Supporting Information

for

Highly regio- and stereoselective phosphinylphosphination of terminal alkynes with tetraphenyldiphosphine monoxide under radical conditions

Dat Phuc Tran, Yuki Sato, Yuki Yamamoto, Shin-ichi Kawaguchi, Shintaro Kodama, Akihiro Nomoto and Akiya Ogawa

Beilstein J. Org. Chem. 2021, 17, 866–872. doi:10.3762/bjoc.17.72

Characterization data and copies of NMR spectra
CONTENTS

1. Characterization data S3–S10

2. Copies of NMR spectra S11–S50
1. Characterization Data

\((E)\text{-}1\text{-}(\text{diphenylphosphinyl})\text{-}2\text{-}(\text{diphenylthiophosphinyl})\text{-}\text{oct-1-ene}\ (3a)\)

\[
\begin{array}{c}
\text{Ph}_2\text{P} \\
\text{O} \\
\text{S} \\
\text{PPh}_2
\end{array}
\]

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.78-7.72 (m, 4H), 7.70-7.65 (m, 4H), 7.54-7.48 (m, 4H), 7.46-7.41 (m, 8H), 7.19 (dd, \(J_{\text{H-P}} = 27.9, 24.3\) Hz, 1H), 2.90-2.82 (m, 2H), 1.09-0.86 (m, 8H), 0.72 (t, \(J = 7.3\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 158.1 (d, \(J_{\text{C-P}} = 58.5\) Hz), 135.1 (dd, \(J_{\text{C-P}} = 88.2, 7.6\) Hz), 133.7 (d, \(J = 104.9\) Hz), 132.3 (d, \(J = 10.5\) Hz), 131.5 (d, \(J = 115.4\) Hz), 131.7, 130.9 (d, \(J = 9.5\) Hz), 128.8 (dd, \(J = 11.4, 8.6\) Hz), 31.3 (dd, \(J = 10.0, 5.8\) Hz), 31.2, 31.1, 29.5, 22.4, 14.03; \(^{31}\)P NMR (162 MHz, CDCl\(_3\)): \(\delta\) 49.6 (d, \(J_{\text{P-P}} = 56.4\) Hz), 20.26 (d, \(J_{\text{P-P}} = 56.4\) Hz); IR (KBr, cm\(^{-1}\)): 3055, 2954, 2928, 1436, 1202, 744, 719, 693, 640; HRMS (ESI+) \(m/z\) calcd for C\(_{32}\)H\(_{34}\)NaOP\(_2\)S [M+Na]+: 551.1703, found: 551.1696.

\((E)\text{-}1\text{-}(\text{diphenylphosphinyl})\text{-}2\text{-}(\text{diphenylthiophosphinyl})\text{-}\text{dodec-1-ene}\ (3b)\)

\[
\begin{array}{c}
\text{Ph}_2\text{P} \\
\text{O} \\
\text{S} \\
\text{PPh}_2
\end{array}
\]

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.79-7.71 (m, 4H), 7.70-7.65 (m, 4H), 7.54-7.48 (m, 4H), 7.46-7.41 (m, 8H), 7.20 (dd, \(J_{\text{H-P}} = 27.9, 24.0\) Hz, 1H), 2.90-2.81 (m, 2H), 1.33-0.90 (m, 16H), 0.86 (t, \(J = 7.3\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 158.1 (d, \(J_{\text{C-P}} = 58.5\) Hz), 135.1 (dd, \(J_{\text{C-P}} = 88.2, 7.6\) Hz), 133.7 (d, \(J = 104.9\) Hz), 132.3 (d, \(J = 10.5\) Hz), 131.5 (d, \(J = 115.4\) Hz), 131.7, 130.9 (d, \(J = 9.5\) Hz), 128.8 (dd, \(J = 11.4, 8.6\) Hz), 31.3 (dd, \(J = 9.5, 6.7\) Hz), 31.1, 29.9, 29.6, 29.44, 29.36, 29.0, 22.8, 14.2; \(^{31}\)P NMR (162 MHz, CDCl\(_3\)): \(\delta\) 48.9 (d, \(J_{\text{P-P}} = 58.6\) Hz), 19.6 (d, \(J_{\text{P-P}} = 58.6\) Hz); IR (KBr, cm\(^{-1}\)): 3054, 2924, 2852, 1436, 1202.
1117, 1102, 744, 693, 640, 545, 527, 498; HRMS (ESI+) m/z calcd for C\textsubscript{36}H\textsubscript{42}NaOP\textsubscript{2}S [M+Na]+: 607.2329, found: 607.2328.

\textit{(E)- 1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-5-methylhex-1-ene (3c)}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{3c.png}
\end{figure}

Colorless oil; 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 7.77-7.72\) (m, 4H), 7.70-7.66 (m, 4H), 7.54-7.49 (m, 4H), 7.47-7.42 (m, 8H), 7.27 (dd, \(J_{\text{H-P}} = 27.9, 23.8\) Hz, 1H), 2.90-2.81 (m, 2H), 1.28-1.17 (m, 1H), 0.94-0.87 (m, 2H), 0.56 (d, \(J = 6.9\) Hz, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 158.3\) (d, \(J_{\text{C-P}} = 57.5\) Hz), 135.3 (dd, \(J_{\text{C-P}} = 88.2, 7.7\) Hz), 133.8 (d, \(J = 105.4\) Hz), 132.4 (d, \(J = 9.6\) Hz), 131.5 (d, \(J = 115.0\) Hz), 131.7, 130.9 (d, \(J = 10.5\) Hz), 128.8 (dd, \(J = 12.5, 6.7\) Hz), 39.6, 29.5 (dd, \(J = 9.6, 7.7\) Hz), 28.6, 22.0; 31P NMR (162 MHz, CDCl\textsubscript{3}): \(\delta 49.6\) (d, \(J_{\text{P-P}} = 56.4\) Hz), 20.0 (d, \(J_{\text{P-P}} = 56.4\) Hz); IR (KBr, cm-1): 2955, 1436, 1198, 1102, 745, 719, 693; HRMS (ESI+) m/z calcd for C\textsubscript{31}H\textsubscript{32}NaOP\textsubscript{2}S [M+Na]+: 537.1547, found: 537.1547.

\textit{(E)-1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-5-chloropent-1-ene (3d)}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{3d.png}
\end{figure}

Colorless oil; 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 7.77-7.71\) (m, 4H), 7.69-7.34 (m, 4H), 7.56-7.52 (m, 4H), 7.48-7.44 (m, 8H), 7.27 (dd, \(J_{\text{H-P}} = 28.0, 24.0\) Hz, 1H), 3.28 (t, \(J = 6.3\) Hz, 2H), 3.03-2.94 (m, 2H), 1.63-1.56 (m, 2H); 13C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 156.7\) (d, \(J_{\text{C-P}} = 59.1\) Hz), 136.0 (dd, \(J_{\text{C-P}} = 87.3, 6.7\) Hz), 133.1 (d, \(J = 104.9\) Hz), 132.3 (d, \(J = 9.5\) Hz), 130.9 (d, \(J = 9.5\) Hz), 130.7 (d, \(J = 83.9\) Hz), 129.0 (dd, \(J = 12.4, 3.8\) Hz), 44.73, 33.7, 28.9 (dd, \(J = 10.0, 6.7\) Hz); 31P NMR (162 MHz, CDCl\textsubscript{3}): \(\delta 48.9\) (d, \(J_{\text{P-P}} = 54.1\) Hz), 20.4 (d, \(J_{\text{P-P}} = 54.1\) Hz); IR (KBr,
Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ 7.77-7.70 (m, 4H), 7.67-7.62 (m, 4H), 7.58-7.52 (m, 4H), 7.50-7.44 (m, 4H), 7.22 (dd, $J_{\text{H-P}} = 27.1$, 24.0 Hz, 1H), 3.02-2.94 (m, 2H), 2.18 (t, $J = 7.2$ Hz, 2H), 1.55-1.47 (m, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 155.8 (d, $J_{\text{C-P}} = 60.1$ Hz), 136.3 (dd, $J_{\text{C-P}} = 86.3$, 7.6 Hz), 133.1 (d, $J = 105.9$ Hz), 132.4 (d, $J = 2.9$ Hz), 132.3 (d, $J = 10.5$ Hz), 130.9 (d, $J = 9.5$ Hz), 130.6 (d, $J = 83.9$ Hz), 129.1 (d, $J = 12.4$ Hz), 119.2, 29.9 (dd, $J = 10.0$, 6.7 Hz), 27.0, 17.2; 31P NMR (162 MHz, CDCl$_3$): δ 48.6 (d, $J_{\text{P-P}} = 55.2$ Hz), 20.0 (d, $J_{\text{P-P}} = 55.2$ Hz); IR (KBr, cm$^{-1}$): 3054, 2937, 2245, 1436, 1197, 1102, 745, 720, 693, 642; HRMS (ESI+) m/z calcd for C$_{30}$H$_{27}$NNaOP$_2$S [M+Na]$^+$: 534.1186, found: 534.1186.
20.0 (d, \(J_{P-P} = 58.2 \) Hz); IR (KBr, cm\(^{-1}\)) : 3054, 2937, 1732, 1436, 1196, 1101, 744, 719, 693; HRMS (ESI+) \(m/z \) calcd for C\(_{31}\)H\(_{30}\)NaO\(_3\)P\(_2\)S \([\text{M+Na}]^+\) : 567.1289, found: 567.1289.

\((E)-1\)-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-3-phenylprop-1-ene (3i)

\[
\text{Ph}_2\text{P} = \text{Ph}_2\text{S} \\
\text{O} \\
\begin{array}{c}
\end{array}
\]

White solide; mp. 124-125 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) : \(\delta \) 7.63-7.56 (m, 8H), 7.52-7.48 (m, 2H), 7.44-7.38 (m, 6H), 7.31-7.27 (m, 4H), 7.04 (dd, \(J_{H-P} = 25.8, 23.1 \) Hz, 1H), 6.99 (d, \(J = 5.9 \) Hz, 2H), 6.87-6.80 (m, 3H), 4.89 (d, \(J = 19.0 \) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) : \(\delta \) 156.4 (d, \(J_{C-P} = 59.1 \) Hz), 136.6, 136.0 (dd, \(J_{C-P} = 87.7, 6.7 \) Hz), 133.3 (d, \(J = 104.9 \) Hz), 132.2 (d, \(J = 10.5 \) Hz), 132.1 (d, \(J = 2.9 \) Hz), 131.8 (d, \(J = 2.9 \) Hz), 130.9 (d, \(J = 9.5 \) Hz), 130.7 (d, \(J = 83.0 \) Hz), 129.6, 128.9 (d, \(J = 12.4 \) Hz), 128.5 (d, \(J = 12.4 \) Hz), 127.8, 126.1, 35.3 (dd, \(J = 10.5, 6.7 \) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) : \(\delta \) 49.8 (d, \(J_{P-P} = 54.2 \) Hz), 19.4 (d, \(J_{P-P} = 54.2 \) Hz); IR (KBr, cm\(^{-1}\)) : 3054, 2923, 1587, 1436, 1206, 1109, 741, 718, 692, 528; HRMS (ESI+) \(m/z \) calcd for C\(_{33}\)H\(_{28}\)NaOP\(_2\)S \([\text{M+Na}]^+\) : 557.1234, found: 557.1228.

\((E)-1\)-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-(2-cyclohexyl)ethene (3j)

\[
\text{Ph}_2\text{P} = \text{Ph}_2\text{S} \\
\text{O} \\
\begin{array}{c}
\end{array}
\]

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) : \(\delta \) 7.83-7.75 (m, 4H), 7.63-7.56 (m, 4H), 7.53-7.48 (m, 4H), 7.47-7.39 (m, 8H), 6.82 (dd, \(J_{H-P} = 30.4, 21.3 \) Hz, 1H), 3.02-2.91 (m, 1H), 2.28-2.18 (m, 2H), 1.65-1.46 (m, 3H), 1.39-1.30 (m, 2H), 1.28-1.18 (m, 1H), 1.03-0.92 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) : \(\delta \) 161.3 (d, \(J_{C-P} = 56.3 \) Hz), 134.6 (dd, \(J_{C-P} = 87.7, 8.6 \) Hz), 134.1 (d, \(J = 105.9 \) Hz), 132.3 (d, \(J = 10.5 \) Hz), 132.9 (dd, \(J = 13.4, 1.9 \) Hz), 131.1 (d, \(J = 83.0 \) Hz),
130.8 (d, $J = 9.5$ Hz), 128.7 (dd, $J = 12.4, 6.7$ Hz), 43.1 (dd, $J = 11.4, 5.7$ Hz), 32.6, 29.4, 25.2;

31P NMR (162 MHz, CDCl$_3$): δ 51.1 (d, $J_{P-P} = 60.6$ Hz), 18.2 (d, $J_{P-P} = 60.6$ Hz); IR (KBr, cm$^{-1}$): 3055, 2927, 2852, 2226, 1436, 1200, 1117, 1102, 734, 720, 694, 645; HRMS (ESI+) m/z calcd for C$_{32}$H$_{32}$NaOP$_2$S [M+Na]$^+$: 549.1547, found: 549.1547.

(E)-1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-2-(4-florophenyl)ethene (3k)

![structure](image)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ 7.78-7.73 (m, 4H), 7.56 (dd, $J_{H-P} = 24.9, 20.1$ Hz, 1H), 7.53-7.44 (m, 5H), 7.40-7.35 (m, 6H), 7.28-7.24 (m, 5H), 6.90 (td, $J = 6.9, 1.4$ Hz, 2H), 6.51 (t, $J = 8.7$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 162.7 (d, $J_{C-F} = 248.9$ Hz), 156.2 (d, $J_{C-P} = 60.1$ Hz), 138.3 (d, $J_{C-P} = 88.7, 9.5$ Hz), 132.5 (d, $J_{C-P} = 105.9$ Hz), 132.6 (d, $J_{C-P} = 10.5$ Hz), 132.1 (d, $J = 2.9$ Hz), 130.0 (t, $J = 4.8$ Hz), 131.8 (d, $J = 1.9$ Hz), 130.9, 130.7 (d, $J = 9.5$ Hz), 129.5 (d, $J_{C-P} = 84.9$ Hz), 128.57, 128.58 (d, $J = 21.9$ Hz), 128.0 (d, $J = 12.4$ Hz), 127.6 (d, $J = 12.4$ Hz), 114.4 (d, $J_{C-F} = 21.0$ Hz); 19F NMR (377 MHz, CDCl$_3$): δ -112.43; 31P NMR (162 MHz, CDCl$_3$): δ 47.8 (d, $J_{P-P} = 50.7$ Hz), 18.4 (d, $J_{P-P} = 50.7$ Hz); IR (KBr, cm$^{-1}$): 3057, 1600, 1503, 1436, 1229, 1187, 1099, 838, 747, 726, 692, 639, 548, 528, 503; HRMS (ESI+) m/z calcd for C$_{32}$H$_{25}$FNaOP$_2$S [M+Na]$^+$: 561.0983, found: 561.0982.

(E)-1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-2-(4-methoxyphenyl)ethene (3l)

![structure](image)
Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ 7.77-7.72 (m, 4H), 7.58 (dd, $J_{H-P} = 25.4$, 20.1 Hz, 1H), 7.56-7.51 (m, 4H), 7.50-7.45 (m, 2H), 7.41-7.36 (m, 6H), 7.32-7.27 (m, 4H), 6.85 (dd, $J = 8.7$, 1.8 Hz, 2H), 6.39 (d, $J = 8.2$ Hz, 2H), 3.65 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 159.4, 152.6 (d, $J_{C-P} = 59.4$ Hz), 138.9 (dd, $J_{C-P} = 73.3$, 11.0 Hz), 132.9 (d, $J = 105.9$ Hz), 132.7 (d, $J = 10.5$ Hz), 131.63 (d, $J = 2.9$ Hz), 131.57 (d, $J = 3.8$ Hz), 132.0 (d, $J = 2.9$ Hz), 131.9, 131.7 (dd, $J = 8.6$, 2.9 Hz), 131.4, 131.3, 130.2 (d, $J = 83.4$ Hz), 128.6 (d, $J = 12.5$ Hz), 128.4 (d, $J = 13.4$ Hz), 124.8, 112.7, 55.2; 31P NMR (162 MHz, CDCl$_3$): δ 47.5 (d, $J_{P-P} = 52.0$ Hz), 17.90 (d, $J_{P-P} = 52.0$ Hz); IR (KBr, cm$^{-1}$): 3053, 2924, 1605, 1505, 1436, 1250, 1180, 1099, 748, 719, 693, 640; HRMS (ESI+) m/z calcd for C$_{33}$H$_{28}$NaO$_2$P$_2$S [M+Na]$^+$: 573.1183, found: 573.1183.

(E)-1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-2-(4-tert-butylphenyl)ethene

(3m)

White solid; mp. > 250 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.74-7.68 (m, 4H), 7.64 (dd, $J_{H-P} = 25.7$, 19.7 Hz, 1H), 7.53-7.44 (m, 6H), 7.39-7.32 (m, 6H), 7.28-7.24 (m, 4H), 6.83 (d, $J = 8.2$ Hz, 2H), 6.78 (dd, $J = 8.7$, 1.4 Hz, 2H), 1.41 (s, 9H); 13C NMR (100 MHz, CDCl$_3$): δ 156.8 (d, $J_{C-P} = 70.9$ Hz), 151.3, 138.2 (dd, $J_{C-P} = 89.1$, 8.6 Hz), 133.0 (d, $J = 106.4$ Hz), 132.7 (d, $J = 10.54$ Hz), 132.0 (d, $J = 2.9$ Hz), 131.5 (d, $J = 1.9$ Hz), 130.8 (d, $J = 9.6$ Hz), 130.1 (d, $J = 84.35$ Hz), 129.9 (d, $J = 3.8$ Hz), 128.5 (dd, $J = 12.5$, 7.7 Hz), 124.2, 34.5, 31.2; 31P NMR (162 MHz, CDCl$_3$): δ 48.5 (d, $J_{P-P} = 52.0$ Hz), 18.9 (d, $J_{P-P} = 52.0$ Hz); IR (KBr) 3051, 2924, 1605, 1436, 1250, 1180, 1099, 748, 719, 693, 640; HRMS (ESI+) m/z calcd for C$_{36}$H$_{34}$NaOP$_2$S [M+Na]$^+$: 599.1703, found: 599.1702.
(E)-1-(diphenylphosphinyl)-2-(diphenylthiophosphinyl)-2-(4-octylphenyl)ethene (3n)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ 7.74-7.68 (m, 4H), 7.66 (dd, $J_{\text{H-P}}$ = 25.4, 20.2 Hz, 1H), 7.55-7.49 (m, 4H), 7.46-7.43 (m, 2H), 7.38-7.33 (m, 6H), 7.29-7.24 (m, 4H), 6.76 (dd, J = 7.8, 1.4 Hz, 2H), 6.63 (d, J = 7.8 Hz, 2H), 2.36 (t, J = 7.6 Hz, 2H), 1.46-1.36 (m, 2H), 1.31-1.21 (m, 10H), 0.88 (t, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 156.9 (d, $J_{\text{C-P}}$ = 58.5 Hz), 143.4, 138.0 (dd, $J_{\text{C-P}}$ = 89.1, 9.6 Hz), 133.0 (d, $J_{\text{C-P}}$ = 106.4 Hz), 132.7 (d, J = 9.6 Hz), 131.9 (d, J = 1.9 Hz), 131.5 (d, J = 2.9 Hz), 130.8 (d, J = 10.5 Hz), 130.6 (d, J = 8.6 Hz), 129.99 (d, J = 84.4 Hz), 129.95 (d, J = 3.8 Hz), 128.4 (dd, J = 12.5, 6.7 Hz), 127.3, 35.6, 32.0, 31.3, 29.5, 29.4, 29.3, 22.8, 14.2; 31P NMR (162 MHz, CDCl$_3$): δ 48.4 (d, $J_{\text{P-P}}$ = 52.0 Hz), 18.9 (d, $J_{\text{P-P}}$ = 52.0 Hz); IR (KBr, cm$^{-1}$): 2925, 2854, 1437, 1186, 1106, 720, 693; HRMS (ESI+) m/z calcd for C$_{40}$H$_{42}$NaOP$_2$S [M+Na]$^+$: 655.2329, found: 655.2329.

(3o)

White solid; mp. 89-90 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.80-7.75 (m, 4H), 7.68 (dd, $J_{\text{H-P}}$ = 30.2, 19.2 Hz, 1H), 7.56-7.52 (m, 4H), 7.45-7.47 (m, 2H), 7.30-7.39 (m, 8H), 7.06 (d, J = 8.2 Hz, 2H), 6.93 (dd, J = 8.2, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 152.3 (d, $J_{\text{C-P}}$ = 59.1 Hz), 141.0 (dd, $J_{\text{C-P}}$ = 72.5, 9.5 Hz), 132.8 (d, J = 10.5 Hz), 132.7 (d, J = 4.8 Hz), 132.4, 132.3 (d, J = 5.7 Hz), 132.1, 131.8, 131.7 (d, J = 78.2 Hz), 131.6 (d, J = 8.6 Hz), 131.5 (d, J = 10.5 Hz), 131.3 (d, J = 2.9 Hz), 130.8 (d, J = 2.9 Hz), 130.2 (d, J = 84.9 Hz),
128.9, 128.6 (d, $J = 12.4$ Hz), 128.5 (d, $J = 12.4$ Hz), 128.4 (d, $J = 13.4$ Hz), 127.6, 127.0, 126.8 (d, $J = 68.6$ Hz), 125.8; 31P NMR (162 MHz, CDCl$_3$): δ 48.4 (d, $J_{P-P} = 52.0$ Hz), 18.9 (d, $J_{P-P} = 52.0$ Hz); IR (KBr, cm$^{-1}$): 3053, 1482, 1436, 1185, 1099, 719, 692, 642, 545, 509; HRMS (ESI+) m/z calcd for C$_{40}$H$_{42}$NaOP$_2$S [M+Na]$^+$: 655.2329, found: 655.2329.
2. Copies of NMR spectra

![NMR spectra diagram]
abundance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X : parts per Million : Carbon13

Ph$_2$P$_2$O

nHex

S3PPh$_2$

3a
Ph₂P-OⁿDec

S-PPh₂

3b

 abuncl1.0 2.0 3.0

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0...

1.016

0.997

0.981

0.962

0.944

0.925

0.910

0.878

0.860

0.842

16.18

8.20

4.08

4.00

3.99

3.24

1.94

1.11

1.01

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.90

0.89

0.88

0.87

0.86

0.85
abundance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X : parts per Million : Carbon13
170.0 160.0 150.0 140.0 130.0 120.0 110.0 ...
128.827
128.740
77.486
77.160
76.844
31.970
31.280
31.107
29.919
29.555
29.440
29.364
29.009
22.782
14.236
abundance
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
X : parts per Million : Phosphorus31
100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0
49.741
49.366
20.197
19.848
abundance
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
X : parts per Million : Proton
8.0 7.0 6.0 5.0 4.0 3.0 ... 8
3.009
2.986
2.964
2.944
1.632
1.615
1.603
1.594
1.575
1.557
1.535
8.404.34
4.074.03
2.00
1.96
2.04
1.17
abundance
0 0.1 0.2 0.3 0.4 0.5 0.6
X : parts per Million : Carbon13
170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 ... 29
132.295
132.189
130.906
130.810
130.082
129.191
129.066
119.246
77.486
77.160
76.844
29.814
26.969
17.197
abundance

X : parts per Million : Proton

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

3g
$\text{Ph}_2\text{P} - \sigma - \text{Ph}_2\text{P}$

3k
\text{X : parts per Million : Phosphorus31}
Abundance

Parts Per Million (ppm)	Peak Intensity
7.425	6.0
7.417	4.0
7.402	2.0
7.395	1.0
7.388	1.0
7.281	1.0
7.273	1.0
7.260	1.0
7.047	4.0
6.474	2.0
8.06	2.0
7.04	2.0
4.00	2.0
4.00	2.0
2.09	2.0
2.00	2.0
2.03	2.0
0.97	

Chemical Structure

![Chemical Structure Image]

30

X: parts per Million; Proton
