Clinical Manifestations and Diagnosis of Axial Spondyloarthritis

Jessica A. Walsh, MD* and Marina Magrey, MD†

BACKGROUND: Axial spondyloarthritis (axSpA) is a chronic, rheumatic disease characterized by inflammation of the sacroiliac joint, spine, and entheses. Axial spondyloarthritis affects up to 1.4% of adults in the United States and is associated with decreased quality of life, increased mortality, and substantial health care–related costs, imposing a high burden on patients, their caregivers, and society.

SUMMARY OF WORK: Diagnosing axSpA can be difficult. In this review, we seek to help rheumatologists in recognizing and diagnosing axSpA.

MAJOR CONCLUSIONS: A discussion of challenges associated with diagnosis is presented, including use and interpretation of imaging, reasons for diagnostic delays, differences in disease presentation by sex, and differential diagnoses of axSpA.

FUTURE RESEARCH DIRECTIONS: The early diagnosis of axSpA and advances in available therapeutic options have improved patient care and disease management, but delays in diagnosis and treatment remain common. Additional research and education are critical for recognizing diverse axSpA presentations and optimizing management early in the course of disease.

KEY WORDS: ankylosing spondylitis, axial spondyloarthritis, diagnosis, inflammatory back pain, primary care physicians

Spondyloarthritis (SpA) encompasses a group of inflammatory diseases that may be referred to as ankylosing spondylitis (AS), reactive arthritis, psoriatic arthritis, juvenile SpA, SpA associated with inflammatory bowel disease, undifferentiated SpA, peripheral SpA, axial SpA (axSpA), nonradiographic axSpA (nr-axSpA), or radiographic axSpA (r-axSpA). Spondyloarthritis with predominantly axial or peripheral involvement is termed axSpA (including nonradiographic and radiographic axSpA) or peripheral SpA, respectively. Axial SpA is a chronic disease that mainly involves the sacroiliac joints (SIJs) and spine. The National Health and Nutrition Examination Survey conducted in 2009–2010 estimated that the prevalence of axSpA ranges from 0.9% to 1.4% in the adult population in the United States. However, the true prevalence is unknown because of the significant delay in diagnosis, underrecognition of the disease, and challenges regarding case ascertainment in epidemiological data sets.

Patients with axSpA commonly present with back pain that starts before 45 years of age. The characteristic features of the back pain include chronicity (>3 months), insidious onset, improvement with exercise, occurrence at night with improvement upon waking, and no improvement with rest (Fig. 1). Inflammatory back pain (IBP) criteria are important in screening for axSpA. The relatively high sensitivity of IBP (approximately 70%–95%) for axSpA among at-risk patients (back pain >3 months with onset age <45 years) renders it useful in axSpA screening. However, studies evaluating strategies for referral to a rheumatologist showed that only 17% to 33% of at-risk patients with IBP received an axSpA diagnosis, demonstrating that IBP criteria alone are not specific for diagnosis of axSpA.

The average symptom duration before diagnosis of axSpA has been reported to be as long as 13 years. The early diagnosis and subsequent treatment of axSpA may substantially decrease the burden of disease and increase quality of life; however, misdiagnoses, diagnostic delays, and underdiagnosis remain challenges. Additionally, sex differences have been described, with women experiencing longer delays in diagnosis, even though the age at disease onset is similar for men and women or even slightly earlier in women. In this narrative review, we seek to help rheumatologists in diagnosing axSpA. We also discuss current challenges with axSpA diagnosis, including use and interpretation of imaging, reasons for diagnostic delays, differences in disease presentation by sex, and differential diagnoses of axSpA.

CONCEPTS OF AXSPA AND COMMON DISEASE FEATURES

The Assessment of SpondyloArthritis international Society (ASAS) have developed classification criteria for axSpA, as well as peripheral SpA or SpA in general. The criteria for axSpA are based on the presence of sacroiliitis on imaging or human leukocyte antigen B27 (HLA-B27) positivity in the presence of other SpA features (Fig. 2A). Axial SpA with radiographic sacroiliitis is designated as radiographic axSpA, which overlaps with the definition of AS based on the 1984 modified New York criteria (Fig. 2B). Radiographic sacroiliitis is the hallmark of AS; however, AS symptoms such as back pain, difficulty sleeping, and fatigue may be present for several years before radiographic changes are detected. Axial SpA without definitive radiographic sacroiliitis is termed nr-axSpA. Patients with nr-axSpA may or may not have sacroiliitis on magnetic resonance imaging (MRI).

The conceptual paradigm of axSpA has been evolving. Nonradiographic axSpA and radiographic axSpA may be considered as 2 distinct but overlapping subtypes of axSpA. Axial SpA may also be conceptualized along a continuum of structural damage, with nonradiographic disease representing little or no structural damage, and radiographic axSpA damage representing more advanced structural damage to the SIJs. Some patients initially classified with nr-axSpA will progress along the damage continuum to later fulfill criteria for radiographic axSpA.

From the *University of Utah School of Medicine and Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT; and †The MetroHealth System and School of Medicine, Case Western Reserve University, Cleveland, OH. J.A.W. received research funding from AbbVie and Pfizer and served as a consultant for Amgen, Lilly, Novartis, and UCB. M.M. received research funding from AbbVie for clinical trials, served as a consultant for Janssen, Novartis, and UCB.

Correspondence: Jessica A. Walsh, MD, University of Utah School of Medicine, 50 N Medical Dr, Salt Lake City, UT 84132. E-mail: jessica.walsh@hsc.utah.edu.

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ISSN: 1076-1608
DOI: 10.1097/RHU.0000000000001575

JCR: Journal of Clinical Rheumatology • Volume 27, Number 8, December 2021 www.jclinrheum.com | 5477
FIGURE 1. The 5 parameters that independently contribute to inflammatory back pain based on the ASAS criteria; inflammatory back pain requiring further investigation is usually indicated if 4 or more parameters are positive.10

FIGURE 2. A summary of the (A) 2009 ASAS classification criteria for axSpA in patients presenting with chronic back pain lasting 3 months or more and age at onset of younger than 45 years6,22 and (B) 1984 modified New York criteria for AS. The ASAS criteria account for patients with and without radiographic sacroiliitis. Furthermore, patients meeting both the ASAS and modified New York criteria are classified as having AS.6,24
The prevalence of inflammatory bowel disease (including Crohn disease and ulcerative colitis), psoriasis, or uveitis in axSpA is an indicator of disease severity in axSpA and has been linked to worse physical function. Increase levels of acute-phase reactants are also included for conceptualizing the relative importance of various SpA features for detecting axSpA.

Diagnostic Considerations

Diagnostic algorithms have been designed to guide rheumatologists in assessing clinical SpA features, imaging characteristics, and laboratory results. The algorithm shown in Figure 3 was tested in populations with chronic back pain (lasting >3 months) at onset age of younger than 45 years; using diagnosis by a rheumatologist as the external standard, the ASAS modifications of the original Berlin algorithm had sensitivities of 77.9% to 79.7% and specificities of 78.3% to 80.4%. Although the overall performance of this algorithm was favorable, approximately 20% of patients with axSpA were misdiagnosed as not having axSpA. For patients with a high suspicion of axSpA, despite a negative diagnosis per the algorithm, additional imaging may be considered. For example, SIJ MRI may be appropriate in some patients who are x-ray and HLA-B27 negative but have 2 to 3 SpA features, and spondylitis may be considered in symptomatic psoriatic patients without sacroiliitis. Symptom onset later in life would be unusual, although some patients with axSpA may present with loss of spinal mobility rather than back pain as the primary symptom, and more research about onset age is required for axSpA subsets such as axPsA.

Clinical SpA Feature Evaluation: History and Physical Examination

Clinicians should inquire about SpA features (e.g., IBP, peripheral joint inflammation, enthesitis, uveitis, or response to non-steroidal anti-inflammatory drugs [NSAIDs]) and arrange for referrals to collaborating specialists, when appropriate, for diagnostic confirmation of suspected uveitis, inflammatory bowel disease, and psoriasis. Family histories of first- and second-degree relatives with axSpA, psoriatic arthritis, inflammatory bowel disease, and uveitis are also useful in assessing axSpA risk. A physical examination of patients with axSpA may be completely remarkable, but clinicians should examine patients for SpA features (e.g., tender and swollen joints, enthesitis, dactylitis, cutaneous psoriasis, psoriatic nail changes) and alternative explanations of back pain (e.g., disk disease, scoliosis). Measurements of spinal mobility, such as the Schober test, are highly variable in healthy individuals and may not be particularly helpful in the diagnosis of axSpA. Physical examinations for sacroiliitis have low sensitivity and specificity.

Laboratory Tests

Although no laboratory tests are diagnostic of axSpA, testing for HLA-B27 may be useful in diagnostic assessments (Table 1). Human leukocyte antigen B27 positivity occurs in 70% to 90% of White patients with AxSpA but in less than 10% of the general population; however, the prevalence of AS in the White population with HLA-B27 positivity is approximately only 5%. Studies in patients with nr-axSpA have reported the prevalence with axPsA have spondylitis without sacroiliitis, whereas sacroiliitis is believed to occur before or in conjunction with spondylitis in patients with AS. Patients with axPsA have lower rates of HLA-B27 positivity, particularly patients with manifestations that differ from classic AS-like presentations. The relative impact of various axPsA subphenotypes is largely unknown, but the burden of axPsA (all subphenotypes) has been reported to be comparable to that of AS with respect to disease activity, function, and quality of life. Although additional research is required to better understand the spectrum of axPsA, improved awareness of the diversity of axPsA may influence recognition of axial involvement, particularly in patients who lack classic IBP or involvement of the SIJs.
of HLA-B27 positivity at 74% to 86%, but these estimates should be interpreted cautiously, because HLA-B27 positivity was used as a criterion for identifying these patients.29 Hence, HLA-B27 positivity alone is not diagnostic for axSpA, and a lack of a positive HLA-B27 test does not exclude the diagnosis.67 The diagnostic utility of markers of systemic inflammation, such as elevated erythrocyte sedimentation rate or C-reactive protein (CRP), is low; less than 50% of patients with AS present with elevated inflammatory markers at initial presentation, and many other conditions also cause elevations in these inflammatory markers.68

Imaging

For radiographic imaging of patients with chronic low back pain and suspected axSpA, a single, anteroposterior view of the pelvis or a Ferguson view is commonly taken to evaluate for sacroilitis. Oblique views may arguably provide additional useful information but require slightly higher radiation levels. Changes suggestive of sacroilitis include sclerosis, erosions, changes in joint width, and ankylosis. Interpretation of sacroilitis on radiographs can be challenging, and agreement among expert readers is lower when changes are limited to sclerosis or small, localized erosions without changes in joint width or ankylosis. If the pelvis radiograph of the SIJ is unremarkable or equivocal for sacroilitis and there is ongoing clinical suspicion for axSpA, a pelvic MRI should be considered. In contrast to plain radiographs or computed tomography (CT), MRI can detect active inflammatory lesions, regardless of structural lesions, and is more sensitive for detecting active sacroilitis.59,60 Currently, the recommended MRI studies include axial and semicoronal sections of the SIJs, T1 sequence (for structural evaluation), and a water-sensitive sequence (to detect inflammation), such as short tau inversion recovery (STIR) or T2-weighted sequence with fat suppression.85

The ASAS definition of active sacroilitis was updated in 2016 to state that active inflammatory lesions of the SIJs should appear as osteitis or bone marrow edema on STIR or T2-weighted images with fat suppression and be clearly present in typical locations, such as the subchondral or periartricular bone marrow.70 A positive MRI should show 2 or more bone marrow edema lesions on the same slice or 1 lesion in the same quadrant on 2 or more consecutive slices.70 Structural changes may be seen on T1 images, including erosions, partial or complete ankylosis of the SIJs, sclerosis, and fat metaplasia of the subchondral bone.71

Although the site of pain is associated with the site of MRI inflammation overall, a limitation of SIJ MRI is that the axial site with the most bone marrow edema may not be the site with the most pain72; thus, clinical activity may not consistently correlate with MRI activity.73 Also, MRI activity may change over time.74 Magnetic resonance imaging reading and interpretation by radiologists and/or rheumatologists are inherently subjective and can vary even among experienced evaluators.75 No objective reference could be established during the development of the ASAS criteria.76–78 The presence of bone marrow edema on MRI is not specific for axSpA, as it has been observed in patients with mechanical back pain and healthy volunteers.79,80 Bone marrow edema fulfilling ASAS criteria was observed among recreational runners, elite ice hockey players, and military recruits before and 6 weeks after intensive physical training82,83 and in women with postpartum back pain.84 In the SPondyloArthritis Caught Early (SPACE) cohort, a study examining patients with unexplained chronic back pain, 11 of 47 healthy volunteers (23.4%) and 43 of 47 patients with axSpA (91.5%) had MRI lesions consistent with sacroilitis.84 Additional research with MRI and other imaging techniques, such as low-dose CT, may lead to improvements in the diagnostic assessment of axSpA. Low-dose CT shows promise for the evaluation of SIJs, because it demonstrates subtle bony changes better than radiographs, and the radiation risk is low (albeit slightly higher than with radiographs). At the time of writing, the role of low-dose CT in clinical practice remains unclear because of limited availability and uncertain cost.

Spinal imaging is not recommended for axSpA diagnosis in most cases, but spine images may identify alternative causes of back pain, provide prognostic information, and help identify subsets of patients with less-typical axial presentations (e.g., axPsA). If a spinal MRI is deemed appropriate, the sequences should include T1 and water-sensitive sequences (STIR or T2 fat suppressed).

Underdiagnosis and Diagnostic Delay

Early diagnosis of axSpA is important to minimize disease burden. Importantly, disease activity as measured by the Bath Ankylosing Spondylitis Disease Activity Index and patient-reported pain is high in the early stages of the disease, independent of radiographic changes.85 Treatment improves symptoms and physical function,86 and patients with AS with a shorter disease duration have been shown to have better response rates than patients with a longer disease duration.87 Thus, delayed diagnosis and treatment contribute to the substantial burden of disease on patients.88
Although the magnitude of underdiagnosis in axSpA is difficult to quantify, the gap between axSpA prevalence estimates from epidemiological screening research and health care record data suggests that underdiagnosis is common. In a National Health and Nutrition Examination Survey, adults representative of the general population of the United States were prospectively screened for axSpA with face-to-face evaluations, and the axSpA prevalence was estimated at 0.9% to 1.4%. In contrast, chart review studies reported an axSpA prevalence ranging from 0.2% to 0.7%. This difference in prevalence estimates suggests that axSpA is widely underdiagnosed and underaddressed in our current health care systems. Diagnostic delays are also common. Feldtkeller and colleagues published a seminal report in 2003 describing an average diagnosis delay from symptom onset of 8.5 to 11.4 years in patients with AS, with a longer delay in patients lacking HLA-B27 positivity. More recently, the estimated delay between AS symptom onset and diagnosis in the United States has been reported to be 14 years.

Reasons for underdiagnosis and diagnostic delays are multifactorial. Patients may be slow to seek care because of the insidious, intermittent nature of symptoms or because of logistical considerations that disproportionately affect young adults (e.g., inadequate insurance, limited flexibility with work schedules). Also, providers may not consider axSpA in patients with back pain, because a relatively small percentage of patients with back pain has axSpA. Additionally, the absence of remarkable physical findings or unique biomarkers and the frequent lack of extra-articular manifestations make early diagnosis challenging. Strategies for screening and referring patients with suspected axSpA to a rheumatologist may be helpful, but they are not practical for many clinical settings in the United States and are infrequently implemented. Thus, processes for identifying and prioritizing appropriate patients for rheumatologist evaluation are often inconsistent or inefficient.

Prior to receiving their axSpA diagnoses, patients often consult with various types of health care providers for unrecognized axSpA symptoms, thus experiencing unnecessary diagnostic workups and interventions that may delay appropriate evaluations and referrals. Interventions to alleviate pain symptoms may also delay diagnosis. Importantly, limited accessibility to a rheumatologist leads to diagnostic delays in many communities.

Sex Differences in AxSpA Diagnosis

Women experience longer delays in receiving a diagnosis of axSpA, even though studies show that the age at onset does not vary between men and women or that women have a slightly younger age at onset of AS; this may reflect erroneous assumptions that women rarely have AS and insufficient awareness of the differences in disease presentations between women and men. Specifically, enthesitis, patient-reported disease activity, and quality of life were significantly worse in women than in men with AS in several studies. In a study, women reported more pelvic, heel, and widespread pain than men during the course of the disease. Women may also be more likely than men to receive misdiagnoses of fibromyalgia and psychosomatic disorders.

Women and men also differ with regard to structural changes in the spine and SIJs. Male sex has been associated with more severe radiological progression. Men had more limited chest expansion and increased occiput-to-wall distance than women. In a 5-year, prospective study of spinal radiographic progression in AS, elevated CRP levels and increased smoking were reported as predictors of structural progression in men but not in women.

Much is to be learned about the reasons that axSpA differs between men and women. Several studies have demonstrated that women and men with AS have different gene expression and immunologic processes. Despite equivalent interferon-γ levels among men and women with AS, higher levels of Th17 cells and cellular responses were observed in men. Additionally, levels of inflammatory molecules, such as vascular endothelial growth factor, interleukin 18, and tumor necrosis factor α, were significantly higher in men with AS than in women in a study, which led investigators to believe that men may more frequently experience irregular bone metabolism, leading to osteoporosis and syndesmophyte formation. Genetic studies reported a modest to strong association of the ANKH haplotype with AS, with more frequent ANKH variants on the 3’ end in men and 5’ end in women. The murine homolog of the ANKH protein, Ank, regulates normal osteogenesis; mutant mice expressing a premature stop codon at the 3’ end of the Ank gene develop severe ankylosis. Understanding sex differences in axSpA is important for decreasing diagnostic delays and misdiagnoses, particularly among women.

Differential Diagnosis

The differential diagnosis of axSpA is broad; details are discussed below, and a summary is provided in Table 2. Diseases that may be particularly challenging to differentiate from axSpA include causes of chronic back pain beginning in adolescence or early adulthood and diseases that mimic axSpA changes on imaging of the spine or SIJs.

Causes of Chronic Back Pain With Onset in Adolescence or Early Adulthood

Degenerative Changes

Spinal degenerative changes are common in young adults. In a study of 20- to 22-year-old patients, 47% had degenerative changes on lumbar MRI, and 52% reported low back pain. In a population of patients with low back pain younger than 40 years, 38% had degenerative disk changes, including 13% with vertebral end plate spinal changes. Differentiating degenerative changes from axSpA changes can be challenging. For instance, degenerative changes on end plates may be mistaken for inflammatory lesions, as both are associated with bone marrow edema. In Dutch and French early axSpA study populations, the prevalence of spinal degenerative changes on MRI was high and similar in patients with and without axSpA. Despite the high prevalence of degenerative changes and overlapping features of inflammatory and degenerative changes on MRI of the spine, several features can be used to distinguish between degenerative and inflammatory spine disease, including the nature of the back pain, MRI findings (e.g., location of bone marrow edema in the anterior corners of the vertebrae, fatty lesions at the anterior vertebral corners), sacroiliitis, and extra-axial inflammatory arthritis features (e.g., peripheral arthritis, enthesitis, uveitis, HLA-B27 positivity).

Fibromyalgia

Patients with fibromyalgia experience widespread pain, including chronic back pain and tenderness at multiple sites that may mimic enthesitis. However, back pain with fibromyalgia is usually mechanical in nature, rather than inflammatory. In contrast to patients with axSpA, those with fibromyalgia...
TABLE 2. Summary of the Differential Diagnosis of AxSpA

Chronic Back Pain With Onset in Adolescence or Early Adulthood	Distinguishing Features
Degenerative disk disease114–119	• MBP exacerbated by flexion ± radicular pain radiating below the knee
	• Risk factors: obesity, genetics, repetitive microtrauma, other injury
	• Imaging: disk space narrowing. Disk herniation may be visible on MRI
Fibromyalgia120–123	• MBP with widespread pain in other areas of the body, fatigue, and sleep disturbances.
	• Minimal relief with NSAIDs
	• Risk factors: female sex, obesity, ± adverse childhood experiences
	• Imaging: no evidence of inflammatory disease or other etiology
Spondylolysis and spondylolisthesis124–129	• MBP exacerbated by hyperextension that may extend into buttocks or posterior thighs
	• Risk factors: activities with repetitive flexion and extension of the lower back (gymnastics, football, ice skating, weightlifting, etc.)
	• Imaging: with spondylolysis, separation or fracture of the pars interarticularis (pars defect). With bilateral pars defects, the injured vertebra may be shifted forward relative to the vertebra directly below it (spondylolisthesis)
Scheuermann disease130–132	• MBP occurring in early adolescence without precipitating trauma
	• Risk factors: male sex, more severe with tall height
	• Imaging: vertebral wedging (wider posterior vs. anterior angle) and possible Schmorl nodes (protrusion of disk material into the vertebrae)
Astrocytomas133,134	• Gradual or subacute MBP onset, often with subsequent development of sensory or motor dysfunction
	• Risk factors: genetics, ionizing radiation
	• Imaging: asymmetrical spinal cord expansion on MRI

Mimics of AxSpA on Imaging

Osteitis condensans ili135–138	• Asymptomatic or nonradicular low back pain that can extend to the posterior thighs
	• Risk factors: multiparity, other mechanical stress
	• Imaging: SIJ sclerosis of the iliac side without erosions or fusion
DISH139–145	• Asymptomatic or MBP
	• Risk factors: male gender, age >50 y, diabetes, obesity
	• Imaging: flowing bone along the anterolateral vertebral bodies and across the disk space in the thoracic spine with or without lumbar and cervical spine involvement. A lucent area may be seen between the anterior longitudinal ligament and midportion of the vertebral body. SIJs are often unaffected, but the superior aspect of the SIJ may appear fused. Peripheral calcific enthesopathy may occur
Infectious sacroiliitis146–151	• Subacute onset of unilateral buttock or back pain with elevated CRP. Fever is usually absent or low grade
	• Risk factors: IV drug use, pelvic trauma, infectious endocarditis, immunosuppression, cutaneous or genitourinary infection
	• Imaging: on MRI, unilateral periarticular muscle edema, thick capsulitis, and extracapsular fluid collection may be useful in differentiating infectious sacroiliitis from axSpA
Whipple disease152–161	• Large joint migratory arthralgias, abdominal pain, weight loss, and diarrhea, with or without IBP
	• Risk factors: occupational exposure to soil or animals
	• Imaging: sacroiliitis and spondylitis indistinguishable from axSpA
Familial Mediterranean fever143,162–164	• Intermittent fevers, abdominal pain, large joint arthritis, enthesitis, IBP. Childhood or adolescent onset is typical, but may occur in adulthood
	• Risk factors: genetics (MEFV gene mutations); Turkish, Armenian, North African, Jewish, and Arab descent
	• Imaging: sacroiliitis indistinguishable from axSpA
Sarcoidosis149,165–170	• IBP
	• Risk factors: sacroiliitis may occur most frequently in sarcoidosis limited to the thorax (thoracic lymph nodes and lungs)
	• Imaging: sacroiliitis indistinguishable from axSpA
Spinal calcium pyrophosphate deposition disease171–173	• Periodic IBP with elevated inflammatory markers
	• Risk factors: widespread peripheral chondrocalcinosis
	• Imaging: linear calcium deposition in intervertebral disks, SIJs, and/or peripheral joints
Idiopathic hypoparathyroidism174–178	• Hypocalcemia presentation ± back pain
	• Risk factors: long-standing hypoparathyroidism
	• Imaging: syndesmophytes. SIJ usually not involved but subchondral bone resorption or sclerosis may occur

Continued next page
experience little or no pain relief with NSAIDs. Furthermore, the sites of maximal point tenderness with fibromyalgia are usually not located precisely at enthesal sites. Differentiation between fibromyalgia and axSpA can be challenging, particularly in patients without definitive imaging findings of axSpA. Fibromyalgia may co-occur with axSpA, with prevalence of fibromyalgia within populations of AS or axSpA ranging from 4% to 25%.

Spondylolysis and Spondylolisthesis

Among pediatric patients and young adults, spondylolysis manifests as a fracture of the posterior arch in the lower lumbar spine due to overuse (i.e., hyperextension observed in particular athletes), and spondylolisthesis refers to the anterior displacement of a vertebral body due to bilateral defects of the posterior arch. Spondylolysis may progress to spondylolisthesis. For imaging, MRI is usually preferred due to the lack of radiation exposure. Magnetic resonance imaging detection of a typical spondylolysis lesion requires an edema-sensitive sequence with a STIR or fat-saturated T2 image; a cortex-sensitive image with a T1 or non-fat-saturated T2 image; and axial, sagittal, and coronal views. Magnetic resonance imaging may reveal increased metabolic activity and the presence of a fracture, although further radiographic evaluation may be needed.

Scheuermann Disease

This condition of unknown etiology is characterized by uneven growth of the vertebrae with respect to the sagittal plane, with anterior compression of 5° or greater in 3 or more adjacent vertebral bodies and thoracic spine kyphosis greater than 40° or thoracolumbar spine kyphosis greater than 30°. Scheuermann disease usually presents in early adolescence and is associated with subacute pain without precipitating trauma. The pain improves with rest and is worse with activity and extension. Pain often improves with skeletal maturity in adulthood but long-term follow-up of adolescents with Scheuermann disease indicates an increased prevalence of back pain in adulthood. Standing lateral spine radiographs are required for diagnosis, and Schmorl nodes, with protrusion of disk material into the vertebrae, may be observed.

Primary Tumors of the Spine

Spinal tumors are rare but should be considered in adolescents and young adults with unexplained back pain. Astrocytomas represent the most common spinal cord tumors in both the pediatric and adult populations and typically present with gradual or subacute onset of regional back pain. Astrocytomas can be differentiated from axSpA by the noninflammatory nature of the back pain, sensory or motor dysfunction that may evolve over the course of months or years, and MRI lesions that typically appear as an asymmetrical spinal cord expansion.

Diseases With Axial Imaging Features That May Mimic axSpA

Osteitis Condensans Ilii

Osteitis condensans ili, characterized by benign sclerosis of the ilium adjacent to the SIJ, affects 0.9% to 2.5% of the general population. It is typically an incidental finding but it can cause nonradicular low back pain, especially in women who have given birth. No fusion or erosion is observed in the SIJ. Subchondral bone marrow edema may be present later in the disease stage.

Diffuse Idiopathic Skeletal Hyperostosis

Diffuse idiopathic skeletal hyperostosis (DISH) is characterized by flowing hyperostosis at 4 or more contiguous vertebral bodies and the calcification and ossification of soft tissues, principally ligaments and entheses. Diffuse idiopathic skeletal hyperostosis is mostly seen in men older than 50 years. In a Hungarian study among those older than 50 years, the prevalence of DISH was 4.9% and 1.4% in men and women, respectively. Its etiology is unknown but has been linked to metabolic disorders, such as obesity and insulin-dependent diabetes mellitus. Although most patients are asymptomatic, some experience chronic back pain, stiffness, and limited mobility of the spine. This condition may affect the SIJ, leading to a suspicion of sacroiliitis, as seen in AS; however, several distinguishing factors may delineate the 2 diseases. Diffuse idiopathic skeletal hyperostosis tends to involve the superior portion of the SIJ, whereas AS involves the inferior portion. Erosions may be seen in the SIJs of patients with AS, but not in patients with DISH. Diffuse idiopathic skeletal hyperostosis tends to occur on the right side of the spine, and radiolucencies between the calcified anterior
longitudinal ligament and the anterior vertebral body may be seen in DISH.145 Ankylosing spondylitis and DISH can occur concurrently, although this co-occurrence is infrequently observed.139

Infectious Sacroilitis

Accounting for up to 4\% of bone and joint infections,146,147 infectious sacroilitis is usually seen in children and younger patients.146 The time to diagnosis of infectious sacroilitis may be delayed (average of \approx45 days) because of a lack of specific symptoms; patients usually present with unilateral pain and elevated CRP but do not always have fever.148 *Staphylococcus aureus* is the primary etiologic agent responsible for this infection; *Streptococcus, Escherichia coli,* and *Salmonella* have also been recovered from affected patients.147,148 The SJ is the most commonly reported ostearticular space for infections with *Brucella,* evidenced by its recovery from synovial fluid.149

Musculoskeletal symptoms occurring in infectious sacroilitis are not easily distinguishable from other causes of sacroilitis.149 Radiographic changes initially show widespread erosions and subsequent bony repair, possibly involving more than the anterior-inferior synovium of the joint; radiographic findings are usually delayed by approximately 2 weeks. Although the findings are not specific, MRI is the imaging technique of choice and will demonstrate intra-articular fluid, bone marrow edema, and periarticular involvement, particularly during the earlier stage of the infection, whereas subchondral sclerosis, erosions, and ankylosis will be apparent in the later stages of the infection.150,151

Whipple Disease

A rare, bacterial infection caused by the gram-positive bacillus *Tropheryma whipplei,* Whipple disease is marked by the lack of inflammatory response to or cytotoxic effects from the infection, suggesting host immune deficiency or immune system downregulation by the bacteria.152–156 This condition is commonly characterized by peripheral joint symptoms, which are present in up to 80\% of patients.157,158 Inflammatory back pain, sacroilitis, and spondylitis may occur with Whipple disease. Many patients are initially misdiagnosed with enteropathic arthritis or other forms of seronegative inflammatory arthritis, with at least 50\% in 2 studies receiving immunomodulatory therapy, including tumor necrosis factor inhibition.159,160 A diagnosis of Whipple disease should be considered in patients presenting with the 4 principal manifestations of arthralgias, diarrhea, abdominal pain, and weight loss.161

Familial Mediterranean Fever

Patients with familial Mediterranean fever may have back pain, peripheral arthritis, enthesitis, and imaging changes typical of sacroilitis.162–164 Sacroilitis more commonly occurs in patients with familial Mediterranean fever with HLA-B27 positivity and/or M694V.143 A history of intermittent fevers and serositis may distinguish patients with familial Mediterranean fever from those with axSpA.143

Sarcoidosis

A systemic, chronic granulomatous disease, sarcoidosis commonly affects the skin, lungs, and musculoskeletal system;149 the prevalence of radiographic sarcoiditis in sarcoidosis ranges from 6\% to 14\%.165–167 Sacroilitie joint involvement in sarcoidosis often occurs with a history of IBP but may present in patients with mechanical back pain.149,168 Radiographic evidence of sarcoiditis in sarcoidosis may be similar to that of AS; a biopsy of the SJ may reveal noncaseating granuloma in the synovium, but SJ biopsy is usually unnecessary if a sarcoidosis diagnosis can be made via clinical presentation or biopsy of extra-articular tissue.169 Sacroilitis may occur most frequently in sarcoidosis limited to the thorax.170

Spinal Calcium Pyrophosphate Deposition Disease

Although deposition of calcium pyrophosphate dihydrate crystals into fibrocartilage usually occurs in peripheral joints, involvement of the cervical, thoracic, and lumbar spine has been documented.171 Patients may experience episodic IBP from acute sacroilitis with elevated inflammatory markers.172,173 Asymptomatic changes to the SJs that may resemble sacroilitis from AS may also occur.171,172 Linear calcium deposition in the SJs, intervertebral disks, and peripheral joints is useful in differentiating calcium pyrophosphate deposition disease from axSpA.171

Idiopathic Hypoparathyroidism

Patients with this condition present with various clinical manifestations, including morning stiffness, spinal pain, nail deformities, renal abnormalities, increased bone mineral density, and/or vertical syndesmophyte formation similar to axSpA.174,175 Syndesmophytes are associated with long-standing hypoparathyroidism. Sacroilitic joints are usually not involved, but there may be subchondral bone resorption of the SJ with minimal cartilage irregularities.174,176,177 Hypoparathyroidism should be suspected in patients with low serum total calcium or low ionized calcium levels, especially those with a personal or family history of autoimmune diseases.176,178

Behçet Disease

Behçet disease is marked by recurrent mucocutaneous ulcers, ocular inflammation, and peripheral inflammatory arthritis; enthesaer inflammation may also occur.179 Interestingly, an elevated prevalence of sacroilitis has been reported in patients with Behçet disease; however, the prevalence has been highly variable, likely due to interobserver variability, and has been more recently shown to be comparable to healthy controls.180–184 On imaging, SJ changes may be indistinguishable in patients with axSpA versus Behçet disease.185 Uveitis may occur with both axSpA and Behçet disease, but with axSpA, uveitis is typically limited to the anterior chamber of the eye, whereas uveitis with Behçet disease may also involve the posterior and intermediate ocular chambers.43,185,186 Like axSpA, arthritis in median and large joints is common in Behçet disease, occurring in approximately one-half of patients.186 Behçet disease differs from axSpA through a strong association with the HLA-B51 but not HLA-B27 gene.188

Hereditary Hypophosphatemic Rickets

X-linked hypophosphatemia, due to a mutation in the phosphate-regulating endopeptidase on the X chromosome (*Phex* gene), is primarily characterized by musculoskeletal anomalies among children and osteoarthritis and enthesealopathy among adults.189,190 In the late second or third decade of life, adults with hypophosphatemic rickets may experience new bone formation in the spine that resembles axSpA changes.190 In contrast to axSpA, patients with X-linked hypophosphataemia do not develop sacroilitis or inflammatory lesions in the spine, such as erosions or bone marrow edema.191

Ochronosis

Ochronosis is a manifestation of alkaptonuria, a rare, autosomal recessive disorder that causes blue-black pigmentation in skin, sclera, and other connective tissues.192,193 Spinal ochronosis,
a progressive condition, results from the deposition of the ochronotic pigment within articular cartilages, especially in the dorsolumbar spine, leading to decreased intervertebral disk spaces, disk calcification, and osteopenia; ankylosis may develop spontaneously later in the disease course that may mimic the spinal bony productive lesions of axSpA.194 In ochronosis, bamboo spine, annular ossification, joint erosion, and fusion of the SIJs do not occur.193,195

CONCLUSIONS

Over the past decade, the concept of axSpA has broadened to include AS and previously unrecognized axSpA without sacroiliitis on radiographs. This conceptual evolution has spurred research on the early detection and diagnosis of axSpA, revealing differences in disease presentation and severity between men and women, barriers to early diagnosis, and other axSpA-like conditions that may confound diagnosis. The early detection and diagnosis of axSpA, along with breakthroughs in available therapeutic options, have led to improvements in patient care and disease management, but delays in diagnosis and treatment remain common. Additional research and education are critical for recognizing diverse axSpA presentations and optimizing management early in the course of disease.

ACKNOWLEDGMENT

The authors thank Kheng Bekdache, PhD, and Eric Deutsch, PhD, CMPF of Health Interactions, Inc., for providing medical writing and editorial support, which was funded by Novartis Pharmaceuticals Corporation, East Hanover, NJ, in accordance with Good Publication Practice (GPP3) guidelines (http://www.gpp3.org/gpp3).

REFERENCES

1. Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68(Suppl 2):i1–i44.
2. Costantini F, Breban M, Garchon HJ. Genetics and functional genomics of spondyloarthritis. Front Immunol. 2018;9:2933.
3. Danne A, Deodhar A. Axial spondyloarthritis in the USA: diagnostic challenges and missed opportunities. Clin Rheumatol. 2019;38:625–634.
4. Revelle JD, Witter JP, Weisman MH. Prevalence of axial spondylarthropathy in the United States: estimates from a cross-sectional survey. Arthritis Care Res (Hoboken). 2012;64:905–910.
5. Revelle JD. Epidemiology of spondyloarthritis in North America. Am J Med Sci. 2011;341:284–286.
6. Rudwaleit M, van der Heijde D, Landewe R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondylarthropathy (part II): validation and final selection. Ann Rheum Dis. 2009;68:777–783.
7. Rudwaleit M, van der Heijde D, Khan MA, et al. How to diagnose axial spondylarthropathy early. Ann Rheum Dis. 2004;63:535–543.
8. Rudwaleit M, Feldtkeller E, Sieper J. Easy assessment of axial spondylarthropathy (early ankylosing spondylitis) at the bedside. Ann Rheum Dis. 2006;65:1251–1252.
9. Rudwaleit M, Sieper J. Referral strategies for early diagnosis of axial spondylarthropathy. Nat Rev Rheumatol. 2012;8:262–268.
10. Sieper J, van der Heijde D, Landewe R, et al. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis. 2009;68:784–788.
11. Sieper J, Srivivasan S, Zamani O, et al. Comparison of two referral strategies for diagnosis of axial spondylarthritis: the Recognising and Diagnosing Ankylosing Spondylitis Reliably (RADAR) study. Ann Rheum Dis. 2013;72:1621–1627.
12. Solmaz D, Akar S, Soyasal O, et al. Performance of different criteria sets for inflammatory back pain in patients with spondylarthropathies with and without radiographic sacroilitis. Clin Rheumatol. 2014;33:1475–1479.
13. Poddubnyy D, Callhoff J, Spiller I, et al. Diagnostic accuracy of inflammatory back pain for axial spondylarthropathy in rheumatological care. RMD Open. 2018;4:e000825.
14. Hermann J, Giessauf H, Schaffer G, et al. Early spondylarthropathy: usefulness of clinical screening. Rheumatology (Oxford). 2009;48:812–816.
15. Poddubnyy D, Vahldeik J, Spiller I, et al. Evaluation of 2 screening strategies for early identification of patients with axial spondylarthritis in primary care. J Rheumatol. 2011;38:2452–2460.
16. Deodhar A, Mittal M, Reilly P, et al. Ankylosing spondylitis diagnosis in US patients with back pain: identifying providers involved and factors associated with rheumatology referral delay. Clin Rheumatol. 2016;35:1769–1776.
17. Ogdie A, Nowell WB, Reynolds R, et al. Real-world patient experience on the path to diagnosis of ankylosing spondylitis. Rheumatol Ther. 2019;6:255–267.
18. Calin A, Elswood J, Rigg S, et al. Ankylosing spondylitis—an analytical review of 1500 patients: the changing pattern of disease. J Rheumatol. 1988;15:1234–1238.
19. Jovani V, Blasco-Blasco M, Ruiz-Cantero MT, et al. Understanding how the diagnostic delay of spondylarthropathy differs between women and men: a systematic review and metaanalysis. J Rheumatol. 2017;44:174–183.
20. Feldtkeller E, Bruckel J, Khan MA. Scientific contributions of ankylosing spondylitis patient advocacy groups. Curr Opin Rheumatol. 2000;12:239–247.
21. Feldtkeller E, Khan MA, van der Heijde D, et al. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int. 2003;23:61–66.
22. Rudwaleit M, Landewe R, van der Heijde D, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondylarthropathy (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann Rheum Dis. 2009;68:770–776.
23. Rudwaleit M, van der Heijde D, Landewe R, et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondylarthropathy and for spondylarthropathy in general. Ann Rheum Dis. 2011;70:25–31.
24. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–368.
25. Ostergaard M, Lambert RG. Imaging in ankylosing spondylitis. Ther Adv Musculoskelet Dis. 2012;4:301–311.
26. Maksymowych WP, Wichuk S, Dougados M, et al. MRI evidence of structural changes in the sacroiliac joints of patients with non-radiographic axial spondylarthropathy even in the absence of MRI inflammation. Arthritis Res Ther. 2017;19:126.
27. Deodhar A, Strand V, Kay J, et al. The term ‘non-radiographic axial spondylarthropathy’ is much more important to classify than to diagnose patients with axial spondylarthropathy. Ann Rheum Dis. 2016;75:791–794.
28. Kiltz U, Baraliakos X, Karakostas P, et al. Do patients with non-radiographic axial spondylarthropathy differ from patients with ankylosing spondylitis? Arthritis Care Res (Hoboken). 2012;64:1415–1422.
29. Sieper J, van der Heijde D. Review: nonradiographic axial spondylarthropathy: new definition of an old disease? Arthritis Rheum. 2013;65:543–551.
30. van der Heijde D, Ramiro S, Landewe R, et al. 2016 Update of the ASAS-EULAR management recommendations for axial spondyloarthritis. *Ann Rheum Dis*. 2017;76:978–991.

31. Dougdos M, Sepriano A, Molto A, et al. Sacroiliac radiographic progression in recent onset axial spondyloarthritis: the 5-year data of the DESIR cohort. *Ann Rheum Dis*. 2017;76:1823–1828.

32. Poddubnyy D, Rudwaleit M, Haibel H, et al. Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. *Ann Rheum Dis*. 2011;70:1369–1374.

33. Sampaio-Barros PD, Bortoluzzo AB, Conde RA, et al. Undifferentiated spondyloarthritis: a longterm followup. *J Rheumatol*. 2010;37:1195–1199.

34. Ruderman E, Strand V, Joshi A, et al. Spondyloarthritis epidemiology and burden phase 2 [SPEED 2] study: disease progression in axial spondyloarthritis (SpA). *Arthritis Rheum*. 2013;65:S1052–S1053.

35. Barkham N, Keen HI, Coates LC, et al. Clinical and imaging efficacy of infliximab in HLA-B27-positive patients with magnetic resonance imaging–determined early sacroiliitis. *Arthritis Rheum*. 2009;60:946–954.

36. Braun J, Baraliakos X, Kiltz U. Non-radiographic axial spondyloarthritis: a classification or a diagnosis? *Clin Exp Rheumatol*. 2016;34(1 Suppl 95):S5–S6.

37. Haibel H, Rudwaleit M, Listing J, et al. Efficacy of adalimumab in the 10-year follow-up of early inflammatory back pain in France: study design and baseline characteristics of the 708 recruited patients. *Ann Rheum Dis*. 2016;75:1368–1374.

38. Mease PJ, Heijde DV, Karki C, et al. Characterization of patients with ankylosing spondylitis and nonradiographic axial spondyloarthritis in the US-based Corrona Registry. *Arthritis Care Res (Hoboken)*. 2018;70:1661–1670.

39. Yu DT, van Tubergen A. Diagnosis and differential diagnosis of axial spondyloarthritis (ankylosing spondylitis and nonradiographic axial spondyloarthritis) in adults. In: Sieper J, editor. *Update* 2018. Waltham, MA: UpToDate; 2018. p. Available at: https://www.uptodate.com/contents/diagnosis-and-differential-diagnosis-of-axial-spondyloarthritis.

40. de Winter JJ, van Mens LIJ, van der Heijde D, et al. Prevalence of peripheral and extra-articular disease in ankylosing spondylitis versus non-radiographic axial spondyloarthritis: a meta-analysis. *Arthritis Res Ther*. 2016;18:196.

41. Dougdos M, d’Agostino MA, Benessiano J, et al. The DESIR cohort: a 10-year follow-up of early inflammatory back pain in France: study design and baseline characteristics of the 708 recruited patients. *Joint Bone Spine*. 2011;78:598–603.

42. Doedhar AA, Miceli-Richard C, Baraliakos X, et al. Incidence of uveitis in secukinumab-treated patients with ankylosing spondylitis: pooled data analysis from three phase 3 studies [published online April 30, 2020]. *ACR Open Rheumatol*. 2020;2:294–299.

43. Stohlwijk C, van Tubergen A, Castillo-Ortiz JD, et al. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. *Ann Rheum Dis*. 2015;74:65–73.

44. Zeboulon N, Dougdos M, Gossec L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review. *Ann Rheum Dis*. 2008;67:955–959.

45. Rudwaleit M, Rosenbaum JT, Landewe R, et al. Observed incidence of uveitis following certolizumab pegol treatment in patients with axial spondyloarthritis. *Arthritis Care Res (Hoboken)*. 2016;68:838–844.

46. Canoui-Poitrine F, Lekpu FK, Farrenq V, et al. Prevalence and factors associated with uveitis in spondyloarthritis patients in France: results from an observational survey. *Arthritis Care Res (Hoboken)*. 2012;64:919–924.

47. Cyphers H, Varkas G, Beeckman S, et al. Elevated calprotectin levels reveal bowel inflammation in spondyloarthritis. *Ann Rheum Dis*. 2016;75:1357–1362.

48. Van Praet L, Van den Bosch FE, Jacques P, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. *Ann Rheum Dis*. 2013;72:414–417.

49. Gilis E, Mortier C, Venken K, et al. The role of the microbiome in gut and joint inflammation in psoriatic arthritis and spondyloarthritis. *J Rheumatol*. 2018;94:36–39.

50. De Vos M, Mielenst H, Cuvelier C, et al. Long-term evolution of gut inflammation in patients with psoriatic spondyloarthritis. *Gastroenterology*. 1996;110:1696–1703.

51. Ritchlin CT. Therapies for psoriatic entheseopathy. A systematic review. *J Rheumatol*. 2006;33:1435–1438.

52. Ciurea A, Scherer A, Exer P, et al. Tumor necrosis factor alpha inhibition in radiographic and nonradiographic axial spondyloarthritis: results from a large observational cohort. *Arthritis Rheum*. 2013;65:3096–3106.

53. Vander Cruyssen B,Ribbens C,Boonen A,et al. The epidemiology of ankylosing spondylitis and the commencement of anti-TNF therapy in daily rheumatology practice. *Ann Rheum Dis*. 2007;66:1072–1077.

54. Yap KS, Ye JY, Li S, et al. Back pain in psoriatic arthritis: defining prevalence, characteristics and performance of inflammatory back pain criteria in psoriatic arthritis. *Ann Rheum Dis*. 2018;77:1573–1577.

55. Feld J, Chandran V, Haroon N, et al. Axial disease in psoriatic arthritis and ankylosing spondylitis: a critical comparison. *Nat Rev Rheumatol*. 2018;14:363–371.

56. Jodon DR,Sengupta R,Nightingale A, et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. *Ann Rheum Dis*. 2017;76:701–707.

57. Aydin SZ, Kucukaslan O, Kilic L, et al. Axial psoriatic arthritis: the impact of underdiagnosed disease on outcomes in real life. *Clin Rheumatol*. 2018;37:3443–3448.

58. Baraliakos X, Coates LC, Braun J. The involvement of the spine in psoriatic arthritis. *Clin Exp Rheumatol*. 2015;33(S Suppl 93):S31–S35.

59. Perez Alamino R, Maldonado Cocco JA, Critara G, et al. Differential features between primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease. *J Rheumatol*. 2011;38:1656–1660.

60. van den Berg R, de Hooge M, Rudwaleit M, et al. ASAS modification of the Berlin algorithm for diagnosing axial spondyloarthritis: results from the SPOndyloArthritis Caught Early (SPACE)-cohort and from the Assessment of SpondyloArthritis international Society (ASAS)-cohort. *Ann Rheum Dis*. 2013;72:1646–1653.

61. Poddubnyy D, van Tubergen A, Landewe R, et al. Assessment of SpondyloArthritis international Society (ASAS). Development of an ASAS-endorsed recommendation for the early referral of patients with a suspicion of axial spondyloarthritis. *Ann Rheum Dis*. 2015;74:1483–1487.

62. Marques ML, Ramiro S, Goupille P, et al. Measuring spinal mobility in early axial spondyloarthritis: does it matter? *Rheumatology (Oxford)*. 2019;58:1597–1606.

63. Slobodin G, Hussein H, Rosner I, et al. Sacroiliitis—early diagnosis is key. *J Inflamm Res*. 2018;11:339–344.

64. Bakland G, Nossent HC. Epidemiology of spondyloarthritis: a review. *Curr Rheumatol Rep*. 2013;15:351.

65. Stohlwijk C, Boonen A, van Tubergen A, et al. Epidemiology of spondyloarthritis. *Rheum Dis Clin North Am*. 2012;38:441–476.

66. Reveille JD, Weisman MH. The epidemiology of back pain, axial spondyloarthritis and HLA-B27 in the United States. *Am J Med Sci*. 2013;345:431–436.

67. Brown MA. Human leucocyte antigen-B27 and ankylosing spondylitis. *Intern Med J*. 2007;37:739–740.
102. Lubrano E, Perrotta FM, Manara M, et al. The sex influence on response to tumor necrosis factor-α inhibitors and remission in axial spondyloarthritis. *J Rheumatol*. 2018;45:195–201.

103. Shahlaee A, Mahmoudi M, Nicknam MH, et al. Gender differences in Iranian patients with ankylosing spondylitis. *Clin Rheumatol*. 2015;34:285–293.

104. van der Horst-Bruinsma IE, Zack DJ, Szmuski A, et al. Female patients with ankylosing spondylitis: analysis of the impact of gender across treatment studies. *Ann Rheum Dis*. 2013;72:1221–1224.

105. Webers C, Essers I, Ramiro S, et al. Gender-attributable differences in outcome of ankylosing spondylitis: long-term results from the Outcome in Ankylosing Spondylitis International Study. *Rheumatology (Oxford)*. 2016;55:419–428.

106. Slobodin G, Reyhan I, Avshovich N, et al. Recently diagnosed axial spondyloarthritis: gender differences and factors related to delay in diagnosis. *Clin Rheumatol*. 2011;30:1075–1080.

107. Ramiro S, van der Heijde D, van Tubergen A, et al. Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort. *Ann Rheum Dis*. 2014;73:1455–1461.

108. Rudwaleit M, Haibel H, Baraliakos X, et al. The early disease stage in axial spondyloarthritis: results from the German Spondyloarthritis Inception cohort. *Arthritis Rheum*. 2009;60:717–727.

109. Deminger A, Klingberg E, Geijer M, et al. A five-year prospective study of spinal radiographic progression and its predictors in men and women with ankylosing spondylitis. *Arthritis Res Ther*. 2018;20:162.

110. Tsui HW, Inman RD, Paterson AD, et al. ANKH variants associated with ankylosing spondylitis: gender differences. *Arthritis Res Ther*. 2005;7:R513–R525.

111. Gracey E, Yao Y, Green B, et al. Sexual dimorphism in the T2*17 signature of ankylosing spondylitis. *Arthritis Rheumatol*. 2016;68:679–683.

112. Huang WN, Tso TK, Kuo YC, et al. Distinct impacts of syndesmophyte formation on male and female patients with ankylosing spondylitis. *Int J Rheum Dis*. 2012;15:163–168.

113. Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. *Science*. 2000;289:265–270.

114. Takatolo J, Koppinen J, Ninnimäki J, et al. Prevalence of degenerative imaging findings in lumbar magnetic resonance imaging among young adults. *Spine (Phila Pa 1976)*. 2009;34:1716–1721.

115. Martinez-Quinones JV, Aso-Escarjo J, Gonzalez-Garcia L, et al. Are Modic changes able to help us in our clinical practice? A study of the Modic changes in young adults during working age. *Clin Spine Surg*. 2017;30:259–264.

116. Aggarwal R, Malaviya AN. Diagnosis delay in patients with ankylosing spondylitis: factors and outcomes—an Indian perspective. *Clin Rheumatol*. 2009;28:327–331.

117. Gerdan V, Akar S, Solmaz D, et al. Initial diagnosis of lumbar disc herniation is associated with a delay in diagnosis of ankylosing spondylitis. *J Rheumatol*. 2012;39:1996–1999.

118. de Braun F, Treuyaud MO, Feydy A, et al. Prevalence of degenerative changes and overlap with spondyloarthritides-associated lesions in the spine of patients from the DESIR cohort. *RMD Open*. 2018;4:e000657.

119. de Braun F, ter Horst S, Bloem HL, et al. Prevalence of degenerative changes of the spine on magnetic resonance images and radiographs in patients aged 16–45 years with chronic back pain of short duration in the SPondoArthritis Caught Early (SPACE) cohort. *Rheumatology (Oxford)*. 2016;55:56–65.

120. Mease PJ. Fibromyalgia, a missed comorbidity in spondyloarthritis: prevalence and impact on assessment and treatment. *Curr Opin Rheumatol*. 2017;29:304–310.

121. Creed F. A review of the incidence and risk factors for fibromyalgia and chronic widespread pain in population-based studies [published online June 2020]. *Pain*. 2020;161:1169–1176.

122. Staud R, Rodriguez ME. Mechanisms of disease: pain in fibromyalgia syndrome. *Nat Clin Pract Rheumatol*. 2006;2:90–98.

123. Derry S, Wiiffen PJ, Häuser W, et al. Oral nonsteroidal anti-inflammatory drugs for fibromyalgia in adults. *Cochrane Database Syst Rev*. 2017;3:CD012332.

124. Gagné P, Kern K, Andrews K, et al. Spondylolysis and spondyloolisthesis: a review of the literature. *J Orthop*. 2018;15:404–407.

125. Symmou E, Tzitsopoulos PP, Marinopoulos D, et al. Spondyloysis: a review and reappraisal. *Hippokratia*. 2010;14:17–21.

126. Delavan JA, Stence NV, Mirsky DM, et al. Confidence in assessment of lumbar spondylolysis using three-dimensional volumetric T2-weighted MRI compared with limited field of view, decreased-dose CT. *Sports Health*. 2016;8:364–371.

127. Yamashita K, Sakai T, Takata Y, et al. Utility of STIR-MRI in detecting the pain generator in asymmetric bilateral pars fracture: a report of 5 cases. *Neurul Med Chir (Tokyo)*. 2018;58:91–95.

128. Masci L, Pike J, Malara F, et al. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. *Br J Sports Med*. 2006;40:940–946.

129. Yamaguchi KT, Skaggs DL, Acevedo DC, et al. Spondylosis is frequently missed by MRI in adolescents with back pain. *J Child Orthop*. 2012;6:237–240.

130. Summers BN, Singh JP, Manns RA. The radiological reporting of lumbar Scheuermann’s disease: an unnecessary source of confusion amongst clinicians and patients. *Br J Radiol*. 2008;81:383–385.

131. Mansfield JT, Bennett MJ, Scheuermann disease. In: *StatPearls [Internet]*. Treasure Island, FL: StatPearls Publishing; 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK499966/. Accessed September 21, 2020.

132. Murray PM, Weinstein SL, Spratt KF. The natural history and long-term follow-up of Scheuermann kyphosis. *J Bone Joint Surg Am*. 1993;75:236–248.

133. Huisman TA. Pediatric tumors of the spine. *Cancer Imaging*. 2009; (9 Spec Num A):S45–S48.

134. Ogunlade J, Wiginton JG, Elia C, et al. Primary spinal astrocytomas: a literature review. *Cureus*. 2019;11:e5247.

135. Mitra R. Osteitis condensans illi. *Rheumatol Int*. 2010;30:293–296.

136. Ayoub MA. Refractory osteitis condensans illi: outcome of a novel mini-invasive surgical approach. *Int Orthop*. 2013;37:1251–1256.

137. Tuite MJ. Sacroiliac joint imaging. *Semin Musculoskelet Radiol*. 2008;12:72–82.

138. Ma L, Gao Z, Zhong Y, et al. Osteitis condensans illi may demonstrate bone marrow edema on sacroiliac joint magnetic resonance imaging. *Int J Rheum Dis*. 2018;21:299–307.

139. Olivieri I, D’Angelo S, Palazzi C, et al. Diffuse idiopathic skeletal hyperostosis: differentiation from ankylosing spondylitis. *Curr Rheumatol Rep*. 2009;11:321–328.

140. Westerveld LA, van Ufford HM, Verlaan JJ, et al. The prevalence of diffuse idiopathic skeletal hyperostosis in an outpatient population in the Netherlands. *J Rheumatol*. 2008;35:1635–1638.

141. Kiss C, O’Neill TW, Mituszova M, et al. The prevalence of diffuse idiopathic skeletal hyperostosis in a population-based study in Hungary. *Scand J Rheumatol*. 2002;31:226–229.

142. Sarzi-Puttini P, Atzeni F. New developments in our understanding of DISH (diffuse idiopathic skeletal hyperostosis). *Curr Opin Rheumatol*. 2004;16:287–292.

143. Merjanah S, Igoe A, Magrey M. Mimics of axial spondyloarthritis. *Curr Opin Rheumatol*. 2019;31:335–343.
144. Imamura T, Saiki K, Okamoto K, et al. Characterization of individuals with sacroiliac joint bridging in a skeletal population: analysis of degenerative changes in spinal vertebrae. *Biomed Res Int*. 2014;2014:879645.

145. Mader R, Verlaan JJ, Eshed I, et al. Diffuse idiopathic skeletal hyperostosis (DISH): where we are now and where to go next. *RMD Open*. 2017;3:e000472.

146. Abid H, Chaabouni S, Frikha F, et al. Contribution of imaging in the diagnosis of infectious sacroiliitis: about 19 cases. *Pan Afr Med J*. 2014;17:171.

147. Wu MS, Chang SS, Lee SH, et al. Pyogenic sacroiliitis. *Rheumatol (Oxford)*. 2007;46:1684–1687.

148. Hermet M, Minichiello E, Flipo RM, et al. Infectious sacroiliitis: a retrospective, multicentre study of 39 adults. *BMC Infect Dis*. 2012;12:305.

149. Antonelli MJ, Magrey M. Sacroiliitis mimics: a case report and review of the literature. *J Musculoskelet Disord*. 2017;18:170.

150. Bozgeyik Z, Aglamis S, Bozdag PG, et al. Magnetic resonance imaging in familial Mediterranean fever and transient inhibitory serum factors in Whipple's disease. *Clin Immunol*. 2014;38:719–723.

151. Kang Y, Hong SH, Kim JY, et al. Unilateral sacroiliitis: differential diagnosis between infectious sacroiliitis and spondyloarthritis based on MRI findings. *AJR Am J Roentgenol*. 2015;205:1048–1055.

152. Moos V, Schmidt C, Geelhaar A, et al. Impaired immune functions of monocytes and macrophages in Whipple's disease. *Gastroenterolology*. 2010;138:210–220.

153. March T, Neurath M, Cuccherini BA, et al. Defects of monocyte and macrophage functions in Whipple's disease. *Clin Immunol*. 1997;93:442–448.

154. March T, Roux M, von Herbay A, et al. Persistent reduction of complement receptor 3 alpha-chain expressing mononuclear blood cells and transient inhibitory serum factors in Whipple's disease. *Clin Immunol Immunopathol*. 1994;72:217–226.

155. Kalt A, Schneider T, Ring S, et al. Decreased levels of interleukin-12p40 in the serum of patients with Whipple's disease. *Ann Clin Res*. 2006;21:114–120.

156. Ectors N, Geboes K, De Vos R, et al. Whipple's disease: a histological, immunocytochemical and electronmicroscopic study of the immune response in the small intestinal mucosa. *Histopathology*. 1992;21:1–12.

157. Moos V, Schneider T. Changing paradigms in Whipple's disease and infection with *Tropheryma whipplei*. *Eur J Clin Microbiol Infect Dis*. 2011;30:1151–1158.

158. Schneider T, Moos V, Loddenkemper C, et al. Whipple's disease: new aspects of pathogenesis and treatment. *Lancet Infect Dis*. 2008;8:179–190.

159. Lagier JC, Lepidi H, Raoul D, et al. Systemic *Tropheryma whipplei*: clinical presentation of 142 patients with infections diagnosed or confirmed in a reference center. *Medicine (Baltimore)*. 2010;89:337–345.

160. Meunier M, Puechal X, Hoppé E, et al. Rheumatic and musculoskeletal features of Whipple disease: a report of 29 cases. *J Rheumatol*. 2013;40:2061–2066.

161. Apstein M, Schneider T. Whipple's disease. In: Bloom A, editor. *UpToDate*. Waltham, MA: UpToDate; 2019. p. Available at: https://www.uptodate.com/contents/whipples-disease. Accessed September 28, 2019.

162. Balaban B, Yasar E, Ozgul A, et al. Hypoparathyroidism mimicking ankylosing spondylitis and myopathy: a case report. *Clinics (Sao Paulo)*. 2011;66:1287–1290.

163. Jakkanik RK, Sureja J, Mathew J. Spondyloarthropathy occurring in long-standing idiopathic hypoparathyroidism. *Radiol Case Rep*. 2011;6:545.

164. Goltzman D. Hypoparathyroidism. In: Mulder JE, editor. *UpToDate*. Waltham, MA: UpToDate; 2019. p. Available at: https://www.uptodate.com/contents/hypoparathyroidism. Accessed September 9, 2019.

165. Kobak S, Sefer F, Ince O, et al. The prevalence of sacroiliitis and spondyloarthritis in patients with sarcoidosis. *Int J Rheumatol*. 2014;2014:289454.

166. Cuthbertson MJ, Kassimos DG, et al. An assessment of back pain and the prevalence of sacroiliitis in sarcoidosis. *Chest*. 2005;127:192–196.

167. Shariatmaghani S, Salari R, Sahabari M, et al. Musculoskeletal manifestations of sarcoidosis: a review article. *Curr Rheumatol Rev*. 2019;15:83–89.

168. Binici O, Sari I, Sen G, et al. Axial sacroiliitis mimicking radiographic sacroiliitis. *Rheumatol Int*. 2009;29:343–345.

169. Binicier O, Sari I, Sen G, et al. Axial sacroiliitis mimicking radiographic sacroiliitis. *Rheumatol Int*. 2009;29:343–345.

170. Briongos-Figuero LS, Ruiz-de-Temino A, Perez-Castañon JL. Sarcoidosis and sacroiliitis, a case report. *Rheumatol Int*. 2012;32:2949–2950.

171. Sigaux J, Semerano L, Nasrallah T, et al. High prevalence of spondyloarthropathy in sarcoidosis patients with chronic back pain. *Semin Arthritis Rheum*. 2019;49:246–250.

172. Moshari A, Laredo JD, Bassioni H, et al. Spinal involvement with calcium pyrophosphate deposition disease in an academic rheumatology center: a series of 37 patients. *Semin Arthritis Rheum*. 2019;48:1113–1126.

173. Rosenthal AK, Ryan LM. Calcium pyrophosphate deposition disease. *N Engl J Med*. 2016;374:2575–2584.

174. Frances S, Guaydier-Souquieres G, Marcelli C. Acute sacroiliitis as a manifestation of calcium pyrophosphate dihydrate crystal deposition disease. A report of two cases. *Rev Rhum Engl Ed*. 1997;64:508–512.

175. Goswami R, Ray D, Sharma R, et al. Presence of spondyloarthropathy and its clinical profile in patients with hypoparathyroidism. *Clin Endocrinol (Oxf)*. 2008;68:258–263.

176. Shohack DM, Bilezikian JP, Costa AG, et al. Presentation of hypoparathyroidism: etiologies and clinical features. *J Clin Endocrinol Metab*. 2016;101:2300–2312.

177. Kajitani TR, Silva RV, Bonfá E, et al. Hypoparathyroidism mimicking ankylosing spondylitis and myopathy: a case report. *Clinics (Sao Paulo)*. 2011;66:1287–1290.

178. Goltzman D. Hypoparathyroidism. In: Mulder JE, editor. *UpToDate*. Waltham, MA: UpToDate; 2019. p. Available at: https://www.uptodate.com/contents/hypoparathyroidism. Accessed September 9, 2019.

179. Nair DR, Moos J. Whipple's disease. *Clin Med (Lond)*. 2017;17:71–77.

180. Bicer A. Musculoskeletal findings in Behçet's disease. *Patholog Res Int*. 2012;2012:653806.

181. Chamberlain MA, Robertson RJ. A controlled study of sacroiliitis in Behçet's disease. *Br J Rheumatol*. 1993;32:693–698.

182. Yazici H, Tuzlacı M, Yıldakul S. A controlled survey of sacroiliitis in Behçet's disease. *Ann Rheum Dis*. 1981;40:558–559.

183. Canella C, Costa F, Bacchiega AB, et al. Sacroiliitis in Behçet syndrome. *J Clin Rheumatol*. 2013;19:356.

184. Cobankar V, Topaloglu M, Balkarli A, et al. Determining the prevalence of sacroiliitis in Behçet's disease by magnetic resonance imaging. *Ann Rheum Dis*. 2014;73:699–700.

185. Nussenblatt RB. Uveitis in Behçet's disease. *Int Rev Immunol*. 1997;14:67–79.

186. Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, et al. Uveitis in Behçet disease: an analysis of 880 patients. *Am J Ophthalmol*. 2004;138:373–380.

187. Kim HA, Choi KW, Song YW. Arthropathy in Behçet's disease. *Sord J Rheumatol*. 1997;26:125–129.

188. Lecesse P, Alpsy E. Behçet's disease: an overview of etiopathogenesis. *Front Immunol*. 2019;10:1067.
189. Marie PJ, Glorieux FH. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. *Calcif Tissue Int*. 1983;35:443–448.

190. Polisson RP, Martinez S, Khoury M, et al. Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. *N Engl J Med*. 1985;313:1–6.

191. Adams J. Chapter 49—radiology of rickets and osteomalacia. In: Feldman D, Pike J, Adams J, editors. *Vitamin D*. Cambridge, MA: Academic Press; 2011. p. 861–889.

192. Ranga U, Aiyappan SK, Shanmugam N, et al. Ochronotic spondyloarthropathy. *J Clin Diagn Res*. 2013;7:403–404.

193. Al-Mahfoudh R, Clark S, Buxton N. Alkaptonuria presenting with ochronotic spondyloarthropathy. *Br J Neurosurg*. 2008;22:805–807.

194. Balaban B, Taskaynatan M, Yasar E, et al. Ochronotic spondyloarthropathy: spinal involvement resembling ankylosing spondylitis. *Clin Rheumatol*. 2006;25:598–601.

195. Groseanu L, Marinescu R, Laptoianu D, et al. A late and difficult diagnosis of ochronosis. *J Med Life*. 2010;3:437–443.