Supporting Information

Easy To Synthesize, Robust, Organo-Osmium Asymmetric Transfer Hydrogenation Catalysts

James P. C. Coverdale, Carlos Sanchez-Cano, Guy J. Clarkson, Rina Soni, Martin Wills,* and Peter J. Sadler*[a]

c chem_201500534_sm_miscellaneous_information.pdf
Supporting Information

Contents

- Instrumentation
- Synthetic methods
- Catalytic reductions
- 1H and 13C NMR for $4a$ / $4b$ / $5a$ / $5b$
- 1H NMR of osmium hydride species
- Identification of dichlorido species $4a$ / $4b$
- Crystallographic data for [Os(η^6-p-cymene)((R,R)-TsDPEN)] $5a$
- Crystallographic data for [Os(η^6-p-cymene)((S,S)-TsDPEN)] $5b$
Instrumentation

Nuclear magnetic resonance. Samples of complexes 4a, 4b, 5a and 5b were prepared in CDCl₃. 5 mm NMR tubes were used to record spectra at 298 K on Bruker DPX-400 or AV-600 spectrometers. Data processing was carried out using TOPSPIN version 2.0 (Bruker UK Ltd.).

Elemental analysis. Elemental analysis of complexes 4a, 4b, 5a and 5b (C, H, N) was carried out by Warwick Analytical Services on an Exeter elemental analyser CE440.

High resolution mass spectrometry. HRMS of complexes 4a, 4b, 5a and 5b in acetonitrile were obtained using a Bruker UHR-Q-TOF MaXis. A positive ion scan range of \(m/z \) 50-3000 with a spectra rate of 1 Hz was selected. Analysis was carried out through direct infusion (2 \(\mu \)L/min) with a syringe pump, with sodium formate (10 mM) calibration. Source conditions: ESI (+); end plate offset: -500 V; capillary: -3000 V; nebulizer gas (N₂): 0.4 bar; dry gas (N₂): 4 L/min; dry temperature: 453 K; funnel RF: 200 Vpp; multiple RF: 200Vpp; quadruple low mass: 55 \(m/z \); collision energy: 5.0 eV; collision RF: 600 Vpp; ion cooler RF: 50-250 Vpp ramping; transfer time: 121 \(\mu \)s; pre-pulse storage time: 1 \(\mu \)s.

Ultraviolet-visible spectroscopy. The ultraviolet-visible spectra for complexes 4a, 4b, 5a and 5b in DCM (0.1 - 0.3 mM) were recorded using a Cary 300 scan spectrophotometer. Path length of cell 1 cm, range 800-200 nm, average time 0.1 s, data interval 1 nm; scan rate 600 nm/min.

Gas chromatography. Reduction products of 6-9: Chrompac cyclodextrin-\(\beta \)-236M-19, 50 m x 0.25 mm x 0.25 \(\mu \)m, \(P = 15 \) psi, gas H₂. Temperature varied depending on substrate. Reduction products of 10: Chrompac-chirasil-DEX CB, 25 m x 0.25 mm x 0.25 \(\mu \)m, \(T = 383 \) K, \(P = 18 \) psi, gas He.
Synthetic Methods

[Os(ƞ⁶-p-cymene)Cl₂]₂. Osmium trichloride trihydrate (1.00 g, 2.8 mmol, 2 mol equiv) was dissolved in degassed methanol (10 mL). To this was added α-phellandrene (3.8 g, 28 mmol, 20 mol equiv) with stirring. The reaction vessel was placed in a CEM Discovery-SP microwave reactor for 10 min (413 K, 150 W, 250 psi) after which a precipitate of a crystalline orange solid was observed. The solution was washed with n-pentane (3 x 10 mL) before the solid was collected, washed with additional n-pentane (3 x 10 mL) and dried with diethyl ether yielding a bright orange crystalline solid (863 mg, 1.1 mmol, 79%).

[OsCl₂(ƞ⁶-p-cymene)((H)TsDPEN)] (4a and 4b). To a stirred solution of osmium p-cymene-chlorido dimer (50 mg, 0.06 mmol, 1 mol equiv) in dry DCM (2.5 mL) was added either (1R,2R)-(H)TsDPEN (for 4a) or (1S,2S)-(H)TsDPEN (for 4b) (50 mg, 0.14 mmol, 2.05 mol equiv). The resulting yellow solution was placed in a CEM Discovery-SP microwave reactor for 10 min (393 K, 150 W, 250 psi) after which the colour changed to red. After cooling and concentration in vacuo, a large excess of hexane was added to precipitate the product as an amorphous yellow solid (88 mg, 0.12 mmol, 89%). ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ=7.41 (d, 3J(H,H)=7.9 Hz, 2H), 7.17-7.22 (m, 2H), 7.04-7.08 (m, 2H), 6.89-6.96 (m, 3H), 6.81-6.86 (m, 3H), 6.64 (d, 3J(H,H)=7.6, 2H), 6.38 (d, 3J(H,H)=8.3 Hz, H; TsNH), 5.60 (d, 3J(H,H)=5.3 Hz, 1H; Os-ArH), 5.32-5.37 (m, 2H; Os-ArH), 5.23 (d, 3J(H,H)=5.3 Hz, 1H; Os-ArH), 5.20 (d, 3J(H,H)=11.6 Hz, 1H; NH₂), 4.50-4.58 (m, 1H; CHNH₂), 4.43-4.50 (m, 1H; CHNHTs), 4.20 (t, 3J(H,H)=10.7 Hz, 1H; CH₃), 2.59 (sept, 3J(H,H)=6.9 Hz, 1H; CH(CH₃)₂), 2.20 (s, 3H; CH₃), 2.02 (s, 3H; CH₃), 1.13 (d, 3J(H,H)=6.9 Hz, 3H; CH(CH₃)₂), 1.08 (d, 3J(H,H)=6.9 Hz, 3H; CH(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃, 25°C, TMS) δ 129.3, 128.9, 128.2, 127.7, 127.4, 127.2, 72.6, 71.5, 70.9,
70.8, 65.1, 63.8, 22.6, 22.4, 21.4, 18.7; UV/Vis: \(\lambda_{\text{max}} \) 264 and 337 nm; HRMS (m/z): [M-H]- calcd. for \(\text{C}_{31}\text{H}_{35}\text{Cl}_{2}\text{N}_{2}\text{O}_{2}\text{S} \), 761.1406; found, 761.1347; [M-HCl-Cl]+ calcd. for \(\text{C}_{31}\text{H}_{35}\text{Cl}_{2}\text{N}_{2}\text{O}_{2}\text{S} \), 691.2028; found, 691.2036; analysis (calcd., found for 4a \(\text{C}_{31}\text{H}_{36}\text{Cl}_{2}\text{N}_{2}\text{O}_{2}\text{S} \)): C (48.87, 48.72), H (4.76, 4.73), N (3.68, 3.76); analysis (calcd., found for 4b \(\text{C}_{31}\text{H}_{36}\text{Cl}_{2}\text{N}_{2}\text{O}_{2}\text{S} \)): C (48.87, 48.78), H (4.76, 4.75), N (3.68, 3.74).

\[
[\text{Os(\eta}^6-p\text{-cymene})(\text{TsDPEN})] \text{(5a and 5b).}
\]

Osmium \(p \)-cymene-chlorido dimer (51.4 mg, 0.065 mmol 1 mol equiv) and either (1\(R,2R \))-\((H)\)TsDPEN (for 5a) or (1\(S,2S \))-\((H)\)TsDPEN (for 5b) (51.3 mg, 0.14 mmol, 2.1 mol equiv) were stirred in chloroform (5 mL) with freshly ground KOH (56.1 mg, 1 mmol, 15 mol equiv). A colour change from yellow to red was observed < 1 min. After 5 min, \(\text{H}_2\text{O} \) (5 mL) was added with stirring for a further 10 min. The organic layer was removed by syringe and concentrated in vacuo to yield a red oil, which was dissolved in the minimum amount of DCM, followed by addition of a large excess of \(n \)-hexane. Formation of red needle crystals was observed (sometimes requiring further reduction in the volume of solvent in vacuo), and larger crystals were grown by leaving the DCM/\(n \)-hexane solution in a freezer at 253 K. A significant reduction in yield was observed when the product was collected as a red solid (73 mg, 0.105 mmol, 81%). \(^1\text{H NMR} \) (400 MHz, CDCl\(_3\), 25°C, TMS): \(\delta=7.41 \) (d, \(^3\text{J(H,H)}=7.6 \) Hz, 2H), 7.05-7.20 (m, 10H), 6.82 (d, \(^3\text{J(H,H)}=8.0 \) Hz, 2H), 6.80 (br s, 1H; NH), 5.79 (d, \(^3\text{J(H,H)}=5.6 \) Hz, 1H; Os-ArH), 5.62 (d, \(^3\text{J(H,H)}=5.6 \) Hz, 1H; Os-ArH), 5.52 (d, \(^3\text{J(H,H)}=5.6 \) Hz, 1H; Os-ArH), 5.42 (d, \(^3\text{J(H,H)}=5.6 \) Hz, 1H; Os-ArH), 4.42 (s, 1H; CHCHNH\(_2\)), 2.23 (s, 3H; CH\(_3\)), 2.22 (s, 3H; CH\(_3\)), 2.23 (s, 3H; CH\(_3\)), 2.22 (s, 3H; CH\(_3\)), 1.23 (d, \(^3\text{J(H,H)}=6.9 \) Hz, 3H; \(\text{CH(CH}_3)_2 \)), 1.17 (d, \(^3\text{J(H,H)}=6.9 \) Hz, 3H; \(\text{CH(CH}_3)_2 \)); \(^{13}\text{C NMR} \) (100 MHz, CDCl\(_3\), 25°C, TMS) \(\delta \) 127.4, 127.0, 126.8, 126.0, 125.9, 125.9, 125.4, 81.7, 76.2, 72.4, 70.7, 70.0, 66.2, 22.5, 22.4, 20.2; UV/Vis: \(\lambda_{\text{max}} \) 260, 410 and 478 nm; HRMS (m/z): [M+H]\(^{+}\) calcd.
for C$_{31}$H$_{35}$N$_2$O$_2$OsS, 691.2; found, 691.2; analysis (calcd., found for 5a C$_{31}$H$_{34}$N$_2$O$_2$OsS): C (54.05, 53.66), H (4.97, 4.88), N (4.07, 3.95); analysis (calcd., found for 5b C$_{31}$H$_{34}$N$_2$O$_2$OsS): C (54.05, 53.71), H (4.97, 4.84), N (4.07, 4.00).

Crystal growth for complexes 5a and 5b. Single crystals of C$_{31}$H$_{34}$N$_2$O$_2$OsS 5a and 5b were grown from CHCl$_3$/hexane. A suitable crystal was selected in each case and mounted on a glass fibre with Fromblin oil and placed on an Oxford Diffraction Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2$^{[1]}$, the structure was solved with the ShelXS$^{[2]}$ structure solution program using Direct Methods and refined with the ShelXL$^{[2]}$ refinement package using Least Squares minimisation. Both complexes had a Flack parameter greater than 2σ from zero however this is within an acceptable range for complexes synthesised from compounds of known chirality.
Catalytic Reductions

ATH reductions were conducted under N₂ for 24 h unless stated otherwise. Aliquots of reaction solution for analysis were placed into 1 mL EtOAc and 1 mL NaHCO₃ and the organic layer was filtered through a plug of silica. Conversion and e.e. were analysed by GC-FID.

Asymmetric reduction of 6-10 (S/C = 100). Pre-catalyst 4a / 4b (7.61 mg, 10 µmol, 1 mol equiv) was stirred in a 5:2 formic acid / triethylamine azeotrope (0.5 mL) for 30 min to ensure the catalyst was dissolved. A prochiral ketone (6-10) was injected (1 mmol, 100 mol equiv) and stirred.

Asymmetric reduction of 6 (S/C = 200). Active catalyst 5a / 5b (3.45 mg, 5 µmol, 1 mol equiv) was stirred in a 5:2 formic acid / triethylamine azeotrope (0.5 mL) for 30 min to ensure the catalyst was completely dissolved. Acetophenone 4 (120 mg) was injected (1 mmol, 200 mol equiv) and stirred.

Racemic reduction of 7-8 with NaBH₄. To an ice-cold solution of sodium borohydride (100 mg, 2.53 mmol, 2 mol equiv of H⁺) in ethanol (1.5 mL) was added 4'-chloro-acetophenone (0.67 mL, 5.14 mmol) or 4'-methoxy-acetophenone (771 mg, 5.14 mmol) drop-wise over 15 min. A white solid was precipitated by addition of 3 M HCl (0.5 mL). Diethyl ether (5 mL) and water (5 mL) were added and the organic layer was dried over MgSO₄. The solvent was evaporated, yielding a colourless liquid.

Chiral GC data for reduction products from the following ketones:

Acetophenone (6). 120 mg. **6** = 12.1 min, **S** = 19.0 min, **R** = 18.4 min. **T** = 388 K, **t** = 0.5 h.

4'-chloro- (7). 155 mg. **7** = 10.5 min, **S** = 17.1 min, **R** = 16.5 min. **T** = 423 K, **t** = 0.5 h.

4'-methoxy- (8). 150 mg. **8** = 35.7 min, **S** = 40.5 min, **R** = 39.0 min. **T** = 403 K, **t** = 1 h.

α-chloro- (9). 155 mg. **9** not recorded, **S** = 11.4 min, **R** = 11.2 min. **T** = 388 K, **t** = 0.5 h.

Propiophenone (10). 134 mg. **10** = 9.4 min, **S** = 26.0 min, **R** = 24.0 min. **T** = 383 K, **t** = 0.5 h.
NMR Data for complex 4a

Figure S1: 1H-NMR spectrum of complex 4a (400 MHz, CDCl$_3$, TMS) with key assignments.

Figure S2: 13C-NMR spectrum (dept 135, long acquisition) of complex 4a (100 MHz, CDCl$_3$, TMS).
NMR Data for complex 4b

Figure S3: 1H-NMR spectrum of complex 4b (400 MHz, CDCl$_3$, TMS) with key assignments.

Figure S4: 13C-NMR spectrum (dept 135, long acquisition) of complex 4b (100 MHz, CDCl$_3$, TMS).
NMR for complex 5a

Figure S5: 1H-NMR spectrum of complex 5a (400 MHz, CDCl$_3$, TMS) with key assignments.

Figure S6: 13C-NMR spectrum (dept 135, long acquisition) of complex 5a (100 MHz, CDCl$_3$, TMS).
NMR for complex 5b

Figure S7: 1H-NMR spectrum of complex 5b (400 MHz, CDCl$_3$, TMS) with key assignments.

Figure S8: 13C-NMR spectrum (dept 135, long acquisition) of complex 5b (100 MHz, CDCl$_3$, TMS).
'H NMR of osmium hydride species

The treatment of complex 4 with 4.0 mol equiv of triethylamine followed by the addition of 2 µL of formic acid allowed for the observation of osmium hydride resonances, observed as two singlets at -5.89 and -6.04 ppm, each having 187Os satellites ($^1J(^{187}\text{Os},^1\text{H}) = 44$ Hz). Over a period of 30 min, the ratio between the resonances decreased from 3:1 to 1.2:1; a similar observation has been made in the case of the analogous RuII complexes.3

Figure S9: 600 MHz 1H-NMR spectrum showing Os-H formation as two singlets with the ratio changing over time: initially 3:1 (top) and 1.2:1 after 30 min (bottom).
Identification of Dichlorido Species 4a / 4b

Evidence for the characterisation of 4a / 4b as species containing two chlorido ligands was obtained, revealing the novel monodentate-(H)TsDPEN complex that differs from Noyori-type ruthenium catalysts.

Infra-red spectroscopy

TsN-H bond stretch absorbance remains at 2859 cm\(^{-1}\), whilst terminal amine N-H stretches are shifted from 3344 and 3281 cm\(^{-1}\) in the free ligand to 3078 and 2953 cm\(^{-1}\) in the complex.

Mass spectrometry

Dichlorido species 4 identified by high resolution MS (Bruker MaXis) with samples of the complex in acetonitrile. The mass is consistent with synthesis in the absence of base.

Figure S10: HRMS of 4a-H (upper) and simulated spectrum of C\(_{31}\)H\(_{36}\)N\(_2\)O\(_2\)OsCl\(_2\) (lower).
Figure S11: HRMS of [4a-HCl-Cl]⁺ (top) and simulated spectrum of C₃₁H₃₅N₂O₂OsS (bottom).
Crystallographic data for [Os(ƞ₆-p-cymene)((R,R)-TsDPEN)] 5a - CCDC 1035611

Figure S12: X-ray crystal structure of 5a with atom labels. Thermal ellipsoids are drawn at the 50% probability level. The asymmetric unit contains the complex, there are 4 complexes in the unit cell. The hydrogen on N12 was located in a difference map. It was allowed to refine freely but given a U_{iso} 1.5 times U_{equiv} of the parent nitrogen. The Flack parameter was more than 2 sigma from zero, but is from a known chiral starting material so is within acceptable limits.

Crystal Data for C₃₁H₃₄N₂O₂OsS (M=688.86 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 10.6100(3) Å, b = 13.8464(3) Å, c = 18.9830(5) Å, V = 2788.79(11) Å³, Z = 4, T = 150(2) K, μ(MoKα) = 4.678 mm⁻¹, Dcalc = 1.641 g/cm³, 33345 reflections measured (4.836° ≤ 2θ ≤ 61.698°), 8053 unique (R_{int} = 0.0557, R_{sigma} = 0.0502) which were used in all calculations. The final R₁ was 0.0333 (I > 2σ(I)) and wR₂ was 0.0927 (all data).

Flack x: 0.023(5) (Shelx); Hooft y: 0.039(5) (Olex2)

Selected distances (Å) and angles (°): Os-N12 1.916(6), Os-N9 2.046(6), N12-H12 0.96(11); N12-Os-N9 78.3(3), Os-N12-C11 121.6(5), Os-N9-C10 115.9(4).
Crystallographic data for [Os(η⁶-p-cymene)((S,S)-TsDPEN)] 5b - CCDC 1035612

Figure S13: X-ray crystal structure of 5b with atom labelling. Thermal ellipsoids are drawn at 50% probability level. The asymmetric unit contains the complex. There are four complexes in the unit cell. The hydrogen was located on N12 and refined with a DFIX restraint and given a U_{iso} 1.5 times the U_{equiv} of N12. The Flack parameter was more than 2 sigma from zero, but is from a known chiral starting material so is within acceptable limits (similarly for 5a).

Crystal Data for C₃₁H₃₄N₂O₂OsS (M=688.86 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 10.61241(15) Å, b = 13.8542(2) Å, c = 18.9999(3) Å, V = 2793.49(8) Å³, Z = 4, T = 150(2) K, μ(MoKα) = 4.670 mm⁻¹, D_{calc} = 1.638 g/cm³, 48265 reflections measured (4.836° ≤ 2Θ ≤ 67.25°), 10419 unique (R_{int} = 0.0258, R_{sigma} = 0.0182) which were used in all calculations. The final R₁ was 0.0184 (I > 2σ(I)) and wR₂ was 0.0774 (all data).

Flack x: 0.015(2); Hooft y: 0.0070(15) (Olex2)

Selected distances (Å) and angles (°): Os-N12 1.914(3), Os-N9 2.047(4), N12-H12 0.96(3); N12-Os-N9 78.27(16), Os-N12-C11 122.1(3), Os-N9-C10 115.4(2).
[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.

[2] G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.

[3] a) R. Hodgkinson, V. Jurčík, A. Zanotti-Gerosa, H. G. Nedden, A. Blackaby, G. J. Clarkson, M. Wills, Organometallics 2014, 33, 5517-5524; b) N. A. Strotman, C. A. Baxter, K. M. J. Brands, E. Cleator, S. W. Kraska, R. A. Reamer, D. J. Wallace, T. J. Wright, J. Am. Chem. Soc. 2011, 133, 8362-8371.