Coronavirus Pandemic

Albumin level as an independent predictive factor for adverse outcomes in COVID-19 patients: a retrospective cohort study

Congyi Xie1,2, Sijiao Wang2, Jian Zhou2, Lin Tong1,2, Changzhou Shao1,2

1 Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
2 Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China

Abstract

Introduction: Research on the association between albumin (ALB) level and clinical outcomes of coronavirus disease 2019 (COVID-19) are limited. This study aimed to investigate the relationship between albumin level at the time of admission and adverse outcomes in patients with COVID-19.

Methodology: This was a retrospective cohort study with 199 COVID-19 patients from five designated hospitals in Fujian Province who were enrolled between 22 January and 27 February, 2020. Clinical characteristics and laboratory values at the time of admission were collected. Adverse outcomes were defined as meeting at least one of the following criteria: development of acute respiratory distress syndrome (ARDS), respiratory failure, shock, multiple organ failure (MOF), intensive care unit (ICU) admission and in-hospital mortality event. The univariate and multivariate linear regression models and generalized additive models (GAM) were used to analyze the relationship between ALB and adverse outcomes.

Results: A non-linear relationship with an inflection point of 32.6g/L was detected between ALB and adverse outcomes after adjusting for potential confounders. The odds ratio and the confidence intervals on the left and right sides of the inflection point were 0.204 (0.061-0.681) and 0.908 (0.686-1.203), respectively. This suggested that ALB was negatively correlated with adverse outcomes when ALB was less than 32.6 g/L, and for every 1 unit increase in ALB, the risk of adverse outcomes was reduced by 79.6%.

Conclusions: The relationship between ALB and adverse outcomes of COVID-19 is non-linear. ALB level is an independent predictive factor for adverse outcomes in COVID-19 patients.

Key words: COVID-19; albumin; predictive factor; outcome.

J Infect Dev Ctries 2022; 16(11):1696-1702. doi:10.3855/jidc.16880

(Received 22 May 2022 – Accepted 10 October 2022)

Copyright © 2022 Xie et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Coronavirus disease 2019 (COVID-19) is a global pandemic and has been declared a public health emergency of international concern by the World Health Organization (WHO) [1]. Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) can affect multiple organs, leading to adverse outcomes, such as cerebrovascular events [2,3], myocardial infarction [4], pulmonary embolism [5], acute liver injury, and death [6,7]. In order to improve the management of patients, it is critical to identify predictors of adverse outcomes.

Albumin is a protein synthesized in the liver, and performs a variety of physiological roles in the body, such as providing oncotic pressure, binding and transporting materials, and maintaining acid base balance [8,9]. When the body is in critical condition, inflammatory mediators reduce albumin synthesis to preferentially synthesize other proteins required for acute phase response. Additionally, these mediators increase vascular permeability and cause albumin to escape into interstitial space and lead to hypoalbuminemia [10]. Previous studies have suggested an association between hypoalbuminemia and poor outcomes in critical patients [11], but the relationship between the albumin level and catastrophic events in COVID-19 remains unclear.

We explored the relationship between initial admission albumin concentration and adverse outcomes in COVID-19 patients, with the hypothesis that albumin level can be an independent predictive factor for adverse outcomes in COVID-19 patients. This can help clinicians identify high-risk patients early and take timely preventive measures.

Methodology

Study design and participants

A total of 199 COVID-19 patients (age range: 16-93 years) who were admitted to five hospitals in the Fujian Province, including Fuzhou, Zhangzhou,
Xiamen, Putian and Quanzhou, from 22 January to 27 February, 2020, were consecutively enrolled for this retrospective study. The clinical outcomes, discharge from hospital or death, were recorded up to March 3, 2020. The hospitals are designated for COVID-19 treatment by the government. All the patients were diagnosed with COVID-19 through real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay, according to the Guideline for Diagnosis and Treatment for Novel Coronavirus Pneumonia released by the National Health Commission of China (5th edition) [12]. This study was approved by the ethical committee in Zhongshan Hospital (Xiamen), Fudan University (B2020-003). The requirement for informed consent was waived because the data were urgently collected and analyzed anonymously.

Characteristics	T1 (26.8-37.8)	T2 (38.0-42.3)	T3 (42.4-49.8)	p value
No. of participants	66	66	67	0.001
Age, years	53.61 ± 16.55	45.89 ± 15.02	39.49 ± 14.67	< 0.001
Male	35 (53.93%)	26 (39.39%)	33 (49.25%)	0.269
BMI, kg/m²	23.68 ± 3.44	23.54 ± 3.14	23.97 ± 3.70	0.768
Current smoking	5 (7.56%)	1 (1.52%)	7 (10.45%)	0.104
Comorbidities				
Hypertension	12 (18.18%)	6 (8.96%)	3 (4.48%)	0.180
Diabetes	8 (12.12%)	6 (8.96%)	2 (2.99%)	0.822
Cardiovascular disease	3 (4.55%)	2 (2.99%)	1 (1.49%)	0.848
Chronic kidney disease	2 (3.03%)	1 (1.52%)	1 (1.49%)	0.848
Pulmonary disease	8 (12.12%)	3 (4.55%)	0 (0.00%)	0.008
Tumor	2 (3.03%)	2 (3.03%)	4 (5.97%)	0.735
Chronic liver disease	1 (1.52%)	9 (13.64%)	1 (1.49%)	0.002
Symptoms				
Cough	39 (59.09%)	45 (68.18%)	37 (55.22%)	0.292
Fever	52 (78.79%)	55 (83.33%)	45 (67.16%)	0.077
Chest distress	10 (15.15%)	2 (3.03%)	6 (8.96%)	0.052
Dyspnea	2 (3.03%)	0 (0.00%)	0 (0.00%)	0.218
Fatigue	16 (24.24%)	14 (20.90%)	10 (15.15%)	0.068
Headache	6 (9.09%)	6 (9.09%)	2 (2.99%)	0.282
Diarrhea	9 (13.64%)	4 (6.06%)	4 (5.97%)	0.194
Laboratory findings				
Leukocytes, 10⁹/L	5.16 ± 1.96	5.65 ± 2.95	5.49 ± 2.10	0.607
Neutrophils, 10⁹/L	3.16 (2.05-4.39)	3.29 (2.43-4.16)	3.26 (2.22-4.51)	0.950
Lymphocytes, 10⁹/L	1.24 ± 0.58	1.38 ± 0.66	1.58 ± 0.78	0.051
Platelets, 10⁹/L	195.15 ± 66.61	207.70 ± 85.77	207.93 ± 56.73	0.335
Hemoglobin, g/L	129.77 ± 15.76	137.88 ± 18.14	143.18 ± 17.97	< 0.001
TBIL, μmol/L	12.45 (8.70-17.85)	12.45 (8.07-16.68)	13.00 (7.40-20.60)	0.625
ALT, U/L	22.50 (16.00-30.00)	27.50 (19.25-37.18)	22.70 (17.50-34.60)	0.136
AST, U/L	25.40 (21.00-32.00)	25.00 (21.00-33.00)	23.90 (19.00-30.15)	0.476
LDH, U/L	209.30 (164.00-347.75)	257.70 (174.75-406.75)	217.00 (168.00-436.00)	0.591
Creatinine, μmol/L	68.91 ± 19.73	66.93 ± 16.29	70.01 ± 17.44	0.716
BUN, mmol/L	3.95 ± 1.67	3.93 ± 1.53	4.07 ± 1.62	0.779
CK, U/L	70.00 (45.50-140.50)	70.30 (42.50-103.75)	60.00 (44.00-100.30)	0.577
PT, sec	12.07 ± 0.99	12.01 ± 0.99	11.61 ± 1.06	0.040
APTT, sec	31.43 ± 5.30	30.26 ± 4.30	30.87 ± 6.20	0.517
Fibrinogen, mg/dL	3.77 ± 0.97	3.56 ± 0.99	3.58 ± 0.92	0.289
D-dimer, mg/L	0.28 (0.18-0.49)	0.19 (0.02-0.32)	0.23 (0.02-0.34)	< 0.001
Adverse outcomes				
ARDS	11 (16.67%)	6 (9.09%)	5 (7.46%)	0.197
Respiratory failure	6 (9.09%)	4 (6.06%)	2 (2.99%)	0.335
Shock	2 (3.03%)	1 (1.49%)	1 (1.49%)	1.000
MOF	0 (0.00%)	0 (0.00%)	1 (1.49%)	1.000
ICU admission	6 (9.09%)	3 (4.55%)	5 (7.46%)	0.585
In-hospital mortality	1 (1.52%)	0 (0.00%)	0 (0.00%)	0.663

*Continuous variable was obtained by Kruskal-Wallis rank sum test. If the count variable had a theoretical number < 10, the probability was calculated accurately using Fisher’s exact test. BMI: Body mass index; TBIL: Total bilirubin; ALT: Alanine transaminase; AST: Aspartate transaminase; LDH: Lactate dehydrogenase; BUN: Blood urea nitrogen; CK: Creatine kinase; PT: Prothrombin time; APTT: Activated partial thromboplastin time; ALB: Albumin; ARDS: Acute respiratory distress syndrome; MOF: Multiple organ failure; ICU: Intensive Care Unit.
Data collection
A team of professional physicians retrospectively reviewed the electronic medical records, comprising of clinical notes and laboratory values for our cohort of patients. We recorded the demographic data including age, gender, body mass index (BMI), and smoking habit, the comorbidities including hypertension, diabetes, cardiovascular disease, chronic kidney disease, pulmonary disease, tumor, and chronic liver disease, and the symptoms. In the case of laboratory values, initial values on the day of admission were collected. The outcomes were recorded, including development of acute respiratory distress syndrome (ARDS), respiratory failure, shock, multiple organ failure (MOF), intensive care unit (ICU) admissions, in-hospital mortality events, and total adverse outcomes (sum of the adverse outcomes detailed above).

Statistical analysis
Adverse outcomes were defined as meeting at least one of the following criteria: development of ARDS, respiratory failure, shock, MOF, ICU admissions and in-hospital mortality events. Statistical analysis was performed in five steps. First, we analyzed the baseline characteristics of participants in accordance with the following principles and we grouped albumin (ALB) in tertiles: (1) continuous variables were expressed as the means ± standard deviations (normal distribution) or medians (interquartile) (skewed distribution), and categorical variables were expressed as frequency (percentage); and (2) the one-way ANOVA (normal distribution), Kruskal-Wallis H (skewed distribution) test and Chi square test (categorical variables) were used to analyze any significant differences between the means and proportions of the groups. Second, we used univariate and multivariate Cox regression analyses to assess relationships between ALB and adverse outcomes risk. The covariates, including age, gender, body mass index (BMI), current smoking, hypertension, cardiovascular disease, pulmonary disease, tumor, chronic liver disease, D-dimer, creatinine, creatinine kinase (CK), leukocytes, neutrophil, lactate dehydrogenase (LDH), blood urea nitrogen (BUN), and fibrinogen, when added to this model changed the matched odds ratio by at least 10% and were adjusted. Third, generalized additive models (GAM) were used to identify non-linear relationships because ALB was a continuous variable. If a non-linear correlation was observed, a two piecewise linear regression model was used to calculate the threshold effect of ALB on adverse outcomes in terms of the smoothing plot. When the ratio between adverse outcomes and ALB appeared obvious in a smoothed curve, the recursive method automatically calculates the inflection point, where the maximum model likelihood will be used. The statistical analysis of this part was carried out using “mgcv” [13] package of R software. Fourth, subgroup analysis of the association between ALB and adverse outcomes was performed using stratified linear regression models. The modifications and interactions of subgroups were examined by likelihood ratio tests. All the analyses were performed with the statistical software package R (http://www.R-project.org, The R Foundation) and EmpowerStats (http://www.empowerstats.com, X&Y Solutions, Inc., Boston, MA). p values less than 0.05 (two-sided) were considered statistically significant.

Results
The average age of the cohort was 46.3 ± 16.4 years, and approximately 52.8% of the patients were male. We compared the baseline demographic, clinical, and biochemical characteristics of the patients by tertiles of ALB (Table 1). Patients in the lowest tertile were older, and more likely to have pulmonary disease compared to the subjects in the highest tertile of ALB. Participants with chronic liver disease were mainly in the middle tertile of ALB. Patients in the highest tertile group had significantly higher lymphocyte and hemoglobin, and lower prothrombin time (PT) and D-dimer compared to the lowest tertile group.

The univariate logistic regression models between baseline variables and adverse outcomes are presented in Table 2. The results of univariate analysis showed that age, hypertension, cardiovascular disease, pulmonary disease, tumor, fatigue, leukocytes, neutrophil, aspartate transferase (AST), LDH, creatinine, BUN, CK, fibrinogen and D-dimer were positively correlated with the risk of adverse outcomes. The ALB (OR = 0.850, 95% CI, 0.776 - 0.931, p = 0.00045) was negatively correlated with the risk of adverse outcomes. We have presented the results of multivariate Cox regression analyses in Table 3. After adjusting potential confounders, we found that ALB was negatively correlated with adverse outcomes (OR = 0.70, 95% CI, 0.56 - 0.88, p = 0.002). We also analyzed ALB as a categorical variable (tertiles) for the purpose of sensitivity analysis, and found the same trend (p = 0.0303).
Table 2. The results of univariate analysis (n = 199). Values are mean ± SD or n (%).

Variables	Statistics	Odds ratio (95% CIs)	p value
Age	46.3 ± 16.4	1.063 (1.033, 1.094)	0.00003
Female	94 (47.2%)	0.379 (0.142, 1.014)	0.0533
BMI	23.7 ± 3.4	1.054 (0.905, 1.228)	0.4962
Current smoking	13 (6.5%)	1.509 (0.312, 7.301)	0.6089
Hypertension	31 (15.6%)	4.878 (1.867, 12.740)	0.0012
Diabetes	15 (7.5%)	2.171 (0.562, 8.386)	0.2608
Cardiovascular disease	8 (4.0%)	9.611 (2.213, 41.737)	0.0025
Chronic kidney disease	4 (2.0%)	2.762 (0.275, 27.771)	0.3883
Pulmonary disease	11 (5.5%)	5.397 (1.440, 20.224)	0.0123
Tumor	8 (4.0%)	5.432 (1.203, 24.532)	0.0278
Chronic liver disease	11 (5.5%)	0.379 (0.142, 1.014)	0.0533
Cough	121 (60.8%)	1.145 (0.457, 2.871)	0.7730
Neutrophils, 10^9/L	3.7 ± 2.7	0.441 (0.194, 1.001)	0.0535
Lymphocytes, 10^9/L	1.4 ± 0.7	1.134 (1.003, 1.282)	0.0452
Platelets, 10^9/L	121 (60.8%)	2.762 (0.275, 27.771)	0.3883
Hemoglobin, g/L	137.0 ± 18.0	0.898 (0.958, 1.003)	0.0944
Creatinine, umol/L	68.6 ± 17.8	1.030 (1.006, 1.054)	0.0152
BUN, mmol/L	40.2 ± 5.1	0.507 (0.275, 27.771)	0.3883
CK, U/L	28.9 ± 17.3	1.053 (1.017, 1.090)	0.0034
LDH, U/L	295.7 ± 170.9	1.002 (1.000, 1.005)	0.0287
Creatine, mmol/L	4.0 ± 1.6	1.449 (1.155, 1.818)	0.0013
AST, U/L	27.1 ± 10.8	1.007 (1.002, 1.012)	0.0087
Neutrophils, 10^9/L	3.7 ± 2.7	1.134 (1.003, 1.282)	0.0452
Platelets, 10^9/L	203.6 ± 70.6	0.995 (0.988, 1.003)	0.2120
Hemoglobin, g/L	137.0 ± 18.0	0.980 (0.958, 1.003)	0.0944
ALT, U/L	28.9 ± 17.3	1.005 (1.981, 1.029)	0.7016
AST, U/L	27.1 ± 10.8	1.053 (1.017, 1.090)	0.0034
LDH, U/L	295.7 ± 170.9	1.002 (1.000, 1.005)	0.0287
Creatinine, mmol/L	68.6 ± 17.8	1.030 (1.006, 1.054)	0.0152
BUN, mmol/L	4.0 ± 1.6	1.449 (1.155, 1.818)	0.0013
CK, U/L	89.2 ± 69.1	1.007 (1.002, 1.012)	0.0087
PT, sec	11.9 ± 1.0	0.819 (0.510, 1.316)	0.4098
APTT, sec	30.9 ± 5.3	0.928 (0.840, 1.026)	0.1428
Fibrinogen, mg/dL	3.6 ± 1.0	1.830 (1.153, 2.903)	0.0103
D-dimer, mg/L	0.3 ± 0.4	3.240 (1.465, 7.169)	0.0037
ALB, g/L	40.2 ± 5.1	0.850 (0.776, 0.931)	0.00045

BMI: Body mass index; TBIL: Total bilirubin; ALT: Alanine transaminase; AST: Aspartate transaminase; LDH: Lactate dehydrogenase; BUN: Blood urea nitrogen; CK: Creatine kinase; PT: Prothrombin time; APTT: Activated partial thromboplastin time; ALB: Albumin; CI: confidence interval.

Table 3. Relationship between albumin and adverse outcomes.

Exposure	Odds ratio (95% CIs)	p value
Albumin, g/L	0.70 (0.56, 0.88)	0.0020
Albumin (tertiles), g/L	Ref	Ref
T1	0.14 (0.02, 1.07)	0.0579
T3	0.07 (0.00, 0.86)	0.0377
p for trend	0.0303	

Adjusted for age, gender, body mass index, current smoking, hypertension, cardiovascular disease, pulmonary disease, tumor, chronic liver disease, D-dimer, creatinine, creatine kinase, leukocytes, neutrophil, lactate dehydrogenase, blood urea nitrogen and fibrinogen.
In the present study, we analyzed the non-linear relationship between ALB and adverse outcomes because ALB is a continuous variable (Figure 1). We found that the relationship between ALB and adverse outcomes was non-linear (after adjusting for age, gender, BMI, smoking status, hypertension, cardiovascular disease, pulmonary disease, tumor, chronic liver disease, D-dimer, creatinine, CK, leukocytes, neutrophil, LDH, BUN and fibrinogen). By using a two-piecewise linear regression model, we calculated the inflection point as 32.6. On the right of the inflection point, the odds ratio, 95% CI and p value were 0.908, 0.686 to 1.203 and 0.5032, respectively. However, we observed a negative relationship between ALB and adverse outcomes on the left side of the inflection point (OR = 0.204, 95% CI, 0.061 - 0.681, p = 0.0097) (Table 4). This suggests that when ALB was less than 32.6 g/L, for every 1 unit increase in ALB, the risk of adverse outcomes was reduced by 79.6%.

The results of subgroup analysis indicated that interaction effect of age was significant (p = 0.0113), while the test for interactions had no significant differences for gender, BMI, hypertension, diabetes, pulmonary disease and chronic liver disease (p values for interactions were > 0.05; cardiovascular disease, chronic kidney disease and tumor were not included in subgroup analysis because the sample size in the subgroup was less than 10) (Figure 2).

Discussion
We used generalized linear model (GLM) and GAM models to elucidate the relationship between ALB and adverse outcomes among participants. As is shown in multivariate Cox regression analyses, ALB was negatively correlated with the risk of adverse outcomes. This relationship seems to diminish with age. The same trend was observed when we analyzed ALB as a categorical variable. However, the results obtained from GAM and two-piecewise linear regression model showed that the relationship between ALB and adverse outcomes was non-linear, and the correlations between ALB and adverse outcomes were different on the left and right sides of the inflection point (ALB = 32.6). ALB, as assessed at baseline, was not statistically significant on the right side of the inflection point, but it was negatively associated with adverse outcomes on the left of the inflection point. It means that ALB is negatively correlated with adverse outcomes when

Table 4. The results of the two-piecewise linear regression model.

ALB (g/L)	Odds ratio (95% CI)	p value
≤ 32.6	0.204 (0.061, 0.681)	0.0097
> 32.6	0.908 (0.686, 1.203)	0.5032

Adjusted for age, gender, body mass index, current smoking, hypertension, cardiovascular disease, pulmonary disease, tumor, chronic liver disease, D-dimer, creatinine, creatine kinase, leukocytes, neutrophil, lactate dehydrogenase, blood urea nitrogen and fibrinogen.
ALB is less than 32.6 g/L, and for every 1 unit increase in ALB, the risk of adverse outcomes was reduced by 79.6%.

Several studies have indicated a decrease in serum albumin concentrations in patients affected by COVID-19 [14,15]. Hypoalbuminemia has a negative impact on clinical outcomes in COVID-19 patients [16-19]. Hypoalbuminemia has been identified as an independent predictor of mortality in COVID-19 patients [17]. However, our study differs from the previous studies in that our patients were from five different hospitals. Furthermore, our study has a few strengths. First, we not only used GLM to evaluate the linear relationship between ALB and adverse outcomes, but also used GAM to clarify their non-linear relationship. GAM has advantages in analyzing non-linear relations; it can handle non-parametric smoothing and will fit a regression spline to the data. The use of GAM helped us better discover the real relationship between exposures and outcomes. Second, this study is an observational study, including unavoidable potential confounders; therefore, we used strict statistical adjustment to minimize residual confounding. Third, we had the positive finding that when ALB was less than 32.6 g/L (32.6, per 1 change in the text), for every 1 unit increase in ALB, the risk of adverse outcomes was reduced by 79.6%. The clinical value of this finding is that the association of ALB and adverse outcomes can only be observed when ALB levels do not reach a certain threshold (ALB = 32.6g/L), which can guide clinical practice directly.

The relationship between hypoalbuminemia and more adverse outcomes may have several explanations. First, as an anti-inflammatory and antioxidant protein, albumin plays a crucial role in scavenging free oxygen radicals, which can cause tissue ischemia-reperfusion injury and even an intense systemic inflammatory response [20,21]. Previous studies indicated that albumin concentrations were inversely correlated with white blood cell, neutrophil-to-lymphocyte ratio, C-reactive protein and interleukin-6, which suggested that hypoalbuminemia might be due to the systemic inflammatory state in COVID-19 [17,22]. It is well known that inflammation may be responsible for the extravasation of serum albumin into the interstitial space due to an expanded capillary vascular permeability, with an increased volume distribution of albumin [10]. In this context, the role of albumin in scavenging oxygen free radicals is not potent enough to protect against the cytokine storm and the ensuing organ failure. Besides, albumin not only has anticoagulant properties, but also inhibits oxidative stress-related coagulation and platelet activation [23,24]. Therefore, the negative impact of hypoalbuminemia on coagulation activation may be associated with a higher risk of COVID-19 adverse outcomes. Hence, in addition to prior known biomarkers, such as procalcitonin, C-reactive protein, lymphocyte count, D-dimer, troponin I, aspartate transaminase and alanine transaminase, associated with severe COVID-19 [25], serum albumin level might help in prognostic risk stratification.

There are some limitations in our study. First, the study population may not be large enough and some bias may have occurred. Second, the subgroup analysis was not adjusted for potential confounding variables because of the limited number of positive events. Third, we showed only the predictive value of baseline albumin level for outcome of COVID-19, yet the changes in albumin level during the evolution of COVID-19 were not reflected in our data set, and whether the dynamic changes of albumin level are more predictive of adverse outcomes remains unknown. Fourth, this dataset only included the clinical data at the beginning of the pandemic, and the analysis period was short, which limits generalizations and further observations, especially since new strains emerged later on.

Conclusions
We demonstrated that the relationship between ALB and adverse outcomes of COVID-19 is non-linear. ALB is negatively correlated with adverse outcomes when ALB is less than 32.6 g/L. These findings further expand the potential role of ALB as a prognostic predictor in COVID-19, suggesting that for COVID-19 patients who had admission ALB lower than 32.6g/L, the risk of adverse outcomes was much higher, and they need more intensive and active treatment.

Acknowledgements
We thank all the staff working at the frontline to battle against SARS-CoV-2.

Authors’ Contributions
Congyi Xie conducted the data analyses and wrote the initial manuscript. Sijiao Wang and Jian Zhou contributed to data collection. Lin Tong and Changzhou Shao designed the study, revised the data analyses and the manuscript. All authors read and approved the final manuscript.

Funding
This work was funded by the Fujian Provincial Department of Science and Technology (2020Y01090006), the National...
Natural Science Foundation of China (82170088), the Natural Science Foundation of Fujian Province, China (2022J05330), and by the Science and Technology Commission of Shanghai Municipality (20DZ2254400, 20DZ2261200).

References
1. Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel coronavirus outbreak of global health concern. Lancet 395: 470–473.
2. Markus HS, Brainin M (2020) COVID-19 and stroke - a global World Stroke Organization perspective. Int J Stroke 15: 361–364.
3. Avula A, Nalleballe K, Narula N, Sapożnikow S, Dandu V, Toom S, Glaser A, Elsayegh D (2020) COVID-19 presenting as stroke. Brain Behav Immun 87: 115–119.
4. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259–260.
5. Wichmann D (2020) Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med 173: 1030.
6. Su T-H, Kao J-H (2020) The clinical manifestations and management of COVID-19-related liver injury. J Formos Med Assoc 119: 1016–1018.
7. Price-Haywood EG, Burton J, Fort D, Seoane L (2020) Hospitalization and mortality among black patients and white patients with COVID-19. N Engl J Med 382: 2534–2543.
8. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57: 787–796.
9. Palioiannis P, Mangoni AA, Cangemi M, Fois AG, Carru C, Zinellu A (2021) Serum albumin concentrations are associated with disease severity and outcomes in coronavirus 19 disease (COVID-19): a systematic review and meta-analysis. Clin Exp Med 21: 343–354.
10. Soeters PB, Wolfe RR, Shenkin A (2019) Hypoalbuminemia: pathogenesis and clinical significance. J Parenter Enter Nutr 43: 181–193.
11. Yin M, Si L, Qin W, Li C, Zhang J, Yang H, Han H, Zhang F, Ding S, Zhou M, Wu D, Chen X, Wang H (2018) Predictive value of serum albumin level for the prognosis of severe sepsis without exogenous human albumin administration: a prospective cohort study. J Intensive Care Med 33: 687–694.
12. The National Health Commission of China (2020) Guideline for diagnosis and treatment for novel coronavirus pneumonia (5th edition). http://www.nhc.gov.cn/yzwj/ys7653p/202002/3b09b894ace9b4204a79db5b8912d4440.shtml. Accessed: 5 February 2020.
13. Wood, S.N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association. 99:673-686.
14. Lippi G, Plebani M (2020) Laboratory abnormalities in patients with COVID-19 infection. Clin Chem Lab Med 58: 1131–1134.
15. Palioiannis P, Zinellu A, Scano V, Mulas G, De Riu G, Pascale RM, Arru LB, Carru C, Pirina P, Mangoni AA, Fois AG (2020) Laboratory test alterations in patients with COVID-19 and non-COVID-19 interstitial pneumonia: a preliminary report. J Infect Dev Ctries 14: 685–690. doi: 10.3855/jidc.12879.
16. Aziz M, Fatima R, Lee-Smith W, Assaly R (2020) The association of low serum albumin level with severe COVID-19: a systematic review and meta-analysis. Crit Care 24: 255.
17. Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, Lin S (2020) Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol 92: 2152–2158.
18. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506.
19. Kheir M, Saleem F, Wang C, Mann A, Chua J (2021) Higher albumin levels on admission predict better prognosis in patients with confirmed COVID-19. PLoS One 16: e0248358.
20. Taverna M, Marie A-L, Mira J-P, Guidet B (2013) Specific antioxidant properties of human serum albumin. Ann Intensive Care 3: 4.
21. Shim H, Jung JY, Lee SH, Lee JG (2013) Correlation of the oxygen radical activity and antioxidants and severity in critically ill surgical patients – study protocol. World J Emerg Surg 8: 18.
22. Huang W, Li C, Wang Z, Wang H, Zhou N, Jiang J, Ni L, Zhang XA, Wang D-W (2020) Decreased serum albumin level indicates poor prognosis of COVID-19 patients: hepatic injury analysis from 2,623 hospitalized cases. Sci China Life Sci 63: 1678–1687.
23. Ronit A, Kirkegaard-Klitbo DM, Dohllmann TL, Lundgren J, Sabin CA, Phillips AN, Nordestgaard BG, Afzal S (2020) Plasma albumin and incident cardiovascual disease: results from the CGPS and an updated meta-analysis. Arterioscler Thromb Vasc Biol 40: 473–482.
24. Basili S, Carnevale R, Nocella C, Bartimosci C, Raparelli V, Talerico G, Stefanini L, Romiti GF, Perticone F, Corazza GR, Piscaglia F, Pietrangelo A, Violi F, PRO-LIVER Collaborators (2019) Serum albumin is inversely associated with portal vein thrombosis in cirrhosis. Hepatol Commun 3: 504–512.
25. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T (2020) Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 57: 389–399.

Corresponding authors
Lin Tong, MD, PhD.
Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, 200032 Shanghai, China
Tel: +86 21 64041990
Fax: +86 21 64038038
Email: tong.lin@zs-hospital.sh.cn

Changzhou Shao, MD, PhD
Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, 200032 Shanghai, China
Tel: +86 21 64041990
Fax: +86 21 64038038
Email: sczzzhongshan@126.com

Conflict of interests: No conflict of interests is declared.