Extended Abstract

1. Introduction

Two-dimensional spin-echo sequences are commonly used to study knee osteoarthritis. The Three-dimensional Double-echo Steady State (3D-DESS) imaging sequence is among the sequences of Siemens Magnetic Resonance Imaging (MRI) machine. This sequence helps to diagnose lesions in knee cartilage by increasing the contrast difference between synovial joint fluid and cartilage. No comprehensive comparison has been made between the DESS sequence and other routine sequences to demonstrate the effectiveness of this sequence.
Moriya et al. investigated the increase in flip angle from 10 to 90 degrees on Contrast-to-Noise Ratio (CNR). The CNR obtained for the 90-degree DESS sequence had the highest value [1].

Schaefer et al. compared the three DESS, PD FS FSE, and PD SPACE sequences in detecting cartilage anomalies on the human body patella. The DESS sequence provided better relative contrast values, compared to the other sequences [2].

In 1999, Mosher and Pruett conducted a comparative study between the FLASH and DESS sequences on patella cartilage phantom in an albumin solution to assess the diagnosis of cartilage lesions. The DESS sequence performed more effectively in assessing cartilage surface lesions.

We aimed to explore the effectiveness of the DESS sequence to better diagnose osteoarthritis-induced cartilage anomalies in the knee.

2. Materials and Methods

This study was performed on 15 patients suspected of having osteoarthritis at Shahid Kamyab and Imam Reza (AS) Hospitals of Mashhad University of Medical Sciences from April 2018 to March 2019.

Considering $s^2=30.25$ and $\bar{x}=18.2$ according to the previous similar article of Han et al. [21]; $d=2\bar{x}$ and with the type I error of 0.05; the test power of 80%, and the 20% sample dropouts, the sample size was estimated to be 15 individuals.

A 1.5 T Siemens MRI machine (Avanto series, made in Germany) was used to obtain the required images. Quantitative image processing was performed using Radiant DICOM Viewer 4.6.9 software. Then, using SPSS, the obtained numerical values were compared. To perform statistical analysis, the Friedman test and Wilcoxon signed-rank test were employed. $P<0.05$ was considered statistically significant.

3. Results

The Friedman test data for the measured values of relative contrast in the weight-bearing area indicated a significant relationship between the investigated sequences. According to the statistical tests performed for the sequences as well as the measured values of relative contrast for all sequences, the DESS sequence with a flip angle of 90° and an average value of 72.2667 has the best numerical value of relative contrast among the sequences. Besides, the FLASH sequence has the lowest value in this regard.

4. Conclusion

Moria et al. qualitatively compared the DESS sequence at the flip angles of 90° and 40°. Accordingly, the DESS sequence with a flip angle of 90° (due to better contrast difference between liquid and cartilage) led to more effective diagnosis of the lesion, compared to the DESS sequence with a flip angle of 40°. The quantitative results obtained by measuring the relative contrast in the present study agree with their findings.

The DESS sequence has significant capabilities in imaging cartilaginous lesions; thus, it is recommended to use this imaging sequence as a complementary sequence along with other routine sequences in medical imaging centers.

5. Conclusion

Due to the cooperation of all medical departments, there were no restrictions for performing this study. The DESS sequence is highly efficient for imaging knee cartilage, as well as knee joint fluid. Furthermore, it could improve the

Scanning parameters	TR (ms)	TE (ms)	Cross-section Thickness (mm)	Number of Slides	FOV For Frequency Coding	FOV For Phase Coding	Scan Time (Second)	NEX (Number of Scans)
DESS90	21.36	7.57	1.5	64	180	100	6:30	1
DESS40	21.36	7.57	1.5	64	180	100	6:44	1
FLASH	10	4.92	1.5	64	180	100	4:09	1
STIR	3700	40	3	32	180	100	2:44	1
PD	2400	41	3	32	180	100	3:55	1
T2W FSE	3740	80	3	32	180	100	2:27	1

Table 1. The scanning parameters used in this study.
contrast ratio of joint fluid to cartilage; thus, it could help to better diagnose knee cartilage lesions.

Ethical Considerations

Compliance with ethical guidelines

This research project obtained code of ethics with the ID of IR.MUMS.MEDICAL.REC.1397.215, which was approved on 23.05.2018.

Funding

The financial resources of this project have been provided by the Research Center of Mashhad University of Medical Sciences and have been registered in the Pajouhan system (Code: 961866).

Authors’ contributions

Conceptualization: Alireza montazerabadi, Amir shahriyar ariamanesh; Methodology: Behzad Aminzade; Investigation: Hormoz Abed, & Sepehr Lotfi; writing _review and editing: Sepehr Lotfi; Analysis: Alireza Montazerabadi, Sepehr Lotfi.

Conflicts of interest

There is no conflict of interest to be declared by the authors.

Acknowledgements

We are very grateful to Mashhad University of Medical Sciences Research Center as the funding provider of this research; Mashhad Medical Physics Department, Medical Imaging Department of Shahid Kamyab Hospital of Mashhad University of Medical Sciences, Orthopedic Department of Imam Reza Hospital of Mashhad University of Medical Sciences, and the esteemed board that guided us in carrying out this research. Eventually, we would like to thank the esteemed officials of Ofogh-e-Danesh Scientific-Research Journal, who helped us in developing this article in the best possible manner by providing us their best guidance.
مهندسی کنترست نسبی در سکانس تصویربرداری سه‌بعدی DESS به منظور تشخیص بهتر ناهنجاری‌های غضروفی زانو

سپهر لطفی مرنگلو، امیر شهید راییانشی، بهزاد اسپاده، هرمز عابدی، علیرضا منتظرابدی

1. مرکز تحقیقات فیزیک پزشکی دانشگاه طبیعی-پزشکی مشهد، مشهد، ایران
2. گروه رادیولوژی، گروه بالینی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2. شماره 26. دوره 1399 بهار

* نویسنده مسئول
دکتر علیرضا منتظرابدی
مشهد، دانشگاه علوم پزشکی مشهد، مرکز تحقیقات فیزیک پزشکی.
نشانی:
+98 (915) 1587761 تلفن a)alone.montazerabadi@gmail.com پست الکترونیک

اهداف
و سکانس PD، T2، STIR سکانس‌های روتین به منظور اثبات کارآمدی این سکانس در مقایسه با سایر سکانس‌های روتین نظیر سکانس‌های PD T2 DESS برای اولین بار در هر سکانس برای بهبود کنتراست نسبی و بهبود کیفیت تصویر نهایی در سطح ماهیت مغناطیسی استفاده خواهد شد.

سال) که دارای علائم زانو درد بودند با معرفی پزشک ارتوپد ۵۶-۶۳ سال) و شش خانم (۶۵-۴۱ سال) که ناهنجاری‌های غضروفی را داشتند در شرکت انتخاب شدند و سه‌بعدی تصویربرداری با سکانس PD، T2، STIR و مغناطیس‌های زاویهME و PD، T2، STIR مورد نگر قرار گرفت و مقایسه کنترست‌های مربوط به سکانس‌های انتخاب شده در هر سکانس برای هر بیمار به دست آمد. این مقایسه به‌کمک نرم‌افزار SPSS انجام شد.

از تحقیقات امروزی و پیشکسوتان محققان سه‌بعدی تصویربرداری در هر سکانس تیر می‌باشد که با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت مغناطیسی، بهبود کنتراست نسبی در سکانس تصویربرداری سه‌بعدی DESS با داشتن میانگین مقدار کنتراست نسبی ۰۹ با زاویه فلیپ DESS می‌باشد. با توجه به این جزئیات و به تبدیل خاصیت تصویر در سطح ماهیت M
مقادیر عددی به دست آمده را با هم مورد های دایره ای شکل در نواحی مختلف تصاویر با نظر متخصص درجه و نیز سایر بیماران اقدام به انجام ام آرآی کردیم. تصاویر سکانس های با علائم بیماری استئوآرتریت و نیز زانو درد به و همچنین با در نظر گرفتن طبق مقاله مشابه قبلی بیمارستان شهید کامیاب دانشگاه علوم پزشکی مشهد معرفی جراح ارتوپد به مرکز تصویربرداری پزشکی می‌شد. در این مطالعه در باره زمان تا سپتامبر ۱۳۷۹، سکانس های روتین و همچنین سکانس های سه بعدی انجام گرفتند.

مراحل

1. مراحل انتخاب: در این مطالعه، ۱۵ بیمار (۱۱ مرد و ۴ خانم) با علائم زانوسکته با علائم بیماری استئوآرتریت یا زانو درد دیده شده در بیمارستان شهید کامیاب دانشگاه علوم پزشکی مشهد بودند. هر بیمار بستری شده بودند و در مدت حداقل ۶ ماه واکنش به درمان و بهبود نهایی داشتند. سکانس های سه بعدی و سکانس های روتین در مدت حداقل ۶ ماه با هم مقایسه و نتایج مشاهده گردید.

2. مراحل اجرای: در این مطالعه، سکانس های تکنولوژیک HASTE با توان آزمون از ۱۸۰ میکرون، سکانس های T2W SE با توان آزمون از ۸۰ میکرون و سکانس T1W SE با توان آزمون از ۱۸۰ میکرون داشتند. سکانس های T2W SE و T1W SE به مدت حداقل ۶ ماه با هم مقایسه و نتایج مشاهده گردید.

3. مراحل بررسی: برای بررسی مقادیر کنتراست نسبی، روش تکنولوژیک PDFF SE استفاده شد. در این مطالعه، مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید.

4. مراحل جهش: سکانس های T2W SE و T1W SE به مدت حداقل ۶ ماه با هم مقایسه و نتایج مشاهده گردید.

نتایج

1. نتایج مطالعه نشان داد که مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید.

2. نتایج مطالعه نشان داد که مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید.

نتیجه‌گیری

در این مطالعه، مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید. نتایج مطالعه نشان داد که مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید. نتایج مطالعه نشان داد که مقادیر کنتراست نسبی سکانس های T2W SE و T1W SE با هم مقایسه و نتایج مشاهده گردید.
گزارش شده است، مقایسه میانگین رتبه‌ها در جدول شماره ۶، در مقایسه با سایر سکانس‌های بیرونی به منظور تشخیص میزان ضایعات فضروی و نسبی از پیشنهاد است که تداخلاتی از سکانس‌های دیگر بایستی در این منطقه مورد بررسی قرار گیرد. به‌طور کلی، میزان کنتراست نسبی در ناحیه وزن‌برداری کوتاه‌تر از سایر سکانس‌ها بود و این تفاوت معنادار بود.

1. Relative Contrast = \(\frac{SI_1 - SI_2}{SI_1 + SI_2} \)

2. Weight bearing

3. DESS90

4. DESS40

5. FLASH

6. STIR

7. PD

8. T2W FSE

جدول ۱: پارامترهای سکانس استفاده شده در این مطالعه

T1W	T2W	PD	STIR	FLASH	T2W FSE
۶۴	۶۳	۸۷	۶۴	۶۴	۸۷
۸۷	۸۷	۸۷	۸۷	۸۷	۸۷
۶۴	۶۴	۸۷	۸۷	۸۷	۸۷
۸۷	۸۷	۸۷	۸۷	۸۷	۸۷
۶۴	۶۴	۸۷	۸۷	۸۷	۸۷
درجه روی کنتراست به درجه تصاویر سجیتال به دست آمده از زانو بررسی کردند. آن‌ها در این مطالعه تأثیر افزایش زاویه فلیپ/۴ به منظور تشخیص بهتر ناهنجاری‌های غضروفی زانو را بررسی کردند. A و B این تصاویر لازم به داشتن مایع فلیپ/۴ است. T2- FLASH وجود مایع سینویال و بیشتر از T2- DESS40 می‌باشد.

جدول ۲: مقایسه کنتراست نسبی برای هر سکانس

تکنولوژی سکانس	کنتراست N/A	کنتراست	دامنه احتمال سکانس	میانگین‌های موقعیت	نسبی محلولهای زانو	سکانس‌های های مورفولوژی
PD-DESS90	۳۲۳۶۶۶	۲۶۳۷۷۷	۲۶۳۷۷۷	۲۶۳۷۷۷	۲۶۳۷۷۷	DESS90
PD-FLASH	۳۲۳۷۷۷	۲۶۳۹۸۰	۲۶۳۹۸۰	۲۶۳۹۸۰	۲۶۳۹۸۰	DESS40
PD-DESS40	۳۲۳۹۸۰	۲۶۴۰۰۰	۲۶۴۰۰۰	۲۶۴۰۰۰	۲۶۴۰۰۰	FLASH
PD-DESS90	۳۲۴۰۰۰	۲۶۴۲۱۲	۲۶۴۲۱۲	۲۶۴۲۱۲	۲۶۴۲۱۲	STIR
PD-FLASH	۳۲۴۲۱۲	۲۶۴۴۶۶	۲۶۴۴۶۶	۲۶۴۴۶۶	۲۶۴۴۶۶	PD
PD-DESS40	۳۲۴۴۶۶	۲۶۴۶۸۰	۲۶۴۶۸۰	۲۶۴۶۸۰	۲۶۴۶۸۰	T2

میانگین‌های موقعیت T2-DESS40 میانگین‌های موقعیت T2-DESS90 داشته و T2-FLASH بهتر از T2-DESS40 و T2-DESS90 بوده است. بهترین کنتراست را در T2-FLASH داشت. بهترین کنتراست را در T2-FLASH داشت.

8. Contrast to Noise Ratio (CNR)

سری التماس مولتی‌چاننل و همکاران، به‌همراه کنتراست نسبی در سکانس‌های مورفولوژیکی سکانس‌های T2 به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست نسبی در سکانس‌های مورفولوژیکی سکانس‌های T2 به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست نسبی در سکانس‌های مورفولوژیکی سکانس‌های T2 به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست نسبی در سکانس‌های مورفولوژیکی سکانس‌های T2 به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست نسبی در سکانس‌های مورفولوژیکی SIR و DESS به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست نسبی در سکانس‌های M0 به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات زانویان به‌همراه کنتراست N/A به‌منظور تشخیص بهتر از تغییرات Z

Z

P
تشخیص تلعب‌های غضروفی روی پتلا درجه نسبت به زاویه فلیپ CNR در دو زاویه فلیپ، مقدار بیشتری را نسبت به آن مقداری که زاویه فلیپ ۹۰ درجه داشته باشد، نشان می‌دهد. این نتایج نشان می‌دهد که در زاویه فلیپ ۹۰ درجه، مقدار کنتراست بیشتری را نسبت به زاویه فلیپ ۴۵ درجه نشان می‌دهد. این نتایج نشان می‌دهد که در زاویه فلیپ ۹۰ درجه، مقدار کنتراست بیشتری را نسبت به زاویه فلیپ ۴۵ درجه نشان می‌دهد.

deb0e46be37e059d821367b26d4a1b34.jpg

سکانس‌های MRI	میانگین رتبه
DESS90	۸/۵۳
DESS40	۸/۴۰
STIR	۸/۴۰
PD	۸/۳۰
T2	۸/۲۷
FLASH	۸/۱۹

جدول ۲: مقایسه میانگین رتبه کنتراست سه سکانس MRI
درصد و برای $2/56$ یا $2/56$ برابر با DESS درصد و برای سکانس $7/9/3$ درصد گزارش شد.

اگرچه در $8/06$ یا $8/06$ برابر با PD SPACE سکانس مطالعه حاضر ضایعات حساسیت و درخشانی برای سکانس ها محاسبه کننده است. ولی با توجه به این مطالعه نشان داد، در این مطالعه پیشنهاد شد که سکانس های دیس (DESS) می توانند ضایعات را بهتر از سایر سکانس های مورد بررسی در این مطالعه به تصویر بکشند.

یک مطالعه مقایسه ای در سال ۹۹/۱۹ به موجب تعیین و پیروی از اصول اخلاق پژوهش و همچنین به موجب تشکیل شرکت مطالعات جامعی، ۷/۹۳ از آن مطالعه، که به صورت کلی به‌طور گسترده و با مدت طولانی، به شکل یک پژوهشگری، در مطالعه حاضر ضایعات سطحی غضروف را در سطح ماهیتی حجمه با مشکل مواجد یک سطحی سطحی و با توجه به سیستم DESS، سکانس DESS یا DESS هر دوی آنها به تصویر بگیرد. در این مطالعه، نتیجه‌گیری شده است که سطحی سطحی DESS بهتر است در تشخیص ضایعات سطحی غضروفی.

نتیجه‌گیری

نتیجه‌گیری مطالعه، که در سال ۹۹/۱۹ بر اساس اصول اخلاق پژوهش و با همبستگی با مسئولین مالی پژوهش و مسئولین سیستمی، داشته باشد. در این مطالعه، سکانس تصویربرداری DESS بهتر است در تشخیص ضایعات سطحی غضروفی.

ملاحظات اخلاقی

پژوهشگران، به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربرداری DESS را به‌طور کلی به‌طور اخلاقی، برای انجام مطالعه، سکانس تصویربردا
References

[1] Shapiro LM, McWalter EJ, Son MS, Leventon M, Hargreaves BA, Gold GE. Mechanisms of osteoarthrosis in the knee: MR imaging appearance. Journal of Magnetic Resonance Imaging. 2013; 39(6):1346-56. [DOI:10.1002/jmri.24562] [PMID] [PMCID]

[2] Wildi LM, Martel-Pelletier J, Abram F, Moser T, Raynauld JP, Pelletier JP. Assessment of cartilage changes over time in knee osteoarthritis disease-modifying osteoarthritis drug trials using semiquantitative and quantitative methods: Pros and cons. Arthritis Care & Research. 2013; 65(5):686-94. [DOI:10.1002/acr.21890] [PMID] [PMCID]

[3] Sharma L. Osteoarthritis year in review 2015: Clinical. Osteoarthritis and Cartilage. 2016; 24(1):36-48. [DOI:10.1016/j.joca.2015.07.026] [PMID] [PMCID]

[4] March LM, Bachmeier CIM. Economics of osteoarthritis: A global perspective. Baillière's Clinical Rheumatology. 1997; 11(4):817-34. [DOI:10.1016/S0268-2036(97)80011-8]

[5] Coumans JM, Palmer WE. Knee arthrography: Evolution and current status. Radiologic Clinics. 1998; 36(4):703-28. [DOI:10.1016/S0033-8389(05)70057-9]

[6] Britttberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine. 1994; 331(4):889-95. [DOI:10.1056/NEJM199406023311401] [PMID]

[7] Jones G, Ding C, Scott F, Glisson M, Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis and Cartilage. 2004; 12(2):169-74. [DOI:10.1016/j.joca.2003.08.010] [PMID] [PMCID]

[8] Van Dyck P, Vanhevel F, Vanhoenacker FM, Wouters K, Grodzki DM, Gielan JL, et al. Morphological MR imaging of the articular cartilage of the knee at 3 T: Comparison of standard and novel 3D sequences. Insights into Imaging. 2015; 6(3):285-93. [DOI:10.1007/s13244-015-0405-1] [PMID] [PMCID]

[9] Peterfy CG, Gold G, Eckstein F, Cicuttini F, DarziDBsinski B, Stevens R. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis and Cartilage. 2006; 14 Suppl A:A95-111. [DOI:10.1016/j.joca.2006.02.029] [PMID]

[10] Siepmann DB, McGovern J, Brittain JH, Reeder SB. High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. American Journal of Roentgenology. 2007; 189(6):1510-5. [DOI:10.2214/AJR.07.2661] [PMID] [PMCID]

[11] Hunter DJ, Guermazi A. Imaging techniques in osteoarthritis. PM & R: The Journal of Injury, Function, and Rehabilitation. 2012; 4(Suppl):S68-74. [DOI:10.1016/j.pmrj.2012.02.004] [PMID]

[12] Milewski MD, Smitaman E, Moukaddam H, Katz LD, Essig DA, Medovich MJ, et al. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3T system scientific research. European Journal of Radiology. 2012; 81(7):1637-43. [DOI:10.1016/j.ejrad.2011.04.072] [PMID]

[13] Crema MD, Nogueira-Barbosa MH, Roemer FW, Marra MD, Ni J, Chagas-Neto FA, et al. Three-dimensional turbo spin-echo Magnetic Resonance Imaging (MRI) and semiquantitative assessment of knee osteoarthritis: Comparison with two-dimensional routine MRI. Osteoarthritis and Cartilage. 2013; 21(3):428-33. [DOI:10.1016/j.joca.2012.12.011] [PMID]

[14] Heron CW, Calvert PT. Three-dimensional gradient-echo MRI imaging of the knee: Comparison with arthroscopy in 100 patients. Radiology. 1992; 183(3):839-44. [DOI:10.1148/radiology.183.3.1584944] [PMID]

[15] Kijowski R, Blankenbaker DG, Woods M, Del Rio AM, De Smet AA, Reeder SB. Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol. American Journal of Roentgenology. 2011; 196(1):159-67. [DOI:10.2214/AJR.09.4095] [PMID]

[16] Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. Journal of Magnetic Resonance Imaging. 2011; 33(4):758-71. [DOI:10.1002/jmri.22342] [PMID] [PMCID]

[17] Hardy PA, Recht MP, Piraino D, Thomasson D. Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. Journal of Magnetic Resonance Imaging. 1996; 6(2):329-35. [DOI:10.1002/jmri.1880060212] [PMID]

[18] Lavdas E, Topalzikis T, Mavroidis P, Kyrilakis I, Roka V, Kostopoulos S, et al. Comparison of PD BLADE with Fat Saturation (FS), PD FS and T2 3D DESS with Water Excitation (WE) in detecting articular knee cartilage defects. Magnetic Resonance Imaging. 2013; 31(8):1255-62. [DOI:10.1016/j.mri.2013.06.007] [PMID]

[19] Moriya S, Miki Y, Kanagaki M, Matsuwo Y, Miyati T. 90°-flip-angle three-dimensional Double-Echo Steady-State (3D-DESS) magnetic resonance imaging of the knee: Isovoxel cartilage imaging at 3T. European Journal of Radiology. 2014; 83(8):1429-32. [DOI:10.1016/j.ejrad.2014.04.034] [PMID]

[20] Roemer FW, Kwoh CK, Hannon MJ, Crema MD, Moore CE, Jakicic JM, et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: A comparative study of dual echo at steady state (DESS) and Intermediate-Weighted (IW) fat suppressed fast spin echo sequences. European Journal of Radiology. 2011; 80(2):e126-31. [DOI:10.1016/j.ejrad.2010.07.025] [PMID]

[21] Han CH, Park HJ, Lee SY, Chung EC, Choi SH, Yun JS, et al. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: A comparison with conventional 3 T fast spin-echo T2 fat saturation image. Acta Radiologica (Stockholm, Sweden: 1987). 2015; 56(12):1479-86. [DOI:10.1177/0284185114566097] [PMID]

[22] Moriya S, Miki Y, Yokobayashi T, Ishikawa M. Three-dimensional Double-Echo Steady-State (3D-DESS) magnetic resonance imaging of the knee: contrast optimization by adjusting flip angle. Acta Radiologica (Stockholm, Sweden: 1987). 2009; 50(5):507-11. [DOI:10.1080/02841850902904444] [PMID]

[23] Schaefer FK, Kurz B, Schaefer PI, Fuerst M, Hedderich J, Graesener J, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiologica (Stockholm, Sweden: 1987). 2007; 48(10):1131-7. [DOI:10.1080/02841850701549583] [PMID]

[24] Mosher TJ, Pruett SW. Magnetic resonance imaging of superficial cartilage lesions: Role of contrast in lesion detection. Journal of Magnetic Resonance Imaging. 1999; 10(2):178-82. [DOI:1002/ISCI1522-2586(199908)10:2<178::AID-JMRI11>3.0.CO;2-W]