Antimicrobial resistance prevalence of *Aeromonas hydrophila* isolates from motile *Aeromonas septicemia* disease

R Kusdarwati¹, Rozi¹, D Dinda N¹ and I Nurjanah²

¹Department of Fish Health Management and Aquaculture Faculty of Fisheries and Marine, Airlangga University, Jl. Airlangga 60115, Surabaya, East Java, Indonesia.
²Aquaculture, Faculty of Fisheries and Marine, Airlangga University, Jl. Airlangga 60115, Surabaya, East Java, Indonesia.

E-mail: rahayukusdar@gmail.com

Abstract. Fish suffer, from bacteria, fungi, virus and parasites or by physical ailments. Gurami (*Osphronemus gouramy*), nila (*Oreochromis niloticus*), carp (*Cyprinus carpio*), catfish (*Clarias* sp.) were the most reported infections caused by *Aeromonas* are bacterial hemorrhagic septicemia or Motile *Aeromonas* Septicemia (MAS). Antibiotics are drugs of natural or synthetic origin that have the capacity to kill or to inhibit the growth of micro-organisms included MAS. However, the use of antibiotics in the long term can cause negative impacts, among others, feared the occurrence of bacterial resistance in certain antibiotics. The results showed five of isolates were sensitive to antibiotics of chloramphenicol, gentamycin, oxytetracycline, cefradoxil and nalidixic acid but resistant to vancomycin, colistin sulphate, rifampisin, cephalosporin and novobiocin.

1. Introduction
Motile *Aeromonas septicemia* (MAS) disease can cause death between 80-100% of dumbo catfish seeds in a period of approximately one week [1]. MAS disease has also been reported to have infected freshwater fish in the Banyumas region. The Livestock and Fishery Service Office of Banyumas Area (2005) reported that there were at least 72,000 freshwater fish that were infected with *Aeromonas hydrophila* in 2003, namely 52,100 gurami and 19,900 catfish; while in 2004 the number amounted to 43,000 freshwater fish, which included 29,900 gurami and 13,100 dumbo catfish.

MAS disease control in cultivation is usually carried out by using antibiotics such as chloramphenicol, novobiocin, gentamicin, oxytetracycline, vancomycin, nalidixic acid, colistin sulphate and several other types of antibiotics. However, the use of antibiotics in the long term can cause negative impacts, among them is the fear of the occurrence of bacterial resistance to certain antibiotics.

The main cause of antibiotic resistance is its inappropriate dosage of use [2]. There have been case reports of bacterial resistance to these chemicals, namely from *Aeromonas caviae*, *Aeromonas sobria*, *Aeromonas bestiarum* and *Aeromonas hydrophila* which are resistant to tetracycline [3]. The resistance that occurs will cause the bacteria to be resistant to the drug given so that the use of the drug becomes ineffective. Therefore, it is necessary to perform resistance tests of *Aeromonas hydrophila* isolates against some types of antibiotics to find out which isolates are resistant.
2. Methodology
2.1. Bacteria isolate
Three isolates of *Aeromonas hydrophyla* bacteria were obtained from Sukabumi, West Java; Jepara, Central Java; and Surabaya, East Java.

2.2. Antibiotics
The antibiotics used were 30 (mcg) vancomycin, 30 (mcg) chloramphenicol, 5 (mcg) novobiocin, 10 (mcg) gentamicin, 30 (mcg) oxytetracycline, 10 (mcg) colisine sulphate, 5 (mcg) rifampicin, 5 (mcg) cefixime, 2 (mcg) cefadroxil and 30 (mcg) nalidixic acid.

2.3. Media
The media used in this research was Trp ticate Soya Agar (TSA), Mueller Hinton Agar (MHA) and NaCl Physiological.

2.4. Research design
This study was conducted in July-August 2017 as an experimental study by observing, measuring and comparing the inhibit zone formed in the resistance test and comparing it with each antibiotic standard [4]. Three isolates of *Aeromonas hydrophyla* collected from Surabaya, Sukabumi and Jepara were used in this study. Each isolate was tested using seven antibiotics namely chloramphenicol, gentamycin, oxytetracycline and nalidixic acid, but resistant to vancomycin, colistin sulphate and novobiocin.

2.5. Reidentification of bacteria
The identification of the *Aeromonas hydrophila* bacterial isolate was done by the analytical profile index (API) method by using KIT API.

2.6. Bacterial culture
After the reidentification, the bacterial isolates were cultured in Trypticase Soya Agar (TSA) media to obtain sufficient quantity of bacterial stock. The amount was then determined for the resistance test.

2.7. Production of bacterial suspension
Bacteria turbidity was likened to Mc Farland's cloudy number 1 with the number of bacteria at 3x10^8 / mL [5]. A reaction tube containing physiological NaCl with a volume of 9 ml was prepared. An amount of 1 ml of bacteria was taken from the bacteria turbidity and then fed into a reaction tube containing physiological NaCl with a volume of 9 ml.

2.8. Resistance test
The resistance test was performed by using diffusion discs or diffusion test discs. Petri dishes contained MHA media were first prepared. An *Aeromonas hydrophyla* suspension of 100 μl was taken using a micropipette and dispersed on the entire surface of the agar plate and flattened using a drigalski to obtain even growth. After 10-15 minutes, the disc paper was placed on the agar medium by using sterile tweezers. The bacteria-planted medium and paper discs were incubated at 30°C for 18-24 hours [6]. The media was observed and the clear zone that formed around the disc paper was measured using the sliding term. The measurement of the inhibit zone diameter was done by reducing the diameter of the obstacle area by the diameter of the disc paper (6 mm) [7].

2.9. Data analysis
After the data was obtained, namely the clear zone diameter seen around the disk paper that has been overgrown with *Aeromonas hydrophyla* bacteria, the results were then compared to the standard
inhibition zone of each antibiotic according to CLSI (Clinical Laboratory Standards Institute) and descriptively analyzed.

3. Results and discussions
3.1. Reidentification of Bacteria
The results of the identification of Aeromonas hydrophyla isolates from Sukabumi, Surabaya and Jepara are presented in table 1.

Table 1. Results identification of isolates Aeromonas hydrophyla from Sukabumi(K), Surabaya (S) and Jepara (J).

Physiological character	S	K	J	
Gram	-	-	-	-
Motility	+	+	+	+
Citrate utilization	-	-	-	V
H2S	-	-	-	-
Oxidase	+	+	+	+
Indol production	+	+	+	+

The result of examination using KIT API shows that the three isolates identified are Aeromonas hydrophila with a 90.16 % isolation for the Sukabumi isolate, 90.05 % for the Surabaya isolate and 88.31 % for the Jepara isolate.

3.2. Resistance test
The results of the resistance tests of each isolate on several antibiotics are presented in table 2.

Table 2. Resistance test result of Aeromonas hydrophyla isolate from Sukabumi, Jepara and Surabaya against some antibiotics.

Antibiotic (mcg concentration)	Sukabumi (K)	Jepara (J)	Surabaya (S)
Vancomycin (30)	- (R)	- (R)	- (R)
Chloramphenicol (30)	29.8 (S)	25.8 (S)	27.6 (S)
Novobiocin (5)	8.1 (R)	5.8 (R)	5 (R)
Gentamicin (10)	17.2 (S)	15.1 (S)	14.8 (S)
Oxytetracycline (30)	24.5 (S)	20.2 (S)	24.6 (S)
Colistin Sulphate (10)	9.4 (R)	8 (R)	7.3 (R)
Nalidixic Acid (30)	31.4 (S)	28.1 (S)	28.9 (S)
Rifampicin (5)	- (R)	- (R)	- (R)
Cefixime (5)	- (R)	- (R)	- (R)
Cefadroxil (2)	1.775 (S)	1.7 (S)	1.95 (S)

Resistance test results of Aeromonas hydrophyla against some antibiotics were marked by the formation of clear zones around the antibiotic dish. Each isolate showed resistance to five antibiotics (prevalence 50 %), with the same type of antibiotic.

Doses of the 10 antibiotics used were standard doses of antibiotics or in general can be considered as effective doses of antibiotics, such as vancomycin 30 mcg, 30 mcg chloramphenicol, novobiocin 5 mcg, 10 mcg gentamicin, oxytetracycline 30 mcg, 10 mcg colistin sulphate, 5mcg rifampicin, cefixime
5mcg, cefadroxil 2mcg and nalidixic acid 30 mcg [4]. When administered correctly, they greatly affect the ability of antibiotics in inhibiting the growth of microorganisms, otherwise it may affect the resistance of these antibiotics [8].

Sensitive results indicate that antibiotics are capable of inhibiting microbes in recommended antibiotic concentrations that can be used for the treatment of microorganism infections. While resistant results indicate that isolates of microorganisms cannot be inhibited by antibiotics at normal doses and are no longer used in treatment [4]. Novobiocin is an antibiotic that has a working mechanism by inhibiting DNA synthesis and tricholic acid in bacterial cell membranes [9]. Test results show a drag zone was seen with a clear color around the antibiotic dish of novobiocin of 8.1 mm in the Sukabumi isolate (K), 5.8 mm in the Jepara isolate (J) and 5 mm in the isolate of Surabaya (S). Based on data from Clinical Laboratory Standards Institute (CLSI) [4], novobiocin antibiotics are categorized as resistant (R) if the inhibit zone formed is less than or equal to (≤) 17 mm. This means that novobiocin antibiotics are resistant to Aeromonas hydrophyla bacteria. The cause of resistance to this type of antibiotic is the suspected structural changes of the bacteria that result in these antibiotics not working optimally in carrying out its action and causing bacteria to remain resistant.

Vancomycin is an antibiotic of the polypetides group that has a working mechanism that inhibits the synthesis of bacterial cell walls. Recently increased use of vancomycin has reduced the sensitivity of this antibiotic [7]. Based on the results of the tests, the three isolates of Aeromonas hydrophyla namely Sukabumi (K), Jepara (J) and Surabaya (S) do not show any inhibition zone around the vancomycin antibiotics dish (0 mm). This suggests that vancomycin antibiotics are resistant to Aeromonas hydrophyla bacteria.

The mechanism of resistance and reduced vancomycin sensitivity is thought to be associated with changes and rearrangement of bacterial cell walls. In addition, the production of excess Penicillin Binding Protein-2 (PBP-2) is also considered an important factor for the expression of resistance to vancomycin. Resistance to vancomycin is mediated by a van A gene specific to glycopeptides. The presence of Van A results in a change in the target terminal of D-alanil-D-alanil or D-alanil-D-serine, which causes its bond with vancomycin to be poor as the critical point for the hydrogen bond is lost. This causes vancomycin to be unable to be bound, resulting in decreased sensitivity [11].

Colistin can inhibit the permeability of Gram negative cell wall bacteria. The cytoplasm of all living cells is limited by the cytoplasmic membrane acting as a barrier to selective permeability, performing an active transport function so that it can control the arrangement of cells. When the integrity of the cytoplasmic function is impaired so that the permeability of the cell wall changes or even becomes damaged, important components, such as proteins, nucleic acids, nucleotides and cells gradually die [11].

The colistin sulphate antibiotic also showed similar activity with vancomycin and novobiocin and is also resistant to all isolated Aeromonas hydrophyla isolates. Based on the data obtained, the inhibition zone formed around the antibiotic dish of colistin sulphate was 9.4 mm in the Sukabumi isolate (K), 8 mm in the Jepara isolate (J) and 7.3 mm in the isolate of Surabaya (S). Based on these results, it can be categorized as resistant (R) because it has a zone of <10 mm [4]. Colistin becomes resistant through the modification of the outer membrane structure of LPS, the bacteria is negatively charged so that the LPS phosphate component becomes neutral and weakens the binding of colistin with LPS wall. The emergence of resistance to an antibiotic can occur through several mechanisms: the bacteria synthesizes an enzyme inactivator or antibiotic destroyer; bacteria change their permeability to drugs; bacteria develop a change of target structure for drugs; or bacteria to develop metabolic path changes directly inhibited by drugs [12].

4. Conclusions
Based on the results of the study, it can be concluded that the isolates of Aeromonas hydrophila from Sukabumi, Surabaya and Jepara showed three resistant properties of vancomycin, novobiocin, rifampicin, cephalosporin and colistin sulphate (prevalence 50 %), while it showed sensitive results against 5 other antibiotics.
5. References

[1] Mulia, D S 2007 *JPP* 7 43-52
[2] Krisnaningsih M W, Asmaradan M W 2005 *J. Sains Vet.* 1
[3] Nurjanah S, S B Prayitno and Sarjito 2014 *J. Man. Cul. Tech.* 3 308-316
[4] Clinical Laboratory Standards Institute (CLSI) 2012 *Performance Standards for Antimicrobial Disk Susceptibility Tests 22th ed.* CLSI 2012 document M100-S22 (USA : Clinical Laboratory Standards Institute Wayne,PA) 32
[5] Whitman, K A and N G MacNair 2004 *Finfish and Shellfish Bacteriology Manual: Techniques and Procedures* (State Avenue : Iowa State Press)
[6] Behrman, Kligman and Arvin 2000 *The science of child health Nelson* Vol. 2 (Jakarta : Penerbit Buku Kedokteran EGC) 904 p
[7] Hermawan, A, W Hana dan T Wiwiek 2007 *The influence of betel leaf extract against the growth of Staphylococcus aureus and Escherichia coli* (Surabaya : University of Airlangga)
[8] Chambers, H F 2006 *Beta-Laktam Antibiotics and Other Inhibitors of Cell Wall Synthesis In* :Katzung, Bertram G, et al. *Basic and Clinical Pharmacology* 10th edition (New York : McGraw Hills) 754-773 p
[9] Jawetz, E 1986 *Microbiology for health professions XVI ed* translated by dr. Bonang,G. (Jakarta : EGC Press) pp 336-384
[10] Hiramatsu, K 2001 *Lancet Infect. Dis.* 1 147-55
[11] Lecrere V, R Marti, M Bechet, P Fickers and P Jacques 2006 *Arch. Microbiol.* 186 475-483
[12] Jawetz E 1997 *Principle of Antimicrobial Drug Action Basic and Clinical Pharmacology Third edition* (Appleton and Lange Norwalk)