DATA NOTE

The genome sequence of the plain-faced dronfly, *Eristalis arbustorum* (Linnaeus, 1758) [version 1; peer review: 2 approved]

William Hawkes¹, Karl Wotton¹, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Department of Biosciences, University of Exeter, Penryn, TR10 9FE, UK

First published: 15 Feb 2022, 7:61
https://doi.org/10.12688/wellcomeopenres.17580.1
Latest published: 15 Feb 2022, 7:61
https://doi.org/10.12688/wellcomeopenres.17580.1

Abstract
We present a genome assembly from an individual female *Eristalis arbustorum* (the plain-faced dronfly; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 451 megabases in span. The majority of the assembly (94.71%) is scaffolded into 6 chromosomal pseudomolecules, with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 16.0 kilobases in length.

Keywords
Eristalis arbustorum, plain-faced dronfly, genome sequence, chromosomal, Diptera

This article is included in the Tree of Life gateway.

Open Peer Review

Approval Status ✓ ✓

1	2	
version 1	view	view
15 Feb 2022		

1. Zhao Le, Shaanxi University of Technology, Hanzhong, China
2. Abby Davis, The University of New England, NSW, Australia

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Hawkes W: Investigation, Resources, Writing – Original Draft Preparation; Wotton K: Investigation, Resources, Supervision, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Hawkes W et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Hawkes W, Wotton K, University of Oxford and Wytham Woods Genome Acquisition Lab et al. The genome sequence of the plain-faced droneyfly, Eristalis arbustorum (Linnaeus, 1758) [version 1; peer review: 2 approved] Wellcome Open Research 2022, 7:61 https://doi.org/10.12688/wellcomeopenres.17580.1

First published: 15 Feb 2022, 7:61 https://doi.org/10.12688/wellcomeopenres.17580.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Syrphoidea; Syrphidae; Eristalinae; Eristalis; Eristalis arbustorum (Linnaeus, 1758) (NCBI:txid1124515).

Background
The plain-faced drone fly, Eristalis arbustorum, is a smaller member of the Eristalis genus. Both sexes lack an obvious median stripe down the centre of their face (which E. nemorum has) and have more plumose arista and darker tips of the mid tibiae than E. abusiva (van Veen, 2010). Like others in the Eristalis genus, E. arbustorum has large pale patches either side of its abdomen and is a Batesian mimic of the honeybee Apis mellifera to gain protection from predators such as birds. This mimicry is not limited solely to visual similarities but also behavioural and acoustic similarities (Golding & Edmunds, 2000; Moore & Hassall, 2016). E. arbustorum is widespread and common in the UK, and can be found in a variety of open habitats feeding on a range of flowers including Apiaceae and Asteraceae, making it an important generalist pollinator (Ball et al., 2015; Doyle et al., 2020). The larvae of E. arbustorum are colloquially known as rat-tailed maggots and feed on decaying organic matter in organically rich pools (Ball et al., 2015; van Veen, 2010). Interestingly, as in E. tenax, reproduction by larval stages (paedogenesis) has been suggested to occur (Achterkamp et al., 2000) and E. arbustorum, along with other other Eristalis flies, play a highly important ecological role in terms of decomposition (Hurtado et al., 2008). E. arbustorum has also been used as a model for the plastic response to temperature on traits such as colour pattern and wing size and has featured in studies of fine scale population structure (Francuski et al., 2020; Ottenheim et al., 1998). This is the first production of a high quality E. arbustorum genome and we believe that the sequence described here, generated as part of the Darwin Tree of Life project, will further aid understanding of the biology and ecology of this hoverfly.

Genome sequence report
The genome was sequenced from a single female E. arbustorum collected from Wytham Great Wood, Oxfordshire, UK (latitude 51.769, longitude -1.330) (Figure 1). A total of 19-fold coverage in Pacific Biosciences single-molecule long reads and 87-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 370 missing/misjoins and removed 5 haplotypic duplications, reducing the assembly size by 0.11% and scaffold number by 33.59%, and increasing the scaffold N50 by 244.23%.

The final assembly has a total length of 451 Mb in 257 sequence scaffolds with a scaffold N50 of 77.5 Mb (Table 1). The majority, 94.71%, of the assembly sequence was assigned to 6 chromosomal-level scaffolds, representing 5 autosomes (numbered by sequence length), and the X sex chromosome (Figure 2–Figure 5; Table 2). Based on published karyotype potential micro-chromosomes have not been recovered.

Table 1. Genome data for Eristalis arbustorum, idEriArbu1.1.

Project accession data	Assembly identifier	idEriArbu1.1
Species	Eristalis arbustorum	
Specimen	idEriArbu1 (PacBio, 10X, Hi-C), idEriArbu2 (RNAseq)	
NCBI taxonomy ID	1124515	
BioProject	PRJEB46302	
BioSample ID	SAMEA7520036	
Isolate information	Females, head/thorax (idEriArbu1), abdomen (idEriArbu2)	

Raw data accessions	PacificBiosciences SEQUEL II	ERR705761
	10X Genomics Illumina	ERR6787423-ERR6787426
	Hi-C Illumina	ERR6787428
	Illumina PolyA RNAseq	ERR6787427

Genome assembly	Assembly accession	GCA_916610145.1
Accession of alternate haplotype	GCA_916610155.1	
Span (Mb)	451	
Number of contigs	1,338	
Contig N50 length (Mb)	1.2	
Number of scaffolds	518	
Scaffold N50 length (Mb)	78.3	
Longest scaffold (Mb)	115.5	
BUSCO* genome score	C:96.5%,S:95.9%,D:0.7%, F:0.9%	M:2.6%,n:3285

*BUSCO scores based on the diptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/idEriArbu1.1/dataset/CAKAIZ01/busc.
in the curated assembly (Rozek et al., 1995). The assembly has a BUSCO v5.1.2 (Manni et al., 2021) completeness of 96.5% (single 95.9%, duplicated 0.7%) using the diptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
Sample acquisition and nucleic acid extraction
Two female *E. arbustorum* samples, idEriArbu1 and idEriArbu2, were collected from Wytham Great Wood, Oxfordshire, UK (latitude 51.772, longitude -1.339) by Will Hawkes, University of Exeter on 7 (idEriArbu1) and 8 (idEriArbu2) August 2019. The specimens were caught with a net, snap-frozen on dry ice and stored using a CoolRack.

DNA was extracted from the head/thorax of idEriArbu1 at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA from abdomen tissue of idEriArbu2 was extracted in the Tree of Life Laboratory at the WSI using TRIzol, according to the
Figure 3. Genome assembly of *Eristalis arbustorum*, idEriArbu1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idEriArbu1.1/dataset/CAKAIZ01/blob.

manufacturer’s instructions. RNA was then eluted in 50 μl RNase-free water and its concentration assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using the Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing

Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated from remaining head/thorax tissue of idEriArbu1 using the Arima v2 Hi-C kit in the Tree of Life laboratory and sequenced at the Scientific Operations core on an Illumina NovaSeq 6000 instrument.

Genome assembly

Assembly was carried out with Hifiasm (*Cheng et al.*, 2021); haplotypic duplication was identified and removed with
Figure 4. Genome assembly of *Eristalis arbustorum*, idEriArbu1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idEriArbu1.1/dataset/CAKAIZ01/cumulative.

purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination as described previously (Howe et al., 2021). Manual curation was performed using HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performs annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.
Figure 5. Genome assembly of *Eristalis arbustorum*, idEriArbu1.1: Hi-C contact map. Hi-C contact map of the idEriArbu1.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Eristalis arbustorum*, idEriArbu1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OU744316.1	1	115.47	42.2
OU744317.1	2	83.54	43.3
OU744318.1	3	78.27	43.8
OU744319.1	4	74.46	43.9
OU744320.1	5	66.43	43.8
OU744321.1	X	8.83	45.2
OU744322.1	MT	0.02	19.7
-	-	24.04	37.0
Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.15.1	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2	Uliano-Silva et al., 2021
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.4	Challis et al., 2020

Data availability

European Nucleotide Archive: Eristalis arbustorum (plane-faced dronelfly). Accession number PRJEB46302; https://identifiers.org/ena.embl/PRJEB46302.

The genome sequence is released openly for reuse. The *E. arbustorum* genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated using the RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.5746938.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5744840.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5743293.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

References

Achterkamp B, Ottenheim M, Beukeboom L, et al.: Paedogenesis in Eristalis Arbustorum (Diptera: Syrphidae). Paedogenesis in Eristalis Arbustorum (Diptera: Syrphidae). 2000; 11: 83–87.

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905.

Ball S, Ball SG, Morris R: Britain’s Hoverflies: A Field Guide - Revised and Updated Second Edition. Princeton University Press, 2015.

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74.

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170-75.

Doyle T, Hawkes WA, Massy R, et al.: Pollination by Hoverflies in the Anthropocene. Proc Biol Sci. 2020; 287(1227): 20200508.

Francuski L, Ludoški J, Lukaić M, et al.: Fine Scale Population Structure of Hoverfly Pollinator, Eristalis Arbustorum: An Integrative Study. J Insect.
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 1

Reviewer Report 13 May 2024

https://doi.org/10.21956/wellcomeopenres.19439.r70944

© 2024 Davis A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abby Davis
The University of New England, NSW, Australia

This data report assembles the genome of the fly Eristalis arbustorum, a syrphid fly capable of providing dual ecosystem services to the environment. The authors describe how the fly representatives were acquired, how the DNA and RNA of the specimens were extracted, and how these data were sequenced. The genome data supplied here will be important to syrphid fly phylogenetics and taxonomic research.

The rationale for creating the dataset is clearly described in the Background, the protocols for constructing this dataset are appropriate, the authors have listed sufficient details of methods and materials to allow replication by others, and the raw datasets have been deposited in the INSDC databases with the genome sequence of E. arbustorum free to use.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Syrphidae, Diptera taxonomy

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 25 April 2022

https://doi.org/10.21956/wellcomeopenres.19439.r48736

© 2022 Le Z. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Zhao Le
School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China

The manuscript ‘The genome sequence of the plain-faced dronfly, Eristalis arbustorum (Linnaeus, 1758)’ applies the Hifi long read technology to assemble a species of syrphid flies, which have overwhelming importance for ecological stability and agricultural economy. To date, the available high-quality genome data of syrphids are limited, this newly generated data will contribute to the syrphid research.

I have some comments:
- Although this is a paper aimed at the data report, the descriptions of results are too short for understanding. The authors presented several figures and tables in the paper, but almost none of them have been well explained and discussed in the current version manuscript. For readers, the meaning of each table and figures are quite confused. At least, the authors need to discuss some important parameters and results shown in each plot or table respectively to reflect the quality of this assembly version, or if there are some other available previous published genomes of closed species, it is worth doing a comparison. Overall, it feels like an unfinished manuscript and quite a lot of content needs to be filled.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Syrphidae, genome, evolution

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.