LINEARITY DEFECT OF THE RESIDUE FIELD OF SHORT LOCAL RINGS

RASOUL AHANGARI MALEKI

Abstract. Let \((R, m, k)\) be a Noetherian local ring with maximal ideal \(m\) and residue field \(k\). The linearity defect of a finitely generated \(R\)-module \(M\), which is denoted \(\text{ld}_R(M)\), is a numerical measure of how far \(M\) is from having linear resolution. We study the linearity defect of the residue field. We give a positive answer to the question raised by Herzog and Iyengar of whether \(\text{ld}_R(k) < \infty\) implies \(\text{ld}_R(k) = 0\), in the case when \(m^4 = 0\).

1. Introduction and notation

This paper is concerned with the notion of the linearity defect of the residue field of a commutative Noetherian local ring. This invariant was introduced by Herzog and Iyengar \([3]\) and has been further studied by Iyengar and Römer \([4]\), Şega \([6]\) and Nguyen \([5]\). Let us recall the definition of the linearity defect. Throughout this paper \((R, m, k)\) will denote a commutative Noetherian local ring with maximal ideal \(m\) and residue field \(k\). Let

\[F : \cdots \to F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to 0 \]

be a minimal complex (i.e. \(\partial_i(F_i) \subseteq mF_{i-1}\) for all \(i \geq 0\)) of finitely generated free \(R\)-modules. Then the complex has a filtration \(\{\delta^p F\}_{p \geq 0}\) with \((\delta^p F)_i = m^{p-i}F_i\) for all \(p\) and \(i\) where, by convention, \(m^j = R\) for all \(j \leq 0\). The associated graded complex with respect to this filtration is called the linear part of \(F\) and denoted by \(\text{lin}^R(F)\). Let \(N\) be an \(R\)-module. The notation \(R^g\) will stand for the associated graded ring \(\bigoplus_{i \geq 0} m^i/m^{i+1}\) and \(N^g\) for the associated graded \(R^g\)-module \(\bigoplus_{i \geq 0} m^iN/m^{i+1}N\). By construction, \(\text{lin}^R(F)\) is a graded complex of graded free \(R^g\)-modules and has the property that \(\text{lin}^R(F)_i = F^g_i(-n)\), for all \(n\). For more information about this complex, we again refer to \([3]\) and \([4]\). Let \(M\) be a finitely generated \(R\)-module. The linearity defect of \(M\) is defined to be the number

\[\text{ld}_R(M) := \sup \{i \in \mathbb{Z} | \text{H}_i(\text{lin}^R(F)) \neq 0\}, \]

where \(F\) is a minimal free resolution of \(M\). By definition, \(\text{ld}_R(M)\) can be infinite and \(\text{ld}_R(M) \leq d\) is finite if and only if \((\text{Syz}_d(M))^g\) has a linear resolution over the standard graded algebra \(R^g\), where \(\text{Syz}_d(M)\) is the \(d\)th syzygy module of \(M\). In particular, \(\text{ld}_R(M) = 0\) if and only if \(M^g\) has a linear resolution over \(R^g\) and then \(\text{lin}^R(F)\) is a minimal graded free resolution of \(M^g\). The notion of the linearity defect can be defined, in the same manner, for graded modules over a standard graded

\[2010 \text{ Mathematics Subject Classification.} \quad 13D07 \text{ (primary), 13D02 (secondary)} \]

\[\text{Key words and phrases.} \quad \text{Minimal free resolutions, Linearity defect.} \]

This research was in part supported by a grant from IPM (No. 94130028). This work was also supported by the Iran National Science Foundation (INSF) grant No. 95001343.
algebra A over a field k. In [3], the authors proved that if $\text{ld}_A(k) < \infty$, then $\text{ld}_A(k) = 0$. Motivated by this known result in the graded case, the following natural question raised in [3].

Question 1. If $\text{ld}_R(k) < \infty$, does it follow that $\text{ld}_R(k) = 0$?

If R^k is Cohen-Macaulay, Şega [6] showed that the question has positive answer in the case that R is a complete intersection. Also, she gave an affirmative answer when $m^3 = 0$. Another positive answer to the question is given by the author and Rossi [1] when R is of homogeneous type, that is $\dim_k \text{Tor}_i^R(M, k) = \dim_k \text{Tor}_i^{R^k}(k, k)$ for all i.

In this paper we show that this problem has an affirmative answer when $m^4 = 0$. The proof relies on the existence of a DG algebra structure of a minimal free resolution of residue field k.

2. Preliminaries and the main result

Şega provided an interpretation of linearity defect in terms of vanishing of special maps. For each $n \geq 0$ and $i \geq 0$ we consider the map

$$v_i^n(M) : \text{Tor}_i^R(M, R/m^{n+1}) \to \text{Tor}_i^R(M, R/m^n)$$

induced by the natural surjection $R/m^{n+1} \to R/m^n$. For simplicity, we set $v_i^n := v_i^n(k)$ when $M = k$.

Theorem 2.1. [6, Theorem 2.2] Let M be a finitely generated R-module and d be an integer. Then the following conditions are equivalent.

1. $\text{ld}_R(M) \leq d$;
2. $v_i^n(M) = 0$ for all $i \geq d + 1$ and all $n \geq 0$.

Remark 2.2. Let $i \geq 0$. Assume that F is a minimal free resolution of a finitely generated R-module M. Then by [6, 2.3 (2′)], the following statements are equivalent.

1. $v_1^1(M) = 0$;
2. if $x \in F_i$ satisfies $\partial_i(x) \in m^2F_{i-1}$, then $x \in mF_i$.

Let S be a unitary commutative ring. Given an S-complex C, we write $|c| = i$ (the homological degree of c) when $c \in C_i$. When we write $c \in C$ we mean $c \in C_i$ for some i. A (graded commutative) **DG algebra** over S is a non-negative S-complex (D, ∂) with a morphism of complexes called the product

$$\mu^D : D \otimes_S D \to D$$

$$a \otimes b \mapsto ab$$

satisfying the following properties:

1. **unital**: there is an element $1 \in D_0$ such that $1a = a1 = a$ for $a \in D$;
2. **associative**: $a(ba) = (ab)c$ for all $a, b, c \in D$;
3. **graded commutative**: $ab = (-1)^{|a||b|}ba \in D_{|a|+|b|}$ for all $a, b \in D$ and $a^2 = 0$ when $|a|$ is odd.

The fact that μ is a morphism of complexes is expressed by the **Leibniz rule**:

$$\partial(ab) = \partial(a)b + (-1)^{|a|}a\partial(b)$$

For more information on DG algebras we refer to [2].
Remark 2.3. If (D, ∂) is a DG algebra over S. Using Leibniz rule, one can see that the subcomplex of cycles $Z(D)$ is a DG subalgebra of D and the boundaries $B(D)$ is a DG ideal of $Z(D)$. Thus the product on D induces a product on the homology $H(D) = Z(D)/B(D)$. In particular, $\bigoplus_{i \geq 0} H_n(D)$ is a graded module over commutative ring $H_0(D)$.

Tate constructed a DG algebra (free) resolution of k. Furthermore, such a resolution can be chosen to be minimal, see [2, Theorem 6.3.5], which we refer a minimal Tate resolution of k over R.

The following lemma shows that the linear part of a minimal Tate resolution of k inherits a DG algebra structure from that of the resolution.

Lemma 2.4. Let (F, ∂) be a minimal Tate resolution of k. Then $\text{lin}^R(F)$ has a DG algebra structure induced by that of F.

Proof. Let $\mu^F : F \otimes_R F \to F$ be a morphism of complexes which defines the product on F. Set $S = R^\mathbb{Z}$. Since F is minimal we see that $F \otimes_R F$ is a minimal complex as well. Hence the morphism induces a morphism of graded S-complexes $\text{lin}^R(\mu^F) : \text{lin}^R(F \otimes_R F) \to \text{lin}^R(F)$ such that if $i, n \geq 0$ and x^* is the image of an element $x \in m^i(F \otimes_R F)_n$ in $m^i(F \otimes_R F)_n/m^{i+1}(F \otimes_R F)_n$, then $\text{lin}^R(\mu^F)$ maps x^* into the image of $\mu(x)$ in $m^iF_n/m^{i+1}F_n$. There is also a natural isomorphism of graded S-complexes $\lambda : \text{lin}^R(F) \otimes_S \text{lin}^R(F) \to \text{lin}^R(F \otimes_R F)$ such that if $i, j, n, m \geq 0$ and $x \in m^iF_n$ and $y \in m^jF_m$, the image of $x^* \otimes y^*$ in $m^iF_n/m^{i+1}F_n$ and y^* in $m^jF_m/m^{j+1}F_m$ respectively, then λ maps $x^* \otimes y^*$ into the image of $x \otimes y$ in $m^{i+j}(F \otimes_R F)_{n+m}/m^{i+j+1}(F \otimes_R F)_{n+m}$, see [4, Lemma 2.7]. Now, define (the product) $\mu^{\text{lin}^R(F)} : \text{lin}^R(F) \otimes_S \text{lin}^R(F) \to \text{lin}^R(F)$ as the composition $\text{lin}^R(\mu^F) \circ \lambda$. Since μ satisfies conditions $(i), (ii), (iii)$ of the definition of DG algebras, one can see that $\mu^{\text{lin}^R(F)}$ satisfies the same properties as well. Therefore the linear part of F is a DG algebra over S augmented to k.

Let m^* denote the homogeneous maximal ideal of $R^\mathbb{Z}$. The following is a direct consequence of the above lemma.

Corollary 2.5. If F is a minimal free resolution of k, then $m^* H_n(\text{lin}^R(F)) = 0$ for all n.

Proof. The assertion follows from Remark 2.3 with considering the fact that $H_0(\text{lin}^R(F)) = R^\mathbb{Z}/m^*$.

In what will follow, let (F, ∂) be a minimal free resolution of residue field k with differential map ∂. The differential map of $\text{lin}^R(F)$ which is induced by ∂ will be denoted by ∂^*. We recall that $\text{lin}^R(F)_n = F^R_n(−n)$. For any $i, n \geq 0$ and $x \in m^iF_n$, ∂^* maps $x + m^{i+1}F_n$, the image of x in $m^iF_n/m^{i+1}F_n$, into the image of $\partial(x)$ in $m^{i+1}F_{n-1}/m^{i+2}F_{n-1}$ that is $\partial(x) + m^{i+2}F_{n-1}$.

Proposition 2.6. Let d be an integer. If $\text{ld}_R(k) \leq d$, then the following hold.

(1) $v_d^* = 0$.
(2) $m^* \text{Ker} \partial^* = m^* \text{Im} \partial^*_{d+1}$.
Proof. For the simplicity, we set \(Z = \text{Ker} \partial_d^* \) and \(B = \text{Im} \partial_{d+1}^* \).

(1) If \(v_1^d \neq 0 \), then there exists an element \(e \in F_d \setminus m F_d \) such that \(\partial_d(e) \in m^2 F_{d-1} \), by 2.2. Let \(e^* \) be the image of \(e \) in the quotient module \(F_d/m F_d \). Then \(\partial_d^*(e^*) = 0 \) and so \(e^* \) is a cycle in \(\text{lin} R(F) \). Applying 2.5, we have \(m^* Z \subseteq B \) and therefore \(m^* e^* \subseteq B \). As \(e^* \) is an element of a basis of the free module \(F_d(-d) \) and \(B \subseteq m^* F_d(-d) \), it is straightforward to see that \(m^* e^* \) is a direct summand of \(B \). Therefore \(k \) has a linear resolution over \(R \) and consequently \(\text{lin} R(F) \) is acyclic.

Hence \(v_1^d = 0 \) and this is a contradiction.

For (2), it is enough to show that \(m^* Z \subseteq m^* B \). First we claim that \(m^* Z \) is generated in degree at least \(d + 2 \) and \(m^* Z \subseteq B \). Indeed since \(v_1^d = 0 \), applying Remark 2.2, one has \(Z \subseteq m^* F_d(-d) \) and consequently \(m^* Z \) is generated in degree at least \(d + 2 \). The second part of the claim follows from Corollary 2.5.

On the other hand, \(B \) has a linear resolution, by the hypothesis. Hence \(B \) is generated by elements of degree \(d + 1 \) and then all its elements of degree at least \(d + 2 \) contained in \(m^* B \). Now, putting these two considerations together, we get \(m^* Z \subseteq m^* B \).

Now, we are ready to prove our main result.

Theorem 2.7. Assume that \(R \) is Artinian with \(m^4 = 0 \). If \(\text{ld}_R(k) < \infty \), then \(\text{ld}_R(k) = 0 \).

Proof. Let \(d \) be a non-negative integer and \(\text{ld}_R(k) \leq d \). We prove by descending induction on \(d \). The case where \(d = 0 \) is clear. Let \(d > 0 \). Applying Proposition 2.6, we have \(v_1^d = 0 \). Since \(m^4 = 0 \), it follows from [6, Theorem 7.1] that \(v_2^d = 0 \). Again since \(m^4 = 0 \) obviously \(v_i^d = 0 \) for all \(i \geq 3 \), by the definition of the map \(v_i^d \). Therefore, from 2.1 we get \(\text{ld}_R(k) \leq d - 1 \). This completes the induction and finishes the proof. \(\square \)

Acknowledgments. The author would like to express great thanks to the referee for valuable comments and suggestions which have improved the exposition of this paper. This research was in part supported by a grant from IPM (No. 94130028). This work was also jointly supported by the Iran National Science Foundation (INSF) and Alzahra University grant No. 95001343.

REFERENCES

[1] R. Ahangari Maleki, M.E. Rossi, Regularity and linearity defect of modules over local rings, J. Commut. Algebra 6 (2014) 485-504.
[2] L.L. Avramov, Infinite free resolutions, in: Six Lectures on Commutative Algebra, Bellaterra, 1996, in: Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 1-118.
[3] J. Herzog, S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005) 154–188.
[4] S. Iyengar, T. Römer, Linearity defects of modules over commutative rings, J. Algebra 322 (2009) 3212-3237.
[5] H.D. Nguyen, Notes on the linearity defect and applications, arXiv:1411.0261.
[6] L.M. Şega, On the linearity defect of the residue field, J. Algebra 384 (2013) 276–290.

RASOUL AHANGARI MALEKI, SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX: 19395-5746, TEHRAN, IRAN

E-mail address: rahangari@ipm.ir, rasoulahangari@gmail.com