A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem

MARIO ÁLVAREZ† †† GABRIEL N. GATICA‡ ‡‡ RICARDO RUIZ-BAIER§ §§

Abstract

We develop the *a posteriori* error analysis for a mixed finite element method applied to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow effects across a given interface. The system is formulated in terms of velocity and pressure within the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvability of the fully-mixed formulation along with *a priori* error estimates for a finite element method have been recently established in [M. Alvarez et al., Comput. Methods Appl. Mech. Engrg. 307 (2016) 68–95]. Here we derive a residual-based *a posteriori* error estimator for such a scheme, and we prove its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decompositions, and properties of Clément and Raviart-Thomas operators. The estimator is also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We present some numerical tests to confirm the features of the estimator and to illustrate the performance of the method in a number of application-oriented problems.

Key words: Brinkman-Darcy equations, vorticity-based formulation, mixed finite element methods, *a posteriori* error analysis.

Mathematics subject classifications (1991): 65N30, 65N12, 76D07, 65N15

*This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile; and by Centro de Investigación en Ingeniería Matemática (C2MA), Universidad de Concepción.

†Sección de Matemática, Departamento de Ciencias Naturales, Sede de Occidente, Universidad de Costa Rica, Costa Rica, email: mario.alvarezguadamuz@ucr.ac.cr.

‡C2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, email: ggatica@ci2ma.udec.cl.

§Mathematical Institute, Oxford University, Andrew Wiles Building, Woodstock Road, Oxford, UK, email: ruizbaier@maths.ox.ac.uk.
References

[1] M. Álvarez, G.N. Gatica, and R. Ruiz-Baier, Analysis of a vorticity-based fully-mixed formulation for the 3D Brinkman-Darcy problem. Comput. Methods Appl. Mech. Engrg., 307 (2016) 68–95.

[2] I. Babuška and G.N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal., 48(2) (2010) 498–523.

[3] C. Bernardi and F. Hecht, Quelques propriétés d’approximation des éléments finis de Nédélec, application à l’analyse a posteriori. C. R. Acad. Sci. Paris, Ser. I 344 (2007) 461–466.

[4] S. Caucao, G.N. Gatica, and R. Oyarzúa, A posteriori error analysis of a fully-mixed formulation for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity. Comput. Methods Appl. Mech. Engrg, 315 (2017) 943–971.

[5] S. Cochez-Dhondt, S. Nicaise, Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Engrg, 197 (2007) 2583–2595.

[6] G.N. Gatica, A note on stable Helmholtz decompositions in 3D. Preprint 2016-03, Centro de Investigación en Ingeniería Matemática (CI²MA). Universidad de Concepción, Chile, (2016). [available from http://www.ci2ma.udec.cl].

[7] G.N. Gatica, L.F. Gatica, and F.A. Sequeira, A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71(2) (2016) 585-614.

[8] G.N. Gatica, R. Ruiz-Baier, and G. Tierra, A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comput., 85(297) (2016) 1–33.

[9] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer., 11 (2002) 237–339.

[10] J. Pasciak, J. Zhao, Overlapping Schwarz methods in $H(curl)$ on polyhedral domains. J. Numer. Math. 10 (2002) 221–234.