Sturm – Liouville integrable operators, generated by
generalized Dunkl operators

K O Politov
State University of Humanities and Social Studies, Zelenaya St., 40, Kolomna, Russian Federation
E-mail: mr.politov.k@gmail.com

Abstract. Based on the generalized intertwining relation of Dunkl operator with operator of
differentiation, eigenfunctions for certain Sturm – Liouville operators were obtained.

1. Introduction

Dunkl differential-difference operators were introduced in paper [1]. The study of these operators
showed their significant connection with various branches of mathematics. For example, they
are closely connected with second-order differential operators, namely with Sturm – Liouville
operators theory. (See e.g. [2, 3] and works cited therein).

Paper [4] considers the problem of Dunkl generalized differential-difference operator
classification (similar operators were also considered in [5])

\[\nabla_{\kappa} = \frac{d}{dx} - \kappa(x) s \]

based on a following intertwining property

\[\nabla_{\kappa} V = V \frac{d}{dx} \]

Here \(x \in \mathbb{R}, \frac{d}{dx} \) – differentiation operator for \(\mathbb{R} \), \(s \) – inversion operator for \(\mathbb{R} \) \((sf(x) = f(-x)) \), \(\kappa(x) \) – multiplication operator for a sufficiently differentiable nonvanishable even or
odd function. \(V \) – a linear differential-difference operator which allows intertwining property
\((1.2) \) in Cherednik algebra \(A = \langle 1, x, \frac{d}{dx}, s \rangle \):

\[[1, x] = \left[1, \frac{d}{dx} \right] = [1, s] = 0, \]

\[\left[\frac{d}{dx}, x \right] = 1, [x, s] = 2x s, \left[s, \frac{d}{dx} \right] = 2 s \frac{d}{dx}. \]

Let us consider the task of Dunkl operators classification (1.1) in the case when \(V \) belongs to
the extension of \(A^* \) algebra \(A \) with the help of pseudodifferential operator \(\frac{d^{-1}}{dx^{-1}} \) [6]:

\[A^* = \left\langle A, \frac{d^{-1}}{dx^{-1}} \right\rangle, \]
Thus, the coefficients in the operators A in algebra congruence if and only if D then

\[
\begin{bmatrix}
1, \frac{d^{-1}}{dx^{-1}} \\
\frac{d^{-1}}{dx^{-1}}, \frac{d}{dx}
\end{bmatrix} = 0, \begin{bmatrix}
s, \frac{d^{-1}}{dx^{-1}} \\
\frac{d^{-1}}{dx^{-1}}, x\frac{d^{-1}}{dx^{-1}}
\end{bmatrix} = 2s \frac{d^{-1}}{dx^{-1}}, \begin{bmatrix}
x, \frac{d^{-1}}{dx^{-1}}
\end{bmatrix} = \frac{d^{-2}}{dx^{-2}}.
\]

It is required to establish, at which $\varphi(x)$ and $V \in A^*$ is fulfilled (1.2).

This requirement allows to obtain additional data on integrable operators of Sturm – Liouville type, which are in this case the constraint of Dunkl operators squares for the subspace of even \mathcal{F}_+ or odd \mathcal{F}_- functions on \mathbb{R}:

\[
\nabla^2_x = \frac{d^2}{dx^2} - \varphi(x) - \varphi'(x)s,
\]

\[
\mathcal{L}_+ = \nabla^2_{x|\mathcal{F}_+} = \frac{d^2}{dx^2} - [\varphi(x) + \varphi'(x)], \quad \mathcal{L}_- = \nabla^2_{x|\mathcal{F}_-} = \frac{d^2}{dx^2} - [\varphi(x) - \varphi'(x)].
\]

2. Intertwining condition

Let us reduce (1.1) to a set of equations on $\varphi(x)$ and operator coefficients V. The following lemma is required.

Lemma. Let

\[
D_1 = \sum_{i=0}^I f_i(x) \frac{d^i}{dx^i}, D^{-1}_1 = \sum_{k=1}^K f_k(x) \frac{d^{-k}}{dx^{-k}},
\]

\[
D_2 = \sum_{j=0}^J f_j(x) \frac{d^j}{dx^j}, D^{-1}_2 = \sum_{i=1}^L f_i(x) \frac{d^{-l}}{dx^{-l}},
\]

then

\[
D_1^{-1} + D_2^{-1}s + D_1 + D_2s = 0,
\]

if and only if $D_1 = D_1^{-1} = D_2 = D_2^{-1} = 0$.

Proof. Let $D_1^{-1} + D_2^{-1}s + D_1 + D_2s = 0$, in algebra A^*, then for $q = \max \{\deg D_1^{-1}, \deg D_2^{-1}\}$ congruence

\[
(D_1^{-1} + D_2^{-1}s + D_1 + D_2s) \frac{d^q}{dx^q} = 0
\]

in algebra A is obtained.

Let us designate via $\widetilde{D}_1 = (D_1^{-1} + D_1) \frac{d^q}{dx^q}$ and $\widetilde{D}_2 = (D_2^{-1} + D_2) \frac{d^q}{dx^q}$. Then [4] we have

\[
\widetilde{D}_1 + \widetilde{D}_2s = 0 \Leftrightarrow \widetilde{D}_1 = \widetilde{D}_2 = 0.
\]

Thus, the coefficients in the operators \widetilde{D}_1 and \widetilde{D}_2 are zero. Consequently, in operators D_1, D_1^{-1}, D_2 and D_2^{-1} the same. Sufficiency is obvious. The proof is complete.

Let us designate via

\[
V = \sum_{i=1}^N P_i(x) \frac{d^{-i}}{dx^{-i}} + \sum_{i=1}^M Q_i(x) \frac{d^{-i}}{dx^{-i}}s + \sum_{i=0}^n p_i(x) \frac{d^i}{dx^i} + \sum_{i=0}^m q_i(x) \frac{d^i}{dx^i}s,
\]

Assertion. If the operator of V kind (2.1) satisfies intertwining property (1.2), then $N = M$ and $n = m + 1$.

2
Theorem. We shall further write
\[
\sum_{i=1}^{N} P_i(x) \frac{d^{-i}}{dx^{-i}} + \sum_{i=1}^{M} Q_i(x) \frac{d^{-i}}{dx^{-i}} + \sum_{i=0}^{n} p_i(x) \frac{d^i}{dx^i} + \sum_{i=0}^{m} q_i(x) \frac{d^i}{dx^i} + \sum_{i=1}^{M} Q_i(x) \frac{d^{-i}}{dx^{-i}}
\]
\[
+ \varkappa(x) \sum_{i=1}^{N} (-1)^{i+1} P_i(-x) \frac{d^{-i}}{dx^{-i}} + \varkappa(x) \sum_{i=1}^{M} (-1)^{i+1} Q_i(-x) \frac{d^{-i}}{dx^{-i}}
\]
\[
+ \varkappa(x) \sum_{i=0}^{n} (-1)^{i+1} p_i(-x) \frac{d^i}{dx^i} + \varkappa(x) \sum_{i=0}^{m} q_i(-x) \frac{d^i}{dx^i},
\]
\[
V \frac{d}{dx} = \sum_{i=1}^{N} P_i(x) \frac{d^{-i+1}}{dx^{-i+1}} - \sum_{i=1}^{M} Q_i(x) \frac{d^{-i+1}}{dx^{-i+1}} + \sum_{i=0}^{n} p_i(x) \frac{d^{i+1}}{dx^{i+1}} - \sum_{i=0}^{m} q_i(x) \frac{d^{i+1}}{dx^{i+1}}.
\]

According to the lemma we have
\[
\begin{align*}
\sum_{i=1}^{N} P_i(x) \frac{d^{-i}}{dx^{-i}} + \varkappa(x) \sum_{i=1}^{M} (-1)^{i+1} Q_i(-x) \frac{d^{-i}}{dx^{-i}} &= 0, \\
\sum_{i=1}^{M} Q_i(x) \frac{d^{-i}}{dx^{-i}} + 2 \sum_{i=2}^{M} Q_i(x) \frac{d^{-i}}{dx^{-i}} + \varkappa(x) \sum_{i=1}^{N} (-1)^{i+1} P_i(-x) \frac{d^{-i}}{dx^{-i}} &= 0, \\
\sum_{i=0}^{n} p_i(x) \frac{d^i}{dx^i} + \varkappa(x) \sum_{i=0}^{m} (-1)^{i+1} q_i(-x) \frac{d^i}{dx^i} &= 0, \\
\sum_{i=0}^{m} q_i(x) \frac{d^i}{dx^i} + 2Q_1 + 2 \sum_{i=0}^{m} q_i(x) \frac{d^{i+1}}{dx^{i+1}} + \varkappa(x) \sum_{i=0}^{n} (-1)^{i+1} p_i(-x) \frac{d^i}{dx^i}.
\end{align*}
\]

Let us look at the second equation in the system (2.2). If \(Q_M = const\), then \(M = N\). This is contrary to the first equation of the system. At \(Q_M \neq const\) we have \(M = N\). From the fourth equation of the system (2.2) follows that \(m + 1 = n\). The proof is complete.

We shall further write
\[
V = \sum_{i=1}^{N} F_i(x) \frac{d^{-i}}{dx^{-i}} + \sum_{i=N+1}^{N+N+1} F_i(x) \frac{d^{-i+N}}{dx^{-i+N}} + \sum_{i=0}^{n} f_i(x) \frac{d^i}{dx^i} + \sum_{i=n+1}^{2n+1} f_i(x) \frac{d^{i-n-1}}{dx^{i-n-1}},
\]

where for convenience \(F(N+1)(x) \equiv 0, f_{2n+1}(x) \equiv 0\).

Theorem. The equation (1.2) for the operator (2.3) is equivalent to the system of the differential-difference equations
\[
\begin{align*}
F_i'(x) + (-1)^{i+1} \varphi(x) F_i(x) &= 0, i = 1, N, \\
F_{i+N}'(x) + 2 F_{i+N+1}(x) + (-1)^{i+1} \varphi(x) F_i(-x) &= 0, i = 1, N, \\
f_i'(x) + (-1)^{i+1} \varphi(x) f_{i+n+1}(x) &= 0, i = 0, n, \\
f_{n+1}'(x) + 2F_{N+1}(x) - \varphi(x)f_0(-x) &= 0, \\
f_{i+n+1}(x) + 2f_{i+n} + (-1)^{i+1} \varphi(x) f_i(-x) &= 0, i = 1, n.
\end{align*}
\]
Proof. As per formula (2.2), taking into account the designations (2.3), we have

\[\sum_{i=1}^{N} (F_i'(x) + (-1)^{i+1} \varphi(x)F_{i+N}(-x)) \frac{d^{-i}}{dx^{-i}} = 0, \]

\[\sum_{i=1}^{N-1} (F_{i+N}'(x) + 2F_{i+N+1}(x) + (-1)^{i+1} \varphi(x)F_i(-x)) \frac{d^{-i}}{dx^{-i}} \]

\[+ (F_{2N}' + (-1)^{N+1} \varphi(x)F_N(-x)) \frac{d^{-N}}{dx^{-N}} = 0, \]

\[\sum_{i=0}^{n-1} (f_i''(x) + (-1)^{i+1} \varphi(x)f_{i+n+1}(-x)) \frac{d^i}{dx^i} + f_n'(x) \frac{d^n}{dx^n} = 0, \]

\[f_{n+1}'(x) + \varphi(x)f_0(-x) + 2F_{n+1}(x) \]

\[+ \sum_{i=1}^{n} (f_i''(x) + 2f_{i+n} + (-1)^{i+1} \varphi(x)f_i(-x)) \frac{d^i}{dx^i} = 0. \]

Taking into account the lemma, the proof is complete.

3. Important example

Let \(N = 1, n = 1 \), then the system (2.4) shall take the form

\[
\begin{align*}
F_1'(x) + \varphi(x)F_2(-x) &= 0, \\
F_2'(x) + \varphi(x)F_1(-x) &= 0, \\
f_0'(x) - \varphi(x)f_2(-x) &= 0, \\
f_1'(x) &= 0, \\
f_2'(x) + 2F_2 - \varphi(x)f_0(-x) &= 0, \\
2f_2 + \varphi(x)f_1(-x) &= 0.
\end{align*}
\tag{3.1}
\]

Without restriction on generality it is possible to consider that \(f_1(x) \equiv 1 \). Then from the 4th equation of system (3.1) we have \(f_2 = \frac{-\varphi(x)}{2} \). It means that \(f_2'(x) = \frac{-\varphi'(x)}{2} \). Further from the third equation we get \(f_0'(x) = \frac{-\varphi(x)}{2} \in \mathcal{F}_+ \). It means that \(f_0(x) = f_0^-(x) + \text{const} \), where \(f_0^-(x) \in \mathcal{F}_- \). There are two possible cases.

3.1. The case \(f_0(x) \in \mathcal{F}_- \)

From the fifth equation of system (3.1) we get that \(F_2(x) \in \mathcal{F}_+ \). Then \(\int F_1(x)dF_1 = \int F_2(x)dF_2 \), and \(F_2^2(x) = F_1^2(x) + c_1 \).

3.1.1. The case \(c_1 = 0 \)

If \(c_1 = 0 \), then \(F_1(x) = F_2(x) \), and then, for example, from the second equation of the system (3.1) it follows

\[\frac{F_1''(x)}{F_2(x)} = -\varphi(x). \]

Taking into account that \(\varphi(x) = (\log |\varphi(x)|)' \), we get

\[\log |F_2(x)| = -\log |\varphi(x)|. \]
From the fifth equation (3.1), having put $\tilde{c} = 1$, we have

$$\kappa(x)f_0(x) = \frac{\kappa'(x)}{2} - \frac{2}{\varphi(x)}. \quad (3.2)$$

Differentiating the latter, we get

$$\kappa'(x)f_0(x) + \kappa(x)f'_0(x) = \frac{\kappa''(x)\varphi(x)}{2} + \frac{2\varphi'(x)\kappa(x)}{\varphi^2(x)}.$$

Let us multiply the obtained result by $\kappa(x)$:

$$\kappa'(x)\kappa(x)f_0(x) + \kappa^2(x)f'_0(x) = \frac{\kappa''(x)\kappa(x)}{2} + \frac{2\varphi'(x)\kappa(x)}{\varphi^2(x)}.$$

Let us plug here the equation for $\kappa(x)f_0(x)$ from (3.2):

$$\kappa'(x)\left[\frac{\kappa'(x)}{2} - \frac{2}{\varphi(x)}\right] + \kappa^2(x)f'_0(x) = \frac{\kappa''(x)\kappa(x)}{2} + \frac{2\varphi'(x)\kappa(x)}{\varphi^2(x)}.$$

taking into account $\kappa(x) = (\log |\varphi(x)|)'$, we get

$$\varphi'''(x)\varphi'(x)\varphi(x) - \varphi''(x)(\varphi'(x))^2 - (\varphi''(x))^2\varphi(x) + 4\varphi''(x)\varphi(x) = 0. \quad (3.3)$$

3.1.2. The case $c_1 = 1$

If $c_1 = 1$, then $F_1(x) = \sqrt{F_2^2(x) + 1}$ and, for example, from the second equation of the system (3.1) we get

$$\frac{F_1'(x)}{\sqrt{F_2^2(x) + 1}} = -\kappa(x).$$

Similar to point 2.1.1, we have

$$\kappa(x)f_0(x) = \frac{\kappa'}{2} - 2\left(-\frac{\varphi(x)}{2} + \frac{1}{2\varphi(x)}\right),$$

$$\kappa'(x)f_0(x) + \kappa(x)f'_0(x) = \frac{\kappa''}{2} + \frac{\varphi'(x)}{\varphi^2(x)},$$

$$\varphi'''(x)\varphi'(x)\varphi(x) - \varphi''(x)(\varphi'(x))^2 - (\varphi''(x))^2\varphi(x) + 2\varphi''(x)\varphi(x) - 2\varphi''(x)\varphi^3(x) + 4(\varphi'(x))^2\varphi^2(x) = 0. \quad (3.4)$$

3.1.3. The case $c_1 = -1$

Let then $c_1 = -1$, then

$$F_1(x) = \sqrt{F_2^2(x) - 1},$$

$$\varphi'''(x)\varphi'(x)\varphi(x) - \varphi''(x)(\varphi'(x))^2 - (\varphi''(x))^2\varphi(x) + 2\varphi''(x)\varphi(x) + 2\varphi''(x)\varphi^3(x) - 4(\varphi'(x))^2\varphi^2(x) = 0. \quad (3.5)$$
3.2. The case $f_0(x) = f_0^-(x) + c$
Suppose now that $f_0(x) = f_0^-(x) + c$, where $f_0^-(x) \in \mathcal{F}_-$, $c \in \mathbb{R} \setminus \{0\}$. From the fifth equation of the system (3.1) we get

$$f_2'(x) + 2F_2(x) + \kappa(x)f_0^-(x) - c\kappa(x) = 0.$$

Let us depict F_2 as the sum of even and odd functions

$$F_2(x) = F_2^+(x) + F_2^-(x),$$

then

$$f_2'(x) + 2F_2^+(x) + 2F_2^-(x) + \kappa(x)f_0^-(x) - c\kappa(x) = 0.$$

(3.6)

Here $f_2^+(x), 2F_2^+(x), \kappa(x)f_0^-(x) \in \mathcal{F}_+$, and $2F_2^-, c\kappa(x) \in \mathcal{F}_-$. Thus,

$$\begin{cases} 2F_2^-(x) = c\kappa(x), \\ f_2'(x) + 2F_2^+(x) + \kappa(x)f_0^-(x) = 0. \end{cases}$$

(3.7)

Further, depicting F_1 as the sum of even and odd functions

$$F_1(x) = F_1^+(x) + F_1^-(x),$$

and using the first equation from (3.7), we shall present the first two equations of the system (3.1) as follows

$$\begin{cases} (F_1^+(x))' + (F_1^-(x))' + \kappa(x)F_2^+(x) - c\kappa^2(x) = 0, \\ (F_2^+(x))' + c\kappa'(x) + \kappa(x)F_1^+(x) - \kappa(x)F_1^-(x) = 0. \end{cases}$$

(3.8)

From (2.3) we get

$$\begin{cases} (F_1^-(x))' = c\kappa^2(x), \\ \kappa(x)F_1^+(x) = c\kappa^2(x). \end{cases}$$

Where from

$$\kappa^2(x) = \left(\frac{\kappa'(x)}{\kappa(x)}\right)' = \kappa(x),'$$

(3.9)

$$\kappa^2(x) = (\log |\kappa(x)|)'.'$$

(3.10)

is easily integrated [4], and we get

$$\kappa = \pm \frac{1}{x}; \quad \kappa = \pm \frac{1}{\sinh x}; \quad \kappa = \pm \frac{1}{\sinh x}.$$

Comment. Equation (3.9) can be integrated by reduction of order, replacing $\kappa'(x) = y(\kappa)$, which reduces it to Bernoulli equation.

Thus, as a result we get the following set of nonlinear differential equations

$$\begin{bmatrix} \kappa^2(x) = (\log |\kappa(x)|)'', \\ \varphi'' \varphi' \varphi - (\varphi'')^2 \varphi - \varphi'' (\varphi')^2 + 4\varphi'' \varphi = 0, \\ \varphi'' \varphi' \varphi - (\varphi'')^2 \varphi - \varphi'' (\varphi')^2 + 2\varphi'' \varphi'' + 4(\varphi')^2 \varphi'' = 0, \\ \varphi'' \varphi' \varphi - (\varphi'')^2 \varphi - \varphi'' (\varphi')^2 + 2\varphi'' \varphi'' + 2\varphi'' \varphi'' = 0, \\ \varphi'' \varphi' \varphi - (\varphi'')^2 \varphi - \varphi'' (\varphi')^2 + 4(\varphi')^2 \varphi''^2 = 0, \end{bmatrix}$$

This set actually classifies the operators of the type (1.1): rational, hyperbolic, trigonometrical and their combinations. For example,

$$\kappa = \frac{1}{x}, \quad \kappa = \frac{1}{\sin x}; \quad \kappa = \frac{1}{\sinh x}; \quad \kappa = \frac{\sinh(2x) - 2x}{x\sinh(2x) - 2\sinh^2(x)}.$$

(3.11)
4. Solution of the equation (3.3)

In section 3.1., we got the equation (3.3) for $\varphi(x)$, provided that $f_0 \in \mathcal{F}_-$. Let us multiply it by $\frac{1}{(\varphi'(x))^2}$, then

$$\frac{\varphi''(x)\varphi'(x)\varphi(x)}{(\varphi'(x))^2} - \frac{\varphi''(x)(\varphi'(x))^2}{(\varphi'(x))^2} - \frac{(\varphi''(x))^2\varphi(x)}{(\varphi'(x))^2} + 4\frac{\varphi''(x)\varphi(x)}{(\varphi'(x))^2} = 0,$$

$$\frac{\varphi''(x)\varphi'(x)\varphi(x)(c_1 + 4x)}{\varphi'(x)\varphi^3(x)} - 2\frac{(\varphi'(x))^2(c_1 + 4x)}{\varphi^3(x)} - \frac{4\varphi'(x)\varphi(x)(c_1 + 4x)}{\varphi'(x)\varphi^3(x)} + 4\frac{\varphi'(x)(c_1 + 4x)x}{\varphi^3(x)} = -c_1 - c_1(x + 4x)\varphi'(x),$$

$$\left(\frac{(c_1 + 4x)\varphi'(x)}{\varphi^2(x)}\right)' - 4\frac{1}{\varphi(x)}\varphi'(x) - 4\left[-\frac{(c_1 + 4x)^2\varphi(x)}{4\varphi^2(x)}\varphi(x) + 4(c_1 + 4x)\varphi^2(x)\right] = 0,$$

$$\left(\frac{(c_1 + 4x)\varphi'(x)}{\varphi^2(x)}\right)' - 4\frac{1}{\varphi(x)}\varphi'(x) - 4\left[\frac{1}{2\varphi^2(x)}\varphi'(x)\right]' = 0,$$

$$\frac{(c_1 + 4x)\varphi'(x)}{\varphi^2(x)} - 4\frac{1}{\varphi(x)}\varphi'(x) - 4\left[\frac{1}{2\varphi^2(x)}\varphi'(x)\right] = c_2,$$

$$\varphi'(x) = \frac{-2c_2\varphi^2(x) - 8\varphi(x) + (c_1 + 4x)^2}{2(c_1 + 4x)^2}. \quad (4.1)$$

$$(4.1)$$ is the Riccati equation. By means of replacement $\varphi(x) = \frac{z'(c_1 + 4x)}{c_2}$ it is reduced to linear

$$z'' = \frac{-8z'}{(c_1 + 4x)} + \frac{c_2}{2}z. \quad (4.2)$$

Solving (4.2) using Kovachich algorithm [7] we get

$$z = c_3 \frac{\sinh(\frac{\sqrt{2}c_2 x}{2})}{c_1 + 4x} + \frac{c_3 \cosh(\frac{\sqrt{2}c_2 x}{2})}{c_1 + 4x}.$$

Coming back to $\varphi(x)$, we shall have

$$\varphi(x) = \frac{(\sqrt{2}c_1c_2c_3 + 4\sqrt{2}c_2c_3 - 8)\sinh(\frac{\sqrt{2}c_2 x}{2}) + (\sqrt{2}c_1c_2 + 4\sqrt{2}c_2 - 8c_3)\cosh(\frac{\sqrt{2}c_2 x}{2})}{2c_2^2 c_3 \cosh(\frac{\sqrt{2}c_2 x}{2}) + \sinh(\frac{\sqrt{2}c_2 x}{2})}.$$

Since we are interested in the odd $\varphi(x)$, we need even or odd $\varphi(x)$: $\varphi(x) = x$, only, or $\varphi(x) = \frac{2x}{\tanh(x)} - 2$.

They correspond to $\varphi(x) = \frac{1}{2}$, or $\varphi(x) = \frac{\sinh(2x) - 2x}{x \sinh(2x) - 2 \sinh(x)}$.

Comment. The explicit solution of the equations (3.4) and (3.5) is not known to us, there is a numerical solution only.
5. Explicit form of the operators V

For all $\kappa(x)$, determined by the formulas (3.11), let us calculate the coefficients of the operator V, which intertwines ∇_{κ} and $\frac{d}{dx}$.

5.1. The case $\kappa(x) = \frac{1}{x}$

In accordance with the outlined in section 2, from the system (3.1)

$$f_1(x) \equiv 1, f_2(x) = -\frac{\kappa(x)}{2} = -\frac{1}{2x}, f_0'(x) = \kappa(x)f_2(-x) = \frac{1}{2x^2}$$

and

$$V = -\frac{1}{2x} + \frac{d}{dx} - \frac{1}{2x}s.$$

5.2. The case $\kappa(x) = \frac{1}{\sin x}$

From the system (3.1) we get

$$f_1(x) \equiv 1, f_2(x) = -\frac{\kappa(x)}{2} = -\frac{1}{2\sin x}, f_0'(x) = \kappa(x)f_2(-x) = \frac{1}{2\sin^2 x}$$

and

$$V = -\frac{\cot x}{2} + \frac{d}{dx} - \frac{1}{2\sin x}s.$$

5.3. The case $\kappa(x) = \frac{1}{\sinh x}$

If $\kappa(x) = \frac{1}{\sinh x}$, then

$$V = -\frac{\coth x}{2} + \frac{d}{dx} - \frac{1}{2\sinh x}s.$$

5.4. The case $\kappa = \frac{\sinh(2x)-2x}{\sinh(2x)-2\sinh^2(x)}$

If $\kappa = \frac{\sinh(2x)-2x}{x\sinh(2x)-2\sinh^2(x)}$, then

$$V = \frac{\tanh x}{2x-2\tanh x}(d^{-1}_{x} - \coth x - \frac{\sinh 2x - 2x}{2\sinh 2x - 4\sinh^2 x}(s + 1) + \frac{d}{dx}).$$

6. Eigenfunctions of the operators ∇_{κ}^2 and their Connection with Sturm – Liouville problem

From intertwining relations

$$\nabla_{\kappa} V = V \frac{d}{dx}$$

and

$$\nabla_{\kappa}^2 V = V \frac{d^2}{dx^2}$$

it is obvious that eigenfunctions of Dunkl operator and its square can be obtained. In the general case, the operator ∇_{κ}^2 shall take the form

$$\nabla_{\kappa}^2 = \frac{d^2}{dx^2} - \kappa^2 - \kappa's.$$

Thus, its restriction to the space of even F_+ or odd F_- functions is the Sturm – Liouville operator

$$\mathcal{L}_+ = \nabla_{\kappa}^2|_{F_+} = \frac{d^2}{dx^2} - [\kappa^2 + \kappa'], \quad \mathcal{L}_- = \nabla_{\kappa}^2|_{F_-} = \frac{d^2}{dx^2} - [\kappa^2 - \kappa'].$$

Based on the results from section 4 we have the following cases.
6.1. Rational type case [8]

\[\varphi(x) = \frac{1}{x}; \nabla \varphi = \frac{d}{dx} - \frac{1}{x}s; \nabla^2 \varphi = \frac{d^2}{dx^2} + \frac{1}{x^2}(s - 1), \]

\[V = -\frac{1}{2x} + \frac{d}{dx} - \frac{1}{2x}s. \]

Based on direct calculations get that

\[V[\sinh x] = \cosh x \in \mathcal{F}_+, \quad V[\cosh x] = \sinh x - \frac{\cosh x}{x} \in \mathcal{F}_-. \]

Thus, eigenfunctions for the following Sturm – Liouville operators (Lagnese – Stellmacher operators) are obtained

\[L_+ = \frac{d^2}{dx^2}, \quad L_- = \frac{d^2}{dx^2} - \frac{2}{x^2}. \]

6.2. Trigonometrical type case [9]

\[\varphi(x) = \frac{1}{\sin x}; \nabla \varphi = \frac{d}{dx} - \frac{1}{\sin x}s; \nabla^2 \varphi = \frac{d^2}{dx^2} + \frac{1}{\sin^2(x)}(\cos(x)s - 1), \]

\[V = -\frac{\cot x}{2} + \frac{d}{dx} - \frac{1}{2\sin x}s. \]

For the Sturm – Liouville operators

\[L_+ = \frac{d^2}{dx^2} - \frac{1}{2\cos^2(x/2)}, \quad L_- = \frac{d^2}{dx^2} - \frac{1}{2\sin^2(x/2)}. \]

the corresponding eigenfunctions have the following form

\[V[\sinh(x)] = \cosh(x) + \frac{1}{2}\tan(x/2)\sinh(x), \quad V[\cosh(x)] = \sinh(x) - \frac{\cot(x/2)\cosh(x)}{2}. \]

6.3. Hyperbolic type case [9]

\[\varphi(x) = \frac{1}{\sinh x}; \nabla \varphi = \frac{d}{dx} - \frac{1}{\sinh x}s; \nabla^2 \varphi = \frac{d^2}{dx^2} + \frac{1}{\sinh^2(x)}(\cosh(x)s - 1), \]

\[V = \frac{d}{dx} - \frac{1}{2\sinh(x)}(s + \cosh(x)). \]

Eigenfunctions of the operators

\[L_+ = \frac{d^2}{dx^2} + \frac{1}{2\cosh^2(x/2)}, \quad L_- = \frac{d^2}{dx^2} - \frac{1}{2\sinh^2(x/2)}. \]

have the following form

\[V[\sinh(x)] = \cosh^2(x/2), \quad V[\cosh(x)] = \frac{\sinh(x) - \coth(x/2)}{2}. \]
6.4. Mixed type case [10]
For
\[x(x) = \frac{\sinh(2x) - 2x}{x \sinh(2x) - 2 \sinh^2(x)} \]
we have
\[\nabla_x^2 = \frac{d^2}{dx^2} + \left(\frac{\sinh(2x) - 2x}{x \sinh(2x) - 2 \sinh^2(x)} \right)^2 (s - 1) - \frac{2}{\sinh^2(x)} s, \]
\[V = \frac{\tanh x}{2x - 2 \tanh x} \left(\frac{d^{-1}}{dx} + 1 \right) - \coth x - \frac{\sinh 2x - 2x}{2 \sinh 2x - 4 \sinh^2 x} (s + 1) + \frac{d}{dx}. \]
Direct calculations show that \(V[\sinh x] = V[\cosh x] = 0. \)

Sturm – Liouville eigenfunctions
\[L_+ = \frac{d^2}{dx^2} - \frac{2}{\sinh^2(x)}, \quad L_- = \frac{d^2}{dx^2} - 2 \left(\frac{\sinh(2x) - 2x}{x \sinh(2x) - 2 \sinh^2(x)} \right)^2 + \frac{2}{\sinh^2(x)}. \]
have the following form
\[V[\text{sgn} x \cosh(x)] = -\frac{1}{\sinh|x|}, \quad V[\sinh|x|] = \frac{|x|}{x \cosh(x) - \sinh(x)}. \]

Acknowledgments
I hereby would like to express my acknowledgment to Savelev Sergey, Associate Professor, PhD for his assistance in drafting the English version of this article. The author would also like to thank the participants of the Seminar on Analytic Theory of Differential Equations at Steklov Mathematical Institute of Russian Academy of Sciences.

References
[1] Dunkl C F 1989 Differential-difference operators associated to reflection groups Trans. Math. Soc. 311 pp 163-83.
[2] Levitan B M, Sargasyan I S 1988 Sturm – Liouville and Dirac operators (Moscow: Science) p 432
[3] Berest Y Y and Veselov A P 1994 Huygens’ principle and integrability Uspekhi Mat. Nauk 49:6(300), pp 7–78
[4] Mescheryakov V V Khekalo S P 2013 Proc. Conf. Differential equations and related questions (Kolomna: State University of Humanities and Social Studies)
[5] Khekalo S P 2017 Dunkl-Darboux differential-difference operators Izv. RAN. Ser. Mat. 81 :1 pp 161–82
[6] Politov K O 2017 Proc. Int. Conf. dedicated to Krein’s 100th anniversary (Voronezh: VSU publishing)
[7] Kovacic J J 1986 An algorithm for solving second order linear homogeneous differential equations J. Symbolic Comput. 2 no. 1 pp 3–43. MR 839134 (88c:12011).
[8] Lagnese J E and Stellmacher K L 1967 A method of generating class of Huygens’ operators J. Math. Mech. V. 17 N 5 pp 461–72.
[9] Landau L D and Lifshitz E M 1965 Course of Theoretical Physics: Vol. 3, Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press) p 72
[10] Khekalo S P and Politov K O 2018 Proc. Int. Conf. on differential equations and dynamical systems (Vladimir: Arkaim) p 163