LETTER TO THE EDITORS

Brainstem clinical and neurophysiological involvement in COVID-19

Tommaso Bocci1,4,5 · Gaetano Bulfamante2,4 · Laura Campiglio1,4,5 · Silvia Coppola3,4 · Monica Falleni2,4 · Davide Chiumello3,4 · Alberto Priori1,4,5,6

Received: 17 December 2020 / Revised: 12 February 2021 / Accepted: 13 February 2021 / Published online: 18 March 2021
© The Author(s) 2021

Dear Sirs,

Whilst respiratory failure in COVID-19 arises from severe interstitial lung involvement [17], SARS-CoV-2 likely spreads also through the nervous system [3, 6]. Before that SARS-CoV-2 emerged at a global scale [14], other coronaviruses have been proven to invade the brainstem in mice [5] and humans [1, 2, 7]. SARS-CoV-2 might spread cell-to-cell in a prion-like way [3, 8, 11], along the vagus nerve, reaching respiratory centers in the brainstem, possibly adding a neurogenic component to the respiratory failure [11, 15]. To test this hypothesis, we assessed neurophysiologically and clinically the brainstem in patients admitted to the Intensive Care Unit (ICU; time of hospitalization: 10.5 ± 4.8 days, mean ± standard deviation).

The blink reflex (BR) was assessed in 11 severe COVID-19 patients (9 males, mean age 55.2 ± 7.1 years, range 48–70; Fig. 1) [4, 9]. Diagnosis of COVID-19 was confirmed by positive results on a reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay performed on nasopharyngeal and throat swab, or on lower respiratory tract specimens; each patient suffered from interstitial pneumonia typical of SARS-CoV-2 disease and was intubated at the time of the neurological evaluation. The BR includes two responses: the first is mediated by a disynaptic pathway between the sensory nucleus of the trigeminal nerve (V) in the mid pons and the ipsilateral facial nucleus in the lower pontine tegmentum. The second response (RII) originates through a multi-synaptic circuit in the medulla oblongata [9]. The supraorbital nerve was stimulated through a pair of silver chloride cup electrodes with the cathode over the supraorbital foramen and the anode 2 cm above (constant current stimulation, pulse width 200 µs, inter-trial interval ranging between 25 and 35 s to avoid habituation) [4, 9]. A total of 8 blink reflexes were recorded on each side and data were collected from superimposed traces. Electromyographic signal was captured by surface electrodes and analyzed (band-pass 10 Hz–10 kHz, sampling rate 5 kHz, sensitivity set 200 µV/Div; sweep speed 10 ms/Div). Neurophysiological responses in COVID-19 patients were compared with those from 15 age-matched healthy volunteers and 5 non-COVID ICU intubated patients (Fig. 1). The glabellar and corneal reflexes were also clinically tested; the response to both reflexes was labeled as normal (score = 2), reduced (1) or absent (0).

At the time of evaluation, patients were awake and in the 60 min before none of them assumed drugs interfering with neuromuscular transmission or depressing the central nervous system. Whereas all the COVID-19 patients had normal pontine RI latencies (p = 0.1), in two of them the RI was absent and in the remaining cases markedly abnormal, both the ipsilateral (latency: p < 0.001; amplitude: p < 0.001; duration: p < 0.001) and the contralateral response (latency: p = 0.0014; amplitude: p < 0.0001; duration: p < 0.0001; see Table 1).

Among COVID-19 patients, four had an absent glabellar reflex (score = 0), while the others had a markedly impaired reflex (score = 1). The corneal reflex was present in eight COVID-19 patients out of 11, and reduced in the remaining three. Non-COVID patients showed normal glabellar and corneal reflexes.

Our findings provide the neurophysiological and clinical evidence of SARS-Cov-2-related brainstem involvement in
severe Covid-19 patients, especially at the medullary level. Our results agree with recent histopathological data showing a preferential involvement of the lower medulla, without any evidence of intracerebral bleeding or small-vessels thromboses, and confirming the intraneuronal localization of SARS-Cov-2 nucleoprotein [13].

Although SARS-Cov-2-related Guillain-Barré syndrome has been recently reported, mainly of axonal type and with an early involvement of the cranial nerves [16], normal RI latencies and amplitudes rule out this diagnosis in our patients.

Table 1 Data concerning the medullary RII component of the blink reflex (BR)

	Ipsilateral R2	Contralateral R2				
	Latency (ms)	Amplitude (µV)	Duration (ms)	Latency (ms)	Amplitude (µV)	Duration (ms)
Covid-19	40.1 ± 7.0	261.6 ± 235	45.9 ± 8.7	41.2 ± 7.5	172.6 ± 171.2	48.3 ± 9.1
Healthy Controls	33.3 ± 2.7	638.7 ± 316	32.2 ± 4.2	35.9 ± 4.1	443.0 ± 239	37.0 ± 6.3
Non Covid-19 ICU patients	32.2 ± 1.0	597.2 ± 192	35.7 ± 6.7	34.7 ± 1.3	421.5 ± 131	39.4 ± 5.5
From a clinical perspective, the glabellar reflex was impaired more than the corneal. The two reflexes rely on slightly different circuits, targeting the pontine sensory nucleus and the nucleus of the spinal tract of the trigeminal nerve, then projecting to the facial nucleus and reticular formation (RF). However, the amount of fibers reaching the interneuronal network of the medullary reticular formation is lower for the corneal than for the glabellar reflex, probably accounting for the differences we observed [9].

Overall, our results suggest that the brainstem involvement likely contributes to respiratory failure in COVID-19 patients as postulated by Manganelli [12] and Baig [3].

Yet, BR assesses a ponto-medullary circuitry partly involving the reticular formation [9] close to the respiratory nuclei. The reticular formation itself modulates the activity of the respiratory centers [10].

Author contributions Concept and design: TB, and AP. Acquisition and statistical analysis: TB, LC, SC, MF. Interpretation of the data: TB, GB, LC, SC, MF, DC and AP. Drafting of the manuscript: TB and AP. Critical revision of the manuscript for important intellectual content: GB, DC and AP.

Funding The Authors declare no funding source.

Data availability The corresponding author has full access to data and has the right to publish such data. Data will be available upon reasonable request to the corresponding author.

Compliance with ethical standards

Conflicts of interest None of the authors have no conflict of interest to report.

Ethical approval The study was approved by the institutional review board and the ethics committee at “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”. The study has been performed in accordance with the ethical standards laid down in the Declaration of Helsinki.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, Saeed BT, Wahbi A, Saedy A, AlDabbagh T, Okaili R, Sadat M, Balkhy H (2015) Severe neurologic syndrome associated with Middle East respiratory syndrome coronavirus (MERS-CoV). Infection 43:495–501
2. Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74:8913–8921
3. Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11:995–998
4. Berardelli A, Cruccu G, Kimura J, Ongerboer de Visser BW, Valls-Sole J (1999) The orbicularis oculi reflexes. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:249–253
5. Bleau C, Filliol A, Samson M, Lamontagne L (2015) Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J Virol 89:9896–9908
6. Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S, Felsisi G (2020) First ultrastructural autopsic findings of SARS-CoV-2 in olfactory pathways and brainstem. Minerva Anestesiologica
7. Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ (2014) Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol 807:75–96
8. Dube M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ (2018) Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 92:e00404-00418
9. Esteban A (1999) A neurophysiological approach to brainstem reflexes. Blink reflex. Neurophysiol Clin 29:7–38
10. Ghali MGZ (2019) Respiratory rhythm generation and pattern formation: oscillators and network mechanisms. J Integr Neurosci 18:481–517
11. Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 92:552–555
12. Manganelli F, Vargas M, Iovino A, Iacovazzo C, Santoro L, Servillo G (2020) Brainstem involvement and respiratory failure in COVID-19. Neurol Sci 41:1663–1665
13. Matschke J, Lugthetmann M, Hagel C, Sperhake JP, Schroder AS, Edler C, Mushumba H, Fitzek A, Allweiss L, Dandi M, Dottermusch M, Heinemann A, Pfefferle S, Schwabenland M, Sumner Magruder D, Bonn S, Prinz M, Gerloff C, Puschel K, Krassernak S, Aepfelbacher M, Glazet M (2020) Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 19:919–929
14. Priori A, Baisi A, Banderali G, Biglioli F, Bulfamante G, Canevini MP, Cariati M, Carugo S, Cattaneo M, Cerri A, Chiumello D, Colosio C, Cozzolino M, D’Arminio Monforte A, Felsisi G, Ferrari D, Gambini O, Gardinelli M, Marconi AM, Oliviari I, Orfeo NV, Opoche P, Pietrogrande L, Previtera A, Rossetti L, Vegni E, Toschi V, Zuin M, Centanni S, (2021) The Many Faces of Covid-19 at a Glance: A University Hospital Multidisciplinary Account From Milan, Italy. Front Public Health 8:575029
15. Tassorelli C, Mojoli F, Baldanti F, Bruno R, Benazzo M (2020) COVID-19: what if the brain had a role in causing the deaths? Eur J Neurol
16. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, Franciotta D, Baldanti F, Daturi R, Postorino P, Cavallini A, Micieli G (2020) Guillain-Barre syndrome associated with SARS-CoV-2. N Engl J Med 382:2574–2576
17. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

© Springer