Desempenho no treinamento auditivo computadorizado

Performance in computerized auditory training

Computer-based auditory training: different type of performance analysis

Ândrea de Melo Boaz1, Eliara Pinto Vieira Biaggio1

RESUMO

Objetivo: Analisar e correlacionar o desempenho auditivo na etapa de avaliação existente no software escolhido e respostas eletrofisiológicas pré e pós-treinamento auditivo computadorizado. Métodos: Trata-se de um estudo longitudinal, comparativo, clínico e experimental, realizado após aprovação do comitê de ética. A amostra foi composta por sete crianças, com idade entre 7 anos e 8 anos e 11 meses, de ambos os gêneros, diagnosticadas com transtorno do processamento auditivo. A intervenção terapêutica foi baseada no treinamento com o software Escuta Ativa® e composta por 12 sessões, realizadas duas vezes por semana, com duração aproximada de 30 minutos cada. Analisou-se a pontuação nas etapas de avaliação existente no software escolhido e os achados da medida eletrofisiológica potencial evocado auditivo de longa latência, especificamente o componente P3, pré e pós-treinamento, por meio de estudo estatístico adequado. Resultados: Dentre as três etapas de avaliação pelo software, não houve resultado estatisticamente significativo pós-treinamento. Quanto ao componente P3, 3 das 4 crianças com ausência do componente passaram a tê-lo, pós-intervenção terapêutica. Na busca de correlação entre resultados comportamentais e eletrofisiológicos, não houve significância estatística, em ambos os momentos de avaliação. Conclusão: Não foi possível verificar diferença significativa entre os períodos pré e pós-treinamento, usando a etapa de avaliação do próprio software, mostrando necessidade de mais estudos de investigação para verificar a utilização desta ferramenta de avaliação em ambiente clínico. Percebeu-se efeito da plasticidade pós-treinamento, com o surgimento do componente P3 em algumas crianças. Não houve correlação entre as etapas de avaliação pelo software e a mensuração eletrofisiológica.

Palavras-chave: Audição; Percepção auditiva; Transtornos da percepção auditiva; Criança; Software.

ABSTRACT

Purpose: Analyze and correlate the auditory performance in the evaluation stage in the chosen software and electrophysiological responses pre and post computer-based auditory training. Methods: This is a longitudinal, comparative, clinical and experimental study, performed after the approval of the ethics committee. The sample consisted of seven children, aged 7 to 8 years and 11 months, from both genders, diagnosed with auditory processing disorder. The therapeutic intervention was based on the training with the Escuta Ativa® software and composed of 12 sessions, performed twice a week, lasting approximately 30 minutes each. The score in the evaluation stage in the chosen software and the findings of the electrophysiological measurement on Long-Latency Potential Evoked Auditory, specifically P3 component, pre and post-training, were analyzed through an adequate statistical study. Results: Among the three stages of the evaluation by the software, there was no statistically significant post-training result. As for the P3 component, 3 out of the 4 children started to have it post-intervention therapy. In the search for correlation between behavioral and electrophysiological results, there was no statistical significance in either moments of the evaluation. Conclusion: It was not possible to verify a significant difference between the pre and post-training periods in the evaluation stage of the software itself, showing the need for further studies to verify the use of this evaluation tool in a clinical setting. An effect of post-training plasticity with the appearance of P3 component was noted in some children. There was no correlation between the evaluation steps by the software and the electrophysiological measurement.

Keywords: Hearing; Auditory perception; Auditory perceptual disorders; Child; Software.
INTRODUÇÃO

O avanço da tecnologia permitiu o diagnóstico mais preciso dos transtornos do processamento auditivo (TPAs) e trouxe abordagens mais atrativas de terapia dos distúrbios da audição. Quando se pensa no treinamento auditivo (TA) para o público infantil, quanto mais instigante a atividade para a criança, mais fácil atingir o objetivo terapêutico, tanto pela adesão ao processo, como pelo prazer em realizar as estratégias terapêuticas motivadoras, propostas na sessão fonoaudiológica.

Estudos vêm mostrando os efeitos do treinamento auditivo computadorizado (TAC) em diferentes populações: sujeitos com perda auditiva (1-3), com audição normal e transtorno do processamento auditivo (PA) (4,5), com audição normal e transtorno do processamento auditivo e alteração de linguagem (6,7) ou de fala (8,9), entre outros.

O transtorno do processamento auditivo (TPA) ocorre quando os estímulos sonoros são escutados, porém, há um prejuízo em processá-los, seja na interpretação, transmissão, análise, organização, transformação, elaboração, armazenamento e/ou recuperação das informações recebidas (8). Dentre as queixas encontradas na população com TPA estão: dificuldade de compreender estímulos verbais na presença de ruído competitivo, dificuldade de apreciação musical, desatenção em sala de aula e dificuldades escolares (9). Desta forma, faz-se essencial pesquisar a eficácia de intervenções terapêuticas em crianças diagnosticadas com TPA, pois tais intervenções têm função de minimizar as consequências funcionais das alterações nas habilidades auditivas centrais (4,5,7,11-13) e as pesquisas nesse tema contribuem para direcionar as práticas fonoaudiológicas.

Em geral, as pesquisas que visam à investigação da eficácia de treinamentos auditivos utilizam os mesmos testes comportamentais do processamento auditivo (PA) (10,11) e/ou eletrofisiológicos, como o potencial evocado auditivo de longa latência (PEALL) (12,13), realizados na avaliação pré-treinamento (geralmente avaliação na qual foi diagnosticado o TPA), para comprovar seus resultados em diferentes populações.

O PEALL é formado por cinco componentes (P1, N1, P2, N2 e P3) e o P3, especificamente, é um potencial endógeno, constituído por um componente positivo com latência aproximada de 300 ms pós-estímulo e com origem nas áreas primárias e secundárias do córtex auditivo (14). Sua importância justifica-se, pois, para estar presente na avaliação, é necessário que o sujeito tenha capacidade de percepção e cognição, bem como motivação para realizar a tarefa solicitada. Sendo assim, para que ocorra a mensuração do P3, é necessária a identificação de estímulos raras dentre uma série de estímulos frequentes, que são apresentados aleatoriamente, caracterizando o paradigma oddball (15). Como já referenciado, estudos destacaram a importância do monitoramento terapêutico pelo uso do P3, em especial, medida de latência deste componente do PEALL, comparando o desempenho pré e pós-terapia (12,14).

Além disso, alguns softwares desenvolveram meios de mensurar o desempenho auditivo dos seus usuários, no TAC, com atividades e/ou questionários avaliativos inseridos nos próprios utilitários, como, por exemplo, a etapa de avaliação do software Escuta Ativa (17). A presente pesquisa utilizou deste recurso como outro parâmetro comportamental de avaliação, que buscou verificar possíveis modificações neste processo de reorganização, provenientes de um TAC.

O objetivo desta pesquisa foi analisar o efeito do TAC, por meio da seção de avaliação do software Escuta Ativa e achados no PEALL-P3, além de buscar correlação das etapas de avaliação, com o resultado no PEALL-P3.

METODOLOGIA

Trata-se de um estudo longitudinal, clínico, comparativo e experimental. Foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos da Universidade Federal de Santa Maria, sob o protocolo 43171715.0.0000.5346. Os pais e/ou responsáveis que concordaram que seus filhos participassem desta pesquisa receberam e assinaram o Termo de Consentimento Livre e Esclarecido (TCLE), bem como o Termo de Assentamento da Criança. Respeitou-se, na integralidade, a Resolução 466/12, do Conselho Nacional de Saúde.

Para a composição da amostra, buscou-se por crianças em estágios e serviços ambulatoriais de um curso de graduação e pós-graduação em Fonoaudiologia, da instituição em questão. Além disso, foram realizadas coletas em escolas públicas de ensino fundamental, por meio da exposição das características e queixas relacionadas ao TPA aos professores, para identificação de crianças e encaminhamento para avaliação. Ademais, utilizou-se de redes sociais para divulgação da pesquisa e, desta forma, identificar interessados em participar do estudo.

Elencaram-se critérios de elegibilidade, sendo os seguintes requisitos de inclusão: responsáveis terem consentido na participação com assinatura do TCLE e consentimento da criança; crianças com idade entre 7 anos e 8 anos e 11 meses; possuir audição periférica normal; apresentar P3 diagnosticado com o término das avaliações comportamentais previamente realizadas (apresentar habilidades auditivas alteradas após bateria de testes comportamentais, ou quando a alteração fosse em apenas um teste, porém acompanhada de queixa funcional dependente da habilidade avaliada); possuir, como língua nativa e única, o Português Brasileiro; possuir aquisição fonológica típica; apresentar preferência manual destra (autorrrelatada). Os critérios de exclusão foram: crianças com comprometimento neurológico, emocional e/ou cognitivo evidente, seguido por relato dos pais, ou apresentação de alterações motoras ou orgânicas evidentes; fazer uso regular de instrumentos musicais; ter realizado terapia fonoaudiológica ou estimulação auditiva, anteriormente.

Do total de 105 crianças selecionadas, somente 77 puderam ser contatadas, não sendo possível fazer contato com as demais, devido a números telefônicos errados e/ou por não aceitarem participar da pesquisa. Das crianças contatadas, 44 compareceram na data previamente agendada para avaliação.

A avaliação inicial para composição amostral foi composta pelos seguintes procedimentos: anamnese geral, inspeção visual do meato acústico externo, audiometria tonal liminar, logoaudiometria, medidas de imitação acústica e avaliação comportamental do processamento auditivo, por meio de três testes envolvendo os processos cognitivos de codificação, codificação e gnosia não verbal, sendo eles: Random Gap Detection Test (Teste de Detecção de Intervalos Aleatórios), Pediatric Speech Intelligibility (Teste de Inteligibilidade Pediátrica) e Teste Dicótico Não Verbal. A escolha por estes testes foi determinada pela existência de critérios de normalidade de acordo com a faixa etária amostral, aplicabilidade sem...
interferência de questões linguísticas e escolha de uma bateria mínima, que avaliasse diferentes processos gnônicos.

A disposição amostral inicial foi composta por 18 crianças que apresentaram alteração em, pelo menos, um teste comportamental, porém, foram excluídas oito, por apresentarem alteração de fala e três porque optaram por não dar continuidade na participação da pesquisa. Desta forma, a amostra final foi de sete crianças de ambos os gêneros, que atendiam a todos os critérios de elegibilidade.

Após a composição final da amostra, efetuou-se o PEALL em todas as crianças. Para a realização desta avaliação eletrofisiológica, utilizou-se o equipamento Smart Ep da Intelligent Hearing Systems (IHS), de dois canais. Os pais ou responsáveis pelas crianças foram orientados para que estas evitassem uso de medicamentos nas 24 horas antecedentes ao exame e ingestão de alimentos ou bebidas estimulantes (chá, café ou chocolate) nas quatro horas anteriores. Além disso, as crianças não poderiam realizar atividades físicas ou mentais esgotantes.

Para a realização da avaliação eletrofisiológica, a criança foi posicionada sentada confortavelmente em uma poltrona e orientada a ficar relaxada e atenta aos sons que seriam apresentados; a cada estímulo raro ouvido, ela deveria marcar/sinalizar em uma folha\(^\text{17}\). O PEALL foi realizado com os pares /ba/ e /di/, apresentados de forma binaural, por meio de fones de ineração, a uma intensidade de apresentação de 75 dBnHL. Para cada tipo de estímulo, o paradigma Oddball\(^\text{18}\) foi adotado, com a apresentação de, aproximadamente, 240 estímulos frequentes /ba/ e 60 raros /di/, em uma janela de 510 ms, filtro de 30Hz-1KHz e polaridade alternada. Os eletrodos foram posicionados com uso de pasta eletrolítica, visando melhorar a condução, após limpeza da pele com pasta abrasiva Nuprep\(^\text{19}\), da seguinte forma: A1 na mastoide esquerda, A2 na mastoide direita, Cz no vértex e o terra (Fpz), na testa. Na presente pesquisa, assim como já realizado por outros pesquisadores\(^\text{15}\), não houve registro de reprodução destas ondas, uma vez que a replicação da coleta poderia causar cansaço e comprometer o resultado da avaliação, já que esta depende da atenção. Para manter a qualidade de todos os traçados do PEALL-P300, efetuaram-se mudanças de posicionamento de eletrodos para os sujeitos que apresentaram algum tipo de interferência miogênica. Mudanças na posição da poltrona e pré-amplificador também foram realizadas. Além disso, quando necessário, o exame foi repetido. O valor de impedância dos eletrodos foi igual ou inferior a 3 kohms. Considerou-se, como componentes exógenos P1, N1, P2 e N2, os traçados correspondentes aos estímulos frequentes e, como componente P3, somente os traçados formados pelos estímulos raros. Levou-se em consideração, na análise da presença do P3, o maior pico positivo após os demais componentes, estando sua latência entre 220 e 380,ms, conforme sugerido na literatura\(^\text{16}\). Para que o exame fosse considerado adequado, a criança deveria acertar de 90% a 95% do total de estímulos raros apresentados e apresentar, durante a avaliação, no máximo, 10% de artefatos. Caso contrário, o exame era pausado, orientado novamente e reiniciado, ou, dependendo do caso, remarcado. Ressalta-se que as avaliações iniciais e o PEALL foram realizados em mais de um dia, para evitar fadiga e interferência no resultado, o que poderia comprometer a pesquisa. O PEALL foi realizado pré e pós-TAC e as marcações dos componentes foram verificadas por três juízes aptos (fonoadiôlogos), com conhecimento teórico e experiência prática em exames eletrofisiológicos, especialmente PEALL. Dois juízes receberam uma cópia dos traçados sem as devidas marcações e inseriram cada um dos componentes, considerando sua experiência na marcação e critérios especificados anteriormente. O terceiro juiz realizou a análise final de tais marcações. O presente estudo analisou apenas os dados da latência do P3 pré e pós-intervenção. Justifica-se a utilização apenas dos valores de latência, pois tal variável, quando comparada aos valores de amplitude, sofre menos influência de alteração pela falta de atenção ao exame\(^\text{19}\).

Para que se conseguisse monitorar e averiguar a evolução resultante do TAC após duas semanas do término da intervenção terapêutica, foi realizada, em cada criança, a reavaliação, seguindo o mesmo protocolo composto pelos testes comportamentais do processamento auditivo, aplicados no momento da avaliação diagnóstica. Contudo, os desempenhos pré e pós-TAC nos testes comportamentais padronizados não foram considerados neste estudo, pois compõem outro trabalho e o objetivo do presente foi a análise comportamental da etapa de avaliação presente no software utilizado e eletrofisiológico-P3.

Todo o processo de reabilitação foi baseado em um programa de treinamento auditivo computadorizado (TAC), composto por 12 sessões individuais, tendo cada sessão duração de 30 minutos, realizadas em setting terapêutico na clínica-escola da instituição em questão. As sessões tiveram frequência de duas vezes por semana, sendo realizada uma atividade diferente por sessão, na mesma sequência para todas as crianças. O software utilizado foi o Escuta Ativa\(^\text{15}\), com uso de fones de ouvido supra-auriculares da marca Sony, modelo MDR-ZX100. Dentre as habilidades auditivas estimuladas pelas 12 atividades disponíveis no software, têem-se etapas de estimulação das habilidades auditivas de figura-fundo, resolução e padronização temporal, integração e separação binaural e discriminação auditiva\(^\text{5,17}\). As atividades possuem um tempo limite para que a criança possa responder ao objetivo proposto, porém, no presente estudo não foi considerado, pois se observou ser insuficiente para que a criança pensasse e respondesse de forma adequada, em especial nas primeiras sessões. Desta forma, utilizou-se a possibilidade de “pausa”, visando permitir maior tempo de raciocínio para as crianças. Salienta-se que se optou por realizar apenas as 12 sessões do software, pois o estudo trata de uma análise por meio do uso específico do software, objetivando investigar o efeito deste tipo de treinamento sem a realização de sessões extras, cuidando da padronização entre os sujeitos.
dicótica”, que avalia habilidade de integração binaural, a criança ouve quatro palavras diferentes, duas na orelha direita e duas na orelha esquerda. Ao final das avaliações, o software mostra o número de acertos em cada uma das três etapas. Ressalta-se que a referida seção de avaliação ocorre imediatamente após o término da décima atividade (décima sessão de TAC), antes de duas das atividades bônus, as quais não trabalham diretamente as habilidades auditivas, contudo buscam melhorar habilidades, como atenção visual, coordenação visomotor e velocidade de processamento/agilidade de resposta. A seção de avaliação do software não apresenta exposição da mesma atividade posteriormente, na terapia, pois traria repetição e invalidaria sua utilização pós-terapia.

Consideraram-se como variáveis do presente estudo: desempenho comportamental na seção de avaliação do software escolhido e latência do componente eletrofisiológico P3. Para análise dos resultados obtidos, utilizou-se o software Statistica 13.0. Em todas as análises estatísticas inferenciais, utilizou-se um nível de significância de 5% (p<0,05). Todas as variáveis analisadas no presente estudo foram quantitativas discretas. A distribuição das variáveis foi calculada com o Teste Shapiro Wilk e todas obtiveram distribuição normal. Desta forma, utilizou-se o teste paramétrico Teste t pareado, para comparação dos momentos pré e pós-intervenção em um grupo dependente, e o teste paramétrico de correlação de Pearson, para correlacionar os resultados referentes ao desempenho comportamental dos participantes na seção de avaliação do software escolhido e a latência do componente eletrofisiológico P3, tanto para o momento pré-intervenção, quanto para o momento pós-intervenção.

RESULTADOS

Os resultados pré e pós-TAC na seção de avaliação do software Escuta Ativa estão expostos na Tabela 1. Observou-se que não houve diferença significativa em nenhuma das etapas de avaliação.

Cabe destacar que estes resultados se referem a uma pontuação de acertos calculada pelo próprio software.

Em relação à medida objetiva analisada (P3), apontando as ausências e as latências (ms), quando tal componente esteve presente, consideraram-se valores acima do indicado pela literatura, como já referenciado (latência entre 220 e 380ms), pois o estudo teve como objetivo a comparação de possível mudança pré e pós-intervenção. Observou-se que os resultados apontaram melhora nas respostas, considerando que 4 crianças não apresentavam o componente pesquisado no registro e análise do PEALL (P3) pré-TAC, na orelha direita, e 3, na orelha esquerda e, após o TAC, apenas uma criança não apresentou resposta ao componente P3. Entretanto, não houve diferença estatisticamente significativa nas latências, nos dois momentos pesquisados. Os resultados pré e pós-TAC estão descritos na Tabela 2.

Tabela 1. Desempenho das crianças na sessão de avaliação do software Escuta Ativa, pré e pós-treinamento auditivo computadorizado, na totalidade da amostra (n=7)

SUJEITO	IDENTIFICAÇÃO DE APITOS	FALA NO RUído	ESCUTA DICÓTICA					
	PRÉ-TAC	PÓS-TAC	PRÉ-TAC	PÓS-TAC	PRÉ-TAC	PÓS-TAC	PRÉ-TAC	PÓS-TAC
S1	40	20	66	83	30	50	15	30
S2	20	10	33	66	35	10	15	55
S3	10	40	66	66	70	45	0	15
S4	10	0	33	66	05	06	35	40
S5	10	10	0	33	20	40	20	06
S6	10	10	66	50	35	0	10	75
S7	30	30	66	83	30	50	10	40

*p<0,05 – Teste-T Pareado

Legenda: TAC = treinamento auditivo computadorizado; S1 = Sujeito 1; S2 = Sujeito 2; S3 = Sujeito 3; S4 = Sujeito 4; S5 = Sujeito 5; S6 = Sujeito 6; S7 = Sujeito 7

Tabela 2. Análise do componente P3 na avaliação eletrofisiológica, pré e pós-treinamento auditivo computadorizado, na totalidade da amostra, considerando as respostas como ausência e presença com latência (ms) deste componente (n=7)

SUJEITO	ORELHA DIREITA	PRÉ-TAC	PÓS-TAC	ORELHA ESQUERDA	PRÉ-TAC	PÓS-TAC
S1	AUS	AUS	AUS	AUS	AUS	AUS
S2	AUS	336	363	336	364	360
S3	357	361	364	360		
S4	AUS	335	AUS	AUS	357	352
S5	363	356	364	360		
S6	AUS	370	AUS	364		
S7	360	353	371	364		

*p<0,05 – Teste-T Pareado

Legenda: TAC = treinamento auditivo computadorizado; AUS = ausente; S1 = Sujeito 1; S2 = Sujeito 2; S3 = Sujeito 3; S4 = Sujeito 4; S5 = Sujeito 5; S6 = Sujeito 6; S7 = Sujeito 7
Referente ao desempenho na sessão de avaliação do software Escuta Ativa® e correlação com o componente P3 na avaliação eletrofisiológica, observou-se que a análise não apontou valores significativos (Tabela 3).

DISCUSSÃO

Houve dificuldade em encontrar estudos analisando o desempenho do TA com uso de avaliação realizada no próprio programa terapêutico, como o abordado na presente publicação. Os estudos atuais vêm demonstrando análises com teste-reteste por testes comportamentais (p. 17), ou eletrofisiológicos do PA (p. 11). Conforme demonstrado na Tabela 1, ao analisar o desempenho das crianças na sessão de avaliação do software Escuta Ativa® (17), considerando as três etapas avaliadas, houve maior tendência de diferença pré e pós-TAC na etapa “fala no ruído”, que envolve habilidade de figura-fundo auditiva e atenção. Acredita-se que esta habilidade desempenha papel essencial para que a criança possa ter um bom desenvolvimento social e educacional, considerando que a habilidade permite que a criança saiba distinguir informações auditivas importantes principalmente de informações de maneira geral, sem ter ênfase em uma ou outra habilidade específica, como ocorreu, também, na ausência de significância para a etapa “escuta dicótica”. Desta forma, o software, como foi utilizado, acabou não sendo suficiente para reabilitar ou melhorar a habilidade relacionada a padrões de intensidade e frequência na população estudada pela etapa de avaliação do programa terapêutico. Como já referenciado na metodologia, neste estudo optou-se por realizar apenas as 12 sessões previstas no software. Talvez a realização de sessões extras pudesse auxiliar na reabilitação de tais habilidades. Cabe destacar que outras modalidades de treinamento demonstraram que, mesmo sem o treino de uma habilidade específica, pode ocorrer melhora global das habilidades auditivas (20-22), fato este que não foi visualizado no presente estudo.

Na etapa “escuta dicótica”, foram avaliadas as habilidades de atenção seletiva e escuta direcionada para sons verbais, que, apesar de mostrar mudanças importantes pós-TAC, bilateralmente, não evidenciou diferença significativa. A média de acertos pré-TAC foi de 32,14 na orelha direita e 15 na orelha esquerda e, pós-TAC, de 28,57 na orelha direita e 37 na orelha esquerda, podendo-se notar a inversão de desempenho por orelha. Este dado pode ser explicado quando se analisa a anatomia cerebral e sua fisiologia, pois os hemisférios cerebrais são organizados de forma não simétrica e relacionam-se a funções distintas, como hemisfério esquerdo voltado para a linguagem e direito aos componentes visuais e espaciais (21,24). Acredita-se que a ocorrência da inversão do desempenho por orelha pré e pós-TAC tenha relação com o efeito de compensação entre os hemisférios cerebrais pós-estimulação. Adicionalmente, observou-se que significativa entre pré-TAC e pós-TAC, pois apenas uma das crianças apresentou melhora. Este achado discorda da pesquisa realizada com crianças de 8 anos, diagnosticadas com distúrbio de leitura e submetidas a sessões de TAC, por meio do software Fast Forward Language, na qual os resultados foram estatisticamente significativos para testes de padrões de frequência e duração, envolvidos na ordenação temporal, pré e pós-TAC (7). Acredita-se que esta diferença entre os achados pode ser explicada pelo fato do software utilizado na referida pesquisa ter como objetivo estimular o processamento auditivo temporal dos sujeitos, especificamente, enquanto o software utilizado na presente pesquisa estimula o processamento auditivo de maneira geral, sem ter ênfase em uma ou outra habilidade específica, como ocorreu, também, na ausência de significância para a etapa “escuta dicótica”. Desta forma, o software, como foi utilizado, acabou não sendo suficiente para reabilitar ou melhorar a habilidade relacionada a padrões de intensidade e frequência na população estudada pela etapa de avaliação do próprio software. Como já referenciado na metodologia, neste estudo optou-se por realizar apenas as 12 sessões previstas no software. Talvez a realização de sessões extras pudesse auxiliar na reabilitação de tais habilidades. Cabe destacar que outras modalidades de treinamento demonstraram que, mesmo sem o treino de uma habilidade específica, pode ocorrer melhora global das habilidades auditivas (20-22), fato este que não foi visualizado no presente estudo.

Audiol Commun Res. 2019;24:e1942
houve piora na orelha direita e melhora na orelha esquerda, pós-TAC, para estimulo verbal, o que chama a atenção por causa das funções hemisféricas já citadas (hemisfério esquerdo, orelha direita, relacionar-se com a linguagem), esperando-se um resultado inverso na habilidade avaliada, após estimulação, não sendo possível fazer umainferência para justificar este achado.

Em uma análise geral do desempenho apresentado pelas crianças nas atividades de terapia do software Escuta Ativa19(17), não houve melhora significativa, possivelmente em decorrência do curto tempo entre o final das atividades e a reavaliação proposta pelo programa computacional. A reavaliação foi realizada logo após o término da décima sessão de TAC (décima atividade) e antes de duas das atividades bôns, não permitindo a visualização de mudanças positivas nas respostas das crianças. Cabe citar uma pesquisaa25 que define a existência de diferentes etapas de aprendizagem para a aquisição dos efeitos do treinamento auditivo, sendo uma rápida e outra lenta. A etapa rápida seria aquela que ocorre ainda durante a sessão, na qual a criança adquire conhecimento sobre a tarefa; já a etapa lenta, desenvolve-se durante a fase de consolidação, que pode demorar de seis a oito horas, ou, até mesmo, semanas, para que se adquira a aprendizagem, possibilitando a modificação na memória de longo prazo. Além disso, outro fator que pode ter influenciado negativamente para a obtenção de resultados foi o tamanho amostral de apenas sete escolares, sendo este um viés de pesquisa. Outra hipótese também a ser abordada é que tal procedimento ainda não passou por uma avaliação criteriosa de sua sensibilidade e especificidade, conforme a literatura consultada. Para sugerir a utilização desta proposta de avaliação do software Escuta Ativa19(17), seria necessário um estudo clínico com amostra mais robusta e com análise de correlação com testes comportamentais de processamento auditivo, que avaliem habilidades auditivas correlataes.

Neste estudo, o efeito da plasticidade auditiva após estimulação pode ser observado na Tabela 2, pois quatro crianças tinham ausência de P3 e, após o TAC, apenas uma manteve-se sem o potencial em ambas as orelhas. Um estudo publicado em 2013 demonstrou o efeito do treinamento auditivo em crianças com alteração de linguagem após terapia, por meio do PEALL26(20), confirmando a relação entre estimulação e plasticidade27. Cabe lembrar que o PEALL tem sido utilizado para mensuração da eficácia terapêutica12,14,15, bem como para complementar o diagnóstico de TPA28.

Na análise da correlação entre as avaliações comportamentais (etapa de avaliação do próprio software) e avaliação eletrofisiológica (latência P3) demonstrou-se ausência de resultado significativo (Tabela 3), não sendo evidenciada correlação entre as duas medidas, tanto pré, como pós-TAC. Este achado vai ao encontro de outros estudos11,29, que verificaram fraça correlação entre os achados obtidos na avaliação comportamental e eletrofisiológica. De acordo com pesquisa recente29, a presença de correlação fraça se justifieda, em decorrência da condição/essência da avaliação. Ao passo que a avaliação comportamental analisa a função das habilidades auditivas, a avaliação eletrofisiológica verifica a integridade das vias auditivas, ou seja, a comportamental avalia a função auditiva da criança como um todo, considerando a atuação do sistema auditivo por completo, enquanto a eletrofisiológica verifica a sincronia neural, que varia de indivíduo para indivíduo e pode sofrer interferências de fatores externos. Entretanto, outros autores referem que o PEALL possui correlação com avaliações comportamentais do PA, quando pareados28, sendo um meio adicional de avaliação diagnóstica para TPA.

Novas pesquisas que investiguem os achados trazidos pela etapa de avaliação do programa de TAC seriam interessantes, tanto para auxiliar no trabalho do terapeuta, por se tratar de um meio prático de avaliação teste-reteste, considerando que o sujeito estará familiarizado com o software, quanto para mostrar ao paciente seu desempenho com a estimulação auditiva. Sabe-se que muitos sujeitos com indicação terapêutica de treinamento auditivo não possuem condições financeiras para arcar com uma avaliação completa do PA, ou não podem aguardar o tempo até serem chamados no Sistema Único de Saúde, sendo, desta forma, necessário e importante ter, em clínica, formas alternativas de avaliação mais acessíveis, visando mensurar o efeito da terapia. Contudo, não podem ser consideradas como meio de substituição de avaliação completa realizada por meio de testes comportamentais do PA, sendo úteis para mensuração do tratamento, por parte do profissional.

Cabe ressaltar que, no presente estudo, optou-se por não ter um grupo controle, uma vez que a amostra, considerando os critérios de elegibilidade, foi restrita e prioritizou-se oferecer o treinamento auditivo para todos os sujeitos. Logo, foi analisada a comparação do sujeito com ele mesmo, pré e pós-TAC, para mensurar o efeito da intervenção, pois, desta maneira, evitou-se a variabilidade de fatores ambientais, socioeconômicos e culturais.

CONCLUSÃO

A partir da análise do desempenho das crianças frente à seção de avaliação do software, foi possível concluir que não houve resultados significativos pós-intervenção terapêutica. Entretanto, houve melhora no P3 após estimulação auditiva, com o surgimento do componente em três crianças, demonstrando o efeito da plasticidade cerebral perante estimulação.

Quanto à análise da correlação entre as etapas de avaliações comportamentais e a avaliação eletrofisiológica, não houve correlação entre as variáveis estudadas em ambos os momentos de avaliação.

Não foi possível verificar diferença significativa entre os períodos pré e pós-treinamento, usando a etapa de avaliação do próprio software. Percebeu-se efeito da plasticidade pós-treinamento, com o surgimento do componente P3 em algumas crianças. Não houve correlação entre as etapas de avaliação pelo software e a mensuração eletrofisiológica. Ressalta-se, ainda, a necessidade de se realizar mais pesquisas no campo de treinamento auditivo computadorizado, visando estudar e comprovar sua efetividade como meio de intervenção terapêutica no TPA, bem como novos estudos que busquem mensurar os efeitos do TAC por meio da avaliação pelo software de treinamento, para tornar sua utilização confiável como uma ferramenta clínica de auxílio ao terapeuta.

REFERÊNCIAS

1. Silva MP, Comerlatto AA Jr, Balen AS, Bevilacqua MC. O uso de um software na (re)habilitação de crianças com deficiência auditiva. J Soc Bras Fonoaudiol. 2012;24(1):34-41. http://dx.doi.org/10.1590/ S2179-649120120000100007. PMid:22460370.

2. Henshaw H, Ferguson MA. Efficacy of individual computer-based auditory training for people with hearing loss: a systematic review of
Desempenho no treinamento auditivo