Metamorphosis of helical magnetorotational instability in the presence axial electric current

Jānis Priede
Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom

This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. It is shown that the electric current passing through the liquid can extend the range of helical magnetorotational instability indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are found. The first is that of the well-known Taylor instability, which is due to the interaction of the electric current with its own magnetic field. The second is a new kind of electromagnetic instability driven by the interaction of electric current with a weak collinear magnetic field.

PACS numbers: 47.20.Qr, 47.65.-d, 95.30.Lz

I. INTRODUCTION

Certain hydrodynamically stable rotational flows of electrically conducting fluids can turn unstable in the presence of the magnetic field. This rather counter-intuitive effect was first predicted by Velikhov [1] and Chandrasekhar [2] for cylindrical Taylor-Couette (TC) flow of a perfectly conducting fluid subject to axial magnetic field. After three decades of obscurity the MRI was re-discovered by Balbus and Hawley who speculated that it could account for the fast formation of stars by accretion disks [3]. This hypothesis has spurred many theoretical and numerical studies [4] as well as several attempts to reproduce the MRI in the laboratory [5]. Though there is little doubt about the reality of MRI, this follows directly from classical fluid mechanics and is independent of to the MRI [7].

A way to circumvent this technical issue was suggested by Hollerbach and Rüdiger [8], who found that the threshold of MRI in cylindrical TC flow drops to \(Re \sim 10^6 \) when the imposed magnetic field is helical rather than purely axial as for the standard MRI (SMRI). This helical type of MRI (HMRI) turned out to be significantly weaker and much more limited than the SMRI [9]. Nevertheless, an instability closely resembling the HMRI was shortly observed in the PROMISE experiment [10]. Subsequent analysis revealed that this instability has been observed slightly beyond the narrow range in which the existence of HMRI is predicted by the ideal TC flow model [11]. This apparently small discrepancy between the theory and experiment hides two major issues pertinent to the HMRI. First, due to the hydrodynamic and electromagnetic end effects the real base flow, in which the HMRI is to be observed, inevitably deviates from the ideal TC flow used by the underlying theory. The end effects can be reduced to some degree, as in the modified PROMISE experiment [12], but they cannot be eliminated completely. Although the end effects can be taken into account by realistic numerical models, which can achieve a good agreement with the experiment, this does not solve the main problem which is the identification of the HMRI. Namely, the HMRI is physically indistinguishable from a magnetically modified hydrodynamic Taylor vortex flow. The distinction between both is only theoretical and based on the hydrodynamic stability limit. The latter is well defined only for ideal TC flow but not for a realistic base flow affected by the end effects. It is not obvious how to determine this stability limit for a real base flow affected by both hydrodynamic and magnetic end effects. Neither experiment nor direct numerical simulation is able to discriminate between the HMRI and other possible hydromagnetic of instabilities.

The second issue that makes the identification of the HMRI particularly hard is the very short extension of this instability, especially its self-sustained (absolute) mode, beyond the hydrodynamic stability limit [11]. It is the narrow confinement of the HMRI behind the hydrodynamic stability limit which makes the exact location of this limit so important for the identification of the HMRI. Besides the identification problem, the short extension of the HMRI implies a limited astrophysical relevance of this instability. Namely, though the HMRI is able to destabilize certain centrifugally stable velocity distributions, it does not reach up to the astrophysically relevant Keplerian rotation profile [9, 13].

Recently, it was suggested by Kirillov and Stefani that
II. FORMULATION OF THE PROBLEM

Consider an incompressible fluid of kinematic viscosity ν and electrical conductivity σ filling the gap between two infinite concentric cylinders with the inner radius R_i and the outer radius R_o, rotating respectively with the angular velocities Ω_i and Ω_o in the presence of a generally helical magnetic field $B_0 = e_z B_z + e_\phi B_\phi$ with the axial component $B_z = \alpha B_0$ and the azimuthal component

$$B_\phi = B_0 \left[(\beta - \gamma) R_i/r + \gamma R_i / R_o \right]$$

in cylindrical coordinates (r, ϕ, z). The dimensionless coefficient α defines the magnitude of axial component of the magnetic field relative to that of the azimuthal component. The latter has a free-space part defined by the coefficient β and a rotational part defined by the coefficient γ, which is associated with the axial current density in the fluid $j_0 = \mu_0^{-1} \nabla \times B_0 = e_z 2 \gamma B_0 / \mu_0 R_i$, where μ_0 is the magnetic permeability of vacuum. In the annular geometry with $R_i \neq 0$, the absence of the current at $r < R_i$ produces also a free-space component of the magnetic field with the effective helicity $-\gamma$ which appears in the first term of Eq. (1). Free-space magnetic field can be modified by passing additional current along an electrode placed in the center of the annular cavity as in the PROMISE experiment [10]. This component of the magnetic field is specified by the coefficient β.

Following the inductionless approximation, which holds for most of liquid-metal magnetohydrodynamics characterized by small magnetic Reynolds numbers $Rm = \mu_0 \nu \sigma L \ll 1$, where ν and L are the characteristic velocity and length scales, the magnetic field of the currents induced by the fluid flow is assumed to be negligible relative to the imposed field B_0 everywhere except the electromagnetic force term in the Navier-Stokes equation

$$\partial_t v + (v \cdot \nabla)v = \rho^{-1} (-\nabla p + j \times B) + \nu \nabla^2 v,$$

where, as shown below, its interaction with the background electric current j_0 results in a non-negligible perturbation of the electromagnetic body force. The electric current density is governed by Ohm’s law for a moving medium

$$j = \sigma (E + v \times B_0)$$

and related to the magnetic field by Ampère’s law $j = \mu_0^{-1} \nabla \times B$. In addition, we assume that the characteristic time of velocity variation is much longer than the magnetic diffusion time $\tau_0 = \tau_m = \mu_0 \sigma L^2$. This leads to the quasi-stationary approximation according to which

$$\nabla \times E = 0 \quad \text{and} \quad E = -\nabla \Phi,$$

where Φ is the electrostatic potential. Mass and charge conservation imply

$$\nabla \cdot v = \nabla \cdot j = 0.$$

The problem admits a base state with a purely azimuthal velocity distribution $v_0(r) = e_\phi v_0(r)$, where

$$v_0(r) = \frac{\Omega_o R_o^2 - \Omega_i R_i^2}{R_o^2 - R_i^2} + \frac{1}{r} \frac{\Omega_o - \Omega_i}{R_o^2 - R_i^2}.$$

Note that this base flow is not affected by the magnetic field and remains the same as in the hydrodynamic case. First, this is because the unperturbed electromagnetic force is potential, and thus can be compensated by a radial pressure gradient. Second, there is no current and thus no additional electromagnetic force generated by the base flow which gives rise only to the electrostatic potential $\Phi_0(r) = B_0 \int v_0(r) \, dr$, whose gradient compensates the induced electric field. Current can appear only in the perturbed state

$$\left\{ \begin{array}{l} v, p \\ B, \Phi \end{array} \right\} (r, t) = \left\{ \begin{array}{l} v_0, p_0 \\ B_0, \Phi_0 \end{array} \right\} (r) + \left\{ \begin{array}{l} v_1, p_1 \\ B_1, \Phi_1 \end{array} \right\} (r, t),$$
where \(v_1, p_1, B_1 \), and \(\Phi_1 \) are small-amplitude perturbations for which Eqs. (2) after linearization take the form
\[
\partial_t v_1 + (v_1 \cdot \nabla)v_0 + (v_0 \cdot \nabla)v_1 = \rho^{-1}(-\nabla p_1 + j \times B_0 + j_0 \times B_1) + \nu \nabla^2 v_1 \tag{4}
\]
\[
j_1 = \sigma (-\nabla \Phi_1 + v_1 \times B_0) = \mu_0^{-1} \nabla \times B_1. \tag{5}
\]
Taking the curl of Eq. (5) to eliminate the potential gradient we obtain the following induction equation
\[
\sigma \nabla \times (v_1 \times B_0) + \mu_0^{-1} \nabla^2 B_1 = 0 \tag{6}
\]

The subsequent analysis is limited to axisymmetric perturbations which are not necessary the most unstable but still useful for elucidating the basic instability mechanisms. For axisymmetric perturbations, the solenoidity constraints are satisfied by introducing meridional stream functions \(\psi \) and \(\hat{h} \) for the fluid flow and electric current as
\[
v = ve_\phi + \nabla \times (\psi e_\phi),
\]
\[
j = je_\phi + \nabla \times (he_\phi).
\]
Note that \(\hat{h} \) is the azimuthal component of the induced magnetic field which is governed by Eq. (6) and used subsequently instead of \(\Phi \) for the description of the induced current. Equation (4) contains not only the azimuthal current, which is explicitly related to the radial velocity, but also the radial component of the induced magnetic field, which is subsequently denoted by \(g \) and governed by the radial component of Eq. (4). For numerical purposes, we introduce also the vorticity
\[
\omega = \omega e_\phi + \nabla \times (ve_\phi) = \nabla \times v
\]
as an auxiliary variable. Perturbations are sought in the normal mode form
\[
\{v_1, \omega_1, \psi_1, h_1, g_1\}(r, t) = \{\hat{v}, \hat{\omega}, \hat{\psi}, \hat{h}, \hat{g}\}(r) \times e^{\gamma t + ikz},
\]
where \(\Gamma \) is, in general, a generally complex growth rate and \(k \) is a real wave number. Henceforth, we proceed to dimensionless variables by using \(R_l, R_f^2/\nu, R_l \Omega_l, B_0, \sigma \mu_0 B_0 R_f^2 \Omega_l \) as the length, time, velocity, and the induced magnetic field scales, respectively. Non-dimensional governing equations then read as
\[
\begin{align*}
\Gamma \hat{v} &= D_k \hat{v} + Re ikr^{-1}(r^2 \Omega)^2 \hat{v} + Ha^2 (ik \hat{h} + 2\gamma \hat{g}), \quad \Gamma \hat{\omega} = D_k \hat{\omega} + 2Re ik \Omega \hat{\omega} + \nabla^2 (\alpha \hat{\psi} - 2(\beta - \gamma) \hat{r} \hat{r} \hat{\omega} - 2(\beta - \gamma) r^{-2} \hat{\psi}), \quad 0 = D_k \hat{\psi} + \hat{\omega}, \quad 0 = D_k \hat{h} + ik(\alpha \hat{\psi} - 2(\beta - \gamma) r^{-2} \hat{\psi}), \quad 0 = D_k \hat{g} + k^2 \alpha \hat{\psi},
\end{align*}
\]
\[
\text{where } D_k f \equiv r^{-1}(rf')' - (r^{-2} + k^2)f \text{ and the prime stands for } \frac{d}{dr}; \quad Re = R_f^2 \Omega_l / \nu \text{ and } Ha = R_l B_0 \sqrt{\sigma \nu} \text{ are Reynolds and Hartmann numbers, respectively;}
\]
\[
\Omega(r) = \frac{\lambda^{-2} - \mu + r^{-2} (\mu - 1)}{\lambda^{-2} - 1}
\]
is the dimensionless angular velocity of the base flow defined in terms of \(\lambda = R_o / R_l \) and \(\mu = \Omega_o / \Omega_l \).

The boundary conditions for the hydrodynamic perturbations on the inner and outer cylinders at \(r = 1 \) and \(r = \lambda \), respectively, are \(\hat{v} = \hat{\psi} = \hat{\psi} = 0 \). The boundary conditions for the electric stream function \(\hat{h} \) on the insulating walls, which are considered in the following, are \(\hat{h} = 0 \). The effective boundary conditions for the radial component of the induced magnetic field \(\hat{g} \) follow from the free-space solution of Eq. (11) with \(\hat{\psi} \equiv 0 \), which yields
\[
\hat{g}(r) = \begin{cases} G_1 I_1(kr), & 0 \leq r \leq 1 \\ G_o K_1(kr), & r \geq \lambda, \end{cases}
\]
where \(I_1 \) and \(K_1 \) are the modified Bessel functions of the first and second types of index 1 [24]. Taking the ratio \((r \hat{g})' / \hat{g} \) to eliminate the unknown constants \(G_1 \) and \(G_o \) we obtain the sought boundary conditions in the form
\[
(r \hat{g})' = c_i(kr) \hat{g} \text{ at } r = 1,
\]
\[
(r \hat{g})' = c_o(kr) \hat{g} \text{ at } r = \lambda,
\]
where \(c_i(r) = r I_0(r) / I_1(r) \) and \(c_o(r) = -r K_0(r) / K_1(r) \).

Equations (7)-(11) were solved numerically using a spectral collocation method on a Chebyshev-Lobatto grid with a typical number of internal points \(N = 32 \). In order to avoid spurious eigenvalues, auxiliary Dirichlet boundary conditions for \(\hat{\omega} \) were introduced and then numerically eliminated using the no-slip boundary conditions \(\hat{\psi}' = 0 \) [25]. The electromagnetic variables \(\hat{h} \) and \(\hat{g} \) were represented in terms of \(\hat{v} \) and \(\hat{\psi} \) by numerical solution of Eqs. (10)-(11) and then substituted into Eqs. (7)-(11). The resulting standard complex matrix eigenvalue problem of the size \(2N \times 2N \) was solved by the LAPACK ZGEEV routine.

III. RESULTS

A. Degeneration of the HMRI in the presence of axial electric current

In the following, the radii ratio of inner and outer cylinders is fixed to \(\lambda = 2 \) and the cylinders are assumed to be...
insulating. We start with a hydrodynamically unstable flow corresponding to the ratio of rotation rates \(\mu = 0.2 \), which is below the Rayleigh limit \(\mu_c = \lambda^{-2} = 0.25 \). The magnetic field is helical with the axial component fixed by \(\alpha = 1 \) and the azimuthal component generated only by the current passing through the fluid, which corresponds to \(\beta = 0 \). In a purely axial magnetic field corresponding to \(\gamma = 0 \), the flow becomes centrifugally unstable to stationary Taylor vortices when Reynolds number exceeds the marginal value which is plotted in Fig. 2(b) against the wave number \(k \). Addition of a weak azimuthal magnetic field reduces the instability threshold and makes the instability oscillatory with the frequency \(\omega = 3/7 \) which is shown in Fig. 2(b). The most important result seen in Fig. 2(a) is the drop of marginal Reynolds number to zero in a range of intermediate wave numbers when the helicity of the field due the axial current defined by \(\gamma \) becomes somewhat greater than 3.7. Zero Reynolds number means that this instability becomes entirely electromagnetic. Moreover, Fig. 2(b) shows that this instability is stationary, i.e., \(\omega = 0 \). It will be shown later that two different electromagnetic mechanisms may be behind this instability.

Next, let us turn to a hydrodynamically stable case corresponding to the ratio of rotation rates set to \(\mu = 0.3 \) which is slightly above the Rayleigh limit \(\mu_c = 0.25 \). As seen in Fig. 3(a), a moderately helical rotational magnetic field can destabilize this flow similarly to the helical free-space magnetic field 26. In both cases neutral stability curves from closed contours which mean that the instability can occur only limited ranges of Reynolds and wave numbers. In contrast to the hydrodynamically unstable case considered above, there are now two marginal Reynolds numbers – the lower one by exceeding which the flow destabilizes, and the upper one by exceeding which the flow restabilizes. The existence of the upper critical Reynolds number is another peculiarity of the HMRI which, in principle, distinguishes it from a magnetically modified Taylor vortex flow 21.

This picture changes when the helicity of the rotational field exceeds \(\gamma \approx 3.7 \). As for the hydrodynamically unstable case considered above, marginal Reynolds number again drops to zero in a certain range of intermediate wave numbers. Figure 4(a) shows the critical Reynolds number and the respective frequency versus the ratio of rotation rates of inner and outer cylinders \(\mu \) at various helicities \(\gamma \) of rotational helical magnetic field with \(\alpha = 1, \beta = 0 \) and \(Ha = 10 \).}

B. Instability in the azimuthal magnetic field generated by axial current in the liquid

Let us consider next what happens when the axial component of the magnetic field is switched off by setting \(\alpha = 0 \). It means that the magnetic field is now perfectly azimuthal and generated only by the axial current in the liquid. Marginal Reynolds number and the frequency for both hydrodynamically unstable (\(\mu = 0.2 \)) and stable (\(\mu = 0.3 \)) flows in the magnetic fields of various strength defined by \(\gamma \) and \(Ha = 10 \) are plotted against the wave number \(k \) in Fig. 4. For the hydrodynamically unstable flow, the effect of the azimuthal field is very similar to that of the helical field considered previously. Namely, the increase of the axial electric current defined by \(\gamma \) reduces marginal Reynolds number, which again drops to zero in a certain range of wave numbers when \(\gamma \gtrsim 4.5 \). In contrast to helical magnetic field, now the instability is completely stationary, i.e., \(\omega = 0 \). For hydrodynamically stable flow, the effect is slightly distant from that of the helical field. First, in this case all neutral stability curves, which as before exist only for a limited range of wave numbers, end at zero Reynolds number. It means that the lower critical Reynolds number, if any, is always zero when the flow is hydrodynamically stable. Second, as shown in Fig. 5, an oscillatory instability mode ap-
pears contrary to Edmonds conjecture [18] in a certain subrange of unstable wave numbers at sufficiently high Re when $\gamma \gtrsim 6$. This oscillatory mode, which resembles an electromagnetically destabilized inertial wave, persists up to much higher Reynolds numbers than the stationary one.

The stationary mode is obviously a pinch-type instability which has been studied in this setup numerically by Shalybkov using a more general non-axisymmetric and finite-Pm approximation [22] and Rüdiger et al. in the context of the so-called azimuthal MRI [21]. This instability operates through the compression of the azimuthal magnetic field lines by a radially inward flow perturbation which amplifies itself by enhancing the electromagnetic pinch force generated by the interaction of the axial electric current with its own magnetic field. It is important to notice that axisymmetric meridional flow interacts only with the free-space ($\sim r^{-1}$) but not with the rotational ($\sim r$) component of the azimuthal magnetic field [17, 18]. As it is easy to see from Eq. (10), the respective induction term proportional to $\beta - \gamma$ is entirely due to the free-space component of the magnetic field, and vanishes together with the latter when $\gamma = \beta$. The interaction between axisymmetric meridional flow and azimuthal rotational magnetic field is precluded by the conservation of the magnetic flux. The flux is conserved because the rotational magnetic field varies linearly with the cylindrical radius r while the respective cross-section area of a toroidal element of constant volume in incompressible fluid flow varies inversely with r. Thus, in contrast to the conventional z-pinch, this instability requires not only a rotational but also a free-space component of the azimuthal magnetic field. The latter, however, is possible only in annular but not in cylindrical geometry. As seen from Eq. (10), the free-space component of the azimuthal magnetic field associated the axial electric current in annular geometry ($R_i \neq 0$) can be compensated by an additional free-space magnetic field with $\beta = \gamma$ which leaves only the rotational component $\sim r$ as in the solid cylinder.

C. Instability in helical magnetic field with a perfectly rotational azimuthal component

Now let us check what happens when the axisymmetric pinch instability is excluded by applying a compensating free-space magnetic field with $\beta = \gamma$ which makes the azimuthal component of the magnetic field perfectly rotational, that is, purely linear in r. In order to have any electromagnetic effect on the axisymmetric disturbances, we need to add axial magnetic field by setting $\alpha = 1$. Both the critical Reynolds number and the frequency, which are shown in Fig. 6 versus the ratio of rotation rates of outer and inner cylinders for $Ha = 10$, look very similar to the respective characteristics shown in Fig. 4 for the rotational helical magnetic field with an uncompensated free-space component. As before, the increase of the axial current reduces the critical Reynolds number, which in this case drops to zero at the critical value $\beta = \gamma \approx 2.9$ leading to an unlimited extension of the instability beyond the Rayleigh limit. Thus, the elimination of the pinch-type instability has a surprisingly little effect on the remaining instability.

D. Purely electromagnetic instabilities

Zero marginal Reynolds number means that the instability no longer depends on the background flow and is driven entirely by the electromagnetic force which is

![Figure 5. Marginal Reynolds number versus wave number for hydrodynamically unstable ($\mu = 0.2$) and stable ($\mu = 0.3$) flows in the azimuthal magnetic field ($\alpha = 0$) generated only by the axial current in the liquid annulus ($\beta = 0$) with various magnitude γ at $Ha = 10$.](image)

![Figure 6. Critical Reynolds number versus the ratio of rotation rates of inner and outer cylinders μ at various helicities γ of purely rotational helical magnetic field with $\alpha = 1$, $\beta = \gamma$ and $Ha = 10$.](image)
defined by Hartmann number. Marginal Ha for such electromagnetically sustained disturbances is plotted in Fig. 7 against wave number for various axial current parameters γ in helical magnetic field with uncompensated ($\alpha = 1, \beta = 0$) (a) and compensated $\beta = \gamma$ (b) free-space azimuthal components as well as in a purely azimuthal field ($\alpha = 0$) generated only by the axial current in the liquid ($\beta = 0$), and with nearly compensated free-space component ($\beta \to \gamma$) (c). For the first two helical field configurations, marginal Ha is seen to vary with γ in a similar way. For purely azimuthal field configuration, the instability is determined by the effective Hartmann number γHa. As seen in Fig. 7(c), the lowest value $\gamma Ha \approx 42.74$ is attained at the critical wave number $k_c \approx 3.13$. This pinch-type instability gives rise to a meridional flow whose streamlines and the associated electric current lines are shown in Fig. 8.

Critical Hartmann and wave numbers for all three basic field configurations are summarized in Fig. 8. It is seen that at a sufficiently large γ, the instability in helical magnetic field with a non-zero (uncompensated) free-space azimuthal component turns into the pinch instability with $Ha \sim 42.74 \gamma^{-1}$. When the free-space azimuthal component is compensated ($\beta = \gamma$), the critical Hartmann number at large γ varies differently as $Ha \sim 10.47 \gamma^{-1/2}$. This implies a different type of instability driven by the interaction of axial electric current with a collinear external magnetic field. The critical perturbation pattern of this rather complex instability is shown in Fig. 9 while its mechanism is discussed in the concluding section.

Finally, let us consider the effect of additional free-space azimuthal field on the pinch-type instability without axial magnetic field ($\alpha = 0$). Critical Hartmann numbers and the wave numbers for this case are shown in Fig. 11 versus $1 - \beta/\gamma$, which defines the relative strength of the free-space component. As seen in Fig. 11, the critical Hartmann number attains the minimum $Ha_c \approx 42.74 \gamma^{-1}$ at $\beta/\gamma \approx 1$ and increases asymptotically as $Ha_c \sim 31 \gamma^{-2} (1 - \beta/\gamma)^{-1/2}$ when $\beta/\gamma \to 1$. Critical Hartmann number for this limit, which corresponds to a nearly compensated free-space azimuthal component of the magnetic field, is plotted in Fig. 11(c). Asymptotic result is obtained by dropping the term with $\beta - \gamma$ in Eq. 8 which produces a quadratically small effect relative to analogous term in Eq. 8 when $\beta \to 1$. Critical Hartmann number becomes very large also when $\beta/\gamma \to -1$, which corresponds a compensated total axial current through the system. In this case, the current which passes through the liquid returns along a central electrode and thus cancels the field in the free space outside the system. This setup has been suggested by Stefani et al. as a possible means of avoiding Taylor instability in the future liquid metal batteries 27.
IV. SUMMARY AND CONCLUSIONS

The present study was concerned with numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying an axial electric current in the presence of a generally helical external magnetic field. It was shown that the electric current passing through the liquid profoundly alters the nature of the helical MRI by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms were identified. The first is the well-known Taylor instability which is driven by the interaction of the electric current with its own magnetic field. The axisymmetric mode of this instability considered in the present study requires a free-space component of the azimuthal magnetic field, which is possible in the annular but not in cylindrical geometry. In the annular geometry this instability mode can be eliminated by passing an additional current along the axis of the system to compensate the free-space azimuthal component of the magnetic field in the liquid. In this case, the addition of axial magnetic field was found to give rise to a new kind of electromagnetic instability.

The mechanism of this instability, which is driven by the interaction of axial electric current with a weak collinear external magnetic field, is as follows. First, a radially outward initial flow perturbation slightly bends the axial magnetic field but does not affect, as argued above, the purely rotational azimuthal field and the associated axial current. The deflected axial field crossing the unperturbed axial current gives rise to an azimuthal electromagnetic force which, in turn, drives an azimuthal flow perturbation. The fluid rotates in the positive direction below the radial flow perturbation, where the axial field is bent outwards, and in the negative direction above it, where the axial field bends back. Next, the azimuthal flow perturbation in the axial magnetic field induces radially outward and inward electric currents below and above the initial radial flow perturbation, respectively. These two opposite radial electric currents close in the inner part of the liquid annulus via a downward axial current, which, in turn, interacts with the azimuthal magnetic field and generates a radially outward electromagnetic force perturbation. The latter amplifies the initial radial flow perturbation so promoting the instability.

In contrast to the azimuthal MRI \cite{21}, the helical MRI does not separate from purely electromagnetic instabilities in the inductionless limit $Pm = 0$. It is also impor-
tant to note that although electromagnetic instabilities can develop without mechanical rotation, the latter has a stabilizing effect when the base flow is hydrodynamically stable. Similarly to the HMRI, the electromagnetic instabilities are constrained beyond the Rayleigh line to sufficiently low Reynolds numbers. This dynamical constraint may severely limit astrophysical relevance of electromagnetic instabilities. Nevertheless, there are several industrial applications such as, for example, aluminium reductions cells [28] and the prospective liquid metal batteries [29], where the strong electric current passing through the liquid metal in the presence of a collinear magnetic field can give rise to the electromagnetic instability identified in this study.

ACKNOWLEDGMENTS

This work was supported by Helmholtz Association of German Research Centres (HGF) in the framework of the LIMTECH Alliance through agreement between Coventry University and Helmholtz-Zentrum Dresden-Rossendorf.

[1] E. P. Velikhov, Sov. Phys. JETP 36, 995 (1959).
[2] S. Chandrasekhar, Proc. Nat. Acad. Sci. 46, 253 (1960); Hydodynamical Stability, (Oxford University, London, 1961), Sec. 81.
[3] S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991);
[4] S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).
[5] H. Ji and S. Balbus, Phys. Today 66, 074109 (2013).
[6] J. Goodman and H. Ji, J. Fluid. Mech. 462, 365 (2002).
[7] D. R. Sisan, N. Mujica, W. A. Tillotson, Y.-M. Huang, W. Dorland, A. B. Hassam, T. M. Antonsen, and D. P. Lathrop, Phys. Rev. Lett. 93, 114502 (2004).
[8] R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005).
[9] W. Liu, J. Goodman, I. Herron, and H. Ji, Phys. Rev. E 74, 056302 (2006).
[10] F. Stefani, Th. Gundrum, G. Gerbeth, G. Rüdiger, M. Schultz, J. Szklarski, and R. Hollerbach, Phys. Rev. Lett 97, 184502 (2006).
[11] J. Priede and G. Gerbeth, Phys. Rev. E 79, 046310 (2009).
[12] F. Stefani, G. Gerbeth, Th. Gundrum, J. Szklarski, G. Rüdiger, and R. Hollerbach, Astron. Nachr. 329, 652 (2008).
[13] J. Priede, Phys. Rev. E 79, 066314 (2009).
[14] F. Stefani, G. Gerbeth, Th. Gundrum, R. Hollerbach, J. Priede, G. Rüdiger, and J. Szklarski, Rev. E 80, 066303 (2009).
[15] J. Priede, Phys. Rev. E 84, 066314 (2011).
[16] O. N. Kirillov and F. Stefani, Phys. Rev. Lett. 111, 061103 (2013).
[17] D. H. Michael, Mathematika 1, 45 (1954).
[18] F. N. Edmonds, Phys. Fluids 1, 30 (1958).
[19] Yu. V. Vankurov, Sov. Astron. 16, 265 (1972).
[20] R. J. Taylor, Mon. Not. R. Astron. Soc. 161, 365 (1973).
[21] G. Rüdiger, R. Hollerbach, M. Schultz, and D. Elstner, Mon. Not. R. Astron. Soc. 377, 1481 (2007).
[22] D. Shalybkov, Phys. Rev. E 73, 016302 (2006); 75, 047302 (2007).
[23] M. Selimfayer, F. Stefani, Th. Gundrum, T. Weier, G. Gerbeth, M. Gellert, and G. Rüdiger, Phys. Rev. Lett. 108, 244501 (2012).
[24] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1972).
[25] J. Hagan and J. Priede, J. Comp. Phys. 238, 210 (2013).
[26] J. Priede, I. Grants, and G. Gerbeth, Phys. Rev. E 75, 047303 (2007).
[27] F. Stefani, T. Weier, Th. Gundrum and G. Gerbeth, Energy Convers. Manage. 52, 2982 (2011).
[28] A. Fedchenko, S. Molokov, J. Priede, A. Lukyanov, and P. J. Thomas, Europhys. Lett. 88, 24001 (2009).
[29] K. Wang, K. Jiang, B. Chung, T. Ouchi, P. J. Burke, D. A. Boysen, D. J. Bradwell, H. Kim, U. Muecke, and D. R. Sadoway, Nature, DOI:10.1038/nature13700 (2014).