Self-induced polar order of active Brownian particles in a harmonic trap

Marc Hennes, Katrin Wolff, and Holger Stark
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
(Dated: February 28, 2022)

Hydrodynamically interacting active particles in an external harmonic potential form a self-assembled fluid pump at large enough Péclet numbers. Here, we give a quantitative criterion for the formation of the pump and show that particle orientations align in the self-induced flow field in surprising analogy to ferromagnetic order where the active Péclet number plays the role of inverse temperature. The particle orientations follow a Boltzmann distribution \(\Phi(p) \sim \exp(Ap) \) where the ordering mean field \(A \) scales with active Péclet number and polar order parameter. The mean flow field in which the particles’ swimming directions align corresponds to a regularized stokeslet with strength proportional to swimming speed. Analytic mean-field results are compared with results from Brownian dynamics simulations with hydrodynamic interactions included and are found to capture the self-induced alignment very well.

Introduction

Understanding the non-equilibrium behavior of self-propelled particles is one of the major challenges at the interface of physics, biology, and also chemical engineering [1, 2]. Interacting active particles may show exotic phenomena such as swirling motion [3], or exhibit dynamic clustering [4, 5] and motility-induced phase separation [6–10]. Their collective motion drives macroscopic fluid flow as in bioconvection [11] or vortex formation [12]. Hydrodynamic interactions between microswimmers crucially determine their collective patterns [13–20], while external fluid flow leads to aggregation [21], trapping [22], and nonlinear dynamical behaviors [23].

In order to understand the collective dynamics of active particles and their steady-state distributions, they are often mapped onto passive systems that move in effective potentials [24, 25]. However, for interacting particles there is no general route for identifying an equilibrium counterpart [1, 2, 10].

The system we investigate here is composed of self-propelled or active Brownian particles whose swimming directions undergo rotational diffusion in a harmonic trap. Bacteria or both active and passive colloids confined in optical traps have attracted experimental [27–29] and theoretical [24, 30–33] interest. Passive colloids are often mapped onto passive systems that move in effective potentials while external fluid flow leads to aggregation [21], trapping [22], and nonlinear dynamical behaviors [23].

The model

We consider a dilute suspension of \(N \) self-propelled particles with constant propulsion speed \(v_0 \) whose leading hydrodynamic interactions are modeled by (far-field) mobility tensors \(\mu_{ij} \). Particles are spherical with an internal orientation vector \(p_i \), as realized, for example, in active colloids [5, 8] and they swim with velocity \(v_0 p_i \). The Langevin equations of motion for the position \(r_i \) and orientation \(p_i \) of particle \(i \) then are

\[
\dot{r}_i = v_i, \quad \dot{p}_i = \omega_i \times p_i
\]

with

\[
v_i = v_0 p_i + \sum_{j=1}^N \mu_{ij}^{tt} F_j + \sum_{j=1}^{2N} \mathbf{H}_{ij} \xi_j + \sum_{j \neq i}^N \mathbf{u}_{SS,j}(\mathbf{r}_{ij})
\]

\[
\omega_i = \sum_{j=1}^N \mu_{ij}^{tr} F_j + \sum_{j=1}^{2N} \mathbf{H}_{(i+N)j} \xi_j + \sum_{j \neq i}^N \omega_{SS,j}(\mathbf{r}_{ij}).
\]

The particle velocity \(v_i \) thus consists of the self-propulsion term \(v_0 p_i \) along the particle’s orientation vector, the contribution from the harmonic trapping forces acting on all particles, \(F_j = -k_{trapp} r_j \), a stresslet velocity term \(\mathbf{u}_{SS} \) caused by the active swimming of all other particles with \(\mathbf{r}_{ij} = r_i - r_j \), and the thermal noise term \(\sum_{j=1}^{2N} \mathbf{H}_{ij} \xi_j \). Here, \(\xi_j \) is a 3-component vector and contains time-uncorrelated Gaussian variables with zero mean and unit variance for translational or rotational...
Active particles concentrate in the upper half sphere and align their orientations along the vertical. The resulting flow field is illustrated by a regularized stokeslet. The dashed black circle with radius \(r_{\text{hor}} \) is the particles’ horizon. (Left) Sketch of the fluid pump. (Right) State diagram of pump formation in active (Pe) versus trapping (\(\alpha \)) Péclet numbers. The mean orientation of the particles, \(\mathcal{P}_\infty \), is color-coded. The lower solid curve, \(\alpha = 4\sqrt{\text{Pe}/(N\pi)} \), separates the region of pump formation from the region of dominant rotational noise. Along the dashed lines density \(n \) is constant. At very high densities the active particles are close-packed and cannot form a pump (upper solid curve).

\[\lambda = k_{\text{trap}} a^2/(k_B T) \] the trapping Péclet number with translational diffusion coefficient \(D = k_B T/(6\pi \eta a) \). The spherical symmetry, however, is broken when hydrodynamic interactions are included. At sufficiently large Pe, particles assemble into a pump in a more tightly packed region, where they align their swimming directions and produce a macroscopic fluid flow [22]. The situation is sketched in Fig. 1 (left) and accompanying videos can be found in the supplemental material.

Figure 1 (right) gives the state diagram for pump formation. A simple criterion for pump formation against thermal noise (lower solid line in the diagram) can be derived from a comparison of time scales. In simulations, particles first accumulate mainly at the characteristic radius \(r_{\text{hor}} \) of the non-interacting system without generating any macroscopic fluid flow. So translational advection but also translational noise are not important at this point, however, their orientations can freely diffuse. Therefore, the relevant criterion for particles to assemble into a pump is the following. When hydrodynamic interactions between particles are strong enough to overcome rotational diffusion, they rotate their swimming directions towards spontaneously formed denser particle regions. Thus if the time scale of rotational diffusion, \(T_{\text{diff}} = 2\pi^2/D_R [30] \), is larger than the rotation time due to the flow field’s vorticity \(T_H = 2\pi/\omega_H \), particles will be rotated towards dense spots and then, by swimming towards them, further enhance those density hot spots. Estimating the net vorticity disturbance on a particle in the otherwise spherically symmetric initial state to be \(\omega_H = k_{\text{trap}} r_{\text{hor}}/(8\pi \eta a^2) \), with the nearest-neighbor distance \(r_{\text{nn}} \approx 4r_{\text{hor}}/\sqrt{N} \), we find the pump formation criterion \(\alpha \geq 4\sqrt{\text{Pe}/(N\pi)} \). Details of the calculations are given in the supplemental material.

This rough estimate reproduces the onset of pump formation quite well [see lower solid line in Fig. 1 (right)]. To indicate the alignment of particle orientations in the steady state, we use the polar order parameter \(\mathcal{P}_\infty = \lim_{t\to\infty} \sum_{i=1}^N \mathbf{p}_i(t) \bigg|/N [17] \). For very dense systems, particles become close-packed and no pump is formed as the upper solid curve at constant density \(n = 0.5 \) in Fig. 1 (right) shows. At such high densities, however, the assumption of far-field interactions also no longer holds. In the following we concentrate on dilute systems and, unless stated otherwise, follow the path of the dashed line with mean density \(n = 10^{-3} \). To realize a constant density for different Pe, we fix the particle number \(N = 100 \) and keep the effective trap volume constant by varying the trapping Péclet number \(\alpha \) alongside the active Péclet number Pe to ensure \(r_{\text{hor}} \propto \alpha/\text{Pe} = \text{const..} \)

Mean-field theory for self-induced order In order to gain analytical insight, we reduce the Smoluchowski equation for the \(N \)-particle distribution function to a mean-field equation for the one-particle distribution \(\psi(\mathbf{r}, \mathbf{p}) \). The collective dynamics due to hydrodynamic
interactions is taken into account by a mean flow field \(\mathbf{u}(\mathbf{r}) \) generated by all the particles. It is independent of time, once the pump has formed. The Smoluchowski equation governing the effective one-particle dynamics is

\[
\partial_t \psi(\mathbf{r}, \mathbf{p}) = -\nabla \cdot \mathbf{J}_T - \mathbf{R} \cdot \mathbf{J}_R \quad \text{with} \quad \mathbf{R} = \mathbf{p} \times \nabla\mathbf{p},
\]

We use the translational flux \(\mathbf{J}_T = [v_0 \mathbf{p} + \mu \mathbf{F}_{\text{ext}}(\mathbf{r}) + \mathbf{u}(\mathbf{r})] \psi(\mathbf{r}, \mathbf{p}) \) and the rotational flux \(\mathbf{J}_R = [(\nabla \times \mathbf{u}(\mathbf{r}))/2 - D_R \mathbf{R}] \psi(\mathbf{r}, \mathbf{p}) \). Translational diffusion is neglected in \(\mathbf{J}_T \) because of Péclet numbers \(Pe \geq 100 \), whereas rotational diffusion still needs to be included. As we assume the flow field \(\mathbf{u} \) to be independent of time, Eq. (1) only describes the dynamics close to a fully formed pump state and we will just attempt to determine the steady state distribution \(\psi(\mathbf{r}, \mathbf{p}) \).

Strictly speaking, the collective flow field follows self-consistently from the distribution \(\psi(\mathbf{r}, \mathbf{p}) \) by integrating over all particle contributions, \(\mathbf{u}(\mathbf{r}) = \int \mu (\mathbf{r} - \mathbf{r'}) \mathbf{F}_{\text{ext}}(\mathbf{r'}) \psi(\mathbf{r'}, \mathbf{p'}) d\mathbf{r'}d\mathbf{p'} \). Here, however, we first determine the flow field from the full number-particle simulations, argue that it is well represented by a regularized stokeslet, and only check \textit{a posteriori} that our resulting mean-field density gives rise to the same flow field.

To quantify the flow field \(\mathbf{u}(\mathbf{r}) \), Fig. 2 shows the directional average for the absolute value of its Fourier transform \(\tilde{\mathbf{u}}(\mathbf{k}) \). The average goes over all directions of wave vector \(\mathbf{k} \) keeping wave number \(k \) fixed. Before taking the Fourier transform, the flow field has been averaged over 100 uncorrelated simulation snapshots in the steady state to suppress fluctuations. We find that in the parameter range, where the pump is fully formed, the strength of the flow field \(\mathbf{u} \) is simply proportional to the particle swimming speed \(v_0 \). As Fig. 2 demonstrates, for active Péclet number \(Pe = 100 \) the pump has not yet fully formed but for \(Pe = 200 \) to 500 all data fall on a single master curve when rescaled by \(v_0 \). They agree very well with the flow field of a regularized stokeslet \[37\].

\[
\mathbf{u}_{\text{reg}}(\mathbf{r}) = -\frac{v_0 \epsilon}{2(r^2 + \epsilon^2)^{3/2}} [1 (r^2 + 2c^2) + r \otimes \mathbf{r}] \mathbf{e}_z, \quad (2)
\]

also for the regions inside the pump (see Fig. 2 solid line). Here, the flow field deviates from an unregularized stokeslet (dashed line) and only in the far field (small \(k \)) does the flow field become a conventional stokeslet. The regularization parameter \(\epsilon \) is used as a fit parameter but it turns out that it coincides with the radius of the region populated by active particles and thus can be interpreted as the pump radius. For large wave numbers \(k \), the simulated flow field starts to differ from \(u_{\text{reg}} \) as fluctuations on the scale of several particle radii become visible.

We now make an ansatz for the particle distribution \(\psi(\mathbf{r}, \mathbf{p}) \) and assume that particle orientations always point radially outward, \(\psi(\mathbf{r}, \mathbf{p}) = \Phi(\mathbf{p}) f(r) \delta(\cos(\theta - \cos(\theta_p))\delta(\varphi - \varphi_p) \). Here \(\theta \) and \(\varphi \) are the spherical coordinate angles of position and \(\theta_p \) and \(\varphi_p \) those of orientation. The polar angles \(\theta \) and \(\theta_p \) are both measured against the main axis of the pump [see also the sketch in Fig. 1 (left)]. The assumption of parallel orientation and position vector is motivated by the system without hydrodynamic interactions at high Péclet numbers. Here, particles quickly swim to the horizon where the trapping force cancels their self-propulsion. With interactions in-

![FIG. 2. (Color online.) Directional average for the absolute value of the Fourier transform of fluid velocity, \(\langle |\tilde{\mathbf{u}}(\mathbf{k})|\rangle \), plotted versus wave number \(k \). Results obtained from the Brownian dynamics simulations (colored dots) are compared with a regularized stokeslet (solid line) and a stokeslet without regularization (dashed line).](image)

![FIG. 3. (Color online.) (Top) Orientational distribution functions for different values of particle activity \(Pe \) at fixed average density \(n = 10^{-3} \). The simulation results (dots) are very well reproduced by \(\Phi(\cos(\theta_p)) \sim \exp(A \cos(\theta_p)) \) (solid lines), where \(A \) can be derived analytically. (Bottom) Particle alignment \(\mathcal{P}_\infty \) for increasing activity \(Pe \) at different densities. The simulation results (dots) again agree very well with the analytic result \(\mathcal{P}_\infty - N^{-1/2}/\mathcal{P}_\infty^{\text{max}} = \mathcal{L}(3 (Pe \mathcal{P}_\infty / Pe_c)^2) \) (solid lines).](image)
which fits the data very well when numerically solved for $\gamma = 1$.

The latter is taken into account via a geometric parameter P_{∞}^{max}. The implicit equation for P_{∞}^{β} becomes $\left(P_{\infty} - N^{-1/2}\right)/P_{\infty}^{\text{max}} = L(\beta P_{\infty}/P_{\epsilon})^{\gamma}$, which fits the data very well when numerically solved for P_{∞} with the critical Péclet number P_{ϵ} and the geometric parameter P_{∞}^{max} as fitting parameters. The exponent $\gamma = 1.0$ for $\beta = 0$ but decreases for higher densities and is only $\gamma = 0.5$ for $n = 10^{-2}$, which is likely due to excluded volume effects. The critical Péclet numbers for the different densities are found to agree roughly with the values derived from the time scale argument in Fig. 1.

We also investigated the effect of the velocity dipoles ($\beta \neq 0$) due to the particles’ swimming and found those flow stresslets to hinder alignment (Fig. 1). This is in agreement with previous studies on suspensions of active particles [17, 18]. Neutral swimmers ($\beta = 0$) show the strongest ordering meaning that the alignment of swimmers is mediated solely by the stresslets due to the trapping force, as assumed in our calculations. Our studies also show an asymmetry between pushers and pullers with alignment decreasing faster for pushers ($\beta < 0$) than pullers $\beta > 0$. Again this agrees with previous studies [17, 18] which explained this asymmetry by the observation that head-to-head orientations (which would contribute to $P_{\infty} = 0$) are stabilized for pushers due to a stagnation point in front of the swimmer in the swimming frame.

Conclusions We investigated the pump formation of active Brownian particles in a harmonic trap with hydrodynamic interactions included. This is an example of a non-equilibrium system whose properties are in striking analogy to a well-known equilibrium system. Specifically, we showed that the self-induced alignment of particles mediated by the flow field they create is in formal agreement with spontaneous magnetization in ferromagnetic materials treated on the mean-field level. Here, particle orientations follow a Boltzmann distribution in an aligning mean flow field which is created by the active particles. A critical Péclet number, where pump formation sets in, can be determined in analogy to the (inverse) critical temperature of ferromagnets. The mean flow field corresponds to a single regularized stresslet. Its strength scales linearly with the particle swimming speed and the regularization parameter ϵ gives the pump radius.

Understanding the non-equilibrium of active particles is one of the challenging questions in statistical physics right now. This Letter presents an intriguing example of a non-equilibrium system of active particles which can be mapped onto a classical equilibrium system. With recent advances in colloid physics it would be very interesting to experimentally realize the fluid pump formed by self-induced polar order and validate our predictions.
Acknowledgments We thank Andreas Zöttl for helpful discussions and gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through the research training group GRK1558.

[1] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012)
[2] P. Romanzuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)
[3] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)
[4] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)
[5] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Science (2013)
[6] I. Buttinoni, J. Bialke, F. Kümmer, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013)
[7] J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and M. E. Cates, Phys. Rev. Lett. 111, 145702 (2013)
[8] T. J. Pedley and J. O. Kessler, Annu. Rev. Fluid Mech. 24, 313 (1992)
[9] A. Ordemann, G. Balazsi, and F. Moss, Physica A 325, 260 (2003)
[10] R. Aditi Simha and S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)
[11] T. Ishikawa and T. Ishikawa and T. J. Pedley, Phys. Rev. Lett. 100, 088103 (2008)
[12] D. Sainillian and M. J. Shelley, Phys. Rev. Lett. 100, 178103 (2008)
[13] A. Baskaran and M. C. Marchetti, Proc. Nat. Acad. Sci. U.S.A. 106, 15567 (2009)
[14] A. A. Evans, T. Ishikawa, T. Yamaguchi, and E. Lauga, Phys. Fluids 23, 111702 (2011)
[15] J. J. Molina, Y. Nakayama, and R. Yamamoto, Soft Matter 9, 4923 (2013)
[16] F. Alarcon and I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)
[17] A. Zöttl and H. Stark, arXiv e-print 1309.4352 (2013).
[18] C. Torney and Z. Neufeld, Phys. Rev. Lett. 99, 078101 (2007)
[19] N. Khurana, J. Blawzdziewicz, and N. T. Ouellette, Phys. Rev. Lett. 106, 198104 (2011)
[20] J. Tailleur and M. E. Cates, Europhys. Lett. 86, 60002 (2009)
[21] M. Enculescu and H. Stark, Phys. Rev. Lett. 107, 058301 (2011)
[22] K. Wolff, A. M. Halin, and H. Stark, Eur. Phys. J. E 36 (2013)
[23] S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, Proc. Nat. Acad. Sci. U.S.A. 103, 13712 (2006)
[24] C. Lutz, M. Reichert, H. Stark, and C. Bechinger, Europhys. Lett. 74, 719 (2006)
[25] B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, Biomed Microdevices 9, 703 (2007)
[26] F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998)
[27] M. Rex and H. Löwen, Phys. Rev. Lett. 101, 148302 (2008)
[28] R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates, Phys. Rev. Lett. 104, 258101 (2010)
[29] A. Pototsky and H. Stark, Europhys. Lett. 98, 50004 (2012)
[30] J. Vollmer, A. G. Vegh, C. Lange, and B. Eckhardt, Phys. Rev. E 74, 051925 (2009)
[31] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978)
[32] For thermal diffusion of spherical particles, the rotational (\mathcal{D}_R) and translational (\mathcal{D}) diffusion coefficients are connected by $\mathcal{D}_R = 3\mathcal{D}/(4\pi a^2)$.
[33] R. Cortez, L. Fauci, and A. Medovikov, Phys. Fluids 17, 031504 (2005)
[34] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt, Orlando, 1976).