A comparative study on distillation methods for oil content, chemical composition, yield and economics in *Eupatorium adenophorum*

Sonal Bisht, Arvind Singh Negi, Hema Lohani and Ujjwal Bhandari

DOI: https://doi.org/10.22271/chemi.2020.v8.i3f.9266

Abstract

An experiment was conducted to assess oil content (%), chemical composition, oil yield and economics in *E. adenophorum*. In an experiment was conducted to assess oil content (%), oil yield (kg/10q) and economic returns (Rs/10 q) in *Eupatorium adenophorum* via two different distillation methods: Hydro-steam and Steam distillation. Maximum oil content (0.23%) was achieved by Hydro-steam distillation method as compared to Steam distillation (0.18%). Further, Hydro-steam distillation (2.27 kg/10q) exceeded Steam distillation (1.82 kg/10q) in term of oil yield. The economic returns were also significantly higher for Hydro-steam distillations (Rs 10696.60/10 q) as compared to steam distillation (Rs. 7376.40/10 q). Experimental finding reveals Hydro-steam distillation to be significantly better than Steam distillation in terms of oil content (%), oil yield (kg/10 q) and economic returns (Rs/10 q). The suitability and feasibility of Hydro-steam distillation were found to be more appropriate under field/farm conditions in comparison to Steam distillation. Further, the chemical compositions of essential oil via two different methods were largely similar. GC-MS analysis of the essential oil showed that the presence of p-cymene (12.87%), α-Phellandrene (9.35%), cis-Cadin-4-en-7-ol (7.46%), Bornyl acetate (5.97%), Camphene (5.75%), γ-patchoulenone (5.18%), δ-2-carene (4.26%) as major constituents in steam distillation and p-cymene (11.31%), α-Phellandrene (7.92%), cis-Cadin-4-en-7-ol (8.52%), Bornyl acetate (5.78%), Camphene (5.08%), γ-patchoulenone (4.40%), δ-2-carene (4.00%) in Hydro-steam distillation respectively.

Keywords: Eupatorium, distillation, hydro-steam, chemical composition

1. Introduction

Eupatorium adenophorum Spreng syn. (*Ageratina adenophora* King and Robinson) belong to the family Asteraceae is a perennial herbaceous shrub, having woody rootstock and numerous upright branching stems is native to Central America (Mexico). Commonly known as Crofton weed, Banmara (Nepal), Kala Bansa (Uttarakhand) is highly invasive and fast-growing weed. It comprises mainly 600 species [1]. This weed is widely distributed from tropical to the temperate regions mainly all over the world in ravine slopes and grassy localities, up to 2200 meters above mean sea level [2]. The weed is characterized by its great reproductive capacity, broad tolerance, and enormous dispersal ability to various environmental conditions [3]. The weed is reported to possess diverse medicinal properties and uses in traditional medicines. *E. adenophorum* is used in folk medicine since ancient times due to its anti-septic, allelopathic, antioxidant, antifungal, analgesic properties. It also posses properties like blood coagulant, antipyretic, acaricidal, anti-nematodal activity and suppose to be enhancer of phenobarbitone that induced sleep [4] It is also used to treat jaundice, fever, insomnia, and ulcers [5]. The essential oil of the *E. adenophorum* is also known to possess insect repellent activity [6]. Due to the significant essential oil content in its aerial parts, it is considered as a valuable raw material for perfumery industry [5] & (Sharma et al., 1998 [7]; Adhkikari and Kraus, 1994). The essential oil of *E. adenophorum* is extracted from aerial part of the plant has been investigated for its chemical composition [8–10]. Mainly oil extractions of Aromatic plants are done by the various distillation processes that include water distillation (hydro distillation), hydro-steam distillation, and steam distillation. In view of its important medicinal properties a study was conducted to emaphases on the cost-effective distillation technique for maximizing the essential oil extraction/yield of *E. adenophorum*.
2. Material and Method

2.1 Sample collection and Extraction of essential oil

The fresh aerial part of E. adenophorum Plants [10 quintals] were collected from Sahiya (Chakrata), Dehradun (30°35′47.41″ N, 77°52′38.21″ E) and 1035 m asml). The collected materials were chopped, and finally weighed before proceeding for distillation via two different distillation processes. Total portion of plant above ground was harvested and weighed. After the plant sample collection, the plant materials were freshly chopped and then passed through following distillation methods.

2.1.1 Hydro-Steam Distillation method

10kg freshly chopped material was loaded in 20kg pilot distillation unit plant chamber (cylindrical) kept above the water level. A perforated grid (or plate) was placed fashioned to ensure so that the plant materials were as raised above the water level. The water is boiled at 100 C below the firewood and "wet" steam generated by boiling the water passed through the plant material vaporizing the essential oil. The complete distillation process extraction of essential oil took 4.30 hrs. The steam along with the water and oil were collected in the tube (Figure: 1). The traces of water in the essential oil were removed by adding anhydrous sodium sulfate (Na2SO4) and stored at 4 C for further analysis. Finally the essential oil yield was calculated using below formula:

\[\text{The yield of essential oil} \ (\%) = \frac{\text{Essential oil obtained}}{\text{Total raw material}} \times 100 \]

2.1.2 Steam Distillation method

10kg fresh chopped material (10 kgs) was loaded in steam distillation units (50 kg capacity) 50kg plant chamber (cylindrical). Steam was generated using steam boiler (separate unit) at temperature of above 100 °C and "dry" steam was channeled into the 50kg plant chamber (separate unit) containing the chopped material E. adenophorum aerial parts. The complete distillation process took 4.30 hrs. The water steam along with the and oil were collected in the separator (Figure: 2). The temperature of the steam was kept high enough (above 100 C) but adequately maintained below the extreme levels by adjusting temperature control knobs so that the chemical compositions of essentials oils were not affected .to vaporize the oil present, but not so high that destroys the plants or burns the essential oil. The traces of water in the essential oil were removed by adding anhydrous sodium sulfate (Na2SO4) and stored at 4 C for the use of analysis. Finally the essential oil yield was calculated using below formula:

\[\text{The yield of essential oil} \ (\%) = \frac{\text{Essential oil obtained}}{\text{Total raw material}} \times 100 \]

2.2 Chemical composition

2.2.1 Gas-Chromatography

Gas chromatography (GC) analyses of the essential oils were carried out by Agilent (model 6890N) gas chromatograph equipped with Flame Ionization Detector (FID) using N2 as the carrier gas. The column was HP-5 fused silica capillary column (30 m × 0.32 mm, 0.25μm film thickness) and temperature program was used as follows: initial temperature of 60 °C (hold: 2 minutes) programmed at a rate of 3 °C/minute to a final temperature of 220 °C (hold: 5 minutes). Temperatures of the injector and FID were maintained at 210 °C and 250 °C, respectively. The sample injection volume was 0.2μL. (neat essential oil).

2.2.2 Gas-Chromatography and Mass-Spectrometry

The gas chromatography-mass spectrometry (GC/MS) analyses of the oils were performed with a Perkin Elmer Clarus 500 gas chromatograph equipped with a split/split less injector (split ratio 50:1) data handling system. The column was Rtx-5 capillary columns (60 m × 0.32 mm, 0.25μm film thickness). Helium (He) was the carrier gas at a flow rate 1.0mL/min. The mass spectra were recorded over 40–350amu that revealed the total ion current (TIC) chromatograms, using an ionizing voltage of 70eV. The identification of compound was performed by MS library search with Wiley and NIST and compare with MS literature search (11) and the quantification was done by peak area percentage of GC compound was performed by MS library search with Wiley and NIST and compare with MS literature search [(Adams R.P, 2009)].

3. Statistical Analysis

The data was collected on parameters viz. oil content (%) and oil yield (kg/10q) were worked out. Further economics of oil yield via. two different methods: Hydro-steam distillation and Steam distillation were worked out to find out economic returns (Rs./10q). All data were subjected to student’s t-test for statistical analysis.

4. Results & Discussion

4.1 Hydro-steam and Steam Distillation

The experiments revealed that the essential oil content, oil yield, and economics of E. adenophorum differed significantly due to different distillation methods. By Hydro-steam distillation method essential oil content, oil yield & economic return are found to be (0.23%), (2.27kg/10q) and (Rs 10696.9/10q) respectively & Steam distillation method essential oil content, oil yield & net return are found to be (0.18%), (1.82kg/10q) and (Rs 7376.4/10q) respectively. Under student’s t-test (%) oil content, oil yield and economic returns differ significantly at p=0.05 (Table: 1). Therefore, from the experimental finding it may be concluded that Hydro-steam distillation was the better in comparison to Steam distillation method for maximizing essential oil content, oil yield and economics return. Similar results were also reported by [12] with maximum essential oil yield (1.5%) under Hydro-distillation method, while minimum yield under Steam distillation method (1.1%). Another study also confirms the higher yield of essential oil through Hydro distillation than the Steam distillation [13]. Previous studies also reveal that there were statistically significant differences found for interaction between the concentration of the main oil constituents and the method of distillation [14]. The essential oil extraction by Hydro-steam distillation method also proved suitable and feasible under field and natural conditions. Further it was also observed that the Steam distillation required more precision in operation which is not likely feasible under field conditions so the Hydro-steam distillation method may be used alternatively. Hydro-steam distillation can also be modified to get maximum output as well as maximum recovery by using various distillers [15]. Chemical composition of essential oils

The chemical composition of the essential oils of E. adenophorum by Steam distillation is presented as Table 2. GC-MS analysis of the essential oil of E. adenophorum leaves showed that the presence of p-cymene (12.87%), α-
Phellandrene (9.35%), Cis-Cadin-4-en-7-ol (7.46%), Bornyl acetate (5.97%), Camphene (5.75%), γ-patchoulene (5.18%), δ-2-carene (4.26%) as major constituents (Table 2). The earlier workers had reported the major constituents in essential oil of the aerial parts of *E. adenophorum* were p-cymene (11.6%), α-phellandrene (5.7%), γ-curcumene (5.0%), δ-2-carene (5.0%), and camphene (4.8%), and endo-bornyl acetate (4.4%) [10]. Further, the chemical composition of the essential oils of *E. adenophorum* by Hydro-steam distillation revealed the presence of p-cymene (11.31%), α-Phellandrene (7.92%), Cis-Cadin-4-en-7-ol (8.52%), Bornyl acetate (5.78%), Camphene (5.08%), γ-patchoulene (4.40%), δ-2-carene (4.00%) as major constituents (Table 2).

5. Acknowledgements

The Author thanks to the Director of the Centre for aromatic plants, Selaqui and National Mission on Himalayan Studies (NMHS), MoEF&CC for providing the facilities like necessary funds, technical guidance and field support for conduct of this study.

Table 1: Average mean values for different parameters via Different distillation methods in *E. adenophorum*

Treatment	Oil content (%)	Oil yield kg/10 q	Net return Rs./10q
Hydro-steam distillation	0.23a	2.27a	10696.9a
Steam distillation	0.18b	1.82b	7376.4b

The value of p=0.05 was considered statistically significant. All results refer to mean±SD. In each column, different letters mean significant differences between the samples mean.

Table 2: Chemical composition of *E. adenophorum* (Steam & Hydro-Steamb Distillation)

S. No	RT	Component	RI_{exp}	RI_{lit} (%) (Steam Dist.)	(%) (Hydro- Steam Dist.)
1.	11.329	camphene	950	5.75	5.08
2.	13.330	δ-2-carene	1002	4.26	4.00
3.	13.520	α-Phellandrene	1005	9.35	7.92
4.	14.400	p-cymene	1026	12.87	11.31
5.	14.520	DL-limonene	1029	0.99	0.88
6.	15.230	β-ocimene	1043	0.28	0.22
7.	17.610	Linalool	1098	0.13	0.27
8.	20.821	Borneol	1170	0.28	0.54
9.	21.971	P-mentha-1,5-dien-8-ol	1175	0.14	0.62
10.	23.452	Thymol methyl et her	1235	0.14	0.13
11.	26.122	Bornyl acetate	1287	5.97	5.78
12.	31.813	Trans-caryophyllene	1419	1.47	1.25
13.	32.303	α-Bergamotene	1435	1.08	0.90
14.	33.074	β-farnesene	1443	3.32	2.67
15.	34.104	β-Himachalene	1450	1.40	1.09
16.	34.244	Epizonarene	1504	2.17	1.88
17.	34.374	γ-patchoulene	1497	5.18	4.40
18.	34.964	Trans-β guaiene	1504	1.39	1.21
19.	35.274	α-farnesene	1512	4.81	4.00
20.	35.554	β-curcumene	1515	0.44	0.36
21. 35.874 β-sesquiphellandrene 1519 1521 2.44 2.02
22. 36.184 α-bisabolene 1526 1529 1.18 1.16
23. 37.324 Elemol 1548 1548 0.31 0.36
24. 37.534 Nerolidol 1557 1561 0.12 0.14
25. 38.455 Spathulenol 1579 1577 0.29 0.39
26. 40.355 Cis-Cadin-4-en-7-ol 1639 1637 7.46 8.52
27. 40.515 <epi-α>cadinol 1638 1640 0.59 0.71
28. 41.035 α-cadinol 1655 1652 0.44 0.55
29. 41.505 <epi-β>Bisabolol 1672 1670 0.27 0.33
30. 42.065 <epi-α>Bisabolol 1686 1685 2.73 4.04
31. 42.705 Widdrenol 1704 1708 2.08 2.91

6. References
1. Adams RP. Identification of essential oil components by gas chromatography mass spectrometry 4th ed. Allured Publishing, 2009.
2. Adhikari R, Kraus W. Bioactive constituents of Eupatorium adenophorum Spreng (banmara). J Nepal chem. Soc. 1994; 13:34-36.
3. Bhattarai N, Shrestha G. Antibacterial and antifungal effect of Eupatorium adenophorum Spreng against bacterial and fungal isolates. Nepal J Sci. Technol. 2009; 10:91-95.
4. Chauhan N, Lohani H, Sah S, Yadav RK. Commercial extraction of essential oil from Lantana camara. Indian Journal of Forestry, 2004; 27(1):117-119.
5. Ding Z, Guo Y, Ding J. Chemical constituents from flowers of Eupatorium adenophorum. Acta Botanica Yunnanica. 1999; 21:5055-5068.
6. Esquivel MM, Ribeiro MA, Bernardo-Gil MG. Supercritical extraction of savory oil: study of antioxidant activity and extract characterization. Supercrit. Fluids, 1999; 14:129-138.
7. Kundu A, Saha S, Ahluwalia V, Walia S. Plant growth inhibitory terpenes from Eupatorium adenophorum leaves. Journal of Applied Botany and Food Quality. 2013; 86:33-36.
8. Negi M. Ecology and management of an invasive species, Eupatorium adenophorum in Kumaun Himalaya. ENVIS Bulletin Himalayan Ecology. 2016; 24:128-132.
9. Pala-Paul J, Perez-Alonso MJ, Velasco-Negueruela A, Sanz J. Analysis by gas chromatography-mass spectrometry of the volatile components of Ageratina adenophora Spreng growing in the Canary Islands. J Chrom 2002; A947:327-331.
10. Prajapati PS. A handbook of medicinal plants- a complete sourcebook: Agrobios publication. 2003, 345.
11. Sefidkon F, Abbasi K, Jamzad Z, Ahmadi S. The effect of distillation methods and stage of plant growth on the essential oil content and composition of Satureja rechingeri Jamzad. Food Chem., 2007; 100:1054-1058.
12. Sharma OP, Dawra RK, Kurade NP, Sharma PD. A review of the toxicosis and biological properties of the genus Eupatorium. Nattoxins. 1998; 6:1-14.
13. Sun XY, Lu ZH, Sang WG. Review on the study of Eupatorium adenophorum- An important invasive species in China. Journal of Forestry Research. 2004; 15(4):319-322.
14. Wesołowska A, Grzeszcuk M, Jadczak D. Influence of Distillation Method on the Content and Composition of Essential Oil Isolated from Summer Savory (Satureja hortensis L.). Journal of Essential Oil Bearing Plants, 2005; 18(1):215-221.
15. Weyerstahl P, Marschall H, Seelmann I, Kaul V. Constituents of the flower essential 48 oil of Ageratina adenophora (Spreng) from India. Flavour Fragr J. 1997; 12:387-396.