EQUIVARIANT EULER CHARACTERISTICS OF PARTITION POSETS

JESPER M. MØLLER

ABSTRACT. We compute all the equivariant Euler characteristics of the \(\Sigma_n \)-poset of partitions of the \(n \) element set.

1. INTRODUCTION

Let \(G \) be a finite group and \(\Pi \) a finite \(G \)-poset. For \(r \geq 1 \), let \(C_r(G) \) denote the set of tuples \(X = (x_1, \ldots, x_r) \) of \(r \) commuting elements of \(G \). Write \(\Pi^X \) for the subposet consisting of all elements of \(\Pi \) fixed by all elements of \(X \in C_r(G) \). The \(r \)th reduced equivariant Euler characteristic of the \(G \) poset \(\Pi \), as defined by Atiyah and Segal [2], is the normalized sum

\[
\tilde{\chi}_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in C_r(G)} \tilde{\chi}(\Pi^X)
\]

of the reduced Euler characteristics of the subposets \(\Pi^X \) as runs through the set \(C_r(G) \) of commuting \(r \)-tuples.

In this note we focus on equivariant Euler characteristics of partition posets. Let \(\Sigma_n \) denote the symmetric group of degree \(n \geq 2 \). The set \(\Pi(\Sigma_{n-1}\setminus \Sigma_n) \) of partitions of the standard right \(\Sigma_n \)-set \(\Sigma_{n-1}\setminus \Sigma_n \) is a (contractible) right \(\Sigma_n \)-lattice with smallest element \(\hat{0} \), the discrete partition, and largest element \(\hat{1} \), the indiscrete partition. We let \(\Pi^*(\Sigma_{n-1}\setminus \Sigma_n) = \Pi(\Sigma_{n-1}\setminus \Sigma_n) - \{\hat{0}, \hat{1}\} \) be the (non-contractible) \(\Sigma_n \)-poset obtained by removing \(\hat{0} \) and \(\hat{1} \).

We now state the result and defer the the explanation of the undefined expressions till after theorem.

Theorem 1.1. The \(r \)th reduced equivariant Euler characteristic of the \(\Sigma_n \)-poset \(\Pi^*(\Sigma_{n-1}\setminus \Sigma_n) \) of partitions is

\[
\tilde{\chi}_r(\Pi^*(\Sigma_{n-1}\setminus \Sigma_n), \Sigma_n) = \frac{1}{n}(a \ast b_{r})(n)
\]

when \(n \geq 2 \) and \(r \geq 1 \).

The multiplicative arithmetic sequence \(a \ast b_{r} \) is the Dirichlet convolution

\[
(a \ast b_{r})(n) = \sum_{d_1d_2=n} a(d_1)b_{r}(d_2)
\]

of the the multiplicative arithmetic sequences \(a \) and \(b_{r} \) given by

\[
a(n) = (-1)^{n+1}, \quad b_{r}(n) = \prod_p (-1)^{n_p} \binom{r}{n_p}_p, \quad r \geq 1, n \geq 1
\]

where \(n = \prod_p p^{n_p} \) is the prime factorization of \(n \) and the \(p \)-binomial coefficient

\[
\binom{r}{d}_p = \frac{(p^r - 1)(p^r - p^{r-1}) \cdots (p^d - p^{d-1})}{(p^d - 1)(p^d - p^{d-1}) \cdots (p^1 - 1)}
\]

is the number of \(d \)-dimensional subspaces of the \(r \)-dimensional \(\mathbb{F}_p \)-vector space [9, Proposition 1.3.18].

2. PARTITIONS OF FINITE G-SETS

Let \(G \) be a group and \(S \) a finite right \(G \)-set.

Definition 2.1. (1) A partition \(\pi \) of \(S \) is an equivalence relation on \(S \). The blocks of \(\pi \) are the equivalence classes of \(\pi \). For any \(x \in S \), \([x]_\pi\), or simply \([x]\), is the \(\pi \)-block of \(x \). The set of \(\pi \)-blocks is denoted \(\pi \setminus S \).

(2) \(\Pi(S) \) is the \(G \)-lattice of all partitions of \(S \) and \(\Pi^*(S) = \Pi(S) - \{\hat{0}, \hat{1}\} \) the \(G \)-poset of all partitions of \(S \) but the discrete and the indiscrete partitions, \(\hat{0} \) and \(\hat{1} \).

(3) A partition of \(S \) is a \(G \)-partition if \(x \sim y \iff xg \sim yg \) for all \(x, y \in S \) and \(g \in G \).
(4) $\Pi(S)^G$ is the lattice of all G-partitions of S and $\Pi^+(S)^G = \Pi(G)^G - \{0, 1\}$ the poset of all G-partitions of S but the discrete and indiscrete partitions.

(5) The isotropy subgroup at $x \in S$ is the subgroup $xG = \{g \in G \mid xg = x\}$ of G.

(6) If π is a G-partition, the block isotropy subgroup at $x \in S$ is the isotropy subgroup $[x]G = \{g \in G \mid (xg)\pi x\}$ at the π-block x of x in the G-set $\pi\backslash S$ of π-blocks.

(7) The G-set S is isotypical if all isotropy subgroups are conjugate.

(8) The G-partition $\pi \in \Pi(S)^G$ is isotypical if the G-set $\pi\backslash S$ of π-blocks is isotypical. $\Pi^+(S)^G$ is the poset of all isotypical G-partitions and $\Pi^+(\Pi^+)^G = \Pi^+(\Pi)^G - \{0, 1\}$.

The set $\Pi(S)$ of partitions of S is partially ordered by refinement:

$$\pi_1 \leq \pi_2 \iff \forall x \in S: [x]_{\pi_1} \subseteq [x]_{\pi_2}$$

The meet of π_1 and π_2 is the partition $\pi_1 \cap \pi_2$ with blocks $[x]_{\pi_1 \cap \pi_2} = [x]_{\pi_1} \cap [x]_{\pi_2}$, $x \in S$. The discrete partition is \emptyset with blocks $[x]_\emptyset = \{x\}$, $x \in S$, and the indiscrete partition is 1 with block $[x]_1 = S$, $x \in S$.

Example 2.2. Let K be a subgroup of G. The partition ω_K, whose blocks $[x]_{\omega_K} = xK$ are the K-orbits in S, is an $N_G(K)$-partition of S. In particular, the partition ω_G whose blocks are the G-orbits is a G-partition.

The set $\Pi(S)$ of partitions of S is a right G-lattice: For any partition π of S and any $g \in G$, πg is the partition given by $x(\pi g)y \iff (xg)\pi(xg)$. Then $[x]_{\pi g} = \{yg \mid x(\pi g)y\} = \{yg \mid (y(g)(\pi(xg))\} = \{y \mid y\pi(xg)\} = [x]_\pi$.

Obviously,

$$\pi \text{ is a } G\text{-partition} \iff \forall g \in G: \pi g = \pi \iff \forall g \in G \forall x \in X: [x]_{\pi g} = [x]_{\pi} \iff \forall g \in G \forall b \in \pi: bg \in \pi$$

Thus the fixed poset for this G-action on $\Pi(S)$, $\Pi(S)^G$, is the set of all G-partitions. The discrete and the indiscrete partitions are G-partitions.

Proposition 2.3. Let π be a G-partition of S.

1. There is a right G-action on the set $\pi\backslash S$ of π-blocks such that $S \to \pi\backslash S$ is a G-map.
2. $xG \leq [x]G$ for any $x \in S$.
3. $xgG = xG^g$ and $[xg]G = [x]G^g$
4. $xG \leq [x]G$ for any $x \in S$ and any $g \in G$.

Proof. The G-action on $\pi\backslash S$ is given by $[x]g = [xg]$ for all $x \in S$ and $g \in G$. \square

Definition 2.4. Let P be a subposet of a lattice. An element c of P is a contractor if $x \lor c \in P$ or $x \land c \in P$ for all $x \in P$.

If c is a contractor for P then $x \leq x \lor c \leq c$ or $x \leq x \land c \leq c$ are homotopies between the identity map of P and the constant map c. We view P as a finite topological space with the order right ideals as open sets.

Lemma 2.5. [1, Lemma 7.1] $\Pi^+(S)^G$ is contractible unless S is isotypical.

Proof. Let ω_G be the G-partition represented by the G-map $S \to S/G$ to the G-set of G-orbits and θ_G the G-partition represented by the G-map $S \to S/G \to \Pi(S)/G$ to the set of isomorphism classes of G-orbits. Explicitly, $x\omega_G y$ if and only if x and y are in the same G-orbit, and $x\theta_G y$ if and only if x and y have conjugate isotropy subgroups. We shall prove that θ_G is a contractor (Definition 2.4) for $\Pi^+(S)^G$ when S is not isotypical.

We first make some small observations. Obviously, $\omega_G \leq \theta_G$. The G-action is trivial if and only if $\omega_G = \emptyset$. The G-action is isotypical if and only if $\theta_G = 1$. If the G-action is trivial, all isotropy subgroups are equal to G, and therefore $\theta_G = 1$. We may summarize these observation in a string

$$\theta_G = \emptyset \Rightarrow \omega_G = \emptyset \iff \forall x \in S: xG = G \Rightarrow \theta_G = 1 \iff S \text{ is isotypical}$$

of implications.

Let π be any G-partition of S. We claim that

$$\pi \land \theta_G = \emptyset \Rightarrow \pi = \emptyset$$

To see this first note that

$$\forall x, y \in S: x\pi y \Rightarrow y \cdot xG \subseteq [y]_{\pi \land \theta_G}$$

Indeed, let $x\pi y$ and $g \in xG$. Then $y\pi(xg)$ for $y\pi x$, $x = xg$, and $(xg)\pi(yg)$. Thus y and yg are both in $[y]_{\pi}$ and in $[y]_{\theta_G}$. Now assume that $\pi \land \theta_G = \emptyset$. Then

$$\forall x, y \in S: x\pi y \Rightarrow xG \leq yG$$
for the block $[y]_{|\theta_G} = [y]_0 = \{y\}$ consists of y alone which forces $yg = y$ for all $g \in xG$. This can be sharpened to
\[\forall x, y \in S : xGy \iff xG = yG \]
as the equivalence relation π is symmetric, of course. Now, when x and y have the same isotropy subgroups, x and y belong to the same block under θ_G. Thus we have shown $\pi \leq \theta_G$. Then $\pi = \pi \wedge \theta_G = 0$. This proves claim (2.6).

Suppose that S is not isotypical. Then $\theta_G \neq 0, 1$ and θ_G belongs to the poset $\Pi^*(S)^G$. From claim (2.6) we know that $\pi \wedge \theta_G \neq 0$ for all $\pi \in \Pi^*(S)^G$. Thus θ_G is a contractor for $\Pi^*(S)^G$.

There are, of course, isotypical G-sets S for which $\Pi^*(S)^G$ is contractible.

Example 2.7 (An isotypical G-set S such that $\Pi^*(S)^G$ is contractible). Suppose that the Frattini subgroup $\Phi(G)$ of G is nontrivial and proper. The G-set $S = G$ is transitive and hence isotypical. But still the poset $\Pi^*(S)^G$ is contractible: By Proposition 2.8, $\Pi^*(S)^G$ is the poset $(1, G)$ of non-identity proper subgroups of G, and $\Phi(G)$ is a contractor of $(1, G)$. (I thank Matthew Gelvin for pointing out this example.)

A G-partition of a transitive G-set S is uniquely determined by its block isotropy subgroup at a single point.

Proposition 2.8. [10, Lemma 3] Let S be a transitive G-set and x a point of S. The block isotropy map
\[\Pi(S)^G \to [xG, G] = xG/S_G : \pi \mapsto [x]_\pi G \]
is an isomorphism of posets.

Proof. Let $H = xG$ be the isotropy subgroup of x. For every subgroup K of G containing H, let π_K be the G-partition of S with blocks $xKg, g \in G$ (the fibres of $S = H \cap K\setminus \{G\}$). The π_K-block of x, $[x]_{\pi_K} = xK$, has isotropy subgroup $\{g \in G \mid xg \in xK\} = K$. Conversely, let π be any G-partition of S. The orbit through x of the block isotropy subgroup $[x]_\pi G$ is $x : [x]_\pi G = [x]_\pi$ as S is transitive. These observations show that $K \mapsto \pi_K$ is an inverse to the block isotropy subgroup map $\pi \mapsto [x]_\pi G$. It is clear that these bijections respect the partial orderings. □

Definition 2.9. \mathcal{O}_G is the category of finite G-sets with surjective G-maps as morphisms.

We may consider G-partitions as morphisms in the category \mathcal{O}_G. To any G-partition π of the G-set S we associate the surjective G-map $S \to \pi S$. Conversely, the blocks of the partition represented by the surjective G-map $\pi : S \to T$ are the fibres of π. The block of $x \in S$ is $\pi^{-1}(\pi(x))$. The overlap of the block and the G-orbit of x is the orbit through x of the block isotropy subgroup, $\pi^{-1}(\pi(x)) \cap xG = x\pi(x)G$.

3. Euler characteristics of posets of G-partitions

Let Π be a finite poset. For $a, b \in \Pi$ let
\[a/\Pi = \{p \in \Pi \mid a \leq p\} \quad a/\Pi = \{p \in \Pi \mid a < p\} \quad k_a = -\chi(a/\Pi) \]
\[\Pi/b = \{p \in \Pi \mid p \leq b\} \quad \Pi/b = \{p \in \Pi \mid p < b\} \quad k_b = -\chi(\Pi/b) \]
denote the coslice of Π under a, the proper coslice of Π under a, and the weighting at a, and, dually, the slice of Π over b, the proper slice of Π over b, and the coweighting at b [4, Corollary 3.8]. The Euler characteristic of Π
\[\sum_{a \in \Pi} k_a = \chi(\Pi) = \sum_{b \in \Pi} k_b \]
is the sum of the values of the weighting or coweighting. In particular, for a finite G-set S, we can compute the Euler characteristic of $\Pi^*(S)^G$,
\[\sum_{\pi \in \Pi^*(S)^G} -\chi(\pi/\Pi^*(S)^G) = \chi(\Pi^*(S)^G) = \sum_{\pi \in \Pi^*(S)^G} -\chi(\Pi^*(S)^G/\pi) \]
from its weighting or coweighting [4, Corollary 3.8]. We shall now determine these functions.

Proposition 3.2 (Slices in $\Pi^*(S)^G$). For any G-partition π of the right G-set S \[\pi/\Pi(S)^G = \Pi(\pi\setminus S)^G, \quad \pi/\Pi^*(S)^G = \Pi^*(\pi\setminus S)^G \]
The weighting for $\Pi^*(S)^G$
\[k^\pi = -\chi(\Pi^*(\pi\setminus S)^G), \quad \pi \in \Pi^*(S)^G, \]
vanishes at π unless π is isotypical (Definition 2.1.8).

Proof. Let ρ be a partition of the right G-set $\pi\setminus G$ of blocks of π. There is then a partition of S with blocks $[x] = ([x]_{\rho}), x \in S$. This new partition is a G-partition if and only if ρ is a G-partition of $\pi \setminus S$. Any G-partition $\geq \pi$ of S arises in this way. □
Proposition 3.3 (Coslices in $\Pi^*(S)^G$). For any G-partition π of the right G-set S

$$\Pi(S)^G/\pi = \prod_{BG \in \pi \backslash S/G} \Pi(B)^G,$$

$$\Pi^*(S)^G/\pi = \left(\prod_{BG \in \pi \backslash S/G} \Pi(B)^G \right)^*$$

The coweighting for $\Pi^*(S)^G$

$$k_{\pi} = - \prod_{BG \in \pi \backslash S/G} \chi(\Pi^*(B)^G), \quad \pi \in \Pi^*(S)^G,$$

vanishes at π unless all blocks B of π are isotypical G-sets.

Proof. Let π be a G-partition and B one its blocks. Observe first that the blocks contained in B of a G-partition $\lambda \leq \pi$ determine all blocks of λ contained in any of the blocks of the orbit BG through B for the G-action on $\pi \backslash S$.

Let B be a block, with isotropy subgroup BG, of the G-partition π. Let λ be a BG partition of π. Extend λ to a G-partition of the orbit BG of π by $[xg]_\lambda = [x]_\lambda g$. We must argue that this extension is well-defined. Suppose that $x_1g_1 = x_2g_2$ for some $x_1, x_2 \in B$ and $g_1, g_2 \in G$. We must show that $[x_1]_\lambda g_1 = [x_2]_\lambda g_2$. We have $x_2 = x_1g_1g_1^{-1} = x_1g_2g_2^{-1}$. From $B = [x_2]_\lambda = [x_1g_1g_1^{-1}]_\lambda = [x_1]_\lambda g_1g_1^{-1} = Bg_1g_1^{-1}$ we get that $g_1g_1^{-1}$ stabilizes the block B. As λ is a BG-partition, $[x_1]_\lambda g_1 = [x_1]_\lambda g_2g_2^{-1}$ implies $[x_1]_\lambda = [x_2]_\lambda g_2$ as we wanted.

Conversely, if λ is a G-partition and $\lambda \leq \pi$ then the blocks of λ inside a fixed block B of π form a BG-partition of B, of course.

According to Quillen the reduced Euler characteristic is multiplicative: $\chi((\prod L_i)^{\ast}) = \prod \chi(L_i^*)$ for lattices L_i of more than one element [1, Proposition 2.8].

If the block B of partition π consists of a single element of S, then also the partition poset $\Pi(B)$ consists of a single element so it can be omitted from the poset product $\prod_{B \in \pi \backslash S} \Pi(B)$.

In all cases,

$$\sum_{\pi \in \Pi^*(S)^G} \chi(\Pi^*(\pi \backslash S)^G) = -\chi(\Pi^*(S)^G) = \sum_{\pi \in \Pi^*(S)^G} \prod_{BG \in \pi \backslash S/G} \chi(\Pi^*(B)^G)$$

where the sum on the left can be restricted to the G-partitions π with G-isotypical block set $\pi \backslash S$, and the sum on the right can be restricted to the G-partitions π for which BG acts isotypically on every block B of π. If G acts non-isotypically on S then these sums equal 0.

Example 3.5 (Two examples of G-partition posets). The poset $\Pi^*(S)^G$ of nontrivial G-partitions for $S = \{1, 2, \ldots, 4\}$ and $G = \langle (1, 2), (4, 5) \rangle \leq \Sigma_4$ (isotypical):

$$13 - 24 \quad \quad 12 - 34 \quad \quad 14 - 23$$

$$\begin{array}{c}
(k^*, k_*) = (1, 1) \\
(k^*, k_*) = (1, -1) \\
(k^*, k_*) = (1, 1) \\
\end{array}$$

$$\sum k^* = 3 = \sum k_*$$

$$1 - 2 - 34 \quad \quad 12 - 3 - 4$$

$$\begin{array}{c}
(k^*, k_*) = (0, 1) \\
(k^*, k_*) = (0, 1) \\
\end{array}$$

The poset $\Pi^*(S)^G$ of nontrivial G-partitions for $S = \{1, 2, \ldots, 6\}$ and $G = \langle (1, 2, 3), (4, 5) \rangle \leq \Sigma_6$ (non-isotypical):

$$1236 - 45 \quad \quad 12345 - 6 \quad \quad 1234 - 56$$

$$\begin{array}{c}
(k^*, k_*) = (1, 0) \\
(k^*, k_*) = (1, 0) \\
(k^*, k_*) = (1, 0) \\
\end{array}$$

$$1236 - 4 - 5 \quad \quad 12345 - 6 = \theta_G \quad \quad 123 - 4 - 56$$

$$\begin{array}{c}
(k^*, k_*) = (0, 0) \\
(k^*, k_*) = (-2, -1) \\
(k^*, k_*) = (0, 0) \\
\end{array}$$

$$\sum k^* = 1 = \sum k_*$$

Corollary 3.6. The inclusion $\Pi^{\ast \text{iso}}(S)^G \hookrightarrow \Pi^*(S)^G$ is a homotopy equivalence.
Proof. This follows immediately from Bouc’s theorem [3] since \(\pi/\Pi^*(S)^G \) is contractible unless \(\pi \) is isotypical by Proposition 3.2 and Lemma 2.5.

Because of Corollary 3.6 we now restrict attention to isotypical \(G \)-partitions of isotypical \(G \)-sets.

For any \(G \)-orbit \(S \) and any natural number \(n \geq 1 \), let \(nS = \coprod_n S \) be the isotypical \(G \)-set with \(n \) \(G \)-orbits isomorphic to \(S \).

Definition 3.7. Let \(S \) and \(T \) be \(G \)-orbits.

- An \(nS/kT \)-partition is an isotypical \(G \)-partition of \(nS \) with block \(G \)-set isomorphic to \(kT \).
- The \(G \)-Stirling number of the second kind

\[
S_G(nS,kT) = |\{\pi \in \Pi(nS)^G \mid \pi(nS) \cong kT\}|
\]

is the number \(nS/kT \)-partitions.

In the following, \(S_G \) is the poset of subgroups, and \([S_G]\) the poset of subgroup conjugacy classes of \(G \). We write \(\zeta_G \), or just \(\zeta \), for the poset incidence matrix (with \(\zeta_G(H,K) = 1 \) if \(H \leq K \) and \(\zeta_G(H,K) = 0 \) otherwise) and \(\mu = \mu_G = \zeta^{-1} \) for the Möbius matrix of \(S_G \).

Definition 3.8. The \(G \)-Stirling matrix of degree \(n \) is the square \((n||S_G|| \times n||S_G||) \)-matrix

\[
[\zeta]_G \otimes S_G = ((S_G(sH\backslash G,tK\backslash G))_{1 \leq s,t \leq n})_{H,K \in S_G}
\]

obtained as the \((||S_G|| \times ||S_G||)\)-matrix of \((n \times n)\)-block matrices \((S_G(sH\backslash G,tK\backslash G))_{1 \leq s,t \leq n}\) of Stirling numbers with fixed \(G \)-orbits \(G,H \) and \(K,G \).

If we order the subgroups of \(G \) in decreasing order starting with \(G \) itself, the \(G \)-Stirling matrix is lower triangular. If we in Equation 3.1 insert the values from Proposition 3.2 we obtain formulas for the reduced Euler characteristic of the poset \(\Pi^*(nS)^G \),

\[
\chi(\Pi^*(nS)^G) = -1 - \sum_{T,k} \chi(\Pi^*(kT)^G)S_G(nS,kT), \quad 1 = \sum_{k|T|>1} -\chi(\Pi^*(kT)^G)S_G(nS,kT)
\]

with \(T \) ranging over the set of isomorphism classes of \(G \)-orbits and \(k \geq 1 \) over natural numbers with \(k|T| > 1 \). (Observe that \(S_G(nS,nS) = 1 \).) In matrix notation

\[
(S_G(sH\backslash G,tK\backslash G))_{H,K \in S_G} = \left(\begin{array}{c} \vdots \\ -\chi(\Pi^*(sH\backslash G)^G) \\ \vdots \end{array} \right)_{1 \leq s,t \leq n} = \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right)
\]

we see that minus the reduced Euler characteristics of the \(G \)-partitions of the isotypical \(G \)-sets are a weighting for the Stirling matrix of \(G \). Equation (3.10) comes with the caveat that the top entry of the left column vector is 0 and not \(-\chi(\Pi^*(1G\backslash G)^G) = 1 \).

Example 3.11 \((G\text{-Stirling matrices of degree 1})\). The Stirling number for single orbits \(S = H\backslash G \) and \(T = K\backslash G \),

\[
S_G(H\backslash G,K\backslash G) = S_G(H,[K]) = \left| \frac{N_G(H,K)}{|N_G(K,K)|} \right| = \left| \frac{G(H\backslash G,K\backslash G)}{G(K\backslash G)} \right| = \frac{|(K\backslash G)^H|}{|K\backslash G|} = \frac{\text{TOM}(H,K)}{\text{TOM}(K,K)}
\]

is the number, \(S_G(H,[K]) = |\{L \in [K] \mid H \leq L\}|, \) of conjugates of \(K \) containing \(H \) [7, Definition 3.5, Lemma 3.6]. This number is determined by the table of marks \(\text{TOM}(H,K) = \|(K\backslash G)^H\| \) for \(G \). Proposition 2.8 or [7] show that the entries of the column vector in Equation (3.10) are

\[
-\chi(\Pi^*(H\backslash G)^G) = -\chi(H,G) = -\mu(H,G)
\]

for all proper subgroups \(H \) of \(G \). (In any finite poset, \(\mu(x,y) = \chi(x,y) \) whenever \(x < y \) [9, Proposition 3.8.5]).

For instance, \(G = \Sigma_3 \) has \|\(\Sigma_3 \)\| = 4 orbits \(S_1,S_2,S_3,S_6 \) of sizes 1, 2, 3, 6. The \(\Sigma_3 \)-Stirling matrix of degree 1 is

\(S_{\Sigma_3}(S,T) \)	\(\Sigma_3 \backslash \Sigma_3 \)	\(A_3 \backslash \Sigma_3 \)	\(C_2 \backslash \Sigma_3 \)	\(C_1 \backslash \Sigma_3 \)	\(-\chi(\Pi^*(H\backslash \Sigma_3)^\Sigma_3)\)
\(\Sigma_3 \backslash \Sigma_3 \)	1				0
\(A_3 \backslash \Sigma_3 \)	1	1			1
\(C_2 \backslash \Sigma_3 \)		1	1		
\(C_1 \backslash \Sigma_3 \)		1	3		

and (remembering the caveat that the top entry of the column to the far right is 0 when solving Equation (3.10)) we read off that \(\mu(A_3,\Sigma_3) = -1 \), \(\mu(C_2,\Sigma_3) = -1 \), \(\mu(1,\Sigma_3) = 3 \).
Since $\bar{\chi}(\Pi^*(1H \setminus G)^G) = \bar{\chi}(H, G) = \mu(H, G)$ for proper subgroups H of G by Proposition 2.8, it seems natural to define the higher Möbius numbers to be the solutions to the linear equation (3.10).

Definition 3.12 (Higher Möbius numbers). For every subgroup H of G and every natural number $n \geq 1$ let

$$\mu_n(H, G) = \bar{\chi}(\Pi^*(nH \setminus G)^G)$$

with the convention that $\mu_1(G, G) = 1$.

For any group G, $\mu_n(G, G) = (-1)^n(n-1)! = \mu_n(1, 1)$ for $n \geq 2$, and $\mu_n(1, G) = \bar{\chi}(\Pi^*(\prod_n G)^G)$ for $n \geq 1$. With $n = 1$, $\mu_1(H, G) = \mu(H, G)$ is the usual Möbius function of S_G as considered in Example 3.11.

The higher Möbius numbers $\mu_h(H, G)$ for $1 \leq h \leq n$ are determined by the G-Stirling matrix of degree n. We shall now consider the problem of determining the entries of this matrix.

Let $S(n, k)$ stand both for the poset of partitions of the n element set with k blocks and for the Stirling number (Example 3.17) of such partitions. Then

$$S_G(nH \setminus G, kK \setminus G) = \sum_{\pi \in S(n, k)} \prod_{b \in \pi} \frac{|O_G(H \setminus G, K \setminus G)|^{[b]}}{|O_G(K \setminus G)|^{[b]}} S(n, k) = \frac{TOM(H, K)^n}{TOM(K, K)^k} S(n, k)$$

In particular

$$S_G(nS, kT) = \begin{cases} |T|^{n-k} S(n, k) & O_G(S, T) \neq \emptyset \\ 0 & O_G(S, T) = \emptyset \end{cases}$$

when G is abelian.

Lemma 3.14. If $H \leq G$ is normal in G, then $\mu_n(H, G) = \mu_n(1, H \setminus G)$ for all $n \geq 1$.

Proof. H acts trivially on $H \setminus G$ as $Hgh = Hghg^{-1}g = Hg$ for all $h \in H$, $g \in G$. Thus a partition of $nH \setminus G$ is a G-partition if and only if it is a $H \setminus G$-partition. \qed

The higher Möbius numbers $\mu_1(H, G), \ldots, \mu_n(H, G)$ for $H \leq G$ (except for $\mu_1(G, G)$ which by decree equals 1) solve the system of linear equations (3.10) which we now rewrite as

$$[\zeta]_G \otimes S_G$$

with the G-Stirling matrix as coefficient matrix. We shall adapt the convention that in the Stirling matrix the groups will be listed with decreasing order. The group G itself occurs as the first group in the Stirling matrix which is lower triangular. The first n columns are made up of the block matrices $(S(i, j))_{1 \leq i, j \leq n}$ of classical Stirling numbers. All entries of the first column, in particular, equal $S(n, 1) = 1$. Thus

$$[\zeta]_G \otimes S_G$$

$$= \begin{bmatrix} \mu_1(G, G) \\ \mu_n(G, G) \\ \vdots \\ \mu_1(1, G) \\ \mu_n(1, G) \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \end{bmatrix}$$
or

\[
\begin{bmatrix}
\mu_1(G,G) \\
\vdots \\
\mu_n(G,G) \\
\vdots \\
\mu_1(1,G) \\
\vdots \\
\mu_n(1,G)
\end{bmatrix}
= ([\zeta]_G \otimes S_G)^{-1}
\begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

(3.16)

The entries of the inverted matrix \(([\zeta]_G \otimes S_G)^{-1}\) are the \textit{G-Stirling numbers of the first kind} [9, p 36].

Example 3.17 (Higher Möbius numbers of the trivial group). The \(C_1\)-Stirling matrix of the second kind (Definition 3.7) is the matrix

\[
S =
\begin{bmatrix}
1 \\
1 & 1 \\
1 & 3 & 1 \\
1 & 7 & 6 & 1 \\
1 & 15 & 25 & 10 & 1 \\
1 & 31 & 90 & 65 & 15 & 1 \\
\end{bmatrix}
\]

of classical Stirling numbers \(S(n,k) = |\{ \pi \in \Pi_n \mid |\pi| = k \}\) of the second kind. The higher Möbius numbers of the trivial group are by Equation (3.16) equal to the Stirling numbers of the first kind [9, p 36]

\[
\mu_n(1,1) = (S^{-1})(n,1) = s(n,1) = (-1)^{n-1}(n-1)!, \quad n \geq 1
\]

We have re-derived the classical formula [9, Example 3.10.4] for the reduced Euler characteristic of the partition poset.

Lemma 3.18. If the group \(G\) is abelian then

\[
\mu_n(H,G) = \mu(H,G)|G : H|^{n-1} \mu_n(1,1)
\]

for all \(n \geq 1\) and all subgroups \(H \leq G\).

Proof. Since \(G\) is abelian, \(S_G(iH \backslash G, jK \backslash G) = |G : K|^{i-j} S(i,j)\) by Equation (3.13), and the \(G\)-Stirling matrix of degree \(n\) is the block matrix

\[
((\zeta(H,K)|G : K|^{i-j} S(i,j))_{1 \leq i,j \leq n})_{H,K \in [S_G]}
\]

The vector \(((\mu(G,H))_{1 \leq i \leq n})_{H \in [S_G]}\) is (Equation (3.16)) the first column

\[
((\mu(G,H)|G : H|^{i-1} S^{-1}(i,1))_{1 \leq i \leq n})_{H \in [S_G]} = ((\mu(H,K)|G : H|^{i-1} \mu_i(1,1))_{1 \leq i \leq n})_{H \in [S_G]}
\]

in the inverse matrix

\[
((\mu(G,H)|G : H|^{i-j} S^{-1}(i,j))_{1 \leq i,j \leq n})_{H,K \in [S_G]}
\]

of the \(G\)-Stirling matrix. \(\square\)

In the example below we consider an example of a Stirling matrix for a non-abelian group.

Example 3.19. The \(\Sigma_3\)-Stirling matrix of degree 3 (reusing the notation of Example 3.11) is

\(S_{\Sigma_3}(S,T)\)	1S₁	2S₁	3S₁	1S₂	2S₂	3S₂	1S₃	2S₃	3S₃	1S₆	2S₆	3S₆	\(-\mu_i(H, \Sigma_3)\)
1S₁	1	0	0	1	0	0	0	0	0	1	0	0	0
2S₁	1	1	0	1	1	0	1	1	1	1	1	1	1
3S₁	1	3	1	0	0	0	0	0	0	0	0	0	0
1S₂	1	0	0	1	0	0	1	0	0	1	0	0	1
2S₂	1	1	0	0	0	0	0	0	0	0	0	0	0
3S₂	1	3	1	1	1	1	1	1	1	1	1	1	1
1S₃	1	0	0	1	0	0	3	0	0	1	0	0	0
2S₃	1	1	0	2	1	0	9	9	0	6	1	0	18
3S₃	1	3	1	4	6	1	27	81	27	36	18	1	-216
We read off that \(\mu_n(A_3, \Sigma_3) = \mu_n(1, C_2) = -2^{n-1} \mu_n(1, 1) \) (Lemma \ref{lem:4.14}) and that \(\mu_n(1, \Sigma_3) = -3^n \mu_n(1, 1) \). This last result shows that Lemma \ref{lem:4.18} does not in general extend to non-abelian groups.

4. Equivariant Euler characteristics of G-posets

Let \(\Pi \) be a finite G-poset. The \(r \)th, \(r \geq 1 \), equivariant Euler characteristic of \(\Pi \) is \([2] [7, \text{Proposition 2.9}]
\[
\chi_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in C_r(G)} \chi(\Pi^X) = \frac{1}{|G|} \sum_{A \leq G} \chi(\Pi^A) \varphi_r(A)
\]

The first sum runs over the set \(C_r(G) \) of all commuting \(r \)-tuples \(X = (x_1, \ldots, x_r) \) of elements of \(G \). The second sum runs over all abelian subgroups \(A \) of \(G \) and \(\varphi_r(A) \) is the number of generating \(r \)-tuples \((a_1, \ldots, a_r) \) of elements of \(A \) [5] [7, Remark 2.20].

We now specialize from general poset to posets of partitions. Let \(S \) be a finite \(G \)-set, \(\Pi(S) \) the \(G \)-poset of partitions of \(G \), and \(\Pi^*(S) = \Pi(S) - \{ \emptyset, \hat{1} \} \) the \(G \)-poset of non-extreme partitions of \(S \).

Definition 4.1. The group \(G \) acts effectively on \(S \) if only the trivial element of \(G \) fixes all elements of \(S \).

Lemma 4.2. Suppose that the abelian group \(A \) acts effectively on \(S \). The following conditions are equivalent:

1. \(A \) acts isotypically on \(S \)
2. \(A \) acts freely on \(S \)
3. The degree of any non-identity element of \(A \) is \(|S| \)
4. The cycle structure of any element of \(A \) is \(d^m \) for some natural numbers \(d \) and \(m \) with \(dm = |S| \)

If \(A \) acts isotypically on \(S \) then the order of \(A \) divides \(|S| \).

Proof. If \(A \) acts isotypically and \(A \) is abelian, the isotropy subgroup at any point of \(S \) is the same subgroup, \(B \), of \(A \). The group \(B \) acts trivially on \(S \), so \(B \) is the trivial subgroup since the action is effective. Thus \(A \) acts freely on \(S \).

If \(A \) acts isotypically on \(S \) then \(S = m1 \backslash A \) as right \(A \)-sets and \(|S| = m|A| \).

Lemma 4.3. Let \(A \) be any abelian subgroup of \(\Sigma_n \) acting freely on \(\Sigma_{n-1} \backslash \Sigma_n \). Put \(m = \frac{n}{|\Sigma_n|} \).

1. The number of conjugates of \(A \) in \(\Sigma_n \) is
\[
|\Sigma_n : N_{\Sigma_n}(A)| = \frac{1}{|\text{Aut}(A)||A|^m m!}
\]
2. \(\chi(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)^A) = (\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)^A) = (1)^{m-1} \mu(1, A)|A|^{m-1}(m - 1)! \) when \(n \geq 2 \).
3. \(\chi(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)^A)\Sigma_n : N_{\Sigma_n}(A)| \Sigma_n : N_{\Sigma_n}(A)| = \frac{(-1)^{n/|\Pi|}}{|\text{Aut}(A)|} (n - 1)! \)

Proof. (1) It is a standard result that the normalizer of \(A \) in the right regular permutation representation of \(A \) is the holomorphic \(A \times \text{Aut}(A) \) of \(A \) [8, pp 36–37]. Similarly, the normalizer of \(A \) in \(m \) times the right regular representation is \((A \rtimes \Sigma_n) \rtimes \text{Aut}(A) \) of order \(|A||\Sigma_n| \).

(2) As an \(A \)-set \(\Sigma_{n-1} \backslash \Sigma_n = m1 \backslash A \) consists of \(m \) free \(A \)-orbits. According to Lemma \ref{lem:4.3}
\[
\chi(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)^A) = \chi(\Pi^*(m1 \backslash A)^A) = \mu(1, A)|A|^{m-1} \mu(m, A)|A|^{m-1}(m - 1)!
\]

This formula also holds when \(A \) is trivial group. In this case, the left hand side is \(\chi(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)) = (1)^{n-1}(n - 1)! \), and the right hand side is \((1)^{n-1}(n - 1)! \) as \(\mu(1) = 1 \).

(3) This is an immediate consequence of (1) and (2).

Proof of Theorem 1.1. on Combine the expression
\[
\chi_r(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n), \Sigma_n) = \frac{1}{n!} \sum_{\text{free and abelian}} \chi(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n)^A) \varphi_r(A)|\Sigma_n : N_{\Sigma_n}(A)|
\]

for the \(r \)th equivariant Euler characteristic with Lemma 4.3(3). Note also that any abelian group of order dividing \(n \) is realizable as a unique subgroup conjugacy class in the symmetric group \(\Sigma_n \) acting freely on \(\Sigma_{n-1} \backslash \Sigma_n \). This gives
\[
\chi_r(\Pi^*(\Sigma_{n-1} \backslash \Sigma_n), \Sigma_n) = -\frac{1}{n} \sum_{|A|=n} (-1)^{n/|A|} \mu(1, A) \frac{\varphi_r(A)}{|\text{Aut}(A)|}
\]

where the sum ranges over the set of isomorphism classes of abelian groups \(A \) of order dividing \(n \). The Möbius function \(\mu(1, A) \) is completely known [5, 2.8]. Indeed, write \(A = \prod A_p \) as the product of its Sylow \(p \)-subgroups \(A_p \).
Then $\mu(1, A) = \prod \mu(1, A_p)$ and $\mu(1, A_p) = 0$ unless A_p is an elementary abelian p-group. For an elementary abelian p-group of rank d,

$$\mu(1, C_p^d) = (-1)^d p^{(\frac{d}{2})}$$

Suppose now that $A = \prod A_p$ where each Sylow p-subgroup $A_p = C_p^{d_p}$ is elementary abelian of rank d_p. By [6, Lemma 2.1], $\text{Aut}(A) = \prod_p \text{Aut}(A_p) = \prod_p \text{GL}_{d_p}(p)$ and clearly $\varphi_r(\prod A_p) = \prod \varphi_r(A_p)$. The number of surjections of C_p^r onto C_p^d is

$$\varphi_r(C_p^d) = \binom{r}{d} |\text{GL}_d(p)|$$

and consequently

$$\frac{\varphi_r(C_p^d)}{|\text{Aut}(C_p^d)|} = \binom{r}{d}.$$

This finishes the proof. □

Let $c_r(n) = (a * b_r)(n)$ denote Dirichlet convolution of the multiplicative arithmetic function $a(n)$ and $b_r(n)$. The function a is $-1 (+1)$ on any even (odd) prime power and the multiplicative function b_r has value

$$(4.4) \quad b_r(p^e) = (-1)^e p^{\frac{e}{2}} \binom{r}{e}$$

on any prime power p^e.

Proposition 4.5. The multiplicative arithmetic sequences b_r are given by $b_1 = \mu$ and the recurrence relations

$$b_{r+1}(p^d) = p^d b_r(p^d) - p^{d-1} b_r(p^{d-1})$$

valid for all $r \geq 1$ and all prime powers p^d, $d \geq 0$.

Proof. Use Pascal’s identities for ordinary and Gaussian binomial coefficients [9, Equation 17b]

$$\binom{d}{2} = \binom{d-1}{2} + (d-1), \quad \binom{r+1}{d} = p^d \binom{r}{d} + \binom{r}{d-1}$$

and the definition (4.4) of b_r. □

In the following proposition, 1 is the constant sequence with value 1 on all $n \geq 1$.

Corollary 4.6. $(1 * b_{r+1})(n) = nb_r(n)$ for all $r, n \geq 1$.

Proof. The telescopic sum

$$(1 * b_{r+1})(p^d) = \sum_{e=0}^{d} b_r(p^e) = \sum_{e=0}^{d} (p^e b_r(p^e) - p^{e-1} b_r(p^{e-1})$$

evaluates to $p^d b_r(p^d)$ at any prime power p^d. □

Proposition 4.7. The multiplicative arithmetic sequences c_r are given by $c_1 = 1, -2, 0, 0, \ldots$ and

$$c_{r+1}(n) = n b_r(n) - b_r(n/2) \quad (\text{where } b_r(n/2) = 0 \text{ for odd } n)$$

for all $r, n \geq 1$.

Proof. The two multiplicative sequences $c_1 = a * \mu$ and $1, -2, 0, 0, \ldots$ are identical since they agree on all prime powers. For odd n, $c_{r+1}(n) = (a * b_{r+1})(n) = (1 * b_{r+1})(n) = nb_r(n)$ by Corollary 4.6. For powers of 2,

$$c_{r+1}(2^d) = (a * b_{r+1})(2^d) = b_{r+1}(2^d) - \sum_{e=0}^{d-1} b_r(2^e) = 2^d b_r(2^d) - 2^{d-1} b_r(2^{d-1}) - 2^{d-1} b_r(2^{d-1}) = 2^d (b_r(2^d) - b_r(2^{d-1}))$$

by the recurrence relation of Proposition 4.5. Thus $c_{r+1}(n) = n b_r(n) - b_r(n/2)$ for even n by multiplicativity. □

The multiplicative sequences c_r can be defined recursively. The initial sequence is $c_1 = 1, -2, 0, 0, \ldots$. For $r \geq 1$,

$$c_{r+1}(2^d) = \begin{cases} 2 c_r(2) & d = 1 \\ 2^d c_r(2^d) + \sum_{j=2}^{d} 2^{d-j} 2 c_r(2^{d-j}) & d \geq 2 \end{cases}$$

for powers of 2. At powers of an odd prime p, $c_{r+1}(p^d) = p^d c_r(p^d) - p^{d-1} c_r(p^{d-1})$ as the sequences b_r and c_r coincide and we can refer to Proposition 4.5.
Corollary 4.8. The Dirichlet series of the multiplicative arithmetic functions b_r and c_r are
\[
\sum_{n=1}^{\infty} \frac{b_r(n)}{n^s} = \frac{1}{\zeta(s)(s-1)\cdots\zeta(s-r+1)}, \quad \sum_{n=1}^{\infty} \frac{c_r(n)}{n^s} = \frac{2^s - 2}{2^s\zeta(s-1)\cdots\zeta(s-r+1)}
\]
where $\zeta(s)$ is the Riemann zeta function and $r \geq 1$.

Proof. Write $\beta_r(s)$ for the Dirichlet series of $b_r(n)$. Corollary 4.6 implies the recurrence
\[
\zeta(s)\beta_{r+1}(s) = \beta_r(s-1)
\]
as $\beta_r(n)$, with series $\beta_r(s-1)$, is the Dirichlet convolution of 1, with series $\zeta(s)$, and $b_{r+1}(n)$. (The Dirichlet series of a Dirichlet convolution is the product of the Dirichlet series of the factors.) The expression for the Dirichlet series of $b_r(n)$ follows by induction starting with the series, $\zeta(s)^{-1}$, for $b_1 = \mu$. The Dirichlet series of the Dirichlet convolution $c_r = a \ast b_r$ is the product of this series and the series, $\zeta(s)(1 - 2^{1-s})$, of $a = 1 \ast c_1$. \(\square\)

It is easy to make explicit computations on a computer. The values of the multiplicative arithmetic function $\frac{1}{n} c_r(n) = \chi_r (\Pi^*(\Sigma_{n-1} \setminus \Sigma_n), \Sigma_n)$, $2 \leq n \leq 15$ and $1 \leq r \leq 5$, are

$\frac{1}{n} c_r(n)$	$n = 2$	3	4	5	6	7	8	9	10	11	12	13	14	15
$r = 1$	1	-1	0	0	0	0	0	0	0	0	0	0	0	0
$r = 2$	-2	-1	1	-1	2	-1	0	2	-1	-1	-1	2	1	
$r = 3$	-4	-4	5	-6	16	-8	-2	3	24	-12	-20	-14	32	24
$r = 4$	-8	-13	21	-31	104	-57	-22	39	248	-133	-273	-183	456	403
$r = 5$	-16	-40	85	-156	640	-400	-190	390	2496	-1464	-3400	-2380	6400	6240

Acknowledgments

I would like to thank Michał Adamaszek, Magdalena Kedziorek, Matthew Gelvin, and Morten S. Risager for inspiring discussions and valuable input.

References

[1] G. Arone, A branching rule for partition complexes, ArXiv e-prints (2015).
[2] Michael Atiyah and Graeme Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989), no. 4, 671–677. MR 1076708 (92c:19005)
[3] Serge Bouc, Homologie de certains ensembles ordonnés, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 2, 49–52. MR 756517 (85k:20150)
[4] Matthew Gelvin and Jesper M. Møller, Homotopy equivalences between p-subgroup categories, J. Pure Appl. Algebra 219 (2015), no. 7, 3030–3052. MR 3313517
[5] P. Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1936), 134–151.
[6] Christopher J. Hillar and Darren L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no. 10, 917–923. MR 2363058
[7] J. M. Møller, Euler characteristics of centralizer subcategories, ArXiv e-prints (2015).
[8] Derek J. S. Robinson, A course in the theory of groups, second ed., Springer-Verlag, New York, 1996. MR 96f:20001
[9] Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. MR MR1442260 (98a:05001)
[10] Dennis E. White and S. G. Williamson, Combinatorial structures and group invariant partitions, Proc. Amer. Math. Soc. 55 (1976), no. 1, 233–236. MR 0392600 (52 #13417)

Institut for Matematiske Fag, Universitetsparken 5, DK–2100 København
E-mail address: moller@math.ku.dk
URL: http://www.math.ku.dk/~moller