Impact of Janus Kinase 3 on Cellular Ca$^{2+}$ Release, Store Operated Ca$^{2+}$ Entry and Na$^+$/Ca$^{2+}$ Exchanger Activity in Dendritic Cells

Jing Yana Evi Schmida,b Zohreh Hosseinzadeha Sabina Honischa
Ekaterina Shumilinaa Joerg Fuchsb Florian Langa

aDepartment of Physiology, University of Tübingen, Tübingen, bDepartment of Pediatric Surgery and Pediatric Urology, University Children’s Hospital Tübingen, Tübingen, Germany

Key Words
ATP • CXCL12 • CRAC channel • SOCE • Intracellular Ca$^{2+}$ release

Abstract
Background/Aims: Janus kinase 3 (JAK3), a tyrosine kinase mainly expressed in hematopoietic cells, participates in the signaling stimulating cell proliferation. The kinase is expressed in dendritic cells (DCs), antigen presenting cells involved in the initiation and regulation of antigen-specific T-cell responses. Dendritic cell function is regulated by cytosolic Ca$^{2+}$ activity ([Ca$^{2+}$]$_i$). Mediators increasing [Ca$^{2+}$]$_i$ in DCs include ATP and the chemokine receptor CXCR4 ligand CXCL12. The present study explored, whether JAK3 participates in the regulation of [Ca$^{2+}$]$_i$ in DCs.

Methods: Fura-2 fluorescence was employed to determine [Ca$^{2+}$]$_i$, and whole cell patch clamp to decipher electrogenic transport in immature DCs isolated from bone marrow of JAK3-knockout (jak3$^{-/-}$) or wild-type mice (jak3$^{+/+}$).

Results: Without treatment, [Ca$^{2+}$]$_i$ was similar in jak3$^{-/-}$ and jak3$^{+/+}$ DCs. Addition of ATP (100 µM) was followed by transient increase of [Ca$^{2+}$]$_i$ reflecting Ca$^{2+}$ release from intracellular stores, an effect significantly less pronounced in jak3$^{-/-}$ DCs than in jak3$^{+/+}$ DCs. CXCL12 administration was followed by a sustained increase of [Ca$^{2+}$]$_i$ reflecting receptor operated Ca$^{2+}$ entry, an effect significantly less rapid in jak3$^{-/-}$ DCs than in jak3$^{+/+}$ DCs. CXCL12 administration was followed by a sustained increase of [Ca$^{2+}$]$_i$, reflecting receptor operated Ca$^{2+}$ entry, an effect significantly less rapid in jak3$^{-/-}$ DCs than in jak3$^{+/+}$ DCs. In addition, the Ca$^{2+}$ release-activated Ca$^{2+}$ channel (CRAC) current triggered by IP$_3$-induced Ca$^{2+}$ store depletion and CXCL12 was significantly higher in DCs from jak3$^{-/-}$ mice than in jak3$^{+/+}$ mice. Inhibition of sarcoendoplasmatic reticulum Ca$^{2+}$-ATPase (SERCA) by thapsigargin (1 µM) in the absence of extracellular Ca$^{2+}$ was followed by a transient increase of [Ca$^{2+}$]$_i$, reflecting Ca$^{2+}$ release from intracellular stores, and subsequent readdition of extracellular Ca$^{2+}$ in the continued presence of thapsigargin was followed by a sustained increase of [Ca$^{2+}$], reflecting store operated Ca$^{2+}$ entry (SOCE). Both, Ca$^{2+}$ release from intracellular stores and SOCE were again significantly lower in jak3$^{-/-}$ DCs than in jak3$^{+/+}$ DCs.

J. Yan and E Schmid contributed equally to this work.
DCs. Pretreatment of $jak3^{+/+}$ DCs with JAK inhibitor WHI-P154 (22 µM, 10 minutes or 24 hours) significantly blunted both thapsigargin induced Ca$^{2+}$ release and subsequent SOCE. Abrupt replacement of Na$^+$ containing (130 mM) and Ca$^{2+}$ free (0 mM) extracellular bath by Na$^+$ free (0 mM) and Ca$^{2+}$ containing (2 mM) extracellular bath increased [Ca$^{2+}$], reflecting Na$^+$/Ca$^{2+}$ exchanger activity, an effect again significantly less pronounced in $jak3^{-/-}$ DCs than in $jak3^{+/+}$ DCs. **Conclusions:** JAK3 deficiency is followed by down-regulation of cytosolic Ca$^{2+}$ release, receptor and store operated Ca$^{2+}$ entry and Na$^+$/Ca$^{2+}$ exchanger activity in DCs.

Introduction

Janus kinase 3 (JAK3), a tyrosine kinase, is mainly expressed in hematopoietic cells [1, 2]. JAK3 expressing cells include dendritic cells (DCs) [3], antigen-presenting cells contributing to initiation and regulation of antigen-specific T-cell responses [4, 5]. JAK3 is involved in the signaling of cytokine receptors in hematopoietic cells [6-10]. The kinase contributes to the stimulation of cell proliferation as well as the inhibition of apoptosis [11-15]. The gain of function mutation $A572V$ JAK3 was found in acute megakaryoplastic leukemia [16, 17]. Whether this mutation impacts on Ca$^{2+}$ signaling, remained elusive. Gene targeted mice lacking JAK3 suffer from several disorders affecting immune system and hematopoiesis including impaired B cell development [18]. Jak3 deficiency further interferes with T cell activation leading to decreased IL-2 secretion [18]. In JAK3 deficient mice spleen, peripheral lymph nodes, and thymus are hypoplastic, and intestinal Peyer’s patches completely lacking [18]. Jak3-deficiency leads to increased formation of 1,25(OH)$_2$D$_3$ in the kidney [19] and to enhanced release of IL-12 [20], which is produced by several cell types including dendritic cells [21].

The function of DCs is governed by alterations of cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}$]). [Ca$^{2+}$] is increased following Ca$^{2+}$ release from intracellular stores accomplished by the IP3 receptor [23]. The emptying of the intracellular stores is followed by activation of Ca$^{2+}$ release activated current I_{crac} [24] leading to store operated Ca$^{2+}$ entry (SOCE) [25-28], which is accomplished by the pore forming Ca$^{2+}$ channel subunits Orai1, Orai2 or Orai3 [29-33] and their regulators STIM1 or STIM2 [34-38]. Cytosolic Ca$^{2+}$ concentration is further a function of Ca$^{2+}$ extrusion by K$^+$-independent (NCX) and K$^+$-dependent (NCKX) Na$^+$/Ca$^{2+}$ exchangers [39, 40] as well mitochondrial Ca$^{2+}$ uptake or release [41-46]. Agonists stimulating Ca$^{2+}$ release from intracellular stores include purinergic receptor agonist ATP [47], agonists stimulating receptor operated Ca$^{2+}$ entry include CXCL12 [27].

The present study explored, whether JAK3 influences intracellular Ca$^{2+}$ release, SOCE, Ca$^{2+}$ release-activated Ca$^{2+}$ channel activity, and Na$^+$/Ca$^{2+}$ exchanger activity. To this end, DCs were isolated from gene-targeted mice lacking functional JAK3 ($jak3^{-/-}$) and corresponding wild type mice ($jak3^{+/+}$). [Ca$^{2+}$], in $jak3^{-/-}$ and $jak3^{+/+}$ DCs was determined utilizing Fura-2 fluorescence, and Ca$^{2+}$ release-activated Ca$^{2+}$ channel current (I_{crac}) by whole cell patch clamp.

Materials and Methods

Mice

All animal experiments were conducted according to the German law for the welfare of animals and were approved by the authorities of the state of Baden-Württemberg. Experiments were performed with dendritic cells from 7-12 weeks old female and male gene-targeted mice lacking functional JAK3 ($jak3^{-/-}$) and in age- and sex-matched wild type mice ($jak3^{+/+}$) (Charles River; Sulzfeld, Germany) [48]. The mice had free access to water and control food (SSniff, Soest, Germany).
Cell Culture

Dendritic cells (DCs) were cultured from bone marrow of jak3/- and jak3+/+ mice [27]. Bone marrow derived cells were flushed out of the cavities from the femur and tibia with PBS. Cells were then washed twice with RPMI and seeded out at a density of 2 x 10^6 cells/10ml per 60-mm dish. Cells were cultured for 8 days in RPMI 1640 (GIBCO, Carlsbad) containing: 10% FCS, 1% penicillin/streptomycin, 1% non-essential amino acids (NEAA) and 0.05% β-mercaptoethanol. Cultures were supplemented with GM-CSF (35 ng/ml, Immunotools) and fed with fresh medium containing GM-CSF on days 3 and 6. Experiments were performed on DCs at day 7-9 after isolation.

Measurement of intracellular Ca^{2+}

Fura-2 fluorescence was employed to estimate cytosolic Ca^{2+} activity ([Ca^{2+}]_i) [49, 50]. To this end, the cells were loaded with Fura-2/AM (2 μM, Molecular Probes, Goettingen, Germany) for 15 min at 37 °C. Fluorescence measurements were carried out with an inverted phase-contrast microscope (Axiovert 100, Zeiss, Oberkochen, Germany). Cells were excited alternatively at 340 or 380 nm and the light was deflected by a dichroic mirror into either the objective (Fluar 40×/1.30 oil, Zeiss, Oberkochen, Germany) or a camera (Proxitrionic, Bensheim, Germany). Emitted fluorescence intensity was recorded at 505 nm and data acquisition was accomplished by using specialized computer software (Metafluor; Universal Imaging, Downingtown, USA). The corresponding ratios (F_{340}/F_{380}) were used to obtain intracellular Ca^{2+} concentrations. The following equation was used: [Ca^{2+}]_i = K_d x ((R-R_{min})/(R_{max}-R)) x S (K_d = dissociation constant of Fura-2; R = ratio of emission intensity, exciting at 340 nm, to emission intensity, exciting at 380 nm; R_{min} = ratio at zero free Ca^{2+}; R_{max} = ratio at saturating Ca^{2+}; S = instrumental constant). As a measure for the increase of cytosolic Ca^{2+} activity, the slope and peak of the changes in the intracellular Ca^{2+} ratio were calculated for each experiment.

Intracellular Ca^{2+} was measured prior to and following addition of MgATP (100 μmol/l, Alfa Aesar GmbH & Co KG, Germany) or CXCL12 (300 ng/ml, Sigma, Germany). Store operated Ca^{2+} entry (SOCE) was determined by extracellular Ca^{2+} removal and subsequent Ca^{2+} readdition in the presence of sarcendooplasmatic reticulum Ca^{2+}-ATPase (SERCA) inhibitor thapsigargin (1 μM, Invitrogen) [51]. For quantification of Ca^{2+}-entry, the slope (delta ratio/s) and peak (delta ratio) of [Ca^{2+}]_i increase were calculated.

The modified Ringer solution contained (in mmol/l): 125 NaCl, 5 KCl, 1.2 MgSO_4, 2 CaCl_2, 2 Na_2HPO_4, 32 HEPES (pH 7.4), 5 glucose. The Ca^{2+}-free solution contained (in mmol): 125 NaCl, 5 KCl, 1.2 MgSO_4, 0.5 EGTA, 2 Na_2HPO_4, 32 HEPES (pH 7.4), 5 glucose.

The changes in [Ca^{2+}]_i upon removal of extracellular Na^+ were taken as measure of Na^+/Ca^{2+} exchange. N-methyl-D-glucamine (NMDG) was used to replace Na^+. The Na^-containing and Na^-free solution contained either 5 mM or 40 mM KCl. Experiments were performed with modified Ringer solution containing (in mM): 125 NaCl, 5 KCl, 1.2 MgSO_4, 2 CaCl_2, 2 Na_2HPO_4, 32 HEPES (pH 7.4), 5 glucose. To measure Na^-/Ca^{2+} exchange the Na^-containing solution contained (in mM): 130 or 90 NaCl, 5 or 40 KCl, 2 CaCl_2, 2 MgCl_2, 10 HEPES (pH 7.4), 5 glucose, and the Na^-free solution contained (in mM): 130 or 90 NMDG, 5 or 40 KCl, 2 CaCl_2, 2 MgCl_2, 10 HEPES (pH 7.4), 5 glucose.

For calibration purposes ionomycin (10 μM, Sigma-Aldrich, Taufkirchen, Germany) was applied at the end of each experiment.

Whole-cell patch clamp

Patch clamp experiments were performed at room temperature in voltage clamp, fast-whole-cell mode according [52-54]. The currents were recorded by an EPC-9 amplifier (Heka, Lambrecht, Germany) using Pulse software (Heka) and an ITC-16 Interface (Instrutech, Port Washington, N.Y., USA). For I_{Ca, transient} measurements whole-cell currents were elicited by 200 ms square wave voltage pulses from -50 to +50 mV in 10 mV steps delivered from a holding potential of -30 mV. Alternatively, the currents were recorded with 200 ms voltage ramps from -50 to +50 mV. Leak currents determined as the currents at the very beginning of each experiment immediately after reaching the whole-cell mode were subtracted. The currents were recorded with an acquisition frequency of 10 kHz and 3 kHz low-pass filtered. DCs were superfused with a bath solution containing (in mmol/l): 140 NaCl, 5 KCl, 10 CaCl_2, 20 glucose, 10 HEPES/NaOH, pH 7.4. The patch clamp pipettes were filled with an internal solution containing (in mmol/l): 120 CsCl, 35 NaCl, 10 EGTA, 10 HEPES/CSA, 0.04 inositol 1,4,5-trisphosphate (Ins(1,4,5)P_3, Enzo Life Sciences), pH 7.4. The liquid junction potential ΔE between the CsCl-based pipette and the NaCl-based bath solutions was estimated according to Barry and Lynch [55] and approached 1 mV. The data were not corrected for ΔE.
Statistical analysis

Data are provided as means ± SEM. n represents the number of the number of independent experiments. Data were tested for significance using ANOVA or Student’s unpaired two-tailed t-test, as appropriate. Results with p < 0.05 were considered statistically significant.

Results

The present study explored the impact of JAK3 on cytosolic Ca\(^{2+}\) activity ([Ca\(^{2+}\)]\(_i\)) in dendritic cells (DCs). Alterations of [Ca\(^{2+}\)]\(_i\) were traced by measurements of Fura-2 fluorescence ratio. Experiments were performed in DCs isolated from bone marrow of JAK3-knockout (jak3\(^{-/-}\)) or wild-type mice (jak3\(^{+/+}\)). In the absence of agonists and presence of extracellular Ca\(^{2+}\), the Fura-2 fluorescence ratio was similar in jak3\(^{-/-}\) DCs (1.01 ± 0.02; n = 76) and jak3\(^{+/+}\) DCs (1.08 ± 0.02; n = 76).

Reduced ATP induced Ca\(^{2+}\) release in jak3\(^{-/-}\) DCs

In order to define the impact of JAK3 on agonist induced Ca\(^{2+}\) release from intracellular stores, the effect of purinergic receptor agonist ATP in the absence of extracellular Ca\(^{2+}\) was tested. As illustrated in Fig.1, addition of ATP (100 µM) in the absence of extracellular Ca\(^{2+}\) was followed by transient increase of Fura-2 fluorescence ratio reflecting Ca\(^{2+}\) release from intracellular stores. Amplitude (peak, Δ ratio), and velocity (slope, Δ ratio/s), were both significantly less pronounced in jak3\(^{-/-}\) than in jak3\(^{+/+}\) DCs (Fig.1). Accordingly, lack of JAK3 compromises ATP induced intracellular Ca\(^{2+}\) release.

Reduced Ca\(^{2+}\) release and store operated Ca\(^{2+}\) entry (SOCE) in jak3\(^{-/-}\) DCs in the presence of SERCA inhibitor

In order to determine SOCE, intracellular stores were emptied by inhibition of sarcoplasmic endoplasmatic reticulum Ca\(^{2+}\)-ATPase (SERCA) with thapsigargin (1 µM) in the absence of extracellular Ca\(^{2+}\). The treatment resulted in a transient increase of Fura-2 fluorescence ratio reflecting Ca\(^{2+}\) release from intracellular stores, an effect significantly less pronounced in jak3\(^{-/-}\) than in jak3\(^{+/+}\) DCs (Fig. 2). Subsequent readdition of extracellular Ca\(^{2+}\) in the continued

\[\text{Fig. 1. ATP induced Ca}^{2+}\text{ release in jak3}^{+/+}\text{ and jak3}^{-/-}\text{ DCs. A. Representative tracings showing the Fura-2 fluorescence ratio reflecting cytosolic Ca}^{2+}\text{ activity in jak3}^{+/+}\text{ (white symbols) and jak3}^{-/-}\text{ (black symbols) DCs. Where indicated, Ca}^{2+}\text{ was removed from (0 Ca}^{2+}\text{) and ATP (100 µM) added to the bath solution leading to release of Ca}^{2+}\text{ from intracellular stores with subsequent increase of the Fura-2 fluorescence ratio. The amplitude (peak) and the velocity (slope, calculated from the linear fit) of the Fura-2 fluorescence ratio increase were analysed. B,C. Arithmetic means (± SEM, n = 20-37 cells) of the slope (B) and the peak (C) of the change in Fura-2 fluorescence ratio in jak3\(^{+/+}\) (white bars) and jak3\(^{-/-}\) (black bars) DCs following addition of ATP (100 µM) in the absence of Ca\(^{2+}\) (Ca\(^{2+}\) release). * (p<0.05), ** (p<0.01) indicate significant difference between jak3\(^{-/-}\) and jak3\(^{+/+}\) DCs, unpaired t-test.}\]
presence of thapsigargin was followed by a sustained increase of Fura-2 fluorescence ratio reflecting SOCE, an effect again significantly less pronounced in jak3\(^{-/-}\) than in jak3\(^{+/+}\) DCs (Fig. 2). Lack of JAK3 thus impairs intracellular Ca\(^{2+}\) release and SOCE.

Fig. 2. Thapsigargin induced Ca\(^{2+}\) release and store-operated Ca\(^{2+}\) entry in jak3\(^{+/+}\) and jak3\(^{-/-}\) DCs. A. Representative tracings showing the Fura-2 fluorescence ratio in jak3\(^{+/+}\) (white symbols) and jak3\(^{-/-}\) (black symbols) DCs. Where indicated, Ca\(^{2+}\) was removed (0 Ca\(^{2+}\)) and sarcoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA) inhibitor thapsigargin (1 µM) added to the bath solution leading to release of Ca\(^{2+}\) from intracellular stores. Re-addition of extracellular Ca\(^{2+}\) in the continued presence of thapsigargin reflects store-operated Ca\(^{2+}\) entry (SOCE). The amplitude (peak) and the velocity (slope, calculated from the linear fit) of Ca\(^{2+}\) release and Ca\(^{2+}\) entry were analysed. B,C. Arithmetic means (± SEM, n = 76 cells) of the slope (B) and the peak (C) of the change in Fura-2 fluorescence ratio in jak3\(^{+/+}\) (white bars) and jak3\(^{-/-}\) (black bars) DCs following addition of thapsigargin (1 µM) in the absence of Ca\(^{2+}\) (Ca\(^{2+}\) release). *(p<0.05), ** (p<0.01) indicates significant difference from jak3\(^{+/+}\) DCs (two-tailed unpaired t-test). D,E. Arithmetic means (± SEM, n = 76 cells) of the slope (D) and the peak (E) of the change in Fura-2 fluorescence ratio following re-addition of extracellular Ca\(^{2+}\), reflecting SOCE (Ca\(^{2+}\) entry), in jak3\(^{+/+}\) (white bars) and jak3\(^{-/-}\) (black bars) DCs. *** (p<0.001) indicates significant difference between jak3\(^{-/-}\) and jak3\(^{+/+}\) DCs, unpaired t-test.

Fig. 3. CXCL12 induced Ca\(^{2+}\) entry in jak3\(^{+/+}\) and jak3\(^{-/-}\) DCs. A. Representative tracings showing the Fura-2 fluorescence ratio reflecting cytosolic Ca\(^{2+}\) activity in jak3\(^{+/+}\) (white symbols) and jak3\(^{-/-}\) (black symbols) DCs. Where indicated, CXCL12 (300 ng/ml) was added to the bath solution leading to increase of Fura-2 fluorescence ratio. The amplitude (peak) and the velocity (slope, calculated from the linear fit) of the increase were analysed. B,C. Arithmetic means (± SEM, n = 80-94 cells) of the slope (B) and the peak (C) of the change in Fura-2 fluorescence ratio in jak3\(^{+/+}\) (white bars) and jak3\(^{-/-}\) (black bars) DCs following addition of CXCL12 (300 ng/ml). **(p<0.01), *** (p<0.001) indicate significant difference between jak3\(^{-/-}\) and jak3\(^{+/+}\) DCs, unpaired t-test.
Reduced CXCL12 induced operated Ca\(^{2+}\) entry in jak3\(^{-/-}\) DCs

In order to determine the impact of JAK3 on Ca\(^{2+}\) entry following activation of the chemokine receptor CXCR4, the effect of its ligand CXCL12 was tested. As shown in Fig. 3, the administration of CXCL12 (300 ng/ml) in the presence of extracellular Ca\(^{2+}\) was followed by a sustained increase of Fura-2 fluorescence ratio reflecting receptor operated Ca\(^{2+}\) entry (Fig. 3). The effect was again significantly less pronounced in jak3\(^{-/-}\) than in jak3\(^{+/+}\) DCs (Fig. 3). Accordingly, lack of JAK3 compromises CXCL12 induced Ca\(^{2+}\) entry.

Reduced current through store operated Ca\(^{2+}\) channels in jak3\(^{-/-}\) DCs

Whole cell patch clamp recording was employed in order to analyze Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) current (I\(_{\text{CRAC}}\)) in jak3\(^{-/-}\) and jak3\(^{+/+}\) DCs. As illustrated in Fig. 4, the conductance of the inward current triggered by Ca\(^{2+}\) store depletion with inositoltrisphosphate (IP\(_{3}\)) and stimulation with CXCL12 in the pipette solution was significantly impaired in jak3\(^{-/-}\) DCs.

Inhibition of Ca\(^{2+}\) release and store operated Ca\(^{2+}\) entry in jak3\(^{-/-}\) DCs by JAK3 inhibitor WHI-P154

Additional experiments addressed, whether genetic JAK3 knockout could be mimicked by pharmacological inhibition of JAK3 with WHI-P154. The inhibitor was applied long term.
Fig. 5. Effect of JAK3 inhibitor WHI-P154 on thapsigargin induced Ca2+ release and store-operated Ca2+ entry in \textit{jak3}-/- DCs. A. Representative tracings showing the Fura-2 fluorescence ratio in \textit{jak3}-/- DCs without (white symbols) and with (black symbols) WHI-P154 treatment (22 µM, 24 hours). Where indicated, Ca2+ was removed (0 Ca2+) and sarco-endoplasmatic reticulum Ca2+ ATPase (SERCA) inhibitor thapsigargin (1 µM) added to the bath solution leading to release of Ca2+ from intracellular stores. Re-addition of extracellular Ca2+ in the continued presence of thapsigargin reflects store-operated Ca2+ entry (SOCE). The amplitude (peak) and the velocity (slope, calculated from the linear fit) of Ca2+ release and Ca2+ entry were analyzed. B, C. Arithmetic means (± SEM, n = 66-99 cells) of the slope (B) and the peak (C) of the change in Fura-2 fluorescence ratio in \textit{jak3}-/- DCs without (white bars) and with (black bars) WHI-P154 treatment (22 µM, 24 hours) following addition of thapsigargin (1 µM) in the absence of Ca2+ (Ca2+ release). * (p<0.05), ** (p<0.01) indicates significant difference from \textit{jak3}-/- DCs (two-tailed unpaired \textit{t}-test). D, E. Arithmetic means (± SEM, n = 66-99 cells) of the slope (D) and the peak (E) of the change in Fura-2 fluorescence ratio following re-addition of extracellular Ca2+, reflecting SOCE (Ca2+ entry), in \textit{jak3}-/- DCs without (white bars) and with (black bars) WHI-P154 treatment (22 µM, 24 hours). * (p<0.05) indicates significant difference from \textit{jak3}-/- DCs (two-tailed unpaired \textit{t}-test). F. Representative tracings showing the Fura-2 fluorescence ratio in \textit{jak3}-/- DCs without (white symbols) and with (black symbols) WHI-P154 treatment (22 µM, 10 min). Where indicated, Ca2+ was removed (0 Ca2+) and sarcoplasmatic reticulum Ca2+ ATPase (SERCA) inhibitor thapsigargin (1 µM) added to the bath solution leading to release of Ca2+ from intracellular stores. Re-addition of extracellular Ca2+ in the continued presence of thapsigargin reflects store-operated Ca2+ entry (SOCE). The amplitude (peak) and the velocity (slope, calculated from the linear fit) of Ca2+ release and Ca2+ entry were analyzed. G, H. Arithmetic means (± SEM, n = 60-61 cells) of the slope (G) and the peak (H) of the change in Fura-2 fluorescence ratio in \textit{jak3}-/- DCs without (white bars) and with (black bars) WHI-P154 treatment (22 µM, 10 min) following addition of thapsigargin (1 µM) in the absence of Ca2+ (Ca2+ release). ***(p<0.001) indicates significant difference from \textit{jak3}-/- DCs (two-tailed unpaired \textit{t}-test). I, J. Arithmetic means (± SEM, n = 60-61 cells) of the slope (I) and the peak (J) of the change in Fura-2 fluorescence ratio following re-addition of extracellular Ca2+, reflecting SOCE (Ca2+ entry), in \textit{jak3}-/- DCs without (white bars) and with (black bars) WHI-P154 treatment (22 µM, 10 min). * (p<0.05), ** (p<0.01) indicate significant difference from \textit{jak3}-/- DCs (two-tailed unpaired \textit{t}-test).
(24h, 22 µM) (Fig. 5A-E) or short term (10 min, 22 µM) (Fig. 5F-J) to jak3+/+ DCs. As illustrated in Fig. 5F-J, a 24 h and 10 min pretreatment with WHI-P154 (22 µM) blunted significantly both the thapsigargin induced increase of Fura-2 fluorescence ratio reflecting Ca^{2+} release and the increase of Fura-2 fluorescence ratio following readdition of Ca^{2+} in the continued presence of thapsigargin reflecting SOCE. Accordingly, WHI-P154 mimics the effect of genetic JAK3 knockout on both, intracellular Ca^{2+} release and SOCE.

Decreased Na^+/Ca^{2+} exchanger activity in jak3−/− DCs

Blunted increase of [Ca^{2+}], following stimulation of Ca^{2+} release and/or Ca^{2+} entry could have resulted from accelerated Ca^{2+} extrusion by Na^+/Ca^{2+} exchange. Thus, an additional series of experiments explored, whether JAK3 influences Na^+/Ca^{2+} exchanger activity. The Na^+/Ca^{2+} exchanger activity was estimated from the alterations of Fura-2 fluorescence ratio following abrupt replacement of Na+ containing (130 mM) and Ca^{2+} free (0 mM) extracellular bath by Na+ free (0 mM) and Ca^{2+} containing (2 mM) extracellular bath. As illustrated in Fig. 6, the removal of extracellular Na+ and addition of extracellular Ca^{2+} was followed by a sharp increase of Fura-2 fluorescence ratio reflecting Na^+/Ca^{2+} exchanger activity. The increase of Fura-2 fluorescence ratio was significantly less pronounced in jak3+/+ than in jak3+/− DCs. Accordingly, lack of JAK3 compromises Na^+/Ca^{2+} exchanger activity.

Discussion

The present observations reveal a novel function of JAK3, i.e. the regulation of Ca^{2+} release from intracellular stores, of receptor and store operated Ca^{2+} entry (ROCE or SOCE, resp.) as well as Na^+/Ca^{2+} exchanger activity in dendritic cells (DCs). All those functions are blunted in DCs isolated from gene targeted mice lacking JAK3 (jak3−/−) as compared to DCs isolated from corresponding wild type mice (jak3+/+). Thus, those functions are up-regulated by JAK3. The present observations do not allow safe conclusions on the JAK3 sensitive mechanisms influencing Ca^{2+} signaling. In theory, the effects of JAK3 deficiency could have resulted from direct phosphorylation of the effector proteins accomplishing Ca^{2+} release, Ca^{2+} entry and/or Ca^{2+} extrusion, from phosphorylation of other signaling proteins regulating expression or function of the effector proteins, or even more indirectly from altered inflammatory response
and cytokine levels in jak3−/− mice. The observation that the effects of genetic knockout on Ca2+ release from intracellular stores and SOCE are mimicked by a 10 minutes exposure to the Jak3 inhibitor WHI-P154 may point to phosphorylation of the effector proteins or of signaling molecules directly regulating the effector proteins. The effect of the inhibitor on intracellular Ca2+ release is smaller after 24 hours exposure, an observation pointing to partial relaxation of the effect. Along those lines, the differences of cytosolic Ca2+ activity ([Ca2+]i) between jak3−/− and jak3+/+ DCs following CXCL12 exposure are only transient. Possibly, JAK3 sensitive CXCL12 induced Ca2+ entry is inhibited by increase of [Ca2+]i. In the absence of stimulation, [Ca2+]i is similar in jak3−/− and jak3+/+ DCs suggesting that the JAK3 sensitive mechanisms are only effective following stimulation of the DCs or following emptying of intracellular stores, Ca2+ signaling is decisive for migration [56-60], which directs the DCs to cytokines [61], diverse antigens, including Toll-like receptor ligands, intact bacteria, and microbial toxins [5]. Ca2+ -sensitive signaling plays a critical role in several further functions of DCs, including DC activation, maturation, and formation of immunological synapses with T cells. Moreover, alterations of cytosolic Ca2+ trigger immune suppression or switch off of DC activity [22].

Ca2+ signaling is further decisive for cell proliferation [62-65]. The impact of JAK3 on cell proliferation is illustrated by the gain of function mutation A572V JAK3 apparently leading to acute megakaryoplastic leukemia [16, 17]. The impact of JAK3 deficiency on cell proliferation is, however, less obvious, as conflicting results have been reported on development and abundance of DCs in jak3−/− mice. The in vitro development of jak3−/− DCs is seemingly normal [20, 66]. In jak3−/− mice normal [66] or decreased [20] abundance of splenic DCs, normal [20] or impaired [66] maturation and normal [66] or enhanced [20] DCs survival have been reported.

In conclusion, lack of JAK3 has a profound influence on Ca2+ signaling in DCs, i.e. down-regulation of Ca2+ release from intracellular stores, of receptor and store operated Ca2+ entry, CRAC channel current, and of Na+/Ca2+ exchanger activity.

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch.

This study was supported by the Deutsche Forschungsgemeinschaft, SFB 773 B4/A1, La 315/13-3 and the Open Access Publishing Fund of Tuebingen University.

Disclosure Statement

The authors of this manuscript state that they do not have any conflict of interests.

References

1. O’Shea JJ, Husa M, Li D, Hofmann SR, Watford W, Roberts JL, Buckley RH, Changelian P, Candotti F: Jak3 and the pathogenesis of severe combined immunodeficiency. Mol Immunol 2004;41:727-737.
2. Vijayakrishnan L, Venkataramanan R, Gulati P: Treating inflammation with the Janus kinase inhibitor CP-690,550. Trends Pharmacol Sci 2011;32:25-34.
3. Bharadwaj AS, Agrawal DR: Transcription factors in the control of dendritic cell life cycle. Immunol Res 2007;37:79-96.
4. Dubsky P, Ueno H, Piqueras B, Connolly J, Banchereau J, Palucka AK: Human dendritic cell subsets for vaccination. J Clin Immunol 2005;25:551-572.
5. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811.
6. Cornejo MG, Boggon TJ, Mercher T: JAK3: a two-faced player in hematological disorders. Int J Biochem Cell Biol 2009;41:2376-2379.
Yan et al.: JAK3 Sensitivity of Cytosolic Ca2+

7 Imada K, Leonard WJ: The Jak-STAT pathway. Mol Immunol 2000;37:1-11.
8 Ghoreschi K, Laurence A, O'Shea JJ: Janus kinases in immune cell signaling. Immunol Rev 2009;228:273-287.
9 O'Shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109 Suppl:S1 21-131.
10 Shuai K, Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003;3:900-911.
11 de Totero D, Meazza R, Capaia M, Fabbri M, Azzarone B, Balleare E, Gobbi M, Cutrona G, Ferrarini M, Ferrini S: The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood 2008;111:517-524.
12 Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Banyash M, Ben-Hur T: Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci 2008;39:335-341.
13 Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D: BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 2009;113:1483-1492.
14 Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK, Baeg GH: MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol 2010;148:132-143.
15 Uckun FM, Vassilev A, Dibdirlik I, Tibbles H: Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. Anticancer Agents Med Chem 2007;7:612-623.
16 Malinge S, Ragu C, Dellava-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, Dastugue N, Baruchel A, Vainchenker W, Bourquin JP, Penard-Lacronique V, Bernard QA: Activating mutations in human acute megakaryoblastic leukemia. Blood 2008;112:4220-4226.
17 Walters DK, Merchier T, Gu TL, O’Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ: Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006;10:65-75.
18 Thomis DC, Gurniak CB, Tivol E, Sharpe AH, Berg LJ: Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 1995;270:794-797.
19 Umbach AT, Zhang B, Daniel C, Fajol A, Velic A, Hosseinznadeh Z, Bhavsar SK, Bock CT, Kandolf R, Pichler BJ, Amann KU, Foller M, Lang F: Janus kinase 3 regulates renal 25-hydroxyvitamin D 1alpha-hydroxylase expression, calcitriol formation, and phosphate metabolism. Kidney Int 2008;74:728-737.
20 Yamaoka K, Min B, Zhou YJ, Paul WE, O’Shea J J: Jak3 negatively regulates dendritic-cell cytokine production and survival. Blood 2005;106:3227-3233.
21 Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A: The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 2009;8:40-52.
22 Shumilina E, Huber SM, Lang F: Ca2+ signaling in the regulation of dendritic cell functions. Am J Physiol Cell Physiol 2011;300:C1205-1214.
23 Rahman T, Taylor CW: Dynamic regulation of IP3 receptor clustering and activity by IP3. Channels (Austin) 2009;3:226-232.
24 Hogan PG, Rao A: Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 2007;32:235-245.
25 Geng S, Gao YD, Yang J, Zou JJ, Guo W: Potential role of store-operated Ca2+ entry in Th2 response induced by histamine in human monocyte-derived dendritic cells. Int Immunopharmacol 2012;12:358-367.
26 Nurbaeva MK, Schmid E, Szteyn K, Yang W, Viollet B, Shumilina E, Lang F: Enhanced Ca(2)(+)(+) entry and Na(+)/Ca(2)(+)(+) exchanger activity in dendritic cells from AMP-activated protein kinase-deficient mice. FASEB J 2012;26:3049-3058.
27 Schmid E, Bhandaru M, Nurbaeva MK, Yang W, Szteyn K, Russo A, Leibrock C, Tyan L, Pearce D, Shumilina E, Lang F: SGK3 regulates Ca2+(+) entry and migration of dendritic cells. Cell Physiol Biochem 2012;30:1423-1435.
28 Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG: An siRNA screen for NFAT activation identifies sepsis as coordinators of store-operated Ca2+ entry. Nature 2013;499:238-242.
29 Prahriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG: Orai1 is an essential pore subunit of the CRAC channel. Nature 2006;443:230-233.
30 Putney JW Jr: New molecular players in capacitative Ca2+ entry. J Cell Sci 2007;120:1959-1965.
31 Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP: CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006;312:1220-1223.
32 Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD: Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 2006;443:226-229.
33 Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Yu Y, Penna A, Shen W, Chi Y, Cahalan MD: Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J Biol Chem 2008;283:17,167-17,671.
34 Fahrner M, Muik M, Derler I, Schindl R, Fritsch R, Frischaufl F, Romain C: Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 2009;231:99-112.
35 Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP: Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006;8:771-773.
36 Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD: The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 2008;456:116-120.
37 Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW: Activation and regulation of store-operated calcium entry. J Cell Mol Med 2010;14:2337-2349.
38 Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD: STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005;437:902-905.
39 Heise N, Shumilina E, Nurbavea MK, Schmid E, Szteyn K, Yang W, Xuan NT, Wang K, Zemtsova IM, Duszenko M, Lang F: Effect of dexamethasone on Na+/Ca2+ exchanger in dendritic cells. Am J Physiol Cell Physiol 2011;300:C1306-1313.
40 Shumilina E, Nurbavea MK, Yang W, Schmid E, Szteyn K, Russo A, Heise N, Leibrock C, Xuan NT, Faggio C, Kuro-o M, Lang F: Altered regulation of cytosolic Ca(2)(+) concentration in dendritic cells from klotho hypomorphic mice. Am J Physiol Cell Physiol 2013;305:C70-77.
41 Garcia-Sancho J: The coupling of plasma membrane calcium entry to calcium uptake by endoplasmic reticulum and mitochondria. J Physiol 2014;592:261-268.
42 Leanza L, Biasutti L, Manago A, Gulbins E, Zoratti M, Szabo I: Intracellular ion channels and cancer. Front Physiol 2013;4:227.
43 Littlejohns B, Lin H, Angelini GD, Halestrap AP, Suleiman MS: Switching back to normal diet following high-fat diet feeding reduces cardiac vulnerability to ischaemia and reperfusion injury. Cell Physiol Biochem 2014;34:1090-1100.
44 Lu FH, Fu SB, Leng X, Zhang X, Dong S, Zhao YJ, Ren H, Li H, Zhong X, Xu CQ, Zhang WH: Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure. Cell Physiol Biochem 2013;31:728-743.
45 Rizzuto R, De Stefani D, Raffaello A, Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012;13:566-578.
46 Wu ZS, Yao YM, Hong GL, Xu XP, Liu Y, Dong N, Zheng JY, Lu ZQ, Zhao GJ, Zhu XM, Zhang QH, Sheng ZY: Role of mitofusin-2 in high mobility group box-1 protein-mediated apoptosis of T cells in vitro. Cell Physiol Biochem 2014;33:769-783.
47 Mutini C, Falzoni S, Ferrari D, Chiozzi P, Morelli A, Baricordi OR, Collot G, Ricciardi-Castagnoli P, Di Virgilio F: Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 1999;163:1958-1965.
48 Umbach AT, Luo D, Bhavsar SK, Hosseinzadeh Z, Lang F: Intestinal Na Loss and Volume Depletion in JAK3-Deficient Mice. Kidney Blood Press Res 2013;37:514-520.
49 Bhavsar SK, Schmidt S, Bobbala D, Nurbavea MK, Hosseinzadeh Z, Merches K, Fajol A, Wilmes J, Lang F: AMPKalpha1-sensitivity of Orai1 and Ca(2+) entry in T - lymphocytes. Cell Physiol Biochem 2013;32:687-698.
50 Borst O, Walker B, Munzer P, Russo A, Schmid E, Faggio C, Bigalke B, Laufer S, Gawaz M, Lang F: Skepinone-L, a novel potent and highly selective inhibitor of p38 MAP kinase, effectively impairs platelet activation and thrombus formation. Cell Physiol Biochem 2013;31:914-924.
51 Bird GS, DeHaven WI, Smyth JT, Putney JW, Jr.: Methods for studying store-operated calcium entry. Methods 2008;46:204-212.
Yan et al.: JAK3 Sensitivity of Cytosolic Ca$^{2+}$

52 Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F: Down-regulation of Na/K+ atpase activity by human parvovirus B19 capsid protein VP1. Cell Physiol Biochem 2013;31:638-648.

53 Hosseinzaeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F: Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase JAK2. Cell Physiol Biochem 2013;31:673-682.

54 Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F: PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 2013;31:785-794.

55 Barry PH, Lynch JW: Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 1991;121:101-117.

56 Howe AK: Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol 2011;23:554-561.

57 Monteith GR, Davis FM, Roberts-Thomson SJ: Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012;287:31666-31673.

58 Nielsen N, Lindemann O, Schwab A: TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014;10.1111/bph.12721

59 Noda M, Ifuku M, Mori Y, Verkhratsky A: Calcium influx through reversed NCX controls migration of microglia. Adv Exp Med Biol 2013;961:289-294.

60 Prevarskaya N, Skryma R, Shuba Y: Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 2011;11:609-618.

61 Yang W, Nurbaeva MK, Schmid E, Russo A, Almilaji A, Szteyn K, Yan J, Faggio C, Shumilina E, Lang F: Akt2- and ETS1-dependent IP3 receptor 2 expression in dendritic cell migration. Cell Physiol Biochem 2014;33:222-236.

62 Berridge MJ: Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 2009;1793:933-940.

63 Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM: Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 2005;205:147-157.

64 Mencalha AL, Correa S, Abdelhay E: Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 2014;7:1247-1254.

65 Parkash J, Asotra K: Calcium wave signaling in cancer cells. Life Sci 2010;87:587-595.

66 Rivas-Caicedo A, Soldevila G, Fortuul TI, Castell-Rodriguez A, Flores-Romo L, Garcia-Zepeda EA: Jak3 is involved in dendritic cell maturation and CCR7-dependent migration. PLoS One 2009;4:e7066.