FAST TRACK COMMUNICATION

Difficulties in applying pure Kohn–Sham density functional theory electronic structure methods to protein molecules

Elias Rudberg

Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

E-mail: elias.rudberg@it.uu.se

Received 28 October 2011, in final form 9 December 2011
Published 6 January 2012
Online at stacks.iop.org/JPhysCM/24/072202

Abstract

Self-consistency-based Kohn–Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO–LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree–Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree–Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO–LUMO gaps for the tested protein-like systems also for pure functionals.

1. Introduction

Kohn–Sham density functional theory [1] (KS-DFT) has been widely used in electronic structure calculations. Efficient algorithms have been developed that allow KS-DFT methods to be applied for large molecules, including hundreds and even thousands of atoms [2]. However, a problem with KS-DFT is the self-interaction error (SIE). For example, it is known that SIE causes severe errors in computed polymer polarizabilities [3] where the problem becomes more and more severe with increasing system size. Thus, application of KS-DFT to large systems is not always straightforward.

One important application of KS-DFT for large molecules is the study of proteins, whose properties are of interest in biology. In this work, we study the applicability of standard self-consistency-based KS-DFT methods for calculations on protein molecules.

2. Method

In KS-DFT methods, the electron density is expressed via a set of orbitals in a similar way as in the Hartree–Fock [4] (HF) method. We consider here non-periodic spin-restricted
KS-DFT methods at zero electronic temperature. Then, the number of occupied orbitals is \(n_{\text{occ}} = n/2 \), where \(n \) is the number of electrons in the system. The Kohn–Sham orbitals are determined by solving

\[
FC = SC\epsilon
\]

(1)

where \(F \) is the Kohn–Sham matrix, \(C \) the matrix of orbital coefficients, \(S \) the overlap matrix and \(\epsilon \) the diagonal matrix of orbital energies. The matrices in (1) are \(N \times N \) matrices, where \(N \) is the number of basis functions. Given a set of \(N \) orbitals that constitute a solution to (1), a set of occupied orbitals is formed by including the \(n_{\text{occ}} \) orbitals of lowest energy. The occupied orbitals determine the density matrix \(D \) as

\[
D_{ij} = 2 \sum_{k=1}^{n_{\text{occ}}} C_{ik} C_{jk}
\]

(2)

where the columns of \(C \) are taken to be ordered by the corresponding orbital energies. The Kohn–Sham matrix \(F \) is computed from \(D \) according to the chosen exchange–correlation functional. Since \(F \) depends on \(D \), an iterative procedure is used to find a self-consistent solution.

Calculations where a new density matrix is computed by occupying the orbitals of lowest energy as described above are, in this work, referred to as self-consistency-based calculations, to clearly distinguish them from direct minimization approaches.

In self-consistency-based calculations, convergence schemes such as damping [5] and direct inversion in the iterative subspace (DIIS) [6] are usually employed, where a new Kohn–Sham matrix is constructed by taking information from previous iterations into account. See the work of Kudin and Scuseria [7] for an overview of such convergence schemes.

The self-consistency-based approach usually works well provided that there is a sizable gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies. However, there is no guarantee that the HOMO–LUMO gap will be large; the gap depends on the studied system as well as on the basis set and on the exchange–correlation functional used. If the gap is very small the procedure of determining the occupied orbitals needed in (2) becomes ill-defined and then a self-consistent solution may be difficult or even impossible to find.

KS-DFT exchange–correlation functionals can be divided into two main classes: pure and hybrid functionals. In hybrid functionals, some fraction of HF exchange is added to the Kohn–Sham matrix, often using empirically determined constants.

3. Results

This section includes results of HF and KS-DFT calculations for various protein-like systems. The presented results were computed using the Ergo program [8]. The obtained results can, however, be readily reproduced using other KS-DFT codes employing Gaussian basis functions.

The convergence scheme used in the reported calculations is a combination of damping and DIIS, as implemented in the Ergo program. This scheme essentially uses damping in early iterations, with a dynamically adapted damping factor such that the step size is decreased whenever the energy goes up, leading to very small steps in difficult cases. However, details of this scheme do not affect the reported results; the observed convergence problems are due to vanishing HOMO–LUMO gaps, a problem that neither damping nor DIIS-like schemes can resolve.

In this work, calculations were considered ‘converged’ when the largest absolute matrix element of the matrix commutator \(FDS − SDF \) was smaller than \(5 \times 10^{-4} \). This particular choice of convergence threshold is, however, not critical for the reported results, since the calculations that failed to converge due to vanishing gaps were typically very far from reaching this criterion.

3.1. Molecules from the Protein Data Bank

Table 1 shows computed HOMO–LUMO gaps for a set of protein-like molecular systems with geometries taken from the Protein Data Bank (PDB) [9]. In cases where the PDB file contains more than one structure, the one labeled ‘model 1’ was used. The 17 structures in table 1 were selected in order to give examples of various types of protein-like systems, with the requirement that positions of hydrogen atoms should be included in the PDB file. The net charge of each molecule, shown in the fourth column in table 1, was chosen after performing a set of HF/3–21G calculations for different charges. For each system, the charge that gave the largest HOMO–LUMO gap was chosen. Calculations were performed using six different KS-DFT functionals as well as HF. The employed density functionals include the pure functionals LDA (SVWN5), BLYP and PBE as well as the hybrid functionals B3LYP, PBE0 and BHandHLYP with HF exchange fractions of 20%, 25% and 50%, respectively. The Gaussian basis set 6-31G** was used.

The most important conclusion from the results shown in table 1 is that, in many cases, calculations using pure functionals fail to converge for molecules larger than a few hundred atoms. Note that the blank spaces in the columns for BLYP, PBE and LDA indicate not only that no gap value was obtained, but that those calculations did not give any meaningful results at all since they failed to converge.

For the calculations that did converge, the computed HOMO–LUMO gaps are strongly correlated to the fraction of HF exchange included in the functional, with a large fraction of HF exchange giving a large gap. Thus, for each molecule, the HF method yields the largest HOMO–LUMO gap, while the BHandHLYP functional consistently gives a larger gap than PBE0 and B3LYP. The pure functionals give much smaller gaps; in many cases, no converged results were obtained for the pure functionals due to vanishing HOMO–LUMO gaps. For the 1RVS system, the B3LYP and PBE0 calculations also failed to converge.

To check the basis set dependence, calculations with larger basis sets were also performed for the smaller systems. The larger basis set results indicate that the computed HOMO–LUMO gaps are not critically dependent on the
Table 1. Results of HF and KS-DFT calculations using the Ergo program on a set of protein-like molecules. Basis set: 6-31G**. Blank space indicates that no converged result was obtained.

PDB ID	Type	Atoms	Charge	HF	BHandHLYP	PBE0	B3LYP	BLYP	PBE	LDA
2P7R	Biosynthetic	73	0	12.03	7.23	4.65	4.16	2.12	2.10	2.12
1BFZ	Peptide	87	0	11.96	8.13	6.18	5.77	3.97	3.93	3.79
2GZ	Antibiotic	147	0	11.81	7.99	5.70	5.27	3.27	3.23	3.12
1D1E	Neuropeptide	243	+3	10.14	6.05	3.96	3.47	1.56	1.58	1.54
1SP7	Structural	352	+3	9.13	4.06	1.65	0.87			
1N9U	Signaling protein	182	0	9.12	3.80	1.12	0.57			
1MZI	Viral protein	225	−3	8.77	3.80	1.29	0.54			
1XT7	Antibiotic	217	+1	8.51	4.85	3.32	2.65	1.02	1.24	1.30
1PLW	Neuropeptide	75	0	7.25	2.31	0.36	0.29			
1FUL	Peptide	135	−1	6.95	1.85	0.20	0.16			
1EDW	Peptide	399	−1	6.89	2.02	0.26	0.21			
1EVC	Bacterial toxin	109	−2	5.82	1.14	0.30	0.24			
1RVS	De novo protein	172	0	5.60	0.60					
2FR9	Peptide toxin	194	−2	5.48	0.55	0.26	0.21			
2JSI	Hormone	198	−1	5.26	0.66	0.24	0.19			
1LVZ	Peptide-binding	185	0	5.05	0.71	0.31	0.25			
1FDF	Signaling protein	416	+1	3.64	0.25	0.13	0.11			

basis set. For example, calculations using the cc-pVTZ basis set for the 1BFZ, 1EVC, 1PLW and 2P7R molecules gave HOMO–LUMO gaps that differed by less than 15% compared to the 6-31G** results. In some cases, a larger basis set gives a smaller gap.

Calculations using the smaller basis set 3-21G were also performed. Those results indicate that the 3-21G basis set already gives similar gaps and convergence behavior for the different functionals.

3.2. Size dependence

The results in table 1 indicate that the convergence problems due to small gaps are, to a large extent, system-dependent. However, for even smaller protein-like fragments, consisting of only a few amino acids, calculations also typically converge without problems for pure functionals. Therefore there is a reason to believe that the convergence problems increase with increasing molecular size.

To further assess the size dependence, calculations were also performed for a sequence of polyproline I helix molecules of increasing length. The model helix geometries were generated using the Gabedit program [10], applying the ‘build polypeptide’ function with the ‘polyproline I’ conformation followed by the ‘add hydrogens’ command.

Computed HOMO–LUMO gaps for the polyproline I helix systems obtained using the KS-DFT functionals BLYP, B3LYP and BHandHLYP as well as HF are shown in figure 1. The size dependence is clearly seen: for any given functional, the computed HOMO–LUMO gap decreases with increasing helix length, and because the computed gaps for pure functionals are so small, those calculations fail to converge for sizes larger than six proline units.

As seen in figure 1, the problem of vanishing HOMO–LUMO gaps is in this case clearly related to the system size. However, the system size is not the only important factor. For example, performing the corresponding test calculations for helices in the polyproline II conformation gives sizable gaps even for very large systems. Apparently the problem of vanishing gaps is not seen for the fairly stretched-out polyproline II helices, but the problem does appear for the more compact polyproline I conformation.

3.3. Including solvent water molecules

The calculations in sections 3.1 and 3.2 were done for isolated protein-like systems without any surrounding water molecules. This is not completely realistic, since in real biological systems protein molecules are typically dissolved in water and the solvent water molecules can have a significant effect on both the molecular geometry and the electronic structure of the protein. In this section, we consider the effect of explicitly including solvent water molecules when performing KS-DFT calculations for protein-like systems.
Figure 2. Computed HOMO–LUMO gaps for protein-like systems without and with surrounding water molecules. Basis set: 3-21G. For BLYP, none of the calculations without surrounding water molecules converged. Several of the BLYP calculations failed to converge even with surrounding water molecules. (a) Without surrounding water molecules. (b) With surrounding water molecules.

Since structures from the PDB in general do not include solvent molecules, model structures including solvent molecules were generated by molecular dynamics (MD) simulations at standard temperature and pressure using the Gromacs program [11] version 4.5.4. The AMBER03 force field and the TIP3P water model were used. The MD simulations were done with the ‘position restraints’ option in the Gromacs program (define=-DPOSRES and constraints=all-bonds), thus keeping the protein geometry reasonably close to the original geometry from the PDB, but allowing some motion and complete freedom of the surrounding solvent water molecules. The default values for position restraints force constants were used (force constants set by the Gromacs pdb2gmx utility using the default parameter value, -posrefc=1000). However, the use of position restraints is not critical for the obtained results; if using structures from MD simulations without such restraints, similar results are obtained regarding the convergence problems and computed HOMO–LUMO gaps of KS-DFT calculations.

MD simulations were done for four of the systems from section 3.1: 1FUL, 1LVZ, 1PLW and 1RVS. For each of them, a number of MD runs were performed, generating ten uncorrelated MD snapshots. Each snapshot was generated from a separate MD run with 10 ps duration, starting from different random distributions of solvent molecules. From each snapshot a model system with solvent was created by including all water molecules within 4 Å from the solute. For comparison, corresponding model structures without solvent were also generated for the same set of MD snapshots. The structures without solvent differ slightly from the original PDB structures as the molecules moved during the MD simulations. The RMSD (root mean square deviations) of the protein backbone of the structures used from MD simulations, compared to the PDB structures, were 1.2–1.5 Å. (Corresponding MD simulations without position restraints gave RMSD values ranging from 1.2 to 2.5 Å.)

Figure 2 shows computed HOMO–LUMO gaps for the model systems generated from MD simulations. To reduce the computational effort, these calculations were done using the 3-21G basis set. Comparisons to larger basis set calculations done for a few cases indicate that the effect of this limited basis set is not critical; qualitatively similar results would probably be obtained with a larger basis set.

Figure 2(a) shows computed gaps for structures without surrounding solvent molecules. As can be expected from the results of section 3.1, the BLYP calculations here give vanishing gaps and therefore fail to converge. Figure 2(b) shows that the inclusion of explicit solvent molecules in the calculation in general gives a larger gap. However, in several cases the BLYP calculations still fail to converge. There is some randomness; BLYP calculations may or may not converge depending on the positions of included solvent molecules in that particular MD snapshot.

In the test calculations presented in figure 2(b), water molecules up to 4 Å from the solute were included. One may of course include more solvent molecules, but doing so does not seem to solve the problem. In fact, vanishing gaps for pure functionals is also a problem when considering water clusters, as shown in figure 3. The water cluster geometries were generated by including all water molecules within a certain radius from a snapshot from an MD simulation at standard temperature and pressure. The problem of pure functionals giving vanishing gaps for water clusters was reported previously [12].

The computed gaps in figure 3 decrease rather drastically at 13–16 Å radius, but this is a coincidence for the particular MD snapshot considered here; if continuing to larger clusters using HF or hybrid functionals the gaps tend to stabilize [13, 14]. However, pure functionals are not straightforwardly applicable for water clusters generated in this way. Therefore, embedding a protein-like molecule in water by including explicit water molecules up to some radius cannot be expected to solve the convergence problems due to vanishing gaps. In order to achieve converged results with pure functionals,
some modeling needs to be done of the other water molecules, outside the domain of the electronic structure calculation, as will be seen in section 3.4.

3.4. Including point charges representing solvent water molecules outside computational domain

Previous work by Cabral do Couto *et al.* [15] has shown that, for water clusters extracted from a larger simulation, orbital energies are strongly affected by the water molecules surrounding the clusters, and that such surface effects can to some extent be corrected for by including point charges representing the surrounding molecules. Cabral do Couto *et al.* found that HOMO–LUMO gaps are significantly increased when adding point charges representing surrounding water molecules. In this section, the approach of adding such point charges is applied to the case of protein molecules embedded in water.

The test systems used in this section are the same as those in section 3.3 except that now water molecules outside the electronic structure calculation domain are included via point charges. These ‘outer’ water molecules are not explicitly included in the electronic structure calculation, but they are represented by point charges corresponding to their simple point charge (SPC) distribution. That is, oxygen and hydrogen atoms are represented by point charges of -0.82 and $+0.41$, respectively. Outer water molecules up to 10 Å away from the studied system were included. This gives a large number of point charges (for 1RVS, around 4800 point charges were used) but the extra computational effort is anyway small since the point charges only affect the core Hamiltonian matrix. The expensive Coulomb, HF exchange and exchange–correlation parts of the calculation are not affected by the added point charges.

Figure 4 shows computed HOMO–LUMO gaps for the same systems as in figure 2, but now including SPC point charges as described above. Note that in the calculations shown in figure 4(b), water molecules are included in two ways: water molecules up to 4 Å from the solute are explicitly included in the electronic structure calculation and additional water molecules between 4 and 14 Å away from the solute are represented by point charges.

Judging from figure 4, the approach of including point charges representing water molecules outside the electronic structure calculation domain appears to solve the convergence problems for pure functionals: when point charges are included in this way, BLYP calculations give HOMO–LUMO gaps of more than 0.9 eV in all studied cases. This approach also gives convergence for the polyproline I helix systems considered in section 3.2.

Thus, it appears that, despite the discouraging results of sections 3.1 and 3.2, calculations using pure functionals can be done for protein-like systems provided that surrounding...
solvent water molecules are accounted for by somehow taking their charge distribution into account. If solvent water molecules are explicitly included in the electronic structure calculation, surface effects must anyway be handled by including the charge distribution of water molecules further away.

In this section, surface effects were handled using point charges in the same way as in the work of Cabral do Couto et al [15]. This is easily done from an implementation point of view and required only a minor modification to the Ergo program [8] that was used to perform the calculations. Another way of taking effects of the surrounding water into account would be to use a polarizable continuum model, although that possibility was not explored here.

The point charge embedding approach was here considered as a tool to obtain a converged solution. Of course, such point charges are a very crude approximation of the solvent atoms they are supposed to represent. One should therefore be careful when interpreting results of such calculations, in particular regarding the electronic structure near the boundary where point charges were added.

4. Concluding remarks

All calculations reported in this work were performed using Gaussian basis sets, far from the basis set limit. To better assess the basis set dependence, it would be desirable to also perform calculations with other types of basis sets, e.g. plane waves.

The results obtained here for protein fragments are in line with previous findings that pure KS-DFT functionals give vanishing gaps for large polypeptide and water cluster systems [14]. Also, vanishing PBE gaps have been reported for plane-wave calculations on semiconductors [16].

Although the problem of pure KS-DFT functionals underestimating HOMO–LUMO gaps is well known in the literature [17–22], to the author’s best knowledge the resulting convergence problems in self-consistency-based calculations for protein-like molecules has received little, if any, attention previously.

It should be noted that the calculations reported in this work were done for finite model systems. That is, periodic boundary conditions were not used. When using a finite model system to describe a protein in water solution, the domain must be truncated somewhere, and it is then important to handle surface effects in some way, for example as described in section 3.4. In a periodic calculation there is no boundary and thus no surface effects to worry about. Periodic calculations using pure KS-DFT for proteins have been reported for example by Sulpizi et al [23].

The calculations in this work were all performed using the self-consistency approach, as described in section 2. Therefore, a non-vanishing HOMO–LUMO gap was here necessary to achieve convergence. It should be noted that other optimization schemes for KS-DFT calculations exist, where a parameterization is used that ensures that the density matrix stays idempotent (and has the correct number of electrons), but where there is no guarantee that the orbitals defining the density are the ones having the lowest orbital energies. Then, a converged solution could in principle be found even if the gap vanishes. However, such approaches were not used in the present work.

In the calculations reported in this work, significant effort was made to reduce the risk that the reported results are dependent on any particular choice of starting-guess density. For cases that turned out to be difficult to converge, repeated calculations using several different starting guesses were tried, including densities obtained with other functionals and other basis sets. In those cases where ‘convergence failure’ is reported, this does not mean only that one particular calculation failed to converge, but that all calculation attempts using various starting guesses failed.

All results reported in section 3 are from spin-restricted (closed-shell) calculations. Additional spin-unrestricted calculations with different alpha- and beta-spin densities as starting guesses were performed for many of the studied cases. In those cases, spin-unrestricted calculations did not resolve the convergence problems.

Test calculations using level shifting [24] were performed for a few of the difficult cases in sections 3.1 and 3.2. If employing a large enough shift, a converged result can sometimes be obtained. However, if the resulting density is used as a starting guess for a calculation without any level shift, different orbitals are occupied and convergence is not obtained. Also, the calculations with level shifting are very sensitive to the starting guess. In cases where the usual self-consistency-based approach (without level shifting) fails due to vanishing gaps, calculations employing level shifting may converge to any of many possible final results with small differences in energy, depending on the starting guess. Such solutions found using level shifting do typically not obey the aufbau principle; that is, the occupied orbitals are not the ones having the lowest orbital energies. This suggests that proper aufbau solutions to the standard Kohn–Sham model may not exist for these cases; compare for example to the case of chromium carbide considered by Kudin et al [25]. In any case, using level shifting does not seem to be a satisfactory solution to the convergence problems, since the final result then becomes heavily dependent on the starting guess.

Another way to achieve convergence in difficult cases would be to employ fractional finite-temperature occupation numbers in the same way as in calculations for metals [26, 27]. Alternatively, instead of standard KS-DFT methods one may consider employing the extended Kohn–Sham model [28] or using GW theory [29]. However, application of such methods goes beyond the scope of the present work.

Application of self-consistency-based pure KS-DFT methods to protein-like molecules without including solvent often leads to convergence problems due to vanishing HOMO–LUMO gaps. Although such problems can be alleviated by including solvent molecules, they indicate that the applicability of such pure KS-DFT methods may be limited: if a protein-like system surrounded by air or vacuum is to be studied, it is unclear to what extent self-consistency-based pure KS-DFT methods can be applied. Further investigation of this issue remains a subject of future work.
Acknowledgments

The author wishes to thank E R Davidson, E H Rubensson and P Salek for helpful discussions. The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and Uppsala Multi-disciplinary Center for Advanced Computational Science (UPPMAX).

References

[1] Kohn W and Sham L J 1965 Phys. Rev. 140 1133
[2] Goedecker S 1999 Rev. Mod. Phys. 71 1085
[3] Mori-Sánchez P, Wu Q and Yang W 2003 J. Chem. Phys. 119 11001
[4] Szabo A and Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (New York: Dover)
[5] Zerner M C and Hehenberger M 1979 Chem. Phys. Lett. 62 550
[6] Pulay P 1982 J. Comput. Chem. 3 556
[7] Kudin K N and Scuseria G E 2007 Math. Model. Num. Anal. 41 281
[8] Rudberg E, Rubensson E H and Salek P 2011 Ergo (version 3.51); a quantum chemistry program for large scale self-consistent field calculations www.ergoscf.org
[9] The Protein Data Bank www.pdb.org
[10] Allouche A 2011 J. Comput. Chem. 32 174
[11] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[12] Rubensson E H and Rudberg E 2011 J. Comput. Chem. 32 1411
[13] Rudberg E, Rubensson E H and Salek P 2008 J. Chem. Phys. 128 184106
[14] Rudberg E, Rubensson E H and Salek P 2011 J. Chem. Theory Comput. 7 340
[15] Cabral do Couto P, Guedes R C and Costa Cabral B J 2004 Braz. J. Phys. 34 42
[16] Deák P, Aradi B, Frauenheim T, Janzén E and Gali A 2010 Phys. Rev. B 81 153203
[17] Perdew J P and Levy M 1983 Phys. Rev. Lett. 51 1884
[18] Godby R W, Schlüter M and Sham L J 1988 Phys. Rev. B 37 10159
[19] Seidl A, Görling A, Vogl P, Majewski J A and Levy M 1996 Phys. Rev. B 53 3764
[20] Salzner U, Lagowski J B, Pickup P G and Poirier R A 1997 J. Comput. Chem. 18 1943
[21] Lany S and Zunger A 2008 Phys. Rev. B 78 235104
[22] Stein T, Eisenberg H, Kronik L and Baer R 2010 Phys. Rev. Lett. 105 266802
[23] Sulpizi M, Raugei S, VandeVondele J, Carloni P and Sprk M 2007 J. Phys. Chem. B 111 3969
[24] Saunders V R and Hillier I H 1973 Int. J. Quantum Chem. 7 699
[25] Kudin K N, Scuseria G E and Cancès E 2002 J. Chem. Phys. 116 8255
[26] Marzari N, Vanderbilt D and Payne M C 1997 Phys. Rev. Lett. 79 1337
[27] Freysoldt C, Boeck S and Neugebauer J 2009 Phys. Rev. B 79 241103
[28] Cancès E 2001 J. Chem. Phys. 114 10616
[29] van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402