Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease
A Randomized Clinical Trial

Christopher H. van Dyck, MD; Haakon B. Nygaard, MD, PhD; Kewei Chen, PhD; Michael C. Donohue, PhD; Rema Raman, PhD; Robert A. Rissman, PhD; James B. Brewer, MD, PhD; Robert A. Koepppe, PhD; Tiffany W. Chow, MD; Michael S. Rafii, MD; Devon Gessert; Jiyoung Choi, MS; R. Scott Turner, MD, PhD; Jeffrey A. Kaye, MD; Seth A. Gale, MD; Eric M. Reiman, MD; Paul S. Aisen, MD; Stephen M. Strittmatter, MD, PhD

IMPORTANCE
Oligomeric amyloid-β peptide binds to cellular prion protein on the neuronal cell surface, activating intracellular fyn kinase to mediate synaptotoxicity and tauopathy. AZD0530 is an investigational kinase inhibitor specific for the Src family, including fyn, that has been repurposed for the treatment of Alzheimer disease.

OBJECTIVE
To determine whether AZD0530 treatment slows the decline in cerebral metabolic rate for glucose (CMRgl) and is safe and well tolerated.

DESIGN, SETTING, AND PARTICIPANTS
This multicenter phase 2a randomized clinical trial enrolled participants between December 23, 2014, and November 30, 2016. Participants (n = 159) had mild Alzheimer dementia and positron emission tomography (PET) evidence of elevated levels of amyloid-β peptide. Efficacy analyses of all primary and secondary outcomes were conducted in a modified intention-to-treat population. Final analyses were conducted from February 9, 2018, to July 25, 2018.

INTERVENTIONS
AZD0530 (100 mg or 125 mg daily) vs placebo for 52 weeks.

MAIN OUTCOMES AND MEASURES
Primary outcome was the reduction in relative CMRgl, as measured by 18F-fluorodeoxyglucose (18F-FDG) PET, at 52 weeks in an Alzheimer disease–associated prespecified statistical region of interest. Secondary endpoints included change in cognition, function, and other biomarkers.

RESULTS
Among the 159 participants, 79 were randomized to receive AZD0530 and 80 to receive placebo. Of the 159 participants, 87 (54.7%) were male, with a mean (SD) age of 71.0 (7.7) years. Based on a week-2 plasma drug level (target = 180 ng/mL; 30 mM free), 15 participants (19.2%) had their AZD0530 dose escalated from 100 mg to 125 mg. Mean plasma levels from weeks 13 to 52 were 220 ng/mL and 36 mM free. More participants discontinued treatment with AZD0530 than with placebo (21 vs 11), most commonly because of adverse events. The most frequent adverse events were gastrointestinal disorders (primarily diarrhea), which occurred in 38 participants (48.1%) who received AZD0530 and in 23 (28.8%) who received placebo. In the primary outcome, the treatment groups did not differ in 52-week decline in relative CMRgl (mean difference: −0.006 units/y; 95% CI, −0.017 to 0.006; P = .34). The treatment groups also did not differ in the rate of change in Alzheimer’s Disease Assessment Scale–Cognitive Subscale, Alzheimer’s Disease Cooperative Study–Activities of Daily Living, Clinical Dementia Rating, Neuropsychiatric Inventory, or Mini-Mental State Examination scores. Secondary volumetric magnetic resonance imaging analyses revealed no treatment effect on total brain or ventricular volume but did show trends for slowing the reduction in hippocampal volume and entorhinal thickness.

CONCLUSIONS AND RELEVANCE
Statistically significant effects of AZD0530 treatment were not found on relative CMRgl reduction in an Alzheimer disease–associated region of interest or on secondary clinical or biomarker measures.

TRIAL REGISTRATION
ClinicalTrials.gov identifier: NCT02167256
n Alzheimer disease, the amyloid-β peptide (Aβ) accumulates in the brain as insoluble plaque and soluble oligomers (Aβo). The early accumulation of Aβ, in turn, triggers synaptic damage, inflammatory reaction, and pathological tau with cognitive impairment. Therapeutic development efforts have concentrated on limiting Aβ cleavage from amyloid precursor protein by secratase inhibition or on promoting its clearance by active or passive immunization. One alternative approach is to limit the toxic effects of accumulated Aβ rather than its level. Although Aβo can assume a range of different species, evidence has shown that multiple forms of Aβo are damaging, either directly or in concert with microglia.

To interrupt Aβo-induced synaptic dysfunction, dendritic spine loss, inflammatory mediator recruitment, and memory dysfunction, an understanding of Aβo’s biochemical action is central. The only reported genome-wide expression screen for receptors has identified cellular prion protein as an oligomer-specific high-affinity binding site. Pathological signals from Aβo or cellular prion protein are transmitted through its coreceptor metabotropic glutamate receptor 5 to intracellular signaling. Critical for downstream signaling is the tyrosine kinase, fyn, which regulates the Alzheimer disease risk gene product PTK2B, the glutamate receptor subunit NR2B, and the neurofibrillary tangle-forming tau protein. Thus, fyn inhibition provides a potential target for disease-modifying therapy. AZD0530 (saracatinib) is a potent small-molecule inhibitor of Src family kinases. In transgenic mouse Alzheimer disease models, AZD0530 rescues deficits in synaptic density, learning and memory, and tau accumulation at a dose of 5 mg/kg/d but not 2 mg/kg/d.

A previous phase 1b multiple ascending-dose study of AZD0530 in Alzheimer disease demonstrated the safety, tolerability, and central nervous system availability of oral AZD0530 for 4 weeks. Both the 100-mg and 125-mg doses achieved cerebrospinal fluid (CSF) drug levels similar to those that rescued memory deficits in transgenic mice.

A major challenge in the development of treatments for Alzheimer disease is rapid and cost-effective evaluation. Owing to the high test-retest variability of clinical outcomes, researchers have sought biomarkers that reflect Alzheimer disease progression to assess disease-modifying treatments with greater statistical power. One biomarker of Alzheimer disease progression is the decline of regional cerebral metabolic rate for glucose (CMRgl) as measured by 18F-fluorodeoxyglucose positron emission tomography (PET). Chen et al. introduced an empirically defined statistical region of interest (consisting of voxels associated with preferential 12-month CMRgl declines relative to a spared region in an independent Alzheimer disease sample) to achieve optimal power.

Thus, the primary aims of this randomized clinical trial were to assess (1) the effect of AZD0530 treatment on 52-week reductions in relative CMRgl using 18F-FDG PET measurements in the predefined statistical region of interest and (2) the safety and tolerability of AZD0530 treatment over 52 weeks in participants with mild Alzheimer disease. This trial also acquired data for secondary clinical and biomarker end points.

Key Points

Question Can fyn inhibition by AZD0530 slow the decline in relative cerebral metabolic rate for glucose and the change in secondary end points in cognition, function, and other biomarkers in participants with mild Alzheimer dementia?

Findings In this multicenter randomized clinical trial of 159 participants with mild Alzheimer dementia, AZD0530 treatment did not differ from placebo in slowing cerebral metabolic decline in an Alzheimer disease–associated prespecified statistical region of interest. Secondary end points revealed no treatment effects on the rate of change in cognition, function, and other biomarkers but revealed trends for slowing the decrease in hippocampal volume and entorhinal thickness.

Methods

Study Design and Participants Recruitment for this phase 2a trial took place from December 23, 2014, to November 30, 2016. The last participant visit occurred on January 3, 2018, and final analyses were conducted from February 9, 2018, to July 25, 2018. Written informed consent was obtained from all participants in compliance with federal, state, and institutional review board requirements. This trial was registered at ClinicalTrials.gov (NCT02167256) and was approved by the institutional review boards of Yale University, the University of Southern California, and the 22 participating sites; the trial protocol is included in Supplement 1.

The primary enrollment criteria were a diagnosis of mild Alzheimer disease dementia as determined by the National Institute on Aging and Alzheimer’s Association core clinical criteria and evidence of Aβ pathogenesis based on central review of a 18F-florbetapir PET scan (eMethods in Supplement 2). Additional criteria included age 55 to 85 years and scores of 4 or lower on a modified Hachinski Ischemia Scale (score range: 0-12, with the highest score indicating highest probability of vascular dementia), 6 or lower on the Geriatric Depression Scale (score range: 0-15, with the highest score indicating most depressive symptoms), and 18 to 26 on the Mini-Mental State Examination (MMSE). In addition, cholinesterase inhibitors and memantine hydrochloride were permitted if stable for 12 weeks prior to screening. More complete exclusion criteria are provided in the eMethods in Supplement 2. Participants who met the eligibility requirements were randomized to receive either AZD0530 or placebo using a permuted block method stratified by site (Figure 1).

Dosing Procedures Study medication was taken in the morning with or without food. The AZD0530 treatment group initially received 100 mg...
daily. At the week 2 visit, total plasma AZD0530 levels were measured (Alzheimer Disease Cooperative Study [ADCS] Biomarker Core), and those participants in the active treatment group with sufficient compliance but with levels less than 100 ng/mL were given an increase at the week 4 visit to 125 mg daily for the remainder of the study. The control group received the placebo comparator for the entire study. The rationale for dose selection and the method of matching both doses of AZD0530 and placebo are provided in the eMethods in Supplement 2.

Safety Assessments
After randomization, participants were evaluated at weeks 2, 4, 6, 8, 13, 19, 26, 32, 39, 45, and 52. Safety was assessed by reported adverse events, vital signs, and laboratory tests at all visits. Physical and neurological examinations, pharmacokinetics analysis of AZD0530, electrocardiography, and magnetic resonance imaging (MRI) scans were performed at selected visits. At higher doses in cancer studies, AZD0530 has been associated with neutropenia and thrombocytopenia. Therefore, laboratory criteria for considering drug discontinuation included an absolute neutrophil count of less than 1500/μL (to convert to × 10⁹/L, multiply by 0.001) or a platelet count of under 100 × 10⁹/μL (to convert to × 10⁹/L, multiply by 1.0). Previous experience with AZD0530 in patients with advanced solid tumors has also indicated a possible rare relationship with interstitial lung disease. For this reason, thoracic high-resolution computed tomography (CT) was obtained if unexplained pulmonary symptoms arose. All safety data were reviewed quarterly by the independent Data and Safety Monitoring Board.

18F-FDG PET Methods
The primary outcome was 18F-FDG PET measurement of the reduction in relative CMRgl using statistical parametric mapping of an Alzheimer disease–associated statistical region of interest, as described in previous studies. The 18F-FDG PET scans were acquired at baseline and week 52 by a standard protocol (eMethods in Supplement 2) and were read locally to confirm eligibility. Magnetic resonance imaging was also performed at week 52 to assess treatment effects on the rate of change in total brain volume, ventricular volume, hippocampal volume, and entorhinal thickness. Measurement relied on nonlinear registration between baseline and follow-up images to calculate point-by-point volumetric change along with FreeSurfer-based probabilistic-atlas image segmentation to calculate mean change across regions of interest as defined in the Desikan-Killiany atlas (eMethods in Supplement 2).

Cerebrospinal Fluid Analysis
Cerebrospinal fluid was obtained optionally in a subset of participants at baseline and week 52 to assess the effect of AZD0530 treatment on CSF total tau and pTau. Samples (≤20 mL) were collected after an 8-hour fast, and study medication was held on the morning of the procedure. A sample of 1 to 2 mL of CSF was sent to the local laboratory for protein, glucose, and cell count. The remaining CSF sample was shipped frozen to the ADCS Biomarker Core for processing and analysis. Levels of AZD0530 in CSF were also obtained at week 52.

MRI Methods
Magnetic resonance imaging scans were acquired using a standard protocol (eMethods in Supplement 2) and were read locally to confirm eligibility. Magnetic resonance imaging was also performed at week 52 to assess treatment effects on the rate of change in total brain volume, ventricular volume, hippocampal volume, and entorhinal thickness. Measurement relied on nonlinear registration between baseline and follow-up images to calculate point-by-point volumetric change along with FreeSurfer-based probabilistic-atlas image segmentation to calculate mean change across regions of interest as defined in the Desikan-Killiany atlas (eMethods in Supplement 2).

Clinical Assessments
The clinical effects of AZD0530 treatment were assessed by the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11; score range: 0-70, with the highest score indicating worst), MMSE, ADCS-Activities of Daily Living Scale (ADCS-ADL; score range: 0-78, with the highest score indicating best), Clinical Dementia Rating-Sum of Boxes (CDR-SB; score range: 0-18, with the highest score indicating worst), and Neuropsychiatric Inventory (NPI; score range: 0-144, with the highest score indicating worst). The ADAS-Cog11 was administered at baseline and weeks 13, 26, 39, and 52, and the MMSE was administered at screening and weeks 13, 26, 39, and 52. The ADCS-ADL, CDR-SB, and NPI were all administered at baseline and weeks 26 and 52.

Statistical Analysis
Prospective power was based on pilot estimates for a mean (SD) 12-month reduction in CMRgl, as measured by 18F-FDG PET.
of 0.0514 (0.0309) \(^3\) in the control arm. Assuming an attrition rate of 10\%, we required a sample of 152 participants to detect a 30\% effect of AZD0530 with 80\% power at a 2-tailed level of .05.

Demographic and baseline characteristics of the 2 treatment groups were compared using the Fisher exact test for categorical variables and 2-sample t test for continuous variables. Efficacy analyses of all primary and secondary outcomes were conducted in a modified intention-to-treat population, namely, all randomized participants who had at least 1 postbaseline assessment. Clinical outcomes with missing item scores were imputed using a proration strategy as detailed in the eMethods in Supplement 2. We used a serial gatekeeping procedure to maintain an overall experimentwise type I error rate of 5\% for 6 outcome hypotheses (\(^{18}\)F-FDG PET–measured CMRgl, ADAS-Cog11, ADCS-ADL, CDR-SB, MMSE, and NPI).

Because \(^{18}\)F-FDG PET images were collected at 2 time points, a linear mixed-effects regression model was used to compare rates of change between treatment groups, assuming a common mean CMRgl at baseline. This model included fixed effects for time from randomization (continuous), age at baseline, and apolipoprotein E (APOE) \(\varepsilon4\) carrier status as well as participant-specific random intercepts. This model was also used for prespecified post hoc subgroup analyses based on compliance (80\%-120\% by pill counts), \(^{18}\)F-florbetapir PET standardized uptake value ratio (by quartiles), and screening MMSE (median split).

Because of 0.0514 (0.0309) \(^3\) in the control arm. Assuming an attrition rate of 10\%, we required a sample of 152 participants to detect a 30\% effect of AZD0530 with 80\% power at a 2-tailed level of .05.

Demographic and baseline characteristics of the 2 treatment groups were compared using the Fisher exact test for categorical variables and 2-sample t test for continuous variables. Efficacy analyses of all primary and secondary outcomes were conducted in a modified intention-to-treat population, namely, all randomized participants who had at least 1 postbaseline assessment. Clinical outcomes with missing item scores were imputed using a proration strategy as detailed in the eMethods in Supplement 2. We used a serial gatekeeping procedure to maintain an overall experimentwise type I error rate of 5\% for 6 outcome hypotheses (\(^{18}\)F-FDG PET–measured CMRgl, ADAS-Cog11, ADCS-ADL, CDR-SB, MMSE, and NPI).

Because \(^{18}\)F-FDG PET images were collected at 2 time points, a linear mixed-effects regression model was used to compare rates of change between treatment groups, assuming a common mean CMRgl at baseline. This model included fixed effects for time from randomization (continuous), age at baseline, and apolipoprotein E (APOE) \(\varepsilon4\) carrier status as well as participant-specific random intercepts. This model was also used for pre-specified post hoc subgroup analyses based on compliance (80\%-120\% by pill counts), \(^{18}\)F-florbetapir PET standardized uptake value ratio (by quartiles), and screening MMSE (median split).

The mixed model of repeated measures was used for all secondary outcome measures assessed at more than 2 time points. The dependent variable of the mixed model of repeated measures was the change from baseline at each follow-up visit. The model treated time as a categorical variable and included fixed effects for the treatment-by-time interactions, baseline outcome, age, and APOE \(\varepsilon4\) status. An unstructured correlation and heterogeneous variance with respect to time was assumed.

Safety analyses were conducted on the intention-to-treat population, namely, all randomized participants. The Fisher exact test was used to compare frequencies of adverse events or laboratory abnormalities between treatment groups. Population pharmacokinetics analysis of concentration-time data of AZD0530 was also performed using the mixed model of repeated measures. Magnetic resonance imaging and CSF biomarker outcomes were analyzed using analysis of covariance, including mean baseline value, age, and APOE \(\varepsilon4\) status as covariates. All statistical analyses were performed with R, version 3.4.2 (R Foundation for Statistical Computing), and results are reported as point estimates with 95\% CIs. A 2-sided \(P = .05\) was considered statistically significant.

As detailed in the eMethods in Supplement 2, the statistical analysis plan changed from the original to the final protocol (Supplement 1). However, these changes did not alter the final results.

Results

As shown in Figure 1, a total of 293 participants were screened for this trial, and 159 were randomized: 79 were randomized to the AZD0530 group (1 of whom never received the drug) and 80 to the placebo group. All 159 participants were included in the intention-to-treat population for safety analyses, and 128 (80.5\%) completed the study (126 of whom were receiving treatment). Early treatment discontinuations, primarily owing to adverse events, included 21 (26.6\%) in the AZD0530 group and 11 (13.8\%) in the placebo group.

Baseline Characteristics

Participant baseline characteristics are displayed in Table 1. Of the 159 randomized participants, 87 (54.7\%) were male, with a mean (SD) age of 71.0 (7.7) years, and 105 (66.0\%) were APOE \(\varepsilon4\) carriers. The mean (SD) MMSE score was 22.5 (2.5). Baseline characteristics were generally well balanced between treatment groups. However, the mean (SD) baseline NPI score was higher in the AZD0530 group compared with the placebo group (11.6 [13.2] vs 7.5 [8.1]; \(P = .05\)).

Safety and Tolerability

The number of participants in each treatment group who experienced adverse events is presented in Table 2. In general, 100 mg to 125 mg daily of AZD0530 was reasonably well tolerated. A total of 593 adverse events were reported (of which 389 were mild, 176 moderate, and 28 severe; 331 of these adverse events were in the AZD0530 group, and 262 in the placebo group). Seventy-three participants (92.4\%) receiving AZD0530 and 65 (81.2\%) receiving placebo experienced at least 1 adverse event during the study (\(P = .06\), Fisher exact test). The most frequent adverse events were gastrointestinal, which occurred in 38 participants (48.1\%) receiving AZD0530 and 23 (28.7\%) receiving placebo (\(P = .02\), Fisher exact test). These gastrointestinal disorders were primarily driven by diarrhea, the most common individual adverse event, which occurred in 22 participants (27.8\%) receiving AZD0530 and 9 (11.2\%) receiving placebo. Risk differences in adverse events by MedDRA (Medical Dictionary for Regulatory Activities) System Organ Class between participants in the AZD0530 and placebo groups are graphically displayed in eFigure 1 in Supplement 2.

A total of 24 serious adverse events were reported during the study, with 16 among participants receiving AZD0530 and 8 among participants receiving the placebo. Two adverse events were deemed by site investigators as possibly related to the study drug: delirium (placebo group) and acute diverticulitis (AZD0530 group). One death (owing to urinary tract infection) was reported in the active treatment group and deemed unrelated to the study drug. Among the participants who met the protocol-specified discontinuation criteria, 2 (1 from the AZD0530 group, and 1 from the placebo group) discontinued the study drug owing to neutropenia, but 0 discontinued for thrombocytopenia or interstitial lung disease.

Dosing and Pharmacokinetics

Of the 78 participants who received active AZD0530, 15 (19.2\%) had their dose escalated from 100 mg to 125 mg at week 4 based on week 2 plasma levels. The mean plasma levels from weeks 13 to 52 were 220 ng/mL and 36 nM free (target = 180 ng/mL; 30 nM free). Only 13 participants had a week-52 lumbar puncture while receiving active treatment, with a mean (SD) CSF
AZD0530 level of 2.3 (1.3) ng/mL (4.3 [2.5] nM). From the previous phase 1b study, we targeted CSF levels of 5 nM ± 4 or greater and predicted levels of 4.5 ng/mL (8 nM), which was within the range of the fyn Ki (inhibition constant) for AZD0530 (5-10 nM) and the efficacious levels in Alzheimer disease model mice (5.8-14 nM).27

Primary Efficacy Measure: 18F-FDG PET

The primary outcome was 18F-FDG PET measurement of a decline in relative CMRgl at week 52 in an Alzheimer disease-associated statistical region of interest39,45 (Figure 2). No statistically significant difference was observed between the AZD0530 and placebo groups (difference: -0.006 units/y; 95% CI, -0.017 to 0.006; *P* = .34). One hundred thirty-one participants (59 in the AZD0530 group and 72 in the placebo group) received both baseline and follow-up 18F-FDG PET. Prespecified subgroup analyses based on compliance, 18F-florbetapir PET standardized uptake value ratio (by quartiles), and screening MMSE (median split) were consistent with the primary analysis. An additional exploratory subgroup analysis based on baseline CMRgl (median split) suggested that treatment differences favored placebo above the median CMRgl (difference: -0.027 units/y; 95% CI, -0.043 to -0.010; *P* = .002) but favored AZD0530 below the median (difference: 0.014 units/y; 95% CI, -0.0002 to 0.027; *P* = .05). Relative CMRgl as the primary outcome was well correlated with standard clinical outcomes both cross-sectionally and long term (eFigure 2 in Supplement 2) and demonstrated greater precision (narrower CIs) compared with any clinical measure (eFigure 3 in Supplement 2).

Secondary Outcomes

Results for secondary clinical outcomes are summarized in Figure 3A. No statistically significant treatment effects were observed for any outcome. For the ADAS-Cog11, the AZD0530 (treatment) group score increased by 7.26 (95% CI, 5.39-9.14) compared with the placebo (control) group score (6.14; 95% CI, 4.36-7.91; *P* = .39). For the ADCS-ADL, the AZD0530 group score decreased by 9.49 (95% CI, 7.00-11.97) compared with the placebo group score (7.64; 95% CI, 5.28-10.00; *P* = .29). For the CDR-SB, the AZD0530 group score increased by 1.95 (95% CI, 1.37-2.52) compared with the placebo group score (1.47; 95% CI, 0.93-2.01; *P* = .23). For the NPI, the AZD0530 group score increased by 2.24 (95% CI, 1.08-5.56) compared with the pla-

Table 1. Baseline Participant Characteristics

Variable	AZD0530 Group	Placebo Group	Combined Group	*P* Value*
Total No.	79	80	159	
Sex, No. (%), Male	38 (48.1)	49 (61.2)	87 (54.7)	.11
Female	41 (51.9)	31 (38.7)	72 (45.3)	
Race/ethnicity, White (not Hispanic)	74 (93.7)	68 (85.0)	142 (89.3)	
Black or African American	4 (5.1)	3 (3.7)	7 (4.4)	.69
Hispanic or Latino	1 (1.3)	6 (7.5)	7 (4.4)	.16
American Indian or Alaskan Native	0	1 (1.2)	1 (0.6)	
> 1 Race	0	1 (1.2)	1 (0.6)	
Unknown or not reported	0	1 (1.2)	1 (0.6)	
APOE ε4, No. (%), Yes	50 (63.3)	55 (68.7)	105 (66.0)	
Age, mean (SD), y	70.9 (8.0)	71.2 (7.4)	71.0 (7.7)	.85
Education, mean (SD), y	16.01 (2.84)	16.14 (2.94)	16.08 (2.88)	.86
Baseline ADAS-Cog11 score, mean (SD)	21.35 (8.42)	21.04 (7.09)	21.19 (7.76)	.79
Baseline ADCS-ADL score, mean (SD)	65.80 (8.31)	66.83 (8.47)	66.31 (8.38)	.52
Baseline CDR-SB score, mean (SD)	5.15 (2.28)	5.06 (2.17)	5.11 (2.22)	.81
Screening MMSE score, mean (SD)	22.62 (2.47)	22.32 (2.44)	22.47 (2.45)	.52
Baseline NPI score, mean (SD)	11.62 (13.22)	7.50 (8.09)	9.55 (11.09)	.051b
Screening GDS score, mean (SD)	1.54 (1.59)	1.79 (1.51)	1.67 (1.55)	.18
Screening modified Hachinski Ischemia Scale score, mean (SD)c	0.633 (0.880)	0.688 (0.773)	0.660 (0.825)	.16

Abbreviations: ADAS-Cog11, Alzheimer’s Disease Assessment Scale–Cognitive Subscale (score range: 0-70, with the highest score indicating worst); ADCS-ADL, Alzheimer’s Disease Cooperative Study–Activities of Daily Living (score range: 0-78, with the highest score indicating best); MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory (score range: 0-144, with the highest score indicating worst).

* Fisher exact test was used for categorical variables, and 2-sample *t* test was used for continuous variables.

b Group NPI differences were driven primarily by differences in mean (SD) Anxiety (1.6 [2.9] vs 0.7 [1.3]; *P* = .03) and Agitation (0.9 [1.5] vs 0.6 [1.4]; *P* = .06) Wilcoxon rank sum test scores between the AZD0530 and placebo groups.

c Modified Hachinski Ischemia Scale score range: 0-12, with the highest score indicating highest probability of vascular dementia.
cebo group score (3.16; 95% CI, 0.71-6.24; \(P = .69 \)). For the MMSE, the AZD0530 group score decreased by 3.84 (95% CI, 2.71-4.97) compared with the placebo group score (3.33; 95% CI, 2.26-4.39; \(P = .51 \)).

Results for MRI volumetric outcomes are summarized in Figure 3B. For hippocampal volume, the mean (SD) volume of the AZD0530 group (\(n = 57 \)) decreased by 0.89% (1.81%) compared with the placebo group volume decrease (1.54% [1.99%]; \(P = .09 \)). For lateral ventricular volume, the mean (SD) volume of the AZD0530 group (\(n = 57 \)) increased by 11.35% (7.09%) compared with the placebo group (\(n = 62 \)) volume increase (11.67% [6.45%]; \(P = .85 \)). For whole-brain volume, the mean (SD) volume of the AZD0530 group (\(n = 57 \)) decreased by 1.60% (1.06%) compared with the placebo group (\(n = 62 \)) volume decrease (1.71% [1.09%]; \(P = .98 \)). For entorhinal cortical thickness, the mean (SD) volume of the AZD0530 group (\(n = 57 \)) decreased by 2.39% (1.81%) compared with the placebo group (\(n = 62 \)) volume decrease (3.10 [1.74%]; \(P = .07 \)). Changes in hippocampal volume and entorhinal thickness were not correlated with changes in clinical outcomes (ADAS-Cog11, MMSE, CDR-SB, or NPI) in the overall sample. In light of the trends for slowing of decline by AZD0530 in hippocampal volume and entorhinal thickness, we conducted post hoc exploratory analyses of \(^{18}\)F-FDG PET measurement of decline in relative CMRgl in the hippocampus and entorhinal cortex (with global normalization). We observed a slowing of decline in the entorhinal cortex (difference: 0.014 units/y; 95% CI, 0.00052 to 0.027; \(P = .04 \)) but not in the hippocampus (difference: 0.00016 units/y; 95% CI, −0.017 to 0.018; \(P = .99 \)).

The CSF substudy included 53 participants at baseline, 36 at week 52, and 34 at both time points, enabling the calculation of the rates of change in Alzheimer disease biomarkers (eFigure 4 in Supplement 2). No statistically significant treatment differences were observed for rates of change in either CSF total tau (difference: 98.3 pg/mL/y; 95% CI, −24.9 to 221.4; \(P = .11 \)) or pTau (difference: 3.65 pg/mL/y; 95% CI, −7.55 to 14.84; \(P = .51 \)).

Discussion

This phase 2a randomized clinical trial demonstrated that a 100-mg to 125-mg daily dose of AZD0530 is reasonably safe and well tolerated in participants with mild Alzheimer disease. However, in comparison to placebo, AZD0530 treatment had no significant effect on \(^{18}\)F-FDG PET–measured reduction in relative CMRgl at 52 weeks in an Alzheimer disease–associated statistical region of interest. The treatment groups also did not significantly differ in secondary clinical outcomes, including rates of change in ADAS-Cog11, ADCS-ADL, CDR-SB, NPI, or MMSE scores.

Table 2. Reported Adverse Events

Adverse Event	AZD0530 Group (n = 79)	Placebo Group (n = 80)	Total (n = 159)	\(P \) Value*
Adverse event	73 (92.4)	65 (81.2)	138 (86.8)	.06
Serious adverse event	12 (15.2)	7 (8.7)	19 (11.9)	.23
Gastrointestinal disorders	38 (48.1)	23 (28.8)	61 (38.4)	.02
Infections and infestations	28 (35.4)	24 (30.0)	52 (32.7)	.50
Psychiatric disorders	27 (34.2)	17 (21.2)	44 (27.7)	.08
Investigations	24 (30.4)	17 (21.2)	41 (25.8)	.21
Nervous system disorders	18 (22.8)	16 (20.0)	34 (21.4)	.70
Skin and subcutaneous tissue disorders	18 (22.8)	10 (12.5)	28 (17.6)	.10
General disorders and administration site conditions	15 (19.0)	9 (11.2)	24 (15.1)	.19
Musculoskeletal and connective tissue disorders	14 (17.7)	24 (30.0)	38 (23.9)	.09
Injury, poisoning, and procedural complications	13 (16.5)	22 (27.5)	35 (22.0)	.13
Respiratory, thoracic, and mediastinal disorders	13 (16.5)	7 (8.7)	20 (12.6)	.16
Metabolism and nutrition disorders	11 (13.9)	3 (3.7)	14 (8.8)	.03
Renal and urinary disorders	6 (7.6)	2 (2.5)	8 (5.0)	.17
Eye disorders	5 (6.3)	1 (1.2)	6 (3.8)	.12
Blood and lymphatic system disorders	4 (5.1)	2 (2.5)	6 (3.8)	.44
Cardiac disorders	3 (3.8)	6 (7.5)	9 (5.7)	.50
Ear and labyrinth disorders	3 (3.8)	1 (1.2)	4 (2.5)	.37
Benign, malignant, and unspecified neoplasms (including cysts and polyps)	3 (3.8)	8 (10.0)	11 (6.9)	.21
Reproductive system and breast disorders	3 (3.8)	1 (1.2)	4 (2.5)	.37
Vascular disorders	3 (3.8)	6 (7.5)	9 (5.7)	.50
Immune system disorders	2 (2.5)	1 (1.2)	3 (1.9)	.62
Endocrine disorders	1 (1.3)	0 (0)	1 (0.6)	.50

Abbreviation: MedDRA, Medical Dictionary for Regulatory Activities.

* Fisher exact test; unadjusted for multiple comparisons.

b Sorted by adverse event rate in the AZD0530 group.
Secondary MRI analyses revealed no statistically significant treatment effects on any of 4 volumetric measures but did show trends for slowing the decline in hippocampal volume and entorhinal thickness. Additional credence was lent to these trends by post hoc exploratory analyses of 18F-FDG PET–measured reduction in relative CMRgls for entorhinal cortex but not for hippocampus. Although AZD0530 demonstrated no treatment effect on neuroimaging outcomes in this study, we cannot exclude the possibility of some regionally specific effects on brain structure and function. A previous study has shown in Alzheimer disease model mice that chronic fyn inhibition with AZD0530 treatment restores memory function and markers of synaptic density (PSD-95 and SV2a) in the dentate gyrus of the hippocampus induced by APP/PS1 transgenes.27 AZD0530 treatment may have a more focal effect on medial temporal lobe structure and function.

Although disappointing, these results do not exclude fyn kinase as a therapeutic target in Alzheimer disease. Our previous findings in Alzheimer disease model mice may not have translated into mild Alzheimer disease dementia because of inadequate study drug dose and limited inhibition of fyn in the brain. Overall, the targeted plasma levels (180 ng/mL; 30nM free) were achieved in the present trial. Mean plasma levels from weeks 13 to 52 were 220 ng/mL and 36nM free. However, in a small CSF pharmacokinetic substudy, drug levels fell below the targets suggested by the previous mouse study27 and phase 1b trial.54 Preclinical dose reduction from 5 mg/kg/d to 2 mg/kg/d eliminated the efficacy in transgenic mice. The tolerability of a daily dose of 100 mg to 125 mg of AZD0530 in the current study suggests that higher doses may be unfeasible in the Alzheimer disease population such that a narrow therapeutic window in mice is closed for human participants.

Numerically, more participants discontinued treatment with AZD0530 than with placebo (21 vs 11), primarily owing to adverse events. The most frequent adverse events were diarrhea and other gastrointestinal disorders, which were significantly more common in the AZD0530 treatment arm. Nonetheless, selective fyn inhibitors might be developed that would have greater tolerability to permit more complete target engagement. Alternatively, higher AZD0530 doses in those individuals who can tolerate such a regimen, and perhaps who have the greatest 18F-FDG hypometabolism, might be effective in limiting cognitive decline. Further optimization of fyn inhibition is required to fully evaluate the enzyme as a target for disease modification in Alzheimer disease.
The results of this trial provide strong support for the use of CMRgl, measured by 18F-FDG PET, as a primary outcome in a proof-of-concept study. 18F-FDG PET demonstrated the clinical relevance of CMRgl as a biomarker outcome in that it was well correlated with cognitive and functional outcomes both cross-sectionally and longitudinally (eFigure 2 in Supplement 2). Findings are consistent with longitudinal associations between 18F-FDG PET and clinical measures in previous observational studies in the context of a therapeutic trial. Additional studies showing an association between an effective treatment's 18F-FDG PET and clinical findings are needed to provide further support for its theragnostic value. Moreover, relative CMRgl in an Alzheimer disease–associated statistical region of interest proved to be a statistically powerful biomarker measure with at least twice the precision of the best clinical measures, demonstrating that it would have power to detect active placebo differences that are less than half as great as for clinical measures.

Figure 3. Secondary Outcomes

A. Analyses of clinical variables used a mixed model of repeated measures to estimate the mean group difference at each follow-up time, with change from baseline as the outcome, controlling for baseline score, age, and apolipoprotein E (APOE) ε4 status. B. Analyses of magnetic resonance imaging (MRI) variables used an analysis of covariance model with percentage of deformation per year from baseline as the outcome, adjusted for mean baseline volume or thickness of brain region, age, and APOE ε4 status. Blue represents the placebo group; orange, the AZD0530 group.

A. Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog11) score range: 0 (indicating best) to 70 (worst).
B. Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) score range: 0 (worst) to 78 (best).
C. Clinical Dementia Rating–Sum of Boxes (CDR-SB) score range: 0 (best) to 18 (worst).
D. Neuropsychiatric Inventory score range: 0 (best) to 144 (worst).
measures (eFigure 3 in Supplement 2). This trial also supports the feasibility of another novel element: the use of early drug-level monitoring to adjust the final dose. Week 2 plasma drug levels were measured by a central laboratory with rapid turnaround to guide potential double-blind dose escalation in the active treatment arm at week 4.

Limitations
This study has a number of limitations. First, the larger-than-expected rate of attrition diminished the statistical power of the study to detect all but a large (30%) effect size. Second, the availability of CSF in only 21% of trial participants limited our ability to evaluate the treatment effects on rates of change in CSF total tau or pTau or to assess the adequacy of doses in relation to CSF drug levels.

Conclusions
In this 52-week randomized clinical trial, we could not detect statistically significant effects of AZD0530 treatment on relative CMRgl decline in an Alzheimer disease-associated region of interest or in secondary clinical or biomarker measures. However, this trial supports the use of CMRgl, as measured by 18F-FDG PET, as a statistically powerful outcome measure that is well correlated with clinical outcomes.

ARTICLE INFORMATION
Accepted for Publication: May 17, 2019.
Published Online: July 22, 2019.
doi:10.1001/jamaneurol.2019.2050
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2019 van Dyck CH et al. JAMA Neurology.

Author Affiliations: Alzheimer’s Disease Research Unit, Yale School of Medicine, New Haven, Connecticut (van Dyck); Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada (Nygaard); Banner Alzheimer’s Institute, Phoenix, Arizona (Chen, Reiman); Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego (Donohue, Raman, Rissman, Chow, Rafii, Gessert, Choi, Aisen); Department of Neurosciences, University of California, San Diego, La Jolla, California (Rissman, Brewer); Department of Radiology, University of Michigan, Ann Arbor (Koeppe); Department of Neurology, Georgetown University, Washington, DC (Turner); Department of Neurology, Oregon Health & Science University, Portland (Kaye); Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts (Gale); Department of Neurology, Yale School of Medicine, New Haven, Connecticut (Strittmatter).

Author Contributions: Dr van Dyck had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: van Dyck, Nygaard, Rissman, Rafii, Reiman, Aisen, Strittmatter.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: van Dyck, Donohue, Raman, Rissman, Chow, Rafii, Choi, Strittmatter.

Critical revision of the manuscript for important intellectual content: van Dyck, Nygaard, Chen, Donohue, Rissman, Brewer, Koeppe, Rafii, Gessert, Turner, Kaye, Gale, Reiman, Aisen, Strittmatter.

Statistical analysis: van Dyck, Chen, Donohue, Raman, Rissman, Choi, Reiman.

Obtained funding: van Dyck, Nygaard, Strittmatter.

Administrative, technical, or material support: van Dyck, Nygaard, Brewer, Koeppe, Chow, Rafii, Gessert, Turner, Kaye, Reiman, Aisen, Strittmatter.

Supervision: van Dyck, Nygaard, Donohue, Rissman, Chow, Rafii, Reiman, Strittmatter.

Arranged drug supply and communication with sponsors: Strittmatter.

Technical work on positron emission tomography aspects of the project: Koeppe.

Conflict of Interest Disclosures: Dr van Dyck reported receiving consulting fees from Roche, Eisai, Kyowa Kirin, Merck, Eli Lilly, and Janssen as well as grants for clinical trials from Biogen, Novartis, Eli Lilly, Merck, Eisai, Janssen, Roche, Genentech, Biogen, Toiyama, and Taulu outside of the submitted work. Dr Nygaard reported receiving 18F-Florbetapir from Avid Radiopharmaceuticals for the Canadian site (University of British Columbia). Dr Donohue reported personal fees from Eli Lilly and Neurotrack and other from Janssen outside the submitted work. Dr Chen reported current full-time employment at Green Valley Pharmaceuticals, Shanghai, China, and past employment at Banner Alzheimer’s Institute during the conduct of the study. Dr Raman reported receiving grants from Eli Lilly, Janssen, and the National Institute on Aging through the Alzheimer’s Therapeutic Research Institute. Dr Brewer reported receiving consulting fees from Elan, Bristol-Myers Squibb, Avanir, Novartis, Genentech, and Eli Lilly as well as stock options in CorTec Labs Inc and Human Longevity Inc. Dr Koeppe reported receiving grants from the National Institutes of Health during the conduct of the study. Dr Kaye reported receiving grants from Alzheimer’s Therapeutic Research Institute during the conduct of the study. Dr Turner reported receiving consulting fees from Eli Lilly and grants for clinical trials from Acadia, Biogen, Novartis, Eli Lilly, Merck, Eisai, Janssen, Roche, Genentech, and Toyma. Dr Gale reported receiving consulting fees from Phillips and grants for clinical trials from Eisai, Roche, Eli Lilly, Novartis, and Genentech. Dr Reiman reported receiving fees as a scientific advisor to Alkahest, Alzeon, Aural Analytics, Denali, Green Valley, Roche (expenses only), United Neurosciences, and Zinc and grants for clinical trials from Genentech/Roche, Novartis/Angen, and Avid/Lilly. Dr Aisen reported receiving consulting fees from Proclara, Merck, Biogen, Roche, Eisai, Storz, and Immunobrain. Checkpoint as well as grants for clinical trials from Eli Lilly and Janssen. Dr Strittmatter reported receiving founder shares and consulting fees from ReNetX Bio as well as being an inventor on Yale patents and patent applications related to Alzheimer treatment. No other disclosures were reported.

Funding/Support: This study was supported by grant UH3 TR000967 (Dr Strittmatter, van Dyck, and Nygaard) from the National Center for Advancing Translational Sciences and grants P50 AG047270 (Dr Strittmatter), P30 AG19610 (Dr Reiman), and ROI AG031581 (Dr Reiman) from the National Institute on Aging.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Contributions: We thank all study participants and their families, the study teams at each site, the Alzheimer’s Therapeutic Research Institute (Coordinating Center), and the Data and Safety Monitoring Board. We also thank the AstraZeneca Open Innovation Program for providing the study medication and Avid Radiopharmaceuticals for providing 18F-Florbetapir to the Canadian site (University of British Columbia). The Fyn Study Team (nonauthor investigators) members are Mary Sano, PhD, Mount Sinai; Gregory Jicha, MD, PhD, University of Kentucky; Borna Bonakdarpour, MD, Northwestern University; Suzanne Craft, PhD, Wake Forest University; Delwyn Miller, MD, University of Iowa; Edward Zamrini, MD, Banner Sun Health Research Institute; Edmond Teng, MD, PhD, University of California, Los Angeles; Neelum Aggarwal, MD, Rush University; Judith Heidebrink, MD, University of Michigan; Ranja Dua, MD, Wien Center for Alzheimer’s Disease and Memory Disorders; Elaine Peskind, MD, University of Washington; Jacobo Mintzer, MD, Roper St Francis Healthcare; Amanda Smith, MD, University of South Florida; Oscar Lopez, MD, University of Pittsburgh; Martin Farlow, MD, Indiana University; Marwan Sabbagh, MD, Barrow Neurological Institute; and Anton Porsteinsson, MD, University of Rochester.

REFERENCES
1. Voytyuk I, De Strooper B, Chávez-Gutiérrez L. Modulation of y- and β-secretase as early prevention against Alzheimer’s disease. Biol Psychiatry. 2018;83(4):320-327. doi:10.1016/j.biopsych.2017.08.010
2. van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry. 2018;83(4):311-319. doi:10.1016/j.biopsych.2017.08.010
3. Berman DE, D’Alarco C, Voronov SV, et al. Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate

jamaneurology.com

JAMA Neurology October 2019 Volume 76, Number 10 1227
metabolism. Nat Neurosci. 2008;11(5):547-554. doi:10.1038/nn2100
4. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8(1):79-84. doi:10.1038/nn1372
5. Hong S, Beja-Glasser VF, Ifonoyim BM, et al. Complement and microglia mediate early synaptic loss in Alzheimer mouse models. Science. 2016;352(6286):712-716. doi:10.1126/sciadv.ade8373
6. Lacor PN, Buniel MC, Farrow PW, et al. Aβ oligomer-induced aberrations in synaptic composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27(4):796-807. doi:10.1523/JNEUROSCI.3501-06.2007
7. Lambert MP, Barlow AK, Chrony BA, et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system toxins. Proc Natl Acad Sci U S A. 1998;95(11):6448-6453. doi:10.1073/pnas.95.11.6448
8. Laureyn J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular protein prion mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nat Neurosci. 2009;12(7):1128-1132. doi:10.1038/nn0761
9. Lesn S, Koh MT, Kottilinuk L, et al. A specific amyloid-beta protein assembly in the brain impairments. Nature. 2006;440(7082):352-357. doi:10.1038/nature04533
10. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe DJ. Soluble oligomers of amyloid-beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788-801. doi:10.1016/j.neuron.2009.09.005
11. Paloj JP, Muckle L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13(7):812-818. doi:10.1038/nn.2583
12. Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2009;15(8):837-842. doi:10.1038/nm1978
13. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535-539. doi:10.1038/416535a
14. Purro SA, Nicoll AJ, Collinge J. Prion protein as a toxic acceptor of amyloid-β oligomers. Biol Psychiatry. 2018;83(4):358-368. doi:10.1016/j.biopsych.2017.11.020
15. Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain. 2016;139(pt 2):526-546. doi:10.1093/brain/aww356
16. Um JW, Kaufman AC, Kostylev M, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer binding to cellular prion protein. Neuron. 2013;79(5):887-902. doi:10.1016/j.neuron.2013.06.036
17. Larson M, Sheman MA, Amar F, et al. The complex PPrPc-fyn-fyn couples human oligomeric Aβ, with pathological tau changes in Alzheimer’s disease. J Neurosci. 2012;32(47):16857-16871. doi:10.1523/JNEUROSCI.1858-12.2012
18. Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to post synaptic prion protein activates fyn in neurons. Nat Neurosci. 2012;15(9):1227-1232. doi:10.1038/nn.3178
19. Beecham GW, Hamilton K, Naj AC, et al. Alzheimer’s Disease Genetics Consortium (ADGC). Genome-wide association meta-analysis of neuropathological features of Alzheimer’s disease and related dementia. PLoS Genet. 2014;10(9): e1004606. doi:10.1371/journal.pgen.1004606
20. Bhaskar K, Hobbs GA, Yen SH, Lee G. Tyrosine phosphorylation of tau accompanies disease progression in transgenic mouse models of tauopathy. Neuropathol Appl Neurobiol. 2010;36(6):462-477. doi:10.1111/j.1365-2990.2010.01103.x
21. Bhaskar K, Yen SH, Lee G. Disease-related modifications in tau affect the interaction between fyn and tau. J Biol Chem. 2005;280(42):35191-35125. doi:10.1074/jbc.M508952000
22. Chin J, Paloj JP, Puiliovil J, et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2005;25(42):9644-9703. doi:10.1523/JNEUROSCI.2980-05.2005
23. Chin J, Paloj JP, Yu GU, Kojima N, Masliah E, Mucke L. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J Neurosci. 2004;24(19):4692-4697. doi:10.1523/JNEUROSCI.0057-04.2004
24. Dourlen P, Fernandez-Gomez FJ, Dupont C, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of tau pathology. Mol Psychiatry. 2017;22(6):874-883. doi:10.1038/mp.2016.59
25. Haas LT, Strittmatter SM. Oligomers of amyloid β prevent physiological activation of the cellular prion protein-metabotropic glutamate receptor 5 complex by glutamate in Alzheimer disease. J Biol Chem. 2016;291(33):17112-17121. doi:10.1074/jbc.M116.720664
26. Ittner LM, Ke KD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387-397. doi:10.1016/j.cell.2010.06.036
27. Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synaptic loss in Alzheimer mice. Ann Neurol. 2015;77(6):953-971. doi:10.1002/ana.24394
28. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al; European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease Neuroimaging Initiative. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010;51(2):654-664. doi:10.1016/j.neuroimage.2010.02.064
29. Mckhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263-269. doi:10.1016/j.jalz.2011.03.005
30. Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol. 1980;7(5):486-488. doi:10.1002/ana.40007516
31. Sheikh J, Yesavage J. Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. In: Brind TL, ed. Clinical Gerontology: A Guide to Assessment and Intervention. New York: Haworth Press; 1986:165-173.
32. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: A practical method for grading
the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198. doi:10.1016/0022-3956(75)90026-6
44. Baselga J, Cervantes A, Martinelli E, et al. Phase I safety, pharmacokinetics, and inhibition of SRC activity study of saracatinib in patients with solid tumors. Clin Cancer Res. 2010;16(19):4876-4883. doi:10.1158/1078-0432.CCR-10-0748
45. Chen K, Lee W, Kuang X, et al. Twelve-month glucose metabolism declines in an empirically pre-defined statistical region-of-interest in amyloid-positive persons with Alzheimer’s dementia and mild cognitive impairment: updated ADNI findings. Paper presented at: Human Amyloid Imaging. January 19, 2018, Miami, FL.
46. Mohs RC, Knopman D, Petersen RC, et al; the Alzheimer’s Disease Cooperative Study. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. Alzheimer Dis Assoc Disord. 1997;11(suppl 2):S13-S21. doi:10.1097/00002093-199700112-00003
47. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356-1364. doi:10.1176/ajp.141.11.1356
48. Galasko D, Bennett D, Sano M, et al; the Alzheimer’s Disease Cooperative Study. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. Alzheimer Dis Assoc Disord. 1997;11(suppl 2):533-539. doi:10.1097/00002093-199700112-00005
49. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-2414. doi:10.1212/WNL.43.11.2412-a
50. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308-2314. doi:10.1212/WNL.44.12.2308
51. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5)(suppl 6):S10-S16. doi:10.1212/WNL.48.5_Suppl_6.105
52. Holland D, Dale AM; Alzheimer’s Disease Neuroimaging Initiative. Nonlinear registration of longitudinal images and measurement of change in regions of interest. Med Image Anal. 2011;15(4):489-497. doi:10.1016/j.media.2011.02.005
53. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-980. doi:10.1016/j.neuroimage.2006.01.021
54. Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):35. doi:10.1186/s13195-015-0119-0