The \textit{UNC-112} Gene in \textit{Caenorhabditis elegans} Encodes a Novel Component of Cell-Matrix Adhesion Structures Required for Integrin Localization in the Muscle Cell Membrane

Teresa M. Rogalski,* Gregory P. Mullen,* Mary M. Gilbert,* Benjamin D. Williams,‡ and Donald G. Moerman*

*Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and ‡Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Abstract. Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of \textit{C. elegans} exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The \textit{unc-52} (perlecan), pat-2 (\(\alpha\)-integrin), and pat-3 (\(\beta\)-integrin) genes encode ECM or transmembrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell–matrix adhesion complexes. The 720–amino acid \textit{UNC-112} protein is homologous to \textit{Mig-2}, a human protein of unknown function. These two proteins share a region of homology with talin and members of the \textit{FERM} superfamily of proteins.

We have determined that a functional \textit{UNC-112}::GFP fusion protein colocalizes with \textit{PAT-3/\(\beta\)}-integrin in both adult and embryonic body wall muscle. We also have determined that \textit{UNC-112} is required to organize \textit{PAT-3/\(\beta\)}-integrin after it is integrated into the basal cell membrane, but is not required to organize \textit{UNC-52/} perlecan in the basement membrane, nor for \textit{DEB-1/vinculin} to localize with \textit{PAT-3/\(\beta\)}-integrin. Furthermore, \textit{UNC-112} requires the presence of \textit{UNC-52/perlecan} and \textit{PAT-3/\(\beta\)}-integrin, but not \textit{DEB-1/vinculin} to become localized to the muscle cell membrane.

Key words: \textit{UNC-112} • integrin • muscle development • adhesion complex • \textit{FERM} superfamily

Introduction

In the nematode \textit{Caenorhabditis elegans}, a highly ordered series of attachments is required between the myofilament lattice of a body wall muscle cell and the external cuticle for muscle contraction to result in movement. The myofilament lattice is anchored to the muscle cell membrane and adjacent basement membrane by integrin-containing structures called dense bodies and M-lines which, in turn, are linked to intermediate filament arrays that extend across the thin hypodermis and attach to the cuticle (Waterston, 1988; Francis and Waterston, 1991; Moerman and Fire, 1997; Hresko et al., 1999). Dense bodies and M-lines contain many of the components found in focal adhesion plaques (\textit{FAs})\(^1\), the cell–extracellular matrix (\textit{ECM}) contacts of tissue culture cells. Many proteins, including integrins, cytoskeletal proteins, signaling molecules, proteases, protein kinases and phosphatases, as well as proteins of unknown function are associated with \textit{FAs} (Burridge and Chrzanowska-Wodnicka, 1996). Genetic analysis of focal adhesion analogues in \textit{C. elegans} offers an important opportunity not only to directly test the function of focal adhesion components in vivo, but also to identify new components. Here we describe a novel component of dense bodies and M-lines, and show directly that it plays a critical role in the assembly of these focal adhesion analogues in vivo.

Integrins are a family of adhesion receptors that attach cells to the \textit{ECM}, or to other cells, and anchor intracellular matrix; \textit{FAs}, focal adhesion plaques; \textit{GFP}, green fluorescent protein; \textit{ORF(s)}, open reading frame(s); \textit{Pat}, paralyzed, arrested elongation at twofold.
structural proteins and signal transduction molecules to the plasma membrane (Hynes, 1992). The C. elegans genome contains genes encoding β-integrin and α-integrin subunits (Gettner et al., 1995; Baum and Garriga, 1997; C. elegans sequencing consortium, 1998; Williams, B., unpublished observations). The α subunit encoded by the pat-2 gene and the β subunit encoded by the pat-3 gene are found in most contractile tissues of the worm (Francis and Waterston, 1985; Williams and Waterston, 1994; Gettner et al., 1995; Moulder et al., 1996; Williams, B., unpublished observations). In body wall muscle, α-PA T-2/β-PA T-3 heterodimers are transmembrane components of dense bodies and M-lines, the structures that anchor, respectively, the actin and myosin filaments to the cell membrane. Dense bodies are comparable to the Z-lines of vertebrate striated muscle (Waterston, 1988), and include vinculin (Francis and Waterston, 1985; Barstead and Waterston, 1989), α-actinin (Francis and Waterston, 1985; Barstead et al., 1991), talin (Moulder et al., 1996), and the UNC-97/PINCH protein (Oberst et al., 1999), in addition to α-PA T-2/β-PA T-3 integrin heterodimers. With the exception of vinculin and α-actinin, the same proteins are also present in the M-lines. In addition, M-lines contain the unc-89 gene product (Bian et al., 1996).

Integrins link both the dense body and M-line components to the underlying basement membrane (Francis and Waterston, 1985; Gettner et al., 1995). The unc-52 gene encodes the nematode homologue of mammalian perlecan (Ogalski et al., 1993), the major heparan sulfate proteoglycan of the extracellular matrix (Noonan et al., 1991; Kallunki and Tryggvason, 1992; Murdock et al., 1992). UNC-52/perlecan is found in the basement membrane between the body wall muscle cells and the hypodermis, and is concentrated at muscle cell dense bodies and M-lines (Francis and Waterston, 1991; Ogalski et al., 1993; Mullen et al., 1999). The interaction of integrin and perlecan, either directly or indirectly, is a key early event in the assembly of these attachment structures (Ogalski et al., 1993; Hresko et al., 1994; Williams and Waterston, 1994; Mullen et al., 1999). This interaction is required for integrin to become localized at the basal membrane of the cell and to assemble into attachment structures.

Null mutations in muscle-affecting genes have been identified and characterized in the nematode (reviewed in Waterston, 1988; Moulder and Fire, 1997). In addition, antibodies to many proteins expressed in muscle have been generated (Miller et al., 1983; Francis and Waterston, 1985, 1991; Moulder et al., 1996; Mullen et al., 1999). Careful analyses of wild-type and mutant animals with these antibodies have revealed that body wall muscle assembly is initiated by events occurring at the muscle cell membrane (Waterston, 1989; Barstead and Waterston, 1991; Ogalski et al., 1993; Williams and Waterston, 1994; Hresko et al., 1994; Moulder et al., 1996). Early in embryonic body wall muscle development, muscle proteins accumulate at membranes where adjacent muscle cells contact each other and the hypodermis (Hresko et al., 1994). This has been termed muscle cell polarization, and at this stage, muscle, basement membrane, and hypodermal components are all colocalized in a continuous linear structure at the site of muscle-hypodermal contact (Hresko et al., 1994). In the later stages of body wall muscle development, perlecan and integrin become organized along the basal cell membrane in structures resembling cell–matrix adhesion complexes. These complexes are not yet organized into the highly ordered arrays that are present in mature muscle. Dense body and M-line components then assemble at the nascent attachment sites. The thick filaments of the lattice assemble with the M-line and the thin filaments with the dense bodies (Waterston, 1989; Barstead and Waterston, 1991; Rogalski et al., 1993; Williams and Waterston, 1994; Hresko et al., 1994; Gettner et al., 1995). Myofilament lattice assembly in the nematode is remarkably similar to the assembly of focal adhesions in mammalian cell culture (Burridge et al., 1988; Moulder and Fire, 1997). In both processes, integrin-ECM interactions are required to initiate assembly and stabilize existing adhesion complexes (Hresko et al., 1994; Yamada and Geiger, 1997).

Many of the muscle-affecting mutations obtained in the nematode are recessive lethal and result in a Pat (paralyzed, arrested elongation at twofold) phenotype, indicating that the missing gene products are essential for the formation of functional embryonic body wall muscle (Waterston, 1989; Williams and Waterston, 1994). Null mutations in several kinds of genes result in a Pat phenotype, including those required for: (a) the assembly of the dense bodies and M-lines, (b) the assembly of thick or thin filaments into the lattice, and (c) the regulation of muscle contraction (see Williams and Waterston, 1994). The most severe Pat phenotype is exhibited by embryos homozygous for mutations in the unc-52 (perlecan), pat-2 (α-integrin), pat-3 (β-integrin), and unc-112 genes (Williams and Waterston, 1994). Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble (Ogalski et al., 1993; Williams and Waterston, 1994; Mullen et al., 1999; Williams, B., unpublished observations). The unc-52, pat-2, and pat-3 genes encode ECM and membrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines (Francis and Waterston, 1985, 1991; Ogalski et al., 1993; Gettner et al., 1995; Williams, B., unpublished observation).

Embryonic body wall muscle assembly in C. elegans is an excellent in vivo system in which to study the assembly of integrin-containing adhesion structures, and to identify essential components that are involved in this process. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with perlecan and integrin at cell–matrix adhesion complexes. The 720–amino acid UNC-112 protein is most similar to a human protein of unknown function called MIG-2 (Wick et al., 1994), but also shares a short, ~200–amino acid region of homology with talin and other members of the FERM superfamly of proteins. The analysis of mutant embryos presented here demonstrates that UNC-112 is required for the proper spatial localization of PA T-3/β-integrin in the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane nor for DE B-1/vinculin to become localized with PAT-3/β-integrin. We also show that UNC-112 requires the presence of UNC-52/perlecan and PAT-3/β-integrin, but not DE B-1/vinculin to become localized in the muscle cell membrane.
Materials and Methods

Nematode Strains

The CB0228: unc-61(e2381) V strains were obtained from The Caenorhabditis Genetics Center (CGC) at the University of Minnesota (Minneapolis, Minnesota). The following transgenic strains were generated from J. Thomas (University of Washington, Seattle, WA; see Birnby et al., 1997): S787 [T7185(+):(+); seae87 [T719G(4)V + T258 I(V) + C297A I(V) + M05D 1(V) + prf #H(ro-l(6-su1006dm))]; T8203: (+); seae86 [R15H(1)V + F54H 7(V) + W08A 7(V) + ZC457 V + ZC394(V) + prf #H(ro-l(6-su1006dm))]; T8209: (+); seae86 [R15H(1)V + F54H 7(V) + W08A 7(V) + ZC457 V + ZC394(V) + prf #H(ro-l(6-su1006dm))]; T8318: (+); saxo108 [R08A 2(V) + prf #H(ro-l(6-su1006dm))]; T8321: (+); saxo111 [T10E 3(V) + prf #H(ro-l(6-su1006dm))]; T8323: (+); saxo113 [C18G 4(V) + prf #H(ro-l(6-su1006dm))]; T8324: (+); saxo114 [C18G 4(V) + prf #H(ro-l(6-su1006dm))]; and T8327: (+); saxo117 [M05D 1(V) + prf #H(ro-l(6-su1006dm))]. The following strains were provided by Barbara Meyers at the University of California, Berkeley, California (see Klein and Meyers, 1993; T3132: +[M11][let(m435) V] unc-42[e270] yDf9 9[e270] f[9n1][let(m435) V] and T3133: +[M11][let(m435) V] yD11 111[let(m435) V]. The CVCC002: unc-112(gk1)+/+ strain was obtained from the C. elegans Reverse Genetics Core Facility at the University of British Columbia (Vancouver, British Columbia). The following transgenic strains were provided by S. Xu, J. Ahnn, and G. Seydoux, Carnegie Institute, Baltimore, MD) and T. Doudna, University of California, Berkeley, California: JT8200: unc-112(st581)/unc-112(r367); saEx86 [M05D1(V) + pRF#4]; JT8203: (+); saxo111 [T10E3(V) + prf #H(ro-l(6-su1006dm))]; JT8208: (+); saxo113 [C18G4(V) + prf #H(ro-l(6-su1006dm))]; and JT8324: (+); saxo114 [C18G4(V) + prf #H(ro-l(6-su1006dm))].

The following cosmid arrays were provided by Barbara Meyers at the University of California, Berkeley, California and were used in the present study: W08A7; ZC394; T19G4; and ZC457. All cosmid arrays were linearized with HindIII and introduced into Caenorhabditis elegans by microinjection. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing. Viable Rol hermaphrodites that were homozygous for the gene of interest were obtained by progeny testing.
QIA prep Spin miniprep kit (catalog no. 27106). The pDM #208, pDM #209 and pDM #211 plasmid DNA's (~1-μg/ml) were co-injected with the pRF4 rol-6(su1006dm) plasmid (~80-μg/ml) into the gonad syncytium of wild-type hermaphrodites as described by Mello and Fire (1995). F1 Rol hermaphrodites were selected and any that produced Rol progeny were maintained as transgenic strains. The following strains were obtained: D M 7010: +/+; raEx10 [pRF4 (rol-6(su1006dm)) + pDM #208 (unc-112 (+))]; D M 7011: +/+; raEx11 [pRF4 (rol-6(su1006dm)) + pDM #208 (unc-112 (+))]; and D M 7016: +/+; raEx16 [pRF4 (rol-6(su1006dm)) + pDM #211 (unc-112:GFP)].

Sequence Analysis

All sequencing was done by the Nucleic Acid/Protein Service (NA PS) unit at the University of British Columbia. The Y K126 cDNA was obtained as a lambda ZapI clone from the C. eleagns cDNA project (kindly provided by Y. K ohara; data are available from GenBank/E MBL/ D D B J under accession numbers D 34763 and D 27524). The blue script plasmid containing the cDNA insert was excised following the protocol provided by Stratagene and transformed into E. coli X 11 blue cells. This strain was named pDM #205. Plasmid DNA was prepared for sequencing using a modified alkaline lysis/PEG precipitation procedure. The entire cDNA insert was sequenced on one strand to confirm the intron/exon boundaries predicted by the Geneex finder program. Birnby et al. (2000) has identified the C47E8.7 ORF as the C47E8.5 gene. We correlated the physical and genetic maps for this region and localized the unc-112 gene to the interval between the cosmids R02D5 and C48G7. For most experiments (Figs. 5, B, G, 6, and 7), embryos and adult hermaphrodites were stained using a freeze-fracture procedure adapted from A lbertson (1984). The worms were fixed in 20°C acetone for 4 min, then rehydrated through a graded (75, 50, and 25%) acetone series. Incubation times were overnight at 20°C with the primary antibodies, and 2.5-3.0 h at room temperature with the secondary antibodies. To observe GFP fluorescence in the absence of antibody staining, hermaphrodites (see Fig. 5 A) were fixed in 1% formaldehyde for 10 min, washed with TBS and then re-suspended in mounting media (25% w/vol; D ABCO; 90% glycerol in TBS). For immunofluorescence staining, the mouse monoclonal antibodies M H 2, M H 24, M H 25 (Francis and Waterston, 1985, 1991), and D M 5.6 (Miller et al., 1983) were diluted 1:100, 1:100, 1:50, and 1:50, respectively. The secondary antibody, TR SC-labeled donkey anti-mouse I gG F(ab’) 2 (Jackson Immun oR esearch Laboratories) was diluted 1:200.

Worms from the following strains were used in these experiments. D M 5115 for Figs. 3 A and 6, B, D, F, and H; D M 7016 for Fig. 5, B-G; N 2 for Fig. 6, A, C, E, and G; D M 5118 for Fig. 7, A, B, E, and F; D M 5220 for Fig. 7, C and D; and D M 5119 for Fig. 7, G and H.

Microscopy

Confocal images were collected using the MRC 600 system (Bio-Rad Laboratories) attached to a Nikon Optiphot-2 compound microscope. Optical sections were collected at 0.2-μm intervals and combined using the maximum projection function. For publication, confocal images were transferred to a Macintosh computer, and arranged and annotated using A dobe Photoshop 4.0. Final images were printed on a Codonics N P-1600 printer.

Results

The unc-112 Gene Encodes a Novel 720-Amino Acid Protein

Embryos homozgyous for null mutations in the unc-112 gene exhibit a Pat terminal phenotype. They arrest at the twofold stage of embryogenesis and have severely disorganized body wall muscle (Williams and Waterston, 1994). In contrast, animals homozgyous for the r367 allele of unc-112 are viable, although they do have disorganized body wall muscle and are paralyzed as adults (Bj osovec et al., 1984). The unc-112(r367) phenotype is affected by temperature, being somewhat less severe in animals raised at 15°C, compared with animals raised at 20°C.

The unc-112 gene maps to the left of unc-76 on L G V in the interval between the left breakpoints of the deficiencies, yD f9 and yD f11. We correlated the physical and genetic maps for this region and localized the unc-112 gene to the interval between the cosmids R02D5 and C48G 7 (Fig. 1). Our results reveal that the left breakpoint of yD f9 lies between cosmids R02D5 and R11H6, and the left breakpoint of yD f11 is located between C47E8 and C48G 7. Genetic crosses using the unc-112(r367) allele and transgenic strains carrying cosmids from this region of the genome (Birnby et al., 2000) revealed that unc-112 resides on the cosmid T10E 3/C47E 8.

The C47E8 cosmid has been sequenced by the C. eleagns genome consortium (1998; data are available from Ge nBank/E MBL/ D D B J under accession number Z 75530) and eight open reading frames (ORFs) have been identified by the Geneex finder program. Birnby et al. (2000) have shown that the daf-21 gene corresponds to the C47E8 8 ORF, and that the mutant phenotype of daf-21(p673) is not rescued by cosmid R08A 2 which overlaps with the right end of C47E8. We crossed unc-112(r367) into a transgenic strain carrying R08A 2 and found that homozygous mutant hermaphrodites were rescued by the R08A 2 cosmid array. This result allowed us to position the unc-112 gene to the right of daf-21, and narrowed down the candidate ORFs to either C47E 8 6, C47E 8 7 or C47E 8 8.

The journal of Cell Biology, Volume 150, 2000 256
sequence alterations corresponding to three putative null alleles (Fig. 2; see below).

The C47E8.7 ORF was identified using the Genefinder program (Eckman and Durbin, 1995), which predicted the intron/exon structure shown in Fig. 2. Several cDNA clones corresponding to this ORF were isolated and partially sequenced as part of the C. elegans cDNA project (Kohara, Y., personal communication). We have completely sequenced one of these clones, YK 12c6, a 2.769-kb cDNA which contains the complete ORF that was predicted by Genefinder plus 288 bp of 5' untranslated sequence and 303 bp of 3' untranslated sequence (data are available from GenBank/EMBL/DDBJ under accession number AF217185). A conventional polyadenylation signal is located 13 bp upstream from the poly A tail. The predicted 720-amino acid UNC-112 protein does not appear to have a signal sequence nor a transmembrane domain.

A search of the database identified three proteins that exhibit significant similarity to UNC-112 (Fig. 3); a human protein encoded by a gene called mig-2 (for mitogen-inducible gene; Wick et al., 1994), and the CG7729 and CG14991 gene products from Drosophila melanogaster (A dams et al., 2000). The nematode, fly, and human proteins are ~60% similar (~41% identical) over their entire length, and share a short, ~200-amino acid region of homology with talin, band 4.1, and ezrin (Fig. 4). This conserved sequence is found in members of the FERM protein superfamily, and may be important for attachment to the plasma membrane (Chishti et al., 1998). Fig. 4A shows the alignment of the conserved amino acid regions of UNC-112 and talin, and Fig. 4B shows the alignment of this same region in UNC-112, band 4.1, and ezrin. The UNC-112 sequence is more similar to talin (~53% homology) than to band 4.1, and ezrin (~33% homology). Other, short regions of the UNC-112 protein sequence are similar to the golgin-97 protein (amino acids [aa] 159–199), human PA CE 4 proteases (aa 185–238), and mammalian oxysterol-binding protein (aa 422–464 and 487–528).

The sequence alterations corresponding to the putative null alleles, unc-112(st562), unc-112(st581) and unc-112(gk1), have been identified (Fig. 2). The EMS-induced st562 and st581 mutations (Williams and Waterston, 1994) are single nucleotide alterations that introduce stop codons into the unc-112 coding sequence. For these two alleles, we began sequencing ~160 bp upstream of the start codon, and continued downstream until a nucleotide alteration was identified. Both mutations are C to T transitions that change arginine codons (cga) to stop codons (tga), and both are located in exon 5. The st562 mutation alters the Arg619 codon and the st581 mutation alters the Arg663 codon. The formaldehyde-induced gk1 allele of unc-112 (see Materials and Methods) is a 2.18-kb deletion. Sequence analysis identified the deletion breakpoints which are located in the second intron and close to the 3' end of exon 4. We have also identified the sequence alteration corresponding to the hypomorphic r367 mutation, which is a C to T transition changing the Thr85 codon (aca) to an Ile codon (ata). To identify this allele, we sequenced the entire coding region of the unc-112 gene from r367 mutant hermaphrodites. This was the only nucleotide change found after comparing the sequence of the mutant locus to that of the wild-type gene.

The UNC-112 Protein Colocalizes with PAT-3/β1-Integrin in Body Wall Muscle

Several groups have shown that the green fluorescent protein (GFP) can be fused to some nematode proteins without affecting their function in living animals, thus allowing the expression pattern of these proteins to be detected.
simply by observing GFP fluorescence (Chalfie et al., 1994; see for example Hobart et al., 1999). Using this approach, we have determined that the UNC-112 protein is a component of dense bodies and M-lines, the structures which attach the myofilament lattice to the muscle cell membrane. The UNC-112::GFP fusion protein is able to rescue the embryonic lethal phenotype of unc-112(st581) homozygous animals when expressed from a transgenic array. Rescued hermaphrodites with the genotype unc-112(st581); [unc-112::GFP; rol-6(su1006)] move well, and their body wall muscle structure appears wild-type when observed using polarized light (data not shown) or GFP fluorescence (Fig. 5 A). These results indicate that the UNC-112::GFP fusion protein retains normal or near normal function, and that its localization should reflect a substantial portion of the range of expression of the endogenous UNC-112 protein.

GFP fluorescence in wild-type and homozygous st581 adult hermaphrodites carrying the raEx16(unc-112::GFP; rol-6(su1006)) array is found in the body wall, vulval, spermathecal, uterine, and anal sphincter/depressor muscles. In the body wall muscle, UNC-112::GFP is localized to muscle cell boundaries in regions of contact with adjacent muscle cells, and to the dense bodies and M-lines (Fig. 5 A) in a pattern identical to that observed for UNC-52/perlecan (Francis and Waterston, 1991; Rogalski et al., 1993; Mullen et al., 1999), PAT-3/b-integrin (Francis and Waterston, 1995; Gettner et al., 1995), and PAT-2/a-integrin (Williams, B., unpublished observations). GFP fluorescence appears to localize near the membrane and does not

Figure 3. Comparison of the predicted amino acid sequences of UNC-112, the human Mig-2 protein and the CG7729 and CG14991 proteins in D. melanogaster. The nematode, fly, and human proteins are ~60% similar (~41% identical) over their entire length, and share a short region of homology with talin and other members of the FERM superfamily (aa 288–488 of UNC-112). The amino acid sequences were aligned using the Clustal W program. Identical amino acids are shaded, and similar amino acids are boxed. The functional UNC-112::GFP protein has the GFP inserted between Arg28 and Ser29 of the UNC-112 amino acid sequence.

Figure 4. Comparison of the homologous amino acid sequences of UNC-112 and members of the FERM protein superfamily. A alignment of aa 288–488 of UNC-112 with (A) aa 173–369 of the human talin sequence, and (B) aa 107–293 of the mouse band 4.1 sequence and aa 58–258 of the chicken ezrin sequence. The UNC-112 sequence is more similar to talin (~53% homology) than to band 4.1 and ezrin (~33% homology). Note the very high homology between the first 52 amino acids of the alignment of UNC-112 and talin (50% identity; 65% similarity). The sequences were aligned using the Clustal W program. Identical amino acids are shaded, and similar amino acids are boxed.
extend very deeply into the muscle cell. A few unidentified cells also exhibit GFP expression, suggesting that UNC-112 may not be limited to contractile tissues.

The UNC-112::GFP protein colocalizes with PAT-3/β-integrin in adult and embryonic body wall muscle. Fig. 5, B–G show the results obtained when +/++; rtEx16[unc-112::GFP; rol-6(su1006)] adults and embryos were stained with MH25, a mAb that recognizes PAT-3/β-integrin (Francis and Waterston, 1985; Gettner et al., 1995). In adult body wall muscle, both UNC-112::GFP and PAT-3/β-integrin localize to dense bodies, M-lines, and muscle cell boundaries in regions of contact with adjacent muscle cells (Fig. 5, B–D). The regions of contact between adjacent muscle cells are the adhesion plaques described by Francis and Waterston (1985). The body wall muscle cells in adults and embryos are arranged in four longitudinal stripes or quadrants, each consisting of a double row of unfused muscle cells. In embryos, the UNC-112::GFP protein first localizes to regions of cell–cell contact between adjacent muscle cells, and then spreads over the muscle cell basal surface as the embryo elongates. In a 1.5-fold embryo, UNC-112::GFP appears as a single thin line in each quadrant (Fig. 5 E), corresponding to the line of contact formed between the two rows of muscle cells. PAT-3/β-integrin has a similar distribution pattern during embryogenesis, as do perlecan and vinculin (Hresko et al., 1994). Fig. 5, E–G, show the colocalization of GFP fluorescence and MH25 immunofluorescence in a 1.5-fold embryo.
The UNC-112 Protein Is Required for the Spatial Organization of Integrin within the Muscle Cell Membrane

Williams and Waterston (1994) examined the organization of myosin heavy chain A (mhcA) and actin in the body wall muscle of unc-112(st562) mutant embryos using monoclonal antibodies. They found that both mAbs showed a disorganized staining pattern in the mutants when compared with the pattern observed in wild-type embryos. We extend these earlier observations by examining the distribution of UNC-52/perlecan, PAT-3/β-integrin and DEB-1/vinculin in wild-type and unc-112 mutant embryos (Fig. 6). Our data reveal that the earliest steps in PAT-3/β-integrin localization occur normally, but that later steps are disrupted, leaving PAT-3/β-integrin in a severely abnormal distribution within the cell. In contrast, the distribution of UNC-52/perlecan in the basement membrane appears largely unaffected by the absence of UNC-112, and DEB-1/vinculin still localizes, presumably with integrin, at the basal membrane.

Fig. 6 shows wild-type and unc-112(st581) embryos stained with mAbs that recognize PAT-3/β-integrin, DEB-1/vinculin (Francis and Waterston, 1985; Barstead and Waterston, 1989), and the M and L isoforms of UNC-52/perlecan (Francis and Waterston, 1991; Rogalski et al., 1993; Mullen et al., 1999). Although elongation arrests at the twofold stage in unc-112(st581) embryos, development continues as indicated by cuticle formation, the development of a well-formed pharynx, and the ability to hatch (Williams and Waterston, 1994). Thus, the mutant embryos are comparable in age to threefold, wild-type embryos.

In the threefold, wild-type embryo in Fig. 6, A and A', and also the mutant Pat embryo in Fig. 6, B and B', the UNC-52/perlecan mA b, M H 2, stains basement membranes associated with the body wall muscles. Although misshapen, the arrested unc-112(st581) embryo shows regions where UNC-52/perlecan is properly localized. It should be noted that the structural organization of UNC-52/perlecan may not be entirely normal in the unc-112 mutant embryo, as suggested by the absence of the fine, regular granularity that is observed in the wild-type embryo (compare Fig. 6, A' with B'). This feature may be a secondary effect of the failure of the unc-112 embryos to elongate properly.

The M H 25 (PAT T-3/β-integrin) staining patterns in wild-type and unc-112(st581) mutant embryos at ~350 min after the first cell division are shown in Fig. 6. C, D, C', and D'. At this stage of development, PAT T-3/β-integrin is localized at regions of muscle/muscle cell contact in both embryos. In wild-type embryos just before this stage, threelfold stage of embryonic development. The mutant embryos in B, F, and H have arrested at the twofold stage of embryogenesis, but are comparable in age to the threefold wild-type embryos. The two embryos in C and D were stained at an earlier stage (~350 min after the first cell division), before the mutant embryo has arrested development. The unc-112(st581) mutant embryo can be identified at this early stage by a gap in the ventral quadrant which is detectable by ~300 min after the first cell division. All of the mutant embryos were obtained as segregants from unc-112(st581); raEx16[unc-112::GFP; rol-6(su1006)] hermaphrodites. A ll of the panels show lateral views of the embryos except C and D which show dorsal views. Note the disorganized staining in the mutant embryos in F and H. In all cases, images have been projected from a full Z-series to show two muscle quadrants. The arrows in A–H indicate the regions of each embryo that have been magnified in A’–H’. The arrows in E’–H’ indicate adhesion structures. Bar, 10 μm.
PAT-3/β-integrin is diffusely expressed in the muscle cells, and only assumes this polarized localization once the muscle cells have migrated from the lateral hypodermis to the dorsal or ventral hypodermis (Hresko et al., 1994). The nearly identical PAT-3/β-integrin staining pattern of the ~350-min wild-type and unc-112 mutant embryos lead us to conclude that the initial expression and polarization of PAT-3/β-integrin occurs normally in the absence of functional UNC-112 protein. MH25 immunofluorescence in a threefold, wild-type embryo and an arrested unc-112 (st581) Pat embryo are shown in Fig. 6, E, F, E′, and F′. In the wild-type embryo in Fig. 6, E and E′, PAT-3/β-integrin is organized into distinct adhesion structures that are distributed in a recognizable pattern along the length of each muscle quadrant. Some integrin foci are present in the basal membrane in the st581 mutant embryo shown in Fig. 6, F and F′ (arrows), but they are highly disorganized compared with the orderly arrays of adhesion structures observed in the wild-type embryo. Hresko et al. (1994) have shown that the organization of PAT-3/β-integrin at the base of the M-line and dense bodies is not affected in embryos homozygous for either deb-1(st555) or myo-3(st386), both of which arrest elongation at the same stage as unc-112(st581) embryos. The MH25 staining pattern seen in arrested deb-1(st555) embryos is not as well organized as in threefold, wild-type embryos, but distinct lines and rows of dots that run obliquely to the long axis of the worm are detected and appear to be spaced as in wild-type (Hresko et al., 1994). Thus, the disorganization of PAT-3/β-integrin observed in the unc-112 mutant embryo is not the result of developmental arrest, but must be due to the absence of UNC-112. This result leads us to conclude that the UNC-112 protein is required for the proper spatial organization of PAT-3/β-integrin clusters in the muscle cell membrane.

The MH24 (DEB-1/vinculin) staining patterns observed in the wild-type embryo in Fig. 6, G and G′, and the mutant embryo in Fig. 6, H and H′, are very similar to those seen with the MH25 mAb. In wild-type, DEB-1/vinculin colocalizes with PAT-3/β-integrin at the base of the dense bodies (Francis and Waterston, 1985). Although MH24 immunofluorescence is highly disorganized in the arrested unc-112(st581) mutant embryo when compared with the wild-type, threefold embryo, it is still associated with the membrane. The similarity in the distribution patterns of DEB-1/vinculin and PAT-3/β-integrin in the mutant embryos leads us to conclude that DEB-1/vinculin does not require the UNC-112 protein to localize with PAT-3/β-integrin in the basal muscle cell membrane.

Localization of the UNC-112 Protein Is Disrupted in unc-52 and pat-3 Mutant Embryos

We examined the distribution of the UNC-112::GFP protein in embryos homozygous for null mutations in the unc-52, pat-3, or deb-1 genes to determine the effect of the missing gene products on UNC-112 localization. Hresko et al. (1994) had previously shown that the absence of DEB-1/vinculin does not dramatically affect the organization of PAT-3/β-integrin at the base of the dense body, whereas the absence of UNC-52/perlecan results in the complete loss of PAT-3/β-integrin adhesion complexes. Our data (Fig. 7) demonstrate that the distribution of UNC-112, like...
that of PAT-3/β-integrin, is not adversely affected in the deb-1(st555) mutant, but is severely affected in the unc-52(ra401) mutant. In addition, our data demonstrate that PAT-3/β-integrin is required for the proper spatial distribution of UNC-112:GFP in the basal membrane.

We initially attempted to observe GFP fluorescence in arrested unc-52(ra401), pat-3(st564), and unc-44(e362)deb-1(st555) Pat embryos. However, the continuous accumulation of UNC-112::GFP in these mutants made interpretation of the images obtained difficult. To overcome this problem, we stained embryos with D M 5.6, a mAb that recognizes the minor body wall myosin, mhcA (Miller et al., 1983). This allowed us to identify the mutant embryos before developmental arrest by looking for disorganized myosin staining (compare Fig. 7 A with C, E, and G; see also Williams and Waterston, 1994). All of the embryos shown are at the 1.5-fold stage of development. In a +/+; raEx16[unc-112::GFP; rol-6(su1006)] embryo at this stage, mhcA is organized into recognizable myofilaments (Fig. 7 A) and UNC-112::GFP is distributed over the basal face of the body wall muscle cells, appearing in this figure as a line near the margin of the embryo due to the orientation of the dorsal muscle quadrant in the plane of focus (Fig. 7, B and B'). The pattern of GFP fluorescence observed in the unc-44(e362)deb-1(st555); raEx16[unc-112::GFP; rol-6(su1006)] embryo (Fig. 7, D and D') is identical to that seen in the wild-type embryo. Thus, it appears that DEB-1/vinculin is not required for the polarization of UNC-112 to the basal membrane. However, in both the unc-52 (ra401); raEx16[unc-112::GFP; rol-6(su1006)] and pat-3(st564); raEx16[unc-112::GFP; rol-6(su1006)] mutant embryos (Fig. 7, F, F', H, and H'), very little, if any UNC-112::GFP protein appears to be associated with the basal membrane.

Instead of the continuous pattern of fluorescence that is observed in the wild-type and deb-1(st555) embryos, GFP fluorescence in these mutants appears as small disorganized dots. The presence of GFP fluorescence in the cytoplasm of most muscle cells in these mutant embryos confirms that they carry the unc-112::GFP transgenic array. These results lead us to conclude that the presence of UNC-52/perlecan and PAT-3/β-integrin are necessary for the proper spatial localization of UNC-112 in the muscle cell membrane.

Discussion

Our analysis of the unc-112 gene in C. elegans has identified a new component of cell–matrix adhesion structures, the ~80-kD UNC-112 protein. UNC-112 is a nematode homologue of the human M ig-2 protein, which was identified by sequencing a cDNA clone obtained after induction of W1-38 fibroblast cells with fetal calf serum (Wick et al., 1994). A recent search of the database identified two additional human cDNA clones that exhibit significant similarity to the COOH-terminal 300 aa of the UNC-112 protein sequence. Thus, it likely will be necessary to wait for the completion of the human genome sequence to determine whether UNC-112 and M ig-2 are orthologs. The D. melanogaster genome contains two homologues of UNC-112. These proteins were identified by sequencing the fly genome and have not been correlated with any known genes. Neither the function nor localization of the human or fly proteins is known. A short, ~200-amino-acid region of UNC-112 shows homology to a membrane attachment sequence found in talin and other members of the FERM superfamily of proteins (Chishti et al., 1998). This homology, together with the absence of a signal peptide or transmembrane domain led us to suspect that the unc-112 gene product may be intracellular and associated with the plasma membrane. The fact that the UNC-112::GFP protein is associated with dense bodies and M-lines at the muscle cell membrane confirmed these speculations, and also revealed that this protein is a component of cell–matrix adhesion structures.

The UNC-112::GFP fusion protein used in this study rescues the severe Pat phenotype exhibited by unc-112 (st581) embryos and fully restores functional body wall muscle. This is strong evidence that the UNC-112::GFP localization described here accurately reflects the range and expression of the endogenous UNC-112 protein. In addition, the subcellular localization of UNC-112::GFP to the dense bodies and M-lines is consistent with the mutant phenotype which suggests that UNC-112 is required for attachment of the myofilament lattice to the basal cell membrane (Williams and Waterston, 1994).

Tissue culture focal adhesions are considered to be reasonable models of mammalian in vivo adhesion complexes. Many components common to vertebrate FAs are present in dense bodies and M-lines in the body wall muscle of C. elegans. These include α/β-integrin, talin, and UNC-97/PINCH. In addition, the dense bodies which anchor actin filaments also contain vinculin and α-actinin. It was originally thought that dense bodies and M-lines were structurally very different. However, as more components of these structures are identified, it appears that many of the same proteins are present in both, at least where they are anchored to the muscle cell membrane. A nether protein known to interact with integrin is integrin-linked kinase or ILK (Hannigan et al., 1996). The nematode ortholog of ILK is encoded by the pat-4 gene, and this protein has been localized to dense bodies and M-lines in the body wall muscle (Williams, B., unpublished observations). Nematode orthologs of other vertebrate proteins found in focal adhesions have been identified recently by searching the completed genomic sequence of C. elegans. These include tensin, paxillin and zyxin. The analysis of these proteins in the nematode should help to elucidate their function in cell–matrix adhesion sites.

The severe Pat phenotype exhibited by embryos homozygous for the st562, st581, and gk1 alleles suggests that these mutations completely eliminate unc-112 gene function. The sequence alterations that we identified are consistent with this hypothesis. The formaldehyde-induced gk1 mutation which deletes almost one half of the unc-112 gene is certainly a null allele. The other two mutations, which introduce stop codons into the open reading frame of this gene, are also likely to be null mutations. The sequence alteration responsible for the hypomorphic phenotype of r367 homozygous hermaphrodites is a missense mutation in the NH2-terminal region of the UNC-112 protein. The Thr85-Ile missense mutation results in a milder, temperature-sensitive phenotype, suggesting the presence of a protein product with reduced or altered function.
Proper localization of PAT-3 / perlecan is necessary for the muscle cell membrane, and that PAT-3 / perlecan, and UNC-112 are mutually required for proper localization in the muscle cell membrane. Our results show that UNC-112 is not required for the initial polarization of integrin in the muscle cell, nor for its clustering into nascent attachments, events which are blocked in unc-52 null mutants. Instead, UNC-112 is needed for the subsequent localization of the nascent attachments into an ordered array within the muscle cell membrane. Whether UNC-112 interacts directly with PAT-3 / perlecan or through an additional protein or proteins is not known. Our results also show that UNC-112 is not required for DEB-1 / vinculin to assemble at nascent dense bodies, and conversely, that DEB-1 / vinculin is not required for UNC-112 to localize properly in the muscle cell membrane.

In the absence of the UNC-112 protein, actin and myosin filaments do not attach to the muscle cell membrane (Williams and Waterston, 1994). Perhaps UNC-112 is needed for the assembly of additional, membrane-distal components of the dense body and M-line, and these in turn mediate the attachment of the thick and thin filaments. In this model, failure of the nascent attachments to become properly arranged in a striated array within the basal membrane would be a direct result of these lost connections and the corresponding loss of tension that the myofilament lattice would normally exert on the nascent attachment sites. Conversely, the disorganized nature of the integrin adhesion complexes may be a direct effect of the absence of UNC-112, perhaps by blocking integrin’s attachment sites. Conversely, the disorganized nature of the nascent dense bodies and M-lines in the muscle cell basal membrane.

Roggal et al. (1994) has shown that the basement membrane proteoglycan UNC-52 / perlecan is necessary for the proper localization of PAT-3 / integrin to the muscle cell membrane, and that PAT-3 / integrin, in turn, is required for DEB-1 / vinculin to localize to the base of the dense bodies. It appears from the mutant analysis described here that the UNC-112 protein plays a role downstream from UNC-52 / perlecan, and that PAT-3 / integrin and UNC-112 are mutually required for proper localization in the muscle cell membrane. This work was funded by grants from the Medical Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, and the Health Research Foundation of British Columbia to D.G. Merman.

Submitted: 4 February 2000
Revised: 24 May 2000
Accepted: 30 May 2000

References

A dams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. A manalides, S.E. Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, et al. 2000. The genome sequence of Drosophila melanogaster. Science. 287:2185–2195.
A lbertson, D.G. 1984. Localization of the ribosomal genes in Caenorhabditis elegans chromosomes by in situ hybridization using biotin-labeled probes. EMBO J (Eur. Mol. Biol. Organ.). J. 3:1227–1234.
A ltschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
B arstead, R.J., and R.H. Waterston. 1989. The basal component of the nematode dense-body is vinculin. J. Biol. Chem. 264:10171–10185.
B arstead, R.J., and R.H. Waterston. 1991. Vinculin is essential for muscle function in the nematode. J. Cell Biol. 114:715–724.
B arstead, R.J., L. Kleinman, and R.H. Waterston. 1991. Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Genes. Cytol. Cytoarchitecture 20:79–89.
B aum, P.D., and G. Arririga. 1997. Neuronal migrations and axon fasciculation are disrupted in ini-1 integrin mutants. Neuron. 19:51–62.
B ejevec, A., D. Eide, and P. Anderdon. 1984. Genetic techniques for analysis of nematode muscle. In Molecular Biology of the Cytoskeleton. G. Borisy, D. Cleveland, and D. Murphy, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 267–273.
B enian, G.M., T.L. Tinley, X. Tang, and M. Borodovsky. 1996. The Caenorhabditis elegans gene unc-89, required for muscle assembly, encodes a modular protein composed of Ig and signal transduction domains. J. Cell Biol. 132:835–848.
B irsby, D., E.A. Malone, J.J. Vowels, H. Tian, P. Colacurcio, and J.H. Thomas. 2000. A transmembrane guanylyl cyclase (DAF-11) and Hsp-70 (DAF-21) regulate a common set of chemosensory behaviors in C. elegans. Genetics. 155:85–104.
B uiding, K., K. Fath, T. Kelly, G. Nuckolls, and C. Turner. 1988. Focal adhesions: transmembrane junctions between extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525.
B urridge, K., and M. Chrzanowska-Wodnicka. 1996. Focal adhesions, contraction, and signaling. Annu. Rev. Cell Dev. Biol. 12:463–519.
Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science. 260:802–805.
Chisti, A.H., A.C. Kim, S.M. Marfatia, M. Lutchman, M. Hanspal, H. Jindal, S.-C. Liu, P.S. Low, G.A. Rouleau, M. Mohandas, et al. 1998. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23:281–282.
Costell, M., E. Gustafsson, A. Szodzi, M. Morgenl, W. Bloch, E. Hunziker, K. A R dik, R. Timpl, and R. Fassler. 1999. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147:1109–1122.
E ckeckman, F.H., and R. Durbin. 1995. A CebD and Macace. In Caenorhabditis elegans: Modern Biological Analysis of an Organism. H.F. Epstein and D.C. Shakes, editors. A cademic Press, San Diego. 586–605.
F rancis, G.R., and R.H. Waterston. 1985. Muscle organization in Caenorhabditis elegans. J. Cell Biol. 101:535–1549.
F rancis, G.R., and R.H. Waterston. 1991. Muscle cell organization in Caenorhabditis elegans. J. Cell Biol. 114:465–479.
G ettner, S.N., S.C. K eyon, and L.F. Reichardt. 1995. Characterization of β-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 129:1127–1141.
H annigan, G.E., C. Leung-Hagesteijn, L. Fitz-Gibbon, M.G. Copolli, G. R adeva, J. Filimius, J.C. Bell, and S. D edhar. 1996. Regulation of cell adhesion and anchorage-dependent growth by a new beta1-integrin-linked kinase. Nature. 379:91–96.
H obrat, O., D.G. Merman, K.A. Clark, M.C. Beckerle, and G. R ukvIn. 1999. A conserved LIM protein that affects muscle adherens junction integrity and mechanosensory function in the nematode Caenorhabditis elegans. J. Cell Biol. 144:65–57.
H resko, M.C., B.D. Williams, and R.H. Waterston. 1994. Aassembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 124:491–506.
H resko, M.C., L.A. Schriefer, P. Shrimankar, and R.H. Waterston. 1994. Myo-
tactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146:659–672.

Hynes, R.O. 1992. Integrins: versatility, modulation and signaling in cell adhesion. Cell. 69:11–25.

Kallunki, P., and K. Tryggvason. 1992. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Cell Biol. 116:559–571.

Klein, R.D., and B.J. Meyer. 1993. Independent domains of the sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell. 72: 349–364.

Mello, C., and A. Fire. 1995. DNA transformation. In Caenorhabditis elegans Modern Biological Analysis of an Organism. H.F. Epstein and D.C. Shakes, editors. Academic Press, San Diego. 452–482.

Müller, D.M., I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Differential localization of two myosins within nematode thick filaments. Cell. 34:477–490.

Moerman, D.G., and A. Fire. 1997. Muscle structure, function and development. In C. elegans II. D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 417–470.

Moulder, G.L., M.M. Huang, R.H. Waterston, and R.J. Barstead. 1996. Talin requires beta-integrin, but not vinculin, for its assembly into focal adhesion-like structures in the nematode Caenorhabditis elegans. Mol. Biol. Cell. 7:1181–1193.

Mullen, G.P., T.M. Rogalski, J.A. Bush, P. Rahmani Gorgi, and D.G. Moerman. 1993. Complex patterns of alternative splicing mediate the spatial and temporal distribution of perlecan/UNC-52 in Caenorhabditis elegans. Mol. Biol. Cell. 10:3205–3221.

Murdoch, A.D., G.R. Dodge, I. Cohen, R.S. Tuan, and R.V. Iozzo. 1992. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecain). J. Biol. Chem. 267:8544–8557.

Noonan, D.M., A. Fulie, P. Valliente, S. Cai, E. H origan, M. Sasaki, Y. Y amada, and J.R. Hassel. 1991. The complete sequence of perlecain, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266:22939–22947.

Rogalski, T.M., B.D. Williams, G.P. Mullen, and D.G. Moerman. 1993. The products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 7:1471–1484.

Rogalski, T.M., E.J. Gilchrist; G.P. Mullen, and D.G. Moerman. 1995. Mutations in the unc-52 gene responsible for body wall muscle defects in adult Caenorhabditis elegans are located in alternatively spliced exons. Genetics. 139:159–169.

The Caenorhabditis elegans Genome Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 282:2012–2017.

Waterston, R.H. 1988. Muscle. In The Nematode Caenorhabditis elegans. W.B. Wood, editor. Cold Spring Laboratory Press, Cold Spring Harbor, New York. 281–335.

Waterston, R.H. 1989. The minor myosin heavy chain, MHC A, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO (Eur. Mol. Biol. Organ.) J. 8:3429–3436.

Wick, M., C. Burger, S. Brusselsbach, F.C. Lucibello, and R. Muller. 1994. Identification of serum-inducible genes: different patterns of gene regulation during G0→S and G1→S progression. J. Cell Sci. 107:227–239.

Williams, B.D., and R.H. Waterston. 1994. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 124:475–490.

Yamada, K., and B. Geiger. 1997. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 6:76–85.