Driver2vec: Driver Identification from Automotive Data

Jingbo Yang
jingboy@stanford.edu
Stanford University
California United States

Ruge Zhao
rugezhao@stanford.edu
Stanford University
California United States

Meixian Zhu
mxzhu@stanford.edu
Stanford University
California United States

David Hallac
david@viaduct.ai
Viaduct.ai
California United States

Jaka Sodnik
jsodnik@nervtech.com
Nervtech
Ljubljana Slovenia

Jure Leskovec
jure@cs.stanford.edu
Stanford University
California United States

ABSTRACT
With increasing focus on privacy protection, alternative methods to identify vehicle operator without the use of biometric identifiers have gained traction for automotive data analysis. The wide variety of sensors installed on modern vehicles enable autonomous driving, reduce accidents and improve vehicle handling. On the other hand, the data these sensors collect reflect drivers’ habit. Drivers’ use of turn indicators, following distance, rate of acceleration, etc. can be transformed to an embedding that is representative of their behavior and identity. In this paper, we develop a deep learning architecture (Driver2vec) to map a short interval of driving data into an embedding space that represents the driver’s behavior to assist in driver identification. We develop a custom model that leverages performance gains of temporal convolutional networks, embedding separation power of triplet loss and classification accuracy of gradient boosting decision trees. Trained on a dataset of 51 drivers provided by Nervtech, Driver2vec is able to accurately identify the driver from a short 10-second interval of sensor data, achieving an average pairwise driver identification accuracy of 83.1% from this 10-second interval, which is remarkably higher than performance obtained in previous studies. We then analyzed performance of Driver2vec to show that its performance is consistent across scenarios and that modeling choices are sound.

1 INTRODUCTION
Identifying the operator of a vehicle can be achieved through installing biometric devices, but there are situations in which the use of such devices is not desired [1]. In this case, a driver identification system can rely on the increasing number of sensors available on modern vehicles. Data from these sensors are already used to build applications such as automatic braking, lane departure warning, and blind spot detection [2]. These applications can be further improved through user-specific customization after inferring identity of the driver from sensor data.

A mature driver assistance system that responds to a short snippet of sensor data gives engineers the potential to build applications that adapt to specific users. At the household level, the system can quickly identify the driver behind the wheel and then adjust vehicle settings accordingly. This adjustment will not be limited to air conditioning or seat position, but will also help with vehicle maneuvering according to drivers’ habits [3]. A system with high accuracy in identifying drivers can also be built to alert vehicle owners of unrecognized driving pattern to deter possibility of theft [4]. One way to build such a system is to map driving behavior to a user-specific embedding, from which many downstream tasks can also take advantage of. A primary challenge is that such system must be generalizable to all scenarios. This requirement is due to the fact that drivers behave differently according to local conditions, including different area types such as highway, urban or rural areas and road conditions like straight roads or turns. Model training for a highly capable system depends on large amounts of driving data, yet those recorded in a varieties of scenarios and by drivers of different driving styles have been difficult to obtain.

In this paper, we develop a model to map a short interval of sensor data into a driver embedding that is suitable for accurate driver identification. Our model is built to extract information from a high quality dataset and to tackle challenges outlined above. To achieve this goal, we design a customized deep learning architecture that leverages the advantages of temporal convolution, the Haar wavelet transform, triplet loss and gradient boosted decision trees’ [5][6][7]. We train this model on a dataset consisting of more than 15 hours of driving data collected from a driving simulator designed by Nervtech, a high-end driving simulation company. In Section 5.1, we show that using a short 10 second snippet of driving data, we can learn embeddings that are able to identify the driver out of a set of 51 potential candidates. In a series of experiments, we further show that Driver2vec can correctly identify the driver in pairwise (2-way) comparison setting with 83.1% accuracy and perform consistently across different road areas. We then analyze the effects of many important hyper-parameters and model components to demonstrate the robustness of our model.

2 RELATED WORKS
Non-invasive identification has been investigated in many domains. For smartphone users, it has been found that movements and gestures associated with phone usage or their correlations with app usage link directly to user identity [8][9][10]. These methods show the effectiveness of using machine learning models for user identification through time series data as an alternative to facial recognition, a common invasive method for user identification.

Researchers have made direct efforts to identify vehicle operator or driving style using time series data with the following three approaches: (1) Rule-based approaches, such as fuzzy logic [11][12] (2) Supervised machine learning models such as decision trees [13], support vector machines [14][15] and neural networks [16] [17].
that drivers spend in each area is presented in Table 1. A unique advantage of this dataset is that it was designed for multiple drivers to drive the same exact scenarios on the simulator, removing external factors, including the effect of weather and road condition, from driver analysis. Another advantage of this dataset is that the simulator samples at 100Hz, much higher than datasets used by existing studies [18] [12] [19] [21] [26].

Road Area	Average Time (SD)
Highway	238.8 (73.8)
Suburban	251.7 (83.8)
Urban	196.9 (77.1)
Tutorial	171.9 (83.1)
Total	859.4 (245.7)

Table 1: Average (standard deviation) time spent in seconds for each driver in each road area.

For this study, we divided data from each road area using a 8:1:1 ratio for training, evaluation and testing. We then grouped the data columns into 8 categories: (1) distance information, (2) lane information, (3) acceleration/break pedal, (4) speed, (5) gear box, (6) acceleration, (7) steering wheel/road angle, (8) turn indicators. These categories correspond to a total of 31 features. More details of the dataset are presented in Appendix Section A.1.

4 DRIVER2VEC MODEL

In this paper, we convert a 10 second snippet of sensor data sampled at 100Hz to a representation which is indicative of the driver’s identity. The input to our model is a multi-channeled time-series sequence. The output of our model has two stages. At first, we output an embedding of length 62 to represent a driver’s behavior. Afterwards, this embedding is further processed for driver identification. To achieve this, we develop a new deep learning architecture, which we call Driver2vec. This new architecture is illustrated in Figure 1.

The core of Driver2vec architecture is time series processing. For this task, we use temporal convolutional network (TCN), which is based on dilated causal convolutions for variable length input sequences. The benefit of using a temporal convolution is that it can be scaled much larger than RNNs and often leads to significant accuracy gains in time series datasets [22]. As demonstrated by previous works, information from the frequency domain contributes to model performance [18][21]. To capture the spectral component of input channels, we use a Haar wavelet transformation, which generates two vectors in the frequency domain [30]. We pass these vectors through a linear layer then concatenate them with results from TCN as the final driver embedding vector. Driver2vec uses triplet loss as the training metric due to its effectiveness shown in other domains [7][31]. Each input is constructed as a set of 3 samples \(x = x_r, x_p, x_n \), where \(x_r \) denotes an anchor, \(x_p \) denotes a positive sample belonging to the same driver as \(x_r \), and \(x_n \) a negative sample from a different driver. The triplet loss is defined as:

\[
I(x_r, x_p, x_n) = \max(0, D_{rp}^2 - D_{rn}^2 + \alpha)
\]

where \(\alpha \) is the margin and \(D \) is the \(l_2 \) distance. In Driver2vec, the optimization is based on triplet loss and the objective is to achieve \(D_{rn} \gg D_{rp} \gg \alpha \) using the concatenated embedding as shown in

3 DATASET

The dataset used for this work was collected from a high-end driving simulator built by Nervtech. This simulator has been demonstrated to reproduce an environment that invokes realistic driver reactions and has been used for evaluating risks of young drivers and those with neurological diseases [28][29]. This dataset contains 51 anonymous volunteer drivers’ test drives on four disjoint road areas, labeled as highway, suburban, urban and tutorial. Each driver spent approximately 15 minutes on the simulator, accumulating to more than 15 hours of driving in total. The average amount of time
Figure 1. Model architecture for Driver2vec, its loss structure and possible downstream tasks.

Figure 1. This setup encourages embeddings for the same driver to be close to each other, and to be far apart for embedding of different drivers. Once the embedding model is trained, we use LightGBM, an efficient implementation of gradient boosting decision trees (GBDT) [6] for subsequent tasks. The output of the LightGBM classifier is driver identification output of the overall Driver2vec model, completing our time series classification workflow.

Overall, our network takes in a multi-channel time series input \(X \in \mathbb{R}^{31 \times 1000} \) and converts it to a 62-dimensional embedding. This embedding is then used to predict the correct driver out of potential candidates. In Section 5, we evaluate our model’s performance and analyze its robustness in a series of experiments.

5 EVALUATION

In this section, we evaluate the performance of Driver2vec on a variety of driver prediction tasks. Since the Driver2vec embedding is trained on driver prediction, we first investigate its performance on driver identification, then analyze the importance of components of Driver2vec. For our experiments, we selected model based on pairwise (2-way) accuracy only. We determined that training with Adam optimizer using learning rate \(4 \times 10^{-4} \), decay \(0.975 \), kernel size \(16 \), triplet margin \(\alpha = 1 \) yields the highest pairwise evaluation accuracy of 81.8% and test accuracy of 83.1%. Hyper-parameters for the LightGBM classifier are found through grid search and are presented in Appendix Section A.2. All parameters for subsequent experiments are kept the constant unless specified otherwise.

5.1 Driver Prediction

We evaluate the performance of Driver2vec for several driver identification scenarios, which are full multi-class driver identification, identification among a set of \(n \) candidates, performance in specific driving area and identification with "none-of-the-above" option.

51-way Driver Identification. We plot confusion matrix for driver identification result using Driver2vec model in Figure 2. A clear diagonal shows that the model is frequently correct. This corresponds to 15% identification accuracy among a full set of 51 candidate drivers. We then use a set of features similar to those used by a baseline approach which is based on a tree classifier for 8-10 seconds of driving data [21]. After grid searching for the best set of parameters, we are only able to achieve 10.9% identification accuracy with the baseline model. We attribute the added accuracy of our model to embeddings generated from the TCN component of Driver2vec because both models use frequency domain features while embeddings from TCN are unique to Driver2vec.

Figure 2: Confusion matrix of 51-way driver identification.

Multi-way Driver Identification. In real life, a vehicle is usually shared among a small number of drivers, therefore a model deployed in the real world should only have to identify a driver from a small group of candidates. For this purpose, we perform experiments for pairwise accuracy \((n = 2) \) and \(n \)-way average accuracy on combinations of \(n = 3, 4, 5 \) drivers. Setup for \(n \)-way accuracy is presented in Appendix Section A.3.

Results for \(n = 2, 3, 4, 5 \)-way accuracy are presented in Table 2. For \(n = 2 \), Driver2vec achieved 83.1% pairwise accuracy on test data. Accuracy decreased to 62.5% for 5-way identification. This decrease is in line with eventual \(n = 51 \) way accuracy of 15%. This observation reflects the fact that as group size increases, probability of including another driver with similar driving behavior increases, which negatively affects prediction accuracy. In comparison, we also experiment with the previously mentioned baseline [21] and are only able to achieve 69.8% for pairwise accuracy, with even wider gap in performance compared to Driver2vec for \(n = 3, 4, 5 \).

Area Specific Prediction. Previous work [16] demonstrated that less sophisticated roads, such as rural roads and highway, are more difficult for driver identification. However, it is important for a system deployed in the real world to perform well in all circumstances. We performed driver identification on the four areas (tutorial, urban, suburban and highway) provided by the Nervtech dataset. As shown...
Table 2: Multi-way accuracy for Driver2vec and for a reference baseline implementation [21] on test data set for 2, 3, 4 and 5 way driver identification.

Accuracy (Test set) (%)	Baseline (%) [21]	
2-way	83.1	69.8
3-way	73.8	55.1
4-way	67.3	47.0
5-way	62.5	42.7

Table 3: Driver2vec performance in given driving area type.

Prediction with None-of-the-above Option. We introduce a "none-of-the-above" option to emulate the real world use case of identifying new or unauthorized drivers. Details for setting up the none-of-the-above evaluation is presented in Appendix Section A.3. Table 4 compares performance between with and without the none-of-the-above setup. The highest drop in performance of 15.3% is observed in the pairwise setup; the difference decreases monotonically down to 6.2% for 5-way predictions. This decrease is expected because having more candidates potentially introduces more driving styles, making it easier for the model to identify a not-included driving behavior. To our best knowledge, this work is the first to explore none-of-the-above possibility in driver identity prediction and our result shows Driver2vec is robust to "noise" introduced as part of our none-of-the-above experiment setup.

Table 4: Multi-way accuracy with and without none-of-the-above (N-o-t-a) noise.

Driving Area	Pairwise Accuracy	Evaluation Set (%)	Test Set (%)
Highway	78.4	81.1	
Suburban	70.7	81.9	
Urban	78.9	82.4	
Tutorial	80.4	84.7	

Table 5: Feature ablation study through comparing pairwise accuracy after removal of different sensor groups.

Removed Sensor Group	Pairwise Accuracy (%)
Speed, acceleration only	66.3
Distance information	74.6
Lane information	77.8
Acceleration/break pedal	78.1
Speed	78.8
Gear box	79.0
Acceleration	79.1
Steering wheel/road angle	79.2
Turn indicators	79.3

Table 6: Driver2vec performance with different combination of components.

5.2 Model Component Analysis

In this section, we evaluate the importance of groups of sensor data and contribution of each part of Driver2vec to overall model performance. Analysis of two important hyper-parameters, interval length and embedding size are presented in Appendix Section A.4.

Feature Importance. We group similar variables in the Nervtech dataset to evaluate the importance of each category of variables. Since a model could infer velocity in y-direction from total velocity and its x,z components, the entire group of velocity related variables must be removed together. A detailed table for grouping of these time series signals is presented in Appendix Section A.1.

Model Ablation. We conduct a model ablation study to investigate the marginal benefit of each model component to overall performance. Our reference deep learning model is RNN (LSTM) with its last output connected to a linear layer for 51-way driver classification using cross-entropy loss. The next improvement is replacing LSTM with TCN for handling time series data. We then replace the cross-entropy loss function with the triplet loss setup and add wavelet features into the embeddings as illustrated in Figure 1. Performances of these incremental steps are presented in Table 6. Clearly, the most important component in Driver2vec is temporal convolution, supporting previous reports [22] on benefits of using TCN for time series tasks.
onto a 2-dimensional latent space using t-SNE. As shown on the left of Figure 3, embeddings of 3 randomly selected drivers are shown in different colors along with embeddings for rest of the drivers in gray. Although scattered, each driver’s embeddings are only present in a region of the graph and have little overlap with embeddings from other drivers. In contrast, right hand side of Figure 3 contains the same background, but embeddings from a group of “indistinguishable” (for which Driver2vec made mistakes) drivers are colored. Driver2vec made incorrect predictions because these embeddings cluster in one region of the plot, indicating that they might have similar driving style.

Figure 3: Left: t-SNE visualization of 3 randomly selected drivers. Right: t-SNE visualization of 3 drivers Driver2vec had difficulty differentiating. (For both figures, all other drivers are colored in light gray).

7 CONCLUSION

This paper proposes a deep learning architecture to map a 10 seconds snippet of sensor data into a embedding representing the driver’s identity. Our proposed model, Driver2vec, is the first to combine temporal convolutional network with triplet loss for embedding generation. Performance on the core task of pairwise driver identification is 83.1%, beating an RNN implementation performance of 72.3% and achieves comparable accuracy against an autoencoder implementation that utilized much longer data snippets [26]. With high quality embeddings, we graphically demonstrate that embeddings from the same driver form cohesive clusters. We believe semi-supervised methods such as contrastive learning and introduction of driver stereotypes like Universal Background Model [33] for speaker identification are viable ways to improve model performance while reducing requirement on size of labeled data. To summarize, Driver2vec is an accurate model for driver identification. The embedding Driver2vec generates has great potential for many downstream applications.

REFERENCES

[1] C. Matyszczek, “Hertz installs cameras and microphones in rental cars,” 2015.
[2] M. Klotz and H. Rohling, “24 ghz radar sensors for automotive applications,” Journal of Telecommunications and Information Technology, pp. 11–14, 2001.
[3] J. Huang, Y.-K. Chun, and W. C. Lin, “Adaptive vehicle control system with driving style recognition,” Sept. 4 2012. US Patent 8,260,515.
[4] B. L. Kwak, J. Woo, and H. K. Kim, “Know your master: Driver profiling-based anti-theft method,” in 2016 14th Annual Conference on Privacy, Security and Trust (PST), pp. 211–218, IEEE, 2016.
[5] C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional networks: A unified approach to action segmentation,” in European Conference on Computer Vision, pp. 47–54, Springer, 2016.
[6] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal., vol. 38, pp. 367–378, Feb. 2002.
[7] H. Song, M. Willi, J. J. Thiagarajan, V. Berisha, and A. Spanias, “Triplet network with attention for speaker diarization,” 2018.
A APPENDIX

A.1 Signals Used as Time Series Input
We grouped available data from the Nervtech dataset into the following categories, presented in Table 7. As described in Section 5.2, we removed these groups one at a time to evaluate the impact of each group on performance of Driver2vec. A sample of the dataset has been made publicly available on Github (repository URL has been anonymized). Source code for this study will be released after full publication.

Group: Acceleration	Acceleration (x)	Acceleration (y)
Group: Distance information	Distance to next vehicle	Distance to next intersection
	Distance to next stop sign	Distance to next traffic signal
	Distance to next yield sign	Distance to completion
Group: Gearbox	Gear	Clutch pedal
Group: Lane information	Number of lanes present	Fast lane
	Location in lane (right)	Location in lane (center)
	Location in lane (left)	Lane width
Group: Pedals	Acceleration pedal	Brake pedal
Group: Road Angle	Steering wheel angle	Curve radius
	Road angle	
Group: Speed	Speed (x)	Speed (y)
	Speed (z)	Speed (next vehicle)
	Speed limit	
Group: Turn indicators	Turn indicators	Tun indicators on intersection
Group: Uncategorized	Horn	Vehicle heading

Table 7: Groups of time series signals used for Driver2vec

A.2 LightGBM Hyper-parameter
Hyper-parameters for LightGBM are identified through grid search over common tuning parameters for LightGBM. The best set of hyper-parameters is presented in Table 8.

LightGBM Parameter Name	Value
num leaves	31
num trees	100
max depth	12
metric	multi_logloss
feature fraction	0.8
bagging fraction	0.9

Table 8: Hyper-parameters for LightGBM classifier.

Setup for None-of-the-above. We designed the none-of-the-above option to better represent the scenario in which an unknown driver is operating the vehicle. For example, the unknown driver can be a friend who is temporarily using the vehicle, or an indication of vehicle theft. For standard n-way accuracy, there is a total of n tuples, out of which 50 tuples contain the ground truth driver and n tuples that do not contain the ground truth driver. We introduce none-of-the-above by sampling 1/2 (50−1) tuples from those that contain the ground truth driver and another 1/2 (50−1) from those that do not contain the ground truth driver.

At prediction time, unlike standard n-way accuracy where the model chooses argmax of predicted probabilities among n probabilities, we introduce a threshold representing minimum certainty for the model to make prediction. If the sum of probabilities for candidate drivers is less than the threshold, the model’s prediction will be considered “uncertain”. In this case, if the ground truth is indeed not in the given set of candidates, the prediction is considered correct. With this setup, 2-way accuracy turns into a selection among (ground truth driver, another driver, not the 2 given candidates).

A.4 Analysis of Hyper-parameters

A.4.1 Interval Length. We define interval length as the length of time in number of seconds for the time series we look ahead for the model. Recall that the Nervtech dataset is collected at 100Hz, thus interval length of 10 seconds represents an input size of 1000 × C, where C is the number of channels (C = 31 for our experiments). Interval gap is the time interval between start of a sample. With a interval gap of 2 seconds, 5 consecutive samples will share a 2 second snippet (located at the beginning of the last sample). All experiments are conducted using the same hyper-parameters as the optimal model we found, except interval length. Figure 4 illustrates interval length and interval gap of our samples.

Figure 4: Illustration of data sampling using a 10 seconds interval length with a 2 seconds interval gap.

As illustrated in Figure 5, longer time interval leads to higher accuracy. With 30-second sequences, Driver2vec can achieve over 90% accuracy on evaluation data for pairwise accuracy. This observation is consistent with high driver identification accuracy achieved using stacked-RNN auto-encoder using long intervals of low frequency data [26]. However, utility of driver identification decreases as vehicle adjustments and warnings depend on responsive data.
processing. On the other hand, although number of samples scales inversely with interval length, model performance diminishes. This fact can be attributed to the difficulty of distinguishing between drivers of similar style in only a few seconds. This observation partially supports the slightly lower accuracy observed for highway samples, as driving on highway require less frequent adjustment of vehicle state.

A.4.2 TCN Embedding Size. Embedding size is another important hyper-parameter we investigated in detail. The size of the Driver2vec embedding represents the amount of information and level of complexity associated with driver behavior projected to latent space. Identifying an appropriate embedding size retains information while reduces chance for overfitting. For these experiments, we keep wavelet embedding size at 30 and only adjust the output size of TCN layers. For driver prediction, embedding from TCN and transformations from Haar wavelet are concatenated, as illustrated in Figure 1. Table 9 compares pairwise prediction accuracy with various embedding sizes. Total embedding size of 62 has the highest performance, which means a driver’s behavior can be represented in approximately 62 dimensions.

TCN embedding size (Total embedding size)	Pairwise Accuracy(%)
16 (46)	79.7
32 (62)	81.8
64 (94)	79.4

Table 9: Pairwise accuracy generated on evaluation data using different embedding size.