Interleukin-8 produced from cancer-associated fibroblasts suppresses proliferation of the OCUCh-LM1 cancer cell line

Ryota Tanaka1,2,3, Kenjiro Kimura1*, Shimpei Eguchi1, Go Ohira1, Shogo Tanaka1, Ryosuke Amano1, Hiroaki Tanaka2, Masakazu Yashiro2,4,5, Masaichi Ohira2 and Shoji Kubo1

Abstract

Background: Cancer-associated fibroblasts (CAFs) play an important role in cancer growth by interacting with cancer cells, but their effects differ depending on the type of cancer. This study investigated the role of CAFs in biliary tract cancers (BTCs), compared with pancreatic ductal adenocarcinoma (PDAC) as a comparison cohort.

Methods: We retrospectively evaluated alpha-smooth muscle actin (αSMA) expression in CAFs from 114 cases of PDAC and 154 cases of BTCs who underwent surgical treatment at our institution from 1996 to 2017. CAFs were isolated from resected specimens of BTC and PDAC, and tested for the effects of their supernatants and cytokines on cancer cell proliferation.

Results: PDAC patients with positive αSMA expression showed significantly shorter overall survival and recurrence-free survival than αSMA-negative patients (p = 0.003, p = 0.009, respectively). BTC patients with positive αSMA expression showed better recurrence-free survival than αSMA-negative patients (p = 0.03). CAF-conditioned medium suppressed the proliferation of cancer cells for only OCUCh-LM1 cells and not PDAC cells. Blockage of Interleukin-8 (IL-8) or its receptor C-X-C motif chemokine receptor 2 (CXCR2) by antibodies canceled the suppressive effect of the IL-8.

Conclusions: CAFs are a good prognostic factor in BTC, but not for PDAC. Moreover, CAF-produced Interleukin-8 suppresses the proliferation of OCUCh-LM1 cell lines.

Keywords: Bile duct cancers, Cancer-associated fibroblast, Interleukin-8, Pancreatic ductal adenocarcinoma, Suppressive CAFs

Background

Biliary tract cancers (BTCs) are aggressive, and each has a poor prognosis. Despite advance in surgical treatments and chemotherapy that target cancer cells, their effects are limited. Recently, therapies targeting non-cancerous cells have been developed [1]. However, there are few reports on therapy that focus on tumor microenvironment, such as those of fibroblast in BTCs [2].

The stroma in solid tumors is composed of a rich extracellular matrix and many types of non-cancerous cells, including fibroblasts, myeloid cells, and lymphocytes, which play important roles in cancer growth [3]. Activated fibroblasts in the stroma, called cancer-associated fibroblasts (CAFs), interact with cancer cells and are involved in cancer progression, invasion, metastasis, and resistance to anticancer drugs [4]. Carcinogenesis of BTCs is closely associated with chronic inflammation such as cholelithiasis, cholangitis, primary sclerosing
cholangitis, and pancreaticobiliary maljunction [5, 6]. Fibroblasts in the tumor microenvironment are strongly associated with the progression and metastasis of BTCs [7]. However, there are few reports on the function of CAFs in BTCs.

In scirrhous gastric cancer and pancreatic ductal adenocarcinoma (PDAC), which are characterized by abundant stroma component, CAFs secrete several growth factors, including transforming growth factor-beta, hepatocyte growth factor and fibroblast growth factor [8, 9]. These cytokines from CAFs have been widely reported to promote tumor progression, and alpha-smooth muscle actin (αSMA), fibroblast activation protein alpha, and podoplanin have been reported as markers of CAFs. On the other hand, Ozemir et al. and Rhim et al. each reported that depletion of αSMA-positive CAFs promoted pancreatic cancer progression [10, 11]. More recently, Mizutani et al. reported that meflin-positive CAFs suppress cancer progression [12]. Research indicates that there are cancer-promoting CAFs and cancer-suppressive CAFs [13]. In addition, Yangngam et al. reported that Interleukin (IL)-33 acts as a tumor suppressor against cholangiocarcinoma. They reported that high IL-33 level in cancer cells and in CAFs is a good prognostic marker of survival. They revealed IL-33 inhibit cancer cell migration [14]. Most cytokines in the tumor microenvironment have a promoting effect on cancer cells, but some of them have shown a suppressive effect [10–14].

The purpose of this study was to investigate the role of CAFs and to elucidate the interaction of cancer cells and CAFs in BTCs by comparing them to PDAC cells, as a control. Furthermore, we explored the factors secreted by CAFs that suppress cancer progression.

Materials and methods
Patient population and tissue samples
This retrospective study includes 114 patients with PDAC and 154 patients with BTCs who underwent surgical treatment at our institution from 1996 to 2017. Clinical data and formalin fixed paraffin-embedded tissues were analyzed. BTCs include intrahepatic (n = 24), perihilar, and distal bile duct cancer (n = 67), gallbladder cancer (n = 27), and ampulla of Vater cancer (n = 36). Pathological findings were evaluated using TNM classification of the UICC guideline, eighth edition [15]. After surgical treatment, the patients were followed-up at 3–6-month intervals by clinical examinations and enhanced computed tomography. Recurrence-free survival (RFS) and overall survival (OS) were defined as the time from surgery to recurrence and death, respectively. The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Osaka City University (approval number: 924). Written informed consent were obtained from all patients for use of tissue sample in this research.

Immunohistochemical determination
For immunohistochemical analysis, 4-μm thick sections were obtained from the tissue microarray of formalin fixed paraffin-embedded tissues. Immunohistochemical staining was examined. The sections were deparaffinized and autoclaved for 10 min at 105°C in Target Retrieval Solution (Dako, Carpinteria, CA, USA). After blocking the endogenous peroxidase activity, the samples were incubated with anti-human αSMA antibody (1:50, Dako, Carpinteria, CA, USA) over night at 4°C. The sections were then incubated with biotinylated IgG for 10 min. The slides were treated with streptavidin-peroxidase reagent, followed by counterstaining with Mayer’s hematoxylin. CAFs were located around the cancer cells and stained brown. The staining intensity of spindle-shaped cells in the stroma as well as the stained area was evaluated on a 4 scale (0–3). Next, the intensity score was summed up from the staining intensity and the stained area. And then, the group of CAFs was assigned 4 scales according to the intensity score (score 1 = no staining, 2 = weak, 3 = moderate, > 4 = strong). Expression levels were considered positive when moderate or strong staining, and negative when no or week staining. Immunohistochemical evaluation was performed by two independent investigators who were blinded to patient outcomes and clinicopathological features.

Cell line and cancer associated fibroblast
In this study, six cell lines were used: two PDAC cell lines (OCUP-A1, OCUP-A2) [16], two BTCs cell lines (OCUG, OCUCCh-LM1) [17, 18], HuCCT1 purchased from RIKEN BRC (BioResource Research Center, Tsukuba, Japan), and RBE purchased from RIKEN BRC (BioResource Research Center). OCUP-A was established from anaplastic pancreatic adenocarcinoma. OCUG was established from gallbladder cancer. OCUCCh-LM1 was established from a liver metastasis of extrahepatic bile duct cancer. These four OCU series cell lines were established in Department of Gastroenterological Surgery at Osaka City University Graduate School of Medicine. CAFs were obtained and isolated from specimens of pancreatic and distal bile duct cancer that underwent surgical resection at our institution from 2017 to 2019. The specimens were sliced and autoclaved for 10 min at 105°C in Target Retrieval Solution (Dako, Carpinteria, CA, USA) at 37°C for 4 h. After incubation, the specimens with medium were put into a 50 ml tube through a sterile cell strainer. The cell suspensions were spun down using a centrifuge. Then the cells were collected and cultured in Dulbecco’s modified Eagle medium (DMEM; Nikken, Kyoto, Japan). To determine CAFs, immunohistochemical staining was performed. Fibroblast cells were seeded into
chamber slide and fixed with methanol for 10 min. They were then incubated with anti-αSMA antibody (clone 1A4; 1:200; Dako, Cambridge, UK) for 1 h and counterstained with Mayer’s hematoxylin. Cells with αSMA-positive were determined as CAFs (Supplementary Fig. 1). All CAFs used in the experiments were at less than 10 passages. The BTC CAFs and PDAC CAFs were isolated from different patients. The culturing medium consisted of DMEM (Nikken, Kyoto, Japan) without serum. The cells were cultured at 37°C in 21% O2 for 24 hours in 10 mL serum-free DMEM to obtain CAFs-conditioned medium (CM-CAFs).

Cell proliferation assay
Each cell line was washed twice with phosphate-buffered saline and cultured at 5000 cells/well in 96 wells. Each cell line was incubated in 50 μL of serum-free DMEM and 50 μL of CM-CAFs for 3 days, and cell proliferation was evaluated using the CCK-8 cell counting kit (Dojindo, Kumamoto, Japan). Recombinant human IL-8, anti-human IL-8 antibody and anti-human C-X-C motif chemokine receptor 2 (CXCR2) antibody (each from R&D Systems, Minneapolis, MN, USA) were added to 100 μL of serum-free DMEM. After incubation for 3 days, cell proliferation was evaluated using the CCK-8 and MTT assay (Dojindo, Kumamoto, Japan). The control medium contained 100 μL of serum-free DMEM.

Cytokine assay
The Human XL Cytokine Array Kit was purchased from R&D Systems (Minneapolis, MN, USA) and experiments for measuring the cytokine content of the CAFs-conditioned medium were performed according to the manufacturer’s protocols. Complete list of Human XL Cytokine Array Kit is in Supplementary Table 1.

Western blotting
Each cancer cell was lysed on ice to collect protein. Total protein was quantified using Coomassie Plus Assay Kit (Thermo Fisher Scientific). The protein was transferred to a polyvinylidene difluoride membrane. The membranes were placed in each primary antibody: CXCR2 (1:2000, R&D Systems) or β-actin (1:5000; Sigma-Aldrich, St. Louis, MO, USA) at 4°C overnight. The membranes were incubated with secondary antibody for 1 h and were detected by enhanced chemiluminescence using ECL prime (GE Health Care, Buckinghamshire, UK).

Statistical analysis
Continuous variables were compared using the Mann-Whitney U test. Categorical variables were compared using chi-square or Fisher exact tests, as appropriate.

OS and RFS were estimated using the Kaplan–Meier method, and survival curves were compared using the log-rank test. The groups were considered significantly different at $p < 0.05$. All tests were performed using JMP software version 13 (SAS Institute, Cary, NC, USA).

Results

Clinicopathological characteristics of PDAC and BTCs with high and low αSMA expression
The clinicopathological characteristics of the 114 resected cases of PDAC and the 154 resected cases for BTCs are listed in Tables 1 and 2. All patients were classified into an αSMA-positive or αSMA-negative expression group based on the defined criteria (Fig. 1). In patients with PDAC, positive αSMA expression was not associated with any clinicopathological characteristics (Table 3). In patients with BTCs, positive αSMA expression was associated with T category (≤ pT2), absence of lymph node metastasis, absence of distant metastasis, absence of lymphatic invasion, absence of neural invasion, UICC stage (≤ Stage 2), low serum CA19–9 levels (Table 3).

Survival analysis
For patients with PDAC, those with positive αSMA expression showed significantly shorter OS than those with negative αSMA expression (median OS, 20.4 vs. 36.6 months; 5-year survival rate, 14.7 vs. 39.2%, $p = 0.003$) (Fig. 2a). Similarly, the αSMA-positive group showed statistically shorter RFS, compared to the αSMA-negative group (median RFS, 8.8 vs. 14.4 months; 5-year RFS rate, 5.8 vs. 29.9%, $p = 0.009$) (Fig. 2b). On the other hand, in the patients with BTCs, the αSMA-positive group showed better RFS compared to the αSMA-negative group (median RFS: not reached vs 20.8 months; 5-year RFS rate: 39.9% vs 19.3%, $p = 0.03$) (Fig. 2d). In the OS of patients with BTCs, the αSMA-positive group tended to have better OS compared to the αSMA-negative group (median OS: 60.8 vs 29 months; 5-year survival rate: 47.4% vs 31.5%, $p = 0.06$) (Fig. 2c).

Effect of CM-CAFs on cancer cell proliferation
In order to evaluate the effect of CM-CAFs on cancer cell proliferation, CM-CAFs from PDAC or BTC was added to each cell line (OCUP-A1, OCUP-A2, OCUG and OCUCh-LM1). Although none of the CM-CAFs affected OCUP-A1 or OCUG cell proliferation, the BTC CM-CAFs and PDAC CM-CAFs 1 and 2 promoted cell proliferation compared to OCUP-A2 growth in the control medium. On the other hand, all CM-CAFs significantly suppressed the proliferation of OCUCh-LM1 compared to growth in the control medium (Fig. 3).
To determine the cytokine content of the CAFs that had a suppression effect, cytokine assays were performed on BTC CM-CAFs and PDAC CAFs which had suppressed OCUCh-LM1 cell proliferation. The cytokines commonly included were IL-8, IL-1α, and brain-derived neurotrophic factor (BDNF) (Fig. 4a). For OCUCh-LM1, the addition of IL-8 had a suppressive effect on proliferation. The addition of IL-1α promoted OCUCh-LM1 cell proliferation. The addition of BDNF had no effect on OCUCh-LM1 cell proliferation (Supplementary Fig. 2).

The addition of IL-8 did not affect cancer cell proliferation for OCUP-A1, OCUP-A2, OCUG, HuCCT-1, or RBE (Supplementary Fig. 3). Both CCK and MTT assays showed similar IL-8 suppressive effects on OCUCh-LM1 cells.

Effect of IL-8 on cell proliferation of OCUCh-LM1

To confirm the suppressive effect of IL-8 on OCUCh-LM1 cell proliferation, anti-human IL-8 antibody was added to the cell culture medium. After the addition of anti-human IL-8 antibody, the suppressive effect

Table 1 Clinicopathological characteristics of 114 patients with PDAC

	number
Sex	
men	58
women	56
Age, median (range)	70 (34–85)
Differentiated	
differentiated	91
undifferentiated	16
other	7
Location of cancer	
Head	68
Body/head	46
T category	
pT1	6
pT2	23
pT3	82
pT4	3
Lymph node metastasis	
absent	54
present	106
Distant metastasis	
absent	16
present	98
Lymphatic invasion	
absent	16
present	98
Vascular invasion	
absent	16
present	98
Neural invasion	
absent	18
present	96
UICC stage	
1	17
2	86
3	3
4	8
Serum CEA level, ng/ml, median (range)	3.6 (0.5–262)
Serum CA19–9 level, U/ml, median (range)	98 (0–10,148)
Serum SPan-1 level, U/ml, median (range)	52 (1–2411)
Recurrence	
yes	80
no	34
Outcome	
death	75
alive	39
Recurrence free survival, days, median (range)	289 (0–5257)
Overall survival, days, median (range)	632 (26–1815)

PDAC pancreatic ductal adenocarcinoma, UICC Union for International Cancer Control, CEA carcinoembryonic antigen, CA19–9 carbohydrate antigen 19–9, SPan-1 s-pancreas-1 antigen
of IL-8 disappeared. Anti-human CXCR2 antibody suppressed cell growth similar to that of the anti-human IL-8 antibody (Fig. 4b).

Expression of CXCR2 on cancer cell lines

Supplementary Fig. 4 showed that CXCR2 was expressed on all cell lines, but the expression level was highest on OCUCh-LM1.

Table 2 Clinicopathological characteristics of 154 patients with BTCs

	number	
Sex		
men	86	
women	68	
Age, median (range)	69 (43–87)	
Differentiated		
differentiated	123	
undifferentiated	14	
other	17	
Location of cancer		
peripheral and distal bile duct	67	
intrahepatic bile duct	24	
gallbladder	27	
ampullary	36	
T category		
pT0	19	
pT1	21	
pT2	49	
pT3	58	
pT4	7	
Lymph node metastasis		
absent	98	
present	49	
Distant metastasis		
absent	136	
present	11	
Lymphatic invasion		
absent	60	
present	64	
Vascular invasion		
absent	21	
present	103	
Neural invasion		
absent	58	
present	62	
UICC stage		
0	19	
1	23	
2	66	
3	42	
4	4	
Serum CEA level, ng/ml, median (range)	2.6 (0–86.5)	
Serum CA19–9 level, U/ml, median (range)	29 (0–45,152)	
Recurrence	yes	76
no	78	
Outcome	death	70
alive	84	
Recurrence free survival, days, median (range)	521 (0–4160)	
Overall survival, days, median (range)	778 (9–4157)	

BTCs: bile tract cancers, UICC: Union for International Cancer Control, CEA: carcinoembryonic antigen, CA19–9: carbohydrate antigen 19–9.

Discussion

In this study, we found that CAFs that express αSMA are a poor prognostic factor in patients with PDAC. On the other hands, CAFs in BTCs were a good prognostic factor. In addition, we demonstrated in vitro that IL-8 produced from CAFs suppresses the proliferation of OCUCh-LM1 cells. Previous reports have indicated that CAFs promote cancer growth by interacting with cancer cells but are a poor prognostic factor in several
cancer types [19, 20]. CAFs often affect cancer progression by interacting with cancer cells via cytokines and exosomes [8, 9]. The current result suggested that CAFs have a one-sided effect on suppressing cancer progression in BTCs.

αSMA is the best-known marker for CAFs and has been identified as a poor prognostic factor in several cancers [21]. Akatsu et al. reported that αSMA-positive CAFs, called type II CAFs, are associated with the endothelial-to-mesenchymal transition and promote tumor growth and metastasis [22]. Augsten reported that cancer-suppressive CAFs, type I CAFs, do not express αSMA, have the ligand Slit2, and inhibit the tumorigenicity of cancer cells [23]. The current study suggests that αSMA expression in CAFs is a good prognostic factor in BTCs, but not in PDAC. This is the first report of αSMA-positive CAFs in BTCs being a good prognostic factor.

We hypothesized that there were molecules, especially the cytokines secreted by αSMA-positive CAFs, which might have a suppressive effect on the proliferation of OCUCch-LM1 cells. The results show that CM-CAF, which wither promoted proliferation or had no effect in PDAC cells, showed a suppressive effect on OCUCch-LM1 cell proliferation. More interestingly, we found that both BTC CM-CAFs and PDAC CM-CAFs contained factors that have suppressive effects on OCUCch-LM1 cell proliferation. We previously reported cytokines and exosomes are found in CM-CAFs [8, 24]. In the current study, we demonstrated that IL-8 secreted by CAFs suppresses OCUCch-LM1 cell proliferation.

The most interesting finding in this study was that IL-8 produced from the CM-CAFs of PDAC and BTC suppressed the proliferation of OCUCch-LM1 cells. Although IL-8 is well known as inflammatory cytokines [25], there are many reports of chemokines from CAFs that promote the proliferation and migration of cancer cells [26, 27]. The function of IL-8 depends on its interaction with its receptors, CXCR1 and CXCR2. The CXCR1 receptors are activated only in response to binding of IL-8, whereas CXCR2 receptors are activated by several chemokines [28]. Wang et al. reported that CXCR1 expression correlates with drug resistance, invasion and metastasis in many types of cancers [29]. On the other hand, IL-8 and CXCR2 are also involved in cell proliferation and cell senescence.

![Immunohistochemical staining of αSMA. Microscopic images showing (a) negative, (b) weakly positive, (c) moderate positive, and (d) strongly positive staining. Magnification is 200x, and the scale bar is 100 μm. The αSMA-positive CAFs in the stroma are stained brown. Each patient is classified into either αSMA-positive or αSMA-negative expression group. Expressions are considered positive for scores of 2 or 3 and negative for scores of 0 or 1. αSMA: alpha-smooth muscle actin, CAFs: cancer-associated fibroblasts](image-url)
is upregulated during senescence [30, 31]. We also reported that CXCL1-CXCR2 signaling have tumor suppression roles in cholangiocarcinoma [32]. Therefore, it may be that CXCR-2 is more involved than CXCR1 in cancer suppression. Thus, we investigated IL-8/CXCR2 signaling. Here, we found that IL-8 produced from CAFs suppresses the proliferation of OCUCh-LM1 cell line. In addition, we demonstrated that the addition of the antibodies that inhibit IL-8 or CXCR2 eliminated their suppressive effect. Therefore, we suggest that IL-8/CXCR2 signaling pathway might be a mechanism that suppresses OCUCh-LM1 growth. However, CXCR2 expression was observed in each cell line suggesting that even with the same receptor and signaling, the functions of IL-8/CXCR2 signaling might be changed depending on the difference in expression level of CXCR2 and the characteristics of the cancer itself. In addition, the effect of IL-8/CXCR2 signaling on cell senescence is needed in the future.

There have been no reports of αSMA-positive CAF in biliary tract cancer as a good prognosis factor of survival. This study revealed that anti-IL-8 antibody and anti-CXCR2 antibody are able to inhibit the suppressive effects of IL-8. However, these antibodies were not able to inhibit the suppressive effects of CM-CAFs (data not shown). This result indicated that the suppressive effect came from not only IL-8 alone, but also several cytokines produced by CAF. Also, the balance of chemokines and the expression level of receptors were affected. Therefore, further explorations are needed to achieve therapeutic development.

This study has limitations. First, this was a retrospective study with a small cohort of patients. Second, the number of CAFs and cell lines was low and limited.

Table 3 Correlation between clinicopathological features and αSMA in 114 patients with PDAC and in 154 patients with BTCs

Feature	PDAC	P value	BTC	P value
αSMA positive	n = 67		αSMA positive n = 83	
Sex: men	37	0.26	46	0.26
Sex: women	30	0.26	37	0.26
Age, median (range)	68(34–85)	0.06	70(43–87)	0.23
T category pT0–2	20	0.19	56	0.008
T category pT3–4	47	0.27	38	0.003
Lymph node metastasis absent	32	0.92	64	0.01
Distant metastasis absent	61	0.31	81	0.01
Lymphatic invasion absent	6	0.06	43	0.01
Vascular invasion absent	38	0.59	66	0.06
Neural invasion absent	10	0.76	43	40001
UICC stage≦2	59	0.31	69	40001
Serum CEA level < 5 ng/ml	38	0.72	63	0.62
Serum CA19–9 level < 37 U/ml	19	0.26	52	0.008
Serum SPan-1 level < 30 U/ml	18	0.09	28	37

αSMA: alpha-smooth muscle actin, PDAC: pancreatic ductal adenocarcinoma, BTCs: bile tract cancers, UICC: Union for International Cancer Control, CEA: carcinoembryonic antigen, CA19–9: carbohydrate antigen 19–9, SPan-1: s-pancreas-1 antigen

*p < 0.05
Fig. 3 Effect of CM-CAFs on proliferation of each cell line. Conditioned medium from each CAFs (CM-CAFs) significantly promote proliferation of OCUP-A2 cells but significantly suppress proliferation of OCUCH-LM1. Data are presented as the mean and standard deviation of four experiments. Asterisks indicate a significant difference. *p < 0.05. CAFs: cancer-associated fibroblasts.

Fig. 2 Overall survival and recurrence-free survival according to αSMA in PDAC and BTCs. Kaplan-Meier survival curve indicates that αSMA-positive PDAC patients show significantly shorter OS than those with αSMA-negative expression (a), with similar results for RFS (b). c Patients with αSMA-positive expression tend to have better OS compared to those with αSMA-negative expression in BTCs. d BTC patients with αSMA-positive expression show significantly better RFS compared to those with αSMA-negative expression. αSMA: alpha-smooth muscle actin, PDAC: pancreatic ductal adenocarcinoma, BTCs: biliary tract cancers, OS: overall survival, RFS: recurrence-free survival.
Third, CAFs had a mixed population with αSMA positive and negative fibroblasts, therefore, it was unclear which type of CAFs had suppressive effects on OCUCh-LM1 cell proliferation. Fourth, Human XL Cytokine Array Kit could investigate only 105 typical cytokines, so other cytokines might have been overlooked. Lastly, it is difficult to establish and passage CAFs from biliary tract cancer and pancreatic cancer. Therefore, it is also difficult to repeatedly experiment with the same CAFs.

In summary, this study suggests that CAFs are a good prognostic factor in patients with BTCs, but not in those with PDAC. This is the first report of αSMA-positive CAFs in BTCs being a good prognostic factor of survival. In addition, IL-8 found in CM-CAFs suppresses the proliferation of OCUCh-LM1 cells. Our findings suggest that CAFs have tumor-suppressive activity in BTCs via their own humoral factors, including IL-8.

Abbreviations

CAFs: cancer-associated fibroblasts; BTCs: biliary tract cancers; PDAC: pancreatic ductal adenocarcinoma; αSMA: alpha-smooth muscle actin; IL-8: Interleukin-8; UICC: Union for International Cancer Control; RFS: recurrence-free survival; OS: overall survival; DMEM: Dulbecco's modified Eagle medium; CM: conditioned medium; CCK: cell counting kit; CXCR: C-X-C motif chemokine receptor; CEA: carcinoembryonic antigen; CA19–9: carbohydrate antigen 19–9; SPan-1: s-pancreas-1 antigen; IL-1α: Interleukin-1α; BDNF: brain-derived neurotrophic factor.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12885-022-09847-z.

Additional files

- Additional file 1.
- Additional file 2.
- Additional file 3.
- Additional file 4.
- Additional file 5.

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Authors’ contributions

RT, KK, MO, and SK: drafting of manuscript. SE, GO, ST, RA, HT, MY: critical revision of manuscript. All authors read and approved the final manuscript.

Funding

N/A

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Osaka City University (approval number: 924). Written informed consent were obtained from all patients for use of tissue sample.
Consent for publication
Written informed consent were obtained from all patients for publication.

Competing interests
Authors declare no Competing Interest for this article. It is the responsibility of the corresponding author to review this policy with all authors.

Author details
1 Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1–4–3 Asahimachi, Abenoku, Osaka 545-8585, Japan. 2 Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan. 3 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA. 4 Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan. 5 Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan.

Received: 22 February 2022 Accepted: 30 June 2022
Published online: 08 July 2022

References
1. Whittle MC, Hingorani SR. Fibroblasts in pancreatic ductal adenocarcinoma: biological mechanisms and therapeutic targets. Gastroenterology. 2019;156:2085–96.
2. Mertens JC, Rizvi S, Gores GJ. Targeting cholangiocarcinoma. Biochem Biophys Acta. 1864:2018:1454–60.
3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.
4. Ham HJ, Lee D, Hur H. Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol. 2019;2019:6270784.
5. Kubo S, Takeyama S, Tanaka S, Shinkawa H, Kinoshita M, Hamagno G, et al. Outcomes after resection of occupational cholangiocarcinoma. J Hepato- biliary Pancreat Sci. 2016;23:336–44.
6. Kubo S, Takeyama S, Tanaka S, Shinkawa H, Kinoshita M, Hamano G, et al. Occupational cholangiocarcinoma caused by exposure to 1,2-dichloropropane and/or dichloromethane. Ann Gastroenterol Surg. 2017;1:99–105.
7. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:49185.
8. Hasegawa T, Yashiro M, Nishi T, Matsuoka J, Fuyuhiro Y, Morisaki T, et al. Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-β signaling. Int J Cancer. 2014;134:1785–95.
9. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg. 2019;3:130–7.
10. Ozdemir BC, Petcheva-Hoang T, Carstens JL, Zhang X, Wu CC, Simpson TR, et al. Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2. BMC Cancer. 2016;16:268.
11. Yamada N, Chung Y, Ohtani H, Ikeda T, Onoda N, Sawada T, et al. Establishment and characterization of a new human gallbladder carcinoma cell line (OGUC-1-1) producing TA-4. Int J Onkol. 1997;10:1251–5.
12. Yamada N, Chung YS, Ariimoto Y, Sawada T, Seki S, Sowa M. Establishment of a new human extrahepatic bile duct carcinoma cell line (OCUCh-LM11) and experimental liver metastatic model. Br J Cancer. 1995;71:543–8.
13. Brennes RM, Donnern T, Al-Saad S, Al-Shibli K, Andersen S, Siera R, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6:209–17.
14. Son GM, Kwon MS, Shin DH, Shin N, Ryu D, Kang CD. Comparisons of cancer-associated fibroblasts in the intratumoral stroma and invasive front in colorectal cancer. Medicine (Baltimore). 2019;98:e15164.
15. Numrik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–903.
16. Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, et al. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via ERK1. Mol Oncol. 2019;13:1706–24.
17. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;4:62.
18. Miki Y, Yashiro M, Okuno T, Kuroda K, Togano S, Hirakawa K, et al. Clinicopathological significance of exosome marker CD63 expression on cancer cells and stomachal carcinoma cells in gastric cancer. PLoS One. 2018;13:e0202956.
19. Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1548–88.
20. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61–71.
21. Sun Q, Li F, Sun F, Niu J. Interleukin-8 is a prognostic indicator in human hilar cholangiocarcinoma. Int J Clin Exp Pathol. 2015;8:8376–84.
22. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:735–41.
23. Wang JP, Hu WM, Wang KS, Luo BH, Wu C, Chen ZH, et al. Upregulation of C-X-C chemokine receptor type 1 expression is associated with late-stage gastric adenocarcinoma. Exp Ther Med. 2012;4:455–60.
24. Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.
25. Acosta JC, O’Loghlen A, Banito A, Raguz S, Gil J. Control of senescence by CXCR2 and its ligands. Cell Cycle. 2008;7:9296–9.
26. Yamamoto Y, Sugimoto A, Maruo K, Tsujio G, Sera T, Kushiyama S, et al. CXCR2 signaling might have a tumor-suppressive role in patients with cholangiocarcinoma. PLoS One. 2022;17:e0266027.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more: biomedcentral.com/submissions