Hermite and poly-Bernoulli mixed-type polynomials

Dae San Kim¹ and Taekyun Kim²*

¹Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea
²Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea
Full list of author information is available at the end of the article

Abstract
In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Stirling numbers, Bernoulli and Frobenius-Euler polynomials of higher order.

1 Introduction
For \(r \in \mathbb{Z}_{\geq 0} \), as is well known, the Bernoulli polynomials of order \(r \) are defined by the generating function to be

\[
\sum_{n=0}^{\infty} \frac{B_n^{(r)}(x)}{n!} t^n = \left(\frac{t}{e^t - 1} \right)^r (see [1–16]).
\]

For \(k \in \mathbb{Z} \), the polylogarithm is defined by

\[
\text{Li}_k(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^k}.
\]

Note that \(\text{Li}_1(x) = -\log(1 - x) \).

The poly-Bernoulli polynomials are defined by the generating function to be

\[
\frac{\text{Li}_k(1 - e^{-t})}{1 - e^{-t}} e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!} (see [5, 8]).
\]

When \(x = 0 \), \(B_n^{(k)} = B_n^{(k)}(0) \) are called the poly-Bernoulli numbers (of index \(k \)).

For \(\nu \neq 0 \) \(\in \mathbb{R} \), the Hermite polynomials of order \(\nu \) are given by the generating function to be

\[
e^{-\frac{x^2}{2t}} e^{xt} = \sum_{n=0}^{\infty} H_n^{(\nu)}(x) \frac{t^n}{n!} (see [6, 12, 13]).
\]

When \(x = 0 \), \(H_n^{(\nu)} = H_n^{(\nu)}(0) \) are called the Hermite numbers of order \(\nu \).
In this paper, we consider the Hermite and poly-Bernoulli mixed-type polynomials $HB_{n}^{(v,k)}(x)$ which are defined by the generating function to be

$$e^{\frac{-u^2}{2}} \frac{\ln(1-e^{-t})}{1-e^{-t}} e^{xt} = \sum_{n=0}^{\infty} H_{n}^{(v,k)}(x) \frac{t^n}{n!},$$

(1.5)

where $k \in \mathbb{Z}$ and $v (\neq 0) \in \mathbb{R}$.

When $x = 0$, $H_{n}^{(v,k)} = H_{n}^{(v,k)}(0)$ are called the Hermite and poly-Bernoulli mixed-type numbers.

Let \mathcal{F} be the set of all formal power series in the variable t over \mathbb{C} as follows:

$$\mathcal{F} = \left\{ f(t) = \sum_{k=0}^{\infty} a_k t^k \bigg| a_k \in \mathbb{C} \right\}.$$

(1.6)

Let $\mathbb{P} = \mathbb{C}[x]$ and \mathbb{P}^* denote the vector space of all linear functionals on \mathbb{P}.

$(L|p(x))$ denotes the action of the linear functional L on the polynomial $p(x)$, and we recall that the vector space operations on \mathbb{P}^* are defined by $(L + M|p(x)) = (L|p(x)) + (M|p(x))$, $(cL|p(x)) = c(L|p(x))$, where c is a complex constant in \mathbb{C}. For $f(t) \in \mathcal{F}$, let us define the linear functional on \mathbb{P} by setting

$$\langle f(t)|x^n \rangle = a_n \quad (n \geq 0).$$

(1.7)

Then, by (1.6) and (1.7), we get

$$\langle t^k|x^n \rangle = n! \delta_{n,k} \quad (n, k \geq 0),$$

(1.8)

where $\delta_{n,k}$ is the Kronecker symbol.

For $f_k(t) = \sum_{k=0}^{\infty} \frac{(f(t)|x^k)}{k!} t^k$, we have $(f_k(t)|x^n) = (L|x^n)$. That is, $L = f_k(t)$. The map $L \mapsto f_k(t)$ is a vector space isomorphism from \mathbb{P}^* onto \mathcal{F}. Henceforth, \mathcal{F} denotes both the algebra of formal power series in t and the vector space of all linear functionals on \mathbb{P}, and so an element $f(t)$ of \mathcal{F} will be thought of as both a formal power series and a linear functional.

We call \mathcal{F} the umbral algebra and the umbral calculus is the study of umbral algebra. The order $O(f)$ of the power series $f(t) \neq 0$ is the smallest integer for which a_k does not vanish. If $O(f) = 0$, then $f(t)$ is called an invertible series. If $O(f) = 1$, then $f(t)$ is called a delta series. For $f(t), g(t) \in \mathcal{F}$, we have

$$\langle f(t)g(t)|p(x) \rangle = \langle f(t)|g(t)p(x) \rangle = \langle g(t)|f(t)p(x) \rangle.$$

(1.9)

Let $f(t) \in \mathcal{F}$ and $p(x) \in \mathbb{P}$. Then we have

$$f(t) = \sum_{k=0}^{\infty} \frac{(f(t)|x^k)}{k!} t^k, \quad p(x) = \sum_{k=0}^{\infty} \frac{(t^k|p(x))}{k!} x^k \quad (\text{see [8, 9, 11, 13, 14]}).$$

(1.10)

By (1.10), we get

$$p^{(k)}(0) = \langle t^k|p(x) \rangle = \langle 1|p^{(k)}(x) \rangle,$$

(1.11)

where $p^{(k)}(0) = \frac{d^k p(x)}{dx^k} \big|_{x=0}$.

From (1.11), we have

\[t^k p(x) = p^{(k)}(x) = \frac{d^k p(x)}{dx^k} \quad (\text{see} \ [8, 9, 13]). \] (1.12)

By (1.12), we easily get

\[e^{it} p(x) = p(x + y), \quad \{e^{it} \mid p(x)\} = p(y). \] (1.13)

For \(O(f(t)) = 1, O(g(t)) = 0 \), there exists a unique sequence \(s_n(x) \) of polynomials such that

\[\langle g(t)f(t)^k \mid x^n \rangle = n! s_{n,k} \quad (n, k \geq 0). \]

The sequence \(s_n(x) \) is called the Sheffer sequence for \((g(t), f(t)) \) which is denoted by \(s_n(x) \sim (g(t), f(t)) \).

Let \(p(x) \in P, f(t) \in F \). Then we see that

\[\langle f(t)|xp(x)\rangle = \langle h(t)f(t)p(x) \rangle = \left(\frac{df(t)}{dt} \right) p(x), \]

where \(p(x) \in P, h(t) \in F, \)

\[\frac{1}{g(f(t))} e^{\tilde{f}(t)} = \sum_{n=0}^{\infty} s_n(y) \frac{t^n}{n!}, \]

where \(\tilde{f}(t) \) is the compositional inverse for \(f(t) \) with \(f(\tilde{f}(t)) = t \),

\[s_n(x + y) = \sum_{k=0}^{n} \binom{n}{k} s_k(y) p_{n-k}(x), \quad \text{where} \quad p_n(x) = g(t) s_n(x), \]

\[f(t) s_n(x) = n s_{n-1}(x), \quad s_{n+1}(x) = \left(x - \frac{g(t)}{f(t)} \right) \frac{1}{f'(t)} s_n(x), \]

and the conjugate representation is given by

\[s_n(x) = \sum_{j=0}^{n} \binom{x^n}{j} \langle g(\tilde{f}(t))^{-1} f'(t)^j \mid x^n \rangle x^j. \] (1.19)

For \(s_n(x) \sim (g(t), f(t)), r_n(x) \sim (h(t), l(t)) \), we have

\[s_n(x) = \sum_{m=0}^{n} C_{n,m} r_m(x), \]

where

\[C_{n,m} = \frac{1}{m!} \left(\frac{h(\tilde{f}(t))}{g(f(t))} \right) \frac{1}{f(t)^m} \left(\frac{g(t)}{l(t)} \right)^m \]

(see \([8, 9, 13]\)). (1.20)

\[\text{(1.21)} \]
In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Bernoulli and Frobenius-Euler polynomials of higher order.

2 Hermite and poly-Bernoulli mixed-type polynomials

From (1.5) and (1.16), we note that
\[HB^{(\nu,k)}_n(x) \sim \left(e^{\frac{\nu^2}{2}} \frac{1 - e^{-t}}{\text{Li}_k(1 - e^{-t})}, t \right), \]
and, by (1.3), (1.4) and (1.16), we get
\[B^{(k)}_n(x) \sim \left(\frac{1 - e^{-t}}{\text{Li}_k(1 - e^{-t})}, \right), \] \[H^{(\nu)}_n(x) \sim \left(e^{\frac{\nu^2}{2}}, t \right), \text{ where } n \geq 0. \]

From (1.18), (2.1), (2.2) and (2.3), we have
\[tB^{(k)}_n(x) = nB^{(k)}_{n-1}(x), \quad tH^{(\nu)}_n(x) = nH^{(\nu)}_{n-1}(x), \quad tHB^{(\nu,k)}_n(x) = nHB^{(\nu,k)}_{n-1}(x). \]

By (1.5), (1.8) and (2.1), we get
\[HB^{(\nu,k)}_n(x) = e^{\frac{\nu^2}{2}} \text{Li}_k(1 - e^{-t}) \sum_{m=0}^{\infty} \frac{1}{m!} \left(-\frac{\nu}{2} \right)^m B^{(k)}_{n-2m}(x) \]
\[= \sum_{m=0}^{\infty} \frac{1}{m!} \left(\frac{2m}{m!} \right) \left(-\frac{\nu}{2} \right)^m B^{(k)}_{n-2m}(x). \]

Therefore, by (2.5), we obtain the following proposition.

Proposition 1 For \(n \geq 0 \), we have
\[HB^{(\nu,k)}_n(x) = \sum_{m=0}^{\infty} \frac{n}{2m} \left(\frac{2m!}{m!} \right) \left(-\frac{\nu}{2} \right)^m B^{(k)}_{n-2m}(x). \]

From (1.5), we can also derive
\[HB^{(\nu,k)}_n(x) = \text{Li}_k(1 - e^{-t}) e^{\frac{\nu^2}{2}} \sum_{m=0}^{\infty} \frac{1}{(m+1)^2} \frac{1 - e^{-t}}{m!} H^{(\nu)}_n(x) \]
\[= \sum_{m=0}^{\infty} \frac{1}{(m+1)^2} \sum_{j=0}^{m} \binom{m}{j} (-1)^j H^{(\nu)}_n(x-j). \]

(2.6)
Therefore, by (2.6), we obtain the following theorem.

Theorem 2 For \(n \geq 0 \), we have

\[
HB_n^{(v,k)}(x) = \sum_{m=0}^{n} \frac{1}{(m+1)^k} \sum_{j=0}^{m} \binom{m}{j} (-1)^j H_n^{(v)}(x-j).
\]

By (1.5), we get

\[
HB_n^{(v,k)}(x) = e^{x^{1/2}} B_n^{(k)}(x) = \sum_{l=0}^\infty \frac{1}{l!} \left(-\frac{v}{2} \right)^l t^l B_n^{(k)}(x).
\]

\[
= \sum_{l=0}^\infty \frac{1}{l!} \sum_{m=0}^{n} \frac{1}{(m+1)^k} (-1)^j \binom{m}{j} t^l (x-j)^n.
\]

\[
= \sum_{l=0}^\infty \sum_{j=0}^{n} \sum_{m=j}^{n} \binom{n}{2l} \frac{(2l)!}{l!} \left(-\frac{v}{2} \right)^l \binom{n}{m} \binom{m}{j} (x-j)^{n-2l}.
\]

Therefore, by (2.7), we obtain the following theorem.

Theorem 3 For \(n \geq 0 \), we have

\[
HB_n^{(v,k)}(x) = \sum_{l=0}^\infty \sum_{j=0}^{n} \binom{n}{2l} \frac{(2l)!}{l!} \left(-\frac{v}{2} \right)^l \binom{n}{m} \binom{m}{j} (x-j)^{n-2l}.
\]

By (2.6), we get

\[
HB_n^{(v,k)}(x) = \sum_{m=0}^{n} \frac{(1-e^{-t})^m}{(m+1)^k} H_n^{(v)}(x).
\]

\[
= \sum_{m=0}^{n} \frac{1}{(m+1)^k} \sum_{a=0}^{n-m} \binom{m}{a} (-1)^a S_2(a+m,m)(n)_{a+m} H_n^{(v)}(x).
\]

\[
= \sum_{m=0}^{n} \sum_{a=0}^{n-m} \left(-1 \right)^{n-a-m} \binom{n}{a} \binom{m}{n-a} S_2(n-a,m) H_n^{(v)}(x).
\]

\[
= (-1)^n \sum_{a=0}^{n} \sum_{m=0}^{n-a} \left(-1 \right)^{m+a} \binom{n}{a} S_2(n-a,m) H_n^{(v)}(x),
\]

where \(S_2(n,m) \) is the Stirling number of the second kind.

Therefore, by (2.8), we obtain the following theorem.

Theorem 4 For \(n \geq 0 \), we have

\[
HB_n^{(v,k)}(x) = (-1)^n \sum_{a=0}^{n} \sum_{m=0}^{n-a} \left(-1 \right)^{m+a} \binom{n}{a} S_2(n-a,m) H_n^{(v)}(x).
\]
From (1.19) and (2.1), we have

\[H_{n}^{(\nu, k)}(x) = \sum_{j=0}^{n} \binom{n}{j} \left(e^{-\frac{x^2}{2}} \frac{L_k(1-e^{-t})}{1-e^{-t}} \right)^{n-j} x^j \]

\[= \sum_{j=0}^{n} \binom{n}{j} e^{-\frac{x^2}{2}} B_{n-j}^{(k)}(x) x^j \]

\[= \sum_{j=0}^{n} \binom{n}{j} \sum_{l=0}^{n-j} \binom{n-j}{l} \left(-\frac{2}{l} \right)^l (n-j)_{2l} \left(e^{-t} \right)^{l} B_{n-j-2l}^{(k)} x^j \]

\[= \sum_{j=0}^{n} \left\{ \sum_{l=0}^{n-j} \binom{n-j}{l} \left[\frac{2l!}{l!} \left(-\frac{2}{l} \right)^l B_{n-j-2l}^{(k)} \right] \right\} x^j. \] \tag{2.9}

Therefore, by (2.9), we obtain the following theorem.

Theorem 5 For \(n \geq 0 \), we have

\[H_{n}^{(\nu, k)}(x) = \sum_{j=0}^{n} \binom{n}{j} \sum_{l=0}^{n-j} \binom{n-j}{l} \left(-\frac{2}{l} \right)^l (n-j)_{2l} \left(e^{-t} \right)^{l} B_{n-j-2l}^{(k)} x^j. \]

Remark By (1.17) and (2.1), we easily get

\[H_{n}^{(\nu, k)}(x+y) = \sum_{j=0}^{n} \binom{n}{j} H_{j}^{(\nu, k)}(x) y^{n-j}. \] \tag{2.10}

We note that

\[H_{n}^{(\nu, k)}(x) \sim \left(g(t) = e^{\frac{x^2}{2}} \frac{1-e^{-t}}{L_k(1-e^{-t})} f(t) = t \right). \] \tag{2.11}

From (1.18) and (2.11), we have

\[H_{n+1}^{(\nu, k)}(x) = \left(x - \frac{g'(t)}{g(t)} \right) H_{n}^{(\nu, k)}(x). \] \tag{2.12}

Now, we observe that

\[\frac{g'(t)}{g(t)} = (\log(g(t)))' \]

\[= (\log e^{\frac{x^2}{2}} + \log(1-e^{-t}) - \log(L_k(1-e^{-t})))' \]

\[= vt + e^{-t} \left(1 - \frac{L_{k-1}(1-e^{-t})}{L_k(1-e^{-t})} \right). \] \tag{2.13}
By (2.12) and (2.13), we get

\[
HB_{n+1}^{(v,k)}(x) = xHB_n^{(v,k)}(x) + \frac{t}{e^t - 1} \left(\frac{1}{m^2} - \frac{1}{m^{k+1}} \right) (1 - e^{-t})^{m-1}
\]

(2.14)

It is easy to show that

\[
\frac{\text{Li}_k(1 - e^{-t}) - \text{Li}_{k-1}(1 - e^{-t})}{1 - e^{-t}} = \sum_{m=2}^{\infty} \left(\frac{1}{m^2} - \frac{1}{m^{k+1}} \right) (1 - e^{-t})^{m-1}
\]

\[
= \left(\frac{1}{2^2} - \frac{1}{2^{k+1}} \right) t + \cdots .
\]

(2.15)

Thus, by (2.15), we get

\[
\frac{\text{Li}_k(1 - e^{-t}) - \text{Li}_{k-1}(1 - e^{-t}) x^n}{t(1 - e^{-t})} = \frac{\text{Li}_k(1 - e^{-t}) - \text{Li}_{k-1}(1 - e^{-t})}{1 - e^{-t}} \frac{x^{n+1}}{n+1}.
\]

(2.16)

From (2.16), we can derive

\[
e^{-\frac{\nu t^2}{2}} \frac{t}{e^t - 1} \frac{\text{Li}_k(1 - e^{-t}) - \text{Li}_{k-1}(1 - e^{-t})}{1 - e^{-t}} x^n
\]

\[
= \frac{1}{n+1} \left(\sum_{l=0}^{n+1} \frac{B_l}{l!} t^l \right) (HB_{n+1}^{(v,k)}(x) - HB_{n+1}^{(v,k-1)}(x))
\]

\[
= \frac{1}{n+1} \sum_{l=0}^{n+1} \frac{B_l}{l!} t^l (HB_{n+1}^{(v,k)}(x) - HB_{n+1}^{(v,k-1)}(x))
\]

\[
= \frac{1}{n+1} \sum_{l=0}^{n+1} \binom{n+1}{l} B_l (HB_{n+1-l}^{(v,k)}(x) - HB_{n+1-l}^{(v,k-1)}(x)).
\]

(2.17)

Therefore, by (2.14) and (2.17), we obtain the following theorem.

Theorem 6 For \(n \geq 0 \), we have

\[
HB_{n+1}^{(v,k)}(x) = xHB_n^{(v,k)}(x) - vnHB_{n-1}^{(v,k)}(x)
\]

\[
- \frac{1}{n+1} \sum_{l=0}^{n+1} \binom{n+1}{l} B_l (HB_{n+1-l}^{(v,k)}(x) - HB_{n+1-l}^{(v,k-1)}(x)).
\]

(2.18)

Let us take \(t \) on both sides of (2.18). Then we have

\[
(n+1)HB_n^{(v,k)}(x) = (xt + 1)HB_0^{(v,k)}(x) - vn(n-1)HB_{n-2}^{(v,k)}(x)
\]
\begin{align*}
&\quad -\frac{1}{n+1} \sum_{l=0}^{n+1} \binom{n+1}{l} (n+1-l)B_l \{ HB_{n-1}^{(v,k)}(x) - HB_{n-l}^{(v,k-1)}(x) \} \\
&= nxHB_{n-1}^{(v,k)}(x) + HB_{n}^{(v,k)}(x) - vn(n-1)HB_{n-2}^{(v,k)}(x) \\
&\quad - \sum_{l=0}^{n} \binom{n}{l} B_l (HB_{n-1}^{(v,k)}(x) - HB_{n-l}^{(v,k-1)}(x)), \tag{2.19}
\end{align*}

where \(n \geq 3 \).

Thus, by (2.19), we obtain the following theorem.

Theorem 7 For \(n \geq 3 \), we have

\[
\sum_{l=0}^{n} \binom{n}{l} B_l HB_{n-l}^{(v,k-1)}(x)
\]

\[
= (n+1)HB_{n}^{(v,k)}(x) - n \left(x + \frac{1}{2} \right) HB_{n-1}^{(v,k)}(x)
\]

\[
+ n(n-1) \left(v + \frac{1}{12} \right) HB_{n-2}^{(v,k)}(x)
\]

\[
+ \sum_{l=0}^{n-3} \binom{n}{l} B_{n-l} HB_{l}^{(v,k)}(x).
\]

By (1.5) and (1.8), we get

\[
HB_{n}^{(v,k)}(y)
\]

\[
= \left\{ e^{\frac{i \sqrt{2} }{\tau}} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right\} x^n
\]

\[
= \left\{ \partial_{\tau} e^{\frac{i \sqrt{2} }{\tau}} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right\} x^{n-1}
\]

\[
= \left\{ \partial_{\tau} e^{\frac{i \sqrt{2} }{\tau}} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right\} x^{n-1}
\]

\[
\quad + \left\{ e^{\frac{i \sqrt{2} }{\tau}} \left(\partial_{\tau} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right) x^{n-1} \right\}
\]

\[
= -v(n-1) \left\{ e^{\frac{i \sqrt{2} }{\tau}} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right\} x^{n-2}
\]

\[
\quad + y \left\{ e^{\frac{i \sqrt{2} }{\tau}} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right\} x^{n-1}
\]

\[
\quad + \left\{ e^{\frac{i \sqrt{2} }{\tau}} \left(\partial_{\tau} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right) x^{n-1} \right\}
\]

\[
= -v(n-1)HB_{n-2}^{(v,k)}(y) + yHB_{n-1}^{(v,k)}(y)
\]

\[
\quad + \left\{ e^{\frac{i \sqrt{2} }{\tau}} \left(\partial_{\tau} \frac{Li_k(1-e^{-\frac{\tau}{i}})}{1-e^{-\frac{\tau}{i}}} e^{\frac{\tau}{i}} \right) x^{n-1} \right\}. \tag{2.20}
\]
Now, we observe that
\[
\partial_t \left(\frac{\text{Li}_k(1-e^{-t})}{1-e^{-t}} \right) = \frac{\text{Li}_{k-1}(1-e^{-t}) - \text{Li}_k(1-e^{-t})}{(1-e^{-t})^2} e^{-t}. \tag{2.21}
\]
From (2.21), we have
\[
\left(e^{-\frac{v^2 t^2}{2}} \left(\partial_t \frac{\text{Li}_k(1-e^{-t})}{1-e^{-t}} \right) e^{\nu t} | x^{v-1} \right) = e^{-\frac{v^2 t^2}{2}} \left(\frac{\text{Li}_{k-1}(1-e^{-t}) - \text{Li}_k(1-e^{-t})}{(1-e^{-t})^2} \right) e^{\nu t} \left| \frac{1}{n} t x^n \right|
\]
\[
= \frac{1}{n} e^{-\frac{v^2 t^2}{2}} \frac{\text{Li}_{k-1}(1-e^{-t}) - \text{Li}_k(1-e^{-t})}{1-e^{-t}} e^{\nu t} t \left| \frac{1}{e^t - 1} x^n \right|
\]
\[
= \frac{1}{n} \sum_{l=0}^{n} \binom{n}{l} B_l \left(e^{-\frac{v^2 t^2}{2}} \frac{\text{Li}_{k-1}(1-e^{-t}) - \text{Li}_k(1-e^{-t})}{1-e^{-t}} e^{\nu t} \right) \left| \frac{1}{e^t - 1} x^n \right|
\]
\[
= \frac{1}{n} \sum_{l=0}^{n} \binom{n}{l} B_l \left\{ \text{HB}^{(v,k-1)}_{n-l}(y) - \text{HB}^{(v,k)}_{n-l}(y) \right\}, \tag{2.22}
\]
where \(B_n\) are the ordinary Bernoulli numbers which are defined by the generating function to be
\[
t \left(\frac{e^t}{e^t - 1} - 1 \right) = \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n.
\]
Therefore, by (2.20) and (2.22), we obtain the following theorem.

Theorem 8 For \(n \geq 2\), we have
\[
\text{HB}^{(v,k)}_n(x) = -v(n-1)\text{HB}^{(v,k)}_{n-2}(x) + x\text{HB}^{(v,k)}_{n-1}(x)
+ \frac{1}{n} \sum_{l=0}^{n} \binom{n}{l} B_l \left(\text{HB}^{(v,k-1)}_{n-l}(x) - \text{HB}^{(v,k)}_{n-l}(x) \right).
\]

Now, we compute
\[
\left\langle e^{-\frac{v^2 t^2}{2}} \text{Li}_k(1-e^{-t}) | x^{v-1} \right\rangle
\]
in two different ways.

On the one hand,
\[
\left\langle e^{-\frac{v^2 t^2}{2}} \text{Li}_k(1-e^{-t}) | x^{v-1} \right\rangle
= \left\langle e^{-\frac{v^2 t^2}{2}} \frac{\text{Li}_k(1-e^{-t})}{1-e^{-t}} (1-e^{-t}) | x^{v-1} \right\rangle
= \left\langle e^{-\frac{v^2 t^2}{2}} \frac{\text{Li}_k(1-e^{-t})}{1-e^{-t}} | (1-e^{-t})x^{v-1} \right\rangle
\]
\[= \left\{ e^{-\frac{u^2}{2}} \frac{\text{Li}_k(1 - e^{-t})}{1 - e^{-t}} \right\} x^{n+1} - (x - 1)^{n+1} \]
\[= \sum_{m=0}^{n} (-1)^{n-m} \binom{n+1}{m} e^{-\frac{u^2}{2}} \frac{\text{Li}_k(1 - e^{-t})}{1 - e^{-t}} x^m \]
\[= \sum_{m=0}^{n} (-1)^{n-m} \binom{n+1}{m} \text{HB}^{(\nu, k)}_m. \]
(2.23)

On the other hand,
\[\langle e^{-\frac{u^2}{2}} \text{Li}_k(1 - e^{-t}) | x^{n+1} \rangle \]
\[= \{ \text{Li}_k(1 - e^{-t}) e^{-\frac{u^2}{2}} x^{n+1} \} \]
\[= \left\{ \int_0^t (\text{Li}_k(1 - e^{-s}))' ds e^{-\frac{u^2}{2}} x^{n+1} \right\} \]
\[= \left\{ \int_0^t e^{-\frac{u^2}{2}} \frac{\text{Li}_{k-1}(1 - e^{-s})}{1 - e^{-s}} ds e^{-\frac{u^2}{2}} x^{n+1} \right\} \]
\[= \sum_{l=0}^{\infty} \left(\sum_{m=0}^{l} (-1)^{l-m} \binom{l}{m} B^{(k-1)}_m \frac{l+1}{(l+1)!} \right) \left\{ H^{(\nu)}_m(x) \right\} \]
\[= \sum_{l=0}^{n} \sum_{m=0}^{l} (-1)^{l-m} \binom{l}{m} B^{(k-1)}_m \frac{1}{(l+1)!} \left(t^{l+1} H^{(\nu)}_{m+l} \right) \]
\[= \sum_{l=0}^{n} \sum_{m=0}^{l} (-1)^{l-m} \binom{l}{m} \binom{n+1}{l+1} B^{(k-1)}_m H^{(\nu)}_{n+l}. \]
(2.24)

Therefore, by (2.23) and (2.24), we obtain the following theorem.

Theorem 9 For \(n \geq 0 \), we have
\[\sum_{m=0}^{n} (-1)^{n-m} \binom{n+1}{m} \text{HB}^{(\nu, k)}_m \]
\[= \sum_{m=0}^{n} \sum_{l=0}^{n} (-1)^{l-m} \binom{l}{m} \binom{n+1}{l+1} B^{(k-1)}_m H^{(\nu)}_{n+l}. \]

Let us consider the following two Sheffer sequences:
\[\text{HB}^{(\nu, k)}_n(x) \sim \left(e^{-\frac{u^2}{2}} \frac{1 - e^{-t}}{\text{Li}_k(1 - e^{-t})}, t \right) \]
(2.25)

and
\[B^{(r)}_n(x) \sim \left(\left(\frac{e^t - 1}{t} \right)^r, t \right) \quad (r \in \mathbb{Z}_{\geq 0}). \]
(2.26)

Let us assume that
\[\text{HB}^{(\nu, k)}_n(x) = \sum_{m=0}^{n} C_{n,m} B^{(r)}_m(x). \]
(2.27)
Then, by (1.20) and (1.21), we get
\[
C_{n,m} = \frac{1}{m!}\left(\left(\frac{e^t - 1}{t}\right)^r t^m \left| e^{-\frac{x^2}{2}} \frac{\text{Li}_2(1 - e^{-t})}{1 - e^{-t}} x^m\right| \right)
\]
\[
= \frac{1}{m!}\left(\left(\frac{e^t - 1}{t}\right)^r t^m HB_n^{(v,k)}(x)\right) = \frac{1}{m!}(n_m)\left(\left(\frac{e^t - 1}{t}\right)^r HB_{n-m}^{(v,k)}(x)\right)
\]
\[
= \left(\frac{n}{m}\right)\sum_{l=0}^{\infty} \frac{r!}{(l+r)!} S_2(l + r, r)\left| t^l HB_n^{(v,k)}(x)\right|
\]
\[
= \left(\frac{n}{m}\right)\sum_{l=0}^{n-m} (n - m) \frac{r!}{(l+r)!} S_2(l + r, r)HB_{n-m-l}^{(v,k)}
\]
\[
= \left(\frac{n}{m}\right)\sum_{l=0}^{n-m} \frac{r!}{(l+r)!} S_2(l + r, r)HB_{n-m-l}^{(v,k)}
\] (2.8)

Therefore, by (2.27) and (2.28), we obtain the following theorem.

Theorem 10 For \(n, r \in \mathbb{Z}_{\geq 0} \), we have
\[
HB_n^{(v,k)}(x) = \sum_{m=0}^{n} \left(\left(\frac{n}{m}\right)\sum_{l=0}^{\infty} \frac{r!}{(l+r)!} S_2(l + r, r)HB_{n-m-l}^{(v,k)}\right)|B_m^{(r)}(x)|.
\]

For \(\lambda \neq 1 \in \mathbb{C}, \, r \in \mathbb{Z}_{\geq 0} \), the Frobenius-Euler polynomials of order \(r \) are defined by the generating function to be
\[
\left(1 - \frac{\lambda}{e^t - \lambda}\right)^r e^{xt} = \sum_{n=0}^{\infty} H_n^{(r)}(x|\lambda) \frac{t^n}{n!} \quad \text{(see [1, 4, 7, 9, 10])}. \] (2.29)

From (1.16) and (2.29), we note that
\[
H_n^{(r)}(x|\lambda) \sim \left(\left(\frac{e^t - \lambda}{1 - \lambda}\right)^r, t\right).
\] (2.30)

Let us assume that
\[
HB_n^{(v,k)}(x) = \sum_{m=0}^{n} C_{n,m}H_m^{(r)}(x|\lambda).
\] (2.31)

By (1.21), we get
\[
C_{n,m} = \frac{1}{m!}\left(\left(\frac{e^t - \lambda}{1 - \lambda}\right)^r t^m \left| e^{-\frac{x^2}{2}} \frac{\text{Li}_2(1 - e^{-t})}{1 - e^{-t}} x^m\right| \right)
\]
\[
= \frac{(n)_m}{m!(1 - \lambda)^r} \left(\sum_{l=0}^{r} \binom{r}{l} (-\lambda)\frac{-t^l}{l!} HB_{n-m}^{(v,k)}(x)\right)
\]
\[
= \frac{(n)_m}{(1 - \lambda)^r} \sum_{l=0}^{r} \binom{r}{l} (-\lambda)^{-l-1} t^l HB_{n-m}^{(v,k)}(x)|B_m^{(r)}(x)|
\]
\[
= \frac{(n)_m}{(1 - \lambda)^r} \sum_{l=0}^{r} \binom{r}{l} (-\lambda)^{-l-1} HB_{n-m}^{(v,k)}(1).
\] (2.32)
Therefore, by (2.31) and (2.32), we obtain the following theorem.

Theorem 11 For \(n, r \in \mathbb{Z}_{\geq 0} \), we have

\[
HB_n^{(r, k)}(x) = \frac{1}{(1-\lambda)^r} \sum_{m=0}^{n} \binom{n}{m} \left(\sum_{l=0}^{r} \binom{r}{l} (-\lambda)^{r-l} HB_{n-m}^{(l, k)}(t) \right) H_m^{(r)}(x|\lambda).
\]

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details
1Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. 2Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2003786).

Received: 23 September 2013 **Accepted:** 7 November 2013 **Published:** 27 Nov 2013

References
1. Araci, S, Acikeloz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
2. Dere, R, Simsek, Y: Application of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22(3), 433-438 (2012)
3. Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 20(1), 7-21 (2010)
4. Ozden, H, Cangul, I, Simsek, Y: Remarks on \(q \)-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 18(1), 41-48 (2009)
5. Kaneko, M: Poly-Bernoulli numbers. J. Théor. Nr. Bordx. 9(1), 221-228 (1997)
6. Kim, DS, Kim, T, Dolgy, DV, Rim, SH: Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus. Adv. Differ. Equ. 2013, 73 (2013)
7. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012, 196 (2012)
8. Kim, DS, Kim, T, Lee, SH: A note on poly-Bernoulli polynomials arising from umbral calculus. Adv. Stud. Theor. Phys. 7(15), 731-744 (2013)
9. Kim, DS, Kim, T, Lee, SH: Poly-Cauchy numbers and polynomials with umbral calculus viewpoint. Int. J. Math. Anal. 7, 2235-2253 (2013)
10. Kim, DS, Kim, T, Lee, SH: Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials. Adv. Stud. Contemp. Math. 23, 543-554 (2013)
11. Kim, DS, Kim, T: Some identities of Bernoulli and Euler polynomials arising from umbral calculus. Adv. Stud. Contemp. Math. 23(1), 159-171 (2013)
12. Kurt, B, Simsek, Y: On Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math. 23(1), 13-17 (2013)
13. Roman, S: The Umbral Calculus: Pure and Applied Mathematics, vol. 111. Academic Press, New York (1984). ISBN 0-12-594380-6
14. Roman, S, Rosa, G-C: The umbral calculus. Adv. Math. 27(2), 95-188 (1978)
15. Rim, SH, Jeong, J: On the modified \(q \)-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 22(1), 93-98 (2012)
16. Simsek, Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 16(2), 251-278 (2008)