Complications and survival in patients undergoing colonic stenting for malignant obstruction

Citation
Almadi, Majid A, Nahla Azzam, Nazia Sadaf, Othman Alharbi, Alabbas H. Mohammed, Aljebreen M. Abdulrahman. "Complications and survival in patients undergoing colonic stenting for malignant obstruction." WJG 19, no. 41 (2013): 7138. DOI: 10.3748/wjg.v19.i41.7138

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37373508

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Complications and survival in patients undergoing colonic stenting for malignant obstruction

Majid A Almadi, Nahla Azzam, Othman Alharbi, Alabbas H Mohammed, Nazia Sadaf, Abdulrahman M Aljebreen

AIM: To investigate whether predicting patients that might be at a higher risk for complications might serve to improve the selection of patients undergoing colonic stenting.

METHODS: A retrospective review of consecutive patients who underwent an attempted self-expandable metal stent (SEMS) insertion for malignant colonic obstruction between November 2006 and March 2013. All patients were either referred for preoperative colonic decompression with the intent of a single surgical procedure, or for palliation of the malignant colorectal obstruction for unresectable cancer. Fisher’s test or χ² test was performed on categorical variables, and the t test for continuous variables. Univariable and multivariable logistic regression were used to examine the association between independent variables and the presence of complications from SEMS insertion.

RESULTS: SEMS insertion was attempted in 73 patients. Males comprised 55.71% and the mean age was 67.41 ± 12.41 years. Of these, 65.15% underwent subsequent surgery, while 34.85% received SEMS as palliation for advanced disease. Extracolonic tumors were only 4.76%. The majority of patients had stage IV disease (63.83%), while the remainder had stage III (36.17%). SEMS were successfully inserted in 93.85% (95%CI: 87.85%-99.85%). Perforations occurred in 4.10%, SEMS migration in 8.21%, and stent re-occlusion from ingrowth occurred in 2.74% of patients. The mean duration of follow up for the patients was 13.52 ± 17.48 mo (range 0-73 mo). None of the variables: age, sex, time between the onset of symptoms to SEMS insertion, time between SEMS insertion and surgery, length of the stenosis, location of the stenosis, albumin level, or receiving neoadjuvant chemotherapy, could predict the development of complications from either SEMS insertion nor prolonged survival.

CONCLUSION: None of the variables could predict the development of complications or survival. Further studies are required to identify patients who would benefit the most from SEMS.

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Colonic obstruction; Colorectal cancer; Palliative interventions; Self-expanding metal stent; Colonic stents; Enteric stenting; Emergency surgery; Complications; Endoscopy

Core tip: Despite the debate as to whether there is an added benefit from the use of self-expandable metal stents (SEMS), when compared to surgery, as an ini
tial management strategy in patients with malignant colorectal obstruction, this study found that SEMS insertion for malignant colorectal obstruction is a safe option with an acceptable risk profile. We could not identify factors that would predict the development of complications or factors that might impact long-term survival. Nonetheless, based on current guidelines, SEMS insertion for malignant colorectal obstruction is the best option for palliation or as a bridge to surgery when technical skills for such a procedure are available.

Almadi MA, Azzam N, Alharbi O, Mohammed AH, Sadaf N, Aljebreen AM. Complications and survival in patients undergoing colonic stenting for malignant obstruction. *World J Gastroenterol* 2013; 19(41): 7138-7145 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i41/7138.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i41.7138

INTRODUCTION

The use of self-expandable metal stents (SEMS) has increased in recent years, mostly either as a palliative measure or as a bridge to surgery. There are risks associated with the use of SEMS, such as perforation, migration, reobstruction, as well as a debate as to whether there is an added benefit from the use of SEMS when compared to surgery as an initial management strategy, and even possibly a negative effect on survival. However, there are study design considerations that might account for such results. As a consequence of the variability in individual study designs as well as the lack of standardization in reporting outcomes, results of numerous meta-analyses conducted on this topic have been variable. SEMS remain an attractive option due to the avoidance of emergency surgeries, the advantage of undergoing a single operation with the avoidance of stomas, a lower early morbidity, a shorter hospital stay, and decreased cost. Attempting to predict patients that might develop complications and identifying factors that might impact long-term survival from the insertion of SEMS for the management of malignant colorectal obstruction might aid in the better selection of patients who undergo this management strategy and who would benefit the most from SEMS.

MATERIALS AND METHODS

A retrospective review was conducted using an endoscopic reporting database of individuals seen at a major tertiary care university hospital: King Khalid University Hospital in Riyadh, Saudi Arabia. The medical records of consecutive patients who underwent an attempted SEMS insertion between November 2006 and March 2013 were included. All patients were either referred for preoperative colonic decompression with the intent of a single surgical procedure, or for palliation of the malignant colorectal obstruction of unresectable cancer. Based on a computerized tomography (CT) scan that was performed for the patients, the stage of the tumor was determined, and the SEMS insertion would be either as a bridge to surgery in patients that were deemed resectable or as a palliative procedure in those who had metastatic disease or were poor surgical candidates. All demographic features were collected through a chart review, which included: age, sex, symptoms, comorbidities, indication for SEMS insertion, date of the procedure, date of subsequent surgery (if performed), location, length of stenosis, stage of the tumor, whether the patient received neo-adjuvant chemotherapy, whether the SEMS insertion was successful (as well as the reason if it did not succeed), length of the SEMS used, number of SEMS used (if more than one SEMS was used for a patient), any complications that occurred after the SEMS insertion, duration between the initial symptoms and the SEMS insertion, and the duration between SEMS insertion and last date of follow up. Patients with any of the following were excluded: clinical evidence of bowel perforation or peritonitis, free intraperitoneal air on abdominal imaging, significant coagulopathy, hemodynamic or pulmonary instability, non-malignant strictures (e.g., those with inflammatory strictures due to diverticulitis), those where the endoscopist found a patent lumen not requiring SEMS insertion, or rectal cancer within 5 cm from the anocutaneous line.

Endoscopic technique

Before insertion of colonic SEMS, the patients underwent a CT scan of the chest, abdomen, and pelvis to evaluate the location and extent of the tumor, and to assess the area of the stenosis. SEMS were inserted by 1 of 3 therapeutic endoscopists. All endoscopies were performed under fluoroscopic guidance and were inserted through the working channel of the endoscope, which was either a therapeutic gastroscope, a colonoscope, or a duodenoscope depending on the location of the tumor and its angulation compared to the lumen of the colon. All the SEMS used were uncovered (WallFlex colonic stent), 22 mm in diameter, and 60 or 90 mm in length. The length of the stent used was dictated by the judgment of the endoscopist. The majority of the procedures were performed with the patient under conscious sedation, with intravenous midazolam and fentanyl administered by the endoscopist. Cleansing enemas were used until the washing water became clear. No oral bowel preparation was given. The endoscope was carefully inserted to the site of obstruction, then a straight tip guidewire (0.035 in diameter and 450 cm long) was inserted through a triple-lumen 5.5 French ERCP cannula through the stricture, and water soluble contrast was injected to delineate the length of the stricture, as well as the anatomy, and to confirm the intralumenal position of the guidewire. After the guidewire was passed through the stricture, a colonic SEMS assembly was advanced over the guidewire through the working channel and inserted through the obstruction site under combined fluoroscopic and endo-
scopic guidance. The stent was deployed at the stricture site while pulling back the outer sheath. If a SEMS did not expand, no dilation was attempted but a second stent inserted co-axially within the initial SEMS might have been used. If there was clinical suspicion of a complication, a plain abdominal radiograph was performed post-procedure. Stool softeners were routinely prescribed to prevent stool impaction in the stent. A plain abdominal radiograph the day after the procedure was performed, to confirm correct positioning and expansion of the SEMS. Successful SEMS insertion was defined as deployment and expansion of the SEMS across the stricture, radiologic and clinical relief of obstruction, and the ability to defecate. After the SEMS insertion, patients were observed for any procedure-related complications. Patients who had SEMS inserted with a palliative intent or as a bridge to surgery were followed until their last visits or death. The ethics committee of King Khalid University Hospital approved the study.

Statistical analysis
Descriptive statistics were computed for continuous variables including mean ± SD, and minimum and maximum values. Frequencies and inter-quintile ranges were used for categorical variables. Fisher’s test or χ² test was performed on categorical variables, and the t test for continuous variables. Univariable and multivariable logistic regression were used to examine the association between independent variables and the presence of complications from SEMS insertion. OR and 95%CI were estimated. Cox proportional hazard ratio was used for survival analysis. We used the software STATA 11.2 (StataCorp, TX, United States) in our analysis. A P value of < 0.05 was considered statistically significant.

RESULTS
SEMS insertion was attempted in 73 patients. Males comprised 55.71% of the cohort and the mean age was 67.41 ± 12.41 years (95%CI: 63.50-71.33). Clinical and laboratory values for these patients are summarized in Table 1.

Of these, 65.15% (95%CI: 53.35%-76.95%) underwent subsequent surgery while 34.85% (95%CI: 23.05%-46.65%) received SEMS for palliation for advanced disease or were not surgical candidates. The majority of the tumors were adenocarcinomas of the colon or rectum, while extracolonic tumors were only 4.76% (95%CI: 0.01%-6.57%). The obstruction in the sigmoid colon was found in 69.57%, the rectum and splenic flexure in 21.91%-50.43%). SEMS were successfully inserted in 93.85% (95%CI: 87.85%-99.85%) of patients, while insertion failed in 6.15% (95%CI: 0.15%-12.15%). SEMS technical failure occurred in 4 patients; in 3 the guidewire could not be passed through the stricture, while in the fourth patient the SEMS would not expand. The majority of patients required one SEMS insertion 87.32% (95%CI: 79.39%-95.25%), while two SEMSs inserted in a co...

Variable	Mean	95% CI
Age (yr)	67.41	63.50-71.33
Male	55.71%	43.79%-67.64%
Female	44.29%	32.36%-56.22%
Hemoglobin	103	92-114
Platelets	273	238-308
Creatinine	92	76-109
Urea	6.76	4.85-8.67
ALT	37	30-44
AST	37	24-51
ALP	192	106-277
Albumin	30	29-32
Total bilirubin	17	8-26
INR	1.4	1.2-1.6
CEA	90	33-148

Table 1 Description of the study population

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; INR: International normalized ratio; CEA: Carcinoembryonic antigen; SEMS: Self-expandable metal stents.
with a survival advantage \((P < 0.01) \). None of the following predicted long term survival: time between the onset of symptoms to SEMS insertion \((P = 0.91) \), time between SEMS insertion and surgery \((P = 0.44) \), location of the stenosis \((P = 0.43) \), length of the stenosis \((P = 0.95) \), development of complications from SEMS insertion \((P = 0.07) \), carcinoembryonic antigen level \((P = 0.10) \), or neoadjuvant chemotherapy \((P = 0.71) \). On multivariate analysis, none of the variables were associated with long-term survival.

DISCUSSION

SEMS are a reasonably safe option for patients with malignant colorectal obstruction\cite{19}. The aim for the insertion of SEMS includes decreasing the need for emergency surgeries, reducing the rate of stomas, facilitation of laparoscopic resection when surgery is indicated, decreasing morbidity, shortening the time to chemotherapy, improving the quality of life for patients, and being more cost-effective\cite{3,15-21}. Despite these potential and important endpoints and numerous studies addressing the use of SEMS for malignant colorectal obstruction, there still remains considerable controversy concerning their added benefit when compared to surgery as a dominant strategy.
The benefits of SEMS for right-sided malignant colorectal obstruction are less than that of distal lesions, as right hemicolectomy with primary anastomosis is possible even in an unprepared colon, although it avoids emergent surgery and possibly permits preoperative medical optimization of patients[5].

Our cohort had a mean age similar to other studies[1,3,23,27], with about half the study population being female, which is higher than in some series[1,23]. Also, in other series, 27%-41% of patients who underwent colonic SEMS insertion with a palliative intent had extracolonic tumors, which is similar to the cohort by Jiménez-Pérez et al[15]. These salient differences in patient characteristics can explain some of the variation in study results, as patients who had SEMS inserted for malignant colonic obstruction from extraintestinal tumor origins were more likely to be unsuccessful[16,29], but in those receiving SEMS with a palliative intent there was no difference in the SEMS patency and reobstruction rate (21.9% vs 30%, P = 0.29)[28].

The location of the obstruction was mostly in the sigmoid colon and the majority was on the left side of the colon, this is also in keeping with the literature[1,3,23,27,28].

The rate of patients with complete obstruction in this cohort (38.1%) was lower than that by Yoon et al[1] (73%), but a number of series have included patients with incomplete obstruction, defined as a state with narrow stool caliber or the ability to pass only small amounts of liquid stool or gas. We had a lower rate of patients with stage IV (64%) disease when compared to others (92%)[27], although it was still similar to some series[30]. One of the concerns with some of the series, and which limits the generalization of their results, is a lack in reporting the stage of the disease; a known independent factor affect-

| Table 2 Factors associated with the development of complications (perforation, migration, and stent re-occlusion) |
|-----------------|-----------------|-----------------|-----------------|
| Variables | Complication Yes | Complication No |
| | Mean | 95%CI | Mean | 95%CI | P value |
| Age | 70 | 58.37-81.63 | 66.97 | 62.60-71.34 | 0.56 |
| Sex | | | | | |
| Male | 12.82% | 2.00%-23.64 | 87.18% | 76.36%-98.00| 0.17 |
| Female | 25.80% | 9.87%-41.74 | 74.19% | 58.26%-90.13| 0.84 |
| Hemoglobin | 106 | 73-140 | 102 | 92-114 | 0.93 |
| Platelet count | 287 | 176-398 | 271 | 234-308 | 0.38 |
| Creatinine | 90 | 76-104 | 93 | 73-113 | 0.76 |
| Urea | 5.44 | 2.78-8.09 | 7.04 | 4.77-9.32 | 0.83 |
| Albumin | 29.31 | 25.11-33.50 | 30.49 | 28.56-32.43 | 0.59 |
| Alkaline phosphatase | 53 | 17-88 | 34 | 30-37 | 0.28 |
| Aspartate aminotransferase | 86 | 7-165 | 28 | 21-34 | 0.13 |
| Alanine aminotransferase | 439 | 1-850 | 144 | 92-196 | 0.21 |
| Total bilirubin | 37 | 1-88 | 13 | 8-17 | 0.33 |
| Internation normalized ratio | 1.15 | 1.06-1.24 | 1.44 | 1.19-1.68 | 0.03 |
| Carcinoembryonic antigen | 188 | 0.439 | 69 | 19-148 | 0.32 |
| Length of stenosis (cm) | 5.43 | 4.75-6.11 | 5.09 | 4.24-5.93 | 0.49 |
| Duration between symptoms and stenting (d) | 5 | 1.62-8.38 | 4.59 | 2.94-6.24 | 0.80 |
| Duration between stenting and surgery (d) | 51.33 | 10.96-91.70 | 28.34 | 11.76-44.93 | 0.26 |
| Neo-adjuvant chemotherapy | 17.14% | 4.22%-30.07% | 22.22% | 5.92%-38.53% | 0.62 |
| Number of stents | 1.15 | 0.90-1.38 | 1.1 | 1.03-1.20 | 0.66 |

for managing these patients[5,7,20,22]. This is mostly due to methodological issues in these studies that are inherited in their design, as well as the possibility of selection bias, being underpowered in detecting differences between study arms, lack of standardized outcomes (as well as definitions), heterogeneity of the patients included, underlying origin of the tumor, stage of the disease, and the use of covered or uncovered SEMS[30].

In a meta-analysis that included 601 patients, of which 38.6% underwent colonic SEMS insertion compared to emergency surgery, the SEMS group had a reduced risk of requiring intensive care with a risk ratio (RR = 0.42, 95%CI: 0.19-0.93), the need for a stoma (RR = 0.70, 95%CI: 0.50-0.99), reduced anastomotic leakage (RR = 0.31 (95%CI: 0.14-0.69), and reduced complications (RR = 0.42, 95%CI: 0.24-0.71)[15]. Furthermore, SEMS insertion prior to surgery did not affect the mortality or long-term survival[15]. Although encouraging, the meta-analysis by Zhang et al[15] had considerable heterogeneity, and included various study designs between observational and randomized studies[30]. In an editorial by Dayeh et al[30], a meta-analysis was attempted and included only randomized trials[15-29]. It demonstrated that there was a decrease in the rate of stomas with the use of SEMS for malignant colorectal obstruction (RR = 0.68, 95%CI: 0.53-0.89), and no difference in complications when compared to emergent surgery (RR = 0.88, 95%CI: 0.66-1.18)[29]. The authors correctly pointed out that when examining studies with a high technical success rate in inserting the SEMS, they had a more favorable complication profile when compared to emergent surgery[29], and that possibly the focus should be on the probability of inserting a SEMS in patients with malignant colorectal obstruction, as a determinant for using it as a management strategy[14,28].
ing the overall survival of patients.

The success rate for SEMS insertion in our cohort was 93.85%. This is similar to that reported in the literature (83%-100%)[27,28,31]. Our study exclusively used uncovered SEMS, since covered SEMS had no added benefit when compared to uncovered SEMS with regards to technical or clinical success. Covered SEMS had a higher proportion of late migration (40% vs 0%) and loss of function during the long-term follow-up (60% vs 18.8%)[32]. A randomized trial also demonstrated that although there was a higher rate of ingrowth when using uncovered SEMS (14.5% vs 3.8%), the rate of migration was higher in the covered SEMS group (21.1% vs 1.8%), with no difference in the mean patency rate[33].

The migration rate in this study was 8.21%; this is in keeping with that reported by others (1%-6%)[32-35], as well as a pooled analysis that found the migration rate to be 11.81%[36]. Kim et al[37] found that covered SEMS and those with a diameter of less than 24 mm had a higher risk of migration. The perforation rate was 4.1%. A pooled analysis of 2287 patients found the perforation rate to be 4.9%, with no statistical difference between the use of stents as a bridge to surgery or palliation[38]. The rate of silent perforations could not be assessed in our study, although it was been reported to be as high as 20% in a randomized trial[39].

In our series, none of the patient or tumor characteristics were a predictor for complications from SEMS insertion. This may well be due to the low number of events in this cohort. A study by Kim et al[37] did not find any predictors for failed SEMS insertion, while in a series of 412 patients, Yoon et al[40] described predictors for technical and clinical failure in patients who underwent SEMS insertion. Factors associated with technical failure were: right-sided obstruction (OR = 2.25, 95%CI: 1.06-4.75), extrinsic origin of malignancy (OR = 2.57, 95%CI: 1.25-5.32), and the presence of carcinomatosis (OR = 2.83, 95%CI: 1.19-6.75). Factors associated with long term clinical failure, defined as the recurrence of obstructive symptoms requiring re-intervention after initial relief, were when balloon dilatation was used in combination with SEMS insertion (OR = 3.58, 95%CI: 1.25-5.32), while it was decreased when the patient received additional chemotherapy (OR = 0.52, 95%CI: 0.31-0.88)[41].

Since we did not have the exact mortality data, we conducted the survival analysis until the patients’ death, when known, or till the last date of follow up. The mean duration of follow up for the complete cohort was 425 d (95%CI: 297-554). As expected, the patients receiving subsequent surgery after SEMS insertion had a longer survival than those who had SEMS inserted with a palliative intent; 608 d vs 137 d respectively (Figure 2A). The authors think this is mainly due to the stage of the disease (Figure 2B), and also probably due to unmeasured factors like the functional status of the patients. On univariable analysis, the albumin level was found to be associated with a better survival, but this probably reflected the overall health of the patient. Thus, on multivariable analysis, this variable was not associated with a survival advantage. Jung et al[42] found that the location of the tumor affected the mean event-free survival, with distal obstructions being better than proximal lesions; 122.9 ± 18.6 d vs 35.8 ± 12.8 d respectively[43]. Additionally, SEMS < 10 cm long had a better mean event-free survival when compared to those > 10 cm; 151.0 ± 24.5 d vs 59.5 ± 14.4 d respectively[43]. The median duration of stent patency in patients with malignant colorectal obstruction was 193 ± 42 - 200 d[27,28]. This was not affected by patient demographics[27], site of obstruction[37], or the administration of palliative chemotherapy[27,28].

We also demonstrated through this study that side-viewing duodenoscopes can be used successfully (as was the case in at least three patients in this series) for better visualizing of the tumor and targeting the insertion of a guidewire in areas where the tumor is situated in a tight angle in the distal colon[44].

Guidelines on the management of left-sided colonic obstructions state that, in facilities where SEMS insertion is possible, they should be preferred to colostomy, since SEMS have a similar mortality/morbidity rate and a shorter hospital stay (grade of recommendation 2B)[45]. The guidelines also suggested considering alternative treatments to SEMS in patients eligible for further bevacizumab-based therapy, due to the potentially increased perforation rates[46]. Furthermore, the guidelines state that SEMS should be used as a bridge to elective surgery in referral centers with specific expertise and in selected patients, as their use seems to be associated with a lower mortality rate, a shorter hospital stay, and a lower colostomy rate (grade of recommendation 1B)[47].

In conclusion, none of the variables in our study could predict the occurrence of complications (perforation, migration, and stent re-occlusion) from the insertion of SEMS or long-term survival in cases with malignant colonic obstruction. This may well be due to the size of the cohort in this study. Based on current guidelines[47], as well as in a technical review[48], SEMS insertion for malignant colorectal obstruction is the best option for palliation or as a bridge to surgery when technical skills for such a procedure are available[49].

COMMENTS

Background

In patients presenting with malignant colorectal obstruction there is a debate in the literature about the best management strategy that would translate to decreased morbidity, mortality, and cost to the health care system. Despite some randomized controlled trials on the use of self-expandable metal stents (SEMS) or surgery, the answer is not clear due to the variability in the results, as well as the wide variability in the frequency of adverse events from the use of SEMS.

Research frontiers

SEMS are an attractive management strategy for the management of malignant colorectal obstruction, as it allows for the avoidance of emergency surgeries as providing a single operation without the need for stomas, lower early morbidity, a shorter hospital stay, and decreased costs when compared to emergency surgery. In this study, the authors have demonstrated that the insertion of SEMS in cases with malignant colorectal obstruction is effective with an acceptable risk profile, but could not find any predictors that could determine the development...
of complications or survival. **Innovations and breakthroughs** Despite the conduction of randomized controlled trials with regards to an emergent surgery strategy compared to the insertion of SEMS as a bridge to surgery, there are considerable arguments with regards to the outcomes and the proportion of complications encountered during the insertion of SEMS. This study, although retrospective, replicates that the insertion of SEMS is relatively safe and the rate of complications is less than that reported in some randomized trials. **Applications** By identifying factors that might predict complications or a survival advantage from one treatment modality compared to another, the authors could individually tailor the best management strategy for patients who present with malignant colorectal obstruction. **Terminology** SEMS: tubes that are made of a metallic material and are inserted into the colon through the use of endoscopes. These are usually deployed in individuals who have developed a blockage of the colon, most commonly due to malignancy. Migration: when the stent has moved from its intended position to an area either before or after the area of obstruction. Ingrowth: when the tumor tissue extends through the mesh network of the stent and causes occlusion of the stent. **Peer review** This is a well-written manuscript on an important topic. The authors aimed to predict complications after stent placement for colonic obstruction either in a palliative or a curative attempt. The purpose of the study is interesting and a bridge to surgery for malignant colorectal obstruction either in an emergent surgery strategy compared to the insertion of SEMS as a bridge to surgery in malignant colorectal obstruction? A comparative study with a propensity score analysis. *Ann Surg* 2013; 258: 107-115 [PMID: 23324856] 10 *Cennamo* V, Lugiano C, Coccolini F, Fabbrì C, Bassi M, De Caro G, Ceroni L, Mainmone A, Raveli P, Ansaloni L. Meta-analysis of randomized trials comparing endoscopic stenting and surgical decompression for colorectal cancer obstruction. *Int J Colorectal Dis* 2013; 28: 855-863 [PMID: 23151813] 11 *Sagar* J. Colorectal stents for the management of malignant colorectal obstructions. *Cochrane Database Syst Rev* 2011; (11): CD007378 [PMID: 22071835 DOI: 10.1002/14651858.CD007378.pub2] 12 *Tan* CJ, Dasari BV, Gardiner K. Systematic review and meta-analysis of randomized clinical trials of self-expanding metallic stents as a bridge to surgery versus emergency surgery for malignant left-sided large bowel obstruction. *Br J Surg* 2012; 99: 469-476 [PMID: 22261931 DOI: 10.1002/bjs.8689] 13 *Cirochi* R, Farinella E, Trastulli S, Desiderio J, Listorti C, Beselli C, Parisi A, Noya G, Sagar J. Safety and efficacy of endoscopic colonic stenting as a bridge to surgery in the management of intestinal obstruction due to left colon and rectal cancer: a systematic review and meta-analysis. *Surg Oncol* 2013; 22: 14-21 [PMID: 23183301 DOI: 10.1016/j.suronc.2012.10.003] 14 *Ye* GY, Cui Z, Chen L, Zhong M. Colonic stenting vs emergent surgery for acute left-sided malignant colorectal obstruction: a systematic review and meta-analysis. *World J Gastroenterol* 2012; 18: 5608-5615 [PMID: 23112555 DOI: 10.3748/wjg.v18.i39.5608] 15 *Zhang* Y, Shi J, Shi B, Song CY, Xie WF, Chen XY. Self-expanding metallic stent as a bridge to surgery versus emergency surgery for obstructive colorectal cancer: a meta-analysis. *Surg Oncol* 2012; 21: 110-119 [PMID: 21789642 DOI: 10.1007/s00464-011-1835-6] 16 *Zhang* Y, Shi J, Shi B, Song CY, Xie WF, Chen XY. Comparison of efficacy between uncovered and covered self-expanding metallic stents in malignant large bowel obstruction: a systematic review and meta-analysis. *Colorectal Dis* 2012; 14: e567-e574 [PMID: 22540666 DOI: 10.1111/j.1463-1318.2012.03056.x] 17 *Sánchez* J, Jiménez-J, Vera R, Tarifa A, Balen E, Arrazubi V, Vila J, Lera JM. Stent or surgery for incurable obstructive colorectal cancer: an individualized decision. *Int J Colorectal Dis* 2010; 25: 91-96 [PMID: 19859722 DOI: 10.1007/s00053-009-0814-z] 18 *Lee* WS, Baek JH, Kang JM, Choi S, Kwon KA. The outcome after stent placement or surgery as the initial treatment for obstructive primary tumor in patients with stage IV colon cancer. *Am J Surg* 2012; 203: 715-719 [PMID: 22265203 DOI: 10.1016/j.amjsurg.2011.05.015] 19 *Donnellan* F, Cullen G, Cagney D, O’Halloran P, Harewood GC, Murray FE, Patchett SE. Efficacy and safety of colonic stenting for malignant disease in the elderly. *Int J Colorectal Dis* 2010; 25: 747-750 [PMID: 20213457 DOI: 10.1007/s00053-010-0917-6] 20 *Davyeh* BK, Baron TH. Editorial: endoscopic stent placement as a bridge to surgery in malignant colorectal obstruction: a balance between study validity and real-world applicability. *Am J Gastroenterol* 2011; 106: 2181-2182 [PMID: 22138942 DOI: 10.1038/ajg.2011.362]
Almadi MA et al. Colonic stenting in colorectal cancer

21 Govindarajan A, Naimark D, Coburn NG, Smith AJ, Law CH. Use of colonic stents in emergent malignant left colonic obstruction: a Markov chain Monte Carlo decision analysis. Dis Colon Rectum 2007; 50: 1811-1824 [PMID: 17899279]

22 Grundmann RT. Primary colon resection or Hartmann’s procedure in malignant left-sided large bowel obstruction? The use of stents as a bridge to surgery. World J Gastrointest Surg 2013; 5: 1-4 [PMID: 23515179 DOI: 10.4240/wjgs.v5.i1.1]

23 van Hooft JE, Benelman WA, Oldenburg B, Marinelli AW, Holzik MF, Grubben MJ, Sprangers MA, Dijkgraaf MG, Fockens P. Colonic stenting versus emergency surgery for acute left-sided malignant colonic obstruction: a multicentre randomised trial. Lancet Oncol 2011; 12: 344-352 [PMID: 21398178 DOI: 10.1016/s1470-2045(11)70035-3]

24 Cheung HY, Chung CC, Tsang WW, Wong JC, Yau KK, Li MK. Endolaparoscopic approach vs conventional open surgery in the treatment of obstructing left-sided colon cancer: a randomized controlled trial. Arch Surg 2009; 144: 1127-1132 [PMID: 20026830 DOI: 10.1001/archsurg.2009.216]

25 Pirlet IA, Slim K, Kwiatkowski F, Michot F, Millat BL. Emergency preoperative stenting versus surgery for acute left-sided malignant colonic obstruction: a multicenter randomized controlled trial. Surg Endosc 2011; 25: 1814-1821 [PMID: 21170659 DOI: 10.1007/s00464-010-1471-6]

26 Alcântara M, Serra-Aracil X, Falcó J, Mora L, Bombardó J, Navarro S. Prospective, controlled, randomized study of intraoperative colonic lavage versus stent placement in obstructive left-sided colonic cancer. World J Surg 2011; 35: 1904-1910 [PMID: 21559998 DOI: 10.1007/s00268-011-1139-y]

27 Im JP, Kim SC, Kang HW, Kim JS, Jung HC, Song IS. Clinical outcomes and patency of self-expanding metal stents in patients with malignant colorectal obstruction: a prospective single center study. Int J Colorectal Dis 2008; 23: 789-794 [PMID: 18443807 DOI: 10.1007/s00384-008-0477-1]

28 Kim JY, Kim SY, Baek JY, Choi HS, Chang HJ, Kim DY, Oh JH. Clinical outcomes of palliative self-expanding metallic stents in patients with malignant colorectal obstruction. J Dig Dis 2012; 13: 258-266 [PMID: 22505788 DOI: 10.1111/j.1751-2980.2012.00564.x]

29 Alcântara M, Serra-Aracil X, Falcó J, Mora L, Bombardó J, Navarro S. Clinical outcomes and patency of self-expanding metal stents in patients with malignant colorectal obstruction: a prospective single center study. Int J Colorectal Dis 2008; 23: 789-794 [PMID: 18443807 DOI: 10.1007/s00384-008-0477-1]

30 Kim BC, Han KS, Hong CW, Sohn DK, Park JW, Park SC, Kim SY, Baek JY, Choi HS, Chang HJ, Kim DY, Oh JH. Clinical outcomes of palliative self-expanding metallic stents in patients with malignant colorectal obstruction. J Dig Dis 2012; 13: 258-266 [PMID: 22505788 DOI: 10.1111/j.1751-2980.2012.00564.x]
