PAPER

Influence of enriched ^{100}Mo on Mo reaction yields

Jaewoong Jang1 and Mitsuru Uesaka1,2

1 Department of Bioengineering, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
2 Nuclear Professional School, University of Tokyo, Naka, Ibaraki 319-1188, Japan

E-mail: jangj@korea.ac.kr

Keywords: ^{99}Mo, ^{99m}Tc, nuclear medicine, electron linear accelerator, cyclotron

Supplementary material for this article is available online

Abstract

In accelerator-driven $^{99}\text{Mo}/^{99m}\text{Tc}$ production, the ^{100}Mo enrichment level should be chosen carefully as it greatly affects the yields of the involved Mo reactions. To facilitate selecting the ^{100}Mo enrichment level, we defined a figure of merit called density change coefficient and developed its calculation program. Density change coefficients calculated for nine commercial enriched ^{100}Mo products are presented and their use in selecting the ^{100}Mo enrichment level is discussed.

1. Introduction

Technetium-^{99m}Tc, arguably the most widely used gamma emitter in nuclear medicine, is obtained via the negatron decay of its precursor, molybdenum-^{99}Mo (^{99}Mo). Most of this precursor nuclide is produced via the fission reaction $^{235}\text{U}(n,f)^{99}\text{Mo}$ in research reactors. All but one of the major reactors, however, have only about 10 years left until the end of operation (figure 1), resulting in an increasingly unstable ^{99}Mo supply chain; there have been a number of ^{99}Mo supply shortages attributed to the aging of the reactors in the past few decades [1–3]. In response to the unstable ^{99}Mo supply chain, accelerator-based alternative methods of $^{99}\text{Mo}/^{99m}\text{Tc}$ production have been explored extensively, including (figure 2):

- Production of ^{99}Mo via the $^{100}\text{Mo}(\gamma,n)^{99}\text{Mo}$ reaction using electron linear accelerators [4–9].
- Production of ^{99}Mo via the $^{100}\text{Mo}(n,2n)^{99}\text{Mo}$ reaction using fast neutron generators [10–13].
- Production of ^{99m}Tc via the $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$ reaction using medical cyclotrons [14–25].

In all of the accelerator methods mentioned above, use of enriched ^{100}Mo is necessary: in the $^{100}\text{Mo}(\gamma,n)^{99}\text{Mo}$ and $^{100}\text{Mo}(n,2n)^{99}\text{Mo}$ reaction routes, the use of 99%-enriched ^{100}Mo can provide approximately tenfold increases in the yield and specific yield of ^{99}Mo. In the $^{100}\text{Mo}(p,2n)^{99m}\text{Tc}$ reaction route, the use of >99%-enriched ^{100}Mo is required to minimize the production of Tc isotopes other than ^{99m}Tc. Such a need for enriched ^{100}Mo has been known for years, and the minimum required ^{100}Mo enrichment levels have been reported by a number of researchers [15, 18, 23, 27].

The required ^{100}Mo enrichment level can be determined by considering (i) the yields of $^{99}\text{Mo}/^{99m}\text{Tc}$, (ii) the yields of impurity nuclides, and (iii) the influence of individual impurity nuclides on the radiation dose and image quality. In order to facilitate selecting the ^{100}Mo enrichment level, we defined a figure of merit that can be used to evaluate (i) and (ii) above. The theoretical basis, calculation results, and use of the figure of merit are presented.

2. Theory

2.1. Molybdenum hierarchy

We classify Mo into three hierarchical groups as described in figure 3: (i) Mo materials, (ii) Mo element, and (iii) Mo isotopes. The Mo materials of interest in this paper were Mo metal and Mo(VI) oxide (MoO$_3$), both of which...
are used in accelerator production of 99Mo [2, 6, 9, 11], and the former of which is used in cyclotron production of 99mTc [2, 16, 18, 21, 23–25, 27]. We hereafter refer to Mo metal as Momet to distinguish it from the Mo element. Based on this hierarchy, we examine how the physical quantities of Mo materials and Mo elements are affected by their 100Mo content.
2.2. Amount fraction, mass fraction, and enrichment level

The amount fraction of 100Mo in naturally occurring Mo is $x_{^{100}Mo} = 0.09744$ \cite{28,29}, while the corresponding mass fraction is $w_{^{100}Mo} = \frac{0.09744 \times 100}{199.887 + 0.15 \times 15.999} \approx 0.1015$ (figure 4). Any of the two fraction quantities can be used as the enrichment level. To avoid confusion and to conform to the conventions of enriched 100Mo vendors \cite{30,31}, this paper assumes that the amount fraction of 100Mo denotes the enrichment level of 100Mo. On the other hand, the mass fraction of 100Mo, as is appropriate for describing the dependence of Mo element on the 100Mo content, will be used in explaining the influence of enriched 100Mo on the hierarchical Mo entities.

2.3. Mass fraction of Mo element

The mass fraction of Mo element in Mo$_{met}$ and MoO$_3$ can be expressed as

$$w_{Mo}(w_{^{100}Mo}) = \frac{n_{Mo}}{n_{Mo,^{100}Mo} + n_{O,MoO_3}}$$

$$= \left(\frac{n_{Mo}}{n_{Mo,^{100}Mo}} \right) \left(\frac{n_{Mo}}{n_{Mo,MoO_3}} + \frac{n_{O}}{n_{O,MoO_3}} \right)^{-1}, \quad (1)$$

where n denotes the amount of substance (number of moles), \overline{M} the weighted-average molar mass, M the molar mass, and A represents the mass numbers of the naturally occurring isotopes of the chemical elements.

For nonenriched MoO$_3$, for example, (1) becomes

$$w_{Mo}(0.1015) = \frac{(1)(95.949 \text{ g mol}^{-1})}{(1)(95.949 \text{ g mol}^{-1}) + (3)(15.999 \text{ g mol}^{-1})} \approx 0.66656.$$

If the MoO$_3$ is enriched in 100Mo and now has a 100Mo mass fraction of 0.990, the mass fraction of Mo element will increase to

$$w_{Mo}(0.990) = \frac{(1)(99.887 \text{ g mol}^{-1})}{(1)(99.887 \text{ g mol}^{-1}) + (3)(15.999 \text{ g mol}^{-1})} \approx 0.67544.$$

In other words, the mass of Mo element per mass of MoO$_3$ will increase by a factor of

$$w_{Mo}(0.990) \approx \frac{0.67544}{0.66656} \approx 1.0133. \quad (2)$$

By contrast, w_{Mo} in Mo$_{met}$ is unaffected by its associated 100Mo mass fraction:

$$w_{Mo}(0.990) \approx \frac{(1)(99.887 \text{ g mol}^{-1})}{(1)(99.887 \text{ g mol}^{-1}) + (0)(15.999 \text{ g mol}^{-1})} = 1.0000. \quad (3)$$

Equations (2) and (3) are plotted in figure 5 along with other postenrichment 100Mo mass fractions. The mass fraction of Mo element in MoO$_3$, although slowly, increases with increasing 100Mo mass fraction. An
increased mass fraction of a Mo element means an increase in its mass density, which further increases the 100Mo mass density and in turn contributes to improving the 100Mo reaction yields. These cascading effects will be explained in the next subsection.

2.4. Density change coefficient

The mass density of 100Mo can be written as

$$\rho_{^{100}\text{Mo}}(w_{^{100}\text{Mo}}) = w_{^{100}\text{Mo}}/\rho_{\text{Mo-mat}}$$

where the subscript Mo-mat is the placeholder for Mo materials. Because of the dependence of $w_{^{100}\text{Mo}}$ on $w_{^{100}\text{Mo}}$, when $w_{^{100}\text{Mo}}$ is changed, $\rho_{^{100}\text{Mo}}$ is affected not only by the change in $w_{^{100}\text{Mo}}$, but also by w_{Mo}. For instance, $\rho_{^{100}\text{Mo}}(0.1015) = (0.1015)(0.66656)(4.690 \text{ g cm}^{-3}) \approx 0.3173 \text{ g cm}^{-3}$,

which, if the 100Mo mass fraction is increased to 0.9900, will become

$$\rho_{^{100}\text{Mo}}(0.9900) = (0.9900)(0.67544)(4.690 \text{ g cm}^{-3}) \approx 3.136 \text{ g cm}^{-3}.$$

The 100Mo mass density will then increase by a factor of

$$\frac{\rho_{^{100}\text{Mo}}(0.9900)}{\rho_{^{100}\text{Mo}}(0.1015)} = \frac{3.136 \text{ g cm}^{-3}}{0.3173 \text{ g cm}^{-3}} \approx 9.884.$$

If the change in w_{Mo} by $w_{^{100}\text{Mo}}$ had not been taken into account, (5) would have been

$$\frac{(0.9900)(0.66656)(4.690 \text{ g cm}^{-3})}{(0.1015)(0.66656)(4.690 \text{ g cm}^{-3})} = \frac{3.095 \text{ g cm}^{-3}}{0.3173 \text{ g cm}^{-3}} \approx 9.754,$$

leading to an underestimation. Note, also, that (5) is actually the product of (2) and (6):

$$\left[\begin{array}{c}
0.67544 \\
0.66656
\end{array}\right] \left[\begin{array}{c}
0.9900(0.66656)(4.690 \text{ g cm}^{-3}) \\
(0.1015)(0.66656)(4.690 \text{ g cm}^{-3})
\end{array}\right] = \left(\begin{array}{c}
1.0133 \\
0.9754
\end{array}\right) \approx 9.884,$$

in which the role of (1) is clearly shown. Under the same conditions, the 100Mo mass density increment of Mo$_{\text{net}}$ will be

$$\frac{\rho_{\text{Mo}_{\text{net}}}(0.9900)}{\rho_{\text{Mo}_{\text{net}}}(0.1015)} = \frac{(0.9900)(1.0000)(10.28 \text{ g cm}^{-3})}{(0.1015)(1.0000)(10.28 \text{ g cm}^{-3})} \approx 9.754.$$

The dependence of mass densities of Mo element and 100Mo on the 100Mo mass fraction are summarized in figure 6. As shown in the bottom-right panel, the mass density of Mo element ρ_{Mo} in MoO$_3$ increases with the 100Mo mass fraction. This positive slope of ρ_{Mo}, then improves the rate of increase in the 100Mo mass density $\rho_{^{100}\text{Mo}}$, as can be seen from (4). Consequently, MoO$_3$ can have a greater 100Mo mass density increment than Mo$_{\text{net}}$ when enriched in 100Mo. However, it should be noted that the absolute 100Mo mass density in Mo$_{\text{net}}$ remains greater than that in MoO$_3$ by a factor of 3.2. Namely, the ratio between the 100Mo mass density in nonenriched Mo$_{\text{net}}$ and that in MoO$_3$ is
Equation (7) shows that the ^{100}Mo reaction yields of Mo$_\text{met}$ are greater than those of MoO$_3$ regardless of the ^{100}Mo enrichment level.

Next, we examine how the number densities of the hierarchical Mo entities are affected by the ^{100}Mo mass fraction. The number density of a substance i is related to its mass density by

$$N_i = \frac{\rho_i}{\rho_i} N_A,$$

where N_A is the Avogadro constant. Inserting (4) into (8), the number density of ^{100}Mo is written as

$$N_{^{100}\text{Mo}}(w_{^{100}\text{Mo}}) = \frac{w_{^{100}\text{Mo}} w_{^{100}\text{Mo}} (w_{^{100}\text{Mo}})}{M_{^{100}\text{Mo}}} \frac{\rho_{^{100}\text{Mo}}} {N_A},$$

which, in terms of the ^{100}Mo amount fraction, is equivalent to

$$N_{^{100}\text{Mo}}(x_{^{100}\text{Mo}}) = x_{^{100}\text{Mo}} x_{^{100}\text{Mo}} N_{^{100}\text{Mo}} (x_{^{100}\text{Mo}})$$

or

$$N_{^{100}\text{Mo}}(x_{^{100}\text{Mo}}) = x_{^{100}\text{Mo}} x_{^{100}\text{Mo}} N_{^{100}\text{Mo}} (x_{^{100}\text{Mo}})$$

provided that the Mo material is Mo$_\text{met}$ or MoO$_3$, either of which has $x_{^{100}\text{Mo}} = 1$.

Equations (8) and (9) are plotted in figure 7 for the hierarchical Mo entities. Because ^{100}Mo is the heaviest Mo isotope among the naturally occurring ones, increasing $w_{^{100}\text{Mo}}$ increases $M_{^{100}\text{Mo}}$ and thereby $M_{^{100}\text{Mo}}$. Correspondingly, increasing $w_{^{100}\text{Mo}}$ decreases $N_{^{100}\text{Mo}}$ and $N_{^{100}\text{Mo}}$. Meanwhile, $N_{^{100}\text{Mo}}$ increases linearly (note the logarithmic y-axis) with increasing $w_{^{100}\text{Mo}}$.

We now generalize the influence of $w_{^{100}\text{Mo}}$ on $\rho_{^{100}\text{Mo}}$ and $N_{^{100}\text{Mo}}$. Using (9), the ^{100}Mo densities before and after ^{100}Mo enrichment are interrelated by

$$\rho_{^{100}\text{Mo}}(0.1015) \text{ in Mo}_{\text{met}} = \frac{(0.1015)(1.000) (10.28 \text{ g cm}^{-3})}{(0.1015)(0.66656)(4.690 \text{ g cm}^{-3})} \approx 3.288,$$

and the corresponding ratio for $w_{^{100}\text{Mo}} = 0.990$ is

$$\rho_{^{100}\text{Mo}}(0.990) \text{ in Mo}_{\text{met}} = \frac{(0.990)(1.000) (10.28 \text{ g cm}^{-3})}{(0.990)(0.67544)(4.690 \text{ g cm}^{-3})} \approx 3.245.$$
where \(w_{\text{Mo-100}}^{\text{bef}} \) and \(w_{\text{Mo-100}}^{\text{aft}} \) denote the pre- and post-enrichment \(^{100}\text{Mo}\) mass fractions, respectively. Assuming that \(w_{\text{Mo-100}}^{\text{bef}} \) is fixed to be the mass fraction of nonenriched \(^{100}\text{Mo}\), and expressing \(^{100}\text{Mo}\) as a Mo isotope, (11) reduces to

\[
D_{\text{Mo-A}}(w_{\text{Mo-100}}^{\text{aft}}) = \frac{w_{\text{Mo-A}}(w_{\text{Mo-100}}^{\text{aft}})}{w_{\text{Mo-A}}(0.1015)} \cdot \frac{w_{\text{Mo}}(w_{\text{Mo-100}}^{\text{aft}})}{w_{\text{Mo}}(0.1015)},
\]

which we call a density change coefficient (DCC).

Using (10), the DCC can also be defined in terms of the \(^{100}\text{Mo}\) amount fraction:

\[
D_{\text{Mo-A}}(x_{\text{Mo-100}}^{\text{aft}}) = \frac{x_{\text{Mo-A}}(x_{\text{Mo-100}}^{\text{aft}})}{x_{\text{Mo-A}}(0.0974)} \cdot \frac{M_{\text{Mo-mat}}(0.0974)}{M_{\text{Mo-mat}}(x_{\text{Mo-100}}^{\text{aft}})},
\]

As implied by \(w_{\text{Mo}} \) in (12) and \(M_{\text{Mo-mat}} \) in (13), the DCC is dependent on the molecular composition of a Mo material and, therefore, should be calculated separately for \(\text{Mo}_{\text{mat}} \) and \(\text{MoO}_3 \).

3. Methods

3.1. \textit{enrimo}: A DCC calculation program

Despite the concise forms of the DCC, its calculation can be error-prone and time-consuming. To automate DCC calculations and to facilitate data exchange, we developed a Perl program called \textit{enrimo}.

The DCC calculation algorithm of \textit{enrimo} is described in figure 8. As of v1.05, the following conditions can be customized via the command-line options: (i) Mo materials of interest, (ii) the Mo isotope to be enriched (in addition to enriched \(^{100}\text{Mo}\), enriched \(^{98}\text{Mo}\) can be examined for the \(^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}\) reaction route), (iii) the fraction type to refer to the enrichment level, (iv) the range of enrichment levels, (v) the minimum depletion level applied to all of the associated nuclides, and (vi) the order of nuclide depletion in the process of isotopic enrichment. Also, an input file can be used to specify the minimum depletion levels of individual nuclides and the calculation precision.

Once the calculation conditions are specified, \textit{enrimo} prepares the data necessary for DCC calculations and enters the main module. The core task of the main module is to redistribute the fraction quantities of the Mo isotopes according to the given \(^{100}\text{Mo}\) enrichment level. Based on the redistributed fraction quantities, the molar mass of the Mo material under investigation is recalculated, which in turn is used for the DCC calculation via (13). If the mass fraction has been set to represent the enrichment level, (12) is used instead. Finally, the precision of calculation results are adjusted according to the user specifications, and the product nuclides of photon, neutron, and proton reactions on \(^{92,94-98,100}\text{Mo}\) are associated with the calculated DCCs.

Data files are generated each time a series of calculations for a Mo material is completed. The supported output formats are plain text (.dat); LaTeX tabular environment (.tex); comma-separated values (.csv);...
Microsoft Excel 2007 (.xlsx); JavaScript Object Notation (.json); and YAML (.yaml). Considering the typical use frequencies of these formats, we have set .dat and .xlsx as the default output formats. More detailed descriptions of enrimo are documented in its source code, which is available in [32].

3.2. DCC calculation conditions
Two enriched isotope vendors use gas centrifuges for 100Mo enrichment [33, 34]. When $^{92,94–98,100}$Mo]Mo(VI) fluoride is fed into a gas centrifuge, the light stream becomes the waste and the heavy stream containing 100Mo becomes the product, leading to the depletion of lighter Mo isotopes in the process of 100Mo enrichment. To emulate this centrifugal enrichment of 100Mo, the $^{92,94–98}$Mo nuclides were depleted in ascending order of mass number in our DCC calculations. DCCs were calculated for nine commercial enriched 100Mo products listed in table 1.

4. Results and discussion
The overall dependence of $^{92,94–98,100}$Mo DCCs on the 100Mo enrichment level is shown in figure 9. In its most basic sense, the DCC of a Mo isotope is the factor by which the amount of the Mo isotope concerned is modified by a change in the 100Mo enrichment level. Because the amount of a Mo isotope is directly proportional to the yields of the involved Mo reactions, a DCC can be deemed as a scale factor for reaction yields. In other words, a DCC greater than 1.0 means that the yields of the involved reactions will increase, and a DCC less than 1.0 means that the yields of the involved reactions will decrease.

DCCs calculated for the nine commercial enriched 100Mo products are presented in table 2, some of which are also plotted in figure 10 for showing their relative magnitudes. As expected from (1), the 100Mo DCCs were greater in MoO$_3$ than in Momet, meaning that the 100Mo increment ratio is higher in MoO$_3$ than in Momet. As shown in (7), however, it should be noted that the absolute 100Mo mass density is always greater in Momet than in MoO$_3$ by a factor of about 3. On the other hand, the $^{92,94–98}$Mo DCCs were almost the same in the two target materials.

The importance of $^{92,94–98,100}$Mo DCCs differs by the 99Mo/99mTc production methods. In both the 100Mo(γ,n)99Mo and 100Mo(n,2n)99Mo reaction routes, the major impurity radionuclides are niobium (Nb) radioisotopes produced from $^{92,94–98}$Mo [5, 6, 9, 11]. Because Nb isotopes can be separated from 99Mo and 99mTc by chemical means [6, 35], the practical importance of 100Mo enrichment is its influence on the yield and specific yield of 99Mo, putting emphasis on the 100Mo DCC. For instance, if the 99Mo yield of 100Mo(γ,n)99Mo obtained from a nonenriched Mo$_{\text{met}}$ target was $Y_{Mo-99}(0.0974) = 100.00$ GBq,
using 99.01\% enriched 100Mo will provide a 99Mo yield of
\[Y_{\text{Mo-99}}(0.990\ 1) = D_{\text{Mo-100}}(0.990\ 1) Y_{\text{Mo-99}}(0.097\ 4) = 9.765\ \times\ 100.00\ \text{GBq} = 976.58\ \text{GBq}. \]

Similarly, if the 99Mo specific yield of 100Mo(n,2n)99Mo obtained from a nonenriched MoO\textsubscript{3} target was
\[S_{\text{Mo-99}}(0.097\ 4) = 10.000\ \text{GBq Mo-g}^{-1}, \]
using 99.54\% enriched 100Mo will result in
\[S_{\text{Mo-99}}(0.995\ 4) = D_{\text{Mo-100}}(0.995\ 4) S_{\text{Mo-99}}(0.097\ 4) = 9.946\ \times\ 10.000\ \text{GBq Mo-g}^{-1} = 99.468\ \text{GBq Mo-g}^{-1}. \]
Table 2. DCCs of $^{92,94-98,100}\text{Mo}$ calculated for the commercial enriched ^{100}Mo products listed in Table 1.

Vendor	$\%_{\text{Mo}=100}$	^{92}Mo	^{94}Mo	^{95}Mo	^{96}Mo	^{97}Mo	^{98}Mo	^{99}Mo	^{100}Mo
Trace	97.39	0.000 3	0.000 3	0.000 3	0.001 0	0.102 1	9.667 9		
	97.42	0.034 8	0.018 8	0.017 6	0.021 1	0.038 0	9.616 2		
ISOFLEX	99.01	0.005 9	0.006 3	0.006 3	0.008 0	0.021 8	9.765 8		
	99.03	0.005 2	0.007 3	0.005 4	0.008 0	0.021 4	9.767 7		
	99.05	0.005 2	0.005 2	0.006 1	0.007 0	0.021 4	9.769 5		
	99.27	0.003 9	0.003 1	0.002 4	0.008 0	0.018 6	9.790 3		
	99.54	0.000 4	0.000 5	0.000 5	0.000 1	0.000 2	9.895 7		
	99.815	0.000 2	0.000 3	0.000 2	0.000 3	0.000 5	9.946 8		
	99.86	0.000 3	0.000 5	0.000 3	0.000 3	0.000 5	9.978 4		

Figure 10. DCCs of $^{92,94-98,100}\text{Mo}$ in (a) Momet and (b) MoO$_3$. The percentages indicate ^{100}Mo enrichment levels. Note that the y-axes are not uniformly scaled in order to accommodate $^{98,100}\text{Mo}$ exhibiting relatively high DCCs.
Table 3. Product radionuclides (PRNs) associated with proton reactions on $^{92,94–98,100}$Mo. Listed are PRNs whose half-lives are longer than 10 min and shorter than one year, and reactions whose TENDL-2017 [36] peak cross sections below 25 MeV2 are greater than 0.1 mb. The decay data were retrieved from NuDat 2.7 [37]. Detailed studies of proton reactions on Mo isotopes can be found in [14,17–19].

PRN	Principal decay mode	Proton reaction	92Mo	94Mo	95Mo	96Mo	97Mo	98Mo	100Mo
98Zr	83.4 d	98Y	(p,γp)	(p,α)	(p,α)	(p,α)	(p,α)	(p,α)	(p,α)
99Nb	2.0 h	99Zr	(p,α)						
99mNb	1.1 h	99Zr	(p,α)						
99Nb	14.6 h	99Zr	(p,α)						
99mNb	60.9 d	99Zr	(p,α)						
99Nb	10.2 d	99Zr	(p,α)						
99Nb	35.0 d	99Mo	(p,α)						
99Nb	3.6 d	99Nb	(p,α)						
96Nb	23.4 h	96Mo	(p,α)						
97Nb	72.1 min	97Mo	(p,α)						
91Mo	15.5 min	91Mo	(p,α)						
93Mo	6.9 h	93Mo	(p,α)						
99Mo	66.0 h	99Mo	(p,α)						
93mTc	2.8 h	93Mo	(p,γ)						
93mTc	43.5 min	93Tc	(p,γ)						
94Tc	4.9 h	94Mo	(p,γ)						
94Tc	52.0 min	94Mo	(p,γ)						
95Tc	20.0 h	95Mo	(p,γ)						
95Tc	61.0 d	95Mo	(p,γ)						
96Tc	4.3 d	96Mo	(p,γ)						
96Tc	51.5 min	96Tc	(p,γ)						
97mTc	91.0 d	97Tc	(p,γ)						
99Tc	6.0 h	99Tc	(p,γ)						
100Tc	14.0 min	101Ru	(p,γ)						

Notes.

a Above which energy the amounts of Tc impurities rapidly increase [27].

b The excitation function can be found in [14].

c The excitation function can be found in [19].

As shown above, the 100Mo DCC can quantitatively estimate the yield and specific yield of 95Mo for enriched 100Mo, which in turn can be used for selecting the 100Mo enrichment level in the 100Mo($γ,n$)99Mo and 100Mo($n,2n$)99Mo reaction routes.

On the contrary, the $^{92,94–98}$Mo DCCs as well as the 100Mo DCC play important roles in the 100Mo($p,2n$)99Tc reaction route, because the $^{92,94–98}$Mo DCCs are directly proportional to the amounts of Tc isotopes other than 99mTc (table 3). These Tc impurities, which cannot be chemically separated from 99mTc, increase radiation dose [15] and result in image quality degradation [20]. Therefore, an enriched 100Mo product having low $^{92,94–98}$Mo DCCs as well as a high 100Mo DCC is necessary in the 100Mo($p,2n$)99mTc reaction route.

In their studies [15] and [20], Hou et al. reported that at proton beam energies below 20 MeV, the contents of $^{94–97}$Mo contribute more than the content of 96Mo to the dose increase and image quality degradation. Recent studies by [24, 25] have also reported comparable results. In this regard, the $^{94–95}$Mo DCCs calculated in this paper suggest that if proton beams of <20 MeV are used, the 97.39% enriched 100Mo product is preferable to the 97.42%, 99.01%, 99.03%, 99.05%, and 99.27% ones. Quantitatively speaking, the 95Mo DCC of the 97.39% enriched 100Mo product in the form of Mo$_{net}$ is smaller than those of the 97.42%, 99.01%, 99.03%, 99.05%, and 99.27% enriched 100Mo products by factors of 8–58.7, while the 100Mo DCCs differ only by factors of 1.001–1.019. This means that while the yield of the 100Mo($p,2n$)99mTc reaction remains almost unchanged, all the yields of the proton reactions on 95Mo, for example 95Mo($p,2n$)94Tc and 95Mo(p,n)95Tc, can be reduced by factors of 8–58.7. The same is true for the yields of the proton reactions on 94,96,97Mo. The low $^{94–97}$Mo DCCs of 97.39% enriched 100Mo are also highlighted in figure 10.

The 98Mo DCC should also be considered if the proton beam energies are greater than 20 MeV, which is the threshold for the 98Mo($p,3n$)96Tc and 98Mo($p,3n$)96Tc reaction routes [14, 36]. 96mTc deexcites to 96Tc with 98% probability [37], and 96Tc is reported to be one of the major impurities affecting the radiation dose and image quality [15, 20, 24, 25]. Therefore, the 99.815% and 99.86% enriched 100Mo products, whose 98Mo DCCs as well...
as $^{92-97}$Mo DCCs are significantly lower than the other enriched 100Mo products, are preferable for proton beams of >20 MeV.

5. Conclusion

A figure of merit called the DCC can quantify the influence of enriched 100Mo on Mo reaction yields. DCCs can be calculated for various 100Mo enrichment levels using the dedicated program enrimo.

The main advantage of using DCCs is that the changes in Mo reaction yields resulting from a change in the 100Mo enrichment level can be easily estimated. For example, the 100Mo DCC of 99.01% enriched 100Mo in the form of 97Mo is 9.765 \times 8, meaning that 9.765 \times 8 times greater 99Mo reaction yields can be obtained. Likewise, the $^{92-97}$Mo DCCs of 97.39% enriched 100Mo in the form of 97Mo, or 0.000 3–0.001, suggest that the $^{92-97}$Mo reaction yields can be reduced by factors of 1000–3333.

In determining the required 100Mo enrichment level, the 100Mo DCC alone can be useful in the 100Mo($^{\gamma}$,n)99Mo and 100Mo(p,$2n$)99Mo reaction routes, where the yield and specific yield of 99Mo are the primary concerns. In contrast, the $^{92-94}$Mo DCCs as well as the 100Mo DCC need to be considered in the 100Mo(p,$2n$)99Mc reaction route, where the production of chemically inseparable Tc impurities must be minimized.

Complete DCC data are available as supplementary materials online at stacks.iop.org/JPCS/3/055015/mmedia. The source code of the DCC calculation program enrimo is available in an open-source repository [32].

ORCID iDs

Jaewoong Jang @ https://orcid.org/0000-0002-8466-0502

References

[1] Ponsard B 2010 Mo-99 supply issues: status report and lessons learned Proceedings of the 14th International Topical Meeting on Research Reactor Fuel Management, RRFM 2010 (Marrakesh, Morocco) (Brussels: European Nuclear Society)

[2] International Atomic Energy Agency 2013 Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m (IAEA Nuclear Energy Series No. NF-T-5.4) (Vienna: International Atomic Energy Agency)

[3] National Academies of Sciences, Engineering, and Medicine 2016 Molybdenum-99 for Medical Imaging (Washington, DC: National Academies Press) (https://doi.org/10.17226/23563)

[4] Galea R, Wells R G, Ross C K, Lockwood J, Moore K, Harvey J T and Isensee G H 2013 Phys. Med. Biol. 58 2737–50

[5] Mang era K, Ogimoto K, Ziriba R, Fitzpatrick J, Brown J, Pellerin E, Barnard J, Saunders C and de Jong M 2015 J. Radioanal. Nucl. Chem. 305 79–85

[6] Sekimoto S, Tatenuma K, Suzuki Y, Tsuruguchi A, Tanaka A, Tadokoro T, Kani Y, Morikawa Y, Yamamoto A and Ohtsuki T 2017 J. Radioanal. Nucl. Chem. 311 1361–6

[7] Martin T M, Harahsheh T, Munoz B, Hamoui Z, Clanton R, Douglas J, Brown P and Akabani G 2017 J. Radioanal. Nucl. Chem. 314 1051–62

[8] Jang J, Yamamoto M and Uesaka M 2017 Phys. Rev. Accel. Beams 20 104701

[9] Takeda T et al 2018 J. Radioanal. Nucl. Chem. 318 811–21

[10] Nagai Y et al 2013 J. Phys. Soc. Jpn. 82 064201

[11] Tsukada K, Nagai Y, Hashimoto K, Kawabata M, Minato F, Saeki H, Motoishi S and Itoh M 2018 J. Phys. Soc. Jpn. 87 043201

[12] Leung K-N, Leung J K and Melville G 2018 Appl. Radiat. Isot. 137 23–7

[13] Capogni M et al 2018 Molecules 23 1872

[14] Celler A, Hou X, Bénard F and Ruth T 2011 Phys. Med. Biol. 56 5469–84

[15] Hou X, Celler A, Grimes I, Bénard F and Ruth T 2012 Phys. Med. Biol. 57 1499–515

[16] Gagnon K, Wilson J S, Holt C M B, Abrams D N, McEwan A J B, Mitlin D and McAuliffe S A 2012 Appl. Radiat. Isot. 70 1685–90

[17] Gagnon K, Wilson J S and McAuliffe S A 2012 Nucl. Med. Biol. 39 923–5

[18] Esposito I, Vecchi G, Pupillo G, Taibi A, Ucelli L, Boschi A and Gambaccini M 2013 Sci. Technol. Nucl. Ins. 2013 972381

[19] Quim S M, Sudar S, Scholten B, Koning A J and Coenen H H 2014 Appl. Radiat. Isot. 85 101–13

[20] Hou X, Tanguay J, Vuckovic M, Buckley K, Schaffer P, Bénard F, Ruth T J and Celler A 2016 Phys. Med. Biol. 61 8199–213

[21] Martini P, Boschi A, Cicoria G, Ucelli L, Pasquali M, Duatti A, Pupillo G, Marengo M, Loriggiola M and Esposito J 2016 Appl. Radiat. Isot. 118 302–7

[22] Anderson J D, Thomas B, Selivanova S V, Berthelette E, Wilson J S, McEwan A J B and Gagnon K 2018 Nucl. Med. Biol. 60 63–70

[23] Martini P et al 2018 Appl. Radiat. Isot. 139 325–31

[24] Uzunov N et al 2018 Phys. Med. Biol. 63 185021

[25] Meléndez-Alafort L, Ferro-Florès G, De Nardo L, Bello M, Puisasco M, Negri A, Zorz A, Uzunov N, Esposito J and Rosato A 2019 Med. Phys. 46 1437–46

[26] OECD Nuclear Energy Agency 2018 The Supply of Medical Radioisotopes: 2018 Medical Isotope Demand and Capacity Projection for the 2018–2023 Period (Supply of Medical Radioisotopes series) (Paris: OECD)

[27] International Atomic Energy Agency 2017 Cyclotron Based Production of Technetium-99m (IAEA Radioisotopes and Radiopharmaceuticals Reports 2) (Vienna: International Atomic Energy Agency)

[28] Mayer A J and Wieser M E 2014 J. Anal. At. Spectrom. 29 85–94
[29] Meija J et al 2016 Pure Appl. Chem. 88 293–306
[30] Trace Sciences International Molybdenum isotopes accessed March 27, 2019
[31] ISOFLEX Stable isotopes of molybdenum available from ISOFLEX accessed March 27, 2019
[32] Jang J 2019 enrimo - Investigate the influence of an enriched Mo isotope (v1.05) Zenodo (https://doi.org/10.5281/zenodo.2628760)
[33] Trace Sciences International Modes of production accessed March 2, 2019
[34] ISOFLEX Stable isotopes produced in gas centrifuges accessed March 2, 2019
[35] Ueno K, Sasaki M and Ishimori T 1969 J. Nucl. Sci. Technol. 6 203–6
[36] Koning A J and Rochman D 2012 Nucl. Data Sheets 113 2841–934
[37] National Nuclear Data Center 2019 NuDat 2.7 accessed April 25, 2019 (http://www.nndc.bnl.gov/nudat2/)