Enantioselective Copper-Catalyzed Cyanation of Remote C(sp³)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer

HIGHLIGHTS
- Remote C-H functionalization
- Enantioselective cyanation
- High ee & excellent yields
- Low catalysts loading

![Enantioselective Cyanation of Remote C(sp³)-H Bonds](image)
Enantioselective Copper-Catalyzed Cyanation of Remote C(sp³)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer

Cheng-Yu Wang,1,2 Zi-Yang Qin,1,2 Yu-Ling Huang,1 Ruo-Xing Jin,1 Quan Lan,1 and Xi-Sheng Wang1,3,*

SUMMARY
The direct functionalization of C(sp³)-H bonds has led to the development of methods to access molecules or intermediates from basic chemicals in an atom- and step-economic fashion. Nevertheless, achieving high levels of chemo-, regio-, and enantioselectivity in these reactions remains challenging due to the ubiquity and low reactivity of C(sp³)-H bonds. Herein, we report an unprecedented protocol for enantioselective cyanation of remote C(sp³)-H bonds. With chiral Box-Cu complex as the catalyst, the reaction of N-fluorosulfonamide furnishes the corresponding products in excellent yields and high enantiomeric excess (ee) under mild reaction conditions. A radical relay pathway involving 1,5-hydrogen atom transfer (1,5-HAT) of N-center radicals followed by enantioselective cyanation of the in situ-formed benzyl radicals is proposed. This enantioselective copper-catalyzed cyanation thus offers insights into an efficient way for the synthesis of bioactive molecules for drug discovery.

INTRODUCTION
Synthesizing functional molecules in a rapid, efficient, and convenient manner still represents a significant challenge in organic synthesis (McMurry et al., 2011; Gutekunst and Baran, 2011; Yamaguchi et al., 2012; Karimov and Hartwig, 2018). The past several decades have witnessed the renaissance of C-H bond functionalization, which thus offers a unique solution for facile synthesis of functional molecules from basic chemicals (Giri et al., 2009; Colby et al., 2010; Lyons and Sanford, 2010; Newhouse and Baran, 2011; Sun et al., 2011; Wencel-Delord et al., 2011; Wendlandt et al., 2011; Liu et al., 2015; Davies and Morton, 2016; Rao and Shi, 2016; Liang and Jiao, 2017; Yang et al., 2017; Dong et al., 2017; Gensch et al., 2018). Specifically, the direct functionalization of C(sp³)-H bonds has led to the development of methods to access molecules or intermediates from simple starting materials in an atom- and step-economic fashion (Zhang et al., 2011; Baudoin, 2011; Rouquet and Chatani, 2013; Xie et al., 2014; Liu and Groves, 2015; He et al., 2016, 2017; Hartwig, 2016; Yi et al., 2017; Saint-Denis et al., 2018). Nevertheless, achieving high levels of chemo-, regio-, and enantioselectivity in these reactions remains challenging due to the ubiquity and low reactivity of C(sp³)-H bonds. To date, one efficient approach to asymmetric C(sp³)-H functionalization was the enantioselective insertion of chiral metallocarbene (Davies and Beckwith, 2003; Doyle et al., 2010; Davies and Morton, 2011; Davies and Manning, 2008; Lu and Zhang, 2011; Zheng and You, 2014; Schafer and Blakey, 2015; Newton et al., 2017) or metallonitrene (Davies and Manning, 2008; Lu and Zhang, 2011; Zheng and You, 2014; Schafer and Blakey, 2015; Newton et al., 2017; Müller and Fruit, 2003; Collet et al., 2011) species in situ generated into C-H bonds. The other known approach was transition-metal-catalyzed C(sp³)-H activation, which involves a stereocontrolled C-H cleavage to generate an enantioenriched organometallic intermediate for further functionalization (Saint-Denis et al., 2018). Despite recent advances in both approaches, the efficient and practical methods for enantioselective functionalization of remote C(sp³)-H bonds are still less developed.

As an alternative tactic, hydrogen-atom abstraction via radical pathway has long been used as a powerful tool to activate the C(sp³)-H bonds. Of note is a radical relay strategy for enantioselective functionalization of allylic (Zhou and Andrus, 2002) and benzylic (Zhang et al., 2016, 2019a, 2019b; Wang et al., 2018) C-H bonds has recently been developed, in which a benzylic or allylic radical generated by hydrogen-atom abstraction underwent asymmetric functionalization by a chiral copper catalysis. Although inert C(sp³)-H bonds are almost impossible to distinguish from other aliphatic C-H bonds on the alkyl side chain, 1-n-hydrogen-atom transfer strategy offers us a reliable solution to selectively cleave the remote C(sp³)-H bonds in a high chemo- and regioselective path. Starting from the pioneering work of Hofmann (Hofmann, 1817),...
1883), known as Hofmann–Löffler–Freytag (HLF) reaction with N-haloamines used as precursors to generate N-centered radical (Hofmann, 1883; Löffler and Freytag, 1909; Wolff, 1963; Neale, 1971; Mackiewicz and Furstoff, 1978), the selective cleavage of remote C(sp³)-H bonds via 1,5-HAT process is well documented (Robertson et al., 2001; Čeković, 2003; Chiba and Chen, 2014; Stateman et al., 2018; Chu and Rovis, 2016, 2018; Martínez and Muñiz, 2015; Wappes et al., 2016; Choi et al., 2016; Xia et al., 2018; Na and Alexanian, 2018). Although the early examples utilize transition metal to facilitate electron transfer, to further expand the scope of this remote C(sp³)-H functionalization process, many domino processes involving a metal-catalyzed cross-coupling pathway have developed (Scheme 1A) (Zhou and Andrus, 2002; Zhang et al., 2016, 2019a, 2019b, 2019c; Wang et al., 2018; Groendyke et al., 2016; Li et al., 2018; Liu et al., 2019; Bao et al., 2019). With the generation of N-centered radical initiating remote hydrogen transfer, the following cross-coupling reactions enabled by the recapture of in situ-generated carbon radical could be achieved with transition metals (Groendyke et al., 2016; Li et al., 2017, 2018; Liu et al., 2019; Bao et al., 2019; Zhang et al., 2019a, 2019b, 2019c; Yu et al., 2014). As our continuous efforts on selective cleavage of remote aliphatic C(sp³)-H via a 1,5-HAT process (Scheme 1B) (Wang et al., 2017a, 2017b), we envisioned that the recapture of in situ-generated carbon radical of 1,5-HAT by chiral metal catalyst, followed by reductive elimination from the chiral metal complex would realize enantioselective C(sp³)-H functionalizations, thus providing a convenient entry to optically pure α-cyano amines and their pharmaceutical derivatives (Figure 1) (Sugimoto et al., 2000; van de Waterbeemd et al., 2001; Abdel-Rahman et al., 2002). More recently, the remote C(sp³)-H functionalization was accomplished by the groups of Zhu (Bao et al., 2019) and Nagib (Zhang et al., 2019a, 2019b; 2019c), whereas the enantioselective remote C(sp³)-H cyanation reaction of excellent yield and high ee still remains as an unsolved problem.

Herein, we described the first example of N-radical initiated enantioselective copper-catalyzed cyanation of remote C(sp³)-H bonds with excellent yield and high enantioselectivity (up to 95% ee). This asymmetric

Scheme 1. Enantioselective C(sp³)-H Functionalization via Reductive Elimination from Chiral Transition-Metal Catalyst

(A) Previous work: copper-catalyzed benzylic or allylic C-H functionalizations.
(B) This work: copper-catalyzed remote C(sp³)-H cyanation enabled by 1,5-HAT.
(C) Proposed mechanism.
reaction has demonstrated high catalytic reactivity, excellent regio- and enantioselective control, low catalyst loading, mild conditions, and broad scope. The key to success is the recapture of the alkyl radical generated by selective cleavage of C(sp3)-H bond via 1,5-HAT with Box-Cu catalyst resulting in chiral copper cyanide for stereoselective reductive elimination (Wang et al., 2018). This radical relay strategy will offer a solution for regio- and enantioselective functionalization of remote C(sp3)-H bonds and provides an efficient way for facile synthesis of chiral \(\delta \)-cyano amines and their pharmaceutical derivatives.

RESULTS AND DISCUSSION

Optimization of the Enantioselective Copper-Catalyzed Cyanation

Our initial investigation commenced with N-fluorosulfonamide 1a used as the pilot substrate, along with trimethylsilyl cyanide (TMSCN) used as the coupling partner in the presence of a catalytic amount of Cu(MeCN)4PF6 (3 mol%) at room temperature. To our delight, the desired cyanation product 2a was obtained in 62% yield and 78% ee when chiral bis(oxazoline) ligand L1 was used (Entry 1, Table 1). To improve the enantioselectivity of this reaction, various chiral bis(oxazoline) ligands were next investigated. Gratifyingly, indanyl amino alcohol-derived bis(oxazoline) ligands (L2-L7) could afford almost the same good ee and normally satisfactory yield, whereas Pybox (L8) gave only trace amount of 2a (Entries 2–8). Lowering the reaction temperature to 10°C could further improve the ee to 90%, albeit with a relatively lower yield (52%, Entry 9). A careful investigation of various copper salts with the optimal bis(oxazoline) ligand (L6) were next performed, which indicated that a variety of Cu(I) and Cu(II) sources (Entries 10–12) gave higher ee, but with a low overall yield. Although a majority of H-abstraction byproduct of nitrogen was found after the reaction had run for 24 h, we proposed decreasing catalyst loading might improve the mass balance by reducing the amount of H-abstraction byproducts and allowing for a higher yield (Shu et al., 2017). As expected, lower catalyst loading to 1 mol% remarkably increased the yield to about 80% without a decline in ee (Entries 13–14).

To further improve the yield of this transformation, solvent effect was next studied with 1 mol% of CuSCN used as the catalyst, which showed DCE was the optimal solvent with excellent yield and a slightly lower ee (99% yield, 90% ee, Entry 17). Interestingly, a lower concentration and an enhancement of the ratio of ligand to copper salts (2/1) could slightly improve the ee to 92% (Entries 19–21), whereas further reducing the reaction temperature to 0°C resulted in an obvious drop in yield and 29% of 1a recovered from the reaction system (Entry 22). The absolute configuration of product 2a was assigned as (R) by single crystal X-ray diffraction.

Scope of the Enantioselective Copper-Catalyzed Cyanation

With the optimal reaction conditions in hand, we next explored the scope of this enantioselective cyanation of remote C(sp3)-H bonds (Figure 2). First, with respect to substituted benzenesulfonyl protecting groups (ArSO2), both electron-donating (1b-1c) and electron-withdrawing (1d-1e) substituents (R1) at para-position of the aryl rings gave the desired product in good to excellent yield along with excellent ee, among
Entry	Cu cat.	Ligand	Solvent	Yield (%)	ee (%)
1	Cu(MeCN)4PF6	L1	DCM	62	78
2	Cu(MeCN)4PF6	L2	DCM	75	86
3	Cu(MeCN)4PF6	L3	DCM	33	87
4	Cu(MeCN)4PF6	L4	DCM	58	86
5	Cu(MeCN)4PF6	L5	DCM	70	87
6	Cu(MeCN)4PF6	L6	DCM	73	89
7	Cu(MeCN)4PF6	L7	DCM	33	87
8	Cu(MeCN)4PF6	L8	DCM	trace	–
9a	Cu(MeCN)4PF6	L6	DCM	52	90
10a	CuSCN	L6	DCM	43	92
11a	Cu(OAc)2	L6	DCM	43	92
12a	CuI	L6	DCM	30	92
13a,b	CuSCN	L6	DCM	81	91
14a,b	Cu(OAc)2	L6	DCM	78	92
15a,b	CuSCN	L6	MeCN	39	81
16a,b	CuSCN	L6	PhCl	84	88
17a,b	CuSCN	L6	DCE	99	90
18a,b	Cu(OAc)2	L6	DCE	91	90
19a,b,c	CuSCN	L6	DCE	92	91
20a,c,d	CuSCN	L6	DCE	98	91
21a,b,e	CuSCN	L6	DCE	99	92
22a,f	CuSCN	L6	DCE	64	92

Table 1. Optimization of Reaction Conditions
Reaction conditions: 1a (0.1 mmol, 1.0 equiv), TMSCN (1.2 equiv), Cu cat. (3 mol%), L (3.6 mol%), solvent (1.0 mL), rt, 2 d, Ar. Yields were determined by 1H NMR analysis using CH2Br2 as internal standard. The ee values were determined by HPLC analysis on a chiral stationary phase. DCM, dichloromethane; THF, tetrahydrofuran; DCE, 1,2-dichloroethane; Ac, acetyl.

*1°C, 3 days.
**Cu cat. (1 mol%), L6 (1.2 mol%).
***Solvent (2.0 mL).
****CuSCN (1 mol%), L6 (1.5 mol%).
*****CuSCN (1 mol%), L6 (2 mol%).
******O°C.
which para-CF$_3$ substituted substrate performed best with 97% yield and 93% ee. Considering the common availability and low cost, benzenesulfonyl group was selected as the N-protecting group to investigate the substituent effect (R2) of the aromatic ring linked to the alkyl chain. A variety of N-fluorosulfonamides 1 installed with ortho-, meta-, and para-substituents on the aryl rings were smoothly cyanated on the benzylic position in this asymmetric catalytic system, furnishing the corresponding products 2 with satisfactory yields and high ee (up to 95%). Both electron-donating, including Me (2f, 2o, 2s), "C$_6$H$_{11}$" (2h), "Bu (2g), PhO (2j), and MeO (2p), and electron-withdrawing groups, including F (2t), Cl (2i, 2q), Br (2m), and CF$_3$ (2n, 2r, 2u), were well compatible with the optimized conditions. Notably, Br (2m) as well as inert halides including F and Cl on the aromatic ring offered the synthetic potential for further transformations through transition-metal-catalyzed cross-coupling methods. Moreover, polycyclic arenes, such as naphthalene (2w-2x), and heteroaromatic ring, such as thiophene (2y), were well tolerated in this reaction with high ee and good yield. To our surprise, the incorporation of two methyl groups to the alkyl chain to induce the Thorpe-Ingold effect failed to give higher ee (2z), possibly because the increased steric hindrance of the methyl groups hampered the stereo control of chiral copper catalyst.

Mechanistic Studies
To gain some insights into the mechanism of this asymmetric cyanation of remote C(sp3)-H bonds, we next carried out a series of control experiments. Firstly, the addition of 2.0 equiv of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) into the standard conditions completely inhibited the reaction, and 1a was
100% recovered from the reaction system (Scheme 2A), which was consistent with our previously noted hypothesis that this reaction may proceed via a radical path (Scheme 1). Although the coupling product of TEMPO and 1a was not isolated, compounds 4 and 6 had been designed and synthesized to trap the corresponding radicals. Accordingly, the subjection of alkene 4 into the reaction system afforded 5-exo cyclization product 5 in 62% yield, indicating an N-centered radical was involved in the catalytic cycle (Scheme 2B). Meanwhile, a radical clock experiment with 6 furnished the ring-opening product 7 in 73% yield, which suggested a carbon-centered radical generated via N-radical initiated 1,5-HAT (Scheme 2C). Secondly, competition experiments had been performed using N-fluorosulfonamide substrates with different substituents on respective aryl ring. Indeed, a competition experiment between 1c and 1e with para-OMe or CF3 groups on the aryl rings in the arylsulfonyl protecting groups showed that trifluoromethylated substrate reacted faster than methoxylated substrate (16% yield to 9% yield). On the other hand, the competition experiment between 1j and 1n with para-OPh or CF3 groups on the alkylated aryl rings afforded the desired products 2j and 2n in almost the same yields (15% and 17%, Scheme 2D). All these results indicated that a copper-involved single electron transfer process for the cleavage of N-F bond might be the rate-determining step (Zhang et al., 2016, 2019a; Shu et al., 2017; Shekhar et al., 2018, 2019b, 2019c). It should be noted that besides our proposed mechanism as shown in Scheme 1C, an alternative

Scheme 2. Mechanistic Studies
(A) The radical trapping experiment with TEMPO.
(B) N-radical trapping experiment.
(C) Radical clock experiment.
(D) Competition experiments.
mechanism involving the direct cyano group enantioselective transfer from chiral copper cyanide could not be excluded at this stage (Liu et al., 2018; Xiao et al., 2019).

Conclusion
In summary, we have developed a nitrogen-centered radical-initiated enantioselective copper-catalyzed cyanation of remote C(sp³)-H bonds with high yield and enantioselectivity (up to 95% ee). This method has demonstrated high catalytic reactivity, excellent regio- and enantioselective control, low catalyst loading, mild conditions, and broad scope. This radical relay strategy will offer a solution for region- and enantioselective functionalization of remote C(sp³)-H bonds and provides an efficient way for facile synthesis of chiral α-cyano amines and their pharmaceutical derivatives. Mechanistic studies indicate that this transformation undergoes a radical relay pathway involving a 1,5-HAT process. Further exploration on enantioselective functionalizations of remote C(sp³)-H bonds are currently ongoing in our laboratory.

Limitations of the Study
Starting materials were cyanated only on the benzylic position under the current reaction conditions.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY
The structures of 2a reported in this article have been deposited in the Cambridge Crystallographic Data Center under accession numbers CCDC: 1911620.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.048.

ACKNOWLEDGMENTS
We gratefully acknowledge the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), the National Basic Research Program of China (973 Program 2015CB856600), and the National Science Foundation of China (21971228, 21772187) for financial support. During the revision of our manuscript, we are informed that a similar work has just been accepted by Chem, see: Chem, xx, xx-xx (2019).

AUTHOR CONTRIBUTIONS
C.-Y. W. and Z.-Y. Q. designed and performed the experiments. Y.-L. H., R.-X. J., and Q. L. helped to complete the experiments. X.-S. W. directed the project and wrote the manuscript. All authors interpreted the results on the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: September 2, 2019
Revised: September 25, 2019
Accepted: October 23, 2019
Published: November 22, 2019

REFERENCES
Abdel-Rahman, H.M., Al-karamany, G.S., El-Koussi, N.A., Youssef, A.F., and Kiso, Y. (2002). HIV protease inhibitors: peptidomimetic drugs and future perspectives. Curr. Med. Chem. 9, 1905–1922.

Bao, X., Wang, Q., and Zhu, J. (2019). Dual photoredox/copper catalysis for the remote C(sp³)-H functionalization of alcohol and alkyl halides by N-alkoxypyridinium salts. Angew. Chem. Int. Ed. 58, 2139–2143. Only one enantioselective example was reported in this work (74% yield & 86% ee).

Baudoin, O. (2011). Transition metal-catalyzed arylation of unactivated C(sp³)-H bonds. Chem. Soc. Rev. 40, 4902–4911.

Čeković, Ž. (2003). Reactions of α-carbon radicals generated by 1,5-hydrogen transfer to alkoxyl radicals. Tetrahedron 59, 8073–8090.

Chiba, S., and Chen, H. (2014). sp³ C-H oxidation by remote H-fragment shift with oxygen- and nitrogen-radicals: a recent update. Org. Biomol. Chem. 12, 4051–4060.
Choi, G.J., Zhu, Q., Miller, D.C., Gu, C.J., and Knowles, R.R. (2016). Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271.

Chu, J.C.K., and Rovis, T. (2016). Amide-directed photoredox-catalysed C-C bond formation at unactivated sp³ C-H bonds. Nature 539, 272–275.

Chu, J.C.K., and Rovis, T. (2018). Complementary strategies for directed C(sp³)-H functionalization: a comparison of transition-metal-catalyzed activation, hydrogen atom transfer, and carbine/nitrene transfer. Angew. Chem. Int. Ed. 57, 62–101.

Colby, D.A., Bergman, R.G., and Ellman, J.A. (2010). Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev. 110, 624–655.

Collet, F., Lescot, C., and Dauban, P. (2011). Catalytic C-H amination: the stereoselectivity issue. Chem. Soc. Rev. 40, 1926–1936.

Davies, H.M.L., and Beckwith, R.E.J. (2003). Catalytic enantioselective C-H activation by means of metal-carbene-induced C-H insertion. Chem. Rev. 103, 2861–2904.

Davies, H.M.L., and Manning, J.R. (2008). Directed C(sp³)-H functionalization. Angew. Chem. Int. Ed. 47, 13288–13292.

Dong, Z., Ren, Z., Thompson, S.J., Xu, Y., and Dong, G. (2017). Transition-metal-catalyzed C-H functionalization by remote C(sp³)-H bonds in carboxamides and sulfonamides. Angew. Chem. Int. Ed. 56, 8754–8786.

Hofmann, A.W. (1883). Uber die einwirkung des broms in alkalischem übungen auf die amine. Ber. Dtsch. Chem. Ges. 16, 558–560.

Karimov, R.R., and Hartwig, J.F. (2018). Transition-metal-catalyzed selective functionalization of C(sp³)-H bonds in natural products. Angew. Chem. Int. Ed. 57, 4234–4241.

Li, T., Yu, P., Du, Y.-M., Lin, J.-S., Zhi, Y., and Liu, X.-Y. (2017). Enantioselective C-H functionalization of amides with indoles triggered by radical trifluoromethylation of alkenes: highly selective formation of C-CF₃ and C-C bonds. J. Fluor. Chem. 203, 214–217.

Li, Z., Wang, Q., and Zhu, J. (2018). Copper-catalyzed arylation of remote C(sp³)-H bonds in carboxamides and sulfonamides. Angew. Chem. Int. Ed. 57, 13863–13892.

Liang, Y.-F., and Jiao, N. (2017). Oxygenation via C-H/C-C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653.

Liu, W., and Groves, J.T. (2015). Manganese catalyzed C-H halogenation. Acc. Chem. Res. 48, 1727–1735.

Liu, B., Hu, F., and Shi, B.-F. (2015). Recent advances on esters synthesis via transition-metal catalyzed C-H functionalization. ACS Catal. 5, 1863–1881.

Liu, Z., Chen, H., Li, Y., Tan, X., Shen, H., Hu, H.-Z., and Li, C. (2018). Radical carbofluorination of unactivated alkenes with fluoride ions. J. Am. Chem. Soc. 140, 6169–6175.

Liu, Z., Xiao, H., Zhang, B., Shen, H., Zhu, L., and Li, C. (2019). Copper-catalyzed remote C(sp³)-H trifluoromethylation of carboxamides and sulfonamides. Angew. Chem. Int. Ed. 58, 2510–2513.

Lu, H., and Zhang, X.P. (2011). Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909.

Lyons, T.W., and Sanford, M.S. (2010). Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110, 1147–1169.

Löffler, K., and Freytag, C. (1900). Überbereineneubildungsweise von N-alkyliertenpyrrolidinen. Ber. Dtsch. Chem. Ges. 42, 3427–3431.

Mackiewicz, P., and Furstoss, R. (1978). H transformation. Chem. Soc. Rev. 7, 234–243.

Muller, P., and Fruit, C. (2003). Enantioselective catalytic azidonitrilations and asymmetric nitrene insertions into CH bonds. Chem. Rev. 103, 2905–2920.

Na, C.G., and Alexanian, E.J. (2018). A general approach to site-specific, intramolecular C-H functionalization using dithiocarbamates. Angew. Chem. Int. Ed. 57, 13106–13109.

Neale, R.S. (1971). Nitrogen radical as synthesis intermediates. N-halamide rearrangements and additions to unsaturated hydrocarbons. Synthesis 3, 1–15.

Newhouse, T., and Baran, P.S. (2011). If C-H bonds could talk: selective C-H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374.

Newton, C.J., Wang, S.-G., Oliveira, C.C., and Cramer, N. (2017). Catalytic enantioselective transformations involving C-H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976.

Rao, W.-H., and Shi, B.-F. (2016). Recent advances in copper-mediated chelation-assisted functionalization of unactivated C-H bonds. Org. Chem. Front. 3, 1028–1047.

Robertson, J., Pillai, J., and Lush, R.K. (2001). Radical translocation reactions in synthesis. Chem. Soc. Rev. 30, 94–103.

Rouquet, G., and Chatani, N. (2013). Catalytic functionalization of C(sp³)-H and C(sp²)-H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743.

Saint-Denis, T.G., Zhu, R.-Y., Chen, G., Wu, Q.-F., and Yu, J.-Q. (2018). Enantioselective C(sp³)-H bond activation by chiral transition metal catalysts. Science 359, eaao4798.

Schafer, A.G., and Blayke, S.B. (2015). Ir-catalyzed enantioselective group transfer reactions. Chem. Soc. Rev. 44, 5969–5980.

Shekhar, K.C., Dhungana, R., Thapa, S., Khanal, N., Basnet, P., Lebrun, R.W., and Giri, R. (2018). J. Am. Chem. Soc. 160, 9801–9805.

Shu, W., Genoux, A., Li, Z., and Nevado, C. (2017). γ-Functionalization of amines through visible-light-mediated, redox-neutral C-C bond cleavage. Angew. Chem. Int. Ed. 56, 10521–10524.

Statem, L.M., Nakafuku, K.M., and Nagib, D.A. (2018). Remote C-H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586.

Sugimoto, H., Sugimoto, T., Watanabe, Y., and Watanabe, T. (2000). Copper-catalyzed oxidative C(sp³)-H bond activation via metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 29, 3272–3278.

Sun, N., and Zhao, H. (2017). Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909.

Lyons, T.W., and Sanford, M.S. (2010). Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110, 1147–1169.

Löfler, K., and Freytag, C. (1900). Uberbereineuebildung der N-alkyliertenpyrrolidinen. Ber. Dtsch. Chem. Ges. 42, 3427–3431.

Mackiewicz, P., and Furstoss, R. (1978). H transformation. Chem. Soc. Rev. 7, 234–243.

Martínez, C., and Muñoz, K. (2015). An iodine-catalyzed Hofmann-Löfler reaction. Angew. Chem. Int. Ed. 54, 8287–8291.

McMurry, L., O’Hara, F., and Gaunt, M.J. (2011). Recent developments in natural product synthesis using metal-catalyzed C-H bond functionalization. Chem. Soc. Rev. 40, 1885–1898.
C(sp²)-H cross-coupling en route to carbocyclic rings. Chem. Sci. 8, 3838–3842.

Wang, F., Chen, P., and Liu, G. (2018). Copper-catalyzed radical relay for asymmetric radical transformation. Acc. Chem. Res. 51, 2036–2046.

Wappes, E.A., Fosu, S.C., Chopko, T.C., and Nagib, D.A. (2016). Triiodide-mediated β-amination of secondary C-H bonds. Angew. Chem. Int. Ed. 55, 9974–9978.

dv de Waterbeemd, H., Smith, D.A., Beaumont, K., and Walker, D.K. (2001). Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313–1333.

Wencel-Delord, J., Drège, T., Liu, F., and Glorius, F. (2011). Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev. 40, 4740–4761.

Wendlandt, A.E., Suess, A.M., and Stahl, S.S. (2011). Copper-catalyzed aerobic oxidation C-H functionalizations: trends and mechanistic insights. Angew. Chem. Int. Ed. 50, 11062–11087.

Wolff, M.E. (1963). Cyclization of N-halogenated amines (the Hofmann-Löffler reaction). Chem. Rev. 63, 55–64.

Xia, Y., Wang, L., and Studer, A. (2018). Site-selective remote radical C-H functionalization of unactivated C-H bonds in amides using sulfone reagents. Angew. Chem. Int. Ed. 57, 12940–12944.

Xie, J., Pan, C., Abdulkader, A., and Zhu, C. (2014). Gold-catalyzed C(sp³)-H bond functionalization. Chem. Soc. Rev. 43, 5245–5256.

Yamaguchi, J., Yamaguchi, A.D., and Itami, K. (2012). C-H bond functionalization: emerging synthetic tool for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009.

Yang, Y., Lan, J., and You, J. (2017). Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863.

Yi, H., Zhang, G., Wang, H., Huang, Z., Wang, J., Singh, A.K., and Lei, A. (2017). Recent advances in radical C-H activation/radical crossing-coupling. Chem. Rev. 117, 9016–9085.

Yu, P., Lin, J.-S., Li, L., Zheng, S.-C., Xiong, Y.-P., Zhao, L.-J., Tan, B., and Liu, X.-Y. (2014). Enantioselective C-H bond functionalization triggered by radical trifluoromethylation of unactivated alkene. Angew. Chem. Int. Ed. 53, 11890–11894.

Zhang, W., Wang, F., McCann, S.D., Wang, D., Chen, P., Stahl, S.S., and Liu, G. (2016). Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay. Science 353, 1014–1018.

Zhang, W., Wu, L., Chen, P., and Liu, G. (2019). Enantioselective arylation of benzylic C-H bonds by copper-catalyzed radical relay. Angew. Chem. Int. Ed. 58, 6425–6429.

Zhang, Z., Stateman, L.M., and Nagib, D.A. (2019). C-H (hetero)arylation via Cu-catalyzed radical relay. Chem. Sci. 10, 1207–1211. Only one enantioselective example was reported in this work (59% yield & 65% ee).

Zhang, K.-F., Bian, K.-J., Li, C., Sheng, J., Li, Y., and Wang, X.-S. (2019). Nickel-catalyzed carbofluoroalkylation of 1,3-enynes to access structurally diverse fluoroalkylated allenes. Angew. Chem. Int. Ed. 58, 5069–5074.

Zheng, C., and You, S.-L. (2014). Recent development of direct asymmetric functionalization of inert C-H bonds. RSC Adv. 4, 6173–6214.

Zhou, Z., and Andrus, M.B. (2002). Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefin with tert-Butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807.
Supplemental Information

Enantioselective Copper-Catalyzed Cyanation of Remote C(sp³)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer

Cheng-Yu Wang, Zi-Yang Qin, Yu-Ling Huang, Ruo-Xing Jin, Quan Lan, and Xi-Sheng Wang
Supporting Information
For

Enantioselective Copper-Catalyzed Cyanation of Remote C(sp3)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer
Cheng-Yu Wang*, Zi-Yang Qin*, Yu-Ling Huang, Ruo-Xing Jin, Quan Lan and Xi-Sheng Wang *
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China

Tabel of Contents
I. General Information S2
II. Optimization of conditions S3
 Solvent Screening S3
 Catalyst Screening S3
 Loading of Catalyst Screening S4
 Concentration Screening S4
 Ligand Screening S4
 Loading of Ligand Screening S4
 Temperature Screening S4
 Controlling Experiments S4
III. Experimental procedures and data S6
 Synthesis of Starting Materials S6
 Synthesis of Products S7
 Analytical data for compounds S8
 Machanistic studies S23
IV. References S26
X-Ray crystal data of 2a S27
NMR spectra and HPLC of the products S31
Transparent Methods

I. General Information

NMR spectra were recorded on Bruker-400 MHz NMR spectrometer (400 MHz for 1H; 101 MHz for 13C and 376 MHz for 19F { 1H, 13C decoupled}). 1H NMR spectra were referenced relative to internal Si(Me)$_4$ (TMS) at δ 0.00 ppm. 13C NMR spectra were recorded at ambient temperature on Bruker-400 (100 MHz) spectrometers and are referenced relative to CDCl$_3$ at δ 77.16 ppm. The 13C NMR spectra were obtained with 1H decoupling. Data for 1H, 13C, 19F NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, quint = quintet, br = broad), integration, and coupling constant (Hz). High resolution mass spectra were recorded on P-SIMS-Gly of BrukerDaltonics Inc. using ESI-TOF (electrospray ionization-time of flight). High performance liquid chromatography was performed on shimadzu Series HPLC, using AD-H, OD-H, AS-H chiral column eluted with a mixture of hexane and isopropyl alcohol. TMSCN was purchased from energy-chemical, CuSCN was purchased from TCI. And DCE was purchased from J&K Chemical Reagent Co., Ltd.
II. Tables of the Optimization of Reaction Conditions of Enantioselective Copper-catalyzed Cyanation

Table S1. Solvent Screening$^{[a]}$, related to Table 1.

Entry	Solvent	$2a^{[b]}$	$3a^{[b]}$	$ee^{[c]}$
1	MeCN	39%	40%	81%
2	DCE	99%	8%	90%
3	THF	20%	78%	89%
4	PhCl	84%	15%	88%
5	PhCF$_3$	84%	14%	87%
6	DCM	78%	26%	91%

$^{[a]}$ Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), L6 (1.2 mol%), TMSCN (1.2 equiv), solvent (1.0 mL), Ar, 10 °C, 3 d.
$^{[b]}$ Yields detected by crude 1H NMR with CH$_3$Br$_2$ as internal standard.
$^{[c]}$ Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S2. Catalyst Screening$^{[a]}$, related to Table 1.

Entry	Solvent	Cu cat. (1 mol%)	L6 (1.2 mol%)	$2a^{[b]}$	$3a^{[b]}$	$ee^{[c]}$
1	CuI	69%	23%	90%		
2	CuCN	51%	32%	88%		
3	Cu(MeCN)$_2$PF$_6$	trace	0%	-		
4	Cu(OAc)$_2$	91%	13%	90%		
5	Cu(acac)$_2$	70%	21%	90%		
6	Cu(OTf)$_2$	0%	0%	-		

$^{[a]}$ Reaction conditions: 1a (0.1 mmol, 1.0 equiv), Cu cat. (1 mol%), L6 (1.2 mol%), TMSCN (1.2 equiv), DCE (1.0 mL), Ar, 10 °C, 3 d.
$^{[b]}$ Yields detected by crude 1H NMR with CH$_3$Br$_2$ as internal standard.
$^{[c]}$ Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S3. Loading of Catalyst Screening$^{[a]}$, related to Table 1.

Entry	X	$2a^{[b]}$	$3a^{[b]}$	$ee^{[c]}$
1	0.5	86%	11%	89%
2	1.5	60%	30%	90%
3	2.0	55%	20%	91%

$^{[a]}$ Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (X mol%), L6 (1.2X mol%), TMSCN (1.2 equiv), DCE (1.0 mL), Ar, 10 °C, 3 d.
$^{[b]}$ Yields detected by crude 1H NMR with CH$_3$Br$_2$ as internal standard.
$^{[c]}$ Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.
Table S4. Concentration Screening$^{[a]}$, related to Table 1.

Entry	Y	1a$^{[h]}$	2a$^{[h]}$	3a$^{[h]}$	ee$^{[i]}$
1	0.05	0%	92%	13%	91%
2	0.2	45%	22%	12%	90%

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), L6 (1.2 mol%), TMSCN (1.2 equiv), Ar, 10 °C, 3 d.
[b] Yields detected by crude 1H NMR with CH$_2$Br$_2$ as internal standard.
[c] Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S5. Ligand Screening$^{[a]}$, related to Table 1.

Entry	Ligand	2a$^{[h]}$	3a$^{[h]}$	ee$^{[i]}$
1	L2	92%	16%	88%
2	L3	72%	5%	87%
3	L4	98%	4%	87%
4	L5	89%	15%	91%
5	L7	74%	25%	82%

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), ligand (1.2 mol%), TMSCN (1.2 equiv), Ar, DCE (2.0 mL), 10 °C, 3 d.
[b] Yields detected by crude 1H NMR with CH$_2$Br$_2$ as internal standard.
[c] Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S6. Loading of Ligand Screening$^{[a]}$, related to Table 1.

Entry	Z	2a$^{[h]}$	3a$^{[h]}$	ee$^{[i]}$
1	1.5	98%	4%	91%
2	2.0	99%	5%	92%

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), L6 (2 mol%), TMSCN (1.2 equiv), Ar, DCE (2.0 mL), 10 °C, 3 d.
[b] Yields detected by crude 1H NMR with CH$_2$Br$_2$ as internal standard.
[c] Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S7. Temperature Screening$^{[a]}$, related to Table 1.

Entry	1a$^{[h]}$	2a$^{[h]}$	3a$^{[h]}$	ee$^{[i]}$
1	29%	64%	4%	92%

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), L6 (2 mol%), TMSCN (1.2 equiv), Ar, DCE (2.0 mL), 0 °C, 3 d.
[b] Yields detected by crude 1H NMR with CH$_2$Br$_2$ as internal standard.
[c] Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.

Table S8. Controlling Experiments$^{[a]}$, related to Table 1.
Entry	Reaction conditions	2a^[a]	3a^[b]	ee^[c]
1	w/o CuSCN	0%	0%	-
2	w/o L6	trace	0%	-

[a] Reaction conditions: 1a (0.1 mmol, 1.0 equiv), CuSCN (1 mol%), L6 (2 mol%), TMSCN (1.2 equiv), Ar, DCE (2.0 mL), 0 °C, 3 d.
[b] Yields detected by crude 1H NMR with CH$_3$Br$_2$ as internal standard.
[c] Enantiomeric excess (ee) values detected by HPLC on a chiral stationary phase.
III. Experimental procedures and data

1. Synthesis of Starting Materials

General Procedure A – N-F sulfonamides

![Chemical Structure](image)

Synthesized according to a reported procedure (Wang et al., 2017): In a 100 mL round-bottomed flask, to a stirred suspension of NaH (6 mmol, 60 wt% in mineral oil) in anhydrous CH₂Cl₂ (24 mL), a solution of sulfonamide (3 mmol) in anhydrous CH₂Cl₂ (6 mL) was slowly added at room temperature under an N₂ atmosphere. After stirring for 30 min, N-fluorobenzenesulfonimide (NFSI, 5.67 g, 18 mmol) was added. The reaction mixture was stirred for another 6 h. Upon completion, the reaction was quenched by the addition of water. The mixture was extracted with DCM (3 × 30 mL) and the organic layers were combined, washed with brine, and dried over anhydrous Na₂SO₄. The crude mixture was filtered through celite and concentrated. The resulting residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate.

![Chemical Structure](image)

Synthesized according to a reported procedure (Zhang et al., 2019). To a clean, dry round bottom flask was added a magnetic stir bar and primary amine (1 equiv) under nitrogen at RT. The substrate was dissolved in DCM [0.2 M], followed by addition of freshly distilled triethylamine (1.5 equiv), 4-Dimethylaminopyridine (0.1 equiv) and p-toluenesulfonyl chloride (1.1 equiv) were subsequently added. The reaction was allowed to stir at room temperature overnight. H₂O was added to the reaction and the aqueous layer was extracted DCM (3 × 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude material was purified by silica gel chromatography.

![Chemical Structure](image)

Synthesized according to a reported procedure (Zhang et al., 2019). To a clean, dry round bottom flask was added a magnetic stir bar, the starting carboxylic acid (1.0 equiv), 4-Dimethylaminopyridine (1.5 equiv) and benzenesulfonamide (1.0 equiv) under nitrogen at room temperature. The mixture was
dissolved in DCM, followed by addition of EDCI (1.5 equiv). The reaction was allowed to stir at room temperature overnight. Upon completion, 4N HCl was added, the organic phase was collected, and the aqueous layer was extracted three times with DCM. The combined organic phase was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude mixture was then taken onto the reduction step.

To a dry round bottom flask, was added a magnetic stir bar, the starting amide (1.0 equiv), and lithium aluminum hydride (2.0 equiv) under nitrogen. Reaction was cooled to 0 °C and slowly dissolved in THF. The reaction was monitored by TLC and upon consumption of starting material, the mixture was cooled to 0 °C and quenched carefully by addition of a 1 M solution of sodium hydroxide. The reaction was allowed to warm to room temperature and stirred for 20 minutes. The mixture was filtered through celite and the resulting clear solution was dried over Na₂SO₄ and concentrated in vacuo. Final substrates were purified by silica gel chromatography.

2. Synthesis of Products

General Procedure B – Enantioselective 1,5-HAT cyanation

Preparation of catalyst solution A. To a 25 mL sealed tube, CuSCN (1.1 mg, 0.009 mmol), chiral bisoxazoline ligand (IR, 2S) – L₆ (6.9 mg, 0.018 mmol) were added in degassed DCE (18.0 mL) under Ar atmosphere. The tube was sealed with a Teflon-lined cap, then the mixture was stirred at room temperature for 30 minutes. The solution A was used immediately.

To a sealed tube, solution A (4.0 mL), TMSCN (23.8 mg, 30 µL, 0.24 mmol, 1.2 equiv) and substrate were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for three days. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleumether and ethylacetate (PE/EA = 5:1) to afford the product.
3. Analytical data for compounds

1. N-F sulfonamides:

N-fluoro-N-(4-phenylbutyl)benzenesulfonamide (1a)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow solid (664 mg, 72% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.99 – 7.88 (m, 2H), 7.78 – 7.69 (m, 1H), 7.65 – 7.56 (m, 2H), 7.31 – 7.23 (m, 2H), 7.22 – 7.11 (m, 3H), 3.23 (dt, $J = 40.7$, 6.4 Hz, 2H), 2.63 (t, $J = 7.0$ Hz, 2H), 1.83 – 1.66 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 141.80, 135.00, 132.11, 130.04, 129.40, 128.49, 126.03, 53.60 (d, $J = 12.5$ Hz), 35.41, 28.41, 25.97. 19F NMR (376 MHz, Chloroform-d) δ -49.82 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcld. for C$_{16}$H$_{18}$FNO$_2$SNa: 330.0940, found: 330.0914.

N-fluoro-4-methyl-N-(4-phenylbutyl)benzenesulfonamide (1b)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow solid (571 mg, 59% yield). The NMR spectra were identical to the reference.

N-fluoro-4-methoxy-N-(4-phenylbutyl)benzenesulfonamide (1c)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow solid (597 mg, 62% yield). The NMR spectra were identical to the reference.

4-chloro-N-fluoro-N-(4-phenylbutyl)benzenesulfonamide (1d)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow solid (655 mg, 64% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.84 – 7.75 (m, 2H), 7.55 – 7.46 (m, 2H), 7.25 – 7.16 (m, 2H), 7.15 – 7.03 (m, 3H), 3.17 (dt, $J = 40.5$, 5.6 Hz, 2H), 2.56 (t, $J = 6.2$ Hz, 2H), 1.77 – 1.56 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 142.01, 141.74, 131.39, 130.62, 129.81, 128.51, 128.48, 126.06, 53.50 (d, $J = 12.5$ Hz), 35.40, 28.37, 25.93. 19F NMR (376 MHz, Chloroform-d) δ -49.50 (t, $J = 40.5$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcld. for C$_{16}$H$_7$ClFNO$_2$SNa: 364.0550, found: 364.0524.

N-fluoro-N-(4-phenylbutyl)-4-(trifluoromethyl)benzenesulfonamide (1e)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow solid (617 mg, 55% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.07 (d, $J = 8.2$ Hz, 2H), 7.87 (d, $J = 8.3$ Hz, 2H), 7.31 – 7.25 (m, 2H), 7.22 – 7.12 (m, 3H), 3.28 (dt, $J = 40.3$, 6.5 Hz, 2H), 2.64 (t, $J = 7.0$ Hz, 2H), 1.83 – 1.70 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 141.70, 136.54 (q, $J = 33.3$ Hz), 136.00, 130.61, 128.54, 128.50, 126.55 (q, $J = 3.6$ Hz), 126.10, 123.08 (q, $J = 273.2$ Hz), 53.39 (d, $J = 12.6$ Hz), 35.40, 28.35,
25.93. 19F NMR (376 MHz, Chloroform-d) δ -49.57 (t, $J = 40.3$ Hz), -63.36 (s). HRMS (ESI) (m/z): [M+N+] calcd. for $C_{17}H_{17}F_2NO_2SNa$: 398.0814, found: 398.0790.

N-fluoro-N-(4-(p-tolyl)butyl)benzenesulfonamide (1f)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (439 mg, 46% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.98 - 7.89 (m, 2H), 7.78 - 7.70 (m, 1H), 7.65 - 7.57 (m, 2H), 7.12 - 7.01 (m, 4H), 3.23 (dt, $J = 40.7$, 6.5 Hz, 2H), 2.59 (t, $J = 7.0$ Hz, 2H), 2.31 (s, 3H), 1.79 - 1.67 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 138.72, 135.48, 134.99, 132.16, 130.05, 129.39, 129.18, 128.37, 53.61 (d, $J = 12.5$ Hz), 34.96, 28.53, 25.97, 21.13. 19F NMR (376 MHz, Chloroform-d) δ -49.86 (t, $J = 40.7$ Hz). HRMS (ESI) (m/z): [M+N+] calcd. for $C_{17}H_{20}FNO_2SNa$: 344.1096, found: 344.1086.

N-(4-(4-(tert-butyl)phenyl)butyl)-N-fluorobenzenesulfonamide (1g)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (373 mg, 34% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.99 - 7.90 (m, 2H), 7.78 - 7.70 (m, 1H), 7.65 - 7.56 (m, 2H), 7.29 (d, $J = 8.3$ Hz, 2H), 7.09 (d, $J = 8.2$ Hz, 2H), 3.24 (dt, $J = 40.7$, 6.4 Hz, 2H), 2.60 (t, $J = 7.1$ Hz, 2H), 1.83 - 1.67 (m, 4H), 1.30 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 148.83, 138.73, 135.00, 132.17, 130.06, 129.40, 128.14, 125.38, 53.62 (d, $J = 12.5$ Hz), 34.86, 34.49, 31.54, 28.42, 26.06. 19F NMR (376 MHz, Chloroform-d) δ -49.79 (t, $J = 40.7$ Hz). HRMS (ESI) (m/z): [M+N+] calcd. for $C_{20}H_{26}FNO_2SNa$: 386.1566, found: 386.1570.

N-fluoro-N-(4-(4-pentylphenyl)butyl)benzenesulfonamide (1h)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a white solid (581 mg, 51% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.00 - 7.85 (m, 2H), 7.78 - 7.68 (m, 1H), 7.66 - 7.54 (m, 2H), 7.14 - 6.96 (m, 4H), 3.23 (dt, $J = 40.7$, 6.0 Hz, 2H), 2.67 - 2.47 (m, 4H), 1.82 - 1.66 (m, 4H), 1.65 - 1.52 (m, 2H), 1.40 - 1.23 (m, 4H), 0.88 (t, $J = 6.3$ Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 140.62, 138.92, 134.99, 132.16, 130.05, 129.39, 128.51, 128.34, 53.63 (d, $J = 12.5$ Hz), 35.65, 35.00, 31.69, 31.40, 28.49, 26.01, 22.69, 14.18. 19F NMR (376 MHz, Chloroform-d) δ -49.83 (t, $J = 40.7$ Hz). HRMS (ESI) (m/z): [M+N+] calcd. for $C_{21}H_{28}FNO_2SNa$: 400.1722, found: 400.1714.

N-(4-(1,1'-biphenyl)-4-yl)butyl]-N-fluorobenzenesulfonamide (1i)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a white solid (520 mg, 45% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.98 - 7.90 (m, 2H), 7.77 - 7.71 (m, 1H), 7.64 - 7.55 (m, 4H), 7.51 (d, $J = 8.0$ Hz, 2H), 7.46 - 7.39 (m, 2H), 7.35 - 7.29 (m, 1H), 7.23 (d, $J = 8.0$ Hz, 2H), 3.26 (dt, $J = 40.7$, 6.2 Hz, 2H), 2.68 (t, $J = 6.8$ Hz, 2H), 1.83 - 1.75 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 141.14, 140.94, 139.03, 135.02, 132.15, 130.06, 129.41, 128.93, 128.86, 127.25, 127.18, 127.12, 53.60 (d, $J = 12.5$ Hz), 35.05, 28.39, 26.02. 19F NMR (376 MHz, Chloroform-d) δ -
N-fluoro-N-(4-(4-phenoxypbenyl)butyl)benzenesulfonamide (1j)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (332 mg, 28% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.02 – 7.87 (m, 2H), 7.80 – 7.69 (m, 1H), 7.68 – 7.56 (m, 2H), 7.36 – 7.29 (m, 2H), 7.15 – 7.04 (m, 3H), 7.03 – 6.96 (m, 2H), 6.96 – 6.88 (m, 2H), 3.25 (dt, $J = 40.7$, 6.3 Hz, 2H), 2.62 (t, $J = 6.9$ Hz, 2H), 1.86 – 1.64 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 157.70, 155.34, 136.80, 135.03, 132.15, 130.07, 129.81, 129.70, 129.42, 123.08, 119.17, 118.66, 53.59 (d, $J = 12.5$ Hz), 34.71, 28.55, 25.96. 19F NMR (376 MHz, Chloroform-d) δ -49.81 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{22}$H$_{23}$FNO$_2$SNa: 406.1253, found: 406.1250.

N-fluoro-N-(4-(4-(trifluoromethoxy)phenyl)butyl)benzenesulfonamide (1k)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a colourless oil (835 mg, 71% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.90 (m, 2H), 7.79 – 7.70 (m, 1H), 7.66 – 7.58 (m, 2H), 7.17 (d, $J = 8.7$ Hz, 2H), 7.11 (d, $J = 8.2$ Hz, 2H), 3.24 (dt, $J = 40.6$, 6.0 Hz, 2H), 2.64 (t, $J = 6.8$ Hz, 2H), 1.82 – 1.66 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 147.56, 140.55, 135.07, 132.05, 130.04, 129.71, 129.43, 121.09, 120.62 (q, $J = 256.5$ Hz), 53.52 (d, $J = 12.5$ Hz), 34.72, 28.32, 25.89. 19F NMR (376 MHz, Chloroform-d) δ -49.82 (t, $J = 40.6$ Hz), -57.92 (s). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{17}$H$_{19}$FNO$_3$SNa: 414.0763, found: 414.0773.

N-(4-(4-chlorophenyl)butyl)-N-fluorobenzenesulfonamide (1l)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (483 mg, 47% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.88 (m, 2H), 7.79 – 7.70 (m, 1H), 7.67 – 7.56 (m, 2H), 7.23 (d, $J = 8.4$ Hz, 2H), 7.08 (d, $J = 8.4$ Hz, 2H), 3.23 (dt, $J = 40.6$, 6.3 Hz, 2H), 2.60 (t, $J = 7.0$ Hz, 2H), 1.81 – 1.65 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 140.22, 135.05, 132.06, 131.73, 130.03, 129.83, 129.42, 128.58, 53.51 (d, $J = 12.5$ Hz), 34.74, 28.27, 25.86. 19F NMR (376 MHz, Chloroform-d) δ -49.81 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{16}$H$_{17}$ClFNO$_2$SNa: 364.0550, found: 364.0548.

N-(4-(4-bromophenyl)butyl)-N-fluorobenzenesulfonamide (1m)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (243 mg, 21% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.88 (m, 2H), 7.79 – 7.70 (m, 1H), 7.67 – 7.58 (m, 2H), 7.38 (d, $J = 8.4$ Hz, 2H), 7.03 (d, $J = 8.4$ Hz, 2H), 3.23 (dt, $J = 40.6$, 6.4 Hz, 2H), 2.59 (t, $J = 7.0$ Hz, 2H), 1.81 – 1.65 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 140.74, 135.05, 132.10, 131.55, 130.26, 130.04, 129.42, 119.77, 53.49 (d, $J = 12.5$ Hz), 34.81, 28.21, 25.87. 19F NMR (376 MHz,
Chloroform-\(d\) \(\delta\) -49.75 (t, \(J = 40.5\) Hz). HRMS (ESI) (\(m/z\)): [M+Na]\(^+\) calcd. for \(C_{16}H_{17}BrFNO_2SNa\): 408.0045, found: 408.0040.

N-fluoro-N-(4-(4-(trifluoromethyl)phenyl)butyl)benzenesulfonamide (1n)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a colourless oil (474 mg, 42% yield). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.01 – 7.85 (m, 2H), 7.79 – 7.71 (m, 1H), 7.65 – 7.58 (m, 2H), 7.53 (d, \(J = 8.0\) Hz, 2H), 7.27 (d, \(J = 7.4\) Hz, 2H), 3.25 (dt, \(J = 40.5, 5.8\) Hz, 2H), 2.70 (t, \(J = 6.6\) Hz, 2H), 1.89 – 1.63 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 145.92, 135.08, 132.06, 130.04, 129.44, 128.80, 128.44 (q, \(J = 32.3\) Hz), 125.44 (q, \(J = 3.8\) Hz), 124.44 (q, \(J = 271.8\) Hz), 53.45 (d, \(J = 12.4\) Hz), 35.24, 28.10, 25.89. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -49.81 (t, \(J = 40.5\) Hz), -62.30 (s). HRMS (ESI) (\(m/z\)): [M+Na]\(^+\) calcd. for \(C_{16}H_{17}F_2NO_2SNa\): 398.0814, found: 398.0815.

N-fluoro-N-(4-(m-tolyloxy)butyl)benzenesulfonamide (1o)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (447 mg, 46% yield). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.00 – 7.86 (m, 2H), 7.78 – 7.69 (m, 1H), 7.67 – 7.54 (m, 2H), 7.16 (t, \(J = 7.5\) Hz, 1H), 7.07 – 6.88 (m, 3H), 3.23 (dt, \(J = 40.7, 5.9\) Hz, 2H), 2.59 (t, \(J = 6.6\) Hz, 2H), 2.31 (s, 3H), 1.81 – 1.66 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 141.74, 138.02, 134.99, 132.09, 130.02 (d, \(J = 0.6\) Hz), 129.39, 129.30, 128.37, 126.75, 125.48, 53.63 (d, \(J = 12.7\) Hz), 35.33, 28.42, 26.01, 21.51. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -49.83 (t, \(J = 40.7\) Hz). HRMS (ESI) (\(m/z\)): [M+Na]\(^+\) calcd. for \(C_{17}H_{20}FNO_2SNa\): 344.1096, found: 344.1092.

N-fluoro-N-(4-(3-methoxyphenyl)butyl)benzenesulfonamide (1p)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (476 mg, 47% yield). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.00 – 7.90 (m, 2H), 7.78 – 7.70 (m, 1H), 7.66 – 7.56 (m, 2H), 7.19 (t, \(J = 7.8\) Hz, 1H), 6.82 – 6.64 (m, 3H), 3.79 (s, 3H), 3.23 (dt, \(J = 40.7, 6.3\) Hz, 2H), 2.61 (t, \(J = 6.9\) Hz, 2H), 1.80 – 1.68 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 159.75, 143.43, 135.00, 132.08, 130.02 (d, \(J = 0.5\) Hz), 129.45, 129.39, 120.90, 114.23, 111.30, 55.25, 53.60 (d, \(J = 12.7\) Hz), 35.43, 28.26, 25.95. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -49.82 (t, \(J = 40.7\) Hz). HRMS (ESI) (\(m/z\)): [M+Na]\(^+\) calcd. for \(C_{17}H_{20}FNO_3SNa\): 360.1046, found: 360.1053.

N-(4-(3-chlorophenyl)butyl)-N-fluorobenzenesulfonamide (1q)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (498 mg, 49% yield). \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 8.00 – 7.90 (m, 2H), 7.78 – 7.71 (m, 1H), 7.67 – 7.57 (m, 2H), 7.23 – 7.12 (m, 3H), 7.09 – 7.00 (m, 1H), 3.23 (dt, \(J = 40.6, 6.1\) Hz, 2H), 2.61 (t, \(J = 6.9\) Hz, 2H), 1.81 – 1.67 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 143.83, 135.05, 134.22, 132.05, 130.04, 129.76, 129.42, 128.58, 126.71, 126.25, 53.50 (d, \(J = 12.7\) Hz), 35.08, 28.14, 25.88. \(^{19}\)F NMR (376 MHz, Chloroform-\(d\)) \(\delta\) -49.78 (t, \(J = 40.6\) Hz). HRMS (ESI) (\(m/z\)): [M+Na]\(^+\) calcd. for
C_{18}H_{17}ClFNO_{2}SNa: 364.0550, found: 364.0555.

N-fluoro-N-(4-(3-(trifluoromethyl)phenyl)butyl)benzenesulfonamide (1r)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (588 mg, 52% yield). \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.01 – 7.88 (m, 2H), 7.79 – 7.71 (m, 1H), 7.66 – 7.58 (m, 2H), 7.50 – 7.29 (m, 4H), 3.25 (dt, \(J = 40.5, 6.2\) Hz, 2H), 2.70 (t, \(J = 7.1\) Hz, 2H), 1.86 – 1.67 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta\) 142.69, 135.08, 132.04, 131.91 (d, \(J = 1.1\) Hz), 130.78 (q, \(J = 32.0\) Hz), 130.05, 129.44, 128.94, 125.13 (q, \(J = 3.8\) Hz), 124.34 (q, \(J = 273.3\) Hz), 122.98 (q, \(J = 3.8\) Hz), 53.48 (d, \(J = 12.5\) Hz), 35.25, 28.23, 25.93. \(^{19}\)F NMR (376 MHz, Chloroform-d) \(\delta\) -49.77 (t, \(J = 40.5\) Hz), -62.54 (s). HRMS (ESI) (m/z): [M+Na]^+ calcd. for C_{17}H_{15}F_{4}NO_{2}SNa: 398.0814, found: 398.0812.

N-fluoro-N-(4-(o-tolyl)butyl)benzenesulfonamide (1s)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (580 mg, 60% yield). \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 7.98 – 7.90 (m, 2H), 7.78 – 7.71 (m, 1H), 7.66 – 7.57 (m, 2H), 7.16 – 7.06 (m, 4H), 3.26 (dt, \(J = 40.7, 6.7\) Hz, 2H), 2.62 (t, \(J = 7.7\) Hz, 2H), 2.29 (s, 3H), 1.85 – 1.75 (m, 2H), 1.74 – 1.65 (m, 2H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta\) 140.02, 135.93, 135.01, 132.15, 130.35, 130.05, 129.40, 128.91, 126.17, 126.07, 53.60 (d, \(J = 12.5\) Hz), 32.78, 27.24, 26.32, 19.41. \(^{19}\)F NMR (376 MHz, Chloroform-d) \(\delta\) -49.83 (t, \(J = 40.7\) Hz). HRMS (ESI) (m/z): [M+Na]^+ calcd. for C_{17}H_{20}FNO_{2}SNa: 344.1096, found: 344.1090.

N-fluoro-N-(4-(2-fluorophenyl)butyl)benzenesulfonamide (1t)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (529 mg, 54% yield). \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.00 – 7.87 (m, 2H), 7.78 – 7.70 (m, 1H), 7.66 – 7.56 (m, 2H), 7.20 – 7.12 (m, 2H), 7.09 – 6.93 (m, 2H), 3.25 (dt, \(J = 40.6, 6.4\) Hz, 2H), 2.66 (t, \(J = 6.7\) Hz, 2H), 1.81 – 1.68 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta\) 161.21 (d, \(J = 244.5\) Hz), 135.02, 132.11, 130.71 (d, \(J = 5.1\) Hz), 130.05, 129.41, 128.57 (d, \(J = 15.9\) Hz), 127.80 (d, \(J = 8.1\) Hz), 124.11 (d, \(J = 3.5\) Hz), 115.34 (d, \(J = 22.2\) Hz), 53.54 (d, \(J = 12.5\) Hz), 28.55 (d, \(J = 2.3\) Hz), 27.21, 25.99. \(^{19}\)F NMR (376 MHz, Chloroform-d) \(\delta\) -49.77 (t, \(J = 40.9\) Hz), -118.70 – -119.10 (m). HRMS (ESI) (m/z): [M+Na]^+ calcd. for C_{16}H_{17}F_{2}NO_{2}SNa: 348.0846, found: 348.0852.

N-fluoro-N-(4-(2-(trifluoromethyl)phenyl)butyl)benzenesulfonamide (1u)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (563 mg, 50% yield). \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.02 – 7.87 (m, 2H), 7.78 – 7.71 (m, 1H), 7.69 – 7.55 (m, 3H), 7.50 – 7.41 (m, 1H), 7.34 – 7.26 (m, 2H), 3.26 (dt, \(J = 40.6, 6.5\) Hz, 2H), 2.79 (t, \(J = 7.5\) Hz, 2H), 1.89 – 1.67 (m, 4H). \(^{13}\)C NMR (101 MHz, Chloroform-d) \(\delta\) 140.67, 135.06, 132.03, 131.91, 131.04, 130.05, 129.43, 128.45 (q, \(J = 29.7\) Hz), 126.17, 126.05 (q, \(J = 5.8\) Hz), 124.72 (q, \(J = 274.8\) Hz), 53.57 (d, \(J = 12.5\) Hz),
Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow solid (752 mg, 70% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.99 (d, $J = 8.1$ Hz, 1H), 7.91 (d, $J = 7.4$ Hz, 2H), 7.86 – 7.81 (m, 1H), 7.73 – 7.66 (m, 2H), 7.57 (t, $J = 7.8$ Hz, 2H), 7.52 – 7.43 (m, 2H), 7.37 (t, $J = 7.6$ Hz, 1H), 7.28 (d, $J = 6.8$ Hz, 1H), 3.24 (dt, $J = 40.7$, 6.3 Hz, 2H), 3.08 (t, $J = 7.1$ Hz, 2H), 1.94 – 1.73 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 137.85, 135.00, 133.99, 132.03, 131.82, 130.00, 129.38, 128.91, 126.86, 126.13, 125.94, 125.61, 125.59, 123.76, 53.60 (d, $J = 12.5$ Hz), 32.55, 27.72, 26.38. 19F NMR (376 MHz, Chloroform-d) δ -49.67 (t, $J = 40.7$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{20}$H$_{20}$FNO$_2$SNa: 380.1096, found: 380.1091.

N-fluoro-N-(4-(naphthalen-2-yl)butyl)benzenesulfonylamine (1w)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow solid (834 mg, 78% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.91 (d, $J = 7.5$ Hz, 2H), 7.81 – 7.73 (m, 3H), 7.71 (t, $J = 7.5$ Hz, 1H), 7.63 – 7.53 (m, 3H), 7.49 – 7.38 (m, 2H), 7.33 – 7.26 (m, 1H), 3.24 (dt, $J = 40.6$, 6.5 Hz, 2H), 2.79 (t, $J = 7.1$ Hz, 2H), 1.90 – 1.68 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 139.29, 134.99, 133.68, 132.13, 132.06, 130.01, 129.38, 128.08, 127.72, 127.53, 127.28, 126.54, 126.06, 125.31, 53.62 (d, $J = 12.5$ Hz), 35.53, 28.22, 25.99. 19F NMR (376 MHz, Chloroform-d) δ -49.82 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{20}$H$_{20}$FNO$_2$SNa: 380.1096, found: 380.1093.

N-fluoro-N-(4-(thiophen-2-yl)butyl)benzenesulfonylamine (1y)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow oil (417 mg, 42% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.94 (d, $J = 7.8$ Hz, 2H), 7.74 (t, $J = 7.5$ Hz, 1H), 7.61 (t, $J = 7.8$ Hz, 2H), 7.11 (d, $J = 5.1$ Hz, 1H), 6.97 – 6.83 (m, 1H), 6.77 (d, $J = 3.3$ Hz, 1H), 3.24 (dt, $J = 40.5$, 6.0 Hz, 2H), 2.85 (t, $J = 6.6$ Hz, 2H), 1.90 – 1.68 (m, 4H). 13C NMR (101 MHz, Chloroform-d) δ 144.52, 135.03, 132.03, 130.03, 129.41, 126.87, 124.46, 123.23, 53.46 (d, $J = 12.5$ Hz), 29.41, 28.73, 25.76. 19F NMR (376 MHz, Chloroform-d) δ -
N-(2,2-dimethyl-4-phenylbutyl)-N-fluorobenzenesulfonamide (1z)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a white solid (653 mg, 65% yield). 1H NMR (400 MHz, Chloroform-d) δ 7.99 – 7.90 (m, 2H), 7.78 – 7.71 (m, 1H), 7.66 – 7.58 (m, 2H), 7.30 – 7.25 (m, 2H), 7.21 – 7.13 (m, 3H), 3.10 (d, $J = 44.2$ Hz, 2H), 2.60 – 2.52 (m, 2H), 1.68 – 1.61 (m, 2H), 1.05 (s, 6H). 13C NMR (101 MHz, Chloroform-d) δ 142.69, 134.96, 132.68, 129.92, 129.44, 128.52, 128.46, 125.88, 62.85 (d, $J = 10.6$ Hz), 42.42, 34.69, 30.44, 25.76. 19F NMR (376 MHz, Chloroform-d) δ -36.35 (t, $J = 44.2$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calced. for $C_{12}H_{18}FNO_2SNa$: 358.1253, found: 358.1242.

N-fluoro-N-((pent-4-en-1-yl)benzenesulfonamide (4)

Prepared following general procedure A the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a yellow oil (565 mg, 77% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.90 (m, 2H), 7.79 – 7.71 (m, 1H), 7.67 – 7.57 (m, 2H), 5.87 – 5.66 (m, 1H), 5.12 – 4.96 (m, 2H), 3.25 (dt, $J = 40.5$, 6.9 Hz, 2H), 2.18 (q, $J = 7.0$ Hz, 2H), 1.82 (quint, $J = 7.3$ Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 136.97, 135.02, 132.18, 130.05, 129.41, 116.09, 53.02 (d, $J = 12.5$ Hz), 30.59, 25.53. 19F NMR (376 MHz, Chloroform-d) δ -49.87 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calced. for $C_{13}H_{14}FNO_2SNa$: 266.0627, found: 266.0616.

N-fluoro-N-((4-(2-phenylcyclopropyl)butyl)benzenesulfonamide (6)

Prepared following general procedure A (1.1 mmol scale) the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 19/1 as the eluent) as a light yellow oil (214 mg, 56% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.87 (m, 2H), 7.78 – 7.69 (m, 1H), 7.66 – 7.57 (m, 2H), 7.26 – 7.20 (m, 2H), 7.16 – 7.09 (m, 1H), 7.07 – 6.96 (m, 2H), 3.23 (dt, $J = 40.6$, 6.9 Hz, 2H), 1.83 – 1.70 (m, 2H), 1.64 – 1.50 (m, 3H), 1.45 – 1.37 (m, 2H), 1.05 – 0.93 (m, 1H), 0.92 – 0.84 (m, 1H), 0.79 – 0.70 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 143.80, 134.99, 132.18, 130.06, 129.40, 128.38, 125.88, 125.38, 53.78 (d, $J = 12.5$ Hz), 33.96, 26.55, 26.20, 23.55, 23.36, 16.23. 19F NMR (376 MHz, Chloroform-d) δ -49.85 (t, $J = 40.6$ Hz). HRMS (ESI) (m/z): [M+Na]$^+$ calced. for $C_{19}H_{22}FNO_3SNa$: 370.1253, found: 370.1248.

2. Products:

(R)-N-(4-cyano-4-phenylbutyl)benzenesulfonamide (2a)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2a (58.0 mg, 92% yield, 92% ee) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.80 (m, 2H), 7.62 – 7.55 (m, 1H), 7.55 – 7.47 (m, 2H), 7.40 – 7.30 (m, 3H), 7.30 – 7.26 (m, 2H), 4.95 – 4.55 (m, 1H), 3.80 (t, $J = 7.3$ Hz, 1H), 3.07 – 2.91 (m, 2H), 2.00 – 1.85 (m, 2H), 1.71 – 1.58 (m, 2H). 13C NMR (101 MHz, Chloroform-
mL/min, detection at 214 nm) retention time = 20.62 min (minor) and 22.13 min (major).

(R)-N-(4-cyano-4-phenylbutyl)-4-methylbenzenesulfonamide (2b)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2b (47.5 mg, 72% yield, 91% ee) as a white solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 9.0 Hz, 2H), 7.39 – 7.30 (m, 3H), 7.30 – 7.26 (m, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.76 (t, J = 6.4 Hz, 1H), 3.86 (s, 3H), 3.80 (t, J = 7.4 Hz, 1H), 3.02 – 2.89 (m, 2H), 1.98 – 1.83 (m, 2H), 1.68 – 1.58 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 163.04, 135.39, 131.29, 129.22, 128.27, 127.28, 120.61, 114.45, 55.74, 42.28, 36.80, 32.71, 26.98. HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₈H₂₀N₂O₃SNa: 351.1143, found: 351.1151.

[R]ᵈ⁺ = 10.08 (c 0.57, CHCl₃). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 7/3, flow 0.5 mL/min, detection at 214 nm) retention time = 20.17 min (minor) and 21.88 min (major).

(R)-N-(4-cyano-4-phenylbutyl)-4-methoxybenzenesulfonamide (2c)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 to 3/1 as the eluent) to afford the product 2c (63.5 mg, 92% yield, 90% ee) as a yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.30 (m, 3H), 7.30 – 7.26 (m, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.76 (t, J = 6.4 Hz, 1H), 3.86 (s, 3H), 3.80 (t, J = 7.4 Hz, 1H), 3.02 – 2.89 (m, 2H), 1.98 – 1.83 (m, 2H), 1.68 – 1.58 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 163.04, 135.39, 131.29, 129.22, 128.27, 127.28, 120.61, 114.45, 55.74, 42.28, 36.80, 32.71, 26.98. HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₈H₂₀N₂O₃SNa: 367.1092, found: 367.1082.

[R]ᵈ⁺ = 21.03 (c 0.50, CHCl₃). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 7/3, flow 0.5 mL/min, detection at 214 nm) retention time = 27.64 min (minor) and 29.80 min (major).

(R)-4-chloro-N-(4-cyano-4-phenylbutyl)benzenesulfonamide (2d)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2d (51.7 mg, 74% yield, 91% ee) as a white solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.30 – 7.26 (m, 2H), 4.84 (t, J = 6.4 Hz, 1H), 3.82 (t, J = 7.3 Hz, 1H), 3.05 – 2.92 (m, 2H), 1.99 – 1.85 (m, 2H), 1.73 – 1.58 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.42, 138.34, 135.24, 129.64, 129.30, 128.55, 128.39, 127.27, 120.54, 42.44, 36.85, 32.69, 27.07. HRMS (ESI) (m/z): [M+Na]⁺ calcd. for C₁₇H₁₇ClN₂O₃SNa: 371.0597, found: 371.0591.

[R]ᵈ⁺ = 13.10 (c 1.0, CHCl₃). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 7/3, flow 0.5 mL/min, detection at 214 nm) retention time = 20.62 min (minor) and 22.13 min (major).
(R)-N-(4-cyano-4-phenylbutyl)-4-(trifluoromethyl)benzenesulfonamide (2e)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2e (74.1 mg, 97% yield, 93% ee) as a colourless oil. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 7.96 (d, \(J = 8.2\) Hz, 2H), 7.77 (d, \(J = 8.2\) Hz, 2H), 7.40 – 7.31 (m, 3H), 7.30 – 7.26 (m, 2H), 4.92 (t, \(J = 6.3\) Hz, 1H), 3.83 (t, \(J = 7.3\) Hz, 1H), 3.10 – 2.93 (m, 2H), 1.99 – 1.89 (m, 2H), 1.73 – 1.62 (m, 2H). \(^1^3\)C NMR (101 MHz, Chloroform-d) \(\delta\) 143.47, 135.20, 139.78, 138.10, 132.87, 132.31, 129.87, 129.31, 127.15, 127.04, 120.76, 42.39, 36.40, 32.68, 27.13.

HRMS (ESI) \((\text{m}/\text{z})\): [M+Na]\(^+\) calcd. for C\(_{18}\)H\(_{17}\)F\(_3\)N\(_2\)O\(_2\)SNa: 405.0861, found: 405.0871. \([\alpha]_D^{20.0} = 11.51\) (c 1.0, CHCl\(_3\)). HPLC (AS-H, 0.46*25 cm, 5 \(\mu\)m, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 56.98 min (major) and 69.90 min (minor).

(R)-N-(4-cyano-4-(p-tolyl)butyl)benzenesulfonamide (2f)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2f (62.4 mg, 95% yield, 84% ee) as a white solid. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 7.89 – 7.79 (m, 2H), 7.62 – 7.54 (m, 1H), 7.54 – 7.46 (m, 2H), 7.20 – 7.11 (m, 4H), 5.02 – 4.86 (m, 1H), 3.74 (t, \(J = 7.3\) Hz, 1H), 3.06 – 2.86 (m, 2H), 2.34 (s, 3H), 1.94 – 1.83 (m, 2H), 1.68 – 1.56 (m, 2H). \(^1^3\)C NMR (101 MHz, Chloroform-d) \(\delta\) 139.78, 138.10, 132.87, 132.31, 129.87, 129.31, 127.15, 127.04, 120.76, 42.39, 36.40, 32.66, 27.01, 21.16. HRMS (ESI) \((\text{m}/\text{z})\): [M+Na]\(^+\) calcd. for C\(_{18}\)H\(_{20}\)N\(_2\)O\(_2\)SNa: 351.1143, found: 351.1140.

\([\alpha]_D^{20.0} = 14.60\) (c 0.70, CHCl\(_3\)). HPLC (AD-H, 0.46*25 cm, 5 \(\mu\)m, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 30.62 min (minor) and 34.30 min (major).

(R)-N-(4-(4-(tert-butyl)phenyl)-4-cyano-butyl)benzenesulfonamide (2g)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2g (67.2 mg, 91% yield, 86% ee) as a white solid. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 7.89 – 7.82 (m, 2H), 7.60 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.37 (d, \(J = 8.3\) Hz, 2H), 7.20 (d, \(J = 8.3\) Hz, 2H), 4.87 (t, \(J = 6.0\) Hz, 1H), 3.76 (t, \(J = 7.3\) Hz, 1H), 3.06 – 2.90 (m, 2H), 2.00 – 1.81 (m, 2H), 1.70 – 1.58 (m, 2H), 1.31 (s, 9H). \(^1^3\)C NMR (101 MHz, Chloroform-d) \(\delta\) 151.36, 139.81, 132.89, 132.26, 129.33, 127.06, 126.98, 126.17, 120.74, 42.44, 36.38, 34.68, 32.66, 31.38, 27.09. HRMS (ESI) \((\text{m}/\text{z})\): [M+Na]\(^+\) calcd. for C\(_{31}\)H\(_{36}\)N\(_2\)O\(_2\)SNa: 393.1613, found: 393.1609.

\([\alpha]_D^{20.0} = 13.20\) (c 0.61, CHCl\(_3\)). HPLC (OD-H, 0.46*25 cm, 5 \(\mu\)m, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 19.71 min (minor) and 22.73 min (major).

(R)-N-(4-cyano-4-(4-pentylphenyl)butyl)benzenesulfonamide (2h)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2h (70.8 mg, 92% yield, 86% ee) as a white solid. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 7.88 – 7.81
Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2i (71.4 mg, 91% yield, 91% ee) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.81 (m, 2H), 7.61 – 7.54 (m, 5H), 7.53 – 7.42 (m, 4H), 7.40 – 7.32 (m, 3H), 4.80 (t, $J = 6.2$ Hz, 1H), 3.85 (t, $J = 7.3$ Hz, 1H), 3.08 – 2.93 (m, 2H), 2.07 – 1.86 (m, 2H), 1.76 – 1.59 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 141.32, 140.26, 139.80, 134.28, 132.93, 129.35, 129.01, 127.94, 127.78, 127.75, 127.18, 127.07, 120.52, 42.41, 36.51, 32.67, 27.10. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{23}$H$_{27}$N$_2$O$_3$SNa: 413.1300, found: 413.1292.

$[\alpha]_{D}^{20.0}$ = 11.58 (c 0.60, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 20.22 min (minor) and 21.85 min (major).

(R)-N-(4-[[1,1'-biphenyl]-4-yl]-4-cyanobutyl)benzenesulfonamide (2j)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2j (34.5 mg, 42% yield, 86% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.81 (m, 2H), 7.59 (t, $J = 7.0$ Hz, 1H), 7.52 (t, $J = 7.7$ Hz, 2H), 7.36 (t, $J = 7.7$ Hz, 2H), 7.23 (d, $J = 8.5$ Hz, 2H), 7.14 (t, $J = 7.4$ Hz, 1H), 6.99 (dd, $J = 15.0$, 8.4 Hz, 4H), 4.73 (t, $J = 6.3$ Hz, 1H), 3.78 (t, $J = 7.4$ Hz, 1H), 3.07 – 2.93 (m, 2H), 1.92 (t, $J = 7.7$ Hz, 2H), 1.73 – 1.57 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 157.53, 156.72, 139.85, 132.95, 130.01, 129.86, 129.37, 128.74, 127.08, 123.90, 120.59, 119.36, 119.21, 42.42, 36.19, 32.76, 27.14. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{23}$H$_{27}$N$_2$O$_3$SNa: 429.1249, found: 429.1248.

$[\alpha]_{D}^{20.0}$ = 7.03 (c 0.34, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 46.47 min (major) and 54.01 min (minor).

(R)-N-(4-cyano-4-(4-phenoxyphenyl)butyl)benzenesulfonamide (2k)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2k (66.5 mg, 83% yield, 88% ee) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.91 – 7.78 (m, 2H), 7.63 – 7.55 (m, 1H), 7.55 – 7.47 (m, 2H), 7.33 (d, $J = 8.3$ Hz, 2H), 7.21 (d, $J = 8.2$ Hz, 2H), 5.03 – 4.71 (m, 1H), 3.85 (t, $J = 7.3$ Hz, 1H), 3.11 – 2.91 (m, 2H), 2.03 – 1.83 (m, 2H), 1.75 – 1.58 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 148.96, 139.64, 134.00, 132.87, 129.26, 128.75, 126.93, 121.62, 120.19 (q,
Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 as the eluent) to afford the product 2I (59.5 mg, 85% yield, 90% ee) as a white solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.80 (m, 2H), 7.62 – 7.56 (m, 1H), 7.54 – 7.47 (m, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 5.05 (s, 1H), 3.80 (t, J = 7.4 Hz, 1H), 3.04 – 2.92 (m, 2H), 1.96 – 1.84 (m, 2H), 1.69 – 1.57 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.71, 134.27, 133.89, 132.95, 129.42, 129.35, 128.69, 127.01, 120.17, 42.24, 36.20, 32.55, 26.95. HRMS (ESI) (m/z): [M+Na]+ calcd. for C₁₇H₁₇F₂N₂O₄SnA: 415.0092, found: 415.0092.

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 as the eluent) to afford the product 2m (74.1 mg, 94% yield, 89% ee) as a white solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.90 – 7.80 (m, 2H), 7.62 – 7.56 (m, 1H), 7.55 – 7.44 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 4.98 (s, 1H), 3.79 (t, J = 7.4 Hz, 1H), 3.06 – 2.91 (m, 2H), 2.00 – 1.80 (m, 2H), 1.70 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.72, 134.41, 132.97, 132.40, 129.36, 129.01, 127.02, 122.36, 120.07, 42.25, 36.28, 32.51, 26.97. HRMS (ESI) (m/z): [M+Na]+ calcd. for C₁₇H₁₇BrN₂O₄SnA: 415.0092, found: 415.0092.

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 as the eluent) to afford the product 2n (63.0 mg, 82% yield, 87% ee) as a yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.81 (m, 2H), 7.65 – 7.55 (m, 3H), 7.54 – 7.48 (m, 2H), 7.43 (d, J = 8.1 Hz, 2H), 5.04 (s, 1H), 3.91 (dd, J = 8.5, 6.3 Hz, 1H), 3.10 – 2.91 (m, 2H), 2.05 – 1.86 (m, 2H), 1.72 – 1.61 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.70, 139.40, 133.00, 130.69 (q, J = 32.8 Hz), 129.38, 127.81, 127.02, 126.27 (q, J = 3.7 Hz), 123.87 (q, J = 273.1 Hz), 119.82, 42.20, 36.62, 32.53, 27.01. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.68 (s). HRMS (ESI) (m/z): [M+Na]+ calcd. for C₁₇H₁₇F₃N₂O₂SnA: 405.0861, found: 405.0862.

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 as the eluent) to afford the product 2n (63.0 mg, 82% yield, 87% ee) as a yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.81 (m, 2H), 7.65 – 7.55 (m, 3H), 7.54 – 7.48 (m, 2H), 7.43 (d, J = 8.1 Hz, 2H), 5.04 (s, 1H), 3.91 (dd, J = 8.5, 6.3 Hz, 1H), 3.10 – 2.91 (m, 2H), 2.05 – 1.86 (m, 2H), 1.72 – 1.61 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.70, 139.40, 133.00, 130.69 (q, J = 32.8 Hz), 129.38, 127.81, 127.02, 126.27 (q, J = 3.7 Hz), 123.87 (q, J = 273.1 Hz), 119.82, 42.20, 36.62, 32.53, 27.01. ¹⁹F NMR (376 MHz, Chloroform-d) δ -62.68 (s). HRMS (ESI) (m/z): [M+Na]+ calcd. for C₁₇H₁₇F₃N₂O₂SnA: 405.0861, found: 405.0862.
(R)-N-(4-cyano-4-(m-tolyl)butyl)benzenesulfonamide (2o)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2o (50.1 mg, 76% yield, 90% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.87 – 7.81 (m, 2H), 7.61 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.15 – 7.03 (m, 3H), 4.80 (s, 1H), 3.74 (t, J = 7.3 Hz, 1H), 3.04 – 2.93 (m, 2H), 2.35 (s, 3H), 1.96 – 1.85 (m, 2H), 1.70 – 1.59 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.84, 139.12, 135.26, 132.90, 129.33, 129.12, 129.07, 127.95, 127.07, 124.35, 120.67, 42.44, 36.78, 32.71, 27.12, 21.49. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{20}$N$_2$O$_2$SNa: 351.1143, found: 351.1142.

[α]$_D^{20.0}$ = 14.95 (c 0.60, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 23.46 min (minor) and 26.59 min (major).

(R)-N-(4-cyano-4-(3-methoxyphenyl)butyl)benzenesulfonamide (2p)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 to 3/1 as the eluent) to afford the product 2p (60.5 mg, 88% yield, 93% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.87 – 7.81 (m, 2H), 7.60 – 7.55 (m, 1H), 7.54 – 7.47 (m, 2H), 7.26 (t, J = 7.9 Hz, 1H), 6.87 – 6.80 (m, 3H), 4.85 (t, J = 5.8 Hz, 1H), 3.81 (s, 3H), 3.76 (t, J = 7.36 Hz, 1H), 3.03 – 2.93 (m, 2H), 1.95 – 1.87 (m, 2H), 1.68 – 1.59 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.01, 139.83, 136.80, 132.90, 130.32, 129.33, 127.05, 124.35, 119.54, 113.69, 113.13, 55.46, 42.40, 36.80, 32.59, 27.07. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{20}$N$_2$O$_2$SNa: 367.1092, found: 367.1102.

[α]$_D^{20.0}$ = 11.36 (c 0.80, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 39.34 min (minor) and 45.54 min (major).

(R)-N-(4-(3-chlorophenyl)-4-cyanobutyl)benzenesulfonamide (2q)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2q (51.6 mg, 74% yield, 93% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.90 – 7.80 (m, 2H), 7.63 – 7.56 (m, 1H), 7.56 – 7.47 (m, 2H), 7.33 – 7.27 (m, 3H), 7.22 – 7.15 (m, 1H), 4.86 (t, J = 6.3 Hz, 1H), 3.80 (dd, J = 8.4, 6.4 Hz, 1H), 3.11 – 2.91 (m, 2H), 2.00 – 1.82 (m, 2H), 1.74 – 1.56 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.75, 137.30, 135.12, 132.99, 130.58, 129.38, 128.64, 127.51, 127.05, 125.55, 119.93, 42.29, 36.48, 32.55, 27.05. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{17}$H$_{17}$ClN$_2$O$_2$SNa: 371.0597, found: 371.0601.

[α]$_D^{20.0}$ = 13.75 (c 0.70, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 μm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 27.74 min (minor) and 32.43 min (major).

(R)-N-(4-cyano-4-(3-(trifluoromethyl)phenyl)butyl)benzenesulfonamide (2r)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2r (54.1 mg, 71% yield, 90% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.81 (m, 2H), 7.62 – 7.56
Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2s (51.5 mg, 78% yield, 90% ee) as a light yellow solid.

1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.80 (m, 2H), 7.60 – 7.54 (m, 1H), 7.54 – 7.47 (m, 2H), 7.38 – 7.31 (m, 1H), 7.25 – 7.19 (m, 2H), 7.19 – 7.14 (m, 1H), 4.88 (t, $J = 6.2$ Hz, 1H), 3.94 (t, $J = 7.3$ Hz, 1H), 3.11 – 2.91 (m, 2H), 2.31 (s, 3H), 2.00 – 1.82 (m, 2H), 1.74 – 1.56 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.72, 135.07, 133.67, 132.91, 131.20, 129.89, 128.35, 127.43, 127.05, 126.97, 120.84, 42.50, 33.73, 31.27, 27.26, 19.24. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{17}$F$_3$N$_2$O$_2$SNa: 405.0861, found: 405.0859.

[α]$_{D}^{20.0}$ = 4.48 (c 0.60, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 20.85 min (minor) and 23.16 min (major).

(R)-N-(4-cyano-4-(o-tolyl)butyl)benzenesulfonamide (2s)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2t (42.9 mg, 65% yield, 94% ee) as a yellow oil.

1H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.81 (m, 2H), 7.62 – 7.55 (m, 1H), 7.55 – 7.48 (m, 2H), 7.44 – 7.37 (m, 1H), 7.37 – 7.29 (m, 1H), 7.22 – 7.14 (m, 1H), 7.12 – 7.04 (m, 1H), 4.63 (t, $J = 6.3$ Hz, 1H), 4.07 (t, $J = 7.3$ Hz, 1H), 3.01 (q, $J = 6.7$ Hz, 2H), 1.98 – 1.87 (m, 2H), 1.74 – 1.58 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 159.80 (d, $J = 247.6$ Hz), 139.85, 132.91, 130.36 (d, $J = 8.3$ Hz), 129.34, 129.01 (d, $J = 3.1$ Hz), 127.08, 125.01 (d, $J = 3.7$ Hz), 122.61 (d, $J = 14.0$ Hz), 119.71, 116.06 (d, $J = 21.4$ Hz), 42.44, 31.27, 30.79 (d, $J = 3.3$ Hz), 27.20. 19F NMR (376 MHz, Chloroform-d) δ -118.14 – -118.34 (m). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{20}$F$_3$N$_2$O$_2$SNa: 355.1143, found: 355.1148.

[α]$_{D}^{20.0}$ = 32.73 (c 0.60, CHCl$_3$). HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 30.22 min (minor) and 34.51 min (major).

(R)-N-(4-cyano-4-(2-fluorophenyl)butyl)benzenesulfonamide (2t)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2u (55.6 mg, 73% yield, 95% ee) as a yellow oil.

1H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.82 (m, 2H), 7.70 – 7.65 (m, 1H), 7.64 – 7.54 (m, 3H), 7.54 – 7.42 (m, 3H), 4.77 (s, 1H), 4.08 (dd, $J = 9.1, 5.7$ Hz, 1H), 3.06 – 2.97 (m, 2H), 1.98 – 1.84 (m, 2H), 1.84 – 1.72 (m, 1H), 1.70 – 1.58 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 139.84, 134.37, 133.04, 132.92, 129.59, 129.34, 128.68, 127.71 (q, $J = 30.4$ Hz), 127.09, 126.67 (q, $J =$
5.5 Hz), 124.01 (q, J = 273.8 Hz), 120.18, 42.49, 33.47 (q, J = 2.3 Hz), 33.32, 27.67. 19F NMR (376 MHz, Chloroform-d) δ -58.82 (s). HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{17}$F$_2$N$_2$O$_2$SNa: 405.0861, found: 405.0855.

[α]$_D$$_{20.0}^{19}$ = 18.90 (c 0.71, CHCl$_3$). HPLC (AD-H, 0.46×25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 20.36 min (minor) and 23.87 min (major).

(R)-N-(4-(4-chloro-2-methylphenyl)-4-cyanobutyl)benzenesulfonamide (2v)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2v (47.3 mg, 65% yield, 85% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.95 – 7.80 (m, 2H), 7.65 – 7.47 (m, 3H), 7.35 – 7.15 (m, 3H), 4.90 (s, 1H), 3.92 (t, J = 7.3 Hz, 1H), 3.12 – 2.90 (m, 2H), 2.29 (s, 3H), 1.96 – 1.78 (m, 2H), 1.78 – 1.60 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.74, 137.10, 134.03, 132.95, 132.28, 131.07, 129.35, 128.83, 127.05, 120.40, 42.42, 33.30, 31.15, 27.19, 19.16. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{18}$H$_{17}$F$_2$N$_2$O$_2$SNa: 385.0753, found: 385.0753.

[α]$_D$$_{20.0}^{19}$ = 19.91 (c 0.67, CHCl$_3$). HPLC (OD-H, 0.46×25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 30.23 min (minor) and 32.25 min (major).

(R)-N-(4-cyano-4-(naphthalen-1-yl)butyl)benzenesulfonamide (2w)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2w (49.4 mg, 68% yield, 90% ee) as a yellow oil. 1H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.87 (m, 2H), 7.85 – 7.79 (m, 3H), 7.63 – 7.50 (m, 4H), 7.50 – 7.42 (m, 3H), 4.73 (t, J = 6.3 Hz, 1H), 4.56 (dd, J = 8.8, 5.3 Hz, 1H), 3.08 – 2.92 (m, 2H), 2.16 – 1.92 (m, 2H), 1.81 – 1.66 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.71, 134.12, 132.89, 130.99, 129.94, 129.44, 129.30, 129.23, 127.22, 127.05, 126.34, 125.63, 125.52, 122.17, 120.80, 42.49, 33.90, 31.55, 27.34. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{21}$H$_{20}$N$_2$O$_2$SNa: 387.1143, found: 387.1139.

[α]$_D$$_{20.0}^{19}$ = 52.21 (c 0.50, CHCl$_3$). HPLC (AD-H, 0.46×25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 48.28 min (major) and 64.37 min (minor).

(R)-N-(4-cyano-4-(naphthalen-2-yl)butyl)benzenesulfonamide (2x)

Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2x (60.1 mg, 82% yield, 90% ee) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.86 – 7.78 (m, 5H), 7.77 – 7.73 (m, 1H), 7.55 – 7.48 (m, 3H), 7.48 – 7.41 (m, 2H), 7.33 (dd, J = 8.5, 1.8 Hz, 1H), 4.90 (t, J = 6.2 Hz, 1H), 3.95 (t, J = 7.2 Hz, 1H), 3.05 – 2.91 (m, 2H), 2.05 – 1.93 (m, 2H), 1.69 – 1.60 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 139.75, 133.31, 132.91, 132.87, 132.57, 129.29, 129.27, 127.97, 127.82, 127.01, 126.88, 126.69, 126.42, 124.72, 120.58, 42.38, 36.92, 32.49, 27.02. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{21}$H$_{20}$N$_2$O$_2$SNa: 387.1143, found: 387.1140.

[α]$_D$$_{20.0}^{19}$ = 15.25 (c 0.67, CHCl$_3$). HPLC (OD-H, 0.46×25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 48.95 min (minor) and 55.55 min (major).

(S)-N-(4-cyano-4-(thiophen-2-yl)butyl)benzenesulfonamide (2y)

S21
Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2y (36.2 mg, 56% yield, 93% ee) as a yellow oil. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.88 – 7.83 (m, 2H), 7.62 – 7.56 (m, 1H), 7.56 – 7.48 (m, 2H), 7.28 – 7.24 (m, 1H), 7.05 – 7.00 (m, 1H), 6.99 – 6.93 (m, 1H), 4.83 (t, \(J = 5.9\) Hz, 1H), 4.08 (t, \(J = 7.2\) Hz, 1H), 3.82 (dd, \(J = 10.6, 3.8\) Hz, 1H), 2.85 (dd, \(J = 13.1, 8.2\) Hz, 1H), 2.71 (dd, \(J = 13.1, 6.3\) Hz, 1H), 1.98 (dd, \(J = 14.4, 10.6\) Hz, 1H), 1.75 (dd, \(J = 14.5, 3.9\) Hz, 1H), 1.05 (s, 3H), 1.00 (s, 3H). \(^13\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 139.76, 137.17, 132.93, 129.37, 128.20, 127.35, 127.04, 122.04, 52.64, 45.38, 34.77, 32.64, 25.69, 25.13. HRMS (ESI) (m/z): [M+Na]\(^{+}\) calcd. for C\(_{19}\)H\(_{22}\)N\(_2\)O\(_2\)S\(_2\)Na: 365.1300, found: 365.1302.

\([\alpha]_D^{20.0} = 18.59\) (c 0.30, CHCl\(_3\)). HPLC (AD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 8/2, flow 0.5 mL/min, detection at 214 nm) retention time = 37.54 min (minor) and 41.14 min (major).

(R)-N-(4-cyano-2,2-dimethyl-4-phenylbutyl)benzenesulfonamide (2z) Prepared following general procedure B the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate = 5/1 as the eluent) to afford the product 2z (68.5 mg, 92% yield, 86% ee) as a white solid. \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.90 – 7.81 (m, 2H), 7.61 – 7.55 (m, 1H), 7.54 – 7.48 (m, 2H), 7.39 – 7.29 (m, 5H), 4.91 (t, \(J = 7.2\) Hz, 1H), 3.82 (dd, \(J = 10.6, 3.8\) Hz, 1H), 2.85 (dd, \(J = 13.1, 8.2\) Hz, 1H), 2.71 (dd, \(J = 13.1, 6.3\) Hz, 1H), 1.98 (dd, \(J = 14.4, 10.6\) Hz, 1H), 1.75 (dd, \(J = 14.5, 3.9\) Hz, 1H), 1.05 (s, 3H), 1.00 (s, 3H). \(^13\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 139.76, 137.17, 132.93, 129.37, 128.20, 127.35, 127.04, 122.04, 52.64, 45.38, 34.77, 32.64, 25.69, 25.13. HRMS (ESI) (m/z): [M+Na]\(^{+}\) calcd. for C\(_{19}\)H\(_{22}\)N\(_2\)O\(_2\)S\(_2\)Na: 365.1300, found: 365.1302.

\([\alpha]_D^{20.0} = 12.35\) (c 0.50, CHCl\(_3\)). HPLC (OD-H, 0.46*25 cm, 5 µm, hexane/isopropanol = 7/3, flow 0.5 mL/min, detection at 214 nm) retention time = 13.26 min (minor) and 17.62 min (major).
Mechanistic Studies

1. Procedure of the radical trapping experiment with TEMPO:

![Scheme S1](image)

Scheme S1. The radical trapping experiment with TEMPO, related to Scheme 2.

To a sealed tube containing TEMPO, solution A (2.0 mL), TMSCN (11.9 mg, 15 µL, 0.12 mmol, 1.2 equiv) and 1a (0.1 mmol, 1.0 equiv) were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for three days. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product.

2. Procedure of competition experiments:

![Scheme S2](image)

Scheme S2. Competitive experiments, related to Scheme 2.

To a sealed tube, solution A (2.0 mL), TMSCN (9.9 mg, 12.5 µL, 0.10 mmol, 1.0 equiv), 1c (0.1 mmol, 1.0 equiv) and 1e (0.1 mmol, 1.0 equiv) were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for 12 h. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product.

To a sealed tube, solution A (2.0 mL), TMSCN (9.9 mg, 12.5 µL, 0.10 mmol, 1.0 equiv), 1j (0.1 mmol, 1.0 equiv) and 1n (0.1 mmol, 1.0 equiv) were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for 8 h. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product.
Figure S1. 1H NMR spectrum of the mixture of 2j and 2n, related to Scheme 2.

3. Procedure of 5-exo cyclization reaction:

Scheme S3. 5-exo cyclization reaction, related to Scheme 2.

To a sealed tube, solution A (4.0 mL), TMSCN (23.8 mg, 30.0 uL, 0.24 mmol, 1.2 equiv), 4 (0.2 mmol, 1.0 equiv) were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at room temperature for two days. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleumether and ethylacetate (PE/EA = 5:1) to afford the product.

2-(1-(phenylsulfonyl)pyrrolidin-2-yl)acetonitrile (5)

1H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.82 (m, 2H), 7.69 – 7.62 (m, 1H), 7.61 – 7.54 (m, 2H), 3.90 – 3.78 (m, 1H), 3.52 (dt, $J = 10.2, 5.9$ Hz, 1H), 3.19 (dt, $J = 10.1, 7.1$ Hz, 1H), 2.90 (dd, $J = 16.8, 3.6$ Hz, 1H), 2.81 (dd, $J = 16.8, 7.9$ Hz, 1H), 2.03 – 1.93 (m, 1H), 1.90 (q, $J = 7.0$ Hz, 2H), 1.66 – 1.58 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 136.77, 133.34, 129.46, 127.61, 117.52, 56.11, 49.72, 31.37, 25.40, 24.02. HRMS (ESI) (m/z): [M+Na]$^+$ calcd. for C$_{12}$H$_{14}$N$_2$O$_2$SNa: 273.0674, found: 273.0675.

4. Procedure of radical clock experiment:
Scheme S4. Radical clock experiment, related to Scheme 2.

To a sealed tube solution A (3.0 mL), TMSCN (17.9 mg, 22.5 µL, 0.18 mmol, 1.2 equiv) and 6 (0.15 mmol, 1.0 equiv) were sequentially added under Ar atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred at 10 °C for three days. After the reaction was completed, the mixture was concentrated. Then the residue was purified by silica gel chromatography with petroleum ether and ethyl acetate (PE/EA = 5:1) to afford the product.

(R)-N-(7-cyano-7-phenylhept-4-en-1-yl)benzenesulfonamide (7)

\(^1 \)H NMR (400 MHz, Chloroform-\(d \)) \(\delta 7.92 - 7.82 \) (m, 2H), \(7.63 - 7.56 \) (m, 1H), \(7.56 - 7.49 \) (m, 2H), \(7.40 - 7.28 \) (m, 5H), \(5.55 - 5.32 \) (m, 2H), \(4.59 \) (s, 1H), \(3.80 \) (t, \(J = 7.2 \) Hz, 1H), \(3.01 - 2.84 \) (m, 2H), \(2.53 \) (t, \(J = 6.9 \) Hz, 2H), \(2.03 \) (q, \(J = 6.6 \) Hz, 2H), 1.59 – 1.45 (m, 2H). \(^{13} \)C NMR (101 MHz, Chloroform-\(d \)) \(\delta 140.08, 135.37, 134.10, 132.74, 129.25, 129.16, 128.23, 127.42, 127.14, 125.56, 120.59, 42.54, 38.93, 38.10, 29.35, 29.10. HRMS (ESI) (m/z): [M+Na]\(^+\) calcd. for C\(_{20}\)H\(_{22}\)N\(_2\)O\(_2\)SNa: 377.1300, found: 377.1304.
References:

Wang, D., Wu, L., Wang, F., Wan, X., Chen, P., Lin, Z., Liu, G. Asymmetric copper-catalyzed intermolecular aminoarylation of styrenes: efficient access to optical 2,2-diarylethylamines. *J. Am. Chem. Soc.* **139**, 6811-6814 (2017).

Zhang, Z., Stateman, L. M., Nagib, D. A. δ C–H (hetero)arylation *via* Cu-catalyzed radical relay. *Chem. Sci.* **10**, 1207-1211 (2019).
Figure S2. X-Ray crystal data of 2a, related to Figure 2

Table 9 Crystal data and structure refinement for 2a, related to Figure 2.

Identification code	2a
Empirical formula	C₁₇H₁₈N₂O₂S
Formula weight	314.39
Temperature/K	293(2)
Crystal system orthorhombic

Parameter	Value
Space group	P2₁2₁2₁
a/Å	8.93873(10)
b/Å	10.13670(8)
c/Å	18.31766(18)
α/°	90
β/°	90
γ/°	90
Volume/Å³	1659.75(3)
Z	4
ρ(calc) g/cm³	1.258
μ/mm⁻¹	1.799
F(000)	664.0
Crystal size/mm³	0.3 × 0.3 × 0.2
Radiation CuKα (λ = 1.54184)	9.656 to 147.836
2Θ range for data collection/°	9.656 to 147.836
Index ranges	-10 ≤ h ≤ 11, -12 ≤ k ≤ 12, -22 ≤ l ≤ 22
Reflections collected	15923
Independent reflections	3313 [R(int) = 0.0252, R(sigma) = 0.0146]
Data/restraints/parameters	3313/0/199
Goodness-of-fit on F²	1.114
Final R indexes [I>2σ(I)]	R₁ = 0.0344, wR₂ = 0.1209
Final R indexes [all data]	R₁ = 0.0353, wR₂ = 0.1236
Largest diff. peak/hole / Å⁻³	0.16/-0.37
Flack parameter	0.009(6)

Table 10 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10⁻³) for 2a. U(eq) is defined as 1/3 of the trace of the orthogonalised U_ij tensor, related to Figure 2.

Atom	x	y	z	U(eq)
S001	-4627.8(6)	-1386.4(5)	-2339.6(3)	56.6(2)
O002	-5617(2)	-262.1(18)	-2362.4(14)	79.9(6)
N1	-5654(2)	-2680.6(18)	-2370.3(11)	58.0(4)
C1	-3707(3)	-1337(2)	-1493.1(12)	55.2(5)
C11	-10477(3)	-3162(2)	-4098.7(12)	57.0(5)
C9	-8704(3)	-2991(2)	-3008.3(12)	57.1(5)
O007	-3511(2)	-1512(3)	-2887.8(11)	81.3(6)
C8	-8381(3)	-2306(2)	-2287.6(13)	58.5(5)
C10	-10138(3)	-2483(2)	-3377.4(13)	56.4(5)
C7	-6986(3)	-2815(2)	-1913.9(12)	61.0(6)
C13	-10029(5)	-3464(4)	-5380.9(16)	90.5(10)
C17	-10031(3)	-1046(3)	-3478.7(14)	69.4(7)
N2	-9918(4)	56(2)	-3550.9(19)	99.5(10)
C3	-1792(5)	-2174(4)	-713.5(17)	88.3(9)
C12	-9728(4)	-2818(3)	-4727.1(15)	75.3(7)
C16	-11516(4)	-4156(3)	-4122.9(17)	76.3(7)
Table 11 Anisotropic Displacement Parameters (Å²×10³) for 2a. The Anisotropic displacement factor exponent takes the form: -2π²[h²a²U11+2hka*b*U12+…], related to Figure 2.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
S001	52.1(3)	48.7(3)	69.0(3)	5.9(2)	2.7(2)	-1.6(2)
O002	65.7(10)	41.6(7)	132.5(16)	15.8(9)	-5.7(12)	-0.9(8)
N1	56.9(10)	43.1(8)	73.9(10)	-4.1(7)	-4.9(9)	1.4(7)
C1	56.8(11)	47.4(9)	61.5(10)	-4.8(8)	5.8(9)	-10.2(9)
C11	52.4(12)	55.8(10)	62.9(11)	2.5(8)	-3.4(10)	4.2(9)
C9	56.4(12)	50.6(10)	64.1(11)	-2.5(8)	-0.4(9)	0.5(9)
O007	63.2(12)	115.2(17)	65.4(9)	11.1(9)	6.7(8)	-2.9(12)
C8	55.0(12)	58.4(11)	63.1(11)	-7.0(9)	4.2(10)	-4.4(9)
C10	51.0(12)	55.5(11)	62.6(11)	-0.6(8)	5.6(9)	-0.9(2)
C7	70.2(14)	53.4(11)	59.4(11)	3.7(9)	-7.1(10)	-14.6(10)
C13	115(3)	95(2)	62.1(13)	-3.2(13)	0.7(15)	16(2)
C17	72.8(18)	57.8(12)	77.5(13)	-5.8(11)	-0.3(13)	12.8(11)
N2	124(3)	55.3(13)	119(2)	-4.7(13)	-6(2)	15.6(14)
C3	89(2)	99(2)	77.7(16)	18.6(16)	-16.1(16)	-15.0(19)
C12	85.6(19)	73.2(15)	67.2(13)	0.1(11)	5.2(13)	-9.2(15)
C16	70.8(16)	73.7(15)	84.6(16)	2.8(13)	-8.4(15)	-10.9(14)
C14	104(3)	93(2)	82.4(19)	-21.7(16)	-29.7(19)	17.6(19)
C6	92(2)	75.6(16)	90.9(18)	-27.5(15)	18.0(17)	-3.8(16)
C15	87(2)	91(2)	115(3)	-22(2)	-22(2)	-12(2)
C4	139(4)	112(3)	63.8(14)	1.5(17)	-14.2(19)	-52(3)
C2	72.2(15)	63.1(12)	65.5(12)	1.4(11)	-1.4(11)	0.9(12)
C5	140(4)	117(3)	81(2)	-38(2)	14(3)	-25(3)

Table 12 Bond Lengths for 2a, related to Figure 2.

Atom	Atom	Length/Å					
S001	O002	1.443(19)					
S001	N1	1.6011(19)					
S001	C1	1.756(2)					
S001	O007	1.421(2)					
N1	C7	1.461(3)					
C1	C6	1.381(3)					
C1	C2	1.390(4)					
C11	C10	1.520(3)					
C11	C15	1.390(5)					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
------	------	------	---------	------	------	------	---------
O002	S001	N1	107.14(11)	C11	C10	C9	113.37(19)
O002	S001	C1	106.89(13)	C17	C10	C11	110.6(2)
N1	S001	C1	108.82(10)	C17	C10	C9	109.4(2)
O002	S001	O002	118.72(14)	N1	C7	C8	112.40(18)
O007	S001	N1	107.70(13)	C14	C13	C12	120.1(3)
O007	S001	C1	107.29(12)	N2	C17	C10	178.5(4)
C7	N1	S001	121.51(16)	C2	C3	C4	119.4(4)
C6	C1	S001	120.0(2)	C11	C12	C13	120.5(3)
C6	C1	C2	121.7(3)	C11	C16	C15	120.1(3)
C2	C1	S001	118.31(18)	C13	C14	C15	119.5(3)
C12	C11	C10	121.1(2)	C1	C6	C5	118.2(4)
C16	C11	C10	119.7(2)	C14	C15	C16	120.6(4)
C16	C11	C12	119.2(3)	C5	C4	C3	121.1(3)
C8	C9	C10	112.8(2)	C3	C2	C1	118.8(3)
C7	C8	C9	113.2(2)	C4	C5	C6	120.7(4)

Table 13 Bond Angles for 2a, related to Figure 2.

Atom	x	y	z	U(eq)
H1	-5108.69	-3377.48	-2339.08	70
H9A	-8800.19	-3931.39	-2922.99	68
H9B	-7865.15	-2856.69	-3335.77	68
H8A	-8269.39	-1367.14	-2375.01	71
H8B	-9228.68	-2426.65	-1964.05	71
H10	-10976.48	-2656.57	-3046.07	68
H7A	-6835.46	-2331.35	-1462.77	73
H7B	-7125.64	-3737.04	-1790.83	73
H13	-9510.61	-3233.46	-5802.07	109
H3	-1011.25	-2756.37	-620.13	106
H12	-9016.66	-2149.67	-4714.63	90
H16	-12024.14	-4400.07	-3701.04	92
H14	-11309.5	-4851.88	-5844.58	112
H6	-4874.57	191.83	-1071.3	103
H15	-12506.2	-5480.93	-4789.51	117
H4	-1690.14	-1201.77	246.64	126
H2	-2321.38	-2870.68	-1713.79	80
H5	-3544.5	272.51	19.35	135

Table 14 Hydrogen Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for 2a, related to Figure 2.
NMR Spectra of New Compounds (\(^1\)H NMR, \(^{19}\)F NMR, \(^{13}\)C NMR)

Figure S3. \(^1\)H NMR of 1a, related to Figure 2.

Figure S4. \(^{13}\)C NMR of 1a, related to Figure 2.
Figure S5. 19F NMR of 1a, related to Figure 2.

Figure S6. 1H NMR of 1d, related to Figure 2.
Figure S7. 13C NMR of 1d, related to Figure 2.

Figure S8. 19F NMR of 1d, related to Figure 2.
Figure S9. 1H NMR of 1e, related to Figure 2.

Figure S10. 13C NMR of 1e, related to Figure 2.
Figure S11. 19F NMR of 1e, related to Figure 2.

Figure S12. 1H NMR of 1f, related to Figure 2.
Figure S13. 13C NMR of 1f, related to Figure 2.

Figure S14. 19F NMR of 1f, related to Figure 2.
Figure S15. 1H NMR of 1g, related to Figure 2.

Figure S16. 13C NMR of 1g, related to Figure 2.
Figure S17. 13C NMR of $1g$, related to Figure 2.

Figure S18. 1H NMR of $1h$, related to Figure 2.
Figure S19. 13C NMR of 1h, related to Figure 2.

Figure S20. 1H NMR of 1h, related to Figure 2.
Figure S21. 1H NMR of 1, related to Figure 2.

Figure S22. 13C NMR of 1, related to Figure 2.
Figure S23. 19F NMR of \textit{1i}, related to Figure 2.

Figure S24. 1H NMR of \textit{1j}, related to Figure 2.
Figure S25. 13C NMR of 1j, related to Figure 2.

Figure S26. 19F NMR of 1j, related to Figure 2.
Figure S27. 1H NMR of 1k, related to Figure 2.

Figure S28. 13C NMR of 1k, related to Figure 2.
Figure S29. 19F NMR of 1k, related to Figure 2.

Figure S30. 1H NMR of 1l, related to Figure 2.
Figure S31. 13C NMR of II, related to Figure 2.

Figure S32. 19F NMR of II, related to Figure 2.
Figure S33. 1H NMR of 1m, related to Figure 2.

Figure S34. 13C NMR of 1m, related to Figure 2.
Figure S35. 19F NMR of 1m, related to Figure 2.

Figure S36. 1H NMR of 1n, related to Figure 2.
Figure S37. 1H NMR of 1n, related to Figure 2.

Figure S38. 1H NMR of 1n, related to Figure 2.
Figure S39. 1H NMR of 1o, related to Figure 2.

Figure S40. 13C NMR of 1o, related to Figure 2.
Figure S41. 19F NMR of 1o, related to Figure 2.

Figure S42. 1H NMR of 1p, related to Figure 2.
Figure S43. 13C NMR of 1p, related to Figure 2.

Figure S44. 19F NMR of 1p, related to Figure 2.
Figure S45. 1H NMR of 1q, related to Figure 2.

Figure S46. 13C NMR of 1q, related to Figure 2.
Figure S47. 19F NMR of 1q, related to Figure 2.

Figure S48. 1H NMR of 1r, related to Figure 2.
Figure S49. 13C NMR of Ir, related to Figure 2.

Figure S50. 19F NMR of Ir, related to Figure 2.
Figure S51. 1H NMR of 1s, related to Figure 2.

Figure S52. 13C NMR of 1s, related to Figure 2.
Figure S53. 19F NMR of 1s, related to Figure 2.

Figure S54. 1H NMR of 1t, related to Figure 2.
Figure S55. 13C NMR of It, related to Figure 2.

Figure S56. 19F NMR of It, related to Figure 2.
Figure S57. 1H NMR of 1u, related to Figure 2.

Figure S58. 13C NMR of 1u, related to Figure 2.
Figure S59. 19F NMR of 1u, related to Figure 2.

Figure S60. 1H NMR of 1v, related to Figure 2.
Figure S61. 13C NMR of 1v, related to Figure 2.

Figure S62. 19F NMR of 1v, related to Figure 2.
Figure S63. 1H NMR of 1w, related to Figure 2.

Figure S64. 13C NMR of 1w, related to Figure 2.
Figure S65. 19F NMR of 1w, related to Figure 2.

Figure S66. 1H NMR of 1x, related to Figure 2.
Figure S67. 13C NMR of 1x, related to Figure 2.

Figure S68. 19F NMR of 1x, related to Figure 2.
Figure S69. 1H NMR of 1y, related to Figure 2.

Figure S70. 13C NMR of 1y, related to Figure 2.
Figure S71. 19F NMR of 1y, related to Figure 2.

Figure S72. 1H NMR of 1z, related to Figure 2.
Figure S73. 13C NMR of 1z, related to Figure 2.

Figure S74. 19F NMR of 1z, related to Figure 2.
Figure S75. 1H NMR of 2a, related to Figure 2.

Figure S76. 13C NMR of 2a, related to Figure 2.
Figure S77. 1H NMR of 2b, related to Figure 2.

Figure S78. ^{13}C NMR of 2b, related to Figure 2.
Figure S79. 1H NMR of 2c, related to Figure 2.

Figure S80. 13C NMR of 2c, related to Figure 2.
Figure S81. 1H NMR of 2d, related to Figure 2.

Figure S82. 13C NMR of 2d, related to Figure 2.
Figure S83. 1H NMR of 2e, related to Figure 2.

Figure S84. 13C NMR of 2e, related to Figure 2.
Figure S85. 19F NMR of 2e, related to Figure 2.

Figure S86. 1H NMR of 2f, related to Figure 2.
Figure S87. 13C NMR of 2f, related to Figure 2.

Figure S88. 1H NMR of 2g, related to Figure 2.
Figure S89. 13C NMR of 2g, related to Figure 2.

Figure S90. 1H NMR of 2h, related to Figure 2.
Figure S91. 13C NMR of 2h, related to Figure 2.

Figure S92. 1H NMR of 2i, related to Figure 2.
Figure S93. 13C NMR of 2i, related to Figure 2.

Figure S94. 1H NMR of 2j, related to Figure 2.
Figure S95. 13C NMR of 2j, related to Figure 2.

Figure S96. 1H NMR of 2k, related to Figure 2.
Figure S97. 13C NMR of 2k, related to Figure 2.

Figure S98. 19F NMR of 2k, related to Figure 2.
Figure S99. 1H NMR of 2l, related to Figure 2.

Figure S100. 13C NMR of 2l, related to Figure 2.
Figure S101. 1H NMR of 2m, related to Figure 2.

Figure S102. 13C NMR of 2m, related to Figure 2.
Figure S103. 1H NMR of 2n, related to Figure 2.

Figure S104. 13C NMR of 2n, related to Figure 2.
Figure S105. 19F NMR of 2n, related to Figure 2.

Figure S106. 1H NMR of 2o, related to Figure 2.
Figure S107. ^{13}C NMR of 2o, related to Figure 2.

Figure S108. ^1H NMR of 2p, related to Figure 2.
Figure S109. 13C NMR of 2p, related to Figure 2.

Figure S110. 1H NMR of 2q, related to Figure 2.
Figure S11. 13C NMR of $2q$, related to Figure 2.

Figure S12. 1H NMR of $2r$, related to Figure 2.
Figure S113. 13C NMR of 2r, related to Figure 2.

Figure S114. 19F NMR of 2r, related to Figure 2.
Figure S115. 1H NMR of 2s, related to Figure 2.

Figure S116. 13C NMR of 2s, related to Figure 2.
Figure S117. 1H NMR of 2t, related to Figure 2.

Figure S118. 13C NMR of 2t, related to Figure 2.
Figure S119. 19F NMR of 2t, related to Figure 2.

Figure S120. 1H NMR of 2u, related to Figure 2.
Figure S1. 13C NMR of 2u, related to Figure 2.

Figure S12. 19F NMR of 2u, related to Figure 2.
Figure S123. 1H NMR of 2v, related to Figure 2.

Figure S124. 13C NMR of 2v, related to Figure 2.
Figure S12. 1H NMR of 2w, related to Figure 2.

Figure S12. 13C NMR of 2w, related to Figure 2.
Figure S127. 1H NMR of 2x, related to Figure 2.

Figure S128. 13C NMR of 2x, related to Figure 2.
Figure S129. 1H NMR of 2y, related to Figure 2.

Figure S130. 13C NMR of 2y, related to Figure 2.
Figure S131. 1H NMR of 2z, related to Figure 2.

Figure S132. 13C NMR of 2z, related to Figure 2.
Figure S13. 1H NMR of 4, related to Scheme 2.

Figure S134. 13C NMR of 4, related to Scheme 2.
Figure S135. 19F NMR of 4, related to Scheme 2.

Figure S136. 1H NMR of 5, related to Scheme 2.
Figure S137. 13C NMR of 5, related to Scheme 2.

Figure S138. 1H NMR of 6, related to Scheme 2.
Figure S139. 13C NMR of 6, related to Scheme 2.

Figure S140. 19F NMR of 6, related to Scheme 2.
Figure S141. 1H NMR of 7, related to Scheme 2.

Figure S142. 13C NMR of 7, related to Scheme 2.
Figure S143. HPLC data of rac-2a, related to Figure 2.

Figure S144. HPLC data of 2a, related to Figure 2.
Figure S145. HPLC data of rac-2b, related to Figure 2.

Figure S146. HPLC data of 2b, related to Figure 2.
Figure S147. HPLC data of rac-2c, related to Figure 2.

Figure S148. HPLC data of 2c, related to Figure 2.
Figure S149. HPLC data of rac-2d, related to Figure 2.

Figure S150. HPLC data of 2d, related to Figure 2.
Figure S151. HPLC data of rac-2e, related to Figure 2.

Figure S152. HPLC data of 2e, related to Figure 2.
Figure S153. HPLC data of rac-2f, related to Figure 2.

Figure S154. HPLC data of 2f, related to Figure 2.
Figure S155. HPLC data of rac-2g, related to Figure 2.

Figure S156. HPLC data of 2g, related to Figure 2.
Figure S157. HPLC data of rac-2h, related to Figure 2.

峰号	保留时间	面积	面积%	高度	标记
1	19.678	108938346	48.935	2400876	M
2	21.575	113679614	51.065	2278074	M
总计		222617960	100.000	4678950	

Figure S158. HPLC data of 2h, related to Figure 2.

峰号	保留时间	面积	面积%	高度	标记
1	20.218	5823598	6.877	175191	M
2	21.848	78856066	93.123	1769621	M
总计		84679663	100.000	1944811	
Figure S159. HPLC data of rac-2i, related to Figure 2.

Figure S160. HPLC data of 2i, related to Figure 2.
Figure S161. HPLC data of rac-2j, related to Figure 2.

Figure S162. HPLC data of 2j, related to Figure 2.
Figure S163. HPLC data of rac-2k, related to Figure 2.

Figure S164. HPLC data of 2k, related to Figure 2.
Figure S165. HPLC data of rac-2l, related to Figure 2.

Figure S166. HPLC data of 2l, related to Figure 2.
Figure S167. HPLC data of rac-2m, related to Figure 2.

Figure S168. HPLC data of 2m, related to Figure 2.
Figure S169. HPLC data of rac-2n, related to Figure 2.

Figure S170. HPLC data of 2n, related to Figure 2.
Figure S171. HPLC data of rac-2o, related to Figure 2.

Figure S172. HPLC data of 2o, related to Figure 2.
Figure S173. HPLC data of rac-2p, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	36.386	49.72	22109730	337653	M
2	42.959	50.27	22356073	291561	M
总计		100.00	44465803	629214	

Figure S174. HPLC data of 2p, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	39.338	3.733	2881025	41233	M
2	45.535	96.26	74295852	843885	M
总计		100.00	77178777	886118	
Figure S175. HPLC data of rac-2q, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	27.093	51.853	58740492	1211363	M
2	32.081	48.147	54542872	995634	M
总计		100.000	113283364	2206998	M

Figure S176. HPLC data of 2q, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	27.739	3.725	2027757	44497	M
2	32.430	96.275	52415512	910129	M
总计		100.000	54443269	954617	M
Figure S177. HPLC data of rac-2r, related to Figure 2.

Figure S178. HPLC data of 2r, related to Figure 2.
Figure S179. HPLC data of rac-2s, related to Figure 2.

Figure S180. HPLC data of 2s, related to Figure 2.
Figure S181. HPLC data of rac-2t, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	29.460	49.853	21095675	587941	M
2	34.157	50.147	21220385	505914	M
总计	100.000	42316060	1093855	1093855	1093855

Figure S182. HPLC data of 2t, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	29.227	3.067	1220161	36392	M
2	33.901	96.933	38561063	946462	M
总计	100.000	39781224	982854	982854	
Figure S183. HPLC data of rac-2u, related to Figure 2.

Figure S184. HPLC data of 2u, related to Figure 2.
Figure S185. HPLC data of rac-2\textit{v}, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	30.256	49.631	15059593	287218	M
2	32.672	50.369	15283631	264088	M
总计	100.000	30343224	551305		

Figure S186. HPLC data of 2\textit{v}, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	30.227	7.501	4960280	102400	M
2	32.254	92.499	61165750	1003022	M
总计	100.000		66126029	1105422	
Figure S187. HPLC data of rac-2w, related to Figure 2.

Figure S188. HPLC data of 2w, related to Figure 2.
Figure S189. HPLC data of rac-$2x$, related to Figure 2.

Figure S190. HPLC data of $2x$, related to Figure 2.
Figure S191. HPLC data of rac-2y, related to Figure 2.

Figure S192. HPLC data of 2y, related to Figure 2.
Figure S193. HPLC data of rac-2z, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	12.748	48.951	53812413	1915599	M
2	17.067	51.049	56118615	1575674	M
总计	100.000	109931028	3491183		

Figure S194. HPLC data of 2z, related to Figure 2.

峰号	保留时间	面积%	面积	高度	标记
1	13.263	7.554	3582124	133245	M
2	17.623	92.446	43836613	1185247	M
总计	100.000		47418737	1318492	