A CHARACTERIZATION OF SATURATED FUSION SYSTEMS OVER ABELIAN 2-GROUPS

ELLEN HENKE

Abstract. Given a saturated fusion system \(F \) over a 2-group \(S \), we prove that \(S \) is abelian provided any element of \(S \) is \(F \)-conjugate to an element of \(Z(S) \). As a consequence, if \(B \) is a 2-block of a finite group \(G \) such that all \(B \)-subsections are major, the defect groups of \(B \) are abelian. Our results were conjectured by Kühnshammer–Navarro–Sambale–Tiep [2] and generalize a Theorem of Camina–Herzog [3].

1. Introduction

This short note gives an example of how a conjecture in the modular representation theory of finite groups can be proved by showing its generalization to saturated fusion systems. We refer the reader to [1] for definitions and basic results regarding fusion systems and to [5] as a background reference on block theory. Here is our main theorem:

Theorem 1. Let \(F \) be a saturated fusion system on a 2-group \(S \) such that for any \(x \in S \), \(\text{Hom}_F(\langle x \rangle, Z(S)) \neq \emptyset \). Then \(S \) is abelian.

Since for any finite group \(G \) with Sylow 2-subgroup \(S \) the fusion system \(F_S(G) \) is saturated, the above theorem yields immediately the following corollary:

Corollary 1 (Camina–Herzog). Let \(G \) be a finite group such that \(|G : C_G(x)| \) is odd for any 2-element \(x \) of \(G \). Then the Sylow 2-subgroups of \(G \) are abelian.

Corollary 1 was first proved by Camina–Herzog [3]. As they point out, it means that one can read from the character table of a finite group if its Sylow 2-subgroups are abelian. The proof of Camina–Herzog relies on the Theorem of Goldschmidt [4] about groups with strongly closed abelian 2-subgroups, whereas our approach is elementary and self-contained. More precisely, we show Theorem 1 by an induction argument which appears canonical in the context of fusion systems. Using the same idea, one can also give an elementary direct proof of Corollary 1 which does not use fusion systems; see Remark 2.1 for details.

We now turn attention to \(p \)-blocks of finite groups. Their Brauer categories, which we introduce in Definition 2.2, provide important examples of saturated fusion systems. Given a finite group \(G \) and a \(p \)-block \(B \) of \(G \), recall that a \(B \)-subsection of \(G \) is a pair \((x, b)\) such that \(x \) is a \(p \)-element and \(b \) is a block of \(C_G(x) \) with the property that the induced block \(b^G \) equals \(B \). A \(B \)-subsection \((x, b)\) is called major if the defect groups of \(b \) are also defect groups of \(B \). Theorem 1 applied to the Brauer category of a 2-block yields the following corollary, which we prove in detail at the end of this paper:

Corollary 2. Suppose \(B \) is a 2-block of a finite group \(G \) such that all \(B \)-subsections are major. Then the defect groups of \(B \) are abelian.

Acknowledgement. Theorem 1 and Corollary 2 were conjectured by Kühnshammer–Navarro–Sambale–Tiep [2]. The author would like to thank Benjamin Sambale for drawing her attention to this problem.

The author was supported by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation.
2. Proofs

Proof of Theorem 1 Let \mathcal{F} be a counterexample to Theorem 1 such that $|S|$ is minimal.

Step 1: We show that $N_S(x) = C_S(x)$ for any $x \in S$. By assumption, there exists $\varphi \in \text{Hom}_\mathcal{F}(x, S)$ such that $\varphi(x) \in Z(S)$. In particular, $\varphi(x)$ is fully normalized, so by [1 I.2.6(c)], there exists $\alpha \in \text{Hom}_\mathcal{F}(N_S(x), S)$ such that $\alpha(\langle x \rangle) = \varphi(\langle x \rangle)$. Then in particular, $\alpha(x) \in Z(S)$ and so $[\alpha(x), \alpha(N_S(\langle x \rangle))] = 1$. As α is injective, this implies $[x, N_S(\langle x \rangle)] = 1$.

Step 2: We prove that $U := \Omega_1(S)$ is elementary abelian. It is sufficient to show that any two involutions $u, v \in S$ commute. Note that $\langle u, v \rangle$ is a dihedral subgroup of S, so there exists $x \in S$ with $\langle u, v \rangle = \langle x, u \rangle$ and $x^u = x^{-1}$. Then by Step 1, $[x, u] = 1$, so $\langle u, v \rangle$ is a four-group, which implies $[u, v] = 1$.

Step 3: We now reach the final contradiction. By Step 2, U is an elementary abelian subgroup of S, and since the image of an involution under an \mathcal{F}-morphism is again an involution, U is strongly closed. Hence the factor system $\overline{\mathcal{F}} := \mathcal{F}/U$ as in [1 Section II.5] is well-defined and by [1 II.5.2, II.5.4] a saturated fusion system on $\overline{S} := S/U$. By construction of $\overline{\mathcal{F}}$ and by [1 I.4.7(a)] or [1 II.5.10], the morphisms of $\overline{\mathcal{F}}$ are precisely the group homomorphisms between subgroups of \overline{S} which are induced by morphisms in \mathcal{F}. Hence, as $\text{Hom}_\mathcal{F}(\langle x \rangle, Z(S)) \neq \emptyset$ for any $x \in S$, we have also

$$\text{Hom}_{\overline{\mathcal{F}}}(\overline{\langle x \rangle}, \overline{Z(S)}) \neq \emptyset$$

Since $\overline{Z(S)} \leq Z(S)$, we have in particular that $\overline{\mathcal{F}}$ fulfills the assumptions of Theorem 1. So as \mathcal{F} is a counterexample with $|S|$ minimal, \overline{S} is abelian. Now by [1 Theorem 3.6], every morphism of $\overline{\mathcal{F}}$ extends to an element of $\text{Aut}_\overline{\mathcal{F}}(\overline{S})$. By construction of $\overline{\mathcal{F}}$, the elements of $\text{Aut}_\overline{\mathcal{F}}(\overline{S})$ are induced by elements of $\text{Aut}_\mathcal{F}(S)$ and whence leave $\overline{Z(S)}$ invariant. It follows now from (II) that $S = Z(S)U$, so S is abelian as U is abelian, contradicting \mathcal{F} being a counterexample.

Remark 2.1 (Proof of the Theorem of Camina–Herzog). The proof of Corollary [1] in [3] also starts with showing that $U := \Omega_1(S)$ is abelian. An elementary proof of Corollary [1] which does not rely on the theory of fusion systems, can be given by applying induction to $N_G(U)/U$ similarly as in Step 3 of our proof of Theorem 1. This requires to show that $N_G(U)$ controls fusion in G. In fact, by [1 I.4.7(a)], it is true in general that any abelian subgroup which is strongly closed in $S \in \text{Syl}_p(G)$, controls fusion in G. However, in the special case we are in, there is a shorter argument to show that $N_G(U)$ controls fusion, which we give here:

We show first that $U \leq Z(S)$. Suppose by contradiction, there exists $a \in S$ with $[U, a] \neq 1$. Then we may choose a of minimal order, which implies that a acts as an involution on U. So $[U, a, a] = 1$ and thus U normalizes $W := C_U(\langle a \rangle)$ as U is abelian. By assumption of the Theorem, there exists $g \in G$ with $a \in Z(S^g)$. As $W \leq C_G(a)$, by Sylow’s Theorem we may assume $W \leq S^g$. Then $C_U(a)^{g^{-1}} \leq U$ as U is strongly closed in S, and thus $C_U(a) \leq U^g$. Hence, since U^g is abelian and $a \in Z(S^g)$,

$$U^g \leq C_G(W) \leq N_G(W).$$

Note that for any $h \in G$, U^h is strongly closed in S^h, so if $U \leq S^h$, then $U = U^h$ is strongly closed in S^h. In particular, U is strongly closed in any 2-subgroup containing U. Hence, as $U \leq N_G(W)$, it follows from Sylow’s Theorem that U is conjugate to U^g by an element of $N_G(W)$ and thus $U \leq C_G(W) \leq C_G(a)$, a contradiction. Thus $U \leq Z(S)$.

Let now $P \leq S$ and $x \in G$ such that $P^x \leq S$. By what we have just shown, $U, U^x \leq C_G(P^x)$. Again, as U is strongly closed in any 2-subgroup containing U, there exists $c \in C_G(P^x)$ with $U^{xc} = U$. This proves that $N_G(U)$ controls fusion in G as required.
Definition 2.2 (The Brauer category of a p-block). Let G be a finite group, p a prime, and B a p-block of G. We refer the reader to [5, Section 5.9.1] for the definitions of subpairs, B-subpairs, the relation \leq and its transitive closure \leq, which is an ordering on subpairs. The defect groups of B are precisely the p-subgroups D of G which occur as the first component of a maximal B-subpair of G. Fixing a maximal B-subpair (D, b_D), for any subgroup $Q \leq D$, there exists a unique block b_Q of $QC_G(Q)$ such that $(\langle x \rangle, b_x) \leq (D, b_D)$. The Brauer category $\mathcal{F}_{(D, b_D)}(G, B)$ is the category whose objects are all subgroups of D and, for $P, Q \leq D$, the set of morphisms from P to Q is given by

$$\text{Hom}_{\mathcal{F}_{(D, b_D)}(G, B)}(P, Q) = \{c_g : g \in G \text{ such that } (P^g, b_P^g) \leq (Q, b_Q)\},$$

where $c_g : P \rightarrow Q$ is defined via $c_g(x) = x^g$. It follows from [1, Theorem IV.3.2, Proposition IV.3.14] that the category $\mathcal{F}_{(D, b_D)}(G, B)$ is a saturated fusion system on D.

Proof of Corollary 2. Fix a maximal B-subpair (D, b_D) of G and set $\mathcal{F} := \mathcal{F}_{(D, b_D)}(G, B)$. Let $x \in D$. Then by [5, Theorem 5.9.3], there exists a unique block b_x of $C_G(x)$ such that $(\langle x \rangle, b_x) \leq (D, b_D)$. Then (x, b_x) is a B-subsection of G, which by assumption is major. Hence, by [5, Theorem 5.9.6], there exists $g \in G$ with $x^g \in Z(D)$ and $b_x^g = b_{C_G(x)}^g$. Note now the following general fact that follows from [5, Lemma 5.3.4] and the definition of \leq: If (P, b_P) is a B-subpair with $P \leq Z(D)$ and $b_P = b_{C_G(P)}^P$, then $(P, b_P) \leq (D, b_D)$. Hence, we have $(\langle x^g \rangle, b_x^g) \leq (D, b_D)$ and thus $c_g : \langle x \rangle \rightarrow D$ is a morphism in \mathcal{F} by definition of the Brauer category. Therefore, \mathcal{F} fulfills the assumption of Theorem 1, which implies that D is abelian. □

References

1. M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and topology, London Math. Soc. Lecture Note Series, vol. 391, Cambridge University Press, 2011.
2. B. Sambale P.H. Tiep B. K¨ulshammer, G. Navarro, Finite groups with two conjugacy classes of p-elements and related questions for p-blocks, Preprint, 2013.
3. Alan R. Camina, Character tables determine abelian sylow 2-subgroups, Proc. Amer. Math. Soc. 80, no. 3, 533–535.
4. David M. Goldschmidt, 2-fusion in finite groups, Ann. of Math. (2) 99, 70–117.
5. Hirosi Nagao and Yukio Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989. Translated from the Japanese.

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark