In vitro drug susceptibility of two strains of the wildlife trypanosome, Trypanosoma copemani: A comparison with Trypanosoma cruzi

Adriana Botero a, *, 1, Sarah Keatley a, Christopher Peacock b, c, R.C. Andrew Thompson a

a School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
b The Marshall Center, School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia
c Telethon Kids Institute, 100 Roberts Road, Subiaco, WA 6008, Australia

ARTICLE INFO

Article history:
Received 4 November 2016
Received in revised form 18 December 2016
Accepted 20 December 2016
Available online 23 December 2016

Keywords:
Trypanosoma copemani
Trypanosoma cruzi
High throughput screening
Lead compounds
Woylie

ABSTRACT

Trypanosomes are blood protozoan parasites that are capable of producing illness in the vertebrate host. Within Australia, several native Trypanosoma species have been described infecting wildlife. However, only Trypanosoma copemani has been associated with pathological lesions in wildlife hosts and more recently has been associated with the drastic decline of the critically endangered woylie (Bettongia penicillata). The impact that some trypanosomes have on the health of the vertebrate host has led to the development of numerous drug compounds that could inhibit the growth or kill the parasite. This study investigated and compared the in vitro susceptibility of two strains of T. copemani (G1 and G2) and one strain of Trypanosoma cruzi (10R26) against drugs that are known to show trypanocidal activity (benznidazole, posaconazole, miltefosine and melarsoprol) and against four lead compounds, two fenarimols and two pyridine derivatives (EPL-BS1937, EPL-BS2391, EPL-BS0967, and EPL-BS1246), that have been developed primarily against T. cruzi. The in vitro cytotoxicity of all drugs against L6 rat myoblast cells was also assessed. Results showed that both strains of T. copemani were more susceptible to all drugs and lead compounds than T. cruzi, with all IC50 values in the low and sub-μM range for both species. Melarsoprol and miltefosine exhibited the highest drug activity against both T. copemani and T. cruzi, but they also showed the highest toxicity in L6 cells. Interestingly, both fenarimol and pyridine derivative compounds were more active against T. copemani and T. cruzi than the reference drugs benznidazole and posaconazole. T. copemani strains exhibited differences in susceptibility to all drugs demonstrating once again considerable differences in their biological behaviour.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The genus Trypanosoma comprises a large number of species and subspecies that are capable of producing detrimental effects on the host. T. cruzi for example, is a protozoan that causes Chagas disease in humans and is an important contributor to heart disease in Latin America (Kirchhoff, 1996). This parasite is able to infect different marsupial species in America and has been shown to produce inflammatory lesions in tissues similar to those seen in human infections (Barr et al., 1991; Carreira et al., 1996). Furthermore, trypanosomes from the “T. brucei complex” are pathogenic trypanosomes from Africa that cause sleeping sickness in humans, and nagana in vertebrate animals. Common signs of the infection in humans are swollen lymph nodes, fever, anaemia, oedema, and neurological involvement. Other trypanosomes that are considered non-pathogenic may cause harm when they find a new or naïve vertebrate host. For example, within Australia, the accidental introduction of the exotic T. lewisi to Christmas Island is hypothesized to have caused a collapse in the population of the endemic rat Rattus macleari to the point of complete extinction (Pickering and Norris, 1996; Wyatt et al., 2008). More recently, a genotype of a native Australian trypanosome, Trypanosoma copemani G2, was associated with the rapid and substantial population decline of the critically endangered woylie (Bettongia penicillata), which saw 90% of the population crash over 10 years (Botero et al., 2013; Wayne et al., 2013a, 2013b). Although, two genotypes of T. copemani have been isolated from the blood of woylies (T. copemani G1 and G2), only T. copemani G2 has been found infecting several tissues in the woylie and other endangered marsupials such as the southern...
brown bandicoot (*Isodon obesulus*), and chuditch (*Dasyurus geoffroii*). Intraacellular structures suggestive of amastigotes as well as extensive inflammatory cell infiltrates and tissue damage have been found in woylie tissues infected with *T. copemani* G2, thus demonstrating pathogenic potential previously not associated with tryppanosomes from wildlife in Australia (Botero et al., 2013). In *vitro* experiments have also confirmed *T. copemani* capability to infect cells (Botero et al., 2016). Both genotypes of *T. copemani* firmly clustered in a monophyletic assemblage with different genotypes of *T. copemani* previously described in the blood of other critically endangered and vulnerable Australian marsupials including Gilbert’s potoroos (*Potorous gilbertii*), quokkas (*Setonix brachyurus*) (Austen et al., 2009), and koalas (*Phascolarctos cinereus*) (Mcllnnes et al., 2011). 18SrDNA and gcAPDH *T. copemani* phylogenies that included pathogenic trypanosomes such as *T. cruzi* and *T. brucei* have shown a closer relationship between *T. copemani* and *T. cruzi* compared with *T. brucei* and allied species (Austen et al., 2009; Mcllnnes et al., 2011).

The impact that pathogenic trypanosomes have on the health of the vertebrate host has led to the development of numerous drug compounds that could inhibit or kill the parasite. Benznidazole (N-benzyl-2-nitro-1-imidazole-acetamide) for example, is currently wallowing in treatment of *T. cruzi* infections. Despite this drug not being completely effective, especially in the chronic stage of the disease (Soeiro and de Castro, 2009; Organization, 2010; Jackson et al., 2010; Batista et al., 2011; Alonso-Padilla and Rodriguez, 2014), it is the main drug therapy available to treat the disease. Posaconazole, an ergosterol biosynthesis inhibitor, has also shown potent *in vitro* and *in vivo* activity against *T. cruzi* (de Figueiredo Diniz et al., 2013). Drugs currently used to treat other trypanosomatid infections such as African trypanosomiasis and leishmaniasis include melarsoprol, efornithine, miltefosine, and also nifurtimox. (Melarsoprol [2-(4-(4,6-diamino-1,3,5-triazin-2-ylamino)phenyl)-1,3,2-dithiarsolan-4-yl)methanol] is an arsenical drug that has been used against late-stage infections with *T. brucei* subspecies (Denise and Barrett, 2001), and miltefosine (hexadecylphosphocholine) is an alkylphosphocholine that was the first and still the only oral drug that can be used to treat visceral and cutaneous leishmaniasis (Dorlo et al., 2012a, 2012b). Efornithine (α-difluoromethylornithine) an ornithine decarboxylase inhibitor, has been shown to be active against second stage *Tb. gambiensis* (Steverding, 2010), and has been used in conjunction with nifurtimox (E-N-(3-methyl-1,1-dioxo-1,4-thiazinan-4-yl)-1-(5-nitrofuran-2-yl)methanimine) against *T. brucei* (Alirol et al., 2013).

Although, all these drugs are the main treatment used to combat these trypanosomatid infections, they are less than ideal due to toxicity, adverse side effects and in some cases lack of efficacy against intracellular parasites (Milord et al., 1992; Castro et al., 2006; Pinazo et al., 2013; Hasslocher-Moreno et al., 2012). Attempts to develop new compounds with potent activity against trypanosomes and low toxicity in mammalian cells has led to the discovery of different ergosterol biosynthesis inhibitor compounds with demonstrated in *vitro* and *in vivo* activity against all *T. brucei* subspecies and *T. cruzi*. For example, inhibition of *T. cruzi* CYP51 (sterol 14α-demethylase) has been shown to affect sterol composition and consequently cause damage to the parasites ultrastructure leading to their death (Lepesheva and Waterman, 2011; Hargrove et al., 2013; Keenan et al., 2013c). Recently developed and optimized lead compounds include the ergosterol biosynthesis inhibitors EPL-BS1937, EPL-BS2391, EPL-BS0967, and EPL-BS1246. All have recently been shown to be non-azole inhibitors of *T. cruzi* CYP51 (Hargrove et al., 2013; Keenan et al., 2013a; Keenan et al., 2013b).

Considering not only the potential pathogenicity of *T. copemani* G2 in the woylie, but also that this parasite has been found infecting other critically endangered and vulnerable Australian marsupials, there is the need to evaluate the *in vitro* susceptibility of *T. copemani* to drugs as first steps towards the understanding of possible ways to ameliorate its impact on threatened populations. Therefore, the aims of this paper are to investigate and compare the *in vitro* susceptibility of *T. copemani* G1 and G2, and *T. cruzi* to reference drugs and compounds currently used against pathogenic trypanosomatids.

2. Materials and methods

2.1. Parasites and cells

T. copemani strains G1 and G2 isolated from the blood of woovies (Botero et al., 2013), and the *T. cruzi* strain 10R26 were grown and maintained as epimastigotes by successive passages every 3 days at 28 °C in RPMI medium containing 10% foetal calf serum (FCS), 5 mg/ml penicillin-streptomycin and 2.5 mg/l haemnin. 16 cells (skeletal myoblasts) cells purchased from the American Type Culture Collection were used in the drug toxicity assays. Cells were grown in RPMI medium supplemented with 10% FCS at 37 °C and 5% CO₂.

2.2. Test compounds

Miltefosine and melarsoprol were kindly provided by Dr Vanessa Yardley (London School of Hygiene and Tropical Medicine, UK). Benznidazole tablets (Roche - 100 mg) were purchased from Roche (Rio de Janeiro, Brazil). Posaconazole was purchased as an oral suspension (Novafil Schering Corporation, 40 mg/ml) and isolated from the suspension by dilution with water and centrifugation, followed by extraction and recrystallization from hot i-propyl alcohol (Keenan et al., 2012). Four CYP51 inhibitor lead compounds that have been shown to be inhibitors of *T. cruzi*, including two pyridine derivatives EPL-BS0967 and EPL-BS1246 (PDB1 and PDB2 respectively - also known as UDD and UDO), and two non-azole antifungal fenarimoles EPL-BS1937 and EPL-BS2391 (FN1 and FN2 respectively) were kindly provided by Epichem Pty Ltd (Hargrove et al., 2013; Keenan et al., 2012; Keenan et al., 2013c). Their molecular structures are shown in Fig. 1. Drug compounds were dissolved in dimethyl sulfoxide (DMSO) and stored at 4 °C. Immediately before use, drugs were pre-diluted in RPMI media to the desired concentration. The final DMSO concentration did not exceed 1% (v/v) and had no effect by itself on the proliferation of the parasites.

2.3. In vitro compound activity against trypanosomes

Epimastigotes of *T. copemani* G1 and G2, and *T. cruzi* 10R26 strains in the log phase of growth were diluted in RPMI media to 1 × 10⁶ parasites/ml. 100 μl of parasite suspension (1 × 10² parasites/well) was seeded into 96-well flat-bottom plates (Corning, Corning, N.Y.), and then incubated at 28 °C in a seven-fold dilution series covering a range from 1 μM to 0.004 μM for melarsoprol, and 10 μM–0.013 μM for the remainder of the drugs. All concentration ranges were selected based on initial screenings at 10 and 1 μM that showed percentages of inhibition greater than 50% at 10 or 1 μM. Each drug concentration was evaluated in triplicate. Control wells with only compounds and with only parasites (without compounds) were included. After 48 h of compound exposure, 15 μl of AlamarBlue® (Resazurin-Abd Serotec) was added to each plate allowing for a colour change through metabolic oxidation-reduction by viable trypanosomes. Plates were incubated for an additional 24 h. After this time, absorbance was quantified using a Dynex microplate reader at an excitation wavelength of 570 nm and emission wavelength of 590 nm. The percentage of inhibition was
calculated and used to generate dose-response curves by an average of triplicate data points. The concentration (µM) of the drug necessary to inhibit 50% of cell proliferation of that observed in control cultures (parasites grown in the absence of test compound) was calculated (IC50). Graphs were created and analysed using the statistical software program Prism (GraphPad Software Inc., San Diego, Cali). The statistical significance of results was estimated by 2way ANOVA. Each experiment was performed on three independent occasions.

2.4. In vitro compound toxicity in L6 cells

An evaluation of mammalian cell cytotoxicity was carried out in parallel. 100 µL of RPMI 1640 medium supplemented with 10% foetal bovine serum and containing 5 × 10^5 L6 cells were seeded into 96-well plates. Plates were incubated overnight at 37 °C and 5% CO2 and then drugged with seven 3-fold dilutions covering a range from 10 µM to 0.013 µM for melarsoprol and miltefosine, and 100 µM—0.13 µM for the remainder of the drugs. Control wells with only compounds and with only cells were included. After 72 h of incubation with the drugs, plates were inspected under an inverted microscope to assure growth of cells in the control wells (not drugged) and sterile conditions. 15 µL of AlamarBlue® was then added to wells and the plates incubated for another 2 h at 37 °C and 5% CO2. Absorbance was quantified using a Dynex microplate reader at an excitation wavelength of 570 nm and emission wavelength of 590 nm. Podophyllotoxin was used as a reference drug for toxicity. The therapeutic index (TI) of all drugs was calculated as TD50/ED50, where TD50 is the dose of drug that causes a toxic response in 50% of the L6 cells (IC50 value for cytotoxicity) and ED50 is the dose of drug that is active in 50% of trypanosomes (IC50 value for anti-trypanosomal activity). When IC50 values for toxicity were higher than 100 µM, this concentration value was used to calculate the therapeutic index (TI). The statistical significance of results was estimated by 2way ANOVA. Each experiment was performed on three independent occasions.

3. Results

3.1. In vitro compound efficacy of reference drugs

The reduction of resazurin, converted from blue to a bright-red colour by metabolically active trypanosomes/cells, was used as an indicator of viability of trypanosomes and L6 cells and therefore as a measure of drug activity and toxicity respectively. All reference drugs exhibited potent in vitro activity against all trypanosomes. However, both strains of T. copemani were more susceptible to all drugs than T. cruzi. Benznidazole was approximately eight times more active against T. copemani G1 (IC50 1.053 µM) and G2 (IC50 0.713 µM) than against T. cruzi (IC50 8.537 µM) (Fig. 2). Posaconazole exhibited similar activity against T. cruzi and T. copemani G2, both with an IC50 of 5.429 µM and 6.147 µM respectively. This drug was more active against T. copemani G1, which exhibited an IC50 of 1.254 µM. Melarsoprol and miltefosine
were the most active drugs against all parasites tested. However, melarsoprol was much more active with IC50s in the sub-μM range. Significant differences in drug susceptibility between *T. copemani* G1 and G2 (p < 0.0001) were found. *T. copemani* G2 was more susceptible to benznidazole and melarsoprol. In contrast, *T. copemani* G1 was more susceptible to melarsoprol and miltefosine (Table 1, Fig. 3).

3.2. In vitro compound efficacy of fenarimol and pyridine derivatives

All lead compounds exhibited potent *in vitro* activity against all trypanosomes in the low and sub-μM range. However, they were more active against both strains of *T. copemani*, with the exception of PDB1 which was less active against *T. copemani* G2 than *T. cruzi* (Table 2). All four compounds exhibited similar activity against *T. cruzi*, with IC50 values ranging from 4.5 μM to 6.1 μM FN2 was the compound that presented the highest activity against both *T. copemani* G1 and G2, with IC50 of 1.122 μM for G1 and 0.969 μM for G2. There was a significant difference in susceptibility between the two *T. copemani* strains to all compounds (p < 0.0001), with *T. copemani* G2 more susceptible to FN1 and FN2 and *T. copemani* G1 more susceptible to FN2 and PDB2 (Table 2, Fig. 4).

3.3. In vitro drug toxicity in L6 cells

The therapeutic index (TI) of all compounds was calculated for each parasite (Tables 1 and 2). The highest cytotoxicity for L6 cells was exerted by melarsoprol (IC50, 0.062 μM) and miltefosine (IC50, 0.231 μM), which interestingly, had the highest activity

Compounds	*T. copemani* G1 (IC50 ± SD)	*T. copemani* G2 (IC50 ± SD)	*T. cruzi* (IC50 ± SD)	Toxicity on L6 cells (IC50 ± SD)
Benznidazole	1.053 ± 0.183 (94.9)	0.713 ± 0.186 (140.2)	8.537 ± 0.306 (11.7)	>100 μM
Posaconazole	1.254 ± 0.418 (79.7)	6.147 ± 0.154 (12.3)	5.429 ± 0.151 (18.4)	>100 μM
Melarsoprol	0.007 ± 0.001 (8)	0.005 ± 0.0006 (12.1)	0.010 ± 0.001 (6.2)	0.062 μM
Miltefosine	0.095 ± 0.007 (2.4)	0.745 ± 0.034 (0.31)	2.109 ± 0.112 (0.1)	0.231 μM
Podophyllotoxin	--- (---)	--- (---)	--- (---)	0.01 μM

(*) Therapeutic indices are given in parenthesis.

* Reference drug for toxicity.
The effect of different drugs and new compounds on the growth of two strains of *T. copomani* and one strain of *T. cruzi* was investigated and compared using the AlamarBlue® assay. The AlamarBlue® assay is sensitive and reproducible method to measure the viability of different cell lines (Ansar Ahmed et al., 1994). It has been extensively used to determine the *in vitro* activity/toxicity of different drugs against different trypanosomatids such as *T. cruzi*, *T. brucei* and *Leishmania* spp. (Rolón et al., 2006; Sykes and Avery, 2009; Morais-Teixeira et al., 2011; Bowling et al., 2012; Sales Junior et al., 2014; Engel et al., 2015). A previous study found AlamarBlue® was a good method to quantify the activity of different compounds against *T. brucei gambiense* and *T. b. rhodesiense* in vitro and demonstrated that results were comparable to those obtained with other fluorochrome dyes (Raz et al., 1997). Furthermore, AlamarBlue® has been shown to be slightly superior in sensitivity to the MTT cell proliferation assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which has been extensively used in high throughput screenings (Hamid et al., 2004; Ho et al., 2012).

The results of the present study showed IC50 values for benznidazole and miltefosine similar to IC50 values reported in previous studies for *T. cruzi*, confirming the reliability and reproducibility of this assay (Santa-Rita et al., 2000; Lira et al., 2001; Saraiva et al., 2002; Luna et al., 2009; Moraes et al., 2014).

The present study is the first to be carried out looking at the *in vitro* susceptibility of Australian trypanosomes to different drugs and new compounds developed against different trypanosomatids. All reference drugs, benznidazole, posaconazole, melarsoprol and miltefosine, displayed promising trypanocidal activity against the epimastigotes of both strains of *T. copomani* isolated from the critically endangered woylie and against *T. cruzi*, showing a broad anti-trypanosomal spectrum. Previous studies have also demonstrated that some of these reference drugs present a broad-spectrum of activity. Miltefosine for example, originally developed as an anticancer agent and now used for treatment of both visceral and cutaneous leishmaniasis, has also been shown to be active *in vitro* against *T. cruzi*, with an IC50 ranging from 1 μM to 3.5 μM (Santa-Rita et al., 2000; Lira et al., 2001; Saraiva et al., 2002). Melarsoprol, mainly used against late-stage sleeping sickness (Schweingruber, 2004), has also been shown to be active *in vitro* and *in vivo* against *T. lewisi* (Howie et al., 2006; Verma et al., 2011; Dethoua et al., 2013).

Miltefosine was active against *T. cruzi* and *T. copomani* G1 and G2, with IC50s of 0.085 μM, 0.745 μM and 2.1 μM respectively. However, it has been shown to present significantly lower activity *in vitro* and *in vivo* against *T. brucei* subspecies with 18-fold and 43-fold greater IC50 values of 35.5 μM for *T. brucei* and 47.0 μM for *T. brucei rhodesiense* in *in vitro* experiments (Croft et al., 1996), and 76 μM for *T. brucei gambiense* and 88 μM for *T. brucei rhodesiense* in experimentally infected mice (Konstantinov et al., 1997). The significant differences in miltefosine activity between species is not surprising if we take into account the fact that antiparasitic drugs are usually developed to target and/or inhibit intracellular signaling pathways that are crucial in cell replication and survival, and those pathways may differ between species. Hence, the significant similarities in the activity of miltefosine against both *T. cruzi* and *T. copomani* may be due to intrinsic similarities between them in the target site of the drug. However, the mechanism of action of miltefosine is not known.

Benznidazole and posaconazole demonstrated lower activity against *T. cruzi* than the drugs miltefosine and melarsoprol. Similar studies evaluating the susceptibility of different strains of *T. cruzi* to miltefosine found this drug had a greater activity against each strain than the reference drug benznidazole with IC50s ranging between 0.9 μM and 3.0 μM for miltefosine and 9.0 μM–27 μM for benznidazole (Saraiva et al., 2002; Luna et al., 2009). However, it cannot be ignored that miltefosine and melarsoprol exhibited the

Compounds	*T. copomani* G1 (IC50 ± SD)	*T. copomani* G2 (IC50 ± SD)	*T. cruzi* (IC50 ± SD)	Toxicity on L6 cells (IC50 ± SD)
FN1	3.316 ± 0.1021 (53.1)	2.395 ± 0.302 (51.1)	6.112 ± 0.0605 (41.7)	>100 μM
FN2	1.122 ± 0.3971 (33.1)	0.969 ± 0.188 (33.1)	5.979 ± 0.2288 (10)	59.52 μM
PDB1	2.675 ± 0.7263 (>37.4)	7.178 ± 0.713 (14)	5.261 ± 0.6828 (>19)	>100 μM
PDB2	1.51 ± 0.2736 (33.1)	3.343 ± 0.197 (15)	4.533 ± 0.3151 (11)	50.06 μM
Podophyllotoxin*	—	—	—	0.01 μM

(*) Therapeutic indices are given in parenthesis.

* Reference drug for toxicity.
highest toxicity to the mammalian cell line used and the lowest therapeutic indices. This suggests that the greater activity of both drugs against *T. cruzi* and *T. copemani* may not be entirely due to their trypanocidal activity. This is not the first study showing toxicity of melarsoprol and miltefosine in mammalian cell lines. Melarsoprol has been shown to induce programmed cell death or apoptosis in leukemic and plasma cell lines *in vitro* (Köng et al., 1997; Rousselot et al., 1999) as well as miltefosine in numerous tumour cell lines (Engelmann et al., 1995; Henke et al., 1998; Rybczynska et al., 2001).

All fenarimol and piridyne derivatives exhibited potent activity against *T. cruzi* and *T. copemani* epimastigotes. Moreover, these four compounds showed better activity against *T. cruzi* than the *T. cruzi* reference drug, benznidazole. These results are consistent with those obtained by Keenan (Keenan et al., 2013c), who showed that both FN1 and FN2 exhibited curative activity in mice infected with the Tulahuen strain of *T. cruzi* and significant activity *in vitro* against *T. cruzi* amastigotes, as well as low toxicity in L6 cells. However, the *T. cruzi* IC50s of both fenarimol compounds obtained in the present study are generally higher than those previously reported (Keenan et al., 2013c). Moreover, Moraes (Moraes et al., 2014) found that amastigotes of the *T. cruzi* strains Y, CL, and Tulahuen, and the cloned Sm28c, ARMA13 c11, 92–80 c12, and ERA c12, exhibited better IC50s for posaconazole, PDB1 and PDB2 compared with our findings.

These discrepancies may be due to the use of different *T. cruzi* strains but most probably because different trypanosome life cycle stages were used in both studies. Several studies have revealed that some drugs or compounds, including benznidazole, are more active against *T. cruzi* intracellular amastigotes compared to epimastigotes and tryptomastigotes (Freire-de-Lima et al., 2008; Luna et al., 2009; Sales Junior et al., 2014). This has also been shown with different species of *Leishmania*, where intracellular amastigotes showed greater susceptibility to miltefosine, than promastigotes (Oboanga et al., 2014). This diverse degree of activity that some drugs present in different life-stages of the parasite, has been shown to be related to the capacity of the drug to exert anti-trypanosomatid action independently of cell-mediated parasiticidal mechanisms (Vermeersch et al., 2009). For example, a greater susceptibility of *Leishmania* amastigotes than promastigotes to miltefosine was suggested to be the result of increased cytotoxicity within the macrophage, conferred by alkyl-lysophospholipids promoting the death of intracellular parasites as a secondary effect on host cells by oxidative burst or production of reactive-oxygen metabolites (Azzouz et al., 2005). Although, we previously demonstrated that *T. copemani* G2 is able to invade L6 and VERO cells *in vitro*, the parasite was not able to replicate inside cells (Botero et al., 2016). Therefore, testing the drugs on intracellular amastigotes could not be achieved. The use of a better *in vitro* model, possibly a marsupial derived cell line, that could support the intracellular growth of *T. copemani* will be necessary to test all drugs on amastigotes. Moreover, complementary *in vivo* studies using a murine or any other *in vivo* model are required as a next step to better understand *T. copemani* drug susceptibility on natural hosts.

References

Alirol, E., Schrumpl, D., Amici Heradi, J., Riedel, A., de Patoul, C., Quere, M., Chappuis, F., 2013. Nifurtimox-eflohexalone combination therapy for second-stage gambiense human African trypanosomiasis: medicins Sans Frontieres experience in the Democratic Republic of the Congo. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 56, 195–203.

Alonso-Padilla, J., Rodriguez, A., 2014. High throughput screening for anti-*Trypanosoma cruzi* drug discovery: PloS neglected Trop. Dis. 8, e3259.

Ansar Ahmed, S., Gogal Jr., M., Walsh, J.E., 1994. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay. J. Immunol. methods 170, 211–224.

Augsten, J., Jefferies, R., Friend, J., Ryan, U., Adams, P., Reid, S., 2009. Morphological and molecular characterization of *Trypanosoma copemani* n. sp. (Trypanosomatidae) isolated from Gilbert’s potoroo (*Potorous gilbertii*) and quokka (*Setonix brachyurus*). Parasitology 136, 783.

Azzouz, S., Maache, M., Garcia, R.G., Osuna, A., 2005. Leishmaniacidal activity of edefsone, miltefosine and ilomosine. Basic & Clin. Pharmacol. Toxicol. 96, 60–65.

Barr, S., Brown, C., Dennis, V., Klei, T., 1991. The lesions and prevalence of *Trypanosoma cruzi* in opossums and armadillos from southern Louisiana, J. Parasitol. 67, 24–672.

Batista, D.d.G.J., Batista, M.M., de Oliveira, G.M., Britto, C.C., Rodrigues, A.C.M., Stephens, C.E., Boykin, D.W., Soeiro, M.d.N.C., 2011. Combined treatment of heterocyclic analogues and benznidazole upon *Trypanosoma cruzi* in vivo. PloS one 6, e22155.

Botero, A., Clode, P.L., Peacock, C., Thompson, R.C., 2016. Towards a better understanding of the life cycle of *Trypanosoma cruzi*. Protist 167, 82–92.

Botero, A., Thompson, C.K., Peacock, C.S., Clode, P.L., Nicholls, P.K., Wayne, A.E., Lymbery, A.J., Thompson, R., 2013. *Trypanosomes* genetic diversity, poly-parasitism and the population decline of the critically endangered Australian marsupial, the brush tailed bettong or woylie (* Bettongia penicillata*). Int. J. Parasitol. Parasites Wildl. 2, 77–89.

Bowling, T., Mercer, L., Don, R., Jacobs, R., Nare, B., 2012. Application of a resazurin-based high-throughput screening assay for the identification and progression of new treatments for human African trypanosomiasis. Int. J. Parasitology-Drugs Drug Resist. 2, 262–270.
Keenan, M., Alexander, P.W., Diao, H., Best, W.M., Khong, A., Kerfoot, M., Keenan, M., Abbott, M.J., Alexander, P.W., Armstrong, T., Best, W.M., Berven, B., Jackson, Y., Alirol, E., Getaz, L., Wolff, H., Combescure, C., Chappuis, F., 2010. Tolerability of miltefosine against Trypanosoma cruzi in a mice model. In vitro and sequential treatments. PLoS neglected Trop. Dis. 7, e2367.

Croft, S.L., Snowden, D., Yardley, V. 1996. The activities of four anticaner alkyl-lysophosphatidyl ethanolamine analogues against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J. Antimicrob. Chemother. 38, 1041–1047.

De Figueiredo Diniz, L., Urbina, J.A., de Andrade, I.M., Mazzeti, A.L., Martins, T.A.F., Calvo, T., de Francisco, L., Bahia, M.E., Cidades, J.A.B., and por-acetona in experimental chagas disease: positive interaction in concomitant and sequential treatments. PLoS neglected Trop. Dis. 7, e2367.

Denise, H., Barrett, M.P., 2001. Uptake and mode of action of drugs used against Trypanosoma cruzi. Parasitol. Res. 99, 103–106.

Ho, W., Yeap, S., Ho, C., Rahim, R., Alitheen, N., 2012. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS one 7 (9), e44640. http://dx.doi.org/10.1371/journal.pone.0044640.

Hovius, B.T., Brozova, M., Barley, P., Noyes, H., Hafe, J.A., Pepin, J., Greenwood, B., Whittle, H., Molyneux, D., 2006. A Gambian infant with fever and an unexpected blood film. PLoS Med. 3, e355.

Jackson, Y., Aliri, E., Getz, L., Wolff, H., Combescure, C., Chappuis, F., 2010. Tolerance and safety of antifurinex in patients with chronic chagas disease. Clin. Infect. Dis. official publ. Infect. Dis. Soc. Am. 51, e69–75.

Keenan, M., Abbott, M.J., Alexander, P.W., Armstrong, T., Best, W.M., Berven, B., Botero, A., Chapman, J.H., Charnan, S.A., Chatelain, E. 2012. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi. Future Med. Chem. 5, 1733–1752.

Keenan, M., Alexander, P.W., Diao, H., Best, W.M., Khong, A., Kerfoot, M., Thompson, R.C., White, K.L., Shackelford, D.M., Ryan, E., Gregg, A.D., Charnan, S.A., von Geldern, T.W., Scandale, I., Chatelain, E. 2013b. Design, structure-activity relationship and in vivo efficacy of piperine analogues of fenofibrate as inhibitors of Trypanosoma cruzi. Bioorg. Med. Chem. 21, 1756–1763.

Keenan, M., Chapman, J.H., Alexander, P.W., Abbott, M.J., Best, W.M., Khong, A., Botero, A., Perez, C., Cornwall, S., Thompson, R.A., 2013c. Two analogues of fenofibrate show curative activity in Trypanosoma cruzi infection: An experimental model of chagas disease. J. Med. Chem. 56 (24), 10158–10170.

Kirchhoff, L.V., 1996. American trypanosomiasis. Princ. Pract. Clin. Parasitol. 35–35.

König, W., Wzelar, L., Warnell, R.P., Rivi, R., Pandolfi, P.P., Jakubowski, A., Gabrilev, J.L. 1997. Comparative activity of melarsoprol and arsenic trioxide in chronic B-cell leukemia lines. Blood 90, 562–570.

Konstantinov, S., Kaminsky, R., Brun, R., Berger, M., Zillmann, U., 1997. Efficacy of antiproliferative benzoylphospholines in Trypanosoma brucei subtypes. Acta trop. 64, 145–154.

Laffitte, M.C., Leprohon, P., Legare, D., Ouellette, M., 2016. Deep-sequencing revealing mutation dynamics in the miltefosine transporter gene in Leishmania infantum selected for miltefosine resistance. Parasitol. Res. 115, 3793–3795.

Lepesheva, G.I., Waterman, M.R., 2011. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis. Curr. Top. Med. Chem. 11, 2080.

Lira, R., Contreras, L.M., Santa Rita, R.M., Urbina, J.A., 2001. Mechanism of action of antiproliferative lysophosphatidyl ethanolamine analogues against Trypanosoma cruzi: potentiation of in vitro activity by the sterol biosynthesis inhibitor flufenicol. J. Antimicrob. Chemother. 46, 173–182.

Lund, K.P., Hernandez, I.P., Rueda, C.M., Zoro, M.M., Croft, S.L., Escobar, P. 2009. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole. Biochem. Pharmacol. 25, 448–455.

McInnes, L., Hanger, J., Simmons, G., Reid, S., Ryan, U., 2011. Novel trypanosome Trypanosoma gillettii sp. (Euglenozoa: Trypanosomatidae) and the extension of the host range of Trypanosoma cruzi to the koala (Phascolarctos cinereus). Parasitology 138, 95.

Miford, F., Pepin, J., Loko, L., Ethier, M., Mpia, B., 1992. Efficacy and toxicity of eflornithine for treatment of Trypanosoma brucei gambiense sleeping sickness. Lancet 340, 652–655.

Morais, C.B., Gardini, M.A., Kim, H., Franco, C.H., Araujo-Junior, A.M., Schenkman, S., Chatelain, E., Freitas-Junior, L.H., 2014. Nitroretherocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci. Rep. 4, 4703.

Morais-Teixeira, E.D., Damasceno, Q.S., Galuppo, M.K., Romanha, A.J., Rabello, A., 2011. The in vitro leishmanicidal activity of hexadecylphosphocholine (miltefoxine) against four medically relevant Leishmania species of Brazil. Memorias do Inst. Oswaldo Cruz 106, 475–478.

Obonaga, R., Fernandez, O.L., Valderrama, L., Rubiano, L., Castro Mdel, M., Barrera, M.C., Gomez, M.A., Garo Saraiva, N., 2014. Treatment failure and miltefoxine susceptibility in dermal leishmaniasis caused by Leishmania infantum subgenus Vannia species. Antimicrob. agents Chemother. 58, 144–152.

Organization, W.H., 2010. First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases. WHO, 2010. New evidence concerning the extinction of the endangered muridae genus Thomas, 1897 from Christmas Island, Indian Ocean. Austral. Mamm. 19, 19–26.

Pinto, M.-J., Guererro, L., Posada, E., Rodriguez, E., Soy, D., Gascon, J., 2013. Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob. agents Chemother. 57, 390–395.

Plourde, M., Coelho, A., Keyeun, Y., Larios, O.E., Ndao, M., Ruest, A., Roy, G., Rubinstein, E., Ouellette, M., 2012. Genetic polymorphisms and drug susceptibility in four isolates of Leishmania tropica obtained from Canadian soldiers returning from Afghanistan. PLoS neglected Trop. Dis. 6, e1463.

Rex, B., Iten, M., Grether-Bühler, Y., Kaminsky, R., Brun, R., 1977. The Alamar Blue microtiter assay for drug sensitivity testing of Trypanosoma cruzi. Acta trop. 75, 219–226.

Rolle, M., Vega, C., Escario, J.I., Gómez-Barrios, A., 2006. Development of resarizuminorat assay for drug sensitivity testing of Trypanosoma cruzi epimastigotes. J. Antimicrob. Chemother. 57, 1047–1049.

Rousselot, P., Labaune, S., Marolleau, J.-P., Larghero, J., Noguera, M.-H., Brouet, L.-C., Fermond, J.-P., 1999. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res. 59, 1041–1048.

Rybczynska, M., Spitaler, M., Knebel, N.G., Boeck, G., Grunicke, H., Hofmann, J., 2001. Effects of miltefosine on various biochemical parameters in a panel of tumor cell lines with different sensitivities. Biochem. Pharmacol. 62, 765–772.

Sales Junior, P.A., Rezende Junior, C.O., Le Hyaric, M., Almeida, M.V., Romanha, A.J., 2010. Fatty diamine and amino alcohol analogues of fenofibrate are efficacious in a murine model of Chagas disease. J. Med. Chem. 53, 4189–4192.

Sales Junior, P.A., Rezende Junior, C.O., Le Hyaric, M., Almeida, M.V., Romanha, A.J., 2014. The in vitro activity of fatty diamines and amino alcohols against mixed amastigote and trypomastigote Trypanosoma cruzi forms. Memorias do Inst. Oswaldo Cruz 109, 364–367.

Saraiva, V.B., Gribaldi, D., Previtali, J.O., Mendonça-Previtali, L., Bozza, M.T., Freire-de-Lima, C., Heise, N., 2002. Proinflammatory and cytotoxic effects of...
hexadecylphosphocholine (miltefosine) against drug-resistant strains of *Trypanosoma cruzi*. Antimicrob. agents Chemother. 46, 3472–3477.

Schweingruber, M.E., 2004. The melaminophenyl arsenicals melarsoprol and melarsen oxide interfere with thiamine metabolism in the fission yeast *Schizosaccharomyces pombe*. Antimicrob. agents Chemother. 48, 3268–3271.

Soeiro, M.N.C., de Castro, S.L., 2009. *Trypanosoma cruzi* targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets 13 (1), 105–121.

Steverding, D., 2010. The development of drugs for treatment of sleeping sickness: a historical review. Parasites vectors 3, 15.

Sykes, M.L., Avery, V.M., 2009. Development of an Alamar Blue viability assay in 384-well format for high throughput whole cell screening of *Trypanosoma brucei brucei* bloodstream form strain 427. Am. J. Trop. Med. Hyg. 81, 665–674.

Toledo, M.J.d.O., Guilherme, A.L.F., Silva, J.C.d., Gasperi, M.V.d., Mendes, A.P., Gomes, M.L., Araujo, S.M.d., 1997. *Trypanosoma cruzi*: chemotherapy with benznidazole in mice inoculated with strains from Parana state and from different endemic areas of Brazil. Rev. do Inst. Med. Trop. Sao Paulo 39, 283–290.

Verma, A., Manchanda, S., Kumar, N., Sharma, A., Goel, M., Banerjee, P.S., Garg, R., Singh, B.P., Balharbi, F., Lejon, V., 2011. Case report: *Trypanosoma lewisi* or *T. lewisi*-like infection in a 37-day-old indian infant. Am. J. Trop. Med. Hyg. 85, 221.

Vermeersch, M., da Luz, R.I., Toté, K., Timmermans, J.-P., Cos, P., Maes, L., 2009. In vitro susceptibilities of *Leishmania donovani* promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob. agents Chemother. 53, 3855–3859.

Wayne, A., Maxwell, M., Ward, C., Vellios, C., Ward, B., Liddelow, G., Wilson, I., Wayne, J., Williams, M., 2013a. Importance of getting the numbers right: quantifying the rapid and substantial decline of an abundant marsupial, *Betongia penicillata*. Wildl. Res. 40, 169–183.

Wayne, A.F., Maxwell, M.A., Ward, C.G., Vellios, C.V., Wilson, I., Wayne, J.C., Williams, M.R., 2013b. Sudden and Rapid Decline of the Abundant Marsupial *Betongia penicillata* in Australia. Oryx, pp. 1–11.

Wyatt, K.R., Campos, P.F., Gilbert, M.T.P., Kolokotronis, S.O., Hynes, W.H., DeSalle, R., Daszak, P., MacPhee, R.D.E., Greenwood, A.D., 2008. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PloS one 3, e3602.