Nitric oxide and virus infection

T. AKAIKE & H. MAEDA Department of Microbiology, Kumamoto University School of Medicine, Kumamoto, Japan

SUMMARY
Nitric oxide (NO) has complex and diverse functions in physiological and pathophysiological phenomena. The mechanisms of many events induced by NO are now well defined, so that a fundamental understanding of NO biology is almost established. Accumulated evidence suggests that NO and oxygen radicals such as superoxide are key molecules in the pathogenesis of various infectious diseases. NO biosynthesis, particularly through expression of an inducible NO synthase (iNOS), occurs in a variety of microbial infections. Although antimicrobial activity of NO is appreciated for bacteria and protozoa, NO has opposing effects in virus infections such as influenza virus pneumonia and certain other neurotropic virus infections. iNOS produces an excessive amount of NO for long periods, which allows generation of a highly reactive nitrogen oxide species, peroxynitrite, via a radical coupling reaction of NO with superoxide. Thus, peroxynitrite causes oxidative tissue injury through potent oxidation and nitration reactions of various biomolecules. NO also appears to affect a host’s immune response, with immunopathological consequences. For example, overproduction of NO in virus infections in mice is reported to suppress type 1 helper T-cell-dependent immune responses, leading to type 2 helper T-cell-biased immunological host responses. Thus, NO may be a host response modulator rather than a simple antiviral agent. The unique biological properties of NO are further illustrated by our recent data suggesting that viral mutation and evolution may be accelerated by NO-induced oxidative stress. Here, we discuss these multiple roles of NO in pathogenesis of virus infections as related to both non-specific inflammatory responses and immunological host reactions modulated by NO during infections in vivo.

INTRODUCTION
Free radical species with oxygen- or nitrogen-based unpaired electrons are now considered to play diverse roles in many aspects of physiological and pathological events. In the past decade, particular attention has been paid to the unique biological functions of nitric oxide (NO), a gaseous nitrogen-centred inorganic radical that is produced endogenously in a number of cells and tissues. NO is critically involved in non-specific (innate) and immunological host defense. It has antimicrobial actions against various pathogens via its cytotoxic or cytostatic effects.1–5 Potent host defence against intruding microbes is also mediated by oxygen radicals and active oxygen species, including superoxide anion radical (O2–), hydrogen peroxide (H2O2), and hypochlorite anion (OCl–), produced from phagocytic cells such as neutrophils and activated macrophages.6 It is now well accepted that the chemical and biological reactivities of NO produced in environments such as inflamed tissues are greatly affected by concomitantly formed oxygen radicals, particularly O2–, through formation of reactive nitrogen and oxygen intermediates.7–12 Although the importance of these reactive nitrogen and oxygen intermediates has been documented for host defence reactions against bacteria and fungi,1–5 their role in the pathogenesis of virus infections is only partly understood.

Because pathological consequences of microbial infections are determined by the interaction of the host and the pathogen, a central theme in modern microbiology is overall understanding of the mechanism of host–pathogen interaction rather than gaining insight about a particular microbe. It is thus critical to evaluate the pathogenesis of virus infection as related to the emerging concept of free radicals that are generated as...
host-derived factors during interactions between viruses and hosts. In this review, the biological relevance of NO production is discussed in view of oxidative stress and immunomodulation of the host's responses caused by NO during virus infections.

INDUCTION OF NO BIOSYNTHESIS AND OXYGEN RADICALS IN VIRUS INFECTION

Overproduction of NO, mainly caused by inducible NO synthase (iNOS), which is usually expressed by inflammatory phagocytic cells and other types of cells (e.g. epithelial and neuronal cells), has a defence function against bacteria, fungi, and parasites. iNOS produces a much larger amount of NO for a longer time (i.e. 10–100 times more) than do the other two constitutive enzymes, neuronal NOS and endothelial NOS. Although NO seems to have a limited bactericidal effect, suppression or lack of NO production results in impaired clearance of some types of bacteria by the host.

NOS is induced in a variety of experimental virus infections in rats and mice, including those with neuroviruses, such as Borna disease virus, herpes simplex virus type 1 (HSV-1), rabies virus, and pneumotropic and cardiotropic viruses, such as influenza virus, Sendai virus, and coxsackievirus. iNOS expression is also observed in human diseases caused by human immunodeficiency virus-1 (HIV-1) and hepatitis B virus (HBV). It seems therefore that iNOS is ubiquitously expressed during host responses to viral replication in vivo.

For example, iNOS is expressed by exudate macrophages and bronchial epithelial cells in lung tissues infected with influenza virus in mice; the high output of NO has been clearly identified and quantified by electron spin resonance (ESR) spin trapping with the use of a dithiocarbamate-iron complex. iNOS induction in virus infection is mediated by pro-inflammatory cytokines such as interferon-γ (IFN-γ) (Fig. 1a).

![Image](https://via.placeholder.com/150)

Figure 1. (a) Mechanisms of iNOS induction in viral diseases. In many virus infections, iNOS expression appears to be regulated indirectly via interferon-γ (IFN-γ) induction. Direct iNOS induction may occur in some cases, such as with respiratory syncytial virus and HIV-1 (gp41). (b) NO generation detected by ESR spectroscopy with N-dithiocarboxy(sarcosine) (DTCS)-iron complexes in influenza virus-infected lung (7 days after virus infection). Wild-type mice (C57BL/6, B6), iNOS heterozygotes (iNOS+/−), and mice deficient in iNOS (iNOS−/−) were inoculated with 2 × LD50 of influenza virus, and ESR was performed as described previously. 16

© 2000 Blackwell Science Ltd., *Immunology*, 101, 300–308
In pneumonia induced by influenza virus or Sendai virus, NO production is greatly attenuated in IFN-γ-deficient mice (Akaike et al., unpublished observation). Furthermore, the iNOS-inducing potential in bronchoalveolar lavage fluid in influenza virus pneumonia is attributable solely to IFN-γ, as revealed by an immunoadsorption study using a specific anti-IFN-γ antibody. These results strongly support the suggestion that IFN-γ is a major cytokine inducing iNOS and NO overproduction in pathogenesis of virus infection.15,16,31

Many previous reports indicate that type 1 helper T cell (Th1) responses are important for viral clearance. However, IFN-γ, a Th1-dependent cytokine, seems to be inefficient in host defence against various viral pathogens including influenza virus, Sendai virus, and vaccinia virus.42–44 In addition, lack of an iNOS-dependent antiviral effect is also noted for the same virus infections, which was recently confirmed by a number of studies using iNOS-deficient (iNOS−/−) mice.44–48

Downregulation of iNOS expression is also reported for some cytokines, e.g. interleukin (IL)-4, IL-10, and transforming growth factor-β. In addition, these suppressor cytokines may reduce NO production indirectly via induction of arginase, which diminishes the supply of the substrate (L-arginine) for iNOS. Because IL-4 and IL-10 are induced by regulatory T cells and both are antiviral cytokines, expression of these cytokines may reduce NO production indirectly via induction of arginase.52–54 Thus, NO produced in response to the intruding virus. In fact, in our influenza model, induction of IL-4 seems to be inversely related to IFN-γ and iNOS induction in virus-infected lungs, suggesting downregulation of IFN-γ and NO production in pathogenesis of various proteins and sulfhydryl targets of pathogens is of great interest in view of the diverse functions of NO.54–69 However, it remains ambiguous whether selective toxicity of NO for virus and virus-infected cells is brought about by NO-dependent S-nitrosylation. In fact, considerable evidence shows redox regulation by S-nitrosylation of sulfhydryl-containing proteins involved in intracellular signaling pathways, including neurotransmission, transcription, and apoptosis, containing proteins involved in inter- and intracellular signal pathways, including neurotransmission, transcription, and apoptosis, containing proteins involved in inter- and intracellular signal pathways, including neurotransmission, transcription, and apoptosis.

Activity of NO against other viruses remains unclear, however. Recent reports suggest that NO has no appreciable antiviral effect on several types of viruses such as ortho- and paramyxoviruses, murine vaccinia virus, coronavirus (mouse hepatitis virus, MHV), lymphocytic choriomeningitis virus (LCMV), murine encephalomyocarditis virus (EMCV), tick-borne encephalitis virus (TBE-V), and others. This lack of antiviral activity of NO has been proven in murine pneumotropic virus infections caused by influenza and Sendai viruses in a series of cell, mouse, and in vivo studies (Akaike et al., unpublished observation). Exposure of these viruses to biologically relevant concentrations of NO produces no appreciable reduction of viral growth in cultured cells in vitro. More important, antiviral host defence is not impaired by pharmacological interventions producing NO inhibition or by genetic iNOS deficiency of in mice infected with either influenza virus or Sendai virus. Such NO inhibition and lack of NO biosynthesis, however, significantly reduce the pathological consequences of various virus infections, including viral pneumonia in mice caused by influenza virus, Sendai virus, and HSV-1; HSV-1-induced encephalitis in rats; EMCV-induced carditis and diabetes; and murine encephalitis induced by flavivirus (Murray Valley encephalitis virus; TBE-V). It is thus conceivable that NO is not entirely an antiviral molecule in various, if not all, virus infections.

EFFECTS OF NO ON IMMUNOLOGICAL RESPONSES DURING VIRUS INFECTION AND THE PATHOLOGICAL CONSEQUENCES

It has been suggested that NO affects the polarized Th1–Th2 response, causing a Th2-biased immunoregulatory balance, via a relatively specific suppressive effect on Th1 subpopulations. Such NO-induced immunomodulation occurs during virus infection in mice, as revealed by recent studies of HSV-1 and influenza virus infections. These biased Th2 responses are most clearly demonstrated by using iNOS−/− mice, which show enhanced Th1 immune responses after these infections. It is believed that Th1 cells produce IL-2 and IFN-γ, whereas production of IL-4 and IL-10 depends on Th2 cells. NO thus seems to downregulate the Th1-associated cytokine IFN-γ, which is a major iNOS-inducing cytokine in virus infections as described above, and increases the Th2-associated IL-4 and IL-10 during virus infections in mice.

However, the immunoregulatory effects of NO on Th1–Th2 balance are not commonly observed among the different types of...
Defence is eliminated in coxsackievirus-infected iNOS–/– mice, Similarly, Lowenstein's group reported that the antiviral host defence in iNOS–/– mice is significantly exacerbated, even though the Th1-dependent IFN-γ response is critical for viral clearance, NO may impair antiviral responses by suppressing Th1-dependent IFN-γ induction and tipping the Th1–Th2 balance toward Th2 domination. However, it has now been demonstrated that IFN-γ, a Th1-dependent cytokine, is eventually inefficient in clearance of influenza virus from infectious foci, and even IL-4, induced by Th2 responses, possesses antiviral activity against murine paramyxovirus (Sendai virus). Our recent experiments using iNOS−/− mice indicate that clearance of virus from lungs infected with either influenza virus or Sendai virus is not affected by a lack of iNOS expression (Akaie et al., unpublished observation). In fact, iNOS−/− mice recover from viral pneumonia much better than do wild-type animals, because of reduced levels of oxidative stress in virus-infected tissues. Therefore, not only NO-induced Th1 suppression, but also NO-induced oxidative injury may be attributable to pathogenesis of infection with certain viruses that are resistant to the direct antiviral actions of NO.

In addition, NO seems to have profound immunosuppressive and immunopathological effects, most typically in Mycobacterium avium and Salmonella typhimurium infections, which may be due to NO-induced cytotoxic effects on immune effector cells such as macrophages. Similar immunosuppression by NO is clearly demonstrated with vaccinia virus-infected murine macrophages, which show a loss of antiviral activity because of inhibition of IFN-α/β production by NO.

Thus, NO has complex roles in immunological host responses against viruses. The mechanism of pathogenesis of virus infection is mediated by the following three classes of biological events affected by NO:

1. Direct antiviral effects of NO that may contribute to innate resistance of hosts to viruses: e.g. coxsackievirus and EV appear to be potentially susceptible to NO. Therefore, virus infection in iNOS−/− mice is significantly exacerbated, even though the Th1-dependent IFN-γ response is enhanced by the disrupted iNOS gene. Similarity, Lowenstein's group reported that the antiviral defence is eliminated in coxsackievirus-infected iNOS−/− mice. However, in infections with vaccinia virus and corona virus (MHV), iNOS deficiency affects neither antiviral host defence nor pathology of viral diseases. Also, the antiviral immunological response against LCMV is unimpaired in iNOS−/− mice lacking iNOS, although T-cell-mediated inflammation induced by LCMV is reduced.

2. Effects of NO on antiviral defence mediated by polarized Th1–Th2 immunological reactions of hosts: if the Th1 response is critical for viral clearance, NO may impair antiviral responses by suppressing Th1 functions.

3. Contribution of NO-induced oxidative stress: NO-induced cytotoxicity via oxidative injury may cause not only immunosuppression and immunopathology, but also cellular and organ dysfunctions (detailed molecular mechanisms are described in the following section).

NO-INDUCED OXIDATIVE STRESS IN PATHOGENESIS OF VIRUS INFECTION

No itself is an inert radical and much less reactive compared with other naturally occurring oxygen and alkyl radicals. Of the complex chemistry of NO, the most important and biologically relevant reaction is formation of...
ONOO via a very rapid radical coupling with \(O_2\) (NO + \(O_2\) \(\rightarrow\) ONOO− \(k = 6.7 \times 10^7 \ \text{M}^{-1} \ \text{s}^{-1}\)).7,9,11,12 Although NO can function as an antioxidant, particularly in lipid peroxidation,9 it also has indirect pro-oxidant activity after conversion to a strong oxidant and a potent nitrating agent (ONOO) causing oxidative stress.9 In addition, although NO and nitrosothiols show strong anti-apoptotic effects as described above,67–71 ONOO− induces apoptosis, possibly via mitochondrial damage leading to cytochrome \(c\) release.10,92 NO chemistry in biological systems is shown schematically in Fig. 2. As mentioned above, the reaction between NO and \(O_2\) takes place in virus-infected inflammatory tissues, leading to formation of ONOO−. Immunohistochemical analysis with anti-nitrotyrosine antibody shows positive staining in macrophages and neutrophils infiltrating the alveoli and interstitial tissues, as well as in inflammatory intra-alveolar exudate in virus-infected lung,34 which provides indirect indication of ONOO− generation during virus infection.

ONOO− may cause various pathological events in virus infections, such as host cell apoptosis and necrosis. It may be also involved in NO-induced suppressive effects on macrophages, as described in earlier sections. In addition, we recently found that ONOO− activates matrix metalloproteinases (MMPs), which are involved in extracellular tissue damage and remodelling.97 Accordingly, oxidative tissue injury in virus-infected lung may be mediated by ONOO−-induced MMP activation. In fact, remarkable improvements in pathological condition in the lung and in survival rate of virus-infected mice were observed with \(l\)-NMMA, and with the \(O_2\) scavenger SOD and the NO inhibitor allopurinol as well.34,38 Furthermore, a therapeutic effect on influenza virus-induced pneumonia in mice (Sendai) containing a marker gene (green fluorescent protein, GFP) for genetic mutation and iNOS knockout mice, we clearly showed that oxidative stress induced by NO in wild-type mice \textit{in vivo} remarkably increases and accelerates viral mutation rates compared with the situation in iNOS-deficient mice (Fig. 3). This process of accelerated mutation may occur in other virus infections \textit{in vivo}. For example, NO-induced oxidative stress in virus infection may cause increased survival of heterogeneous mutants, resulting in selection of highly pathogenic variants of coxsackievirus.

In addition, our recent study verifies for the first time that oxidative stress induced by a high output of NO accelerates mutation of RNA virus.48 By using a recombinant RNA virus (Sendai) containing a marker gene (green fluorescent protein, GFP) for genetic mutation and iNOS knockout mice, we clearly showed that oxidative stress induced by NO in wild-type mice \textit{in vivo} remarkably increases and accelerates viral mutation rates compared with the situation in iNOS-deficient mice (Fig. 3). This process of accelerated mutation may occur in other virus infections \textit{in vivo}. For example, NO-induced oxidative stress may cause greater heterogeneity of variants of RNA viruses including HIV and influenza virus, leading to rapid viral evolution under selective pressure and to production of drug-resistant and immunologically tolerant and cell tropism-altered mutants (Fig. 4). We now know that NO and \(O_2\), and hence ONOO− and other reactive molecular species in the pathogenesis of influenza virus-induced pneumonia in mice.
species such as NO₂, ClO⁻, and H₂O₂, are generated universally as a result of host responses during infections. Therefore, we may expect such chemical mutagenesis in other DNA viruses, bacteria, and even host cells, although it may not be as effective as that in single-strand RNA viruses.

CONCLUSION

Biological consequences of NO generation and implications for pathogenesis of virus infections are discussed by illustrating NO-modulated non-specific and virus-specific immune responses of the hosts. Free radicals are produced primarily as effector molecules of the host defence response. Their biological effects, however, are not necessarily beneficial to the infected host. Understanding of the pathophysiological functions of NO and oxygen radicals will provide profound insights into many aspects of infectious diseases.

ACKNOWLEDGMENTS

We thank Ms Judith B. Gandy for editorial preparation of the manuscript. This work is supported by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan, and a grant from the Ministry of Health and Welfare of Japan.

REFERENCES

1 Granger DL, Hibbs JB Jr, Perfect JR, Durack DT. Specific amino acid (L-arginine) requirement for microbiostatic activity of murine macrophages. J Clin Invest 1988; 81:1129–36.
2 Nathan CF, Hibbs JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 1991; 3:65–70.
3 Doi T, Ando M, Akaike T, Suga M, Sato K, Maeda H. Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect Immun 1993; 61:1980–9.
4 James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995; 59:533–47.
5 Umezawa K, Akaike T, Fuji S, Suga M, Setoguchi K, Ozawa A, Maeda H. Induction of nitric oxide synthesis and xanthine oxidase and their role in the antimicrobial mechanism against Salmonella typhimurium in mice. Infect Immun 1997; 65:2932–40.
6 Badwey JA, Karnovsky ML. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 1980; 49:695–726.
7 Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87:1620–4.
8 Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite: The good, bad, and the ugly. Am J Physiol 1996; 271:C1424–37.
9 Rubbo H, Darley-Usmar V, Freeman BA. Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol 1996; 9:809–20.
10 Estévez AG, Crow JP, Sampson JB et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999; 286:2498–500.

Figure 3. NO-dependent Sendai virus mutation as revealed by genetic mutation of GFP in Sendai virus during Sendai virus-induced pneumonia in mice. (a) The mutation frequency of the virus isolated from the lung of wild-type B6 and iNOS⁻/⁻ mice was quantified by use of the GFP-based mutation assay. (b) Virus yield in the lung of wild-type B6 and iNOS⁻/⁻ mice. Data are the mean ± SEM (n = 4). *P < 0.05, †P < 0.01, between wild-type B6 and iNOS⁻/⁻ mice (t-test). Adapted from Akaike et al. (FASEB J 2000; 14:1447).

Figure 4. Schematic drawing of the possible involvement of NO-induced oxidative stress and mutagenesis in viral mutation and evolution. NO-derived reactive nitrogen intermediates, via their potent mutagenic activities, may contribute to the molecular evolution of viruses. Alternatively, NO may affect viral evolution by inhibiting a host’s antiviral immune responses, which may impair clearance of viral mutants.
Maeda H, Akaike T. Oxygen free radicals as pathogenic molecules.

Reiter CD, Teng RJ, Beckman JS. Superoxide reacts with nitric oxide to generate nitrogen radicals.

Sawa T, Akaike T, Maeda H. Molecular pathogenesis of influenza virus pneumonia: Impacts of proteases, kinins, and oxygen radicals derived from host.

Maeda H, Akaike T. Oxygen free radicals as pathogenic molecules in viral diseases. Proc Soc Exp Biol Med 1991; 198:721–7.

Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998; 217:64–73.

Akaike T, Maeda H. Nitric oxide in influenza. In: Fang FC ed. Nitric Oxide in Infection. New York: Kluwer Academic/Plenum Publishers, 1999: 397–415.

Takishima T ed. Basic and Clinical Aspects of Pulmonary Fibrosis. Boca Raton, FL: CRC Press, 1994:213–27.

Nathan CF. Inducible nitric oxide synthase: what difference does it make? J Clin Invest 1997; 100:2417–23.

Moncada S, Higgs A. The l-arginine-nitric oxide pathway. N Engl J Med 1993; 329:2002–12.

Stuehr DJ, Griffith OW. Mammalian nitric oxide synthase. Adv Enzymol Relat Areas Mol Biol 1992; 65:287–346.

Yoshida K, Akaike T, Doi T, Sato K, Ijiri S, Suga M, Ando M, Maeda H. Pronounced enhancement of NO-dependent antimicrobial action by an NO-oxidizing agent, imidazolineoxyl N-oxide. Infect Immun 1993; 61:3552–5.

de Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 1995; 92:6399–403.

Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, Okamoto S, Maeda H. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun 2000; 68:4738–83.

MacMicking JD, North RJ, LaCourse R, Mugdett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 1997; 94:5243–8.

Shiloh MU, MacMicking JD, Nicholson S et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 1999; 10:29–38.

Shiloh MU, Nathan CF. Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol 2000; 3:535–42.

Darragh PA, Hondalus MK, Chen Q, Ischiropoulos H, Mosser DM. Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages. Infect Immun 2000; 68:3587–93.

Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormanee CE, Dougan G. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 2000; 192:237–48.

Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Ronke L, Fu ZF, Hanlon C, Dietzschold B. In vitro expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci USA 1993; 90:3024–7.

Zheng YM, Schöfer MKH, Weihe E, Sheng H, Corisdeo S, Fu ZF, Koprowski H, Dietzschold B. Severity of neurological signs and degree of inflammatory lesions in the brains of the rats with Borna disease correlate with the induction of nitric oxide synthase. J Virol 1993; 67:5786–91.

Karupiah G, Xie Q, Buller RML, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-y-induced nitric oxide synthase. Science 1993; 261:1445–8.

Akaike T, Weihe E, Schaefer M et al. Effect of neurotrophic virus infection on neuronal and inducible nitric oxide synthase activity in rat brain. J Neurovirol 1995; 1:118–25.

Mikami S, Kawashima S, Kanazawa K et al. Expression of nitric oxide synthase in a murine model of viral myocarditis induced by coxsackie virus B3. Biochem Biophys Res Commun 1996; 220:983–9.

Akaike T, Noguchi Y, Iijiri S, Setoguchi K, Suga M, Zheng YM, Dietzschold B, Maeda H. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996; 93:2448–53.

Fuji S, Akaike T, Maeda H. Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 1999; 256:203–12.

Bukrinsky MI, Nottet HSL, Schmidtmayerova H, Dubrovsky L, Flanagan CR, Mullins ME, Lipton SA, Gendelman HE. Regulation of nitric oxide synthase activity in human immunodeficiency virus type I (HIV-1) -infected macrophages: implications for HIV-associated neurological disease. J Exp Med 1995; 181:735–45.

Majano PL, Garcia-Monzon C, Lopez-Cabrera M, Lara-Pezzi E, Fernandez-Ruiz E, Garcia-Iglesias C, Borque MJ, Moreno-Otero R. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Invest 1998; 101:1343–52.

Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, Maeda H. Dependence on O2− generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest 1990; 85:739–45.

Mahon BP, Katrak R, Nomoto A, Macadam AJ, Minor PD, Mills KH. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med 1995; 181:1285–92.

Jouic S, Mutter W, Weiland F, Reddelhase MJ, Koszinowski UH. Site-restricted persistent cytomegalovirus infection after selective long-term deletion of CD4+ T lymphocytes. J Exp Med 1989; 169:1199–212.

Eichberger M, Allan W, Zijlstra Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 1991; 174:875–80.

Graham MB, Dalton DK, Giltinan D, Braciale VL, Stewart TA, Braciale TJ. Response to influenza infection in mice with a targeted disruption in the interferon γ gene. J Exp Med 1993; 178:1725–32.

Mo XY, Tripp RA, Sangster MY, Doherty PC. The cytotoxic T-lymphocyte response to Sendai virus is unimpaired in the absence of gamma interferon. J Virol 1997; 71:1906–10.

van den Broek M, Bachmann MF, Hoehler G, Barner M, Escher R, Zinkernagel R, Kopf M. IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-γ and nitric oxide synthetase 2. J Immunol 2000; 164:371–8.

Karupiah G, Chen HJ, Mahalingam S, Nathan CF, MacMicking JD. Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 1998; 188:1541–6.

Bartholdy C, Nansen A, Christensen JE, Marker O, Thomsen AR. Inducible nitric-oxide synthase plays a minimal role in lympho-
cytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology. J Gen Virol 1999; 80:2997–3005.

47 Wu GF, Pewe L, Perlman S. Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase. J Virol 2000; 74:6783–6.

48 Akaite T, Fuji C, Kato A et al. Viral mutation accelerated by nitric oxide production during infection in vivo. FASEB J 2000; 14:1147–54.

49 Cunha FQ, Moncada S, Liew FY. Interleukin-10 (IL-10) inhibits coronavirus-induced demyelination in vivo. FASEB J 1999; 13:7683–7.

50 Bogdan C, Vodovotz Y, Paik J, Xie Q, Nathan C. Mechanism of suppression of macrophage nitric oxide release by transforming growth factor β. J Exp Med 1993; 178:605–13.

51 Bogdan C, Vodovotz Y, Paik J, Xie Q, Nathan C. Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J Leukoc Biol 1994; 55:227–33.

52 Corraliza IM, Soler G, Eichmann K, Modolell M. Arginase induction by suppression of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone marrow-derived macrophages. Biochem Biophys Res Commun 1995; 206:667–73.

53 Gotto T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophase-like cell line. FEBS Lett 1996; 395:119–22.

54 Sonoki T, Nagasaki A, Gotoh T, Takiguchi M, Takeya M, Hori K, Burd PR, Furuke K, Kutza J, Weih KA, Clouse KA. Inducible nitric oxide synthase influences the clinical course of coxsackievirus pancreatitis. J Immunol 1999; 163:307–16.

55 Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. Nitric oxide and virus infection: no antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 1996; 219:364–6.

56 Hori K, Burd PR, Furuke K, Kutza J, Weih KA, Clouse KA. Human immunodeficiency virus-1-infected macrophages induce inducible nitric oxide synthase and nitric oxide (NO) production on astrocytes: astrocytic NO as a possible mediator of neuronal damage in acquired immunodeficiency syndrome. J Immunol 1999; 163:1843–50.

57 Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TR, Rimm IJ. Suppression of herpes simplex virus type 1 (HSV-1) -induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 1997; 184:1533–40.

58 Nishio R, Matsumori A, Shioi T, Ishida H, Sasayama S. Treatment of experimental viral myocarditis with interleukin-10. Circulation 1999; 100:1102–8.

59 Hirasa K, Jun HS, Hans HS, Zhang ML, Hollenberg MD, Yoon JW. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J Virol 1999; 73:8541–8.

60 Andrews DM, Matthews VB, Sambells LM, Carrello AC, McMinn PC. The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J Virol 1999; 73:8781–90.

61 Taylor-Robinson AW, Liew FY, Severn A, Xu D, McSorley SJ, Garside P, Padron J, Phillips RS. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 1994; 24:980–4.

62 Wei XQ, Charles IG, Smith A et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375:480–11.

63 Kolb H, Kolb-Bachofen V. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 1998; 12:556–61.

64 MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY. Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 1998; 79:825–30.

65 Karupiah G, Chen JH, Nathan CF, Mahalingam S, MacMicking JD. Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J Virol 1998; 72:7703–6.

66 Saura M, Zaragoza C, Ocampo CJ, Saura M et al. Inducible nitric oxide synthase protection against coxsackievirus pancreatitis. J Immunol 1999; 163:5497–504.
84 Zaragoza C, Ocampo C, Saura M et al. The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 1998; 95:2469–74.
85 Zinkernagel RM. Immunology taught by viruses. Science 1996; 271:173–8.
86 Bennink JR, Doherty PC. Different rules govern help for cytotoxic T cells and B cells. Nature 1978; 276:829–31.
87 Ramsay AJ, Ruby J, Ramshaw IA. A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 1993; 14:155–7.
88 Graham MB, Braciale VL, Braciale TJ. Influenza virus-specific CD4 T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 1994; 180:1273–82.
89 Mo XY, Sangster MY, Tripp RA, Doherty PC. Modification of the Sendai virus-specific antibody and CD8 T-cell responses in mice homozygous for disruption of the interleukin-4 gene. J Virol 1997; 71:2518–21.
90 Doherty TM, Sher A. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection. J Immunol 1997; 158:4822–31.
91 Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 2000; 192:227–36.
92 Hortelano S, Alvarez AM, Bosca L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB J 1999; 13:2311–7.
93 Okamoto T, Akaikte T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism of procollagenase activation involving nitric oxide. Arch Biochem Biophys 1997; 342:261–74.
94 Matsumoto H, Sies H. The reaction of ethselen with peroxynitrite. Chem Res Toxicol 1996; 9:262–7.
95 Weitzman SA, Stossel TP. Mutation caused by human phagocytes. Science 1981; 212:546–7.
96 Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. Carcinogenesis 1995; 16:2045–50.
97 Juedes MJ, Wogan GN. Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 1996; 349:51–61.
98 Zhuang JC, Lin C, Lin D, Wogan GN. Mutagenesis associated with nitric oxide production in macrophages. Proc Natl Acad Sci USA 1998; 95:8286–91.
99 Beck MA, Shi Q, Morris VG, Levander OA. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1995; 1:433–6.
100 Beck MA, Esworthy RS, Ho Y-S, Chu F-F. Glutathione peroxidase protects mice from viral-induced myocarditis. FASEB J 1998; 12:1143–9.