CBP-JMF: An Improved Joint Matrix Tri-Factorization Method for Characterizing Complex Biological Processes of Diseases

Bingbo Wang 1*, Xiujuan Ma 1, Minghui Xie 1, Yue Wu 1, Yajun Wang 2, Ran Duan 1, Chenxing Zhang 1, Liang Yu 1, Xingli Guo 1 and Lin Gao 1*

1 School of Computer Science and Technology, Xidian University, Xi’an, China, 2 School of Humanities and Foreign Languages, Xi’an University of Technology, Xi’an, China

Multi-omics molecules regulate complex biological processes (CBPs), which reflect the activities of various molecules in living organisms. Meanwhile, the applications to represent disease subtypes and cell types have created an urgent need for sample grouping and associated CBP-inferring tools. In this paper, we present CBP-JMF, a practical tool primarily for discovering CBPs, which underlie sample groups as disease subtypes in applications. Differently from existing methods, CBP-JMF is based on a joint non-negative matrix tri-factorization framework and is implemented in Python. As a pragmatic application, we apply CBP-JMF to identify CBPs for four subtypes of breast cancer. The result shows significant overlapping between genes extracted from CBPs and known subtype pathways. We verify the effectiveness of our tool in detecting CBPs that interpret subtypes of disease.

Keywords: non-negative matrix factorization, complex biological processes, multi-dimensional genomic data, disease, subtype

INTRODUCTION

Complex biological processes (CBPs) are the coordinated effect of multiple molecules, which result in some functional pathways and the vital processes occurring in living organisms. In addition, the vast amounts of multi-omics data, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics, can be integrated to understand systems biology accurately (Suravajhala et al., 2016). Hasin et al. (2017) pointed out that a deeper and better understanding of important biological processes and modules can be obtained through multi-omics studies. However, practical tools are still missing to integrate diverse multi-omics data at different biological levels and reveal the CBPs and other problems like the causes of diseases.

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a powerful tool for dimension reduction and feature extraction. It has been increasingly applied to diverse fields, including bioinformatics (e.g., high-dimensional genomic data analysis). For example, Brunet et al. (2004) applied NMF and consensus clustering to the gene expression data of leukemia to discover metagenes and molecular patterns. Xi et al. (2018) detected driver genes from pan-cancer data based on another matrix decomposition framework called matrix tri-factorization. Up to
now, several variants of NMF have been proposed, including
tri-factorization NMF (Ding et al., 2006), graph-regularized
NMF (Cai et al., 2011), joint NMF (Zhang et al., 2012),
inNMF (Yang and Michailidis, 2016), etc. (more details are
in Supplementary Note 1 of the Supplementary Materials). In
2012, jNMF (Zhang et al., 2012) was proposed to identify multi-
omics modules by integrating cancer’s DNA methylation data,
gene expression data, and miRNA expression data. Chen and
Zhang (2018) applied joint matrix tri-factorization to discover
two-level modular organization from matched genes and miRNA
expression data, gene expression data, and drug response data.

Omnis data across the same samples contain signal values from
expression counts, methylation levels, and protein concentrations, which control biological systems, resulting in
so-called multi-dimensional genomic (MG) data. The natural
representation of these diverse MG data is a series of matrices
with measured values in rows and individual samples in
columns. Recently, there are integrative analysis tools based on
NMF technique that reveal low-dimensional structure patterns.
The low-dimensional structure patterns reflect CBPs and sample
groups while preserving as much information as possible from
high-dimensional MG data (Stein-O’Brien et al., 2018).

In general, most particular matrix factorization techniques
are being developed to enhance their applicability to specific
biological problems. Meanwhile, the applications to represent
disease subtypes (Biton et al., 2014) and cell types (Fan et al.,
2016) have created an urgent need for sample grouping and
associated CBP-inferring tools. Moreover, cancer and other
complex diseases are heterogeneous, i.e., there are various
subgroups for a cancer or a complex disease. The study of the
heterogeneity of cancer and complex diseases will help us
understand the disease further and provide better opportunities
to disease treatment (Xi et al., 2020). To address this issue, we
extend traditional jNMF and develop CBP-JMF, an improved
joint matrix tri-factorization framework for characterizing CBPs
that represent sample groups, and implement a Python package.
This package takes labeled samples as the prior information
and integrates MG data (e.g., copy number variation, gene
expression, microRNA expression, and/or molecule interaction
network) to identify the underlying CBPs which characterize
the specific functional properties of each group. CBP-JMF can
be used to mark unlabeled samples with groups of known
labels. For ease of use, CBP-JMF can recommend reasonable
parameter settings for users. CBPs found by CBP-JMF are
connected network markers, and they are distinguished between
sample groups. These markers usually have specific biological
functions and play important roles in phenotypes. As an example,
CBPs for subtypes of breast cancer are obtained by CBP-JMF,
but they may not have been collected in any reference
database yet.

The rest of this paper is organized as follows. Section
“Framework of CBP-JMF” deals with the problem formulation
of CBP-JMF and the implementation of it. Then, Section “Results”
exemplifies our approach by applying CBP-JMF to identify CBPs
for different subtypes of breast cancers and compares the results
of classifying unlabeled samples with CBP-JMF and its several
variants. Finally, Section “Discussion” discusses our results and
lists our expectations of our method and the limitations of it.
Section “Conclusions” highlights our method.

FRAMEWORK OF CBP-JMF

Problem Definition

Given a non-negative matrix $X \in \mathbb{R}^{m \times n}$, it can be factorized
into three non-negative matrix factors based on matrix tri-
factorization: $X \approx USV$, where $U \in \mathbb{R}^{m \times k}$, $S \in \mathbb{R}^{k \times k}$, and
$V \in \mathbb{R}^{k \times n}$. Factored matrix S cannot only absorb scale difference
between U and V but also indicates relationships between the
identified k modules.

In CBP-JMF, given a MG dataset composed of P omics, it can be
presented by multiple matrices $X^{(1)}, X^{(2)}, ..., X^{(p)}$, as illustrated in
Figure 1. For each row, the rows indicate molecules like
genes, and the columns indicate samples; the values in it are
related to the meaning of omics. If $X^{(p)}$ ($p \in \{1, P\}$) is a
matrix of gene expression data, $X^{(p)}_{ij}$ represents the expression
value of the gene in the i-th row on the j-th sample. Basically,
each non-negative matrix $X^{(p)} \in \mathbb{R}^{m \times n}$ is factored into three non-negative matrix factors based on matrix tri-
factorization: $X^{(p)} \approx U^{(p)} S^{(p)} V$, where molecular coefficient
matrix (MCM) $U^{(p)} \in \mathbb{R}^{m \times k}$ and sample basis matrix (SBM) $V \in \mathbb{R}^{k \times n}$ are the pattern indicator matrices of k CBPs and k sample
groups, respectively. Scale absorbing matrix (SAM) $S^{(p)} \in \mathbb{R}^{k \times k}$
explains the relationships between them. Furthermore,
MCM describes the structure pattern between molecules (e.g.,
genes), SBM indicates the structure pattern between samples,
and SAM absorbs the difference of scales between MCM and
SBM (Figure 1). Each column of the MCM infers a latent
feature associated with a CBP, and the continuous values in it
represent the relative contribution of each molecule in the
CBP. Meanwhile, each row of the SBM describes the relative
contributions of the samples to a latent feature. The sample
groups can be detected by comparing the relative weights in each
row of the SBM.

Overall, $X^{(1)}, X^{(2)}, ..., X^{(p)}$ can be jointly factorized into
specific $U^{(1)}, U^{(2)}, ..., U^{(p)}, S^{(1)}, S^{(2)}, ..., S^{(p)}$, and a common
matrix V. $X^{(1)}, X^{(2)}, ..., X^{(p)}$ are across the same samples, and V
reveals consistent sample groups of multi-omics data. In CBP-JMF,
V can be divided into V^L and V^{UL} according to input
data, where L and UL mean “labeled” samples and “unlabeled”
samples, respectively.

Objective Function of CBP-JMF

Considering that different datasets may play different roles in
data integration, we adopted a method that can learn the weights
of different input data through a weighted joint tri-NMF:

\[
\min_{\pi(p)} \sum_{p=1}^{P} \pi(p) \left\| X^{(p)} - U^{(p)} S^{(p)} V \right\|_F^2 + \omega \| \Pi \|_2^2 \\
\text{s.t. } \pi(p) > 0, \sum_{p=1}^{P} \pi(p) = 1
\]
where $\Pi = (\pi^{(1)}, \pi^{(2)}, ..., \pi^{(P)})$. CBP-JMF differentiates the importance of datasets by the weight constraint $\|\Pi\|^2$, and $\pi^{(p)}$ will get a weight to represent the contribution of data $X^{(p)}$ to objective function after optimization. If $X^{(p)}$ contributes to the optimization of cost function, then it will be given a higher weight $\pi^{(p)}$, or if $X^{(p)}$ contains lots of noises which hinder the optimization of objective function, it will be given a lower weight $\pi^{(p)}$.

In addition, V can be divided into labeled V^L and unlabeled V^{UL} parts according to the labeled samples and unlabeled samples. In order to learn the correlation between labeled samples, we use a graph Laplacian to represent the distance of labeled sample in latent space (Guan et al., 2015). We use Equations (2) and (3) to denote the distance between labeled samples from the same class and different class in the learned latent space, respectively,

\[
\min \sum_{p=1}^{P} \pi^{(p)} \|X^{(p)} - U^{(p)}S^{(p)}V\|_F^2 + \beta \left\{ \operatorname{tr} \left[V^L L^a (V^L)^T \right] - \operatorname{tr} \left[V^L L^p (V^L)^T \right] \right\} + \omega \|\Pi\|^2
\]

\[
\sum_{i=1}^{N^L} \sum_{j=1}^{N^L} W^a_{ij} \|V^i - V^j\|^2_2 = \operatorname{tr} \left[V^L L^a (V^L)^T \right]
\]

\[
\sum_{i=1}^{N^L} \sum_{j=1}^{N^L} W^p_{ij} \|V^i - V^j\|^2_2 = \operatorname{tr} \left[V^L L^p (V^L)^T \right]
\]

where N^L is the number of labeled samples in V, and W^a ($W^{affinity}$) and W^p ($W^{penalty}$) are the weighted adjacency matrices (see Supplementary Note 2 in SM) corresponding to intra-group and inter-group samples respectively. L^a ($L^{affinity}$) and L^p ($L^{penalty}$) are the Laplacian matrix of W^a and W^p, respectively, where $L^a = D^a - W^a$, $L^p = D^p - W^p$, $D^a = \sum_{j=1}^{N^L} W^a_{ij}$, $D^p = \sum_{j=1}^{N^L} W^p_{ij}$. In machine learning, people try to make samples from the same class each other in the learned latent space and samples from different class far from each other. This principle can be written as

\[
\min \left\{ \operatorname{tr} \left[V^L L^a (V^L)^T \right] - \operatorname{tr} \left[V^L L^p (V^L)^T \right] \right\}
\]

Combining weighted joint tri-NMF and the constraints of correlation between labeled samples mentioned above, we give the formulation of the optimization objective function of CBP-JMF as follows (Figure 1):

\[
\min_{\{U^{(p)}\}_{p=1}^{P}, \{S^{(p)}\}_{p=1}^{P}, V} \sum_{p=1}^{P} \pi^{(p)} \|X^{(p)} - U^{(p)}S^{(p)}V\|_F^2 + \beta \left\{ \operatorname{tr} \left[V^L L^a (V^L)^T \right] - \operatorname{tr} \left[V^L L^p (V^L)^T \right] \right\} + \omega \|\Pi\|^2
\]

\[s.t. \forall p, U_{ij}^{(p)} \geq 0, V_{ij} \geq 0, \pi^{(p)} \geq 0, \sum_{p=1}^{P} \pi^{(p)} = 1\]

Parameters β and ω represent the importance of the graph Laplacian regularization and weight constraint $\|\Pi\|^2$. In total, each $X^{(p)}$ is factorized into individual molecular matrix $U^{(p)}$ and scale matrix $S^{(p)}$ and a common sample matrix V. We allowed all matrices to share the same sample matrix V for finding common factors in MG data. There is only a part of samples labeled (subtype or subpopulation or subgroup is known as prior information); we incorporate this prior information with graph Laplacian. We can also learn the weights of different input data to conclude the roles that different data matrices play in CBP-JMF.

Optimization and Update Rules of CBP-JMF

To solve the problem of factorization $X \approx USV$, we firstly randomly initialize the solution of U, S, and V and then apply iterative multiplicative updates as the optimization
Based on the KKT conditions $\Psi_j U_{ij} = 0$, we can get the following update rules:

$$U^{(p)}_i \leftarrow U^{(p)}_i \odot \frac{X^{(p)} \odot \left(S^{(p)}\right)^T}{U^{(p)}S^{(p)}V^TV\left(S^{(p)}\right)^T}$$

Similarly, we can get the update rules for W, V^L, and V^{UL}:

$$S^{(p)} \leftarrow S^{(p)} \odot \left(\frac{U^{(p)}_i \odot \left(S^{(p)}\right)^T}{U^{(p)}S^{(p)}V^TV\left(S^{(p)}\right)^T}\right)$$

$$V^L \leftarrow V^L \odot \frac{\sum_{p=1}^{P} \pi(p) \left(S^{(p)}\right)^T (U^{(p)}_i \odot X^{(p)}_i) + \beta V^L (D^p + S^p)}{\sum_{p=1}^{P} \pi(p) \left(S^{(p)}\right)^T (U^{(p)}_i \odot S^{(p)}) V^L + \beta V^L (D^p + S^p)}$$

$$V^{UL} \leftarrow V^{UL} \odot \frac{\sum_{p=1}^{P} \pi(p) \left(S^{(p)}\right)^T (U^{(p)}_i \odot X^{(p)}_i) + \beta V^{UL} (D^p + S^p)}{\sum_{p=1}^{P} \pi(p) \left(S^{(p)}\right)^T (U^{(p)}_i \odot S^{(p)}) V^{UL} + \beta V^{UL} (D^p + S^p)}$$

As for updating π, when $U, V, and S$ are fixed, minimization of $O(\pi)$ is a convex optimization, and we use convex optimization toolbox to update π.

CBPs Obtained From CBP-JMF

Values in each column of $U^{(p)}$ represent the relative contribution of each molecule in each module, and values in each row of V represent the degree of each sample involved in each module. According to the rules of matrix multiplication, the i-th column of basis matrix $U^{(p)}, p = 1, 2, ..., P$ corresponds to the i-th row of coefficient matrix V, so there is a one-to-one correspondence between subtype and multi-omics module discovered from the columns of $U^{(p)}$ matrix. Firstly, we need to know the relationship between k modules and subtypes by counting each subtype's value in each module from $V^{(p)}$ matrix (see Supplementary Note 3 in Supplementary Material).

To select features associated with each module, CBP-JMF calculates the z-scores of each molecule for each column vector of $U^{(p)}$ as $z = \frac{(x - \bar{x})}{S_x}$, where $\bar{x} = \frac{1}{n} \sum_i x_i$, $S_x^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$. Let $u^{(p)}_j$ be the j-th column of $U^{(p)}$ and infer a latent feature associated with j-th CBP. The continuous value $u^{(p)}_j$ represents the relative contribution of molecule i in the j-th CBP. $u^{(p)}_j$ can be regarded as x_i, and the length of $u^{(p)}_j$ can be regarded as n in Equation (12). CBP-JMF calculates a z-score for each value in $u^{(p)}_j$ and obtains CBP's members through a given cutoff (z-score > 2 in our tests). Then, they are mapped to a built-in molecule interaction network (see "Section 'Results'") to extract their connected components as the final CBP.

RESULTS

We applied CBP-JMF to BRCA with multi-omics data. The reason we chose BRCA as example is that breast cancer is a heterogeneous complex disease, and it is the most commonly occurring cancer. BRCA is also a type of cancer that can be divided into smaller groups based on certain characteristics of the cancer cells. Distinct complex biological processes represent different subtypes. Characterizing the processes can provide us comprehensive insights into the mechanisms of how multiple
Wang et al. CBP-JMF for Complex Biological Processes

FIGURE 2 | Complex biological processes of luminal B and basal-like subtype. We mapped the genes and miRNAs obtained from luminal B's module and basal-like's module to an integrated gene regulation network. The network was obtained through integrating three databases including Reactom, Kyoto Encyclopedia of Genes and Genomes, and Nci-PID Pathway Interaction Database. The interactions between genes and miRNAs were obtained from miRTarBase. The size of the node is proportional to the size of the degree. The thickness of the edges indicates the strength of the regulatory relationship expressed by the Pearson correlation coefficient between microRNA and gene.

TABLE 1 | Enrichment analysis of the extracted module gene across six datasets.

Dataset	Online mendelian inheritance in man	CGC	Virhostome	Kinome	Drug target	BRCA pathway
Total	51	43	947	516	61	102
Overlapped nodes	2	5	13	6	3	6
P-value	0.049	0.0003	0.007	0.008	0.010	0.012

FIGURE 3 | Part of complex biological processes luminal B and basal-like. The edges with checkmarks are the interactions that have been documented. (A) Luminal B's biological processes: luminal subtypes are driven by the estrogen/ER pathway. Among all nodes, ERBB2, ERBB3, and ESR1 are involved in the estrogen/ER pathway. (B) Basal-like's biological processes: basal-like subtype is driven by the deregulation of various signaling pathways (Notch, MAPK, FoxO signaling pathway, and Wnt/beta-catenin). Among all nodes, MAPKAPK2, CDC25B, CCNB1, CCNB2, PAK1, and STMN1 are known to exist in multiple signaling pathways.
levels of molecules interact with each other and the heterogeneity of breast cancers.

Data

Firstly, we downloaded the Gene Expression (GE) data, miRNA expression (ME) data, and copy number variation (CNV) data across the same set of 738 breast cancer samples from UCSC Xena (Goldman et al., 2018). Secondly, we obtained the sample label information which is classified by PAM50 from The Cancer Genome Atlas Network (Koboldt et al., 2012). Among 738 samples, there are 522 breast cancer samples with labels, including 231 luminal A, 127 luminal B, 98 triple negative/basal-like, 58 HER2-enriched, and eight normal-like. Thirdly, we filtered out some samples, in which more than 90% of the genes have an expression value of zero. For genes and miRNAs, we filtered the genes and miRNAs with an expression value of zero. For genes and miRNAs, we filtered out some samples, in which more than 90% of the genes have an expression value of zero. For genes and miRNAs, we filtered the genes and miRNAs with an expression value of zero. For genes and miRNAs, we filtered the genes and miRNAs with an expression value of zero. For genes and miRNAs, we filtered the genes and miRNAs with an expression value of zero.

To explore whether the genes in the CBPs of luminal B are regulated by miRNA, we used miRTarBase (Chou et al., 2018) to find the miRNA-gene interactions. We found that miR-34a modulates the expression of ESR1 in breast cancer cell lines. We also found that miR-26a modulates the expression of ESR1 in breast cancer cell lines. We then used miRNA to the gene supported by miRTarBase to find the miRNA-gene interactions. We found that miR-26a modulates the expression of ESR1 in breast cancer cell lines.

Table 2: Evidences of luminal B’s complex biological processes.

Interactions	Literatures	Descriptions
miR-34a->ESR1	Wang et al., 2017	miR-34a modulates ESR1 in breast cancer
miR-26a->ESR1	Howard and Yang, 2018	miR-26a modulates ESR1 in breast cancer
JUN->ESR1	Stossi et al., 2012	The activation of ESR1 gene locus in a breast cancer cell line is dependent
JUN->CCND1	Cicatiello et al., 2004	The activation of CCND1 gene locus in a breast cancer cell line is dependent

Table 3: Evidences of basal-like’s complex biological processes.

Interactions	Literatures	Descriptions
CCNB1(CCNB2)->PLK1	Li et al., 2019	CCNB1 (CCNB2), PLK1, and CDK1 have interactions in chicken breast muscle
miR221->FOS	Yao et al., 2016	miR221 modulates FOS
miR221->PAK1	Ergun et al., 2015	miR221 modulates PAK1 in breast cancer cell lines
PAK1->PLK1	Maroto et al., 2008	PAK1 regulates PLK1
MAPKAPK2->CDC25B	MAPK signaling pathway	MAPKAPK2 and CDC25B are involved in MAPK signaling pathway
CDC25B->CDK1	Timofeev et al., 2010	Timely assembly of CDK1 required CDC25B

Complex Biological Processes for Breast Cancer Subtypes

In our example, we set parameters $k = 4$, $\beta=10$, and $\omega=100,000$. Other parameters and more details can be found in Supplementary Note 2 of Supplementary Material. As a result, we obtained unique matrices $U^{(1)} \in \mathbb{R}^{2913 \times 4}$, $U^{(2)} \in \mathbb{R}^{516 \times 4}$, $S^{(1)} \in \mathbb{R}^{4 \times 4}$, and $S^{(2)} \in \mathbb{R}^{4 \times 4}$ and a common matrix $V \in \mathbb{R}^{4 \times 725}$.

To get heterogeneous CBPs (Supplementary Table 1), directed regulatory pathways containing miRNAs and genes, which correspond to each cancer subtype we put subtype-specific multi-omics modules obtained from matrix $U^{(p)}$, $p = 1, 2$ onto an integrated gene regulation network from Reactome (Croft et al., 2014), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), and Nci-PID pathway (Schafer et al., 2009). Then, we add directed regulatory edges from miRNA to the gene supported by miRTarBase (Chou et al., 2018).

Finally, we extracted the maximum connected component of the regulation network and showed the discovered characteristic CBPs underlying luminal B and basal-like subtypes in Figure 2.

To explore whether the genes in the CBPs of luminal B and basal-like subtype have significant biological importance or...
not, we performed an enrichment analysis with all 124 genes from Figure 2 across six datasets. The datasets are from OMIM (Hamosh et al., 2005), CGC (Futreal et al., 2004), virhostome, kinome (Manning et al., 2002), drug target (Wishart et al., 2008), KEGG pathway of BRCA (Kanehisa and Goto, 2000). Genes associated with breast cancer or breast tissue in the six datasets are selected as the set of enrichment analysis. Genes extracted through CBP-JMF have significant overlapping with known datasets (Table 1). Furthermore, for each subtype’s CBP, functional enrichment analysis (Supplementary Figure 4) shows that four CBPs are mainly enriched in known biological processes and pathways associated with breast cancer, such as cell cycle and various signaling pathways (including p53 signaling pathway and estrogen pathway). However, each CBP also has its specific biological processes and path. This may explain differences between subtypes. As a demonstration, we take the CBPs of luminal B and basal-like as example. Based on the study of the subtypes of BRCA, luminal B is mainly driven by the estrogen/ER pathway (Zhang et al., 2014). In our discovered CBPs, we found several CBPs containing genes like ERBB2, ERBB3, and ESR1 that are related to the estrogen/ER pathway. Besides that, through literature review, miRNAs in luminal B’s CBP can regulate the estrogen/ER pathway, such as miR-34a, miR-125b, miR-200b, and so on (Figure 3, Table 2). In addition, basal-like subtype is mainly driven by the deregulation of various signaling pathways including Notch, MAPK, and wnt/β-catenin signaling pathway (King et al., 2012). In our discovered CBPs, we found genes involved in the above-mentioned pathways, such as MAPKAPK2, CDC25B, PLK1, and so on. Besides that, we also found that miRNAs in CBPs of basal-like, such as miR-221 and miR-210, may regulate the genes above in basal-like subtype (Figure 3, Table 3). In summary, subtype-specific biological processes can be identified by CBP-JMF, and CBP-JMF can help users discover potential biological targets.

Meanwhile, to classify unlabeled samples into subtypes, CBP-JMF returned predicted labels for unlabeled samples (Supplementary Note 4 in Supplementary Material). Figure 4 shows the Kaplan–Meier (KM) survival analysis using survival package (Therneau, 2015) on unlabeled samples based on their clinical data in TCGA. We compared our results with other NMF methods (Supplementary Note 4 of Supplementary Material) and found that CBP-JMF achieves more accurate subtype classification results. Unlabeled samples are classified by using GE data and ME data. Figure 4 indicates that the survival analysis for unlabeled samples has the most significant Cox (Lin and Zelterman, 2002) p-value 0.031 and similar survival curves like the labeled samples. This proves that the CBP-JMF framework is useful for cancer subtyping, as the framework incorporates integration of multi-omics data and samples’ prior information.

DISCUSSION

Understanding CBPs is vital to help us further understand the development of disease and intervene in the disease. NMF is an effective tool for dimension reduction and data mining in high-throughput genomic data. In this paper, we proposed CBP-JMF, an improved method of multi-view data analysis. It is designed for heterogeneous biological data based on NMF. Moreover, we created an easy-to-use package in Python. CBP-JMF analyzes multi-dimensional genomic data across the same samples integrally. Our method can discover CBPs that underlie sample groups and classify unlabeled samples through learning the relationship between labeled samples.

We tested this framework on the gene expression data and miRNA expression data of BRCA. CBP-JMF discovered subtype-specific biological processes and classified unlabeled samples into four subtypes. We did survival analysis and function analysis, and the results showed that CBP-JMF has great performance. Furthermore, CBP-JMF is a weighted joint tri-NMF framework in essence. We expect that it can be applied to vast fields including disease subtypes, cell types, and population stratification. Meanwhile, we expect that CBP-JMF can be used to identify hub genes or predict the association between genes or non-coding mRNA and diseases by integrating a variety of data. Though CBP-JMF is efficient to uncover CBPs by integrating multi-omics data, CBP-JMF must integrate different multi-omics data that have the same samples. This weakness limits the use of more types.
of data and integrates more information to obtain more significant results.

CONCLUSIONS

In this article, we develop CBP-JMF, a matrix tri-factorization and weighted joint integration tool, for detecting CBPs, which characterize prior disease subtypes and cell groups in Python. We improve its usability by estimating the parameters, such as determining the number of features through consensus clustering. CBP-JMF always gives reference values of all parameters. In applications, CBP-JMF characterizes the CBPs of four subtypes of BRCA based on gene and miRNA expression data from TCGA, and we find the significantly different functional pathways that characterized luminal B and basal-like subtypes.

DATA AVAILABILITY STATEMENT

The datasets presented in this study are publicly available and the addresses for finding them are listed within the article. Prediction results and a reference implementation of CBP-JMF in Python are available at: https://github.com/wangbingbo2019/CBP-JMF.

REFERENCES

Biton, A., Bernard-Pierrot, I., Lou, Y., Krucker, C., Chapeaublanc, E., Rubio-Pérez, C., et al. (2014). Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes. Cell Rep. 9, 1235–1245. doi: 10.1016/j.celrep.2014.10.035

Brunet, J. P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2004). Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. U.S.A. 101, 4164–4169. doi: 10.1073/pnas.0308531101

Cai, D., He, X., Han, J., and Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1548–1560. doi: 10.1109/TPAMI.2010.231

Chen, J., and Zhang, S. (2018). Discovery of two-level modular organization from matched genomic data via joint matrix tri-factorization. Nucleic Acids Res. 46, 5967–5976. doi: 10.1093/nar/gky440

Chou, C. H., Shrestha, S., Yang, C. D., Chang, N. W., Lin, Y. L., Liao, K. W., et al. (2018). MiRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302. doi: 10.1093/nar/gkx1067

Cicatiello, L., Adddeo, R., Sasso, A., Altucci, L., Petrizzi, V. B., Borgo, R., et al. (2004). Estrogens and Progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of Cyclin D1. Mol. Cell. Biol. 24, 7260–7274. doi: 10.1128/MCB.24.16.7260-7274.2004

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., et al. (2014). The Reactome pathway knowledgebase. Nucleic Acids Res. 42, 472–477. doi: 10.1093/nar/gkt1102

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22. doi: 10.1111/j.2517-6161.1977.tb01600.x

Ding, C., Li, T., Peng, W., and Park, H. (2006). “Orthogonal nonnegative matrix tri-factorizations for clustering” in KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Philadelphia, PA), 126–135. doi: 10.1145/1150402.1150420

AUTHOR CONTRIBUTIONS

BW, YWu, and XM conceived and designed the experiments. YWu and MX performed the experiments. XM, RD, CZ, LY, XG, and LG analyzed the data. BW, YWu, XM, and YWa proofread the paper. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61772395 and 61873198, the Fundamental Research Funds for the Central Universities (Nos. JB190306 and ZD2009), and the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01). We thank LCNBI and ZJLab for the financial support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.665416/full#supplementary-material

ERGUN, S., TAYEB, T. S., ARSLAN, A., TEMIZ, E., ARMAN, K., SAFDAR, M., et al. (2015). The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene 555, 377–381. doi: 10.1016/j.gene.2014.11.036

FAN, J., SALATHIA, N., LIU, R., KAESSER, G. E., YUNG, Y. C., HERMAN, J. L., et al. (2016). Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244. doi: 10.1038/nmeth.3734

FUTRELL, P. A., COIN, L., MARSHALL, M., DOWN, T., HUBBARD, T., WOOSTER, R., et al. (2004). A census of human cancer genes. Nat. Rev. Cancer 4, 177–183. doi: 10.1038/nrc1299

GOLDMAN, M., CRAFT, B., HASTIE, M., REPECKA, K., MCDADE, F., KAMATH, A., et al. (2018). The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv, 1–16. doi: 10.1101/326470

GRASSILI, S., BRUGNOLI, F., LATTANZIO, R., ROSSI, C., PERRACCHIO, L., MOTTOLESE, M., et al. (2014). High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process. Oncotarget 5, 4320–4336. doi: 10.18632/oncotarget.2011

GUAN, Z., ZHANG, L., PENG, J., and FAN, J. (2015). Multi-view concept learning for data representation. IEEE Trans. Knowl. Data Eng. 27, 3016–3028. doi: 10.1109/TKDE.2015.2448542

HAMOSH, A., SCOTT, A. F., AMBERGER, J. S., BOCCHINI, C. A., and McKUSICK, V. A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, 514–517. doi: 10.1093/nar/gki033

HASIN, Y., SELDIN, M., and LUSIS, A. (2017). Multi-omics approaches to disease. Genome Biol. 18, 1–15. doi: 10.1186/s13059-017-1215-1

HOWARD, E. W., and YANG, X. (2018). MicroRNA regulation in estrogen receptor-positive breast cancer and endocrine therapy. Biol. Proced. Online 20, 1–19. doi: 10.18632/bioprotoc.15680

JIN, T., KIM, H. S., CHOI, S. K., HWANG, E. H., WOO, J., RYU, H. S., et al. (2017). microRNA-200c/141 upregulates SerpinB2 to promote breast cancer metastasis and reduce patient survival. Oncotarget 8, 32769–32782. doi: 10.18632/oncotarget.15680

KANEHISA, M., and GOTO, S. (2000). KEGG: Kyoto Encyclopedia of genes and genomes. Oxford Univ. Press Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27
King, T. D., Suto, M. J., and Li, Y. (2012). The wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. *J. Cell. Biochem.* 113, 13–18. doi: 10.1002/jcb.23550

Koboldt, D. C., Fulton, R. S., McElhan, M. D., Schmidt, H., Kalicki-Veizer, J., McMichael, J. F., et al. (2015). Comprehensive molecular portraits of human breast tumours. *Nature* 490, 61–70. doi: 10.1038/nature11412

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. *Nature* 401, 788–791. doi: 10.1038/44565

Li, Y., Chen, Y., Jin, W., Fu, S., Li, D., Zhang, Y., et al. (2019). Analyses of microRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development. *Front. Genet.* 10, 1–15. doi: 10.3389/fgene.2019.00197

Lin, H., and Zelterman, D. (2002). Modeling survival data: extending the cox model. *Technometrics* 44, 85–86. doi: 10.1198/tech.2002.a656

Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. *Science* 298, 1912–1934. doi: 10.1126/science.1075762

Maroto, B., Ye, M. B., Von Lohneysen, K., Schnelzer, A., and Knaus, U. G. (2008). P21-activated kinase is required for mitotic progression and regulates Ptk1. *Oncogene* 27, 4900–4908. doi: 10.1038/onc.2008.131

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and Getz, G. (2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. *Genome Biol.* 12, 1–14. doi: 10.1186/gb-2011-12-4-r41

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140. doi: 10.1093/bioinformatics/btp616

Rosenberg, B. J., Gil-Henn, H., Mader, C. C., Halo, T., Yin, T., Condeelis, J., et al. (2017). Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. *Mol. Biol. Cell* 28, 1347–1360. doi: 10.1091/mbc.e16-12-0885

Schaefer, C. F., Anthony, K., Krupa, S., Buchhoff, J., Day, M., Hannay, T., et al. (2009). PIDD: the pathway interaction database. *Nucleic Acids Res.* 37, 674–679. doi: 10.1093/nar/gkn653

Stein-O’Brien, G. L., Arora, R., Cullane, A. C., Favorov, A. V., Garmire, L. X., Greene, C. S., et al. (2018). Enter the matrix: factorization uncovers knowledge from omics. *Trends Genet.* 34, 790–805. doi: 10.1016/j.tig.2018.07.003

Stossi, F., Madak-Erdogan, Z., and Katzenellenbogen, B. S. (2012). Macrophage-elicited loss of estrogen receptor-α in breast cancer cells via involvement of MAPK and c-Jun at the ESR1 genomic locus. *Oncogene* 31, 1825–1834. doi: 10.1038/onc.2011.370

Suravajhala, P., Kogelman, L. J. A., and Kadarmideen, H. N. (2016). Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. *Genet. Sel. Evol.* 48, 1–14. doi: 10.1186/s12711-016-0217-x

Therneau, T. M. (2015). A Package for Survival Analysis in S. Version 2.38. Available online at: https://cran.r-project.org/package=survival.

Timofeev, O., Cizmecioglu, O., Settele, F., Kempf, T., and Hoffmann, I. (2010). Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. *J. Biol. Chem.* 285, 16978–16990. doi: 10.1074/jbc.M109.096552

Wang, S. E., Shin, I., Wu, F. Y., Friedman, D. B., and Arteaga, C. L. (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor β. *Cancer Res.* 66, 9591–9600. doi: 10.1158/0008-5472.CAN-06-2071

Wang, Y., Zhang, X., Chao, Z., Kung, H. F., Lin, M. C., Dress, A., et al. (2017). MiR-34a modulates ErbB2 in breast cancer. *Cell Biol. Int.* 41, 93–101. doi: 10.1002/cbin.10700

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., et al. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. *Nucleic Acids Res.* 36, 901–906. doi: 10.1093/nar/gkm958

Xu, J., Li, A., and Wang, M. (2018). A novel unsupervised learning model for detecting driver genes from pan-cancer data through matrix tri-factorization framework with pairwise similarities constraints. *Neurocomputing* 296, 64–73. doi: 10.1016/j.neucom.2018.03.026

Xi, J., Yuan, X., Wang, M., Li, A., Li, X., and Huang, Q. (2020). Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication. *Bioinformatics* 36, 1855–1863. doi: 10.1093/bioinformatics/btzz79

Yang, Z., and Michailidis, G. (2016). A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. *Bioinformatics* 32, 1–8. doi: 10.1093/bioinformatics/btv544

Yao, M., Gao, W., Yang, J., Liang, X., Luo, J., and Huang, T. (2016). The regulation roles of miR-125b, miR-221 and miR-27b in porcine Salmonella infection signalling pathway. *Biosci. Rep.* 36, 1–11. doi: 10.1042/B.S.R.20160243

Zhang, M. H., Man, H. T., Zhao, X. D, Dong, N., and Ma, S. L. (2014). Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (review). *Biomed. Rep.* 2, 41–52. doi: 10.3892/br.2013.187

Zhang, S., Liu, C. C., Li, W., Shen, H., Laird, P. W., and Zhou, X. J. (2012). Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. *Nucleic Acids Res.* 40, 9379–9391. doi: 10.1093/nar/gks725

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wang, Ma, Xie, Wu, Wang, Duan, Zhang, Yu, Guo and Gao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.