Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography

P Ropars and S Boudreau

Northern Research Chair on Disturbance Ecology, Centre d’études nordiques, Département de biologie, Université Laval 1045, avenue de la Médecine, Québec, QC, G1V 0A6, Canada

E-mail: pascale.ropars.1@ulaval.ca

Received 30 July 2011
Accepted for publication 24 November 2011
Published 4 January 2012
Online at stacks.iop.org/ERL/7/015501

Abstract
Recent densification of shrub cover is now documented in many Arctic regions. However, most studies focus on global scale responses, yielding very little information on the local patterns. This research aims to quantify shrub cover increase at northern treeline (Québec, Canada) in two important types of environment, sandy terraces and hilltops (which cover about 70% of the landscape), and to identify the species involved. The comparison of a mosaic of two aerial photographs from 1957 (137 km²) and one satellite image taken in 2008 (151 km²) revealed that both hilltops and terraces recorded an increase in shrub cover. However, the increase was significantly greater on terraces than on hilltops (21.6% versus 11.6%). According to ground truthing, the shrub cover densification is associated mainly with an increase of Betula glandulosa Michx. The numerous seedlings observed during the ground truthing suggest that shrub densification should continue in the future.

Keywords: Betula glandulosa, climate change, forest–tundra ecotone, shrub expansion, topography

1. Introduction

Arctic and subarctic regions have been subjected to important changes over the last few decades (IPCC 2007a). Among the rapid changes observed, Myneni et al (1997, 1998) were the first to report evidence of the pan-Arctic increase in vegetation cover. By analysing worldwide NDVI trends between 1981 and 1991, they showed that the greatest increase in photosynthetic activity occurred in regions above 50°N. Since then, this phenomenon has been observed for different regions (Alaska: Silapaswan et al 2001, Jia et al 2003, Verbyla 2008; Russia: Forbes et al 2010; Western Canada: Olthof and Pouliot 2010), over a longer time span (≥20 y: Jia et al 2003, Goetz et al 2005, Verbyla 2008, Forbes et al 2010, Olthof and Pouliot 2010) and at a better resolution (Jia et al 2003, Olthof and Pouliot 2010). Moreover, recent NDVI studies revealed that the increase in photosynthetic activity is more important in regions dominated by erect shrub species (Raynolds et al 2006), a result corroborated by the comparison of aerial photographs and satellite images which reported an increase in shrub cover in Alaska (Sturm et al 2001, Tape et al 2006) and northern Québec (Tremblay 2010).

Changes in shrub cover in Arctic and subarctic regions are however likely to be spatially heterogeneous. In these regions, minor differences in the abiotic environment could translate into important differences in shrub survival, growth and reproduction. Local topography, one of the most influential features at the landscape level (Shaver et al 1996), will influence variables such as snow accumulation, duration of the snow cover (Sonesson and Callaghan 1991, Shaver et al 1996), nutrient availability (Shaver et al 1996), soil moisture (Schimel et al 1999) and soil temperature (Romanovsky and Osterkamp 1995), which can all have major impacts on plant growth and recruitment. An increase in shrub cover could then be a function of the different topographic features of the landscape. Such observations have been reported in northern
Alaska (Tape et al 2006), where shrub cover increase was more important on hill slopes, in valleys and on south-facing slopes. However, most of the studies used a spatial scale that does not provide insights on the importance of the local topography for shrub densification. Temporal NDVI analyses use NOAA–AVHRR (National Oceanic and Atmospheric Administration–Advanced Very High Resolution Radiometer) satellite images with, at best, a 1 km² resolution (Jia et al 2003, Othlof and Pouliot 2010). Furthermore, the NDVI reflects the change in photosynthetic activity without any distinction of the taxa implied. As the shrub cover increases in many Arctic and subarctic regions (ACIA 2005, IPCC 2007b), it becomes necessary to understand how and where the changes occur. A better understanding of the importance of the local topography on the response of shrub communities is therefore important to refine our ability to predict future response of shrub communities to climate change.

The objective of this study was to quantify the change in shrub cover in subarctic western Québec over the last 50 yr, if any. Specific objectives were (1) to determine if shrub cover has increased, (2) to identify the species implied in the cover change, and (3) to determine if the extent of the change varies with the local topography (hilltops and terraces). Based on current knowledge, we hypothesized that there has been a non-uniform increase in shrub cover in the studied area, mostly attributable to Betula glandulosa Michx., the main erect shrub species.

2. Methods

2.1. Study area

The study area is located near the Boniface River research station (57°45′N, 76°20′W), 35 km east of Hudson Bay and 10 km south of the treeline in subarctic Québec, Canada (figure 1). The region is located in the shrub subzone of the forest–tundra ecotone (Payette 1983), where black spruce (Picea mariana (Mill.) B.S.P.) is the main tree species and dwarf birch (Betula glandulosa Michx.) dominates the shrub layer. At the regional scale, shrub–lichen tundra is the dominant community, covering approximately 70% of well-drained sites (Payette et al 2008). This vegetation type is found mainly on slopes and exposed hilltops along with spruce–lichen woodlands. The forested stands are confined to more mesic environments, and are remnants of a once more extensive forest (Payette and Morneau 1993). Fires were frequent during the Holocene period (Payette et al 2008), but were rather scarce over the last millennium due to cooler and wetter climatic conditions (Filion 1984). More recently, trampling from the Leaf River Caribou Herd (Rangifer tarandus L.) exposed mineral soil over substantial areas. Browsing evidence was however mostly observed on Salix species.

The nearest weather station (Inukjuak Meteorological Station, 58°28′N, 78°05′W) recorded an annual mean temperature of −7 °C for the 1970–2000 period, with the highest and lowest mean monthly temperatures recorded in July (10.2 °C) and February (−25.2 °C), respectively (Environment Canada 2010). Over this period, annual precipitation averaged 460 mm, of which 44% fell as snow (Environment Canada 2010). The temperature trend in the region has changed considerably over the last 50 years. Between 1969 and 1993, the region experienced a cooling trend at a rate of −0.03 °C yr⁻¹ while a warming trend (+0.09 °C yr⁻¹) was observed afterwards. This rapid change in temperature was also recorded for most of northern Québec (Chouinard et al 2007).

2.2. Ortho-photo analyses

Change in shrub cover was evaluated through the comparison of two aerial photographs and a satellite image taken in July 1957 and 2008, respectively (figure 2). The 2008 image is a WorldView-1 Standard Ortho-Ready panchromatic satellite image taken on 15th July and covers 151 km². The 1957 photos are two adjacent 9′ × 9′ aerial photos produced from high quality negatives stored at the National Air Photo Library of Canada and covering an area of 137 km² (taken on 29th July, 1:40 000). Aerial photos were scanned at 1200 dpi for further analysis.

Aerial photographs and the WorldView image were orthorectified in order to remove topographic distortions. The WorldView image was first reprojected into UTM 18 N, NAD 1983 and orthorectified using PCI Geomatics V.10.3 software, resulting in a 0.5 m ortho-photo. The 1957 image was then rigorously matched to the 2008 image. A 15 m resolution digital elevation model (DEM) of the study region generated by Natural Resources Canada was used as an elevation input. These manipulations were performed with the ALTA Photogrammetry Suite 7 software and resulted in a 1 m resolution 1957 ortho-photo. The spatial lag between the two ortho-photos is <1 m. From here on, the satellite image and aerial photos are both referred to as ortho-photos.
In general, erect shrub species were easily detected by their darker shade and the roundish aspect of each individual (figure 3), while trees were recognized by the triangular shape of their projected shade. Pale areas were mostly characterized by lichen and graminoid vegetation. Therefore, shrub cover identification was based on both the pixel colour and the texture of the ortho-photo. Preliminary observations of both ortho-photos suggested that the analyses should be restricted to non-forested, well-drained sites, because shrub cover was difficult to accurately evaluate between trees and in wetlands, riparian ecosystems and snowbeds. These well-drained, non-forested sites, which cover about 70% of the landscape, are characterized by hilltops and sandy terraces. Hilltops are characterized by the presence of Arctic–alpine species and exposed mineral soil. Sandy terraces, located on the river’s margin, are low altitude sites dominated by shrub, lichen and herbaceous species. Prior to the field season, the 113 km2 overlapping zones of the two ortho-photos were scrutinized to identify potential sites belonging to either hilltop or terrace. Once in the field, 59 of the 106 pre-identified sites were selected to evaluate shrub cover change from 1957 to 2008 (26 hilltops and 33 terraces, table 1). Sites were excluded when they did not correspond with the given definition of one of the two environments and/or were not easily accessible by foot from the river. On average, exposed hilltops and terraces covered 1.2 ha and 1.1 ha, respectively. The 59 sites covered a total area of 671.7 ha (13.8% of the total well-drained non-forested area of the study area).

In the laboratory, the transects used for the ground truthing (see section 2.3) were located on the ortho-photos for each of the 59 study sites. Subsequently, the analysed area for each site, ranging from 0.4 to 2.1 ha, was delimited with ArcGIS 9.3 (by ESRI; figure 4) in order to encompass the transects but to exclude areas not relevant for shrub cover photo-interpretation (water bodies, forested area, etc). A grid consisting of a series of 16 m2-cells (4 m \times 4 m) was then overlaid on both ortho-photos. Inside the analysed area, shrub cover was estimated within each cell (see table 1 for additional information on the number of cells per site) and assigned to one of the following cover classes: (1) 0%, (2) 1–25%, (3) 26–50%, (4) 51–75%, and (5) 76–100%. Total shrub cover for each site was calculated for both ortho-photos by averaging the median value of the cover class assigned to each cell. Shrub cover change over the last 50 yr was then calculated as the difference in shrub cover between 2008 and 1957. Moreover, the delta value was calculated for each cell as the difference between the cover class assigned in 2008 and 1957. The evaluation of shrub cover was carried out by the same observer for every site and was recorded in Excel tables with respect to the spatial position of each cell.

Rather than degrading the 2008 ortho-photos to match the resolution of the 1957 ortho-photo, we decided to conduct the analyses at the finest resolution for each ortho-photo (1 m and 0.5 m for 1957 and 2008, respectively) in order to retain as much information as possible. However, to evaluate if different resolutions could influence shrub cover evaluation, we conducted a supplemental analysis for ten sites after having degraded the 2008 ortho-photo to a 1.0 m resolution.
Table 1. Description of the 59 sites studied. The transects correspond to the total length of the linear surveys in the field (sum of the four transects).

Site	Altitude (m a.s.l.)	Length (m)	Width (m)	Area (ha)	Number of cells	Transects (m)
1	118.6	124	116	1.4	895	240
2	120.2	104	100	1.0	650	240
3	119.6	172	128	2.1	1302	240
4	118.9	108	100	0.9	554	240
5	115.1	122	92	0.9	588	220
6	113.0	124	108	1.0	646	239
7	115.9	100	104	1.0	595	240
8	122.0	116	112	1.3	804	240
9	116.1	120	92	0.8	525	210
10	116.0	84	100	0.7	432	205
11	115.8	124	72	0.8	518	190
12	114.2	124	92	1.0	628	240
13	121.0	124	100	1.1	713	240
15	118.6	120	136	1.6	1002	240
17	118.4	120	112	1.2	767	240
33	135.6	120	120	1.2	764	240
37	117.0	112	116	1.2	774	240
41	132.4	96	100	1.0	600	240
46	114.1	120	104	1.0	649	223
47	115.9	124	104	1.2	737	230
49	119.5	128	116	1.2	750	240
50	121.9	124	112	1.3	805	240
51	122.9	120	116	1.2	741	240
58	125.2	96	80	0.6	378	197
86	125.4	112	120	1.3	801	225
87	118.5	120	120	1.2	764	240
91	117.2	128	112	1.3	808	240
94	127.6	112	112	1.2	775	240
95	116.0	112	104	1.1	665	240
96	120.2	108	96	0.9	585	240
103	122.9	116	104	1.1	672	225
105	124.7	116	116	1.2	774	240

Site	Altitude (m a.s.l.)	Length (m)	Width (m)	Area (ha)	Number of cells	Transects (m)
17	118.4	120	112	1.3	805	240
33	135.6	120	120	1.2	764	240
46	114.1	120	104	1.0	649	223
47	115.9	124	104	1.2	737	230
49	119.5	128	116	1.2	750	240
50	121.9	124	112	1.3	805	240
51	122.9	120	116	1.2	741	240
58	125.2	96	80	0.6	378	197
86	125.4	112	120	1.3	801	225
87	118.5	120	120	1.2	764	240
91	117.2	128	112	1.3	808	240
94	127.6	112	112	1.2	775	240
95	116.0	112	104	1.1	665	240
96	120.2	108	96	0.9	585	240
103	122.9	116	104	1.1	672	225
105	124.7	116	116	1.2	774	240

\[a\] Maximal length and width of the site.
\[b\] Number of cells analysed on the ortho-photos.
\[c\] Total length of the linear surveys in the field (sum of four transects).

Figure 4. Satellite image of a sandy terrace (site 1) over which a 16 m²-cell grid was overlaid. The two perpendicular lines represent transects along which linear surveys were conducted. Outer black line shows the site’s perimeter.

(Aggregate tool in ArcGIS, which uses cubic convolution resampling). Shrub cover evaluations for both the degraded and non-degraded 2008 ortho-photos were compared.

2.3. Ground truthing

An extensive ground truthing was carried out in order to identify which species were implicated in the shrub cover change, if any, and to evaluate our accuracy in evaluating shrub cover on the 2008 ortho-photo. At each site, four 60 m transects were delimited, when possible, from the centre of the site and extended respectively towards the four cardinal points (N, E, S, W; figure 4). For 17 sites however, some transects were shorter due to the smaller size of the site (see table 1). The position of each transect was determined with a high-precision GPS (Leica, Model GS20, ±30 cm). Tree and shrub species were recorded at every centimetre along the transects. Each species cover could then be calculated for each site by dividing the number of centimetres on which it was recorded by the total number of centimetres on which it was recorded by the total number of centimetres surveyed.

To determine our accuracy in evaluating shrub cover on the 2008 ortho-photo, we conducted an additional photo-interpretation analysis. We overlaid a 1 m²-cell grid over the 2008 ortho-photo (at 5 hilltop sites and 5 terrace sites).
Table 2. Shrub cover change results for terraces (33 sites) and hilltops (26 sites).

Site	Terraces 1957 (%)	Terraces 2008 (%)	Change (%)	Site	Hilltops 1957 (%)	Hilltops 2008 (%)	Change (%)
1	16.0	32.1	16.1	11	20.8	44.7	23.9
2	12.5	27.8	15.3	28	22.5	46.0	23.5
3	10.0	38.2	28.2	29	33.0	40.5	7.4
4	8.2	55.6	47.4	30	35.6	44.3	8.7
5	24.6	45.7	21.2	31	36.0	47.0	11.0
6	11.3	49.6	38.3	32	31.5	34.9	3.4
7	29.7	50.1	20.4	34	39.1	59.2	20.1
8	25.6	60.5	34.9	36	38.4	45.2	6.8
9	26.6	43.7	17.1	38	41.6	44.8	3.2
10	30.0	46.8	16.8	42	50.4	46.1	−4.3
11	43.0	62.7	19.8	43	43.6	52.9	9.3
12	40.8	57.2	16.4	45	45.8	57.3	11.4
13	27.3	48.8	21.5	48	42.6	41.6	−1.1
14	38.9	57.6	18.7	52	46.7	47.8	1.1
15	25.2	50.7	25.5	55	48.8	47.6	−1.2
16	27.4	63.5	36.1	56	40.8	49.5	8.8
17	41.4	35.5	−5.9	59	39.3	49.3	10.0
18	51.9	44.9	−7.0	88	31.5	40.1	8.6
19	42.9	64.2	21.3	90	33.7	51.6	17.8
20	19.1	49.7	30.6	97	28.6	44.8	16.1
21	25.0	45.4	20.4	98	22.5	49.4	26.9
22	27.4	49.0	21.6	99	30.9	50.2	19.3
23	48.2	56.9	8.7	100	31.5	49.6	18.1
24	45.0	58.4	13.4	102	29.7	45.1	15.4
25	39.9	50.2	10.3	103	19.9	48.6	28.7
26	44.1	55.4	11.4	106	33.2	42.3	9.1
27	33.9	57.4	23.5				
28	31.6	50.0	18.4				
29	14.8	52.7	37.8				
30	11.2	51.4	40.2				
31	16.7	56.6	39.9				
32	30.5	47.3	16.8				
33	23.0	40.6	17.6				

Mean 28.6 50.2 21.6 35.3 46.9 11.6

sites) and we evaluated the shrub cover in every single cell touching the linear transects surveyed in the field. We used 1 m² cells to optimize the comparison with the results from the ground truthing exercise, as larger cell size would include more variability.

2.4. Statistical analysis

Differences in shrub cover between 1957 and 2008 in terraces and hilltops, as well as dwarf birch cover from ground truthing data were tested using one-sample t-tests. Changes in shrub cover from 1957 to 2008 in both environments and between the different validation procedures (resolution and field and ortho-photo results) were evaluated using paired t-tests. The frequency distribution of delta values in terraces and hilltops were compared using a Kolmogorov–Smirnov test.

3. Results

3.1. Shrub cover change

In 1957, hilltops had a greater shrub cover than terraces (35.3% versus 28.6%; t(32) = −2.39, P < 0.05; figure 5, table 2). From 1957 to 2008, shrub cover increased in most of the studied sites (31/33 terraces, 23/26 hilltops), with a substantial increase (>15%) in 27 terraces and 10 hilltops. This increase resulted in a significant difference in shrub cover between 1957 and 2008 in both environments (terraces: 28.6% versus 50.2%; t(32) = −10.27, P < 0.01; hilltops: 35.3% versus 46.9%; t(25) = −6.67, P < 0.01). Terraces showed a greater increase than hilltops (21.6% versus 11.6%; t(57) = −3.52, P < 0.05). As a result, shrub cover in 2008 did not significantly differ between hilltops and terraces (46.9% versus 50.2%; t(57) = 1.68, P = 0.10; figure 5). There was no significant difference between the delta frequency distribution of terraces and hilltops (Kolmogorov–Smirnov test: P = 0.96). However, terraces tended to have a higher proportion of cells showing a large increase in shrub cover (delta = 2–4; figure 6).

Differential resolution between the 2008 and 1957 ortho-photos did not have a major impact on shrub cover evaluation, as revealed by the comparison of the degraded and non-degraded 2008 ortho-photos. On hilltops, 68.2% of the cells were assigned to the correct cover class, while 14.3% and 17.1% were assigned to the cover classes directly above
and below. On terraces, 62.5% of the cells were assigned to the correct cover class, while 22.2% and 14.4% were respectively assigned to the cover classes above and below. The remaining cells (<1%) were assigned to more distant cover classes (2 or more cover classes). Overall, the observed differences in shrub cover at the site scale ranged from −4.8% to 4.1% (table 3), shrub cover being under-evaluated for 6 sites and over-evaluated for 4 sites. Differences in shrub cover were not statistically significant between the degraded and non-degraded 2008 ortho-photos (t(9) = 0.89, P = 0.39).

3.2. Species implicated

Dwarf birch was the major shrub species recorded during ground truthing. On average, dwarf birch covered 36.7% of the surveyed area. The cover of this species ranged from 10.0% to 58.6% and was significantly higher on terraces than on hilltops (40.1% versus 32.5%; t(57) = 2.48, P < 0.05). Dwarf birch was the only species found at every site. Moreover, several dwarf birch seedlings not detected on the ortho-photos were found in open areas in both terraces and hilltops. The other most abundant species on terraces were Rhododendron tomentosum Harmaja, Empetrum nigrum L., and R. groenlandicum Oeder, with a cover of 7.0%, 6.3% and 4.9%, respectively. On hilltops, R. tomentosum, E. nigrum, and Vaccinium uliginosum L. were the other most abundant species, with a cover of 10.0%, 8.7% and 2.5%, respectively. Salix planifolia Pursh, S. glauca L., S. uva-ursi Pursh, Alnus viridis ssp. crispa (Ait.) Turrill, Diapensia lapponica L., Kalmia procumbens L., Arctous sp., and Rubus chamaemorus L. were also recorded in the vegetation surveys on both terraces and hilltops, but covered less than 2.1% of the surveyed area.

4. Discussion

Our results indicate an increase in shrub cover over the past 50 yr at the northern limit of the forest–tundra ecotone in subarctic Québec. This finding corroborates other studies using a similar method conducted in different regions of the Arctic (Alaska: Sturm et al 2001, Tape et al 2006; northern Québec: Tremblay 2010; Russia: Forbes et al 2010) and studies which revealed a major increase of the NDVI over the last few decades (Jia et al 2003, Verbyla 2008).

4.1. Betula glandulosa, a key species for shrub expansion

The observed increase in shrub cover is mainly attributable to dwarf birch, a species previously identified as one of the key species in pan-Arctic shrub densification (Tape et al 2006). Dwarf birch was found at all sites and was the dominant shrub species at 56 out of 59 sites.

Dwarf birch’s fast response to environmental change could be linked to its growth plasticity, clonal growth and reproduction potential. As shown by Bret-Harte et al (2001), dwarf birch generates numerous leaf-producing long shoots, which allows it to rapidly take advantage of experimental fertilization and warming treatments. It can also reproduce asexually via clonal growth, with stems producing
Table 4. Comparison of the shrub cover evaluated from the 2008 ortho-photo (1 m² cell) and the ground truthing results (total shrub cover and dwarf birch cover).

Type of environment	Site	Cover estimated with 2008 ortho-photo 1 m² cell (%)	Total shrub cover (%)	Dwarf birch cover (%)	Cover ortho-photo-total cover (%)	Cover ortho-photo-birch cover (%)
Terraces	10	21.2	43.9	22.8	−22.7	−1.6
	12	48.9	64.4	45.6	−15.5	3.3
	14	34.7	42.5	33.0	−7.8	1.7
	91	48.7	85.5	53.6	−36.8	−4.9
	95	30.2	28.3	27.6	1.9	2.6
Hilltops	36	44.4	90.4	44.3	−46.0	0.1
	43	31.6	53.6	33.2	−22.0	−1.6
	56	47.5	65.7	47.7	−18.2	−0.2
	98	29.2	53.8	23.7	−24.6	5.5
	106	28.0	49.8	33.5	−21.8	−5.5

Adventitious roots when overgrown by adjacent vegetation (Shaver and Cutler 1979). It also produces an abundant seed rain (>13 000 seeds m⁻²; Weis and Hermanutz 1988), and seed germination is higher under experimental warming (Vaartaja 1959). In fact, several seedlings were observed in the field, which suggest that the densification should continue in the upcoming years.

4.2. Potential causes of shrub expansion: climate change, fire or caribou?

The recent increase in temperature is the most likely factor explaining the shrub expansion in the Boniface River region. To the best of our knowledge, climate warming is the only large-scale phenomenon observed in the region over the last few decades that could promote a regional response of such intensity. The warming trend observed since the 1990s has already triggered an increase in black spruce seed viability in the region (Dufour-Tremblay et al. 2010). Many studies have demonstrated a similar growth increase for other shrub species under extensive warming (Hippophae rhamnoides L.: Xiao et al. 2007, Empetrum nigrum ssp. hermaphroditum Hagerup: Bär et al. 2008, Artemisia tridentata Nutt.: Poore et al. 2009, Salix lanata L.: Forbes et al. 2010, Juniperus nana Willd.: Hallinger et al. 2010).

Besides improving radial and vertical growth, climate warming has many indirect effects that can be beneficial for shrub species. For example, an increase in temperature is known to enhance decomposition rate and nutrient cycling (Chapin and Shaver 1996, Hobbie 1996, Bret-Harte et al. 2001, 2002, Wahren et al. 2005). Combined with the capacity of birch litter to promote nitrogen availability (Buckeridge et al. 2010), shrub growth can be largely enhanced (Jonasson et al. 1999, Gordon et al. 2001, Sturm et al. 2005). Winter events could also play a major role in the observed pan-Arctic shrub densification. The abrasive effect of windblown ice particles may limit the vertical growth of erect species (Sonesson and Callaghan 1991). Thicker snow cover under large shrub patches enhances decomposition during winter because of its insulating effect (Liston et al. 2002) and may also result in greater water availability at the beginning of the growing season. In fact, differential snow accumulation, one of the most important environmental factors for plant growth in subarctic regions (Payette et al. 1973), could at least partially explain why shrub cover increased significantly more on terraces than on hilltops. As they are more exposed to wind, hilltops have thinner snow cover, which could result in greater winter damage to aboveground biomass because of mechanical breakage of exposed tissues (Marchand and Chabot 1978) and winter desiccation (Sonesson and Callaghan 1991). On the other hand, individuals established on terraces are protected by a thicker snow cover and the reduced importance of wind is believed to allow dwarf birch individuals to grow rapidly and to expand.

Fire and large herbivores are among other disturbances that could be considered to explain this shrub densification. The Boniface River area has experienced massive deforestation in the last few millennia because of the combined effects of fire and climate. However, fires are unlikely to have triggered the recent shrub densification, as few fires occurred over the last millennium in the study region (Payette et al. 2008). In fact, some of the study sites have not burned for at least 1300 yr.

On a shorter timescale, the role of large herbivores in shrub expansion might also be given some consideration. Caribou (Rangifer tarandus L.) activity in the study area was high from the mid-1990s to the mid-2000s. Although caribou browsing can inhibit shrub performance, caribou trampling creates suitable seedbeds for dwarf birch by exposing the mineral soil, on which numerous B. glandulosa seedlings were observed. However, because dwarf birch expansion was observed on sites with or without caribou activity evidence, it strongly suggests that caribou activity did not trigger shrub expansion.

5. Conclusion

This research shows an increase in shrub cover in the last 50 yr for the studied region. Exhaustive ground truthing allowed us to identify dwarf birch as the main species implicated in this phenomenon. We also demonstrated that the shrubification is
non-uniform across the landscape, with terraces promoting a higher shrub densification during the last decades. Further studies are now warranted to understand the processes at play in subarctic shrub densification. Does expansion rely mainly on clonal growth or on sexual reproduction? What is the spatial pattern of shrub expansion? Our ability to predict changes at the landscape level depends on our ability to understand the ecological processes underlying the observed changes.

Acknowledgments

This research project was funded in part by Natural Sciences and Engineering Research Council of Canada (NSERC), by the Fonds de Recherche sur la Nature et les Technologies Quèbec (FQRNT) and by the Northern Research Chair on Disturbance Ecology. The authors would like to thank Sandra Angers-Blondin, Marie-Pier Denis and Caroline Mercier for their assistance in the field and the Centre d’études nordiques for its logistical support.

References

ACIA 2005 Arctic Climate Impact Assessment (Cambridge: Cambridge University Press)

Bär A, Pape R, Brauning A and Loffler J 2008 Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences J. Biogeogr. 35 625–36

Bret-Harte M S, Shaver G R and Chapin F S 2002 Primary and secondary stem growth in Arctic shrubs: implications for community response to environmental change J. Ecol. 90 251–67

Bret-Harte M S, Shaver G R, Zoerner J P, Johnstone J F, Wagner J L, Chavez A S, Gunkelman R F, Lippert S C and Laundre J A 2001 Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment Ecology 82 18–32

Buckeridge K M, ZafelE, Chu H Y and Grogan P 2010 Soil nitrogen cycling rates in low Arctic shrub tundra are enhanced by litter feedbacks Plant Soil 330 407–21

Chapin F S and Shaver G R 1996 Physiological and growth responses of Arctic plants to a field experiment simulating climatic change Ecology 77 822–40

Chouinard C, Fortier R and Mareschal J C 2007 Recent climate variations in the Subarctic inferred from three borehole temperature profiles in northern Quèbec, Canada Earth Planet. Sci. Lett. 263 355–69

Dufour-Tremblay G and Boudreau S 2011 Black spruce regeneration at the treeline ecotone: synergistic impacts of climate change and caribou activity Can. J. For. Res. 41 460–8

Environment Canada 2010 Canadian Climate Normals or Averages 1971–2000 (http://www.climate.weatheroffice.ec.gc.ca/ climate_normals)

Filion L 1984 A relationship between dunes, fire and climate recorded in the Holocene deposits of Quèbec Nature 309 543–6

Forbes B C, Fauria M M and Zetterberg P 2010 Russian Arctic warming and greening are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542–54

Goetz S J, Bunn A G, Fiske G J and Houghton R A 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. 102 13521–5

Gordon C, Wynn J M and Woodin S J 2001 Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability New Phytol. 149 461–71

Hallinger M, Manthey M and Wilming M 2010 Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia New Phytol. 186 890–9

Hobbie S E 1996 Temperature and plant species control over litter decomposition in Alaskan tundra Ecol. Monogr. 66 503–22

IPCC 2007a Climate Change 2007: The Physical Science Basis (Cambridge: Cambridge University Press)

IPCC 2007b Climate Change 2007: Impacts, Adaptation and Vulnerability (Cambridge: Cambridge University Press)

Jia G S J, Epstein H E and Walker D A 2003 Greening of the Arctic Alaska, 1981–2001 Geophy. Res. Lett. 30 2067

Jonasson S, Michelsen A, Schmidt I K and Nielsen E V 1999 Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic Ecology 80 1828–43

Liston G E, McFadden J P, Sturm M and Pielke R A 2002 Modelled changes in Arctic tundra snow, energy and moisture fluxes due to increased shrubs Glob. Change Biol. 8 17–32

Marchand P J and Chabot B F 1978 Winter water relations of tree-line plant species on Mt. Washington, New Hampshire Arct. Alp. Res. 10 105–16

Myneni R B, Keeling C D, Tucker C J, Asrar G and Nemani R R 1997 Increased plant growth in the northern latitudes from 1981 to 1991 Nature 386 698–702

Myneni R B, Tucker C J, Asrar G and Keeling C D 1998 Interannual variations in satellite-sensed vegetation index data from 1981 to 1991 J. Geophys. Res.—Atmos. 103 19839

Othol I and Pouliot D 2010 Treenline vegetation composition and change in Canada’s western Subarctic from AVHRR and canopy reflectance modelling Remote Sens. Environ. 114 805–15

Payette S 1983 The forest tundra and present tree-lines of the northern Quebec-Labrador peninsula Tree-line Ecology, Proceedings of the Northern Quebec Tree-line Conf. (Quèbec: Nordicana) pp 3–23

Payette S, Filion L and Delwaide A 2008 Spatially explicit fire-climate history of the boreal forest-tundra (eastern Canada) over the last 2000 years Phil. Trans. R. Soc. B. 363 2301–16

Payette S, Filion L and Ouzilleau J 1973 Relations neige-végétation dans la toundra forestière du Nouveau-Quèbec, Baie d’Hudson Naturaliste Can. 100 493–508

Payette S and Morneau C 1993 Holocene relict woodlands at the eastern Canadian tree line Q. Res. 39 64–9

Poore R E, Lamanna C A, Ebersole J J and Enquist B J 2009 Controls on radial growth of Mountain Big Sagebrush and implications for climate change West. N. Am. Naturalist 69 556–62

Raynolds M K, Walker D A and Maier H A 2006 NDVI patterns and phytomass distribution in the circumpolar Arctic Remote Sens. Environ. 102 271–81

Romanovsky V E and Osterkamp T E 1995 Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska Permaf. Periglac. Proc. 6 313–3

Schimel J P, Ouluddle J M, Clein-Curley J S, Lindstrom J E and Braddock J F 1999 Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga Soil Biol. Biochem. 31 831–8

Shaver G R and Cutler J C 1979 The vertical distribution of live vascular phytomass in cottongrass tussock tundra Arct. Alp. Res. 11 335–42

Shaver G R, Laundre J A, Giblin A E and Nadelhoffer K J 1996 Changes in live plant biomass, primary production and species composition along a riverside toposequence in Arctic Alaska, USA Arct. Alp. Res. 28b 363–79

Silapaswan C S, Verbyla D L and McGuire A D 2001 Land cover change on the Seward Peninsula: the use of remote sensing to

8
evaluate the potential influences of climate warming on historical vegetation dynamics Can. J. Remote Sens. 27 542–54
Sonesson M and Callaghan T V 1991 Strategies of survival in plants of the Fennoscandian tundra Arctic 44 95–105
Sturm M, Racine C and Tape K 2001 Increasing shrub abundance in the Arctic Nature 411 546–7
Sturm M, Schimel J, Michaelson G, Welker J M, Oberbauer S F, Liston G E, Fahnestock J and Romanovsky V E 2005 Winter biological processes could help convert Arctic tundra to shrubland Bioscienc 55 17–26
Tape K, Sturm M and Racine C 2006 The evidence for shrub expansion in northern Alaska and the pan-Arctic Glob. Change Biol. 12 686–702
Tremblay B 2010 Augmentation récente du couvert ligneux érigé dans les environs de Kangiqsualujjuaq (Nunavik, Québec) Master Thesis Université du Québec à Trois-Rivières, Québec, Canada
Vaartaja O 1959 Photoperiodic response in germination of four species of Betula Bi-monthly Progress Report, Forest Biology Division, Department of Agriculture, Canada vol 15 p 2
Verbyla D 2008 The greening and browning of Alaska based on 1982–2003 satellite data Glob. Ecol. Biogeogr. 17 547–55
Wahren C H A, Walker M D and Bret-Harte M S 2005 Vegetation responses in Alaskan Arctic tundra after 8 years of a summer warming and winter snow manipulation experiment Glob. Change Biol. 11 537–52
Weis I M and Hermanutz L A 1988 The population biology of the Arctic dwarf birch Betula glandulosa: seed rain and the germinable seed bank Can. J. Bot. 66 2055–61
Xiao S C, Xiao H L, Kobayashi O and Liu P X 2007 Dendrochronological investigations of sea buckthorn (Hippophae rhamnoides) and reconstruction of the equilibrium line altitude of the July first glacier in the Western Qilian mountains, northwestern China Tree-Ring Res. 63 15–26