FINITE ORDER INVARIANTS FOR \((n, 2)\)-TORUS KNOTS
AND THE CURVE \(Y^2 = X^3 + X^2\)

SVETLANA TYURINA* AND ALEXANDER VARCHENKO**

ABSTRACT. We describe the algebra of finite order invariants on the set of all \((n, 2)\)-torus knots.

*OASIS, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA
svetlana@email.unc.edu

**Department of Mathematics, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3250, USA
anv@email.unc.edu

February, 2004

This paper is an extended exposition of the talk [Ty] given by the first author. The authors thank S. Duzhin and A. Sossinsky for interest to this work and S. Chmutov for useful discussions.

Consider the \(\mathbb{Q}\)-algebra \(V\) of Vassiliev finite order knot invariants, see for example [B, CDL]. The algebra is filtered,

\[V_0 \subset V_1 \subset \cdots \subset V_k \subset \cdots \subset V, \]

the vector subspace \(V_k \subset V\) consists of knot invariants of order not greater than \(k\). We have \(V_k \cdot V_l \subset V_{k+l}\).

The subspace \(V_0\) is of dimension 1 and consists of invariants taking the same value on all knots. It is known that \(V_1 = V_0, \dim V_2/V_1 = \dim V_3/V_2 = 1\). The generator in \(V_2/V_1\) is given by the knot invariant \(x\) of order 2 which takes value 0 on the trivial knot and value 8 on the trefold. The generator in \(V_3/V_2\) is given by the knot invariant \(y\) of order 3 which takes value 0 on the trivial knot, takes value 24 on the trefold, and takes value \(-24\) on its mirror image. Those conditions determine \(x\) and \(y\) uniquely, see for example [L].

It is known that the space \(V_k\) has finite dimension fast growing with \(k\), see for example [CD, D, Z].

By definition the algebra \(V\) is an algebra of certain special functions on the set \(K\) of all knots in \(\mathbb{R}^3\) considered up to isotopy.

1Supported in part by NSF grant DMS-0244579.
Let $T \subset K$ be the subset of toric knots of type $(n, 2)$, $n = \pm 1, \pm 3, \ldots$. Here $(1, 2)$ and $(-1, 2)$ denote the trivial knot, $(3, 2)$ is the trefoil, $(-3, 2)$ its mirror image, and so on.

Consider the algebra A of functions on T, which is the restriction of V to T, i.e. $A = V|_{T}$. The algebra A is filtered,

$$A_0 \subset A_1 \subset \cdots \subset A_k \subset \cdots \subset A,$$

where $A_k = V_k|_{T}$ for any k. Our goal is to describe A.

Let $X \in A_2$ and $Y \in A_3$ be the image of x and y, respectively, under the natural projection $V \to A$.

Theorem. The algebra A is generated by X and Y and is isomorphic to the algebra $\mathbb{Q}[X, Y]/(X^3 + X^2 - Y^2)\mathbb{Q}[X, Y]$, where $(X^3 + X^2 - Y^2)\mathbb{Q}[X, Y] \subset \mathbb{Q}[X, Y]$ is the ideal generated by the polynomial $X^3 + X^2 - Y^2$. We have $\dim A_0 = 1$, $\dim A_1/A_0 = 0$, $\dim A_k/A_{k-1} = 1$ for $k > 1$. The generator in A_{2l}/A_{2l-1} is given by X^l and the generator in A_{2l+1}/A_{2l} is given by $X^{l-1}Y$ for all $l > 0$.

Proof. Denote by \mathbb{Z}_{odd} the set of all odd integers. For $n \in \mathbb{Z}_{\text{odd}}$ denote by $[n]$ the torus knot of type $(n, 2)$.

An element $f \in A$ defines a function $\mathbb{Z}_{\text{odd}} \to \mathbb{Q}$, $n \mapsto f([n])$, and is uniquely determined by that function. Thus A can be considered as an algebra of certain functions on \mathbb{Z}_{odd}.

Lemma.

- If $f : \mathbb{Z}_{\text{odd}} \to \mathbb{Q}$ belongs to A_k for some k, then f is a polynomial of degree not greater than k.
- If $f : \mathbb{Z}_{\text{odd}} \to \mathbb{Q}$ belongs to A, then $f(1) = f(-1)$.

The lemma is a direct corollary of definitions.

We have $X : \mathbb{Z}_{\text{odd}} \to \mathbb{Q}$, $n \mapsto n^2 - 1$, and $Y : \mathbb{Z}_{\text{odd}} \to \mathbb{Q}$, $n \mapsto n^3 - n$. This gives the relation $Y^2 = X^3 + X^2$.

It is easy to see that all polynomials $f : \mathbb{Z}_{\text{odd}} \to \mathbb{Q}$ with property $f(1) = f(-1)$ are linear combinations of monomials X^l and $X^{l-1}Y$ of degree $2l$ and $2l + 1$ respectively.

The theorem is proved.

Remarks.

- After this paper had been written, S. Chmutov informed us about paper [T], where R. Trapp in particular shows that any element $f \in A$ is a polynomial function on \mathbb{Z}_{odd} and f can be written as a polynomial in X and Y.
S. Chmutov informed us that the shapes, similar to the shape of our curve $Y^2 = X^3 + X^2$, appeared in [W], where S. Willerton discusses statistics of points $(x(k), y(k)) \in \mathbb{Q}^2$ for arbitrary knots k.

According to our theorem the algebra $V|_T$ is isomorphic to the algebra of regular functions on the affine curve $Y^2 = X^3 + X^2$. One may wander what kind of algebraic varieties one obtains considering restrictions of V to other reasonable subsets of the set of all knots.

References

[B] D. Bar-Natan, On the Vassiliev knot invariants, Topology, 34 (1995), 423–472.
[CDL] S. Chmutov, S. Duzhin, and S. Lando Vassiliev Knot Invariants I. Introduction, Adv. in Soviet Math. 21 Singularities and Curves, V.I.Arnold ed. (1994) 117–126.
[CD] S. Chmutov and S. Duzhin, An upper bound for the number of Vassiliev knot invariants, Journal of Knot Theory and its Ramifications, 3 (1994), 141–151.
[D] O. Dasbach, On the Combinatorial Structure of Primitive Vassiliev Invariants III – A Lower Bound, Communications in Contemporary Mathematics, 2 (2000), No. 4, 579-590.
[L] J. Lannes, Sur les invariants de Vassiliev de degré inférieur ou égal à 3, L’Enseignement Mathématique, 39 (1993), 295–316.
[T] R. Trapp, Twist Sequences and Vassiliev Invariants, Journal of Knot Theory and its Ramifications, 3 (1994), No. 3, 391–405.
[Ty] S. Tyurina, Diagram formulas of Viro-Polyak type and the Kontsevich integral for $(2, n)$-torus knots, Proc. Rokhlin Memorial Conference, Euler Institute, Saint-Petersburg, August 1999.
[Z] D. Zagier, Vassiliev Invariants and a Strange Identity Related to the Dedekind Eta-Function, Topology 40 (5) (2001), 945–960.
[W] S. Willerton, On the First Two Vassiliev Invariants, math.GT/0104061 1–11.