A Review of Research on Cytological Approach in Salivary Gland Masses

Abstract
To evaluate the diagnostic accuracy of fine-needle aspirations (FNAs) in salivary gland pathologies. A comprehensive literature search was conducted in the PubMed database using related Medical Subject Heading terms “sensitivity and specificity of FNA in salivary gland” and “diagnostic accuracy of FNA in salivary gland” for the period 1980–2016, and we found that 414 research studies had been published. PRISMA technology was utilized to prepare flow chart for displaying data search strategy. A total of 385 articles were excluded based on the established inclusion and exclusion criteria of the study. Twenty-nine research studies were included. Those twenty-nine studies on the sensitivity and specificity of FNAs in salivary gland pathology consisted of 5274 cases of benign, malignant and inflammatory salivary gland lesions. The present study identified a range of 87%–100% sensitivity and 90%–100% specificity for the usefulness of FNAs in distinguishing benign and malignant salivary gland lesions. Although a considerable number of studies have been identified that reported on sensitivity and specificity of FNAs in salivary gland pathologies, each study had a different approach in reporting the sensitivity and specificity. We emphasize that standardized reporting protocols of sensitivity and specificity report supported with checklists would help future researchers to interpret this cytological method and make more accurate clinical utility and usefulness reports on salivary gland pathologies.

Keywords: Cytology, diagnosis, fine needle aspiration, pathology, salivary gland

Introduction
Cytology focuses at the cellular level on the structure, function and biochemical characteristics whereas cytomorphometric analysis is a qualitative and quantitative measurement of nuclear area, cytoplasmic area and nuclear to cytoplasmic ratio of normal cells. The principles of cytology are applied in diagnostic pathology diagnosis to observe the significance in the difference between normal and diseased cells. Fine needle aspirations (FNAs) are the most common cyto-methodology in salivary gland pathology practice. FNA is a cytological method that is used to describe the morphological findings of individual cells, groups of cells, and microparticles in tissue from samples that were acquired using a needle. The conventional biopsy procedure has a possible risk of intraoperative tumor cell implantation and damage to the facial nerve in parotid gland pathologies. FNAs are minimally invasive, simple, cost-effective, and minimal risk procedure than conventional biopsy procedure. Schröder et al. mentioned that FNAs have a minimal incidence of complication, have a reduced risk of tumor cell implantation (<1%). In addition, complications from surgical procedures such as hemorrhage, facial nerve damage and inflammatory reaction at the surgical site are rare. In routine FNAs practice, the needle used in aspiration is 25-gauge (i.e., 0.5 mm) and 10-mL syringe. Perkins in 2002 reported that larger syringes do not produce better specimens. In Sweden, a syringe holder is used, whereas in France a puncture is made without syringe aspiration. The material aspirated can be either prepared as direct smears or as cell blocks. The cell blocks are useful and are suitable for histochemical and immunocyto/histochemical staining methods. FNA methodology thus helps in recognizing inflammatory, reactive, cystic, benign, or malignant conditions of salivary gland tissue.

The focus of the pathologist, while evaluating the aspirated specimen, is on: (1) Whether the clinical condition had originated from salivary gland tissue? (2) The type of pathology (inflammatory, cystic, etc)
benign or malignant), (3) When the lesion is identified as malignant, the focus is made on detection of low grade versus high grade, (4) How specifically can the cytological diagnosis be derived? and (5) Cytological specimens that indicate atypical or malignant features mandate the need for surgical biopsy.

This review of the cytological approach to salivary gland masses will focus on the normal salivary gland cytology, report on FNA research that focused on sensitivity and specificity of salivary gland pathologies, cytological diagnosis in salivary gland pathology, specific cytological features of major salivary gland pathologies and problems, as well as pitfalls, in cytdiagnosis of salivary gland aspirates.

Descriptive Analysis on Research Report of Sensitivity and Specificity of Fine Needle Aspiration in Salivary Gland Pathology

The search for a reliable adaptation of FNA in salivary gland pathology practice has developed rapidly, encouraged by the fact that collecting a specimen is relatively easy, minimally invasive, economical, and rarely associated with complications. We conducted a comprehensive literature search in PubMed database using related Medical Subject Heading terms “sensitivity and specificity of FNA in salivary gland,” “diagnostic accuracy of FNA in salivary gland” from the early 1980s until the present, four hundred and fourteen research studies have been published in the PubMed database. The research papers were included based on: (1) full-text availability, (2) research papers that were available in English language, and (3) papers having Information on sensitivity and specificity of FNAs in salivary gland pathologies. However, research papers were excluded based on: (1) duplication of titles, (2) studies that focused on genetic and/or salivary analysis, and (3) incorrect weblink for full-text accessibility. Three hundred and eighty-five articles were excluded, 29 research studies were included [Figure 1].

The 29 studies on the sensitivity and specificity of FNAs in salivary gland pathology were all retrospective and consisted of 5274 cases of benign, malignant and inflammatory salivary gland lesions. The largest number of studies were reported from the Department of Pathology (8–20) (13 studies, 44.82%), followed by Departments of Otorhinolaryngology (21–24) (four studies, 13.79%), Head and Neck (25–28) (four studies, 13.79%), Surgery (29–31) (three studies, 10.34%), Surgical Oncology (32) (one study, 3.44%), Radiology (33) (one study, 3.44%), Stomatology (34) (one study, 3.44%), Laboratory Medicine (35) (one study, 3.44%), and one study (36) that did not specify their department details (one study, 3.44%) [Figure 2]. The rate of publication on sensitivity and specificity of FNAs has increased during the past 10-year period [Table 1].

A predominant number of studies focused on determining the diagnostic value of sensitivity and specificity of FNAs in salivary gland pathology. The overall accuracy rate of reporting on distinguishing benign from malignant salivary gland lesions was 87%–100% with a specificity of 90%–100%. A Taiwanese study evaluated the efficacy of Ultrasonography-Guided Fine Needle Aspiration Biopsy on malignant salivary gland lesions and revealed a sensitivity of 66.7% and specificity of 98.2%. So far, only three studies have been exclusively focused on FNAs sensitivity and specificity on parotid gland pathologies. Piccioni et al. assessed diagnostic accuracy of FNAs on benign and malignant parotid swellings that included Pleomorphic adenoma, Warthin’s tumor, mucoepidermoid carcinoma, adenocarcinoma, lymphoma, adenoid cystic carcinoma (ADCC), ductal carcinoma, oncocytoma, monomorphic adenoma and lipoma; and reported 81% sensitivity and 99% specificity on FNAs.[32] Awon and Ahmad evaluated the usefulness and accuracy of FNA cytology in the diagnosis of parotid gland tumors that included oncocytoma, mucoepidermoid carcinoma, pleomorphic adenoma and reported 74% sensitivity and 97% specificity.[39] Zurrida et al. assessed the accuracy of FNAs in planning therapy for parotid disease such as pleomorphic adenoma, Whartin’s tumor, oncocytoma, monomorphic adenoma, myoepithelioma, basal cell adenoma (BCA), acinic cell carcinoma, mucoepidermoid carcinoma, ADCC, malignant myoepithelialoma, metastatic squamous cell carcinoma and non-Hodgkin’s lymphoma by comparing the preoperative FNAs diagnosis with the postsurgical biopsy based specimen diagnosis; and reported 100% sensitivity and 90.40% specificity.[32] The results show higher specificity than sensitivity. Another study from the United States determined the accuracy of FNAs for establishing the diagnosis in lymphoproliferative, reactive and neoplastic salivary gland lesions as 100% sensitivity and 87% specificity.[20]

Two of the studies studied the preoperative efficacy of FNAs in salivary gland pathologies. Singh et al. established sensitivity and specificity of FNAs by correlating FNAC diagnosis with histopathology in benign, malignant, and nonneoplastic salivary gland lesions and revealed 76.90% sensitivity and 97.10% specificity. Their results concluded that FNAs can be used preoperatively to avoid unnecessary surgery and discomfort associated with open biopsy.[13] Tahoun and Ezzat evaluated the diagnostic accuracy of preoperative FNAs in benign and malignant salivary gland lesions and revealed 91.7% sensitivity and 92.5% specificity. Their results suggested that FNAC is complementary in usefulness for malignant salivary gland tumors. In contrast, FNAs does not influence the management of benign salivary gland lesions and routine FNAs for every patient may not be cost-effective.[14]
Number	Study hypothesis	Study sample size	Type of pathologies observed in the study	Specific information on pathologies observed	Report on sensitivity and specificity on FNAs	Reporting country	Reporting specialty	Author/year (reference)
1	To examine the sensitivity, specificity, and accuracy of FNAC of salivary gland lesions	101	Benign, malignant, and nonneoplastic lesions	Pleomorphic adenoma, Warthin’s tumor, adenoid cystic carcinoma, acinic cell carcinoma, squamous cell carcinoma, sialadenitis, cystic lesion, abscess, sialadenosis, and granulomatous inflammation	Sensitivity: 80%			
Specificity: 98.80%								
Malaysia								
Pathology								
Ameli et al., 2015[8]								
2	To determine utility of FNAC in the diagnosis of salivary gland lesions	186	Benign, malignant, and nonneoplastic lesions	Chronic sialadenitis, Kuttner’s tumor, lymphoepithelial cyst, pleomorphic adenoma, basal cell adenoma, Warthin’s tumor, mucoepidermoid carcinoma, acinic cell carcinoma, adenoid cystic carcinoma, carcinoma ex-pleomorphic adenoma, epithelial-myoepithelial carcinoma, and squamous cell carcinoma	Sensitivity: 86.60%			
Specificity: 94.60%								
India								
Pathology								
Arul et al., 2015[9]								
3	To assess the diagnostic accuracy of FNAC for salivary gland lesions	187	Benign, malignant, and nonneoplastic lesions	Chronic sialadenitis, Benign cystic lesion, granulomatous inflammation, pleomorphic adenoma, Warthin’s tumor, mucoepidermoid carcinoma, acinic cell carcinoma, adenoid cystic carcinoma, lympho proliferative disorder, and papillary adenocarcinoma	Sensitivity: 77.70%			
Specificity: 86.30%								
Pakistan								
Histopathology								
Naz et al., 2015[10]								
4	To identify the spectrum of cytological diagnoses and evaluate the diagnostic effectiveness of FNAC in patients <20 years old	909; salivary gland masses were 75	Benign lesions	Pleomorphic adenoma, epidermal cysts, brachial cleft cyst	Sensitivity: 63%			
Specificity: 99%								
South Korea Pathology								
Kim et al., 2013[11]								
5	To determine diagnostic value in patients with neck masses in Iranian patients	31	Benign, malignant and nonneoplastic lesions	Inflammatory process, mucoepidermoid carcinoma, adenoid cystic carcinoma, acinic cell carcinoma, squamous cell carcinoma, adenocarcinoma, lymphoma	Sensitivity: 72%			
Specificity: 87%								
Iran								
Pathology								
Saatian et al., 2011[12]								
6	To correlate FNAC diagnoses with histopathology and to establish the sensitivity and specificity of FNAC in diagnosis of salivary gland swellings in our institution	96	Benign, malignant and nonneoplastic lesions	Pleomorphic adenoma, basal cell adenoma, Warthin’s tumor, lipoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, acinic cell carcinoma, pleomorphic adenoma ex-carcinoma, metastatic tumor, inflammatory lesion	Sensitivity: 76.90%			
Specificity: 97.10%								
India								
Pathology								
Singh et al., 2011[13]								
Number	Study hypothesis	Study sample size	Type of pathologies observed in the study	Specific information on pathologies observed	Report on sensitivity and specificity on FNAs	Reporting country	Reporting specialty	Author/year (reference)
--------	------------------	-------------------	---	---	---	-------------------	---------------------	------------------------
7	Evaluation of diagnostic accuracy of preoperative FNAC in salivary gland lesions	82	Benign and malignant lesions	Pleomorphic adenoma, Warthin’s tumor, and basal cell adenoma, acinic cell carcinoma and mucoepidermoid carcinoma	91.70% 92.50%	United States	Pathology	Tahoun and Ezzat 2008\[14\]
8	To evaluate the sensitivity and specificity of FNA of SGTs	115	Benign and malignant lesions	Pleomorphic adenoma, Warthin’s tumor, and basal cell adenoma, acinic cell carcinoma and mucoepidermoid carcinoma	88.20% 100%	Japan	Pathology	Mihashi et al., 2006\[15\]
9	To evaluate utility of FNAC in salivary gland lesions	70	Benign, malignant and nonneoplastic lesions	Sialadenitis, cystic lesions, tuberculosis, pleomorphic adenoma, Warthin’s tumor, mucoepidermoid carcinoma, adenoid cystic carcinoma and squamous cell carcinoma	94.54% 80.95%	India	Pathology	Khandekar et al., 2006\[16\]
10	The reliability of FNA biopsy as a the initial diagnostic procedure for palpable masses	56	Benign, malignant and nonneoplastic lesions	Pleomorphic adenoma, sialadenitis, hyperplasia, Warthin’s tumor, cyst, duct ectasia, lipoma, traumatic neuroma, dermoid cyst, carcinoma	93% 100%	United States	Pathology	Florentine et al., 2006\[17\]
11	To evaluate FNAC in terms of accuracy along with its complications and limitations	55	Benign, malignant, and nonneoplastic lesions	Not available	90.91% 93.18%	India	Pathology	Tilak et al., 2002\[18\]
12	To evaluate FNAC effectiveness in the interpretation of salivary gland disorders	52	Benign, malignant, and nonneoplastic lesions	Chronic sialadenitis, lymphoid hyperplasia, follicular lymphoma, acinic cell carcinoma, carcinoma ex-pleomorphic adenoma, monomorphic adenoma, Warthin’s tumor, lipoma, neurilemmoma, lymphoma, multiple myeloma and non-Hodgkin lymphoma	66% 100%	Israel	Pathology and Lurie et al., 2002\[19\] otolaryngology	
13	To determine the accuracy of FNA for establishing the diagnosis in salivary gland lesions	43	Reactive and neoplastic lymphoproliferative lesions	Lymphoid hyperplasia, multiple myeloma and non-Hodgkin lymphoma	100% 87%	United States	Pathology	Chhieng et al., 2000\[20\]
14	To assess the efficacy of FNAC in preoperative diagnosis of parotid tumors	93	Benign and malignant lesions	Pleomorphic adenoma, Warthin’s tumor, mucoepidermoid carcinoma, adenoid cystic carcinoma, acinar cell carcinoma, nondifferentiated carcinoma, lymphoma, melanoma, and oncocytic carcinoma	57.10% 95.10%	Spain	Otorhinolaryngology	Zerpa Zerpa et al., 2014\[21\]

Contd...
Table 1: Continued...

Number	Study hypothesis	Study sample size	Type of pathologies observed in the study	Specific information on pathologies observed	Report on sensitivity and specificity on FNAs	Reporting country	Reporting specialty	Author/year (reference)
15	To identify the efficacy of FNA cytology by comparing cytodiagnoses with histopathology	115	Benign and malignant lesions	Not available	80.80%	Turkey	Otorhinol aryngology	Inançli et al., 2013[22]
16	To assess the diagnostic accuracy of FNAC, on parotid gland swellings	176	Benign and malignant lesions of parotid gland	Pleomorphic adenoma, Warthin’s tumor, mucoepidermoid carcinoma, adenocarcinoma, lymphoma, adenoid cystic carcinoma, ductal carcinoma, oncocytoma, monomorphic adenoma and lipoma	81%	Italy	Otorhinol aryngology	Piccioni et al., 2011[23]
17	To determine the FNAs accuracy in malignant salivary gland lesions	51	Malignant lesions	Sialadenitis, benign lymphoepithelial lesion, pleomorphic adenoma, myoepithelioma, acinic cell carcinoma, carcinosarcoma, squamous cell carcinoma, metastatic Merkel cell carcinoma, lymphoma, rhabdomyosarcoma	79%	Germany	Otorhinol aryngology/ plastic surgery	Gerstner et al., 2003[24]
18	To determine the diagnostic value of FNAC in our institution in order to define its place in the diagnostic strategy	249	Benign and malignant lesions	Lymphoepithelial cyst, pleomorphic adenoma, Warthin’s tumor, acinar cell carcinoma, follicularB-cell lymphoma, low-grade mucoepidermoid carcinoma, adenocarcinoma	80%	France	Cervico-facial clinic	Fakhry et al., 2012[25]
19	To study the clinicopathological characteristics of SGTs in a Chinese population	1176	Benign and malignant lesions	Pleomorphic adenoma, whartin’s tumor, basal cell adenoma, mucoepidermoid carcinoma, adenoid cystic carcinoma, salivary duct carcinoma, acinic cell carcinoma, lymphoepithelial carcinoma, polymorphous low-grade adenocarcinoma, adenocarcinoma, carcinoma ex-pleomorphic adenoma, epithelial myoepithelial carcinoma, squamous cell carcinoma, metastatic carcinoma and lymphoma	87.20%	China	Head and neck surgery	Wang et al., 2012[26]
20	To evaluate the diagnostic accuracy, sensitivity and specificity of FNAB of salivary gland tumours	79	Benign and malignant lesions	Pleomorphic adenoma, whartin’s tumor, lipoma and acinar cell carcinoma	68.20%	Brazil	Head and neck surgery	Stramandinoli et al., 2019[27]

Contd..
Number	Study hypothesis	Study sample size	Type of pathologies observed in the study	Specific information on pathologies observed	Report on sensitivity and specificity on FNAs	Reporting country	Reporting specialty	Author/year (reference)
21	To review the FNAC and FS in salivary gland surgery and analyze the accuracy of both modalities	114	Benign, malignant and nonneoplastic lesions	Pleomorphic adenoma, Warthin’s tumor, basal cell adenoma, schwannoma, sialadenitis, inflamed salivary duct cyst, oncocytosis, lymphoid hyperplasia, castlemann’s disease, Kimun’s disease, acinic cell carcinoma, oncocytic carcinoma, adenoid cystic carcinoma, basal cell carcinoma, lymphoepitheliotumor-like carcinoma, mucoepidermoid carcinoma, recurrent nasopharyngeal carcinoma	Sensitivity: 89.70% Specificity: 100%	Singapore	Head and neck	Tan and Khoo 2006[28]
22	To determine the ability of FNA of the parotid gland to differentiate benign and malignant disease	201	Benign, malignant and nonneoplastic lesions	Pleomorphic adenoma, Warthin’s tumor, benign squamous cyst, lymphoma, nonspecific inflammation, lymphoepithelial cyst, basal cell adenoma, lipoma, salivary gland retention cyst, acinic cell carcinoma, adenocarcinoma, squamous cell carcinoma, mucoepidermoid carcinoma, adenoid cell carcinoma, oncocytic carcinoma, myoepithelial carcinoma, and pleomorphic ex-carcinoma	FNA showed 85% sensitivity among benign lesions FNA showed 76% specificity among benign lesions	United Kingdom	Surgery	Mallon et al., 2013[29]
23	To evaluate the usefulness and accuracy of fine needle aspiration cytology in the diagnosis of parotid gland tumors	50	Benign and malignant lesions of parotid gland	Oncocytoma, mucoepidermoid carcinoma, pleomorphic adenoma	Sensitivity: 74% Specificity: 97%	Pakistan	Surgery	Awan and Ahmad 2004[30]
24	To determine if in the light of development of these developments, disease of the parotid glands can be managed satisfactorily in a general surgical unit	50	Neoplastic and nonneoplastic conditions of parotid glands	Pleomorphic adenoma, Warthin’s tumor	The sensitivity of fine needle cytology for malignant parotid tumors was 66%. Whereas for benign tumors (pleomorphic adenoma or Warthin’s) 83%, specificity was 95%.	United Kingdom	Surgery	Deans et al., 1995[31]
Table 1: Continued...

Number	Study hypothesis	Study sample size	Type of pathologies observed in the study	Specific information on pathologies observed	Report on sensitivity and specificity on FNAs	Reporting country	Reporting specialty	Author/year (reference)
25	The aim was to compare preoperative and postoperative diagnoses in this series and to assess the accuracy of FNA and its role in planning therapy for parotid diseases	246	Benign and malignant lesions of parotid gland	Pleomorphic adenoma, Warthin’s tumor, oncocytoma, monomorphic adenoma, myoepithelioma, basal cell adenoma, acinic cell carcinoma, mucoepidermoid carcinoma, adnoid cystic carcinoma, malignant myoepithelialoma, metastatic squamous cell carcinoma, and non-Hodgkin’s lymphoma	Sensitivity: 88% Specificity: 90.40	Italy	Surgical oncology	Zurrida et al., 1993[32]
26	To evaluate the efficacy of UGFNAB in the diagnosis of salivary gland lesions	158	Malignant lesions	Metastatic carcinoma, pleomorphic adenoma, lymphoid hyperplasia, Warthin’s tumor, lymphoma, myxoid liposarcoma, carcinoma	Sensitivity: 66.7% Specificity: 98.2%	Taiwan	Radiology	Huang et al., 2012[33]
27	To evaluate the sensitivity, specificity and accuracy of FNAB in different staining techniques for nodular lesions from oral cavity and head and neck region	39	Benign and malignant lesions	Not available	FNAs stained with Papanicolaou staining showed sensitivity of 71.4%	Brazil	Stomatology	Santos et al., 2015[34]
28	The accuracy of FNA cytology of salivary gland lesions by correlation between histology and cytology	131	Benign and malignant lesions	Pleomorphic adenoma, Warthin’s tumor, basal cell adenoma, myoepithelioma, papillary mucinous cystadenoma, oncocytoma, sialolipoma, sialoadenitis, benign lymphoepithelial lesion, nodular oncocytic hyperplasia, sialolithiasis, lymphoepithelial cyst, Kimura’s	Sensitivity: 74% Specificity: 99%	Taiwan	Laboratory medicine	Jan et al., 2008[35]
Approach to Analyze Diagnostic Accuracy of Fine Needle Aspirations via Sensitivity and Specificity Report in Salivary Gland Cytodiagnosis

The sensitivity and specificity report of benign, malignant, and nonneoplastic salivary gland lesions on FNA cytology is shown in Table 1. The benign salivary gland conditions observed in present study are pleomorphic adenoma, Warthin’s tumor, lipoma, lipoma, oncocytoma, monomorphic adenoma, myoepithelioma, and schwannoma. The malignant salivary gland conditions observed in the present study are ADCC, acinic cell carcinoma, squamous cell carcinoma, mucoepidermoid carcinoma, carcinoma ex-pleomorphic adenoma, epithelial-myoepithelial carcinoma, adenocarcinoma, lymphoma, non-Hodgkin’s lymphoma, multiple myeloma, undifferentiated carcinomas, oncocytic carcinoma, ductal carcinoma, metastatic Merkel cell carcinoma, carcinomasarcoma, rhabdomyosarcoma, lymphoepithelial carcinoma, polymorphous low-grade adenocarcinoma (PLGA), nasopharyngeal carcinoma, myxoid liposarcoma, and basoloid squamous cell carcinoma.

The significance of utilizing FNA cytology practice in salivary gland pathology diagnosis is controversial due to lack of reliable recognition of true positive, true negative, false positive, or false negative cases. To achieve the reliable adaption of FNAs in salivary gland diagnosis, the preferred statistical tools to assess the positive and negative predictive values of FNA methodology were analyzed using sensitivity and specificity tests. If the FNAs were able to measure fewer false positives but more false negative cases, then the FNAs is highly specific but not very sensitive. Similarly, if the FNAs are able to measure fewer false negatives but more false positives, then the FNAs is highly sensitive but not very specific. When FNAs report was able to produce 100% sensitivity and 100% specificity results on the identification of salivary gland pathology then the FNAs should be considered as gold standard test and that it would never make an error. However, in routine practice that categorized a test as a gold standard may not be true gold standard because the gold standard is regarded as the best test under reasonable conditions.

The present study observed sensitivity of FNAs in recognition of salivary gland pathology was at a range of 57%–100% and specificity 80.95%–100%. Based on the current observation, the results can be generalized that FNAs are low sensitivity and highly specific, which means that there are many false negatives and few false positive results. Interestingly, the studies that focused on only benign salivary gland or inflammatory salivary gland conditions generated highly sensitive and highly specific results. The later observation is convenient to state that FNAs are useful diagnostic test in distinguishing benign and malignant salivary gland conditions. However, observations of the present study cannot be concluded as

Specificities	Sensitivities
benign	malignant
squamous cell carcinoma	myoepithelial carcinoma
salivary duct carcinoma	adenoid cystic carcinoma
adenocarcinoma	carcinomasarcoma
mucoepidermoid carcinoma	rhabdomyosarcoma
carcinoma ex-pleomorphic adenoma	lymphoepithelial carcinoma
epithelial-myoepithelial carcinoma	polymorphous low-grade adenocarcinoma (PLGA)
adenocarcinoma	nasopharyngeal carcinoma
lymphoma	myxoid liposarcoma
non-Hodgkin’s lymphoma	basoloid squamous cell carcinoma

Table 1: Specific information on pathologies observed in the study

Type of pathologies observed in the study	Study sample size	Author/year (reference)
squamous cell carcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, malignant lymphoma, lipoma, oncocytoma, basoloid squamous cell carcinoma	73	Not available
benign and malignant lesions	29	Not available

FNAs showed sensitivity of 87.9% for benign tumors, whereas malignant tumors showed specificity of 42.5%.

FNAC=Fine needle aspiration cytology, FNAs=Fine needle aspirations, SGTs=Salivary gland tumors, FNAB=Fine needle aspiration biopsies, FS=Frozen section.
FNAs in salivary gland practice displays low sensitivity and highly specific reports due to the following reasons (1) the variation in reporting approach, (2) reports produced were clustered with benign, malignant and/or nonneoplastic salivary gland lesions, and (3) many studies did not show any evidence of standardized sample size calculation for reporting their results. The present study is the descriptive analysis of available reports on sensitivity and specificity of FNAs and the interpretations presented is not statistically acceptable. Systematic reviews are the best research tool to assess the diagnostic accuracy of FNAs in salivary gland diagnosis by investigating sensitivity and specificity reports of FNAs. The systematic reviews will come out with research questions on diagnostic accuracy with inclusion and exclusion criteria for selection of research reports. Following to the data collection from the reports available in literature, data analysis will be employed using statistical analysis. The results of the systematic reviews will be presented in the discussion exploring areas arising from research questions.

Normal Cytological Characteristics of Salivary Gland Aspirate

The three major salivary gland tissues are the parotid, submandibular, and sublingual. The normal cytological characteristics of salivary gland tissue are studied from the unintentional aspiration of normal tissue while aspirating abnormal tissue. FNAs of the normal salivary gland aspirate shows glandular (i.e., acinic cells), ductal elements, adipose tissue and scattered inflammatory cells. The acinic cells are either serous or mucous. The acinic cells are seen as cohesive ball like/grape-like arrangements, whereas ductal elements are identified as cohesive orderly sheets or more rarely as tubules and elongated myoepithelial cells attached to the epithelial elements.\(^{[7,38]}\) Acinic cells appear as a background field of bare nuclei. The acinic cells are composed of pyramidal cells that have uniform eccentric nuclei, and cytoplasm of serous cells is finely granular, foamy or vacuolated compared to the cytoplasm of ductal elements. Whereas ductal cells appear crowded, are smaller than acinar cells, and have less cytoplasm. When the nuclei of the ductal cells lose their cytoplasm, it is easy to misdiagnose these cells as lymphocytes.\(^{[38,39]}\)
Table 2: Microscopic characteristics of salivary gland pathology

Salivary gland pathology	Microscopic details of FNA	Author/year (reference)
Sialadenosis	Plenty of acinar epithelial cells, which appear normal or slightly increased in size. Microarchitectural pattern of regular acini joined by small ducts and fibrovascular stroma is that of normal salivary gland tissue is seen without inflammatory cells	Ascol et al., 1993, Henry-Stanley et al., 1995, Gupta and Sodhani 1998(40-42)
Cysts	Aspirate fluid of nonneoplastic cysts such as retention cysts, salivary duct cyst and lymphoepithelial cysts is poor in cells with presence of variable number of histiocytes, inflammatory cells and few degenerating epithelial cells and also few crystalloids. Aspirate of mucocele yields mucus with variable amount of mucinophages and inflammatory cells	Mavec et al., 1964, Elliott and Oertel., 1990, Zurrida, 1993, Layfield and Gomez, 2002(34,43-45)
Sialadenitis	Purulent aspirate (acute, infective sialadenitis) consisting of scanty ductal epithelial cells and acinar cells associated with fragments of fibrous stroma. Variable amounts of lymphocytes may be present in case of chronic sialadenitis. Sheets of ductal epithelium may show regenerative atypia and or squamous metaplasia	Qizilbash et al., 1985, Abad et al., 1992, Wax et al., 1994, Johnson et al. 1995(46-49)
Necrotizing sialometaplasia	Cellular smear of squamous metaplastic cells showing regenerative atypia and degenerative changes such as nuclear pyknotosis with necrotic material in the background	
Benign lymphoepithelial lesion	Smears from benign lymphoepithelial lesion are characterized by small clusters of ductal epithelial cells associated with lymphocytes and with a background of lymphoid cells	
Pleomorphic adenoma	Thick, sticky, fibrillary chondromyxoid ground substance like gel with variable cellularity consisting of and showing, mainly spindle shaped myoepithelial cells in single, in poorly cohesive clusters and sheets embedded in stromal matrix. Rounded, ovoid, plasmacytoid or spindle cells with abundant well defined cytoplasm, mesenchymal cells in a variable proportion. Sometimes metaplastic cells such as oncocytic, sebaceous and squamous cells may be seen. Whereas, monomorphic adenomas show lack of fibromyxoid material	Klijjanienko and Vielh, 1996, Viguier et al., 1997(13,54)
Basal cell and canalicular adenoma	Numerous small basoloid cells having scanty cytoplasm and rounded nuclei are found both singly and in multilayered clusters with occasional peripheral palisading with scanty inconspicuous stroma	Hood et al., 1983, Stanley et al., 1996, Klijjanienko et al., 1992(55-57)
Warthin’s tumor	Aspirate is mucoid, murky fluid. There is the presence of bland oncocytic cells in cohesive, monolayered sheets and lymphoid cells in amorphous and granular debris background. Mast cells commonly associated with oncocyes	Klijjanienko and Vielh, 1997(58)
Oncocytoma and oncocytic carcinoma	Contains cohesive oncocyes in sheets and three dimensional clusters with no fluid, debris and lymphoid cells	
Adenoid cystic carcinoma	Shows cellular smear with small uniform, basoloid cells with round hyperchromatic nuclei and coarse chromatin. Hyaline spherical globules with adherent tumor cells are characteristic	O’Dwyer et al., 1986(59)

Contd...
Table 2: Continued...

Salivary gland pathology	Microscopic details of FNA	Author/year (reference)
Mucoepidermoid carcinoma	Shows low cellularity with a dirty background of mucus and debris. Various cell types	Cohen et al., 1990,
	predominantly intermediate cells, some mucous cells and infrequently squamous cells are	Kumar et al., 1991,
	seen	Klijanienko and Vielh,
		1997[62-64]
Acinic cell carcinoma	Shows pure population of acinar cells in a clean background without ductal cells or	Frierson et al., 1987,
	stroma. Cells arranged in clusters shows abundant, fragile, finely vacuolated cytoplasm	Klijanienko and Vielh,
	with rounded medium sized nuclei. Mild to moderate anisokaryosis and bland chromatin is	1998, Gibbons et al.,
	present	1999[65-66]
Polymorphous low grade adenocarcinoma	Cells with mildly enlarged pale ovoid homogeneous nuclei are arranged in	Carrillo et al., 1990,
	clustered tissue fragments with a trabecular pattern but also single cells. Hyaline	Kocjan et al., 1993,
	stromal globules often present. Small basolaid epithelial cells or slightly larger	Klijanienko and Vielh,
	cells resembling ductal epithelium or metaplastic squamous cells are also seen	1998, Ng et al., 1999,
		Miliauskas and Orell
		2003[68-69]
Epithelial myoepithelial carcinoma	Shows single cells or cell aggregates having strands of fibrous stroma and	Smith, 1991[73]
	trabecular pattern. A biphasic population of clustered small epithelial cells and less	Dee et al. 1993, Elsheikh
	cohesive myoepithelial (clear) cells with pale fragile cytoplasm and large vesicular	1994, Fýrat et al. 1997,
	nuclei showing mild to moderate nuclear enlargement and variation	Khurana et al., 1997,
		Klijanienko and Vielh, 1998
		Ng et al., 1999,
		Miliauskas and Orell, 2003
Carcinoma ex pleomorphic adenoma	Shows a dual population of malignant epithelial cells and benign cells and stromal	Batsakis et al., 1992[81]
Salivary duct carcinoma	components of pleomorphic adenoma	
Adenocarcinoma of no special type	Aspirate of salivary duct carcinoma shows clearly malignant epithelial cells, single	
	and in clusters. These cells show abundant cytoplasm, squamous,	
	sometimes oncocytic like with no stromal component in the background of necrotic debris	
	Shows poorly cohesive atypical epithelial cells with nuclear features of malignancy	
	with the presence of intracellular or extracellular mucin. Some glandular differentiation	
	(microglandular pattern) may be present. These features do not suggest any specific entity	

FNA=Fine needle aspiration

Cytological Characteristics of Aspirates from Salivary Gland Pathology

In responding to the call for detection of aspiration cytology diagnosis, oral and maxillofacial pathologists are expected to be knowledgeable of the cytological details of both normal as well as pathological conditions. Several excellent case studies and reviews have been previously published concerning the fine needle cytology diagnosis of various salivary gland pathologies. The microscopic characteristics of fine needle aspirate of salivary gland pathology are listed in Table 2.

Miller’s Approach in Salivary Gland Cytodiagnosis

The complexity of salivary gland lesions predisposes the cytodiagnosis to be challenging. Miller devised a five group approach to salivary gland cytodiagnosis: (1) myxoid-hyaline, (2) basolaid, (3) oncocytoid, (4) lymphoid, and (5) squamoid lesions [Figure 3]. The lesions that are included in myxoid hyaline lesions are benign mixed tumors, ADCC, carcinoma ex benign mixed tumor, PLGA; the lesions that show myxoid hyaline but are not of salivary gland origin are schwannoma, myxoma, myxoid lipoma, and myxoid neurofibroma. The basolaid lesions included BCA, basal cell carcinoma, solid variant of ADCC, PLGA, and small cell undifferentiated carcinoma. Intraglandular oncocytic lesions included Whartin’s tumor, oncocytoma, acinic cell carcinoma; and extraglandular oncocytic lesions include paraganglioma, carcinoid, granular-cell tumor, rhabdoid tumors, renal cell carcinoma, melanoma, medullary carcinoma, Hurthle cell carcinoma, and hepatocellular carcinoma. Lymphoid lesions included chronic sialadenitis, benign lymphepithelial lesions, intra-/peri-salivary gland lymph nodes. The misdiagnosis of lymphoid lesions included neoplastic lesions that are associated with lymphocytes such as Whartin’s tumor, lymphoepithelial carcinoma, and metastasis to intra-/peri-parotid lymph node. Squamoid lesions include retention cyst/mucoceles, squamous cell carcinoma and benign congenital cysts extrinsic to salivary glands such as branchial cleft, thyroglossal duct, thymic, and dermoid/epidermal inclusion cysts.[82]

Conclusion

The present study identified that the usefulness of FNAs in distinguishing benign and malignant salivary gland lesions were at a range of 87%–100% sensitivity and 90%–100% specificity. Although a considerable number
of studies have been identified that reported on sensitivity and specificity of FNAs in salivary gland pathologies, each study had a different approach in reporting the sensitivity and specificity. Hence, the present study results may not be conclusive to make a statement on overall sensitivity and specificity reports on FNA in salivary gland pathologies. However, we emphasize that standardized reporting protocols of sensitivity and specificity report with the means of checklists, would help future researchers interpret this cytological method and make more accurate clinical utility and usefulness reports on salivary gland pathologies.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Ogden GR, Cowpe JG, Wight AJ. Oral exfoliative cytology: Review of methods of assessment. J Oral Pathol Med 1997;26:201-5.
2. Hughes JH, Volk EE, Wilbur DC; Cytopathology Resource Committee, College of American Pathologists. Pitfalls in salivary gland fine-needle aspiration cytology: Lessons from the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology. Arch Pathol Lab Med 2005;129:26-31.
3. Allen EA, Ali SZ, Mathew S. Lymphoid lesions of the parotid. Diagn Cytopathol 1999;21:170-3.
4. Hughes JH, Volk EE, Wilbur DC; Cytopathology Resource Committee, College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology. Arch Pathol Lab Med 2005;129:26-31.
5. Costas A, Castro P, Martin-Granizo R, Monje F, Marrón C, Amigo A. Fine needle aspiration biopsy (FNAB) for lesions of the salivary glands. Br J Oral Maxillofac Surg 2000;38:539-42.
6. Allen EA, Ali SZ, Mathew S. Lymphoid lesions of the parotid. Diagn Cytopathol 1999;21:170-3.
7. Schröder U, Eckel HE, Rasche V, Arnold G, Stennert E. Value of fine needle puncture cytology in neoplasms of the parotid gland. HNO 2000;48:421-9.
8. Mukunyadzi P. Review of fine-needle aspiration cytology of salivary gland neoplasms, with emphasis on differential diagnosis. Am J Clin Pathol 2002;118 Suppl: S100-15.
9. Stanley MW. Selected problems in fine needle aspiration of head and neck masses. Mod Pathol 2002;15:342-50.
10. Ameli F, Baharoom A, Md Isa N, Noor Akmal S. Diagnostic challenges in fine needle aspiration cytology of salivary gland lesions. Malays J Pathol 2015;37:11-8.
11. Arul P, Akshatha C, Masilamani S, Jonathan S. Diagnosis of salivary gland lesions by fine needle aspiration cytology and its histopathological correlation in a tertiary care center of Southern India. J Clin Diagn Res 2015;9:EC07-10.
12. Naz S, Hashmi AA, Khurshid A, Faridi N, Edhi MM, Kamal M, et al. Diagnostic role of fine needle aspiration cytology (FNAC) in the evaluation of salivary gland swelling: An institutional experience. BMC Res Notes 2015;8:101.
13. Kim S, Jang EJ, Jeong JY, Park JY. Clinical usefulness of fine needle aspiration cytology in patients less than 20 years old: A 10-year experience at a single institution. Int J Clin Exp Pathol 2013;6:2962-7.
14. Saatiän M, Badie BM, Shahriari S, Fattahi F, Rasoolinejad M. FNA diagnostic value in patients with neck masses in two teaching hospitals in Iran. Acta Med Iran 2011;49:85-8.
15. Singh A, Haritwal A, Murali B. Correlation between cytology and histopathology of the salivary gland. Australas Med J 2011;4:66-71.
16. Tahoun N, Ezzat N. Diagnostic accuracy and pitfalls of preoperative fine needle aspiration cytology in salivary gland lesions. J Egypt Natl Canc Inst 2008;20:358-68.
17. Mihashi H, Kawahara A, Kage M, Kojio M, Nakashima T, Umeno H, et al. Comparison of preoperative fine-needle aspiration cytology diagnosis and histopathological diagnosis of salivary gland tumors. Kurume Med J 2006;53:23-7.
18. Khandekar MM, Kavatkar AN, Patankar SA, Bagwan IB, Puranik SC, Deshmukh SD. FNAC of salivary gland lesions with histopathological correlation. Indian J Otolaryngol Head Neck Surg 2006;58:246-8.
19. Florentine BD, Stuymets B, Rabadi M, Barstis J, Black A; Cancer Committee of the Henry Mayo Newhall Memorial Hospital. The reliability of fine-needle aspiration biopsy as the initial diagnostic procedure for palpable masses: A 4-year experience of 730 patients from a community hospital-based outpatient aspiration biopsy clinic. Cancer 2006;107:406-16.
20. Lurie M, Misselevitch I, Fradis M. Diagnostic value of fine-needle aspiration from parotid gland lesions. Isr Med Assoc J 2002;4:681-3.
21. Chhieng DC, Cangiarella JF, Cohen JM. Fine-needle aspiration cytology of lymphoproliferative lesions involving the major salivary glands. Am J Clin Pathol 2000;113:563-71.
22. Zerpa Zerpa V, Cuesta Gonzales MT, Agostini Porras G, Marcano Acuña M, Estellés Ferriol E, Dalmau Galofre J. Diagnostic accuracy of fine needle aspiration cytology in parotid tumours. Acta Otorrinolaringologica 2014;65:157-61.
23. Inançlı HM, Kamnaz MA, Ural A, Dilek GB. Fine needle aspiration biopsy: In the diagnosis of salivary gland neoplasms compared with histopathology. Indian J Otolaryngol Head Neck Surg 2013;65 Suppl 1:121-5.
24. Piccioni LO, Fabiano B, Gemma M, Sarandria D, Bussi M. Fine-needle aspiration cytology in the diagnosis of parotid lesions. Acta Otorhinolaryngol Ital 2011;31:1-4.
25. Gerstner AO, Müller AK, Machlitt J, Tärnok A, Tannapfel A, Weber A, et al. Slide-based cytometry for predicting malignancy in solid salivary gland tumors by fine needle aspirate biopsies. Cytometry B Clin Cytom 2003;55:20-5.
26. Fakhry N, Antonini F, Michel J, Penicaud M, Mancini J, Lagier A, et al. Fine-needle aspiration cytology in the management of parotid masses: Evaluation of 249 patients. Eur Ann Otorhinolaryngol Head Neck Dis 2012;129:131-5.
27. Wang YL, Zhu YX, Chen TZ, Wang Y, Sun GH, Zhang L, et al. Clinicopathologic study of 1176 salivary gland tumors in a Chinese population: Experience of one cancer center 1997-2007. Acta Otorhinolaryngol 2012;132:879-86.
28. Stramandinoli RT, Sassi LM, Pedruzzi PA, Ramos GH, Oliveira BV, Ogata DC, et al. Accuracy, sensitivity and specificity of fine needle aspiration biopsy in salivary gland tumours: A retrospective study. Med Oral Patol Oral Cir Bucal 2010;15:e32-7.
29. Tan LG, Khoo ML. Accuracy of fine needle aspiration cytology and frozen section histopathology for lesions of the major salivary glands. Ann Acad Med Singapore 2006;35:242-8.
30. Mallon DH, Kostalas M, MacPherson FJ, Farnar A, Drysdale A, Chisholm E, et al. The diagnostic value of fine needle aspiration in parotid lumps. Ann R Coll Surg Engl 2013;95:258-62.
31. Awan MS, Ahmad Z. Diagnostic value of fine needle aspiration cytology in parotid tumors. J Pak Med Assoc 2004;54:617-9.
31. Deans GT, Briggs K, Spence RA. An audit of surgery of the parotid gland. Ann R Coll Surg Engl 1995;77:188-92.
32. Zurrada S, Alasio L, Tradati N, Bartoli C, Chiesa F, Pilotti S. Fine-needle aspiration of parotid masses. Cancer 1993;72:2306-11.
33. Huang YT, Jung SM, Ko SF, Chen YL, Chan SC, Wu EH, et al. Diagnostic efficacy of ultrasonography-guided fine needle aspiration biopsy in evaluating salivary gland malignancy. Chang Gung Med J 2012;35:62-9.
34. Santos AP, Sugaya NY, Pinto Ddos S Jr., Lemos CA Jr. Evaluation of fine needle aspiration biopsy in oral cavity and head and neck region with different stains techniques. Braz Oral Res 2015;29. pii: S1806-8324(2015)00010-275.
35. Jan IS, Chung PF, Weng MH, Huang MS, Lee YT, Cheng TY, et al. Analysis of fine-needle aspiration cytology of the salivary gland. J Formos Med Assoc 2008;107:364-70.
36. Goncalves AJ, Menezes MB, Kavabata NK, Bertelli AA, Souza RA, Joelsons D. Fine needle aspiration in salivary gland tumors: Specificity and sensitivity. Rev Assoc Med Bras 2007;53:267-71.
37. El Hag IA, Chiedozi LC, al Reyees FA, Kollur SM. Fine needle aspiration cytology of head and neck masses. Seven years’ experience in a secondary care hospital. Acta Cytol 2003;47:387-92.
38. Stanley MW, Bardales RH, Farmer CE, Frierson HF Jr., Suhrland M, Powers CN, et al. Primary and metastatic high-grade carcinomas of the salivary glands: A cytologic-histologic correlation study of twenty cases. Diagn Cytopathol 1995;13:37-43.
39. Esroz C, Uguz AH, Tuncer U, Soylu L, Kiorglu M. Fine needle aspiration cytology of the salivary glands: A twelve years’ experience. Aegan Pathol J 2004;1:51-6.
40. Ascoli V, Albedi FM, De Blasiis R, Nardi F. Sialadenosis of the parotid gland: Report of four cases diagnosed by fine-needle aspiration cytology. Diagn Cytopathol 1993;9:151-5.
41. Henry-Stanley MJ, Beneke J, Bardales RH, Stanley MW. Fine-needle aspiration of normal tissue from enlarged salivary glands: Sialosis or missed target? Diagn Cytopathol 1995;13:300-3.
42. Gupta S, Hodhani P. Sialadenosis of parotid gland: A cytomorphologic and morphometric study of four cases. Anal Quant Cytol Histol 1998;20:225-8.
43. Mavec P, Eneroth CM, Franzen S, Moberger G, Zajicek J. Aspiration biopsy of salivary gland tumours. I. Correlation of cytologic reports from 652 aspiration biopsies with clinical and histologic findings. Acta Otolaryngol 1964;58:471-84.
44. Elliott JN, Oertel YC. Lymphoepithelial cysts of the salivary glands. Histologic and cytologic features. Am J Clin Pathol 1990;93:39-43.
45. Layfield LJ, Gopez EV. Cystic lesions of the salivary glands: Cytologic features in fine-needle aspiration biopsies. Diagn Cytopathol 2002;27:197-204.
46. Qzibilbash AH, Sianos J, Young JE, Archibald SD. Fine needle aspiration biopsy cytology of major salivary glands. Acta Cytol 1985;29:503-12.
47. Abad MM, G-Macias C, Alonso MJ, Muñoz E, Paz JI, Galindo P, et al. Statistical evaluation of the predictive power of fine needle aspiration (FNA) of salivary glands. Results and cytohistological correlation. Pathol Res Pract 1992;188:340-3.
48. Wax TD, Layfield LJ, Zaleski S, Bhargara V, Cohen M, Lyerly HK, et al. Cytomelagovirus sialadenitis in patients with the acquired immunodeficiency syndrome: A potential diagnostic pitfall with fine-needle aspiration cytology. Diagn Cytopathol 1994;10:169-72.
49. Johnson FB, Oertel YC, Ammann K. Sialadenitis with crystallloid formation: A report of six cases diagnosed by fine-needle aspiration. Diagn Cytopathol 1995;12:76-80.
50. Jayaram G, Pathmanathan R, Khaniow V. Cystic lesion of the parotid gland with squamous metaplasia mistaken for squamous cell carcinoma. A case report. Acta Cytol 1998;42:1468-72.
51. Finfer MD, Gallo L, Perchick A, Schinella RA, Burstein DE. Fine needle aspiration biopsy of cystic benign lymphoepithelial lesion of the parotid gland in patients at risk for the acquired immune deficiency syndrome. Acta Cytol 1990;34:821-6.
52. Casiano RR, Cooper JD, Gould E, Ruiz P, Umatchandani R. Value of needle biopsy in directing management of parotid lesions in HIV-positive patients. Head Neck 1991;13:411-4.
53. Klijnjenko J, Vielh P. Fine-needle sampling of salivary gland lesions. I. Cytology and histology correlation of 412 cases of pleomorphic adenoma. Diagn Cytopathol 1996;14:195-200.
54. Viguier JM, Vicandi B, Jiménez-Heffernan JA, López-Ferrer P, Limeres MA. Fine needle aspiration cytology of pleomorphic adenoma. An analysis of 212 cases. Acta Cytol 1997;41:786-94.
55. Hood IC, Qzibilbash AH, Salama SS, Alexopoulos I. Basal-cell adenoma of parotid. Difficulty of differentiation from adenoid cystic carcinoma on aspiration biopsy. Acta Cytol 1993;27:515-20.
56. Stanley MW, Horwitz CA, Rollins SD, Powers CN, Bardales RH, Korourian S, et al. Basal cell (monomorphic) and minimally pleomorphic adenomas of the salivary glands. Distinction from the solid (anaplastic) type of adenoid cystic carcinoma in fine-needle aspiration. Am J Clin Pathol 1996;106:35-41.
57. Klijnjenko J, El-Naggar AK, Vielh P. Comparative cytologic and histologic study of fifteen salivary basal-cell tumors: Differential diagnostic considerations. Diagn Cytopathol 1999;21:30-4.
58. Klijnjenko J, Vielh P. Fine-needle sampling of salivary gland lesions. II. Cytology and histology correlation of 71 cases of Warthin’s tumor (adenolymphoma). Diagn Cytopathol 1997;16:221-5.
59. O’Dwyer P, Farrar WB, James AG, Finkelmeier W, McCabe DP. Needle aspiration biopsy of major salivary gland tumors. Its value. Cancer 1986;57:554-7.
60. Klijnjenko J, Vielh P. Fine needle sampling of salivary gland lesions. III. Cytology and histology correlation of 75 cases of adenoid cystic carcinoma. Review and experience at the Institut Curie with emphasis on cytologic pitfalls. Diagn Cytopathol 1997;17:36-41.
61. Nagel H, Hotze HJ, Laskawi R, Chilla R, Droese M. Cytologic diagnosis of adenoid cystic carcinoma of salivary glands. Diagn Cytopathol 1999;20:358-66.
62. Cohen MB, Fisher PE, Holly EA, Ljung BM, Löwhagen T, Bottles K. Fine needle aspiration biopsy diagnosis of mucoepidermoid carcinoma. Statistical analysis. Acta Cytol 1990;34:43-9.
63. Kumar N, Kapila K, Verma K. Fine needle aspiration cytology of mucoepidermoid carcinoma. A diagnostic problem. Acta Cytol 1991;35:357-9.
64. Klijnjenko J, Vielh P. Fine-needle sampling of salivary gland lesions. IV. Review of 50 cases of mucoepidermoid carcinoma with histologic correlation. Diagn Cytopathol 1997;17:92-8.
65. Klijnjenko J, Vielh P. Fine-needle sampling of salivary gland lesions. V: Cytology of 22 cases of acinic cell carcinoma with histologic correlation. Diagn Cytopathol 1997;17:347-52.
66. Nagel H, Laskawi R, Büttler JJ, Schröder M, Chilla R, Droese M. Cytologic diagnosis of acinic-cell carcinoma of salivary glands. Diagn Cytopathol 1997;16:402-12.
67. Frierson HF Jr., Covell JL, Mills SE. Fine-needle aspiration cytology of terminal duct carcinoma of minor salivary gland. Diagn Cytopathol 1987;3:159-62.
68. Klijianienko J, Vielh P. Salivary carcinomas with papillae: Cytology and histology analysis of polymorphous low-grade adenocarcinoma and papillary cystadenocarcinoma. Diagn Cytopathol 1998;19:244-9.
69. Gibbons D, Saboorian MH, Vuitch F, Gokaslan ST, Ashfaq R. Fine-needle aspiration cytology of terminal duct carcinoma of minor salivary gland. Diagn Cytopathol 1987;3:159-62.
70. Carrillo R, Poblet E, Rocamora A, Rodriguez-Peralto JL. Epithelial-myoepithelial carcinoma of the salivary gland. Fine needle aspiration cytologic findings. Acta Cytol 1990;34:243-7.
71. Kocjan G, Milroy C, Fisher EW, Eveson JW. Cytological features of epithelial-myoepithelial carcinoma of salivary gland: Potential pitfalls in diagnosis. Cytopathology 1993;4:173-80.
72. Klijianienko J, Vielh P. Fine needle sampling of salivary gland lesions VII. Cytology and histology correlation of 5 cases of epithelial-myoepithelial carcinoma. Diagn Cytopathol 1998;19:405-9.
73. Ng WK, Choy C, Ip P, Shek WH, Collins RJ. Fine needle aspiration cytology of epithelial-myoepithelial carcinoma of salivary glands. A report of three cases. Acta Cytol 1999;43:675-80.
74. Miliauskas JR, Orell SR. Fine-needle aspiration cytological findings in five cases of epithelial-myoepithelial carcinoma of salivary glands. Diagn Cytopathol 2003;28:163-7.
75. Frable MA, Frable WJ. Fine-needle aspiration biopsy of salivary glands. Laryngoscope 1991;101:245-9.
76. Dee S, Masood S, Issacs JH Jr., Hardy NM. Cytomorphologic features of salivary duct carcinoma on fine needle aspiration biopsy. A case report. Acta Cytol 1993;37:539-42.
77. Elsheikh TM, Bernacki EG Jr., Pittarodi L. Fine-needle aspiration cytology of salivary duct carcinoma. Diagn Cytopathol 1994;11:47-51.
78. Fyra P, Cramer H, Feezko JD, Kratzer S, Layfield LJ, Eisenhut CC, et al. Fine-needle aspiration biopsy of salivary duct carcinoma: Report of five cases. Diagn Cytopathol 1997;16:526-30.
79. Khurana KK, Pitman MB, Powers CN, Korourian S, Barales RH, Stanley MW. Diagnostic pitfalls of aspiration cytology of salivary duct carcinoma. Cancer 1997;81:373-8.
80. Klijianienko J, Vielh P. Cytologic characteristics and histomorphologic correlations of 21 salivary duct carcinomas. Diagn Cytopathol 1998;19:333-7.
81. Batsakis JG, El-Naggar AK, Luna MA. “Adenocarcinoma, not otherwise specified”: A diminishing group of salivary carcinomas. Ann Otol Rhinol Laryngol 1992;101:102-4.
82. Miller TR. FNA of salivary gland: Problems and pitfalls. San Francisco: Director of Cytology, University of California; 2006.