Numerical analysis of beam self-cleaning in multimode fiber amplifiers

Mesay Addisu Jima,1,2 Alessandro Tonello,2 Alionne Niang,3 Tigran Mansuryan,2 Katarzyna Krupa,4 Daniele Modotto,1,† Annamaria Cucinotta,5 Vincent Coudere,2 and Stefan Wabnitz3,6

1 Dipartimento di Ingegneria dell’Informazione, Università di Brescia, via Branze 38, 25123 Brescia, Italy
2 Université de Limoges, XLIM, UMR CNRS 7252, 123 Av. A. Thomas, 87060 Limoges, France
3 Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
4 Institute of Physical Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
5 Dipartimento di Ingegneria e Architectura, Università di Parma, Parco Area delle Scienze 181/A, I-43124 Parma, Italy
6 CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy

Recent experimental results have reported the observation of beam self-cleaning or, more generally, nonlinear beam reshaping in active multimode fibers. In this work we present a numerical analysis of these processes, by considering the ideal case of a diode-pumped signal amplifier made of a graded-index multimode fiber with uniform Yb doping. Simulations confirm that beam cleaning of the signal may take place even in amplifying fibers, that is the absence of beam energy conservation. Moreover, we show how the local signal intensity maxima, which are periodically generated by the self-imaging process, may influence the population inversion of the doping atoms, and locally saturate the amplifier gain.

1. INTRODUCTION

Light propagation in active waveguides may hold surprises or counter-intuitive situations. An example is provided by the robust singlemode behaviour which can be obtained, in the presence of sufficiently large gain, even in step-index fibers with a refractive index dip in the core, or in anti-guides [1]. Doped fibers provide the most technologically successful, and suitable platform for optical amplifiers. Accurate models to describe short pulse propagation in active fibers, including the contribution to dispersion introduced by the active ions, have been developed, see for instance Ref. [2].

In this context, Yb-doped fibers are of particular interest for many applications since their quantum defect is small, which contributes to reducing thermal effects, and allows for developing high-power amplifiers and lasers, especially if large-mode-area or multimode (MM) fibers are used. A thorough discussion of Yb-doped fiber amplifiers can be found in Ref. [3], whereas static and dynamic instabilities due to thermooptic effects are analysed in Ref. [4].

An interesting aspect is that, in a MM fiber amplifier, the beating among modes can create a thermally induced refractive index grating, which in turn leads to modal energy transfer and causes the well known transverse mode instabilities [5]. The amplification of coherent signals in MM fiber amplifiers cannot be merely limited to the study of their overall power throughput; it is essential to consider transversally resolved rate equations, since the light intensity pattern can lead to different amplification regimes, and it has a substantial impact on the quality of the output beam [6].

Remarkably, steering of the output beam from a MM active fiber could be obtained by properly shaping the input beam phase-front via a spatial light modulator (such as a segmented deformable mirror). This was achieved by measuring the relevant transmission matrix, and by implementing appropriate wavefront control algorithms [7, 8].

On the other hand, in recent years there has been a resurgence of research interest in nonlinear optical effects in multimode fibers. Among these, spatial beam self-cleaning (BSC) due to intermodal four-wave mixing via the Kerr effect was first observed in passive graded-index (GRIN) fibers [9]. Soon thereafter, BSC was also reported in an Yb-doped fiber amplifier with a quasi step-index profile [10]. Although the radial evolution of the refractive index profile was not following a parabolic profile, it was possible to observe BSC at 1064 nm, both in the presence or in the absence of an additional forward diode pump at 940 nm, leading to signal gain of about 13 dB [10], or to signal loss of 7.3 dB owing to Yb ground state absorption, respectively. This experimental work was also extended, for a quasi-step index MM fiber, to the case of a coupled-cavity composed MM laser [11] and, more recently, to Yb-doped fiber tapers with graded-index profiles [12, 13].

The numerical simulation of complex beam shaping combining MM propagation, gain/loss mechanisms and the Kerr effect has recently been discussed in the context of spatio-temporal mode-locked fiber lasers [14]. This has permitted to point out the role played by gain saturation as a modal coupling mechanism for locking both longitudinal and transverse laser modes (see supplementary material of Ref. [14]). In addition, the generation of self-similar pulses in all-normal dispersion mode-locked fiber...
lasers has been experimentally and numerically studied in Ref. [13].

In this work we introduce a numerical model, suitable for describing spatial beam cleaning effects in active GRIN MM fibers. Our simulation results fully support earlier experimental findings using Yb-doped MM fibers, showing that dissipative MM fibers are a convenient and important platform for obtaining BSC. Moreover, our model permits to design and optimize novel active fiber structures and amplification schemes based on BSC; for example, by introducing a suitable transverse gain/loss distribution in the fiber core. Our manuscript is organized as follows: Section 2 explains the mathematical model for gain in Yb-doped MM fibers; Section 3 and 4 describe the dynamics in Yb-doped MM fibers, both in the absence of any pumping, and with a forward pump, respectively; Section 5 extends the analysis of BSC and self-imaging to Yb-doped MM tapers; finally, Section 6 draws our conclusions.

2. DISTRIBUTED GAIN MODEL

Our goal is to numerically study signal beam evolution in Yb-doped MM fibers, under the combined action of the Kerr effect and gain due to Yb ions, with continuous wave (CW) diode pumping. For efficient pumping, we consider a two cladding active fiber structure: owing to the presence of thousands of modes in the inner cladding, the pump distribution is uniform in the transverse dimension.

Previous experiments with either passive [9] or active MM fibers [10] have taught us that, when using signal powers higher than a few tens of kW, a reshaping of the transverse beam profile is obtained after 2-3 m of propagation. As a matter of fact, as the signal power grows larger, one observes a progressive evolution of the output speckled pattern, which is typical of the MM regime, towards a single bell-shaped profile. For such a reason, our numerical model must necessarily include, besides the dependence of the field on the transverse coordinates, a longitudinal fiber perturbation which breaks the radial symmetry of the beam and leads, in the linear regime, to a speckled output pattern as a result of MM interference [10] [13]. We underline that the signal evolution cannot be only modeled in terms of mode powers, since keeping track of the phase evolution is necessary for properly modelling linear and nonlinear mode coupling.

The model presented herein combines transversely resolved rate equations, including the pump power \(P_p(z) \), with a nonlinear beam propagation equation for the signal electric field \(E(x,y,z) \). When considering forward pumping, the pump evolution is described by the equation

\[
\frac{dP_p}{dz} = \left(\sigma_{AP} + \sigma_{EP} \right) \int S N_2(x,y,z) dS + \eta \alpha_P P_p
\]

where \(\sigma_{AP} \) and \(\sigma_{EP} \) are absorption and emission cross-sections at the pump wavelength, \(N_1 (N_2) \) is the ground (excited) Yb ion density, \(N_T = N_1 + N_2 \) is the total Yb density, \(A_{Cl} \) is the inner cladding area, and \(\alpha_P \) is the linear pump absorption coefficient. Since we consider a uniformly distributed pump (i.e., it does not depend on \(x,y \)) in the inner guiding cladding, the pump intensity reads as \(I_p(z) = P_p(z)/A_{Cl} \). In the previous equation the local densities of ions in the ground and excited states depend on the three spatial coordinates since, as we will see, it is important to take into account the fact that \(N_1 \) and \(N_2 \) vary not only along the longitudinal coordinate \(z \), but also in the transverse \(x,y \) plane. As a result, the two integrals for the ion densities are calculated on the cross-section \(S \), where doping is present. In the present work, we assume that doping is only present in the core, where it is uniformly distributed. Therefore, \(N_T \) is constant, and it vanishes outside the core.

The pump is CW, and we consider the steady-state amplification regime. Nevertheless, when writing the rate equations, we must take into account that the signal pulses have a duration \(T_S \), a repetition rate \(1/T_R \) (where \(T_R \) is the separation between two consecutive pulses) and a time-dependent intensity \(I_S(x,y,z,t) \). We can define the time-averaged signal intensity as \(\bar{I}_S(x,y,z) = 1/T_R \int_{T_R} I_S(x,y,z,t) dt \). This is an approximation in this context, although it is often adopted in fiber lasers [10]. It follows that the density of excited ions \(N_2(x,y,z) \) can be explicitly written as a function of the pump and the (time-averaged) signal intensities [4]:

\[
N_2(x,y,z) = \frac{N_T (\sigma_{AP} I_p(z) + \sigma_{AS} \bar{I}_S(x,y,z) \lambda_S / \lambda_P)}{\sigma_{AE} \sigma_{AP} I_p(z) + \sigma_{AES} \bar{I}_S(x,y,z) \lambda_S / \lambda_P + P_l}
\]

where \(\sigma_{AE} = \sigma_{AP} + \sigma_{EP} \), \(\sigma_{AES} = \sigma_{AS} + \sigma_{ES} \), \(\tau \) is the excited level lifetime, \(P_l = h c / (\lambda_P \tau) \), \(h \) is the Planck’s constant and \(c \) is the speed of light.

The complex envelope of the signal electric field \(E(x,y,z) \) is normalized in such a way that its intensity is \(|E(x,y,z)|^2 \); the field evolution is governed by the following equation [4]:

\[
\frac{\partial E}{\partial z} = \frac{i}{2k_0} \left\{ \nabla_{\perp}^2 E + \left[k^2 - k_0^2 \right] E \right\} + i \gamma |E|^2 E - \frac{\alpha_S}{2} E
\]

\[+ \frac{1}{2} \left(\sigma_{AS} + \sigma_{ES} \right) N_2 - \sigma_{AS} N_T \left\{ \frac{1}{2} \right\} \]

where \(k_0 = 2 \pi n_0 / \lambda_S \) is the reference propagation constant, \(k = 2 \pi n(x,y)/\lambda_s \), and \(n(x,y) \) is the refractive index distribution. For an ideal GRIN fiber, \(n(x,y) \) is well approximated by a circular paraboloid \(n^2 = n_0^2 + 2 \Delta z^2 / R^2 \), where the reference index is the maximum core refractive index \(n_0 = n_{Co}, n_{Cl} \) is the cladding index, and \(\Delta = (n_{Co}^2 - n_{Cl}^2)/2n_{Co}^2 \). In Eq. (3), the term in braces describes diffraction and the guiding structure,
the term $i\gamma|E|^2E$ represents the instantaneous Kerr nonlinearity, α_S is the linear loss coefficient of the silica glass host, and the last term accounts for the gain $g(x,y,z)$ introduced by the population inversion, which reads as

$$g(x,y,z) = (\sigma_{AS} + \sigma_{ES})N_2(x,y,z) - \sigma_{AS}N_T(x,y,z)$$

(4)

It is worth observing that even if the Kerr coefficient and the doping are homogeneous over the fiber cross-section, the intensity dependent refractive index and the gain function depend on the transverse coordinates, and can lead to an exchange of power among modes carried by the MM fiber.

Moreover, the refractive index distribution can be perturbed by the population inversion of the Yb ions. The variation of the refractive index δn depends linearly on the population of the excited state, as described by the equation

$$\delta n = \frac{2\pi}{n_0} \left(\frac{n_0^2 + 2}{3} \right)^2 \Delta p N_2$$

(5)

where $\Delta p = 1.2 \times 10^{-20}$ cm3 is the polarizability difference of the Yb$^{3+}$ ions in the excited and ground states, respectively [24]. We also assume that the Yb-doped glass, for the selected pump and signal wavelengths, behaves as a quasi-three-level system [21, 22], and that the maximum fraction of inverted population is $N_2/N_T = 0.5$ (since $\sigma_{AP} = \sigma_{EP}$): by considering $N_T = 9 \times 10^{19}$ cm$^{-3}$ and a maximally inverted population $N_2 = 4.5 \times 10^{19}$ cm$^{-3}$, the resulting variation is $\delta n = 4.44 \times 10^{-6}$. In other words, $\delta n = 8.88 \times 10^{-6}N_2/N_T$, where N_2/N_T is the fractional inverted population. In GRIN fibers the self-imaging effect is responsible for the formation of a Kerr-induced index grating [23, 24], which also leads to a periodic modulation of N_2 according to Eq. (2), hence of δn.

In order to investigate how this refractive index modulation eventually interferes with the Kerr-induced index grating, in Eq. (4) we may replace $n(x,y)$ by $n(x,y) + \delta n(x,y,z)$; this part of the study is addressed at the end of section 5. It is also worth observing that a local change in the fiber temperature δT of just a few Kelvin can lead to an increase in the refractive index which is larger than that expected from population inversion, since $\delta n \approx 1.2 \times 10^{-5}\delta T$; however, this would lead to refractive index fluctuations on a longitudinal scale which is longer than the self-imaging period. We may thus neglect this contribution in the current numerical analysis, and we plan to address this issue in subsequent studies.

It is also customary to express the guided signal field by using the base provided by the set of Hermite-Gauss guided modes $\psi_{hk}(x,y)$, which are the eigensolutions of the linear problem $\nabla^2 \psi_0 + [k^2 - k_0^2] \psi_0 = 0$ for the GRIN fiber [25].

In the next sections we develop our simulations for an ideal sample case, whose set of parameter values are summarized in Table I. Whenever necessary, in some simulations the parameters will be modified (for instance, we may neglect the Kerr effect), as explained in the corresponding sections.

Symbol	Parameter	Value
λ_p	Pump wavelength	979 nm
λ_s	Signal wavelength	1064 nm
T_S	Signal pulse duration	500 ps
D	Signal beam diameter FWHM	40 μm
σ_{AP}	Pump absorption cross section	2.358×10^{-24} m2
σ_{EP}	Pump emission cross section	2.358×10^{-24} m2
σ_{AS}	Signal absorption cross section	5×10^{-27} m2
σ_{ES}	Signal emission cross section	2.89×10^{-25} m2
α_p	Linear absorption (pump)	1.1 dB/km
α_s	Linear absorption (signal)	1.1 dB/km
N_T	Yb$^{3+}$ concentration	9.0×10^{25} m$^{-3}$
n_{Co}	Maximum core refractive index	1.47
n_{Cl}	Cladding refractive index	1.457
R	Core radius	26 μm
A_{Cl}	Inner cladding area	7.06×10^{-8} m2
η_2	Kerr nonlinear coefficient	2.6×10^{-20} m2/W

Table I. Parameters used in modelling and numerical simulations

The disorder along the propagation, which is responsible for the formation of a speckled output intensity pattern in the linear regime, and which may also lead to an acceleration of the beam cleaning process in the nonlinear regime [10], is implemented in the GRIN fiber with a core radius $R = 26$ μm and $\Delta = 8.8 \times 10^{-3}$ by considering randomly oriented elliptical deformations of the fiber core, with a maximum excursion of the axes of 0.15 μm, and a coarse 5 mm pitch for the ellipse rotation.

3. LINEAR AND NONLINEAR DYNAMICS IN YB$^{3+}$ DOPED FIBER IN THE ABSENCE OF PUMPING

First, by means of an example, we numerically confirm that, whenever the input beam peak intensity grows larger than a certain threshold value, spatial beam self-cleaning can indeed be obtained in an undoped, passive GRIN fiber. Let us consider the parameters of Table I and an input Gaussian signal beam with a peak intensity in the time domain of 5 GW/cm2. The corresponding numerically calculated evolution (see the iso-intensity surface at half maximum intensity in Fig. 1(a)) shows that a transition, from a wide and speckled intensity pattern into a cleaned beam, occurs after about 0.5 m. With ten times less input intensity (see Fig. 1(b)), this beam cleaning effect substantially vanishes: the transverse pattern remains speckled over the full propagation distance of 4 m, as it occurs when the simulation is carried out in the absence of the Kerr effect (i.e., we set $n_2 = 0$).
When one includes a uniform Yb doping (while keeping the same graded index profile), and in the absence of a pump, i.e., with $P_p(0) = 0$, the GRIN fiber exhibits high losses, owing to ground state absorption by Yb ions. Nevertheless, quite surprising Figure 2 shows that, in spite of the additional loss, it is still possible to observe beam self-cleaning in a doped un-pumped fiber, with the same input signal peak intensity of 5 GW/cm2 (see panel (a)) as in Fig. 1(a). Obviously, beam cleaning vanishes whenever the simulation does not include the Kerr effect, i.e., with $n_2 = 0$ (panel (b)). These numerical simulations are in qualitative agreement with experimental results of Ref. [10], that were carried out for a slightly different fiber geometry. Figure 3 reveals the evolution with distance of the beam modal composition, corresponding to the case of Fig. 2(a), where $a_{h,k}$ is the amplitude of the mode $\psi_{h,k}$. Although the signal drops at a rate of 1.9 dB/m, owing to linear losses due to the absence of a pump for inverting the population of the active medium, we still observe that a significant nonlinear energy exchange among the modes occurs over the first few meters of propagation. In particular, the blue curve in Fig. 2(a) shows the power carried by the fundamental mode $\psi_{0,0}$, whereas the red and green curves indicate the power carried by modes $\psi_{0,1}$ and $\psi_{1,0}$, respectively: these two modes are poorly excited, because of the symmetry of the input condition. The other modes $\psi_{h,k}$ are plotted in grey (we considered the projections with $h,k \in [0,9]$).

It is also instructive to calculate the corresponding signal power evolution, as displayed in Fig. 4 where $P_S(z) = \int_S |E(x,y,z)|^2 dS$. It is worth underlining that nonlinear effects occur substantially before the signal is attenuated along its propagation.

4. LINEAR AND NONLINEAR DYNAMICS IN DOPED FIBER WITH FORWARD PUMPING

In this Section, we numerically simulate the dynamics of the signal beam amplification when the pump is switched on. The corresponding iso-intensity levels are shown in Fig. 5 as it can be seen, for a pump power level of 20 W, beam cleaning is obtained with a signal of 0.5 GW/cm2 peak intensity only. Note that with such input signal level it was not possible to obtain beam cleaning in a passive GRIN fiber (see panel (b) of Fig. 1). We may thus numerically confirm the behavior reported in
the experiments of Ref. [10]: specifically, a reduction of
the input threshold power for beam cleaning in an active
fiber, owing to signal amplification which accompanies
nonlinear beam reshaping.

The field gain $g/2$ (as defined in Eq. (4)) experienced
by the complex electric field E is neither uniform along
the fiber (due to the progressive pump absorption), nor
uniform in the transverse domain, owing to the differ-
ent population inversion across the beam cross-section.
In particular, gain saturation is most pronounced at the
point of minimum waist for the signal beam. The well-
known periodic evolution of the beam in a parabolic
refractive index profile causes then a periodic fluctua-
tion of the signal intensity. In turn, this gives rise to
a periodic evolution of the inverted fraction $N_2(x,y,z)$
along the coordinate z. To exemplify this effect, in Fig. 6
we show the evolution of the gain along the fiber axis
g($x = 0, y = 0, z$). The inset is a detail of the evolu-
tion over a shorter fiber span, as highlighted by the blue
bar. Maximum gain is experienced at the beginning of
the propagation, and then gain gradually drops as the
pump is absorbed during its propagation. However, the
most striking feature of the g evolution is the fast vary-
ing oscillation on a sub-millimetric scale, which is due to
the coherent beating of all modes with the self-imaging
period of $\Lambda = \pi R/\sqrt{2\Delta}$ (with the present parameters,
$\Lambda = 0.6$ mm).

A better understanding of the signal dynamics can be
gained by observing the evolution of the power carried by
the different modes $|a_{h,k}|^2$ (see Fig. 7). Specifically, it is
possible to notice that, although all modes are amplified,
their gain is not uniformly distributed among them. This
is surprising, since in the absence of nonlinearity and gain
saturation, the uniform doping distribution coupled with
the cladding pumping scheme would lead to the same
gain per mode. This process culminates in a strong non-
linear reshaping nearby $z = 1$ m.

Along the propagation of the signal beam, amplification
increases nonlinear mode mixing, and reduces the
nonlinear length. As a result, in Fig. 7 we observe a
rapid growth of both low and high-order modes (see for
instance the red and green curves, referring to modes
$a_{1,0}, a_{0,1}$). Note that these very modes are poorly ex-
cited in the initial steps of the propagation. In parallel,
nearby $z = 1$ m in Fig. 7, we notice a local decrease of
the fundamental mode power (blue curve), before a new
amplification stage, which can be ascribed to power flow
from high-order modes. Thus, high-order modes can ef-
ciently absorb the gain distributed on the outer edge of
the fiber core, before transferring it to the fundamental
mode by four-wave mixing. For $z > 1$ m, the power of the
fundamental mode grows larger. Such multi-step nonlin-
ear amplification mechanism, involving the amplification
of many modes coupled with nonlinear power transfer.
toward the fundamental mode via the Kerr effect, provides an original light amplification scheme for nonlinear multimode fiber amplifiers.

![Graph](image_url)

FIG. 8. Powers of pump and signal along the fiber: \(I_S(0, 0, 0) = 0.5 \text{ GW/cm}^2 \) and input pump power \(P_P(0) = 20 \text{ W} \).

The situation can be possibly clarified by inspecting the evolution of pump and signal powers, as reported in Fig.\[8\]. The strong nonlinear reshaping at \(z = 1 \text{ m} \) corresponds to the maximum amplification of the signal, whose peak power reaches above 2.5 MW. Moreover, at that distance the pump is entirely absorbed, so that over the remaining propagation distance the signal power is reduced. We can conclude that the Kerr effect may provide an efficient mechanism of nonlinear mode scrambling (especially close to the threshold for beam collapse) and power transfer. We also observed that there is a well-defined optimal amplifier length for obtaining a maximum amplification of the signal.

5. MULTIMODE ACTIVE TAPERS

An important category of fiber amplifiers is provided by fiber tapers, where both cladding and core radius \(R(z) \) vary along the amplifier length. In this Section, we support by numerical simulations the results of a series of experiments on nonlinear spectral broadening and beam reshaping in both passive and active MM fiber tapers [20, 21]. Here we limit our analysis to the spatial coordinates: in this case, Eq. (8) can be easily extended to tapers, where the radius \(R(z) \) varies from a value \(R_{IN} \) to a value \(R_{OUT} \). For the ease of discussion, we model the evolution of the core radius by means of a linear function \(R(z) = R_{OUT} + (z - L)\left(R_{OUT} - R_{IN} \right)/L \), where \(L \) is the taper length. In practical implementations of fiber tapers, the variation upon distance of the core radius is not necessarily linear. We refer here to the case \(R_{IN} > R_{OUT} \), in order to qualitatively reproduce some of the experimental results of Ref. [12]. Note that the decrease of core radius with fiber length progressively increases the strength of the fiber nonlinearity, which leads to an acceleration of nonlinear mixing along the beam propagation [22]. Similarly to the previous considered cases, here the pump is combined with the signal in the forward direction. Aiming at a comparative analysis with the previous cases, we considered the same set of parameters’ values that we used for uniform or z-invariant fibers. However, in order to match some of the features of the taper of Ref. [12], we have chosen \(L = 9 \text{ m} \), \(R_{IN} = 61 \mu\text{m} \), \(R_{OUT} = 18 \mu\text{m} \). Moreover, in our simulation the cladding radius linearly varies from 350 \(\mu\text{m} \) down to 90 \(\mu\text{m} \). Again, the presence of fiber disorder is introduced by means of local elliptical deformations of the fiber core. Since the core radius changes along the propagation of the signal beam, these deformations are uniformly randomly distributed with a maximal excursion proportional to \(R(z) \). In the simulation the maximal deformation on each axis is \(5.8 \times 10^{-3}R(z) \), and with a coarse step of 5 \(\mu\text{m} \).

The numerical simulation presented in Figure 9 illustrates signal beam propagation along the active taper, in the absence of the Kerr effect (i.e., we set \(n_2 = 0 \)); here the input diode pump power is 20 W, and the signal intensity is 1 GW/cm². As can be seen, the output beam exhibits a speckled intensity pattern. As shown in Fig.\[10\], the result is qualitatively different when adding the contribution of the Kerr effect. Specifically, the simulation shows that the output signal intensity pattern exhibits a large bright spot at its center, surrounded by a weak background. Note that in the considered case the pump is absorbed over the first meter of fiber, so that for longer distances the signal is experiencing a propagation loss. Nevertheless, Fig.\[10\] clearly illustrates the gradual transition from a speckled to a cleaned beam, when the Kerr effect is switched on.

In fiber amplifiers and lasers, fiber tapers are commonly used by propagating the signal in the opposite direction, namely, with \(R_{IN} < R_{OUT} \). In fact, if the size of the core increases at the same time that the signal is amplified, the nonlinearity increase due to the growing signal power can be compensated by the decrease of the nonlinear coefficient, because of the larger effective area of the guided beam. An example of the nonlinear dynamics in this configuration for the multimode active taper is illustrated in Fig.\[11\] here \(R_{IN} = 18 \mu\text{m} \), \(R_{OUT} = 61 \mu\text{m} \), the input beam diameter (FWHMI) is 12.5 \(\mu\text{m} \), and the input pump power is 20 W. In details, panel (a) in Fig.\[11\] illustrates nonlinear propagation in the presence of disorder and Kerr effect. As can be seen, the signal beam width remains substantially unchanged along the taper, in spite of experiencing a drastic increase of the core diameter. For comparison, panel (b) illustrates propagation in the same taper, but in the absence of the Kerr effect (we set \(n_2 = 0 \)): now, the beam spreads wider along its propagation. Although the present simulations refer to a forward pumping situation, these numerical results substantially agree with the experimental observations of
spatial beam self-cleaning in active tapers with decelerating nonlinearity, as reported in Ref. [13], and obtained with a backward pump.

Since core and cladding radii vary slowly along the taper, a significant change of their values can only be obtained after a distance that is orders of magnitude greater than the typical value of the self-imaging period (which ranges from a few millimeters to a few hundred microns). For this reason, the self-imaging effect can also be observed in short segments of the taper in Fig. 10. As a matter of fact, Λ is the self-imaging period for an on-axis symmetric input field only, similarly to what is observed in other multimode waveguides [31, 32]. With $R = 61$ μm, $\Delta n = 0.018$ and assuming for instance $n_{CI} = 1.457$, the expected self-imaging period is $\Lambda = 1.2$ mm: this value is close to the experimental result in Fig. 10(a), and agrees well with the numerical result in Fig. 10(b).

The signal beam intensity maxima are more closely packed when observing the taper near its small input facet, as illustrated in Fig. 11: here panel (a) shows the light scattered by photoluminescence. As can be seen, the spacing between two consecutive bright spots reduces down to 0.36 mm, owing to the reduced diameter. Whereas panel (b) illustrates the numerical propagation result, again assuming a segment of constant diameter for a few millimeters of propagation, and panel (c) shows the corresponding measured local refractive index profile.

At this point we may briefly address the relevant problem of the local refractive index perturbations that are induced by the population inversion in the active fiber medium. Figure 12 analyses the additional impact of the refractive index perturbation δn, which is caused by the...
population inversion of Yb ions, as described by Eq. 5. Here we show the output beam profiles for realistic values of δn. The simulations have been carried out with the same parameters as in Fig. 10. To simplify our analysis, δn is assumed to be proportional to the ratio N_2/N_T, with a proportionality factor ranging from 1×10^{-6} (panel (a)) up to 9×10^{-6} (panel (d)). The conclusion of this analysis is that, although population inversion can induce a refractive index perturbation, its impact is not sufficient to reduce the effectiveness of spatial beam cleaning, at least within the considered range of parameters.

6. CONCLUSIONS

In this work, we carried out a series of numerical simulations in order to study the onset of nonlinear beam reshaping and cleaning in MM GRIN fiber amplifiers. At variance with single-mode fibers, GRIN fibers lead to a periodic evolution of the signal intensity, which, in turn, periodically modulates the population inversion. The beam cleaning effects observed in our numerical simulations agree well with experimentally reported spatial beam self-cleaning in Refs. [10–13], and add a new building block to the study of this interesting nonlinear phenomenon. In this work, as well as in the reported experiments, we have shown how BSC can be observed even in dissipative fiber systems, that is when the signal power evolves (under the effect of either linear absorption or amplification), that is in absence of conservation of the signal power. Peculiar properties of the associated nonlinear beam evolution have been pointed out, specifically in connection with the contribution of the active medium, and its non-uniform transverse population distribution, whose detailed analysis deserves further studies.

FUNDING

H2020 European Research Council (ERC) (grant No. 740355); Arianegroup (X-LAS); Polish National Agency for Academic Exchange (POLONIUM, grant No. BPN/BFR/2021/1/00013) and French-Polish Partnership Hubert Curien (grant No. 48161TH).
ACKNOWLEDGMENTS

We acknowledge useful discussions and suggestions by Dr. Alain Barthélyé.

DISCLOSURES

The authors declare no conflicts of interest. Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

[1] A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24, 1677–1682 (2007).
[2] Govind P. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991).
[3] Robert Lindberg, Peter Zei, Mikael Malmström, Fredrik Laurell, and Valdas Pasiekievicius, “Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers,” Scientific Reports 6, 34742 (2016).
[4] Jesper Lægsgaard, Federica Poli, Annamaria Cucinotta, and Stefano Selleri, “Static and dynamic mode instabilities in dual-core fiber amplifiers,” J. Opt. Soc. Am. B 36, 757–767 (2019).
[5] Christoph Stihler, Cesar Jauregui, Andreas Tünnermann, and Jens Limpert, “Modal energy transfer by thermally induced refractive index gratings in yb-doped fibers,” Light: Science & Applications 7, 59 (2018).
[6] Cesar Jauregui, Tino Eidam, Jens Limpert, and Andreas Tünnermann, “Impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011).
[7] Raphael Florentin, Vincent Kermene, Agnès Desfargues-Berthelemot, and Alain Barthélyé, “Shaping of amplified beam from a highly multimode yb-doped fiber using transmission matrix,” Opt. Express 27, 32638–32648 (2019).
[8] Raphael Florentin, Vincent Kermene, Joel Benoist, Agnès Desfargues-Berthelemot, Dominique Pagnoux, Alain Barthélyé, and Jean-Pierre Hugnard, “Shaping the light amplified in a multimode fiber,” Light: Science & Applications 6, e16208–e16208 (2017).
[9] Katarzyna Krupa, Alessandro Tonello, Badr M. Shalaby, Marc Fabert, Alain Barthélyé, Guy Millot, Stefan Wabnitz, and Vincent Couderc, “Spatial beam self-cleaning in multimode fibres,” Nature Photonics 11, 237–241 (2017).
[10] R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfargues-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélyé, G. Millot, S. Wabnitz, and V. Couderc, “Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber,” Opt. Express 25, 4783–4792 (2017).
[11] R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, A. Desfargues-Berthelemot, J. L. Auguste, A. Tonello, A. Barthélyé, G. Millot, S. Wabnitz, and V. Couderc, “Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber,” Opt. Express 25, 22219–22227 (2017).
[12] A. Niang, T. Mansuryan, K. Krupa, A. Tonello, M. Fabert, P. Leproux, D. Modotto, O. N. Egorova, A. E. Levchenko, D. S. Lipatov, S. L. Semjonov, G. Millot, V. Couderc, and S. Wabnitz, “Spatial beam self-cleaning and supercontinuum generation with yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape,” Opt. Express 27, 24018–24028 (2019).
[13] A. Niang, D. Modotto, A. Tonello, F. Mangini, U. Minoni, M. Zitelli, M. Fabert, M. A. Jima, O. N. Egorova, A. E. Levchenko, S. L. Semjonov, D. S. Lipatov, S. Babin, V. Couderc, and S. Wabnitz, “Spatial beam self-cleaning in tapered yb-doped grin multimode fiber with decelerating nonlinearity,” IEEE Photonics Journal 12, 1–8 (2020).
[14] Logan G. Wright, Demetrios N. Christodoulides, and Frank W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017). https://science.sciencemag.org/content/358/6359/94.full.pdf
[15] Uğur Teğin, Eirini Kakkava, Babak Rahmani, Demetri Psaltis, and Christophe Moser, “Spatiotemporal self-similar fiber laser,” Optica 6, 1412–1415 (2019).
[16] Adrien Fusaro, Josselin Garnier, Katarzyna Krupa, Guy Millot, and Antonio Picozzi, “Dramatic acceleration of wave condensation mediated by disorder in multimode fibers,” Phys. Rev. Lett. 122, 123902 (2019).
[17] J. Garnier, A. Fusaro, K. Baudin, C. Michel, K. Krupa, G. Millot, and A. Picozzi, “Wave condensation with weak disorder versus beam self-cleaning in multimode fibers,” Phys. Rev. A 100, 053838 (2019).
[18] K. Baudin, A. Fusaro, K. Krupa, J. Garnier, S. Rica, G. Millot, and A. Picozzi, “Classical rayleigh-jeans condensation of light waves: Observation and thermodynamic characterization,” Phys. Rev. Lett. 125, 244101 (2020).
[19] Antoine F.J. Runge, Claude Aguergaray, Richard Provo, Miro Erkintalo, and Neil G.R. Broderrick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Optical Fiber Technology 20, 657–665 (2014).
[20] Andrei A. Fotiadi, Oled L. Antipov, and Patrice Mégret, “Resonantly induced refractive index changes in yb-doped fibers: the origin, properties and application for all-fiber coherent beam combining,” Frontiers in Guided Wave Optics and Optoelectronics, 209–34 (2010).
[21] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for
the 1-1.2 µm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).

[22] Rüdiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE Journal of Quantum Electronics 33, 1049–1056 (1997)

[23] Stefano Longhi, “Modulational instability and space-time dynamics in nonlinear parabolic-index optical fibers,” Opt. Lett. 28, 2363–2365 (2003)

[24] Govind P. Agrawal, “Invite paper: Self-imaging in multimode graded-index fibers and its impact on the nonlinear phenomena,” Opt. Fiber Technol. 50, 309–316 (2019)

[25] Ajoy Ghatak and K. Thyagarajan, “Propagation characteristics of graded index fibers,” in Introduction to fiber optics (Cambridge University Press, 1998).

[26] M. A. Eftekhar, Z. Sanjabi-Eznaveh, H. E. Lopez-Aviles, S. Benis, J. E. Antonio-Lopez, M. Kolesik, F. Wise, R. Amezcua-Correa, and D. N. Christodoulides, “Accelerated nonlinear interactions in graded-index multimode fibers,” Nature Communications 10, 1638 (2019)

[27] Katarzyna Krupa, Alessandro Tonello, Alain Barthélémé, Tigran Mansouryan, Vincent Couderc, Guy Millot, Philippe Grelu, Daniele Modotto, Sergey A. Babin, and Stefan Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photon. 4, 110901 (2019)

[28] Tobias Hansson, Alessandro Tonello, Tigran Mansouryan, Fabio Mangini, Mario Zitelli, Mario Ferraro, Alioune Niang, Rocco Crescenzii, Stefan Wabnitz, and Vincent Couderc, “Nonlinear beam self-imaging and self-focusing dynamics in a grin multimode optical fiber: theory and experiments,” Opt. Express 28, 24005–24021 (2020)

[29] Fabio Mangini, Mario Ferraro, Mario Zitelli, Alioune Niang, Alessandro Tonello, Vincent Couderc, and Stefan Wabnitz, “Multiphoton-absorption-excited up-conversion luminescence in optical fibers,” Phys. Rev. Applied 14, 054063 (2020)

[30] Mario Ferraro, Fabio Mangini, Yifan Snu, Mario Zitelli, Alioune Niang, Maria Caterina Crocco, Vincenzo Formoso, Raffaele Agostino, Riccardo Barberi, Antonio De Luca, Alessandro Tonello, Vincent Couderc, Sergey Babin, and Stefan Wabnitz, “Multiphoton ionization of standard optical fibers,” Photonics Research 10, 06001394 (2022)

[31] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in n × n multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994)

[32] M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34, 6898–6910 (1995)