NF-κB and Its Regulators During Pregnancy

Fernando Gómez-Chávez,1,2,3*, Dolores Correa,4 Pilar Navarrete-Meneses,5 Juan Carlos Cancino-Díaz,6 Mario Eugenio Cancino-Díaz7 and Sandra Rodríguez-Martínez7

1 Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, México City, Mexico, 2 Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City, Mexico, 3 Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico, 4 Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico, 5 Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico, 6 Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico, 7 Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico

The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.

Keywords: NF-κB, NF-κB regulation, IκBNS, IκBζ, Bcl-3, pregnancy, reproductive system

INTRODUCTION

According to global statistics, the leading cause of infant mortality and morbidity is premature labor (1). Worldwide, it is estimated that 1/10 of all pregnancies end preterm (2). According to the annual summary of vital statistics 2011-2012 of the American Academy of Pediatrics, 11.72% of all pregnancies in the United States end preterm, representing a 10.5% incidence increase from 1990 to 2012 (3). In developing countries, such as Mexico, the average preterm birth rate is similar to that in developed countries; however, this percentage can be as high as 40% in the poorest regions (4). Failure in identifying molecular mechanisms that limit and regulate the trigger of delivery has hampered its timely diagnosis, prevention, and treatment.
Labor is the last link between pregnancy and birth. It begins with the rupture of fetal membranes (chorion and amnion), followed by coordinated cervical dilation and uterine contractions, the fetus’s expulsion, and, finally, placental separation. The Nuclear Factor (NF-κB) partially induces this phenomenon, and thus, its activation before complete fetal development can cause preterm birth, increasing the risk for the mother, but especially for the fetus (5). Several studies have revealed the central role of NF-κB in labor regulation, controlling diverse pro-inflammatory cytokines that are upregulated in amniotic fluid, fetal membranes, placenta, myometrium, and cervix during normal and preterm labor (6–13). Thus, NF-κB is a cornerstone molecule that regulates the onset of labor induced by molecular stimuli such as cytokines, growth factors or hormones, but also by viral, bacterial, fungal, and parasite products (14–18).

“DELIVERY” OF NF-κB

NF-κB was first described by the group of Dr. T. David Baltimore as a component with nuclear activity (nuclear factor, “NF”) and DNA binding specificity, especially towards variations of the ten bp consensus DNA sequence of 5′-GGGRNYYYCC-3′ (in which R is a purine, Y is a pyrimidine, and N is any nucleotide), known as κB sites (19). It was initially demonstrated that NF-κB induced gene expression of the immunoglobulin kappa light-chain in antibody-producing B cells (thus the “κB” component of its name) (20). Later, it was clear that this was a family of proteins composed by two members, the NF-κB and the Rel subfamilies associated with several biological phenomena, such as immunity and development, as well as diseases like cancer and inflammatory disorders (17). These molecules are also related to pregnancy phenomena, including normal and preterm delivery (5, 21).

NF-κB FAMILY

The classic NF-κB family is composed by five members: NF-κB1 (p105/p50), NF-κB2 (p100/p52), p65 (RelA), c-rel and RelB (18) (Figure 1A). These proteins share a conserved N-terminal region designated as Rel homology domain (RHD), which mediates dimerization, binding to DNA, translocation to the nucleus, and interaction with NF-κB inhibitory proteins (IκB’s) (22, 23) (Figure 1B). The active forms of NF-κB are homo- or heterodimers of various family members (18). Twelve to 15 possible dimers formed by the NF-κB members’ interaction can bind DNA and, therefore, can regulate gene transcription (18). The diversity of combinations formed by NF-κB members contributes to the specificity of several panels of regulated genes (18, 24, 25). Due to this specificity for DNA binding sites, dimers have different protein-protein interactions with target promoters and are activated under particular physiological conditions (25).

Proteins p65, c-rel, and RelB contain transcriptional activation domains (TADs) in their C-termini, required for NF-κB dimer translocation to the nucleus (24). In contrast, family members p50 and p52 lack TADs, but can form

![FIGURE 1](image-url)
heterodimers with TAD carrying proteins, modifying the specificity for κB sites; repressing transcription by blocking κB binding sites in homodimers or promoting recruitment to other proteins containing TADs (26). Proteins p50 and p52 are generated by the proteolytic processing of their respective precursors, p105 and p100 (27). The latter are constitutively processed, although p105 is more efficiently cut. Most cells exhibit high levels of p50, whereas the levels of p52 are steadily lower (28, 29). Despite the diversity of NF-κB dimers combinations, the most prevalent NF-κB heterodimer is formed by p50 and p65, which is typically bound to one of its inhibitors in the cytoplasm of non-stimulated cells (30).

NF-κB REGULATORS

As soon as it was described, it was inferred the capability of NF-κB to interact with other molecules in the cytoplasm. The presence of NF-κB was demonstrated in the cytoplasm of non-stimulated cells by treating cell cytoplasmic fractions with dissociating agents, such as the weak detergent sodium deoxycholate (31). This observation suggested a non-covalent interaction with an inhibitory molecule responsible for maintaining NF-κB in an inactive state (31, 32). Later, these molecules capable to bind NF-κB in the cytoplasm [NF-κB inhibitor alpha (IκBα), NF-κB inhibitor beta (IκBβ) and NF-κB inhibitor epsilon (IκBε)] were described and considered as classical regulators of NF-κB activity (33–35) (Figures 1B and 2). The IκBs characteristically present ankyrin repeat domains, which interact with the RHD in NF-κB, limiting nuclear localization and DNA binding (33, 34, 36). The precursor proteins p105 and p100 also contain ankyrin repeats, and they function as IκB proteins (37–39). These considered non-classical IκBs, are importantly involved in determining the formation of new dimers of NF-κB via the processing and assembly of large complexes with IκB activity (39). Crystallographic and mechanistic studies have revealed that IκBs, specifically IκBα, acts on the dimer p50/p65, masking the nuclear localization sequence (NLS) of the p65 subunit. Although p50 NLS is still exposed in the IκBα/p50/p65 trimer, the presence of the nuclear export sequence (NES) present in IκBα and p65, results in an active nucleus to cytoplasm, and cytoplasm to nucleus shuttle of this complex (40). Because the export process is more efficient than the import process, cellular localization of IκBα bound to NF-κB is preferably in the cytoplasm of non-stimulated cells (40). IκBβ lacks NES and masks both NF-κB (p50/p65) NLS, and thus, this complex remains sequestered in the cytoplasm of non-stimulated cells (41).

Besides the classical proteins IκB, other non-classical IκB proteins share ankyrin repeats (Figure 1B). Unlike classical IκBs, these are not generally expressed in unstimulated cells, but are preferably induced after cell activation by several stimuli, like IL-1β or TLR ligands in a spatiotemporal fashion, controlling gene transcription of secondary response genes (Figure 3) (42).

![Figure 2](https://example.com/figure2.png) | NF-κB classic activation. After recognition of IL-1R or TLR ligands, MyD88 promotes activation of the IκK complex, which mediates IκB phosphorylation. IκBα phosphorylated, in turn, is ubiquitinated and delivered to the proteasome where it is degraded. NF-κB released in the cytoplasm can now translocate to the nucleus and promote transcription of several primary response genes. Most of these genes are related to inflammation such as TNFα, IL-1β, IκBζ and IκBSNS.
BCL-3 was the first cloned protein belonging to the family of non-classical IkBs. Bcl-3 was initially identified as an oncogene present in chronic lymphocytic leukemia (43). Bcl-3 was described as an inhibitor of the NF-κB activity, specifically bound to heterodimers containing the p50 subunit (44, 45). Subsequent studies revealed that Bcl-3 could also act as a transcriptional coactivator of p50 homodimers (46). It has been described that Bcl-3 is able to bind p50 and p52 homodimers, which lack TADs. In contrast to p50 and p52, Bcl-3 poses a distinctive TAD region. The binding of Bcl-3 to p50 or p52 provides the complex with transcriptional activity (47, 48). Binding of Bcl-3-p52-p52 or Bcl-3-p50-p50 complexes to their respective promoters can control the expression of the cyclin D1 and the epidermal growth factor receptor (EGFR) (49). A large study reported Bcl-3-p50-homodimer-dependent genes associated with disuse muscle atrophy; such genes are Trim63 (MurF1), Fbxo32 (MAFbx), Ubc, Cisl, Runx1, Tnfrsf12a (Tweak receptor) and Cxcl10 (IP-10) (50). In contrast, Bcl-3 also stabilizes homodimers of NF-κB bound to DNA, repressing its transcriptional activity (51). In this context, Bcl-3 has been involved in processes of tolerance to LPS (51). It is known that treatment of immune cells with IL-10 decreases the DNA binding of NF-κB and induces Bcl-3 expression (51). It has been suggested that Bcl-3 expression correlates with low production of TNF-α (52).

Regarding pregnancy, Bcl-3 is overexpressed in human placentas of severe early-onset preeclampsia cases (53). Recently, Bcl-3 has been reported in normal uterus of mice, where its subtle expression correlates with low production of TNF-α (54).

IKBζ

The IκBζ protein is another non-classical IκB, which exhibits greater homology to Bcl-3 than to other IκBs. The first report of this molecule was presented in a paper that sought to identify upregulated genes upon cells challenged with LPS (55). Unlike the classical IκBs, IκBζ is neither constitutively expressed nor controlled by inducible degradation, but post-transcriptionally regulated by microRNA (miR)-124a (56, 57). Kitamura et al. found that IκBζ was positioned in the nucleus upon the challenge with LPS, where it stimulated the production of IL-6 (55). Soon later, it was determined that IκBζ was also induced by IL-1 but not by TNF-α in mice, and similar to the former study, it was localized in the nucleus (58). In contrast to the first reports, it was shown that IκBζ could be considered a new negative NF-κB regulator, acting in the nucleus by association either the p50 or the p65 subunit (56, 58, 59). IκBζ has been linked to the production of IL-6 in response to the challenge with TLR ligands, preferentially binding to p50 NF-κB dimers (60–63). IκBζ has also been involved in the production of IFN-γ (64), CCL2/MCP-1 (65), neutrophil gelatinase-associated lipocalin (NGAL) (66), human β-defensin 2 (66), antibacterial protein lipocalin-2 (Lcn2) (67), and IL-17A during Th17 polarization (68). Congruently, IκBζ downregulates Foxp3 in T cells, IL-10, CTLA-4, and the class switch DNA recombinase activation-induced cytidine deaminase activity.
(AID) in B cells, as well as IL-12 and IL-18 in activated -mouse and human- NK cells (62, 69–72).

Interestingly, it has been reported that the 10-hydroxy-trans-2-decenoic acid (10H2DA), a major fatty acid component of royal jelly, presents an inhibitory effect on LPS-induced IL-6 production by downregulating IkBζ expression in RAW 264 murine cell line. Although the pathway by which IkBζ is downregulated is unknown, 10H2DA showed to be also an important expression modulator of second genes regulated by IkBζ, such as Lipocalin, G-CSF, and IL-6, but not TNF-α (73). Specifically in pregnancy, IkBζ is overexpressed in human myometrium in spontaneous human labor at term (16). Interestingly, magnesium sulfate (MgSO4), given to woman at risk of preterm labor, provides fetal neuroprotection, which can be explained by its ability to inhibit inflammation during pregnancy and particularly to reduce the expression of pro-inflammatory cytokines and their transcription regulator IkBζ, as seen in both human placental explants and a rat model of pregnancy (74). More recently, our group has reported how Galectin-1, a lectin able to bind β-galactosides added to other proteins by glycosylation, reduces the expression and production of IL-6 in human decidua cells challenged with LPS in vitro, through downregulation of IkBζ expression, its translocation to the nucleus, and its recruitment to the IL-6 promoter (75).

IkBNS

IkBNS was initially defined as a rapidly induced gene upon thymocyte TCR stimulation, which inhibited NF-κB DNA binding activity, but not its translocation to the nucleus, suggesting that it can negatively regulate NF-κB within the nucleus (76).

Later, the expression of IkBNS was identified in macrophages of the lamina propria in the colon, while it was undetectable in peripheral blood monocytes. IkBNS was shown selectively recruited to the IL-6 but not the TNF-α promoter, suppressing LPS-induced IL-6 production (77). IkBNS in macrophages and DCs was demonstrated to be a regulator for IL-6 and IL-12p40 transcription, cytokines induced by several TLR ligands, DCs was demonstrated to be a regulator for IL-6 and IL-12p40 transcription, cytokines induced by several TLR ligands, which in this way maintains immunological homeostasis after infection, for example by influenza virus (92).

ACTIVATION OF NF-κB BY THE IKKS

IKKα, IKKβ and IKKγ (also called NEMO, NF-κB essential modulator) compose the IKK complex that phosphorylates Ser/Thr residues of NF-κB inhibitors, such as IkBζ, labeling them for their ubiquitination and degradation by the proteasome, allowing in this way the release of NF-κB for its translocation to the nucleus (reviewed by Echeverria et al. (91)). Despite the role of other kinases, IKKs are especially important since they act rapidly, promoting classical IkB degradation. The various members of this complex are also under the control of molecules responsive to PAMPs or DAMPs; for example, NEMO degradation is promoted by the E3 ubiquitin ligase TRIM29, which in this way maintains immunological homeostasis after infection, for example by influenza virus (92).

NF-κB IN PREGNANCY: EXPRESSION IN FETAL AND MATERNAL TISSUES

As previously discussed, activation of NF-κB implies that its dimers are released into the cytoplasm and can thus translocate to the nucleus and bind DNA via the κB motifs of NF-κB-regulated gene promoters. These κB motifs have been identified in several genes of pro-inflammatory mediators, such as adhesion molecules (ICAM-1); enzymes like inducible NO synthase, phospholipase A2S, cyclooxygenase-2 (COX-2) and metalloproteinases (MMP-9); cytokines (IL-1β, IL-6, TNF-α); and chemokines such as IL-8. These genes are widely expressed

Frontiers in Immunology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 679106
during normal pregnancy and in some gestational disorders (93–95).

The activity of NF-κB has been indirectly observed by the increase of pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6, IL-8, or IFNγ in the amniotic fluid, the placenta, the fetal membranes, the myometrium, the decidua and the cervix (96–101). Immune cells that infiltrate the fetal-mother interface can secrete chemokines and cytokines, leading to activation of NF-κB in the myometrium, the cervical epithelium, and the amnion cells (99). Many components of the signaling pathway of the NF-κB have been identified in pregnancy tissues. It has been shown that in the first-trimester decidua, there is the expression of IkBα, IKK complex, and NIK (102). On the other hand, the expression of genes regulated by NF-κB is increased by the end of pregnancy, as well as its DNA binding activity in isolated cytotrophoblasts, in primary cultures of the amnion, and in nuclear extracts prepared from the placenta, the amnion, and the choriodecidua (9, 103–106).

NF-κB REGULATION DURING PREGNANCY

Substantial evidence supports the notion that pregnancy is significantly regulated by cytokines and hormones, driving different pathways that lead to the activation of specific nuclear factors, including NF-κB, which controls the expression of several molecules that can promote labor under normal conditions or can induce preterm birth caused by infectious and non-infectious disorders of pregnancy (93). Before gestation, NF-κB activity is present in the female genital tract and has an essential role in regulating innate immune response, because a suboptimal response could favor a permissive environment for pathogen colonization, whereas an over-induced response could cause excessive inflammation and tissue damage (54, 107). Cytokines produced under NF-κB regulation play a critical role in human implantation, inducing adhesion molecules’ expression on the embryo and the maternal surfaces, regulating by these means the expression of proteases that remodel the extra-cellular matrix, and promoting the invasion and differentiation of trophoblasts (108, 109). Once implantation has occurred, excessive activation of NF-κB can activate an uncontrolled response, potentially contributing to disorders of fetus development, such as intrauterine growth restriction, abortion, or preterm birth (10, 103, 110, 111). During pregnancy, NF-κB is negatively regulated in the maternal peripheral blood T cells (112, 113). Also, hormones like progesterone (P4), importantly elevated during pregnancy, can suppress the activity of NF-κB (114). Likewise, cytokines such as IL-10 have a vital role in downregulating NF-κB at the maternal-fetal interface and systemically (115, 116). IL-10 is expressed during the most extended period of pregnancy, both in humans and mice, and different studies have demonstrated its ability to downregulate TNF-α, IL-6, and prostaglandins in human fetal membranes and decidual cells (115–117). Moreover, the relationship between NF-κB activity, pro-inflammatory cytokines, and preterm birth was demonstrated in IL-10 KO mice: the absence of this cytokine resulted in an increased expression of IL-6 and TNF-α induced by LPS, which caused the onset of early labor (118).

More recently, the important role of Galectins has been introduced in reproductive biology, e.g., Gal-1 is abundantly

![Image](https://example.com/image.png)

**FIGURE 4** | NF-κB regulation during pregnancy. During pregnancy, two critical changes in the profile of molecules produced at the maternal-fetal interface and the systemic level must occur. Implantation requires developing an inflammatory phenotype, which depends on the NF-κB’s activity. In uncomplicated pregnancies, the pro-inflammatory environment has to change towards an anti-inflammatory phenotype during the fetus’s development, downregulating NF-κB. Once the fetus’s development is complete, anti-inflammatory molecules’ production decreases, and inflammatory molecules’ expression is triggered again. This breaking point where the phenotype changes from anti-inflammatory to inflammatory initiates labor, inducing molecules such as IL-6, IL-8, TNF-α, Metalloproteinases, and COX2, now regular contractions and rupture of the fetal membranes begin. As a consequence of the change to an inflammatory environment, the new individual’s birth is promoted. The primary complications of pregnancy occur when labor begins prematurely; that is, when the profile change occurs before the fetus complete development, which promotes pre-term pregnancies or even abortion. Therefore, down-regulation of inflammatory molecules is necessary during fetal development, remarking the prominent role of NF-κB activity regulation in the required inflammatory/anti-inflammatory balance.
produced in the maternal reproductive tissues in humans and mouse, suggesting a crucial role in the development of maternal tolerance to the fetus during pregnancy, by inhibition of TNF-α and IL-6 expression, induction of IL-10 and promotion of regulatory T cells (Treg) proliferation (119–121). Interestingly, it has been demonstrated that Gal-1 regulates pro-inflammatory cytokine production by blocking NF-κB activation in peripheral blood monocytes (122). Besides, our group has shown that Gal-1 reduces the effect of LPS on IL-6 production in non-immune cells from the fetal-maternal interface, such as decidual fibroblasts; even more, we found that Gal-1 inhibits the nuclear translocation ability of IκBz and its recruitment to the IL-6 promoter in LPS treated cells (75).

Regulation of NF-κB is crucial during pregnancy, and thus, it is not surprising this transcription factor has already been proposed as a key target for preterm labor prevention (123). Even more, in silico models have been used to analyze the inhibitory effect over NF-κB, simulating an anti-inflammatory treatment to avoid the development of preterm labor, which remarks the therapeutic implications of NF-κB downregulation (124). Although the exact mechanism of NF-κB regulation during pregnancy has not been established, it is clear that its activity should remain suppressed during most normal gestation time until the end.

**NF-κB DYSREGULATION BY PATHOGENS IN PREGNANCY: EXAMPLES OF TWO PROTOZOA**

During pregnancy, the mother’s immune system is highly regulated but can effectively respond against pathogens. Nevertheless, best-adapted pathogens have evolved so they modulate NF-κB activation, limiting the response against them and favoring the pathogen survival (125). *Trichomonas vaginalis* is a genitourinary tract lumen-dwelling flagellated protozoan that infects humans (126). It is responsible for trichomoniasis, one of the most common non-viral sexually transmitted diseases (127). Infection by *T. vaginalis* has been associated with adverse

![Diagram showing NF-κB regulation in pregnancy](https://via.placeholder.com/150)
outcomes of pregnancy like low birth weight and preterm labor. It has been suggested that these adverse outcomes are mediated by downregulation of TNF-α and IL-12 expression through blocking NF-κB translocation to the nucleus (128, 129), but it induces IL-1β production in human prostate epithelium through activation of ROS (130), and through this mechanism it also provokes apoptosis of the host cells, including monocytes and primary cultures of human vaginal epithelial cells by means of NF-κB downregulation (131–134).

Another pathogen related to pregnancy is Toxoplasma gondii, the causal agent of toxoplasmosis, a cosmopolitan, water/foodborne infection that can be transmitted to the fetus which may cause severe pathological conditions (135, 136). This protozoan is a strict intracellular pathogen, classified in three classical strains and the atypical variants, some of them with the capacity to modulate NF-κB (137). For invasion, T. gondii secretes proteins from the parasite organelles called rhotropins (ROP) and dense granules (GRAs) into the cytoplasm of the host cell, which modulate molecular host signaling and transcription (138). ROP and GRA proteins have been involved in the control of NF-κB activation. The GRA15 protein of type II strains activates NF-κB, leading to a pro-inflammatory environment, which results in disease manifestations like encephalitis and colitis. Type II T. gondii strains are more prevalent in human congenital toxoplasmosis; interestingly, these strains allow the recruitment of immune cells that can be infected by the parasite and are useful to disseminate it throughout the fetus body (139–142). On the other hand, ROP 18 from T. gondii strain I (GRA15-type I cannot induce NF-κB) can directly interact with NF-κB p65 and phosphorylate it at Ser-468, targeting p65 for proteasome degradation, this manipulation of the host immune system facilitates infection (143). Importantly, there is a low number of reported congenital toxoplasmosis cases due to type I strains, but these cases commonly present pregnancy complications, including abortion (141). Congenitally infected patients may develop pathological conditions such as hydrocephalus, macro or microcephalus, cerebral calcifications, retinoblastoiditis, and other ocular or central nervous system alterations, which can manifest even years later in life and most severe congenital infection cases can cause spontaneous abortion or stillbirth (144). We have recently shown evidence that T. gondii congenital transmission and severity of clinical manifestations in the infected newborns depend on the promotion of an inflammatory non-regulated environment, in which NF-κB and its regulators are probably involved (145, 146).

CONCLUSIONS

Labor can be promoted normally, or by exposure to damaging substances, infectious agents, or genetic predisposition (12, 13, 147, 148). In all cases, it depends on the development of an inflammatory flux orchestrated by the transcription factor NF-κB. Its activation begins the cascade of events that culminate with the onset of labor and the rupture of the fetal membranes, which depends on the production of pro-inflammatory cytokines, chemokines, metalloproteinases, and prostaglandin-synthesis enzymes, among other molecules. In a normal pregnancy, this final step elicits the birth of a new individual (Figure 4). In contrast, NF-κB activation before the full development of the fetus can induce product disease or loss, as well as and collateral damage to the mother. Some insights on the mechanisms of NF-κB activation/regulation during pregnancy complications are shown in Figure 5, in which the balance of pro-inflammatory stimuli and anti-inflammatory environment determines the success or failure of the pregnancy. Although there is some information about NF-κB activity at the beginning and the end of pregnancy, there is very little information on the dynamics of its functions and regulation along the most extended period of pregnancy, so it is expected it will be studied furthermore in the near future.

AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Instituto Nacional de Pediatría (040/2018) and by SIP-IPN (SIP20210419, SIP20210140, and SIP20210139). FG-C is a Cátedra CONACyT Research Fellow. All authors are SNI-CONACyT fellows.

REFERENCES

1. Simmons LE, Rubens CE, Darmstadt GL, Gravett MG. Preventing Preterm Birth and Neonatal Mortality: Exploring the Epidemiology, Causes, and Interventions. Semin Perinatol (2010) 34(6):408–15. doi: 10.1053/ j.semperi.2010.09.005
2. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, et al. The Worldwide Incidence of Preterm Birth: A Systematic Review of Maternal Mortality and Morbidity. Bull World Health Organ (2010) 88(1):31–8. doi: 10.2471/BLT.08.062554
3. Hamilton BE, Hoyert DL, Martin JA, Strobino DM, Guyer B. Annual Summary of Vital Statistics: 2010-2011. Pediatrics (2013) 131(3):548–58. doi: 10.1542/peds.2012-3769
4. Egan LAV, Gutiérrez AKC, Cuevas MP, Lucio JR. Perfil Epidemiológico Del Parto Prematuro. Ginecología y Obstet México (2008) 76(9):542–8.
5. Capce A, Vasieva O, Meher S, Alfrevic Z, Alfrevic A. Pathway Analysis of Genetic Factors Associated With Spontaneous Preterm Birth and Pre-Labor Preterm Rupture of Membranes. PLoS One (2014) 9(9):e108578. doi: 10.1371/journal.pone.0108578
6. Holst RM, Hagberg H, Wennerholm UB, Skogstrand K, Thorsen P, Jacobsson B. Prediction of Spontaneous Preterm Delivery in Women With Preterm Labor: Analysis of Multiple Proteins in Amniotic and Cervical Fluids. Obstet Gynecol (2009) 114(2 Pt 1):268–77. doi: 10.1097/ AOG.0b013e3181ae6a08
7. Marvin KW. Use of cDNA Arrays to Generate Differential Expression Profiles for Inflammatory Genes in Human Gestational Membranes
Go

61. Seshadri S, Kannan Y, Mitra S, Parker-Barnes J, Wewers MD. Mail Regulates

64. Unutmaz D, Raices RM, Kannan Y, Bellamkonda-Athmaram V, Seshadri S,

60. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, et al.

67. Kohda A, Yamazaki S, Sumimoto H. DNA Element Downstream of The

55. Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M. MAIL, a Novel

56. Totzke G, Essmann F, Pohlmann S, Lindenblatt C, Jänicke RU. Schulze-

57. Lindenblatt C, Schulze-Osthoff K, Totzke G. I

50. Wu C-L, Kandarian SC, Jackman RW. Identi

53. Heikkila A, Tuomisto T, Hakkinen SK, Keski-Nisula L, Heinonen S, Yla-

45. doi: 10.1038/nature02738

k

52. doi: 10.1074/jbc.M511956200

6. doi: 10.1016/j.immuni.2005.11.004

93.

92.

79. Touma M, Antonini V, Kumar M, Osborn SL, Bobenchik AM, Keskin DB,

84. Hosokawa J, Suzuki K, Meguro K, Tanaka S, Maezawa Y, Suto A, et al. I

98. doi: 10.1074/jbc.M511956200

22.

23.

35. doi: 10.1073/pnas.1415866111

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

488.

489.

490.

491.

492.

493.

494.

495.

496.

497.

498.

499.

500.

501.

502.

503.

504.

505.

506.

507.

508.

509.

510.

511.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

525.

526.

527.

528.

529.

530.

531.

532.

533.

534.

535.

536.

537.

538.

539.

540.

541.

542.

543.

544.

545.

546.

547.

548.

549.

550.

551.

552.

553.

554.

555.

556.

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

567.

568.

569.

570.

571.

572.

573.

574.

575.

576.

577.

578.

579.

580.

581.

582.

583.

584.

585.

586.

587.

588.

589.

590.

591.

592.

593.

594.
Production in B Cells. *Immunology* (2016) 147(4):453–63. doi: 10.1111/imimm.12578

87. Schuster M, Glauben R, Plaza-Sirvent C, Schreiber L, Annemann M, Floess S, et al. IkBns Protein Mediates Regulatory T Cell Development via Induction of the Foxp3 Transcription Factor. *Immunology* (2012) 37(6):998–1008. doi: 10.1016/j.imimm.2012.08.023

88. Reddy J, Kobayashi S, Hara A, Isagawa T, Manabe I, Takeda K, et al. The Nuclear Ikb Family Protein Ibns Influences the Susceptibility to Experimental Autoimmune Encephalomyelitis in a Murine Model. *PLoS One* (2014) 9(10):e110838. doi: 10.1371/journal.pone.0110838

89. Annemann M, Wang Z, Plaza-Sirvent C, Glauben R, Schuster M, Ewald Sander F, et al. IkBnsregulates Murine Th17 Differentiation During Gut Inflammation and Infection. *J Immunol* (2015) 194(6):2888–98. doi: 10.4049/jimmunol.1401964

90. Gómez-Chávez F, López-Porales OH, Baiza-Martínez DA, Cancino-Díaz JC, Murrieta-Coxa JM, Cancino-Díaz ME, et al. IkBns and IL-6 Expression is Differentially Established in the Uterus of Pregnant Healthy and Infected Mice. *Helix* (2020) 66(6):e04122. doi: 10.1371/journal.pbio.200.04122

91. Echeverri R, Nancy P, Mockus S. Factor Nuclear Ikb (Nf-Ikb): Signalosomes Y Su Importancia En Enfermedades Inflamatorias Y CvAñcer. *Rev la Facultad Med* (2008) 56:133–46.

92. Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R, et al. Identification of a Role for TRIM29 in the Control of Innate Immunity in the Respiratory Tract. *Nat Immunol* (2016) 17(12):1373–80. doi: 10.1038/nature20580

93. Lappas M, Rice GE. Transcriptional Regulation of the Processes of Human Labour and Delivery. *Placenta* (2009) 30:90–5. doi: 10.1016/j.placenta.2008.10.005

94. Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory Pathways in Female Reproductive Health and Disease. *Reproduction* (2009) 138(6):903–19. doi: 10.1530/rep-09-0427

95. Lim R, Barker G, Lappas M. A Novel Role for FOXO3 in Human Labor: Increased Expression in Laboring Myometrium, and Regulation of Proinflammatory and Prolabor Mediators in Pregnant Human Myometrial Cells. * Biol Reprod* (2013) 88(6):156–. doi: 10.1095/biolreprod.113.108126

96. Breuil-Fouche M, Germain G. Gene and Protein Expression in the Placental Tissues and Isolated Cytotrophoblasts. *Advances in Medical Diagnosis of Intra-Amniotic Infection.* *Biol Reprod* (2001) 61(1):3–7. doi: 10.1095/biolreprod.61.1.3

97. Li W, Li H, Bocking AD, Challis JRG. Tumor Necrosis Factor Stimulates Increased Expression in Laboring Myometrium, and Regulation of NF-κB Signalling Pathways. *Placenta* (2008) 29(12):995–1002. doi: 10.1016/j.placenta.2008.09.010

98. Horne AW, Stock SJ, King AE. Innate Immunity and Disorders of the Female Reproductive Tract. *Reproduction* (2008) 135(6):739–49. doi: 10.1530/repp-07-0564

99. McIlwan M, Lins RJ, Munro SK, Vincent ZL, Ponnampalam AP, Mitchell MD. Cytokine Regulation During the Formation of the Fetal-Maternal Interface: Focus on Cell–Cell Adhesion and Remodelling of the Extra-Cellular Matrix. *Cytokine Growth Factor Rev* (2009) 20(3):241–9. doi: 10.1016/j.cytogfr.2009.05.004

100. van Mourik MSS, Macklon NS, Heijnen CJ. Embryonic Implantation: Cytokines, Adhesion Molecules, and Immune Cells in Establishing an Implantation Environment. *J Leukoc Biol* (2008) 85(1):1–19. doi: 10.1189/jlb.0708395

101. Bukowski R, Saddovsky Y, Goodarzi H, Zhang H, Biggio JR, Varner M, et al. Onset of Human Preterm and Term Birth is Related to Unique Inflammatory Transcriptome Profiles At the Maternal Fetal Interface. *PeerJ* (2017) 5:e3685. doi: 10.7717/peerj.3685

102. Scharfe-Nugent A, Corr SC, Carpenter SB, Keogh L, Boyle D, Martin C, et al. Thioprostines Inflammation and Response to Fetal Dna: Mechanism for Fetal Loss in Preterm Birth and Preeclampsia. *J Immunol* (2012) 188(11):5706–12. doi: 10.4049/jimmunol.1101008

103. McCracken SA, Gallery EDM, Morris JM. 286. Nuclear Factor Kβ Downregulation in Human T-cells is Essential for the Maintenance of the Cytokine Profile Required for Pregnancy Success. *Reprod Fertil Dev* (2004) 16(9):286. doi: 10.1071/SR04ab286

104. Hadfield KA, McCracken SA, Ashton AW, Nguyen TG, Morris JM. Regulated Suppression of NF-kβ Throughout Pregnancy Maintains a Favourable Cytokine Environment Necessary for Pregnancy Success. *Reprod Immunol* (2011) 89(1):1–9. doi: 10.1016/j.repi.2010.11.008

105. Mendelson CR. Minireview: Fetal-Maternal Hormonal Signaling in Pregnancy and Labor. *Mol Endocrinol* (2009) 23(7):947–54. doi: 10.1202/mce.2009.0016

106. Fettke F, Schumacher A, Canelada A, Toledo N, Bekerides-Ding I, Bondt A, et al. Maternal and Fetal Mechanisms of B Cell Regulation During Pregnancy: Human Chorionic Gonadotropin Stimulates B Cells to Produce IL-10 While Alpha-Fetoprotein Drives Them Into Apoptosis. *Front Immunol* (2016) 7:495. doi: 10.3389/fimmu.2016.00495

107. Hanna N, Hanna I, Hleb M, Wagner E, Dougherty J, Balkundi D, et al. Gestational Age-Dependent Expression of IL-10 and Its Receptor in Human Placental Tissues and Isolated Cytotrophoblasts. *J Immunol* (2006) 184(1):571–8. doi: 10.4049/jimmunol.184.1.571

108. Chaouat G, Cayol V, Mairovitz V, Dubanchet S. Localization of the Th2 Cytokines IL-3, IL-4, IL-10 At the Fetalmaternal Interface During Human and Murine Pregnancy and Lack of Requirement for Fas/Fas Ligand Interaction for a Successful Allogeneic Pregnancy. *Am J Reprod Immunol* (2019) 42(1):1–13. doi: 10.1111/ajri.00979.190045.x

109. Robertson SA, Skinner RJ, Care AS. Essential Role for IL-10 in Resistance to Lipopolysaccharide-Induced Preterm Labor in Mice. *J Immunol* (2006) 177(7):4888–48. doi: 10.4049/jimmunol.177.7.4888

110. Kopcow ID, Rosetti F, Leung Y, Allan DSJ, Kutok JL, Strominger JL. IL-2 Cell Apoptosis At the Maternal-Fetal Interface in Early Human Pregnancy, Involvement of Galectin-1. *Proc Nail Acad Sci* (2008) 105(47):18472–7. doi: 10.1073/pnas.0809233105

111. Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, et al. A Pivotal Role for Galectin-1 in Fetomaternal Tolerance. *Nat Med* (2007) 13(12):1450–7. doi: 10.1038/nm1680

112. Toscano MA, Campagna L, Molinero LL, Cerlani JP, Croci DO, Ilarregui JM, et al. Nuclear Factor (NF)-κb Controls Expression of the Immunoregulatory Glycan-Binding Protein Galectin-1. *Mol Immunol* (2011) 48(15-16):1940–9. doi: 10.1016/j.molimm.2011.05.021
123. Lim S, MacIntyre DA, Lee YS, Khanjani S, Terzidou V, Teoh TG, et al. Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labor Suppression of NF-kappaB Expression. Mol Genet Genomic (2010) 283(4):470–9. doi: 10.1007/s00439-009-0699-3

124. Bader JS, Equils O, Nambiar P, Hobel CJ, Smith R, Simmons CF, et al. A Computer Simulation of Progesterone and Cox2 Inhibitor Treatment for Preterm Labor. PLoS One (2010) 5(1):e5002. doi: 10.1371/journal.pone.0005002

125. Tato CM, Hunter CA. Host-Pathogene Interactions: Subversion and Utilization of the NF- B Pathway During Infection. Infect Immun (2002) 70(7):3311–7. doi: 10.1128/iai.70.7.3311-3317.2002

126. World Health O. Prevalence and Incidence of Selected Sexually Transmitted Infections, Chlamydia Trachomatis, Neisseria gonorrhoeae, Syphilis and Trichomonas Vaginalis: Methods and Results Used by WHO to Generate 2005 Estimates. Geneva: World Health Organization (2011).

127. Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and Microbiological Aspects of Trichomonas Vaginalis. Clin Microbiol Rev (1998) 11(2):300–17. doi: 10.1128/CMR.11.2.300

128. Cotch MF, Pastorek JG,2, Nugent RP, Hillier SL, Gibbs RS, Martin DH, et al. Prevalence and Incidence of Selected Sexually Transmitted Infections, Chlamydia Trachomatis, Neisseria Gonorrhoeae, Syphilis and Trichomonas Vaginalis. Clin Microbiol Rev (2008) 31(3):553–60. doi: 10.1128/CMR.00005-17

129. Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ. Trichomonas Vaginalis: Methods and Results Used by WHO to Generate 2005 Estimates. Geneva: World Health Organization (2011).

130. Gu N-Y, Kim J-H, Han J-H, Im S-J, Seo M-Y, Chung Y-V, et al. Trichomonas Vaginalis Induces IL-1β Production in a Human Prostate Epithelial Cell Line by Activating the NLRP3 Inflammasome Via Reactive Oxygen Species and Potassium Ion Efflux. Prostate (2016) 76(10):885–96. doi: 10.1002/pros.23178

131. Ahn MH, Song HO, Ryu JS. Trichomonas Vaginalis-Induced Neutrophil Apoptosis Causes Anti-Inflammatory Cytokine Production by Human Monocyte-Derived Macrophages. Parasit Immunol (2008) 30(8):410–6. doi: 10.1111/j.1365-3024.2008.01037.x

132. Song H-O, Shin M-H, Ahn M-H, Min D-Y, Kim Y-S, Ryu J-S. Trichomonas Vaginalis: Reactive Oxygen Species Mediaete Caspase-3 Dependent Apoptosis of Human Neutrophils. Exp Parasitol (2008) 118(1):59–65. doi: 10.1016/j.exppara.2007.06.010

133. Sommer U, Costello CE, Hayes GR, Beach DH, Gilbert RO, Lucas JJ, et al. Identification of Trichomonas Vaginalis Cysteine Proteases That Induce Apoptosis in Human Vaginal Epithelial Cells. J Biol Chem (2005) 280(25):23853–60. doi: 10.1074/jbc.M301752200

134. Quan J-H, Kang B-H, Yang J-B, Rhee Y-E, Noh H-T, Choi I-W, et al. Trichomonas Vaginalis Induces Siha Cell Apoptosis by NF-kappaB Inactivation Via Reactive Oxygen Species. BioMed Res Int (2017) 2017:1–10. doi: 10.1155/2017/3904870

135. Robert-Gangneux F, Darde ML. Epidemiology of And Diagnostic Strategies for Toxoplasmosis. Clin Microbiol Rev (2012) 25(2):264–96. doi: 10.1128/CMR.00513-11

136. Dubey JP, Jones JL. Toxoplasma Gondii Infection in Humans and Animals in the United States. Int J Parasitol (2008) 38(11):1257–78. doi: 10.1016/j.ijpara.2008.03.007

137. Shapira S, Harb OS, Gaamano J, Hunter CA. The NF-kB Signaling Pathway: Immune Evasion and Immunoregulation During Toxoplasmosis. Int J Parasitol (2004) 34(3):393–400. doi: 10.1016/j.ijpara.2003.12.005

138. Hakimi M-A, Olias P, Sibley LD. Toxoplasma Effectors Targeting Host Signaling and Transcription. Clin Microbiol Rev (2017) 30(3):615–45. doi: 10.1128/CMR.00512-17

139. Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, et al. Strain-Specific Activation of the NF-kB Pathway by GRA15, a novelToxoplasma Gondii-dense Granule Protein. J Exp Med (2011) 208(1):195–212. doi: 10.1084/jem.20100717

140. Dupouy-Camet J. Immunopathogenesis of Toxoplasmosis in Pregnancy. Infect Dis Obstet Gynecol (1997) 3(2):121–7. doi: 10.1155/10647/4499700197

141. Rico-Torres CP, Vargas-Villavicencio JA, Correa D. Is Toxoplasma Gondii Type Related to Clinical Outcome in Human Congenital Infection? Systematic and Critical Review. Eur J Clin Microbiol Infect Dis (2016) 35(7):1079–88. doi: 10.1007/s10096-016-2633-z

142. Sanecka A, Frickel E-M. Use and Abuse of Defensive Cells byToxoplasma Gondii. Virulence (2014) 3(7):678–89. doi: 10.4161/viru.22833

143. Du J, An R, Chen L, Shen Y, Chen Y, Cheng L, et al. Toxoplasma Gondii Involvement Factor Rop18 Inhibits the Host NF-kB Pathway by Promoting p65 Degradation. J Biol Chem (2014) 289(18):12578–92. doi: 10.1074/jbc.M113.544718

144. Gómez-Toscano V, Linares-López KA, Arce-Estrada GE, Figueroa-Damian R, Barrios Bautista DM, Hernández-Luengas L, et al. Toxoplasmosis Congenita En El Valle De Mexico. Resultados De Una Serie De Casos (Congenital Toxoplasmosis in the Valley of Mexico. Results of a Case Series). Actas Pediatr Mex (2017) 2017:1

145. Gómez-Chávez F, Cañedo-Solares I, Ortíz-Alegria LB, Flores-García Y, Figueroa-Damian R, Luna-Pastén H, et al. A Proinflammatory Immune Response Might Determine Toxoplasma Gondii Vertical Transmission and Severity of Clinical Features in Congenitally Infected Newborns. Front Immunol (2020) 11:390. doi: 10.3389/fimmu.2020.00390

146. Gómez-Chávez F, Cañedo-Solares I, Ortíz-Alegria LB, Flores-García Y, Luna-Pastén H, Figueroa-Damian R, et al. Maternal Immune Response During Pregnancy and Vertical Transmission in Human Toxoplasmosis. Front Immunol (2019) 10:285. doi: 10.3389/fimmu.2019.00285

147. Romero R, Mazzor M. Infection and Preterm Labor. Clin Obstet Gynecol (1988) 31(3):553–84. doi: 10.1097/00003081-198809000-00006

148. Dizon-Townsend DS. Preterm Labor and Delivery: A Genetic Predisposition. Paediatr Perinat Epidemiol (2001) 15(2):57–62. doi: 10.1046/j.1365-3016.2001.00008.x

149. Santucci-Pereira J, George C, Armiss D, Russo IH, Vanegas JE, Sheriff F, et al. Mimicking Pregnancy as a Strategy for Breast Cancer Prevention. Breast Cancer Manage (2013) 2(4):283–94. doi: 10.2217/bcm.13.16

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gómez-Chávez, Correa, Navarrete-Meneses, Cancino-Díaz, Cancino-Díaz and Rodríguez-Martínez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.