Ascites as a Rare Presentation of Eosinophilic Enteritis in a Pollinic Patient

López-Sáez MP, Magdalena Bethencourt K, Muñoz Tornero M, Alajarin Cervera M, Serrano Santos E, Sánchez-Guerrero Villajos J, López Sánchez JD

1 Allergy Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
2 Gastroenterology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
3 Biochemical Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain

Key words: Eosinophilic enteritis. Eosinophilic ascites. Pollinosis. Panallergen. Ole e 7.

Eosinophilic gastrointestinal diseases (EGIDs) are chronic inflammatory disorders whose diagnosis is confirmed by infiltration of eosinophils in the digestive tract wall in the absence of other causes of eosinophilia [1]. This infiltration varies based on the part of the digestive tract involved. Although its etiology is unknown, the infiltration has been shown to be associated with allergy and involved in immunologic responses to different types of food and aeroallergens [2-6]. Eosinophilic enteritis (EE) is a rare disease, which is classified into 3 subtypes according to the layer of the digestive tract wall involved (mucosa, muscle, and subserosa). The stomach and duodenum are the most frequently affected areas, and clinical manifestations depend on the location, extension, and depth of the inflammatory infiltrate, with ascites being the rarest presentation, owing to involvement of the intestinal serosa [1]. Treatment is difficult, with a high relapse rate that diminishes patients’ quality of life [7].

We present a case of EE with repeated seasonal ascites in a 36-year-old woman with a history of rhinoconjunctivitis and bronchial asthma since childhood due to pollen sensitization. The patient was referred to the allergology department for further assessment, because in recent years, and coinciding with the spring months, she had experienced 5 episodes of abdominal distension and oliguria preceded by colic and diarrhea. In the first 2 episodes, which were the most intense, she had to be hospitalized on an internal medicine ward (in April and May of 2 consecutive years). Most outbreaks coincided with nasal conjunctival and bronchial symptoms.

Findings were similar during both hospitalizations: free abdominal fluid was detected by ultrasound and computed axial tomography. Paracentesis revealed clear ascitic fluid, with 95% polymorphonuclear eosinophils and negative cultures. The eosinophil count in peripheral blood was higher than 23% (2200/µL). Gastroscopy with biopsy sampling at different levels revealed normal esophagus and gastric mucosa, bulbitis, and eosinophilic infiltration in the lamina propria of the duodenum (40 eosinophils per high power field). Colonoscopy, general biochemistry, chest and abdomen x-rays, and echocardiograms were normal, and findings for blood cultures, tumor markers, and serology were negative. Total serum IgE was >390 kU/L.

In the intercritical periods, outside the spring, she had intermittent, milder abdominal discomfort, with colic, flatulence, and/or diarrhea, which she attributed to "poor digestion" and which she eventually associated with foods such as salads, nuts, fruit, and legumes. The symptoms appeared about 60 minutes after ingestion and sometimes persisted for up to 2-3 days.

The most severe episodes of pain and abdominal distension were effectively treated with oral corticosteroids. Milder episodes were only treated with a bland diet of cooked or grilled food.

In the allergy study, prick tests were positive for mites, cat and dog epithelia, pollens (grass, olive, Parietaria, Artemisia, Plantago, Platanus, palm tree), and polcalcin and negative for commercial foods, latex, peach lipid transfer protein (LTP) (Pru p 3), and profilin (ALK-Abelló). The prick-by-prick test with natural foods (fruits, vegetables, cereals, legumes, nuts, milk) was positive for orange, banana, and tomato. Serum-specific IgE (ImmunoCAP, Thermo Fisher Scientific) was negative for food and for Pru p 3 (values below 0.10 kU/L).

Allergen component	ISU-E
Ole e 7	44
Ole e 1	27
Ole e 9	7.8
Bet v 4	24
Phl p 7	19
Phl p 5	16
Der p 2	18
Der f 2	12
Fel d 1	11

Abbreviations: ISAC, Immuno Solid-phase Allergen Chip; ISU-E, ISAC standardized units for specific IgE.
The results of the ISAC (Immuno Solid-phase Allergen Chip) are shown in the Table.

After these results were obtained and given that the patient was positive to the vegetal panallergen Ole e 7, the LTP from olive tree pollen (pathogenesis-related protein [PR] 14), she was advised to avoid the food for which she had reported abdominal discomfort (corn, nuts, legumes, fruits, and various vegetables), and her clinical condition improved. She continued eating potatoes, sweet potatoes, carrots, onions, broccoli, courgette, pumpkin, rice, and wheat, which she tolerated well. She has stopped eating fruit because of abdominal pain and/or oral pruritus (although tests were positive only with natural banana and orange [prick by prick]).

Despite following the exclusion diet, she had 2 subsequent episodes of pain and abdominal distension with diarrhea in the spring. These were consistent with a higher concentration of environmental pollen in our region, especially Olea europaea.

In summary, we report a case of recurrent ascites in a young atopic woman. Once other causes of ascites had been ruled out, EE seemed to be the most likely diagnosis owing to the presence of peripheral blood eosinophilia, eosinophils in ascitic fluid and the duodenum, and good response to oral corticosteroids. Although ascites is the rarest presentation of EE, the patient experienced several episodes, 2 of which were confirmed and required hospitalization.

In this case, sensitization to olive pollen and its LTP Ole e 7, which is responsible for cross-reactivity between pollen and plant foods [8], could explain the digestive symptoms, both by inhaling environmental pollen in spring and by ingesting plant foods rich in LTP at any time of the year [3,4].

In the literature, we found only 1 case of EE with seasonal clinical changes. The patient was from Central Europe, and the EE was associated with sensitization to PR-10 proteins (equivalent to the main allergen in birch pollen Bet v 1), which are responsible for cross-reactivity between vegetables and birch pollen in said geographical area [9]. Worsening of inflammation and gastrointestinal symptoms was associated with consumption of vegetables and a higher concentration of environmental birch pollen. Pollen-specific immunotherapy prevented relapses. Seasonality remains controversial in eosinophilic esophagitis (the most prevalent EGID), although some studies have described an increase in the number of cases diagnosed and worsening of symptoms in the spring because of an increase in aeroallergens [3].

Treatment of EE is challenging, and, although the response to oral corticosteroids is usually good, 50% of patients experience relapses and develop chronic disease, with a significant decrease in quality of life [7]. In patients with proven sensitization to food, targeted diets may be an option, since there is not enough information in the literature to recommend elemental or empirical elimination diets [1]. In the case we report, based on the results obtained, immunotherapy with an allergen extract of Ole e 7 and Ole e 1 could improve both digestive and respiratory conditions and probably enable less restrictive diets, thus leading to better quality of life. The patient’s desire to become pregnant and her twin pregnancy have made it difficult to implement specific treatment at the moment.

In conclusion, we report a case of relapsing EE of rare presentation, in which component-resolved diagnostics, absent in most cases in the literature, revealed sensitization to vegetal panallergen Ole e 7 (negative to Pru p 3, the most prevalent LTP in the Mediterranean area), thus explaining the patient’s digestive condition. This case reveals that the molecular study of EE [10] may help to identify potential triggers of relapse and enable more specific treatments, such as targeted exclusion diets and specific immunotherapy. These approaches will prevent disease becoming chronic, reduce the likelihood of complications, and help improve patients’ quality of life.

Acknowledgments

The authors would like to thank i2e3 Biomedical Research Institute for medical writing and editorial assistance.

Funding

This study received funding from Allergy Therapeutics Iberica SL, Barcelona, Spain, for medical writing and editorial assistance services.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. Pineton de Chambrun G, Dufour G, Tassy B, Rivière B, Botta N, Bismuth M, et al. Diagnosis, Natural History and Treatment of Eosinophilic Enteritis: a Review. Curr Gastroenterol Rep. 2018;20(8):37.
2. Armentia A, Martín-Armentia S, Martín-Armentia B, Santos-Fernández J, Álvarez R, Madrigal B, et al. Is eosinophilic esophagitis an equivalent of pollen allergic asthma? Analysis of biopsies and therapy guided by component resolved diagnosis. Allergol Immunopathol (Madr). 2018;46(2):181-9.
3. Fogg MI, Buchelli E, Spergel JM. Pollen and eosinophilic esophagitis. J Allergy Clin Immunol. 2003;112(4):796-7.
4. Bartra J, Sastre J, del Cuvillo A, Montoro J, Jáuregui I, Dávila I, et al. From pollinosis to digestive allergy. J Investig Allergol Clin Immunol. 2009;19 Suppl 1:3-10.
5. Letrán A, Hueso S, González V, Ramos C, Amaya A. Eosinophilic Asces: Singular Presentation of Eosinophilic Gastrointestinal Disorder. J Investig Allergol Clin Immunol. 2018;28(4):275-6.
6. García Rodríguez R, Morano Lozano L, Extremera Ortega A, González Jiménez OM, Borja Segade J, Gómez Torrijos E. Eosinophilic Esophagitis Is Probably a Comorbid Condition in Egg-Allergic Patients Undergoing Egg Oral Immunotherapy. J Investig Allergol Clin Immunol. 2020;30(1):60-1.
7. Bedell A, Taft T, Craven MR, Guadagnoli L, Hirano I, Gonsalves N. Impact on Health-Related Quality of Life in Adults with Eosinophilic Gastritis and Gastroenteritis: A Qualitative Assessment. Dig Dis Sci. 2018;63(5):1148-57.
8. Oeo-Santos C, Navas A, Benedé S, Ruiz-León B, Díaz-Perales A, Vogel L, et al. New insights into the sensitisation to nonspecific lipid transfer proteins from pollen and food: New role of allergen Ole e 7. Allergy. 2020;75(4):798-807.

© 2022 Esmon Publicidad
9. De Swert L, Veereman G, Bublin M, Breiteneder H, Dilissen E, Bosmans E, et al. Eosinophilic gastrointestinal disease suggestive of pathogenesis-related class 10 (PR-10) protein allergy resolved after immunotherapy. J Allergy Clin Immunol. 2013;131(2):600‐2.

10. Armentia A, Martín S, Barrio J, Martin B, García JC, Vega JM, et al. Value of microarray allergen assay in the management of eosinophilic oesophagitis. Allergol Immunopathol (Madr). 2015;43(1):73‐80.

Identification of Ribosomal Proteins as Cross-Reactive Allergens in a Case of Mushroom Allergy

Ogino R, Chinuki Y, Tobita R, Morita E
Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan

J Investig Allergol Clin Immunol 2022; Vol. 32(1): 58-60
doi: 10.18176/jiaci.0700

Key words: Mushroom allergy. Ribosomal protein. Shiitake mushroom allergen. King trumpet mushroom allergen. Cross-reactivity.

Palabras clave: Alergia a champiñones. Proteína ribosómica. Alergia a seta shiitake. Alergia al hongo trompeta del rey. Reactividad cruzada.

Although a variety of mushroom species are commonly consumed worldwide, mushrooms are a rare cause of IgE-mediated hypersensitivity reactions. One of the most common characteristics of mushroom allergy is cross-reactivity between fungal species; however, mushroom allergens are poorly characterized [1-4]. Here, we present a Japanese case of immediate-type food allergy caused by 4 popular mushroom species in which ribosomal proteins were identified as cross-reactive mushroom allergens.

A 21-year-old Japanese man had a 7-year history of recurrent episodes of oral allergic symptoms (oral irritation, throat discomfort, and itching) and cough immediately after consuming meals containing each of shiitake (Lentinula edodes), brown beech (Hypsizygus marmoreus), king trumpet (Pleurotus eryngii), or hen-of-the-woods (Grifola frondosa) mushrooms and the broth of shiitake mushrooms. These symptoms resolved spontaneously within 30-60 minutes of onset. He visited our hospital for further examination of mushroom allergy. He did not experience any food allergy symptoms after consuming meals without mushrooms. He had a history of asthma and atopic dermatitis from the age of 10-12 years. His total IgE level was 457.0 IU/mL, and the multipanel IgE test (View Allergy 39, Thermo Fisher Diagnostics K.K.) revealed positivity for the following allergen-specific IgEs: Japanese cedar (index value, 15.63), Japanese cypress (8.76), timothy grass (12.65), orchard grass (16.78), house dust (4.32), Dermatophagoides pteronyssinus (5.50), and shrimp (0.53). In this test, Alternaria-specific IgE (0.48) and Aspergillus-specific IgE (0.33) were detected at the suspected level (index value <0.50). A prick-to-prick test showed a wheal size of 8×7 mm with 10 mg/mL histamine (Torii Pharma), 1×1 mm with saline, 5×5 mm (2+) with raw L edodes, 5×5 mm (2+) with broth of L edodes, 8×9 mm (3+) with raw H marmoreus, 12×7 mm (3+) with raw G frondosa, 10×7 mm (3+) with raw Flammulina velutipes, and 0×0 mm (–) with raw Auricularia auricula-judae.

To explore mushroom allergens, 5 g of edible parts of L edodes, H marmoreus, P eryngii, and G frondosa were minced and homogenized with 1000 μL of ice-cold phosphate-buffered saline (PBS). After centrifugation at 21 500 g for...