Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis

LIANG GuiZhao1,2,3, CHEN ZeCong1,2, YANG ShanBin1,2, MEI Hu2,3, ZHOU Yuan2,3, YANG Li2,3, ZHOU Peng1,3, YANG ShengXi1, SHU Mao1,3, LIAO ChunYang1,2, WU ShiRong1,2, LI GenRong2,3, HE Liu2,3, GAO JianKun2,3, Gan MengYu1,2,3, LI DeJing1,2, CHEN GuoPing2,3, WANG GuiXue2,3, LONG Sha2,3, JING JuHua2,3, ZHENG XiaoLin2,3, ZENG Hui1,2, ZHANG QiaoXia1,2, ZHANG MengJun1,2, YANG Qi1,2, TIAN FeiFei2,3, TONG JianBo1,2, WANG JiaoNa1, LIU YongHong1,2,3, LI Bo1, QIU LiangJia2,3, CAI ShaoXi2,3, ZHAO Na1,2,3, YANG Yan1,2,3, SU Xiali2,3, SONG Jian1,2, CHEN MeiXia1,2, ZHANG XueJiao1,2, SUN JiaYing1,2, LI JingWei1,2,3, CHEN GuoHua1,2, CHEN Gang1,4, DENG Jie1,2,3, PENG ChuanYou1,2, ZHU WanPing1,2, XU Luolan1,2,3, WU YuQuan1,2, LIAO LiMin1,2, LI Zhi1,2, LI Jun1,2, LI JingWei1,2,3, HUANG ZhengHu1,2, ZHOU Ping1,2, LI ZhiLiang1,2

1 College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; 2 Key Laboratory for Biomechanics and Tissue Engineering under Ministry of Education at Chongqing University, Chongqing 400044, China; 3 College of Bioengineering, Chongqing University, Chongqing 400044, China; 4 Technology Centre for Life Sciences and Biotechnology, Singapore Polytechnic, Singapore 139651, Singapore

Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.

Influenza viruses, including A, B, and C types, belong to the family of Orthomyxoviridae. Avian influenza is a syndrome of poultry and livestock caused by influenza A viruses1,2. Avian influenza viruses (AIVs) are classified on the basis of the antigenic properties of the hemagglutinin (HA) and the neuraminidase (NA) glycoproteins expressed on the surface of virus particles. To date, AIVs representing 16 HA and 9 NA subtypes have

Received November 27, 2005; accepted March 13, 2006
doi: 10.1007/s11426-008-0006-7

1 Corresponding author (email: zlli@163.com; zlli2662@163.com; sdqdlgz@163.com)

Supported by Foundations of National High Technology (863) Programme (Grant No. 2006AA02Z312), Innovative Group Programme for Graduates of Chongqing University, Science and Innovation Fund (Grant No. 2007711C1A0010260), National 111 Programme Introducing Talents of Discipline to Universities (Grant No. 050711106), Chongqing Municipality Basic and Applied Fundamental Science Fund (Grant No. 01-3-6), National Chunhui Project Foundation (Grant No. 99-4-4-3-7), State Key Laboratory of Chemo/Biosensing and Chemometrics Fund (Grant No.2005012), Fok-Yingtung Educational Foundation (Grant No. 98-7-6)
been detected in wild birds and poultry throughout the world. Rapid detection and recognition for the viruses are required to protect human and animal because of the changeability of AIV antigen and the risk to cause illness. Type A, B and C can be differentiated by the antigens differences obtained from agar diffuse and alexin combine experiments. But it is time consuming and painful to test all of them by experiments. In this study, total 200 properties of HA coded proteins were culled to represent structures of 400 HA proteins of AIVs, B and C influenza viruses, and recognition models for them were built by linear discriminant analysis and support vector machine. All 200 HA sequences of testing set were used to validate the external power of the models obtained. Then structural characteristics of AIVs, B and C viruses were primarily investigated. Thoughts and results in this work can provide with helpful references and foundations for study on corresponding genomics and proteomics.

1 Principles and methods

1.1 Sequences preparation and parametrization
Total 400 samples (Table 1 in supplementary materials) including 200 HA proteins of AIVs, 100 HA proteins of type B viruses and 100 HA proteins of type C viruses were randomly selected from GenBank. It has been documented\(^\text{[2]}\) that the number of basic amino acid of HA and distribution of the protease as cleavage are the main factors in breaking into cells and determining the pathogenicity. Therefore, the pathogenicity are influenced by the composition, amino acid position and the physicochemical properties and conformation characteristics of HA sequences. A variety of parameters (Table 2 in supplementary materials) including molecular weight, isoelectric point, volume, specific volume, steric descriptors, electric characters, hydrophobicity, alpha and turn propensities, beta propensity, the time and frequency of amino acid, free energy, etc. were widely collected to roundly represent the structures of HA sequences.

1.2 Linear discriminant analysis (LDA) modeling
Linear discriminant analysis (LDA)\(^\text{[3]}\) realizes the process that how objects will be classified according to many observed samples. The basic theory of it is to classify the dependence by dividing an n-dimensional descriptor space into two regions (two classes) that are separated by a hyperplane defined by a linear discriminant function as follows:

\[Y = a_0 + a_1X_1 + a_2X_2 + \cdots + a_nX_n, \]

where \(Y \) is the dependent variable, \(X_1, X_2, \ldots, X_n \) represents the independent variable (observed values), \(a_1, a_2, \ldots, a_n \) corresponds to weights associated with the respective independent variable, that is discriminant coefficients. Independent variable space is divided into two regions through the hyperplane, then to discriminate which region every compound belongs to. In this study, LDA was carried out by the software of SPSS13.0. In order to decrease the number of descriptors and make the model interpreted, variables entering the model were selected by a stepwise method. The selection of the variables was chosen according to \(F \) value of partial \(F \) test: The variable was accepted into the model when \(F \) value calculated was greater than 3.84; the variable was rejected when \(F \) value was less than 2.71.

1.3 Support vector machine modeling
Extensive attention and interest have been attracted due to many attractive features and promising empirical performances of support vector machine (SVM)\(^\text{[4-11]}\). Optimal interface found does not implement the minimum experimental error but minimum generalization error based on the theory of structural risk minimization. SVM can not only solve some problems such as nonlinear, high dimensional and local minimum but also avoid over-training phenomenon from other conventional machine learning. In linearly separable cases, SVM constructs a hyperplane which separates two different classes of vectors with a maximum margin. In nonlinearly separable cases, SVM maps the input variables into a high-dimensional feature space using a kernel function

\[K(x, y) = \Phi(x) \cdot \Phi(y) \]

which can effectively deal with many problems such as dimensional puzzledom, calculation complexity, etc. At present, familiar kernel functions are mainly: linear kernel function:

\[K(x, y) = x \cdot y; \]

polynomial kernel function:

\[K(x, y) = (a_1x \cdot x + a_2)^p; \]

radial basis kernel function:

\[K(x, y) = \exp(-\gamma ||x - y||^2); \]

Sigmoid kernel function:

\[K(x, y) = \tanh (a_1x \cdot x + a_2). \]

SVM with radial basis kernel function was applied to create recognition models of AIVs in this work. SVM was implemented using Matlab7.0.

1.4 Model evaluation and verification
Identification accuracy (\(R_u \)) was used to measure the performance of this method:

\[R_u = (N_t - N_e)/N_t \times 100\%, \]
where \(N_t \) is the number of all samples; \(N_e \) represents the number of misclassified samples. It is necessary to validate the external predictive capacity of a model\(^{[12]}\), so 200 HA sequences of influenza viruses (STable 3 in supplementary materials) not present in the training samples retrieved from GenBank as external test set were used to evaluate the external predictive capacity of the models built.

2 Results and discussion

2.1 Recognition results by LDA

Among the 200 variables, 24 were selected to construct the model by LDA through a stepwise manner. 24 variables, original and standardized coefficients for LDA are collected in Table 1. \(R_{ia} \) for 400 HA sequences was 99.8%, and \(R_{ia} \) of 99.5% by CV was obtained (STable 1 in supplementary materials).

Significance of 24 variables affecting identification results was analyzed according to their standardized coefficients. Table 4 shows the absolute value of standardized coefficients corresponding to the variables of the frequency of W, retention coefficient in TFA, the quality percentage of R, the quality percentage of Q, the times of N and value of theta (\(\theta \)) are greater than 5.000. So, it is predicted that these characteristics may bring significant influence on emergence of AIVs, type B viruses and type C viruses. The largest coefficient in all ones is +10.157, as the contribution of the variable related to the times of N. The acylamino group of the side chain of N is an unionized polar group, but it can form hydrogen bond with other atoms. Consequently, we speculated that there is higher tendency on forming AIVs with the increase of the times of N in a sequence. The standardization coefficient of retention coefficient in TFA which refers to a hydrophobic property is 8.289, indicating that it takes on positive influence on the creation of HA proteins of AIVs. The quality percentage of Q with the largest negative coefficient may not easily lead to HA proteins of AIVs. It can be reasoned that although the acylamino group of the side chain of Q can bring hydrogen bond with other atoms, it may be influenced by the quality percentage of other amino acids. As a result, the larger the quality percentage of other amino acids in a sequence is, the easier the development of HA proteins is.

Table 1 The 24 variables selected, \(F \) values, original (\(b_i \)), and standardized coefficients (\(b'_i \)) for LDA model

No.	Description of variables	\(F \) to remove	\(b_i \)	\(b'_i \)
0	constant	/	1.067	/
1	frequency of W	130.209	–0.265	–5.292
2	sum of geometrical distances between N and N	12.377	–0.064	–3.214
3	retention coefficient in TFA	269.913	334.507	8.289
4	time of basic amino acids	83.583	0.276	3.334
5	times of H	11.304	0.091	0.742
6	frequency of V	6.760	–0.150	–0.862
7	times of Q	98.835	0.425	2.724
8	times of G	58.201	105.144	2.193
9	quality percentage of R	305.617	–0.442	–6.223
10	side chain angle theta	255.701	1.165	4.032
11	frequency of S	130.073	0.332	4.023
12	times of I	72.358	0.431	2.774
13	times of V	36.268	–61.539	–1.183
14	quality percentage of Q	23.253	–338.692	–7.633
15	times of N	40.011	595.566	10.157
16	times of C	129.147	0.675	2.461
17	average accessible surface area	54.213	–0.223	–2.258
18	times of M	147.924	108.587	1.553
19	frequency of M	80.158	4.960	2.447
20	quality percentage of S	62.693	1.422	2.477
21	times of D	55.766	–1.180	–3.938
22	parameter of charge transfer donor capability	3.842	1.833	1.747
23	time of polar amino acids	5.354	13.251	0.388
24	value of theta (\(\theta \))	138.692	–21.630	–5.997
Corresponding coefficients of the value of theta (i) and the frequency of W are less than 0.000, indicating that they are fit not for the development of HA proteins of AIVs but for the emergence of HA proteins of type B and C viruses. Especially for W, the spacial effects from the indolyl group of its side chain may result in adverse action to develop HA proteins of AIVs. Other variables are not analyzed in here.

According to the original equation, the centroids were 3.729 and −3.729 for HA group of AIVs and HA group of non-AIVs, respectively. The selected 24 variables of a sequence were introduced into the original equation. As a result, it was HA proteins of AIVs if discriminant value was more than 0.000, otherwise, it was HA group of non-AIVs. Finally, total \(R_{ia} \) of 95.5\% for 200 sequences (STable 3 in supplementary materials) indicates that the LDA model cherishes favorable external identification capacity.

2.2 Recognition results by SVM

Parameters are crucial to SVM regression. As for SVM with radial basis kernel function, they are regularized coefficient \(C \) and the kernel style \(K \) and its corresponding parameters. \(C \) is a regulative parameter, which is used to control the tradeoff maximizing the margin and minimizing the training error between maximal interval and minimum training error. Insufficient stress will be placed on fitting the training data if \(C \) is too small, contrarily, fitting will be beyond if \(C \) is too large. The \(\gamma \) controls amplitude of Gaussian function, that is, generality capability of SVM. In the present study, SVM parameters were confirmed by \(R_{ia} \) of external validation using single factor alternation method.

Based on the SVM model developed by 200 original variables, \(R_{ia} \) for 400 training samples and 200 testing samples were both relatively low. So, 16 principal components whose corresponding eigenvalues were larger than 1.0 were derived from 200 original variables by principal component analysis\(^ {13}\). These 16 principal components explained 98.2\% variance of the original variable matrix. Scores of the 16 principal components were treated as the input of SVM. Firstly, \(\gamma \) value is set as 0.031, then \(C \) is 5, 10, 30, 50, 100, 300, 600 and 1000, respectively. Plot of \(\gamma \) versus \(R_{ia} \) shows (Figure 2) that \(R_{ia} \) is 96.5\% when \(\gamma \) is 0.031. So, parameters of SVM are as follows: \(C = 100 \), the kernel function: \(K(x, x_i) = \exp(-0.031 ||x - x_i||^2) \). \(R_{ia} \) for 400 HA sequences is 99.8\% which is equivalent to that of LDA. \(R_{ia} \) of CV (99.3\%) is a bit less than that of LDA (99.5\%), but \(R_{ia} \) (96.5\%) for 200 external samples is higher than that of LDA (95.5\%).

3 Conclusion

Rapid identification for AIVs is very important for taking effective methods to control its pandemics\(^ {14-18}\). 200 local and whole parameters of influenza viruses were culled to recognize their structural characteristics. Then, recognition models for AIVs were developed by LDA and SVM. The results indicate that two models can preferably discriminate HA proteins of AIV from HA proteins of non-AIV. By comparison, the performances of SVM are better than those of LDA. The recognition
models for AIVs can help researchers investigate the differences between AIV proteins and non-AIV proteins, such as coding proteins related to severe acute respira-
tory syndrome coronavirus (SARS-CoV)[10], which can provide useful references for correlated genomics and proteomics.

1 Gan M H. Avian Influenza (the second edition). Beijing: Chinese Agriculture Press, 2002. 15—79
2 Garten W, Klenk H D. Understanding influenza virus pathogenicity. Trends in Microbiol, 1999, 7(3): 99 — 100
3 Kachigan S K. Statistical analysis. New York: Radius Press, 1986: 264—285
4 Burbidge R, Trotter M, Buxton B. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comp and Chem, 2001, 26: 5 — 14
5 Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. J Mol Biol, 2001, 308: 397—407
6 Hong S J, Weiss S M. Advances in predictive models for data mining. Pattern Recogn Lett, 2001, 22: 55 — 61
7 Belousov A I, Verzakov S A, Frese J von. A flexible classification approach with optimal generalization performance: support vector machines. Chemom Intell Lab Syst, 2002, 64: 15 — 25
8 Gao J B, Gunn S R, Harris C J. SVM regression through variational methods and its sequential implementation. Neurocomputing, 2003, 55: 151 — 167
9 Cortes C, Vapnik V. Support vector networks. Mach Learn, 1995, 20: 273 — 293
10 Flach P A. On the state of the art in machine learning: A personal review. Artif Intell, 2001, 131: 199—222
11 Sánchez A V D. Advanced support vector machines and kernel methods. Neurocomputing, 2003, 55: 5 — 20
12 Tropsha A, Gramatica P, Gombar V K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci, 2003, 22: 69—77
13 Kim D, Lee I-B. Process monitoring based on probabilistic PCA. Chemom Intell Lab Syst, 2003, 67: 109—123
14 Guan Y, Poon L L M, Cheung C Y. H5N1 influenza: A protein pandemic threat. Proc Natl Acad Sci, 2004, 101(21): 8156—8161
15 Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster R G, Yu K. The evolution of H5N1 influenza viruses in ducks in southern China, Proc Natl Acad Sci USA, 2004, 101: 10452—10457
16 Guan Y, Shortridge K F, Krauss S, et al. Molecular characterization of H9N2 influenza viruses: Were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA, 1999; 96: 9363—9367
17 Chen H, Smith G J D, Li K S. Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proc Natl Acad Sci USA, 2006, 103: 2845—2850
18 Lin Y P, Shaw M, Gregory V. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA, 2000, 97: 9654—9658
19 Mei H, Sun L L, Zhou Y, Xing Q, Li Z. Identification of coding proteins related to SARS-CoV. Chin Sci Bull, 2004, 49(19): 2037—2040
No.	Strains	Accession number	Type	LDA	LDAcv	SVM	SVMcv
1	A/avian/NY/53726/00(H5N2)	AAP57601	+	+	+	+	+
2	A/avian/NY/31588-2/00(H5N2)	AAP57596	+	+	+	+	+
3	A/avian/NY/53726/00(H5N2)	AAP57577	+	+	+	+	+
4	A/avian/NY/31588-3/00(H5N2)	AAP57573	+	+	+	+	+
5	A/avian/NY/31588-2/00(H5N2)	AAP57572	+	+	+	+	+
6	A/avian/NY/53726/00(H5N2)	AAP57548	+	+	+	+	+
7	A/avian/NY/31588-3/00(H5N2)	AAP57544	+	+	+	+	+
8	A/avian/NY/31588-2/00(H5N2)	AAP57543	+	+	+	+	+
9	A/avian/China/417-428/98(H9N2)	AAG53055	+	+	+	+	+
10	A/avian/Ireland/PV46B/93(H9N3)	AAG53046	+	+	+	+	+
11	A/avian/NY/17150-7/2000(H6N2)	ABA12261	+	+	+	+	+
12	A/avian/NY/17150-7/2000(H6N2)	ABA12260	+	+	+	+	-
13	A/avian/NY/31588-3/00(H5N2)	AAP57597	+	+	+	+	+
14	A/avian/NY/81746-5/00(H7N2)	AAP21438	+	+	+	+	+
15	A/avian/NY/76247-3/00(H7N2)	AAP21437	+	+	+	+	+
16	A/avian/NY/118353-1/01(H7N2)	AAP21436	+	+	+	+	+
17	A/avian/NY/73063-6/00(H7N2)	AAO86952	+	+	+	+	+
18	A/avian/NY/7729-6/00(H7N2)	AAO86909	+	+	+	+	+
19	A/avian/NY/81746-5/00(H7N2)	AAO86908	+	+	+	+	+
20	A/avian/NY/76247-3/00(H7N2)	AAO86907	+	+	+	+	+
21	A/avian/NY/74211-2/00(H7N2)	AAO86906	+	+	+	+	+
22	A/avian/NY/70411-12/00(H7N2)	AAO86905	+	+	+	+	+
23	A/avian/NY/118353-1/01(H7N2)	AAO86904	+	+	+	+	+
24	A/avian/NY/53726/00(H5N2)	AAP71999	+	+	+	+	+
25	A/avian/NY/31588-3/00(H5N2)	AAP71995	+	+	+	+	+
26	A/Hong Kong/482/97(H5N1)	AAK49273	+	+	+	+	+
27	A/Hong Kong/481/97(H5N1)	AAK49272	+	+	+	+	+
28	A/Hong Kong/1074/99(H9N2)	AAK49271	+	+	+	+	+
29	A/Hong Kong/1073/99(H9N2)	AAK49270	+	+	+	+	+
30	A/Hong Kong/516/97(H5N1)	AAK49269	+	+	+	+	+
31	A/Hong Kong/516/97(H5N1)	AAK49268	+	+	+	+	+
32	A/Hong Kong/514/97(H5N1)	AAK49267	+	+	+	+	+
33	A/Hong Kong/514/97(H5N1)	AAK49266	+	+	+	+	+
34	A/Hong Kong/507/97(H5N1)	AAK49265	+	+	+	+	+
35	A/Hong Kong/507/97(H5N1)	AAK49264	+	+	+	+	+
36	A/Hong Kong/503/97(H5N1)	AAK49263	+	+	+	+	+
37	A/Hong Kong/503/97(H5N1)	AAK49262	+	+	+	+	+
38	A/Hong Kong/491/97(H5N1)	AAK49261	+	+	+	+	+
39	A/Hong Kong/491/97(H5N1)	AAK49260	+	+	+	+	+
40	A/Hong Kong/491/97(H5N1)	AAK49259	+	+	+	+	+
41	A/Hong Kong/488/97(H5N1)	AAK49258	+	+	+	+	+
42	A/Hong Kong/488/97(H5N1)	AAK49257	+	+	+	+	+
43	A/Hong Kong/488/97(H5N1)	AAK49256	+	+	+	+	+
44	A/Hong Kong/485/97(H5N1)	AAK49255	+	+	+	+	+
45	A/Hong Kong/485/97(H5N1)	AAK49254	+	+	+	+	+
46	A/Hong Kong/485/97(H5N1)	AAK49253	+	+	+	+	+
47	A/Hong Kong/542/97(H5N1)	AAK49250	+	+	+	+	+
48	A/Hong Kong/542/97(H5N1)	AAK49249	+	+	+	+	+
49	A/Hong Kong/538/97(H5N1)	AAK49248	+	+	+	+	+
50	A/Hong Kong/538/97(H5N1)	AAK49247	+	+	+	+	+
51	A/turkey/Italy/125/89(H9N2)	AAG53044	+	+	+	+	+
52	A/turkey/Pennsylvania/11086-2/88(H9N2)	AAG53043	+	+	+	+	+
53	A/turkey/Minnesota/46719-5/88(H9N2)	AAG53042	+	+	+	+	+
54	A/duck/NewYork/17542-4/86(H9N1)	AAG53041	+	+	+	+	+
55	A/duck/India/31g/86(H9N2)	AAG53040	+	+	+	+	+

(To be continued on the next page)
No.	Strains	Accession number	Type	LDA	LDA_{cv}	SVM	SVM_{cv}
56	A/chicken/Italy/169/85(H9N2)	AAG53039	+	+	+	+	+
57	A/turkey/Italy/245/84(H9N2)	AAG53038	+	+	+	+	+
58	A/turkey/Italy/VR86/83(H9N2)	AAG53037	+	+	+	+	+
59	A/duck/Hong Kong/D91/76(H9N2)	AAG53036	+	+	+	+	+
60	A/turkey/Scotland/70(H9N7)	AAG53035	+	+	+	+	+
61	A/CNIC/149/98(H3N2)	AAK49204	+	+	+	+	+
62	A/CNIC/146/98(H3N2)	AAK49203	+	+	+	+	+
63	A/CNIC/145/98(H3N2)	AAK49202	+	+	+	+	+
64	A/CNIC/130/98(H3N2)	AAK49201	+	+	+	+	+
65	A/CNIC/125/98(H3N2)	AAK49200	+	+	+	+	+
66	A/CNIC/121/98(H3N2)	AAK49199	+	+	+	+	+
67	A/CNIC/109/98(H3N2)	AAK49198	+	+	+	+	+
68	A/CNIC/97/98(H3N2)	AAK49197	+	+	+	+	+
69	A/CNIC/96/98(H3N2)	AAK49196	+	+	+	+	+
70	A/CNIC/52/98(H3N2)	AAK49195	+	+	+	+	+
71	A/CNIC/3/98(H3N2)	AAK49194	+	+	+	+	+
72	A/teal/Taiwan/WB2-37-2TPFE2/98(H7N1)	AAG10680	+	+	+	+	+
73	A/chicken/Italy/1081/99(H7N1)	AAG10679	+	+	+	+	+
74	A/peregrine falcon/U.A.E./188/2384/98(H7N3)	AAG10678	+	+	+	+	+
75	A/ostrich/South Africa/M320/96(H7N7)	AAG10677	+	-	-	+	+
76	A/Kalij Pheasant/Bangkok/Thailand/CU-18/04(H5N1)	AAZ9998	+	+	+	+	+
77	A/chicken/Saraburi/Thailand/CU-17/04(H5N1)	AAZ9997	+	+	+	+	+
78	A/white peafowl/Bangkok/Thailand/CU-16/04(H5N1)	AAZ9996	+	+	+	+	+
79	A/crow/Bangkok/Thailand/CU-15/04(H5N1)	AAZ9995	+	+	+	+	+
80	A/chicken/Nakhon Pathom/Thailand/CU-14/04(H5N1)	AAZ9994	+	+	+	+	+
81	A/chicken/Nakhon Sawan/Thailand/CU-13/04(H5N1)	AAZ9993	+	+	+	+	+
82	A/chicken/Nakhon Sawan/Thailand/CU-12/04(H5N1)	AAZ9992	+	+	+	+	+
83	A/chicken/Chachoengsao/Thailand/CU-11/04(H5N1)	AAZ9991	+	+	+	+	+
84	A/chicken/Chachoengsao/Thailand/CU-10/04(H5N1)	AAZ9990	+	+	+	+	+
85	A/chicken/Suphanburi/Thailand/CU-9/04(H5N1)	AAZ9989	+	+	+	+	+
86	A/chicken/Prachinburi/Thailand/CU-8/04(H5N1)	AAZ9988	+	+	+	+	+
87	A/chicken/Chonburi/Thailand/CU-7/04(H5N1)	AAZ9987	+	+	+	+	+
88	A/chicken/Bangkok/Thailand/CU-6/04(H5N1)	AAZ9986	+	+	+	+	+
89	A/chicken/Bangkok/Thailand/CU-3/04(H5N1)	AAZ9983	+	+	+	+	+
90	A/chicken/Suphanburi/Thailand/CU-1/04(H5N1)	AAZ9982	+	+	+	+	+
91	A/Mynas/Ranong/Thailand/CU-209/04(H5N1)	AAZ9981	+	+	+	+	+
92	A/sparrow/Phang-Nga/Thailand/CU-203/04(H5N1)	AAZ9980	+	+	+	+	+
93	A/pigeon/Samut Prakan/Thailand/CU-202/04(H5N1)	AAZ9979	+	+	+	+	+
94	A/chicken/Prachinburi/Thailand/CU-104/04(H5N1)	AAZ9978	+	+	+	+	+
95	A/duck/Saraburi/Thailand/CU-74/04(H5N1)	AAZ9977	+	+	+	+	+
96	A/chicken/Chonburi/Thailand/CU-73/04(H5N1)	AAZ9976	+	+	+	+	+
97	A/chicken/Nakhon Pathom/Thailand/CU-71/04(H5N1)	AAZ9975	+	+	+	+	+
98	A/chicken/Ratchaburi/Thailand/CU-68/04(H5N1)	AAZ9974	+	+	+	+	+
99	A/chicken/Nakhon Sawan/Thailand/CU-39/04(H5N1)	AAZ9973	+	+	+	+	+
100	A/chicken/Lopburi/Thailand/CU-38/04(H5N1)	AAZ9972	+	+	+	+	+
101	A/duck/Korea/S10/03(H3N2)	AAW78083	+	+	+	+	+
102	A/duck/Korea/S9/03(H3N2)	AAW78082	+	+	+	+	+
103	A/duck/Korea/S8/03(H3N2)	AAW78081	+	+	+	+	+
104	A/duck/Korea/S7/03(H3N2)	AAW78080	+	+	+	+	+
105	A/chicken/Korea/S6/03(H3N2)	AAW78079	+	+	+	+	+
106	A/chicken/Korea/S18/03(H9N2)	AAW78078	+	+	+	+	+
107	A/chicken/Korea/S16/03(H9N2)	AAW78077	+	+	+	+	+
108	A/chicken/Korea/S15/03(H9N2)	AAW78076	+	+	+	+	+
109	A/dove/Korea/S14/03(H9N2)	AAW78075	+	+	+	+	+
110	A/duck/Korea/S13/03(H9N2)	AAW78074	+	+	+	+	+

(To be continued on the next page)
No.	Strains	Accession number	Type	LDA/DA	SVM/SVM		
111	A/chicken/Korea/S12/03(H9N2)	AAW78073	+	+	+		
112	A/chicken/Korea/S5/03(H9N2)	AAW78072	+	+	+		
113	A/chicken/Korea/S4/03(H9N2)	AAW78071	+	+	+		
114	A/silky chicken/Korea/S3/03(H9N2)	AAW78070	+	+	+		
115	A/duck/Korea/S17/03(H6N1)	AAW78069	+	+	+		
116	A/dove/Korea/S11/03(H3N2)	AAW78068	+	+	+		
117	A/duck/Korea/S10/03(H3N2)	AAW78067	+	+	+		
118	A/duck/Korea/S9/03(H3N2)	AAW78066	+	+	+		
119	A/duck/Korea/S8/03(H3N2)	AAW78065	+	+	+		
120	A/duck/Korea/S7/03(H3N2)	AAW78064	+	+	+		
121	A/chicken/Korea/S6/03(H3N2)	AAW78063	+	+	+		
122	A/chicken/Korea/S18/03(H9N2)	AAW78062	+	+	+		
123	A/chicken/Korea/S16/03(H9N2)	AAW78061	+	+	+		
124	A/chicken/Korea/S15/03(H9N2)	AAW78060	+	+	+		
125	A/dove/Korea/S14/03(H9N2)	AAW78059	+	+	+		
126	A/chicken/Chile/176822/02(H7N3)	AAQ77402	+	+	+		
127	A/turkey/Italy/220158/2002(H7N3)	CAF33023	+	+	+		
128	A/turkey/Italy/220158/2002(H7N3)	CAF33022	+	+	+		
129	A/turkey/Italy/220158/2002(H7N3)	CAF33020	+	+	+		
130	A/turkey/Italy/214845/2002(H7N3)	CAF33017	+	+	+		
131	A/turkey/Italy/4603/1999(H7N1)	CAF33013	+	+	+		
132	A/turkey/Italy/4603/1999(H7N1)	CAF33012	+	+	+		
133	A/turkey/Italy/214845/2002(H7N3)	CAF33011	+	+	+		
134	A/turkey/Italy/214845/2002(H7N3)	CAF33010	+	+	+		
135	A/chicken/Mudanjiang/0823/2000(H9N2)	AAS18237	+	+	+		
136	A/chicken/Mudanjiang/0823/2000(H9N2)	AAS18236	+	+	+		
137	A/dove/China/E319-2/03(H5N1)	AAR99633	+	+	+		
138	A/dove/China/E319-2/03(H5N1)	AAR99632	+	+	+		
139	A/dove/China/E319-2/03(H5N1)	AAR99631	+	+	-		
140	A/dove/China/E319-2/03(H5N1)	AAR99630	+	+	+		
141	A/dove/China/E319-2/03(H5N1)	AAR99629	+	+	+		
142	A/dove/China/E319-2/03(H5N1)	AAR99628	+	+	+		
143	A/dove/China/E319-2/03(H5N1)	AAR99627	+	+	+		
144	A/dove/China/E319-2/03(H5N1)	AAR99626	+	+	+		
145	A/dove/China/E319-2/03(H5N1)	AAR99625	+	+	+		
146	A/dove/China/E319-2/03(H5N1)	AAR99624	+	+	+		
147	A/chicken/Mudanjiang/0823/00 (H9N2)	AAR98872	+	+	+		
148	A/Mallard/WI/944/82)	AAB39639	+	+	+		
149	A/chicken/Germany/R28/03(H7N7)	CAF04486	+	+	+		
150	A/chicken/Germany/R28/03(H7N7)	CAF04466	+	+	+		
151	A/chicken/Hong Kong/830.2/01 (H5N1)	AAO52871	+	+	+		
152	A/chicken/Hong Kong/829.2/01 (H5N1)	AAO52870	+	+	+		
153	A/chicken/Hong Kong/822.1/01 (H5N1)	AAO52869	+	+	+		
154	A/chicken/Hong Kong/715.5/01 (H5N1)	AAO52868	+	+	+		
155	A/chicken/Hong Kong/SF219/01 (H5N1)	AAO52867	+	+	+		
156	A/pigeon/Hong Kong/SF215/01 (H5N1)	AAO52866	+	+	+		
157	A/quail/Hong Kong/SF203/01 (H5N1)	AAO52865	+	+	+		
158	A/silky chicken/Hong Kong/SF189/01 (H5N1)	AAO52864	+	+	+		
159	A/chicken/Hong Kong/FY150/01 (H5N1)	AAO52862	+	+	+		
160	A/chicken/Hong Kong/YU563/01 (H5N1)	AAO52861	+	+	+		
161	A/chicken/Hong Kong/YU562/01 (H5N1)	AAO52860	+	+	+		
162	A/chicken/Hong Kong/FY77/01 (H5N1)	AAO52859	+	+	+		
163	A/chicken/California/0139/2001(H6N2)	AAO35354	+	+	+		
164	A/chicken/California/650/2000(H6N2)	AAO35359	+	+	+		
165	A/chicken/California/9420/2001(H6N2)	AAO35358	+	+	+		
No.	Strains	Accession number	Type_1	LDA	LDA_α	SVM	SVM_α
-----	--------------------------------	------------------	--------	-----	-------	-----	-------
166	A/chicken/California/9420/2001(H6N2)	AAO33537	+	+	+	+	+
167	A/chicken/California/9174/2001(H6N2)	AAO33536	+	+	+	+	+
168	A/chicken/California/9174/2001(H6N2)	AAO33535	+	+	+	+	+
169	A/chicken/California/1316/2001(H6N2)	AAO33534	+	+	+	+	+
170	A/chicken/California/1316/2001(H6N2)	AAO33533	+	+	+	+	+
171	A/chicken/California/8892/2001(H6N2)	AAO33532	+	+	+	+	+
172	A/chicken/California/8892/2001(H6N2)	AAO33531	+	+	+	+	+
173	A/chicken/California/6643/2001(H6N2)	AAO33530	+	+	+	+	+
174	A/chicken/California/6643/2001(H6N2)	AAO33529	+	+	+	+	+
175	A/chicken/California/0139/2001(H6N2)	AAO33528	+	+	+	+	+
176	A/chicken/California/0139/2001(H6N2)	AAO33527	+	+	+	+	+
177	A/chicken/California/1002/2000(H6N2)	AAO33526	+	+	+	+	+
178	A/chicken/California/1002/2000(H6N2)	AAO33525	+	+	+	+	+
179	A/chicken/California/650/2000(H6N2)	AAO33524	+	+	+	+	+
180	A/chicken/California/650/2000(H6N2)	AAO33523	+	+	+	+	+
181	A/chicken/California/465/2000(H6N2)	AAO33522	+	+	+	+	+
182	A/chicken/California/465/2000(H6N2)	AAO33521	+	+	+	+	+
183	A/chicken/California/431/2000(H6N2)	AAO33520	+	+	+	+	+
184	A/chicken/California/431/2000(H6N2)	AAO33519	+	+	+	+	+
185	A/chicken/California/9420/2001(H6N2)	AAO33518	+	+	+	+	+
186	A/chicken/California/9420/2001(H6N2)	AAO33517	+	+	+	+	+
187	A/chicken/California/9174/2001(H6N2)	AAO33516	+	+	+	+	+
188	A/chicken/California/9174/2001(H6N2)	AAO33515	+	+	+	+	+
189	A/chicken/California/8892/2001(H6N2)	AAO33514	+	+	+	+	+
190	A/chicken/California/8892/2001(H6N2)	AAO33513	+	+	+	+	+
191	A/chicken/California/6643/2001(H6N2)	AAO33512	+	+	+	+	+
192	A/chicken/California/6643/2001(H6N2)	AAO33511	+	+	+	+	+
193	A/chicken/California/1316/2001(H6N2)	AAO33510	+	+	+	+	+
194	A/chicken/California/1316/2001(H6N2)	AAO33509	+	+	+	+	+
195	A/chicken/California/0139/2001(H6N2)	AAO33508	+	+	+	+	+
196	A/chicken/California/0139/2001(H6N2)	AAO33507	+	+	+	+	+
197	A/chicken/California/1002/2000(H6N2)	AAO33506	+	+	+	+	+
198	A/chicken/California/1002/2000(H6N2)	AAO33505	+	+	+	+	+
199	A/chicken/California/650/2000(H6N2)	AAO33504	+	+	+	+	+
200	A/chicken/California/650/2000(H6N2)	AAO33503	+	+	+	+	+
201	B/Memphis/12/97-MA	AAP22120	−	−	−	−	−
202	B/Memphis/12/97-MA	AAP22119	−	−	−	−	−
203	B/Memphis/12/97-MA	AAP22118	−	−	−	−	−
204	B/Memphis/12/97-MA	AAP22117	−	−	−	−	−
205	B/Memphis/12/97-MA	AAP22116	−	−	−	−	−
206	B/Memphis/12/97-MA	AAP22115	−	−	−	−	−
207	B/clinical isolate SA116 Philippines/2002	AAY21787	−	−	−	−	−
208	B/clinical isolate SA115 Philippines/2002	AAY21786	−	−	−	−	−
209	B/clinical isolate SA114 Philippines/2002	AAY21785	−	−	−	−	−
210	B/clinical isolate SA113 Philippines/2002	AAY21784	−	−	−	−	−
211	B/clinical isolate SA112 Philippines/2002	AAY21783	−	−	−	−	−
212	B/clinical isolate SA110 Philippines/2002	AAY21782	−	−	−	−	−
213	B/clinical isolate SA109 Philippines/2002	AAY21781	−	−	−	−	−
214	B/clinical isolate SA108 Philippines/2002	AAY21780	−	−	−	−	−
215	B/clinical isolate SA107 Philippines/2002	AAY21779	−	−	−	−	−
216	B/clinical isolate SA106 Philippines/2002	AAY21778	−	−	−	−	−
217	B/clinical isolate SA105 Philippines/2002	AAY21777	−	−	−	−	−
218	B/clinical isolate SA104 Philippines/2002	AAY21776	−	−	−	−	−
219	B/clinical isolate SA103 Philippines/2002	AAY21775	−	−	−	−	−
220	B/clinical isolate SA102 Philippines/2002	AAY21774	−	−	−	−	−

(Continued)

(To be continued on the next page)
No.	Strains	Accession number	TypeLDA	LDA	LDA*	SVM	SVM*
221	B/clinical isolate SA101 Philippines/2002	AAY21773					
222	B/clinical isolate SA100 Philippines/2002	AAY21772					
223	B/clinical isolate SA99 Philippines/2002	AAY21771					
224	B/clinical isolate SA98 Philippines/2002	AAY21770					
225	B/clinical isolate SA97 Philippines/2002	AAY21769					
226	B/clinical isolate SA96 Thailand/2002	AAY21768					
227	B/clinical isolate SA95 Philippines/2002	AAY21767					
228	B/clinical isolate SA94 Thailand/2002	AAY21766					
229	B/clinical isolate SA93 Thailand/2002	AAY21765					
230	B/clinical isolate SA92 Thailand/2002	AAY21764					
231	B/clinical isolate SA91 Thailand/2002	AAY21763					
232	B/clinical isolate SA90 Thailand/2002	AAY21762					
233	B/clinical isolate SA89 Thailand/2002	AAY21761					
234	B/clinical isolate SA88 Thailand/2002	AAY21760					
235	B/clinical isolate SA87 Thailand/2002	AAY21759					
236	B/clinical isolate SA86 Thailand/2002	AAY21758					
237	B/clinical isolate SA85 Thailand/2002	AAY21757					
238	B/clinical isolate SA84 Philippines/2002	AAY21756					
239	B/clinical isolate SA83 Philippines/2002	AAY21755					
240	B/clinical isolate SA82 Philippines/2002	AAY21754					
241	B/clinical isolate SA81 Philippines/2002	AAY21753					
242	B/clinical isolate SA80 Philippines/2002	AAY21752					
243	B/clinical isolate SA79 Philippines/2002	AAY21751					
244	B/clinical isolate SA78 Philippines/2002	AAY21750					
245	B/clinical isolate SA77 Philippines/2002	AAY21749					
246	B/clinical isolate SA76 Philippines/2002	AAY21748					
247	B/clinical isolate SA75 Philippines/2002	AAY21747					
248	B/clinical isolate SA74 Philippines/2002	AAY21746					
249	B/clinical isolate SA73 Philippines/2002	AAY21745					
250	B/clinical isolate SA72 Philippines/2002	AAY21744					
251	B/Yamagata/K320/2001	BAD29880					
252	B/Yamagata/K270/2001	BAD29879					
253	B/Yamagata/1311/2003	BAD29878					
254	B/Yamagata/1311/2003	BAD29877					
255	B/Yamagata/1246/2003	BAD29876					
256	B/Yamagata/1246/2003	BAD29875					
257	B/Yamagata/115/2003	BAD29874					
258	B/Yamagata/115/2003	BAD29873					
259	B/Yamagata/222/2002	BAD29872					
260	B/Yamagata/222/2002	BAD29871					
261	B/Yamagata/K542/2001	BAD29870					
262	B/Yamagata/K542/2001	BAD29869					
263	B/Yamagata/K535/2001	BAD29868					
264	B/Yamagata/K535/2001	BAD29867					
265	B/Yamagata/K521/2001	BAD29866					
266	B/Yamagata/K521/2001	BAD29865					
267	B/Yamagata/K520/2001	BAD29864					
268	B/Yamagata/K520/2001	BAD29863					
269	B/Yamagata/K519/2001	BAD29862					
270	B/Yamagata/K519/2001	BAD29861					
271	B/Yamagata/K515/2001	BAD29860					
272	B/Yamagata/K515/2001	BAD29859					
273	B/Yamagata/K508/2001	BAD29858					
274	B/Yamagata/K508/2001	BAD29857					
275	B/Yamagata/K501/2001	BAD29856					

(To be continued on the next page)
No.	Strains	Accession number	Typedef	LDA	LDA_{nc}	SVM	SVM_{nc}
276	B/Yamagata/K501/2001	BAD29855	−	−	−	−	−
277	B/Yamagata/K500/2001	BAD29854	−	−	−	−	−
278	B/Yamagata/K500/2001	BAD29853	−	−	−	−	−
279	B/Yamagata/K490/2001	BAD29852	−	−	−	−	−
280	B/Yamagata/K490/2001	BAD29851	−	−	−	−	−
281	B/Yamagata/K461/2001	BAD29850	−	−	−	−	−
282	B/Yamagata/K461/2001	BAD29849	−	−	−	−	−
283	B/Yamagata/K386/2001	BAD29848	−	−	−	−	−
284	B/Yamagata/K386/2001	BAD29847	−	−	−	−	−
285	B/Yamagata/K320/2001	BAD29846	−	−	−	−	−
286	B/Yamagata/K320/2001	BAD29845	−	−	−	−	−
287	B/Yamagata/K270/2001	BAD29844	−	−	−	−	−
288	B/Yamagata/K270/2001	BAD29843	−	−	−	−	−
289	B/Yamagata/1311/2003	BAD29842	−	−	−	−	−
290	B/Yamagata/1246/2003	BAD29841	−	−	−	−	−
291	B/Yamagata/115/2003	BAD29840	−	−	−	−	−
292	B/Yamagata/222/2002	BAD29839	−	−	−	−	−
293	B/Yamagata/K542/2001	BAD29838	−	−	−	−	−
294	B/Yamagata/K535/2001	BAD29837	−	−	−	−	−
295	B/Yamagata/K521/2001	BAD29836	−	−	−	−	−
296	B/Yamagata/K520/2001	BAD29835	−	−	−	−	−
297	B/Yamagata/K519/2001	BAD29834	−	−	−	−	−
298	B/Yamagata/K515/2001	BAD29833	−	−	−	−	−
299	B/Yamagata/K508/2001	BAD29832	−	−	−	−	−
300	B/Yamagata/K501/2001	BAD29831	−	−	−	−	−
301	CM2 protein [Influenza C virus]	YP. 089658	−	−	−	−	−
302	matrix protein [Influenza C virus]	YP. 089657	−	−	−	−	−
303	nucleoprotein [Influenza C virus]	YP. 089656	−	−	−	−	−
304	hemagglutinin-esterase precursor [Influenza C virus]	YP. 089655	−	−	−	−	−
305	polymerase 3 [Influenza C virus]	YP. 089654	−	−	−	−	−
306	polymerase 1 [Influenza C virus]	YP. 089653	−	−	−	−	−
307	polymerase 2 [Influenza C virus]	YP. 089652	−	−	−	−	−
308	NS1 [Influenza C virus]	YP. 089651	−	−	−	−	−
309	NS2 [Influenza C virus]	YP. 089650	−	−	−	−	−
310	hemagglutinin esterase [Influenza C virus]	BAA06094	−	−	−	−	−
311	hemagglutinin esterase [Influenza C virus]	BAA06093	−	−	−	−	−
312	hemagglutinin esterase [Influenza C virus]	BAA06092	−	−	−	−	−
313	hemagglutinin esterase [Influenza C virus]	BAA06096	−	−	−	−	−
314	hemagglutinin esterase [Influenza C virus]	BAA06095	−	−	−	−	−
315	NS1 [Influenza C virus]	BAB12101	−	−	−	−	−
316	NS2 [Influenza C virus]	BAB12100	−	−	−	−	−
317	NS1 [Influenza C virus]	BAB12099	−	−	−	−	−
318	NS2 [Influenza C virus]	BAB12098	−	−	−	−	−
319	NS1 [Influenza C virus]	BAB12097	−	−	−	−	−
320	NS2 [Influenza C virus]	BAB12096	−	−	−	−	−
321	NS1 [Influenza C virus]	BAB12095	−	−	−	−	−
322	NS2 [Influenza C virus]	BAB12094	−	−	−	−	−
323	NS1 [Influenza C virus]	BAB12093	−	−	−	−	−
324	NS2 [Influenza C virus]	BAB12092	−	−	−	−	−
325	NS1 [Influenza C virus]	BAB12091	−	−	−	−	−
326	NS2 [Influenza C virus]	BAB12090	−	−	−	−	−
327	NS1 [Influenza C virus]	BAB12089	−	−	−	−	−
328	NS2 [Influenza C virus]	BAB12088	−	−	−	−	−
329	NS1 [Influenza C virus]	BAB12087	−	−	−	−	−
330	NS2 [Influenza C virus]	BAB12086	−	−	−	−	−
No.	Strains	Accession number	Type _{int}	LDA	LDA_{ax}	SVM	SVM_{ax}
-----	-------------------------	------------------	---------------------	-----	-----------------	-----	-----------------
331	NS1 [Influenza C virus]	BAB12085					
332	NS2 [Influenza C virus]	BAB12084					
333	NS1 [Influenza C virus]	BAB12083					
334	NS2 [Influenza C virus]	BAB12082					
335	NS1 [Influenza C virus]	BAB12081					
336	NS2 [Influenza C virus]	BAB12080					
337	NS1 [Influenza C virus]	BAB12079					
338	NS2 [Influenza C virus]	BAB12078					
339	NS1 [Influenza C virus]	BAB12077					
340	NS2 [Influenza C virus]	BAB12076					
341	NS1 [Influenza C virus]	BAB12075					
342	NS2 [Influenza C virus]	BAB12074					
343	NS1 [Influenza C virus]	BAB12073					
344	NS2 [Influenza C virus]	BAB12072					
345	NS1 [Influenza C virus]	BAB12071					
346	NS2 [Influenza C virus]	BAB12070					
347	NS1 [Influenza C virus]	BAB12069					
348	NS2 [Influenza C virus]	BAB12068					
349	NS1 [Influenza C virus]	BAB12067					
350	NS2 [Influenza C virus]	BAB12066					
351	C/Saitama/3/2000	BAD37028					
352	C/Saitama/2/2000	BAD37027					
353	C/Saitama/1/2000	BAD37026					
354	C/Miyagi/5/2000	BAD37025					
355	C/Miyagi/4/2000	BAD37023					
356	C/Miyagi/3/2000	BAD37022					
357	C/Miyagi/2/2000	BAD37021					
358	C/Yamagata/8/2000	BAD37020					
359	C/Yamagata/6/2000	BAD37019					
360	C/Yamagata/3/2000	BAD37018					
361	C/Yamagata/2/2000	BAD37017					
362	C/Yamagata/9/2000	BAD37016					
363	C/Yamagata/2/99	BAD37015					
364	C/Greece/79	BAD37014					
365	C/Kansas/1/79	BAD37013					
366	C/California/78	BAD37012					
367	C/NewJersey/76	BAD37011					
368	C/Hiroshima/251/2000	BAD37010					
369	C/Hiroshima/250/2000	BAD37009					
370	C/Hiroshima/248/2000	BAD37008					
371	C/Hiroshima/247/2000	BAD37007					
372	C/Hiroshima/246/2000	BAD37006					
373	C/Hiroshima/249/2000	BAD37005					
374	C/Hiroshima/252/99	BAD37004					
375	C/Hiroshima/290/99	BAD37003					
376	C/Saitama/3/2000	BAD37002					
377	C/Saitama/2/2000	BAD37001					
378	C/Saitama/1/2000	BAD37000					
379	C/Miyagi/5/2000	BAD36999					
380	C/Miyagi/4/2000	BAD36998					
381	C/Miyagi/3/2000	BAD36997					
382	C/Miyagi/2/2000	BAD36996					
383	C/Yamagata/8/2000	BAD36995					
384	C/Yamagata/6/2000	BAD36994					
385	C/Yamagata/3/2000	BAD36993					

(Continued)

(To be continued on the next page)
No.	Strains	Accession number	Type_{init}	LDA	LDA_{cv}	SVM	SVM_{cv}
386	C/Yamagata/2/2000	BAD36992	-	-	-	-	-
387	C/Yamagata/9/2000	BAD36991	-	-	-	-	-
388	C/Yamagata/2/99	BAD36990	-	-	-	-	-
389	C/Greece/79	BAD36989	-	-	-	-	-
390	C/Kansas/1/79	BAD36988	-	-	-	-	-
391	C/California/78	BAD36987	-	-	-	-	-
392	C/NewJersey/76	BAD36986	-	-	-	-	-
393	C/Hiroshima/251/2000	BAD36985	-	-	-	-	-
394	C/Hiroshima/250/2000	BAD36984	-	-	-	-	-
395	C/Hiroshima/248/2000	BAD36983	-	-	-	-	-
396	C/Hiroshima/247/2000	BAD36982	-	-	-	-	-
397	C/Hiroshima/246/2000	BAD36981	-	-	-	-	-
398	C/Hiroshima/249/2000	BAD36980	-	-	-	-	-
399	C/Hiroshima/252/99	BAD36979	-	-	-	-	-
400	C/Hiroshima/290/99	BAD36978	-	-	-	-	-

\(\text{a) } ^{+}\text{ and } ^{-}\text{ represent AIVs and the non-AIVs, respectively. LDA, SVM, LDA_{cv}, and SVM_{cv} represent the method with simulative modeling, leave-one-out cross validation for LDA and SVM, respectively.} \)

\begin{table}
\centering
\begin{tabular}{|l|l|l|l|}
\hline
No. & Description of variables & Resources \\
\hline
1 & molecular weight & \\
2 & times of charged amino acids & \\
3 & frequency of charged amino acids & \\
4 & quality percentage of charged amino acids & \\
5 & times of acidic amino acids & \\
6 & frequency of acidic amino acids & \\
7 & quality percentage of acidic amino acid & \\
8 & times of basic amino acids & \\
9 & frequency of basic amino acids & \\
10 & quality percentage of basic amino acids & \\
11 & times of polar amino acids & \\
12 & frequency of polar amino acids & \\
13 & quality percentage of polar amino acids & \\
14 & times of hydrophobic amino acids & \\
15 & frequency of hydrophobic amino acids & \\
16 & quality percentage of hydrophobic amino acids & \\
17 & times of A & \\
18 & frequency of A & \\
19 & quality percentage of A & \\
20 & times of R & \\
21 & frequency of R & \\
22 & quality percentage of R & \\
23 & times of N & \\
24 & frequency of N & \\
25 & quality percentage of N & \\
26 & times of D & \\
27 & frequency of D & \\
28 & quality percentage of D & \\
29 & times of C & \\
30 & frequency of C & \\
31 & quality percentage of C & \\
32 & times of Q & \\
33 & frequency of Q & \\
34 & quality percentage of Q & \\
35 & times of E & \\
\hline
\end{tabular}
\end{table}

(To be continued on the next page)
No.	Description of variables	Resources
36	frequency of E	
37	quality percentage of E	
38	times of G	
39	frequency of G	
40	quality percentage of G	
41	times of H	
42	frequency of H	
43	quality percentage of H	
44	times of I	
45	frequency of I	
46	quality percentage of I	
47	times of L	
48	frequency of L	
49	quality percentage of L	
50	times of K	
51	frequency of K	
52	quality percentage of K	
53	times of M	
54	frequency of M	
55	quality percentage of M	
56	times of F	
57	frequency of F	
58	quality percentage of F	
59	times of P	
60	frequency of P	
61	quality percentage of P	
62	times of S	
63	frequency of S	
64	quality percentage of S	
65	times of T	
66	frequency of T	
67	quality percentage of T	
68	time of W	
69	frequency of W	
70	quality percentage of W	
71	times of Y	
72	frequency of Y	
73	quality percentage of Y	
74	times of V	
75	frequency of V	
76	quality percentage of V	
77	Retention coefficient in TFA	BROC820101¹¹
78	Free energy of solution in water	CHAM820102
79	Solvation free energy	EISD860101
80	Melting point	FASG760102
81	Number of hydrogen bond donors	FAUJ880109
82	Number of full nonbonding orbitals	FAUJ880110
83	Partition energy	GUYH850101
84	Hydration number	HOPA770101
85	Retention coefficient in HPLC, pH7.4	MEEJ800101
86	Retention coefficient in HPLC, pH2.1	MEEJ800102
87	Partition coefficient in thin-layer chromatography	PLIV810101
88	Retention coefficient at pH 2	GUOD860101
89	R_f for 1-N-(4-nitrobenzofurazono)-amino acids in ethyl acetate/pyridine/water	–²³
90	ΔG of transfer from organic solvent to water	–
No.	Description of variables	Resources
-----	--	--------------------
91	Hydration potential or free energy of transfer from vapor phase to water	
92	R_s, salt chromatography	
93	log D_r, partition coefficient at pH 7.1 for acetylamide derivatives of amino acids in octanol/water	
94	$dG = RT \ln f$, f = fraction buried/accessible amino acids in 22 proteins	
95	Average volume of buried residue	CHOC750101
96	Residue accessible surface area in tripeptide	CHOC760101
97	Graph shape index	FAUJ880101
98	Normalized van der Waals volume	FAUJ880103
99	STERIMOL length of the side chain	FAUJ880104
100	STERIMOL minimum width of the side chain	FAUJ880105
101	STERIMOL maximum width of the side chain	FAUJ880106
102	Average accessible surface area	JANJ780101
103	Distance between C-alpha and centroid of side chain	LEVM760102
104	Side chain angle theta	LEVM760103
105	Side chain torsion angle phi	LEVM760104
106	Radius of gyration of side chain	LEVM760105
107	van der Waals parameter R_0	LEVM760106
108	van der Waals parameter epsilon	LEVM760107
109	Refractivity	MCMT640101
110	Value of theta (i)	RACS820113
111	Substituent van der Waals volume	
112	Alpha-CH chemical shifts	ANDN920101
113	Alpha-NH chemical shifts	BUNA790101
114	A parameter of charge transfer capability	CHAM830107
115	A parameter of charge transfer donor capability	CHAM830108
116	N M R chemical shift of alpha-carbon	FAUJ880107
117	Localized electrical effect	FAUJ880108
118	Positive charge	FAUJ880111
119	Negative charge	FAUJ880112
120	Polarity	GRAR740102
121	Net charge	KLEP840101
122	Amphilicity index	MITS020101
123	Isoelectric point	ZIMJ680104
124	Electron-ion interaction potential values	COSI940101
125	pKNH$_2$(NH$_2$ on C-alpha)	FASG760104
126	pKCOOH(COOH on C-alpha)	FASG760105
127	Depth	c)
128	logP value	b)
129	Inorganic(I) value	b)
130	Organic(O) value	b)
131	Residue electronegativity	b)
132	Polarizability	e)
133	Hydrophobicity	e)
134	Helix probability	e)
135	Sheet probability	e)
136	ECI	f)
137	ISA	f)
138	Specific volume c/mL·g$^{-1}$	g)
139	Hydrophobic parameter 1 (K-D)	h)

(To be continued on the next page)
No.	Description of variables	Resources
140	hydrophobic parameter 2	h)
141	hydrophobic parameter 3	h)
142	hydrophobic parameter 4 \((F-P)\)	h)
143	Volume \(\text{Å}^3\)	f)
144	Sum of atomic van der Waals volumes (scaled on carbon atom)	i)
145	Sum of atomic Sanderson electronegativities (scaled on carbon atom)	/
146	Sum of atomic polarizabilities (scaled on carbon atom)	/
147	Sum of Kier-Hall electrotopological states	/
148	Mean atomic van der Waals volume (scaled on carbon atom)	/
149	Mean atomic Sanderson electronegativity (scaled on carbon atom)	/
150	Mean atomic polarizability (scaled on carbon atom)	/
151	Mean electrotopological state	/
152	Aromatic ratio	/
153	Total structure connectivity index	/
154	Polarity number	/
155	Wiener W index	/
156	All-path Wiener index	/
157	Balaban distance connectivity index	/
158	Maximal electrotopological negative variation	/
159	Maximal electrotopological positive variation	/
160	Molecular electrotopological variation	/
161	E-state topological parameter	/
162	Kier symmetry index	/
163	Kier flexibility index	/
164	Unipolarity	/
165	Balaban centric index	/
166	Lopping centric index	/
167	Radial centric information index	/
168	Modified Randic connectivity index	/
169	Information index on molecular size	/
170	Graph distance complexity index (log)	/
171	3D-Wiener index	/
172	3D-Balaban index	/
173	3D-Harary index	/
174	Average distance/distance degree	/
175	Gravitational index G1	/
176	Radius of gyration (mass weighted)	/
177	Span \(R\)	/
178	Molecular eccentricity	/
179	Spherosity	/
180	Asphericity	/
181	Folding degree index	/
182	3D Petitjean shape index	/
183	Absolute eigenvalue sum on geometry matrix	/
184	Aromaticity index	/
185	HOMA total	/
186	Sum of geometrical distances between N...N	/
187	Sum of geometrical distances between N...O	/

(To be continued on the next page)
No.	Description of variables	Resources
188 | Sum of geometrical distances between O..O | /
189 | Number of total primary C(sp3) | /
190 | Number of total secondary C(sp3) | /
191 | H attached to heteroatom | /
192 | Phenol/enol/ carboxyl OH | /
193 | The number of O== | /
194 | The number of R—SH | /
195 | Unsaturation index | /
196 | Hydrophilic factor | /
197 | Ghose-Crippen molar refractivity | /
198 | Fragment-based polar surface area | /
199 | Moriguchi octanol-water partition coefficient (logP) | /
200 | Ghose-Crippen octanol-water partition coefficient (logP) | /

a) Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res, 2000, 28: 374. Tomii K, Kanehisa M. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng, 1996, 9: 27—36. Nakai K, Kidera A, Kanehisa M. Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng, 1988, 2: 93—100
b) Hellberg S, Sjöström M, Skagerberg B, Word S. Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem, 1987, 30: 1126—1135
c) Pintar A, Carugo O, Pongor S. Atom depth in protein structure and function. Trends in Biochem Sci, 2003, 28(11): 593—597
d) Wu H Q. Chemical property calculation through javascript and applications in QSAR. Molecules, 1999, 4: 16—27
e) Meiler J, Müller M, Zeidler A, Schmaeschke F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. J Mol Model, 2001(7): 360—369
f) Collantes E R, Dunn III W J. Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues. J Med Chem, 1995, 38: 2705—2713
g) Creighton T E. Protein Molecule, New York: WH Freeman and Co, 1982
h) Thorton J, Taylor W R. Structure Prediction. In: Findlay J B C, Geisow M J eds. Protein Aequencing. Oxford: IRL Press, 1989
i) Riesi M (President and Chief Executive Officer), Todeschini Ed, Dragon & Mobydigs evaluation versions of software developed by the Milano Chemometrics and QSAR Research Group, Web site: http://www.talete.mi.it/
No.	Strains	Accession number	Type_{orig}	LDA_{ext}	SVM_{ext}
1	A/Hong Kong/532/97(H5N1)	AAK49246	+	+	+
2	A/Hong Kong/532/97(H5N1)	AAK49245	+	+	+
3	A/Hong Kong/486/97(H5N1)	AAK49244	+	+	+
4	A/Hong Kong/486/97(H5N1)	AAK49243	+	+	+
5	A/Hong Kong/483/97(H5N1)	AAK49242	+	+	+
6	A/Hong Kong/483/97(H5N1)	AAK49241	+	+	+
7	A/Hong Kong/482/97(H5N1)	AAK49240	+	+	+
8	A/Hong Kong/482/97(H5N1)	AAK49239	+	+	+
9	A/Hong Kong/481/97(H5N1)	AAK49238	+	+	+
10	A/Hong Kong/481/97(H5N1)	AAK49237	+	+	+
11	A/Hong Kong/1074/99(H9N2)	AAK49236	+	+	+
12	A/Hong Kong/1074/99(H9N2)	AAK49235	+	+	+
13	A/Hong Kong/1073/99(H9N2)	AAK49234	+	+	+
14	A/Hong Kong/1073/99(H9N2)	AAK49233	+	+	+
15	A/chicken/Puebla/8623-607/94(H5N2)	AAR91547	+	–	–
16	A/chicken/Puebla/8623-607/94(H5N2)	AAR91539	+	+	+
17	A/chicken/Puebla/8623-607/94(H5N2)	AAR91531	+	+	+
18	A/chicken/Puebla/8623-607/94(H5N2)	AAR91523	+	+	+
19	A/chicken/Puebla/8623-607/94(H5N2)	AAR91515	+	–	–
20	A/chicken/Puebla/8623-607/94(H5N2)	AAR91507	+	–	–
21	A/chicken/Mexico/3181-7/94 (H5N2)	AAR91506	+	–	–
22	A/chicken/British Columbia/CN6/04(H7N3)	AAS68158	+	+	+
23	A/chicken/Guatemala/45511-1/00 (H5N2)	AAR88833	+	+	+
24	A/chicken/China(H9N2)	AAT70836	+	+	+
25	A/chicken/Mudanjiang/0823/00 (H9N2)	AAF51706	+	+	+
26	A/parrot/Northern Ireland/VF-73-67/73(H7N1)	AAG10676	+	+	+
27	A/parakeet/Netherlands/267497/94(H7N1)	AAG10675	+	+	+
28	A/macaw/England/626/80(H7N7)	AAG10674	+	+	+
29	A/conure/England/766/94(H7N1)	AAG10673	+	+	+
30	A/gull/Italy/692-2/93(H7N2)	AAG10672	+	+	+
31	A/turkey/England/647/77(H7N7)	AAG10671	+	+	+
32	A/turkey/Northern Ireland/VF-1545 CS/98(H7N7)	AAG10670	+	+	+
33	A/turkey/England/192-328/79(H7N3)	AAG10669	+	+	+
34	A/parrot/South Africa/1069/91(H7N1)	AAG10668	+	+	+
35	A/parrot/England/1174/94(H7N1)	AAG10667	+	+	+
36	A/psittacine/Italy/1/91(H7N2)	AAG10666	+	+	+
37	A/conure/England/1234/94(H7N1)	AAG10665	+	+	+
38	A/non-psittacine/England/Q-1985/89(H7N7)	AAG10664	+	+	+
39	A/chicken/Ireland/1733/89(H7N7)	AAG10663	+	+	+
40	A/turkey/England/63/97(H7N3)	AAG10662	+	+	+
41	A/FPV/Egypt/45(H7N1)	AAG10661	+	–	–
42	A/chicken/England/71/82(H7N1)	AAG10660	+	+	+
43	A/turkey/Israel/Ramon/79(H7N2)	AAG10659	+	+	+
44	A/parrot/Zimbabwe/222/96(H7N1)	AAG10658	+	+	+
45	A/chicken/Pakistan/16/99/95(H7N3)	AAG10657	+	+	+
46	A/chicken/Queensland/667/95(H7N3)	AAG10655	+	–	–
47	A/chicken/Pakistan/CR2/95(H7N3)	AAG10654	+	+	+
48	A/fairy bluebird/Singapore/F92/94(H7N1)	AAG10653	+	+	+
49	A/common iora /Singapore/F89/95(H7N1)	AAG10652	+	+	+
50	A/chicken/Victoria/192/92(H7N3)	AAG10651	+	–	–
51	A/crow/Bangkok/Thailand/CU-35/04(H5N1)	AAZ29971	+	+	+
52	A/parrot/Samut Prakan/Thailand/CU-31/04(H5N1)	AAZ29970	+	+	+
53	A/white peafowl/Bangkok/Thailand/CU-29/04(H5N1)	AAZ29969	+	+	+
54	A/chicken/Saraburi/Thailand/CU-27/04(H5N1)	AAZ29968	+	+	+
55	A/rollers/Bangkok/Thailand/CU-26/04(H5N1)	AAZ29967	+	+	+

(To be continued on the next page)
No.	Strains	Accession number	Type_{ext}	LDA_{ext}	SVM_{ext}
56	A/crow/Bangkok/Thailand/CU-25/04(H5N1)	AAZ29966	+	+	+
57	A/chicken/Ayutthaya/Thailand/CU-24/04(H5N1)	AAZ29965	+	+	+
58	A/chicken/Bangkok/Thailand/CU-20/04(H5N1)	AAZ29964	+	+	+
59	A/ostrich/Samut Prakan/Thailand/CU-19/04(H5N1)	AAZ29963	+	+	+
60	A/kalij pheasant/Bangkok/Thailand/CU-18/04(H5N1)	AAZ29962	+	+	+
61	A/chicken/Saraburi/Thailand/CU-17/04(H5N1)	AAZ29961	+	+	+
62	A/white peafowl/Bangkok/Thailand/CU-16/04(H5N1)	AAZ29960	+	+	+
63	A/crow/Bangkok/Thailand/CU-15/04(H5N1)	AAZ29959	+	+	+
64	A/chicken/Nakhon Pathom/Thailand/CU-14/04(H5N1)	AAZ29958	+	+	+
65	A/chicken/Nakhon Sawan/Thailand/CU-13/04(H5N1)	AAZ29957	+	+	+
66	A/chicken/Nakhon Sawan/Thailand/CU-12/04(H5N1)	AAZ29956	+	+	+
67	A/chicken/Chachoengsao/Thailand/CU-11/04(H5N1)	AAZ29955	+	+	+
68	A/chicken/Chachoengsao/Thailand/CU-10/04(H5N1)	AAZ29954	+	+	+
69	A/chicken/Suphanburi/Thailand/CU-9/04(H5N1)	AAZ29953	+	+	+
70	A/chicken/Prachinburi/Thailand/CU-8/04(H5N1)	AAZ29952	+	+	+
71	A/chicken/Chonburi/Thailand/CU-7/04(H5N1)	AAZ29951	+	+	+
72	A/chicken/Bangkok/Thailand/CU-6/04(H5N1)	AAZ29950	+	+	+
73	A/chicken/Bangkok/Thailand/CU-3/04(H5N1)	AAZ29947	+	+	+
74	A/chicken/Suphanburi/Thailand/CU-1/04(H5N1)	AAZ29946	+	+	+
75	A/ostrich/HeNan/14/2002(H5N1)	AAZ29456	+	+	+
76	A/duck/Korea/S13/03(H9N2)	AAW78058	+	+	+
77	A/chicken/Korea/S12/03(H9N2)	AAW78057	+	+	+
78	A/chicken/Korea/S5/03(H9N2)	AAW78056	+	+	+
79	A/chicken/Korea/S4/03(H9N2)	AAW78055	+	+	+
80	A/silky chicken/Korea/S3/03(H9N2)	AAW78054	+	+	+
81	A/duck/Korea/S17/03(H6N1)	AAW78053	+	+	+
82	A/dove/Korea/S11/03(H5N2)	AAW78052	+	+	+
83	A/duck/Korea/S10/03(H3N2)	AAW78051	+	+	+
84	A/duck/Korea/S9/03(H3N2)	AAW78050	+	+	+
85	A/duck/Korea/S8/03(H3N2)	AAW78049	+	+	+
86	A/duck/Korea/S7/03(H3N2)	AAW78048	+	+	+
87	A/chicken/Korea/S6/03(H3N2)	AAW78047	+	+	+
88	A/chicken/Korea/S18/03(H9N2)	AAW78046	+	+	+
89	A/chicken/Korea/S16/03(H9N2)	AAW78045	+	+	+
90	A/chicken/Korea/S15/03(H9N2)	AAW78044	+	+	+
91	A/dove/Korea/S14/03(H9N2)	AAW78043	+	+	+
92	A/duck/Korea/S13/03(H9N2)	AAW78042	+	+	+
93	A/chicken/Korea/S12/03(H9N2)	AAW78041	+	+	+
94	A/chicken/Korea/S5/03(H9N2)	AAW78040	+	+	+
95	A/chicken/Korea/S4/03(H9N2)	AAW78039	+	+	+
96	A/silky chicken/Korea/S3/03(H9N2)	AAW78038	+	+	+
97	A/chicken/Viet Nam/LA-024/2004(H5N1)	AAW59560	+	–	–
98	A/chicken/Viet Nam/LA-024/2004(H5N1)	AAW59559	+	+	+
99	A/chicken/Viet Nam/CT-018/2004(H5N1)	AAW59558	+	+	+
100	A/chicken/Viet Nam/DT-015/2004(H5N1)	AAW59557	+	–	–
101	B/clinical isolate SA69 Philippines/2002	AAY21743	–	–	–
102	B/clinical isolate SA68 Philippines/2002	AAY21742	–	–	–
103	B/clinical isolate SA67 Philippines/2002	AAY21741	–	–	–
104	B/clinical isolate SA66 Philippines/2002	AAY21740	–	–	–
105	B/clinical isolate SA65 Philippines/2002	AAY21739	–	–	–
106	B/clinical isolate SA64 Philippines/2002	AAY21738	–	–	–
107	B/clinical isolate SA63 Philippines/2002	AAY21737	–	–	–
108	B/clinical isolate SA62 Philippines/2002	AAY21736	–	–	–
109	B/clinical isolate SA61 Philippines/2002	AAY21735	–	–	–
110	B/clinical isolate SA60 Philippines/2002	AAY21734	–	–	–

(Continued)
No.	Strains	Accession number	Type (tag)	LDA$_{out}$	SVM$_{out}$
111	B/clinical isolate SA59 Philippines/2002	AAY21733	−	−	−
112	B/clinical isolate SA58 Philippines/2002	AAY21732	−	−	−
113	B/clinical isolate SA57 Philippines/2002	AAY21731	−	−	−
114	B/clinical isolate SA53 Philippines/2002	AAY21730	−	−	−
115	B/clinical isolate SA52 Philippines/2002	AAY21729	−	−	−
116	B/clinical isolate SA51 Philippines/2002	AAY21728	−	−	−
117	B/clinical isolate SA50 Philippines/2002	AAY21727	−	−	−
118	B/clinical isolate SA47 Philippines/2002	AAY21726	−	−	−
119	B/clinical isolate SA46 Philippines/2002	AAY21725	−	−	−
120	B/clinical isolate SA45 Philippines/2002	AAY21724	−	−	−
121	B/clinical isolate SA44 Thailand/2002	AAY21723	−	−	−
122	B/clinical isolate SA43 Thailand/2002	AAY21722	−	−	−
123	B/clinical isolate SA42 Philippines/2002	AAY21721	−	−	−
124	B/clinical isolate SA41 Philippines/2002	AAY21720	−	−	−
125	B/clinical isolate SA40 Thailand/2002	AAY21719	−	−	−
126	B/Yamagata/K50/2001	BAD29830	−	−	−
127	B/Yamagata/K490/2001	BAD29829	−	−	−
128	B/Yamagata/K461/2001	BAD29828	−	−	−
129	B/Yamagata/K386/2001	BAD29827	−	−	−
130	B/Yamagata/K320/2001	BAD29826	−	−	−
131	B/Yamagata/K270/2001	BAD29825	−	−	−
132	B/Yamagata/1311/2003	BAD29824	−	−	−
133	B/Yamagata/1311/2003	BAD29823	−	−	−
134	B/Yamagata/1246/2003	BAD29822	−	−	+
135	B/Yamagata/1246/2003	BAD29821	−	−	−
136	B/Yamagata/115/2003	BAD29820	−	−	+
137	B/Yamagata/115/2003	BAD29819	−	−	−
138	B/Yamagata/222/2002	BAD29818	−	−	−
139	B/Yamagata/222/2002	BAD29817	−	−	−
140	B/Yamagata/K542/2001	BAD29816	−	−	−
141	B/Yamagata/K542/2001	BAD29815	−	−	−
142	B/Yamagata/K535/2001	BAD29814	−	−	+
143	B/Yamagata/K535/2001	BAD29813	−	−	−
144	B/Yamagata/K521/2001	BAD29812	−	−	+
145	B/Yamagata/K521/2001	BAD29811	−	−	−
146	B/Yamagata/K520/2001	BAD29810	−	−	−
147	B/Yamagata/K520/2001	BAD29809	−	−	−
148	B/Yamagata/K519/2001	BAD29808	−	−	+
149	B/Yamagata/K519/2001	BAD29807	−	−	−
150	B/Yamagata/K515/2001	BAD29806	−	−	−
151	NS1 [Influenza C virus]	BAB12065	−	−	−
152	NS2 [Influenza C virus]	BAB12064	−	−	−
153	NS1 [Influenza C virus]	BAB12063	−	−	−
154	NS2 [Influenza C virus]	BAB12062	−	−	−
155	NS1 [Influenza C virus]	BAB12061	−	−	−
156	NS2 [Influenza C virus]	BAB12060	−	−	−
157	NS1 [Influenza C virus]	BAB12059	−	−	−
158	NS2 [Influenza C virus]	BAB12058	−	−	−
159	NS1 [Influenza C virus]	BAB12057	−	−	−
160	NS2 [Influenza C virus]	BAB12056	−	−	−
161	NS1 [Influenza C virus]	BAB12055	−	−	−
162	NS2 [Influenza C virus]	BAB12054	−	−	−
163	NS1 [Influenza C virus]	BAB12053	−	−	−
164	NS2 [Influenza C virus]	BAB12052	−	−	−
165	NS1 [Influenza C virus]	BAB12051	−	−	−

(Continued)

(To be continued on the next page)
No.	Strains	Accession number	Type_{orig}	LDA_{ext}	SVM_{ext}
166	NS2 [Influenza C virus]	BAB12050	–	–	–
167	NS1 [Influenza C virus]	BAB12049	–	–	–
168	NS2 [Influenza C virus]	BAB12048	–	–	–
169	NP [Influenza C virus]	BAA98019	–	–	–
170	NP [Influenza C virus]	BAA98018	–	–	–
171	PB1 [Influenza C virus]	BAA98017	–	–	–
172	PB1 [Influenza C virus]	BAA98016	–	–	–
173	CM2 [Influenza C virus]	BAA98015	–	–	–
174	M1 [Influenza C virus]	BAA98014	–	–	–
175	CM2 [Influenza C virus]	BAA98013	–	–	–
176	C/Saitama/3/2000	BAD36977	–	–	–
177	C/Saitama/2/2000	BAD36976	–	–	–
178	C/Saitama/1/2000	BAD36975	–	–	–
179	C/Miyagi/5/2000	BAD36974	–	–	–
180	C/Miyagi/4/2000	BAD36973	–	–	–
181	C/Miyagi/3/2000	BAD36972	–	–	–
182	C/Miyagi/2/2000	BAD36971	–	–	–
183	C/Yamagata/8/2000	BAD36970	–	–	–
184	C/Yamagata/6/2000	BAD36969	–	–	–
185	C/Yamagata/3/2000	BAD36968	–	–	–
186	C/Yamagata/2/2000	BAD36967	–	–	–
187	C/Yamagata/9/2000	BAD36966	–	–	–
188	C/Yamagata/2/99	BAD36965	–	–	–
189	C/Miyagi/4/2000	BAD36964	–	–	–
190	C/Miyagi/3/2000	BAD36963	–	–	–
191	C/Miyagi/2/2000	BAD36962	–	–	–
192	C/Yamagata/8/2000	BAD36961	–	–	–
193	C/Yamagata/6/2000	BAD36960	–	–	–
194	C/Yamagata/3/2000	BAD36959	–	–	–
195	C/Yamagata/2/2000	BAD36958	–	–	–
196	C/Yamagata/9/2000	BAD36957	–	–	–
197	C/Yamagata/2/99	BAD36956	–	–	–
198	C/Yamagata/13/98	BAD36955	–	–	–
199	C/Yamagata/13/98	BAD36954	–	–	–
200	C/Yamagata/6/98	BAD36953	–	–	–

a) “+” and “−” represent avian influenza viruses and the non-avian influenza viruses, respectively. LDA_{ext} and SVM_{ext} represent the method with external validation for LDA and SVM, respectively.