Beta and Gamma functions of Cayley-Dickson numbers

S.V. Ludkovsky

27.05.2004

1 Introduction.

This paper continues investigations of function theory over Cayley-Dickson algebras [12, 13]. Cayley-Dickson algebras \mathbb{A}_v over the field of real numbers coincide with the field \mathbb{C} of complex numbers for $v = 1$, with the skew field of quaternions, when $v = 2$, with the division nonassociative noncommutative algebra \mathbb{K} of octonions for $v = 3$, for each $v \geq 4$ they are nonassociative and not division algebras. The algebra \mathbb{A}_{v+1} is obtained from \mathbb{A}_v with the help of the doubling procedure. This work provides examples of \mathbb{A}_v-meromorphic functions and usages of line integrals over \mathbb{A}_v. Here notations of previous papers [12, 13] are used. Discussions of references and results of others authors can be found in [12, 13] as well as physical applications (see also [1, 4, 6, 7, 9, 10, 11, 14, 15] and references therein). Beta and Gamma functions illustrate general theory of meromorphic functions of Cayley-Dickson numbers and also applications of line integration over \mathbb{A}_v.

The results below show some similarity with the complex case and as well differences caused by noncommutativity and nonassociativity of Cayley-Dickson algebras. It is necessary to mention that before works [12, 13] there was not any publication of others authors devoted to the line integration of continuous functions of Cayley-Dickson numbers or even quaternions along rectifiable paths. In works of others authors integrations over submanifolds of codimension 1 in \mathbb{H} or \mathbb{K} were used instead of line integral. Therefore, in this respect publications [12, 13] are the first devoted to (integral) holomorphic functions of Cayley-Dickson numbers.
If \(g \) is a complex holomorphic function on a domain \(V \) in the complex plane \(\Pi \) embedded into \(\mathcal{A}_v \) and \(g \) has a local expansion \(g(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \) in the ball \(B(\Pi, z_0, r^-) \) for each \(z_0 \in \text{Int}(V) \), where \(\text{Int}(V) \) is the interior of \(V \) in \(\Pi \), \(r > 0 \) and \(a_n = a_n(z_0) \in \mathbb{C} \) may depend on parameter \(z_0 \), \(B(X, a, r^-) := \{x \in X : \rho(x, a) < r\} \) for a metrizable space \(X \) with metric \(\rho \), \(f \) is a function on a domain \(U \) in \(\mathcal{A}_v \), \(v \geq 2 \), such that \(V \subset U \cap \Pi \) and \(f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \) is the local expansion of \(f \) in \(B(\mathcal{A}_v, z_0, r^-) \) for each \(z_0 \in V \), then the line integral \(\int_\omega f(z)dz \) over \(\mathcal{A}_v \) for a rectifiable path \(\omega \) in \(V \) coincides with the classical complex Cauchy line integral, since \(\hat{f}|_V = f|_V \). Nevertheless, if \(f \) is an \(\mathcal{A}_v \)-holomorphic function on a domain \(U \) in \(\mathcal{A}_v \), \(V = U \cap \Pi \) is a domain in the complex plane \(\Pi \) embedded into \(\mathcal{A}_v \), then in general \(\int_\omega f(z)dz \) can not be reduced to Cauchy line integral for any rectifiable path \(\omega \) in \(V \), since the generalized operator \(\hat{f} \) is defined by values of \(f \) in the neighbourhood of \(\omega \) (see [12, 13]).

2 Beta and Gamma functions of Cayley-Dickson numbers.

1. Definition. The Gamma function is defined by the formula:
 \[
 \Gamma(z) := \int_0^\infty e^{-t}t^{z-1}dt,
 \]
 whenever this (Eulerian of the second kind) integral converges and defined by \(\mathcal{A}_v \)-holomorphic continuation elsewhere, where \(0 < t \in \mathbb{R}, t^z := \exp(z\ln t) \), \(z \in \mathcal{A}_v \), \(t^z \) take its principal value, \(dt \) corresponds to the Lebesgue measure on \(\mathbb{R} \), \(\ln : (0, \infty) \to \mathbb{R} \) is the classical (natural) logarithmic function.

 Denote by \(\text{Re}(z) := (z + z^*)/2 \) the real part of \(z \in \mathcal{A}_v \), \(\mathcal{I}_v := \{z \in \mathcal{A}_v : \text{Re}(z) = 0\} \), where \(z^* \) is the conjugate of a Cayley-Dickson number \(z \).

2. Proposition. The gamma function has as singularities only simple poles at the points \(z \in \{0, -1, -2, \ldots\} \) and \(\text{res}(-n, \Gamma)M = [(-1)^n/n!]M \) for each \(M \in \mathcal{I}_v \).

 Proof. Write \(\Gamma(z) \) in the form:
 \[
 (i) \ \Gamma(z) = \Phi(z) + \Psi(z),
 \]
 \[
 (ii) \ \Phi(z) = \int_0^1 e^{-t}t^{z-1}dt,
 \]
 \[
 (iii) \ \Psi(z) := \int_1^\infty e^{-t}t^{z-1}dt.
 \]
 Since \(|e^{a+M}| = e^{a} \) for each \(a \in \mathbb{R} \) and \(M \in \mathcal{I}_v \) (see Corollary 3.3 [13]), then \(|t^{z-1}| \leq t^{\delta-1} \) for each \(\text{Re}(z) \leq \delta \), where \(\delta > 0 \) is a marked number. From
\[\lim_{t \to \infty} e^{-t}t^{z-1} = 0 \] it follows, that there exists \(C = \text{const} > 0 \) such that
\[|e^{-t}t^{z-1}| \leq Ce^{-t/2} \] for each \(t > 0 \) and each \(z \) with \(\text{Re}(z) \leq \delta \). Therefore,
\(\Psi(z) \) is the \(\mathcal{A}_v \)-holomorphic function in \(\mathcal{A}_v \).

Consider change of variables \(t = 1/u \), then \(\Phi(z) = \int_1^\infty e^{-1/u}u^{-z-1}du \) for each \(\delta > 0 \) and each \(z \) with \(\text{Re}(z) \leq \delta \), hence
\[|e^{-1/u}u^{-z-1}| \leq u^{-\delta-1} \]. Therefore, \(\Phi(z) \) is \(\mathcal{A}_v \)-holomorphic, when \(\text{Re}(z) > 0 \). Substituting the Taylor series for \(e^{-t} \) into the integral expression (ii), we get
\[(iv) \quad \Phi(z) = \sum_{n=0}^\infty (-1)^n \int_0^1 t^{n+z-1}dt/n! = \sum_{n=0}^\infty (-1)^n(n+z)^{-1}/n! \]. Series
\((iv) \) is uniformly and abosolutely convergent in any closed domain in \(\mathcal{A}_v \setminus \{0, -1, -2, \ldots\} \) and this series gives \(\mathcal{A}_v \)-analytic continuation of \(\Phi(z) \). Thus
\(\Gamma(z) \) has only simple poles at the points \(z \in \{0, -1, -2, \ldots\} \).

The following Tannery lemma is true for \(\mathcal{A}_v \)-valued functions (for complex valued functions see §9.2 [3]).

3. Lemma. If \(g(t) \) and \(f(t, n) \) are functions from \([a, \infty) \) to \(\mathcal{A}_v \), \(v \geq 2 \), \(\lim_{n \to \infty} f(t, n) = g(t) \), \(\lim_{n \to \infty} \lambda_n = \infty \), then \(\lim_{n \to \infty} \int_a^n t^n f(t, n)dt = \int_a^\infty g(t)dt \), provided that \(f(t, n) \) tends to \(g(t) \) uniformly on any fixed interval, and provided also that there exists a positive function \(M(t) \) such that
\[|f(t, n)| \leq M(T) \] for each values of \(n \) and \(t \) and such that \(\int_a^\infty M(t)dt \) converges.

Proof. The sequence \(f(t, n) \) converges uniformly to \(g(t) \) in the fixed segment \(a \leq t \leq b \), \(a < b < \infty \). Using triangle inequalities and \(|\int_a^b g(t)dt| \leq \int_a^b |g(t)|dt \) gives:
\[\limsup_{n \to \infty} |\int_a^n f(t, n)dt - \int_a^\infty g(t)dt| \leq 2 \int_a^b M(t)dt \] for each \(a < b < \infty \). From \(\lim_{b \to \infty} \int_a^b M(t)dt = 0 \) the statement of this lemma follows.

4. Proposition. If \(\Gamma(z, n) := n!n^z([((z(n+1))(z+n)]^{-1}, \quad n \in \mathbb{N} \), then \(\Gamma(z, n) \) tends to \(\Gamma(z) \) as \(n \to \infty \), the convergence being uniform in any bounded canonical closed subset \(U \subset \mathcal{A}_v \) which contains no any of the singularities of \(\Gamma(z) \), \(v \geq 2 \).

Proof. Since \(\mathcal{A}_v \) is power-associative and \(\mathbb{R} \) is the centre of the Cayley-Dickson algebra, then \(\{n\frac{z}{2}[z(z+1)(z+2)\ldots(z+n)]^{-1}\}_{q(n+2)} \) does not depend on the order of multiplication regulated by the vector \(q(n+2) \) (see [13]). Therefore,
\[\Gamma(z, n) = (n/(n+1))^{z-1} \prod_{m=1}^{n} ((1 + 1/m)^{z}(1 + z/m)^{-1}) \]. Then
\[(1 + 1/m)^{z}(1 + z/m)^{-1} = 1 + z(z-1)/(2m^2) + O(1/m^3) \], when \(m > 0 \) is large, hence
\[z^{-1} \prod_{m=1}^{n} ((1 + 1/m)^{z}(1 + z/m)^{-1}) \] converges uniformly and abosolutely in any bounded canonical closed domain \(U \) in \(\mathcal{A}_v \) to an \(\mathcal{A}_v \)-holomorphic function in accordance with Theorem 3.21 [13]. In view of Formulas (3.6, 7) in [13] \(|((1 - t/n)^n t^{-1})| = (1 - t/n)^n t^{-1} \leq e^{-t/n} \), where \(a := \text{Re}(z) \). From
\[f_n(t) = \int_0^n (1 - u)^n u^{-1} du \] and integrating by parts we get
\[\Gamma(z, n) = \int_0^n (1 - u)^n u^{-1} du, \] hence \(\lim_{n \to \infty} \Gamma(z, n) = \int_0^\infty e^{-t} t^{-1} dt =: \Gamma(z) \] by Lemma 3.

5. Remark. From the proof of Proposition 4 it follows, that \(\Gamma(z) = z^{-1} \prod_{i=1}^\infty ((1 + 1/m)^z(1 + z/m)^{-1}) \) for each \(z \in A_v \setminus \{0, -1, -2, \ldots\}, v \geq 1. \) The latter is known as the Euler’s formula in the case of complex numbers.

6. Proposition. The gamma function satisfies identities:
(i) \(\Gamma(z + 1) = z\Gamma(z) \) and
(ii) \(\Gamma(z)\Gamma(1 - z) = \pi \csc(\pi z) \)
for each \(z \in A_v \setminus \{0, -1, -2, \ldots\}, v \geq 2. \)

Proof. In view of power associativity of \(A_v \) and that \(R \) is the centre of the Cayley-Dickson algebra we get
\[\Gamma(z + 1) = \lim_{n \to \infty} n!z^2[(z + 1)\ldots(z + n)]^{-1} n/(z + n + 1) = z\Gamma(z), \] also
\[\Gamma(z)\Gamma(1 - z) = \lim_{n \to \infty} \left\{ z(1 - z^2/2^2)(1 - z^2/2^2)\ldots(1 - z^2/n^2)(1 + (1 - z)/n) \right\}^{-1} = \{z \prod_{i=1}^\infty (1 - z^2/n^2) \}^{-1} \] for complex \(z \) in \(C \setminus \mathbb{Z} \) [3]. Using the \(A_v \)-holomorphic extension of this function from the complex domain onto the corresponding domain \(A_v \setminus \mathbb{Z} \) (see Proposition 3.13, Corollary 2.13 and Theorems 3.10, 3.21 [13]), we get Formula (ii).

7. Definition. A function \(F \) on an unbounded domain \(U \) in \(A_v, v \geq 2, \) is said to have an asymptotic expansion \(F \sim \sum_{|k| \leq 0}(a_k, z^k), \) if
\[\lim_{z \to U, |z| \to \infty} z^n \{ F(z) - \sum_{|k| \leq 0}(a_k, z^k) \} = 0 \]
for each \(n \in \mathbb{N}, \) where \(k = (k_1, \ldots, k_n), \) \(|k| := k_1 + \ldots + k_n, \) \(k_j \in \mathbb{Z} \) for each \(j, n \in \mathbb{N}, \) \((a_k, z^k) := a_k z^{k_1} \ldots a_k z^{k_n}, \) \(a_k \in A_v \) for each \(j. \)

We write \(F(z) \sim G(z) \sum_{|k| \leq 0}(a_k, z^k), \) if \(G(z)^{-1} F(z) \sim \sum_{|k| \leq 0}(a_k, z^k). \) The term \(G(z)a_0 \) is called the dominant term of the asymptotic representation of \(F(z). \)

8. Lemma. Let \(f(t) \) be a function in an unbounded domain \(U \) in \(A_v, \) possibly with a branch point at 0 and such that
\[f(z) = \sum_{m=1}^\infty a_m z^{r(m/r)} \]
when \(|z| \leq a, a > 0, r > 0, \) let also \(f \) be \(A_v \)-holomorphic in \(B(U, 0, a + \delta) \setminus \{0\}, \) where \(\delta > 0. \) Suppose, that when \(t \geq 0, |f(t)| < Ce^{bt}, \) where \(C > 0 \) and \(b > 0 \) are constants. Then
\[F(z) = \int_0^\infty e^{-zt} f(t) dt \sim \sum_{n=1}^\infty a_n \Gamma(n/r) z^{-n/r}, \]
when \(|z| \) is large and \(|\text{Arg}(z)| \leq \pi/2 - \epsilon, \) where \(\epsilon > 0 \) is arbitrary.

Proof. For each \(n \in \mathbb{N} \) there exists a constant \(C = \text{const} > 0 \) such that
for each \(t \geq 0 \). In view of Formulas (3.2, 3) [13]

\[
|f(t) - \sum_{m=1}^{n-1} a_m t^{(m/r)-1}| \leq C t^{(n/r)-1} e^{bt}
\]

for each \(x > b \), where \(x := \text{Re}(z) \). From the condition \(|\text{Arg}(z)| \leq \pi/2 - \epsilon \) it follows, that \(x \geq |z|^2 \sin(\epsilon) \), such that \(x > b \) for \(|z| > b \csc(\epsilon) \). Therefore, for \(|\text{Arg}(z)| \leq \pi/2 - \epsilon < \pi/2 \) and \(|z| > b \csc(\epsilon) \), there is the inequality:

\[
|z^{n/r} \int_{0}^{\infty} e^{-zt} [f(t) - \sum_{m=1}^{n-1} a_m t^{(m/r)-1}] dt| \leq C \Gamma(n/r) |z|^{n/r} / (|z| \sin(\epsilon) - b)^{n/r} = O(1).
\]

9. **Proposition.** Let \(0 < \delta < \pi/2 \), \(z \in \mathcal{A}_v \setminus \{0, -1, -2, \ldots\} \), \(|\text{Arg}(z)| \leq \pi - \delta \), \(v \geq 2 \). Then there exists the asymptotic expansion:

\[
\ln \Gamma(z) \sim (z-1/2) \ln(z) - z + (\ln(2\pi))/2 + \sum_{n=1}^{\infty} (-1)^{n-1} B_n [2n(2n-1)z^{2n-1}]^{-1},
\]

where \(B_n \) are Bernoulli numbers defined by the equation: \((z/2) \coth(z/2) = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} B_n z^{2n}/(2n)! \).

Proof. If \(z > 0 \), then the substitution \(t = z u \) gives \(\Gamma(z) = \Gamma(1 + z)/z = z e^{-z} \int_0^\infty (ue^{-u}) z du \) and by analytic continuation the formula \(\Gamma(z) = z e^{-z} \int_0^\infty (ue^{-u}) z du \) is true for each copy of \(\mathbb{C} \), \(0 \in \mathbb{C} \), embedded into \(\mathcal{A}_v \).

In view of independence of this formula from such embedding and power associativity of \(\mathcal{A}_v \) it follows, that it is true for each \(z \in \mathcal{A}_v \) with \(\text{Re}(z) > 0 \). For \(\text{Re}(z) > 0 \) and large \(|z| \) using substitutions \(e^{-t} = \eta e^{1-v} \) for \(t \in (0, \infty) \) and \(\eta \in (1, \infty) \); also the substitution \(e^{-t} = u e^{1-v} \) for \(t \) decreasing monotonously from \(\infty \) to 0 and \(u \in (0, 1) \), we get \(z^{-z} e^z \Gamma(z) = \int_0^\infty e^{-zt} (d\eta/dt - du/dt) dt \).

Consider two real solutions \(\eta \) and \(u \) of the equation \(t = u - 1 - \ln(u) \) and the equation \(\zeta^2/2 = w - \ln(1+w) \) which defines \(w = w(\zeta) \) for \(\zeta \in \mathbb{R} \oplus M \mathbb{R} \). It has two branches \(\zeta = \beta w(1-2w/3+2w^2/4-\ldots)^{-1/2} \), where \(\beta = -1 \) or \(\beta = 1 \). Each branch is the analytic function of \(w \) in the domain \(\{ w \in \mathbb{R} \oplus M \mathbb{R} : |w| < 1 \} \) with a simple zero at \(w = 0 \). For \(\beta = 1 \) there exists a unique solution \(w = \zeta + a_2 \zeta^2 + a_3 \zeta^3 + \ldots \) in \(\{ \zeta : |\zeta| < \rho \} \), \(na_n M = \text{res}(0, \zeta^{-n}) M \) for each \(n > 1 \).

Thus \(w \) has two branches \(w_1 \) and \(w_2(\zeta) = w_1(-\zeta) \). Singularities of \(w(\zeta) \) are only points at which \(dw/d\zeta \) is zero or infinite, hence these are \(\zeta = 0 \), also points corresponding to \(w = 0 \) and \(w = -1 \), since \(dw/d\zeta = \zeta(1+w)/w \).

Then \(\zeta = 0 \) is not a branch-point of \(w_1 \), to \(w = -1 \) there corresponds \(\zeta = \infty \). Therefore, singularities are: \(\zeta^2 = 4n\pi M \), where \(n \in \mathbb{Z} \setminus \{0\} \). Then \(\eta \) and \(u \) are \(\mathcal{A}_v \)-holomorphic, when \(|(z+\bar{z})/2| < 2 \) possibly besides \(z = 0 \) and when \(|z| < 2\pi \), where \(\zeta^2 := 2z \) such that \(\eta = 1 + (2z)^{1/2} + a_2(2z) + a_3(2z)^{3/2} + a_4(2z)^2 + \ldots \).
u = 1 - (2z)^{1/2} + a_2(2z) - a_3(2z)^{3/2} + a_4(2z)^2 - ..., the square roots are taken positive, when z > 0. Applying Lemma 8 we get the asymptotic expansion. In view of Theorem 2.15 [13] for M ∈ ℑ_ν with |M| = 1 and α ∈ R and a loop defined by pe^{Mt} on the boundary of the sector |z| ≤ ρ and two lines Arg(z) = 0, Arg(z) = Mα, where α ∈ (-π/2, π/2), g(z) := d(η - u)/dt, provides the equality: ∫_0^∞ e^{-zt}g(t)dt = ∫_0^∞ exp(-zte^{Ma})g(te^{Ma})e^{Ma}dt, when Arg(z) ∈ M/R, Re(z) > 0 and Re(zte^{Ma}) > 0, since R ⊕ M/R is isomorphic with C which is commutative. Therefore, the latter integral converges uniformly and provides the analytic function. Two regions Re(z) > 0 and Re(zte^{Ma}) > 0 have a common area and by the analytic continuation: z^-z e^z Γ(z) = ∫_0^∞ exp(-zte^{Ma})g(te^{Ma})e^{Ma}dt, when α ∈ (-π/2, π/2). Applying Lemma 8 we get the region of validity of this asymptotic expansion, since M is arbitrary.

10. Corollary. For large |y| there is the asymptotic expansion |Γ(x + My)| ∼ (2π)^{1/2}|y|^{x-1/2} exp(-π|y|/2) uniformly by M ∈ ℑ_ν, |M| = 1, where v ≥ 2, y ∈ R.

11. Corollary. π^{1/2}Γ(2z) = 2^{2z-1}Γ(z)Γ(z + 1/2) for each z ∈ ℛ_v \ {0, −1, −2, ...}, v ≥ 2.

The proof is analogous to §§9.55, 9.56 [3], since R ⊕ M/R is isomorphic with C for each M ∈ ℑ_ν, v ≥ 2, |M| = 1.

12. Proposition. For all z ∈ ℛ_v:

1/Γ(z) = (2π)^{-1}(∫_ψ e^{ζ^{-z}}dζ)M^*

for a loop ψ and z in the plane R ⊕ M/R, M ∈ ℑ_ν, |M| = 1, ψ starts at −∞ of the real axis, encircles 0 once in the positive direction and returns to the starting point.

Proof. Consider the integral ∫_ψ e^{ζ^{-z}}dζ = ∫_ψ f(ζ)dζ, the integrand f(ζ) has a branch point at zero, but each branch is a one-valued function of ζ and each branch is ℛ_v-holomorphic in ℛ_v \ Q, where Q is a submanifold in ℛ_v of real codimension 1 such that (−∞, 0] ⊂ Q (see §3.7 [12]). Then take a branch e^{ζ^{-z}} = exp(ζ - zLn(ζ)), where Ln(ζ) takes its principal value. Consider a rectifiable loop γ in R ⊕ M/R encompassing zero in the positive direction and beginning at −ρ on the lower edge of the cut and returns to −ρ at the upper edge of the cut, where ρ > 0.

In view of Theorem 2.15 [13] the value of the integral is not changed by the deformation to a contour γ consisting of the lower edge of the cut intersected with [−ρ, −δ], where 0 < δ < ρ, the circle |z| = δ in the plane R ⊕ M/R, and the upper edge of the cut intersected with [−ρ, −δ]. On
the upper edge of the cut in \(\gamma \): \(\zeta = ue^{\pi M} \), where \(u > 0 \), \(u \in \mathbb{R} \), and

\[f(\zeta) = \exp(-u - zln(u) - z\pi M) = e^{-u}e^{-z\pi M}. \]

On the lower edge of the cut in \(\gamma \): \(\zeta = ue^{-\pi M} \) and \(f(\zeta) = e^{-u}e^{z\pi M} \). Therefore, \(f_\gamma f(\zeta) d\zeta = (e^{z\pi M} - e^{-z\pi M}) \int_0^\gamma e^{-u}e^{-z}du + J \), where \(J := \int_{-\pi}^{\pi} \exp(\delta e^{\theta M})(\delta(1-z)e^{(1-z)\theta M}d\theta, \)

since \(\mathbb{R} \oplus M\mathbb{R} \) is isomorphic with \(\mathbb{C} \) and \(f(\zeta)h = f(z)h \) for each \(h \) and \(z \in \mathbb{R} \oplus M\mathbb{R} \) (see Theorem 2.7 [13]).

If \(z = x + yM \), where \(x \) and \(y \in \mathbb{R} \), then \(|J| \leq \int_{-\pi}^{\pi} \delta^{1-x} \exp(\delta \cos(\theta) + y\theta)d\theta \leq 2\pi \delta^{1-x}e^{\delta + \pi |y|} \), consequently, \(\lim_{\delta \to 0} J = 0 \), when \(x < 1 \). Hence \(f_\gamma e^{-\zeta}e^{-z}\zeta = 2\sin(\pi z)(f_\gamma e^{-u}e^{-z}du)M \) for \(Re(1-z) > 0 \). Suppose \(\psi \) is the loop obtained from \(\gamma \) by tending \(\rho \) to the infinity, then \(f_\psi e^{\zeta}e^{-z}\zeta = 2\sin(\pi z)(f_\psi e^{-u}e^{-z}du)M = 2\sin(\pi z)\Gamma(1-z)M \), since \(\Gamma(z)\Gamma(1-z) = \pi \csc(\pi z) \), hence \(1/\Gamma(z) = (2\pi)^{-1}(f_\psi e^{\zeta}e^{-z}\zeta)M^* \). Since \(M \in \mathcal{I}_v \) with \(|M| = 1 \) is arbitrary, then this formula is true in \(\mathcal{A}_v \setminus Q \) with \(Re(1-z) > 0 \). By the complex holomorphic continuation this formula is true for all values of \(z \) in \(\mathbb{R} \oplus M\mathbb{R} \).

13. Corollary. Let \(M \) and \(\psi \) be as in Proposition 12, then \(\Gamma(z) = (2\sin(\pi z))^{-1}(f_\psi e^{\zeta}e^{-z}\zeta)M^* \) for each \(z \in \mathbb{R} \oplus M\mathbb{R} \setminus \mathbb{Z} \).

14. Definition. The Beta function \(B(p, q) \) of Cayley-Dickson numbers \(p, q \in \mathcal{A}_v, v \geq 2 \), is defined by the equation:

\[B(p, q) := \int_0^1 \zeta^{p-1}(1-\zeta)q^{-1}d\zeta, \]

whenever this integral (Eulerian of the first kind) converges, where \(\zeta^{p-1} := e^{(p-1)ln(\zeta)} \) and the logarithm has its principal value. This equation defines \(B(p, q) \) for each \(Re(p) > 0 \) and \(Re(q) > 0 \). For others values of \(p \) and \(q \) it is defined by the complex holomorphic continuation by \(p \) and \(q \) separately and subsequently in each complex plane \(\mathbb{R} \oplus M\mathbb{R} \) and \(\mathbb{R} \oplus S\mathbb{R} \), \(M, S \in \mathcal{I}_v \), \(|M| = 1 \) and \(|S| = 1 \).

15. Proposition. Let \(p, q \in \mathcal{A}_v, v \geq 2 \), such that the minimal subalgebra \(\mathcal{Y}_{p,q} \) containing \(p \) and \(q \) has embedding into \(\mathbb{K} \), then

\[B(p, q) - B(p, p_0 - q') = B(p_0 - p', q) + B(p_0 - p', q_0 - q')/(q')^2q_2/2, \]

where \(p_0 := Re(p) \), \(p' := p - Re(p) \), \(q_2 \perp p' \), \(q_1 \parallel p' \) relative to the scalar product \((z, \eta) := Re(\eta z^*) \), \(q' = q_1 + q_2 \).

Proof. Making the substitution \(\eta \mapsto 1 - \eta \) of the variable, we get

\[\int_0^1 \eta^{q-1}(1-\eta)^{p-1}d\eta = \int_0^1 (1-\eta)^{q-1}p^{p-1}d\eta, \]

but in general \(p \) and \(q \) do not commute. In view of Formulas (3.2, 3.3) [13] the commutator of two terms in the integral is:

\[[t^{p-1}, (1-t)^{q-1}] = 2t^{p-1}(1-t)^{q-1}[(\sin |p'lnt|)/|p'lnt|)(\sin |q'lnt|)(1-1)]/|q'lnt|1-1. \]
\(t \rangle \rangle p' \text{Int}(q'_2 \text{ln}(1 - t)). \)

On the other hand, \(((\sin |M|)/|M|)M = [e^M - e^{-M}]/2\) for each \(M \in \mathcal{I}_v \), hence

\[
\int_0^1 [t^{p-1}, (1-t)^{q-1}] dt = (\int_0^1 t^{p-1}(1-t)^{q-1} \frac{t^{1-p} - t^{1-q}}{1-t} \frac{(1-t)^q - (1-t)^p}{1-t} dt) (q')^* q'_2 / 2
\]

where \(K \) is alternative and

\[
B(p, q) - B(p, q_0 - q') - B(p_0 - p', q) + B(p_0 - p', q_0 - q') (q')^* q'_2 / 2, \]

since \(K \) is alternative and

\[
p' q'_2' = p'(q'q'^*) q'_2 = p'(q'q'^*) q'_2. \]

16. **Remark.** Let \(G \) be a classical Lie group over \(\mathbb{R} \) and \(g = T_e G \) be its Lie algebra (finite dimensional over \(\mathbb{R} \)). Suppose that \(e : V \to U \) is the exponential mapping of the neighbourhood \(V \) of zero in \(g \) into a neighbourhood \(U \) of the unit element \(e \in G \). \(\ln : U \to V \) is the logarithmic mapping. Then, \(w = \ln(e^u \circ e^v) \), \(w = w(u, v) \), is given by the Campbell-Hausdorff formula in terms of the adjoint representation \((ad \ u)(v) := [u, v]::

\[
w = \sum_{n=1}^{\infty} n^{-1} \sum_{r+s=n, r \geq 0, s \geq 0} (w'_{r,s} + w''_{r,s}), \text{ where } w'_{r,s} = \sum_{m=1}^{\infty} (-1)^{m-1} m^{-1} \sum_{s} ^{\star} ((\prod_{i=1}^{m-1} (ad \ u))^{r_i} (ad \ v)^{s_i} (r_i!)^{-1}(s_i!)^{-1}) (ad \ u)^{m} (r_m!)^{-1}(v),
\]

\[
w''_{r,s} = \sum_{m=1}^{\infty} (-1)^{m-1} m^{-1} \sum_{s} ^{**} ((\prod_{i=1}^{m-1} (ad \ u))^{r_i} (ad \ v)^{s_i} (r_i!)^{-1}(s_i!)^{-1})(u),
\]

\(\sum' \) means the sum by \(r_1 + \ldots + r_m = r, s_1 + \ldots + s_{m-1} = s - 1, r_1 + s_1 \geq 1, \ldots, r_{m-1} + s_{m-1} \geq 1 \), \(\sum'' \) means the sum by \(r_1 + \ldots + r_{m-1} = r - 1, s_1 + \ldots + s_{m-1} = s, r_1 + s_1 \geq 1, \ldots, r_{m-1} + s_{m-1} \geq 1 \). In particular, this formula can be applied to the multiplicative group \(G = \mathbf{H} \setminus \{0\} \) with \(U = G \) and \(V = q \), since each quaternion can be represented as a \(2 \times 2 \) complex matrix, where generators of \(\mathbf{H} \) are Pauli matrices [2].

17. **Theorem.** Let \(p, q \in \mathbb{A}_v \), \(v \geq 2 \), such that the minimal subalgebra \(\mathcal{Y}_{p,q} \) generated by \(p \) and \(q \) has embedding into \(\mathbf{H} \), then \(\Gamma(p) \Gamma(q) = \Gamma(w(p, q))B(p, q) - \{ [\Gamma(w(p, q)) - \Gamma(w(p, q_0 - q'))]q'^* q'_2 [B(p, q) - B(p_0 - p', q)]/2 \}

where \(p_0 := Re(p), p' := p - Re(p), q'_2 \perp p', q'_1 \parallel p' \) relative to the scalar product \((z, \eta) := Re(z \eta^*)\), \(q' = q'_1 + q'_2 \), \(w(p, q) \) is given in Remark 16.

Proof. Let \(S_R := \{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq R, 0 \leq y \leq R\} \). Then

\[
\Gamma(p) \Gamma(q) = \int_0^R \int_0^R e^{-x-y} x^p y^q dxdy = \lim_{R \to \infty} \int_0^R \int_0^R e^{-x-y} x^p y^q dxdy = \lim_{R \to \infty} \int_{S_R} e^{-x-y} x^p y^q dxdy
\]
in accordance with the Fubini theorem, since each function \(f : U \to \mathbf{H} \) has
the form \(f(z) = f_1(z) + f_2(z)i + f_3(z)j + f_4(z)k \) for each \(z \) in a domain \(U \) in \(\mathbb{H} \), \(f_1, f_2, f_3, f_4 \) are real-valued functions, \(\{1, i, j, k\} \) are generators of \(\mathbb{H} \).

Consider a triangle \(T_R := \{(x, y) \in \mathbb{R}^2 : 0 \leq x, 0 \leq y, x + y \leq R\} \) and put
\[
f(x, y) := e^{-x-y}x^{p-1}y^{q-1},
\]
where \(p, q \in \mathbb{A} \) are marked, then
\[
\int \int_{S_R} f(x, y) \, dx \, dy - \int \int_{S_R} f(x, y) \, dx \, dy \leq \int \int_{S_R \setminus T_R} f(x, y) \, dx \, dy.
\]
We have
\[
\lim_{R \to \infty} \int \int_{S_R} |f(x, y)| \, dx \, dy = \Gamma(p_0)\Gamma(q_0),
\]
hence
\[
\lim_{R \to \infty} \int \int_{S_R \setminus S_{R/2}} |f(x, y)| \, dx \, dy = 0.
\]
Therefore,
\[
\Gamma(p)\Gamma(q) = \lim_{R \to \infty} \int \int_{T_R} e^{-x-y}x^{p-1}y^{q-1} \, dx \, dy.
\]
The substitution \(x + y = \xi, y = \xi \eta \) and application of the Fubini theorem gives
\[
\Gamma(p)\Gamma(q) = \int_0^\infty \int_0^1 e^{-\xi \eta p} (1 - \eta)^{p-1} \eta^{q-1} \, d\xi \, d\eta,
\]
since \(H \) is associative, \(\xi^{p-1} \) commutes with \((1 - \eta)^{p-1}, \xi^{q-1} \) commutes with \(\eta^{q-1} \).
Therefore,
\[
\Gamma(p)\Gamma(q) = \Gamma(w(p, q))B(p, q) + \int_0^\infty \int_0^1 e^{-\xi \eta p}[(1 - \eta)^{p-1}, \xi^{q-1}] \eta^{q-1} \, d\xi \, d\eta.
\]
Let \(M \) and \(N \) be in \(\mathbb{I}_v \), then \(e^Ne^M = (\cos |M|)e^N + [(\sin |N|)/|N|]Me^{N_1 - N_2} \),
where \(M \perp N_2, M \parallel N_1 \) relative to the scalar product \((z, \eta) := Re(z\eta^*)\),
\(N_1, N_2 \in \mathbb{I}_v, N = N_1 + N_2 \) (see Formulas (3.2, 3.3) [13]). Therefore,
\[
\int_0^\infty \int_0^1 e^{-\xi \eta p}[(1 - \eta)^{p-1}, \xi^{q-1}] \eta^{q-1} \, d\xi \, d\eta = \\
- \int_0^\infty \int_0^1 e^{-\xi \eta p}[(\xi^{q-1} - \xi^{q_0 - q'}) (q^* q') [[(1 - \eta)^{p-1} - (1 - \eta)^{p_0 - p'} - (1 - \eta)^{p_0 - p'} - 1] \eta^{q-1} \, d\xi \, d\eta/2.
\]
18. **Note.** Proposition 15 and Theorem 17 show differences in identities for Beta and Gamma functions between commutative case of \(C \) and noncommutative cases of \(\mathbb{A}_v, v \geq 2, \) and \(H \) particularly. Certainly, in the particular case if \(\Upsilon_{p,q} \) has embedding into \(C \), then \(q^* q' = 0 \) and Proposition 15 and Theorem 17 give classical results, but for general \(p \) and \(q \) the subalgebra \(\Upsilon_{p,q} \) can have no any embedding into \(C \).
References

[1] J.C. Baez. "The octonions". Bull. Amer. Mathem. Soc. **39**: 2 (2002), 145-205.

[2] N. Bourbaki. "Groupes et algèbres de Lie". Fasc. XXVI, XXXVII. Chap. I-III (Herman: Paris, 1971, 1972).

[3] E.T. Copson. "An introduction to the theory of functions of a complex variable" (Oxford Univ. Press, Ely House: London, 1972).

[4] G. Emch. "Mécanique quantique quaternionienne et Relativité restreinte". Helv. Phys. Acta **36**, 739-788 (1963).

[5] R. Engelking. "General topology" (Heldermann: Berlin, 1989).

[6] F. Gürsey, C.-H. Tze. "On the role of division, Jordan and related algebras in particle physics" (World Scientific Publ. Co.: Singapore, 1996).

[7] W.R. Hamilton. "Selected papers. Optics. Dynamics. Quaternions" (Nauka: Moscow, 1994).

[8] M. Heins. "Complex function theory" (Acad. Press: New York, 1968).

[9] I.L. Kantor, A.S. Solodovnikov. "Hypercomplex numbers" (Berlin: Springer, 1989).

[10] A.G. Kurosh. "Lectures on general algebra" (Moscow: Nauka, 1973).

[11] H.B. Lawson, M.-L. Michelson. "Spin geometry" (Princeton: Princ. Univ. Press, 1989).

[12] S.V. Lüdkovsky, F. van Oystaeyen. "Differentiable functions of quaternion variables". Bull. Sci. Math. (Paris). Ser. 2. **127** (2003), 755-796.

[13] S.V. Lüdkovsky, F. van Oystaeyen. "Differentiable functions of Cayley-Dickson numbers". Los Alam. Nat. Lab. Preprint **math.CV/0405471** (May 2004), 62 pages.

[14] H. Rothe. "Systeme Geometrischer Analyse" in: "Encyklopädie der Mathematischen Wissenschaften. Band 3. Geometrie", 1277-1423 (Leipzig: Teubner, 1914-1931).
[15] J.P. Ward. "Quaternions and Cayley numbers". Ser. Math. and its Applic. 403 (Dordrecht: Kluwer, 1997).

Address: Sergey V. Ludkovsky, Mathematical Department, TW-WISK, Brussels University, V.U.B., Pleinlaan 2, Brussels 1050, Belgium.

Acknowledgment. The author thanks the Flemish Science Foundation for support through the Noncommutative Geometry from Algebra to Physics project.