Learning the ABCs of ATP release

DOI 10.1074/jbc.H120.013321

Andrew E. Libby‡, Bryce Jones§, and Moshe Levi†,1

From the ‡Department of Biochemistry and Molecular and Cellular Biology and the §Pharmacology and Physiology, Georgetown University, Washington, D. C. 20007

Edited by Roger J. Colbran

ATP is well-known as the energy currency of the cell, but it can also be exported to act as a signaling molecule. Extracellular ATP can bind to cell surface purinergic receptors, including the ion channel P2X and the G protein–coupled receptor P2Y, affecting processes such as inflammation, tumor-host interactions, apoptosis, vascular barrier function, and neuronal function (1). Despite the diverse and important roles for extracellular ATP signaling that have been described over the last 60 years, the exact mechanisms by which ATP is exported have remained elusive. Dunn et al. now take a major step forward in this field, reporting an unexpected link between cellular cholesterol levels and ATP release made possible by a gene collection 11 years in the making (2).

How is it possible that our understanding of ATP release lags so far behind our knowledge of its functional mechanisms? First, the complexity of these systems has hindered detailed studies. A key step forward in this regard was the discovery that cultured cells can release ATP in response to cellular swelling under hypotonic conditions, thus providing an ideal in vitro system to study ATP export (3). Thanks in part to this approach, it is currently thought that release of ATP may involve both ATP pores and fusion of ATP-containing vesicles at the plasma membrane.

In particular, previous loss-of-function studies identified leucine-rich repeat–containing protein 8A (LRRC8) as involved in the export of ATP induced by hypotonic conditions (4). LRRC8 is a functionally critical component of VRAC,2 which plays an important role in maintaining cellular volume under hypotonic extracellular conditions by permitting Cl− and organic solute efflux, providing a viable explanation for ATP export (5). But how is VRAC-mediated ATP-release triggered? The loss-of-function approach has not provided more answers here, perhaps due to functional redundancy of the biomolecules involved.

Dunn et al. tackle this problem by taking an opposite approach: using a gain of function screen of the most extensive ORF library to date in combination with efficient in vitro assays. Their library contained more than 17,000 ORFs, or 90% of nonredundant protein-encoding genes from humans, enabling nearly exhaustive screening for mediators of ATP export. Importantly, the authors also found a way to simplify readouts compared with monitoring exported ATP levels with traditional luciferin-luciferase bioluminescence assays. Because P2Y receptors indirectly activate calcium release from the endoplasmic reticulum (6), the authors were able to read out VRAC-dependent increases in extracellular ATP using the FLIPR Tetra technology to detect calcium levels. After screening, the authors identified cells overexpressing two transcript variants of ABC subfamily G member 1 (ABCG1) as having higher calcium responses, leading to a proposal that ABCG1 mediates ATP export from cultured cells in a VRAC-dependent manner (Fig. 1). The authors validated this proposal with extensive controls, such as knocking down LRRC8A in ABCG1-overexpressing cells, adding an extracellular calcium chelator, and testing other stimulants and inhibitors. They also showed that the ATPase activity of ABCG1 is required for this effect by overexpressing a catalytically defective mutant. The existence of the two variants explains why ABCG1 would not have been found in a loss-of-function screen, highlighting the complementarity of this approach.

ABCG1’s identification in ATP release is unexpected because the transporter is much better known as a cholesterol exporter, decreasing cellular cholesterol levels (7). Surprisingly, when the authors retested 39 other ABC transporters in their assay, they found that only cholesterol-exporting members of the ABC family (ABCG1, ABCG4, and ABCA1) could evoke a hypotonicity-induced calcium release in overexpressing cells, leading the authors to speculate that hypotonic-induced ATP export could be achieved simply by modulating cellular cholesterol levels directly. Accordingly, the authors nicely demonstrated that ATP export and intracellular calcium release could be achieved by using methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol levels. This effect was attenuated using VRAC inhibitors, indicating that the cholesterol-modulated hypotonicity-evoked effects were dependent on the VRAC

This work is supported by National Institutes of Health Grants AG049493 and DK 116567 (to M. L.); American Heart Association Grant 19POST34430001 (to A. L.); and National Institutes of Health Grant T1TR001431 (to B. J.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

1 To whom correspondence should be addressed. E-mail: moshe.levi@georgetown.edu.

2 The abbreviations used are: VRAC, volume-regulated anion channel; ABC, ATP-binding cassette; MβCD, methyl-β-cyclodextrin.

This is an Open Access article under the CC BY license.

5204 J. Biol. Chem. (2020) 295(16) 5204–5205

© 2020 Libby et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
complex. Finally, the authors demonstrated their findings in a primary neuron culture system. Using cultured cerebellar granular neurons from mice, the authors show that depletion of cholesterol using MβCD mediates ATP release in response to hypotonic conditions in a VRAC-dependent manner, and they also demonstrate an attenuation of hypotonic ATP release by supplementing the cells with excess cholesterol.

The study by Dunn et al. raises a variety of interesting questions. For example, the authors show that ATP release in response to hypotonicity can be achieved simply by modulating ABCG1 and/or cholesterol levels, but what is the direct mechanism by which a reduction in cholesterol mechanistically achieves ATP release? The authors postulate that cholesterol may block the LRRC8A complex to prohibit ATP release under hypotonic conditions. When cholesterol is pharmacologically sequestered, hypotonicity induces VRAC-dependent ATP release. This figure was created with BioRender.

By identifying ABCG1 and its substrate cholesterol as responsible for enhancing VRAC-mediated ATP release, Dunn et al. have provided building blocks for further examination as fundamental as our own ABCs. We hope the results of this study will bring together talented scientists from both the lipid and ion transporter fields to elucidate complex functionality of systems that would otherwise go unstudied.

References

1. Khakh, B. S., and North, R. A. (2012) Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76, 51–69 CrossRef Medline
2. Dunn, P. J., Salm, E. J., and Tomita, S. (2020) ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity. J. Biol. Chem. 295, 5192–5203 CrossRef Medline
3. Hoffmann, E. K., Lambert, I. H., and Pedersen, S. F. (2009) Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 CrossRef Medline
4. Qiu, Z., Dubin, A. E., Mathur, J., Tu, B., Reddy, K., Miraglia, L. J., Reinhardt, J., Orth, A. P., and Patapoutian, A. (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157, 447–458 CrossRef Medline
5. Voss, F. K., Ullrich, F., Münch, J., Lazarow, K., Lutter, D., Mah, N., Andrade-Navarro, M. A., von Kries, I. P., Stauber, T., and Lentsch, T. J. (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638 CrossRef Medline
6. Sanderson, M. J., Charles, A. C., Boitano, S., and Dirksen, E. R. (1994) Mechanisms and function of intercellular calcium signaling. Mol. Cell. Endocrinol. 98, 173–187 CrossRef Medline
7. Tarling, E. I., and Edwards, P. A. (2012) Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim. Biophys. Acta 1821, 386–395 CrossRef Medline
8. Tozzi, M., Hansen, J. B., and Novak, I. (2020) Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol. (Oxf.) 228, e13360 CrossRef Medline

Editors’ Pick Highlight: The ABCs of ATP release