A class of simple proper Bol loops

Gábor P. Nagy

March 30, 2022

The existence of finite simple non-Moufang Bol loops was considered as one of the main open problems in the theory of loops and quasigroups. In this paper, we present a class of proper simple Bol loops. This class also contains finite and new infinite simple proper Bol loops.

1 Preliminaries

For a loop Q, we call the maps $L_a(x) = ax, R_a(x) = xa$ left and right translations, respectively. These are permutations of Q, generating the left and right multiplication groups $\text{LMlt}(Q), \text{RMlt}(Q)$ of Q, respectively. The group closure $\text{Mlt}(Q)$ of $\text{LMlt}(Q)$ and $\text{RMlt}(Q)$ is the full multiplication group of Q. Just like for groups, normal subloops are kernels of homomorphisms of loops. The loop Q is simple if it has no proper normal subloop. The commutator-associator subloop Q' is the smallest normal subloop of Q such that Q/Q' is an Abelian group. For basic introductory reference on loops see [11].

The loop Q is a left (right) Bol loop if the identity $x(y(xz)) = (x(yx))z (((xy)z)y = x((yz)y))$ holds in Q. Loops which satisfy both identities are called Moufang loops.

For any field F, L. J. Paige [10] constructed a simple nonassociative Moufang loop $M(F)$. Using the classification of finite simple groups, M. Liebeck [5] showed that the only finite simple nonassociative Moufang loops are $M(\mathbb{F}_q)$. The existence of finite simple non-Moufang Bol loops was considered as the one of the main open problems in the theory of loops and quasigroups, cf. [12] and [1, Question 4].

In this paper, Bol loops are left Bol loops and with proper Bol loops we mean left Bol loops which are not Moufang.

2 Bol loops as sections in groups

Let Q be a Bol loop, G the group generated by the left translations of Q, H the stabilizer of 1 in G and S the set of left translations. (S is called the left section of the loop.) It is widely known that the triple (G, H, S) satisfies the following properties:

*This paper was written during the author’s Marie Curie Fellowship MEIF-CT-2006-041105.
Therefore, $N = \text{structure of the Bol loop}$.

Proof. Let $\phi = \text{Lemma 2.1.}$ Let ϕ be a surjective homomorphism: $\text{then the map } \tilde{\phi} = \text{Lemma 2.2.}$ Let σ be an Abelian group and assume $\phi : Q \rightarrow A$ is a surjective homomorphism. Then the map $\tilde{\phi} : L_x \mapsto \varphi(x)$ extends to a surjective homomorphism $G \rightarrow A$. Indeed, if $L_{x_1} \cdots L_{x_n} = 1$ then $x_1(x_2(\cdots x_n)) = 1$ and

$$\varphi : \hat{G} = \langle S \rangle \rightarrow \text{LMlt}(S, \circ), \quad s \mapsto L_s = \alpha^{-1}s\alpha.$$

The kernel of φ is the largest normal subgroup of \hat{G} contained in $H \cap \hat{G}$. If the permutation representation of \hat{G} on the left cosets of H is faithful, that is, if H contains no proper normal subgroup of G, then φ is a bijection.

In the remaining of this section, we show some folklore results which connect the structure of the Bol loop Q and its left multiplication group.

Lemma 2.1. Let Q be a loop with left multiplication group $G = \text{LMlt}(Q)$. Then $Q = Q'$ if and only if G' acts transitively on Q.

Proof. Let A be an Abelian group and assume $\varphi : Q \rightarrow A$ is a surjective homomorphism. Then the map $\tilde{\varphi} : L_x \mapsto \varphi(x)$ extends to a surjective homomorphism $G \rightarrow A$. Indeed, if $L_{x_1} \cdots L_{x_n} = 1$ then $x_1(x_2(\cdots x_n)) = 1$ and

$$\tilde{\varphi}(L_{x_1}) \cdots \tilde{\varphi}(L_{x_n}) = \varphi(x_1) \cdots \varphi(x_n) = \varphi(x_1(x_2(\cdots x_n))) = \varphi(1) = 1.$$

Moreover, $N = \ker \tilde{\varphi}$ contains the stabilizer G_1 of the unit element of Q in G:

$$\tilde{\varphi}(L_x^{-1}L_xL_y) = \varphi(xy)^{-1}\varphi(x)\varphi(y) = 1.$$

Therefore, N and $G' \leq N$ are not transitive. Conversely, if G' is not transitive then $N = G'G_1$ is a proper normal subgroup of G. Then the map $\varphi : Q \rightarrow G/N$, $\varphi(x) = L_xN$ is a surjective homomorphism:

$$\varphi(x)\varphi(y) = L_xNL_yN = L_{xy}L_{xy}^{-1}L_xL_yN = L_{xy}N = \varphi(xy).$$

Lemma 2.2. Let Q be a Bol loop and let σ be an automorphism of $\text{LMlt}(Q)$ such that $L_x^\sigma = L_x^{-1}$ for all $x \in Q$. Let K be proper normal subloop of Q. Then, $K = N(1)$ for some σ-invariant normal subgroup N of $\text{LMlt}(Q)$. In particular, Q is simple if all σ-invariant normal subgroups of $\text{LMlt}(Q)$ act transitively on Q.

\[2\]
Proof. Put $G = \text{LMlt}(Q)$ and define the subset

$$M = \{ g \in G \mid g(yK) = yK \text{ for all } y \in Q \}.$$

of G. Clearly, $M \triangleleft G$ and $L_x \in M \cap M^\sigma$ for all $x \in K$. For the σ-invariant normal subgroup $N = M \cap M^\sigma$, $K = N(1)$ holds.

We notice that for any simple proper Bol loop Q, the left multiplication group possesses an involutorial automorphism σ with $L_x^\sigma = L_x^{-1}$ for all $x \in Q$.

The bijection $u : Q \to Q$ is a left pseudo-automorphism of the loop Q with companion element $c \in Q$ if

$$cu(x) = (cu(x))u(y)$$

holds for all $x, y \in Q$. Equivalently, $u(1) = 1$ and $L_c u L_x = L_{cu(x)} u$ for all $x \in Q$.

Two loops (Q, \cdot) and (K, \circ) are isotopes if bijections $\alpha, \beta, \gamma : Q \to K$ exist such that $\alpha(x) \circ \beta(y) = \gamma(x \cdot y)$ for all $x, y \in Q$. The loop Q is a G-loop if it is isomorphic to all its isotopes.

Lemma 2.3. Let Q be a left Bol loop and let us denote by S the set of left translations of Q. The loop Q is a G-loop if and only if for all $c \in Q$ there is a permutation u of Q such that $u(1) = 1$ and $uSu^{-1} = L_c^{-1}S$ hold.

Proof. Combining Theorem III.6.1 and IV.6.16 of [11], we see that a left Bol loop is a G-loop if and only if every element of Q occurs as a companion of some left pseudo-automorphism. Let $c \in Q$ be given and let $u : Q \to Q$ be a bijection such that $u(1) = 1$ and for all $x \in Q$ holds $uL_xu^{-1} = L_{c^{-1}L_x}$, where $x' \in Q$ depends on x, c and u. Then, $x' = cu(x)$ and u is a left pseudo-automorphism with companion c.

We close this section with a lemma on the left multiplication groups of nonproper Bol loops.

Lemma 2.4. Let Q be a simple Moufang loop. Then $\text{LMlt}(Q)$ is a simple group.

Proof. If Q is a simple group, then $\text{LMlt}(Q_T) \cong Q_T$ is simple. The left and right Bol identities can be written in the form

$$R_{xz}R_z^{-1} = L_x^{-1}R_zL_x, \quad L_{xy}L_y^{-1} = R_y^{-1}L_xR_y.$$

This means that for Moufang loops, the left and right multiplication groups are normal in the full multiplication group. Theorem 4.3 of [8] says that for an arbitrary nonassociative simple Moufang loop Q, the multiplication group is simple. Hence, $\text{LMlt}(Q) = \text{RMlt}(Q) = \text{Mlt}(Q)$ is a simple group.

3 Construction of left Bol loops using exact factorizations of groups

Definition 3.1. The triple (X, Y_0, Y_1) is called an exact factorization triple if X is a group, Y_0, Y_1 are subgroups of X satisfying $Y_0 \cap Y_1 = 1$ and $Y_0Y_1 = X$. The exact factorization triple (X, Y_0, Y_1) is faithful if Y_0, Y_1 do not contain proper normal subgroups of X.
If \(Y_1 \) does not contain any proper normal subgroup of \(X \), then an equivalent definition of exact factorization triples is that \(Y_0 \) is a regular subgroup in the permutation representation of \(X \) on the cosets of \(Y_1 \). In the mathematical literature, the group \(X \) is also called the \textit{Zappa-Szép product} of the subgroups \(Y_0, Y_1 \).

Proposition 3.2. Let \(\mathcal{T} = (X, Y_0, Y_1) \) be a faithful exact factorization triple. Let us define the triple \((G, H, S)\) by

\[
G = X \times X, \quad H = Y_0 \times Y_1 \leq G, \quad S = \{(x, x^{-1}) \mid x \in X\}.
\]

Then \((G, H, S)\) is a Bol loop folder. The associated left Bol loop \((S, \circ)\) is a \(G\)-loop.

Proof. We first show that \(S \) is a left transversal for all conjugates of \(H \). Let \(a, b \in X \) be arbitrary elements; we can write \(a^{-1} = a_0a_1 \) and \(b = b_0b_1 \) in a unique way with \(a_0, b_0 \in Y_0 \) and \(a_1, b_1 \in Y_1 \). We have

\[
\exists x \in X : (x, x^{-1}) \in (a, b)H \iff \exists y_0 \in Y_0, y_1 \in Y_1 : ay_0 = y_1^{-1}b^{-1} = \iff \exists y_0 \in Y_0, y_1 \in Y_1 : a^{-1}a_0^{-1}y_0 = y_1^{-1}b_1^{-1}b_0^{-1} = \iff \exists y_0 \in Y_0, y_1 \in Y_1 : a_0^{-1}y_0b_0 = a_1y_1^{-1}b_1^{-1} \in Y_0 \cap Y_1.
\]

Since \(Y_0 \cap Y_1 = 1 \), we obtain \(y_0 = a_0b_0^{-1}, y_1 = b_1^{-1}a_1 \) and the unique element of \((a, b)H \cap S\) is \((a_1b_0^{-1}, b_0a_1)\). This shows that \(S \) is a left transversal to \(H \) in \(G \). In order to prove the same fact for the conjugates of \(H \), let us take an arbitrary \(g \in G \) and write \(g = sh \); we have \(H^g = H^s \). For \(a \in G \) let us define \(t \in S \) as the unique element of \(S \cap aH^s \). This proves \((F1)\) and \((F2)\).

Let \(b \in X \) and write \(b = y_0y_1^{-1} \) with \(y_0 \in Y_0, y_1 \in Y_1 \). Then

\[
(y_0, y_1)(a, a^{-1})(y_0, y_1)^{-1} = (b, b^{-1})(y_1a_0^{-1}, y_0a^{-1}y_1^{-1}) \in (b, b^{-1})S.
\]

Since \(b \in X \) is arbitrary and \((y_0, y_1) \in H \), Lemma 2.3 implies that \((S, \circ)\) is a \(G\)-loop. \(\square\)

Definition 3.3. Let \(\mathcal{T} = (X, Y_0, Y_1) \) be a faithful exact factorization triple and let us define \(G, H, S \) as in Proposition 3.2. The Bol loop corresponding to the Bol loop folder \((G, H, S)\) will be denoted by \(Q_\mathcal{T}\).

Lemma 3.4. Let \(\mathcal{T} = (X, Y_0, Y_1) \) be a faithful exact factorization triple and let us define \(G, H, S \) as in Proposition 3.2. Then \(\operatorname{LMIt}(Q_\mathcal{T}) \) is isomorphic to \(\bar{G} = \langle S \rangle \cong X.X' \triangleleft G \).

Proof. We claim that \(H \) contains no normal subgroup of \(G \). Indeed, the projections of \(H \) to the direct factors of \(G = X \times X \) are \(Y_0, Y_1 \) which contain no normal subgroup of \(X \). Thus a normal subgroup of \(H \) must have trivial projections, hence it must be trivial. Therefore, the permutation action of \(G \) on the left cosets of \(H \) is faithful and we can consider \(G \) as a permutation group. Moreover, by the definition of \(Q = Q_\mathcal{T} \), the left translations are precisely the permutations induced by the elements of \(S \). This proves the lemma. \(\square\)

Proposition 3.5. Let \(\mathcal{T} = (X, Y_0, Y_1) \) be a faithful exact factorization triple such that \(X'Y_0 = X'Y_1 = X \) and let us define \(G, H, S \) as in Proposition 3.2. Then
(i) $\hat{G}H = G$ with $\hat{G} = \langle S \rangle$.

(ii) $Q_T^r = Q_T$. In particular, Q_T is not solvable.

Proof. Since $X' \times X' \leq \hat{G}$, we have $X'' \times X'' \leq \hat{G}'$. By $1 \times Y_1 \leq H$ and $X''Y_1 = X$, we obtain $1 \times X \leq \hat{G}'H$. Clearly, for any $a, b \in X$, $([a, b], [a^{-1}, b^{-1}]) \in \hat{G}'$, thus $([a, b], 1) \in \hat{G}'H$. This implies $X' \times 1 \leq \hat{G}'H$, hence $X \times 1 \leq \hat{G}'H$ by $Y_0 \times 1 \leq H$ and $X'Y_0 = X$. This proves (i). Lemma 3.4 says that \hat{G} is isomorphic to the left multiplication group of Q and the commutator subgroup of \hat{G} acts transitively on the left cosets of H in G. Therefore, (ii) follows from Lemma 2.1.

We call the group X almost simple if $T \leq X \leq \text{Aut}(T)$ for some nonabelian simple group T. The group T is the socle of X.

Theorem 3.6. Let X be an almost simple group with socle T. Let $T = (X,Y_0,Y_1)$ be a faithful exact factorization triple and assume $X = TY_0 = TY_1$. Then Q_T is a simple proper left Bol loop.

Proof. Let σ be the automorphism of G mapping $(a, b) \mapsto (b, a)$. Since $S^\sigma = S$, we have $\hat{G}^\sigma = \hat{G}$ and $\text{LMlt}(Q_T)$ has an automorphism which inverts the left translations. Clearly, $T \times T \leq X' \times X' \leq \hat{G}$ and every σ-invariant normal subgroup of \hat{G} contains $T \times T$. However, $T \times T$ is transitive by assumption, thus, Q_T is simple by Lemma 2.2. Moreover, Q is proper Bol by Lemma 2.4.

4 Some classes of simple proper Bol loops

In this section we present some finite and infinite simple proper Bol loops by applying the construction of Proposition 3.2.

Example I: Put $X = \text{PSL}(n, 2)$, let Y_0 be a Singer cycle and Y_1 be the stabilizer of a projective point. Then $Q_{(X,Y_0,Y_1)}$ is a finite simple proper Bol loop by Theorem 3.6. We notice that many other finite simple groups have exact factorizations. The factorizations of finite groups are intensively studied, cf. [6], [4] and the references therein.

Example II: Let n be an even integer and put $X = S_n$, $Y_0 = \langle (1,2,\ldots,n) \rangle$ and $Y_1 = S_{n-1}$ with $n \geq 4$. Define the loop $Q_n = Q_{(X,Y_0,Y_1)}$. If $n \geq 6$ then Q_n is simple by Theorem 3.6. If $n = 4$ then by Proposition 3.5 Q_4 is a nonsolvable Bol loop of order 24. It is known that all Bol loops of order at most 12 are solvable, thus, Q_4 is simple. We emphasize the fact that the left multiplication group of Q_4 is a solvable group of order 288. The computer result [7] of G. E. Moorhouse shows that all Bol loops of order less than 24 are solvable, hence Q_4 is a simple Bol loop of least possible order.

Example III: Put $X = \text{PSL}_2(\mathbb{R})$ and define the subgroups

$$Y_0 = \left\{ \pm \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \mid t \in \mathbb{R} \right\}, \quad Y_1 = \left\{ \pm \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right\} \quad a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}$$
of X. By Theorem 3.6, $Q_{(X,Y_0,Y_1)}(X,Y_0,Y_1)$ is a proper simple proper Bol loop which is isomorphic to all its isotopes. In particular, $Q_{(X,Y_0,Y_1)}(X,Y_0,Y_1)$ is not isotopic to a Bruck loop. Moreover, the left translation group is $PSL_2(\mathbb{R}) \times PSL_2(\mathbb{R})$.

In [2], the author classifies all differentiable Bol loops having a semi-simple left multiplications group of dimension at most 9. Our construction shows that the classification cannot be complete. (The author seems not to consider the case when the group G topologically generated by the left translations is a proper direct product of simple Lie groups G_1, G_2 and the stabilizer of $1 \in Q$ in G is a direct product $H = H_1 \times H_2$ with $1 \neq H_i \leq G_i, i = 1, 2$.)

Example IV: Let Σ be the set of non-zero squares in \mathbb{F}_{27}, $|\Sigma| = 13$. Let X be the set of transformations

$$X = \{ f(z) = az^t + b \mid a \in \Sigma, b \in \mathbb{F}_{27}, \tau \in \text{Aut}(\mathbb{F}_{27}) \}$$

of \mathbb{F}_{27}. Then X has order $1053 = 3^4 \cdot 13$ and it acts primitively on \mathbb{F}_{27}. Moreover,

$$X' = \{ f(z) = az + b \mid a \in \Sigma, b \in \mathbb{F}_{27} \}, \quad X'' = \{ f(z) = z + b \mid b \in \mathbb{F}_{27} \}.$$

We define Y_1 as the stabilizer of 0 in X. Since X'' acts regularly, we have $X''Y_1 = X$. Let U be the 3-Sylow subgroup of X, $|U| = 81$. Clearly, $U/X'' \cong C_3$, thus $U' \cap U_0 = 1$ where U_0 is the stabilizer of 0 in U. Therefore, U has a subgroup Y_0 of order 27 such that $Y_0 \neq X''$ and $Y_0 \cap U_0 = 1$; in other words, Y_0 acts regularly on \mathbb{F}_{27}. Since X'' is the unique 3-Sylow subgroup of X', Y_0 cannot be contained in X'. This implies $X'Y_0 = X$ because X' has index 3 in X.

We define now the Bol loop $Q = Q_{(X,Y_0,Y_1)}$. Let K be a maximal proper normal subgroup of Q, that is, Q/K be a simple loop. If Q/K were associative then by the Odd Order Theorem, it would be a cyclic group and we had a surjective homomorphism from Q to an Abelian group. By Proposition 3.5 this is not possible. Hence, Q/K is a proper simple Bol loop of odd order. (It can be shown by computer that Q itself is a simple Bol loop.) This last construction shows that the Odd Order Theorem does not hold for finite Bol loops. (Cf. [3].)

Acknowledgement I would like to thank Peter Müller (Uni. Würzburg) for his help in finding the group X in Example IV. I also thank Petr Vojtěchovský and Michael Kinyon (Uni. Denver) for many stimulating conversations and helpful comments.

References

[1] M. Aschbacher. On Bol loops of exponent 2. J. Algebra 288, No. 1, 99-136 (2005).

[2] A. Figula. Bol loops as sections in semi-simple Lie groups of small dimension. Manuscr. Math. 121, No. 3, 367-384 (2006).

[3] T. Foguel, M. K. Kinyon and J. D. Phillips. On twisted subgroups and Bol loops of odd order. http://arxiv.org/abs/math/0208231 (2004).
[4] M. GIUDICI. Factorisations of sporadic simple groups. *J. Algebra* **304**, No. 1, 311-323 (2006).

[5] M. W. LIEBECK. The classification of finite simple Moufang loops. *Math. Proc. Cambridge Philos. Soc.* **102**, 33-47 (1987).

[6] M. W. LIEBECK, C. E. PRAEGER and J. SAXL. Transitive subgroups of primitive permutation groups. *J. Algebra* **234**, No. 2, 291-361 (2000).

[7] G. E. MOORHOUSE. Bol loops of small order. http://www.uwyo.edu/moorhouse/pub/bol/ (2007).

[8] G. P. NAGY and M. VALSECCHI. Splitting automorphisms and Moufang loops. *Glasgow Math. J.* **46**, 305-310 (2004).

[9] P. T. NAGY and K. STRAMBACH. *Loops in Group Theory and Lie Theory*. W. de Gruyter, Berlin, New York (2002).

[10] L. J. PAIGE. A class of simple Moufang loops. *Proc. Amer. Math. Soc.* **7**, 471-482 (1956).

[11] H. O. PFLUGFELDER. *Quasigroups and loops*. Heldermann-Verlag, Berlin (1990).

[12] *Problems in Loop Theory and Quasigroup Theory*. http://www.math.du.edu/plq/ (2005).