Norm of matrix operator on Orlicz-binomial spaces and related operator ideal

Taja Yayinga, Bipan Hazarikab,∗, M. Mursaleenc,d

aDepartment of Mathematics, Dera Natung Govt. College, Itanagar 791111, Arunachal Pradesh, India.
bDepartment of Mathematics, Gauhati University, Guwahati 781014, Assam, India.
cDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, India.
dDepartment of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan.

Abstract

The purpose of this article is to introduce Orlicz extension of binomial sequence spaces b_{ψ}^r,s and investigate some topological and inclusion properties of the new spaces. We give an upper estimation of $\|A\|_{\ell_{\psi}^p,b_{\psi}^r,s}$, where A is the Hausdorff matrix operator or Nörlund matrix operator. A Hardy type formula is established in the case of Hausdorff matrix operator. Finally we introduce operator ideal using the space b_{ψ}^r,s and the sequence of s-number function and prove its completeness under certain assumptions.

Keywords: Binomial sequence space, upper bounds, Hausdorff Matrix, Nörlund Matrix, Orlicz function, s-number, operator ideal.

2020 MSC: 26D15, 46A45, 47A30, 47L20, 47B06.

1. Introduction

Throughout this paper $\mathbb{N}_0 = \{0,1,2,\ldots\}$ and ω denotes the linear space of all real sequences. Any vector subspace of ω is called a sequence space. Also by ℓ_p, we mean the space of absolutely p-summable series, where $1 \leq p < \infty$. The space ℓ_p is a Banach space according to the ℓ_p norm given by

$$||x||_p = \left(\sum_{k=0}^{\infty} |x_k|^p\right)^{\frac{1}{p}}. \quad (1.1)$$

For some recent papers on sequence spaces, one may refer to [5, 8, 16, 20, 36, 39, 40]. Let X and Y be two sequence spaces and let $A = (a_{n,k})$ be an infinite matrix of real entries. We write A_n to denote the sequences in the nth row of the matrix A. We recall that A defines a matrix mapping from X to Y if for
every sequence \(x = (x_k) \), the \(A \)-transform of \(x \), i.e., \(Ax = (A_n x)_{n=0}^\infty \in Y \), where

\[
A_n x = \sum_{k=0}^\infty a_{nk} x_k, \quad n \in \mathbb{N}_0.
\]

An Orlicz function \(\varphi \) is a function from \((0, \infty)\) to \((0, \infty)\) which is continuous, increasing and convex with \(\varphi(0+) = 0 \) and so has a unique inverse \(\varphi^{-1} : (0, \infty) \to (0, \infty) \). As usual in the Orlicz theory the domain of \(\varphi \) is extended to the real line by \(\varphi(x) = \varphi(|x|) \) and \(\varphi(0) = 0 \) (for details on Orlicz functions see [12, 13, 27]).

Let \(x = (x_n) \) be a sequence of real numbers with \(x_n > 0 \) for all \(n \in \mathbb{N}_0 \). The Orlicz sequence space is defined as

\[
\ell_{\varphi} = \left\{ x \in \omega : \sum_{n=0}^\infty \varphi \left(\frac{x_n}{\rho} \right) < \infty \text{ for some } \rho > 0 \right\}.
\]

The space \(\ell_{\varphi} \) is a Banach space equipped with the Orlicz-Luxemborg norm \(\| x \|_{\varphi} \), defined by

\[
\| x \|_{\varphi} = \inf \left\{ \rho > 0 : \sum_{n=0}^\infty \varphi \left(\frac{x_n}{\rho} \right) \leq 1 \right\}.
\] (1.2)

Clearly \(|x_n| \leq |y_n| \) for all \(n \in \mathbb{N}_0 \), then \(\| x \|_{\varphi} \leq \| y \|_{\varphi} \). Further if \(0 < \| x \|_{\varphi} < \infty \), then \(\sum_{n=0}^\infty \varphi \left(\frac{x_n}{\| x \|_{\varphi}} \right) \leq 1 \)

[25, Lemma 1].

In particular, if \(\varphi(t) = |t|^p, \ p \geq 1 \), then the space \(\ell_{\varphi} \) reduces to the \(\ell_p \) space and the norm \(\| x \|_{\varphi} \) given by (1.2) reduces to the norm \(\| x \|_p \) given by (1.1).

By supermultiplicative function, we shall mean any function \(\varphi : (0, \infty) \to (0, \infty) \) such that for all positive \(a \) and \(b \)

\[
\varphi(ab) \geq \varphi(a) \varphi(b).
\]

An immediate example of supermultiplicative function is \(\varphi(t) = t^p, \ p \geq 1 \). Throughout the article, we consider this supermultiplicative Orlicz function \(\varphi \) which satisfies \(\varphi(1) = 1 \).

We recall that an upper bound for a matrix operator \(T \) from a sequence space \(X \) into another sequence space \(Y \) is the value of \(U \) satisfying the inequality

\[
\|Tx\|_Y \leq U \|x\|_X,
\]

where \(\| - \|_X \) and \(\| - \|_Y \) are the norms on the spaces \(X \) and \(Y \), respectively. Here, \(U \) does not depend on \(x \). The best possible value of \(U \) is regarded as the operator norm of \(T \).

The Euler mean matrix \(E^r \) of order \(r \) is defined by the matrix \(E^r = (e^r_{nk}) \), where \(0 < r < 1 \) and

\[
e^r_{nk} = \begin{cases} \binom{n}{k} (1 - r)^{n-k} r^k, & (0 \leq k \leq n), \\ 0, & (k > n). \end{cases}
\]

The Euler sequence spaces \(e^r_p \) and \(e^r_\infty \) were introduced by Altay et al. [7] as follows (also see Altay and Başar [6]):

\[
e^r_p = \left\{ x = (x_k) \in \omega : \sum_{n=0}^\infty \left| \sum_{k=0}^n \binom{n}{k} (1 - r)^{n-k} r^k x_k \right|^p < \infty \right\}
\]

and

\[
e^r_\infty = \left\{ x = (x_k) \in \omega : \sup_{n \in \mathbb{N}_0} \left| \sum_{k=0}^n \binom{n}{k} (1 - r)^{n-k} r^k x_k \right| < \infty \right\}.
\]

Let \(r, s \in \mathbb{R} \) and \(r + s \neq 0 \), then the binomial matrix \(B^{r,s} = (b^{r,s}_{nk}) \) is defined by:

\[
b^{r,s}_{nk} = \begin{cases} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} r^k, & (0 \leq k \leq n), \\ 0, & (k > n). \end{cases}
\]
Bisgin [10, 11] obtained another generalization of Euler sequence spaces by introducing the binomial sequence spaces $b^{r,s}_p$ and $b^{r,s}_\infty$ as follows:

$$b^{r,s}_p = \left\{ x = (x_k) \in \omega : \sum_{n=0}^{\infty} \frac{1}{(s+r)^n} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} r^k x_k \right\}^p < \infty$$

and

$$b^{r,s}_\infty = \left\{ x = (x_k) \in \omega : \sup_{n \in \mathbb{N}_0} \frac{1}{(s+r)^n} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} r^k x_k \right\} < \infty.$$

It is clear that, if we take $r + s = 1$, then the binomial matrix $B^{r,s}$ reduces to the Euler mean matrix E^r of order r. Thus binomial matrix generalizes the Euler mean matrix.

Euler weighted sequence space $e^{\theta}_{w,p}$ has been studied recently by Talebi and Dehgan [37] as follows:

$$e^{\theta}_{w,p} = \left\{ x = (x_k) \in \omega : \sum_{n=0}^{\infty} w_n \left(\frac{n}{1-\theta} \right)^{n-k} r^k x_k \right\}^p < \infty,$$

where $1 \leq p < \infty$, $0 < \theta < 1$ and $w = (w_n)$ is a decreasing non-negative sequences of real numbers with $\sum_{n=0}^{\infty} \frac{w_n}{n+1} = \infty$.

More recently, Manna [26] has studied Orlicz extension of weighted Euler sequence space and obtained norm inequalities involving generalized Hausdorff and Nörlund matrix operators which strengthen the results of Talebi and Dehgan [38]. The lower bounds of operators on different sequence spaces were studied in [18, 21–24]. Recently Roopaei and Foroutaninia [34, 35] and Ilkhan [15] discussed the norms of matrix operators on different sequence spaces. Following Bisgin [10], Manna [26], Talebi and Dehgan [37], we introduce Orlicz extension of binomial sequence spaces $b^{r,s}_\varphi$.

The paper is organized as follows. In the Section 2, we introduce Orlicz-binomial sequence space $b^{r,s}_\varphi$, investigate topological properties and inclusion relations. In the Section 3, we give an upper bound estimation for the norm of Hausdorff matrix as an operator from ℓ_φ to $b^{r,s}_\varphi$ and provide some immediate corollaries. In the Section 4, we give an upper bound estimation for $\|N\|_{\ell_{\varphi},b^{r,s}_\varphi}$ where $N = N(x_n)$ is the Nörlund matrix associated with the sequence $x = (x_n)$. In the final section, we introduce operator ideal $\mathcal{L}_{b^{r,s}_\varphi}$ using the space $b^{r,s}_\varphi$ and the sequence of s-number functions and prove its completeness under certain assumption.

2. Orlicz-binomial sequence spaces $b^{r,s}_\varphi$

Let φ be an Orlicz function. Then the Orlicz-binomial sequence space $b^{r,s}_\varphi$ can be defined as the set of all sequences whose $B^{r,s}_\varphi$-transform is in ℓ_φ. That is

$$b^{r,s}_\varphi = \left\{ x \in \omega : B^{r,s}_\varphi x \in \ell_\varphi \right\} = \left\{ x \in \omega : \sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} r^k x_k \right) < \infty \text{ for some } \rho > 0 \right\}.$$

One can observe that the sequence space $b^{r,s}_\varphi$ reduces to $b^{r,s}_p$ when $\varphi(t) = t^p$, $p \geq 1$ as studied by Bisgin [11] which further reduces to the space b^{r}_p as studied by Altay et al. [7] when $r + s = 1$. Also if $r + s = 1$, the sequence space $b^{r,s}_\varphi$ reduces to the Orlicz-Euler sequence space $e^{\varphi}_{w,p}$ studied by Manna [26].

Clearly the space $b^{r,s}_\varphi$ is a normed linear space equipped with the norm $\|x\|^{r,s}_\varphi = \|B^{r,s}_\varphi x\|_\varphi$. We begin with the following theorem.

Theorem 2.1. The sequence space $b^{r,s}_\varphi$ is a Banach space equipped with the norm $\|\cdot\|^{r,s}_\varphi$.

Proof. Let \((x^i)\) be a Cauchy sequence in \(b^{r,s}_\varphi\). Then for any \(\varepsilon > 0\), there exist \(n_0 \in \mathbb{N}_0\) such that
\[
\|x^i - x^j\|_{\varphi} < \varepsilon \quad \text{for each} \quad i, j \geq n_0.
\]
Choose \(0 < \rho \varepsilon < \varepsilon\) such that
\[
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho \varepsilon} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} \left(x^i_k - x^j_k \right) \right) \leq 1 \quad \text{for each} \quad i, j \geq n_0.
\]
Using the assumption \(\varphi(1) = 1\), we obtain
\[
\frac{1}{\rho \varepsilon} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} \left(x^i_k - x^j_k \right) \leq 1 \quad \text{for each} \quad i, j \geq n_0.
\]
Thus it is clear that the sequence \((x^i_k)\) is a Cauchy sequence of real numbers and hence converges. Let \((x^i_k) \to x_k\) as \(i \to \infty\) for each \(k \geq 0\). Since \(\varphi\) is continuous, we obtain from (2.1)
\[
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho \varepsilon} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} \left(x^i_k - x^j_k \right) \right) \leq 1 \quad \text{for each} \quad i \geq n_0.
\]
Thus \(x \in b^{r,s}_\varphi\) and \(\|x^i\|_{\varphi} \leq \rho \varepsilon < \varepsilon\) for \(i \geq n_0\). So \((b^{r,s}_\varphi, \|\cdot\|_{\varphi}^{r,s})\) is a Banach space.

Theorem 2.2. The sequence space \(b^{r,s}_\varphi\) is linearly isomorphic to \(\ell_{\varphi}\).

Proof. Define a mapping \(T : b^{r,s}_\varphi \to \ell_{\varphi}\) by \(x \mapsto y = T x\), where the sequence \(y = \{y_k\}\) is the \(B^{r,s}\)-transform of the sequence \(x = \{x_k\}\), i.e.,
\[
y_k = \sum_{i=0}^{k} \frac{1}{(s+r)^i} \binom{k}{i} (-s)^{k-i} r^i x^i_i.
\]
Clearly, \(T\) is linear and injective. Let \(y \in \ell_{\varphi}\) and define the sequence \(x = \{x_k\}\) by
\[
x_k = \sum_{i=0}^{k} \frac{1}{(s+r)^i} \binom{k}{i} (-s)^{k-i} r^i y^i_i.
\]
Then, one obtains
\[
\|x\|_{\varphi}^{r,s} = \|B^{r,s}_\varphi x\|_{\varphi} = \sum_{k=0}^{\infty} \varphi \left(\frac{B^{r,s}_\varphi x}{\rho} \right)
\]
\[
= \sum_{k=0}^{\infty} \varphi \left(\frac{1}{\rho} \sum_{j=0}^{k} \frac{1}{(s+r)^j} \binom{k}{j} s^{k-j} r^j x^j_j \right)
\]
\[
= \sum_{k=0}^{\infty} \varphi \left(\frac{1}{\rho} \sum_{j=0}^{k} \frac{1}{(s+r)^j} \binom{k}{j} s^{k-j} r^j \sum_{i=0}^{j} (s+r)^i \binom{j}{i} (-s)^{i-j} r^j y^j_i \right)
\]
\[
= \sum_{k=0}^{\infty} \varphi \left(\frac{\sum_{j=0}^{k} \delta_{kj} y^j_i}{\rho} \right) = \sum_{k=0}^{\infty} \varphi \left(\frac{y_k}{\rho} \right) = \|y\|_{\varphi} \leq \rho.
\]
Thus we conclude that \(x \in b^{r,s}_\varphi\) and \(T\) is norm preserving. Consequently, \(T\) is surjective. Thus \(b^{r,s}_\varphi \cong \ell_{\varphi}\).
Now we establish certain inclusion properties concerning Orlicz-binomial sequence space. We start with the following result.

Theorem 2.3. Let φ be an Orlicz and supermultiplicative function. Then the inclusion $\ell_\varphi \subset b^{r,s}_\varphi$ holds.

Proof. Let $x = (x_k) \in \ell_\varphi$ with $x \neq 0$. Applying Jensen’s inequality, we have

$$
\sum_{n=0}^{\infty} \varphi \left(\frac{B^{r,s}x}{\rho} \right) \leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} r^k \varphi \left(\frac{x_k}{\rho} \right)
$$

$$
= \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\rho} \right) \sum_{n=k}^{\infty} \binom{n}{k} \left(\frac{s}{s+r} \right)^{n-k} \left(\frac{r}{s+r} \right)^k
$$

$$
= \frac{s+r}{r} \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\rho} \right)
$$

$$
= \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\rho} \right) \varphi^{-1} \left(\frac{s+r}{r} \right) = \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\|x\|_\varphi} \right) \leq 1.
$$

Let us put $\rho = \|x\|_\varphi \varphi^{-1} \left(\frac{s+r}{r} \right)$. Then the above inequality implies that

$$
\sum_{n=0}^{\infty} \varphi \left(\frac{B^{r,s}x}{\rho} \right) \leq \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\rho} \right) \varphi^{-1} \left(\frac{s+r}{r} \right) = \sum_{k=0}^{\infty} \varphi \left(\frac{x_k}{\|x\|_\varphi} \right) \leq 1.
$$

Hence, by the definition of Orlicz-Luxemborg norm, we obtain that

$$
\|x\|_{\ell_\varphi} \leq \rho = \varphi^{-1} \left(\frac{s+r}{r} \right) \|x\|_\varphi.
$$

Therefore, $\ell_\varphi \subset b^{r,s}_\varphi$. To establish the strictness part, we consider $\varphi(t) = t^p$, $p \geq 1$. Then the sequence $x = (x_k) = (-1)^k \in b^{r,s}_\varphi$ but $x \notin \ell_\varphi$. This completes the proof. \qed

Theorem 2.4. Let φ be an Orlicz and supermultiplicative function. Then the inclusion $e^{r,s}_\varphi \subset b^{r,s}_\varphi$ is strict.

Proof. The inclusion part is obvious since the sequence space $b^{r,s}_\varphi$ reduces to $e^{r,s}_\varphi$ when $r + s = 1$. To establish the strictness part, we consider $\varphi(t) = t^p$, $p \geq 1$ and a sequence $x = (x_k) = (-1)^k \varphi^{-1} \left(\frac{s+r}{r} \right)$ and let $0 < r < 1$ and $s = 4$. Then one can easily deduce that $(x_k) = (-1)^k \notin \ell_\varphi$, $E^r(x) = (-2-r)^k \notin \ell_\varphi$ and $B^{r,s}x = \left(\frac{1}{s+r} \right) \varphi^{-1} \left(\frac{s+r}{r} \right) \notin \ell_\varphi$. Thus there exists at least one sequence $x = (x_k) \in b^{r,s}_\varphi \setminus e^{r,s}_\varphi$. This establishes the result. \qed

3. Upper bound for Hausdorff matrix operators

In this section, we establish a Hardy type formula as an upper estimate for $\|H_{\mu}\|_{\ell_\varphi, b^{r,s}_\varphi}$, where $d\mu$ is a Borel probability measure on $[0,1]$ and H_{μ} is the generalized Hausdorff matrix associated with $d\mu$. Let $\alpha > -1$ and $c > 0$, then the generalized Hausdorff matrix, $H_{\mu} = H_{\mu}(\vartheta) = (h_{nk}(\vartheta))_{n,k \geq 0}$ is defined by (see [9, 17])

$$
h_{nk} = \begin{cases}
(n+a) \Delta^{n-k} \mu_k, & (k \leq n), \\
0, & (k > n).
\end{cases}
$$

where $\Delta \mu_k = \mu_k - \mu_{k+1}$ and $\mu = (\mu_n)_{n \in \mathbb{N}}$ is a sequence of real numbers, normalized so that $\mu_0 = 1$ and

$$
\mu_k = \int_0^1 \theta^k d\mu(\theta), \quad k = 0, 1, 2, \ldots.
$$
An equivalent expression for the generalized Hausdorff matrix $H_\mu = (h_{nk})$ is given by

$$h_{nk} = \begin{cases} \frac{\theta^c}{1-n} \int_0^\theta \theta^{(k+\alpha)}(1-\theta^c)^{n-k} \, d\mu(\theta), & (k \leq n), \\ 0, & (k > n). \end{cases}$$

When $a = 0$ and $c = 1$, then H_μ reduces to the ordinary Hausdorff matrix (see [9]) which generalizes various classes of matrices. These classes are:

(a) taking $d\mu(\theta) = \alpha(1-\theta)^{\alpha-1} \, d\theta$ gives the Cesàro matrix of order α;
(b) taking $d\mu(\theta) = \text{point evaluation at } \theta = \alpha$ gives the Euler matrix of order α;
(c) taking $d\mu(\theta) = \log(\theta)^{\alpha-1} / \Gamma(\alpha) \, d\theta$ gives the Hölder matrix of order α;
(d) taking $d\mu(\theta) = \alpha\theta^{\alpha-1} \, d\theta$ gives the Gamma matrix of order α.

The Cesàro, Hölder, and Gamma matrices have non-negative entries when $\alpha > 0$, and also the Euler matrices, when $0 < \alpha < 1$. Now we consider the following hypothesis related to Orlicz function and Hausdorff matrix:

‘Hypothesis OH’: Let φ be an Orlicz and supermultiplicative function, φ^{-1} be its inverse, and $\|\cdot\|_\varphi$ be the Orlicz-Luxemborg norm. Denote $(x)_q = \frac{r[x+q]}{x}$ for $x \geq 0$ and $H_\mu = (h_{nk})$, $h_{nk} \geq 0$. Further, let $a > -1, c > 0, q > -a -1$ and $\frac{m+a+q}{n} \geq 0$. Now we state a lemma due to Love [25] which is essential for deducing our results.

Lemma 3.1 ([25, Theorem 2]). Suppose that the ‘Hypothesis OH’ holds. Then for any non-negative sequence $x = (x_k)$ and $\mu = (\mu_k)$ of real numbers normalized so that $\mu_0 = 1$, the following inequality holds:

$$\|H_\mu x\|_\varphi \leq \hat{C} \|x\|_\varphi,$$

where

$$\hat{C} = \int_0^1 \varphi^{-1}(\theta^{-(q+1)c}) \, d\mu(\theta).$$

Theorem 3.2. Suppose that the ‘Hypothesis OH’ holds. Then the Hausdorff matrix H_μ maps ℓ_φ to b^r_φ and

$$\|H_\mu\|_{\ell_\varphi, b^r_\varphi} \leq \hat{C} \varphi^{-1} \left(\frac{s+r}{r}\right),$$

where \hat{C} is given by (3.2).

Proof. Let $x = (x_n)$ be a non-negative sequence of real numbers in ℓ_φ. Let $\rho > 0$ be a real number, then using Jensen’s inequality, we have

$$\|H_\mu\|_{\ell_\varphi, b^r_\varphi} = \sum_{k=0}^\infty \varphi \left(\frac{1}{\rho} \sum_{i=0}^k \sum_{l=k}^n \binom{n}{k} h_{ki} x_i \right)^{-1} \left(\frac{1}{\rho} \sum_{i=0}^k h_{ki} x_i \right)^{-1},$$

$$\leq \sum_{k=0}^\infty \sum_{n=0}^\infty \sum_{k=0}^n \frac{1}{(s+r)^n} \binom{n}{k} h_{ki} x_i \sum_{n=0}^\infty \varphi \left(\frac{1}{\rho} \sum_{i=0}^k \binom{n}{k} \frac{s}{s+r}^{-n} \right)^{-1} \left(\frac{r}{s+r}\right)^k,$$

$$= \frac{s+r}{r} \sum_{k=0}^\infty \varphi \left(\frac{1}{\rho} \sum_{i=0}^k h_{ki} x_i \right) \varphi \left(\varphi^{-1} \left(\frac{s+r}{r}\right) \right).$$
Let $\rho = \|H_\mu x\|_{\varphi} \varphi^{-1}\left(\frac{s+r}{r}\right)$. Then the above inequality implies that

$$\|H_\mu\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \sum_{k=0}^{\infty} \varphi\left(\frac{1}{\rho} \sum_{l=0}^{k} h_{kl} x_l \varphi^{-1}\left(\frac{s+r}{r}\right)\right) = \sum_{k=0}^{\infty} \varphi\left(\frac{H_\mu x}{\|H_\mu x\|_{\varphi}}\right) \leq 1.$$

Now using the definition of Orlicz-Luxemborg norm and equation (3.1), we get

$$\|H_\mu x\|_{\varphi}^{r,s} \leq \rho = \|H_\mu x\|_{\varphi} \varphi^{-1}\left(\frac{s+r}{r}\right) \leq C \varphi^{-1}\left(\frac{s+r}{r}\right) \|x\|_{\varphi}.$$

This gives

$$\|H_\mu\|_{\ell_\varphi,b_{r,s}^\varphi} \leq C \varphi^{-1}\left(\frac{s+r}{r}\right).$$

\[\square\]

Corollary 3.3. Choose $c = 1$ and $a = 0$. Then $\mathcal{C} = \int_{0}^{1} \varphi^{-1}(\theta^{-(q+1)}) \, d\mu(\theta)$ and Cesàro, Hölder, Euler, and Gamma matrices map ℓ_φ into $b_{r,s}^\varphi$ and

$$\|C(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \alpha \varphi^{-1}\left(\frac{s+r}{r}\right) \int_{0}^{1} \varphi^{-1}\left(\theta^{-(q+1)}(1-\theta)^{\alpha-1}\right) \, d\theta, \quad \alpha > 0;$$

$$\|H(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \frac{1}{\Gamma(\alpha)} \varphi^{-1}\left(\frac{s+r}{r}\right) \int_{0}^{1} \varphi^{-1}\left(\theta^{-(q+1)} \log \theta\right)^{\alpha-1} \, d\theta, \quad \alpha > 0;$$

$$\|E(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \varphi^{-1}\left(\frac{s+r}{r}\right) \varphi^{-1}\left(\alpha^{-}q+1\right), \quad 0 < \alpha < 1;$$

$$\|\Gamma(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \alpha \varphi^{-1}\left(\frac{s+r}{r}\right) \int_{0}^{1} \varphi^{-1}\left(\theta^{-(q+1)}\right) \theta^{\alpha-1} \, d\theta.$$

Corollary 3.4. Choose $c = 1$, $a = 0$, $q = 0$ and $\varphi(t) = t^p$, $p \geq 1$, and denote $p^* = \frac{p}{p-1}$. Then Cesàro, Hölder, Euler and Gamma matrices map ℓ_φ to $b_{r,s}^\varphi$ and

$$\|C(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \frac{\varphi^{-1}\left(\frac{s+r}{r}\right)}{\Gamma(\alpha + \frac{1}{p^*})}, \quad \alpha > 0;$$

$$\|H(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \frac{1}{\Gamma(\alpha)} \varphi^{-1}\left(\frac{s+r}{r}\right) \int_{0}^{1} \theta^{\frac{1}{p^*}} \log \theta^{\alpha-1} \, d\theta, \quad \alpha > 0;$$

$$\|E(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \frac{\varphi^{-1}\left(\frac{s+r}{r}\right)}{\alpha^{\frac{1}{p^*}}}, \quad 0 < \alpha < 1;$$

$$\|\Gamma(\alpha)\|_{\ell_\varphi,b_{r,s}^\varphi} \leq \frac{\varphi^{-1}\left(\frac{s+r}{r}\right)}{\alpha^{\frac{1}{p^*}}}, \quad \alpha > 1.$$

4. Upper bound for Nörlund matrix operator

In this section, we give an upper bound estimation for the norm of Nörlund matrix as an operator
from ℓ_p to b_{qs}^r . Let $u = (u_n)$ be a sequence of non-negative numbers with $u_0 > 0$. We write $U_n = \sum_{k=0}^{n} u_k, \ n \geq 0$. Then the Nörlund mean with respect to the sequence $u = (u_n)$ is defined by the matrix $N = N(u_n) = (a^u_{nk})$ given by

$$a^u_{nk} = \begin{cases} \frac{u_n - u_k}{U_n}, & (0 \leq k \leq n) \\ 0, & k > n. \end{cases}$$

In the case when $u_n = e$, Nörlund matrix reduces to Cesàro matrix. Note that one can assume $u_0 = 1$ because $N(u_n) = N(cu_n)$ for any $c > 0$.

Theorem 4.1. Let $u = (u_n)$ be a sequence of non-negative real numbers with $u_0 = 1$. Then

$$||N||_{\ell_p,b_{qs}^r} \leq \varphi^{-1} \left(\frac{s + r}{r} \sum_{n=0}^{\infty} \frac{u_n}{U_n} \right).$$

Proof. Let $x \in \ell_p$ be any non-negative sequence of real numbers and $\rho > 0$. Applying Jensen’s inequality, we obtain

$$\sum_{n=0}^{\infty} \varphi\left(\frac{1}{\rho} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \binom{n}{k} s^{n-k} r^k \sum_{i=0}^{k} \frac{u_{k-i}}{U_k} x_i \right) \leq \sum_{n=0}^{\infty} \frac{n}{(s + r)^n} \binom{n}{k} s^{n-k} r^k \varphi\left(\frac{1}{\rho} \sum_{i=0}^{k} \frac{u_{k-i}}{U_k} x_i \right)$$

$$= \sum_{k=0}^{\infty} \varphi\left(\frac{1}{\rho} \sum_{i=0}^{k} \frac{u_{k-i}}{U_k} x_i \right) \sum_{n=k}^{\infty} \binom{n}{k} \left(\frac{s}{s + r} \right)^{n-k} \left(\frac{r}{s + r} \right)^k$$

$$\leq \frac{s + r}{r} \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{u_{k-i}}{U_k} \varphi\left(\frac{x_i}{\rho} \right)$$

$$= \frac{s + r}{r} \sum_{k=0}^{\infty} \frac{u_k}{U_k} \sum_{i=0}^{\infty} \varphi\left(\frac{x_i}{\rho} \right)$$

$$= \sum_{i=0}^{\infty} \varphi\left(\frac{x_i}{\rho} \right) \varphi^{-1} \left(\frac{s + r}{r} \sum_{k=0}^{\infty} \frac{u_k}{U_k} \right)$$

$$\leq \sum_{i=0}^{\infty} \varphi\left(\frac{x_i}{\rho} \right) \varphi^{-1} \left(\frac{s + r}{r} \sum_{k=0}^{\infty} \frac{u_k}{U_k} \right).$$

Put $\rho = \|x\|_{\ell_p} \varphi^{-1} \left(\frac{s + r}{r} \sum_{k=0}^{\infty} \frac{u_k}{U_k} \right)$, then the above inequality becomes

$$||Nx||_{\ell_p,b_{qs}^r} \leq \sum_{i=0}^{\infty} \varphi\left(\frac{x_i}{\|x\|_{\ell_p}} \right) \leq 1.$$

Now using the definition of Orlicz-Luxemborg norm, we get

$$||Nx||_{\ell_p,b_{qs}^r} \leq \rho = \varphi^{-1} \left(\frac{s + r}{r} \sum_{k=0}^{\infty} \frac{u_k}{U_k} \right) \|x\|_{\ell_p}.$$

This establishes the result. □
Corollary 4.2. Let \(u = (u_n) \) be a non-negative sequence of real numbers such that \(\frac{u_n}{n} = \frac{1}{(n+1)^p}, n = 0, 1, 2, \ldots \). Then the Nörlund matrix maps \(\ell_p \) into \(b^{r,s}_p \) and

\[
\|N\|_{\ell_p, b^{r,s}_p} \leq \varphi^{-1} \left(\frac{(s+r)^2}{6r} \right).
\]

Corollary 4.3. Let \(\varphi(t) = t^p p \geq 1 \) and \(u = (u_n) \) be a non-negative sequence of real numbers such that \(\frac{u_n}{n} = \frac{1}{(n+1)^p}, n = 0, 1, 2, \ldots \). Then the Nörlund matrix maps \(\ell_p \) into \(b^{r,s}_p \) and

\[
\|N\|_{\ell_p, b^{r,s}_p} \leq \left(\frac{(s+r)^2}{6r} \right)^{\frac{1}{p}}.
\]

5. The operator ideals \(\mathcal{A}^{(s)}_{b^{r,s}_p} \)

Throughout this section, we denote by \(X \) and \(Y \), the Banach spaces over the complex field \(\mathbb{C} \) and by \(L(X, Y) \), the class of all bounded linear maps from \(X \) to \(Y \). Let \(L \) be the class of all bounded linear operators between any pair of Banach spaces.

A map \(s : L \rightarrow \omega^+ \), where \(\omega^+ \) is the class of sequences of non-negative real numbers, is called an \(s \)-number function if it satisfies the following conditions:

(i) \(\|s\| = s_0(S) \geq s_1(S) \geq \cdots \geq 0 \), \(s(S) = \{s_n(S)\}, S \in L; \)
(ii) \(s_n(S+T) \leq s_n(S) + \|T\| \) for \(S, T \in L(X, Y) \) and \(n \in \mathbb{N}_0; \)
(iii) \(s_n(RST) \leq \|R\| s_n(S) \|T\| \) for \(R, T \in L(X_0, X), S \in L(Y, Z) \), \(R \in L(Y_0, Y), \) and \(n \in \mathbb{N}_0; \)
(iv) if \(\text{rank}(S) < n \), then \(s_n(S) = 0; \)
(v) if \(\dim X \geq n \), then \(s_n(S_X) = 1 \), where \(S_X \) denotes the identity map of \(X \).

An \(s \)-number function is called additive if the condition (ii) is replaced by

(ii) \(s_{m+n-1}(S+T) \leq s_m(S) + s_n(T) \) for \(S, T \in L(X, Y) \) and \(m, n \in \mathbb{N}_0. \)

If the condition (iii) is replaced by

(iii) \(s_{m+n-1}(RT) \leq s_m(R)s_n(T) \) for \(R \in L(Y_0, Y), T \in L(X, Y), \) and \(m, n \in \mathbb{N}_0, \)
then the \(s \)-number function is called multiplicative, where the negative subscript is consider to be naught.

For a subset \(A \) of \(L \), we write \(A(X, Y) = A \cap L(X, Y) \) where \(X \) and \(Y \) are Banach spaces. The collection \(A \) is said to be an operator ideal if it satisfies the following conditions:

(i) \(A \) contains all finite rank operators;
(ii) \(T + S \in A(X, Y) \) for \(S, T \in A(X, Y); \)
(iii) if \(T \in A(X, Y) \) and \(S \in L(Y, Z) \), then \(ST \in A(X, Z) \) and also if \(T \in L(X, Y) \) and \(S \in A(Y, Z) \), then \(ST \in A(X, Z). \)

The collection \(A(X, Y) \), for a given pair of Banach spaces \(X \) and \(Y \), is called a component of \(A \). For more details on \(s \)-number and operator ideal, we strictly refer to [1–4, 14, 19, 28–33] and the references cited therein.

An ideal quasi norm is a real valued function \(f \) defined on an operator ideal \(A \), which satisfies the following properties:

(i) \(0 \leq f(\mathcal{I}) < \infty \), for each \(\mathcal{I} \in A \) and \(f(\emptyset) = 0 \) if and only if \(\mathcal{I} = \emptyset; \)
(ii) there exists a constant \(N \geq 1 \) such that \(f(S+T) \leq N[f(S) + f(T)] \) for \(S, T \in A(X, Y) \), where \(A(X, Y) \) is any component of \(A; \)
(iii) (a) \(f(RS) \leq \|R\| f(S) \) for \(S \in A(X, Z), R \in L(Z, Y); \) and
(b) \(f(RS) \leq \|S\| f(R) \) for \(S \in L(X, Z), R \in A(Z, Y). \)
We start with the following definition.

Definition 5.1. An operator \(T \in \mathcal{L}(X, Y) \) is said to be of type \(b^{r,s}_\varphi \) if \(\{ s_n(T) \} \in b^{r,s}_\varphi \).

Let \(\mathcal{L}^{(s)}_{b^{r,s}_\varphi} \) denotes the collection of all such mappings, i.e.,

\[
\mathcal{L}^{(s)}_{b^{r,s}_\varphi} = \{ T \in \mathcal{L}(X, Y) : \{ s_n(T) \} \in b^{r,s}_\varphi \}.
\]

For \(T \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi} \), we define

\[
\| T \|^{(s)}_{b^{r,s}_\varphi} = \inf \left\{ \rho > 0 : \sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho_1} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k s_k(T) \right) \leq 1 \right\}.
\]

Theorem 5.2. The class \(\mathcal{L}^{(s)}_{b^{r,s}_\varphi} \) is an operator ideal equipped with the norm \(\| - \|^{(s)}_{b^{r,s}_\varphi} \).

Proof. Note that all the finite rank operators are contained in \(\mathcal{L}^{(s)}_{b^{r,s}_\varphi} \), since \(s_n(T) = 0 \) for \(n \geq n_0 \) if \(\text{rank}(T) < n_0 \). Let \(T_1, T_2 \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi} \), then

\[
\begin{align*}
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho_1 + \rho_2} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k s_k(T_1 + T_2) \right) &< \infty \text{ for some } \rho_1 > 0, \text{ and} \\
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho_2} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k s_k(T_1 + T_2) \right) &< \infty \text{ for some } \rho_2 > 0.
\end{align*}
\]

Now

\[
\begin{align*}
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho_1 + \rho_2} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k s_k(T_1 + T_2) \right) &\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k \varphi \left(\frac{1}{\rho_1 + \rho_2} s_k(T_1 + T_2) \right) (\text{using Jensen's inequality}) \\
&= \sum_{k=0}^{\infty} \varphi \left(\frac{1}{\rho_1 + \rho_2} s_k(T_1 + T_2) \right) \sum_{n=k}^{\infty} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k \\
&= \frac{s+r}{r} \sum_{k=0}^{\infty} \varphi \left(\frac{s_k(T_1 + T_2)}{\rho_1 + \rho_2} \right) + \sum_{k=0}^{\infty} \frac{\varphi(s_k(T_2))}{\rho_2} < \infty.
\end{align*}
\]

Thus \(T_1 + T_2 \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi} \). Let \(T \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi}(X_0, Y_0), R \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi}(X, X_0), S \in \mathcal{L}^{(s)}_{b^{r,s}_\varphi}(Y_0, Y) \). Using the property (iii) of s-number function, we obtain

\[
\begin{align*}
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k s_k(RTS) \right) &\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k \varphi \left(\frac{1}{\rho} s_k(RTS) \right) (\text{using Jensen's inequality}) \\
&\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k}r^k \varphi \left(\frac{\| R \| \| S \|}{\rho} s_k(T) \right) (\text{using property (iii) of s-number function})
\end{align*}
\]
\[
\frac{s + r}{\rho} \sum_{k=0}^{\infty} \phi \left(\frac{\|R\| s_k(T) \|S\|}{\rho} \right) < \infty.
\]

Thus \(RTS \in \mathcal{L}_{b_p^{(s)}}^{(s)}. \) Thus \(\mathcal{L}_{b_{q}^{(s)}}^{(s)} \) is an operator ideal. \(\Box \)

Theorem 5.3. The operator ideal \(\mathcal{L}_{b_{q}^{(s)}}^{(s)} \) is complete under the quasi-norm \(\| \cdot \|^{(s)}_{b_{q}^{(s)}}. \)

Proof. First we shall show that \(\| \cdot \|^{(s)}_{b_{q}^{(s)}} \) is a quasi-norm on \(\mathcal{L}_{b_{q}^{(s)}}^{(s)}. \) Note that \(\|T\|^{(s)}_{b_{q}^{(s)}} \geq 0 \) for each \(T \in \mathcal{L}_{b_{q}^{(s)}}^{(s)} \) and \(\|T\|^{(s)}_{b_{q}^{(s)}} = 0 \) for \(T = 0. \) Now, let \(T \in \mathcal{L}_{b_{q}^{(s)}}^{(s)} \) such that \(\|T\|^{(s)}_{b_{q}^{(s)}} = 0. \) Then for \(\varepsilon > 0, \) we can find \(0 < \rho < \varepsilon \) and

\[
\sum_{n=0}^{\infty} \phi \left(\frac{1}{\rho} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T) \right) \leq 1.
\]

Using the assumption \(\phi(1) = 1, \) one obtains

\[
\frac{1}{\varepsilon} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T) \leq \frac{1}{\varepsilon} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T) \leq 1.
\]

Now

\[
\frac{1}{\varepsilon} \left(\frac{s}{s + r} \right)^n s_0(T) \leq \frac{1}{\varepsilon} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T) \leq 1.
\]

Since \(\varepsilon \) is arbitrary, we get

\[
\|T\| = s_0(T) = 0 \implies T = 0.
\]

Next we establish the triangular inequality. Let \(T_1, T_2 \in \mathcal{L}_{b_{q}^{(s)}}^{(s)} \) and \(\varepsilon > 0 \) arbitrary. Choose \(\rho_1 > 0, \rho_2 > 0 \) such that

\[
\frac{1}{\rho_1} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T_1) \leq 1, \quad \rho_1 \leq \|T_1\|^{(s)}_{b_{q}^{(s)}} + \frac{\varepsilon}{2}, \quad \text{and}
\]

\[
\frac{1}{\rho_2} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T_2) \leq 1, \quad \rho_2 \leq \|T_2\|^{(s)}_{b_{q}^{(s)}} + \frac{\varepsilon}{2}.
\]

We choose \(N > 1. \) Then

\[
\sum_{n=0}^{\infty} \phi \left(\frac{1}{N (\rho_1 + \rho_2)} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T_1 + T_2) \right) \leq 1.
\]

From which one can deduce that

\[
\|T_1 + T_2\|^{(s)}_{b_{q}^{(s)}} \leq N (\rho_1 + \rho_2) \leq N \left(\|T_1\|^{(s)}_{b_{q}^{(s)}} + \|T_2\|^{(s)}_{b_{q}^{(s)}} + \varepsilon \right).
\]

Since \(\varepsilon > 0 \) is arbitrary, therefore

\[
\|T_1 + T_2\|^{(s)}_{b_{q}^{(s)}} \leq N \left(\|T_1\|^{(s)}_{b_{q}^{(s)}} + \|T_2\|^{(s)}_{b_{q}^{(s)}} \right).
\]

Now we shall establish the completeness of \(\mathcal{L}_{b_{q}^{(s)}}^{(s)}. \) Let \((T^{(i)}) \) be a Cauchy sequence in \(\mathcal{L}_{b_{q}^{(s)}}^{(s)}, \) then for \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that \(\|T^{(i)} - T^{(j)}\|^{(s)}_{b_{q}^{(s)}} < \varepsilon \) for each \(i, j \geq n_0. \) We choose \(0 < \rho < \varepsilon \) and

\[
\sum_{n=0}^{\infty} \phi \left(\frac{1}{\rho} \sum_{k=0}^{n} \frac{1}{(s + r)^n} \left(\frac{n}{k} \right) s^{n-k} r^{k} s_k(T^{(i)} - T^{(j)}) \right) \leq 1 \quad (5.1)
\]
for $i, j \geq n_0$. Using the assumption $\varphi(1) = 1$ and the same argument above, one can deduce that $\|T^{(i)} - T^{(j)}\| \to 0$ as $i, j \to \infty$. Hence $(T^{(i)})$ is a Cauchy sequence in $L(X, Y)$ and hence converges, say to T, i.e., $\|T^{(i)} - T\| \to 0$ as $i \to \infty$. Since φ is continuous, therefore using equation (5.1) as $i \to \infty$,

$$
\sum_{n=0}^{\infty} \varphi \left(\frac{1}{\rho} \sum_{k=0}^{n} \frac{1}{(s+r)^n} \left(\begin{array}{c} n \\ k \end{array} \right) s^{n-k} r^k \right) \leq 1.
$$

Thus $T \in L_{b_\varphi^s}$ and $\|T^{(i)} - T\|_{b_\varphi^s} \leq \rho < \varepsilon$ as $i \to \infty$. This establishes the result.

6. Conclusion

In this article, we give an upper bound estimation for the norms of Hausdorff matrix and Nörlund matrix as operators from ℓ_φ to b_φ^s, thereby obtaining a Hardy type formulae in the case of Hausdorff matrix. We have used Jensen’s inequality to prove all the results. Note that by ignoring the weighted version, i.e., by taking $\lambda_n = 1$ and $v_n = 1$ for all $n \in \mathbb{N}_0$ in the results of Manna [26] and Talebi and Dehgan [37], respectively, then our investigated results in this paper intend to generalize the results obtained by the authors in [26, 37]. We also defined operator ideal for Orlicz-binomial sequence space and proved its completeness. We expect that the results obtained in this paper might be a reference for further studies in this field.

Acknowledgment

The research of the first author (T. Yaying) is supported by SERB, DST, New Delhi, India under the grant number EEQ/2019/000082.

References

[1] P. Z. Alp, E. E. Kara, Some equivalent quasinorms on $L_{\phi,E}$, Facta Univ. Ser. Math. Inform., 33 (2018), 739–749. 5
[2] P. Z. Alp, E. E. Kara, The new class $L_{s,p,E}$ of s-type operators, AIIMS Math., 4 (2019), 779–791.
[3] P. Z. Alp, E. E. Kara, A new class of operator ideals on the block sequence space $\ell_p(E)$, Adv. Appl. Math. Sci., 18 (2018), 205–217.
[4] P. Z. Alp, M. Ilkhan, A new class of s-type $X(u,v,l_\varphi(E))$ operators, Sakarya University J. Sci., 23 (2019), 792–800. 5
[5] P. Z. Alp, M. Ilkhan, On the difference sequence space $\ell_p(T^4)$, Math. Sci. & Appl. E-Notes, 7 (2019), 161–173. 1
[6] B. Altay, F. Başar, On some Euler sequence spaces of nonabsolute type, Ukr. Math. J., 57 (2005), 1–17. 1
[7] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞, Math. Slovaca, 57 (2006), 1450–1462. 1, 2
[8] S. Aydin, H. Polat, Difference sequence spaces derived by using Pascal Transform, Fundam. J. Math. Appl., 2 (2019), 56–62. 1
[9] G. Bennet, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120 (1996). 3
[10] M. C. Biggin, The binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016 (2016), 16 pages. 1
[11] M. C. Biggin, The binomial sequence spaces which include the spaces ℓ_p and ℓ_∞ and geometric properties, J. Inequal. Appl., 2016 (2016), 15 pages. 1, 2
[12] A. Esi, H. Dutta, Some sets of double lacunary invariant sequences defined by four dimensional summable matrices and Orlicz functions, Miskolc Math. Notes, 16 (2015), 805–816. 1
[13] A. Esi, B. Hazarika, A. Esi, New type of lacunary Orlicz difference sequence spaces generated by infinite matrices, Filomat, 30 (2016), 3195–3208. 1
[14] M. Gupta, A. Bhar, Generalized Orlicz-Lorentz sequence spaces and their corresponding operator ideals, Math. Slovaca, 64 (2014), 1475–1496. 5
[15] M. Ilkhan, Norms and lower bounds of some matrix operators on Fibonacci weighted difference sequence space, Math. Methods Appl. Sci., 42 (2019), 5143–5153. 1
[16] M. Ilkhan, E. E. Kara, A new Banach space defined by Euler totient Matrix operator, Oper. Matrices, 13 (2019), 527–544. 1
[17] A. Jakimowski, B. E. Rhoades, J. Tzimbalario, Hausdorff matrices as bounded operators over $\ell_{p,\nu}$, Math. Z., 138 (1974), 173–181. 3
[18] G. J. O. Jameson, R. Lashkaripour, Lower bounds of operators on weighted ℓ_p spaces and Lorentz sequence spaces, Glasgow Math. J., 42 (2000), 211–223. 1

[19] E. E. Kara, M. İlkhan, On a new class of s-type operators, Konuralp J. Math., 3 (2015), 1–11. 5

[20] E. E. Kara, M. Öztürk, M. Başarır, Some topological and geometric properties of generalized Euler sequence space, Math. Slovaca, 60 (2010), 385–398. 1

[21] R. Lashkaripour, D. Foroutannia, Inequality involving upper bounds for certain matrix operators, Proc. Indian Acad. Sci. Math. Sci., 116 (2006), 325–336. 1

[22] R. Lashkaripour, D. Foroutannia, Some inequalities involving upper bounds for some matrix operators I, Czechoslovak Math. J., 57 (2007), 553–572.

[23] R. Lashkaripour, D. Foroutannia, Lower bounds for matrices on weighted sequence spaces, J. Sci. Islam. Repub. Iran., 18 (2007), 49–56.

[24] R. Lashkaripour, G. Talebi, Lower bounds of Copson for Hausdorff matrices on weighted sequence spaces, J. Sci. Islam. Repub. Iran., 22 (2011), 153–157. 1

[25] E. R. Love, Hardy’s inequality in Orlicz-type sequence spaces for operators related to generalized Hausdorff matrices, Math. Z., 193 (1986), 481–490. 1, 3, 3.1

[26] A. Manna, Norm inequalities involving upper bounds for certain matrix operators in Orlicz-type sequence spaces, J. Anal., 27 (2019), 761–779. 1, 2, 6

[27] J. Musielak, Orlicz spaces and modular spaces, Springer, Berlin, (1983). 1

[28] M. Mursaleen, K. Raj, Some vector valued sequence spaces of Musielak-Orlicz functions and their operator ideals, Math. Slovaca, 68 (2018), 115–134. 5

[29] S. A. Mohiuddine, K. Raj, Vector valued Orlicz-Lorentz sequence spaces and their operator ideals, J. Nonlinear Sci. Appl., 10 (2017), 338–353.

[30] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math., 51 (1974), 201–223.

[31] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, (1978).

[32] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, (1986).

[33] K. Raj, A. Esi, On some I-convergent sequence spaces over n-normed spaces, J. Anal. Number Theor, 3 (2015), 21–26. 5

[34] H. Roopaei, D. Foroutannia, The norm of matrix operator on Cesaro weighted sequence spaces, Linear Multilinear Algebra, 67 (2019), 175–185. 1

[35] H. Roopaei, D. Foroutannia, The norms of certain matrix operators from ℓ_p spaces into $\ell_p(\Delta^n)$ spaces, Linear Multilinear Algebra, 67 (2019), 767–776. 1

[36] N. Subramanian, A. Esi, The Nörlund space of double entire sequences, Fasc. Math., (2010), 147–153. 1

[37] G. Talebi, M. A. Dehgan, Upper bounds for the operator norms of Hausdorff matrices and Nörlund matrices on the Euler weighted sequence space, Linear Multilinear Algebra, 62 (2014), 1275–1284. 1, 6

[38] G. Talebi, M. A. Dehgan, Approximation of upper bound for matrix operators on the Fibonacci weighted sequence spaces, Linear Multilinear Algebra, 64 (2016), 196–207. 1

[39] T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference sequence spaces of fractional order and sequence spaces, Rend. Circ. Mat. Palermo, 68 (2019), 459–476. 1

[40] T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca, 69 (2019), 901–918. 1