Abstract

We present in this work energy levels, oscillator strengths, radiative decay rates and fine structure collision strengths for the Mg III and Al IV ions. The 11 configurations:(1s²) 2s²2p⁶, 2s²2p³3l, 2s²p⁶3l, 2s²2p⁵4l (l ≤ n − 1, where n is the principal quantum number), yielding the lowest 75 levels are used. The collisional data for these two ions are missing in the literature, especially the database CHIANTI, this is the principal motivation behind the present work. Calculations have been performed using the AUTOSTRUCTURE code. AUTOSTRUCTURE treats the scattering problem in the distorted wave approach. Fine structure collision strengths are calculated for a range of electron energies from 10 Ry to 240 Ry. The atomic structure data are compared to available experimental and theoretical results.

Keywords: plasma diagnostics; X-ray spectra; atomic structure; impact excitation by electrons; line broadening

1. Introduction

Neon-like ions have a high abundance over a wide range of electron temperatures and densities because of their closed-shell configuration ground state. Due to its various applications in astrophysics, plasma physics and spectroscopy, they have been the subject of investigation for many years. The ions of this sequence play an important role in the diagnostics of a wide variety of laboratory and astrophysical plasmas. For example, the energies and transition rates are used for the determination of radiative opacities of stellar envelopes, the Opacity Project (Seaton, 1987), for spectral diagnostics of solar, stellar and laboratory plasmas, for plasma modelling and for laser research, particularly in the soft X-ray region (Lee et al., 1987; Elton, 1990; Matthews et al., 1985; Feldman et al., 1984). They are used to study transport and confinement of high-Z impurity ions in tokamaks. Furthermore, oscillator strengths are important for the study of laboratory and solar spectra (Borges et al., 2004). Mg III and Al IV are two ions belonging to the neon-like sequence.

The Mg III spectrum was extensively studied by Anderson (1971). Later, an experimental work on this spectrum was published by Lundström (1973). An extensive level classification and wavelengths have been compiled by Kaufman & Martin (1991a). Hibbert et al. (1993) have calculated configuration-interaction wave functions in intermediate coupling for the states 2s²2p⁶, 2s²2p³3l (l = 0, 1, 2), and 2s²2p⁶3l (l = 0, 1, 2) of neon-like ions Ne I through Kr XXVII, incorporating variationally optimized orbitals and a modified Breit-Pauli Hamiltonian into the code CIV3. They have presented the percentage LS compositions of the LSJ levels, together with their energies, oscillator strengths, and probabilities of transition between them. Lifetimes of 2s²2p⁵3l levels have been also presented. More recently and using the multi-configuration Hartree-Fock (MCHF) method with relativistic effects, Froese Fischer & Tachiev (2004) have obtained energy levels and transitions probabilities for transitions between computed levels for the Be-like (4 ≤ Z ≤ 12) to Ne-like (10 ≤ Z ≤ 24) sequences including the Mg III and Al IV ions (Z is the nuclear charge). A recent experimental study of Mg III was published (Brown et al., 2009). Further analyzes of the Mg III spectra have been performed and about 60 unobserved levels have been predicted (Liang et al., 2010) using the multichannel quantum defect theory (MQDT). The most recent results are those of Beiersdorfer et al. (2011), where the radiative decay rates of the (2s²2p⁵5l)⁰ = 0 level in neon-like ions have been calculated for nuclear charges ranging from Z = 10 to Z = 110.

In Artru & Kaufman (1975), a total of 225 new lines of Al IV have been observed in the wavelength range of 400–4700 Å, leading to the determination of all of the levels of the 2p⁵4p, 4d, 4f, 5s, 5f, and 5g configurations. Martin & Zalubas (1979) have published energy levels for the atom and all positive ions of aluminium, where the authors have critically compiled their data using the published material on measurements and analyzes of the optical spectra. An extensive level classification and wavelengths for Al IV have been compiled by Kaufman & Martin (1991b). A more recent compilation of atomic transition probabilities for about 5000 lines of aluminium in all its ionization stages (except the hydrogenic one) has been published by

*Corresponding author
Email address: haelabidi@uqu.edu.sa, haykel.elabidi@fsh.rnu.tn (Haykel Elabidi)
Kelleher & Podobedova (2008).

To our best knowledge, there are no distorted wave fine structure collision strengths for the Mg III and Al IV ions to compare with. Although the number of published papers dedicated to the atomic structure of Mg III and Al IV is important, the only published electron scattering calculations are those of Ganas & Green (1980) and Liang & Badnell (2010). In Ganas & Green (1980), integrated cross sections for incident electron energies ranging from threshold to 5 keV were calculated for the 2p3s resonance transition along the neon-like sequence. The authors in Ganas & Green (1980) used an analytic atomic independent particle model potential adjusted to experimental energy levels to generate wave functions for the ground and excited states of the considered ions. The obtained wave functions are used in conjunction with the Born approximation and the LS-coupling scheme to obtain generalized oscillator strengths, which are used to calculate integrated cross sections. The method of deriving generalized oscillator strengths and the formula used to obtain cross sections may be found in Ganas (1998). In Liang & Badnell (2010), electron impact excitation data were calculated for Ne-like ions from Na II to Kr XXVII using the intermediate-coupling frame transformation R-matrix approach, and the results of effective collision strengths were presented.

The principal motivation behind the present work is the missed collisional data for the two ions Mg III and Al IV in many databases. These data can be useful for many astrophysical investigations. Besides the importance of the structural and collisional data of multicharged ions in astrophysical and laboratory plasmas investigations, collision strengths have another importance which is related to another field of investigation: the comparison of these data to the accuracy of the atomic and collisional ones. This represents an other motivation and interest of the present work. Indeed, our line broadening method is ab initio, this means that all the parameters required for the line broadening calculations such as radiative atomic data (energy levels, oscillator strengths...) and collisional data (collision strengths or cross sections, scattering matrices...) are evaluated during the calculation and not taken from other data sources. Consequently, the accuracy of our broadening parameters is strongly related to the accuracy of the atomic and collisional ones. This represents an other motivation and interest of the present work.

The aim of this paper is to provide fine structure collision strengths for Mg III and Al IV transitions in the distorted wave approximation. The atomic structure has been calculated for the 75 levels arising from the eleven configurations \((1s^2)\ 2s^2 2p^6, 2s^2 2p^5 3l, 2s2p^63l, 2s^2 2p^5 4l (l \leq n - 1)\). Collision strengths have been computed for transitions from the ground and the four first excited levels to all the levels. The incoming electron energies used in our calculations are between 10 Ry and 240 Ry. Discussions and investigations of convergence of collision strengths with energy and with total angular momentum \(J^T\) are also given. Only the atomic structure data are compared to available experimental and theoretical results.

2. Atomic structure and electron-ion scattering

The atomic structure has been calculated using the AUTOSTRUCTURE (AS) code (Badnell, 1986, 1997) by constructing target wavefunctions using radial wavefunctions calculated in a scaled Thomas-Fermi-Dirac-Amaldi statistical model potential using the Breit-Pauli intermediate coupling (Bethe & Salpeter, 1957). The radial scaling parameters \(\lambda_{nl}\) (depending on \(n\) and \(l\)) are determined by minimizing the sum of the energies of all the target terms, computed in \(LS\) coupling, i.e. neglecting all relativistic effects. In this code, besides the one-body and the two-body fine structure interactions, the two-body non-fine structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit are incorporated. More details of how these interactions are incorporated are reported in Badnell (1997).

Recently, the Breit-Pauli Distorted Wave (BPDW) approach for electron impact excitation of atomic ions has been implemented in the AS code (Badnell, 2011), which we use for the scattering problem in the present paper. We note that the distorted wave approximation (DW) is adequate for moderately and highly charged ions and the agreement between the DW and more sophisticated methods (close coupling for example) is good. Collision strengths are calculated at the same set of final scattered energies for all transitions: zero gives all threshold transitions, for example. For large \(l\) values, a ‘top up’ for dipole transitions makes use of the sum rule of Burgess (1974). For higher multipoles, a geometric series in energy in combination with the degenerate energy limit (Burgess, 1970) is used to take into account of large \(l\) contributions to collision strengths.

3. Results and discussions

3.1. Structure

Eleven configurations: \((1s^2)\ 2s^2 2p^6, 2s^2 2p^5 3l, 2s2p^63l, 2s^2 2p^5 4l (l \leq n - 1)\) have been used in AUTOSTRUCTURE to study the atomic structure of the Mg III and Al IV ions. This set of configurations gives rise to 75 fine structure levels. The radial scaling parameters \(\lambda_{nl}\) used in the code AUTOSTRUCTURE for the two ions are listed in the Table 1. The energy levels of Mg III are listed in Table 2. We have presented a comparison of our Mg III energies with the NIST (Kramida et al., 2012) values, with those of Froese Fischer & Tachiev (2004) and with the results of Liang & Badnell (2010). The wavefunctions in Froese Fischer & Tachiev (2004) were determined using the multi-configuration HartreeFock (MCHF) method with relativistic effects included through the BreitPauli Hamiltonian,
where only the orbit-orbit interaction was omitted. In Liang & Badnell (2010), the authors used the code AUTOSTRUCTURE but with a 31-configuration model. Our ground level 1s22s2p5 1S0 energy has been shifted by +24993 cm\(^{-1}\). This shift is obtained by the difference between the center of gravity of levels 2−27 for calculated and compiled energies by NIST (Kramida et al., 2012). After adjustment, our results become in an excellent agreement (less than 1\% with those of Froese Fischer & Tachiev (2004) and Liang & Badnell (2010). It is important to note that, even the authors in Liang & Badnell (2010) used more configurations than we used in the present work, we prefer to present our energy levels and compare them with other results. This is because the collision strengths presented in the next subsection are calculated using our 11-configuration model energies. So, it is better to present coherent structural and collisional data derived from the same model. We present in Table 3 our line strengths, oscillator strengths and transition probabilities for spontaneous emission for the Mg III allowed transitions (E1). The comparison between our results and those of the MCHF calculations shows that the relative differences between them are about 12\% for line strengths, 11\% for oscillator strengths and 10\% for transition probabilities. Our Al IV adjusted energies are also compared with the MCHF (Froese Fischer & Tachiev, 2004) results and results of Liang & Badnell (2010) in Table 4. The same procedure of the ground level adjustment has been adopted as for Mg III, and we have shifted the ground level energy by +22339 cm\(^{-1}\). Excellent agreement has been found between our results and the two other ones. Line strengths, oscillator strengths and transition probabilities of Al IV are presented in Table 5. The relative differences between our results and those of Froese Fischer & Tachiev (2004) are of the same order of magnitude as those of the Mg III ion. The averaged relative difference between the two methods is about 10\%. In the following, some common remarks of the two ions will be drawn. Firstly, an inversion of some levels is found between our energies and those of NIST (Kramida et al., 2012) and Froese Fischer & Tachiev (2004). The inverted levels are denoted by asterisks in Tables 2 and 4. Secondly, our adjusted energies have been used (instead of the calculated ones) to evaluate the present radiative data (line strengths, oscillator strengths and transition probabilities). Thirdly, the worse disagreement for level energies is about 1.6\% and has been found for the level 2s22p53p 1S0 (level 15 in Tables 2 and 4). We found that the energy of level 15 before the adjusting process had the best agreement with the MCHF results of Froese Fischer & Tachiev (2004) (about 1.6\%), and all the other energies have a relative difference of about 3\%. After adjustment of our ground level, all the level energies become in agreement with the MCHF results except the energy of the level 15. Finally, we found that the highest difference (about 30\%) between our results and those of the MCHF method (Froese Fischer & Tachiev, 2004) has been found for the two transitions 2s22p53s 1P1−2s22p53p 3D2 and 2s22p53s 1P1−2s22p53p 3D1 (transitions 5−8 and 5−9 in Tables 3 and 5).

3.2. Collision problem

Collision problem has been treated in the distorted wave approximation using the AUTOSTRUCTURE code. We present in Tables 6, 7, 8, 9 and 10 Mg III collision strengths from the ground level and from the first four excited levels to all the other levels. Our collision strengths have been computed for five energies 10, 20, 40, 80 and 160 Ry. In Tables 11, 12, 13, 14 and 15 Al IV collision strengths from the ground level and from the first four excited levels to all the other levels are presented. The incoming electron energies used are 15, 30, 60, 120 and 240 Ry. To our best knowledge, there are no distorted wave collision strengths for Mg III or Al IV to compare with. In Liang & Badnell (2010), electron impact excitation data were calculated for Ne-like ions from Na II to Kr XXVII using the intermediate-coupling frame transformation R-matrix approach, and only the results of effective collision strengths were presented. Any other collision calculations for these two ions will be very helpful for two reasons. Firstly, to compare with our results and to decide about their applicability in astrophysics and plasma diagnostics. Secondly, since collision strengths (and other collisional parameters like scattering matrices, cross sections...) are used in our line broadening calculations, their comparison with collision strengths derived from other different methods will be very interesting for the evaluation of our line broadening results. We hope that the structural and collisional data presented in this paper will be useful in spectral diagnostics and modelling of astrophysical and laboratory plasmas, laser development and tokamaks research.

4. Conclusion

We have calculated energy levels, oscillator strengths and radiative decay rates for the two neon-like ions Mg III and Al IV. We have used eleven configurations: (1s2) 2s22p6, 2s22p53l, 2s2p63l, 2s2p54l (l \leq n − 1) yielding 75 fine structure levels. The atomic structure has been studied using the AUTOSTRUCTURE code. We have compared our level energies with the NIST values and with the multiconfiguration Hartree-Fock ones. We find that the agreement (after adjustment of the ground level energy) is much better than 1\%. The agreement for the oscillator strengths and the radiative decay rates is about 12\%.

Fine structure collision strengths have been calculated in the distorted wave approximation using the AUTOSTRUCTURE code at five electron energies: 10, 20, 40, 80 and 160 Ry for Mg III and 15, 30, 60, 120 and 240 Ry for Al IV. We have presented our collision strengths between the ground and the four first excited levels to all other
Acknowledgments

This work has been supported by the Tunisian research unit 05/UR/12-04.

References

Andersson, E. & Johannesson, G.-A., Extended Analysis of the Spectrum of Mg III, Phys. Scr., 3,203-210, 1971
Artru, M.-C. & Kaufman, V., Extension of the analysis of triply ionized aluminum (Al IV), J. Opt. Soc. Am., 65, 594-599, 1975
Badnell, N.R., Dielectric recombination of Fe(22+) and Fe(21+), J. Phys. B: At. Mol. Opt. Phys., 19, 3827-3835, 1986
Badnell, N.R., On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, J. Phys. B: At. Mol. Opt. Phys., 30, 1-11, 1997
Badnell, N.R., A Breit-Pauli distorted wave implementation for AU-TOSTRUCTURE, Comput. Phys. Comm., 182, 1528-1535, 2011
Beiersdorfer, P., Obst, M. & Safronova, U.I., Radiative decay probabilities of the (2s^22p_i^j 3s1/2)_{J=0} level in neon-like ions, Phys. Rev. A, 83, 012514, 2011
Bethe, H.A. & Slapeter, E.E., Quantum Mechanics of One-and Two-Electron Atoms, Springer, Berlin, Göttingen, 1957
Borges, P.O., Cavalcanti, G.H., Trigueiros, A.G. & Jupén, C., Weighted oscillator strengths and lifetimes for the S VII spectrum, J. Quant. Spectrosc. Radiat. Transfer, 83, 751-763, 2004
Brown, C.M., Kramida, A.E., Feldman, U. & Reader, J., Extension of the resonance line series of Mg III, Phys. Scr., 80, 065302, 2009
Burgess, A., Coulomb integrals: tables and sum rules, J. Phys. B: At. Mol. Phys., 7, L364-367, 1974
Burgess, A., Hummer, D.G. & Tully, J.A., Electron Impact Excitation of Positive Ions, Phil. Trans. R. Soc. Lond. A 266, 225-279, 1970
Elabidi, H., Ben Nessib, N., Cornille, M., Dubau, J. & Sahal-Bréchot, S., Electron impact broadening of spectral lines in Be-like ions: quantum calculations, J. Phys. B: At. Mol. Opt. Phys., 41, n° 025702, 2008
Elabidi, H. & Sahal-Bréchot, S., Checking the dependence on the upper level ionization potential of electron impact widths together with corresponding quantum calculations, Eur. Phys. J. D, 61, 285-290, 2011
Elabidi, H., Sahal-Bréchot, S. & Ben Nessib, N., Quantum Stark broadening of 3p^1p spectral lines in Li-like ions: Z-scaling and comparison with semi-classical perturbation theory, Eur. Phys. J. D, 54, 51-64, 2009
Elabidi, H., Ben Nessib, N. & Sahal-Bréchot, S., Electron impact broadening of Si IV spectral lines: Comparison with recent experiments, J. Quant. Spectrosc. Radiat. Transfer, 113, 1606-1611, 2012
Elabidi, H., Sahal-Bréchot, S., Dimitrijevic, M.S. & Ben Nessib, N., Quantum Stark broadening data for the C IV, N V, O VI, F VII and Ne VIII resonance doublets, Mon. Not. R. Astron. Soc., 417, 2624-2630, 2011
Elton, R.C., "X-Ray Lasers" (Academic Press Inc., 1990), p 114
Feldman, U., Seely, J.F. & Bhatia, A.K., Scaling of collisionally pumped 3s—3p lasers in the neon isoelectronic sequence, J. App. Phys., 56, 2475-2478, 1984
Froese Fischer, C. & Tachiev, G., Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences, At. Data Nucl. Data Tables, 87, 1-184, 2004
Ganas, P.S. & Green, A.E.S., Electron impact excitation of the neon isoelectronic sequence, J. Chem. Phys., 73, 3891-3896, 1980
Ganas, P.S., Electron impact excitation cross sections for phosphorus, Eur. Phys. J. D., 1, 165-167, 1998
Hibbert, A., Ledourneuf, M. & Mohan, M., Energies, Oscillator Strengths, and Lifetimes for Neon-like Ions Up to Kr XXVII, At. Data Nucl. Data Tables, 53, 23-112, 1993
Kaufman, V. & Martin, W.C., Wavelengths and Energy Level Classifications of Magnesium Spectra for All Stages of Ionization (Mg I through Mg XII), J. Phys. Chem. Ref. Data, 20, 83-152, 1991
Kaufman, V. & Martin, W.C., Wavelengths and Energy Level Classifications for the Spectra for Aluminum (Al I through Al XIII), J. Phys. Chem. Ref. Data, 20, 775-858, 1991
Kelleher, D.E. & Podobedova, I.I., Atomic Transition Probabilities of Aluminum. A Critical Compilation, J. Phys. Chem. Ref. Data, 37, 709-911, 2008
Kramida, A., Balchenko, Yu.V., Reader, J. and NIST ASD Team (2012). NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd
Lee, T.N., McLean, E.A. & Elton, R.C., Soft X-ray lasing in neonlike germanium and copper plasmas, Phys. Rev. Lett., 59, 1185-1188, 1987
Liang, G.Y. & Badnell, N.R., R-matrix electron-impact excitation data for the Ne-like iso-electronic sequence, Astron. Astrophys., 518, A64, 2010
Liang, L., He, S.-K., Zhou, C., Zhang, L. & Zhang, H.-P., Analysis of the J=1 energy levels of Mg III by multichannel quantum defect theory, Phys. Scr., 82, 025301, 2010
Lundström, T., Ground Term Combinations of Mg III, Phys. Scr.,7, 62-64, 1973
Martin, W. C. & Zalubas, R., Energy Levels of Aluminum, Al I through Al XIII, J. Phys. Chem. Ref. Data, 8, 817-864, 1979
Martin, W. C. & Zalubas, R., Energy levels of magnesium, Mg I through Mg XVII, J. Phys. Chem. Ref. Data, 9, 1-58, 1980
Matthews, D.L. et al., Demonstration of a soft X-ray amplifier, Phys. Rev. Lett., 54, 110-113, 1985
Seaton, M.J., Atomic data for opacity calculations. I - General description, J. Phys. B: At. Mol. Phys., 20, 6363-6378, 1987
Table 1: Radial scaling parameters λ_{nf} used in AUTO Structure.

Ion	1s	2s	2p	3s	3p	3d	4s	4p	4d	4f
Mg	1.6229	1.1129	1.0581	0.9879	0.9582	0.9140	1.0035	0.9466	0.9115	0.8629
Al	1.6596	1.1231	1.0641	1.0068	0.9709	0.9411	1.0243	0.9599	0.9401	0.9034

Table 2: Mg III energy levels in cm$^{-1}$. E: present results, E_{NIST}: energies reported by NIST (Kramida et al., 2012) and taken from Martin & Zalubas (1980), E_{MCHF}: Hartree-Fock energies (Froese Fischer & Tachiev, 2004), E_{LB10}: energies calculated in Liang & Badnell (2010) by AUTO Structure using 31 configurations. Levels denoted by asterisks (*) are inverted compared to our values.

l	Conf.	Level	E	E_{NIST}	E_{MCHF}	E_{LB10}
1	$2s^22p^6$	$1S_0$	0	0	0	0
2	$2s^22p^3$3s	$3P_2$	426260	425640.3	425638.16	424178.0
3	$2s^22p^3$3s	$3P_1$	427481	426868.1	426861.97	425391.0
4	$2s^22p^3$3s	$3P_0$	428462	427852.1	427834.77	426313.0
5	$2s^22p^3$3s	$1P_1$	432100	431530.0	431569.27	430399.0
6	$2s^22p^3$3p	$3S_1$	468025	467378.5	467378.97	465349.0
7	$2s^22p^3$3p	$3D_3$	474034	474053.2	474052.45	472851.0
8	$2s^22p^3$3p	$3D_2$	474656	474655.0	474651.63	473453.0
9	$2s^22p^3$3p	$3D_1$	475504	475502.9	475492.16	474277.0
10	$2s^22p^3$1D_2	477190	478846.1	477440.27	476441.0	
11	$2s^22p^3$1D_2	478245	479456.0	478376.48	477572.0	
12	$2s^22p^3$1D_2	478609	479265.3	478844.95	477886.0	
13	$2s^22p^3$1D_2	479049	479435.7	479272.29	478393.0	
14	$2s^22p^3$1D_2	479238	478374.5	479455.80	478598.0	
15	$2s^22p^3$1D_2	505651	496012.1	496012.43	505219.0	
16	$2s^22p^3$3P_0	529081	530178.2	530181.62	528446.0	
17	$2s^22p^3$3P_1	529326	530420.6	530422.66	528695.0	
18	$2s^22p^3$3P_2	529869	530962.9	530961.40	529244.0	
19	$2s^22p^3$3P_3	530598	531563.0	531563.27	530078.0	
20	$2s^22p^3$3P_3	530931	531833.1	531828.43	530383.0	
21	$2s^22p^3$3P_3	531752	532725.7	532715.89	531233.0	
22	$2s^22p^3$3P_3	532080	532971.2	532973.68	531550.0	
23	$2s^22p^3$3P_3	533321	534197.7	534771.87	532853.0	
24	$2s^22p^3$3D_2	533807	534776.9	534205.42	533310.0	
25	$2s^22p^3$3D_2	533931	534923.6	534918.56	533429.0	
26	$2s^22p^3$3D_2	534164	535179.6	535173.97	533690.0	
27	$2s^22p^3$3P_1	535401	536152.0	536156.03	534805.0	
28	$2s^22p^3$3P_0	534510	545813.46	545193.0		
29	$2s^22p^3$3P_1	545231	546532.94	545933.0		
30	$2s^22p^3$3P_0	546705	548017.37	547312.0		
31	$2s^22p^3$3P_0	547412	548720.99	548088.0		
32	$2s^22p^3$3P_1	559232	559009.0			
33	$2s^22p^3$3P_0	560481	560898.0			
34	$2s^22p^3$3P_0	560788	561268.0			
35	$2s^22p^3$3P_0	561227	561793.0			
36	$2s^22p^3$3P_0	561434	562149.0			
37	$2s^22p^3$3P_0	562890	563533.0			
38	$2s^22p^3$3D_2	562912	563365.0			
39	$2s^22p^3$3D_2	563205	563767.0			
40	$2s^22p^3$3P_1	563262	563854.0			
41	$2s^22p^3$3P_0	576696	574235.0			
42	$2s^22p^3$3D_2	579959	580886.0			
i	Conf.	Level	E_{NIST}	E_{MCHF}	E_{LB10}	
----	-------	-------	-------------------	-------------------	-----------------	
43	$2s^22p^34d$	$^3P_1^0$	580127	580886.0		
44	$2s^22p^34d$	$^3P_2^0$	580457	581443.0		
45	$2s^22p^34d$	$^3F_4^0$	580476	581590.0		
46	$2s^22p^34d$	$^3F_3^0$	580662	581800.0		
47	$2s^22p^34d$	$^1D_2^0$	581092	582275.0		
48	$2s^22p^34d$	$^3D_3^0$	581187	582408.0		
49	$2s^22p^34d$	$^3D_1^0$	581937	583236.0		
50	$2s^22p^34f$	$^3D_1^0$	582249	583537.0		
51	$2s^22p^34f$	$^3D_2^0$	582260	583549.0		
52	$2s^22p^34f$	$^3G_5^0$	582394	583687.0		
53	$2s^22p^34f$	$^1G_4^0$	582397	583688.0		
54	$2s^22p^34f$	$^3D_3^0$	582477	583775.0		
55	$2s^22p^34f$	$^1D_2^0$	582486	583781.0		
56	$2s^22p^34f$	$^1F_3^0$	582614	583917.0		
57	$2s^22p^34f$	$^3F_4^0$	582616	583920.0		
58	$2s^22p^34d$	$^3F_3^0$	582953	584052.0		
59	$2s^22p^34d$	$^1F_3^0$	583068	584189.0		
60	$2s^22p^34d$	$^3D_2^0$	583071	584184.0		
61	$2s^22p^34d$	$^1P_1^0$	584053	585339.0		
62	$2s^22p^34f$	$^3F_3^0$	584676	585905.0		
63	$2s^22p^34f$	$^3G_3^0$	584682	585907.0		
64	$2s^22p^34f$	$^3F_2^0$	584683	585910.0		
65	$2s^22p^34f$	$^3G_4^0$	584685	585911.0		
66	$2s^2p^53s$	$^3S_1^0$	760404	761263.0		
67	$2s^2p^53s$	$^1S_0^0$	771523	771417.0		
68	$2s^2p^53p$	$^3P_0^0$	807679	807900.0		
69	$2s^2p^53p$	$^3P_1^0$	807716	807979.0		
70	$2s^2p^53p$	$^3P_2^0$	807801	808146.0		
71	$2s^2p^53p$	$^1P_1^0$	810617	812511.0		
72	$2s^2p^53d$	$^3D_2^0$	862962	865827.0		
73	$2s^2p^53d$	$^3D_1^0$	862962	865822.0		
74	$2s^2p^53d$	$^3D_3^0$	862962	865835.0		
75	$2s^2p^53d$	$^1D_2^0$	863989	866676.0		
Table 3: Line strengths (S), oscillator strengths (f_{ij}), and radiative decay rates (A_{ji}) for some Mg III lines. Our results (Present) are compared with the Hartree-Fock (MCHF) values (Froese Fischer & Tachiev, 2004).

Transition	S	f_{ij}	A_{ji} (s$^{-1}$)			
$i - j$	Present	MCHF	Present	MCHF		
1 - 3	1.22E−02	8.946E−03	1.594E−02	1.160E−02	6.477E+08	4.700E+08
1 - 5	2.113E−01	1.687E−01	2.773E−01	2.212E−01	1.151E+10	9.160E+09
1 - 17	2.424E−03	1.931E−03	3.897E−03	3.111E−03	2.428E+08	1.946E+08
1 - 23	1.367E−01	1.220E−01	2.215E−01	1.980E−01	1.401E+10	1.257E+10
2 - 6	3.792E+00	3.404E+00	9.621E−02	8.631E−02	1.866E+08	1.672E+08
2 - 7	1.390E+01	1.282E+01	4.035E−01	3.772E−01	4.388E+08	4.212E+08
2 - 8	3.494E+00	3.226E+00	1.027E−01	9.605E−02	1.605E+08	1.539E+08
2 - 9	4.523E−01	3.980E−01	1.353E−02	1.205E−02	3.648E+07	3.331E+07
2 - 10	3.438E+00	3.015E+00	1.064E−01	9.489E−02	1.840E+08	1.698E+08
2 - 11	5.234E−01	4.240E−01	1.653E−02	1.359E−02	4.966E+07	4.201E+07
2 - 12	2.862E+00	2.885E+00	9.102E−02	9.326E−02	1.664E+08	1.761E+08
2 - 14	1.183E+00	1.219E+00	3.809E−02	3.985E−02	1.188E+08	1.283E+08
3 - 6	1.703E+00	1.539E+00	6.990E−02	6.314E−02	7.663E+07	6.914E+07
3 - 8	6.289E+00	5.821E+00	3.004E−01	2.817E−01	2.675E+08	2.575E+08
3 - 9	3.325E+00	3.024E+00	1.616E−01	1.489E−01	2.486E+08	2.349E+08
3 - 10	1.054E+00	9.421E−01	5.304E−02	4.825E−02	5.245E+07	4.940E+07
3 - 11	3.869E−01	3.543E−01	1.989E−02	1.848E−02	3.418E+07	3.271E+07
3 - 12	2.561E+00	2.401E+00	1.326E−01	1.264E−01	1.387E+08	1.367E+08
3 - 13	1.873E+00	1.767E+00	9.785E−02	9.379E−02	5.207E+08	5.155E+08
3 - 14	5.431E−01	5.568E−01	2.846E−02	2.965E−02	5.085E+07	5.470E+07
4 - 6	4.969E−01	4.531E−01	5.972E−02	5.443E−02	2.078E+07	1.892E+07
4 - 9	2.149E+00	2.056E+00	3.070E−01	2.976E−01	1.511E+08	1.503E+08
4 - 11	1.769E+00	1.398E+00	2.674E−01	2.146E−01	1.474E+08	1.219E+08
4 - 14	1.515E+00	1.570E+00	2.337E−01	2.462E−01	1.339E+08	1.459E+08
5 - 6	3.399E−02	3.114E−02	1.236E−03	1.129E−03	1.064E+06	9.658E+05
5 - 8	1.735E−01	1.365E−01	7.477E−03	5.953E−03	5.419E+06	4.422E+06
5 - 9	3.238E−02	2.219E−02	1.423E−03	9.868E−04	1.788E+06	1.270E+06
5 - 10	5.574E+00	5.409E+00	2.545E−01	2.512E−01	2.071E+08	2.116E+08
5 - 11	3.270E+00	3.404E+00	1.528E−01	1.613E−01	2.170E+08	2.357E+08
5 - 12	4.479E+00	3.932E+00	2.109E−01	1.882E−01	1.826E+08	1.683E+08
5 - 13	7.555E−02	5.492E−02	3.591E−03	2.653E−03	1.584E+07	1.208E+07
5 - 14	2.659E+00	2.169E+00	1.269E−01	1.051E−01	1.881E+08	1.608E+08
i	Conf.	Level	E	E_{\text{NIST}}	E_{\text{MCHF}}	E_{\text{LB10}}
-----	-------	---------	-----	-----------------	-----------------	-----------------
1	2s^22p^6	^1S_0	0	0	0	0
2	2s^22p^3s^1	^3P_0	616706	616644.2	616643.56	615386.0
3	2s^22p^3s^3	^3P_2	618536	618473.9	618470.83	617213.0
4	2s^22p^3s^3	^3P_0	620113	620060.1	620050.63	618711.0
5	2s^22p^3s^1	^1P_1	624841	624717.5	624721.95	623896.0
6	2s^22p^3p^3	^3P_1	671875	671632.5	671634.22	669906.0
7	2s^22p^3p^3	^3D_1	680859.8	680859.51	679917.0	
8	2s^22p^3p^3	^3D_0	681390	681683.3	681680.35	680740.0
9	2s^22p^3p^3	^3D_1	682981.8	682968.11	682025.0	
10	2s^22p^3p^3	^3P_0	685179	687830.5	687823.79*	687014.0
11	2s^22p^3p^3	^1P_1	686612	686959.1*	686959.06*	686396.0
12	2s^22p^3p^0	^3P_0	687302	688309.6	688303.59*	687617.0
13	2s^22p^3p^3	^1D_2	687816	685752.8*	685732.60*	684895.0
14	2s^22p^3p^3	^3P_1	688162	688649.4	688642.76	687988.0
15	2s^22p^3p^3	^1S_0	725669	714096.9	714097.28	724385.0
16	2s^22p^3d^3	^3P_0	757933	759193.4	759195.79	758177.0
17	2s^22p^3d^3	^3P_1	758340	759566.8	759566.88	758595.0
18	2s^22p^3d^3	^3P_0	759218	760472.3	760466.93	759487.0
19	2s^22p^3d^0	^3P_0	760660	761688.4	761689.66	761052.0
20	2s^22p^3d^3	^3P_1	761318	762272.5	762273.51	761666.0
21	2s^22p^3d^3	^3P_0	762575	763613.6	763602.97	762953.0
22	2s^22p^3d^3	^1P_1	763443	764297.1	764302.67	763801.0
23	2s^22p^3d^3	^3D_1	765871	766880.8	766881.57*	766393.0
24	2s^22p^3d^3	^1D_2	766039	767035.7*	767032.92*	766489.0
25	2s^22p^3d^3	^3D_0	766293	767345.5	767340.51	766741.0
26	2s^22p^3d^3	^3D_1	766675	767750.6	767748.86	767164.0
27	2s^22p^3d^3	^1P_1	7700620	770836.9	770841.05	770877.0
28	2s^22p^4s^3	^3P_0	799949	801874.46	801987.0	
29	2s^22p^4s^1	^3P_1	800994	802909.49	803031.0	
30	2s^22p^4s^3	^3P_0	803354	805291.23	805296.0	
31	2s^22p^4s^1	^3P_1	804316	806233.72	806284.0	
32	2s^22p^4p^4	^3S_1	820251	821115.0		
33	2s^22p^4p^3	^3D_1	822296	823847.0		
34	2s^22p^4p^3	^3D_0	822647	824347.0		
35	2s^22p^4p^1	^1P_1	823307	825112.0		
36	2s^22p^4p^3	^3P_2	823639	825604.0		
37	2s^22p^4p^3	^3P_0	825834	827700.0		
38	2s^22p^4p^3	^3D_1	825921	827570.0		
39	2s^22p^4p^1	^1D_2	826403	828182.0		
40	2s^22p^4p^3	^3P_1	826453	828262.0		
41	2s^22p^4p^1	^1S_0	843570	842124.0		
42	2s^22p^4d^3	^3P_0	849638	851762.0		

Table 4: Al IV energy levels in \(\text{cm}^{-1}\). \(E\): present results, \(E_{\text{NIST}}\): energies reported by NIST (Kramida et al., 2012) and taken from Martin & Zaubas (1979), \(E_{\text{MCHF}}\): Hartree-Fock energies (Froese Fischer & Tachiev, 2004), \(E_{\text{LB10}}\): energies calculated in Liang & Badnell (2010) by AUTOSTRUCTURE using 31 configurations. Levels denoted by asterisks (*) are inverted compared to our values.
\(i\)	Conf.	Level	\(E\)	\(E_{\text{NIST}}\)	\(E_{\text{MCHF}}\)	\(E_{\text{LB10}}\)
43	\(2s^22p^54d\)	\(^3\)P\(_1\)	849921	852068.0		
44	\(2s^22p^54d\)	\(^3\)P\(_2\)	850465	852670.0		
45	\(2s^22p^54d\)	\(^3\)F\(_3\)	850529	852914.0		
46	\(2s^22p^54d\)	\(^3\)F\(_3\)	850896	853306.0		
47	\(2s^22p^54d\)	\(^3\)D\(_3\)	851575	854328.0		
48	\(2s^22p^54d\)	\(^1\)D\(_2\)	851804	854036.0		
49	\(2s^22p^54d\)	\(^3\)D\(_1\)	853286	855841.0		
50	\(2s^22p^54d\)	\(^3\)F\(_3\)	854430	856796.0		
51	\(2s^22p^54f\)	\(^3\)D\(_1\)	854579	857299.0		
52	\(2s^22p^54f\)	\(^3\)D\(_2\)	854613	857331.0		
53	\(2s^22p^54d\)	\(^3\)D\(_2\)	854654	857045.0		
54	\(2s^22p^54d\)	\(^1\)F\(_3\)	854677	857077.0		
55	\(2s^22p^54f\)	\(^3\)G\(_5\)	854871	857595.0		
56	\(2s^22p^54f\)	\(^1\)G\(_4\)	854880	857598.0		
57	\(2s^22p^54f\)	\(^3\)D\(_3\)	854999	857733.0		
58	\(2s^22p^54f\)	\(^1\)D\(_2\)	855031	857756.0		
59	\(2s^22p^54f\)	\(^1\)F\(_3\)	855271	858008.0		
60	\(2s^22p^54f\)	\(^3\)F\(_3\)	855275	858016.0		
61	\(2s^22p^54d\)	\(^1\)P\(_1\)	857213	859776.0		
62	\(2s^22p^54f\)	\(^3\)F\(_3\)	858421	861072.0		
63	\(2s^22p^54f\)	\(^3\)G\(_3\)	858439	861078.0		
64	\(2s^22p^54f\)	\(^3\)F\(_2\)	858443	861086.0		
65	\(2s^22p^54f\)	\(^3\)G\(_4\)	858447	861088.0		
66	\(2s^22p^53s\)	\(^3\)S\(_1\)	999258	1000574.0		
67	\(2s^22p^53s\)	\(^1\)S\(_0\)	1013660	1014285.0		
68	\(2s^22p^53p\)	\(^3\)P\(_0\)	1062257	1062181.0		
69	\(2s^22p^53p\)	\(^3\)P\(_1\)	1062339	1062321.0		
70	\(2s^22p^53p\)	\(^3\)P\(_2\)	1062525	1062625.0		
71	\(2s^22p^53p\)	\(^1\)P\(_1\)	1066573	1068018.0		
72	\(2s^22p^53d\)	\(^3\)D\(_2\)	1140513	1143486.0		
73	\(2s^22p^53d\)	\(^3\)D\(_1\)	1140513	1143471.0		
74	\(2s^22p^53d\)	\(^3\)D\(_3\)	1140517	1143509.0		
75	\(2s^22p^53d\)	\(^1\)D\(_2\)	1143020	1145678.0		
Table 5: Line strengths (S), oscillator strengths (f_{ij}), and radiative decay rates (A_{ji}) for some Al IV lines. Our results (Present) are compared with the Hartree-Fock (MCHF) values (Froese Fischer & Tachiev, 2004).

Transition	S	f_{ij}	A_{ji} (s^{-1})			
$i - j$	Present	MCHF	Present	MCHF	Present	MCHF
1 - 3	1.075E-02	9.144E-03	2.020E-02	1.718E+09	1.719E+09	
1 - 5	1.391E-01	1.177E-01	2.640E-01	2.324E-01	2.291E+10	1.939E+10
1 - 7	1.374E-03	1.264E-03	3.165E-03	2.916E-03	4.047E+08	3.741E+08
1 - 23	5.067E-02	5.796E-02	1.179E-01	1.350E-01	1.537E+10	1.765E+10
2 - 6	2.546E+00	2.322E+00	8.533E-02	7.756E-02	2.887E+08	2.607E+08
2 - 7	9.417E+00	8.741E+00	3.651E-01	3.410E-01	7.081E+08	6.700E+08
2 - 8	2.444E+00	2.268E+00	9.602E-02	8.962E-02	2.680E+08	2.528E+08
2 - 9	3.828E-01	2.956E-01	1.191E-02	1.191E-02	6.373E+07	5.824E+07
2 - 10	2.621E+00	2.367E+00	1.090E-01	9.936E-02	3.140E+08	3.140E+08
2 - 11	3.346E-01	2.609E-01	1.421E-02	1.114E-02	7.719E+07	6.125E+07
2 - 12	1.622E+00	1.612E+00	6.955E-02	6.969E-02	2.312E+08	2.355E+08
2 - 14	7.898E-01	8.243E-01	3.429E-02	3.552E-02	1.946E+08	2.047E+08
3 - 6	1.097E+00	9.994E-01	5.922E-02	5.380E-02	1.124E+08	1.014E+08
3 - 8	4.210E-01	3.919E-01	2.679E-01	2.508E-01	4.236E+07	4.010E+07
3 - 9	2.326E+00	2.143E+00	1.511E-01	1.400E-01	4.147E+08	3.884E+08
3 - 10	9.515E-01	9.162E-01	6.715E-02	6.240E-02	1.193E+08	1.130E+08
3 - 11	2.774E-01	2.521E-01	1.912E-02	1.748E-02	5.911E+07	5.470E+07
3 - 12	1.522E+00	1.423E+00	1.060E-01	9.992E-02	2.006E+08	1.923E+08
3 - 13	1.266E+00	1.195E+00	8.878E-02	8.453E-02	8.527E+08	8.249E+08
3 - 14	3.161E-01	3.244E-01	2.229E-02	2.305E-02	7.206E+07	7.571E+07
3 - 15	7.376E-02	6.312E-02	8.218E-03	6.111E-03	1.887E+08	1.118E+08
4 - 6	3.183E-01	2.923E-01	5.005E-02	4.579E-02	2.982E+07	2.709E+07
4 - 9	1.365E+00	1.298E+00	2.594E-01	2.481E-01	2.258E+08	2.184E+08
4 - 11	1.274E+00	1.025E+00	2.573E-01	2.082E-01	2.530E+08	2.073E+08
4 - 14	1.063E+00	1.119E+00	2.196E-01	2.332E-01	2.261E+08	2.440E+08
5 - 6	3.226E-02	3.163E-02	1.536E-03	1.502E-03	2.267E+06	2.205E+06
5 - 8	8.992E-02	7.195E-02	5.149E-03	4.150E-03	6.589E+06	5.388E+06
5 - 9	1.357E-02	1.101E-02	9.236E-04	6.495E-04	2.062E+06	1.476E+06
5 - 10	3.203E+00	3.087E+00	1.957E-01	1.907E-01	2.851E+08	2.846E+08
5 - 11	2.150E+00	2.257E+00	1.345E-01	1.422E-01	3.422E+08	3.674E+08
5 - 12	3.617E+00	3.278E+00	2.288E-01	2.094E-01	3.572E+08	3.373E+08
5 - 13	6.899E-02	5.450E-02	4.399E-03	3.508E-03	3.491E+07	2.838E+07
5 - 14	1.852E+00	1.513E+00	1.187E-01	9.793E-02	3.175E+08	2.669E+08
5 - 15	1.358E+00	1.313E+00	1.386E-01	1.188E-01	2.820E+09	1.899E+09
Table 6: Fine structure collision strengths from the Mg III ground level $1s^22s^22p^6 \ ^1S_0$ (level 1 in Table 2) to all the other levels.

$i - j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
1 − 2	3.120E-03	1.673E-03	6.358E-04	1.868E-04	5.347E-05
1 − 3	2.491E-02	3.138E-02	3.338E-02	3.921E-02	4.982E-02
1 − 4	6.223E-04	3.338E-04	1.269E-04	3.726E-05	1.065E-05
1 − 5	3.943E-01	5.218E-01	5.662E-01	6.694E-01	8.523E-01
1 − 6	9.857E-03	4.755E-03	1.867E-03	6.209E-04	1.978E-04
1 − 7	6.458E-03	3.060E-03	1.137E-03	3.450E-04	9.508E-05
1 − 8	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 9	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 10	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 11	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 12	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 13	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 14	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 15	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 16	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 17	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 18	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 19	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 20	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 21	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 22	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 23	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 24	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 25	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 26	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 27	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 28	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 29	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 30	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 31	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 32	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 33	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 34	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 35	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 36	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
1 − 37	6.879E-03	7.025E-03	7.689E-03	9.523E-03	
1 − 38	3.785E-03	1.997E-03	7.900E-04	2.623E-04	7.865E-05
1 − 39	2.058E-03	8.523E-04	2.623E-04	6.209E-04	1.978E-04
1 − 40	3.359E-01	3.294E-01	3.346E-01	3.429E-01	3.631E-01
1 − 41	8.039E-04	2.533E-04	6.815E-05	1.477E-05	2.736E-06
$i-j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
-------	-------	-------	-------	-------	--------
1−42	3.563E-04	1.137E-04	3.159E-05	7.239E-06	1.436E-06
1−43	4.425E-03	5.840E-03	7.301E-03	1.096E-02	
1−44	1.449E-03	4.561E-04	1.251E-04	2.861E-05	5.679E-06
1−45	1.151E-03	3.393E-04	8.877E-05	2.027E-05	4.139E-06
1−46	2.133E-03	2.553E-03	3.331E-03	3.822E-03	3.844E-03
1−47	4.644E-04	1.252E-04	2.972E-05	6.733E-06	1.419E-06
1−48	1.657E-03	2.043E-03	2.707E-03	3.123E-03	3.148E-03
1−49	1.280E-01	1.979E-01	2.165E-01	2.735E-01	4.110E-01
1−50	3.134E-05	6.737E-06	1.401E-06	2.595E-07	4.320E-08
1−51	1.196E-03	2.022E-03	2.794E-03	3.659E-03	2.941E-03
1−52	3.531E-05	7.621E-06	1.759E-06	3.513E-07	5.822E-08
1−53	2.799E-04	3.737E-04	4.441E-04	4.493E-04	3.292E-04
1−54	4.523E-05	9.477E-06	1.947E-06	3.580E-07	5.855E-08
1−55	1.154E-03	1.979E-03	2.741E-03	3.590E-03	2.888E-03
1−56	1.490E-05	2.840E-06	5.922E-07	1.128E-07	1.758E-08
1−57	8.349E-05	9.785E-05	1.143E-04	1.154E-04	8.454E-05
1−58	5.171E-04	1.444E-04	3.574E-05	8.151E-06	1.707E-06
1−59	1.812E-03	2.174E-03	2.863E-03	3.306E-03	3.346E-03
1−60	6.737E-04	1.935E-04	4.871E-05	1.104E-05	2.242E-06
1−61	2.511E-01	3.903E-01	4.276E-01	5.387E-01	8.071E-01
1−62	3.923E-05	8.141E-06	1.663E-06	3.044E-07	4.929E-08
1−63	1.900E-05	3.931E-06	8.798E-07	1.739E-07	2.847E-08
1−64	8.642E-04	1.483E-03	2.059E-03	2.697E-03	2.183E-03
1−65	1.593E-04	2.028E-04	2.409E-04	2.447E-04	1.805E-04
1−66	2.066E-03	8.954E-04	3.408E-04	1.106E-04	3.620E-05
1−67	1.126E-01	1.155E-01	1.207E-01	1.272E-01	1.390E-01
1−68	3.126E-04	1.798E-04	7.803E-05	2.646E-05	8.297E-06
1−69	9.512E-04	5.731E-04	2.738E-04	1.192E-04	7.771E-05
1−70	1.580E-03	9.098E-04	3.952E-04	1.342E-04	4.219E-05
1−71	2.099E-02	5.830E-02	6.960E-02	7.023E-02	9.443E-02
1−72	9.292E-04	3.226E-04	1.004E-04	2.693E-05	6.344E-06
1−73	5.570E-04	1.932E-04	5.994E-05	1.586E-05	3.474E-06
1−74	1.300E-03	4.510E-04	1.398E-04	3.692E-05	8.035E-06
1−75	1.627E-02	2.668E-02	4.249E-02	5.365E-02	5.992E-02
$i-j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
------	-------	-------	-------	-------	-------
2−3	2.095E-01	1.527E-01	1.339E-01	1.328E-01	1.366E-01
2−4	6.579E-02	5.879E-02	5.861E-02	6.109E-02	6.375E-02
2−5	1.519E-01	7.291E-02	3.097E-02	1.466E-02	9.603E-03
2−6	2.047E+01	2.450E+01	2.863E+01	3.267E+01	3.714E+01
2−7	7.013E+01	8.451E+01	9.973E+01	1.147E+02	1.313E+02
2−8	1.770E+01	2.126E+01	2.506E+01	2.882E+01	3.295E+01
2−9	2.277E+00	2.733E+00	3.224E+00	3.711E+00	4.245E+00
2−10	1.702E+01	2.047E+01	2.421E+01	2.792E+01	3.198E+01
2−11	2.572E+00	3.089E+00	3.658E+00	4.224E+00	4.843E+00
2−12	1.399E+01	1.684E+01	1.995E+01	2.305E+01	2.643E+01
2−13	1.114E-03	2.449E-04	7.291E-02	1.466E-02	9.603E-03
2−14	5.751E+00	6.921E+00	8.207E+00	9.490E+00	1.089E+01
2−15	1.421E-03	3.079E-05	1.534E-06	1.691E-07	3.198E+01
2−16	4.829E-01	5.766E-01	5.225E-01	3.416E-01	8.565E-01
2−17	1.214E+00	1.386E+00	1.450E+00	1.313E+00	8.358E-01
2−18	1.249E+00	1.426E+00	1.492E+00	1.349E+00	8.773E-01
2−19	4.116E+00	4.718E+00	4.936E+00	4.449E+00	2.857E+00
2−20	1.037E+00	1.181E+00	1.234E+00	1.122E+00	7.163E+00
2−21	4.974E-01	5.659E-01	5.914E-01	5.339E+01	3.452E-01
2−22	1.525E+00	1.746E+00	1.876E+00	1.648E+00	1.062E+00
2−23	1.690E-01	1.901E-01	1.983E-01	1.792E-01	1.162E-01
2−24	1.610E-01	1.837E-01	1.921E-01	1.735E-01	1.124E-01
2−25	5.185E-01	5.964E-01	6.245E-01	5.635E-01	3.635E-01
2−26	3.519E-01	4.042E-01	4.231E-01	3.819E-01	2.469E-01
2−27	3.031E-02	3.412E-02	3.557E-02	3.207E-02	2.072E+00
2−28	2.841E+00	3.001E+00	3.123E+00	3.314E+00	3.606E+00
2−29	3.599E-03	2.969E-03	2.781E-03	2.124E-03	1.135E-03
2−30	1.231E-03	1.471E-03	1.574E-03	1.299E-03	6.511E-04
2−31	1.091E-03	1.123E-03	1.147E-03	8.806E-04	4.621E-04
2−32	1.345E-01	1.506E-01	1.902E-01	2.633E-01	3.378E-01
2−33	4.206E-01	4.771E-01	5.641E-01	6.749E-01	6.908E-01
2−34	1.191E-01	1.345E-01	1.572E-01	1.841E-01	1.826E-01
2−35	2.974E-02	3.314E-02	3.808E-02	4.311E-02	4.026E-02
2−36	1.864E-01	2.122E-01	2.442E-01	2.730E-01	2.487E-01
2−37	1.819E-04	5.441E-05	8.462E-06	8.746E-07	1.732E-07
2−38	1.680E-03	1.878E-03	2.079E-03	2.128E-03	1.645E-03
2−39	1.115E-02	1.280E-02	1.424E-02	1.441E-02	1.087E-02
2−40	2.781E-02	3.189E-02	3.518E-02	3.499E-02	2.598E-02
2−41	6.652E-04	2.130E-04	4.276E-05	9.203E-06	2.536E-06
Table 7: continued

$i - j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
2 − 42	2.461E-02	2.961E-02	3.327E-02	4.031E-02	3.755E-02
2 − 43	6.854E-02	8.239E-02	9.270E-02	1.122E-01	1.038E-01
2 − 44	8.797E-02	1.051E-01	1.185E-01	1.422E-01	1.293E-01
2 − 45	2.313E-01	2.786E-01	3.162E-01	3.809E-01	3.424E-01
2 − 46	6.226E-02	7.289E-02	8.204E-02	9.890E-02	8.95E-02
2 − 47	4.168E-02	4.867E-02	5.480E-02	6.576E-02	5.890E-02
2 − 48	1.289E-01	1.543E-01	1.751E-01	2.099E-01	1.865E-01
2 − 49	8.933E-03	9.493E-03	1.048E-02	1.241E-02	1.095E-02
2 − 50	6.282E-02	7.504E-02	7.014E-02	5.022E-02	2.447E-02
2 − 51	4.714E-02	5.581E-02	5.195E-02	3.716E-02	1.831E-02
2 − 52	2.292E-01	2.902E-01	3.091E-01	2.522E-01	1.366E-01
2 − 53	3.350E-02	4.135E-02	4.385E-02	3.576E-02	1.953E-02
2 − 54	9.161E-02	1.084E-01	1.006E-01	7.204E-02	3.608E-02
2 − 55	5.542E-02	6.571E-02	6.121E-02	4.378E-02	2.138E-02
2 − 56	4.912E-02	5.782E-02	5.367E-02	3.829E-02	1.863E-02
2 − 57	1.480E-01	1.869E-01	1.984E-01	1.621E-01	8.858E-02
2 − 58	2.226E-03	2.614E-03	2.972E-03	3.486E-03	3.005E-03
2 − 59	7.032E-03	8.491E-03	9.756E-03	1.143E-02	9.775E-03
2 − 60	1.047E-02	1.254E-02	1.437E-02	1.664E-02	1.417E-02
2 − 61	1.247E-03	1.269E-03	1.399E-03	1.618E-03	1.366E-03
2 − 62	1.999E-03	2.208E-03	2.008E-03	1.673E-03	1.578E-03
2 − 63	1.624E-04	1.799E-04	1.662E-04	1.181E-04	5.769E-05
2 − 64	5.061E-04	5.778E-04	5.331E-04	4.019E-04	2.503E-04
2 − 65	4.184E-04	5.033E-04	5.151E-04	4.247E-04	2.320E-04
2 − 66	2.664E+00	3.113E+00	3.507E+00	4.169E+00	4.976E+00
2 − 67	1.782E-02	9.780E-03	4.092E-03	1.400E-03	4.139E-04
2 − 68	8.716E-05	1.097E-04	1.294E-04	1.295E-04	9.638E-05
2 − 69	2.095E-04	2.516E-04	2.912E-04	2.895E-04	2.148E-04
2 − 70	1.649E-03	2.185E-03	2.609E-03	2.921E-03	3.163E-03
2 − 71	3.839E-05	1.840E-05	6.894E-06	2.212E-06	6.807E-07
2 − 72	7.430E-04	9.753E-04	9.735E-04	1.197E-03	1.851E-03
2 − 73	1.818E-04	3.059E-04	3.543E-04	3.269E-04	2.526E-04
2 − 74	3.367E-03	4.024E-03	3.721E-03	5.262E-03	9.676E-03
2 − 75	1.639E-05	8.265E-06	3.291E-06	1.154E-06	4.135E-07
Table 8: Fine structure collision strengths from the Mg III level $1s^22s^22p^33p\,^1P_1$ (level 3 in Table 2) to all the other levels.

$i - j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
3 – 4	5.843E-02	2.442E-02	8.466E-03	2.544E-03	6.812E-04
3 – 5	8.958E-02	4.994E-02	3.075E-02	2.430E-02	2.291E-02
3 – 6	9.343E+00	1.116E+01	1.301E+01	1.482E+01	1.681E+01
3 – 7	8.263E-03	2.147E-03	6.073E-04	3.764E-04	2.470E-04
3 – 8	3.209E+01	5.843E-02	4.548E+01	5.225E+01	5.968E+01
3 – 9	3.209E+01	5.843E-02	4.548E+01	5.225E+01	5.968E+01
3 – 10	5.261E+00	6.322E+00	7.469E+00	8.609E+00	9.861E+00
3 – 11	1.923E+01	1.522E+01	1.801E+01	2.078E+01	2.380E+01
3 – 12	9.222E+00	1.110E+01	1.315E+01	1.518E+01	1.739E+01
3 – 13	2.682E+00	3.221E+00	3.811E+00	4.396E+00	5.034E+00
3 – 14	3.008E-01	3.606E-01	4.416E-01	5.311E-01	6.332E-01
3 – 15	6.677E+01	3.860E+01	7.469E+00	8.609E+00	9.861E+00
3 – 16	1.689E+01	2.031E+01	2.393E+01	2.751E+01	3.142E+01
3 – 17	5.261E+00	6.322E+00	7.469E+00	8.609E+00	9.861E+00
3 – 18	1.923E+01	1.522E+01	1.801E+01	2.078E+01	2.380E+01
3 – 19	9.222E+00	1.110E+01	1.315E+01	1.518E+01	1.739E+01
3 – 20	2.682E+00	3.221E+00	3.811E+00	4.396E+00	5.034E+00
3 – 21	3.008E-01	3.606E-01	4.416E-01	5.311E-01	6.332E-01
3 – 22	6.677E+01	3.860E+01	7.469E+00	8.609E+00	9.861E+00
3 – 23	1.689E+01	2.031E+01	2.393E+01	2.751E+01	3.142E+01
3 – 24	5.261E+00	6.322E+00	7.469E+00	8.609E+00	9.861E+00
3 – 25	1.923E+01	1.522E+01	1.801E+01	2.078E+01	2.380E+01
3 – 26	9.222E+00	1.110E+01	1.315E+01	1.518E+01	1.739E+01
3 – 27	2.682E+00	3.221E+00	3.811E+00	4.396E+00	5.034E+00
3 – 28	3.008E-01	3.606E-01	4.416E-01	5.311E-01	6.332E-01
3 – 29	6.677E+01	3.860E+01	7.469E+00	8.609E+00	9.861E+00
3 – 30	1.689E+01	2.031E+01	2.393E+01	2.751E+01	3.142E+01
3 – 31	5.261E+00	6.322E+00	7.469E+00	8.609E+00	9.861E+00
3 – 32	1.923E+01	1.522E+01	1.801E+01	2.078E+01	2.380E+01
3 – 33	9.222E+00	1.110E+01	1.315E+01	1.518E+01	1.739E+01
3 – 34	2.682E+00	3.221E+00	3.811E+00	4.396E+00	5.034E+00
3 – 35	3.008E-01	3.606E-01	4.416E-01	5.311E-01	6.332E-01
3 – 36	6.677E+01	3.860E+01	7.469E+00	8.609E+00	9.861E+00
3 – 37	1.689E+01	2.031E+01	2.393E+01	2.751E+01	3.142E+01
3 – 38	5.261E+00	6.322E+00	7.469E+00	8.609E+00	9.861E+00
3 – 39	1.923E+01	1.522E+01	1.801E+01	2.078E+01	2.380E+01
3 – 40	9.222E+00	1.110E+01	1.315E+01	1.518E+01	1.739E+01
3 – 41	2.682E+00	3.221E+00	3.811E+00	4.396E+00	5.034E+00
Table 8: continued.

i − j	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
3 − 42	1.512E-04	3.897E-05	6.479E-06	9.360E-07	1.360E-07
3 − 43	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 44	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 45	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 46	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 47	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 48	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 49	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 50	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 51	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 52	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 53	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 54	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 55	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 56	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 57	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 58	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 59	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 60	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 61	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 62	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 63	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 64	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 65	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 66	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 67	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 68	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 69	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 70	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 71	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 72	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06
3 − 73	8.665E-03	9.971E-03	1.106E-02	1.276E-02	1.177E-02
3 − 74	3.493E-02	4.184E-02	4.691E-02	5.708E-02	5.314E-02
3 − 75	1.445E-03	3.822E-04	7.190E-05	1.846E-05	8.076E-06

16
Table 9: Fine structure collision strengths from the Mg III level

$1s^22s^22p^53s^23p^5P_0^0$ (level 4 in Table 2) to all the other levels.

$i \rightarrow j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
4 \rightarrow 5	2.749E-02	1.186E-02	4.098E-03	1.207E-03	3.153E-04
4 \rightarrow 6	2.757E+00	3.290E+00	4.235E+00	5.729E+00	1.259E+00
4 \rightarrow 7	1.102E+01	1.324E+01	1.559E+01	1.789E+01	2.042E+01
4 \rightarrow 8	7.658E-04	1.679E-04	1.873E-05	1.257E-06	1.633E-07
4 \rightarrow 9	8.847E+00	1.064E+01	1.257E+01	1.448E+01	1.656E+01
4 \rightarrow 10	4.503E-03	9.924E-04	1.101E-04	6.975E-06	1.259E-06
4 \rightarrow 11	7.910E-04	1.742E-04	1.888E-05	1.257E-06	1.633E-07
4 \rightarrow 12	3.371E-04	7.300E-05	8.892E-06	1.204E-06	2.971E-07
4 \rightarrow 13	9.866E-01	1.132E+00	1.185E+00	1.073E+00	6.921E-01
4 \rightarrow 14	4.135E-03	9.225E-04	1.471E-04	2.226E-05	3.132E-06
4 \rightarrow 15	6.246E-01	7.220E-01	7.791E-01	6.821E-01	4.153E-01
4 \rightarrow 16	9.865E-05	7.220E-05	7.791E-05	6.821E-05	4.153E-05
4 \rightarrow 17	2.460E-04	6.141E-05	1.239E-05	2.491E-06	4.938E-07
4 \rightarrow 18	3.623E-01	4.144E-01	4.336E-01	3.921E-01	2.526E-01
4 \rightarrow 19	8.248E-04	1.831E-04	2.927E-05	4.443E-06	6.281E-07
4 \rightarrow 20	7.910E-04	1.742E-04	1.888E-05	1.257E-06	1.633E-07
4 \rightarrow 21	3.371E-04	7.300E-05	8.892E-06	1.204E-06	2.971E-07
4 \rightarrow 22	9.866E-01	1.132E+00	1.185E+00	1.073E+00	6.921E-01
4 \rightarrow 23	4.135E-03	9.225E-04	1.471E-04	2.226E-05	3.132E-06
4 \rightarrow 24	6.246E-01	7.220E-01	7.791E-01	6.821E-01	4.153E-01
4 \rightarrow 25	9.865E-05	7.220E-05	7.791E-05	6.821E-05	4.153E-05
4 \rightarrow 26	2.460E-04	6.141E-05	1.239E-05	2.491E-06	4.938E-07
4 \rightarrow 27	3.623E-01	4.144E-01	4.336E-01	3.921E-01	2.526E-01
4 \rightarrow 28	8.248E-04	1.831E-04	2.927E-05	4.443E-06	6.281E-07
4 \rightarrow 29	7.910E-04	1.742E-04	1.888E-05	1.257E-06	1.633E-07
4 \rightarrow 30	3.371E-04	7.300E-05	8.892E-06	1.204E-06	2.971E-07
4 \rightarrow 31	9.866E-01	1.132E+00	1.185E+00	1.073E+00	6.921E-01
4 \rightarrow 32	4.135E-03	9.225E-04	1.471E-04	2.226E-05	3.132E-06
4 \rightarrow 33	6.246E-01	7.220E-01	7.791E-01	6.821E-01	4.153E-01
4 \rightarrow 34	9.865E-05	7.220E-05	7.791E-05	6.821E-05	4.153E-05
4 \rightarrow 35	2.460E-04	6.141E-05	1.239E-05	2.491E-06	4.938E-07
4 \rightarrow 36	3.623E-01	4.144E-01	4.336E-01	3.921E-01	2.526E-01
4 \rightarrow 37	8.248E-04	1.831E-04	2.927E-05	4.443E-06	6.281E-07
4 \rightarrow 38	7.910E-04	1.742E-04	1.888E-05	1.257E-06	1.633E-07
4 \rightarrow 39	3.371E-04	7.300E-05	8.892E-06	1.204E-06	2.971E-07
4 \rightarrow 40	9.866E-01	1.132E+00	1.185E+00	1.073E+00	6.921E-01
4 \rightarrow 41	4.135E-03	9.225E-04	1.471E-04	2.226E-05	3.132E-06
$i - j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
---------	-------	-------	-------	-------	--------
4 – 42	8.822E-04	9.701E-04	9.609E-04	8.474E-04	6.138E-04
4 – 43	1.610E-05	4.440E-06	8.372E-07	1.424E-07	2.531E-08
4 – 44	3.127E-05	4.170E-03	4.725E-06	1.093E-06	5.090E-03
4 – 45	1.058E-05	8.789E-06	6.314E-06	5.068E-06	3.928E-06
4 – 46	2.492E-03	3.018E-03	3.367E-03	4.130E-03	3.950E-03
4 – 47	2.375E-05	6.046E-06	9.989E-07	1.433E-07	2.064E-08
4 – 48	3.873E-05	1.036E-05	1.792E-06	2.824E-07	4.776E-08
4 – 49	1.248E-05	1.458E-05	1.573E-05	1.122E-05	5.191E-06
4 – 50	9.369E-04	1.196E-03	1.297E-03	1.049E-03	5.701E-04
4 – 51	4.878E-04	6.226E-04	6.777E-04	5.472E-04	2.972E-04
4 – 52	4.382E-06	5.064E-07	1.297E-07	3.524E-08	4.491E-09
4 – 53	7.601E-02	9.196E-02	1.040E-01	1.254E-01	1.136E-01
4 – 54	6.061E-02	6.892E-02	8.285E-02	7.490E-02	5.099E-02
4 – 55	5.676E-04	1.457E-04	2.434E-05	3.539E-06	5.099E-07
4 – 56	7.801E-02	7.911E-02	6.473E-02	3.529E-02	5.099E-02
4 – 57	3.834E-02	1.057E-01	1.127E-01	9.223E-02	5.099E-02
4 – 58	2.663E-04	4.708E-05	6.932E-06	8.115E-07	7.682E-08
4 – 59	4.719E-04	8.520E-05	1.216E-05	1.291E-06	1.151E-07
4 – 60	5.371E-01	6.266E-01	7.059E-01	8.391E-01	9.998E-01
4 – 61	3.565E-03	1.955E-03	8.174E-04	2.795E-04	8.248E-05
4 – 62	2.965E-04	4.017E-04	4.826E-04	5.219E-04	4.719E-04
4 – 63	1.153E-05	5.119E-06	1.745E-06	4.813E-07	1.245E-07
4 – 64	8.868E-05	1.093E-04	1.290E-04	1.287E-04	9.430E-05
4 – 65	7.924E-06	3.792E-06	1.404E-06	4.292E-07	1.171E-07
4 – 66	3.803E-06	1.935E-06	7.692E-07	2.552E-07	7.554E-08
4 – 67	7.965E-04	9.402E-04	8.642E-04	1.233E-03	2.296E-03
4 – 68	8.095E-05	1.522E-04	2.049E-04	2.028E-04	1.168E-04
4 – 69	3.412E-06	1.714E-06	6.690E-07	2.191E-07	6.427E-08
Table 10: Fine structure collision strengths from the Mg III level
$1s^22s^22p^33s \, ^1P_o$ (level 5 in Table 2) to all the other levels.

$i-j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
5−6	2.010E-01	2.350E-01	2.709E-01	3.064E-01	3.460E-01
5−7	6.024E-03	1.322E-03	1.626E-04	2.918E-05	1.558E-05
5−8	9.277E-01	1.106E+00	1.293E+00	1.481E+00	1.690E+00
5−9	1.761E-01	2.062E-01	2.406E-01	2.758E-01	3.148E-01
5−10	2.891E+01	3.474E+01	4.083E+01	4.685E+01	5.350E+01
5−11	1.689E+01	2.028E+01	2.385E+01	2.738E+01	3.126E+01
5−12	2.296E+01	2.759E+01	3.248E+01	3.732E+01	4.264E+01
5−13	3.944E-01	4.711E-01	5.532E-01	6.340E-01	7.218E-01
5−14	1.361E+01	1.635E+01	1.925E+01	2.212E+01	2.528E+01
5−15	7.642E+00	9.216E+00	1.124E+01	1.342E+01	1.588E+01
5−16	5.654E-04	1.314E-04	2.335E-05	4.050E-06	6.862E-07
5−17	4.411E-03	1.071E-03	7.565E-04	6.678E-04	4.574E-04
5−18	5.024E-03	2.241E-03	1.510E-03	1.149E-03	6.830E-04
5−19	4.348E-03	9.651E-04	1.606E-03	3.075E-03	7.891E-03
5−20	5.120E-01	5.795E-01	5.998E-01	5.334E-01	3.408E-01
5−21	1.316E-01	1.467E-01	1.510E-01	1.340E-01	8.600E-02
5−22	1.585E+00	1.804E+00	1.873E+00	1.673E+00	1.070E+00
5−23	2.017E-01	2.288E-01	2.368E-01	2.096E-01	1.338E-01
5−24	1.090E+00	1.241E+00	1.290E+00	1.154E+00	7.425E+00
5−25	1.260E+00	1.434E+00	1.492E+00	1.337E+00	8.573E+01
5−26	1.067E+00	1.215E+00	1.263E+00	1.132E+00	7.284E+00
5−27	1.250E+00	1.429E+00	1.487E+00	1.329E+00	8.535E+00
5−28	1.390E-03	8.272E-04	6.248E-04	4.644E-04	2.602E-04
5−29	3.243E-01	3.421E-01	3.554E-01	3.780E-01	4.045E-01
5−30	4.429E-04	1.433E-04	3.680E-05	6.963E-06	1.535E-06
5−31	1.693E+00	1.791E+00	1.863E+00	1.981E+00	2.140E+00
5−32	1.873E-03	1.880E-03	1.934E-03	1.791E-03	1.258E-03
5−33	6.907E-04	2.062E-04	3.282E-05	3.495E-06	9.512E-07
5−34	5.607E-02	6.360E-02	8.102E-02	1.080E-01	1.279E-01
5−35	5.545E-02	6.324E-02	8.126E-02	1.086E-01	1.289E-01
5−36	8.911E-02	1.011E-01	1.281E-01	1.705E-01	2.024E-01
5−37	3.064E-03	3.309E-03	4.444E-03	6.541E-03	9.270E-03
5−38	7.286E-02	8.254E-02	1.031E-01	1.337E-01	1.535E-01
5−39	2.263E-01	2.569E-01	3.163E-01	4.029E-01	4.512E-01
5−40	9.009E-02	1.023E-01	1.271E-01	1.632E-01	1.845E-01
5−41	4.596E-01	5.286E-01	6.038E-01	6.398E-01	5.966E-01
$i - j$	10 Ry	20 Ry	40 Ry	80 Ry	160 Ry
--------	-------	-------	-------	-------	-------
5 - 42	1.230E-04	3.196E-05	5.519E-06	8.425E-07	1.314E-07
5 - 43	8.574E-04	6.493E-04	6.411E-04	6.545E-04	5.269E-04
5 - 44	5.765E-03	6.284E-03	6.909E-03	8.413E-03	7.388E-03
5 - 45	1.063E-03	2.716E-04	4.481E-05	6.906E-06	1.342E-06
5 - 46	3.994E-02	4.757E-02	5.312E-02	6.529E-02	5.913E-02
5 - 47	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 48	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 49	8.574E-04	6.284E-03	6.909E-03	8.413E-03	7.388E-03
5 - 50	8.574E-04	6.284E-03	6.909E-03	8.413E-03	7.388E-03
5 - 51	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 52	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 53	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 54	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 55	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 56	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 57	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 58	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 59	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 60	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 61	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 62	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 63	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 64	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 65	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 66	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 67	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 68	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 69	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 70	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 71	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 72	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 73	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 74	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
5 - 75	2.785E-02	3.300E-02	3.689E-02	4.522E-02	4.060E-02
Table 11: Fine structure collision strengths from the Al IV ground level $1s^22s^22p^6 \ ^3S_0$ (level 1 in Table 4) to all the other levels.

$i-j$	15 Ry	30 Ry	60 Ry	8120 Ry	240 Ry
1−2	2.480E-03	1.217E-03	4.371E-04	1.254E-04	3.629E-05
1−3	2.146E-02	2.696E-02	2.890E-02	3.420E-02	4.390E-02
1−4	4.946E-04	2.428E-04	8.716E-05	2.497E-05	7.211E-06
1−5	2.574E-01	3.390E-01	3.694E-01	4.391E-01	5.646E-01
1−6	7.575E-03	3.519E-03	1.336E-03	4.322E-04	1.362E-04
1−7	5.152E-03	9.342E-04	3.254E-04	9.359E-05	2.481E-05
1−8	6.647E-03	6.950E-03	7.754E-03	8.619E-03	7.504E-03
1−9	2.113E-03	9.342E-04	3.254E-04	9.359E-05	2.481E-05
1−10	1.982E-02	3.095E-02	4.042E-02	4.723E-02	4.172E-02
1−11	1.558E-03	6.188E-04	1.860E-04	4.348E-05	8.564E-06
1−12	1.242E-02	1.805E-02	2.312E-02	2.690E-02	2.379E-02
1−13	9.670E-04	6.579E-04	1.336E-03	4.322E-04	1.362E-04
1−14	6.647E-03	6.950E-03	7.754E-03	8.619E-03	7.504E-03
1−15	2.754E-01	2.711E-01	2.760E-01	2.838E-01	3.008E-01
1−16	8.808E-04	2.828E-04	7.175E-05	1.676E-05	3.060E-06
1−17	4.945E-03	4.307E-03	4.113E-03	4.491E-03	5.647E-03
1−18	4.195E-03	3.863E-03	3.655E-04	7.916E-05	1.435E-05
1−19	2.577E-03	7.682E-04	2.013E-04	4.525E-05	8.969E-06
1−20	3.913E-03	3.804E-03	4.953E-03	6.006E-03	6.258E-03
1−21	1.256E-03	3.687E-04	9.486E-05	2.141E-05	4.292E-06
1−22	6.345E-03	9.129E-03	1.306E-03	1.614E-03	1.691E-02
1−23	8.561E-04	2.120E-04	4.990E-05	1.124E-05	2.366E-06
1−24	3.913E-03	3.312E-03	4.526E-03	5.562E-03	5.835E-03
1−25	8.166E-04	2.233E-04	5.115E-05	1.152E-05	2.328E-06
1−26	6.924E-01	1.039E+00	1.671E+00	1.332E+00	1.692E+00
1−27	6.044E-04	3.030E-04	1.125E-04	3.226E-05	9.192E-06
1−28	1.057E-02	1.513E-02	1.648E-02	2.137E-02	3.142E-02
1−29	1.212E-04	6.056E-05	2.242E-05	6.397E-06	1.816E-06
1−30	1.862E-02	2.712E-02	2.971E-02	3.824E-02	5.583E-02
1−31	1.735E-03	8.034E-04	3.651E-04	9.754E-05	3.083E-05
1−32	1.447E-03	6.475E-04	2.923E-04	6.600E-05	1.809E-05
1−33	8.561E-02	1.275E-01	1.429E-01	1.632E-01	2.072E-01
1−34	8.166E-04	2.120E-04	4.890E-05	1.124E-05	2.366E-06
1−35	3.913E-03	3.312E-03	4.526E-03	5.562E-03	5.835E-03
1−36	8.166E-04	2.233E-04	5.115E-05	1.152E-05	2.328E-06
1−37	6.924E-01	1.039E+00	1.671E+00	1.332E+00	1.692E+00
Table 11, continued.

i − j	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
1 − 42	3.703E-04	1.203E-04	3.388E-05	7.775E-06	1.513E-06
1 − 43	2.953E-03	3.276E-03	3.376E-03	4.010E-03	5.679E-03
1 − 44	1.533E-03	4.927E-04	1.373E-04	3.147E-05	6.126E-06
1 − 45	1.189E-03	3.954E-04	9.594E-05	2.211E-05	4.505E-06
1 − 46	1.814E-03	1.840E-03	2.396E-03	2.884E-03	3.230E-03
1 − 47	4.810E-04	1.337E-04	3.268E-05	7.556E-06	1.593E-06
1 − 48	1.657E-03	1.914E-03	2.617E-03	3.190E-03	3.584E-03
1 − 49	6.809E-02	1.057E-01	1.183E-01	1.435E-01	2.038E-01
1 − 50	5.205E-04	1.484E-04	3.736E-05	8.671E-06	1.827E-06
1 − 51	4.293E-05	9.901E-06	2.145E-06	3.985E-07	6.545E-08
1 − 52	1.239E-03	2.181E-03	3.097E-03	4.000E-03	3.551E-03
1 − 53	6.574E-04	1.909E-04	4.852E-05	1.112E-05	2.238E-06
1 − 54	1.732E-03	1.901E-03	2.561E-03	3.118E-03	3.512E-03
1 − 55	4.619E-05	1.076E-05	2.543E-06	5.097E-07	8.496E-08
1 − 56	2.287E-04	3.004E-04	4.099E-04	4.638E-04	3.938E-04
1 − 57	6.313E-05	1.424E-05	3.060E-06	5.652E-07	9.120E-08
1 − 58	1.415E-03	2.551E-03	3.634E-03	4.697E-03	4.172E-03
1 − 59	1.895E-05	3.902E-06	8.600E-07	1.665E-07	2.605E-08
1 − 60	7.672E-05	8.506E-05	1.131E-04	1.276E-04	1.083E-04
1 − 61	2.850E-01	4.455E-01	4.998E-01	6.045E-01	8.553E-01
1 − 62	5.092E-05	1.133E-05	2.423E-06	4.456E-07	7.096E-08
1 − 63	2.435E-05	5.433E-06	1.257E-06	2.502E-07	4.122E-08
1 − 64	9.397E-04	1.688E-03	2.406E-03	3.105E-03	2.769E-03
1 − 65	1.334E-04	1.634E-04	2.218E-04	2.516E-04	2.148E-04
1 − 66	1.393E-03	5.814E-04	2.148E-04	6.729E-05	2.020E-05
1 − 67	1.005E-01	1.022E-01	1.065E-01	1.121E-01	1.221E-01
1 − 68	2.665E-04	1.401E-04	5.617E-05	1.803E-05	5.474E-06
1 − 69	8.299E-04	4.869E-04	2.447E-04	1.334E-04	1.245E-04
1 − 70	1.348E-03	7.098E-04	2.850E-04	9.171E-05	2.795E-05
1 − 71	2.583E-02	5.796E-02	6.648E-02	6.926E-02	9.505E-02
1 − 72	1.134E-03	4.005E-04	1.251E-04	3.304E-05	7.716E-06
1 − 73	6.795E-04	2.397E-04	7.456E-05	1.927E-05	4.015E-06
1 − 74	1.586E-03	5.595E-04	1.738E-04	4.479E-05	9.240E-06
1 − 75	2.340E-02	3.725E-02	5.591E-02	6.983E-02	7.777E-02
Table 12: Fine structure collision strengths from the Al IV level
1s22s22p53s 3P3 (level 2 in Table 4) to all the other levels.

i – j	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
2 – 3	1.471E-01	1.123E-01	1.021E-01	1.023E-01	1.050E-01
2 – 4	4.920E-02	4.552E-02	4.616E-02	4.808E-02	4.991E-02
2 – 5	9.792E-02	4.682E-02	2.118E-02	1.169E-02	8.896E-03
2 – 6	1.446E+01	1.728E+01	2.007E+01	2.278E+01	2.577E+01
2 – 7	4.938E+01	6.007E+01	7.049E+01	8.064E+01	9.182E+01
2 – 8	1.295E+01	1.559E+01	1.828E+01	2.091E+01	2.379E+01
2 – 9	1.728E+00	2.079E+00	2.441E+00	2.794E+00	3.182E+00
2 – 10	8.268E+00	9.981E+00	1.177E+01	1.353E+01	1.544E+01
2 – 11	1.715E+00	2.067E+00	2.436E+00	2.798E+00	3.193E+00
2 – 12	8.268E+00	9.981E+00	1.177E+01	1.353E+01	1.544E+01
2 – 13	7.026E-04	1.528E-04	1.559E-05	1.010E-06	1.590E-07
2 – 14	4.003E+00	4.833E+00	5.705E+00	6.560E+00	7.495E+00
2 – 15	9.914E-04	2.161E-04	2.739E-05	4.424E-06	1.139E-06
2 – 16	3.479E-01	3.924E-01	4.092E-01	3.758E-01	2.531E-01
2 – 17	8.703E-01	9.819E-01	1.024E+00	9.397E-01	6.313E-01
2 – 18	8.711E-01	9.829E-01	1.025E+00	9.390E-01	6.283E-01
2 – 19	2.960E+00	3.364E+00	3.509E+00	3.204E+00	2.117E+00
2 – 20	8.617E-01	9.712E-01	1.012E+00	9.243E-01	6.122E-01
2 – 21	3.304E-01	3.716E-01	3.872E-01	3.539E-01	2.352E-01
2 – 22	9.219E-01	1.043E+00	1.088E+00	9.932E-01	6.576E-01
2 – 23	1.434E-01	1.608E-01	1.675E-01	1.531E-01	1.019E-01
2 – 24	1.483E-01	1.674E-01	1.745E-01	1.594E-01	1.059E-01
2 – 25	4.546E-01	5.174E-01	5.404E-01	4.931E-01	3.263E-01
2 – 26	2.880E-01	3.273E-01	3.417E-01	3.120E-01	2.067E-01
2 – 27	7.572E-03	7.288E-03	7.308E-03	6.616E-03	4.367E-03
2 – 28	1.945E+00	2.062E+00	2.150E+00	2.288E+00	2.500E+00
2 – 29	1.515E+00	9.738E-04	7.920E-04	5.561E-04	2.717E-04
2 – 30	3.599E-04	4.329E-04	4.676E-04	3.485E-04	1.694E-04
2 – 31	3.910E-04	3.802E-04	3.820E-04	2.789E-04	1.345E-04
2 – 32	1.408E-01	1.571E-01	2.088E-01	3.085E-01	4.342E-01
2 – 33	3.347E-01	3.751E-01	4.772E-01	6.568E-01	8.306E-01
2 – 34	9.439E-02	1.054E-01	1.329E-01	1.805E-01	2.254E-01
2 – 35	2.114E-02	2.332E-02	2.899E-02	3.857E-02	4.663E-02
2 – 36	1.282E-01	1.441E-01	1.794E-01	2.368E-01	2.829E-01
2 – 37	1.335E-04	3.530E-05	5.656E-06	7.313E-07	1.674E-07
2 – 38	7.511E-04	8.263E-04	9.882E-04	1.214E-03	1.294E-03
2 – 39	5.426E-03	6.175E-03	7.364E-03	8.794E-03	8.939E-03
2 – 40	1.527E-02	1.741E-02	2.001E-02	2.204E-02	1.977E-02
2 – 41	4.079E-04	1.420E-04	3.278E-05	8.034E-06	2.190E-06
$i - j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
---------	--------	--------	--------	--------	--------
2 - 42	1.075E-02	1.297E-02	1.364E-02	1.539E-02	1.726E-02
2 - 43	2.972E-02	3.580E-02	3.770E-02	4.299E-02	4.792E-02
2 - 44	3.669E-02	4.379E-02	4.628E-02	5.350E-02	5.863E-02
2 - 45	9.894E-02	1.191E-01	1.266E-01	1.473E-01	1.596E-01
2 - 46	3.107E-02	3.626E-02	3.820E-02	4.481E-02	4.867E-02
2 - 47	1.757E-02	2.021E-02	2.134E-02	2.524E-02	2.725E-02
2 - 48	4.974E-02	5.899E-02	6.300E-02	7.503E-02	8.019E-02
2 - 49	4.073E-03	4.227E-03	4.406E-03	5.275E-02	5.542E-02
2 - 50	1.174E-03	1.352E-03	1.465E-03	1.775E-03	1.823E-03
2 - 51	5.659E-02	6.849E-02	6.510E-02	4.740E-02	2.389E-02
2 - 52	4.558E-02	5.472E-02	5.186E-02	3.778E-02	1.933E-02
2 - 53	4.830E-03	5.736E-03	6.285E-03	7.588E-03	7.693E-03
2 - 54	3.406E-03	4.076E-03	4.475E-03	5.445E-03	5.537E-03
2 - 55	2.066E-01	2.641E-01	2.846E-01	2.370E-01	1.324E-01
2 - 56	3.106E-02	3.868E-02	4.150E-02	3.452E-02	1.946E-02
2 - 57	8.248E-02	9.903E-02	9.366E-02	6.849E-02	3.590E-02
2 - 58	4.682E-02	5.623E-02	5.325E-02	3.871E-02	1.956E-02
2 - 59	4.444E-02	5.304E-02	5.004E-02	3.625E-02	1.822E-02
2 - 60	1.331E-01	1.697E-01	1.824E-01	1.519E-01	8.560E-02
2 - 61	5.333E-04	3.423E-04	3.000E-04	3.505E-04	3.435E-04
2 - 62	1.954E-03	2.233E-03	2.233E-03	2.083E-03	2.051E-03
2 - 63	2.210E-04	2.548E-04	2.395E-04	1.740E-04	8.757E-05
2 - 64	6.821E-04	8.061E-04	7.691E-04	5.935E-04	3.691E-04
2 - 65	5.920E-04	7.386E-04	7.782E-04	6.491E-04	3.649E-04
2 - 66	2.310E+00	2.619E+00	3.021E+00	3.634E+00	4.293E+00
2 - 67	1.206E-02	6.167E-03	2.450E-03	8.096E-04	2.266E-04
2 - 68	5.971E-05	6.777E-05	7.534E-05	7.082E-05	5.681E-05
2 - 69	1.456E-04	1.547E-04	1.704E-04	1.590E-04	1.272E-04
2 - 70	1.428E-03	1.746E-03	1.999E-03	2.205E-03	2.431E-03
2 - 71	3.035E-05	1.391E-05	5.046E-06	1.624E-06	5.327E-07
2 - 72	5.721E-04	6.753E-04	7.131E-04	9.182E-04	1.350E-03
2 - 73	1.403E-04	2.080E-04	2.397E-04	2.298E-04	1.886E-04
2 - 74	2.610E-03	2.829E-03	2.863E-03	4.178E-03	7.051E-03
2 - 75	1.340E-05	6.205E-06	2.315E-06	8.059E-07	3.092E-07
Table 13: Fine structure collision strengths from the Al IV level $1s^22s^22p^3\text{3}P^0_1$ (level 3 in Table 4) to all the other levels.

$i-j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
3−4	3.685E-02	1.502E-02	5.086E-03	1.496E-03	3.916E-04
3−5	6.059E-02	3.646E-02	2.580E-02	2.268E-02	2.228E-02
3−6	6.336E+00	7.556E+00	8.754E+00	9.914E+00	1.120E+01
3−7	5.507E-03	1.423E-03	3.950E-04	2.524E-04	1.709E-04
3−8	2.54E+01	3.713E+01	3.04E+01	2.84E+01	2.78E+01
3−9	1.238E+01	1.490E+01	1.747E+01	1.996E+01	2.270E+01
3−10	5.194E+00	6.258E+00	7.356E+00	8.431E+00	9.611E+00
3−11	1.441E+00	1.735E+00	2.041E+00	2.341E+00	2.670E+00
3−12	7.852E+00	9.470E+00	1.115E+01	1.279E+01	1.458E+01
3−13	6.508E+00	7.855E+00	9.254E+00	1.062E+01	1.211E+01
3−14	1.628E+00	1.961E+00	2.310E+00	2.650E+00	3.020E+00
3−15	3.006E+00	3.644E-01	1.423E-03	4.442E-04	1.227E-01
3−16	6.537E-01	7.500E-01	7.818E-01	7.171E-01	4.798E-01
3−17	1.703E-01	1.909E-01	1.988E-01	1.826E-01	1.227E-01
3−18	6.653E-01	7.500E-01	7.818E-01	7.171E-01	4.798E-01
3−19	4.680E-03	1.311E-03	2.487E-04	9.777E-05	5.137E-05
3−20	1.281E+00	1.449E+00	1.511E+00	1.381E+00	9.135E-01
3−21	9.454E-01	1.071E+00	1.117E+00	1.022E+00	6.779E-01
3−22	1.551E-01	1.729E-01	1.792E-01	1.627E-01	1.072E-01
3−23	7.962E-01	9.050E-01	9.450E-01	8.647E-01	5.750E-01
3−24	4.488E-03	2.338E-03	1.773E-03	1.450E-03	9.293E-04
3−25	8.430E-01	9.568E-01	9.997E-01	9.160E-01	6.069E-01
3−26	6.749E-02	7.422E-02	7.724E-02	7.126E-02	4.772E-02
3−27	4.221E-03	3.131E-03	2.952E-03	2.858E-03	2.091E-03
3−28	1.629E-03	1.362E-03	1.283E-03	9.491E-04	4.727E-04
3−29	1.082E+00	1.089E+00	1.136E+00	1.207E+00	1.319E+00
3−30	1.678E-04	5.264E-05	1.177E-05	1.837E-06	3.833E-07
3−31	1.529E-01	1.618E-01	1.685E-01	1.782E-01	1.958E-01
3−32	5.296E-02	5.918E-02	7.879E-02	1.163E-01	1.662E-01
3−33	5.841E-04	1.864E-04	3.840E-05	9.711E-06	6.470E-06
3−34	1.242E-01	1.392E-01	1.787E-01	2.492E-01	3.223E-01
3−35	8.938E-02	1.005E-01	1.285E-01	1.770E-01	2.245E-01
3−36	5.192E-02	5.836E-02	7.378E-02	9.940E-02	1.215E-01
3−37	4.279E-02	4.838E-02	5.950E-02	7.707E-02	8.956E-02
3−38	6.662E-03	7.173E-03	8.799E-03	1.197E-02	1.549E-02
3−39	6.532E-02	7.315E-02	9.074E-02	1.204E-01	1.460E-01
3−40	1.740E-02	1.927E-02	2.438E-02	3.376E-02	4.362E-02
3−41	1.275E-02	1.457E-02	1.665E-02	1.771E-02	1.653E-02
Table 13: continued.

$i - j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
3 - 42	9.618E-05	2.584E-05	4.255E-06	5.883E-07	8.559E-08
3 - 43	3.608E-03	4.123E-03	4.299E-03	4.578E-03	5.022E-03
3 - 44	1.657E-02	1.990E-02	2.070E-02	2.318E-02	2.603E-02
3 - 45	9.090E-04	2.480E-04	4.489E-05	9.713E-06	4.161E-06
3 - 46	3.619E-02	4.377E-02	4.594E-02	5.273E-02	5.793E-02
3 - 47	2.989E-02	3.612E-02	3.806E-02	4.427E-02	4.836E-02
3 - 48	1.491E-02	1.750E-02	1.851E-02	2.194E-02	2.326E-02
3 - 49	3.240E-02	3.932E-02	4.225E-02	5.016E-02	5.406E-02
3 - 50	3.475E-03	3.637E-03	3.758E-03	4.257E-03	4.861E-03
3 - 51	6.042E-04	5.337E-04	5.436E-04	6.031E-04	7.597E-04
3 - 52	3.210E-02	3.862E-02	3.665E-02	2.690E-02	1.413E-02
3 - 53	6.623E-03	7.511E-03	7.963E-03	9.220E-03	1.031E-02
3 - 54	2.946E-02	3.524E-02	3.791E-02	4.474E-02	4.858E-02
3 - 55	5.116E-04	1.085E-04	2.999E-05	1.436E-05	6.697E-06
3 - 56	8.581E-02	1.095E-01	1.177E-01	9.769E-02	5.465E-02
3 - 57	3.672E-02	4.671E-02	5.024E-02	4.173E-02	2.347E-02
3 - 58	1.943E-02	2.318E-02	2.190E-02	1.607E-02	8.468E-03
3 - 59	5.594E-02	7.130E-02	7.655E-02	6.356E-02	3.572E-02
3 - 60	1.269E-02	1.577E-02	1.677E-02	1.391E-02	7.769E-03
3 - 61	1.353E-03	1.168E-03	1.132E-03	1.190E-03	1.318E-03
3 - 62	2.367E-02	3.003E-02	3.255E-02	2.727E-02	1.542E-02
3 - 63	1.725E-02	2.177E-02	2.360E-02	1.976E-02	1.117E-02
3 - 64	4.088E-02	4.948E-02	4.717E-02	3.460E-02	1.779E-02
3 - 65	6.912E-02	8.835E-02	9.552E-02	7.992E-02	4.494E-02
3 - 66	1.299E+00	1.471E+00	1.696E+00	2.040E+00	2.406E+00
3 - 67	8.579E-02	9.363E-02	1.054E-01	1.256E-01	1.480E-01
3 - 68	8.033E-06	2.383E-06	1.024E-06	2.652E-07	6.983E-08
3 - 69	7.842E-04	9.693E-04	1.114E-03	1.231E-03	1.365E-03
3 - 70	1.421E-04	1.464E-04	1.585E-04	1.465E-04	1.164E-04
3 - 71	3.180E-05	2.757E-05	2.669E-05	2.886E-05	2.645E-05
3 - 72	1.349E-03	1.477E-03	1.503E-03	2.150E-03	3.564E-03
3 - 73	4.274E-04	4.556E-04	4.591E-04	6.763E-04	1.154E-03
3 - 74	1.169E-04	1.905E-04	2.449E-04	2.475E-04	1.618E-04
3 - 75	5.170E-05	5.829E-05	6.691E-05	7.088E-05	6.504E-05
Table 14: Fine structure collision strengths from the Al IV level
$1s^22s^22p^53s\ ^3P_0$ (level 4 in Table 4).

$i-j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
4−5	1.733E-02	7.144E-03	2.359E-03	6.720E-04	1.699E-04
4−6	1.864E+00	2.219E+00	2.566E+00	2.902E+00	3.275E+00
4−7	1.176E-04	1.330E-04	1.410E-04	1.307E-04	9.220E-05
4−8	7.840E-04	1.847E-04	2.633E-05	4.108E-06	9.574E-07
4−9	1.176E-04	1.330E-04	1.410E-04	1.307E-04	9.220E-05
4−10	3.378E-04	7.343E-05	7.813E-06	5.988E-07	1.022E-07
4−11	6.675E+00	8.045E+00	9.453E+00	1.082E+01	1.232E+01
4−12	3.012E-03	6.583E-04	6.932E-05	4.988E-06	8.227E-07
4−13	4.918E-04	1.070E-04	1.081E-05	6.170E-07	2.399E-07
4−14	6.675E+00	8.045E+00	9.453E+00	1.082E+01	1.232E+01
4−15	3.012E-03	6.583E-04	6.932E-05	4.988E-06	8.227E-07
4−16	5.821E-05	5.771E-05	5.623E-05	4.803E-05	4.803E-05
4−17	1.627E-04	3.834E-05	6.539E-06	1.085E-06	1.741E-07
4−18	1.958E-05	2.204E-05	2.297E-05	2.111E-05	1.415E-05
4−19	3.442E-05	4.218E-05	4.587E-05	4.218E-05	2.798E-05
4−20	3.080E-04	7.460E-05	1.355E-05	2.389E-06	4.156E-07
4−21	3.226E-04	3.648E-04	3.806E-04	3.488E-04	2.315E-04
4−22	6.206E-04	1.412E-04	2.249E-05	3.396E-06	4.775E-07
4−23	4.088E-04	9.422E-05	1.511E-05	2.334E-06	3.405E-07
4−24	6.521E-05	5.763E-05	5.771E-05	5.623E-05	4.803E-05
4−25	2.981E-03	6.818E-04	1.087E-04	1.641E-05	2.301E-06
4−26	4.652E-01	5.275E-01	5.507E-01	5.047E-01	3.354E-01
4−27	1.075E-03	2.488E-04	4.087E-05	6.357E-06	9.300E-07
4−28	4.981E-04	5.940E-04	6.378E-04	4.909E-04	2.479E-04
4−29	4.467E-05	1.482E-05	3.901E-06	8.292E-07	1.975E-07
4−30	3.887E-01	4.122E-01	4.290E-01	4.315E-01	3.850E-01
4−31	3.822E-04	1.197E-04	2.610E-05	3.863E-06	7.827E-07
4−32	1.325E-02	1.487E-02	1.959E-02	2.842E-02	4.060E-02
4−33	5.183E-06	5.938E-06	6.673E-06	3.917E-06	3.269E-06
4−34	1.221E-05	3.711E-06	5.530E-07	5.095E-08	9.744E-09
4−35	5.449E-03	6.083E-03	7.823E-03	1.109E-02	1.497E-02
4−36	1.974E-06	5.883E-07	8.382E-08	7.351E-09	1.311E-09
4−37	5.177E-05	1.577E-05	2.314E-06	1.969E-07	3.558E-08
4−38	8.437E-02	9.476E-02	1.197E-01	1.629E-01	2.046E-01
4−39	4.624E-04	1.414E-04	2.121E-05	2.110E-06	4.246E-07
4−40	4.568E-02	5.129E-02	6.503E-02	8.884E-02	1.116E-01
4−41	9.976E-05	3.418E-05	7.549E-06	1.769E-06	4.764E-07
$i - j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
---------	-------	-------	-------	--------	--------
4 − 42	2.354E-04	2.602E-04	2.611E-04	2.310E-04	1.677E-04
4 − 43	1.125E-05	3.122E-06	5.488E-07	8.427E-08	1.420E-08
4 − 44	1.829E-03	2.230E-03	2.298E-03	2.352E-03	2.749E-03
4 − 45	3.389E-06	3.305E-06	2.948E-06	2.479E-06	1.987E-06
4 − 46	1.405E-05	3.994E-06	7.728E-07	1.322E-07	2.453E-08
4 − 47	1.513E-03	1.852E-03	1.920E-03	2.053E-03	2.370E-03
4 − 48	1.343E-05	3.537E-06	5.779E-07	7.899E-08	1.138E-08
4 − 49	5.731E-05	1.568E-05	2.618E-06	3.747E-07	5.781E-08
4 − 50	2.659E-07	4.065E-08	5.123E-09	6.700E-10	8.400E-11
4 − 51	7.999E-04	2.094E-04	3.445E-05	4.742E-06	6.777E-07
4 − 52	6.904E-04	7.593E-04	8.096E-04	9.060E-04	1.141E-03
4 − 53	2.659E-07	4.065E-08	5.123E-09	6.700E-10	8.400E-11
4 − 54	7.999E-04	2.094E-04	3.445E-05	4.742E-06	6.777E-07
4 − 55	7.409E-06	8.909E-06	1.004E-05	7.913E-06	4.015E-06
4 − 56	6.634E-07	4.571E-08	2.504E-08	9.512E-09	1.274E-09
4 − 57	1.149E-03	1.471E-03	1.605E-03	1.336E-03	7.524E-04
4 − 58	4.615E-06	8.355E-07	1.235E-07	1.421E-08	1.344E-09
4 − 59	5.746E-04	7.360E-04	8.058E-04	6.700E-04	3.760E-04
4 − 60	4.967E-06	6.567E-07	1.555E-07	3.888E-08	4.836E-09
4 − 61	3.170E-04	8.488E-05	1.416E-05	1.997E-06	2.889E-07
4 − 62	5.257E-02	6.709E-02	7.238E-02	6.040E-02	3.398E-02
4 − 63	7.535E-02	9.637E-02	1.040E-01	8.681E-02	4.838E-02
4 − 64	2.521E-04	4.639E-05	6.699E-06	8.171E-07	7.690E-08
4 − 65	4.478E-04	8.413E-05	1.224E-05	1.294E-06	1.145E-07
4 − 66	4.656E-01	5.278E-01	6.089E-01	7.323E-01	8.636E-01
4 − 67	2.411E-03	1.232E-03	4.891E-04	1.615E-04	4.508E-05
4 − 68	2.655E-04	3.315E-04	3.814E-04	4.038E-04	3.639E-04
4 − 69	9.104E-06	3.862E-06	1.253E-06	3.348E-07	8.664E-08
4 − 70	5.870E-05	6.555E-05	7.387E-05	6.908E-05	5.500E-05
4 − 71	6.360E-06	2.908E-06	1.032E-06	3.071E-07	8.184E-08
4 − 72	2.719E-06	1.260E-06	4.617E-07	1.439E-07	3.960E-08
4 − 73	6.196E-04	6.647E-04	6.708E-04	9.851E-04	1.677E-03
4 − 74	6.287E-05	1.032E-04	1.329E-04	1.345E-04	8.777E-05
4 − 75	2.792E-06	1.281E-06	4.615E-07	1.431E-07	3.977E-08
Table 15: Fine structure collision strengths from the Al IV level
$1s^22s^22p^33s^1P^0_1$ (level 5 in Table 4).

$i-j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
5 – 6	1.993E-01	2.338E-01	2.684E-01	3.020E-01	3.396E-01
5 – 7	3.479E-03	7.600E-04	9.430E-05	2.344E-05	1.419E-05
5 – 8	5.053E-01	6.018E-01	6.999E-01	7.969E-01	9.050E-01
5 – 9	9.052E-02	1.055E-01	1.223E-01	1.394E-01	1.585E-01
5 – 10	1.741E-01	2.092E-01	2.445E-01	2.790E-01	3.171E-01
5 – 11	1.163E+01	1.397E+01	1.635E+01	1.866E+01	2.120E+01
5 – 12	1.939E+01	2.332E+01	2.732E+01	3.121E+01	3.550E+01
5 – 13	3.750E-01	4.493E-01	5.253E-01	5.991E-01	6.794E-01
5 – 14	9.910E+00	1.192E+01	1.396E+01	1.596E+01	1.814E+01
5 – 15	5.583E+00	6.792E+00	8.244E+00	9.761E+00	1.146E+01
5 – 16	3.911E-04	9.237E-05	1.609E-05	2.693E-06	4.403E-07
5 – 17	4.486E-03	3.834E-03	3.731E-03	3.440E-03	2.354E-03
5 – 18	3.672E-03	1.535E-03	1.032E-03	9.269E-05	6.535E-05
5 – 19	3.015E-03	6.885E-04	1.155E-04	2.284E-05	6.411E-06
5 – 20	1.889E-01	2.104E-01	2.172E-01	1.958E-01	1.285E-01
5 – 21	4.460E-02	4.775E-02	4.874E-02	4.371E-02	2.878E-02
5 – 22	1.248E+00	1.407E+00	1.460E+00	1.324E+00	8.715E-01
5 – 23	1.217E-02	1.242E-02	1.248E-02	1.092E-02	7.025E-03
5 – 24	8.104E-01	9.135E-01	9.484E-01	8.612E-01	5.697E-01
5 – 25	9.495E-01	1.070E+00	1.112E+00	1.011E+00	6.669E-01
5 – 26	7.800E-01	8.795E-01	9.135E-01	8.302E-01	5.496E-01
5 – 27	1.026E+00	1.164E+00	1.211E+00	1.096E+00	7.216E-01
5 – 28	6.465E-04	3.010E-04	1.735E-04	1.086E-04	5.392E-05
5 – 29	2.093E-01	2.215E-01	2.306E-01	2.460E-01	2.653E-01
5 – 30	2.913E-04	9.526E-05	2.363E-05	4.594E-06	1.060E-06
5 – 31	1.133E+00	1.201E+00	1.251E+00	1.333E+00	1.449E+00
5 – 32	1.199E-03	1.217E-03	1.256E-03	1.182E-03	9.245E-04
5 – 33	3.856E-04	1.185E-04	1.871E-05	2.378E-06	8.466E-07
5 – 34	4.015E-02	4.524E-02	6.045E-02	8.732E-02	1.157E-01
5 – 35	4.272E-02	4.832E-02	6.540E-02	9.531E-02	1.274E-01
5 – 36	6.933E-02	7.812E-02	1.038E-01	1.496E-01	1.988E-01
5 – 37	3.479E-03	3.834E-03	5.164E-03	7.596E-03	1.084E-02
5 – 38	6.296E-02	7.069E-02	9.352E-02	1.340E-01	1.769E-01
5 – 39	1.922E-01	2.161E-01	2.820E-01	3.981E-01	5.170E-01
5 – 40	7.506E-02	8.438E-02	1.115E-01	1.593E-01	2.096E-01
5 – 41	1.952E-01	2.271E-01	2.564E-01	2.619E-01	2.192E-01
$i-j$	15 Ry	30 Ry	60 Ry	120 Ry	240 Ry
-------	-------	-------	-------	--------	--------
5 - 42	6.740E-05	1.816E-05	3.060E-06	4.349E-07	6.580E-08
5 - 43	3.529E-04	2.163E-04	1.906E-04	1.766E-04	1.364E-04
5 - 44	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 45	1.453E-02	1.720E-02	1.719E-02	1.939E-02	2.060E-02
5 - 46	1.151E-02	1.353E-02	1.345E-02	1.534E-02	1.612E-02
5 - 47	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 48	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 49	1.151E-02	1.353E-02	1.345E-02	1.534E-02	1.612E-02
5 - 50	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 51	1.151E-02	1.353E-02	1.345E-02	1.534E-02	1.612E-02
5 - 52	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 53	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 54	2.091E-03	2.133E-03	2.045E-03	2.380E-03	2.403E-03
5 - 55	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 56	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 57	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 58	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 59	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 60	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 61	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 62	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 63	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 64	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 65	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 66	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 67	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 68	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 69	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 70	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 71	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 72	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 73	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 74	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03
5 - 75	3.316E-03	3.734E-03	4.030E-03	4.853E-03	4.753E-03