Ultra-confined Propagating Exciton–Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs

Yipei Wang¹*, Aoning Luo¹, Chunyan Zhu¹, Zhiyong Li²³⁴ and Xiaoqin Wu¹*

Abstract

Hybrid coupling systems consisting of transition metal dichalcogenides (TMD) and plasmonic nanostructures have emerged as a promising platform to explore exciton–plasmon polaritons. However, the requisite cavity/resonator for strong coupling introduces extra complexities and challenges for waveguiding applications. Alternatively, plasmonic nano-waveguides can also be utilized to provide a non-resonant approach for strong coupling, while their utility is limited by the plasmonic confinement-loss and confinement-momentum trade-offs. Here, based on a cavity-free approach, we overcome these constraints by theoretically strong coupling of a monolayer TMD to a single metal nanowire, generating ultra-confined propagating exciton–plasmon polaritons (PEPPs) that beat the plasmonic trade-offs. By leveraging strong-coupling-induced reformations in energy distribution and combining favorable properties of surface plasmon polaritons (SPPs) and excitons, the generated PEPPs feature ultra-deep subwavelength confinement (down to 1-nm level with mode areas ~ 10⁻⁴ of λ²), long propagation length (up to ~ 60 µm), tunable dispersion with versatile mode characters (SPP- and exciton-like mode characters), and small momentum mismatch to free-space photons. With the capability to overcome the trade-offs of SPPs and the compatibility for waveguiding applications, our theoretical results suggest an attractive guided-wave platform to manipulate exciton–plasmon interactions at the ultra-deep subwavelength scale, opening new horizons for waveguiding nano-polaritonic components and devices.

Keywords: Strong coupling, Exciton–plasmon polaritons, Waveguiding, Transition metal dichalcogenides, Metal nanowires

Introduction

As an intriguing regime of the light–matter interaction, strong coupling between excitons and photons with the formation of polaritons enables great possibilities to modify the properties of the coupled systems, offering numerous opportunities for both fundamental research and technological applications including Bose–Einstein condensation [1], low-threshold lasing [2], ultrafast modulation and switching [3, 4], and all-optical logic operation [5]. Recently, owing to their remarkable excitonic properties such as large binding energies and strong oscillator strengths [6], monolayer transition metal dichalcogenides (TMDs) are emerging as promising candidate two-dimensional (2D) materials to sustain the exciton resonance for reaching the strong coupling regime. By combining them to plasmonic nanostructures with ultra-tight optical confinement, the great size mismatch between the optical field and the ultra-thin thickness of monolayer TMDs can be bridged, providing the unprecedented ability to explore the strong plasmon–exciton interaction at the deep subwavelength scale [7].
Generally, in the plasmonic-TMD system, the key for achieving strong coupling is to ensure a sufficiently large coupling strength that overcomes the overall damping of the coupled system. And a common strategy is to utilize tightly confined cavity modes or localized surface plasmon resonances (LSPRs), which have been previously realized by introducing plasmonic cavities or resonators including metallic F-P cavities [8], periodic structures [9–11], plasmonic dimers [12, 13], single nanoparticles [14–18], and nanogap resonators formed by nanoparticle-over-mirror configurations [19–21]. However, the requisite cavity/resonator may introduce extra complexities [22, 23] and challenges for flexible mode engineering [24], on-chip integration [25], and remote exciton–polariton transportations [26] for waveguiding applications.

On the other hand, besides the cavity modes and LSPRs, propagating modes can also be utilized to provide a non-resonant approach for strong coupling [23, 27–30], but have received little attention in the plasmonic nano-waveguiding system. As one of the simplest one-dimensional (1D) nano-waveguides to support propagating surface plasmon polaritons (SPPs), metal nanowires (MNWs) possess unique advantages including excellent compatibilities to on-chip nanophotonics [31] and deep subwavelength confinement (e.g., ∼10–2 ∼ 10–3 of λ2) [32–35] for promoting light–matter interactions, offering a potential guided-wave platform for strong coupling. However, the utility of MNWs is limited by the well-known trade-off between the energy confinement and the loss of SPPs [33, 35]. In addition to the confinement-loss trade-off, another fundamental hurdle is the trade-off between confinement and momentum mismatch to photons [36], leading to challenges for efficient photon-SPP conversions and consequently weakened compatibilities for integrated hybrid components and devices.

Here, based on a MNW-TMD system, we theoretically propose a cavity-free strong coupling approach for generating ultra-confined propagating exciton–plasmon polaritons (PEPPs) that beat the plasmonic confinement-loss and confinement-momentum trade-offs. We show that the strong coupling between SPPs in a single MNW and excitons in a monolayer WS2 results in a back-bending dispersion with the complex momentum and an anti-crossing dispersion with the complex frequency, exhibiting large Rabi splitting energies with tunability. Due to the strong-coupling-induced reformation in the energy distribution, the generated PEPPs are much more confined than the original SPPs in MNWs, offering the possibility to realize a full width at half maximum of the energy distribution at the ultra-deep subwavelength scale (∼1 nm). Meanwhile, as a mixture of SPPs and excitons, PEPPs are highly versatile that can be manipulated to exhibit exciton-like character with extremely tight confinement (∼10–4 of λ2) or SPP-like character with high quality and long propagation distance (up to ∼60 µm). More importantly, we also show that PEPPs represent another class of waveguiding polaritons with much more efficient confinement-loss and confinement-momentum trade-offs that outperforms the original SPPs, which may offer new opportunities for waveguiding polaritonic applications such as ultra-compact integrated circuits and high-performance polaritonic devices.

Methods

The proposed MNW-TMD structure consists of a single MNW waveguide with a monolayer TMD cladding, which is schematically plotted in Fig. 1a. The MNW is assumed to have a uniform diameter with a smooth surface. In such configuration, the tightly confined SPP with strong field enhancement around the MNW–TMD interface facilitates the plasmon–exciton interaction. As a model system for theoretical investigation, a WS2-clad Ag MNW is selected, in which the permittivities of WS2 (εWS2) and Ag (εAg) are described by a Lorentz oscillator model [25] and an effective Drude model [37], respectively (see supporting information for details). The thickness of the WS2 layer is assumed to be 1 nm [12]. For simplicity and facilitating strong coupling, we only focus on the coupling of excitons to the fundamental mode in the Ag MNW, since the fundamental mode is more confined than the other order ones [35, 38], and the single-mode operation is favorable and can be readily realized in many applications [32, 33, 35, 39].

For theoretical investigation of the strong coupling and the formed PEPP in the proposed coupling system, the wave equations are numerically solved in both complex-frequency (complex-ω) and complex-momentum dispersion.
Results and Discussion

Cavity-Free Strong Coupling Between Excitons and 1D-SPPs

Figure 2A gives the complex-\(k \) solution of the PEPP with the MNW diameter of 50 nm. As to its dispersion curve (\(\hbar \omega \) vs. Re(\(k \)), left panel), the hybridization of the exciton (black dashed line) and the SPP mode (orange dashed line) gives rise to the anomalous dispersion in the vicinity of the exciton resonance with a significant back-bending feature, clearly indicating strong coupling [23, 27, 29]. Meanwhile, when \(\omega \) is approaching the exciton resonance, Im(\(k \)) of the PEPP dramatically increases (Fig. 2a, right panel), resulting in a drastic reduction in its propagation length that will be discussed later in waveguiding properties. For comprehensive characterization, Fig. 2b presents the corresponding complex \(\omega \) solutions of the PEPP. Instead of the continuous dispersion curve in the complex-momentum plane, the dispersion in terms of \(\hbar \Omega_R \) versus \(k \) (Fig. 2b, left panel) exhibits two asymptotic branches (upper branch: blue dots; lower branch: red dots) disconnected by a polaritonic gap around the exciton resonance, manifesting itself in an anti-crossing behavior with the Rabi splitting energy (\(\hbar \Omega_R \)) of \(\approx 85.7 \) meV at the zero-detuning (green double arrow). Compared to the SPP, the PEPP exhibits a “left-pulling” trend in the complex-\(\omega \) trajectory (Fig. 2b, right panel) and becomes highly damped around the excitonic resonance which corresponds well to other propagating polaritons previously reported [23]. Note that the aforementioned back-bending and anti-crossing behaviors in dispersions are not inconsistent with each other [23, 29, 40], and they are actually the results obtained at a given frequency or momentum and can be both experimentally measured by momentum- and frequency-resolved spectroscopy [40].

For further verification, we approximate our system to the coupled-oscillator model (COM) [41]:

\[
\begin{bmatrix}
\omega_{\text{SPP}} - \frac{i \gamma_{\text{SPP}}}{2} & \frac{\Omega_e}{2} & \frac{\Omega_x}{2} \\
\frac{-\Omega_e}{2} & \omega_{\text{ex}} - \frac{i \gamma_{\text{ex}}}{2} & 0 \\
\frac{-\Omega_x}{2} & 0 & \omega_{\text{ex}} - \frac{i \gamma_{\text{ex}}}{2}
\end{bmatrix}
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}
= \omega_{\pm}
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix},
\]

from which the eigenvalues \(\omega_\pm \) of the PEPP can be analytically obtained through diagonalization of the Hamiltonian matrix, and the eigenvectors \((\alpha, \beta)_\pm \) are determined for revealing contributions from SPPs (\(|\alpha_\pm|^2 \)) and excitons (\(|\beta_\pm|^2 \)). Here, \(\omega_{\text{SPP}} \) and \(\gamma_{\text{SPP}} \) are eigenfrequency and damping frequency of the SPP mode (i.e., \(\omega_{\text{SPP}} = \text{Re}(\omega), \gamma_{\text{SPP}} = 2|\text{Im}(\omega)| \)) extracted from the orange
dashed line in Fig. 2b). \(\omega_{\text{ex}} \) and \(\gamma_{\text{ex}} \) are exciton resonance frequency and damping frequency of the WS\(_2\) material. With the above parameters, the analytically obtained results using the COM (solid line in Fig. 2b) exhibit excellent agreements to numerical simulations for both of the dispersion curve and the complex-\(\omega \) trajectory. Note that \(\text{Im}(\omega) \) around the excitonic resonance from the simulation is slightly larger than the one analytically obtained, which may be attributed to the extra dissipation caused by the extremely tight confinement [42, 43] near the excitonic resonance that is not considered in the analytical model. To claim the strong coupling, the strict criterion \(h\Omega > h(\gamma_{\text{SPP}} + \gamma_{\text{ex}})/2 \) [41] is well fulfilled comparing the Rabi energy \(h\Omega \) of \(\sim 85.7 \) meV to the overall damping in the system \(h(\gamma_{\text{SPP}} + \gamma_{\text{ex}})/2 \) of \(\sim 18 \) meV. As to fractions of SPPs and excitons in PEPPs, they are equally contributed (|\(\alpha_a \)|\(^2\)=|\(\beta_a \)|\(^2\)=0.5) for both upper and lower branches at the zero-detuning (Fig. 2c) corresponding to \(h\omega_a = 2.057 \) (\(\sim 603 \) nm in wavelength \(\lambda \)) and 1.971 eV (\(\lambda \sim 629 \) nm), respectively. Within this range (1.971 eV < \(h\omega < 2.057 \) eV), PEPPs are dominant by excitons in terms of |\(\beta_a \)|\(^2\) > 0.5 (exciton-like) and they are otherwise SPP-like outside the range.

Mode Characteristics and Waveguiding Properties of PEPPs

The above results evidently show that SPPs in MNWs can be strongly coupled to excitons in the WS\(_2\) monolayer, creating PEPPs that are hybrid mixtures of SPPs and excitons. Due to the hybrid nature, the fractions of SPPs and excitons in PEPPs can be manipulated by the wavelength \(\lambda \) (which is discussed in Fig. 2c), offering opportunities to alter and even reverse the energy distribution of PEPPs. To gain a deeper insight, Fig. 3a, b gives cross-sectional mode profiles and \(\lambda \)-dependent fractional energy distributions of PEPPs, in which the fractional energy inside the MNW (\(\eta_m \)) and the WS\(_2\) layer (\(\eta_l \)) is calculated via their corresponding energy density \(W(x, y) \) [44] integrations (using Additional file 1: Eq. S1). For reference, the corresponding fractional energy for the SPP is also provided (pale red and blue dashed lines, Fig. 3b)

It can be seen that at wavelengths distant away from the excitonic resonance (e.g., \(\lambda = 560 \) and 680 nm, Fig. 3a(i), (v)), where the plasmon–exciton interaction is relatively weak, the PEPP shows a SPP-like mode character with a much larger \(\eta_m \) than \(\eta_l \) (e.g., \(\eta_m \sim 0.46 \) vs. \(\eta_l \sim 0.10 \) at \(\lambda = 560 \) nm). As wavelengths approach the excitonic resonance, \(\eta_l \) rapidly increases with more energy being pulled out from the MNW and mode profiles shifted to the WS\(_2\) layer (e.g., Fig. 3a(ii), (iv) for \(\lambda = 596 \) and 636 nm, \(\eta_m = \eta_l \sim 0.32 \)). And at wavelengths of 603 and 629 nm, \(\eta_l \) increases to 0.5 (which also coincides very well with the calculated result from |\(\beta_a \)|\(^2\)=0.5), indicating that the PEPP mode enters the exciton-like region (blue-filling area, Fig. 3b). Finally, around the excitonic resonance wavelength (\(\lambda \sim 616 \) nm), \(\eta_l \) reaches its maximum (\(\eta_l \sim 0.94 \)), enabling an extremely tight confinement with most of the energy inside the WS\(_2\) layer (Fig. 3a(iii)). To better visualize such strong-coupling-induced reformation in the energy distribution, Fig. 3c gives the normalized energy density along the \(x \) direction \(W(x, 0) \) at \(\lambda = 616 \) nm. Yellow line: PEPP. Gray solid and dashed lines: SPP and its \(10 \times \) times multiplication for clear visualization. Inset: coordinates on the cross-section. The diameter for the Ag MNW here is 50 nm.
interaction that may have great potentials for nonlinear applications.

For further quantitative characterization of the confinement, Fig. 4a gives mode areas A_m (calculated using Additional file 1: Eq. S2) of the PEPP (red dotted line). As is shown, benefitted from the strong-coupling-induced reformation in the energy distribution, A_m of the PEPP is always much smaller than the SPP (red-dashed line), making it possible to realize an extremely small value down to 0.000169 μm2 ($\sim 4 \times 10^{-4}$ of λ^2, see right y-axis for the normalized mode area) that is only $\sim 1/20$ the size of the corresponding SPP. On the other hand, the propagation lengths L_m (calculated using Additional file 1: Eq. S3) are shown in Fig. 4b. The profound dip in the L_m curve with a drastic reduction from ~ 6 to 0.24 μm is due to the most energy distributed in the WS$_2$ layer with higher absorption, which may have potential applications in all-optical switching and modulation. For other applications where the long-range propagation is desired, L_m of the PEPP can be manipulated by increasing the MNW diameter, while the strong coupling still holds valid (e.g., $L_m = \sim 60$ μm can be achieved for a 400-nm-diameter MNW which will be discussed in the next section). Moreover, as a mixture, the PEPP inherits both properties of the SPP and the exciton, offering opportunities to achieve higher versatility and superior quality than the bare SPP. For demonstration, the calculated figure of merit (FOM $= L_m / (2 \sqrt{A_m / \pi}$) [45]) of both PEPP and SPP is shown in Fig. 4c. Instead of the monotonic behaviors of the SPP, the FOM curve of the PEPP is divided into two types of regions (indicated by the blue-filling and non-filling areas) according to the mode characters (exciton-like and SPP-like). In the blue-filling zone where the exciton dominates, the PEPP is able to exert its full potential for confining energy at the ultra-deep subwavelength scale (e.g., at the maximum confinement wavelength of ~ 616 nm, blue star), while in the SPP-like region, the PEPP can offer higher FOM than SPP with two local maximum values of ~ 127 and 131 (at the maximum FOM wavelengths: ~ 596 and 642 nm, green diamond and square) around transitions of mode characters.

Tunability in Rabi Splitting Energy with Tailored Dispersions

Besides the versatility in operation wavelengths, the PEPP and strong coupling behaviors can also be manipulated by the diameter (D) of the MNW (Fig. 5), exhibiting large tunability with tailored dispersions. As shown in Fig. 5a, by increasing D from 50 to 400 nm, the back-bending feature in the anomalous region becomes less profound (Fig. 5a(i)) with a smaller Rabi splitting (Fig. 5a(ii)) in dispersions. The corresponding $\hbar\Omega_R$ varies from ~ 85.7 to ~ 34.2 meV (dotted line in Fig. 5b). To understand this decline trend, we derive an analytical expression of Ω_R in a general form, which is calculated via the coupling strength between the SPP and the exciton resonance as [46, 47]

$$\Omega_R = 2g = 2\mu\sqrt{N E_m}/\hbar \tag{2}$$

where g is the zero-detuning coupling coefficient, μ is the transition dipole moment of the exciton, N is the numbers of the excitons, and E_m is the electric field amplitude of the SPP per photon. Since the WS$_2$ is described by the

Fig. 4 Waveguiding properties including a mode area A_m (left y-axis) and normalized mode area A_m/λ^2 (right y-axis), b propagation length L_m, and c figure of merit (FOM) of the PEPP and SPP with a MNW diameter of 50 nm. Compared to the monotonic behaviors of the SPP, the PEPP is able to exert its full strength for energy confinement in the exciton-like region (blue-filling area in c), while is capable of achieving excellent FOM in the SPP-like region (non-filling area in c). Blue star: maximum confinement. Green diamond and square: local maximum FOMs. The diameter for the Ag MNW here is 50 nm.
Lorentz oscillator model, the overall transition dipole moments term \(\mu \sqrt{N} \) can be estimated as [23, 48]

\[
\mu \sqrt{N} = \mu \sqrt{\rho V} = \sqrt{\hbar \varepsilon_0 f \omega_p^2 V / 2\omega_{ex}},
\]

where \(\rho, f, \omega_p, \omega_{ex} \) represent the oscillator density, oscillator strength, and resonance frequency of the WS\(2\). \(V \) is the volume of the WS\(2\) layer that can be obtained from its geometric thickness \(t_1 \) as \(V = \pi (D + t_1) t_1 L = A_1 L_m \), where \(A_1 \) denotes the cross-sectional area of the WS\(2\) layer. On the other hand, \(E_m \) can be approximately calculated through the mode volume \(V_m \) [49]

\[
E_m = \sqrt{\hbar \omega / 2\varepsilon_0 \varepsilon_b V_m} = \sqrt{\hbar \omega / 2\varepsilon_0 \varepsilon_b A_m L_m},
\]

where \(A_m \) is the mode area of the SPP mode. At the zero-detuning where \(\omega = \omega_{ex} \) by substituting Eqs. (3–4) into Eq. (2), we can obtain the \(\Omega_R \) as

\[
\Omega_R = \sqrt{f \omega_p^2 A_1 / \varepsilon_b A_m}.
\] (5)

As shown by the pale green dotted line in Fig. 5b, \(\hbar \Omega_R \) obtained using Eq. (5) agrees reasonably well with the simulated one (green squared line), further validating our result. The decline trend in \(\hbar \Omega_R \) is due to the increasing \(A_m \) in a thicker MNW with a consequent weaker plasmon–exciton interaction. Despite of the reduced \(\hbar \Omega_R \), the strong coupling condition is still fulfilled for every diameter within the range we presented compared to the overall damping of the system (gray dashed line). On the other hand, although \(\hbar \Omega_R \) shown here (e.g., \(\hbar \Omega_R / \hbar \omega_{ex} = \sim 4.2% \) for \(D = 50 \text{ nm} \)) cannot reach the ultrastrong coupling regime (\(\hbar \Omega_R / \hbar \omega_{ex} > 20% \) [50]), it can be further enhanced by decreasing \(A_m \). And potential strategies for reducing \(A_m \) may include reducing the diameter of the MNW [32] and utilizing nano-focusing structures (e.g., tapered plasmonic waveguides) [51, 52]. Along with the tailored \(\hbar \Omega_R \) and dispersions, waveguiding properties of PEPPs can also be engineered with varied MNW diameters, exhibiting large tunability with \(A_m \) (~0.000169 \(\mu \text{m}^2 \) to \(\sim 0.09 \mu \text{m}^2 \)) and \(L_m \) (~0.24 \(\mu \text{m} \) to ~60 \(\mu \text{m} \)) ranging across two orders of magnitudes, and FOM up to 250 (see Additional file 1: Fig. S4–S9 for waveguiding properties of MNW with \(D \) from 75 to 400 nm). Note that even for the thickest MNW (\(D = 400 \text{ nm} \)) we discussed here, the energy can still be tightly confined within the ultra-thin WS\(2\) layer at the 1-nm level due to the strong coupling (see Additional file 1: Fig. S10).

Exceptional Confinement-Loss and Confinement-Momentum Trade-Offs

In this section, we show that the PEPP provided by our strongly coupled MNW-WS\(2\) structure represents another kind of waveguiding polaritons that is superior than the original SPP in MNWs. To understand its merits, parametric plots allowing direct comparison between different polaritons [53] are provided in Fig. 6. Due to two types of mode characters for the PEPP, operations in the exciton-like region at the maximum confinement wavelength (e.g., blue star in Fig. 4c for \(D = 50 \text{ nm} \)) and in the SPP-like region with the two local maximum FOMs (e.g., green square and diamond in Fig. 4c for \(D = 50 \text{ nm} \)) are considered. Figure 6a gives parametric plots of normalized propagation length (\(L_m / \lambda \)) versus normalized mode area (\(A_m / \lambda^2 \)), showing the confinement-loss trajectory over the range of \(D \) from 50 to 400 nm. As is shown, polaritons of the same character type follows the same trajectory, allowing a fair comparison between the PEPP and the SPP that is independent of the geometric size. As indicated by the inset, the trajectories toward
the efficient SPP excitation and may further limits its application (e.g., ultra-thin MNW) [35]. Figure 6b gives parametric plots of normalized momentum (Re(k)/k0) vs. normalized mode area (A_m/λ), where the trajectory towards the bottom-left area represents the best performance in confinement-momentum relations. As is shown, PEPPs outperform the SPP and offer the capability to realize a much tighter confinement with a smaller momentum mismatch to the free-space photon (e.g., for the SPP, A_m of ~0.01 λ^2 with a Re(k)/k_0 of ~1.62, while for PEPPs, A_m of ~0.01 λ^2 (SPP-like) and ~0.0015 λ^2 (exciton-like) can be achieved at a Re(k)/k_0 as small as ~1.17). The smaller momentum mismatch indicates the less momentum needs to be compensated, which may facilitate a more efficient polariton excitation [36] with an improved compatibility for integrated photonic/plasmonic structures. Such compatibility offers the opportunity to realize high-performance hybrid polaritonic components and devices (e.g., by integrating with low-loss photonic waveguides), where ultra-deep subwavelength confinement and low propagation loss can be simultaneously achieved.

Considerations for Practical Applications

The fabrication of the proposed structure is experimentally possible and can be realized by various techniques for the integration of nano-waveguides and 2D materials [54–56]. For instance, a bare Ag MNW with a uniform diameter and smooth surface can be chemically synthesized by a solution [57]- or vapor-phase [58] method. The monolayer 2D material can be wrapped around the MNW via micro-manipulation under an optical microscope [54, 55] or a capillary-force-driven rolling-up process [56]. By selectively wrapping the WS_2 monolayer on one segment of the MNW, we can seamlessly integrate our proposed WS_2-clad MNW to the bare MNW for efficient external coupling. For demonstration, 3D simulations are performed (see Additional file 1: Fig. S11 for configurations). Energy density distributions of a bare MNW without cladding (Fig. 7a), a WS_2-clad MNW (Fig. 7b), and the integrated structure (Fig. 7c) are, respectively, provided. Since the energy is highly concentrated in the 1-nm WS_2 cladding, energy densities are normalized and plotted in a color bar with saturation [59] for better visualization and comparison. As is illustrated by the schematic plot in Fig. 7c, the left part of the integrated structure is the bare MNW without cladding, while only the right part is wrapped with the WS_2 layer. In this case, the plasmon mode of the bare part (inset P1 in Fig. 7c) is firstly excited and then efficiently converted to the PEPP mode (inset P2 in Fig. 7c) at the right part. Note that the simulated mode profiles for the plasmon and PEPP modes (insets P1 and P2 in Fig. 7c) in the integrated structure also agree well with the one individually
the fundamental TM mode under the following considerations: (1) The single-mode operation is usually favorable [32, 33] and can be readily realized for practical applications (e.g., by aligning the polarization of the incident light to the long axis of the MNW to only excite the TM mode) [35, 39]; (2) more importantly, the HE mode has a dramatically increasing \(A_m \) with the decreasing MNW diameter, making it non-confined with an almost infinitely large \(A_m \) at the small diameter we discussed here [35], which is difficult to be excited and not suitable for strong coupling applications.

Finally, for guiding practical applications, we investigate three typical situations including a substrate-supported WS\(_2\)-clad MNW, a multilayer WS\(_2\)-clad MNW, and a WS\(_2\)-clad MNW with an insulating layer between the metal and WS\(_2\), which are shown, respectively, in Fig. 8a–c.

For the substrate-supported case (Fig. 8a), we calculate the situation of a WS\(_2\)-clad MNW on a silica substrate \((n=1.45)\). As is shown, the energy can be well concentrated within the WS\(_2\) layer (Fig. 8a(i)), and the strong coupling effect is still valid at the presence of the substrate, exhibiting a similar Rabi energy \(\hbar \Omega = \sim 86.9 \text{ meV} \) compared to the free-standing case \(\hbar \Omega = \sim 85.7 \text{ meV} \) (Fig. 8a(ii)). For the waveguiding properties, the substrate-supported MNW features asymmetric SPP mode with improved waveguiding properties [32]. Since the PEPP consists of both SPP and exciton, the mode profile of the PEPP also becomes asymmetric with more energy distributed towards the substrate side (Fig. 8a(ii)). Meanwhile, compared to the symmetric PEPP mode in the free-standing WS\(_2\)-clad Ag nanowire (black dashed lines in Fig. 8a(iii–v)), the asymmetric PEPP mode has a tighter confinement (red line in Fig. 8a(iii)), a slightly shorter \(L_m \) (red line in Fig. 8a(iv)), and an overall enhancement in FOM (red line in Fig. 8a(v)), which may be mainly due to the improved properties of the asymmetric SPP [45, 60, 61]. As can be seen, at the wavelengths far away from the excitonic resonance, PEPPs are mostly composed of SPPs, resulting in a relatively large difference in the waveguiding properties between the free-standing and the substrate-supported cases (e.g., Fig. 8a(iii), (iv)), while at the wavelengths close to the excitonic resonance, such difference becomes almost negligible since the excitons contribute mostly to the PEPPs.

For the multilayer case, a Ag MNW with a multilayer WS\(_2\) cladding is investigated and schematically illustrated in Fig. 8b(i). The thickness \((t_e=4 \text{ nm})\) and permittivity parameters \((\varepsilon_r=20.25, \frac{\hbar^2}{\varepsilon_r} \Omega_p^2 = 0.8 \text{ eV}^2, \hbar\omega_p = 2 \text{ eV} \text{ and } \hbar\gamma = 50 \text{ meV})\) of the multilayer WS\(_2\) are taken from Ref. [62]. Due to the larger overall transition dipole moments \((\mu \sqrt{N} \text{ which is proportional to the thickness } t_p \text{ see})\)
Eq. 3), the Rabi energy ($\hbar \Omega_R \approx 127.5$ meV) of the strong coupling is greater than the monolayer case (Fig. 8b(ii)). On the other hand, compared to the monolayer case, the increase in the t_i is not favorable for the energy confinement to achieve a small A_m (Fig. 8b(iii)). Moreover, the exciton damping $\hbar \gamma_{ex}$ of the multilayer WS$_2$ (50 meV) is much larger than that of the monolayer WS$_2$ (22 meV), leading to extra loss in the coupling system. As

Fig. 8 Typical situations of a silica substrate-supported WS$_2$-clad MNW (Ag-WS$_2$-sub.), b a multilayer WS$_2$-clad MNW (Ag-multi. WS$_2$), and c a WS$_2$-clad MNW with a silica insulating layer (Ag-SiO$_2$-WS$_2$). (i) Schematic plot (left) and mode profile at the excitonic resonance (right). (ii) Rabi splitting dispersion of the corresponding PEPs (red lines). Yellow and black dashed lines: SPPs and excitons. (iii) Normalized mode area A_m/λ^2. (iv) Propagation length L_m. (v) Figure of merit (FOM). The free-standing WS$_2$-clad MNW (Ag-WS$_2$) is also provided for comparison and plotted as black dashed lines in (ii–v). The thickness of the insulating layer in c is 5 nm. The diameter of the Ag MNW here is 50 nm.
a result, compared to the monolayer WS$_2$-clad Ag MNW (black dashed lines in Fig. 8b(iv, v)), PEPP modes in the multilayer WS$_2$-clad Ag MNW (red lines in Fig. 8b(iv, v)) exhibit much shorter L_{m} and much poorer FOM, which may limit their waveguiding applications.

In some applications, the direct contact of metal and TMD materials may induce weak electronic coupling that affects the exciton formation in the WS$_2$ and the electron dynamics in the metal [63, 64]. To minimize the influence, one may use the structure of a core/shell MNW with a TMD layer. As is schematically illustrated in Fig. 8c(i), a Ag-core/silica-shell MNW [65, 66] with a monolayer WS$_2$ cladding is used, where the silica shell serves as an insulating layer between the Ag and the WS$_2$. For such configuration, the strong coupling can also be achieved (Fig. 8c(ii)) with comparable waveguiding properties to the ones without the dielectric insulating layer (Fig. 8c(iii–v)).

Conclusion

In summary, we have theoretically demonstrated plasmon–exciton strong couplings in a single Ag MNW with a monolayer WS$_2$ cladding, generating PEPPs with exceptional properties. As to strong coupling behaviors, solutions in both complex-momentum and complex-frequency planes have been investigated, revealing the back-bending and anti-crossing features with tunable Rabi splitting energies that can be controlled by varying the diameter of MNWs. We have also shown that results obtained from numerical simulations exhibit very good agreement to the ones obtained from the COM model and the analytical estimation. For the generated PEPPs, fractions, model profiles, energy density distributions, waveguiding properties including mode areas, propagation lengths, and FOMs have been investigated to provide a comprehensive characterization. We have shown that energy distributions can be reformed by the strong coupling, yielding a much tighter confinement of the PEPP than the original SPP. Meanwhile, due to the hybrid nature of polaritons, the PEPP is highly versatile possessing SPP-like and exciton-like characters that can be operated at different wavelengths. When operated at the exciton-like region, the PEPP can exert its full potential to reach the ultra-deep subwavelength confinement, while in the SPP-like region, the PEPP exhibits excellent FOM with long propagation distance and tight confinement. Moreover, by comparing trajectories in the parametric plots, we have also demonstrated that PEPPs represent another kind of waveguiding polaritons with exceptional confinement-loss and confinement-momentum trade-offs that outperform the SPP in MNW. Such exceptional properties are favorable for integrations with low-loss photonic waveguides to form hybrid photonic-polaritonic structures, making it possible to bypass the barriers of nano-plasmonics with simultaneous realization of ultra-deep subwavelength confinement and low propagation loss. Note that this strong coupling scheme can be extended to other configurations of different nano-waveguides and TMDs (e.g., a TMD-clad pentagonal MNW and a MNW on a flat TMD, see Additional file 1: Figs. S13–S14), offering a simple and promising guided-wave platform to manipulate the plasmon–exciton interaction at the ultra-deep subwavelength scale. The generated PEPPs with exceptional properties may open new opportunities for various integrated polaritonic components and devices such as on-chip polaritonic circuits, polariton lasers, and all-optical switches.

Abbreviations

TMD: Transition metal dichalcogenides; PEPPs: Propagating exciton–plasmon polaritons; SPPs: Surface plasmon polaritons; 1D: One dimension; 2D: Two dimensions; Ag: Silver; WS$_2$: Tungsten disulfide; FWHM: Full width at half maximum; MNWs: Metal nanowires; COM: Coupled-oscillator model; FOM: Figure of merit.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s11671-022-03748-7.

Acknowledgements

The authors thank Prof. Pan Wang and Dr. Junsheng Zheng for helpful discussion.

Author Contributions

YW designed the work, acquired the data, and drafted the manuscript. AL, CZ, ZL, and XW supplied help for data analysis and manuscript revision. YW and XW supervised the investigation. All authors read and approved the final manuscript.

Funding

Funding was provided by National Natural Science Foundation of China (Nos. 62005031 and 62005032), Fundamental Research Funds for the Central Universities (Nos. 2021CDJQY-046 and 2022CDJXY-018), and Innovation Support Plan for Returned Overseas Scholars (No. cx2021058).

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics Approval and Consent to Participate

All authors state that they adhere to the Ethical Responsibilities of Authors.

Consent for Publication

All authors consent to the publication of this manuscript.

Competing interests

The authors declare that they have no competing interests.
References

1. Deng H, Haug H, Yamanoto Y (2010) Exciton-polariton Bose–Einstein condensation. Rev Mod Phys 82:1489–1537
2. Ramezani M, Halpin A, Fernández-Domínguez AI et al (2017) Plasmon-exciton-polariton lasing. Optica 4:31–37
3. Du W, Zhao J, Zhao W et al (2019) Ultrafast modulation of exciton-plasmon coupling in a monolayer WSe₂−Ag nanodisk hybrid system. ACS Photonics 6:2822–2840
4. Tang Y, Zhang Y, Liu Q et al (2022) Interacting pllexcitions for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci Appl 11:94
5. Zasedatelev AV, Baranikov AV, Urbosn D et al (2019) A room-temperature organic polariton transistor. Nat Photonics 13:378–383
6. Regan EC, Wang D, Paik EY et al (2022) Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat Rev Mater. https://doi.org/10.1038/s41770-022-00440-1
7. Wei H, Yan X, Niu Y et al (2021) Plasmon-exciton interactions: spontaneous emission and strong coupling. Adv Funct Mater. https://doi.org/10.1002/adfm.202106651
8. Wang S, Li S, Chervy T et al (2016) Coherent coupling of WS₂-monolayers with metallic photonic nanostructures at room temperature. Nano Lett 16:4368–4374
9. Dibos AM, Zhou Y, Jauregui LA et al (2019) Electrically tunable exciton-plasmon coupling in a WSe₂ monolayer embedded in a plasmonic crystal cavity. Nano Lett 19:3543–3547
10. Zou Y, Song G, Jiao R et al (2019) Strong coupling between a quasi-single molecule and a plasmonic cavity in the trapping system. Nanoscale Res Lett 14:74
11. Zhang H, Abhiraman B, Zhang Q et al (2020) Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat Commun 11:3552
12. Pang H, Huang H, Zhou L et al (2021) Strong dipole-quadrupole-exciton coupling realized in a gold nanorod dimer placed on a two-dimensional material. Nanomaterials 11:1619
13. Yang L, Xie X, Yang J et al (2022) Strong light-matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way. Nano Lett 22:2177–2186
14. Cuadra J, Baranov DG, Wersäll M et al (2018) Observation of tunable charged exciton polaritons in hybrid monolayer WS₂−−−plasmonic nanoantenna system. Nano Lett 18:1777–1785
15. Geisler M, Cui X, Wang J et al (2019) Single-crystalline gold nanodisks on WSe₂ monolayers and multilayers for strong coupling at room temperature. ACS Photonics 6:994–1001
16. Zheng D, Zhang S, Deng Q et al (2017) Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe₂. Nano Lett 17:3809–3814
17. Wen J, Wang H, Wang W et al (2017) Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett 17:4689–4697
18. Stührenberg M, Mukhtar B, Baranov DG et al (2018) Strong light-matter coupling between plasmons in individual gold bi-pyramids and excitons in mono- and multilayer WS₂e, Nano Lett 18:5938–5945
19. Kleemann M-E, Chilkikarrady R, Alexeev EM et al (2017) Strong-coupling of WSe₂ in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 8:1296
20. Han X, Wang K, Xing X et al (2018) Rabi splitting in a plasmonic nanocavity coupled to a WS₂ monolayer at room temperature. ACS Photonics 5:3970–3976
21. Qin X, Chen Y, Zhang Z et al (2020) Revealing strong plasmon-exciton coupling between nanogap resonators and two-dimensional semiconductor devices at ambient conditions. Phys Rev Lett 124:063902
22. Munkhbat B, Baranov DG, Stührenberg M et al (2019) Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 6:139–147
23. Canales A, Baranov DG, Antosiewicz T, Shegai T (2021) Abundance of cavity-free plasmonic states in resonant materials and nanostructures. J Chem Phys 154:024701
24. Ashham K, Al-Ani I, Huang L et al (2021) Boosting strong coupling in a hybrid WSe₂ monolayer–anapole–plasmon system. ACS Photonics 8:489–496
25. Zhang L, Gogna R, Burg W et al (2018) Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat Commun 9:2713
26. Wang S, Le-Van Q, Vianella F et al (2019) Limits to strong coupling of excitons in multilayer WS₂, with collective plasmonic resonances. ACS Photonics 6:286–293
27. Gonçalves PAD, Bertelsen LP, Xiao S, Mortensen NA (2018) Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Phys Rev B 97:041402
28. Beane G, Brown BS, Johns P et al (2018) Strong exciton-plasmon coupling in silver nanowire nanocavities. J Phys Chem Lett 9:1676–1681
29. Bylinkin A, Schnell M, Aurote M et al (2021) Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat Photonics 15:197–202
30. Thomas PA, Menghajani KS, Barnes WL (2021) Cavity-free ultrastrong light-matter coupling. J Phys Chem Lett 12:6914–6918
31. Chen B, Wu H, Xin C et al (2017) Flexible integration of free-standing nanowires into silicon photonics. Nat Commun 8:20
32. Wang Y, Ma Y, Guo X, Tong L (2012) Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates. Opt Express 20:19006–19015
33. Guo X, Ma Y, Tong L (2013) Nanowire plasmonic waveguides, circuits and devices. Laser Photonics Rev 7:855–881
34. Wang Y, Guo X, Tong L, Lou J (2014) Modeling of Au-nanowire waveguide for plasmonic sensing in liquids. J Lightwave Technol 32:4233–4238
35. Wei H, Pan D, Zhang S et al (2018) Plasmon waveguiding in nanowires. Chem Rev 118:2882–2926
36. Lee I-H, Yoo D, Avouris P et al (2019) Graphene acoustic plasmon resonator for ultrasensitive and tunable mid-infrared spectroscopy. Nat Nanotechnol 14:313–319
37. Kolwas K, Derkachova A (2020) Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10:1411
38. Chang DE, Sorensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420
39. Li Z, Bao K, Fang Y et al (2010) Correlation between incident and emission polarization in nanowire surface plasmon waveguides. Nano Lett 10:1831–1835
40. Alexander RW, Kovener GS, Bell RJ (1974) Dispersion curves for surface electromagnetic waves with damping. Phys Rev Lett 32:154–157
41. Sun J, Li Y, Hu H et al (2021) Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostuctures. Nanomaterials 13:4408–4419
42. Guo X, Ying Y, Tong L (2014) Photonic nanowires: from subwavelength waveguides to optical sensors. Acc Chem Res 47:656–666
43. Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10:2–6
44. Ruppin R (2002) Electromagnetic energy density in a dispersive and absorptive material. Phys Lett A 299:309–312
45. Zhang S, Xu H (2012) Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano 6:8128–8135
46. Ren J, Gu Y, Zhao D et al (2017) Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Phys Rev Lett 118:073604
47. Peng P, Liu Y-C, Xu D et al (2017) Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys Rev Lett 119:233901
48. Zeng J, Li Z-Y (2022) Analytical model and solution illustrating classical optical contribution to giant spectral splitting in strongly-coupled micro/nanocavity-atom system. Front Phys 10:734-841
49. Baranov DG, Wersäll M, Cuadra J et al (2018) Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 5:24–42
50. Frisk-Kockum A, Miranowicz A, De Liberato S et al (2019) Ultrastrong coupling between light and matter. Nat Rev Phys 1:19–40
51. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404
52. Guigni A, Torre B, Toma A et al (2013) Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat Nanotechnol 8:845–852
53. Oulton RF, Sorgor VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500
54. Li W, Chen B, Meng C et al (2014) Ultrafast all-optical graphene modulator. Nano Lett 14:955–959
55. Wu X, Yu S, Yang H et al (2016) Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon 96:1114–1119
56. Zhao B, Wan Z, Liu Y et al (2021) High-order superlattices by rolling up van der Waals heterostructures. Nature 591:385–390
57. Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833–837
58. Mohanty P, Yoon I, Kang T et al (2007) Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering. J Am Chem Soc 129:9576–9577
59. Li Q, Qu M (2013) Plasmonic wave propagation in silver nanowires: guiding modes or not? Opt Express 21:8587–8595
60. Zou C-L, Sun F-W, Xiao Y-F et al (2010) Plasmon modes of silver nanowire on a silica substrate. Appl Phys Lett 97:183102
61. Wang Y, Feng Y, Zeng L, Wu X (2022) Versatile and high-quality manipulation of asymmetric modes in bent metal nanowires. Opt Mater Express 12:2782
62. Zong X, Li L, Liu Y (2021) Photonic bound states in the continuum in nanostructured transition metal dichalcogenides for strong photon–exciton coupling. Opt Lett 46:6095
63. Camargo FVA, Ben-Shahar Y, Nagahara T et al (2021) Visualizing ultrafast electron transfer processes in semiconductor-metal hybrid nanoparticles: toward excitonic-plasmonic light harvesting. Nano Lett 21:1461–1468
64. Keller KR, Rojas-Aedo R, Zhang H et al (2022) Ultrafast thermionic electron injection effects on exciton formation dynamics at a van der Waals semiconductor/metal interface. ACS Photonics 9:2683–2690
65. Dean SL, Stapleton JJ, Keating CD (2010) Organically modified silicas on metal nanowires. Langmuir 26:14861–14870
66. Rothe M, Zhao Y, Kewes G et al (2019) Silver nanowires with optimized silica coating as versatile plasmonic resonators. Sci Rep 9:3859

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com