De: info@sciforum.net [mailto:info@sciforum.net]
Enviado el: jueves, 14 de noviembre de 2019 2:28
Para: mitopi93@hotmail.com
CC: mitopi93@hotmail.com; tmcampo@quim.ucm.es; palmendros@iqog.csic.es; hanatoli@ucm.es; ecsoc@mdpi.com
Asunto: Your submission has been published in Sciforum [sciforum-027511]

Sciforum

Dear Authors,

Your submission has been published in Sciforum.

Submission ID: sciforum-027511
Title: Solvent-Controlled Switching of Cycloisomerization to Transposition in the Ag/Cu-Promoted Reaction of Terminal α-Allenols
Authors: Mireia Toledano Pinedo, Teresa Martínez del Campo, Pedro Almendros, Hristo Anatóliev
Conference: The 23rd International Electronic Conference on Synthetic Organic Chemistry
Section: General Organic Synthesis

Public version:
https://sciforum.net/paper/view/conference/6467

Your submission:
https://sciforum.net/dashboard/author/submissions/18926e46cf13d960b6d667bf04b2633b

Kind regards,
Your ECSOC-23 Organizing Team
csoc@mdpi.com

Sciforum.net is a platform published and maintained by MDPI.
For technical support, email info@sciforum.net

De: info@sciforum.net [mailto:info@sciforum.net]
Enviado el: miércoles, 13 de noviembre de 2019 18:42
Sciforum

Dear Authors,

Your submission has been approved by our editorial team.

Submission ID: sciforum-027511
Title: Solvent-Controlled Switching of Cycloisomerization to Transposition in the Ag/Cu-Promoted Reaction of Terminal α-Allenols
Authors: Mireia Toledano Pinedo, Teresa Martínez del Campo, Pedro Almendros, Hristo Anatóliev
Conference: The 23rd International Electronic Conference on Synthetic Organic Chemistry
Section: General Organic Synthesis

Editor decision: Approve
Editor comments:

https://sciforum.net/dashboard/author/submissions/18926e46cf13d960b6d667bf04b2633b

Kind regards,

Your ECSOC-23 Organizing Team
ecsoc@mdpi.com

Sciforum.net is a platform published and maintained by MDPI.
For technical support, email info@sciforum.net
Solvent-Controlled Switching of Cycloisomerization to Transposition in the Ag/Cu-Promoted Reaction of Terminal α-Allenols †

Mireia Toledano-Pinedo 1*, Hristo Anatoliev 1, Teresa Martínez del Campo 1 and Pedro Almendros 2

1 Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain.
2 Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006-Madrid, Spain.
* mireiato@ucm.es
† Presented at the 23rd International Electronic Conference on Synthetic Organic Chemistry.

Received: date; Accepted: date; Published: date

Abstract: We report herein a study on the Ag/Cu-catalyzed reactivity of α-allenols. The focus was the development of new methodologies for cyclization and/or transposition of this moiety. By simple solvent switch, the divergent preparation of dihydrofurans and 3-halo-3-alkenals in a controlled manner has been reached.

Keywords: Allene, dihydrofurans and 3-halo-3-alkenals.

1. Introduction

For a long time, it was thought that allenes were highly unstable compounds and for this reason, their chemical and synthetic applications were not well established. In recent years, chemistry of these compounds has attracted the attention of many chemists giving rise to many studies due to the presence of accumulated diene in the structure of the compound [1-3].

There are different properties of the allenes, the following are included in them: 1) allenes are the starting point of a large number of synthetic routes, due to the possibility of housing up to four substituents in their structure; 2) the electronic density as well as the reactivity of each carbon of the allenes can be modulated as a function of the substituent, 3) the inherent axial chirality allows the stereoselective synthesis of optically active allenes, just like the transfer of chirality from the allenes to the final product.

Transition-metal catalyzed nucleophile addition to allene group is a very useful tool for the synthesis of functionalized molecules containing heteroatoms in an atom efficient manner [4-9]. This reactivity has a benefit because of regiochemistry can be controlled using different metals or changing the substituents or the length of the chain between allene and heteroatom in the intramolecular case. The metal can coordinate to one or the other double bonds of the allene, promoting the exo- or endo-attack to the terminal or internal carbons to form different size heterocycles. Five- and six-membered rings are often preferred, but bigger rings have been obtained by modulating the substitution in the starting material and the metal employed.

The electrophilic addition of allenes with “X+” is very attractive since 2-haloallylic halides or alcohols are usually formed. Ma et al. [10,11] described the electrophilic interaction of allenols where they explained the formation of 3-halo-3-alkenals by means of a new synthetic protocol, using α-allenols and X+ as the reaction substrate.
On the other hand, non-aromatic oxacycles are structural units that are extensively encountered in a number of biologically active natural products and functional molecules, and therefore their stereocontrolled synthesis remains an intensive research area [12-18].

Dihydrofurans are one of the most studied oxacycles [19-23] which can be found in different applications such as pharmaceuticals, flavor and fragrance compounds [17].

The main aim of this project is the development of new methodologies for the cyclization and/or transposition of allenols which allow to obtain non-aromatic oxacycles in a regiocontrolled manner, as well as 3-halo-3-alkenals.

2. Results and discussion

In order to synthesize starting materials, the allenylation reaction was carried out on the aldehydes 1 (Scheme 1). Experiments were performed according to previous conditions developed in our research group [24,25]. Briefly, Barbier-type conditions [26] were used where aldehydes 1 reacted with differently substituted propargyl bromides, using indium and THF/NH₄Cl mixture (1:5) as a metal promoter and solvent, respectively. In this way, α-allenols 2 were prepared with total regioselectivity.

![Scheme 1. Synthesis of α-allenols [24,25].](image)

First, the treatment of allenol 2c with different reagents of Cu (II)- and Ag (I)-based salts in DCE was carried out, which provided the compound 2,5-dihydrofuran 3c as the only reaction product resulting from a 5-endo-trig oxycyclization process. As we can see in Table 1, the highest yield of the product was achieved by employing AgF and CuBr₂ at room temperature in DCE.

However, surprisingly, the treatment of the same α-allenol under the same catalytic conditions, but using CH₃CN as solvent instead DCE provided 3-halo-3-alkenal 4c as the only reaction product.
Table 1. Optimization of reaction conditions for the formation of 2,5-dihydrofurans 3 and 3-halo-3-alkenals 4.

Table: Optimization of reaction conditions for the formation of 2,5-dihydrofurans 3 and 3-halo-3-alkenals 4.

[Cu]	[Ag]	Solvent	Conv. 3:4	Yield (%)
CuBr₂	AgF	CH₃CN	0:100	45
CuBr₂	AgF	CH₃CN	0:100	73
CuBr₂	AgF	CH₃CN	0:100	41
CuBr₂	AgF	CH₃CN	100:0	40
CuBr₂	AgF	DCE	100:0	91
Cu(OAc)₂	AgF	DCE	100:0	54
CuBr₂	-	DCE	0:100	38

For this reason, the scope of this divergent reactivity was explored using different α-allenols. In the event, both protocols gave rise to 2,5-dihydrofurans 3 and 3-halo-3-alkenals 4.

Scheme 2. Preparation of 2,5-dihydrofurans 3 and 3-halo-3-alkenals 4.

This protocol allowed to obtain a family of 2,5-dihydrofurans and 3-halo-3-alkenals by changing both aromatic substitution and internal position of the allene. It should be noted that compound 4b could not be isolated because a complex reaction mixture was obtained.

The possible pathway for the formation of 2,5-dihydrofurans 3 requires an initial coordination of the silver at the double terminal bond of the allene. Next, a 5-endo-trig oxycyclization followed by proton release and protonation of the C-Ag bond liberates the 2,5-dihydrofuran product 3.
Scheme 3. Possible mechanism for the formation of 2,5-dihydrofurans 3.

A possible explanation for the formation of the 3-halo-3-alkenals 4 is shown in Scheme 4. It has been proven that the formation of the 3-halo-3-alkenals is a radical process. In this study, the involvement of radicals has been demonstrated through the inhibition of the formation of the corresponding 3-halo-3-alkenal when TEMPO was added to the reaction medium.

Scheme 4. Possible mechanism for the formation of 3-halo-3-alkenals 4.

3. Experimental Section

General methods: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance-30 spectrometer. NMR spectra were recorded in CDCl₃, except otherwise stated. Chemical shifts are given in ppm relative to TMS (¹H, 0.00 ppm), or CDCl₃ (¹3C, 77.0 ppm). Low and high resolution mass spectra were taken on an AGILENT 6520 Accurate-Mass QTOF LC/MS spectrometer using the electrospray mode (ES) unless otherwise stated. IR spectra were recorded on a Bruker Tensor 27 spectrometer. All commercially available compounds were used without further purification.

3.1. These precursors were readily obtained as described in the literature [24,25]: 2a and 2g
3.2. General Procedure for the Preparation of 2,5-dihydrofurans 3a-e and 3-halo-3-alkenals 4a-e.

CuBr₂ (2.5 mmol) and AgF (3.5 mmol) was added to a well stirred solution of α-allenol (1 mmol) in DCE or CH₃CN (5 mL). After disappearance of the starting material (TLC) the mixture was extracted with ethyl acetate (3 x 5 mL). The organic extract was washed with brine, dried (MgSO₄) and concentrated under reduced pressure.

Chromatography of the residue eluting with hexanes/ethyl acetate mixtures gave analytically pure compounds 3 and 4.

2,5-dihydrofuran 3a. From 54 mg (0.34 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 3a (30 mg, 56%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.23 (m, 5H), 5.56 (q, 1H, J = 1.66 Hz), 5.40 (m, 1H), 4.72 (m, 2H), 1.48 (m, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 141.5, 138.5, 128.4 (2CH), 127.9 (CH), 126.8 (2CH), 120.7 (CH), 90.5 (CH), 75.5 (CH₂), 12.5 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2925, 2854, 1727, 701.

2,5-dihydrofuran 3b. From 50 mg (0.23 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 3b (29 mg, 58%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.41 (m, 2H), 7.13 (m, 8H), 6.24 (m, 1H), 6.03 (c, 1H, J = 1.91 Hz), 4.80 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 141.9, 141.5, 133.3, 128.7 (2CH), 128.5 (2CH), 128.2 (CH), 128.1 (2CH), 127.9 (CH), 127.8 (2CH), 126.9 (CH), 88.4 (CH), 75.3 (CH₂); IR (CHCl₃, cm⁻¹): ν = 2925, 2854, 1721, 754.

2,5-dihydrofuran 3c. From 15 mg (0.09 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 3c (14 mg, 91%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.17 (s, 4H), 5.65 (q, 1H, J = 1.64 Hz), 5.47 (m, 1H), 4.79 (m, 2H), 2.36 (s, 3H), 1.57 (m, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 138.6, 138.4, 137.6, 129.1 (2CH), 126.8 (2CH), 120.6 (CH), 90.3 (CH), 75.3 (CH₂), 21.1 (CH₃), 12.5 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2925, 2854, 1726, 748.
2,5-dihydrofuran 3d. From 50 mg (0.26 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 3d (29 mg, 57%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.21 (m, 2H), 6.90 (m, 2H), 5.65 (q, 1H, J = 1.55 Hz), 5.46 (m, 1H), 4.76 (m, 2H), 3.81 (s, 3H), 1.56 (m, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 159.4, 138.5, 133.6, 128.2 (2CH), 120.7 (CH), 113.8 (2CH), 90.1 (CH), 75.1 (CH₃), 55.2 (CH₃), 12.5 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2924, 2853, 1513, 1247.

2,5-dihydrofuran 3e. From 51 mg (0.20 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 3e (5 mg, 11%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.17 (m, 7H), 6.77 (m, 2H), 6.39 (m, 1H), 6.01 (m, 1H), 4.82 (m, 2H), 3.69 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 159.5, 140.8, 133.1, 132.8, 129.0 (2CH), 128.9 (CH), 128.4 (2CH), 127.6 (CH), 126.5 (CH), 122.9 (CH), 114.1 (2CH), 87.7 (CH), 75.0 (CH₃), 55.2 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2925, 2853, 1513, 1252.

3-Halo-3-alkenal 4a. From 50 mg (0.31 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 4a (39 mg, 52%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 9.74 (s, 1H), 7.28 (m, 5H), 5.75 (dd, 2H, J = 22.47, 2.75 Hz), 1.63 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 197.7 (CHO), 138.0, 135.1, 129.0 (2CH), 128.0 (CH), 127.6 (2CH), 120.5 (CH₃), 62.3, 20.9 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2926, 2854, 1731, 1263.

3-Halo-3-alkenal 4c. From 50 mg (0.29 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 4c (38 mg, 53%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 9.79 (s, 1H), 7.20 (m, 4H), 5.82 (dd, 2H, J = 20.91, 2.74 Hz), 2.37 (s, 3H), 1.70 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 197.6 (CHO), 137.8, 135.4, 134.9, 129.7 (2CH), 127.5 (2CH), 120.3 (CH₃), 62.0, 21.0 (CH₃), 20.7 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2926, 2854, 1728, 1268.
3-Halo-3-alkenal 4d. From 50 mg (0.27 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 4d (43 mg, 61%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 9.76 (s, 1H), 7.23 (m, 2H), 6.95 (m, 2H), 5.80 (dd, 2H, J = 22.54, 2.72 Hz), 3.83 (s, 3H), 1.69 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 197.4 (CHO), 159.2, 135.8, 129.7, 128.9 (2CH), 120.2 (CH₂), 114.3 (2CH), 61.7, 55.3 (CH₃), 20.6 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2923, 2853, 1718, 1252.

3-Halo-3-alkenal 4e. From 50 mg (0.20 mmol) of the corresponding α-allenol, and after chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 4e (23 mg, 37%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 10.12 (s, 1H), 7.39 (m, 3H), 7.25 (m, 2H), 7.13 (m, 2H), 6.92 (m, 2H), 5.86 (dd, 2H, J = 93.17, 2.29 Hz), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 196.4 (CHO), 159.2, 137.2, 133.4, 131.4 (2CH), 130.1 (2CH), 128.7 (CH), 128.5 (2CH), 128.0 (CH), 124.4 (CH₂), 113.9 (2CH), 70.9, 55.3 (CH₃); IR (CHCl₃, cm⁻¹): ν = 2925, 2854, 1730, 1299.

3. Conclusions
In this project, we have investigated new methodologies for obtaining 2,5-dihydrofurans as well as 3-halo-3-alkenals starting from 2,3-allenoles with a bimetallic system Ag/Cu. Surprisingly we found that, for the same reaction conditions, when changing the solvent, the product obtained changed.

Author Contributions: M.T.-P. and H.A. planned and conducted experiments. M.T.-P. analyzed the data for the compounds and compiled most of the Supplementary Information. T.M.C. analyzed data to support the mechanistic proposal. P.A. designed and directed the project. M.T.-P. wrote the manuscript. T.M.C. and P.A. contributed to discussion.

Funding: This work was supported in part by AEI (MICIU) and FEDER (Project PGC2018-095025-B-I00).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis. John Wiley & Sons: New York, 1984.
2. Patai, S. The Chemistry of Ketenes, Allenes and Relates Compounds Part 1. John Wiley & Sons: New York, 1980.
3. Alcaide, B.; Almendros, P. Chem. Soc. Rev., 2014, 43, 2886, DOI: 10.1039/c4cs90020k.
4. Ma, S. Chem. Rev. 2005, 105, 2829, DOI: 10.1021/cr020024j.
5. Krause, N.; Hashmi, A. S. K., Eds. Modern allene chemistry, Wiley-VCH: Weinheim, 2004.
6. Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067, DOI: 10.1021/cr9902796.
7. Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994, DOI: 10.1021/cr1004088.
8. Muñoz, M. P.; Chem. Soc. Rev., 2014, 43, 3164, DOI: 10.1039/C3CS60408j.
9. Le Bras, J.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003, DOI: 10.1039/C3CS60379B.
10. Fu, C.; Li, J.; Ma, S.; Chem. Commun., 2005, 4119–4121, DOI: 10.1039/B508069J.
11. Ma, S.; Li, J.; Chen, G.; Chai, G.; Adv. Synth. Catal. 2008, 350, 1376-1382, DOI: 10.1002/adsc.200800088.
12. Larrosa, I.; Romea, P.; Urpi, F. Tetrahedron, 2008, 64, 2683, DOI: 10.1016/j.tet.2007.11.092.
13. Wolfe, J. P.; Hay, M. B. Tetrahedron, 2007, 63, 261, DOI: 10.1016/j.tet.2006.08.015.
14. Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2405.
15. Snyder, N. L.; Haines, H. M.; Peczuh, M. W. Tetrahedron, 2006, 62, 9301, DOI: 10.1016/j.tet.2006.07.021.
16. Hou, X. L.; Yang, Z.; Yeung, K. S.; Wong, H. N. C.; In Progress in Heterocyclic Chemistry: Vol. 17, Gribble, G. W., Joule, J. A., Eds. Elsevier: Oxford, 2005; pp 142-171.

17. Eicher, T.; Hauptmann, J. S., Eds. The chemistry of heterocycles: structure, reactions, syntheses, and applications. Wiley-VCH: Weinheim, 2003.

18. Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev., 2008, 108, 3174, DOI: 10.1021/cr078361l.

19. Aksın, O.; Krause, N. Adv. Synth. Catal. 2008, 350, 1106, DOI: 10.1002/adsc.200800050.

20. Alcaide, B.; Almendros, P.; Aparicio, B.; Lázaro-Milla, C.; Luna, A.; Nieto, O. Adv. Synth. Catal. 2017, 359, 2789, DOI: 10.1002/adsc.201700598.

21. Alcaide, B.; Almendros, P.; González, A; Luna, A.; Matinez-Ramirez, S. Adv. Synth. Catal. 2016, 358, 2000, DOI: 10.1002/adsc.201501132.

22. Alcaide, B.; Almendros, P.; Luna, A.; Soriano, E. J. Org. Chem. 2015, 80, 7050, DOI: 10.1021/acs.joc.5b00887.

23. Wang, M.; Khan, S.; Miliordos, E.; Chen, M. Adv. Synth. Catal. 2018, 360, 4634, DOI: 10.1002/adsc.201801080.

24. Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. Eur. J. Org. Chem. 2005, 98.

25. Alcaide, B.; Almendros, P.; Rodríguez-Acebes, R. J. Org. Chem. 2006, 71, 2346, DOI: 10.1021/jo0525027.

26. Isaac, M. B.; Chan, T. –H.; J. Chem. Soc., Chem Commun. 1995, 1003, DOI: 10.1039/C9950001003.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Solvent-Controlled Switching of Cycloisomerization to Transposition in the Ag/Cu-Promoted Reaction of Terminal α-Allenols

Mireia Toledano Píneu, Hristo Anatolyiev, Teresa Martinez del Campo, Pedro Almendros

Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid and Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006-Madrid, Spain
In recent years, chemistry of these compounds has attracted the attention of many chemists giving rise to many studies due to the presence of a cumulated diene in the structure of the compound. Among most important properties of the allenes include:

- (1) control of reactivity
- (2) control of regioselectivity
- (3) transfer of chirality

Optically active products

(a) Allenes in Organic Synthesis; Schuster, H. F.; Coppola, G. M. *John Wiley & Sons: New York*, **1984**; (b) The Chemistry of Ketenes, Allenes and Relates Compounds Part 1; Patai, S. *John Wiley & Sons: New York*, **1980**; (c) Alcaide, B.; Almendros, P. *Chem. Soc. Ren.*, **2014**, 43, 2883.
Transition-metal catalyzed nucleophile addition to allene group is a very useful tool for the synthesis of functionalized molecules containing heteroatoms in an atom efficient manner. This reactivity has a benefit because of regiochemistry can be controlled using different metals or changing the substituents or the length of the chain between allene and heteroatom in the intramolecular case.

The electrophilic addition of allenes with “X+” is very attractive since 2-haloallylic halides or alcohols are usually formed.

(a) Ma, S. Chem. Rev. 2005, 105, 2829; (b) Krause, N.; Hashmi, A. S. K., Eds. Modern allene chemistry, Wiley-VCH: Weinheim, 2004; (c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067; (d) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994; (e) Muñoz, M. P.; Chem. Soc. Rev, 2014, 43, 3164; (f) Le Bras, J.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003.
Allenones are synthetic precursors useful in Organic Synthesis due to the versatility to carry out different transformations. The main aim of this work is the development of new methodologies for the cyclization and/or transposition of allenes which allow to obtain non-aromatic oxacycles in a regiocontrolled manner, as well as 3-halo-3-alkenals.
The treatment of allenol 1c with different Cu (II)- and Ag (I)-based salts in DCE was carried out, which provided the 2,5-dihydrofuran 2c as the only reaction product resulting from a 5-endo-trig oxycyclization process. However, surprisingly, the treatment of the same α-allenol under the same catalytic conditions, but using CH₃CN as solvent instead DCE provided 3-halo-3-alkenal 3c as the only reaction product.
For this reason, the scope of this divergent reactivity was explored using different α-allenols. In the event, both protocols gave rise to 2,5-dihydrofurans 2 and 3-halo-3-alkenals 3, respectively.

\[R_1 = H, R_2 = Me (56\%) \]
\[R_1 = H, R_2 = Ph (58\%) \]
\[R_1 = Me, R_2 = Me (91\%) \]
\[R_1 = OMe, R_2 = Me (57\%) \]
\[R_1 = OMe, R_2 = Ph (11\%) \]
\[R_1 = H, R_2 = Me (52\%) \]
\[R_1 = H, R_2 = Ph (---\%) \]
\[R_1 = Me, R_2 = Me (53\%) \]
\[R_1 = OMe, R_2 = Me (61\%) \]
\[R_1 = OMe, R_2 = Ph (37\%) \]
The next scheme describes a putative mechanism for generating 2,5-dihydrofurans 2 from the 5-endo-trig oxycyclization of α-allenols 1.
It has been proven that the formation of the 3-halo-3-alkenals 3 is a radical process. In this study, the involvement of radicals has been demonstrated through the inhibition of the formation of the corresponding 3-halo-3-alkenal when TEMPO was added to the reaction medium.
In this project, we have investigated new methodologies for obtaining 2,5-dihydrofurans as well as 3-halo-3-alkenals starting from \(\alpha \)-allenols with a bimetallic system Ag/Cu. Surprisingly we found that, for the same reaction conditions, when changing the solvent, the product obtained changed.
Members of the research group:

Teresa Martínez del Campo
Pedro Almendros
Hristo Anatóliev