Late effects after hematopoietic stem cell transplantation for β-thalassemia major: the French national experience

Ilhem Rahal,1 Claire Galambrun,1 Yves Bertrand,2 Nathalie Garnier,2 Catherine Paillard,3 Pierre Frange,4 Corinne Pondarré,5 Jean Hugues Dalle,6 Regis Peffault de Latour,7 Mauricette Michallet,8 Dominique Steschenko,9 Despina Moshous,4 Patrick Lutz,3 Jean Louis Stephan,10 Pierre Simon Rohrlich,11 Ibrahim Yakoub-Agha,12 Françoise Bernaudin,5 Christophe Piguet,13 Nathalie Aladjidi,14 Catherine Badens,15 Claire Berger,10 Gérard Socié,7 Cécile Dumesnil,16 Marie Pierre Castex,17 Marilyne Poirée,11 Anne Lambilliote,12 Caroline Thomas,18 Pauline Simon,19 Pascal Auquier,20 Gérard Michel,4 Anderson Loundou,20 Imane Agouti15 and Isabelle Thuret,1,15

1Service d’Hématologie Pédiatrique, Hôpital d’Enfant de la Timone, Assistance Publique des Hôpitaux de Marseille; 2Service d’Hématologie et Immunologie Pédiatrique, Institut d’Hématologie et d’Oncologie Pédiatrique, Lyon; 3Service d’Hématologie Pédiatrique, CHU de Strasbourg - Hôpital de Hautepierre; 4Service d’Immunologie Hématologie Pédiatrique, CHU Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris; 5Service de Pédiatrie, Centre de Référence de la Drépanocytose, Centre Hospitalier Intercommunal de Créteil (CHIC); 6Service d’Immunologie Hématologie, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris; 7Service d’Hématologie - Greffe, Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris; 8Service d’Hématologie, Centre Hospitalier Lyon Sud, Pierre-Bénite; 9Service d’Hématologie Pédiatrique, CHR Nancy, Hôpitaux de Brabois, Vandœuvre-lès-Nancy; 10Service d’Immuno-Hématologie et Oncologie Pédiatrique, CHU de Saint-Etienne, Saint-Priest-en-Jarez; 11Service d’Hématologie-Organogreffe, Hôpital l’Archet 2, CHU de Nice; 12Service de Maladies du Sang, CHR Lille- Hôpital Claude Huriez; 13Service d’Hématologie Pédiatrique, Hôpital de la Mère et de l’Enfant, CHU de Limoges; 14Service de Pédiatrie Médicale, Groupe Hospitalier Pellegrin Enfants, Bordeaux; 15Centre de Référence Thalassémie, Hôpital d’Enfant de la Timone, Assistance Publique des Hôpitaux Marseille; 16Service d’Immuno-Hématologie et Oncologie Pédiatrique, CHU-Hôpitaux de Rouen; 17Service d’Hématologie-Oncologie Pédiatrique, Hôpital Des Enfants, CHU de Toulouse; 18Service d’Hématologie Pédiatrique, Hôpital Enfant-Adolescent, CHU Nantes; 19Service d’Hématologie Pédiatrique, CHR Jean Minjoz, Besançon and 20Service de Santé Publique, Assistance Publique des Hôpitaux Marseille et Université Aix-Marseille, France

©2018 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.183467

Received: November 9, 2017.
Accepted: March 23, 2018.
Pre-published: March 29, 2018.
Correspondence: isabelle.thuret@ap-hm.fr
Online Supplement

Supplementary Methods:

Details on endpoints definitions

Overweight in adults was defined as a Body Mass Index (BMI) over 25 kg/m².
Puberty delay was defined as lack of puberty onset in boys aged 14 or more and in girls aged 13 or more. Hypogonadism was defined in females as low estradiol levels or long-term sex hormone replacement therapy and in males as low levels of testosterone or long-term sex hormone replacement therapy. According follicle stimulating hormone (FSH) and luteinising hormone (LH) basal values, hypogonadism was classified as hypergonadotrophic or hypogonadotropic.

Hypothyroidism was defined as elevated thyroid-stimulating hormone (TSH) concentration with normal (subclinical) or decreased (overt) levels of serum free thyroxin (FT4) concentration.

Cardiac function was impaired when the echocardiographic ejection fraction (EF) was reduced (EF≤50%). Diabetes was diagnosed through blood tests (fasting glucose test >7mmol/l or glycosylated haemoglobin test HbA₁c>6.5%) and insulin or oral antidiabetic medication requirement.
Table S1: Multivariate longitudinal analysis of factors influencing height and weight SDS evolution after HSCT

Characteristics	Coefficient (β)	95% CI	p-value
Height			
Age at transplantation (per year)	-0.12	-0.15 to -0.1	<0.001
Serum ferritin level before HSCT (per 100 µg/L)	-0.007	-0.01 to -0.003	<0.001
Follow-up duration (per year)	-0.02	-0.03 to -0.01	<0.001
Weight			
Age at transplantation (per year)	-0.24	-0.28 to -0.2	<0.001
Sex			
- Males vs females	-0.42	-0.7 to -0.14	0.003
Serum ferritin level before HSCT (per 100 µg/L)	-0.01	-0.01 to -0.005	<0.001
Follow-up duration (per year)	0.05	0.03 to 0.07	<0.001

HSCT: Hematopoietic Stem Cell Transplantation; CI: confidence interval
Supplementary Table 2

Table S2: Multivariate longitudinal analysis of factors influencing serum ferritin levels evolution after HSCT

Characteristics	Coefficient (β)	95% CI	p-value
Phlebotomy/chelation therapy	-327.9	-577. to -78.8	0.011
- Yes vs No			
Follow-up duration (per year)	-78	-90 to -66	<0.001
Serum Ferritin level at HSCT (µg/L)	0.15	0.056 to 0.261	<0.001
Age at transplantation (per year)	35.8	15.6 to 56	0.001

HSCT: Hematopoietic Stem Cell Transplantation; CI: confidence interval