Stability of Quadratic Functional Equation in Two Variables

Jianbing Cao*
Department of Mathematics, Henan Institute of Science and Technology, Xinxiang, China
*Corresponding author: caocjb@163.com

Abstract In this paper, we establish the general solution of a 2-variable quadratic functional equation
\[f(x + y, 2z + w) - f(x - y, z - w) + 4f(x, z) + f(y, w) \]
and prove the generalized Hyers-Ulam stability of this functional equation.

Keywords: solution, stability, quadratic functional equation

Cite This Article: Jianbing Cao, “Stability of Quadratic Functional Equation in Two Variables.” Applied Mathematics and Physics, vol. 5, no. 3 (2017): 95-98. doi: 10.12691/amp-5-3-3.

1. Introduction

One of the interesting questions in the theory of functional equations is the following (see [2]):

When is it true that a function which approximately satisfies a functional equation \(F \) must be close to an exact solution of \(F \)?

If there exists an affirmative answer we say that the equation \(F \) is stable. The stability problems of functional equations were raised by S. M. Ulam during his talk before a Mathematical Colloquium at the University of Wisconsin in 1940 [15]:

Given a group \(G_1 \), a metric group \((G_2, d) \) and a positive number \(\varepsilon \), does there exist a number \(\delta > 0 \) such that if a function \(f : G_1 \rightarrow G_2 \) satisfies the inequality
\[d(f(xy), f(x)f(y)) < \delta \quad \text{for all} \quad x, y \in G_1, \]
then there exists a homomorphism \(T : G_1 \rightarrow G_2 \) such that
\[d(f(x), T(x)) < \varepsilon \quad \text{for all} \quad x \in G_1. \]

If the answer is affirmative, we would say that the equation of homomorphism \(T(xy) = T(x)T(y) \) is stable.

The concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is that how do the solutions of the inequality differ from those of the given functional equation?

Hyers [12] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Subsequently, his result was extended and generalized in several ways (see e.g. [13]). Th.M. Rassias [15] extended Hyers’ theorem in the following form where Cauchy difference is allowed to be unbounded:

Let \(X \) and \(Y \) be real normed spaces with \(Y \) complete, for a mapping \(f : X \times X \rightarrow Y \), consider the 2-variable quadratic functional equation:
\[f(x + y, 2z + w) - f(x - y, z - w) + 4f(x, z) + f(y, w) \]
When \(X = \mathbb{R} \), we see the quadratic form given by
\[f(x, y) = ax^2 + bxy + cy^2 \]
is a solution of (1.1). In fact, we can check that
\[
\begin{align*}
\|f(x) - T(x)\| &\leq \frac{\varepsilon}{1 - 2^p} \\
\text{for all} \quad x \in X.
\end{align*}
\]
In 1994, a generalization of Rassias’ theorem was obtained by Gavruta P. Gavruta [10] in the spirit of Th. M. Rassias’ approach.

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem. A large list of references can be found, the reader is referred to [5,13,14] and references therein for further information on stability.

Let \(X \) and \(Y \) be vector spaces. For a mapping \(f : X \times X \rightarrow Y \), consider the 2-variable quadratic functional equation:
\[f(x + y, 2z + w) = f(x + y, z + w) - f(x - y, z - w) + 4f(x, z) + f(y, w) \]
When \(X = Y = \mathbb{R} \), we see the quadratic form given by
\[f(x, y) = ax^2 + bxy + cy^2 \]
is a solution of (1.1). In fact, we can check that
\[
\begin{align*}
f(x + y, 2z + w) &= a(x + y)^2 + b(x + y)(2z + w) + c(2z + w)^2 \\
&= a(x + y)^2 + b(x + y)(z + w) + c(z + w)^2 \\
&\quad - \left[a(x - y)^2 + b(x - y)(z - w) + c(z - w)^2 \right] \\
&\quad + 4ax^2 + bxz + cz^2 + 4ay^2 + byw + cw^2 \\
&= f(x + y, z + w) - f(x - y, z - w) + 4f(x, z) + f(y, w).
\end{align*}
\]
For a mapping \(g : X \rightarrow Y \), Now, we consider the quadratic functional equation:
One can easily verify that \(g(2x + y) = g(x + y) - g(x - y) + 4g(x) + g(y) \) \((1.2)\)

In a one paper, by using the fixed point theorem method, C. Park \([3]\) proved the generalized Hyers-Ulam stability of the quadratic functional equation \((1.2)\).

In this paper, we investigate the relation between \((1.1)\) and \((1.2)\). And we find out the general solution and the generalized Hyers-Ulam stability of \((1.1)\).

2. The Relation between \((1.1)\) and \((1.2)\)

Theorem 2.1. Let \(f : X \times X \to Y \) be a mapping satisfying \((1.1)\) and let \(g : X \to Y \) be the mapping given by

\[
g(x) = f(x, x) \tag{2.1}
\]

for all \(x \in X \), then \(g \) satisfies \((1.2)\).

Proof. By \((1.1)\) and \((2.1)\), we can show that

\[
g(2x + y) = f(2x + y, 2x + y)
= f(x + y, x + y) + f(x - y, x - y)
+ 4f(x, y) - f(y, y)
= g(x + y) - g(x - y) + 4g(x) + g(y)
\]

for all \(x, y \in X \).

Theorem 2.2. Let \(a, b, c \in \mathbb{R} \) and \(g : X \to Y \) be a mapping satisfying \((1.2)\). If \(f : X \times X \to Y \) is the mapping given by

\[
f(x, y) := ag(x) + b\left[g(x + y) - g(x - y) \right] + cg(x) \tag{2.2}
\]

for all \(x, y \in X \), then \(f \) satisfies \((1.1)\).

Proof. By \((1.2)\) and \((2.2)\), we can show that

\[
f(2x + y, 2z + w)
= ag(2x + y) + b\left[g(2x + y + 2z + w) \right]
= 4ag(x) + 4ag(y) + 4ag(x + y) - 4ag(x - y)
+ b\left[4g(x + z) - g(y + w) \right]
+ g(x + z + y + w) - g(x + z - y - w)
- b\left[4g(x - z) - g(y + w) \right]
+ g(x - z + y - w) - g(x - z - y + w)
+ 4cg(z) + 4cg(w) + cg(z + w) - cg(z + w)
= ag(x + y) + b\left[g(x + z + y + w) \right]
- g(x - y + z - w) + cg(z + w)
- ag(x - y) + b\left[g(x - y + z - w) - g(x - y + z - w) \right]
+ cg(z - w) + 4ag(x) + b\left[g(x + z) - g(x - z) \right]
+ cg(z) + 4cg(w) + b\left[g(x + z) - g(x - z) \right] + cg(w)
\]

for all \(x, y, z, w \in X \). This completes the proof.

3. Solution and Stability Results

In the following theorem, we find out the general solution of the main functional equation \((1.1)\).

Theorem 3.1. A mapping \(f : X \times X \to Y \) satisfies \((1.1)\) if and only if there exist two symmetric bi-additive mappings \(S_1, S_2 : X \times X \to Y \) and a bi-additive mapping \(B : X \times X \to Y \) such that

\[
f(x, y) = S_1(x, x) + B(x, y) + S_2(x, y)
\]

for all \(x, y \in X \).

Proof. We first assume that there exist two symmetric bi-additive mappings

\[
S_1, S_2 : X \times X \to Y
\]

and a bi-additive mapping

\[
B : X \times X \to Y
\]

such that

\[
f(x, y) = S_1(x, x) + B(x, y) + S_2(x, y)
\]

for all \(x, y \in X \). Then we have

\[
f(2x + y, 2z + w) - f(x + y, z + w) - f(x - y, z - w)
= S_1(2x + y, 2x + y) + B(2x + y, 2z + w)
+ S_2(2z + w, 2z + w)
-[S_1(x, x, x, y) + B(x + y, z + w) + S_2(z + w, z + w)]
+[S_1(x, y, x, y) + B(x - y, z - w) + S_2(z - w, z - w)]
= 4S_1(x, x) + S_1(y, y) + 4B(x, z)
+ B(y, w) + 4S_2(z, z) + S_2(w, w)
= 4S_1(x, x) + B(x, z) + S_2(z, z)
+[S_1(y, y) + B(y, w) + S_2(w, w)]
= 4f(x, z) + f(y, w)
\]

for all \(x, y, z, w \in X \).

Conversely, we assume that \(f \) is a solution of \((1.1)\). Define \(f_1, f_2 : X \to Y \) by \(f_1(x) := f(x, 0) \) and \(f_2(x) = f(0, x) \) for all \(x \in X \). One can easily verify that \(f_1, f_2 \) are quadratic. By \([16]\), there exist two symmetric bi-additive mappings

\[
S_1, S_2 : X \times X \to Y
\]

such that \(f_1 = S_1(x, x) \) and \(f_2 = S_2(x, x) \) for all \(x \in X \).

Define \(B : X \times X \to Y \) by

\[
B(x, y) := f(x, y) - \left[f(x, 0) + f(0, y) \right]
\]

for all \(x, y \in X \). Then, it is easy to investigate that \(B \) is bi-additive. This completes the proof.
In the following theorem, let X be a vector space and Y be a Banach space. Given a function $f : X \times X \to Y$, we set
\[
Df(x,y,z,w) = f(2x+y, z+w) - f(x+y, z+w) + f(x, z-w) - 4f(x, z) - f(y, w)
\]
for all $x, y, z, w \in X$.

Theorem 3.2. Let $f : X \times X \to Y$ be a mapping for which there exists a function $\phi : X^4 \to [0, \infty)$, such that
\[
\left\|Df(x,y,z,w)\right\| \leq \phi(x, y, z, w) \tag{3.1}
\]
for all $x, y, z, w \in X$. Then there exists a unique 2-variable quadratic mapping $A : X \times X \to Y$ such that
\[
\|f(x,y) - A(x,y)\| \leq \frac{1}{4} \phi(x,0,0,0) \tag{3.3}
\]
for all $x, y \in X$. The mapping A is given by
\[
A(x,y) = \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n y)
\]
for all $x,y \in X$.

Proof. Letting $y = 0$ and $w = 0$ in (3.2), we get
\[
\left\|\frac{1}{4} f(2x,2z) - f(x,0) + \frac{1}{4} f(0,0)\right\| \leq \frac{1}{4} \phi(x,0,0,0)
\]
for all $x, z \in X$. Thus we obtain
\[
\left\|\frac{1}{4^{j+1}} f(2^{j+1} x, 2^{j+1} z) - \frac{1}{4^j} f(2^j x, 2^j z) + \frac{1}{4^{j+1}} f(0,0)\right\| \leq \frac{1}{4^{j+1}} \phi(2^j x, 0, 2^j z, 0)
\]
for all $x, z \in X$ and all j. Replacing z by y in the above inequality, we see that
\[
\left\|\frac{1}{4^{j+1}} f(2^{j+1} x, 2^{j+1} y) - \frac{1}{4^j} f(2^j x, 2^j y) + \frac{1}{4^{j+1}} f(0,0)\right\| \leq \frac{1}{4^{j+1}} \phi(2^j x, 0, 2^j y, 0)
\]
for all $x, y \in X$ and all j. For given integers $l, m (0 \leq l < m)$, we get
\[
\left\|\frac{1}{4^m} f(2^m x, 2^m y) - \frac{1}{4^l} f(2^l x, 2^l y) + \frac{1}{4^m} f(0,0)\right\| \leq \frac{1}{4^m} \phi(2^l x, 0, 2^l y, 0)
\]
for all $m > 1$ and all $x, y \in X$. It follows from (3.1) and (3.4) that the sequence $\left\{\frac{1}{4^n} f(2^n x, 2^n y)\right\}$ is Cauchy. Due to the completeness of Y, this sequence is convergent. So we can define the mapping $A : X \times X \to Y$ by
\[
A(x,y) = \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n y)
\]
for all $x, y \in X$. By (3.2) and (3.1), we have
\[
\left\|DA(x,y,z,w)\right\| = \lim_{n \to \infty} \frac{1}{4^n} \left\|Df(2^n x, 2^n y, z, w)\right\| = \lim_{n \to \infty} \frac{1}{4^n} \phi(2^n x, 2^n y, z, w)
\]
for all $x, y, z, w \in X$. So $DA(x,y,z,w) = 0$. Moreover, letting $I = 0$ and passing the limit $m \to \infty$ in (3.4), we get (3.3).

Now let $A : X \times X \to Y$ be another 2-variable quadratic mapping satisfying (3.3). Then we have
\[
\left\|A(x,y) - A'(x,y)\right\| = \frac{1}{4^n} \left\|A(2^n x, 2^n y) - A'(2^n x, 2^n y)\right\| \leq \frac{1}{4^n} \left\|A(2^n x, 2^n y) - f(2^n x, 2^n y)\right\| + \frac{1}{4^n} \left\|A'(2^n x, 2^n y) - f(2^n x, 2^n y)\right\| \leq \frac{1}{2^n} \phi(2^n x, 2^n y, 2^n x, 2^n y)
\]
which tends to zero as $n \to \infty$ for all $x, y \in X$. So we can conclude that $A(x, y) = A'(x, y)$ for all $x, y \in X$. This proves the uniqueness of A. This completes the proof.

Remark 3.3. Let $f : X \times X \to Y$ be a mapping for which there exists a function $\phi : X^4 \to [0, \infty)$ satisfying (3.2) such that
\[
\phi(x, y, z, w) = \sum_{j=1}^{\infty} 4^j \phi\left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j}, \frac{w}{2^j}\right) < \infty
\]
for all $x, y, z, w \in X$. By a similar method to the proof of Theorem 3.2, one can show that there exists a unique 2-variable quadratic mapping $A : X \times X \to Y$ such that
\[
\|f(x,y) - A(x,y)\| \leq \frac{1}{4} \phi(x,0,y,0)
\]
for all $x, y \in X$. The mapping A is given by
\[
A(x,y) = \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}, \frac{y}{2^n}\right)
\]
for all $x, y \in X$.

Acknowledgements

The authors wish to thank the editor and referees for their helpful comments and suggestions.
References

[1] Czerwik, S, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ.Hamburg, 62, 1992, 59-64.
[2] Gruber, P. M, Stability of isometries, Trans. Amer. Math. Soc., 245, 1978, 263-277.
[3] Park, C, Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications, vol. 2008, Article ID 493751, 9.
[4] Najati, A, Hyers-Ulam stability of an n-apollonius type quadratic mapping, Bull. Belg. Math. Soc. Simon Stevin, Volume 14, Number 4, 2007, 755-774.
[5] Czerwik, S. (ed.), Stability of Functional equations of Ulam–Hyers–Rassias Type, Hadronic Press, 2003.
[6] Kwon, Y.-H, Lee H.-M. and Sim, J.-S. et al, Generalized Hyers–Ulam stability of functional equations, J. Chungcheong Math. Soc. 20, 2007, 337-399.
[7] Chu, Y-H, Kang, D. S and Th. M. Rassias, On the stability of a mixed n-dimensional quadratic functional equation, Bull. Belg. Math. Soc. Simon Stevin Volume 15, Number 1, 2008, 9-24.
[8] Park, W.-G. and Bae, J.-H., On a bi-quadratic functional equation and its stability, Nonlinear Analysis: Theory, Methods & Applications, vol. 62, no. 4, 2005, 643-654.
[9] Bae, J.-H and Park, W.-G, A functional equation originating from quadratic form, J. Math. Anal. Appl. 326, 2007, 1142-1148.
[10] Gavruta, P, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184, 1994, 431-436.
[11] Ulam, S. M, Problems in Modern Mathematics, Wiley, New York, 1960.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27, 1941, 222-224.
[13] Hyers, Donald H., George Isac, and Themistocles Rassias. Stability of functional equations in several variables. Vol. 34. Springer Science & Business Media, 2012.
[14] Jung, S.-M, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, 2001.
[15] Rassias, Th. M, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 1978, 297-300.
[16] Aczel J. and Dhombres, J, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, 1989.
[17] Rassias, Th. M. (ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.