Dynamical modelling of cascading failures in the Turkish power grid

Benjamin Schäfer1,2,3 and G. Cigdem Yalcin3
1)School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
2)Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical University of Dresden, 01062 Dresden, Germany
3)Department of Physics, Istanbul University, 34134, Vezneciler, Istanbul, Turkey

(Dated: 4 September 2019)

A reliable supply of electricity is critical for our modern society and any large scale disturbance of the electrical system causes substantial costs. In 2015, one overloaded transmission line caused a cascading failure in the Turkish power grid, affecting about 75 million people. Here, we analyze the Turkish power grid and its dynamical and statistical properties. Specifically, we propose, for the first time, a model that incorporates the dynamical properties and the complex network topology of the Turkish power grid to investigate cascading failures. We find that the network damage depends on the load and generation distribution in the network with centralized generation being more susceptible to failures than a decentralized one. Furthermore, economic considerations on transmission line capacity are shown to conflict with stability.

Cascading failures in power grids are the main cause of large-scale blackouts, which cause large economic and social costs. Previous studies mainly modeled cascades as a sequence of steady states, employing mostly static analysis. However, real-world cascading failures often commence within short time scales such as few minutes or even seconds, rendering static analysis inappropriate. Here, we focus on the Turkish power grid, which experienced a major blackout in 2015. We extract the Turkish power grid topology from Transmission System Operator (TSO) data and introduce a framework to describe dynamical cascading failures.

I. INTRODUCTION

We are surrounded by natural or man-made networks, either technologically or sociologically that directly or indirectly affect human beings and are studied extensively as complex system. Many advancements of our modern society rely on a stable electricity supply and thereby on the network of electrical power grids. Examples range from medical care to long-distance transportation, instant communication or industrial automation, most of which break down without electricity. Therefore, we can clearly identify the electrical supply system as uniquely critical. Any large scale outage will cause high economic costs and potentially threaten the political stability of a region.

The electricity system is based on a high-voltage alternating current (AC) network, the power grid. This electrical grid cannot store any energy in itself, in contrast to, for example, the gas network. Instead, supply and demand have to be balanced at all times. Any imbalance will cause a shift of the power grid’s frequency away from the reference of 50 Hz (or 60 Hz in the Americas and part of South-East Asia). A shortage of generation reduces the frequency and an abundance of generation increases the frequency, speeding up the turbines at the connected power plants. Any large deviation from the reference frequency will cause disconnection of loads (load shedding) and shutdown of power plants, either to keep the grid stable or to protect the machine. Simultaneously, transmission lines are protected by automatic shut-down mechanisms, which disconnect the line if the load on the line exceeds a given security threshold, i.e., the line trips.

Cascading failures are sequences of events where the disruption of a single element causes a global breakdown (blackout) of the system. Suppose a single element of the power grid fails, e.g., a large generator has to shut down, a major load is disconnected or an important transmission line is lost. The removal of this one element then induces a disturbance in most of the remaining network elements. In the worst case, this disruption triggers a domino-like cascade of errors where additional lines become overloaded and trip and also generators have to disconnect.

Despite the overall improvements in supply security, we are still facing multiple major blackouts worldwide every decade. Constraining ourselves to major power blackouts that affected more than twenty million people at least, we obtain the following list: Venezuelan 2019 (30 millions), Sri Lanka 2016 (21 millions), Kenya 2016 (44 millions), Turkey 2015 (75 millions), Pakistan 2015 (140 millions), Bangladesh 2014 (150 millions), India 2012 (620 millions), Indonesia 2005 (100 millions), United States-Canada 2003 (55 millions), Italy-Switzerland 2003. One of the more recent extreme events in this list is the major power blackout of Turkey in 2015 that affected the entire population of the country, not only parts of the country, like some of the other examples.

Turkey’s geography is quite unique with major cities in its Western European region, while a large area of its land is also on the Asian continent. Due to this prominent geographical feature, the relationship between power subsystems of the Western and Eastern parts of Turkey also corresponds...
II. THE TURKISH GRID

We require a network representation of the Turkish power grid to investigate and analyze any (dynamical) phenomenon, such as the blackout that occurred in 2015. Therefore, we extract the approximate topology using publicly available data from the report on the blackout by ENTSO-E12 and the interactive ENTSO-E map33. The maps mark the position of substations, which we treat as the nodes of the Turkish network, and transmission lines, which form the edges of the Turkish grid. Details of the line parameters or the precise demand and generation at each node are not available to us. For our dynamical model below, we will assume different random realizations to model the various states of the grid. Considering multiple scenarios grants deeper insight into the power grid’s behavior as demand and generation distribution will typically be different in summer than in winter, similarly as night demand profiles differ from ones during the day12.

Inspecting the extracted Turkish power grid, we notice a large cluster of substations close to the highly populated regions, e.g. close to Istanbul in the North-West of Turkey, see Fig. 12 In contrast, the central and Eastern parts of Turkey are less populated and also have fewer substations. These subjective observations are backed-up by network measures37. With $N = 127$ nodes and $|E| = 174$ edges the Turkish grid topology is a sparse network with a highly connected and highly clustered community in the North-West and a very sparse and almost tree-like structure to the East.

The extracted topology, including the names of the substations and their approximate positions, is freely available for download, see Appendix: Methods. With the grid topology available, we formulate the dynamical model determining the state of each node (substation) in the next section.

III. A DYNAMICAL POWER GRID MODEL

To model line failures within the time scale of seconds, we formulate a dynamical model capturing the essential properties of the power grid dynamics. Each node in our approximation of the Turkish grid is a substation in the high voltage transmission grid. Modelling all underlying voltage structures, machines and devices would result in a very complex model, which would not allow easy structural and analytical insights. Therefore, we will focus on the transmission level of the power grid and make a couple of simplifying assumptions: Since the voltage on the transmission lines is typically between 220 and 380 kV, we neglect any ohmic losses and reactive power, thereby we only consider active power transmission. The voltage amplitude is assumed to be constant as well. Furthermore, we aggregate all consumers and generators connected to each substation into one effective synchronous machine. This machine acts as an effective generator on the transmission grid if it is connected to many generators, e.g. hydro or fossil fuel plants. Contrary, nodes in urban areas will often act as effective consumers.

Mathematically, we make use of the well-known swing equation48–49. Each node $i \in \{1,\ldots,N\}$ is then described by
The grid has many connections and substations close to its major cities in the West (Istanbul, Ankara, Izmir etc). In contrast, the more sparsely populated Eastern part is dominated by hydro power plants and long-distance transmission lines.

FIG. 2. Following an initial failure, the flow of few critical lines exceeds a threshold. We display the flows along 5 lines representative for the flows in the network. The initial conditions of the simulation use the fixed point of the original full network. Then, we let the most heavily loaded line trip, resulting in a dynamical transition towards a new fixed point. This transition involves large transient power flows on several lines, which might violate security thresholds α dynamically, while most line flows remain uncritical.

its deviation from the reference or mains frequency $f_R = 50$ Hz or 60 Hz. We express the deviation in terms of the angular velocity $\omega_i = 2\pi (f_i - f_R)$ in the rotating frame, i.e., $\omega_i = 0$ is equivalent to a frequency of $f_i = 50$ Hz (or 60 Hz).

The other state variable of each node is the voltage phase angle θ_i, which crucially determines the power flow between two nodes. Overall the swing equation can be expressed as follows

$$\frac{d}{dt} \theta_i = \omega_i,$$

$$\frac{d}{dt} \omega_i = P_i - \gamma \omega_i + \sum_{j=1}^{N} K_{ij} \sin(\theta_j - \theta_i),$$

where B_{ij} is the susceptance between two nodes and V_i is the voltage amplitude. We often use homogeneous coupling $K_{ij} = KA_{ij}$ with an unweighted adjacency matrix A_{ij} and then only need to fix the coupling constant K. Note that high voltage transmission lines use three phase currents, while we are using a simplified one-phase calculation that assumes all three phases to be symmetrical.

In its steady state or fixed point, all angles θ_i are constant and all angular velocities ω_i are zero. Contrary, if the system is undergoing a perturbation, e.g. the loss of a transmission line, the dynamical nature of the system becomes clear.

Let us consider the Turkish grid to rest at its stable state and suddenly a line is lost, e.g. due to an overload, a lightning strike or similar. Then, the flows F_{ij} on many lines will change. Especially, if the lost line was carrying a large current, changes will be substantial. While some flows stay almost constant or decrease, other lines will have to carry the flow of the lost line. Eventually, the system might settle down at a new fixed point but in the transition period from one steady state to the next one, overload criteria on the transmission lines might be exceeded, see Fig. 2.

We link the dynamical swing equation with considerations of cascading failures as follows. Throughout all simulations,
we track the relative flow \(F(t) \), given by

\[
F_{ij}(t) = \sin(\theta_j(t) - \theta_i(t)) \tag{4}
\]

as a function of time. Most transmission lines will be disconnected automatically if they exceed a security threshold \(\alpha \). We will be strict in our security measures and assume a line \((i, j)\) is disconnected as soon as \(F_{ij}(t) > \alpha \). Note that \(F_{ij} \) gives the relative fraction of maximal power flow along a line, which would be reached if \(\sin(\theta_j(t) - \theta_i(t)) = 1 \). The threshold \(\alpha = 0.5 \) means that a line is assumed to overload if it is transmitting 50% of this maximal load, regardless of its absolute physical capacity.

Our simulations work as follows: Without knowledge of the precise distribution of generation and consumption throughout the network, we assume randomly distributed generators and consumers so that the total generation matches the total consumption. We consider three different scenarios using the same grid topology as introduced in Section II.

First, we consider many small distributed generators and consumers with a total of 63 consumers with consumption \(P_{\text{con}} = 1.26 \times 10^9 \text{s}^{-2} \) and 64 generators with generation \(P_{\text{gen}} = 1.28 \times 10^9 \text{s}^{-2} \approx 1 \text{s}^{-2} \). We use homogeneous coupling of \(K = 4.5 \text{s}^{-2} \) on all lines.

Secondly, we model a more centralized generation pattern with fewer generators, namely 18 generators with \(P_{\text{gen}} = 1.09 \times 10^9 \text{s}^{-2} \approx 6 \text{s}^{-2} \). The remaining 109 nodes are consumers, still with \(P_{\text{con}} = 1.26 \times 10^9 \text{s}^{-2} \). This centralized power distribution requires a larger coupling \(K \) to reach its stable state. Hence, we use a homogeneous coupling of \(K = 12 \text{s}^{-2} \).

Finally, we emulate a more economical investment into the grid infrastructure. We initiate the grid at the same parameters as in the first case, i.e., homogeneous coupling and many small generators. Then, we change the coupling \(K_{ij} \) on all lines so that it is approximately twice as large as the relative flow \(F_{ij} \). Since a change in the network coupling \(K_{ij} \) changes the flows \(F_{ij} \), we iterate this procedure a couple of times until most lines carry about 50% of their maximum capacity. We call this case heterogeneous coupling since all lines might have a different coupling constant \(K_{ij} \). See also \cite{52} for details and Appendix: Methods for a link to the applied coupling matrix. Note that these heterogeneities are on the network topology level, i.e., different edges now have different properties. These are still synthetic transmission line values and each individual line in itself is considered physically homogeneous and we also still assume that the three phase voltage can be simplified as a single phase voltage.

Before we started the simulations, we prepared each network in its fixed point. At \(t = 1 \) second, we remove one trigger line \((a, b)\) from the network. Then, we update the flows \(F_{ij}(t) \) over time and cut other lines as soon as their flow exceeds the threshold \(F_{ij} > \alpha \). We consider all lines in the network as potential trigger lines. The threshold \(\alpha \) is chosen so that at the fixed point and time \(t = 0 \) seconds no line is overloaded, i.e., \(F_{ij}(0) < \alpha \) on all lines \((i, j)\). Cascade computations are done for up to 50 seconds of simulation time, during which all observed cascades terminated.

IV. CASCADING FAILURES IN THE TURKISH POWER GRID

We now apply the dynamical cascading framework to investigate the statistical properties of cascading failures in the Turkish grid topology. We start by asking: How many lines will fail if one random line were to trip? We answer this question in a structured way by considering all lines in the network as a potential trigger line \((a, b)\). Then, we record how many lines did fail at the end of each simulation and compare two different tolerances \(\alpha \). Aggregating the results for all trigger lines yields a histogram of the number of line failures, see Fig. 3.

For a given network, a higher tolerance \(\alpha \) reduces the expected damage on the network substantially. While for \(\alpha_1 = 0.52 \) the decentralized power topology can have cascading events with up to 45 failed lines, a higher tolerance of \(\alpha_2 = 0.7 \) restricts the maximum network damage to approximately 5 lines (Fig. 3 a). We observe a very similar behavior for centralized power and heterogeneous coupling (Fig. 3 b & c).

Interestingly, we do note that especially for homogeneous coupling many lines do not cause any cascade (Fig. 3 a & b), and the most likely case is to observe 1 line failure, i.e., only the trigger line \((a, b)\) failed. Contrary, heterogeneous coupling results in many large cascades, even for the higher tolerance of \(\alpha_2 = 0.7 \) many lines cause cascades of 75 failures or more (Fig. 3 c).

To understand the different cascade responses in more detail, we investigate the number of line failures as a function of time in Fig. 4. We compare two different trigger lines as highlighted in Fig. 4 a and record the aggregated number of line failures over time for the decentralized, homogeneous coupling (Fig. 4 b) and the heterogeneous coupling (Fig. 4 c). Again, we notice that the heterogeneous coupling results in many more line failures than the decentralized setting. After a brief period of a few seconds with no or few failures, the system experiences a large number of contingencies until either most lines already tripped or the grid eventually stabilizes so that no further lines are lost. While line 1 does not lead to any secondary line failures beyond the trigger line failure, line 2 causes large damage in the heterogeneous case. Fig. 4 c. The cascading events in Turkey in 2015 were likely set in motion by a failure of such a "line 2", i.e., a line critical for the operation of the stable state either because it is carrying a large load or because alternative rerouting pathways are already highly loaded. This also emphasizes that some lines are critical for the network’s operation while the failure of other lines can be more easily compensated.

Why do heterogeneously coupled grids display such large cascades? To answer this, we compare the flow distribution of the homogeneously and the heterogeneously coupled grids at their respective fixed points in Fig. 5. By construction, the heterogeneous coupling has many lines with a relative load of \(F \approx 0.5 \) and lines with very low absolute load are likely not essential to operate the grid. Contrary, the homogeneously coupled grid has many lines with low load because the coupling on all lines has to be increased so that the highest loaded line
is still within security margins. Thereby, the homogeneously coupled grid is more robust with respect to line failures as its lines carry a lower average flow of $\langle F^{\text{Homo. coupling}} \rangle \approx 0.15$, compared to $\langle F^{\text{Heter. coupling}} \rangle \approx 0.4$ of the heterogeneously coupled grid.

However, the high robustness of the homogeneously coupled grid is expensive. The total coupling necessary, i.e. $|K| = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{ij}$, is about 3 times as large in the homogeneous case than in the heterogeneous case. This intuitively makes sense as the total power transmitted $P^{\text{Trans.}}$ within the network should be about the same between the two cases. This transmitted power is given approximately as the product of the coupling and the relative flow $P^{\text{Trans.}} \approx |K| \langle F \rangle$. We conclude that robustness has to be paid by investments into the grid infrastructure.
the network to have a certain initial load $F_{ij}(0) = |\sin(\theta_j(0) - \theta_i(0))|$, where the angles $\theta_i(0)$ are fixed point solutions of the swing equation (1). The homogeneously coupled grid (a) has many lines with very small loads, while the heterogeneously coupled grid (b) has many highly-loaded lines.

V. DISCUSSION

Motivated by the fast time scale of the Turkish blackout in 2015, we have introduced a dynamical description of cascading failures. We have extracted an approximation of the Turkish power grid’s topology based on data from the transmission system operators. Furthermore, we discussed the swing equation as a means to model the short time scale of the power grid dynamics and presented a framework for cascading failures.

Crucially, both the network topology and the simulation framework are available for download and further usage, see the link in the Appendix: Methods. Thereby, we offer a tool for other scientists to investigate additional questions related to the Turkish grid or any instance of cascading failures in any power grid. The Turkish power grid is of special interest as it bridges Europe and Asia and a failure within the Turkish grid disconnects the Continental interconnection. Also, the technique presented here may be used to understand other major power blackouts by investigating the impact of network structure and dynamical characteristics of the power grids on the blackout dynamics.

For the Turkish case, we found that whether a specific line failure will cause no, a small or a large-scale cascade depends critically on the distribution of generation and demand as well as on the line properties throughout the network. We highlighted this by comparing centralized and decentralized generation schema as well as considering heterogeneous coupling. Interestingly, the distribution of generation and demand within a given grid is not static but changes over time, e.g. due to seasonal changes, night and day differences etc. Even cultural routines and geographical properties of the regions may affect the distribution of generation and demand of the power grid, e.g. based on cooking habits, air condition usage etc. Consequently, the resilience of the grid has to be monitored continuously, as it is done in modern power grids. Our contribution of the dynamical framework could be a starting point for dynamical properties to be integrated into the monitoring. Furthermore, weighting resilience with respect to cascading failures has to be balanced with economic considerations, as we have shown in Fig. 5. Investing in few strategically important lines may lead to larger cascades than a more spread out investment in transmission lines. Still, the former is considerably cheaper and more likely to be accepted by local communities. These economic and social considerations further add to previous insights that not every added transmission lines is necessarily beneficial for the grid’s stability.

Our dynamical framework is based on the swing equation with several simplifications (e.g. constant voltage amplitude, no ohmic losses or reactive power transmission). We believe these simplifications are justified in order to have access to the dynamical properties and to allow (semi-)analytical investigations, e.g. to predict critical lines or observe propagation patterns. Tools for more detailed analysis of power systems already exist but only allow specific case studies instead of a systematic investigation.

Many aspects of cascading failures are still not fully explored. The most pressing question would be how to mitigate cascading failures. If we were to anticipate the fast transient events, could we disconnect specific regions of the grid to enable a steady operation of the remaining grid? Can we identify topologies and generation patterns that are more robust than others? In addition, we could expand our cascading framework to explicitly allow generators connected to substations to disconnect, thereby changing the node properties dynamically without altering the network topology. Finally, real power grids are very heterogeneous systems and these heterogeneous properties heavily influence stability properties and could even reduce overload risks. An interesting and ideal future project would be to test our predictions by using real node and edge properties.
ACKNOWLEDGMENTS

B. Schäfer gratefully acknowledges support from the Federal Ministry of Education and Research (BMBF grant no. 03SF0472A-F and 03EK3055F) and the German Science Foundation (DFG) by a grant toward the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 840825. G. C. Yalcin was supported by the Scientific Research Projects Coordination Unit of Istanbul University with project number 32990. G. C. Yalcin also gratefully acknowledges to the Asian Network of Complexity Scientists (ANCS), Complexity Institute, Nanyang Technological University.

Appendix: Methods

The details of the simulations, including all network parameters, topology of the Turkish grid and simulation examples are available at https://osf.io/gd5xn/

1. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,” Physics Reports 424, 175–308 (2006).
2. V. Latora, V. Nicolas, and G. Russo, Complex Networks: Principles, Methods and Applications (Cambridge University Press, 2017).
3. D. Bundestag, “Ta (technikfolgenabschätzung)-project: Threat and vulnerability of modern societies on the example of a large-scale and long-term blackout: Report of the commission on education, research and technology assessment (ta-projekt): Gefährdung und verletzbarkeit moderner gesellschaften am Beispiel von grossräumigen und langdauernden ausfalls der Stromversorgung: Bericht des ausschusses für bildung, forschung und technikfolgenabschätzung,” Drucksache 17, 5672 (2011).
4. B. Obama, “Presidential policy directive 21: Critical infrastructure security and resilience,” Washington, DC. (2013).
5. J. W. Bialek, “Why has it happened again? comparison between the UCTE blackout in 2006 and the blackouts of 2003,” in Power Tech, 2007 IEEE Lausanne (IEEE, 2007) pp. 51–56.
6. P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control, Vol. 7 (McGraw-hill New York, 1994).
7. A. Osiadacz, Simulation and analysis of gas networks (Gulf Publishing Company, Houston, TX, 1987).
8. J. Machowski, J. Bialek, and J. Bumby, Power system dynamics, stability and control (John Wiley & Sons, New York, 2008).
9. P. Crucitti, V. Latora, and M. Marchiori, “A topological analysis of the italian electric power grid,” Physica A: Statistical mechanics and its applications 338, 92–97 (2004).
10. P. Crucitti, V. Latora, and M. Marchiori, “Model for cascading failures in complex networks,” Physical Review E 69, 045104 (2004).
11. R. Kinney, P. Crucitti, R. Albert, and V. Latora, “Modeling cascading failures in the north american power grid,” The European Physical Journal B-Condensed Matter and Complex Systems 46, 101–107 (2005).
12. C. Ji, Y. Wei, H. Mei, J. Calzada, M. Carey, S. Church, T. Hayes, B. Nugent, G. Stella, M. Wallace, et al., “Large-scale data analysis of power grid resilience across multiple us service regions,” Nature Energy 1, 16052 (2016).
13. I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization,” Chaos: An Interdisciplinary Journal of Nonlinear Science 17, 026103 (2007).
14. Wikipedia, “List of major power outages,” Wikipedia, https://en.wikipedia.org/wiki/List_of_major_power_outages (2019).
15. Union for the Co-ordination of Transmission of Electricity (UCTE), “Final Report: System disturbance on 4 November 2006,” (2007).
16. P. Veloza and F. Santamaria, “Analysis of major blackouts from 2003 to 2015: Classification of incidents and review of main causes,” The Electricity Journal 29, 42–49 (2016).
17. Y. Shao, Y. Tang, J. Yi, and A. Wang, “Analysis and lessons of blackout in Turkey power grid on March 31, 2015,” Automation of Electric Power Systems 40, 9–14 (2016).
18. Explained: How 76 million people were hit by Turkey’s worst blackout since 1999,” Hurriyet Daily News http://www.hurriyetedailynews.com/explained-how-76-million-people-were-hit-by-turkeys-worst-blackout-since-1999-20442 (2015).
19. “Massive power blackouts hit Turkish cities,” Hurriyet Daily News http://www.hurriyetedailynews.com/massive-power-blackouts-hit-turkish-cities-80399 (2015).
20. European Network of Transmission System Operators for Electricity (ENTSO-E), “Report on Blackout in Turkey on 31st March 2015,” (2015).
21. M. Rohden, A. Sorge, M. Timme, and D. Witthaut, “Self-organized synchronization in decentralized power grids,” Physical Review Letters 109, 064101 (2012).
22. S. Lozano, L. Buzna, and A. Díaz-Guilera, “Role of network topology in the synchronization of power systems,” The European Physical Journal B 85, 1–8 (2012).
23. M. Rohden, A. Sorge, D. Witthaut, and M. Timme, “Impact of network topology on synchrony of oscillatory power grids,” Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 013123 (2014).
24. D. Manik, D. Witthaut, B. Schäfer, M. Mathiae, A. Sorge, M. Rohden, and E. Katifori, “Supply networks: Instabilities without overload,” The European Physical Journal Special Topics 223, 2527 (2014).
25. P. J. Me嫩ch, J. Heitzig, J. Kurths, and H. J. Schellnhuber, “How dead ends undermine power grid stability,” Nature Communications 5, 3969 (2014).
26. K. Schmietendorf, J. Peinke, R. Friedrich, and O. Kamps, “Self-organized synchronization and voltage stability in networks of synchronous machines,” The European Physical Journal Special Topics 223, 2577–2592 (2014).
27. T. Nishikawa and A. E. Motter, “Comparative analysis of existing models for power-grid synchronization,” New Journal of Physics 17, 015012 (2015).
28. B. Schäfer, C. Beck, K. Alhara, D. Witthaut, and M. Timme, “Non-gaussian power grid frequency fluctuations characterized by lévy-stable laws and superstatistics,” Nature Energy 3, 119–126 (2018).
29. I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, “Transient dynamics increasing network vulnerability to cascading failures,” Physical Review Letters 100, 218701 (2008).
30. P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Do topological models provide good information about electricity infrastructure vulnerability? Chaos: An Interdisciplinary Journal of Nonlinear Science 20, 033122 (2010).
31. V. B. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic cascade of failures in interdependent networks,” Nature 464, 1025–1028 (2010).
32. C. D. Brummitt, P. D. H. Hines, I. Dobson, C. Moore, and R. M. D Souza, “Transdisciplinary electric power grid science,” Proceedings of the National Academy of Sciences 110, 12159 (2013).
33. Y. Koo, M. Warner, P. Van Mieghem, R. E. Kooij, and F. M. Brazier, “A topological investigation of phase transitions of cascading failures in power grids,” Physica A: Statistical Mechanics and its Applications 415, 273–284 (2014).
34. S. Pahwa, C. Scoglio, and A. Scala, “Abruptness of cascade failures in power grids,” Scientific Reports 4, 3694 (2014).
35. D. Witthaut and M. Timme, “Nonlocal effects and countermeasures in cascading failures,” Physical Review E 92, 032809 (2015).
36. A. Pietzsch, P. Schultz, J. Heitzig, and J. Kurths, “Local vs. global redundancy—trade-offs between resilience against cascading failures and frequency stability,” The European Physical Journal Special Topics 225, 551–568 (2016).
37M. Rohden, D. Jung, S. Tamrakar, and S. Kettemann, “Cascading failures in AC electricity grids,” Physical Review E 94, 032209 (2016).
38D. Manik, M. Rohden, H. Ronellenfitsch, X. Zhang, S. Hallerberg, D. Witthaut, and M. Timme, “Network susceptibilities: Theory and applications,” Physical Review E 95, 012319 (2017).
39H. Ronellenfitsch, D. Manik, J. Horsch, T. Brown, and D. Witthaut, “Dual theory of transmission line outages,” IEEE Transactions on Power Systems 32, 4060–4068 (2017).
40H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman, and P. Van Mieghem, “Comparing the effects of failures in power grids under the ac and dc power flow models,” IEEE Transactions on Network Science and Engineering (2017).
41H. Guo, S. S. Yu, H. H. Iu, T. Fernando, and C. Zheng, “A complex network theory analytical approach to power system cascading failure—from a cyber-physical perspective,” Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 053111 (2019).
42J. Song, E. Cotilla-Sanchez, G. Ghanavati, and P. D. Hines, “Dynamic modeling of cascading failure in power systems,” IEEE Transactions on Power Systems 31, 2085–2095 (2015).
43Y. Yang and A. E. Motter, “Cascading failures as continuous phase-space transitions,” Physical Review Letters 119, 248302 (2017).
44B. Schäfer, D. Witthaut, M. Timme, and V. Latora, “Dynamically induced cascading failures in power grids,” Nature communications 9, 1975 (2018).
45European Network of Transmission System Operators for Electricity (ENTSO-E), "Entso-e transmission system map," ().
46Y. Yang, T. Nishikawa, and A. E. Motter, “Small vulnerable sets determine large network cascades in power grids,” Science 358, eaan3184 (2017).
47M. Newman, Networks: An Introduction (Oxford University Press Inc., New York, NY, USA, 2010).
48G. Filatrella, A. H. Nielsen, and N. F. Pedersen, “Analysis of a power grid using a kuramoto-like model,” The European Physical Journal B 61, 485 (2008).
49D. Witthaut, M. Rohden, X. Zhang, S. Hallerberg, and M. Timme, “Critical links and nonlocal rerouting in complex supply networks,” Physical Review Letters 116, 138701 (2016).
50A. R. Ciupuliga and E. Cuppen, “The role of dialogue in fostering acceptance of transmission lines: the case of a france–spain interconnection project,” Energy Policy 60, 224–233 (2013).
51“Electric grid test case repository,” Texas A&M University https://electricgrids.engr.tamu.edu (2019).
52A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid structural characteristics as validation criteria for synthetic networks,” IEEE Transactions on Power Systems 32, 3258–3265 (2017).