Differential effects of transgenerational plasticity on morphological and photosynthetic properties between an invasive plant and its congeneric native one

Xiao Xiao · Linxuan He · Xiaomei Zhang · Yu Jin · Jinsong Chen

Original Paper

Abstract Phenotype of plant offspring may be affected by particularly maternal environmental conditions, which is named as transgenerational plasticity. Transgenerational plasticity enhances the fitness of offspring under the maternal environmental conditions. Transgenerational plasticity may promote the successful invasion of alien plants, particularly those with clonal growth. However, few studies have compared transgenerational plasticity between alien invasive clonal plants and their congeneric native ones. A pot experiment with the invasive herb Wedelia trilobata and its congeneric native species Wedelia chinensis was conducted to investigate effects of light conditions (low vs. high light treatment) experienced by mother ramets on morphological and photosynthetic properties of offspring ramets subjected to the low light treatment. Compared with those of offspring ramets from mother ramets subjected to the high light treatment, leaf area, potential maximum net photosynthetic rate (P_{max}) and biomass accumulation of offspring ramets from mother ramets subjected to the low light treatment were significantly greater in W. trilobata than W. chinensis. Opposite pattern was observed in number of offspring ramets. We conclude that effects of transgenerational plasticity on growth performance could be species-specific between invasive plant and its congeneric native one. Positive effect of transgenerational plasticity on number of offspring ramets was not transformed into growth advantages of native species W. chinensis during its later establishment. However, favorable effects of transgenerational plasticity on capturing light resource could enhance competitive ability and promote successful invasion of W. trilobata.

Keywords Clonal plant · Morphological property · Photosynthetic property · Biomass accumulation · Invasion

Introduction

Clonal plants can propagate multiple ramets with identical genotype that remain connected to their parent ones at least during the early stage of development (Klimešová et al. 2016; Wang et al. 2020). Many of the world’s worst invasive plant species are clonal (Yu et al. 2009). In China, for instance, 67% of the most invasive plant species with extensive distribution or severe damage to local diversity are clonal plants (Liu et al. 2006; Wang et al. 2020). Thus, factors determining invasiveness of alien clonal plants has received increasing attention recently (Portela et al. 2020).

Phenotype of plant offspring may be affected by particularly maternal environmental conditions,
which is named as transgenerational plasticity (Galloway and Etterson 2007; González et al. 2016; Sobral et al. 2021). For example, germination rate of seed was significantly increased when *Campanula americana* was planted into its maternal light environment (Galloway 2005). Offspring of *Plantago lanceolata* subjected to their maternal nutrient treatment accumulated more biomass as well as greater storage of root carbohydrates (Latzel et al. 2014). Transgenerational plasticity allows offspring to form a ‘memory’ of the maternal environment, which enhances their fitness under the same environmental conditions (Ren et al. 2017; Dong et al. 2018).

Without meiosis during propagation process, effects of the environmental conditions experienced by mother ramets might be transmitted to their offspring ramets more stably and efficiently (Schwagerle et al. 2000; Douhovnikoff and Dodd 2015; González et al. 2016). Compared with offspring ramets from mother ramets subjected to the high light treatment, light capturing ability and utilization efficiency of offspring ramets from mother ramets subjected to the low light treatment were significantly improved (Li et al. 2018). Stolon internode length of offspring ramets subject to same foliar herbivory experienced by mother ramets was significantly increased in invasive plant *Alternanthera philoxeroides* (Dong et al. 2017). Compared with non-maternal light environment, biomass accumulation of offspring ramets subject to maternal light environment was significantly greater in the clonal invader (Dong et al. 2019). It is suggested that transgenerational plasticity may potentially contribute to successful invasion of clonal invaders (Dong et al. 2017, 2018, 2019; Portela et al. 2020).

A meta-analysis showed that phenotypic plasticity was significantly greater in invasive plants than non-invasive ones (Davidson et al. 2011). However, little effort has been dedicated to revealing the differential transgenerational effects between clonal invaders and their congeneric native species. Transgenerational plasticity can improve adaptation of their offspring to various environments when plants colonize into new habitat (Münzbergová and Hadincová 2017). So, it was hypothesized that invasive species exhibited greater transgenerational plasticity in morphological and photosynthetic properties than their congeneric native ones.

By using clonal invader *Wedelia trilobata* (L.) Hitchc and its congeneric native one *Wedelia chinensis* (Osbeck.) Merr, a pot experiment was conducted to test the hypothesis. Light is crucial for growth and development of *W. trilobata* and *W. chinensis* (Qi et al. 2014; Niu et al. 2019). In the experiment, mother ramets were grown under high or low light conditions respectively, whereas offspring ramets were subjected to the same low light conditions. We predicted that (1) effects of light treatment experienced by their mother ramets on morphological and photosynthetic properties (such as leaf area, stolon internode length and potential maximum net photosynthetic rate (P_{max})) of offspring ramets were significantly greater in *W. trilobata* than *W. chinensis*; (2) effects of light treatment experienced by their mother ramets on number and biomass accumulation (such as leaf, stem, root and total biomass) of offspring ramets were significantly greater in *W. trilobata* than *W. chinensis*.

Materials and methods

Plant species

W. trilobata is a stoloniferous perennial herb originated from South America. As one of world’s worst invasive alien species, *W. trilobata* rapidly spreads and colonizes new habitats in Asia, North America, and Australia (Wang et al. 2017; Saptiningsih et al. 2018). In the late twentieth century, it was introduced to China as an ornamental plant. Now it is widely distributed in South China, such as Hainan, Jiangsu, Guangdong and Fujian provinces (Huang et al. 2022). As its congeneric native plant, stoloniferous perennial herb *W. chinensis* is generally distributed in woodlands, glades, forests edge and roadsides or creeks in southeast China (Hossen et al. 2020; Das et al. 2020).

Eight original plants of *W. chinensis* and *W. trilobata* were collected in Jiangsu, China (location 32°12’ N, 119°27’ E). Then, the original plants were propagated in a glasshouse with a natural day/night light cycle located at Sichuan Normal University, Chengdu, China (location 30°42’N; 102°84’E, altitude 540 m a.s.l). The glasshouse was maintained at a temperature of 20–28 °C and light intensity was equivalent to approx. 90% of full daylight outside the greenhouse. After 4 months, offspring ramets of each original plant formed a “ramet bank”.
Experimental design

F₀ generation F₀ generation of each species was subjected to two treatments (high light and low light) in the experiment. Two mother ramets with similar size (two leaves, 4 cm length roots) were chosen from “ramet bank”. Each ramet was grown in pot (32 cm × 37 cm × 24 cm) filled with substrate (3:1 mixture of humus soil and sand) respectively. Content of organic matter and total nitrogen was 66.3 g kg⁻¹ and 2.94 g kg⁻¹ in the substrate. Then, one ramet was subjected to high light treatment (full light), while the other was subjected to low light treatment (50% full light). Low light treatment was created by covering a neutral shading net (light transmittance is 50%). During the experiment, each pot was poured 100 mL Hogland nutrient solution with a concentration of 20% every week. Water was added to keep soil moist. All propagated ramets were named as F₀ generation in each pot.

F₁ generation One rooted ramet (two leaves, 4 cm length roots) subjected to high light or low light treatment was separated from F₀ generation of each species. Each separated rooted ramet was grown in pot (32 cm × 37 cm × 24 cm) filled with substrate (3:1 mixture of humus soil and sand). Then, each rooted ramet was subjected to low light treatment (50% full light). Low light treatment was created by covering a neutral shading net. During the experiment, 100 ml Hogland nutrient solution with a concentration of 20% was poured into each pot every week. Water was added to keep soil moist. All propagated ramets were named as F₁ generation in each pot (Fig. 1). Each treatment was replicated eight times. The whole experiment lasted 20 weeks.

Measurements

A fully expanded and mature leaf of offspring ramets (F₁ generation) was selected for photosynthetic measurement. Photosynthesis was measured using a portable photosynthesis system GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany). Under a CO₂ pressure of 400 µmol mol⁻¹, PPFD was set from 0 to 1600 µmol mol⁻¹. Light–response curve [net photosynthesis rate (Pᵣ)–photosynthetic photon flux density (PPFD) curve] was generated according to the method proposed by Chen et al. (2015). \(P_{\text{max}} \) was calculated from \(P_{\text{net}} \)-PPFD curves fitted by a nonrectangular hyperbola model using the plotting software.

![Schematic diagram of the experimental design](image-url)
Origin (Origin Lab, United States) (Gomes et al. 2006; Sorrell et al. 2012). Where Ø was the apparent quantum efficiency, θ was the convexity of the curve and \(R_d \) was the dark respiration rate.

After harvesting, stolon internode length and leaf area (WinFOLIA Pro 2004a, Regent Instruments, Inc., QC, Canada) of offspring ramets were measured. Then, offspring ramets were separated into leaf, stem (including petiole and stolon) and root, dried at 60 °C for 72 h and weighed. Leaf, stem and root biomass were calculated as well as total biomass.

Statistical analysis

Randomized block analysis of two-factor was used to investigate effects of block (original plant), maternal light condition (high/low light treatment) and species (invasive/native) on leaf area, stolon internode length, \(P_{\text{max}} \), total stolon length, number and biomass accumulation of offspring ramets (F1 generation).

All analyses were conducted with the R software (http://www.r-project.org/). Data calculation and statistical analysis were carried out by R package reshape (http://had.co.nz/) and R package agricolae (http://CRAN.R-project.org/package=agricolae).

Results

Leaf area of offspring ramets (F1 generation) was significantly affected by species, maternal light condition and their interaction (Table 1). Stolon internode length of offspring ramets (F1 generation) was significantly affected by species (Table 1). Compared with that of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 2A). Significant effect of maternal light conditions on stolon internode length of offspring ramets (F1 generation) was not observed in the two species (Fig. 2B).

Potential maximum net photosynthetic rate (\(P_{\text{max}} \)) of offspring ramets (F1 generation) was significantly affected by species, maternal light condition and their interaction (Table 1). Compared with that of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, \(P_{\text{max}} \) of offspring ramets (F1 generation) from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 3).

Number of offspring ramets (F1 generation was significantly affected by the interaction of species and maternal light condition (Table 2). Leaf, stem, root and total biomass of offspring ramets (F1 generation were significantly affected by species, maternal light condition and their interaction as well as total stolon length (Table 2). Compared with those of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 3).

Leaf, stem, root and total biomass of offspring ramets (F1 generation) were significantly affected by species, maternal light condition and their interaction as well as total stolon length (Table 2). Compared with those of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 3).

Number of offspring ramets (F1 generation) was significantly affected by the interaction of species and maternal light condition (Table 2). Leaf, stem, root and total biomass of offspring ramets (F1 generation) were significantly affected by species, maternal light condition and their interaction as well as total stolon length (Table 2). Compared with those of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 3).

Number of offspring ramets (F1 generation) was significantly affected by the interaction of species and maternal light condition (Table 2). Leaf, stem, root and total biomass of offspring ramets (F1 generation) were significantly affected by species, maternal light condition and their interaction as well as total stolon length (Table 2). Compared with those of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 3).

Effect	df	Leaf area	Stolon internode length	\(P_{\text{max}} \)
B	7,21	1.47 ns	1.89 ns	6.95*
S	1,21	14.98**	10.97**	23.93***
M	1,21	18.90**	0.15 ns	17.27**
S×M	1,21	138.67***	0.01 ns	21.14**

Values give \(F \); symbols show \(P: \) *** \(P<0.001, \) ** \(P<0.01, \) * \(P<0.05, \) ns, non-significant, \(P>0.05 \)

Fig. 2 Effects of transgenerational plasticity on morphological properties of offspring ramets (F1 generations). The colors in the columns represent different maternal light treatments. The same lower case letters are not significantly different at \(P=0.05 \). Values are means ± standard errors, \(n=8 \)
Differential effects of transgenerational plasticity on morphological and photosynthetic properties of offspring ramets (F1 generation).

Fig. 3 Effects of transgenerational plasticity on photosynthetic property of offspring ramets (F1 generation). The colors in the columns represent different maternal light treatments. The same lower case letters are not significantly different at $P = 0.05$. Values are means ± standard errors, $n = 8$.

to the high light treatment, number and total stolon length of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. chinensis than W. trilobata (Fig. 4). Compared with those of offspring ramets (F1 generation) from mother ramets subjected to the high light treatment, leaf, stem, root and total biomass of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata than W. chinensis (Fig. 5).

Discussion

Compared with that of offspring ramets from mother ramets subjected to the high light treatment, leaf area of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in W. trilobata. Opposite pattern was observed in W. chinensis. Significant effect of maternal light treatments on stolon internode length of offspring ramets was not observed in the two species. Offspring ramets from mother ramets subjected to the high light treatment, P_{max} of offspring ramets from mother ramets subjected to the low light treatment was significantly greater in clonal invader W. trilobata. Similar pattern was not observed in its native counterpart W. chinensis. The results supported our hypothesis.

Compared with those of offspring ramets from mother ramets subjected to the high light treatment, number of offspring ramets and total stolon length were significantly greater in W. chinensis. Without significant change of stolon internode length, total stolon length of W. chinensis significant increased with propagating more offspring ramets. Clonal plants often adopted morphological response such as stolon prolongation or petiole elongation to escape from low light condition (González et al. 2017; Li et al. 2018). Similar pattern was not observed in W. trilobata. So, we tentatively concluded that effects of transgenerational plasticity on growth performance of offspring ramets were species-specific between the two species. With greater P_{max}, invasive species allocated more nitrogen to its photosynthetic machinery than native species (Feng et al. 2007, 2008). A resistance-overcome strategy (bigger leaf and greater P_{max}) was employed by clonal invader W. trilobata and an avoidance strategy (longer total stolon length resulting from more ramets) was employed by its congeneric native one respectively (Galloway 2005; Marin et al. 2018). The possible explanation is that clonal invader W. trilobata may present greater threshold of shade tolerance in the experiment.

Positive association among leaf area, P_{max} and biomass accumulation of offspring ramets was observed in W. trilobata. Similar effects of transgenerational plasticity was observed in stoloniferous herb Centella asiatica (Li et al. 2018). There was

| Table 2 ANOVA results for effects of block (B), species (S), maternal light condition (M) and their interaction on number of ramets, total stolon length and biomass accumulation of offspring ramets |
|-----------------|------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Effect | df | No. of ramets | Total stolon length | Leaf biomass | Stem biomass | Root biomass | Total biomass |
| B | 7.21 | 1.68 ns | 0.59 ns | 1.09 ns | 0.99 ns | 1.11 ns | 0.86 ns |
| S | 1.21 | 0.23 ns | 35.67*** | 34.40*** | 35.96*** | 23.85*** | 89.35*** |
| M | 1.21 | 4.80** | 12.80** | 29.63*** | 59.66*** | 28.83*** | 105.0*** |
| S×M | 1.21 | 13.79** | 40.61**** | 16.98** | 34.73*** | 21.28** | 63.03*** |

Values give F; symbols show P: *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, ns, non-significant, $P > 0.05$
no significant effect on biomass accumulation of W. chinensis. A possible explanation is that higher resource capture ability and photosynthetic energy use efficiency of invasive plant may present positive associations with biomass accumulation (Shen et al. 2011; Funk 2013). The alternative explanation is that effects of transgenerational plasticity on propagation of offspring ramets may not transform into growth advantages of W. chinensis during its later establishment (Alba et al., 2011, 2016).

Transgenerational plasticity refers to the effect of maternal environment on offspring phenotype and phenotypic plasticity, which allows offspring to form a “memory” of maternal environment and helps them quickly adapt to environment (González et al. 2016; Fenesi et al. 2014; Portela et al. 2020). Favorable effects of transgenerational plasticity on leaf area, P_{max} and biomass accumulation may be helpful for clonal invader W. trilobata to achieve larger final size and compete more intensely, which plays an important role in the successful invasion (Osunkoya et al. 2010; Geng et al. 2013; Zhang and Kleunen 2019).

Our experiment provides new insight into invasiveness of invasive plant with clonal growth, especially subjected to maternal environmental conditions. Evolutionary history of invasive species may be different from their congeneric native species. At the same time, transgenerational plasticity may be interfered by the evolutionary history of W. trilobata during invasion (Montesinos and Callaway 2018). It is suggested that a wider range of species pairs with overlapping distributions and similar evolutionary histories are used to investigate effects of transgenerational plasticity on growth performance and interspecific competitive ability between invasive plants and their congener native ones in the future.

![Fig. 4](image-url) Effects of transgenerational plasticity on number of ramets and total stolon length of offspring ramets (F$_1$ generation). The colors in the columns represent different maternal light treatments. The same lower case letters are not significantly different at $P=0.05$. Values are means ± standard errors, $n=8$.
Acknowledgements This research was supported by the Key Research and Development Program of Sichuan Province (Grant No.19ZDYF) and Specialized Fund for the Post-Disaster Reconstruction and Heritage Protection in Sichuan Province (No. 5132202019000128).

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiao Xiao, Linxuan He, Xiaomei Zhang and Yu Jin. The first draft of the manuscript was written by Xiao Xiao. Jinsong Chen commented on previous versions of the manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.

Funding This research was supported by the Key Research and Development Program of Sichuan Province (Grant No.19ZDYF) and Specialized Fund for the Post-Disaster Reconstruction and Heritage Protection in Sichuan Province (No. 5132202019000128).

Fig. 5 Effects of transgenerational plasticity on leaf, stem, root and total biomass of offspring ramets (F1 generation). The colors in the columns represent different maternal light treat-
ments. The same lower case letters are not significantly different at P=0.05. Values are means ± standard errors, n=8

Data availability The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

Alba C, Bowers MD, Blumenthal D et al (2011) Evolution of growth but not structural or chemical defense in Verbascum thapsus (common mullein) following introduction to North America. Biol Invasions 13(10):2379–2389. https://doi.org/10.1007/s10530-011-0050-7

Alba C, Moravcová L, Pyšek P (2016) Geographic structuring and transgenerational maternal effects shape germination in native, but not introduced populations of a widespread plant invader. Am J Bot 103(5):837–844. https://doi.org/10.3732/ajb.1600099
Chen JS, Li J, Zhang Y et al (2015) Clonal integration ameliorates the carbon accumulation capacity of a stoloniferous herb, *Glechoma longituba*, growing in heterogeneous light conditions by facilitating nitrogen assimilation in the rhizosphere. Ann Bot 115(1):127–136. https://doi.org/10.1093/aob/mcu207

Das KR, Iwasaki A, Suenaga K et al (2020) A kaurene-type novel phytotoxic substance in *Wedelia chinensis*. Tetrahedron Lett 61(11):151600. https://doi.org/10.1016/j.tetlet.2020.151600

Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A Meta-Analysis. Ecology Letters 14(4):419–431. https://doi.org/10.1111/j.1461-0248.2011.01596.x

Dong BC, Fu T, Luo FL et al (2017) Herbivory-induced maternal effects on growth and defense traits in the clonal species *Alternanthera philoxeroides*. Sci Total Environ 605–606:114–123. https://doi.org/10.1016/j.scitotenv.2017.06.141

Dong BC, Wang MZ, Liu RH et al (2018) Direct and legacy effects of herbivory on growth and physiology of a clonal plant. Biol Invasions 20(12):3631–3645. https://doi.org/10.1007/s10530-018-1801-5

Dong BC, Alpert P, Yu FH (2019) Transgenerational effects of herbivory and soil nutrients transmitted via vegetative reproduction in the clonal plant *Alternanthera philoxeroides*. Perspectives Plant Ecology, Evolution Syst 41:125498. https://doi.org/10.1016/j.ppees.2019.125498

Douhovnikoff V, Dodd RS (2015) Epigenetics: a potential mechanism for clonal plant success. Plant Biol 21(2):227–233. https://doi.org/10.1007/s11258-014-0430-z

Fenesi A, Dyer AR, Gerold J et al (2014) Can transgenerational plasticity contribute to the invasion success of annual plant species? Oecologia 176(1):95–106. https://doi.org/10.1007/s00442-014-2994-7

Feng YL, Auge H, Ebeling SK (2007) Invasive *Buddleja davidi* allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153(3):501–510. https://doi.org/10.1007/s00442-007-0759-2

Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeren Planta 228(3):383–390. https://doi.org/10.1007/s00425-008-0732-2

Funk JL (2013) The physiology of invasive plants in low-resource environments. Conservation Physiology 1(1):cot026. https://doi.org/10.1093/conphys/cot026

Galloway LF (2005) Maternal effects provide phenotypic adaptation to local environmental conditions. New Phytol 166(1):93–99. https://doi.org/10.1111/j.1469-8137.2004.01314.x

Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318(5853):1134–1136. https://doi.org/10.1126/science.1148766

Geng XY, Jiang S, Li B et al (2013) Do higher resource capture ability and utilization efficiency facilitate the successful invasion of exotic plant? A Case Study of *Alternanthera philoxeroides*. Am J Plant Sci 4(9):1839–1845. https://doi.org/10.4236/ajps.2013.49226

Gomes FP, Oliva MA, Mielke MS et al (2006) Photosynthetic irradiance-response in leaves of dwarf coconut palm (*Cocos nucifera*, L. ‘nana’, *Arecales*): comparison of three models. Scientia Horticulaurae 109(1):101–105. https://doi.org/10.1016/j.scienta.2006.02.030

González APR, Chirtk J, Drobrev PI et al (2016) Stress-induced memory alters growth of clonal offspring of white clover (*Trifolium repens*). Am J Bot 103(9):1567–1574. https://doi.org/10.3732/ajb.1500526

González APR, Dumalasová V, Rosenthal J et al (2017) The role of transgenerational effects in adaptation of clonal offspring of white clover (*Trifolium repens*) to drought and herbivory. Evol Ecol 31(3):345–361. https://doi.org/10.1007/s10682-016-9844-5

Hossen K, Das KR, Okada S et al (2020) Allelopathic potential and active substances from *Wedelia Chinensis* (Osbeck). Foods (basel, Switzerland) 9(11):1591. https://doi.org/10.3390/foods9111591

Huang P, Shen FY, Abbas A et al (2022) Effects of different nitrogen forms and competitive treatments on the growth and antioxidant system of *Wedelia trilobata* and *Wedelia chinensis* under high nitrogen concentrations. Front Plant Sci 13:851099. https://doi.org/10.3389/FPLS.2022.851099

Klimešová J, Tackenberg O, Herben T (2016) Herbs are different: clonal and bud bank traits can matter more than leaf-height-seed traits. New Phytol 210(1):13–17. https://doi.org/10.1111/nph.13788

Latzel V, Janecek S, Dolezal J et al (2014) Adaptive transgenerational plasticity in the perennial *Plantago lanceolata*. Oikos 123(1):41–46. https://doi.org/10.1111/j.1600-0706.2013.00537.x

Li KN, Chen JS, Wei Q et al (2018) Effects of transgenerational plasticity on morphological and physiological properties of stoloniferous herb *Centella asiatica* subjected to high/low light. Front Plant Sci 9:1640. https://doi.org/10.3389/fpls.2018.01640

Liu J, Dong M, Miao SL et al (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8(7):1461–1470. https://doi.org/10.1007/s10530-005-5838-x

Marin M, Blandino C, Laverack G et al (2018) Responses of *Primula vulgaris* to light quality in the maternal and germination environments. Plant Biol 21(3):439–448. https://doi.org/10.1111/plb.12849

Montesinos D, Callaway RM (2018) Traits correlate with invasive success more than plasticity: A comparison of three *Centauraea* congeners. Ecol Evol 8(15):7378–7385. https://doi.org/10.1002/eco.34080

Münzbergová Z, Hadincová V (2017) Transgenerational effects of herbivory on growth and physiology of a clonal plant. *Trifolium repens*. Am J Bot 104(5):1099–1109. https://doi.org/10.3732/ajb.150027

Niu YX, Ning L, Dong BC et al (2019) Effects of clonal integration on interspecific interactions between *Wedelia trilobata* and *W. chinensis* in heterogeneous light environments. Acta Ecologica Sinica 39(22):8585–8594. https://doi.org/10.1086/7101172492

Osunkoya OO, Bayliss D, Panetta FD et al (2010) Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and
Differential effects of transgenerational plasticity on morphological and photosynthetic…

Portela R, Dong BC, Yu FH et al. (2020) Trans-generational effects in the clonal invader *Alternanthera philoxeroides*. J Plant Ecology 13(1):122–129. https://doi.org/10.1093/jpe/rtz043

Qi SS, Dai ZC, Miao SL et al. (2014) Light limitation and litter of an invasive clonal plant, *Wedelia trilobata*, inhibit its seedling recruitment. Ann Bot 114(2):425–433. https://doi.org/10.1093/aob/mcu075

Ren WB, Hu N, Hou XY et al. (2017) Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Front Plant Sci 8:419. https://doi.org/10.3389/fpls.2017.00419

Saptiningsih E, Dewi K, Santosa S et al. (2018) Clonal integration of the invasive plant *Wedelia trilobata* (L.) Hitch in stress of flooding type combination. Int J Plant Biology 10(1):7526. https://doi.org/10.4081/pb.2018.7526

Schwaegerle KE, McIntyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution 54(2):452–461. https://doi.org/10.1554/0014-3820(2000)054[0452:QGATPO]2.0.CO;2

Shen XY, Peng SL, Chen BM et al. (2011) Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol Invasions 13(4):869–881. https://doi.org/10.1007/s10530-010-9875-8

Sobral M, Neylan IP, Narbona E et al. (2021) Transgenerational plasticity in flower color induced by Caterpillars. Front Plant Sci 12:617815. https://doi.org/10.3389/fpls.2021.617815

Sorrell BK, Brix H, Fitridge I et al. (2012) Gas exchange and growth responses to nutrient enrichment in invasive *Glyceria maxima* and native New Zealand *Carex* species. Aquat Bot 103:37–47. https://doi.org/10.1016/j.aquabot.2012.05.008

Wang YJ, Müller SH, van Kleunen M et al. (2017) Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol 216(4):1072–1078. https://doi.org/10.1111/nph.14820

Wang JY, Xu TT, Wang Y et al. (2020) A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs. heterogeneous environments. Functional Ecology 35(3):578–589. https://doi.org/10.1111/1365-2435.13732

Yu FH, Wang N, Alpert P et al. (2009) Physiological integration in an introduced, invasive plant increases its spread into experimental communities and modifies their structure. Am J Botany 96(11):1983–1989. https://doi.org/10.3732/ajb.0800426

Zhang ZJ, van Kleunen M (2019) Common alien plants are more competitive than rare natives but not than common natives. Ecol Lett 22(9):1378–1386. https://doi.org/10.1111/ele.13320

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.