Gene Activation as a Cell Protection Mechanism Against Gamma-Ray radiation

Abdolrahim Nikzamir1, Mostafa Rezaei Tavirani2*, Zahra Razzaghi3, Mohammad Rostami-Nejad4, Mostafa Hamdieh5, Babak Arjmand6

1Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Department of Psychosomatic, Taleghani Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

*Correspondence to
Mostafa Rezaei Tavirani,
Proteomics Research Center,
Faculty of Paramedical Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Email: tavirany@yahoo.com

Published online December 30, 2020

Abstract

Introduction: Gamma radiation is accompanied by prominent biological effects and damages. Cell proliferation and tumorigenesis are highlighted as the main resulted effects of gamma radiation on cultured cells. This study aims to assess the dysregulated mode of gene function after gamma radiation in human Jurkat cells.

Methods: Six gene expression profiles from Gene Expression Omnibus (GEO) were analyzed by GEO2R to find the significant differentially expressed genes (DEGs) via gamma radiation. Action map analysis was applied to screen the query DEGs.

Results: Among 108 study genes, 20 critical DEGs including AURKA, AURKB, BORA, CCNB1, CCNB2, CCNF, CDC20, CDCA8, CENPA, CENPE, CENPF, KIF18A, KIF20A, KIF23, BUB1, DLGAP5, ECT2, PLK1, SGO2, and TPX2 were introduced as down-regulated genes by the gamma ray.

Conclusion: Activators of the introduced critical genes may be the cell protector against gamma radiation.

Keywords: Gamma ray; Human Jurkat cell; Activation; Action map; Gene.

Introduction

There are pieces of evidence about various types of damages after exposure to ionized radiation, especially among the survivors of Hiroshima and Nagasaki atomic bombs and the Chernobyl nuclear accident, and studies which are administrated in the treated people after radiotherapy.1-4 Different models of damages after ionized radiation have been presented, mostly focused on the DNA and chromosome damages. Effects on protein and lipid molecules have also been investigated to find a clear concept for the mechanism of the radiation effect on biological systems.5-7

Since gene expression profiles in normal and pathological conditions are different, it is reasonable that stress conditions such as radiation can alter gene expression in the irradiated samples.8,9 Today advances in proteomics and genomics provide useful methods for assessing the alteration of gene expression profiles after exposure to ionized radiation. In such experiments, the expression changes of the genome before and after radiation have been investigated and the dysregulated genes and also the rate of dysregulation have been identified. The results of these types of evaluations indicate that large numbers of genes are dysregulated.10,11

Bioinformatics abilities in the study of complex systems led to widespread penetration of this field in medical investigations. Since gene regulation and genomic study provide complex data, bioinformatics and system biology are a useful approach to analyzing the findings of genomics and proteomics investigations.12,13 Network analysis as a bioinformatics and system biology approach is used to analyze large numbers of dysregulated genes, proteins, and metabolites. Such analysis leads to find the critical macromolecules which are related to the studied diseases.8,14,15 Action map analysis can make available valuable information about the biological relationship between the studied gens. In such analysis, activation, inhibition, regulation, binding, catalysis, and reaction
properties of the studied genes relative to the neighbors are determined to elucidate the role of the candidate gene in the interaction with the neighbors. Since protection against ionized radiation is important for human health care, in the present study the gene profiles of human Jurkat cells after being exposed to 10 Gy γ-ray relative to the controls from GEO are analyzed via action map analysis to find the critical dysregulated genes and also the mode of damages.

Materials and Methods
GSE10422/GPL6480 was extracted from GEO. GSM2792815-17 were selected as the control sample (in the absence of γ irradiation) and GSM2792818-20 were nominated as irradiated samples with 10 Gy γ-ray. The human Jurkat cells from the T lymphoma cell line were treated with 0 and 10 Gy γ-ray irradiation and after 6 hours they were investigated to find gene expression changes. The samples were prepared from six 14-year-old boys.

Gene expression profiles were matched statistically by the GEO2R program and the 250 top differentially expressed genes (DEGs) considering p-value were assigned for more analysis. 31 uncharacterized DEGs were omitted, and based on the fold change cutoff equal to 1.5, 123 significant DEGs among 219 characterized genes were determined to be investigated in the next steps. If there were several isomers, one of them, which was determined with maximum expression change, was considered for analysis and the others were ignored. 15 isomers were deleted and finally, 108 DEGs were candidates to be assessed. In the case of introducing more than 1 gene for one spot, the first individual was considered. P value < 0.001 was the criterion of statistical analysis.

The action map including regulation, inhibition, and activation actions for the 108 candidate DEGs was provided by CluePedi application of Cytoscape software. The isolated DEGs were separated from the others and the connected DEGs were studied in the form of regulatory networks.

Results
The matched gene expression profiles are shown in Figure 1. Distribution of gene expression amounts of the 6 studied profiles are median center and are comparable in the next steps of analysis. 70 DEGs which are shown in Figure 2 were isolated (without any interaction with the other genes). As it is shown in Figure 3, PDGFA, KIT, LEPR, and SOCS3 formed a limited network and LAMC1, ITGB, and LAMA3 the other network. PSMC3LIP with DMC and UCP1 with SESN2 were paired. These limited networks included 11 DEGs. One of the 27 remained DEGs was not identified by CluePedia and the other 26 individuals were presented as the main connected component (see Figure 4). Since the main action type was activation, the 20 DEGs which were involved in the main connected component and functioned as activator or activated genes were shown in the separated subnetwork (see Figure 5). The properties of these 20 genes are tabulated in Table 1.

Discussion
Proteomic analysis is performed to discover latent aspects
of gamma radiation. Network exploration and pathway examination provide detailed information about the effect of gamma radiation on protein expression. In the present study, gene expression changes of human Jurkat cells in the presence and absence 10 Gy gamma-ray irradiation were investigated. As it is shown in Figure 1, the distribution of gene expression values for all samples is statistically comparable. The median centric distribution of the data in the box plot presentation indicates that the studied samples are similar with the different pattern of gene expression which reflects the effect of gamma radiation. As it is shown in Figures 3 and 4. Since 26 genes among the 37 DEGs (about 70% of the interacted genes) were presented in the main connected component, we focused on the main connected component.

As it is shown in Figure 4, 4 genes (about 15% of the main connected component elements) are linked to the neighbors via regulation action. Similar analysis indicates that 10 genes (about 38% of the linked genes in the main connected component) are related to the nodes of the subnetwork by inhibition action edges. Finally, it appeared that 20 genes (about 77% of DEGs in the studied subnetwork) are connected with activation action. Since the nodes may be linked by multiple types of action edges, the total value of the percentage is more than 100%. It can be concluded that activation is the prominent relationships between the connected elements in Figure 4. In the next step of the analysis, the focus was on the activation action between the related genes, which was dysregulated after gamma-ray irradiation (see Figure 5). The importance of gene activation via certain conditions is considered by researchers in the molecular studies of the living systems.

Table 1. Properties of the 20 Activators and Activated Genes Which Are Involved in the Main Connected Component of the Action Map

Gene Symbol	Gene Title	logFC
AURKA	Aurora kinase A	-1.35
AURKB	Aurora kinase B	-0.62
BORA	Bora, aurora kinase A activator	-0.83
BUB1	BUB1 mitotic checkpoint serine/threonine kinase	-0.65
CCNB1	Cyclin B1	-1.83
CCNB2	Cyclin B2	-1.07
CCNF	Cyclin F	-0.67
CDC20	Cell division cycle 20	-1.47
CDC2A8	Cell division cycle associated B	-0.74
CENPA	Centromere protein A	-1.40
CENPE	Centromere protein E	-1.37
CENPF	Centromere protein F	-1.10
DLGAP5	DLG associated protein 5	-1.43
ECT2	Epithelial cell transforming 2	-0.66
KIF18A	Kinesin family member 18A	-0.88
KIF20A	Kinesin family member 20A	-1.78
KIF23	Kinesin family member 23	-0.65
PLK1	Polo-like kinase 1	-2.80
SCO2	Shugoshin 2	-0.67
TPX2	TPX2, microtubule nucleation factor	-0.86

Note: The genes that belong to a certain family are shown in the same colors.
are related to each other by activation edges are shown in Table 1. Fourteen genes among the 20 individuals are classified as five gene families including aurora kinase, cyclin, cell division cycle, centromere protein, and kinase family. The other 6 genes are determined as BUB1, DLGAP5, ECT2, PLK1, SGO2, and TPX2. Control of cell division and cell proliferation processes are the main functions that are attributed to the 5 introduced gene families. The importance of SGO2 phosphorylation by aurora B in cell proliferation has been reported by researchers. The significant role of BUB1, DLGAP5, ECT2, PLK1, and TPX2 in the cell cycle, cell proliferation, and tumorigenesis is highlighted by investigations in various reports. The effect of gamma radiation on cell division is a well-known concept established many years ago. Based on the findings in Figure 4 and Table 1, there are critical genes, such as CDC20, which are common between the inhibition region and the activation part. This gene is also involved in the cell cycle process. On the other hand, the main part of inhibition action is formed between the genes that are related to the cell cycle and cell proliferation.

As it is depicted in Table 1, all introduced dysregulated genes are downregulated. It is a surprising finding that the cellular damages are induced mainly by gamma radiation via suppressing the activation mode of action which is accompanied by the lack of biochemical normal function in the treated cells. The finding indicates that applying some activators such as metabolites can protect cells against gamma radiation. The role of metabolites in protection against radiation is discussed in more detail in published research studies. It can be suggested that the introduced 20 genes be considered as suitable targets to select proper activator against radiation.

Conclusion

Activation is the main action which the dysregulated genes are suffered from in the irradiated cells by the gamma ray. Aurora kinase, cyclin, cell division cycle, centromere protein, and kinase family together with BUB1, DLGAP5, ECT2, PLK1, SGO2, and TPX2 genes were introduced as the target genes for the activators to protect cells against gamma radiation.

Ethical Considerations

Not applicable.

Conflict of Interests

The authors declare no conflict of interest.

Acknowledgments

Shahid Beheshti University of Medical Sciences supports this research.

References

1. Klimov DV, Aderikhin KN. Risk factors for the development of hypertension in the liquidators of 1986-1987. *Int J Radiat Med*. 2001;3(1-2):59.
2. Wong FL, Yamada M, Sasaki H, Kodama K, Akiba S, Shimaoka K, et al. Noncancer disease incidence in the atomic bomb survivors: 1958-1986. *Radiat Res*. 1993;135(3):418-30. doi: 10.2307/3578884.
3. Soloviev AI, Tishkin SM, Parshikov AV, Ivanova IV, Goncharov EV, Gurney AM. Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilatation. *Br J Pharmacol*. 2003;138(5):837-44. doi: 10.1038/sj.bjp.0705079.
4. Sjövall K, Strömbeck G, Löfgren A, Bendahl PO, Gunnars B. Adjuvant radiotherapy of women with breast cancer—information, support and side-effects. *Eur J Oncol Nurs*. 2010;14(2):147-53. doi: 10.1016/j.ejon.2009.09.002.
5. Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. *Prog Nucleic Acid Res Mol Biol*. 1988;35:95-125. doi: 10.1016/s0079-6603(08)60611-x.
6. Bender MA, Griggs HG, Bedford JS. Mechanisms of chromosomal aberration production III. Chemicals and ionizing radiation. *Mutat Res*. 1974;23(2):197-212. doi: 10.1016/0027-5107(74)90140-7.
7. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. *Antioxid Redox signal*. 2014;21(2):260-92. doi: 10.1089/ars.2013.5489.
8. Audic S, Claverie JM. The significance of digital gene expression profiles. *Genome Res*. 1997;7(10):986-95. doi: 10.1101/gr.7.10.986.
9. Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. *Radiat Res*. 2005;164(1):17-26. doi: 10.1667/rr3354.
10. Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. *Life Sci Space Res (Amst)*. 2020;24:1-8. doi: 10.1016/j.lssr.2019.10.009.
11. Herskind C, Sticht C, Sami A, Giordano FA, Wenz F. Gene expression profiles of fibroblasts irradiated with two protocols in vitro. *Int J Radiat Oncol Biol Phys*. 2020;108(3):e512. doi: 10.1016/j.ijrobp.2020.07.1611.
12. Wood A, Kahrobaei D, Najarain K. Homomorphic encryption for machine learning in medicine and bioinformatics. *ACM Comput Surv*. 2020;53(4):70. doi: 10.1145/3394658.
13. Orlov YL, Baranova AV. Editorial: Bioinformatics of genome regulation and systems biology. *Front Genet*. 2020;11:625. doi: 10.3389/fgene.2020.00625.
14. Safari-Alighiarloo N, Taghizadeh M, Tabatabaei SM, Namaki S, Rezaei-Tavirani M. Identification of common key genes and pathways between type 1 diabetes and multiple sclerosis using transcriptome and interactome analysis. *Endocriune*. 2020;61(8):81-92. doi: 10.1007/s12020-019-02181-8.
15. Heidari MH, Razzaghi M, Akbarzadeh Baghban A, Rostami-Nejad M, Rezaei-Tavirani M, Zamanian Azodi M.
et al. Assessment of the microbiome role in skin protection against UV irradiation via network analysis. J Lasers Med Sci. 2020;11(3):238-42. doi: 10.34172/jlms.2020.40.

16. Barghi N, Bambaiechi E, Rezaei-Tavirani M, Khaledi N. Aerobic exercises induce antioxidant pathways activation in rats. Int J Prev Med. 2020;11:144. doi: 10.4103/ijpm. IJPVM_246_19.

17. Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioğlu H, Wojcik A, Harms-Ringdahl M, et al. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics. 2013;13(7):1096-107. doi: 10.1002/pmic.201200463.

18. Williamson DF, Parker RA, Kendrick JS. The box plot: a simple visual method to interpret data. Annals Intern Med. 1989;110(11):916-21. doi: 10.7326/0003-4819-110-11-916.

19. Mansouri V, Rezaei-Tavirani M, Zadeh-Esmaeel MM, Rezaei-Tavirani S, Razagahi M, Okhovatian F, et al. Analysis of laser therapy effects on squamous cell carcinoma patients: A system biology study. J Lasers Med Sci. 2019;10(Suppl 1):S1-S6. doi: 10.15171/jlms.2019.S1.

20. von Landesberger T, Gorner M, Schreck T, editors. Visual analysis of graphs with multiple connected components. 2009 IEEE symposium on visual analytics science and technology; 2009 Oct 12-13; Atlantic City, NJ, USA : IEEE. doi: 10.1109/VAST.2009.5333893.

21. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171-83. doi: 10.1016/j.molcel.2010.06.022.

22. Boettcher M, Tian R, Blau JA, Markegard E, Wagner RT, Wu D, et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol. 2018;36(2):170-8. doi: 10.1038/nbt.4062.

23. Vader G, Lens SM. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta. 2008;1786(1):60-72. doi: 10.1016/j.bbcan.2008.07.003.

24. Tyers M. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc Natl Acad Sci U S A. 1996;93(15):7772-6. doi: 10.1073/pnas.93.15.7772.

25. Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle. 2018;17(1):43-52. doi: 10.1080/15384101.2017.1387700.

26. Zeng X, Kahana JA, Silver PA, Morpwh MK, McIntosh JR, Fitch IT, et al. Slk19p is a centromere protein that functions to stabilize mitotic spindles. J Cell Biol. 1999;146(2):415-26. doi: 10.1083/fjcb.146.2.415.

27. Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, et al. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc Natl Acad Sci U S A. 1997;94(18):9654-9. doi: 10.1073/pnas.94.18.9654.

28. Tanno Y, Kitajima TS, Honda T, Ando Y, Ishiguro KI, Watanabe Y. Phosphorylation of mammalian Sgo2 by Aurora B recruits PPA2 and MCAK to centromeres. Genes Dev. 2010;24(19):2169-79. doi: 10.1101/gad.194530.

29. Shigeishi H, Oue N, Kuniyasu H, Wakikawa A, Yokozaki H, Ishikawa T, et al. Expression of Bub1 gene correlates with tumor proliferating activity in human gastric carcinomas. Pathobiology. 2001;69(1):24-9. doi: 10.1159/000048754.

30. Liao W, Liu W, Yuan Q, Liu X, Ou Y, He S, et al. Silencing of DLGAP5 by siRNA significantly inhibits the proliferation and invasion of hepatocellular carcinoma cells. PLoS One. 2013;8(12):e80789. doi: 10.1371/journal.pone.0080789.

31. Morita K, Hirono K, Han M. The Caenorhabditis elegans ect-2 RhoGEF gene regulates cytokinesis and migration of epidermal P cells. EMBO Rep. 2005;6(12):1163-8. doi: 10.1038/sj.embor.7400533.

32. Golsteyn RM, Schultz SJ, Bartek J, Ziemiecki A, Ried T, Nigg EA. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci. 1994;107(Pt 6):1509-17.

33. Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, et al. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One. 2008;3(10):e3338. doi: 10.1371/journal.pone.0003338.

34. Tansley K, Spear FG, Glücksmann A. The effect of gamma rays on cell division in the developing rat retina. Br J Ophthalmol. 1937;21(6):273-98. doi: 10.1136/bjo.21.6.273.

35. Grdina DJ, Shigematsu N, Dale P, Newton GL, Aguilera JA, Fahey RC. Thiol and disulfide metabolites of the radiation protector and potential chemopreventive agent WR-2721 are linked to both its anti-cytotoxic and anti-mutagenic mechanisms of action. Carcinogenesis. 1995;16(4):767-74. doi: 10.1038/carcin.16.4.767.

36. Dziegielewski J, Bauch JE, Goetz W, Coleman MC, Spitz DR, Murley JS, et al. WR-1065, the active metabolite of amifostine, mitigates radiation-induced delayed genomic instability. Free Radic Biol Med. 2008;45(12):1674-81. doi: 10.1016/j.freeradbiomed.2008.09.004.

37. Rhodes LE, Darby G, Massey KA, Clarke KA, Dew TP, Farrar MD, et al. Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyeicosatetraenoic acid. Br J Nutr. 2013;110(5):891-900. doi: 10.1017/S0007114512006071.