Development and characterization of EST-SSR markers for *Vitex negundo* var. *heterophylla* (Lamiaceae)

Lele Liu, Jingwen Wang, Meiqi Yin, Xiao Guo, Yunfei Cai, Ning Du, Xiaona Yu, and Weihua Guo

PREMISE OF THE STUDY: *Vitex negundo* var. *heterophylla* (Lamiaceae) is a dominant shrub in the warm temperate zone of northern China. Expressed sequence tag–simple sequence repeat (EST-SSR) markers were developed to investigate its genetic diversity and structure.

METHODS AND RESULTS: We detected 12,075 SSRs in *V. negundo* var. *heterophylla* using transcriptome sequencing. Primer pairs for 100 SSR loci were designed and amplified in three populations of *V. negundo* var. *heterophylla*. Sixty loci were amplified, of which 14 were polymorphic. The number of alleles per locus ranged from two to 15, and levels of observed and expected heterozygosity ranged from 0.241 to 0.828 and from 0.426 to 0.873, respectively. All primer pairs amplified PCR products from *V. rotundifolia* but only four of them amplified products from *Leonurus japonicus*.

CONCLUSIONS: The identified EST-SSR markers will be useful for future molecular and reproductive ecology studies of *V. negundo* var. *heterophylla* and *V. rotundifolia*.

KEY WORDS expressed sequence tag–simple sequence repeat (EST-SSR) markers; Lamiaceae; transcriptome sequencing; *Vitex negundo* var. *heterophylla*; *V. rotundifolia*.

METHODS AND RESULTS

Two *V. negundo* var. *heterophylla* individuals were sampled for transcriptome sequencing from Fohui Mountain in Jinan, Shandong Province, China (Appendix 1). RNA was extracted from collected leaves using the RNAPrep Pure Plant kit (Tiangen, Beijing, China), and mRNA was isolated from total RNA using the NEBNext Ultra RNA Library Prep Kit (New England Biolabs, Ipswich, Massachusetts, USA). After ultrasonic fragmentation, mRNA was converted to double-stranded cDNA using the same kit. Purification and size selection were conducted using AMPure XP beads (Beckman Coulter, Brea, California, USA). Finally, DNA fragments of approximately 400 bp in length were sequenced using an Illumina HiSeq instrument (Illumina, San Diego, California, USA). The raw data were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession no. PRJNA491662).

The raw sequences were filtered by removing adapters and low-quality reads (quality score < 30), resulting in 45,568 and 43,082 million clean reads, from the two libraries, respectively. These reads were de novo assembled using Trinity (Grabherr et al., 2011) into 45,568 and 43,082 million clean reads, from the two libraries, respectively. These reads were de novo assembled using Trinity (Grabherr et al., 2011) into 52,072 unigenes, with an N50 length of 1414 bp. The putative functions of EST-SSR sequences were determined by BLASTX against the NCBI non-redundant protein (nr) database. We detected 12,075 SSR loci from these unigenes using MISA (Thiel et al., 2003), consisting of 4242 mononucleotide SSRs and 7833 di-, tri-, tetra-, penta-, and hexanucleotide SSRs. Primers were designed using Primer3 (Untergasser et al., 2012).

Fresh leaves were collected from three populations of *V. negundo* var. *heterophylla* in Shandong Province, China (Appendix 1), and genomic DNA was extracted from dried leaf tissue using the
Table 1. Characteristics of 14 polymorphic EST-SSR markers developed for Vitex negundo var. heterophylla.

Locus	Primer sequences (5′-3′)	Repeat motif	T_a (°C)	Expected allele size (bp)	Allele size range (bp)	Putative function [Organism]	E-value	GenBank accession no.
V02	F: AGCAGGGAGGAGGGAGAAC	(TGG)₁₁	58	172	156–187	No hit	—	MH825839
	R: ACCACACCACTCCATAGGA							
V07	F: CCTCTGTCGCCATGCTCTAT	(AG)₈	56	125	107–133	Serine hydroxymethyltransferase, mitochondrial [Erythranthe guttata]	8.90E-114	MH825840
	R: AAAGGTCCTGCAAATGGAG							
V15	F: CAACAGAGGGGCTTCAAGT	(AT)₆	56	220	206–237	No hit	—	MH825841
	R: GGGAGGTGCTGAAATGGAG							
V25	F: ACAAGGACCATCTAGCTGT	(GT)₁₀	58	236	207–253	No hit	—	MH825842
	R: GATGAGGCGGCATTCAGCA							
V30	F: GCTGGGGAGGAGCTAGTGT	(TGC)₆	56	191	189–205	ABC transporter G family member 11 [Sesamum indicum]	6.20E-172	MH825843
	R: CCAGACAGTTCGTTGCTAC							
V49	F: CGTCCTGGCTCTTGGTCTAC	(AG)₁₄	56	215	200–242	No hit	—	MH825844
	R: CCTCAGAGTTGGAGCTCT							
V55	F: GCAAGCTTCCCTTCCCTCTCT	(CTC)₁₀	56	198	192–206	Probable protein 3-acyltransferase 12, isoform X3 [Sesamum indicum]	6.00E-99	MH825845
	R: ACGAGGAATGGTAGGTGCG							
V59	F: AGCTGATTGCACATCTTGCA	(GAT)₇	56	238	224–237	Intracellular protein transport protein USO1-like [Sesamum indicum]	8.80E-78	MH825846
	R: CGATGACTCTACGCTTGGCTT							
V70	F: GTTGGCCGCTAGCTAGTT	(GCT)₆	56	144	133–153	Hypothetical protein MIMG18_v1000263039 [Erythranthe guttata]	1.00E-146	MH825847
	R: GCACAGGCGCTTCCATTAGC							
V76	F: TGACCTGCTGATCACTAC	(AG)₁₁	56	121	94–128	Uncharacterized protein At4g26450 [Sesamum indicum]	5.50E-52	MH825848
	R: GGTCACAGCTTTGGATTGCC							
V95	F: CGATGATACGACGGCAACT	(GCC)₂	56	253	242–266	Zinc finger protein 8 [Erythranthe guttata]	6.10E-13	MH825849
	R: GGTGCTGCTGACGCATTGT							
V97	F: GTCAAGCTACGCGGCAATA	(CA)₁₂	56	229	211–232	Uncharacterized protein LOC105175071 [Sesamum indicum]	2.90E-40	MH825850
	R: GCAGGCTGCTACGCGGCAATA							
V99	F: AGCAGGACTGCGCAATGAA	(GTG)₇	56	161	155–173	Transcription factor bHLH63 [Sesamum indicum]	5.50E-52	MH825851
	R: GATACGAGCGAGCCAGAGAT							
V100	F: CTGTGACCACTCTTCATCTT	(CA)₈	56	220	211–235	α-3-phosphoglycerate dehydrogenase 2, chloroplastic-like [Sesamum indicum]	1.20E-293	MH825852
	R: TGGAAATCCTTCTACACGAC							

Note: T_a = annealing temperature.

Table 2. Genetic variation in the 14 polymorphic EST-SSR markers in three Vitex negundo var. heterophylla populations.

Locus	Population A (n = 5)	Population B (n = 5)	Population C (n = 5)						
	H_o	H_e	H_o	H_e	H_o	H_e			
A	7	0.655	0.746	7	0.786	0.815	9	0.692	0.844
V07	7	0.759	0.804	7	0.714	0.751	8	0.692	0.834
V15	7	0.536	0.573	7	0.500	0.670	6	0.615	0.698
V25	15	0.828	0.873	12	0.714	0.865	13	0.692	0.719
V30	4	0.655	0.624	5	0.500	0.466	5	0.577	0.679
V49	10	0.586	0.757	10	0.714	0.836	11	0.538	0.771
V55	7	0.759	0.687	9	0.714	0.733	7	0.538	0.562
V59	3	0.621	0.540	3	0.500	0.517	3	0.538	0.514
V70	6	0.828	0.719	8	0.714	0.746	6	0.731	0.724
V76	12	0.690	0.699	11	0.786	0.811	8	0.615	0.754
V95	6	0.379	0.479	7	0.643	0.629	10	0.500	0.509
V97	8	0.345	0.717*	9	0.393	0.790*	8	0.385	0.798
V99	4	0.241	0.456	5	0.536	0.573	2	0.385	0.426
V100	8	0.724	0.744*	6	0.357	0.651*	8	0.500	0.743

Note: A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity; n = sample size.

*Locality and voucher information are provided in Appendix 1.

Significant deviation from Hardy–Weinberg equilibrium (P < 0.001).
observed heterozygosity ranged from 0.241 to 0.828, and the levels of expected heterozygosity ranged from 0.426 to 0.873 (Table 2). Significant linkage disequilibrium was detected between loci V15 and V30 (P = 0.0109) and loci V25 and V70 (P = 0.0266). Loci V97 and V100 showed significant deviation from Hardy–Weinberg equilibrium in two populations (P < 0.001; Table 2).

To test the transferability of the 14 primers between taxa, they were used with DNA samples from *V. rotundifolia* and *Leonurus japonicus*. All primer pairs successfully amplified products from *V. rotundifolia*, but only four primer pairs amplified products from some *L. japonicus* individuals (Table 3).

CONCLUSIONS

We assembled 52,072 unigenes of *V. negundo var. heterophylla* following transcriptome sequencing and used this data set to develop 14 novel polymorphic EST-SSR primer pairs. All of these primers amplified products in the related species *V. rotundifolia*. These markers represent a useful resource for reproductive and genetic ecology studies of this species and may provide a valuable tool for revegetation and management in northern China.

ACKNOWLEDGMENTS

The authors thank Dr. Shuping Zhang for field assistance and Prof. Fengning Xiang for technical guidance. This work was supported by the National Natural Science Foundation of China (no. 31470402, 31770361), the Basic Work of the Ministry of Science and Technology of China (no. 2015FY1103003-02), and the Fundamental Research Funds of Shandong University (no. 2017GN0018). The authors also thank PlantScribe (www.plantscribe.com) for editing this manuscript.

AUTHOR CONTRIBUTIONS

W.G., L.L., and Y.C. conceived and designed the experiments. L.L., J.W., M.Y., X.G., X.Y., and N.D. contributed to sample collection. L.L. and J.W. performed the molecular laboratory work. L.L., J.W., M.Y., and Y.C. participated in data pre-processing. L.L., Y.C., N.D., X.Y., and W.G. analyzed the data. L.L. drafted the manuscript and all authors participated in manuscript modifications and gave final approval for publication.

DATA ACCESSIBILITY

All sequence information was uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession no. PRJNA491662); primer sequences were uploaded to GenBank (accession no. MH825839–MH825852 and MH892533–MH892570; Table 1 and Appendix 2).

LITERATURE CITED

Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Du, N., W. Guo, X. Zhang, and R. Wang. 2010. Morphological and physiological responses of *Vitex negundo* L. var. *heterophylla* (Franch.) Rehd. to drought stress. *Acta Physiologiae Plantarum* 32: 839–848.

Du, N., R. Wang, J. Liu, X. Zhang, X. Tan, W. Wang, H. Chen, and W. Guo. 2012. Morphological response of *Vitex negundo* var. *heterophylla* and *Ziziphus jujuba* var. *spinosa* to the combined impact of drought and shade. *Agroforestry Systems* 87: 403–416.

Du, N., X. Tan, Q. Li, X. Liu, W. Zhang, R. Wang, J. Liu, and W. Guo. 2017. Dominance of an alien shrub *Rhus typhina* over a native shrub *Vitex negundo* var. *heterophylla* under variable water supply patterns. *PLoS ONE* 12: e0176491.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* 29: 644.

Liu, L., N. Du, C. Lei, X. Guo, and W. Guo. 2018. Genetic and epigenetic variations associated with adaptation to heterogeneous habitat conditions in a deciduous shrub. *Ecology and Evolution* 8: 2594–2606.

Ohtsuki, T., T. Shoda, Y. Kaneko, and H. Setoguchi. 2014. Development of microsatellite markers for *Vitex rotundifolia* (Verbenaceae), an endangered coastal plant in Lake Biwa, Japan. *Applications in Plant Sciences* 2: 1300100.

Peakall, R., and P. E. Smouse. 2012. *GenALEx* 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* 28: 2537–2539.

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.

Su, H., L.-J. Qu, K. He, Z. Zhang, J. Wang, Z. Chen, and H. Gu. 2003. The Great Wall of China: A physical barrier to gene flow? *Heredity* 90: 212–219.

Thiel, T., W. Michalek, R. K. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106: 411–422.

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3—New capabilities and interfaces. *Nucleic Acids Research* 40: e115.

Zhang, Z.-Y., X.-M. Zheng, and S. Ge. 2007. Population genetic structure of *Vitex negundo* (Verbenaceae) in Three-Gorge Area of the Yangtze River: The riverine barrier to seed dispersal in plants. *Biochemical Systematics and Ecology* 35: 506–516.
APPENDIX 1. Voucher information for Vitex negundo var. heterophylla, V. rotundifolia, and Leonurus japonicus individuals used in this study.

Species	Population	N	Collection localitya	Geographic coordinates	Voucher specimenb
Vitex negundo L. var. heterophylla (Franch.) Rehder	A	29	Fanggan	36.4317°N, 117.4516°E	01611001
Vitex negundo var. heterophylla	B	28	Mengshang	35.5376°N, 117.9895°E	01611002
Vitex negundo var. heterophylla	C	26	Yaosiang	36.3213°N, 117.1200°E	01611003
Vitex negundo var. heterophylla	—	2	Jinan	36.6317°N, 117.0347°E	01709001c
Vitex rotundifolia L. f.	—	13	Muping	37.4574°N, 121.6826°E	01801001
Leonurus japonicus Houtt.	—	8	Jinan	36.7239°N, 117.0207°E	01801002

aCollection localities are in Shandong Province, China.
bAll voucher specimens were collected by Lelel Liu and are deposited in the Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University (JSPC), Qingdao, China. The sample with irregularly pinnatifid leaflets (c) and the sample with slightly incised leaflets (d) were used for transcriptome sequencing.

APPENDIX 2. Characteristics of the 38 monomorphic EST-SSR markers developed for Vitex negundo var. heterophylla.

Locus	Primer sequences (5′–3′)	Repeat motif	T_a (°C)	Allele size (bp)	Putative function [Organism]	E-value	GenBank accession no.
V3	FGATGCTGCCCTCCACACTGTC	(TC)_15	56	150	Unnamed protein product [Coffea canephora]	2.80E-17	MH892533
V4	TCTCTCTCTCTCTCTCTGCGCC	(CAA)_6	56	207	Uncharacterized protein LOC105175754 [Sesamum indicum]	1.50E-60	MH892534
V8	ACCGGCACTCTGGAAGATGTTG	(CT)_15	56	171	Hypothetical protein M569_03371, partial [Genlisea aurea]	2.50E-56	MH892535
V56	ACAGTCACAGTGTGGCACAT	(AAG)_4	56	248	G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290 [Sesamum indicum]	1.20E-15	MH892536
V13	TAAGACTCCCACTGCAAGGCA	(CCA)_6	56	212	Uncharacterized protein LOC105974765 [Erythranthe guttatus]	3.20E-50	MH892537
V18	GGAACACGTAATGCGGGTTCC	(TC)_15	56	193	No hit	—	MH892538
V21	CCGGAAAGCAAGCTAAGCCCA	(CT)_15	56	209	Unnamed protein product [Vitis vinifera]	5.10E-06	MH892539
V26	CAGCGACCCCCAAAAATTTCGAA	(GGC)_6	56	241	26S proteasome subunit RPT2B [Arabidopsis thaliana]	5.10E-06	MH892540
V36	TACGCTATGGTTGGCCCA	(AG)_10	56	182	Pentatricopeptide repeat-containing protein At5g67570, chloroplastic [Sesamum indicum]	7.00E-118	MH892544
V39	CCGGGGACCGAACAAAGATGAT	(GA)_10	56	245	Myosin-14 [Sesamum indicum]	2.90E-127	MH892544
V43	AGCAGGGGGAGGTTAATGGCA	(AAC)_6	56	221	Transcription factor GTE7-like [Sesamum indicum]	1.50E-111	MH892545
V47	TGGAAAGCCTGTGGTGTTGGA	(GA)_17	56	152	Haloacid dehalogenase-like hydrolase domain-containing protein SGPP [Erythranthe guttatus]	9.90E-75	MH892546
V48	CCAACAAAGCGGATTGACTCA	(CAG)_6	56	103	Unnamed protein product [Coffea canephora]	9.90E-198	MH892547
V50	CCAATTACACGCAACAGGAC	(TC)_15	56	258	Phospholipase SGR2-like isofrom X1 [Sesamum indicum]	3.60E-187	MH892548
V51	CCGGGGAGGTTAATGGCA	(GGC)_6	56	165	Uncharacterized protein LOC105172005 isofrom X1 [Sesamum indicum]	2.10E-83	MH892549
V52	CCAAGGGGAGGTTAATGGCA	(AG)_18	56	260	Uncharacterized protein LOC105171026 [Sesamum indicum]	1.30E-36	MH892550
V53	AACACCGGGAGGTTAATGGAG	(AG)_14	56	115	Hypothetical protein POPTR_0007s12520g [Populus trichocarpa]	7.10E-33	MH892551
V54	CGCTCTCCACTGCAACTGCC	(TG)_15	56	149	No hit	—	MH892552
V56	ACCATTGCTCCCTGCAAGC	(GGA)_6	56	135	No hit	—	MH892553
V58	AACGCTCTCACCACGGTGA	(GTG)_15	56	269	Protein E6-like [Sesamum indicum]	2.00E-24	MH892554
V61	GCCCTCAGAAGCCCAAGCAG	(GA)_11	56	159	Galacturonokinase [Sesamum indicum]	5.10E-165	MH892555

(Continues)
APPENDIX 2. (Continued)

Locus	Primer sequences (5′–3′)	Repeat motif	T_a (°C)	Allele size (bp)	Putative function [Organism]	E-value	GenBank accession no.
V63	F: CCATGACGTCGGAGGAGATG	(AG)$_n$	56	275	Uncharacterized protein LOC105970868 [Erythranthe guttatus]	8.20E-51	MH892556
	R: TCTGTCACAAACACCGCCATT						
V64	F: ACCGACCTGGATTTCGACAC	(AG)$_n$	56	168	No hit —	—	MH892557
	R: GCAGCAACAACAAGACCAT						
V66	F: TCTTGATCAGCTGCCCACCAT	(TCA)$_n$	56	234	Uncharacterized protein LOC105157368 [Sesamum indicum]	1.10E-31	MH892558
	R: GASCTGTGTTGATGTGGCGAGA						
V71	F: CACTCGCAACACTTGAAGCT	(TCT)$_n$	56	162	Protein IQ-DOMAIN 32-like [Sesamum indicum]	5.90E-60	MH892559
	R: GTGAAGCGGAGAGACCAACA						
V72	F: TCAAGGGCGTCCTGTAGAGTC	(TCT)$_n$	56	123	Uncharacterized protein LOC105170218 [Sesamum indicum]	1.30E-74	MH892560
	R: CATCAGGCGGGAGAAACAGTG						
V82	F: GCAAGAGCTCTGAGCTTTC	(ATG)$_n$	56	248	RNA exonuclease 3 [Gossypium arboreum]	1.90E-22	MH892561
	R: AGCTCATGAGCTTCCGACAAAT						
V83	F: TCCACCAACACTCAAAGAGC	(CT)$_n$	56	139	Protein GAR2 isoform X1 [Sesamum indicum]	7.90E-98	MH892562
	R: CCTGCAAACCTCTCATTCCGT						
V84	F: CAGTGAAGAGCGAGAGAGAGA	(GGC)$_n$	56	183	Uncharacterized protein LOC105176253 isoform X1 [Sesamum indicum]	2.00E-253	MH892563
	R: CCTCCTCTCGCTTCCATCAC						
V88	F: TTGTTCTCTGCAAGCATAGCA	(AG)$_n$	56	189	No hit —	—	MH892564
	R: TGCCAACGCGGTCTTAAATCA						
V89	F: TCGCGTGTGCCAGCCTTCTCTC	(AG)$_n$	56	149	Reactive oxygen species modulator 1-like [Sesamum indicum]	1.90E-20	MH892565
	R: ATAAACAGCACAACACCGC						
V90	F: ACCGATGCCTGTGAGGATT	(GT)$_n$	56	151	Probable leucine-rich repeat receptor-like protein kinase At1g35710 [Sesamum indicum]	1.60E-185	MH892566
	R: CGTCTCCACACTCGATGCTTT						
V92	F: GGAAATGCTGTTCCCTGCCG	(AGC)$_n$	56	186	E3 ubiquitin-protein ligase RGLG2-like, partial [Pyrus x bretscheni]	1.60E-87	MH892567
	R: GCAAATCTGACGCCTTCAGGC						
V93	F: CAGATATCGCGGTGGAACCG	(CGC)$_n$	56	251	Uncharacterized protein LOC105173283 [Sesamum indicum]	6.30E-51	MH892568
	R: ACTTCTACTCTGCCGATCTC						
V94	F: CGGAGAAAGCCATCATCATG	(GAA)$_n$	56	226	Hypothetical protein MIMGU1 [Erythranthe guttata]	1.90E-18	MH892569
	R: TGGATTCAAGGAGACAGCCA						
V96	F: AAGGCAGAAGCAAGAGATG	(GGC)$_n$	56	177	Uncharacterized protein LOC105968457 [Erythranthe guttata]	3.80E-40	MH892570
	R: GAGTGGCCTGCTTCCAAATCG						

Note: T_a = annealing temperature.