Research Article

Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil of Haru in Western Ethiopia

Bikila Takala1*, Taye Kufa2, Alemayehu Regassa3

1 Ethiopian Institute of Agricultural Research, Jimma Agricultural Research Center, P. O. Box 192, Jimma Ethiopia
2 International Institute of Tropical Agriculture- Burundi Station, P. O. Box 1893, Bujumbura
3 Department of Natural Resources Management, Jimma University, P. O. Box 307, Jimma, Ethiopia

*corresponding author: biktak@gmail.com

Received 27 May 2020, Accepted 10 July 2020

Abstract: A pot experiment was conducted to determine the effects of lime, coffee husk compost and their combinations on growth response of coffee (Coffea arabica L.) seedlings at Haru Research Sub-Center nursery site in West Ethiopia in 2016/17. The experiment was laid out in a factorial experiment arranged in Randomized Complete Block Design with three replications. The treatments included four levels of lime (0, 2, 4 and 6 g/2.5 kg soil (pot)) and coffee husk compost (0, 6.25, 12.5 and 18.75 g/2.5 kg soil (pot)). The relevant shoot and root growth parameters data were collected and subjected to Analysis of Variance using SAS package and treatment means were compared at 0.05 probability using Duncan’s Multiple Range Test. The results revealed that lime and coffee husk compost rates significantly (p ≤ 0.01) affected the shoot and root growth of coffee seedlings. The highest growth performance of coffee seedlings (plant height, stem girth, leaf number and area, tap and lateral root length, lateral root number, root volume, stem, leaf and root dry matter) were obtained from the application of 18.75 g/pot coffee husk compost and combined lime and coffee husk compost at the modest levels of 4g/pot lime and 12.5 g/pot coffee husk compost with a non-significant variation. From the study, it can be concluded that application of 18.75 g/pot coffee husk compost or combining 12.5 g/pot of coffee husk compost and 4 g/pot of agricultural lime could be a promising alternative amendment for acid soil management and production of vigorous coffee seedlings in Haru areas. But, further investigations should be continued under field conditions across locations and seasons to evaluate the effects of liming and coffee husk composts in ameliorating soil acidity, and improving growth, yield and quality of coffee varieties and establish their profitable levels for sustainable soil fertility management and production of Wollega coffee in west Ethiopia.

Keywords: coffee husk compost, coffee growth, lime and soil acidity

To cite this article: Takala, B., Kufa, T. and Regassa, A. 2020. Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil of Haru in Western Ethiopia. J. Degrade. Min. Land Manage. 8(1): 2391-2400, DOI: 10.15243/jdmlm.2020.081.2391.

Introduction

Soil acidity has become a serious threat to crop production in most highlands of Ethiopia in general and in the western part of the country in particular (Taye, 2007; Wassie and Shiferaw, 2009; Achalu et al., 2012; Abdenna, 2013; Tigist et al., 2019). An earlier study by Mesfin (2007) estimated that about 41% of arable lands of Ethiopia are affected by soil acidity/Al3+ toxicity. An inventory was made in 2006 to determine the status of soil acidity of Nitisols occurring in western and central Ethiopia and the results revealed that all samples were acidic though the degree varied from location to location (Abdenna et al., 2007). Soil acidity is expanding both in scope and magnitude in Ethiopia; severely limiting crop production (Wassie and Shiferaw, 2009; Wassie and Shiferaw, 2011; Tamene et al., 2017). Recently, Eysu (2016) also reported that 80% of the Nitisols and Luvisol subgroup soils found in the north-central and south western high lands of Ethiopia are very strong to strongly acidic
soils having pH of 4.5-5.5. Also, the original ecology of the major coffee growing areas in western Ethiopia is being disturbed with the high intensity of deforestation and land degradation (Abdenna et al., 2007; Achalu et al., 2012). This and the prevailing high rainfall have resulted in severe erosion, exposure of the less fertile sub-soils and increased soil acidity in major coffee growing areas of western Ethiopia (Abdenna, 2013; Melke and Ittana, 2015). As a result of coffee production potential in western Ethiopia hardly exceeds 0.67 t/ha (CSA, 2016) despite the existence of enormous genetic diversity and importance of the crop in the national economy of the country. In addition, coffee cultivation mainly lies on the production of coffee seedlings with desirable characteristics under the recommended nursery management operations. Because any improper handling made at the early stage would remain to cause poor field performances and life span of coffee trees in the field (Anteneh et al., 2015). In this regard, reports (IAR, 1996; Yacob et al., 1996) indicated the use of appropriate potting media from forest soil to produce vigorous and healthy coffee seedlings. However, there is diminished accessibility to the sources, and the accelerated deforestation practices would also call for alternative nursery media preparations from available organic sources with due consideration of both physical and chemical conditions given the well-established cultural practises of using organic material under traditional crop production in Ethiopia (Taye, 1998; Anteneh et al., 2015).

As low pH affects the availability of nutrients particularly that of phosphorus and other macronutrients, correction of the low pH through liming, and/or application of organic materials is critical for sustainable management of these soils (Mesfin, 2007; Wassie and Shiferaw, 2009; Tigist et al., 2019). Agricultural liming is proved a good way of correcting soil pH along with supplying Ca to the soil (Wassie and Shiferaw, 2011). Likewise, the Ministry of Agriculture has also given special attention to demonstrate the beneficial effects of liming in reclaiming soil acidity for several crops across different locations in Ethiopia. As a result, farmers are being encouraged to increase productivity of the acidic soils by liming. However, practical applicability by the Ethiopian farmers has been constrained by limited supply, long transportation distances between crushing and application sites and lack of research recommendations specific to crop types and soil conditions (i.e. soil buffering capacity) (Eyasu, 2016). So finding liming material from easily available organic materials is recommended (Tamene et al., 2017). Using compost and animal manures on crops almost always has a desirable effect since they contain substantial amounts of major and trace elements. Furthermore, they have a positive effect on the chemical and physical properties of the soil. Thus, they can be of tremendous benefit in heavily weathered coffee soils because they can improve the soil structure and its water holding capacity (Ano and Ubochi, 2007; Solomon et al., 2008). Also the need for renewable, locally available and cheaper options for supplying nutrient to crops is increasingly becoming important because of the need for sustainable agriculture (Ahmad et al., 2006; Tigist et al., 2019). With growing demands for sustainably produced agricultural products for environmental, social and food safety reasons, the use and recycling of organic matter is becoming inevitable, particularly for the export market, which depended on commodities such as coffee (Chemura, 2014).

There is thus the need to recognize other potential organic amendment sources such as the by-products from wet and dry coffee processing. The dry method is commonly practiced and easily available at coffee producing areas in Haru areas of Western Ethiopia. These coffee by-products are utilized in other coffee producing countries as soil amendments (Kasongo et al., 2011; Dzung et al., 2013; Kasongo et al., 2013; Nduka et al., 2015). While in Ethiopia enormous quantities are either dumped into streams or burnt in big piles, with contributions to environmental hazards (Solomon, 2006; Gezahegne et al., 2011; Henok and Tenaw, 2014). In addition, liming rate should be judiciously determined not to cause nutrient imbalances by increasing the already high level of exchangeable Ca concentrations that might affect the availability and uptake of other nutrients. Therefore, the objective of this study was to determine the effects of lime, coffee husk compost and their combinations on the growth response of coffee (Coffea arabica L.) seedlings at Haru, western Ethiopia.

Materials and Methods

Description of the study area

The study was conducted at the Haru Agricultural Research Sub-Center (HARSC) in West Wollega zone, Oromia National Regional State, Western Ethiopia. Haru Agricultural Research Sub-center of the Jimma Agricultural Research Center was established in 1998 primarily to address the potentials and constraints in west Wollega specialty coffee growing areas. The center represents the sub-humid tepid to cool mid highlands coffee agro-ecological zone in West Ethiopia. It is found at 28 km from Gimbi town of
Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil

West Wollega zone and 466 km from Addis Ababa in western Ethiopia. The area is geographically located between the latitude of 8°54' 30" North and longitude of 35°52' 0" East at an elevation of 1750 m.a.s.l. The area is characterized by uni-modal rainfall pattern with an average annual rainfall of 1700 mm. The rainy season starts in March or May and extends up to October. The mean maximum and minimum air temperature is 27.8°C and 12.4°C, respectively. The soil type of the center is Acrisols and sandy clay loam (Zebene and Wondwosen, 2008).

Experimental materials and procedures

Fresh coffee husk was collected from the dry coffee processing site in Jitu town, Haru District. The compost was prepared by using 70% coffee husk, 20% animal manure and 10% top soil by volume following the procedure adopted by Solomon (2006). Top soil at a depth of 0-20cm was collected from open field which is less fertile and acidic soil to be amended with coffee husk compost and lime. Moreover, the different lime rates as powdered lime having a calcium carbonate equivalent of 98% was used and amount of lime applied at each was calculated on the basis of exchangeable acidity concentration of the soil and crop factor tolerant to soil acidity (Kamprath, 1984). Menesibu coffee variety was used as test crop. The variety was released in the year 2010 for Wollega specialty coffee producing areas (EIAR, 2015). Coffee seeds were hand harvested from the already established seed orchards at Haru center and prepared as per the standard procedures.

Experimental treatments and design

The treatments consisted of four coffee husk compost application rates (0, 6.25 g, 12.5 g and 18.75 g) and four lime rates (0, 2 g, 4 g, and 6 g) in 2.5 kg of acidic soil. The treatments were conducted using polythene bags of 12 x 22 cm size. The polythene bags were prepared and firmly filled with the treatment rates which were added and thoroughly mixed with the soil. A 4 x 4 factorial experiment arranged in a randomized complete block design with three replications was used for the study. The treatment combinations were shown in Table 1 and the numbers of seedlings per plot were 16 with a total of 768 coffee seedlings. The so prepared pots were arranged and on October 16/2016, two coffee seeds were directly sown in polythene bags (potted) at a depth of 1.00 cm. Thinning to one seedling was made in each pot after the emerged seedlings attained a butterfly growth stage and were uniformly managed until they attain desirable stage and end of the study. All other routines pre-and post- nursery management practices, including mulching, watering, shading, weeding and other activities were carried out as per the recommendation (IAR, 1996).

Table 1. Treatment combinations and their rates used for the study.

Treatment number	Treatment combinations and description
1	0 g L and 0 g CHC (Control)
2	2 g L and 0 g CHC
3	4 g L and 0 g CHC
4	6 g L and 0 g CHC
5	0 g L and 6.25 g CHC
6	2 g L and 6.25 g CHC
7	4 g L and 6.25 g CHC
8	6 g L and 6.25 g CHC
9	0 g L and 12.5 g CHC
10	2 g L and 12.5 g CHC
11	4 g L and 12.5 g CHC
12	6 g L and 12.5 CHC
13	0 g L and 18.75 g CHC
14	2 g L and 18.75 g CHC
15	4 g L and 18.75 g CHC
16	6 g L and 18.75 g CHC

Key: L = lime, CHC = coffee husk compost

Data collection

Growth of coffee seedlings

Non-destructive plant growth parameters such as plant height (cm), girth diameter (cm), number of true leaves and estimated leaf area (cm²) were recorded from four coffee seedlings which are located at the middle of the plot. Estimated leaf area was measured using the procedure adapted by Yacob et al. (1996) as follows:

\[Y = K \times L \times B \]

where, \(Y \) is estimated leaf area; \(K \) is constant specific to cultivars and canopy classes (0.67); \(L \) is leaf length (cm) and \(B \) is maximum leaf breadth (cm).

Stem diameter (girth) was measured at the surface of the potting soil by using a caliper. Each seedling sampled for measurement of non-destructive growth parameters was brought to laboratory to measurement of destructive shoot and root growth parameters. The polythene bag containing the roots of the seedlings was immersed in a bucket filled with water and roots were allowed to separate carefully from the soil still being in water. The roots were subsequently washed with clean water and dried with water absorbent cloth. Seedlings were then cut with scissor to separate the shoot from root parts. Then tap root length (cm), lateral root number, lateral root length (cm) and root volume (ml) were recorded. Finally the shoot and
root dry matters were measured using sensitive balance after oven drying at 70°C for 24 hours.

Statistical analysis

The collected soil and plant data were summarized and subjected to ANOVA (analysis of variance) using SAS software (version 9.3) (SAS, 2011). For significantly different treatments, the means were separated using Duncan’s Multiple Range Test (DMRT) at $p = 0.05$. Simple correlation analyses were also conducted to assess the associations between some soil chemical parameters.

Results and Discussion

The shoot growth parameters of coffee seedlings

Addition of lime and coffee husk compost on acidic soil significantly ($p \leq 0.01$) affected plant height, stem diameter, leaf number and leaf area of coffee seedlings (Table 2). This finding showed that there was a positive effect on plant height and stem diameter of coffee ($Coffea arabica$ L.) seedlings by application

Treatment number	Treatment combination	Parameters			
		Plant height (cm)	Girth (mm)	Leaf number	Leaf area (cm2)
1	0 g L + 0 g CHC (Control)	8.08a	2.14b	6.33g	5.74c
2	2 g L + 0 g CHC	10.04a	2.37b	9.17def	8.08b
3	4 g L + 0 g CHC	11.21b	2.68a	11.17abc	8.83def
4	6 g L + 0 g CHC	11.33ab	2.71a	11.55abc	10.56bc
5	0 g L + 6.25 g CHC	11.15ab	2.72a	11.17abc	10.56bc
6	2 g L + 6.25 g CHC	11.68ab	2.87a	11.55abc	12.34ab
7	4 g L + 6.25 g CHC	11.92ab	2.98a	11.17abc	11.77bc
8	6 g L + 6.25 g CHC	12.76ab	3.12ab	11.17abc	9.16de
9	0 g L + 12.5 g CHC	12.08ab	2.88a	9.78de	10.67e
10	2 g L + 12.5 g CHC	13.05ab	3.32de	9.33de	9.42e
11	4 g L + 12.5 g CHC	13.64ab	3.57ab	10.56bc	11.43de
12	6 g L + 12.5 g CHC	13.12ab	3.17def	11.55abc	12.43de
13	0 g L + 18.75 g CHC	14.27a	3.70a	11.17abc	13.36a
14	2 g L + 18.75 g CHC	13.74a	3.43bc	11.17abc	11.77bc
15	4 g L + 18.75 g CHC	12.60ab	3.25de	9.11def	9.44e
16	6 g L + 18.75 g CHC	11.60ab	3.11def	9.50def	9.56e

DMRT (5%)

| **CV (%)** | 3.08 | 5.48 | 5.03 | 4.98 |

Leaf area (cm2)

| **Leaf area (cm2)** | 3.08 | 5.48 | 5.03 | 4.98 |

Key: - DMRT = Duncan’s Multiple Range Test; L=Lime; CHC=Coffee husk compost; **=highly significant at $p \leq 0.01$. Mean values followed by the same letters within a column are not different from each other at $p \leq 0.05$.

Nduka et al. (2015) also recorded significant increase in plant height and stem diameter on cashew seedling growth as a result of coffee husk application to acid soil. Furthermore, the combined application of lime and coffee husk compost showed significant differences in plant height and stem diameter among treatments, with increments of 68.8% for plant height and 66.8% for stem diameter over the control at combined application rate of 4g lime and 12.5 g/pot coffee husk compost (Table 2). This finding showed that there was a positive effect on plant height and stem diameter of coffee ($Coffea arabica$ L.) seedlings by application of sole coffee husk compost and combined with lime. The soil of the experimental site was strongly acidic, low in N, P and other plant nutrients.
Therefore the application of coffee husk compost might be contributed not only by supplying nutrients (including N, P, K and micronutrients) through mineralization but also by making P available to the plant as a result of its liming effect. This finding agrees with Kasongo et al. (2013) and Nduka et al. (2015) who reported the liming effect of coffee husk amendments on tropical acid soils.

Leaf number and leaf area

Application of lime and coffee husk compost due to their main and interaction effects significantly (p ≤ 0.01) affected leaf number and leaf area of coffee seedlings (Table 2). Accordingly, the improvement in coffee seedlings leaf number and area following the addition of lime without coffee husk compost were 32.5, 41.2 and 44.8% for leaf number and 22.8, 40.8 and 39.5% for leaf area over the control by the application of 2, 4 and 6 g/pot of lime rate respectively (Table 2). Also, the improvement in coffee seedlings leaf number and area following the addition of compost without lime were 39.5, 47.4 and 84.3% for leaf number and 39.7, 64.1 and 132.7% for leaf area over the control by the application of 6.25, 12.5 and 18.75 g/pot of coffee husk compost rate respectively (Table 2). The highest leaf number and area were observed by application of the highest rate of coffee husk compost without lime at 18.75g/pot with an increment of 84.3% for leaf number and 132.7 leaf area over the control and followed by combined application of lime and coffee husk compost at rates of 4g and 12.5 g/pot respectively with increment of 82.6% for leaf number and 114.9% leaf area, while the lowest leaf number and area were observed at control (Table 2). The significant increases in coffee seedling leaf number and leaf area with application of lime and coffee husk compost could be attributed to the general improvement of the soil environment in terms of decreased acidity and increased availability of plant nutrients. This finding was in line with Anteneh (2015) and Ewnetu et al. (2019) who reported the increased leaf number and area of coffee (*Coffea arabica* L.) seedlings by application of Lime and P fertilizer on acid soil of southwestern Ethiopia. Taye (1998), also reported the increased leaf number and area of coffee seedlings due to lime application (Table 2). Accordingly, application of lime alone increased leaf number and area of coffee seedling by 15-25.9% and 9.12-36.47%, respectively, over control with increasing lime rates (Table 3). Similarly, application of coffee husk compost alone increased tap and lateral root length of coffee seedling by 25.5-54.5% and 41.8-125%, respectively, over control with increasing rates (Table 3). The highest tap and lateral root length (21.96 and 7.16 cm) were recorded for application of coffee husk compost at the highest rate (18.75 g/pot) followed by the combined effect of 4 g/pot lime and 12.5 g/pot compost which gave 21.44 and 6.92 cm tap and lateral root length respectively, while the lowest tap root length (14.21 cm) and lateral root length (3.18 cm) were observed from the control treatment (Table 3).

Lateral root number and root volume

Analysis of variance revealed that lateral root number and root volume were highly significantly influenced (p ≤ 0.01) by application of lime, coffee husk compost and their interaction effect (Table 3). Accordingly, application of lime without coffee husk compost increased lateral root number and root volume by 14.23-30.9% and 37.5-60%, respectively, over the control with increasing lime rates (Table 3). Similarly, application of coffee husk compost without lime increased lateral root number and root volume of coffee seedling by 40.6-102% and 50-152.5%, respectively, over control with increasing rates (Table 3). The highest lateral root number and root volume (64.33 and 1.01 ml) were recorded for application of coffee husk compost at the highest rate (18.75 g/pot) followed by the combined effect of 4 g/pot lime and 12.5 g/pot coffee husk compost which gave 64.33 and 0.94 ml lateral root number and root volume respectively, while the lowest (31.83 and 0.40 ml) lateral root number and root volume were observed from the control treatment (Table 3). The increased root growth of coffee seedlings because of lime and coffee husk compost amendment could be due to the reduced exchangeable acidity (Aluminium toxicity) and the compost improve physical conditions of soil that promote penetration with profound growth and development of the root systems. Also, lime and coffee husk compost amendment improved the nutrient availability of the soil which could be contributing for better root growth. This result was in line with Taye (1998), who reported coffee seedling grown on the different organic sources showed highly significant variations for all the root parameters considered, where by best responses were reported from treatment of decomposed coffee husk at Jimma, south west Ethiopia.
was obtained from untreated (control) plot dry matter weight. While the lowest leaf dry weight husk compost (12.5 g/pot) which gave 0.43 g leaf without lime (18.75 g/pot) and followed by received the highest coffee husk compost rate dry matter weight (0.44 g) was obtained from plots of rye grass on tropical acid soil. The highest leaf was in line with Kasongo et al. (2013) who reported control with increasing rate (Figure 1). The result leaf dry matter weight by 108.3-266.7%, over the compost without lime increased coffee seedling maximum availability of the nutrient may be phosphorus, since it improve soil pH under which improve the nutrient availability, particularly applying lime to the soil might considerably increasing lime rate (Figure 1). The results indicate increment 25-108%, over the control with application of lime without coffee husk compost difference among the treatments. Accordingly, the highest root dry matter weight showed highly significant (p ≤ 0.01) on stem dry weight (Figure 2). The results indicate that their interaction gave highly significance difference (p ≤ 0.01) on stem dry weight (Figure 2). This could be due to the favorable chemical status of the media including increased organic carbon (organic matter), total nitrogen, available phosphorus and exchangeable bases contributed to better coffee seedling growth.

Shoot and root dry matter of coffee seedling

Leaf dry matter

Analysis of variance on coffee seedling leaf dry matter weight showed highly significant (p ≤ 0.01) difference among the treatments. Accordingly application of lime without coffee husk compost produced a significant increase in leaf fresh and dry weight of coffee seedling with the magnitude of increment 25-108%, over the control with increasing lime rate (Figure 1). The results indicate that applying lime to the soil might considerably improve the nutrient availability, particularly phosphorus, since it improve soil pH under which maximum availability of the nutrient may be obtained. Similarly, application of coffee husk compost without lime increased coffee seedling leaf dry matter weight by 108.3-266.7%, over the control with increasing rate (Figure 1). The result was in line with Kasongo et al. (2013) who reported the application of coffee husk increased dry matter of rye grass on tropical acid soil. The highest leaf dry matter weight (0.44 g) was obtained from plots received the highest coffee husk compost rate without lime (18.75 g/pot) and followed by combined application of lime (4 g/pot) and coffee husk compost (12.5 g/pot) which gave 0.43 g leaf dry matter weight. While the lowest leaf dry weight (0.12 g) was obtained from untreated (control) plot (Figure 1). This could be due to the favorable chemical status of the media including increased organic carbon (organic matter), total nitrogen, available phosphorus and exchangeable bases contributed to better coffee seedling growth.

Stem dry matter

Application of lime and coffee husk compost and their interaction gave highly significance difference (p ≤ 0.01) on stem dry weight (Figure 2). Accordingly, the highest stem dry weight (0.25 g) was obtained from plots received the highest coffee husk compost rate (18.75 g/pot) and followed by combined application of lime (4 g/pot) and coffee husk compost (12.5 g/pot) which gave 0.23 g stem dry matter weight. While the lowest stem dry weight (0.12 g) was obtained from untreated (control) plot (Figure 2). The results indicate that applying lime and compost to the soil might considerably improve the nutrient availability, particularly phosphorus since it improves soil pH under which maximum availability of the nutrient may be obtained and as a result, coffee seedling growth parameters were improved.

Root dry weight

The interaction of lime and coffee husk compost rates significantly affected (p ≤ 0.01) root dry matter. The highest root dry matter weight (0.23 g)
Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil

was obtained from plots received the highest coffee husk compost rate (18.75 g/pot) and followed by combined application of lime (4 g/pot) and coffee husk compost (12.5 g/pot) which gave 0.23 g/pot root dry matter weight (Figure 3). While the lowest root fresh and dry weight (0.57 and 0.09 g/pot) was obtained from untreated (control) plot (Figure 3). The significant effect obtained by the application of lime and compost on coffee seedling shoot and root dry matter weight could be because of more favorable chemical conditions of the media such as reduced Aluminum toxicity and increased nutrient availability which ultimately enhanced coffee seedling growth. Similar findings were reported by Taye (1998), Anteneh (2015) and Ewnetu et al. (2019) at Jimma, Southwest Ethiopia. Although the combination of lime up to 4 g/pot and coffee husk compost 12.5 g/pot significantly increased the coffee seedling growth, increasing lime and coffee husk compost rate in their combination above the mentioned rate (4 g/pot Lime and 12.5 g/pot coffee husk compost) retarded the coffee seedling growth.

Figure 1. Interaction effects of lime and coffee husk compost rates on leaf dry weight of coffee seedlings.

Figure 2. Interaction effects of lime and coffee husk compost rates on stem dry weight of coffee seedlings.
Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil

Figure 3. Interaction effects of lime and coffee husk compost rates on root dry weight of coffee seedlings

Also lime application on the highest coffee husk compost rate (18.75 g/pot) did not increased the shoot and root growth of coffee seedlings. This shows that the potential of the use of coffee husk compost to ameliorate soil acidity without lime as mentioned in the literatures (Kasongo et al., 2013; Nduka et al., 2015). As well as the reduction in shoot and root growth of coffee seedlings at increased rate of their combination attributed to a reduction in the solubility and availability of P to crops which might be caused by the formation of insoluble Ca-P compounds in the soil (Fageria and Baligar, 2008), to induced Fe, Mn, Zn and B deficiency (Fageria, 2009), to high level of Al in plant tissue and increased cation retention capacity of soil colloids and hence decreased availability of K and Mg (Fageria and Baligar, 2003). All these findings invariably illustrated that depending on the type of crop species, lime rates which only raise the pH to levels that neutralize exchangeable Al or reduced it to lower levels increase crop growth and yield.

Conclusion

In the evaluation of the response of coffee (Coffea arabica L.) seedlings growth following incorporation of agricultural lime and coffee husk compost amendments on acidic soil, the study found that application of lime and coffee husk compost rates and their interactions were enhanced shoot and root growth performances of coffee seedlings. Vigorous coffee seedlings were obtained by application of 18.75 g/pot coffee husk compost rate and combined application of lime (4 g/pot) and coffee husk compost (12.5 g/pot). Therefore this short-term study showed that a promising potential of coffee husk compost amendment alone or in combination with conventional lime to ameliorate soil acidity and improve nutrient availability for coffee seedling growth since it is easily available organic material in coffee producing areas.

Acknowledgements

The authors gratefully acknowledge The Ethiopian Institute of Agricultural Research for the financial support of the study.

References

Abdenna, D. 2013. Evaluation of soil acidity in agricultural soils of smallholder farmers in South Western Ethiopia. Sciences, Technology and Arts Research Journal 2(2): 01-06.

Abdenna, D., Negassa, Ch. and Tilahun, G. 2007. Inventory of Soil Acidity Status in Crop Lands of Central and Western Ethiopia. In: Utilization of diversity in land use systems: Sustainable and organic approaches to meet human needs. A paper presented on Tropentag, October 9-11, 2007 Witzenhausen, Germany.

Achalu, Ch., Heluf, G., KibebeW, K. and Abi, T. 2012. Effects of liming on acidity-related chemical properties of soils of different land use systems in Western Oromia, Ethiopia. World Journal of Agricultural Sciences 8 (6): 560-567.

Ahmad, R., Naseer, A., Zahir, Z.A., Arshad, M., Sultan, T. and Ullah, M.A. 2006. Integrated use of recycled organic waste and chemical fertilizers for improving maize yield. International Journal of Agriculture and Biology 8(6):840-843.

Ane, A.O. and Ubochi, C.I. 2007. Neutralization of soil acidity by animal manures: mechanism of reaction. African Journal of Biotechnology 6 (4):364-368.

Anteneh, N., Taye, K. and Tesfaye, Sh. 2015. Review of...
arabica coffee management research in Ethiopia. *Journal of Biology, Agriculture and Healthcare* 5 (13):235-258.

Anteneh, N. 2015. Response of coffee (Coffea arabica L.) seedlings to lime and phosphorus mineral fertilizer at Jimma, Southwestern Ethiopia. *Journal of Biology, Agriculture and Healthcare* 5(13):27-32.

Central Stastical Agency (CSA).2016. Report on Area and Production of Major Crops (Private Peasant Holdings, 2016/17 Meher Season). Central Stastical Agency, Ethiopia. Volume I.

Chemura, A. 2014. The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. *International Journal of Recycling Organic Waste in Agriculture* 3(59): 1-9.

Dzung, N.A., Dzung, T.T. and Khanh, V.T.P. 2013. Evaluation of compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. *Resources and Environment* 3 (4): 77-82.

Ethiopian Institute of Agricultural Research (EIAR). 2015. Crop research technology recommendations. Addis Ababa, Ethiopia.183pp.

Ewnetu, T., Taye, K. and Alemayehu, R. 2019. Effects of lime and phosphorus rates on growth of hybrid arabica coffee seedlings at Jimma, Southwestern Ethiopia. *Journal of Biology, Agriculture and Healthcare* 9(15):37-46.

Eyasu, E. 2016. Soil of Ethiopian Highlands: Geomorphology and properties. CASCAPE Project, ALTERA, Wageningen University and Research Centre (Wageningen UR). The Netherlands.385pp.

Fageria, N.K. 2009. The Use of Nutrients in Crop Plants. CRC Press, New York. 430pp.

Fageria, N.K. and Baligar, V.C. 2003. Fertility management of tropical acid soils for sustainable crop production, 359 - 385. In: Z. Rengel, Editor, Handbook of soil acidity. University of Western Australia, Perth, Western Australia, Australia.

Fageria, N.K. and Baligar, V.C. 2008. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. *Advance in Agronomy* 99: 345-400.

Gezahegne, B., Fikre, L. and Mulatu, W. 2011. Exploring the suitability of coffee pulp compost as growth media substitute in greenhouse production. *International Journal of Agricultural Research* 6(3):255-267.

Henok, K. and Tena, W. 2014. Evaluation of some additives on coffee residue (coffee husk and pulp) quality as compost, southern Ethiopia. *International Invention Journal of Agricultural and Soil Science* 2(2):14-21.

Institute of Agricultural Research (IAR). 1996. Recommended production technologies for coffee and associated crops. Addis Ababa, Ethiopia.17pp.

Kamprath, E.J. 1984. Crop response to lime on soils in the humid tropics. 348-368 In Adams, RE. (ed.), Soil acidity and liming. Agronomy. Amer. Soc. of Agron, Madison, Wisconsin, USA.

Kasongo R.K., Verdooth, A., Kanyankogote, P., Baert, G. and Van Ranst, E. 2011. Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. *Soil Use and Management* 27: 94–102.

Kasongo, R.K., Verdooth, A., Kanyankogote, P., Baert, G. and Van Ranst, E. 2013. Response of Italian ryegrass (*Lolium multiflorum* Lam.) to coffee waste application on a humid tropical sandy soil. *Soil Use and Management* 29: 22–29.

Melke, A. and Fisseha, I. 2015. Nutritional requirement and management of arabica Coffee (Coffea arabica L.) in Ethiopia : national and global perspectives. *American Journal of Experimental Agriculture* 5 (5): 400-418.

Mesfin, A. 2007. Nature and Management of Acid Soil in Ethiopia. Haramaya University. Haramaya, Ethiopia.99pp.

Mduka, B.A., Adewale, D.B., Akambi, O.S.O. and Adejoli, K.B. 2015. nursery soil amendments for cashew seedling production: a comparative analysis of coffee husk and NPK. *Journal of Agricultural Science* 7(3):111-122.

SAS Institute Inc.2011.SAS®9.3 Macro Language: Reference. Cary, NC: SAS Institute Inc.

Solomon, E., Tesfu, K. and Tesfaye, Y. 2008. Inorganic fertilizer management and coffee production. 217-225. In: Coffee Diversity and Knowledge (Girma, A.; Bayetta, B.; Tesfaye, Sh.; Endale, T. and Taye, K. ed.).Proceedings of National Workshop Four Decades of Coffee Research and Development in Ethiopia, 14-17 August 2007, Addis Ababa (Ghion hotel), Ethiopia.

Solomon, E. 2006. Accelerated composting of coffee processing by products: an organic option for soil fertility management in the coffee based cropping system of south western Ethiopia. *Proceeding of 21st International Scientific Conference on Coffee Science (ASIC)*, Montpelier, France, pp 1084-1089.

Tamene, L., Amede, T., Kihara, J., Tibebe, D. and Schulz, S. (eds.). 2017. A review of soil fertility management and crop response to fertilizer application in Ethiopia: towards development of site- and context-specific fertilizer recommendation. CIAT Publication No. 443. International Center for Tropical Agriculture (CIAT), Addis Ababa, Ethiopia.86p.

Taye, B. 2007. An overview of acid soils their management in Ethiopia paper presented in the Third International Workshop on water management (Waterman) project, September 19-21, 2007, Haromaya, Ethiopia.

Taye, K. 1998. Response of Arabica coffee (Coffea arabica L.) to various soil fertility management. Thesis presented to the school of graduate studies Haramaya University of Agriculture. In partial fulfillment of the requirement for the degree master of science in agriculture (agronomy), Haramaya, Ethiopia.137pp.

Tigist, A., Lemma, W. and Tesfaye, F. 2019. Soybean (*Glycine max* L.) response to lime and vermicompost amelioration of acidic Nitisols of Assosa, North Western Ethiopia. *International Journal of Plant & Soil Science* 27(2): 1-18.

Wassie, H. and Shiferaw, B. 2011. On-Farm verification of lime and NPK fertilizers effects on the tuber yield of Irish potato (*Solanum tuberosum*) on some acidic...
Effects of lime and coffee husk compost on growth of coffee seedlings on acidic soil

soils of Southern Ethiopia. *Journal of the Dry Lands* 4(1): 283-288.
Wassie, H. and Shiferaw, B. 2009. Mitigation of soil acidity and fertility decline challenges for sustainable livelihood improvement: research findings from southern region of Ethiopia and its policy implications. *Proceedings of the National Conference on Sustainable Land Management and Poverty Alleviation*, Ethiopian Development Research Institute, Sustainable Land Use Forum (SLUF), Oromia Agriculture.
Yacob, E., Tesfaye, Sh., Alemseged, Y., Anteneh, N., Takele, N., Mohammedur, A. and Bekele, B. 1996. Advances in coffee agronomy research in Ethiopia. p. 40-45. *Proceedings of Inter Africa Coffee Organization* (IACO) Workshop, 4-6 September 1995, Kampala, Uganda.

Zebene, M. and Wondwosen, T. 2008. Potentials and Constraints of Nitisols and Acrisols 209-216. In: Coffee Diversity and Knowledge (Girma, A.; Bayetta, B.; Tesfaye, Sh.; Endale, T.and Taye K. eds.). *Proceedings of National Workshop Four Decades of Coffee Research and Development in Ethiopia*, 14-17 August 2007, Addis Ababa (Ghion Hotel), Ethiopia.