A Review of Feature and Data Fusion with Medical Images

Alex Pappachen James and Belur V. Dasarathy

CONTENTS

27.1 Introduction ... 491
27.2 Feature-Level Medical Image Fusion Methods ... 492
 27.2.1 Morphological Operators and Filters ... 493
 27.2.2 Wavelet-Based Feature Fusion ... 493
 27.2.3 Wavelet-Based Hybrid Feature Fusion ... 493
 27.2.4 Component Analysis Techniques ... 494
 27.2.5 Transform-Based Approaches ... 494
27.3 Data Fusion Methods in Medical Imaging ... 494
 27.3.1 Knowledge in Data Fusion Methods ... 494
 27.3.2 Data Fusion with Artificial Neural Networks .. 494
 27.3.3 Data Fusion with Hybrid Artificial Neural Networks ... 494
 27.3.4 Data Fusion with Fuzzy Logic ... 495
 27.3.5 Data Fusion with Hybrid Fuzzy Logic ... 495
 27.3.6 SVM Classifier-Based Approaches .. 495
 27.3.7 Hybrid SVM Classifier-Based Approaches ... 495
27.4 Discussion and Conclusions .. 495
References ... 496

27.1 INTRODUCTION

The fusion techniques that utilize multiple feature sets to form new features that are often more robust and contain useful information for future processing are referred to as feature fusion [1]. The term data fusion is applied to the class of techniques used for combining decisions obtained from multiple feature sets to form global decisions [2]. Feature and data fusion interchangeably represent two important classes of techniques that have proved to be of practical importance in a wide range of medical imaging problems.

There has been a significant growth in the amount of scientific literature on the fusion of medical images in general since the last decade [3,4]. This largely reflects the wider importance gained in the use of medical images and multiple imaging modalities in the clinical assessment of organ conditions. In addition, the noninvasive nature of medical imaging makes it an alternative to classical techniques of drug-induced patient assessment or invasive measurement techniques. Medical images of human organs and cells from different modalities indicate different types of features and details. The use of multiple images can reveal a wide range of useful information that is not otherwise visible from a single image modality. However, going through the details in an individual modality one at a time can lead to significant time lags and requires multiple levels of expertise, making this an expensive process for the patient and the health service provider. Multimodal and
multisensory imaging systems can reduce the overhead to information processing through feature and data fusion techniques to improve the overall operational efficiency.

A large variety of imaging modalities are in use today, such as magnetic resonance imaging (MRI) [5–21], computerized tomography (CT) [8,13,15,18,20,22–31], positron emission tomography (PET) [17,32–44], single-photon emission computed tomography (SPECT) [7,8,10,26,28,30,32–34,45–62], and ultrasound (US) [22,41,63–76]. Among others, they largely find applications in the study of the brain [7,11,32–35,45,46,77–99], breast [28,62,73,100–111], prostate [25,41,52,54,56,63–68,70,72,112–127], and lungs [43,44,49,128–135].

The field of medical image fusion is faced with the problems of veracity, velocity, and volume of the data that require faster and efficient processing of information. This review chapter provides an overview of information fusion techniques making use of feature and data fusion principles that find application in medical image computing and analysis. The aim of this chapter is to provide a collective view of the applicability and progress of information fusion techniques in medical imaging useful for clinical studies [3,4,22,136–144].

27.2 FEATURE-LEVEL MEDICAL IMAGE FUSION METHODS

We organize the methodological developments in medical image fusion methods into those that rely on feature-level processing and those that work at decision-level fusion. Feature-level fusion often aids in improving image quality and extracts newer features that are otherwise difficult to find in the original set of features.

Feature-level fusion between images is challenged by the problem of interimage variability such as pixel mismatches (scale, rotations, shifts), missing pixels, image noise, resolution, and contrast. The inaccuracies in feature representations can lead to poor fusion performance and lesser robustness of the feature representation. In addition, this also means that wrong feature representations can lead to wrong conclusions (increased false positives and false negatives) that reduce the reliability of medical image analysis in clinical settings.

Figure 27.1 is a summary of the major medical image fusion methods that are used individually and in combination for solving clinically relevant medical imaging computing problems.

FIGURE 27.1 The classification tree for the major list of medical image fusion methods.
27.2.1 **Morphological Operators and Filters**

Morphological operators make use of the connectedness between pixels either to improve the spatial arrange of the pixels or to distort them to extract useful features from the subset of spatially localized pixel features. The filters designed with morphological operators have been successfully applied in the problem of diagnosis of brain conditions to analyze and identify tumors [32,77,91]. The morphological operators are used for fusing the images from multiple modalities such as CT and MR [77,78], with a varied degree of success. The success of these operators depends on the size and design of the structuring operator that invariably controls the opening and closing operations in morphological filtering. Among many, the major operators used for fusion are averaging, morphology towers, K-L transforms, and morphology pyramids. The advantage of the morphological operators results from their simplicity and ability to parallelize for high-speed implementations, while the drawbacks largely result from the high dependence of pixel intensities.

27.2.2 **Wavelet-Based Feature Fusion**

Wavelet transforms have the ability to compress the details of the images through their coefficients and to separate the fine and coarse details from one another. Because of the ability to represent the different properties of the image through coefficients, the impact of noise on the image would be reflected in one coefficient or another. This opens up the possibility to use wavelets to retain only those coefficients that are stable. Such coefficients from different features can be fused together to form more robust representations of the images [5,8,13,27,29,31,145–171]. In effect, the idea of the wavelet fusion is to inject good features from one image to another and in the process remove the problematic ones. Substitution, addition, aggregator functions, and data-driven models all form the methodological process of injection. Although the coefficients do show a compressed processing, the fused output image is optimized for maximum resolution and target quality. The high resolution of the input images can lead to increased computational complexity, whereas a combination of high- and low-resolution images for fusion can make the problem of feature level fusion challenging in terms of robustness. Examples of the application of wavelets include image pseudo coloring [85], improving the resolution of the images through super-resolution techniques [8], diagnosis with medical images [27,145,152,172], lifting schemes [173], image segmentation [146], planning for radiotherapy treatment using 3-D conformal mapping [154], and color visualization for labeling [167].

27.2.3 **Wavelet-Based Hybrid Feature Fusion**

The features obtained from the wavelet feature fusion techniques have been used along with other feature extraction methods to improve the robustness of the wavelet-based fusion approaches. Neural networks, considered an excellent candidate for dimensionality reduction and feature extraction, have been employed along with fusion rules set by wavelet operators to implement medical image fusion [145,151,172]. Several combinations of the operators exist that have been combined along with wavelet operators to improve the robustness of the features. Some examples are combinations with support vector machines [150], the use of wavelet-texture measure [27], wavelet combined with magnetic resonance angiogram (MRA) [152,153], the use of wavelet-self adaptive operator [155], wavelet-resolution with entropy [156,158], nonlinear approach with properties of wavelet-shift invariant imaging [157], independent component analysis (ICA) combined with wavelet [174], wavelet and edge features [161], wavelet with a genetic approach [162], wavelet combined with contourlet transform [168], hybrid of neuron networks with fuzzy logic and wavelets [169], and wavelet entropy [171].
27.2.4 Component Analysis Techniques

Several dimensionality reduction methods exist that can reduce the large feature set to a smaller subset of algebraically transformed features. The idea of extracting components from the images has been widely explored via ICA [97,174] and principal component analysis (PCA) [175–178]. Like wavelet coefficients, the derived feature coefficients from these techniques can be used to reconstruct the image with only a small number of feature coefficients. They find application in higher resolution and large volume imaging such as volumetric medical imagery [179]. A multimodal image fusion based on PCA using the intensity-hue-saturation (IHS) transform has been shown to preserve spatial features and required functional information without color distortion [178].

27.2.5 Transform-Based Approaches

There are different mathematical transforms on features that can enhance the performance of the image fusion. For example, the combination of complex contourlet transform with wavelet has been shown to result in robust image fusion [176,177]. Transform-based methods are also applied for liver diagnosis [50], risk factor fusion [180], prediction of multifactorial diseases [180], parametric classification [180], local image analysis [181], and multimodality image fusion [168,176,177,182–184]. Possibilistic clustering methods show improvement over the fuzzy c-means clustering and have a wide range of application in registration stages of image fusion. Some of the applications of possibilistic clustering include tissue classification [87], diagnosis of brain conditions [34,185], and automatic segmentation [88].

27.3 DATA FUSION METHODS IN MEDICAL IMAGING

27.3.1 Knowledge in Data Fusion Methods

Even more often, it becomes quite a difficult premise to replace the expertise of the medical practitioner in improving and validating the computer-aided analysis of the medical images in segmentation of the regions of interest, labeling and updating the points of interest, and re-registering the images. A high level of domain-specific knowledge is required to specify the type of image and region of interest, which leads to a range of practical applications in the image analysis concerned with region segmentation [79], microcalcification diagnosis [186], classification of tissues [89], diagnosis of brain-related condition [89], classifiers for fusion [107], breast cancer and tumor detection [107], and delineation and recognition of anatomical parts of the brain [79].

27.3.2 Data Fusion With Artificial Neural Networks

Artificial neural networks (ANNs) represent a set of decision processing models inspired from the working of the human neural network. The neural networks consist of a weighted addition of inputs followed up with decisions at each of its nodes and further layers of neuron nodes acting as decision aggregates to global decisions. Because each node processes information from the group of input pixels, the network can learn and make decisions in modular levels. This makes it useful for a wide range of decision fusion applications that involve feature generation and classification [187], generic data fusion [145,186,187], various applications specific to image fusion [103,145,151,188–192], identification and diagnosis of microcalcification [186], breast cancer detection [103,109,193], data-driven medical diagnosis [145,172,191], cancer diagnosis [194], natural computing methods [195], and classifier fusion [193].

27.3.3 Data Fusion With Hybrid Artificial Neural Networks

The combination of ANNs with other fusion techniques results in hybrid-ANN methods. They usually combine feature-level decisions and fusion-level decisions with the neural network training
algorithms to improve image fusion performances. The major group of techniques includes wavelets combined with the neural network [145,151,172], neural networks combined with fuzzy logic [190,192], combinations of fuzzy logic with a genetic-neural network [195], and support vector machines (SVMs) combined with ANN and Gaussian mixture model (GMM) [193].

27.3.4 Data Fusion With Fuzzy Logic

The fuzzy approach to decision making allows for a greater level of flexibility in the grouping of features and decisions utilizing a wide set of fuzzy set operators and membership functions for image-based decision fusion algorithms [10,18,32,34,38,88,91,93,95,162,169,190,192,195–204]. They find applications in diagnosis of brain conditions [32,34,91,196], treatment of cancer [38], image integration and segmentation [38,88], maximization of mutual information [10], deep brain stimulation [93], segmentation of brain tumors [95], feature fusion and image retrieval [197,198], weighted entropy calculations in images [197], multimodal analysis and image fusion [162,190,199], ovarian cancer detection and diagnosis [200], sensor-oriented image fusion [201], natural computing methods [195], and gene expression [202,203].

27.3.5 Data Fusion With Hybrid Fuzzy Logic

The optimal selection of feature sets, membership functions, and fuzzy operators remains an open problem. Similar to other hybrid approaches, fuzzy decisions can be combined with other fusion approaches to obtain hybrid-fuzzy fusion algorithms. Common examples of hybrid-fuzzy fusion methods are fuzzy-neural network [190,192], fuzzy logic combined with genetic-neural network-rough set [195], fuzzy logic with statistical probability measures [202], and fuzzy logic combined with neural networks and wavelets [169].

27.3.6 SVM Classifier-Based Approaches

Decision fusion is a straightforward operation when it comes to the majority of classifiers, as they inherently need to make local and global decisions to classify patterns. Most classifiers rely on thresholds to make a decision, whereas others go with statistical approaches; nonetheless ranking the scores and selecting the most likely one forms the core idea of asserting the presence or absence of a pattern. SVMs are a parameter-driven approach of detecting feature closeness and removing outliers for determining the class of the patterns. The ability to make decisions at local levels in the images is used in the process of decision fusion. Some of the applications of SVMs as a tool for image fusion include cancer diagnosis [194,205], classifier fusion [108,193,205], breast cancer diagnosis and treatment [108,193], image fusion [150,206], content-based image retrieval [207,208], tumor segmentation [206], gene classification [209], and feature fusion [208].

27.3.7 Hybrid SVM Classifier-Based Approaches

The SVMs can be combined along with other fusion algorithms and techniques to improve processing speed and to work with better representations of low-dimensional feature vectors. These hybrid SVM methods include SVM combined with wavelets [150]; SVM with adaptive similarity measures [207], SVM-data fusion [206], and SVM combined with ANN and GMM [193].

27.4 DISCUSSION AND CONCLUSIONS

Image fusion studies with medical images face several challenges having a significant impact in the field of medical diagnostics and monitoring. The wide-range use of information and communication technologies in the health sciences during the last decade has increased trust in technology for
image analysis as an essential tool. However, there is hardly any imaging modality that can capture all the possible mechanisms required to reveal the conditions under study. This necessitates the use of multimodal imaging techniques; however, they are limited by the significant footprint it takes on computational and human resources to improve the efficiency of decision processing and clinical conclusions.

The technological challenges with image fusion are manifold, including sensor-level errors, imaging noise, interimage variabilities, motion artifacts, contrast variations, and interimage resolution mismatches. Many of these issues also make the automated co-registration and normalization process between the images a difficult problem to solve. They become even more serious issues in real-time imaging systems where high-speed sampling along with increased imaging accuracy is essential to ensure accuracy and reliability of image fusion methods.

Feature-level fusion methods are affected by the imaging quality and the natural variability of the modality. The importance of improving the image formation methods necessitates careful attention when designing feature fusion techniques, as they constitute the primary reason for the robustness of fusion techniques across a wide range of imaging conditions. Noise estimation is another important area that is growing in significance to improve the signal quality before fusion techniques can be applied. The processing speed of the large-volume feature fusion algorithms can be improved by the practical realization of algorithms in field-programmable gate array (FPGA) or graphical processing units. They could in the future find practical applications in real-time monitoring, telemedical diagnosis, and surgery.

The decision-level fusion methods require a good set of features at most times to ensure high reliability of fusion. Because they are highly dependent on the underlying data structure, they are generally referred to as a data fusion technique. The computational complexity of a majority of decision fusion techniques increases nonlinearly with any linear increase in feature size. In the future, this can be a serious challenge, as the convenience of data-driven processing requires a large volume of images for processing to ensure high accuracy and reliability. Although the data-driven techniques can lead to robust fusion rules, the trust of the users plays a major role in the adoption of data-driven techniques in mainstream health systems.

Overall, both feature and data fusion techniques have made promising progress in the practical domains of medical diagnosis and analysis. This is evident from the large number of algorithmic and medical studies that make use of automated medical image fusion techniques. Future progress could very well depend on developing techniques that are well tested across realistic case studies and scenarios across a large collection of data. This also requires a large-scale standardization of data sets to compare techniques that can be considered reliable to be used in clinical settings. The major methods that have been shown to be useful for feature and data fusion include wavelet transforms, neural networks, ICA/PCA, fuzzy logic, morphology methods, SVMs, and their combinations. Further major progress that is required is the miniaturization of medical devices with increased processing capability and reliability. The ability of these devices to make use of modern communication technologies also plays a major role in the sustainable use of the fusion algorithms.

REFERENCES

1. M. Ulug, and C. L. McCullough, “Feature and data-level fusion of infrared and visual images,” in AeroSense’99. International Society for Optics and Photonics, 1999, pp. 312–318.
2. T. Peli, M. Young, R. Knox, K. K. Ellis, and F. Bennett, “Feature-level sensor fusion,” in AeroSense’99. International Society for Optics and Photonics, Orlando, FL, April 5, 1999, pp. 332–339.
3. A. P. James, and B. V. Dasarathy, “Medical image fusion: A survey of the state of the art,” Information Fusion, vol. 19, pp. 4–19, 2014.
4. B. V. Dasarathy, “Editorial: Information fusion in the realm of medical applications—A bibliographic glimpse at its growing appeal,” Information Fusion, vol. 13, no. 1, pp. 1–9, 2012.
5. Q. Guihong, Z. Dalí, and Y. Pingfan, “Medical image fusion by wavelet transform modulus maxima,” Optics Express, vol. 9, no. 4, pp. 184–190, 2001.
6. A. Taleb-Ahmed, and L. Gautier, “On information fusion to improve segmentation of MRI sequences,” Information Fusion, vol. 3, no. 2, pp. 103–117, 2002.
7. M. Aguilar, and J. R. New, “Fusion of multi-modality volumetric medical imagery,” in Information Fusion, 2002. Proceedings of the Fifth International Conference on, IEEE, Annapolis, MD, July 8–11, 2002, vol. 2, pp. 1206–1212.
8. R. Kapoor, A. Dutta, D. Bagai, and T. S. Kamal, “Fusion for registration of medical images—A study,” in Applied Imagery Pattern Recognition Workshop. 2003. Proceedings. 32nd. IEEE, Washington, DC, October 15–17, 2003, pp. 180–185.
9. M. Vermandel, N. Betrouni, G. Palos, J.-Y. Gauvrit, C. Vasseur, and J. Rousseau, “Registration, matching, and data fusion in 2D/3D medical imaging: Application to DSA and MRA,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003. Springer, New York, 2003, pp. 778–785.
10. C.-H. Huang, and J.-D. Lee, “Improving MI1 with enhanced-FCM for the fusion of brain MR and SPECT images,” in Pattern Recognition. 2004. ICPR 2004. Proceedings of the 17th International Conference on, IEEE, Cambridge, UK, August 23–26, 2004, vol. 3, pp. 562–565.
11. A.-S. Capelle, O. Colot, and C. Fernandez-Malagón, “Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information,” Information Fusion, vol. 5, no. 3, pp. 203–216, 2004.
12. Y.-M. Zhu, and S. M. Cochoff, “An object-oriented framework for medical image registration, fusion, and visualization,” Computer Methods and Programs in Biomedicine, vol. 82, no. 3, pp. 258–267, 2006.
13. A. Wang, H. Sun, and Y. Guan, “The application of wavelet transform to multi-modality medical image fusion,” in Networking, Sensing and Control, 2006. ICNSC ’06. Proceedings of the 2006 IEEE International Conference on. IEEE, 2006, pp. 270–274.
14. O. Tanaka, S. Hayashi, M. Matsu, M. Nakano, H. Uno, K. Ohtakara, S. Okada, H. Hoshi, and T. Deguchi, “Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion,” European Journal of Cancer Supplements, vol. 5, no. 4, p. 292, 2007.
15. S. F. Nemec, P. Peloschek, M. T. Schmook, C. R. Krestan, W. Hauff, C. Matula, and C. Czerny, “CT–MR image data fusion for computer-assisted navigated surgery of orbital tumors,” European Journal of Radiology, vol. 73, no. 2, pp. 224–229, 2010.
16. S. Danseshvar, and H. Ghassemian, “MRI and PET image fusion by combining IHS and retina-inspired models,” Information Fusion, vol. 11, no. 2, pp. 114–123, 2010.
17. H. Park, C. R. Meyer, D. Wood, A. Khan, R. Shah, H. Hussain, J. Siddiqui, J. Seo, T. Chenevert, and M. Pietr, “Validation of automatic target volume definition as demonstrated for 14C-choline PET/CT of human prostate cancer using multi-modality fusion techniques,” Academic Radiology, vol. 17, no. 5, pp. 614–623, 2010.
18. J. Teng, S. Wang, J. Zhang, and X. Wang, “Fusion algorithm of medical images based on fuzzy logic,” in Fuzzy Systems and Knowledge Discovery(FSDK), 2010 Seventh International Conference on, IEEE, Yantai, China, August 10–12, 2010, vol. 2, pp. 546–550.
19. E. Faliagka, G. Matsopoulos, A. Tsakaldis, J. Tsaknakis, and G. Tzimas, “Registration and fusion techniques for medical images: Demonstration and evaluation,” in Biomedical Engineering Systems and Technologies. Springer, New York, 2011, pp. 15–28.
20. B. Hentschel, W. Oehler, D. Strauß, A. Ulrich, and A. Malich, “Definition of the CTV prostate in CT and MRI by using CT–MRI image fusion in IMRT planning for prostate cancer,” Strahlentherapie und Onkologie, vol. 187, no. 3, pp. 183–190, 2011.
21. C. Tsien, W. Parker, D. Parmar, D. Hristov, L. Souhami, and C. Freeman, “The role of MRI fusion in radiotherapy planning of pediatric CNS tumors,” International Journal of Radiation Oncology Biology Physics, vol. 45, no. 3, pp. 188–189, 1999.
22. J. Greensmith, U. Aickelin, and G. Tedesco, “Information fusion for anomaly detection with the dendritic cell algorithm,” Information Fusion, vol. 11, no. 1, pp. 21–34, 2010.
23. M. Uematsu, A. Shiota, H. Taira, Y. Hama, A. Suda, J. Wong, and S. Kusano, “Interfractional movements of the prostate detected by daily computed tomography (CT)-guided precise positioning system with a fusion of CT and linear accelerator (focal) unit,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 2, p. 13, 2002.
24. H. Fukunaga, M. Sekimoto, M. Ieda, I. Higuchi, M. Yasui, I. Seshimo, O. Takayama, H. Yamamoto, M. Ohue, M. Tatsumi et al., “Fusion image of positron emission tomography and computed tomography for the diagnosis of local recurrence of rectal cancer,” Annals of Surgical Oncology, vol. 12, no. 7, pp. 561–569, 2005.
25. R. Cambria, F. Cattani, M. Ciocca, C. Garibaldi, G. Tosi, and R. Orecchia, “CTImage fusion as a tool for measuring in 3D the setup errors during conformal radiotherapy for prostate cancer,” Tumori, vol. 92, no. 2, p. 118, 2006.
26. R. J. Ellis, H. Zhou, D. A. Kaminsky, P. Fu, E. Y. Kim, D. B. Sodee, V. Colussi, J. P. Spirnak, C. C. Whalen, and M. I. Resnick, “Rectal morbidity after permanent prostate brachytherapy with dose escalation to biologic target volumes identified by SPECT/CT fusion,” Brachytherapy, vol. 6, no. 2, pp. 149–156, 2007.

27. K. Yuanyouan, L. Bin, T. Lianfang, and M. Zongyuan, “Multi-modal medical image fusion based on wavelet transform and texture measure,” in Control Conference, 2007. Chinese. IEEE, 2007, pp. 697–700.

28. A. P. Pecking, W. Wartski, R. Cluzan, D. Bellet, and J. Albérini, “SPECT–CT fusion imaging radionuclide lymphoscintigraphy: Potential for limb lymphedema assessment and sentinel node detection in breast cancer,” in Cancer Metastasis and the Lymphovascular System: Basis for Rational Therapy. Springer, 2007, New York, pp. 79–84.

29. C. Shangli, H. Junmin, and L. Zhongwei, “Medical image of PET/CT weighted fusion based on wavelet transform,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, 2008, pp. 2523–2525.

30. J. L. Albérini, M. Wartski, V. Edeline, O. Madar, S. Banayan, D. Bellet, and A. P. Pecking, “Molecular imaging of neuroendocrine cancer by fusion SPECT/CT,” in From Local Invasion to Metastatic Cancer. Springer, New York, 2009, pp. 169–175.

31. Y. Liu, J. Yang, and J. Sun, “PET/CT medical image fusion algorithm based on multiwavelet transform,” in Advanced Computer Control (ICACC), 2010 2nd International Conference on, IEEE, Shenyang, Liaoning, China, March 27–29, 2010, vol. 2, pp. 264–268.

32. C. Barilott, D. Lemoine, L. Le Briquer, F. Lachmann, and B. Gibaud, “Data fusion in medical imaging: Merging multimodal and multipatient images, identification of structures and 3D display aspects,” European Journal of Radiology, vol. 17, no. 1, pp. 22–27, 1993.

33. J. Julow, T. Major, M. Emri, I. Valak, S. Sagi, L. Mangel, G. Németh, L. Torn, G. Várralay, D. Solymosi et al., “The application of image fusion in stereotactic brachytherapy of brain tumours,” Acta Neurochirurgica, vol. 142, no. 11, pp. 1253–1258, 2000.

34. V. Barra, and J.-Y. Boire, “A general framework for the fusion of anatomical and functional medical images,” NeuroImage, vol. 13, no. 3, pp. 410–424, 2001.

35. H. Lee, and H. Hong, “Hybrid surface-and voxel-based registration for MR-PET brain fusion,” in Image Analysis and Processing—ICIAP 2005. Springer, New York, 2005, pp. 930–937.

36. J. A. Marquez, A. Gastellum, and M. A. Padilla, “Image-fusion operators for 3D anatomical and functional analysis of the brain,” in Engineering in Medicine and Biology Society (EMBS 2007). 29th Annual International Conference of the IEEE. IEEE, 2007, pp. 833–835.

37. H. Lee, J. Lee, G. Kim, and Y. G. Shin, “Efficient hybrid registration method using a shell volume for PET and high resolution MR brain image fusion,” in World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009. Munich, Germany. Springer, New York, 2010, pp. 2326–2329.

38. R. Wasserman, R. Acharya, C. Shibata, and K. Shin, “A data fusion approach to tumor delineation,” in Image Processing, 1995. Proceedings. International Conference on, vol. 2. IEEE, 1995, pp. 476–479.

39. C. Anderson, M. Koshy, C. Staley, N. Esiashvili, S. Ghavidel, Z. Fowler, T. Fox, F. Esteves, J. Landry, and K. Godette, “PET-CT fusion in radiation management of patients with anorectal tumors,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 1, pp. 155–162, 2007.

40. A. C. Riegel, A. M. Berson, S. Destian, T. Ng, L. B. Tena, R. J. Mitnick, and P. S. Wong, “Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion,” International Journal of Radiation Oncology Biology Physics, vol. 65, no. 3, pp. 726–732, 2006.

41. A. Venkatesan, J. Kruecker, S. Xu, J. Locklin, P. Pinto, A. Singh, N. Glosop, and B. Wood, “Abstract no. 155: Early clinical experience with real time ultrasound-MRI fusion-guided prostate biopsies,” Journal of Vascular and Interventional Radiology, vol. 19, no. 2, pp. S59–S60, 2008.

42. Y. Nakamoto, K. Tamai, T. Saga, T. Higashi, T. Hara, T. Suga, T. Koyama, and K. Togashi, “Clinical value of image fusion from MR and PET in patients with head and neck cancer,” Molecular Imaging and Biology, vol. 11, no. 1, pp. 46–53, 2009.

43. J. F. Vansteenkiste, S. G. Stroobants, P. J. Dupont, P. R. De Leyn, W. F. De Wever, E. K. Verbeek, J. L. Nuys, F. P. Maes, and J. G. Bogert, “FDG-PET scan in potentially operable non-small cell lung cancer: Do anatomic bolus PET-CT fusion images improve the localisation of regional lymph node metastases?” European Journal of Nuclear Medicine, vol. 25, no. 11, pp. 1495–1501, 1998.

44. E. Deniaud-Alexandre, E. Touboul, D. Lerouge, D. Grahe, J.-N. Fouquier, Y. Petegnief, B. Grès, H. El Balaa, K. Keraudy, K. Kerrou et al., “Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 5, pp. 1432–1441, 2005.
45. J.-D. Lee, B.-R. Huang, and C.-H. Huang, “A surface-projection MNI for the fusion of brain MR and SPECT images,” *Biomedical Engineering: Applications, Basis and Communications*, vol. 18, no. 4, pp. 202–206, 2006.

46. M. C. Dastjerdi, A. Karimian, H. Afarideh, and A. Mohammadzadeh, “FMDIB: A software tool for fusion of MRI and DHC-SPECT images of brain,” in *World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany*. Springer, New York, 2009, pp. 741–744.

47. K.-P. Lin, and W.-J. Yao, “A SPECT-CT image fusion technique for diagnosis of head-neck cancer,” in *Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference*, IEEE, Montreal, Quebec, Canada, September 20–24, 1995, vol. 1, pp. 377–378.

48. N. Tomura, O. Watanabe, K. Omachi, I. Sakuma, S. Takahashi, T. Otani, H. Kidani, and J. Watarai, “Image fusion of thallium-201 SPECT and MR imaging for the assessment of recurrent head and neck tumors following flap reconstructive surgery,” *European Radiology*, vol. 14, no. 7, pp. 1249–1254, 2004.

49. S. Katyal, E. L. Kramer, M. E. Noz, D. McCauley, A. Chachoua, and A. Steinfeld, “Fusion of immunoscintigraphy single photon emission computed tomography (SPECT) with CT of the chest in patients with non-small cell lung cancer,” *Cancer Research*, vol. 55, no. 23 Supplement, pp. 5759s–5763s, 1995.

50. T. Chung, Y. Liu, C. Chen, Y. Sun, N. Chiu, and J. Lee, “Intermodality registration and fusion of liver images for medical diagnosis,” in *Intelligent Information Systems, 1997. IIS ’97. Proceedings*, IEEE, Grand Bahama Island, Bahamas, December 8–10, 1997, pp. 42–46.

51. J. Li, and K. F. Koral, “An algorithm to adjust a rigid CT-SPECT fusion so as to maximize tumor counts from CT VOI in I-131 therapies,” in *Nuclear Science Symposium Conference Record, 2001 IEEE*, IEEE, San Diego, CA, November 4–10, 2001, vol. 3, pp. 1432–1436.

52. D. B. Sodee, A. E. Sodee, and G. Bakale, “Synergistic value of single-photon emission computed tomography/computed tomography fusion to radioimmunoscintigraphic imaging of prostate cancer,” in *Seminars in Nuclear Medicine*, vol. 37, no. 1, pp. 17–28, 2007.

53. M. Aguilar, J. R. New, and E. Hasanbelliu, “Advances in the use of neurophysiologically-based fusion for visualization and pattern recognition of medical imagery,” *Information Fusion, 2003. Proceedings of the Sixth International Conference of*, IEEE, July 8–11, 2003, vol. 2, pp. 860–867.

54. B. Fei, Z. Lee, D. T. Boll, J. L. Duerk, J. S. Lewin, and D. L. Wilson, “Image registration and fusion for interventional MRI guided thermal ablation of the prostate cancer,” in *Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003*, Springer, New York, 2003, pp. 364–372.

55. B. Fei, Z. Lee, D. T. Boll, J. L. Duerk, D. B. Sodee, J. S. Lewin, and D. L. Wilson, “Registration and fusion of SPECT, high-resolution MRI, and interventional MRI for thermal ablation of prostate cancer,” *Nuclear Science, IEEE Transactions on*, vol. 51, no. 1, pp. 177–183, 2004.

56. M. Krenghi, M. Dominietto, S. Chiara, C. Barbara, R. Marco, I. Eugenio, K. Irvin, B. Frea et al., “Study of lymphatic drainage by SPECT-CT fusion images for pelvic irradiation of prostate cancer,” *International Journal of Radiation Oncology Biology Physics*, vol. 63, p. S305, 2005.

57. M. Krenghi, A. Ballaré, B. Cannillo, M. Rudoni, E. Kocjanec, G. Loi, M. Brambilla, E. Inglese, and B. Frea, “Potential advantage of studying the lymphatic drainage by sentinel node technique and SPECT-CT image fusion for pelvic irradiation of prostate cancer,” *International Journal of Radiation Oncology Biology Physics*, vol. 66, no. 4, pp. 1100–1104, 2006.

58. C.-C. Tsai, C.-S. Tsai, K.-K. Ng, C.-H. Lai, S. Hsueh, P.-F. Kao, T.-C. Chang, J.-H. Hong, and T.-C. Yen, “The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers,” *European Journal of Nuclear Medicine and Molecular Imaging*, vol. 30, no. 12, pp. 1674–1683, 2003.

59. T. Denecke, B. Hildebrandt, L. Lehmkuhl, N. Peters, A. Nicolaou, M. Pech, H. Riess, J. Ricke, R. Felix, and H. Amthauer, “Fusion imaging using a hybrid SPECT-CT camera improves port perfusion scintigraphy for control of hepatic arterial infusion of chemotherapy in colorectal cancer patients,” *European Journal of Nuclear Medicine and Molecular Imaging*, vol. 32, no. 9, pp. 1003–1010, 2005.

60. C. Beneder, F. Fuechsle, T. Krause, A. Kuhn, and M. Mueller, “The role of 3D fusion imaging in sentinel lymphadenectomy for vulvar cancer,” *Gynecologic Oncology*, vol. 109, no. 1, pp. 76–80, 2008.

61. Z. Zhao, L. Li, F. Li, and L. Zhao, “Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer,” *Skeletal Radiology*, vol. 39, no. 2, pp. 147–153, 2010.

62. H. Iwase, Y. Yamamoto, T. Kawasoe, and M. Ibusuki, “Qsl06. Sentinel lymph node biopsy using SPECT-CT fusion imaging in patients with breast cancer and its clinical usefulness,” *Journal of Surgical Research*, vol. 151, no. 2, p. 287, 2009.
63. E. Holupka, I. Kaplan, E. Burdette, and G. Svensson, “Ultrasound image fusion for external beam radiotherapy for prostate cancer,” *International Journal of Radiation Oncology Biology Physics*, vol. 35, no. 5, pp. 975–984, 1996.

64. I. Kaplan, E. Holupka, and M. Morrissey, “MRI-ultrasound image fusion for 125I prostate implant treatment planning,” *International Journal of Radiation Oncology Biology Physics*, vol. 42, no. 1, p. 294, 1998.

65. L. Beaulieu, D. Tubic, J. Pouliot, E. Vigneault, and R. Taschereau, “Post-implant dosimetry using fusion of ultrasound images with 3D seed coordinates from fluoroscopic images in transperineal interstitial permanent prostate brachytherapy,” *International Journal of Radiation Oncology Biology Physics*, vol. 48, no. 3, p. 360, 2000.

66. L. Taylor, J. Beatty, J. Enderle, and M. Escabi, “Design of a simple ultrasound/CT fusion image fusion solution for the evaluation of prostate seed brachytherapy,” in *Bioengineering Conference, 2001. Proceedings of the IEEE 27th Annual Northeast*. IEEE, 2001, pp. 57–58.

67. B. C. Porter, L. Taylor, R. Baggs, A. di Sant’Agnes, G. Nadasdy, D. Pasternack, D. J. Rubens, and K. J. Parker, “Histology and ultrasound fusion of excised prostate tissue using surface registration,” in *Ultrasonics Symposium, 2001 IEEE*. IEEE, 2001, pp. 1473–1476.

68. D. B. Fuller, H. Jin, J. A. Koziol, and A. C. Feng, “CT-ultrasound fusion prostate brachytherapy: A dynamic dosimetry feedback and improvement method. A report of 54 consecutive cases,” *Brachytherapy*, vol. 4, no. 3, pp. 207–216, 2005.

69. N. Patanjali, M. Keyes, W. J. Morris, M. Liu, R. Harrison, I. Spadinger, and V. Moravan, “A comparison of post-implant US/CT image fusion and MRI/CT image fusion for 125I prostate brachytherapy post implant dosimetry,” *Brachytherapy*, vol. 8, no. 2, p. 124, 2009.

70. F. Dube, A. Mahadevan, and T. Sheldon, “Fusion of CT and 3D ultrasound (3DUS) for prostate delineation of patients with metallic hip prostheses (MHP),” *International Journal of Radiation Oncology Biology Physics*, vol. 75, no. 3, pp. S327–S328, 2009.

71. A. Rastinehad, J. Kruecker, C. Benjamin, P. Chung, B. Turkbey, S. Xu, J. Locklin, S. Gates, C. Buckner, M. Linehan et al., “MRI/US fusion prostate biopsies: Cancer detection rates,” *The Journal of Urology*, vol. 185, no. 4, p. e340, 2011.

72. N. Papanikolaou, D. Gearheart, T. Bolek, A. Meigooni, D. Meigooni, and M. Mohiuddin, “A volumetric and dosimetric study of LDR brachytherapy prostate implants based on image fusion of ultrasound and computed tomography,” in *Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE*. IEEE, 2000, pp. 2769–2770.

73. F. Arena, T. DiCicco, and A. Anand, “Multimodality data fusion aids early detection of breast cancer using conventional technology and advanced digital infrared imaging,” in *Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE*. IEEE, San Francisco, CA, September 1–5, 2004, vol. 1, pp. 1170–1173.

74. A. Hakime, F. Deschamps, E. G. M. De Carvalho, C. Teritcheau, A. Auperin, and T. De Baere, “Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases,” *Cardiovascular and Interventional Radiology*, vol. 34, no. 2, pp. 338–344, 2011.

75. B. Hadachisk, T. Kuru, C. Tulea, D. Teber, J. Huber, V. Popeneiciu, S. Pahernik, H.-P. Schlemmer, and M. Hohenfeller, “Stereotactic prostate biopsy with pre-interventional MRI and live US fusion,” *The Journal of Urology*, vol. 185, no. 4, p. e924, 2011.

76. A. J. Walker, B. J. Spier, S. B. Perlman, J. R. Stangl, T. J. Frick, D. V. Gopal, M. J. Lindstrom, T. L. Weigel, and P. R. Pfau, “Integrated PET/CT fusion imaging and endoscopic ultrasound in the pre-operative staging and evaluation of esophageal cancer,” *Molecular Imaging and Biology*, vol. 13, no. 1, pp. 166–171, 2011.

77. S. Marshall, and G. Matsopoulos, “Morphological data fusion in medical imaging,” in *Nonlinear Digital Signal Processing, 1993. IEEE Winter Workshop on*. IEEE, 1993, pp. 6.1.5.1–6.1.5.6.

78. G. Matsopoulos, S. Marshall, and J. Brunt, “Multiresolution morphological fusion of MR and CT images of the human brain,” in *Vision, Image and Signal Processing, IEEE Proceedings*, vol. 141, no. 3, IET, 1994, pp. 137–142.

79. H. Li, R. Deklerck, B. De Cuypere, A. Hermanus, E. Nyssen, and J. Cornelis, “Object recognition in brain CT-scans: Knowledge-based fusion of data from multiple feature extractors,” *Medical Imaging, IEEE Transactions on*, vol. 14, no. 2, pp. 212–229, 1995.

80. D. Dey, D. G. Gobbi, P. J. Slomka, K. J. Surry, and T. M. Peters, “Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: Creating stereoscopic panoramas,” *Medical Imaging, IEEE Transactions on*, vol. 21, no. 1, pp. 23–30, 2002.
81. A. Viola, T. Major, and J. Julow, “The importance of postoperative CT image fusion verification of stereotactic interstitial irradiation for brain tumors,” *International Journal of Radiation Oncology Biology Physics*, vol. 60, no. 1, pp. 322–328, 2004.

82. H. Eldredge, A. Doemer, D. Friedman, and M. Werner-Wasik, “Improvement in optic chiasm contouring for RT planning in patients with brain tumors using CT/MP-RAGE MRI fusion as compared to the routine T1-weighted MRI image,” *International Journal of Radiation Oncology Biology Physics*, vol. 75, no. 3, p. S246, 2009.

83. S. A. Kuhn, B. Romeike, J. Walter, R. Kalf, and R. Reichart, “Multiplanar MRI–CT fusion neuro-navigation-guided serial stereotactic biopsy of human brain tumors: Proof of a strong correlation between tumor imaging and histopathology by a new technical approach,” *Journal of Cancer Research and Clinical Oncology*, vol. 135, no. 9, pp. 1293–1302, 2009.

84. X. Yong, S. Eberl, and D. Feng, “Dual-modality 3D brain PET-CT image segmentation based on probabilistic brain atlas and classification fusion,” *Image Processing (ICIP), 2010 17th IEEE International Conference on*, IEEE, September 26–29, 2010, pp. 2557–2560.

85. C. Kok, Y. Hui, and T. Nguyen, “Medical image pseudo coloring by wavelet fusion,” in *Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE*, vol. 2. IEEE, 1996, pp. 648–649.

86. M. C. Erie, C. H. Chu, and R. D. Sidman, “Visualization of the cortical potential field by medical imaging data fusion,” in *Visual Information and Information Systems*. Springer, New York, 1999, pp. 815–822.

87. V. Barra, and J.-Y. Boire, “Quantification of brain tissue volumes using MR/MRI fusion,” in *Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE*, vol. 2. IEEE, 2000, pp. 1451–1454.

88. V. Barra, and J.-Y. Boire, “Automatic segmentation of subcortical brain structures in MR images using information fusion,” *Medical Imaging. IEEE Transactions on*, vol. 20, no. 7, pp. 549–558, 2001.

89. W. Dou, S. Ruan, Q. Liao, D. Bloyet, and J. Constans, “Knowledge based fuzzy information fusion applied to classification of abnormal brain tissues from MRI,” in *Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on*, vol. 1. IEEE, 2003, pp. 681–684.

90. R. Gorniak, E. Kramer, G. Q. Maguire Jr., M. E. Noz, C. Schettino, and M. P. Zeleznik, “Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets,” *Journal of Medical Systems*, vol. 27, no. 2, pp. 141–156, 2003.

91. I. Blach, O. Colliot, O. Camara, and T. Géraud, “Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI,” *Pattern Recognition Letters*, vol. 26, no. 4, pp. 449–457, 2005.

92. A. Villégé, L. Ouchchane, J.-J. Lemaire, and J.-Y. Boire, “Assistance to planning in deep brain stimulation: Data fusion method for locating anatomical targets in MRI,” in *Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE*. IEEE, 2006, pp. 144–147.

93. A. Villégé, L. Ouchchane, J.-J. Lemaire, and J.-Y. Boire, “Data fusion and fuzzy spatial relationships for locating deep brain stimulation targets in magnetic resonance images,” in *Advanced Concepts for Intelligent Vision Systems*. Springer, New York, 2006, pp. 909–919.

94. R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, “Multiclassifier fusion in human brain MR segmentation: Modelling convergence,” in *Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006*. Springer, New York, 2006, pp. 815–822.

95. W. Dou, S. Ruan, Q. Liao, D. Bloyet, J.-M. Constans, and Y. Chen, “Fuzzy information fusion scheme used to segment brain tumor from MR images,” in *Fuzzy Logic and Applications*. Springer, New York, 2006, pp. 208–215.

96. K. Yuan, W. Liu, S. Jia, and P. Xiao, “Fusion of MRI and DTI to assist the treatment solution of brain tumor,” in *Innovative Computing, Information and Control, 2007. ICICIC'07. Second International Conference on*, IEEE, September 5–7, 2007, p. 620.

97. V. D. Calhoun, and T. Adali, “Feature-based fusion of medical imaging data,” *Information Technology in Biomedicine, IEEE Transactions on*, vol. 13, no. 5, pp. 711–720, 2009.

98. F. Forbes, S. Doyle, D. Garcia-Lorenzo, C. Barillot, and M. Dojat, “Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation,” in *Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on*. IEEE, 2010, pp. 69–72.

99. W. Dou, A. Dong, P. Chi, S. Li, and J. Constans, “Brain tumor segmentation through data fusion of T2-weighted image and MR spectroscopy,” in *Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on*. IEEE, 2011, pp. 1–4.
100. C. P. Behrenbruch, K. Marias, P. A. Armitage, M. Yam, N. Moore, R. E. English, and J. M. Brady, “Mri–mammography 2d/3d data fusion for breast pathology assessment,” in *Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000*. Springer, New York, 2000, pp. 307–316.

101. K. G. Baum, K. Rafferty, M. Helguera, and E. Schmidt, “Investigation of PET/MRI image fusion schemes for enhanced breast cancer diagnosis,” in *Nuclear Science Symposium Conference Record, 2007. NSS ’07*. IEEE, vol. 5. IEEE, 2007, pp. 3774–3780.

102. G. M. Duarte, C. Cabello, R. Z. Torresan, M. Alvarenga, G. H. Telles, S. T. Bianchessi, N. Caserta, S. R. Segala, M. d. C. L. de Lima, E. C. S. de Camargo Etchebehere et al., “Fusion of magnetic resonance and scintimammography images for breast cancer evaluation: A pilot study,” *Annals of Surgical Oncology*, vol. 14, no. 10, pp. 2903–2910, 2007.

103. H. Szu, I. Kopriva, P. Hoekstra, N. Diakides, M. Diakides, J. Buss, and J. Lupo, “Early tumor detection by multiple infrared unsupervised neural nets fusion,” in *Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE*, vol. 2. IEEE, 2003, pp. 1133–1136.

104. Y. Chen, E. Gunawan, Y. Kim, K. Low, and C. Soh, “UWB microwave imaging for breast cancer detection. Tumor/clutter identification using a time of arrival data fusion method,” in *Antennas and Propagation Society International Symposium 2006*. IEEE, 2006, pp. 255–258.

105. Y. Chen, E. Gunawan, K. S. Low, S.-C. Wang, C. B. Soh, and L. L. Thi, “Time of arrival data fusion method for two-dimensional ultrawideband breast cancer detection,” *Antennas and Propagation, IEEE Transactions on*, vol. 55, no. 10, pp. 2852–2865, 2007.

106. S. Ueda, H. Tsuda, H. Asakawa, J. Omata, K. Fukatsu, N. Kondo, T. Kondo, Y. Hama, K. Tamura, J. Ishida et al., “Utility of 18f-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18f-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer,” *BMC Cancer*, vol. 8, no. 1, p. 165, 2008.

107. M. Raza, I. Gondal, D. Green, and R. L. Coppell, “Classifier fusion to predict breast cancer tumors based on microarray gene expression data,” in *Knowledge-Based Intelligent Information and Engineering Systems*. Springer, New York, 2005, pp. 866–874.

108. M. Raza, I. Gondal, D. Green, and R. L. Coppell, “Classifier fusion using Dempster-Shafer theory of evidence to predict breast cancer tumors,” in *TENCON 2006. 2006 IEEE Region 10 Conference*. IEEE, 2006, pp. 1–4.

109. Y. Wu, C. Wang, S. C. Ng, A. Madabhushi, and Y. Zhong, “Breast cancer diagnosis using neural-based linear fusion strategies,” in *Neural Information Processing*. Springer, New York, 2006, pp. 165–175.

110. Y. M. Kirova, V. Servois, F. Reyal, D. Peurien, A. Fourquet, and N. Fournier-Bidoz, “Use of deformable image fusion to allow better definition of tumor bed boost volume after oncoplastic breast surgery,” *Surgical Oncology*, vol. 20, no. 2, pp. el23–el25, 2011.

111. J. L. Jesneck, S. Mukherjee, L. W. Nolte, A. E. Lokshin, J. R. Marks, and J. Lo, “Decision fusion of circulating markers for breast cancer detection in premenopausal women,” in *Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on*. IEEE, 2007, pp. 1434–1438.

112. K. Kagawa, W. R. Lee, T. E. Schultheiss, M. A. Hunt, A. H. Shaer, and G. E. Hanks, “Initial clinical assessment of CT-MRI image fusion software in localization of the prostate for 3D conformal radiation therapy,” *International Journal of Radiation Oncology Biology Physics*, vol. 38, no. 2, pp. 319–325, 1997.

113. R. J. Amdur, D. Gladstone, K. A. Leopold, and R. D. Harris, “Prostate seed implant quality assessment using MR and CT image fusion,” *International Journal of Radiation Oncology Biology Physics*, vol. 43, no. 1, pp. 67–72, 1999.

114. L. Gong, P. S. Cho, B. H. Han, K. E. Wallner, S. G. Sutlief, S. D. Pathak, D. R. Haynor, and Y. Kim, “Ultrasoundography and fluoroscopic fusion for prostate brachytherapy dosimetry,” *International Journal of Radiation Oncology Biology Physics*, vol. 54, no. 5, pp. 1322–1330, 2002.

115. V. Servois, L. Chauveine, C. El Khoury, A. Lantoine, L. Ollivier, T. Flam, J. Rosenwald, J. Cosset, and S. Neuenschwander, “Comparaison de deux méthodes de recalage d’images de scanographie et d’IRM en curiethérapie prostatique. intérêt pour l’évaluation thérapeutique,” *Cancer/Radiothérapie*, vol. 7, no. 1, pp. 9–16, 2003.

116. J. Crook, M. McLean, I. Yeung, T. Williams, and G. Lockwood, “MRI-CT fusion to assess postbrachytherapy prostate volume and the effects of prolonged edema on dosimetry following transperineal interstitial permanent prostate brachytherapy,” *Brachytherapy*, vol. 3, no. 2, pp. 55–60, 2004.
117. T. Wurm, K. Eichhorn, S. Corvin, A. Anastasiadis, R. Bares, and A. Stenzl, “Anatomic-functional image fusion allows intraoperative sentinel node detection in prostate cancer patients,” *European Urology Supplements*, vol. 3, no. 2, p. 140, 2004.

118. M. Moerland, I. Jurgenliemk-Schulz, and J. Batternmann, “Fusion of pre-implant MRI and intra-operative US images for planning of permanent prostate implants,” *Radiotherapy and Oncology*, vol. 75, p. S38, 2005.

119. D. Taussky, L. Austen, A. Toi, I. Yeung, T. Williams, S. Pearson, M. McLean, G. Pond, and J. Crook, “Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion,” *International Journal of Radiation Oncology Biology Physics*, vol. 62, no. 4, pp. 974–980, 2005.

120. O. Tanaka, S. Hayashi, K. Sakurai, M. Matsuo, M. Nakano, S. Maeda, H. Hoshi, and T. Deguchi, “Importance of the CT/MRI fusion method as a learning tool for CT-based postimplant dosimetry in prostate brachytherapy,” *Radiotherapy and Oncology*, vol. 81, no. 3, pp. 303–308, 2006.

121. S. Wachter, S. Tomek, A. Kurtaran, N. Wachter-Gerstner, B. Djavan, A. Becherer, M. Mitterhauser, G. Dobrozemsky, S. Li, R. Pütter et al., “11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer,” *Journal of Clinical Oncology*, vol. 24, no. 16, pp. 2513–2519, 2006.

122. R. J. Ellis, D. A. Kaminsky, H. Zhou, and M. I. Resnick, “Erectile dysfunction following permanent prostate brachytherapy with dose escalation to biological tumor volumes (BTVs) identified with SPECT/CT fusion,” *Brachytherapy*, vol. 6, no. 2, p. 103, 2007.

123. J. Pouliot, A. J. Cunha, G. D. Reed, S. M. Noworolski, J. Kuraniewicz, I. Hsu, and J. Chow, “Multi-image fusions and their role in inverse planned high-dose-rate prostate brachytherapy for dose escalation of dominant intraprostatic lesions defined by combined MRI/MRSI,” *Brachytherapy*, vol. 8, no. 2, pp. 113–114, 2009.

124. M. Aoki, A. Yorozu, and T. Dokiya, “Evaluation of interobserver differences in postimplant dosimetry following prostate brachytherapy and the efficacy of CT/MRI fusion imaging,” *Japanese Journal of Radiology*, vol. 27, no. 9, pp. 342–347, 2009.

125. A. Mesa, L. Chittenden, J. Lizarde, J. Lee, M. Nelson, J. Lane, A. Spitz, and K. Tokita, “A gold fiducial based CT/MRI fusion method for prostate treatment planning,” *International Journal of Radiation Oncology Biology Physics*, vol. 78, no. 3, p. S375, 2010.

126. S. Kadosury, P. Yan, S. Xu, N. Glossop, P. Choyke, B. Turkbey, P. Pinto, B. J. Wood, and J. Kruecker, “Realtime TRUS/MRI fusion targeted-biopsy for prostate cancer: A clinical demonstration of increased positive biopsy rates,” in *Prostate Cancer Imaging, Computer-Aided Diagnosis, Prognosis, and Intervention*. Springer, New York, 2010, pp. 52–62.

127. O. Ukimura, M. Desai, M. Aron, A. Hung, A. Berger, S. Valencerina, S. Palmer, and I. Gill, “2131 Elastic registration of 3D prostate biopsy trajectory by real-time 3D TRUS with MR/TRUS fusion: Pilot phantom study,” *The Journal of Urology*, vol. 185, no. 4, p. e853, 2011.

128. M. Uematsu, A. Shioda, A. Suda, K. Tahara, T. Kojima, Y. Hama, M. Kono, J. R. Wong, T. Fukui, and S. Kusano, “Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (focal) unit,” *International Journal of Radiation Oncology Biology Physics*, vol. 48, no. 2, pp. 443–448, 2000.

129. M. Schmoecking, K. Plichta, E. Lopatta, C. Przetak, J. Leonhardi, D. Gottschild, T. Wendt, and R. Baum, “Image fusion of F-18 FDG PET and CT-is there a role in 3D-radiation treatment planning of non-small cell lung cancer?” *International Journal of Radiation Oncology Biology Physics*, vol. 48, no. 3, p. 130, 2000.

130. P. Giraud, D. Grahek, F. Montravers, M.-F. Carette, E. Deniaud-Alexandre, F. Julia, J.-C. Rosenwald, J.-M. Cosset, J.-N. Talbot, M. Houssset et al., “CT and [18F]-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers,” *International Journal of Radiation Oncology Biology Physics*, vol. 49, no. 5, pp. 1249–1257, 2001.

131. Y. Nakamoto, M. Senda, T. Okada, S. Sakamoto, T. Saga, T. Higashi, and K. Togashi, “Software-based fusion of PET and CT images for suspected recurrent lung cancer,” *Molecular Imaging and Biology*, vol. 10, no. 3, pp. 147–153, 2008.

132. W. Ge, G. Yuan, C. Li, Y. Wu, Y. Zhang, and X. Xu, “CT image fusion in the evaluation of radiation treatment planning for non-small cell lung cancer,” *The Chinese-German Journal of Clinical Oncology*, vol. 7, no. 6, pp. 315–318, 2008.

133. A. Kovacs, J. Hadjiev, F. Lakosi, G. Antal, G. Liposits, and P. Bogner, “Tumor movements detected by multi-slice CT-based image fusion in the radiotherapy of lung cancer,” *Lung Cancer*, vol. 64, p. S50, 2009.
134. J. Bradley, K. Bae, N. Choi, K. Förster, B. Siegel, J. Brunetti, J. Purdy, S. Faria, T. Vu, and H. Choy, “A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): Primary analysis of radiation therapy oncology group (RTOG) 0515,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 3, p. S2, 2009.

135. X. Xu, J. Deng, H. Guo, M. Xiang, C. Li, L. Xu, W. Ge, G. Yuan, Q. Li, and S. Shan, “Ct image fusion in the optimization of replanning during the course of 3-dimensional conformal radiotherapy for non-small-cell lung cancer,” in Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on, vol. 3. IEEE, 2010, pp. 1336–1339.

136. J. Navarra, A. Alsius, S. Soto-Faraco, and C. Spence, “Assessing the role of attention in the audiovisual integration of speech,” Information Fusion, vol. 11, no. 1, pp. 4–11, 2010.

137. C. E. Hugenschmidt, S. Hayasaka, A. M. Peiffer, and P. J. Laurienti, “Applying capacity analyses to psychophysical evaluation of multisensory interactions,” Information Fusion, vol. 11, no. 1, pp. 12–20, 2010.

138. J. Twycross, and U. Ackelink, “Information fusion in the immune system,” Information Fusion, vol. 11, no. 1, pp. 35–44, 2010.

139. S. Wuerger, G. Meyer, M. Hofbauer, C. Zetzsche, and K. Schill, “Motion extrapolation of auditory–visual targets,” Information Fusion, vol. 11, no. 1, pp. 45–50, 2010.

140. T. D. Dixon, S. G. Nikolov, J. J. Lewis, J. Li, E. F. Canga, J. M. Noyes, T. Troscianko, D. R. Bull, and C. Nihan Canagarajah, “Task-based scanpath assessment of multi-sensor video fusion in complex scenarios,” Information Fusion, vol. 11, no. 1, pp. 51–65, 2010.

141. J.-B. Lei, J.-B. Yin, and H.-B. Shen, “Feature fusion and selection for recognizing cancer-related mutations from common polymorphisms,” in Pattern Recognition (CCPR), 2010 Chinese Conference on. IEEE, 2010, pp. 1–5.

142. S. Tsevas, and D. Iakovidis, “Dynamic time warping fusion for the retrieval of similar patient cases represented by multimodal time-series medical data,” in Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on. IEEE, 2010, pp. 1–4.

143. H. Müller, and J. Kalpathy-Cramer, “The Image CLEF medical retrieval task at ICPR 2010—Information fusion to combine visual and textual information,” in Recognizing Patterns in Signals, Speech, Images and Videos. Springer, New York, 2010, pp. 99–108.

144. Z. R. Mnatsakanyan, H. S. Burkom, M. R. Hashemian, and M. A. Coletta, “Distributed information fusion models for regional public health surveillance,” Information Fusion, vol. 13, no. 2, pp. 129–136, 2012.

145. Q. Zhang, W. Tang, L. Lai, W. Sun, and K. Wong, “Medical diagnostic image data fusion based on wavelet transformation and self-organising features mapping neural networks,” in Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on, vol. 5. IEEE, 2004, pp. 2708–2712.

146. S. Garg, K. U. Kiran, R. Mohan, and U. Tiwary, “Multilevel medical image fusion using segmented image by level set evolution with region competition,” in Engineering in Medicine and Biology Society, 2005. IEMBS 2005. 27th Annual International Conference of the. IEEE, 2006, pp. 7680–7683.

147. L. X. M. L. J. Wang, and S. Hui, “New medical image fusion algorithm based on second generation wavelet transform,” in Computational Engineering in Systems Applications, IMACS Multiconference on, 2006.

148. W. Li, X. Zhu, and S. Wu, “A novel approach to fast medical image fusion based on lifting wavelet transform,” in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, vol. 2. IEEE, 2006, pp. 9881–9884.

149. H. Zhang, L. Liu, and N. Lin, “A novel wavelet medical image fusion method,” in Multimedia and Ubiquitous Engineering, 2007. MUE’07. International Conference on. IEEE, 2007, pp. 548–553.

150. W. Anna, W. Jie, L. Dan, and C. Yu, “Research on medical image fusion based on orthogonal wavelet packet filters transformation combined with 2V-SVM,” in Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference on. IEEE, 2007, pp. 670–675.

151. L. Xiaoqin, Z. Baohua, and G. Yong, “Medical image fusion algorithm based on clustering neural network,” in Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007. The 1st International Conference on. IEEE, 2007, pp. 637–640.

152. B. Alfano, M. Ciampi, and G. De Pietro, “A wavelet-based algorithm for multimodal medical image fusion,” in Semantic Multimedia. Springer, New York, 2007, pp. 117–120.

153. X. Li, X. Tian, Y. Sun, and Z. Tang, “Medical image fusion by multi-resolution analysis of wavelets transform,” in Wavelet Analysis and Applications. Springer, New York, 2007, pp. 389–396.
A Review of Feature and Data Fusion with Medical Images

154. L. Bin, T. Lianfang, K. Yuanyuan, and Y. Xia, “Parallel multimodal medical image fusion in 3d conformal radiotherapy treatment planning,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, 2008, pp. 2600–2604.

155. Y. Licai, L. Xin, and Y. Yucui, “Medical image fusion based on wavelet packet transform and self-adaptive operator,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, 2008, pp. 2647–2650.

156. Z. Wencang, and C. Lin, “Medical image fusion method based on wavelet multi-resolution and entropy,” in Automation and Logistics, 2008. ICAL 2008. IEEE International Conference on. IEEE, 2008, pp. 2329–2333.

157. B. Yang, and Z. Jing, “Medical image fusion with a shift-invariant morphological wavelet,” in 2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, pp. 175–178.

158. R. Singh, M. Vatsa, and A. Noore, “Multimodal medical image fusion using redundant discrete wavelet transform,” in Advances in Pattern Recognition, 2009. ICAPR’09. Seventh International Conference on. IEEE, 2009, pp. 232–235.

159. Z.-S. Xiao, and C.-X. Zheng, “Medical image fusion based on an improved wavelet coefficient contrast,” in Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009. 3rd International Conference on. IEEE, 2009, pp. 1–4.

160. L. Chiorean, and M.-F. Vaida, “Medical image fusion based on discrete wavelet transform using JAVA technology,” in Information Technology Interfaces, 2009. ITI’09. Proceedings of the ITI 2009 31st International Conference on. IEEE, 2009, pp. 55–60.

161. X. Zhang, Y. Zheng, Y. Peng, W. Liu, and C. Yang, “Research on multi-mode medical image fusion algorithm based on wavelet transform and the edge characteristics of images,” in Image and Signal Processing, 2009. CISP’09. 2nd International Congress on. IEEE, 2009, pp. 1–4.

162. A. Das, and M. Bhattacharya, “Evolutionary algorithm based automated medical image fusion technique: Comparative study with fuzzy fusion approach,” in Nature Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, December 2009, pp. 269–274.

163. Y. Yang, “Multimodal medical image fusion through a new DWT based technique,” in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, 2010, pp. 1–4.

164. B. Li, L. Tian, and S. Ou, “Rapid multimodal medical image registration and fusion in 3D conformal radiotherapy treatment planning,” in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, 2010, pp. 1–5.

165. M. Agrawal, P. Tsakalides, and A. Achim, “Medical image fusion using the convolution of meridian distributions,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE, 2010, pp. 3727–3730.

166. W. Xue-Jun, and M. Ying, “A medical image fusion algorithm based on lifting wavelet transform,” in Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on, vol. 3. IEEE, 2010, pp. 474–476.

167. M. Ciampi, “Medical image fusion for color visualization via 3D RDWT,” in Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on. IEEE, 2010, pp. 1–6.

168. S. Rajkumar, and P. S. Kavitha, “Redundancy discrete wavelet transform and contourlet transform for multimodality medical image fusion with quantitative analysis,” in Emerging Trends in Engineering and Technology (ICETET), 2010 3rd International Conference on. IEEE, 2010, pp. 134–139.

169. C. Kavitha, and C. Chellamuthu, “Multimodal medical image fusion based on integer wavelet transform and neuro-fuzzy,” in Signal and Image Processing (ICSIP), 2010 International Conference on. IEEE, 2010, pp. 296–300.

170. S. Vekko, “Wavelet based medical image fusion using filter masks,” in Trends in Intelligent Robotics. Springer, New York, 2010, pp. 298–305.

171. J. Teng, X. Wang, J. Zhang, S. Wang, and P. Huo, “A multimodality medical image fusion algorithm based on wavelet transform,” in Advances in Swarm Intelligence. Springer, New York, 2010, pp. 627–633.

172. Q. Zhang, M. Liang, and W. Sun, “Medical diagnostic image fusion based on feature mapping wavelet neural networks,” in Multi-Agent Security and Survivability, 2004 IEEE First Symposium on. IEEE, 2004, pp. 51–54.

173. S. Kor, and U. Triwary, “Feature level fusion of multimodal medical images in lifting wavelet transform domain,” in Engineering in Medicine and Biology Society, 2004. IEMBS 04. 26th Annual International Conference of the IEEE. vol. 1. IEEE, 2004, pp. 1479–1482.

174. Z. Cui, G. Zhang, and J. Wu, “Medical image fusion based on wavelet transform and independent component analysis,” in Artificial Intelligence, 2009. JCAI’09. International Joint Conference on. IEEE, 2009, pp. 480–483.
175. W. Hao-Quan, and X. Hao, “Multi-mode medical image fusion algorithm based on principal component analysis,” in Computer Network and Multimedia Technology, 2009. CNMT 2009. International Symposium on, IEEE, 2009, pp. 1–4.
176. N. Al-Azzawi, H. A. M. Sakim, A. Wan Abdullah, and H. Ibrahim, “Medical image fusion scheme using complex contourlet transform based on PCA,” in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, 2009, pp. 5813–5816.
177. N. A. Al-Azzawi, H. A. M. Sakim, and A. Wan Abdullah, “An efficient medical image fusion method using contourlet transform based on PCM,” in Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposium on, vol. 1. IEEE, 2009, pp. 11–14.
178. C. He, Q. Liu, H. Li, and H. Wang, “Multimodal medical image fusion based on IHS and PCA,” Procedia Engineering, vol. 7, pp. 280–285, 2010.
179. C. Wang, and Z. Ye, “First-order fusion of volumetric medical imagery,” IEEE Proceedings-Vision, Image and Signal Processing, vol. 153, no. 2, pp. 191–198, 2006.
180. J. Phegley, K. Perkins, L. Gupta, and J. K. Dorsey, “Risk-factor fusion for predicting multifactorial diseases,” Biomedical Engineering, IEEE Transactions on, vol. 49, no. 1, pp. 72–76, 2002.
181. B. Escalante-Ramirez, “The Hermite transform as an efficient model for local image analysis: An application to medical image fusion,” Computers & Electrical Engineering, vol. 34, no. 2, pp. 99–110, 2008.
182. Z. Zhang, J. Yao, S. Bajwa, and T. Gudas, “Automatic” multimodal medical image fusion,” in Soft Computing in Industrial Applications, 2003. SMCia/03. Proceedings of the 2003 IEEE International Workshop on, IEEE, 2003, pp. 161–166.
183. L. Yang, B. Guo, and W. Ni, “Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform,” Neurocomputing, vol. 72, no. 1, pp. 203–211, 2008.
184. Y. Wei, Y. Zhu, F. Zhao, Y. Shi, T. Mo, X. Ding, and J. Zhong, “Implementing contourlet transform for medical image fusion on a heterogenous platform,” in Scalable Computing and Communications; Eighth International Conference on Embedded Computing, 2009. SCALCOM-EMBEDDEDCOM’09. International Conference on, IEEE, 2009, pp. 115–120.
185. L. Gupta, B. Chung, M. D. Srinath, D. L. Molfese, and H. Kook, “Multichannel fusion models for the parametric classification of differential brain activity,” Biomedical Engineering, IEEE Transactions on, vol. 52, no. 11, pp. 1869–1881, 2005.
186. G. L. Rogova, and P. C. Stomper, “Information fusion approach to microcalcification characterization,” Information Fusion, vol. 3, no. 2, pp. 91–102, 2002.
187. S.-H. Lai, and M. Fang, “Adaptive medical image visualization based on hierarchical neural networks and intelligent decision fusion,” in Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop, IEEE, 1998, pp. 438–447.
188. S. Constantinos, M. S. Pattichis, and E. Micheli-Tzanakou, “Medical imaging fusion applications: An overview,” in Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on, vol. 2. IEEE, 2001, pp. 1263–1267.
189. W. Li, and X.-F. Zhu, “A new algorithm of multi-modality medical image fusion based on pulse-coupled neural networks,” in Advances in Natural Computation. Springer, New York, 2005, pp. 995–1001.
190. Y.-P. Wang, J.-W. Dang, Q. Li, and S. Li, “Multimodal medical image fusion using fuzzy radial basis function neural networks,” in Wavelet Analysis and Pattern Recognition, 2007. ICWAPR’07. International Conference on, vol. 2. IEEE, 2007, pp. 778–782.
191. Z. Wang, and Y. Ma, “Medical image fusion using M-PCNN,” Information Fusion, vol. 9, no. 2, pp. 176–185, 2008.
192. J. Teng, S. Wang, J. Zhang, and X. Wang, “Neuro-fuzzy logic based fusion algorithm of medical images,” in Image and Signal Processing (CISP), 2010 3rd International Congress on, vol. 4. IEEE, 2010, pp. 1552–1556.
193. D. Lederman, B. Zheng, X. Wang, X. H. Wang, and D. Gur, “Improving breast cancer risk stratification using resonance-frequency electrical impedance spectroscopy through fusion of multiple classifiers,” Annals of Biomedical Engineering, vol. 39, no. 3, pp. 931–945, 2011.
194. M. Sehgal, I. Gondal, and L. Dooley, “Support vector machine and generalized regression neural network based classification fusion models for cancer diagnosis,” in Hybrid Intelligent Systems, 2004. HIS ’04. Fourth International Conference on, December 2004, pp. 49–54.
195. F. Masulli, and S. Mitra, “Natural computing methods in bioinformatics: A survey,” Information Fusion, vol. 10, no. 3, pp. 211–216, 2009.
196. W. Dou, S. Ruan, Y. Chen, D. Bloyet, and J.-M. Constans, “A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images,” Image and Vision Computing, vol. 25, no. 2, pp. 164–171, 2007.
197. X. Tai, and W. Song, “An improved approach based on FCM using feature fusion for medical image retrieval,” in *Fuzzy Systems and Knowledge Discovery*, 2007. *FSKD 2007. Fourth International Conference on*, vol. 2. IEEE, 2007, pp. 336–342.

198. W. Song, and T. Hua, “Analytic implementation for medical image retrieval based on FCM using feature fusion with relevance feedback,” in *Bioinformatics and Biomedical Engineering*, 2008. ICBBE 2008. *The 2nd International Conference on*. IEEE, 2008, pp. 2590–2595.

199. Y. Na, H. Lu, and Y. Zhang, “Content analysis based medical images fusion with fuzzy inference,” in *Fuzzy Systems and Knowledge Discovery*, 2008. *FSKD’08. Fifth International Conference on*, vol. 3. IEEE, 2008, pp. 37–41.

200. A. Assareh, and L. G. Volkert, “Fuzzy rule base classifier fusion for protein mass spectra based ovarian cancer diagnosis,” in *Computational Intelligence in Bioinformatics and Computational Biology*, 2009. *CIBCB’09. IEEE Symposium on*. IEEE, 2009, pp. 193–199.

201. J. K. Avor, and T. Sarkodie-Gyan, “An approach to sensor fusion in medical robots,” in *Rehabilitation Robotics*, 2009. *ICORR 2009. IEEE International Conference on*. IEEE, 2009, pp. 818–822.

202. G. N. Brock, W. D. Beavis, and L. S. Kubatko, “Fuzzy logic and related methods as a screening tool for detecting gene regulatory networks,” *Information Fusion*, vol. 10, no. 3, pp. 250–259, 2009.

203. R. K. De, and A. Ghosh, “Linguistic recognition system for identification of some possible genes mediating the development of lung adenocarcinoma,” *Information Fusion*, vol. 10, no. 3, pp. 260–269, 2009.

204. M. Bhattacharya, and A. Das, “Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches,” in *Software Tools and Algorithms for Biological Systems*. Springer, New York, 2011, pp. 441–449.

205. I. Dimou, G. Manikis, and M. Zervakis, “Classifier fusion approaches for diagnostic cancer models,” in *Engineering in Medicine and Biology Society*, 2006. *EMBS’06. 28th Annual International Conference of the IEEE*. IEEE, 2006, pp. 5334–5337.

206. N. Zhang, Q. Liao, S. Ruan, S. Lebonvallet, and Y. Zhu, “Multi-kernel SVM based classification for tumor segmentation by fusion of MRI images,” in *Imaging Systems and Techniques*, 2009. *IST’09. IEEE International Workshop on*. IEEE, 2009, pp. 71–75.

207. M. M. Rahman, B. C. Desai, and P. Bhattacharya, “Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion,” *Computerized Medical Imaging and Graphics*, vol. 32, no. 2, pp. 95–108, 2008.

208. Y. Huang, J. Zhang, Y. Zhao, and D. Ma, “Medical image retrieval with query-dependent feature fusion based on one-class SVM,” in *Computational Science and Engineering (CSE)*, 2010 *IEEE 13th International Conference on*. IEEE, 2010, pp. 176–183.

209. G. Pavesi, and G. Valentini, “Classification of co-expressed genes from DNA regulatory regions,” *Information Fusion*, vol. 10, no. 3, pp. 233–241, 2009.
