Flavivirus Infection in Wild Birds from Brazilian Amazon

Lopes SF 1 *, Farias IP 1, Figueiredo LTM 2, Figueiredo RP 3, Morais FA 4, Nunes MRT 5 and Figueiredo MLG 5

1Laboratory of Genetics and Molecular Evolution, Institute of Biological Sciences, UFAM, Manaus, Brazil
2Virology Research Center, School of Medicine of the University of São Paulo in Ribeirão Preto, Ribeirão Preto, Brazil
3Virology Laboratory, Tropical Medicine Foundation of Amazonas, Manaus, Brazil
4Department of Biochemistry (IQ), University of Sao Paulo, Brazil
5Center for Technological Innovation Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil

Abstract

The Amazon region has the greatest biodiversity on earth, including birds and hematophagous arthropods. Birds are hosts and amplifiers of at least 80 species of arthropod-borne viruses (arbovirus) including those belonging to the Flavivirus genus (Flaviviridae family). In Brazil, occur many Flaviviruses of the Japanese encephalitis group, including Ilheus virus (ILHV). These Flaviviruses are linked to birds and transmitted by Culex mosquitoes. We show here a study aimed to detect infected birds by Flavivirus in the Amazon region. The birds were captured in Alter do Chão, Pará State, Northern Brazil, and birds were also obtained in the Wildlife Refuge Saiman-Chestnut, in Amazonas State, North of Brazil. A total of 189 birds, distributed into 11 orders (Passeriformes, Galbuliformes, Coraciiformes, Accipitriformes, Strigiformes, Psittaciformes, Falconiformes, Anseriformes, Columbiformes, Pelecaniformes, Cathartiformes) were bled and liberated. It was possible to detect Flavivirus genome in 7 sera (3.7% positivity) from Nystalus maculatus (n=3), Tolomomyias flaviventris (n=1), Dendroplexicus (n=1), Amazona festiva (n=1) and Eleaenia flavogaster (n=1), using a RT-PCR specific for Flavivirus genus followed by a species-specific nested-PCR. Based on the size of the amplicons (all having ~ 470 bp) it is suggested that birds were likely infected by Ilheus virus (ILHV), a pathogenic Flavivirus to humans. The importance of infected bird species involved in the natural cycle of ILHV or another related Flavivirus is unknown.

Keywords: Wild birds; Arbovirus; Flavivirus; Ilheus virus; Amazonic region

Introduction

Brazil has the largest diversity of wild birds in the world (1832 species), and 20% of them occur in the Amazon region [1,2]. About 92% of Brazilian birds are resident and only 8% are migrant species [3]. A proportion of 61% of the migrant species to Brazil come from the northern hemisphere (Nearctic). Brazil is regularly visited by thousands of birds that fly seasonally between North and South America [2,3]. Most of these animals migrate to Brazil in the summer, looking for abundant food [4]. Southern migratory species (austral) represent 39% of the migrant species into Brazil. However, their movements and natural histories are less studied than that of northern migratory birds [5].

Birds are hosts and amplifiers of at least 80 species of arthropod-borne viruses (arbovirus) including those belonging to the Flavivirus genus (Flaviviridae family), but only some of these may affect the health of these animals [6]. Introduced by migratory birds, Flavivirus found in the Brazilian Amazon and have been maintained in this area due to suitable ecological and climatic conditions for proliferation of arthropod vectors that feed in birds and may maintain the natural cycles of these arboviruses [7].

In Brazil, mosquito-borne Flaviviruses can be grouped phylogenetically into three main branches: the yellow fever, the dengue (types 1, 2, 3 and 4) and the Japanese encephalitis, which includes Saint Louis encephalitis (SLEV), West Nile Virus (WNV), Cacipacoré, Iguape, Rocio, ILHV and Bussuquara viruses. The viruses in the Japanese encephalitis group are related to birds and mostly transmitted by Culex mosquitoes. Many of these viruses can infect and produce human disease [8].

ILHV was first isolated in 1944, from mosquitoes collected in Ilheus County, at the northeastern coast of Brazil [9]. ILHV has been isolated from various species of mosquitoes and wild animals. Moreover, antibodies to the virus have been reported in bats, monkeys, rodents and marsupials, but, particularly, in birds. Psorophora ferox mosquito is considered as the main vector of ILHV and many wild birds were found infected with the virus. Birds are considered as the principal hosts of ILHV in the Brazilian Amazon [6,10].

ILHV has been reported to cause human acute febrile illness in Brazil, Argentina, Panama, Colombia and Trinidad. Infections by ILHV are commonly associated to the exposition to forested areas. Infections by ILHV have been associated to sporadic human disease but not to outbreaks. ILHV disease has been reported in ecotourists, fishermen, farm workers and truck drivers. The virus can produce moderate or high fever, headache, chills, photophobia, arthralgia, myalgia, and asthenia. The disease takes 3 to 5 days, and patients recover without sequelae. Serological surveys to ILHV have shown a high number of seropositives contrasting with a relatively small number of disease cases [7,11]. It is possible that most of the disease cases by ILHV remain undiagnosed. On this basis, the goal of the study described here was to detect infected birds by Flaviviruses in the Amazon region.

Material and Methods

Bird captures

Bird captures were performed in a peninsula of 3 km long and 1-2 km wide, located at the right bank of Tapajós River, in Alter do Chão (2°31'S, 55°00'W), County of Santarem, Pará State (Figure 1). The region has a well-defined dry season, which runs from July to December and

Received May 21, 2015; Accepted June 20, 2015; Published June 23, 2015

Citation: Lopes SF, Farias IP, Figueiredo LTM, Figueiredo RP, Morais FA, et al. (2015) Flavivirus Infection in Wild Birds from Brazilian Amazon. Entomol Omithol Herpetol 4: 56. doi:10.4172/2161-0983.1000156

Copyright: © 2015 Lopes SF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
were used in the RT-PCR. The RT-PCR was followed by a species-specific multiplex-nested-PCR, using the 14 inner primers shown in Table 1, as previously reported Bronzoni et al. [12]. Each species-specific primer was used in combination with the FG1 primer for Flavivirus. All RNA extracts showing amplicons in the multiplex-nested-PCR had a confirmation of the positive result using the virus-specific primer alone in a Hemi-Nested-PCR.

Ethic statements

Bird captures were authorized by the Biodiversity Information System - SISBIO (No: 21722-1) for activities with scientific purpose of collection and transportation of biological material in situ (Alter do Chão, PA) and ex-situ (Manaus, AM). All procedures involving animal manipulation (e.g., blood collection) were performed according to national biosafety rules.

Results

Captured bird species

A total of 189 birds, distributed into 11 orders (Passeriformes, Galbuliformes, Coraciiformes, Accipitriformes, Strigiformes, Psittaciformes, Falconiformes, Anseriformes, Pelicaniformes, Columbiformes and Cathartiformes), 23 families and 50 species, were captured. A proportion of 58.7% of these animals were Passeriformes of the family Tyrannidae (n=111) and 46 of them were identified as *Elaenia cristata* (23), *Thamnophilidae sp* (22) and *Formicivora grisea* (15). In Alter do Chão, *Elaenia cristata* was more frequently captured in the dry season (n=14) while *Formicivora grisea* was in the rainy season (n=8), as shown in Table 2. Nine species of non-passerine Psittacidae were also obtained, representing 24.9% (n=47) of the analyzed samples.

Virus genome detection

It was possible to detect a virus genome in 2 of 189 sera. The obtained amplicons had approximately 980 bp in the RT-PCR for Flavivirus, representing 1% positivity, as shown in Figure 2A. Virus genome detection increased into 7 amplicons of approximately 470 bp, in the multiplex-nested-PCR (3.7% positivity), as shown in Figure 2B and 2C. These 7 amplicons were obtained from Nystalus maculatus (3), *Tolmomyias flaviventris* (1), *Dendroplex picus* (1), *Amazonsa festivala* (1) and *Elaenia flavogaster* (1). All birds infected by Flavivirus lived free with the only exception was *Amazonia festiva* which was captive, as shown in Table 3.

As previously reported by Bronzoni et al. [12], based on the size of

Primer	Sequence (5’-3’)	Amplification Step	Amplicon (bp)
nDENV1	CTTTTGTGCCTTGTTG GCC	MN-PCR	472
nDENV2	GAACCGTTGTTTDTCTT CATAGCT GCC	MN-PCR	316
nDENV3	CCCATTCGCTCCTCCTGTG	MN-PCR	628
nYFV	TCAGAAGCAACAGGATCATG	MN-PCR	253
nDENV4	GCACTCGTGAAAGCTTCCCTC	N-PCR	222
nSLEV	ATCTCCCCTCATATCCGT	N-PCR	232
nROCV	TCACCTCTCAAGCCTTTG	N-PCR	230
nLHV	TCCAGCGCTGAGTCTGCAAGCGTGTA	N-PCR	474
nBSGV	AAGTGAACCTGCTTGGTTA	N-PCR	386

Table 1: Species-specific inner primers used for detection of distinct flavivirus genomes in the Nested-PCR reactions. DENV-1: Dengue Virus Serotype 1; DENV-2: Dengue Virus Serotype 2; DENV-3: Dengue Virus Serotype 3; DENV-4: Dengue Virus Serotype 4; YFV: Yellow Fever Virus; SLEV: Saint Louis Encephalitis Virus; ROCV: Rocío Virus; ILHV: Ilheus Virus; BSQV: Bussuquara Virus; N: Nested PCR Step; MN: Multiplex-Nested PCR. bp: Base Pairs.

Blood samples

The approach for blood collection was determined according to the body weight of the birds. For those weighing over to 200 grams, blood collections were performed in jugular, wing or metatarsal veins, using heparinized insulin syringes. For birds weighing less than 200 grams, few drops of blood were harvested in capillary tubes. Blood samples were maintained in cryotubes, which were properly identified. Samples were transported into the laboratory in liquid nitrogen barrel and stored at -70°C.

Virus genome amplification

RNA was extracted from bird serum using the QiAamp Viral RNA Mini Kit, according to the manufacturer’s instructions (QIAGEN, Germany). This RNA extract was tested for the presence of genomes of Flavivirus by using a generic RT-PCR protocol. FG1 (+) primers (forward TCAAGAAACTCCACACATGAGATGACT and FG2 (-reverse, GTGTCCCATCCTGCT GTGTCATCA), that allow amplification of approximately 980 bases (bp) of the NS5 protein gene using a fluorescence-based multiplex-nested RT-PCR system. As previously reported by Bronzoni et al. [12], based on the size of

[Figure 1: Geographic location of different study sites used for sample collection in Pará (Alter do Chão county) and Amazonas (RVSSC, Manaus county). Map elaborated based on the digital cartographic platform. Scale of 1: 250.000. SIPAM/IBGE/IBAMA, 2009. Image from LANDSAT TM5 scene 227/62 de 01/07/2005. Source: INPE (National Institute of Spatial Research).]
to confirm what wild species of bird (migratory or resident), could be a reservoir and transmitter of the arbovirus. The vector competence of arthropods which parasitizes birds is directly linked to their abundance on site and the transmission of Flavivirus to man is related to their eclectic feeding habits that include humans [13,14]. Many bird-related flaviviruses can infect humans.

Some birds, depending on the infecting Flavivirus may have severe and fatal disease while others become viremic but asymptomatic or develop disease after migration, or when going through stress, reproductive activity, or acquiring concurrent diseases that alter their immune defenses [13]. Migratory birds could spread into densely populated urban areas (in places like urban parks) allowing introduction of a Flavivirus that could infect local Culex mosquitoes and produce disease after feeding on humans. Human disease due to Flavivirus infections could also be related to some birds that are of great interest due to the beauty of its colors or beautiful singing. Pet birds in Brazil are the main trafficked animals being traded in free markets or transported to other cities and countries [15]. Pets carrying zoonotic viruses (including pathogenic arboviruses) could be introduced into urban areas (e.g. houses) where Culex are abundant allowing transmission of the virus to man. In this context, as same as observed to domestic birds (chickens) in United States of America, the potential risk of arbovirus (in this case flavivirus) transmission to humans could be increased when inadequate management of the environment (ranch or shop) where birds are commercialized allows the breeding of large amounts of mosquitoes [16].

In the current work, a total 189 birds were obtained in two places of Amazon region. Seven of the studied wild birds were infected with a Flavivirus. This diagnosis was made based on amplicons of approximately 470 bp obtained from their sera by nested-RT-PCR. The amplicon size suggests that these birds could be infected by ILHV [12]. It is noteworthy that the risk of false-positive results in the reaction was avoided by measures that include the separation of pre- and post-PCR areas, the use of unique pipettors for each area, and the use of tips with barriers and negative controls in each reaction. However, an important difficulty in the study was related to substantial loss of bird serum barriers and negative controls in each reaction. However, an important difficulty in the study was related to substantial loss of bird serum. Therefore, we hypothesized that birds are infected by Flavivirus (ILHV), although live virus was not detected in additional techniques.

In the present study, Nystalus maculatus, Tolmomyias flaviventris, Dendroplex picus, Amazona festiva and Elaenia flavogaster were found...
infected with Flavivirus. Although no information regarding migratory events involving any of the bird species above referred have been found, it is important to note that *Elaenia flavogaster* species is largely distributed in the Americas and found from Mexico to Bolivia and Argentina, as well as in all regions of Brazil (http://www.wikiaves.com.br/iguacu-de-barriga-amarela) and could potentially contribute for ILHV or other virus spread throughout Brazil.

Nystalus maculatus lives in low forests and dry savannas of the Amazonic region, Northeast, Midwest, and Southeast of Brazil [17]. It is also found in Argentina, Bolivia and Paraguay. The bird has approximately 18 cm long, red beak and brown plumage in the back. It makes his nest in soil and can catch food in flight, feeding on insects, spiders, scorpions, fruits and small vertebrates. The reproductive period of the *Nystalus maculatus* is from September to December (http://www.wikiaves.com/rapazinho-dos-velhos*), and matches with the season of highest mosquito activity in Brazilian Amazon region as observed during a study conducted in an important Brazilian highway linking the cities of Cuiaba, Mato Grosso State, Central of Brazil, and Santarem, Para State, Northern Brazil [18-22]. It is possible that *Nystalus maculatus* could participate as a virus-reservoir in the natural cycle of ILHV or of another related Flavivirus.

Tolmomyias flaviventris, a tyrant flycatcher, is a tropical species of passerine that feed primarily on insects and lives at trees of the Brazilian northeastern caatinga, *Mauritia flexuosa* agglomerates and forests. This bird has a yellow plumage that is more intense on the ventral side [3,17].

Dendroplex picus is an insectivorous bird that lives in mangroves and flood forests located at river margins of all Brazilian regions except in Southern areas of the country. This bird is also found in Guyana, Venezuela, Colombia, Ecuador, Peru Bolivia and Panama [2,3] (http://es.wikipedia.org/wiki/Dendroplex_picus).

Amazona festiva is a parrot that lives in forests located at river margins in Brazil, Colombia, Ecuador, Bolivia, Guyana, Peru, and Venezuela. This bird can be 35 cm long, with a dark red plumage and blue spot behind the eyes. *Amazona festiva* feeds on cocoa, fruits, nuts, leaves, berries, seeds and occasionally, eggs and insects. Due to its beauty, intelligence, docility and capacity to imitate human voice these animals are commonly victims of wildlife traffic [20]. *Amazona festiva* commonly become pets that could bring arboviruses to vectors living in close contact with humans.

Elaenia flavogaster is a common and noisy tyrant flycatcher of 6.5 cm long that feeds berries and insects in semi-open woodlands, gardens and farms of southern Mexico, Central and South-America [17].

Conclusively, even not knowing the real importance of the species of infected birds on the natural cycles and human infections by ILHV or another related Flavivirus, it is important to emphasize that this same virus was found infecting birds in two places and possibly, occurs in most of the Amazonic region.

Acknowledgements

The authors acknowledge Samuel Franco Lopes for suggestions. This work was supported by Amazon State Research Council (FAPEAM) and the Brazilian Government Research Council (CNPq).

References

1. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, et al. (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci U S A 100: 10309-10313.
2. Moura NG, Lees AC, Andretti CB, Davis BJW, Solar RRC et al. (2013) Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biol Conserv 167: 339-348.
3. Sick H (1993) Birds in Brazil: A natural history, 1st ed. Princeton University press, Princeton.
4. Chesser RT (1994) Migration in South America, an overview of the austral system. Bird Conserv Int 4: 91-107.
5. Sick H (1997) Ornitolgia Brasileira. Rio de Janeiro, Ed. Nova Fronteira.
6. McLean RG, Ubic SR (2007) Arboviruses in Birds. In: Thomas NJ, Hunter DB, Atkinson CT (eds.). Infectious Diseases of Wild Birds. Blackwell Oxford, England. 17-62.
7. Travassos da Rosa JFS, Travassos da Rosa APA, Vasconcelos PFC, Pinheiro FP, Rodrigues SG (1998) Arboviruses isolated in the Evandro Chagas Institute, including some described for the first time in the Brazilian Amazon region, their known hosts and their pathology for man. In: Travassos da Rosa APA, Vasconcelos PFC, Travassos da Rosa JFS (eds). An overview of arbovirology in Brazil and neighboring countries. Instituto Evandro Chagas, Belem; 18-31.
8. Kuno G, Cheng GJ, Tsuichiyu KR, Karabatos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72: 73-83.
9. Laemmert HW Jr, Hughes TP (1947) The virus of lilius encephalitis; isolation, serological specificity and transmission. J Immunol 55: 61-67.
10. Turell MJ, O’Guinn ML, Jones JW, Sardelas MR, Dohm DJ, et al. (2005) Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru. J Med Entomol 42: 891-899.
11. Figueiredo LT (2000) The Brazilian flaviviruses. Microbes Infect 2: 1643-1649.
12. de Morais Bronzoni RV, Baleiotti FG, Ribeiro Nogueira RM, Nunes M, Moreira Figueiredo LT (2005) Duplex reverse transcription-PCR followed by nested PCR assays for detection and identification of Brazilian alphaviruses and flaviviruses. J Clin Microbiol 43: 696-702.
13. Shaman J (2007) Amplification due to spatial clustering in an individual-based model of mosquito-avian arbovirus transmission. Trans R Soc Trop Med Hyg 101: 469-483.
14. Tabachnick WJ (2013) Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int J Environ Res Public Health 10: 249-277.
15. Nobrega Alves RR, De Farias Lima JR, Araujo HFP (2012) The live bird trade in Brazil and its conservation implications: an overview. Bird Conserv.
16. Moore CG, McLean RG, Mitchell CJ, Naselli RS, Tsai TF (1993) Guidelines for arbovirus surveillance programs in the United States 85.
17. Sanaioiti TM, Cintra R (2001) Breeding and Migrating Birds in an Amazonian Savanna. Stud. Neotrop. Fauna Environ. 36: 23-32.
18. Karabatos N (1978) Supplement to International Catalogue of Arboviruses including certain other viruses of vertebrates. Am J Trop Med Hyg 27: 372-440.
19. Pinheiro FP, Travassos da Rosa APA, Freitas RB, Travassos da Rosa JFS, Vasconcelos PFC (1986) Arbovirus: aspectos Clinico-epidemiologicos. In: Instituto Evandro Chagas; 50 anos de contribuição às ciências biológicas e à medicina tropical. Ed. Fundação Serviços de Saúde Pública, Belém: 376-408.
20. Nascimiento C, augusto rodrigues (2009) Histórico oficial do comércio ilegal de fauna no Estado do amazonas. Diss. Mestr. 53.
21. Nunes MR, Barbosa TF, Casseb LM, Nunes Neto JP, Segura Nde O, et al. (2009) [Arbovirus eco-epidemiology in the area affected by the Cuiabá-Santarém Highway (BR-163), Pará State, Brazil]. Cad Saude Publica 25: 2583-2602.
22. Baleiotti FG, Morell ML, Figueiredo LT (2003) Brazilian Flavivirus phylogeny based on NSS. Mem Inst Oswaldo Cruz 98: 379-382.