Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts

A M Ukkola1, M G De Kauwe2, A J Pitman1,3, M J Best4, G Abramowitz1,3, V Haverd5, M Decker1, N Haughton1

1ARC Centre of Excellence for Climate System Science, University of New South Wales, Kensington, NSW 2052, Australia
2Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
3Climate Change Research Centre, University of New South Wales, Kensington, NSW 2052, Australia
4Met Office, Fitzroy Road, Exeter, Devon, EX6 7AX, United Kingdom
5CSIRO Oceans and Atmosphere, GPO Box 3023, Canberra ACT 2601, Australia

Supplementary Information

This supplementary information contains Tables S1-S2 and Figures S1-S3.
Table S1: Land surface models used in this study. Further details on each model can be found in Best et al. (2015).

Full model name	Abbreviated name	Reference
Community Atmosphere Biosphere Land Exchange (CABLE) version 2.0	CABLE-2.0	Kowalczyk *et al* (2006); Wang *et al* (2011)
CABLE SubgridSoil GroundWater	CABLE-GW	Decker (2015)
CABLE Soil-Litter-Iso	CABLE-SLI	Haverd and Cuntz (2010); Haverd *et al* (2016)
Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL), uncoupled version	CHTESSEL	Balsamo *et al* (2009); Boussetta *et al* (2013)
Centre for Ocean-Land-Atmosphere Studies Simplified Simple Biosphere	COLASSiB	Dirmeyer and Zeng (1999); Guo and Dirmeyer (2013)
Interaction Soil-Biosphere-Atmosphere (ISBA) 3-layer soil	ISBA-3L	Boone *et al* (1999); Masson *et al* (2013)
ISBA multilayer soil	ISBA-dif	Decharme *et al* (2011); Masson *et al* (2013)
Joint UK Land Environment Simulator (JULES) version 3.1	JULES-3.1	Best *et al* (2011)
JULES-altP	JULES-altP	Best *et al* (2011)
Mosaic	Mosaic	Koster and Suarez (1992, 1994)
Noah version 2.7.1	Noah 2.7	Ek *et al* (2003)
Noah version 3.2	Noah 3.2	www.ral.ucar.edu/research/land/technology/lsm.php
Noah version 3.3	Noah 3.3	www.ral.ucar.edu/research/land/technology/lsm.php
ORganizing Carbon and Hydrology In Dynamic EcosystEms	ORCHIDEE	Krinner *et al* (2005)
Table S2: Study sites. Observed mean annual precipitation (P; mm yr\(^{-1}\)), mean annual evapotranspiration (E; mm yr\(^{-1}\)) and climatological aridity index (the ratio of mean annual potential evapotranspiration to P) were determined from the available years.

Site name	Country	Lat.	Long.	Record length	Mean annual P	Mean annual E	Aridity index
Amplero*	Italy	41.90	13.61	2003-2006	853	599	1.2
Blodgett*	USA	38.90	-120.63	2000-2006	1377	671	0.9
Bugac	Hungary	46.69	19.60	2002-2006	530	458	1.6
El Saler	Spain	39.35	-0.32	2003-2005	559	554	2.5
Espirra*	Portugal	38.64	-8.60	2001-2006	660	602	2.1
Fort Peck	USA	48.31	-105.10	2000-2006	395	305	2.4
Harvard	USA	42.54	-72.17	1994-2001	1080	451	0.7
Hesse	France	48.67	7.06	1999-2006	941	288	0.9
Howard Springs*	Australia	-12.49	131.15	2002-2005	1827	1077	1.1
Howland (main)	USA	45.20	-68.74	1996-2004	817	362	1.0
Hytylää	Finland	61.85	24.29	2001-2004	461	297	1.2
Kruger	South Africa	-25.02	31.50	2002-2003	264	232	6.5
Loobos	Netherlands	52.17	5.74	1997-2006	944	482	0.8
Merbleue	Canada	45.41	-75.52	1999-2005	841	456	1.0
Mopane*	Botswana	-19.92	23.56	1999-2001	269	364	7.5
Palang*	Indonesia	2.35	111.04	2002-2003	2072	1234	0.8
Tumbarumba	Australia	-35.66	148.15	2002-2005	1281	683	0.9
University of Michigan	USA	45.56	-84.71	1999-2003	616	529	1.4

* Selected site
Figure S1: Simulated and observed (a) Edrought duration (number of drought days per year), (b) Edrought magnitude (cumulative deficit; mm yr$^{-1}$) and (c) Edrought intensity (mm) at the supplementary flux tower sites. Individual model estimates are shown as coloured bars, observations as the dotted line and the mean of all models as the solid line. Hesse and Howland are not shown as there were no simulated or observed Edroughts at these sites. We exclude Sylvania (where precipitation forcing was found to be erroneous) and El Saler 2 (an irrigated site; Haughton *et al* 2016)).
Figure S1 continued.
Figure S2: Location of flux tower sites. The names of sites presented in the main manuscript are indicated. Vegetation types were taken from Best et al (2015).
Figure S3: Simulated and observed sensible heat flux during an example one-year period. The time series show the 14-day running mean from January to December. The grey bars show 7-day precipitation totals.
References:

Balsamo G, Beljaars A, Scipal K, Viterbo P, van den Hurk B, Hirschi M and Betts A K 2009 A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System J. Hydrometeorol. 10 623–43

Best M J, Abramowitz G, Johnson H R, Pitman A J, Balsamo G, Boone A, Cuntz M, Decharme B, Dirmeyer P A, Dong J, Ek M, Guo Z, Haverd V, van den Hurk B J., Nearing G S, Pak B, Peters-Lidard C, Santanello J A, Stevens L and Vuchard N 2015 The plumbing of land surface models: benchmarking model performance J. Hydrometeorol. 16 1425–42 Online: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-14-0158.1

Best M J, Pryor M, Clark D B, Rooner G G, Essery R L H, Menard C B, Edwards J M, Hendry M A, Porson A, Gedney N, Mercado L M, Sitch S, Blyth E, Boucher O, Cox P M, Grimmond C S B and Harding R J 2011 The Joint UK Land Environment Simulator (JULES), model description-Part 1: energy and water fluxes Geosci. Model Dev. 4 677–99

Boone A, Calvet J-C and Noilhan J 1999 Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force–Restore Method J. Appl. Meteorol. 38 1611–30

Boussetta S, Balsamo G, Beljaars A, Panareda A A, Calvet J C, Jacobs C, Van Den Hurk B, Viterbo P, Lafont S, Dutra E, Jarlan L, Balzarolo M, Papale D and Van Der Werf G 2013 Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation J. Geophys. Res. Atmos. 118 5923–46

Decharme B, Boone A, Delire C and Noilhan J 2011 Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions J. Geophys. Res. Atmos. 116 1–29

Decker M 2015 Development and evaluation of a new soil moisture and runoff parameterization for the CABLE LSM including subgrid-scale processes J. Adv. Model. Earth Syst. 7

Dirmeyer P A and Zeng F J 1999 An update to the distribution and treatment of vegetation and soil properties in SSiB. COLA Tech. Rep. 78 (Calverton, MD)

Ek M B, Mitchell K E, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G and Tarpley J D 2003 Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model J. Geophys. Res. Atmos. 108 8851 Online: http://dx.doi.org/10.1029/2002JD003296

Guo Z and Dirmeyer P A 2013 Interannual Variability of Land–Atmosphere Coupling Strength J. Hydrometeorol. 14 1636–46 Online: http://journals.ametsoc.org/doi/full/10.1175/JHM-D-12-0171.1npapers3://publication/doi/10.1175/JHM-D-12-0171.1

Haughton N, Abramowitz G, Pitman A J, Or D, Best M, Johnson H R, Balsamo G, Boone A, Cuntz M, Decharme B, Dirmeyer P, Dong Z, Haverd V, van der Hurk B, Nearing G, Pak
B, Santanello J A, Stevens L E and Vuichard N 2016 The plumbing of land surface models: is poor performance a result of methodology or data quality? J. Hydrometeorol. 17 1705–23 Online: http://journals.ametsoc.org/doi/pdf/10.1175/JHM-D-15-0171.1

Haverd V and Cuntz M 2010 Soil-Litter-Iso: A one-dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction J. Hydrol. 388 438–55 Online: http://dx.doi.org/10.1016/j.jhydrol.2010.05.029

Haverd V, Cuntz M, Nieradzik L P and Harman I N 2016 Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432) Geosci. Model Dev. 9 3111-3122

Koster R D and Suarez M J 1992 Modeling the land surface boundary in climate models as a composite of independent vegetation stands J. Geophys. Res. 97 2697–715 Online: http://doi.wiley.com/10.1029/91JD01696

Koster R D and Suarez M J 1994 The components of a “SVAT” scheme and their effects on a GCM’s hydrological cycle Adv. Water Resour. 17 61–78

Kowalczyk E A, Wang Y P, Law R M, Davies H L, Mcgregor J L and Abramowitz G 2006 The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model (Aspendale, Victoria, Australia)

Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S and Prentice I C 2005 A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system Global Biogeochem. Cycles 19GB1015 Online: http://doi.wiley.com/10.1029/2003GB002199

Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Belamari S, Barbu A, Boone A, Bouyssel F, Brousseau P, Brun E, Calvet J-C, Carrer D, Decharme B, Delire C, Donier S, Essaouini K, Gibelin A-L, Giordani H, Habets F, Jidane M, Kerdraon G, Kourzeneva E, Lafaysse M, Lafont S, Lebeaufin Brossier C, Lemonsu A, Mahfouf J-F, Marguinaud P, Mokhtari M, Morin S, Pigeon G, Salgado R, Seity Y, Taillefer F, Tanguy G, Tulet P, Vincendon B, Vionnet V and Voldoire A 2013 The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes Geosci. Model Dev. 6 929–60 Online: http://www.geosci-model-dev.net/6/929/2013/

Wang Y P, Kowalczyk E, Leuning R, Abramowitz G, Raupach M R, Pak B, van Gorsel E and Luhar A 2011 Diagnosing errors in a land surface model (CABLE) in the time and frequency domains J. Geophys. Res. 116 G01034 Online: http://doi.wiley.com/10.1029/2010JG001385