Prey electivity of the slimy sculpin within the Lake Superior-North Watershed

Jonathon I. Newkirk and Casey W. Schoenebeck

Department of Biology, Bruner Hall of Science, University of Nebraska at Kearney, Kearney, NE, USA

ABSTRACT
We evaluated the prey electivity of lotic slimy sculpin (Cottus cognatus) within the Lake Superior-North Watershed, an area characterized by high gradient streams and lacking the preferred prey of Gammarus. Fish and macroinvertebrates were sampled at 67 sites within 52 rivers and streams during 2013 in the Lake Superior-North Watershed by the Minnesota Pollution Control Agency. Fish sampling was conducted with the use of backpack and stream tote barge electrofishers, and macroinvertebrates were collected using qualitative multi-habitat sampling within D-Frame kick nets. Feeding electivity was calculated using Strauss’ modified feeding electivity model for three rivers. In total we sampled 174 slimy sculpins within the Lake Superior-North Watershed and found sculpins positively selected for Hydropsychidae (47.3% of total taxa consumed) and Perlidae (11% of total taxa consumed) instead of abundant Chironomidae (20% of total taxa sampled).

KEYWORDS
Slimy sculpin; prey electivity; food habits; Lake Superior; lotic

Introduction
Slimy sculpins, Cottus cognatus, are an ecologically important benthic insectivore inhabiting lentic and lotic cold-water ecosystems throughout North America. In cold-water lentic systems, slimy sculpin inhabit rocky littoral areas ranging from small headwater lakes to the Great Lakes. Lentic slimy sculpin have been found to primarily consume Gammarus spp. and feeding strategies have been found to be nocturnal (Brandt 1986), when Gammarus are most active. In addition to Gammarus, lentic slimy sculpins have also been found to consume Opossum shrimp, Mysis relicta, and Diptera spp. (Brandt 1986).

Slimy sculpin also inhabit low-order, cold-water streams with abundant cobble. Similar to lentic systems, slimy sculpin have been found to have primary consume Gammarus spp. (Mundahl et al. 2012), and nocturnal feeding upon Gammarus spp. has also been observed within streams (Holomuzki and Hoyle 1990). Slimy sculpin also selected Gammarus spp., and selected various sizes of Gammarus over other available prey (Filicky et al. 2000).

Summer food habits of both lentic and lotic slimy sculpin largely consists of Gammarus spp. when present (Filicky et al. 2000; Mundahl et al. 2012). In contrast, slimy sculpin largely consumed Chironomidae and Baetidae during October (Chalupnicki and Johnson 2016) and selected Chironomidae and trichoptera in January in a New York stream when Gammarus were not present (Johnson et al. 2017). The summer feeding preference of the slimy sculpin in systems without Gammarus spp. is unknown.
The Lake Superior-North Watershed is a unique ecoregion featuring high gradient cold-water streams and subsequently, *Gammarus* spp. populations are nearly absent. The objective of this study was to define the summer feeding prey electivity of the slimy sculpin within a *Gammarus* limited system, utilizing the ongoing sampling of an entire watershed that is uniquely without *Gammarus*.

Methods

Field collection

Sampling took place during summer daylight hours, over the three-month period of June through August 2013, in cooperation with the Minnesota Pollution Control Agency’s (MPCA) Intensive Watershed Monitoring Program (EPA tier 4 biological monitoring program). Sixty-seven sampling locations within the Lake Superior-North Watershed were sampled for fish and macroinvertebrates (Figure 1). Sampling locations were selected utilizing the pour point design, placing a station at the pour point of each 8, 12, and 14 digit HUC watersheds with a minimum drainage area of 5 square miles (MPCA 2009). Reach lengths were determined according to Lyons (1992), with a minimum reach length of 150 m and ranged from 150 m with ≤4 m median stream width (MSW) to >14 m MSW with a maximum reach length of 500 m.

Smith-Root LR-24 backpack electrofishers and stream tote barge electrofishers were used to obtain specimens in accordance with the MPCA standard operating procedure (MPCA 2009). Captured specimens were euthanized by use of carbon dioxide exposure, and a quick sharp blow to the head (IACUC# 042213). All specimens were preserved in formalin and taken to the lab for dissection. Available macroinvertebrate prey were sampled within each of the 67 cool-water stream sample
sites using the multi-habitat method with a D-Frame kick net downstream of up to four habitat types (i.e. riffles, logs, aquatic macrophytes, and undercut bank/overhanging vegetation) in accordance with the MPCA standard operating procedure (MPCA 2017). A total of 20 evenly distributed samples were taken at each sampling site in an attempt to utilize all available macroinvertebrate habitats, pooled, and preserved in ethanol.

Feeding electivity

Slimy sculpin stomach contents were removed and identified to family. Only prey with identifiable heads were counted and the frequency of prey in the stomach contents was quantified using the percent composition of each diet item. Prey electivity by slimy sculpin was evaluated at sites with greater than 10 sculpin collected to ensure averaged electivity values were not biased by individual fish. Prey electivity was calculated using the Strauss’ prey electivity index (1979):

\[L = r_i - p_i \]

where \(r_i \) and \(p_i \) represent the relative abundance of prey in the diet and the environment, respectively. We determined the relative abundance of prey in the diet of slimy sculpin \((r_i) \) by dividing the number of each macroinvertebrate group found in the stomachs of individual slimy sculpin processed from site \(i \), by the total number of macroinvertebrates consumed by each slimy sculpin. Diet item proportions in the environment \((p_i) \) were calculated by dividing the density of each prey item family by the total density of all prey items available in the environment at site \(i \). Electivity \((L) \) was determined for all macroinvertebrate groups found within the environment for each individual slimy sculpin at site \(i \), and then averaged. Strauss’ index value \((L) \) can range from total avoidance \((-1)\) to absolute selectivity \((1)\) for a given prey item. Similar to previous studies (Sullivan et al. 2011; Sullivan et al. 2012; Thiessen et al. 2018), a value of ±0.15 was chosen as the cutoff to determine selectivity or avoidance. Prey items with index values between 0.15 and −0.15 represent prey consumed proportionately to their availability (Sullivan et al. 2012). Therefore, we defined opportunistic prey selection as electivity values between 0.15 and −0.15, prey selection as values >0.15, and prey avoidance as <−0.15.

Results

Slimy sculpin were collected (>40 mm) within 10 of the 67 sample sites indicating a presence in six river systems (Table 1). Macroinvertebrates were collected at all 67 sample sites, and the structure of the macroinvertebrate communities was determined for the six river systems containing slimy sculpin (Table 2). Throughout all of the sampling stations, only three stream reaches yielded more than 10 slimy sculpin; Cascade River (87), Devil Track River (58), and Elbow Creek (11) (Table 1). *Hydropsychidae* (25.7%), *Chironomidae* (20.0%), and *Baetidae* (10.9%) were the most abundant macroinvertebrate taxa sampled in those three streams, and *Hydropsychidae* (47.3%), *Perlidae* (11.0%), and *Chironomidae* (8.9%) were most often consumed (Table 3).

Feeding electivity was calculated using fish and macroinvertebrates sampled from three sites: Cascade River, Devil Track River, and Elbow Creek. Most macroinvertebrate taxa were consumed in proportion to their availability \((-0.15 < L > 0.15)\), however, *Hydropsychidae* were selected by slimy sculpins within two of the three investigated streams within the Lake Superior-North Watershed. *Hydropsychidae* were selected at Elbow Creek \((L = 0.41, \text{Table 3}) \) and Devil Track River \((L = 0.16, \text{Table 3}) \). *Perlidae* \((L = 0.17) \), and *Hydropsychidae* \((L = 0.13) \) were selected within the Cascade River (Table 3).

Chironomidae was the second most abundant macroinvertebrate taxa within the population at most of the sampling sites, but was rarely selected as a prey source by the slimy sculpin. For example,
Table 1. Locality information, sample date, water temperature, conductivity, length range and standard error, sample size, and number of empty stomach data for sites containing slimy sculpin within the Lake Superior-North Watershed.

Site location	Latitude, longitude	Sample date	Water temperature (°C)	Sp. conductivity (μS/cm)	Length range (mm)	Mean length (mm)	N	# Empty stomachs
Cascade River	47.7918, -90.52752	9/5/2013	11.6	71.2				
Cascade River	47.47147, -91.03616	7/23/2013	15.3	78.6				
Cascade River	47.82938, -90.53031	9/4/2013	17.7	41.1	52–100	75.8 ± 1.0	87	24
Cascade River	47.74680, -90.52498	9/10/2013	15.2	74.4				
Temperance River	47.71632, -90.87783	9/3/2013	19.8	45.0	81–84	82.3 ± 0.8	4	0
Baptism River, West Branch	47.45285, -91.30735	7/18/2013	21.3	72.8				
Baptism River, West Branch	47.41519, -91.24901	7/23/2013	19.9	60.5	73–101	85.1 ± 4.2	8	2
Devil Track River	47.80412, -90.30323	9/4/2013	17.2	64.6				
Devil Track River	47.80662, -90.31177	8/5/2013	18.4	48.8	45–92	78.2 ± 1.8	58	21
Devil Track River	47.77030, -90.26211	9/11/2013	19.9	92.4				
Two Island River	47.54114, -90.97508	6/26/2013	16.7	49.9	63–82	70.7 ± 3.1	6	3
Elbow Creek	47.81707, -90.3123	8/7/2013	16.9	45.0	54–94	74.3 ± 4.1	11	1

Table 2. Locality information, sample date, water temperature, and qualitative macroinvertebrate structure attributes for sites containing slimy sculpin within the Lake Superior-North Watershed.

Site	Latitude, longitude	Sample date	Water temperature (°C)	EPT% Filterer	EPT% Gatherer	EPT% Predator	EPT% Scraper	EPT% Shredder	
Cascade River	47.7918, -90.52752	8/12/2013	17.9	46.9	31.5	24.4	13.3	15.1	6.0
Cascade River	47.47147, -91.03616	9/11/2013	17.6	75.1	14.0	19.3	20.3	11.3	4.0
Cascade River	47.82938, -90.53031	8/13/2013	18.9	58.3	47.1	16.6	13.7	14.6	2.0
Cascade River	47.74680, -90.52498	8/12/2013	18.3	58.8	25.5	40.3	6.3	17.6	4.0
Temperance River	47.71632, -90.87783	8/14/2013	13.9	71.3	55.3	8.7	17.0	13.7	4.0
Baptism River, West Branch	47.45285, -91.30735	9/12/2013	14.4	72.7	27.6	34.2	11.3	15.4	3.0
Baptism River, West Branch	47.41519, -91.24901	9/17/2013	14.6	71.0	35.0	37.2	10.7	4.1	4.0
Devil Track River	47.80412, -90.30323	8/12/2013	17.0	85.3	48.2	28.1	7.0	10.9	3.0
Devil Track River	47.80662, -90.31177	8/21/2013	21.7	89.6	52.1	22.3	10.7	4.2	4.0
Devil Track River	47.77030, -90.26211	8/13/2013	14.4	62.7	22.2	51.6	8.2	1.3	4.0
Two Island River	47.54114, -90.97508	8/15/2013	11.6	37.3	53.8	25.6	5.4	7.0	6.0
Elbow Creek	47.81707, -90.3123	8/21/2013	25.4	70.1	44.1	20.9	15.4	9.0	3.0
Table 3. Macroinvertebrate taxa sampled within the Cascade River, Devil Track River, and Elbow Creek with corresponding electivity values (L) and standard error where $L = r_i - p_i$, using the Strauss’ prey electivity index (1979) where r_i and p_i represent the relative abundance of prey in the diet and the environment, respectively.

Family	Cascade River total taxa sampled	Devil Track River total taxa sampled	Elbow Creek total taxa sampled	% of total taxa consumed	Cascade River electivity (L)	Devil Track River electivity (L)	Elbow Creek electivity (L)
Athericidae	11 3 18	1.5 0	-0.01 ± 0	-0.01 ± 0	-0.06 ± 0		
Baetidae	143 71 14	10.9 2.8	-0.08 ± 0.02	-0.03 ± 0.05	-0.04 ± 0		
Chironomidae	262 101 55	20.0 8.9	-0.17 ± 0.02	0.00 ± 0.07	-0.18 ± 0		
Elmidae	22 1 7	1.4 1.1	-0.01 ± 0	-0.01 ± 0	-0.01 ± 0.03		
Glossosomatidae	72 26 32	6.2 2.8	-0.06 ± 0	-0.05 ± 0	-0.10 ± 0		
Heptageniidae	24 39 24	4.2 2.5	-0.01 ± 0.01	-0.02 ± 0.04	-0.08 ± 0		
Hydrobiidae	29 0 0	1.4 0	-0.02 ± 0				
Hydrobiidae	313 149 74	25.7 47.3	0.13 ± 0.05	0.16 ± 0.08	0.41 ± 0.10		
Hydriodidae	25 4 0	1.4 0	-0.01 ± 0.01	-0.01 ± 0			
Hylaeomorpha	49 3 5	2.7 8.2	0.1 ± 0.04	0.04 ± 0.03	0.00 ± 0.02		
Philopotamidae	52 29 19	4.8 11	0.17 ± 0.04	0.05 ± 0.05	0.05 ± 0.06		
Philopotamidae	51 16 43	5.3 2.5	0.00 ± 0.02	-0.03 ± 0	-0.14 ± 0		
Simuliidae	29 0 5	1.6 0	-0.02 ± 0		-0.02 ± 0		

Elbow Creek had a *Chironomidae* electivity value of $L = -0.18$ (Table 3) and the Cascade River had a *Chironomidae* electivity value of $L = -0.17$ (Table 3).

Discussion

Some previous summer food habit studies have found that slimy sculpins feed opportunistically and consume prey in proportion to their availability in the environment (Mundahl et al. 2012). While we found that slimy sculpin consumed most invertebrate families in proportion to their availability, our results suggest that slimy sculpins can display instances of selective feeding behavior. Slimy sculpins in the Lake Superior-North Watershed actively selected for caddisflies (*Hydropsychidae*) and stoneflies (*Perlidae*) during summer. Similarly, slimy sculpin were selective during October (Chalupnicki and Johnson 2016) and January in a New York stream (Johnson et al. 2017). Indeed, slimy sculpin diets and prey selectivity likely change due to fish community structure and seasonal prey availability.

When present, *Gammarus* spp. are commonly the prey of choice for *Cottus* spp. within both lentic (Brandt 1986) and lotic systems (Holomuzki and Hoyle 1990; Filicky et al. 2000; Mundahl et al. 2012). *Gammaridae* were not known to inhabit our study area and indeed no *Gammaridae* were collected throughout all 67 sampling locations within the Lake Superior-North Watershed. In the absence of *Gammarus* spp., slimy sculpin positively selected for *Hydropsychidae* and *Perlidae* and negatively selected *Chironomidae* within the Lake Superior-North Watershed during summer. Interestingly, Chironomids were an important diet item and selected by slimy sculpins in October (Chalupnicki and Johnson 2016) in a stream without *Gammarus* spp. present. There are several likely reasons for this difference in prey selection. This could be related to the fact that both New York studies (Chalupnicki and Johnson 2016; Johnson et al. 2017) were conducted in a stream with a fairly low drainage area (<10 sq mi). In contrast, the streams used in this study had larger drainage areas ranging from 19 to 105 sq mi., which likely affect the structure of the macroinvertebrate communities (Vannote et al. 1980). Macroinvertebrate communities in lower order streams (small drainage areas) are generally comprised of shredders compared to higher stream orders where scrapers, gatherers, and filterers are more common. Filterer and gatherer macroinvertebrate taxa are prevalent (Table 2) within the Lake Superior-North Watershed indicating a shift in the macroinvertebrate community to utilize autochthonous and particulate material in the higher order systems. Conversely, the studies at the New York stream were heavily comprised of *Branccentridae*.
(shredders/gatherers) and *Rhyacophilidae* (predators) in the fall (Chalupnicki and Johnson 2016), and coleoptera, ephemeroptera, and diptera in the winter (Johnson et al. 2017).

There is also a possibility that the discrepancies are simply due to seasonal changes in macroinvertebrate abundance or availability. Previous studies suggest that slimy sculpin feed upon ephemeroptera and trichoptera taxa during the winter (Johnson et al. 2017), and *Chironomidae* and *Baetidae* in the fall (Chalupnicki and Johnson 2016). Slimy sculpins in the Lake Superior-North Watershed primarily selected trichoptera and plecoptera taxa during the summer. Shorter-lived taxa such as *Hydropsychidae* are univoltine (Mackay 1986), with only one brood of offspring each year. *Hydropsychidae* emerge in the fall, and therefore would not be available as a prey source for slimy sculpin. It is at this time that slimy sculpin feeding habits may shift to *Chironomidae* and *Baetidae* in the fall. Another shift may then occur when ephemeroptera and trichoptera taxa reach later instars and become large enough to consume during the winter months.

We agree with Johnson et al. (2017) that extending the understanding of slimy sculpin food habits to additional seasons would assist in developing a more complete understanding of sculpin feeding ecology. While acknowledging the potential sampling difficulties, we recommend future efforts investigating the feeding ecology of slimy sculpin within the Lake Superior-North Watershed be directed at environmentally critical times of year such as winter; especially given the northern latitude of the Lake Superior-North Watershed.

Acknowledgments

We thank the MPCA North Biological Monitoring Unit for assisting with field collections and B. Miller for technical assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Jonathon I. Newkirk is graduated with a MS from the University of Nebraska at Kearney and is currently a biologist with the Minnesota Pollution Control Agency in Baxter, Minnesota.

Casey W. Schoenebeck is a former associate professor of biology at the University of Nebraska at Kearney. He is currently the Sentinel Lakes Program coordinator in the Fisheries Research Unit for the Minnesota Department of Natural Resources in Glenwood, Minnesota.

ORCID

Jonathon I. Newkirk http://orcid.org/0000-0001-7148-8793

Casey W. Schoenebeck http://orcid.org/0000-0002-4787-574X

References

Brandt SB. 1986. Ontogenetic shifts in habitat, diet, and diel-feeding periodicity of slimy sculpin in Lake Ontario. Trans Am Fish Soc. 115:711–715.

Chalupnicki MA, Johnson JH. 2016. Diel feeding ecology of slimy sculpin in a tributary to Skaneateles Lake. Am Midl Nat. 175:37–46.

Filicky C, Irish J, Lutz CL, Pyle AL. 2000. Size selection of the slimy sculpin (*Cottus cognatus*) on *Gammarus minus* prey. J Eco Res. 2:30–36.

Holomuzki JR, Hoyle JD. 1990. Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, *Gammarus minus*. Freshw Biol. 24:509–517.
Johnson JH, Chalupnicki MA, Abbett R. 2017. Diet composition, feeding periodicity, and prey selection of slimy sculpin (*Cottus cognatus*) during winter. J Fish Wildl Manag. In-Press.

Lyons J. 1992. The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. N Am J Fish Manag. 16:241–256.

Mackay RJ. 1986. Life cycles of *Hydropsyche riola*, *H. slossonae*, and *Cheumatopsyche petti* (Trichoptera: Hydropsychidae) in a spring-fed steam in Minnesota. Am Midl Nat. 115:19–24.

Minnesota Pollution Control Agency. 2009. Fish community sampling protocol for stream monitoring sites. Biol Monit. [accessed 2014 May 14]. 2–5. http://www.pca.state.mn.us/index.php/view-document.html?gid=6087.

Minnesota Pollution Control Agency. 2017. Macroinvertebrate data collection protocols for lotic waters in Minnesota. [accessed 2018 May 9]. 8–10. https://www.pca.state.mn.us/sites/default/files/wq-bsm3-12a.pdf.

Mundahl ND, Mundahl DE, Merten EC. 2012. Success of slimy sculpin reintroductions in Minnesota trout streams: influence of feeding diets. Am Midl Nat. 168:162–183.

Strauss RE. 1979. Reliability estimates for Ivlev’s electivity index, the forage ratio, and a proposed linear index of food selection. Trans Am Fish Soc. 108:344–352.

Sullivan CL, Koupal KD, Hoback WW, Peterson BC, Schoenebeck CW. 2012. Food habits and abundance of larval freshwater drum in a South Central Nebraska irrigation reservoir. J Fresh Ecol. 27:111–121.

Sullivan CL, Schoenebeck CW, Koupal KD, Hoback WW, Peterson BC. 2011. Patterns of age-0 gizzard shad abundance and food habits in a south-central Nebraska irrigation reservoir. Prairie Nat. 43(3–4):110–116.

Thiesen J, Koupal KD, Schoenebeck CW, Shaffer JJ. 2018. Food habits of imperiled plains topminnow and diet overlap with the invasive western mosquitoﬁsh in the central great plains. Trans Nebr Acad Sci Affil Soc. 38:1–9.

Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci. 37(1):130–137.