Thermal artefacts in two-photon solar cell experiments

Chris C. Phillips1

Asahi et al. recently reported1 record increases (ΔEQE) in the external quantum efficiency (EQE) of a heterojunction solar cell when it is illuminated with below-bandgap energy light. The EQE is the ratio of photocurrent electron flux to incident photon flux at zero bias. This ‘two-step photon up-conversion’ effect offers a way of breaking the 31% theoretical Shockley–Queisser solar cell efficiency limit. However, the device transport is very temperature sensitive, and a 10 K temperature rise (see Fig. 3b, ref. 1) increases the photocurrent by about 30% on its own. The below-bandgap light is continuous wave (CW) and intense (about 360 mW cm−2). Here it is argued that the observed photocurrent increase is due to sample heating, not direct photoexcitation.

Bandgap light (wavelength, $\lambda \sim 780$ nm) creates photocarrier pairs in the GaAs which are separated by the depletion field. It is claimed that photoelectrons accumulate in a long-lived intermediate state1 at a 220 meV high Al0.3Ga0.7As/GaAs heterojunction barrier in the depletion zone, before being photo- excited over it by the below bandgap ($\lambda = 1300$ nm) light and thus increasing the efficiency.

The best (ΔEQE = 30%) result came from a device measured in a solar simulator that also had a layer of InAs quantum dots (QDs) at the heterojunction1. However, a second measurement, using a 110 mW of CW ($\lambda = 780$ nm) laser instead of the simulator, saw the short-circuit current (J_{sc}) increase from 6.6 to 7.2 mA cm−2, corresponding to a much lower ΔEQE of ~0.95%.

In other words, applying the 360 mW cm−2 of CW laser, with a wavelength of $\lambda = 1300$ nm, increased the photocurrent by a fraction of about 8.5%. This would correspond to a sample warming of <3 K.

The large (32 times) discrepancy between the two ΔEQE measurements is not discussed in the paper1, so one can only speculate on its origins. The simulator illumination intensity was about 2 mW cm−2 spectrally integrated, corresponding to about 29 μW cm−2 during the 350 nm wide EQE scan at 5 nm resolution (see Fig. 2a, b, ref. 1). The 1300 nm laser was therefore between 180 and 12,000 times brighter than the simulator was designed to work with. This could have both heated the sample, and blinded the simulator’s sensitive reference channel optical detectors with scattered laser light, causing it to over-report the ΔEQE. This would also explain why, somewhat surprisingly, a record ΔEQE (~10%) was also seen in the control sample (see Fig. 2d, ref. 1) that had no QDs.

Concerning the photoexcitation over the barrier, the control sample result (ΔEQE approximately 10%) would have to be due to free-carrier absorption by the accumulated electrons. At these wavelengths, free-carrier absorption gives a cross section of about 6 × 10−18 cm2 per electron4, and the fact that the QD and control samples gave comparable ΔEQE results in the simulator would argue that the QD absorption cross section is similar. Taking the laser measurement definiteness, the 110 mW cm−2 of bandgap light generates a photoelectron flux of about 4.1 × 1015 cm−2 s−1. Dividing this by the photon flux in the 320 mW cm−2 beam (λ of 1300 nm) would imply that 1.95 × 10−2 of the latter is involved in photoexciting electrons over the barrier. To get this absorption would need at least roughly 3.3 × 1014 cm−2 electrons to be trapped at the barrier.

This electron density is about 330 times higher than the n_0 of around 1012 cm−2 density of the QDs. It is also roughly 3300 times higher than the electron density (n_0 of around 1 × 1014 cm−2) that would be enough to generate a field discontinuity. ΔE proportional to en_0/e_F, that is large enough to screen out the roughly 1.4 × 109 V m−1 depletion field that is needed to trap the electrons. This argues that the ΔEQE effect cannot be explained by photoexcitation at the barrier.

Also reported was a roughly 2 mV increase in the roughly 700 mV open-circuit voltage (V_{oc}) when the λ equals 1300 nm light was applied (Fig. 7 in ref. 1). By comparing this with the 20 mV approximate drop in V_{oc} seen when the device is warmed by 10 K, it is argued that the light-induced rise in V_{oc} must be non-thermal, because warming a normal p–n junction increases the diode leakage current and therefore reduces V_{oc} whereas increasing the photocurrent will always increase V_{oc}. Firstly, these statements only apply to an ideal Shockley p–n junction, with a drift-diffusion dark current and a constant photocurrent. Neither conditions apply to Asahi et al.’s heterostructure, where both photocurrent and the leakage currents increase strongly with temperature1. They will be influencing V_{oc} in opposite directions and in practice the direction of change of V_{oc} will depend in a complex way on bandgap changes and on experimental parameters, such as the bandgap.

1 Physics Department, Imperial College London, London SW7 2AZ, UK. Correspondence and requests for materials should be addressed to C.C.P. (email: chris.phillips@imperial.ac.uk)

https://doi.org/10.1038/s41467-018-07166-1

NATURE COMMUNICATIONS | (2019) 10:957 | https://doi.org/10.1038/s41467-018-07166-1 | www.nature.com/naturecommunications
illumination intensity, so the observed sign of the change cannot be taken as evidence that it is caused by photoexcitation.

Secondly, there is the problem of experimental drift. The quoted 0.4 mV accuracy on V_{oc} (Fig. 7b error bars) translates into a J_{sc} uncertainty of about 2.5×10^{-5} A cm$^{-2}$. This is only 1/270th of the ~7 mA cm$^{-2}$ photocurrent. Furthermore, the fact that Fig. 7a inset plot shows no data points or experimental noise implies a V_{oc} error that is less than the width of the lines in the graph. Measuring off the plot this is about 0.1 mV, i.e. about four times less than the error bars in Fig. 7b, so Fig. 7a, b are not compatible.

To summarise, one has to conclude that Fig. 7 data could only be taken at face value if experimental parameters, such as the excitation laser intensity and the effects of ambient light fluctuations were all controlled to better than one part in about 1000. This would be a formidable experimental achievement.

Finally, Asahi et al. point out that their ΔEQE signals are “approximately two orders of magnitude greater than previously reported”, and cite a number of related experiments. Many of these, and others in the literature, describe CW measurements that are also susceptible to these thermal artefacts. ΔEQE signals with a thermal origin have much slower response times than genuine electronic ones. They can be eliminated by intensity modulating the excitation laser(s) and checking that the ΔEQE signal is independent of the modulation frequency. The claims of Asahi et al. are incorrect because they have failed to demonstrate this. The purpose of this correspondence is to urge the experimental community to apply this simple experimental test in future work.

Data availability
The data are available from the author on request.

Received: 8 May 2018 Accepted: 22 October 2018
Published online: 27 February 2019

References
1. Asahi, S., Teranishi, H., Kusaki, K., Kaizu, T. & Kita, T. Two-step photon up-conversion solar cells. Nat. Commun. 8, 14962 (2017).
2. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of PN junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
3. Yoshida, M., Ekins-Daukes, N. J., Farrell, D. J. & Phillips, C. C. Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 100, 263902 (2012).
4. Blakemore, J. F. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982).
5. Vaquero-Stainer, A. et al. Semiconductor nanostructure quantum ratchet for high efficiency solar cells. Comms. Physics 1, 7 (2018).
6. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, New York, 2019).

Author contributions
C.C.P. performed the analysis and wrote the script.

Additional information
Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.