The Impact of Chemotherapy Prescription on Long-Term Survival Outcomes in Early-Stage Invasive Lobular Carcinoma – A Systematic Review and Meta-Analysis

Matthew G. Davey, Stephen Keelan, Aoife J. Lowery, Michael J. Kerin

Abstract

Invasive lobular carcinoma are typically endocrine responsive breast cancers which respond poorly to chemotherapy. This meta-analysis which included over 28,000 patients from 9 studies illustrated the non-inferiority of treating early stage lobular carcinoma with chemotherapy. These findings should be incorporated into multidisciplinary team discussions when deciding upon the value of chemotherapy for prospective patients.

Introduction: Invasive lobular carcinoma (ILCs) are typically endocrine responsive breast cancers which respond poorly to chemotherapy. The long-term survival advantage of prescribing chemotherapy in such cases remains unclear. To perform a systematic review and meta-analysis assessing, the impact of prescribing chemotherapy in such patients on long-term disease-free (DFS) and overall (OS) survival outcomes. Methods: A systematic review and meta-analysis was performed in accordance with the PRISMA guidelines. Ten-year DFS and OS were pooled as odds ratios (ORs) with 95% confidence intervals (CI) using the Mantel-Haenszel method. Time-to-effect modelling was performed using the generic inverse variance method. Results: Overall, 9 studies including 28,218 patients were included. The mean follow-up was 74 months (range: 0–150 months) and mean age was 60 years (range: 22–90 years). Of these, 34.7% received chemotherapy (9,797/28,218) and 66.3% did not receive chemotherapy (18,421/28,218). Chemotherapy prescription failed to improve 10-year DFS (OR: 0.89, 95% CI: 0.65–1.23) and OS (OR: 0.92, 95% CI: 0.72–1.18). When using time-to-effect modelling, chemotherapy prescription failed to improve DFS (hazard ratio (HR): 1.01, 95% CI: 0.78–1.31) and OS (HR: 1.07, 95% CI: 0.89–1.27, \(P = 67\% \)). Conclusion: This meta-analysis illustrates no long-term survival advantage associated with chemotherapy prescription in the setting of early-stage ILC. In the absence of well-designed, prospective clinical trials evaluating the impact of chemotherapy on long-term outcomes in ILC, these results should be considered by the multidisciplinary team when deciding on the value of systemic chemotherapy prescription in ILC.

Clinical Breast Cancer, Vol. 000, No.xxx, 1–7 © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Systemic chemotherapy, Oncological outcomes

Introduction

Invasive lobular carcinoma (ILC) represents the second most common breast cancer histological subtype and accounts for 5% to 15% of diagnoses globally.1,2 Despite representing a minority share of all breast tumors, ILC contributes a similar share to the global cancer burden as ovarian carcinoma, central nervous system tumors, and malignant melanoma.3 Notwithstanding, ILCs remain an understudied breast cancer histological subtype,4,5 particularly as these tumors possess unique biological characteristics and illustrate a different natural history to the more common IDC subtype. ILCs have the tendency to develop in older patients, who typically have more advanced disease,1,6 and these cancers exhibit peculiar metastatic patterns once relapse occurs.7 Furthermore, ILCs are typically indolent (moderate-to-well differentiated) tumors with the propensity to develop strong estrogen and/or progesterone receptor positivity and human epidermal growth factor receptor-2 negativity (ER+/PgR+/HER2-).8 Accordingly, ILCs tend to be endocrine responsive,9 chemoinsensitive cancers,7 with surgery...
The Impact of Chemotherapy Prescription on Long-Term Survival

combined with multimodal therapeutics proving curative for the majority.1,10,11

ILC represent a unique histological subtype.12 These cancers are characterized by small, non-cohesive epithelial cells which are dispersed individually in a single-file linear pattern in a fibrous stroma of the breast parenchyma, with loss of expression of E-cadherin (CDH1) cell adhesion molecule occurring in 60% to 90%.13-15 Loss of CDH1 expression is a renowned cellular hallmark of ILC, with histopathological measurement of the biomarker recommended within expert statements for breast carcinoma workup.16 Given these unique histological parameters, it is imperative that the multidisciplinary team consider an array of host, tumor, and therapeutic factors when treating patients with ILC disease, for example the propensity for strong responsiveness to endocrine agents combined with reported modest sensitivity to systemic chemotherapy, when compared to patients with other histological subtypes.9 Despite these differences, there are currently no expert consensus statements or guidelines which focus on optimizing systemic therapy specific to lobular histology.17 This often leads to breast cancers being treated en masse with systemic chemoendocrine therapies with limited consideration for histological subtype.18,19 Thus, the perceived benefit of prescribing systemic chemotherapy in the setting of early-stage ILC may be brought into question or may not be completely understood.

At the time of writing, there are no prospective, randomized clinical trials evaluating the impact of chemotherapy prescription on long-term survival outcomes in patients who are being treated with curative intent for early-stage ILC. Accordingly, the aim of the current study was to perform a systematic review and meta-analysis assessing the impact of prescribing chemotherapy in such patients on long-term survival outcomes.

Methods

Materials and Methods

A systematic review was performed in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist and meta-analysis and systematic reviews of observational studies (MOOSE) guidelines.20,21 This study was registered with the International Prospective Register of Systematic Reviews (PROSPERO: CRD42022327137). Local institutional ethical approval was not required for this study.

Search Strategy

An electronic search was performed of the PubMed, Embase, and Cochrane databases on the 3rd March 2022 for relevant studies suitable for inclusion in this study. The search was performed of all fields under the following headings: ((carcinoma, lobular[MeSH Terms]) AND (chemotherapies[MeSH Terms]) AND (breast cancer[MeSH Terms]), which were linked with the Boolean operator ‘AND’. Included studies were limited to those published in the English language and to studies with full-text articles available. Included studies were not restricted based on the year of publication. Initially, all titles were screened, and studies deemed appropriate had their abstracts and full texts reviewed.

Inclusion and Exclusion Criteria

Studies meeting the following inclusion criteria were included: (1) Studies assessing the impact of chemotherapy on long-term survival outcomes (ie: hazard ratios (HR), 10-year disease-free (DFS) and/or overall (OS) survival) for patients diagnosed with early-stage ILC; (2) eligible studies had to provide full-text manuscripts. Studies meeting any of the following exclusion criteria were excluded from this study: (1) Studies not evaluating the impact of chemotherapy on long-term survival outcomes for patients diagnosed with early-stage ILC; (2) studies reporting outcomes solely in relation to ILC subgroups (eg: pleomorphic ILC); (3) conference abstracts; (4) review articles; (5) studies including less than 100 patients in their series; (6) case reports, or (7) editorial articles.

Data Extraction and Quality Assessment

Two independent reviewers performed the literature search using a predesigned search strategy. Duplicate studies were manually removed. Each reviewer then reviewed the titles, abstracts and/or full texts of the retrieved manuscripts to ensure all inclusion criteria were met, before extracting the following data: (1) first author name; (2) year of publication; (3) study design; (4) country of origin; (5) number of patients diagnosed with ILC included; (6) number of patients undergoing chemotherapy; (7) number of patients not undergoing chemotherapy; (8) basic clinicopathological data (eg: age at diagnosis, tumor staging, follow-up, etc.); and (11) long-term DFS and OS outcomes from each study. Methodological and risk of bias assessment of the included studies was undertaken using the Newcastle Ottawa Risk of Bias Assessment tool for observational studies.22

Definitions

Disease-free survival – freedom from invasive disease recurrence or death.

Overall survival – freedom from death due to any cause.

Statistical Analysis

Fisher’s Exact (\(\chi^2\)) test was used as appropriate to determine the association between chemotherapy prescription and long-term survival.23 Thereafter, survival outcomes were expressed as dichotomous or binary outcomes, reported as odds ratios (OR) and 95% confidence intervals (95% CI) following estimation using the Mantel-Haenszel method. Data specific to patient outcomes and chemotherapy prescription (expressed as HR, 95% confidence intervals (95% CI) and \(P\)-values) were directly extracted from tables and study text. HR and associated standard errors were calculated from Kaplan-Meier curves where relevant. Time-to-event modelling was then performed using the generic inverse variance method. Either fixed or random-effects modelling were applied on the basis of whether significant heterogeneity (\(I^2 > 50\%\)) existed between studies included in the analysis. Symmetry funnel plots were used to assess publication bias. Statistical heterogeneity was determined using \(F\) statistics. All tests of significance were 2-tailed with \(P < .050\) indicating statistical significance. Descriptive statistics were performed using the Statistical Package for Social Sciences (SPSS) version 26 (International Business Machines Corporation, Armonk, NY). Meta-analysis was performed using Review Manager.
Results

Literature Search

The systematic search strategy identified a total of 853 studies, of which 7 duplicate studies were manually removed. The remaining 846 studies had their titles screened for relevance before 30 abstracts and 17 full texts were reviewed for edibility. In total, 9 studies fulfilled the inclusion criteria and were included in this systematic review (Figure 1).

Study Characteristics

Of the 9 included studies, 44.4% provided data from the United States and European translational research facilities respectively (both 4/9). All included studies were of retrospective design (100.0%, 9/9). Publication dates of included studies ranged from 2012 to 2022. Basic study data from the included 9 studies are outlined in Table 1. Risk of bias performed using the Newcastle-Ottawa Scale are outlined in detail in the supplementary material (S1).

Clinicopathological Characteristics

Overall, 28,218 patients were included in the 9 included studies. Of these, 34.7% received chemotherapy (9,797/28,218) and 66.3% did not receive chemotherapy (18,421/28,218). Seven studies reported follow-up data and the mean follow-up was 74 months (range: 0-150 months). Three studies reported patient age and the mean age of included patients was 60 years (range: 22-90 years) (Table 2).

Impact of Chemotherapy on Disease-free Survival

At 10-years follow-up, a higher proportion of patients who had received chemotherapy remained free of disease recurrence or death (83.4%-2,444/2,930 vs. 80.3%, 2,883/3,592 \(P = .001\)). At meta-analysis, 10-year DFS was similar for those who received chemotherapy versus those who did not receive chemotherapy (OR: 0.89, 95% CI: 0.65-1.23, \(F = 83\%\)) (Figure 2A). Similarly, DFS was similar for...
The Impact of Chemotherapy Prescription on Long-Term Outcomes

Table 1: Details of the 9 Included Studies in This Analysis

Author	Year	Study	Country	Number	Number Chemo	Number Control	Mean age in Years (Range)	Follow-up in Months (Range)	NOS
Chen	2018	China	RC	6467	1246	5221	60 (22-90)	63 (0-145)	5
de Nonville	2019	France	RC	2308	823	1485	-	58	5
Hu	2020	USA	RC	3570	1785	1785	-	-	6
Iorfida	2012	Italy	RC	981	345	636	-	89 (0-150)	5
Jenkins	2022	USA	RC	2561	459	2102	-	40	5
Marmor	2017	USA	RC	4095	1347	2748	-	-	7
Metzger-Filho	2019	Portugal	RC	337	170	167	55 (48-64)	95	6
Truin	2012	NL	RC	3685	1515	2170	-	67	7
Watanuki	2020	USA	RC	4214	2107	2107	-	129	7

Chemo = chemotherapy, NL = Netherlands, RC = retrospective cohort, USA = United States of America, NOS = Newcastle Ottawa Scale

Table 2: Clinicopathological Data of the 9 Included Studies in This Analysis

Author	Year	Tumor Staging	Nodal Status	Subtypes	Chemotherapy	Control
Chen	2018	T1-T2	N0 or N1	ER+/HER2-	aCT + aHT	aHT
de Nonville	2019	T1-T2	N0 or N1	ER+/HER2-	aCT + aHT	aHT
Hu	2020	T1	N0 or N1	ER+/HER2-	aCT + aHT	aHT
Iorfida	2012	T1-3	N1-3	All subtypes	aCT	aHT or none
Jenkins	2022	T1-3	N or N+	ER+	aCT	None
Marmor	2017	Stage I-II	N0 or N1	ER+/HER2-	aCT + aHT	aHT
Metzger-Filho	2019	T1-3	N or N+	ER+	aCT	-
Truin	2012	T1-T4	N0 or N1	ER+	aCT + aHT	aHT
Watanuki	2020	T1-T4	N0-N3	All subtypes	NAC or aCT	NET or aHT

T = tumor stage, N = nodal stage/status, ER+ = estrogen receptor positive, HER2- = human epidermal growth factor receptor-2 negative, aCT = adjuvant chemotherapy, aHT = adjuvant hormonal therapy, NAC = neoadjuvant chemotherapy, NET = neoadjuvant endocrine therapy

Impact of Chemotherapy on Overall Survival

At 10-years follow-up, a similar proportion of patients who had received chemotherapy were still alive compared to those who did not receive chemotherapy (76.3% - 4.421/5,792 vs. 75.9%, 6,459/8,510, P = .563, 95%). At meta-analysis, 10-year OS was similar for those who received chemotherapy versus those who did not receive chemotherapy (OR: 0.92, 95% CI: 0.72-1.18, F = 89%) (Figure 3A). Similarly, OS was similar for those who received chemotherapy versus those who did not receive chemotherapy when using time-to-event modelling (HR: 1.07, 95% CI: 0.89 - 1.27, F = 67%) (Figure 3B).

Discussion

The most important finding in this meta-analysis is the data illustrating that there is no survival advantage associated with prescribing systemic chemotherapies in the setting of localized ILC. These results are of the utmost importance within the current breast cancer management paradigm, as there is currently a paucity of expert consensus statements or guidelines providing recommendations for optimizing systemic chemotherapy use in ILC. Several translational and clinical research studies have illustrated the chemoinvasive sensitive nature of ‘pure’ ILC. Although improved oncological outcomes are typically observed in patients who respond favorably to chemotherapy, these results are non-representative of ILC disease: Cortazar et al., illustrated that ILC demonstrates poor sensitivity to neoadjuvant chemotherapies (NAC) and no impact on OS outcomes overall [pCR rate in ILC: 7.8%, HR: 0.93 (95% CI: 0.50-1.70)]. While achieving a pCR to NAC is perceived to carry prognostic significance in certain breast cancer molecular subtypes, the ILC histological subtype fails to corroborate such results, based on the work of the Collaborative Trials on Neoadjuvant Breast Cancer (CTNeoBC). Therefore, perhaps it is somewhat unsurprising that prescribing chemotherapy failed to improve the long-term survival observed in the current analysis of over 28,000 patients treated for ILC. Thus, these results indicate a more judicious approach to systemic therapy prescription in ILC is warranted in future.

Prior to this study, the long-term impact of prescribing systemic chemotherapy to improve oncological and survival outcomes in early-stage ILC had not previously been evaluated. Therefore, this meta-analysis provides novel data highlighting the limited premise for using such therapies to improve DFS (OR: 0.89, 95% CI: 0.65-1.23) and OS (OR: 0.92, 95% CI: 0.72-1.18) at 10-years outcomes following treatment and over the full trajectory of the included studies [DFS - HR: 1.01 (95% CI: 0.78-1.31), OS - HR: 1.07 (95% CI: 0.89-1.27)]. These are interesting findings which speak to the
The tendency of ILCs to develop larger, more indolent cancers which are ER+/PgR+, with lower 21-gene expression assay recurrence scores (RS) and metastatic potential, which derive limited benefit from chemotherapy. The modern breast cancer treatment paradigm for early-stage ER+/HER2- disease relies heavily upon multigene expression assays (such as RS) to guide therapeutic decision making surrounding chemoendocrine therapies, which of course may influence ILC management prospectively: Makower et al. previously demonstrated that just 7.2% of patients with ILC had high-risk RS (RS 26-100) versus 16.9% of those with ductal histology in their analysis using patients from the National Cancer Database. Furthermore, this analysis illustrated no survival advantage associated with chemotherapy use in ILC (HR: 0.99, 95% CI: 0.70-1.39) when adjusted for age, race, ethnicity, rurality, median income and educational level of area of residence, RS, tumor size, grade, nodal involvement, and Charlson-Deyo comorbidity index. Interestingly, patients in the aforementioned study with RS 11-25 being treated for ILC disease were more likely to receive adjuvant chemotherapy than other histological subtypes, which is best explained by the overestimated benefit of such therapies in the setting of larger ILC...
cancers by the medial oncology community. As evidenced by the recent TAILORx and RxPONDER trials, reliance upon traditionally actionable clinicopathological parameters (such as tumor size and nodal status) to guide chemoendocrine prescription in ER+ disease is now becoming almost obsolete. Furthermore, trials such as RxPONDER were not powered to estimate the survival advantage of chemoendocrine therapies based on subgroups, such as histological subtypes. The evidence reported in the current analysis illustrates that the case of lobular histology provides an obvious exception to this concept, with limited premise to prescribe chemotherapy for cases of ILC, unless directed by multigene expression assays.

There are currently no prospective randomized clinical trials attempting to ascertain the value of chemotherapy use on long-term oncological and survival outcomes in ILC. The poor response previously observed in ILC to NAC in prospective clinical trials precludes efforts to design such studies which may inform the long-term impact of cytotoxic chemotherapy on survival outcomes for those with ILC, and further exacerbates the research inequity surrounding the management of this common, understudied cancer subtype. Until this partiality is recognized and subsequent reevaluation is performed, reliance upon studies such as the current meta-analysis to provide insights into the optimal managerial strategy for ILC will remain.

The current study suffers from several limitations. Firstly, all the included studies are retrospective in design, rendering this data subject to potential selection, confounding and ascertainment biases. For example, the potential for confounding factors such as tumor size, degree of nodal burden, and tumor biology to influence therapeutic decision-making regarding systemic therapies must be considered when interpreting the results of this analysis. Secondly, to build on this previous limitation, just 2 included studies [representing 27.6% of the entire patient group (7,782/28,218)] performed propensity matching to accurately inform the impact of systemic chemotherapy on outcome. The remaining seven studies failed match ILC cases based on clinicopathological information, limiting the robustness of these results. Thirdly, this analysis failed to illustrate the survival outcomes according to ILC subgroups (eg: pleomorphic variants), with all patients classified under the umbrella term “ILC.” Finally, current expert consensus statements and guidelines do not recommend histological subtype to guiding therapeutic decision-making in ER+HER2- disease and emphasize the importance of multigene expression assays for adjuvant chemoendocrine prescription in early-stage ER+HER2- patients. Adherence to such guidelines is of critical importance, irrespective of histological tumor subtype.

This systematic review and meta-analysis illustrates no long-term oncological or survival advantage associated with chemotherapy prescription in the setting of early-stage ILC breast cancer. Survival outcomes 10-years following treatment were similar for those receiving chemotherapy and their counterparts, highlighting the chemoinsensitive nature of ILC. In the absence of well-designed, prospective clinical trials evaluating the impact of chemotherapy on long-term outcomes in ILC, these results should be considered by the multidisciplinary team when deciding on the value of systemic chemotherapy prescription in these cases.

Acknowledgments
MGD received funding from the National Breast Cancer Research Institute, Ireland.

Declaration of Competing Interest
None of the authors have any conflicts of interest to disclose.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.clbc.2022.09.005.

References
1. Wilson N, Ironside A, Diaco A, Oikonomidou O. Lobular breast cancer: a review. Front Oncol. 2021;10:591399.
2. Thomas M, et al. Invasive lobular breast cancer: A review of pathogenesis, diagnosis, management, and future directions of early stage disease. Semin Oncol. 2019;46(6):121–132.
3. Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(1):209–249.
4. Mounshi JA, et al. Invasive lobular carcinoma: an understudied emerging subtype of breast cancer. Breast Cancer Res Treat. 2022;193(2):253–264.
5. Luvera J, et al. Invasive lobular breast cancer as a distinct disease: implications for therapeutic strategy. Oncol. therapy. 2020;8:1–11.
6. Zenobi B, et al. Comparison of the clinicopathological features of invasive ductal, invasive lobular, and mixed (invasive ductal + invasive lobular) carcinoma of the breast. Breast Cancer. 2015;22:374–381.
7. Korhonen T, et al. The impact of lobular and ductal breast cancer histology on the metastatic behavior and long term survival of breast cancer patients. Breast. 2013;22:1119–1124.
8. Rakha EA, et al. Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer. 2008;44:73–83.
9. O’Connor DJ, et al. Differences in sensitivity to neoadjuvant chemotherapy among invasive lobular and ductal carcinoma of the breast and implications on surgery. A systematic review and meta-analysis. Breast. 2022;61:1–10.
10. Cocco D, et al. Invasive lobular breast cancer: data to support surgical decision making. Ann Surg Oncol. 2021;28:5723–5729.
11. Sharma SD, et al. Surgical management of lobular carcinoma from a national screening program: a retrospective analysis. Eur J Surg Oncol. 2015;41:79–85.
12. Chen Z, et al. Invasive lobular carcinoma of the breast: a special histological type compared with invasive ductal carcinoma. PLoS One. 2017;12.
13. Cirilillo G, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–519.
14. Christgen M, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Modern Pathol. 2020;33:2483–2498.
15. Teo K, et al. E-cadherin loss causes targetable autocrine activation of growth factor signalling in lobular breast cancer. Sci Rep. 2018;8:15454.
16. De Schepper M, et al. Results of a worldwide survey on the currently used histopathological diagnostic criteria for invasive lobular breast cancer. Modern Pathol. 2022 Epub ahead of print.
17. Jacobs C, et al. Treatment choices for patients with invasive lobular breast cancer: a doctor survey. J Eval Clin Pract. 2015;21:740–748.
18. Kalinsky K, et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. New England J Med. 2021;385:2336–2347.
19. Sparano JA, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. New England J Med. 2018;379:111–121.
20. Mohor D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b353.
21. Stroup DF, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama. 2000;283:2008–2012.
22. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–605.
23. Kim HT. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Breast Dis Enduc. 2017;42:152–155.
24. Chen XH, et al. 21-gene recurrence score and adjuvant chemotherapy decisions in patients with invasive lobular breast cancer. Biomark Med. 2019;13:83–93.
25. de Nonville A, et al. Adjuvant chemotherapy in lobular carcinoma of the breast: a clinicopathological score identifies high-risk patient with survival benefit. Breast Cancer Res Treat. 2019;175:379–387.
26. Hu G, et al. Adjuvant chemotherapy could not bring survival benefit to HR-positive, HER2-negative, pT1b-c/N0–1/M0 invasive lobular carcinoma of the breast: a propensity score matching study based on SEER database. BMC Cancer. 2020;20:136.
27. Iorfida M, et al. Invasive lobular breast cancer: subtypes and outcome. Breast Cancer Res Treat. 2012;133:713–725.
28. Jenkins JA, et al. The 70-gene signature test as a prognostic and predictive biomarker in patients with invasive lobular breast cancer. Breast Cancer Res Treat. 2022;191(2):401–407.
29. Marmor S, et al. Relative effectiveness of adjuvant chemotherapy for invasive lobular compared with invasive ductal carcinoma of the breast. Cancer. 2017;123:3015–3021.
30. Metzger-Filho O, et al. mixed invasive ductal and lobular carcinoma of the breast: prognosis and the importance of histologic grade. The oncologist. 2019;24:e441–e449.
31. Watanuki R, et al. Impact of neoadjuvant and adjuvant chemotherapy on invasive lobular carcinoma: a propensity score-matched analysis of SEER data. Breast J. 2020;26:1765–1770.
32. Truin W, et al. Effect of adjuvant chemotherapy in postmenopausal patients with invasive ductal versus lobular breast cancer. Ann Oncol. 2012;23:2859–2865.
33. Cristofanilli M, et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol. 2005;23:41–48.
34. Davey MG, et al. Clinicopathological response to neoadjuvant therapies and pathological complete response as a biomarker of survival in human epidermal growth factor receptor-2 enriched breast cancer - a retrospective cohort study. Breast. 2021;59:67–75.
35. Spring LM, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res. 2020;26:2838–2848.
36. Cortazar P, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–172.
37. Davey MG, et al. Clinicopathological correlates, oncological impact, and validation of OncoType DXTM in a European Tertiary Referral Centre. Breast J. 2021;27:521–528.
38. Makower D, et al. The 21-gene recurrence score in early non-ductal breast cancer: a National Cancer Database analysis. npj Breast Cancer. 2022;8:4.
39. Truin W, et al. Differences in response and surgical management with neoadjuvant chemotherapy in invasive lobular versus ductal breast cancer. Ann Surg Oncol. 2016;23:51–57.
40. Pak S, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England J. Med. 2004;351:2817–2826.
41. Pivor X, et al. In the era of genomics, should tumor size be reconsidered as a criterion for neoadjuvant chemotherapy? Oncologist. 2015;20:344–350.
42. Reitsamer R, et al. Pathological complete response rates comparing 3 versus 6 cycles of epirubicin and docetaxel in the neoadjuvant setting of patients with stage II and III breast cancer. Anti-Cancer Drugs. 2005;16(8):867–870.
43. Loibl S, et al. Surgical procedures after neoadjuvant chemotherapy in operable breast cancer: results of the GEPARDUO trial. Ann Surg Oncol. 2006;13:1434–1442.
44. Goldhirsch A, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–2223.
45. Senkus E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):v17–v23.