Definition of regional ostracod (*Cytheridella*) morphotypes by use of landmark-based morphometrics

Claudia Wrozyna¹,4, Juliane Meyer¹,5, Martin Gross²,6, Maria Ines F. Ramos³,7, and Werner E. Piller¹,8

¹University of Graz, Institute of Earth Sciences, NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
²Universalmuseum Joanneum, Department for Geology and Palaeontology, Weinzöttlstrasse 16, 8045 Graz, Austria
³Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Avenida Perimetral, s/n Terra Firme, Belém-PA 66077-830, Brazil

Abstract: Geometric morphometric analyses were performed on the Neotropical ostracod *Cytheridella* including recent populations from Florida, Yucatán, Colombia, and Brazil. Generalized least-squares Procrustes analyses were applied to left and right valves of adult females and males and to A-1 to A-3 juveniles. The analyses show that the prevailing shape variability is in the outline of the valves. Further characters defining the variability range are the anterior pore conuli 2 and 4 (LM 2, LM 4) and the connection point between transversal sulcus and the extension of the posterior lobe (LM 6). Relative Warps Analysis enabled delineation of the whole-shape disparity and revealed a geographical pattern in the morphological variability that is apparent in adults and juveniles. Females show greatest morphological disparity, whereas juveniles are more variable on the population scale. Differences in hard- and soft-part morphology identify the specimens from Yucatán as new a morphospecies. Different hydrological or hydrochemical conditions may have led to the evolution of the new species. *Cytheridella* has occurred in the Neotropics since the Oligocene with a similar distribution to that in the Recent. Avian dispersal may repeatedly reintroduce *C. ilosvayi* to Yucatánian populations possibly explaining the sympatric occurrence of 2 *Cytheridella* morphospecies. Our findings promote the benefit of investigating morphological variability quantitatively to detect regional morphotypes and ultimately to contribute to evaluations of biodiversity.

Key words: Neotropics, geometric morphometrics, ostracods, morphological variability

The Neotropics are considered to be the most diverse tropical area on Earth (Jaramillo et al. 2006, Pérez et al. 2010, Basset et al. 2012, Carrillo et al. 2014, Toussaint et al. 2016). The ranges of most Neotropical species probably arose from historic climatic oscillations and geological events (Colinvaux and Oliveira 2001, Assine and Soares 2004, Hodell et al. 2008, Hoorn et al. 2010, Escobar et al. 2012, O’Dea et al. 2016), in contrast to the assumption that many species occur ubiquitously (e.g., Pérez et al. 2010, 2011, Bergmann and Russell 2007, Fouquet et al. 2007). Freshwater invertebrates, such as ostracods, live in discrete habitat patches and depend on passive dispersal. Overland dispersal is presumed to be common in most freshwater taxa, but generalizations are not accurate and proper ecological assessments require specific information for each taxon (Bohonak and Jenkins 2003).

The common Neotropical freshwater ostracod *Cytheridella* comprises 3 extant species: *C. ilosvayi*, *C. argentinensis*, and *C. boldii*. The latter 2 species are described only from their type localities in Venezuela (*C. boldii*) and Argentina (*C. argentinensis*) (Purper 1974, Colin and Danielopol 1980). *Cytheridella ilosvayi* is assumed to ubiquitous and has been reported from the entire Neotropical range (Pérez et al. 2010). Knowledge of morphological variability within and between populations of ostracods is still very vague. Investigations of morphological variation on a (large) continuous geographical and ecological range are the prerequisite for identification of environmentally induced vari-

E-mail addresses: ¹claudia.wrozyna@uni-graz.at; ²juliane.meyer@uni-graz.at; ³martin.gross@museum-joanneum.at; ⁷mramos@museu-goeldi.br; ⁸werner.piller@uni-graz.at

DOI: 10.1086/699482. Received 23 March 2017; Accepted 10 April 2018; Published online 16 July 2018.

Freshwater Science. 2018. 37(3):573–592. © 2018 by The Society for Freshwater Science. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-commercial reuse of the work with attribution. For commercial use, contact journalpermissions@press.uchicago.edu.
Morphological variability is most obvious at the antennule A1. The penultimate segment is substantially shorter for males and females from Mexico than from Florida.
and Brazil (Fig. 3A–F). In addition, the hemipenes are very variable with differences in the shape of the proximal lobe. The shape is flatter for Mexican than for Floridian or Brazilian specimens, which have cuspidal shapes (Fig. 4A–F).

RWA of carapaces

Carapace shape variability of females The major shape variation at RW1 differentiated between slender elongated outlines (positive scores) and shortened outlines with prominent rounded posterior lobes (negative scores) (Fig. 5A, B, Tables S1, S2). Shape variation also affected the position of the connecting point between the extension of the posterior lobe and the transversal sulcus (LM 6), respectively (Fig. 5 thin plate splines). In the elongated forms, this point was close to the dorsal margin and slightly shifted posteriorly. The shortened females exhibited this point closer to the center of the valve and closer to the anterior pore conuli. At RW2, shape variation also differed between elongated outline shapes with well-defined posterior lobes (positive scores) and
Sample identifier	Locality	Date	Country	N (S)	E (W)	Habitat
BB 01 09	Barro Branco	27.09.2009	Brazil	06'50' 18.31'	69'45' 37.03'	Root zone in an abandoned channel
LG 01 09	Lago Comprido	27.09.2009	Brazil	06'43' 52.77'	69'44' 33.99'	Littoral, abundant leaf litter, abandoned channel
MX Sil 1 14	Lake Silvius	12.08.2014	Mexico	18'38' 29.89'	90'16' 28.11'	Littoral of a lake
BR CU 1 15	Costaódia Lagoon	04.09.2015	Brazil	30'02' 15.22'	050'10' 20.22'	Lagoon
BR MN 3 15	Rio do Relógio	04.09.2015	Brazil	30'04' 10.37'	050'12' 20.87'	Inflow to lake Mañuel Nuñez Lagoon
BR PL 1 15	Passos da Lagoo	03.09.2015	Brazil	29'51' 16.11'	050'06' 57.99'	Littoral of a lake, dense macrophytes
BR ITA 4 15	Lagoa Itapeva	06.09.2015	Brazil	29'22' 32.67'	049'47' 39.22'	Lagoon, next to inflow
BR EM 3 15	Embobua Lagoon	03.09.2015	Brazil	29'57' 52.87'	050'13' 27.44'	Lagoon, temporary connection to the ocean
BR PTO 4 15	L. Passos de Torres	07.09.2015	Brazil	29'18' 39.67'	049'42' 32.87'	Lagoon, floating plants
CO ET 1a 15	Estero Texas	04.02.2015	Colombia	04'24' 31.27'	71'58' 44.54'	Phytal of 1b
CO ET 1b 15	Estero Texas	04.02.2015	Colombia	04'24' 31.27'	71'58' 44.54'	Spillway channel, permanent flooded
FL PG 3 13	Shell Creek, Peace R.	28.11.2013	Florida, USA	26'58' 26.99'	81'53' 21.89'	Littoral of an artificial slack water, dense terrestrial macrophytes
FL LS 1a/1b 13	Little Salt Spring	26.11.2013	Florida, USA	27'4' 29.37'	82'14' 53.77'	Spring with outflow
FL Bc 1 13	Big Cyprus National Reserve	29.11.2013	Florida, USA	25'53' 29.53'	81'16' 14.52'	Swamp
FL LX 1 14	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 03.07'	80'10' 36.47'	Root zone littoral of a river
FL LX 2 14	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 32.57'	80'10' 19.27'	Littoral of a river
FL LX 3 14	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 40.28'	80'10' 15.94'	Littoral of a river
FL LX-4 15	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 46.91'	80'10' 15.42'	Root zone littoral of a river
FL LX 5 15	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 49.87'	80'10' 12.47'	Littoral of a river
FL LX 6 15	Locohatchee R.	31.07.2014	Florida, USA	26' 56' 52.57'	80'10' 11.14'	Root zone littoral of a river
FL CAL 4 3	Caloosahatchee R.	06.08.2014	Florida, USA	26'50' 22.41'	81'04' 51.18'	Artificial littoral, large stones and sand lenses
FL CAL 4 4	Caloosahatchee R.	06.08.2014	Florida, USA	26'50' 09.98'	81'05' 14.44'	Littoral, parts cased
FL CAL 4 5	Caloosahatchee R.	06.08.2014	Florida, USA	26'47' 21.77'	81'18' 33.64'	Stillwater area, floating macrophytes
FL PR 15a/b 14	Shell Creek, Peace R.	08.08.2014	Florida, USA	26'58' 26.99'	81'53' 21.81'	Littoral of an artificial slack water, dense terrestrial macrophytes
FL EG 3a/b 14	Everglades	02.08.2014	Florida, USA	25'26' 2.07'	80'45' 12.33'	Marsh
MX CA 1 14	Cenote Azul	12.08.2014	Mexico	18'48' 43.33'	90'38' 48.14'	Hardground littoral of a cenote
MX SNo 1a 14	Siüi No Há Cenote	11.08.2014	Mexico	19'28' 33.55'	88'03' 15.65'	Littoral, cenote
MX CG 1 14	Cenote Galáena	11.08.2014	Mexico	19'27' 45.67'	88'19' 46.37'	Littoral, cenote
MX BC 1 14	Laguna Bacalar	11.08.2014	Mexico	18'39' 5.87'	88'24' 33.07'	Littoral of a lake
MX P Zhang 14	Punta Laguna	13.08.2014	Mexico	20'38' 49.47'	87'38' 04.13'	Littoral, karstified blocks near thick layer of leaf litter and reed belt
MX LG 114	Lake Las Garantias	13.08.2014	Mexico	18'27' 11.77'	89'00' 42.00'	Steep littoral, hard ground

Table 1. Details on sampling localities with sample identifier, name of the locality, sampling date, country, coordinates, a short habitat description, and physicochemical field data. EC = electrical conductivity, Temp = temperature, L. = Laguna, R. = river, nd = no data.
rather ovate compressed outlines and an upward shifted pore conulus (LM 1) (Fig. 5A, B and thin plate splines). Positive scores at RW3 were related to elongated outline shapes with less developed posterior lobes and subrectangular outlines with a slight depression mid-dorsally (LV) and a relatively well-defined posterior lobe (RV) (negative scores) (Fig. 5C, D).

The Mexican populations, characterized by positive scores, were clearly separated from the Floridian and South American populations along RW1 and plotted at higher scores. One Mexican population from Punta Laguna (MX Pul114) was divided. Some females plotted adjacent to the Floridian/Brazilian cluster and the others in the Mexican cluster. Brazilian populations were differentiated from other South American and Floridian populations along RW2, but the difference was better expressed at RV (Fig. 5B).

Carapace shape variability of males The major shape variation at RW1 was strongly related to the position of LM 6 (Fig. 6 thin plate splines). At LV it was shifted slightly ventrally at negative scores (6A, C, Tables S3, S4). At positive scores, it was shifted dorsal-posteriorly and almost reached the outline (Fig. 6B, D). The most positive scores at RV described elongated outlines with a rounded posterior, which is wider than the anterior (positive scores). The differences at RW2 were related to outline shapes and pore conuli, which led to elongated outlines (positive scores at LV, negative scores at RV) and more compressed outlines (negative scores at LV, positive scores at RV). At LV, pore conuli 2 and 4 changed between narrower (positive scores) and more distant positions (negative scores) whereas at RV, only pore conulus 2 displayed a slight shift up-down (positive scores) (negative scores). Shape variation at RW3 was related predominantly to the anterior lobe and discriminated between steeper (positive scores) and flatter slopes (negative scores) (Fig. 6B, D). Aside from a distinct cluster of Floridian males with positive scores at RW1 of LV and a weaker separation of the Mexican populations at RV at RW2, the distribution of the populations did not show a clear pattern (Fig. 6A–D).

Carapace shape variability of A-1 instars Shape variability of A-1 instars was primarily related to the position of the dip point of the posterior lobe, which differed between a more centrodorsal position (negative scores) and a shift posterodorso (positive scores) (Fig. 7A–D, Tables S5, S6). Variations along RW2 affected the outline and separated elongated shapes (positive scores, LV; negative scores, RV) and more rounded outlines with a slightly broader anterior (negative scores, LV; positive scores, RV) (Fig. 7 thin plate splines). The position of the pore conuli 2 and 4 switched between more distal (negative scores, LV; positive scores, RV) and more central positions (opposite to before mentioned scores). RW3 described changes between the position of the points of maximum curvature at the anterior and posterior ends. A shift downward was related to elongated and slightly ventrally curved outlines (negative scores, LV; positive scores, RV) and a shift upward was connected to more shortened and anteriorly and posteriorly well-rounded outlines (positive scores, LV; negative scores, RV) (Fig. 7C, D).

Northern Brazilian populations (LC 1 09/BB 01 09) had their own cluster at higher positive scores at RV, but no other separations occurred among populations at RW1 (Fig. 7A, B). Mexican populations were relatively separated at positive scores at RW2 (LV) and RW3 (RV) (Fig. 7A, D). The Everglades (Florida) population was relatively close at negative scores of RW1 (RV), but the other Floridian populations did not show a clear pattern in their distribution and were widely scattered on RW1 and RW2 (Fig. 7A, B).

Carapace shape variability of A-2 instars Maximal shape variations at RW1 of A-2 instars were primarily related to LM 6 (Fig. 8A–D, Tables S7, S8). LM 2 and 4 displayed relatively large variation and shifted between inward (nega-
Table 2. Overview of valve material analyzed from the different sampling localities. RV = right valve, LV = left valve, A-1, A-2, A-3 = juvenile instars, Σ = total individuals sampled.

Sample	Females	Males	A-1	A-2	A-3	Σ															
	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	LV	RV	Σ
LC 1 09	10	9	2	2	5	5	1	1	35												
BB 01 09	7	6	1	0	0	1	1		16												
FL BiC 1 13	0	1																			
FL PG 3 13	2	3																			
FL LSS 1 13	0	1																			
FLPR 15a/b 14	1	3	1	1	1	1			11												
FL LX 6 14	0	1																			
FL LX 5 14	1	1																			
FL LX 4 14	3	1																			
FL LX 3 14	2	3	2	1	15	14	15	17	6	2	77										
FL LX 2 14	1	10	13	11	13																
FL LX 1 14	3	4																			
FL EG 3a/b 14	4	2	1	2	6	5	1	1	22												
FL CAL 1 14	2	1																			
FL CAL 4 14	4	3	2	4	2	1			16												
FL CAL 1 14	6	6	13	9	18	13	10	9	84												
FL CAL 1 14	2	2																			
MX BC 1 14	8	6	3	5	5	2	1		30												
MX CA 1 14	9	8	5	4	13	9	2	8	7	7	72										
MX CG 1 14	0	1	2	1	1	1			6												
MX CT 1 14	1	1																			
MX LG 1 14	4	5	3	4	2				18												
MX Pul 1 14	10	13	3	4	6	3	2	1	42												
MX SiNo 1 14	3	5	3	3	5	2	1		22												
MX Sil 1 14	1	1	1	1					4												
BR CU 1 15	2	0							2												
BR EM 3 15	1	1							2												
BR ITA 4 15	14	13	6	7					40												
BR MN 3 15	1								1												
BR PL 1 15	1								1												
BR PTO 4 15	5	2	1	1	2	2			13												
CO ET 1b 15	3	2							7												
Σ	107	104	60	52	94	77	41	54	14	11	614										

tive scores) and outward (positive scores) directed positions (Fig. 8 thin plate splines). Shape variations at RW2 described a change from a more pointed anterior part and a ventrally shifted LM 2 (negative scores, LV) to a more pointed posterior part with a dorsally shifted LM 2 (positive scores) (Fig. 8A, B). At RV, the variation was primarily related to the outline and distinguished between more elongated with ventrally shifted LM 2 (positive scores) and more shortened with dorsally shifted LM 2 (negative scores) outlines (Fig. 8B). RW3 also affected the outline, which differed between those with elongated straight outlines (negative scores) and outlines with a smaller posterior becoming wider to the anterior (positive scores) (Fig. 8C, D). The distribution of the populations showed no specific pattern. Some populations (e.g., FL-LX-3-14) were widely scattered on each warp, and others (e.g., FL-CAL-14-3) were more concentrated (Fig. 8A–D).

Carapace shape variability of A-3 instars Negative scores at RW1 were associated with a kidney-like outline with a rounded dorsal part (Fig. 9A–D, Tables S9, S10). The maximum posterior was slightly shifted downward, and the ventral outline was slightly concave (Fig. 9 thin plate splines).
LM 6 was situated near the mid-length of the valve. At positive scores, the outline was more oval with a straight ventral outline and a less rounded dorsal outline. LM 6 was behind the mid-length of the valve. RW2 predominantly differentiated between more a compressed triangular outline with a smaller posterior (positive scores) and more elongated and more ovate outlines (negative scores) (Fig. 9A, B). RW3 was connected to shape variations similar to those at RW2 but also involved the position of the 2nd pore tubercle (LM 2) (Fig. 9C, D). The triangular forms (positive scores, LV; negative scores, RV) showed an LM 2 shifted ventrally and vice versa in the more elongated forms. Mexican and Floridian populations tended to be separated at RW1, but the number of specimens was low (Fig. 9A–D).

DFA of females

Discrimination of the relative warps of the females showed significant separation of the specimens belonging to the different populations (Wilk’s Lambda = 0.0 [LV, RV], $\chi^2 = 778.580$ [LV], 636.931 [RV], $p = 0.00$ [LV, RV]). Classification results showed that 94.1% (LV) and 92.5% (RV), respectively, of the specimens were correctly classified. The first 3 canonical functions accounted for 46.9, 14.7, and 12.1% of the explained variation in LV and 54.1, 14.4, and 7.3% of the explained variability in RV (Tables S11, S12). The most obvious separation was between the Mexican and the other populations along function 1 (Fig. 10A–D). For LV, 2 conspicuous clusters of northern Brazil (negative scores) and southern Brazil (positive scores) populations occurred along function 2 (Fig. 10A). The Floridian populations overlapped with the 2 Brazilian clusters. Populations from Caloosahatchee River and, to some extent, from the Everglades plotted adjacent to the southern Brazilian cluster, and the population from Loxahatchee was situated near the northern Brazilian cluster. This pattern was not conspicuous for RV (Fig. 10C).

Function 3 separated the populations into large regions: South America and Florida (Fig. 10B, D). This pattern was distinct only for LV (Fig. 10B). A pattern also could be seen in the Mexican cluster. Populations from Laguna Bacalar (MX BC 1 14) and Sijill No Há (MX SiNo 1 14) had the most positive scores on function 1 (LV) followed by Cenote Azul (MX CA 1 14) with scores between 2 and 4. The pop-
ulation from Punta Laguna was divided with some specimens coinciding with the southern Brazilian cluster.

DISCUSSION

Shape variation of *Cytheridella*

Some ostracod species show minimal morphological variability even at large geographic ranges (Rossetti and Martens 1996), whereas other species display high intraspecific variability, (e.g., Reyment 1993, Yin et al. 1999, do Carmo et al. 1999, Minati et al. 2008, Frenzel et al. 2012, Wrozyna et al. 2014). Studies of morphological variability are generally rare and follow different approaches. Investigators deal either with soft parts (e.g., Maddocks 2000) or qualitative (Martens et al. 1998) or quantitative characters (Aiello et al. 2007, Hunt 2007), and they usually include adults only (Iepure et al. 2007).

Our results show that adult *Cytheridella* show a greater morphological disparity than juveniles as reflected by the splines of maximum scores of the RWs. Juveniles are relatively variable on the population scale. Primary shape variation is related to outline, as has been observed in several other species (Baltanás and Geiger 1998, Tanaka 2009).

Females display the most striking variability in (outline) shape, which ranges from elongated narrow forms in Mexico to shortened forms with well-developed brood pouches (posterior lobes) in Florida. Subordinate shape changes differentiate between shorter and elongated outlines both with curved posterior lobes and separate northern and southern Brazilian populations (Fig. 5A–D). Large overlapping areas at RW2 and RW3 are apparent in populations outside Mexico. This result indicates that the shapes of the populations are relatively variable and the similarity between populations is higher. The shape disparity (or morphological diversity) of males is not as high as in females and is primarily related to the position of the transversal sulcus (LM 6) (Fig. 6A–D). They reflect, however, the same pattern of regional and local shape variation as females.
Figure 5. Relative Warps Analysis (RWA) of female left (LVs) (A, C) and right valves (RVs) (B, D) with RWs 1 and 2 and 1 and 3 and the associated thin plate splines at maximum and minimum scores.
The primary shape variation in A-1 is similar to the variation shown by the males and is related to the position of LM 6 resulting in anteriorly or posteriorly shifted transversal sulci. In A-1, the differing elongated and shortened outlines are connected to RW2 and are of secondary importance. The high variability of Floridian A-1 also is represented in A-2. The question is whether this is an expression of genotypic features or is under environmental control. The fact that the variability occurs within populations points to a relatively high genotypic variability. Most

Figure 6. Relative Warps Analysis (RWA) of male left (LVs) (A, C) and right valves (RVs) (B, D) with RWs 1 and 2 and 1 and 3 and the associated thin plate splines at maximum and minimum scores.
of the Mexican and Brazilian populations were sampled from lakes or ponds, whereas the Floridian populations frequently were sampled in rivers (Table 1) where the probability of genetic exchange might be higher. Ecophenotypic variability (Wrozyna et al. 2017, in review) might be masked to some extent by the high within-population variability. To test this possibility, further studies including environmental data are necessary. The variability also might be explained to some extent by slightly different morphospaces occupied by immature females and males. Many ostracod species develop sexual organs throughout ontogeny from the last instar A-1 to adults. Therefore, juvenile appendages must be investigated to check if they exhibit differences in carapace shape variability that might be related to phase of the molt cycle.

Morphological variability also is reflected by the position of pore conuli, especially LM 2 and, less frequently,
LM 4. The pore setae extruding from the conuli are thought to possess a sensory function (Karanovic 2012). An adaptation to different environmental conditions (e.g., change in vegetation cover) could result in decrease or increase in number of sensory setae. Thus, the small shifts of the position of the pore conuli might not influence the sensory ability. Since the small observed variations occur within populations and no pattern is recognizable, these variations may not be ecologically induced but rather the expression of genetic variability.

Species differentiation

The Mexican populations form a clearly separated cluster represented in both sexes and all instars down to A-3 (Figs 5A–D to 9A–D). This clear differentiation points to separation on the species level. Hints for a new morpho-
species also are provided by soft parts: different proportions of the 4th podomere at A1 and the difference in the hemipenis morphology (Figs 3A–F, 4A–F). Differences in the hemipenes might indicate reproductive isolation (Martens 2003). The bipartite clusters of the population from Punta Laguna, Mexico (Figs 3A–F, 4A–F) indicate the existence of 2 discernible morphotypes in 1 sample. One morphotype is more similar to that from Florida and Brazil and is assigned to C. ilosvayi; the other one represents a new (hitherto undescribed) species.

Ostracods are known for a high degree of intralacustrine speciation (Martens 1994). For example, Gomphocythere, a member of the subfamily Timiriaseviinae to which Cythereidella belongs, is known for high speciation rates in Afri-

Figure 9. Relative Warps Analysis (RWA) of juvenile A-3 left (LVs) (A, C) and right valves (RVs) (B, D) with RWs 1 and 2 and 1 and 3 and the associated thin plate splines at maximum and minimum scores.
can lakes Tanganyika (Park and Martens 2001) and Malawi (Martens 2003) and shows a complex distributional pattern. Martens (2003) argued that, at least for the Malawian Gomphocythere species, evolution and speciation are controlled by both environmental and sexual selection. Sexual selection is indicated by significant differences of the copulatory complex of the hemipenes and parapatric speciation by the exclusive occurrence of species at specific water depths. In the case of Cytheridella, environmental conditions (e.g., conductivity or hydrological conditions) differ between Florida and Yucatán and may have driven speciation ecologically. However, sympatric speciation is also known for ostracods and may explain the co-occurrence of 2 Cytheridella morphospecies in Punta Laguna, which may occupy different microhabitats.

Biogeography

Shape is the result of a complex interaction of genotype and environment (Baltanás and Geiger 1998), but the application of shape analysis enabled us to identify strikingly evident biogeographical patterns on various scales for adult and juvenile Cytheridella. Our data show a rough regional differentiation of morphotypes between Mexico, Florida, and South America along RW1 and RW2, respectively (Fig. 5A, B). The DFA revealed separation patterns on regional and populational scales (Fig. 10A–D). A unique feature of the Timiriaseviinae is that they possess brood care, which is discussed in terms of dispersal advantage (Horne et al. 1998). Therefore, the presence of a geographical pattern in the morphological variability of Cytheridella might be the result of complex interactions of dispersal, reproductive strategies, and environmental conditions.

The first doubtful records of the genus Cytheridella are reported from the Upper Jurassic of North America (Swain 1999). Well-documented Cytheridella occurred during the Oligocene at the northern and southern margins of the present geographical range (Fig. 1). North and South America were not connected by a land bridge before 2.8 Ma (O’Dea et al. 2016), so the Oligocene distribution supports the hypothesis of avian dispersal of Cytheridella as already discussed for extant Cytheridella by Wrozyna et al. (2016). Neogene records are restricted to the Miocene of northern Brazil (Gross et al. 2013), late Miocene/Pliocene of Argentina (Marengo 2015), and the Pliocene of the Dominican Republic and Venezuela (van den Bold 1975, 1986). Pleistocene records cover more or less the distributional range of recent Cytheridella (Fig. 1). All recent and Pleistocene Cytheridella occurrences relate to C. ilosvayi except those from Venezuela, which belongs to C. boldii and one locality in Argentina, which refers to C. argentinensis (Fig. 1, Table 3).

According to our morphological data, the Yucatán specimens do not belong to C. ilosvayi (except for Punta Laguna) but represent a new undescribed species. Wrozyna et al. (2016) discussed whether the distinct morphological separation of the Yucatánian Cytheridella might be the result of longer isolation, but the high similarity of the 2 Cytheridella species may point to a relatively recent separation. The presence of 2 morphotypes, of which one is considered to belong to C. ilosvayi, contradicts continuous isolation. In our data set, comprising 9 localities in Yucatán, Lake Punta Laguna is the only locality that yielded both species. Different ecological conditions (i.e., higher salinities or hydrological composition) may have led to the evolution of a new Cytheridella species in Yucatán. Dispersal by birds may occasionally introduce C. ilosvayi into the same habitats, but ecological barriers could prevent C. ilosvayi from establishing where the new species lives. This scenario is what de Meester et al. (2002) described in their ‘monopolization hypothesis.’ Rapid population growth and local adaptation upon colonization of a new habitat result in the effective monopolization of resources, thereby yielding a strong priority effect. Once a population is locally adapted, the presence of a large resting propagule bank provides a powerful buffer against newly invading genotypes and enhances priority effects.
Number	Locality	Country	Stratigraphic age	Species	Reference
1	Pruett Formation, Texas	USA	Oligocene	C. alpinensis	Swain 1999
2	Tampa Bay	USA	Pleistocene	C. ilosvayi	Willard et al. 2007
3	Little Salt Spring	USA	Holocene	C. ilosvayi	Alvarez-Zarikian et al. 2005
4	MX Pul 1 14	Mexico	Recent	C. sp. nov/	
				C. ilosvayi	
5	Lake Punta Laguna	Mexico	Holocene	C. ilosvayi	Curtis et al. 1996
6	Cenote Aktun Ha	Mexico	Holocene	C. ilosvayi	Gabriel et al. 2009
7	MX-SiNo 1 14	Mexico	Recent	C. sp. nov	
8	MX CG 1 14	Mexico	Recent	C. sp. nov	
9	MX BC 1 14	Mexico	Recent	C. sp. nov	
10	MX LG 1 14	Mexico	Recent	C. sp. nov	
11	MX Sil 1 14	Mexico	Recent	C. sp. nov	
12	MX CA 1 14	Mexico	Recent	C. sp. nov	
13	Cobweb Swamp	Belize	Holocene	C. alosa*	Alcala-Herrera et al. 1994
14	Laguna Tuspán	Guatemala	Holocene	C. ilosvayi	Fleury et al. 2014
15	Lake Petén Itza	Guatemala	Recent	C. ilosvayi	Pérez et al. 2010
16	Lake Petén Itza	Guatemala	Pleistocene	C. ilosvayi	Escobar et al. 2012, Pérez et al. 2013
17	Lake Güija	Guatemala/El Salvador	Recent	C. ilosvayi	Pérez 2010
18	Lake Amatitlán	Guatemala	Recent	C. ilosvayi	Pérez et al. 2010
19	Lake Nicaragua	Nicaragua	Recent	Metacypris	Swain 1976
				onomatopensis*	
20	Wallywash Pond	Jamaica	Pleistocene	C. ilosvayi	Holmes 1998
21	Wallywash Pond	Jamaica	Recent	C. ilosvayi	Holmes 1997
22	Jimani Formation	Dominican Republic	Pliocene	C. ilosvayi?	van den Bold 1975
23	Lago Enriquillo	Dominican Republic	Holocene	C. ilosvayi	Medley et al. 2007
24	Lajas Valley	Puerto Rico	Pleistocene	C. ilosvayi?	cited by van den Bold 1975
25	Lake Valencia	Venezuela	Recent	C. boldii	Purper 1974
26	Lake Valencia	Venezuela	Pleistocene	C. boldii	Binford 1982
27	Siqueire Formation	Venezuela	Pliocene	C. boldii	van den Bold 1986
28	Talparo Formation	Trinidad	Pliocene	C. ilosvayi?	cited in van den Bold 1975
29	Pebas Formation	Peru	Miocene	C. danielopoli	Muñoz-Torres et al. 2006
30	Solimões Formation	Brazil	Miocene	C. danielopoli	Gross et al. 2013
31	Paraná River Floodplain	Brazil	Recent	C. ilosvayi	Higuti et al. 2007
32	Paraná River Floodplain	Brazil	Recent	C. ilosvayi	Mormul et al. 2010
33	Tremembé Formation	Brazil	Oligocene	C. sp.	Berge et al. 2015
34	Rio Paraguay	Argentina	Recent	C. ilosvayi	Poi de Neiff 2003
35	Villa Escolar	Argentina	Pleistocene	C. ilosvayi	Zamudio 2013
36	Rio Negro	Argentina	Recent	C. ilosvayi	Pieri Damborsky et al. 2012
37	Florianópolis Island	Brazil	Recent	C. ilosvayi	Lisboa et al. 2011
38	Porto Alegre	Brazil	Recent	C. ilosvayi	Purper 1974
39	Rio Grande do Sul	Brazil	Recent	C. ilosvayi	Stener et al. 2012
40	Santa Fe	Argentina	Recent	C. argentinensis**	Ferguson 1967
41	Pinamar	Argentina	Recent	C. ilosvayi	Laprida 2006
42	Pozo del Tigre Member,	Argentina	Late Miocene to Pliocene	C. ilosvayi	Marengo 2015
	Chaco Formation				
In general, hydrochemical conditions (i.e., salinity) control ostracod species distribution (Curry 1999). The (calculated) optimum conductivity of Cytheridella in Yucatán is ~700 μS/cm (Pérez 2010) but it has been reported at conductivities up to 5960 μS/cm (~3.7 psu) (Pérez et al. 2013), which is a rather large range. Most species prefer smaller conductivities (~<200 μS/cm) of the South American sampling localities might favor the occurrence of C. ilosvayi. Lack of ecological barriers and persistent interconnection through, e.g., avian dispersal may explain the great morphological resemblance between Floridian and South American Cytheridella.

Relevance for freshwater biodiversity and ecology assessments

Virtually all empirical ecological studies require species identification during data collection (Taberlet et al. 2012). In the recent decades, genetic analysis has become popular and has undergone impressive improvements (Taberlet et al. 2012). Some authors consider DNA-based tools as surrogate for traditional morphological species identification (e.g., Smith et al. 2005, Pfrender et al. 2010). Future projections of diversity change undoubtedly require consideration of current diversity patterns and temporal change (Bunnell and Huggard 1999, Willis and Whittaker 2002). Fossil records provide an historical perspective to the present and can contribute to key questions in conservation and management, such as habitat naturalness, biological invasions, disturbance regimes, natural variability, and ecosystem health (Willis and Birks 2006). However, molecular data cannot be obtained from fossil material because preservation of soft-part material is rare. Our geometric morphometric approach is not restricted to modern material because it is applicable to living and fossil ostracod valves.

Our study highlights the relevance of quantitative morphological investigations of ostracods for characterization of morphological differences for the discrimination of species or morphotypes, which probably would be overlooked in traditional morphological investigations. Our findings show that quantitative data of morphological variability reveal ontogenetically fixed differentiations of a widespread Neotropical taxon into several species or morphotypes with regional or local distributions. If this higher taxonomic resolution applies for other ostracod species, it implies higher rates of freshwater ostracod species diversity in the Neotropics than estimated thus far (see e.g., Martens and Behen 1994, Pérez-Gelabert 2008). The Neotropics are known for great biodiversity in aquatic and terrestrial ecosystems, but neither data that quantify this diversity exactly nor a sound understanding of species ecology and distribution exist (Hoorn et al. 2010). Ecological models and reconstructions of climatic and environmental history of the Neotropics are based predominantly on botanical indicators (e.g., van der Hammen and Hooghiemstra 2000, Baker and Fritz 2015). Ostracods offer the possibility to achieve insights into recent Neotropical freshwater diversity and ecology and to integrate fossil and modern data sets, thereby enabling investigation of diversity changes and patterns on multiple temporal scales. This capability would enable assessment of the influences of long-term climatic fluctuations or geological events (see e.g., Hubert and Renno 2006).

The higher taxonomic resolution of Cytheridella also has relevance for ecological assessments. Widespread species like C. ilosvayi typically are characterized by wide ecological ranges (see discussion above). Changing the taxonomic scale of a biotic-assemblage data set influences our ability to detect ecological patterns (Jones 2008). False or imprecise deductions of ecological conditions may result from the integration of several species with potentially different or narrower ecological preferences. The observed biogeographical patterns in the morphology of Cytheridella might provide a base on which spatially scaled revision of ecological preferences can be prepared if detailed morphological and ecological investigations are coupled with, e.g., genetic analyses critical for a final documentation of species richness (Hajibabaei et al. 2006).

Conclusion

Our study yielded insight on the variability of hard parts of adults and instars of Cytheridella on different geographical scales based on geometric morphometrics. The dominant feature that is subject to the shape variability is the outline of the valves. Other characters describing the variability range are the anterior pore conuli 2 and 4 (LM 2, LM 4) and the connection point between the transversal sulcus and extension of the posterior lobe (LM 6). RWA enabled us to identify the overall shape disparity and revealed a regional pattern of the morphological variability (Florida, Yucatán, and South America). DFA identified subregional (e.g., northern and southern Brazil) and local (populations) patterns.

The Mexican specimens are identified as a new species based on distinct differences in hard (outline shape) and soft parts (short penultimate segment of the antennula, different distal and proximal lobes at the hemipenis). The evolution of a new species in Yucatán could have been caused by the specific hydrochemical conditions (i.e., higher salinity). The occurrence of 2 species in Lake Punta Laguna indicates that C. ilosvayi might be introduced occasionally but may not be able to establish there.

Our study highlights the advance of geometric morphometrics for the differentiation of species or morphotypes,
which is the prerequisite for estimations of freshwater biodiversity. It refutes the assumption of the ubiquitous distribution of *Cytheridella* species and indicates a much higher, yet not detected, diversity of freshwater ostracods in the Neotropics.

ACKNOWLEDGEMENTS

Author contributions: CW and WEP conceived the study. MG and MIFR provided data collection and analysis guidance. CW, WEP, and JM collected and analyzed the data and prepared the manuscript.

We thank Sergio Cohuo Durán and Laura Anahi Macario-González for providing information on the occurrence of *Cytheridella* in Yucatán and for Norma L. Würdig (Universidade Federal do Rio Grande do Sul) and personnel at CECLIMAR in Tramandai, Brazil) for offering facilities. We thank Georg Stegmüller for his enduring help with data management. We gratefully acknowledge Gene Hunt and an anonymous referee for their work. This study was funded by the Austrian Science Fund (grant number: P26554).

LITERATURE CITED

Aiello, G., F. Barattolo, D. Barra, G. Fiorito, A. Mazzarella, P. Raia, P., and R. Viola. 2007. Fractal analysis of ostracod shell variability: a comparison with geometric and classic morphometrics. Acta Palaeontologica Polonica 52:563–573.

Alcala-Herrera, J. A., J. S. Jacob, M. L. Machain Castillo, and R. W. Neck. 1994. Holocene Palaeosalinity in a Maya wetland, Belize, inferred from the microfaunal assemblage. Quaternary Research 41:121–130.

Alvarez-Zarikian, C. A., P. K. Swart, J. A. Gifford, and P. L. Blackwelder. 2005. Holocene paleohydrology of Little Salt Spring, Florida, based on ostracod assemblages and stable isotopes: earth environments and dynamics of Ostracoda. Palaeogeography, Palaeoclimatology, Palaeoecology 225:134–156.

Assine, M. L., and P. C. Soares 2004. Quaternary of the Pantanal, west-central Brazil. Quaternary International 114:23–34.

Baker, P. N., and S. C. Fritz. 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124:31–47.

Baltanás, A., and W. Geiger. 1998. Intraspécific morphological variability: morphometry of valve outlines. Pages 127–142 in K. Martens (editor). Sex and parthenogenesis. Evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden, The Netherlands.

Basset, Y., L. Cizek, P. Cuenod, R. K. Didham, F. Guilhaumon, O. Missa, and V. Novotny, F. Ődegaard, T. Roslin, J. Schmidl, A. K. Tishechkin, N. N. Winchester, D. W. Roubik, H.-P. Aberlenc, J. Bail, H. Barrios, J. R. Bridle, G. Castaño-Meneses, B. Corbara, G. Curletti, W. D. da Rocha, D. De Bakker, J. H. C. Delabie, A. Dejean, L. L. Fagan, A. Floren, R. L. Kitching, E. Medianero, S. E. Miller, E. G. da Oliveira, J. Orivel, M. Pollet, M. Rapp, S. P. Ribeiro, Y. Roisin, J. B. Schmidt, L. Sørensen, and M. Leponce. 2012. Arthropod diversity in a tropical forest. Science 338:1481–1484.

Bergmann, P. J., and A. P. Russell. 2007. Systematics and biogeography of the widespread Neotropical gekkonid genus *Thecadactylus* (Squamata), with the description of a new cryptic species. Zoological Journal of the Linnean Society 149:339–370.

Bergue, C. T., M. da S. A. S. Maranhão, and G. Fauth. 2015. Paleolimnological inferences based on Oligocene ostracods (Crustacea: Ostracoda) from Tremembé Formation, southeast Brazil. Anais da Academia Brasileira de Ciências 87:1531–1544.

Binford, M. W. 1982. Ecological history of Lake Valencia, Venezuela: interpretation of animal microfossils and some chemical, physical, and geological features. Ecological Monographs 52:307–333.

Bohonak, A. J., and D. G. Jenkins. 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6:783–796.

Brito, D. 2004. Lack of adequate taxonomic knowledge may hinder endemic mammal conversation in the Brazilian Atlantic Forest. Biodiversity and Conversation 13:2135–2144.

Bunnell, F. L., and D. J. Huggard. 1999. Biodiversity across spatial and temporal scales: problems and opportunities. Forest Ecology and Management 115:113–126.

Carrillo, J. D., A. Forasiepi, C. Jaramillo, and M. R. Sanchez-Villagra. 2014. Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Frontiers in Genetics 5:451.

Colin, J. P., and D. L. Danielpol. 1980. Sur la morphologie, la systématique, la biogéographie et l’évolution des ostracodes *Tümirassevinæ* (Limnoctheridae). Paléobiologie Continentale 11:1–51.

Colinvaux, P., and P. de Oliveira. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:51–63.

Curry, B. B. 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 148:51–63.

Curtis, J. H., D. A. Hodell, and M. Brenner. 1996. Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quaternary Research 46:37–47.

de Meester, L., A. Gómez, B. Okamura, and K. Schwenk. 2002. The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23:121–135.

do Carmo, D. A., R. C. Whately, and S. Timberlake. 1999. Variable nodding and palaeoecology of a Middle Jurassic limnoctherid ostracod: implications for modern brackish water taxa. Palaeogeography, Palaeoclimatology, Palaeoecology 148:23–35.

Escobar, J., D. A. Hodell, M. Brenner, J. H. Curtis, A. Gilli, A. D. Mueller, F. S. Anselmetti, D. Ariztegui, D. A. Grzeslik, L. Pérez, A. Schwalb, and T. P. Guilderson. 2012. A ~43-ka record of paleoenvironmental change in the Central American lowlands inferred from stable isotopes of lacustrine ostracods. Quaternary Science Reviews 37:92–104.

Ferguson, E. 1967. Three new species of freshwater ostracods (Crustacea) From Argentina. Notulae Naturae 405:1–7.

Fleury, S., B. Malaizé, J. Girardeau, D. Galop, V. Bouthoumazelles, P. Martinez, K. Charlier, P. Carbonel, and M.-C. Arnauld. 2014. Impacts of Mayan land use on Laguna Tuspán watershed (Petén, Guatemala) as seen through clay
and ostracode analysis. Journal of Archaeological Science 49: 372–382.

Fouquet, A., A. Gilles, M. Vences, C. Marty, M. Blanc, and M. J. Gummell. 2007. Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2: e1109.

Frenzel, P., I. Schulze, and A. Pint. 2012. Noding of *Cyprideis torosa* valves (Ostracoda)—a proxy for salinity? New data from field observations and a long-term microcosm experiment. International Review of Hydrobiology 97:314–329.

Gabriel, J. J., E. G. Reinhardt, M. C. Peros, D. E. Davidson, P. J. Hengstum, and P. A. Beddows. 2009. Palaeoenvironmental evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to Holocene sea-level rise. Journal of Paleolimnology 42:199–213.

Gross, M., M. I. F. Ramos, M. Caporalletti, and W. E. Piller. 2013. From the edge of the Pebas System–Ostracods (Crustacea) and their palaeoenvironmental implication (Late Miocene; Solimões Formation; Western Amazonia/Brazil). Journal of South American Earth Sciences 42:216–241.

Gunz, P., and K. Harvati. 2007. The Neanderthal "chignon": variation, integration, and homology. Journal of Human Evolution 52:262–274.

Gunz, P., and P. Mitteroecker. 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, the Italian Journal of Mammalogy 24:103–109.

Hajibabaei, M., D. H. Janzen, J. M. Burns, W. Hallwachs, and P. D. N. Hebert. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103:968–971.

Hammer, O., and D. A. T. Harper. 2006. Paleontological data analysis. Blackwell, Malden, Massachusetts.

Higuti, J., L. F. Machado Velho, F. A. Lansac-Tôha, and K. Martens. 2007. Pleistocene communities are buffered from regional flood pulses: the example of ostracods in the Paraná River floodplain, Brazil. Freshwater Biology 52:1930–1943.

Hodell, D. A., F. S. Anselmetti, D. Ariztégui, M. Brenner, and J. H. Curtis A. Gilli, D. A. Grzesik, T. J. Guilderson, A. D. Müller, M. B. Bush, A. Correa-Metrio, J. Escobar, and S. Kutterolf. 2008. An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews 27:1152–1165.

Holmes, J. A. 1997. Recent non-marine Ostracoda from Jamaica, West Indies. Journal of Micropalaeontology 16:137–143.

Holmes, J. A. 1998. A late Quaternary ostracod record from Wallywash Great Pond, a Jamaican marl lake. Journal of Paleolimnology 19:115–128.

Hoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermeudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, and A. Antonelli. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931.

Horne, D. J., A. Baltanás, and G. Paris. 1998. Geographical distribution of reproductive modes in living non-marine ostracods. Pages 77–99 in K. Martens (editor). Sex and parthenogenesis. Evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, The Netherlands.

Hubert, N., and J.-F. Renno. 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography 33:1414–1436.

Hunt, G. 2007. Evolutionary divergence in directions of high phenotypic variance in the ostracode genus *Poseidonamicus*. Evolution 61:1560–1576.

Iepure, S., T. Namiotko, and D. L. Danielopol. 2007. Evolutionary and taxonomic aspects within the species group Pseudocandona eremita (Vejdovský) (Ostracoda, Candonidae). Hydrobiologia 585:159–180.

Jaramillo, C., M. J. Rueda, and G. Mora. 2006. Cenozoic plant diversity in the Neotropics. Science 311:1893–1896.

Jones, F. C. 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16:45–69.

Karanovic, I. 2012. Recent freshwater ostracods of the world. Crustacea, Ostracoda, Podocopa, Springer–Verlag, Berlin, Germany.

Laprida, C. 2006. Ostrácodos recientes de la llanura pampeana, Buenos Aires, Argentina: ecología e implicancias paleolimnológicas. Ameghiniana 43:181–204.

Lisboa, L. K., A. da Silva, and M. M. Petrucio. 2011. Aquatic invertebrate’s distribution in a freshwater coastal lagoon of southern Brazil in relation to water and sediment characteristics. Acta Limnologica Brasiliensis 23:119–127.

Maddock, R. F. 2000. The antennule in podocopid Ostracoda: chaetotaxy, ontogeny, and morphometrics. Micropaleontology 46:1–72.

Maresco, H. 2015. Neogene micropaleontology and stratigraphy of Argentina: the Chaco-Paranense Basin and the Peninsula de Valdés. Springer Briefs in Earth System Sciences. Springer International Publishing, Cham, Switzerland.

Martens, K. 1994. Ostracod speciation in ancient lakes: a review. Pages 203–22 in K. Martens, B. Goddeeris, and G. Coulter (editors). Speciation in ancient lakes. Schweizerbart, Stuttgart, Germany.

Martens, K. 2003. On the evolution of *Gomphocythere* (Crustacea, Ostracoda) in Lake Nyassa/Malawi (East Africa), with the description of 5 new species. Hydrobiologia 497:121–144.

Martens, K., and F. Behen. 1994. A checklist of the recent non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Travaux Scientifiques du Musée National d’Histoire Naturelle de Luxembourg, Luxembourg.

Martens, K., G. Rossetti, and W. Geiger. 1998. Intraspecific morphological variability of limbs. Pages 143–155 in K. Martens (editor). Sex and parthenogenesis. evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, Netherlands.

Medley, P., N. E. Tibert, W. P. Patterson, H. A. Curran, L. Greer, and J.-P. Colin. 2007. Paleosalinity history of middle Holocene lagoonal and lacustrine deposits in the Enriquillo Valley, Dominican Republic based on pore morphometrics and isotope geochemistry of Ostracoda. Micropaleontology 53:409–419.

Minati, K., M. C. Cabral, R. Pipik, D. L. Danielopol, J. Linhart, and W. Neubauer. 2008. Morphological variability among European populations of *Vest全日ula cylindrica* (Straub) (Crustacea, Ostracoda). Palaeogeography, Palaeoclimatology, Palaeoecology 264:296–305.
van der Hammen, T., and H. Hooghiemstra. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19:725–742.

van der Meeren, T., S. Mischke, N. Sunjidmaa, U. Herzschuh, E. Ito, K. Martens, and D. Verschuren. 2012. Subfossil ostracode assemblages from Mongolia—quantifying response for paleolimnological applications. Ecological Indicators 14:138–151.

Willard, D. A., C. E. Bernhardt, G. R. Brooks, T. M. Cronin, T. Edgar, and R. Larson. 2007. Deglacial climate variability in central Florida, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 251:366–382.

Willis, K. J., and H. J. B. Birks. 2006. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–1265.

Willis, K. J., and R. J. Whittaker. 2002. Species diversity—scale matters. Science 295:1245–1248.

Wrozyna, C., T. A. Neubauer, J. Meyer, M. I. F. Ramos, and W. E. Piller. 2017 (in review). Impact of climate and hydrochemistry on shape variation—a case study on Neotropical cytheroidean Ostracoda. Biogeosciences Discussions. https://doi.org/10.5194/bg-2017-390.

Wrozyna, C., T. A. Neubauer, J. Meyer, and W. E. Piller. 2016. Shape variation in Neotropical Cytheridella (Ostracoda) using semilandmarks-based geometric morphometrics: a methodological approach and possible biogeographical implications. PloS ONE 11:e0168438.

Wrozyna, C., W. E. Piller, and M. Gross. 2014. Morphotypes of Cytheridella ilosvayi (Ostracoda) detected by soft and hard part analyses. Crustaceana 87:1043–1071.

Yin, Y., W. Geiger, and K. Martens. 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia 400:85–114.

Zamudio, M. B. 2013. Primeras citas de ostrácodos (Crustacea) del Pleistocene tardío de la provincia de Formosa, Argentina. Revista del Museo Argentino Ciencias Naturales 15:201–206.