Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of *Albizia Lebbeck Benth.* stem bark (ALEx) on streptozotocin induced diabetic rats

Danish Ahmed1*, Vikas Kumar1, Amita Verma1, Pushpraj S Gupta1, Hemant Kumar4, Vishal Dhingra4, Vatsala Mishra4 and Manju Sharma2,3*

Abstract

Background: Hypoglycemic and/or anti-hyperglycemic activities have been recorded with numerous plants, many of which are used as traditional herbal treatments of diabetes. *Albizia Lebbeck Benth.* stem bark have been used in traditional medicine along with some preliminary reports on its hypoglycemic action. The aim of present investigation was to evaluate the antidiabetic and antioxidant activities of methanolic extract of stem bark of *Albizia Lebbeck Benth.* in streptozotocin induced diabetic rats.

Methods: The powdered stem bark of *Albizia Lebbeck Benth.* was extracted with methanol (MeOH) using soxhlation method and subjected to phytochemical analysis. The methanol/dichloromethane extract of *Albizia Lebbeck Benth.* (ALEx) was concentrated to dryness using Rotary Evaporator. Diabetes was experimentally induced in the rats by single intraperitoneal administration of Streptozotocin (60 mg/kg). They glycemic control was measured by the blood glucose, glycated hemoglobin and plasma insulin. The oxidative stress was evaluated in the liver and kidney by level of antioxidant markers and various biochemical parameters were assessed in diabetic control and extract treated rats.

Results: Streptozotocin induced diabetic rats depicted the increased blood glucose levels, total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-c), diminished level of high density lipoprotein cholesterol (HDL-c) level and perturb level of antioxidant markers. Oral administration of MeAL at a concentration of 100, 200, 300 and 400 mg/kg b.w daily for 30 days results a significant decrease in fasting blood glucose, glycated hemoglobin and enhancement of plasma insulin level as compared with STZ induced diabetic rats. Furthermore, it significantly (p < 0.05) decreased the level of TC, TG, and LDL-c, VLDL-c. While it increases the level of HDL-c to a significant (p < 0.05) level. The treatment also resulted in a marked increase in reduced glutathione, glutathione Peroxidase, catalase and superoxide dismutase and diminished level of lipid peroxidation in liver and kidney of STZ induced diabetic rats. Histopathological studies suggest the diminution in the pancreatic, liver and cardiac muscle damage.

(Continued on next page)

* Correspondence: danish.ahmed@shiats.edu.in; manju.sharma72@yahoo.com
1Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Deemed University, Allahabad, Uttar Pradesh, India
2Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
3Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
4Full list of author information is available at the end of the article

© 2014 Ahmed et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Diabetes mellitus (DM) is the most common endocrine disorder, and affects more than 100 million people worldwide (6% of the population) and in the next 10 years it may affect five times more people than it does now (World Health Organization and American Diabetes Association). The World Health Organization has pointed out that the prevention of diabetes and its complications is not only a major challenge for the future, but essential if health for all is to be an attainable target, and strongly emphasize the optimal, rational use of traditional and natural indigenous medicines (World Health Organization 1985, 1994).

There is an imbalance between radical generating and radical scavenging mechanisms i.e. increased free radical production or abridged activity of antioxidant defenses or both results in oxidative stress. Oxidative stress is currently suggested as the mechanism underlying diabetes and diabetic complications [1]. Some of the researches have shown that administration of streptozotocin (STZ) in the animals can induce diabetes mellitus and produce an assortment of reactive oxygen species (ROS) as a result of glucose autoxidation and protein glycosylation such as superoxide, hydrogen peroxide, and hydroxyl radicals that are either formed by STZ itself over the short term or result from induced hyperglycemia[2-4]. Additionally, there is a formation of advanced glycation end-products (AGE) by non-enzymatic glycation reactions such as Amadori, Schiff base, and Maillard, persuade the formation of free radical at accelerated rates during the course of diabetes, and are associated with the pathogenesis of chronic diseases such as arthritis, atherosclerosis, and liver cirrhosis [5,6]. Consequently, in recent times, antioxidant therapy has been thought to be effective for the prevention and treatment of various diseases including diabetes, because oxidative stress plays a key role in the pathogenesis of human diseases [7,8].

Albizia Lebbeck Benth. is a deciduous tree with compound leaves and flat oblong fruits. It is distributed throughout India from the plains upto 900 m in the Himalayas. The bark and flowers of Albizia Lebbeck Benth. were used to treat arthritis according to the Siddha system of Medicine [9]. Several studies reported the traditional use of A. Lebbeck Benth. such as the tribal people in Himachal Pradesh and Kashmir use the plant to treat inflammation [10-12], while the tribals of Tamil Nadu utilizes the plant in the treatment of bone fractures [13]. Diaorrhea, edema, poisoning, asthma and bronchitis were also being cured by the use of this plant [14,15]. Earlier studies also reported the beneficial effects of A. Lebbeck Benth such as the plant reduces the level of histamine and raised the plasma cortisol in antigen challenged guinea pigs [16] and proves advantageous activity in bronchial asthma patients [17]. An anti-inflammatory effect of methanolic extract of Albizia Lebbeck bark was also reported [18,19]. The antioxidant potential of leaves of A. Lebbeck Benth. was reported by Resmi et al (2006) [20]. Furthermore, a recent research work has reported the hypoglycemic action of Albizia Lebbeck Benth. bark on diabetic rats. The study confirms the improved glycemic control of Albizia Lebbeck Benth. bark [21]. A research work indicating the antidiabetic potential of Albizia Lebbeck bark in alloxan induced diabetic mice was reported [22]. One report portraying the antidiabetic activity of another important species of Albizia i.e. Albizia odoratissima Benth. in alloxan induced diabetic rats. The study depicted the hypoglycemic potential of Albizia odoratissima Benth. in diabetic rats [23]. The antioxidant action of Albizia Lebbeck leaves on alloxan induced diabetic rats was evidenced by another study, confirming the antioxidant activity of Albizia Lebbeck Benth. on alloxan induced diabetic rats [24]. Some other researches that shows the leaves of plant has the antioxidant potential [25] that can target the free radicals accountable for the destruction of β-cells of pancreas. Consequently, aqueous extract of flowers of Albizia Lebbeck showed enhanced glycemic control in alloxan induced diabetic rats [26].

Despite a long traditional utilization and some reports on the hypoglycemic and antioxidant action of A. Lebbeck Benth. in diabetes, no systematic phytochemical and pharmacological research exertion has been carried out on exhaustive research exertion on mode of action, antihyperlipidemic, pancreas, renal, liver and cardiac histopathological alterations, of the methanol/dichloromethane stem bark extract of this impending plant. Therefore, we have taken this research exertion in order to scrutinize plausible mode of action of anti-diabetic potential and the antioxidant action and of the A. Lebbeck Benth. bark.

Methods
Chemicals
Streptozotocin (STZ) was purchased from Sigma Aldrich, St. Louis, USA. The kits for the assay of blood glucose (GLU), total cholesterol(TC), triglyceride(TG), high density Lipoprotein cholesterol(HDL–C), low density lipoprotein cholesterol(LDL–C), hepatic glycogen, hepatic hexokinase, glucose-6-phosphatase, fructose-1-6-bisphosphatase,
glucose-6-phosphate, lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione Peroxidase (GSH-Px), reduced glutathione (GSH) diagnostic kits were purchased from Span Diagnostics, Surat, India. Glycated serum protein (GSP), blood urea nitrogen (BUN), and creatinine (CRE) diagnostic kits were procured from Accurex, India. Glibenclamide was a generous gift from Ranbaxy Pharmaceutical Company, Gurgaon, India. All other commercial reagents used were of analytical grade.

Animals

Male albino rats aged between 8-10 weeks (250-300 g) were purchased from Indian Institute of Toxicological Research (IITR), Lucknow, UP, India. Animals were kept in controlled condition in animal house at an ambient temperature of 25-30°C and relative humidity of 55-60% and 12/12 h light/dark cycle and were provided pellet diet along with water ad libitum. The experimental protocol has been duly approved by institutional animal ethical committee of Adina Institute of Pharmaceutical Sciences (IAEC Reg. no. 1546/PO/a/11/CPCSEA) and was performed according to the animal ethical guidelines of CPCSEA, government of India.

Plant material

Fresh stem bark pieces of of A. Lebbeck Benth. were collected from herbal garden of faculty of health sciences, SHIATS, Allahabad, between September 2013-October 2013. The stem barks were identified and authenticated by taxonomist, Botany department in FHS, SHIATS, Allahabad, as stem barks of A. Lebbeck. A voucher specimen of the plant (Ref no. FHS/PHCD/ALB/2013-2014/188) has been deposited in the University’s Botany department herbarium.

Preparation of plant extracts

The A. Lebbeck Benth. stem barks were chopped into small pieces, powdered and dried, sieved (#40) and stored in air tight container at room temperature. Two kilogram of powdered plant material was soaked in 4 L of methanol/dichloromethane in a glass jar for two days at room temperature. The mixture was then subjected to the maceration and the solvent was then filtered with Whatman No. 1. The filtration was repeated 4-5 times until the extract depicts no faint discoloration. The yield of the methanol/dichloromethane extract was found to be 10.82% w/w (132 g). Five grams of this extract were dissolved in 1 mL of dimethyl sulfoxide (DMSO) and then the solution adjusted to 100 mL with distilled water. The extract was further subjected to concentration using a rotary evaporator (Buchi, India) under reduced pressure. The extract was freeze dried for further phytochemical screening.

Preliminary phytochemicals studies

The extract was subjected to various phytochemicals tests to determine the active constituents present in the crude methanol/dichloromethane leaves extracts of stem bark of A. Lebbeck Benth.

Acute toxicity study

Acute oral toxicity study was performed according to the 423 guidelines (Acute toxicity class method) lay down by OECD (Organisation of Economic Cooperation and Development). Healthy male albino rats were randomly divided into eight groups with 6 animals in each group. The animals were kept fasting overnight with supplementation of water, thereafter, with methanolic/dichloromethane extract of A. Lebbeck Benth. stem bark with increasing doses (100, 200, 300, 400, 500, 600, 700 & 800 mg/kg body weight) with the aid of intragastric tube in order to determine the safe doses by up and down staircase method [27]. The animals were scrutinized continuously for 1 h, then repeatedly for 4 h and later at the end of 24 h for general behavior; autonomic and neurological profiles. Thereafter, one group was administered high dose of A. Lebbeck Benth. extract orally once daily for 20 days and observed for any lethality and death.

Induction of diabetes

Wistar rats were injected intraperitoneally with STZ dissolved in 0.1 M citrate buffer (pH = 6.5) at 60 mg/kg. Animals of control group were received equal volume of vehicle. After 48 hours of STZ injection, blood glucose of the induced rats was estimated. The rats depicting FBG ≥ 230 mg/dL considered to be diabetic.

Experimental design

A total of 30 male albino wistar rats were utilized and the animals were randomly divided into 7 groups of 5 animals in each group:

- **Group I:** Normal rats (untreated with dimethylsulfoxide, [DMSO, 3 ml/kg])
- **Group-II:** Diabetic control (administered with Streptozotocin (STZ))
- **Group-III:** Diabetic control + A. Lebbeck Benth. stem bark (ALEx) (100 mg/kg body weight)
- **Group – IV:** Diabetic control + A. Lebbeck Benth. stem bark (ALEx) (200 mg/kg body weight)
- **Group-V:** Diabetic control + A. Lebbeck Benth. stem bark (ALEx) (300 mg/kg body weight)
- **Group-VI:** Diabetic control + A. Lebbeck Benth. stem bark (ALEx) (400 mg/kg body weight)
- **Group-VII:** Diabetic control + Glibenclamide (1 mg/kg body weight)

The extract was administered to the respective groups through oral route using intragastric tube for 45 days.
Biochemical evaluation

Rats of the different groups were fasted overnight and the blood was withdrawn by retro orbital puncture under light and under anesthesia. Blood was withdrawn from the rats on the 1st, 22nd and 45th day after the induction of diabetes to assess the blood glucose and plasma insulin level by glucose oxidase method [28] and modified method of Herbert et al. (1965) [29] respectively. The alteration in the body weight was observed throughout the therapy in the experimental animals.

At the termination of treatment i.e 45 days, animals were deprived of food for overnight. Activities of hepatic hexokinase, glucose-6-phosphatase, fructose-1-6-bisphosphatase, glucose-6-phosphate were assayed according to the method of Branstrup et al. (1957) King (1965), Gancedo and Gancedo (1971) and Robert Langdon (1966), respectively [30-33]. The lipid parameters viz. total cholesterol, HDL cholesterol and triglycerides were evaluated according the method of Zlatkis et al. (1953), Burnstein et al. (1970) and Foster and Dunn (1973), respectively [34-36]. Level of serum LDL cholesterol and VLDL cholesterol were estimated according to the Friedewald formula [37]. Hepatic glycogen level was assessed by the method given by Kemp and Van Heijnigen (1954) [38]. The levels of lipid peroxidation (LPO) in the tissues were evaluated by the method of Okhawa et al. (1979) [39]. Level of superoxide dismutase (SOD) was assayed by the method of Kakkar et al. (1984) [40]. The level of catalase (CAT) enzyme was evaluated by the method of Sinha et al. (1972) [41]. Glutathione Peroxidase (GSH-Px) was assayed by the method given by Rotruck et al. (1973) [42]. Level of reduced glutathione (GSH) was assessed by the method of Ellman (1959) [43]. Levels of blood urea nitrogen (BUN), glycated serum protein (GSP) and creatinine (CRE) in serum were evaluated according to the manufacturer’s instructions provided in diagnostic kits.

Production of liver and kidney homogenate

For the estimation of the antioxidant level, the rats of the respective groups were kept overnight fasted. All the rats were decapitated and an abdominal incision was performed, in order to harvest liver and pancreas. The whole organs were thoroughly cleaned with chilled normal saline on ice. A 10% (w/v) homogenate of the liver and pancreas (0.03 M sodium phosphate buffer, pH 7.4) was prepared with the help of Ultra-Turrax homogenizer, maintaining the speed at 9500 rpm.

Observation of general condition of rats

The overall general condition of rats such as psychological activity, food intake, water intake, urine output, general locomotor activity, and skin infection were observed every day. The parameters such as body weight and food intake were determined every week.

Histological assessment of liver, kidney, pancreas and heart sample by hematoxylin eosin (H/E) staining

At the end of the treatment with the drug, all the rats of different groups were sacrificed using mild anesthesia. After collection of the blood samples, the liver, kidney, pancreas and heart tissues were fixed in neutral formalin solution for 48 hours, dehydrated by passing through graded series of alcohol embedded in paraffin blocks. 4 μm thick sections were prepared using a semi-automated rotator microtome.

Statistical analysis

Statistical analysis was performed using GRAPH PAD Prism software package, Version 5.0. All the data were

| Table 1 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEX) on blood glucose level in normal & STZ induced diabetic treated rats |
|-----------------|-----------------|-----------------|-----------------|
| Groups | Blood glucose level in mg/dL at different time interval of experimentation |
| | At start (On 1st day) | On 21st day | On 45th day |
| Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1 | 83.78 ± 1.031 | 86.45 ± 1.003 | 90.00 ± 0.4292 |
| Diabetic control (administered with Streptozotocin (STZ)) Group 2 | 305.4 ± 2.065 | 317.3 ± 1.612 | 372.3 ± 2.233 |
| Diabetic control + (ALEX) (100 mg/kg body weight) Group 3 | 295.6 ± 1.842 | 250.1 ± 2.338** | 208.9 ± 0.5738*** |
| Diabetic control + (ALEX) (200 mg/kg body weight) Group 4 | 288 ± 0.4932 | 235.4 ± 0.8799* | 155.7 ± 0.4750*** |
| Diabetic control + (ALEX) (300 mg/kg body weight) Group 5 | 283 ± 0.7396 | 200.2 ± 0.3971* | 125.2 ± 1.196*** |
| Diabetic control + (ALEX) (400 mg/kg body weight) Group 6 | 282 ± 0.6635** | 166.1 ± 0.7504** | 91.68 ± 1.451*** |
| Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7 | 281.1 ± 0.7859*** | 157.4 ± 1.004*** | 86.74 ± 1.701*** |

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnent’s test. ns = non-significant, STZ = Streptozotocin.

*p < 0.05 is considered as significant when compared to the control group (0 h).

**p < 0.001 is considered as very significant when compared to the control group (0 h).

***p < 0.001 is considered as extremely significant when compared to the control group (0 h).
Figure 1 Effect of methanol/dichloromethane extract of Albizia Lebbeck Benth. stem bark (ALEx) on blood glucose level in normal & STZ induced diabetic treated rats. *p < 0.05 is considered as significant when compared to the control group (0 h); **p < 0.001 is considered as very significant when compared to the control group (0 h); ***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

Figure 2 Effect of Albizia Lebbeck Benth. stem bark extract (ALEx) on histological profile of pancreas in normal, STZ-induced diabetic untreated and STZ-induced diabetic treated wistar rats (Original magnification 10×, DXIT 1200, Nikon, Japan). (i) NPALx: Heamatoxylin and eosin (H/E) stained sections of pancreas of normal control rat portraying normal islet of langerhans shown by yellow arrows. (ii) STZP: Pancreatic section of streptozotocin induced diabetic rat showing no/destroyed islet of langerhans and beta cells depicted by yellow arrows. (iii) AL100: Pancreatic section of STZ-induced diabetic rats treated with ALEx at 100 mg/kg body wt. showing small number of islet of langerhans (yellow arrows). (iv) AL200: Section of pancreas of STZ-induced diabetic rats treated with ALEx at 200 mg/kg body wt. portraying increased number of islet of langerhans with small proportions of beta cells (yellow arrows). (v) AL300: Pancreatic section of diabetic rats treated with 300 mg/kg body wt. ALEx depicting nearly normal islet of langerhans (yellow arrows). (vi) AL400: Sections of pancreas of diabetic treated rats with 400 mg/kg body wt. ALEx showing normal islet of langerhans with numerous beta cells (yellow arrows). (vii) GLP: Pancreatic section of diabetic rats treated with Glibenclamide showing normal pancreatic islet of langerhans with enhancement in the number of beta cells.
expressed as mean ± standard error mean (SEM). The comparisons within groups were evaluated utilizing independent student T-test and one way analysis of variance (ANOVA). The value of \(p < 0.05 \) or \(p < 0.01 \) were considered to be statistically significant.

Results

Effect of ALEx on blood glucose level in normal & STZ induced diabetic treated rats

The biochemical parameters of glycemic control in the animals were summarized in Table 1 (Figure 2). The intraperitoneal administration of streptozotocin (STZ) resulted in nearly 4-fold increase of the fasting blood glucose levels in the male/female diabetic Wistar rats. The blood glucose level was measured at different time intervals during the research exertion viz. on the very first day of induction of diabetes, at the middle of the study i.e. on 21st day and at the finish of the experiment i.e. on 45th day. It was observed that the gradual increase in the dose of the ALEx, the blood glucose level was improvised. At the end of 45 day period, ALEx treated diabetic animals showed a significant reduction of blood glucose nearly to the normal level compared with the diabetic animals (\(p < 0.05 \)) (Figure 2).

Effect of ALEx on plasma insulin level in normal & STZ induced diabetic treated rats

The level of plasma insulin was measured at different period during the experimentation. A significant decrease in the level of plasma insulin was observed in
the diabetic untreated rats compared to the normal rats and the level of plasma insulin was further decreased in the untreated diabetic rats at the end of the study i.e. after 45 days. The treatment with the methanol/dichloromethane extract of ALEx in a dose dependent manner. Treatment with 400 mg/kg body weight of ALEx was shown to produce most significant (p < 0.05) effect on the level of plasma insulin and amplify the level of plasma insulin nearly to the normal as compared to the other doses of ALEx at the end of research exertion (Table 2) (Figure 3).

Table 3 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) during 120 min (2 h) on OGTT in normal & STZ induced diabetic treated rats

Groups	Time (h)				
	0 h	0.5 h	1 h	1.5 h	2 h
Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1	94.03 ± 1.193	135 ± 2.159	144.5 ± 1.385	155.9 ± 1.153	164.8 ± 1.785
Diabetic control (administered with Streptozotocin (STZ) Group 2	265.7 ± 1.070	275.9 ± 1.205**	286.4 ± 1.180**	296.6 ± 0.9096**	306.3 ± 0.9778
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	255 ± 1.086	265 ± 0.8882**	273.4 ± 1.024**	283.1 ± 1.020**	292.3 ± 0.9420**
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	245.2 ± 0.9767	254.8 ± 0.8538	263 ± 1.724**	271.8 ± 0.421	280.4 ± 1.148**
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	234.2 ± 1.263	242.3 ± 1.136**	251.6 ± 0.8199**	261 ± 0.9516	270.8 ± 0.6865**
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	217.1 ± 1.329***	240.3 ± 0.4723**	250 ± 0.5276**	261.1 ± 0.7415	265.3 ± 0.6950***
Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7	221.9 ± 0.6154	242.2 ± 0.6026**	252.1 ± 0.802	261.1 ± 0.8815	269 ± 0.5970***

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnent’s test. ns = non-significant, STZ = Streptozotocin. **p < 0.001 is considered as very significant when compared to the control group (0 h). ***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

The results from the research exertion clearly indicated that the of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) (400 mg/kg body weight) and Glibenclamide (1 mg/kg) reduced the blood glucose level (significant hyperglycemia due to administration of glucose load of 2 g/kg p.o) to a significant level (p <0.05) after 2 h of oral administration as compared to the diabetic control (Table 3, Figure 4).

Figure 4 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) during 120 min (2 h) on OGTT in normal & STZ induced diabetic treated rats. *p < 0.05 is considered as significant when compared to the control group (0 h); **p < 0.001 is considered as very significant when compared to the control group (0 h): ***p < 0.001 is considered as extremely significant when compared to the control group (0 h).
Effect of ALEx on weight variation (grams) in normal & STZ induced diabetic treated rats

The body weight variation of the rats was observed at the start and end of the research exertion. As it is obvious from the table (Table 4) (Figure 5), the weight of the diabetic untreated rats was reduced to a significant level. Weight of the ALEx treated rats was increased to a momentous level (p < 0.05) as compared to the normal rats.

Effect of ALEx on hepatic enzymes in normal & STZ induced diabetic treated rats

Table 5 (Figure 6) portrays the alteration in the activities of carbohydrate metabolizing enzymes in the liver of diabetic control and other experimental animals. The activities of hepatic hexokinase and glucose-6-phosphate dehydrogenase (G6PD) were found to be decreased. On the other hand, the level of gluconeogenic enzymes viz. glucose-6-phosphatase and fructose-6-phosphatase were significantly increased in the diabetic animals compared to those in normal rats. Administration of different doses of ALEx in diabetic rats reversed the alterations in the hepatic enzymes such that animals received 400 mg/kg body weight showed the significant improvement (p < 0.05) in all the hepatic enzymes alterations as compared to the other doses.

Effect of ALEx on serum lipid profile in normal & STZ induced diabetic treated rats

As evident from the Table 6 that diabetic rats exhibited significantly increased serum total cholesterol, VLDL cholesterol, LDL cholesterol, triglycerides and decreased level of HDL cholesterol and hepatic glycogen. Lipid profile of the ALEx treated diabetic rats was significantly improved (p < 0.05) as compared to the untreated diabetic rats (Figure 7).

Effect of ALEx on oxidative stress parameters in normal & STZ induced diabetic treated rats

Table 7 clearly illustrates the effect of ALEx on the antioxidant enzymes. A marked reduction was reported in the level of superoxide dismutase (SOD), catalase (CAT), Glutathione Peroxidase (GSH-Px), and reduced glutathione (GSH) in the STZ induced diabetic rats along with a discernible increase in the level of TBARS. Administration of ALEx at different doses for the 45 days to STZ induced diabetic rats significantly (p < 0.05) increased SOD, CAT, GSH-Px levels with maximum effect seen at 400 mg/kg b.wt. The enhanced level of TBARS was reversed to near normal after administration of ALEx after administering 400 mg/kg b.wt of ALEx. It is pertinent to note that the ALEx was found to be equipped with the antioxidant effect in a dose dependent manner (Figure 8).

Effect of ALEx on renal function parameters in normal & STZ induced diabetic treated rats

Blood urea nitrogen (BUN), serum creatinine (SCr) and glycated serum protein (GSP), a measurement of kidney

Table 4 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on body weight variation (grams) in normal & STZ induced diabetic treated rats

Groups	Time (h)	
	1st Day	45th Day
Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1	245.6 ± 4.479	297 ± 2.408
Diabetic control (administered with Streptozotocin (STZ) Group 2	249.8 ± 3.625	217 ± 3.527
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	245.6 ± 1.965**	266 ± 0.701
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	247.4 ± 1.288	266 ± 2.41
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	247.2 ± 3.680	266 ± 0.701
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	252.2 ± 2.245**	300 ± 0.5099**
Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7	249.8 ± 1.020	302 ± 0.7071***

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnent's test.

*ns = non-significant, STZ = Streptozotocin.

**p < 0.001 is considered as very significant when compared to the control group (0 h).

***p < 0.001 is considered as extremely significant when compared to the control group (0 h).
function test was evaluated during the experimentation. As it is pertinent from Table 8 that the level of BUN, SCr and GSP increased to a momentous level in the STZ induced diabetic rats. Treatment with different doses of ALEx has profound effect on the altered level of renal function parameters. BUN, SCr and GSP level were decreased to a significant (p < 0.05) level after administration of an assorted doses of ALEx. While the maximum reduction has been observed in the group of rats received 400 mg/kg b.wt. of ALEx as compared to the other doses (Figure 9).

Table 5 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on hepatic enzymes in normal & STZ induced diabetic treated rats

Groups	Biochemical Parameters of Hepatic enzymes			
	Hepatic hexokinase (units/min/mg of protein)	Glucose-6-phosphatase (units/min/mg of protein)	Fructose 1-6-biphosphatase (units/min/mg of protein)	Glucose-6-phosphate dehydrogenase (units/min/mg of protein)
Normal rats (untreated with dimethylsulfoxide, [DMSO])	0.214 ± 0.9152	0.176 ± 1.583	0.0282 ± 0.8437	0.128 ± 3.056
Diabetic control (administered with Streptozotocin (STZ) Group 2)	0.112 ± 1.056	0.273 ± 0.6038	0.0596 ± 1.492	0.058 ± 4.576
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	0.13 ± 0.9104**	0.241 ± 0.5943**	0.0536 ± 0.6264**	0.031 ± 3.347
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	0.142 ± 0.2780	0.219 ± 0.3493**	0.0496 ± 0.4148	0.0622 ± 3.083
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	0.17 ± 0.5145	0.197 ± 1.831***	0.0386 ± 0.7895**	0.0892 ± 7.843
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	0.210 ± 0.8454***	0.181 ± 0.8955***	0.0298 ± 1.460	0.122 ± 3.408**
Diabetic control + Glibenclamide (1 mg/kg b.wt.) Group 7	0.212 ± 0.7552	0.172 ± 0.4005	0.047 ± 0.724	0.127 ± 1.711***

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnett’s test. ns = non-significant, STZ = Streptozotocin.

**p < 0.001 is considered as very significant when compared to the control group (0 h).

***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

As it is pertinent from Table 8 that the level of BUN, SCr and GSP increased to a momentous level in the STZ induced diabetic rats. Treatment with different doses of ALEx has profound effect on the altered level of renal function parameters. BUN, SCr and GSP level were decreased to a significant (p < 0.05) level after administration of an assorted doses of ALEx. While the maximum reduction has been observed in the group of rats received 400 mg/kg b.wt. of ALEx as compared to the other doses (Figure 9).

Effect of ALEx on histopathology of pancreas, kidney, liver and heart

Pancreas

Normal control rat exhibited normal histological architecture. Many rounded normal proportions of islet of langerhans were found all around the pancreatic acini. Prominent nuclei with well arranged lobules with surrounding islet cells were found in normal control rats (Figure 2). Groups received STZ, demonstrated cellular damage to the pancreatic acini and islets, which showed pancreatic β-cell damage and degeneration with asymmetrical...
vacuoles. ALEx treated STZ induced-DM rats showed marked improvement of the cellular injury (Figure 2), as evident from the partial restoration of islet cells, reduced β-cell damage, more symmetrical vacuoles and an increase in number of islet cells.

Kidney

Morphological features of kidney remains normal in the control group like prominent glomeruli, collecting ducts, tubules and ascending and descending loops. STZ-induced DM group showed presence of crystal deposition on the glomeruli along with destructed glomeruli and infiltration of red blood cells (Figure 10). Groups received the ALEx demonstrated the reversal of these pathological destructions as apparent by the cell regeneration and removal of crystal deposition.

Liver

The liver cells of normal control groups showed eminent hepatocytes with central vein along with portal triad

Table 6 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth.. stem bark (ALEx) on lipid profile in normal & STZ induced diabetic treated rats

Groups	Serum lipid profile				
	Total cholesterol (mg/dL)	HDL cholesterol (HDL-c) (mg/dL)	LDL cholesterol (LDL-c) (mg/dL)	Triglycerides (TG) (mg/dL)	Hepatic glycogen (mg glucose equivalents/mg wet tissue)
Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1	128.9 ± 0.3926	53.19 ± 0.4878	27.18 ± 0.5619	77.57 ± 0.5943	49.7 ± 0.2316
Diabetic control (administered with Streptozotocin (STZ) Group 2	273 ± 0.7544	14.25 ± 0.2791	105.81 ± 0.8731**	193.1 ± 1.424	17.21 ± 0.1749
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	201.8 ± 0.3189**	15.26 ± 0.1843	82.56 ± 0.4372**	191.7 ± 0.4291	17.17 ± 0.1749
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	188.1 ± 0.4720	28.27 ± 0.5883	81.11 ± 1.201	161.6 ± 0.5797**	25.41 ± 0.4521
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	162.8 ± 0.3100**	34.69 ± 0.5712*	43.94 ± 0.6629	131.1 ± 0.406	28.41 ± 0.2578*
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	141.4 ± 0.4808***	43.74 ± 0.3495***	30.09 ± 0.3958***	91.77 ± 0.389**	41.68 ± 0.3041***
Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7	145.7 ± 0.5246	48.02 ± 0.1643	28.51 ± 0.7293	81.99 ± 0.5388	48.05 ± 0.1163

The data are expressed as mean ± SEM, (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnent’s test.

*ns = non-significant, STZ = Streptozotocin.

*p < 0.05 is considered as significant when compared to the control group (0 h).

**p < 0.001 is considered as very significant when compared to the control group (0 h).

***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

Figure 7 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on lipid profile in normal & STZ induced diabetic treated rats. *p < 0.05 is considered as significant when compared to the control group (0 h); **p < 0.001 is considered as very significant when compared to the control group (0 h); ***p < 0.001 is considered as extremely significant when compared to the control group (0 h).
Table 7 Effect of methanol/dichloromethane extract of *Albizia Lebbeck Benth.* stem bark (ALEx) on oxidative stress parameters in normal & STZ induced diabetic treated rats

Groups	SOD (units/mg protein)	CAT (μ mol/min/mg protein)	GSH-px (μ mol/min/mg protein)	GSH (mM/100 g tissue)
Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1	10.3 ± 0.1642	86.24 ± 0.7028	12.51 ± 0.1523	56.23 ± 0.5273
Diabetic control (administered with Streptozotocin (STZ) Group 2	2.67 ± 0.07218	25.28 ± 0.4598	6.274 ± 0.1402	25.78 ± 0.1816
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	3.794 ± 0.1306	26.89 ± 0.3122**	6.628 ± 0.08243	25.7 ± 0.162
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	6.366 ± 0.01965	38.08 ± 0.4018	7.28 ± 0.01304**	36.99 ± 0.2022
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	7.44 ± 0.1626**	58.61 ± 0.2086**	9.694 ± 0.1273	41.36 ± 0.5254**
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	9.474 ± 0.1209**	75.88 ± 0.6258***	11.18 ± 0.04104***	52.71 ± 0.4298***
Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7	10.41 ± 0.1322	84.3 ± 0.5113	12.53 ± 0.155	54.52 ± 0.3057

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were done by one way ANOVA followed by Dunnent’s test. ns = non-significant, STZ = Streptozotocin.

**p < 0.001 is considered as very significant when compared to the control group (0 h).

***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

The damage to the liver cells in the form of damaged central vein, hepatocytes and portal trial can be clearly seen in the group received STZ. The damage to the liver cells were reversed in all the ALEX treated groups.

Heart

Normal control group showed a regular arrangement of cardiac myocytes. STZ-induced DM rats demonstrated a large infarct area with prominent lymphocyte infiltration and fibrosis. Administration of ALEX reversed these morphological changes in dose dependent manner (Figure 12).

Discussion

The present research exertion was designed to evaluate the prospective effects of *Albizia Lebbeck Benth.* stem bark extract (ALEx) on glycemic control, antioxidant status and its histopathological changes on the liver, pancreas, kidney and heart. STZ diabetic model is one of the important and most widely accepted and utilized
method to induced diabetes comparable to human dia-
betes. At present, a growing apprehension has attracted
attention of many researchers to and has brought back
traditional and complementary medicine due to their
pharmacological and economic advantages [44-46]. Our
previous research work also depicts the protective effect
of one traditionally used polyherbal formulation against
the diabetes induced liver and pancreatic damage [47].
Streptozotocin enters the pancreatic β-cells through
one of the important glucose transporter known as
GLUT 2 and damages the β-cells by DNA alkylation.
Furthermore, the damage is also done by the production
of superoxide radicals inside the β-cells which are pro-
duced with the help of xanthine oxidase. In addition to
the following mechanism another important mechanism
by which the β-cells are partially destroyed are the for-
formation of nitric oxide free radicals. Therefore, free radi-
cals play an important role in the development of
diabetes mellitus by causing the partial destruction of
β-cells [48]. In view of that, we hypothesized that free radi-
cals scavenging properties of a compound can ameliorate
the diabetic conditions.

Flavonoids are naturally occurring phenolic compounds
that are found in plants. They are widely distributed in

Table 8 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth.. stem bark (ALEx) on renal function parameters in normal & STZ induced diabetic treated rats

Groups	Blood urea nitrogen (BUN) (mM/L)	Glycated serum protein (GSP) (μ mol/L)	Serum creatinine (μ mol/L)
Normal rats (untreated with dimethylsulfoxide, [DMSO]) Group 1	6.54 ± 0.1503	152.3 ± 0.5651	27.35 ± 0.1943
Diabetic control (administered with Streptozotocin (STZ) Group 2	13.63 ± 0.1404	313.9 ± 1.426	37.21 ± 0.143
Diabetic control + (ALEx) (100 mg/kg body weight) Group 3	12.11 ± 0.02990*	285.7 ± 1.548*	34.3 ± 0.123
Diabetic control + (ALEx) (200 mg/kg body weight) Group 4	10.53 ± 0.1070	204.1 ± 1.795	33.43 ± 0.143
Diabetic control + (ALEx) (300 mg/kg body weight) Group 5	8.48 ± 0.1101**	181.9 ± 0.3565*	32.29 ± 0.1512**
Diabetic control + (ALEx) (400 mg/kg body weight) Group 6	7.586 ± 0.1244***	162.2 ± 0.6422*	31.23 ± 0.06719***
Diabetic control + Glibenclamide (1 mg/kg b wt.) Group 7	7.122 ± 0.03121***	160.8 ± 0.3588***	29.5 ± 0.1336

The data are expressed as mean ± SEM. (n = number of animals in each group = 5). The comparisons were made by one way ANOVA followed by Dunnent’s test.
ns = non-significant, STZ = Streptozotocin.
*p < 0.05 is considered as significant when compared to the control group (0 h).
**p < 0.001 is considered as very significant when compared to the control group (0 h).
***p < 0.001 is considered as extremely significant when compared to the control group (0 h).

Figure 9 Effect of methanol/dichloromethane extract of Albizzia Lebbeck Benth.. stem bark (ALEx) on renal function parameters in normal & STZ induced diabetic treated rats. *p < 0.05 is considered as significant when compared to the control group (0 h); **p < 0.001 is considered as very significant when compared to the control group (0 h); ***p < 0.001 is considered as extremely significant when compared to the control group (0 h).
most of the frequently consumed beverages and food products of plant origin such as fruits, vegetables, tea, wine and cocoa [49]. In recent years much of the attraction was on the antioxidant activity of flavonoids, due to their ability to reduce the free radicals formation and to scavenge free radicals. There are strong experimental evidences that show that patients with diabetes mellitus are susceptible to increase in blood level of oxidants [50,51].

An enhancement of blood glucose level was observed in the oral glucose tolerance test (OGTT) was considerably greater in the STZ induced diabetic rats as compared to the non-diabetic rats. The level of plasma insulin was increased in the non-diabetic rats as compared to the diabetic rats in which there is a decrease in the plasma insulin level. Administration of ALEX at different dose noticeably enhanced the impaired glucose tolerance in the STZ induced diabetic rats with improvement in the plasma insulin level. Based on the above results, the hypoglycemic action of the Albizzia Lebbeck Benth. stem bark extract may be due to the insulin like action i.e performing its action at the peripheral level to improve the cellular uptake of glucose or enhance the glycogenesis. Many of the plant and their extracts have shown to exert hypoglycemic action through stimulation of insulin release [52,53]. The hypoglycemic action of the ALEX is comparable to the conventional sulfonylurea i.e. Glibenclamide that is reported to enhance the insulin release from the beta cells of pancreas though their activation. Therefore, it is presupposed that ALEX could be accountable for potentiation of the pancreatic secretion of insulin from regenerated β-cells by inhibiting ATP sensitive K+ channels like Glibenclamide for stimulation of insulin from the pancreatic beta cells.

Diabetic state is characterized by a severe loss in body weight because of loss or degradation of structural proteins [54]. Due to insulin deficiency there is a marked reduction in the protein content in the muscular tissue due to proteolysis [55]. The reversal in loss of weight in the ALEX treated diabetic rats group exhibited that restoration of the weight loss may be due the reversal of proteolysis, gluconeogenesis and glycogenolysis [56].

In experimental diabetes, there is a marked alteration of the enzymes accountable for glucose metabolism. Persistent hyperglycemia is the major factor responsible
for such metabolic alterations that lead to the development of diabetic complications such as neuropathy and micro-vascular complications [57]. Hepatic Hexokinase and glucose-6-phosphate dehydrogenase activities have been found to be decreased in the diabetic rats, which may be due to the insufficiency of insulin. Hexokinase is one of the important enzymes responsible for phosphorylation of glucose into glucose-6-phosphate [58].

Insufficiency of hexokinase results in decreased glycolysis and a marked reduction in the utilization of glucose for the production of energy. Oral administration of ALEx to diabetic rats resulted in considerable increase in the activity of hexokinase in dose dependent manner (Table 5).

The activities of hepatic glucose-6-phosphatase as well as fructose-1,6 biphosphatase were increased to a significant extent in STZ induced diabetic rats. The above mentioned enzymes are the key regulators in gluconeogenic pathway. The increased activities of the two enzymes may be due to the increased synthesis of enzymes contributing to the enhanced glucose production by the liver in the period of diabetes [59]. In our research exertion, administration of ALEx had a significant effect on the level of glucose-6-phosphatase and fructose-1,6 biphosphatase, which decreased to considerable level in dose dependent manner. Maximum effect was observed in 400 mg/kg body weight. The reduction in the above two biochemical enzymes portrays the sequential metabolic correlation between increased glycolysis and decreased gluconeogenesis.

In the pathogenesis of diabetes, lipid plays a significant factor. Increased level of cholesterol and lipids in plasma represent a risk factor for coronary artery disease [60]. Increased level of total cholesterol, triglycerides, low density lipoprotein cholesterol (LDL-cholesterol), very low density lipoprotein cholesterol (VLDL-cholesterol) was observed in streptozotocin induced diabetic rats. Hypercholesterolemia in the rats received streptozotocin is caused by increased intestinal absorption and increased cholesterol biosynthesis [54]. Treatment with ALEx reduced the total cholesterol, LDL-c, VLDL-c and triglycerides level to a significant extent in dose dependent manner, while increasing the beneficial HDL level to a considerable extent. It is assumed that ALEx may exert its hypocholesterolemic effect either due to decreased intestinal absorption or decreased cholesterol biosynthesis. The lipoproteins in the diabetic rats are oxidized and may be cytotoxic, which can be reversed by the administration of

Figure 11 Effect of Albizia Lebbeck Benth. stem bark extract (ALEx) on histological profile of liver in normal, STZ-induced diabetic untreated and STZ-induced diabetic treated wistar rats (Original magnification 40x; DXIT 1200, Nikon, Japan). (i) NLALx: Hematoxylin and eosin (H/E) stained sections of liver of normal control rats showing normal portal triad along with normal hepatocytes with central vein (yellow arrows). (ii) STZL: Liver section of rats received streptozotocin depicting destroyed portal triad, disarranged hepatocytes and central vein (yellow arrows). (iii) ALEx100: Section of liver supplemented with 100 mg/kg body wt. of ALEx portaying improvement in structure of portal triad (yellow arrows). (iv) ALEx200: Liver section of rats received 200 mg/kg body wt. of ALEx showing arranged hepatocytes (yellow arrows). (v) ALEx300: Section of liver or diabetic rats treated with 300 mg/kg body wt. of ALEx depicting arranged central vein (yellow arrows). (vi) ALEx400: Liver of diabetic rat showing normal portal triad, central vein and hepatocytes (yellow arrows). (vii) LGB: Liver section of rat administered with Glibenclamide showing normal microvasculature along with normal hepatocytes (yellow arrows).
antioxidants [61]. Our results clearly demonstrated that ALEx recovered the imbalanced lipid profile of STZ induced diabetic rats in dose dependent manner.

Antioxidant capacity is reduced to a significant extent in the plasma of STZ-induced diabetic rats, due to the higher requirement of antioxidants in order to regulate the reactive oxygen species (ROS) homeostasis [62]. Nevertheless, enhanced plasma antioxidant capacity in conjunction with reduced lipid peroxidation could be attained by regular ingestion of rich source of antioxidant compounds. In our research exertion, we examined the antioxidant capacity of ALEx. ROS can be primarily eliminated by essential free radical scavenger enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione Peroxidase (GSH-Px). As it is obvious from the Table 7 that activities of antioxidant related enzymes were detiorated by administration of streptozotocin (STZ). When the activities of these important antioxidant enzymes were diminished, the superoxide anion and hydrogen peroxide (H_2O_2) radical are available in excess, prompting the production of ROS and dissemination of lipid peroxidation. The level of SOD, CAT, GSH, GSH-Px were diminished in all the tissue of diabetic individuals [63]. Supplementation of ALEx in STZ induced diabetic rats protect, to certain degree, further improvement in the activities of GSH, GSH-Px, CAT and SOD in liver of the diabetic rats.

Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus. In our present research study, the development of DN is confirmed by significant enhancement in the level of blood urea nitrogen (BUN), glycated serum protein (GSP) and serum creatinine (Scr). Supplementation of ALEx in dose dependent manner improves the renal function parameters. Effect of ALEx 400 mg/kg body weight on reducing oxidative stress and renal function parameters was significantly ($p < 0.05$) better than the other doses.

Histopathological examination of diabetic pancreas, showed islet of langerhans with fatty infiltration and damaged acini. Administration of ALEx restores the morphological changes in the pancreas to normal. Similarly, the microscopic sections of STZ-diabetic liver demonstrated the damaged central vein and surrounding portal triad. Supplementation of ALEx at different dose recovers the normal histology of liver. Furthermore, the damaged glomeruli, tubules, collecting ducts...
and ascending and descending limbs were seen the kidney of STZ-induced diabetic rats. These destructive morphological changes were upturned to normal in all ALEx treated groups. Correspondingly, arranged cardiac myocytes were observed in the ALEx supplemented groups as compared to the toxic diabetic rats. According to the microscopic examinations, the severe hepatic, renal, pancreatic and cardiac lesions induced by STZ were significantly diminished and restored by administration of ALEx at lower to higher doses.

Conclusion
The results of the present investigation indicate that ALEx ameliorates the hypoglycemia mediated oxidative stress as well as corrects the lipid profile, hepatic and renal parameters, which was evidenced by improved glycem ic control, lipid, renal, hepatic as well as antioxidant biochemical parameters. It can also be concluded that ALEx is a good source of natural antioxidants, which could be a valuable tool in controlling lipid peroxidation and maintaining lipid and lipoproteins. The histological and ultra-structural observations made on the pancreas, liver, kidney and heart tissue substantiate that ALEx protects the oxidative damage of islets of langerhans, hepatocytes, glomeruli and cardiac myocytes on account of its antioxidant potential. Consequently, further studies on the isolation of active principle(s) which exert the anti-diabetic, hepatic and renal protective effect from ALEx are at the developmental stage in our laboratory.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DA and MS carried out the experimental work, biochemical and statistical analysis. VK, AV & PSG designed and planned the study as well as drafting the manuscript. HK, VD & VM performed the histological and ultra-structural observations made on the pancreas, liver, kidney and heart tissue substantiate that ALEx protects the oxidative damage of islets of langerhans, hepatocytes, glomeruli and cardiac myocytes on account of its antioxidant potential. Consequently, further studies on the isolation of active principle(s) which exert the anti-diabetic, hepatic and renal protective effect from ALEx are at the developmental stage in our laboratory.

Acknowledgement
Authors wish to acknowledge Sam Higginbottom Institute of Agriculture, Technology & Sciences for providing necessary facilities.

Author details
1Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Deemed University, Lucknow, Uttar Pradesh, India. 2Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India. 3Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi, India. 4Department of Pathology, Moti Lal Nehru Medical College, Allahabad, India.

Received: 24 March 2014 Accepted: 10 July 2014 Published: 16 July 2014

References
1. Halliwell B, Gutteridge JMC: Free Radicals in Biology and Medicine. 2nd edition. Oxford: Clarendon Press; 1989.
2. Ohkawa T, Sato Y, Naoi M: Hydroxyl radical formation in diabetic rats induced by STZ. Life Sci 1995, 56(17):1789–1798.
3. Robertson RP, Harmon J, Tanaka Y, Tran PO, Potout V: Diabetes Mellitus: a Fundamental and Clinical Text. 3rd edition. Philadelphia: Lippincott Williams & Wilkins, Inc; 2004:129–139.
4. Niedowicz DM, Daleke DL: The role of oxidative stress in diabetic complications. Cell Biochem Biophys 2005, 43(2):289–330.
5. Lapolla A, Traldi P, Fedele D: Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem 2005, 38(10-13):115.
6. Yagmur E, Trautwein C, Gressner AM, Tack F: Resistin serum levels are associated with insulin resistance, disease severity, clinical complications, and prognosis in patients with chronic liver diseases. Am J Gastroenterol 2006, 101(8):1244–1252.
7. Da Ros R, Assaloni R, Cerello A: Antioxidant therapy in diabetic complications: what is new? Curr Vasc Pharmacol 2005, 3:333–441.
8. Medina J, Moreno-Otero R: Pathophysiological basis of antioxidant therapy in chronic liver disease. Drugs 2007, 67:445–462.
9. Mudalai KSM: Siddha Materia Medica. Chennai: Department of Indian Medicine and Homeopathy, 1993:799–800.
10. Srivastava TN, Rajasekaran S, Badgire S: A Shalyuka index of the available medicinal plants used in Siddha system of medicine from Jammu and Kashmir State. Ancient Sci Life 1988, 6:347–352.
11. Jain SK: Dictionary of Indian Fruits. Medicine and Ethnobotany. Lucknow: Deep Publications; 1991:17.
12. Kapur SK: Ethno- medicinal plants of raisa valley (Himachal Pradesh). J Ecol Taxon 199,95:395–408.
13. Balasubramaniam P: Observations on the utilization of forest plants by the tribes of point Calimere wild life sanctuary, Tamilnadu. Bull Bot Surv India 1991, 3(1):100–111.
14. Nadkarni AK: Materia Medica, vol. I. Bombay: Popular Book Depot; 1954:25.
15. Gupta AK: Drugs on Indian Medicinal Plants, vol. I. New Delhi: Indian Council of Medical Research; 2004:445–480.
16. Pramanik KC, Bhattacharya P, Chatterjee TK, Mandal SC: Hypoglycaemic activity of methanol extract ofAlbizia lebbeck(Mimosaceae) bark. Eur Bull Drug Res 2005, 13:71–75.
17. Jung MJ, Chung HY, Kang SS, Choi JH, Baek KS, Choi JS: Antioxidant activity from the stem bark of Albizia julibrissin. Arch Pharm Res 2003, 2(3):297–302.
18. Kumar D, Dash GK, Tripathy NK: Hypoglycaemic activity of bark extracts of Albizia lebbeck Benth. in streptozotocin induced diabetic rats. Int J Pharm Sci Res 2013, 18:220–225.
19. Syiem D, Khup PZ, Syiem AB: Evaluation of anti-diabetic potential of Albizia Lebbeck bark in normal and alloxan-induced diabetic mice. Pharmacologyonline 2008, 3(8):563–573.
20. Kumar D, Kumar S, Kohli S, Ayra R, Gupta J: Anti diabetic activity of methanolic bark extract of Albizia odoratissima Benth. in alloxan induced diabetic albino mice. Asian Pac J Trop Med 2011, 4:900–903.
21. Kesari AN, Gupta RK, Singh SK, Dwivakar S, Watal G: Hypoglycemic and anti-hyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006, 107:374–379.
22. Herbert V, Lau K, Gottlieb CW, Bleicher SJ: Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 1965, 25:1375.
23. Bantrup N, Krik JE, Brun I: The hexokinase and phosphoglucol isomerase activities of aorta and pulmonary artery tissue in individuals of various ages. J Gerontol B-Psychol Sci 1957, 12:166–171.
31. King J: The Hydrolases Acid and Alkaline Phosphatase. In Practical Clinical Enzymology. Edited by Van D. London: Nortstand Company Ltd; 1965:191–208.
32. Gancedo C, Gancedo JM, Solís A: Metabolite repression of fructose 1,6-diphosphatase in yeast. Biochem Biophys Res Commun 1967, 62:536–542.
33. Robert Langdon G: Glucose-6-Phosphate Dehydrogenase from Erythrocytes. In Methods in Enzymology IX. Edited by Willis A.W. New York: Academic Press; 1966.
34. Zlatkis A, Zak B, Boyle AJ: A new method for the direct determination of serum lactate. J Lab Clin Med 1953, 41:486–492.
35. Burnstein M, Scholnic HR, Morfin R: Rapid method of isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 1970; 11:583–587.
36. Foster LB, Dunn RF: Stable reagents for determination of serum triglycerides by colorimetric hantzsch condensation method. Clin Chem Acta 1973, 36:132–137.
37. Friedward WT, Levy R, Fradrickson DS: Estimation of concentration of low-density lipoprotein cholesterol in plasma without the use of preparative ultracentrifuge. Clin Chem 1972, 18:449–452.
38. Kemp A, van Heijningen AJM K: A colorimetric micromethod for the determination of glycogen in tissues. Biochem J 1954, 56:464–468.
39. Okawa H, Ohishi N, Yagi K: Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Ann Biochem 1979, 95:351–358.
40. Kakkar P, Das B, Viswanathan P: A modified method for assay of superoxide dismutase. Ind J Biochem Biophys 1984, 21:131–132.
41. Sinha AK: Colorimetric assay of catalase. Anal Biochem 1972, 47:389–394.
42. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: biochemical role as a component of glutathione peroxidase. Science 1973, 181:702–712.
43. Elman G: Tissue sulphhydryl groups. Arch Biochem Biophys 1959, 32:70–77.
44. Kumar V, Ahmed D, Gupta PS, Anwar F, Mujeeb M: Antidiabetic, anti-oxidant and anti-hyperlipidemic activities of Melastoma malabathricum Linn leaves in streptozotocin induced diabetic rats. BMC Complement Altern Med 2013, 13:22.
45. Ahmed D, Sharma M, Mukerjee A, Ramteke PW, Kumar V: Improved glycemic control, pancreas protective and hepato-protective effect by traditional poly-herbal formulation “Qurs Tabashier” in streptozotocin induced diabetic rats. BMC Complement Altern Med 2013, 13:87.
46. Kumar V, Ahmed D, Verma A, Anwar F, Ali M, Mohamad I, Ubemberg V, Bhatnagar P, Bhatnagar S, Patel A, Keharia A, Bhatnagar G: β-D-galactopyranoside from Aegle marmelos (L.) corr. a corr. an ethnomedical plant with antidiabetic, antihyperglycemic and antioxidative activity. BMC Complement Altern Med 2013, 13:273.
47. Szukedel T: The mechanism of allosteric effects of streptozotocin action in B cells of the rat pancreas. Physiol Res 2002, 51:101–106.
48. Ross JA, Kasum CM: Dietary Rennovids: A comparability, metabolic effects, and safety. Annu Rev Nut 2005, 21:19–34.
49. Santini SA, Marra G, Giardino SB, Orione P, Mordente A, Martorana GE, Manto A, Ghirlanda G, Defeo R: Plasma antioxidant defences and enhanced susceptibility to lipid peroxidation in uncomplicated type-2 diabetes mellitus. Diabetes 1997, 46:447–454.
50. Turk HM, Savar JH, Delsu D, Gigi A, Buyukberber S, Savil H, Bayraktar N: Plasma lipid peroxidation products and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Acta Diabetol 2002, 39:117–122.
51. Mohankumar SK, Orendra A, Charoensiri R, Kongkachuichai R, Andert SE, Schreine W, Toma C, Schreiner P, Mathé D: Amino acid substituents in hexokinase II and alanine aminotransferase, lethal enzyme of alloxan and streptozotocin-induced diabetes in mice. Life Sci 2007, 20:338–344.
52. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: biochemical role as a component of glutathione peroxidase. Science 1973, 181:702–712.
53. Laakso M, Malkki M, Deeb SS: Amino acid substituents in hexokinase II among patients with NIDDM. Diabetes 1995, 44:330–334.
54. Pari L, Sarawanin R: Succinic Acid monohydrate and metformin regulates carbohydrate metabolic enzymes and improves glycemic control in streptozotocin nicotinamide induced type-2 diabetic rats. Iran J Pharm Res 2005, 41:122–137.
55. He Z, King GL: Microvascular complications of diabetes. Endocrinol Metab Clin North Am 2004, 33:215–238.
56. Silva M, Lima WG, Silva ME, Pedrosa ML: Effect of antiprototic on the circulating and lipid profiles and oxidative stress in rats. An Bras Endocrinol Metab 2011, 55:46–53.
57. Mathé D: Dyslipidemia and diabetes: animal models. Diabetes Metab 1995, 21:106–111.
58. Posuwan J, Prangphip P, Leardkaemp S, Vochabut P, Suriangat U, Suriangat R, Charnoensri R, Kongkachuichai R: Long-term supplementation of high pigmented rose rice bran oil (Oryza sativa L.) in amelioration of oxidative stress and histological changes in streptozotocin-induced diabetic rats fed a high fat diet. Rice J Biol 2003, 13:501–508.
59. Alessandro NR, Granato D, Genvolo J, Jabbotinska (Myricaria jabbotska (Vahl) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-induced diabetic rats. Food Res Int 2013, 54:650–659.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Cite this article as:
Ahmed et al.: Antidiabetic, renal/hepatic/pancreas/ cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complementary and Alternative Medicine 2014, 243.