A Combined Yeast/Bacteria Two-hybrid System

DEVELOPMENT AND EVALUATION*

Ilya G. Serebriiskii‡§, Rui Fang¶, Ekaterina Latypova‡, Richard Hopkins**§, Charles Vinson‡‡, J. Keith Joung¶, and Erica A. Golemis‡

Two-hybrid screening is a standard method used to identify and characterize protein-protein interactions and has become an integral component of many proteomic investigations. The two-hybrid system was initially developed using yeast as a host organism. However, bacterial two-hybrid systems have also become common laboratory tools and are preferred in some circumstances, although yeast and bacterial two-hybrid systems have never been directly compared. We describe here the development of a unified yeast and bacterial two-hybrid system in which a single bait expression plasmid is used in both organismal milieus. We use a series of leucine zipper fusion proteins of known affinities to compare interaction detection using both systems. Although both two-hybrid systems detected interactions within a comparable range of interaction affinities, each demonstrated unique advantages. The yeast system produced quantitative readout over a greater dynamic range than that observed with bacteria. However, the phenomenon of “autoactivation” by baits was less of a problem in the bacterial system than in the yeast. Both systems identified physiological interactors for a library screen with a cl-Ras test bait; however, non-identical interactors were obtained in yeast and bacterial screens. The ability to rapidly shift between yeast and bacterial systems provided by these new reagents should provide a marked advantage for two-hybrid investigations. In addition, the modified expression vectors we describe in this report should be useful for any application requiring facile expression of a protein of interest in both yeast and bacteria. Molecular & Cellular Proteomics 4: 819–826, 2005.

Yeast two-hybrid systems (1–4) are standard tools used to identify novel protein-protein interactions and to perform structure-function analysis on previously defined protein-protein interactions. Such systems are effective with a substantial fraction of eukaryotic proteins and have played an important role in high throughput proteomic analyses aimed at establishing sets of interacting proteins (e.g. Refs. 5–8). To increase the power of a two-hybrid approach to identify and analyze protein interactions in high throughput applications, one strategy has been to translate the basic components of the yeast two-hybrid system to a bacterial host organism (9, 10). To date, the relative effectiveness of protein interaction detection in bacterial and yeast backgrounds has not been directly compared. However, there are a number of reasons to anticipate that differences might be observed. Because yeast are eukaryotes, eukaryotic proteins used as “baits” in two-hybrid screens might be more likely to be appropriately folded and post-translationally modified in yeast than in bacteria, thereby increasing their chances of identifying physiological partners. However, certain proteins can be challenging as baits in the yeast two-hybrid system; for example, eucaryotic proteins that are normally excluded from the nucleus, that are potentially sequestered via interaction with an abundant partner evolutionarily conserved in yeast, or that stimulate transcription in yeast (i.e. that “autoactivate”). All of these potential issues would be expected to be less problematic in the bacterial two-hybrid system. To maximize chances of obtaining all relevant interactors for a protein of interest, it would be desirable to have the capability to rapidly test any given bait in both yeast and bacterial milieus.

In the current study, we have created and validated plasmids and strains that facilitate interconversion between yeast and bacterial protein interaction systems. We have designed a novel series of vectors in which a single plasmid containing a modified promoter drives the efficient expression of a bait protein in either yeast or bacteria, thereby permitting parallel studies in both organisms. In addition, we have constructed optimized yeast and bacterial two-hybrid reporter strains. Using these reagents, we have generated constructs that permitted us to test a series of leucine zippers with interaction constants ranging between K_d values of 10^{-4} and 10^{-15} M in both the yeast and bacterial systems using auxotrophic and quantitative reporters. We report that although both systems detect protein interactions within a comparable range of affinities, there are characteristic differences between the two systems; the yeast system possesses greater dynamic range...
for signal, but the bacterial system seems to be less susceptible to the phenomenon of bait autoactivation. Using a well characterized protein (H-Ras) as a bait, we also show that the system is robust for library screening purposes and that its use in parallel in both organisms may increase coverage and accuracy in screening. We discuss particular applications for this novel yeast/bacterial two-hybrid system.

MATERIALS AND METHODS

Molecular and Microbiological Manipulation—The cloning of novel constructs was performed using conventional protocols. Details of the sequences and cloning sites encompassed in the plasmids described under “Results,” as well as other basic characterizations of expression properties of these plasmids, are available at www.fccc.edu/research/labs/golemis/InteractIonTranPl.html. Media and growth conditions used are described in Ref. 11.

In brief, plasmid pGLS20 was constructed by replacing the ADH1 promoter of pGKS9 with a combination of the TEF1 promoter (from the pLexZeo plasmid, Invitrogen, Carlsbad, CA) and a lpp/lacUV5 promoter (from the pBT plasmid; Stratagene, La Jolla, CA). To produce pGLS23, a HIS5 CmR cassette was constructed in the pCR2.1 vector by combining a HIS5 cassette from pJFK1 and a CmR cassette from pMW108. This cassette was then used to replace the G418R cassette in pGLS20. The bacterial two-hybrid prey plasmid pAC-Amp-α LPL was constructed by replacing the chloramphenicol resistance gene present in plasmid pKJ1267 with the ampicillin resistance gene from plasmid pACYC177. To fuse the various leucine zippers to the amino-terminal domain and interdomain linker of the Escherichia coli RNA polymerase-α subunit, DNA fragments encoding the zipper variants were inserted into the plasmid using unique NotI and XhoI restriction sites. Further information about cloning strategies used for plasmid construction or details of the sequences and cloning sites encompassed in the plasmids described in this novel yeast/bacterial two-hybrid system are available upon request.

Leucine Zippers—Leucine zipper sequences were chosen from among peptides described in Refs. 12–14. DNA was synthesized artificially to encode the described peptide sequences. All leucine zippers have the same length and differ only in the amino acids in positions g and e of the coiled coil (marked above sequence). Shown in Scheme 1 is the amino acid sequence of the zipper RR12EE345; helices 1, 3, and 5 are underlined, helices 2 and 4 are double-underlined, and the variable amino acids are shown in bold. Thus, in the example shown, there are Rs in positions g and e of helices 1 and 2 (hence the nomenclature of the molecule starts with RR12), whereas E’s in the corresponding positions of the helices 3–5 cause the nomenclature of the molecule to end with EE345. Complete details are available upon request.

Bait and Prey Expression—The expression of the bait and prey proteins (except for bacterial RNA polymerase-α fusions, for which no antibody was available) was confirmed by Western analysis, with primary antibody to cl for baits (1:5000) or hemagglutinin (1:1000) for prey expressed in yeast. To compare expression levels of cl proteins in E. coli, corresponding plasmids were transformed into the DHI5α strain and protein extracts prepared from exponentially growing cultures. Equal protein concentration was confirmed by Coomassie staining of a PAGE gel; then, equal volumes of 1:40 (for pGLS20) or 1:100 (for pBT) dilutions of extracts in sample buffer were loaded in parallel with the same volume of undiluted extract from pGLS10-bearing cells. Proteins were resolved on a PAGE gel, and Western blot analysis was performed, using anti-cl antibodies. To compare expression levels of cl proteins in yeast, corresponding plasmids were transformed in SKY191 strain and protein extracts prepared from exponentially growing cultures. Equal protein loading was confirmed by Coomassie staining samples resolved on a PAGE gel (data not shown). Then, equal volumes of extracts in sample buffer were loaded on the gel, and Western blot analysis was performed.

Reporter Assays—For yeast, the activity of quantitative reporters was determined on a plate reader using a technique modified from Serebriiskii et al. (15). In brief, to 50 μl of cultures exponentially growing in the wells of 96-well plates was added an equal volume of 2× Z-buffer containing 2 mg/ml of p-nitrophenyl-β-D-glucopyranoside and 50% Y-PER. Activity was calculated as the ratio of A405nm − A420f divided by A600n (where the difference between A420f and A405n (i and f indicate initial and final readings, respectively) reflects the conversion of the colorless substrate into yellow product over a period of time from −30 to −10 min, and A600n is a measure of cell density in a given sample. For each data point for each yeast experiment, activities of five to eight clones were measured and averaged. All readings were taken in a plate reader; it was shown previously (15) that plate reader measurements and derivative units are proportionally correlated with the optical density units taken on a spectrophotometer.

For fluorescence detection, an equal volume of 2× Z-buffer/50% Y-PER containing 0.8 mg/ml of 4-methylumbelliferyl-β-D-glucopyranoside was added. Increase in fluorescence (excitation wavelength, 355 nm; emission wavelength, 460 nm) reflected the conversion of the colorless substrate into fluorescent product over a period of time from −3 to −10 min, whereas A600n was a measure of cell density in a given sample. The pRG61 plasmid was used as reporter in these experiments. For bacterial β-galactosidase reporter gene measurements, assays were performed essentially as described previously (16). In brief, cultures inoculated from a fresh single colony were grown to mid-log phase and lysed by adding 1/10 volume PopCulture (Novagen, Madison, WI). In a 96-well microtiter plate, 15 μl of cell lysate was added to a mixture of 135 μl of Z buffer and 30 μl of 4 mg/ml O-nitrophenyl-β-D-galactopyranoside to start the reaction. Kinetic assays were carried out by monitoring A420f from 0–30 min using a plate reader. Additional details can be found at www.zincfinger.org. All bacterial β-galactosidase assays were done in triplicate. Auxotrophic reporters were assayed as described in Ref. 11. Bait and prey plasmids were transformed into corresponding selection strain (Saccharomyces cerevisiae SKY191 or pRT50 or E. coli K1567). Growth on selection plates was measured over 5 days (yeast; note that all colonies that grew were prominent at 2 days) or 1 day (bacteria).

Library Screenings—Screening of the yeast two-hybrid library and analysis of primary isolates was done essentially as described in Ref. 11 using the pOR6 lacZ reporter. In brief, approximately 3.5 × 10⁸ cells carrying plasmids from the HeLa cDNA library were plated. 130 clones appearing on the auxotrophic selection plates were further
examined. Of 28 positives (in which an initial positive phenotype was repeated), 24 were sequenced. The yeast/bacteria two-hybrid system developed here is fully compatible with strains and library reagents from Stratagene (the Bacteriomatch system). To emphasize compatibility, screening of the BTH library and analysis of primary isolates was done with this system (see Table II) essentially as recommended by the supplier. In brief, approximately 5.5×10^6 cells carrying plasmids from the HeLa cDNA library (average insert size, 1.3 kb) were plated. 96 clones appearing on the auxotrophic selection plates were characterized, and 18 of 22 positives with a reproducible phenotype were sequenced.

RESULTS AND DISCUSSION

We have developed plasmids that allow the expression and parallel screening of a single bait protein in either a yeast or bacterial two-hybrid system using a single expression plasmid (Fig. 1). As shown in Fig. 1, bait proteins are expressed as fusions to the λcl protein in both the yeast and bacterial two-hybrid systems. To enable this, we made several modifications to the plasmid pGBS9 (17), originally developed to express bait proteins as fusions to the λcl repressor in a yeast two-hybrid system. The ADH1 promoter from this plasmid was replaced with a tandem promoter in which the extremely powerful TEF1 promoter (18) from S. cerevisiae and the E. coli lpp/lacUV5 promoter both direct expression of a λcl coding sequence and polylinker cloning site. The resulting plasmid, pGLS20, can be maintained in yeast or bacteria based on

Fig. 1. Schematics of the yeast and bacterial two-hybrid systems. A, in the yeast two-hybrid system shown, a dimeric λcl-bait hybrid protein interacts with an activation domain (AD)-prey hybrid protein, thereby stimulating transcription from an adjacent promoter that directs expression of a quantitative gusA or selectable LYS2 reporter gene. B, in the bacterial two-hybrid system shown, a dimeric λcl-bait hybrid protein interacts with an E. coli RNA polymerase (RNAP) α-subunit-prey hybrid protein, thereby recruiting RNAP to an adjacent promoter that directs expression of a quantitative lacZ or selectable HIS3 reporter gene. Note that both systems use a λcl-bait hybrid protein expressed from a single plasmid effective in either organism.

Fig. 2. Bait expression from a combined bacterial/yeast expression plasmid. A, plasmids pGLS20, pGLS22, and pGLS23 (pGLS22 and pGLS23 differ only in the presence of an extra EcoRI site in the CmR gene of pGLS22) use a combined TEF1/lpp-lacUV5 promoter to express λcl fused baits in yeast or bacteria. Plasmids are selected in yeast by selection for G418 resistance (pGLS20) or HIS5 complementation (pGLS23), and in bacteria by selection for kanamycin resistance (pGLS20) or chloramphenicol resistance (pGLS23). B, relative expression of λcl baits from these plasmids compared with the previously described pGBS10 (yeast two-hybrid (17)) or pBT (bacterial two-hybrid; Stratagene) vectors is shown in bacteria (center). To demonstrate relative bait levels, equal total protein concentration was confirmed by Coomassie staining of a PAGE gel loaded with equivalent amounts of cell lysate for bacteria expressing each plasmid (not shown). Then, equal volumes of 1:40 (for pGLS20) or 1:100 (for pBT) dilutions of extracts in sample buffer were loaded in parallel with the same volume of undiluted extract from pGBS10-bearing cells. Western blots using anti-λcl antibodies are shown. C, pGBS10 and pGLS20 express comparable levels of λcl baits in yeast, based on Western analysis with antibodies to λcl. 1 and 2, two independent transformants in bacteria or yeast; --, yeast containing no bait plasmid.
G418 or kanamycin resistance, respectively (Fig. 2A). Other closely related plasmid derivatives (pGLS22, pGLS23) harbor the HIS5 gene to confer selection in yeast and chloramphenicol resistance for selection in bacteria (Fig. 2A). As shown in Fig. 2B, expression of λcl repressor using plasmid pGLS20 in bacteria is comparable with that obtained with plasmid pBT (a vector optimized for the bacterial two-hybrid system; Stratagene), and is more than 40-fold higher than that provided by the standard yeast two-hybrid expression plasmid pGBS10 (17). In yeast, expression of cl repressor fusions from pGLS20 and its derivatives is comparable with or exceeds that from pGBS10 (Fig. 2C).

We used these bifunctional pGLS plasmids to determine whether the yeast and bacterial two-hybrid systems exhibited any differences in their abilities to detect a series of interactions with differing affinities. To do this, we created a series of bait and prey fusion proteins using a set of previously characterized leucine zipper variants (12–14) with defined interaction affinities ranging from $K_d > 10^{-4}$ to 10^{-15} M as determined in vitro (Table I). For analysis in the bacterial two-hybrid system, plasmid pAC-AMP-αLPL (Table II) was used to express preys from the strong inducible lpp/lacUV5 tandem promoter as fusions to the amino-terminal domain and linker of the E. coli RNA polymerase α subunit. For the yeast two-hybrid system, pJG4–5 (3) was used to express preys from the inducible GAL1 promoter as fusions to the synthetic transcriptional activation domain B42 (Fig. 1). The ability of each zipper pair to activate transcription of a quantitative and an auxotrophic reporter was then assessed in bacteria and in yeast.

Our results in the yeast-based system demonstrate that zipper bait-prey combinations activate transcription of a quantifiable β-glucuronidase (gusA) reporter over a substantial range of affinities (Fig. 3, bar graph). In this assay, zipper pairs with reported interaction dissociation constants of 1×10^{-8} M or lower (lanes 6–12) strongly activated reporter gene expression, as detected using a colorimetric substrate (p-nitrophenyl β-D-glucopyranoside). Those with K_d values of 2.5×10^{-7} M or higher (with one exception; see below) did not strongly activate the reporter gene (Fig. 3A, lanes 1–5). β-Glucuronidase activity was generally induced ~30–180-fold over baseline values with the higher affinity leucine zipper pairs. Additional testing of the lower affinity interacting pairs using a more sensitive fluorescent substrate for β-glucuronidase, 4-methylumbelliferyl-β-D-glucopyranoside (Fig. 3A, inset), indicated that it was also possible to convincingly detect interactions in the range of 10^{-7} M, although the stimulation of gusA gene expression seen in these samples is markedly less strong than those obtained with interactions in the 10^{-8} M range. With the auxotrophic reporter strain (Fig. 3, panels below bar graph), cells grew under selective conditions only if the interacting zippers possessed dissociation constants of $\leq 1 \times 10^{-8}$ M, paralleling the results obtained with the quantitative gusA reporter. The system did not have significant ability to discriminate between interactions with dissociation constants of $<10^{-8}$ M, suggesting the expression of the reporter gene was saturated. It is noteworthy that for some of the baits examined, expression of the bait alone in the absence of the prey was sufficient to strongly activate transcription of the reporters, making it difficult to convincingly demonstrate protein interaction (see Figs. 3, samples 1, 10, and 12).

We next examined the abilities of the same zipper bait-prey combinations to activate transcription in the bacterial two-hybrid system (Fig. 1) using the quantifiable lacZ reporter (Fig. 4). Consistent with our results in the yeast-based system, leucine zipper pairs with reported dissociation constants lower than 10^{-8} M clearly stimulated expression of the lacZ reporter gene (Fig. 3, samples 6–12), whereas interaction pairs with dissociation constants 2.5×10^{-7} M or higher failed to stimulate lacZ expression (Fig. 3, samples 1–5). We also analyzed zipper-based activation of the auxotrophic reporter HIS3 (Fig. 4, panels below bar graph). Results obtained using the auxotrophic HIS3 reporter gene closely paralleled those obtained with the lacZ reporter; only cells harboring zipper pairs with dissociation constants of $\leq 1 \times 10^{-8}$ M showed growth after 24 h on selective plates. In contrast to the results obtained in the yeast-based system, none of the baits tested exhibited autoactivation in the absence of prey partners (compare samples 1, 10, and 12 in Figs. 3 and 4).

These results suggest differential advantages for detecting protein-protein interactions in the yeast and bacterial two-hybrid systems. First, our results using quantifiable reporters suggest that the yeast-based system possesses a broader dynamic range for detecting interactions (contrast Figs. 3 and 4). In the yeast system, interactions characterized by dissociation constants as high as 10^{-8} M could be detected as an increase in gusA reporter gene expression (or as high as 10^{-7} M if a more sensitive substrate for GusA detection was used). In contrast, in the bacterial system, only interactions charac-

Table I

Combination	Bait pl	Prey	K_d for Bait-Prey
1	EE$_{[3a]45}$L	4.2 EE$_{[3a]45}$L	N.D.
2	RR$_{[3a]4}$E$_{[3a]45}$L	6.5 RR$_{[3a]4}$EE$_{[3a]45}$L	N.D.
3	EE$_{[3a]4}$	5.3 EE$_{[3a]4}$	8.1×10^{-4}
4	RR$_{[3a]4}$	10.5 RR$_{[3a]4}$	3.9×10^{-5}
5	RR$_{[3a]4}$	11.8 RR$_{[3a]4}$	2.5×10^{-7}
6	RR$_{[3a]4}$	10.5 EE$_{[3a]4}$	1.0×10^{-8}
7	EE$_{[3a]4}$	5.3 RR$_{[3a]4}$	1.0×10^{-8}
8	RR$_{[3a]4}$EE$_{[3a]45}$L	6.5 EE$_{[3a]4}$RR$_{[3a]4}$L	1.3×10^{-11}
9	EE$_{[3a]4}$RR$_{[3a]4}$L	10.4 RR$_{[3a]4}$EE$_{[3a]45}$L	1.3×10^{-11}
10	RR$_{[3a]4}$	12.2 EE$_{[3a]45}$L	1.1×10^{-11}
11	RR$_{[3a]4}$	11.8 EE$_{[3a]45}$L	1.0×10^{-15}
12	EE$_{[3a]45}$L	4.3 RR$_{[3a]4}$L	1.0×10^{-15}
Table II: Strains and plasmids used in this study

Plasmids	Yeast	E. coli	Comment/description
pGLS20^a	G418^R	Km^R	TEF1 promoter ensures expression of cl in yeast, while lpp/lacUV5 promoter provides for expression in E. coli
pGLS22/23^a	HIS5	Cm^R	Similar to pGLS20, see text for details
Reporters pRG61	URA3	Km^R	λcl operators direct transcription of the gusA gene; pRG61 is less sensitive and lower background reporter than pDR8.
pDR8	URA3	Km^R	λcl operators direct transcription of the gusA gene; pRG61 is less sensitive and lower background reporter than pDR8.
pOR6	URA3	Ap^R	λcl operators direct transcription of the lacZ gene
Activation Domain Fusions pJG4–5	TRP1	Ap^R	GAL1 promoter provides efficient expression in yeast of a gene fused to a cassette consisting of nuclear localization sequence, transcriptional activation domain, and HA epitope tag
pAC-AMP-αLPL^a	N/A	Ap^R	Tandem lpp/lacUV5 promoters provide efficient expression in E. coli of a gene fused to E. coli RNAP α subunit residues 1–248. Plasmids differ in replication origins (pACYC and ColE1, respectively)

Table:

Strains	Relevant Genotype	Comment/Description
S. cerevisiae SKY191	MATα trp1, his3, ural, clop-LYS2	Reporter strains in which the expression of the LYS2 reporter gene is directed by a weak promoter bearing a λcl DNA binding site
S. cerevisiae PRT475^a	MATα trp1, his3, his5, ural, clop-LYS2	Reporter strain in which the expression of the HIS3 and aadA reporter genes is directed by a weak promoter bearing a λcl DNA binding site
S. cerevisiae PRT50^a	ΔhisB463, Δ(gpt-proAB-arg-lac)XIII za::Tn10 [F' lac^R HIS3 aadA Kan^R]	Reporter strain in which the expression of the HIS3 and aadA reporter genes is directed by a weak promoter bearing a λcl DNA binding site
E. coli KJ1567^a	ΔhisB463, Δ(gpt-proAB-arg-lac)XIII za::Tn10 [F' lac^R lacZ Kan^R]	Reporter strain in which the expression of the lacZ reporter gene is directed by a weak promoter bearing a λcl DNA binding site
BacterioMatch II reporter strain (Stratagene)	Δ(mcrA/183 Δ(mcrCB-hsdSMR-mrr)173 endA1 hisB supE44 thi-1 recA1 gyrA96 relA1 lac [F' lac^R HIS3 aadA Kan^R]	Reporter strain in which the expression of the HIS3 and aadA reporter genes is directed by a weak promoter bearing a λcl DNA binding site
E. coli AG58A(RP28)^a	ΔhisB463, Δ(gpt-proAB-arg-lac)XIII za::Tn10 [F' lac^R lacZ Kan^R]	Reporter strain in which the expression of the lacZ reporter gene is directed by a weak promoter bearing a λcl DNA binding site

Libraries

Libraries	Vector	Comment/description
YTH Human HeLa Cell Library	pJG4–5	Hela S-3 cells, Primary size: 9.6 × 10⁶ Primer: UdT, average insert size: 1.5 kb
BacterioMatch II Human HeLa Cell Library	pTRG: see Stratagene Manual for details	Hela S-3 cells, Primary size: 4.5 × 10⁶ Primer: UdT, average insert size: 1.3 kb

^aReagent produced in this study.

Characterization of the Two-hybrid System

A Yeast/Bacteria Two-hybrid System

Characterized by dissociation constants 10^{−8} M or lower could be detected as an increase in lacZ expression. Second, we note that the experiments performed using bacterial two-hybrid system yield colonies on selective medium somewhat more quickly than those done in the yeast system (1 day versus 2). Third, our results also suggest that autoactivation by bait proteins may be less problematic in bacteria than in yeast, because at least some proteins that are autoactivators in the yeast two-hybrid system are not in the bacterial two-hybrid system (compare lanes 1, 10, and 12 in Figs. 3 and 4). This finding is not entirely surprising given the fundamental differences in mechanisms of gene activation and the evolutionary distance between prokaryotes and eukaryotes. The ability to use some baits that are autoactivating (unusable) in yeast in the bacterial two-hybrid system is a potentially significant advantage.

Our data also suggest that the threshold interaction strength required for robust transcriptional activation is similar in both organisms. In both the yeast and bacterial systems, full activation seems to require an interaction affinity between bait and prey fusion proteins defined by a dissociation constant in the range of 10^{−8} M. Although our results demonstrate a sharp transition between no activation and full activation of the reporter genes, previous studies in both systems have demonstrated that the magnitude of transcriptional ac-
tivation observed can be correlated with the affinity of the bait-prey interaction (10, 19). Although we do not know the precise reason for this difference in our results compared with previous studies, we note that Estojak et al. (19) assessed interactions using a series of reporters of varying stringency (i.e., containing differing numbers of binding sites for the baits) to expand the detection range; there is no technical limitation to using a similar strategy with this new system. Overall, our
The most demanding test of a protein interaction system is comparative results of yeast and bacterial two-hybrid screening of expression libraries. To test the YBTH system, we used a bait library screening. We also thank Mary Buchanan for the Bacteri-um of HeLa cDNA, Astrid Giesecke for bacterial strains, and Stacey Thibodeau for technical assistance.

Acknowledgments—We thank Dr. Paul Watt for critical review of the manuscript. We are grateful to Yijing Groeber for assistance in library screening. We also thank Mary Buchanan for the Bacteri-omatch II HeLa cDNA library, Astrid Giesecke for bacterial strains, and Stacey Thibodeau for technical assistance.

* This work was supported by American Cancer Society pilot fund- ing (to I. G. S.); awards from NCI Translational Pilot Project funding, National Institutes of Health Grant R01-CA63366, and the Pennsyl- vania Tobacco Health Research Formula Fund (to E. A. G.); National Institutes of Health Core Grant CA06927 (to Fox Chase Cancer Cen- ter); National Institutes of Health Grants K08-DK02883 and R01- GM069906, Massachusetts General Hospital Department of Pathol- ogy start-up funds (to J. K. J.); and the National Health and Medical Research Council of Australia (to R. H.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom correspondence should be addressed: 333 Cottman Ave., Philadelphia, PA 19111. Tel.: 215-728-3885; Fax: 215-728-3816; E-mail: ig_serebrilski@fccc.edu.

REFERENCES

1. Fields, S., and Song, O. (1989) A novel genetic system to detect protein-protein interaction. Nature **340**, 245–246
2. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. U. S. A. **88**, 9578–9582
3. Gyuris, J., Golemis, E. A., Cherikov, H., and Brent, R. (1993) Cdi1, a human G and S phase protein phosphatase that associates with Cdk2. Cell **75**, 791–803
4. Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A. (1993) Mammalian Ras
interacts directly with the serine/threonine kinase Raf. Cell **74**, 205–214

5. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., and Sakaki, Y. (2000) Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 1143–1147

6. Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J. M. (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. *Nature* **403**, 623–627

7. Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Farrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Sripps, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr, White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shinkets, R. A., McKenna, M. P., Chant, J., and Rothberg, J. M. (2003) A protein interaction map of Drosophila melanogaster. *Science* **302**, 1727–1736

8. Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P. O., Han, J. D., Chesneau, A., Hao, T., Goldberg, D. S., Li, N., Martinez, M., Rual, J. F., Lamesch, P., Xu, L., Tewari, M., Wong, S. L., Zhang, L. V., Berriz, G. F., Jacob, T., Vaglio, P., Rebout, J., Hirozane-Kishikawa, T., Li, Q., Gabel, H. W., Eleva, A., Baumgartner, B., Rose, D. J., Yu, H., Bosak, S., Sequerra, R., Fraser, A., Mango, S. E., Saxton, W. M., Strome, S., Van Den Heuvel, S., Piano, F., Vandenheuvel, J., Sardet, C., Gerstein, M., Doucette-Stamm, L., Gunsalus, K. C., Harper, J. W., Cusick, M. E., Roth, F. P., Hill, D. E., and Vidal, M. (2004) A map of the interactome network of the metazoan *C. elegans*. *Science* **303**, 540–543

9. Joung, J. K., Ramn, E. I., and Pabo, C. O. (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein–protein interactions. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 7382–7387

10. Dove, S. L., Joung, J. K., and Hochschild, A. (1997) Activation of prokaryotic transcription through arbitrary protein–protein contacts. *Nature* **386**, 627–630

11. Serebriiskii, I. G., and Joung, J. K. (2002) Yeast and bacterial two-hybrid selection systems for studying protein–protein interactions, in *Protein-Protein Interactions: A Molecular Cloning Manual* (Golemis, E., ed) pp. 93–142, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

12. Krylov, D., Mikhailenko, I., and Vinson, C. (1994) A thermodynamic scale for leucine zipper stability and dimerization specificity: E and G interhelical interactions. *EMBO J.* **13**, 2849–2861

13. Krylov, D., Barchi, J., and Vinson, C. (1998) Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids. *J. Mol. Biol.* **279**, 959–972

14. Moll, J. R., Ruvinov, S. B., Pastan, I., and Vinson, C. (2001) Designed heterodimerizing leucine zippers with a range of pIs and stabilities up to 10^{-11} M. *Protein Sci.* **10**, 649–655

15. Serebriiskii, I. G., Toby, G. G., and Golemis, E. A. (2000) Streamlined yeast colorimetric reporter assays using scanners and plate readers. *BioTechniques* **29**, 278–279, 282–284, 286–288

16. Thibodeau, S. A., Fang, R., and Joung, J. K. (2004) High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. *BioTechniques* **36**, 410–415

17. Serebriiskii, I. G., Mitina, O., Pugacheva, E., Benevolenskaya, E., Kotova, E., Toby, G. G., Khazak, V., Kaelin, W. G., Chernoff, J., and Golemis, E. A. (2002) Detection of peptides, proteins, and drugs that selectively interact with protein targets. * Genome Res.* **12**, 1785–1791

18. Nagashima, K., Kasai, M., Nagata, S., and Kaziro, Y. (1986) Structure of the two genes coding for polypeptide chain elongation factor 1 alpha (EF-1 alpha) from Saccharomyces cerevisiae. *Gene* **45**, 265–273

19. Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid affinity data with in vitro measurements. *Mol. Cell. Biol.* **15**, 5820–5829

20. Corbett, K. D., and Alber, T. (2001) The many faces of Ras: recognition of Rap1. *Oncogene* **10**, 1043–1049

21. Campbell, P. M., and Der, C. J. (2004) Oncogenic Ras and its role in tumor cell invasion and metastasis. *Semin. Cancer Biol.* **14**, 105–114

22. Serebriiskii, I., Estojak, J., Sonoda, G., Testa, J. R., and Golemis, E. A. (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21–22. *Oncogene* **15**, 1043–1049

23. Peterson, S. N., Trabalzini, L., Brtva, T. R., Fischer, T., Altschuler, D. L., Martelli, P., Lapetina, E. G., Der, C. J., and White, G. C., 2nd (1996). *Trends Biochem. Sci.* **21**, 710–716

24. Serebriiskii, I., Khazak, V., and Golemis, E. A. (1999) A two-hybrid dual bait system to discriminate specificity of protein interactions. *J. Biol. Chem.* **274**, 17080–17087