Polynomial algorithm for \(k \)-partition minimization of monotone submodular function

Shohei Hidaka

Abstract. For a fixed \(k \), this study considers \(k \)-partition minimization of submodular system \((V, f)\) with a finite set \(V \) and symmetric submodular function \(f : 2^V \mapsto \mathbb{R} \). Our algorithm uses the Queyranne’s (1998) algorithm for 2-partition minimization which arises at each step of the recursive decomposition of subsets of the original \(k \)-partition minimization. We show that the computational complexity of this minimizer is \(O(n^{3(k-1)}) \).

Keywords. Submodular partition problem · symmetric submodular function

1 \(k \)-partition minimization of submodular system

Let \((V, f)\) is any submodular system with a finite set \(V \) and submodular function \(f : 2^V \mapsto \mathbb{R} \). We call function \(f : 2^V \mapsto \mathbb{R} \) is submodular, if for any \(X, Y \subseteq V \) it satisfies

\[
f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y).\]

We call function \(f \) symmetric, if \(f(U) = f(V \setminus U) \) for any set \(U \subseteq V \), and call it monotone, if \(f(U \cup U') \geq f(U) \) for any set \(U, U' \subseteq V \).

Relevant with this manuscript, 2-partition minimization of entropy function and its potential extension to \(k \)-partition one are discussed in our paper under review (https://arxiv.org/abs/1708.01444). This work was supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas JP 16H06609 and for Scientific Research B (Generative Research Fields) JP 15KT0013.

S. Hidaka
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Tel.: +81-761-51-1725
E-mail: shhidaka@jaist.ac.jp
In this paper, we consider k-partition minimization with monotone submodular function f. Denote the set of all k-partitions for a given set V by

$$P_{k,V} := \{ (U_0, U_1, \ldots, U_{k-1}) \mid \bigcup_i U_i = V, U_i \cap U_j = \emptyset \text{ for any } i \neq j \text{ and } U_i \neq \emptyset \text{ for every } i \}.$$

k-partition minimization problem of a submodular system (V, f) is to find k-partition $U = (U_0, U_1, \ldots, U_{k-1}) \in P_{k,V}$ which minimizes the function

$$g(U) := \sum_{i=0}^{k-1} f(U_i) + C,$$

where C is a constant to any choice of k-partition. As a practical application of k-partition minimization problem with monotone submodular function, Hidaka and Oizumi [1] have discussed the minimum k-partition of the mutual information for subsets with higher integrated information. In their study, the monotone submodular function is defined by the Shannon entropy of a set of random variables X, denoted by $f(X) := H(X)$. The function $H(X)$ is monotone increasing, as $H(X \cup Y) - H(X) = H(Y | X) \geq 0$ for any set of variables Y. The k-partition function is defined by

$$g(U) = \sum_{i=0}^{k-1} H(U_i) - H(U),$$

which is known as total correlation [5] or multi-information [4].

Quyranne [3] has shown a $O(|V|^3)$ algorithm for the 2-partition minimization problem. Okumoto and colleagues [2] have shown a polynomial algorithm for the 3-partition minimization problem. To our knowledge, no study has reported yet a polynomial algorithm for the k-partition minimization problem with a fixed $k > 1$ in general. In this paper, we report a polynomial-time algorithm for k-partition minimization of an arbitrary monotone submodular function by extending Queyranne’s algorithm [3].

2 Extension of Queyranne’s algorithm

Queyranne’s algorithm [3] works on bi-partition minimization of

$$g(U) = f(U) + f(V \setminus U)$$

for an arbitrary submodular system (V, f) with respect to non-empty set $U \subset V$.

Here we show a recursive algorithm extending it for k-partition minimization of $g(U) = \sum_{i=0}^{k-1} f(U_i)$ with respect to $U \in P_{k,V}$. The basic idea is to reduce the original k-partition problem with the objective function $g : P_{k,V} \mapsto \mathbb{R}$ to a set function $g_{k,V} : 2^V \mapsto \mathbb{R}$ by recursively defining $g_{k-1,U}$ for the remaining $(k-1)$ subsets in a given k-partition.
By taking a 3-partition minimization as an example, first let us consider the following “naive” reduction:

$$
\min_{U \in P_2} g(U) = \min_{\emptyset \subset U_1 \subset V} \left[f(U_1) + \min_{\emptyset \subset U_2 \subset V \setminus U_1} g_2(V \setminus U_1) \right].
$$

The first-level minimization is performed on the function $f(U_1) + g_2(V \setminus U_1)$, where $g_2(V \setminus M_1)$ is defined by the second-level minimization of bi-partition function $f(U_2) + f(V \setminus (U_1 \cup U_2))$. In this naive reduction, the second-level minimization is solved by the Queyranne’s algorithm, but the first-level function $f(M_1) + g_2(V \setminus M_1)$ is not symmetric in general. In order to let the function at every level be symmetric, let us redefine the reduction as follows:

$$
\min_{U \in P_2} g(U) = \min_{\emptyset \subset U_1 \subset V} \left[f(V \setminus U_1) + \min_{\emptyset \subset U_2 \subset U_1} f_{U_2}(U_1) \right],
$$

where $f_W(U) := f(U) + f(W \setminus U)$ for any set $U \subseteq W$. In this formulation, each of the second-level minimization for $g_2(U_1)$ and $g_2(V \setminus U_1)$ is solveable by Queyranne’s algorithm, and the first-level function

$$
g_3(V)(U_1) := \min(f(V \setminus U_1) + g_2(U_1), f(U_1) + g_2(V \setminus U_1))
$$

is symmetric. Thus, the 3-partition minimization of $g(U)$ is solveable by Queyranne’s algorithm, if this first-level function $g_{3,V}(U_1)$ is submodular. Later, we prove its submodularity.

Before considering with the submodularity of the above function, let us extend the reduction with nested symmetric functions for the k-partition minimization as follows. We can identify the k-partition minimization problem of $g(U)$ to

$$
\min_{\langle U_1, \ldots, U_k \rangle \in \mathcal{P}_k} \sum_{i=1}^{k} f(U_i) = \min_{\emptyset \subset U \subset V} g_{k,V}(U),
$$

where the series of symmetric function is defined for any non-empty subset $U_1 \subset U_2 \subseteq V$ by $g_{2,U_2}(U_1) := f_{U_2}(U_1) = f(U_1) + f(U_2 \setminus U_1)$ and for $k > 2$

$$
g_{k,U_2}(U_1) := \min(h_{k-1,U_2}(U_1), h_{k-1,U_2}(U_2 \setminus U_1)),
$$

where

$$
h_{k,U_2}(U_1) = \begin{cases}
 f(U_1) + \min_{\emptyset \subset U' \subset U_2 \setminus U_1} g_{k,U_2 \setminus U_1}(U') & \text{if } |U_2 \setminus U_1| > 1 \\
 \infty & \text{otherwise}
\end{cases} \quad (3)
$$

for any $k > 2$ and $U_1 \subset U_2 \subseteq V$. For $k = 2$, $g_{2,V}(U) = f_V(U)$, and minimization of $f_V(U)$ over the set of bi-partitions of V can be computed by Queyranne’s algorithm.
3 Main results

If the kth order function $g_{k,V}$ is submodular at every step above, we can apply Queyranne’s algorithm to this function at every recursive step. As $g_{k,V}$ is symmetric by definition, our main question is whether it is submodular. The main result, Theorem 1, states the function $g_{k,V}$ is submodular, if f is monotone submodular. To prove Theorem 1 we have the following steps.

1. Lemma 1 shows submodularity of the function $h_{2,V}$.
2. Lemma 2 shows the minimum of two submodular functions $\min(f(X), g(X))$ with monotone difference is submodular.
3. Theorem 1 shows the symmetrized minimum of k-partition $g_{k,V}$ is submodular.

Lemma 1 (submodularity of minimum bi-partition) For an arbitrary submodular system (V, f) such that the function f is monotone and $f(\emptyset) = 0$. The minimum of bi-partition function

$$g(X) := \begin{cases}
 f(V \setminus X) + \min_{A \subseteq A' \subseteq X} f(A) + f(X \setminus A) & \text{if } |X| \geq 2 \\
 f(V \setminus X) + f(X) & \text{otherwise}
\end{cases}$$

is submodular.

Proof If $|X| < 2$, g is obviously submodular, and thus suppose $|X| \geq 2$. For $\emptyset \subset W \subset Z \subseteq V$, write $f_Z(W) := f(W) + f(Z \setminus W)$. Denote one of the minimal sets for the following functions by

$$A_1 := \arg \min_{\emptyset \subset A' \subseteq X} f_X(A'), \quad B_1 := \arg \min_{\emptyset \subset B' \subseteq Y} f_Y(B'),$$

$$W_1 := \arg \min_{\emptyset \subset W' \subseteq X \cup Y} f_{X \cup Y}(W'), \quad Z_1 := \arg \min_{\emptyset \subset Z' \subseteq X \cap Y} f_{X \cap Y}(Z'),$$

and their another subset of bi-partition by

$$A_2 = X \setminus A_1, \quad B_2 = V \setminus B_1, \quad W_2 = (X \cup Y) \setminus W_1, \quad Z_2 = (X \cap Y) \setminus Z_1,$$

and their complements by

$$A_3 = V \setminus X, \quad B_3 = V \setminus Y, \quad W_3 = V \setminus (X \cup Y), \quad Z_3 = V \setminus (X \cap Y).$$

If $X \cap Y = \emptyset$, $f(Z_1) = f(Z_2) = f(A_i \cap B_j) = 0$ for any $i, j = 1, 2$, and by the minimality of $f(Z_1) + f(Z_2)$ and $f(W_1) + f(W_2)$, we have

$$f(A_1 \cup B_1) + f(A_3 \cap B_2) + f(A_2 \cup B_2) + f(A_3 \cap B_2) \geq f(W_1) + f(W_2) + f(Z_1) + f(Z_2).$$

By the submodular inequality,

$$f(A_1) + f(B_1) + f(A_2) + f(B_2) \geq f(W_1) + f(W_2) + f(Z_1) + f(Z_2) \quad (4)$$

and

$$f(A_3) + f(B_3) \geq f(W_3) + f(Z_3). \quad (5)$$
Adding these inequalities, \(g(X) \) holds the submodular inequality.

Consider the second case that holds \(X \cap Y \neq \emptyset, A_i \cap B_j \neq \emptyset \). Then, by the minimality of \(f(Z_1) + f(Z_2) \) and \(f(W_1) + f(W_2) \), we have

\[
f(A_i \cap B_j) + f((A_{3-i} \cup B_{3-j}) \cap X \cap Y) \geq f(Z_1) + f(Z_2),
\]

and

\[
f(A_i \cup B_j) + f((A_{3-i} \cap B_{3-j})) \geq f(W_1) + f(W_2).
\]

By monotonicity of \(f \), \(f((A_{3-i} \cup B_{3-j})) \geq f((A_{3-i} \cup B_{3-j}) \cap X \cap Y) \), and by the submodularity inequality we have (4). Adding (5) to (4), \(g(X) \) holds the submodular inequality.

Lemma 1 states the minimum bi-partition function is submodular, if \(f \) is monotone submodular function. But note that this function is not symmetric as it is, and slightly different from the function \(g \), that we defined earlier so it can be minimized by Queyranne’s algorithm. As the function \(g \) takes additional minimum to be symmetric, we need to deal with this minimum of two submodular functions by showing the following Lemma 2.

Lemma 2 (submodularity of minimum of two submodular functions)

*For two submodular function \(f \) and \(g \) over the ground set \(V \),

\[
h(X) = \min(f(X), g(X))
\]

is submodular, if the function \(d(X) := f(X) - g(X) \) is either monotone increasing or decreasing.*

Proof If \(h(X) + h(Y) = f(X) + f(Y) \) or \(h(X) + h(Y) = g(X) + g(Y) \), by submodularity we have

\[
h(X)+h(Y) \geq \min(f(X \cup Y), g(X \cup Y)) + \min(f(X \cap Y), g(X \cap Y)) = h(X \cup Y) + h(X \cap Y).
\]

Otherwise, \(h(X) + h(Y) = f(X) + g(Y) \) or \(h(X) + h(Y) = g(X) + f(Y) \). As \(d(X) \) is monotone, it holds either

\[
f(X) \geq f(X \cup Y) - g(X \cup Y) + g(X) \quad \text{or} \quad g(Y) \geq f(Y) - f(X \cup Y) + g(X \cup Y).
\]

By submodularity of \(f \) and \(g \)

\[
f(X) + g(Y) \geq f(X \cup Y) + g(X \cap Y) \quad \text{or} \quad f(X) + g(Y) \geq g(X \cup Y) + f(X \cap Y).
\]

Similarly,

\[
g(X) + f(Y) \geq g(X \cup Y) + f(X \cap Y) \quad \text{or} \quad g(X) + f(Y) \geq f(X \cup Y) + g(X \cap Y).
\]

Thus,

\[
h(X) + h(Y) \geq h(X \cup Y) + h(X \cap Y).
\]

Combining Lemma 1 and Lemma 2, the following theorem states submodularity of the symmetrized minimum \(k \)-partition.
Theorem 1 (submodularity of symmetric minimum \(k\)-partition) For \(k > 1\) and an arbitrary submodular system \((V, f)\) with monotone submodular function \(f\), for \(X \subseteq V\) define \(g_{2,X}(Y) := f(Y) + f(X \setminus Y)\), and for \(k > 2\)

\[g_{k,X}(Y) = \min (h_{k-1,X}(Y), h_{k-1,X}(X \setminus Y)) \]

and

\[h_{k,X}(Y) := f(Y) + g_k(X \setminus Y). \]

The set function \(g_{k,Y} : 2^V \rightarrow \mathbb{R}\) is submodular for any \(k \geq 2\).

Proof Any function \(h_{2,X}(Y)\) for \(\emptyset \subsetneq Y \subsetneq X \subsetneq V\) is submodular due to Lemma 1. By induction, suppose that \(h_{m,X}(Y)\) is submodular for \(k = 2, \ldots, m\), and let us show \(g_{m+1,X}(Y)\) is submodular. By Lemma 2, it is sufficient to show

\[d_{m,X}(Y) := h_{m,X}(Y) - h_{m,X}(X \setminus Y) \]

is either monotone decreasing or monotone increasing. For any singleton set \(S \subseteq V\) and \(|S| = 1\),

\[d_{m,X}(Y) - d_{m,X}(Y \cup S) = f(Y) + \min_{U \in P_{k,X \setminus Y}} \sum_{i=1}^k f(U_i) - f(X \setminus Y) - \min_{U \in P_{k,X}} \sum_{i=1}^k f(U_i) - f(Y \cup U) + \min_{U \in P_{k,Y \cup U}} \sum_{i=1}^k f(U_i) \]

Write the minimal \(k\)-partitions

\((W_1, \ldots, W_k) := \arg\min_{(U_1, \ldots, U_k) \in P_{k,X \setminus Y}} \sum_{i=1}^k f(U_i) \)

and

\((Z_1, \ldots, Z_k) := \arg\min_{(U_1, \ldots, U_k) \in P_{k,Y \cup U}} \sum_{i=1}^k f(U_i). \)

We have the following inequalities

\[\sum_{i=1}^k f(W_i) - \min_{U \in P_{k,Y \setminus (X \cup U)}} \sum_{i=1}^k f(U_i) \geq \sum_{i=1}^k \delta(S \subseteq W_i) (f(W_i) - f(W_i \setminus S)) \]

and

\[\sum_{i=1}^k f(Z_i) - \min_{U \in P_{k,X}} \sum_{i=1}^k f(U_i) \geq \delta(S \subseteq Z_i) (f(Z_i) - f(Z_i \setminus S)), \]

where \(\delta(P) = 1\) if the statement \(P\) is true, and \(\delta(P) = 0\) otherwise. By submodularity of \(f\), we have the following inequalities for any \(i\)

\[f(Y \cup S) - f(Y) \leq f(Z_i) - f(Z_i \setminus S) \]

and

\[f(X \setminus Y) - f(X \setminus (Y \cup S)) \leq f(W_i) - f(W_i \setminus U). \]
Inserting these inequalities, we have
\[d_{m,X}(Y) - d_{m,X}(Y + S) \geq 0, \]
and it implies \(d_{m,X}(Y) \) is monotone decreasing.

Theorem 4 states that the \(k \)th order function \(g_{k,V} \) is submodular at every step above, and thus we can apply Queyranne's algorithm to this function at every recursive step. As minimization of a \(k \)-partition function includes minimization of the \((k-1) \)-partition function, the number of required times to call the function \(f \) is \(O(n^{3k-1}) \) for this recursive algorithm for the minimal \(k \)-partition of \(n \) elements.

Acknowledgements We thank Masafumi Oizumi for his encouragement to complete this manuscript.

References

1. Hidaka, S., Oizumi, M.: Fast and exact search for the partition with minimal information loss. PLoS ONE (under review)
2. Okumoto, K., Fukunaga, T., Nagamochi, H.: Divide-and-conquer algorithms for partitioning hypergraphs and submodular systems. Algorithmica 62(3), 787–806 (2012)
3. Queyranne, M.: Minimizing symmetric submodular functions. Mathematical Programming 82(1-2), 3–12 (1998)
4. Studený M & Vejnarová, J.: The multiinformation function as a tool for measuring stochastic dependence. MIT Press, Cambridge, MA (1999)
5. Watanabe, S.: Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4(1), 66–82 (1960). DOI 10.1147/rd.41.0066. URL http://dx.doi.org/10.1147/rd.41.0066