The Volatile Compounds and Aroma Profile of Some Pigmented Rice Brans After Fermentation

AMALIA MAR’ATUN NADHIFAH¹, DWI LARASATIE NUR FIBRI¹, DODY DWI HANDOKO², WAHYUDI DAVID³, SLAMET BUDIJANTO⁴, HITOSHI SHIRAKAWA⁵,6 and ARDIANSYAH³*

¹Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta, Indonesia.
²Indonesian Center for Rice Research, Indonesian Agency for Agricultural Research And Development, Ministry of Agriculture, Subang, Jawa Barat, Indonesia.
³Department of Food Technology, Faculty of Engineering and Computer Science, Universitas Bakrie, Jl.HR. Rasuna Said No. 2, Jakarta, Indonesia.
⁴Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Darmaga Campus, Bogor, Jawa Barat, Indonesia.
⁵Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai, Japan.
⁶International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.

Abstract
Pigmented rice is known to have nutritional and bioactive compounds which commonly concentrated in the bran layers. Solid-state fermentation is known to enhance the bioactive compounds of rice bran. The study aims to identify fermented rice bran’s volatile compounds and aroma attributes from some pigmented rice (Inpari 24, Saodah, Cempo Ireng and Jeliteng). The rice brans were sterilized at 121°C for 15 minutes and produced non-fermented rice bran and some of them were fermented for 72 hours at 30°C using *Rhizopus oligosporus*. Both non-fermented and fermented rice brans were analysed using solid-phase microextraction-gas chromatography/mass spectrometry (GC/MS) and qualitative descriptive analysis (QDA). The result showed that a total 114 of volatile compounds were identified from fermented and non-fermented rice bran. They consisted of 14 aldehydes, 12 ketones, 14 alcohols, 15 hydrocarbons, 8 acids, 23 esters, 9 benzenes, 5 phenols, 6 furans, 2 lactones, 1 monoterpene, 1 sesquiterpene, 1 thiazole, 1 pyrazine

Article History
Received: 27 August 2021
Accepted: 17 Jan 2022

Keywords
Aroma Description; Fermentation; Pigmented Rice Bran; Volatile Compounds.

CONTACT Ardiansyah ardiansyah.michwan@bakrie.ac.id Department of Food Technology, Faculty of Engineering and Computer Science, Universitas Bakrie, Jl.HR. Rasuna Said No. 2, Jakarta, Indonesia.

© 2022 The Author(s). Published by Enviro Research Publishers.
This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).
Doi: http://dx.doi.org/10.12944/CRNFSJ.10.1.11
and 1 pyridine. The aroma attributes of fermented rice brans obtained by 10 trained panellists in QDA were sweet, caramel, vanilla, grass, milky, fatty, nutty, smoky, rancid, acid, cereal, pungent, earthy and fermented. The non-fermented rice bran has the same aroma as the corresponding fermented rice bran except fermented aroma. Furthermore, Pearson’s correlation test has resulted in several positive correlations between GC-MS results and QDA. These studies indicated that fermented rice bran might increase the volatile compound of rice bran; thus, it may provide opportunities to develop the production of fermented rice bran as a functional ingredient.

Introduction
Rice is one of major food in the world, and it has some varieties. Appearance-wise, there are pigmented and non-pigmented rice. The characteristics between pigmented and non-pigmented rice are differentiated by the bran. Pigmented rice contains anthocyanins in the aleurone (bran layers) as the pigment colorants, have functions as antioxidants and a higher nutritional content than non-pigmented rice. Indonesia has hundreds of rice varieties, both pigmented and non-pigmented. Inpari 24 (red rice) and Jeliteng (black rice) are improved pigmented rice varieties released by the Indonesian Agency for Agricultural Research and Development. Saodah (red rice) and Cempo Ireng (black rice) are local rice varieties in Yogyakarta Province. Pigmented rice contains bioactive compounds such as phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, c-oryzanol and phytic acid. The bioactive compound composition of pigmented depends on the cultivar (genetic), environment, cultivation practices, postharvest and processing.

Over the years, aroma has become one of consumer preference for rice. Volatile compounds play a key role in aroma formation in rice bran (RB) and are usually identified using gas chromatography-mass spectrometry (GC-MS). The volatile compound of RB consists of esters, alkanes, alcohol, ketones and aldehydes. Acid and aldehydes, especially hexanal and nonanal in high amount, are thought to form rancid aroma in RB because of lipid degradation reactions compounds. Our research have showed that the dominant volatile compounds of black RB were 2-furanmetanol, hexanal, naphthalene, 1R-α-pinene, and 4-ethyl-2-methoxyphenol; they produced burnt, nutty, fatty and pungent aromas.

Solid-state fermentation (SSF) is one of the fermentation techniques that can increase the content of bioactive components in foods and is thought to cause the reduction of lipid oxidation in RB. SSF using Rhizopus oryzae resulted in higher total phenolic content and antioxidant activity of Inpari 30 and Cempo Ireng RB; it also reduced the hexanal content due to hydrolases production during the fermentation process, which are responsible for the degradation of polysaccharides, oxidative and extracellular ligninolytic systems. SSF also increased the content of chlorogenic acid, p-hydroxybenzoic acid and vanillin, which gives the vanilla flavour in the bran.

Identification of volatile compounds in some varieties of fermented Indonesia RB has been examined using GC-MS. The developments of such studies are needed to expand our previous study and enhance the knowledge of volatile compounds as well as aroma profiles of Indonesian pigmented RB varieties. Thus, the objective of these studies was to identify the volatile compounds and aroma profiles that are responsible for the flavour attributes of fermented RB from pigmented rice varieties—Saodah, Inpari 24 (red rice), Jeliteng and Cempo Ireng (black rice)—using GC-MS and qualitative descriptive analysis (QDA) methods.

Materials and Methods
Rice Bran Preparation
The samples used in this study were red paddies (Saodah and Inpari 24 varieties) and black paddies (Cempo Ireng and Jeliteng varieties); they were obtained from farmers in Bantul and Sleman Regency, Yogyakarta, Indonesia. RB preparation
was done based on previous study with modification. Rice paddy was de-hulled using LM 24 to obtain brown rice. All samples were then polished using ICHI N50 resulting RB. RB samples were sterilized using an autoclave at 121°C for 15 minutes and stored at 5°C. The samples were divided into a non-fermented group: Inpari 24RB (Inp24NF), Saodah (SaodahNF), Cempo Ireng (CINF) and Jeliteng (Jeliteng NF), and a fermented group: Inpari 24 RB (Inp24F), Saodah (SaodahF), Cempo Ireng (CIF) and Jeliteng (JelitengF).

RB Fermentation
Rhizopus oligosporus with code 6010 was purchased from the Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia. Culture preparation and fermentation method refer to the previous study with a slight modification. *R. oligosporus* was inoculated with the pour plate method on potato dextrose agar (PDA). Fermented and non-fermented RB were dried using a freeze dryer (VirTis, SP SCIENTIFIC BenchTop Pro) for 2 days before further analysis.

Sample Extraction
HS-SPME method was used for sample extraction according to the prior study with modification. Briefly, 2cm of DVB/CAR/PDMS, 50/30 μm fibre (SUPELCO Bellefonte, PA USA) with 2,4,6-trimethyl pyridine as internal standard were used for the extraction. Three grams (±0.1 g) of the sample were put in a 22 mL headspace vial and sealed with Septa PTFE/Silicon septum. The sample was immersed in a water bath at 80°C and then extracted with DVB/CAR/PDMS, 50/30 μm fibre for 30 minutes. The fibres were removed from the vial and injected into the GC-MS injector at desorption for 10 minutes at 250°C in splitless mode.

Volatile Compound Identification
The identification of volatile compound in RB was done using GC-MS (GC Agilent Technologies 7890 A, MS Agilent 5975 C with triple exist detector XL EI/CI) that was equipped with a splitless mode injection port at 250°C. DBWax capillary column (30 m×0.25 mm×0.25 μm film thickness; Agilent Technologies) was used with a mass detector (TSQ Quantum XLS). The detector temperature was programmed at initial temperature of 40°C for 5 minutes, which was then increased to 110°C with 5°C/min speed and then increased again to 230°C at a speed of 8°C/min; finally, it was maintained for 5 min. Interface area temperature was set at 250°C. Helium is used as a carrier gas at a rate of 0.8 mL/min.

Evaluation of Aroma Attributes
QDA was used to evaluate the aroma attributes in RBs. The analysis was performed by 10 panellists (7 females and 3 males) who were trained based on ISO 8586-2012. Before evaluation, all panellists supplied an informed consent letter. The training was held 3 times (3 hours/time) with a final evaluation. Qualitative analysis was carried out by focus group discussions to obtain subjective data on the description of the aroma of fermented and non-fermented RB. Eight samples with trivial code consisting of fermented and non-fermented RB powder from four different varieties were presented individually to avoid bias during testing. Three-gram samples were served in odourless glasses at room temperature. The trained panellists provided an assessment of the aroma attributes present in the RB samples. Furthermore, the panellists were asked to inhale the aroma of the sample for 5 seconds and then neutralized it with the aroma of coffee and drink mineral water.

Data Analysis
The results obtained were processed by principal component analysis (PCA). The PCA results were visualized in the form of a biplot graphic using XLSTAT 2021 software. The correlation of RB volatile compound and aroma attributes from GC-MS and QDA were analysed using Pearson’s correlation with XLSTAT 2021.

Result and discussion
Volatile Compounds of Rice Bran
A total of 114 compounds were identified from GC–MS analysis in fermented and non-fermented RB; they consisted of 14 aldehydes, 12 ketones, 14 alcohols, 15 hydrocarbons, 8 acids, 23 esters, 9 benzenes, 5 phenols, 6 furans, 2 lactones, 1 monoterpen, 1 sesquiterpen, 1 thiazole, 1 pyrazine and 1 pyridine (Figure 1). The identified volatiles and their relative peak areas in the respective variety are summarized in Table 1.
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Description		
					Fermented	Non-fermented		
	Inp24	Saodah	CIF	Jeliteng	Inp24	Saodah	CINF	Jeliteng
	F	F	NF	NF	F	NF	NF	NF

Aldehydes

1. Hexanal
 - Relative peak area: 0.652 (F), 0.786 (Saodah), 0.528 (CIF), 0.01 (Jeliteng)
 - Description: Grass, tallow, fat
2. Heptanal
 - Relative peak area: nd (F), nd (Saodah), 0.601 (CIF), 0.184 (Jeliteng)
 - Description: Fat, citrus, rancid
3. Octanal
 - Relative peak area: 0.122 (F), nd (Saodah), 0.256 (CIF), 0.223 (Jeliteng)
 - Description: Lemon, green, fat, rancid
4. (2E)-hept-2-enal
 - Relative peak area: 0.42 (F), nd (Saodah), nd (CIF), nd (Jeliteng)
 - Description: Fatty
5. Nonanal
 - Relative peak area: 0.775 (F), 0.34 (Saodah), 0.411 (CIF), 0.7 (Jeliteng)
 - Description: Green, fat, citrus
6. Oct-2-enal
 - Relative peak area: 0.517 (F), 0.112 (Saodah), nd (CIF), nd (Jeliteng)
 - Description: Green, nut, fat
7. Furfural
 - Relative peak area: nd (F), nd (Saodah), 0.331 (CIF), 0.027 (Jeliteng)
 - Description: Sweet
8. Decanal
 - Relative peak area: 0.112 (F), 0.558 (Saodah), 0.049 (CIF), 0.226 (Jeliteng)
 - Description: Bitter, aldehyde, orange peel
9. Benzaldehyde
 - Relative peak area: 0.584 (F), 0.177 (Saodah), 0.297 (CIF), 0.866 (Jeliteng)
 - Description: Nutty, almond
10. Non-2-enal
 - Relative peak area: 0.098 (F), nd (Saodah), 0.066 (CIF), 0.025 (Jeliteng)
 - Description: Woody, fatty
11. Benzeneacetaldehyde
 - Relative peak area: nd (F), nd (Saodah), 0.431 (CIF), 0.104 (Jeliteng)
 - Description: Green, honey
12. 3-methylbenzeldehyde
 - Relative peak area: nd (F), nd (Saodah), 0.326 (CIF), 0.112 (Jeliteng)
 - Description: Cinnamon
13. Cinnamaldehyde
 - Relative peak area: nd (F), nd (Saodah), 0.081 (CIF), 0.028 (Jeliteng)
 - Description: Vaniilla
14. Vanillin
 - Relative peak area: 0.055 (F), 0.053 (Saodah), 0.116 (CIF), 0.035 (Jeliteng)
 - Description: Fruity
15. (3Z)-pent-3-en-2-one
 - Relative peak area: 1.175 (F), 0.632 (Saodah), nd (CIF), nd (Jeliteng)
 - Description: Butter, cream
16. 3-hydroxybutan-2-one
 - Relative peak area: nd (F), nd (Saodah), 0.133 (CIF), 0.068 (Jeliteng)
 - Description: Butter, cream

Ketones

1. 3-hydroxybutan-2-one
 - Relative peak area: nd (F), nd (Saodah), 0.133 (CIF), 0.068 (Jeliteng)
 - Description: Butter, cream

1. 3-methylbenzaldehyde
 - Relative peak area: nd (F), nd (Saodah), 0.326 (CIF), 0.112 (Jeliteng)
 - Description: Cinnamon
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identifica- tion	Codes	Compounds	Relative peak area (µg/kg)	Description	
17	1408	1435	MS+LRI	Ke3	(3E)-oct-3-en-2-one	0.178 0.121 0.05 0.181 0.052 0.04 0.013 0.063	Berry, nutty, fruity	
18	1582	na	MS	Ke4	6-Methyl-3,5-heptadien-2-one	nd nd nd 0.215 nd nd nd nd		
19	1648	1643	MS+LRI	Ke5	1-Phenylethanol	nd nd nd 0.236 0.024 0.042 0.072 0.042	Must, flower, almond	
20	1667	1684	MS+LRI	Ke6	2(3H)-Furanone, 5-ethenylidihydromethyl-5-methyl-2,6,6-trimethyl-2-cyclohexene-1,4-dione	nd nd nd nd 0.084 nd nd nd	Musty, woody, tobacco, leafy	
21	1691	1677	MS+LRI	Ke7	2-Tridecanone	nd nd nd 0.145 nd 0.074 0.063 0.047	Waxy, fatty, milky	
22	1803	1803	MS+LRI	Ke8	(5Z)-6,10-dimethyl-4-hyldene-5,9-dien-2-one	nd nd nd 0.104 0.03 0.045 0.029 0.03		
23	1865	1840	MS	Ke9	1-(1H-pyrrol-2-yl)-2-one	nd nd nd 0.067 0.024 0.022 0.026 0.011	Nut, walnut, bread	
24	1977	1967	MS+LRI	Ke10	1-(1H-pyrrol-2-yl)-2-one	nd nd nd 0.035 nd 0.012 0.071 0.009	Floral	
25	1998	2006	MS+LRI	Ke11	6,10,14-Trime-thylpentadecan-2-one	0.957 0.339 0.124 0.096 0.071 0.116 0.03 0.028		
26	2110	2131	MS+LRI	Ke12				

F (Fermented) | NF (Non-fermented) | NF (Non-fermented) | N (Non-fermented)
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No.	LRI-Exp	LRI-Ref	Identifier	Codes	Compounds	Fermented	Non-fermented	Description						
						Inp24 F	Saodah CIF	Jeliteng NF	Inp24 F	Saodah CINF	Jeliteng NF			
27	0	91335	MS+LRI 01	Ol1	Ethanol	8.763	2.689	1.217	nd	nd	2.828	nd	Sweet35	
28	0	109317	MS+LRI 02	Ol2	2-Methylpropan-1-ol	3.504	1.041	1.686	nd	0.563	nd	nd	Wine35	
29	1247	122038	MS+LRI 03	Ol3	3-Methylbutan-1-ol	4.026	1.544	3.173	nd	nd	nd	nd	Fruity, whiskey, Fruity35	
30	1441	144839	MS+LRI 04	Ol4	Oct-1-en-3-ol	0.38	0.244	nd	0.143	0.178	0.019	0.122	Raw mushroom34	
31	1546	149436	MS+LRI 05	Ol5	Butane-2,3-diol	5.176	2.564	4.365	nd	nd	0.016	nd	fruity, creamy, Buttery34	
32	1564	156639	MS+LRI 06	Ol6	Octan-1-ol	nd	nd	nd	0.016	nd	nd	nd	Fatty, citrus34	
33	1552	155037	MS+LRI 07	Ol7	3,7-Dimethylocta-1,6-dien-3-ol	nd	nd	0.204	0.078	0.043	0.047	0.082	Floral, citrus34	
34	1552	149436	MS+LRI 08	Ol8	Butane-2,3-diol	8.023	4.351	5.267	nd	nd	nd	nd	Fruity, creamy, buttery34	
35	1572	na	MS+LRI 09	Ol9	1,3-Benzenediol, 4-ethyl-	nd	nd	0.205	nd	0.062	0.044	0.073	Slightly sweet35	
36	1581	156839	MS+LRI 10	Ol10	Butane-2,3-diol	10.809	6.133	6.911	nd	nd	0.077	nd	Slightly sweet35	
37	1879	187937	MS+LRI 11	Ol11	Phenylmethanol	0.311	0.302	0.515	0.027	nd	nd	0.035	Mild rose35	
38	1920	192039	MS+LRI 12	Ol12	2-Phenylethanol	2.809	0.975	1.497	0.278	0.07	0.06	0.051	Waxy34	
39	2173	217135	MS+LRI 13	Ol13	4-Allyl-2-methoxy-	nd	nd	nd	nd	0.021	nd	nd	Clove, honey34	
40	2235	na	MS+LRI 14	Ol14	Pyridin-3-ylmethanol	0.268	0.193	nd	nd	nd	nd	nd	Waxy34	
41	1131	113034	MS+LRI 15	Hc1	1,4-Dimethylbenzene	nd	nd	nd	nd	0.037	0.094	0.061	Geranium35	
42	1169	117438	MS+LRI 16	Hc2	1,2-Dimethylbenzene	nd	0.187	0.208	0.208	0.072	0.076	0.125	Geranium35	
No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Fermented	Non-fermented	Description						
----	---------	---------	----------------	-------	-----------	-----------	--------------	-------------						
						Inp24	Saodah	CIF	Jeliteng	Inp24	Saodah	CINF	Jeliteng	
43	1397	na	MS	Hc3	-benzene	0.476	0.242	0.386	0.504	0.176	0.219	0.115	0.178	Alkane35
44	1498	na	MS	Hc4	Tetradecane	0.335	0.16	0.235	nd	0.167	0.118	0.102	nd	Waxy34
45	1738	173416	MS+LRI	Hc5	Naphthalene	1.273	0.74	1.534	0.962	0.264	0.386	0.313	0.399	Camphor wood-like40
46	1835	180218	MS+LRI	Hc6	(1R,4R)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4-tetrahydronaphthalene	nd	0.068	nd	0.18	0.046	0.076	0.065	0.056	Herb, spice35
47	1853	18772	MS+LRI	Hc7	2-Methylnaphthalene	0.231	nd	0.255	0.207	0.045	0.058	0.05	0.075	Sweet, floral, woody44
48	1889	na	MS	Hc8	Naphthalene, 1-methyl-2-ethyl-naphthalene	nd	0.131	0.299	0.134	0.031	nd	0.033	0.038	Naphthyl44
49	1950	na	MS	Hc9	2,7-Dimethyl naphthalene	nd	nd	nd	0.066	nd	nd	nd	0.017	
50	1998	na	MS	Hc10	2,6-Dimethyl naphthalene	0.119	nd	0.141	0.209	0.03	0.038	0.033	0.086	Grass35
51	2006	201222	MS+LRI	Hc11	2,3-Dimethyl naphthalene	nd	nd	nd	0.035	nd	nd	nd	0.011	
52	2073	212216	MS+LRI	Hc12	1,6,7-Trimethyl naphthalene	nd	nd	nd	0.033	nd	nd	nd	0.012	
53	2112	212216	MS+LRI	Hc13	2,3,6-Trimethyl naphthalene	nd	nd	0.026	0.01	0.005	nd	nd	0.045	Fruity44
54	2120	na	MS	Hc14	1H-indole	nd	nd	0.105	nd	0.011	0.017	0.037	Mothball, burnt35	
55	2450	237616	MS+LRI	Hc15	1H-indole	nd	nd	0.105	nd	0.011	0.017	0.037	Mothball, burnt35	
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Relative peak area (µg/kg)	Description					
				Fermented	Non-fermented							
				Inp24 F	Saodah F	CIF Jeliteng F	Inp24 NF	Saodah NF	CINF Jeliteng NF			
56	1450	1457²⁸	MS+LRI Ac1	Acetic acid	nd	nd	0.301	0.192	nd	0.216	0.183	Sharp, pungent, sour, vinegar³⁵
57	1628	1628²⁷	MS+LRI Ac2	Butanoic acid	nd	nd	0.597	0.338	0.086	0.081	0.126	Sharp acetic cheesy buttery fruity³⁹
58	1853	1846²⁷	MS+LRI Ac3	Hexanoic acid	0.321	0.544	0.083	0.081	0.017	nd	0.0158	Goaty, fatty acid, vegetable oil, Sweaty⁴⁶
59	1976	1971²³	MS+LRI Ac4	Heptanoic acid	nd	nd	0.049	0.027	nd	nd	0.0158	Rancid, sour, sweaty
60	2065	2065²⁷	MS+LRI Ac5	Octanoic Acid	0.344	0.238	0.02	0.018	0.034	0.029	sweet, cheese, oily, Fatty⁴⁴	
61	2165	na	MS Ac6	Hexadecanoic acid	3.818	1.623	0.238	0.089	nd	1.466	Rancid, sour, waxy⁴⁵	
62	2492	2502²⁷	MS+LRI Ac7	Dodecanoic acid	nd	nd	0.056	0.0194	0.027	0.017	0.053	Soapy, waxy⁴⁵
63	2706	2706²⁷	MS+LRI Ac8	Tetradecanoic acid	0.491	0.271	0.095	0.06	0.082	0.158	Waxy⁴⁴	
64	1187	1177²⁶	MS+LRI Es1	Methyl hexanoate	nd	0.756	nd	nd	nd	nd	nd	Fruity⁴⁴
65	1288	na	MS Es2	Methyl (E)-2-hexenoate	nd	0.353	nd	nd	nd	nd	nd	nd
66	1373	1378²⁶	MS+LRI Es3	Methyl octanoate	0.283	0.355	0.283	nd	nd	nd	0.077	
67	1592	na	MS Es	6-Methyl-3,5	nd	nd	0.215	nd	nd	nd	0.015	
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Relative peak area (µg/kg)	Description							
				Fermented	Non-fermented									
	Inp24	Saodah	CIF	Jeliteng	Inp24	Saodah	CIF	Jeliteng						
	F	F	NF	NF	F	NF	NF	NF						
68	1619	1601	MS+LRI	Es5	Methyl benzozate	0.575 nd nd 0.135 0.047 0.068 nd nd	Pleasant smell							
69	1775	1755	MS+LRI	Es6	Methyl 2-hydroxybenzoate	nd nd nd 0.085 0.023 nd nd 0.028	Peppermint							
70	na	MS	Es7	Methyl pyridine-3-carboxylate	nd nd nd nd 0.034 nd nd nd									
71	1802	1795	MS	Es8	Methyl dodecanoate	0.523 0.431 nd 0.119 0.015 nd nd nd								
72	1845	1824	MS+LRI	Es9	Ethyl dodecanoate	0.174 nd nd nd nd nd nd nd	Floral, honey							
73	2014	1994	MS+LRI	Es10	Methyl tetradecanoate	2.212 1.144 0.42 0.107 0.053 0.033 0.044 0.023	Orris							
74	2052	2044	MS+LRI	Es11	Ethyl tetradecanoate	1.035 0.225 0.233 nd 0.017 nd nd 0.008	Floral, honey							
75	2116	2108	MS+LRI	Es12	Methyl pentadecanoate	0.185 0.126 0.039 nd nd nd nd nd								
76	2224	2226	MS+LRI	Es13	Methyl palmitate	28.735 14.219 3.831 0.562 0.438 0.198 0.245 0.138	Waxy, fatty, oily, orris							
77	na	MS	Es14	Ethyl (9Z)-hexadec-9-enoate	0.441 0.193 nd nd nd nd nd nd									
78	2261	2259	MS+LRI	Es15	Ethyl hexadecanoate	12.038 2.041 1.266 0.089 0.093 0.031 0.032	Fatty acids, fruity, sweetish, rancid							
No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Fermented	Non-fermented	Description						
----	---------	---------	----------------	-------	-----------	-----------	---------------	-------------						
						Inp24 F	Saodah F	CIF Jelteng	Inp24 F	Saodah F	CINF Jelteng			
79	2279	na	MS	Es16	Ethyl (E)-hexadec-9-enoate	0.494	0.158	nd	nd	nd	nd	nd		
80	2374	na	MS	Es17	Butyl hexadecanoate	0.584	0.149	0.127	nd	nd	nd	nd		
81	2430	2424	MS+LRI	Es18	Methyl octadecanoate	0.54	0.281	0.057	nd	0.003	nd	nd	Oily, waxy	
82	2451	na	MS	Es19	Methyl (E)-octadec-9-enoate	17.033	8.657	1.667	0.052	0.071	0.02	nd	Waxy, fatty, oily	
83	2466	2450	MS+LRI	Es20	Ethyl octadecanoate	0.375	nd	nd	nd	nd	nd	nd	Fatty acids	
84	2486	na	MS	Es21	Ethyl (9Z)-octadec-9-enoate	9.541	2.027	0.725	0.456	0.05	nd	0.035	Fatty acids, vegetable oil, rancid	
85	2502	na	MS	Es22	Methyl octadeca-9,12-dienoate	nd	6.335	1.554	0.155	0.131	0.027	0.043	0.035	Waxy, fatty, oily
86	2535	2491	MS+LRI	Es23	Ethyl (9Z,12Z)-octadeca-9,12-dienoate	7.249	1.416	0.693	nd	0.026	0.014	nd	nd	Fatty acids, vegetable oil, rancid
87	2568	na	MS	Es24	Methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate	nd	0.218	0.046	nd	nd	nd	nd	Oily fatty fruity	
88	1122	1115	MS+LRI	Bz1	Ethylbenzene	nd	nd	nd	0.24	0.066	0.128	0.051	0.093	Gasoline

Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Fermented	Non-fermented	Description						
						Inp24 F	Saodah F	CIF Jelteng	Inp24 F	Saodah F	CINF Jelteng			
89	2535	2491	MS+LRI	Es23	Ethyl (9Z,12Z)-octadeca-9,12-dienoate	7.249	1.416	0.693	nd	0.026	0.014	nd	nd	Fatty acids, vegetable oil, rancid
90	2568	na	MS	Es24	Methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate	nd	0.218	0.046	nd	nd	nd	nd	Oily fatty fruity	
91	1122	1115	MS+LRI	Bz1	Ethylbenzene	nd	nd	nd	0.24	0.066	0.128	0.051	0.093	Gasoline

Benzenes

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Fermented	Non-fermented	Description						
						Inp24 F	Saodah F	CIF Jelteng	Inp24 F	Saodah F	CINF Jelteng			
92	1122	1115	MS+LRI	Bz1	Ethylbenzene	nd	nd	nd	0.24	0.066	0.128	0.051	0.093	Gasoline

Relative peak area (µg/kg)

- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88

Description

- Oily, waxy
- Fatty acids
- Fatty acids, vegetable oil, rancid
- Fatty acids, vegetable oil
- Fatty acids, vegetable oil, rancid
- Oily fatty fruity
- Gasoline
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Relative peak area (µg/kg)	Description							
				Fermented	Non-fermented									
				Inp24	Saodah	CIF	Jeliteng	Inp24	Saodah	CINF	Jeliteng			
89	1250	1240	MS+LRI	Bz2	Styrene	0.429	0.494	0.364	0.23	nd	0.208	0.143	0.219	Balsamic, gasoline
90	1266	1260	MS+LRI	Bz3	1-Methyl-2-(propan-2-yl)benzene	nd	nd	0.253	0.462	0.093	0.128	0.112	0.182	
91	1276	1269	MS+LRI	Bz4	1,3,5-Trimethylbenzene	nd	0.19	nd	0.302	0.078	0.1	0.078	0.128	Sweet
92	1419	1274	MS+LRI	Bz5	1-Methyl-4-(propan-2-yl)benzene	nd	nd	nd	0.056	nd	nd	nd	0.051	Citrus
93	1724	1721	MS+LRI	Bz6	1,2-Dimethoxybenzene	nd	nd	0.185	nd	nd	nd	nd	0.066	Sweet, creamy, vanilla
94	1828	1820	MS+LRI	Bz7	1-methoxy-4-[(E)-prop-1-enyl]benzene	nd	nd	0.302	0.171	0.052	0.1	0.075	0.063	Sweet, licorice, medicinal
95	1593	1593	MS+LRI	Bz8	(1R,4E,9S)-4,11,11-Trimethyl-8-methylidenecyclo[7.2.0]undec-4-ene	nd	nd	0.337	0.22	0.275	0.094	0.127	Clove, pepper, floral	
96	1140	1138	MS+LRI	Bz9	3,7,7-trimethylbicyclo[4.1.0]hept-3-ene	0.339	0.487	0.552	0.092	0.332	0.232	0.176	Sweet, pungent	
97	1877	1872	MS+LRI	Ph1	2-Methoxyphenol	0.744	0.457	6.524	0.593	0.022	0.028	0.096	0.207	Nutty
98	1913	191224	MS+LRI	Ph2	2,6-bis(1,1-dimethylmethyl)phenol	nd	nd	0.09	0.09	0.025	0.028	0.025	0.017	
Table 1: Volatile Compounds in Various Varieties of Non-fermented RB

No	LRI-Exp	LRI-Ref	Identifi -cation	Codes	Compounds	Relative peak area (µg/kg)	Description						
					Fermented	Non-fermented							
					Inp24 F	Saodah F	CIF F	Jeliteng F	Inp24 NF	Saodah NF	CINF NF	Jeliteng NF	
99	2002	2000	MS+LRI	Ph3	1.021	0.383	0.664	0.051	0.014	0.073	0.019	0.02	Sweet, medicinal
100	2203	2200	MS+LRI	Ph4	0.536	0.147	0.258	0.507	0.074	0.231	0.093	0.179	dry, woody, fresh, roasted
101	2315	2317	MS+LRI	Ph5	nd	nd	nd	0.077	0.03	0.055	0.034	0.031	

Furans

No	LRI-Exp	LRI-Ref	Identifi -cation	Codes	Compounds	Relative peak area (µg/kg)	Description						
102	1230	1234	MS+LRI	Fu1	0.626	0.177	0.118	0.248	0.089	0.102	0.032	0.075	Nutty, beany, buttery
103	1426	na	MS	Fu2	nd	nd	nd	0.322	nd	0.073	0.046	0.121	
104	1667	1684	MS+LRI	Fu3	nd	nd	nd	nd	0.027	nd	nd	nd	
105	2037	na	MS	Fu4	nd	nd	0.06	nd	nd	nd	nd	nd	
106	2391	na	MS	Fu5	0.097	0.02	0.045	0.036	0.01	0.02	0.012	0.008	Sweet
107	2368	na	MS	Fu6	0.201	nd	nd	0.112	0.045	0.052	0.023	0.03	

Lactone

No	LRI-Exp	LRI-Ref	Identifi -cation	Codes	Compounds	Relative peak area (µg/kg)	Description						
108	1613	na	MS	Fu7	nd	nd	nd	0.123	0.039	0.045	0.05	0.042	Creamy, fatty
109	2037	2051	MS+LRI	Fu8	0.135	0.274	nd	0.288	0.096	0.083	0.06	0.091	Cotton candy
No.	LRI-Exp	LRI-Ref	Identification	Codes	Compounds	Fermented Relative peak area (µg/kg)	Non-fermented Relative peak area (µg/kg)	Description					
-----	---------	---------	----------------	-------	--	-------------------------------------	--	--------------------------					
					Esehoxolan-2-one	F 1.356 1.39 5.61 5.325 0.435 1.064 1.606 2.63	F 1.39 5.61 5.325 0.435 1.064 1.606 2.63	Lemon, orange					
					Monoterpenes (4R)-1-Methyl-4-prop-1-en-2-ylcyclohexene	F 0.151 nd nd 0.151 nd nd nd 0.054	F nd nd nd nd nd nd nd						
					Sesquiterpenoid (1R,8aS)-1,6-Dimethyl-4-(pr-3,7,8,8a-hexahydro-1,2,3,7,8,8a-hexahydra)	F 0.591 0.129 0.48 0.193 0.094 0.112 0.041 0.061	F nd nd nd nd nd nd nd	Sulfurous, meaty					
					Thiazole 1,3-Benzothi-azole	F 0.384 nd nd nd nd nd nd nd	F nd nd nd nd nd nd nd	Coffee, caramellic					
					Pyridine 2,3-Dimethyl-pyridine	F nd nd nd nd nd nd nd nd	F nd nd nd nd nd nd nd	Roasted, green					
					Pyrazine 2-Methyl-5-[(E)-prop-1-enyl]pyrazine	F nd nd nd 0.145 nd nd nd nd	F nd nd nd nd nd nd nd						

*MS, mass spectrum match to those NIST/EPA/NIH Mass spectral database; MS+LRI, mass spectrum match to those NIST/EPA/NIH Mass spectral databases and LRI match with literature value
nd: not detected
Volatile compounds in RB are probably composed of the original compounds, the compound resulting from the Maillard reaction due to the sterilization process and the compound resulting from the fermentation. The original compounds in RB were hexanal; heptanal; octanal; nonanal; benzaldehyde; (3E)-oct-3-en-2-one; 2,6,6-trimethyl-2-cyclohexene-1,4-dione; (5Z)-6,10-dimethylundeca-5,9-dien-2-one; 1-(1H-pyrrol-2-yl)ethan-1-one; oct-1-en-3-ol; octan-1-ol; 3,7-dimethylocta-1,6-dien-3-ol; phenylmethanol; 1,2-dimethylbenzene; tetradecane; pentadecane; acetic acid; butanoic acid; hexanoic acid; octanoic acid; phenol; 2-pentylfuran; 2,3-dihydro-1-benzofuran; (3R)-3,4,4-trimethyloxolan-2-one; (4R)-1-Methyl-4-prop-1-en-2-ylcyclohexene (d-limonene) and naphthalene.

Reaction between amino acids and carbohydrates in Maillard reaction were reported to form pyrazines such as 2-methyl-5-[(E)-prop-1-enyl]pyrazine, which contributed in roasted and green aroma. Heat treatment also allegedly formed vanillin and furfural, due to thermal degradation of ferulic acid and sugars, respectively. 4-ethenyl-2-methoxyphenol was also reported to be derived from thermal decarboxylation of ferulic acid in RB.

There were 20 volatile compounds that could have been formed during the fermentation process—as they were only found in fermented RB—as shown in Figure 2. They are oct-2-enal, (E); (3Z)-pent-3-en-2-one; 6-methyl-3, 5-heptadiene-2-one; 3-methylbutan-1-ol; butan-2,3-diol; pyridin-3-ylmethanol (nicotinyl alcohol); methyl hexanoate; methyl (E)-2-hexenoate; methyl octanoate; ethyl dodecanoate; methyl pentadecanoate; methyl (9Z)-hexadec-9-enoate; ethyl (E)-hexadec-9-enoate; butyl hexadecanoate; ethyl octadecanoate; methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate (methyl
linolenate); dihydro-3-hydroxy-4, 4-dimethyl-2(3H)-furanone; 2,3-dimethylpyridine and 2-methyl-5-[(E)-prop-1-enyl]pyrazine. This proved that fermentation might produce more volatile compounds in RB.

Esters were reported as the major volatiles constituent in fermented RB. The major esters compounds identified in the fermented RB were methyl palmitate, 9-octadecenoic acid, methyl ester, (E)- and ethyl hexadecanoate. Those compounds are responsible for waxy, fatty and oily odor and were increasing due to the fermentation process. Esters mostly are formed by esterification between acids and alcohols during fermentation. The second most common substances in fermented RB were alcohols. Among them were the contents of butane-2,3-diol, 3-methylbutan-1-ol and phenylmethanol. Butane-2,3-diol is thought to provide a characteristic of buttery and creamy aroma, and is formed from glucose catabolism via the glycolysis pathway. Phenylmethanol is known to be formed from the reduction of benzoic acid assisted by microorganisms. Similar to 3-methyl-3-butanal, phenylmethanol tends to increase in RB treated with fermentation due to the metabolic activity of microbes that form in RB through the glycolysis pathway.

Amyl alcohols (3-methylbutan-1-ol and 2-methylbutan-1-ol) have fermented and malt-like odour notes. These are also detected in other fermented rice such as makegolli (Korean rice wine). Another alcohol compound that was identified in fermented RB is 2-phenylethanol; it is thought to have a slightly rose floral scent. The formation of 2-phenylethanol might be from hydrolysis of phenylethyl ester and phenylethyl acetate.

In the group of aldehydes, hexanal, nonanal and benzaldehyde were the compounds with the highest relative peak areas found in fermented RB. These three compounds tend to increase compared to non-fermented RB. Saturated aldehydes such as hexanal and nonanal might be formed by linoleic acid (C18:2) oxidation as one of the main fatty acids in RB. Linoleic acid might be oxidized to form 9-OOOH and 13-OOOH hydrogen peroxides, which are further degraded to form saturated aldehydes such as oct-2enal and hexanal. Hexanal allegedly contributed to grass, tallow and fat aroma; meanwhile, nonanal might have contributed to green, fat and citrus aroma. Benzaldehyde may be the odour-active compounds in RB. The content of amino acids in RB such as valine, isoleucine, leucine and phenylalanine can be transformed into Strecker aldehydes, leading to 2-methylpropanal, 2-methylbutanal, 3-methylbutanal and phenylacetaldehyde, which is also the most effective precursor for the production of benzaldehyde. Benzaldehyde is responsible for giving the nutty and almond aroma.
In addition, other aldehydes found in fermented rice bran in relatively low peak areas include heptanal, octanal, (2E)-hept-2-enal, oct-2-enal, furfural, decanal, non-2-enal, benzeneacetaldehyde, 3-methylbenzaldehyde and vanillin. Furfural, which provides bread, almond and sweet aroma, was derived from the thermal degradation of sugars such as fructose and glucose. Unsaturated aldehydes such as (2E)-hept-2-enal, oct-2-enal and non-2-enal are the products of linoleic acid oxidation that provides fat and green, nut and fat aroma, respectively. Non-2-enal and hexanal were also reported to cause rancid defects in virgin olive oil. Benzeneacetaldehyde was found in all varieties of non-fermented RB, while in fermented RB, it was only identified in Jeliteng, and the content tends to increase due to the fermentation process. Benzeneacetaldehyde may be formed from phenylalanine precursor. Vanillin, which gives vanilla aroma, originates from lignin degradation in aerobic conditions and might be formed by the thermal degradation of ferulic acid.

Naphthalene was the highest content of hydrocarbon that was found in RB. The relative peak areas of naphthalene which contributed to camphor wood-like aroma tends to increase due to fermentation. In other prior research, naphthalene was also found to be an odour-active compound in red and black rice.

Principle Component Analysis (PCA) of Volatile Compounds in RB

The PCA biplot of volatile compounds in fermented and non-fermented RB is shown in Figure 3.
Fig. 3: Principal Component Analysis (PCA) biplot of: a) non-fermented RB, b) fermented RB, c) fermented and non-fermented RB. The variable descriptions were referred to their corresponding compound in Table 1.

![Biplot](image)

Fig. 4: Summary of major volatile compounds (ppb) of Inpari 24 non-fermented (Inp24NF); Inpari 24 fermented (Inp24F); Saodah non-fermented (SaodahNF); Saodah fermented (SaodahF); Cempo Ireng non-fermented (CINF); Cempo Ireng fermented (CIF); Jeliteng non-fermented (JelitengNF); and Jeliteng fermented (JelitengF).
PCA was used to analyse the grouping of fermented and non-fermented RB in all varieties and to determine the volatiles characteristic in each group. The data variation (F1 and F2) of non-fermented, fermented and RB groups were 82.15%, 87.08% and 72.11%, respectively (Figure 3). Figure 3a showed that non-fermented RB variety Cempo Ireng, Inpari 24 and Saodah were grouped together with hexadecanoic acid (Ac6), methyl palmitate (Es13), (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene (d-limonene) (Mt1), benzaldehyde (Al9), nonanal (Al5) and octanal (Al3) as the dominant compounds, while Saodah was dominated with ethanol (Ol1). The result of fermented RB is shown in Figure 3b. Saodah and Inpari 24 RB were dominated by methyl palmitate (Es13), 9-octadecenoic acid, methyl ester, (E)- (Es19), butane-2,3-diol (Ol10), ethyl hexadecanoate (Es15) and ethanol (Ol1), while Jeliteng and Cempo Ireng had the higher amount of (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene (d-limonene) (Mt1), hexadecanoic acid (Ac6), 2-methoxyphenol (Ph1) and naphthalene (Hc5).

Cempo Ireng and Jeliteng might be in a group since they have the same pigment: black rice. Figure 3c showed the PCA of fermented and non-fermented RB. Fermented RB of Inpari 24, Saodah and Cempo Ireng were grouped together and their dominant compounds were methyl palmitate (Es13), 9-octadecenoic acid, methyl ester, (E)- (Es19), butane-2,3-diol (Ol10) and ethanol (Ol1) which contribute to oily, waxy, fatty, orris, fruity, creamy, buttery and sweet odours. Meanwhile, fermented Jeliteng was in the same group with all non-fermented RB. This group was characterized by higher amount of (4R)-1-methyl-4-prop-1-en-2-ylcyclohexene (d-limonene) (Mt1), hexadecanoic acid (Ac6), nonanal (Al5), naphthalene (Hc5) and benzaldehyde (Al9), which provided lemon, orange, green, fat, champor wood-like and almond aroma.

The dominant aroma of fermented RB were esters, especially methyl palmitate; ethyl hexadecanoate; 9-octadecenoic acid, methyl ester; ethyl (9Z)-octadec-9-enoate and methyl octadeca-9,12-dienoate (Figure 4). Esters were formed by the esterification of acids and alcohol, and provide fruity and floral notes. Therefore, JelitengF had the lowest relative peak areas of esters due to a few numbers of alcohols. The relative peak areas of esters might be affected by sugar content of RB, yeast strains, the temperature of fermentation and aeration. Alcohols that dominated the fermented RB were ethanol; 2-methylpropan-1-ol; 3-methylbutan-1-ol; butane-2,3-diol and 2-phenylethanol. Alcohol in fermented RB might be derived by sugar fermentation or amino acids catabolism, so the content of alcohol in fermented RB might be differed by sugar and amino acid availability. Other compounds that dominated fermented RBs were hydrocarbons. Tetradecane, pentadecane and naphthalene were the most abundant hydrocarbons contained in fermented RBs. Even so, it might have a little contribution on RB aroma because generally hydrocarbons have high threshold values. Acids also became one of main compounds in fermented RB. Prior study stated that acid was the most abundant volatile oil in red and black rice and tends to provide an unpleasant aroma. In this study, the relative peak areas of acids were relatively lower than other compounds such as esters and phenols. The differences might be affected by the degree of oxidation. RBs used in this study were fresh so the level of oxidation could be minimized and result in a lower level of acids.

QDA of Aroma Attributes
Aroma attributes of fermented and non-fermented RBs from each variety are shown in Figure 5. The QDA result showed that both the fermented and non-fermented RBs had a similar aroma attribute (sweet, caramel, rancid, acid, pungent, fatty, milky, woody, sour, cereal, vanilla, nutty, smokey) except “fermented” aroma, which was only identified in fermented RBs. PCA analysis was used group varieties that had some similarities and matching aromas, based on panellists’ identification. Both fermented and non-fermented RBs tended to have sweet, acid, vanilla, cereal and caramel aromas as their major attributes. The differences between these RBs were in the number of panellists that recognized the aroma. Aroma attributes of fermented RBs were noticed more by panellists; this might conclude that the intensities of aromas in fermented RBs were higher than non-fermented RBs. The aroma attribute similarities between fermented and non-fermented RBs were allegedly because the RBs used in this study were fresh; thus, they were not dominated by unwanted aroma like pungent and rancid. Sweet, caramel and vanilla aroma might have been derived from the Maillard reaction.
Fig. 5: Aroma attributes of a) non-fermented RB and b) fermented RB by QDA
Fig. 6: Principal Component Analysis (PCA) biplot of: a) non-fermented RB, b) fermented RB, c) fermented and non-fermented RB by QDA.
Non-fermented RBs in varieties Jeliteng and Inpari 24 were in the same group with cereal and acid as the dominant aromas, while Saodah and Cempo Ireng were in the same group with the dominant aromas of sweet, vanilla and caramel (Figure 6a). Biplot aroma of fermented RB is shown in Figure 6b. Inpari 24 and Cempo Ireng were in the same group with cereal, acid and sweet as the dominant aromas, while Saodah and Jeliteng were in the same group that were characterized by vanilla and caramel aromas. Figure 6c shows the PCA of fermented and non-fermented RB aromas. Fermented RB varieties Inpari 24, Jeliteng, Cempo Ireng are in the group with non-fermented Inpari 24. These RBs are characterized by acid and cereal aromas. Non-fermented RB varieties such as Jeliteng, Cempo Ireng and Saodah are in the same group with Saodah F; they were characterized by sweet, vanilla and caramel aromas. Figure 6a shows that non-fermented RB in Jeliteng and Inpari 24 varieties were in the same group with cereal and acid as the dominant aromas, while Saodah and Cempo Ireng were in the same group with the dominant aromas of sweet, vanilla and caramel. Biplot aroma of fermented RBs is shown in Figure 6b. Inpari 24 and Cempo Ireng were in the same group with cereal, acid and sweet as the dominant aromas, while Saodah and Jeliteng were in the same group that were characterized by vanilla and caramel aromas. Figure 6c shows the PCA of fermented and non-fermented RB aromas. Fermented RBs in Inpari 24, Jeliteng, and Cempo Ireng varieties were the group with non-fermented Inpari 24. These RBs are characterized by acid and cereal aromas. Non-fermented RB varieties such as Jeliteng, Cempo Ireng and Saodah were in the same group with the fermented Saodah; they were characterized by sweet, vanilla and caramel aromas.

Pearson’s Correlation of Volatile Compounds and Aroma Profile

The correlation between volatile compounds of RB are identified by GC-MS, and the aroma attributes are identified by QDA (Table 2). It shows that some volatile compounds have positive correlation with aroma description obtained by QDA. Hexanal has positive correlation with grass aroma. This is in accordance with the study that stated grass, tallow and fat as the aromas of hexanal. Oct-2-enal has positive correlation with fatty aroma, similar to a previous study’s description. The 2-methylpropan-1-ol and 3-methylbutan-1-ol were positively correlated with fermented aroma. It is also in accordance with the description by another previous study. Acetic acid was described to have sharp, pungent, sour and vinegar aroma and the Pearson’s correlation showed that acetic acid correlated with pungent aroma. Ethyl hexadecanoate and ethyl octadecanoate have positive correlation with fatty aroma, while ethyl (9Z)-octadec-9-enoate positively correlated with acid aroma. 2-methyl-5-[(E)-prop-1-enyl] pyrazine correlated to smokey aroma. These correlations match with the aroma description by previous studies.

Table 2: Pearson’s Correlation between RB Volatile Compounds by GC-MS and Aroma Description by Panelists

Variables	Hexanal	2-Octenal, (E)	1-Propanol, 2-methyl	1-Butanol, 3-methyl	Acetic acid	Ethyl hexadecanoate	Ethyl stearate	Ethyl oleate	Pyrazine, 2-methyl-5-(1-propenyl), (E)
Sweet	-0.035	0.232	0.003	-0.160	-0.177	0.165	0.189	0.163	0.567
Caramel	0.307	-0.418	-0.267	-0.195	-0.294	-0.251	-0.574	-0.421	0.082
Vanilla	-0.274	-0.549	-0.353	-0.221	0.002	-0.526	-0.570	-0.541	-0.114
Grass	0.895	0.519	0.278	0.135	-0.003	0.452	0.424	0.503	0.424
Milky	-0.384	-0.257	-0.152	-0.156	0.142	-0.194	-0.087	-0.244	-0.087
Fatty	-0.086	0.517	0.311	0.085	0.001	0.502	0.607	0.494	0.087
Nutty	0.312	0.264	0.339	0.236	-0.603	0.257	0.215	0.248	0.277
Smokey	0.259	0.422	0.376	0.284	0.179	0.458	0.535	0.459	0.555
Rancid	-0.836	-0.359	-0.192	-0.018	0.163	-0.303	-0.293	-0.337	-0.293
Acid	0.356	0.473	0.375	0.447	0.266	0.482	0.459	0.510	0.459
Cereal	0.197	0.497	0.627	0.760	-0.114	0.560	0.509	0.557	0.218
Pungent	-0.197	-0.292	-0.462	-0.446	0.543	-0.313	-0.238	-0.305	0.143
Earthly	0.094	-0.598	-0.633	-0.648	0.661	-0.588	-0.488	-0.582	0.683
Fermented	0.183	0.294	0.586	0.735	-0.259	0.382	0.314	0.371	0.314
Conclusion
Volatiles compounds found in RB consist of ester, hydrocarbon, aldehyde, ketone, acid, phenol, furan, lactone, monoterpenes, thiazole, sesquiterpenes, pyridine and pyrazine. A total of 114 volatile compounds were found, out of which 106 were contained in fermentation RB and 94 in non-fermentation RB. Fermentation on RB formed some new volatile compounds such as oct-2-enal; (3Z)-pent-3-en-2-one; 6-methyl-3,5-heptadiene-2-one; 3-methylbutan-1-ol; butane-2,3-diol; 3-pyridinemethanol (nicotinyl alcohol); methyl hexanoate; methyl (E)-2-hexenoate; methyl octanoate; ethyl dodecanoate; methyl pentadecanoate; methyl (9Z)-hexadec-9-enoate; ethyl (E)-hexadec-9-enoate; butyl hexadecanoate; ethyl octadecanoate; methyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate (methyl linolenate); dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone; 2,3-dimethylpyridine and 2-methyl-5-[(E)-prop-1-enyl]pyrazine. The result between GC-MS identification has some positive correlation with QDA; hexanal was correlated with grass; oct-2-enal, ethyl octadecanoate and ethyl hexadecanoate were correlated with fatty; 2-methylpropan-1-ol and 3-methylbutan-1-ol were correlated with fermented aroma; acetic acid was correlated with pungent; ethyl (9Z)-octadec-9-enolate was correlated with acid and 2-methyl-5-[(E)-prop-1-enyl] pyrazine was correlated with smoky.

Acknowledgements
The authors gratefully thank you to Anang Juni Yastanto, Desi Arofah, Yudha Restu Ginanjar Windi and all sensory panelists for technical assistance and helpful suggestions during these studies.

Funding
This work was supported by grants from the Ministry of Education, Culture, Research and Technology, Republic of Indonesia (contract No. 163/E4.1/ AK.04. PT/2021).

Conflict of interest
All authors declare no conflict of interest.

References
1. Goufo, P., Trindade, H. Factors Influencing Antioxidant Compounds in rice. Critical Reviews In Food Science and Nutrition. 2017; 57(5):893–922.
2. Sasmita, P., Suprihanto, Nugraha, Y., Hasmi, I., Satoto, Rumanti, I. A., Susanti, Z., Kusbiantoro, B., Rahmini, Hairmansis, A., Sitaresmi, T., Suharna, Norvyani, M., Arismiati, D. Deskripsi Varietas Unggul Padi. Balitbangtan; 2020.
3. Kristamtini. Stabilitas dan Adaptabilitas Varietas Padi Merah Lokal Daerah Istimewa Yogyakarta. Buletin Plasma Nutfah. 2016; 16(2):103.
4. Kristamtini, K., Taryono, T., Basunanda, P., Murti, R. H. Keragaman Genetik Kultivar Padi Beras Hitam Lokal Berdasarkan Penanda Mikrosatelit. Jurnal AgroBiogen. 2016; 10(2): 69.
5. Chumpolsri, W., Wijit, N., Boontakham, P., Nimmanpipup, P., Sookwong, P., Luangkamin, S., Wongporomchai, S. Variation of Terpenoid Flavor Odorants in Bran of Some Black and White Rice Varieties Analyzed by GC×GC-MS. Journal of Food and Nutrition Research. 2015; 3(2):114–120.
6. Zeng, M., Zhang, L., He, Z., Qin, F., Tang, H., Huang, X. Determination of Flavor Components of RB by GC-MS and Chemometrics. Analytical Methods Journal. 2012; 4(2):539-45.
7. Arsa, S., Theerakulkait, C. Preparation, Aroma characteristics and Volatile Compounds of Flavorings From Enzymatic Hydrolyzed RB Protein Concentrate. Science Food and Agricultural. 2018; 98(12):4479-4487.
8. Ardiannya, Nada, A., Rahmawati, N. T. I., Oktiani, A., David, W., Astuti, R. M., Handoko, D. D., Kusbiantoro, B., Budijanto, S., Shirakawa, H. Volatile Compounds, Sensory Profile and Phenolic Compounds in Fermented Rice Bran. Plants. 2021; 10(6):1073.
9. Schmidt, C.G., Goncalves, L.M., Pietto L. Antioxidant Activity and Enzyme Inhibition of Phenolic Acids from Fermented RB with Fungus Rhizopusoryzae. Food Chemistry. 2014; 146 (4):371–377.
10. Martins, S., Mussatto, S.I., Martínez, G.A., Montañez JS., Cristobal, N. Bioactive Phenolic Compounds: Production and Extraction by Solid-state Fermentation. A review. Biotechnology Advances. 2011; 29(11):365–373.

11. Oliveira, M. D. S., Feddern, V., Kupski, L., Cipolatti, E. P., Badiale-Furlong, E., de S.S.A. Changes in Lipid, Fatty Acids and Phospholipids Composition of Whole Rice Bran After Solid-State Fungal Fermentation. Bioresource Technology. 2011; 102(17):8335-8338.

12. Janarny, G., and Gunathilake K.D.P.P. Changes in Rice bran Bioactives, Their Bioactivity, Bioaccessibility and Bioavailability with Solid-State Fermentation by Rhizopus Oryzae. Biocatalysis and Agricultural Biotechnology. 2020; 23(2):1878-8181.

13. Ardiansyah, David, W., Handoko, D.D., Kusbiantoro, B., Budijanto, S., Shirakawa, H. Fermented Rice Bran Extract Improves Blood Pressure and Glucose in Stroke-prone Spontaneously Hypertensive Rats. Nutrition & Food Science. 2019; 49(5): 844-853.

14. Choi, S., and Lee, J. Volatile and Sensory Profiles of Different Black Rice (Oryza sativa L.) Cultivars Varying in Milling Degree. Food Research International. 2021; 141:110150.

15. Meilgaard, M.C., Civille, G.V.,and Carr, BT. Sensory Evaluation Techniques. Ed.Washington. CRC Press. CLL; 1999.

16. Kondjoyan, N., Berdagué, J.-L., & Berdagué, J. L. A Compilation of Relative Retention Indices for the Analysis of Aromatic Compounds. INRA de Theix: Saint Genes Champanelle; 1996. http://books.google.co.uk/books?id=CYDKAAAACAAJ

17. Goodner, K. L. Á. Practical Retention Index Models of OV-101, DB-1, DB-5, and DB-Wax for Flavor and Fragrance Compounds. LWT - Food Science and Technology. 2008; 41(6):951–958.

18. Pino, J. A., Marbot, R., Fuentes, V. Characterization of Volatiles in Bullock’s Heart (Annona reticulata L.) Fruit Cultivars from Cuba. Journal of Agricultural and Food Chemistry. 2003; 51(13):3836–3839.

19. Gao, C., Li, Y., Pan, Q., Fan, M., Wang, L., Qian, H. Analysis of the Key Aroma Volatile Compounds in Rice Bran during Storage and Processing via HS-SPME GC/MS. Journal of Cereal Science. 2021; 99:103178.

20. Njoroge, S. M., Ukeda, H., Sawamura, M. Changes of the Volatile Profile and Artifact Formation in Daidai (Citrus aurantium) Cold-Pressed Peel Oil on Storage. Journal of Agricultural and Food Chemistry. 2003; 51(14):4029–4035.

21. Cullere, L., Escudero, A., Cacho, J., Ferreira, V. Gas Chromatography – Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red. Journal of Agricultural and Food Chemistry. 2004; 52:1653–1660.

22. Ouzouni, P. K., Koller, W. D., Badeka, A. V., Riganakos, K. A. Volatile compounds from the fruiting bodies of three Hygrophorus mushroom species from Northern Greece. International Journal of Food Science and Technology. 2009; 44(4):854–859

23. Cho, I. H., Choi, H.-K. K., Kim, Y.-S. S., In, H. C., Choi, H.-K. K., Kim, Y.-S. S. Difference in the Volatile Composition of Pine-Mushrooms (Tricholoma matsutake Sing.) According to Their Grades. Journal of Agricultural and Food Chemistry. 2006; 54(13):4820–4825.

24. Umano, K., Hagi, Y., Nakahara, K., Shyoji, A., & Shibamoto, T. Volatile chemicals formed in the headspace of a heated D-Glucose/L-Cysteine Maillard Model System. Journal of Agricultural and Food Chemistry. 1995; 43(8):2212–2218.

25. Wedge, D. E., Klun, J. A., Tabanca, N., Demirci, B., Ozek, T., Baser, K. H. C., Liu, Z., Zhang, S., Cantrell, C. L., Zhang, J., Husnu. Bioactivity-Guided Fractionation and GC/MS Fingerprinting of Angelica Sinensis and Angelica Archangelica Root Components for Antifungal and Mosquito Deterrent Activity. Journal of Agricultural and Food Chemistry. 2009; 57(2):464–470.

26. Sanz, M. L., Sanz, J., Martínez-Castro, I. Presence of Some Cyclitols in Honey. Food Chemistry. 2004; 84(1):133–135.

27. Dregus, M., Engel, K. H. Volatile Constituents of Uncooked Rhubarb (Rheum rhabarbarum L.) Stalks. Journal of Agricultural and Food Chemistry. 2003; 51(22):6530–6536.

28. Wu, S., Zorn, H., Krieks, U., Berger, R. G. Characteristic Volatiles from Young and Chilled Chilled Tomatoes. Journal of Agricultural and Food Chemistry. 2005; 53(24):8569–8575.
Fruiting Bodies of Wild Polyporus sulfureus (Bull.:Fr.) Fr. Journal of Agricultural and Food Chemistry. 2005; 53(11):4524–4528.

29. Wu, Y., Pan, Q., Qu, W., Duan, C. Comparison of Volatile Profiles of Nine Litchi (Litchi chinensis Sonn. Cultivars from Southern China. Journal of Agricultural and Food Chemistry. 2009; 57(20):9676–9681.

30. Cheng, Y., Huynk-Ba, T., Blank, I., Robert, F., Heng, Y. O. N. G. C., A. T. U. H. U., Lank, I. M. R. E. B., Obert, F. A. R. Temporal Changes in Aroma Release of Longjing Tea Infusion: Interaction of Volatile and Nonvolatile Tea Components and Formation of 2-Butyl-2-octenal upon Aging. Journal of Agricultural and Food Chemistry. 2008; 56:2160–2169.

31. Bobo-Garcia, G.; Daidov-Pardo, G.; Arroqui, C.; Virseda, P.; Marin-Arroyo, M.R.; Navarro, M. Intra-laboratory Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Polyphenolic Extracts, and Comparison with Conventional Spectrophotometric Methods. Journal of the Science of Food and Agriculture. 2014; 95:204–209.

32. Selli, Serkan, Rannou, C., Prost, C., Robin, J., Serot, T. Characterization of Aroma-Active Compounds in Rainbow Trout (Oncorhynchus mykiss) Eliciting an Off-Odor. Journal of Agricultural and Food Chemistry. 2006; 54(25):9496–9502.

33. Mahajan, S. S. S., Goddik, L., Qian, M. C. C. Aroma Compounds in Sweet Whey Powder. Journal of Dairy Science. 2004; 87(12):4057–4063.

34. Du, X., Finn, C. E., Qian, M. C. Bound Volatile Precursors in Genotypes in the Pedigree of ‘Marion’ Blackberry (Rubus Sp.). Journal of Agricultural and Food Chemistry. 2010; 58(6):3694–3699.

35. Flavornet.org: From Flavornet. Available from: http://flavornet.org/flavornet.html. Accessed: May 15, 2021.

36. Lee, S.-J., Ahn, B. Comparison of Volatile Components in Fermented Soybean Pastes using Simultaneous Distillation and Extraction (SDE) with Sensory Characterization. Food Chemistry. 2009; 114(2):600–609.

37. Chung, H. Y., Fung, P. K., Kim, J.-S. Aroma Impact Components in Commercial Plain Sufu. Journal of Agricultural and Food Chemistry. 2005; 53(5):1684–1691.

38. Lopes-Lutz, D., Alviano, D. S., Alviano, C. S., Kolodziejczyk, P. P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities of Artemisia Essential Oils. Phytochemistry. 2008; 69(8):1732–1738.

39. Beck, J. J., Merrill, G. B., Higbee, B. S., Light, D. M., Gee, W. S. In Situ Seasonal Study of the Volatile Production of Almonds (Prunus dulcis) Var. ‘Nonpareil’ and Relationship to Navel Orangeworm. Journal of Agricultural and Food Chemistry. 2009; 57(9):3749–3753.

40. Lee, K. G., Lee, S. E., Takeoka, G. R., Kim, J. H., Park, B.-S. Antioxidant Activity and Characterization of Volatile Constituents of Beechwood Creosote. Journal of the Science of Food and Agriculture. 2005; 85(9):1580–1586.

41. Xu, Y., Fan, W., Qian, M. C. I., Ian, M. I. C. Q. Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction. Journal of Agricultural and Food Chemistry. 2007; 55(8):3051–3057.

42. Chung, H. Y., Ma, W. C. J., Kim, J.-S. S., Chen, F., Hau, Y. C., Ma, W. C. J., Kim, J.-S. S., Chen, F. Odor-Active Headspace Components in Fermented Red Rice in the Presence of a Monascus Species. Journal of Agricultural and Food Chemistry. 2004; 52(21):6557–6563.

43. Chinnici, F., Guerrero, E. D., Sonni, F., Natali, N., Marin, R. N., Riponi, C. Gas Chromatography-Mass Spectrometry (GC-MS) Characterization of Volatile Compounds in Quality Vinegars with Protected European Geographical Indication. Journal of Agricultural and Food Chemistry. 2009; 57(11):4784-4792.

44. The good scents company information system: From The Good Scents Company. Available from: http://www.thegoodscentscompany.com. Accessed: June 5, 2021.

45. Miller, G.H. Whisky Science: Treshold Data. Springer, Cham; 2019: p.421-530.

46. Yi, C., Zhu.H., Yang, R., Bao, J., Haiyun, H., Niu, M. Links Between Microbial Compositions and Volatile Profiles of Rice Noodle Fermentation Liquid Evaluated by 16S rRNA Sequencing and GC-MS. Food
47. Verma, D. K., Mahato, D. K., Billoria, S., Srivastav, P. P. Solid Phase Micro Extraction (SPME): A Modern Extraction Method for Rice Aroma Chemicals. In D. K. Verma, P. P. Srivastav (Eds.), Science and Technology of Aroma, Flavour and Fragrance in Rice. USA: Apple Academic Press; 2018: p.93–140.

48. Park, H. J., Lee, S. M., Song, S. H., Kim, Y. S. Characterization of Volatile Components in Makgeolli, a Traditional Korean Rice Wine, with or without Pasteurization, During Storage. *Molecules*. 2013; 18:5317-5325.

49. Jasti, T., Chintala, R. K., & Kolluru, V. C. Biological functions of volatile compounds extracted from the rice bran- A review. *Biomedical and Pharmacology Journal*. 2020; 13(1):213–231.

50. Sukhonthara, S., Theerakulkait, C., Miyazawa, M. Characterization of Volatile Aroma Compounds from Red and Black Rice Bran. *Journal of Oleo Science*. 2009; 58(3):155–161.

51. Yu A-N, Tan Z-W, Shi B-A. Influence of the pH on the Formation of Pyrazine Compounds by the Maillard Reaction of L-ascorbic Acid with Acidic, Basic and Neutral Amino Acids. *Asia Pacific Journal of Chemical Engineering*. 2012; 7(3):455–462.

52. Arsa, S., Puechkamutr, Y. Pyrazine Yield and Functional Properties of Rice Bran Protein Hydrolysate Formed by the Maillard Reaction at Varying pH. *Journal of Food Science and Technology*. 2021.

53. Buttery, R. G., Orts, W. J., Takeoka, G. R., & Nam, Y. Volatile Flavor Components of Rice Cakes. *Journal of Agricultural and Food Chemistry*. 1999; 47(10):4353–4356.

54. Arsa, S., Theerakulkait, C., Cadwallader, K.R. Quantitation of Three Strecker Aldehydes from Enzymatic Hydrolyzed Rice Bran Protein Concentrates as Prepared by Various Conditions. *Journal of Agriculture and Food Chemistry*. 2019; 67:8205-8211.

55. Lee, S.M., Hwang, Y.R., Kim, M.S., Chung, M.S., Kim, Y. S. Comparison of Volatile and Nonvolatile Compounds in Rice Fermented by Different Lactic Acid Bacteria. *Molecules*. 2019; 24:1183.

56. Culleré, L., Escudero, A., Cacho, J., Ferreira, V. Gas Chromatography-Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines. *Journal of Agricultural and Food Chemistry*. 2004; 52(6):1653-1660.

57. Shetty, K., Paliyath, G., Pommeto, A., Levin, R. E. Food Biotechnology. New York. Taylor and Francis Group; 2006.

58. Bocharova, O., Reshta, S., Eshtokin, V. Tolune and Benzyl Alcohol Formation in Fruit Juice Containing Benzoates. *Journal of Food Processing and Preservation*. 2016; 41(4):1-8.

59. Tang, H., Ma, J.-K., Chen, L., Jiang, L.-W., Xie, J., Li, P. GC-MS Characterization of Volatile Flavor Compounds in Stinky Tofu Brine by Optimization of Headspace Solid-Phase Microextraction Condition. *Molecules*. 2018; 23(12):3155.

60. Lombion, S., Comte, A., Tatu, L., Brand, G., Moulin, T., Millot, d. J.-L. Pattern of Cerebral Activation during Olfactory and Trigeminal Stimulations. *Human Brain Mapping*. 2009; 30(3):821-828.

61. Jayasena, D.D., Ahn, D.U., Nam, K.C., Jo, C. Flavour Chemistry of Chicken Meat: a Review. *Asian-Australasian Journal of Animal Science*. 2013; 26(5):732-742.

62. Pruckler, M., Lorenz, C., Endo, A., KraIer, M., Dürrschmid, K., Hendriks, K. Comparison of Homo-and Heterofermentative Lactic Acid Bacteria for Implementation of Fermented Wheat Bran in Bread. *Food Microbiol*. 2015; 49:211–219.

63. Lee, J., Xiao, L., Zhang, G., Ebeler, S.E., Mitchell, A.E. Influence of Storage on Volatile Profiles in Roasted Almonds (Prunus dulcis). *Journal of Agricultural and Food Chemistry*. 2014; 62:11236-11245.

64. Neugebauer, A., Granvogl, M., Schieberle, P., Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. *Journal of Agricultural and Food Chemistry*. 2020; 68:5927-5937.

65. Liu, S., Yang, L., Zhou, Y., He, S., Li, J., Sun, H., Yao, S., Xu, S. Effect of Mixed Moulds Starters on Volatile Flavor Compounds in Rice Wine. *Food Science and Technology*. 2019; 112:108215.

66. Rong, J. H., Xiong, S., Zhang, L. Z., Xie,
S. L., Xiong, S. B. Analysis of Volatile Flavor Components in Crisp Grass Carp Muscle by Electronic Nose and SPME-GC-MS. *Food Science*. 2015; 36(10):124–128.

67. Miyazawa, N., Nakanishi, A., Tomita, N., Ohkubo, Y., Maeda, T., Fujita, A. Novel Key Aroma Components of Galbanum Oil. *Journal of Agricultural and Food Chemistry*. 2009; 57(4):1433–1439.

68. Tamura, H., Boonbumrung, S., Yoshizawa, T., Varanyanond, W. Volatile Components of the Essential Oils in the Pulp of Four Yellow Mangoes (*Mangifera indica L.*) in Thailand. *Food Science and Technology Research*. 2000; 6(1):68–73.