LETTERS

Impact of neonatal sepsis calculator in West Midlands (UK)

The Kaiser Permanente Sepsis Risk Calculator (KP-SRC) was developed to predict early-onset neonatal sepsis (EOS), using continuous variables (local EOS incidence rates, maternal factors, infant well-being) to guide decision making.1

KP-SRC has been adopted in Plymouth and Wales, reducing antibiotic use by up to 84%2 3 compared with using National Institute for Health and Care Excellence (NICE) guidelines. This may reduce antibiotic resistance, dysbiosis,4 invasive procedures and mother–baby separation, although some safety concerns have been raised.4

We performed a virtual application of the KP-SRC versus NICE guidance on postnatal antibiotic usage and length of stay, using anonymised clinical data collected prospectively across 11 neonatal units in the West Midlands, UK. The Health Research Authority confirmed ethical approval was not required.

All infants born ≥34 weeks’ gestation between 1 January 2020 and 29 February 2020 who were commenced on antibiotics for EOS and managed as per NICE guidelines were included. Those admitted to the neonatal unit prior to commencing antibiotics were excluded.

The KP-SRC was applied retrospectively, using two EOS incidence rates—1/1000 and 2/1000 live births (West Midlands rate varies between 0.7 and 1.3/1000). KP-SRC recommendations were analysed against evidence of EOS.

Data from 626 infants were collected and 599 were included for analysis (figure 1). KP-SRC would have led to antibiotic use in only 118 infants at an incidence of 2/1000 and 71 at 1/1000; a reduction of 80% and 88%, respectively. If those recommended blood cultures only by KP-SRC were also treated, the reduction would be 49% and 72%, respectively.

Three of 599 (0.5%) infants had positive blood cultures. One infant had Group B Streptococcus bacteraemia (C reactive protein (CRP) 28) and would have been recommended antibiotics using KP-SRC. Two infants had Escherichia coli (E. coli) bacteraemia: one recommended observations by KP-SRC (CRP 37); the other recommended culture at 2/1000 and observations at 1/1000 (CRP 88). Due to persistent fever, both would likely have commenced antibiotics subsequently under KP-SRC observations. All cerebrospinal fluid cultures were negative.

Twenty-seven (5%) infants had CRP levels >60, including one of the babies with E. coli bacteraemia; 7 (26%) infants with CRP >60 would be recommended observations only, even using KP-SRC at 2/1000.

No infants received mechanical ventilation or inotropes, and there were no deaths.

Current antibiotic use using NICE guidance led to a mean treatment length of 68.0 hours (median 48 hours). This could be reduced by up to 38% at 1/1000 and 35% at 2/1000 KP-SRC if only babies recommended antibiotics were treated, and all other babies observed for 36 hours. If babies recommended either antibiotics or culture were treated, then reductions would be 30% at 1/1000 and 18% at 2/1000.

As reported by others, we conclude that implementation of KP-SRC could reduce antibiotic exposure in 49%–88% of infants with a reduction in hospital stay by 18%–38%.

However, a small group of infants initially recommended observations by KP-SRC can have high CRP or bacteraemia. Therefore, emphasis on close observation, early recognition of deterioration and timely escalation is vitally important.

Further research is required to examine the safety of KP-SRC in the UK setting.

Tim J van Hasselt,1 Helen McDermott,2 Pinki Surana,2 Rawia Eltahir,1 Laura Macaskill,4 Raunak Jain,5 Nicola McMullan,6 Samantha Slee,1 Megha Jagga,7 Muhammed Naseem,4 Oluwaseyi Alake,7 Canada Cherry,8 Benjamin Miguras,9 Andrew K Ewer10 Paediatric Research Across the Midlands (PRAM) Network

Figure 1 Retrospective virtual application of KP-SRC to infants receiving antibiotics as per National Institute for Health and Care Excellence (NICE) EOS guidelines.


Neonatal Intensive Care Unit, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
7 Neonatal Intensive Care Unit, Birmingham Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
8 Neonatal Unit, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, UK
4 Neonatal Unit, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
3 University College London, London, UK
6 Neonatal Unit, Dudley Group of Hospitals NHS Trust, Dudley, UK
2 Neonatal Intensive Care Unit, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
1 Neonatal Unit, Good Hope Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
9 The Dudley Group NHS Foundation Trust, Shrewsbury, UK
5 University College London, London, UK

Contributors

Dr Chandan Gupta, Dr Mohammed Buhary, Dr Michael Mahmoud, Dr Vishanna Balbirsingh, Dr Catherine Lomax, Dr Emmeline Parfitt-Roche, Dr Andrew Pearce, Dr Lindsay Mulligan, Dr Afza Sadiq. Initial pilot work: Dr Sonia Goyal. Local Consultant Leads: Dr Kate Palmer, Dr Chandan Gupta, Dr Mohammed Buhary, Dr Michael Plunkett, Dr Paul Watson, Dr Robert Negrine, Dr Penny Broggi, Dr Raghu Krishnamurthy, Dr Kathryn Seagave.

Collaborators

PRAM Collaborators: Local leads: Dr Hannah Vawda, Ms Sarah Kirk, Dr Moataz Badawy, Dr Pooja Siddhi. Local data collection and analysis: Dr Sebastian Brown. Local data collection: Dr Mshail Mahmoud, Dr Vishanna Balbirsingh, Dr Catherine Lomax, Dr Emmeline Parfitt-Roche, Dr Andrew Pearce, Dr Lindsay Mulligan, Dr Afza Sadiq. Initial pilot work: Dr Sonia Goyal. Local Consultant Leads: Dr Kate Palmer, Dr Chandan Gupta, Dr Mohammed Buhary, Dr Michael Plunkett, Dr Paul Watson, Dr Robert Negrine, Dr Penny Broggi, Dr Raghu Krishnamurthy, Dr Kathryn Seagave.

Correspondence to Dr Tim J van Hasselt, Neonatal Intensive Care Unit, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent ST4 6QG, UK; t.vanhasselt@nhs.net

Twitter Muhammed Naseem @94naseem

Acknowledgements

We are grateful to the West Midlands Operational Delivery Network, all the trusts, consultants, doctors and ANPNs who have contributed to and supported this project.

Funding

The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite

van Hasselt TJ, McDermott H, Surana P, et al. Arch Dis Child Fetal Neonatal Ed 2021;106:F568–F569.

Accepted 16 November 2020
Published Online First 8 December 2020

Arch Dis Child Fetal Neonatal Ed 2021;106:F568–F569.
doi:10.1136/fetalneonatal-2020-320862

ORCID iDs

Tim J van Hasselt http://orcid.org/0000-0001-6157-1083
Andrew K Ewer http://orcid.org/0000-0002-3825-4781

REFERENCES

1 Kuzniewicz MW, Puopolo KM, Fischer A, et al. A quantitative, Risk-Based approach to the management of neonatal early-onset sepsis. JAMA Pediatr 2017;171:365–71.
2 Goel N, Shrestha S, Smith R, et al. Screening for early onset neonatal sepsis: NICE guidance-based practice versus projected application of the Kaiser Permanente sepsis risk calculator in the UK population. Arch Dis Child Fetal Neonatal Ed 2020;105:118–22.
3 Eason J, Ward H, Danko O, et al. Early-Onset sepsis: can we screen fewer babies safely? Arch Dis Child 2021;106:86–8.
4 Pettinger KJ, Mayers K, McKiehnie L, et al. Sensitivity of the Kaiser Permanente early-onset sepsis calculator: a systematic review and meta-analysis. EClinicalMedicine 2020;19:100227.