CHAIN GRAPHS HAVE UNBOUNDED READABILITY

MARTIN CHARLES GOLUMBIC, URI N. PELED, AND UDI ROTICS

Abstract. A triangle-free graph G is called read-k when there exists a monotone Boolean formula ϕ whose variables are the vertices of G and whose minterms are precisely the edges of G, such that no variable occurs more than k times in ϕ. The smallest such k is called the readability of G. We exhibit a very simple class of bi-partite chain graphs on 2^n vertices with readability $\Omega\left(\frac{\log n}{\log \log n}\right)$.

1. Introduction

1.1. Terminology. We consider monotone Boolean formulas — formulas for short — i.e., formulas ϕ built from variables a_1, \ldots, a_n using the Boolean operations \lor and \land, which we denote as $+$ and \ast for convenience. If no variable appears more than k times in ϕ, we say that ϕ is read-k. A monotone Boolean function F is said to be read-k if F has a logically equivalent read-k formula. The readability of a monotone Boolean function F is the smallest k such that F is read-k. In general determining the readability of a monotone Boolean function might be quite difficult, since to the best of our knowledge it is not known whether there is a polynomial-time algorithm which, given a monotone Boolean function F in an irredundant DNF or CNF representation, decides whether or not F has a read-k formula, for fixed $k \geq 2$.

Given a formula ϕ, we can, using distributivity and idempotency, write a formula logically equivalent to ϕ in the form of sum of products of distinct variables, which we call the complete sum of products of ϕ, denoted by $\text{CSOP}(\phi)$. Using the absorption rule $\alpha + \alpha * \beta \equiv \alpha$ we can simplify $\text{CSOP}(\phi)$ by eliminating products containing other products, obtaining the sum of minterms of ϕ, denoted by $\text{SOP}(\phi)$. Each formula ϕ' logically equivalent to ϕ satisfies $\text{SOP}(\phi') = \text{SOP}(\phi)$, so we denote it

\[\text{SOP}(\phi') = \text{SOP}(\phi) \]

:\[\text{SOP}(\phi') = \text{SOP}(\phi)\]
by SOP(F), where F is the Boolean function given by ϕ. For example, $\phi = a_1 \ast (a_1 + a_2)$ is read-2, CSOP(ϕ) = $a_1 + a_1 \ast a_2$, and SOP(ϕ) = a_1.

With every monotone Boolean function F on the variables a_1, \ldots, a_n we associate a simple graph G_F on the vertex set $\{a_1, \ldots, a_n\}$ whose edges are the unordered pairs $a_i a_j$ such that a_i and a_j occur in the same term of $\text{SOP}(F)$. Thus each term of $\text{SOP}(F)$ induces a clique in G_F. For example for $F_1 = a_1 \ast a_2 \ast a_3$ and $F_2 = a_1 \ast a_2 + a_2 \ast a_3 + a_3 \ast a_1$, both G_{F_1} and G_{F_2} are the triangle on $\{a_1, a_2, a_3\}$. In the other direction, with every simple graph G we associate a formula $\phi(G)$, which is the SOP formula whose terms are the maximal cliques of G. Thus if G is the triangle on $\{a_1, a_2, a_3\}$, then $\phi(G) = F_1$. A monotone Boolean function F is said to be normal when $\text{SOP}(F) = \phi(G_F)$. If G is triangle-free, then $\phi(G)$ is automatically normal. In that case we say that G is read-k if $\phi(G)$ is read-k, and a read-k formula for $\phi(G)$ with the smallest possible k is said to be read-optimal for G. This smallest k is called the readability of G.

For example, if G is a complete bipartite graph G with edges $a_i b_j$, then $\phi(G)$ has the read-1 formula $(a_1 + \cdots + a_m) \ast (b_1 + \cdots + b_n)$. It follows that if the edges of a triangle-free graph G can be covered by complete bipartite subgraphs in such a way that each vertex belongs to at most k of them, then G is read-k.

We illustrate these concepts on grid graphs. It is well-known (see for example [3, 4]) that a monotone Boolean function F is read-1 if and only if F is normal and G_F is a cograph, i.e., G_F does not have a path on 4 vertices as an induced subgraph. Since grid graphs are triangle-free but are not cographs (unless the grid is 1 by 1), they are not read-1. On the other hand, it is easy to cover the edges of a grid graph G by complete bipartite subgraphs of the form $K_{2,2}$, $K_{1,1}$, and $K_{1,2}$ in such a way that each vertex belongs to at most two subgraphs. To do this, color the squares of G with black and white as in Chess, and for each black square take its bounding cycle. These $K_{2,2}$ subgraphs cover all the internal edges of G. Then cover the uncovered boundary edges with $K_{1,1}$ and $K_{1,2}$. This shows that the readability of G is 2.

Problem 1.1. Is it true that a triangle-free graph G always has a read-optimal formula obtained by covering the edges of G with complete bipartite subgraphs?

1.2. Background on readability. We are indebted to G. Turan [9] for the following background information on readability of monotone normal Boolean functions. Recall that a monotone quadratic Boolean function F is normal if and only if G_F is triangle-free.
Proposition 1.2. Almost all n-variable monotone quadratic Boolean functions have readability $\Omega(\frac{n}{\log n})$.

Proof.

(1) Let Q_n be the number of n-variable monotone quadratic Boolean functions. Since every subgraph of a complete bipartite graph $K_{n,n}$ is triangle-free, $\log Q_n \geq c_1 n^2$ for some constant $c_1 > 0$.

(2) Every monotone formula is associated with a parse tree, with variables at the leaves, and $+$ and $*$ internal nodes representing the Boolean operations in the formula. The size of the formula is defined as the number of nodes in the parse tree. Let $M_{n,s}$ be the number of n-variable monotone Boolean formulas of size s, and we estimate it as follows. The parse tree is an ordered tree, and there are $s(2s-2)2s$ ordered trees with s nodes. The tree has at most s internal nodes and at most s leaves. Therefore there are at most 2^s ways to assign $*$ or $+$ to the internal nodes, and at most n^s ways to assign the n variables to the leaves. Multiplying everything together, we deduce that $M_{n,s} \leq 2^{3s}n^s$. Therefore $\sum_{j=0}^s M_{n,j} \leq \sum_{j=0}^s 2^{3j}n^j \leq 2^{3s+1}n^s$ for $n \geq 2$, and therefore $\log \sum_{j=0}^s M_{n,j} \leq c_2 s \log n$ for some constant $c_2 > 0$.

(3) If $s \leq c_1 c_2^{-1} \frac{n^2}{\log n} - \varepsilon$ for some $\varepsilon > 0$, then by (2) and (1) we have

$$\log \sum_{j=0}^s M_{n,j} \leq c_2 s \log n \leq c_1 n^2 - \varepsilon c_2 \log n,$$

or equivalently $\frac{\sum_{j=0}^s M_{n,j}}{Q_n} \leq \frac{1}{n^{c_2}} \to 0$. Therefore among all n-variable monotone quadratic Boolean formulas, the proportion of those of size at most s tends to zero. So with probability 1 an n-variable monotone quadratic Boolean formula has size at least $c_1 c_2^{-1} \frac{n^2}{\log n}$, and therefore readability $\Omega(\frac{n}{\log n})$.

\[\Box\]

No such functions are known explicitly, but there are explicit n-variable monotone quadratic Boolean functions with monotone formula size $\Omega(n \log n)$ and thus readability $\Omega(\log n))$. To explain this, we use the concept of graph entropy defined by Körner [6]. We adopt its definition as presented in Newman and Wigderson [8]. The entropy of a discrete random variable Z is defined as $H(Z) = -\sum_z p(z) \log_2 p(z)$, and the mutual information of two random variables X,Y is defined as $I(X,Y) = H(X) + H(Y) - H((X,Y))$. Let $A(G)$ be the set of
all maximal stable sets of a graph $G = (V,E)$. Define $Q(G)$ to be the set of all probability distributions Q_{XY} on $V \times A(G)$ such that
(a) $Q_{XY}(v,I) = 0$ if $v \notin I$, (b) the marginal distribution Q_X of Q_{XY} on V is the uniform distribution on V. Then the *entropy* of G is defined as $H(G) = \min \{ I(X,Y) \}$, where the minimum is taken over all random variables X and Y that are distributed according to the marginal distributions Q_X and Q_Y of some distribution $Q_{XY} \in Q(G)$.

Now we use the following three facts. (1) Körner [6] proved that every n vertex graph G satisfies $H(G) \geq \log_2(\frac{n}{\alpha(G)})$, where $\alpha(G)$ is the maximum size of a stable set of G. (2) Newman and Wigderson [8] proved that if G is an n-vertex graph, the monotone Boolean formula size of $\phi(G)$ is at least $H(G)n$. (3) Using an explicit Ramsey construction, Alon [1] gave explicit n-vertex triangle-free graphs G_n with $\alpha(G_n) = O(n^{2/3})$. Applying (1)–(3) to G_n, we obtain that the monotone Boolean formula size of $\phi(G_n)$ is $\Omega(n \log n)$.

Since an n-vertex bipartite graph G satisfies $\alpha(G) \geq \frac{n}{2}$, it cannot satisfy $\alpha(G_n) = O(n^{1-\varepsilon})$ for any $\varepsilon > 0$. Therefore the argument in the preceding paragraph cannot use a bipartite graph instead of Alon’s G_n.

Jukna [5] proved that every $\{C_3,C_4\}$-free graph $G = (V,E)$ has monotone Boolean formula size at least $|E|/2$ and hence readability $\Omega(|E|/|V|)$. Such graphs include many explicit bipartite graphs, and also the point-line incidence graphs of the projective planes, for which $|E| \sim |V|^{2/3}$. Thus the readability for such graphs can be as high as $\Omega(\sqrt{n})$.

1.3. Results. The graph $G(n)$ is the bipartite graph with vertices x_1, \ldots, x_n and y_1, \ldots, y_n whose edges are the pairs $x_i y_j$ with $i \leq j$. Figure 1 illustrates $G(3)$.

![Figure 1. The graph $G(3)$.](image-url)
The graph $G(n)$ is an example of so-called chain graphs \cite{10}, also known as difference graphs \cite{7}. The most general chain graph is obtained from $G(n)$ by duplicating vertices, i.e., adding new vertices with the same neighbors as existing vertices. It has the same readability as $G(n)$.

Theorem 1.3 (Main Theorem). The readability of $G(n)$ is
\[\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right). \]

Note that although the lower bound in Theorem 1.3 is smaller than the ones mentioned above, the graph $G(n)$ is bipartite (so is not covered by the arguments of Alon), has C_4s (so is not covered by the results of Jukna) and has a very simple and natural structure. In light of this, Theorem 1.3 is an interesting result.

Since $G(n)$ is distance-hereditary, this theorem answers affirmatively a question posed in \cite{2}.

The following result follows from Theorem 1.3.

Theorem 1.4. For each k, the edges of $G(n)$ cannot be covered by complete bipartite subgraphs in such a way that each vertex belongs to at most k of them, for sufficiently large n.

On the other hand, Theorem 1.3 follows from Theorem 1.4 if Problem 1.1 has an affirmative answer. We give a graph-theoretical proof of Theorem 1.4 not using Theorem 1.3 in the Appendix, which may be of independent interest, and served as a starting point of our investigations. We also show there that $G(n)$ is read-$(1 + \lceil \log_2 n \rceil)$.

Golumbic, Mintz and Rotics \cite{2} have shown that if F is normal and G_F is a partial k-tree, then F is read-2^k, and thus has bounded readability independent of the number of vertices of G_F. Our main theorem continues this line of research with a negative result, namely giving a very simple family of bipartite graphs with unbounded readability.

2. Proof of the Main Theorem

We shall be using Greek letters such as ϕ and ψ to denote formulas. We say that a formula ψ is *as good as* a formula ϕ when they are logically equivalent and for each variable, the number of its occurrences in ψ does not exceed the number of its occurrences in ϕ.

Each formula ϕ is associated with a parse tree, denoted by $\text{tree}(\phi)$, with the occurrences of the variables of ϕ at the leaves and the operations $+$ and \ast of ϕ at the internal nodes. Figure 2 gives an example.
We can simplify $\text{tree}(\phi)$ by eliminating internal nodes corresponding to unary $+$ and \ast operations, i.e., having a single child. Then, using distributivity, we can assume that every path down $\text{tree}(\phi)$ alternates between $+$ and \ast nodes; if for example a $+$ node has a $+$ child, remove the child and make the grandchildren children of the parent. These operations give a logically equivalent formula and do not change the number of occurrences of a variable in ϕ; we always assume they have been performed already, as in Figure 2.

We say that a variable a_i is isolated in a formula ϕ if ϕ is of the form $a_i + \psi$.

A subformula of ϕ is obtained by taking a node of $\text{tree}(\phi)$, removing zero or more of its children but leaving at least two children if the node is internal, then taking the entire subtree rooted at the resulting node. For example, a_3 and $a_1 \ast (a_2 + a_5)$ are subformulas of the formula of Figure 2. A subformula ψ of ϕ is 2-mult if the root of ψ is a \ast node and it has exactly two children in $\text{tree}(\phi)$. For example, $a_3 \ast a_4$ is a 2-mult subformula of the formula of Figure 2, but $a_1 \ast (a_2 + a_5)$ is not.

A formula is said to be non-redundant if it does not have a subformula of the form $\psi = (a_i + \phi_1) \ast (a_i + \phi_2)$. Since $a_i + \phi_1 \ast \phi_2$ is as good as ψ, every formula ϕ can be converted to a non-redundant formula that is as good as ϕ.

A crucial concept in our proof is that of an extension of $G(n)$. A formula ϕ is said to be an extension of $G(n)$ or to extend $G(n)$ when $\text{SOP}(\phi)$ consists of all the edges of $G(n)$ (i.e., all the terms of the form $x_i \ast y_j$ for $1 \leq i \leq j \leq n$), and in addition zero or more terms, each
of which is a product of two or more x_i variables or two or more y_j variables. For example, $\phi = x_1 \cdot (y_1 + y_2 + y_3) + y_3 \cdot (x_2 + x_3) + x_2 \cdot y_2 + x_1 \cdot x_2 \cdot x_3 + y_1 \cdot y_3$ is an extension of $G(3)$, but $\psi = x_1 \cdot (y_1 + y_2 + y_3) + y_3 \cdot (x_2 + x_3) + x_2 \cdot y_2 + x_2 \cdot y_1 \cdot (x_2 + y_3)$ is not, because $\text{SOP}(\psi)$ contains the term $x_2 \cdot y_1$, which is neither an edge of $G(3)$ nor a product of two or more x_i or y_j variables.

Lemma 2.1. Let ϕ be a non-redundant extension of $G(m)$. For every edge $x_i \cdot y_j$ of $G(m)$, ϕ has a 2-mult subformula of the form $(x_i + \phi_1) \cdot (y_j + \phi_2)$.

Proof. Since the term $x_i \cdot y_j$ occurs in $\text{SOP}(\phi)$, ϕ has a subformula of the form $\phi' = (x_i + \phi_1) \cdot (y_j + \phi_2)$ that contributes this term. If ϕ' is 2-mult, we are done. If not, this is due to another subformula multiplying ϕ' at the same level of $\text{tree}(\phi)$, in other words, ϕ has a subformula of the form $\phi' \cdot \psi$, and because ϕ' contributes $x_i \cdot y_j$ to $\text{SOP}(\phi)$, so does $\phi' \cdot \psi$. The formula ψ cannot be a leaf of $\text{tree}(\phi)$, because such leaf could only be x_i or y_j, and this would contradict the non-redundancy of ϕ. Therefore ψ is rooted at a $+$ node or at a $*$ node. In fact we may assume that ψ is rooted at a $+$ node, for if ψ has the form $\psi = \psi_1 \cdot \psi_2$, we replace ψ with ψ_1, and if ψ_1 still is not rooted at a $*$ node, we continue this process of taking the first factor.

By the non-redundancy of ϕ, ψ is neither of the form $x_i + \psi_1$ nor of the form $y_j + \psi_2$, and therefore ψ itself contributes $x_i \cdot y_j$ to $\text{SOP}(\phi)$.

We now repeat the same argument on ψ, and obtain that ψ has a subformula of the form $\psi' = (x_i + \psi_1) \cdot (y_j + \psi_2)$ that contributes the term $x_i \cdot y_j$ to $\text{SOP}(\phi)$. If ψ' is 2-mult we are done. If not, we notice that because ϕ' is rooted at a $*$ node and ψ is rooted at a $+$ node, the root of ψ' is a proper descendant of the root of ψ. Therefore our argument eventually terminates in a 2-mult subformula of ϕ having the form $(x_i + \phi'_1) \cdot (y_j + \phi'_2)$. \hfill \QED

We make the notational convention that whenever we write sets of the form $\{i_1, i_2, \ldots, i_n\}$ or formulas of the form $x_{i(1)} + x_{i(2)} + \cdots + x_{i(n)}$ or $y_{i(1)} + y_{i(2)} + \cdots + y_{i(n)}$, we have $i(1) < i(2) < \cdots < i(n)$.

Lemma 2.2. For every n there exists $m > n$ such that every non-redundant read-k extension of $G(m)$ has a subformula of the form

$$(x_{i(1)} + x_{i(2)} + \cdots + x_{i(n)} + \phi_1) \cdot (y_{i(1)} + y_{i(2)} + \cdots + y_{i(n)} + \phi_2).$$

Note that by our notational convention, the subgraph of $G(m)$ induced by $x_{i(1)}, \ldots, x_{i(n)}, y_{i(1)}, \ldots, y_{i(n)}$ is isomorphic to $G(n)$.

Proof. Given n, we take m as a large enough number, to be specified later. Let ϕ be a non-redundant read-k extension of $G(m)$. By
Lemma 24.1 for each of the edges \(x_1 \ast y_j, 1 \leq j \leq m \) of \(G(m) \), \(\phi \) has a 2-mult subformula of the form

\[\psi = (x_1 + \phi_1) \ast (y_j + \phi_2). \]

We say that \(\psi \) represents the variable \(y_j \) with respect to \(x_1 \). It is possible that a 2-mult subformula \(\psi \) of \(\phi \) represents two variables, say \(y_{j(1)} \) and \(y_{j(2)} \), with respect to \(x_1 \), in which case it has the form

\[\psi = (x_1 + \phi_1) \ast (y_{j(1)} + y_{j(2)} + \phi_2). \]

Since \(x_1 \) occurs at most \(k \) times in \(\phi \), there must be at least \(\lceil \frac{n}{k} \rceil \) variables \(y_{i(1)}, \ldots, y_{i(\lceil \frac{n}{k} \rceil)} \) among \(y_1, \ldots, y_m \) all represented with respect to \(x_1 \) by the same 2-mult subformula of \(\phi \). In other words, \(\phi \) has a 2-mult subformula of the form

\[\psi_1 = (x_1 + \phi_{11}) \ast (y_{i(1)} + \cdots + y_{i(\lceil \frac{n}{k} \rceil)} + \phi_{12}). \]

We now consider the variables \(x_{i(1)}, \ldots, x_{i(\lceil \frac{n}{k} \rceil)} \). If at least \(n \) of them occur isolated in \(x_1 + \phi_{11} \), we are done, so we assume this is not the case. Therefore at least \(n_1 = \lceil \frac{n}{k} \rceil - n \) of these variables (in fact at least \(n_1 + 1 \) of them), call them \(x_{j(1)}, \ldots, x_{j(n_1)} \), do not occur isolated in \(x_1 + \phi_{11} \).

We now repeat the argument for the subgraph of \(G(m) \) induced by \(x_{j(1)} \), \ldots, \(x_{j(n_1)}, y_{j(1)}, \ldots, y_{j(n_1)}. \) Consider the edges \(x_{j(1)} \ast y_{j(l)}, 1 \leq l \leq n_1 \) of this subgraph. By Lemma 24.1 and the fact that \(x_{j(1)} \) occurs at most \(k \) times in \(\phi \), there is a set of \(\lceil \frac{n}{k} \rceil \) variables among \(y_{j(1)}, \ldots, y_{j(n_1)} \), say \(y_{i'(1)}, \ldots, y_{i'('\lceil \frac{n}{k} \rceil)} \), all represented with respect to \(x_{j(1)} \) by the same 2-mult subformula of \(\phi \). In other words, \(\phi \) has a 2-mult subformula of the form

\[\psi_2 = (x_{j(1)} + \phi_{21}) \ast (y_{i'(1)} + \cdots + y_{i'(\lceil \frac{n}{k} \rceil)} + \phi_{22}). \]

As before, if at least \(n \) of the variables \(x_{i'(1)}, \ldots, x_{i'(\lceil \frac{n}{k} \rceil)} \) occur isolated in \(x_{j(1)} + \phi_{21} \), we are done, so we assume this is not the case. Therefore at least \(n_2 = \lceil \frac{n}{k} \rceil - n \) of these variables, call them \(x_{j'(1)}, \ldots, x_{j'(n_2)} \), do not occur isolated in \(x_{j(1)} + \phi_{21} \). And so on.

If we are not done within \(k \) steps, we obtain 2-mult subformulas of \(\phi \) of the form

\[\psi_1 = (x_1 + \phi_{11}) \ast (y_{i(1)} + \cdots + y_{i(\lceil \frac{n}{k} \rceil)} + \phi_{12}), \]

with

\[\{j(1), \ldots, j(n_1)\} \subset \{i(1), \ldots, i(\lceil \frac{n}{k} \rceil)\} \subset \{1, \ldots, m\}, \]

\[n_1 = \lceil \frac{m}{k} \rceil - n. \]
and the variables \(x_{j(1)}, \ldots, x_{j(n_1)} \) do not occur isolated in \(x_1 + \phi_{11} \);
\[
\psi_2 = (x_{j(1)} + \phi_{21}) \ast (y_{i'(1)} + \cdots + y_{i'([n_1/k])} + \phi_{22}),
\]
with
\[
\{ j'(1), \ldots, j'(n_2) \} \subset \{ i'(1), \ldots, i'([n_1/k]) \} \subset \{ j(1), \ldots, j(n_1) \},
\]
\[
n_2 = \left[\frac{n_1}{k} \right] - n
\]
and the variables \(x_{j'(1)}, \ldots, x_{j'(n_2)} \) do not occur isolated in \(x_{j(1)} + \phi_{21} \);
\[
\psi_3 = (x_{j'(1)} + \phi_{31}) \ast (y_{i''(1)} + \cdots + y_{i''([n_2/k])} + \phi_{32}),
\]
with
\[
\{ j''(1), \ldots, j''(n_3) \} \subset \{ i''(1), \ldots, i''([n_2/k]) \} \subset \{ j'(1), \ldots, j'(n_2) \},
\]
\[
n_3 = \left[\frac{n_2}{k} \right] - n
\]
and the variables \(x_{j''(1)}, \ldots, x_{j''(n_3)} \) do not occur isolated in \(x_{j'(1)} + \phi_{31} \);

And so on. In the general case we use the notation \(i^{(1)}, i^{(2)}, \ldots \) for \(i', i'', \ldots \) and similarly for \(j \), and after \(k \) steps we obtain
\[
\psi_k = (x_{j(k-2)(1)} + \phi_{k1}) \ast (y_{i(k-1)(1)} + \cdots + y_{i(k-1)([n_k-1]/k)} + \phi_{k2}),
\]
with
\[
\{ j^{(k-1)}(1), \ldots, j^{(k-1)}(n_k) \} \subset \{ i^{(k-1)}(1), \ldots, i^{(k-1)}([n_k-1]/k) \}
\]
\[
\subset \{ j^{(k-2)}(1), \ldots, j^{(k-2)}(n_{k-1}) \},
\]
\[
n_k = \left[\frac{n_k-1}{k} \right] - n
\]
and \(x_{j^{(k-1)}(1)}, \ldots, x_{j^{(k-1)}(n_k)} \) do not occur isolated in \(x_{j^{(k-2)}(1)} + \phi_{k1} \);

Each of the variables \(y_{i(k-1)(1)}, \cdots, y_{i(k-1)([n_k-1]/k)} \) occurs in all the subformulas \(\psi_1, \ldots, \psi_k \). We show that these \(k \) subformulas are distinct, and therefore each of the above variables already occurs \(k \) times in \(\phi \).

For example, we assume that \(\psi_1 = \psi_2 \) and obtain a contradiction (the argument is the same for \(\psi_i = \psi_j \) for \(i < j \)). Let us denote
\[
\psi_{1L} = x_1 + \phi_{11}
\]
\[
\psi_{1R} = y_{i(1)} + \cdots + y_{i([n_1/k])} + \phi_{12}
\]
\[
\psi_{2L} = x_{j(1)} + \phi_{21}
\]
\[
\psi_{2R} = y_{i'(1)} + \cdots + y_{i'([n_2/k])} + \phi_{22}
\]

Thus \(\psi_1 = \psi_{1L} \ast \psi_{1R} \) and \(\psi_2 = \psi_{2L} \ast \psi_{2R} \). By the definition of \(\psi_2 \), the variable \(x_{j(1)} \) does not occur isolated in \(\psi_{1L} \), but it does occur isolated in \(\psi_{2L} \). Therefore \(\psi_{1L} \neq \psi_{2L} \). Since \(\psi_1 \) and \(\psi_2 \) are 2-mult (they can be factored in only one way into two subformulas, up to order), the equality \(\psi_{1L} \ast \psi_{1R} = \psi_{2L} \ast \psi_{2R} \) then implies that \(\psi_{1L} = \psi_{2R} \) and \(\psi_{1R} =
ψ_{2L}. From ψ_{1L} = ψ_{2R} it follows that y_{i'}(1) occurs isolated in ψ_{1L}, and since \(i' \left(\left\lfloor \frac{m}{k} \right\rfloor \right) \subset \{ i(1), \ldots, i(\left\lfloor \frac{m}{k} \right\rfloor) \} \), this variable also occurs isolated in ψ_{1R}. Therefore ψ_1 has the form \((y_{i'}(1) + \phi_1) * (y_{i'}(1) + \phi_2)\), and this contradicts the assumption that \(\phi\) is non-redundant. This contradiction proves \(\psi_1 \neq \psi_2\).

We have shown that each of the variables

\[y_{i(k-1)(j)}, \quad 1 \leq j \leq i^{(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor) \]

already occurs \(k\) times in \(\phi\). We now show that each of the variables

\[x_{i(k-1)(j)}, \quad 1 \leq j \leq i^{(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor) \]

occurs isolated in \(x_{j(k-2)(1)} + \phi_{k1}\). We assume that for some \(1 \leq j \leq i^{(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor)\), the variable \(x_{i(k-1)(j)}\) does not occur isolated in \(x_{j(k-2)(1)} + \phi_{k1}\), and obtain a contradiction. By construction, this variable also does not appear isolated in any of \(x_1 + \phi_{11}, x_{1(1)} + \phi_{21}, \ldots, x_{j(k-3)(1)} + \phi_{k-1,1}\). Therefore none of the \(k\) occurrences of the variable \(y_{i(k-1)(j)}\) in \(ψ_1, ψ_2, \ldots, ψ_k\) contributes the term \(x_{i(k-1)(j)} * y_{i(k-1)(j)}\) to SOP(\(ϕ\)). Since there are no other occurrences of \(y_{i(k-1)(j)}\) in \(ϕ\), the edge \(x_{i(k-1)(j)} * y_{i(k-1)(j)}\) of \(G(m)\) does not occur in SOP(\(ϕ\)), contradicting the assumption that \(ϕ\) extends \(G(m)\). This contradiction confirms that all of the variables

\[x_{i(k-1)(j)}, \quad 1 \leq j \leq i^{(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor) \]

occur isolated in \(x_{j(k-2)(1)} + \phi_{k1}\). We conclude that \(ψ_k\) is of the form

\[ψ_k = \left(x_{i(k-1)(1)} + \cdots + x_{i(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor) + \phi' \right) * \]

\[y_{i(k-1)(1)} + \cdots + y_{i(k-1)}(\left\lfloor \frac{n_k-1}{k} \right\rfloor) + \phi_{k2} \].

To conclude the proof, we need only choose \(m\) so large that \(\left\lfloor \frac{n_k-1}{k} \right\rfloor \geq n\). We have

\[n_1 \geq \frac{m}{k} - n \]
\[n_2 \geq \frac{n_1}{k} - n \]
\[\ldots \]
\[n_{k-1} \geq \frac{n_{k-2}}{k} - n. \]
Therefore
\[n_{k-1} \geq \frac{m}{k^{k-1}} - \frac{n}{k^{k-2}} - \cdots - \frac{n}{k} - n > \frac{m}{k^{k-1}} - n \left(1 + \frac{1}{k} + \frac{1}{k^2} + \cdots \right) = \frac{m}{k^{k-1}} - \frac{nk}{k-1} \geq \frac{m}{k^{k-1}} - nk. \]

It follows that if \(m \geq 2nk^k \), we have \(\frac{n_{k-1}}{k} > n \), as required. \(\square \)

Lemma 2.3. For every \(n \) there exists \(m > n \) such that every non-redundant read-k extension \(\phi \) of \(G(m) \) has a subformula of the form
\[\phi' = (x_{i(1)} + x_{i(2)} + \cdots + x_{i(n)} + \phi_1) * (y_{i(1)} + y_{i(2)} + \cdots + y_{i(n)} + \phi_2) \]
with the following property: Let \(\psi \) denote the formula obtained from \(\phi \) by substituting a new variable \(z \) for \(\phi' \). Then \(\text{SOP}(\psi) \) does not contain terms of the form \(z * x_{i(j)} \) or \(z * y_{i(j)} \) for \(1 \leq j \leq n \).

Proof. We apply Lemma 2.2 for \(n + 2 \) and conclude that there exists \(m > n + 2 \) such that every non-redundant read-k extension of \(G(m) \) has a subformula of the form
\[\phi' = (x_{i(1)} + \cdots + x_{i(n+2)} + \phi_1) * (y_{i(1)} + \cdots + y_{i(n+2)} + \phi_2). \]
Define new indices \(j(1) = i(2), j(2) = i(3), \ldots, j(n) = i(n+1) \), so that \(\phi' \) takes the form
\[\phi' = (x_{j(1)} + \cdots + x_{j(n)} + \phi'_1) * (y_{j(1)} + \cdots + y_{j(n)} + \phi'_2), \]
where \(\phi'_1 = x_{i(1)} + x_{i(n+2)} + \phi_1 \) and \(\phi'_2 = y_{i(1)} + y_{i(n+2)} + \phi_2 \).

We assume that for some \(1 \leq s \leq n \) the term \(z * x_{j(s)} \) occurs in \(\text{SOP}(\psi) \) and obtain a contradiction. Replacing \(z \) with \(\phi' \) and expanding \(\phi' \), we obtain a term \(y_{i(1)} * x_{j(s)} \) in \(\text{CSOP}(\phi) \). This term remains in \(\text{SOP}(\phi) \), because the latter does not have terms of the form \(y_{i(1)} \) or \(x_{j(s)} \) that could absorb \(y_{i(1)} * x_{j(s)} \), since \(\phi \) is an extension of \(G(m) \). Again, since \(\phi \) is an extension of \(G(m) \), we obtain that \(y_{i(1)} * x_{j(s)} \) is an edge of \(G(m) \), a contradiction.

Similarly no term of the form \(z * y_{j(s)} \) occurs in \(\text{SOP}(\psi) \). \(\square \)

Lemma 2.4. Suppose \(G(n) \) has a read-k extension \(\phi \) having a subformula of the form
\[\phi' = (x_1 + x_2 + \cdots + x_n + \phi_1) * (y_1 + y_2 + \cdots + y_n + \phi_2) \]
with the following property: Let \(\phi'' \) denote the formula obtained from \(\phi \) by substituting a new variable \(z \) for \(\phi' \). Then \(\text{SOP}(\phi'') \) does not contain terms of the form \(z * x_i \) or \(z * y_j \). Then \(G(n) \) has a read-(k - 1) extension.
Proof. We call a minterm that is a product of both x and y variables mixed. So by definition, the mixed minterms of an extension of $G(n)$ are precisely the edges of $G(n)$.

Let ψ be the formula obtained from ϕ by substituting 1 (i.e., a true value) for ϕ'. Since each variable $x_1, \ldots, x_n, y_1, \ldots, y_n$ occurs in ϕ', each variable occurs in ψ less often than in ϕ. Therefore ψ is read-$(k-1)$. To complete the proof, we will show that ψ extends $G(n)$.

Assertion 1: The term z does not occur in $\text{SOP}(\phi''')$, for otherwise we expand z and obtain the term $x_2 \ast y_1$ in $\text{CSOP}(\phi)$. This term remains in $\text{SOP}(\phi)$ because ϕ extends $G(n)$, but this implies that $G(n)$ has the edge $x_2 \ast y_1$, a contradiction.

Assertion 2: No terms of the form x_i or y_j occur in $\text{SOP}(\psi)$. We assume for example that the term x_i occurs in $\text{SOP}(\psi)$ and obtain a contradiction. Since x_i is in $\text{SOP}(\psi)$, it follows that the term x_i or the term $z \ast x_i$ is in $\text{SOP}(\phi'')$. The hypothesis rules out the latter, so the former holds. But this implies that x_i is in $\text{SOP}(\phi)$, which contradicts the assumption that ϕ extends $G(n)$.

Assertion 3: All the mixed terms of $\text{SOP}(\psi)$ are quadratic, i.e., of the form $x_i \ast y_j$. We suppose that a non-quadratic mixed term A occurs in $\text{SOP}(\psi)$ and obtain a contradiction. Either A or $z \ast A$ occurs in $\text{SOP}(\phi'')$.

The first case is that A occurs in $\text{SOP}(\phi'')$. Since ϕ extends $G(n)$, A does not occur in $\text{SOP}(\phi)$. Therefore A is absorbed by a proper subterm B occurring in $\text{SOP}(\phi)$. This B does not occur in $\text{SOP}(\phi'')$, or else it would also absorb A in $\text{SOP}(\phi'')$. It follows that B is obtained in $\text{SOP}(\phi)$ by multiplying some term of $\text{CSOP}(\phi')$ with some subterm B' of B. It follows that some subterm of B' occurs in $\text{SOP}(\psi)$. Since B' is a proper subterm of A, A does not appear in $\text{SOP}(\psi)$, a contradiction.

The second case is that $z \ast A$ occurs in $\text{SOP}(\phi'')$. By the forms of ϕ' and A we have $\phi' \ast A = A$. Therefore we see that after substituting ϕ' for z, some subterm B of A occurs in $\text{SOP}(\phi)$. B must be a proper subterm of A since ϕ extends $G(n)$, and thus all mixed terms of $\text{SOP}(\phi)$ are quadratic. Then either B or zB' with B' a subterm of B occurs in $\text{SOP}(\phi'')$, and in both cases a subterm of B occurs in $\text{SOP}(\psi)$. Since B is a proper subterm of A, A cannot occur in $\text{SOP}(\psi)$, a contradiction.

Assertion 4: $\text{SOP}(\phi)$ and $\text{SOP}(\psi)$ have the same mixed terms.

Let A be a mixed term occurring in $\text{SOP}(\phi)$. Then A has the form $x_i \ast y_j$. The first case is that A occurs in $\text{SOP}(\phi'')$. In this case a subterm B of A occurs in $\text{SOP}(\psi)$, but B cannot be a proper subterm of A by Assertion 2, so A occurs in $\text{SOP}(\psi)$. The second case is that A does not occur in $\text{SOP}(\phi'')$. In that case A appears in $\text{SOP}(\phi)$ as a result of multiplying ϕ' by some other formulas. Thus $\text{SOP}(\phi'')$ has
a term $z \ast B$ where B is a subterm of A. This B cannot be a proper subterm of A by Assertion 1 and the hypothesis that $z \ast x_i$ and $z \ast y_j$ do not occur in SOP(ϕ''). Therefore $B = A$ and $z \ast A$ occurs in SOP(ϕ''). Substituting $z = 1$ we see that a subterm of A occurs in SOP(ψ), and this subterm must be A itself by Assertion 2.

Conversely, let A be a mixed term occurring in SOP(ψ). By Assertion 3 A must be quadratic, i.e., A has the form $x_i \ast y_j$. The first case is that A occurs in SOP(ϕ''). In this case a subterm of A occurs in SOP(ϕ), and this subterm must be A itself because ϕ extends $G(n)$. The second case is that A does not occur in SOP(ϕ''). In that case the term $z \ast A$ occurs in SOP(ϕ''). Substituting ϕ' for z we see that the terms of CSOP($\phi' \ast A$) occur in CSOP(ϕ). But by the forms of ϕ' and A we have $\phi' \ast A = A$. Therefore a subterm of A occurs in SOP(ϕ). Again, by the form of A and the hypothesis that ϕ extends $G(n)$, this subterm is A itself.

We have proven Assertion 4, and therefore, since ϕ extends $G(n)$, so does ψ, as required. □

Theorem 2.5. If $G(n)$ has no read-($k - 1$) extension, then there exists $m > n$ such that $G(m)$ has no read-k extension.

Proof. Suppose the conclusion of the theorem fails, i.e., for each $m > n$, $G(m)$ has a read-k extension. Let $m > n$ be the value given by Lemma 2.3 for n. By our supposition $G(m)$ has a read-k extension ρ. We can find a non-redundant formula ϕ that is as good as ρ. In particular ϕ is read-k, and SOP(ϕ) = SOP(ρ), so that ϕ is also an extension of $G(m)$. By Lemma 2.3 ϕ has a subformula of the form

$$\phi' = (x_{i_1} + x_{i_2} + \cdots + x_{i_n} + \phi_1) \ast (y_{i_1} + y_{i_2} + \cdots + y_{i_n} + \phi_2)$$

with the following property: Let ϕ'' denote the formula obtained from ϕ by substituting a new variable z for ϕ'. Then SOP(ϕ'') does not contain terms of the form $z \ast x_{i(j)}$ or $z \ast y_{i(j)}$ for $1 \leq j \leq n$.

Let ψ denote the formula obtained from ϕ by substituting zero (i.e., false) for all variables except $x_{i_1}, \ldots, x_{i_n}, y_{i_1}, \ldots, y_{i_n}$ and renumbering $i(1), \ldots, i(n)$ as $1, \ldots, n$. Then ψ is read-k. Since ϕ extends $G(m)$, the mixed terms of SOP(ϕ) are precisely the edges of $G(m)$. Only the edges induced by x_1, \ldots, x_n and y_1, \ldots, y_n (in the new numbering) survive the substitution, and these edges form $G(n)$. No new non-mixed terms appear as the result of the substitution. Therefore ψ extends $G(n)$.

Let ψ' be obtained from ϕ' by the same substitution and renumbering. Then ψ' is a subformula of ψ of the form

$$\psi' = (x_1 + x_2 + \cdots + x_n + \psi_1) \ast (y_1 + y_2 + \cdots + y_n + \psi_2)$$
with the following property: Let ψ'' denote the formula obtained from ψ by substituting a new variable z for ψ'. Then $\text{SOP}(\psi'')$ does not contain terms of the form $z \ast x_j$ or $z \ast y_j$ for $1 \leq j \leq n$. Indeed, suppose $z \ast x_j$ occurs in $\text{SOP}(\psi'')$. Since it does not occur in $\text{SOP}(\phi ')$, a proper subterm, i.e., either z or x_j, occurs in $\text{SOP}(\phi '')$. It follows that either a subterm of $x_2 \ast y_1$ or the term x_j occurs in $\text{SOP}(\phi)$, which is impossible since ϕ extends $G(m)$.

We have shown that ψ and ψ' satisfy the hypothesis of Lemma 2.4, so by its conclusion $G(n)$ has a read-$(k - 1)$ extension, contradicting the hypothesis of the theorem.

Corollary 2.6. For each k, $G(m)$ has no read-k extension for m sufficiently large.

Proof. By Theorem 2.5 and the fact that $G(2)$ has no read-1 extension, it follows that there exists an m such that $G(m)$ has no read-k extension. If $G(m + 1)$ had a read-k extension, we would obtain from it a read-k extension of $G(m)$ by substituting zero for x_{m+1} and y_{m+1}.

Corollary 2.7. For each k, $G(m)$ is not read-k for m sufficiently large.

Proof. This follows from Corollary 2.6, since every formula for $G(m)$ is an extension of $G(m)$.

To prove our main theorem, we analyze the proofs above to find out how large they require m to be for a given k.

Proof. (of Theorem 1.3) It follows from the proofs of Lemma 2.2 through Corollary 2.6 that if $G(n)$ has no read-$(k - 1)$ extension and $m \geq 2nk^k$, then $G(m)$ has no read-k extension. Since $G(2)$ has no read-1 extension, it follows by induction on k that $G(2^k \cdot 1^2 \cdots (k - 1)^{k - 1})$ has no read-k extension, and therefore it is not read-k. Since $2^k \cdot 1^2 \cdots (k - 1)^{k - 1} \leq 1^1 \cdots k^k$, it follows that if $1^1 \cdots k^k \leq n$, then $G(n)$ is not read-k. We use the estimate $\log(1^1 \cdots k^k) \leq k^2 \log k$. If we substitute $k = \left\lfloor \sqrt{\frac{\log n}{\log \log n}} \right\rfloor$, we obtain $k^2 \log k \leq \log n$. Therefore for this k, $G(n)$ is not read-k; in other words, the readability of $G(n)$ is $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.

3. **Appendix**

We denote by r_n the smallest k such that the edges of $G(n)$ can be covered by complete bipartite subgraphs in such a way that no vertex belongs to more than k subgraphs. Equivalently, r_n is the smallest number k such that we can give to each vertex of $G(n)$ at most k
colors in such a way that \(x_i \) and \(y_j \) share a color if and only if \(i \leq j \), i.e., if and only if \(x_i \ast y_j \) is an edge of \(G(n) \). In that case we say that we have *represented* \(G(n) \) with these colors. The total number of colors used does not matter, only how many colors each vertex receives. As we mentioned in the Introduction, \(r_n \) is an upper bound for the readability of \(G(n) \).

Proposition 3.1. \(r_n \leq r_{n+1} \).

Proof. This follows trivially from the fact that \(G(n) \) is an induced subgraph of \(G(n + 1) \). □

Lemma 3.2. \(r_{n+m} \leq 1 + r_{\max(n,m)} \).

Proof. Assume without loss of generality that \(n \leq m \). Consider \(G(n + m) \). The subgraph \(G_1 \) induced by \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_n \) is \(G(n) \), and the subgraph \(G_2 \) induced by \(x_{n+1}, \ldots, x_{n+m} \) and \(y_{n+1}, \ldots, y_{n+m} \) is isomorphic to \(G(m) \). Let \(k = r_m \). We represent \(G_2 \) with a set of colors so that each vertex of \(G_2 \) receives at most \(k \) colors. Since \(r_n \leq k \) by Proposition 3.1 we can represent \(G_1 \) by a set of new colors so that each vertex of \(G_1 \) receives at most \(k \) colors. Since no color is common to \(G_1 \) and \(G_2 \), we have not represented the non-existing edges between \(y_1, \ldots, y_n \) and \(x_{n+1}, \ldots, x_{n+m} \). Finally we give a new color to the vertices \(x_1, \ldots, x_n \) and \(y_{n+1}, \ldots, y_{n+m} \) to represent the edges between \(x_1, \ldots, x_n \) and \(y_{n+1}, \ldots, y_{n+m} \). This coloring represents \(G(n + m) \) and gives at most \(k + 1 \) colors to each vertex. □

Corollary 3.3. \(r_{2q} \leq q + 1 \), or equivalently by Proposition 3.1, \(r_n \leq 1 + \lceil \log_2 n \rceil \).

Proof. This follows from Lemma 3.2 and \(r_1 = 1 \). □

Lemma 3.4. If \(r_n \geq k \), then \(r_{(2k+1)n} \geq k + 1 \).

Proof. We assume that \(r_n \geq k \) but \(r_{(2k+1)n} \leq k \) and obtain a contradiction. By Proposition 3.1 we have \(k \leq r_n \leq r_{(2k+1)n} \leq k \), and consequently

\[
r_n = r_{(2k+1)n} = k.
\]

Let \(G = G((2k+1)n) \), and consider a coloring representing \(G \) with at most \(k \) colors present at each vertex. We divide \(G \) into \(2k+1 \) induced subgraphs \(G_1, G_2, \ldots, G_{2k+1} \) isomorphic to \(G(n) \), \(G_i \) being induced by the vertices \(x_{(i-1)n+1}, \ldots, x_{in} \) and \(y_{(i-1)n+1}, \ldots, y_{in} \), \(1 \leq i \leq 2k+1 \). We call \(\{ x_{(i-1)n+1}, \ldots, x_{in} \} \) and \(\{ y_{(i-1)n+1}, \ldots, y_{in} \} \) the opposite sides of \(G_i \).

The coloring of \(G \) also represents \(G_i \). This coloring still represents \(G_i \) if at each vertex of \(G_i \) we keep only the colors that appear in the
opposite side of G_i. If the resulting coloring has fewer than k colors present at each vertex of G_i, then $r_n < k$, a contradiction. Therefore G_i has a vertex with k colors, all appearing in the opposite side of G_i. We call such a vertex a distinguished vertex of G_i.

Assertion 1: It is impossible that G_i has a distinguished vertex x_p and G_{i+1} has a distinguished vertex y_q. We suppose such distinguished vertices exist and obtain a contradiction. The edge $x_p \ast y_q$ of G necessitates a common color to x_p and y_q. Since x_p is distinguished, this color is present at some vertex y_r of G_i, and since y_q is distinguished, this color is present at some vertex x_s of G_{i+1}. This contradicts the non-existence of the edge $x_s \ast y_r$, proving Assertion 1.

Assertion 2: It is impossible that G_i, G_{i+1}, ..., G_{i+k} all have distinguished vertices on the same side. Assume for example that G_j has a distinguished vertex $y_{d(j)}$ for each $i \leq j \leq i+k$ (the argument is similar if G_i, G_{i+1}, ..., G_{i+k} all have distinguished vertices on the x side). Since $y_{d(j)}$ is distinguished, all the k colors present at $y_{d(j)}$ appear on the x side of G_j. Therefore they cannot be present at $y_{d(l)}$ for any $i \leq l \leq j - 1$, or else a non-existing edge of G would appear. It follows that each distinguished vertex $y_{d(j)}$ has k colors that are not present at any other distinguished vertex $y_{d(j')}$, $j' \neq j$. Now consider the vertex $x_{d(i)}$. Since it is adjacent to the k distinguished vertices $y_{d(i+1)}$, ..., $y_{d(i+k)}$, it has a common color with each of them. This already gives to $x_{d(i)}$ k distinct colors that are not present at the distinguished vertex $y_{d(i)}$. Since $x_{d(i)}$ has no other colors, the edge $x_{d(i)} \ast y_{d(i)}$ is missing, a contradiction. This proves Assertion 2.

As a consequence of Assertion 1, there exists an index $0 \leq L \leq 2k+1$ such that G_1, ..., G_L have distinguished vertices only on the y side and not on the x side, whereas G_{L+1}, ..., G_{2k+1} have distinguished vertices only on the x side and not on the y side. As a consequence of Assertion 2 we have both $L \leq k$ and $2k+1-L \leq k$, a contradiction, which proves the lemma.

Since $r_1 = 1$, Lemma \[\ref{lemma:1}\] gives $r_{3,1} \geq 2$, $r_{5,3,1} \geq 3$, and in general $r_{(2k-1)!!} \geq k$, where $(2k-1)!! = (2k-1) \cdot (2k-3) \cdots 3 \cdot 1$. This proves Theorem \[\ref{theorem:1}\].

References

[1] N. Alon. Explicit Ramsey graphs and orthonormal labelings. Electr. J. Combinatorics 1 (1994).

[2] Martin Charles Golumbic, Aviad Mintz and Udi Rotics. Factoring and Recognition of Read-Once Functions using Cographs and Normality and the Readability of Functions Associated with Partial k-trees. Discrete Applied Math. 154:1465–1477, 2006.
[3] V.A. Gurvich, On repetition-free Boolean functions, *Uspekhi Mat. Nauk.* 32:183–184, 1977, (in Russian); also, On read-once Boolean functions, *Russian Math. Surveys* 32:183–184, 1977.

[4] V. Gurvich. Criteria for repetition-freeness of functions in the algebra of logic. *Soviet Math. Dokl.*, 43(3):721–726, 1991.

[5] S. Jukna. On graph complexity. *ACCC TR04-005* http://eccc.hpi-web.de/eccc-reports/2004/TR04-005/index.html#R01

[6] J. Körner. Coding of an information source having ambiguous alphabet and the entropy of graphs. *Trans. 6th Conf. on Information Theory*, Academia, Prague (1973), 441–425.

[7] N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics. *Annals of Discrete Mathematics* 56:1–543, 1995, North-Holland.

[8] I. Newman and A. Wigderson. Lower bounds on formula size of Boolean functions using hypergraph entropy. *SIAM Journal on Discrete Mathematics* 8(4) 1995, 536–542.

[9] G. Turan. Private communication, 2006.

[10] M. Yannakakis. The Complexity of the Partial Order Dimension Problem. *SIAM Journal on Algebraic and Discrete methods* 3:351–358, 1982.

Golumbic: Caesarea Rothschild Institute and Department of Computer Science, University of Haifa, Israel
E-mail address: golumbic@cs.haifa.ac.il

Peled: The University of Illinois at Chicago, United States
E-mail address: uripeled@uic.edu

Rotics: Netanya Academic College, Israel
E-mail address: rotics@mars.netanya.ac.il