COSETS OF BERSHADSKY-POLYAKOV ALGEBRAS AND RATIONAL W-ALGEBRAS OF TYPE A

TOMOYUKI ARAKAWA, THOMAS CREUTZIG AND ANDREW R. LINSHAW

ABSTRACT. The Bershadsky-Polyakov algebra is the W-algebra associated to \mathfrak{sl}_3 with its minimal nilpotent element f_θ. For notational convenience we define $W^\ell = W^{\ell-3/2}(\mathfrak{sl}_3, f_\theta)$. The simple quotient of W^ℓ is denoted by W^ℓ, and for ℓ a positive integer, W^ℓ is known to be C_2-cofinite and rational. We prove that for all positive integers ℓ, W^ℓ contains a rank one lattice vertex algebra V_L, and that the coset $C^\ell = \text{Com}(V_L, W^\ell)$ is isomorphic to the principal, rational W($\mathfrak{sl}_{2\ell}$)-algebra at level $(2\ell + 3)/(2\ell + 1) - 2\ell$. This was conjectured in the physics literature over 20 years ago. As a byproduct, we construct a new family of rational, C_2-cofinite vertex superalgebras from W^ℓ.

1. INTRODUCTION

A longstanding problem in vertex algebra theory is to classify rational and C_2-cofinite vertex algebras. Well-known examples include those associated to even positive definite lattices [D], and simple affine vertex algebras at positive integral level [FZ]. More recently, Kac and Wakimoto conjectured the C_2-cofiniteness and rationality of many quantum Hamiltonian reductions based on the modularity of their characters [KWII], and these conjectures were proven for the minimal series principal W-algebras in [ArIV, ArV]. New examples beyond this conjecture and still associated to quantum Hamiltonian reductions have also been found [Ka, ArM]. The classification problem seems to be out of reach at present, but it is still of great interest to find new examples and constructions of such vertex algebras.

There are some standard ways to construct new vertex algebras from old ones. First, the orbifold construction begins with a vertex algebra V and a group of automorphisms G, and considers the invariant subalgebra V^G and its extensions. The Moonshine vertex algebra is constructed in this way; its full automorphism group is the Monster, which is the largest of the sporadic simple finite groups, and its graded character is $j(\tau) - 744$ where $j(\tau)$ is the modular invariant j-function [FLM]. It is widely believed that if V is C_2-cofinite and rational, and G is a finite group, V^G will inherit these properties. In the case where G is cyclic, the C_2-cofiniteness of V^G was proven by Miyamoto in [MiI], and the rationality was established by Carnahan and Miyamoto in [CM].

Similarly, the coset construction associates to a vertex algebra V and a subalgebra A, the subalgebra $\text{Com}(A, V) \subset V$ which commutes with A. This was introduced by Frenkel and Zhu in [FZ], generalizing earlier constructions in representation theory [KP] and physics [GKO], where it was used to construct the unitary discrete series representations of the Virasoro algebra. It is believed that if both A and V are C_2-cofinite and rational, these

This work was partially supported by JSPS KAKENHI Grants (#25287004 and #26610006 to T. Arakawa), an NSERC Discovery Grant (#RES0019997 to T. Creutzig), and a grant from the Simons Foundation (#318755 to A. Linshaw).
properties will be inherited by $\Com(\mathcal{A}, \mathcal{V})$. In the case where \mathcal{V} is a rational affine vertex algebra and \mathcal{A} is a lattice vertex algebra, this has been proven recently in [DR], building on [ALY, DLY, DLWY, DWI, DWII, DWIII].

In this paper, we consider cosets of the Bershadsky-Polyakov algebra. This algebra appeared originally in the physics literature [Ber, Pol], and is the \mathcal{W}-algebra corresponding to the quantum Hamiltonian reduction of \mathfrak{sl}_3 with its minimal nilpotent element f_0. For notational convenience, we introduce a shift of level and define \mathcal{W}^ℓ to be the universal Bershadsky-Polyakov algebra $\mathcal{W}^{\ell-3/2}(\mathfrak{sl}_3, f_0)$, for $\ell \neq -3/2$. It is freely generated by fields J, T, G^+, G^- of weights $1, 2, 3/2, 3/2$, and we denote its simple quotient by \mathcal{W}_ℓ. For ℓ a positive integer, the C_2-cofiniteness and rationality of \mathcal{W}_ℓ were proven in [ArII]. Let

$$
C^\ell = \Com(\mathcal{H}, \mathcal{W}^\ell),
$$

where \mathcal{H} is the Heisenberg algebra generated by J. It was conjectured over 20 years ago in the physics literature [B-HIII] that C^ℓ should be of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for generic values of ℓ. In other words, a minimal strong generating set should consist of one field in each of these weights. In [B-HIII] it was also conjectured that when ℓ is a positive integer, the simple coset

$$
C_\ell = \Com(\mathcal{H}, \mathcal{W}_\ell)
$$

should be the principal $\mathcal{W}(\mathfrak{sl}_2\ell)$-algebra at level $(2\ell + 3)/(2\ell + 1) - 2\ell$, which is rational by [ArV]. So far, this has been proven only very recently by Kawasetsu [Ka] in the case $\ell = 1$. These conjectures imply a uniform truncation property of this family of simple $\mathcal{W}(\mathfrak{sl}_2\ell)$-algebras for $\ell > 3$; they are expected to be of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$, even though the universal $\mathcal{W}(\mathfrak{sl}_2\ell)$-algebra is of type $\mathcal{W}(2, 3, \ldots, 2\ell)$. This can only happen if there exist decoupling relations expressing the generators of weights $8, 9, \ldots, 2\ell$ as normally ordered polynomials in the ones up to weight 7. The existence of a singular vector of weight 8 in the universal algebra has been known for many years [B-HIII], and provides further evidence for these conjecture.

In this paper we shall prove all of these conjectures. We begin by studying the $U(1)$-orbifold $(\mathcal{W}^\ell)^{U(1)}$ in Section 5. Typically, an orbifold of a vertex algebra \mathcal{A}^ℓ with structure constants depending continuously on a parameter ℓ will have a minimal strong generating set that works for generic values of ℓ. This was established in [CLI] when \mathcal{A}^ℓ is a tensor product of affine and free field algebras, and a similar approach works for \mathcal{W}^ℓ. We show that $(\mathcal{W}^\ell)^{U(1)}$ is of type $\mathcal{W}(1, 2, 3, 4, 5, 6, 7)$ for generic values of ℓ, and we give a complete description of the non-generic set, where additional generators are needed; it consists only of $\{0, 1/2\}$. In general, it is an important problem to characterize the non-generic set for such orbifolds, and we expect that our methods will be applicable in a wider setting. In Section 6, using the description of $(\mathcal{W}^\ell)^{U(1)}$, we obtain

Theorem 1.1. $C^\ell = \Com(\mathcal{H}, \mathcal{W}^\ell)$ is of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for all values of ℓ except for 0 and 1/2. Here \mathcal{H} is the Heisenberg algebra generated by J.

In Section 7, we show that when ℓ is a positive integer, the Heisenberg algebra $\mathcal{H} \subset \mathcal{W}_\ell$ is actually part of a rank one lattice vertex algebra \mathcal{V}_L for $L = \sqrt{6}\ell \mathbb{Z}$. Moreover, \mathcal{V}_L and C_ℓ form a Howe pair, i.e., a pair of mutual commutants, inside \mathcal{W}_ℓ. By a theorem of Miyamoto, this implies the C_2-cofiniteness of C_ℓ. In Section 8, we consider a certain simple current extension of $\mathcal{W}(\mathfrak{sl}_2\ell) \otimes \mathcal{V}_L$ where $\mathcal{W}(\mathfrak{sl}_2\ell)$ has level $(2\ell + 3)/(2\ell + 1) - 2\ell$, and show that it is isomorphic to \mathcal{W}_ℓ. This implies our main result:
Theorem 1.2. For all positive integers \(\ell \), \(C_\ell \) is isomorphic to the principal, rational \(\mathcal{W}(\mathfrak{sl}_{2\ell}) \)-algebra at level \((2\ell + 3)/(2\ell + 1) - 2\ell \).

We obtain the uniform truncation property of this family of \(\mathcal{W}(\mathfrak{sl}_{2\ell}) \)-algebras, and also a new proof of the \(C_2 \)-cofiniteness and rationality of \(\mathcal{W}_\ell \), since it is a simple current extension of a rational, \(C_2 \)-cofinite vertex algebra. The appearance of principal, rational \(\mathcal{W} \)-algebras as cosets of nonprincipal ones is a remarkable coincidence, and it indicates that the principal rational \(\mathcal{W} \)-algebras may be important building blocks for more general rational \(\mathcal{W} \)-algebras. In Section 9, we obtain some nontrivial character identities as a consequence of the above isomorphism. Finally, in Section 10 we consider cosets of the Heisenberg algebra inside \(\mathcal{W}^\ell \otimes \mathcal{E} \) where \(\mathcal{E} \) denotes the rank one \(bc \)-system. We obtain a new deformable vertex superalgebra with even generators in weights 1, 2, 3 and two odd generators in weight 2, whose simple quotients for positive integers \(\ell \) form a new series of rational, \(C_2 \)-cofinite vertex superalgebras with integer conformal weights.

Coset vertex algebras have various applications in physics. One of the most interesting recent developments in the AdS/CFT correspondence is the relation between two-dimensional coset conformal field theories and higher spin gravity on three dimensional Anti-de-Sitter space. The main examples are the \(\mathcal{W}_N \)-minimal models [GG] and their super conformal analogues [CHR]. Recall that the Bershadsky-Polyakov algebra coincides with the case \(n = 3 \) in the family of \(\mathcal{W}^{(2)}_n \)-algebras constructed by Feigin and Semikhatov [FS], which were studied this context in [A-R]. In that article it was observed that the \(\mathcal{W}^{(2)}_4 \)-algebra at level \(-7/3 \) is just a rank one lattice vertex algebra and hence rational. We expect that for all \(n \geq 4 \), there is a similar series of rational \(\mathcal{W}^{(2)}_n \)-algebras which contain a rank one lattice vertex algebra \(V_L \), and that the coset of \(V_L \) will give rise to another series of principal, rational \(\mathcal{W} \)-algebras of type \(A \) with a uniform truncation property. In fact, coincidences among cosets of simple \(\mathcal{W} \)-algebras by the affine subalgebra at special levels is a much more general phenomenon that is not limited to the rational levels. Other examples of this phenomenon involving cosets of minimal \(\mathcal{W} \)-algebras can be found in [ACKL].

Another reason to study cosets \(C_\ell \) at irrational levels is that they have some interesting connections to logarithmic conformal field theories, which are associated to irrational \(C_2 \)-cofinite vertex algebras whose representation category is not semisimple. The best studied examples are the so-called \(\mathcal{W}(p) \)-triplet algebras, see e.g. [AM, TW]. Interestingly, \(\mathcal{W}(p) \) is related to the coset \(\text{Com}(\mathcal{H}, \mathcal{W}^{(2)}_{p-1}) \) where \(\mathcal{H} \) is a Heisenberg algebra. In particular, \(\mathcal{W}(4) \) is a simple current extension of our coset \(C_\ell \) with \(\ell = -3/4 \) [CRW].

2. VERTEX ALGEBRAS

In this section, we define vertex algebras, which have been discussed from various points of view in the literature (see for example [Bor, FLM, K, FBZ]). We will follow the formalism developed in [LZ] and partly in [Li]. Let \(V = V_0 \oplus V_1 \) be a super vector space over \(\mathbb{C} \), and let \(z, w \) be formal variables. By \(\mathcal{QO}(V) \), we mean the space of linear maps

\[V \to V((z)) = \{ \sum_{n \in \mathbb{Z}} v(n)z^{-n-1} | v(n) \in V, v(n) = 0 \text{ for } n \gg 0 \}. \]
Each element $a \in \text{QO}(V)$ can be represented as a power series
\[a = a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \in \text{End}(V)[[z, z^{-1}]]. \]
We assume that $a = a_0 + a_1$ where $a_i : V_{i+j} \to V_{i+j}(z)$ for $i, j \in \mathbb{Z}/2\mathbb{Z}$, and we write $|a_i| = i$.

For each $n \in \mathbb{Z}$, there is a nonassociative bilinear operation \circ_n on $\text{QO}(V)$, defined on homogeneous elements a and b by
\[a(w) \circ_n b(w) = \text{Res}_z a(z) b(w) \ell_{|z|>|w|}(z-w)^n - (-1)^{|a||b|} \text{Res}_z b(w) a(z) \ell_{|w|>|z|}(z-w)^n. \]
Here $\ell_{|z|>|w|} f(z,w) \in \mathbb{C}[[z,z^{-1},w,w^{-1}]]$ denotes the power series expansion of a rational function f in the region $|z| > |w|$. For $a, b \in \text{QO}(V)$, we have the following identity of power series known as the operator product expansion (OPE) formula.
\[(2.1) \quad a(z) b(w) = \sum_{n \geq 0} a(w) \circ_n b(w) (z-w)^{-n-1} + :a(z)b(w): \]
Here $a(z) b(w) := a(z) b(w) + (-1)^{|a||b|} b(w) a(z)$, where $a(z)_- = \sum_{n < 0} a(n) z^{-n-1}$ and $a(z)_+ = \sum_{n \geq 0} a(n) z^{-n-1}$. Often, (2.1) is written as
\[a(z) b(w) \sim \sum_{n \geq 0} a(w) \circ_n b(w) (z-w)^{-n-1}, \]
where \sim means equal modulo the term $:a(z)b(w):$, which is regular at $z = w$.

Note that $a(z) b(z) :$ is a well-defined element of $\text{QO}(V)$. It is called the Wick product or normally ordered product of a and b, and it coincides with $a(z) \circ_{-1} b(z)$. For $n \geq 1$ we have
\[n! \, a(z) \circ_{-n-1} b(z) = : (\partial^n a(z)) b(z) :, \quad \partial = \frac{d}{dz}. \]
For $a_1(z), \ldots, a_k(z) \in \text{QO}(V)$, the k-fold iterated Wick product is defined inductively by
\[(2.2) \quad :a_1(z) a_2(z) \cdots a_k(z): = :a_1(z) b(z):, \quad b(z) = :a_2(z) \cdots a_k(z):. \]
We often omit the formal variable z when no confusion can arise.

A subspace $A \subset \text{QO}(V)$ containing 1 which is closed under all products \circ_n will be called a quantum operator algebra (QOA). We say that $a, b \in \text{QO}(V)$ are local if
\[(z-w)^N [a(z), b(w)] = 0 \]
for some $N \geq 0$. Here $[,]$ denotes the super bracket. This condition implies that $a \circ_n b = 0$ for $n \geq N$, so (2.1) becomes a finite sum. Finally, a vertex algebra will be a QOA whose elements are pairwise local. This notion is well known to be equivalent to the notion of a vertex algebra in the sense of [FLM].

A vertex algebra A is said to be generated by a subset $S = \{ a_i \mid i \in I \}$ if A is spanned by words in the letters a_i, \circ_n, for $i \in I$ and $n \in \mathbb{Z}$. We say that S strongly generates A if A is spanned by words in the letters a_i, \circ_n for $n < 0$. Equivalently, A is spanned by
\[\{ : \partial^{k_1} a_{i_1} \cdots \partial^{k_m} a_{i_m} : \mid i_1, \ldots, i_m \in I, k_1, \ldots, k_m \geq 0 \}. \]
We say that S freely generates A if there are no nontrivial normally ordered polynomial relations among the generators and their derivatives. As a matter of notation, we say that a vertex algebra A is of type $\mathcal{W}(d_1, \ldots, d_r)$ if it has a minimal strong generating set consisting of one field in each weight d_1, \ldots, d_r.
Given a vertex algebra \mathcal{V} and a vertex subalgebra $\mathcal{A} \subset \mathcal{V}$, the coset or commutant of \mathcal{A} in \mathcal{V}, denoted by $\text{Com}(\mathcal{A}, \mathcal{V})$, is the subalgebra of elements $v \in \mathcal{V}$ such that $[a(z), v(w)] = 0$ for all $a \in \mathcal{A}$. Equivalently, $v \in \text{Com}(\mathcal{A}, \mathcal{V})$ if and only if $a \circ_n v = 0$ for all $a \in \mathcal{A}$ and $n \geq 0$.

3. The Bershadsky-Polyakov Algebra

The universal Bershadsky-Polyakov algebra at level $k \neq -3$ is isomorphic to the W-algebra $W^k(\mathfrak{sl}_3, f_\theta)$ associated to \mathfrak{sl}_3 with its minimal nilpotent element f_θ ([KRW]). Alternatively, it arises as the algebra W^3_{θ} in the family W^3_{θ} constructed by Feigin and Semikhatov [FS]. For notational convenience we introduce a shift of level and define

$$W^\ell = W^{\ell - 3/2}(\mathfrak{sl}_3, f_\theta).$$

The reason for this shift is that the values $\ell = 0, 1, 2, \ldots$ now correspond to the special levels $p/2 - 3$ for $p = 3, 5, 7, \ldots$, which were considered in [ArI]. For $\ell \neq -3/2$, W^ℓ is freely generated by fields J, T, G^+, G^- of weights $1, 2, 3/2, 3/2$, satisfying the following OPE relations.

\begin{align*}
(3.1) \quad J(x)J(w) & \sim \frac{2\ell}{3}(z-w)^{-2}, \quad G^\pm(z)G^\pm(w) \sim 0, \quad J(z)G^\pm(w) \sim \pm G^\pm(w)(z-w)^{-1}, \\
(3.2) \quad T(z)T(w) & \sim -\frac{\ell(6\ell - 7)}{2\ell + 3}(z-w)^{-4} + 2T(w)(z-w)^{-2} + \partial T(w)(z-w)^{-1}, \\
(3.3) \quad T(z)G^\pm(w) & \sim \frac{3}{2}G^\pm(w)(z-w)^{-2} + \partial G^\pm(w)(z-w)^{-1}, \\
(3.4) \quad T(z)J(w) & \sim J(w)(z-w)^{-2} + \partial J(w)(z-w)^{-1}, \\
& \quad G^+(z)G^-(w) \sim \ell(2\ell - 1)(z-w)^{-3} + \frac{3}{2}(2\ell - 1)J(w)(z-w)^{-2} \\
& \quad + \left(3 : J(w)J(w) : + \frac{3}{4}(2\ell - 1)\partial J(w) - (\ell + \frac{3}{2})T(w)\right)(z-w)^{-1}.
\end{align*}

We denote by W_ℓ the simple quotient of W^ℓ by its maximal, proper ideal graded by conformal weight. For $\ell = 0$, $W_0 \cong \mathbb{C}$, and for ℓ a positive integer, the maximal proper ideal is generated by $(G^\pm)^{2\ell + 1}$ and W_ℓ is C_2-cofinite and rational [ArII].

4. Weak Increasing Filtrations

A good increasing filtration on a vertex algebra \mathcal{A} is a $\mathbb{Z}_{\geq 0}$-filtration

$$\mathcal{A}(0) \subset \mathcal{A}(1) \subset \mathcal{A}(2) \subset \cdots, \quad \mathcal{A} = \bigcup_{d \geq 0} \mathcal{A}(d)$$

such that $\mathcal{A}(0) = \mathbb{C}$, and for all $a \in \mathcal{A}(r)$, $b \in \mathcal{A}(s)$, we have

$$a \circ_n b \in \begin{cases}
\mathcal{A}(r+s) & n < 0 \\
\mathcal{A}(r+s-1) & n \geq 0.
\end{cases}$$
We set \(A_{(-1)} = \{0\} \), and we say that \(a \in A_{(d)} \setminus A_{(d-1)} \) has degree \(d \). Such filtrations were introduced in [LiII], and the key property is that the associated graded algebra

\[
gr(A) = \bigoplus_{d \geq 0} A_{(d)}/A_{(d-1)}
\]
is a \(\mathbb{Z}_{\geq 0} \)-graded associative, (super)commutative algebra with a unit 1 under a product induced by the Wick product on \(A \). The derivation \(\partial \) on \(A \) induces a derivation of degree zero on \(\text{gr}(A) \), which we also denote by \(\partial \). We call such rings \(\partial \)-rings, and we say that a \(\partial \)-ring \(A \) is generated by a set \(\{a_i \mid i \in I\} \) if \(\{\partial^k a_i \mid i \in I, k \geq 0\} \) generates \(A \) as a ring.

For \(r \geq 1 \) we have the projection

\[
(4.3) \quad \varphi_r : A_{(r)} \to A_{(r)}/A_{(r-1)} \subset \text{gr}(A).
\]
By Lemma 3.6 of [LL], if \(\{a_i \mid i \in I\} \) is a set of generators for \(\text{gr}(A) \) as a \(\partial \)-ring, where \(a_i \) is homogeneous of degree \(d_i \), and \(\bar{a}_i \in A_{(d_i)} \) are elements satisfying \(\varphi_{d_i}(\bar{a}_i) = a_i \), then \(A \) is strongly generated as a vertex algebra by \(\{\bar{a}_i \mid i \in I\} \).

In this paper, we will need filtrations with weaker properties. We define a weak increasing filtration on a vertex algebra \(A \) to be a \(\mathbb{Z}_{\geq 0} \)-filtration

\[
(4.4) \quad A_{(0)} \subset A_{(1)} \subset A_{(2)} \subset \cdots , \quad A = \bigcup_{d \geq 0} A_{(d)}
\]
such that for \(a \in A_{(r)}, b \in A_{(s)} \), we have

\[
(4.5) \quad a \circ_n b \in A_{(r+s)}, \quad n \in \mathbb{Z}.
\]
This condition guarantees that \(\text{gr}(A) = \bigoplus_{d \geq 0} A_{(d)}/A_{(d-1)} \) is a vertex algebra, but it is no longer abelian in general. Let \(\varphi_r : A_{(r)} \to A_{(r)}/A_{(r-1)} \subset \text{gr}(A) \) denote the projection as above. We have the following reconstruction property, whose proof is the same as the proof of Lemma 3.6 of [LL].

Lemma 4.1. Let \(A \) be a vertex algebra with a weak increasing filtration, and let \(\{a_i \mid i \in I\} \) be a set of strong generators for \(\text{gr}(A) \), where \(a_i \) is homogeneous of degree \(d_i \). If \(\bar{a}_i \) are elements of \(A_{(d_i)} \) satisfying \(\varphi_{d_i}(\bar{a}_i) = a_i \) for all \(i \in I \), then \(A \) is strongly generated as a vertex algebra by \(\{\bar{a}_i \mid i \in I\} \).

We define an increasing filtration

\[
\mathcal{W}^r_{(0)} \subset \mathcal{W}^r_{(1)} \subset \cdots
\]
on \(\mathcal{W}^r \) as follows: \(\mathcal{W}^r_{(-1)} = \{0\} \), and \(\mathcal{W}^r_{(r)} \) is spanned by iterated Wick products of the generators \(J, T, G^\pm \) and their derivatives, such that at most \(r \) of \(G^\pm \) and their derivatives appear. It is clear from the defining OPE relations that this is a weak increasing filtration. Clearly \(\mathcal{W}^r_{(0)} \) has strong generators \(J \) and \(T \). Replacing \(T \) by \(T^c = T - \frac{4}{3 \ell} : JJ : \), we see that \(J(z)T^c(w) \sim 0 \), so \(\mathcal{W}^r_{(0)} \) is the tensor product of the Heisenberg algebra with generator \(J \) and the Virasoro algebra with generator \(T^c \).

Note that the associated graded algebra

\[
\mathcal{V}^r = \text{gr}(\mathcal{W}^r) = \bigoplus_{d \geq 0} \mathcal{W}^r_{(d)}/\mathcal{W}^r_{(d-1)}
\]
is freely generated by J, T, G^\pm. (By abuse of notation, we use the same symbols for the images of these generators in \mathcal{V}^ℓ). The OPE relations (3.1)-(3.4) still hold in \mathcal{V}^ℓ, but (3.5) is replaced with $G^+(z)G^-(w) \sim 0$. Finally, \mathcal{V}^ℓ has a good increasing filtration
$$\mathcal{V}^\ell_{(0)} \subset \mathcal{V}^\ell_{(1)} \subset \cdots,$$
where $\mathcal{V}^\ell_{(-1)} = \{0\}$, and $\mathcal{V}^\ell_{(r)}$ is spanned by iterated Wick products of the generators J, T, G^\pm and their derivatives, of length at most r. Then $\text{gr}(\mathcal{V}^\ell)$ is an abelian vertex algebra freely generated by J, T, G^\pm. In particular,
$$\text{gr}(\mathcal{V}^\ell) \cong \mathbb{C} [J, \partial J, \partial^2 J, \ldots, T, \partial T, \partial^2 T, \ldots, G^+, \partial G^+, \partial^2 G^+, \ldots, G^-, \partial G^-, \partial^2 G^-, \ldots].$$

5. The $U(1)$ Invariants in \mathcal{W}^ℓ

The action of the zero mode J_0 integrates to a $U(1)$-action on \mathcal{W}^ℓ, and the invariant subalgebra $(\mathcal{W}^\ell)^{U(1)}$ coincides with the kernel of J_0. Since J, T lie in $(\mathcal{W}^\ell)^{U(1)}$ and $J_0(G^\pm) = \pm G^\pm$, it is immediate that $(\mathcal{W}^\ell)^{U(1)}$ is spanned by all normally ordered monomials of the form
$$\mathcal{W}^\ell_{(r)} = \{ \partial^{a_1} T \cdots \partial^{a_r} T (\partial^{b_1} J) \cdots (\partial^{b_r} J)(\partial^{c_1} G^+) \cdots (\partial^{c_r} G^+)\partial^{d_1} G^- \cdots (\partial^{d_r} G^-) \} ,$$
where $r \geq 0$ and $a_1 \geq \cdots \geq a_r \geq 0$, $b_1 \geq \cdots \geq b_j \geq 0$, $c_1 \geq \cdots \geq c_r \geq 0$, and $d_1 \geq \cdots \geq d_r \geq 0$. We say that $\omega \in (\mathcal{W}^\ell)^{U(1)}$ is in normal form if it has been expressed as a linear combination of such monomials. Since \mathcal{W}^ℓ is freely generated by J, T, G^\pm, these monomials form a basis of $(\mathcal{W}^\ell)^{U(1)}$, and the normal form is unique.

The filtration on \mathcal{W}^ℓ restricts to a filtration
$$(\mathcal{W}^\ell)^{U(1)}_{(0)} \subset (\mathcal{W}^\ell)^{U(1)}_{(1)} \subset \cdots$$
on $(\mathcal{W}^\ell)^{U(1)}$, where $(\mathcal{W}^\ell)^{U(1)}_{(r)} = (\mathcal{W}^\ell)^{U(1)} \cap \mathcal{W}^\ell_{(r)}$. The $U(1)$-action descends to $\mathcal{V}^\ell = \text{gr}(\mathcal{W}^\ell)$, and
$$\text{gr}(\mathcal{W}^\ell)^{U(1)} \cong (\mathcal{V}^\ell)^{U(1)}.$$
Similarly, $U(1)$ acts on $\text{gr}(\mathcal{V}^\ell)$ and $\text{gr}((\mathcal{V}^\ell)^{U(1)}) \cong (\mathcal{V}^\ell)^{U(1)}$. Clearly $\text{gr}(\mathcal{V}^\ell)^{U(1)}$ is generated as a ring by $\{ \partial^k J, \partial^k T, u_{i,j} | i, j, k \geq 0 \}$, where $u_{i,j} = (\partial^k G^+)(\partial^j G^-)$. The ideal of relations among these generators is generated by
$$u_{i,j} u_{k,l} - u_{i,k} u_{j,l} = 0, \quad 0 \leq i < k, \quad 0 \leq j < l.$$
As a differential algebra under ∂, there is some redundancy in this generating set for $\text{gr}(\mathcal{V}^\ell)^{U(1)}$ since
$$\partial u_{i,j} = u_{i+1,j} + u_{i,j+1}.$$
Letting A_m be the span of $\{ u_{i,j} | i+j = m \}$, note that for all $m > 0$,
$$A_m = \partial (A_{m-1}) \oplus \langle u_{0,m} \rangle,$$
where $\langle u_{0,m} \rangle$ denotes the span of $u_{0,m}$. Therefore $\{ u_{i,j} | i+j \geq 0 \}$ and $\{ \partial^n u_{0,m} | m,n \geq 0 \}$ span the same vector space, and $\{ J, T, u_{0,m} | m \geq 0 \}$ is a minimal generating set for $\text{gr}(\mathcal{V}^\ell)^{U(1)}$ as a differential algebra. Define
$$U_{i,j} = : \partial^i G^+ \partial^j G^- : \in (\mathcal{W}^\ell)^{U(1)}_{(2)},$$
which has filtration degree 2 and weight $i+j+3$.

7
Lemma 5.1. \((W^\ell)^U(1)\) is strongly generated as a vertex algebra by
\[
\{J, T, U_{0,m} | m \geq 0\}.
\]

Proof. Since \(\{J, T, u_{0,m} | m \geq 0\}\) generates \(\text{gr}(W^\ell)^U(1) \cong \text{gr}(\mathcal{V}^\ell)^U(1)\) as a differential algebra, Lemma 3.6 of [LL] shows that the corresponding set strongly generates \((W^\ell)^U(1)\) as a vertex algebra. Since \((\mathcal{V}^\ell)^U(1) = \text{gr}(W^\ell)^U(1) \cong \text{gr}((W^\ell)^U(1))\), the result follows from Lemma 4.1.

In terms of the generating set (5.4), \((W^\ell)^U(1)_{2r}\) is spanned by elements with at most \(r\) of the fields \(U_{0,m}\) and \((W^\ell)^U(1)_{2r+1} = (W^\ell)^U(1)_{2r}\).

Observe next that \((W^\ell)^U(1)\) is not freely generated by (5.4). To see this, observe that
\[
u_{0,0}u_{1,1} - u_{0,1}u_{1,0} = 0
\]
is the unique relation of the form (5.2) in \(\text{gr}(W^\ell)^U(1)\), of minimal weight 8. The corresponding element \(U_{0,0}U_{1,1} : - : U_{0,1}U_{1,0} :\) of \((W^\ell)^U(1)\) does not vanish due to (5.5). However, it lies in the degree 2 filtered piece \((W^\ell)^U(1)_2\) and has the form
\[
U_{0,0}U_{1,1} : - : U_{0,1}U_{1,0} : = \frac{1}{60} \ell(2\ell - 1)U_{0,5} + \cdots.
\]
The remaining terms lie in \((W^\ell)^U(1)_2\) and are normally ordered monomials in \(\{J, T, U_{0,i}, 0 \leq i \leq 4\}\) and their derivatives. For the reader’s convenience, this relation is written down explicitly in the Appendix. Note that
\[
U_{1,0} = -U_{0,1} + \partial U_{0,0}, \quad U_{1,1} = \partial U_{0,1} - U_{0,2}.
\]
Therefore the left side of (5.6) is a normally ordered polynomial in \(U_{0,0}, U_{0,1}, U_{0,2}\), so (5.6) can be rewritten in the form
\[
\frac{1}{60} \ell(2\ell - 1)U_{0,5} = P(J, T, U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}),
\]
where \(P\) is a normally ordered polynomial in \(J, T, U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}\), and their derivatives. We call this a decoupling relation since it allows \(U_{0,5}\) to be expressed as a normally ordered polynomial in these fields whenever \(\ell \neq 0\) or 1/2. Since there are no relations among the generators \(\{J, T, u_{i,j} | i, j \geq 0\}\) of \(\text{gr}(\mathcal{V}^\ell)^U(1)\) of weight less than 8, there are no decoupling relations for \(U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}\). We shall see that the coefficient of \(U_{0,5}\) in (5.7) is canonical in the sense that it does not depend on any choices of normal ordering in \(P\). The uniqueness of (5.5) up to scalar multiples implies the uniqueness of (5.7), so for \(\ell = 0\) and \(\ell = 1/2\), there is no decoupling relation for \(U_{0,5}\).

In order to construct more decoupling relations of this kind, we introduce a certain invariant of elements of \((W^\ell)^U(1)_{2r}\). Given \(\omega \in (W^\ell)^U(1)_{2r}\) of weight \(n + 7\), write \(\omega\) in normal form. For \(i = 0, 1, \ldots, n + 4\), let \(C_{n,i}(\omega)\) denote the coefficient of \((\partial^i G^+)(\partial^{n+4-i} G^-)\) appearing in the normal form. Define
\[
C_n(\omega) = \sum_{i=0}^{n+4} (-1)^i C_{n,i}(\omega).
\]
Next, since \(\{J, T, U_{0,i} | i \geq 0\}\) strongly generates \((W^\ell)^U(1)\) and since \(U_{0,i}\) has weight \(i + 3\), we may express \(\omega\) as a normally ordered polynomial \(P_\omega(J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4})\) in the
subset \{J, T, U_{0,i}, 0 \leq i \leq n + 4\} and their derivatives. Since there exist relations among the generators \{J, T, U_{0,i}, 0 \leq i \leq n + 4\}, as well as different choices of normal ordering, such an expression for \(\omega\) is not unique. In particular, the coefficients of \(\partial^i U_{0,n+4-i}\) for \(i > 0\) will depend on the choice of normal ordering in \(P_\omega(J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4})\).

Lemma 5.2. For any \(\omega \in (\mathcal{W}^\ell)_{(2)}^{U(1)}\) of weight \(n + 7\), the coefficient of \(U_{0,n+4}\) appearing in \(P_\omega(J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4})\) is independent of all choices of normal ordering in \(P_\omega\), and coincides with \((-1)^n C_n(\omega)\).

Proof. Let \(J^\ell \subset (\mathcal{W}^\ell)^{U(1)}\) denote the subspace spanned by elements of the form : \(a \partial b :\) with \(a, b \in (\mathcal{W}^\ell)^{U(1)}\). It is well known [YZh] that Zhu’s commutative algebra

\[C((\mathcal{W}^\ell)^{U(1)}) = (\mathcal{W}^\ell)^{U(1)}/J^\ell \]

has generators corresponding to the strong generators \(\{J, T, U_{0,n}| n \geq 0\}\) of \((\mathcal{W}^\ell)^{U(1)}\). In particular, given \(\omega \in (\mathcal{W}^\ell)^{U(1)}\) of filtration degree 2 and weight \(n + 7\), suppose we have two expressions

\[\omega = P_\omega(J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4}) = Q_\omega(J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4}) \]

where \(P, Q\) are normally ordered polynomials. Let \(\bar{P}_\omega\) and \(\bar{Q}_\omega\) denote the components of \(P_\omega, Q_\omega\) which are linear combinations of \(\partial^i U_{0,n+4-i}\) for \(i = 0, 1, \ldots, n+4\). Then \(\bar{P}_\omega - \bar{Q}_\omega\) lies in \(J^\ell\), and hence must be a total derivative. It follows that the coefficient of \(U_{0,n+4}\) in \(P_\omega\) and \(Q_\omega\) is the same. The last statement follows from the fact that

\[U_{i,n+4-i} = \sum_{r=0}^{i} (-1)^{i+r} \binom{i}{r} \partial^r U_{0,n+4-r}. \]

\[\square \]

Corollary 5.3. The coefficient of \(U_{0,5}\) in (5.6) coincides with \(-C_1(: U_{0,0}U_{1,1} : - : U_{0,1}U_{1,0} :)\) and is independent of all choices of normal ordering.

Theorem 5.4. For all \(\ell \neq 0\) or 1/2, \((\mathcal{W}^\ell)^{U(1)}\) has a minimal strong generating set

\[\{J, T, U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}\}, \]

and in particular is of type \(\mathcal{W}(1, 2, 3, 4, 5, 6, 7)\).

Proof. It suffices to construct decoupling relations of the form

\[U_{0,n+4} = P_n(J, T, U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}), \]

for all \(n > 1\) and \(\ell \neq 0\) or 1/2, since we already have such a relation for \(n = 1\). Since \(G^\pm\) commute in \(\text{gr}(\mathcal{W}^\ell)\), \(: U_{0,0}U_{1,n} : - : U_{0,n}U_{1,0} :\) lies in \(\mathcal{W}^\ell_{(2)}\), and we can express it as a normally ordered polynomial in the generators \(J, T, U_{0,m}\) and their derivatives. We have

\[: U_{0,0}U_{1,n} : - : U_{0,n}U_{1,0} : = C_n U_{0,n+4} + \cdots, \]

where \(C_n = C_n(: U_{0,0}U_{1,n} : - : U_{0,n}U_{1,0} :)\), and the remaining terms are normally ordered polynomials in \(\{J, T, U_{0,0}, U_{0,1}, \ldots, U_{0,n+4-1}\}\) and their derivatives. It suffices to show that \(C_n \neq 0\) for all \(\ell \neq 0\) or 1/2, the claim then follows by induction on \(n\).

First, we have

\[: U_{0,0}U_{1,n} : - : U_{0,n}U_{1,0} : = (: G^+G^- :)(\partial G^+)\partial^n G^- : \]

\[+ G^+G^- (\partial G^+)\partial^n G^- : - : G^+G^- (\partial G^+)\partial^n G^- : \]
Similarly, we have
\[+ : G^+ G^- (\partial^n G^-)(\partial G^+) : \]
\[+ : G^+ (\partial^n G^-) G^- (\partial G^+) : \]
\[+ : G^+ (\partial^n G^-)(\partial G^+) G^- : \]
\[- : G^+ (\partial^n G^-)(\partial G^+) G^- : \]
\[- : (G^+ (\partial^n G^-) : (\partial G^+)(G^-) : \]

It is immediate that \(C_{n,i} : (G^+ G^- (\partial^n G^-)(\partial G^+) : \) = 0. Let
\[C^1_{n,i} = C_{n,i} \left(: (G^+ G^- :)(\partial G^+)(\partial G^-) : \right), \]
\[C^2_{n,i} = C_{n,i} \left(: G^+ G^- (\partial G^+)(\partial G^-) : \right), \]
\[C^3_{n,i} = C_{n,i} \left((\partial^n G^-)(\partial G^+) G^- : \right), \]
\[C^4_{n,i} = C_{n,i} \left(: G^+ (\partial^n G^-)(\partial G^+) G^- : \right), \]

so that \(C_n = \sum_{i=1}^{n} \sum_{j=0}^{n+i} (-1)^j C^i_{n,j} \). Using the OPE formulas (3.1)-(3.5), one can check that
\[C^1_{n,0} = 0, \quad C^1_{n,1} = \frac{(3 + 2\ell)(4 + 4\ell + n + 2\ell n)}{4(2+n)(3+n)}, \quad C^1_{n,2} = -\frac{3(3 + 2\ell)}{4(2+n)}, \]
\[C^1_{n,3} = \frac{3 + 2\ell}{2n + 2} - \frac{3 + 10\ell + 6n + 4\ell n}{12(1+n)}, \]
\[C^1_{n,4} = -\frac{(3 + 2\ell)(5 + 6\ell)}{48} - \frac{3 + 10\ell + 6n + 4\ell n}{48}, \]
\[C^1_{n,j} = -\frac{(3 + 10\ell + 6n + 4\ell n)n!}{2(n+4-j)!j!}, \quad j = 5, \ldots, n, \]
\[C^1_{n,n+1} = -\frac{3 + 10\ell + 6n + 4\ell n}{12(1+n)}, \quad C^1_{n,n+2} = -\frac{3 + 10\ell + 6n + 4\ell n}{4(1+n)(2+n)}, \]
\[C^1_{n,n+3} = -\frac{3 + 10\ell + 6n + 4\ell n}{2(1+n)(2+n)(3+n)}, \quad C^1_{n,n+4} = -\frac{3(5 + 2\ell + 2n)}{(1+n)(2+n)(3+n)(4+n)}. \]

Similarly, we have
\[C^2_{n,0} = \frac{18 - 4\ell + 3n + 2\ell n}{2(1+n)(2+n)(3+n)(4+n)}, \]
\[C^2_{n,j} = -\frac{6(n!)}{(n+4-j)!(j!)}, \quad j = 1, \ldots, n \]
\[C^2_{n,n+1} = -\frac{1}{1+n}, \quad C^2_{n,n+2} = -\frac{3}{(1+n)(2+n)}, \quad C^2_{n,n+3} = -\frac{6}{(1+n)(2+n)(3+n)}, \]
\[C^2_{n,n+4} = -\frac{-15 - 2\ell - 6n + 4\ell n}{2(1+n)(2+n)(3+n)(4+n)}. \]

Next, we have
\[C^3_{n,0} = -\frac{18 - 4\ell + 3n + 2\ell n}{2(1+n)(2+n)(3+n)(4+n)}, \quad C^3_{n,1} = \frac{6}{(1+n)(2+n)(3+n)}, \]
\[C^3_{n,2} = \frac{3}{(1+n)(2+n)}, \quad C^3_{n,3} = \frac{1}{1+n}, \quad C^3_{n,4} = -\frac{5}{16} - \frac{\ell}{24}, \]
\[C^3_{n,i} = 0, \quad 5 \leq i \leq n + 4. \]
Finally, we have

\[
C^4_{n,0} = 0, \quad C^4_{n,1} = -\frac{3(4 + n)}{4(2 + n)(3 + n)} + \frac{\ell(-30 - 10n + n^2)}{6(2 + n)(3 + n)} - \frac{\ell^2}{3},
\]

\[
C^4_{n,2} = \frac{3(6 + 4\ell - n + 2\ell n)}{8(2 + n)}, \quad C^4_{n,3} = -1,
\]

\[
C^4_{n,j} = 0, \quad 4 \leq j \leq n + 2,
\]

\[
C^4_{n,n+3} = -\frac{(-1)^n(3 + 2\ell)}{4(3 + n)}.
\]

\[
C^4_{n,n+4} = \frac{(-1)^n(45 + 40\ell + 12\ell^2 + 25n + 47\ell n + 22\ell^2 n + 14\ell n^2 + 12\ell^2 n^2 - n^3 + \ell n^3 + 2\ell^2 n^3)}{2(1 + n)(2 + n)(3 + n)(4 + n)}.
\]

Then \(C_n(\ell) \equiv U_0 U_1, \ldots\) is given by the simple expression

\[
C_n(\ell) = \sum_{i=1}^{n} \sum_{j=0}^{n+4} C^i_{n,j},
\]

Considerable cancellation occurs, and this turns out to be given by the simple expression

\[
C_n(\ell) = \sum_{i=1}^{n} \sum_{j=0}^{n+4} C^i_{n,j},
\]

which is clearly nonzero for \(\ell \neq 0\) or \(1/2\). It follows that for all \(n\), we have a relation

\[
C_n(\ell) = \sum_{i=1}^{n} \sum_{j=0}^{n+4} C^i_{n,j},
\]

where the remaining terms depend on \(\{J, T, U_0, U_1, U_2, U_3, U_4\}\) and their derivatives.

6. The structure of \(\text{Com}(\mathcal{H}, \mathcal{W}^\ell)\)

Let \(\mathcal{H} \subset \mathcal{W}^\ell\) denote the copy of the Heisenberg vertex algebra generated by \(J\), and let \(\mathcal{C}^\ell\) denote the commutant \(\text{Com}(\mathcal{H}, \mathcal{W}^\ell)\). Clearly we have

\[
(\mathcal{W}^\ell)^{(1)} \cong \mathcal{H} \otimes \mathcal{C}^\ell
\]

and \(\mathcal{C}^\ell\) has a Virasoro element

\[
T^\mathcal{C} = T - T^\mathcal{H}, \quad T^\mathcal{H} = \frac{3}{4\ell} : JJ :.
\]

Theorem 6.1. For \(0 \leq i \leq 4\), and \(\ell \neq 0\), there exist correction terms \(\omega_i \in (\mathcal{W}^\ell)^{(1)}\) such that \(U_i^\mathcal{C} = U_{0,i} + \omega_i\) lies in \(\mathcal{C}^\ell\). Therefore \(\mathcal{C}^\ell\) has a minimal strong generating set \(\{T^\mathcal{C}, U_i^\mathcal{C} | 0 \leq i \leq 4\}\), and is therefore of type \(\mathcal{W}(2, 3, 4, 5, 6, 7)\) for \(\ell \neq 0\) or \(1/2\). Moreover, when \(\ell\) is also not a root of any the following quadratic polynomials

\[
60x^2 - 104x - 51, \quad 28x^2 - 104x - 107, \quad 4x^2 - 20x - 23, \quad 24x^2 - 22x + 9,
\]

\[
84x^2 - 220x - 183, \quad 6x^2 - 29x - 33, \quad 60x^2 - 52x + 27, \quad 132x^2 - 832x - 1017,
\]

there exist a unique correction term \(\omega_i \in (\mathcal{W}^\ell)^{(1)}\) such that \(U_i^\mathcal{C} = U_{0,i} + \omega_i\) lies in \(\mathcal{C}^\ell\) and is primary of weight \(i + 3\) with respect to \(T^\mathcal{C}\).

Proof. The existence and uniqueness of the terms \(\omega_i\) satisfying the above properties is a straightforward computer calculation. In the explicit formulas for \(U_{0,i}^\mathcal{C}\), for \(i = 1, 2, 3, 4,\) all coefficients of normally ordered monomials in \(J, T, U_{0,i}\) are rational functions of \(\ell\), whose denominator only contains the above quadratic factors together with \(\ell\). \(\square\)
An alternative realization of C^ℓ. Feigin and Semikhatov [FS] constructed a family of vertex algebras which they call $W_n^{(2)}$-algebras, and the case $n = 3$ is the Bershadsky-Polyakov algebra. Their first construction is as a centralizer of some quantum super group action and the second is in terms of a coset associated to $V_k(sl(n|1))$, that is the affine vertex super algebra of $sl(n|1)$ at level k. One consequence is

Theorem 6.2. Let k and k' be complex numbers related by $(k + 2)(k' + 2) = 1$. Then for generic values of k,

$$Com(V_{k'}(gl_3), V_{k'}(sl(3|1))) \cong C^\ell, \quad \ell = k + 3/2.$$

Proof. Feigin and Semikhatov consider $V_{k'}(sl(3|1)) \otimes V_L$, where V_L is a certain rank one lattice VOA. They find that the coset by $V_{k'}(sl_3) \otimes \mathcal{H}$ for a certain rank one Heisenberg sub VOA \mathcal{H} contains as subalgebra a VOA with same OPE algebra as W^ℓ for $\ell = k + 3/2$. Since the Bershadsky-Polyakov algebra is generically simple [ArI, ArII] the two must be isomorphic for generic level k. Furthermore,

$$Com(V_{k'}(gl_3), V_{k'}(sl(3|1))) \cong Com(V_{k'}(gl_3) \otimes \mathcal{H}, V_{k'}(sl(3|1)) \otimes V_L),$$

since the Heisenberg coset of a rank one lattice VOA is one-dimensional. In [CL] we proved that the left-hand side for generic level is of type $W(2, 3, 4, 5, 6, 7)$. This completes the proof, since if $W \subset V$ is a vertex subalgebra with the same strong generating set as V, we must have $W = V$.

\[\square \]

7. **The structure of $Com(\mathcal{H}, W^\ell)$**

For $\ell \neq -3/2$, let \mathcal{I}_ℓ denote the maximal proper ideal of W^ℓ, and let W_ℓ denote the simple quotient W^ℓ/\mathcal{I}_ℓ. Let C_ℓ denote the quotient $C^\ell/(\mathcal{I}_\ell \cap C^\ell)$.

Lemma 7.1. $C_\ell = Com(\mathcal{H}, W_\ell)$ where $\mathcal{H} \subset W_\ell$ is the Heisenberg algebra generated by J. In particular, C_ℓ is simple.

Proof. This is immediate from the fact that W^ℓ is completely reducible as an \mathcal{H}-module, and \mathcal{I}_ℓ is an \mathcal{H}-submodule of W^ℓ.

\[\square \]

As shown by Arakawa [ArII], when ℓ is a positive integer, \mathcal{I}_ℓ is generated by $(G^\pm)^{2\ell+1}$, and W_ℓ is C_2-cofinite and rational.

Theorem 7.2. For all positive integers ℓ, W_ℓ contains a rank one lattice vertex algebra V_L with generators $J, (G^\pm)^{2\ell}$, where $L = \sqrt{6}\ell\mathbb{Z}$. Moreover, $Com(Com(\mathcal{H}, W_\ell)) = V_L$ so V_L and C_ℓ form a Howe pair inside W_ℓ.

Proof. In W^ℓ we have

$$J(z)(G^\pm)^{2\ell}(w) \sim \pm 2\ell(G^\pm)^{2\ell}(w)(z - w)^{-1},$$

so $(G^\pm)^{2\ell}$ are both primary with respect to J in W^ℓ, and similarly in W_ℓ. It suffices to show that $(G^\pm)^{2\ell}$ both lie in the double commutant $Com(Com(\mathcal{H}, W_\ell))$. Equivalently, we need to show that $(G^\pm)^{2\ell}$ both commute with $T^\mathcal{C} = T - T^{\mathcal{H}}$ in W_ℓ. We have the following OPE relations in W^ℓ:

$$T_0^\mathcal{H}(G^\pm)^{2\ell} = 3\ell(G^\pm)^{2\ell}, \quad T_0^\mathcal{C}(G^\pm)^{2\ell} = 3\ell(G^\pm)^{2\ell},$$

so $T_0^\mathcal{C}(G^\pm)^{2\ell} = 0$ in W^ℓ. Similarly,

$$T_{-1}^\mathcal{H}(G^\pm)^{2\ell} = \pm 3 : J(G^\pm)^{2\ell} :, \quad T_{-1}^\mathcal{C}(G^\pm)^{2\ell} = \partial(G^\pm)^{2\ell},$$

12
so $T_{-1}(G^\pm)^{2\ell} = \partial(G^\pm)^{2\ell} \equiv 3 : J(G^\pm)^{2\ell} :$. Finally,

$$G^- \circ_1 (G^+)^{2\ell+1} = \frac{(2\ell + 1)^2}{2} (\partial((G^+)^{2\ell}) - 3 : J(G^+)^{2\ell} :),$$

so $\partial((G^+)^{2\ell}) - 3 : J(G^+)^{2\ell} : = 0$ in W_ℓ. Similarly,

$$G^+ \circ_1 (G^-)^{2\ell+1} = -\frac{(2\ell + 1)^2}{2} (\partial((G^-)^{2\ell}) + 3 : J(G^-)^{2\ell} :),$$

so $\partial((G^-)^{2\ell}) + 3 : J(G^-)^{2\ell} : = 0$ in W_ℓ. It is straightforward to check that for all $k \geq 1$, $T_k(G^\pm)^{2\ell} = 0$ and $T_k^3(G^\pm)^{2\ell} = 0$ in W_ℓ, and hence in W_ℓ as well. It follows that $(G^\pm)^{2\ell}$ commutes with T^C in W_ℓ.

Corollary 7.3. For all positive integers ℓ, C_ℓ is C_2-cofinite.

Proof. This follows from Corollary 2 of [MiI]. □

Since C_ℓ has strong generators $\{T^C, U_{0,0}^C, U_{0,1}^C, U_{0,2}^C, U_{0,3}^C, U_{0,4}^C\}$ for $\ell \neq 0, \frac{1}{2}$, it follows that for $\ell = 1, 2, \ldots$, C_ℓ is generated by the images of these fields in W_ℓ, which we also denote by $\{T^C, U_{0,0}^C, U_{0,1}^C, U_{0,2}^C, U_{0,3}^C, U_{0,4}^C\}$ by abuse of notation. For $\ell \geq 4$ this is a minimal strong generating set, but for $\ell = 1, 2, 3$ there are additional decoupling relations and a smaller generating set suffices.

Recently, Kawasetsu proved the following result in the case $\ell = 1$ [Ka].

Theorem 7.4. (Kawasetsu) C_1 is isomorphic to the rational Virasoro vertex algebra generated by T^C of central charge $c = -3/5$.

An alternative proof of this result can be given as follows. One can check by computer calculation that for $i = 1, 2, 3, 4$, $U_{0,i}^C \in C^C$ lies in $I_1 \cap C^C$, where $I_1 \subset W^1$ denotes the maximal ideal. In particular, $U_{0,0}^C = 0$ as an element of C_1, so C_1 is strongly generated by T^C. Being simple it must be the rational Virasoro algebra with $c = -3/5$.

Similarly, in the case $\ell = 2$, one can check that $U_{0,2}^C$ vanishes in C_2, and that $U_{0,3}^C$ and $U_{0,4}^C$ can be expressed as normally ordered polynomials in $\{T^C, U_{0,0}^C, U_{0,1}^C\}$. Since there are no relations of weight less than 5, it follows that C_2 is of type $\mathcal{W}(2,3,4)$ and has a minimal strong generating set $\{T^C, U_{0,0}^C, U_{0,1}^C\}$. In the case $\ell = 3$, one checks that $U_{0,4}^C$ can be expressed as a normally ordered polynomial in $\{T^C, U_{0,i}^C | i = 0, 1, 2, 3\}$. Since there are no relations of weight less than 6, C_3 is of type $\mathcal{W}(2,3,4,5,6)$. Finally, for $\ell > 3$, the element of $I_\ell \cap C^C$ of minimal weight is $(G^+ \circ_1)^{2\ell+1}((G^-)^{2\ell+1})$, which has weight $2\ell + 1$. Therefore none of the generators of C_ℓ decouple, so C_ℓ is of type $\mathcal{W}(2,3,4,5,6,7)$.

In this paper our focus is on C_ℓ when ℓ is a positive integer, but there are other interesting levels as well. For example,

Lemma 7.5. Let $\mathcal{A}(3)$ be the rank three symplectic fermion algebra. Then

$$\mathcal{A}(3)^{GL(3)} \cong C_\ell, \quad \ell = -1/2.$$

Proof. $\mathcal{A}(3)^{GL(3)}$ is of type $\mathcal{W}(2,3,4,5,6,7)$ [CLIII] and as an orbifold of a simple vertex algebra it is itself simple [DM]. Using the notion of deformable family of vertex algebras introduced in [CLIII], it has been proven [CLI] that

$$\lim_{k' \to \infty} \text{Com}(V_{k'}(g_3), V_{k'}(sl(3|1))) \cong \mathcal{A}(3)^{GL(3)}.$$
By Theorem [6.2], both $A(3)^{GL(3)}$ and $C^{-1/2}$ have the same OPE algebra, and hence their simple quotients must coincide.

8. W-Algebras of Type A

In this section, we prove our main result that for all $\ell \geq 1$, C_ℓ is isomorphic to the principal, rational $W(\mathfrak{sl}_{2\ell})$-algebra with central charge $c = -3(2\ell - 1)^2 / (2\ell + 3)$, which has level $(2\ell + 3)/(2\ell + 1) - 2\ell$. In the case $\ell = 2$, using the fact that C_2 is of type $W(2, 3, 4)$, one can verify by computer calculation that the OPE relations of the generators coincide with the OPE relations of $W(\mathfrak{sl}_4)$, which appear explicitly in [CZh]. However, for $\ell > 2$ it is not practical to check this directly, and a more conceptual approach is needed.

Let V_ℓ be the universal $W(\mathfrak{sl}_{2\ell})$ at level $(2\ell + 3)/(2\ell + 1) - 2\ell$ and let V_ℓ be its simple quotient. Its rationality has been proven [ArV]. Simple modules of V_ℓ are labelled by integrable positive weights of $\mathfrak{sl}_{2\ell}$ at level 3. We denote the fundamental weights of $\mathfrak{sl}_{2\ell}$ by $\Lambda_0, \Lambda_1, \ldots, \Lambda_{2\ell-1}$. By Theorem 4.3 of [FKW] (see also [AvE]) V_ℓ has a simple current $L_{3\Lambda_1}$ of order 2ℓ and both $L_{3\Lambda_1}$ and its inverse $L_{3\Lambda_2}$ are generated as V_ℓ modules by a single lowest-weight state of conformal dimension $3/2 - 3/4\ell$. Further the conformal dimension of the lowest-weight-state of both $L_{3\Lambda_s}$ and $L_{3\Lambda_{2-1-s}}$ for $1 \leq s \leq \ell$ is $3s/2 - 3s^2/4\ell$. Let $L = \sqrt[6]{6\ell}Z$ and V_L the lattice vertex algebra associated to L. Then V_L has a simple current $V_{L+ \frac{3}{4\ell}}$ of order 2ℓ with lowest-weight state of conformal dimension $3/4\ell$. It follows that

$$B_\ell := \bigoplus_{s=0}^{2\ell-1} L_{3\Lambda_s} \otimes V_{L+ \frac{3}{4\ell}}$$

is a simple current extension of $V_\ell \otimes V_L$. A priori it is not clear that B_ℓ is a VOA, but one purpose of [CKL] was to develop a framework (extending earlier works [C, LLY]) that decides this type of question.

Lemma 8.1. B_ℓ can be given the structure of a VOA such that the natural map $V_\ell \otimes V_L \hookrightarrow B_\ell$ is a conformal embedding.

Proof. This follows from [CKL]: a simple current extension is either a VOA or a super VOA by Theorem 3.12 of [CKL], and if the tensor category of the underlying VOA is modular, the parity question is decided by the categorical dimension of the generating simple current by Corollary 2.8 of [CKL]. This follows directly from Huang’s work on the Verlinde formula [Hu], and is explained in [CKL]. Since a lattice VOA is a unitary VOA, any of its simple currents has categorical dimension one, so we have to determine the categorical dimension of $L_{3\Lambda_1}$. By Proposition 4.2 together with Proposition 1.1 of [FKW] the categorical dimension is given by

$$\text{qdim}(L_{3\Lambda_1}) = \frac{S_{3\Lambda_1, 3\Lambda_0}}{S_{3\Lambda_0, 3\Lambda_0}} = \epsilon(3\Lambda_1) = (-1)^{2(\Lambda_1 | \rho)}.$$

Since $n = 2\ell$ and $\alpha_1, \ldots, \alpha_{n-1}$ are the simple roots of \mathfrak{sl}_n,

$$\Lambda_1 = \frac{1}{n} \left((n-1)\alpha_1 + (n-2)\alpha_2 + \cdots + \alpha_{n-1} \right),$$

so that

$$(\Lambda_1 | \rho) = \frac{1}{n} \frac{n(n-1)}{2} = \frac{(n-1)}{2}.$$
It follows that \(\text{qdim}(\mathbb{L}_{3\Lambda_1}) = (-1)^{(n-1)} = -1 \) since \(n = 2\ell \) is even. Odd quantum dimension and odd twist (half-integer conformal dimension) of a simple current imply that the extension is a VOA by Corollary 2.8 together with Theorems 3.9 and 3.12 of [CKL]. □

We would like to show that \(\mathcal{B}_\ell \cong \mathcal{W}_\ell \). Denote the vertex operator associated to the vector of lowest conformal dimension of \(\mathbb{L}_{3\Lambda_1} \otimes V_{L+ \frac{3}{2\sqrt{6}}} \) by \(F^+ \) and the one associated to the vector of lowest conformal dimension of \(\mathbb{L}_{3\Lambda_2_{-\ell-1}} \otimes V_{L+ \frac{3}{2\sqrt{6}}} \) by \(F^- \).

Lemma 8.2. The subalgebra of \(\mathcal{B}_\ell \) generated under operator product algebra by \(F^\pm \) has the same OPE algebra as \(\mathcal{W}_\ell \).

Proof. Let

\[
J(z) = \sum_{n \in \mathbb{Z}} J_n z^{-n-1}, \quad G^\pm(z) = \sum_{n \in \mathbb{Z}} G_n^\pm z^{-n-2}, \quad T^c(z) = \sum_{n \in \mathbb{Z}} T_n^c z^{-n-2}
\]

be the mode expansion of the corresponding fields of \(\mathcal{W}_\ell \). Here \(T^c \) denotes the Virasoro field of \(\mathcal{C}_\ell \). It is related to the Virasoro field of \(\mathcal{W}_\ell \) by \(T = T^c + \frac{3}{8\ell} (J)^2 \) where \((J)^2 \) denotes the normal ordered product of \(J \) with itself. We can thus read off the commutation relations of the mode algebra from the operator product algebra of the fields given in Section 3, see also [ArV]. These are

\[
[J_m, J_n] = \frac{2\ell}{3} \delta_{m+n,0}, \\
[J_m, G_n^\pm] = \pm G_{n+m}^\pm, \\
[G^+, G^-] = \frac{9}{4\ell} \left(\ell - \frac{1}{2} \right) (J^2)_{n+m} + \frac{3}{2} \left(\ell - \frac{1}{2} \right) \left(m - n - 1 \right) J_{m+n} - \left(\ell + \frac{3}{2} \right) T^c_{n+m+1} \\
\ell \left(\ell - \frac{1}{2} \right) m(m+1) \delta_{n+m,0}.
\]

Here we omit the Virasoro algebra relations as they are standard. We want to show that the modes of the fields \(F^\pm \) together with those of the Heisenberg field \(H \) of \(V_L \) and the Virasoro field \(S \) of \(V_L \) have the same commutation relations. Let

\[
H(z) = \sum_{n \in \mathbb{Z}} H_n z^{-n-1}, \quad F^\pm(z) = \sum_{n \in \mathbb{Z}} F_n^\pm z^{-n-3/2}, \quad S(z) = \sum_{n \in \mathbb{Z}} S_n z^{-n-2}
\]

be the mode expansion of the corresponding fields. We can normalize \(H \), such that

\[
H(z) F^\pm(w) \sim \pm (z-w)^{-1} F^\pm(w),
\]

with this normalization the operator product of \(H \) with itself is

\[
H(z) H(w) \sim \frac{2\ell}{3} (z-w)^{-2}.
\]

The following commutation relations follow

\[
[H_m, H_n] = \frac{2\ell}{3} \delta_{m+n,0}, \quad [H_m, F_n^\pm] = \pm F_{n+m}^\pm.
\]

Since the state of lowest conformal dimension of both \(\mathbb{L}_{3\Lambda_2} \otimes V_{L+ \frac{3}{2\sqrt{6}}} \) and \(\mathbb{L}_{3\Lambda_2_{-\ell-2}} \otimes V_{L+ \frac{3}{2\sqrt{6}}} \) has dimension three the operator product of \(F^+ \) with itself as well as the one of \(F^- \) with itself is regular. The operator products involving the Virasoro fields are of course the same as the corresponding ones of \(\mathcal{W}_\ell \). It remains to compute the operator product of \(F^+ \)
with F^-. The known operator product algebra of lattice VOAs leaves us with two free coefficients a, b for the moment:

$$F^+(z)F^-(w) \sim (z-w)^{-3} a \left(1 + \frac{3}{2\ell}(z-w)H + (z-w)^2 \left(\frac{1}{2} \left(\frac{3}{2\ell}\right)^2 (H^2) + \frac{3}{2} \frac{3}{2\ell} \partial H\right)\right) + b(z-w)^{-1} S.$$

We will see that these coefficients are uniquely determined by the Jacobi identity for the Lie algebra of the modes. First, $a \neq 0$ by Proposition 4.1 of [CKL]. We can now rescale the fields F^\pm so that $a = 2\ell(\ell - \frac{1}{2})$. It remains to show that $b = -(\ell + \frac{3}{2})$. Set $b = -(\ell + \frac{3}{2}) + \lambda$. Then using that the Jacobi identity of \mathcal{W}^ℓ holds we get

$$0 = [R_n, [F_m^+, F^{-}_r]] + [F_m^+, [F^{-}_r, R_n]] + [F^{-}_r, [R_n, F_m^+]] = \lambda \frac{c_\ell}{12} (n^3 - n) \delta_{n+m+r,0}.$$

Hence $\lambda = 0$. We thus have shown that the mode algebra of \mathcal{W}^ℓ and the VOA generated by F^\pm coincide, hence their operator product algebras coincide. \hfill \Box

Theorem 8.3. The coset C_ℓ is isomorphic to the simple rational \mathcal{W}-algebra of $\mathfrak{sl}_{2\ell}$, $\mathcal{W}(\mathfrak{sl}_{2\ell})$ at level $(2\ell + 3)/(2\ell + 1) - 2\ell$.

Proof. By the previous lemma, B_ℓ is a module for \mathcal{W}^ℓ and it contains a homomorphic image of \mathcal{W}^ℓ and hence the generators of weights $2, 3, 4, 5, 6, 7$ that strongly generate the corresponding homomorphic image of C_ℓ. But under operator products, already the dimension two and three fields of V_ℓ generate V_ℓ, hence the homomorphic image of C_ℓ must be V_ℓ. Since it is simple, we have $C_\ell \cong V_\ell$. \hfill \Box

Corollary 8.4. \mathcal{W}_ℓ is rational and C_2-cofinite.

Proof. \mathcal{W}_ℓ is a simple current extension of a rational and C_2-cofinite VOA of CFT-type, hence itself has these properties [Y]. \hfill \Box

In other words, we have found a very different proof of the main result of [ArII].

Corollary 8.5. The simple rational \mathcal{W}-algebra of $\mathfrak{sl}_{2\ell}$, $\mathcal{W}(\mathfrak{sl}_{2\ell})$ at level $(2\ell + 3)/(2\ell + 1) - 2\ell$, is a \mathcal{W}-algebra of type $\mathcal{W}(2, 3, 4, 5, 6, 7)$ for $\ell > 3$. For $\ell = 1$ it is of type $\mathcal{W}(2)$, for $\ell = 2$ it is of type $\mathcal{W}(2, 3, 4)$ and for $\ell = 3$ it is of type $\mathcal{W}(2, 3, 4, 5, 6)$.

Proof. We have just proven that the simple rational \mathcal{W}-algebra of $\mathfrak{sl}_{2\ell}$, $\mathcal{W}(\mathfrak{sl}_{2\ell})$ at level $(2\ell + 3)/(2\ell + 1) - 2\ell$, is isomorphic to C_ℓ, but the latter is of the corresponding type as proven in the last section. \hfill \Box

9. A Character Identity

We first recall the known characters of \mathcal{W}_ℓ and V_ℓ and their simple currents $\mathbb{L}_{\delta\Lambda}$. In this section $q = e(\tau)$, $z = e(u)$ and τ in the upper half of the complex plane, and $u \in \mathbb{C}$.

Characters of rational Bershadsky-Polyakov algebras. Recall that \(\ell = k + 3/2 \) and \(\mathcal{W}_\ell = \mathcal{W}_k(\mathfrak{sl}_3, f_\theta) \), the simple Bershadsky-Polyakov algebra at level \(k \). We have

\[
\mathcal{W}_\ell = H_{DS,f_\theta}^0(L_k(\mathfrak{sl}_3))
\]

provided that \(k \not\in \mathbb{Z}_{\geq 0} \) ([ArIII]). Here \(H_{DS,f_\theta}^0(\tau) \) is the Drinfeld-Sokolov reduction with respect to the nilpotent element \(f_\theta \) ([KRW]) and \(L_k(\mathfrak{sl}_3) \) is the simple affine vertex algebra associated with \(\mathfrak{sl}_3 \) at level \(k \). This gives

\[
\text{ch } \mathcal{W}_\ell := \text{tr}_{\mathcal{W}_\ell} \left(z^{\hat{p}} q^{L_0 - \hat{p}} \right) = q^{-\hat{p}} \left(\text{ch } L_k(\mathfrak{sl}_3) \prod_{\alpha \in \Delta^e_+} (1 - e^{-\alpha}) \frac{1}{\prod_{n \geq 0} (1 - e^{-\alpha_1 - \ldots - \alpha_n})} \right) \bigg|_{e^{-\delta} \to q, \frac{e^\alpha}{z} \to \frac{e^{\alpha_1}}{z} \frac{e^{\alpha_2}}{z^{1/2}}}
\]

On the other hand if \(k \) is admissible we have ([KWI])

\[
\text{ch } L(k\Lambda_0) = \frac{\sum_{w \in \hat{W}(k\Lambda_0)} (-1)^{\ell_{k\Lambda_0}(w)} e^{w_0 k\Lambda_0}}{\prod_{\alpha \in \Delta^e_+} (1 - e^{-\alpha})^{\dim \mathfrak{h}_\alpha}},
\]

where \(\hat{W}(k\Lambda_0) \) is the integrable Weyl group of \(k\Lambda_0 \) generated by reflections \(s_\alpha \) such that \(\langle k\Lambda_0, \alpha^\vee \rangle \in \mathbb{Z} \) and \(\ell_{k\Lambda_0} \) is the length function of \(\hat{W}(k\Lambda_0) \). The nontrivial rational levels are \(k = p/2 - 3 = \ell - 3/2 \) with \(p = 5, 7, 9, \ldots \) and thus \(\ell = 1, 2, 3, \ldots \) Then \(k\Lambda_0 \) is admissible and

\[
\hat{W}(k\Lambda_0) = W \ltimes 2Q^\vee (\cong \hat{W} = W \ltimes Q^\vee),
\]

where \(W = S_3 \) and \(Q^\vee \) is the coroot lattice of \(\mathfrak{g} = \mathfrak{sl}_3 \). Thus

\[
\text{ch } \mathcal{W}_\ell = \frac{1}{\eta(\tau) \vartheta(\tau, u)} \left(\sum_{w \in \hat{W} \times 2Q^\vee} e^{w_0 k\Lambda_0} \right) \bigg|_{e^{-\delta} \to q, \frac{e^\alpha}{z} \to \frac{e^{\alpha_1}}{z} \frac{e^{\alpha_2}}{z^{1/2}}}
\]

where

\[
\vartheta(\tau, u) = \prod_{i \geq 1} (1 - q^i) \prod_{j \geq 1} (1 - q^{1/2+j}) (1 - z^{-1} q^{1/2+j}), \quad \eta(\tau) = q^{\frac{3}{16}} \prod_{i \geq 1} (1 - q^i).
\]

Characters of simple modules over \(\mathcal{W}_k(\mathfrak{sl}_n) \). Let \(\mathcal{W}_k(\mathfrak{sl}_n) \) be the simple principal \(\mathcal{W} \)-algebra associated with \(\mathfrak{sl}_n \) at level \(k \). We consider the special case \(k = n + \frac{3}{2} \) (for us \(p = 3 \)). Then ([FKW], ArIII, ArV],

\[
\hat{P}_+^p \Rightarrow \{ \text{simple } \mathcal{W}_k(\mathfrak{sl}_n)\text{-modules} \}, \quad \lambda \mapsto \mathbb{L}_\lambda := H_{DS,f_{\text{prin}}}^0(L(\lambda + (k - p)\Lambda_0)),
\]

where \(\hat{P}_+^p \) is the set of dominant integrable weight of \(\mathfrak{g} = \mathfrak{sl}_n \) level \(p \), and

\[
\text{ch } \mathbb{L}_\lambda = \frac{1}{\eta(\tau)^n} \sum_{w \in \hat{W}} \epsilon(w) q^{\frac{(n+p)(n+1)}{2} \frac{w(\lambda+p)}{n+1} - \frac{\rho}{n+1}}.
\]

Here \(\hat{W} \) is the affine Weyl group of \(\mathfrak{sl}_n \).
Decomposing the character of \mathcal{W}_ℓ. We can now put everything together to decompose the character of the VOA \mathcal{W}_ℓ.

Theorem 9.1. The character of the simple current U^s of the type A \mathcal{W}-algebra \mathcal{V}_ℓ is in terms of the character of the simple Bershadsky-Polyakov algebra \mathcal{W}_ℓ

$$\text{ch}[\mathcal{L}_{3\Lambda_s}](\tau) = \frac{1}{2\ell} \frac{\eta(\tau)}{\theta_s(\tau, 0)} \sum_{t=0}^{2\ell-1} e^{-2\pi its} \text{ch}[\mathcal{W}_\ell] \left(\tau, \frac{t}{3\ell} \right).$$

Proof. By Theorem 8.3 together with equation (8.1) we have that

$$\text{ch}[\mathcal{W}_\ell](\tau, u) = \sum_{s=0}^{2\ell-1} \text{ch}[\mathcal{L}_{3\Lambda_s}](\tau) \text{ch}[\mathcal{V}_{L+\frac{1}{\sqrt{6}}}](\tau, u).$$

The theorem now follows directly by using $e^{-2\pi its}\theta_s'(\tau, u + \frac{t}{3\ell}) = e^{-2\pi it(s-s')}\theta_s'(\tau, u)$ which implies

$$\frac{1}{2\ell} \sum_{t=0}^{2\ell-1} e^{-2\pi its}\theta_s'(\tau, u + \frac{t}{3\ell}) = \frac{1}{2\ell} \sum_{t=0}^{2\ell-1} e^{-2\pi it(s-s')}\theta_s'(\tau, u) = \delta_{s,s'}\theta_s'(\tau, u).$$

\[\square\]

Plugging in the explicit form of the characters, we get the identities of different lattice theta functions:

Corollary 9.2. For $s = 0, \ldots, 2\ell - 1$ the following identity holds

$$\sum_{w \in \mathcal{W}} \epsilon(w) q^{\frac{(n+p)(n+1)}{2} \frac{w(3n+3p)}{n+p} - \frac{w}{2d}} = \frac{1}{2\ell} \frac{\eta(\tau)}{\theta_s(\tau, 0)} \sum_{t=0}^{2\ell-1} e^{-2\pi its} \left(\sum_{w \in \mathcal{W} \times 2Q^\vee} \epsilon(wk\Lambda_0) \right) \left| e^{-\frac{s}{q}} q^{1/2} \right| e^{\frac{3 + 2\ell}{3}(z-w)^{-2}}$$

where on the left hand side we have the affine Weyl group of \mathfrak{sl}_n while on the right hand side it is the Weyl group and coroot lattice of \mathfrak{sl}_3.

10. A FAMILY OF SUPER \mathcal{W}-ALGEBRAS

We consider the tensor product $\mathcal{W}^\ell \otimes \mathcal{E}$, where \mathcal{E} is the rank one bc-system, or equivalently the lattice vertex algebra \mathcal{V}_ℓ. It has odd generators b, c satisfying

$$b(z)c(w) \sim (z-w)^{-1},$$

a Heisenberg element $J^\mathcal{E} = -: bc :$ and a Virasoro element $T^\mathcal{E} = -: \partial c : + : (\partial b)c :$ of central charge 1, under which b, c are primary of weight 1/2.

Let $J^{\text{diag}} = J + J^\mathcal{E} \in \mathcal{W}^\ell \otimes \mathcal{E}$ denote the diagonal Heisenberg element, which satisfies

$$J^{\text{diag}}(z)J^{\text{diag}}(w) \sim \frac{3 + 2\ell}{3}(z-w)^{-2}.$$
We will be interested in the commutant $\text{Com}(J^\text{diag}, W^\ell \otimes \mathcal{E})$. As with our study of \mathcal{C}^ℓ, we begin by describing $(W^\ell \otimes \mathcal{E})^{U(1)}$ where the action of $U(1)$ is generated by the zero mode of J^diag. It is easy to see that $(W^\ell \otimes \mathcal{E})^{U(1)}$ has the following strong generating set
\[
\{T, J, J^\mathcal{E}, U_{0,n}, \varphi^+_0, \varphi^-_0 \mid n \geq 0\},
\]
where $\varphi^+_0 = :b\partial^n G^+:$ and $\varphi^-_0 = :c\partial^n G^-:$.

Observe that $\varphi^\pm_{0,1} = \pm :\varphi^\pm_{0,0} J^\mathcal{E} :$, and $\varphi^\pm_{0,n} = \pm :\varphi^\pm_{0,n-1} J^\mathcal{E} :$, for $n \geq 0$, so the generators $\{\varphi^\pm_0 \mid n > 0\}$ are not necessary. From the previous relations, we know that $\{U_{0,n} \mid n \geq 5\}$ are not necessary as long as $\ell \neq 0$ or $1/2$. In fact, we have the relation
\[
U_{0,1} = -: \varphi^+_0 \partial_0 \varphi^-_0 : - : J^\mathcal{E} U_{0,0} : - \frac{3}{2} : J J\partial J^\mathcal{E} : + \frac{3 + 2\ell}{4} : T \partial J^\mathcal{E} : + \frac{3 - 6\ell}{8} : (\partial J)\partial J^\mathcal{E} : + \frac{1 - 2\ell}{4} : J\partial^2 J^\mathcal{E} : + \frac{\ell - 2\ell^2}{24} : \partial^3 J^\mathcal{E} : + \partial U_{0,0} + \frac{3}{2} : J J^\mathcal{E} J^\mathcal{E} : - \frac{3 - 6\ell}{8} : (\partial J)J^\mathcal{E} J^\mathcal{E} : - \frac{\ell - 2\ell^2}{8} : (\partial^2 J)J^\mathcal{E} : - (\partial J^\mathcal{E}) : + \frac{1 - 2\ell}{4} : J J^\mathcal{E} J^\mathcal{E} : - \frac{3 + 2\ell}{4} : T J^\mathcal{E} J^\mathcal{E} : ,
\]
so for all $\ell \neq -3/2$, including $\ell = 0$ and $\ell = 1/2$, $U_{0,1}$ is not necessary. We have similar relations
\[
U_{0,n+1} = (-1)^n : (\varphi^+_0 (J^\mathcal{E} (\cdots (J^\mathcal{E} (\varphi^-_0) (\cdots)))) : - : J^\mathcal{E} U_{0,n} + \cdots
\]
for all $n \geq 1$, where the remaining terms depend only on $J, T, J^\mathcal{E}$ and their derivatives, and have coefficients given by polynomials in ℓ. This proves

Lemma 10.1. For all $\ell \neq -3/2$, $(W^\ell \otimes \mathcal{E})^{U(1)}$ has a minimal strong generating set
\[
\{\varphi^\pm_0, U_{0,0}, T, J, J^\mathcal{E}\}.
\]

Let \mathcal{D}^ℓ denote the commutant $\text{Com}(J^\text{diag}, W^\ell \otimes \mathcal{E})$. Note that
\[
(W^\ell \otimes \mathcal{E})^{U(1)} \cong \mathcal{H} \otimes \mathcal{D}^\ell,
\]
where \mathcal{H} is generated by J^diag. Also, \mathcal{D}^ℓ has a Virasoro element
\[
T^\mathcal{D} = T + T^\mathcal{E} - \frac{3}{2(3 + 2\ell)} : J^\text{diag} J^\text{diag} :
\]
and a Heisenberg field
\[
J^\mathcal{D} = J - \frac{2\ell}{3} J^\mathcal{E}.
\]
The odd weight 2 elements $\varphi^\pm = \varphi^\pm_0$, as well as the even weight 3 element $U^\mathcal{D} = U^\mathcal{C}_{0,0}$, are easily seen to lie in \mathcal{D}^ℓ as well. As in the previous section, Lemma 10.1 implies the following result.

Theorem 10.2. \mathcal{D}^ℓ has a minimal strong generating set
\[
\{J^\mathcal{D}, T^\mathcal{D}, \varphi^\pm, U^\mathcal{D}\}.
\]

The full OPE algebra of \mathcal{D}^ℓ is easy to compute from the explicit formulas for the generators, and it would be interesting to relate it to a super W-algebra associated to $\mathfrak{sl}(3|1)$.

Next, we consider the simple vertex algebra $\mathcal{W}_\ell \otimes \mathcal{E}$, and we let \mathcal{D}_ℓ denote the commutant $\text{Com}(J^\text{diag}, \mathcal{W}_\ell \otimes \mathcal{E})$. By Corollary 2 of [MiI], \mathcal{D}_ℓ is C_2-cofinite for all $\ell \in \mathbb{Z}_{>0}$.

19
Theorem 10.3. \mathcal{D}_ℓ is rational for all positive integers ℓ.

Proof. \mathcal{D}_ℓ is an extension of $\mathcal{C}_\ell \otimes V_{\sqrt{2\ell(2\ell+3)}}$. The lattice vertex algebra is rational and for $\ell = 1, 2$ we also know that \mathcal{C}_ℓ is rational. The discriminant $\mathbb{Z}/2\ell(2\ell+3)\mathbb{Z}$ of the lattice $\sqrt{2\ell(2\ell+3)}\mathbb{Z}$ acts on \mathcal{D}_ℓ as automorphism subgroup. The orbifold is $\mathcal{C}_\ell \otimes V_{\sqrt{2(2\ell+3)}}$ and as a module for the orbifold

$$\mathcal{D}_\ell = \bigoplus_{n=0}^{2\ell(2\ell+3)-1} M_\ell,$$

where each M_ℓ is a simple $\mathcal{C}_\ell \otimes V_{\sqrt{2\ell(2\ell+3)}}$-module [DM]. It is in fact also C_1-cofinite as the orbifold is C_2-cofinite, hence Proposition 20 of [MiIII] implies that each M_ℓ is a simple current. We thus have a simple current extension of a rational, C_2-cofinite vertex algebra of CFT-type and hence by [Y] the extension is also rational.

Remark 10.4. \mathcal{D}_ℓ is an example of a rational, C_2-cofinite vertex superalgebra whose conformal weight grading is by \mathbb{N}, not $\frac{1}{2}\mathbb{N}$.

11. APPENDIX

Here we give the explicit relation of minimal weight 8 among the generators of $(\mathcal{W}_\ell)^{(1)}$.

$$\begin{align*}
: U_{0,0}U_{1,1} : &- U_{0,1}U_{1,0} : - \frac{3}{4} : (\partial^4 J)JJ : + 3 : (\partial^3 J)(\partial J)J : - \frac{9}{4} : (\partial^2 J)(\partial^2 J)J : + 18 : (\partial^2 J)(\partial J)(\partial J)J : - \frac{3}{32}(1 - 2\ell) : (\partial^5 J)JJ : - \frac{3}{16}(1 - 2\ell) : (\partial^4 J)(\partial J)J : \\
&- \frac{3}{4}(1 - 2\ell) : (\partial^3 J)(\partial J)J : + \frac{45}{16}(-1 + 2\ell) : (\partial^2 J)(\partial^2 J)\partial J : + \frac{1}{16}(3 + 2\ell) : (\partial^4 T)JJ : \\
&- \frac{1}{2} : (\partial^2 T)(\partial J)J : - \frac{3}{4}(\partial T)(\partial^3 J)J : - \frac{3}{2}(3 + 2\ell) : (\partial T)(\partial^2 J)\partial J : \\
&+ \frac{1}{8}(3 + 2\ell) : T\partial^4 J)J : + \frac{3}{4}(3 + 2\ell) : T(\partial^2 J)\partial^2 J : \\
&- \frac{27 - 36\ell + 28\ell^2}{960} : (\partial^6 J)J : - \frac{93 - 84\ell + 52\ell^2}{640} : (\partial^5 J)\partial J : - \frac{3 + \ell + 2\ell^2}{8} : (\partial^4 J)\partial^2 J : \\
&- \frac{3 + \ell + 2\ell^2}{12} : (\partial^3 J)\partial^3 J : - \frac{3 - 4\ell - 4\ell^2}{160} : (\partial^5 T)J : + \frac{3 - 4\ell - 4\ell^2}{64} : (\partial^4 T)\partial J : \\
&+ \frac{3 - 4\ell - 4\ell^2}{16} : (\partial^3 T)\partial^2 J : - \frac{3 - 4\ell - 4\ell^2}{320} : (\partial^5 T)J : - \frac{9 + 12\ell + 4\ell^2}{96} : (\partial^4 T)T : \\
&+ \frac{9 + 12\ell + 4\ell^2}{24} : (\partial^3 T)\partial T : + \frac{3 - 13\ell + 16\ell^2 - 4\ell^3}{2240} : (\partial^7 J) - \frac{3\ell - 4\ell^2 - 4\ell^3}{1440} : (\partial^6 T) \\
&- : (\partial^3 J)JJU_{0,0} : - 3 : (\partial^2 J)(\partial J)U_{0,0} : + 3 : (\partial J)JJU_{0,1} : + : (\partial J)^2 U_{0,0} : - \frac{3}{2} : JJ\partial^2 U_{0,1} : \\
&+ 3 : (\partial J)\partial^2 U_{0,0} : - 6 : (\partial J)\partial U_{0,1} : + 3 : (\partial J)U_{0,2} : + : JJ\partial^3 U_{0,0} : - \frac{3}{2} : JJ\partial^2 U_{0,1} : \\
&+ \frac{3}{2} : JJ\partial U_{0,2} : - : JJU_{0,3} : - \left(\frac{7}{8} + \frac{\ell}{4}\right) : (\partial^3 J)U_{0,1} : - \frac{3}{8}(3 + 2\ell) : (\partial^2 J)\partial U_{0,0} : \\
&- \left(\frac{9}{4} + \frac{3\ell}{2}\right) : (\partial^2 J)\partial U_{0,1} : + \left(\frac{27}{8} + \frac{9\ell}{4}\right) : (\partial^2 J)U_{0,2} : - \frac{3}{4}(3 + 2\ell) : (\partial J)\partial^3 U_{0,0} : \\
\end{align*}
\[+\left(\frac{15}{8} + \frac{9\ell}{4}\right): (\partial J)\partial^2 U_{0,1} : + \left(\frac{3}{8} - \frac{3\ell}{4}\right): (\partial J)\partial U_{0,2} : - \frac{3}{8}(3 + 2\ell): J\partial^4 U_{0,0} : \]
\[+ (2 + 2\ell): J\partial^3 U_{0,1} : - \left(\frac{3}{4} + \frac{3\ell}{2}\right): J\partial^2 U_{0,2} : - \left(\frac{1}{4} - \frac{\ell}{2}\right): J\partial U_{0,3} : \]
\[+ \left(\frac{1}{8} - \frac{\ell}{4}\right): JU_{0,4} : + \frac{1}{12}(3 + 2\ell): (\partial^3 T)U_{0,0} : - \left(\frac{3}{4} + \frac{\ell}{2}\right): (\partial^2 T)U_{0,1} : \]
\[- \frac{1}{4}(3 + 2\ell): (\partial T)\partial^2 U_{0,0} : + \left(\frac{3}{2} + \ell\right): (\partial T)\partial U_{0,1} : - \left(\frac{3}{4} + \frac{\ell}{2}\right): (\partial T)U_{0,2} : \]
\[- \frac{1}{6}(3 + 2\ell): T\partial^2 U_{0,0} : + \left(\frac{3}{4} + \frac{\ell}{2}\right): T\partial^2 U_{0,1} : - \left(\frac{3}{4} + \frac{\ell}{2}\right): T\partial U_{0,2} : \]
\[+ \left(\frac{1}{2} + \frac{\ell}{3}\right): TU_{0,3} : + \left(\frac{45 + 58\ell + 24\ell^2}{120}\right)\partial^5 U_{0,0} : - \left(\frac{8 + 13\ell + 6\ell^2}{8}\right)\partial^4 U_{0,1} \]
\[+ \left(\frac{7 + 14\ell + 8\ell^2}{8}\right)\partial^3 U_{0,2} : - \left(\frac{3 + 7\ell + 6\ell^2}{12}\right)\partial^2 U_{0,3} : - \left(\frac{\ell(1 - 2\ell)}{24}\right)\partial U_{0,4} + \left(\frac{\ell(1 - 2\ell)}{60}\right)U_{0,5}. \]

References

[A-R] H. Afshar, T. Creutzig, D. Garmill, Y. Hikida, P. B. Ronne, Unitary W-algebras and three-dimensional higher spin gravity with spin one symmetry, JHEP 1406 (2014) 063.

[AM] D. Adamovic, A. Milas, On the triplet vertex algebra W(p), Adv. Math. 217 (2008), no. 6, 2664-2699.

[ArI] T. Arakawa, Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture, Duke Math. J., Vol. 130, No. 3, pp. 435-478, 2005.

[ArII] T. Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Commun. Math. Phys. 323 (2013), no. 2, 627-633.

[ArIII] T. Arakawa, Representation theory of W-algebras. Invent. Math., 169(2):219–320, 2007.

[ArIV] T. Arakawa, Associated varieties of modules over Kac-Moody algebras and C2-cofiniteness of W-algebras, Int. Math. Res. Not. (2015) Vol. 2015 11605-11666.

[ArV] T. Arakawa, Rationality of W-algebras: principal nilpotent cases, Ann. Math. 182(2):565-694, 2015.

[ACKL] T. Arakawa, T. Creutzig, K. Kawasetsu, and A. Linshaw, Orbifolds and cosets of minimal W-algebras, published online in Comm. Math. Phys.DOI 10.1007/s00220-017-2901-2.

[AvE] T. Arakawa, J. van Ekeren, Modularity of relatively rational vertex algebras and fusion rules of regular affine W-algebras, arXiv:1612.09100.

[ALY] T. Arakawa, C.H. Lam and H. Yamada, Zhu’s algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261-295.

[ArM] T. Arakawa, A. Moreau, Joseph ideals and lisse minimal W-algebras, J. Inst. Math. Jussieu, published online.

[Ber] M. Bershadsky, Conformal field theories via Hamiltonian reduction, 139 (1991), no. 1, 71-82.

[B-HI] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck, and R. Hubel, Unifying W-Algebras, Phys. Lett. B 332 (1994).

[B-HIII] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck, and R. Hubel, Coset realizations of unifying W-algebras, Int. Jour. Mod. Phys. Lett. A10 (1995) 2367-2430.

[Bor] R. Borcherds, Vertex operator algebras, Kac-Moody algebras and the monster, Proc. Nat. Acad. Sci. USA 83 (1986) 3068-3071.

[C] S. Carnahan, Building vertex algebras from parts, arXiv:1408.5215.

[CM] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.

[CHR] T. Creutzig, Y. Hikida and P. B. Ronne, Higher spin AdS3 supergravity and its dual CFT, JHEP 1202 (2012) 109.

[CKL] T. Creutzig, S. Kanade, A. Linshaw, Simple current extensions beyond semi-simplicity, arXiv:1511.08754.

[CLI] T. Creutzig, A. Linshaw, Cosets of affine vertex algebras inside larger structures, arXiv:1407.8512v4.
T. Creutzig, A. Linshaw, *Orbifolds of symplectic fermion algebras*, Trans. Amer. Math. Soc. 369, no. 1 (2017), 467-494.

T. Creutzig, A. Linshaw, *The super $W_{1+\infty}$ algebra with integral central charge*, Trans. Amer. Math. Soc. 367, no. 8 (2015), 5521-5551.

T. Creutzig, D. Ridout, S. Wood, *Coset constructions of logarithmic (1, p) models*, Lett. Math. Phys. 104 (2014), no. 5, 553-583.

C. Dong, *Vertex algebras associated with even lattices*, J. Algebra 161 (1993), no. 1, 245-265.

C. Dong, G. Mason *Quantum Galois theory for compact Lie groups*, J. Algebra 214 (1999), no. 1, 92-102.

C. Dong, H. Li, and G. Mason, *Regularity of rational vertex operator algebras*, Adv. Math. 132 (1997), no. 1, 148-166.

C. Dong, C.H. Lam and H. Yamada, *W-algebras related to parafermion algebras*, J. Algebra 322 (2009), 2366-2403.

C. Dong, C.H. Lam, Q. Wang and H. Yamada, *The structure of parafermion vertex operator algebras*, J. Algebra 323 (2010), no. 2, 371-381.

P. Di Vecchia, J. L. Petersen, M. Yu and H. B. Zheng, *Explicit construction of unitary representations of the N = 2 superconformal algebra*, Phys. Lett. B 174 (1986) 280-284.

C. Dong, L. Ren, *Representations of the parafermion vertex operator algebras*, arXiv:1411.6085.

C. Dong, Q. Wang, *The structure of parafermion vertex operator algebras: general case*, Comm. Math. Phys. 299 (2010), 783-792.

C. Dong, Q. Wang, *On C_2-cofiniteness of the parafermion vertex operator algebras*, J. Algebra 328 (2011), 420-431.

C. Dong, Q. Wang, *Parafermion vertex operator algebras*, Frontiers of Mathematics in China 6(4) (2011), 567-579.

B. Feigin and A. Semikhatov, *$W^{(2)}_n$ algebras*, Nuclear Phys. B 698 (2004), no. 3, 409-449.

E. Frenkel and D. Ben-Zvi, *Vertex Algebras and Algebraic Curves*, Math. Surveys and Monographs, Vol. 88, American Math. Soc., 2001.

E. Frenkel, V. Kac and M. Wakimoto, *Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction*, Comm. Math. Phys. 147 (1992), no. 2, 295–328.

I. B. Frenkel, J. Lepowsky, and A. Meurman, *Vertex Operator Algebras and the Monster*, Academic Press, New York, 1988.

I. B. Frenkel, and Y.C. Zhu, *Vertex operator algebras and the Verlinde conjecture*, Commun. Contemp. Math. 10 (2008), 103-154.

P. Goddard, A. Kent, and D. Olive, *Virasoro algebras and coset space models*, Phys. Lett B 152 (1985) 88-93.

G. Höhn, *Genera of vertex operator algebras and three-dimensional topological quantum field theories*, Fields Inst. Commun., 39, Amer. Math. Soc., Providence, RI, 2003.

Y.-Z. Huang, *Differential equations and intertwining operators*, Commun. Contemp. Math. 7 (2005), no. 3, 375-400.

Y.-Z. Huang, *Vertex operator algebras and the Verlinde conjecture*, Commun. Contemp. Math. 10 (2008), 103-154.

K. Kawasetsu, *W-algebras with non-admissible levels and the Deligne exceptional series*, Int. Math. Res. Notices (2016), rnw240.

V. Kac, *Vertex Algebras for Beginners*, University Lecture Series, Vol. 10. American Math. Soc., 1998.

V. Kac, D. Peterson, *Infinite-dimensional Lie algebras, theta functions and modular forms*, Adv. Math. 53 (1984) 125-264.

V. Kac, S.-S. Roan, M. Wakimoto, *Quantum reduction for affine superalgebras*. Comm. Math. Phys. 241 (2003), no. 2-3, 307-342.

V. Kac, M. Wakimoto M, *Modular invariant representations of infinite-dimensional Lie algebras and superalgebras*. Proc. Nat. Acad. Sci. U.S.A., 85(14):4956-4960, 1988.

V. Kac, M. Wakimoto M, *On rationality of W-algebras*, Transform. Groups 13 (2008), no. 3-4, 671-713.

C. H. Lam, N. Lam and H. Yamada, *Extension of unitary Virasoro vertex operator algebra by a simple module*, Int. Math. Res. Not. 2003, no. 11, 577-611.
[LiI] H. Li, *Local systems of vertex operators, vertex superalgebras and modules*, J. Pure Appl. Algebra 109 (1996), no. 2, 143-195.

[LiII] H. Li, *Vertex algebras and vertex Poisson algebras*, Commun. Contemp. Math. 6 (2004) 61-110.

[LL] B. Lian and A. Linshaw, *Howe pairs in the theory of vertex algebras*, J. Algebra 317, 111-152 (2007).

[LZ] B. Lian and G. Zuckerman, *Commutative quantum operator algebras*, J. Pure Appl. Algebra 100 (1995) no. 1-3, 117-139.

[MiI] M. Miyamoto, *C_2-cofiniteness of cyclic-orbifold models*, Comm. Math. Phys. 335 (2015), 1279-1286.

[MiII] M. Miyamoto, *Flatness and semi-rigidity of vertex operator algebras*, arXiv:1104.4675.

[Pol] A. Polyakov, *Gauge transformations and diffeomorphisms*, Internat. J. Modern Phys. A 5 (1990), no. 5, 833-842.

[TW] A. Tsuchiya, S. Wood, *The tensor structure on the representation category of the Wp triplet algebra*, J. Phys. A 46 (2013) 445203.

[Wa] W. Wang, *Rationality of Virasoro vertex algebras*, Int. Math. Res. Notices 1993, no. 7, 197-211.

[Y] H. Yamauchi, *Module categories of simple current extensions of vertex operator algebras*. J. Pure Appl. Algebra 189 (2004), no. 1-3, 315-328.

[CZh] C.-J. Zhu, *The BRST quantization of the nonlinear WB_2 and W_4 algebras*, Nucl. Phys. B418 (1994), 379-399.

[YZh] Y. Zhu, *Modular invariants of characters of vertex operators*, J. Amer. Soc. 9 (1996) 237-302.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY

E-mail address: arakawa@kurims.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA

E-mail address: creutzig@ualberta.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER

E-mail address: andrew.linshaw@du.edu