Emerging trends and hotspot in gut–lung axis research from 2011 to 2021: a bibliometrics analysis

Zhendong Wang1†, Chen Bai1†, Tingyao Hu2, Changyong Luo3, He Yu1, Xueyan Ma1, Tiegang Liu1* and Xiaohong Gu1*

Abstract

Background: Increasing attention has been paid to the potential relationship between gut and lung. The bacterial dysbiosis in respiratory tract and intestinal tract is related to inflammatory response and the progress of lung diseases, and the pulmonary diseases could be improved by regulating the intestinal microbiome. This study aims to generate the knowledge map to identify major the research hotspots and frontier areas in the field of gut–lung axis.

Materials and methods: Publications related to the gut–lung axis from 2011 to 2021 were identified from the Web of Science Core Collection. CiteSpace 5.7.R2 software was used to analyze the publication years, journals, countries, institutions, and authors. Reference co-citation network has been plotted, and the keywords were used to analyze the research hotspots and trends.

Results: A total of 3315 publications were retrieved and the number of publications per year increased over time. Our results showed that Plos One (91 articles) was the most active journal and The United States (1035 articles) published the most articles. We also observed the leading institution was the University of Michigan (48 articles) and Huffnagle Gary B, Dickson Robert P and Hansbro Philip M, who have made outstanding contributions in this field.

Conclusion: The Inflammation, Infection and Disease were the hotspots, and the regulation of intestinal flora to improve the efficacy of immunotherapy in lung cancer was the research frontier. The research has implications for researchers engaged in gut–lung axis and its associated fields.

Keywords: Bibliometric, Knowledge map, Gut–lung axis, Inflammation
the occurrence and development of diseases [2–4]. Concepts such as “gut–brain axis”, “gut–liver axis”, “gut–lung axis” were developed to illustrate the relationship between organs. The gut–lung axis is bidirectional and is the crosstalk between the respiratory and digestive system [5]. According to the theories of traditional Chinese medicine, lung and intestines are in a closely related organ system [6]. The intestines and lung are homologous structurally from a histological embryological point of view [7]. Studies have found the destruction of intestinal integrity in patients with chronic obstructive pulmonary disease (COPD) [8]. Patients with lung cancer have gastrointestinal dysmotility as well [9]. Studies have shown that respiratory symptoms and pulmonary function changed in patients with intestinal bowel disease (IBD) and intestinal bowel syndrome (IBS) even without acute or chronic respiratory diseases [10, 11]. Gastroesophageal reflux disease would cause respiratory symptoms and aggravate the existing respiratory diseases [12]. Researchers have also found that lipopolysaccharide (LPS) atomization and high-calorie diet synergistically promoted the pulmonary inflammatory process in rat, that is relevant to the change in gut microbiota [13]. The above studies have confirmed the close relationship between intestines and lung, especially in the pathological states involving inflammation.

Bibliometrics is used to evaluate the information of literature, and the database Web of Science Core Collection (WoSCC) is often used in the bibliometric analysis. CiteSpace, a software developed by Chaomei Chen [14], has become a key tool for bibliometric analysis in recent years. It is applied to generate visual knowledge map to explore the knowledge domain [15]. Based on WoSCC, Xiaoquan Huang performed a global bibliometric analysis from 1998 to 2018 and evaluated the emerging trends in the field of gastrointestinal microbiology, whose study has found that the new therapeutic targets in intestinal microflora would be the focus of future research [16]. However, there is no bibliometric analysis in the field of the gut–lung axis.

To analyze the research situation and trends concerning the gut–lung axis within the past 10 years, CiteSpace 5.7.R2 was applied in this study, which aims to identify the key authors, institutions, countries, important journals, research focuses and emerging trends in this field.

Results
Distribution of articles by publication years
From 2011 to 2021, 3,315 articles were published. There was an increasing trend for a quantity of research publications on gut–lung axis, from 214 in 2011 to 553 in 2020 (Fig. 1), which indicates an increasing interest in this field in recent years.

Funding source
The top 10 major funding sources are shown in Table 1. United States Department of Health and Human Services, National Institutes of Health, National Natural Science Foundation of China mainly funded this field. The United States and China contributed the most fundings in this field.
Journal analysis

The top 10 journals are listed by the number of publication in Table 2, which have published 361 articles in total and accounts for about 11% of the total number of publications. *Plos One* has published 91 articles, followed by *Frontiers in Immunology*, 73 articles. The impact factor (IF) of the 10 journals ranged from 2.192 to 7.561. The top 10 cited journals are listed in Table 3. *Plos One* was the most active journal (1586 citations), followed by *Proceedings of the National Academy of Sciences of the United States of America* (1,409 citations). In addition, articles in top journals such as *New England Journal of Medicine*, *Lancet*, *Nature* and *Science* were widely cited in the field of the gut–lung axis.

A dual-map overlay graph of journals is shown in Fig. 2 to clarify the relationship between journals [17]. There are four main citation paths, two orange and two green. The orange paths indicate that the articles published in Molecular/Biology/Immunology journals often cite what was published in Molecular/Biology/Genetic and Health/
Table 2 Top 10 most publication journals

Ranking	Journal	Frequency	IF
1	Plos One	91	3.24
2	Frontiers in Immunology	73	7.561
3	Scientific Reports	45	4.379
4	Frontiers in Microbiology	36	5.640
5	International Journal of Molecular Sciences	25	5.923
6	Oncotarget	20	5.168*
7	Mucosal Immunology	19	7.313
8	World Journal of Gastroenterology	18	5.742
9	Journal of Immunology	17	5.422
10	Journal of Surgical Research	17	2.192

IF, impact factors in 2020. *, the impact factors of Oncotarget in 2016.

Table 3 Top 10 most cited journals

Ranking	Journals	Citation times	IF
1	Plos One	1586	3.24
2	Proceedings of the National Academy of Sciences of the United States of America	1409	11.205
3	Nature	1364	49.962
4	Science	1184	47.728
5	New England Journal of Medicine	1044	91.245
6	Cell	890	41.582
7	American Journal of Respiratory and Critical Care Medicine	878	21.405
8	Nature Medicine	848	53.44
9	Journal of Immunology	833	5.422
10	Lancet	810	79.321

IF, impact factors in 2020

Fig. 2 The dual-map overlay of gut–lung axis research. The dual-map overlay of journals represents the subject distribution of journals, with the left side of the graph representing citing journals and the right cited journals. The colored lines represent the citation relationship between articles in citing and in cited journals.

Nursing/Medicine. The green paths indicate the articles published in Medicine/Medical/Clinical cite articles published in Molecular/Biology/Genetics and Health/Nursing/Medicine. The articles were published in the journals of medicine, health, molecule,
gene, biology, immunity, nursing and other fields. All of the analysis above would provide a reference for the researchers in the field of the gut–lung axis.

Country analysis
The top 10 countries are listed in Table 4. The United States published the most articles (1035 articles), which accounted for nearly 1/3 of the total amount and surpassed China (554 articles) and Germany (255 articles). The country co-occurrence map is shown in Fig. 3A with 59 nodes and 65 links. It could be seen from Fig. 3B and C that the main cooperation countries of the United States were Thailand and Uganda in this field with the link strength of 0.12. The main cooperation country of China was Pakistan with a link strength of 0.2. The United States and China were the main research forces, however, their cooperation was not close in this field.

Institution analysis
The institution co-occurrence map is shown in Fig. 4 with 357 nodes and 443 links. The top 10 institutions in the number of publications in this field are listed in Table 5. The
University of Michigan was the most productive one (48 articles), followed by the University of Washington (32 articles) and Colorado State University (32 articles). Most are located in the United States among the top 10 institutions, and the support of American institutions has been an important factor for the dominance of the United States in this field.

Author analysis
The author co-occurrence map is shown in Fig. 5, with 430 nodes and 658 links. The top 5 most productive authors and their affiliated institutions are shown in Table 6. The top 3 authors, Huffnagle Gary B, Dickson Robert P and Hansbro Philip M, have formed the largest cooperative network among many small scattered research groups. Dickson Robert P and Huffnagle Gary B were both from the University of Michigan Medical School.

Table 5 Top 10 most publication institutions

Ranking	Institution	Country/region	Frequency
1	The University of Michigan	United States	48
2	University of Washington	United States	32
3	Colorado State University	United States	32
4	Shanghai Jiao Tong University	China	30
5	Harvard University	United States	30
6	Johns Hopkins University	United States	30
7	Mayo Clinic	United States	30
8	Harvard Medical School	United States	29
9	Sun Yat-Sen University	China	29
10	University of Pittsburgh	United States	29
Keyword analysis

The top 40 keywords with the most occurrences are shown in Table 7. It is shown that the most frequent keywords were “gut microbiota” (362), “inflammation” (280), “disease” (239) and “infection” (238). The keyword co-occurrence map is shown in Fig. 6 with 197 nodes and 283 lines. It is shown in Fig. 6 that “gut microbiota” often occurs together with “bacteria”, “supplement” and “pathology”. “Inflammation” often occurs together with “intestinal barrier”, “lung microbiome”, “tissue”, “epithelial cell” and “lipopolysaccharide”. “Infection” often occurs together with “diversity”, “Escherichia Coli” and “epidemiology”. “Disease” often occurs together with “protection”, “metabolite”, “expression”, “allergic asthma” and “exposure”.

The top 25 keywords with burst impact are shown in Fig. 7. “Gene”, “protein”, “gastrointestinal tract”, “carcinoma”, “in vivo” and “gastropoda” were the keywords that had the earliest burst impact. “Epidemiology”, “children”, “growth”, “gastroesophageal reference”, “rat”, “inflammatory bowel disease” and “Crohn’s disease” had burst impact during 2014–2016. From 2017 to 2019, the keywords with burst impact were “chain fast acid”, “dental cell”, “regulatory T cell”, “internal lymphoid cell”, “immunity”, “host defense”, “immunity” and “dysbiosis.” The bursts with the most recent onset were “immunity”, “dysbiosis”, “health”, “antibiotics”, “gut microbiome” and

Table 6 Top 5 most publication authors

Ranking	Frequency	Author	Country	Institution
1	13	Huffnagle Gary B	United States	University of Michigan Medical School
2	12	Dickson Robert P	United States	University of Michigan Medical School
3	11	Hansbro Philip M	Australia	The University of Newcastle
4	11	Marsland Benjamin J	Australia	Central Clinical School, Monash University
5	8	Shore Stephanie A	United States	Harvard University

Fig. 5 Co-occurrence analysis of authors. The size of the node represents the number of publications, the link between nodes represents the cooperation between authors and the thickness of the link represents the degree of cooperation.

Fig. 6 Keyword co-occurrence map.
“microbiome”, which indicated the forefront in the field of the gut–lung axis. The keyword with the highest strength was “health”, with a score of 14.07, followed by “antibiotics” and “immunotherapy”, with the score of 12.36 and 12.35, respectively.

References analysis
The knowledge map of the co-occurrence references is shown in Fig. 8 with 313 nodes and 632 links. The nine largest clusters were presented by cluster analysis (Fig. 9), including #0

Table 7 Top 40 keywords with the highest frequency of occurrence

Ranking	Frequency	Year of first occurrence	Keyword
1	362	2013	Gut microbiota
2	280	2011	Inflammation
3	239	2011	Disease
4	238	2011	Infection
5	226	2011	Expression
6	201	2013	Microbiota
7	195	2011	Lung
8	190	2014	Microbiome
9	179	2011	Lung cancer
10	167	2011	Cancer
11	154	2011	Cell
12	144	2011	Asthma
13	115	2015	Intestinal microbiota
14	106	2013	Bacteria
15	106	2011	Mice
16	105	2011	In vitro
17	100	2013	Cystic fibrosis
18	100	2012	Activation
19	99	2013	T cell
20	88	2011	Mechanism
21	86	2011	Colorectal cancer
22	85	2013	Risk
23	84	2011	Identification
24	83	2012	Gut
25	78	2011	Immune response
26	74	2015	Immunity
27	73	2011	Pathogenesis
28	73	2011	Diagnosis
29	72	2013	Diversity
30	70	2011	Model
31	67	2013	Probiotics
32	65	2011	Oxidative stress
33	62	2013	Cell lung cancer
34	62	2014	Children
35	58	2016	Health
36	58	2018	Immunotherapy
37	56	2015	Biomarker
38	55	2011	Therapy
39	54	2013	Metabolism
40	53	2011	Obstructive Pulmonary disease
obstructive lung disease, #1 cov-2 infection, #2 cov-2 infection, #3 commensal bacteria, #4 airway microbiome, #5 influencing allergy, #6 lung diseases, #9 toll-like receptor, #14 human microbiome. It is shown in Fig. 10 that cov-2 infection has attracted much attention in recent years.

The top 10 cited references in this field are listed in Tables 8 and 9, which could be often considered fundamental in gut–lung axis research. The articles published by Trompette A in *Nature Medicine* had the highest number of citations (191), and the articles published by Hilty M had the highest centrality of score of 0.35. High centrality is often regarded as turning points or key points in a field [18].

Twenty-five references with burst impact are shown in Fig. 11. Eleven articles have been highly cited in recent 4 years, and 5 of them were published in the journal *Science* [26, 36–39], which were about the significance of microbiota in tumor immunotherapy. Researchers have found that programmed cell death protein-1 (PD-1) and programmed cell death protein ligand-1 (PD-L1) have significantly improved the survival rate of non-small cell lung cancer (NSCLC) [40], while antibiotic therapy led to an imbalance of intestinal flora, which affected the anti-tumor efficacy of immune checkpoint inhibitors (ICI). However the therapeutic effect of ICI was restored after manipulating the microbiota [26, 37, 38]. The studies above have provided a reference for clinicians in the application of ICI. The intervention of intestinal flora in improving the efficacy of lung cancer immunotherapy was a new frontier hotspot, which was consistent with the results of keyword burst detection.

Discussion

Increasing attention has been paid to the field of gut–lung axis in recent years. Multiple intestinal diseases would result in respiratory symptoms and changes in the respiratory flora. Intestinal microbiota disorders are also present in patients with respiratory diseases. The antibiotic application may lead to disturbances in intestinal flora.

This bibliometric study aims to analyze the current status and trend of articles in the field of gut–lung axis in recent 10 years by using CiteSpace 5.7.R2. The results
have demonstrated the important authors, core teams, active journals, research focuses and research development trends in this field.

The number of publications in this field has been increasing, which indicates a broad research prospect in the field of the gut–lung axis. The top 10 journals accounted for 1/9 of the total studies, suggesting that the articles were widely distributed among

Keywords	Year	Strength	Begin	End	2011 - 2021
gene	2011	10.23	2011	2014	
protein	2011	9.99	2011	2015	
gastrointestinal tract	2011	9	2011	2015	
carcinoma	2011	8.85	2011	2013	
in vivo	2011	8.4	2011	2013	
gastropoda	2011	10.26	2012	2014	
epidemiology	2011	7.91	2013	2015	
children	2011	11.24	2014	2017	
growth	2011	10.81	2014	2016	
gastroesophageal reflux	2011	10.21	2014	2017	
rat	2011	7.93	2014	2016	
inflammatory bowel disease	2011	9.76	2015	2017	
crohns disease	2011	8.38	2016	2017	
chain fatty acid	2011	12.02	2017	2019	
dendritic cell	2011	10.09	2017	2018	
regulatory t cell	2011	9.32	2017	2019	
innate lymphoid cell	2011	9.21	2017	2018	
immunotherapy	2011	12.35	2018	2021	
host defense	2011	10.95	2018	2019	
immunity	2011	10.37	2018	2019	
dysbiosis	2011	10.2	2018	2021	
health	2011	14.07	2019	2021	
antibiotics	2011	12.36	2019	2021	
gut microbiome	2011	9.8	2019	2021	
microbiome	2011	8.19	2019	2021	

Fig. 7 Top 25 keywords in burst impact. The blue and white squares in each row on the right side of the figure correspond to the year of hotspot. Red squares represent the year of hotspot, and blue squares represent non-hotspot year. The recent successive red squares represent the research hotspots in recent years.
Fig. 8 Co-occurrence analysis of references. The node size represents the citation frequency of the cited references, and the node with purple circle represents the key references. The larger purple circle indicates that the reference is more important.

Fig. 9 The cluster map of co-cited references. The cited references are clustered, each clustered box represents a category.
various journals. The greatest number of articles on the gut–lung axis were published on *Plos One* and were cited the most frequently. As the most active journal in this field, *Plos One* has a certain influence in the field of the gut–lung axis.

The analysis of the collaboration network map has indicated that the United States was the leading research force in the field of the gut–lung axis. Besides the high participation of American Institutions, the large amount of the United States' financial support for the field may be another important factor for the United States to be dominant in this field. Although the United States and China have produced the largest number of research articles, their cooperation is not close and strengthening the cooperation between which in this field may contribute to more ground-breaking results. Among the three key authors in this field, both Dickson Robert P and Hufnagle Gary B came from the University of Michigan Medical School who focused on the field of respiratory and critical medicine. Researchers have found that the lung microbiome is rich in gut-associated bacteria in patients with sepsis and acute respiratory distress syndrome (ARDS) [41]. The key characteristics of the lung microbiome (bacterial load and enrichment of gut-associated bacteria) were correlated with ARDS, which could predict the prognosis of critical patients [42, 43]. The hyperoxia would cause changes in the microbiota of the lung and intestines and would lead to lung injury [44]. Hansbro Philip M has studied widely and achieved some research results in the effect of diet on mucosal immunity [45], short-chain fatty acids (SCFAs), and the role of inflammasomes in regulating intestinal and pulmonary inflammation [46, 47], and 146 bacterial species were found to differ between the patients with COPD and normal individuals by examining the fecal microbiome [48].

Keyword analysis has identified 3 research focuses in the field of the gut–lung axis: *Inflammation, Infection* and *Disease*. (1) *Inflammation*: The gut flora and its metabolites are critical in maintaining normal mucosal immune function [49]. The mucosal barrier is
rich in Group 2 initial lymphocytes that can migrate from the gut to the lung to participate in the inflammatory process [50, 51]. Respiratory immune response belongs to the category of the mucosal immune response. The commensal microflora would contribute to activating human immune cells after bacteriae, viruses or other pathogenic microorganisms infection [22, 25, 52, 53]. In addition, SCFAs, the metabolites of the intestinal flora, plays a significant role in preventing airway allergic reaction and inhibiting airway inflammation [19, 54, 55]. (2) Infection: When there is pulmonary bacterial infection, the intestinal

Authors	Frequency	Year of publication	Journal	Title	Focus
Trompette A [19]	191	2014	Nature Medicine	Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis	Fiber diet, bacterial metabolites, allergic airway disease
Budden KF [20]	122	2017	Nature Reviews Microbiology	Emerging pathogenic links between microbiota and the gut–lung axis	Gut–lung axis
Hilty M [21]	101	2010	Plos One	Disordered microbial communities in asthmatic airways	Dysbacteriosis of respiratory tract, asthmatic airways
Tim J Schuijt [22]	94	2016	Gut	The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia	Bacterial pneumonia
Erb-Downward JR [23]	88	2011	Plos One	Analysis of the lung microbiome in the "healthy" smoker and in COPD	Pulmonary microorganism, chronic obstructive pulmonary disease
Emily S Charlson [24]	86	2011	American Journal of Respiratory and Critical Care Medicine	Topographical continuity of bacterial populations in the healthy human respiratory tract	Distribution of respiratory tract microbiome
Takeshi Ichinohe [25]	86	2011	Proceedings of the national academy of sciences of the united states of America	Microbiota regulates immune defense against respiratory tract influenza A virus infection	Immunity after influenza virus infection
Bertrand Routy [26]	84	2018	Science	Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors	Intestinal flora, immune checkpoint inhibitors
Human Microbiome Project Consortium [27]	82	2012	Nature	Structure, function and diversity of the healthy human microbiome	Structure, function and diversity of microbiome
Benjamin J Marsland [28]	77	2015	Annals of the American Thoracic Society	The Gut–Lung Axis in Respiratory Disease	Intestinal flora, Respiratory diseases
Table 9: Top 10 references ranked by centrality

Author	Frequency	Year of publication	Journal Title	Title	Focus
Hilty M [21]	0.35	2010	Plos One	Disordered microbial communities in asthmatic airways	Dysbacteriosis of respiratory tract, asthmatic airways
Mairi C Noverr [29]	0.34	2005	Infection and Immunity	Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13	Antibiotic therapy, allergic airway, interleukin-13
Alison Morris [30]	0.32	2013	American Journal of Respiratory and Critical Care Medicine	Comparison of the respiratory microbiome in healthy nonsmokers and smokers	Differences of respiratory tract microbiome
Paul Forsythe [31]	0.32	2007	American Journal of Respiratory and Critical Care Medicine	Oral Treatment with Live Lactobacillus reuteri Inhibits the Allergic Airway Response in Mice	Probiotics, allergic airway
Emily S Charlson [24]	0.22	2011	American Journal of Respiratory and Critical Care Medicine	Topographical continuity of bacterial populations in the healthy human respiratory tract	Distribution of microorganisms in lung
Torsten Olszak [32]	0.21	2012	Science	Microbial exposure during early life has persistent effects on natural killer T cell function	Microbial exposure during early life, natural killer T cells
Christine M Bassis [33]	0.18	2015	mBio	Analysis of the upper respiratory tract microbiota as the source of the lung and gastric microbiotas in healthy individuals	Source of respiratory tract microorganism
Trompette A [19]	0.17	2014	Nature Medicine	Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis	Fiber diet, bacterial metabolites, allergic airway
Jian Wang [34]	0.16	2014	Journal of Experimental Medicine	Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation	Influenza virus infection, Th17, intestinal immune injury
Rebecca L Brown [35]	0.15	2017	Rebecca L Brown	The microbiota protects against respiratory infection via GM-CSF signaling	Microbiota, GM-CSF signal, respiratory tract infection
flora would increase host defense through toll-like receptor and nod-like receptor signaling [52, 56]. After influenza A virus infection, the intestinal flora is involved in the activation of inflammasomes, contributing to dendritic cell migration [25]. Moreover, Bifidobacterium could regulate Th1/Th2 immune response and enhance the disease resistance of mice [57].

(3) Disease: The three most related ones are pulmonary obstructive disease, cystic fibrosis and lung cancer. ① The occurrence of asthma is closely related to the early intestinal flora imbalance in children, which is associated with early life antibiotic exposure and the severity of asthma has a dose-dependent correlation with antibiotics [58–61]. Appropriate probiotic supplementation was beneficial to the treatment of asthma [56, 62]. Additionally, patients with obstructive pulmonary disease had a higher risk of IBD and IBS [63, 64]. Moreover, IBD also increases the mortality of patients with COPD and asthma [65]. ② Cystic fibrosis is an autosomal recessive genetic disease, mainly characterized by respiratory and gastrointestinal symptoms, which reflects the correlation between lung and gut. Compared with healthy subjects, Faecalibacterium, Roseburia and Bifidobacterium decreased in the intestinal tract in patients with cystic fibrosis. However, breastfeeding or probiotic application was beneficial to the recovery of intestinal flora structure, which could reduce the deterioration of the pulmonary condition and the number of hospitalizations [66, 67]. ③ The abundance of Firmicutes and Proteobacteria is relatively low in patients
with lung cancer while relatively high in Bacteroidetes and Fusobacteria [68]. Lipopolysaccharide produced by G-bacilli in the gut could induce inflammatory response and lung metastasis of melanoma, while the changes in the intestinal flora could prevent this process [69]. Furthermore, diversities of intestinal flora are also crucial in the immunotherapy in lung cancer [26, 37, 38, 70].

The references analysis has revealed the important references in the field of the gut–lung axis in the past 10 years. The references listed in Tables 8 and 9 would provide an important reference for the study in this field. Additionally, the timeline of references analysis (Fig. 8C) suggests that CoV-2 infection has attracted much attention in this field in recent years. Studies have found that intestinal flora imbalance could lead to the destruction of the intestinal barrier, which may contribute to SARS-CoV-2 transferring from the lung to the intestines through the circulatory and lymphatic system, leading to secondary infection and multiple organ failure [53, 71, 72]. The use of probiotics could significantly improve fever, cough, diarrhea and other clinical symptoms of COVID-19 patients and reduce the risk of respiratory failure [73, 74], which provides a new direction for the treatment of COVID-19. Moreover, burst detection demonstrates that immunotherapy, antibiotics, dysbiosis, health, gut microbiome and microbiome are new research directions in the field of the gut–lung axis. Antibiotics could lead to dysbacteriosis, affecting the efficacy of tumor immunotherapy. It is a frontier field of the improvement of immunotherapy efficacy in lung cancer by modulating intestinal flora.

Conclusion
Based on the results of CiteSpace, this study has identified the important journals, countries and collaborators in the field of the gut–lung axis. According to the keywords, references and burst detection, the research focuses and frontier hotspots of the gut–lung axis were determined. In addition, new therapeutic targets in gut microbiota have great potential in treating pulmonary diseases.

This study retrieved publications from the WoSCC with the limitation of language (English) and literature type (article and review), which may not be sufficient in the representation of all the current research on the gut–lung axis. However, this study has covered the majority of articles in the field of the gut–lung axis in recent 10 years, which could reflect the overall status and trends in this field.

Methods
Search strategy
WoSCC has a wide range of selective literature and its data analysis format meets the requirements of CiteSpace software. We reviewed papers published in the past 10 years on WoSCC on March 26, 2021. The retrieval strategies are as follows:

\[
(\{TS = (gastro * micro*) OR TS = (gastro * flora) OR TS = (gut micro*) OR TS = (gut flora) OR TS = (intestin * micro*) OR TS = (intestin * flora)\}) \text{ OR TS = (lung*) OR TS = (pulmo*)} \}
\]

\[
\text{OR TS = (gut–lung axis)}
\]
The language was “English”, the document types included “article” and “review”. “Procedures paper”, “book chapter”, “data paper”, “early access” and “retracted publication” were excluded; publication time was from 2011/01/01 to 2021/3/26. 3315 articles (including 2469 articles and 846 reviews) were screened out. The “fully recorded and cited references” of these documents were extracted into CiteSpace 5.7.R2 in “plain text” format to identify the main countries, institutions, authors, keywords and references.

Parameter settings

The parameters of CiteSpace 5.7.R2 were set as follows:

1. Time slicing: each year as a time slice from 2011 to 2021.
2. Term source: title, abstract, author keywords, and keywords plus.
3. Node types: author, institution, country, keywords, reference.
4. Top Nperslice: “Top Nperslice = 50” for author, institution, country and keyword node type, “Top Nperslice = 25” for reference node type.
5. Pruning options: Pathfinder, pruning the merged network. The information of country, author, institution, keywords and references were analyzed visually.

Abbreviations

COPD: Chronic obstructive pulmonary disease; IBD: Intestinal bowel disease; IBS: Intestinal bowel syndrome; LPS: Lipopolysaccharide; WoSCC: Web of Science Core Collection; PD-L1: Programmed cell death protein ligand-1; PD-1: Programmed cell death protein-1; ICI: Immune checkpoint inhibitors; SCFAs: Short-chain fatty acids; ARDS: Acute respiratory distress syndrome.

Acknowledgements

We thank Xuan Wang for her help in language polishing.

Authors’ contributions

XG and TL designed the research. ZW, C Bai and TH collected the data. CL, XM, HY processed the data. ZW and CB wrote the paper. All authors read and approved the final manuscript.

Funding

This study was funded by the National Natural Science Foundation of China, Grant Number 81874421 and Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine, Grant Number ZYXCXTD-C-202006.

Availability of data and materials

All the data used to support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare that they consent for publication.

Competing interests

The authors declare that they have no conflicts of interest.

Author details

1School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China. 2School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China. 3Department of Infectious Diseases, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China.
References
1. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48:39–49.
2. Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20–40.
3. Wang HX, Wang YP. Gut Microbiota-brain Axis Chin Med J (Engl). 2016;129:2373–80.
4. Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397–411.
5. He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol. 2017;43:81–95.
6. Liu P, Wang P, Tian DZ, et al. Study on Traditional Chinese Medicine theory of lung being connected with large intestine. J Tradit Chin Med. 2012;32:482–7.
7. Wang YJ, Zhou D, Feng Y, Chen G, Li N. T-UCRs with digestive and respiratory diseases. Bioorg Med Chem Lett. 2020;30:16–127306.
8. Rutten EPA, Lenaerts K, Buurman WA, Wouters EFM. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest. 2014;145:245–52.
9. Lipowska A, Micic D, Cavallo A, McDonald E. Autoimmune Gastrointestinal Dysmotility Due to Small Cell Lung Cancer. Am J Gastroenterol. 2016;111:5981–5981.
10. Yazar A, Atis S, Konca K, et al. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am J Gastroenterol. 2001;96:1511–6.
11. Wang H, Liu JS, Peng SH, et al. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases. World J Gastroenterol. 2013;19:6794–804.
12. Abrosimov VN, Ponomareva IB, Nizov AA, Solodun MV. On respiratory manifestations of gastroesophageal reflux disease. Ter Arkh. 2018;90:131–6.
13. Bai C, Liu T, Xu J, et al. Effect of High Calorie Diet on Intestinal Flora in LPS-Induced Pneumonia Rats. Sci Rep. 2020;10:1701–1701.
14. Chen CM, Hu ZG, Liu SB, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12:593–608.
15. Chen CM, Liu T, Xu J, et al. Emerging trends and research foci in gastrointestinal microbiome. J Transl Med. 2019;17:67.
16. Huang XQ, Fan XWW, Ying J, Chen SY. Emerging trends and research foci in gastrointestinal microbiome. J Transl Med. 2019;17:67.
17. Chen C, Leydesdorff L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J Assoc Inf Sci Technol. 2014;65:334–51.
18. Chaomei SMBC. CiteSpace II: visualization and knowledge discovery in bibliographic databases. In: AMIA Annual Symposium proceedings. 2005
19. Trompette A, Gollwitzer ES, Yeadav K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.
20. Budden RF, Geillatry SL, Wood DL A, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol. 2017;15:55–63.
21. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS ONE. 2010;5:1.
22. Sun TJ, Lu JM, Sheng BR et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65:475–83.
23. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE. 2011;6:e16384.
24. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184:957–63.
25. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 2011;108:5354–9.
26. Routy B, Le Chatelier E, Derose L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.
27. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS ONE. 2010;5:1.
28. Marsland BI, Trompette A, Gollwitzer ES. The Gut-lung axis in respiratory disease. Ann Am Thorac Soc. 2015;12:S150–6.
29. Noever MC, Falkowski NR, McDonald RA, McKenzie AN, Huffman GB. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun. 2005;73:30–8.
30. Morris A, Beck JM, Schloss P, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med. 2013;187:1067–75.
31. Forsythe P, Inman MD, Bienenstock J. Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care Med. 2007;175:S61–9.
32. Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.
33. Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiota as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2013;6:2-e00037.
34. Wang J, Li FQ, Wei HM, et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med. 2014;211:2683–2683.
35. Brown RL, Sequeira RP, Clarke TB. The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 2017;8:1–1512.
36. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–8.
37. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.
38. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.
39. Vezzoni M, Pitt JM, Dalliere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.
40. Xia L, Liu Y, Wang Y. PD-1/PD-L1 blockade therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions. Oncologist. 2019;24:S31–41.
41. Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:10–16113.
42. Dickson RP, Schultz MJ, van der Poll T, et al. Lung microbiota predict clinical outcomes in critically ill patients. Am J Respir Crit Care Med. 2020;201:555–63.
43. Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016;4:59–72.
44. Ashley SL, Spjoding MW, Popova AP, et al. Effect of probiotics on gut and lung microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 2020;12:556.
45. Alemao CA, Budden KE, Gomez HM, et al. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy. 2021;76:714–34.
46. Donovan C, Liu G, Shen S, et al. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol. 2020;108:925–35.
47. Rufing S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNF alpha-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. Am J Physiol-Lung Cell Molec Physiol. 2019;316:L157–74.
48. Boweferman KL, Rhaen MS, Vaughan A, et al. Disease-associated gut microbiome and metabolite changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11:1–5886.
49. Youn YJ, Maureen G, Ozorio DSV, Arunji S, Ian MD. Gut microbiota and immune system interactions. Microorganisms. 2020;8:10–1587.
50. Miyasaka T, Rho A. Lung inflammation originating in the gut. Science. 2018;359:36–7.
51. Huang Y, Mao K, Chen X, et al. SIP-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114–9.
52. Chen L-W, Chen P-H, Hsu C-M. Commensal Microflora Contribute to Host Defense Against Escherichia Coli Pneumonia Through Toll-Like Receptors. Shock. 2011;36:667–75.
53. Yu H, Jianghui W, Fang L, Yuan S. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections. Front Microbiol. 2020;11:1302.
54. Isabel H, Baines KJ, Berthan BS, et al. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR44 in Asthma. Nutrients. 2017;9:1–57.
55. Tomoda K, Kubo K, Danski K, et al. Whey peptide-based enteral diet attenuated elastase-induced emphysema with increase in short chain fatty acids in mice. BMC Pulm Med. 2015;15:1–7.
56. Chang TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect Immunity. 2014;82:4596–606.
57. Mahooti M, Abdolalipour E, Salehzadeh A, et al. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J Microbiol Biotechnol. 2019;35:6–91.
58. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy predicts asthma at school age. Clin Exp Allergy. 2014;44:842–50.
59. Arrieta MC, Siemensen LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7:307.
60. Alhasan MM, Catt AM, Heimesaat MM, et al. Antibiotic use during pregnancy increases asthma severity in a dose-dependent manner. Allergy. 2020;75:1979–90.
61. Loewen K, Monchka B, Mahmud SM, Jong G, Azad MB. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J. 2018;52:1702070.
62. Sagar S, Morgan ME, Chen S, et al. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir Res. 2018;15:1–7.
63. Mahooti M, Abdolalipour E, Salehzadeh A, et al. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J Microbiol Biotechnol. 2019;35:6–91.
64. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy predicts asthma at school age. Clin Exp Allergy. 2014;44:842–50.
65. Arrieta MC, Siemensen LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7:307.
70. Gui Q-F, Lu H-F, Zhang C-X, Xu Z-R, Yang Y-H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015;14:5642–51.
71. Busra A, Belma A. Gut-lung axis and dysbiosis in COVID-19. Turk J Biol. 2020;44:265–72.
72. Dhar D, Mohanty A. Gut microbiota and Covid-19-possible link and implications. Virus Res. 2020;285:198018.
73. Udds DA, Maryam M, Muhammed W, et al. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother. 2021;133:110947.
74. Gabriella DE, Giancarlo C, Massimiliano M, et al. Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front Med. 2020;7:389.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.