WEAK KAM THEORY FOR SUBRIEMANNIAN LAGRANGIANS

HÉCTOR SÁNCHEZ MORGADO

ABSTRACT. We extend weak KAM theory to Lagrangians that are defined only on the horizontal distribution of a sub-Riemannian manifold. The main tool is Tonelli’s theorem which allows dispending on a Lagrangian dynamics.

1. INTRODUCTION

Lagrangians that are not defined on the whole tangent bundle of a manifold arise naturally in mechanics with non-holonomic constraints. We approach the study of such kind of systems based on variational principles, more specifically the study of global minimizing curves and the related weak KAM solutions.

A basic fact that should be established to start, is a Tonelli type theorem. We accomplish that in section 2. In section 3 we consider the infinite horizon discounted problem and obtain some bounds for the discounted value function, uniform respect to the discount. Using those bounds we prove in section 4 the existence of weak KAM solutions. Then we introduce the Lax-Oleinik semigroup, the action potential, the Peierls barrier and the Aubry set, and establish usual properties of these objects. We also prove the long time convergence of the Lax-Oleinik semigroup under a suitable growth condition for the Lagrangian. In section 5 we consider viscosity solutions of the Hamilton-Jacobi equation and prove that weak KAM solutions are viscosity solutions. We don’t know if the converse is true. In section 6 we consider minimizing measures and define the effective Lagrangian and Hamiltonian. We don’t know if the support of any minimizing measure is contained in the Aubry set. In section 7 we observe that the normalized discounted value function converges, as in [DFTZ], to a particular weak KAM solution. In section 8 we consider homogenization of the Hamilton Jacobi following the approach in [CIS].

Several authors have studied some aspects of Calculus of Variations and Hamilton-Jacobi equation in our setting.

Gomes [G] has studied the existence and properties of minimizing measures as well as the solutions of the dual min-max problem.

Manfredi and Stroffolini [MS] gave a Hopf-Lax formula in the Heisenberg group, and Balogh et al [BCP] did it for Carnot groups.

Birindelli and Wigniolli [BW] studied homogenization of the Hamilton-Jacobi equation in the Heisenberg group and Stroffolini [S] did it for Carnot groups.
2. Tonelli’s theorem

2.1. Preliminaries. Let \((M, \mathcal{D}, \langle \cdot, \cdot \rangle)\) be a sub-Riemannian manifold such that \(\mathcal{D}\) is bracket generating. Denote by \(\pi : TM \to M\) the natural projection.

Definition 1. We say that

- A continuous curve \(\gamma : [a, b] \to M\) is **absolutely continuous** iff \(\varphi \circ \gamma\) is absolutely continuous for any smooth and compactly supported \(\varphi : M \to \mathbb{R}\).
- An absolutely continuous curve \(\gamma : [a, b] \to M\) is **horizontal** if \(\dot{\gamma}(t) \in \mathcal{D}\) for a.e. \(t \in [a, b]\).
- We denote by \(W^{1,1}_\mathcal{D}([a, b])\) the set of horizontal absolutely continuous curves defined on the interval \([a, b]\).

Proposition 1. A continuous curve \(\gamma : [a, b] \to M\) is absolutely continuous if and only if there is a partition \(a = t_0 < t_1 < \cdots < t_p = b\) and charts \((U_i, \varphi_i)\) of \(M\) for \(1 \leq i \leq p\) such that \(\gamma([t_{i-1}, t_i]) \subset U_i, \) and \(\varphi_i \circ \gamma|_{[t_{i-1}, t_i]}\) is absolutely continuous.

For \(\gamma \in W^{1,1}_\mathcal{D}([a, b])\) we define its sub-Riemannian length by

\[\ell(\gamma) = \int_a^b \|\dot{\gamma}(t)\| \, dt. \]

From that we define the *Carnot-Caratheodory* distance \(d\) on \(M\) which in turn defines a topology on \(M\) that coincides with the original topology of \(M\) as a manifold.

Definition 2.

- A family \(F\) of curves \(\gamma : [a, b] \to M\) is **d-absolutely equicontinuous** if \(\forall \varepsilon > 0, \exists \delta > 0\) s.t. \(\forall \gamma \in F\) and any disjoint subintervals \([a_1, b_1], \ldots, [a_N, b_N]\) of \([a, b]\):

\[\sum_{i=1}^N b_i - a_i < \delta \implies \sum_{i=1}^N d(\gamma(b_i), \gamma(a_i)) < \varepsilon \]

- A family \(G \subset L^1([a, b], m)\), \(m\) the Lebesgue measure on \([a, b]\), is uniformly integrable if given \(\varepsilon > 0\) there is \(\delta > 0\) such that

\[f \in G, E \subset [a, b] \text{ measurable, } m(E) < \delta \implies \int_E |f| < \varepsilon. \]

Remark 1.

1. A family \(F \subset W^{1,1}_\mathcal{D}([a, b])\) such that \(\{\|\dot{\gamma}\| : \gamma \in F\}\) is uniformly integrable, is d-absolutely equicontinuous.
2. A d-absolutely equicontinuous family is d-equicontinuous.
3. An uniform limit of d-absolutely equicontinuous functions is d-absolutely continuous.

Theorem 1. Let \((\gamma_n)_n\) be a sequence in \(W^{1,1}_\mathcal{D}([a, b])\) that converges d-uniformly to \(\gamma\), and such that \((\|\dot{\gamma}_n\|)_n\) is uniformly integrable. Then \(\gamma \in W^{1,1}_\mathcal{D}([a, b])\).
Thus V is continuous. We observe that according to exercise 3.52 in \textit{ABB}, $V(\eta) = \ell(\eta)$.

Let $[c, d] \subset [a, b]$, and $c = t_0 < t_1 < \cdots < t_m = d$, then

$$
\sum_{i=1}^{m} d(\gamma(t_{i-1}), \gamma(t_i)) = \lim_{n \to \infty} \sum_{i=1}^{m} d(\gamma_n(t_{i-1}), \gamma_n(t_i)) \leq \liminf_{n \to \infty} V(\gamma_n|[c, d])
$$

Thus $V(\gamma|[c, d]) \leq \liminf_{n \to \infty} V(\gamma_n|[c, d])$.

Given $\varepsilon > 0$ there is $\delta > 0$ such $n \in \mathbb{N}, m(E) < \delta \implies \int_E \|\dot{\gamma}_n\| < \varepsilon$. Let $]c_1, d_1[, \cdots ,]c_k, d_k[$ be disjoint subintervals of $[a, b]$, with $\sum_k (d_i - c_i) < \delta$, then

$$
0 \leq \sum_{i=1}^{k} v(d_i) - v(c_i) = \sum_{i=1}^{k} V(\gamma|[c_i, d_i]) \leq \sum_{i=1}^{k} \liminf_{n \to \infty} V(\gamma_n|[c_i, d_i])
$$

$$
\leq \liminf_{n \to \infty} \sum_{i=1}^{k} V(\gamma_n|[c_i, d_i]) = \liminf_{n \to \infty} \sum_{i=1}^{k} \int_{c_i}^{d_i} \|\dot{\gamma}_n\| \leq \varepsilon
$$

Step 2. There is reparametrization $\bar{\gamma} : [0, L] \to M$ of γ, $L = V(\gamma)$, such that $d(\bar{\gamma}(r), \bar{\gamma}(s)) \leq |r - s|$ for all $r, s \in [0, L]$, and so $\gamma \in W^{1,1}_D([a, b])$.

Since v is nondecreasing and absolutely continuous, the function $\phi : [0, L] \to [a, b]$ defined by

$$
\phi(s) = \inf\{t : v(t) \geq s\}
$$

satisfies $v(\phi(s)) = s$. ϕ is strictly increasing with a denumerable set of jump discontinuities

$$
\lim_{s \to r^-} \phi(s) = a_n < b_n = \lim_{s \to r^+} \phi(s),
$$

which correspond to the intervals $[a_n, b_n]$ where v is constant. v is a bijection from $[0, 1] - \bigcup[a_n, b_n]$ onto $[0, L]$.

For a Riemannian metric g on M defining a distance d_g there is $C > 0$ such that

$$
C d_g(\gamma(t), \gamma(s)) \leq d(\gamma(t), \gamma(s)) \leq V(\gamma|[t, s]) = v(s) - v(t),
$$

thus, if $v'(t) = 0$ then $\dot{\gamma}(t) = 0$. If $t \in [a, b]$ is a number where v and γ are differentiable and $\dot{\gamma}(t) \neq 0$, then $t \notin \bigcup[a_n, b_n]$, and thus $t = \phi(s)$ for a number $s \in [0, L]$ where ϕ is continuous. Then

$$
\lim_{r \to s} \frac{\phi(r) - \phi(s)}{r - s} = \lim_{r \to s} \frac{1}{v(\phi(r)) - v(\phi(s))} = \frac{1}{v'(t)},
$$

so that ϕ is differentiable at s.

Define $\bar{\gamma} : [0, L] \to M$ by $\bar{\gamma}(s) = \gamma(\phi(s))$, for $r < s$ we have

$$
d(\bar{\gamma}(r), \bar{\gamma}(s)) = d(\gamma(\phi(r), \gamma(\phi(s)))) \leq V(\gamma|[\phi(r), \phi(s)]) = v(\phi(s)) - v(\phi(r)) = s - r
$$
By Proposition 3.50 in [ABB] we have that \(\tilde{\gamma} \in W^{1,1}_D([0, L]) \). If \(t \in [a, b] \) is a number where \(v \) and \(\gamma \) are differentiable and \(\dot{\gamma}(t) \neq 0 \), then \(t = \phi(s) \) for a number \(s \in [0, L] \) where \(\phi \) is differentiable, thus so is \(\tilde{\gamma} \) and \(\dot{\gamma}(s) = \gamma(t)/v'(t) \). Thus \(\gamma \in W^{1,1}_D([a, b]) \).

2.2. Tonelli’s Theorem

We assume that \(L : D \to \mathbb{R} \) is a \(C^2 \) function satisfying the following properties

Uniform superlinearity: For all \(K \geq 0 \) there is \(C(K) \in \mathbb{R} \) such that
\[
L(v) \geq K\|v\| + C(K) \quad \text{for all} \quad v \in D.
\]

Uniform boundedness: For all \(R \geq 0 \), we have
\[
A(R) = \sup\{L(v) : \|v\| \leq R\} < +\infty.
\]

Strict convexity: there is \(a > 0 \) such that \(\partial_{vv}^2 L(v)(w, w) \geq a \) for all \(v, w \in D \) with \(\|w\| = 1 \), where \(\partial_v L \) denotes the derivative along the fibers.

We define the Energy function \(E : D \to \mathbb{R} \) by \(E(v) = \partial_v L(v) \cdot v - L(v) \). Notice that \(\frac{dE(sv)}{ds} = s\partial_{vv}^2 L(sv)(v, v) \), and therefore
\[
E(v) = E(0) + \int_0^1 \frac{dE(sv)}{ds} ds = -L(0) + \int_0^1 s\partial_{vv}^2 L(sv)(v, v) \geq -A(0) + a\|v\|^2.
\]

For \(\gamma \in W^{1,1}_D([a, b]) \), \(\lambda \geq 0 \) we define the discounted action
\[
A_{L, \lambda}(\gamma) = \int_a^b e^{\lambda t} L(\dot{\gamma}(t)) \, dt.
\]

Lemma 1. For \(c \in \mathbb{R} \) let \(\mathcal{F}(c, r) = \{ \gamma \in W^{1,1}_D([a, b]) : A_{L, \lambda}(\gamma) \leq c, \lambda \in [0, r] \} \). Then the families \(\{e^{\lambda t}\|\dot{\gamma}(t)\| : \gamma \in \mathcal{F}(c, r), \lambda \in [0, r]\} \) \(\{\|\dot{\gamma}(t)\| : \gamma \in \mathcal{F}(c, r)\} \) are uniformly integrable.

Proof. By the uniform superlinearity, \(L(v) \geq C(0) \). Given \(\varepsilon > 0 \) take \(K > 0 \) such that
\[
\max_{\lambda \in [0, r]} \left(c - C(0) \int_a^b e^{\lambda t} dt \right) < K\varepsilon.
\]

By the uniform superlinearity,
\[
L(v) \geq K\|v\| + C(K).
\]

Let \(\gamma \in \mathcal{F}(c) \) and \(E \subset [a, b] \) be measurable, then
\[
C(K) \int_E e^{\lambda t} dt + K \int_E e^{\lambda t}\|\dot{\gamma}(t)\| \, dt \leq \int_E e^{\lambda t} L(\dot{\gamma}(t)) \, dt
\]
and
\[
C(0) \int_{[a, b] \setminus E} e^{\lambda t} dt \leq \int_{[a, b] \setminus E} e^{\lambda t} L(\dot{\gamma}(t)) \, dt
\]
Adding the inequalities we get
\[
(C(K) - C(0)) \int_E e^{\lambda t} dt + C(0) \int_a^b e^{\lambda t} dt + K \int_E e^{\lambda t} \|\dot{\gamma}(t)\| dt \leq A_{L,\lambda}(\gamma) \leq c
\]
which gives
\[
\int_E e^{\lambda t} \|\dot{\gamma}(t)\| dt \leq \frac{c - C(0)}{K} \int_a^b e^{\lambda t} dt + \frac{C(0) - C(K)}{K} \int_E e^{\lambda t} dt \leq c + \frac{C(0) - C(K)}{K} \int_E e^{\lambda t} dt.
\]
This gives the uniform integrability of \(\{e^{\lambda t} \|\dot{\gamma}(t)\| : \gamma \in \mathcal{F}(c, r), \lambda \in [0, r]\}\). The uniform integrability of \(\{|\ddot{\gamma}(t)| : \gamma \in \mathcal{F}(c, r)\}\) follows from
\[
\int_E e^{\lambda t} \|\dot{\gamma}(t)\| dt \geq e^{\lambda a} \int_E \|\dot{\gamma}\| \geq \min_{\lambda \in [0, r]} e^{\lambda a} \int_E \|\dot{\gamma}\|
\]
\[\square\]

Theorem 2. Let \((\gamma_n)_n\) be a sequence in \(W^{1,1}_D([a, b])\) converging d-uniformly to \(\gamma\), \(\lambda_n \geq 0\) converging to \(\lambda\) and
\[
\liminf_{n \to \infty} A_{L,\lambda_n}(\gamma_n) < +\infty.
\]
Then \(\gamma \in W^{1,1}_D([a, b])\) and
\[(1) \quad A_{L,\lambda}(\gamma) \leq \liminf_{n \to \infty} A_{L,\lambda_n}(\gamma_n).
\]

Proof. Let \(l = \liminf_{n \to \infty} A_{L,\lambda_n}(\gamma_n)\), extracting subsequence still denoted \(\gamma_n, \lambda_n\) we have \(l = \lim_{n \to \infty} A_{L,\lambda_n}(\gamma_n)\), and forgetting some of the first curves \(\gamma_n\), we can suppose that \(\gamma_n \in \mathcal{F}(l + 1, \lambda + 1)\) for all \(n\). Lemma \([\text{I}]\) implies that \((\|\dot{\gamma}_n\|)_n\) and \((e^{\lambda_n t} \|\dot{\gamma}_n(t)\|)_n\) are uniformly integrable, and Theorem \([\text{I}]\) that \(\gamma \in W^{1,1}_D([a, b])\).

Let us show how we can reduce the proof of \([\text{I}]\) to the case where \(M\) is an open subset of \(\mathbb{R}^d\), \(d = \dim M\) and the horizontal distribution is trivial. The lagrangian \(L\) is bounded below by \(C(0)\). If \([a', b'] \subset [a, b]\), for all \(n\) we have
\[
A_{L,\lambda_n}(\gamma_n|[a', b']) \leq A_{L,\lambda_n}(\gamma_n) - C(0) \int_{[a, b]\setminus[a', b']} e^{\lambda_n t} dt
\]
so that
\[
\liminf_{n \to \infty} A_{L,\lambda_n}(\gamma_n|[a', b']) < +\infty.
\]
Let now the partition \(a_0 = 0 < a_1 < \ldots < a_p = 1\) and \(U_1, \ldots, U_p\) be as in the proof of Theorem \([\text{I}]\) so that the horizontal distribution is trivial on \(U_i\) and \(\gamma([a_{i-1}, a_i]) \subset U_i, i = 1, \ldots, p\). It is enough to prove that
\[
A_{L,\lambda_n}(\gamma|[a_{i-1}, a_i]) \leq \liminf_{n \to \infty} A_{L,\lambda_n}(\gamma_n|[a_{i-1}, a_i])
\]
because that implies

\[A_{L,\lambda}(\gamma) = \sum_{i=1}^{p} A_{L,\lambda}(\gamma[a_{i-1}, a_i]) \leq \sum_{i=1}^{p} \liminf_{n \to \infty} A_{L,\lambda_n}(\gamma[a_{i-1}, a_i]) \]

\[\leq \liminf_{n \to \infty} \sum_{i=1}^{p} A_{L,\lambda_n}(\gamma[a_{i-1}, a_i]) = \liminf_{n \to \infty} A_{L,\lambda}(\gamma_n) \]

In the sequel we suppose that \(M = U \) is an open set of \(\mathbb{R}^d \), the horizontal distribution is \(U \times \mathbb{R}^m \) with \(\langle , \rangle \) the euclidean inner product in \(\mathbb{R}^m \), and that \(\gamma([a, b]) \) and all \(\gamma_n([a, b]) \) are contained \(U \). We will write \(\gamma(t) = (\gamma(t), \zeta(t)) \), \(\gamma_n(t) = (\gamma_n(t), \zeta_n(t)) \).

Lemma 2. Let \(U \subset \mathbb{R}^d \) be open, \(L \in C^2(U \times \mathbb{R}^m) \) be strictly convex and uniformly superlinear on the second variable with \(\sup\{ L(x, v) : \|v\| \leq R \} < +\infty \) for each \(R > 0 \). Given \(K \subset U \) compact, \(C > 0 \) and \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that if \(x \in K \), \(|x - y| \leq \delta \), \(\|v\| \leq C \) and \(w \in \mathbb{R}^m \), then

\[L(y, w) \geq L(x, v) + \partial_v L(x, v) \cdot (w - v) - \varepsilon. \]

For a fixed constant \(C \) let

\[E_C = \{ t \in [a, b] : \|\zeta(t)\| \leq C \} \]

Given \(\varepsilon > 0 \), the compact set \(K = \gamma([a, b]) \cup \bigcup_{n \in \mathbb{N}} \gamma_n[a, b] \) and the constant \(C \) fixed above, we apply Lemma 2 to get \(\delta > 0 \) satisfying its conclusion. By the compactness of \([a, b]\) and the continuity of \(\gamma \), there is \(\eta > 0 \) such that \(t \in [a, b] \), \(d(x, \gamma(t)) < \eta \) imply \(|x - \gamma(t)| < \delta \). Since \(\gamma_n \) converges \(d\)-uniformly to \(\gamma \), there exists an integer \(n_0 \) such that, for each \(n \geq n_0 \) we have \(d(\gamma_n(t), \gamma(t)) < \eta \) for each \(t \in [a, b] \). Hence, for each \(n \geq n_0 \) and almost all \(t \in E_C \), we have

\[L(\gamma_n(t), \zeta_n(t)) \geq L(\gamma(t), \zeta(t)) + \partial_v L(\gamma(t), \zeta(t)) \cdot (\zeta_n(t) - \zeta(t)) - \varepsilon, \]

and from the uniform superlinearity, \(L(\gamma_n(t), \zeta_n(t)) \geq C(0) \) a.e.where. Thus

\[A_{L,\lambda_n}(\gamma_n) \geq \int_{E_C} e^{\lambda t} L(\gamma(t), \zeta(t)) \, dt + C(0) \int_{[a, b] \setminus E_C} e^{\lambda t} \, dt \]

\[+ \int_{E_C} e^{\lambda t} \partial_v L(\gamma(t), \zeta(t)) \cdot (\zeta_n(t) - \zeta(t)) \, dt - \varepsilon e^{\lambda b} m(E_C) \]

Since \(\{ \|e^{\lambda t} \zeta_n(t)\| \} \) is uniformly integrable, \(e^{\lambda t} \zeta_n(t) \) converges to \(e^{\lambda t} \zeta(t) \) in the weak topology \(\sigma(L^1, L^\infty) \). Since \(\|\zeta(t)\| \leq C \) for \(t \in E_C \), the function \(\chi_{E_C}(t) \partial_v L(\gamma(t), \zeta(t)) \) is bounded. Thus

\[\int_{E_C} \partial_v L(\gamma(t), \zeta(t)) \cdot (e^{\lambda t} \zeta_n(t) - e^{\lambda t} \zeta(t)) \, dt, \int_{E_C} \partial_v L(\gamma(t), \zeta(t)) \cdot (e^{\lambda t} - e^{\lambda t}) \zeta(t) \, dt \to 0, \]

as \(n \to \infty \). Taking limit in \(2 \) we have

\[l = \lim_{n \to \infty} A_{L,\lambda_n}(\gamma_n) \geq \int_{E_C} e^{\lambda t} L(\gamma(t), \zeta(t)) \, dt + C(0) \int_{[a, b] \setminus E_C} e^{\lambda t} \, dt - \varepsilon e^{\lambda b} m(E_C). \]
Letting $\varepsilon \to 0$ we have

$$l = \lim_{n \to \infty} A_{L,\lambda_n}(\gamma_n) \geq \int_{E_C} e^{\lambda t} L(\gamma(t), \zeta(t)) \, dt + C(0) \int_{[a,b] \setminus E_C} e^{\lambda t} \, dt.$$

Since $\zeta(t)$ is defined and finite for almost all $t \in [a,b]$ we have that $E_C \nearrow E_\infty$ as $C \nearrow +\infty$ with $m([a,b] \setminus E_\infty) = 0$. Since $L(\gamma(t), \zeta(t))$ is bounded below by $C(0)$, the monotone convergence theorem gives

$$\int_{E_C} e^{\lambda t} L(\gamma(t), \zeta(t)) \, dt \to \int_{a}^{b} e^{\lambda t} L(\gamma(t), \zeta(t)) \, dt \text{ as } C \to +\infty.$$

Letting $C \nearrow +\infty$ in (3) we finally obtain

$$l = \lim_{n \to \infty} A_{L,\lambda_n}(\gamma_n) \geq A_{L,\lambda}(\gamma).$$

\[\square \]

Corollary 1. The action $A_{L,\lambda} : W_D^{1,1}([a,b]) \to \mathbb{R} \cup \{+\infty\}$ is lower semicontinuous for the topology of d-uniform convergence in $W_D^{1,1}([a,b])$.

Proof. Let γ_n be a sequence in $W_D^{1,1}([a,b])$ that converges d-uniformly to $\gamma \in W_D^{1,1}([a,b])$. We must show that

$$\liminf_{n \to \infty} A_{L,\lambda}(\gamma_n) \geq A_{L,\lambda}(\gamma).$$

If $\liminf_{n \to \infty} A_{L,\lambda}(\gamma_n) = +\infty$ there is nothing to prove. In other case, the result follows from Theorem 2 \[\square \]

Corollary 2 (Tonelli’s Theorem). If $K \subset M$ is compact, $c \in \mathbb{R}$ then the set

$$\mathcal{F}(K,c) = \{ \gamma \in W_D^{1,1}([a,b]) : [a,b] \cap K \neq \emptyset, A_{L,\lambda}(\gamma) \leq c \}$$

is a compact subset of $W_D^{1,1}([a,b])$ for the topology of d-uniform convergence.

Proof. By the compactness of K and Theorem 2 the subset $\mathcal{F}(K,c)$ is closed in the space of continuous curves $C([a,b],M)$. By the uniform superlinearity, $L(v) \geq \|v\| + C(1)$ for all $v \in D$. Thus for any $\gamma \in W_D^{1,1}([a,b])$ and any $t,s \in [a,b]$ with $t \leq s$, we have

$$C(1) \int_{t}^{s} e^{\lambda r} \, dr + e^{\lambda a} \int_{t}^{s} \|\dot{\gamma}\| \leq A_{L,\lambda}(\gamma).$$

If $\gamma \in \mathcal{F}(c,K)$ we have

$$d(\gamma(s), \gamma(t) \leq e^{-\lambda a} \left(c + |C(1)| \int_{a}^{b} e^{\lambda r} \, dr \right),$$

and thus, letting $r = e^{-\lambda a} (c + |C(1)| \int_{a}^{b} e^{\lambda r} \, dr)$, we get

$$\gamma([a,b]) \subset \{ y \in M : d(y,K) \leq r \}.$$
Since $\mathcal{F}(c)$ is d-absolutely equicontinuous by Theorem 1 and Remark (1), the Arzelá-Ascoli Theorem implies that $\mathcal{F}(K, c)$ is a compact subset of $W^{1,1}_D([a, b])$ for the topology of d-uniform convergence.

Denote $C_{a,b}(x, y) := \{ \gamma \in W^{1,1}_D([a, b]) : \gamma(a) = x, \gamma(b) = y \}$.

Corollary 3 (Tonelli minimizers). For each $x, y \in M$ and each $a, b \in \mathbb{R}$, $a < b$, there exists $\gamma \in C_{a,b}(x, y)$, $A_{L,\lambda}(\gamma) \leq A_{L,\lambda}(\alpha)$ for any $\alpha \in C_{a,b}(x, y)$.

Proof. Set $C = \inf \{ A_{L,\lambda}(\gamma) : \gamma \in C_{a,b}(x, y) \}$. By Corollary 2 the set

$$\{ \gamma \in C_{a,b}(x, y) : A_{L,\lambda}(\gamma) \leq \bar{C} + 1 \}$$

is a compact subset of $W^{1,1}_D([a, b])$ for the topology of d-uniform convergence. Choose $\gamma_n \in C_{a,b}(x, y)$ such that $A_{L,\lambda}(\gamma_n) < \bar{C} + \frac{1}{n}$. Then γ_n has a subsequence that converges d-uniformly to some $\gamma \in C_{a,b}(x, y)$. By Theorem 2, $A_{L,\lambda}(\gamma) = \bar{C}$.

3. The discounted value function

For $\lambda > 0$ we define the discounted value function

$$u_\lambda(x) = \inf_{\gamma(0)=x} \int_{-\infty}^{0} e^{\lambda t} L(\dot{\gamma}(t)) \, dt$$

where the infimum is taken over the curves $\gamma \in W^{1,1}_D([- \infty, 0])$, with $\gamma(0) = x$.

Proposition 2. The discounted value function has the following properties

1. $\min L \leq \lambda u_\lambda \leq A(0)$.
2. For any $\alpha \in W^{1,1}_D([a, b])$

$$u_\lambda(\alpha(b)) e^{\lambda b} - u_\lambda(\alpha(a)) e^{\lambda a} \leq A_{L,\lambda}(\alpha)$$

Proof. 1) Taking $\gamma(t) \equiv x$ we have

$$u_\lambda(x) = \int_{-\infty}^{0} e^{\lambda t} A(0) \, dt = \frac{A(0)}{\lambda}$$

Given $\varepsilon > 0$ take $\gamma \in W^{1,1}_D([- \infty, 0])$ with $\gamma(0) = x$ such that

$$\frac{\min L}{\lambda} \leq \int_{-\infty}^{0} e^{\lambda t} L(\dot{\gamma}(t)) \, dt < u_\lambda(x) + \varepsilon.$$

2) For $\alpha \in W^{1,1}_D([a, b])$ define $\alpha_b(t) = \alpha(t + b)$, then (5) is equivalent to

$$u_\lambda(\alpha_b(0)) - u_\lambda(\alpha_b(a - b)) e^{\lambda(a-b)} \leq A_{L,\lambda}(\alpha_b),$$

and so we can assume that $b = 0$. Given $\gamma \in W^{1,1}_D([- \infty, 0])$ with $\gamma(0) = \alpha(a)$ define $\gamma_a(s) = \gamma(s - a)$. From the definition of u_λ we have

$$u_\lambda(\alpha(0)) \leq \int_{-\infty}^{a} e^{\lambda s} L(\dot{\gamma}_a(s)) \, ds + A_{L,\lambda}(\alpha) = e^{\lambda a} \int_{-\infty}^{0} e^{\lambda t} L(\dot{\gamma}(t)) \, dt + A_{L,\lambda}(\alpha)$$
Taking the infimum over the curves $\gamma \in W^{1,1}_D([-\infty, 0])$, with $\gamma(0) = \alpha(a)$ we get

$$u_\lambda(\alpha(0)) \leq u_\lambda(\alpha(a))e^{\lambda a} + A_{L,\lambda}(\alpha)$$

\[\square\]

Theorem 3 (Dynamic Programming Principle). The function u_λ satisfies

$$(6) \quad u_\lambda(x) = \inf\{u_\lambda(\gamma(-T))e^{-\lambda T} + A_{L,\lambda}(\gamma) : \gamma \in W^{1,1}_D([-T, 0]), \gamma(0) = x\}.$$

Moreover the infimum is attained

Proof. The inequality \leq in (6) follows from (5). Given $\varepsilon > 0$ take $\gamma \in W^{1,1}_D([-\infty, 0])$ with $\gamma(0) = x$ such that

$$\int_{-\infty}^0 e^{\lambda t}L(\dot{\gamma}(t))\,dt < u_\lambda(x) + \varepsilon.$$

$$u_\lambda(\gamma(-T))e^{-\lambda T} \leq \int_{-\infty}^{-T} e^{\lambda t}L(\dot{\gamma}(t))\,dt = \int_{-\infty}^0 e^{\lambda t}L(\dot{\gamma}(t))\,dt - A_{L,\lambda}(\gamma|_{[-T,0]})$$

$$< u_\lambda(x) + \varepsilon - A_{L,\lambda}(\gamma|_{[-T,0]}),$$

giving the inequality \geq in (6). To prove that the infimum is attained we consider a minimizing sequence $\gamma_n \in W^{1,1}_D([-T, 0])$ with $\gamma_n(0) = x$. For n large enough

$$A_{L,\lambda}(\gamma_n) \leq 1 + u_\lambda(x) - u_\lambda(\gamma_n(-T))e^{-\lambda T} \leq 1 + 2\|u_\lambda\|_{\infty}.$$

By Corollary 2 up to subsequences, γ_n converges d-uniformly to $\gamma \in W^{1,1}_D([-T, 0])$ with $\gamma(0) = x$ and by Theorem 2

$$A_{L,\lambda}(\gamma) \leq \liminf_{n \to \infty} A_{L,\lambda}(\gamma_n) = u_\lambda(x) - u_\lambda(\gamma(-T))e^{-\lambda T}$$

\[\square\]

Proposition 3. u_λ is Lipschitz for the metric d, uniformly in $\lambda > 0$

Proof. Let $x, y \in M$, $d = d(x, y)$ and take a minimizing geodesic $\gamma \in W^{1,1}_D([-d, 0])$ with $\gamma(-d) = y$, $\gamma(0) = x$ and $\|\dot{\gamma}\| = 1$ a.e.

$$u_\lambda(x) \leq u_\lambda(y)e^{-\lambda d} + \int_{-d}^0 e^{\lambda s}L(\dot{\gamma}(s))\,ds \leq u_\lambda(y)e^{-\lambda d} + \frac{1 - e^{-\lambda d}}{\lambda}(A(1))$$

$$u_\lambda(x) - u_\lambda(y) \leq \frac{1 - e^{-\lambda d}}{\lambda}(-\lambda u_\lambda(y) + A(1)) \leq \frac{1 - e^{-\lambda d}}{\lambda}(A(1) - \min L) \leq d(A(1) - \min L)$$

\[\square\]

Proposition 4. Given $\lambda > 0$, $x \in M$ there exists $\gamma_{\lambda,x} \in W^{1,1}_D([-\infty, 0])$ such that $\gamma_{\lambda,x}(0) = x$ and for any $t \geq 0$

$$(7) \quad u_\lambda(x) = u_\lambda(\gamma_{\lambda,x}(-t))e^{-\lambda t} + A_{L,\lambda}(\gamma_{\lambda,x}|_{[-t,0]}).$$
Moreover $\|\dot{\gamma}_{\lambda,x}\|_\infty$ is bounded uniformly in $\lambda > 0, x \in M$ and

$$u_\lambda(x) = \int_{-\infty}^{0} e^{\lambda t}L(\dot{\gamma}_{\lambda,x}(t)) \, dt.$$ \hfill (8)

Proof. By Theorem 3, for each $T > 0$ there is $\gamma^T \in W^{1,1}_D([-T,0])$ with $\gamma^T(0) = x$ and

$$u_\lambda(x) = u_\lambda(\gamma^T(-T))e^{-\lambda T} + A_{L,\lambda}(\gamma).$$

Since u satisfies (5), for any $t \in [0, T]$ we have

$$u_\lambda(x) - e^{-\lambda t}u_\lambda(\gamma^T(-t)) = A_{L,\lambda}(\gamma^T_{-t,0}).$$

As in the proof Theorem 3

$$A_{L,\lambda}(\gamma^T_{-t,0}) \leq 2\|u_\lambda\|_\infty$$

By Tonelli’s Theorem there is a sequence $T_j \to \infty$ such that $\gamma^{T_j}_{-t,0}$ converges uniformly with the metric d. Applying this argument to a sequence $t_k \to \infty$ and using a diagonal trick one gets a sequence $\gamma_{\lambda,x} \in W^{1,1}_D([-\infty,0])$ such that $\gamma_{\sigma_n}[-t,0]$ converges d-uniformly to $\gamma_{\lambda,x}[-t,0]$ for any $t > 0$. By the continuity of u, for any $t > 0$, $u_\lambda(\gamma_{\lambda,x}(-t)) = \lim_{n \to \infty} u_\lambda(\gamma_{\sigma_n}(-t))$. By Theorem 2

$$u_\lambda(x) = u_\lambda(\gamma_{\lambda,x}(-t))e^{-\lambda t} + A_{L}(\gamma_{\lambda,x}[-t,0]).$$

By Proposition 3 there is a uniform Lipschitz constant K for u_λ. By the superlinearity, $L(v) = (K + 1)\|v\| + C(K + 1)$. For $a < b < 0$

$$u_\lambda(\gamma_{\lambda,x}(b))e^{\lambda b} - u_\lambda(\gamma_{\lambda,x}(a))e^{\lambda a} = A_{L,\lambda}(\gamma_{\lambda,x}|_{[a,b]})$$

$$\geq e^{\lambda a}(K + 1) \int_a^b \|\dot{\gamma}_{\lambda,x}\| + C(K + 1) \frac{e^{\lambda b} - e^{\lambda a}}{\lambda}. $$

$$u_\lambda(\gamma_{\lambda,x}(b))e^{\lambda b} - u_\lambda(\gamma_{\lambda,x}(a))e^{\lambda a} \leq u_\lambda(\gamma_{\lambda,x}(b))(e^{\lambda b} - e^{\lambda a}) + Ke^{\lambda a}d(\gamma_{\lambda,x}(b), \gamma_{\lambda,x}(a))$$

$$\leq A(0)e^{\lambda b} - e^{\lambda a} + Ke^{\lambda a} \int_a^b \|\dot{\gamma}_{\lambda,x}\|$$

Thus

$$\frac{1}{b - a} \int_a^b \|\dot{\gamma}_{\lambda,x}\| \leq (A(0) - C(K + 1)) \frac{e^{\lambda(b-a)} - 1}{\lambda(b-a)}$$

implying that $\|\dot{\gamma}_{\lambda,x}\| \leq (A(0) - C(K + 1)$ a.e. Letting $t \to +\infty$ in (7) we get (8) by the dominated convergence theorem. \hfill \Box

4. **Weak KAM theory**

In this section we extend weak KAM theory to our setting. The difference with the standard case is the lack of a Lagrangian dynamics and Tonelli’s theorem takes care of this difficulty. Denote $A_{L,0}$ by A_L
4.1. The weak KAM theorem.

Definition 3. Let $c \in \mathbb{R}$, we say that

- $u : M \to \mathbb{R}$ is $L + c$ dominated if for any $\gamma \in W^{1,1}_D([a, b])$ we have \[u(\gamma(b)) - u(\gamma(a)) \leq A_{L+c}(\gamma) \]
- $\gamma \in W^{1,1}_D([a, b])$ is calibrated by an $L + c$ dominated function $u : M \to \mathbb{R}$ if \[u(\gamma(b)) - u(\gamma(a)) = A_{L+c}(\gamma) \]
- $u : M \to \mathbb{R}$ is a backward (forward) c-weak KAM solution if it is $L + c$ dominated and for any $x \in M$ there is $\gamma \in W^{1,1}_D([\gamma_0, \gamma_1]) (\gamma \in W^{1,1}_D([0, \infty)))$ calibrated by u such that $\gamma(0) = x$.

Suppose M is compact. Consider the value function u_λ, $\lambda > 0$. Since λu_λ is uniformly bounded, u_λ is uniformly Lipschitz there is a sequence λ_n converging to zero such that $\lambda_n u_{\lambda_n}$ converges to a constant $-c$. Thus $u_\lambda - \max u_\lambda$ is uniformly bounded and Lipschitz, and then, through some sequence converges to a Lipschitz function v.

Theorem 4 (weak KAM theorem). Suppose M is compact. Let $v_\lambda = u_\lambda - \min u_\lambda$. Suppose that $v = \lim_{k \to \infty} v_{\lambda_k}$ and $c = - \lim_{k \to \infty} \lambda_k \min u_{\lambda_k}$ for a sequence $\lambda_k \to 0$. Then v is a backward c-weak KAM solution.

Proof. Let $\gamma \in W^{1,1}_D([a, b])$, By (3), for any $\lambda > 0$

\[v_\lambda(\gamma(b))e^{\lambda a} - v_\lambda(\gamma(b))e^{\lambda b} \leq (e^{\lambda a} - e^{\lambda b}) \min u_\lambda + A_{L,\lambda}(\gamma). \]

Taking limits $\lambda_k \to 0$,

\[v(\gamma(b)) - v(\gamma(a)) \leq (b - a)c + A_L(\gamma), \]

giving that v is $L + c$ dominated.

Let $x \in M$ and $\gamma_\lambda \in W^{1,1}_D([\gamma_0, \gamma_1])$ be a curve such that $\gamma_\lambda(0) = x$ for any $t \geq 0$

\[u_\lambda(x) = u_\lambda(\gamma(-t))e^{\lambda t} + A_{L,\lambda}(\gamma_\lambda), \]

so that

\[v_\lambda(x) = v_\lambda(\gamma(-t))e^{\lambda t} + (e^{\lambda t} - 1) \min u_\lambda + A_{L,\lambda}(\gamma_\lambda). \]

Then, as in the proof of Proposition 4, there is a subsequence $(\lambda^n)_n$ of $(\lambda_k)_k$ and a curve $\gamma \in W^{1,1}_D([\gamma_0, \gamma_1])$ such for any $t > 0$, $\gamma_\lambda^n([-t, 0])$ converges d-uniformly to $\gamma|_{[-t, 0]}$. Taking limits $\lambda^n \to 0$, by Theorem 2 we have

\[v(x) = u(\gamma(-t)) + ct + A_L(\gamma) \]

showing that γ is calibrated by v. Thus v is a c-weak KAM solution. \qed
Suppose there is a function $u : M \to \mathbb{R}$ that is $L + c$ dominated and let $x \in M$. Taking $\gamma : [a, b] \to M$ the constant curve $\gamma(t) = x$ we have $L(x, 0) + c \geq 0$. Thus $c \geq -\min_{x \in M} L(x, 0)$. Define $c(L) = \inf\{c \in \mathbb{R} : \exists u : M \to \mathbb{R} \text{ $L + c$ dominated}\}$.

If $k \geq -\min L$, then $L + k \geq 0$ and so any constant function is $L + k$ dominated. Thus $c(L) \leq -\min L$.

Example 1. Let M be compact, $U : M \to \mathbb{R}$ be smooth and $L(x, v) = \|v\|^2 - U(x)$. Then $\min_{x \in M} L(x, 0) = -\max U$. Thus $c(L) = \max U$.

Proposition 5.

1. There exists $u : M \to \mathbb{R}$ that is $L + c(L)$ dominated.
2. If M is compact and there is a backward c-weak KAM solution $u : M \to \mathbb{R}$, then $c = c(L)$.

The proof of (1) is as the one of Theorem 4.2.7 in [F]. The proof of (2) is as the one of Corollary 4.3.7 in [F].

Proposition 6. Let $u : M \to \mathbb{R}$ be $L + c$ dominated then

1. $|u(y) - u(x)| \leq (A(1) + c)d(x, y)$
2. If $\gamma \in W^{1,1}_2(I)$ then $u \circ \gamma$ is absolutely continuous and $(u \circ \gamma)'(t) \leq L(\gamma(t)) + c$ at any $t \in I$ where $u \circ \gamma$ and γ are differentiable.

Proof. (1) Taking a minimizing geodesic $\alpha \in C_d(x, y)$ with $\|\dot{\alpha}\| = 1$ a.e. we have

$$u(y) - u(x) \leq A_{L+c}(\alpha) \leq (A(1) + c) d(x, y).$$

(2) Since u is Lipschitz with constant $K = A(1) + c$, given $\varepsilon > 0$ there is $\delta > 0$ such that for any disjoint $I_{a_1, b_1}, \ldots, I_{a_k, b_k} \subseteq I$,

$$\sum_{i=1}^k b_i - a_i < \delta \implies \sum_{i=1}^k |u \circ \gamma(b_i) - u \circ \gamma(a_i)| \leq K \sum_{i=1}^k d(\gamma(a_i), \gamma(b_i)) \leq K \sum_{i=1}^k \int_{a_i}^{b_i} \|\dot{\gamma}\| < \varepsilon.$$

Let $t \in I$ be a point of differentiability of $u \circ \gamma$ and γ, dividing $u(\gamma(t + h)) - u(\gamma(t)) \leq A_{L+c}(\gamma|_{t, t+h})$ by h and letting $h \to 0$ we get $(u \circ \gamma)'(t) \leq L(\dot{\gamma}(t)) + c$. \qed

4.2. **The Lax-Oleinik semigroup.** Set $C_t(x, y) = C_{0,t}(x, y)$ and $C(x, y) = \bigcup_{t > 0} C_t(x, y)$.

Definition 4. We define the minimal action to go from x to y in time $t > 0$ as the function $h : M \times M \times \mathbb{R}^+ \to \mathbb{R}$ given by

$$h(x, y, t) := h_t(x, y) := \inf\{A_L(\gamma) : \gamma \in C_t(x, y)\}$$
Proposition 7. The minimal action has the following properties

(1) \(h_t(x, y) \geq t \inf_{M} L \)
(2) \(h_{t+s}(x, z) = \inf_{y \in M} h_t(x, y) + h_s(y, z) \)
(3) \(\gamma \in W^{1,1}_{D}([a, b]), a < b \) is minimizing if and only if \(h_{b-a}(\gamma(a), \gamma(b)) = A_L(\gamma) \).
(4) For each \(x, y \in M, t > 0 \), there exists \(\gamma \in C_t(x, y) \) such that \(h_t(x, y) = A_L(\gamma) \).

Proposition 8. Assume that there are \(C_1, C_2 \geq 1 \) such that

\[\partial_t L \cdot v \leq C_1 L + C_2 \]

and let \(\Delta_\delta = \{ x, y \in M : d(x, y) \leq 1/\delta \} \) for \(\delta > 0 \). Then \(h \) is Lipschitz on \(\Delta_\delta \times [\delta, 1/\delta] \). In particular, \(h \) is continuous.

Proof. First observe that \(h \) is bounded on \(\Delta_\delta \times [\delta, 1/\delta] \). Indeed, let \(d = d(x, y) \) and take a minimizing geodesic \(\sigma \in C_d(x, y) \) with \(\| \tilde{\sigma} \| = 1 \) a.e. and \(\gamma(s) = \sigma(s) / t \), then \(\| \gamma \| = d(x, y) / t \leq \delta^{-2} \) for \((x, y) \in \Delta_\delta, t \geq \delta \). Thus \(h(x, y, t) \leq A(\delta^{-2}) / \delta \).

Next observe that the assumption (10) implies that

\[L(sv) \leq sC_1 L(v) + \frac{C_1}{C_2}(sC_1 - 1), \quad s \geq 1. \]

Let \(x, y \in M, t > 0 \). For \(z \in M, d = d(y, z) \), take a minimizing geodesic \(\sigma \in C_d(y, z) \) with \(\| \tilde{\sigma} \| = 1 \) a.e. For \(\gamma \in C_t(x, y) \) define \(\tilde{\gamma} \in C_t(x, z) \) by \(\tilde{\gamma}[0, t] = \gamma, \tilde{\gamma}(s) = \sigma(s-t) \) for \(s \in [t, t+\delta] \). Thus \(h(x, z, t+d) \leq A_L(\tilde{\gamma}) \leq A_L(\gamma) + A(1)d \) and then

\[h(x, z, t+d(y, z)) \leq h(x, y, t) + A(1)d(y, z). \]

Similarly, defining \(\tilde{\tau} \in C_t(y, z), \tau > t \) by \(\tilde{\gamma}[0, t] = \gamma, \tilde{\gamma}(s) = y \) for \(s \in [t, \tau] \) we get

\[h(x, y, \tau) \leq h(x, y, t) + A(0)(\tau - t). \]

Let \(r > 0 \) an \(\gamma \in C_{t+r}(x, y) \) and define \(\tilde{\gamma} \in C_t(x, y) \) by \(\tilde{\gamma}(s) = \gamma((t+r)s/t) \) we have

\[h(x, y, t) \leq A_L(\tilde{\gamma}) = \frac{t+r}{t} \int_{0}^{t+r} L\left(\frac{t+r}{t} \right) \]

\[\leq \left(\frac{t+r}{t} \right)^{C_1-1} A_L(\gamma) + \frac{C_1}{C_2} \left(\left(\frac{t+r}{t} \right)^{C_1} - 1 \right), \]

and then

\[h(x, y, t) \leq \left(\frac{t+r}{t} \right)^{C_1-1} h(x, y, t+r) + \frac{C_1}{C_2} \left(\left(\frac{t+r}{t} \right)^{C_1} - 1 \right). \]

Thus

\[h(x, y, t) - h(x, y, t+r) \leq \left(\left(\frac{t+r}{t} \right)^{C_1-1} - 1 \right) h(x, y, t+r) + \frac{C_1}{C_2} \left(\left(\frac{t+r}{t} \right)^{C_1} - 1 \right) \]

\[\leq C_1 r(1 + \delta^{-2})^{C_1-1} \left(\frac{A(\delta^{-2})}{\delta} + \frac{C_1}{C_2} \right). \]
Letting \(d = d(y, z) \), from (11), (13) we get
\[
 h(x, z, t) - h(x, y, t) \leq \left(\left(\frac{t + d}{t} \right)^{C_1} - 1 \right) h(x, z, t + d) + \frac{C_1}{C_2} \left(\left(\frac{t + d}{t} \right)^{C_1} - 1 \right) + h(x, z, t + d) - h(x, y, t)
\]
and similarly for \(h(z, y, t) - h(x, y, t) \).

Corollary 4. Assume \(M \) is compact and there are \(C_1, C_2 > 0 \) such that (10) holds. For any \(\delta > 0 \) there is \(K_\delta > 0 \) such that \(h_t \) is \(K_\delta \)-Lipschitz for any \(t \geq \delta \).

Proof. Since \(h \) is continuous and \(M \) is compact, for \(x, y, t, s > 0 \) there is \(z \in M \) such that \(h_{t+s}(x, y) = h_t(x, z) + h_s(z, y) \).

Let \(\delta > 0 \), by Proposition 8 there is \(K_\delta > 0 \) such that \(h \) is \(K_\delta \) Lipschitz on \(M \times M \times [\delta, 1/\delta] \). If \(t > 1/\delta \) choose \(t_0 < t_1 < \cdots < t_k = t \) such that \(t_i - t_{i-1} \in [\delta, 1/\delta] \). Let \(x_1, x_2, y_1, y_2 \in M \) and suppose \(h_t(x_1, y_1) \geq h_t(x_2, y_2) \). There are \(z_0 = x_2, z_1, \ldots, z_l = y_2 \in M \) such that \(h_t(x_2, y_2) = \sum_{i=1}^{l} h_{t_i-t_{i-1}}(z_{i-1}, z_i) \).

Since
\[
 h_t(x_1, y_1) \leq h_{t_1}(x_1, z_1) + \sum_{i=2}^{l} h_{t_i-t_{i-1}}(z_{i-1}, z_i) + h_{t_l-t_{l-1}}(z_{l-1}, y_1),
\]
we have
\[
 h_t(x_1, y_1) - h_t(x_2, y_2) \leq h_{t_1}(x_1, z_1) - h_{t_1}(x_2, z_1) + h_{t_l-t_{l-1}}(z_{l-1}, y_1) - h_{t_l-t_{l-1}}(z_{l-1}, y_2) \leq K_\delta (d(x_1, x_2) + d(y_1, y_2))
\]

Definition 5 (Lax-Oleinik semi-group). For \(u : M \to [\infty, +\infty] \) and \(t > 0 \) we define \(\mathcal{L}_t u : M \to [\infty, +\infty] \) by
\[
 \mathcal{L}_t u(x) = \inf_{y \in M} \{ u(\gamma(0)) + A_L(\gamma) : \gamma \in W^{1,1}_{D}([0, t]), \gamma(t) = x \}
\]

Notice that
\[
 \mathcal{L}_t u(x) = \inf_{y \in M} u(y) + h_t(y, x)
\]

Proposition 9. The family of maps \(\{ \mathcal{L}_t \}_{t \geq 0} \) has the following properties
\begin{enumerate}
 \item \(u : M \to \mathbb{R} \) is \(L + c \) dominated if and only if \(u \leq \mathcal{L}_t u + ct \) for all \(t \geq 0 \).
 \item For any \(s, t > 0 \), \(\mathcal{L}_{t+s} = \mathcal{L}_t \circ \mathcal{L}_s \).
 \item If \(u : M \to \mathbb{R} \) is Lipschitz for the metric \(d \), then for each \(x \in M \) and \(t > 0 \) there is \(\gamma \in W^{1,1}_{D}([0, t]) \) such that \(\gamma(t) = x \) and
\[
 \mathcal{L}_t u(x) = u(\gamma(0)) + A_L(\gamma) = u(\gamma(0)) + h_t(\gamma(0), x).
\]
(4) If M is compact, $u \in C(M)$ and that there are $C_1, C_2 > 0$ such that \[\| u \|_{C_b(M)} \leq C \] holds, then for each $x \in M$, $t > 0$ there is $y \in M$ such that $\mathcal{L}_t u(x) = u(y) + h_t(y, x)$.

Proof. (3) Using the constant curve with value x we have $\mathcal{L}_t u(x) \leq u(x) + t A(0)$. Thus

$$\mathcal{L}_t u(x) = \inf \{ u(\gamma(0)) + A_L(\gamma) : \gamma \in \mathcal{F}(u, x, t) \}$$

where

$$\mathcal{F}(u, x, t) = \{ \gamma \in W^{1,1}_D([0, t]) : \gamma(t) = x, u(\gamma(0)) + A_L(\gamma) \leq u(x) + t A(0) \}.$$

If u is K-Lipschitz, $u(x) - u(\gamma(0)) \leq K d(x, \gamma(0))$.

By the superlinearity of L we have

$$C(K + 1)t + (K + 1)c(\gamma) \leq A_L(\gamma),$$

thus, if $\gamma \in \mathcal{F}(u, x, t)$ then $d(x, \gamma(0)) \leq c(\gamma) \leq t(A(0) - C(K + 1))$. Therefore

$$\mathcal{L}_t u(x) = \inf \{ u(\gamma(0)) + A_L(\gamma) : \gamma \in \mathcal{F}(x, t, K) \}$$

where

$$\mathcal{F}'(x, t, K) = \{ \gamma \in W^{1,1}_D([0, t]) : \gamma(t) = x, A_L(\gamma) \leq t(A(0) + K(A(0) - C(K + 1))) \}.$$

By Tonelli’s Theorem the set $\mathcal{F}'(x, t, K)$ is compact for the topology of uniform convergence with the metric d. Choose $\gamma_n \in \mathcal{F}'(x, t, K)$ such that $u(\gamma_n(0)) + A_L(\gamma_n) \leq \mathcal{L}_t u(x) + \frac{1}{n}$. Then γ_n has a subsequence γ_{n_j} that converges uniformly with the metric d to some $\gamma \in \mathcal{F}'(x, t, K)$. By continuity of u, $u(\gamma(0)) = \lim u(\gamma_{n_j}(0))$. By Theorem 2 $u(x) = \mathcal{L}_t u(x) = u(\gamma(0)) + A_L(\gamma)$.

Proposition 10. Let $c \in \mathbb{R}$. A function $u : M \to \mathbb{R}$ satisfies $u = \mathcal{L}_t u + ct$ for all $t \geq 0$ if and only it is a weak KAM solution.

Proof. It is clear that a weak KAM solution u satisfies $u = \mathcal{L}_t u + ct$ for all $t \geq 0$. Assuming that $u = \mathcal{L}_t u + ct$ for all $t \geq 0$, by item (1) in Proposition 9 we have that u is $L + c$ dominated.

Let $x \in M$ by item (3) of Proposition 9 for each $s > 0$ there is $\gamma_s \in W^{1,1}_D([-s, 0])$ with $\gamma(0) = x$ and $\mathcal{L}_s u(x) = u(\gamma_s(-s)) + A_L(\gamma)$; then $u(x) = u(\gamma_s(-s)) + A_{L+c}(\gamma)$. Since u is $L + c$ it is dominated, it is K-Lipschitz for $K = c + A(1)$ we have that $u(x) = u(\gamma_s(-t)) + A_{L+c}(\gamma_s[-t, 0])$ for any $t \in [0, s]$. From the proof of item (3) of Proposition 9 for $s > t$ we have

$$\int_t^s L(\gamma_s) \leq t(A(0) + K(A(0) + C(K + 1))).$$

By Tonelli’s Theorem there is a sequence $s_j \to \infty$ such that $\gamma_{s_j}[-t, 0]$ converges uniformly with the metric d Aplying this argument to a sequence $t_k \to \infty$ and using a diagonal trick one gets a sequence $\sigma_n \to \infty$ and a curve $\gamma \in W^{1,1}_D([-\infty, 0])$ such that $\gamma_{\sigma_n}[-t, 0]$ converges uniformly with the metric d to $\gamma[-t, 0]$ for any $t > 0$.

By the continuity of u, for any $t > 0$, $u(\gamma(-t)) = \lim_{n \to \infty} u(\gamma_{\alpha_n}(-t))$. By Theorem 2
\[\mathcal{L}_t u(x) = u(\gamma(-t)) + A_L(\gamma|[-t,0]). \]

Corollary 5. Let M be compact. For each $\delta > 0$ there is $C_\delta > 0$ such that $|h_t(x,y) + c(L)t| \leq C_\delta$ for $x, y \in M$, $t \geq \delta$

Proof. For $\gamma \in C_t + \delta(x,y)$ we have
\[A_L(\gamma) = A_L(\gamma|[0,1]) + A_L(\gamma|[\delta/2, t + \delta/2]) + A_L(\gamma|[t + \delta/2, t + \delta]) \geq 2 \inf h_{\frac{\delta}{2}} + \inf h_t, \]
thus
\[h_{t+\delta}(x,y) \geq 2 \inf h_{\frac{\delta}{2}} + \inf h_t. \]

For any $z, w \in M$
\[h_{t+\delta}(x,y) \leq h_{\frac{\delta}{2}}(x,z) + h_t(z,w) + h_{\frac{\delta}{2}}(w,y) \leq 2 \sup h_{\frac{\delta}{2}} + h_t(z,w), \]
thus
\[h_{t+\delta}(x,y) \leq 2 \sup h_{\frac{\delta}{2}} + \inf h_t. \]

Therefore, for $t \geq 2$ we have that
\[h_t - \inf h_t \leq 2(\sup h_{\frac{\delta}{2}} - \inf h_{\frac{\delta}{2}}) := a \]
Let $u : M \to \mathbb{R}$ be such that $u = \mathcal{L}_t u + c(L)t$ for all $t \geq 0$. For $t \geq \delta$ we have
\[-2\|u\|_{\infty} \leq u(y) - u(x) \leq h_t(x,y) + c(L)t \leq a + \inf h_t + c(L)t \]
\[= a + \inf h_t + u - \mathcal{L}_t u \leq a + 2\|u\|_{\infty} \]
and then
\[|h_t(x,y) + c(L)t| \leq 2(\sup h_{\frac{\delta}{2}} - \inf h_{\frac{\delta}{2}} + \|u\|_{\infty}). \]

4.3. **Static curves and the Aubry set.** We assume that M is compact and set $c = c(L)$.

Definition 6. We define
- The **Peierls barrier** $h : M \times M \to \mathbb{R}$ by
 \[h(x,y) = \lim_{t \to \infty} \inf h_t(x,y) + ct, \]
- The **Mañé potential** $\Phi : M \times M \to \mathbb{R}$
 \[\Phi(x,y) = \inf_{t>0} h_t(x,y) + ct. \]

It is clear that $\Phi \leq h$

Proposition 11. Functions h and Φ have the following properties
1. u is $L + c$ dominated $\iff u(y) - u(x) \leq \Phi(x,y)$.
2. For each $x \in M$, $\Phi(x,x) = 0$.
We refer to Example 1 for a more precise definition of semi-static and static curves.

The following Proposition says that semi-static curves have energy $c(L)$.

Example 2. Let M, U and L be as in example 1. If $\gamma : [0, t] \to U^1([-\infty, \max U - \varepsilon])$ then $A_{L + c(L)}(\gamma) \geq \varepsilon t$, therefore if $\gamma_n \in C_{t_n}(x, y)$ is a sequence such that $t_n \to \infty$ and $A_{L + c(L)}(\gamma_n)$ converges to $h(x, y)$ then for any $\varepsilon > 0$ there is N such that $\gamma_n([0, t_n]) \cap U^1([-\max U - \varepsilon, +\infty]) \neq \emptyset$ for $n \geq N$.

If $U(x) = \max U$ and $\gamma : [0, t] \to M$ is the constant curve x, then $A_{L + c(L)}(\gamma) = 0$ and thus $h(x, x) = 0$.

If $U(x) < \max U$ there are $\delta, \varepsilon > 0$ such that $U(y) \leq \max U - \varepsilon$ for $d(x, y) \leq \delta$. It is not hard to see that for any $\gamma \in C_t(x, x)$ such that $\gamma([0, t]) \cap U^1([-\max U - \varepsilon, \max U]) \neq \emptyset$ we have $A_{L + c(L)}(\gamma) \geq 2\sqrt{\delta \varepsilon}$ and then $h(x, x) \geq 2\sqrt{\delta \varepsilon}$.

Thus $A = U^{-1}(\max U)$.

The following Proposition says that semi-static curves have energy $c(L)$.
Proposition 12. Let \(\eta \in W^{1,1}_D(J) \) be semi-static. For a. e. \(t \in J \)
\[
E(\dot{\eta}(t)) = L_v(\dot{\eta}(t))\dot{\eta}(t) - L(\dot{\eta}(t)) = c
\]
Proof. For \(\lambda > 0 \), let \(\eta_{\lambda}(t) := \eta(\lambda t) \) so that \(\dot{\eta}_{\lambda}(t) = \lambda \dot{\eta}(\lambda t) \) a. e.
For \(r, s \in J \) let
\[
A_{rs}(\lambda) := \int_{r/\lambda}^{s/\lambda} \left[L(\dot{\eta}_{\lambda}(t)) + c \right] dt = \int_{r}^{s} \left[\frac{L(\lambda \dot{\eta}(t)) + c}{\lambda} \right] dt.
\]
Since \(\eta \) is a free-time minimizer, differentiating \(A_{rs}(\lambda) \) at \(\lambda = 1 \), we have that
\[
0 = A'_r(1) = \int_{r}^{s} [L(\dot{\eta})\dot{\eta} - L(\dot{\eta}) - c].
\]
Since this holds for any \(r, s \in J \) we have
\[
E(\dot{\eta}(t)) = L_v(\dot{\eta}(t))\dot{\eta}(t) - L(\dot{\eta}(t)) = c
\]
for a. e. \(t \in J \). \(\square \)

Example 3. Let \(M, U : M \to \mathbb{R} \) and \(L \) be as in example 1. If \(\gamma \in W^{1,1}_D([a, b]) \) is semi-static, then \(\frac{1}{2} \| \dot{\gamma}(t) \|^2 + U(\gamma(t)) = \max U \). Thus
\[
A_{L+c}(\gamma) = \int_{a}^{b} \| \dot{\gamma} \|^2 = \int_{a}^{b} \sqrt{2(\max U - U(\gamma))} \| \dot{\gamma} \| = \int_{0}^{b} \sqrt{2(\max U - U(\gamma))} ds
\]
where \(s(t) = \int_{a}^{t} \| \dot{\gamma} \| \) is the arc length function, \(s(b) = l \).

We have that \(\Phi(x, y) \) is the distance from \(x \) to \(y \) for the Maupertuis type sub-riemannian metric \(g_x(v, w) = 2(\max U - U(x))\langle v, w \rangle \).

The following Propositions prove the existence of static curves and that \(A \neq \emptyset \).

Proposition 13. Let \(u \) be \(L + c \) dominated, \(\gamma \in W^{1,1}_D([-\infty, 0]) \) be calibrated by \(u \). Take a sequence \(t_n \to \infty \) such that the sequence \(\gamma(-t_n) \) converges. Then there is a subsequence \(s_k = t_{n_k} \) and \(\eta \in W^{1,1}_D(\mathbb{R}) \) such that
(i) For each \(l > 0 \), \(\gamma(-s_k + \cdot)[-l, l] \) converges uniformly to \(\eta([-l, l]) \).
(ii) \(\eta \) is static.

Proof. (i) Set \(c = c(L) \) and let \(r < l \), then
\[
\int_{-t_n + r}^{-t_n + l} L(\dot{\gamma}) + c(l - r) = u(\gamma(-t_n + l)) - u(\gamma(-t_n + r)) \leq 2\| u \|.
\]
As we had before, Tonelli’s Theorem implies that there is a sequence \(n_k \to \infty \) and a curve \(\eta \in W^{1,1}_D(\mathbb{R}) \) satisfying (i).
(ii) For $l > 0$

$$0 \leq A_{L+c}(\eta|_{[-L,l]}) + \Phi(\eta(l),\eta(-l))$$

$$\leq \lim_k \left\{ A_{L+c}(\gamma|_{[-s_k-l,-s_k+l]}) + \lim_m A_{L+c}(\gamma|_{[-s_k+l,-s_m-l]}) \right\}$$

$$= \lim_k \lim_m A_{L+c}(\gamma|_{[-s_k-l,-s_m-l]})$$

$$= \lim_k \Phi(-s_k-l,\gamma(-s_m-l))$$

$$= \Phi(\eta(-l),\eta(-l)) = 0.$$

proving that η is static. \hfill \square

Proposition 14. If $\gamma \in W^{1,1}_D([0,\infty)) \cup W^{1,1}_D([-\infty,0])$ is static, then $p = \gamma(0) \in A$.

Proof. For $\gamma \in W^{1,1}_D([0,\infty))$ take a sequence $r_n \to \infty$ such that the sequence $\gamma(r_n)$ converges to $y \in M$. Then

$$0 \leq h(p,p) \leq h(p,y) + \Phi(y,p)$$

$$\leq \lim_n A_{L+c}(\gamma|_{[0,r_n]}) + \Phi(y,p)$$

$$= \lim_n -\Phi(\gamma(r_n),p) + \Phi(y,p) = 0.$$

Analogously for $\gamma \in W^{1,1}_D([-\infty,0])$. \hfill \square

Proposition 15. For any $x \in M$, $h(x,\cdot)$ is a backward weak KAM solution and $-h(\cdot,x)$ is a forward weak KAM solution.

Proof. By items (1), (4) of Proposition 11, $h(x,\cdot)$ is $L + c$ dominated. Let $\gamma_n : [-t_n,0] \to M$ be a sequence of minimizing curves connecting x to y such that

$$h(x,y) = \lim_{n \to \infty} A_{L+c}(\gamma_n).$$

Let $l > 0$, for n big enough $t_n > l$ and $a(n,l) = A_{L+c}(\gamma_n[-l,0])$ is bounded from above, because if there were a sequence $n_k \to \infty$ such that $a(n_k,l) \to +\infty$, passing to a subsequence $\gamma_{n_k}(-l)$ would converge to $z \in M$, and then we would have that

$$h(x,z) \leq \liminf_{k \to \infty} A_{L+c}(\gamma_{n_k}[-t_{n_k},-l]).$$

As we had before, Tonelli’s Theorem implies that there is a sequence $n_k \to \infty$ such $\gamma_{n_k}[-l,0]$ converges uniformly with the metric d to $\gamma[-l,0]$ for any $t > 0$. For $s < 0$ define $\gamma(s) = \lim_{k \to \infty} \gamma_{n_k}(s)$. Fix $t < 0$, for k large $t + t_{n_k} \geq 0$ and

$$A_{L+c}(\gamma_{n_k}) = \int_{-t_{n_k}}^t L(\dot{\gamma}_{n_k}) + c(t + t_{n_k}) + \int_t^0 L(\dot{\gamma}_{n_k}) - ct.$$
Since γ_{n_k} converges to γ uniformly on $[t, 0]$, we have
\[
\liminf_{k \to \infty} \int_t^0 L(\gamma_{n_k}, \dot{\gamma}_{n_k}) \geq \int_t^0 L(\gamma, \dot{\gamma}).
\]
From item (6) of Proposition 11 we have
\[
h(x, \gamma(t)) \leq \liminf_{k \to \infty} \int_t^{-t_{n_k}} L(\gamma_{n_k}, \dot{\gamma}_{n_k}) + c(t + t_{n_k}).
\]
Taking $\liminf_{k \to \infty}$ in (14) we get
\[
h(x, y) \geq h(x, \gamma(t)) + \int_t^0 L(\gamma, \dot{\gamma}) - ct.
\]
which implies that γ is calibrated by $h(x, \cdot)$.

Corollary 7. If $x \in \mathcal{A}$ there exists a curve $\gamma \in W^{1,1}_D(\mathbb{R})$ such that $\gamma(0) = x$ and for all $t \geq 0$
\[
\Phi(\gamma(t), x) = h(\gamma(t), x) = -\int_0^t L(\dot{\gamma}) - ct \\
\Phi(x, \gamma(-t) = h(x, \gamma(-t)) = -\int_{-t}^0 L(\dot{\gamma}) - ct.
\]
In particular the curve γ is static.

Denote by \mathcal{K} the family of static curves $\eta : \mathbb{R} \to M$, and for $y \in \mathcal{A}$ denote by $\mathcal{K}(y)$ the set of curves $\eta \in \mathcal{K}$ with $\eta(0) = y$. On \mathcal{K} we have a dynamics given by time translation along a static curve.

Proposition 16. \mathcal{K} is a compact metric space with respect to the uniform convergence on compact intervals.

Proof. Let $\{\eta_n\}$ be a sequence in \mathcal{K}. By Proposition 12 for a. e. $t \in \mathbb{R}$, $E(\eta_n(t)) = c$, and then $\{A_L(\eta_n)\}$ is bounded. As in Proposition 10 we obtain a sequence $n_k \to \infty$ such that η_{n_k} converges to $\eta : \mathbb{R} \to M$ uniformly on each $[a, b]$ and then η is static.

Proposition 17. Two dominated functions that coincide on $\mathcal{M} = \bigcup_{\eta \in \mathcal{K}} \omega(\eta)$ also coincide on \mathcal{A}.

Proof. Let φ_1, φ_2 be two dominated functions coinciding on \mathcal{M}. Let $y \in \mathcal{A}$ and $\eta \in \mathcal{K}(y)$. Let $(t_n)_n$ be a diverging sequence such that $\lim_n \eta(t_n) = x \in \mathcal{M}$. By (5) in Corollary 6
\[
\varphi_i(y) = \varphi_i(\eta(0)) - \Phi(y, \eta(0)) = \varphi_i(\eta(t_n)) - \Phi(y, \eta(t_n))
\]
for every \(n \in \mathbb{N}, i = 1, 2 \). Sending \(n \to \infty \), we get
\[
\varphi_1(y) = \lim_{n \to \infty} \varphi_1(\eta(t_n)) - \Phi(y, \eta(t_n)) = \varphi_1(x) - \Phi(y, x) = \varphi_2(x) - \Phi(y, x)
\]
\[
= \lim_{n \to \infty} \varphi_2(\eta(t_n)) - \Phi(y, \eta(t_n)) = \varphi_2(y).
\]

Proposition 18. Let \(\eta \in \mathcal{K}, \psi \in C(M) \) and \(\varphi \) be a dominated function. Then the function \(t \mapsto (L_t \psi)(\eta(t)) - \varphi(\eta(t)) \) is nonincreasing on \(\mathbb{R}_+ \).

Proof. From (5) in Corollary 6, for \(t < s \) we have
\[
(L_s \psi)(\eta(s)) - (L_t \psi)(\eta(t)) \leq \int_t^s L(\eta(\tau), \dot{\eta}(\tau)) d\tau = \varphi(\eta(s)) - \varphi(\eta(t)).
\]

Lemma 3. There is \(R > 0 \) such that, if \(\eta \) is any curve in \(\mathcal{K} \) and \(\lambda \) is sufficiently close to 1, we have
\[
\int_{t_1}^{t_2} L(\eta_\lambda(t), \dot{\eta}_\lambda(t)) dt \leq \Phi(\eta_\lambda(t_1), \eta_\lambda(t_2)) + R(t_2 - t_1)(\lambda - 1)^2
\]
for any \(t_2 > t_1 \), where \(\eta_\lambda(t) = \eta(\lambda t) \).

Proof. Let \(K = \max\{\|v\| : E(v) = c\} \), \(a = \sup\{\|L_{vv}(v)\| : \|v\| \leq 2K\} \). For \(\lambda \in (1 - \delta, 1 + \delta) \) fixed, using Proposition 12
\[
\int_{t_1}^{t_2} L(\eta_\lambda(t), \dot{\eta}_\lambda(t)) dt = \int_{t_1}^{t_2} \left[\frac{1}{2} L(v(\eta_\lambda(t)), \dot{v}(\eta_\lambda(t))) \dot{\eta}_\lambda(t) dt \right.
\]
\[
+ \frac{1}{2} (\lambda - 1)^2 L_{vv}(v(\eta_\lambda(t)), \dot{v}(\eta_\lambda(t))) \dot{\eta}_\lambda(t)^2 dt
\]
\[
\leq \lambda \int_{t_1}^{t_2} L(\eta(\lambda t), \dot{\eta}(\lambda t)) dt + \frac{1}{2} (t_2 - t_1) a^2 K^2 (\lambda - 1)^2
\]
\[
= \Phi(\eta(\lambda t_1), \eta(\lambda t_2)) + \frac{1}{2} (t_2 - t_1) a^2 K^2 (\lambda - 1)^2
\]

Proposition 19. Let \(\eta \in \mathcal{K}, \psi \in C(M) \) and \(\varphi \) be a dominated function. Assume that \(D^+((\psi - \varphi) \circ \eta)(0) \setminus \{0\} \neq \emptyset \) where \(D^+ \) denote the super-differential. Then for all \(t > 0 \) we have
\[
(L_t \psi)(\eta(t)) - \varphi(\eta(t)) < \psi(\eta(0)) - \varphi(\eta(0))
\]
Proof. Fix $t > 0$. By (5) in Corollary 6 it is enough to prove (16) for $\varphi = -\Phi(\cdot, \eta(t))$. Since $L_t(\psi + a) = L_t\psi + a$ we can assume that $\psi(\eta(0)) = \varphi(\eta(0))$.

\[
(L_t\psi)(\eta(t)) - \varphi(\eta(t)) = (L_t\psi)(\eta(t)) \leq \int_{(1/\lambda) t}^{t/\lambda} L(\eta_\lambda, \dot{\eta}_\lambda) + \psi((1 - \lambda)t)),
\]

thus, by Lemma 3

\[
(L_t\psi)(\eta(t)) - \varphi(\eta(t)) \leq \psi((1 - \lambda)t) + o((1 - \lambda)t)) + Mt(\lambda - 1)^2.
\]

If $m \in D^+((\psi - \varphi) \circ \eta)(0) \setminus \{0\}$, we have

\[
(L_t\psi)(\eta(t)) - \varphi(\eta(t)) \leq m((1 - \lambda)t) + o((1 - \lambda)t)) + Mt(\lambda - 1)^2,
\]

where $\lim_{\lambda \to 1} o((1 - \lambda)t)/1 - \lambda = 0$. Choosing appropriately λ close to 1, we get

\[
(L_t\psi)(\eta(t)) - \varphi(\eta(t)) < 0.
\]

□

Proposition 20. Let $u : M \to \mathbb{R}$ be a backward weak KAM solution, then

\[
u(x) = \min_{p \in \mathcal{A}} u(p) + h(p, x).
\]

$\nu(x, y) = \min_{q \in \mathcal{A}} h(x, q) + h(q, y) = \min_{q \in \mathcal{A}} \Phi(x, q) + \Phi(q, x)$

Corollary 8. Let $C \subset M$ and $w_0 : C \to \mathbb{R}$ be bounded from below. Let

\[
w(x) = \inf_{z \in C} w_0(z) + \Phi(z, x)
\]

(1) w is the maximal dominated function not exceeding w_0 on C.

(2) If $C \subset \mathcal{A}$, w is a backward weak KAM solution.

(3) If for all $x, y \in C$

\[
w_0(y) - w_0(x) \leq \Phi(x, y),
\]

then w coincides with w_0 on C.

4.4. Convergence of the Lax-Oleinik semigroup. We assume again that M is compact. Adding $c(L)$ to L we can assume that $c(L) = 0$. The main result of this section is Theorem 6.

Proposition 21. Let $u \in C(M)$

(a) Suppose $\psi = \lim_{n \to \infty} L_{t_n} u$ for some $t_n \to \infty$, then

\[
\psi \geq v(x) := \min_{z \in M} u(z) + h(z, x).
\]

(b) Suppose $L_t u$ converges as $t \to \infty$, then the limit is function v defined in (17).
Proof. (a) For \(x \in M \), \(n \in \mathbb{N} \) let \(\gamma_n \in W^{1,1}_D([0,t_n]) \) be such that \(\gamma(t_n) = x \) and
\[
\mathcal{L}_{t_n} u(x) = u(\gamma_n(0)) + A_L(\gamma_n).
\]
Passing to a subsequence if necessary we may assume that \(\gamma_n(0) \) converges to \(y \in M \). Taking \(\lim \inf \) in (18), we have from item (5) of Proposition 11
\[
\psi(x) = u(y) + \lim \inf_{n \to \infty} A_L(\gamma_n) \geq u(y) + h(y, x).
\]

(b) For \(x \in M \) let \(z \in M \) be such that \(v(z) = u(z) + h(z, x) \). Since \(\mathcal{L}_t u(x) \leq u(z) + h_t(z, x) \), we have
\[
\lim_{t \to \infty} \mathcal{L}_t u(x) \leq \lim \inf_{t \to \infty} u(z) + h_t(z, x) = v(z)
\]
which together with item (a) gives \(\lim_{t \to \infty} \mathcal{L}_t u = v \). \(\square \)

Using Proposition 20 we can write (17) as
\[
v(x) = \min_{y \in \mathcal{A}} \Phi(y, x) + w(y)
\]
(19)
\[
w(y) := \inf_{z \in M} u(z) + \Phi(z, y)
\]
(20)

Item (1) of Corollary 8 states that \(w \) is the maximal dominated function not exceeding \(u \). Items (2), (3) of Corollary 8 imply that \(v \) is the unique backward weak KAM solution that coincides with \(w \) on \(\mathcal{A} \).

Proposition 22. Suppose that \(u \) is dominated, then \(\mathcal{L}_t u \) converges uniformly as \(t \to \infty \) to the function \(v \) given by (17).

Proof. Since \(u \) is dominated, the function \(t \mapsto \mathcal{L}_t u \) is nondecreasing. As well, in this case, \(w \) given by (20) coincides with \(u \). Items (1) and (3) of Corollary 8 imply that \(v \) is the maximal dominated function that coincides with \(u \) on \(\mathcal{A} \) and then \(u \leq v \) on \(M \).

Since the semigroup \(\mathcal{L}_t \) is monotone and \(v \) is a backward weak KAM solution
\[
\mathcal{L}_t u \leq \mathcal{L}_t v = v \text{ for any } t > 0.
\]
Thus the uniform limit \(\lim_{t \to \infty} u \) exists. \(\square \)

Henceforth we assume that there are \(C_1, C_2 > 0 \) such that (10) holds.

Proposition 23. Let \(\delta > 0 \) and suppose \(u : M \to \mathbb{R} \) is bounded, then the family \(\{ \mathcal{L}_t u : t \geq \delta \} \) is uniformly bounded and equicontinuous.

Proof. By Proposition 4 there is \(K_\delta > 0 \) such that \(\{ h_t : t \geq \delta \} \) is uniformly \(K_\delta \)-Lipschitz.

Let \(x, y \in M, t \geq \delta \). For \(\varepsilon > 0 \) there is \(z_t \in M \) such that
\[
\mathcal{L}_t u(y) > u(z_t) + h_t(z_t, y) - \varepsilon
\]
(21)
Thus

\[\mathcal{L}_t u(x) - \mathcal{L}_t u(y) \leq u(z_t) + h_t(z_t, x) - u(z_t) - h_t(z_t, y) + \varepsilon \leq K_\delta d(x, y) + \varepsilon, \]

implying that \(\{ \mathcal{L}_t u : t \geq \delta \} \) is equicontinuous.

Let \(C_\delta > 0 \) be given by Corollary 5. From (21) we get

\[-\|u\|_\infty - C_\delta - \varepsilon \leq u(z_t) + h_t(z_t, y) - \varepsilon \]

\[< \mathcal{L}_t u(y) \leq u(z_t) + h_t(z_t, y) \leq \|u\|_\infty + C_\delta \]

proving that \(\{ \mathcal{L}_t u : t \geq \delta \} \) is uniformly bounded. \(\square \)

To prove the convergence of \(\mathcal{L}_t \) we will follow the lines in .

For \(u \in C(M) \) let

\[\omega_L(u) := \{ \psi \in C(M) : \exists t_n \to \infty \text{ such that } \psi = \lim_{n \to \infty} \mathcal{L}_{t_n} u \}. \]

(22) \[u(x) := \sup_{\omega_L(u)} \{ \psi(x) : \psi \in \omega_L(u) \} \]

(23) \[\underline{u}(x) := \inf_{\omega_L(u)} \{ \psi(x) : \psi \in \omega_L(u) \} \]

Corollary 9. Let \(u \in C(M) \), \(v \) be the function given by (17), \(\underline{u}, \bar{u} \) defined in (22) and (23). Then

(24) \[v \leq \underline{u} \leq u \]

Proposition 24. For \(u \in C(M) \), function \(u \) given by (22) is dominated.

Proof. Let \(x, y \in M \). Given \(\varepsilon > 0 \) there is \(\psi = \lim_{n \to \infty} \mathcal{L}_{t_n} u \) such that \(u(x) - \varepsilon < \psi(x) \).

For \(n > N(\varepsilon) \) and \(a > 0 \)

\[u(x) - 2\varepsilon < \psi(x) - \varepsilon \leq \mathcal{L}_{t_n} u(x) = \mathcal{L}_a(\mathcal{L}_{t_n-a} u)(x) \leq \mathcal{L}_{t_n-a} u(y) + h_a(y, x). \]

Choose a divergent sequence \(n_j \) such that \((\mathcal{L}_{t_n-a} u) \) converges uniformly. For \(j > N(\varepsilon) \), \(\mathcal{L}_{t_n-a} u(y) < u(y) + \varepsilon \), and then

\[u(x) - 3\varepsilon < \mathcal{L}_{t_n-a} u(y) + h_a(y, x) - \varepsilon < u(y) + h_a(y, x). \]

\(\square \)

Proposition 25. Suppose \(\varphi \) is dominated and \(\psi \in \omega_L(u) \). For any \(y \in M \) there exists \(\gamma \in K(y) \) such that the function \(t \mapsto \psi(\gamma(t)) - \varphi(\gamma(t)) \) is constant.

Proof. Let \((s_k)_k \) and \((t_k)_k \) be diverging sequences, \(\eta \) be a curve in \(K \) such that \(y = \lim_k \eta(s_k) \), and \(\psi \) is the uniform limit of \(\mathcal{L}_{t_k} u \). As in Proposition 15 we can assume that the sequence of functions \(t \mapsto \eta(s_k + t) \) converges uniformly on compact intervals to \(\gamma : \mathbb{R} \to M \), and so \(\gamma \in K \). We may assume moreover that \(t_k - s_k \to \infty \), as \(k \to \infty \), and that \(\mathcal{L}_{t_k-s_k} u \) converges uniformly to \(\psi_1 \in \omega_L(u) \). By (2) and (5) in Proposition 9

\[\| \mathcal{L}_{t_k} u - \mathcal{L}_{s_k} \psi_1 \|_\infty \leq \| \mathcal{L}_{t_k-s_k} u - \psi_1 \|_\infty \]
which implies that $\mathcal{L}_{s_k} \psi_1$ converges uniformly to ψ. From Proposition 18 we have that for any $\tau \in \mathbb{R}$ $s \mapsto (\mathcal{L}_{s} \psi_1)(\eta(\tau + s)) - \varphi(\eta(\tau + s))$ is a nonincreasing function in \mathbb{R}^+, and hence it has a limit $l(\tau)$ as $s \to \infty$, which is finite since $l(\tau) \geq -\|\mathbf{\tau} - \varphi\|_\infty$.

Given $t > 0$, we have

$$l(\tau) = \lim_{k \to \infty} \left(\mathcal{L}_{s_k + t} \psi_1)(\eta(s_k + \tau + t)) - \varphi(\eta(s_k + \tau + t)) \right) = (\mathcal{L}_t \psi)(\gamma(\tau + t)) - \varphi(\gamma(\tau + t))$$

The function $t \mapsto (\mathcal{L}_t \psi)(\gamma(\tau + t)) - \varphi(\gamma(\tau + t))$ is therefore constant on \mathbb{R}^+. Applying Proposition 19 to the curve $\gamma(\tau + \cdot) \in \mathcal{K}$, we have $D^+((\psi - \varphi) \circ \gamma)(\tau) \setminus \{0\} = \emptyset$ for any $\tau \in \mathbb{R}$. This implies that $\psi - \varphi$ is constant on γ.

Proposition 26. Let $\eta \in \mathcal{K}$, $\psi \in \omega_{\mathcal{L}}(u)$ and v be defined by (17). For any $\varepsilon > 0$ there exists $\tau \in \mathbb{R}$ such that

$$\psi(\eta(\tau)) - v(\eta(\tau)) < \varepsilon.$$

Proof. Since the curve η is contained in \mathcal{A}, we have

$$v(\eta(0)) = \min_{z \in M} u(z) + \Phi(z, \eta(0)),$$

and hence $v(\eta(0)) = u(z_0) + \Phi(z_0, \eta(0))$, for some $z_0 \in M$. Take a curve $\gamma : [0, T] \to M$ such that

$$v(\eta(0)) + \varepsilon = u(z_0) + \Phi(z_0, \eta(0)) + \varepsilon > u(z_0) + \int_0^T L(\gamma, \dot{\gamma}) \geq \mathcal{L}_T u(\eta(0)).$$

Choosing a divergent sequence $(t_n)_n$ such that $\mathcal{L}_{t_n} u$ converges uniformly to ψ we have for n sufficiently large

$$\|\mathcal{L}_{t_n} u - \psi\|_\infty < \frac{\varepsilon}{2}, \quad t_n - T > 0.$$

Take $\tau = t_n - T$

$$\psi(\eta(\tau)) - \frac{\varepsilon}{2} < \mathcal{L}_{t_n} u(\eta(\tau)) = \mathcal{L}_t \mathcal{L}_T u(\eta(\tau)) = \mathcal{L}_T u(\eta(0)) + \int_0^T L(\eta, \dot{\eta})$$

$$< \frac{\varepsilon}{2} + v(\eta(0)) + \int_0^T L(\eta, \dot{\eta}) = \frac{\varepsilon}{2} + v(\eta(\tau))$$

□

From Propositions 25 and 26 we obtain

Theorem 5. Let $\psi \in \omega_{\mathcal{L}}(u)$ and v be defined by (17). Then $\psi = v$ on \mathcal{M}.

Theorem 6. Assume that there are $C_1, C_2 > 0$ such that (10) holds. Let $u \in C(M)$, then $\mathcal{L}_t u$ converges uniformly as $t \to \infty$ to v given by (17).

Proof. The function u is dominated and coincides with v on \mathcal{M} by Theorem 5. Proposition 17 implies that u coincide with v on \mathcal{A} and so does with w. By item (1) of Corollary 8 we have $u \leq v$. □
5. HAMILTON-JACOBI EQUATION

5.1. Viscosity solutions.

Definition 8. Let N be a manifold, $F : T^*N \to \mathbb{R}$ be continuous and consider the Hamilton-Jacobi equation

\[(25)\quad F(u(z), du(z)) = 0\]

We say that $u \in C(N)$ is a *viscosity subsolution* of (25) if $\forall \varphi \in C^1(N)$ s.t. $z_0 \in N$ is a point of local maximum of $u - \varphi$ we have

\[F(u(x_0), d\varphi(x_0)) \leq 0.\]

We say that $u \in C(N)$ is a *viscosity supersolution* of (25) if $\forall \varphi \in C^1(N)$ s.t. $z_0 \in N$ is a point of local minimum of $u - \varphi$ we have

\[F(u(x_0), d\varphi(z_0)) \geq 0.\]

We say that u is a *viscosity solution* if it is both, a subsolution and a supersolution.

Let $\pi^* : T^*M \to M$ be the natural projection and define the sub-Riemannian Hamiltonian $H : T^*M \to \mathbb{R}$ by

\[H(p) = \max\{p(v) - L(v) : v \in \mathcal{D}, \pi(v) = \pi^*(p)\}.\]

For $\omega \in \Omega^1(M)$, the Hamiltonian associated to $L - \omega$ is $H(p + \omega(\pi^*(p)))$

Proposition 27. Let $u \in C(M)$, then $w : M \times [0, \infty[\to \mathbb{R}$ given by $w(x, t) = L_t u(x)$, is a viscosity solution of

\[
\begin{align*}
&w_t(x, t) + H(d_x w(x, t)) = 0, \quad x \in M, t > 0 \\
&w(x, 0) = u(x)
\end{align*}
\]

Proposition 28. Let $\lambda \geq 0$, then $u \in C(M)$ is a viscosity subsolution of

\[(26)\quad \lambda u(x) + H(du(x)) - c = 0,
\]

if and only if

\[(27)\quad u(\gamma(b))e^{\lambda b} - u(\gamma(a))e^{\lambda a} \leq A_{L+c,\lambda}(\gamma) \text{ for any } \gamma \in W^1_\mathcal{D}([a, b])
\]

Corollary 10.

1. A viscosity subsolution of (26) is Lipschitz for the metric d.
2. Considering the case $\lambda = 0$

\[(28)\quad H(du(x)) - c = 0,
\]

\[c(L) = \inf\{c \in \mathbb{R} : (28) \text{ has a viscosity subsolution } u \in C(M)\}\]

Proposition 29.

1. For $\lambda > 0$, let u_λ be the value function, then $u_\lambda + c/\lambda$ is a viscosity solution of (26).
(2) If \(u = \mathcal{L}_t u + ct \) for any \(t > 0 \), then \(u \) is a viscosity solution of (28).

Item (2) of Proposition 29 can be considered a special case of Proposition 27 since \(w(x, t) = \mathcal{L}_t u(x) = u(x) - ct \) and then \(d_x w(x, t) = du(x), w_t = -c \).

Under some mild assumption that can be fulfilled for a sub-Riemannian Hamiltonian, the comparison principle for (26) holds for \(\lambda > 0 \). In particular (26) has a unique viscosity solution. An instance of such an assumption is

\[
\left| \frac{\partial H}{\partial x} (x, p) \right| \leq (1 + |p|)\Phi(H(x, p))
\]

for a continuous function \(\Phi : \mathbb{R} \to \mathbb{R}^+ \), see page 35 in [Ba]. This fact implies the following.

Corollary 11. Assume that (29) holds, then there is only one constant \(c \) such that (28) has viscosity solutions.

Proof. Suppose that there are \(c_1 < c_2 \) such that (28) admits viscosity solutions \(u_1, u_2 \) respectively. Adding a constant to \(u_1 \) we may suppose \(u_1 > u_2 \). Let \(c_1 < c < c_2 \). For \(\lambda > 0 \) small enough \(u_1 \) and \(u_2 \) are a subsolution and a supersolution of (26). By comparison, \(u_1 \leq u_2 \) which is a contradiction. \(\square \)

6. Aubry-Mather theory

In this section we extend Aubry-Mather theory to our setting. We take Mañé’s approach using closed measures. We assume again that \(M \) is compact.

Let \(g \) be a Riemannian metric on \(M \) that tames the sub-Riemannian metric. The values of \(g \) outside \(\mathcal{D} \) will not play any role. Let \(C^0_\mathcal{E} \) be the set of continuous functions \(f : TM \to \mathbb{R} \) having linear growth, i.e.

\[
\|f\|_\mathcal{E} := \sup_{v \in \mathcal{D}} \frac{|f(v)|}{1 + \|v\|_g} < +\infty.
\]

Let \(\mathcal{P}_\mathcal{E} \) be the set of Borel probability measures on \(TM \) such that

\[
\int_{TM} \|v\|_g \, d\mu < +\infty,
\]

endowed with the topology such that \(\lim_n \mu_n = \mu \) if and only if

\[
\lim_n \int_{TM} f \, d\mu_n = \int_{TM} f \, d\mu
\]

for all \(f \in C^0_\mathcal{E} \).

Let \((C^0_\mathcal{E})' \) be the dual of \(C^0_\mathcal{E} \). Then \(\mathcal{P}_\mathcal{E} \) is naturally embedded in \((C^0_\mathcal{E})' \) and its topology coincides with that induced by the weak* topology on \((C^0_\mathcal{E})' \). This topology is metrizable, indeed, let \(\{f_n\} \) be a sequence of functions with compact support on
\(C^0_\ell\) which is dense on \(C^0_\ell\) in the topology of uniform convergence on compact sets of \(TM\). The metric \(d_\ell\) on \(\mathcal{P}_\ell\) defined by

\[
d_\ell(\mu_1, \mu_2) = \left| \int_{TM} \|v\|_g \, d\mu_1 - \int_{TM} \|v\|_g \, d\mu_2 \right| + \sum_n \frac{1}{2^n \|f_n\|_\infty} \left| \int_{TM} f_n \, d\mu_1 - \int_{TM} f_n \, d\mu_2 \right|
\]

gives the topology of \(\mathcal{P}_\ell\).

Let \(\mathcal{P}_D\) be the set of measures in \(\mathcal{P}_\ell\) that are supported in \(D\).

Proposition 30. The function \(A_L : \mathcal{P}_D \to \mathbb{R} \cup \{+\infty\}\), defined as

\[
A_L(\mu) = \int_{TM} \psi(\pi(v)) v \, d\mu(v)
\]

for all \(\psi \in C^1(M)\). We denote by \(V_D\) the convex closed set of vakonomic measures.

Definition 9. A measure \(\mu\) in \(\mathcal{P}_D\) is called closed or vakonomic (see [G]) if

\[
(30) \quad \int_{TM} D\varphi(\pi(v)) v \, d\mu(v) = 0
\]

for all \(\varphi \in C(M)\). We denote by \(V_D\) the convex closed set of vakonomic measures.

For \(\mu \in V_D\) we define its rotation vector \(\rho(\mu) \in H_1(M, \mathbb{R})\) by

\[
(31) \quad \langle [\omega], \rho(\mu) \rangle = \int_{TM} \omega \, d\mu, \quad \omega \in \Omega^1(M), d\omega = 0
\]

For \(\gamma \in W^{1,1}_D([a,b])\) we define the measure \(\mu_\gamma\) by

\[
(32) \quad \int_{TM} f \, d\mu_\gamma = \frac{1}{b-a} \int_a^b f(\gamma), \quad f \in C^0_\ell,
\]

when \(\gamma(a) = \gamma(b), \mu_\gamma \in V_D\) and it is called holonomic. We denote by \(H_D\) the set of holonomic measures.

More generally, if \(\gamma_n \in W^{1,1}_D([a_n, b_n])\), \(b_n - a_n \to \infty\) and \(\mu = \lim_n \mu_{\gamma_n}\) exists then \(\mu \in V_D\). Indeed, we observe again that if \(\alpha \in W^{1,1}_D\) is a minimizing geodesic with \(\|\dot{\alpha}\| = 1\) a.e. we have that \(-C(0)\ell(\alpha) \leq A_L(\alpha) \leq A(1)\ell(\alpha)\). Fix \(x_0 \in M\), take unit speed geodesics \(\alpha_n\) from \(x_0\) to \(\gamma_n(a_n)\) and \(\beta_n\) from \(\gamma_n(b_n)\) to \(x_0\), and the concatenation \(\delta_n\) of \(\alpha_n, \gamma_n\) and \(\beta_n\). Then \(\delta_n\) is a closed curve and for any \(f \in C^0_\ell\) we have

\[
\lim_n \int_{TM} f \, d\mu_{\delta_n} = \lim_n \int_{TM} f \, d\mu_{\gamma_n} = \int_{TM} f \, d\mu.
\]

Thus \(\mu \in V_D\) and \(\rho(\mu) = \lim \rho(\mu_{\delta_n})\).

Set \(\mathbb{G} := \{ h \in H_1(M, \mathbb{Z}) : kh \neq 0 \text{ for all } k \in \mathbb{N} \}\) and consider the abelian cover \(\Pi : \bar{M} \to M\) whose group of deck transformations is \(\mathbb{G}\). The distribution \(\mathcal{D}\) lifts to a bracket generating distribution \(\bar{\mathcal{D}} \subset T\bar{M}\).
Fix a basis \(c_1, \ldots, c_k \) of \(H^1(M, \mathbb{R}) \) and fix closed 1-forms \(\omega_1, \ldots, \omega_k \) in \(M \) such that \(\omega_i \) has cohomology class \(c_i \). Let \(G : \bar{M} \rightarrow H_1(M, \mathbb{R}) \) be given by

\[
\langle \sum_i a_ic_i, G(x) \rangle = \int_{\bar{x}_0}^x \sum_i a_i\bar{\omega}_i,
\]

where \(\bar{x}_0 \) is a base point in \(\bar{M} \) and \(\bar{\omega}_i \) is the lift of \(\omega_i \) to \(\bar{M} \). Since \(\bar{\omega}_i \) is exact, the integral does not depend on the choice of the path from \(\bar{x}_0 \) to \(x \). Notice that the function \(G \) depends on the choice of \(\bar{x}_0 \), on the choice of the basis \(\{c_i\} \) and of representatives \(\omega_i \) in \(c_i \). In general, if \(x, y \) belong to the same fiber, then \(G(x) - G(y) \) is the transformation in \(\mathbb{G} \) carrying \(y \) to \(x \), condition which uniquely identifies it, conversely, any deck transformation admits a representation of this type.

Let \(\bar{\gamma} \in W^{1,1}_D([a, b]) \) and \(\gamma = \Pi \circ \bar{\gamma} \). If \(\omega \in \Omega^1(M) \), \(d\omega = 0 \), there is \(f \in C^1(M) \) such that

\[
\int_{T \bar{M}} \omega \, d\mu_{\gamma} = \frac{1}{b-a}(\langle [\omega], G(\gamma(b)) - G(\gamma(a)) \rangle + f((\gamma(b)) - f(\gamma(a))].
\]

If \(T \in \mathbb{G}, a < b \), take \(\bar{\gamma} \in W^{1,1}_D([a, b]) \) such that \(\bar{\gamma}(b) = T \bar{\gamma}(a) \), then \(T = G(\bar{\gamma}(b)) - G(\bar{\gamma}(a)) \). If \(\gamma = \Pi \circ \bar{\gamma} \) then \(\gamma(\bar{\gamma}(a)) = \gamma(b) \) and \(\rho(\mu_{\gamma}) = T/(b-a) \).

If \(\bar{\gamma}_n \in W^{1,1}_D([a_n, b_n]) \), \(\gamma_n = \Pi \circ \bar{\gamma}_n \), \(b_n - a_n \rightarrow \infty \) and \(\mu = \lim_n \mu_{\gamma_n} \) exists then

\[
h = \lim_{n \rightarrow \infty} \frac{G(\bar{\gamma}(b_n)) - G(\bar{\gamma}(a_n))}{b_n - a_n}
\]

exists and \(\rho(\mu) = h \).

Lemma 4. The map \(\rho : \mathcal{V}_D \rightarrow H_1(M, \mathbb{R}) \) is surjective.

Proof. Since \(\mathcal{V}_D \) is convex and the map \(\rho \) is affine, we have that \(\rho(\mathcal{V}_D) \) is convex, and we have proved that \(\rho(\mathcal{V}_D) \) contains \(\mathbb{G} \).

Lemma 5. If \(M \) is connected the set \(\overline{\mathcal{H}_D} \) is convex.

Proof. Let \(\eta_1, \eta_2 \in \overline{\mathcal{H}_D} \), and let \(\lambda_1 \) and \(\lambda_2 \) in \([0, 1]\) be such that \(\lambda_1 + \lambda_2 = 1 \). There are sequences \(\gamma_n^i \in \mathcal{C}_{S_i}(x_n^i, x_n^i), i = 1, 2 \) such that \(\mu_{\gamma_n} \) converges to \(\eta_i \). There are \(m_1, m_2 \in \mathbb{N} \) such that \(T_n^i = m_n^iS_n^i \rightarrow +\infty \) and \(T_n^i \overline{T_n^2} \) converges to \(\frac{\lambda_1}{\lambda_2} \), then \(\frac{T_n^i}{\overline{T_n^2}} \) converges to \(\lambda_i \).

Taking a minimizing geodesic \(\alpha_n \in \mathcal{C}_1(x_n^1, x_n^2) \), define the curve \(\gamma_n \in \mathcal{C}_{T_n^1 + T_n^2 + 2}(x_n^1, x_n^2) \) by

\[
\gamma_n(t) = \begin{cases}
\gamma_n^1(t) & t \in [0, T_n^1] \\
\alpha_n(t - T_n^1) & t \in [T_n^1, T_n^1 + 1] \\
\gamma_n^2(t - T_n^1 - 1) & t \in [T_n^1 + 1, T_n^1 + T_n^2 + 1] \\
\alpha_n(T_n^1 + T_n^2 + 2 - t) & t \in [T_n^1 + T_n^2 + 1, T_n^1 + 2].
\end{cases}
\]

Then \(\mu_{\gamma_n} \) converges to \(\lambda_1 \eta_1 + \lambda_2 \eta_2 \).
Theorem 7. $\mathcal{V}_D = \overline{H}_D$

Proof. As in [B], by Lemma 5 and Proposition 31.

Proposition 31. Let C be a closed convex subset of \mathcal{P}_ℓ and let

$$C^+ = \{ f \in C^0_\ell : \int_{TM} f d\mu \geq 0 \ \forall \mu \in C \}.$$

Then

$$C = \{ \mu \in \mathcal{P}_\ell : \int_{TM} f d\mu \geq 0 \ \forall f \in C^+ \},$$

it is enough to prove that $\overline{H}_D^+ \subset \mathcal{V}_D^+$. The proof of this fact is the same as the proof of a similar fact in [B]. □

Proposition 32. If $\mu \in \mathcal{V}_D$ then there is a sequence $\mu_{\eta_n} \in H_D$ converging to μ such that $A_L(\mu_{\eta_n})$ converges to $A_L(\mu)$

Proof. The proof is similar to the one of Proposition 2-3.3 in [CI]. □

Proposition 33.

$$\min \{ A_L(\mu) : \mu \in \mathcal{V}_D \} = -c(L).$$

Proof. Set $c = c(L)$ and let $x \in M$, then there is a sequence $x_n \in C_{t_n}(x, x)$ with $t_n \to \infty$ such that

$$h(x, x) = \lim_{n \to \infty} A_L(\gamma_n) + c t_n.$$

Let $\mu_0 \in \mathcal{V}_D$ be the limit of a subsequence of μ_{γ_n}, then

$$0 = \lim_{n \to \infty} \frac{1}{t_n} A_L(\gamma_n) + c = \lim_{n \to \infty} A_L(\mu_{\gamma_n}) + c \geq A_L(\mu_0) + c \geq \inf \{ A_L(\mu) : \mu \in \mathcal{V}_D \} + c.$$

Let $\mu \in \mathcal{V}_D$, by Proposition 32 there is a sequence $\gamma_n \in C_{t_n}(x_n, x_n)$ such that

$$\frac{1}{t_n} A_L(\gamma_n) = A_L(\mu_{\gamma_n})$$

converges to $-c(L)$. Since $A_L(\gamma_n) + c t_n \geq \Phi(x_n, x_n) = 0$,

$$A_L(\mu) + c = \lim_{n \to \infty} \frac{1}{t_n} A_L(\gamma_n) + c \geq 0.$$

Thus $\inf \{ A_L(\mu) : \mu \in \mathcal{V}_D \} + c \geq 0$ and then

$$A_L(\mu_0) = \inf \{ A_L(\mu) : \mu \in \mathcal{V}_D \} = -c$$

□

We define the set of Mather measures as $\mathfrak{M}(L) = \{ \mu \in \mathcal{V}_D : A_L(\mu) = -c(L) \}$, and the set of projected Mather measures $\mathfrak{M}_0(L) = \{ \pi_\# \mu : \mu \in \mathfrak{M}(L) \}$.
Example 4. Let $M, U : M \to \mathbb{R}$ and L be as in example 1. Since $\min L = -\max U = -c(L)$, the support of any $\mu \in \mathcal{M}(L)$ is contained in $\{0\} \times U^{-1}(\max U) = \{0\} \times A$.

If μ is a probability measure in TM supported in $\{0\} \times A$, then $\mu \in \mathcal{V}_A$ and $\int L d\mu = -\max U$ and thus $\mu \in \mathcal{M}(L)$. Therefore $\mathcal{M}_0(L)$ is the set of probability measures in M supported in $U^{-1}(\max U) = A$.

Definition 10. We define the effective Lagrangian $L : H^1(M, \mathbb{R}) \to \mathbb{R}$, or Mather β function, by

\[(33)\quad L(h) = \inf \{ A_L(\mu) : \rho(\mu) = h \}\]

It is clear that L is convex and its Legendre transform, called effective Hamiltonian, $H : H^1(M, \mathbb{R}) \to \mathbb{R}$ is given by

\[(34)\quad H([\omega]) = -\inf \{ A_{L-\omega}(\mu) : \mu \in \mathcal{V}_A \} = c(L - \omega)\]

7. CONVERGENCE OF THE DISCOUNTED VALUE FUNCTION

Suppose M is compact and let $c = c(L)$. For $\lambda > 0$ let u_λ be the discounted value function.

Proposition 34. For every $\mu \in \mathcal{M}_0(L)$ we have $\int_M u_\lambda \ d\mu \leq -\frac{c}{\lambda}$.

Proof. Let $\gamma_k \in C_{t_k}(x_k, x_k)$. By item (2) of Proposition 2

\[u_\lambda(\gamma_k(t)) \leq e^{-\lambda t}(u_\lambda(x_k) + \int_0^t e^{\lambda s} L(\dot{\gamma}_k(s)) \ ds)\]

Integration by parts gives

\[\int_0^{t_k} u_\lambda(\gamma_k(t)) \ dt \leq \frac{1 - e^{-\lambda t_k}}{\lambda} u_\lambda(x_k) + \int_0^{t_k} e^{-\lambda t} \int_0^t e^{\lambda s} L(\dot{\gamma}_k(s)) \ ds \ dt\]

\[= \frac{1 - e^{-\lambda t_k}}{\lambda} u_\lambda(x_k) - e^{-\lambda t_k} \int_0^{t_k} e^{\lambda s} L(\dot{\gamma}_k(s)) \ ds + \frac{1}{\lambda} \int_0^{t_k} L(\dot{\gamma}_k)\]

\[\leq \frac{A_L(\gamma_k)}{\lambda}\]

If the sequence $\mu_{\gamma_k} \in \mathcal{H}_A$ converges to $\nu \in \mathcal{V}_A$ we have

\[\int_M u_\lambda \ d\pi_#\nu \leq \frac{A_L(\nu)}{\lambda}\]

In particular, for $\nu \in \mathcal{M}(L)$ choose a sequence $\mu_{\gamma_k} \in \mathcal{H}_A$ converging to ν, and then

\[\int_M u_\lambda \ d\pi_#\nu \leq -\frac{c}{\lambda}\]

\[\square\]

Proposition 35. $u_\lambda + \frac{c}{\lambda}$ is uniformly bounded.
Proof. Fix $z \in A$ and let $v(x) = h(z, x)$. Let $x \in M$.

By Proposition 4 there is $\gamma_{\lambda, x} \in W^{1,1}_D([-\infty, 0])$ such that $\gamma_{\lambda, x}(0) = x$ and

$$u_\lambda(x) = \int_{-\infty}^{0} e^{\lambda t} L(\gamma_{\lambda, x}(t)) \, dt \geq \int_{-\infty}^{0} e^{\lambda t} ((v \circ \gamma_{\lambda, x})' - c) \, dt$$

$$\geq v(x) - \int_{-\infty}^{0} e^{\lambda t} (\lambda v \circ \gamma_{\lambda, x} - c) \, dt \geq v(x) - \max v - \frac{c}{\lambda}.$$

There is a sequence $\gamma_n \in C_{t_n}(x, x)$ with $t_n \to \infty$ such that $h(x, x) = \lim_{n \to \infty} A_{L}(\gamma_n) + c t_n$.

By (27), $u_\lambda(x)(e^{\lambda t_n} - 1) \leq A_{L, \lambda}(\gamma_n)$. Considering the function $a_n(t) = A_{L}(\gamma_n |_{[0, t]})$ and integrating by parts

$$u_\lambda(x)(e^{\lambda t_n} - 1) \leq A_{L}(\gamma_n) e^{\lambda t_n} - \int_{0}^{t_n} e^{\lambda t} a_n(t) \, dt$$

$$\leq A_{L}(\gamma_n) e^{\lambda t_n} + \int_{0}^{t_n} e^{\lambda t} (v(x) - v(\gamma_n(t)) + c) \, dt$$

$$\leq A_{L}(\gamma_n) e^{\lambda t_n} + (e^{\lambda t_n} - 1)(v(x) - \min v) + c(e^{\lambda t_n} - \frac{e^{\lambda t_n} - 1}{\lambda})$$

$$= (e^{\lambda t_n} - 1)(A_{L}(\gamma_n) + c t_n + v(x) - \min v - \frac{c}{\lambda}) + A_{L}(\gamma_n) + c t_n$$

dividing by $e^{\lambda t_n} - 1$ and letting $n \to \infty$,

$$u_\lambda(x) + \frac{c}{\lambda} \leq h(x, x) + v(x) - \min v \leq h(x, z) + 2v(x) - \min v.$$

□

Corollary 12. If $u_{\lambda_k} + \frac{c}{\lambda_k}$ converges uniformly to u for $\lambda_k \to 0$, then u is a weak KAM solution and $\int_M u \, d\mu \leq 0$

Proof. The first assertion follows as in Theorem 4. We already proved that $\lambda_k \int_M u_{\lambda_k} \, d\mu \leq -c$ for $\mu \in M_0$. Thus $\int_M (u_{\lambda_k} + \frac{c}{\lambda_k}) \, d\mu \leq 0$ and letting $k \to \infty$ we get $\int_M u \, d\mu \leq 0$. □

Theorem 8. Let u_λ be the discounted value function, then $u_\lambda + \frac{c}{\lambda}$ converges uniformly as $\lambda \to 0$ to the weak KAM solution u_0 given by either of the following ways

(i) it is the largest viscosity subsolution of (28) such that $\int_M u \, d\mu \leq 0$ for any $\mu \in M_0(L)$.

(ii) $u_0(x) = \inf_M \{ \int_M h(y, x) \, d\mu(y) : \mu \in M_0(L) \}$.

Now the proof of Theorem 8 goes as in [DFIZ]

8. Homogenization

As in section 6, let M be a compact manifold. We follow the approach of [CIS] and refer to that paper for the definition of the convergence of a family of metric spaces (M_n, d_n) to a metric space (M, d) through continuous maps $F_n : M_n \to M$. For the Carnot Caratheodory metric d on \bar{M} for the distribution \bar{D}, we have as in [CIS] Proposition 36.

$$\lim_{\varepsilon \to 0} (\bar{M}, \varepsilon d, \varepsilon G) = H_1(M, \mathbb{R}).$$

Let $\bar{L} : \bar{D} \to \mathbb{R}$ be the lift of L and

$$\bar{H}(p) = \max\{p(v) - \bar{L}(v) : \bar{\pi}(v) = \bar{\pi}^*(p)\}.$$

We are interested in the limit as $\varepsilon \to 0$ of the Cauchy problem

$$(35) \quad \begin{cases} w_t + \bar{H}(dw/\varepsilon) = 0, & x \in \bar{M}, t > 0; \\
 w(x, 0) = \tilde{f}_\varepsilon(x).
\end{cases}$$

for $f_\varepsilon : \bar{M} \to \mathbb{R}$ continuous, uniformly εG-converging to some $f : H_1(M, \mathbb{R}) \to \mathbb{R}$. Since

$$\bar{H}(p/\varepsilon) = \max\{p(v) - \bar{L}(\varepsilon v) : \bar{\pi}(v) = \bar{\pi}^*(p)\},$$

letting L^ε_t be the Lax-Oleinik semi-group for the Lagrangian $\bar{L}(\varepsilon v)$, by Proposition 27 we have that u_ε given by $u_\varepsilon(x, t) = L^\varepsilon_t f_\varepsilon(x)$ is a viscosity solution to (35). Under assumption (29) the viscosity solution is unique. We have

$$(36) \quad u_\varepsilon(x, t) = \inf\{f_\varepsilon(\tilde{\gamma}(0)) + \int_0^t \bar{L}(\varepsilon \dot{\tilde{\gamma}}) : \tilde{\gamma} \in W^{1,1}_D([0, t])\}$$

$$= \inf\{f_\varepsilon(\alpha(0)) + \varepsilon A_L(\bar{\alpha}) : \bar{\alpha} \in W^{1,1}_D([0, t/\varepsilon])\}$$

where $\bar{h}_t : \bar{M} \times \bar{M} \to \mathbb{R}$ is the minimal action for the Lagrangian \bar{L}.

Theorem 9. Let $f_\varepsilon : \bar{M} \to \mathbb{R}$, $f : H_1(M, \mathbb{R}) \to \mathbb{R}$ be continuous, with f having at most linear growth, such that f_ε uniformly εG-converges to f. Then the family of functions $u_\varepsilon : \bar{M} \times [0, +\infty[\to \mathbb{R}$ locally uniformly εG-converges in $\bar{M} \times [0, +\infty[$ to the viscosity solution $u : H_1(M, \mathbb{R}) \times [0, +\infty[\to \mathbb{R}$ of the problem

$$(37) \quad \begin{cases} u_t + \mathbb{H}(du) = 0, & h \in H_1(M, \mathbb{R}), t > 0; \\
 u(h, 0) = f(h).
\end{cases}$$

We need the following Lemma
Lemma 6 ([CIS]). Given a compact subset K in $H^1(M, \mathbb{R})$, and a compact interval $I \subset [0, +\infty]$, there is a constant $C > 0$ such that $\varepsilon d(x, y) \leq C$ for $\varepsilon > 0$ suitably small $\varepsilon G(x) \in K$, $t \in I$ and $y \in \bar{M}$ realizing the minimum in the (36).

Proof of Theorem 9. The solution for the limit problem (37) is
\[
\liminf_{n \to \infty} u_{\varepsilon_n}(x_n, t_n) = \inf_{\mu \in H_1(M, \mathbb{R})} \{ f(q) + tL(\frac{z - q}{t}) : q \in H_1(M, \mathbb{R}) \}.
\]

Let $h \in H_1(M, \mathbb{R})$, $t > 0$. Let $\{\varepsilon_n\}$ be a sequence converging to zero and let $\{x_n\}, \{t_n\}$ be subsequences in \bar{M}, $(0, +\infty)$ such that $\varepsilon_n G(x_n)$ converges to z and t_n converges to t. Our goal is to prove that $u_{\varepsilon_n}(x_n, t_n)$ converges to $u(z, t)$.

Let $y_n \in \bar{M}$, and $\gamma_n \in \mathcal{C}_{t_n/\varepsilon_n}(y_n, x_n)$ be such that
\[
u_{\varepsilon_n}(x_n, t_n) = f_{\varepsilon_n}(y_n) + \varepsilon_n \bar{h}_{t_n/\varepsilon_n}(y_n, x_n) = f_{\varepsilon_n}(y_n) + \varepsilon_n A_L(\gamma_n).
\]

By Lemma 6, the sequence $\varepsilon_n G(y_n)$ is bounded, so it converges up to subsequences, to $q \in H_1(M, \mathbb{R})$ and then
\[
\lim_n \varepsilon_n(G(x_n) - G(y_n)) = z - q.
\]

Consider the measure μ_{γ_n} for $\gamma_n = \Pi \circ \gamma_n$
\[
\bar{h}_{t_n/\varepsilon_n}(x_n, t_n) = A_L(\gamma_n) = t_n A_L(\mu_{\gamma_n})/\varepsilon_n.
\]

Passing to a further subsequence we can assume that μ_{γ_n} converges to μ, then we have
\[
\rho(\mu) = \frac{z - q}{t} \quad \text{and} \quad \liminf_n A_L(\mu_{\gamma_n}) \geq A_L(\mu).
\]

Thus
\[
\liminf_n \varepsilon_n \bar{h}_{t_n/\varepsilon_n}(x_n, x_n) = \liminf_n t_n A_L(\mu_{\gamma_n}) \geq t A_L(\mu) \geq tL(\frac{z - q}{t}).
\]

By the the uniform $\varepsilon_n G$-convergence of f_{ε_n} to f, we obtain
\[
\liminf_n u_{\varepsilon_n}(x_n, t_n) = \liminf_n f_{\varepsilon_n}(y_n) + \varepsilon \bar{h}_{t_n/\varepsilon_n}(y_n, x_n) \geq f(q) + tL(\frac{z - q}{t}) \geq u(z, t)
\]

Let $l = \limsup_n u_{\varepsilon_n}(x_n, t_n)$ and take a subsequence of $\{\varepsilon_n\}$, still denoted $\{\varepsilon_n\}$, such that $l = \lim_{n \to \infty} u_{\varepsilon_n}(x_n, t_n)$. Choose $q \in H_1(M, \mathbb{R})$ such that $u(z, t) = f(q) + tL(\frac{z - q}{t})$. Let $\mu \in \mathcal{V}_D$ be such that $\rho(\mu) = \frac{z - q}{t}$ and $A_L(\mu) = L(\frac{z - q}{t})$. There is a sequence $\mu_{\eta_k} \in \mathcal{H}_D$ converging to μ such that $\{A_L(\mu_{\eta_k})\}$ converges to $A_L(\mu)$.

We have that $\eta_k \in \mathcal{C}_{T_k}(p_k, p_k)$ and we can assume that $T_k \geq 1$. Take a subsequence $\{\varepsilon_{n_k}\}$ such that $\varepsilon_{n_k} T_k$ converges to 0.

Choose a lift y_k of p_{n_k} such that $d_k^* = d(y_k, x_{n_k}) \leq \text{diam } M$. Let $m_k \in \mathbb{N}$ be such that
\[
(1 + m_k)T_k \leq t_{n_k}/\varepsilon_{n_k} < (2 + m_k)T_k,
\]

then $\varepsilon_{n_k} m_k T_k$ converges to t.
Let $\beta_k \in W^{1,1}_D([0, m_k T_n k])$ be the lift of the curve η_k travelled m_k times such that $\beta_k(m_k T_k) = y_k$, then $\frac{G(y_k) - G(\beta_k(0))}{m_k T_k} = \rho(\mu_{\eta_k})$. Thus $\varepsilon_{n_k}(G(y_k) - G(\beta_k(0))) = \varepsilon_{n_k} m_k T_k \rho(\mu_{\eta_k})$ converges to $z - q$ and since $\varepsilon_{n_k}(G(x_{n_k}) - G(y_k))$ converges to 0, we have that $\varepsilon_{n_k} G(\beta_k(0))$ converges to q.

Take a minimizing geodesic $\beta_k \in C_{0,d^*}(y_k, x_{n_k})$ with $\|\dot{\beta}_k\| = 1$ a.e. Letting $\alpha_k(s) = \beta_k(d^*_k s / (t_{n_k} - m_k T_k))$ we have that $|\dot{\alpha}_k| \leq d^*_k$ and then $A_L(\alpha_k) \leq 2A(diam M) T_k$.

\[l = \lim_k u_{\varepsilon_{n_k}}(x_{n_k}, t_{n_k}) \leq \limsup_k f_{\varepsilon_{n_k}}(\beta_k(0)) + \varepsilon_{n_k}(A_{L}(\beta_k) + A_{L}(\alpha_k)) \]

\[\leq \lim_k f_{\varepsilon_{n_k}}(\beta_k(0)) + \varepsilon_{n_k} m_k T_k A_{L}(\mu_{\eta_k}) + 2\varepsilon_{n_k} T_k A(diam M) = f(q) + tL \left(\frac{z - q}{t} \right). \]

9. Open questions

- Is any viscosity solution of (28) a weak KAM solution?
- Is the support of any $\mu \in \mathcal{M}_0(L)$ contained in \mathcal{A}?

References

[ABB] A. Agrachev, D. Barilari, U. Boscain. A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge studies in advanced Mathematics No. 181. Cambridge University Press.

[BCP] Z. M. Balogh, A. Calogero and R. Pini. The Hopf–Lax formula in Carnot groups: a control theoretic approach. Calc. Var. 49 1379–1414 (2014).

[Ba] G. Barles, Solutions de viscosité des équations de Hamilton Jacobi, Mathématiques et Applications 17, Springer 1994.

[B] P. Bernard. Young Measures, Superposition and Transport. Indiana Univ. Math. J. 57, no. 1 247–75 (2008)

[BW] I. Birindelli and J Wigniolli. Homogenization of Hamilton-Jacobi equations in the Heisenberg group Comm. Pure App. Anal. 2 No.4, 461–479 (2003).

[CI] G. Contreras, R. Iturriaga. Global minimizers for autonomous Lagrangians. 22º Colóquio Brasileiro de Matemática

[CIS] G. Contreras, R. Iturriaga, A. Siconolfi. Homogenization on arbitrary manifolds. Calc. Var. 52 237–252 (2015).

[DFIZ] A. Davini, A. Fathi, R. Iturriaga & M. Zavidovique. Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent. math. 206 (2016) 29 — 55

[F] A. Fathi. Weak KAM Theorem in Lagrangian Dynamics. Preliminary Version Number 10.

[G] D. Gomes, Hamilton-Jacobi methods for Vakonomic Mechanics. NoDEA 14 (2007) 233–257.

[MS] J.J. Manfredi and B. Stroffolini. A version of the Hopf-Lax formula in the Heisenberg group. Comm. Part. Diff. Eq. 27 No. 5&6 1139–1159 (2002).

[M] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications. (No. 91). American Mathematical Soc..

[S] B. Stroffolini. Homogenization of Hamilton-Jacobi equations in Carnot groups. ESAIM: COCV. 13, No 1 107—119 (2007).
Instituto de Matemáticas, UNAM. Ciudad Universitaria C. P. 04510, Cd. de México, México.

Email address: hector@math.unam.mx