide agonist (peptide 5)\(^{10}\) rotated clockwise and approached ECL1 and ECL2. The extracellular parts of TM1 and TM2 moved inward to the center, while TM7 moved outwards accompanied by conformational changes of ECL1. In the intracellular domain, the sharp kink around the conserved Pro\(^{6,47}\)-X-X-Gly\(^{6,50}\) motif in TM6 pivoted the intracellular half of TM6 to move outwards by 18.4 Å (measured by C\(_{\alpha}\) carbon of K346.35b), to the same extent as that achieved by orthosteric agonists (Supplementary Fig. 4). This was joined by a modest outward movement of TM5 (3.6 Å measured by C\(_{\alpha}\) carbon of K336.60b), thereby creating an intracellular crevice to accommodate G\(_i\) coupling\(^{11,12,18}\). The latter was anchored by the a5 helix of G\(_i\) (Ga-h5) and formed rich contacts with TMs 2-7 and ICL3-1-3 (Supplementary Fig. 6).

Instead of occupying the orthosteric binding pocket where peptide or small molecule agonists generally bind, the high-
resolution cryo-EM map demonstrates that compound 2 is covalently bonded to C347.36b (Wootten numbering in superscript37) and mounted on the membrane-facing surface of the cytoplasmic end of TM6, providing solid structural evidence of a unique binding site for the ago-allosteric modulator (Fig. 2b and Supplementary Fig. 3d). Such a covalent modification is supported by a previous report showing that non-sulfonic substituents at the C-2 position (methylsulfone) failed to produce measurable cAMP responses38, consistent with our mutagenesis results, where C347.6.36bA mutation diminished the potency of compound 2 without affecting that of GLP-1 (Fig. 2c and Supplementary Table 2). Compound 2 forms predominantly hydrophobic interactions with the adjacent residues in TM6. The tert-butyl moiety of compound 2 points to TM7 and makes hydrophobic contacts with A350.6.39b and K351.6.40b, replacement at the C-3 position by polar functional groups caused a dramatic decline in its potency and efficacy38. The dichloroquinoxaline group extends to ICL3 forming nonpolar interactions with K346.6.35b, C347.6.36b, and a cholesterol molecule in TM6, the introduction of electron-donating substituents or replacement of quinoxalines by benzimidazole or quinoline at C-6 and C-7 positions led to poor tolerance38. The bulky A350.6.39bW and K351.6.40bA mutants almost abolished the maximal response (E_{max}) of GLP-1R-mediated cAMP accumulation in presence of compound 2, while V332.5.62bA, K346.6.35bA, and L349.6.38bA mutants greatly elevated basal cAMP activities but significantly diminished the efficacy of the response upon stimulation by either compound 2 or GLP-1, suggesting these mutations affect the kink of TM6 required for receptor activation. The same covalent mechanism of action was previously demonstrated for another PAM of GLP-1R (i.e., BETP), showing that in addition to C347, BETP also formed a covalent adduct with C438 in the C-terminus27 that is invisible in the current GLP-1R complex structures. Although mutation of C438 did not alter the PAM

Fig. 1 The overall cryo-EM structure of GLP-1R-G_s complexes. The cryo-EM maps with a disc-shaped micelle (left) and cartoon representation (middle) of compound 2-bound complex (a), compound 2 and GLP-1-bound complex (b), and compound 2 and LY3502970-bound complex (c). The chemical structures of compound 2 and LY3502970 are shown in the right panel of a and c. Compound 2 and GLP-1-bound GLP-1R in red; compound 2 and LY3502970-bound GLP-1R in blue; Ga, Ras-like domain in yellow; Gβ subunit in cyan; Gy subunit in navy blue; Nb35 in gray; GLP-1 in green; compound 2 in orange; LY3502970 in purple.
activity of BETP or compound 227, it cannot rule out the possible formation of a covalent adduct at C438 in our compound 2-bound GLP-1R structure.

ECD conformation. The most profound structural feature in the extracellular half of compound 2-bound GLP-1R is the unique position and orientation of ECD, distinct from all available full-length GLP-1R structures reported to date (Fig. 3). The tripartite αββ/α architecture of ECD observed in apo or peptide-bound structures39 was partially disturbed in the compound 2–GLP-1R–Gs complex except for the N-terminal α-helix (residues 29 to 49). GLP-1-bound ECD was shown to be fully extended11,34 whereas that of compound 2-bound folded down towards the TMD core and penetrated into the orthosteric binding pocket through its N-terminal α-helix and loop by inward movement of 9.0 Å (measured at the C\textsubscript{α} of R40). Notably, the orientation of ECD is distinct from that of GLP-1-bound GLP-1R with a rotation angle of 97.4 degrees: the former pointed from ECL2 to TM1-TM2 and the latter oriented from ECL1 to TM5-TM6 (Fig. 3a). The tip of the N-terminal α-helix (T29) moved by 19.9 Å and inserted into a cleft between TM1 and TM2, partially overlapping with the recently reported allosteric site of PAM LSN316044017. Locked by the conserved disulfide bond (C46-C71) with the N-terminal α-helix, β1 strand (residues 61 to 77) of GLP-1R ECD also shifted towards ECL1 by 9.3 Å (measured at the Ca of E68). Such a movement consequently shortened the length of α-helix at ECL1 in apo state and extended TM2 by one turn, thereby stabilizing the ECD conformation via an extensive network of complementary polar and non-polar contacts (Fig. 3a and Supplementary Fig. 5). Consistently, our molecular dynamics (MD) simulations found that the ECD interacted with the TMD intimately, such that the N-terminal α-helix stably inserted to the TMD core (Supplementary Fig. 7).

To reveal functional roles of the ECD in the presence of either compound 2 or GLP-1, we truncated the N-terminal α-helix in a systemic manner and measured cAMP responses subsequently (Fig. 3b and Supplementary Table 2). For compound 2, truncation of a large portion (28–48 residues) of the N-terminal α-helix resulted in a dramatic efficacy decrease of compound 2, implying the role of the tip of N-terminal α-helix in the ago-allosterism. Removal of the N-terminal 55 residues or ECD deletion completely abolished the activation effect of compound 2 despite that it binds to the cytoplasmic side of TM6, consistent with our previous report that ECD is required for GLP-1R and GCGR activation34. Besides, similar dose-response characteristics between GLP-1 and compound 2 suggest that the latter is capable of stimulating GLP-1R independently (ago-allosteric activation).

In contrast, the action of GLP-1 is dependent on the ECD which binds to the C-terminal half of the peptide. Truncation of the ECD by 28 or 33 residues reduced GLP-1 potency by 50-fold and 13-fold, respectively. In line with the previous study34, cAMP signaling was completely abolished when 38 residues were truncated, but this shortened construct still worked for compound 2. This phenomenon was also observed in constructs expressing wild-type and mutant glucagon receptors. For instance, F3456.36bC mutant of GCGR was sufficient to confer sensitivity to compound 2 (Fig. 3b and Supplementary Table 3). These results show that the ECD requirement is ligand-dependent and is differentiated between orthosteric and allosteric modulators.

To further address this point, we analyzed the TMD-ECD interacting patterns by measuring the buried surface area between TMD and ECD or between TMD and agonists for all available GLP-1R structures with visible ECDs (Fig. 3c, d). In the apo state, its ECD...
adopted a closed TMD-interacting confirmation with a buried surface area of 928 Å². When bound by peptide agonists such as GLP-1 and exendin-P5, their ECDs stood up along the α-helical peptide and made extensive contacts with the C-terminal half of the peptide, thereby limiting the contact with TMD (~350 Å²). Meanwhile, the N-terminal half of the peptide inserted into the TMD core with massive contacts (buried surface area of more than 2000 Å²). As a comparison, small molecules showed much reduced TMD-interacting surface area (~1000 Å²). Complimentarily, its ECD folded down towards the TMD to stabilize the complex with a buried surface area of ~1500 Å², remarkably higher than that of peptidic ligands. In the case of compound 2-bound structure, the N-terminal α-helix of ECD penetrated to the TMD core and formed extensive contacts with residues in TM1-3, ECL1, and ECL2, resulting in an ECD-TMD interacting surface area of 1438.4 Å², similar to other small molecule agonists. The dynamic nature of ECD observed in this study is consistent with previous findings that GLP-1R is equipped with high versatility to recognize a wide range of ligands with distinct chemotypes and to participate in diversified receptor activation processes.

Receptor activation. In spite of various conformational changes upon ligand binding, signaling initiation by either peptidic or small molecule agonists shares a common pathway, i.e., reorganization of the central polar network, HETX motif, and TM2-6-7-helix 8 polar network, as well as the hallmark outward movement of TM6. Thus, the complexes of GLP-1–GLP-1R–Gs and compound 2–GLP-1R–Gs displayed almost identical conformations reflecting the above polar network rearrangement and TM6 movement (Fig. 4). However, there are some distinct structural features in compound 2 alone bound receptor. At the bottom of the orthosteric pocket, the side chain of R3106.40b pointed to the TMD core and formed a cation-pi stacking with Y2413.44b, where it pointed to ECL3 and made no contact with the TMD core in the GLP-1 bound structure. Another notable difference resides in H3636.52b, which is adjacent to the conserved Pro6.47b-X-X-Gly6.50b motif that pivots the intracellular half of TM6 to move outwards. Among all the active GLP-1R structures, H3636.52b dipped into the TMD core whereas it is reoriented ~90° to an outside-facing position and formed a hydrogen bond with Q3947.49b through dismissal of the hydrogen bond with the...
backbone carbonyl oxygen atom of P358. The distinct features manifested by R310 and H363 are likely to be responsible for the kink formation induced by compound 2, in line with previous mutagenesis results that mutation at these two sites altered GLP-1R signaling profiles (cAMP, pERK and iCa2+).

As expected, the compound 2–GLP-1R–Gs complex exhibited a remarkable similarity to GLP-1-bound structures in terms of G protein-binding interface, consistent with a common mechanism of Gs protein engagement. Nonetheless, one additional contact was found to be unique for compound 2-bound structure, i.e., a hydrogen bond between the backbone atom of L260 in ICL2 and R38 in the G\textsubscript{α}H5 subunit (Supplementary Fig. 6).

Positive allosterism. In line with previous findings25, we found that the potency of GLP-1 was not changed but its binding affinity was enhanced by compound 2. The same phenomenon was observed for LY3502970 (Supplementary Fig. 8a). The high-resolution cryo-EM maps of the compound 2–GLP-1–GLP-1R–Gs and compound 2–LY3502970–GLP-1R–Gs complexes provide a good opportunity to further investigate compound 2-associated positive allosterism25. As shown in Fig. 5a, the overall structure of the compound 2–GLP-1–GLP-1R–Gs resembles that without this ago-PAM, with a Ca RMSD of 1.0 Å. This observation also applies to LY3502970–GLP-1R–Gs, with or without compound 2 (Ca RMSD of 0.8 Å). The binding poses of compound 2 in these two structures are nearly identical to that of compound 2 alone except for a slightly different orientation (Fig. 5b and Supplementary Fig. 3d). As seen in the compound 2–GLP-1R–Gs complex, two cholesterol molecules were also found in the identical position of the compound 2–GLP-1–GLP-1R–Gs and compound 2–LY3502970–GLP-1R–Gs complexes, implying a common role for the two cholesterol molecules. In the presence of compound 2, both GLP-1 and the ECD moved inwards to the TMD core by 0.7 and 1.3 Å (measured at the Ca of Y19 in GLP-1 and P90 in ECD), respectively. Upon binding of compound 2, several distinct contacts were formed including a hydrogen bond between T11 in GLP-1 and D372 in ECL3, as well as a salt bridge between R36 in GLP-1 and D215 in ECL1 (Supplementary Fig. 8b). Meanwhile, G\textsubscript{s} moved upward by 0.5–0.8 Å, especially the αN-helix in G\textsubscript{α}s and G\textsubscript{β} subunits (Fig. 5c). Such an alteration may strengthen G protein coupling by introducing several newly formed polar interactions such as two salt bridges (R176 and E408 in G\textsubscript{β}, and R46 in G\textsubscript{β}). A similar phenomenon was also observed in the compound 2–LY3502970–GLP-1R–Gs structure (Fig. 5c) and received the support of our MD studies in which compound 2-bound GLP-1R could stably bind to GLP-1 in the absence of G protein (Supplementary Fig. 9).

Discussion

It has been widely accepted that class B1 GPCRs adopt a two-step model for ligand binding and receptor activation34,43. However,
this may not be relevant to small molecule modulators that have different requirements for the ECD. Several recently determined non-peptidic ligand-bound GLP-1R structures have uncovered previously unknown binding pockets that may have implications in their pharmacological profiles such as biased signaling and allosteric agonism (Supplementary Fig. 10). Agon- PAMs, acting as agonists on their own and as enhancers for orthosteric ligands, are capable of increasing agonist potency and providing additional efficacy, thereby offering an alternative to conventional therapeutics. Mounted on the membrane-facing surface of the cytoplasmic tip of TM6, compound 2 was able to induce a newly discovered ECD conformation allowing its N-terminal helix to penetrate into the TMD core, a key step for the ago-allosterism observed experimentally, consistent with the intrinsic agonism hypothesis for the ECD of GLP-1R. Interestingly, despite the extracellular conformational differences induced by compound 2 and orthosteric agonists, their intracellular architectures underwent a similar reorganization of polar residues that enabled the formation of TM6 sharp kink with the help of G protein binding, indicative of GLP-1R activation (Fig. 6).

Diversified ECD conformations represent the dynamic nature of the receptor in response to a variety of external stimuli. In the peptide-free apo state, the ECD is in favor of a TMD closed conformation stabilized by ECL1 and ECL3. Ligand binding triggers dissociation of the ECD from the TMD, allowing the peptide N-terminus to insert into the orthosteric binding pocket for receptor activation. Unlike peptide, the binding of compound 2 and other small molecule modulators require a complementary conformation of the ECD for ligand recognition, such that the N-terminal α-helix of the compound 2–GLP-1R–Gs deeply inserted to the orthosteric binding pocket as opposed to other GLP-1R structures (Fig. 6), suggesting its unique activation mechanism. In line with this view, we found that the ECD-TMD interaction is crucial for compound 2 and GLP-1 to function. However, this interaction was not required for small molecule agonist TT-OAD2 that elicited cAMP signaling without the presence of an ECD. Reduction in cAMP responses to compound 2 following truncation of the N-terminal helix indicates that the ability of compound 2 to engender a stable ECD conformation may contribute to the “ago” effect on cAMP production. In line with the cryo-EM structure of compound 2-bound GLP-1R, the MD simulations indicate that the N-terminal helix consistently inserts to the TMD core thereby stabilizing the interaction between the ECD and ECL1. This implies that the insertion of the ECD N-
Fig. 6 Postulated model of GLP-1R activation. a In the absence of a ligand, the ECD of GLP-1R is dynamic with multiple conformations (dashed lines) but favors a closed state. The binding of peptidic (b) or non-peptidic (c) agonist triggers the ECD to disengage from the TMD and induce downstream signaling. Meanwhile, the ECD binds to the TMD core thereby penetrating into the orthosteric pocket via the N-terminal α-helix. The TMD rearrangement, together with Gs binding, elicits downstream signaling (positive allosteric modulation). Inactive, intermediate (agonist-bound), and active (both agonist and G protein-bound) conformations are colored in blue, gray, and orange/orange-red, respectively. Movements of the ECD and the intracellular half of TM6 are indicated by arrows. Cell membranes are shown as gray bilayers. Previously reported GLP-1R structures are indicated by dashed-line boxes.

Methods

Cell culture. Spodoptera frugiperda (Sf9) insect cells (Expression Systems) were grown in ESF 921 serum-free medium (Expression Systems) at 27 °C and 120 rpm. HEK 293T cells (Cell Bank at the Chinese Academy of Sciences) were cultured in Dulbecco's modified Eagle's medium (DMEM, Life Technologies) supplemented with 10% fetal bovine serum (FBS, Gibco) and maintained in a humidified chamber with 5% CO2 at 37 °C.

Constructs. The human GLP-1R was modified with its native signal sequence (M1-P23) replaced by the haemagglutinin (HA) signal peptide to facilitate receptor expression. To obtain a GLP-1R-Gαs complex with high homogeneity and stability, we used the NanoBiT tethering strategy, in which the C-terminus of rat Gβ1 was linked to HiBiT subunit with a 15-amino acid polypeptide (GSSGGGSGGGGSGSSG) linker and the C-terminus of GLP-1R was directly attached to LgBiT subunit followed by a TEV protease cleavage site and a double MBP tag (Supplementary Fig. 1a). A dominant-negative human Gαs (DNGαs) with 8 mutations (S54N, G226A, E268A, N271K, K274D, R280K, T284D, and I285T) was generated by site-directed mutagenesis to limit G protein dissociation. An engineered Gβ1 construct (mini-Gβ1) was used for expression and purification of the compound 2–LY3502970–GLP-1R complex, which was designed based on that used in the determination of A2AR-mini-Gαs crystal structure. The replacement of the original Gαs α-helical domain (AHD, V65-L203) with that of human Gαs (G60-K180) provided the binding site for Fab_G50, an antibody fragment used to stabilize the rhodopsin-Gαs complex. In addition, the substitution of N-terminal histidine tag (His6) and TEV protease cleavage site with the N-terminal eighteen amino acids (M1-M18) of human Gi1 made this chimeric Gαs capable of binding to scFv16 used to stabilize GPCR-Gi or GPCR-Gi1 complexes. The constructs were cloned into both pcDNA3.1 and pFastBac vectors for functional assays in mammalian cells and protein expression in insect cells, respectively. All modifications of the receptor had no effect on ligand binding and receptor activation (Supplementary Fig. 1b and Supplementary Table 2). Other constructs including full-length and various N-terminal truncated human GLP-1R and GGGR were cloned into pcDNA3.1 vector for cAMP accumulation and whole cell-binding assays (Supplementary Table 6).

Formation and purification of complex. The Bac-to-Bac Baculovirus Expression System (Invitrogen) was used to generate high-titer recombinant baculovirus for GLP-1R-LgBiT-2MBP, DNGαs, Gβ1-HiBiT, and Gγ2. P0 viral stock was produced by transfecting 5 μg recombinant bacmids into Sf9 cells (2.5 mL, density of 1 million cells per mL) for 96 h incubation and then used to produce P1 and P2 baculovirus. GLP-1R-LgBiT-2MBP, DNGαs, Gβ1-HiBiT, and Gγ2 were co-expressed at multiplicity of infection (MOI) ratio of 1:1:1 by infecting Sf9 cells at a density of 3 million cells per mL with P2 baculovirus (viral titer=90%). The culture was harvested by centrifugation for 48 h post-infection and cell pellets were stored at −80 °C until use. The cell pellets were thawed and lysed in a buffer containing 20 mM HEPES, pH 7.5, 100 mM NaCl, 10% (v/v) glycerol, 10 mM MgCl2, 1 mM MnCl2, and 100 μM TCEP supplemented with EDTA-free protease inhibitor cocktail (Bimake) by
Dounce homogenization. The complex formation was initiated by the addition of 10 μM GLP-1 or LY3502970 and/or 50 μM compound 2, 10 μg/mL Nb35, and 25 mM sodium phosphate (Bio-Lab) at 4°C with temperature (RT), the membrane was solubilized in the buffer above supplemented with 0.5% (w/v) lauryl maltose neopolysteryl glycol (LMNG, Anatrace) and 0.1% (w/v) cholesterol hemisuccinate (CHS, Anatrace) for 2 h at 4°C. The supernatant was isolated by centrifugation at 65,000g for 30 min and incubated with anionyse resin (New England Bio-Lab) for 2 h at 4°C. The resin was then collected by centrifugation at 5000g for 10 min and washed in gravity flow column (Sangon Biotech) with five column volumes of buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl2, 1 mM MnCl2, 25 μM TCEP, 0.1% (w/v) BSA (Sigma), 2 mM GLP-1 and/or 5 μM compound 2, followed by washing with fifteen column volumes of buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 10% (v/v) glycerol, 5 mM MgCl2, 1 mM MnCl2, 25 μM TCEP, 0.03% (w/v) LMNG, 0.01% (w/v) glycodeoxigenin (GDN, Anatrace), 0.008% (w/v) CHS, 2 μM GLP-1 or LY3502970 and/or 10 μM compound 2. The protein was then incubated overnight with TEV protease (customer-made) on the column to remove the C-terminal 2MRB-tag in the buffer above at 4°C. The flow-through was the next day and concentrated with a 100 kDa molecular weight cut-off concentrator (Millipore). The concentrated product was loaded onto a Superdex 200 increase 10/300 GL column (GE Healthcare) with running buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 10 mM MgCl2, 100 μM TCEP, 1 μM GLP-1 or LY3502970 and/or 5 μM compound 2, 0.00075% LMNG, 0.00025% GDN and 0.002% (w/v) CHS. The fractions for the monomeric complex were collected and concentrated to 15-20 mg/mL for electron microscopy examination.

Expression and purification of Nb35. Nb35 with a C-terminal 6× His-tag was expressed in the periplasm of *E. coli* BL21 (DE3), extracted, and purified by nickel affinity chromatography. Briefly, the Nb35 target gene was transformed in BL21 and grown in medium with 300 μg/mL kanamycin and 0.1% (w/v) glucose at 37°C, 180 rpm, and stored at −80°C until use. The Ni-NTA 16/6000 Superdex 75 column (GE Healthcare) was used to separate the monomeric fractions of Nb35 with running buffer containing 20 mM HEPES, pH 7.5, and 100 mM NaCl. The purified Nb35 was flash-frozen in 30% (v/v) glycerol by liquid nitrogen and stored at −80°C until use. The H+ gradient of 100 kDa molecular weight cut-off concentrator (Millipore). The concentrated product was loaded onto a Superdex 200 increase 10/300 GL column (GE Healthcare) with running buffer containing 20 mM HEPES (pH 7.5). Dose-fractionated image stacks were subjected to beam-through was collected the next day and concentrated with a 100 kDa molecular weight cut-off concentrator (Millipore).

Cryo-EM data acquisition. The concentrated sample (3.5 μL) was applied to glow-discharged holey carbon grids (Quantifoil R1.2/1.3, 300 mesh), and subsequently vitrified using a Vitrobot Mark IV (ThermoFisher Scientific) set at 100% humidity and 4°C. Cryo-EM images were collected on a Titan Krios microscope (FEI) equipped with a Gatan energy filter and K3 direct electron detector and performed using serialEM. The microscope was operated at 300 kV accelerating voltage and a calibrated magnification of x81,000 corresponding to a pixel size of 1.045 Å. The total exposure time was set to 7.2 s with intermediate frames recorded every 0.25 s, resulting in an accumulated dose of 80 electrons per Å² with a defocus range of −1.2 to −2.2 μm. Totally, 3,509 images were collected. For further processing in each image, a gold-standard FSC. Half-particles was subjected to 3D re-processed with a mask focused on the ECD. Finally, 147,173 particles were picked from 5,552 images. Particle selection, 2D and 3D classification, and refinement were performed using RELION-3.0.8-beta2. A total of 345,411 particles were subjected to 3D refinement, yielding a final map with a global nominal resolution at 2.9 Å by the 0.143 criteria of the gold-standard FSC. Half-reconstructions were used to determine the local resolution of each map.

Model building and refinement. The structures of the LSN3160440–GLP-1–GLP-1R–Gs, 5,536 images with localized manual adjustment and automated refinement in Coot 0.9.4.1 and Phenix 1.16.6.1, respectively. The final refinement statistics were validated using the module image validation (cryo-EM) in Phenix 1.16.1. The last refinement was performed in Supplemental Table 1. The final refinement statistics are provided in Supplementary Table 1.

cAMP accumulation assay. Peptide or small molecules stimulated cAMP accumulation was measured by a LANCE Ultra cAMP kit (PerkinElmer). Briefly, after 24 h transfection with various constructs, HEK 293T cells were digested by 0.2% (w/v) EDTA and washed once with Dulbecco’s phosphate-buffered saline (DPBS). Cells were then resuspended with stimulation buffer (Hanks’ balanced salt solution (HBSS) supplemented with 5 mM HEPES, 0.5 mM IBMX, and 0.1% (w/v) BSA, pH 7.4) to a density of 0.6 million cells per mL and added to 384-well white plates (3,000 cells per well). Different concentrations of ligand in stimulation buffer were added and the stimulation lasted for 40 min at RT. The reaction was stopped by adding 5 μL Eu-CAMP tracer and ULight-anti-cAMP. After 1 h incubation at RT, the plate was read by an Envision plate reader (PerkinElmer) to measure TR-FRET signals (excitation: 320 nm, emission: 615 nm, and 665 nm). A cAMP standard curve was used to convert the fluorescence resonance energy transfer ratios (665/615 nm) to cAMP concentrations.

Whole-cell binding assay. CHO-K1 cells were seeded to 96-well plates (PerkinElmer) coated with fibronectin (Corning) at a density of 30,000 cells per well and incubated overnight. After 24 h transfection, cells were washed twice and incubated with blocking buffer (1% (w/v) BSA, 0.03% (w/v) CHS, pH 7.4) for 2 h at 37°C. Then, radiolabeled-125I–GLP-1 (40 μM, PerkinElmer) and increasing concentrations of unlabeled peptide were added and competitively reacted with the cells in binding buffer (PBS supplemented with 10% (w/v) BSA, pH 7.4) at RT for 3 h. After that, cells were washed with ice-cold PBS and lysed by 50 μL lysis buffer (PBS supplemented with 20 mM Tris- HCl and 1% (v/v) Triton X-100, pH 7.4). Finally, 150 μL of scintillation cocktail (OptiPhase SuperMix, PerkinElmer) was employed and radioactivity (counts per minute, CPM) determined by a scintillation counter (MicroBeta2 plate counter, PerkinElmer).

Molecular dynamics simulation. Molecular dynamics simulations were performed by Gromacs 2018.5. The receptor was prepared and capped by the Protein Preparation Wizard (Schrodinger 2017–4), while the titratable residues were left in their dominant state at pH 7.0. The complexes were embedded in a bilayer composed of 167 POPC lipids, 42 cholesterol and solvated with 0.15 M NaCl in explicitly TIP3P waters using CHARMM-GUI Membrane Builder v3.2.257. The CHARMM36-CAMP force field 38 was adopted for protein, peptides, lipids, and salt ions. Compound 2 was modeled with the CHARMM CgenFF small-molecule force field, program version 1.0.258. The Particle Mesh Ewald (PME) method was used to compute the electrostatic interactions beyond a cutoff of 1.4 Å (see Supplementary Table 5 for more details). Finally, a restrained-free production run was carried out for each simulation, with a time step of 2 fs in the NPT ensemble at 310 K and 1 bar using the Nose-Hoover thermostat and the semi-isotropic Parrinello-Rahman barostat. 80, the interface areas of agonist-TMD and ECD-TMD were calculated using FreeSASA 2.09 with the Shrake-Rupley algorithm in a probe radius of 1.2 Å.

Statistical analysis. All functional study data were analyzed using Prism 8.0 (GraphPad) and presented as means ± S.E.M. from at least three independent experiments.
experiments. Concentration-response curves were evaluated with a three-parameter logistic equation. The significance was determined with either a two-tailed Student’s t-test or one-way ANOVA, and P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All relevant data are available from the corresponding authors upon reasonable request. The raw data underlying Figs. 2c, 3b, and Supplementary Figs. 1b, 4a, 5c, 8a are provided as a Source Data file. The atomic coordinates and electron microscopy maps, 50 maps have been deposited in the Protein Data Bank (PDB) under accession codes: TDR (compound 2–GLP–1R–G, complex without ECD), 7EVM (compound 2–GLP–1R–G, complex without ECD), 7DUQ (compound 2–GLP–1GLP–1R–G, complex) and 7E14 (compound 2–LY3502970–GLP–1R–G, complex) and Electron Microscopy Data Bank (EMDB) accession codes: EMD–30867 (compound 2–GLP–1R–G, complex with ECD), EMD–31329 (compound 2–GLP–1R–G, complex without ECD), EMD–30886 (compound 2–GLP–1–GLP–1R–G, complex) and EMD–30936 (compound 2–LY3502970–GLP–1R–G, complex), respectively. Source data are provided with this paper.

Received: 1 February 2021; Accepted: 28 May 2021; Published online: 18 June 2021

References

1. Saraiva, F. K. & Sposito, A. C. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. *Cardiovasc. Diabetol.* 13, 142 (2014).
2. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. *Cell Metab.* 27, 740–756 (2018).
3. Cho, Y. M., Merchant, C. E. & Kieffer, T. J. Targeting the glucagon receptor family for diabetes and obesity therapy. *Pharmac. Ther.* 135, 247–278 (2012).
4. Geng, C. C. et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. *Pharm. Res.* 68, 954–1013 (2016).
5. Hitke, Z. Z. et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. *Diabetes Obes. Metab.* 19, 524–536 (2017).
6. Thethi, T. K., Pratley, R. & Meier, J. J. Effects of glucagon-like peptide-1 receptor (GLP-1R) antagonist and agonist on glycemic control in diabetic patients: a systematic review and meta-analysis. *J. Endocr. Invest.* 41, 405–410 (2018).
7. Wright, E. E., Jr. & Aroda, V. R. Clinical review of the efficacy and safety of oral semaglutide in patients with type 2 diabetes: The PIONEER programme. *Diabetes Obes. Metab.* 22, 1263–1277 (2020).
8. Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. *Nature* 546, 312–315 (2017).
9. Jackson, A. et al. Crystal structure of the GLP-1 receptor bound to a peptide agonist. *Nature* 546, 254–258 (2017).
10. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. *Nature* 546, 248–253 (2017).
11. Zhang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. *Nature* 555, 121–125 (2018).
12. Zhang, X. et al. Differential GLP-1R binding and activation by peptide and non-peptide agonists. *Mol. Cell* https://doi.org/10.1016/j.molcel.2020.09.020 (2020).
13. Zhao, P. et al. Activation of the GLP-1 receptor by a non-peptide agonist. *Nature* 577, 432–436 (2020).
14. Ma, H. et al. Structural insights into the activation of GLP-1R by a small tailless molecule agonist. *Cell Res.* https://doi.org/10.1093/cell/resz042 (2020).
15. Kawai, T. et al. A potentiator of orthosteric ligand activity at GLP-1R acts via a pathway-selective manner: implications for drug screening. *Mol. Pharm.* 78, 456–465 (2010).
16. Wootten, D. et al. Discrimination of agonist activity and small-molecule allostery. *Chem. Sci.* 6, 452–457 (2015).
17. Kawai, T. et al. Structural basis for GLP-1 receptor activation by LY3502970, a small-molecule allosteric activator. *Cell Discov.* 2, 104 (2016).
18. Khan, Y. et al. Cryo-EM structure of the human rhodopsin bound to an engineered G protein. *Proc. Natl Acad. Sci. USA* 117, 15119–15130 (2020).
19. Duan, J. et al. Cryo-EM structure of a family B G protein coupled receptor as revealed by a NanobIT tethering strategy. *Nat. Commun.* 11, 4121 (2020).
20. Wu, F. et al. Structural basis for activation of the growth hormone-releasing hormone receptor. *Nat. Commun.* 11, 5205 (2020).
21. Wootten, D., Simms, J., Miller, L., J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. *Proc. Natl Acad. Sci. USA* 110, 5211–5216 (2013).
22. Liang, Y. L. et al. Dominant negative G proteins enhance formation and stability of G protein-GPCR-G protein complexes for structure determination. *J. Adenyl. Nucleotide Regul.* 11, 1–11 (2012).
23. Zhang, Y. et al. Differential activation and modulation of the glucagon-like peptide-1 receptor by small molecule ligands. *Mol. Pharm.* 83, 822–834 (2013).
24. Coopman, K. et al. Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP-1R)–amide and the small-molecule allosteric agonist “compound 2” at the GLP-1R receptor. *J. Pharmacol. Exp. Ther.* 334, 795–808 (2010).
25. Kawai, T. et al. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. *Mol. Pharm.* 78, 104–107 (2010).
26. Wootten, D. et al. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. *Mol. Pharm.* 82, 281–290 (2012).
27. Willard, F. S., Ho, J. D. & Sloop, K. W. Discovery and pharmacology of the covalent GLP-1 receptor (GLP-1R) allosteric modulator BETP: A novel tool to probe GLP-1R pharmacology. *Adv. Pharm.* 88, 173–191 (2020).
28. Zhao, L. H. et al. Differential requirement of the extracellular domain in activation of class B G protein-coupled receptors. *J. Biol. Chem.* 291, 15119–15130 (2016).
29. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. *Bioorg. Med. Chem. Lett.* 17, 5472–5478 (2007).
30. Willard, F. S. & Sloop, K. W. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor. *Exp. Diabetes Res.* 12, 470851, (2012).
31. Yin, Y. et al. Allosteric activation mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. *Cell Discov.* 2, 104024 (2016).
32. Yang, L. et al. Conformational states of the full-length glucagon receptor. *Nat. Commun.* 6, 7859 (2015).
33. Mattedi, G., Acosta-Gutierrez, S., Clark, T. & Gervasio, F. L. A combined activation mechanism for the glucagon receptor. *Proc. Natl Acad. Sci. USA* 117, 15414–15422 (2020).
34. Hoare, S. R. Mechanisms of peptide and nonpeptide ligand binding to Class B G protein-coupled receptors. *Drug Discov. Today* 10, 417–427 (2005).
35. Schwartz, T. W. & Holst, B. Allosteric modulation and other types of allostery in dimeric 7TM receptors. *J. Recept Signal Transduct. Res.* 26, 107–128 (2006).
36. Hilger, D. et al. Structural insights into differences in G protein activation by family A and family B GPCRs. *Science* 360, 1012116, https://doi.org/10.1126/science.aba3373 (2020).
37. Yin, Y. et al. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. *J. Biol. Chem.* 292, 9865–9881 (2017).
38. Liang, Y. L. et al. Allosteric inhibition of negative G proteins enhance formation and purification of agonist-GPCR-G protein complexes for structure determination. *Acs Pharmacol. Transl. Sci.* 1, 1–20 (2018).
39. Carpenter, B., Nehme, R., Warne, T., Leslie, A. G. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. *Nature* 536, 104–107 (2016).
40. Kang, Y. et al. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. *Nature* 558, 553–558 (2018).
Acknowledgements

We thank D.P. Yuan, W. Guo, F. Liu, B. Qiu, P.F. Gan, and M. Lei for technical advice. This work was partially supported by National Natural Science Foundation of China 81827915 (M.-W.W.), 82073904 (M.-W.W.), 81922071 (Y.Z.), 81773792 (D.Y.), 81973733 (D.Y.), and 21704064 (Q.Z.); National Science and Technology Major Project of China-Key New Drug Creation and Manufacturing Program 2016ZX09735-001 (M.-W.W.) and 2018ZX09711002-002-005 (D.Y.); the National Key Basic Research Program of China 2018YFA0507000 (M.-W.W.) and 2019YFA0508800 (Y.Z.); Shanghai Municipal Science and Technology Major Project 2019SHZDZX02 (H.E.X.); Ministry of Science and Technology of China Major Project XDB08020303 (H.E.X.); Shanghai Municipal Science and Technology Commission grant 19ZR1467500 (H.L.M.); Zhejiang Province Science Fund for Distinguished Young Scholars LR19H310001 (Y.Z.); Fundamental Research Funds for Central Universities 2019XZZX001-01-06 (Y.Z.); Novo Nordisk-CAS Research Fund grant NNGAS-2017-1-CC (D.Y.); The Young Innovator Association of CAS Enrollment (H.L.M. and H.Z.H.) and SA-SIBS Scholarship Program (L.H.Z. and D.Y.). The cryo-EM data were collected at Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Author contributions

Z.T.C. and H.L.M. designed the expression constructs, purified the receptor complexes, screened specimens, prepared the final samples for negative staining/data collection towards the structure, and participated in manuscript preparation; L.-N.C., H.L.M., and X.Y.Z. performed map calculation, structure analysis, figure preparation and participated in manuscript writing; Q.T.Z. performed structural analysis, MD simulations, figure preparation and participated in manuscript writing; Q.L. synthesized compound 2; Z.T.C. and A.T.D. conducted ligand binding and signaling experiments; C.Y.Y. and X.W. assisted in complex purification; T.X. assisted in structural analysis; L.H.Z. and P.Y.X. helped construct design and data analysis; W.H., X.Q.S., and W.G.Z. supplied LY3502970 and helped LY3502970 related structure determination; D.Y. supervised mutagenesis and signaling experiments, participated in data analysis and manuscript preparation; H.E.X., Y.Z., W.G.Z., and M.-W.W. initiated the project, supervised the studies, analyzed the data, and wrote the manuscript with inputs from all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-24058-z.

Correspondence and requests for materials should be addressed to D.Y., H.E.X., Y.Z. or M.-W.W.

Peer review information Nature Communications thanks Radostin Danev, Kyle Sloop and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information are available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published online: 11 June 2021 | https://doi.org/10.1038/s41467-021-24058-z