The molecular phylogeny of freshwater Dothideomycetes

C.A. Shearer1*, H.A. Raja1, A.N. Miller2, P. Nelson3, K. Tanaka4, K. Hirayama5, L. Marvanová6, K.D. Hyde6 and Y. Zhang7

INTRODUCTION

Freshwater ascomycetes comprise a diverse taxonomic assemblage of about 577 species (Shearer et al. 2009). These fungi are mostly saprobic on submerged woody and herbaceous debris and are important in aquatic food webs as decomposers and as a food source to invertebrates (see Gessner et al. 2007, Simonis et al. 2008). Although in the early ascomycete taxonomic literature some species were reported and/or described from plants in or near aquatic habitats, little was noted about whether the fungi were on aerial or submerged parts of their hosts/substrates. For the purpose of this study, we consider freshwater ascomycetes as only those species that occur on submerged substrates; ascomycetes on aerial parts of aquatic plants are considered terrestrial and not dealt with herein.

Ingold was the first to recognise that a distinctive freshwater ascomycota might exist and published a series of papers about fungi on submerged substrates in the Lake District, England (Ingold 1951, 1954, 1955, Ingold & Chapman 1952). Ingold was collecting from the submerged stems of macrophytes in the English Lake District when he discovered the magnificent freshwater Dothideomycete, Macrospora scirpicola on Schoenoplectus lacustris, the lakeshore bulrush (Ingold 1955). This fungus has ascospores equipped with a gelatinous sheath (Fig. 1A) that elongates and becomes sticky after the ascospores are discharged into water (Fig. 1B), a feature thought to improve the probability that ascospores will attach to substrates in moving water (Hyde & Jones 1989, Shearer 1993, Jones 2006). This feature is found in numerous freshwater Dothideomycetes (see species monograph, Shearer et al. 2009). The ascospores also germinate immediately upon contact with a firm substrate (Fig. 1C), which may help them adhere to substrates in moving water. Macrospora scirpicola is one of the earliest known freshwater Dothideomycete species; DeCandolle originally described it in 1832 as Sphaeria scirpicola, and Pringsheim first reported it from freshwater in 1858.

The early literature dealing specifically with freshwater ascomycetes, including Dothideomycetes, has been reviewed by Dudka (1963, 1985) and Shearer (1993). Since the 1990’s, interest in aquatic ascomycetes has grown and the number of species reported and/or described from freshwater habitats has increased by 370 to a total of 577 taxa (Shearer et al. 2009). For more recent reviews of the freshwater ascomycetes, see: Goh & Hyde (1996), Wong et al. (1998), Shearer (2001), Tsui & Hyde (2003), Shearer et al. (2007), and Raja et al. (2009b). Approximately 30 % of the 577 freshwater ascomycetes are Dothideomycete species, and based on morphology, belong primarily in Pleosporales or secondarily in Jahnulales. Exceptions include four species in Capnodiiales (Mycosphaerellaceae) and four species in Tubeufiaceae.
Molecular studies of freshwater Dothideomycetes have been of four basic types. The first type was to determine the overall taxonomic placement of one or more undescribed taxa (e.g., Inderbitzin et al. 2001, Cai & Hyde 2007, Kodsueb et al. 2007, Cai et al. 2008, Zhang et al. 2008a, b, 2009a, c, Raja et al. 2010). In these studies one or more nuclear genes were sequenced to place a newly described fungus in an order or family within the Dothideomycetes framework. In the second type, the goal was to use single or multi-gene phylogenies to elucidate the evolutionary relationships among a group of closely related taxa, and to evaluate which suite of morphological characters might be informative for predicting evolutionary relationships and which might be misleading or homoplasious (e.g., Liew et al. 2002, Pang et al. 2002, Campbell et al. 2006, 2007, Tsui & Berbee 2006, Zhang et al. 2009a, c, Hirayama et al. 2010). The third type of molecular study was used to identify relationships between aquatic anamorphic and teleomorphic Dothideomycetes (see Baschien 2003, Belliveau & Bärlocher 2005, Baschien et al. 2006, Campbell et al. 2006, Tsui et al. 2006, 2007). Here the goal was to use sequence data to place the aquatic anamorphs within the teleomorph phylogeny to better understand the phylogenetic affinities of freshwater anamorphs. The fourth type addressed the evolution of freshwater ascomycetes (Vijaykrishna et al. 2006).

Dothideomycetes possess freshwater hyphomycetous anamorphs rather rarely. Approximately only 10% of 86 aquatic hyphomycete species, which are at least tentatively assigned to an ascomycete family, order or class, have affinity to Dothideomycetes. Four of them are connected to known teleomorphs via cultural studies: Tumularia aquatica to Massarina aquatica (Webster 1965), Anguilliospora longissima to Massarina sp. (Willoughby & Archer 1973), Clavariopsis aquatica to Massarina sp. (Webster & Descals 1979), and Aquaphila albicans to Tubeufia asiatica (Tsui et al. 2007). Four connections are published on the basis of molecular phylogenetic rather than cultural studies, but some of these connections are controversial and require further molecular study using additional genes and/or cultural studies. These connections include: Anguilliospora rubescens in Dothideales (Belliveau & Bärlocher 2005), Lemonniera pseudofloscula and Goniopila monticola in Pleosporales (Campbell et al. 2006), and Mycocentrospora acerina to Mycosphaerellaceae (Stewart et al. 1999). (Note: Data on affinity of Mycocentrospora is not explicitly given in the text, but is in the GenBank entry AY266155).

Most of the above-mentioned molecular studies have used limited taxon sampling of various orders and families currently in the Dothideomycetes, as well as a single gene (either nuc SSU rDNA or nuc LSU rDNA) to understand the phylogenetic affinities of the freshwater taxa. A review of past molecular phylogenetic studies of freshwater Dothideomycetes revealed that very few of the approximately 170 freshwater Dothideomycete species have been sequenced. In addition, different genes and different regions of the same genes have been sequenced for different taxa making any comprehensive molecular analysis impossible. Clearly more sequences are needed for taxa already studied and more taxa need to be sequenced if we are to understand the phylogeny of the freshwater Dothideomycetes.

The purpose of this study, therefore, was to obtain two gene sequences (nuc SSU rDNA & nuc LSU rDNA) for as many freshwater Dothideomycetes (teleomorphs and anamorphs) as possible to conduct molecular sequence analyses to place these taxa within a phylogenetic framework comprised of a broader taxonomic and ecological taxon sampling from major orders and families using the most current classification system proposed for the Dothideomycetes (Schoch et al. 2006, Hibbett et al. 2007).

MATERIALS AND METHODS

Taxon sampling

The species used in this study, their isolate numbers, sources and GenBank accession numbers are listed in Table 1 - see online Supplementary Information. The datasets contained 156 taxa for the SSU and 160 taxa for LSU, while the combined dataset consisted of 169 taxa with some missing data. Twenty-two aquatic taxa were newly sequenced for the SSU and 160 taxa for LSU, while the combined dataset consisted of 169 taxa with some missing data. Twenty-two aquatic taxa were newly sequenced for the SSU and/or the LSU gene, while sequences of several other aquatic taxa included in the analyses were obtained from very recently published or unpublished phylogenetic studies of freshwater fungi (Zhang et al. 2008a, b, 2009a, c, Hirayama et al. 2010, Raja et al. 2010). Sequences of a wide array of taxa representing various orders and families within the Dothideomycetes based on Schoch et al. (2006) were included in this study. In addition to taxa from the Dothideomycetes, members of Arthoniomycetes, Lecanoromycetes, Sordariomycetes and Leotiomycetes were also included in the analyses. Members of the Pezizomycetes were used as outgroup taxa.
DNA extraction and PCR amplification

For extraction of genomic DNA, mycelium from axenic cultures was scraped with a sterile scalpel from nutrient agar in plastic Petri dishes and ground to a fine powder in liquid nitrogen using a mortar and pestle. Approximately 400 µL of AP1 buffer from the DNAeasy Plant Mini Kit (QIAGEN Inc., Valencia, California) was added to the mycelial powder and DNA was extracted following the manufacturer’s instructions. The DNA was finally eluted in 30 µL distilled water. Fragments of SSU and LSU nrDNA were amplified by PCR using PuReTaq™ Ready-To-Go PCR beads (Amersham Biosciences Corp., Piscataway, New York) according to Prompputha & Miller (2010). Primers NS1 and NS4 for SSU (White et al. 1990) and LR0R and LR6 for LSU (Vilgalys & Hester 1990, Rehner & Samuels 1995) were used for PCR reactions in addition to 2.5 µL of BSA (bovine serum albumin, New England Biolabs, Ipswich, MA) and/or 2.5 µL of DMSO (dimethyl sulfoxide, Fisher Scientific, Pittsburgh, PA). PCR products were purified to remove excess primers, dNTPs and nonspecific amplification products with the QIAquick PCR Purification Kit (QIAGEN Inc., Valencia, California). Purified PCR products were used in 11 µL sequencing reactions with BigDye Terminators v. 3.1 (Applied Biosystems, Foster City, California) in combination with the following SSU primers: NS1, NS2, NS3, NS4 (White et al. 1990), and LSU primers: LR0R, LR3, LR3R, LR6 (Vilgalys & Hester 1999, Rehner & Samuels 1995).

Sequences were generated on an Applied Biosystems 3730XL high-throughput capillary sequencer at the UIUC Biotech facility. Sequences were also obtained using other methods outlined in Hirayama et al. (2010) and Zhang et al. (2009c).

Sequence alignment

Each sequence fragment obtained was subjected to an individual blast search to verify its identity. Individual sequences were edited and contigs were assembled using Sequencher v. 4.9 (Gene Codes Corp., Ann Arbor Michigan). Newly obtained sequences were aligned with sequences from GenBank using the multiple sequence alignment program, MUSCLE® (Edgar 2004) with default parameters in operation. MUSCLE® was implemented using the programs Seaview (Galtier et al. 1996) and Geneious Pro v. 4.7.6 (Biomatters) (Drummond et al. 2006). Sequences were aligned in MUSCLE using a previous (trusted) alignment made by eye in Sequencher v. 4.9, based on a method called “jump-starting alignment” (Morrison 2006). The final alignment was again optimised by eye and manually corrected using Se-Al v. 2.0a8 (Rambaut 1996) and McClade v. 4.08 (Maddison & Maddison 2000).

Phylogenetic analyses

Separate alignments were made for SSU and LSU sequences. The aligned SSU and LSU datasets were first analysed separately and then the individual datasets were concatenated into a combined dataset. Prior to combining the datasets, the possibility of clade conflict was explored. Independent maximum likelihood (ML) analyses were run with a GTR model including invariable sites and discrete gamma shape distribution and 100 bootstrap replicates were performed using the program Seaview (Galtier et al. 1996). The individual SSU and LSU phylogenies were then examined for conflict by comparing clades with bootstrap support (Wiens 1998). If clades were < 50 % they were considered weakly supported, whereas 70–100 % indicated a strong support. We combined the datasets since there was no obvious clade conflict for 90 % of the taxa included in our study. Subsequent analyses were then performed on the combined SSU + LSU dataset. In the final combined dataset, 13 ambiguously aligned regions were delimited and excluded from all further analyses.

Modeltest v. 3.7 (Posada & Crandall 1998) was used to determine the best-fit model of evolution for the dataset. ML analyses were performed using RAxML v. 7.0.4 (Stamatakis 2006) with 100 successive searches and the best-fit model, which was the (GTR) model with unequal base frequencies (freqA = 0.2666, freqC = 0.2263, freqG = 0.2664, freqT = 0.2407), a substitution rate matrix (A<–>C = 0.9722, A<–>G = 2.7980, A<–>T = 1.1434, C<–>G = 0.6546, C<–>T = 5.1836, G<–>T = 1.0000), a proportion of invariable sites (~ 0.2959) and a gamma distribution shape parameter (~ 0.4649). For the ML analyses constant characters were included and again 13 ambiguously aligned regions were excluded. Each search was performed using a randomised starting tree with a rapid hill climbing option. One thousand fast bootstrap pseudoreplicates (Stamatakis et al. 2008) were run under the same conditions.

Bayesian Metropolis Coupled Markov Chain Monte Carlo (B-MCMC) analyses were performed with MrBayes v. 3.1.2 (Ronquist & Huelsenbeck 2003) as an additional means of assessing branch support. Constant characters were included. A comparable model to the ML analyses was used to run 10 million generations with trees sampled every 1 000th generation resulting in 10 000 total trees. The first 1 000 trees which extended beyond the burn-in phase in each analysis were discarded and the remaining 9 000 trees were used to calculate posterior probabilities. The consensus of 9 000 trees was viewed in PAUP v. 4.0b10 (Swoford 2002). The analysis was repeated twice each with four Markov Chains for the dataset starting from different random trees.

RESULTS

Sequence alignment

The complete dataset (combined SSU and LSU alignment) along with intron regions and ambiguous characters had 169 taxa and 7 264 characters. The dataset consisted of 169 taxa and 3 641 characters after removal of intron regions. We then delimited and removed 548 ambiguous characters from the final alignment along with characters from the 5’ and 3’ end regions due to missing information in most taxa included in the alignment. The final dataset after removal of all the intron regions and 13 ambiguous regions along with missing data from the 5’ and 3’ ends consisted of 1816 characters. There were no significant conflicts among the clades in the separate SSU and LSU analyses in either SSU or LSU datasets (data not shown) therefore we used all 169 taxa in the combined SSU and LSU analyses.

Phylogenetic analyses

The combined matrix analysed in this study produced 852 distinct alignment patterns and the most likely tree (Fig. 2) had a log likelihood of -17187.0385 compared to the average (100 trees) of -17191.7927. Several major clades presented in the multi-genus phylogeny of Schoch et al. (2006) were recovered in our combined SSU and LSU phylogeny. Leotiomycetes was not monophyletic in our analyses, but this relationship was not supported.

Eighty-four Dothideomycete isolates from freshwater habitats, including meiosporic and mitosporic representatives, were included
Fig. 2. Freshwater Dothideomycetes phylogeny. The most likely tree (Ln L = -17187.0385) after 100 replicates of a RAxML analysis of combined SSU and LSU data. Orders, classes, and families are indicated on the tree. ML bootstrap support values greater than 70% are indicated along with Bayesian posterior probabilities ≥ 95% for nodes. Members of Pezizomycetes are used as outgroup taxa. Freshwater lineages are labeled as Clades A–D and are shaded in blue and taxa isolated and described from freshwater habitats are indicated with Fresh W. Ascospore modifications are indicated by: □ = greatly elongating sheath; ▪ = thin to thick non-elongating sheath; △ = apical appendages; ○ = no sheath; ▲ = gelatinous pads. Scale bar indicates nucleotide substitutions per site.
in this study. The majority of freshwater Dothideomycetes had phylogenetic affinities to taxa in Pleosporales (Fig. 2). Four major clades (A–D) of freshwater fungi were recovered, of which three clades received ≥ 70 % Maximum Likelihood Bootstrap (MLB) support and ≥ 90 % Bayesian Posterior Probability (BPP) (Fig. 2). Lentitheciaceae (Clade A) included six taxa, together with undescribed taxon A369-2B but was not supported by either MLB or BPP. Amniculicolaceae (Clade B) was well supported with 97 % MLB bootstrap support and 100 % BPP. Lindgomycetaceae (Clade C) was also supported with 77 % MLB and 100 % BPP values. Jahnulales (Clade D) received 100 % MLB and 100 % BPP support and formed a strong monophyletic group.

Eight undescribed freshwater Dothideomycetes were dispersed throughout the Pleosporomycetidae as follows: A369-2B in Lentitheciaceae; F80-1 as sister taxon to Lentitheciaceae; A-25-1, F-60, and F-65 in Jahnulales; A369-2B in Pleosporales; and F80-1 as sister taxon to Lentitheciaceae. Eight undescribed freshwater Dothideomycetes were dispersed throughout the Pleosporomycetidae as follows: A369-2B in Lentitheciaceae; F80-1 as sister taxon to K. elaterascus; A164 and A183 in Lophiostomataceae 1; A-25-1, F-60, and F-65 in Lindgomycetaceae; and A273-1 in Jahnulales. A few singletons such as Lepidopterella palustris and Ocala scalariformis are on single lineages without any relationships to known groups included in the analyses.

Fig. 2. (Continued).
The anamorph genus Xylomyces was polyphyletic, with one species, X. elegans, placed with Massarina species in the Pleosporales, and the other, X. chlamydosporus, placed within Jahnulales (Fig. 2). The affinity of Anguillospora longissima (CS869-1D, Shearer isolate) to Amniculicola lignicola, A. imersa and A. parva (Fig. 2) confirms this relationship reported previously for a different isolate of A. longissima (Zhang et al. 2009a). *Tumularia aquatica*, originally assigned to *Massarina alternata* (Webster 1965) was placed with Lophiostoma giblatronicum, an aquatic fungus collected in mountain streams in France on submerged wood of *Alnus glutinosa*, *Fagus sylvatica* and *Salix* sp. (Zhang et al. 2009c). *Teenirolella typhoides* occurred in a well-supported group with members of *Lindgomycetaceae* in *Pleosporales*. *Lemoniera pseudoflorsula* isolates occurred among terrestrial taxa as a highly supported sister taxon to a clade of *Alternaria alternata*, *Alternaria* sp. and *Allewia eureka*. This placement is somewhat controversial and a more detailed study with additional isolates and more gene regions should be carried out.

DISCUSSION

Within *Dothideomycetes*, the freshwater species occur in *Pleosporomycetidae* but not *Dothideomycetidae*. It is interesting to speculate on possible reasons for this pattern. First, overall there are more taxa in the *Pleosporomycetidae* than *Dothideomycetidae* resulting in a numerical imbalance between subclasses in most ecological and taxonomic groups. Second, many of the orders in *Dothideomycetidae* contain specialised plant pathogens, e.g., *Capnodiales*, *Myriangiales*, and *Botryosphaeriales*, many of which grow on leaves. It is possible that such specialised fungi have lost the genetic potential to adapt to a submerged, saprobic lifestyle. Third, the absence of pseudoparaphyses in *Dothideomycetidae* taxa may limit survival in aquatic habitats with fluctuating water levels. Pseudoparaphyses of aquatic species in *Pleosporomycetidae* are often abundant and surrounded by gel, which may protect the asci from desiccation during dry conditions. There is currently no experimental evidence, however, to support this idea.

Freshwater *Dothideomycete* species are distributed throughout the *Pleosporomycetidae* (Fig. 2). Several clades, however, contain numerous freshwater species and merit discussion. Clade A (*Lentitheciaceae*), which consists entirely of freshwater taxa, is not well supported in this study (Fig. 2). Reasons for this lack of support are not clear at this time. For a discussion of this clade, see Zhang et al. (2009b; this volume). The well-supported Clade B (*Amniculicolaeeae*) consists of four freshwater teleomorph species and one aquatic hyphomycete anamorph species. This family is established and described in detail by Zhang et al. (2009b; this volume).

A third exclusively freshwater lineage is Clade C (*Lindgomycetaceae*) (Fig. 2). This well supported clade was first revealed during a recent molecular sequence-based study of *Massarina ingoldiana* Shearer & Hyde s. l. (Hirayama et al. 2010). A number of dothideomycetous aquatic species that have 1-septate, hyaline ascospores surrounded by a prominent gelatinous sheath that elongates greatly in water were included in this study. Analyses of a combined dataset of SSU and LSU sequences for a number of aquatic isolates of *M. ingoldiana* and other morphologically similar fungi along with the type specimens of *Massarina* and *Lophiostoma* were conducted. Their results showed that none of the aquatic taxa belonged in *Massarina* or *Lophiostoma* and that convergent evolution in ascospore morphology had occurred, confounding systematic placement based on ascospore morphology. Our results support the study by Hirayama et al. (2010) which found that taxa with 1-septate, hyaline ascospores with a large, elongating gelatinous sheath have evolved independently in several lineages within *Dothideomycetes* (*Lentitheciaceae*, *Lindgomycetaceae*, and *Aliquandostipitaceae*) (Fig. 2). Thus in freshwater *Dothideomycetes*, this form of the gelatinous sheath is not taxonomically informative at the family or genus level.

Clade D (*Jahnulales*) contains the greatest number of freshwater species (Fig. 2). The type species of *Jahnula, J. aquatica*, was described as *Amphiphaeria aquatica* by Piöttner and Kirschstein in 1906 from *Salix* wood in a wet ditch in Germany. Kirschstein (1936) subsequently changed the name of this fungus to *Jahnula*. The genus remained monotypic until 1999, when Hyde & Wong (1999) described five new tropical species based on morphological data. Currently, *Jahnula* and *Aliquandistipitum*, a genus morphologically similar to *Jahnula* that was established by Inderbitzen et al. (2001), represent a well-supported lineage in *Dothideomycetidae* based on molecular and morphological data (Inderbitzen et al. 2001, Pang et al. 2002, Campbell et al. 2007, Suetrong et al. 2009, 2010). Pang et al. (2002) established a new order, *Jahnuliales*, for this group. *Jahnulales* now contains numerous species representing four meiosporic genera and two mitosporic genera from freshwater habitats (Hyde 1992, Hyde & Wong 1999, Pang et al. 2002, Pinrnan et al. 2002, Raja et al. 2005, 2008, Ferrer et al. 2007, Raja & Shearer 2006, 2007). *Manglicola guatemalensis*, collected from mangroves, was recently confirmed to belong in *Jahnulales* (Suetrong et al. 2010). There appear to be four, possibly five, separate lineages within *Jahnulales*, but further molecular work is needed to confirm these lineages. Species in this clade are well adapted for aquatic habitats with large-celled pseudothecia and ascospores filled with lipid guttules and equipped with a variety of gelatinous appendages, pads and sheaths (Fig. 2). Thus far, all members in the order have broad vegetative hyphae (10–40 µm) that attach the fungi to softened, submerged wood.

Clade *Lophiostomataceae* 1 was well supported as a whole in this study and studies by Tanaka & Hosoya (2008) and Zhang et al. (2009c), but relationships within this clade were not well resolved. Several taxa within this clade are undescribed and additional morphological and molecular data are needed to further resolve relationships within this group.

Two interesting freshwater taxa in *Dothideomycetidae* included in this study, *Ocala scalariformis* and *Lepidotopella palustris*, did not show strong phylogenetic affinities with any of the major families and orders included in the *Dothideomycetes* (Fig. 2). These so called singletons each has a distinctive combination of morphological characteristics that perhaps make them unique among other *Dothideomycetes* taxa included in the phylogeny. *Ocala scalariformis* possesses morphological characters that include superficial to erumpent, globose to subglobose, hyaline perithecial ascomata with an ostiole; cellular pseudoparaphyses; fissitunicate ascii; and hyaline, 1-septate, thick-walled ascospores with appendages (Raja et al. 2009a). However, based on the combined SSU and LSU phylogeny, *Ocala scalariformis* is placed as basal to the *Jahnulales*, without any statistical support. *Lepidotopella palustris* has black, cleistothecial ascomata appearing as raised dome-shaped structures on the substrate; hamatheicum of hyaline, septate, narrow pseudoparaphyses not embedded in a gel matrix; thick-walled, globose to subglobose, broadly rounded, fissitunicate ascii; and brown butterfly shaped ascospores (Shearer & Crane 1980, Raja & Shearer 2008). Based on our phylogeny it forms a single branch by itself, basal to the
Mytilindiales with moderate bootstrap support (Fig. 2). It is possible that these singletons represent new lineages currently unknown in the Dothideomycetes.

Belliveau & Bärlocher (2005) showed that aquatic hyphomycetes have multiple origins within the ascomycetes. In this study, we included some hyphomycete taxa that had phylogenetic affinities to the Dothideomycetes based on previous studies (Belliveau & Bärlocher 2005, Campbell et al. 2006, 2007, Zhang et al. 2009c). These taxa are: Anguillospora longissima, Lemnoniera pseudofloscula, Taeniocella typhoides, Tumularia aquatica, and Brachiosphaera tropicalis. Previous studies showed that Anguillospora longissima had a strong affinity to Pleosporales and was a sister species to Kirschsteiniothelia maritima (Baschien 2003, Belliveau & Bärlocher 2005). In contrast, Voglmayr (2004) reported a close relationship between an aeroaerobic fungus, Spirosphaera cupreorufescens, and A. longissima. Baschien et al. (2006) confirmed the close relationships of the five isolates of A. longissima to Spirosphaera cupreorufescens. Zhang et al. (2009c) in a maximum parsimony tree generated from partial 28S rDNA gene sequences showed a 91 % bootstrap support for a clade formed for “similar to Taeniocella typhoides, Tumularia aquatica. Here it forms a well-supported sister clade with Dothideomycetes. This idea is supported by the presence of similar ascospore modifications such as ascomata and hamathecia in interpreting phylogenetic relationships among freshwater Dothideomycetes. The presence of morphologically unique singletons within the molecular-based phylogenetic tree of Dothideomycetes suggests that we need to further sample the freshwater ascomycetes to identify close relatives of these taxa.

The presence of morphologically unique singletons within the molecular-based phylogenetic tree of Dothideomycetes suggests that we need to further sample the freshwater ascomycetes to identify close relatives of these taxa.

CONCLUSIONS

The freshwater Dothideomycetes occur primarily in the Pleosporomycetidae as opposed to the Dothideomycetidae and appear to have adapted to freshwater habitats numerous times, often through ascospore adaptations, and sometimes, through anamorph conidial adaptations. Ascospores and conidiospores of freshwater fungi are under strong selective pressure to disperse and attach to substrates in freshwater habitats in order for the fungi to complete their life cycles. Thus ascospore features that facilitate dispersal and attachment may not be as reliable as other morphological features such as ascomata and hamathecia in interpreting phylogenetic relationships among freshwater Dothideomycetes. The presence of similar ascospore modifications such as the presence of gelatinous ascospore sheaths in phylogenetically distant taxa. Further support is the presence of tetraradiate conidia present in widely separated clades.

REFERENCES
Suetrong S, Sakayaroj J, Prongpaichit S, Jones EBG (2010). Morphological and molecular characteristics of a poorly known marine ascomycete, Manglicola guatemalensis (Jahnulales: Pezizomycotina; Dothideomycetes, Incertae sedis): new lineage of marine ascomycetes. Mycologia: In press.

Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkman-Kohlmeyer B, et al. (2009). Molecular systematics of the marine Dothideomycetes. Studies in Mycology 64: 155–173.

Swofford DL (2002). PAUP 4.0b10: Phylogenetic analysis using parsimony. Sinauer Associates, Sunderland, MA, U.S.A.

Tanaka K, Hatakeyama S, Harada Y (2005). Three new freshwater ascomycetes from rivers in Akkeshi, Hokkaido, northern Japan. Mycosenologie 46: 287–293.

Tanaka K, Hosoya T (2008). Lophiostoma sagittiforme sp. nov., a new ascomycete (Pleosporales, Dothideomycetes) from Island Yakushima in Japan. Sydowia 60: 131–145.

Tsui CKM, Berbee ML (2006). Phylogenetic relationships and convergence of helicosporous fungi inferred from ribosomal DNA sequences. Molecular Phylogenetics and Evolution 39: 587–597.

Tsui CKM, Hyde KD (2003). Freshwater mycology. Fungal Diversity Research Series 10: 1–350.

Tsui CKM, Sivichai S, Berbee ML (2006). Molecular systematics of Helicoma, Helicosporum and their teleomorphs inferred from rDNA sequences. Mycologia 98: 94–104.

Tsui CKM, Sivichai S, Rossman AY, Berbee ML (2007). Tubeufia asiana, the teleomorph of Aquaphila albicans in the Tubeufiaceae, Pleosporales, based on cultural and molecular data. Mycologia 99: 884–894.

Tubaki K (1959). Studies on the Japanese Hyphomycetes V. leaf and stem group with discussion of the classification of Hyphomycetes and their perfect stages. Journal of Hattori Botanical Laboratory 20: 142–244.

Vijaykrishna D, Jeewon R, Hyde KD (2006). Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Diversity 23: 367–406.

Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.

Voglmayr H (2004). Spirophaera cupreorufescens sp. nov., a rare aeroaquatic fungus. Studies in Mycology 50: 221–228.

Webster J (1965). The perfect state of Pyricularia aquatica. Transactions of the British Mycological Society 48: 449–452.

Webster J, Descals E (1979). The teleomorphs of waterborne hyphomycetes from fresh water. In: The Whole Fungus. (Kendrick B, ed.). National Museums of Canada and Kananaskis Foundation, Ottawa, 2: 419–451.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California, U.S.A.: 315–322.

Wiens JJ (1998). Combining data sets with different phylogenetic histories. Systematic Biology 47: 568–581.

Wing Addy N, Archer JF (1973). The fungal spora of a freshwater stream and its colonization pattern on wood. Freshwater Biology 3: 219–239.

Wong MKM, Goh T-K, Hodgkins IJ, Hyde KD, Ranghoo VM, Tsui CKM, Ho W-H, Wong WSW, Yuen T-K (1998). Role of fungi in freshwater ecosystems. Biodiversity and Conservation 7: 1187–1206.

Zhang Y, Fournier J, Crous W, Pointing SB, Hyde KD (2009a). Phylogenetic and morphological assessment of two new species of Amniculicola and their allies (Pleosporales). Persoonia 23: 48–54.

Zhang Y, Fournier J, Pointing SB, Hyde KD (2008a). Are Melanomma pulvis-pyrius and Trematosphaeria pertusa congeneric? Fungal Diversity 33: 47–60.

Zhang Y, Jeewon R, Fournier J, Hyde KD (2008b). Multi-gene phylogeny and morphotaxonomy of Amniculicola lignicola: a novel freshwater fungus from France and its relationships to the Pleosporales. Mycological Research 112: 1186–1194.

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, et al. (2009b). Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary reevaluation. Studies in Mycology 64: 85–102.

Zhang Y, Wang HK, Fournier J, Crous PW, Jeewon R, Pointing SB, Hyde KD (2009c). Towards a phylogenetic clarification of Lophiostoma/Massarina and morphologically similar genera in the Pleosporales. Fungal Diversity 38: 225–251.
SUPPLEMENTARY INFORMATION

Table 1. Species used in this study.

Species	Isolate number	Source	GenBank No.		
			SSU	LSU	
Aliquandostipite crystallinus	F83-1	Raja & Shearer	GU266221	GU266239	
	AF007	–	EF175631	EF175652	
	R76-1	–	EF175630	EF175651	
Aliquandostipite khaoyaiensis	F89-1	Raja & Shearer	EF175625	EF175647	
	SS2961	BCC 15577	EF175626	EF175648	
	SS3028	BCC 23986	EF175627	EF175649	
	SS3321	BCC 18283	EF175628	EF175650	
Aliquandostipite separans	–	–	AF438179	–	
Aliquandostipite siamensiae	SS81.02	BCC 3417	EF175645	EF175666	
Alleuria eureka		DAOM 195275	DQ677994	DQ678044	
Alternaria alternata	CBS 916.96		DQ678031	DQ678082	
Alternaria sp. (as Clathrospora diplospora)					
Amniculicola immera	–	KD Hyde	GU456295	FJ795498	
Amniculicola lignicola	–	KD Hyde	EF493863	EF493861	
Amniculicola parva	KD Hyde		GU296134	FJ795497	
Anguillospora longissima	CS869-1D	Shearer	GU266222	GU266240	
Aquaticheirospora lignicola	–	–	AY36377	AY36377	
Aquaphila albicans		BCC 3543	DQ341093	DQ341101	
Ascochyta pisi var. pisi		CBS 126.54	DQ678018	DQ678070	
Asconombispora aquatica	–	–	–	EU196548	
Bimuria novae-zelandiae		CBS 107.19	AY016338	AY016356	
Botryosphaeria dothidea		CBS 115476	DQ677998	DQ678051	
“Botryosphaeria” tsugae		CBS 418.64	AF271127	DG706765	
Botryotinia fuckeliana		OSC 100012	AY544695	AY544651	
Brachiosphaera tropicalis	E192-1	Shearer	GU266223	EF175653	
Byssothecium cincinans	CBS 675.92		AY016339	AY016357	
Caloscypha fulgens		OSC 100062	DQ247807	DQ247799	
Capnodium coffeae	CBS 147.52		DQ247808	DQ247800	
Capnodium salicinum	CBS 131.34		DQ6779977	DQ678050	
Capronia pilosella	DAOM 216387		DQ823106	DQ823099	
Coccomyces strobi	CBS 202.91		DQ471027	DQ470975	
Cheirosporum trisenale	–	–	EU196548		
Cochliobolus heterostrophus	CBS 134.39		AY544727	AY544645	
Cochliobolus sativus	DAOM 21637		DQ677995	DQ678045	
Coniothyrium obiones	CBS 433.68		DQ678001	DQ678054	
Coniothyrium palmarum	CBS 400.71		DQ678008	DQ676753	
Cucurbitania elongata	CBS 171.55		DQ678009	DQ678061	
Delitschia winteri	CBS 225.62		DQ678026	DQ678077	
Dendryphiella arenaria	CBS 181.85		DQ471022	DQ470971	
Dendyphiopsis atra	DAOM 231155		DQ677996	DQ678046	
Dermea acerina	CBS 161.38		DQ471031	DQ470971	
Didymella cucurbitacearum	IMI 373225		AY293779	AY293792	
Dothidea insculpta	CBS 189.58		DQ247810	DQ247802	
Dothidea sambuci	DAOM 231303		AY544722	AY544681	
Species	Isolate number	Source	GenBank No.	SSU	LSU
-------------------------------	----------------	----------------	-------------	--------------	--------------
Dothiora cannabinae	CBS 373.71		DQ479933	DQ470984	
Elsinoë phaseoli	CBS 165.31		DQ678042	DQ678095	
Elsinoë veneta	CBS 164.29		DQ678007	DQ678060	
Gloniopsis praetectora	CBS 112415		FJ161134	FJ161173	
Gloniopsis squalaccis	CBS 114601		FJ161135	FJ161174	
Guignardia bidwellii	CBS 237.48		DQ678034	DQ678085	
Helicascus kanaloianus	ATCC 18591		AF053729	–	
Helicomyces roseus	CBS 283.51		DQ678032	DQ678083	
Herpotrichia diffusa	CBS 250.62		DQ678019	DQ678071	
Herpotrichia juniperi	CBS 200.31		DQ678020	DQ678080	
Jahnula appendiculata*	AF225-3	Shearer	GU266224	GU266241	
Jahnula aquatica	R68-1	Raja & Shearer	EF175633	EF175655	
Jahnula bipileata	F49-1	MYA 4173	EF175635	EF175657	
Jahnula bipolaris	SS44	BCC 3390	EF175637	EF175658	
Jahnula granulosa	A421	Shearer	EF175636	–	
Jahnula potamophila*	F111-1	Raja & Shearer	GU266225	GU266242	
Jahnula rostrata	F4-3	MYA4176	GU266226	EF175660	
Jahnula sangamonensis	A462-1B	MYA 4174	EF175640	EF175662	
Jahnula seychellensis	SS2133.1	BCC 14207	EF175644	EF175665	
Kirschsteiniothelia aethiops	A22-11B-/-	–	AF053728	–	
Lecanora hybocarpa	DUKE 03.07.04-2		DQ782883	DQ782910	
Lentithecium aquaticum	CBS 123099		FJ795477	FJ795434	
Lentithecium arundinaceum	CBS 619.86		DQ813513	DQ813509	
Lemonniera pseudofloscula	CCM F-4084		–	DQ267631	
Leotia lubrica	OSC100001		AY544687	AY544644	
Lepidopterella palustris*	F32-3	Raja & Shearer	GU266227	GU266244	
Leptosphaeria maculans	DAOM 229267		DQ470993	DQ470946	
Lepidosphaeria nicolai	CBS 101341		–	DQ678067	
Lindgomyces cinctosporeae	R56-1		AB522430	AB522431	
Lindgomyces breviappendiculatus	R56-3	Raja & Shearer	GU266238	GU266245	
Lindgomyces ingoldianus	A39-1	ATCC200398	AB521719	AB521736	
Lindgomyces sp.	KH 100	JCM 16479	AB521720	AB521737	
Lindgomyces rotundatus	KT 966	JCM 16481/MAFF 238473	AB521722	AB521739	
	KT 1096	JCM 16482	AB521723	AB521740	
Table 1. (Continued).

Species	Isolate number	Source	GenBank No.	
			SSU	**LSU**
Lophiostoma arundinis	KH 114	JCM 16484	AB521725	AB521742
	KT 1107	JCM 16483	AB521724	AB521741
Lophiostoma crenatum	CBS 269.34		DG782383	DG782384
Lophiostoma glabrotrunicatum	IFRD 2012		FJ95481	FJ95438
Lophiostoma macrostomum	KT 635	JCM 13545	AB521731	AB433273
	KT 709	JCM 13546 MAFF 239447	AB521732	AB433274
			SSU	LSU
Lophium mytilinum	CBS 269.34		DG782030	DG782081
Massaria platani	CBS 221.37		DG782013	DG782065
Massarina australiensis	–		AF164364	–
Massarina bipolaris	–		AF164365	–
Massarina eburnea	H 2953	JCM 14422	AB521718	AB521735
	–		AF164366	–
Massariopsis typhicola	KT 667	MAFF 239218	AB521729	AB521746
	KT 797	MAFF 239219	AB521730	AB521747
Megalothypha aqua-dulces*	AF005-2a	–	GU266228	EF175667
	AF005-2b	–	–	EF175668
Melanomma radicans	ATCC 42522		U43461	U43479
Montagnula opulenta	CBS 168.34		AF164370	DG782086
Mycosphaerella graminicola	CBS 292.38		DG783033	DG782084
Myriangium diniae	CBS 260.36		AO16347	DG782059
Mytilidion andinense	EB 0330 (CBS 123562)		FJ161159	FJ161199
Mytilidion mytilinellum	CBS 303.34		FJ161144	FJ161184
Neofusisoccum riberi	CBS 115475		DG782000	DG782053
Neurospora crassa	BROAD		X04971	AF286411
Ocala scalariforms*	F21-1	Raja & Shearer	GU266229	–
Ophiophaerella herpotricha	CBS 260.86		DG782010	DG782062
	CBS 240.31		DG767650	DG767656
Phaeodothis winteri	CBS 182.58		DG782021	DG782073
Phaeosphaeria avenaria	DAOM 226215		AY544725	AY544684
Phaeosphaeria eustoma	CBS 573.86		DG782011	DG782063
Phoma herbarum	CBS 276.37		DG782014	DG782066
Piedraia hortae	CBS 480.64		AO16349	AO16366
Pleomassaria siparia	CBS 279.74		DG782027	DG782078
Pleospora herbarum var. herbarum	CBS 714.68		DG767648	DG782049
	CBS 514.72		DG247812	DG247804
Preussia terricola	DAOM 230091		AY544726	AY544686
Pseudocercospora fijiensis	OSC 100622		DG767652	DG767698
Pyrenophora phaeocomes	DAOM 222769		DG499595	DG499596
Pyrenophora tritic-repentis	OSC 100066		AY544716	AY544672
Pyronema domesticum	CBS 666.98		DG247813	DG247805
Quintaria lignatis	–		QLU43462	–
Ramularia endophylla	CBS 113265		DG471017	DG470920
Rocciolegrapha cretacea	DUKE 191Bc		DG83705	DG83696
Schismatomata decolorans	DUKE 0047570		AY548809	AY548815
Species	Isolate number	Source	GenBank No.	
-------------------------------------	----------------	----------------------	---------------------	
Semimassariosphaeria typhicola			GU296174 FJ795504	
Spencermartinia viticola	CBS 117009		DG678036 DG678087	
Sporormiella minima	CBS 524.50		DG678003 DG678056	
Sporidesmium sp.	FH14	–	GU266230 –	
Taenicella typhoides		CCM F-10198/extype	GU266231 –	
Tingoldiago graminicola	KH 68	JCM 16485	AB521276 AB521743	
	KT 891/	MAFF 239472	AB521277 AB521744	
	KH 155/	JCM 16486	AB521278 AB521745	
Trematosphaeria hydrophila		IFRD 2037	GU261721 –	
Trematosphaeria heterospora	CBS 644.86		AY016354 AY016369	
Trematosphaeria pertusa	CBS 400.97		DG678020 DG678072	
Trematosphaeria wegeliniana	CBS 123124		GU261720 GU261722	
		SSU	GU261725 LSU	
Tubeufia cerea	CBS 254.75		DJ471034 DJ470982	
Tubeufia helicomyces	–		DJ767649 DJ767664	
Tumularia aquatica	CCM F-20081		AY357287 –	
Ulospora bigramii	CBS 110020		DG678025 DG678076	
Verruculina enalia	CBS 304.66		DG678028 DG678079	
Westerdykella cylindrica	CBS 454.72		AY016355 AY004343	
Wicklowia aquatica*	F78-2	CBS 125634	GU266232 GU045445	
Xylaria hypoxylon	OSC 100004		AY544719 AY544676	
Xylomyces chlamydosporus	H58-4		GU266233 EF175669	
Xylomyces elegans	H80-1		GU266234 –	
Undescribed taxon A25-1*	Shearer	–	GU266246	
Undescribed taxon R60-1*	Raja & Shearer		GU266235 GU266247	
Undescribed taxon F65-1	Shearer		GU266236 GU266248	
Undescribed taxon A369-1*	Raja & Shearer	–	GU266249	
Undescribed taxon F80-1*	Shearer		GU266237 GU266250	
Undescribed taxon A164-1C*	Shearer	–	GU266251	
Undescribed taxon A164-1D*	Shearer	–	GU266252	
Undescribed taxon A183-1C*	Shearer	–	GU266253	
Undescribed taxon A183-1D*	Shearer	–	GU266254	
Undescribed taxon A273-1C*	Shearer	–	GU266255	