Combinatorics of poly-Bernoulli numbers

Beáta Bényi1,2 \quad Péter Hajnal2

1 József Eötvös College, Baja

2 Bolyai Institute, University of Szeged, Szeged

March, 2014.
What is combinatorics?

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \(S \) and a parameter \(p \).

Determine \(\max \{ p(S) : S \in S_n \} \).

Enumerative/algebraic combinatorics

Given a set of finite sets \(\{ S_n \} \).

Determine/bound \(|S_n| \).
What is combinatorics?

I don’t know.
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p.
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

$$\max\{p(S) : S \in S_n\}.$$
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p. Determine

$$\max\{p(S) : S \in S_n\}.$$
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p.
Determine

$$\max\{p(S) : S \in S_n\}.$$
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: S_n and a parameter p.
Determine

$$\max\{p(S) : S \in S_n\}.$$

Enumerative/algebraic combinatorics

Given a set of finite set $\{S_n\}$.
What is combinatorics?

I don’t know.

There are several “types” of combinatorics.

Extremal/Hungarian combinatorics

Given a set of discrete structures: \(S_n \) and a parameter \(p \).
Determine

\[
\max\{p(S) : S \in S_n\}.
\]

Enumerative/algebraic combinatorics

Given a set of finite set \(\{S_n\} \). Determine/bound

\[
|S_n|.
\]
An example for an extremal question

Question

What is the maximum number of 1’s in a 0-1 matrix of size $n \times k$ without the configuration

$\begin{pmatrix} 1 & 1 \\ 1 & \ast \end{pmatrix}$?
An example for an extremal question

Question

What is the maximum number of 1’s in a 0-1 matrix of size $n \times k$ without the configuration

\[
\begin{pmatrix}
1 & 1 \\
1 & \ast
\end{pmatrix}
\]?

The answer

$n + k - 1$.
An example for an enumerative question

Question
How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

The answer is $C_n = \frac{1}{n+1} \binom{2n}{n}$, the n-th Catalan number.
An example for an enumerative question

Question
How many permutation matrices P are there of size $n \times n$ such that P does not contain a submatrix

$$
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
$$

The answer

$$
C_n = \frac{1}{n+1} \binom{2n}{n},
$$

the n^{th} Catalan number.
Further examples

Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1’s form a permutation matrix. Then the maximum number of 1’s in a matrix of size $n \times n$ without π is $\mathcal{O}(n)$.
Füredi-Hajnal conjecture

Let π be a forbidden configuration where the 1’s form a permutation matrix. Then the maximum number of 1’s in a matrix of size $n \times n$ without π is $O(n)$.

Stanley-Wilf conjecture

Let π be any permutation matrix. The number of permutation matrices of size $n \times n$ without the submatrix π is $2^{O(n)}$.
A connection

Klazar thereom

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.
A connection

Klazar theorem
Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem
The Füredi-Hajnal conjecture is true.
A connection

Klazar theorem

Füredi-Hajnal conjecture implies Stanley-Wilf conjecture.

Marcus - Tardos theorem

The Füredi-Hajnal conjecture is true. Hence the Stanley-Wilf conjecture is true too.
How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration $\begin{pmatrix} 1 & 1 \\ \ast & \end{pmatrix}$?

Observation

The answer should be B_{-k}^n, poly-Bernoulli numbers.
A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

\[
\begin{pmatrix}
1 & 1 \\
1 & *
\end{pmatrix}
\]?

Observation

The answer should be $B(-k)^n$, poly-Bernoulli numbers.
A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

\[
\begin{pmatrix}
1 & 1 \\
1 & *
\end{pmatrix}
\]?

Observation

The answer should be $B^{-k} n^{\text{poly-Bernoulli numbers}}$.

Szeged–Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers
A question

How many 0-1 matrices M are there of size $n \times k$ such that M does not contain the configuration

$$
\begin{pmatrix}
1 & 1 \\
1 & *
\end{pmatrix}
$$

Observation

The answer should be B_n^{-k}, poly-Bernoulli numbers.
What are the poly-Bernoulli numbers?

\[
\sum_{n=0}^{\infty} B^{(k)}_n x^n = \text{Li}_k(1 - e^{-x}),
\]
for all \(k \in \mathbb{Z}\),

where \(\text{Li}_k(x) = \sum_{i=1}^{\infty} x^i / i^k\).
What are the poly-Bernoulli numbers?

(Kaneko 1997)

\[
\sum_{n=0}^{\infty} B_n^{(k)} \frac{x^n}{n!} = \frac{\text{Li}_k(1 - e^{-x})}{1 - e^{-x}}, \quad \text{for all } k \in \mathbb{Z}
\]

where

\[
\text{Li}_k(x) = \sum_{i=1}^{\infty} \frac{x^i}{i^k}.
\]
Let us see the $B_n^{(k)}$ numbers!

k	n = 0	1	2	3	4	5	6	7	8
-5	1	16	146	1066	6902	41506	237686	1315666	-3
-4	1	8	46	230	1066	4718	20266	85310	-2
-3	1	4	14	46	146	454	1394	4246	-1
-2	1	2	8	16	32	64	128	256	0
-1	1	2	4	8	16	32	64	128	0
0	1	1	1	1	1	1	1	1	1
1	1	1	2	4	8	16	32	64	0
2	1	1	3	6	10	15	21	28	0
3	1	1	4	10	20	35	56	84	0
4	1	1	5	15	35	70	126	210	0
Let us see the $B_n^{(k)}$ numbers!

n	0	1	2	3	4	5	6	7
$k = -5$	1	32	454	4718	41506	329462	2441314	17234438
-4	1	16	146	1066	6902	41506	237686	1315666
-3	1	8	46	230	1066	4718	20266	85310
-2	1	4	14	46	146	454	1394	4246
-1	1	2	4	8	16	32	64	128
0	1	1	1	1	1	1	1	1
1	1	$\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0
2	1	$\frac{1}{4}$	$-\frac{1}{36}$	$-\frac{1}{24}$	$\frac{7}{450}$	$\frac{1}{40}$	$-\frac{38}{2205}$	$-\frac{5}{168}$
3	1	$\frac{1}{8}$	$-\frac{11}{216}$	$-\frac{1}{288}$	$\frac{1243}{54000}$	$-\frac{49}{7200}$	$-\frac{75613}{3704400}$	$\frac{599}{35280}$
4	1	$\frac{1}{16}$	$-\frac{49}{1296}$	$\frac{41}{3456}$	$\frac{26291}{3240000}$	$-\frac{1921}{144000}$	$\frac{845233}{155848000}$	$\frac{1048349}{59270400}$
What are the poly-Bernoulli numbers of negative upper index?

\[(\text{Arakawa-Kaneko 1999}) \quad k \in \mathbb{N}\]

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}.\]
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n(-k) = \sum_{m=0}^{\min \{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \).
The combinatorial interpretation of Arakawa-Kaneko's formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n+1\} \) and \(\hat{K} = K \cup \{k+1\} \).
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n+1\} \) and \(\hat{K} = K \cup \{k+1\} \).

Take \(\mathcal{P}_{\hat{N}} \) a partition of \(\hat{N} \) and \(\mathcal{P}_{\hat{K}} \) a partition of \(\hat{K} \) with the same number of classes as \(\mathcal{P}_{\hat{N}} \).
The combinatorial interpretation of Arakawa-Kaneko's formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n+1\} \) and \(\hat{K} = K \cup \{k+1\} \). Take \(\mathcal{P}_{\hat{N}} \) a partition of \(\hat{N} \) and \(\mathcal{P}_{\hat{K}} \) a partition of \(\hat{K} \) with the same number of classes as \(\mathcal{P}_{\hat{N}} \). Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let \(m \) denote the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \) (that is the same as the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \)).
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n^{(-k)} = \min\{n,k\} \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1,2,\ldots,n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n+1\} \) and \(\hat{K} = K \cup \{k+1\} \).

Take \(\mathcal{P}_{\hat{N}} \) a partition of \(\hat{N} \) and \(\mathcal{P}_{\hat{K}} \) a partition of \(\hat{K} \) with the same number of classes as \(\mathcal{P}_{\hat{N}} \). Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let \(m \) denote the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \) (that is the same as the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \)). Obviously \(m \in \{1,2,\ldots,\min\{n,k\}\} \). Order the ordinary classes arbitrary in both partitions.
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1}. \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n+1\} \) and \(\hat{K} = K \cup \{k+1\} \). Take \(\mathcal{P}_{\hat{N}} \) a partition of \(\hat{N} \) and \(\mathcal{P}_{\hat{K}} \) a partition of \(\hat{K} \) with the same number of classes as \(\mathcal{P}_{\hat{N}} \). Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let \(m \) denote the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \) (that is the same as the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \)). Obviously \(m \in \{1, 2, \ldots, \min\{n, k\}\} \). Order the ordinary classes arbitrary in both partitions. Let \(\mathcal{A}_n^{(k)} \) be the set of the possible outcomes.
The combinatorial interpretation of Arakawa-Kaneko’s formula

\[B_n^{(-k)} = \sum_{m=0}^{\min\{n,k\}} m! \binom{n+1}{m+1} m! \binom{k+1}{m+1} . \]

Let \(N \) be a set of \(n \) elements and \(K \) a set of \(k \) elements. One can think as \(N = \{1, 2, \ldots, n\} =: [n] \) and \(K = [k] \). Extend both sets with a special element: \(\hat{N} = N \cup \{n + 1\} \) and \(\hat{K} = K \cup \{k + 1\} \).

Take \(\mathcal{P}_{\hat{N}} \) a partition of \(\hat{N} \) and \(\mathcal{P}_{\hat{K}} \) a partition of \(\hat{K} \) with the same number of classes as \(\mathcal{P}_{\hat{N}} \). Both partitions have a special class: the class of the special element. We call the other classes as ordinary classes. Let \(m \) denote the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \) (that is the same as the number of ordinary classes in \(\mathcal{P}_{\hat{N}} \)). Obviously \(m \in \{1, 2, \ldots, \min\{n, k\}\} \). Order the ordinary classes arbitrary in both partitions. Let \(A_n^{(k)} \) be the set of the possible outcomes.
The easy combinatorial definition

\[B(k, n) = |A(k, n)| \]
The easy combinatorial definition

\[B_n^{(k)} := |A_n^{(k)}| \]
Equivalent combinatorial definitions

Brewbaker

Let $\mathcal{L}_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.
Equivalent combinatorial definitions

Brewbaker

Let $L_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $C_n^{(k)}$ be the set of permutations of $1, 2, 3, \ldots, n, 1, 2, 3, \ldots, k$, such that each monochromatic segment is increasing.
Equivalent combinatorial definitions

Brewbaker

Let $L_n^{(k)}$ be the set of 0-1 matrices that can be reconstructed from their row and column sums.

Callan

Let $C_n^{(k)}$ be the set of permutations of $1, 2, 3, \ldots, n, 1, 2, 3, \ldots, k$, such that each monochromatic segment is increasing.

Vesztergombi

Let $\mathcal{C}_n^{(k)}$ be the set of permutations of $[n + k]$ such that

$$-n \leq \pi(i) - i \leq k,$$

for each i.
With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ...

Let $\mathcal{O}(k)_n$ be the set of acyclic orientations of K_k, k.

Szeged–Novi Sad Workshop on Combinatorics

Combinatorics of poly-Bernoulli numbers
With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ...
“With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ...”
“With Celia Glass and Robert Schumacher, I recently found a combinatorial interpretation of the poly-Bernoulli numbers of negative order ...”

Let $\mathcal{O}_n^{(k)}$ be the set of acyclic orientations of $K_{n,k}$.
If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.
If a formula is simple and combinatorial, then there must be a simple and combinatorial explanation for that.

See

Stanley, Bijective proof problems,
http://www-math.mit.edu/~rstan/bij.pdf
Theorem

There is a bijection between the set of 0-1 matrices of size $n \times k$ without the configuration

$$
\begin{pmatrix}
1 & 1 \\
1 & *
\end{pmatrix}
$$

and

$A_n^{(k)}$.

The proof: The first steps

N is the set of rows, K is the set of columns.
The proof: The first steps

N is the set of rows, K is the set of columns.

We add an additional all-0 row and an additional all-0 column. \hat{N} is the set of rows, \hat{K} is the set of columns.

Two columns are equivalent iff their top 1's are in the same row. That gives us a partition of \hat{K}. The special class is the set of all-0 columns. By knowing this partition of columns we know a lot about our matrix, except elements at the last columns of the ordinary classes.
The proof: The first steps

\mathcal{N} is the set of rows, \mathcal{K} is the set of columns.

We add an additional all-0 row and an additional all-0 column. $\hat{\mathcal{N}}$ is the set of rows, $\hat{\mathcal{K}}$ is the set of columns.

Two columns are equivalent iff their top 1’s are in the same row. That gives us a partition of $\hat{\mathcal{K}}$. The special class is the set of all-0 columns.
The proof: The first steps

\(\mathcal{N} \) is the set of rows, \(\mathcal{K} \) is the set of columns.

We add an additional all-0 row and an additional all-0 column. \(\hat{\mathcal{N}} \) is the set of rows, \(\hat{\mathcal{K}} \) is the set of columns.

Two columns are equivalent iff their top 1’s are in the same row. That gives us a partition of \(\hat{\mathcal{K}} \). The special class is the set of all-0 columns.

By knowing this partition of columns we know a lot about our matrix, except elements at the last columns of the ordinary classes.
The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes.
The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an \((n + 1) \times m\) matrix.
The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an \((n + 1) \times m\) matrix.

In each not all-0 row we define an important 1:
- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.
The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an \((n + 1) \times m\) matrix.

In each not all-0 row we define an important 1:

- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1’s are in the same columns.
The proof: The second step

Take the submatrix formed by the last columns of ordinary column classes. It is an \((n + 1) \times m\) matrix.

In each not all-0 row we define an important 1:

- it is a top 1, if it contains a top 1,
- it is the first 1, if it does NOT contain a top 1.

Two not all-0 rows are equivalent iff their important 1’s are in the same columns.

There is a natural bijection between the classes of the two partitions.
Corollaries

\[B_n^{(-k)} = B_k^{(-n)}. \]
Corollaries

\[B_n^{(-k)} = B_k^{(-n)}. \]

\[B_n^{(-k)} = B_n^{(-(k-1))} + \sum_{i=1}^{n} \binom{n}{i} B_{n-(i-1)}^{(-(k-1))}. \]
Corollaries

\[B_n^{(-k)} = B_k^{(-n)}. \]

\[B_n^{(-k)} = B_n^{(-(k-1))} + \sum_{i=1}^{\frac{n}{2}} \binom{n}{i} B_{n-(i-1)}^{(-(k-1))}. \]

\[\sum_{i,j \in \mathbb{N} : i+j=N \text{ and } i \text{ even}} B_i^{(-j)} = \sum_{i,j \in \mathbb{N} : i+j=N \text{ and } i \text{ odd}} B_i^{(-j)}. \]
Thank you for your attention