I. INTRODUCTION

Some of the most intriguing features of string theory have been the existence of numerous dualities which connect physics in what would otherwise appear to be vastly dissimilar regimes. Such dualities include strong/weak coupling duality (S-duality) as well as large/small compactification radius duality (T-duality), and together these form the bedrock upon which much of our understanding of the full, non-perturbative moduli space of string theory is based.

There is, however, an additional duality which has received far less scrutiny: this is thermal duality, which relates string theory at temperature T with string theory at the inverse temperature $1/T$. Thermal duality follows naturally from T-duality and Lorentz invariance, and thus has roots which are as deep as the dualities that occur at zero temperature. Given the importance of dualities of all sorts in extending our understanding of the full, non-perturbative moduli space of string theory, we are led to ask what new insights can be gleaned from a study of thermal duality.

The observation that underpins our approach is a simple one: classical thermodynamics, as traditionally formulated, is not invariant under thermal duality. While certain thermodynamic quantities such as the free energy and the internal energy of an ideal closed string gas exhibit invariances (or covariances) under thermal duality transformations, other quantities such as entropy and specific heat do not.

It is, of course, entirely possible that thermal duality should be viewed only as an “accidental” symmetry of the string effective potential in cases where it arises; we thus would have no problem with the loss of this symmetry when calculating certain thermodynamic quantities. However, given the close association between thermal duality and the other dualities of string theory, it seems more natural to consider thermal duality as a fundamental property of a consistent string theory, and demand that this symmetry hold for all physically relevant thermodynamic quantities.

As we shall see, imposing this extra requirement launches a variety of new approaches towards thinking about traditional string thermodynamics. In each approach, however, our goal is the same: to reconcile the apparent conflict between thermal duality and the rules of standard thermodynamics.

II. THERMAL DUALITY CONFRONTS ENTROPY: THE PROBLEM

Let us begin by reviewing the source of the problem. Classical thermodynamics provides us with a number of physically relevant temperature-dependent observables: these include the free energy (or effective potential) F, the internal energy U, the entropy S, and the fixed-volume specific heat c_V, all of which descend from a single thermal partition function or vacuum amplitude $\mathcal{V} \equiv -\ln Z$ through relations of the form

$$F = TV, \quad U = -T^2 \frac{d}{dT} V,$$

$$S = -\frac{d}{dT} F, \quad c_V = \frac{d}{dT} U. \quad (1)$$

Our task is then to calculate $V(T)$. For example, in closed string theories, the one-loop contribution to V is given by a modular integral of the form $[1–4]$

$$\mathcal{V}(T) \equiv -\frac{1}{2} \mathcal{M}^{D-1} \int_{\tau} \frac{d^2 \tau}{(\text{Im} \tau)^2} \mathcal{Z}_{\text{string}}(\tau, T) \quad (2)$$

where $\mathcal{M} \equiv M_{\text{string}}/2\pi$ is the reduced string scale; D is the spacetime dimension; τ is the complex modular parameter describing the shape of the one-loop toroidal
worldsheet; $\mathcal{F} \equiv \{ \tau : |\text{Re}\, \tau| \leq \frac{1}{2}, \text{Im}\, \tau > 0, |\tau| \geq 1 \}$ is the fundamental domain of the modular group; and $Z_{\text{string}}(\tau, T)$ is the appropriate thermal string partition function.

However, one important feature that emerges in such string calculations is thermal duality (for early papers, see Refs. [3,5–8]). It is easy to understand how this symmetry arises. In string theory (just as in ordinary quantum field theory), finite-temperature effects can be incorporated [1] by compactifying an extra (Euclidean) time dimension on a circle (or orbifold [9]) of radius $R_T = (2\pi T)^{-1}$. The Matsubara modes are nothing but the Kaluza-Klein states corresponding to this compactification. However, Lorentz invariance guarantees that the properties of this extra time dimension should be the same as those of the original space dimensions, and T-duality tells us that closed string theory on a compactified space dimension of radius R is indistinguishable from that on a space of radius R_2^2/R where R_2 is a critical, self-dual radius [10–12]. Together, these two symmetries thus imply a thermal duality symmetry (or thermal self-duality symmetry) under which Z_{string} (and therefore \mathcal{V}) is invariant under the thermal duality transformation $T \rightarrow T_2^2/T$:

$$Z_{\text{string}}(\tau, T_2^2/T) = Z_{\text{string}}(\tau, T). \quad (3)$$

In other words, thermal Matsubara modes are accompanied in string theory by thermal winding modes; exchanges between the two sets of states results in a duality symmetry which transcends the behavior of point-particle quantum field theories. Note that this symmetry exists to all orders in perturbation theory [7].

Given the emergence of thermal duality for closed strings, the fundamental issue that shall concern us is the failure of the rules in Eq. (1) to respect this symmetry. It is, of course, immediately evident that \mathcal{V}, F, and U all continue to exhibit simple thermal duality transformation properties as a result of the thermal duality invariance of Z_{string}. More specifically, we shall refer to a general thermodynamic quantity $f(T)$ as transforming covariantly with weight k and sign $\gamma = \pm 1$ if $f(T_2^2/T) = \gamma(T_c/T)^k f(T)$ for all T. We thus find that \mathcal{V}, F, and U each transform covariantly with weights and signs $(k, \gamma) = (0, 1)$, $(2, 1)$, and $(2, -1)$ respectively. However, it is immediately apparent that S and c_V fail to transform covariantly (i.e., fail to close back into themselves) under thermal duality. Specifically, we find

$$S(T_2^2/T) = -S(T) - 2F(T)/T, \quad c_V(T_2^2/T) = c_V(T) - 2U(T)/T. \quad (4)$$

Strictly speaking, this failure to transform covariantly does not imply an inconsistency in either the rules of thermodynamics or the existence of thermal duality. Indeed, regardless of their form, the transformation rules in Eq. (4) provide a self-consistent mapping between quantities as measured by an observer using the temperature T and a dual observer using the temperature T_2^2/T.

Nevertheless, it is very unnatural to find a fundamental quantity such as entropy transforming non-covariantly under such a duality transformation. If thermal duality is indeed a fundamental symmetry of string theory, this suggests that entropy and specific heat are improperly defined from a string-theoretic standpoint. At best, they are not the proper “eigenquantities” which should correspond to physical observables. As an analogy, let us consider a system with gauge invariance. Like thermal duality symmetries, gauge symmetries are really redundancies in description: a system may be described in one gauge or another, just as a system may be described with certain thermal modes labelled as “momentum” modes and others labelled as “winding” modes, or vice versa. However, in the case of gauge invariance, we know that physical quantities should be gauge-invariant, transforming invariantly or covariantly under the gauge transformation. By analogy, it therefore seems strange to have fundamental thermodynamic quantities such as entropy which transform non-covariantly under duality transformations. We shall therefore further support for this point of view below.

In this paper, we shall therefore make the conjecture that the string-thermodynamic entropy should indeed be a covariant quantity, transforming covariantly under thermal duality transformations. Our goal will then be to determine how we might reconcile this with the apparent results in Eq. (4), and what this might tell us about the thermal properties of string theory.

III. APPROACH #1: A THERMAL DUALITY “BOOTSTRAP”

Our first approach towards addressing this issue is to investigate whether there might nevertheless exist special solutions for $\mathcal{V}(T)$ such that duality covariance will be preserved for all thermodynamic quantities, including S and c_V. If so, then we can use the requirement of thermal duality covariance for S and c_V in order to “bootstrap” our way to special closed-form solutions for $\mathcal{V}(T)$. We would thus be exploiting thermal duality in order to constrain the vacuum amplitude $\mathcal{V}(T)$ in a manner that transcends a direct order-by-order perturbative calculation.

It is straightforward to implement this bootstrap. The reason that S fails to be covariant, even when F is covariant, is that the temperature derivative breaks the duality covariance. In general, if f is a duality covariant function of weight k and sign γ, then

$$\left[\frac{df}{dT} \right] (T_c^2/T) = -\gamma \left(\frac{T_c}{T} \right)^{k-2} \left(\frac{df}{dT} - \frac{k f}{T} \right). \quad (5)$$
It is the final term on the right side of Eq. (5) which generally prevents \(df/dT \) from transforming as a covariant function when \(k \neq 0 \). However, there is one special case when this does not pose a problem: if
\[
\frac{df}{dT} - \frac{k f}{T} = -\delta \left(\frac{T_c}{T} \right)^\ell \frac{df}{dT},
\]
for some sign \(\delta = \pm 1 \) and exponent \(\ell \), then \(df/dT \) will be covariant, with weight \(k + \ell - 2 \) and sign \(\gamma \delta \). When can this happen? Solving Eq. (6), we find that \(f \) must have the general form \(f(T) \sim (T^c + \delta T_p^{2/\ell})^{k/\ell} \) where \(\delta^{2/\ell} = 1 \). We shall henceforth choose \(\delta = 1 \) since we do not expect \(f(T) \) to vanish at \(T = T_c \). This implies that our remaining thermodynamic quantities must take the closed forms
\[
\begin{align*}
\mathcal{V}(T) &\sim - (T^c + T_p^{2/\ell})^{2/\ell}/TT_c \\
U(T) &\sim (T^c + T_p^{2/\ell})^{2/\ell-1}(T^c - T_p^{2/\ell})/T_c \\
S(T) &\sim 2 T^{\ell-1}(T^c + T_p^{2/\ell})^{2/\ell-1}/T_c \\
c_V(T) &\sim 2 T^{\ell-1}(T^c + T_p^{2/\ell})^{2/\ell-2} \times [T^c + (\ell - 1)T_p^{2/\ell}]/T_c.
\end{align*}
\]
As expected, all of these quantities are duality covariant except for \(c_V \). However, it is easy to verify that \(c_V \) is covariant if \(\ell = 1 \) or \(\ell = 2 \). Thus, from amongst all possible duality covariant functions \(\mathcal{V}(T) \), we have found that only the special closed-form solution listed above enables all subsequent thermodynamic quantities to be duality covariant as well.

Of course, the real issue is to determine whether these functional forms actually correspond to the results of explicit one-loop modular integrations of the sort that can emerge from actual finite-temperature duality covariant string ground states.

Let us first concentrate on the \(T \to 0 \) and \(T \to \infty \) limits. In these limits, it is well known [6,8,4] that we must have \(F(T) \to \Lambda \) and \(F(T) \to \Lambda T^{2D}/T_c^2 \) respectively, where \(\Lambda \) is the corresponding (zero-temperature) one-loop cosmological constant. It is immediately apparent that our closed-form solutions in Eq. (7) have these properties for all \(\ell \), which in turn enables us to identify \(\Lambda \) as the unknown normalization constant in Eqs. (7) and (8).

Another test is to determine whether our closed-form solutions have the correct field-theoretic limit. Let us first recall that in \(D \) spacetime dimensions, quantum field theory predicts \(F(T) \sim T^D \) as \(T \to \infty \). This differs markedly from the expected string-theoretic asymptotic behavior \(F(T) \sim T^2 \) as \(T \to \infty \); this reduced exponent indicates that string theory has a significantly reduced number of degrees of freedom at high temperatures compared with field theory [6]. However, since the high-temperature limit of field theory corresponds to the low-temperature \(T \ll T_c \) limit of string theory, we expect that we should observe \(T^D \) scaling for \(T \ll T_c \).

Our closed-form solutions have this property as well. Keeping the first subleading term in Eq. (7), we find \(F(T) \sim \Lambda + \frac{\mathcal{Z}}{T/T_c} \) for \(T \ll T_c \). This enables us to identify \(\ell = D \), which completely fixes all of the free parameters in our functional forms. Specifically, we find
\[
F(T) = \Lambda \left[1 + \left(\frac{T}{T_c} \right)^D \right]^{2/D},
\]
with the remaining thermodynamic quantities following from Eq. (1).

Having thus verified the low- and high-temperature scaling behaviors of our solutions, we now seek to determine whether these solutions correctly match the expected temperature dependence for all temperatures. Of course, to do this we must select a particular string model.

In general, for thermal duality invariant ground states, \(Z_{\text{string}}(\tau, T) \) in Eq. (2) takes the form
\[
Z_{\text{string}}(\tau, T) = Z_{\text{model}}(\tau) Z_{\text{circ}}(\tau, T).
\]
The first factor \(Z_{\text{model}} \) is temperature-independent and model-specific, while \(Z_{\text{circ}} \) reflects the sum over Matsubara momentum and winding states and takes the form
\[
Z_{\text{circ}}(\tau, T) = \sqrt{\text{Im} \tau} \sum_{m,n \in \mathbb{Z}} \delta^{\text{Re} \tau/a} \text{e}^{\text{Re} \tau b/2} p_L p_R^{D/2}
\]
where \(q \equiv \exp(2\pi i \tau) \) and \(p_{L,R} \equiv (ma \pm n/a)/\sqrt{Z} \) with \(a \equiv T/T_c \). This is, of course, nothing but the standard circle partition function, with the thermal duality symmetry taking the form \((a \leftrightarrow 1/a, m \leftrightarrow n) \). Although not every \(Z_{\text{string}} \) factors as in Eq. (10), this form is the most general form preserving thermal duality invariance; other forms will be discussed below.

For simplicity, let us begin in \(D = 2 \) and focus exclusively on the temperature dependence by taking \(Z_{\text{model}} = 1 \). The associated cosmological constant for this “model” is thus \(\Lambda \equiv -\frac{1}{M^2} \int [d^2 \tau/(\text{Im} \tau)^2] Z_{\text{model}} = -\pi M^2/6 \). Remarkably, substituting Eq. (11) into Eq. (2) and integrating, we find exact agreement with \(\mathcal{V}(\tau=2)(T) \) for all values of \(T \). Thus, our closed-form \(\ell = 2 \) solution exactly reproduces the complete temperature dependence corresponding to this \(D = 2 \) circle compactification! Indeed, the mathematical equivalence of these two expressions
has been known in other contexts for some time (see, e.g., Refs. [13–15]).

Mathematically, this is a rather surprising result: the temperature dependence in Eq. (11), which appears through \(a \equiv T/T_c \) and takes the form of a sum of \(\tau \)-dependent exponentials, is then integrated over the fundamental domain of the modular group. Nevertheless, the net result of this integration is to produce the simple, closed-form result encapsulated within \(V^{(\ell=2)}(T) \). Indeed, we now see that this is the unique functional form which ensures that all thermodynamic quantities are thermal duality covariant.

This agreement is remarkable for another reason as well. Given its formulation, our “bootstrap” derivation makes use of a powerful, all-orders non-perturbative duality symmetry. By contrast, our “bottom-up” string calculation represents only a one-loop result. The exact agreement between the two would therefore tend to suggest that the one-loop result for this \(D = 2 \) example is “exact”, receiving no further contributions at higher loops.

Let us now consider the case in higher dimensions \(D > 2 \). As might be expected, things are more complicated. In general, for \(D \neq 2 \), the analogue of taking the model-independent simplification \(Z_{\text{model}} = 1 \) is to take \(Z_{\text{model}} = (1 \text{m } \tau)^{1-D/2} \), since this overall prefactor is model-independent and required by modular invariance in higher dimensions. Inclusion of this \(D \)-dependent prefactor has the net effect of reweighting the contributions from each term in the \(Z_{\text{circ}} \) power series because they are now being integrating over the modular-group fundamental domain with an altered measure.

Despite these changes, we find that our solutions \(V^{(\ell)}(T) \) with \(\ell = D > 2 \) again successfully capture the dominant temperature dependence of the resulting integrals. Unlike the case with \(D = \ell = 2 \), this agreement is only approximate rather than exact. Nevertheless, we find that this agreement holds to within one or two percent over the entire temperature range \(0 \leq T \leq \infty \).

Once again, this is a rather striking result, indicating that our functional forms continue to capture the dominant temperature dependence, even in higher dimensions. Of course, for \(D > 2 \), our closed-form solutions and the above one-loop results do not agree exactly. However, given the precision with which the one-loop results appear to match these functional forms, it is natural to attribute the failure to obtain an exact agreement for \(D > 2 \) to the fact that our modular integrals are only one-loop expressions. We thus are led to conjecture that our functional forms \(V^{(\ell)}(T) \) indeed represent the exact solutions for the finite-temperature vacuum amplitudes, even in higher dimensions, and that these solutions emerge only when the contributions from all orders in perturbation theory (and perhaps even non-perturbative effects) are included. Viewed from this perspective, it is perhaps all the more remarkable that we found an exact agreement for \(D = 2 \), suggesting that the one-loop result is already exact in this special case.

Of course, these partition functions only represent simple circle compactifications, and do not correspond to actual string models. Nevertheless, the net effect of inserting non-trivial partition functions \(Z_{\text{model}}(\tau) \) into these integrals is merely to change the subleading temperature dependence in a model-dependent way. Thus, we conclude that the leading temperature dependence continues to be captured by our universal solutions \(V^{(\ell)}(T) \) to high precision. Moreover, if our conjecture is correct, then we expect these subleading model-dependent contributions to be washed out as higher-order contributions are included in the perturbation sum. These issues will be discussed in more detail in Ref. [16].

Of course, this conjecture would require not only a special temperature dependence at each order in perturbation theory, but also a specific value of the string coupling which sets the relative sizes of the perturbative contributions. However, since thermal duality transformations necessarily involve shifts of the string coupling beyond one-loop order, the two issues are closely related and it is possible that the string coupling is also fixed in such scenarios, perhaps by other, non-perturbative effects.

It may seem remarkable that we can exploit thermal duality in order to obtain explicit closed-form solutions for our thermodynamic quantities. However, this is somewhat analogous to situations involving conformal invariance, where conformal symmetry can be used to completely fix the form of certain string scattering amplitudes.

These results also provide some justification for our original motivation concerning the duality transformation properties of the entropy. Even though the entropy generically transforms in a non-covariant manner, and even though this does not give rise to a mathematical inconsistency, we now see that string theory manages to find ground states which nevertheless come very close to having entropies which transform covariantly. As far as we are aware, there is no other mathematical or conceptual reason why this should be the case.

Along these lines, we emphasize that the solutions \(V^{(\ell)}(T) \) we have found must be interpreted correctly and with the proper caveats. As is well known, string theories exhibit exponentially growing densities of states which are thought to give rise to a so-called Hagedorn transition at a temperature near \(T_c \). Beyond this temperature, the string degrees of freedom are believed to change in a profound way, thereby eliminating the relevance of the partition functions \(Z_{\text{string}}(T) \) as descriptions of the physics for temperatures beyond the Hagedorn temperature. We shall discuss the relation between these results and the Hagedorn phenomenon below. However, our goal in this paper has not been to explore the post-Hagedorn phase of string theory, but rather to explore the consequences of thermal duality in the pre-Hagedorn
phase. Indeed, despite the possible existence of a potential Hagedorn transition, the pre-Hagedorn partition functions $Z_{\text{string}}(T)$ satisfy the thermal duality relation in Eq. (3), which we can view as an algebraic constraint on the functional form $Z_{\text{string}}(T)$ as a function of an arbitrary variable T. Even though we expect $Z_{\text{string}}(T)$ to describe physics only in the pre-Hagedorn phase of the theory, we can exploit this thermal duality relation in order to obtain closed-form expressions for our thermodynamic quantities as functions of T, as we have done. However, the resulting expressions, like Z_{string} itself, should be interpreted as physically relevant only in the pre-Hagedorn phase of the theory.

These closed-form solutions also have another intriguing property. We have already remarked that the effective scaling behavior of our solutions changes from T^D at low temperatures to T^2 at high temperatures. Given this, it is interesting to examine the effective dimensionality (i.e., the effective scaling exponent) of our solutions as a function of temperature. In general, it is easiest to define this effective dimensionality $D_{\text{eff}}(T)$ by considering the entropy: setting $S(T) \sim T^{D_{\text{eff}}-1}$, we obtain

$$D_{\text{eff}} = 1 + \frac{d \ln S}{d \ln T} = 1 + \frac{T \frac{d S}{d T}}{S} = 1 + \frac{c_V}{S}, \quad (12)$$

where the last equality follows from the thermodynamic identity $c_V = T dS/dT$. Substituting our explicit solutions into Eq. (12), we find the closed-form result $D_{\text{eff}}(T) = (2T^D + DT_c^D)/(T^D + T_c^D)$. Of course, as a consequence of thermal duality and the Hagedorn transition, the true “high-temperature” limit of string theory occurs not as $T \to \infty$, but as $T \to T_c$. In this limit, we find $D_{\text{eff}} \to \frac{1}{2}(2 + D)$. Thus, for $D = 4$, we find that our solutions behave exactly “holographically” within the range $0 \leq T \leq T_c$, with the effective scaling dimensionality falling from $D_{\text{eff}} = 4$ to $D_{\text{eff}} = 3!$ A plot of D_{eff} as a function of temperature is given in Fig. 1.

Of course, this is not true holography since our setup (based on a flat-space computation) is incapable of yielding the additional information concerning the geometry associated with the surviving degrees of freedom that this claim would require. Indeed, such a calculation would need to be performed in a non-trivial background geometry in which both “bulk” and “boundary” are clearly identifiable. Nevertheless, we believe that this approach towards understanding the relation between thermal duality and holography is worthy of further investigation.

IV. APPROACH #2: A DUALITY COVARIANT THERMODYNAMICS

Despite the apparent successes of the bootstrap approach, this method is less than satisfactory. First, c_V is not covariant unless $D \leq 2$. But more importantly, because this approach towards restoring thermal duality applies only for certain ground states, it lacks the generality that should apply to a fundamental symmetry. If thermal duality is to be considered an intrinsic property of finite-temperature string theory (akin to T-duality), then the formulation of the theory itself — including its rules of calculation — should respect this symmetry regardless of the specific ground state. This should be the case even if the particular string ground state is one in which the thermal duality symmetry is spontaneously broken, such as fermionic string theories (e.g., Type II or heterotic) where additional non-trivial phases are required in Z_{string} [17,5,18,6,19], thereby preventing Z_{string} from factorizing as in Eq. (10). After all, it is certainly acceptable if the entropy or specific heat fail to exhibit thermal duality because the ground state fails to yield a duality-symmetric vacuum amplitude $\mathcal{V}(T)$. However, it is not acceptable if this failure arises because the *definitions* of the entropy or specific heat in terms of $\mathcal{V}(T)$ are themselves not duality covariant.

For this reason, we are motivated to develop a new, alternative, fully covariant string thermodynamics in which thermal duality is manifest. Recall that the difficulty with the traditional rules of thermodynamics in Eq. (1) is the temperature derivative: as indicated in Eq. (5), the ordinary derivative d/dT is not covariant with respect to thermal duality transformations.

Taking a clue from gauge theory, let us therefore construct a *duality covariant temperature derivative*. In general, let us define $D_T \equiv d/dT + g(T)/T$ where $g(T)$ is an unknown function. Given the results in Eq. (5), we im-
mediated see that if \(f \) is a duality covariant function with weight \(k \) and sign \(\gamma \), then \(D_T f \) will be a duality covariant function with weight \(k - 2 \) and sign \(-\gamma \) if and only if \(g(T) + g(T^2/T) = -k \).

While many solutions for \(g(T) \) may exist, let us take thermal duality as our guide and demand that \(g(T) \) is itself a duality covariant function with weight \(\alpha \) and sign +1. We then find the unique solution \(g(T) = -k/[1 + (T_c/T)^\alpha] \), leading to the covariant derivative

\[
D_T = \frac{d}{dT} - \frac{k}{T} \frac{T^\alpha}{T^\alpha + T_c^\alpha}.
\]

The analogy with gauge invariance is clear: here the duality weight \(k \) functions as the duality “charge” of the function being differentiated, while the remaining factors are analogous to the connection. Together, the second term in Eq. (13) functions as a “stringy” correction term. Although \(\alpha \) is a free parameter, we shall restrict \(\alpha > 1 \) in order to guarantee that this extra string contribution vanishes in the low temperature \(T \ll T_c \) limit.

Given this covariant derivative, we can now construct a manifestly covariant thermodynamics: our procedure is simply to replace all temperature derivatives in Eq. (1) with the duality-covariant derivative in Eq. (13). We thus obtain a manifestly covariant thermodynamics:

\[
\tilde{F} = T^\gamma \tilde{V}, \quad \tilde{U} = -T^2 D_T \tilde{V}, \\
\tilde{S} = -D_T \tilde{F}, \quad \tilde{c}_V = D_T \tilde{U}.
\]

The tildes emphasize that the new quantities we are defining need not, a priori, be the same as their traditional counterparts. However, it is straightforward to verify that \(\tilde{F} = F \) and \(\tilde{U} = U \) for all temperatures, as expected. The only modifications are in the definitions of entropy and specific heat, which now obtain string-suppressed corrections to their definitions:

\[
\tilde{S} = S + 2 \frac{T^{\alpha-1} F}{T^\alpha + T_c^\alpha}, \quad \tilde{c}_V = c_V - 2 \frac{T^{\alpha-1} U}{T^\alpha + T_c^\alpha}.
\]

Although these correction terms are suppressed for \(T \ll T_c \), they guarantee that \(\tilde{S} \) and \(\tilde{c}_V \) are thermal duality covariant, as required. Or, to phrase this result slightly differently, these corrections ensure that the resulting thermodynamics is one in which all quantities transform covariantly under the thermal duality map. It is indeed remarkable that thermal duality covariance can be explicitly restored to the standard rules of thermodynamics through the addition of correction terms which are all suppressed by powers of the string scale.

At a practical level, these extra terms pose no problems. Since our string correction terms are all suppressed for low temperatures, there is no experimental conflict with any branch of thermal physics, or with the standard theorems of thermodynamics, such as the second or third laws. Moreover, it is straightforward to show that no obvious problematic issues of interpretation arise at any temperature. For example, the string-corrected specific heat \(\tilde{c}_V \) always remains positive, and thus these corrections do not introduce thermal instabilities.

However, these modifications raise a number of important theoretical issues. For example, by redefining entropy, we are clearly modifying the manner by which one counts the number of statistical-mechanical degrees of freedom, especially at high temperatures near the string scale. Can this be interpreted as indicative of some sort of breakdown of the usual axioms of thermodynamics and statistical mechanics near the string scale? After all, if new quantum-gravitational or string-induced effects ultimately distort the manner in which the system explores its energetically allowed states, the string-corrected entropy may be precisely what accounts for this phenomenon, providing a recipe for computing an “effective” number of degrees of freedom after all gravitational or string-induced effects are included. These and other aspects of our string-corrected thermodynamics will be discussed more fully in Ref. [20].

It is, clearly, a big step to propose a modification to the laws of thermodynamics, even if these corrections are essentially unobservable at temperatures small compared to the string scale. However, it may be argued that these corrections are, in some sense, forced upon us in string theory. In the case of geometric string compactifications, we know that there are target-space dualities [such as \(SL(2, \mathbb{Z}) \) dualities] which govern the resulting compactification physics, leading to physical quantities (such as compactification superpotentials) which are \(SL(2, \mathbb{Z}) \) covariant. Within such frameworks, it is well understood that one must utilize \(SL(2, \mathbb{Z}) \)-covariant derivatives when differentiating with respect to compactification parameters. If the correspondence between geometric compactification and finite-temperature effects is to have any validity in string theory, then a similar thing must occur on the thermal side: thermal quantities should be covariant with respect to thermal duality transformations, and duality-covariant thermal derivatives should be employed when taking temperature derivatives. In this context, we note that this geometry/thermal correspondence is more than a mathematical accident in string theory, for both sets of symmetries ultimately have the same worldsheet origins. For example, even if we had wished to formulate a finite-temperature version of string theory without the introduction of thermal winding modes, such a thing would not have been possible; the resulting theory would necessarily break modular invariance, and consequently violate conformal invariance at the one-loop level. Thus the emergence of a thermal duality symmetry, and the resulting need for a covariant string thermodynamics, is essentially unavoidable.
V. BEYOND SELF-DUALITY: SPACETIME FERMIONS AND THE SPONTANEOUS BREAKING OF THERMAL DUALITY

Thus far, we have been focusing on situations which are in some sense “self-dual”: a single finite-temperature (bosonic) theory gives rise to vacuum amplitudes which are invariant under the algebraic replacement $T \rightarrow T^2 / T$. However, the ideas developed in the previous sections can also be directly applied to more realistic (fermionic) string theories in which the thermal duality is spontaneously broken. It is important to consider these fermionic cases because these are the only known strings which are stable and tachyon-free. In this section, we shall briefly sketch how the techniques in previous sections can be extended to such cases. More details can be found in Ref. [21].

Thus far, we have been assuming that all of our spacetime states are spacetime bosons, accruing integer-moded Matsubara excitations as in Eq. (11). However, as is well known, fermionic states must be moded with half-integer Matsubara frequencies. In string theory, this can be accomplished by performing a \mathbb{Z}_2 “twist” on the thermal Euclidean time/temperature circle. In general, this destroys the simple factorized form of the thermal partition function as in Eq. (10), and spontaneously breaks the thermal (self)-duality. We then find that the resulting thermal string model interpolates between two different string models: a given string model M_1 at temperature $T = 0$ smoothly deforms to a different string model M_2 at $T = \infty$. Indeed, for such a string theory, we find that

$$ F(T) \sim \begin{cases} \Lambda_1 & \text{as } T \rightarrow 0 \\ \Lambda_2 T^2 / T^2_c & \text{as } T \rightarrow \infty \end{cases} $$

(16)

where $\Lambda_{1,2}$ are the one-loop cosmological constants of the two different string models involved in the interpolation.

It is important to interpret this interpolation correctly. Of course, one interpretation is that model M_1 at temperature T is dual to a different model M_2 at temperature T_c / T; in this sense, such models are not “self-dual”, but dual to each other. However, we can also continue to view the entire interpolation as a description of the thermal behavior of the original model M_1 a function of T, as in Eq. (16). It is in this sense that we state that thermal duality is broken for Model M_1.

At first glance, the emergence of these non-trivial interpolations would appear to invalidate the analysis of the previous sections. However, somewhat surprisingly, we find that the techniques developed in the previous sections still continue to apply with only slight modifications. For example, it is straightforward to verify in such cases that the free energies $F(T)$ continue to transform as duality-covariant functions of weight $k = 2$, but with respect to a new, shifted critical temperature $T_* \equiv \sqrt{\Lambda_1 / \Lambda_2} T_c$. Of course, while this is entirely consistent with the asymptotic behaviors in Eq. (16), it was hardly required that such a shifted duality symmetry hold for all temperatures.

We can even go one step further. Because the thermal duality is spontaneously broken in such scenarios, we do not expect the traditional entropy to be transform covariantly at all, and direct calculations in such theories verify this expectation. However, using our string-corrected thermodynamics in Eqs. (14) and (15), we find that in many cases the string-corrected entropies S are actually invariant under the same shifted thermal duality with the same shifted temperature T_*. Given that the string corrections in Eq. (15) involve only the critical temperature T_c in their definitions, this is very surprising: somehow the string corrections in Eq. (15), which are insensitive to the model-dependent parameter T_c, manage to combine with the original uncorrected entropies in order to render the full string-corrected entropy invariant with respect to the shifted thermal duality symmetry!

Clearly, this cannot occur unless the free energies $F(T)$ in such cases have a very special algebraic form. It is therefore possible to combine these results in order to develop a new bootstrap solution for $F(T)$ in such situations, obtaining a closed-form expression of the form

$$ F(T) = \Lambda_1 \left[1 + \left(\frac{T}{T_c} \right)^D \right]^{1/D} \left[1 + \left(\frac{\Lambda_2}{\Lambda_1} \right)^D \left(\frac{T}{T_c} \right)^D \right]^{1/D} $$

(17)

As expected, this solution satisfies Eq. (16), and also transforms with weight $k = 2$ under $T \rightarrow T^2 / T$ where T_* is defined as above. This also reduces back to Eq. (9) in the self-dual case as $\Lambda_2 \rightarrow \Lambda_1 \equiv \Lambda$. We stress, however, that this is only one of several possible bootstrap formulations and solutions that can arise for such situations in which thermal duality is spontaneously broken; a more complete discussion can be found in Ref. [21].

Finally, we briefly situations in which the zero-temperature model M_1 not only contains fermions, but is actually supersymmetric. In such cases, $\Lambda_1 = 0$, and the above bootstrap results do not apply. However, even in such cases, it is possible to use our string-corrected thermodynamics in order to uncover the hidden thermal duality symmetries obeyed by $S(T)$, and to use these new symmetries in order to develop an appropriate bootstrap, in complete analogy to what was done above. Results along these lines will be presented in Ref. [21]. However, an important feature in such cases is the fact that we no longer have $F(T) \rightarrow \text{constant as } T \rightarrow 0$. Instead, since $\Lambda_1 = 0$, only the subleading behavior $F(T) \sim \lambda_1 T^D / T^D_c$ as $T \rightarrow 0$ survives, where λ_1 is a subleading coefficient. Since such models continue to exhibit the scaling behavior $F(T) \sim \lambda_2 T^2 / T^2_c$ as $T \rightarrow \infty$, this implies that $F(T)$ in such cases can no longer transform with weight $k = 2$ under any temperature inversion symmetry; instead, we find that we must have $k = 2 + D$ and
(T_s/T_c)^{D-2} \equiv \Lambda_2/\lambda_1$. Thus, we see that in such cases, even the duality weights of our thermodynamic quantities can be altered by spontaneous breaking of the thermal duality symmetry. Nevertheless, our previous techniques will continue to apply.

VI. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we set out to address a very simple issue: even though thermal duality is an apparent fundamental property of string theory, emerging as a consequence of Lorentz invariance and T-duality, the rules of classical thermodynamics do not appear to respect this symmetry. In particular, they result in physically relevant thermodynamic quantities such as entropy which fail to be duality covariant.

Demanding that string theory not give rise to a duality non-covariant entropy, we developed a “bootstrap” approach towards obtaining the temperature dependence of the effective potential for certain finite-temperature ground states. Remarkably, this yielded exact closed-form results as well as others which we conjectured to be exact when contributions from all orders in perturbation theory (and even non-perturbative effects) are included.

The existence of these closed-form solutions does not, however, address the fundamental problem that the rules of thermodynamics are themselves non-covariant. We therefore proceeded to develop an alternative, manifestly covariant thermodynamics which reduces to the traditional thermodynamics at low temperatures, but which contains significant modifications at higher temperatures near the string scale.

At a phenomenological level, these speculations prompt many questions. For example, it is important to further explore how our closed-form results can be extended to theories in which thermal duality is spontaneously broken (such as Type II and heterotic finite-temperature string ground states), as well as to open strings and branes. The results of such studies could have important implications for recent brane-world scenarios, and are currently underway [21]. Likewise, it is interesting to consider the possible applications of our results to early-universe cosmology, particularly regarding the issues of phase transitions and entropy generation.

However, perhaps even more interesting are various theoretical questions that this approach raises. Can the string-corrected entropy continue to be interpreted as corresponding to disorder, or to heat transfer? Can we develop an equivalent microcanonical formulation of the modified thermodynamics we have developed here? Indeed, is it even legitimate to tamper with the laws of thermodynamics near the string scale? These issues will be discussed more fully in Ref. [20].

Needless to say, there are many important aspects of string thermodynamics which we have not touched upon. These include the nature of the Hagedorn phase transition as well as the Jeans instability and general issues concerning the interplay between gravity and thermodynamics. It will be interesting to explore the extent to which thermal duality can shed light on these issues.

There are two issues, in particular, which are directly relevant to the viability of our proposals. First, although we have focused on flat-space solutions of string theory, it is known that strings in AdS backgrounds can be reformulated as gauge field theories [22]. This implies that in such backgrounds, string theories cannot give rise to the asymptotic behavior $F(T) \sim T^2$ that they exhibit in flat space, which would seem to invalidate the existence of thermal duality as a fundamental symmetry of string theory. However, we have already noticed above that in certain situations, spontaneous breakings of thermal duality can give rise to altered asymptotic scaling behaviors, essentially deforming the duality weights of our thermodynamic quantities. Thus, it is entirely possible that even in such AdS cases, the absence of thermal duality should more correctly be viewed as a spontaneous breaking of thermal duality induced by the altered background geometry. To the extent that such a reformulation is possible, we expect that some form of our string-corrected thermodynamics should continue to be relevant. However, the legitimacy of our approach clearly demands that it be possible to formulate strings in such backgrounds as having spontaneously broken thermal dualities. These issues, which clearly include relations to black-hole thermodynamics and D-brane counting, require further study.

Another important phenomenon in string thermodynamics is the Hagedorn transition. At first glance, it may seem that our results (in particular, our closed-form solutions in Sect. III) are inconsistent with the existence of a Hagedorn transition since they provide smooth functions at all temperatures, even as we approach the relevant Hagedorn temperatures from below (where we trust our solutions to provide meaningful descriptions of the relevant physics). However, as has become increasingly clear in the recent string literature, and as will be more fully discussed in Ref. [23], the usual Hagedorn transition is actually absent for wide classes of string theories. This occurs because modular invariance provides an ultraviolet regulator which softens and often eliminates the point-particle divergence that would have arisen from an exponential rise in the degeneracy of string states. Equivalently stated, the thermal ground-state winding mode which is normally assumed to become tachyonic at the Hagedorn temperature [6] is often GSO-projected out of the one-loop string partition function, and does not give rise to divergences in the one-loop thermodynamic quantities. Thus, our results here are not in conflict with our normal expectations as far as the Hagedorn transition is concerned. This issue will be discussed more fully in Ref. [23].

Throughout much of the past decade, progress in
string theory has occurred through the study of non-perturbative dualities. Rather than dismiss these dualities as accidents of particular string compactifications, we now regard such dualities as means by which to gain insight into the truly “stringy” behavior of physics at the most fundamental length scales. In this paper, our goal has been to exploit thermal duality in much the same way, to learn to something “stringy” about the possible nature of temperature, state counting, and thermodynamics near the string scale. After all, if thermal effects can truly be associated with spacetime compactification through the Matsubara/Kaluza-Klein correspondence, then our expectations of an unusual “quantum geometry” near the string scale — one which does not distinguish between “large” and “small” — should simultaneously lead to expectations of an equally unusual thermodynamics near the string scale which does not distinguish between “hot” and “cold” in the traditional sense. Thermal duality should then serve as a tool towards deducing the nature of these new effects.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under Grants PHY-0071054 and PHY-0301998, and by a Research Innovation Award from Research Corporation. We wish to thank S. Chaudhuri, E. Dudas, C. Kounnas, D. Marolf, I. Mocioiu, R. Myers, R. Roiban, S. Sethi, C. Stafford, H. Tye, and U. van Kolck for discussions.

[1] J. Polchinski, Commun. Math. Phys. 104 (1986) 37.
[2] B. McClain and B. D. B. Roth, Commun. Math. Phys. 111 (1987) 539.
[3] K. H. O’Brien and C. I. Tan, Phys. Rev. D 36 (1987) 1184.
[4] For an introduction, see J. Polchinski, String Theory, Vol. I (Cambridge University Press, 1998), Chap. 9.
[5] E. Alvarez and M. A. R. Osorio, Nucl. Phys. B 304 (1988) 327 [Erratum-ibid. B 309 (1988) 220].
[6] J. J. Atick and E. Witten, Nucl. Phys. B 310 (1988) 291.
[7] E. Alvarez and M. A. R. Osorio, Phys. Rev. D 40 (1989) 1150.
[8] M. A. R. Osorio, Int. J. Mod. Phys. A 7 (1992) 4275.
[9] S. Chaudhuri, Phys. Rev. D 65 (2002) 066008 [arXiv:hep-th/0105110].
[10] N. Sakai and I. Senda, Prog. Theor. Phys. 75 (1986) 692 [Erratum-ibid. 77 (1987) 773].
[11] V. P. Nair, A. D. Shapere, A. Strominger and F. Wilczek, Nucl. Phys. B 287 (1987) 402.
[12] B. Sathiapalan, Phys. Rev. Lett. 58 (1987) 1597.
[13] M. Bershadsky and I. R. Klebanov, Phys. Rev. Lett. 65 (1990) 3088.
[14] N. Sakai and Y. Tanii, Int. J. Mod. Phys. A 6 (1991) 2743.
[15] D. J. Gross and I. R. Klebanov, Nucl. Phys. B 344 (1990) 475.
[16] K. R. Dienes and M. Lennek, Adventures in Thermal Duality (I): Extracting Closed-Form Solutions for Finite-Temperature Effective Potentials in String Theory, hep-th/0312216 (Phys. Rev. D, in press).
[17] R. Rohm, Nucl. Phys. B 237 (1984) 553.
[18] M. McGuigan, Phys. Rev. D 38 (1988) 552.
[19] C. Kounnas and B. Rostand, Nucl. Phys. B 341 (1990) 641.
[20] K. R. Dienes and M. Lennek, Adventures in Thermal Duality (II): Towards a Duality-Covariant String Thermodynamics, hep-th/0312217 (Phys. Rev. D, in press).
[21] K. R. Dienes and M. Lennek, Adventures in Thermal Duality (III): Beyond Spontaneous Breaking: The Re-Emergence of Thermal Duality in Fermionic String Theories, to appear.
[22] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [arXiv:hep-th/9711200].
[23] K. R. Dienes and M. Lennek, Re-Identifying the Hagedorn Transition, to appear.