Serum inflammation-based scores in endocrine tumors

Pedro Marques1,2, Friso de Vries1, Olaf M. Dekkers1, Mártá Korbonits2, Nienke R. Biermasz1, Alberto M. Pereira3

1Department of Medicine, Division of Endocrinology and Center for Endocrine Tumors Leiden (CETL), Leiden University Medical Center, Leiden, The Netherlands
2Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK

Corresponding author: Pedro Marques (MD, PhD), Department of Medicine, Division of Endocrinology and Center for Endocrine Tumors Leiden (CETL), Leiden University Medical Center. Albinusdreef 2, 2333 ZA Leiden, The Netherlands. Tel: +31 715263793. Email: pedro.miguel.sousa.marques@gmail.com. ORCID: 0000-0002-4959-5725.

Funding: P.M. was supported by the Fellowship Program Grant ´3E´, the Exchange in Endocrinology Expertise, Board of Endocrinology of the UEMS and Novo Nordisk A/S and Novartis (2019).

Disclosure summary: The authors report no potential conflict of interest.
Abstract

Context: Serum inflammation-based scores reflect systemic inflammatory response and/or patients’ nutritional status, and may predict clinical outcomes in cancer. While these are well-described and increasingly used in different cancers, their clinical usefulness in the management of patients with endocrine tumors is less known.

Evidence acquisition: A comprehensive PubMed search was performed using the terms “endocrine tumor”, “inflammation”, “serum inflammation-based score”, “inflammatory-based score”, “inflammatory response-related scoring”, “systemic inflammatory response markers”, “Neutrophil-to-lymphocyte ratio”, “Neutrophil-to-platelet ratio”, “Lymphocyte-to-monocyte ratio”, “Glasgow Prognostic Score”, “Neutrophil-Platelet Score”, “Systemic Immune-Inflammation Index”, and “Prognostic Nutrition Index” in clinical studies.

Evidence synthesis: The Neutrophil-to-Lymphocyte Ratio and the Platelet-to-Lymphocyte Ratio are the ones most extensively investigated in patients with endocrine tumors. Other scores have also been considered in some studies. Several studies focused in finding whether serum inflammatory biomarkers may stratify the endocrine tumor patients’ risk and detect those at risk for developing more aggressive and/or refractory disease, particularly after endocrine surgery.

Conclusions: In this review, we summarize the current knowledge on the different serum inflammation-based scores and their usefulness in predicting the phenotype, clinical aggressiveness, disease outcomes and prognosis in patients with endocrine tumors. The value of such serum inflammation-based scores in the management of patients with endocrine tumors has been emerging over the last decade. However, further research is necessary to establish useful markers and their cut-offs for routine clinical practice for individual diseases.

Keywords: Endocrine tumor; Serum inflammation-based score; Neutrophil-to-lymphocyte ratio; Neutrophil-to-platelet ratio; Lymphocyte-to-monocyte ratio; Systemic Immune-Inflammation Index.
Introduction

Inflammation plays an important role in tumor biology; in local tumor microenvironment (1,2) but also systemically (3,4). Responses to systemic inflammation include alterations in hematopoiesis and secretion of acute-phase proteins, cytokines, growth factors and hormones, as well as in neuroendocrine metabolism and hormone secretion (5,6). Serum inflammation-based scores can reflect systemic inflammatory status and predict outcomes in cancer patients, and become potentially useful diagnostic and monitoring tools (3,5,7). They are inexpensive, fast accessed, easy to calculate, reproducible and widely available, as virtually every cancer patient will have pre-treatment blood tests (3). To date, multiple serum inflammation-based scores have been developed:

Neutrophil-to-Lymphocyte Ratio (NLR) is the most extensively studied score, and is calculated by dividing absolute neutrophil by lymphocyte counts (3,8,9). Neutrophilia is common in cancer and is mainly caused by tumor secretion of myeloid growth factors, or by inflammation secondary to tissue destruction or hypercytokinemia. Neutrophils, in turn, secrete cytokines which promote tumor proliferation and invasion. Lymphocytes are important anti-tumoral cells, and their decrease may compromise responses against tumor cells (3,7,9). Hence, high NLR reflects an ineffective immune response to the tumor or imbalanced inflammatory state that facilitates tumor growth and invasiveness, and thus poor outcomes in cancer (3,8,9). Similar, although significantly less used, is the derived NLR (dNLR), calculated by dividing absolute neutrophil count by (absolute leucocyte count – absolute neutrophil count) (10,11).

Platelet-to-Lymphocyte Ratio (PLR) is also widely studied and can be obtained by dividing absolute platelet by lymphocyte counts (3,12,13). Tumor cells secrete cytokines and growth factors that stimulate megakaryocyte differentiation leading to increased platelet production (14). Platelets have different roles in cancer and may promote tumor proliferation, invasion or metastasis (13,15,16). High PLR reflects a relative imbalance of platelets and lymphocytes, and is usually associated with poor cancer outcomes (3,12).
Lymphocyte-to-Monocyte Ratio (LMR) is calculated by dividing absolute lymphocyte by monocyte counts. Higher monocyte counts may reflect a higher content of tumor-associated macrophages in neoplastic tissues, resulting in immunosuppression and tumor growth (17,18). Monocytes and macrophages may also contribute to intravascular survival of circulating tumor cells by reducing their apoptosis and extravasation into tumor tissues, which ultimately result in tumor progression and worse outcomes (19,20). Lower LMR has been associated with poor survival in different cancers (18,21).

Neutrophil-Platelet Score (NPS) and **Systemic Immune-Inflammation Index (SII)** combine leucocyte and platelet counts. NPS, ranging from 0 to 2, attributes 1 point to neutrophils >7.5x10^9/L and 1 to platelets >400x10^9/L (22). SII is obtained by multiplying absolute platelet count and NLR (23). An increased NPS or SII reflects an ineffective immunosurveillance or enhanced inflammatory status linked with poor outcomes (22,23).

Glasgow Prognostic Score (GPS), again ranging from 0 to 2, attributes 1 point to C-reactive protein >10mg/dL and 1 to albumin <35g/L (3,5). GPS is regarded as an indicator for nutritional and immunological condition, as decreased albumin and increased C-reactive protein may reflect malnourishment and systemic inflammation (3,5,7,24). Modified versions of GPS have been proposed, including the **High-Sensitivity inflammation-based Prognostic Index (HSPI)** which relies on high-sensitivity C-reactive protein with a cut-off of 3mg/dL (25).

Prognostic Nutrition Index (PNI) is calculated by multiplying serum albumin by 5 times the absolute lymphocyte count, and also reflects the nutritional and inflammatory status; reduced PNI is often associated with poor cancer prognosis (26,27).

In summary, increased NLR, PLR, NPS, SII, and GPS, and low LMR and PNI reflect ineffective immunosurveillance or imbalanced inflammation that facilitate tumor growth and invasiveness, and thus poor outcomes in cancer (3,5,8,18). Several lines of research support the role of serum
inflammation-based scores in predicting outcomes in cancer patients (3,7), including non-metastatic tumors, such as meningiomas (28) and gliomas (23,24,29), but also in endocrine neoplasms (6,30-36). In this review, we summarize the current knowledge on different serum inflammation-based scores and their clinical usefulness in predicting phenotype, aggressiveness, disease outcomes and prognosis in patients with endocrine tumors.

Methods

A PubMed search was performed using the terms “endocrine tumor”, “inflammation”, “serum inflammation-based score”, “inflammatory-based score”, “inflammatory response-related scoring”, “systemic inflammatory response markers”, “Neutrophil-to-lymphocyte ratio”, “Neutrophil-to-platelet ratio”, “Lymphocyte-to-monocyte ratio”, “Glasgow Prognostic Score”, “Neutrophil-Platelet Score”, “Systemic Immune-Inflammation Index”, and “Prognostic Nutrition Index” in clinical studies concerning endocrine neoplasms: thyroid tumors, neuroendocrine tumors, parathyroid tumors, adrenal tumors, pituitary tumors and craniopharyngiomas. Related articles and reference lists in each publication were also reviewed. All papers indexed in the English language and published until the 31st December 2020 were evaluated. All identified studies were analyzed, and their most relevant findings briefly discussed in the review and summarized in more detail in Tables 1-3.

Thyroid tumors

Thyroid cancer is the most common endocrine tumor, and most are well-differentiated and derive from follicular epithelial cells (including papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC)); far less common are medullary (MTC), anaplastic (ATC) and poorly-differentiated thyroid cancer (PDTC) (37,38). Thyroid cancer is closely associated with inflammation, both within the tumor
microenvironment (39,40) and systemically (30,41,42). The inflammatory microenvironment seems to be important in the development and progression of thyroid malignancy (43-46). This is supported by alterations in expression of immune-related genes and activation of oncogenes in PTC (47), such as RET/PTC, RAS, BRAF, resulting in upregulation of a proinflammatory program in normal thyrocytes associated with malignant behaviour (40,48). Thyroid tumor cells are also an active source of cytokines and chemokines that modulate the microenvironment as well as have proinflammatory implications (39). The correlation of inflammatory responses, reflected by serum inflammation-based scores, with tumor behavior and outcomes in different types of thyroid cancer is discussed below and summarized in Table 1.

Differentiated thyroid cancer

Several studies support the role of NLR in predicting prognosis and outcomes in patients with differentiated thyroid cancer (DTC), mainly PTC. Liu et al. conducted the first study assessing the usefulness of NLR in DTC, and observed that patients at high risk for recurrence had higher NLR than those with intermediate/low risk (30). Higher NLR has been described in patients with more advanced PTC, namely stages III/IV (55) and T3/T4 (52), as well as in PTC patients ≥45 years (57). Higher NLR was further associated with lower disease-free survival in patients with PTC staged III/IV (50), or ≥45 years (67), suggesting NLR may be a prognostic factor for disease-free survival in PTC, particularly in older patients with advanced disease. In contrast, other studies reported no association between NLR and PTC stages (53,59,60,63) or recurrent disease (51,52,72). In PTC and FTC patients, NLR correlated with increased thyroglobulin levels 6-month postoperatively (31). A recent study reported no differences in NLR between PTC patients in different treatment stages (66), although a previous series suggested that radioiodine treatment temporarily increases NLR (56). Cho et al. reported an association between high NLR and higher cancer-specific death rate in a large series of thyroid cancer patients (including ATC, MTC and PDTC), but this association was not observed in DTC patients only (52). Lee et al. reported an association between high NLR and
incomplete therapy response in DTC patients, in whom a decrease in NLR after treatment was observed, more prominently in patients with low recurrence risk and excellent treatment response (61). Concordantly, in patients receiving lenvatinib for progressive radioiodine-refractory DTC, a more prominent NLR decrease was seen in patients with best tumor response, while disease progression was followed by NLR increase (71). Additionally, high NLR was associated with shorter overall survival, supporting a role for NLR as an indicator for starting and monitoring lenvatinib treatment, as well as for predicting survival (71).

Several studies reported associations between higher NLR and larger tumors (30,31,50,51,57,65), extrathyroidal extension (60,65), multifocality (57,60) and lymph node metastasis (57,60) in PTC patients. In contrast, others found no association between NLR and lymph node metastasis (30,50,53), including to the central compartment, which ruled out NLR as a potential tool to guide prophylactic central dissection in PTC patients undergoing total thyroidectomy (51,63,65). Different NLR cut-off values associated with more aggressive clinicopathological features/poor outcomes have been proposed, often varying between 1.5 and 3 (50,52,57,60,65,71,79), relatively low in comparison to those reported in highly malignant neoplasms (3,18,21), where NLR>5 often indicates poorer outcomes (3,7). The association between NLR and age is more controversial, with studies reporting higher NLR in older patients (31,51,55), while others reported lower NLR in older patients (53,67), and some excluding any correlation (65). Some studies involving DTC patients excluded a relationship between NLR and thyroid-stimulating hormone levels (30,51,54,57), or with BRAF V6003 mutations (53).

Seretis et al. suggested that NLR could be useful in distinguishing malignant from benign thyroid nodules, and be a possible marker for underlying microcarcinomas in goiter. They reported higher NLR in PTC and microPTC compared to benign goiters and healthy controls (49). Further studies confirmed this (49,54,55,68), however Manatakis et al. described its diagnostic accuracy as low (approximately 45%) and thus unable to effectively predict occult microcarcinomas in patients with
goiter (62). Other studies reported no value of NLR as a marker for thyroid malignancy (30,50,51,58,59,61,64), including a meta-analysis comprising 4617 DTC patients and 1666 subjects with benign nodules, neither in the identification of progressing DTC in subjects with goiter (41).

Fewer studies assessed the role of PLR in predicting outcomes of DTC patients. An elevated PLR was associated with lower disease-free survival in PTC patients aged<45 years, with PLR>164.24 independently predicting recurrence (67). Increased PLR was predictive of advanced nodal disease, with the optimal cut-off being 136.5 in a large series of 1873 PTC patients (27). However, others ruled out a correlation between PLR and recurrent or advanced disease (53,59,72). In a series including 58 PTC patients, no differences in PLR between patients before operation, before radioiodine and 6 months after radioiodine therapy were observed (66). Although Kim et al. found an association between high PLR and larger tumors as well as lymph node metastasis (53), most studies excluded significant correlations between PLR and aggressive clinicopathological features, including extrathyroidal extension (53,59,65), angioinvasion (53,59), multifocality (53,65), surgical margin positivity (65), and BRAF V600E mutation (53). Lower PLR has been reported in PTC patients aged≥45 years (53,67), but not in every study (65). Three studies ruled out any usefulness for PLR in distinguishing malignant and benign thyroid nodules (59,62,64). Ari et al. observed no differences in PLR between PTC and thyroiditis patients, but when compared to healthy controls PLR was significantly higher in both thyroiditis and PTC patients (64).

A lower LMR has been correlated to advanced staged PTC (63,69). Low LMR was also associated with decreased overall and disease-free survival (69), including in patients with DTC refractory to radioiodine and treated with sorafenib (70), with LMR<4 predicting shorter survival (69,70). A different study correlated a low LMR with recurrence, especially in patients with advanced PTC (stages II and III), with an optimal cut-off of 5 (72). In contrast, Lee et al. observed no correlation between LMR and disease-free survival in PTC patients either below or above the age of 45 (67). Song et al. reported an association between lower LMR and larger tumors, multifocality and lymph
node metastasis (69), other studies found no correlation between LMR and lymph node metastasis (63,72). More studies are needed to further assess the LMR usefulness in thyroid cancer, but LMR may be a promising tool in predicting recurrence and survival in patients with high-risk, advanced or refractory PTC (69,70,72).

There is only one large study that investigated the role of PNI in predicting outcome and prognosis of PTC patients, in which a decreased PNI predicted advanced staged PTC (T3 or T4), with an optimal cut-off of 54.1. Moreover, both univariate and multivariate analysis indicated PNI≤53.1 as an independent predictor of recurrence (27). Only one study assessed Platelet-to-Neutrophil Ratio (PNR) in thyroid cancer, in which an increased PNR was observed in PTC patients with extrathyroidal extension and T3 staged disease (59).

Medullary thyroid cancer

Three studies assessed the role of preoperative serum inflammation-based scores in MTC. Xu et al. observed an association between preoperative NLR and lymph node and distant metastasis, with an NLR>1.784 predicting the occurrence of metastases, suggesting a potential role as a screening tool for metastatic disease and indicator for more intensive management (75). Two studies reported that higher PLR independently correlated with lymph node metastasis, higher postoperative recurrence rate and lower disease-free survival (73,74). The optimal PLR cut-offs in predicting recurrence were estimated at >129.8 (73) and >128.9 (74), while PLR>105.3 was an independent predictor for lymph node metastasis (73). Jiang et al. reported PNI<52.5 as a potential predictor for recurrence in MTC patients, but no association between NLR, dNLR and LMR with clinical outcomes (74). These findings suggest that PLR could be a useful addition to the TNM classification in identifying high-risk patients and guiding follow-up and/or therapeutic strategies (73,74), with a possible complementary role for PNI (74).
Anaplastic thyroid cancer

ATC patients which NLR remarkably increased during follow-up (by >5.5 compared to baseline) had a lower survival (77), suggesting that NLR oscillation during follow-up may predict outcomes. Two studies supported a role for preoperative NLR in distinguishing ATC from PTC and PDTC (51,52). Ahn et al. observed that ATC patients with LMR<4 more often had cervical lymph node metastasis and had a 3-fold decreased overall survival compared to those with LMR≥4 (76). In contrast, a recent study has excluded any usefulness for baseline NLR, LMR, and PLR in predicting survival of ATC patients (77). A recent study including lenvatinib-treated ATC patients reported better disease control rates, as well as longer progression-free and overall survival in patients with lower NLR scores (<8) in comparison to those with higher NLR (78), in line with findings reported earlier for DTC patients receiving lenvatinib for progressive radioiodine-refractory disease (71), suggesting that NLR is a potential prognostic factor, as well as an early indicator of response for lenvatinib-treated ATC patients (78).

Neuroendocrine tumors

Neuroendocrine tumors (NETs) are neoplasms originating from the epithelium of organs with neuroendocrine differentiation that typically have an indolent behaviour, but also metastatic potential (33). An increased inflammatory status has known effects in tumorigenesis and tumor progression, locally (80-83) and systemically (35,84-87). Several studies support the role of serum inflammation-based scores in predicting the prognosis and outcomes of NET patients (Table 2).

Yucel et al. reported NLR as a negative independent prognostic factor for overall survival in patients with NETs of all origins (88). In patients with gastrointestinal and pancreatic NETs, pre-treatment NLR was higher in foregut, pancreatic, metastatic, and more advanced NETs and correlated negatively with progression-free survival (35). A meta-analysis comprising 724 patients with
gastroenteropancreatic NETs found that high NLR was associated with poor overall and recurrence-free survival (86). Pozza et al. reported higher NLR in patients with distant metastasis, with a cut-off >2.63 predicting peritoneal metastasis, as well as shorter survival, in patients with gastrointestinal NETs (89). Other series supported an elevated NLR as an independent predictor of metastasis in NET patients, although different cut-offs have been proposed (2.2 in gastric NETs (92); 2.63 in midgut NETs (89); 1.8-3.71 in pancreatic NETs (94,96,97,100)). The prognostic value of NLR has also been confirmed in a series of 262 patients with metastatic NETs undergoing transarterial chemoembolization, where serum NLR before and 6 months after intervention independently predicted survival, suggesting a role for NLR in decision-making and assessing treatment responses (33).

In patients with gastroenteropancreatic NETs, pre-treatment PLR was higher in foregut, pancreatic, metastatic, and more advanced NETs and correlated negatively with progression-free survival (35).

In contrast, another study did not report higher NLR or PLR in foregut NETs (89), whereas 2 other studies failed to confirm the usefulness of NLR and PLR in predicting survival in patients with inoperable and advanced NETs (91) and in predicting response to peptide receptor radionuclide therapy (90), suggesting a prognostic role for other scores, namely GPS (or inflammation-based index) (90), and HSPI (91).

Gastric NETs

In patients with gastric NETs, Cao et al. reported that NLR was higher than in healthy controls and was an independent prognostic factor for low recurrence-free and overall survival, and also correlated with liver metastasis, which support the recommendation for assessing NLR in gastric NET patients and monitor closely those with NLR>2.2 postoperatively (92). Later, the same authors showed that tumor-associated (not serum) NLR on histological samples of gastric NETs also predicted low recurrence-free and overall survival, and correlated with liver and lymph node
metastasis (103). They suggest that serum and tumor-associated NLR together with Ki-67 could be combined in a prognostic nomogram (103).

Pancreatic NETs

Pancreatic NETs comprise 1-3% of all pancreatic neoplasms, with increasing incidence due to frequent use and advances of imaging modalities (94,104). Up to 20% has metastatic potential, and recognized predictors of malignant potential include increased size (particularly above 2cm), advanced grade and high Ki-67 (104,105), though further markers are needed (94,104). Eleven studies have been conducted assessing the role of serum inflammation-based scores in pancreatic NETs. The majority of these focused on NLR and most support its usefulness in predicting poor survival (25,32,97,101) and recurrence (19,25,94,96,97,100,101). In one study, serum NLR was higher in patients with pancreatic NETs than in healthy controls (97). Additionally, elevated NLR has been related to clinicopathological features suggestive of increased aggressiveness, such as larger size (25,99), advanced stages or grades (32,96,97), lymph node metastasis (96,98), liver metastasis (94), perineural invasion (97), thrombosis formation (96), higher Ki-67 (100) and higher mitotic count (100). The pancreatic duct dilation-NLR score has been shown as a potentially useful tool in predicting outcomes of patients with pancreatic head NETs undergoing surgical resection (25).

Therefore, NLR appears to be a useful biomarker predicting aggressive disease and poorer outcomes in pancreatic NET patients, with an elevated NLR identifying high-risk cases, perhaps requiring more intensive treatment or close follow-up. However, different NLR predictive cut-offs have been proposed (1.8 (97); 2.056 (96); 2.4 (94); 3.41 (100); 3.7 (101)). Different studies have consistently found no differences in preoperative NLR scores between functioning and nonfunctioning pancreatic NET patients (94,96,97,100), however increased preoperative pancreatic duct dilation-NLR scores in nonfunctioning pancreatic NET patients comparing to those with functioning tumors was reported in one series (25).
In the first study assessing inflammation-based scores in NETs, Sakka et al. reported serum PLR>300 as an adverse prognostic factor for cumulative survival, and proposed a stratification risk score integrating PLR>300 and 3 other criteria (93). The association of high PLR with advanced disease and poor survival was confirmed by some (97-99), but not all later studies (85,97). One study reported a higher in patients with pancreatic NETs than in healthy controls (97). Gaitanidis et al. reported that an LMR<3.46 was associated with lower recurrence-free survival and distant metastases (99), and more recently Zhou et al. showed LMR<5 as independent predictor for relapse-free survival in patients undergoing surgery (85). However, previous studies excluded a prognostic value of LMR in this setting (97,98,101).

Lung NETs

In a single study in patients with pulmonary large cell neuroendocrine carcinomas, larger tumors were associated with higher NLR and PLR, and patients with NLR≥2.52 and PLR≥133.6 had shorter survival, although in multivariate survival analysis only NLR was an independent prognostic factor (102). There are no data on serum inflammation-based scores in bronchial NETs.

Parathyroid tumors

Zeren et al. first studied serum NLR in primary hyperparathyroidism and reported positive correlations between preoperative NLR and adenoma size, presence of parathyroid carcinoma, as well as calcium and parathyroid hormone (PTH) levels (106). A series involving 8948 American adults reported an association between PTH levels and PLR, as well as with C-reactive protein levels, red cell distribution width and modified GPS, indicating a possible association between PTH and serum inflammatory markers (107). Two studies confirmed these findings, one observing a positive correlation between serum NLR (but not PLR) and PTH levels in patients with hyperparathyroidism and identifying PTH as one of the main determinants of NLR, regardless the glomerular filtration
rate, suggesting PTH as pro-inflammatory factor independent of renal dysfunction (108). The other study reported a correlation between preoperative NLR and both PTH and calcium levels in patients with primary hyperparathyroidism, with a significant 22% decrease in NLR after parathyroidectomy (109). Similarly, patients with secondary hyperparathyroidism had a significant decrease in NLR and PLR after successful parathyroidectomy, while those with persistent or recurrent disease had no changes, suggesting that effective parathyroidectomy may reduce systemic inflammation (110).

These studies, summarized in Table 3, describe an association between PTH and systemic inflammatory markers, as well as amelioration of inflammatory status after parathyroidectomy. However, these studies are not sufficient to establish a causal relationship. Nevertheless, such associations are interesting given that inflammation is involved in the pathophysiology of cardiovascular and metabolic diseases, and there are several reports of higher cardiovascular mortality, inflammation and metabolic syndrome in association with increased PTH levels (111-115), including in primary hyperparathyroidism (116-118). The pleiotropic effects of PTH are also reflected by the non-skeletal manifestations of hyperparathyroidism (119), the upregulation of inflammatory genes in adipose tissue (120), the production of pro-inflammatory cytokines in rodents (121), PTH-induced endothelial dysfunction (122,123) and hematopoietic effects of PTH (124). Future studies are necessary to gain further understanding of PTH biology and implications of primary hyperparathyroidism, as well as to identify useful, predictive markers for decision-making in such patients, including in asymptomatic hyperparathyroidism.

Adrenal tumors

Three studies, summarized in Table 3, investigated the role of serum inflammation-based scores in patients with adrenocortical carcinomas (ACC) (19,125,126). Bagante et al. analysed NLR and PLR in a surgical cohort of ACC patients (125). Patients with NLR>5 had larger tumors, distant metastasis, lower rates of 5-year recurrence-free survival and higher rates of incomplete resection, post-surgical complications and readmissions within 90 days after operation. PLR>190 was associated with a 1.8-
fold increased risk of recurrence, and NLR>5 with a 2-fold increased risk of recurrence and a 2.2-fold increased risk of disease-related death (125). Another study confirmed NLR>5 as adequate prognostic cut-off in ACC, with a poorer survival in patients with preoperative NLR≥5. When differentiating malignant and benign adrenal disease, NLR independently predicted malignant disease, with optimal cut-off estimated at 3.15 (126). NLR was higher in malignant than in benign disease, with the highest NLR in ACC (6.02), and lower NLR in adenomas and pheochromocytomas (2.84 and 2.03, respectively) (126). A shorter disease-specific survival in ACC patients who had an LMR<4 was described in a surgical cohort of recurrent ACC patients. LMR<4 was associated with 4-fold increased risk of disease-related death, suggesting a role for more inflammation-based ratios in ACC prognosis (19). Another study reported a trend for higher NLR in carotid body tumor patients than in healthy controls, with no significant postoperative NLR decrease (127). In conclusion, NLR, and possibly to a lesser degree PLR and LMR, might be useful in assessing preoperative inflammatory states and predicting outcomes of ACC patients. NLR may also help differentiate benign and malignant adrenal disease, but more research is needed to confirm its clinical usefulness.

Pituitary tumors

Only one study characterized the preoperative inflammation-based scores in patients with pituitary tumors and investigated their usefulness in predicting clinically challenging or refractory disease (128). Unsurprisingly, rather unimpressive mean values of serum inflammation-based scores were seen (128), with NLR and PLR relatively low (3,18,21,36) and LMR relatively high (17,21) compared to malignant neoplasms, considering that pituitary tumors are benign and lack metastatic properties. Pituitary tumor cells secrete pro-inflammatory cytokines and growth factors (1,129) but their release into circulation and/or systemic repercussions may be less prominent than in other malignancies (128). In this study, Cushing’s disease patients had higher NLR, NPS and SII than other tumor types, while the serum inflammation-based scores did not differ among other subtypes. Additionally, the
extent of glucocorticoid excess appeared to influence GPS in Cushing’s disease, in line with known glucocorticoid systemic effects on leukocytes and inflammation (reviewed in (130-133)). Some preoperative inflammation-based scores showed a possible association with clinical features and worse outcomes and may have a role in predicting challenging/refractory disease: GPS and PNI in both nonfunctioning and functioning non-Cushing tumors; NPS in functioning non-Cushing pituitary tumors; NLR and PLR in nonfunctioning pituitary tumors (128). However, further studies are needed to validate the findings reported in this exploratory study.

Craniopharyngiomas

Two studies investigated the role of preoperative inflammation-based scores in patients with craniopharyngiomas (Table 3) (6,36). Zhang et al. observed a negative correlation between preoperative NLR and overall and progression-free survival. Patients with NLR≥4 had larger tumors, lower rates of gross total resection, worse quality of life, as well as lower overall and progression-free survival rates, suggesting preoperative NLR may be a predictor of long-term outcome in craniopharyngioma (36). Later, Chen et al. observed higher preoperative NLR and lower PNI in papillary compared to patients with adamantinomatous craniopharyngioma, but no differences between primary or recurrent craniopharyngiomas regarding NLR, dNLR, PLR, LMR and PNI. However, among patients with papillary craniopharyngiomas, time to recurrence correlated negatively with PLR and Monocyte-to-Lymphocyte Ratio (MLR) and positively with PNI (6). Further studies are needed to consolidate the role of serum inflammation-based scores in predicting outcomes in craniopharyngioma patients, with NLR, PLR, MLR and PNI being particularly promising.

Considering PNI is influenced by nutritional status (26), this score is interesting in craniopharyngioma patients, as they often have issues in terms of energy and appetite management resultant from hypothalamic damage (6).
Chen et al. also compared inflammatory parameters of craniopharyngioma patients with patients having other sellar lesions and healthy controls. Craniopharyngioma patients had higher PNI and lower MLR, but similar NLR compared to pituitary tumors and Rathke’s cleft cysts patients. However, NLR was higher in patients with pituitary tumors than in Rathke’s cleft cyst patients or healthy controls. The paired combinations NLR+PLR and dNLR+PLR may differentiate patients with papillary craniopharyngiomas from pituitary tumor or Rathke’s cleft cyst patients (6).

Discussion

The prognosis and clinical outcome of patients with neoplasia not only depends on tumor biology but also on patient-related factors including systemic inflammation and nutritional status, which can be reflected by different serum inflammation-based scores (5,7). These may indeed predict outcomes in cancer (3), including in patients with endocrine neoplasms (6,30-36). The value of such scores in managing patients with endocrine tumors has been emerging over the last decade. Several studies focused on finding whether these scores may stratify endocrine-related cancer patients and identify those at risk of developing aggressive, recurrent or refractory disease, particularly after surgery. These biomarkers should be regarded as extra predictive/prognostic tools in addition to (and not in replacement of) the currently well-known biochemical, pathological and radiological prognostic features concerning each type of endocrine tumor. Figure 1 provides a summary of the studied serum inflammation-based scores per endocrine tumor.

Despite the promising role of serum inflammation-based scores as tools in predicting phenotype, aggressiveness and outcomes in patients with endocrine tumors, more research and more definitive and robust data are still necessary to incorporate them in management and routine decision-making algorithms. For some of the discussed tumors (e.g. pituitary or adrenal tumors) there is little data available about the clinical usefulness of such biomarkers, while for other tumors there are more
studies available (e.g. thyroid cancer and NETs), but many do not account for patients’ comorbidities and overall health unrelated to the underlying cancer, timing and types of treatments, as well as for pituitary-thyroid axis status in case of thyroid cancer. Other study limitations are mainly related to design and type of findings reported in the published studies, which should be taken into account: i) most are retrospective, inheriting the pitfalls related to this study type; ii) most are single-centre cohort studies including a population of a certain ethnicity or background, thus limiting generalizability of results to other populations; iii) some include a relatively small and heterogeneous cohort; iv) most exclude certain groups of patients (e.g. patients with autoimmune, hematological or chronic inflammatory conditions which could interfere with blood test results), but it is possible that some included patients would have unknown/unreported diseases, as well as intercurrent infections, influencing hematopoiesis or systemic inflammation; v) some have a relatively short follow-up which might add challenges in terms of identifying meaningful outcomes, particularly relevant for endocrine tumors that are typically benign with indolent course; vi) most do not include healthy controls as comparator for the findings observed in the studied population, which would be reassuring for validity, including the establishment of optimal cut-offs; vii) some identify differences in scores among subgroups and some sort of predictive values from univariate and multivariate analysis, but often with limited predictive efficiency. Hence, caution should be used when considering the clinical application of such serum inflammation-based scores.

These limitations, together with the heterogeneity in study methodologies, as well as different inclusion/exclusion criteria, may explain, at least in part, the variable cut-offs suggested for the same serum inflammation-based score in the same endocrine tumor. Such heterogeneity and variability across studies limit the clinical applicability of these scores as it is challenging to choose which cut-off would be optimal for adoption in clinical practice. To overcome this issue larger and prospective multicenter studies incorporating these biomarkers into evaluation and treatment algorithms are needed. Another possibility would be considering the highest (or lowest) of reported cut-offs for a certain score and tumor. For instance, in thyroid cancer, different NLR cut-offs demonstrated to
predict aggressive disease and/or poorer outcomes, varying between 1.5-3 (50,52,57,60,65,71,79), thus the application of a NLR cut-off >3 would be a reasonable approach. Similarly, in pancreatic NET patients, different NLR cut-offs predicting poor outcomes have been proposed, including 1.8 (97), 2.056 (96), 2.4 (94), 3.41 (100) and 3.7 (101), hence an NLR cut-off >3.7 could be reasonable to adopt.

Despite these limitations and issues, the amount of evidence in the field of endocrine neoplasms (reviewed here) but also in cancer in general (including benign tumors (24,26,28,29,134)), suggests that serum inflammation-based scores might be useful in predicting aggressive disease and outcomes, with NLR, PLR and LMR thus far most extensively investigated in patients with endocrine neoplasms. The advantages and potential usefulness of such serum inflammation-based scores justify further research.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References

1. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, Grossman AB, Balkwill F, Korbonits M. Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 2019; 7:172

2. Marques P, Grossman AB, Korbonits M. The Tumour Microenvironment of Pituitary Neuroendocrine Tumours. Front Neuroendocrinol 2020:100852

3. Bugada D, Allegri M, Lavand'homme P, De Kock M, Fanelli G. Inflammation-based scores: a new method for patient-targeted strategies and improved perioperative outcome in cancer patients. Biomed Res Int 2014; 2014:142425

4. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 2012; 22:33-40

5. McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care 2009; 12:223-226

6. Chen M, Zheng SH, Yang M, Chen ZH, Li ST. The diagnostic value of preoperative inflammatory markers in craniopharyngioma: a multicenter cohort study. J Neurooncol 2018; 138:113-122

7. Ahmad J, Grimes N, Farid S, Morris-Stiff G. Inflammatory response related scoring systems in assessing the prognosis of patients with pancreatic ductal adenocarcinoma: a systematic review. Hepatobiliary Pancreat Dis Int 2014; 13:474-481

8. Chang X, Zhang F, Liu T, Wang W, Guo H. Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis. Int Urol Nephrol 2017; 49:967-974

9. Tang H, Lu W, Li B, Li C, Xu Y, Dong J. Prognostic significance of neutrophil-to-lymphocyte ratio in biliary tract cancers: a systematic review and meta-analysis. Oncotarget 2017; 8:36857-36868

10. Liu JX, Li A, Zhou LY, Liu XF, Wei ZH, Wang XZ, Ying HQ. Significance of combined preoperative serum Alb and dNLR for diagnosis of pancreatic cancer. Future Oncol 2018; 14:229-239

11. Rajwa P, Zyczkowski M, Paradysz A, Bujak K, Bryniarski P. Evaluation of the prognostic value of LMR, PLR, NLR, and dNLR in urothelial bladder cancer patients treated with radical cystectomy. Eur Rev Med Pharmacol Sci 2018; 22:3027-3037
12. Bhatti I, Peacock O, Lloyd G, Larvin M, Hall RI. Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: neutrophil-lymphocyte versus platelet-lymphocyte ratio. Am J Surg 2010; 200:197-203

13. Zhou X, Du Y, Huang Z, Xu J, Qiu T, Wang J, Wang T, Zhu W, Liu P. Prognostic value of PLR in various cancers: a meta-analysis. PLoS One 2014; 9:e101119

14. Alexandrakis MG, Passam FH, Moschandrea IA, Christophoridou AV, Pappa CA, Couloucheri SA, Kyriakou DS. Levels of serum cytokines and acute phase proteins in patients with essential and cancer-related thrombocytosis. Am J Clin Oncol 2003; 26:135-140

15. Contursi A, Grande R, Dovizio M, Bruno A, Fullone R, Patrignani P. Platelets in cancer development and diagnosis. Biochem Soc Trans 2018; 46:1517-1527

16. Spolverato G, Maqsood H, Kim Y, Margonis G, Luo T, Ejaz A, Pawlik TM. Neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after resection for hepatopancreatobiliary malignancies. J Surg Oncol 2015; 111:868-874

17. Wang X, Su S, Guo Y. The clinical use of the platelet to lymphocyte ratio and lymphocyte to monocyte ratio as prognostic factors in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 2017; 8:84506-84514

18. Yang T, Zhu J, Zhao L, Mai K, Ye J, Huang S, Zhao Y. Lymphocyte to monocyte ratio and neutrophil to lymphocyte ratio are superior inflammation-based predictors of recurrence in patients with hepatocellular carcinoma after hepatic resection. J Surg Oncol 2017; 115:718-728

19. Gaitanidis A, Wiseman D, El Lakis M, Nilubol N, Kebebew E, Patel D. Preoperative systemic inflammatory markers are prognostic indicators in recurrent adrenocortical carcinoma. J Surg Oncol 2019; 120:1450-1455

20. Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell 2017; 32:282-293

21. Chan JC, Chan DL, Diakos CI, Engel A, Pavlakis N, Gill A, Clarke SJ. The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. Ann Surg 2017; 265:539-546

22. Watt DG, Proctor MJ, Park JH, Horgan PG, McMillan DC. The Neutrophil-Platelet Score (NPS) Predicts Survival in Primary Operable Colorectal Cancer and a Variety of Common Cancers. PLoS One 2015; 10:e0142159
23. Liang R, Li J, Tang X, Liu Y. The prognostic role of preoperative systemic immune-inflammation index and albumin/globulin ratio in patients with newly diagnosed high-grade glioma. Clin Neurol Neurosurg 2019; 184:105397

24. Yang T, Mao P, Chen X, Niu X, Xu G, Bai X, Xie W. Inflammatory biomarkers in prognostic analysis for patients with glioma and the establishment of a nomogram. Oncol Lett 2019; 17:2516-2522

25. Zhou B, Zhan C, Xiang J, Ding Y, Yan S. Clinical significance of the preoperative main pancreatic duct dilation and neutrophil-to-lymphocyte ratio in pancreatic neuroendocrine tumors (PNETs) of the head after curative resection. BMC Endocr Disord 2019; 19:123

26. Wang PF, Meng Z, Song HW, Yao K, Duan ZJ, Yu CJ, Li SW, Yan CX. Preoperative Changes in Hematological Markers and Predictors of Glioma Grade and Survival. Front Pharmacol 2018; 9:886

27. Chen W, Wei T, Li Z, Gong R, Lei J, Zhu J, Huang T. Association of the Preoperative Inflammation-Based Scores with TNM Stage and Recurrence in Patients with Papillary Thyroid Carcinoma: A Retrospective, Multicenter Analysis. Cancer Manag Res 2020; 12:1809-1818

28. Lin M, Hu T, Yan L, Xiao D, Zhao H, Yan P. Can Systemic Inflammatory Markers Be Used to Predict the Pathological Grade of Meningioma Before Surgery? World Neurosurg 2019; 127:e677-e684

29. Wang DP, Kang K, Lin Q, Hai J. Prognostic Significance of Preoperative Systemic Cellular Inflammatory Markers in Gliomas: A Systematic Review and Meta-Analysis. Clin Transl Sci 2020; 13:179-188

30. Liu CL, Lee JJ, Liu TP, Chang YC, Hsu YC, Cheng SP. Blood neutrophil-to-lymphocyte ratio correlates with tumor size in patients with differentiated thyroid cancer. J Surg Oncol 2013; 107:493-497

31. Ozmen S, Timur O, Calik I, Altinkaynak K, Simsek E, Gozcu H, Arslan A, Carlioglu A. Neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) may be superior to C-reactive protein (CRP) for predicting the occurrence of differentiated thyroid cancer. Endocr Regul 2017; 51:131-136

32. Luo G, Liu C, Cheng H, Jin K, Guo M, Lu Y, Long J, Xu J, Ni Q, Chen J, Yu X. Neutrophil-lymphocyte ratio predicts survival in pancreatic neuroendocrine tumors. Oncol Lett 2017; 13:2454-2458

33. McDermott SM, Saunders ND, Schneider EB, Strosberg D, Onesti J, Dillhoff M, Schmidt CR, Shirley LA. Neutrophil Lymphocyte Ratio and Transarterial Chemoembolization in Neuroendocrine Tumor Metastases. J Surg Res 2018; 232:369-375
34. Okui M, Yamamichi T, Asakawa A, Harada M, Saito M, Horio H. Prognostic significance of neutrophil-lymphocyte ratios in large cell neuroendocrine carcinoma. Gen Thorac Cardiovasc Surg 2017; 65:633-639

35. Salman T, Kazaz SN, Varol U, Oflazoglu U, Unek IT, Kucukzeybek Y, Alacacioglu A, Atag E, Semiz HS, Cengiz H, Oztop I, Tarhan MO. Prognostic Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Patients with Neuroendocrine Tumors: An Izmir Oncology Group Study. Chemotherapy 2016; 61:281-286

36. Zhang J, He M, Liu Z, Song Y, Wang Y, Liang R, Chen H, Xu J. Impact of neutrophil-lymphocyte ratio on long-term outcome in patients with craniopharyngioma. Medicine (Baltimore) 2018; 97:e12375

37. Wells SA, Jr., Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG, American Thyroid Association Guidelines Task Force on Medullary Thyroid C. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25:567-610

38. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26:1-133

39. Yapa S, Mulla O, Green V, England J, Greenman J. The Role of Chemokines in Thyroid Carcinoma. Thyroid 2017; 27:1347-1359

40. Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol 2010; 321:94-102

41. Liu JF, Ba L, Lv H, Lv D, Du JT, Jing XM, Yang NJ, Wang SX, Li C, Li XX. Association between neutrophil-to-lymphocyte ratio and differentiated thyroid cancer: a meta-analysis. Sci Rep 2016; 6:38551

42. Sertoglu E, Kayadibi H, Uyanik M. Accurate use of neutrophil to lymphocyte ratio in predicting prognosis of papillary thyroid carcinoma. World J Surg 2014; 38:3286-3287
43. Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20

44. Mould RC, van Vloten JP, AuYeung AWK, Karimi K, Bridle BW. Immune responses in the thyroid cancer microenvironment: making immunotherapy a possible mission. Endocr Relat Cancer 2017; 24:T311-T329

45. Nucera C. Targeting thyroid cancer microenvironment: basic research and clinical applications. Front Endocrinol (Lausanne) 2013; 4:167

46. Oczko-Wojciechowska M, Pfeifer A, Jarzab M, Swierniak M, Rusinek D, Tyszkiewicz T, Kowalska M, Chmielik E, Zembala-Nozynska E, Czarniecka A, Jarzab B, Krajewska J. Impact of the Tumor Microenvironment on the Gene Expression Profile in Papillary Thyroid Cancer. Pathobiology 2020; 87:143-154

47. Delys L, Detours V, Franc B, Thomas G, Bogdanova T, Tronko M, Libert F, Dumont JE, Maenhaut C. Gene expression and the biological phenotype of papillary thyroid carcinomas. Oncogene 2007; 26:7894-7903

48. Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M, Marchesi F, Allavena P, Greco A, Collini P, Pilotti S, Cassinelli G, Bressan P, Fugazzola L, Mantovani A, Pierotti MA. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A 2005; 102:14825-14830

49. Seretis C, Gourgiotis S, Gemenetzis G, Seretis F, Lagoudianakis E, Dimitrakopoulos G. The significance of neutrophil/lymphocyte ratio as a possible marker of underlying papillary microcarcinomas in thyroidal goiters: a pilot study. Am J Surg 2013; 205:691-696

50. Kim JY, Park T, Jeong SH, Jeong CY, Ju YT, Lee YJ, Hong SC, Ha WS, Choi SK, Jung EJ. Prognostic importance of baseline neutrophil to lymphocyte ratio in patients with advanced papillary thyroid carcinomas. Endocrine 2014; 46:526-531

51. Lang BH, Ng CP, Au KB, Wong KP, Wong KK, Wan KY. Does preoperative neutrophil lymphocyte ratio predict risk of recurrence and occult central nodal metastasis in papillary thyroid carcinoma? World J Surg 2014; 38:2605-2612

52. Cho JS, Park MH, Ryu YJ, Yoon JH. The neutrophil to lymphocyte ratio can discriminate anaplastic thyroid cancer against poorly or well differentiated cancer. Ann Surg Treat Res 2015; 88:187-192
53. Kim SM, Kim EH, Kim BH, Kim JH, Park SB, Nam YJ, Ahn KH, Oh MY, Kim WJ, Jeon YK, Kim SS, Kim YK, Kim JJ. Association of the Preoperative Neutrophil-to-lymphocyte Count Ratio and Platelet-to-Lymphocyte Count Ratio with Clinicopathological Characteristics in Patients with Papillary Thyroid Cancer. Endocrinol Metab (Seoul) 2015; 30:494-501

54. Kocer D, Karakukcu C, Karaman H, Gokay F, Bayram F. May the neutrophil/lymphocyte ratio be a predictor in the differentiation of different thyroid disorders? Asian Pac J Cancer Prev 2015; 16:3875-3879

55. Liu J, Du J, Fan J, Liu K, Zhang B, Wang S, Wang W, Wang Z, Cai Y, Li C, Yu T, Zhu G, Chen J, Li C. The Neutrophil-to-Lymphocyte Ratio Correlates with Age in Patients with Papillary Thyroid Carcinoma. ORL J Otorhinolaryngol Relat Spec 2015; 77:109-116

56. Demir Y, Ucler R, Surucu E, Turan M, Balli Z, Sengoz T. Temporary changes in neutrophil-to-lymphocyte, platelet-to-lymphocyte ratios, and mean platelet volume reflecting the inflammatory process after radioiodine therapy. Nucl Med Commun 2016; 37:393-398

57. Gong W, Yang S, Yang X, Guo F. Blood preoperative neutrophil-to-lymphocyte ratio is correlated with TNM stage in patients with papillary thyroid cancer. Clinics (Sao Paulo) 2016; 71:311-314

58. Yaylaci S, Tosun O, Sahin O, Genc AB, Aydin E, Demiral G, Karahalil F, Olt S, Ergenc H, Varim C. Lack of Variation in Inflammatory Hematological Parameters between Benign Nodular Goiter and Papillary Thyroid Cancer. Asian Pac J Cancer Prev 2016; 17:2321-2323

59. Machairas N, Kostakis ID, Prodromidou A, Stamopoulo P, Feretis T, Garoufalia Z, Damaskos C, Tsourouflis G, Kouraklis G. Trends in white blood cell and platelet indices in a comparison of patients with papillary thyroid carcinoma and multinodular goiter do not permit differentiation between the conditions. Endocr Res 2017; 42:311-317

60. Manatakis DK, Tseleni-Balafouta S, Balalis D, Soulou VN, Korkolis DP, Sakorafas GH, Plataniotis G, Gontikakis E. Association of Baseline Neutrophil-to-Lymphocyte Ratio with Clinicopathological Characteristics of Papillary Thyroid Carcinoma. Int J Endocrinol 2017; 2017:8471235

61. Lee F, Yang PS, Chien MN, Lee JJ, Leung CH, Cheng SP. An Increased Neutrophil-to-Lymphocyte Ratio Predicts Incomplete Response to Therapy in Differentiated Thyroid Cancer. Int J Med Sci 2018; 15:1757-1763

62. Manatakis DK, Tseleni-Balafouta S, Tzelves L, Balalis D, Tzortzopoulou A, Korkolis DP, Sakorafas GH, Gontikakis E, Plataniotis G. Diagnostic Accuracy of Preoperative Neutrophil-to-Lymphocyte and
Platelet-to-Lymphocyte Ratios in Detecting Occult Papillary Thyroid Microcarcinomas in Benign Multinodular Goitres. J Thyroid Res 2018; 2018:3470429

63. Wen W, Wu P, Li J, Wang H, Sun J, Chen H. Predictive values of the selected inflammatory index in elderly patients with papillary thyroid cancer. J Transl Med 2018; 16:261

64. Ari A, Gunver F. Comparison of neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in patients with thyroiditis and papillary tumors. J Int Med Res 2019;300060519838392

65. Ceylan Y, Kumanlioglu K, Oral A, Ertan Y, Ozcan Z. The Correlation of Clinicopathological Findings and Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in Papillary Thyroid Carcinoma. Mol Imaging Radionucl Ther 2019; 28:15-20

66. Kutluturk F, Gul SS, Sahin S, Tasiyurt T. Comparison of Mean Platelet Volume, Platelet Count, Neutrophil/ Lymphocyte Ratio and Platelet/Lymphocyte Ratio in the Euthyroid, Overt Hypothyroid and Subclinical Hyperthyroid Phases of Papillary Thyroid Carcinoma. Endocr Metab Immune Disord Drug Targets 2019; 19:859-865

67. Lee KH, Seok EY, Kim EY, Yun JS, Park YL, Park CH. Different prognostic values of individual hematologic parameters in papillary thyroid cancer due to age-related changes in immunity. Ann Surg Treat Res 2019; 96:70-77

68. Sit M, Aktas G, Erkol H, Yaman S, Keyif F, Savli H. Neutrophil to Lymphocyte Ratio is Useful in Differentiation of Malign and Benign Thyroid Nodules. P R Health Sci J 2019; 38:60-63

69. Song L, Zhu J, Li Z, Wei T, Gong R, Lei J. The prognostic value of the lymphocyte-to-monocyte ratio for high-risk papillary thyroid carcinoma. Cancer Manag Res 2019; 11:8451-8462

70. Ahn J, Song E, Kim WG, Kim TY, Kim WB, Shong YK, Jeon MJ. Prognostic role of the lymphocyte-to-monocyte ratio for clinical outcomes of patients with progressive radioiodine-refractory differentiated thyroid carcinoma treated by sorafenib. Clin Endocrinol (Oxf) 2020; 92:71-76

71. Fukuda N, Wang X, Ohmoto A, Urasaki T, Sato Y, Nakano K, Nishizawa M, Yunokawa M, Ono M, Tomomatsu J, Takahashi S. Sequential Analysis of Neutrophil-to-lymphocyte Ratio for Differentiated Thyroid Cancer Patients Treated With Lenvatinib. In Vivo 2020; 34:709-714

72. Yokota M, Katoh H, Nishimiya H, Kikuchi M, Kosaka Y, Sengoku N, Watanabe M, Yamashita K. Lymphocyte-Monocyte Ratio Significantly Predicts Recurrence in Papillary Thyroid Cancer. J Surg Res 2020; 246:535-543
73. Jiang K, Lei J, Chen W, Gong Y, Luo H, Li Z, Gong R, Zhu J. Association of the preoperative neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios with lymph node metastasis and recurrence in patients with medullary thyroid carcinoma. Medicine (Baltimore) 2016; 95:e5079

74. Jiang K, Lei J, Li C, Shu K, Li W, Zhang Y, Li Z, Gong R, Zhu J. Comparison of the prognostic values of selected inflammation based scores in patients with medullary thyroid carcinoma: A pilot study. J Surg Oncol 2017; 116:281-287

75. Xu N, Jian Y, Wang Y, Tian W. Evaluation of neutrophil-to-lymphocyte ratio and calcitonin concentration for predicting lymph node metastasis and distant metastasis in patients with medullary thyroid cancer. Mol Clin Oncol 2018; 9:629-634

76. Ahn J, Song E, Oh HS, Song DE, Kim WG, Kim TY, Kim WB, Shong YK, Jeon MJ. Low Lymphocyte-to-Monocyte Ratios Are Associated with Poor Overall Survival in Anaplastic Thyroid Carcinoma Patients. Thyroid 2019; 29:824-829

77. Yamazaki H, Sugino K, Matsuzaki K, Masaki C, Akaishi J, Hames K, Tomoda C, Suzuki A, Urano T, Ohkuwa K, Kitagawa W, Nagahama M, Masuda M, Ito K. Inflammatory biomarkers and dynamics of neutrophil-to-lymphocyte ratio in anaplastic thyroid carcinoma. Endocrine 2020;

78. Fukuda N, Toda K, Fujiwara YU, Wang X, Ohmoto A, Urasaki T, Hayashi N, Sato Y, Nakano K, Yunokawa M, Ono M, Tomomatsu J, Mitani H, Takahashi S. Neutrophil-to-Lymphocyte Ratio as a Prognostic Marker for Anaplastic Thyroid Cancer Treated With Lenvatinib. In Vivo 2020; 34:2859-2864

79. Kaiser UB, Jakubowiak A, Steinberger A, Chin WW. Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro. Endocrinology 1997; 138:1224-1231

80. Cives M, Pelle E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F. The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 2019; 109:83-99

81. Katz SC, Donkor C, Glasgow K, Pillarisetty VG, Gonen M, Espat NJ, Klimstra DS, D'Angelica MI, Allen PJ, Jarnagin W, Dematteo RP, Brennan MF, Tang LH. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases. HPB (Oxford) 2010; 12:674-683
82. Sato S, Tsuchikawa T, Nakamura T, Sato N, Tamoto E, Okamura K, Shichinohe T, Hirano S. Impact of the tumor microenvironment in predicting postoperative hepatic recurrence of pancreatic neuroendocrine tumors. Oncol Rep 2014; 32:2753-2759

83. Vikman S, Giandomenico V, Sommaggio R, Oberg K, Essand M, Totterman TH. CD8+ T cells against multiple tumor-associated antigens in peripheral blood of midgut carcinoid patients. Cancer Immunol Immunother 2008; 57:399-409

84. Wiese D, Kampe K, Waldmann J, Heverhagen AE, Bartsch DK, Fendrich V. C-Reactive Protein as a New Prognostic Factor for Survival in Patients With Pancreatic Neuroendocrine Neoplasia. J Clin Endocrinol Metab 2016; 101:937-944

85. Zhou W, Kuang T, Han X, Chen W, Xu X, Lou W, Wang D. Prognostic role of lymphocyte-to-monocyte ratio in pancreatic neuroendocrine neoplasms. Endocr Connect 2020;

86. Zhou Y, Li D, Lin Y, Yu M, Lu X, Jian Z, Na N, Hou B. Pretreatment hematologic markers as prognostic predictors of gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:2489-2496

87. Kaltenborn A, Matzke S, Kleine M, Krech T, Ramackers W, Vondran FW, Klempnauer J, Bektas H, Schrem H. Prediction of survival and tumor recurrence in patients undergoing surgery for pancreatic neuroendocrine neoplasms. J Surg Oncol 2016; 113:194-202

88. Yucel B, Babacan NA, Kacan T, Eren AA, Eren MF, Bahar S, Celasun MG, Seker MM, Hasbek Z. Survival analysis and prognostic factors for neuroendocrine tumors in Turkey. Asian Pac J Cancer Prev 2014; 14:6687-6692

89. Pozza A, Pauletti B, Scarpa M, Ruffolo C, Bassi N, Massani M. Prognostic role of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with midgut neuroendocrine tumors undergoing resective surgery. Int J Colorectal Dis 2019; 34:1849-1856

90. Black JRM, Atkinson SR, Singh A, Evans J, Sharma R. The Inflammation-Based Index Can Predict Response and Improve Patient Selection in NETs Treated With PRRT: A Pilot Study. J Clin Endocrinol Metab 2019; 104:285-292

91. Zou J, Li Q, Kou F, Zhu Y, Lu M, Li J, Lu Z, Shen L. Prognostic value of inflammation-based markers in advanced or metastatic neuroendocrine tumours. Curr Oncol 2019; 26:e30-e38
Cao LL, Lu J, Lin JX, Zheng CH, Li P, Xie JW, Wang JB, Chen QY, Lin M, Tu RH, Huang CM. A novel predictive model based on preoperative blood neutrophil-to-lymphocyte ratio for survival prognosis in patients with gastric neuroendocrine neoplasms. Oncotarget 2016; 7:42045-42058

Sakka N, Smith RA, Whelan P, Ghaneh P, Sutton R, Raraty M, Campbell F, Neoptolemos JP. A preoperative prognostic score for resected pancreatic and periampullary neuroendocrine tumours. Panreatology 2009; 9:670-676

Arima K, Okabe H, Hashimoto D, Chikamoto A, Nitta H, Higashi T, Kaida T, Yamamura K, Kitano Y, Komohara Y, Yamashita YI, Beppu T, Takeya M, Baba H. Neutrophil-to-lymphocyte ratio predicts metachronous liver metastasis of pancreatic neuroendocrine tumors. Int J Clin Oncol 2017; 22:734-739

Lupi I, Manetti L, Catargli P, Menicagli M, Cosottini M, Iannelli A, Acerbi G, Bevilacqua G, Bogazzi F, Martino E. Tumor infiltrating lymphocytes but not serum pituitary antibodies are associated with poor clinical outcome after surgery in patients with pituitary adenoma. J Clin Endocrinol Metab 2010; 95:289-296

Tong Z, Liu L, Zheng Y, Jiang W, Zhao P, Fang W, Wang W. Predictive value of preoperative peripheral blood neutrophil/lymphocyte ratio for lymph node metastasis in patients of resectable pancreatic neuroendocrine tumors: a nomogram-based study. World J Surg Oncol 2017; 15:108

Zhou B, Zhan C, Wu J, Liu J, Zhou J, Zheng S. Prognostic Significance of Preoperative Neutrophil-to-Lymphocyte Ratio in Surgically Resective Pancreatic Neuroendocrine Tumors. Med Sci Monit 2017; 23:5574-5588

Zhou B, Zhan C, Wu J, Liu J, Zhou J, Zheng S. Prognostic significance of preoperative gamma-glutamyltransferase to lymphocyte ratio index in nonfunctional pancreatic neuroendocrine tumors after curative resection. Sci Rep 2017; 7:13372

Gaitanidis A, Patel D, Nilubol N, Tiros H, Sadowski S, Kebebew E. Markers of Systemic Inflammatory Response are Prognostic Factors in Patients with Pancreatic Neuroendocrine Tumors (PNETs): A Prospective Analysis. Ann Surg Oncol 2018; 25:122-130

Harimoto N, Hoshino K, Muranushi R, Hagiwara K, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Tanaka H, Watanabe A, Kubo N, Araki K, Hosouchi Y, Suzuki H, Arakawa K, Hirai K, Fukazawa T, Ikota H, Shirabe K. Prognostic significance of neutrophil-lymphocyte ratio in resectable pancreatic neuroendocrine tumors with special reference to tumor-associated macrophages. Panreatology 2019; 19:897-902
101. Panni RZ, Lopez-Aguiar AG, Liu J, Poultides GA, Rocha FG, Hawkins WG, Strasberg SM, Trikalinos NA, Maithel S, Fields RC, and other members of U-N. Association of preoperative monocyte-to-lymphocyte and neutrophil-to-lymphocyte ratio with recurrence-free and overall survival after resection of pancreatic neuroendocrine tumors (US-NETSG). J Surg Oncol 2019; 120:632-638

102. Shi M, Zhao W, Zhou F, Chen H, Tang L, Su B, Zhang J. Neutrophil or platelet-to-lymphocyte ratios in blood are associated with poor prognosis of pulmonary large cell neuroendocrine carcinoma. Transl Lung Cancer Res 2020; 9:45-54

103. Cao LL, Lu J, Lin JX, Zheng CH, Li P, Xie JW, Wang JB, Chen QY, Lin M, Tu RH, Huang CM. Nomogram based on tumor-associated neutrophil-to-lymphocyte ratio to predict survival of patients with gastric neuroendocrine neoplasms. World J Gastroenterol 2017; 23:8376-8386

104. Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, Kos-Kudla B, Kwekkeboom D, Rindi G, Kloppel G, Reed N, Kianmanesh R, Jensen RT, Vienna Consensus Conference p. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016; 103:153-171

105. Ito T, Lee L, Hijioka M, Kawabe K, Kato M, Nakamura K, Ueda K, Ohtsuka T, Igarashi H. The up-to-date review of epidemiological pancreatic neuroendocrine tumors in Japan. J Hepatobiliary Pancreat Sci 2015; 22:574-577

106. Zeren S, Yaylak F, Ozbay I, Bayhan Z. Relationship Between the Neutrophil to Lymphocyte Ratio and Parathyroid Adenoma Size in Patients With Primary Hyperparathyroidism. Int Surg 2015; 100:1185-1189

107. Cheng SP, Liu CL, Liu TP, Hsu YC, Lee JJ. Association between parathyroid hormone levels and inflammatory markers among US adults. Mediators Inflamm 2014; 2014:709024

108. Toraman A, Aras F, Hekimsoy Z, Kursat S. Is There a Relationship between Parathyroid Hormone and Neutrophil Lymphocyte Ratio or Platelet Lymphocyte Ratio? Acta Endocrinol (Buchar) 2019; -5:96-101

109. Lam HB, Yang PS, Chien MN, Lee JJ, Chao LF, Cheng SP. Association between neutrophil-to-lymphocyte ratio and parathyroid hormone in patients with primary hyperparathyroidism. Arch Med Sci 2019; 15:880-886
110. Yang PS, Liu CL, Liu TP, Chen HH, Wu CJ, Cheng SP. Parathyroidectomy decreases neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios. J Surg Res 2018; 224:169-175

111. Kritchevsky SB, Tooze JA, Neiberg RH, Schwartz GG, Hausman DB, Johnson MA, Bauer DC, Cauley JA, Shea MK, Cawthon PM, Harris TB, Rubin SM, Tylavsky FA, Houston DK, Health ABCS. 25-Hydroxyvitamin D, parathyroid hormone, and mortality in black and white older adults: the health ABC study. J Clin Endocrinol Metab 2012; 97:4156-4165

112. van Ballegooijen AJ, Reinders I, Visser M, Dekker JM, Nijpels G, Stehouwer CD, Pilz S, Brouwer IA. Serum parathyroid hormone in relation to all-cause and cardiovascular mortality: the Hoorn study. J Clin Endocrinol Metab 2013; 98:E638-645

113. Cawthon PM, Parimi N, Barrett-Connor E, Laughlin GA, Ensrud KE, Hoffman AR, Shikany JM, Cauley JA, Lane NE, Bauer DC, Orwoll ES, Cummings SR. Osteoporotic Fractures in Men Research G. Serum 25-hydroxyvitamin D, parathyroid hormone, and mortality in older men. J Clin Endocrinol Metab 2010; 95:4625-4634

114. Hagstrom E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundstrom J, Melhus H, Held C, Lind L, Michaelsson K, Arnlov J. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 2009; 119:2765-2771

115. Hjelmesaeth J, Hofso D, Aasheim ET, Jenssen T, Moan J, Hager H, Roislien J, Bollerslev J. Parathyroid hormone, but not vitamin D, is associated with the metabolic syndrome in morbidly obese women and men: a cross-sectional study. Cardiovasc Diabetol 2009; 8:7

116. Alemzadeh R, Kichler J. Parathyroid hormone is associated with biomarkers of insulin resistance and inflammation, independent of vitamin D status, in obese adolescents. Metab Syndr Relat Disord 2012; 10:422-429

117. Verheyen N, Meinitzer A, Grubler MR, Ablasser K, Kolesnik E, Fahrleitner-Pammer A, Belyavskiy E, Trummer C, Schwetz V, Pieske-Kraigher E, Voelkl J, Alesutan I, Catena C, Sechi LA, Brussee H, Lewinski DV, Marz W, Pieske B, Pilz S, Tomaszitz A. Low-grade inflammation and tryptophan-kynurenine pathway activation are associated with adverse cardiac remodeling in primary hyperparathyroidism: the EPATH trial. Clin Chem Lab Med 2017; 55:1034-1042

118. Walker MD, Fleischer J, Rundek T, McMahon DJ, Homma S, Sacco R, Silverberg SJ. Carotid vascular abnormalities in primary hyperparathyroidism. J Clin Endocrinol Metab 2009; 94:3849-3856
119. Caron NR, Pasieka JL. What symptom improvement can be expected after operation for primary hyperparathyroidism? World J Surg 2009; 33:2244-2255

120. Christensen MH, Dankel SN, Nordbo Y, Varhaug JE, Almas B, Lien EA, Mellgren G. Primary hyperparathyroidism influences the expression of inflammatory and metabolic genes in adipose tissue. PLoS One 2011; 6:e20481

121. Lutfioglu M, Sakallioglu U, Sakallioglu EE, Diraman E, Ciftci G, Tutkun F. Dietary-induced hyperparathyroidism affects serum and gingival proinflammatory cytokine levels in rats. J Periodontol 2010; 81:150-157

122. Kosch M, Hausberg M, Vormbrock K, Kisters K, Gabriels G, Rahn KH, Barenbrock M. Impaired flow-mediated vasodilation of the brachial artery in patients with primary hyperparathyroidism improves after parathyroidectomy. Cardiovasc Res 2000; 47:813-818

123. Kosch M, Hausberg M, Vormbrock K, Kisters K, Rahn KH, Barenbrock M. Studies on flow-mediated vasodilation and intima-media thickness of the brachial artery in patients with primary hyperparathyroidism. Am J Hypertens 2000; 13:759-764

124. Yao H, Miura Y, Yoshioka S, Miura M, Hayashi Y, Tamura A, Iwasa M, Sato A, Hishita T, Higashi Y, Kaneko H, Ashihara E, Ichinohe T, Hirai H, Maekawa T. Parathyroid hormone enhances hematopoietic expansion via upregulation of cadherin-11 in bone marrow mesenchymal stromal cells. Stem Cells 2014; 32:2245-2255

125. Bagante F, Tran TB, Postlewait LM, Maithel SK, Wang TS, Evans DB, Hatzaras I, Shenoy R, Phay JE, Keplinger K, Fields RC, Jin LX, Weber SM, Salem A, Sicklick JK, Gad S, Yopp AC, Mansour JC, Duh QY, Seiser N, Solorzano CC, Kiernan CM, Votanopoulos KI, Levine EA, Poultsides GA, Pawlik TM. Neutrophil-lymphocyte and platelet-lymphocyte ratio as predictors of disease specific survival after resection of adrenocortical carcinoma. J Surg Oncol 2015; 112:164-172

126. Mochizuki T, Kawahara T, Takamoto D, Makiyama K, Hattori Y, Teranishi JI, Miyoshi Y, Yamura Y, Yao M, Uemura H. The neutrophil-to-lymphocyte ratio (NLR) predicts adrenocortical carcinoma and is correlated with the prognosis. BMC Urol 2017; 17:49

127. Bozan N, Kocak OF, Dinc ME, Demir CY, Turan M, Kiroglu AF. Mean Platelet Volume, Red Cell Distribution Width, and Neutrophil-to-Lymphocyte Ratio Before and After Surgery in Patients With Carotid Body Tumors. J Craniofac Surg 2017; 28:e649-e653
128. Marques P, de Vries F, Dekkers OM, van Furth WR, Korbonits M, Biermasz NR, Pereira AM. Pre-operative serum inflammation-based scores in patients with pituitary adenomas. Pituitary 2020;

129. Tsagarakis S, Kontogeorgos G, Kovacs K. The role of cytokines in the normal and neoplastic pituitary. Crit Rev Oncol Hematol 1998; 28:73-90

130. Colon-Echevarria CB, Lamboy-Caraballo R, Aquino-Acevedo AN, Armaiz-Pena GN. Neuroendocrine Regulation of Tumor-Associated Immune Cells. Front Oncol 2019; 9:1077

131. Dorshkind K, Horseman ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 2000; 21:292-312

132. Jurberg AD, Cotta-de-Almeida V, Temerozo JR, Savino W, Bou-Habib DC, Riederer I. Neuroendocrine Control of Macrophage Development and Function. Front Immunol 2018; 9:1440

133. Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev 2018; 286:120-136

134. Lei YY, Li YT, Hu QL, Wang J, Sui AX. Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: a systematic review and meta-analysis. World J Surg Oncol 2019; 17:152
Figures and Tables (with legends):

Figure 1: Overview of the main study findings regarding each serum inflammation-based scores per endocrine tumor type

In this figure are represented only the main findings reported in each of the published studies investigating the role of different serum inflammation-based scores per endocrine tumor type in terms of predicting aggressive clinico-pathological features or poorer clinical outcomes. The superscript numbers correspond to the references for each one of these studies (further details of each study are shown in Tables 1-3). GPS, Glasgow Prognostic Score; HSPI, High-Sensitivity Inflammation-based Prognostic Index; LMR, Lymphocyte-to-Monocyte Ratio; MLR, Monocyte-to-Lymphocyte Ratio; NLR, Neutrophil-to-Lymphocyte Ratio; NPS, Neutrophil-Platelet Score; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutrition Index; PTH, parathyroid hormone; SII, Systemic Inflammation Index.
Thyroid tumor type	Study (first author, year, reference)	Study population	Summary of the main findings of the study per serum inflammation-based score
Differentiated thyroid cancer	Liu 2013 (30)	159 DTC pts, 138 benign thyroid nodule pts	- Higher NLR was seen in pts with high than with intermediate (p=0.026) or low (p=0.037) ATA risk for recurrence
- Tumor size correlated with NLR (r=0.245; p=0.002), even when microcarcinomas were excluded from the analysis (r=0.255; p=0.009). No difference in preoperative NLR between DTC and benign thyroid nodule pts (1.94 vs 1.86; p=0.293) |
| | Seretis 2013 (49) | 26 thyroid cancer pts, 31 incidental microPTC pts, 26 goiter pts, 26 HCs | - Higher NLR was observed in pts with microPTC and thyroid cancer (3.0 and 3.4, respectively) than in those with goiter or HCs (1.9 and 1.8, respectively; p<0.001) |
| | Kim 2014 (50) | 542 PTC pts, 210 benign thyroid nodule pts | - 5-year disease-free survival was worse in PTC pts staged III/IV with \(\text{NLR} \geq 1.5\) (94.1% vs 99.3%; p=0.013); however, NLR had no prognostic value in pts with PTC stages I/II
- Univariate analysis suggested NLR as independent prognostic factor for disease-free survival (HR=8.76, 95% CI 1.09-70.27; p=0.041)
- There were no difference in NLR between PTC pts and 210 pts with benign nodules (1.79±0.88 vs 1.74±0.84; p=0.504) |
| | Lang 2014 (51) | 191 PTC pts after thyroidectomy and central neck dissection | - NLR was not associated with disease-free survival or presence of central nodal metastasis, but a higher NLR correlated with tumor size (p=0.037) and older age at diagnosis (p<0.001) |
| | Cho 2015 (52) | 3364 PTC pts, 34 FTC pts, 15 MTC pts, 14 PDTC pts, 7ATC pts, 436 benign lesion pts | - Pts with NLR>1.57 had higher proportions of ATC (0.3% vs 0.1%) and PDTC (0.6% vs 0.1%), as well as higher rates of advanced stages T3/T4 (30.4% vs 26.5%; p=0.027) and cancer-specific death (1.2% vs 0.4%; p=0.027)
- NLR was able to discriminate between PTC (1.86±1.16), PDTC (2.13±0.76) and ATC (5.51±4.45; respectively p=0.035, p=0.002 and p=0.025), with optimal cut-off distinguishing PDTC and ATC estimated at 3.8 (none of the PDTC pts had a NLR>3.8) |
| | Kim 2015 (53) | 1066 female PTC pts after thyroidectomy | - Preoperative NLR was lower in pts aged ≥45 (1.52 vs 1.75; p=0.001) and in Hashimoto’s thyroiditis pts (1.52 vs 1.58; p=0.005)
- PLR was lower in pts aged ≥45 (123.60 vs 135.60 p<0.001) and in Hashimoto’s thyroiditis pts (119.48 vs 127.61; p=0.039)
- PLR was higher in pts with tumors >1cm (129.17 vs 124.41; p=0.021) |
| Study (Year) | Controls | Pts | Results |
|-------------|----------|-----|---------|
| Kocer 2015 (54) | 40 PTC pts, 25 PTC with thyroiditis pts, 70 multinodular goiter pts, 97 thyroiditis pts | - Pts with higher PLR had increased incidence of lateral lymph node metastasis (p=0.018) |
| Liu 2015 (55) | 321 PTC pts, 83 adenoma pts, 439 goiter pts | - PTC pts had higher NLR than pts with thyroid adenoma and nodular goiter (2.28 vs 1.98 vs 1.98; p=0.036) |
| Demir 2016 (56) | 57 RAI treated DTC patients, 37 non-RAI DTC pts, 37 HCs | - An increase in NLR and PLR was observed two months after RAI treatment (p=0.021 and p=0.001, respectively), which were lower at 6 months after RAI |
| Gong 2016 (57) | 161 PTC pts | - Pts with high preoperative NLR (≥2) more often had lymph node metastasis (52% vs 25%; p<0.001), larger tumors (1.30±0.88 vs 0.75±0.46; p<0.001) and multifocal tumors (35% vs 19%; p=0.035) |
| Liu 2016 (41) | 4617 DTC pts, 1666 thyroid nodule pts | - In this meta-analysis, serum NLR of DTC pts was similar to benign thyroid nodule pts, and there was no difference in the NLR between pts aged<45 and ≥45 years |
| Yaylaci 2016 (58) | 41 PTC pts, 38 goiter pts | - No differences between regarding preoperative NLR between PTC and goiter pts (1.9±0.7 vs 1.8±0.9; p=0.750) |
| Machairas 2017 (59) | 89 PTC pts and 139 multinodular hyperplasia pts after thyroidectomy | - No differences in NLR and PLR between pts with malignant and benign thyroid lesions (2.2±1.0 vs 2.2±1.1, and 122±44 vs 128±49, respectively) |

Note: NLR = neutrophil to lymphocyte ratio; PLR = platelet to lymphocyte ratio; PNR = platelet to neutrophil ratio; RAI = radioactive iodine; DTC = differentiated thyroid cancer; HCs = healthy controls; PTC = papillary thyroid cancer; TNM = tumor, node, metastasis.
Author(s)	Year	Dataset	Findings
Manatakis et al.	2017 (60)	205 PTC pts	- NLR was higher in cases with extrathyroidal invasion (2.74±1.24 vs 2.39±0.96; p=0.040), multifocality (2.65±1.08 vs 2.29±0.96; p=0.010) and lymph node metastasis (3.12±1.07 vs 2.41±1.02; p=0.030) - Pts with NLR>2.17 more often had lymph node metastasis (11.7% vs 2.9%; p=0.030)
Ozmen et al.	2017 (31)	51 PTC pts, 42 microPTC pts, 31 FTC pts, 50 HCs	- Preoperative NLR correlated with tumor diameter (r=0.219; p=0.030), age (r=0.234; p=0.002) and 6-month postoperative thyroglobulin levels (r=0.261; p=0.010) - Mean NLR and PLR were similar in pts with PTC (3.10±1.85 and 154.41±76.49), microPTC (2.85±1.39 and 141.23±63.44) and FTC (3.55±2.91 and 163.13±88.14), but generally higher than in HCs (1.62±0.56 and 103.12±33.75)
Lee et al.	2018 (61)	151 DTC pts, 87 benign thyroid lesion pts	- NLR decreased after PTC treatment (1.96 vs 1.78 vs; p=0.037); the NLR decrease was more prominent in those with low risk of recurrence (p=0.017) and excellent treatment response (p<0.001) - PTC pts with a structural incomplete response had an NLR increase during follow-up (p=0.012) - Incomplete response to therapy was independently associated with increased NLR (OR=18.66, 95%CI 3.26-106.84; p=0.001) - No differences in preoperative NLR between pts with benign or malignant lesions (1.93 vs 1.96; p=0.633)
Manatakis et al.	2018 (62)	397 total thyroidectomy pts	- Preoperative NLR was higher in PTC and in microPTC pts when compared to benign thyroid disease pts (p=0.026), however it scored low for diagnostic accuracy (approximately 45%) - PLR did not differ among pts with carcinomas and microcarcinomas compared to pts with benign thyroid disease
Wen et al.	2018 (63)	558 PTC pts aged ≥55 years	- Elevated LMR was prognostic for advanced TNM stage (AUC of 0.680; p=0.040) - LMR≥5.45 was an independent factor for advanced TNM stage (OR=7.306; p=0.036) - High LMR was not associated with lymph node metastasis or coexistence of Hashimoto’s thyroiditis - No value for LMR in predicting advanced TNM, lymph node metastasis or coexistence of Hashimoto’s thyroiditis
Ari et al.	2019 (64)	50 PTC pts 50 thyroiditis pts, 46 HCs	- NLR was higher in thyroiditis (2.42±1.40; p=0.017) and non-significantly higher in PTC pts (2.14±0.90) in comparison to HCs (1.89±0.70); but, there were no differences between PTC and thyroiditis pts - PLR was higher in thyroiditis (139.1±52.0; p<0.001) and PTC pts (136.7±57.0; p=0.003) in comparison to HCs (107.0±22.3); but there were no differences between PTC and thyroiditis pts
Author	Year	Sample Size	Results
-----------	--------	-------------	---------
Ceylan 2019 (65)	201 PTC pts	- Pts with NLR≥1.92 had larger tumors (2.79±1.48 vs 2.24±1.13; p=0.002) and extrathyroidal extension (78.6% vs 21.4%; p=0.028)	
- No association between high NLR and age, capsule invasion, surgical margin positivity, multifocality and lymph node metastasis
- No association between high PLR and clinicopathological features |
| Kutluturk 2019 (66) | 58 PTC pts | - No differences in NLR and PLR between PTC pts before surgery, before RAI treatment and 6 months after RAI were observed |
| Lee 2019 (67) | 1921 pts after thyroidectomy | - NLR>2.1 was an independent predictor for recurrence (HR=2.96, 95%CI 1.08-14.73; p=0.035) in pts aged ≥45 years
- NLR was lower in PTC pts aged≥45 years (1.7±0.9 vs 1.9±0.9; p<0.001)
- PLR>164.24 was an independent predictor for recurrence (HR=3.08, 95%CI 1.26-7.52; p=0.014) in pts<45 years
- PLR was lower in PTC pts aged≥45 years (128.1±45.7 vs 146.7±48.5; p=0.019)
- There was no association between high LMR and recurrence
- LMR was higher in PTC pts aged≥45 years (6.5±2.5 vs 5.9±2.2; p<0.001) |
| Sit 2019 (68) | Malignant and benign thyroid nodule pts, HCs | - NLR of the malignant nodule subgroup (2.1±0.9) was significantly higher than both benign nodule (1.7±0.9) and HC (1.7±0.6) subgroups |
| Song 2019 (69) | 224 high-risk PTC pts | - LMR<4 correlated with larger tumor (p=0.001), multifocality (p=0.001), advanced N stage (p=0.011) and distant metastasis (p=0.003)
- LMR was an independent prognostic factor for overall and disease-free survival, with LMR<4 being associated with decreased overall and disease-free survival
- LMR of RAI refractory cases was lower than that of the non-RAI refraction cases (4.5±2.4 vs 6.0±2.1; p<0.001) |
| Ahn 2020 (70) | 40 pts with progressive RAI-refractory DTC treated with sorafenib | - LMR<4 was an independent risk factor for all-cause mortality (HR=2.64, 95%CI 1.04-6.72; p=0.04) and for progression-free survival (HR=2.69, 95%CI 1.02-7.04; p=0.045)
- The progression-free survival (p=0.02) and overall survival (p=0.02) curves differed based on low vs high LMR, with more favourable outcomes in pts with LMR≥4; median progression-free survival of low vs high LMR groups were 10.4 and 29 months
- No differences in disease response or disease control duration to sorafenib between pts with low vs high LMR |
| Chen 2020 (27) | 1873 PTC pts | - Decreased PNI was predictive of advanced T stage (AUC of 0.542, 95%CI 0.512-0.572; p=0.01), with best cut-off 54.1 |
- **PNI** ≤53.1 was an independent factor predicting recurrence (OR=1.511, 95%CI 1.136-2.009; p=0.01)
- Decreased **NLR** was predictive of recurrence (AUC of 0.541, 95%CI 0.500-0.582; p=0.04), with best cut-off value 1.6
- **NLR** ≤1.6 was independent factor predicting recurrence (OR=1.596, 95%CI 1.207-2.111; p=0.001)
- Increased **PLR** was predictive of advanced N stage (AUC of 0.530; 95%CI 0.503-0.557; p=0.030), with best cut-off 136.5

| **Fukuda 2020 (71)** | 33 progressive RAI-refractory DTC pts receiving lenvatinib | Overall survival was significantly shorter in pts with **NLR** ≥3 at the start of lenvatinib (12 vs 35 months)
- **NLR** decreased in pts that achieved best response to lenvatinib (p<0.001), and increased again upon disease progression (p<0.01) |
|----------------------|--|---|
| **Yokota 2020 (72)** | 570 PTC pts | Preoperative **LMR** <5 predicted recurrence (sensitivity 63.3% and specificity 68.7%); **LMR** was lower in pts with vs without recurrence (4.99±2.05 vs 6.37±2.3; p=0.002)
- **LMR** ≤5 was an independent factor predicting 10-year recurrence-free survival (p=0.022)
- Low **LMR** predicts recurrence in pts with advanced PTC including stage II (p=0.001) and III (p=0.035)
- No associations between low **LMR** and size, stage, extrathyroidal extension, multifocality, thyroglobulin levels or presence of chronic thyroiditis
- Pts with **NLR** ≥2 had a lower rate of 10-year recurrence-free survival in the univariate analysis (88.9% vs 95.6%; p=0.010), but not on the multivariate analysis
- No associations noted regarding preoperative **PLR** |
| **Medullary thyroid cancer** | **Cho 2015 (52)** | **NLR** was unable to discriminate between PTC or PDTC and MTC (2.00±0.82), but allowed distinction between MTC and ATC (p=0.026) |
| | 3364 PTC pts, 34 FTC pts, 15 MTC pts, 14 PDTC pts, 7ATC pts, 436 benign lesion pts | **NLR** was not an independent predictive factor for lymph node metastasis or recurrence
- **PLR** >105.3 was an independent predictor of lymph node metastasis (OR=4.782, 95%CI 1.4-16.7), and **PLR** >129.8 independently predicted recurrence (OR=3.838, 95%CI 1.1-13.5)
- **PLR** >142.1 (OR=3.452, 95%CI 1.0-11.8) was an independent predictor for lateral nodal compartment metastasis
- Pts with **NLR** >1.9 had higher rates of multifocality (p=0.001) and bilaterality (p=0.001), but not of other features |
| | **Jiang 2016 (73)** | 70 MTC pts | **NLR** was not an independent predictive factor for lymph node metastasis or recurrence
- **PLR** >105.3 was an independent predictor of lymph node metastasis (OR=4.782, 95%CI 1.4-16.7), and **PLR** >129.8 independently predicted recurrence (OR=3.838, 95%CI 1.1-13.5)
- **PLR** >142.1 (OR=3.452, 95%CI 1.0-11.8) was an independent predictor for lateral nodal compartment metastasis
- Pts with **NLR** >1.9 had higher rates of multifocality (p=0.001) and bilaterality (p=0.001), but not of other features |
| Study | N | Description |
|----------------------|------|---|
| Jiang 2017 (74) | 78 MTC pts | - Pts with PLR $>$ 102.5 had larger tumors ($p=0.031$), higher proportions of total and lateral lymph node metastasis ($p=0.019$ and $p=0.048$, respectively) and tended to have more recurrences ($p=0.088$)
- Increased preoperative PLR predicted lymph node metastasis (AUC: 0.644; $p=0.022$), capsule invasion (AUC of 0.666; $p=0.007$), advanced stage (AUC: 0.657; $p=0.011$) and recurrence (AUC: 0.655; $p=0.049$)
- PLR was a predictor for recurrence on Kaplan-Meier and Cox regression analysis, with an AUC of 0.703 (95%CI 0.589-0.801; $p=0.002$). Optimal cut-off predicting recurrence was 128.9; pts with a PLR $>$ 128.9 had lower disease-free survival
- Reduced PNI was predictive of recurrence (AUC of 0.655; $p=0.049$), with optimal cut-off estimated at 52.5
- No associations between NLR, dNLR and LMR and aggressive clinical features neither with poor outcomes |
| Xu 2018 (75) | 61 MTC pts | - Pts with lymph node and distant metastasis had higher NLR pts without metastasis (1.92 vs 1.69; $p=0.019$)
- Preoperative NLR was associated with lymph node and distant metastasis (OR=5.918, 95%CI 1.147-30.541; $p=0.034$), with best predictive cut-off NLR estimated at 1.784 (AUC of 0.717, sensitivity 68.3%, specificity 80%) |
| Lang 2014 (51) | 192 PTC pts, 192 goiter pts, 15 ATC pts | - ATC pts had higher NLR than PTC pts with lymph node metastasis (7.28±4.64 vs 2.74±2.32; $p<0.001$) |
| Cho 2015 (52) | 3364 PTC pts, 34 FTC pts, 15 MTC pts, 14 PDTC pts, 7 ATC pts, 436 benign lesion pts | - NLR was able to discriminate between PTC (1.86±1.16), PDTC (2.13±0.76) and ATC (5.51±4.45; respectively $p=0.035$, $p=0.002$ and $p=0.025$), with best cut-off distinguishing PDTC vs ATC being 3.8 (none of the PDTC pts exceeded NLR of 3.8) |
| Ahn 2019 (76) | 35 ATC pts | - Pts with LMR $<$ 4 had a higher proportion of cervical lymph node metastasis (95.7% vs 58.3%; $p=0.021$)
- Overall survival was lower in pts with LMR $<$ 4 (3.0 vs 9.5 months; $p=0.004$)
- Low LMR was an independent risk factor for all-cause mortality (HR=2.55; 95%CI 1.08-6.00; $p=0.002$) |
| Yamazaki 2020 (77) | 55 ATC pts | - No differences in overall survival according to the baseline NLR, PLR and LMR
- Preoperative NLR was lower than mean NLR at time of disease progression ($p<0.001$) |
Among pts with full blood count follow-up data, in pts with an increase of NLR>5.5 median overall survival was shorter (7.7 months (95%CI 5.2–12.1) vs 23.5 months (95%CI 13.9–not available); p<0.001).

Fukuda 2020 (78) 13 ATC pts treated with lenvatinib - Better disease control rate in lenvatinib-treated ATC pts with NLR<8 (89%) than in those with NLR≥8 (89% vs 25%; p=0.05).
- Progression-free and overall survival were longer in pts with NLR<8 than in pts with NLR≥8 (respectively, 4.0 vs 1.6 months, p<0.05; and 10.2 vs 3.8 months, p<0.05).

Table 1: Overview of the studies investigating the role of serum inflammation-based scores in thyroid tumors

Study	Pts	Intervention	Key Findings
Fukuda 2020 (78)	13 ATC pts treated with lenvatinib	- Better disease control rate in lenvatinib-treated ATC pts with NLR<8 (89%) than in those with NLR≥8 (89% vs 25%; p=0.05).	

- Progression-free and overall survival were longer in pts with NLR<8 than in pts with NLR≥8 (respectively, 4.0 vs 1.6 months, p<0.05; and 10.2 vs 3.8 months, p<0.05).

ATA, American Thyroid Association; ATC, anaplastic thyroid cancer; AUC, area under curve; CI, confidence interval; CRP, C-reactive protein; DTC, differentiated thyroid cancer; FTC, follicular thyroid cancer; HCs, healthy controls; HR, hazard ratio; IQR, interquartile ranges; LMR, lymphocyte-to-monocyte ratio; microPTC, papillary thyroid microcarcinoma; MLR, monocyte-to-lymphocyte ratio; MTC, medullary thyroid cancer; NLR, neutrophil-to-lymphocyte ratio; OR, odds ratio; PDTC, poorly differentiated thyroid cancer; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; PNR, platelet-to-neutrophil ratio; PTC, papillary thyroid cancer; pts, patients; RAI, radioactive iodine; ROC, receiver operative characteristic curve; TSH, thyroid-stimulating hormone.
Neuroendocrine tumors	Study (first author, year, reference)	Study population	Summary of the main findings of the study per serum inflammation-based score
NETs as a whole	Yucel 2014 (88)	52 pts	- NLR>5 was reported as a negative independent prognostic factor in terms of 3-year overall survival (HR=4.4, 95%CI 1.2-15.7; p=0.003)
(affecting different organs and in different stages)	Salman 2016 (35)	132 gastro-intestinal and pancreatic NET pts	- Pre-treatment NLR was higher for more advanced grades (p=0.0001) and stages (p=0.0001), with foregut NETs being associated with higher NLR
- NLR was higher in pancreatic NETs compared to gastroenteric NETs (3.3±0.9 vs 1.9±0.7; p=0.0001)
- NLR was higher in metastatic NETs comparing to non-metastatic cases (3.1±0.9 vs 1.8±0.7; p=0.0001)
- Negative correlation was observed between progression-free survival and NLR: pts with progression-free survival <12 months had higher pre-treatment NLR (3.5±0.8 vs 1.9±0.7; p=0.0001), and those with NLR>2.17 a lower progression-free survival (11.1±3.7 vs 22.2±6.5months; p=0.0001). NLR of 2.17 predicted progression-free survival of 11.5 months (AUC of 0.94; p<0.0001) with 98.5% sensitivity and 53.7% specificity
- Pre-treatment PLR was higher for more advanced grades (p=0.0001) and stages (p=0.0001), with foregut NETs being associated with higher PLR
- PLR was higher in pancreatic NETs comparing to gastroenteric NETs (303.1±91.2 vs 161.1±67.5; p=0.0001)
- PLR was higher in metastatic NETs comparing to non-metastatic cases (283.2±100.9 vs 154.2±58.0; p=0.0001)
- A negative correlation was observed between progression-free survival and PLR: pts with progression-free survival <12 months had higher pre-treatment PLR (331.5±75.0 vs 158.5±58.1; p=0.0001), and those with PLR>181.5 had a lower progression-free survival (11.2±4.1 vs 21.9±6.6 months; p=0.0001). A PLR of 181.5 predicted a progression-free survival of 12.5 months (AUC of 0.94; p<0.0001) with 98.5% sensitivity and 63.6% specificity |
| Zhou 2018 (86) | 724 gastro-entero-pancreatic NET pts | - In this meta-analysis, a high NLR was associated with a poor prognosis, in terms of overall survival (pooled HR=3.05, 95%CI 1.96-4.76; p<0.00001) and recurrence free-survival (pooled HR=3.30, 95%CI 2.04-5.32; p<0.00001) |
| Pozza 2019 (89) | 48 gastrointestinal NET pts (7 foregut, 35 midgut and 6) | - NLR was higher in pts with distant metastasis (p=0.04); NLR cut-off 2.63 predicted peritoneal metastasis with 100% specificity and 71% sensitivity (AUC of 0.81)
- NLR>2.63 was an independent predictor of survival (HR=4.71, 95%CI 1.18-18.80; p=0.02) |
| Metastatic NETs only | McDermott 2018 (33) | 262 pts that underwent transarterial chemoembolization | - Pre-treatment NLR was an independent predictor of survival (HR=1.481, 95%CI 1.040-2.109; p=0.030)
- The median overall survival of pts with pre-treatment NLR>4 was lower (21.1 vs 33.3 months; p=0.005) |
|----------------------|----------------------|--|--|
| Black 2019 (90) | 55 pts undergoing PRRT | - Baseline GPS>0 was associated with inferior progression-free (HR=14.2, 95%CI 5.25-38.5; p<0.001) and overall survival (HR=5.94, 95%CI 2.21-16.0; p<0.001)
- Baseline GPS>0 was an independent prognostic factor for progression-free survival (p=0.001)
- Persistently elevated GPS after 2 cycles of PRRT was associated with inferior progression-free survival (HR=3.07, 95%CI 1.38-6.82; p=0.01) and reduced overall survival (HR=5.06, 95%CI 1.94-13.2; p=0.001)
- Persistently elevated GPS after 3 or 4 cycles of PRRT was associated with reduced progression-free survival (HR=3.23, 95%CI 1.19-8.74; p=0.02) and reduced overall survival (HR=5.80, 95%CI 1.63-20.7; p=0.01)
- NLR and PLR did not predict overall or progression-free survival |
| Zou 2019 (91) | 135 pts | - Elevated HSPI was the single independent prognostic factor for worse overall survival (p=0.004)
- Elevated GPS and NLR were associated with poorer overall survival in univariate, but not multivariate analysis
- No association between elevated PLR or PNI with the overall survival was observed |
| Gastric NETs only | Cao 2016 (92) | 147 surgical pts 147 HCs | - NLR was higher in pts than in HCs (2.67±0.13 vs 1.52±0.05; p<0.001)
- Preoperative NLR>2.2 was an independent prognostic factor of recurrence-free (HR=2.751, 95%CI 1.572-4.813; p=0.001) and overall survival (HR=2.334, 95%CI 1.286-4.237; p=0.005)
- NLR was negatively correlated with the recurrence time (r=-0.451; p<0.001)
- Pts with NLR>2.20 had liver metastasis more often (55.7% vs 20.8%; p<0.001) |
| Sakka 2009 (93) | 54 pancreatic periampullary NET pts | - PLR>300 was an adverse prognostic factor for cumulative survival (HR=1.004, 95%CI 1.000-1.008; p=0.039)
- Stratification risk score with 4 criteria including PLR>300, age >60, alkaline phosphatase >125 U/L and alanine aminotransferase >35 U/L was proposed |
| Arima 2017 (94) | 58 surgically cured pts | - Higher preoperative NLR was observed in pts with higher grades (G3: 3.52±0.67 vs G2: 2.23±0.66 vs G1: 1.76±0.52; p=0.0001) and with larger tumors (p=0.0015)
- Overall and relapse-free survival of pts with NLR≥2.4 were shorter than those with NLR<2.4 (p=0.0481 and p<0.0001) |
| Study | Sample Size | Characteristics | Findings |
|---------------|-------------|-----------------|--|
| Luo 2017 | 165 pts | 147 nonfunctioning and 18 functioning pancreatic NETs | Preoperative NLR ≥2.4 predicted poor overall survival in the multivariate analysis (HR=3.60, 95% CI 1.33-9.71; p=0.011)
- Pts with NLR ≥2.4 had higher proportions of tumors >3cm (85.1% vs 57.6%; p=0.001), advanced stage III/IV (48.9% vs 29.7%; p=0.019) and advanced grade G2/G3 (71.1% vs 46%; p=0.003)
- NLR ≥2.4 tended to be associated with pancreatic NET functioning status (p=0.084) |
| Tong 2017 | 95 pts | 74 nonfunctioning and 21 functioning pancreatic NETs | Preoperative NLR correlated with advanced grade (p=0.015) and T stage (p=0.044), lymph node metastasis (p<0.001) and tumor thrombosis formation (p=0.002)
- NLR >2.056 was an independent prognostic factor for lymph node metastasis (HR=6.740, 95% CI 1.298-34.998; p=0.023)
- A nomogram to predict lymph node metastasis was proposed, incorporating NLR >2.056, but also T stage and grade
- Pts with NLR >1.40 had a lower recurrence-free survival (61.1±4.4 vs 63.8±2.9 months; p<0.05)
- No difference in mean NLR between functioning vs nonfunctioning pancreatic NET pts (2.049±0.874 vs 2.174±1.387; p=0.697) |
| Zhou 2017 | 172 pts | 131 nonfunctioning and 41 functioning pancreatic NETs | NLR was higher in pts than HCs (2.48±1.57 vs 1.55±0.45; p<0.001)
- NLR >2.31 was associated with advanced stage, grade and perineural invasion (p=0.011, p=0.003 and p=0.038, respectively)
- NLR >2.31 was an independent prognostic factor for overall survival (HR=4.471, 95% CI 1.531-13.054; p=0.006) and disease-free survival (HR=2.531, 95% CI 1.202-5.329; p=0.015)
- No difference in rates of functioning and nonfunctioning pancreatic NETs between pts with NLR >2.31 vs NLR ≤2.31 (p=0.724)
- PLR was higher in pts than HCs (133.39±58.71 vs 110.48±35.68; p<0.001)
- PLR >151.4 was associated with advanced tumor stage and grade (p=0.005 and p=0.045, respectively)
- PLR >151.4 was associated with decreased overall and disease-free survival in univariate analysis (p=0.003 and p=0.001, respectively), but not multivariate analysis
- No difference in rates of functioning and nonfunctioning pancreatic NETs between pts with PLR ≤151.4 vs PLR >151.4 (p=0.450)
- LMR had no prognostic value |
| Study (Year) | Sample Size | Description | Key Findings |
|-------------|-------------|-------------|--------------|
| Zhou 2017 | 101 pts | Surgically cured nonfunctioning pancreatic NET pts | - Pts with lymph node metastasis had higher preoperative NLR (p<0.001)
- NLR≥1.80 was an independent predictor factor for lymph node metastasis (HR=6.218, 95%CI 1.390-27.821; p=0.017)
- Pts with NLR≥1.80 had shorter disease-free survival in the univariate (p=0.007), but not on the multivariate analysis
- Pts with lymph node metastasis had higher preoperative PLR (p=0.025), but PLR had no prognostic value for nodal metastasis
- PLR≥168.25 was associated with lower disease-free survival (HR=2.310, 95%CI 1.134-4.708; p=0.021)
- Pts with lymph node metastasis had lower preoperative LMR (p=0.001), but LMR had no prognostic value for nodal metastasis |
| Gaitanidis 2018 | 97 pts (34 operated, 63 not operated) | | - NLR≥2.3 was an independent predictor of disease progression (HR=2.53, 95%CI 1.05-6.08; p=0.038)
- Higher NLR was seen in pts with larger tumors (<2cm: 2.28±1.62 vs 2-4cm: 2.74±1.56 vs >4cm: 7.24±12.14; p=0.008)
- In non-operated pts, PLR>160.9 was an independent predictor of worse progression-free survival (HR=5.86, 95%CI 1.27-27.08; p=0.023)
- Higher PLR was seen in pts with distant metastasis than in non-metastatic cases (193.83±125.76 vs 144.61±89.08; p=0.031)
- Among pts who underwent complete resection, LMR<3.46 was associated with a worse recurrence-free survival (HR=9.72, 95%CI 1.19-79.42; p=0.034)
- Lower LMR was observed in pts with distant metastasis than in non-metastatic cases (2.8±1.37 vs 4.93±4; p=0.006) |
| Harimoto 2019 | 55 pts (36 nonfunctioning and 19 functioning pancreatic NETs) | | - NLR≥3.41 was associated with higher Ki-67 (21.3±29.6% vs 2.3±2.6%; p<0.01), higher mitotic count (8.5±11.5 vs 1.5±3.0%; p<0.01), higher grades (p=0.02), and higher incidence of lymph node metastasis (42.8% vs 9.8%; p=0.01) and neural invasion (50.0% vs 14.6%; p=0.01)
- Recurrence-free survival of pts with NLR>3.41 was poorer, NLR was an independent risk factor for postoperative recurrence (HR=31.75, 95%CI 1.93-382.92; p=0.03)
- No difference in rates of functioning and nonfunctioning pancreatic NETs between pts with NLR<3.41 vs NLR≥3.41 (p=0.100) |
| Panni 2019 | 620 pts | | - NLR≥3.7 was an independent predictor of poorer overall survival (HR=2.04, 95%CI 1.20-3.46; p<0.01) and recurrence-free survival (HR=1.79, 95%CI 1.20-2.66; p<0.01)
- MLR had no predictive prognostic value for overall survival or recurrence-free survival |
| Zhou 2019 | 64 pts | | - Preoperative PD-NLR score correlated with tumor size (p=0.005), T stage (p=0.016), lymph node |

NLR: Neutrophil-to-Lymphocyte Ratio, PLR: Platelet-to-Lymphocyte Ratio, LMR: Lymphocyte-to-Monocyte Ratio, NLR: Neutrophil-to-Lymphocyte Ratio, PD: Preoperative.
(25) pts (48 nonfunctioning and 16 functioning pancreatic NETs)	metastasis (p=0.005), distant metastasis and perineural invasion (p=0.014). - Pts with nonfunctioning pancreatic NETs had increased preoperative PD-NLR scores (p=0.006) - Pts with higher PD-NLR score had poorer overall survival and disease-free survival, high PD-NLR score was an independent predictor for poor outcome (p<0.001)	
Zhou 2020 (85)	174 surgically cured pts (139 nonfunctioning and 35 functioning pancreatic NETs) - Pts with NLR>1.9 had a shorter relapse-free (p=0.041) and poorer overall survival (p=0.016), however, multivariate analysis excluded its ability to independently predict these outcomes - Preoperative LMR was lower in pts with more advanced disease (p=0.016) - LMR<5.0 was an independent predictor for relapse-free survival (HR=0.30, 95%CI 0.11-0.85; p=0.023) - PLR and SII had no predictive prognostic value for relapse-free survival	
Lung NETs only	Shi 2020 (102)	106 pulmonary large cell neuroendocrine carcinoma pts - Pts with tumors>4.5cm had higher NLR, and pts with NLR≥2.52 had a shorter survival (HR=2.46, 95%CI 1.508-4.011; p<0.001) - NLR was an independent prognostic factor for survival (HR=2.747, 95%CI 1.594-4.733; p<0.001) - Pts with tumors>4.5cm had higher PLR, and pts with PLR≥133.6 had shorter survival (HR=2.086, 95%CI 1.279-3.402; p=0.003) - PLR was not an independent prognostic factor for survival

Table 2: Overview of the studies investigating the role of serum inflammation-based scores in neuroendocrine tumors

AUC, area under curve; CI, confidence interval; GPS, Glasgow Prognostic Score; HCs, healthy controls; HR, hazard ratio; HSPI, high-sensitivity inflammation-based prognostic index; LMR, lymphocyte-to-monocyte ratio; MLR, monocyte-to-lymphocyte ratio; NET, neuroendocrine tumor; NLR, neutrophil-to-lymphocyte ratio; OR, odds ratio; PD-NLR score, pancreatic duct dilation-neutrophil-to-lymphocyte ratio score; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutrition index; PRRT, peptide receptor radionuclide therapy; pts, patients; SII, systemic inflammation index.
Endocrine tumor type	Study (first author, year, reference)	Study population	Summary of the main findings of the study per serum inflammation-based score
Parathyroid tumors	Zeren 2015 (106)	32 pts with primary hyperparathyroidism	Preoperative NLR was 2.1±0.9, with positive correlations between preoperative NLR and adenoma size, presence of carcinoma, calcium levels and PTH levels
	Yang 2018 (110)	213 secondary hyperparathyroidism pts after parathyroidectomy	- There were correlations between preoperative NLR and PLR and levels of serum phosphorous (rho=0.17; p=0.015 and rho=0.19; p=0.007, respectively) and calcium-phosphorus product (rho=0.14; p=0.046 and rho=0.17; p=0.014)
- Postoperative PTH levels correlated with both NLR and PLR at follow-up (rho=0.29; p=0.004 and rho=0.24; p=0.023, respectively)
- NLR and PLR significantly decreased after successful parathyroidectomy (p=0.0006 and p=0.0003, respectively), while pts who had persistent or recurrent hyperparathyroidism had no significant changes |
| | Lam 2019 (109) | 95 pts with primary hyperparathyroidism | A correlation was observed between preoperative NLR and serum PTH (r=0.274; p=0.013) and calcium (r=0.376; p=0.001) levels
- Pts had a decrease in median NLR after successful parathyroidectomy from 2.26 (IQR: 1.70-3.00) to 1.77 (IQR: 1.59-2.61) (p=0.037) |
| | Toraman 2019 (108) | 301 pts with high PTH levels | A positive correlation was observed between serum NLR (but not PLR) and PTH and creatinine levels
- There was a significant negative correlation between NLR (and PLR) and serum calcium levels
- Main determinants of NLR were PTH, albumin, LDL-cholesterol, haemoglobin and gender |
| Adrenal tumors | Bagante 2015 (125) | 84 ACC pts | - Pts with preoperative NLR>5 (34.5%) had higher proportions of tumors >5cm (100% vs 86%), resection of metastasis in other organs (69% vs 38%), incomplete resection R1/R2 (56% vs 26%), post-surgical complications (56% vs 27%) and readmissions within 90 days after operation (41% vs 14%)
- Pts with NLR>5 had lower 5-year recurrence-free survival rates (10.5% vs 14.2%)
- NLR independently predicted both disease-specific (HR=2.21) and recurrence-free survival (HR=1.99)
- No significant differences in glucocorticoid excess rates between pts with NLR≤5 and pts with NLR>5 (38.1% vs 61.9%; p=0.201) |
- **Pts with preoperative PLR>190 (38.1%)** had higher proportion of tumors >5cm (100% vs 84%) and resection of metastasis in other organs (69% vs 36%)
- **Pts with PLR>190 had lower 5-year recurrence-free survival rates (5.2% vs 19.4%)**
- **PLR independently predicted recurrence-free survival (HR=1.72)**
- **No significant differences in glucocorticoid excess rates between pts with PLR≤190 and pts with PLR>190 (61.9% vs 38.1%; p=0.826)**

Mochizuki 2017 (126)
- Preoperative NLR was higher in pts with malignant than those with benign adrenal disease (4.8±2.9 vs 3.0±1.8; p=0.016)
- Median NLR was 2.84 in adrenocortical adenomas; 2.03 in pheochromocytomas; 6.02 in ACC; 3.30 in lymphomas
- **NLR was an independent predictor of malignant adrenal disease, with best cut-off estimated at 3.15 (area under ROC of 0.668)**
- Among ACC pts, those with preoperative NLR≥5 had a poorer survival (median survival of 174 vs 917 days; p=0.032)

Gaitanidis 2019 (19)
- A shorter disease-specific survival was seen in ACC pts with LMR<4 (41±7.4 vs 71±12.3 months; p=0.023)
- **LMR<4 was independently associated with worse disease-specific survival (HR=4.18; 95% CI: 1.18-14.76; p=0.027)**
- No associations between NLR or PLR and disease-specific survival

Pituitary tumors
- **CD pts had significantly higher preoperative NLR, SII and NPS in comparison to other pituitary tumor types**

Within Cushing’s disease pts:
- There was an association between elevated GPS and 24h-UFC or ACTH levels
- **There were no association between inflammation-based scores and features/outcomes suggestive of clinically challenging disease, but pts who had multimodal treatment had fewer platelets (242±50 vs 304±86 x10⁹/L; p=0.001), with a platelet count <299.5x10⁹/L predicting multimodal treatment**

Within prolactinoma+acromegaly+thyrotrophinoma pts:
- Pts with GPS≥1 had higher rates of hypopituitarism (25% vs 4%; p=0.048) and suprasellar extension (25% vs 4%; p=0.048)
- Pts with NPS≥1 had higher rates of suprasellar extension (15% vs 6%; p=0.028)
- **Lower PLR was observed in pts with macroadenomas (p=0.039)**
- **PNI was lower in pts requiring multiple treatments (35.9±23.1 vs 55.4±5.1; p=0.048) including**
Within NFPA pts:
- Pts with GPS≥1 had higher rates of apoplexy (40% vs 6%; p=0.001)
- Pts with visual field defects at presentation had higher NLR (2.6±2.1 vs 1.2±0.3; p=0.024) and lower LMR (3.8±1.9 vs 5.5±1.1; p=0.031)
- Pts with tumor remnant on MRI within 1yr after operation had higher PLR (109±65 vs 1317±46; p=0.021)
- Higher NLR was seen in reoperated pts (3.2±1.0 vs 2.2±1.3; p=0.017) and in those requiring multiple treatments (3.1±1.0 vs 2.2±1.3; p=0.049)
- Pts with active disease at last follow-up had lower PNI (25.9±22.3 vs 54.7±6.1; p=0.021)

Craniopharyngiomas

Author	N	Type of Data	Findings
Chen 2018	197	CP pts, RCC pts	Papillary CP were associated with higher NLR and lower PNI compared to adamantinomatous CP (1.78 vs 1.39; p<0.05, and 54.7 vs 55.8; p<0.05, respectively), but there were no differences between primary or recurrent CP regarding other scores
		Pituitary tumor pts, HCs	A papillary CP pts, time to recurrence correlated with PLR (r=-0.783; p<0.05), MLI (r=-0.674; p<0.05) and PNI (r=0.577; p<0.05)
			CP pts had higher PNI than pituitary tumor and RCC pts and HCs (55.7 vs 51.7 vs 52.8 vs 54.3, respectively; p<0.05)
			CP pts had lower MLI than pituitary tumor pts and HCs (0.15 vs 0.18 vs 0.16, respectively; p<0.05)
			NLR was higher in pituitary tumor pts than in RCC pts or HCs (1.58 vs 1.39 vs 1.49, respectively; p<0.05)
			PNI alone showed good accuracy in predicting a CP (AUC of 0.616; 95% CI 0.568-0.663), but the best predictive value was obtained for the combinations NLR+PNI, dNLR+PNI and PLR+PNI (AUCs of 0.635, 0.6131 and 0.627, respectively)
			A predictive value for papillary CP (in comparison to other subgroups) was seen for NLR+PLR (AUC of 0.713; 95% CI 0.621-0.805) and dNLR+PLR (AUC of 0.703; 95% CI 0.610-0.797)

Zhang 2018 (36) 149 CP pts

- A positive correlation was observed between preoperative NLR and 5-year overall (HR=1.44, 95% CI 1.16–1.79; p=0.001) and 5-year progression-free survival (HR=1.46, 95% CI 1.22–1.74; p<0.001).

- Best predictive cut-off predicting poor outcome was NLR≥4
- Pts with NLR≥4 had larger lesions (5.6±3.5 vs 4.1±1.6 cm²; p=0.001), lower rates of gross total resection (42 vs 76%; p<0.001), worse quality of life (2.7±2.0 vs 3.5±1.6 ASBS-Q score; p=0.039), lower 5-year overall (67 vs 86%; p=0.009) and 5-year progression-free survival rate (44 vs 86%;
Table 3: Overview of the studies investigating the role of serum inflammation-based scores in different endocrine tumors

ACC, adrenocortical carcinoma; ACTH, adrenocorticotropic hormone; ASBS-Q, anterior skull base surgery questionnaire; AUC, area under curve; CD, Cushing’s disease; CI, confidence interval; CP, craniopharyngioma; CRP, C-reactive protein; dNLR, derived neutrophil-to-lymphocyte ratio; DTC, differentiated thyroid cancer; eGFR, estimated glomerular filtration rate; GPS, Glasgow prognostic score; HCs, healthy controls; HR, hazard ratio; IQR, interquartile ranges; LDL, low-density lipoprotein; LMR, lymphocyte-to-monocyte ratio; MLR, monocyte-to-lymphocyte ratio; NFPA, nonfunctioning pituitary adenoma; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; PTH, parathyroid hormone; pts, patients; RCC, Rathke’s cleft cyst; ROC, receiver operative characteristic curve; SII, systemic inflammation index; UFC, urinary free cortisol.