Introduction

Bronchial hyperresponsiveness is one of the hallmarks of asthma and measurement of bronchial responsiveness has been used clinically for over 30 years for asthma diagnosis and monitoring [1]. Exhaled nitric oxide has been introduced as a tool for asthma diagnosis in subjects with symptoms of asthma [2] and for the monitoring of asthma therapy [3]. Fraction of nitric oxide in the exhaled air (FENO) is a non-invasive marker of steroid-sensitive inflammation in the airways [4]. NO has also known bronchodilating and bronchoprotective physiological roles [5]. Apart from asthma, bronchial responsiveness and FENO are also associated with other factors such as atopy and smoking. Atopy is related both to increased bronchial responsiveness [6] and increased FENO [7], while smoking is associated with increased bronchial responsiveness [8] and decreased FENO [9].

A positive correlation between bronchial responsiveness and FENO has been found among subjects with allergic asthma [10] and in population-based studies of adults [11,12] and children [13]. In these studies, after stratification for atopy, the association between bronchial responsiveness and increased FENO was statistically significant only among atopic individuals [11,13].

An interaction of bronchial responsiveness with smoking and atopy has been previously suggested in a Spanish population-based...
and atopy.

This suggests that the association between \(FE_{NO} \) and bronchial responsiveness is affected both by smoking and atopy. No previous studies have analyzed how smoking and smoking amount influences the relationship between bronchial responsiveness and \(FE_{NO} \).

The aim of the present study was to investigate the association between bronchial responsiveness and \(FE_{NO} \), with special regard to how this association is influenced by smoking, smoking amount and atopy.

Methods

Ethics Statement

Written informed consent was obtained from each subject before inclusion in the study. The protocol was approved by the Uppsala Ethics Committee (decision 131/1999 for Swedish multicentre application for Uppsala and Gothenburg) and Verona Ethics Committee (decision 74/1998 for Italian multicentre ECRHS II application including Turin).

Study participants

The European Community Respiratory Health Survey (ECRHS) is an international multicenter study of asthma and allergy. The first part, ECRHS I, was conducted in 1990–4 and the follow-up study, ECRHS II, in 1999–2001. The design of ECRHS I and II has been published in detail [16,17].

The present study included 468 subjects from the random sample of three of ECRHS II centers, Gothenburg (\(n = 225 \)) and Uppsala (\(n = 175 \)) (both Sweden) and Turin (\(n = 68 \)), Italy, who have undergone stage 2 of ECRHS I and in ECRHS II have answered the main questionnaire, performed measurements of \(FE_{NO} \), lung function tests and methacholine challenge. No subjects on daily inhaled steroids and/or oral antileukotrienes were included in the present analyses. Details regarding the selection of the subjects in these three centers are available in another publication [18].

Methacholine challenge

Methacholine challenge was carried out using a dosimeter (Mefar, Brescia, Italy). Methacholine challenge dose-response slope (“slope”) was calculated as the regression coefficient of percentage decline in \(FEV_1 \) on log dose of methacholine and then reciprocally transformed to satisfy statistical assumptions of multiple regression [19]. Its values range from 1 to 20. Two units of change in “slope” corresponds to one unit of change in \(\log_{10}(PD_{20}) \), or 3.32 doubling doses [20]. This relationship has been used to express the results in doubling doses in the manuscript. After transformation a low “slope”, like low \(PD_{20} \), was indicative of increased bronchial responsiveness. All subjects were instructed to refrain from smoking for at least 1 hour before lung function and methacholine reactivity measurements.

Exhaled NO

Exhaled NO measurements were done according to ATS/ERS recommendations [21]. Exhaled NO measurements were carried out on a different day than methacholine challenge. Different techniques and flow rates of measuring \(FE_{NO} \) were used in different centers - offline measurements at 350 mL s\(^{-1}\) in Turin and online measurements at 50 mL s\(^{-1}\) in Uppsala and Gothenburg. The methods are described in more detail in another publication [18]. All subjects were instructed to refrain from smoking for at least two hours before measurements of exhaled NO, in order to exclude any potential confounding effects of acute smoking.

Smoking habits, atopy and asthma diagnosis

Smoking habits were questionnaire-assessed. A subject was considered as being a current smoker if he/she had been smoking for more than one year or at least 20 packs of cigarettes and was still smoking the month before the study. The number of smoked cigarettes per day and cigarette consumption in pack-years was also questionnaire-assessed.

Specific IgE was measured against *Dermatophagoides pteronyssinus*, cat, timothy grass and *Cladosporium herbarum*, using the Pharmacia CAP System (Pharmacia Diagnostics, Uppsala, Sweden). A person was defined as atopic if the titers against at least one of the tested allergens were \(\geq 0.35 \) kU/L.

Current asthma diagnosis was defined having self-reported physician-diagnosis of asthma and at least one asthma symptom or taking regular antiasthmatic medication during the last 12 months preceding the study.

Lung function

Forced expiratory volume in one second \((FEV_1) \) was measured with a standardized method with different spirometers in different study centers, as previously described [18]. \(FEV_1 \) was expressed as % of the predicted value [22].

Statistics

Statistical analyses were performed using STATA 8.0 software (Stata Corp., 2001, Texas, USA). Different \(FE_{NO} \) measurement techniques [23], NO analysers [24] and exhalation flow rates were used and we therefore divided \(FE_{NO} \) in quartiles for each centre and pooled the data for the three centers instead of analyzing the absolute values of \(FE_{NO} \) for each centre.

Trend tests were applied when analyzing the association between \(FE_{NO} \) quartiles and other variables (Table 1). Simple linear regressions between slope values and \(FE_{NO} \) quartiles were performed. Interactions with smoking and atopy were studied in multiple linear regression models where adjustments were made for factors known, from literature, to affect bronchial responsiveness and \(FE_{NO} \). The interactions were also tested by a meta-analysis of corresponding multiple regression linear models when using absolute value of \(FE_{NO} \) instead of \(FE_{NO} \) quartiles for the respective three study centers. Heterogeneity between centers regarding the interaction of smoking respectively atopy with the relation between \(FE_{NO} \) and bronchial responsiveness was tested by means of a meta-analysis of the three centers. A p-value of \(< 0.05 \) was considered statistically significant.

Results

The characteristics of the study population are presented in Table 1. Subjects with higher \(FE_{NO} \) levels were characterized by a higher prevalence of atopy and lower prevalence of current smoking, whereas no significant association was found between \(FE_{NO} \) and slope values. Male gender, current asthma as well as increased height and weight, were associated with increased \(FE_{NO} \) levels.

Selection bias – participants vs. non-participants

Participants who performed \(FE_{NO} \) measurements were more likely to be men (50 vs. 44%, \(p = 0.02 \)) and had a slightly higher mean age (43.2±0.3 vs. 41.2±0.3 years, \(p<0.0001 \)) than participants who did not undergo \(FE_{NO} \) measurements. No
significant differences were found concerning bronchial responsiveness, smoking habits, atopy, physician diagnosed asthma, current asthma or body mass index between subjects who performed FENO measurements and subjects who did not.

Effects of atopy and smoking on FENO

Dividing the subjects after current smoking and atopy status (information available in 438 subjects), we obtained four groups: non-smoking non-atopic (n = 251), non-smoking atopic (n = 107), smoking non-atopic (n = 57) and smoking atopic subjects (n = 23). Comparing the distribution of subjects into different FENO quartiles in the above mentioned groups, the group of non-smoking non-atopic subjects had lower FENO levels than the group of non-smoking atopic subjects (p = 0.01) and higher values than the smoking non-atopic subjects (p < 0.001) (Figure 1). No differences in FENO were found between non-smoking non-atopics and the smoking atopic subjects (p = 0.96).

Effects of smoking status on the relationship between bronchial responsiveness and FENO

Among non-smokers increased bronchial responsiveness was associated with increased FENO values while an opposite trend was seen among current smokers (Figure 2). There was a statistically significant difference in the association between slope and FENO in non- and current smokers (p-value for interaction = 0.004).

Table 1. Descriptive table of subjects divided according to their FENO levels (n (%) or arithmetic mean ± SD or arithmetic mean (95%CI)).

	FE NO Q1 (n = 115)	FE NO Q2 (n = 118)	FE NO Q3 (n = 117)	FE NO Q4 (n = 118)	p-value
Slope	7.86±2.16	7.78±1.80	7.91±1.63	7.51±2.06	0.25
Atopy					
20 (18.5%)	30 (26.5%)	36 (31.9%)	45 (40.9%)	<0.001	
Current smoking					
37 (32.5%)	21 (18.1%)	15 (12.9%)	11 (9.5%)	<0.001	
Cigarettes/day	14 (11, 17)	11 (6, 15)	8 (4, 12)	6 (2, 11)	0.002
Pack-years	22 (18, 26)	16 (10, 23)	16 (11, 20)	11 (3, 19)	0.003
Male gender					
45 (39.1%)	58 (49.1%)	72 (61.5%)	76 (64.4%)	<0.001	
Height (cm)	169.3±8.4	172.8±9.1	174.8±10.5	175.3±11.0	<0.001
Weight (kg)	74.0±15.2	76.9±14.8	77.5±14.2	78.2±15.2	0.03
BMI (kg/m²)	25.7±4.23	25.6±3.73	25.3±3.53	25.3±3.65	0.36
Age (years)	43.2±7.59	43.2±7.43	43.8±7.10	42.2±6.81	0.46
Current asthma					
5 (4.4%)	4 (3.5%)	4 (3.4%)	13 (11.2%)	0.03	
FEV1 (%pred)	105±13	107±14	110±13	107±13	0.22

All the given p-values are for trends across FENO quartiles.
1Methacholine challenge dose-response slope.
2Information on atopy status was missing in 24 patients.
3Information regarding smoking habits was missing in 6 patients.
4Information regarding current asthma was lacking in 6 patients.

doi:10.1371/journal.pone.0035725.t001

Figure 1. Number of subjects in each FENO quartile (FE NO Q1–Q4) for non-smoking non-atopics, non-smoking atopics, smoking non-atopics and smoking atopics, respectively.

doi:10.1371/journal.pone.0035725.g001
Dividing current smokers into two groups, a positive association between slope and FENO quartile could be seen only in the group smoking less than 10 cigarettes/day (p = 0.008) and not in the group smoking ≥ 10 cigarettes/day (p = 0.81) (Figure 3). These relations were consistent after adjusting for pack-years consumption, and also after additional adjustments for age, gender, height, weight, lung function, current asthma, atopy, study centre (p = 0.03). Performing in such a model a test of interaction of “light”/“heavy” smoking with FENO quartile on bronchial responsiveness a trend towards a significant interaction was found (p = 0.055). The positive association between slope and absolute levels of FENO could be found in subjects smoking less than 10 cigarettes/day in Gothenburg and less than 13 cigarettes/day in Uppsala (both p < 0.05) (Table S1).

Effect of atopy on the relationship between bronchial responsiveness and FE\textsubscript{NO}

A positive correlation was found between increased bronchial responsiveness (decrease of slope) and increased FE\textsubscript{NO} among the atopic subjects whereas no significant correlation was found among the non-atopics (Figure 4, Table 3). The difference in association between bronchial responsiveness and FE\textsubscript{NO} in atopics and non-atopics was statistically significant and the interaction of atopy with FE\textsubscript{NO} quartiles on bronchial responsiveness remained statistically significant after adjusting for gender, study centre, FE\textsubscript{V\textsubscript{1}}(%pred), age, height, weight, atopy, current asthma (Table 3). No significant heterogeneity between centers was found regarding the interaction of atopy with the association between slope and FE\textsubscript{NO} (p = 0.13).

Dividing the participants into non-smokers and smokers the relationship between bronchial hyperresponsiveness and FE\textsubscript{NO} was found to be significant only among non-smoking subjects (Table 3).

Significant trends for increasing bronchial responsiveness with increasing FE\textsubscript{NO} levels were found in all atopic subjects (p = 0.033) and all atopic, non-smoking subjects (p = 0.004) when a sub-analysis was performed in Uppsala and Gothenburg centers. Moreover, the interactions with atopy remained statistically significant for atopic subjects (p = 0.04).

The interaction of atopy with the relationship between slope and FE\textsubscript{NO} was also found to be significant when using absolute FE\textsubscript{NO} values (p = 0.01).

Three-way interaction between atopy, smoking and FE\textsubscript{NO} on bronchial responsiveness

In a model where bronchial responsiveness was the outcome and three-way interactions between atopy, smoking and FE\textsubscript{NO} were tested, only the interaction between atopy with FE\textsubscript{NO} on bronchial responsiveness was significant (p = 0.005). This was consistent after adjusting for gender, study centre, FE\textsubscript{V\textsubscript{1}}(%pred), age, height, weight, atopy, current asthma (p = 0.003). The three-way interaction of smoking with atopy with FE\textsubscript{NO} on bronchial responsiveness was found to be significant only among non-atopics (p = 0.008).

Table 2. The difference (Δ) in bronchial responsiveness (BR), expressed as doubling doses of methacholine, between the first FE\textsubscript{NO} quartile (Q\textsubscript{1}) and the other quartiles (Q\textsubscript{2}–Q\textsubscript{4}) in all subjects, atopics and non-atopics, after stratifying for smoking.

Difference in BR	Non-smokers	Current smokers	p\textsubscript{interaction}	
All subjects (n = 432)	ΔQ\textsubscript{1}–Q\textsubscript{2}	0.83	0.08	0.011*
	ΔQ\textsubscript{1}–Q\textsubscript{3}	1.00	−0.91	0.015
	ΔQ\textsubscript{1}–Q\textsubscript{4}	1.29	−1.23	0.017
	P\textsubscript{trend}	0.001	0.17	
Atopics (n = 128)	ΔQ\textsubscript{1}–Q\textsubscript{2}	1.58	−0.28	0.008
	ΔQ\textsubscript{1}–Q\textsubscript{3}	2.46	−1.39	0.003
	ΔQ\textsubscript{1}–Q\textsubscript{4}	3.68	−3.87	0.11
	P\textsubscript{trend}	< 0.001	0.11	
Non-atopics (n = 304)	ΔQ\textsubscript{1}–Q\textsubscript{2}	0.68	0.02	0.22
	ΔQ\textsubscript{1}–Q\textsubscript{3}	0.63	−1.23	0.55
	ΔQ\textsubscript{1}–Q\textsubscript{4}	0.36	−0.88	0.60
	P\textsubscript{trend}	0.60	0.31	

*Slope was the outcome of the regression model and doubling doses were obtained by multiplying the regression coefficients with 1.66, as described in the Methods.

*p-value for trend represents the statistical significance for the association between bronchial responsiveness and FE\textsubscript{NO} quartile (used as a qualitative variable).

*p-value for interaction represents the significance of interaction of smoking status with FE\textsubscript{NO} quartile on airways responsiveness.

All the coefficients and p-values are adjusted for gender, study centre, FE\textsubscript{V\textsubscript{1}}(%pred), age, height, weight, atopy, current asthma.

doi:10.1371/journal.pone.0035725.t002
responsiveness was not significant in unadjusted (p = 0.15) or adjusted model (p = 0.12).

Discussion

The main finding of the present study is that bronchial responsiveness is associated with increased FENO levels in non-smokers and with decreased FENO levels in current smokers. Actually the inverse relationship between FENO and bronchial responsiveness was significant only in “light” smokers, suggesting possible different mechanisms of bronchial responsiveness in “light” and “heavy” smokers. Increased bronchial responsiveness was associated with increased FENO in atopic subjects while no such relationship could be seen in non-atopics. The nature of the interactions on the relationship between FENO and bronchial responsiveness with smoking and atopy appears to be even more complex, since the interaction with smoking was seen only in atopics, while the interaction with atopy was seen only in non-smokers.

We think there are many reasons why the inverse relationship between FENO and bronchial responsiveness in smokers cannot be explained simply by considering the negative effect of smoking on FENO, on one hand, and the favoring effect of smoking on bronchial hyperresponsiveness [25], on the other hand, without a causal relationship between the two effects. First, constitutively produced NO may play a bronchoprotective role, which should be lost in smokers, due to a lower NOS-production of NO [26,27] or an increased catabolism of NO [28,29]. Evidence for a bronchoprotective role of NO exist both in experimental animal studies [30,31], but also in human studies performed in asthmatic subjects [32,33] where administration of different non-selective iNOS inhibitors resulted in increased bronchial responsiveness. Another possible explanation could be related to the smoking-induced neutrophil inflammation. Sputum neutrophils count has been found to be negatively correlated to FENO in smokers [34] and activation of neutrophils, in vitro, has been shown [35] to decrease NO, due to generation of peroxynitrite. Increased IL-16 has been linked with the neutrophilic inflammation [36], and IL-16 has been demonstrated to be increased in the airways of cigarette smokers, independent on the intensity of smoking [37]. Epithelial and subepithelial IL-16 immunoreactivity has been associated with increased bronchial responsiveness in humans with allergic asthma [38] and in an animal model of allergic asthma [39].

Moreover, in our study, decreased FENO was associated with increased bronchial responsiveness only in “light” smokers, in whom the bronchoprotective effect of NO may be particularly valuable. Structural changes of small airways are related to smoking amount [40] and thus, in “heavy” smokers, bronchial hyperresponsiveness is best explained by structural changes of small airways and lung parenchyma [41]. However, we acknowledge the limitation that the different effects of “light” and “heavy” smoking on the association between FENO and bronchial responsiveness could not be fully confirmed when performing a statistical interaction test (p = 0.055).

We were able to confirm in this large population sample that the previous reported association between FENO and increased bronchial responsiveness in adults [11–13] was significant only in atopic subjects. Atopy-related increase in FENO is due probably to the eosinophilic subclinical inflammation in the airways [42], as the link between FENO and eosinophilic inflammation is well known [43–45]. The mechanism behind increased bronchial responsiveness in atopic subjects is most probably due to a combination of subclinical eosinophilic inflammation and remodeling changes described in the airways of atopic subjects [46]. A Th2-driven allergic response via IL-4-IL-13 cytokines could well result in both increased NO [47,48] and increased bronchial responsiveness [48,49].

The present study fills a gap regarding the effect of smoking on the association between bronchial responsiveness and FENO and it
Table 3. The difference (Δ) in bronchial responsiveness (BR), expressed as doubling doses of methacholine, between the first FE_{NO} quartile (Q1) and the other quartiles (Q2–Q4) in all subjects, non-smokers and current smokers, after stratifying for atopy.

	Difference in BR	Non-atopics	Atopics	p_{interaction}
All subjects (n = 432)	ΔQ1−Q2	0.46	0.91	0.012
	ΔQ1−Q3	0.27	1.64	
	ΔQ1−Q4	0.10	2.46	
	P_{trend}	0.91	0.006	
Non-smokers (n = 352)	ΔQ1−Q2	0.68	1.58	0.004
	ΔQ1−Q3	0.63	2.46	
	ΔQ1−Q4	0.35	3.68	
Current smokers (n = 80)	ΔQ1−Q2	0.02	−0.28	0.71
	ΔQ1−Q3	−1.23	−1.39	
	ΔQ1−Q4	−0.88	−3.87	
	P_{trend}	0.31	0.11	

*Δ was the outcome of the regression model and doubling doses were obtained by multiplying the regression coefficients with 1.66, as described in the Methods.

#p-value for interaction represents the statistical significance for the association between bronchial responsiveness and FE_{NO} quartile used as a qualitative variable.

All the coefficients and p-values are adjusted for gender, study center, FEV1(%pred), age, height, weight, atopy, current asthma.

doi:10.1371/journal.pone.0035725.t003

also made it possible to analyze the interactions of atopy and smoking on the association between bronchial responsiveness and FE_{NO}. The only group where we did find an association of increased FE_{NO} values with increased bronchial responsiveness was the group of non-smoking atopic individuals. We found similar levels of FE_{NO} among the non-atopic non-smoking subjects and atopic smoking subjects due to the fact that FE_{NO} is affected both by smoking and atopy.

The main weakness of the present study resides in the different methods to measure FE_{NO} in the participating centers. We used quartiles of FE_{NO} instead of absolute values of FE_{NO} and no heterogeneity between centers was found regarding the interaction of smoking and atopy, respectively, with the relationship between FE_{NO} and bronchial responsiveness. An indirect validation of this method of using FE_{NO} quartiles in the present material is obtained by confirming the previous results on the relationship between FE_{NO} and bronchial responsiveness [11–13]. The fact that in one center (Turin) FE_{NO} was measured by higher flow-rate, which theoretically can sample to a slightly higher extent the peripheral airways, appears to be scarcely influential in this study, as atopy does not affect alveolar NO [50] and current smoking leads only to minor decrease of alveolar in comparison with bronchial contribution to exhaled NO [51]. Moreover, the main results could be confirmed in a subanalysis performed only in Gothenburg and Uppsala. In our population sample atopic subjects are underrepresented in the current smokers group, probably because the subjects with atopy and bronchial hyperresponsiveness might be less prone to start smoking. However this does not appear to confound our results, since the proportion of atopic increase with each FE_{NO} quartile among the smokers without any corresponding increase in BR levels. COPD pathology is unlikely to have affected the results of the present study, as no subjects have a known COPD-diagnosis and only three subjects among the current smokers had a FEV1/FVC-ratio <0.70.

The difference in the relationships between bronchial responsiveness and exhaled NO in smokers and atopics respectively

suggests that atopy- and smoking cause bronchial hyperresponsiveness through different pathophysiological mechanisms. The nature of the interactions between bronchial responsiveness and exhaled NO is complex as the interaction with smoking could be seen only in atopics while the interaction with atopy could be seen only in non-smokers. Further studies are needed in order to understand the mechanisms explaining how smoking and atopy influence the relationship between bronchial responsiveness and exhaled NO.

Supporting Information

Table S1 The relation (beta coefficient from multiple linear regression models) between bronchial responsiveness (expressed as methacholine doubling dose) and FE_{NO} in smoking subjects in Uppsala and Gothenburg centers after dividing them for current cigarette consumption with different arbitrary cut-off levels. All the coefficients and p-values are adjusted for gender, FEV1(%pred), age, height, weight, atopy, current asthma.

Acknowledgments

List of Investigators and Scientific Team for ECRHS II

Turin: Bugiani M, Piccioni P, Carosso A, Arosa W, Caria E, Castiglioni G, Migliore E, Romano C, Fabbro D, Ciccone G, Magnani C, Dalmaso P, Bono R, Gigli G, Giraudo A, Brussino L, Bucca C, Rolla G, Aime M, Gerutti A, Chiampo F, Gallo W, Sulotto F. Gothenburg: Torén K, Lillenhagen L, Ohl AG, Bäder B, Pfeifer-Nilsson A, Sundberg R. Uppsala: Janson C, Boman G, Norback D, Gunnbjörnsdottr M.

Author Contributions

Conceived and designed the experiments: AM CJ MH GR KT DN ACO. Performed the experiments: AM CJ MH GR KT DN ACO. Analyzed the data: AM CJ. Contributed reagents/materials/analysis tools: AM CJ MH GR KT DN ACO. Wrote the paper: AM GR CJ.
References

1. Sont JK, Willems LN, Bel EH, van Krieken JH, Vandenbroucke JP, et al. (1999) Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPLU Study Group. Am J Respir Crit Care Med 159: 1045–1051.

2. Smith AD, Cowan JO, Filddie S, McLachlan C, Monti–Sheehan G, et al. (2004) Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 169: 473–477.

3. Smith AD, Cowan JO, Brassett KP, Heribson GP, Taylor DR. (2005) Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 352: 2163–2173.

4. Taylor DR, Piiparinen MW, Smith AD, De Jonge JC (2006) Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 61: 817–827.

5. Ricciardolo FL, Sterk PJ, Bastin C, Folkerts G (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84: 731–765.

6. Bryant DH, Burns MW (1976) The relationship between bronchial histamine reactivity and atopic status. Clin Allergy 6: 373–381.

7. Horvath P, Barnes PJ (1999) Exhaled monoxides in asymptomatic atopic subjects. ClinExp Allergy 29: 1276–1280.

8. Gerrar JD, Cockcroft DW, Mink JT, Cotton DJ, Poonawala R, et al. (1980) Increased nonspecific bronchial reactivity in cigarette smokers with normal lung function. Am Rev Respir Dis 122: 377–381.

9. Kharitonov SA, Yates D, Robbins RA, Logan–Sinclair R, Shinebourne EA, et al. (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343: 133–135.

10. Ludviksdottir D, Janson C, Hogman M, Hedenstrom H, Bjornsson E, et al. (2005) Increased nitric oxide and its relationship to airway responsiveness and atopy in asthma. BHR–Study Group. Respir Med 93: 552–556.

11. Franklin PJ, Stick SM, Le Sourd PS, Ayres JG, Turner SW (2004) Measuring exhaled nitric oxide levels in adults: the importance of atopy and airway responsiveness. Chest 125: 1543–1545.

12. Salome CM, Roberts AM, Brown NJ, Dermand J, Marks GB, et al. (1999) Exhaled nitric oxide measurements in a population sample of young adults. Am J Respir Crit Care Med 159: 911–916.

13. Franklin PJ, Turner SW, Le Sourd PS, Stick SM (2003) Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness, and symptoms in a community population of children. Thorax 58: 1048–1052.

14. Sumner J, Anto JM, Kogevinas M, Soriano JB, Tobias A, et al. (1997) Smoking and bronchial responsiveness in nonatopic and atopic young adults. Spanish Group of the European Study of Asthma. Thorax 52: 235–238.

15. Olin AC, Rosengren A, Thelle DS, Lissner L, Bake B, et al. (2006) Height, age, parameters. Respir Res 7: 92.

16. Janson C, Anto J, Burney P, Chinn S, de Marco R, et al. (2001) The European Group of the European Study of Asthma. Thorax 56: 456–461.

17. Janson C, Anto J, Burney P, Chinn S, de Marco R, et al. (2001) The European Group of the European Study of Asthma. Thorax 52: 235–238.

18. Malinovschi A, Janson C, Hogman M, Hedenstrom H, Bjornsson E, et al. (2005) An increase in bronchial responsiveness is associated with continuing or only in never-smokers. Allergy 64: 55–61.

19. Franklin PJ, Turner SW, Le Sourd PS, Stick SM (2003) Exhaled nitric oxide and asthma: complex interactions between atopy, airway responsiveness, and symptoms in a community population of children. Thorax 58: 1048–1052.

20. Sumner J, Anto JM, Kogevinas M, Soriano JB, Tobias A, et al. (1997) Smoking and bronchial responsiveness in nonatopic and atopic young adults. Spanish Group of the European Study of Asthma. Thorax 52: 235–238.