Developing a Simplified Method to Investigate the Dynamic Behavior of Fluid Conveying Pipes under Mean Internal Pressure

Mahdi Bayrami Atashgah,1 Mehdi Iranmanesh,1 and Alireza Mojtahedi2

1Department of Maritime Engineering, Amirkabir University of Technology, Hafez St., Tehran 15914, Iran
2Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran

Correspondence should be addressed to Mehdi Iranmanesh; iranmaneshmehdi2021@gmail.com

Received 25 December 2021; Revised 14 February 2022; Accepted 24 March 2022; Published 18 April 2022

1. Introduction

Fluid conveying pipes are used most widely in different fields of engineering, such as marine engineering, oil exploration, refining, and chemical transport. Flow-induced vibrations in these pipes require the study of the interaction between the fluid and the pipe [1–3]. The precise prediction of the natural frequencies and critical flow velocities are two important significant factors in studying the vibrations of the fluid conveying pipes. These factors are strongly dependent on the velocity of the internal fluid. In this regard, predicting the critical fluid velocity to determine the onset of instability is a challenge in the fluid conveying pipes. Critical velocity relates to the value at which the imaginary part of the natural frequency becomes zero.

The vibration of fluid conveying pipes is a profound challenge in many areas. The hot topic started when Paidoussis [2] realized the vibration in pipes caused by the fluid flow and introduced two types of instabilities for them. The first type is the divergence instability that occurs at lower velocity, and the second type is the instability of the flutter that occurs at higher velocity. Benjamin [4] discussed the flutter instability of a cantilevered fluid conveying pipe. Gregory and Paidoussis [5] concluded that the flutter instability occurs earlier than divergence instability for a cantilevered fluid conveying pipe. Paidoussis and Li [6] described in detail the instability of cylindrical pipes due to the fluid by the linear vibration equations. Buckling instability and flutter instability were two issues addressed by them. Paidoussis and Issid [7] proposed a variety of methods to study the dynamic behavior of fluid conveying pipes. So far, different methods have been presented to solve the vibration problem of fluid conveying pipes both in linear and nonlinear dynamics, such as the Galerkin method [7–12] and finite element method (FEM) [13–16]. Housner [17] analytically determined the flow-induced vibration of pipes with pinned-pinned boundary conditions. However, the analytical solutions are problematic for other kinds of
boundary conditions. Ibrahim [18, 19] and Li et al. [1] have systematically summarized research on fluid conveying pipes. Also, Dai et al. [20] studied the vibrations of a flexible fluid conveying pipe for transmitting oscillating currents, and the main parameters were analyzed and discussed.

In this regard, some complicated methods have been developed by other researchers. A homotopy perturbation method was proposed to investigate the dynamic behavior of fluid conveying pipes. Xu et al. [21] evaluated a pinned-pinned fluid conveying pipe and validated the results using the finite element method and experimental data. Yundong and Yi-ren [22] proposed He’s variational iteration method for calculating the natural frequencies and critical velocities of fluid conveying pipes under different boundary conditions. The dynamic response of the Timoshenko beam under random stimulation using the superposition method was analyzed by Zhai et al. [23]. Kuiper and Metrikine [24] studied the instability of a free-hanging riser using power series expansion and the D-decomposition method. Lin and Qiao [25] used the differential quadrature method (DQM) under the harmonic excitation to obtain the vibrational response of fluid conveying pipes. Ni et al. [26] used the differential transformation method (DTM) to analyze the vibration of the fluid conveying pipes with several scenarios. A semianalytical method was proposed by Liang et al. [27] to evaluate the dynamic behavior of a fluid conveying pipe under transverse external fluid flow, employing the differential quadrature method and the Laplace transform. The method was validated by an exact solution. Also, a mathematical model for the free vibration of the fluid-conveying cantilevered pipe-in-pipe system considering the thermal effect and two-phase flow was proposed by Guo et al. [28].

Some researchers were focused on sensitivity analysis of fluid conveying pipe. Gregory and Paidoussis [5] examined the effects of the internal damping on stability of fluid conveying pipes. Chen [29] discussed and evaluated the forced vibrations of a fluid conveying pipe. Linear governing equations of the fluid conveying pipe and the critical velocities were discussed by Paidoussis and Issid [7] for different boundary conditions. Long Jr [30] observed the vibration characteristics of fluid conveying pipes experimentally and measured natural frequencies. He realized that as the internal fluid velocity of the fluid conveying pipes increased, the natural frequencies decreased. A mathematical model for the lateral motion of a marine riser was developed to examine the effect of the internal flow and bending rigidity of the pipe on the dynamic behavior of the riser by Wu and Lou [31]. Meng and Chen [32] investigated nonlinear-free vibrations and vortex-induced vibrations of a fluid-conveying steel catenary riser. The dynamic behavior of catenary pipelines subjected to internal slug-flow was investigated by Chatjigeorgiou [33]. He et al. [34] reported a theoretical investigation of an elastic and slender fluid-conveying pipe with a top-end excitation subjected to uniform cross flows. Oke and Khulief [35] discussed how the internal surface damage is reflected in the vibration behavior of a composite pipe conveying fluid. Gu et al. [36] proposed a stochastic dynamic model for the dynamic characteristics analysis of pipe-conveying fluid. Askarian et al. [37] investigated the gravity effects in vertical and horizontal fluid conveying pipes. An analytical solution for nonlinear vibration and postbuckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects was presented by Khodabakhsh et al. [38]. Shahali et al. [39] investigated the nonlinear dynamic response of a viscoelastic pipe conveying fluid subjected to a uniform external cross flow based on the Euler–Bernoulli theory. The nonplanar vibrations and multimodal responses of pinned-pinned risers in shear cross flow were numerically studied by Jiang et al. [40]. Ma et al. [41] presented an experimental study of large-amplitude intermittent vibrations of an inclined bendable riser transporting an air-water flow with an unsteady slug-flow pattern. Liang et al. [42, 43] developed the dynamical modeling for the spinning pipe conveying fluid and analyzed its vibrations.

The effects of mean internal pressure on the natural frequencies of fluid conveying pipes with different typical boundary conditions have not been studied in detail. The main aim of this study is to introduce a simplified approach to determine the natural frequencies and critical velocities of fluid conveying pipes. For this purpose, the elements of the diagonal matrices of mass, damping, and stiffness are considered to calculate the natural frequencies of pipe before occurring the instability (flow velocity in a range higher than the critical velocity), instead of all ones that gained by the Galerkin discretization. At the first step, a linear equation of motion for an Euler–Bernoulli beam is considered to simulate the vibration of fluid conveying pipes with mean internal pressure. For the second step, the Galerkin method is used to solve the partial differential equation for the condition of $N = 4$ (N is the number of mode shapes). At the next step, the element in the row n and column n of the mass, damping, and stiffness matrices is used to calculate the nth natural frequency by which the matrix form is converted to an algebraic form. Then, the results are validated by experimental data and four numerical methods besides two analytical solutions. Finally, the effects of mean internal pressure variations on the natural frequencies are discussed, and critical values related to internal pressures are investigated. In each vibration mode of the pipe and fluid system, there is a critical value of internal pressure for which the natural frequency of the system becomes zero. This value is named Mean Critical Pressure. This study is the first stage of our work that aims to justify the applicability of an efficient and simplified method to determine and evaluate the natural frequency of fluid conveying pipes. The advantage of the presented method is the simplicity of equations, and the disadvantage of the method is that the real part of the natural frequency is not calculated.

2. Methodology

In this section, the dynamic equation of the fluid conveying pipe is considered, and the Galerkin discretization method is formulated using first four modes to calculate the natural frequencies. The details of the proposed simplified method are also explained.
2.1. Dynamic Equation of the Fluid Conveying Pipes. For a pipe, considered as an Euler–Bernoulli beam, the linear equation of motion for the vibration of the fluid conveying pipe with an external excitation is given as follows [44]:

\[
EI \frac{\partial^4 w(x,t)}{\partial x^4} + (M_f V^2 + \bar{p} A (1 - 2\mu)) \frac{\partial^2 w(x,t)}{\partial x^2} + 2M_f V \frac{\partial^2 w(x,t)}{\partial x \partial t} + (M_f + M_p) \frac{\partial^2 w(x,t)}{\partial t^2} = f, \tag{1}
\]

where \(EI \) is the flexural rigidity, \(A \) stands for the flow area, \(M_f \) and \(M_p \) are the mass-per-unit-length of fluid and pipe, \(V \) is the fluid flow velocity, \(\bar{p} \) is the mean internal pressure, \(\mu \) is the Poisson ratio which only considered in the clamped-clamped pipe, \(w(x,t) \) is the transverse deflection of the pipe, \(f \) is external excitation load, \(x \) is the horizontal coordinate along the centerline of the pipe, and \(t \) stands for the time. In the case of \(f = 0 \), the fluid conveying pipe vibrates due to the motion of the internal fluid, and the dynamic equation is

\[
EI \frac{\partial^4 w}{\partial x^4} + (M_f V^2 + \bar{p} A (1 - 2\mu)) \frac{\partial^2 w}{\partial x^2} + 2M_f V \frac{\partial^2 w}{\partial x \partial t} + (M_f + M_p) \frac{\partial^2 w}{\partial t^2} = 0. \tag{2}
\]

The related nondimensional parameters are defined as follows:

\[
\begin{align*}
\eta &= \frac{w}{L}, \\
\tau &= \frac{t}{\sqrt{M_f + M_p} L^2}, \\
u &= \frac{M_f}{EI} V, \\
\xi &= \frac{x}{L}, \\
P &= \frac{\bar{p} A}{EI}, \\
\beta &= \frac{M_f}{M_f + M_p}, \\
\omega &= \sqrt{\frac{M_f + M_p}{EI} \omega_0 L^2},
\end{align*}
\]

where \(w \) is the dimensionless natural frequency and \(\omega_0 \) is the natural frequency (rad/s). Substituting equation (3) into (2), the dimensionless form of equation (2) can be expressed as follows:

\[
\frac{\partial^4 \eta}{\partial \xi^4} + (u^2 + P (1 - 2\mu)) \frac{\partial^2 \eta}{\partial \xi^2} + 2\sqrt{\beta} u \frac{\partial^2 \eta}{\partial \xi \partial \tau} + \frac{\partial^2 \eta}{\partial t^2} = 0. \tag{4}
\]

The framework of this study is presented in Figure 1. The framework is performed in two main directions. In the first direction, by using the Galerkin method and considering 4 to 8 mode shapes of the pipes, the dynamic matrices of the system are extracted, and the natural frequencies in different boundary conditions are calculated. In the second direction, instead of using four mode shapes of the pipes, only one mode shape of the pipes is used, and the relationships related to natural frequencies and critical velocities are explicitly obtained. The main idea of this research is to use one mode shape of the pipe and convert the matrix form of dynamic equations to algebraic form. Consequently, only the diagonal components of dynamic matrices are used to calculate the natural frequencies.

2.2. Galerkin Discretization. The main purpose of this study is to provide explicit formulas to determine the natural frequencies of the fluid conveying pipe under different boundary conditions presented in Figure 2. The Galerkin method is used to obtain the explicit formulas and reduce complexities compared to the other methods such as the finite element method and finite difference method.

Equation (4) can be discretized using the Galerkin method to solve the related partial differential equation. The dimensionless lateral deflection is represented as follows:

\[
\eta(\xi, \tau) = \sum_{i=1}^{N} \varphi_i(\xi) q_i(\tau) + \epsilon, \tag{5}
\]

where \(q_i(\xi) \) is the shape function that satisfied all considered boundary conditions for the pipe (see Table 1), and \(q_i(\tau) \) is the generalized coordinate of the discretized pipe structure, and \(\epsilon \) is the order of the Galerkin truncation error (\(N \) is the number of mode shapes).

The convergence can be obtained when the condition of \(N \geq 4 \) is satisfied [9]. In this study, it is considered \(N = 4 \). Therefore, we have

\[
\eta(\xi, \tau) \equiv \sum_{i=1}^{4} \varphi_i(\xi) q_i(\tau), \tag{6}
\]

By considering the \(\phi = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \end{bmatrix} \) and \(Q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} \) and introducing the parameters presented in (7), (8), and (5) is changed into the matrix form as shown in (9),

\[
\eta(\xi, \tau) = \phi^T Q = \phi^T \left[\begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} \right] = \phi^T \left[\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} \right], \tag{7}
\]

where

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]

\[
(\beta \omega_0 L^4) = \begin{bmatrix} M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \\ M_f & M_f & M_f & M_f \end{bmatrix}, \tag{8}
\]
Figure 1: The framework of this study.

Figure 2: Fluid conveying pipes with different boundary conditions.
2.3. Simplified Method Based on Galerkin Discretization (SMGD). In this method, the n^{th} mode shape of the Galerkin discretization is used to determine the n^{th} natural frequency of the fluid conveying pipe. The components of the diagonal matrices M, C, and K, which are calculated based on the Galerkin method, are used to calculate the natural frequencies, orders of the matrices of mass, damping, and stiffness being equal to 1. Hence, the matrix form is converted to an algebraic form. The characteristic equation for the n^{th} dimensionless natural frequency can be expressed as follows:

$$K_n - M_n \omega_n^2 + i C_n \omega_n = 0,$$ \hspace{1cm} (13)

where M_n, C_n, and K_n are the n^{th} components of the mass, damping, and stiffness matrices, respectively, as follows:

$$M_n = M_{cof}(n),$$ \hspace{1cm} (14)

$$C_n = C_{cof}(n),$$ \hspace{1cm} (15)

$$K_n = K_{cof}(n) + \Pi K_{cof}(n),$$ \hspace{1cm} (16)

where $M_{cof}(n)$, $C_{cof}(n)$, and $K_{cof}(n)$ are the diagonal matrices of M_{cof}, C_{cof}, and K_{cof}, respectively.

By substituting (8) into equation (13) and using the components of the diagonal matrices, we get the dimensionless form of n^{th} natural frequency, as a function of u, P, and β, and the dimensionless critical velocities for different types of boundary conditions (pinned-pinned, clamped-pinned, cantilevered and clamped-clamped), can be obtained as shown in Table 2 and 3. We explicitly derive the dynamic matrices of the system, including the mass matrix, the damping matrix, and the stiffness matrix. Considering only one mode shape to determine the natural frequency is the main idea of the research. Next, by considering only one mode shape, the characteristic equation is obtained only to determine the natural frequency. The relevant relationships were listed in Table 2. According to the relationships of the mode shapes described in Table 1, the integral multiplication of the mode shape with its derivative, which is described in equation (12), becomes zero for pinned-pinned, clamped-pinned and clamped-clamped conditions. Therefore, the damping term does not appear in the dynamic equations. Furthermore, the relationships presented in Tables 2 and 3 show that increasing the mean internal pressure reduces the natural frequencies and critical flow velocities.

The simplified method, as shown in Figure 1, is fundamentally different from the Galerkin method. In the
Galerein method, the dynamic components of the system are matrices. But in the simplified method, the dynamic components of the system are algebraic.

3. Validations

3.1. Numerical and Analytical Validation. In this section, the equations presented in Tables 2 and 3 are validated using several numerical and analytical methods and experimental data. The structure of the pipe can be considered as a straight beam when the fluid velocity is equal to zero, and internal pressure does not exist. Hence, the natural frequencies can be obtained analytically. At the first step, the case of \(\mu = 0 \) and \(P = 0 \) is considered to compare the results of the explicit formulas with those of the DTM, DQM, and the exact solutions. Data in Table 4 show that the results of the explicit formulas are in good agreement with the exact solutions for the different boundary conditions. More importantly, the results indicate the higher accuracy of explicit formulas in comparison with the DTM and DQM. To investigate the precision of the presented method, the natural frequencies of fluid conveying pipes with four considered boundary conditions are calculated using the equations defined in Table 2. The observed results imply that the parameter of the fluid velocity plays a vital role in the natural frequencies. The results of the explicit formulas are compared for the case of a cantilevered pipe, \(\beta = 0.1 \) and the case of clamped-clamped, \(\mu = 0.3 \) with those predicted by DTM, DQM, and exact solutions. A good agreement in the results is observed, and the relative errors are less than 0.01 percent for all boundary conditions. Moreover, the explicit formulas would be beneficially easier and computational cost lower than the other methods.

Another important issue for the problems of the fluid conveying pipe is the determination of dimensionless critical velocities obtained by the equations presented in Table 3. As reported by Paidoussis [2], the fluid conveying pipe system is stable for dimensionless velocities in the range less than dimensionless critical velocities and loses stability at dimensionless velocities equal to dimensionless critical velocities. For a pipe with positively supported ends, the system will lose stability at dimensionless critical velocities through divergence. However, the flutter is the expected form of instability for a cantilevered system because the cantilever system is nonconservative. In this study, the dimensionless critical velocities of fluid conveying pipe are obtained using the explicit formulas (SMGD) for different boundary conditions. They are listed in Table 5 to compare with the results of the DTM, DQM, and given by Paidoussis [2]. As can be seen, the relative errors are less than 2.08 percent for all boundary conditions. Also, Table 5 shows that the internal pressure leads to a reduction in the dimensionless critical velocities, except for the first mode of cantilevered cases.

In Table 6, the specifications of a pinned-pinned fluid conveying pipe are given to compare the results further. To verify the accuracy of the results, they are compared with those given by Xu et al. [21] and Housner [17].

A homotopy perturbation method (HPM) was used to determine the dimensionless natural frequency of a pinned-pinned fluid conveying pipe [21]. Dimensionless natural frequencies of a simply supported pipe are obtained as follows:

\[
\left(\frac{\omega_n}{\omega_N} \right)^2 = n^2 \left(\frac{V_c}{V} \right)^2 + 16n^5 \beta \left(\frac{V}{V_c} \right)^2 \sum_{k=1}^{\infty} \frac{k^2((-1)^n-k-1)^2}{(n^2+k^2)(n^2-k^2)}, \quad n = 1, 2, \ldots
\]

(17)

where \(\omega_N \) is the fundamental natural frequency of the pipe in the absence of the flow and can be expressed as follows:

\[
\omega_N = \frac{\pi^2}{L^2} \sqrt{\frac{EI}{M_f}}.
\]

(18)

and \(V_c \) is the critical velocity of flow for static buckling of the pipe:

\[
V_c = \frac{\pi}{L} \sqrt{\frac{EI}{M_f}}.
\]

(19)

Housner [17] suggested that the first two dimensionless natural frequencies of a pinned-pinned fluid conveying pipe can be computed by

\[
\left(\frac{\omega_n}{\omega_N} \right)^2 = \alpha \pm \sqrt{\alpha^2 - 4 \left[1 - \left(\frac{V}{V_c} \right)^2 \right] \left[4 - \left(\frac{V}{V_c} \right)^2 \right]}, \quad n = 1, 2,
\]

(20)

where

\[
\alpha = 8.5 - \left(\frac{V}{V_c} \right)^2 \left[2.5 + 128\beta \right].
\]

(21)

The SMGD shows that the dimensionless natural frequency of a simply supported pipe for the case of \(P = 0 \) is as follows:
Table 3: Formulas of SMGD for the first four dimensionless critical velocities of the fluid conveying pipes with internal pressure for the different boundary conditions.

Boundary conditions	Expression
Pinned-pinned	$u_1 = \sqrt{8.8696 - P}$
	$u_2 = \sqrt{39.4784 - P}$
	$u_3 = \sqrt{88.8264 - P}$
	$u_4 = \sqrt{157.9137 - P}$
Clamped-pinned	$u_1 = \sqrt{20.649 - P}$
	$u_2 = \sqrt{58.1984 - P}$
	$u_3 = \sqrt{115.571 - P}$
	$u_4 = \sqrt{192.701 - P}$
Cantilever	$u_1 = \sqrt{\left(\sqrt{4}\beta - 4 \left(0.8583 \left(12.3622 + 0.8583P \right) / 2 \left(0.8583 \right)\right)\right)^2}$
	$u_2 = \sqrt{\left(\sqrt{4}\beta - 4 \left(-13.2943 \left(485.5182 - 13.2943P \right) / 2 \left(-13.2943 \right)\right)\right)^2}$
	$u_3 = \sqrt{\left(\sqrt{4}\beta - 4 \left(-45.9043 \left(3806.6 - 45.9043P \right) / 2 \left(-45.9043 \right)\right)\right)^2}$
	$u_4 = \sqrt{\left(\sqrt{4}\beta - 4 \left(-98.9169 \left(14617 - 98.9169P \right) / 2 \left(-98.9169 \right)\right)\right)^2}$
Clamped-clamped	$u_1 = \sqrt{20.649 - P \left(1 - 2\mu\right)}$
	$u_2 = \sqrt{58.1984 - P \left(1 - 2\mu\right)}$
	$u_3 = \sqrt{115.571 - P \left(1 - 2\mu\right)}$
	$u_4 = \sqrt{192.701 - P \left(1 - 2\mu\right)}$

Table 4: The first four dimensionless natural frequencies of the fluid conveying pipes for the value of $u = 0$ and $P = 0$ for the different boundary conditions.

Boundary conditions	Result	ω_1	ω_2	ω_3	ω_4
SMGD	9.8700	39.4800	88.8300	157.9000	
DTM [26]	9.8669	39.4784	88.8264	157.9137	
Relative error (%)	0.0314	0.0041	0.0041	0.0087	
DQM [26]	9.8716	39.4863	88.8442	157.9454	
Relative error (%)	-0.0162	-0.0160	-0.0160	-0.0287	
Exact [46]	9.8696	39.4784	88.8264	157.9137	
Relative error (%)	0.0041	0.0041	0.0041	0.0087	
Clamped-pinned	15.4200	49.9600	104.2000	178.3000	
DTM [26]	15.4182	49.9649	104.2477	178.2697	
Relative error (%)	0.0117	-0.0098	-0.0458	0.0170	
DQM [26]	15.4228	49.9799	104.2790	178.3234	
Relative error (%)	-0.0182	-0.0398	-0.0758	-0.0131	
Exact [46]	15.4182	49.9649	104.2477	178.2697	
Relative error (%)	0.0117	-0.0098	-0.0458	0.0170	
Cantilever	3.5160	22.0300	61.7000	120.9000	
DTM [26]	3.5160	22.0345	61.6972	120.9019	
Relative error (%)	0.0000	-0.0204	0.0045	-0.0016	
DQM [26]	3.5167	22.0389	61.7096	120.9260	
Relative error (%)	-0.0199	-0.0404	-0.0156	-0.0215	
Exact [46]	3.5160	22.0345	61.6972	120.9019	
Relative error (%)	0.0000	-0.0204	0.0045	-0.0016	
Clamped-clamped	22.3730	61.6700	120.9000	199.9000	
DTM [26]	22.3733	61.6728	120.9034	199.8594	
Relative error (%)	-0.0147	-0.0045	-0.0028	0.0203	
DQM [26]	22.3778	61.6852	120.9276	199.8995	
Relative error (%)	-0.0349	-0.0246	-0.0228	0.0003	
Exact [46]	22.3733	61.6728	120.9034	199.8594	
Relative error (%)	-0.0147	-0.0045	-0.0028	0.0203	

$\omega_n = \sqrt{(nn)^4 - (nn)^2 (u^2)}$, $n = 1, 2, \ldots$ (22)

Equation (22) is simpler than (17) and (20). The first four dimensionless natural frequencies of a pinned-pinned fluid conveying pipe are calculated by equations (18), (14), and (17) and listed in Table 7. The results of the explicit formulas (SMGD) are in good agreement with the results of the FEM, HPM, and Housner’s, and the relative errors are less than 1.83 percent for all cases.
To compare the results with available experimental data, a pinned-pinned fluid conveying pipe is considered based on the specifications in Table 8 [48]. The changes of natural frequencies with increasing dimensionless flow velocity are shown in Figure 3. The results of the present study are compared to those of the experimental data [48], FEM [21], HPM (17), and Housner (20). Figure 3 confirms that the results of the presented study are significantly consistent with the experimental data and the results of the finite element method.

4. Results and Discussions

For the sake of the argument, the material properties of the studied cases are chosen based on the literature as follows: E (the elastic modulus of the pipes), μ (the Poisson ratio), ρ_p (the density of the pipe), D (the outer diameter of the pipes), d (the internal diameter of the pipes), L (length of the pipes), ρ_f (the density of the fluid), and \overline{P} (the mean internal pressure) are considered as 68 GPa, 0.3, 2700 kg.m^{-3}, 46 mm, 40 mm, 2 m, 870 kg.m^{-3}, and 2 MPa, respectively. At the first step, three cases including $u = 0$, 1, and 2, and $P = 1.57$ are considered to compare the results with the Galerkin method ($N = 4$, for all cases $\beta = 0.5$). Table 9 shows that the results of the explicit formulas (SMGD) are in good agreement with the Galerkin method for the different boundary conditions. Furthermore, the acceptable accuracy of the results is obtained by the SMGD. For all cases, relative errors are less than 2.60 percent (except for the first frequency of the cantilever boundary condition, with $u = 2$). At high velocities, the system practically fails, and there is no pipe. Since the behavior of the system tends to be nonlinear at higher critical velocities and there are complex issues related to instability, the accuracy of relationships in these areas is reduced.

Table 5: The first four dimensionless critical velocities of the fluid conveying pipes for the different values of P in the different boundary conditions.

Boundary conditions	Pressure	Result	u_{c1}	u_{c2}	u_{c3}	u_{c4}
Pinned-pinned	0	SMGD	3.1416	6.2832	9.4248	12.5664
		DTM [26]	3.1416	6.2832	—	—
		Relative error (%)	-0.0002	-0.0002	—	—
	1.57	SMGD	3.0400	6.2330	9.3914	12.5414
		DTM [26]	3.1416	6.2832	—	—
		Relative error (%)	-0.0129	-0.0098	—	—
		Paidoussis [2]	3.1400	6.2800	—	—
		Relative error (%)	0.0507	0.0507	—	—
Clamped-pinned	0	SMGD	4.5441	7.6288	10.7502	13.8818
		DTM [26]	4.4934	—	—	—
		Relative error (%)	1.1288	—	—	—
	1.57	SMGD	4.4745	7.5875	10.7210	13.8591
		DTM [26]	4.4937	—	—	—
		Relative error (%)	1.1220	—	—	—
		Paidoussis [2]	4.4900	—	—	—
		Relative error (%)	1.2054	—	—	—
Cantilevered	0	SMGD	3.7951	6.0432	9.1062	12.1561
		DTM [26]	—	—	9.3224	—
		Relative error (%)	—	—	-2.3187	—
	1.57	SMGD	3.9966	5.9119	9.0196	12.0913
		DTM [26]	—	—	9.3233	—
		Relative error (%)	—	—	-2.3281	—
		Paidoussis [2]	—	—	9.3000	—
		Relative error (%)	—	—	-2.0834	—
Clamped-clamped	0	SMGD	6.3787	9.0882	12.1571	15.2576
		DTM [26]	6.2832	—	—	—
		Relative error (%)	1.5196	—	—	—
	1.57	SMGD	6.3293	9.0536	12.1312	15.2370
		DTM [26]	6.2838	—	—	—
		Relative error (%)	1.5099	—	—	—
		Paidoussis [2]	6.2800	—	—	—
		Relative error (%)	1.5714	—	—	—
		DTM [26]	—	—	9.3233	—
		Relative error (%)	—	—	-2.3281	—
		Paidoussis [2]	—	—	9.3000	—
		Relative error (%)	—	—	-2.0834	—

Table 6: Specifications considered for a pinned-pinned fluid conveying pipe [47].

Elasticity modulus	Outer diameter	Wall thickness	Pipe length	Density of the pipe	Density of the internal flow
210 GPa	324 mm	16 mm	32 m	8200 kg.m\(^{-3}\)	908.2 kg.m\(^{-3}\)
without internal pressure.

Figure 4 depicts how the first four fluid conveying pipe.

4.1. μT_he Effects of Mean Internal Pressure on Pinned-Pinned

Table 7: The first four dimensionless natural frequencies (rad/s) of a pinned-pinned fluid conveying pipe for the different values of μ and without internal pressure.

Flow velocity (m/s)	0	15	25	35	45	55	
Dimensionless velocity	0	0.6015	1.0025	1.4035	1.8045	2.2055	
1st mode	SMGD	4.3733	4.2925	4.1449	3.9126	3.5799	3.1144
FEM [21]	4.3732	4.2921	4.1441	3.9116	3.5781	3.1115	
Relative error (%)	0.0017	0.0094	0.0186	0.0254	0.0604	0.0934	
HPM [21]	4.3732	4.2870	4.1293	3.8800	3.5222	3.0145	
Relative error (%)	0.0017	0.1284	0.3771	0.8400	1.6377	3.3142	
Housner [17]	4.3732	4.2971	4.1576	3.9372	3.6183	3.1660	
Relative error (%)	0.0017	-0.1070	-0.3062	-0.6250	-1.0618	-1.6296	
2nd mode	SMGD	17.4931	17.4129	17.2692	17.0511	16.7561	16.3800
FEM [21]	17.4928	17.4123	17.2682	17.0499	16.7544	16.3775	
Relative error (%)	0.0017	0.0034	0.0059	0.0070	0.0104	0.0153	
HPM [21]	17.4928	17.4171	17.2682	17.0765	16.7991	16.4457	
Relative error (%)	0.0017	-0.0242	0.0062	-0.1488	-0.2557	-0.3995	
Housner [17]	17.4928	17.3922	17.2122	16.9330	16.5686	16.0585	
Relative error (%)	0.0017	0.1189	0.3313	0.6974	1.1320	1.8508	
3rd mode	SMGD	39.3595	39.2794	39.1364	38.9206	38.6313	38.2666
FEM [21]	39.3587	39.2783	39.1350	38.9190	38.6292	38.2638	
Relative error (%)	0.0019	0.0027	0.0036	0.0041	0.0054	0.0073	
HPM [21]	39.3587	39.2858	39.1559	38.9602	38.6978	38.3672	
Relative error (%)	0.0019	-0.0164	-0.0498	-0.1016	-0.1718	-0.2622	
4th mode	SMGD	69.9724	69.8923	69.7496	69.5346	69.2472	68.8863

Table 8: Specifications considered for a pinned-pinned fluid conveying pipe [48].

Elasticity modulus	Outer diameter	Wall thickness	Pipe length	Mass-per-unit-length of fluid	Mass-per-unit-length of fluid and pipe
68.948 Gpa	2.54 cm	0.165 cm	3.2 m	0.383 kg.m⁻¹	0.7134 kg.m⁻¹

4.1. The Effects of Mean Internal Pressure on Pinned-Pinned Fluid Conveying Pipe. Figure 4 depicts how the first four dimensionless natural frequencies vary with dimensionless internal pressure for the three dimensionless flow velocity values. The results are obtained using the equations listed in Table 2. It can be seen that the mean internal pressure has more effect on the first frequency for the pinned-pinned boundary condition. Significantly, the value of the critical mean internal pressure (the case of \(u_c = 0 \)) is equal to the dimensionless natural frequency of the pipe with \(u = 0 \) and \(P = 0 \).

It reveals that the fluid velocity affects the internal critical pressure besides the natural frequencies. The fluid velocity has more effect on the mean internal pressure for the first and second frequencies. Furthermore, the values of the mean internal pressure (which leads to \(u_c = 0 \)) for the first four mode shapes of the pinned-pinned fluid conveying pipe are equal to 9.8696, 39.4784, 88.8264, and 157.9137, respectively. The higher the average internal pressure of the pipe, the lower the natural frequency of the system. At high velocities, the safety expected for the pipe decreases, and the critical velocity, which is the limit of instability, decreases.

Figures 5–7 (and equations in Table 3) illustrate that natural frequencies and critical flow velocity gradually decrease as the mean internal pressure is increased (the inverse relationship, except at the first mode of the cantilever boundary condition).

4.2. The Effects of the Flow Velocity on the Boundary Conditions. According to equations of clamped-pinned condition, presented in Table 3, it shows that the values of the critical mean internal pressure (which leads to \(u_c = 0 \)) for the first four mode shapes are equal to 15.42, 49.96, 104.2, and 178.3, respectively. The related values of the critical mean internal pressure are equal to dimensionless natural frequencies of the clamped-pinned pipe with \(u = 0 \) and \(P = 0 \). It can be comprehended that the mean internal pressure has more effect on the first mode natural frequency due to higher values of the critical mean internal pressures for the second, third, and fourth modes.

Figure 5 shows the first four dimensionless natural frequencies of a clamped-pinned pipe conveying fluid for the different values of \(u \). The velocity values according to the Im (\(\omega \)) are equal to critical velocity values. Also, the critical velocity decreases as the mean internal pressure increases.

The values of the critical mean internal pressure for the first four mode shapes of the cantilevered fluid conveying pipe (\(\beta = 0.1 \)) are equal to 3.51, 22.03, 61.7, and 120.9, respectively, which are equal to dimensionless natural frequencies for the condition of \(u = 0 \) and \(P = 0 \). In Figure 6, it can be observed that the mean internal pressure has less effect on the natural frequencies for the third and fourth frequencies and leads to a slight increase in the first frequency. Also, the values of the mean internal pressure for the first four mode shapes of the clamped-clamped fluid
Figure 3: The first third natural frequencies of a pinned-pinned fluid conveying pipe for the different values of (V/V_c) and without internal pressure based on experimental data; (a) the first frequency, (b) the second frequency, and (c) the third frequency.

Table 9: The first four dimensionless natural frequencies of the pipes conveying fluid for the different values of u and with internal pressure $p = 1.57$ in the different boundary conditions.

Boundary conditions	Dimensionless velocity	Result	ω_1	ω_2	ω_3	ω_4
Clamped-pinned	0	SMGD	14.8200	49.2900	103.5000	177.5000
		$N = 4$	14.8200	49.2900	103.5000	177.5000
		Relative error (%)	0.0000	0.0000	-0.0386	-0.0282
		SMGD	14.4300	48.8500	103.1000	177.1000
		$N = 4$	14.3600	48.8900	103.1500	177.1600
		Relative error (%)	0.4875	-0.0818	-0.0485	-0.0339
		SMGD	13.1800	47.5000	101.7000	175.7000
		$N = 4$	12.9400	47.6900	101.9800	176.0000
		Relative error (%)	1.8547	-0.3984	-0.2746	-0.1705
Table 9: Continued.

Boundary conditions	Dimensionless velocity	Result	ω_1	ω_2	ω_3	ω_4
Cantilevered		SMGD	3.703	21.56	61.11	120.3
		$N = 4$	3.716	21.5527	61.1105	120.2569
		Relative error (%)	-0.3498	0.0339	-0.0008	0.0358
		SMGD	3.42	21.18	60.71	119.8
		$N = 4$	3.9575	21.3007	60.786	120.3519
		Relative error (%)	0.7156	-0.5666	-0.1250	-0.4586
		SMGD	2.41	20	59.49	118.6
		$N = 4$	2.28	20.5352	59.8251	120.6216
		Relative error (%)	5.7018	-2.6063	-0.5610	-1.6760
Clamped-clamped ($\mu = 0.3$)		SMGD	22.2000	61.4400	120.6000	199.6000
		$N = 4$	22.2300	61.4700	120.6900	199.6300
		Relative error (%)	-0.1350	-0.0488	-0.0746	-0.0150
		SMGD	21.9200	61.0600	120.2000	199.2000
		$N = 4$	21.8700	61.1300	120.3300	199.2700
		Relative error (%)	0.2286	-0.1145	-0.1080	-0.0351
		SMGD	21.0600	59.9200	119.0000	197.9000
		$N = 4$	20.7900	60.1000	119.2700	198.2000
		Relative error (%)	1.2987	-0.2995	-0.2264	-0.1514

Figure 4: The first four dimensionless natural frequencies of a pinned-pinned pipe conveying fluid for the different values of internal pressure; (a) the first frequency, (b) the second frequency, (c) the third frequency, and (d) the fourth frequency.
Figure 5: The first four dimensionless natural frequencies of a clamped-pinned pipe conveying fluid for the different values of u.

Figure 6: The first four dimensionless natural frequencies of a cantilevered pipe conveying fluid for the different values of u and $\beta = 0.1$.

Figure 7: The first four dimensionless natural frequencies of a clamped-clamped pipe conveying fluid for the different values of u and $\mu = 0.3$.
The first four dimensionless natural frequencies of a pinned-pinned pipe conveying fluid for the different values of u. The values of the critical mean internal pressure ($\mu = 0.3$) are equal to 22.37, 61.67, 120.9, and 199.9, respectively. They are equal to dimensionless natural frequencies for the condition of $u = 0$ and $P = 0$. Like the cantilevered condition, the mean internal pressure has less effect on the natural frequencies for the third and fourth frequencies.

The values of the critical mean internal pressure (which leads to $u_c = 0$) for the first four mode shapes of the pinned-pinned fluid conveying pipe are equal to 9.8696, 39.4784, 88.8284, and 157.9137, respectively. It can be concluded that mean internal pressure has more effect on the first mode natural frequency due to higher values of the critical mean internal pressures for the second, third, and fourth modes. The velocity values based on the $\text{Im}(\omega) = 0$ are equal to critical velocity values, as shown in Figure 8.

5. Conclusion

This paper presents a simplified approach to determine the dynamic behavior of fluid conveying pipes with different typical boundary conditions under the mean internal pressure. For this purpose, the method is suggested by reducing the order of problem, and the n^{th} mode shape of the Galerkin discretization is used to determine the n^{th} dimensionless natural frequency of the considered pipes. The presented method is validated by experimental data, FEM, HPM, DTM, DQM, and the exact solution methods. The following conclusions can be drawn:

The results showed that the explicit formulas (SMGD) for the different boundary conditions are in good agreement with the exact solutions and have higher accuracy in comparison with the DTM and DQM. More importantly, the SMGD is more efficient and easier than the other methods. The results implied that the parameter of the fluid velocity plays a vital role in natural frequencies.

The results are compared for the case of a cantilevered pipe, $\beta = 0.1$ and the case of clamped-clamped, $\mu = 0.3$ with those predicted by DTM, DQM, and exact solutions. A good agreement is observed. The relative errors are less than 0.01 percent for all boundary conditions.

The changes of natural frequencies with increasing dimensionless flow velocity are compared for the case of a pinned-pinned pipe. It was implied that the results of the presented method are significantly consistent with the experimental data and the results of the finite element method. For the cases of the pinned-pinned pipe and the clamped-pinned pipe, the mean internal pressure has more effect on the first frequency.

Values of the critical mean internal pressure for the first four mode shapes of the cantilevered fluid conveying pipe are equal to dimensionless natural frequencies for the condition of $u = 0$ and $P = 0$. Values of the mean internal pressure for the first four mode shapes of the clamped-clamped fluid conveying pipe are equal to 22.3700, 61.67, 120.9, and 199.9, respectively. Furthermore, it was observed that the critical mean internal pressure values of pipes are equal to dimensionless natural frequencies for the condition of $u = 0$ and $P = 0$ for all considered cases.

Summarily, the simplified method analytically predicts the natural frequencies and critical velocities of the fluid-conveying pipes in different boundary conditions. It is less complex with a lower computational cost and higher accuracy than other methods.

Nomenclature

- f: External excitation load
- EI: Flexural rigidity
- A: Stands for flow area
- M_f: Mass-per-unit-length of fluid
- M_p: Mass-per-unit-length of pipe
- V: Fluid flow velocity
- \bar{P}: Mean internal pressure
- μ: Poisson ratio
- $w(x, t)$: Transverse deflection of the pipe
- x: Horizontal coordinate along the centerline of the pipe
- t: Stands for the time
- ω: Dimensionless natural frequency
- ω_0: Natural frequency (rad/s).
- $\varphi_i(\xi)$: Shape functions
- N: Number of mode shapes in the Galerkin method
- M: Matrices of mass
- C: Matrices of damping
- K: Matrices of stiffness
- Q: Generalized acceleration
- \dot{Q}: Generalized velocity
- Q: Generalized displacement.
Appendix

\[M = \int_{0}^{1} \phi \phi^T d\xi \]

\[M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} \]

\[C = \Lambda, \int_{0}^{1} \phi \phi^T d\xi \]

\[C = \Lambda, C_{cof}, \]

\[K^{(1)} = \int_{0}^{1} \phi \phi^{(1)T} d\xi \]

\[K^{(1)} = \begin{bmatrix}
\int_{0}^{1} \phi_{1} \phi_{1}^{(1)T} d\xi \\
\int_{0}^{1} \phi_{2} \phi_{2}^{(1)T} d\xi \\
\int_{0}^{1} \phi_{3} \phi_{3}^{(1)T} d\xi \\
\int_{0}^{1} \phi_{4} \phi_{4}^{(1)T} d\xi \\
\end{bmatrix} \]

\[K^{(1)} = K_{cof}, \]

\[K^{(2)} = \Pi \int_{0}^{1} \phi \phi^{(2)T} d\xi \]

\[K^{(2)} = \Pi K_{cof}, \]

\[K = K^{(1)} + K^{(2)}. \]
Data Availability

The calculated data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] S. Li, B. W. Karney, and G. Liu, “FSI research in pipeline systems - a review of the literature,” Journal of Fluids and Structures, vol. 57, pp. 277–297, 2015.
[2] M. P. Paidoussis, Fluid-structure Interactions: Slender Structures and Axial Flow, Academic Press, Cambridge, Massachusetts, USA, 1998.
[3] M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, “Acoustic insulation characteristics of shell structures: a review,” Archives of Computational Methods in Engineering, vol. 28, no. 2, pp. 505–523, 2021.
[4] T. B. Benjamin, “Dynamics of a system of articulated pipes conveying fluid—Theory,” Proceedings of the Royal Society of London - Series A: Mathematical and Physical Sciences, vol. 261, no. 1307, pp. 457–486, 1962.
[5] R. Gregory and M. Paidoussis, “Unstable oscillation of tubular cantilevers conveying fluid II. Experiments,” Proceedings of the Royal Society of London - Series A: Mathematical and Physical Sciences, vol. 293, no. 1435, pp. 528–542, 1966.
[6] M. Paidoussis and G. Li, “Pipes conveying fluid: a model dynamical problem,” Journal of Fluids and Structures, vol. 7, no. 2, pp. 137–204, 1993.
[7] M. P. Paidoussis and N. T. Issid, “Dynamic stability of pipes conveying fluid,” Journal of Sound and Vibration, vol. 33, no. 3, pp. 267–294, 1974.
[8] J. D. Jin and Z. Y. Song, “Parametric resonances of supported pipes conveying pulsating fluid,” Journal of Fluids and Structures, vol. 20, no. 6, pp. 763–783, 2005.
[9] M. Paidoussis and C. Semler, “Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis,” Nonlinear Dynamics, vol. 4, no. 6, pp. 655–670, 1993.
[10] M. Paidoussis, A. Sarkar, and C. Semler, “A horizontal fluid-conveying cantilever: spatial coherent structures, beam modes and jumps in stability diagram,” Journal of Sound and Vibration, vol. 280, no. 1-2, pp. 141–157, 2005.
[11] A. Sarkar and M. Paidoussis, “A cantilever conveying fluid: coherent modes versus beam modes,” ASME International Mechanical Engineering Congress and Exposition, vol. 36592, pp. 1119–1127, 2002.
[12] L. Wang, “A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid,” International Journal of Non-linear Mechanics, vol. 44, no. 1, pp. 115–121, 2009.
[13] L. G. Olson and D. Jamison, “Application of a general purpose finite element method to elastic pipes conveying fluid,” Journal of Fluids and Structures, vol. 11, no. 2, pp. 207–222, 1997.
[14] A. Pramila, “On the gyroscopic terms appearing when the vibration of fluid conveying pipe is analyzed using the FEM,” Journal of Sound and Vibration, vol. 105, no. 3, pp. 515-516, 1986.
[15] A. Pramila, J. Laukkanen, and S. Liukkonen, “Dynamics and stability of short fluid-conveying Timoshenko element pipes,” Journal of Sound and Vibration, vol. 144, no. 3, pp. 421–425, 1991.
[16] Y. L. Zhang, D. G. Gorman, and J. M. Reese, “A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid,” Journal of Sound and Vibration, vol. 245, no. 1, pp. 93–112, 2001.
[17] G. Houssner, “Bending Vibrations of a Pipe Line Containing Flowing Fluid,” J. Appl. Mech vol. 19, 1952.
[18] R. Ibrahim, “Overview of mechanics of pipes conveying fluids—Part I: fundamental studies,” Journal of Pressure Vessel Technology, vol. 132, no. 3, 2010.
[19] R. Ibrahim, “Mechanics of pipes conveying fluids—part II: applications and fluidelastic problems,” Journal of Pressure Vessel Technology, vol. 133, no. 2, 2011.
[20] H. L. Dai, L. Wang, Q. Qian, and Q. Ni, “Vortex-induced vibrations of pipes conveying pulsating fluid,” Ocean Engineering, vol. 77, pp. 12–22, 2014.
[21] M.-R. Xu, S.-P. Xu, and H.-Y. Guo, “Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method,” Computers & Mathematics with Applications, vol. 60, no. 3, pp. 520–527, 2010.
[22] L. Yun-dong and Y. Yi-ren, “Vibration analysis of conveying fluid pipe via He’s variational iteration method,” Applied Mathematical Modelling, vol. 43, pp. 409–420, 2017.
[23] H.-b. Zhai, Z.-y. Wu, Y.-s. Liu, and Z.-f. Yue, “Dynamic response of pipeline conveying fluid to random excitation,” Nuclear Engineering and Design, vol. 241, no. 8, pp. 2744–2749, 2011.
[24] G. Kuiper and A. Metrikine, “Dynamic stability of a submerged, free-hanging riser conveying fluid,” Journal of Sound and Vibration, vol. 280, no. 3-5, pp. 1051–1065, 2005.
[25] W. Lin and N. Qiao, “Nonlinear dynamics of a fluid-conveying curved pipe subjected to motion-limiting constraints and a harmonic excitation,” Journal of Fluids and Structures, vol. 24, no. 1, pp. 96–110, 2008.
[26] Q. Ni, Z. L. Zhang, and L. Wang, “Application of the differential transformation method to vibration analysis of pipes conveying fluid,” Applied Mathematics and Computation, vol. 217, no. 16, pp. 7028–7038, 2011.
[27] X. Liang, X. Zha, X. Jiang, L. Wang, J. Leng, and Z. Cao, “Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions,” Ocean Engineering, vol. 163, pp. 183–190, 2018.
[28] Y. Guo, B. Zhu, X. Zhao, B. Chen, and Y. Li, “Dynamic characteristics and stability of pipe-in-pipe system conveying two-phase flow in thermal environment,” Ocean Research, vol. 103, Article ID 102333, 2020.
[29] S. S. Chen, “Forced vibration of a cantilevered tube conveying fluid,” Journal of the Acoustical Society of America, vol. 48, no. 3B, pp. 773–775, 1970.
[30] R. Long, “Experimental and Theoretical Study of Transverse Vibration of a Tube Containing Flowing Fluid,” J. Appl. Mech vol. 22, 1955.
[31] M. C. Wu and J. Y. K. Lou, “Effects of rigidity and internal flow on marine riser dynamics,” Applied Ocean Research, vol. 13, no. 5, pp. 235–244, 1991.
[32] D. Meng and L. Chen, “Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser,” Applied Ocean Research, vol. 34, pp. 52–67, 2012.
[33] I. K. Chatjigeorgiou, “Hydroelastic response of marine risers subjected to internal slug-flow,” Applied Ocean Research, vol. 62, pp. 1-17, 2017.
[34] F. He, H. Dai, Z. Huang, and L. Wang, “Nonlinear dynamics of a fluid-conveying pipe under the combined action of cross-
flow and top-end excitations,” *Applied Ocean Research*, vol. 62, pp. 199–209, 2017.

[35] W. A. Oke and Y. A. Khulief, “Effect of internal surface damage on vibration behavior of a composite pipe conveying fluid,” *Composite Structures*, vol. 194, pp. 104–118, 2018.

[36] Z. Gu, C. Bai, and H. Zhang, “Stochastic finite-element modeling and dynamic characteristics analysis of pipe-conveying fluid,” *Journal of Vibration Engineering & Technologies*, vol. 7, no. 3, pp. 251–259, 2019.

[37] A. R. Askarian, M. R. Permoon, and M. Shakouri, “Vibration analysis of pipes conveying fluid resting on a fractional Kelvin-Voigt viscoelastic foundation with general boundary conditions,” *International Journal of Mechanical Sciences*, vol. 179, Article ID 105702, 2020.

[38] R. Khodabakhsh, A. R. Saidi, and R. Bahaadini, “An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects,” *Applied Ocean Research*, vol. 101, p. 102277, 2020.

[39] P. Shahali, H. Haddadpour, and S. A. H. Kordkheili, “Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow,” *Applied Ocean Research*, vol. 94, Article ID 101970, 2020.

[40] T. Jiang, Z. Liu, H. Dai, L. Wang, and F. He, “Nonplanar multi-modal vibrations of fluid-conveying risers under shear cross flows,” *Applied Ocean Research*, vol. 88, pp. 187–209, 2019.

[41] B. Ma, N. Srinil, H. Zhu, and Y. Gao, “Experimental measurement of large-amplitude intermittent vibrations of an inclined bendable riser transporting unsteady multiphase flows,” *Applied Ocean Research*, vol. 113, Article ID 102731, 2021.

[42] F. Liang, X.-D. Yang, W. Zhang, and Y.-J. Qian, “Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment,” *Journal of Sound and Vibration*, vol. 417, pp. 65–79, 2018.

[43] F. Liang, X.-D. Yang, W. Zhang, and Y.-J. Qian, “Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows,” *Journal of Fluids and Structures*, vol. 87, pp. 247–262, 2019.

[44] B. Li, Z. Wang, and L. Jing, “Dynamic response of pipe conveying fluid with lateral moving supports,” *Shock and Vibration*, vol. 2018, 2018.

[45] P. Gonçalves, M. Brennan, and S. Elliott, “Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams,” *Journal of Sound and Vibration*, vol. 301, no. 3-5, pp. 1035–1039, 2007.

[46] W. T. Thomson, *Theory of Vibration with Applications*, CRC Press, Boca Raton, FL, USA, 2018.

[47] X. Yang, H. Guo, M. Lou, and Q. Fu, “Allowable span length of submarine pipeline considering damping,” *Ocean Engineering*, vol. 23, no. 1, pp. 1–5, 2005.

[48] H. L. Dodds and H. L. Runyan, *Effect of High-Velocity Fluid Flow on the Bending Vibrations and Static Divergence of a Simply Supported Pipe*, National Aeronautics and Space Administration, Washington, DC, USA, 1965.