Study of the radiological doses and hazard indices in soil samples from Karbala city, Iraq

Mohammed Abdulhussain Al-Kaabi1,a and Ahmed Al-Shimary1,b

1Department of Physics, College of Science, Kerbala University, Iraq
aE-mail: corresponding author m_alkaabi71@yahoo.com
bE-mail ah_alshimary@yahoo.com

Abstract:
The radiological doses and hazard indices of natural radionuclides ^{238}U, ^{232}Th and ^{40}K in soil samples from Kerbala city were evaluated using gamma-ray spectroscopy system using NaI(Tl) "1.5x2" detector in low-background with 24 hour. The average values of absorbed gamma-ray dose rate, annual effective dose equivalent and annual gonadal dose equivalent were found to be 90.83±2.00 nGy/h, 111.89±2.46 μSv/y and 640.85±15.44 μSv/y respectively. The average values of gamma representative level index and external hazard index resulting from natural radionuclides for all samples in the study area were 1.43±0.031 and 0.53±0.011 respectively. The obtained results in current work were compared with other results for different countries.

Keywords: Annual effective dose, absorbed dose, gonadal dose and NaI.

Submitted to: Chines Physics C

1. Introduction
Naturally radionuclides come from the atmosphere as a result of radiation from outer space, earth's crust such as rocks mineral ores and soil, its emitted from both natural and human-made radionuclides and surrounds us at every time1.

The naturally radionuclides materials that have very long half-lives include ^{238}U, ^{235}U and ^{232}Th chains (terrestrial radionuclides) distribute widely on earth and ocean, they were already present when the earth was born about 4.5 billion years ago and each of these nuclides terminates in stable isotopes of (Pb) nuclide2. The other naturally radionuclides such as ^{40}K, ^{87}Rb, and ^{113}Cd are individual and the most important (^{40}K) a radioactive isotope with a long half-life (1.28×109 years) 3. It is widely distributed on earth and found in measurable quantities in many building materials 4. There are also naturally radionuclides originated from interactions between the cosmic ray and the outer atmosphere such as ^{3}H, ^{14}C, ^{14}N, ^{81}Kr, ^{22}Na2. Man-made radionuclides, which are present in environment, have been created by human activities and added to the inventory of natural radionuclides for example ^{3}H, ^{131}I, ^{129}I, ^{137}Cs, ^{90}Sr and ^{239}Pu, in spite of the amount added is little compared to natural quantities. In 1996, IAEA estimated that 20\% of doses contribution in the environment are come from cosmic ray and man-made processes while 80\% is from the natural radionuclides 5. The presence of the radionuclides depends on the geological and geographical conditions, therefore we can find different levels of radionuclides in the soil samples in different region in the world 6.

The aim of this study was to estimate the levels of radiological doses as absorbed gamma-ray dose rate, Annual effective dose equivalent and annual gonadal dose equivalent in the soil samples collected from different locations in Kerbala city, Iraq. Moreover, radiological hazard indices as gamma representative level index and external hazard index were calculated and compared with results for different regions in the world.

2. Materials and methods
2.1. Samples collection and preparation
The thirty soil samples were collected from different sites of Karbala city during October and November 2014. The collected sample taken from random places as in figure 1 with depth of 5 cm. Table 1 show the sampling location at the area under study. The samples were crushed and dried to ensure that any significant moisture was removed. After that a sieve with diameter holes 500 µm was used to obtain a homogeneous powder and then weighed by 1 kg each one. Then the samples were packed into 1 liter polyethylene plastic Marinelli beakers. Plastic Marinelli beakers were sealed with a tape and stored for about one month before counting to allow secular equilibrium to be attained between 222Rn and its parent 226Ra in uranium chain [7].

![Figure 1. Distribution of collective samples on the map of Karbala city.](image)
Sample No.	Sample Code	Longitude	Latitude	Location
1	Sa1	44.015944	32.614226	Jameaa
2	Sa2	44.017038	32.587162	Benaa Jahez
3	Sa3	43.997273	32.593584	Semood
4	Sa4	44.004239	32.592088	Tahady
5	Sa5	44.007504	32.576145	Naser
6	Sa6	44.012931	32.560085	Resala
7	Sa7	43.979555	32.614472	Askaree
8	Sa8	44.001885	32.622182	Moalmeen
9	Sa9	44.022197	32.589249	Askan
10	Sa10	44.041735	32.590336	Molhak
11	Sa11	44.042898	32.575158	Industrial City
12	Sa12	44.022882	32.578023	Imam Ali
13	Sa13	44.021574	32.554645	Itarat
14	Sa14	44.019797	32.572244	Shohadaa Imam Ali
15	Sa15	44.003453	32.601484	Shohadaa Moadafeen
16	Sa16	44.006756	32.603366	Moadafeen
17	Sa17	43.966443	32.618725	Amen dakhly
18	Sa18	44.032509	32.584459	Osraa
19	Sa19	44.01807	32.635158	Abass
20	Sa20	43.986353	32.627845	Amel
21	Sa21	44.003696	32.565916	Fares
22	Sa22	43.999718	32.58.265	Atebaa
23	Sa23	43.99763	32.584237	Salam
24	Sa24	44.048823	32.641497	Zahraa
25	Sa25	44.026011	32.56712	Wafaa
26	Sa26	44.011411	32.604433	Ramadan
27	Sa27	43.968185	32.638977	Taka
28	Sa28	43.98178	32.639969	Kadesea
29	Sa29	43.987539	32.580592	Qudos
30	Sa30	43.990035	32.641174	Mojtaba

Table 1. Location of the thirty soil samples collected from different districts of Kerbala city.
2.2. Gamma-ray spectrometry

Gamma spectrometry system used for measuring emitted gamma rays from soil samples. The system consists of NaI (TI) scintillation detector, BICRON, crystal dimensions of 1.5×2 inch with CASSY lab program (1024 channel MCA). A detector having 7.5% energy resolution at 662 keV gamma line of radioactive source 137Cs. It is surrounded by a shield consisting of cooper of thickness 6 mm and a lead of thickness 4 cm to reduce the background of gamma radiation to minimum. The detector was energy-calibrated using a set of standard gamma-ray radioactive sources are 137Cs (661.66 keV), 22N (511, 1274 keV) and 60Co (1173.24 and 1332.5 keV) to cover a sufficient range of photo peaks. The photo peaks of 214Bi (609 keV), 228Ac (338 keV) and 40K (1460 keV) were used to specifying the activity of 238U, 232Th and 40K in the soil samples.

2.3. Background measurement

Before the counting process of the samples, the gamma background was determined with an empty Marinelli beaker for 24 hours in the same manner that used for samples. The background was subtracted from the measured gamma-ray spectra of each sample.

3. Results and discussion

3.1. Absorbed gamma-ray dose rate (D)

The main contribution to the absorbed dose rate in the air comes from terrestrial gamma-ray radionuclides present in trace amounts in the soil, the measurements of dose rate depend on measurements of specific activity concentrations of radionuclides, mainly 238U, 232Th and 40K families. The 2008 UNSCEAR report explains that the absorbed dose rate D in air 1 meter above the ground surface can be given by [8]:

$$D\text{(nGy/h)} = 0.462 A_{238\text{U}} + 0.604 A_{232\text{Th}} + 0.0417 A_{40\text{K}} \quad (1)$$

Where $A_{238\text{U}}, A_{232\text{Th}}$ and $A_{40\text{K}}$ are the specific activities of 238U, 232Th and 40K families in (Bq/kg) respectively. The dose conversion factors of 238U, 232Th and 40K are 0.462, 0.604 and 0.0417 in ((nGy/h)/(Bq/kg)) respectively. Table 2 shows that the absorbed dose rate values for the samples ranged from 58.89±1.79 to 138.25±2.31 nGy/h with an average value of 90.83±2.00 nGy/h. The average values of the absorbed dose rate were calculated for soil sample in some countries as 95.5 nGy/h in India [9], 37.15 nGy/h in Jordan [10], and 64.5±27.1 nGy/h in Thailand [11]. The population-weighted value of the absorbed dose rate in outdoor that calculated by UNSCEAR 2000 was 59 nGy/h. Figure 2 represents the samples and the absorbed dose rate and it is shows also the contributions of 238U, 232Th and 40K in each sample.

![Figure 2. The measured absorbed dose rate for all soil sample.](image-url)
3.2. Annual effective dose equivalent (AEDE)
The calculations of effective dose equivalent depend on the value of the absorbed dose rate in air. To accomplish these calculations, account must be taken of the conversion coefficient from absorbed dose rate in air to effective dose equivalent received by adult and occupancy fraction. The value of these two parameters vary depending on the climate at the area considered and the average age of the population. In the UNSCEAR 2008 report, the value of conversion coefficient was 0.7 Sv/Gy for male and female and to the indoor and outdoor, and the 0.2 for the outdoor occupancy fraction. Therefore, the outdoor annual effective dose equivalent can be given as follow [8]:

\[
\text{AEDE} (\mu \text{Sv/y}) = D(\text{nGy/h}) \times 8760(\text{h}) \times 0.2 \times 0.7(\text{Sv/Gy}) \times 10^{-3}
\]

Table 2 shows the values of the annual effective dose equivalent for the different areas of the soil samples. The values varied from 72.22±2.20 to 169.55±2.83 \(\mu\text{Sv/y}\) with mean value and standard deviation of 111.89±2.46 \(\mu\text{Sv/y}\). The average values of the annual effective dose equivalent were calculated for soil sample in some countries as 314.1 \(\mu\text{Sv/y}\) in Turkey [12], 32.33 \(\mu\text{Sv/y}\) in Saudi Arabia [13], 152 \(\mu\text{Sv/y}\) in China [14]. The worldwide average value calculated by UNSCEAR 2008 was 70 \(\mu\text{Sv/y}\). Figure 3 shows the samples and the annual effective dose equivalent.

![Figure 3](image_url)

Figure 3. The measured annual effective dose equivalent for all soil sample.

3.3. Annual gonadal dose equivalent (AGDE)
The organs of interest by UNSCEAR include the thyroid, the lungs, bone marrow, bone surface cell, the gonads and the female breast [8]. Hence, the annual gonadal dose equivalent can be given by [15]:

\[
\text{AGDE} (\mu \text{Sv/y}) = 3.09 A_{238\text{U}} + 4.18 A_{232\text{Th}} + 0.314 A_{40\text{K}}
\]

The obtained values of annual gonadal dose equivalent are listed in table 2, the values varied from 416.49±12.70 to 972.97±16.34 \(\mu\text{Sv/y}\) with mean value and standard deviation of 640.85±15.44 \(\mu\text{Sv/y}\). The mean values of soil samples were 439.73 \(\mu\text{Sv/y}\) for Nigeria [16], 2398 \(\mu\text{Sv/y}\) for Egypt [17], and 182.52 \(\mu\text{Sv/y}\) for Saudi Arabia [13]. The contributions of specific activities due to \(^{238}\text{U}, {232}\text{Th}\) and \(^{40}\text{K}\) in each sample were shown in figure 4.
3.4. Gamma representative level index ($I_{γr}$)

The gamma radiation representative level index associated with natural radionuclide was evaluated using the following equation [18]

$$I_{γr} = \frac{A_{238U}}{150} + \frac{A_{232Th}}{100} + \frac{A_{40K}}{1500}$$ \hspace{1cm} (4)

Table 2 shows the obtained values of gamma index for our samples, the values 0.93±0.03, 2.17±0.04 and 1.43±0.031 indicate a minimum, maximum and mean values for this index. The values for sediments ranged between 0.248 and 2.735 in India [19], 0.89 and 1.03 in Nigeria [16]. The contribution of radioactive chains seems clear from figure 5.

3.5. Hazard index (H_{ex})

The external hazard index, is defined as [20]

$$H_{ex} = \frac{A_{238U}}{370} + \frac{A_{232Th}}{259} + \frac{A_{40K}}{4810} \leq 1$$ \hspace{1cm} (5)

The value of this index must be less than unity in order to keep the radiation hazard insignificant. The maximum value of hazard index equal to unity corresponds to the upper limit of radium equivalent activity (370 (Bq/kg). The values varied from 0.34±0.01 to 0.8±0.013 with mean value of 0.53±0.011 (see table 2). The mean values of hazard index for soil samples were 0.25±0.01 for Jordan [10], 0.38±0.16 for Thailand [11], and 0.13 for Saudi Arabia [13].

Figure 4. The measured annual gonadal dose equivalent for all soil sample.

Figure 5. The gamma representative level index for all soil sample.
Figure 6 shows that the thorium contribution are most significant compared with other radionuclides.

\[\text{Figure 6. The external hazard index for all soil sample.} \]

4. Conclusions

The radiological doses as absorbed gamma-ray dose rate, annual effective dose equivalent and annual gonadal dose equivalent resulting from ^{238}U, ^{232}Th and ^{40}K families in soil samples from Kerbala city have been evaluated using gamma-ray spectroscopy system using NaI (Tl). To determine the radiological risk gamma radiation representative level index and external hazard index were evaluated. The obtained results show that the average values of dose rate, effective dose and annual gonadal dose are higher than the worldwide average. Since the external hazard index less than unity, therefore no significant radiological hazard for all soil samples in the study area.
Table 2. The radiological doses and hazard indices for all soil samples.

Sample code	D (nGy/h)	AEDE (µSv/y)	AGDE (µSv/y)	I_{yr}	H_{ex}
Sa1	131.02±2.26	160.68±2.77	921.91±16.03	2.07±0.04	0.76±0.013
Sa2	63.65±1.82	78.06±2.23	449.88±12.93	1±0.03	0.37±0.01
Sa3	90.36±2.01	110.82±2.47	639.05±14.25	1.43±0.03	0.52±0.012
Sa4	88.80±2.00	108.9±2.45	626.25±14.19	1.4±0.03	0.51±0.011
Sa5	84.69±1.98	103.86±2.43	594.16±13.99	1.32±0.03	0.49±0.011
Sa6	90.85±2.01	114.42±2.47	642.73±14.27	1.43±0.03	0.52±0.012
Sa7	66.47±1.87	81.52±2.29	457.75±13.20	1.04±0.03	0.4±0.011
Sa8	74.18±1.90	91.75±2.33	528.27±13.50	1.17±0.03	0.43±0.011
Sa9	106.56±2.12	130.69±2.60	752.83±15.01	1.69±0.03	0.62±0.012
Sa10	106.89±2.10	131.09±2.58	760.41±14.92	1.69±0.03	0.61±0.012
Sa11	80.26±1.95	98.43±2.39	564.62±13.81	1.26±0.03	0.46±0.011
Sa12	111.90±2.15	137.23±2.64	788.16±15.23	1.76±0.03	0.65±0.012
Sa13	74.48±1.89	91.34±2.32	527.28±13.43	1.17±0.03	0.43±0.011
Sa14	94.82±2.04	116.29±2.50	667.98±14.43	1.48±0.03	0.54±0.012
Sa15	74.29±1.88	91.11±2.31	528.34±13.36	1.16±0.03	0.42±0.011
Sa16	60.52±1.80	74.22±2.21	426.95±12.80	0.95±0.03	0.35±0.011
Sa17	89.42±1.99	109.66±2.44	633.60±14.15	1.41±0.03	0.51±0.011
Sa18	82.06±1.95	100.64±2.39	577.89±13.82	1.28±0.03	0.74±0.011
Sa19	138.25±2.31	169.55±2.83	972.97±16.34	2.17±0.04	0.8±0.013
Sa20	58.89±1.79	72.22±2.20	416.49±12.70	0.93±0.03	0.34±0.01
Sa21	119.47±2.20	146.52±2.70	838.32±15.58	1.87±0.03	0.69±0.013
Sa22	81.93±1.96	100.48±2.40	577.64±13.88	1.3±0.03	0.48±0.011
Sa23	86.70±1.99	106.33±2.44	611.13±14.12	1.37±0.03	0.54±0.011
Sa24	135.28±2.28	165.91±2.80	950.80±16.16	2.11±0.04	0.78±0.013
Sa25	107.52±2.13	131.86±2.61	757.00±15.06	1.7±0.03	0.63±0.012
Sa26	88.06±1.99	108±2.44	622.90±14.14	1.39±0.03	0.51±0.011
Sa27	90.06±2.00	110.45±2.45	637.15±14.21	1.42±0.03	0.52±0.011
Sa28	102.69±2.09	125.94±2.56	725.52±14.80	1.62±0.03	0.59±0.012
Sa29	63.34±1.81	77.68±2.22	450.58±12.87	1.01±0.03	0.36±0.01
Sa30	81.52±1.94	99.98±2.38	576.91±13.81	1.28±0.03	0.47±0.011
Min	58.89±1.79	72.22±2.20	416.49±12.70	0.93±0.03	0.34±0.01
Max	138.25±2.31	169.55±2.83	972.97±16.34	2.17±0.04	0.8±0.013
Mean±S.D.	90.83±2.00	111.89±2.46	640.85±15.44	1.43±0.03	0.53±0.011
References

[1] HPS 2015 Background Radiation: fact sheet (1313 Dolley Madison Blvd., Suite 402, McLean, VA 22101) 1-4
[2] Cember H and Johnson T E 2009 Introduction to Health Physics 4th ed UK: McGraw-Hill Companies.
[3] Arthur R J, Miley H S and Lindsay C BE 7 2008 Cross-talk in RASA Continuous Air Samplers Nuclear Explosion Monitoring: Proc. 24th Seismic Research Review: Innovation and Integration 689-693
[4] Cooper M B 2005 Naturally Occurring Radioactive Materials (NORM) in Australian Industries - Review of Current Inventories and Future Generation, ERS-006, A: Report prepared for the Radiation Health and Safety Advisory Council
[5] IAEA 1996 Regulations for the Safe Transport of Radioactive Material IAEA Division of Public Information (Vienna) 96-00725 IAEA/PI/A47E
[6] UNSCEAR 2000 Sources and Effects of Ionizing Radiation: Report to the General Assembly, with scientific annexes vol 1 (United Nations, New York) 1-654
[7] EPA 2004 Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP) Part II: Chapters 10 - 17 Appendix F (Volume II) with attachment 14A Radioactive Decay and Equilibrium (United State)
[8] UNSCEAR 2010 Sources and Effects of Ionizing Radiation: Report to the General Assembly, with scientific annexes vol 1 (United Nations, New York) 1-219
[9] Saleh H and Abu Shayeh M, 2014 Ann. Nucl. Energy 65 184-189
[10] Santawamaitre T, Malain D, Sulaiti H A, Bradly D A and Matthews M C 2014 J. Environ. Radioactiv. 138 80-86
[11] Mohery M, Baz S, Kelany A M and Abdullah A M 2014 Radiat. Phys. Chem. 97, 16-24
[12] Yang Y, Wu X, Jian Z, Wang W, Lu J, Lin J, Wang I and Hsia Y 2005 Appl. Radiat. Isot. 63 267-75
[13] Mamont-Ciesla K, Gwiazdowski B, Biernacka M and Zak A, 1982 Radioactivity of building materials in Poland. In: Vohra G, Pillai K C and Sadavisan S, (Eds.) Natural Radiation Environment Halsted Press, New York 551.
[16] Ademola A K and Bello A K 2014 J. Radiat. Res. Appl. Sci.7 249-255
[17] Beretka J and Mathew P J 1985 Health phys. 48 87-95