Twenty-four hour plasma levels of growth hormone and prolactin in Huntington’s disease

R DURSO, CA TAMMINGA, SRUGGERI, A DENARO, SKUO, TNCHAVE

From the Experimental Therapeutics Branch, National Institute of Neurologic and Communicative Disorders and Stroke, Bethesda, Maryland and the Maryland Psychiatric Research Center Department of Psychiatry, University of Maryland, Baltimore, Maryland USA

SUMMARY Since hypothalamic neural degeneration is thought to occur in individuals with Huntington’s disease, anterior pituitary hormone secretion which is in part regulated by the hypothalamus, was postulated to be altered in patients with this disease. To test this proposal, nine females with Huntington’s disease were matched with controls to participate in a 24-hour basal level study of growth hormone and prolactin concentration in plasma. Patients who were free from all centrally active medication for at least six months and normal volunteers had blood sampled at 30-minute intervals over 24 hours in a minimal stress environment. The results demonstrated that plasma levels of growth hormone were elevated throughout the 24-hour time period in Huntington’s disease individuals. Despite the elevation, the mean growth hormone curve of the Huntington’s disease group retained characteristics similar to the control curve throughout the 24-hour time. Basal 24-hour plasma prolactin concentrations in Huntington’s disease patients showed no difference from those in control individuals.

Huntington’s disease is an autosomal dominant neurological disorder characterised by ganglion cell degeneration throughout the brain. The well known pathological changes in basal ganglia and, to a lesser extent, in cerebral cortex have been associated with the involuntary movements and cognitive deterioration which occur in the illness. Neuronal loss and degenerative changes associated with selective biochemical abnormalities have also been reported to involve the hypothalamus. These observations suggest that alterations in hypothalamic-modulated function may occur in Huntington’s disease. Since the hypothalamus influences the release of hormones from the anterior pituitary, characteristic abnormalities in the secretion of growth hormone (GH), and prolactin (PRL), might be expected.

Numerous previous investigations have attempted to evaluate basal growth hormone and prolactin plasma levels in patients with Huntington’s disease (reviewed in ref 5). However, these studies have often drawn conflicting conclusions about whether plasma GH and PRL values are increased, decreased, or remain within the normal range in Huntington’s disease individuals. GH and PRL are both episodically released in a periodic pattern; thus, single or even multiple closely spaced measurements can be insufficient to fully describe basal levels. Because implications important to our understanding of the pathophysiology of Huntington’s disease might be drawn from alterations in anterior pituitary hormone control, plasma GH and PRL levels were studied with a 30-minute repeated sampling technique over a 24-hour period in Huntington’s disease subjects.

Methods

Nine females with Huntington’s disease and an equal number of normal controls were hospitalised for study. Six of the Huntington’s disease patients had the classical adult-onset form of this disorder; the three remaining individuals had the rigid-akinetic variant. All had a positive family history. Mean (± SD) age of the Huntington’s disease group was 43 ± 12 years and of controls was 45 ± 14 years. Five of the nine Huntington’s disease subjects had never been treated with antipsychotic drugs; furthermore, none of the patients or controls received any regularly prescribed centrally active drugs for at least six months prior to admission to this study. Menstruating women were tested...
Twenty-four hour plasma levels of growth hormone and prolactin in Huntington's disease

Table

Time Period	Growth hormone (ng/ml)	Controls
	Huntington's disease	Controls
Daytime (0800 h–1530 h)	3.5 ± 0.36	1.9 ± 0.15
Evening (1600 h–2330 h)	4.4 ± 0.40	2.8 ± 0.5
Night (2400 h–0730 h)	5.5 ± 0.7	3.5 ± 0.59

Table

Time Period	Prolactin (ng/ml)	Controls
	Huntington's disease	Controls
Daytime (0800 h–1530 h)	17.0 ± 2.0	13.9 ± 1.8
Evening (1600 h–2330 h)	11.4 ± 0.5	9.1 ± 0.71
Night (2400 h–0730 h)	25.6 ± 1.6	22.6 ± 1.6

Plasma GH concentrations over the entire 24-hour period were significantly higher in Huntington's disease patients than in the control subjects (F = 10.8 df; = 1.16; p < 0.005) (fig 1a) as tested with the repeated measures ANOVA statistic; specific times of significant elevation were 0300 h, 0930 h, 2000 h, and 2400 h. In addition, the mean GH level in the Huntington's disease subjects during the 24-hour period was elevated as compared with controls (table). Similarly, mean GH values during certain subperiods of the 24 hour period, daytime (0800 h–1530 h), evening (1600 h–2330 h), and night (2400 h–0730 h) were increased. Despite these changes, the pattern of secretory episodes in the Huntington's disease group remained indistinguishable from those found in the control individuals; in a time series analysis, the Huntington's disease curve did not differ from the normal in average spectral density.

Plasma levels of PRL were consistently higher in the Huntington's disease subjects than in controls; however, the difference did not attain statistical significance (F = 1.35; df = 1.16; p < 0.26) (fig 1b). Similarly, neither mean PRL values during the 24-
hour period, nor daytime/evening/night mean levels were significantly different between groups (table).

Sleep EEG recordings (mean ± SD) showed a reduced amount of total sleep in patients compared with control individuals (332 ± 29 min and 394 ± 13 min respectively), but a similar duration of slow wave sleep (78 ± 14.5 min and 92.7 ± 18.5 min respectively).

The possible effect of stress as a factor contributing to elevations in the plasma content of GH or PRL was evaluated by comparing mean AM plasma cortisol levels (sampled at 0730 h, 0800 h, 0830 h) and mean PM plasma cortisol levels (sampled at 2200 h, 2230 h, 2300 h) between the Huntington’s disease patients and normal control groups. The mean (±SD) morning and evening plasma cortisol levels (ng/ml) in the Huntington’s disease patients was 205 ± 10 and 99 ± 14, respectively, and in the control subjects was 151 ± 13 and 60 ± 15, respectively. The differences between Huntington’s disease and normal subjects for either morning or evening samples failed to reach statistical significance.

The possibility that the involuntary movements in some of the Huntington’s disease patients influenced plasma GH and PRL concentrations was evaluated by comparing results from three of the nine-member Huntington’s disease cohort who had the nonchoreatic, rigid-akinetic form of this disorder. Mean (±SD) 24 hour levels of GH (4.03 ± 0.28 ng/ml) or PRL (16 ± 1.7 ng/ml) in these individuals did not differ significantly from the values found in the remaining six patients with the classical, choreatic form of Huntington’s disease. Moreover, the plasma GH elevations in the Huntington’s disease group continued during the evening and night in both choreatic and nonchoreatic subjects when normal sleep patterns were demonstrated by EEG but no involuntary movements could be observed.

Discussion

The present data may help clarify the conflicting reports on basal levels of plasma GH and PRL in Huntington’s disease. Prior studies have found basal GH levels either elevated9 10 or unchanged11 12 from controls, and basal PRL levels either depressed,13 elevated,14 15 or unchanged.16 17 The results of this study indicate that the basal plasma levels of GH are significantly increased in Huntington’s disease subjects while basal PRL levels remain within the normal range. The GH findings in the Huntington’s disease population could reflect either an increase in GH secretion from the anterior pituitary, or an alteration in its metabolism. Histopathologic changes already identified in the hypothalamus of Huntington’s disease individuals provide the anatomical basis for postulating an alteration in the regulation of GH secretion to account for the abnormality. Since PRL levels remained normal, the present results do not support previous conclusions18-20 that a generalised abnormality in the dopamine system, which contributes to the regulation of both GH and PRL, occurs in Huntington’s disease.

The potential neural basis of the observed GH abnormality could be a disorder of either of the two hypothalamic factors regulating pituitary GH synthesis and release. Growth Hormone Releasing Factor (GRF) phasically stimulates GH secretion,18 while Somatotropin-Release-Inhibiting Factor, somatostatin, tonically inhibits GH release.19 Because somatostatin appears to mediate tonic and inhibitory control of GH,20 a loss of this peptide could disinhibit GH secretion, thus elevating plasma GH. If the somatostatin effect is diminished in Huntington’s disease, due to a loss of inputs to the hypothalamic somatostatin system, to a degeneration of somatostatin-containing neurons, or to a hyporesponsivity of relevant somatostatin receptors, resultant plasma GH levels would be increased. Indeed, levels of somatostatin in spinal fluid of Huntington’s disease subjects have been reported to be substantially reduced.21 However, diminished somatostatin levels in suprachiasmatic areas of hypothalami have not been confirmed.22 Further evaluation of the somatostatin system in Huntington’s disease may therefore be of interest.

Necropsy brain tissue was received from Dr Edward D Bird for analysis of hypothalamic somatostatin levels, supported by #1-ROI-MH/NS 31862 (Reference 22).

Ms Marjorie Gillespie contributed substantially to the clinical care and testing of the subjects.

References

1. Blackwood W, Corsellis JAM. Greenfield’s Neuropathology. Chicago: Yearbook Medical Publishers, 1976:622-7.
2. Vogt C, Vogt O. Precipitating and modifying agents in chorea. J Nerv Ment Dis 1952;116:601-7.
3. Bruyn GW. Neuropathological changes in Huntington’s chorea. In: Barbeau A, Chase TN, Paulson GW, eds. Advances in Neurology Vol. 1: Huntington’s Chorea 1872-1972. New York: Raven Press, 1973:399-403.
4. Bernheimer H, Hornykiewicz O. Brain amine in Huntington’s chorea. In: Barbeau A, Chase TN, Paulson GW, eds. Advances in Neurology, Vol. 1: Huntington’s Chorea 1872-1972. New York: Raven Press, 1973:525-31.
5. Durso R, Ruggeri SA, Denaro A, Tamminga CA. Neuroendocrine studies in Huntington’s disease. In: Shah NS, Donald AG, eds. Psychoneuroendocrine Dysfunction in Psychiatric and Neurological Illnesses.
Twenty-four hour plasma levels of growth hormone and prolactin in Huntington’s disease

Influence of Psychopharmacological Agents. New York: Plenum Publishing Corp., 1982. In press.

Kirk RE. Experimental Design: Procedures for the Behavioral Sciences. Belmont, California: Wadsworth Publishing Co., 1968:94–95, 248–269.

Podolski S, Leopold NA. Growth hormone abnormalities in Huntington’s chorea: effect of L-dopa administration. J Clin Endocrinol Metab 1974;39:36–9.

Phillipson OT, Bird ED. Plasma growth hormone concentrations in Huntington’s chorea. Clin Sci Mol Med 1976;50:551–4.

Murri L, Indice A, Muratoria A, Polleri A, Barreca T, Muraldo G. Spontaneous nocturnal plasma prolactin and growth hormone secretion in patients with Parkinson’s disease and Huntington’s chorea. Eur Neurol 1980;19:198–206.

Keogh HJ, Johnson RH, Nanda RN, Sulaiman WR. Altered growth hormone release in Huntington’s chorea. J Neurol Neurosurg Psychiatry 1976;39:244–8.

Caraceni T, Panerai AE, Parati EA, Cocchi D, Muller EE. Altered growth hormone and prolactin responses to dopaminergic stimulation in Huntington’s chorea. J Clin Endocrinol Metab 1977;44:870–5.

Muller EE, Parati EA, Panerai AE, Cocchi D, Caraceni T. Growth hormone hyperresponsiveness to dopaminergic stimulation in Huntington’s chorea. Neuroendocrinology 1979;28:313–9.

Hayden MR, Paul M, Vinik AI, Beighton P. Impaired prolactin release in Huntington’s chorea. Lancet 1977;2:423–6.

Caine E, Kartzinel R, Ebert M, Carter AC. Neuroendocrine function in Huntington’s disease: dopaminergic regulation of prolactin release. Life Sci 1978;22:911–8.

Chalmers RJ, Johnson RH, Keogh HJ, Nanda RN. Growth hormone and prolactin response to bromocriptine in patients with Huntington’s chorea. J Neurol Neurosurg Psychiatry 1978;41:135–9.

Levy CL, Carlson HF, Sowers JR, Goodlett RF, Tourtellotte WW, Hershman JM. Growth hormone and prolactin secretion in Huntington’s disease. Life Sci 1979;24:743–50.

Polleri A, Savoldi F, Muratorio A, et al. Circadian rhythmicity of prolactin secretion in Huntington’s chorea. Life Sci 1980;26:1609–17.

Eden S, Eriksson E, Martin JB, Modigh K. Evidence for a growth hormone releasing factor mediating alpha-adrenergic influence on growth hormone secretion in the rat. Neuroendocrinology 1981;33:24–7.

Brazeau P, Vale W, Burgus R et al. Hypothalamic peptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973;179:77–9.

Ferland L, Labrie F, Jobin MA, Arimura A, Schally AV. Physiologic role of somatostatin in the control of growth hormone and thyrotropin secretion. Biochem Biophys Res Commun 1976;68:149–56.

Cramer H, Kohler J, Oepen G, Schomburg G, Schroter E. Huntington’s chorea—measurements of somatostatin, Substance P and cyclic nucleotides in the cerebrospinal fluid. J Neurology 1981;225:183–7.

Chase TN, Durso R, Denaro SA, Ruggieri S, Tamminga CA. Neuroendocrine studies of Huntington’s disease. Presented at Integrative Neurohumoral Mechanisms: Physiological and Clinical Aspects. Budapest, Hungary, March 24–27, 1982.