(R)-N-trans-feruloyloctopamine from the root timber of Melochia umbellata (Houtt.) Stapf var. Visenia (Paliasa)

S Nusan1, N H Soekamto2, Y Maolana Syah3, Firdaus2 and E Hermawati3

1Department of Agriculture, Enrekang Regency, Jl. Jend Sudirman No. 22, Enrekang, Indonesia
2Department of Chemistry, Hasanuddin University, Jalan Perintis Kemerdekaan 10, Makassar, 90245, Indonesia
3Department of Chemistry, Bandung Institute of Technology, Jalan Ganeca 10, Bandung, Indonesia

nunukhariani@unhas.ac.id

Abstract. A phenolic amide namely (R)-N-trans-feruloyloctopamine has been isolated from chloroform fraction of the root timber Melochia umbellata (Houtt) Stapf var. Visenia (Paliasa). Isolation compound has been done by maceration, fractionation, and purification. The molecular structure was determined by IR spectroscopy, NMR 1D and 2D (1H-NMR, 13C-NMR, HSQC and HMBC). Isolate formed yellow paste (83.4 mg) with melting point of 156 – 158 °C. The λmaks data on the UV-Vis spectrum of 333.80 nm (3.795) indicate compound has a long conjugated double bond. Data IR \(\nu_{\text{max}} \) cm\(^{-1} \) for groups as follows: 3327 (–OH), 2933 (C-H aliphatic), 1653 (C=O amide), 1593 (olefin). The data of NMR 1,2D show that this compound contains 18 carbon atoms, consisting of: 1 methyl, 1 methylene, 11 metin and 5 carbon quartener. Metin carbon consists of 2 alkene protons (olefins), 7 aromatic protons, and 1 alkyl alcohol (\(\delta_{C} 72.58 \) ppm). NMR data also shows that one quartener carbon as C = O amide group (\(\delta_{C} 166.92 \) ppm) and one methoxy (\(\delta_{C} 55.35 \) ppm). The (R)-N-trans-feruloyloctopamine is the first compound found in the genus Melochia.

1. Introduction
Paliasa is the term medicinal plant on Sulawesi Island which consist of two different plant species namely Kleinhovia hospita L. and Melochia umbellata (Houtt.) Stapf. Melochia umbellata (Houtt.) Stapf consists of two varieties, namely M. umbellata (Houtt.) Stapf var. Degrabrata K. and M. umbellata (Houtt.) Stapf var. Visenia. M. umbellata with the name synonym of Melochia indica (Gmel.) Kurz. is the native plants in the India to the Philippines, the New Guinea, and the Pasifik Islands [1]. Paliasa, including M. umbellata (Houtt.) Stapf var. Visenia has been used traditionally in the Province of South Sulawesi (Indonesia) to treat liver and other diseases [2].

Paliasa contains chemical compounds such as steroids, terpenoids, alkaloids and flavonoids. The stem bark of K. hospita L. contains 7-hydroxy-6-methoxy-coumarin (scopoletin) and \(\beta \)-sitosterol compounds [3], and two triterpenoid compounds, namely 2,3-dihydroxy-12-oleanan-28-oat and 2-hydroxy-12-oleanen-28-oat from the stem and root bark of K. hospital L. [4]. Hexane extract from the root timber of M. umbellata (Houtt.) Stapf var. Degrabrata found \(\beta \)-sitosterol compound [5], two steroid group namely stigmast-5,22-dien-3-O-\(\beta \)-D-glucopiranoside [6] and \(\beta \)-sitosterol [5], one
compound from triterpenoids group namely 3-acetyl-12-oleanan-28-oic acid [7], phenol compound methyl β- (p-hydroxyphenyl) acrylic [8], the flavonoids compound from the isoflavone group namely 6,6'-dimetoksi-4,4'-dihydroxy-3, 2'-furano-isoflavan [9], melosinine alkaloid compound i.e. Walterion C and the Cleomiscosin A from the coumarin group [10].

Many bioactivity tests to both extracts and pure isolates have been reported. The compounds of stigmas-5,22-dien-3O-β-D-glukopiranoside active against the fungus of Aspergillus niger [6], and 3-acetyl 12-oleanan-28-oic-acid active against the fungus of Bacillus subtilis and Candida albicans [7]. The compounds of 6,6'-dimethoxy-4,4'-dihydroxy-3', 2'-furano-isoflavan [9], methyl b-(p-hydroxyphenyl) acrylic [3], and walterion C shows anticancer activity [10]. The leaf extract of K. hospita and M. umbellata var. Degrabrata can positively protect liver inflammation [11] and also paliasa leaves extract still save in every treatment dosage [12], antioxidant activity and moderate cytotoxic activity against HepG2 liver cancer cells [13].

Recently, a phenolic amide namely (R)-N-trans-feruloyloctopamine, has been isolated from chloroform fraction of the bark M. umbellata (Houtt) Stapf var. Visenia (Paliasa). The molecular structure was determined by IR spectroscopy, NMR 1D and 2D (1H-NMR, 13C-NMR, HMQC and HMBC). The (R)-N-trans-feruloyloctopamine is the first compound found in the genus Melochia, even though to be first discovered in the Malvaceae family.

2. Methods

2.1. Time and location

The research was conducted in February 2018 to March 2019 at the Organic Chemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences of Hasanuddin University in Makassar and Bandung Institute of Technology.

2.2. Materials and Equipment

Materials used in this study are a sample the root timber of M. umbellata (Houtt) Stapf var. Visenia, Organic solvent used quality p.a and technical; n-hexane, chloroform, ethyl acetic, acetone and methanol, silica gel Merck (7730, 7733 and 7734), and cerium sulphate solution 2 %. Equipment used in this study were glass tools commonly used in the laboratory, vacuum liquid chromatography equipment, press column chromatography, gravity column chromatography, thin layer chromatography (TLC), chromototron, a developer room (chamber), micropipette, microplate, antimicrobial test equipment, ultraviolet light (λ, 254 and 360 nm), evaporator tools Buchi, melting point apparatus Fisher.Johns, UV Vis, FTIR 8501 Shimadzu and NMR Agilent 500 MHz.

2.3. Isolation and Spectroscopic Analysis

Extraction is done by total maceration method. First, the root timber powder M. umbellata (Houtt.) Stapf var. Visenia was macerated using methanol, then partitioned liquid-liquid using a solvent: n-hexane, chloroform, ethyl acetate, and methanol. Each filtrate obtained was then evaporated until is obtained viscous extract of each fraction, namely: fraction n-hexane, ethyl acetate and methanol fraction. Each fraction obtained is then weighed to find out its weight. Purification was carried out using chromatographic techniques such as vacuum liquid chromatography, press column chromatography, gravity column chromatography, and chromototron with the appropriate eluents. The purity test was performed using thin layer chromatography analysis and melting point measurements.

The molecular structure was determined by IR spectroscopy, NMR 1D and 2D (1H-NMR, 13C-NMR, HSQC and HMBC).

3. Results and Discussion

3.1. Isolation

The plants bark powder of M. umbellata var. Visenia plants (10 kg) was extracted by maceration with methanol 1 x 24 hours (3 times). The methanol extract was concentrated by a low-pressure rotary evaporator and methanol extract (116,26 g) was obtained. The methanol extract was partitioned with
of liquid - liquid extraction using solvents with increasing polarity: n-hexane, chloroform and ethyl acetate. At the root timber obtained n-hexane extract as much as 10.24 g, chloroform extract as much as 41.28 g, and ethyl acetate as much as 11.1 g.

Chloroform extract as much as 30.78 grams was fractionated using vacuum column chromatography (KKV) method using n-hexane (100%), ethyl acetate: n-hexane in gradually from a ratio of 1: 9 to 9: 1, eti acetate (100%). The initial fractionation results obtained 54 main fractions, then fractions that showed the same profile spot on the TLC plate were combined, resulting in 12 combined fractions (A-K) (Figure 1).

Figure 1. KKV profile spot of chloroform extract

As much as 1.5 grams of the IJ fraction done KVC uses eluent: n-hexane : ethyl acetate in the ratio of 4: 6; 3.5: 6.5; 3: 7, and 4: 6, produce 22 subfractions, then combined based on the similarity of Rf to 11 combined subfractions (IJ1-IJ10). Subfraction of IJ7a and IJ7b respectively in chromototron with eluent chloroform: methanol in the ratio of 19: 1 and 9: 1. Subfraction of IJ7a produced 31 sub-subfractions, where sub-subfraction 18 to sub-subfraction 24 formed yellow paste (83.4 mg) with melting point of 156 – 158 °C was pure compound, shown in Figure 2.

Figure 2. Spot profile of isolated compound of (R)-N-trans-feruloyloctopamine

3.2. Spectroscopic Data Analysis

The maximum wavelength (λ_{max}) data on the UV-Vis spectrum of 333.80 nm with absorbance of 3.795 indicate that this compound has a long conjugated double bond.

The IR spectrum in Figure 3 shows a wide absorption band at wave number 3327.21 cm$^{-1}$ for OH, a strong and sharp absorption band at 1653.00 cm$^{-1}$ for a carbonyl amide (C=O amide) and 1031.92 cm$^{-1}$ for a carbon-oxygen single bond (C-O alcohol). The at wave number 2845.00 cm$^{-1}$ and 2933.73 cm$^{-1}$ for C-H bond of aliphatic structure which are reinforced by absorption band at 1450.47
cm$^{-1}$ for C-H bending of the CH$_2$ group. The weak absorption band between 3000 and 3100 cm$^{-1}$ for C-H is not saturated, and the presence of absorption bands at 1595.13 and 1514.12 cm$^{-1}$ shows that the unsaturated group is an aromatic group. Furthermore, the absorption band at 837.11 cm$^{-1}$ shows that the aromatic group is para substituted. The presence of absorption bands above 1600 cm$^{-1}$ as the shoulder of the absorption band at 1595.13 cm$^{-1}$ shows the presence of olefins, and the absorption band at 975.98 cm$^{-1}$ states that the olefins is trans substituted.

The 1H-NMR spectrum shows the presence of signal at chemical shift (δ_{H}) 7.18 ppm (H-2), δ_{H} 6.85 ppm (H-5), δ_{H} 7.06 ppm (H-6), δ_{H} 7.52 ppm (H-7), δ_{H} 6.63 ppm (H-8), δ_{H} 4.79 ppm (H-7'), δ_{H} 3.42 ppm (Ha-8') and 3.65 ppm (Hb-8'), δ_{H} 3.86 ppm (H-9), and two symmetrical signals at δ_{H} 7.25 ppm (H-2'/6') and 6.82 ppm (H-3'/5').

The 13C-NMR spectrum shows the presence of signal at chemical shift (δ_{C}) 127.20 ppm (C-1), 110.47 ppm (C-2), 147.76 ppm (C-3), 148.41 ppm (C-4), 115.29 ppm (C-5), 121.89 ppm (C-6), 140.27 ppm (C-7), 118.60 ppm (C-8), 166.92 ppm (C-9), 134.13 ppm (C-1'), 127.18 (C-2'/6'), 114.95 ppm (C-3'/5'), 156.70 ppm (C-4'), 72.58 ppm (C-7'), 47.81 ppm (C-8'), and 55.35 ppm (C-9'). The total is 18 carbon atoms, consist of 1 methyl (CH$_3$), 1 methylene (CH$_2$) 11 methin (CH), and 5 quaternary carbon.

Based on the data 1H-NMR and 13C-NMR, can be described that the proton at δ_{H} 6.86 ppm (H-5) which is bonded to the carbon at δ_{C} 115.29 (C-5), and proton at δ_{H} 7.06 ppm (H-6) which is attached to the carbon at δ_{C} 121.89 ppm (C-6) in the aromatic B ring has the same coupling constant of 8.0 Hz indicating that the two protons are coupling ortho to each other. The 1H-NMR spectrum also showed two doublet signal integration 2 (symmetric) ie proton at δ_{H} 7.25 ppm (H-2'/6') are attached to the carbon δ_{C} 127.18 ppm (C-2'/6') and the proton at δ_{H} 6.82 ppm (H-3'/5') which is bound to the carbon δ_{C} 114.95 ppm (C-3'/5') in the aromatic A ring has the same coupling constant of 8.5 Hz indicating that the two protons are also coupling ortho to each other. In addition, the coupling constant of 15.5 Hz indicates a trans relationship (two trans olefinic) between proton at δ_{H} 7.52 ppm (H-7) and proton at δ_{H} 6.63 ppm (H-8).

The HMBC spectrum shows that the proton at δ_{H} 7.25 ppm (H-2'/6') in the aromatic core of A ring have correlation distance with the carbon at δ_{C} 72.58 ppm (C-7) which are in the acyclic chains and quaternary carbon at δ_{C} 156.70 ppm (C-4') which binds to the hydroxyl group. Proton at δ_{H} 6.82 ppm (H-3'/5') correlated distance with carbon at δ_{C} 134.13 ppm (C-1').

![Figure 3. FTIR spectrum of (R)-N-trans-feruloyloctopamine](image-url)
At the B ring, the HMBC spectrum data shows distance correlation of proton at $\delta_H 7.18$ ppm (C-2) to carbon at $\delta_C 121.89$ (C-6), quaternary carbon at $\delta_C 147.76$ ppm (C-3), acyclic chain carbon at $\delta_C 140.27$ (C-7) and carbon at $\delta_C 148.41$ ppm (C-4). Proton at $\delta_H 7.06$ (H-6) correlated distance with carbon at $\delta_C 110.47$ ppm (C-2), carbon at $\delta_C 140.27$ (C-7), and quaternary carbon at $\delta_C 147.76$ ppm (C-3). The proton at $\delta_H 6.85$ ppm (C-5) correlated distance with the quaternary carbon at $\delta_C 127.20$ ppm (C-1), $\delta_C 147.76$ ppm (C-3), and $\delta_C 148.42$ ppm (C-4).

Table 1. Interpretation Data HSQC and HMBC of (R)-N-trans-feruloyloctopamine

No	HSQC	HMBC			
	1H-NMR ppm (I, m, J)a	13C-NMR Ppm (Gugus)a	1H-NMR ppm (I, m, J)b	13C-NMR (ppm)b	
1	-	127.20 (C)	-	127.08	-
2	7.18 (1H, d, 1.5)	110.47 (CH)	7.12 (1H, brs)	110.41	C-6, C-7, C-3, C-4
3	-	147.76 (C)	-	148.13	-
4	-	148.41 (C)	-	148.75	-
5	6.85 (1H, d, 8)	115.29 (CH)	6.79 (d, 8)	115.31	C-1, C-3, C-4
6	7.06 (1H, dd, 8 dan 8)	121.89 (CH)	7.02 (dd; 8.2)	122.13	C-2, C-7, C-3
7	7.52 (1H, d, 15.5)	140.27 (CH)	7.44 (d;15.5)	141.09	C-2, C-6, C-9
8	6.63 (1H, d, 15.5)	118.60 (CH)	6.46 (d; 15.5)	117.46	C-1, C-9
9	-	166.92 (C)	-	168.34	-
1'	-	134.13 (C)	-	133.56	-
2'/6'	7.25 (1H, d, 8.5)	127.18 (CH)	7.22 (d; 8.5)	127.29	C-7', C-2'/6', C-4'
3'/5'	6.82 (1H, d, 8.5)	114.95 (CH)	6.77 (d; 8.5)	114.96	C-1', C-3'/5'
4'	-	156.70 (C)	-	156.91	-
7'	4.79 (1H, qii, 4.0)	72.58 (CH)	4.73 (dd; 7,5;5,0)	72.22	C-8', C-2'/6'
8'	3.42 (1H, brs)	47.81 (CH2)	3.44 (dd;13,5)	47.50	C-7', C-9
9'	3.86 (1H,s)	55.35 (CH3)	Td	55.22	C-3

a Isolated compound (1H-NMR, 500 MHz, acetone-d6; 13C-NMR, 125 MHz, acetone-d6)

b Dong *et al* 2004 (1H-NMR, 500 MHz, CD$_3$OD; 13C-NMR, 125 MHz, CD$_3$OD)

Then in the acyclic chain, proton at $\delta_H 7.52$ ppm (C-7) correlated distance with carbon at $\delta_C 121.89$ ppm (C-6) at the aromatic core of B ring, and carbon atom of carbonyl amide at $\delta_C 166.92$ ppm (C-9).

A methoxy group at $\delta_H 3.86$ ppm (H-9') which is bound to carbon at $\delta_C 52.22$ ppm (C-9') correlated distance with carbon at $\delta_C 147.76$ ppm (C-3) at the aromatic core of B ring.

Based on the data above, this compound has a similarity in position, chemical shift, and coupling constants of previously found compounds namely (R) -N-trans-feruloyloctopamine [14,15].
The interpretation data of HSQC and HMBC is presented in Table 1, and the molecular structure of the isolated compound (R)-N-trans-feruloyloctopamine which has molecular formula C_{18}H_{19}NO_{5} and chemical name (IUPAC) is 2-propenamide, N-[2-hydroxy-2-(4-hydroxyphenyl) ethyl]-3-(4-hydroxy-3-methoxyphenyl).-(2E), shown in Figure 4.

The figure 4 above shows that there are 2 benzene rings, that is disubstitute and trisubstitute benzene. The disubstitute benzene is formed from two symmetrical signals coupled to each other, namely signals at δ_{C} 127.18 ppm and 114.95 ppm (coupling values equal to 8.5, coupling ortho). HMBC data show that δ_{H} 7.25 ppm bound to carbon at δ_{C} 127.18 correlates with quaternary carbon at δ_{C} 156.70 ppm which binds to one substituent, and δ_{H} 6.82 ppm bound to δ_{C} 114.95 ppm correlates with quartener carbon at δ_{C} 134.13 ppm which also binds to one sustituent. The trisubstitute benzene is formed from aromatic signals at δ_{C} 115.29 ppm and δ_{C} 121.89 ppm (coupling value equal to 8.0, ortho-coupled). The HMBC data show that signals at δC 121.89 ppm correlate with CH signals aromatic at δC 110.47 ppm and δC 140.27 ppm. While signals at δC 115.29 ppm correlate with 3 quaternary carbon signals (127.20 ppm; 147.76 ppm; 148.42 ppm), which bind substituents, respectively.

4. Conclusion
A phenolic amide namely (R)-N-trans-feruloyloctopamine has been isolated from chloroform fraction of the root timber Melochia umbellata (Houtt) Stapf var. Visenia (Paliasa) is the first to be found in the genus Melochia.

Acknowledgement
Thanks to the honorable head of the Organic Chemistry Laboratory at the Chemistry Department of Hasanuddin University who has provided the facilities to conduct this research, and head of the Organic Chemistry Laboratory at the Bandung Technology Institute and staffs who have helped obtain NMR spectroscopic data.

References
[1] Little Jr L & R G Skolmen 1989 Agriculture Handbook, The Forest Service, U.S Dept. of Agriculture, USA.
[2] A Noor , A S Kumanireng, R Kartikasari, Suryaningsih, A. Hakim, dan R. Takbir 2004 Isolasi dan Identifikasi Konstituen Organik Tanaman Daun Paliasa, Kleinhovia hospita Linn., pada Kelarutan Berdasarkan Kelompok Polaritasnya Marina Chimica Acta, Vol. 5 No 2: hal 2-10
[3] N H Soekamto, A Noor, Iwan Dini, Rudiyansyah, Marry Garson 2008 Coumarin and steroid compound from stem bark of Kleinhovia hospita Linn Proceeding of The International
Seminar on Chemistry 2008, (pp. 231-234) Jatinangor, 30-31 October.

[4] N H Soekamto, A Noor, D Iwan, A Hasrini, Ruhma, dan Agustono, 2009 Duasen yawa Triterpenoid Dari Tumbuhan Paliasa (Kleinhovia hospital L.) Famili sterculiaceae J Sains MIPA, Vol. 16 No 2, Hal: 94-98

[5] Imran, Nunuk N H Soekamto, and Hanapi Usman 2017 Characterization Compound From Extract Chloroform Leaves Melochia umbellata (Houtt.) Stapf var. Degrabrata K. and Test Anti hyperglycemic Activity Indonesia Chimica Acta Vol.10, No. 2:1-10

[6] A Ridhay, A Noor, N H Soekamto, Tjodi Harlim, and Ian van Altena 2012 A Stigmasterol Glycoside From the Root Wood Of Melochia umbellata (Houtt.) Stapf var.,Degrabrata K. Indo. J. Chem., 12 (1): 100 – 103

[7] Usman, N H Soekamto, Hanapi Usman and Ahyar Ahmad 2014 Toxicity and antimicrobial activity From Extract and oleanean Derivate compounds Of The Bark Melochia umbellata (Houtt.) Stapf Var. Degrabrata (Kleinhovia hospital L.) J Sains MIPA, Vol 16 No 2, Hal: 94-98

[8] N H Soekamto, Firdaus and Whiwiek Surwendah 2017 Methyl β-(p-hydroxyphenyl) acrylic compound from Melochia umbellata (Houtt) Stapf var. degrabata and their antitumor activity International Journal of ChemTech Research. Vol.10 No 4, pp 529-532

[9] Erwin, A Noor, N H Soekamto, and Tjodi Harlim 2010 6,6′-dimethoxy-4,4′-dihydroxy-3′,2′-furano-isoflavane, a new compound from Melochia umbellata (Houtt.) Stapf var. Deabrata K. (Palihoa) Indo. J. Chem., 12 (2), 222 – 225

[10] Erwin, A Noor, N H Soekamto, Ian van Altena,Yana Maolana Syah 2014 Walterion C and cleomiscosin from Melochia umbellata var. Degrabrata K. (Malvaceae), biosynthetic and chemotaxonomic Significance Biochemical Systematics and Ecology 55: 358-361

[11] Rafizlar and M Sihombing 2009 Dekok Daun Paliasa (Kleinhovia hospita Linn) Sebagai Obat Radang Hati Akut Jurnal Ekologi Kesehatan Vol. 8 No 2: 984 –993

[12] Rafizlar 2009 Sub Chronic Toxicity Test From Alkohol Extract Paliasa Leaves (Kleinhovia Hospita Linn) To Hepar/Liver And Kidney Of Experimental Mice Media Penelitian dan Pengembangan Kesehatan, Volume XIX Nomor 4:204-213

[13] T E Arung, I W Kusuma, S Purwatiningsih, S Soo Roh, C H Yang, S Jeon, Y U Kim, E Sukaton, J Susilo, Y Astuti, B D Wicaksono, F Sandra, K Shimizu, R Kondo 2009 Antioxidant Activity and Cytotoxicity of the Traditional Indonesian Medicine Tahongai (Kleinhovia hospital L.) Extract J Acupunct Meridian Stud 2 (4):306-308

[14] Yoshihara Teruhiko, Seiji Takamatsu and Sadao Sakamura 1978 Three New Phenolic Amides from the Roots of Eggplant (Solanum melongena L.) Agric. Biol. Chem., 42 (3), 623- 627.

[15] Dong Gun Lee, Yongkyung Park, Mi Ran Kim, Hyun Jung Jung, Young Bae Seu, KyungSoo Hahn, Eun Rhan Woo 2004 Anti-Fungal effect of phenolic amide isolated from root bark of Licium chinense Biotechnology Letters 26:1125-1130