Simultaneous isolation of two species, *Brachyspira pilosicoli* and *Brachyspira aalborgi*, from a patient with ulcerative colitis

Takuya KANAZAWA¹, Takahiro TAKEZAWA², Junichi IWAMOTO³ and Yoshikazu ADACHI¹*

¹School of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
²Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
³Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo Ami Inashiki, Ibaraki 300-0395, Japan

ABSTRACT. We succeeded in the simultaneous isolation of *Brachyspira* (B.) * aalborgi* and *B. pilosicoli* from a patient with ulcerative colitis. *B. pilosicoli* grew quickly and formed colonies within 7 days, while the growth of *B. aalborgi* was very slow and took over 21 days. Simultaneous isolation of *B. pilosicoli* and *B. aalborgi* from a common specimen is generally recognized to be difficult, mainly due to differences in their growth requirements and the growth rates. However, we succeeded in isolating both species from a patient with ulcerative colitis and this is first evidence. The present results suggest that ulcerative colitis may be caused by simultaneous infection with *B. pilosicoli* and *B. aalborgi*.

KEY WORDS: 16S rRNA, *B. aalborgi*, *B. pilosicoli*, isolation, ulcerative colitis

Brachyspira (B.) *pilosicoli* and *B. aalborgi* are candidate causal agents of large intestinal spirochetosis. These spirochetes are also related to adenocarcinoma, polyps, diarrhea containing blood and ulcerative colitis (UC) [2, 4]. However, the pathogenesis mechanisms of these agents are not yet fully understood. We are interested in the relationship between the pathogenesis of ulcerative colitis and intestinal brachyspiral infection. Recently, the presence of brachyspiras was confirmed by histological investigation of patients with intestinal spirochetosis syndrome i.e. adenocarcinoma, UC, polyps, diarrhea with blood and septicemia. In addition, the presence of two different genes of the brachyspiral species has been reported on a patient with large intestinal spirochetosis [10]. We therefore attempted and succeeded in simultaneous isolation of both species, *B. pilosicoli* and *B. aalborgi*, from a patient.

MATERIALS AND METHODS

Strains used

B. aalborgi NCTC11492 and *B. pilosicoli* ATCC51139 were used in this experiment.

Isolation

The biopsy samples from the colon of a patient with ulcerative colitis were mixed with 500 µl of triplicae soy broth (Difco, Sparks, MD, U.S.A.) into a 1.5 ml centrifuge tube. Isolation was carried out according to the procedure reported by Songer et al. (1976) [11]. Sheep blood agar containing 400 µg/ml spectinomycin was prepared and used for isolating brachyspiras under anaerobic conditions using AnaeroPack (Mitsubishi Gas Chemical Co., Inc., Tokyo, Japan). For genetic diagnosis, DNAs were extracted from biopsy samples and/or grown colonies by InstaGene matrix (Bio-Rad, Hercules, CA, U.S.A.) and identification of the isolates was performed by PCR (2720 Thermal Cycler, Applied Biosystems, San Mateo, CA, U.S.A.) with specific primers, i.e. Acoli1/R583 for *B. pilosicoli* and aalF161/R596 for *B. aalborgi* [6].

Sequencing

For sequencing, we used universal primers for 16S rDNA, i.e. F3/500R [8] and performed as previously described using BigDye Terminator v3.1. The base alignment was performed as previously described [7].
The homology matrix was prepared using a homology % obtained by BLAST techniques using DDBJ. A phylogenetic tree was constructed by sequencing data and a phylogenetic tree was prepared by the neighbor-joining method [9].

RESULTS

After extraction of DNA from biopsy samples of a female patient (37 years old) with UC, PCR was performed using specific primers and the results are shown in Fig. 1. They demonstrated the presence of both species, i.e., *B. aalborgi* and *B. pilosicoli*. Thereafter, the samples were anaerobically cultured on sheep blood agar containing spectinomycin. Seven days later, the blood agar plates were observed and the growth of *B. pilosicoli* was confirmed by the PCR using specific primers (Acoli1/R583). Thirty days later, many colonies including *B. pilosicoli* and *B. aalborgi* on the blood agar plates were confirmed (Table 1), selected and subcultured. Then, the anaerobic culture was continued for at least 3 months at 37°C and the colonies were again selected. All colonies were covered with *B. pilosicoli*, but colonies grown independently on the plastic side were found and we selected those colonies. In general, colonies with *B. aalborgi* were covered with *B. pilosicoli* because the growth speed and swarming ability of *B. pilosicoli* was very high. Thereafter, PCR with universal primers for brachyspiras, i.e. F3/500R, was performed and as shown in Table 2, two types of base alignment were confirmed. One was for *B. pilosicoli* with typical base alignment of -TTTTTT- and the other was for *B. aalborgi* without -TTTTTT-. In addition, a phylogenetic tree, which was constructed by base sequence data, indicated the presence of two different lineages. One lineage was *B. pilosicoli*, the other was *B. aalborgi* (Fig. 2). These results demonstrated that we succeeded in the isolation of both species from one patient in this experiment.
DISCUSSION

Since 1982 [3], there has been no report of simultaneously isolating both species, i.e. *B. aalborgi* and *B. pilosicoli*, from one patient with intestinal spirochetosis. We attempted to isolate the two species from one patient and succeeded first.

In general, the number of intestinal spirochete cells was influenced by the antibody to the spirochetes. When the titer was high, the intestinal spirochete cells were decreased in number and vice versa in case of pigs [1, 5]. In the case of a patient with UC, the growth of *B. pilosicoli* could be inhibited by the antibody with high titer to *B. pilosicoli* and the number of cells in the large intestine could be decreased. Meanwhile the growth of *B. aalborgi* having been inhibited, can be started under the low and no antibody titer to *B. aalborgi*. This may be exchange between *B. pilosicoli* and *B. aalborgi*. We could confirmed the presence of two different genes of those species by PCR. Therefore, under those conditions, we may have succeeded in isolating both species from one patient with ulcerative colitis.

Isolates from	Homology % among the isolates used	Typical base alignment (-TTTTTT-)							
	C	A	T	D	S	R	Bp	Ba	
C	100.00	100.00	93.63	93.23	99.78	99.56	99.34	93.65	+
A	100.00	100.00	93.63	93.23	99.78	99.56	99.34	93.65	+
T	93.63	93.63	100.00	99.12	93.83	93.65	94.07	99.34	–
D	93.23	93.23	99.12	100.00	93.39	93.17	94.04	99.34	–
S	99.78	99.78	93.83	93.39	100.00	99.79	98.90	93.22	+
R	99.56	99.56	93.65	93.17	99.78	100.00	98.69	93.84	+
Bp	99.34	99.34	94.07	94.04	98.90	98.69	100.00	95.38	+
Ba	93.65	93.65	99.34	99.34	93.22	93.84	95.38	100.00	-

Table 2. Homology matrix of *Brachyspr* isolates from a patient with UC syndrome

Isolation names are indicated in this Table and C, A, T, D, S and R refer to the cecum, ascending colon, transverse colon, descending colon, sigmoid colon and rectum, respectively. Bp, *B. pilosicoli* ATCC51139; Ba, *B. aalborgi* NCTC11492; +, presence; −, no presence.

Fig. 2. Phylogenetic tree constructed on the basis of the base alignment of the isolates from a patient with UC. The tree was prepared by the neighbor-joining method (Saitou and Nei, 1987). C, A, T, D, S, R and C1 in this tree refer to the isolate names for the cecum, ascending colon, transverse colon, descending colon, sigmoid colon and rectum, respectively.
REFERENCES

1. Adachi, Y., Tanaka, T. and Watase, H. 1982. Transition of antibody titers in swine apparently infected with weak β-hemolytic spirochetes. p. 34, 7th Internat. Vet. Soc. Cong.

2. Adachi, Y., Yonekawa, M., Takezawa, T., Matsumoto, T., Higashiyama, M. and Yoshizawa, A. 2011. Human ulcerative colitis and Brachyspira infection. Brachyspira 2: 49–58.

3. Hovind-Hougen, K., Birch-Andersen, A., Henrik-Nielsen, R., Orholm, M., Pedersen, J. O., Teglbjaerg, P. S. and Thaysen, E. H. 1982. Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J. Clin. Microbiol. 16: 1127–1136. [Medline]

4. Iwamoto, J., Matsumoto, N., Morishita, Y. and Adachi, Y. 2017. Human intestinal spirochaetosis and ulcerative colitis. Brachyspira 7: 3–14.

5. Kashiwazaki, M., Adachi, Y. and Kume, T. 1980. Microscopic agglutination test for antibody against Treponema hyodysenteriae. Natl. Inst. Anim. Health Q. (Tokyo) 20: 114–115. [Medline]

6. Mikosza, A. S. J., La, T., Brooke, C. J., Lindboe, C. F., Ward, P. B., Heine, R. G., Guccion, J. G., de Boer, W. B. and Hampson, D. J. 1999. PCR amplification from fixed tissue indicates frequent involvement of Brachyspira aalborgi in human intestinal spirochetosis. J. Clin. Microbiol. 37: 2093–2098. [Medline]

7. Ochiai, S., Adachi, Y. and Mori, K. 1997. Unification of the genera Serpulina and Brachyspira, and proposals of Brachyspira hyodysenteriae Comb. Nov., Brachyspira innocens Comb. Nov. and Brachyspira pilosicoli Comb. Nov. Microbiol. Immunol. 41: 445–452. [Medline] [CrossRef]

8. Pettersson, B., Fellström, C., Andersson, A., Uhlen, M., Gunnarsson, A. and Johansson, K. E. 1996. The phylogeny of intestinal porcine spirochetes (Serpulina species) based on sequence analysis of the 16S rRNA gene. J. Bacteriol. 178: 4189–4199. [Medline] [CrossRef]

9. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425. [Medline]

10. Sato, H., Nakamura, S., Habano, W., Wakabayashi, G. and Adachi, Y. 2010. Human intestinal spirochaetosis in northern Japan. J. Med. Microbiol. 59: 791–796. [Medline] [CrossRef]

11. Songer, J. G., Kinyon, J. M. and Harris, D. L. 1976. Selective medium for isolation of Treponema hyodysenteriae. J. Clin. Microbiol. 4: 57–60. [Medline]

doi: 10.1292/jvms.18-0220