Complete mitochondrial genome and phylogenetic analysis of black-fin stream jewel goby *Stiphodon percnopterygionus* (Gobiiformes: Gobiidae) from Taiwan

Tonisman Harea and I-Shiung Chen

Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC

ABSTRACT

The complete mitochondrial genome of the black-fin stream jewel goby *Stiphodon percnopterygionus* has been amplified and sequenced. The whole mitochondrial genome is 16,502 base pairs (bp) in total length and consisting of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and 1 control region (CR). The overall base composition is 28.1% for A, 17.1% for G, 28.7% for C and 26.0% for T with AT comprising 54.1%. A phylogenetic tree was constructed using mitochondrial protein-coding genes (PCGs) sequence data for 34 related taxa of the order Gobiiformes showed that *S. percnopterygionus* is closely related to *S. tuivi*. These findings will contribute for phylogenetic, phylogeography and further genetic studies in genus *Stiphodon* and related gobiiid fishes.

KEYWORDS

Mitogenome; Gobiidae; phylogenetic analysis; *Stiphodon percnopterygionus*;

ARTICLE HISTORY

Received 3 October 2021
Accepted 26 October 2022

CONTACT

I-Shiung Chen (iscfish@gmail.com) Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
separated by the tRNA-Val gene. The control region (D-loop) was 841 bp in length, located between the tRNA-pro and tRNA-Phe genes.

Phylogenetic analysis of *Stiphodon percnopterygionus* and its relatives was performed using maximum likelihood (ML) and Bayesian inference (BI) methods based on the sequences of 13 mitochondrial PCGs from 34 taxa of the order Gobiiformes retrieved from GeneBank. ML and BI analysis were conducted using standard RAxML (Stamatakis 2014) and MrBayes (Ronquist et al. 2012), respectively. ML was performed with 1000 bootstrap replicates and BI was performed as follow: Markov chains were run for 5,000,000 generations with trees being sampled every 500 generations, four chains and a burn-in step for the first 500 generations. GTR + G + I was used as the substitution model based on Akaike Information Criterion (AIC) estimated by MrModeltest (Nylander 2004). The phylogenetic tree (Figure 1) confirms that the 28 taxa were found within Gobiidae clade and remains constituted Eleotridae clade, and Rhyacichthyidae clade which is concordant with the result previous classifications of Order Gobiiformes (Pezold 1993; Gill and Mooi 2012; Agorreta et al. 2013; Fricke et al. 2022). The tree also demonstrated that, *S. percnopterygionus* is most closely related to *S. tuivi*. The further phylogenetic approach of the congeners would be in process to facilitate the detailed phylogenetic perspectives of *Stiphodon*.

Author contributions

Tonisman Harefa: Conception and design, PCR experiments, analysis and interpretation of the data, drafting of manuscript, revising manuscript, final approval of the version to be published. I-Shiung Chen: Conception and design, analysis and interpretation of the data, revising manuscript, final approval of the version to be published. All authors agree to be accountable for all aspects of the work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Forestry Bureau Fund, Agriculture Council, Taipei and also partial support from Yangmingshan National Park, Taipei, Taiwan. The authors are responsible for the content and writing of this paper.

ORCID

Tonisman Harefa http://orcid.org/0000-0003-2308-8669

Data availability statement

Mitochondrial genome sequence can be accessed via accession number MW548257 in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MW548257. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA786405, SRR19216410, and SAMN23671125, respectively.

Ethic approval

Collection of fish sample was approved under the project grant No. 1050707 issued by Yangmingshan National Park, Taipei, Taiwan.

References

Agorreta A, San Mauro D, Schliewen U, Van Tassell JL, Kovačić M, Zardoya R, Rüber L 2013. Molecular phylogenetics of Gobioidi and
phylogenetic placement of European gobies. Mol Phylogenet Evol. 69(3):619–633.

Chen IS, Fang LS. 1999. The freshwater and estuarine fishes of Taiwan. Pingtung: National Museum of Marine Biology and Aquarium Press; p. 1–287 (in Chinese).

Chen IS, Wen ZH. 2016. The complete mitochondrial genome of whiskered eel goby Taenioides ciratus (Perciformes, Gobiodei). Mitochondrial DNA A DNA Mapp Seq Anal. 27(2):1509–1511.

Chiang TY, Chen IS, Lin HD, Chang WB, Ju YM. 2013. Complete mitochondrial genome of Sicyopterus japonicus (Perciformes, Gobiidae). Mitochondrial DNA A. 24(3):191–193.

Chiang T-Y, Chen I-S, Lin H-D, Hsiao S-T, Ju Y-M. 2015. Complete mitochondrial genome of the amphidromous, red tailed goby Sicyopterus lagocephalus (Pallas) (Teleostei, Gobiidae). Mitochondrial DNA A. 26(5):670–671.

Fricke R, Eschmeyer WN, Van der Laan R. 2022. Eschmeyer's catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research Ichthyology/catalog/fishcatmain.asp, version (12/09/2022).

Fricke R, Pauly D. 2021. Fish base. World Wide Electronic Publication. http://www.fishbase.org, version (10/08/2021).

Gill AC, Mooi RD. 2012. Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with revised definition its sister taxon, the Gobiidae (Teleostei: Acanthomorpha). Zootaxa. 3266(1):41–52.

Herre AWCT. 1936. Fishes in the zoological museum of Stanford University, III. New genera and species of gobies and blennies and a new Myxus, from the Pelew Islands and Celebes. Philipp J Sci. 59:275–287.

Huang SP, Shen CN, Chen IS. 2015a. The complete mitochondrial genome of the Abe’s mangrove goby Mugilogobius abei (Teleostei, Gobiidae). Mitochondrial DNA A. 26(1):143–144.

Huang SP, Shen CN, Chen IS. 2015b. The complete mitochondrial genome of the Java fat-nose goby Pseudogobius javanicus (Teleostei, Gobiidae). Mitochondrial DNA A. 26(1):159–161.

Huang SP, Shen CN, Chen IS. 2016a. The complete mitochondrial genome of the Redigoby Redigobius bikolanus (Perciformes, Gobiidae). Mitochondrial DNA A DNA Mapp Seq Anal. 27(1):525–526.

Huang SP, Chen IS, Jang-Liaw NH, Shao KT, Yung MMN. 2016c. Complete mitochondrial reveals a new phylogenetic perspective on the brackish water goby Mugilogobius group (Teleostei: Gobiidae: Gobiinelinae). Zoolog Sci. 33(5):566–574.

Huang SP, Chen IS, Shen CN. 2016b. The complete mitochondrial genome of the small-scaled Wu’s goby Wuhanlingobius polyplepis. Mitochondrial DNA A DNA Mapp Seq Anal. 27(6):3823–3825.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Lord C, Bellec L, Dettaï A, Bonillo C, Keith P. 2019. Does your lip stick? Evolutionary aspects of the mouth morphology of the Indo-Pacific clinging goby of the Sicyopterus genus (Teleostei: Gobiodei: Sicydiinae) based on mitogenome phylogeny. J Zool Syst Evol Res. 57(4):910–925.

Lord C, Maeda K, Keith P, Watanabe S. 2015. Population structure of the Asian amphidromous Sicydiinae goby, Stiphodon percnopterygionus, inferred from mitochondrial COI sequences, with comments on larval dispersal in the northwest Pacific Ocean. Vie Milieu Life Environ. 65(2):63–71.

Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44(W1):W54–W57.

Maeda K, Mukai T, Tachihara K. 2011. A new species of amphidromous goby, Stiphodon alcedo, from the Ryukyu Archipelago (Gobiidae: sicydiinae). Cybium. 35(4):285–298.

Maeda K, Palla HP. 2015. A new species of the genus Stiphodon from Palawan, Philippines (Gobiidae: Sicydiinae). Zootaxa. 4018(3):381–395.

Miyata M, Nishida M. 1999. Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes); first example of transfer RNA gene rearrangements in bony fishes. Mar Biotechnol. 1(5):416–4026.

Nakabo T. 2013. Fishes of Japan with pectoral keys to the species. 3rd ed. Hadano: Tokai University Press; p. 2428 (in Japanese).

Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre Uppsala University.

Pezold F. 1993. Evidence for monophyletic Gobiinae. Copeia. 1993(3):634–643.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Watson RE. 1995. Gobies of the genus Stiphodon from French Polynesia, with descriptions of two new species (Teleostei: Gobiidae: Sicydiinae). Ichthyol Explor Freshw. 6:33–48.

Watson RE, Chen IS. 1998. Freshwater gobies of the genus Stiphodon from Japan and Taiwan (Teleostei: Gobiidae: Sicydiinae). Aqua J Ichthyol Aquat Biol. 3:55–68.

Wen ZH, Chen IS. 2016. The complete mitochondrial genome of spotted hidden-teeth goby Apycryptodon punctatus Tomiyama (Perciformes, Gobiidae). Mitochondrial DNA A DNA Mapp Seq Anal. 27(1):607–608.

Yamazaki N, Maeda K. 2007. Pelagic larval duration and morphology at recruitment of Stiphodon percnopterygionus (Gobiidae: Sicydiinae). Raffles Bull Zool. 14:209–214.

Yamazaki N, Tachihara K. 2006. Reproductive biology and morphology of eggs and larvae of Stiphodon percnopterygionus (Gobiidae: Sicydiinae) collected from Okinawa Island. Ichthyol Res. 53(1):13–18.