A Physical ground for the scaling of Peak Ground Acceleration (PGA) with the integral of squared velocity \((I^2_{Vp}) \) and its potential for Earthquake Early Warning

F Vallianatos\(^{1,2,a}\) and I Spingos\(^{1,2}\)

\(^{1}\)Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Athens, Greece
\(^{2}\)Institute of Physics of the Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, 73133, Chania, Greece

\(^{a}\)E-mail: fvallian@hmu.gr, fvallian@geol.uoa.gr

Abstract. One of the main goals of an Earthquake Early Warning System (EEWS) is to estimate the expected peak ground motion of the destructive S-waves using the first few seconds of P-waves, thus becoming an operational tool for real-time seismic risk management in a short timescale. EEWSs are based on the use of scaling relations between parameters measured on the initial portion of the seismic signal, after the arrival of the P-wave. Scope of the present work is to study the physical basis of the scaling laws observed between the peak ground acceleration (PGA) and the integral of the squared velocity \((I^2_{Vp}) \). Based on Brune’s model, which is one of the most widely adopted earthquake source models, we explore the physical principles of the scaling relations between the root mean square (rms) of the velocity acceleration recorded in the first few seconds after P-wave arrival and acceleration (recorded in S-waves) and the \(I^2_{Vp} \). Assuming a relation between the PGA and the rms values estimated, the scaling of PGA with the integral of the squared velocity \((I^2_{Vp}) \) which is calculated directly from the first few seconds-long signal window \((T) \) after the P-wave arrival obtained. The latter formulation opens the possibility of using such laws for on-site and inter-site earthquake early warning.

1. Introduction

Advances in signal processing, data communications and real-time seismology have gradually rendered the concept of a reliable Earthquake Early Warning System (EEWS) a possibility [1-17]. Damages from an impending strong motion can be reduced by taking mitigation measures suitable for the given warning time [5, 6]. EEWSs have already been deployed, whether operationally or at a pilot stage, in Japan [1, 3, 16], Mexico [18], Taiwan [19], Greece [20, 21], Italy [22-24] and California, USA [25, 26]. A detailed and comparative analysis of the performance of EEWS in Europe is given in [27, 28] while a recent application in the Northern California rail system is presented in [29].

An earthquake generates two fundamental types of body-waves: longitudinal (P) and shear (S) waves. The direct P-waves are weaker in amplitude and have a higher velocity than the S-waves. As a result, the difference in velocity can be used to retrieve information about the earthquake from the first wave arrivals and, consequently, predict the effect of the impending destructive secondary waves [10].

Earthquake early warning systems can mainly be divided into two categories: (a) on-site and (b) regional, even though the combination of both has also been explored [30-34]. The on-site EEWSs use one seismic station to offer insight about individual sites (such as critical infrastructure), e.g. [26, 29]. Regional EEWSs use multiple P arrivals to estimate the epicenter and magnitude of the earthquake.
and provide information for the affected area, e.g. [21, 22, 25, 33, 34]. This poses fundamental differences in the design, operation, and maintenance of the system. The on-site approach can give a larger warning time, but is susceptible to false triggers and local site effects. Regional EEWSs offer more robust estimations, but are affected by errors in the source estimation and require a large investment in seismic network design and deployment.

The regional EEWS, based on the operation of a regional network that detects earthquake events, locate them and determine its magnitude, using for the analysis the first few seconds of the arrivals of the P waves recorded at the stations [35, 36, 37]. In contrast the on-site system consists of a single or more sensors in the vicinity of target area or sometimes inside the structure under interest to be alerted. In the on-site approach the P-wave recordings to the seismic sensor are used to predict the peak ground motion at the site [16]. The on-site approach could be useful for sites located within the blind zone of a regional EEW system, creating a warning before the arrival of strong shaking S-waves. Worth to mentioned that in a number a applications the two EEW approaches combined [38, 39, 40] in a way that local parameters and predicted ground motions at a regional scale could be capable to provide accurate and even rapid estimations of the parameters of earthquake source along with the size of the expected damage zone [30].

The regional EEW can be analyzed in terms of the geometry of the source following two main views. The first one assumes a point-source where the earthquake source viewed as a concentrated volume, while in the second approach a finite fault introduced and thus we take into consideration the entire fault area. Most studies have used the “point-source” demonstrating the reliability of this approach for the magnitude estimation of small to moderate events. However, it has been shown that this approach is not always accurate for strong earthquakes with magnitude greater than 7, due to the saturation of the P-wave parameters [16, 41]. In the present work we use the point-source approach and our results are limited to earthquakes with a moderate magnitude (≤ 6.5) that could be considered as point sources.

Scaling laws are of fundamental importance in EEWSs, as they connect early estimated parameters with the strength of impending S-wave. Relations between the integral of squared velocity estimated from the initial P-wave \(I_{vp}^2\) and a metric of the anticipated shaking, such as the macroseismic intensity or the ground’s acceleration during a seismic event, have been proposed [31-42].

The integral of squared velocity [42] is defined as:

\[
l_{vp}^2 = \int_{t_p}^{t_p+T} V^2(t)dt
\]

where \(t_p\) the P arrival time, \(T\) the considered signal window and \(V(t)\) the signal in velocity terms [33] estimated from the initial P wave. Therefore, a relation between \(l_{vp}^2\) and the Peak Ground Acceleration of S-waves (PGA) [33, 34] can be given as:

\[
\log(\text{PGA}) = a + b \times \log(l_{vp}^2)
\]

which suggests that we can predict the shaking using the initial P waves. Albeit equations similar to (2) have been used to connect \(l_{vp}^2\) to earthquake strength metrics in a single site, using a sensor near the source to obtain the latter and extrapolating the value of PGA in another target site could provide a significant warning time advantage [34].

In this work, we analyse the physical base of the scaling expression (2), focused on the correlation of \(l_{vp}^2\) with PGA on-site and inter-site, using Brune’s model, one of the most widely adopted earthquake source models [43]. Determination of the strength of shaking from the initial P-wave is an important element for earthquake early warning, since PGA is a quantity commonly used in seismic risk and engineering, e.g. [44].

2. Empirical Scaling laws between PGA and \(l_{vp}^2\)
A regional EEWS operates analyzing the information from the seismic network deployed in the vicinity to the epicenter and predicts the regional seismic intensities using a ground motion prediction equation [35]. On the other hand, the on-site system often consists of seismic stations located at particular target sites of interest, providing rapid ground motion estimates, using only information on the characteristics of P waves recorded at one seismic station [10], since a number of empirical relationship used to algorithms that derive ground shaking [45, 46, 47].

The parameter I_{VP}^2 was first introduced in [42] to estimate the earthquake magnitude, providing good correlation between the two quantities. Recently, a correlation between I_{VP}^2 and PGA was reported [20, 21]. The relationship between I_{VP}^2 and PGA could therefore be used to identify, in real-time and before the arrival of S waves, whether a site is going to be adversely affected or not, and, thus, has the potential to become key in the design of on-site or inter-site EEWSs, enabling automatic mitigation measures and assisting civil protection in acting immediately, according to the severity of the situation. We note that the reliability of the scaling between I_{VP}^2 and PGA has been recently tested and extensively used to establish EEWS [31, 42].

Figure 1 presents PGA as a function of I_{VP}^2 in the on-site case of some stations in Greece. For all the cases, a correlation as that of equation (2) exists, while b is quite stable close to 0.5. It is noted that while I_{VP}^2 is computed from measurements in the vertical channel, PGA refers to the maximum observed acceleration between the two horizontal components of the sensor.

$$a = 1.480 \pm 0.148$$
$$b = 0.491 \pm 0.026$$

Figure 1. Scaling of PGA with I_{VP}^2 for stations (a) HT.LIT (red squares) and (b) HA.ATHU (blue dots) using a T=3s time windows after the P-wave arrival. PGA is estimated from the maximum amplitude of the two horizontals after the S-wave arrival, while I_{VP}^2 is obtained from the vertical channel. Both stations are located in Greece. For details see [33, 34]. Values for the intercept and slope of equation (2) are given, along with their standard errors (top left).

The potential of I_{VP}^2 as an inter-site tool has been demonstrated in [20, 21], by measuring it at a reference station located closest to earthquake sources (named $I_{VP}^{2\text{close}}$) and relating it to PGA at target sites (PGA$^{\text{ts}}$) using a scaling relation of the form of equation (2), i.e.,

$$\log(\text{PGA}^{\text{ts}}) = a + b \cdot \log(I_{VP}^{2\text{close}}).$$
Examples of such relations are given in Figure 2.

![Figure 2](image)

\[a = 0.742 \pm 0.245 \\
\[b = 0.401 \pm 0.052 \]

Figure 2. PGA in target site Athens (stations HA.ATHU and HL.ATH) that scaled with \(I^{2} \) measured at reference stations at Loutraki (HA.LOUT and HP.LTK), using a \(T=3s \) time windows after the P-wave arrival. Both sites are located in Greece (see [33]). Values for the intercept and slope of equation (2) are given, along with their standard errors (top left).

From Figures 1 and 2 it is obvious that expression as that of equation (2) could fit the observed data satisfactorily. The physical basis of such an expression is still an open question, along with the source and medium parameters that control the fitting coefficients \(\alpha \) and \(b \) in equation (2). This question will be addressed in the next paragraph.

3. On the Physical basis of PGA- \(I^{2} \) scaling law

To establish a relation between the strong ground motion parameters and \(I^{2} \) we will use the root mean square (rms) value of the velocity and acceleration that could be estimated using the first few seconds from the initial part of the recording after the arrival of P-waves. From the definition of \(I^{2} \), we can state that:

\[
I^{2} = \int_{t_{p}+T} V^{2}(t) dt = V^{2}_{rms_{p}} T
\]

where the index \(rms_{p} \) indicates the root mean square (rms) value of the velocity estimated from the initial part of P-waves, and \(T \) is the record interval.

The latter expression permits the application of the ideas presented in [48-51], where the rms values of velocity and ground acceleration are related with the source parameters and the attenuation coefficient, using Parseval's theorem, which states that:

\[
y_{rms} = \sqrt{\frac{\int_{-\infty}^{\infty} |y(t)|^{2} dt}{T}} = \sqrt{\frac{\int_{-\infty}^{\infty} |Y(f)|^{2} df}{T}}
\]

where \(y(t) \) is the ground motion time series, \(Y(f) \) is the ground motion spectra, and \(T \) is the record interval.

According to Brune's model [43], the far-field ground motions reads as:

\[
\frac{d^{n}}{dt^{n}} \Omega(f) = (2\pi f)^{n} \frac{M_{0}}{1+(f/f_{0})^{2}}
\]

where \(f \) is the frequency and \(f_{0} \) is the corner frequency. The index \(n = 1,2,3 \) refers to displacement, velocity, or acceleration spectra, respectively. According Brune’s model, the displacement spectra are constant equal to \(\Omega_{0} \) at frequencies well below the \(f_{0} \) and decay as \(f^{-2} \) above it, while the velocity spectra increase proportionally to \(f \) below \(f_{0} \) and decrease as \(f^{-1} \) above it. As equation (2) suggests, the acceleration spectra goes as \(f^{2} \) up to the corner frequency and are flat above it. The spectral parameters \(\Omega_{0} \) and \(f_{0} \) are related to the seismic moment, \(M_{0} \), and the stress drop, \(\Delta \tau \), as follows [52]:
\[\Omega_o = \frac{M_o U_{\psi \phi}^{PS} F_s}{4 \pi \rho C_s^2 R} \]

(6)

and

\[f_o = k C_{ps} \left(\frac{16 M_o}{\pi \rho} \right)^{1/3} \]

(7)

Where \(U_{\psi \phi}^{PS} \) is the radiation pattern of P and S waves, \(F_s \) is the free-surface correction factor, \(R \) is the hypocentral distance, \(\rho \) is a constant with different values for P and S waves and \(C \) stands for the wave velocity with \(C_p \) and \(C_s \) for the P and S waves, respectively [53, 54]. The expression (7) is valid for a circular crack embedded within an infinite homogeneous isotropic Poissonian medium. The effect of site and path attenuation can be modelled by multiplying the source spectra with an exponent function [55]:

\[\frac{d^n}{dt^n} \Omega(f) = (2\pi f)^n \frac{M_o}{1 + \left(\frac{f}{f_o} \right)^2} \exp(-\pi \kappa_o f) \]

where \(\kappa_o \) is an attenuation parameter that embodies both anelastic and near surface attenuations. \(\kappa_o > 0 \) results in a high-frequency decay of the spectra and effectively produces an additional corner frequency, \(f_k = 1/(\pi \kappa_o) \).

Using Parseval’s theorem, in [48-51] the displacement, velocity, and acceleration ground motion \(rms \) are obtained as:

\[\left(\sqrt{\frac{d^n}{dt^n} D} \right)_{rms} = \Omega_o \sqrt{\frac{2}{\pi}} \int_0^\infty (2\pi f)^n \frac{1}{1 + \left(\frac{f}{f_o} \right)^2} \exp(-2\pi \kappa_o f) df \]

(8)

Since the solutions of the integrals express either the \(rms \) of velocity or acceleration, based on the Meijer G-function, and \(Ci \) and \(Si \) (the cosine and the sine integral functions), respectively, we use some approximate expressions that are valid for moderate and strong earthquake events that match the exact solutions for the \(rms \) values of velocity, and acceleration (for details see [48-51]), as follows:

\[V_{rms_p} = 2\pi \Omega_{op} \sqrt{\frac{\pi f_o^2}{2\pi}} \]

(9)

\[A_{rms} = (2\pi)^2 \Omega_{os} \int_0^f \frac{1}{\sqrt{\pi \kappa_o}} \]

(10)

The latter expressions suggest that for moderate and strong earthquake magnitudes the \(rms \) of velocity \(V_{rms_p} \) is insensitive to attenuation, while the \(rms \) of acceleration, \(A_{rms} \), depends on the attenuation coefficient \(\kappa_o \).

Combining equations (3), (9) and (10) we obtain:

\[\log A_{rms} = \frac{1}{2} \log \frac{V_{rms}}{V_p} + \log \left(\frac{2 U_{\psi \phi} R_1}{U_{\psi \phi} R_2} \frac{C_p^3}{C_s^3} \frac{2 f_o}{\sqrt{\pi \kappa_o}} \right) \]

(11)

for the on-site scaling

and

\[\log A_{rms} = \frac{1}{2} \log V_{rms} + \log \left(\frac{2 U_{\psi \phi} R_1}{U_{\psi \phi} R_2} \frac{C_p^3}{C_s^3} \frac{2 f_o}{\sqrt{\pi \kappa_o}} \right) \]

(12)

for the inter-site scaling

where \(R_1 \) the hypocentral distance of the close to epicenter station where first detected the seismic wave, while \(R_2 \) the hypocentral distance of the target site.
Taking into account that PGA = γAV_{rms}^{\nu} [48-51], where the local site effects, are taking into consideration in the parameters γ and ν, the above expression leads to:

\[\log \text{PGA} = \frac{\nu}{2} \log I_{P}^{2} + v \log \left(2 \frac{U_{\phi,0}}{U_{\phi,0}} \right) c_{p}^{3} \frac{\sqrt{2f_{0}}}{\kappa_{s}T} + logy \] (13)

for the on-site scaling

and

\[\log \text{PGA} = \frac{\nu}{2} \log I_{P}^{2} + v \log \left(2 \frac{U_{\phi,0}}{U_{\phi,0}} \right) c_{p}^{3} \frac{\sqrt{2f_{0}}}{\kappa_{s}T} + logy \] (14)

for the inter-site scaling.

Expressions (13) and (14) have the form of equation (2) where b=v/2. The latter suggests that when ν = 1, then b ≡ 0.5 as in most of the cases observed [31, 33, 34]. Worth to mentioned that the main advantage of equations (11) to (14) is that based on a simple widely adopted physical source model (attenuated omega-square spectra) could reproduced the empirical formulation of equation (2) which presented in a significant number of observations [see 31, 33 and references therein]. As such, it accounts for the three most important source parameters affecting ground motion intensity; the seismic moment (commonly expressed through the earthquake magnitude), the hypocentral distance, and the stress drop, as suggested by equation (7).

4. Concluding remarks

Today, the development of EEWSs represents one of the most useful strategies to mitigate seismic risk in short timescales, and several countries worldwide are promoting and developing such systems. In the context of seismic risk management, they are considered a reasonably cost-effective solution for loss reduction [56]. In this study, we explored the physical basis of the scaling laws, both on-site and between stations located near the earthquake sources and target sites, in order to estimate inter-site relations for I_{P}^{2} (recorded at the former) and PGA (recorded at the latter). Our results justify the scaling between I_{P}^{2} and PGA at individual sites, with seemingly identical slope parameters. This scaling bears hope for establishing both on-site and inter-site hazard estimators. The physical ground of the scaling between I_{P}^{2} and PGA could be used to improve recent approaches that use I_{P}^{2} parameter to estimate the strength of strong ground motion using modern artificial intelligence techniques as that of machine learning [57-60].

Summarizing, in the present work, on-site and inter-site theoretical scaling relations of the far-field ground motions were derived using the omega-squared model. The scaling laws between I_{P}^{2} and PGA are in agreement with recently observed empirical relations and could be used as earthquake early warning parameter. Further work is required to better support this and solve issues such as the actual consequences of local site effects. However, if these matters are resolved and the robustness of both the empirical and theoretical bases is improved, the on-site and inter-site EEWS approaches could be used to issue alerts and, even, estimate potential damages level within very few seconds, faster than the in-operation regional EEWSs.

References

[1] Nakamura Y 1988 On the urgent earthquake detection and alarm system (UrEDAS) Proc. 9th World Conf. Earthq. Eng. 7 673–678
[2] Fujinawa Y. and Noda Y. 2013 Japan's Earthquake Early Warning System on 11 March 2011: Performance, Shortcomings, and Changes. Earthquake Spectra 29 (S1), S341–S368. doi:10.1193/1.4000127
[3] Hoshiba M 2014 Review of the Nationwide Earthquake Early Warning in Japan during its First Five Years in Earthquake Hazard. Risk Disasters, 509–529. doi:10.1016/b978-0-12-394848-9.00019-5
[4] Erdik M, Fahjan Y, Ozel O, Alcik H, Mert A and Gul M 2003 Istanbul Earthquake Rapid Response and the Early Warning System Bull. Earthquake. Eng. 1, 157–163. doi:10.1024/a:1024813612271

[5] Allen RM, Gasparini P, Kamigachi O and Böse M 2009 The Status of Earthquake Early Warning Around the World: An Introductory Overview. Seismological Res. Lett. 80 (5) 682–693. doi:10.1785/gssrl.80.5.682

[6] Allen RM and Melgar D 2019 Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annu. Rev. Earth Planet. Sci. 47, 361–388. doi:10.1146/annurev-earth-053018-060457

[7] Böse M, Ionescu C and Wenzel F 2007 Earthquake Early Warning for Bucharest, Romania: Novel and Revised Scaling Relations. Geophys. Res. Lett. 34, L07302. doi:10.1029/2007GL029396

[8] Kanamori H, Hauksson E and Heaton T 1997 Real-time seismology and earthquake hazard mitigation Nature 390 461–464

[9] Allen RM and Kanamori H 2003 The potential for earthquake early warning in Southern California Science 300 786–789

[10] Kanamori H 2005 Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 33 195–214

[11] Allen RM, Brown H, Hellweg M, Khainovski O, Lombard P and Neuhauser D 2009 Real-time earthquake detection and hazard assessment by ElarmS across California Geophys. Res. Lett. 36 L00B08

[12] Hloupis G and Vallianatos F 2013 Wavelet–based rapid estimation of earthquake magnitude oriented to early warning IEEE Geosci. Remote. Sens. Lett. 10 43–47

[13] Hloupis G and Vallianatos F 2015 Wavelet–based methods for rapid calculations of magnitude and epicentral distance: an application to Earthquake Early Warning System Pure Appl. Geophys. 172 2371–2386

[14] Parolai S, Bindi D, Boxberger T, Milkereit C, Fleming K and Pittore M 2015 On-site early warning and rapid damage forecasting using single stations: Outcomes from the REAKT project. Seismol. Res. Lett. 86 1393–1404

[15] Brooks BA, Potti M, Ericksen T, Bunn J, Vega F, Cochran ES, Duncan C, Avery J, Minson SE, Chaves E, Baez JC, Foster J and Glennie CL 2021 Robust Earthquake Early Warning at a fraction of the cost: ASTUTI Costa Rica. AGU Adv. 2 e2021AV000407

[16] Collobelli S, Amoroso O, Zollo A and Kanamori H 2012 Test of a Threshold-Based Earthquake Early Warning Method Using Japanese Data. Bull. Seismological Soc. America 102, 1266–1275. doi:10.1785/01201101049

[17] Nakamura Y, Saita J and Sato T 2011 On an Earthquake Early Warning System (EEW) and its Applications. Soil Dyn. Earthquake Eng. 31, 127–136. doi:10.1016/j.soildyn.2010.04.012

[18] Espinosa–Aranda J, Jiménez A, Ibarrola G, Alcantar F, Aguilar A, Inostroza M and Maldonado S 1995 Mexico City seismic alert system. Seism. Res. Lett. 66 42–53

[19] Wu YM, Lee WHK, Chen CC, Shin TC, Teng TL and Tsai YB 2000 Performance of the Taiwan Rapid Earthquake Information Release System (RTD) during the 1999 Chi–Chi (Taiwan) earthquake Seismol. Res. Lett. 71 338–343

[20] Sokos E, Tsalenitis GA, Paraskevopoulos P, Serpetsidaki A, Stathopoulos–Vlamis A and Panagis A 2016 Towards earthquake early warning for the Rion–Antirion bridge, Greece Bull. Earthq. Eng. 14 2531–2542

[21] Kapetanidis V, Papadimitriou P and Kaviris G 2019 Earthquake Early Warning application in Central Greece Bul. Geol. Soc. Greece 7(95) 277–278.

[22] Iannacone G, Zollo A, Elia L, Convertito V, Satriano C, Martino C, Festa G, Lancieri M, Bobbio A, Stabile TA, Vassalo M and Emolo A 2010 A prototype system for earthquake early–warning and alert management in southern Italy Bull. Earthq. Eng. 8 1105–1129

[23] Zollo A, Amoroso O, Lancieri M, Wu YM and Kanamori H 2010 A threshold- based earthquake early warning using dense accelerometer networks Geophys. J. Int. 183 963–974
[24] Caruso A, Colombelli S, Elia L, Picozzi M and Zollo A 2017 An On-Site Alert Level Early Warning System for Italy. *J. Geophys. Res. Solid Earth* **122**, doi:10.1002/2016JB013403

[25] Chung AI, Meier MA, Andrews J, Böse M, Crowell BW, McGuire JJ and Smith DE 2020 ShakeAlert earthquake early warning system performance during the 2019 Ridgecrest earthquake sequence *Bull. Seismol. Soc. Am.* **110** 1904–1923

[26] Böse M, Hauksson E, Solanki K, Kanamori H and Heaton TH 2009 Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 Mw 5.4 Chino Hills earthquake *Geophys. Res. Lett.* **36** L00B03

[27] Clinton J, Zollo A, Marmureanu A, Zulfikar C and Parolai S 2016 State-of-the Art and Future of Earthquake Early Warning in the European Region. *Bull. Earthquake Eng.* **14**, 2441–2458. doi:10.1007/s10518-016-9922-7

[28] Zuccolo E, Cremen G and Galasso C 2021 Comparing the Performance of Regional Earthquake Early Warning Algorithms in Europe. *Front. Earth Sci.* **9**, 686272. doi: 10.3389/feart.2021.686272

[29] Minson SE, Cochran ES, Wu S and Noda S 2021 A Framework for Evaluating Earthquake Early Warning for an Infrastructure Network: An Idealized Case Study of a Northern California Rail System. *Front. Earth Sci.* **9**, 620467. doi: 10.3389/feart.2021.620467

[30] Colombelli S, Caruso A, Zollo A, Festa G and Kanamori H 2015 A P Wave-based, On-site Method for Earthquake Early Warning. *Geophys. Res. Lett.* **42**, 1390–1398. doi:10.1002/2014GL063002

[31] Brondi P, Picozzi M, Emolo A, Zollo A and Mucciarelli M 2015 Predicting the macroseismic intensity from early radiated P wave energy for on-site earthquake early warning in Italy. *J. Geophys. Res. Solid Earth* **120**, 7174–7189

[32] Iaccarino AG, Picozzi M, Bindi D and Spallarossa D 2020 Onsite earthquake early warning: Predictive models for acceleration response spectra considering site effects. *Bull. Seismol. Soc. Am.* **110** 1289–1304

[33] Vallianatos F, Karakonstantis A and Sakelariou N 2021 Estimation of Earthquake Early Warning parameters for Eastern Gulf of Corinth and Western Attica Region (Greece). First results *Sensors* 2021 **21** 5084

[34] Spingos I, Vallianatos F and Kaviris G 2021 The scaling of PGA with IV2p and its potential for Earthquake Early Warning in Thessaly (Central Greece). *Bul. Geol. Soc. Greece*, **58**, 177-199 doi: 10.12681/bgsg.27062

[35] Satriano C, Wu YM, Zollo A and Kanamori H 2011 Earthquake Early Warning: Concepts, Methods and Physical Grounds. *Soil Dyn. Earthquake Eng.* **31**, 106–118. doi:10.1016/j.soildyn.2010.07.007

[36] Zollo A, Colombelli S, Elia L, Emolo A, Festa G, Iannaccone G, C. Martino and P. Gasparini 2014 An Integrated Regional and On-Site Earthquake Early Warning System for Southern Italy: Concepts, Methodologies and Performances, in *Early Warning for Geological Disasters*, Advanced Technologies in Earth Sciences, **117–137**. doi:10.1007/978-3-642-12233-0_7

[37] Picozzi, M, Zollo A, Brondi P, Colombelli S, Elia L and Martino C 2015 Exploring the feasibility of a Nationwide Earthquake Early Warning System in Italy. *J. Geophys. Res. Solid Earth* **120**, 2446–2465. doi:10.1002/2014JB011669

[38] Wang Z and Zhao B 2021 Applicability of Accurate Ground Motion Estimation Using Initial P Wave for Earthquake Early Warning. *Front. Earth Sci.* **9**, 718216. doi:10.3389/feart.2021.718216

[39] Cremen G, and Galasso C 2020 Earthquake Early Warning: Recent Advances and Perspectives *Earth-Science Rev.* **205**, 103184. doi:10.1016/j.earscirev.2020.103184

[40] Ladina C, Marzorati S, Amato A and Cattaneo M 2021 Feasibility Study of an Earthquake Early Warning System in Eastern Central Italy. *Front. Earth Sci.* **9**, 685751. doi:10.3389/feart.2021.685751

[41] Velazquez O, Pescaroli G, Cremin G and Galasso C 2020. A Review of the Technical and Socio-Organizational Components of Earthquake Early Warning Systems. *Front. Earth Sci.* **8**, 533498. doi:10.3389/feart.2020.533498
[42] Festa G, Zollo A and Lancieri M 2008 Earthquake magnitude estimation from early radiated energy. *Geophys. Res. Lett.* **35** L22307

[43] Brune JN 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes *J. Geophys. Res.* **75**, 4997–5009

[44] Dolce M, Prota A, Borzi B, da Porto F, Lagomarsino S, Magenes G, Moroni C, Penna A, Polese M, Speranza E, Verderame GM and Zuccaro G 2021 Seismic risk assessment of residential buildings in Italy *Bull. Earthq. Eng.* **19** 2999–3032

[45] Wu YM and Kanamori H 2008 Development of an Earthquake Early Warning System Using Real-Time strong Motion Signals. *Sensors* **8**(1), 1–9. doi:10.3390/s8010001

[46] Wu YM and Kanamori H 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. *Bull. Seismological Soc. America* **95**(3), 1181–1185. doi:10.1785/0120040193

[47] Zollo A, Colombelli S and Emolo A 2016 An Integrated Regional and On-Site Earthquake Early Warning System for Southern Italy: Concepts, Methodologies and Performances in *Early Warning Geol. Disasters, chapter 7*, 117–137. doi:10.1007/978-3-642-12233-0_7

[48] Lior I, Ziv A and Madariaga R 2016 P–wave attenuation with implications for Earthquake Early Warning *Bull. Seismol. Soc. Am.* **106** 13–22

[49] Ziv A and Lior I 2016 Real–time moment magnitude and stress drop with implications for real–time shaking prediction. *Bull. Seismol. Soc. Am* **106** 2459–2468

[50] Lior I and Ziv A 2017 The relation between ground acceleration and earthquake source parameters: Theory and observations *Bull. Seismol. Soc. Am* **107** 1012–1018

[51] Lior I and Ziv A 2020 Generic source parameter determination and ground–motion prediction for earthquake early warning. *Bull. Seismol. Soc. Am.* **110** 345–356

[52] Eshelby JD 1957 The determination of the elastic field of an ellipsoidal inclusion, and related problems *Proc. R. Soc. Lond. A* **241** 376–396

[53] Madariaga R 1976 Dynamics of an expanding circular fault. *Bull. Seismol. Soc. Am.* **65** 163–182

[54] Sato T and Hirasawa T 1973 Body wave spectra from propagating shear cracks *J. Phys. Earth* **21** 415–431

[55] Ktenidou OJ, Cotton F, Abrahamson N and Anderson JG 2014 Taxonomy of k: A review of definitions and estimation approaches targeted to applications *Seismol. Res. Lett.* **85** 135–146

[56] Valbonesi C 2021 Between Necessity and Legal Responsibility: The Development of EEWS in Italy and its International Framework. *Front. Earth Sci.* **9**, 685153. doi:10.3389/feart.2021.685153

[57] Zhu J Li S Song J and Wang Y 2021 Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. *Front. Earth Sci.* **9**, 653226. doi:10.3389/feart.2021.653226

[58] Ochoa LH, Niño LF and Vargas CA 2017 Fast magnitude determination using a single seismological station record implementing machine learning techniques. *Geod. Geodyn.* **9**, 34–41. doi:10.1016/j.geog.2017.03.010

[59] Mousavi SM and Beroza GC 2020 A Machine-Learning Approach for Earthquake Magnitude Estimation. *Geophys. Res. Lett.* **47**, doi:10.1029/2019GL085976

[60] Iaccarino AG, Gueguen P, Picozzi M and Ghimire S 2021 Earthquake Early Warning System for Structural Drift Prediction Using Machine Learning and Linear Regressors. *Front. Earth Sci.* **9**, 666444. doi: 10.3389/feart.2021.666444