Data S1

Appendix S1. Inclusion criteria.

Item	Included	Excluded
Population	• Men (aged ≥18 yrs) with known DDR status with:	• Pediatric or adolescent populations
	o mCRPC	• Upregulated or downregulated wild-type DDR genes
	o mPC	
	o CRPC	
	o Any type of PC	
Interventions	Not relevant	Not relevant
Comparator	Not relevant	Not relevant
Outcomes	• Incidence/prevalence rates of DDR+ (germline or somatic mutations)	• Incidence/prevalence of individual polymorphisms—unless proven to be
	• Incidence/prevalence of DDR (germline or somatic mutations) expressed as a percentage	
	• Incidence/prevalence of DDR (germline or somatic mutations) expressed as a proportion	
Note:	The 11 DDR genes of interest are listed below.	
Note:	These data may be based on archival and/or fresh tissue samples and/or liquid (eg, blood) samples. Both patient-level and sample-level data will be included, where relevant.	
Study design	• Any observational study (retrospective, prospective, cross-sectional)	• Clinical trials, experimental studies, and interventional studies involving highly selected patient populations
	• Database registry studies	• Studies that analyze only cell lines rather than primary patient specimens
	• Systematic reviews (these will be checked for primary studies)	• Case reports
DDR	• Any of the following individual genes: ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, and RAD51C. DDR defined as any combination of the listed genes.	• When the prevalence of multiple variants for a given gene were presented (or single nucleotide polymorphisms), only those described as pathogenic were extracted; others were excluded.

ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; CRPC, castration-resistant PC; DDR, DNA damage repair; FANCA, Fanconi anemia complementation group A; m, metastatic; MLH1, mutL homolog 1; MRE11A, MRE11 homolog A, double-strand break repair nuclease; NBN, nibrin; PALB2, partner and localizer of BRCA2; PC, prostate cancer; RAD51C, RAD51 paralog C.

Appendix S2. Literature searches.
Searches were carried out to identify studies in the treatment and epidemiology of DDR-positive prostate cancer. All search methods were conducted to follow best practice standards in systematic reviews (1,2).

Search strategies were developed specifically for each database and the key words adapted according to the configuration of each database. Only studies conducted in humans were sought. Searches were not limited by language or publication status (unpublished or published).

The following databases were searched from study inception to December 2017:

- MEDLINE (Ovid): 1946-2017/11/wk 4
- MEDLINE In-Process Citations, Medline Daily Update & Epub Ahead of Print (Ovid): up to 2017/12/05
- Embase (Ovid): 1974-2017/12/04
- Cochrane Database of Systematic Reviews (CDSR) (Wiley): Issue 12/Dec 2017
- Cochrane Central Register of Controlled Trials (CENTRAL) (Wiley): Issue 11/Nov 2017
- Database of Abstracts of Reviews of Effects (DARE) (Wiley): Issue 4/April 2015
- Health Technology Assessment Database (HTA) (Wiley): Issue 4/Oct 2016
- NHS Economic Evaluation Database (NHS EED) (Wiley): Issue 4/April 2015
- PubMed (NLM) (Internet): up to 2017/12/11
- CINAHL (EBSCO): 1981-2017/12/06
- LILACS (BIRME): up to 2017/12/11

Supplementary searches were undertaken in the following trial registers:

- ClinicalTrials.gov (Internet): up to 2017/12/11 http://www.clinicaltrials.gov/
- WHO International Clinical Trials Registry Platform (ICTRP): up to 2017/12/12 http://www.who.int/ictrp/en/

Conference abstracts and proceedings were identified as part of a 3-stage approach:

- The main Ovid Embase search strategy was employed to include conference abstracts and proceedings;
- A second tailored search was conducted using the Northern Light Life Sciences Conference Abstracts database via Ovid (2016-2017/wk 47)
- Limited internet scanning was conducted for any unindexed conference proceedings, selected by Pfizer.

The named conference proceedings were checked against Embase and Northern Light to determine which proceedings were indexed within the databases. The following proceedings were indexed and included in the Embase and Northern Light database searches:

- American Society for Clinical Oncology (ASCO): 2016 & 2017
- ASCO Genitourinary Cancers Symposium: 2016 & 2017
• European Society for Medical Oncology (ESMO): 2016 only
• European CanCer Organisation (ECCO): 2017 only
• American Urological Association (AUA): 2016 & 2017
• European Association of Urology (EAU): 2016 & 2017
• American Association for Cancer Research (AACR): 2016 & 2017

Limited additional scanning of internet conference proceedings was carried for the following unindexed proceedings (2016-2017 only):
• European Society for Medical Oncology (ESMO): 2017 only
• National Comprehensive Cancer Network (NCCN): 2016 & 2017
• Society of Urologic Oncology (SUO): 2016 & 2017

Handling of citations
Identified references were downloaded into Endnote X8 software for further assessment and handling. Individual records within the Endnote reference library were tagged with searching information, such as searcher, date searched, database host, database searched, strategy name and iteration, theme or search question.

Quality assurance within the search process
The main Embase strategy was independently peer reviewed by a second Information specialist. Strategy peer review was informed by items based on the CADTH checklist (3,4).

Search Strategies
Embase (Ovid): 1974-2017/12/04
Searched 5.12.17
1 exp prostate cancer/ (183779)
2 exp prostate tumor/ (208063)
3 (prostat$ adj4 (cancer$ or neoplas$ or carcinoma$ or malignan$ or adenocarcinoma$ or tumo?r$ or adenoma$ or met or mets or metastas$)).ti,ab,ot. (184826)
4 (prostat$ adj3 (castrat$ resist$ or hormone refrac$ or androgen independ$ or androgen insensi$ or androgen in-sensit$ or androgen resist$)).ti,ab,ot. (14783)
5 (mpc or mcrpc or crpc).ti,ab,ot. (11297)
6 or/1-5 (235566)
7 exp DNA damage/ (128563)
8 exp DNA repair/ (82299)
9 (DNA adj2 damag$).ti,ab,ot. (93314)
10 (DNA adj2 repair$).ti,ab,ot. (60659)
11 (DNA adj2 injur$).ti,ab,ot. (753)
12 DDR$.ti,ab,ot. (6742)
13 (base excision repair$ or BER).ti,ab,ot. (7366)
14 (deoxyribonucleic acid adj3 (damag$ or injur$)).ti,ab,ot. (315)
15 (dna adj2 lesion$).ti,ab,ot. (9081)
16 ((photoinduced or photo induced) adj2 dna).ti,ab,ot. (208)
17 (genotoxic adj2 stress$).ti,ab,ot. (3467)
18 (Homologous recombination deficit$ or HRD).ti,ab,ot. (653)
19 (double strand break$ or DSB).ti,ab,ot. (21165)
20 (single strand break$ or SSB).ti,ab,ot. (9297)
21 (H2AX or pH2AX or phosphorylated H2AX or phosphorylated-H2AX or gamma-H2AX or gamma H2AX or yH2AX).ti,ab,ot. (6742)
22 comet assay/ (11267)
23 (comet adj2 assay$).ti,ab,ot. (11305)
24 BRCA1 protein/ (14056)
25 BRCA2 protein/ (10158)
26 (BRCAS or gBRCA or BRIP1 or BACH1).ti,ab,ot. (24734)
27 Rad51 protein/ (4150)
28 RAD51c$.ti,ab,ot. (506)
29 Fanconi anemia/ (5758)
30 Fanconi anemia protein/ or Fanconi anemia group A protein/ (956)
31 (FANCA or FA-H or FA1 or FAA or FACA or FAH or FANCH or "Fanconi anemia complementation group A" or Fam175a).ti,ab,ot. (3110)
32 ((familial or hereditary) adj3 hypoplastic$ adj3 an?emia).ti,ab,ot. (7)
33 ((familial or hereditary) adj3 aplastic$ adj3 an?emia).ti,ab,ot. (35)
34 (fanconi$ adj3 an?emia).ti,ab,ot. (5138)
35 ((fanconi$ or congenital) adj3 pancytop?enia).ti,ab,ot. (81)
36 mckusick 2276$.ti,ab,ot. (0)
37 checkpoint kinase 2/ (3796)
38 ((Checkpoint adj2 Kinase) or CHEK2 or CHK2 or HuCds or HCds1 or CDS1).ti,ab,ot. (4937)
39 cyclin dependent kinase/ (9776)
40 ((cyclin or cycle) adj3 kinase).ti,ab,ot. (19964)
41 (Cdc2 or CRKRS or CRK7 or KIAA0904 or HCDK12 or CRKR).ti,ab,ot. (5709)
(PALB2 or PNCA3).ti,ab,ot. (929)

(MRE11$ or Meiotic Recombination or AT-Like Disease$ or HNGS1).ti,ab,ot. or MRE11 protein/ (4761)

nibrin/ (1157)

(nibrin or NBN or NBS1 or Nijmegen breakage syndrome$).ti,ab,ot. (2271)

(KIAA1794 or Protein FACI).ti,ab,ot. (2)

ATM protein/ (8350)

(ATM or Ataxia Telangiectasia or A-T Mutated or Telomere Maintenance 1 or AT Mutated).ti,ab,ot. (20754)

ATR protein/ (3016)

(ATE or FRP1 or Mitosis Entry Checkpoint).ti,ab,ot. (10857)

(FACD$ or FA-D2 or FAD2 or FA4).ti,ab,ot. (315)

MutL protein homolog 1/ (567)

(MLH1 or MLH3 or COCA2 or HNPCC7 or (MutL adj3 homolog)).ti,ab,ot. (5322)

or/7-53 (304179)

exp nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase inhibitor/ (8926)

((PARP$ or PARS$) adj3 inhibitor$).ti,ab,ot,rn. (5297)

talazoparib/ (292)

(talazoparib or BMN-673 or bmn673 or BMN-673ts or bmn673ts or 1207456-01-6 or 1373431-65-2).ti,ab,ot,rn. (348)

olaparib/ (2790)

(olaparib or Lynparza or AZD-2281 or AZD2281 or ku-0059436 or ku0059436 or ku-59436 or ku59436 or 763113-22-0).ti,ab,ot,rn. (2867)

veliparib/ (1334)

(Veliparib or ABT-888 or abt888 or 912444-00-9).ti,ab,ot,rn. (1490)

rucaparib/ (594)

(Rucaparib or rubraca or ag-014699 or ag014699 or ag-14447 or ag14447 or ag14699 or ag-14699 or co-338 or co338 or pf-01367338 or pf1367338 or pf01367338 or pf-1367338 or pf1367338bw or pf-1367338bw or 859053-21-6 or 283173-50-2 or 459868-92-9).ti,ab,ot,rn. (625)

niraparib/ (385)

(Niraparib or Zejula or MK-4827 or MK4827 or 038915-60-4).ti,ab,ot,rn. (403)

or/55-66 (9985)

54 or 67 (308401)
69 6 and 68 (6611)
70 animal/ or animal experiment/ (3989568)
71 (rat or rats or mouse or mice or murine or rodent or rodents or hamster or hamsters or pig or pigs or porcine or rabbit or rabbits or animal or animals or dogs or dog or cats or cow or bovine or sheep or ovine or monkey or monkeys).ti,ab,ot,hw. (6682078)
72 70 or 71 (6682078)
73 exp human/ or human experiment/ (19273429)
74 72 not (72 and 73) (5205450)
75 (letter or editorial or note).pt. (2256220)
76 69 not (74 or 75) (5987)
Appendix S3. A. Studies not included in the analysis of prevalence in the unselected population or in subgroup analysis.

Author, year	Country	PC Group	Selected population	Germline or somatic mutation	Mutation Definition	Period of data collection	Gene	% prevalence	No. patients	References
Unselected population										
Liu et al, 2016	NR	PC	Unselected	Somatic	Undefined	NR	ATM	5.6	36	(5)
Sonpavde et al, 2017	NR	mCRPC	Unselected	Somatic	Undefined	NR	BRCA1	5.0	514	(6)
Tanaka et al, 2009	Japan	PC	Unselected	Somatic	MLH1 T/A at codon 384 (genotype)	1997 to 2003	MLH1	3.4	177	(7)
Dall'Era et al, 2017	USA	Primary PC	Unselected	NR/unclear	85 DDR genes associated with cancer predisposition syndromes (undefined)	NR	DDR	20.1	936	(8)
Dall'Era et al, 2017	USA	mPC	Unselected	NR/unclear	85 DDR genes associated with cancer predisposition syndromes (undefined)	NR	DDR	18.8	936	(8)
Daniel et al, 2017	USA	mPC	Unselected	NR/unclear	≥1 deleterious BRCA GA (BRCA1 or BRCA2)	NR	DDR	11.3	1911	(9)
Feldman et al, 2014	USA	PC	Unselected	NR/unclear	ATM (undefined)	NR	ATM	5	>330	(10)
Dawson et al, 2016	USA	PC	Unselected	NR/unclear	Alterations in ≥1 DNA repair gene (tested using a 592 gene hybrid capture NGS)	NR	DDR	84	31	(11)
USA	PC	Unselected	NR/unclear	BRCA2 (undefined)	NR	BRCA2	6	437		
Author, year	Country	PC Group	Selected population	Germline or somatic mutation	Mutation Definition	Period of data collection	Gene	% prevalence	No. patients	References
--------------	---------	----------	---------------------	----------------------------	---------------------	--------------------------	------	-------------	-------------	------------
Uchida et al, 1999	Japan	Primary PC	Unselected	NR/ unclear	LOH at ≥1 loci on chr17q (D17S250, D17S1320, D17S855, D17S1322, D17S1323, D17S579, D17S588)	NR	BRCA1	16.7	24	(12)
Angele et al, 2004	UK	PC	Unselected	Germline	ATM 3161C>G	1993 to 2002	ATM	7.4	226	(13)
Browning et al, 2006	USA	PC	Unselected	Germline	ATM heterozygous IVS62+60G/A polymorphism	1997	ATM	30.61	98	(14)
					ATM homozygous IVS62+60G/G	1997	ATM	18.37	98	
					ATM homozygous IVS62+60A/A	1997	ATM	51.02	98	
Nam et al, 2005	Canada	PC	Unselected	Germline	All CHEK2 (1100delC)	Jun 1998 to Jan 2003	CHEK2	0.2	996	(15)
Naslund Koch et al, 2016	Denmark	PC	Unselected	Germline	All CHEK2*1100delC	2003-2010	CHEK2	0.74	39014	(16)
Gambhir et al, 2016	USA	mCRPC	Unselected	Somatic	BRCA1, BRCA2, ATM, CDK12, MLH1 and/or MSH2	NR	DDR	54	13	(17)
Xia et al, 2015	USA	PC	Unselected	Somatic	All ATM (c.8012T>G (p.V2671G))	NR	ATM	5.0	20	(18)
					All ATR (c.7762G>A (p.A2588T))		ATR	5.0	20	
					All (CHEK2 c.721G>A (p.V241I))		CHEK2	5.0	20	
Author, year	Country	PC Group	Selected population	Germline or somatic mutation	Mutation Definition	Period of data collection	Gene	% prevalence	No. patients	References
--------------	---------	----------	---------------------	-----------------------------	---------------------	--------------------------	------	--------------	-------------	------------
Beltran et al, 2015	USA	mPC	Unselected	Somatic	FANCA c.1626G>T (pE542D)	Feb 2013 to Sep 2014	FANC A	5.0	20	(19)
	USA	mPC	Unselected	Somatic	FANCA c.4009delA (p.S1337fs)		FANC A	5.0	20	
	USA	mPC	Unselected	Somatic	All FANCA (c.4009delA (p.S1337fs); c.1626G>T (pE542D))		FANC A	10.0	20	
	USA	mPC	Unselected	Somatic	All MLH1 (c.547T>A (p.Y183N))		MLH1	5.0	20	
Palapattu et al, 2015	USA	PC	Unselected	Somatic	All (K2524fs)	NR	BRCA2	11.1	9	(20)
Robbins et al, 2011	USA	mPC	Unselected	Somatic	All. 7840C>T likely damaging	NR	BRCA2	12.5	8	(21)
Beltran et al, 2013	USA	CRPC	Unselected	Somatic	DNA alterations in ATM in CRPC	NR	ATM	8	25	(22)
	USA	CRPC	Unselected	Somatic	DNA alterations in \(\text{BRCA2}\) in CRPC	NR	BRCA2	12	25	
	USA	mPC	Unselected	Somatic	DNA alterations in ATM in metastatic hormone-naïve PC	NR	ATM	0	4	
	USA	mPC	Unselected	Somatic	DNA alterations in \(\text{BRCA2}\) in metastatic hormone-naïve PC	NR	BRCA2	25	4	
Author, year	Country	PC Group	Selected population	Germline or somatic mutation	Mutation Definition	Period of data collection	Gene	% prevalence	No. patients	References
-------------	---------	----------	---------------------	-----------------------------	---------------------	------------------------	------	-------------	-------------	------------
Cheng et al., 2011	Australia	PC	Familial	NR/unclear	Undefined	NR	BRCA2	26.5	147	(23)
Nicolas et al., 2015	USA	PC	Familial	Germline	One affected gene; high-value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk	NR	DDR	91.7	12	(24)
Meyer et al., 2007	Germany	Primary PC	Treatment	Germline	ATM missense variant P1054R	Oct 2000 to Apr 2006	ATM	9.6	261	(25)
Author, year	Country	PC Group	Selected population	Germline or somatic mutation	Mutation Definition	Period of data collection	Gene	% prevalence	No. patients	References
--------------	---------	----------	---------------------	-----------------------------	---------------------	---------------------------	-------	--------------	-------------	----------
Damaraju et al, 2006	Canada	Primary PC	Treatment	Germline	MLH1 C>T, Val219Ile	Sept 1996 to Dec 2000	MLH1	11	84	(26)
					NBN G>C, Glu185Gln		NBN	83	84	
					BRCA1 G>A, Met1652Ile		BRCA1	6	83	
					BRCA1 A>G, Arg356Gln		BRCA1	11	83	
					BRCA2 A>G, Lys1132Lys		BRCA2	57	83	
					ATM A>G, Asp1853Asn		ATM	69	84	
Schweizer et al, 2016	USA	Ductal PC	Ductal PC	Somatic	All (c.5946delT+likely LOH)	NR	BRCA2	11.1	9	(27) [Linked: True 2017(28)]
					All (c.1100delC+LOH)	NR	CHEK 2	11.1	9	
					All (exon 19+ 3’UTR homozygous deletion)	NR	MLH1	11.1	9	
					CHEK2, BRCA2, MSH6, MSH2, MLH1	NR	DDR	66.7	9	
Stephens et al, 2016	NR	Neuroendocrine PC	Neuroendocrine PC	Somatic	Undefined	NR	DDR	14	32	(29)

Red text indicates criteria that led to studies being deemed irrelevant to the analysis. ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; CRPC, castration-resistant PC; DDR, DNA damage repair; FANCA, Fanconi anemia complementation group A; LOH, loss of heterozygosity; m, metastatic; MLH1, mutL homolog 1; MRE11A, MRE11 homolog A, double-strand break repair nuclease; MSH, MutS homolog; NBN, nibrin; PALB2, partner and localizer of BRCA2; PC, prostate cancer; RAD51C, RAD51 paralog C.
B. Excluded records at full paper screening.

Reference	Reason for exclusion		
[1] Abida W, Brennan R, Armenia J, Curtis KR, Gopalan A, Arcila ME, et al. Genomic characterization of primary and metastatic prostate cancer (PC) using a targeted next-generation sequencing assay. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2016; 07-Jan-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2016020202001400&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F158192-172&token=b3e6fad5b65095a7eeacccf610b2e1b http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE2016020202001400	Duplicate		
[2] A'Hern R, De Bono J, Sandhu S, Kalaitzaki E, Usdin M, Hall EE. Phase II investigation of a PARP inhibitor (olaparib) in castration resistant prostate cancer (CRPC) which incorporates the possibility that treatment effect may be restricted to biomarker defined subgroups. Trials 2011.	No relevant outcome		
[3] A'Hern R, De Bono J, Sandhu S, Kalaitzaki E, Usdin M, Hall E. A two stage phase II design incorporating the possibility that the treatment effect may be restricted to a biomarker defined subgroup: Investigation of a PARP inhibitor (Olaparib) in Castration Resistant Prostate Cancer (CRPC). Clin Trials 2012;9(4):552-553.	No relevant outcome		
[4] Allen-Brady K, Farnham JM, Camp NJ, Karlins E, Ostrander EA, Cannon-Albright LA. No evidence of BRCA2 mutations in chromosome 13q-linked Utah high-risk prostate cancer pedigrees. BMC Res Notes 2009;2:94.	Not a relevant population		
[5] Annala M, Struss WJ, Warner EW, Beja K, Vandekerkhove G, Wong A, et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34-42.	Not relevant study design		
[6] Anonymous. Repair-Gene Mutations Uncovered in Metastatic Prostate Cancer. Cancer Discovery 2016;6(9):OF3.	Not primary research		
[7] Evans JR. (S028) patient-level DNA damage and repair pathway profiles are prognostic after prostatectomy for high-risk prostate cancer. Oncology 2015;29(4 Suppl 1):21.	No DDR mutation/not relevant		
[8] Armenia J, Mullane S, Gao J, Chakravarty D, Kundra R, Huang F, et al. The long tail of significantly mutated genes in prostate cancer. Cancer Res 2017.	No data (abstract)		
[9] Armenia J, Mullane SA, Gao JJ, Chakravarty D, Kundra R, Huang FW, et al. The long tail of significantly mutated genes in prostate cancer. J Clin Oncol 2017.	No data (abstract)		
[10] AstraZeneca. Open label study to assess efficacy and safety of olaparib in confirmed genetic BRCA1 or BRCA2 mutation pats. NCT01078662. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2012 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT01078662.	No relevant outcome		
No.	Source	Description	Relevant Outcome
-----	--------	-------------	------------------
[11]	AstraZeneca. Study of Olaparib (Lynparza™) Versus enzalutamide or abiraterone acetate in men with metastatic castration-resistant prostate cancer (PROfound Study). NCT02987543. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02987543.	No relevant outcome	
[12]	AstraZeneca. Study of Olaparib (Lynparza™) Versus enzalutamide or abiraterone acetate in men with metastatic castration-resistant prostate cancer (PROfound Study). EUCTR2016-000300-28-SE. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://www.clinicaltrialregister.eu/ctr-search/search?query=eudract_number:2016-000300-28.	No relevant outcome	
[13]	AstraZeneca. Study of olaparib (Lynparza™) versus enzalutamide or abiraterone acetate in men with metastatic castration-resistant prostate cancer (PROfound Study). NCT02987543. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT02987543.	Duplicate	
[14]	Aurelius Omlin. Carboplatin in castration-resistant prostate cancer. NCT02311764. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2014 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02311764.	No relevant outcome	
[15]	Banks P, San Leong H, Ryland G, Beshay V, Tran B, Toner G, et al. DNA repair gene defects in Australian men with metastatic castration-resistant prostate cancer (mCRPC). BJU Int 2017.	No data (abstract)	
[16]	Banks P, Leong HS, Ryland G, Beshay V, Tran B, Toner G, et al. DNA repair gene defects in Australian men with metastatic castration-resistant prostate cancer (MCRPC). Asia Pac J Clin Oncol 2017.	No data (abstract)	
[17]	Barrett A, Schwartz LE. Morphologic and clinical comparison of BRCA+ and BRCA prostate carcinoma. In: United States & Canadian Academy of Pathology Annual Meeting 2017; 04-Mar-2017, 2017. Available from: United States & Canadian Academy of Pathology (USCAP). https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170228000002090&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170228000002090	Duplicate	
[18]	Barrett A, Schwartz LE. Morphologic and clinical comparison of BRCA+ and brca prostate carcinoma. Lab Invest 2017.	No relevant outcome	
[19]	Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS One 2015;10(5):e0125560.	No relevant outcome	
[20]	Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L, et al. BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 2010;16(13):3340-3348.	No relevant outcome	
No.	Reference	Outcome	
-----	--	---------	
21	Bednarz N, Semjonow A, Oster PJ, Brandt B. BRCA1 loss in prostate cancer is associated with metastatic spread: Novel predictor of parp-inhibitory therapy? Biochimica Clinica 2013;37:S160.	No relevant outcome	
22	BeiGene Usa Inc, Myriad Genetics Inc, BeiGene. Study to assess safety, tolerability and clinical activity of BGB-290 in combination with temozolomide (TMZ) in subjects with locally advanced or metastatic solid tumors. NCT03150810. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03150810.	No relevant outcome	
23	Beltran H, Stephens PJ, Mosquera JM, Cronin MT, Rubin MA, Yelensky R, et al. Massively parallel DNA-sequencing of aggressive prostate cancer reveals disease heterogeneity and identifies targetable mutations. Cancer Res 2012.	Not a relevant population	
24	Beltran H, Yelensky R, Frampton G, Park K, Downing S, Macdonald T, et al. Targeted next-generation sequencing (NGS) of advanced prostate cancer (PCA) using formalin-fixed tissue. J Clin Oncol 2012.	Not a relevant population	
25	Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennart H, et al. Precision cancer medicine program for whole-exome sequencing of metastatic tumors reveals biomarkers of response. Cancer Res 2015.	No data (abstract)	
26	Bolton D, Thorne H, Willems A, Ho I, Niedemeyer E, Cheng Y, et al. Increased prostate cancer-specific mortality of men with germline BRCA2 mutations from multiple breast cancer families. BJU Int 2011;107:30-31.	No relevant outcome	
27	Bonnet C, Castanon Alvarez E, Michot JM, Bigot F, Varga A, Gazzah A, et al. Patients with metastatic prostate cancer enrolled in phase 1 trials: Outcomes and molecular alterations. Ann Oncol 2016.	Not relevant study design	
28	Bono JSD, Hussain M, Thiery-Vuillemin A, Mateo J, Sartor AO, Chi KN, et al. PROfound: A randomized phase iii trial evaluating olaparib in patients with metastatic castration-resistant prostate cancer and a deleterious homologous recombination DNA repair aberration. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614080002190&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614080002190	No relevant outcome	
29	Boudadi K, Suzman DL, Luber B, Hao W, Silberstein J, Sullivan R, et al. Phase 2 biomarker-driven study of ipilimumab plus nivolumab (ipi/nivo) For ARV7-positive metastatic castrate-resistant prostate cancer (MCRPC). In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614000002210&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614000002210	Duplicate	
Reference	Title	Summary	
-----------	-------	---------	
[30] Boudadi K, Suzman DL, Luber B, Wang H, Silberstein J, Sullivan R, et al.	Phase 2 biomarker-driven study of ipilimumab plus nivolumab (Ipi/Nivo) for ARV7-positive metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 2017.	Not relevant study design	
[31] Bowling L, Espenschied C, Jackson M, Mak B, LaDuca H.	Gender Disparity: overlooking hereditary prostate cancer. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2017; 16-Feb-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170223020000060&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F179589-197&token=351b27608e0aeec43edf9449ed2eeec	Not a relevant population	
[32] Bristow RG, Ishkanian AS, Malloff C, Milosevic M, Pintilie M, Van Der Kwast T, et al.	Use of genetic instability to predict biochemical recurrence in intermediate-risk prostate cancer. J Clin Oncol 2011.	No data (abstract)	
[33] Brown C, McDonald J, Abbas M, Dunston G, Kanaan Y, Ricks-Santi L.	BRCA1 and BRCA2 mutational spectra in African American men with prostate cancer. Cancer Epidemiol Biomark Prev 2016.	No data (abstract)	
[34] Brown K, Calip GS, Bernhisel R, Evans B, Rosenthal ET, Saam J, et al.	Multi-gene hereditary cancer testing among men with breast cancer. J Clin Oncol 2017.	Not a relevant population	
[35] Burger M, Denzinger S, Hammerschmied CG, Tannapfel A, Obermann EC, Wieland WF, et al.	Elevated microsatellite alterations at selected tetranucleotides (EMAST) and mismatch repair gene expression in prostate cancer. J Mol Med 2006;84(10):833-841.	No DDR mutation/not relevant	
[36] Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al.	Germline BRCA mutations are associated with nodal involvement, distant metastasis and poor survival in prostate cancer. Curr Oncol 2012;19(2):e85.	No relevant outcome	
[37] Castro E, Olmos D, Goh CL, Saunders E, Leongamornlert D, Tymrakiewicz M, et al.	BRCA carrier status as an independent prognostic factor associated with earlier biochemical relapse in local prostate cancer. J Clin Oncol 2012.	No relevant outcome	
[38] Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al.	Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31(14):1748-1757.	No relevant outcome	
[39] Castro E, Olmos D, Goh CL, Saunders E, Leongamornlert D, Tymrakiewicz M, et al.	Effect of germ-line BRCA mutations in biochemical relapse and survival after treatment for localized prostate cancer. J Clin Oncol 2013.	No relevant outcome	
[41] Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadaev T, et al.	Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localized prostate cancer. Eur Urol 2015;68(2):186-193.	No relevant outcome	
[42] Cheng HH, Pritchard CC, Nelson P, Montgomery RB. Biallelic inactivation of BRCA2 in metastatic castration-resistant prostate cancer and platinum sensitivity. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2016; 07-Jan-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160202070001300&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F156239-172&token=7d62a3d0c6916c8889c64b7dc56a40e2 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20160202070001300

[43] Cheng HH, Klemfuss N, Montgomery B, Higano CS, Schweizer MT, Mostaghel EA, et al. A pilot study of clinical targeted next generation sequencing for prostate cancer: consequences for treatment and genetic counseling. Prostate 2016;76(14):1303-1311.

[44] Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol 2016;69(6):992-995.

[45] Cheng HH, Klemfuss N, Montgomery RB, Higano CS, Schweizer MT, Mostaghel EA, et al. Pilot study of clinical targeted next generation sequencing for prostate cancer: Consequences for treatment and genetic counseling. J Clin Oncol 2016.

[46] Cheng HH, Pritchard CC, Nelson P, Montgomery RB. Biallelic inactivation of BRCA2 in metastatic castration-resistant prostate cancer and platinum sensitivity. J Clin Oncol 2016.

[47] Cheng ML, Abida W, Rathkopf DE, Arcila ME, Barron D, Autio KA, et al. Next-generation sequencing (NGS) of tissue and cell free DNA (CfDNA) to identify somatic and germline alterations in advanced prostate cancer. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614070002110&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614070002110

[48] Chi KN, Annala M, Sunderland K, Khalaf D, Finch D, Oja CD, et al. A randomized phase ii cross-over study of abiraterone + prednisone (ABI) vs enzalutamide (ENZ) for patients (pts) with metastatic, castration-resistant prostate cancer (MCRPC). In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614070002060&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614070002060

[49] Duplication
No.	Reference	Summary	Notes
49	Chi KN, Annala M, Sunderland K, Khalaf D, Finch D, Oja CD, et al. A randomized phase II cross-over study of abiraterone + prednisone (ABI) vs enzalutamide (ENZ) for patients (pts) with metastatic, castration-resistant prostate cancer (mCRPC). J Clin Oncol 2017.	No relevant outcome	
50	Chiorean EG, McDonough S, Philip PA, Swisher EM, Pishvaian MJ, Guthrie K, et al. Randomized phase II study of 2nd-line FOLFIRI versus modified FOLFIRI with PARP inhibitor ABT-888 (Veliparib) (NSC-737664) in metastatic pancreatic cancer (MPC): SWOG S1513. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614080001880&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614080001880	Not a relevant population	
51	Christie Hospital NHS Foundation Trust. Study of DNA mutations in predicting the effect of external-beam radiation therapy in patients with early breast cancer, localized prostate cancer, or gynecological cancer. NCT00601406. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2008 [accessed 12.12.17]. Available from: http://clinicaltrials.gov/show/NCT00601406	Not relevant study design	
52	Bell DW, Kim SH, Godwin AK, Schiripo TA, Harris PL, Haserlat SM, et al. Genetic and functional analysis of CHEK2 (CHK2) variants in multiethnic cohorts. Int J Cancer 2007;121(12):2661-2667.	Not a relevant population	
53	Cintra HS, Pinezi JC, Machado GD, de Carvalho GM, Carvalho AT, dos Santos TE, et al. Investigation of genetic polymorphisms related to the outcome of radiotherapy for prostate cancer patients. Dis Markers 2013;35(6):701-710.	Not a relevant population	
54	Cintra HS, Pinezi JCD, Carvalho ATS, Santos TED, Marciano RD, Soares RBA. Investigation of ATM, TP53 and MDM2 polymorphisms and their association with outcome of radiotherapy for prostate cancer. BMC Proceedings 2013.	No data (abstract)	
55	Clarke NW, Shepard R, Spencer S, Jones RH. Olaparib combined with abiraterone in patients with metastatic prostate cancer: Safety run-in from a phase II study. J Clin Oncol 2015.	No DDR mutation/not relevant	
56	Cliniques universitaires Saint-Luc- Université Catholique de Louvain. Evaluation and predictive value of genetic polymorphisms in the management of hormonal treatment of prostate cancer. NCT02440802. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2015 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02440802	No DDR mutation/not relevant	
57	Clovis Oncology Inc. A study of rucaparib verses physician's choice of therapy in patients with metastatic castration-resistant prostate cancer and homologous recombination gene deficiency. NCT02975934. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02975934	No relevant outcome	
No.	Source	Description	
-----	--------	-------------	
[58]	Clovis Oncology I. A study of rucaparib in patients with metastatic castration-resistant prostate cancer and homologous recombination gene deficiency. NCT02952534. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02952534	Duplicate	
[59]	Clovis Oncology I. A study to evaluate rucaparib versus physician’s choice of therapy in patients with metastatic castration-resistant prostate cancer. EUCTR2016-003163-20-GB. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2016-003163-20	No relevant outcome	
[60]	Clovis Oncology Inc, Foundation Medicine. A study of rucaparib in patients with metastatic castration-resistant prostate cancer and homologous recombination gene deficiency. NCT02952534. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2019 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT02952534	No relevant outcome	
[61]	Clovis Oncology Inc, Foundation Medicine. A study of rucaparib versus physician’s choice of therapy in patients with metastatic castration-resistant prostate cancer and homologous recombination gene deficiency. NCT02975934. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2022 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT02975934	Duplicate	
[62]	Corcoran NM, Clarkson MJ, Stuchbery R, McCoy P, Hovens CM. Aberrations in DNA repair pathway genes are enriched in human metastasis. BJU Int 2016.	No data (abstract)	
[63]	Cybulski C. Selected aspects of inherited susceptibility to prostate cancer and tumours of different site of origin. Hered Cancer Clin Pract 2007;5(3):164-179.	Not primary research	
[64]	Cybulski C, Wokolorczyk D, Kluzniak W, Kashyap A, Golab A, Slojewski M, et al. A personalised approach to prostate cancer screening based on genotyping of risk founder alleles. Br J Cancer 2013;108(12):2601-2609.	Not a relevant population	
[65]	Dall'Era M, Glass A, Lara P, Hartmaier R, deVeere RW, McPherson J. Frequency of DNA repair gene mutations in localized and metastatic prostate cancer. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2017; 16-Feb-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170223050000060&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F179460-197&token=6c8fa3dcb8f6bc79c4bb3ea2302ea70e http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170223050000060	Duplicate	
[66]	Daniel S, Gornstein E, Frampton GM, Sun J, Morley S, Heilmann A, et al. BRCA1/2 Reversion mutations in prostate cancer identified from clinical tissue and liquid biopsy samples. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO)	Duplicate	
Page	Reference	Notes	
------	-----------	-------	
67	Davidson CJ, Walker S, McCabe N, Hill L, Parkes E, Jain S, et al. An innate immune response to intrinsic DNA damage predicts resistance to docetaxel in prostate cancer. In: European Society for Medical Oncology Congress 2016; 07-Oct-2016, 2016. Available from: European Society for Medical Oncology (ESMO)	Duplicate	
68	Davidson CJ, Walker S, McCabe N, Hill L, Parkes E, Jain S, et al. An innate immune response to intrinsic DNA damage predicts resistance to docetaxel in prostate cancer. Ann Oncol 2016.	No DDR mutation/not relevant	
69	Dawson NA, Heath EI, Feldman R, Reddy SK, Spetzler D, Poste GH, et al. Use of panomic assessment to reveal DNA repair alterations and to predict potential therapeutic response to taxane-platinum combination therapy in prostate cancer. In: American Society of Clinical Oncology Annual Meeting 2016; 03-Jun-2016, 2016. Available from: American Society of Clinical Oncology (ASCO)	Duplicate	
70	De Bono JS, Hussain M, Thier-Vuillemin A, Mateo J, Sartor AO, Chi KN, et al. PROfound: A randomized phase III trial evaluating olaparib in patients with metastatic castration-resistant prostate cancer and a deleterious homologous recombination DNA repair aberration. J Clin Oncol 2017.	No relevant outcome	
71	Dhawan MS, Bartelink IH, Aggarwal RR, Leng J, Zhang JZ, Pawlowska N, et al. Differential toxicity in patients with and without DNA repair mutations: Phase I study of carboplatin and talazoparib in advanced solid tumors. Clin Cancer Res 2017;23(21):6400-6410.	No relevant outcome	
72	Dombernowsky SL, Weischer M, Hojgaard Allin K, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Risk of cancer by ATM missense mutations in the general population. J Clin Oncol 2008;26(15_suppl):11036.	No relevant outcome	
73	Douglas JA, Levin AM, Zuhlke KA, Ray AM, Johnson GR, Lange EM, et al. Common variation in the BRCA1 gene and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2007;16(7):1510-1516.	Not a relevant population	
No	Reference	DDR Status	
----	---	------------------------	
[74]	Dulaney C, Rais-Bahrami S, Della Manna D, Gordetsky J, Nix J, Yang ES. Clinical and radiographic correlates of canonical cancer pathway deregulation in malignant intraprostatic lesions. Int J Radiat Oncol 2016.	No DDR mutation/not relevant	
[75]	Dulaney CR, Rais-Bahrami S, Manna DD, Gordetsky JB, Nix JW, Yang ES. DNA repair deregulation in discrete prostate cancer lesions identified on multi-parametric MRI and targeted by MRI/ultrasound fusion-guided biopsy. Oncotarget 2017;8(40):68038-68046.	No DDR mutation/not relevant	
[76]	Eeles R, Castro E, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Effect of BRCA mutations on biochemical relapse and survival after treatment for localized prostate cancer. Curr Oncol 2014;21(2):e362.	No relevant outcome	
[77]	Efstathiou E, Tsikkinis A, Wen S, Li Ning Tapia E, Hoang A, Aparicio A, et al. Abiraterone acetate (AA) followed by randomization to dasatinib (D) or sunitinib malate (S) in metastatic castrate resistant prostate cancer (mCRPC). Ann Oncol 2016.	No DDR mutation/not relevant	
[78]	El-Saghire H, Vandevoorde C, Ost P, Monsieurs P, Michaux A, De Meereleer G, et al. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients. Int J Oncol 2014;44(4):1073-1083.	No DDR mutation/not relevant	
[79]	Evans JR, Zhao SG, Tomlins SA, Knudsen KE, De Bono JS, Rubin MA, et al. Patient-level DNA damage and repair pathway profiles are prognostic after prostatectomy for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2015;93(3 SUPPL. 1):S134-S135.	No DDR mutation/not relevant	
[80]	Fachal L, Gomez-Caamano A, Peleteiro P, Carballo A, Calvo-Crespo P, Sanchez-Garcia M, et al. Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients. Radiother Oncol 2012;105(3):321-328.	Not a relevant population	
[81]	Fachal L, Gomez-Caamano A, Peleteiro P, Carballo A, Calvo-Crespo P, Sanchez-Garcia M, et al. SNPS in DNA repair and damage detection genes and acute normal tissue toxicity in prostate cancer patients. Radiother Oncol 2012;103:S213.	Not a relevant population	
[82]	Farooqi AA, Kamran Majeed SM, Mansoor Q, Ismail M. Population-specific genetic variation at microRNA-629-binding site in the 3'-UTR of NBS1 gene in prostate cancer patients. J Exp Ther Oncol 2017;11(2):161-163.	No DDR mutation/not relevant	
[83]	Feldman R, Reddy SK, Gatalica Z, Mahanes JR, Myers CE. Biomarker patterns of localized and metastatic prostate cancer. J Clin Oncol 2015.	No data (abstract)	
[84]	Feng FY, Daignault-Newton S, Jennrisak A, Wang Y, Greene S, Rodriguez A, et al. Prediction of PARP inhibitor response and resistance utilizing a CTC phenotypic classifier in patients (pts) with metastatic castration-resistant prostate cancer (MCRPC): Results from the NCI 9012 trial. In: European Society for Medical Oncology Congress 2016; 07-Oct-2016. Available from: European Society for Medical Oncology (ESMO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2016102587000083 &context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE201610258700083	Duplicate	
ID	Reference	Notes	
-----	---	----------------------------	
85	Feng FY, Daignault-Newton S, Jendrisak A, Wang Y, Greene S, Rodriguez A, et al. Prediction of PARP inhibitor response and resistance utilizing a CTC phenotypic classifier in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): Results from the NCI 9012 trial. Ann Oncol 2016.	No DDR mutation/not relevant	
86	Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009;361(2):123-134.	Not a relevant population	
87	Foulkes WD. DNA-repair gene mutations in metastatic prostate cancer. N Engl J Med 2016;1803-1803.	Not primary research	
88	Freedland S, Aronson W. Commentary on "Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer". Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Eur Urol. Jun 2016;69(6):992-995. Urol Oncol 2017;35(8):536.	Not primary research	
89	Freedland SJ, Aronson WJ. Commentary on "Integrative clinical genomics of advanced prostate cancer". Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvenile H, Ferraldeschi R, Flohr P, Miranda S, Zafeiriou Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath EI, Scher HI, Pienta KJ, Kantoff P, de Bono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaian AM.Cell. 21 May 2015;161(5):1215-1228. Urol Oncol 2017;35(8):535.	Not primary research	
90	Freedland SJ, Aronson WJ. Commentary on "Inherited DNA-repair gene mutations in men with metastatic prostate cancer". Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, Elemento O, Rubin MA, Robinson D, Lonigro R, Hussain M, Chinnaian A, Vinson J, Filipenko J, Garraway L, Taplin ME, AlDubayan S, Han GC, Beightol M, Morrissey C, Ngheim B, Cheng HH, Montgomery B, Walsh T, Casadei S, Berger M, Zhang L, Zehir A, Vijai J, Scher HI, Sawyers C, Schultz N, Kantoff PW, Solit D, Robson M, Van Allen EM, Offit K, de Bono J, Nelson PS. N Engl J Med. 2016;375(5):443-53. Urol Oncol 2017;35(8):536-537.	Not primary research	
91	Gao X, Porter AT, Honn KV. Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications. Adv Exp Med Biol 1997;407:407-415.	Not primary research	
92	Glass A, Lara P, Hartmaier R, White Rd, McPherson J, Dall'Era M. Frequency of DNA Repair Gene Mutations in Localized and Metastatic Prostate Cancer. In: American Urological Association Annual Meeting 2017; 12-May-2017, 2017. Available from: American Urological Association (AUA) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2017051801000050&context=WK%40northernlight.com	Duplicate	
Reference	Title and Details		
-----------	------------------		
[93]	Golan T, Oh D-Y, Reni M, Macarulla TM, Tortora G, Hall MJ, et al. POLO: A randomized phase III trial of olaparib maintenance monotherapy in patients (pts) with metastatic pancreatic cancer (MPC) who have a germline BRCA1/2 mutation (GBRCAm). In: American Society of Clinical Oncology Annual Meeting 2016; 03-Jun-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160617990000670&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F165421-176&token=23da85c589294515d5108c1f65afaf74 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE2017051801000050		
[94]	Golan T, Oh DY, Reni M, Macarulla TM, Tortora G, Hall MJ, et al. POLO: A randomized phase III trial of olaparib maintenance monotherapy in patients (pts) with metastatic pancreatic cancer (mPC) who have a germline BRCA1/2 mutation (gBRCAm). J Clin Oncol 2016.		
[95]	Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, et al. Circulating cell-free DNA to guide prostate cancer treatment with parp inhibition. Cancer Discovery 2017;7(9):1006-1017.		
[96]	Gopalan A, Abida W, Middha S, Armenia J, Sirintrupun JS, Chen YB, et al. Microsatellite unstable (MSI-H) prostate cancer (PCA): Correlation of morphology, mismatch repair immunohistochemistry (MMR-IHC) and next generation sequencing (NGS). Lab Invest 2017.		
[97]	Henriquez Hernandez L, Riveros-Perez A, Valenciano A, Rodriguez-Melcon JI, Lloret M, Pinar B, et al. Quality of life of prostate cancer patients is influenced by single nucleotide polymorphisms in DNA repair genes. Radiother Oncol 2014;111:S298.		
[98]	Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF, et al. Polymorphisms in DNA-repair genes in a cohort of prostate cancer patients from different areas in Spain: heterogeneity between populations as a confounding factor in association studies. PLoS One 2013;8(7):e69735.		
[99]	Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF, et al. Polymorphisms in DNA-repair genes in a cohort of prostate cancer patients from different areas in Spain: Heterogeneity between populations as a confounding factor in association studies. PLoS One 2013;8(7):no pagination.		
[100]	Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF, et al. Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC Med Genet 2014;15:143.		
[101]	Hoh I, Thorne H, Willems A, Li J, Hopper J, Fox S, et al. BRCA2 mutation confers an increased risk of aggressive prostate cancer in Australia and New Zealand. Urology 2009; conference publication:(var.pagings). 74(4		
No.	Reference	Notes	
-----	---	--	
[102]	Hoh IM, Thorne HJ, Willems AJ, Li J, Hopper JL, Fox SB, et al. BRCA2 antigen status confers high risk of disease progression in prostate cancer patients from high risk families in Australia and New Zealand. BJU Int 2010;105:1-2.	No relevant outcome	
[103]	Hoque A, Albanes D, Lippman SM, Spitz MR, Taylor PR, Klein EA, et al. Molecular epidemiologic studies within the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Causes Control 2001;12(7):627-633.	Not primary research	
[104]	Hospital Moinhos de Vento. Nivolumab in prostate cancer with DNA repair defects (ImmunoProst Trial). NCT03040791. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT03040791	No relevant outcome	
[105]	Hospital Moinhos de Vento, Bristol-Myers Squibb. Nivolumab in prostate cancer with DNA repair defects (ImmunoProst Trial). NCT03040791. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2019 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03040791	Duplicate	
[106]	Hu JJ, Stoyanova R, Deasy JO, Chung R, Martin E, Buyyounouski MK, et al. Genetic polymorphisms of DNA repair and inflammatory responses as determinants of late toxicity in prostate cancer patients who received radiotherapy in a randomized trial. Int J Radiat Oncol Biol Phys 2011;81(2 SUPPL. 1):S109-S110.	No relevant outcome	
[107]	Huadong Hospital, Fudan University. DNA-repair defects and platinum-based chemotherapy in metastatic castration-resistant prostate cancer. ChiCTR-OPC-16009563. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: http://www.chictr.org.cn/showproj.aspx?proj=15795	No relevant outcome	
[108]	Hummerich J, Werle-Schneider G, Popanda O, Celebi O, Chang-Claude J, Kropp S, et al. Constitutive mRNA expression of DNA repair-related genes as a biomarker for clinical radio-resistance: A pilot study in prostate cancer patients receiving radiotherapy. Int J Radiat Biol 2006;82(8):593-604.	No DDR mutation/not relevant	
[109]	Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, et al. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 2014;32(5):904-912.	No DDR mutation/not relevant	
[110]	Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, et al. Co-targeting androgen receptor (AR) and DNA repair: A randomized ETS gene fusion-stratified trial of abiraterone + prednisone (Abi) +/- the PARP1 inhibitor veliparib for metastatic castration-resistant prostate cancer (MCRPC) patients (Pts) (NCI9012) A University of Chicago phase II consortium trial. In: American Society of Clinical Oncology Annual Meeting 2016; 03-Jun-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2016061797000920&context=WK%4 0northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE2016061797000920	Duplicate	
Reference	Study Description	Design	
-----------	-------------------	--------	
[111] Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, et al. Co-targeting androgen receptor (AR) and DNA repair: A randomized ETS gene fusion-stratified trial of abiraterone + prednisone (Abi) +/- the PARP1 inhibitor veliparib for metastatic castration-resistant prostate cancer (mCRPC) patients (pts) (NCI9012)-A University of Chicago phase II consortium trial. J Clin Oncol 2016.	Not relevant study design		
[112] Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, et al. Abiraterone + prednisone (Abi) +/- veliparib (Vel) for patients (pts) with metastatic castration-resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614080002130&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614080002130	Duplicate		
[113] Hussain M, Daignault S, Twardowski P, Albany C, Stein MN, Kunju LP, et al. Abiraterone + prednisone (Abi) +/- veliparib (Vel) for patients (pts) with metastatic castration-resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data. J Clin Oncol 2017.	Not relevant study design		
[114] Iddawela M, Pazaro C, Lawrence M, Furic L, Taylor R, Risbridger G. Association of "DNA damage signature" with poor outcome in early prostate cancer. J Clin Oncol 2015.	No data (abstract)		
[115] Iddawela M, Boyd S, Frydenberg M, Risbridger G, Nim H. Gene expression profiling and prostate cancer: Using molecular basis of early prostate cancer to improve on gleason score. Asia Pac J Clin Oncol 2016.	No data (abstract)		
[116] Institute of Cancer Research United Kingdom, Royal Marsden N. H. S. Foundation Trust. TOPARP: A phase II trial of olaparib in patients with advanced castration resistant prostate cancer. NCT01682772. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2016 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT01682772	Not relevant study design		
[117] Institute of Cancer Research UK. The BARCODE 2 Study - The use of genetic profiling to guide prostate cancer treatment. NCT02955082. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02955082	Not relevant study design		
[118] Institute of Cancer Research UK. Analysing outcomes after prostate cancer diagnosis and treatment in carriers of rare germline mutations. NCT02705846. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02705846	Not relevant study design		
[119] Janssen Research, Development L. L. C. A safety and pharmacokinetics study of niraparib plus an androgen receptor-targeted therapy in men with metastatic castration-resistant prostate cancer (BEDIVERE). NCT02924766. In:	Not relevant study design		
Study Reference	Title and Details		
-----------------	-------------------		
[120] Janssen Research, Development L. L. C.	An efficacy and safety study of niraparib in men with metastatic castration-resistant prostate cancer and DNA-repair anomalies. NCT02854436. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2019 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT02854436		
[121] Kachakova D, Vlahova A, Mihova K, Mitkova A, Popov I, Popov E, et al.	Targeted next generation sequencing of Bulgarian prostate cancer patients finds new somatic mutations and reflects disease heterogeneity. Eur J Cancer 2016.		
[122] Karzai F, Madan RA, Owens H, Hankin A, Couvillon A, Cordes LM, et al.	Combination of PDL-1 and PARP inhibition in an unselected population with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 2017.		
[123] Karzai F, Madan RA, Owens H, Hankin A, Couvillon A, Houston ND, et al.	A phase II study of the anti-programmed death ligand-1 antibody durvalumab (D; MEDI4736) in combination with PARP inhibitor, olaparib (O), in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2017.		
[124] Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al.	Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33(3):244-50.		
[125] Kilpinen S, Ojala K, Kallioniemi O.	Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome. PLoS One 2010;5(12):e15068.		
[126] Kindler HL, Locker GY, Mann H, Golan T. POLO: A randomized phase III trial of olaparib tablets in patients with metastatic pancreatic cancer (mPC) and a germline BRCA1/2mutation (gBRCAm) who have not progressed following firstline chemotherapy. J Clin Oncol 2015.			
[127] Kolinsky M, Mateo J, Sumanasuriya S, Rescigno P, Bianchini D, Zafeiriou Z, et al.	Clinical Characteristics of Metastatic Castration-Resistant Prostate Cancer (MCRPC) Patients with DNA repair (DNAr) defects. In: American Society of Clinical Oncology Annual Meeting 2016; 03-Jun-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160617920000690&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F164344-176&token=9745aab8b2c60ef3483d75b10d738cd http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20160617920000690		
[128] Kolinsky M, Mateo J, Sumanasuriya S, Rescigno P, Bianchini D, Zafeiriou Z, et al.	Clinical characteristics of metastatic castration-resistant prostate cancer (mCRPC) patients with DNA repair (DNAr) defects. J Clin Oncol 2016.		
[129] Koochekpour S, Majumdar S, Scioneaux R, Subramani D, Willard S, Azabdaftari G, et al.	Cortisol serum levels		
are increased and induce genomic instability in advanced prostate cancer. J Urol 2012;187(4 SUPPL. 1):e326.

Reference	Title	Study Details	Outcome
[130] Kote-Jarai Z, Leongamornlert DA, Saunders EJ, Wakerell S, Whitmore I, Dadaev T, et al.	Rare DNA repair gene mutations predispose to young onset and lethal prostate cancer in the UK. In: American Society of Human Genetics Annual Meeting 2017; 17-Oct-2017, 2017. Available from: American Society of Human Genetics (ASHG) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170927030003390&context=WK%40northernlight.com	No relevant outcome	
[131] Krieger L, Byard I, Clay T, Ganju V, Ryan CJ, Watkins S, et al.	Trial of rucaparib in prostate indications 3 (triton3): an international, multicentre, randomised, open-label phase 3 study of rucaparib vs physician's choice of therapy for patients with metastatic castration-resistant prostate cancer (MCRPC) associated with homologous recombination deficiency (HRD). Asia-pacific journal of clinical oncology. Conference: annual scientific meeting of the australian and new zealand urogenital and prostate, ANZUP 2017. Australia 2017;13:50.	No relevant outcome	
[132] Krieger L, Shapiro J, Byard I, Campbell D, Clay T, Ganju V, et al.	The triton clinical trial programme: Evaluation of the parp inhibitor rucaparib in patients with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). Asia Pac J Clin Oncol 2017.	No relevant outcome	
[133] Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al.	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016;22(4):369-378.	No DDR mutation/not relevant	
[134] Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, Erho N, et al.	Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol 2014;15(13):1521-1532.	No DDR mutation/not relevant	
[135] Ledet EM, Ernst EM, Schiff J, Lin S, Lewis BE, Sartor AO.	Germline variants and family history in Caucasian and African-American prostate cancer. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614020002280&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614020002280	Duplicate	
[136] Lee BH.	Commentary on: "Inherited DNA-repair gene mutations in men with metastatic prostate cancer." Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, Elemento O, Rubin MA, Robinson D, Longiro R, Hussain M, Chinnaiyan A, Vinson J, Filipenko J, Garraway L, Taplin ME, AlDubayan S, Han GC, Beightol M, Morrissey C, Nghiem B, Cheng HH, Montgomery B, Walsh T,	Not primary research	
Reference	Description		
-----------	-------------		
Casadei S, Berger M, Zhang L, Zehir A, Vijai J, Scher HI, Sawyers C, Schultz N, Kantoff PW, Solit D, Robson M, Van Allen EM, Offit K, de Bon J, Nelson PS. N Engl J Med. 2016 Aug 4;375(5):443-53. Urol Oncol 2017;35(9):575-576.	Not a relevant population		
Lee Kindler H, Locker GY, Mann H, Golan T. POLO: A randomized phase III trial of olaparib tablets in patients with metastatic pancreatic cancer (mPC) and a germline BRCA1/2 mutation (gBRCAm) who have not progressed following first-line chemotherapy. J Clin Oncol 2015.	Not a relevant population		
Lin S, Ledet EM, Schiff J, Ernst EM, Garvey CE, Lewis BE, et al. inherited pathologic mutations and family history in patients with prostate cancer. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2017; 16-Feb-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170222000004710&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F179628-197&token=055defc4a8362b1587c530bde8b5664f http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170222000004710	Duplicate		
Lorentz J, Ghanem G, Liu S, Vesprini D. Sunnybrook Familial Prostate Cancer Clinic and Male Oncology and Research Program. In: International Symposium on Hereditary Breast and Ovarian Cancer 2016; 10-May-2016, 2016. Available from: Hereditary Breast and Ovarian Cancer Foundation (HBOCF) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160711120004110&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20160711120004110	Not a relevant population		
M. D. Anderson Cancer Center, AstraZeneca, Merck Sharp, Dohme Corp. Study of olaparib maintenance following cabazitaxel-carbo in men with AVPC. NCT03263650. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03263650	Not relevant study design		
M.D. Anderson Cancer Center. Study of olaparib maintenance following cabazitaxel-carbo in men with AVPC. NCT03263650. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT03263650	Duplicate		
Maia S, Cardoso M, Paulo P, Pinheiro M, Pinto P, Santos C, et al. The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Fam Cancer 2016;15(1):111-121.	Not a relevant population		
Manguoglu E, Guran S, Yamac D, Colak T, Simsek M, Baykara M, et al. Germline mutations of BRCA1 and BRCA2 genes in Turkish breast, ovarian, and prostate cancer patients. Cancer Genet Cytogenet 2010;203(2):230-237.	Duplicate		
Study Reference	Title and Summary		
-----------------	-------------------		
[144] Mateo J, Sandhu S, Miranda S, Carreira S, Jain S, Ralph C, et al. DNA repair defects and antitumor activity with PARP inhibition: TOPARP, a phase II trial of olaparib in metastatic castration resistant prostate cancer. Cancer Res 2015.	Not relevant study design		
[145] Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373(18):1697-1708.	Not relevant study design		
[146] Mateo J, Carreira S, Mossop H, Rescigno P, Kolinsky M, Castro E, et al. DNA repair genes aberrations in germline DNA in metastatic castration-resistant prostate cancer patients. Cancer Res 2016.	Not relevant study design		
[147] McCoy P, Macintyre G, Clarkson M, Kurganovs N, Lunke S, Ryan A, et al. MSH2 translocations are associated with clinically aggressive prostate cancer. BJU Int 2015.	No DDR mutation/not relevant		
[148] McCoy P, Macintyre G, Clarkson M, Kurganovs N, Ryan A, Lunke S, et al. Hormonally regulated mechanisms of MSH2 disruption in prostate cancer. BJU Int 2016.	No DDR mutation/not relevant		
[149] McCoy P, Macintyre G, Clarkson M, Kurganovs N, Ryan A, Lunke S, et al. The potential for androgen influenced disruption of the mismatch repair gene MSH2 in prostate cancer. BJU Int 2017.	No DDR mutation/not relevant		
[150] Medivation Inc. An international study to evaluate the effectiveness of talazoparib in men with a genomic defect and metastatic castration-resistant prostate cancer who received previous chemotherapy and progressed on hormonal treatment. EUCTR2016-002036-32-DE. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2016-002036-32	No relevant outcome		
[151] Michalarea V, Lopez J, Lorente D, Carreira S, Hassam H, Parmar M, et al. Translational phase I trial combining the AKT inhibitor AZD5363 (AZD) and PARP inhibitor olaparib (Ola) in advanced cancer patients (pts). Eur J Cancer 2015;51:S68.	No data (abstract)		
[152] Michalarea V, Roda D, Drew Y, Carreira S, O’Carrigan BS, Shaw H, et al. Phase I trial combining the PARP inhibitor olaparib (Ola) and AKT inhibitor AZD5363 (AZD) in germline (g)BRCA and non-BRCA mutant (m) advanced cancer patients (pts) incorporating noninvasive monitoring of cancer mutations. Cancer Res 2016.	No data (abstract)		
[153] Michie CO, Sandhu SK, Schelman WR, Molife LR, Wilding G, Omlin AG, et al. Final results of the phase I trial of niraparib (MK4827), a poly(ADP)ribose polymerase (PARP) inhibitor incorporating proof of concept biomarker studies and expansion cohorts involving BRCA1/2 mutation carriers, sporadic ovarian, and castration resistant prostate cancer (CRPC). J Clin Oncol 2013.	No relevant outcome		
[154] Miguel Mosquera J, Beltran H, Sboner A, Kossai M, Fontugne J, Pauli C, et al. Precision cancer medicine program for whole exome sequencing (WES) of metastatic tumors reveals biomarkers of response. Lab Invest 2015;95:461A.	No data (abstract)		
[155] Myers CE, Feldman R, Abbott BL, Reddy SK, Castro M. Frequency of BRCA mutations and co-occurring alterations in prostate cancer. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2016: 07-	Duplicate		
Number	Reference	Status	
--------	--	--------------------------	
156	Mygatt JG, Osborn DJ. DNA-Repair Gene Mutations in Metastatic Prostate Cancer. N Engl J Med 2016;375(18):1802-1805.	Not primary research	
157	Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S, et al. Germline Mutations In ATM And BRCA1/2 Distinguish Risk For Lethal And Indolent Prostate Cancer And Are Associated With Early Age At Death. In: European Association of Urology Annual Congress 2017; 24-Mar-2017, 2017. Available from: European Association of Urology (EAU)		
https://doi.org/10.1097/01.juu.0000569202.86676.47	Duplicate		
158	Nappi L, Gleave ME. PARP inhibition in castration-resistant prostate cancer. Future Oncol 2016;12(5):577-580.	Not primary research	
159	National Cancer Institute (NCI). Veliparib in treating patients with malignant solid tumors that do not respond to previous therapy. NCT00892736. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2009 [accessed 12.12.17]. Available from:		
https://clinicaltrials.gov/show/NCT00892736	No relevant outcome		
160	National Cancer Institute (NCI). A phase II single arm pilot study of the Chk1/2 inhibitor (LY2606368) in BRCA1/2 mutation associated breast or ovarian cancer, triple negative breast cancer, high grade serous ovarian cancer, and metastatic castrate-resistant prostate cancer. NCT02203513. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2014 [accessed 12.12.17]. Available from:		
https://clinicaltrials.gov/show/NCT02203513	No relevant outcome		
161	National Cancer Institute. Olaparib with or without cediranib in treating patients with metastatic castration-resistant prostate cancer. NCT02893917. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2018 [accessed 11.12.17]. Available from:		
https://clinicaltrials.gov/show/NCT02893917	No relevant outcome		
162	National Cancer Institute. Olaparib and radium Ra 223 dichloride in treating men with metastatic castration-resistant prostate cancer that has spread to the bone. NCT03317392. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 [accessed 11.12.17]. Available from:		
https://clinicaltrials.gov/show/NCT03317392	No relevant outcome		
No.	Source	Title	Relevant Outcome
-----	--	--	------------------
163	National Cancer Institute, National Institutes of Health Clinical Center. Pilot trial of BMN 673, an oral PARP inhibitor, in patients with advanced solid tumors and deleterious BRCA mutations. NCT01989546. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2018 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT01989546	No relevant outcome	
164	National Taiwan University Hospital. Application of genetic polymorphisms of DNA repair in the prediction of prostate cancer susceptibility and its clinical outcome. NCT00167024. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2005 [accessed 12.12.17]. Available from: http://clinicaltrials.gov/show/NCT00167024	Ongoing trial (no data)	
165	Nelson P, Mateo J, Beltran H, Sarkar ND, Elemento O, Rubin MA, et al. Inherited mutations in DNA repair genes in men with metastatic castration-resistant prostate cancer. In: American Society of Clinical Oncology Annual Meeting 2016; 03-Jun-2016, 2016. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160617980000810&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20160617980000810	Duplicate	
166	Nguyen PL, Yang M, Werner L, Regan M, D'Amico AV, Pomerantz MM, et al. The impact of genetic variants in the double-stranded DNA break repair pathway on cancer control in men treated with radiation for prostate cancer. Int J Radiat Oncol Biol Phys 2011;81(2 SUPPL. 1):S380.	No relevant outcome	
167	Nickerson ML, Im KM, Misner KJ, Tan W, Lou H, Gold B, et al. Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Hum Mutat 2013;34(9):1231-1241.	Not relevant study design	
168	Nicolas E, Zhou Y, Serebriiskii IG, Andrake MD, Handorf EA, Dunbrack RL, et al. Information-driven approaches to predicting familial risk for prostate cancer. Cancer Res 2015.	No data (abstract)	
169	Nientiedt C, Tolstov Y, Volckmar AL, Endris V, Bonekamp D, Haberkorn U, et al. PARP inhibition in BRCA2-mutated prostate cancer. Ann Oncol 2017:28(1):189-191.	Not relevant study design	
170	Northwestern University. Abiraterone/prednisone, olaparib, or abiraterone/prednisone + olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair defects. NCT03012321. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT03012321	No relevant outcome	
171	Northwestern University, AstraZeneca, National Cancer Institute. Abiraterone/prednisone, olaparib, or abiraterone/prednisone + olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair defects. NCT03012321. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2021 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03012321	Duplicate	
172	Nowacka-Zawisza M, Forma E, Walczak M, Rozanski W, Brys M, Krajewska WM. Loss of heterozygosity for	No DDR mutation/not	
Reference	Title	Relevance	
-----------	--------	-----------	
[173] Nowacka-Zawisza M, Wisnik E, Wasilewski A, Skowronska M, Forma E, Brys M, et al.	Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer.	Relevant	
[174] Olmos D, Castro E.	BRCA mutations in prostate cancer patients.	No DDR mutation/not relevant	
[175] Pahuja S, Appleman LJ, Belani CP, Chen A, Chu E, Beumer JH, et al.	Preliminary activity of veliparib (V) in BRCA2-mutated metastatic castration-resistant prostate cancer (mCRPC).	Not a relevant population	
[176] Palapattu G, Cani AK, Hoevelson D, Mehra R, Montgomery JS, Morgan T, et al.	Molecular profiling of prostate cancer derived from serial MRI targeted prostate biopsy in men on active surveillance.	No relevant outcome	
[177] Patel VL, Busch E, D'Amico AV, Rebbeck TR.	BRCA2 Mutations in prostate cancer assort into cluster regions.	Duplicate	
[178] Patel VL, Busch E, Cronin AM, Pomerantz M, Freedman M, D'Amico AV, et al.	Germline BRCA2 mutations in men with prostate cancer assort into functional cluster regions.	Duplicate	
[179] Patel VL, Busch E, Cronin AM, Pomerantz M, Freedman M, D'Amico AV, et al.	Germline BRCA2 mutations in men with prostate cancer assort into functional cluster regions.	No relevant outcome	
[180] Petrovics G, Ravindranath L, Chen Y, Ying K, Ali A, Young D, et al.	Higher frequency of germline BRCA1 and BRCA2 mutations in African American prostate cancer.	Duplicate	
Reference	Title and Details		
-----------	-------------------		
[181] Pfizer, Medivation Inc.	A study of talazoparib in men with DNA repair defects and metastatic castration-resistant prostate cancer. NCT03148795. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2019 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03148795	No relevant outcome	
[182] Pilie P, Johnson AM, Zuhlke KA, Okoth LA, Tomlins S, Cooney KA.	Identification of germline mutations in men with early onset prostate cancer. J Clin Oncol 2015.	No data (abstract)	
[183] Pilie PG, Johnson AM, Hanson KL, Dayno ME, Kapron AL, Stoffel EM, et al.	Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer 2017;123(20):3925-3932.	Not a relevant population	
[184] Pishvaian MJ, Wang H, Zhuang T, He AR, Hwang JJ, Hankin A, et al.	A phase I/II study of ABT-888 in combination with 5-fluorouracil (5-FU) and oxaliplatin (Ox) in patients with metastatic pancreatic cancer (MPC). J Clin Oncol 2013.	Not a relevant population	
[185] Pritchard CC, Offit K, Nelson PS.	DNA-repair gene mutations in metastatic prostate cancer. N Engl J Med. 2016:1804.	Not primary research	
[186] Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, et al.	Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res 2009;15(15):5008-16.	No relevant outcome	
[187] Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, Lloyd P, et al.	Analysis of circulating cell-free DNA IDENTIFIES MULTICLONAL HETEROGENEITY OF BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov 2017;7(9):999-1005.	Not relevant study design	
[188] Raymond C, Hernandez J, Brobey R, Wang Y, Potts K, Garg K, et al.	Detection of HRD gene mutations and copy number changes in cfDNA from prostate cancer patients. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614000002290&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614000002290	Duplicate	
[189] Raymond C, Hernandez J, Brobey R, Wang Y, Potts K, Garg K, et al.	Detection of HRD gene mutations and copy number changes in cfDNA from prostate cancer patients. J Clin Oncol 2017.	No data (abstract)	
[190] Reichert Z, Carneiro BA, Daignault-Newton S, Sullivan A, Feng FY-C, Morgan TM, et al.	A randomized phase II trial of abiraterone, olaparib or abiraterone + olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair defects. In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614020002180&context=WK%40northernlight.com	Duplicate	
Reference	Summary		
-----------	---------		
[191] Reichert Z, Carneiro BA, Daignault-Newton S, Sullivan A, Feng FYC, Morgan TM, et al. A randomized phase II trial of abiraterone, olaparib or abiraterone + olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair defects. J Clin Oncol 2017.	No data (abstract)		
[192] Rescigno P, Rodrigues DN, Yuan W, Carreira S, Lambros M, Seed G, et al. Mismatch repair defects in lethal prostate cancer. Cancer Res 2017.	No DDR mutation/not relevant		
[193] Romero-Laorden N, Pineiro-Yanez E, Gutierrez-Pecharroman A, Pacheco MI, Calvo E, Al-Shahrour F, et al. Somatic BRCA2 bi-allelic loss in the primary prostate cancer was associated to objective response to PARPi in a sporadic CRPC patient. Ann Oncol 2017;28(5):1158-1159.	Not relevant study design		
[194] Royal Marsden N. H. S. Foundation Trust, Institute of Cancer Research, AstraZeneca. Trial of olaparib in combination with AZD5363 (ComPAKT). NCT02338622. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2015 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT02338622	No relevant outcome		
[195] Rubinstein WS, Selkirk CG, Pullum C, Kaul KL, Brendler CB, Shevrin DH, et al. Identification of men with a genetic predisposition to prostate cancer: Targeted screening of BRCA1 and BRCA2 mutation carriers and controls the impact study pilot results. J Urol 2009;181(4 SUPPL. 1):644.	Not a relevant population		
[196] Ryan CJ, Watkins SP, Despain D, Karlovich CA, Simmons A, Golsorkhi AA, et al. Trial of rucaparib in prostate indications 3 (TRITON3): An international, multicenter, randomized, open-label phase 3 study of rucaparib vs physician's choice of therapy for patients (pts) with metastatic castration-resistant prostate cancer (MCRPC) associated with homologous recombination deficiency (HRD). In: American Society of Clinical Oncology Annual Meeting 2017; 02-Jun-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170614030002110&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170614030002110	Duplicate		
[197] Ryan CJ, Watkins SP, Despain D, Karlovich CA, Simmons A, Golsorkhi AA, et al. Trial of rucaparib in prostate indications 3 (TRITON3): An international, multicenter, randomized, open-label phase 3 study of rucaparib vs physician's choice of therapy for patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) associated with homologous recombination deficiency (HRD). J Clin Oncol 2017.	No data (abstract)		
[198] Salami S, Hovelson D, Udager A, Lee M, Curci N, Kaplan J, et al. Molecular characterization of magnetic resonance imaging visible and invisible prostate cancer: Biological insights and therapeutic implications. Eur Urol, Supplements 2017.	No data (abstract)		
[199] Salami S, Hovelson D, Udager A, Lee M, Curci N, Kaplan J, et al. Targeted next generation sequencing to characterize magnetic resonance imaging visible and invisible prostate cancer: Biological insights and therapeutic implications. J Urol 2017.

[200] Sanchez A, Shui IM, Schoenfeld J, Nguyen P, Penkey K, Fiorentino M, et al. BRCA1 single nucleotide polymorphisms (SNPs) may help identify patients at risk for lethal prostate cancer or recurrence after treatment with radiation therapy (RT). J Urol 2014;191(4 SUPPL. 1):e832-e833.

[201] Sanchez A, Schoenfeld JD, Nguyen PL, Fiorentino M, Chowdhury D, Stampfer MJ, et al. Common variation in BRCA1 may have a role in progression to lethal prostate cancer after radiation treatment. Prostate Cancer Prostatic Dis 2016;19(2):197-201.

[202] Sandhu SK, Moreno V, Wilding G, Omlin A, Schelman WR, Miranda S, et al. Phase I study of a poly(ADP)-ribose polymerase (PARP) inhibitor MK-4827 (MK) with antitumour activity in sporadic castration resistant prostate cancer (CRPC). Asia Pac J Clin Oncol 2012;8:33.

[203] Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 2013;14(9):882-892.

[204] Sandhu S, Mateo J, Miranda S, Carreira S, Jain S, Ralph C, et al. Antitumour activity of the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib in unselected sporadic castration resistant prostate cancer (CRPC) in the TOPARP trial. Asia Pac J Clin Oncol 2015;11:28-29.

[205] Scharrer U, Skrzypczak-Zielinska M, Wituszynska W, Froster UG. Analysis of allelic variants in the CHEK2 gene using DHPLC. Study on the Eastern Germany population. Medizinische Genetik 2010; Conference Publication:(var. pagings). 22 (1):100-101.

[206] Scher HI, Jendrisak A, Schreiber NA, McLaughlin B, Graf RP, Rodriguez A, et al. Baseline CTC subtype to predict outcomes on mCRPC patients (pts) receiving enzalutamide (E) compared to abiraterone (A). J Clin Oncol 2017.

[207] Schrader KA, Cheng DT, Vijai J, Prasad M, Walsh MF, Zehir A, et al. Potential burden of germline findings in targeted tumor sequencing using matched normal DNA. Cancer Res 2015.

[208] Schwarzenbach H, Alix-Panabieres C, Muller I, Letang N, Vendrell JP, Rebillard X, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 2009;15(3):1032-1038.

[209] Seattle Institute for Biomedical and Clinical Research. Docetaxel and carboplatin for patients with mCRPC and DNA-repair deficiencies. NCT02985021. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02985021

[210] Seed G, Yuan W, Mateo J, Carreira S, Bertan C, Lambros M, et al. Gene copy number estimation from targeted No DDR mutation/not relevant
No.	Reference	Summary
211	Seed G, Yuan W, Mateo J, Carreira S, Lambros M, Boysen G, et al. Copy number estimation from targeted amplicon-based next-generation sequencing of castration-resistant prostate cancer biopsies: Analytic validation and clinical qualification for a iPARP clinical trial. Cancer Res 2017.	No DDR mutation/not relevant
212	Seng SM, Galsky MD, Tsao C, Li J, Febbo PG, Oh WK. Predicting response to platinum chemotherapy in metastatic castration-resistant prostate cancer (mCRPC) using a genomic signature for "BRCAness": A phase II clinical trial of satraplatin in men with mCRPC who have progressed on docetaxel. J Clin Oncol 2011.	No data (abstract)
213	Setton J, Riaz N, Higginson DS, McBride S, Kollmeier M, Zelefsky MJ, et al. Localized prostate cancers with genetic defects in DNA repair display evidence of functional deficit in homologous recombination. Int J Radiat Oncol 2016.	No DDR mutation/not relevant
214	Shapiro J, Voskoboynik M, Krieger L, Byard I, Clay T, Ganju V, et al. Trial of rucaparib in prostate indications 2 (TRITON2): an international, multicentre, open-label phase 2 study of the parp inhibitor rucaparib in patients with metastatic castration-resistant prostate cancer (MCRPC) associated with homologous recombination deficiency (HRD). Asia-pacific journal of clinical oncology. Conference: annual scientific meeting of the Australian and New Zealand Urogenital and Prostate, ANZUP 2017. Australia 2017;13:61.	No relevant outcome
215	Sidney Kimmel Comprehensive Cancer Center. Olaparib in men with high-risk biochemically-recurrent prostate cancer following radical prostatectomy, with integrated biomarker analysis. NCT03047135. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2021 [accessed 11.12.17]. Available from: https://ClinicalTrials.gov/show/NCT03047135	No relevant outcome
216	Sofronescu AG, Marshall D, Zhu Y. TGFbeta1 -509 C>T and XRCC1 399 Arg>Gln (28152G>A) correlate with increased side effects induced by radiotherapy in prostate cancer patients. Clin Chem 2012;58(10 SUPPL. 1):A42.	No data (abstract)
217	Sonpavde G, Nagy RJ, Agarwal N, Gourdin TS, Naik G, Eshaghian S, et al. Profiling of circulating tumor (ct)-DNA for potentially actionable targets in prostate cancer (PCa). J Clin Oncol 2016.	No data (abstract)
218	Sonpavde G, Nagy RJ, Sartor AO, Pond GR, Gourdin TS, Nandagopal L, et al. Circulating tumor (ct)-DNA alterations in metastatic castration-resistant prostate cancer (MCRPC): Association with outcomes and evolution with therapy. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2017; 16-Feb-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170222000004320&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F179025-197&token=7a4520a922b98e3a58a0d73299a7b97 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170222000004320	Duplicate
Reference	Description	Notes
-----------	-------------	-------
[219] Steinberger AE, Cotogno P, Ledet EM, Lewis B, Sartor O. Exceptional duration of radium-223 in prostate cancer with a BRCA2 mutation. Clin Genitourin Cancer 2017;15(1):e69-e71.		No relevant outcome
[220] Struss WJ, Annala M, Warner EW, Beja K, Vandekerkhove G, Wong A, et al. Germline DNA repair mutations in metastatic castration-resistant prostate cancer: Therapy response and applicability of circulating tumor DNA. In: American Society of Clinical Oncology Genitourinary Cancers Symposium 2017; 16-Feb-2017, 2017. Available from: American Society of Clinical Oncology (ASCO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20170222020001580&context=WK%40northernlight.com&doctype=abstract&docurl=http%3A%2F%2Fmeetinglibrary.asco.org%2Fcontent%2F179168-197&token=a48f237b2d840269e2c5d618dc325bbf http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20170222020001580	Duplicate	
[221] Taneja SS. Re: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. J Urol 2017;197(2):399-400.	Not primary research	
[222] The Institute of Cancer Research. The BARCODE 2 study—The use of genetic profiling to guide prostate cancer treatment. EUCCTR2016-000869-23-GB. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2016-000869-23	No relevant outcome	
[223] Timms K, Cuzick J, Neff C, Reid J, Solimeno C, Sangale Z, et al. The molecular landscape of genome instability in prostate cancer (PC). In: European Society for Medical Oncology Congress 2016; 07-Oct-2016, 2016. Available from: European Society for Medical Oncology (ESMO) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2016102579000810&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE2016102579000810	Duplicate	
[224] Timms K, Cuzick J, Neff C, Reid J, Solimeno C, Sangale Z, et al. The molecular landscape of genome instability in prostate cancer (PC). Ann Oncol 2016.	No data (abstract)	
[225] Tischkowitz M, Eeles R, Grööberg H. Mutations in BRCA1 and BRCA2 and predisposition to prostate cancer...Grööberg H. Prostate cancer epidemiology. Lancet 2003;361:859-64. Lancet 2003;362 North American Edition(9377):80-80.	Not primary research	
[226] Topka S, Walsh MF, Maria A, Lincoln A, Mandelker D, Zhang L, et al. Germline mutations in NBN conferring DNA damage response defects are found in patients with multiple cancer types. Cancer Res 2017.	No data (abstract)	
[227] Turner P, Jain S, Mitchell D, Hounsell A, Prise K, Biggart S, et al. The ADRRAD trial: Neo-adjuvant androgen deprivation therapy, pelvic radiotherapy and radium-223 for new presentation T1-4 N0-1 M1b adenocarcinoma of	No DDR mutation/not relevant	
prostate. In: National Cancer Research Institute Cancer Conference 2016; 06-Nov-2016, 2016. Available from: National Cancer Research Institute (NCRI) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20161208390004310&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20161208390004310

Reference	Study Description	Outcome/Design
[228] University of California San Francisco. Pembrolizumab in metastatic castration resistant prostate cancer (mCRPC) with or without DNA damage repair defects. NCT03248570. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2017 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT03248570	No relevant outcome	
[229] University of Washington. Docetaxel and carboplatin in treating patients with metastatic, castration resistant prostate cancer containing inactivated genes in the BRCA 1/2 pathway. NCT02598895. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2015 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02598895	No relevant outcome	
[230] University of Washington. Durvalumab in treating patients with metastatic hormone-resistant prostate cancer. NCT02966587. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2016 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT02966587	Not relevant study design	
[231] Velasco A, Hewitt SM, Albert PS, Hossein-Saboorian M, Rosenberg H, Martinez C, et al. Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence. Cancer 2002;94(3):690-699.	No DDR mutation/not relevant	
[232] Vesprini D, Narod SA, Trachtenberg J, Crook J, Jalali F, Preiner J, et al. The therapeutic ratio is preserved for radiotherapy or cisplatin treatment in BRCA2-mutated prostate cancers. Can Urol Assoc J 2011;5(2):E31-E35.	Not relevant study design	
[233] Wang L, Xia S, Du M, Ditmar R, Yuan T, Guo Y, et al. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Cancer Res 2015.	No data (abstract)	
[234] Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, et al. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 2010;16(2):743-749.	No DDR mutation/not relevant	
[235] Weill Medical College of Cornell University. Epidemiologic, clinical and genetic profile of prostate cancer in Arab countries. NCT00801996. In: WHO International Clinical Trials Registry Platform (ICTRP) [Internet]. Geneva: World Health Organization (WHO). 2008 [accessed 12.12.17]. Available from: https://clinicaltrials.gov/show/NCT00801996	Not relevant study design	
[236] Wenham R, Wilding G, Baird R, Sun L, Toniatti C, Stroh M, et al. First in human trial of the poly(ADP)-ribose polymerase inhibitor MK-4827 in patients with advanced cancer with antitumor activity in BRCA-deficient and sporadic ovarian cancers. Gynecol Oncol 2011;120:S5-S6.	No data (abstract)	
No.	Reference	Description
-----	------------	-------------
[237]	Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2016;2(12):1598-1606.	Not a relevant population
[238]	Wyatt AW, Annala M, Beja K, Parimi S, Vandekerkhove G, Warner E, et al. Genomic alterations in circulating tumor DNA (ctDNA) are associated with clinical outcomes in treatment-naive metastatic castration-resistant prostate cancer (mCRPC) patients commencing androgen receptor (AR)-targeted therapy. Ann Oncol 2016.	Not relevant study design
[239]	Wyatt AW, Annala M, Parimi S, Zulfiqar M, Finch DL, Oja CD, et al. Circulating tumor DNA (ctDNA) burden and actionable mutations in treatment-naive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2016.	No data (abstract)
[240]	Yadav S, Makridakis N. Targeted next-generation sequencing in DNA repair genes in prostate tumors. Cancer Res 2013.	No data (abstract)
[241]	Yadav S, Anbalagan M, Baddoo M, Flemington E, Moroz K, Hering-Smith K, et al. Landscape of somatic mutations in DNA repair genes in prostate cancer. In: American Association for Cancer Research Annual Meeting 2016; 16-Apr-2016, 2016. Available from: American Association for Cancer Research (AACR) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20160330190002422&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE20160330190002422	Duplicate
[242]	Yadav S, Anbalagan M, Baddoo M, Flemington E, Moroz K, Hering-Smith K, et al. Landscape of somatic mutations in DNA repair genes in prostate cancer. Cancer Res 2016.	No data (abstract)
[243]	Zanusso C, Bortolus R, Dreussi E, Polesel J, Montico M, Cecchin E, et al. Impact of DNA repair gene polymorphisms on the risk of biochemical recurrence after radiotherapy and overall survival in prostate cancer. Oncotarget 2017;8(14):22863-22875.	No DDR mutation/not relevant
[244]	Zhang T, Romanel A, Kluk MJ, Eng K, Iossifov I, Sboner A, et al. Germline variants and secondary findings in a cancer precision medicine cohort. Lab Invest 2016;96:461A.	No relevant outcome
[245]	Zheng L, Wang F, Qian C, Neumann RM, Cheville JC, Tindall DJ, et al. Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines. Hum Mutat 2006;27(10):1062-1063.	No DDR mutation/not relevant
[246]	Zheng SL, Na R, Han M, Novakovic K, Wiley K, Isaacs S, et al. Chek2 Mutations increase risk for prostate cancer but do not differentiate risk of lethal from indolent disease. In: American Urological Association Annual Meeting 2017; 12-May-2017, 2017. Available from: American Urological Association (AUA) https://discovery.northernlight.com/document.php?datasource=PHE&docid=PE2017051815000980&context=WK%40northernlight.com http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=dscv6&AN=PE2017051815000980	Duplicate
Reference	Summary	Note
-----------	---------	------
[247] Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL. Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 2010;21(2):289-300.	No DDR mutation/not relevant	
[248] Basu S, Majumder S, Bhowal A, Gupta A, Sengupta S. Interplay between genetic and epigenetic machinery in the etiopathogenesis of prostate cancer. J Cell Comm Signaling 2013;7(1):99-100.	No DDR mutation/not relevant	
[249] Cypriano AS, Alves G, Ornellas AA, Scheinkman J, Almeida R, Scherrer L, et al. Relationship between XPD, RAD51, and APEX1 DNA repair genotypes and prostate cancer risk in the male population of Rio de Janeiro, Brazil. Genet 2017;40(4):751-758.	No DDR mutation/not relevant	
[250] Gallagher D, Gaudet M, Pal P, Kirchhoff T, Bhatia J, Fine S, et al. BRCA mutations, risk and outcome of prostate cancer. Curr Oncol 2009;16(5):99.	No data (abstract)	
[251] Kaku H, Huang P, Sakai A, Watanabe M, Chen J, Saika T, et al. Comprehensive analyses of genetic predisposition for prostate cancer in Japanese men. Presented at the 30th Congress of the Societe Internationale d'Urologie (SIU); 1-5 Nov 2009; Shanghai: China. Urology 2009;74(4 (suppl S)):S116.	No data (abstract)	
[252] Southey MC, Goldgar DE, Winqvist R, Pylkas K, Couch F, Tischkowitz M, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 2016;53(12):800-811.	No relevant outcome	
[253] Sandhu SK, Omlin A, Hylands L, Miranda S, Barber LJ, Riisnaes R, et al. Poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 2013;24(5):1416-8.	Not relevant study design	
[254] https://clinicaltrials.gov/ct2/show/NCT03395197	Not relevant study design	
[255] https://clinicaltrials.gov/ct2/show/NCT00749502	Not relevant study design	
[256] https://clinicaltrials.gov/ct2/show/NCT01576172	Not relevant study design	
[257] https://clinicaltrials.gov/ct2/show/NCT02601014	Not relevant study design	
[258] https://clinicaltrials.gov/ct2/show/NCT02125357	Not relevant study design	
[259] Antonarakis ES, Lu C, Luber B, Liang C, Wang H, Chen Y, et al. Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol 2018.	Not relevant study design	
[260] https://clinicaltrials.gov/ct2/show/NCT02358200	Not relevant study design	
[261] Maha H, Daignault-Newton S, Twardowski P, Albany C, Stein M, Kunju L, et al. Targeting androgen receptor	Not relevant study	
and DNA repair in metastatic castration-resistant prostate cancer: results from NCI 9012. J Clin Oncol 2018;36(10):991-999.

[262] Hall EJ, Schiff PB, Hanks GE, Brenner DJ, Russo J, Chen J, et al. A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am 1998;4(6):385-389.

[263] Cyrta J, Mosquera JM, Robinson B, Sboner A, Beltran H, Hovelson D, et al. Integrative genomics of prostate cancer progression. Lab Invest 2017.

[264] Usmani N, Leong N, Martell K, Lan L, Ghosh S, Pervez N, et al. Single-nucleotide polymorphisms studied for associations with urinary toxicity from (125)I prostate brachytherapy implants. Brachytherapy 2014;13(3):285-291.

[265] Na R, Lilly S, Han M, Hongjie Y, Deke J, Shah S, et al. Germline mutations in DNA repair genes are significantly enriched in lethal prostate cancer and are associated with disease survival (MP57-01). Presented at the American Urological Association Annual Meeting; 14 May 2017. J Urol 2017;197, No. 4S(4S):e763.

C. Records excluded (not countries of interest).

Title	Country
[1] Ding GF, Xu YF, Yang ZS, Ding YL, Fang HF, Zhao HP. Coexpression of the mutated BRCA1 mRNA and p53 mRNA and its association in Chinese prostate cancer. Urol Oncol 2011;29(2):145-149.	China
[2] Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 2003;72(2):270-280.	
[3] Fredriksson H, Ikonen T, Autio V, Matikainen MP, Helin HJ, Tammela TL, et al. Identification of germline MLH1 alterations in familial prostate cancer. Eur J Cancer 2006;42(16):2802-2806.	Finland
[4] Pelttari LM, Nurminen R, Gylfe A, Aaltonen LA, Schleutker J, Nevanlinna H. Screening of Finnish RAD51C founder mutations in prostate and colorectal cancer patients. BMC Cancer 2012;12:552.	
[5] Seppala EH, Ikonen T, Mononen N, Autio V, Rokman A, Matikainen MP, et al. CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 2003;89(10):1966-1970.	
[6] Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfjord JE, et al. BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 1997;75(10):758-761.	Iceland
[7] Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, Jonasson JG, Olafsdottir EJ, Olafsdottir GH, et al.	
Reference	Country
--	------------------
Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 2007;99(12):929-935.	India
[8] Soni A, Bansal A, Singh LC, Mishra AK, Majumdar M, Regina T, et al. Gene expression profile and mutational analysis of DNA mismatch repair genes in carcinoma prostate in Indian population. OMICS J Integr Biol 2011;15(5):319-324.	India
[9] Abele A, Vjaters E, Irmejs A, Trofimovics G, Miklasevics E, Gardovskis J. Epidemiologic, clinical, and molecular characteristics of hereditary prostate cancer in Latvia. Medicina (Kaunas, Lithuania) 2011;47(10):579-585.	Latvia
[10] Knappskog S, Leirvaag B, Gansmo LB, Romundstad P, Hveem K, Vatten L, et al. Prevalence of the CHEK2 R95* germline mutation. Hered Cancer Clin Pract 2016;14:19.	Norway
[11] Antczak A, Stawicka M, Izycki D, Godlewska D, Cybulski C, Milecki P, et al. Relation between mutations in prostate cancer and familial history of cancer predisposing genes with the age of prostate cancer patients at the time of diagnosis - Impact on screening indications. J Urol 2009;181(4 SUPPL. 1):657.	Poland
[12] Cybulski C, Gorski B, Huzarski T, Masoic B, Mierzejewski M, Debniak T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 2004;75(6):1131-1135.	Poland
[13] Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masoic B, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res 2004;64(4):1215-1219.	Poland
[14] Gronwald J, Cybulski C, Piesiak W, Suchy J, Huzarski T, Byrski T, et al. Cancer risks in first-degree relatives of CHEK2 mutation carriers: effects of mutation type and cancer site in proband. Br J Cancer 2009;100(9):1508-1512.	Poland
[15] Cybulski C, Wokolorczyk D, Kluzniak W, Jakubowska A, Gorski B, Gronwald J, et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 2013;108(2):461-468.	Poland
[16] Cybulski C, Wokolorczyk D, Huzarski T, Byrski T, Gronwald J, Gorski B, et al. A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J Med Genet 2006;43(11):863-866.	Poland
[17] Cybulski C, Huzarski T, Gorski B, Masoic B, Mierzejewski M, Debniak T, et al. A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res 2004;64(8):2677-2679.	Poland
[18] Cybulski C, Gorski B, Gronwald J, Huzarski T, Byrski T, Debniak T, et al. BRCA1 mutations and prostate cancer in Poland. Eur J Cancer Prev 2008;17(1):62-66.	Poland
[19] Wagenius M, Borg A, Johansson L, Giwercman A, Bratt O. CHEK2*1100delC is not an important high-risk gene in families with hereditary prostate cancer in southern Sweden. Scand J Urol Nephrol 2006;40(1):23-25.	Sweden
---	---
[20] Manguoglu E, Guran S, Yamac D, Colak T, Simsek M, Baykara M, et al. Germline mutations of BRCA1 and BRCA2 genes in Turkish breast, ovarian, and prostate cancer patients. Cancer Genet Cytogenet 2010;203(2):230-237.	Turkey
Appendix S4.

Table of Contents for Appendix S4.

Location	Subgroup	Description of Data
A1	Familial PC	Summary of *BRCA2* or DDR gene mutation prevalence in familial prostate cancer germline tissues
B1	Familial PC	Reported prevalence for familial *BRCA2* and DNA damage response mutations in germline prostate cancer populations
C1	Familial PC	Reported prevalence for familial *BRCA2* and DDR mutations in germline PC populations (definitions of familial and inclusion criteria)
A2	Familial PC	Familial germline mutations in patients with prostate cancer
B2	Ashkenazi Jewish	DDR mutations in Ashkenazi Jewish patients with prostate cancer
C2	Pre-specified treatment regimen	DDR mutations in patients receiving a pre-specified treatment regimen
D2	Young-onset PC	DDR mutations in patients with young-onset PC
E2	African-American	DDR mutations in African-American patients
F2	Lethal PC	DDR mutations in patients with lethal PC

A1. Summary of *BRCA2* and DDR gene mutation prevalence in familial prostate cancer germline tissues.

% period prevalence, median (range)	Prostate cancer
Specific *BRCA2*	0.5 (0.21, 2.63)
	3 studies (n=703)
	12 datasets (n=3248)
All *BRCA2*	3.7 (1.3, 7.9)
	6 studies (n=945)

DDR

29.3 (7.3, 91.67)
3 studies \((n=327)\)
4 datasets \((n=339)\)

\[\text{DDR}=\text{multiple gene definitions for DNA damage response gene that includes at least one of our genes of interest.}\]

BRCA, breast cancer susceptibility gene; DDR, DNA damage repair; n, sample size.

B1. Reported prevalence for familial *BRCA2* and DNA damage response mutations in germline prostate cancer populations.

Gene	DDR definition	% prevalence	N	Variant described as pathogenic for PC?	Variant described as pathogenic for other cancers?	Variant shown to be associated with PC or risk to PC?	Country	Author, year	References
Specific BRCA2									
BRCA2 (5531delTT)		2.63	38	Yes	Yes	Yes	UK	Gayther *et al*, 2000	(50)
BRCA2 (6710delACAA)		2.63	38	Yes	Yes	Yes	UK	Gayther *et al*, 2000	(50)
BRCA2 (9078 G>T or K2950N)		2.63	38	No	Yes	Yes	UK	Gayther *et al*, 2000	(50)
BRCA2 (c.1813_14._insA or I605fs) frameshift	0.21	474	Yes	Yes	Yes	Yes	Germany	Maier *et al*, 2014	(72)
BRCA2 (c.3847delGT or V128fs) frameshift	0.21	474	Yes	Yes	Yes	Yes	Germany	Maier *et al*, 2014	(72)
BRCA2 (c.4449delA or T1483fs) frameshift	0.21	474	Yes	Yes	Yes	Yes	Germany	Maier *et al*, 2014	(72)
BRCA2 (c.6037A>T or K2013X) nonsense	0.21	474	Yes	Yes	Yes	Yes	Germany	Maier *et al*, 2014	(72)
BRCA2 (c.7495C>T or Q2499X) nonsense	0.21	474	Yes	Yes	Yes	Yes	Germany	Maier *et al*, 2014	(72)
BRCA2 c.4876_4877del: p.(Asn1626Serfs*12)	0.52	191	Yes	Unclear	Yes	Yes	UK	Leongamornlert *et al*, 2014	(70)
BRCA2	c.4981del:p.(Tyr1661Ilefs*9)	0.52	191	Yes	Unclear	Yes	UK	Leongamornlert et al, 2014 (70)	
-------	-----------------------------	------	-----	-----	---------	-----	----	---------------------------------	
BRCA2	c.5909C>A:p.(Ser1970*)	0.52	191	Yes	Unclear	Yes	UK	Leongamornlert et al, 2014 (70)	
BRCA2	c.9382C>T:p.(Arg3128*)	0.52	191	Yes	Unclear	Yes	UK	Leongamornlert et al, 2014 (70)	

All BRCA2

BRCA2	3.23	124	NA	NA	NA	USA	Leдет et al, 2017 (67)
BRCA2 exon sequence variants	1.3	382	NA	NA	NA	Germany	Maier et al, 2014 (72)
Five BRCA2 variants (L61P, H1458R, G2508S, H3056Y, and R3384X)	4.24	118	NA	NA	NA	Japan	Hayano et al, 2016 (57)
Total undefined BRCA2 variants	7.9	38	NA	NA	NA	UK	Gayther et al, 2000 (50)
Undefined BRCA2	4.35	92	NA	NA	NA	USA	Marshall et al, 2017 (74)
All BRCA2 (c.9382C>T:p.(Arg3128*); c.4876_4877del:p.(Asn1626Serfs*12); c.4981del:p.(Tyr1661Ilefs*9)	2.09	191	NA	NA	NA	UK	Leongamornlert et al, 2014 (70)

DDR

DDR (25-79 cancer-related genes)	16.9	124	NA	NA	NA	USA	Leдет et al, 2017 (67)
Deleterious LoF mutations	7.3	191	NA	NA	NA	UK	Leongamornlert et al, 2014 (70)
One affected gene; High value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk

Two or more affected genes: High value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk

BRCA, breast cancer susceptibility gene; DDR, DNA damage repair; LoF, loss of function; NA, not available; PC, prostate cancer.

C1. Reported prevalence for familial BRCA2 and DDR mutations in germline PC populations (definitions of familial and inclusion criteria).

Gene	DDR definition	% prevalence	N	Definition of familial cancer	Inclusion criteria	Author, year	References
Specific BRCA2	BRCA2 (5531delTT)	2.63	38	NR	Clusters with a relative risk of developing prostate cancer of ≥4; clusters of ≥3 prostate cancers at any age or in sibling pairs, preferably where one is <65 years at diagnosis	Gayther et al., 2000	(50)
	BRCA2 (6710delACAA)	2.63	38				
	BRCA2 (9078 G>T or K2950N)	2.63	38				
BRCA2	(c.1813_14_insA or l605fs) frameshift	0.21	474	NR	Patients with familial PC who are members of families with PC clustering; or patients with sporadic early onset PC who underwent radical	Maier et al, 2014	(72)
BRCA2	(c.3847delGT or V128fs) frameshift	0.21	474				
BRCA2 variants	Frequency	Patients/PCs	Notes				
--	-----------	--------------	--				
BRCA2 (c.4449delA or T1483fs) frameshift	0.21	474	prostatectomy and reported a negative family history for prostate cancer				
BRCA2 (c.6037A>T or K2013X) nonsense	0.21	474					
BRCA2 (c.7495C>T or Q2499X) nonsense	0.21	474					
BRCA2 c.4876_4877del: p.(Asn1626Serfs*12)	0.52	191	Two or more relatives affected by PC				
BRCA2 c.4981del:p. (Tyr1661Ilefs*9)	0.52	191	Men with PC who had two or more relatives affected by PC				
BRCA2 c.5909C>A: p.(Ser1970*)	0.52	191					
BRCA2 c.9382C>T: p.(Arg3128*)	0.52	191					
All BRCA2	3.23	124	PC patients with a family history that met NCCN guidelines for genetic testing				
BRCA2 exons sequence variants	1.3	382	Patients with prostate cancer who met NCCN guidelines for genetic testing				
Five BRCA2 variants (L61P, H1458R, G2508S, H3056Y, and R3384X)	4.24	118	Patients in families with two or more prostate cancer patients				
Total undefined BRCA2 variants	7.9	38					
BRCA2	4.35	92	Personal history of PC and ≥1 close blood relative with breast, ovarian, pancreatic or prostate cancer; or a personal history of PC	Men with PC; personal history of PC and ≥1 close blood relative with breast, ovarian, pancreatic or prostate cancer; or a personal history of PC	Marshall et al, 2017	(74)	
---	---	---	---	---	---	---	
All BRCA2 (c.9382C>T: p.(Arg3128*); c.4876_4877del: p.(Asn1626Serfs*12); c.4981del:p.(Tyr1661Ilefs*9); BRCA2 c.5909C>A: p.(Ser1970*))	2.09	191	Two or more relatives affected by PC	Men with PC who had two or more relatives affected by PC	Leongamornlert et al, 2014	(70)	
DDR (25-79 cancer-related genes)	16.9	124	PC patients with a family history that met NCCN guidelines for genetic testing	Patients with prostate cancer who met NCCN guidelines for genetic testing	Ledet et al, 2017	(67)	
Deleterious LoF mutations	7.3	191	Two or more relatives affected by PC	Men with PC who had two or more relatives affected by PC	Leongamornlert et al, 2014	(70)	
One affected gene; High value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk	91.67	12	NR	Strong family cancer history with either multiple first-degree or second-degree relatives with prostate cancer or other cancers	Nicolas et al, 2015	(24)	
Two or more affected genes; High value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk	41.67	12					
BRCA, breast cancer susceptibility gene; DDR, DNA damage repair; LoF, loss of function; NCCN, National Comprehensive Cancer Network; NR, not reported; PC, prostate cancer.

A2. Familial germline mutations in patients with prostate cancer.

Country	Gene	DDR definition	% prevalence	n	Period of data collection	Author, year	References
Australia	**BRCA1**	Undefined (unclear germline or somatic)	7.5	147	NR	Cheng et al, 2011	(23)
	BRCA2	Undefined (unclear germline or somatic)	26.5	147	NR		
Germany	**BRCA2**	*BRCA2* (c.1813_14_insA or l605fs) frameshift ^a	0.2 ^c	474	1998-2007	Maier et al, 2014	(72) (107)
		BRCA2 (c.3847delGT or V128fs) frameshift ^a	0.2 ^c	474	1998-2007		
		BRCA2 (c.4449delA or T1483fs) frameshift ^a	0.2 ^c	474	1998-2007		
		BRCA2 (c.6037A>T or K2013X) nonsense ^a	0.2 ^c	474	1998-2007		
		BRCA2 (c.7495C>T or Q2499X) nonsense ^a	0.2 ^c	474	1998-2007		
		BRCA2 exon sequence variants	1.3 ^e	382	1998-2007		
	NBN	NBN 657del5 ^a	0.0	299	NR	Hebbring et al, 2006	(58)
Japan	**BRCA2**	Five *BRCA2* variants	4.2 ^b	118	NR	Hayano et al, 2016	(57)
Multi-national	**NBN**	NBN 657del5 ^a	0.2	1819	NR	Hebbring et al, 2006	(58)
UK	**ATM**	*ATM* c.7327C>T:p.(Arg2443*) ^a	0.5	191	NR	Leongamornlert et al, 2014	(70)
		ATM c.7777C>T:p.(Gln2593*) ^a	0.5	191	NR		
		All *ATM* (c.7777C>T: p.(Gln2593*); c.7327C>T:p.(Arg2443*))	1.0	191	NR		
	BRCA1	Total undefined *BRCA1* variants	0.0	38	NR	Gayther et al, 2000	(50)
Gene		Variants (c.4065_4068del: p.(Asn1355Lysfsa10))					
------	---	---------------------------------	---	---	---	---	
BRCA1	All	(c.9382C>T: p.(Arg3128*); c.4876_4877del: p.(Asn1626Serfs*12); c.4981del:p.(Tyr1661Ilefs*9); BRCA2 c.5909C>A: p.(Ser1970*))	0.5	191	NR	Leongamornlert et al, 2014 (70)	
BRCA2	BRCA2	(5531delTT)	2.6	38	NR	Gayther et al, 2000 (50)	
BRCA2	BRCA2	(6710delACAA)	2.6	38	NR		
BRCA2	BRCA2	(9078 G>T or K2950N)	2.6	38	NR		
BRCA2	BRCA2	c.4876_4877del: p.(Asn1626Serfs*12)	0.5	191	NR	Leongamornlert et al, 2014 (70)	
BRCA2	BRCA2	c.4981del:p.(Tyr1661Ilefs*9)	0.5	191	NR		
BRCA2	BRCA2	c.5909C>A: p.(Ser1970*)	0.5	191	NR		
BRCA2	BRCA2	c.9382C>T: p.(Arg3128*)	0.5	191	NR		
BRCA2	Total undefined	BRCA2 variants	7.9	38	NR	Gayther et al, 2000 (50)	

| Gene | | Variants (c.9382C>T: p.(Arg3128*); c.4876_4877del: p.(Asn1626Serfs*12); c.4981del:p.(Tyr1661Ilefs*9); BRCA2 c.5909C>A: p.(Ser1970*)) | 2.1 | 191 | NR | Leongamornlert et al, 2014 (70) |

Gene		Variants (c.1263del:p.(Ser422Valfs*15))						
CHEK2	CHEK2	c.1263del:p.(Ser422Valfs*15)	0.5	191	NR			
CHEK2	CHEK2	c.869del:p.(Asn290Thrfs*14)	0.5	191	NR			
CHEK2	All	(CHEK2 c.869del:p.(Asn290Thrfs*14); c.1263del:p.(Ser422Valfs*15))	1.0	191	NR			
MLH1	NA	(no mutations identified)	0.0	191	NR			
MRE11	NA	(no mutations identified)	0.0	191	NR			
NBN	NA	(no mutations identified)	0.0	191	NR			
PALB2	All	PALB2 (c.3507_3508del:p.(His1170Phefs*19))	0.5	191	NR			
RAD51	NA	(no mutations identified)	0.0	191	NR			
DDR	Deleterious LoF mutations	7.3	191	NR				
	Gene	Description	Value	Frequency	Year	Reference	IW Score	Notes
----	------	-------------	-------	-----------	-------	-----------	----------	-------
USA	ATM	Undefined ATM	1.6	124	2015 to 2016	Ledet et al, 2017 (linked: Lin et al, 2017)	(67) (108)	
			2.1	NR	NR	LaDuca et al, 2017	(65)	
			3.3	92	NR	Marshall et al, 2017	(74)	
BRCA1	Undefined BRCA1	2.4	124	2015 to 2016	Ledet et al, 2017 (linked: Lin et al, 2017)	(67) (108)		
			1.1	92	NR	Marshall et al, 2017	(74)	
BRCA2	Undefined BRCA2	3.2	124	2015 to 2016	Ledet et al, 2017 (linked: Lin et al, 2017)	(67) (108)		
			4.3	92	NR	Marshall et al, 2017	(74)	
CHEK2	Undefined CHEK2	2.4	124	2015 to 2016	Ledet et al, 2017 (linked: Lin et al, 2017)	(67) (108)		
			2.2	92	NR	Marshall et al, 2017	(74)	
NBN	NBN		0.8	124	2015 to 2016	Ledet et al, 2017 (linked: Lin et al, 2017)	(67) (108)	
	NBN 657del5		0.3	1520	NR	Hebbrinck et al, 2006	(58)	
	novel S706* G>C		1.2	85	NR	Zuhlke et al, 2012	(102)	
	rs1805794 C>G E185Q		54.1	85	NR			
B2. DDR mutations in Ashkenazi Jewish patients with prostate cancer.

Country	Germline or somatic mutation	Prostate cancer group	Gene	DDR definition	% prevalence	n	Period of data collection	Author, year	References
Canada	Germline	PC	BRCA1	BRCA1 (185delAG)*^a	0.0^c	146	1991 to 2002	Hamel et al, 2003	(55)
			BRCA2	BRCA1 (5382insC)*^a	0.0^c	146	1991 to 2002		
				BRCA2 (6174delT)*^a	1.4^c	146	1991 to 2002		
			CHEK2	CHEK2 exon 10 1180G>A E394F	0.0^c	136	NR	Tischkowitz et al, 2008	(97)
				CHEK2 exon 11 1270T>C Y424H	0.0^c	136	NR		
				CHEK2 exon 11 1283C>T S428F	2.8^c	141	NR		
				CHEK2 exon 11 1312G>T D438Y	0.7^c	143	NR		
Israel	Germline	PC	BRCA1	BRCA1 (185delAG)^a	2.3^c	87	Jan 1991 to Jul 1997	Hubert et al, 1999	(59)
				BRCA1 (5382insC)^a	3.3^c	60	1998	Vazina et al, 2000	(98)

^aAnalysis for a specific mutation (not all mutations for a given gene), these studies were not highlighted in grey; ^bhigh risk of bias for country representation and statistical analysis; ^chigh risk of bias for country representation.

Note all patients are designated ‘PC’ and all mutations are germline (except Cheng 2011 which has unclear germline or somatic designation). ATM, ataxia telangiectasia mutated; BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; DDR, DNA damage repair; LoF, loss of function; MLH1, mutL homolog 1; MRE11A, MRE11 homolog A, double-strand break repair nuclease; NA, not applicable; NBN, nibrin; NR, not reported; PALB2, partner and localizer of BRCA2; PC, prostate cancer; RAD, DNA repair protein.
Somatic	USA Germline	CRPC
BRCA2	**BRCA2 (6174delT)** a	
DDR	**BRCA1 (185delAG) or BRCA2 (6174delT)**	
BRCA1	**BRCA1 (185delAG)** a	
BRCA1 (5382insC) a	**BRCA1 (185delAG)** a	
Total **BRCA1** [185delAG or 5382insC] a	**BRCA2 (6174delT)** a	
BRCA2	**BRCA2 (6174delT)** a	
	BRCA2*185delAG and BRCA2*6174delIT *	
BRCA1	**BRCA1*185delAG** a	
BRCA2	**BRCA2*6174delT** a	
	185delAG a	
	185delAG *and 5382insC a	
	5382insC a	
	6174delIT a	
	15delAG a	
	15delAG *and 5382insC a	
	5382insC a	
	6174delIT a	

Reference	**Frequency**	**Year**	**Description**	**Comments**					
Hubert et al, 1999	1.1c	1998	Jan 1991 to Jul 1997						
Giusti et al, 2003	1.5	1994 to 1995							
Lehrer et al, 1998	0.1	1998 to 2005							
Agalliu et al, 2009	0.2	1994 to 1995							
Nastiuk et al, 1999	1.1	1998 to 2005							
Kirchoff et al, 2004	2.0c	Apr 2000 to Sep 2002							
Gallagher et al, 2011	8.0	Jun 1998 to Dec 2007							
Gallagher et al, 2010	3.4c	Jun 1998 to Dec 2007							
Gallagher et al, 2010	4.5c	Jun 1998 to Dec 2007							
Lehrer et al, 1998	0.0c	60	NR						
Lehrer et al, 1998	1.1	965	1998 to 2005						
Lehrer et al, 1998	1.2b,c	83	1991 to 1996						
Lehrer et al, 1998	2.0c	251	Apr 2000 to Sep 2002						
Lehrer et al, 1998	0.1	975	1998 to 2005						
Lehrer et al, 1998	0.0c	60	NR						
Country	Germline or somatic mutation	Prostate cancer group	Gene	DDR definition	% prevalence	n	Period of data collection	Author, year	Reference(s)
---------	-----------------------------	-----------------------	----------	--------------------------------------	--------------	-----	--------------------------	--------------	--------------
Germany	Somatic	mCRPC	BRCA1	Undefined	0.0	53	1998 and 2016	Nientiedt et al, 2017	(82)
			BRCA2	Deleterious, otherwise undefined	15.1	53	1998 and 2016		
USA	Germline		ATM	All ATM mutations (c.C4106A; c.5707dupA; c.6227delT)	1.7	172	Oct 2011 to Dec 2015	Antonarakis et al, 2018	(34)

C2. DDR mutations in patients receiving a pre-specified treatment regimen.

*Analysis for a specific mutation (not all mutations for a given gene); *b*high risk of bias for country representation and statistical analysis; *c*high risk of bias for country representation. Note only Tischkowitz 2008(97) analyzed all mutations for a given gene. Agalliu 2009 (32) most representative of USA; Giusti 2003(51) most representative of Israel. All mutations were reported as founder mutations (except Tishkowitz 2008). BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; CRPC, castration-resistant PC; DDR, DNA damage repair; NR, not reported; PC, prostate cancer.
Gene	Description	Frequency	Patients	Time Period	Ref.	Additional Info
ATM	(c.5707dupA)	0.6	172	Oct 2011 to Dec 2015		
ATM	(c.6227delT)	0.6	172	Oct 2011 to Dec 2015		
ATM	(c.C4106A)	0.6	172	Oct 2011 to Dec 2015		
	All pathogenic (c.7271T>G; p.Val2424Gly missense; c.3245_3247delinsTGAT; p.His1082LeufsX14 framshift)	2.9	69	Jun 2013 to Aug 2014	Hart et al, 2016 (Linked: NCT01953640)	(Linked: NCT01953640) (56) (109)
	c.3245_3247delinsTGAT; p.His1082LeufsX14 framshift	1.4	69	Jun 2013 to Aug 2014		
	c.7271T>G; p.Val2424Gly missense	1.4	141	Jun 2013 to Aug 2014		
	All ATM c.A>8266>T; p.K>2756>X	0.7e	69	2001 to 2015	Pomerantz et al, 2017	(85)
ATR	All ATR c.4957C>T; p.Arg1653X Stop gained	1.4	141	Jun 2013 to Aug 2014	Hart et al, 2016 (Linked: NCT01953640)	(Linked: NCT01953640) (56) (109)
ATR	All ATR (c.2634-1G>A)	0.6	69	Oct 2011 to Dec 2015	Antonarakis et al, 2018	(34)
BRCA1	Undefined pathogenic	0.0	172	Jun 2013 to Aug 2014	Hart et al, 2016 (Linked: NCT01953640)	(Linked: NCT01953640) (56) (109)
BRCA2	All BRCA2 mutations (c.5946delT; c.C9076T; c.5946delT; c.C9285T; c.5946delT)	2.9	69	Oct 2011 to Dec 2015	Antonarakis et al, 2018	(34)
BRCA2 (c.5946delT)	0.6	172	Oct 2011 to Dec 2015			
-------------------	-----	-----	---------------------			
BRCA2 (c.C9076T)	0.6	172	Oct 2011 to Dec 2015			
BRCA2 (c.C9285T)	0.6	141	Oct 2011 to Dec 2015			
All BRCA2 variants	5.7	172	2001 to 2015			

c.1189_1190insTTAG; p.Q>397>fs	0.7	172	2001 to 2015
c.2330dupA; p.D>777>fs	0.7	172	2001 to 2015
c.3545_3546del; p.F>1182>fs	0.7	141	2001 to 2015
c.5946delIT; p.S>1982>fs	2.1	141	2001 to 2015
c.6275_6276del; p.L>2092>fs	0.7	141	2001 to 2015
c.8537_8538del p.E>2846>fs	0.7	69	2001 to 2015

All pathogenic variants (c.469_470delAA; p.Lys157ValfsX25 (frameshift); c.6444dupT; p.Ile2149TyrfsX2 frameshift; c.9513_9516delACTT; p.Leu3172AlafsX44 frameshift)	4.3	141	Jun 2013 to Aug 2014
c.469_470delAA; p.Lys157ValfsX25 (frameshift)	1.4	141	Jun 2013 to Aug 2014

Pomerantz et al., 2017 (85)
Gene	Mutation	NR/Frequency	Date Range	Reference
c.6444dupT; p.Ile2149TyrfsX2 frameshift †		1.4	Jun 2013 to Aug 2014	
c.9513_9516delACTT; p.Leu3172AlafsX44 frameshift a		1.4	Jun 2013 to Aug 2014	
CHEK2	All CHEK2 (c.A349G)	0.6	Oct 2011 to Dec 2015	Antonarakis et al, 2018 (34)
DDR	50 defined DDR genes, including: ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, FANCD2, MLH1, MRE11A, NBN, PALB2, RAD51C, BAP1, BRD1, BLM, BRAP, BRIP1, CDH1, CDK12, CENPQ, CHEK1, EPCAM1, ERCC1, ERCC2, ERCC3, ERCC4, ERCC6, FAM175A, FAM175B, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, GEN1, HDAC2, MLH3, MSH2, MSH6, MUTYH, PIF1, PMS2, RAD51, RAD51B, RAD51D, RAD54L, RDM1, TP53, and XRCC2.	12.8	Oct 2011 to Dec 2015	
FANCA	NR	0.0	Oct 2011 to Dec 2015	
All FANCA c.A>100>T; p.K>34>X	0.7	172	2001 to 2015	Pomerantz et al, 2017 (85)
MLH1	NR	0.0	Oct 2011 to Dec 2015	Antonarakis et al, 2018 (34)
MRE11A	NR	0.0	Oct 2011 to Dec 2015	
Gene	NR	Value	Year	Reference
--------	-----	-------	--------	---
NBN	NR	0.0	Oct 2011 to Dec 2015	
PALB2	NR	0.0	Oct 2011 to Dec 2015	
RAD51C	NR	0.0	Oct 2011 to Dec 2015	
PC	25 ATM genetic variants	44.0^c	Jun 1990 to Mar 2006	Cesaretti <i>et al</i>, 2007 (Linked: Cesaretti <i>et al</i>, 2005) (41); (110)
ATM	5557G>A^a	9.0^b	NR	Zhu et al, 2010

^aAnalysis for a specific mutation (not all mutations for a given gene), these studies were not highlighted in grey; ^bhigh risk of bias for country representation and statistical analysis; ^chigh risk of bias for country representation.

Treatments were as follows: Nientiedt 2017 (docetaxel); Antonarakis 2018 (enzalutamide or abiraterone); Hart 2016 (androgen deprivation therapy); Pomerantz 2017 (carboplatin-based chemotherapy); Cesaretti 2007 (brachytherapy).

ATM, ataxia telangiectasia mutated; *ATR*, ataxia telangiectasia and Rad3-related protein; *BAP1*, *BRCA1*-associated protein 1; *BLM*, Bloom syndrome RecQ like helicase; *BRCA*, breast cancer susceptibility gene; *BRAP*, *BRCA1*-associated binding protein; *BRIP1*, *BRCA1* interacting protein C-terminal helicase 1; *CDH1*, cadherin 1; *CDK*, cyclin-dependent kinase; *CENPQ*, centromere protein Q; *CHEK2*, checkpoint kinase 2; *CRPC*, castration-resistant PC; *DDR*, DNA damage repair; *EPCAM*, epithelial cell adhesion molecule; *ERCC*, excision repair cross-complementation group; *FAM175*, family with sequence similarity 175,member; *FANC*, Fanconi anemia complementation group; *GEN1*, *GEN1*, Holliday junction 5’ flap endonuclease; *HDAC*, histone deacetylase; *m*, metastatic; *MLH1*, mutL homolog 1; *MRE11A*, *MRE11* homolog A, double-strand break repair nuclease; *MSH*, muS homolog; *MUTYH*, mutY DNA glycosylase; *NBN*, nibrin; *PALB2*, partner and localizer of *BRCA2*; *PC*, prostate cancer; *PIF1*, PIF1 5’-to-3’ DNA helicase; *PMS2*, *PMS1* homolog 2, mismatch repair system component; *RAD*, DNA repair protein; *RDM1*, *RAD52* motif containing 1XRCC, x-ray repair cross complementing.
D2. DDR mutations in patients with young-onset PC.

Country	PC Group	Selected population	Germline or somatic mutation	Definition	Period of data collection	Gene	% prevalence	n	Author, year	References
UK	Young-onset PC (≤65 years)	Young-onset PC (≤65 years)	Germline	All *BRCA2* (protein-truncating mutations - 16 frameshift and 3 nonsense)	NR	*BRCA2*	1.2	1589	Kote-Jarai *et al.*, 2011 (Linked: Kote-Jarai *et al.*, 2011)	
	Young-onset PC (≤55 years)	Young-onset PC (≤55 years)		All *BRCA2* (deleterious; 5 frameshift, 1 splice site)	1992 to 1999		2.3	263	Edwards *et al.*, 2010 (Linked: Edwards *et al.*, 2003)	
USA			All protein truncating and SNPs in *BRCA2*	Jan 1993 to Dec 2005			0.69	290	Agalliu *et al.*, 2007 (31)	

E2. DDR mutations in African-American patients.

Country	PC Group	Selected population	Germline or somatic	Definition	Period of data collection	Gene	% prevalence	n	Author, year	References
Country	PC Group	Selected population	Germline or somatic mutation	Definition	Period of data collection	Gene	% prevalence	n	Author, yr	References
---------	----------	---------------------	----------------------------	------------	--------------------------	------	--------------	----	------------	------------
USA	African American	African American	Somatic	Pathogenic and variant of unknown significance (VUS) mutations	NR	BRCA2	3.5	857	Petrovics et al, 2016	(84)
Germline	DDR (BRCA1 or BRCA2)	NR	DDR	3.7	857					

F. DDR mutations in patients with lethal PC.
Appendix S5. Baseline characteristics.

Abida et al, 2017 (30)
USA
PC; mPC; mCRPC. Diagnosis: Histology
Other details (Mixed population of locoregional (n=50); biochemically recurrent (n=53); metastatic (n=348))
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=451)
Mean age (SD): NR (NR)
Median age (range): 61 (41, 84)
Ethnicity: White non-Hispanic (23.7); White Hispanic (0.7); White unknown (61.6); Black (5.3); Asian (1.6); Unknown (6.9); Other (0.2)
Gleason score: 6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)
AJCC stage: NR
TNM stage: M0 (75); M1 (24); Unknown MX (1)
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: Surgery (57); ADT (23); Radiation +/- ADT (16); Other/Unknown (4)
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): 9.1 (NR)
Median PSA ng/ml (range): NR) (0.9, 11330)

Comments: Age and PSA are mean levels at diagnosis; 451 patients were included for somatic mutation analysis; 221 patients were included for germline mutation analysis

ADT, androgen deprivation therapy; AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Agalliu et al, 2007 (31)

USA

Other. Diagnosis: Histology
Other details (early onset, <55 years)

Population (further details): unselected (NR)
Treatment (further details): NR (NR)

Total (n=290)

Mean age (SD): NR (NR)
Median age (range): NR (NR)

Ethnicity: Caucasian (86.8); African American (11.4); Jewish (1.7)

Gleason score: 2-4 (6.6); 5-6 (52.1); 3+4 (27.2); 4+3 (6.9); 8-10 (5.5); Missing (1.7)

AJCC stage: NR

TNM stage: NR
ECOG score	0: NR	1: NR	0-1: NR	≥2: NR
Previous treatments:	NR			
Familial history of PC:	108 (37.3)			
Mean years since diagnosis (SD):	NR (NR)			
Median years since diagnosis (range):	NR (NR)			
Mean PSA ng/ml (SD):	NR (NR)			
Median PSA ng/ml (range):	NR (NR)			
Comments:	35-49 years (33.4%); 50-54 years (66.6%). PSA ng/ml: 0-3.9 (19); 4.0-9.9 (48.3); 10-19.9 (12.4); ≥20 (10.3); missing (10)			

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Agalliu et al, 2009 (32)

USA

PC. Diagnosis: Reason for prostate cancer diagnosis: Abnormal PSA 741 (73.1), Abnormal DRE 123 (12.1), Symptoms 25 (2.5), TURP for BPH 15 (1.5), Other procedures 57 (5.6), Unknown 18 (1.8)

Other details (NR)

Population (further details): Ashkenazi (NR)

Treatment (further details): NR (NR)

Total (n=979)
Attribute	Value
Mean age (SD):	69.4 (NR)
Median age (range):	NR (NR)
Ethnicity: Ashkenazi Jewish men	(100)
Gleason score:	2-6 (63); 7 (25); 8-10 (12); unknown (8)
AJCC stage:	NR
TNM stage:	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments:	NR
Familial history of PC:	276 (28.2)
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)
Comments: familial history in column AO is only data on first-degree family history	

AJCC, American Joint Committee on Cancer; **ECOG**, Eastern Cooperative Oncology Group; **m**, metastatic; **NR**, not reported; **PC**, prostate cancer; **PSA**, prostate-specific antigen; **SD**, standard deviation; **TNM**, Tumor Nodes Metastasis classification of malignant tumors.

Angele et al, 2004 (13)

UK
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=637)
Mean age (SD): NR (NR)
Median age (range): NR (43, 86)
Ethnicity: Caucasian (100)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Annala et al, 2017 (33)

Canada
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): Mixed (AR-directed therapies, including prostatectomy 7 (32%); external beam radiation 5 (23%); androgen deprivation 8 (36%); brachytherapy 2 (9%); docetaxel/cabazitaxel 9 (41%); enzalutamide 5 (23%); abiraterone 8 (36%); Other 0 (0%))

DDR+ (n=22)	DDR- (n=113)
Mean age (SD): 63 (NR)	Mean age (SD): 64 (NR)
Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: NR	Ethnicity: NR
Gleason score: 6 (9); 7 (23); 8-10 (59); unknown (9)	Gleason score: 6 (5); 7 (19); 8-10 (68); unknown (8)
AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR
ECOG score	ECOG score
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR
Familial history of PC: NR	Familial history of PC: NR
---------------------------	---------------------------
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 10.3 (NR)	Mean PSA ng/ml (SD): 27.2 (NR)
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, AR, androgen receptor; Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Antonarakis et al, 2018 (34)

USA

mCRPC. Diagnosis: Histologically confirmed prostate adenocarcinoma, progressive disease despite “castration levels” of serum testosterone (<50 ng/dl), and radiographic metastases on computed tomography (CT) or technetium-99 bone scans. Patients had to have three or more rising serum prostate-specific antigen (PSA) values measured ≥ 2 weeks apart.

Other details (NR)

Population (further details): treatment (enzalutamide or abiraterone)

Treatment (further details): Enzalutamide was given at 160 mg daily, and abiraterone was given at 1000 mg daily (with prednisone 5 mg twice daily). (NR)

DDR+ (n=22)	DDR- (n=150)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): 64 (NR)	Median age (range): 70 (NR)
Ethnicity: White (86.4); non-white (13.6)	Ethnicity: White (87.3); non-white (12.7)
Gleason score: ≥8 (68.2)	Gleason score: ≥8 (65.2)
AJCC stage: NR	AJCC stage: NR
TNM stage: T1/T2 (21.1); T3/T4 (78.9); M1 (19.0)	TNM stage: T1/T2 (55.8); T3/T4 (44.2); M1 (26.1)
ECOG score	Previous treatments: chemotherapy (22.7)
------------	--
0: NR	
1: NR	
0-1: NR	
≥2: NR	

Familial history of PC: NR
Familial history of PC: NR

Mean years since diagnosis (SD): 6.3 (NR)	Mean years since diagnosis (SD): 7.4 (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 22.9 (NR)	Median PSA ng/ml (range): 22.6 (NR)

Comments: ECOG ≥1 (5.3)	Comments: ECOG ≥1 (32.1)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Beltran et al, 2013 (22)

USA

Primary PC; mPC; CRPC. Diagnosis: Histology

Other details (Localized PC, hormone-naïve mPC, and mCRPC)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=45)
Category	Value
Mean age (SD)	63 (NR)
Median age (range)	NR (NR)
Ethnicity	NR
Gleason score	NR
AJCC stage	NR
TNM stage	NR
ECOG score	
0: NR	NR
1: NR	NR
0-1: NR	NR
≥2: NR	NR
Previous treatments	NR
Familial history of PC	NR
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)
Comments	Mean age calculated based on 20 out of 45 patients in supplementary table 3

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Beltran et al, 2015 (35)
USA
Primary PC; mPC. Diagnosis: Histology
Other details (Mixed population of localized PC (n=69) and advanced mPC (n=29))
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=97)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): ()
Mean PSA ng/ml (SD): NR (NR)

Median PSA ng/ml (range): NR (NR)
Comments: For a full text study with a comprehensive supplementary appendix, there was very little information on population (age, cancer scores, previous treatments, etc)
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Boudadi et al, 2017 (36)

USA

Other. Diagnosis: Histologically or cytologically confirmed adenocarcinoma of the prostate; Metastatic disease as defined by 2 or more bone metastases confirmed by bone scintigraphy or radiographic soft tissue metastasis; detectable circulating tumor cells (CTCs) with detectable AR-V7 splice-variant by reverse transcriptase (RT)-polymerase chain reaction (PCR).

Other details (androgen receptor-variant-7 positive mCRPC)

Population (further details): unselected (NR)

Treatment (further details): Nivolumab and ipilimumab (Nivolumab 3 mg/kg IV over 60 minutes and ipilimumab 1 mg/kg IV over 90 minutes every 3 weeks for 12 weeks. Patients then receive maintenance nivolumab 3 mg/kg IV over 60 minutes every 2 weeks for 36 weeks in the absence of disease progression or unacceptable)

Total (n=15)

Mean age (SD): NR (NR)
Median age (range): 65 (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score

1: NR
0-1: NR
≥2: NR

Previous treatments: ≥4 prior treatment for mCRPC (60)

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 115 (NR)

Comments: Median follow-up 8.4 months (range: 1.9, 10.5 months)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; IV, intravenous; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Browning et al, 2006 (14)

USA

PC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=98)
Characteristic	Value
Mean age (SD):	NR (NR)
Median age (range):	63 (40, 81)
Ethnicity:	White (100)
Gleason score:	\(\leq 6 \) (63.3); >6 (36.7)
AJCC stage:	I (9.2); II (68.4); III (22.4)
TNM stage:	NR
ECOG score	0: NR
	1: NR
	0-1: NR
	\(\geq 2\): NR
Previous treatments:	radical prostatectomy (100)
Familial history of PC:	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	\(\leq 4\) ng/ml (17.3%); 4-10 ng/ml (53.1); \(\geq 10\) ng/ml (29.6) (NR)
Median PSA ng/ml (range):	NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

The Cancer Genome Atlas, 2015 (37)
Multinational
PC. Diagnosis: Histology
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): radical prostatectomy (NR)
Total (n=333)
Mean age (SD): NR (NR)
Median age (range): 61 (43, 76)
Ethnicity: Caucasian (81.1); African descent (12.9); Asian (2.4); NR (3.6)
Gleason score: 3+3 (19.5); 3+4 (30.6); 4+3 (23.4); ≥8 (26.4)
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: radical prostatectomy
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 7.4 (NR)
Median PSA ng/ml (range): NR) (1.6, 87)
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Castro et al, 2011 (38)

	Total (n=2181)	BRCA1+ (n=5)	BRCA2+ (n=34)	DDR- (n=2142)
UK				
PC. Diagnosis	NR			
Other details	NR			
Population	unselected (NR)			
Treatment	NR (NR)			
Mean age (SD)	NR (NR)	Mean age (SD): NR (NR)	Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): 57 (32, 89)	Mean age (range): NR (NR)	Mean age (range): NR (NR)	Mean age (range): NR (NR)	
Ethnicity	NR	Ethnicity: NR		
Gleason score	NR	Gleason score: ≥8 (20)		
AJCC stage	NR	AJCC stage: NR		
TNM stage	NR	TNM stage: N1 (50); M1 (20)		
ECOG score	NR	ECOG score		
Previous treatments	NR	Previous treatments: NR		
Familial history of PC	NR	Familial history of PC: NR		

Mean age (SD): NR (NR)
Median age (range): 57 (32, 89)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
| Mean years since diagnosis (SD): NR (NR) |
|--|--|--|--|
| Median years since diagnosis (range): NR (NR) |
| Mean PSA ng/ml (SD): NR (NR) |
| Median PSA ng/ml (range): NR (NR) |
| Comments: details for BRCA1, BRCA2, and non-carriers |

AJCC, American Joint Committee on Cancer; BRCA, breast cancer susceptibility gene; ECOG, Eastern Cooperative Oncology Group; IV, intravenous; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Castro et al, 2013 (39)

UK
PC. Diagnosis: Histology
Other details (NR)
Population (further details): unselected (NR)

Treatment (further details): Mixed treatment Primary radical treatment in non-metastatic disease: External-beam radiotherapy (35.4%), Radical prostatectomy (33.8%), Brachytherapy (3.1%), Any local radical treatment (72.3%). Primary hormone treatment indication for early disease: Neoadjuvant-adjuvant (35.9%), Single therapy (6.3%). Primary hormone treatment indication for advanced disease: Palliative (55.4%). Other treatments for metastatic disease: chemotherapy (17.1%).

| DDR+ (n=79) | BRCA1+ (n=18) | BRCA2+ (n=61) | DDR- (n=1940) |
	Mean age (SD): NR (NR)			
Mean age				
Median age	58.3 (41.7, 88)	60.8 (48.3, 73.5)	57.6 (41.7, 88)	57.2 (32.3, 88.9)
Ethnicity:	NR	NR	NR	NR
Gleason score:	≤6 (25.3); 7 (24.1); 8-10 (35.4); unknown=(15.2)	≤6 (33.3); 7 (22.2); 8-10 (27.8); unknown=(16.7)	≤6 (23.0); 7 (24.6); 8-10 (37.7); unknown=(14.8)	≤6 (37.8); 7 (26.3); 8-10 (15.4); unknown=(20.5)
AJCC stage:	I (10.1); IIa (11.4); IIb (16.5); III (16.5); IV (27.8); not assessed (17.7)	I (11.1); IIa (5.6); IIb (16.7); III (22.2); IV (16.7); not assessed (27.8)	I (9.8); IIa (13.1); IIb (16.4); III (18.1); IV (31.1); not assessed (11.5)	I (19.2); IIa (16.8); IIb (11.0); III (18.9); IV (12.8); not assessed (21.3)
TNM stage:	NR	NR	NR	NR
ECOG score:	0: NR	0: NR	0: NR	0: NR
	1: NR	1: NR	1: NR	1: NR
	0-1: NR	0-1: NR	0-1: NR	0-1: NR
	≥2: NR	≥2: NR	≥2: NR	≥2: NR
Previous treatments:	NR	NR	NR	NR
Familial history of PC:	NR	NR	NR	NR
Mean years since diagnosis (SD):	NR (NR)	NR (NR)	NR (NR)	NR (NR)
Median years since diagnosis (range):	NR (NR)	NR (NR)	NR (NR)	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)	NR (NR)	NR (NR)	NR (NR)
Median PSA ng/ml (range):	11.5) (0.5, 3000)	8.9) (0.7, 3000)	15.1) (0.5, 761)	11.3) (0.2, 7800)
AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Castro et al, 2015 (40)

UK	**UK**
Primary PC. Diagnosis: Histology	Population (further details): unselected (NR)
Other details (NR)	Treatment (further details): radical prostatectomy (NR)
	DDR+ (n=35)
	Mean age (SD): NR (NR)
	Median age (range): 58.7 (47.1, 65.3)
	Ethnicity: NR
	Gleason score: ≤6 (42.9); 7 (28.6); 8-10 (25.7); unknown=(2.9)
	AJCC stage: I (11.4); IIa (22.9); IIb (42.9); III (17.1); IV (5.7)
	TNM stage: NR
	DDR- (n=500)
	Mean age (SD): NR (NR)
	Median age (range): 56.9 (36.9, 85.8)
	Ethnicity: NR
	Gleason score: ≤6 (56.8); 7 (32.2); 8-10 (8.8); unknown (2.2)
	AJCC stage: I (34.2); IIa (35.4); IIb (12.6); III (15.8); IV (2.0)
	TNM stage: NR
ECOG score	ECOG score
------------	------------
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR

Previous treatments: ADT (14.3)	Previous treatments: ADT (8.8)

Familial history of PC: NR	Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 6) (0.5, 29.1)	Median PSA ng/ml (range): 7.6) (0.7, 138.9)

ADT, androgen deprivation therapy; AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Castro et al, 2015 (40)

UK

Primary PC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): external-beam radiotherapy (NR)

| DDR+ (n=32) | DDR- (n=735) |
| \hline Mean age (SD): NR (NR) & Mean age (SD): NR (NR) \\
Median age (range): 59.3 (46.0, 77.5) & Median age (range): 57.3 (36.0, 79.0) \\
Ethnicity: NR & Ethnicity: NR \\
Gleason score: ≤6 (21.9); 7 (34.4); 8-10 (43.8); unknown (0) & Gleason score: ≤6 (44.1); 7 (35.1); 8-10 (18.5); unknown (2.3) \\
AJCC stage: I (12.5); IIa (6.3); IIb (18.8); III (37.5); IV (25.0) & AJCC stage: I (19.7); IIa (19.3); IIb (22.0); III (33.5); IV (5.4) \\
TNM stage: NR & TNM stage: NR \\
ECOG score & ECOG score \\
0: NR & 0: NR \\
1: NR & 1: NR \\
0-1: NR & 0-1: NR \\
≥2: NR & ≥2: NR \\
Previous treatments: ADT (84.4) & Previous treatments: ADT (77.7) \\
Familial history of PC: NR & Familial history of PC: NR \\
Mean years since diagnosis (SD): NR (NR) & Mean years since diagnosis (SD): NR (NR) \\
Median years since diagnosis (range): NR (NR) & Median years since diagnosis (range): NR (NR) \\
Mean PSA ng/ml (SD): NR (NR) & Mean PSA ng/ml (SD): NR (NR) \\
Median PSA ng/ml (range): 19.4 (2.1, 68.5) & Median PSA ng/ml (range): 13.9 (1.2, 143.0) \\
\hline
ADT, androgen deprivation therapy; AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Cesaretti et al, 2007 (41)

USA
PC. Diagnosis: Biopsy and Histology
Other details (Patients were staged according to the 1992 American Joint Committee on Cancer standard and had biopsy-proven prostatic adenocarcinoma)

Population (further details): treatment (Brachytherapy)
Treatment (further details): Brachytherapy (125I implant, a 103Pd implant, or the combination of external beam radiotherapy with a 103Pd implant)

Total (n=108)
Mean age (SD): NR (NR)
Median age (range): 64 (46, 79)

Ethnicity: NR
Gleason score: 5 (5); 6 (81); 7 (12); 8-10 (3)

AJCC stage: NR
TNM stage: T1b (1); T1c (59); T2a (20); T2b (15); T2c (4); T recurrent after 70 Gy in 1996 (1)

ECOG score
0: NR
1: NR
0-1: NR
≥2: NR

Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 6.1) (0.8, 41)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Cheng et al, 2011 (23)

Australia

PC. Diagnosis: Histology
Other details (NR)

Population (further details): familial (PC patients from familial breast cancer families)

Treatment (further details): NR (NR)

Total (n=147)

Mean age (SD): NR (NR)
Median age (range): NR (NR)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR

TNM stage: NR

ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Data apparently recorded but not presented in abstract

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Chi et al, 2017 (42)

Canada

mCRPC. Diagnosis: Biopsy histology; PSA; bone or CT scan

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): Mixed (Abiraterone [Abi] acetate 1000 mg PO OD with prednisone 5 mg PO BID or 10 mg OD as per standard of care, or until PSA progression then cross-over to ENZ; enzalutamide 160 mg PO OD as per standard of care, or until PSA progression then cross-over to Abi)

Total (n=NR)

Mean age (SD): NR (NR)

Median age (range): 75 (49, 74)

Ethnicity: NR

Gleason score: NR
| **AJCC stage:** | NR |
| **TNM stage:** | NR |
| **ECOG score** |
0: NR
1: NR
0-1: NR (83)
≥2: NR |
Previous treatments:	None
Familial history of PC:	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	36.1 (NR)
Median PSA ng/ml (range):	NR) (1.7, 2817)

AJCC, American Joint Committee on Cancer; **BID**, twice daily; **CRPC**, castration-resistant PC; **CT**, computed tomography; **ECOG**, Eastern Cooperative Oncology Group; **NR**, not reported; **OD**, once daily; **PC**, prostate cancer; **PO**, per oral; **PSA**, prostate-specific antigen; **SD**, standard deviation; **TNM**, Tumor Nodes Metastasis classification of malignant tumors.

Dall'Era et al, 2017 (8)

USA

Primary PC; mPC. Diagnosis: NR

Other details (NR)

Population (further details): treatment (NR)

Treatment (further details): NR (NR)
Total (n=936)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Very limited patient characteristics provided

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Damaraju et al, 2006 (26)

Country	Canada

Primary PC. Diagnosis: Biopsy with T classification, staging bone scan and CT scan

Other details (NR)

Population (further details): treatment (3-DCRT)

Treatment (further details): 3-DCRT (The clinical target volume (prostatic tissue containing biopsy-proven adenocarcinoma or its suspected microscopic extensions) received a mean dose of 77.1 Gy (range, 68.3-82.1 Gy) in five daily fractions per week. The number of fractions ranged from 35 to 44, and in all patients, the planning target volume received a minimum dose per fraction of 1.8 to 2 Gy. Pelvic lymph nodes were not treated by intention in any patient).

Total (n=83)

- Mean age (SD): 67 (NR)
- Median age (range): NR (45, 78)
- Ethnicity: Caucasian (86%); Caucasian French-Canadian (7%); Aboriginal (4%); Pacific Asian (2%); Afro-Caribbean (1%)
- Gleason score: NR
- AJCC stage: NR
- TNM stage: T1 (22); T2 (53); T3 (24); Tx (1)
- ECOG score
 - 0: NR
 - 1: NR
 - 0-1: NR
 - ≥2: NR

Previous treatments: Abdominopelvic surgery (n=30; 36%); neoadjuvant hormone therapy (n=35; 42%); adjuvant hormone therapy (n=6; 7%).

Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 11.8 (NR)
Median PSA ng/ml (range): NR (0.2, 74.0)

AJCC, American Joint Committee on Cancer; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; 3-DCRT, three dimensional conformational radiation therapy.

Daniel et al, 2017 (9)

USA
mCRPC. Diagnosis: NR
Other details (predominantly relapsed, refractory or metastatic prostate carcinoma (mPC + CRPC + mCRPC))
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=1911)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score	0: NR
	1: NR
0-1: NR	
≥2: NR	

Previous treatments:	NR

| Familial history of PC: | NR |

Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)

Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)

| Comments: | no details |

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Dawson et al, 2016 (11)

USA

PC. Diagnosis:	NR

Other details (NR):

| Population (further details): | unselected (NR) |

| Treatment (further details): | NR (NR) |

Total (n=437):

88
Mean age (SD): NR (NR)
Median age (range): 67 (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Decker et al, 2016 (43)

Multinational
PC and mCRPC. Diagnosis: Histology
Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): radical prostatectomy or NR (NR)

PC USA (n=10)	PC Multinational (Australia; USA) (n=50)	mCRPC Multinational (USA, UK, Israel) (n=150)
Mean age (SD): 63.6 (NR)	Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): NR (54, 77)	Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: European descent (100)	Ethnicity: NR	Ethnicity: NR
Gleason score: 7 (10); 8 (20); 9 (60); 10 (10)	Gleason score: <7 (70); 8-10 (22); NR (8)	Gleason score: NR
AJCC stage: NR	AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR	TNM stage: NR
ECOG score	ECOG score	ECOG score
0: NR	0: NR	0: NR
1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR
Previous treatments: radical prostatectomy (100)	Previous treatments: treatment naïve (100)	Previous treatments: NR
Familial history of PC: 2 (20)	Familial history of PC: NR	Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 11.6 (NR)	Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
--------------------------------	--------------------------------	--------------------------------
Median PSA ng/ml (range): NR (4.4, 22.3)	Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)

Comments: Original study cohort of ten patients from the Mayo clinic

Comments: Reference study of 50 patients from Baca et al

Comments: Second reference study of 150 patients from Robinson et al

AJCC, American Joint Committee on Cancer; **CRPC**, castration-resistant PC; **ECOG**, Eastern Cooperative Oncology Group; **m**, metastatic; **IV**, intravenous; **NR**, not reported; **PC**, prostate cancer; **PSA**, prostate-specific antigen; **SD**, standard deviation; **TNM**, Tumor Nodes Metastasis classification of malignant tumors; **UK**, United Kingdom; **USA**, United States of America.

Edwards et al, 2003 (44)

UK

Other. Diagnosis: <55, no further details

Other details (Young onset)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=263)

Mean age (SD): 51 (NR)

Median age (range): NR (32, 55)

Ethnicity: White (96); Black African/Caribbean (4)

Gleason score: NR

AJCC stage: NR

TNM stage: NR
ECOG score	0: NR
	1: NR
	0-1: NR
	≥2: NR
Previous treatments	NR
Familial history of PC	NR
Mean years since diagnosis	NR (NR)
Median years since diagnosis	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Evans et al, 2016 (45)

USA

PC. Diagnosis: NR

Other details (high risk)

Population (further details): unselected (NR)

Treatment (further details): radical prostatectomy (NR)

Mayo discovery (n=545)	Mayo validation (n=232)	Cleveland clinic (n=130)	Thomas Jefferson University (n=183)
Mean age (SD): 65.3 (6.4)	Mean age (SD): 63.1 (7.4)	Mean age (SD): 61.6 (6.3)	Mean age (SD): 60 (7)
--------------------------	---------------------------	---------------------------	-----------------------
Median age (range): NR (NR)			
Ethnicity: NR	Ethnicity: NR	Ethnicity: NR	Ethnicity: NR
Gleason score: 6 (11); 7 (49); 8 (13); 9 (24); 10 (2); NA (1)	Gleason score: 6 (7); 7 (50); 8 (17); 9 (25); 10 (1); NA (1)	Gleason score: 6 (17); 7 (62); 8 (13); 9 (12); 10 (0); NA (0)	Gleason score: 6 (13); 7 (57); 8 (17); 9 (10); 10 (1.5); NA (1.5)
AJCC stage: I (0); II (40); III (46); IV (0); NA (13)	AJCC stage: I (0); II (42); III (44); IV (0); NA (14)	AJCC stage: NA (100)	AJCC stage: I (0); II (8); III (87); IV (5); NA (0)
TNM stage: NR	TNM stage: NR	TNM stage: NR	TNM stage: NR
ECOG score	ECOG score	ECOG score	ECOG score
0: NR	0: NR	0: NR	0: NR
1: NR	1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR	Previous treatments: NR	Previous treatments: NR
Familial history of PC: NR			
Mean years since diagnosis (SD): NR (NR)			
Median years since diagnosis (range): NR (NR)			
Mean PSA ng/ml (SD): NR (NR)			
Median PSA ng/ml (range): NR (<10 (52); 10-20 (22); >20 (24); NA (3))	Median PSA ng/ml (range): NR (<10 (54); 10-20 (27); >20 (19); NA (0))	Median PSA ng/ml (range): NR (<10 (69); 10-20 (23); >20 (7); NA (1))	Median PSA ng/ml (range): NR (<10 (64); 10-20 (19); >20 (11); NA (5))
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NA, not available; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Fachal et al, 2012 (46)
Spain
PC. Diagnosis: NR
Other details (NR)
Population (further details): treatment (Three-dimensional conformational radiotherapy (3D-CRT))
Treatment (further details): Three-dimensional conformational radiotherapy (3D-CRT) (1.8-2 Gy/fraction)
Total (n=698)
Mean age (SD): 71 (NR)
Median age (range): NR (47, 86)
Ethnicity: NR
Gleason score: 2-4 (10.03); 5-6 (51.58); 7 (26.65); 8-10 (10.17); missing (1.58)
AJCC stage: NR
TNM stage: ≤cT2a (33.1); cT2b (22.4); cT2c (15.5); cT3 (8.3); cT4 (1); recurrent (18.9); Missing (0.9)
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: radiotherapy; prostatectomy (15.9%)
Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): 15.95 (NR)
Median PSA ng/ml (range): NR (0.63, 236)

Comments: patients with radical radiotherapy received a total dose for the PTV I that ranged from 70 to 76 Gy, as well as 56 Gy for the PTV II and 46 Gy for PTV III

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; PTV, planning target volume; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Feldman et al, 2014 (10)

USA

PC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=330)

Mean age (SD): NR (NR)
Median age (range): NR (NR)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: no details

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Fontugne et al, 2015 (47)

Multinational
PC. Diagnosis: NR
Other details (Mixed population of patients with a spectrum of localized and advanced PC)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=51)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: 69 tumors from 51 patients analyzed

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Gallagher et al, 2012 (48)
USA
CRPC. Diagnosis: Pathology	Other details (NR)
Population (further details): Ashkenazi (NR)	
Treatment (further details): Mixed treatment (For the total population, treatment was reported for 76 taxanes based therapies: single-agent docetaxel (n=33 patients), docetaxel + estramustine (17 patients), docetaxel + samarium (five patients), docetaxel + bevacizumab (four patients), docetaxel + 17AAG (two patients), docetaxel + DN-101 (two patients), docetaxel + carboplatin (one patient), docetaxel + traztusumab (one patient), docetaxel + cyclophosphamide (one patient), paclitaxel (three patients), paclitaxel + carboplatin + estramustine (six patients) and paclitaxel + estramustine (one patient).)	

DDR+ (n=7)	DDR- (n=81)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): 72 (59, 82)	Median age (range): 72 (59, 82)
Ethnicity: Jewish (100)	Ethnicity: Jewish (100)
Gleason score: ≤ 6 (14); 7 (43); 8 (0); 9 (44); unknown (0)	Gleason score: ≤ 6 (16); 7 (35); 8 (23); 9 (23); unknown (2)
AJCC stage: NR	AJCC stage: NR
TNM stage: T1 (14); T2 (43); T3 (29); T4 (0); unknown (14)	TNM stage: T1 (14); T2 (26); T3 (27); T4 (4); unknown (30)
ECOG score	ECOG score
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR
Previous treatments: Prostatectomy (43); Radiotherapy alone (14); Radiotherapy + ADT (29); Hormones alone (14); Watchful waiting (0); Chemotherapy (0)	Previous treatments: Prostatectomy (48); Radiotherapy alone (27); Radiotherapy + ADT (15); Hormones alone (9); Watchful waiting (4); Chemotherapy (1)
Familial history of PC: NR	Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
--	--
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 199 (3, 811)	Median PSA ng/ml (range): 73 (18, 262)

ADT, androgen deprivation therapy; AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Gallagher et al, 2012 (49)

USA

Primary PC. Diagnosis: Pathology
Other details (localized)

Population (further details): Ashkenazi (Ashkenazi Jewish background)

Treatment (further details): radical prostatectomy; radiation therapy; radiation therapy + hormones; Hormone therapy alone; Chemotherapy alone; Watchful waiting; (NR)

BRCA1+ (n=6)	BRCA2+ (n=20)	DDR- (n=806)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): 67.1 (NR)	Median age (range): 62 (NR)	Median age (range): 68.2 (NR)
Ethnicity: Jewish (100)	Ethnicity: Jewish (100)	Ethnicity: Jewish (100)
Gleason score: <7 (50); ≥7 (50); NA (0)	Gleason score: <7 (10); ≥7 (85); NA (5)	Gleason score: <7 (40.2); ≥7 (54.2); NA (5.6)
AJCC stage: NR	AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR	TNM stage: NR
ECOG score	ECOG score	ECOG score
------------	------------	------------
0: NR	0: NR	0: NR
1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR

Previous treatments: Prostatectomy (0); Radiotherapy (17); Radiotherapy + Hormones (50); Hormones alone (34)

Previous treatments: Prostatectomy (50); Radiotherapy alone (20); Radiotherapy + Hormones alone (30)

Previous treatments: Prostatectomy (30); Radiotherapy alone (34); Radiotherapy + Hormones (27); Hormones alone (4); Watchful waiting (4); Chemotherapy (0.1)

Familial history of PC: NR

Familial history of PC: NR

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)

Mean years since diagnosis (SD): NR (NR)

Mean years since diagnosis (SD): NR (NR)

Mean years since diagnosis (range): NR (NR)

Mean years since diagnosis (range): NR (NR)

Mean years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)

Mean PSA ng/ml (SD): NR (NR)

Mean PSA ng/ml (SD): NR (NR)

Mean PSA ng/ml (range): 6.5 (5, 8)

Mean PSA ng/ml (range): 6.5 (5, 8)

Mean PSA ng/ml (range): 6.5 (5, 8)

Mean PSA ng/ml (range): 7 (6, 9)

Mean PSA ng/ml (range): 7 (6, 9)

Mean PSA ng/ml (range): 7 (6, 9)

Mean PSA ng/ml (range): 7 (2, 10)

Mean PSA ng/ml (range): 7 (2, 10)

Mean PSA ng/ml (range): 7 (2, 10)

AJCC, American Joint Committee on Cancer; BRCA, breast cancer susceptibility gene; CRPC, castration-resistant PC; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NA, not available; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Gambhira et al, 2016 (17)

USA

mCRPC. Diagnosis:

Other details (NR)

Population (further details): unselected (NR)
	Value
Treatment (further details):	NR (NR)
Total (n=13)	
Mean age (SD):	NR (NR)
Median age (range):	NR (NR)
Ethnicity:	NR
Gleason score:	NR
AJCC stage:	NR
TNM stage:	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments:	NR
Familial history of PC:	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range)	NR (NR)
Comments:	No patient characteristics provided

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Gayther et al, 2000 (50)
UK
PC. Diagnosis: NR
Other details (NR)
Population (further details): familial (NR)
Treatment (further details): NR (NR)
Total (n=38)
Mean age (SD): 60.3 (NR)
Median age (range): NR (43, 76)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Giusti et al, 2003 (51)

Israel

PC. Diagnosis: Histology

Other details (NR)

Population (further details): Ashkenazi (Newly diagnosed Ashkenazi Israelis)

Treatment (further details): NR (NR)

Total (n=940)	BRCA1+ (n=15)	BRCA2+ (n=14)	DDR- (n=145)
Mean age (SD): NR (NR)	Mean age (SD): 74.2 (NR)	Mean age (SD): 71.6 (NR)	Mean age (SD): 73.6 (NR)
Median age (range): NR (NR)			
Ethnicity: NR	Ethnicity: NR	Ethnicity: NR	Ethnicity: NR
Gleason score: NR	Gleason score: NR	Gleason score: NR	Gleason score: NR
AJCC stage: NR	AJCC stage: NR	AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR	TNM stage: NR	TNM stage: NR
ECOG score	ECOG score	ECOG score	ECOG score
0: NR	0: NR	0: NR	0: NR
1: NR	1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR	Previous treatments: NR	Previous treatments: NR
Familial history of PC: NR			
Mean years since diagnosis (SD): NR (NR)			
Median years since diagnosis (range): NR (NR)			
Mean PSA ng/ml (SD): NR (NR)			
Median PSA ng/ml (range): NR (NR)			

AJCC, American Joint Committee on Cancer; BRCA, breast cancer susceptibility gene; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; IV, intravenous; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Gourdin et al, 2016 (52)

USA

mPC. Diagnosis: 82% had CRPC

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=55)

Mean age (SD): NR (NR)

Median age (range): NR (NR)

Ethnicity: Caucasian (49%); African-American (49%); Asian (2%)
Parameter	Value
Gleason score	NR
AJCC stage	NR
TNM stage	NR
ECOG score	0: NR
	1: NR
	0-1: NR
	≥2: NR
Previous treatments	NR
Familial history of PC	NR
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)
Comments	No patient characteristics provided other than ethnicity

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Grasso et al, 2012 (53)

USA

mCRPC and primary PC. Diagnosis: NR

Other details (NR)
| Population (further details): unselected (NR) |
| Treatment (further details): NR (NR) |
mCRPC (n=50)	Primary PC (n=11)
Mean age (SD): 71 (7.5)	Mean age (SD): 60.9 (5.8)
Median age (range): 71 (52, 85)	Median age (range): 60 (54, 71)
Ethnicity: NR	Ethnicity: NR
Gleason score: NR	Gleason score: 7 (18.2); 8 (36.4); 9 (45.4)
AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 1142 (1818)	Mean PSA ng/ml (SD): 10.9 (7.6)
Median PSA ng/ml (range): 324) (0, 8083)	Median PSA ng/ml (range): 6.5) (4.2, 27.1)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Hall et al, 1998 (54)
USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): treatment (External-beam conformal radiotherapy)
Treatment (further details): External-beam conformal radiotherapy (High-dose external-beam conformal radiotherapy)
Total (n=17)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Hamel et al, 2003 (55)
Canada
PC. Diagnosis: Pathology reports from patients' medical charts
Other details (NR)
Population (further details): Ashkenazi (Both parents were reported as Ashkenazi Jewish, with no Sephardic heritage.)
Treatment (further details): NR (NR)
Total (n=146)
Mean age (SD): NR (NR)
Median age (range): 67.9 (48.6, 84.2)
Ethnicity: NR
Gleason score: ≤5 (36.35%); ≥6 (51.4%)
AJCC stage: NR
TNM stage: NR
ECOG score

Previous treatments: NR

Familial history of PC: 13 (8.9%)

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): 5.7 (0.3, 23.7)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

Comments: 5 cases had missing information for the median time since diagnosis

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Hart et al, 2016 (56)

USA

mCRPC. Diagnosis: Histology
Other details (NR)

Population (further details): treatment (Adenocarcinoma, Poorly differentiated, carcinoma NOS, Small-cell carcinoma, and Unknown)

Treatment (further details): androgen deprivation therapy (NR)

| DDR+ (n=13) | DDR- (n=56) |
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: NR	Ethnicity: NR
Gleason score: 7 (0); 8 (0); 9 (15); 10 (31); no data (54)	Gleason score: 7 (4); 8 (27); 9 (11); 10 (23); no data (38)
AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR
ECOG score	ECOG score
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR
Familial history of PC: 10 (77)	Familial history of PC: 45 (80)
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NOS, not otherwise specified; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Hayano et al, 2016 (57)
Japan
PC. Diagnosis: Histology	
Other details (NR)	--
Population (further details): familial (Large PC families (with 3 or 4 patients with PC; n=22) or small PC families (2 patients with PC; n=118))	
Treatment (further details): NR (NR)	
Total (n=140)	--
Mean age (SD): 69 (NR)	--
Median age (range): NR (40, 88)	
Ethnicity: NR	--
Gleason score: <7 (30); ≥7 (69); unknown (1)	
AJCC stage: NR	--
TNM stage: NR	--
ECOG score	--
0: NR	--
1: NR	--
0-1: NR	--
≥2: NR	--
Previous treatments: NR	--
Familial history of PC: NR	--
Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	
Median PSA ng/ml (range): NR (NR)	
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Hebbring et al, 2006 (58)

	Multinational (n=1819)	USA (Mayo Clinic) (n=428)	Germany (Ulm) (n=299)
PC. Diagnosis	NR		
Other details	(NR)		
Population	familial (NR)		
Treatment	NR (NR)		
Multinational		USA (Mayo Clinic) (n=428)	Germany (Ulm) (n=299)
Mean age (SD)	NR (NR)	Mean age (SD): 66 (NR)	Mean age (SD): 64.6 (NR)
Median age (range)	NR (NR)	Median age (range): 45, 84	Median age (range): 47, 89
Ethnicity	NR	Ethnicity: NR	Ethnicity: NR
Gleason score	NR	Gleason score: NR	Gleason score: NR
AJCC stage	NR	AJCC stage: NR	AJCC stage: NR
TNM stage	NR	TNM stage: NR	TNM stage: NR
ECOG score		ECOG score	ECOG score
0: NR		0: NR	0: NR
1: NR		1: NR	1: NR
0-1: NR		0-1: NR	0-1: NR
≥2: NR		≥2: NR	≥2: NR
Previous treatments	NR	Previous treatments: NR	Previous treatments: NR
Familial history of PC: 1819 (100)	Familial history of PC: 428 (100)	Familial history of PC: 299 (100)	
-----------------------------------	-----------------------------------	-----------------------------------	
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)	
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)	
Comments: Limited population data presented	Comments: Mean age at diagnosis extracted	Comments: Mean age at diagnosis extracted	

Hebbring et al, 2006 (58)

Multinational	USA (Mayo Clinic) (n=492)	Germany (Ulm) (n=338)
PC. Diagnosis: NR	Mean age (SD): 64 (NR)	Mean age (SD): 63.7 (NR)
Other details (NR)	Median age (range): 46, 79	Median age (range): 42, 84
Population (further details): unselected (NR)	Ethnicity: NR	Ethnicity: NR
Treatment (further details): NR (NR)	Gleason score: NR	Gleason score: NR
Multinational (n=1218)	AJCC stage: NR	AJCC stage: NR
Mean age (SD): NR (NR)	TNM stage: NR	TNM stage: NR
Median age (range): NR (NR)		
ECOG score	ECOG score	ECOG score
------------	------------	------------
0: NR	0: NR	0: NR
1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR
Previous treatments: NR	**Previous treatments:** NR	**Previous treatments:** NR
Familial history of PC: 0 (0)	**Familial history of PC:** 0 (0)	**Familial history of PC:** 0 (0)
Mean years since diagnosis (SD): NR (NR)	**Mean years since diagnosis (SD):** NR (NR)	**Mean years since diagnosis (SD):** NR (NR)
Median years since diagnosis (range): NR (NR)	**Median years since diagnosis (range):** NR (NR)	**Median years since diagnosis (range):** NR (NR)
Mean PSA ng/ml (SD): NR (NR)	**Mean PSA ng/ml (SD):** NR (NR)	**Mean PSA ng/ml (SD):** NR (NR)
Median PSA ng/ml (range): NR (NR)	**Median PSA ng/ml (range):** NR (NR)	**Median PSA ng/ml (range):** NR (NR)
Comments: Limited population data presented	**Comments:** Mean age at diagnosis extracted	**Comments:** Mean age at diagnosis extracted

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Hubert et al, 1999 (59)

Israel

PC. Diagnosis: Histology and PSA

Other details (NR)

Population (further details): Ashkenazi (NR)
Treatment (further details): NR (NR)	Total (n=87)	DDR+ (n=3)	DDR- (n=84)
Mean age (SD): NR (NR)	Mean age (SD): 64 (NR)	Mean age (SD): NR (NR)	
Median age (range): 71 (NR)	Median age (range): NR (57, 73)	Median age (range): NR (NR)	
Ethnicity: NR	Ethnicity: NR	Ethnicity: NR	
Gleason score: NR	Gleason score: 7 (33.3); ≥8 (66.6)	Gleason score: Average: 5.9	
AJCC stage: NR	AJCC stage: NR	AJCC stage: NR	
TNM stage: NR	TNM stage: NR	TNM stage: NR	
ECOG score	ECOG score	ECOG score	
0: NR	0: NR	0: NR	
1: NR	1: NR	1: NR	
0-1: NR	0-1: NR	0-1: NR	
≥2: NR	≥2: NR	≥2: NR	
Previous treatments: NR	Previous treatments: NR	Previous treatments: NR	
Familial history of PC: 5 (5.7)	Familial history of PC: NR	Familial history of PC: NR	
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): 55.8 (NR)	Mean PSA ng/ml (SD): 23.6 (NR)	
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (47, 60)	Median PSA ng/ml (range): NR (NR)	
Comments: 71 years at diagnosis			

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Hussain et al, 2017 (60)
USA
mCRPC. Diagnosis: Histology or cytology
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): Abiraterone (1000 mg per day plus prednisone 5 mg twice per day (arm A) or AAP plus veliparib 300 mg twice per day (arm B), for days 1 to 28. Treatment was continued until radiographic/clinical disease progression, inter-current illness, unacceptable adverse events (A). Abiraterone + veliparib (AAP plus veliparib 300 mg twice per day (arm B), for days 1 to 28. Arm B patients underwent lead-in treatment with AAP, followed on day 8 by veliparib, in cycle 1 only. Treatment was continued until radiographic/clinical disease progression, inter-current)

A (n=72)	A+V (n=76)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): 69 (50, 90)	Median age (range): 68 (47, 85)
Ethnicity: Caucasian (83); African American (12); other (3)	Ethnicity: Caucasian (94); African American (4); other (3)
Gleason score: NR	Gleason score: NR
AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR
ECOG score	ECOG score
0: 46 (62)	0: 50 (63)
1: 28 (38)	1: 28 (35)
0-1: NR	0-1: NR
≥2: 0	≥2: 1 (1)
Previous treatments: Docetaxel/cabazitaxel (15); other chemotherapy (7); Enzalutamide (3); Sipuleucel-T (30); Experimental agent (26)

Previous treatments: Docetaxel/cabazitaxel (22); other chemotherapy (8); Enzalutamide (3); Sipuleucel-T (17); Experimental agent (19)

Familial history of PC	NR
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	32.7 (0.8, 1557.6)
Mean PSA ng/ml (range)	36.4 (0.04, 1074.4)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Jefferies et al, 2017 (61)

UK

Primary PC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=61)

Mean age (SD)	NR (NR)
Median age (range)	NR (NR)
Ethnicity	NR
Gleason score	NR
AJCC stage	NR
TNM stage: NR

ECOG score	NR
0	NR
1	NR
0-1	NR
≥2	NR

Previous treatments:	NR
Familial history of PC:	NR

Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)

| Comments: | no details |

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Kaufman et al, 2015 (62)

Multi-national
mCRPC. Diagnosis:
Other details (NR):

| Population (further details): | unselected (NR) |
| Treatment (further details): | Olaparib (400 mg capsule twice daily) |
| Total (n=8): |

118
Demographic and Clinical Characteristics

Parameter	Value
Mean age (SD)	66.6 (9.86)
Median age (range)	71 (51, 77)
Ethnicity	Caucasian (100)
Gleason score	NR
AJCC stage	NR
TNM stage	NR
ECOG score	
0: 1 (12.5)	
1: 4 (50)	
0-1: NR	
≥2: 3 (37.5)	
Previous treatments	Docetaxel (75); platinum carboplatin or cisplatin (50)
Familial history of PC	NR
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)
Comments	No PSA details were presented

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Kirchoff et al, 2004 (63)
USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): Ashkenazi (NR)
Treatment (further details): NR (NR)
Total (n=251)
Mean age (SD): 65.7 (NR)
Median age (range): NR (NR)
Ethnicity: Ashkenazi Jewish men (100)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR) (NR)
Comments: mean age for DDR+ PC cases, for controls (still DDR+ but no PC) mean age was 51.0, calculations age adjusted, see table 2

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Kote-Jarai et al, 2011 (64)	
UK	
Other. Diagnosis: <65 years; NR	
Other details (Young-onset PC (onset \(\leq\) 65 years))	
Population (further details): unselected (NR)	
Treatment (further details): NR (NR)	
Total (n=1589)	
Mean age (SD): NR (NR)	
Median age (range): NR (36, 65)	
Ethnicity: NR	
Gleason score: NR	
AJCC stage: NR	
TNM stage: NR	
ECOG score	
0: NR	
1: NR	
0-1: NR	
\(\geq\)2: NR	
Previous treatments: NR	

Familial history of PC: 85.1	
Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	
Median PSA ng/ml (range): NR (NR)	
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.	

LaDuca et al, 2017 (65)

USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): familial (Patients referred for hereditary cancer multi-gene panel testing)
Treatment (further details): NR (NR)
Total (n=NR)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score

Previous treatments
Familial history of PC
Mean years since diagnosis (SD)
Median years since diagnosis (range)
Mean PSA ng/ml (SD)
Median PSA ng/ml (range)
Comments

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Lara et al, 2017 (66)

USA

PC. Diagnosis: NR

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=207; 936)
Attribute	Value
Mean age (SD):	NR (NR)
Median age (range):	NR (NR)
Ethnicity:	NR
Gleason score:	NR
AJCC stage:	NR
TNM stage:	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments:	NR
Familial history of PC:	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Ledet et al, 2017 (67)

USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): familial (PC patients with a family history that met NCCN guidelines for genetic testing)
Treatment (further details): NR (NR)
Total (n=124)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: 124 (100)
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR) (NR)
Comments: Limited description of population characteristics provided. Ethnicity described for the larger cohort of n=535 patients, but not for the finally selected study cohort of n=124

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NCCN, National Comprehensive Cancer Network; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Lehrer et al, 1998 (68)

USA

PC. Diagnosis: Histology
Other details (NR)

Population (further details): Ashkenazi (Ethnic background was confirmed for all subjects by self-report or interview.)

Treatment (further details): NR (NR)

Total (n=60)

Mean age (SD): 70 (5.25)
Median age (range): NR (55, 80)

Ethnicity: Ashkenazi Jewish men (100)

Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: 6 (10)
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Only looking at PC, no controls but using two earlier papers for control cohort: "Following the finding of a 185delAG frameshift mutation of BRCA1 in several Ashkenazi Jewish breast/ovarian cancer families, the frequency of this mutation was found to be 0"

AJCC, American Joint Committee on Cancer; BRCA, breast cancer susceptibility gene; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Leongamornlert et al, 2012 (69)

UK
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=886)
Mean age (SD): NR (NR)
Median age (range): NR (36, 88)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Has data on BRCA1 prevalence stratified by age (36-55, 56-65, 66-88)

AJCC, American Joint Committee on Cancer; BRCA, breast cancer susceptibility gene; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Leongamornlert et al, 2014 (70)

UK

PC. Diagnosis: Clinical detection or PSA screening

Other details (NR)

Population (further details): familial (Two or more relatives affected by PC)
Treatment (further details): NR (NR)
Total (n=191)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: White (68.6); Black African/Caribbean (2.6); Ashkenazi Jew (0.5); unknown (28.3)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)

Median PSA ng/ml (range): NR) (NR)
Comments: PSA given at diagnosis

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Liu et al, 2016 (5)

NR
PC. Diagnosis: Histology
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=36)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: 7 (100)
AJCC stage: NR
TNM stage: NR
ECOG score

Previous treatments: NR

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Lu et al, 2015 (71)

Multi-national

PC. Diagnosis: NR
Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=178)

Mean age (SD): 60.4 (6.9)
Median age (range): NR (NR)
Ethnicity: Caucasian (73.03); Asian (1.12); African American (3.37); NR (5.62)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Very limited PC data available

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Maier et al, 2014 (72)

Germany

PC. Diagnosis: NR

Other details (NR)
Population (further details): familial and unselected (NR)
Treatment (further details): NR (NR)
Familial (n=382)
Mean age (SD): 61.1 (NR)
Median age (range): NR (42, 80)
Ethnicity: NR
Gleason score: Gleason \(\leq 7 \) and <GIII (71.5); Gleason >7 or GIII (18.3); unknown Gleason and grading (10.2)
AJCC stage: NR
TNM stage: T1 (2.1); T2 (55.2); T3 (27.2); T4 (5.2); Tx or not recorded (10.2)
ECOG score
0: NR
1: NR
0-1: NR
\(\geq 2 \): NR
Previous treatments: NR
Familial history of PC: 382 (100)
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 9.6 (0.2, 1300)
Comments: Lymph node involvement also reported (pN0, pN1, Nx); PSA level unknown in n=84
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Manson-Bahr et al, 2015 (73)

| UK |
|---|---|
| PC. Diagnosis: Histology |
| Other details (NR) |
| Population (further details): unselected (NR) |
| Treatment (further details): NR (NR) |
| Total (n=63) |
| Mean age (SD): NR (NR) |
| Median age (range): NR (56, 85) |
| Ethnicity: NR |
| Gleason score: 6 (13); 7 (60); 8 (13); 9 (14) |
| AJCC stage: NR |
| TNM stage: NR |
| ECOG score |
| 0: NR |
| 1: NR |
| 0-1: NR |
| ≥2: NR |
| Previous treatments: Hormone Therapy (27); Active Surveillance (8); Radiotherapy (40); Brachytherapy (6); Surgery (19) |
| Familial history of PC: NR |

134
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (5.5, 136)

Comments: Baseline details per individual data.

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Marshall et al, 2017 (74)
USA
PC. Diagnosis: NR
Other details (≥≥7 Gleason score)
Population (further details): familial (personal history of PC and ≥1 close blood relative with breast, ovarian, pancreatic or prostate cancer; or a personal history of PC)
Treatment (further details): NR (NR)
Total (n=92)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score

Previous treatments
Familial history of PC
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Mateo et al, 2015 (75)

UK				
mCRPC. Diagnosis: Histology				
Other details (NR)				
Population (further details): unselected (NR)				
Treatment (further details): Olaparib (400 mg tablet twice daily)				
Total (n=50)				
--------------------------------	---------------			
Mean age (SD): NR (NR)				
Median age (range): 67.5 (40.8, 79.3)				
Ethnicity: NR				
Gleason score: NR				
AJCC stage: NR				
TNM stage: NR				
ECOG score				
0: 9 (18)				
1: 35 (70)				
0-1: NR				
≥2: 6 (12)				
Previous treatments:	Docetaxel (100); abiraterone acetate (96); cabazitaxel (58); radical prostatectomy or radiotherapy (50); castration (chemical or surgical) (100); enzalutamide (28); radium-223 (2).			
Familial history of PC: NR				
Mean years since diagnosis (SD): NR (NR)				
Median years since diagnosis (range): 5 (NR)				
Mean PSA ng/ml (SD): NR (NR)				
Median PSA ng/ml (range): 349.5 (NR)				
Comments: Circulating tumor-cell count (cells/7.5ml blood) was median 37 (IQR 14-110)				

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.

Meyer *et al*, 2007 (25)
Germany

Primary PC. Diagnosis: Histology
Other details (Clinically localized low risk early PC)

Population (further details): treatment (Brachytherapy I 125)

Treatment (further details): Brachytherapy I 125 (160 Gy)

DDR+ (n=25)	DDR- (n=236)
Mean age (SD): 63.8 (NR)	Mean age (SD): 65.5 (NR)
Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: NR	Ethnicity: NR
Gleason score: 3 (0); 4 (12); 5 (8); 6 (605); 7 (20); 8 (0)	Gleason score: 3 (1.5); 4 (5.9); 5 (19.9); 6 (69.5); 7 (2.5); 8 (0.3)
AJCC stage: NR	AJCC stage: NR
TNM stage: cT1c (0); cT2a (80); cT2b (12); cT2c (8); unknown (0)	TNM stage: cT1c (2); cT2a (73.7); cT2b (19); cT2c (1.7); unknown (3.4)

ECOG score
0: NR
1: NR
0-1: NR
≥2: NR

Previous treatments: neoadjuvant hormone therapy (7)

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 6.6 (NR)
Median PSA ng/ml (range): NR (NR)
Mean PSA ng/ml (SD): 7 (NR)
Median PSA ng/ml (range): NR (NR)

Comments: Mean PSA, Gleason and age are for carriers of P1054R variant

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Myers et al, 2016 (76)
USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
DDR+ (n=12)
Mean age (SD): 58 (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score	ECOG score
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR

Previous treatments: NR	Previous treatments: NR

Familial history of PC: NR	Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Na et al, 2017 (77)

- Multi-national
- Other and Primary PC. Diagnosis: NR
- Other details (Lethal PC)
- Population (further details): unselected (NR)
- Treatment (further details): NR (NR)
- Lethal (n=313) | Primary PC (n=486)
| Mean age (SD): NR (NR) | Mean age (SD): NR (NR) |
|-----------------------|-----------------------|
| Median age (range): 62 (NR) | Median age (range): 65 (NR) |
| Ethnicity: European American (83.4); African American (9.6); Chinese (7.0) | Ethnicity: European American (72.4); African American (18.3); Chinese (9.3) |
| Gleason score: NR | Gleason score: NR |
| AJCC stage: NR | AJCC stage: NR |
| TNM stage: NR | TNM stage: NR |
| ECOG score | ECOG score |
| 0: NR | 0: NR |
| 1: NR | 1: NR |
| 0-1: NR | 0-1: NR |
| ≥2: NR | ≥2: NR |
| Previous treatments: NR | Previous treatments: NR |
| Familial history of PC: NR | Familial history of PC: NR |
| Mean years since diagnosis (SD): NR (NR) | Mean years since diagnosis (SD): NR (NR) |
| Median years since diagnosis (range): NR (NR) | Median years since diagnosis (range): NR (NR) |
| Mean PSA ng/ml (SD): NR (NR) | Mean PSA ng/ml (SD): NR (NR) |
| Median PSA ng/ml (range): 13.1 (NR) | Median PSA ng/ml (range): 5.3 (NR) |
| Comments: Outcomes based on ethnicity in lethal vs localized PC are also available but not extracted (European American, African American, Chinese) | Comments: Outcomes based on ethnicity in lethal vs localized PC are also available but not extracted (European American, African American, Chinese) |

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Nam et al, 2005 (15)
Canada
PC. Diagnosis: Histology
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=996)
Mean age (SD): 66.2 (NR)
Median age (range): NR (NR)
Ethnicity: White (84.1); Black (11.0); Asian (2.9); Other (1.8)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: 163 (16.3)
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: PSA levels (ng/ml) ≤ 4.0 (5.7%); 4.1-10.0 (56.8%); 10.1-20.0 (26.2%); >20.0 (11.2%)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Naslund Koch et al, 2016 (16)

Denmark

PC. Diagnosis: NR
Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=39014)

Mean age (SD): NR (NR)
Median age (range): NR (NR)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR

TNM stage: NR
ECOG score	0: NR
	1: NR
	0-1: NR
	≥2: NR

Previous treatments	NR
Familial history of PC	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)

Comments: Although age and family history were specified, this was only presented for the full cohort of 86,922 subjects (no details were provided regarding the male cohort).

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Nastiuk et al, 1999 (78)

USA
PC. Diagnosis: NR
Other details (Archival records from New York University and Columbia Presbyterian medical centers for stage B PC)
Population (further details): Ashkenazi (NR)
Treatment (further details): NR (NR)
Total (n=83)
Mean age (SD): NR (NR)

Median age (range): NR (NR)
Ethnicity: Ashkenazi Jewish men (100)
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Only looking at PC, no controls, using earlier paper for cohort control (Roa BB, Boyd AA, Volcik K, Richards CS. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat. Genet. 1996; 14:185-187. [PubMed: 8841191].)
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Nelson et al, 2016 (79)
Multi-national

mPC. Diagnosis: NR
Other details (NR)

Population (further details): unselected (NR)
Treatment (further details): NR (NR)

Total (n=569)
Mean age (SD): NR (NR)
Median age (range): NR (NR)

Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR

ECOG score
0: NR
1: NR
0-1: NR
≥2: NR

Previous treatments: NR
Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: No patient characteristics provided

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Nguyen et al, 2011 (80)
USA
Primary PC. Diagnosis: NR
Other details (NR)
Population (further details): treatment (external radiation or brachytherapy)
Treatment (further details): external radiation or brachytherapy (NR)
Total (n=612)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Nicolas et al, 2015 (24)

USA

PC. Diagnosis: Histology

Other details (NR)

Population (further details): familial (NR)

Treatment (further details): NR (NR)

Total (n=12)
Mean age (SD): 57.8 (NR)
Median age (range): NR (41, 68)

Ethnicity: Caucasian (100), Hispanic (0)

Gleason score: 6 (41.7); 7 (50); 8 (8.3)

AJCC stage: NR

TNM stage:
T2cN0MX (41.7); T2aN0MX (8.3); T3bN0MX (8.3); T2cN0MX (8.3); T3aN0MX (8.3); T1c (8.3); T3bN1M0 (8.3); T2cNO (8.3)

ECOG score

- 0: NR
- 1: NR
- 0-1: NR
- ≥2: NR

Previous treatments: NR

Familial history of PC: 12 (100)

Mean years since diagnosis (SD): NR (NR)

Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Nicolosi et al, 2017 (81)
USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=1158)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score

0
1
0-1
≥2

| Previous treatments | NR |

| Familial history of PC | NR |

| Mean years since diagnosis (SD) | NR (NR) |
| Median years since diagnosis (range) | NR (NR) |

| Mean PSA ng/ml (SD) | NR (NR) |
| Median PSA ng/ml (range) | NR (NR) |

Comments: No patient characteristics provided

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Nientiedt et al, 2017 (82)

Germany

mCRPC. Diagnosis: Histology

Other details (NR)

Population (further details): treatment (docetaxel)

Treatment (further details): docetaxel (NR)

Total (n=53)
Mean age (SD): NR (NR)
Median age (range): 63 (40, 78)
Ethnicity: NR
Gleason score: 3+4 (9.4); 4+3 (9.4); 8 (9.4); 9-10 (69.8); unknown (1.9)
AJCC stage: NR
TNM stage: T2 (7.5); T3 (69.8); T4 (13.2); Tx (9.4); N0 (35.8); N1 (52.8); NxD (11.3); M0 (54.7); M1 (41.5); MxD (3.8)
ECOG score
0: 30 (56.6)
1: 21 (39.6)
0-1: 2 (3.8)
≥2: 0
Previous treatments: Radical prostatectomy (77.4) Primary radiotherapy (1.9) Androgen deprivation therapy (100) Adjuvant radiotherapy (24.5) Salvage radiotherapy (13.2) Enzalutamide and/or Abiraterone (15.1)
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 30 (0.6, 6782)
Comments: Population also included primary metastatic PC; Treatment prior to docetaxel is reported

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant PC; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Palapattu et al, 2015 (20)
USA
PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=9)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: 7 (56)
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR) (NR)
Comments: Gleason score all start at 6, after 1 year 5 of 9 are at GS7

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Patel et al, 2016 (83)

USA	
PC. Diagnosis:	NR
Other details (NR)	
Population (further details):	unselected (NR)
Treatment (further details):	NR (NR)
Total (n=327)	
Mean age (SD):	NR (NR)
Median age (range):	NR (NR)
Ethnicity:	NR
Gleason score:	NR
AJCC stage:	NR
TNM stage:	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments: NR	

Familial history of PC: NR	
Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	
Median PSA ng/ml (range): NR (NR)	

AJCC, American Joint Committee on Cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Petrovics et al, 2016 (84)

USA

PC. Diagnosis: NR

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=857)

Mean age (SD): NR (NR)

Median age (range): NR (NR)

Ethnicity: African American (NR); Caucasian American (NR)

Gleason score:

AJCC stage: NR

TNM stage: NR
ECOG score		
0: NR		
1: NR		
0-1: NR		
≥2: NR		

Previous treatments	NR

Familial history of PC	NR

Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)

Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)

- **AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.**

Pomerantz et al, 2017 (85)

USA

mCRPC. Diagnosis	NR

Other details	NR

Population (further details): treatment (Carboplatin-based chemotherapy)

Treatment (further details): Carboplatin/docetaxel-based chemotherapy (At least two doses of carboplatin and docetaxel)

Total (n=141)	DDR+ (n=8)	DDR- (n=133)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
------------------------	------------------------	------------------------
Median age (range): 59 (40, 80)	Median age (range): 53 (40, 62)	Median age (range): 60 (40, 80)
Ethnicity: European American (87.2); African American (2.8); Hispanic (1.4); Unknown (8.5)	Ethnicity: European American (100); African American (0); Hispanic (0); Unknown (0)	Ethnicity: European American (86.5); African American (3); Hispanic (1.5); Unknown (9)
Gleason score: 6 (6.4); 7 (22); 8-10 (62.4); unknown (9.2)	Gleason score: 6 (0); 7 (12.5); 8-10 (75); unknown (12.5)	Gleason score: 6 (6.8); 7 (22.6); 8-10 (61.7); unknown (9)
AJCC stage: NR	AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR	TNM stage: NR
ECOG score	ECOG score	ECOG score
0: NR	0: NR	0: NR
1: NR	1: NR	1: NR
0-1: NR	0-1: NR	0-1: NR
≥2: NR	≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR	Previous treatments: NR
Familial history of PC: 26 (18.4)	Familial history of PC: 2 (25)	Familial history of PC: 24 (18)
Mean years since diagnosis (SD): 6.3 (NR)	Mean years since diagnosis (SD): 4.5 (NR)	Mean years since diagnosis (SD): 6.3 (NR)
Median years since diagnosis (range): NR (0.5, 20.7)	Median years since diagnosis (range): NR (1.1, 13.7)	Median years since diagnosis (range): NR (0.5, 20.7)
Mean PSA ng/ml (SD): 170 (NR)	Mean PSA ng/ml (SD): 49 (NR)	Mean PSA ng/ml (SD): 204 (NR)
Median PSA ng/ml (range): NR) (0, 9145)	Median PSA ng/ml (range): NR) (1, 515)	Median PSA ng/ml (range): NR) (0, 9145)
Comments: PSA at diagnosis also available; PSA presented here is at start of chemo	Comments: PSA at diagnosis also available; PSA presented here is at start of chemo	Comments: PSA at diagnosis also available; PSA presented here is at start of chemo
Pritchard et al, 2014 (86)

USA

mPC. Diagnosis: autopsy

Other details (primary and metastatic prostate cancer)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=60)

Mean age (SD): NR (NR)

Median age (range): NR (NR)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR

TNM stage: NR

ECOG score

0: NR
1: NR
0-1: NR
≥2: NR

Previous treatments: NR
Familial history of PC: NR

Metric	Value
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Pritchard et al, 2016 (87)

Multi-national

mPC and Primary PC. Diagnosis: Histology

Other details (mPC cohort)

Population (further details):	Value
Treatment (further details):	NR (NR)

mPC (n=692) vs. Primary PC (n=499)

Metric	Value
Mean age (SD): <50 (7.2); 50-59 (31.7); 60-69 (43.5); 70-79 (13.6); ≥80 (1.9); unknown (2.2) (NR)	Mean age (SD): <50 (5.4); 50-59 (35.4); 60-69 (48.7); 70-79 (10.4); ≥80 (0); unknown (0) (NR)
Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: Non-Hispanic white (83.2); Hispanic (1.6); non-Hispanic black (5.8); Asian or Pacific Islander (1.7); other or unknown (7.7)	Ethnicity: Non-Hispanic white (81.4); Hispanic (1.4); non-Hispanic black (11.6); Asian or Pacific Islander (2.4); other or unknown (3.2)
Gleason score: ≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Gleason score: ≤6 (9.0); 3+4 (29.7); 4+3 (20.2); 8-10 (41.1); unknown (0)
AJCC stage: NR	AJCC stage: NR
----------------	----------------
TNM stage: NR	TNM stage: NR
ECOG score	ECOG score
0: NR	0: NR
1: NR	1: NR
0-1: NR	0-1: NR
≥2: NR	≥2: NR
Previous treatments: NR	Previous treatments: NR
Familial history of PC: 133 (19.2)	Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR) (NR)	Median PSA ng/ml (range): NR) (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Pugh et al, 2009 (88)
Canada
PC. Diagnosis: Histology and PSA
Other details (NR)
Population (further details): treatment (Brachytherapy)
Treatment (further details): Brachytherapy (Near-ideal rectal and prostate post-implant dosimetry: prostate D90 <175 Gy (dose covering 90% of the prostate <175 Gy), prostate V100 >85% (volume of the prostate covered by >85% of the radiation dose), and rectal VR100 <1.0 cm³ (volume of the rectum rec))
Total (n=41)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: 1C (58); 2A (32); 2B (10)
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Robbins et al, 2011 (21)

Information	Details
USA	
mPC. Diagnosis:	Histology
Other details:	NR
Population (further	unselected (NR)
details):	
Treatment (further	NR (NR)
details):	
Total (n=8)	
Mean age (SD):	NR (NR)
Median age (range):	NR (NR)
Ethnicity:	NR
Gleason score:	NR
AJCC stage:	NR
TNM stage:	NR
ECOG score	0: NR
---------------------	---------------------
	1: NR
	0-1: NR
	≥2: NR

Previous treatments:	NR

Familial history of PC:	NR

Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)

Mean PSA ng/ml (SD):	NR (NR)
Median PSA ng/ml (range):	NR (NR)

| Comments: | Extremely limited patient characteristics presented |

| AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America. |

Robinson et al, 2015 (89)

Multi-national

mCRPC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=150)

Parameter	Value
Mean age (SD):	NR (NR)
Median age (range):	68 (43, 84)
Ethnicity:	NR
Gleason score:	NR
AJCC stage:	NR
TNM stage:	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments:	Abiraterone acetate or enzalutamide (48); taxane chemotherapy (41)
Familial history of PC:	NR
Mean years since diagnosis (SD):	NR (NR)
Median years since diagnosis (range):	NR (NR)
Mean PSA ng/ml (SD):	55.78 ()
Median PSA ng/ml (range):	NR (0.04, 4654.92)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant prostate cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Romero et al, 2017 (90)

Spain

mCRPC. Diagnosis: Histology

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=419)

Mean age (SD): NR (NR)

Median age (range): 73 (43, 94)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR

TNM stage: NR

ECOG score

0: NR

1: NR

0-1: NR (91)

\geq2: NR (9)

Previous treatments: NR

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)

Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): 26.95 (<0.02, 5198)
Comments: Population data included for 'at diagnosis of mCRPC' rather than diagnosis of PC (more relevant to the study)
AJCC, American Joint Committee on Cancer; CRPC, castration-resistant prostate cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Sanchez et al, 2016 (91)
USA
Primary PC. Diagnosis: Initially through self-reporting that was confirmed by medical records and pathology reports
Other details (NR)
Population (further details): treatment (Radiotherapy or radical prostatectomy)
Treatment (further details): Radiotherapy (NR) Radical prostatectomy (NR)

Radiotherapy (n=802)	Radical prostatectomy (n=1111)	
Mean age (SD): 72.1 (5.9)	Mean age (SD): 65.6 (6.1)	
Median age (range): NR (NR)	Median age (range): NR (NR)	
Ethnicity: European descent	Ethnicity: European descent	
Gleason score: ≤6 (64); 7 (25); ≥8 (11)	Gleason score: ≤6 (43); 7 (45); ≥8 (11)	
AJCC stage: NR	AJCC stage: NR	
TNM stage: T1/T2 (95); T3 (5)	TNM stage: T1/T2 (98); T3 (2)	
ECOG score	Previous treatments: Neoadjuvant/adjuvant ADT (33)	Previous treatments: Neoadjuvant/adjuvant ADT (9)
------------	---	---
0: NR	Familial history of PC: NR	Familial history of PC: NR
1: NR	Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)
0-1: NR	Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)
≥2: NR	Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)
	Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)

ADT, androgen deprivation therapy; AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Sandhu et al, 2013 (92)

UK and Multi-national

mCRPC (UK) CRPC (Multi-national). Diagnosis: NR

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): Mixed treatment (Olaparib 200 mg (50%); Olaparib 300 mg (25%); Niraparib (MK-4827) (25%))

mCRPC (n=4) CRPC (n=23)
Parameter	Value
Mean age (SD)	55.4 (6.4)
Median age (range)	NR (54.6, 58)
Ethnicity	NR
Gleason score	6 (25); 7 (25); 8 (25); NR (25)
AJCC stage	NR
TNM stage	T3N0M1 (50); T1cN1M0 (25); TxNXM1 (25)
ECOG score	0: NR; 1: NR; 0-1: NR; ≥2: NR
Previous treatments	Androgen blockade (bicalutamide) (100); carboplatin AUC6 (25); docetaxel (50); docetaxel + figitumub (25); abiraterone (25); radical radiotherapy (25), radiotherapy to inguinal lymph nodes (25)
Familial history of PC	NR
Mean years since diagnosis (SD)	NR (NR)
Median years since diagnosis (range)	NR (NR)
Mean PSA ng/ml (SD)	NR (NR)
Median PSA ng/ml (range)	NR (NR)
Comments	Sandhu 2013(92)

AJCC, American Joint Committee on Cancer; AUC, area under the curve; CRPC, castration-resistant prostate cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.
Schweizer et al, 2016 (27)
USA
Ductal PC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=10)
Mean age (SD): 59 (NR)
Median age (range): NR (40, 73)
Ethnicity: NR
Gleason score: 7 (20); 8 (20); 9 (60)
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)

Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Shapiro et al, 2017 (93)

Multi-national

mCRPC. Diagnosis: Histologically or cytologically confirmed adenocarcinoma or poorly differentiated carcinoma of the prostate; and has undergone surgical or medical castration with serum testosterone levels of ≤ 50 ng/dL (1.73 nM)

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): Rucaparib (600 mg oral rucaparib administered twice daily)

DDR+ (n=NR)

Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR

170
ECOG score	0: NR	1: NR	0-1: NR	≥2: NR
Previous treatments:	NR			
Familial history of PC:	NR			
Mean years since diagnosis (SD):	NR (NR)			
Median years since diagnosis (range):	NR (NR)			
Mean PSA ng/ml (SD):	NR (NR)			
Median PSA ng/ml (range):	NR (NR)			
Comments:	Ongoing trial with no reported details.			

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant prostate cancer; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Sofronescu et al, 2012 (94)
USA
PC. Diagnosis:
Other details (NR)
Population (further details): treatment (radiotherapy)
Treatment (further details): radiotherapy (NR)
Total (n=87)
Parameter

Mean age (SD):
Median age (range):
Ethnicity:
Gleason score:
AJCC stage:
TNM stage:
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments:
Familial history of PC:
Mean years since diagnosis (SD):
Median years since diagnosis (range):
Mean PSA ng/ml (SD):
Median PSA ng/ml (range):

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; UK, United Kingdom.
Sonpavde et al, 2017 (6)
NR
mCRPC. Diagnosis: NR
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=514)
Mean age (SD): NR (NR)
Median age (range): 70 (39, 91)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD):

Median PSA ng/ml (range):

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant prostate cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Stephens et al, 2016 (29)

NR
Other. Diagnosis: Histology
Other details (Relapsed/metastatic neuroendocrine carcinoma of the prostate (NCAP))
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=37)
Mean age (SD): 65.1 (NR)
Median age (range): NR (43, 83)
Ethnicity: NR
Gleason score: NR
AJCC stage: IV (100)
TNM stage: NR
ECOG score
- 0: NR
- 1: NR
- 0-1: NR
- ≥2: NR

Previous treatments: NR
Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Struss et al, 2017 (95)

Canada

mCRPC. Diagnosis: NR
Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): chemotherapy; androgen deprivation therapy (NR)

Total (n=319)

Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; CRPC, castration-resistant prostate cancer; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Tanaka et al, 2009 (7)

| Japan |
| PC. Diagnosis: Pathology (TNM and Grade) |
| Other details (NR) |
Population (further details):	unselected (NR)
Treatment (further details):	NR (NR)
Total (n=177)	
Mean age (SD): 68.6 (0.4)	
Median age (range): NR (NR)	
Ethnicity: NR	
Gleason score: NR	
AJCC stage: NR	
TNM stage: NR	
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments: NR	
Familial history of PC: NR	
Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): 11.6 (0.8)	
Median PSA ng/ml (range): NR (NR)	
Comments: Age and PSA levels in BPH patients also available	

177
AJCC, American Joint Committee on Cancer; BPH, benign prostatic hyperplasia; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Timms et al, 2016 (96)

	Biobank (n=39)	Transatlantic Prostate Group Cohort (n=45)
PC. Diagnosis: Histology		
Other details (NR)		
Population (further details):	unselected (commercial biobank), unselected (Transatlantic Prostate Group Cohort)	
Treatment (further details):	NR (NR)	
Mean age (SD): NR (NR)		Mean age (SD): NR (NR)
Median age (range): NR (NR)		Median age (range): NR (NR)
Ethnicity: NR		Ethnicity: NR
Gleason score: <7 (21); 3+4 (64); 4+3 (15); >7 (0)		Gleason score: <7 (2); 3+4 and 4+3 (82); >7 (18)
AJCC stage: NR		AJCC stage: NR
TNM stage: NR		TNM stage: NR
ECOG score		ECOG score
0: NR		0: NR
1: NR		1: NR
0-1: NR		0-1: NR
≥2: NR		≥2: NR
Previous treatments: NR		Previous treatments: NR
Familial history of PC: NR	Familial history of PC: NR	
--------------------------	--------------------------	
Mean years since diagnosis (SD): NR (NR)	Mean years since diagnosis (SD): NR (NR)	
Median years since diagnosis (range): NR (NR)	Median years since diagnosis (range): NR (NR)	
Mean PSA ng/ml (SD): NR (NR)	Mean PSA ng/ml (SD): NR (NR)	
Median PSA ng/ml (range): NR (NR)	Median PSA ng/ml (range): NR (NR)	

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Tischkowitz et al, 2008 (97)

Canada

PC. Diagnosis: NR

Other details (NR)

Population (further details): Ashkenazi (chosen based on the presence of a family history and/or a high Gleason score)

Treatment (further details): NR (NR)

family history and/or a high Gleason score (n=25)	Total (n=125)
Mean age (SD): NR (NR)	Mean age (SD): NR (NR)
Median age (range): NR (NR)	Median age (range): NR (NR)
Ethnicity: NR	Ethnicity: NR
Gleason score: mean Gleason score: 7.4	Gleason score: mean Gleason score: 5.6
AJCC stage: NR	AJCC stage: NR
TNM stage: NR	TNM stage: NR
ECOG score	Previous treatments: NR
------------------	-------------------------
0: NR	
1: NR	
0-1: NR	
≥2: NR	

Familial history of PC: NR	Mean years since diagnosis (SD): NR (NR)
	Median years since diagnosis (range): NR (NR)
	Mean PSA ng/ml (SD): NR (NR)
	Median PSA ng/ml (range): NR (NR)
Comments: mean age at diagnosis: 67.5 years	Comments: mean age at diagnosis: 68.2 years

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Uchida et al, 1999 (12)

Japan
Primary PC. Diagnosis: Pathology (Stage and Grade)
Other details (NR)
Population (further details): unselected (NR)
Treatment (further details): NR (NR)
Total (n=24)
Description
--
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Staged as A2 in 1 patient, B in 3, C in 5, and D in 15 patients.

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.
Vazina et al, 2000 (98)
Israel
PC. Diagnosis: Clinical and histopathological diagnosis
Other details (NR)
Population (further details): Unselected or Ashkenazi (Unselected prostate cancer patients (95 out of 174 of Ashkenazi origin))
Treatment (further details): NR (NR)
Total (n=174)
Mean age (SD): NR (NR)
Median age (range): 66 (45, 81)
Ethnicity: Ashkenazi (54.6); non-Ashkenazis (45.4)
Gleason score: 5-7 (48.3); 8-10 (6.9)
AJCC stage: NR
TNM stage: T2 (60%); T3 (26.4%)
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: 19 (10.9)
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors.

Williams et al, 1996 (99)
USA
Primary PC. Diagnosis: NR
Other details (stage B)
Population (further details): unselected (NR)
Treatment (further details): radical prostatectomy (NR)
Total (n=23)
Mean age (SD): NR (NR)
Median age (range): NR (NR)
Ethnicity: NR
Gleason score: NR
AJCC stage: NR
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: radical prostatectomy (100)
--
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Very limited patient characteristics presented

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Wu et al, 2006 (100)

USA

Primary PC. Diagnosis: NR

Other details (NR)

Population (further details): unselected (NR)

Treatment (further details): NR (NR)

Total (n=84)

Mean age (SD): NR (NR)

Median age (range): NR (48, 75)

Ethnicity: NR

Gleason score: NR

AJCC stage: NR
Table 1: Patient Characteristics in the Study of Xia et al., 2015 (18)
TNM stage: NR
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)
Comments: Very limited baseline characteristics presented

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.

Xia et al., 2015 (18)

USA

PC. Diagnosis: NR

Other details: NR

Population (further details): unselected (NR)

Treatment (further details): NR (NR)
Total (n=20)
Mean age (SD): 65.5 (NR)
Median age (range): NR (49, 81)
Ethnicity: NR
Gleason score: 5 (5); 6 (5); 7 (35); 8 (10); 9 (45)
AJCC stage: NR
TNM stage: T1 (0); T2 (451); T3 (45); T4 (5); TX (5); N0 (20); N1 (35); N2(5); Nsx(40); M0(65); M1 (35).
ECOG score
0: NR
1: NR
0-1: NR
≥2: NR
Previous treatments: NR
Familial history of PC: NR
Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)
Mean PSA ng/ml (SD): 18.9 (NR)
Median PSA ng/ml (range): NR (0.33, 126)
Comments: PSA levels reported at the time of the first sample collection

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Zhu et al, 2010 (101)

Country	USA
PC. Diagnosis	NR
Other details	NR
Population (further details): treatment	External beam radiotherapy
Treatment (further details):	External beam radiotherapy (NR)
Total (n=31)	
Mean age (SD)	NR
Median age (range)	NR
Ethnicity	NR
Gleason score	NR
AJCC stage	NR
TNM stage	NR
ECOG score	
0: NR	
1: NR	
0-1: NR	
≥2: NR	
Previous treatments	NR
Familial history of PC	NR
Mean years since diagnosis (SD)	NR
Median years since diagnosis (range)	NR
Zuhlke et al, 2012 (102)

Description	Details
Country (USA)	USA
Diagnosis: medical record review whenever possible	
Other details (NR)	
Population (further details): familial (hereditary prostate cancer)	
Treatment (further details): NR (NR)	
Total (n=94)	
Mean age (SD): NR (NR)	
Median age (range): NR (NR)	
Ethnicity: Seven families were of African descent, 2 were of Asian descent, and the remaining 85 were of European descent	
Gleason score: NR	
AJCC stage: NR	
TNM stage: NR	
ECOG score	Previous treatments: radical prostatectomy
------------	---
0: NR	
1: NR	
0-1: NR	
≥2: NR	

Familial history of PC: NR

Mean years since diagnosis (SD): NR (NR)
Median years since diagnosis (range): NR (NR)

Mean PSA ng/ml (SD): NR (NR)
Median PSA ng/ml (range): NR (NR)

AJCC, American Joint Committee on Cancer; ECOG, Eastern Cooperative Oncology Group; NR, not reported; PC, prostate cancer; PSA, prostate-specific antigen; SD, standard deviation; TNM, Tumor Nodes Metastasis classification of malignant tumors; USA, United States of America.
Appendix S6. Methods for DDR gene mutational analysis.

Germline or somatic mutation	Source of DNA	Methods	Details of methods	DDR definition	Author, year	References
Australia						
NR/unclear	NR	NR	NR	BRCA1 and BRCA2 (undefined)	Cheng et al, 2011	(23)
Canada						
Germline	Blood sample	other	Sequencing using an ABI 3730XL DNA Sequencer. Sequences were analysed using Chromas 2.3. Long-range PCR to confirm all variants were located within functional copy of CHEK2 (chromosome 22q12)	CHEK2 variants (exon 11 1270T>CY424H; exon 11 1283C>T S428F; exon 11 1312G>T D438Y; exon 13 1525C>T P509S)	Tischkowitz et al, 2008	(97)
PCR	PCR and pyrosequencing			ATM; BCL2; BRCA1; BRCA2; CYP1A1; CYP2C9; CYP2C19; CYP3A5; CYP2D6; CYP11B2; CYP17A1; ERCC2; ESR1; LIG4; MSH6; NBN; NR3C1; RAD51; RAD52; TGFB1; XPF; XRCC1, XRCC2, XRCC3	Damaraju et al, 2006	(26)
Multiplex sizing assay. Samples demonstrating a band shift were run again for confirmation				BRCA1 (185delAG); BRCA1 (5382insC); BRCA2 (6174delT)	Hamel et al, 2003	(55)
RFLP			CHK2 (1100delC)		Nam et al, 2005	(15)
Country	Method	Target	Description	Samples	Reference	
---------	--------	--------	-------------	---------	-----------	
Denmark	Sanger sequencing	Sanger sequencing method for all 26 coding exons of BRCA2 (NM_000059.3)	Undefined BRCA2 mutations	22 undefined DDR genes (including BRCA2, PALB2, and CDK12)	Akbari et al., 2014	
	plasma ctDNA PCR	Targeted germline sequencing	Struss et al., 2017			

Denmark

- **Germline Blood sample PCR**
 - Presence of CHEK2*1100delC was determined by Taqman PCR and sequencing
 - CHEK2*1100delC
 - Naslund Koch et al., 2016

Germany

- **Germline Blood sample PCR**
 - Allele frequencies assessed using RFLP analysis with AlwI after PCR amplification of a genomic DNA fragment spanning the exons 23 and 24
 - ATM missense variant P1054R
 - Meyer et al., 2007

- Sanger sequencing
 - 25 target regions spanning all 26 coding exons of the BRCA2 gene were amplified by PCR and sequenced by Sanger sequencing. Sequence variants with no codon change and alleles with observed frequencies of >2% were omitted
 - BRCA2 exon sequence variants
 - Maier et al., 2014

- **Somatic Tumor biopsy PCR**
 - Limited details. Ion Torrent AmpliSeq™ technology
 - BRCA1 or BRCA2
 - Nientiedt et al., 2017

Israel

- **Germline Blood sample NR/unclear NR**
 - BRCA1 (185delAG, 5382insC); BRCA2 (6174delT)
 - Hubert et al., 1999
| Sample Type | Tumor Source | PCR Method | PCR Products | Founder Mutations in BRCA1 and BRCA2 | Reference | Page |
|------------------------------|-------------------------------|------------|--|-------------------------------------|-----------------------------|------|
| Peripheral blood and matched paraffin embedded tumor | PCR | PCR with chr17 markers (D17S250, D17S579, D17S855, D17S1322, D17S1325, D17S1323, D17S1327) (all internal to the BRCA1 locus) and D17S1327 (both telomeric to the BRCA1 locus) to measure allelic loss; PCR and restriction enzyme digest to identify three predominant mutations across BRCA1 and BRCA2 | Founder mutations in BRCA1 [185delAG; 5382insC] and BRCA2 [6174delT] | Vazina et al, 2000 | (98) |
| Somatic Tumor sample from paraffin fixed sections | PCR | Multiplex PCR | Founder mutations in BRCA1 [185delAG; 5382insC] and BRCA2 [6174delT] | Giusti et al, 2003 | (51) |
| Japan |
|---|
| **Germline Blood sample** | NGS | Looked for any germline variants in PC, reported for five *BRCA2* variants (L61P, H1458R, G2508S, H3056Y, and R3384X) |
| | | Hayano *et al*, 2016 |
| | | (57) |
| NR/unclear | Tumor sample | NGS | DNA was amplified by PCR using primers for the four polymorphic sites. PCR products were subjected to direct DNA sequencing. Sequence analysis of purified products was determined using the same primers with ABI 377 sequencer and dye terminator cycle sequencing kit | *MLH1* polymorphisms that lead to amino acid changes at codons 132, 219, 384, and 723 | Tanaka *et al.*, 2009 | (7) |
|---|---|---|---|---|---|---|
| Tumor and matched peripheral blood | PCR | DNA was amplified by PCR. LOH was determined using 7 highly polymorphic tandem repeat markers: D17S250, D17S1320, D17S855, D17S1322, D17S1323, D17S579 and D17S588. All coding regions from exons 1 to 24 of the *BRCA1* gene were analyzed | Mutations in *BRCA1* coding regions or LOH on chromosome 17q21 | Uchida *et al.*, 1999 | (12) |
Spain

Germline	Blood sample	Sanger sequencing	Validation of pathogenic mutations by Sanger, MLPA or additional NGS performed for 24 genes on the BROCA panel	Aberrations in 24 undefined DNA-repair genes (reported primarily BRCA1, BRCA2, ATM, and PALB2 genes)	Romero *et al.*, 2017	(90)

UK

Germline	Blood sample	Other	UKGPCS: The coding region of the BRCA1 and BRCA2 genes were screened using multiplex fluorescent heteroduplex detection, Sanger sequencing, and multiplex ligation-dependent probe amplification	Undefined BRCA1 and BRCA2	Castro *et al.*, 2011	(38)

| PCR | PCR followed by high-performance liquid chromatography or RFLP | Five ATM single-nucleotide polymorphisms: 5557G>A, 5558A>T, 3161C>G, ivs38-8t>c, ivs38-15g>c | | | | |
|----------|--|---|---|------------------|--------|

| PCR | High-throughput multiplex fluorescent heteroduplex analysis method. Multiplexed, dye-tagged PCR fragments were run on an ABI3130xl Genetic Analyzer. Genetic alterations were confirmed by sequencing | germline mutations in BRCA2 | | | | |
|----------|--|---|---|------------------|--------|

				Angele *et al.*, 2004	(13)

| | | | | Kote-Jarai *et al.*, 2011 | (104) |
Germline	Capture sequencing	Mutations detected by multiplex PCR, sequenced to identify variants, and deleterious mutations were confirmed by Sanger sequencing	BRCA1 (4 variants: c.68_69delAG; c.212+1G>T; c.1954dupA; c.2475delC)	Leongamo-rnlert et al, 2012	(69)	
Germline	Peripheral blood and tumor tissue	PCR	BRCA1 and BRCA2 were both screened for germline mutations using a combination of the protein truncation test (PTT) and a non-radioactive heteroduplex analysis (HA) to identify variants in the sample set. PTT was used to analyse exon 11 of BRCA1 (representing approximately 60% of the coding sequence), and exons 10 and 11 BRCA2 (60% of the coding sequence). Direct sequence analysis was used for confirmation	Undefined BRCA1 and BRCA2	Gayther et al, 2000	(50)
Somatic	Tumor biopsy	NGS	The Sanger CGP Cancer Genes V3 panel of 365 genes was screened. Eight samples were sequenced to a median depth of 962 reads (IQR, 896-983X) in the target regions, with a median of 93% (IQR, 92.5%-93%) of the target regions being covered at a depth >100×	365 target genes, which included all our genes of interest (except \textit{RAD51C}) and \textit{CDK12}	Manson-Bahr \textit{et al}, 2015 (73)	
----------	-------------	------	--	--	--	
Formalin-fixed paraffin embedded (FFPE)	NGS	Targeted-NGS was performed using the Life Technologies Ion Torrent: Ion AmpliSeq Cancer Hotspot Panel v2 and the Ion Personal Genome Machine sequencer. The hotspot panel covers ~2800 COSMIC mutations of 50 oncogenes and tumor suppressor genes	DNA repair genes such as \textit{ATM} (no further definition)	Jefferies \textit{et al}, 2017 (61)		
USA	Germline	Blood sample	NGS	Next-generation targeted sequencing using the Illumina TruSight Cancer Sequencing panel that includes 94 genes (35 have been identified as being involved in human DNA repair)	35 undefined DDR genes. Results were presented for \textit{BRCA2}, \textit{ATM}, \textit{BLM}, \textit{FANCA}, \textit{MSH2} only	Pomerantz \textit{et al}, 2017 (85)
Other	TaqMan SNP genotyping assay	5557G>A	Zhu \textit{et al}, 2010 (101)			
Germline	Blood sample	PCR	PCR was used to amplify each of the 62 exons, and short intronic regions flanking each exon, that constitute the coding region of the *ATM* gene	Fifty-nine *ATM* genetic alterations, representing 25 different variants, were found in the expressed portions (exons) of the *ATM* gene, or within 10 nucleotides of each exon encompassing potential splice sites.	Cesaretti *et al*, 2007 (41)	
---	---	---	---	---	---	
Genotype	Sample type	PCR	The TaqMan (fluorogenic 5′ nuclease) assay was used for SNP genotyping	*BRCA1*185delAG and *BRCA2*6174delT	Gallagher *et al*, 2012 (48)	
---	---	PCR	PCR products were analysed by RFLP, using modified sites (ACRES) for restriction enzymes TaqI (185delAG), DdeI (538insC), and BstXI [6174delT (15)]. Carriers were recognized by the comparison of test digest with digests of PCR analyses of previously verified *BRCA1/2* carriers	*BRCA1* (185delAG, 5382insC) and *BRCA2* (6174delT)	Kirchoff *et al*, 2004 (63)	
		PCR	Aliquots of amplified DNA were transferred to membranes (Hybond) using a standard protocol (Sambrook *et al*, 1989)	*BRCA1* (185delAG) and *BRCA2* (6174delT)	Lehrer *et al*, 1998 (68)	
		PCR	Genomic DNA was purified and amplified using 47 primer pairs and sequenced using BigDye Terminator v3.1 sequencing kit	Protein truncating or SNP *BRCA2* mutations. (4625_4629delACATT and 4074_4075delGT; both in exon 11).	Agalliu *et al*, 2007 (31)	
WES	Variants were restricted to a subset of 157 target genes associated with hereditary cancer risk	157 target genes associated with hereditary cancer risk (ST1). Results reported for \textit{ATM}, \textit{ATR}, \textit{BRCA2}, \textit{FANCL}, \textit{MSR1}, \textit{MUTYH}, \textit{RB1}, \textit{TSHR}, and \textit{WRN}.	Hart \textit{et al}, 2016	(56)		
Exome sequencing of germline DNA was performed at 30x coverage using a VCRome kit for library preparation, and 100bp paired end processing using the HiSeq platform. Human hg19 reference-guided alignment and variant calling were performed using Illumina CASAVA	High value DDR or androgen signalling pathway gene variants that may contribute to familial prostate risk. 826 genes analysed including all DDR genes of interest.	Nicolas \textit{et al}, 2015	(24)			
Germline	NR	NR/unclear	WES focused on the exonic regions of 50 known DDR genes. The final exome library was sequenced using an Illumina HiSeq 3000 for 75 bp paired-end sequencing with a target sequencing coverage of 30x. Only protein-truncating alterations (nonsense/stop-gains, frameshift insertions and deletions, and donor and acceptor splice-site mutations) were coded as pathogenic or likely pathogenic for the current analysis, while missense and other variants of undetermined significance or alterations with lower levels of evidence were excluded, unless specifically designated as pathogenic in ClinVar	50 defined DDR genes including *ATM, ATR, BRCA1, BRCA2, CDK12, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C*	Antonarakis et al, 2018	(34)
Germline	NR	NR/unclear	Hereditary cancer multi-gene panel test (MGPT) was used to identify pathogenic or likely pathogenic variant frequencies for 34 genes known to predispose to at least one of the six included cancers	Undefined 34-gene hereditary cancer multi-gene panel test (MGPT). Included *ATM, BRCA1, BRCA2, CHEK2, FANCA, and PALB2*; unclear for others.	LaDuca et al, 2017	(65)
Germline	NR	NR/unclear	Genetic testing using a commercially available panel (Invitae) consisting of 25-79 cancer-related genes to identify mutations and selected exonic deletions/duplications	Undefined 25-79 cancer-related genes. Included *ATM, BRCA1, BRCA2, CHEK2*, and *NBN*; unclear for others.	Ledet et al, 2017	(67)
Method	PCR	DNA sequencing and exon-level copy number analysis	DDR (included 14 undefined genes on a hereditary PCa panel, most of which were DNA repair genes, results reported for BRCA and BRCA2)	Marshall et al, 2017 (74)		
--	--	---	---	---------------------------		
Buccal cells and/or a blood sample	Genomic DNA from blood /buccal swabs using Puregene DNA Isolation kit (Gentra Systems). DNA content quantified using PicoGreen dsDNA quantitation kit using a Perkin-Elmer HTS7000 BioAssay Reader	BRCA1 (185delAG, 5382insC) and BRCA2 (6174delT)	Agalliu et al, 2009 (32)			
Archived blood DNA specimens	Ion AmpliSeq targeted sequencing	BRCA1, BRCA2 (undefined)	Petrovics et al, 2016 (84)			
Tumor sample	ABI Prism 7900 HT sequence detection system using Taqman probes	ATM (homozygous IVS62+60G/G, heterozygous IVS62+60G/A, and homozygous IVS62+60A/A)	Browning et al, 2006 (14)			
Germline	Tumor sample	Microarray	Microarray Description	DNA Analysis	Ref.	
----------	--------------	------------	------------------------	--------------	------	
Germline	Tumor sample	Microarray	Purified total RNA was whole-transcriptome amplified using the WT-Ovation FFPE system, fragmented and labelled using the Encore Biotin Module, and hybridized to Affymetrix Human Exon 1.0 ST GeneChips. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data	17 gene sets involving 9 DDR gene pathways (over 200 genes analysed including all DDR genes of interest).	Evans et al, 2016 (45)	
Germline and somatic (mixed)	Tumor and matched blood	NGS	MSK-IMPACT sequencing assay. Germline variants were identified in matched blood samples and filtered out in the somatic analysis process. Mutation clonality was estimated as a cancer cell fraction, and implemented in the FACETS algorithm. Germline analysis of 76 known cancer predisposing genes was performed as previously described (ref 16a - Schrader 2016 (not in library))	Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) gene oncpanel that targets 410 cancer-associated genes plus germline analysis of 76 known cancer-predisposing genes (germline). This included ATM, BRCA1, BRCA2, CHEK2, FANCA, MLH1, and NBN, but was unclear for others	Abida et al, 2017 (30)	
Tumor sample	Method	Description	Probe/Ref	References		
-------------	--------	-------------	--------	------------		
Tumor with matched adjacent normal tissue biopsy or peripheral blood or buccal swab	IHC/ISH/FISH	*FANCA* gene specific probe (BAC clone RP11-79A1) and a reference probe located at 16p12 (BAC clone RP11-450G5) were used for this approach. Five-µm thick tissue sections were used for FISH analysis. Deletion was defined as presence of only copy of *FANCA* specific probe in the presence of two reference signals, per nucleus. At least 100 nuclei were evaluated per tissue section or 50 nuclei per tissue core in tissue microarrays (TMAs), using a fluorescence microscope (Olympus BX51; Olympus Optical, Tokyo, Japan).	*FANCA* deletions	Beltran et al, 2015 (19)		
Tumor sample	PCR	DNA isolated from tumor tissues was paired with primers targeting exons 10-14. Products were subject to direct sequencing	*CHEK2*	Wu et al, 2006 (100)		
NR/unclear	Genomic DNA	NGS	Targeted sequencing	*NBN*	Zuhlke et al, 2012 (102)	
NR	Other	sequencing (NGS, Sanger, pyrosequencing)	*ATM*	Feldman et al, 2014 (10)		
Sample Type	Method	Sample Preparation	DNA Isolation	Genes Identified	Reference/Year	Notes
-----------------------------	--------	--------------------	---------------	--	-----------------------------	-------
Non-tumor tissue (principally lymph Nodes), formalin fixed and embedded in paraffin	PCR	Genomic DNA from sections from paraffin blocks then processing using a tissue DNA isolation kit (Qiagen). Mutant alleles detected by heteroduplex analysis (HDA) of the PCR products. Amplification products of primer pair A sequenced from nested primer for each on an ABI 373A sequencer at the Columbia University Cancer Center		BRCA1 (185delAG) and BRCA2 (6174delT)	Nastiuk et al, 1999	(78)
Tumor tissue or blood sample	NGS	NR		BRCA1, BRCA2	Daniel et al, 2017	(9)
Tumor biopsy	Other	DNA underwent hybrid capture for all coding exons of 395 cancer-related genes. Utilized two described lists of genes involved in DNA repair: our own in-house list of 74 (UCD) and a list of 20 DNA repair genes associated with cancer predisposition syndromes utilized in a recent publication by Pritchard et al	Genes involved in DNA repair, associated with cancer predisposition syndromes. Undefined but included ATM, ATR, BRCA1, BRCA2, and MLH1	Dall'Era et al, 2017	(8)	
Somatic	NR	Other	Tests included gene sequencing (Sanger or NGS), protein expression (IHC), and/or gene amplification (C/FISH)	BRCA1, BRCA2 (undefined)	Myers et al, 2016	(76)
---------	----	-------	--	------------------------	------------------	------
Tumor and needle biopsy	NGS	NGS	UW-OncoPlex was performed. Microsatellite instability (MSI) testing was performed directly on NGS data using the mSINGS method. Total mutation burden was estimated from targeted NGS data as previously described, with hyper-mutation defined as >12 mutations/megabase	Undefined mismatch repair genes (including MLH1) and homologous repair (including BRCA2, CHEK2)	Schweizer et al, 2016	(27)
Somatic	**Cell-free DNA (cfDNA) present in the plasma**	**PCR**	cfDNA was isolated from patient plasma samples using the Qiagen circulating nucleic acid kit. 100ng of cfDNA was utilized for library construction; and the libraries were paired-end sequenced on the Illumina HiSeq 2000. Focused analysis on copy number variations related to AR associated and DNA repair genes			
NGS	DNA repair genes partial/full amplifications (BRCA1, BRCA2, ATM, CDK12, MLH1, and/or MSH2)	**Gambhir et al, 2016**				

| **Cell-free DNA (cfDNA) present in the plasma and matched blood lymphocyte DNA** | **NGS** | Plasma DNA was used to prepare DNA libraries using a NEXTflex DNA-Seq kit. The Comprehensive Cancer Panel (Roche NimbleGen, Madison, WI) was used for NGS. The panel covers 4Mb genomic sequences and targets 578 cancer-related genes. Gene mutations were detected by comparing cfDNA to lymphocyte gDNA in the same patient with 2% variant alleles as the cut-off for mutation calls. Allele-specific PCR was used to validate mutations detected by sequencing |
| **Comprehensive Cancer Panel (578 cancer-related genes). Results reported for ATM, ATR, CHEK2, FANCA, MLH1, and NBN (unclear for other genes of interest)** | **Xia et al, 2015** |

| **Circulating tumor DNA** | **PCR** | A publicly-accessible assay (Guardant Health) was used to analyse 68 known cancer genes for anomalies (missense mutations, amplifications) by a digital PCR technique |
| **DNA repair genes (BRCA1, BRCA2, or ATM)** | **Gourdin et al, 2016** |
Circulating tumor DNA; tumor tissue	NGS	Foundation ACT NGS assay; Foundation One NGS assay	BRCA1 and BRCA2 alterations	Lara et al, 2017	(66)	
Tumor biopsy and matched normal tissue	Capture sequencing	Sequenced exome to identify mutations using exome libraries of matched pairs of tumor /normal genomic DNAs. All captured DNA libraries were sequences with the Illumina GAII Genome Analyser or the Illumina HiSeq. Considered only mutations called at covered annotated targeted positions. Sanger sequencing used to validate	ATM, BRCA2	Grasso et al, 2012	(53)	
Tumor sample	NGS	PCR-based NGS	BRCA2 (K2524fs)	Palapattu et al, 2015	(20)	
Somatic	Tumor sample	NGS	Targeted NGS using the OncoPanel platform (includes point mutations, insertions, and deletions within exons and select introns/enhancers of 300 candidate genes with a role in oncogenesis). The CIMBA database of published germline BRCA2 mutations was used to determine whether BRCA2 mutations found in the prostate tumors studied here have also been reported in the germline	300 genes in the OncoPanel platform. Results reported for ATM, BRCA1, BRCA2, and PALB2 (unclear for other DDR genes of interest).	Patel et al, 2016	(83)
Tumor sample	NGS	Fresh-frozen metastatic prostate lesions. DNA fragment libraries for each of the RainDance-amplified PCR samples were constructed for sequence analysis on the SOLiD next-generation sequencing platform. After PCR, massively parallel sequencing was conducted for 577 candidate genes.	Somatic copy number alterations in 577 undefined cancer related genes, result reported for *BRCA2* (unclear if other included in definition)	Robbins *et al*, 2011	(21)	
---	---	---	---	---	---	
PCR	Paired end sequencing (49x49 cycles) was performed using the HiSeq 2000 (based on libraries that were hybrid captured with custom biotinylated RNA oligo pools) and mapped to the reference human genome (hg19). All copy number alterations involving *BRCA2* that were identified by NGS were confirmed by FISH.	182 cancer-related genes (3230 exons) and 14 commonly rearranged genes (37 introns). Included all DDR genes of interest (except *MRE11A*, *NBN*, and *PALB2*).	Beltran *et al*, 2013	(22)		
	Autopsy samples; formalin-fixed paraffin-embedded tissue or from fresh-frozen tissue Microsatellite instability PCR, Exome sequencing, targeted deep sequencing	MMR hyper-mutation (>300 somatic protein altering mutations based on the distribution of total mutation burden in metastatic tumors, which had matched normal tissue available); Undefined list which included *MSH2*, *MSH6*, and *MLH1*	Pritchard *et al*, 2014	(86)		
Single cell suspensions and touch preparations	FISH	P1 phage FISH probes were prepared, LOH experiments were carried out 'as previously described'	BRCA1, 3 flanking sites on 17q12-21	Williams et al, 1996	(99)	

Multi-national

| Germline Blood sample | WES | WES performed on germline DNA using an Illumina HiSeq 2500 system. The mean sequencing depth of coverage was 71x. In addition, a customized next-generation sequencing panel targeting 222 cancer related genes was used to sequence the germline DNA of the remaining lethal PCa patients and all the indolent PCa patients. The mean sequencing depth of coverage was 135 overall and was 180, 208, and 219 for ATM, BRCA1, and BRCA2, respectively. All the targeted bases in these three genes were successfully sequenced (> 20) in >99% samples. Sanger sequencing was used for confirmation | ATM, BRCA1, BRCA2 | Na et al, 2017 | (106) |
| Blood lymphocyte, saliva, or tissue uninvolved with cancer | Other | Multiplex sequencing assays | Undefined 20 DRGs associated with autosomal dominant cancer predisposition syndromes. Included all DDR genes of interest except FANCA and MLH1 | Nelson et al, 2016 | (79) |
Sample Type	Tumor Type	Methodology	Genes	Reference
Buccal swabs, buffy coats, whole blood, non-tumor tissue	Other	Case series 1,2,6: whole exome sequencing of germline and tumor DNA; case series 3: libraries for targeted sequencing constructed using customized GeneRead Dnaseq Panel covering 53 genes and run on the Illumina MiSeq Sequencer; case series 4: Targeted deep sequencing performed using BROCA panel of 53 DNA repair pathway genes; case series 5: exome sequencing; case series 7: genomic sequencing performed using MSK-IMPACT hybrid capture-based next-generation sequencing assay	ATM, ATR, BAP1, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, FAM175A, GEN1, MLH1, MRE11A, MSH2, MSH6, NBN, PALB2, PMS2, RAD51C, RAD51D, XRCC2	Pritchard et al, 2016 (87)
Germline and somatic (mixed)	Other	Searched for candidate germline cancer predisposition variants in the exome sequence data (Cancer Genome Atlas). Sequencing data were aligned to GRCh37-lite version of the human reference using BWA v0.5.9 and de-duplicated using Picard 1.29	Undefined candidate cancer-associated genes (including ATM, ATR, BRCA1, BRCA2, FANCA, and PALB2)	Lu et al, 2015 (71)
Germline and somatic (mixed)	Tumor sample	Whole-exome capture libraries constructed using DNA from normal and tumor tissue subjected to hybrid capture using SureSelect Exome v4 baits (Agilent) and aligned to the hg19 human genome build	Somatic mutations, copy number laterations, and oncogenic structural DNA rearrangements. Included ATM, BRCA1, BRCA2, CHEK2, MLH1, and PALB2	Robinson et al, 2015 (89)
DNA sequenced with the Illumina HiSeq 2000 Genome Analyzer. Reads were aligned to the NCBI GRCh37 human reference genome. The authors performed SNV and indel discovery, genotyping and variant quality score recalibration in all tumor and germline samples simultaneously, according to the GATK HaplotypeCaller v.3.2 best practices recommendations.

| NR/unclear | NR | PCR | Samples genotyped for 657del5 alteration using either ABI3100 and fluorescently labelled PCR (Mayo Clinic, University of Michigan and Universität'sklinikum Ulm), direct sequencing using an Amersham Megabase (Johns Hopkins), or by DNA sequencing (Tampere University Hospital). E185Q and D95N genotyped were obtained using minisequencing (Tampere University Hospital). R215W genotypes were determined using ddNTP-primer extension (Universitätsklinikum Ulm) | *BRCA2*. Germline and somatic variants, including single nucleotide variants, indels and structural variants | Decker et al, 2016 (43) |

| NR/unclear | NR | PCR | Samples genotyped for 657del5 alteration using either ABI3100 and fluorescently labelled PCR (Mayo Clinic, University of Michigan and Universität'sklinikum Ulm), direct sequencing using an Amersham Megabase (Johns Hopkins), or by DNA sequencing (Tampere University Hospital). E185Q and D95N genotyped were obtained using minisequencing (Tampere University Hospital). R215W genotypes were determined using ddNTP-primer extension (Universitätsklinikum Ulm) | *NBN* 657del5 mutation | Hebbring et al, 2006 (58) |
Somatic Tumor sample	NGS
After hybridisation capture, sequencing was performed (Illumina HiSeq 2500). Raw sequences were aligned to the human genome reference sequence. An in-house tool identified the somatic single nucleotide variants (SNVs) by comparing the tumor to its matched normal.	DDR gene alterations that may be related to prostate cancer progression, including undefined genes related to DDR pathways (n=112), recurrently mutated genes in PC (n=334), and other cancer-related genes (n=77). Reported BRCA2 and NBN; unclear for other genes of interest
NGS extracted from FFPE tumor tissue. Included sequencing of 45 DDR genes	Fontugne et al, 2015 (47)

Somatic Tumor sample	WES						
Whole-exome capture was performed using the Agilent SureSelect Human All Exon protocol containing 188,260 exons from ≈18,560 genes. Sequencing was performed on the Illumina HiSeq 2000 platform	DDR included ATM, BRCA1, BRCA2, FANCD2, MLH1, and RAD51C0. Unclear for other DDR genes of interest.						
	Cancer Genome Atlas 2015 (37)						
Germline and somatic (mixed)	Whole-genome sequencing	DNA sequenced with the Illumina HiSeq 2000 Genome Analyser. Reads were aligned to the NCBI GRCh37 human reference genome. The authors performed SNV and indel discovery, genotyping and variant quality score recalibration in all tumor and germline samples simultaneously, according to the GATK HaplotypeCaller v.3.2 best practices recommendations	BRCA2. Germline and somatic variants, including single nucleotide variants, indels and structural variants	No details provided	DDR (undefined); BRCA2, BRCA1 reported. Germline and somatic variants, including single nucleotide variants, indels and structural variants	Decker et al, 2016	(43)
---	---	---	---	---	---	---	---
Country not reported	Somatic	Tumor biopsy	NGS	70-gene cfDNA next generation sequencing panel from a CLIA-licensed, CAP-accredited laboratory (Guardant Health, Inc.)	70 genes including BRCA1, BRCA2	Sonpavde et al, 2017	(6)
Formalin-fixed and paraffin embedded tumor	Capture sequencing	Comprehensive genomic profiling was performed on hybridization captured, adaptor ligation-based libraries to a mean coverage depth of 583X for up to 315 cancer related genes plus 37 introns from 14 genes frequently rearranged in cancer. Clinically relevant GA (CRGA) were defined as genomic alterations linked to drugs on the market or under evaluation in mechanism driven clinical trials	Undefined BRCA2	Stephens et al, 2016	(29)		
NGS	NGS using the commercially available Ion Torrent Hotspot Cancer Panel. This test is for gene mutation, not for copy number changes or translocations	ATM, MLH1	Liu et al, 2016	(5)			

ATM, ataxia telangiectasia mutated; *ATR*, ataxia telangiectasia and Rad3-related protein; *BAP1*, *BRCA1*-associated protein 1; *BARD1*, *BRCA1*-associated RING domain 1; *BLM*, Bloom syndrome RecQ like helicase; *BRCA*, breast cancer susceptibility gene; *BRIP1*, *BRCA1*-interacting protein C-terminal helicase 1; *CDK*, cyclin-dependent kinase; *ctDNA*, cell-free DNA; *CHEK2*, checkpoint kinase 2; *cTNA*, circulating tumor DNA; *CYP*, cytochrome P450; *DDR*, DNA damage repair; *dsDNA*, double-stranded DNA; *ERCC2*, excision repair cross-complementation group 2; *ESR*, estrogen receptor 1; *FAM175A*, family with sequence similarity 175, member A; *FANCA*, Fanconi anemia complementation group A; *FFPE*, formalin-fixed paraffin-embedded; *FISH*, fluorescent in situ hybridization; *gDNA*, genomic DNA; *GEN1*, GEN1, Holliday junction 5' flap endonuclease; *IHC*, immunohistochemistry; *LIG4*, DNA ligase 4; *LOH*, loss of heterozygosity; *MGPT*, multi-gene panel test; *MLH1*, mutL homolog 1; *MLPA*, multiplex ligation-dependent probe amplification; *MMR*, mismatch repair; *MRE11A*, *MRE11* homolog A, double-strand break repair nuclease; *MSH*, muS homolog; *MUTYH*, mut*Y* DNA glycosylase; *NBN*, nibrin; *NCBI*, National Center for Biotechnology Information; *NGS*, next-generation sequencing; *NR*, not reported; *NR3C1*, nuclear receptor subfamily 3 group C member 1; *PALB2*, partner and localizer of *BRCA2*; *PC*, prostate cancer; *PCR*, polymerase chain reaction; *PMS2*, *PMS1* homolog 2, mismatch repair system component; *PPP2R2A*, protein phosphatase 2 regulatory subunit B alpha; *RAD*, DNA repair protein; *RB1*, RB transcriptional corepressor 1; *RFLP*, restriction fragment length polymorphism; *RING*, really interesting new gene; *SNP*, single nucleotide polymorphism; *TGFB1*, transforming growth factor beta 1; *TSHR*, thyroid stimulating hormone receptor; *UKGPCS*, UK genetic prostate cancer study; *WES*, whole-exome sequencing; *WRN*, Werner syndrome RecQ like helicase; *XPF*, xeroderma pigmentosum complementation group F; *XRCC*, x-ray repair cross complementing
Appendix S7. Summary of risk of bias (Joanna Briggs Institute [JBI] Critical Appraisal Checklist).

Author, year	Publication type	Was the sample representative of the target population?	Were the study participants recruited in an appropriate way?	Was the sample size adequate?	Were the study subjects and setting described in detail?	Is the data analysis conducted with sufficient coverage?	Were objective, standard criteria used for measurement of PCa?	Was the condition measured reliably?	Was there appropriate statistical analysis?	Are all important confounding factors accounted for?	Were subpopulations identified using objective criteria?	References	
Abida et al, 2017	Full paper	No	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	(30)	
Agalliu et al, 2007	Full paper	Unclear	Unclear	Yes	Yes	Yes	Unclear	Yes	Unclear	NA	NA	(31)	
Agalliu et al, 2009	Full paper	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	Unclear	(32)		
Akbari et al, 2014	Full paper	No	Yes	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA	(103)	
Angele et al, 2004	Full paper	No	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA	NA	(13)	
Antonarakis et al, 2018	Full paper	Unclear	Unclear	Yes	Unclear	Yes	Unclear	Yes	Yes	Yes	(34)		
Beltran et al, 2013	Full paper	No	Unclear	No	No	Yes	Unclear	Yes	Yes	No	Yes	NA (22)	
Beltran et al, 2015	Full paper	No	Unclear	Yes	No	Yes	Unclear	Yes	Yes	Unclear	NA	(19)	
Browning et al, 2006	Full paper	No	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes	NA	(14)	
Reference	Type	Available	Mitochondria	BRCA	p53	p16	Myc	Lamin A	Lamin B	Lamin C	Lamin D	APOBEC	NA
---------------------------------	--------------	-----------	--------------	------	-----	-----	-----	---------	---------	---------	---------	---------	-----
Cancer Genome Atlas 2015	Full paper	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Unclear	NA	(37)	
Castro et al., 2011	Abstract	Yes	Yes	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA	(38)	
Cesaretti et al., 2007	Full paper	No	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	(41)
Cheng et al., 2011	Abstract	Unclear	Yes	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	Unclear	Yes	(23)
Dall'Era et al., 2017	Abstract	Unclear	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	(8)
Damaraju et al., 2006	Full paper	No	Unclear	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	(26)
Daniel et al., 2017	Abstract	Unclear	Yes	No	Yes	Unclear	Yes	Unclear	NA	NA	(9)		
Dawson et al., 2016	Abstract	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA	(11)		
Decker et al., 2016	Full paper	Yes	Unclear	Yes	No	Unclear	Yes	Unclear	Yes	Unclear	NA	(43)	
Edwards et al., 2003	Full paper	Yes	Yes	Yes	No	Yes	Unclear	Unclear	Yes	Yes	NA	(105)	
Evans et al., 2016	Full paper	Yes	Unclear	Yes	No	Yes	Yes	Unclear	NA	NA	(45)		
Feldman et al., 2014	Abstract	Unclear	Yes	No	Unclear	Yes	Unclear	No	Unclear	NA	(10)		
Fontugne et al., 2015	Abstract	Unclear	Yes	No	Yes	Unclear	Unclear	No	Unclear	NA	(47)		
Study	Document Type	Complete?	Evidence?	Description?	Timeframe?	Replication?	Unclear?	Address?	Study?				
-----------------------------	---------------	-----------	-----------	---------------	------------	--------------	----------	----------	--------				
Gallagher et al, 2012	Full paper	No	Yes	Yes	Yes	Yes	Unclear	Yes	Unclear (48)				
Gambhira et al, 2016	Abstract	Unclear	Unclear	No	No	Yes	Unclear	Yes	Unclear NA (17)				
Gayther et al, 2000	Full paper	Unclear	Unclear	No	No	No	Unclear	Yes	Yes (50)				
Giusti et al, 2003	Full paper	Yes	Yes	Yes	No	Yes	Unclear	Yes	Unclear Yes (51)				
Gourdin et al, 2016	Abstract	Unclear	Unclear	Yes	No	Yes	Unclear	Unclear	NA (52)				
Grasso et al, 2012	Full paper	Unclear	Unclear	No	Yes	Yes	Unclear	Yes	Unclear NA (53)				
Hamel et al, 2003	Full paper	No	No	Yes	No	Yes	Unclear	Yes	Unclear Yes (55)				
Hart et al, 2016	Full paper	Yes	Unclear	Yes	Yes	Yes	Unclear	Yes	Yes (56)				
Hayano et al, 2016	Full paper	Unclear	Unclear	Yes	No	Yes	Unclear	Yes	Yes (57)				
Hebrbing et al, 2006	Full paper	Yes	Unclear	Yes	No	Yes	Unclear	No	Unclear Yes (58)				
Hubert et al, 1999	Letter	No	Unclear	Yes	No	Yes	Unclear	Yes	No (59)				
Jefferies et al, 2017	Abstract	No	Unclear	Yes	No	Unclear	Unclear	Yes	Unclear NA				
Kirchoff et al, 2004	Full paper	No	Unclear	Yes	No	No	Unclear	Yes	Unclear (63)				
Kote-Jarai	Full paper	Yes	Yes	Yes	No	Yes	Unclear	Yes	NA (104)				
Authors, Year	Type	Unclear	Unclear	No	Unclear	Unclear	Unclear	No	Unclear	No			
--------------	---------	---------	---------	-----	---------	---------	---------	-----	---------	-----			
et al, 2011	Abstract	Unclear	Unclear	No	Unclear	Unclear	Unclear	No	Unclear	No			
LaDuca et al, 2017	Abstract	Unclear	Unclear	Yes	No	Yes	Unclear	Yes	Unclear	NA			
Lara et al, 2017	Abstract	No	Yes	Yes	No	Yes	Unclear	Yes	Yes	Unclear			
Ledet et al, 2017	Abstract	No	Yes	Yes	No	Yes	Unclear	Yes	Yes	Unclear			
Lehrer et al, 1998	Full paper	No	Unclear	Yes	No	Yes	Unclear	Yes	Yes	Unclear			
Leongamornlert et al, 2012	Full paper	Yes	Unclear	Yes	No	Unclear	Unclear	Yes	Yes	Yes			
Leongamornlert et al, 2014	Full paper	Yes	Unclear	Yes	Yes	Yes	Yes	Unclear	Yes	Yes			
Liu et al, 2016	Abstract	Unclear	Unclear	No	No	Yes	Unclear	Unclear	Unclear	NA			
Lu et al, 2015	Full paper	Yes	Unclear	Yes	No	Yes	Unclear	No	Unclear	NA			
Maier et al, 2014	Full paper	No	Unclear	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Unclear		
Manson-Bahr et al, 2015	Full paper	Unclear	Unclear	Yes	Yes	Yes	Unclear	Unclear	Unclear	NA			
Marshall et al, 2017	Abstract	Unclear	Unclear	Yes	No	Unclear	Yes	Unclear	Yes	Yes	Yes		
Meyer et al, 2017	Full paper	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Year	Type	Unclear	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA		
----------	--------------	---------	---------	-----	----	-----	---------	---------	-----	---------	----		
2007	Abstract	Unclear	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA		
Myers et al, 2016	Full paper	Unclear	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Yes	NA (76)		
Na et al, 2017	Full paper	No	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	NA (106)			
Nam et al, 2005	Full paper	No	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	NA (15)			
Naslund Koch et al, 2016	Full paper	No	Yes	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA (16)		
Nastiuk et al, 1999	Full paper	No	Unclear	Yes	No	Unclear	Unclear	Unclear	No	Unclear	Unclear	NA (78)	
Nelson et al, 2016	Abstract	Yes	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA (79)		
Nicolas et al, 2015	Full paper	No	Unclear	No	No	Yes	Yes	Unclear	Yes	Unclear	Yes	NA (24)	
Nicolosi et al, 2017	Abstract	Unclear	Unclear	Yes	No	Unclear	Unclear	Unclear	Unclear	Unclear	NA (81)		
Nientiedt et al, 2017	Full paper	No	Unclear	Unclear	Yes	Unclear	Yes	Unclear	Yes	Unclear	Unclear	NA (82)	
Palapattu et al, 2015	Abstract	Unclear	Unclear	No	No	Yes	Unclear	Unclear	Yes	Unclear	NA (20)		
Patel et al, 2016	Abstract	No	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA (83)		
Petrovics et al, 2016	Abstract	Unclear	Unclear	Yes	Unclear	Yes	Unclear	Unclear	Yes	Unclear	NA (84)		
Pomerantz	Full paper	No	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	Yes	2017		
Reference	Type	Study Design	Case Report	NRI	TAA	SSA	AAR	Carcass Testing	NCT	NTA	Notes		
---------------------------------	-----------	--------------	-------------	-----	-----	-----	-----	-----------------	-----	-----	-----------		
et al, 2017													
Pritchard et al, 2014	Full paper	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	NA	NA	(85)		
Pritchard et al, 2016	Full paper	Yes	Unclear	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	NA (86)		
Robbins et al, 2011	Full paper	Unclear	No	No	Yes	Unclear	Unclear	Yes	NA	(21)			
Robinson et al, 2015	Full paper	Yes	Unclear	Yes	No	Yes	Unclear	Unclear	Unclear	NA (89)			
Romero et al, 2017	Abstract	Yes	Unclear	No	Yes	Unclear	Unclear	Yes	Unclear	NA (90)			
Schweizer et al, 2016	Full paper	No	Yes	No	No	Yes	Yes	Yes	Yes	Unclear	NA (27)		
Sonpavde et al, 2017	Abstract	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	NA (6)			
Stephens et al, 2016	Abstract	Unclear	No	No	Yes	Unclear	Unclear	No	Unclear	NA (29)			
Struss et al, 2017	Abstract	Unclear	Yes	No	Unclear	Unclear	Unclear	Yes	Unclear	NA (95)			
Tanaka et al, 2009	Full paper	No	Unclear	Yes	No	No	Yes	Unclear	Yes	Unclear	NA (7)		
Timms et al, 2016	Poster	Unclear	Yes	No	Unclear	Unclear	Unclear	Unclear	Unclear	NA (96)			
Tischkowitz et al, 2008	Full paper	No	Unclear	Yes	No	Yes	Unclear	Yes	Unclear	No (97)			
Uchida et al, 1999	Full paper	Unclear	No	No	Yes	Yes	Unclear	Yes	Unclear	NA (12)			
Authors	Type	Diagnostic Criterion CLC	Sample Identification CLC	Data Reliability CLC	Study Quality CLC	Publication Status	Paper No.						
--------------------	------------	---------------------------	----------------------------	----------------------	-------------------	-------------------	------------						
Vazina *et al.*, 2000	Full paper	No	Yes	No	Yes	Unclear	Yes	Unclear	No	(98)			
Williams *et al.*, 1996	Full paper	Unclear	Unclear	No	No	Yes	Unclear	Unclear	NA	(99)			
Wu *et al.*, 2006	Full paper	No	Yes	Yes	No	Yes	Unclear	Unclear	NA	(100)			
Xia *et al.*, 2015	Full paper	Unclear	Yes	No	Yes	Yes	Unclear	No	Yes	NA	(18)		
Zhu *et al.*, 2010	Abstract	Unclear	Unclear	No	Yes	Unclear	Unclear	No	Unclear	NA	(101)		
Zuhlke *et al.*, 2012	Full paper	Unclear	Yes	No	Yes	Unclear	Unclear	Yes	Unclear	Yes	(102)		

NA, not applicable. *a*Was the diagnostic criterion clearly reported? *b*Who performed the diagnosis and were all samples diagnosed in the same way?
Appendix S8. Summary of DDR gene mutation prevalence in germline tissue.

% period prevalence, median (range)	General prostate cancer (PC)	Metastatic prostate cancer (mPC)	Metastatic castration-resistant prostate cancer (mCRPC)	Castration-resistant prostate cancer (CRPC)
ATM	1.5 (0.41, 3.4)	1.7 (1.59, 1.8)	1.91 (NA)	NR
	4 studies (n=1384)	2 studies (n=1261)	1 study (n=419)	
ATR	0 (NA)	0.3 (0.3, 0.3)	NR	NR
	1 study (n=499)	2 studies (n=1261)		
BRCA1	0.6 (0.2, 1.0)	0.9 (0.9, 0.9)	0.8 (0.7, 1.0)	NR
	7 studies (n=4784)	2 studies (n=1261)	2 studies (n=569)	
BRCA2	1.1 (0.0, 0.9)	5.2 (5.1, 5.4)	5.0 (3.3, 5.3)	NR
	8 studies (n=5894)	2 studies (n=1261)	3 studies (n=888)	
CHEK2	1.8 (0.4, 10.7)	1.5 (1.2, 1.9)	1.0 (NA)	NR
	5 studies (n=1769)	2 studies (n=1103)	1 study (n=419)	
FANCA	0.56 (NA)	NR	NR	NR
	1 study (n=178)			
MLH1	0.0 (NA)	0.0 (NA)	NR	NR
	1 study (n=499)	1 study (n=692)		
MRE11A	0.2 (NA)	0.2 (0.1, 0.2)	NR	NR
	1 study (n=499)	2 studies (n=1261)		
NBN	0.3 (0.2, 0.5)	0.2 (0.2, 0.3)	NR	NR
	2 studies (n=720)	2 studies (n=1261)		
PALB2	0.5 (0.4, 0.6)	0.5 (0.4, 0.5)	0.6 (NA)	NR
	3 studies (n=898)	2 studies (n=1261)	1 study (n=319)	
RAD51C	0.5 (0.4, 0.6)	0.2 (0.1, 0.2)	NR	NR
	2 studies (n=677)	2 studies (n=1261)		
DDRa	18.6 (17.2, 19)	11.6 (11.4, 11.8)	8.3 (7.5, 9.1)	NR

Note: NR indicates not reported in the studies.
aDDR=multiple gene definitions for DNA damage response gene that includes at least one of our genes of interest. ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; DDR, DNA damage repair; FANCA, Fanconi anemia complementation group A; MLH1, MutL homolog 1; MRE11A, MRE11 homolog A, double-strand break repair nuclease; n, sample size; NA, not applicable; NBN, nibrin; NR, not reported; PALB2, partner and localizer of BRCA2; RAD51C, RAD51 paralog C. Original study data can be found in “Mutations in ATM gene” in Appendix S7.

Summary of DDR gene mutation prevalence in somatic tissue

% period prevalence, median (range)	General prostate cancer (PC)	Metastatic prostate cancer (mPC)	Metastatic castration-resistant prostate cancer (mCRPC)	Castration-resistant prostate cancer (CRPC)					
ATM	3.9 (2.4, 8.0) 7 studies (n=2066)	4 (NA) 1 study (n=70)	6 (0.0, 12.0) 2 studies (n=203)	NR					
ATR	0.6 (0.0, 1.2) 2 studies (n=714)	NR	NR	NR					
BRCA1	1.1 (0.6, 2.4) 5 studies (n=2487); 6 datasets a	NR	2.8 (0.7, 5.0) 2 studies (n=664)	NR					
BRCA2	4.9 (0, 11.8) 9 studies (n=3266); 10 datasets a	NR	5.0 (2.0, 6.0) 3 studies (n=714)	NR					
CHEK2	1.2 (0.8, 2.4) 3 studies (n=798)	NR	NR	NR					
FANCA	2.1 (0.5, 16.0) 4 studies (n=1234)	NR	NR	NR					
Gene	Odds Ratio (95% CI)	Sample Size	Studies	Odds Ratio (95% CI)	Sample Size	Studies	Odds Ratio (95% CI)	Sample Size	Studies
-------------	---------------------	-------------	---------	---------------------	-------------	---------	---------------------	-------------	---------
MLH1	0.6 (0.2, 1.0)	2 studies (n=1081)	3.3 (NA)	1 study (n=60)	NR	NR			
MRE11A	0.0 (NA)	1 study (n=630)	NR	NR					
NBN	1.2 (0.3, 65)	3 studies (n=783)	NR	NR					
PALB2	1.3 (0.6, 2.0)	2 studies (n=1081)	0.0 (NA)	1 study (n=70)	4.0 (NA)	1 study (n=153)			
RAD51C	1.5 (0.0, 3.0)	2 studies (n=963)	NR	NR					
DDR	10.7 (4.9, 22)	3 studies (n=680); 4 datasets	13.2 (10, 16.4)	2 studies (n=105)					

*One study provided 2 data sets, and both were included; DDR=multiple gene definitions for DNA damage response gene that includes at least 1 of our genes of interest; one study provided two definitions, and both were included. ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; BRCA, breast cancer susceptibility gene; CHEK2, checkpoint kinase 2; DDR, DNA damage repair; FANCA, Fanconi anemia complementation group A; MLH1, MutL homolog 1; MRE11A, MRE11 homolog A, double-strand break repair nuclease; n, sample size; NA, not applicable; NBN, nibrin; NR, not reported; PALB2, partner and localizer of BRCA2; RAD51C, RAD51 paralog C. Original study data can be found in Mutations in ATM gene in Appendix S7.
Summary of DDR gene mutation prevalence in unselected populations.

(A) Mutations in the *ATM* gene.

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria\(^a\)	Baseline Gleason score (% of population)	Author, year	References
mCRPC	Germline	1.91	419	Undefined	Spain	Patients ≥18 years of age; histologically confirmed prostate cancer; presence of metastatic disease according to bone, CT, and/or MRI scan; confirmed castration-resistant prostate cancer; due to start or have started first-line treatment with any approved survival-prolonging therapy for mCRPC within a period of 6 months from study entry; ECOG performance status ≤21	NR	Romero et al, 2017	(90)
	Somatic	0	50	*ATM* non-synonymous point mutation	USA	Lethal heavily pre-treated CRPCs obtained at rapid autopsy; or high-grade localized prostate cancers	NR	Grasso et al, 2012	(53)
		12	153	*ATM* mut/del	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017	(30)
mPC	Germline	1.59	692	*ATM*	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
		1.8	569	*ATM* (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)
	Somatic	4	70	*ATM* mut/del	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017	(30)
PC	Germline	2	221	*ATM* undefined	USA		NR	Abida et al, 2017	(30)
PC	Somatic	2.38	84	Defective \(AT^M \) genes (one affected allele)	Multi-national	Selection of PC patients from a commercial biobank and the Transatlantic Prostate Group Cohort	NR	Timms et al, 2016 (96)	
---	---	---	---	---	---	---	---	---	
3	630	Mutation frequency from DNA_REPAIR gene set	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU)	NR	Evans et al, 2016 (45)			
3.17	63	Undefined	UK	Patients diagnosed with PC, whose biopsy contained >5% of cancer	6 (13); 7 (60); 8 (13); 9 (14)	Manson-Bahr et al, 2019 (73)			
3.90	333	Truncating and missense mutations	Multi-national	Patients diagnosed with prostate adenocarcinoma, and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	3+3 (19.5); 3+4 (30.6); 4+3 (23.4); ≥8 (26.4)	Cancer Genome Atlas 2015 (37)			
5	451	\(AT^M \) undefined	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)	Abida et al, 2017 (30)			
5.62	178	\(AT^M \) somatic mutation	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor	NR	Lu et al, 2015 (71)			
DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria	Baseline Gleason score (% of population)	Author, yr	Reference
mPC	Germline	0.29	692	ATR	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
		0.3	569	ATR (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)
PC	Somatic	0	630	Gene frequency from DNA_REPAIR gene set	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU)	NR	Evans et al, 2016	(45)
		1.19	84	Defective ATR genes (both alleles affected)	Multi-national	Selection of PC patients from a commercial biobank and the Transatlantic Prostate Group Cohort	NR	Timms et al 2016	(96)
PC	Germline	0	499	ATR	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (9.0); 3+4 (29.7); 4+3 (20.2)	Pritchard et al, 2016	(87)

*B Study level inclusion criteria may not reflect prostate subgroups because multiple groups are included. ATM, ataxia telangiectasia mutated; CRPC, castration-resistant PC; CT, computed tomography; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; MRI, magnetic resonance imaging; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.

(B) Mutations in the ATR gene.
PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteriaa	Baseline Gleason score (% of population)	Author, year	References
mCRPC	Germline	0.66	150	Biallelic loss	Multi-national	Discovery set PC patients were selected based on high Gleason score and availability of both peripheral blood DNA and fresh frozen prostatectomy samples. 150 samples from Robinson 2015 (89)	7 (10); 8 (20); 9 (60); 10 (10)	Decker et al, 2016	(43)
		0.95	419	Undefined	Spain	Patients ≥18 years of age; histologically confirmed prostate cancer; presence of metastatic disease according to bone, CT, and/or MRI scan; confirmed castration-resistant prostate cancer; due to start or have started first-line treatment with any approved survival-prolonging therapy for mCRPC within a period of 6 months from study entry; ECOG performance status ≤21	NR	Romero et al, 2017	(90)
mCRPC	Somatic	0.66	150	Biallelic loss	Multi-national	Discovery set PC patients were selected based on high Gleason score and availability of both peripheral blood DNA and fresh frozen prostatectomy samples. 150 samples from Robinson 2015 (89)	7 (10); 8 (20); 9 (60); 10 (10)	Decker et al, 2016	(43)

CStudy level inclusion criteria may not reflect prostate subgroups because multiple groups are included. ATR, ataxia telangectasia and Rad3-related protein; DDR, DNA damage repair; m, metastatic; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.

(C) Mutations in the *BRCA1* gene.
Group	Status	Gene	Country	Description	NR	Reference		
mPC	Germline	BRCA1	Multi-	Diagnosis of metastatic prostate cancer, as	NR	Sonpavde <i>et al</i>, 2017	(6)	
			national	determined by histologic evaluation of a				
				tumor biopsy specimen or surgical resection				
				specimen				
PC	Germline	BRCA1	Multi-	Men had to have mPC based on a biopsy of	NR	Nelson <i>et al</i>, 2016	(79)	
			national	a metastatic site				
		(undefined)						
PC	Germline	BRCA1	UK	Patients enrolled in the UKGPCS between1990-2005 with available genomic DNA and clinical and survival data in our prospectively maintained UKGPCS database	NR	Castro <i>et al</i>, 2011	(38)	
		Total BRCA1 (4 variants: c.68_69delAG; c.212+1G>T; c.1954dupA; c.2475delC)	UK	Patients enrolled in the UKGPCS. Age at diagnosis of ≤65 years (821 cases; age range 36-65 years); and aged >65 years (92 cases; age range 66-88 years) with a family history of one or more first-degree relatives with PC	NR	Leongamo <i>rnlert et al</i>, 2012	(69)	
		BRCA1 truncation variant	Multi-	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples	NR	Lu <i>et al</i>, 2015	(71)	
			national					
		BRCA1 undefined	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida <i>et al</i>, 2017	(30)	
---	---	---	---	---	---	---		
1.00	333	All $BRCA1$ mutation	Multi-national	Patients diagnosed with prostate adenocarcinoma, and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	3+3 (19.5); 3+4 (30.6); 4+3 (23.4); \geq8 (26.4)	Cancer Genome Atlas 2015 (37)		
0.41	486	$BRCA1$	Multi-national	NR	NR	Na et al, 2017 (106)		
0.60	499	$BRCA1$	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	\leq6 (9.0); 3+4 (29.7); 4+3 (20.2); 8-10 (41.1); unknown (0)	Pritchard et al, 2016 (87)		
PC	Somatic	0.56	178	$BRCA1$ somatic mutation	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples.	NR	Lu et al, 2015 (71)
0.60	630	Gene frequency from DNA_REPA IR gene set	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU)	NR	Evans et al, 2016 (45)		
1.00	451	$BRCA1$ undefined	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)	Abida et al, 2017 (30)		
1.18	936	Known or likely deleterious mutations in $BRCA1$	USA	Men with PC; No other details	NR	Lara et al, 2017 (66)		
(D) Mutations in the *BRCA2* gene.

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria^a	Baseline Gleason score (% of population)	Author, year	References
mCRPC	Germline	3.34	419	Undefined	Spain	Patients ≥18 years of age; histologically confirmed prostate cancer; presence of metastatic disease according to bone, CT, and/or MRI scan; confirmed castration resistant prostate cancer; due to start or have started first-line treatment with any approved survival-prolonging therapy for mCRPC within a period of 6 months from study entry; ECOG performance status ≤21	NR	Romero et al, 2017	(90)
		5.02	319	Undefined deleterious mutation	Canada	Patients with mCRPC	NR	Struss et al, 2017	(95)

^aStudy level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. *BRCA*, breast cancer susceptibility gene; CRPC, castration-resistant PC; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; NR, not reported; PC, prostate cancer; UKGPCS, UK Genetic Prostate Cancer Study. More baseline details can be found in Appendix S5.
mCRPC	Somatic	2.00	50	BRCA2 non-synonymous point mutation	USA	Lethal heavily pre-treated CRPCs obtained at rapid autopsy; or high-grade localized prostate cancers	NR	Grasso et al, 2012 (53)
		5.00	514	Undefined	USA	Patients with mCRPC that underwent baseline ctDNA analysis for potentially actionable alterations using Guardant360 before new systemic therapy were identified	NR	Sonpavde et al, 2017 (6)
		6.00	150	Biallelic mutation	Multi-national	Discovery set PC patients were selected based on high Gleason score and availability of both peripheral blood DNA and fresh frozen prostatectomy samples. 150 samples from Robinson 2015 (89)	NR	Decker et al, 2016 (43)
mPC	Germline	5.10	569	BRCA2 (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016 (79)
		5.35	692	BRCA2	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016 (87)
PC	Germline	0.00	92	BRCA2 exon sequence variants	Germany	Patients with familial PC who are members of families with PC clustering; or patients with sporadic early onset PC who underwent radical prostatectomy and reported a negative family history for prostate cancer	Gleason ≤7 and <GIII (82.6); Gleason >7 or GIII (15.2); unknown (2.2)	Maier et al, 2014 (72)
p-value	Count	Study Design	Study Details	BRCA2 variant	Reference	Study ID		
---------	-------	--------------	---------------	---------------	-----------	----------		
0.00	178	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples.	BRCA2 truncation variant	Lu et al, 2015	(71)		
1.40	1904	Canada	Men diagnosed with prostate cancer at biopsy in a cohort of men who underwent a prostate biopsy because of an elevated prostate-specific antigen (PSA) blood test (>4.0 ng/ml) or an abnormal digital rectal examination	Undefined	Akbari et al, 2014	(103)		
1.56	2181	UK	Patients enrolled in the UKGPCS between 1990-2005 with available genomic DNA and clinical and survival data in our prospectively maintained UKGPCS database.	Undefined BRCA2	Castro et al, 2011	(38)		
1.80	333	Multi-national	Patients diagnosed with prostate adenocarcinoma and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	BRCA2	Cancer Genome Atlas 2015	(37)		
9.00	221	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	BRCA2 undefined	Abida et al, 2017	(30)		
0.20	499	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	BRCA2	Pritchard et al, 2016	(87)		
0.82	486	Multi-national	NR	BRCA2	Na et al, 2017	(106)		
Gene	Somatic	Frequency	Tumor Type	Tissue Type	Study Details	Frequency Details	Study Reference	
------	---------	-----------	------------	-------------	---------------	-------------------	-----------------	
PC	Somatic	0.00	NR	Multi-national	Discovery set PC patients were selected based on high Gleason score and availability of both peripheral blood DNA and fresh frozen prostatectomy samples. 150 samples from Robinson 2015 (89)	<7 (70); 8-10 (22); NR (8)	Decker et al, 2016 (43)	
		1.60	Gene frequency from DNA_REPAIR gene set	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU)	NR	Evans et al, 2016 (45)	
		1.69	BRCA2 somatic mutation	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples	NR	Lu et al, 2015 (71)	
		3.00	Undefined BRCA2 mutation	Multi-national	Patients diagnosed with prostate adenocarcinoma, and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	3+3 (19.5); 3+4 (30.6); 4+3 (23.4); ≥8 (26.4)	Cancer Genome Atlas 2015 (37)	
		4.00	BRCA2	USA	Men with prostate cancer who had undergone treatment at the Dana Farber Cancer Institute; consented to targeted next generation sequencing	NR	Patel et al, 2016 (83)	
		5.80	Known or likely deleterious mutations in BRCA2	USA	Men with PC; no other details	NR	Lara et al, 2017 (66)	
		6.00	BRCA2 SNVs and indels	Multi-national		NR	Fontugne et al, 2015 (47)	
N	N	Country	Study level inclusion criteria	Baseline Gleason score (% of population)	Author, year	Reference		
-----	-----	----------	--------------------------------	--	-------------	-----------		
7.00	451	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)	Abida et al, 2017	(30)		
11.43	936	USA	Men with PC; no other details	NR	Lara et al, 2017	(66)		
11.76	85	USA	Advanced prostate cancer patients	NR	Myers et al, 2016	(76)		

*Study level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. BRCA, breast cancer susceptibility gene; CRPC, castration-resistant PC; CT, computed tomography; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; m, metastatic; MRI, magnetic resonance imaging; NR, not reported; PC, prostate cancer; SNVs, single nucleotide variations; UKGPCS, UK Genetic Prostate Cancer Study. More baseline details can be found in Appendix S5.

(E) Mutations in the CHEK2 gene.

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria	Baseline Gleason score (% of population)	Author, year	Reference
mCRPC	Germline	0.95	419	Undefined	Spain	Patients ≥18 years of age; histologically confirmed prostate cancer; presence of metastatic disease according to bone, CT, and/or MRI scan; confirmed castration resistant prostate cancer; due to start or have started first-line treatment with any approved survival-prolonging therapy for mCRPC within a period of 6 months from study entry; ECOG performance status ≤21	NR	Romero et al, 017	(90)
mPC	Germline	1.20	569	CHEK2 (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)
Chek2 Status	Gene	Multinational	NR	Research Details	Publication Details				
-------------	------	---------------	----	------------------	---------------------				
PC Germline	CHEK2	1.79 613	NR	CHEK2 germline pathogenic mutations	Pritchard et al, 2016 (87)				
PC Somatic	CHEK2	0.80 630	NR	Gene frequency from DNA_DAM AGE_CHEC KPOINT gene set	Evans et al, 2016 (45)				
PC Somatic	CHEK2	1.19 84	NR	Defective CHEK2 genes (both alleles affected)	Timms et al, 2016 (96)				
PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria^a	Baseline Gleason score (% of population)	Author, year	References
----------	---------------------	--------------	----	--	---------	--	--	--------------	------------
mCRPC	Germline	7.50	319	Undefined deleterious germline DDR mutations (22 genes including BRCA2, PALB2, CDK2)	Canada	Patients with mCRPC	NR	Struss et al, 2017	(95)
		9.10	419	Aberrations in 24 DNA repair genes	Spain	Patients ≥18 years of age; histologically confirmed prostate cancer; presence of metastatic disease according to bone, CT, and/or MRI scan; confirmed castration resistant prostate cancer; due to start or have started first-line treatment with any approved survival-prolonging therapy for mCRPC within a period of 6 months from study entry; ECOG performance status ≤21	NR	Romero et al, 2017	(90)

^aStudy level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. CHEK2, checkpoint kinase 2; CRPC, castration-resistant PC; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; m, metastatic; MRI, magnetic resonance imaging; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.

(F) Mutations in DDR genes
mPC	Germline	11.40	569	20 DNA repair genes associated with autosomal dominant cancer predisposition syndromes (included BRCA2, ATM, CHEK2, BRCA1, PALB2, RAD51D, ATR, FAM175A, GEN1, MRE11A, MSH2, MSH6, RAD51C, NBN).	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016 (79)
		11.80	692	DDR (20-gene panel: ATM, ATR, BAP1, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, FAM175A, GEN1, MLH1, MRE11A, MSH2, MSH6, NBN, PALB2, PMS2, RAD51C, RAD51D, XRCC2)	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016 (79)
mPC	Somatic	10.00	50	MMR (mismatch repair) genes	USA	Human primary and metastatic prostate cancer tissues were obtained as part of the University of Washington Prostate Cancer Donor Rapid Autopsy Program	NR	Pritchard et al, 2014 (86)
		16.40	55	BRCA1, BRCA2, ATM	USA	Patients with metastatic prostate cancer	NR	Gourdin et al, 2016 (52)
PC	Germline	18.62	333	ATM, BRCA1, BRCA2, CDK12, FANCD2, RAD51C	Multi-national	Patients diagnosed with prostate adenocarcinoma, and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	3+3 (19.5); 3+4 (30.6); 4+3 (23.4); ≥8 (26.4)	Cancer Genome Atlas 2015 (37)
		19.00	221	DDR (including BRIP1, NBN, PALB2, PMS2, MITF, RECQL, ATM, CHEK2, BRCA1, BRCA2, FH)				
				USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017 (30)	
DDR (included 14 genes on a hereditary PC panel, most of which were DNA repair genes, including BRCA and \(BRCA2\))

USA

Men with PC

NR

Nicolosi et al, 2017 (81)

Defective DDR genes (one allele affected); \(RAD50\), \(ATM\), \(NBN\), \(ATR\), \(PPP2R2A\), \(CHEK2\), \(FANCA\), \(RAD52\)

Multi-national

Selection of PC patients from a commercial biobank and the Transatlantic Prostate Group Cohort

NR

Timms et al, 2016 (96)

DDR (including \(BRCA2\), \(BRCA1\), \(ATM\), \(FANCA\), \(RAD50\), \(PALB2\), and \(CDK12\))

USA

PC patients consenting to genomic analysis of their tumor and germline DNA

6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)

Abida et al, 2017 (30)

DNA repair genes such as \(ATM\)

UK

Primary prostate cancer samples for the Welsh Cancer Bank

NR

Jefferies et al, 2017 (61)

*Study level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. \(ATM\), ataxia telangiectasia mutated; \(ATR\), ataxia telangiectasia and Rad3-related protein; \(BAP1\), \(BRCA1\)-associated protein 1; \(BARD1\), \(BRCA1\)-associated RING domain 1; \(BRCA\), breast cancer susceptibility gene; \(BRIP1\), \(BRCA1\) interacting protein C-terminal helicase 1; \(CHEK2\), checkpoint kinase 2; CRPC, castration-resistant PC; CT, computed tomography; DDR, DNA damage repair; ECOG, Eastern Cooperative Oncology Group; \(FAM175A\), family with sequence similarity 175,member A; \(FANC\), Fanconi anemia complementation group; \(FH\), fumarate hydratase; \(GEN1\), \(GEN1\), Holliday junction 5’ flap endonuclease; \(m\), metastatic; \(MITF\), melanogenesis-associated transcription factor; \(MLH1\), mutL homolog 1; MMR, mismatch repair; \(MRE11A\), \(MRE11\) homolog A, double-strand break repair nuclease; MRI, magnetic resonance imaging; \(MSH\), muS homolog; \(NBN\), nibrin; \(PALB2\), partner and localizer of \(BRCA2\); \(NR\), not reported; PC, prostate cancer; \(PMS\), \(PMS1\) homolog 2, mismatch repair system component; \(PPP2R2A\), protein phosphatase 2 regulatory subunit B alpha; RAD, DNA repair protein; \(RECQL\), RecQ like helicase; RING, really interesting new gene; \(XRCC\), x-ray repair cross complementing.

More baseline details can be found in Appendix S4.

(G) Mutations in \(FANCA\) gene.

PC group	Germline or somatic	\% prevalence	N	DDR definition	Country	Study level inclusion criteria*	Baseline Gleason score (% of population)	Author, year	References

240
PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria	Baseline Gleason score (% of population)	Author, year	References
mPC	Germline	0.00	692	MLH1	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3 + 4 (9.4); 4 + 3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
Mutations in the MRE11A gene.

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria^a	Baseline Gleason score (% of population)	Author, year	References
mPC	Germline	0.14	692	MRE11A	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.0); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
		0.18	569	MRE11A (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)

^aStudy level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. DDR, DNA damage repair; m, metastatic; MLH1, mutL homolog 1; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.
PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria^a	Baseline Gleason score (% of population)	Author, year	References
mPC	Germline	0.18	569	NBN (undefined)	Multinational	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)
mPC	Germline	0.29	692	NBN	Multinational	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
PC	Germline	0.45	221	NBN undefined	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017	(30)
PC	Germline	0.20	499	NBN	Multinational	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (9.0); 3+4 (29.7); 4+3 (20.2); 8-10 (41.1); unknown (0)	Pritchard et al, 2016	(87)

^aStudy level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. DDR, DNA damage repair; m, metastatic; MRE11A, MRE11 homolog A, double-strand break repair nuclease; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.

(J) Mutations in the NBN gene.
Gene frequency from DNA_REPAIR gene set

Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU).

Evans et al, 2016 (45)

Defective NBN genes (both alleles affected)

Selection of PC patients from a commercial biobank and the Transatlantic Prostate Group Cohort

Timms et al, 2016 (96)

NBN amplifications

NR

Fontugne et al, 2015 (47)

Study level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. DDR, DNA damage repair; m, metastatic; NBN, nibrin; NR, not reported; PC, prostate cancer. More baseline details can be found in Appendix S5.

(K) Mutations in the PALB2 gene.

PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteriaa	Baseline Gleason score (% of population)	Author, year	References
mCRPC	Germline	0.63	319	Undefined deleterious mutation	Canada	Patients with mCRPC	NR	Struss et al, 2017	(95)
mCRPC	Somatic	4.00	153	PALB2 mut/del in metastatic tumor samples	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017	(30)
mPC	Germline	0.43	692	PALB2	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016	(87)
		0.50	569	PALB2 (undefined)	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016	(79)
mPC	Somatic	0.00	70	PALB2 mut/del in metastatic tumor samples	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	NR	Abida et al, 2017	(30)
PC group	Germline or somatic	% prevalence	N	DDR definition	Country	Study level inclusion criteria^a	Baseline Gleason score (% of population)	Author, year	References
----------	---------------------	--------------	---	----------------	---------	--	--	-------------	-----------
PC	Germline	0.45	221	PALB2 undefined	USA	NR	Abida <i>et al</i>, 2017	(30)	
		0.56	178	PALB2 truncations	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples	NR	Lu <i>et al</i>, 2015	(71)
		0.40	499	PALB2	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (9.0); 3+4 (29.7); 4+3 (20.2); 8-10 (41.1); unknown (0)	Pritchard <i>et al</i>, 2016	(87)
PC	Somatic	0.60	630	gene frequency from REACTOME_DNA_REPAIR gene set	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU).	NR	Evans <i>et al</i>, 2016	(45)
		2.00	451	PALB2 undefined	USA	PC patients consenting to genomic analysis of their tumor and germline DNA	6 (5.5); 7 (31.0); 8-10 (57.2); unknown (6.2)	Abida <i>et al</i>, 2017	(30)

^aStudy level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. CRPC, castration-resistant PC; m, metastatic; NR, not reported; PALB2, partner and localizer of BRCA2; PC, prostate cancer. More baseline details can be found in Appendix S5.

L) Mutations in the RAD51C gene.
mPC	Germline	0.14	692	RAD51C	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (6.07); 3+4 (9.4); 4+3 (13.3); 8-10 (55.2); unknown (16.0)	Pritchard et al, 2016 (87)
		0.18	569	RAD51C	Multi-national	Men had to have mPC based on a biopsy of a metastatic site	NR	Nelson et al, 2016 (79)
PC	Germline	0.56	178	RAD51C	Multi-national	Patients with prostate adenocarcinoma and sequence data from germline and tumor DNA; 50% coverage of the targeted exome having at least 20x coverage in both germline and tumor samples.	NR	Lu et al, 2015 (71)
		0.40	499	RAD51C	Multi-national	Diagnosis of metastatic prostate cancer, as determined by histologic evaluation of a tumor biopsy specimen or surgical resection specimen	≤6 (9.0); 3+4 (29.7); 4+3 (20.2); 8-10 (41.1); unknown (0)	Pritchard et al, 2016 (87)
PC	Somatic	0.00	630	any RAD51C	USA	Tumor samples were from 4 published retrospective prostatectomy patient cohorts at the Mayo Clinic (MCI and MCII), Cleveland Clinic (CC), and Thomas Jefferson University (TJU)	NR	Evans et al, 2016 (45)
		3.00	333	any RAD51C	Multi-national	Patients diagnosed with prostate adenocarcinoma, and had not received prior treatment for their disease (chemotherapy, radiotherapy, or hormonal ablation therapy)	3+3 (19.5); 3+4 (30.6); 4+3 (23.4); ≥8 (26.4)	Cancer Genome Atlas 2015 (37)

Study level inclusion criteria may not reflect prostate subgroups, because multiple groups are included. DDR, DNA damage repair; m, metastatic; NR, not reported; PC, prostate cancer; RAD, DNA repair protein. More baseline details can be found in Appendix S5.
References

1. Higgins JPT and Green S (eds.): Cochrane handbook for systematic reviews of interventions [Internet]. The Cochrane Collaboration, Version 5.1.0 [updated March 2011], 2011 [accessed 23.3.11].
2. Centre for Reviews and Dissemination: Systematic Reviews: CRD’s guidance for undertaking reviews in health care [Internet]. University of York, York, 2009 [accessed 23.3.11].
3. McGowan J, Sampson M and Lefebvre C: An evidence based checklist for the peer review of electronic search strategies (PRESS EBC). Evid Based Libr Inf Pract 5: 1-6, 2010.
4. Canadian Agency for Drugs and Technologies in Health: PRESS - Peer Review of Electronic Search Strategies: 2015 Guideline Explanation and Elaboration (PRESS E&E) [Internet]. CADTH, Ottawa, 2016 [accessed 10.8.17].
5. Liu Z, Zhou M, Lepor H, Zoino R, Rajoria G and Klimek S: Mutational analysis of prostate cancer using next generation cancer hotspot panel. Lab Invest 96: 246A-247A, 2016.
6. Sonpavde G, Nagy RJ, Sartor AO, et al.: Circulating tumor (ct)-DNA alterations in metastatic castration-resistant prostate cancer (mCRPC): Association with outcomes and evolution with therapy. J Clin Oncol 35: no pagination, 2017.
7. Tanaka Y, Zaman MS, Majid S, et al.: Polymorphisms of MLH1 in benign prostatic hyperplasia and sporadic prostate cancer. Biochem Biophys Res Commun 383: 440-444, 2009.
8. Dall'Era M, Glass A, Lara P, Hartmaier R, DeVer White R and McPherson J: Frequency of DNA repair gene mutations in localized and metastatic prostate cancer. J Clin Oncol 35: no pagination, 2017.
9. Daniel S, Gornstein E, Frampton GM, et al.: BRCA1/2 reversion mutations in prostate cancer identified from clinical tissue and liquid biopsy samples. J Clin Oncol 35: no pagination, 2017.
10. Feldman RA, Dan Basu G, Xiu J, et al.: Molecular profiling of advanced refractory prostate cancer. J Clin Oncol 32: no pagination, 2014.
11. Dawson NA, Heath EI, Feldman R, et al.: Use of panoramic assessment to reveal DNA repair alterations and to predict potential therapeutic response to taxaneplatinum combination therapy in prostate cancer. J Clin Oncol 34: no pagination, 2016.
12. Uchida T, Wang C, Sato T, et al.: BRCA1 gene mutation and loss of heterozygosity on chromosome 17q21 in primary prostate cancer. Int J Cancer 84: 19-23, 1999.
13. Angele S, Falconer A, Edwards SM, et al.: ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91: 783-787, 2004.
14. Browning REt, Li H, Shinohara ET, et al.: ATM polymorphism IVS62+60G>A is not associated with disease aggressiveness in prostate cancer. Urology 67: 1320-1323, 2006.
15. Nam RK, Zhang WW, Jewett MA, et al.: The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res 11: 8391-8397, 2005.
16. Naslund-Koch C, Nordestgaard BG and Bojesen SE: Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the Copenhagen General Population Study. J Clin Oncol 34: 1208-1216, 2016.
17. Gambhir R, Ledet EM, Dottiwa A, Mandal D and Sartor AO: Copy number variations in AR-associated and DNA repair genes from plasma cell-free DNA of metastatic CRPC patients. J Clin Oncol 34: no pagination, 2016.
18. Xia S, Kohli M, Du M, et al.: Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget 6: 16411-16421, 2015.
19. Beltran H, Eng K, Mosquera JM, et al.: Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol 1: 466-474, 2015.
20. Palapattu GS, Cani AK, Huang J, et al.: Progression of low-to high-grade prostate cancer: molecular profiling of tissue obtained by serial targeted biopsy. J Clin Oncol 33: no pagination, 2015.
21. Robbins CM, Tembe WA, Baker A, et al.: Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21: 47-55, 2011.
22. Beltran H, Yelensky R, Frampton GM, et al.: Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 63: 920-926, 2013.
23. Cheng Y, Thorne H, Bolton D, et al.: Altered significance of D'Amico risk assessment in BRCA2 positive vs negative patients from high risk breast cancer families. J Urol 185: e62, 2011.
24. Nicolas E, Arora S, Zhou Y, et al.: Systematic evaluation of underlying defects in DNA repair as an approach to case-only assessment of familial prostate cancer. Oncotarget 6: 39614-39633, 2015.
25. Meyer A, Wilhelm B, Dork T, et al.: ATM missense variant P1054R predisposes to prostate cancer. Radiother Oncol 83: 283-288, 2007.
26. Damaraju S, Murray D, Dufour J, et al.: Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin Cancer Res 12: 2545-2554, 2006.
27. Schweizer MT, Cheng HH, Tretiakova MS, et al.: Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget 7: 82504-82510, 2016.
28. True L, Gulati R, Lange J, et al.: Histological patterns of ductal adenocarcinoma of prostate correlates with mutations in DNA repair genes and may aid in selecting the type of systemic therapy for castration-resistant prostate carcinoma. Presented at the United States & Canadian Academy of Pathology (USCAP) Annual Meeting; 4-10 Mar 2017; San Antonio: US. 2017 [accessed 7.12.17].
29. Stephens PJ, Gay LM, Ali SM, et al.: Comprehensive genomic profiling of neuroendocrine carcinoma of the prostate. J Clin Oncol 34: no pagination, 2016.
30. Abida W, Armenia J, Gopalan A, et al.: Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol. 31 May, 2017.
31. Agalliu I, Karlins E, Kwon EM, et al.: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97: 826-831, 2007.
32. Agalliu I, Gern R, Leanza S and Burk RD: Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 15: 1112-1120, 2009.
33. Annala M, Struss WJ, Warner EW, et al.: Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 72: 34-42, 2017.
34. Antonarakis ES, Lu C, Luber B, et al.: Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol, 2018.
35. Beltran H, Sboner A, Mosquera JM, et al.: Precision medicine program for whole-exome sequencing (WES) provides new insight on platinum sensitivity in advanced prostate cancer (PCa). J Clin Oncol 33: no pagination, 2015.
36. Boudadi K, Suzman DL, Luber B, et al.: Phase 2 biomarker-driven study of ipilimumab plus nivolumab (Ipi/Nivo) for ARV7-positive metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 35: no pagination, 2017.
37. Cancer Genome Atlas Research N: The molecular taxonomy of primary prostate cancer. Cell 163: 1011-1025, 2015.
38. Castro E, Goh CL, Olmos D, et al.: Correlation of germ-line BRCA2 mutations with aggressive prostate cancer and outcome. J Clin Oncol 29: no pagination, 2011.
39. Castro E, Olmos D, Goh CL, et al.: Effect of germ-line BRCA mutations in biochemical relapse and survival after treatment for localized prostate cancer. J Clin Oncol 31: no pagination, 2013.
40. Castro E, Goh C, Leongamornlert D, et al.: Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol 68: 186-193, 2015.
41. Cesaretti JA, Stock RG, Atencio DP, et al.: A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys 68: 1410-1416, 2007.
42. Chi KN, Annala M, Sunderland K, et al.: A randomized phase II cross-over study of abiraterone + prednisone (ABI) vs enzalutamide (ENZ) for patients (pts) with metastatic, castration-resistant prostate cancer (mCRPC). J Clin Oncol 35: no pagination, 2017.
43. Decker B, Karyadi DM, Davis BW, et al.: Biallelic BRCA2 mutations shape the somatic mutational landscape of aggressive prostate tumors. Am J Hum Genet 98: 818-829, 2016.
44. Edwards SM, Kote-Jarai Z, Meitz J, et al.: Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72: 1-12, 2003.
45. Evans JR, Zhao SG, Chang SL, et al.: Patient-level DNA damage and repair pathway profiles and prognosis after prostatectomy for high-risk prostate cancer. JAMA Oncol 2: 471-480, 2016.
46. Fachal L, Gomez-Caamano A, Peleteiro P, et al.: Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients. Radiother Oncol 105: 321-328, 2012.
47. Fontugne J, Ramazanoglu S, Knudsen K, et al.: DNA damage response genes in prostate cancer: development of a novel targeted sequencing platform. Lab Invest 95: 220A-221A, 2015.
48. Gallagher DJ, Cronin AM, Milowsky MI, et al.: Germline BRCA mutation does not prevent response to taxane-based therapy for the treatment of castration-resistant prostate cancer. BJU Int 109: 713-719, 29 Jan 2011.
49. Gallagher DJ, Gaudet MM, Pal P, et al.: Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 16: 2115-2121, 2010.
50. Gayther SA, de Foy KA, Harrington P, et al.: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 60: 4513-4518, 2000.
51. Giusti RM, Rutter JL, Duray PH, et al.: A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet 40: 787-792, 2003.
52. Gourdin TS and Lilly MB: Genomic profiling of metastatic prostate cancer through analysis of circulating tumor DNA (ctDNA). J Clin Oncol 34: no pagination, 2016.
53. Grasso CS, Wu YM, Robinson DR, et al.: The mutational landscape of lethal castration-resistant prostate cancer. Nature 487: 239-243, 2012.
54. Hall EJ, Schiff PB, Hanks GE, et al.: A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am 4: 385-389, 1998.
55. Hamel N, Kotar K and Foulkes WD: Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet 4: 7, 2003.
56. Hart SN, Ellingson MS, Schahl K, et al.: Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open 6: e010332, 2016.
57. Hayano T, Matsu H, Nakaoka H, et al.: Germline variants of prostate cancer in Japanese families. PLoS One 11: e0164233, 2016.
58. Hebbring SJ, Fredriksson H, White KA, et al.: Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 935-938, 2006.
59. Hubert A, Peretz T, Manor O, et al.: The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 65: 921-924, 1999.
60. Hussain M, Daignault S, Twardowski P, et al.: Abiraterone + prednisone (Abi) +/- veliparib (Vel) for patients (pts) with metastatic castration-resistant prostate cancer (CRPC): NCI 9012 updated clinical and genomics data. J Clin Oncol 35: no pagination, 2017.
61. Jefferies M, Cox A, Clarke A and Kynaston H: Targeted next-generation sequencing analysis of primary prostate cancer identifies potential therapeutic targets. J Urol 197: e594-e595, 2017.
62. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al.: Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33: 244-250, 2015.
63. Kirchhoff T, Kauff ND, Mitra N, et al.: BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 10: 2918-2921, 2004.
64. Kote-Jarai Z, Leongamornlert D, Saunders E, et al.: BRCA2 is a moderate penetrance gene contributing to young onset prostate cancer, but not disease over 65 years. Cancer Res 71: no pagination, 2011.
65. LaDuca H, Espenschied C, Dolinsky JS, et al.: Hereditary cancer panel results identify gaps in knowledge of cancer risks and limitations in current guidelines. Presented at the American Society of Human Genetics Annual Meeting; 17-21 Oct 2017; Orlando: US. 2017 [accessed 7.12.17].
66. Lara P, McPherson J, Heyer W, et al.: 827P - Comprehensive characterization of BRCA1 and BRCA2 alterations in circulating tumor DNA and tumor tissue in men with prostate cancer: Implications for clinical care. Presented at European Society for Medical Oncology (ESMO) 2017 Congress; 1-12 Sep 2017; Madrid: Spain. 2017 [accessed 28.2.18].
67. Ledet EM, Ernst EM, Schiff J, Lin S, Lewis BE and Sartor AO: Germline variants and family history in caucasian and African-American prostate cancer. J Clin Oncol 35: no pagination, 2017.
68. Lehrer S, Fodor F, Stock RG, et al.: Absence of 185delAG mutation of the BRCA1 gene and 6174delT mutation of the BRCA2 gene in Ashkenazi Jewish men with prostate cancer. Br J Cancer 78: 771-773, 1998.
69. Leongamornlert D, Mahmud N, Tymrakiewicz M, et al.: Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 106: 1697-1701, 2012.
70. Leongamornlert D, Saunders E, Dadaev T, et al.: Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 110: 1663-1672, 2014.
71. Lu C, Xie M, Wendl MC, et al.: Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun 6, 2015.
72. Maier C, Herkommer K, Luedeke M, Rinckleb A, Schrader M and Vogel W: Subgroups of familial and aggressive prostate cancer with considerable frequencies of BRCA2 mutations. Prostate 74: 1444-1451, 2014.
73. Manson-Bahr D, Ball R, Gundem G, et al.: Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing. J Clin Pathol 68: 212-217, 2015.
74. Marshall M, Tully D, Susswein L, Theobald K, Murphy P and Klein R: Panel testing in men with prostate cancer meeting NCCN genetic testing criteria (AB2017-59). J Natl Compr Canc Netw 15: e15-e16, 2017.
75. Mateo J, Carreira S, Sandhu S, et al.: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373: 1697-1708, 2015.
76. Myers CE, Feldman R, Abbott BL, Reddy SK and Castro M: Frequency of BRCA mutations and co-occurring alterations in prostate cancer. J Clin Oncol 34: no pagination, 2016.
77. Na R, Lilly S, Han M, et al.: Germline mutations in DNA repair genes are significantly enriched in lethal prostate cancer and are associated with disease survival. Int J Urol 197: e763, 2017.
78. Nastiuk KL, Mansukhani M, Terry MB, et al.: Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 40: 172-177, 1999.
79. Nelson P, Mateo J, Beltran H, et al.: Inherited mutations in DNA repair genes in men with metastatic castration-resistant prostate cancer. J Clin Oncol 34: no pagination, 2016.
80. Nguyen PL, Yang M, Werner L, et al.: The impact of genetic variants in the double-stranded DNA break repair pathway on cancer control in men treated with radiation for prostate cancer. Int J Radiat Oncol Biol Phys 81: S380, 2011.
81. Nicolosi PLW, Michalski ST, Freschi B, et al.: Need for re-evaluation of current guidelines based on results from germline genetic testing in prostate cancer. J Clin Oncol 35: no pagination, 2017.
82. Nientiedt C, Heller M, Endris V, et al.: Mutations in BRCA2 and taxane resistance in prostate cancer. Sci Rep 7: 4574, 2017.
83. Patel VL, Busch E, D'Amico AV and Rebbeck TR: BRCA2 mutations in prostate cancer assort into cluster regions. Int J Radiat Oncol 96: E569-E570, 2016.
84. Petrovics G, Ravindranath L, Chen Y, et al.: Higher frequency of germline BRCA1 and BRCA2 mutations in African American prostate cancer. J Urol 195: e548, 2016.
85. Pomerantz MM, Spisak S, Jia L, et al.: The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 123: 3532-3539, 2017.
86. Pritchard CC, Morrissey C, Kumar A, et al.: Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun 5: 4988, 2014.
87. Pritchard CC, Mateo J, Walsh MF, et al.: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375: 443-453, 2016.
88. Pugh TJ, Keyes M, Barclay L, et al.: Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res 15: 5008-5016, 2009.
89. Robinson D, Van Allen EM, Wu YM, et al.: Integrative clinical genomics of advanced prostate cancer. Cell 161: 1215-1228, 2015.
90. Romero Laorden N, Lozano Mejorada R, Piulats Rodriguez J, et al.: Prevalence and baseline clinico-pathological associations of germline deleterious mutations in DNA repair genes (gmDDR) in a metastatic castration resistant prostate cancer (mCRPC) prospective spanish cohort (PROREPAIR-B study). Presented at European Society for Medical Oncology (ESMO) 2017 Congress; 1-12 Sep 2017; Madrid: Spain. 2017 [accessed 28.2.18].
91. Sanchez A, Schoenfeld JD, Nguyen PL, et al.: Common variation in BRCA1 may have a role in progression to lethal prostate cancer after radiation treatment. Prostate Cancer Prostatic Dis 19: 197-201, 2016.
92. Sandhu SK, Omlin A, Hylands L, et al.: Poly (ADP-ribose) polymerase (PARP) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 24: 1416-1418, 2013.
93. Shapiro J, Voskoboynik M, Krieger L, et al.: Trial of rucaparib in prostate indications 2 (TRITON2): an international, multicentre, open-label phase 2 study of the PARP inhibitor rucaparib in patients with metastatic castration-resistant prostate cancer (MCRPC) associated with homologous recombination deficiency (HRD). Presented at the Annual Scientific Meeting of the Australian and New Zealand Urogenital and Prostate (ANZUP) 2017: Australia. Asia Pac J Clin Oncol 13: 61, 2017.
94. Sofronescu AG, Marshall D and Zhu Y: TGFbeta1 -509 C>T and XRCC1 399 Arg>Gln (28152G>A) correlate with increased side effects induced by radiotherapy in prostate cancer patients. Clin Chem 58: A42, 2012.
95. Struss WJ, Annala M, Warner EW, et al.: Germline DNA repair mutations in metastatic castration-resistant prostate cancer: therapy response and applicability of circulating tumor DNA. J Clin Oncol 35: no pagination, 2017.
96. Timms KM, Cuzick J, Neff C, et al.: The molecular landscape of genome instability in prostate cancer. Presented at the European Society for Medical Oncology Congress; 2016. 2016 [accessed 7.12.17].
97. Tischkowitz MD, Yilmaz A, Chen LQ, et al.: Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Lett 270: 173-180, 2008.
98. Vazina A, Baniel J, Yaacobi Y, et al.: The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 83: 463-466, 2000.
99. Williams BJ, Jones E, Zhu XL, et al.: Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol 155: 720-725, 1996.
100. Wu X, Dong X, Liu W and Chen J: Characterization of CHEK2 mutations in prostate cancer. Hum Mutat 27: 742-747, 2006.
101. Zhu Y, Marshall D, Garrett-Mayer E, Zhou D and Jenrette J: Association between urinary morbidity/erectile dysfunction induced by radiotherapy and SNPs of radiosensitivity-relevant genes in prostate cancer patients. Clin Chem 56: A90, 2010.

102. Zuhlke KA, Johnson AM, Okoth LA, et al.: Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Fam Cancer 11: 595-600, 2012.

103. Akbari MR, Wallis CJD, Toi A, et al.: The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Curr Oncol 21: e362, 2014.

104. Kote-Jarai Z, Leongamornlert D, Saunders E, et al.: BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 105: 1230-1234, 2011.

105. Edwards SM, Evans DG, Hope Q, et al.: Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103: 918-924, 2010.

106. Na R, Zheng SL, Han M, et al.: Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 71: 740-747, 2017.

107. Maier C, Wiest I, Luedeke M, et al.: BRCA2 mutation analysis in familial and early onset prostate cancer. Medizinische Genetik 11: 97-98, 2010.

108. Lin S, Ledet EM, Schiff J, et al.: Inherited pathologic mutations and family history in patients with prostate cancer. J Clin Oncol 35: no pagination, 2017.

109. Mayo Clinic and National Cancer Institute: Gene expression in patients with metastatic prostate cancer receiving CYP-17 inhibition therapy. NCT01953640. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). In: NCT01953640, 2018 [accessed 25.4.18].

110. Cesaretti JA, Stock RG, Lehrer S, et al.: ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer. Int J Radiat Oncol Biol Phys 61: 196-202, 2005.

111. Na R, Zheng SL, Han M, et al.: Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol Suppl 16: e832-e833, 2017.

112. Zheng SL, Na R, Han M, et al.: CHEK2 mutations increase risk for prostate cancer but do not differentiate risk of lethal from indolent disease. J Urol 197: e678, 2017.

113. Na R, Xu J and Isaacs WB: DNA-repair gene mutations in metastatic prostate cancer. N Engl J Med 375: 1802-1803, 2016.
Figure S1. Percentage of studies meeting JBI prevalence quality criteria by question. JBI, Joanna Briggs Institute; NA, not applicable.