ENVIRONMENTAL RESEARCH LETTERS

LETTER

Coupling the dual isotopes of water (δ2H and δ18O) and nitrate (δ15N and δ18O): a new framework for classifying current and legacy groundwater pollution

Julie N Weitzman1, ©, J Renée Brooks1, ©, Paul M Mayer2, ©, William D Rugh© and Jana E Compton©

1 ORISE Fellow at Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Newport, OR, United States of America
2 Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Corvallis, OR, United States of America
© Author to whom any correspondence should be addressed.

E-mail: Weitzman.Julie@epa.gov

Keywords: stable isotopes, nitrate, groundwater, legacy contamination, δH2O, δNO3−

Supplementary material for this article is available online

Abstract

Nitrate contamination of groundwater is a concern globally, particularly in agricultural regions where decades of fertilizer nitrogen (N) use has led to a legacy of N accumulation in soils and groundwater. Linkages between current management practices and groundwater nitrate dynamics are often confounded by the legacy effect, and other processes unrelated to management. A coupled analysis of dual stable isotopes of water (δH2O = δ2H and δ18O) and nitrate (δNO3− = δ15N and δ18O) can be a powerful approach to identify sources and processes responsible for groundwater pollution. To assess how management practices impact groundwater nitrate, we interpreted behavior of δH2O and δNO3−, together with nitrate concentrations, in water samples collected from long-term monitoring wells in the Southern Willamette Valley (SWV), Oregon. The source(s) of nitrate and water varied among wells, suggesting that the nitrate concentration patterns were not uniform across the shallow aquifer of the valley. Analyzing the stability versus variability of a well’s corresponding δH2O and δNO3− values over time revealed the mechanisms controlling nitrate concentrations. Wells with stable δH2O and δNO3− values and nitrate concentrations were influenced by one water source with a long residence time and one nitrate source. Variable nitrate concentrations of other wells were attributed to dilution with an alternate water source, mixing of two nitrate sources, or variances in the release of legacy N from overlying soils. Denitrification was not an important process influencing well nitrate dynamics. Understanding the drivers of nitrate dynamics and interaction with legacy N is crucial for managing water quality improvement. This case study illustrates when and where such coupled stable isotope approaches might provide key insights to management on groundwater nitrate contamination issues.

1. Introduction

Chronic inputs of nitrogen (N) for agricultural production over time can lead to accumulation of surplus N in soils and groundwater. This legacy N contamination of nitrate (NO3−) to groundwater systems has far-reaching consequences for human health and the environment, including impacts to drinking water sources or to groundwater-dependent ecosystems, like wetlands, rivers, and coastal areas (Hansen et al 2017). The U.S. Environmental Protection Agency (EPA) established a maximum contaminant level (MCL) for public drinking water of 10 mg NO3−–N L−1 primarily to reduce risk of methemoglobinemia in infants (USEPA 1995). Ingestion of water with NO3− concentrations at or even below the current MCL can increase risk of cancers, birth defects, and other adverse health effects (Hinsby et al 2012, Ward et al 2018). Furthermore, the leaching of legacy NO3− to the groundwater, and its subsequent discharge to surface waters, can cause eutrophication and seasonal hypoxia (Lewis et al 2011, Davidson et al 2012, Tesoriero et al 2013, Weitzman et al 2014, McLellan et al 2015, Chen et al 2018, Van Meter et al...
2018). Thus, understanding the current and legacy drivers of NO$_3^-$ concentrations in groundwater is critical for water quality management.

Across the US, agricultural activities are the main source of N inputs to landscapes (Ruddy et al. 2006, Galloway et al. 2008, Sobota et al. 2013, Sabo et al. 2019). Nitrate concentrations in groundwater are driven by N inputs to the land, physical features impacting the flow rates of water through soils and aquifers, and redox conditions (DeSimone et al. 2014). More than 20% of shallow domestic wells in agricultural areas of the US are reported to exceed 3 mg NO$_3^-$ of N inputs are attributed to agricultural practices in the Willamette Valley (SWV) in Oregon, where 90% of groundwater used for US public water supplies are largely influenced by cropland area, precipitation, and agricultural lands with a legacy of N applications (Peñin et al. 2020). Such elevated concentrations can persist for decades in groundwater aquifers, especially beneath agricultural areas of the US are reported to exceed 3 mg NO$_3^-$ concentrations (Dieter et al. 2007, Exner et al. 2014, Dwivedi and Mohanty 2016), may lead to significant lags between management efforts and improvements to groundwater quality (Lindsey et al. 2003, Howden et al. 2010, Meals et al. 2010, Van Meter et al. 2016).

In 2015, approximately 47% of the U.S. population was estimated to rely on groundwater for domestic purposes including drinking water (Dieter et al. 2018). This percentage was much higher in Oregon, where ~70% of the state population relies at least partially on groundwater for domestic use, with close to 95% of rural populations entirely dependent on groundwater from private domestic wells (ODEQ 2017a). Over the past three decades, water samples collected from both private and public wells across the state have shown widespread groundwater NO$_3^-$ contamination (ODEQ 2017b). Specifically, an extensive groundwater survey of the southern Willamette Valley (SWV) in Oregon, where 90% of N inputs are attributed to agricultural practices (LCOG 2008), revealed that much of the shallow groundwater of the region was chronically contaminated with NO$_3^-$ at concentrations exceeding natural levels, i.e. >3 mg NO$_3^-$~N L$^{-1}$, indicating anthropogenic causes (Madison and Brunett 1985). Designated as a Groundwater Management Area (GWMA) in 2004, the Oregon Department of Environmental Quality (ODEQ) has since sought to control NO$_3^-$ contamination in the area by promoting best management practices (BMP’s) that reduce N inputs. However, despite 15 years of mitigation efforts 57% of wells in the SWV–GWMA exhibit increasing NO$_3^-$ concentrations (Piscitelli 2019).

Increasing trends emphasize the urgency to link management practices to variations in groundwater NO$_3^-$ concentrations. However, the legacy of past management and N accumulation have complicated these simple linkages. Given the prevalence of legacy NO$_3^-$ in agricultural areas (Van Meter et al. 2016), simply tracking changes in NO$_3^-$ concentrations over time has been inadequate to evaluate long-term effectiveness of management practices (Nestler et al. 2011, Utom et al. 2020). Rather, the addition of isotopic tools to identify sources and transformations of N in groundwater may be an effective means for classifying wells based on unique patterns (figure 1). This approach may be especially important when legacy effects confound the ability to directly link current NO$_3^-$ levels with improved agriculture.

Different sources of groundwater and nutrients have distinct isotopic compositions, and thus, the dual stable isotopes of water (δH$_2$O: δ^{18}H--H$_2$O and δ^{18}O--H$_2$O) and NO$_3^-$ (δNO$_3^-$: δ^{15}N--NO$_3^-$ and δ^{18}O--NO$_3^-$) have both been used as tools for identifying sources, inferring processes, and determining the contributions of various inputs (Sulzman 2007). Specifically, δH$_2$O values can reveal the origin of water sources to groundwater (McGuire and McDonnell 2007, Palmer et al. 2007, Brooks et al. 2012), while δNO$_3^-$ values can differentiate between source inputs of NO$_3^-$ in groundwater (e.g. Kendall et al. 2007, Xue et al. 2009, Suchy et al. 2018, Qin et al. 2019). Trends between δNO$_3^-$ values and groundwater NO$_3^-$ concentrations can also be used to ascertain N transformation processes (e.g. Mayer et al. 2002, Minet et al. 2017, Veale et al. 2019, Utom et al. 2020). However, identification of NO$_3^-$ sources and/or processing based solely on the analysis of δNO$_3^-$ can be complicated by overlapping source δNO$_3^-$ values, potential mixing of NO$_3^-$ sources, and isotopic changes from biogeochemical processes (Kendall et al. 2007, Xue et al. 2009, Zhang et al. 2018, Zhu et al. 2019). Legacy effects may also impact interpretation, as δNO$_3^-$ values in groundwater could represent a mixture of different sources and times (Hu et al. 2019). Thus, for more accurate interpretation, multiple investigative tools should be used simultaneously (Hu et al. 2019, Zhu et al. 2019, Jung et al. 2020). Combining δNO$_3^-$ with δH$_2$O to identify hydrologic parameters could provide a mechanistic approach for understanding groundwater NO$_3^-$ dynamics and help to distinguish areas vulnerable to long-term N contamination due to legacy effects.

The main objectives of this study were to assess whether coupling of dual stable isotopes of δH$_2$O and δNO$_3^-$ can resolve questions about sources and transformations of N in groundwater systems, and to develop an approach to identify some key mechanisms influencing NO$_3^-$ dynamics (figure 1 and table 1). To meet these objectives, NO$_3^-$ concentrations, as well as the dual stable isotopes of δH$_2$O and δNO$_3^-$, were measured in groundwater and domestic wells of the SWV–GWMA. We hypothesized that...
coupled isotopic indicators of δH_2O and δNO_3^- would act as a powerful tool for classifying wells based on N movement, potential N sources with distinct isotopic signals, and transformations of N in the groundwater, allowing for identifying wells where management practices might address contamination issues.

2. Materials and method

2.1. Study location

The Willamette Valley, Oregon, USA, is a productive agricultural area with fine textured soils originating from the Missoula floods (O’Connor et al. 2001). Characterized as having a modified maritime climate regime, the SWV–GWMA has cool, wet winters and warm, dry summers. Yearly precipitation ranges from 1020 to 1270 mm (with ~80% occurring from October to March) and mean monthly air temperatures range from 3°C–5°C in January to 17°C–20°C in August (Uhrich and Wentz 1999). Though relatively flat-lying with very low relief (figure 2), a series of gently sloping and smoother terrace and floodplain surfaces have given the landscape an undulating or rolling topography moving out from the Willamette River (Roberts 1984). The region’s mild climate and flat terrain is suited to produce orchard crops, nursery crops, blueberries, hay, and many types of grass grown for seed (Mueller-Warrant et al. 2015).

Flowing mostly northward (figures 2 and S1), groundwater generally follows the contour of the land, similar to the flow of the Willamette River (Herrera et al. 2014). Groundwater within the topmost shallow aquifer of the SWV–GWMA generally flows through the upper sediments unit, which is characterized by high permeability, high porosity, and high well yield (Conlon et al. 2005). Horizontal hydraulic conductivities range from 1.06×10^{-7} to 8.64×10^{-2} m s$^{-1}$, vertical hydraulic conductivities from 7.06×10^{-6} m s$^{-1}$, and storage coefficients from 3.00×10^{-3} to 2.00×10^{-1}. Flow tends to occur under unconfined conditions with typical water table fluctuations between 1.5 and 6 m of the surface (Conlon et al. 2005). Data from USGS indicates that >80% of groundwater used throughout the Willamette Valley, which is principally recharged by direct infiltration of valley precipitation, is pumped from the uppermost alluvial aquifer layer (consisting of sand and gravel deposits) (Hinkle 1997) and used mostly for irrigation (Conlon et al. 2005). Thus, regional water-quality monitoring has focused on the shallow groundwater (<25 m below land surface), which is likely most affected by anthropogenic activities (Hinkle 1997).

The southern part of the Willamette Valley was identified as a hot spot for N loading (Hoppe et al 2014) with NO_3^- contaminated groundwater (ODEQ 2004, Kite-Powell and Harding 2006). The SWV–GMWA (figure 2), which covers ~600 km2 of lowlands, was established in 2004 because of the high density of domestic and groundwater wells with elevated NO_3^- concentrations. The SWV–GWMA extends from Albany south to the city of Eugene. The boundaries approximate the limits of the underlying shallow alluvial aquifer, with the Willamette River flowing south-to-north through the center of the GWMA (figure 2). Agricultural land uses cover approximately 93% of the SWV–GWMA area (LCOG 2008).

2.2. Shallow groundwater sampling

Since 2006, shallow groundwater samples were analyzed for NO_3^- concentrations, hereafter referred to as $[NO_3^-]$, by ODEQ from 16 domestic wells (installation dating from the 1970s; well depth 6–24 m) and 23 ODEQ groundwater monitoring wells (installation dating between 2003 and 2006; well depth 4–15 m) across the SWV–GWMA. Quarterly sampling for water isotopes (δH_2O, $\delta^2H–H_2O$ and $\delta^{18}O–H_2O$) in all wells began in 2012, but in 2016 sampling frequency decreased to once a year (May/June) in all but 12 wells. Analysis for NO_3^- isotopes (δNO_3^-; $\delta^{15}N–NO_3^-$ and $\delta^{18}O–NO_3^-$) also began in 2016. We report monitoring results from 2012 to 2020 for water isotopes and 2016–2020 for NO_3^- isotopes (Compton 2021). Sampling and analytical techniques are detailed in the supplementary material.
Stable N/A Legacy groundwater

Stable/Variable No apparent

Variable

Stable/Variable

Table 1. Well behavior categories defined in terms of [NO$_3^-$] trends, H$_2$O and NO$_3^-$ source stability over time, and correlative relationships between parameters.

Category	[NO$_3^-$] Nitrate concentration	δ^{15}H–H$_2$O Water source	δ^{15}N–NO$_3^-$ Nitrate source	Trends	Description
Stable	Stable	Stable	Stable	N/A	Legacy groundwater; [NO$_3^-$] disconnected from present-day changes at the surface.
Dilution	Variable	Variable	Stable	[NO$_3^-$] correlated with δ^{15}H–H$_2$O, but no correlation with δ^{15}N–NO$_3^-$; dual δNO$_3^-$ not variable.	
Mixing	Variable	Variable	Variable	[NO$_3^-$] correlated with δ^{15}H–H$_2$O and δ^{15}N–NO$_3^-$; dual δNO$_3^-$ correlated.	
Leaching	Variable	Stable/Variable	Stable	[NO$_3^-$] not correlated with δ^{15}H–H$_2$O or δ^{15}N–NO$_3^-$; dual δNO$_3^-$ not variable.	
Denitrification	Variable	Stable	Variable	[NO$_3^-$] negatively correlated with δ^{15}N–NO$_3^-$, but no correlation with δ^{15}H–H$_2$O; dual δNO$_3^-$ positively correlated.	
Multi-Process	Variable	Variable	Variable	No apparent correlations.	
Likely NO$_3^-$ source in agricultural fields (across all categories)	Stable/Variable	Stable/Variable	Stable	δ^{15}N–NO$_3^-$ more isotopically enriched (e.g. >10 ‰).	

2.3. Well categorization

Relationships between isotopic signatures and [NO$_3^-$] were used to categorize well behavior in terms of H$_2$O and NO$_3^-$ source stability over time, revealing patterns about N transformation and transport mechanisms across the landscape (figure 1). For each well, the variance across sampling times (one SD) in three parameters—[NO$_3^-$], δ^{15}H–H$_2$O values, and δ^{15}N–NO$_3^-$ values—was used as an initial assessment of parameter stability. The SDs ranged from 0.2 to 9.0 mg NO$_3^-$–N l$^{-1}$ for [NO$_3^-$], 0.3‰–4.8‰ for δ^{15}H–H$_2$O values, and 0.1‰–7.0‰ for δ^{15}N–NO$_3^-$ values. When the SD of a parameter was <10% of its variability range, the parameter was initially identified as stable over time, and when it was >10%, it was initially identified as variable over time. We then assessed whether variable parameters were correlated within a well to further classify the behavior (figure 1 and table 1).

3. Results

3.1. Nitrate concentrations and isotopic values

Across all wells sampled from 2012 to 2020, [NO$_3^-$] ranged from 0.0 to 41.8 mg NO$_3^-$–N l$^{-1}$, with a median of 6.1 mg NO$_3^-$–N l$^{-1}$. Values of δ^{15}H–H$_2$O ranged from −81.5‰ to −50.5‰, with a median of −62.6‰, and δ^{18}O–H$_2$O ranged from −11.6‰ to −6.9‰, with a median of −8.9‰. Meanwhile, δ^{15}N–NO$_3^-$ and δ^{18}O–NO$_3^-$ values ranged from −0.1‰ to +40.9‰, with a median of +4.5‰, and −3.2‰ to +17.4‰, with a median of +1.6‰, respectively. These ranges and median values did not differ significantly between DW and GW wells.
3.2. Classification of wells
Theoretically, specific processes such as dilution with an alternate groundwater source, mixing of two groundwater sources with differing NO$_3^-$ sources, leaching of legacy NO$_3^-$ from overlying soils, and denitrification have unique isotopic signatures in this coupled dual isotope approach (figure 1 and table 1). When the relationships between [NO$_3^-$] and δ15N–NO$_3^-$ values, [NO$_3^-$] and δ2H–H$_2$O values, and δ15N–NO$_3^-$ and δ18O–NO$_3^-$ were taken together, clear distinctions among sources and processing of NO$_3^-$ became apparent in most of the wells of the SWV–GWMA (figure 3). However, well category was not related to well location across the SWV–GWMA (figure 4). Of the 39 total sampled wells, [NO$_3^-$] in 28 wells varied over time. Nitrate trends in 85% of the wells (i.e. 33) could be classified based on concentration and isotopic patterns (figures 3(a)–(i)); overlapping processes in six wells, categorized as ‘multi-process’ (figures 3(j)–(l)), make classification difficult using the coupled dual isotope approach alone.

3.2.1. Stable wells
We classified 11 wells with relatively unchanging behavior in all measured parameters (figures 3(a)–(c)) as stable. The SD stability thresholds averaged 0.5 mg NO$_3^-$–N l$^{-1}$, 0.7 ‰ δ2H–H$_2$O, and 0.4 ‰ δ15N–NO$_3^-$. Each stable well occupied a unique space with distinct isotopic values and [NO$_3^-$], indicating that both H$_2$O and NO$_3^-$ sources were unique. Nitrate concentrations ranged from 0.2 to 11.2 mg NO$_3^-$–N l$^{-1}$, with four wells (DW-6, DW-10, GW-9, GW-27) having concentrations >7 mg NO$_3^-$–N l$^{-1}$ throughout the majority of the sampling period (figure 3(a)). Values of δ2H–H$_2$O were used to separate water into two distinct sources: Willamette River water (range: −81.1‰ to −73.5‰) and valley precipitation (range: −67.4‰ to −59.0‰) collected from Corvallis, OR (supplementary material). Water in most stable wells was similar to valley precipitation, with δ2H–H$_2$O values spanning the entire range of precipitation values (figure 3(b)). One well (DW-3), however, had more depleted isotopic values indicating mixing with Willamette River water (figure 3(b)).

Nitrate derived from fertilizers, soil organic matter, and animal manure/septic waste tend to have overlapping δ18O–NO$_3^-$ values, in the range of...
3.2.2. Dilution and mixing wells

Wells where $[\text{NO}_3^-]$ varied with shifting water sources (correlated with $\delta^{2}H$–H_2O) but which had a stable NO_3^- source (stable δNO_3^-) were classified as diluting wells (table 1). Variable $[\text{NO}_3^-]$ in eight wells were positively correlated with $\delta^{2}H$–H_2O values (figure 3(e)) and had stable δNO_3^- values. In these wells, $[\text{NO}_3^-]$ ranged from 0.3 to 29.5 mg NO_3^-–N l^{-1}. The highest $[\text{NO}_3^-]$ were found within the valley precipitation $\delta^{2}H$–H_2O range, and $[\text{NO}_3^-]$ decreased as $\delta^{2}H$–H_2O values decreased from dilution by Willamette River water (figure 3(e)). Synthetic fertilizer was likely the main NO_3^- source to these wells ($\delta^{15}N$–NO_3^- range: $+1.6$ to $+6.7$‰, $\delta^{18}O$–NO_3^- range: -2.2 to $+9.7$‰, figure 3(f)).

The four other wells where $[\text{NO}_3^-]$ increased with $\delta^{2}H$–H_2O (figure 3(e)) had variable $\delta^{15}N$–NO_3^- values that were correlated with NO_3^- levels...
J N Weitzman

were values (range: δ^3H–H$_2$O signatures from overlying soils, leading to the values ranged from 0.1 to 40.9‰. Negative correlations between $[\text{NO}_3^-]$ and δ^{15}N–NO_3^- in tandem with positive correlations between the dual δNO$_3^-$ isotopes would seem to suggest denitrification processes are at play in wells DW-1524, GW-4S, GW-7, GW-18, and seasonally in GW-10 (table 1, figures 3(j) and (l)). However, the variability in δ^2H–H$_2$O and δ^{15}N–NO_3^- values for the wells suggests that the influence of multiple sources cannot be ruled out. Thus, denitrification was not a dominant transformation pathway in any of the six wells (or in any of the wells throughout the SWV–GWMA).

While we cannot distinguish the primary influences accounting for the variable $[\text{NO}_3^-]$ within the multi-process wells, (i.e. whether multiple N transformation processes are occurring simultaneously, or mixing of water sources, and NO$_3^-$ sources, or both), synthetic fertilizers and manure/septic sources appear to be the main contributors (figure 3(l)).

4. Discussion

Given that NO$_3^-$ is highly mobile and primarily originates from non-point sources, tracking its origins can be difficult. However, by analyzing δ^2H–H$_2$O and δNO$_3^-$ in tandem we were able to identify multiple mechanisms and sources controlling groundwater $[\text{NO}_3^-]$. We created a new framework for categorizing groundwater behavior (figure 1 and table 1), revealing insights into groundwater-contaminant interactions and helped identify where to target appropriate land management practices (Hansen et al. 2017) to reduce groundwater $[\text{NO}_3^-]$. While the overlap in isotopic values for multiple sources and the influence of isotopic fractionation pose limits, applying the coupled dual isotope approach at other locations could lead to more mechanistic understanding of the movement of water and contaminants within the groundwater. Experimenting with different management techniques in areas where groundwater $[\text{NO}_3^-]$ are known to be linked to contemporary land management practices could allow for unambiguous assessments of BMP’s, eliminating the confounding effects of legacy lag-times (Meals et al. 2010, Van Meter et al. 2016).
4.1. Application of approach at SWV-GWMA

The variance in $[\text{NO}_3^-]$ and values of the coupled dual isotopic indicators of $\delta^{2}H_2O$ and $\delta^{15}N$ across space and time within the wells of the SWV–GWMA revealed the complex nature of groundwater NO_3^- transport throughout the relatively uniform shallow aquifer. We classified well behavior at this test site into five categories, with the percentage of wells in each category, from greatest to least, as follows: 28% stable, 26% leaching, 21% dilution, 15% multi-process, and 10% mixing. These results suggest that managing groundwater $[\text{NO}_3^-]$ in the region will require integration of different approaches, such as controlling NO_3^- sources and/or enhancing NO_3^- sinks across the landscape (Stigter et al. 2011).

Synthetic fertilizers (69%), manure/septic sources (5%), or a mixture of the two (26%) were found to be the main sources of NO_3^- to the SWV–GWMA groundwater. These results align with a surface water modeling study based on conditions in the Willamette River Basin in 2002 that found agricultural fertilizer (27.2%) and animal manure (10.9%) were the largest contributors to incremental N stream loads (Wise and Johnson 2011). Similarly, Compton et al. (2020) showed that agricultural activities accounted for 78% of the annual total N inputs to the entire Willamette River Basin for the years 2002–2006, with 69% of total inputs attributed to synthetic fertilizers and 7% to manure waste from permitted confined animal feeding operations (CAFOs) used as fertilizer. These numbers closely match those within the boundaries of the SWV–GWMA where agricultural crop activities contribute 90% of N inputs and CAFOs contribute 6% (LCOG 2013). Most of the nursery crops and grass seed of the region require significant inputs of synthetic N fertilizers (100–250 kg N ha$^{-1}$ year$^{-1}$) (Compton et al. 2020) where a substantial amount can leach from the rooting zone into streams or the groundwater, especially when temporal asynchrony occurs between fertilizer application, crop N uptake, and hydrologic movement (Lin et al. 2019).

Eight permitted CAFOs within the SWV–GWMA make up ~2% of the land, and together contribute ~6% of the total N inputs (LCOG 2008). The three largest operations account for ~94% of the total CAFO N contributions and are closest to wells DW-10, GW-3, and GW-12. Average $\delta^{15}N$–NO_3^- values for these nearby wells are 8.8‰, 6.5‰, and 4.6‰, respectively. Typical values for manure waste tend to have $\delta^{15}N$–NO_3^- values ≥ 10‰ (Kendall et al. 2007), suggesting that a well’s distance from a currently-permitted CAFO may not be the best parameter for revealing the true influence of animal agriculture on groundwater $[\text{NO}_3^-]$ in the region. The manure source signatures seen in two wells (DW-5 and GW-8) of the SWV-GWMA that are not close to any currently-permitted CAFOs could be due to the direct application of manure as a crop fertilizer to the surrounding agricultural fields, the legacy impact of past animal agriculture in the area, or the flow path and direction of groundwater.

Water isotopes were useful in elucidating the contributions of varying water sources and hydrological processes to the SWV–GWMA groundwater. Local valley precipitation was the main water source to the groundwater in 64% of the wells across the region, with evidence of Willamette River hyporheic water mixing with valley groundwater (Kendall and Caldwell 1998) in the remaining 34% of wells, which diluted $[\text{NO}_3^-]$ (figure S2). This method worked well because the two sources were isotopically unique; however, the $\delta^{2}H$–H_2O values of groundwater in each stable well were also isotopically distinct within the precipitation range (figure 3(b)). These slight isotopic differences suggest that the shallow aquifer of the SWV–GWMA consists of highly compartmentalized groundwater pools that have limited lateral connectivity (Joshi et al. 2018), likely due to the heterogeneity of the alluvial aquifer material. The slight but consistent isotopic differences also indicate that water isotopes could be a powerful tool even in locations without a broad range of isotopically distinct water sources.

4.2. Management implications for wells

Stable wells, i.e. those with relatively unchanging $[\text{NO}_3^-]$ and $\delta^{2}H_2O$ and $\delta^{15}N$–NO_3^- values (figures 3(a)–(c)), are unlikely to be immediately impacted by any new management modifications at the land surface. The stability of $\delta^{2}H$–H_2O values suggests one slow-moving groundwater source to each stable well with long residence time (Broxton et al. 2009, Thomas et al. 2013). Given this, the stable $\delta^{15}N$–NO_3^- values, which indicate fertilizer- or manure/septic-derived NO_3^- sources, are likely signatures from past N inputs. While the $[\text{NO}_3^-]$ in stable wells appear to be disconnected from current surface inputs, the relatively low concentrations found in some wells (e.g. DW-9, GW-8, GW-15) suggest that land around them may be less susceptible to leaching of NO_3^- into the groundwater, or inputs of N in the past were more efficiently managed. The higher groundwater $[\text{NO}_3^-]$ of other stable wells (e.g. DW-10, GW-9, GW-27), however, could signify a long-term legacy of contaminated groundwater, which immediate land management changes could not resolve readily.

We found $[\text{NO}_3^-]$ variation was driven by dilution of an alternate groundwater source (Ogrinc et al. 2019), the mixing of two NO_3^- sources (Kendall et al. 2007), or the leaching of present-day (Minet et al. 2017) or legacy N (Hu et al. 2019) from overlying soils. The variable $\delta^{2}H$–H_2O values in leaching wells suggest that groundwater within them has a short residence time (Broxton et al. 2009, Thomas et al. 2013), and thus the impact of surface management changes on groundwater $[\text{NO}_3^-]$ could potentially be
assessed over relatively short timeframes. The residence time of groundwater in the dilution and mixing wells, however, is not as discernable. The source of high \([\text{NO}_3^-]\) could be from a stable groundwater pool with a long residence time, suggesting once again that legacy sources could be responsible for the contamination. Concentrations only decrease on the short-term when the contaminated water is influenced by another water supply (like the Willamette River) or another \(\text{NO}_3^-\) source (figure S2). These wells could thus have long-term \([\text{NO}_3^-]\) contamination problems that are not addressed as quickly because evidence of other events (i.e. dilution by ‘cleaner’ river water or mixing with a lower concentration \(\text{NO}_3^-\) source; figure S2) appear to diminish the issue.

The high \([\text{NO}_3^-]\) of the valley groundwater could be due to high N input levels, low plant uptake, re-application of high \([\text{NO}_3^-]\) irrigation water, or N-leaching legacy effects. Reducing new fertilizer inputs (Chen et al. 2018), optimizing uptake of legacy nutrients (Hu et al. 2019), or incorporating perennial vegetation or cover crops to more efficiently sequester excess \(\text{NO}_3^-\) (Brandi-Dohrn et al. 1997, Feaga et al. 2010, Van Meter et al. 2017) could all help in reducing the groundwater \(\text{NO}_3^-\) pool. These changes, however, are not likely to show a short-term effect on N loading in wells impacted by nutrient legacies due to the documented N-leaching lag effect (Hamilton 2012, Van Meter et al. 2018). Wells characterized as leaching with high variability in \(\delta^2\text{H–H}_2\text{O}\) and \([\text{NO}_3^-]\) are the most likely to see short-term effects from management.

Denitrification was not found to be a dominant process in any of the wells of the SWV–GWMA. While many have found high denitrification in groundwater (Böttcher et al. 1990, Tesoriero et al. 2013, Minet et al. 2017), others found it to be insignificant (Howard 1985, Wassenaar et al. 2006, Jia et al. 2020). In shallow, and even deep, aquifer systems, anaerobic conditions known to promote high levels of denitrification may be elusive (Hamilton and Helsel 1995, Lorite-Herrera and Jiménez-Espinoza 2008). The absence of an adequate carbon source can also limit denitrification in soils and groundwater (Hiscock et al. 1991, Rivett et al. 2008, Weitzman et al. 2014). Thus, the conditions necessary for denitrification were likely lacking across the SWV–GWMA. However, strategies that slow the movement of water through the soil profile or supplement low-organic soils with organic-rich carbon sources could increase denitrification.

5. Conclusions

Using the coupled dual isotope approach, we built a framework for classifying different processes responsible for groundwater \([\text{NO}_3^-]\) dynamics and confirmed the prevalence of legacy \(\text{NO}_3^-\) as a main contributor to groundwater contamination in an agricultural setting. Including \(\delta\text{H}_2\text{O}\) and \(\delta\text{NO}_3^-\) analyses with standard \([\text{NO}_3^-]\) data could enable land managers to more effectively evaluate groundwater BMP’s. The value of different improved N management strategies, such as the optimization of fertilizer use (rate, timing, location, and form), irrigation management, soil and tissue testing, cover crop adoption, and soil health promotion (Feaga et al. 2004), may vary depending on the underlying behavior of the groundwater. Future work to elucidate fate and transport of groundwater N may benefit from the coupling of \(\delta\text{H}_2\text{O}, \delta\text{NO}_3^-\), and another discriminate isotope (e.g. boron, strontium, sulfate) or chemical tracers to further elucidate \(\text{NO}_3^-\) sources or processes.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.org/10.23719/1519089.

Acknowledgments

We thank Rich Myzak (Laboratory and Environmental Assessment Division of the Oregon Department of Environmental Quality) for his assistance with sample collection and analytical reporting. We thank Gary Bahr (Natural Resources Assessment Section of the Washington State Department of Agriculture) for his constructive comments and suggestions that helped improve and clarify this manuscript. This project was supported in part by an appointment to the Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

This manuscript has undergone internal peer-review at the U.S. Environmental Protection Agency and has been approved for publication. The views expressed in this article are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, U.S. Department of Energy, or the Oak Ridge Institute for Science and Education. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency.

ORCID iDs

Julie N Weitzman ♦ https://orcid.org/0000-0002-6554-4776
J Renée Brooks ♦ https://orcid.org/0000-0002-5008-9774
Paul M Mayer ♦ https://orcid.org/0000-0002-8550-1386
References

Böttcher J, Strelbo V, Voerkelius S and Schmidt H-L 1990 Using
isotope fractionation of nitrate-nitrogen and nitrate-oxygen
for evaluation of microbial denitrification in a sandy aquifer
J. Hydrol. 114 413–24

Brandi-Dohrn F M, Dick R P, Hess M, Kauffman S M, Hemphill D D and Selker J S 1997 Nitrate leaching under a
cereal rye cover crop J. Environ. Qual. 26 181–92

Brooks J R, Wigington P J, Phillips D L, Comeleo R and
Hemphill D D 2012 Willamette River Basin surface water
isoscape (δ18O and δD): temporal changes of source water
within the river Ecosphere 3 39

Broxton P D, Troch P A and Lyon S W 2009 On the role of aspect
to quantify water transit times in small mountainous
catchments Water Res. Res. 45 1–15

Chen D, Shen H, Hu M, Wang J, Zhang Y and Dahlgren R A 2018
Legacy nutrient dynamics at the watershed scale: principles,
modeling, and implications Adv. Agron. 149 237–313

Compton J E, Goodwin K E, Sobota D J and Lin J 2020 Seasonal
disconnect between streamflow and retention shapes
riverine nitrogen export in the Willamette River Basin,
Oregon Ecosystems 23 1–17

Compton J 2021 Coupling the dual-isotope indicators of water
and nitrate indicates legacy groundwater pollution [Data set] (U.S. EPA Office of Research and Development (ORD))
https://doi.org/10.23719/1519089

Conlon T D, Wozniak K C, Woodcock D, Herrera N B, Fisher B J,
Morgan D S, Lee K K and Hinkle S R 2005 Ground-water
hydology of the Willamette Basin, Oregon U.S. Geological
Survey Scientific Investigations Report 2005–5168 (Reston,
VA: U.S. Government Printing Office) p 83

Davidson E A et al 2012 Excess nitrogen in the U.S. environment:
trends, risks, and solutions Ecol. Issues 2012 1–16

DeSimone L A, McMahon P B and Rosen M R 2014 The quality of
our Nation’s waters—water quality in principal aquifers of
the United States, 1991–2010 U.S. Geological Survey Circular
1360 (Reston, VA: U.S. Government Printing Office) p 151

Dieter C A, Maupin M A, Caldwell R R, Harris M A,
Ivahnenko T I, Lovelace J K, Barber N L and Linsey K S 2018
Estimated use of water in the United States in 2015 U.S.
Geological Survey Circular 1441 (Reston, VA: U.S.
Government Printing Office) p 65

Dubrovsky N M et al 2010 The quality of our Nation’s
waters—nutrients in the Nation’s streams and groundwater,
1992–2004 U.S. Geological Survey Circular 1350 (Reston, VA:
U.S. Government Printing Office) p 174

Dwivedi D and Mohanty B 2016 Hot spots and persistence of
nitrate in aquifers across scales Entropy 18 25

Exner M E, Hirah A J and Spalding R F 2014 Nebraska’s
groundwater legacy: nitrate contamination beneath
irrigated cropland Water Resour. Res. 50 4474–89

Feaga J B, Selker J S, Dick R P and Hemphill D D 2010 Long-term
nitrate leaching under vegetable production with cover
crops in the Pacific Northwest Soil Sci. Soc. Am. J. 74 186–95

Feaga J, Dick R, Louie M and Selker J 2004 Nitrates and
groundwater: why should we be concerned with our current
fertilizer practices? Oregon State University Agricultural
Experiment Station Special Report 1050 (Corvallis, OR:
Oregon State University) p 21

Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z,
Frenney J R, Martinelli L A, Seitzinger S P and Sutton M A
2008 Transformation of the nitrogen cycle: recent trends,
questions, and potential solutions Science 320 889–92

Hamilton P A and Helsel D R 1995 Effects of agriculture on
ground-water quality in five regions of the United States
Ground Water 33 217–26

Hamilton S K 2012 Biogeochemical time lags may delay responses
of streams to ecological restoration Freshwater Biol. 57 43–57

Hansen B, Thorning L, Schullehner J, Termansen M and
Dalgaard T 2017 Groundwater nitrate response to
sustainable nitrogen management Sci. Rep. 7 8566

Herrera N, Burns E and Conlon T 2014 Simulation of
groundwater flow and the interaction of groundwater and
surface water in the Willamette Basin and central Willamette
subbasin, Oregon U.S. Geological Survey Scientific
Investigations Report 2014–5136 (Reston, VA: U.S. Government
Printing Office) p 152

Hinkle S R 1997 Quality of shallow ground water in alluvial
aquifers of the Willamette Basin, Oregon, 1993–95 U.S.
Geological Survey Water-Resources Investigations Report
97–4082-B (Portland, OR: U.S. Government Printing
Office) p 48

Hinsby K, Markager S, Kromvang B, Windolf J, Sonnenborg T O
and Tholring L 2012 Threshold values and management
options for nutrients in a catchment of a temperate estuary
with poor ecological status Hydrol. Earth Syst. Sci. 16 2663–83

Hiscock K M, Lloyd J W and Lerner D N 1991 Review of natural
and artificial denitrification of groundwater Water Res.
25 1099–111

Hoppe B, White D, Harding A, Mueller-Warrant G, Hope B and
Main E 2014 High resolution modelling of agricultural
nitrogen to identify private wells susceptible to nitrate
contamination J. Water Health 12 702–14

Howard K W F 1985 Denitrification in a major limestone aquifer
J. Hydrol. 76 265–80

Howden N J K, Burt T P, Worrall F, Whelan M J and Bieroza M
2010 Nitrate concentrations and fluxes in the River Thames
over 140 years (1868–2008): are increases irreversible?
Hydrol. Process. 24 2657–62

Hu M, Liu Y, Zhang Y, Dahlgren R A and Chen D 2019 Coupling
stable isotopes and water chemistry to assess the role of
hydrological and biogeochemical processes on riverine
nitrogen sources Water Res. 150 418–30

Jia H, Howard K and Qian H 2020 Use of multiple isotopic and
chemical tracers to identify sources of nitrate in shallow
groundwaters along the northern slope of the Qinling
Mountains, China Appl. Geochem. 113 104512

Joshi S K, Rai S P, Sinha R, Gupta S, Densmore A L, Rawat Y S
and Shelkar S 2018 Tracing groundwater recharge sources in
the northernmost Indian alluvial aquifer using water isotopes
(δ18O, δD and 2H) J. Hydrol. 559 835–47

Jung H, Koh D-C, Kim Y, Jeen S-W and Lee J 2020 Stable isotopes
of water and nitrate for the identification of groundwater
flowpaths: a review Water 12 138

Katz B G, Berndt M P and Crandall C A 2014 Factors affecting
the movement and persistence of nitrate and pesticides in
the surficial and upper Floridan aquifers in two agricultural
areas in the southeastern United States Environ. Earth Sci.
71 2779–95

Kendall C and Caldwell E A 1998 Fundamentals of Isotope
Geochemistry Isotope Tracers in Catchment Hydrology ed
C Kendall and J McDonnell (Amsterdam: Elsevier)
p 51–86

Kendall C, Elliott F M and Wankel S D 2007 Tracing
anthropogenic inputs of nitrogen to ecosystems Stable
Isotopes in Ecology and Environmental Science 2nd edn, ed R
Michener and K Labia (Malden, MA: Blackwell Publishing,
Ltd) pp 375–449

Kite-Powell A C and Harding A K 2006 Nitrate contamination in
oregon well water: geologic variability and the public’s
perception J. Am. Water Resour. Assoc. 42 975–87

LCOG 2008 Southern Willamette Valley groundwater
management area: nitrogen/nitrate budget report Lane
Counts and Governments (Eugene, OR: Lane Council of
Governments (LCOG)) p 63

Lewis W M, Wurtsbaugh W A and Paerl H W 2011 Rationale for
control of anthropogenic nitrogen and phosphorus to
reduce eutrophication of inland waters Environ. Sci. Technol. 45 10300–5
Lin J, Compton J E, Leibowitz S G, Mueller-Warrant G, Matthews W, Schoenholte S H, Evans D M and Coulombe R A 2019 Seasonality of nitrogen balances in a Mediterranean climate watershed, Oregon, US Biogeochimisty 142 247–64
Lindsay B D, Phillips S W, Donnelly C A, Speiran G K, Plummer L N, Böhike J, Focazio M J, Burton W C and Bussenberg E 2003 Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed U.S. Geological Survey Water-Resources Investigations Report 2003–4035 (New Cumberland, PA: U.S. Government Printing Office) p 201
Lorite-Herrera M and Jiménez-Espinosa R 2008 Impact of agricultural activity and geologic controls on groundwater quality of the alluvial aquifer of the Guadalquivir River (province of Jaén, Spain): a case study Environ. Geol. 54 1391–402
Madison R J and Brunett J O 1985 Overview of the occurrence of nitrate in ground water of the United States National water summary 1984—Hydrologic events, selected water-quality trends, and ground-water resources U.S. Geological Survey Water-Supply Paper 2275 (Washington, DC: U.S. Government Printing Office) pp 93–105
Mastrococcolo M, Colombani N, Castaldelli G and Jovanovic N 2017 Monitoring and modeling nitrate persistence in a shallow aquifer Water Air Soil Pollut. 217 83–93
Mayer B et al 2002 Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: isotopic constraints Biogeochimisty 57 171–97
McGuire K and McDonnell J 2007 Stable isotope tracers in watershed hydrology Stable Isotopes in Ecology and Environmental Science 2nd edn, ed R Michener and K Lajtha (Malden, MA: Blackwell Publishing, Ltd) pp 334–74
McEllan E, Robertson D, Schilling K, Tomer M, Kostel J, Smith D and King K 2015 Reducing nitrate export from the Corn Belt to the Gulf of Mexico: agricultural strategies for remediating hypoxia J. Am. Water Resour. Assoc. 51 263–89
Meals D W, Dressing S A and Davenport T E 2010 Lag time in geologic units in the Willamette Valley, Oregon. Environment. Res. Lett. 16 (2021) 045008 J N Weitzman 3104–24
Minat E, Godduhe R, Maier-Augenstein W, Kalin R M, Fenton O, Richards K G and Coxon C E 2017 Combining stable isotopes with contamination indicators: a method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitroen inputs Water Res. 124 85–96
Mueller-Warrant G W, Whitaker G W, Banowetz G M, Griffith S M and Barmhart B L 2015 Methods for improving accuracy and extending results beyond periods covered by traditional ground-truth in remote sensing classification of a complex landscape Int. J. Appl. Earth Obs. 38 115–28
Nestler A, Berglund M, Acceo F, Duta S, Xue D, Boeckx P and Taylor P 2011 Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies Environ. Sci. Pollut. Res. 18 519–33
O’Connor J M, Sarna-Wojcicki A, Wozniak K C, Polette D J and Fleck R J 2001 Origin, extent, and thickness of Quaternary geologic units in the Willamette Valley, Oregon. U.S. Geological Survey Professional Paper 1620 (Reston, VA: U.S. Government Printing Office) p 52
ODEQ 2004 Southern Willamette Valley: groundwater summary report Oregon Department of Environmental Quality (ODEQ) (Portland, OR: Oregon Department of Environmental Quality (ODEQ)) p 29
ODEQ 2017a Groundwater basics for drinking water protection fact sheet Oregon Department of Environmental Quality, Water Quality Division, Drinking Water Protection Program. (Portland, OR: Oregon Department of Environmental Quality (ODEQ)) p 4
ODEQ 2017b Oregon public water systems groundwater source guide for drinking water source protection Oregon Department of Environmental Quality, Environmental Solutions Division, Watershed Management (Portland, OR: Oregon Department of Environmental Quality (ODEQ)) p 122
Ogrinc N, Tamsø S, Zavadlav S, Vrzal J and Jin L 2019 Evaluation of geochemical processes and nitrate pollution sources at the Ljubljanjsko polje aquifer (Slovenia): a stable isotope perspective. Sci. Total Environ. 646 1588–600
Palmer P C, Gannett M W and Hinkle S R 2007 Isotopic characterization of three groundwater recharge sources and inference to focused aquifers in the upper Klamath Basin of Oregon and California, USA J. Hydrol. 336 17–29
Pennino M J, Leibowitz S G, Compton J E, Hill R A and Sabo R D 2020 Patterns and predictions of drinking water nitrate violations across the conterminous United States Sc. Total Environ. 722 137661
Piscielli C M 2019 A trend analysis of nitrate in the Southern Willamette Valley Groundwater Management Area (GWMA) MSc Thesis Oregon State University, Corvallis, OR (https://ir.library.oregonstate.edu/concern/graduate_disertations/cr56n703s)
Puckett L J, Tesoriero A J and Dubrovsky N M 2010 Nitrogen contamination of surficial aquifers—a growing legacy Environ. Sci. Technol. 45 839–44
Qin Y, Zhang D and Wang F 2019 Using nitrogen and oxygen isotopes to access sources and transformations of nitrogen in the Qinhe Basin, North China Environ. Sci. Pollut. Res. 26 738–49
Repert D A, Barber I B, Hess K M, Keefe S H, Kent D B, LeBlanc D R and Smith R L 2006 Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater Environ. Sci. Technol. 40 1134–62
Rivett M O, Buss S R, Morgan P, Smith J W and Bemment C D 2008 Nitrate attenuation in groundwater: a review of biogeochemical controlling processes Water Res. 42 4215–32
Roberts M C 1984 The late Cenozoic history of an alluvial fill: the southern Willamette Valley, Oregon Correlation of Quaternary Chronologies ed W C Mahaney (Norwich: Geo Books) pp 491–504
Ruddy B C, Lorenz D L and Mueller D K 2006 County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001 U.S. Geological Survey Scientific Investigations Report 2006–5012 (Reston, VA: U.S. Government Printing Office) p 17
Sabo R D et al 2019 Decadal shift in nitroen inputs and fluxes across the contiguous United States: 2002–2012 J. Geophys. Res.: Biogeosci. 124 3104–24
Sobota D J, Compton J E and Harrison J A 2013 Reactive nitrogen sources in the conterminous United States, 1982–2001 U.S. Geological Survey Scientific Investigations Report 2006–5012 (Reston, VA: U.S. Government Printing Office) p 17
Stiger T Y, Carvalho Dill A M and Ribiero L 2011 Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater Environ. Sci. Technol. 45 8674–82
Suchy M, Wassenara I I, Graham G and Zebarth B 2018 High-frequency NO3−δ 15N, δ 18O) patterns in groundwater recharge reveal that short-term changes in land use and precipitation influence nitrate contamination trends Hydrol. Earth Syst. Sci. 22 4267–79
Sulzman E W 2007 Stable isotope chemistry and measurement: a primer Stable Isotopes in Ecology and Environmental Science 2nd edn, ed R Michener and K Lajtha (Malden, MA: Blackwell Publishing, Ltd) pp 1–21
Tesoriero A J, Duffl H J, Saad D A, Spahr N E and Wolock D M 2013 Vulnerability of streams to legacy nitrate sources Environ. Sci. Pollut. Res. 20 3653–69
Thomas E M, Lin H, Duffy C J, Sullivan P L, Holmes G H, Branley S L and Jin L 2013 Spatiotemporal patterns of water stable isotope compositions at the Shale Hills critical zone observatory: linkages to subsurface hydrologic processes Vadose Zone J. 12 1–16
Ulrich M A and Wentz D A 1999 Environmental setting of the Willamette Basin, Oregon U.S. Geological Survey
Water-Resources Investigations Report 97–4082-A (Portland, OR: U.S. Government Printing Office) p 19
USEPA 1995 National primary drinking water regulations, 40 CFR, Parts 141–143 U.S. Environmental Protection Agency, Office of Water: National Service Center for Environmental Publications (Washington, DC)
Utomo A U, Werban U, Leven C, Müller C, Knöller K, Vogt C and Dietrich P 2020 Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: an assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer Biogeochemistry 147 211–23
Van Meter K J, Basu N B and Van Cappellen P 2017 Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna River Basins Glob. Biogeochem. Cy. 31 2–23
Van Meter K J, Basu N B, Veenstra J J and Burras C I 2016 The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes Environ. Res. Lett. 11 035014
Van Meter K J, Van Cappellen P and Basu N B 2018 Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico Science 360 427–30
Veale N, Visser A, Esser B, Singleton M and Moran J 2019 Nitrogen cycle dynamics revealed through δ¹⁸O–NO₃⁻ analysis in California groundwater Geosciences 9 95
Ward M H, Jones R R, Brender J D, de Kok T M, Weyer P J, Nolan B T, Villanueva C M and van Breda S G 2018 Drinking water nitrate and human health: an updated review Int. J. Environ. Res. Public Health 15 1557
Wassenaar L I, Hendry M J and Harrington N 2006 Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices Environ. Sci. Technol. 40 4626–32
Weitzman J N, Forshay K J, Kaye J P, Mayer P M, Koval J C and Walter R C 2014 Potential nitrogen and carbon processing in a landscape rich in milldam legacy sediments Biogeochemistry 120 337–57
Wise D R and Johnson H M 2011 Surface-water nutrient conditions and sources in the United States Pacific Northwest J. Am. Water Resour. Assoc. 47 1110–35
Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor R, Van Cleemput O, Berglund M and Boeckx P 2009 Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater Water Res. 43 1159–70
Zhang Y, Shi P, Li F, Wei A, Song J and Ma J 2018 Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model Chemosphere 208 493–501
Zhu A, Chen J, Gao L, Shimizu Y, Liang D, Yi M and Cao J. 2019 Combined microbial and isotopic signature approach to identify nitrate sources and transformation processes in groundwater Chemosphere 228 721–34