TOWARDS A PROOF OF THE CLASSICAL SCHOTTKY UNIFORMIZATION CONJECTURE

RUBÉN A. HIDALGO

Abstract. As a consequence of Koebe’s retrosection theorem, every closed Riemann surface of genus \(g \geq 2 \) is uniformized by a Schottky group. Marden observed that there are Schottky groups which are not classical ones, that is, they cannot be defined by a suitable collection of circles. This opened the question to if every closed Riemann surface can be uniformized by a classical Schottky group. Recently, Hou has observed this question has an affirmative answer by first noting that every closed Riemann surface can be uniformized by a Schottky group with limit set of Hausdorff dimension < 1 and then by proving that such a Schottky group is necessarily a classical one. In this paper, we provide another argument, based on the density of Belyi curves on the the moduli space \(\mathcal{M}_g \) and the fact that the locus \(\mathcal{M}^c_g \subset \mathcal{M}_g \) of those Riemann surfaces uniformized by classical Schottky groups is a non-empty open set. We show that every Belyi curve can be uniformized by a classical Schottky group, so \(\mathcal{M}^c_g = \mathcal{M}_g \).

1. Introduction

Let \(S \) be a closed Riemann surface of genus \(g \geq 2 \). An uniformization of \(S \) is a tuple \((G, \Delta, P : \Delta \to S)\), where \(G \) is a Kleinain group, \(\Delta \) is a \(G \)-invariant connected component of its region of discontinuity (that is, \((G, \Delta)\) is a function group) and \(P \) is a regular holomorphic cover with \(G \) as its deck group; in particular, \(G \) acts freely on \(\Delta \). The collection of uniformizations of \(S \) has a natural partial order defined as follows. An uniformization \((G_1, \Delta_1, P_1 : \Delta_1 \to S)\) is higher than \((G_2, \Delta_2, P_2 : \Delta_2 \to S)\) if there is a holomorphic map \(Q : \Delta_1 \to \Delta_2 \) so that \(P_1 = P_2 \circ Q \) (in particular, \(Q \) is a regular covering map, that is, is defined by a subgroup \(N \) of \(G_1 \) and \(G_2 = G_1/N \)). The highest uniformizations correspond to \(\Delta \) being simply connected (so isomorphic to the unit disc). The lowest uniformizations corresponds to the case that \(G \) is a Schottky group.

Geometrically, a Schottky group of rank \(g \geq 2 \) is defined as (equivalent definitions can be found in [10]) a group \(G \) generated by \(g \)loxodromic elements \(A_1, \ldots, A_g \), where there exists a collection of \(2g \) pairwise disjoint simple loops \(C_1, \ldots, C_g, C'_1, \ldots, C'_g \) on the the Riemann sphere \(\hat{\mathbb{C}} \) bounding a common region \(\mathcal{D} \) of connectivity \(2g \) so that \(A_j(C_j) = C'_j \) and \(A_j(\mathcal{D}) \cap \mathcal{D} = \emptyset \), for all \(j = 1, \ldots, g \). The domain \(\mathcal{D} \) is called a standard fundamental domain for \(G \), the collection of loops \(C_1, \ldots, C_g, C'_1, \ldots, C'_g \) a fundamental set of loops and the Möbius transformations \(A_1, \ldots, A_g \) a Schottky set of generators. It is known that \(G \) is a free group of rank \(g \) and Chuckrow [3] proved that every set of \(g \) generators of it is a Schottky set of generators. Its region of discontinuity \(\Omega \) is connected and the quotient space \(\Omega/G \) is a closed Riemann surface of genus \(g \) [9]. Koebe’s retrosection theorem states that every closed Riemann surface can be obtained, up to isomorphisms, as above by a suitable Schottky group. A simple proof of this fact was also given by L. Bers in [2] using quasiconformal

Date: January 12, 2022.
2000 Mathematics Subject Classification. 30F10, 30F40.
Key words and phrases. Riemann Surfaces, Schottky Groups.
Partially supported by Project Fondecyt 1150003 and Project Anillo ACT1415 PIA CONICYT.
mappings. A Schottky uniformization of a closed Riemann surface \(S \) is a uniformization \((G, \Omega, P : \Omega \to S)\), where \(G \) is a Schottky group with region of discontinuity \(\Omega \).

A Schottky group is called classical if it has a Schottky set of generators with a fundamental set of loops consisting of circles. Marden [8] showed that, for every \(g \geq 2 \), there are non-classical Schottky groups of rank \(g \); see also [7]. An explicit family of examples of non-classical Schottky groups of rank two was constructed by Yamamoto [11] and a theoretical construction of an infinite collection of non-classical Schottky groups is provided in [4]. This opened the question to if every closed Riemann surface has a classical Schottky uniformization (I think it was Lipman Bers who first asked this question?).

Theorem 1 (Classical Schottky uniformization conjecture). *Every closed Riemann surface can be uniformized by a classical Schottky group.*

An affirmative answer to the above conjecture were known in either one of the following two situations.

1. \(S \) admits an anticonformal automorphism of order two with fixed points (Koebe).
2. \(S \) has \(g \) pairwise disjoint homologically independent short loops (McMullen).

In [5] Hou proved that every closed Riemann surface can be uniformized by a Schottky group whose limit set has Hausdorff dimension < 1 and, in [6], he also proved that such a Schottky group is necessarily a classical one; so this provides a proof to Theorem 1.

In this paper we describe a different argument. The main idea is the following. Let \(\mathcal{M}_g \) be the moduli space of closed Riemann surfaces of genus \(g \geq 2 \), \(\mathcal{M}_g^{cs} \) be its locus consisting of classes of Riemann surfaces which can be uniformized by classical Schottky groups and \(\mathcal{M}_g^{b} \) be the locus of classes of Belyi curves. It is well known that \(\mathcal{M}_g^{cs} \) is a non-empty open set and that \(\mathcal{M}_g^{b} \) is a dense subset (as a consequence of Belyi’s theorem [1]). In this way, in order to prove Theorem 1, it is enough to check that every Belyi curve can be uniformized by a classical Schottky group (Theorem 2).

Remark 1. It is important to remark that we are dealing with all Belyi curves and not just the regular Belyi curves (also called quasiplatonic curves); as these last ones only provides a finite collection of points in \(\mathcal{M}_g \).

Moduli space \(\mathcal{M}_g \) is non-compact. A compactification, the Deligne-Mumford compactification, is obtained by considering stable Riemann surfaces of genus \(g \). Every stable Riemann surface of genus \(g \geq 2 \) can be uniformized by a noded Schottky group of rank \(g \) (a geometrically finite Kleinian group isomorphic to the free group of rank \(g \)). These noded Schottky groups are geometric limits of Schottky groups. Similarly to Schottky groups, noded Schottky groups can be defined geometrically using a system of \(2g \) simple loops, but one now permits tangencies at parabolic fixed points. A neoclassical Schottky group is one for which these system of loops can be chosen to be circles. In [4] it was observed that there are noded Riemann surfaces which cannot be uniformized by a neoclassical Schottky group.
2. Preliminaries

2.1. Annuli and their modules. An annulus (or ring domain) is a doubly connected domain A in $\hat{\mathbb{C}}$. There exists a unique $r > 1$ so that A is biholomorphically equivalent to a circular annulus $A_r := \{ z \in \mathbb{C} : r^{-1} < |z| < r \}$. The modulus of A is defined as $\text{mod}(A) = \frac{1}{\pi} \log r$. Next, we list some known results on the modulus of annuli.

Lemma 1 (Grötzch inequality). If A is an annulus and $B \subset A$ an essential annulus (i.e., the inclusion map induces an injective map on the fundamental group), then $\text{mod}(B) \leq \text{mod}(A)$.

Lemma 2. If A and B are annuli and $Q : A \to B$ is a degree d covering map, then $\text{mod}(A) = d \text{mod}(B)$.

Lemma 3. Every annulus A satisfying that $\text{mod}(A) > 1/2$ contains an euclidean circle separating its borders.

Lemma 4. Let A and B annuli and $Q : A \to B$ a finite degree surjective holomorphic map (with a finite set of critical points on A). We also assume that Q sends a central loop of A onto a central loop of B and this restriction is a covering map of loops. Then there exists a positive constant $C(Q)$, only depending on Q, so that $\text{mod}(A) > C(Q) \text{mod}(B)$.

3. Belyi curves can be uniformized by classical Schottky groups

A closed Riemann surface S, of genus $g \geq 2$, is called a Belyi curve if it admits a non-constant meromorphic map $\beta : S \to \hat{\mathbb{C}}$ whose branch values are contained in the set $\{1, \omega_3, \omega_2^3\}$, where $\omega_3 = e^{2\pi i/3}$ (in this case β is a called a Belyi map for S). Usually, many authors assume the branch values to be contained in the set $\{\infty, 0, 1\}$, but this is equivalent as the group of Möbius transformations acts 3-transitively on the Riemann sphere.

The group of Möbius transformations keeping invariant the set $\{1, \omega_3, \omega_2^3\}$ is generated by the transformations $A(z) = \omega_3 z$ and $B(z) = 1/z$ and it is isomorphic to the symmetric group in three letters \mathfrak{S}_3. The rational map

$$R(z) = \frac{(1 + 2\omega_3)(z^3 + z^{-3}) - 6}{(1 + 2\omega_3)(z^3 + z^{-3}) + 6}$$

provides a regular branched cover with deck group $\langle A, B \rangle$ and whose set of branch values is $\{1, \omega_3, \omega_2^3\}$.

If $\beta : S \to \hat{\mathbb{C}}$ is a Belyi map for S, then the composition map $R \circ \beta : S \to \hat{\mathbb{C}}$ still a Belyi map for S. A Belyi map for S obtained as a finite sequence of compositions $R \circ R \circ \cdots \circ R \circ \beta$ is called a refining of β.
Theorem 2. Every Belyi curve can be uniformized by a classical Schottky group.

Proof. Let us denote by $S^1 = \{a \in \mathbb{C} : |z| = 1\}$ the unit circle in the complex plane. If $\beta : S \to \mathbb{C}$ is a Belyi map for S, then $\beta^{-1}(S^1)$ provides a triangulation of S. By taking a refining of β, if necessary, we may assume the following two properties:

1. there are g pairwise disjoint homologically independent simple loops $\alpha_1, \ldots, \alpha_g$ inside $\beta^{-1}(S^1)$;
2. for every $j = 1, \ldots, g$, $\beta(\alpha_j) = S^1$ and $\beta : \alpha_j \to S^1$ is a covering map.

Let us consider a Schottky uniformization $(G, \Omega, P : \Omega \to S)$ defined by the loops $\alpha_1, \ldots, \alpha_g$, that is, there is a fundamental set of loops $C_1, \ldots, C_g, C'_1, \ldots, C'_g$ for G so that $P(C_j) = P(C'_j) = \alpha_j$, for $j = 1, \ldots, g$. Let B_1, \ldots, B_g a corresponding Schottky set of generators.

Let us consider the annuli $A_r = \{z \in \mathbb{C} : r < |z| < r\}$, where $r > 1$. Then, the preimage of A_r by the meromorphic map $Q = \beta \circ P : \Omega \to \mathbb{C}$ provides a neighborhood \tilde{A}_r of the graph $\beta^{-1}(S^1)$. Inside \tilde{A}_r there is a collection of g pairwise disjoint annuli, say $\tilde{A}_r^1, \ldots, \tilde{A}_r^g$, where $C_j \subset \tilde{A}_r^j$. We chose them so that $Q : \tilde{A}_r^j \to A_r$ is surjective.

In this way, $\text{mod}(\tilde{A}_r^j) = C(Q)\text{mod}(A_r) = C(Q) \log(r)/\pi$ (see Lemma 4).

Next, we make r approach to $+\infty$ in order to assume the module of each annuli \tilde{A}_r^j to be as big as we want. Now Lemma 3 ensures that inside \tilde{A}_r^j there is a circle D_j (homotopic to C_j in the corresponding annuli). It can be seen that the new loops $D_1, \ldots, D_g, D'_1 = B_1(D_1), \ldots, D'_g = B_g(D_g)$ define a new set of fundamental loops for G making it a classical Schottky group.

\[\square \]

References

[1] G. V. Belyi. On Galois extensions of a maximal cyclotomic field. Mathematics of the USSR-Izvestiya 14 No.2 (1980), 247–256.
[2] Bers, L. Automorphic forms for Schottky groups. Adv. in Math. 16 (1975), 332-361.
[3] Chuckrow, V. On Schottky groups with application to Kleinian groups. Ann. of Math. 88 (1968), 47-61.
[4] Hidalgo, R.A. and Maskit, B. On neoclassical Schottky groups. Trans. Amer. Math. Soc. 358 (2006), No.11, 4765-4792.
[5] Hou, Y. On smooth moduli space of Riemann surfaces. (2016). https://arxiv.org/pdf/1610.03132.pdf
[6] Hou, Y. The classification of Kleinian groups of Hausdorff dimensions at most one. (2016). https://arxiv.org/pdf/1610.03046.pdf
[7] Jørgensen, T. Marden, A. and Maskit, B. The boundary of classical Schottky space. Duke Math. J. 46 (1979),441-446.
[8] Marden, A. Schottky groups and circles. In Contributions to Analysis, pages 273–278. Academic Press, New York and London, 1974.
[9] Maskit, B. Kleinian Groups. G.M.W. 287, Springer-Verlag, 1988.
[10] Maskit, B. A characterization of Schottky groups. J. d’Analyse Math. 19 (1967), 227-230.
[11] Yamamoto, Hiro-o. An example of a non-classical Schottky group. Duke Math. J., 63:193–197, 1991.

Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile
E-mail address: ruben.hidalgo@ufrontera.cl