Research article

On the constant coefficients of a certain recurrence relation: A simple proof

Milica Andelić a, Carlos M. da Fonseca b,c,⁎

a Department of Mathematics, Kuwait University, Safat 13060, Kuwait
b Kuwait College of Science and Technology, Doha District, Safat 13133, Kuwait
c Chair of Computational Mathematics, University of Deusto, 48007 Bilbao, Basque Country, Spain

A R T I C L E I N F O

Keywords:
Recurrence relation
Determinant
Tridiagonal k-Toeplitz matrices
Chebyshev polynomials of second kind

A B S T R A C T

In this note, we provide a short proof for the explicit formulas of the coefficients of a particular 3-term recurrence relation derived from a k-periodic recurrence. Any of the recurrences can be naturally interpreted in terms of determinants of Hessenberg matrices families.

1. Introduction

The sequence

0, 1, 1, 3, 5, 13, 23, 59, 105, 269, 479, 1227, 2185, 5597,…

is coined in the On-Line Encyclopedia of Integer Sequences as A005824. It was considered in [1] by Shallit in the context of the worst-case behavior of three iterative algorithms for computing the Jacobi symbol. It can be recursively defined as

\[f_n = \begin{cases}
2f_{n-1} + f_{n-2} & \text{if } n \text{ is odd}, \\
 f_{n-1} + 2f_{n-2} & \text{if } n \text{ is even},
\end{cases} \]

for \(n ≥ 2 \), with initial conditions \(f_0 = 0 \) and \(f_1 = 1 \). However, in the On-Line Encyclopedia of Integer Sequences, it is stated originally as

\[f_n = 5f_{n-2} - 2f_{n-4}. \]

Over the past few decades, it has been independently claimed in different areas of mathematics that, for a given \(k \)-periodic term recurrence relation

\[f_n = \begin{cases}
a_1f_{n-1} - b_1f_{n-2} & \text{if } n \equiv 1 \pmod{k}, \\
a_2f_{n-1} - b_2f_{n-2} & \text{if } n \equiv 2 \pmod{k}, \\
a_3f_{n-1} - b_3f_{n-2} & \text{if } n \equiv 3 \pmod{k}, \\
\vdots & \\
a_{k-1}f_{n-1} - b_{k-1}f_{n-2} & \text{if } n \equiv k-1 \pmod{k}, \\
a_kf_{n-1} - b_kf_{n-2} & \text{if } n \equiv 0 \pmod{k},
\end{cases} \]

(1.1)

with \(n ≥ 2 \) and assuming that \(f_0 = 1 \) and \(f_1 = a_1 \), there exist constants \(a \) and \(b \) such that

\[f_n = af_{n-k} - bf_{n-2k}. \]

(1.2)

Cooper in [2] finds explicitly these constants for \(k = 2, \ldots, 6 \). In each proof, \(n \pmod{k} \) is considered separately. Motivated by [2], Carson in [3] provides the formula for \(a \) and \(b \), using a recursive process of row elimination. Nevertheless, the particular case when \(a_i = 1 \), for all \(i \), was considered earlier by Lehmer in [4]. This particular case has been rediscovered in [5] using a rather intricate technique.

It is interesting to notice that previously this problem had been independently investigated in orthogonal polynomial theory. Indeed, in [6] this case was analyzed. However, earlier we find this problem in the seminal work by Geronimo and Van Assche [7] or, for \(k = 2 \) and \(a_i \)’s constant, as an exercise in the Chihara’s masterful book [8, p.91]. The papers [9, 10] by Geronimus are also worth mentioning.

The aim of this note is to provide a short proof to (1.2) as an immediate consequence of a less-known result on determinant of certain tridiagonal matrices due to Rózsa [11]. A determinantal formula for the recurrence relation is stated.

2. The main result

The sequences satisfying the recurrence relation (1.1) were considered by Perron in [12]. However, they can be traced back to the foundational work by Stieltjes [13, 14]. On the other hand, the connection between (1.1) and the determinant of tridiagonal k-Toeplitz matrices

https://doi.org/10.1016/j.heliyon.2021.e07764

2405-8440/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
\[
A_n = \begin{pmatrix}
a_1 & 1 & & & \\
b_1 & a_2 & 1 & & \\
& b_2 & a_3 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & & b_{k-1} & a_k & 1
\end{pmatrix}
\] \quad (2.1)

is quite useful, but not always conveniently explored (see, e.g., [15, 16, 17, 18]).

The determinant of \(A_n \) has been independently rediscovered over the decades in many instances (cf., e.g., [19, 20, 21]). Notwithstanding, the first general formula is due to Rózsza [11] in 1969 and it stands relatively ignored. Namely, setting

\[
\Delta_{i,j} = \det \begin{pmatrix} a_i & 1 & \cdots & \cdots & b_{j-1} \\
& a_i & 1 & \cdots & b_{j-1} \\
& & \ddots & \ddots & \ddots \\
& & & a_i & 1 \\
\end{pmatrix},
\]

for \(1 \leq i \leq j \leq k \), and

\[
\Delta_{i,j} = \begin{cases} 0 & \text{if } j < i - 1 \\ 1 & \text{if } j = i - 1. \end{cases}
\]

for \(j < i \), then the determinant of \(A_n \) is given by

\[
\det A_n = (\sqrt{b_1 - b_2})^n \Delta_{1,n} U_q(x) + \sqrt{b_1 - b_2} \Delta_{1,n+2} U_{q+2}(x)
\] \quad (2.2)

with \(n = qk + r \),

\[
x = \frac{\Delta_{1,k} - b_1 \Delta_{2,k-1}}{2 \sqrt{b_1 - b_2}}.
\]

and \(\{U_q(x)\}_{x \geq 0} \) being the Chebyshev polynomials of the second kind. Recall that these polynomials satisfy the three-term recurrence relation

\[
U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \quad \text{for all } n = 1, 2, \ldots.
\] \quad (2.3)

with initial conditions \(U_0(x) = 1 \) and \(U_1(x) = 2x \). Now, taking into account that \(n - k = (q - 1)k + r \), \(n - 2k = (q - 2)k + r \), and using (2.2) and (2.3), we get

\[
\det A_n = (\sqrt{b_1 - b_2})^n \Delta_{1,n} U_q(x) + \sqrt{b_1 - b_2} \Delta_{1,n+2} U_{q+2}(x)
\]

while for \(k = 2 \) one obtains (2.4)

\[
f_n = (a_1a_2 - b_1 - b_2)f_{n-2} - b_1b_2 f_{n-4},
\]

for \(k = 3 \), one gets

\[
f_n = (a_1a_2a_3 - a_1b_1 - a_2b_2 - a_3b_1)f_{n-3} - b_1b_2b_3 f_{n-6},
\]

which coincide with the particular formulas one can find in the recent literature.

Moreover, according for instance to [22, 23], one can represent (1.2) in terms of the determinant of a Hessenberg matrix, namely

\[
f_n = \det \begin{pmatrix} f_{1} & \cdots & f_{k} & \cdots & f_{2k} \\
-1 & 0 & \cdots & \cdots & -1 \\
& -1 & 0 & \cdots & -1 \\
& & \ddots & \ddots & \ddots \\
& & & -1 & 0
\end{pmatrix}_{2k},
\]

where all non-mentioned entries should be read as zero. Furthermore, \(a \) and \(-b\) lie in the \(k \)th and \(2k \)th superdiagonals, respectively.

\section{Conclusion}

Any \(k \)-periodic recurrence relation can be defined as a single recurrence relation. In this note, we provide a short proof for the formulas of the coefficients of such relation, recalling less-known results in the literature.

\section{Declarations}

\section{Author contribution statement}

M. Andelíć: Analyzed and interpreted the data.

C.M. da Fonseca: Analyzed and interpreted the data; wrote the paper.

\section{Declaration of interests statement}

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

\section{Data availability statement}

No data was used for the research described in the article.

\section{Funding statement}

The authors declare no conflict of interest.

\section{Additional information}

No additional information is available for this paper.

\section{References}

[1] J.O. Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symb. Comput. 10 (1990) 593–610.

[2] C. Cooper, An identity for period-\(k \) second order linear recurrence systems, Congr. Numer. 200 (2010) 95–106.

[3] T.R. Carson, Periodic recurrence relations and continued fractions, Fibonacci Q. 45 (2007) 357–361.

[4] D. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices, Fibonacci Q. 13 (1975) 150–158.

[5] M. Edson, S. Lewis, O. Yayenie, The \(k \)-periodic Fibonacci sequence and an extended Binet’s formula, Integers 11 (2011) 739–751.
[6] B. Beckermann, J. Gilewicz, E. Leopold, Recurrence relation with periodic coefficients and Chebyshev polynomials, Appl. Math. 23 (1995) 319–323.

[7] J.S. Geronimo, W. Van Assche, Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory 46 (1986) 251–283.

[8] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.

[9] Ya.L. Geronimus, On some finite difference equations and corresponding systems of orthogonal polynomials, Zap. Mat. Otd. Fiz.-Mat. Fak. Kharkov Obsc. 25 (1957) 87–100.

[10] Ya.L. Geronimus, On the character of the solutions of the moment problem in the case of a limit-periodic associated fraction, Izv. Akad. Nauk SSSR 5 (1941) 203–210.

[11] P. Rózsa, On periodic continuants, Linear Algebra Appl. 2 (1969) 267–274.

[12] O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, Leipzig/Berlin, 1929.

[13] T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 9 (1895) A1–A47.

[14] T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8 (1894) JI–J122.

[15] M. Andelić, Z. Du, C.M. da Fonseca, E. Kılıç, Second-order difference equations with sign-alternating coefficients, J. Differ. Equ. Appl. 26 (2020) 149–162.

[16] M. Andelić, C.M. da Fonseca, Some comments on tridiagonal \((p,r)\)-Toeplitz matrices, Linear Algebra Appl. 572 (2019) 46–50.

[17] M. Andelić, C.M. da Fonseca, R. Mamede, On the number of \(P\)-vertices of some graphs, Linear Algebra Appl. 434 (2011) 514–525.

[18] C.M. da Fonseca, Comments on the spectrum of a tridiagonal \(\lambda\)-Toeplitz matrix, J. Comput. Appl. Math. 375 (2020) 112793.

[19] C.M. da Fonseca, J. Petronilho, Explicit inverse of a tridiagonal \(\lambda\)-Toeplitz matrix, Numer. Math. 100 (3) (2005) 457–482.

[20] M.J.C. Gover, The eigenproblem of a tridiagonal \(2\)-Toeplitz matrix, Linear Algebra Appl. 197/198 (1994) 63–78.

[21] M.J.C. Gover, S. Barnett, Inversion of Toeplitz matrices which are not strongly singular, IMA J. Numer. Anal. 5 (1985) 101–110.

[22] M. Janjić, Determinants and recurrence sequences, J. Integer Seq. 15 (2012) 12.3.5.

[23] L. Verde-Star, Polynomial sequences generated by infinite Hessenberg matrices, Spec. Matrices 5 (2017) 64–72.