Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts

Rasmussen, Jacob A.; Villumsen, Kasper R.; Duchêne, David A.; Puetz, Lara C.; Delmont, Tom O.; Sveier, Harald; Jørgensen, Louise von Gersdorff; Præbel, Kim; Martin, Michael D.; Bojesen, Anders M.; Gilbert, M. Thomas P.; Kristiansen, Karsten; Limborg, Morten T.

Published in:
Communications Biology

DOI:
10.1038/s42003-021-02105-1

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Rasmussen, J. A., Villumsen, K. R., Duchêne, D. A., Puetz, L. C., Delmont, T. O., Sveier, H., Jørgensen, L. V. G., Præbel, K., Martin, M. D., Bojesen, A. M., Gilbert, M. T. P., Kristiansen, K., & Limborg, M. T. (2021). Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Communications Biology, 4, [579]. https://doi.org/10.1038/s42003-021-02105-1
Genome-resolved metagenomics suggests a mutualistic relationship between *Mycoplasma* and salmonid hosts

Jacob A. Rasmussen1,2✉, Kasper R. Villumsen3, David A. Duchêne2, Lara C. Puetz2, Tom O. Delmont2,4, Harald Sveier5, Louise von Gersdorff Jørgensen6, Kim Præbel7, Michael D. Martin8, Anders M. Bojesen3, M. Thomas P. Gilbert2,8, Karsten Kristiansen1,9 & Morten T. Limborg1,2✉

Salmonids are important sources of protein for a large proportion of the human population. *Mycoplasma* species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related *Mycoplasma* species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of *Mycoplasma* dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate *Mycoplasma* species, III) perform a comprehensive pangenomic analysis of *Mycoplasma*, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.
The microbial communities that inhabit the vertebrate gastrointestinal tract are tightly connected to many traits displayed by the host.1–4. Nonetheless, we are far from understanding the ecological and evolutionary forces that structure these microbial communities. Microbial generalists have been investigated in teleosts to decipher these ecological forces.5 Recently, several reports using 16S rRNA gene amplicon surveys of the gut microbiome in salmonids have revealed that the dominant bacterium belongs to the genus Mycoplasma, and that this bacterium was unknown until recently6–8. These salmonid related Mycoplasma species have been shown to be highly dominant in the gastrointestinal microbiota of all salmonids investigated, including rainbow trout (Oncorhynchus mykiss)6,9,10, Chinook salmon (Oncorhynchus tshawytscha)7 and Atlantic salmon (Salmo salar)11–13. Further, phenotypic evidence now points to an advantageous role of the abundant Mycoplasma including increased disease resiliency revealed by a striking inverse correlation between the abundance of Mycoplasma and a potentially pathogenic Vibrio sp.8,9.

Mycoplasma is one of the smallest independently self-replicating organisms known. The small genome size of Mycoplasma spp. is hypothesised to be a result of close interaction with their host, which has resulted in subsequent gene loss14,15. Mycoplasma species are bacteria lacking a cell wall and are in general characterised by small physical dimensions and a small genome. Most host-associated Mycoplasma genomes currently sequenced are smaller than 1 Mb and contain fewer than 1000 protein-encoding genes16–18. Especially because of the small genome size, this genus of Mollicutes has one of the most extensive compilations of genomic sequences19. Mycoplasmas are recognised as either parasitic or commensals to their host and have undergone a reductive evolution from the Bacillus/Clostridium branch of Gram-positive eubacteria18, which often results in a reduction of the number of genes in the genome. Despite the reduction of genes, Mycoplasma displays a vast variety of phenotypic characteristics, like adaptations to their host, pathogenesis, and mobility18.

Despite the observed dominance of Mycoplasma in salmonid hosts, very little is known about Mycoplasma and its functional potential in salmonids and other teleosts20. In this study (I) we present the first high-quality metagenome-assembled genomes (MAGs) of Mycoplasma from multiple salmonid species including shotgun sequencing of intestinal content from rainbow trout, Atlantic salmon, and European whitefish (Coregonus lavaretus), (II) we establish the phylogeny of the salmonid associated MAGs based on a comparison with 44 known Mycoplasma genomes, leading to the identification of putative novel Mycoplasma species, (III) we present a comparative genomics analysis of Mycoplasma to study their functionality in salmonids in the context of other species within the same genus. Lastly, (IV) we examine functions of the salmonid MAGs that may be related to a potential adaptation to the intestinal host environment.

Results

Genome resolved metagenomics reveals dominance of Mycoplasma in the gut microbiota across three salmonid species. We sampled gut content from three salmonid species from different environments. Two species relevant for aquaculture were chosen, including juvenile rainbow trout and adult Atlantic salmon. Juvenile rainbow trout were sampled in a land-based, freshwater recycled aquaculture system (RAS) in northern Denmark. Atlantic salmon were sampled from a commercial cohort in an open water net pen near Bergen, Norway. Thirdly, wild European whitefish were sampled from a freshwater lake in northern Norway (Fig. 1a) to represent a phylogenetic outlier for comparison (Fig. 1a).

A total of 2.9 billion metagenomic reads were generated from 12 individuals. Of those, 297 million reads passed quality control and host filtering criteria. Estimates of saturation revealed a sufficient sequencing depth for rainbow trout, but not fully saturated for Atlantic salmon and European whitefish (Supplementary Fig. 1). These filtered reads represent the gut microbiome of the three hosts studied here and were used to establish three metagenomic co-assemblies (Supplementary Data 1). A combination of automatic and manual binning was applied to each co-assembly output, which resulted in one manually curated, low redundant and a near-complete metagenome-assembled genome (MAG), related to Mycoplasma, from each host species (Table 1) (Supplementary Fig. 2). Though sequencing depth was not fully saturated for Atlantic salmon and European whitefish, we do not suspect this to have a major impact on Mycoplasma MAGs, since they all were of a high completion (Table 1).

Metagenomic data from gut content of juvenile rainbow trout, adult Atlantic salmon, and European whitefish revealed a high relative abundance of Mycoplasma. The salmonid MAGs comprised \(\bar{x} = 69.44\% \) (SD ± 11.45\%) of the metagenomic reads in rainbow trout, \(\bar{x} = 72.98\% \) (SD ± 13.07\%) of the metagenomic reads in Atlantic salmon, and 58.03\% of the metagenomic reads in European whitefish (Fig. 1b). Investigation of bacterial load in juvenile rainbow trout, using real-time polymerase chain reaction

Fig. 1 Sample overview. a Map of Scandinavia, where sampling points are indicated. Host and sample types are specified in the legend. The European whitefish sample is shown as a yellow triangle with a green square, Atlantic salmon samples are illustrated as a yellow triangle with a red square. Rainbow trout are visualised with two different sample types for the mid and distal gut, with green and light blue triangles, respectively. Both sample types have a dark blue square. b Relative abundance of Mycoplasma across all samples. The black bar plot indicates the presence of Mycoplasma, whereas all other bacteria are concatenated as “other bacteria”.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02105-1

COMMUNICATIONS BIOLOGY | (2021)4:579 | https://doi.org/10.1038/s42003-021-02105-1 | www.nature.com/commsbio
Table 1 Summary of metagenomic assembled genomes (MAGs) related to *Mycoplasma* in three salmoid hosts.

Host species	No. of contigs	N50 (bp)	Total length (bp)	GC content (%)	CheckM completion (%)	CheckM contamination (%)	No. of genes in the genome
Atlantic Salmon	243	3598	660,624	26.1	86.24	1.76	844
Rainbow Trout	35	88,883	697,833	24.8	95.00	0.38	627
European Whitefish	66	27,905	701,798	26.4	99.62	0.25	664

(PCR) of the 16S rRNA gene, revealed an average cycle threshold (CT) value of 36.3 (SD ± 2.8), where water samples from RAS resulted in an average CT value of 27.6 (SD ± 2.8), clearly indicating a lower bacterial load in the intestinal environment compared to the surrounding water. The amount of sequencing effort to obtain any microbial data and qPCR results of the 16S rRNA gene indicates low bacterial biomass in juvenile rainbow trout gut content samples22 (Supplementary Fig. 1 and Supplementary Table 1). The GC content of the salmonid MAGs was in the lower end compared to the other *Mycoplasma* species included (Table 1, Fig. 3). Previous investigations of Tenericutes’ genomes reported GC content varying from 20 to 70%, indicating high plasticity24. Initial analysis of average nucleotide identity (ANI) clustering and gene clusters from each sample to investigate strain variation within each sample revealed identical MAGs within each respective host and clustered each individual salmonid MAGs according to host species (Supplementary Fig. 3a).

We used fluorescence microscopy to visualise the presence of bacteria on the distal gut epithelial surface as this would further indicate a functional adaptation of the bacteria to the intestinal environment of juvenile rainbow trout. The identity of bacteria could not be established using specific probes, which is likely due to the low bacterial biomass impeding the generation of clear signals. An alternative explanation is the lack of positive control for probe design; unfortunately, no appropriate reference exists since it has yet not been possible to culture these salmonid associated *Mycoplasma* species20. However, our investigation did reveal a clear DAPI based signal from bacterial cells in close contact with the rainbow trout epithelial surface (Supplementary Fig. 4a-d), which we hypothesise are likely to include *Mycoplasma* cells, based on the observation that >50% of all microbial reads belonged to *Mycoplasma* (Fig. 1b).

Phylogenomics reveal candidate species of *Mycoplasma* in salmons. We performed a phylogenomic analysis to place the salmonid MAGs within *Mycoplasma*. To do so, we generated a database of protein clusters across 44 genomes of *Mycoplasma* isolated from multiple tissue types and host species (Supplementary Data 1). Gene annotation using Hidden Markov Models (HMMs) resulted in 2646 hits, and data filtering for phylogenomics led to a final data set of 55 single-copy core gene alignments from 50 genomes (includes representatives of *Ureaplasma* and *Bacillus*).

Phylogenetic analyses consistently recovered several highly supported groupings in the genus *Mycoplasma* and led to a robust placement of our three salmonid MAGs. Two of the salmonid MAGs isolated from the fish subfamily Salmoninae, species rainbow trout and Atlantic salmon, clustered together with an ANI of 96.1% and formed a monophyletic group with the grouping of *Mycoplasma penetrans* and *Mycoplasma iowae* (Fig. 2 and Supplementary Fig. 5a), the latter being commonly found in the intestine of turkey (*Meleagris gallopavo*)23. The two Salmoninae MAGs likely belong to the same species, as suggested by their short terminal branches and uniquely strong branch support according to multiple metrics. The fact that their ANI relative to *M. penetrans* and *M. iowae* was <80% further indicated that the two MAGs correspond to, to our knowledge, a new salmonid related *Mycoplasma* species (Fig. 3). The close relationship of these salmonid MAGs also indicates that they have a close ecological association with Salmoniniae, rather than originating from the environment surrounding the host (Fig. 2 and Supplementary Fig. 5a).

The third salmonid MAG, characterised by the European whitefish, subfamily Coregoniniae, was not identified as a close relative of the isolates from Salmoniniae (Fig. 2; Supplementary Fig. 5a). Rather this salmonid MAG appears to be distinct from any of the reference *Mycoplasma* species, with the closest relative found to be *Mycoplasma mobile* (ANI <80%), a pathogen isolated from the gills of tench (*Tinca tinca*) (Fig. 3).

Overall, our analysis indicated that the salmonid MAGs we characterised represent two salmonid related *Mycoplasma* species. We tentatively name them according to their respective host species: *Candidatus M. salmoninae* and *Candidatus M. lavaretus*. Furthermore, we divided *Candidatus M. salmoninae* into two biotypes according to their salmonid host, rainbow trout and Atlantic salmon, resulting in *Candidatus M. salmoninae mykiss* (MSM), *Candidatus M. salmoninae salar* (MSS) and *Candidatus M. lavaretus* (ML), respectively.

An open pangenome with diverse sets of functions is in accordance with niche adaptations of *Mycoplasma*. We performed a comparative analysis to place the salmonid MAGs within *Mycoplasma* with high confidence according to most metrics of phylogenetic branch support (Fig. 2 and Supplementary Fig. 3a, b), confirming the previous phylogenetic placement of Mycoplasma22,24. One metric of branch support was low for most branches, internode certainty for sites (iSC), reflecting the fast accumulation of substitutions in the genus. A fast-evolutionary rate relative to the taxonomic scale of the data is also reflected in the saturation of substitutions found in 12 genes (consequently excluded from phylogenetic analyses), and in the long estimated terminal branches across samples.

Beyond the scope of Salmonid MAGs, the phylogenomic analyses also recovered several clades of the genus *Mycoplasma* with high confidence according to most metrics of phylogenetic branch support (Fig. 2 and Supplementary Fig. 3a, b), confirming the previous phylogenetic placement of Mycoplasma22,24. One metric of branch support was low for most branches, internode certainty for sites (iSC), reflecting the fast accumulation of substitutions in the genus. A fast-evolutionary rate relative to the taxonomic scale of the data is also reflected in the saturation of substitutions found in 12 genes (consequently excluded from phylogenetic analyses), and in the long estimated terminal branches across samples.
Comparison of ANI, environmental relation, and host group of Mycoplasma revealed that Mycoplasma are not only clustering according to phylogeny, but also the origin of host and type of tissue, further emphasising niche-specific adaptations (Fig. 3 and Supplementary Fig. 2a).

Metabolic reconstruction of salmonid MAGs of Mycoplasma suggests adaptation to host environment. Using KEGG we were able to annotate 59.8%, 49.4% and 55.1% of the genes for MSM, MSS and ML, respectively. Especially singletons missed KEGG annotation, indicating that novel functions are yet to be described for many genes in these MAGs (Supplementary Fig. 2a).

Comparison of shared KEGG annotations among MSM, MSS, ML and their nearest relatives M. mobile 163 K and M. iowae 695 revealed 247 shared KEGG functions among the genomes (Fig. 2 and Supplementary Fig. 3b). Investigation of present KEGG annotations revealed that fermentation of sugars through glycolysis appeared to be the main method of ATP production in MSM, MSS and ML. As in many other Mycoplasma species, the genomes are characterised by reduced metabolic functionality as all of the genomes lack general functions, such as the citric acid cycle. Together, these findings are in line with conserved adaptations to, and dependence on, the host gastrointestinal environments across the salmonid related MAGs and their nearest relatives.

Unravelling functions of salmonid MAGs revealed several putatively beneficial functions for their salmonid hosts, including thiamine (B1) biosynthesis, riboflavin (B2) biosynthesis and polyamine metabolism. Interestingly, we found a complete pathway of isoprenoids biosynthesis by the non-mevalonate (MEP) pathways in two of the salmonid MAGs, including MSM and MSS (Supplementary Fig. 6 and Supplementary Fig. 7). The MEP pathways are rarely found in Mycoplasma, except for the intestinal associated M. iowae and M. penetrans, the sister group to MSM and MSS. We hypothesise this is to reduce the need to obtain isoprenoid precursors from the host and an adaptation towards intestinal environments.

In brief, our genetic findings are in accordance with a model where Mycoplasma is functionally adapted to the environment in the gut of salmonids. In all three salmonid MAGs, we found...
uvrABCD, the global genome nucleotide excision repair system (GG-NER). GG-NER is known to protect bacteria against bile salts in gastrointestinal environments. We found several complete defence systems across the salmonid MAGs (Supplementary Fig. 6), including the stringent response, which is known to react to multiple stress conditions, including amino acid starvation. We found evidence of complete subsystems for lipoic acid metabolism in genomes of clade VI, including MSM, MSS and M. Iowae. Lipoic acid metabolism is known to be important for oxidative stress response, in agreement with an adaptation against oxidative stress in the gut (Supplementary Fig. 6 and Supplementary Fig. 7). Furthermore, we found presence of the prtC gene in all genomes of clade VI, including MSM and MSS, which encodes a putative collagenase, responsible for mucus degradation in Helicobacter pylori (Supplementary Data 3). The presence of prtC indicates that MSS and MSM are able to live in gastrointestinal environments by facilitating degradation of mucus in the intestine. Interestingly, we found genetic evidence for a cellubiose and chitobiose degrading complex, known as the cellulosome encoded by celABC, in ML, MSM and MSS. The closest homologues of celABC found in ML, MSM and MSS were found in M. Iowae with identities ranging from 58.3 to 64.3%. The cellulosome is responsible for degrading complex polymers, like cellulose, hemicellulose, and chitin, indicating that intestinal related salmonid MAGs have some putative ability to degrade long chain polymers in the gut, possibly originating from host mucus layers or host diet (Supplementary Data 3).

All three salmonid MAGs lack oligosaccharide ABC transporters, which are otherwise found in other Mycoplasma genomes, indicating that salmonid Mycoplasmas are relying on the phosphotransferase system (PTS), like celABC (Supplementary Fig. 6 and Supplementary Fig. 7). This suggests that the main sources of energy absorbed by the Mycoplasmas from the gastrointestinal tract in its teleost host consist of long-chain polymers, fatty acids, lipoproteins and proteins.

Though the molecular basis of Mycoplasma pathogenicity remains largely elusive, we investigated the presence of Mycoplasma related pathogenicity factors, including the presence of traG/traE, glpF, katE, oppA, mgpA/mgpC, virulence factor BrkB, toxins, antitoxins, large membrane proteins (LMPs) and adhesion-related proteins. Our investigation revealed a lack of surveyed putative virulence factors in both MSM and MSS. We found a three-gene cluster with virulence factors, including virulence factor BrkB, an anti-toxin and glpF, in ML, indicating.
that ML still possess some level of pathogenic potential, whereas we found no evidence for pathogenicity of MSS and MSM to its host (Supplementary Fig. 8).

Functional enrichment analysis suggests that intestinal related *Mycoplasma* species are relying on amino acid synthesis, isoprenoid synthesis and an antioxidative protective system. We performed a functional enrichment analysis by reconstructing metabolic pathways specific for *Mycoplasma* with RAST. This analysis revealed 641, 667 and 676 DNA features, including protein-encoding genes and RNA coding genes, in MSM, MSS, and ML, respectively. Our pathway-based comparison among *Mycoplasma* genomes revealed that *Mycoplasma* species have a broad range of different functionalities (Supplementary Data 2), which fits the high dissimilarity of the phylogenetic and pangenomic analyses and the hypothesised host adaptation (Fig. 3).

Interestingly, we found a significant enrichment of the subsystems corresponding to arginine biosynthesis in *Mycoplasma* species and MAGs associated with intestinal environments including the three MAGs described here (87.5%) compared to those in other environments (27.3%) (Fig. 4a, b). Our enrichment analysis also confirmed a higher prevalence of genes encoding the MEP pathway in intestinal environments (Fig. 4b). Lastly, our analysis revealed that glutathione peroxidase protective systems have a putative defensive role in intestinal related *Mycoplasma* (Fig. 4b) (Supplementary Data 4).

Discussion

Our study presents *Mycoplasma* MAGs characterised from gastrointestinal samples of 12 individuals from 3 different salmonid species. These salmonid related MAGs systematically represented the dominant taxa of the gut microbiota in the three host species. Moving beyond 16S rRNA gene amplicon surveys, we provide the first description of the potential functional importance of *Mycoplasma* related to the gastrointestinal environment of multiple salmonid host species, including an essential amino acid metabolism of putative advantage to their fish host. We acknowledge that MAG technology comes with limitations, resulting in potential false positives. To minimise these limitations, we used state-of-the-art binning methods, combining CONCOCT and manual curation with anv’i’o and applied good practice for the reliable generation of MAGs. Our *Mycoplasma* MAG resolved from Atlantic salmon is largely in accordance with another recent study. Together, these findings support a non-neutral evolutionary relationship and warrant further investigations into the use of these *Mycoplasma* candidate species and their potential to boost gut health and growth performance in commercial production of fish and potentially other animal species. Our 16S rRNA gene-based qPCR investigation of bacterial load in rainbow trout indicated low biomass of bacteria, which we hypothesise reflects the young age of rainbow trout, a relatively sterile RAS
environment and that the bacteria present are in a phase of initial colonisation of the gut. The dominance of Mycoplasma in this early life stage further indicates that Mycoplasma is important in young salmonids.

Modifications of the microbiota for a putative gain of beneficial phenotypes, such as increased feed efficiency and host disease resilience, have been exploited for livestock productions. We envisage that our findings will further provide a background for a better understanding of the interaction between Mycoplasma and aquaculturally relevant salmonids and other teleost species to increase the efficiency of aquaculture production. In Atlantic salmon, the abundance of Mycoplasma has been shown to be strongly decreased by the presence of pathogens, which indicates that the abundance of Mycoplasma is positively associated with improved growth8,39, carotenoid utilisation1 and disease resilience of its host40. Together, this suggests that Mycoplasmas may be used as a putative biomarker for monitoring performance and disease status in farmed salmonids.

The phylogeny of salmonid related MAGs of Mycoplasma corresponds to the phylogeny of their hosts, Coregoninae and Salmoninae, indicating a putative host-specific adaptations. We deciphered genetic and functional differentiations among Mycoplasma species, using state of the art methods for phylogenomics, comparative genomics, and reconstruction of metabolic subsystems. Despite the fact that Mycoplasma is often reported to be an obligate parasite, our findings revealed that the salmonid-related Mycoplasma species could be specifically adapted for ammotelic hosts, such as most teleosts, due to the ability to utilise ammonia in the gut. We hypothesise that this might have facilitated an evolutionary beneficial relationship between Mycoplasma and its salmonid hosts. Numerous recent studies have revealed a strong dominance of a salmonid Mycoplasma4,8,11,13; here we add to these intriguing findings by presenting draft genomes, broader phylogenetic relationship and functional potential. A high relative abundance of Mycoplasma has been associated with higher health status in Atlantic salmon indicating a potential adaptive advantage of Mycoplasma to the host fish40. Further, neutral modelling approaches comparing environmental and intestinal frequency distributions of Mycoplasma in Atlantic salmon have previously suggested that Atlantic salmon related Mycoplasmas are well adapted to colonisation of their hosts41. Recent findings of marine Mycoplasma species and uncultured Tenericutes have shed new light over the evolutionary processes and pathogenicity of Mycoplasma, which is corroborated by our findings of symbiotic species of Mycoplasma present in marine environments and marine living vertebrates22,42.

Previous studies have shown the importance of arginine and its derivatives, citrulline and ornithine, in the gastrointestinal tract of farmed fish43–45. Biosynthesis of arginine, citrulline and ornithine has previously been investigated in Mycoplasma, since this pathway is an important energy source in other Mycoplasma species22. We found genetic evidence of MSS, MSM and ML being able to use ammonia as a substrate for biosynthesis of ornithine and citrulline by the presence of the genes encoding carbamate kinase (arcC) and ornithine transcobalaminase (otc). We hypothesise that this is a beneficial trait for salmonids since they lack the ability to de novo synthesise arginine and in addition, this ability of Mycoplasma could increase ammonia detoxification in the gut46, where ammonia are found excessively in salmonids47. Furthermore, ornithine uptake from the gut can lead to increased growth in Atlantic salmon43. These findings indicate that the presence of Mycoplasma in the gut can boost the metabolism of its salmonid host, which we hypothesise could be a result of ammonia detoxification and could result in the increased upper limit of feed utilisation and thereby increased growth of its salmonid host. Further investigations of gene activity related to ammonia detoxification, isoprenoid synthesis and polymer degradation by Mycoplasma would require meta-transcriptomics and metabolomics to further our functional understanding of the role that Mycoplasma plays for its host.

Previous studies investigating the biogeographical dynamics of the intestinal microbiota in Atlantic salmon revealed dominance of Mycoplasma in adults and returning adult salmon, despite the low presence of Mycoplasma in the early life stage of Atlantic salmon13. Combined with our results, we hypothesise that the dominance of Mycoplasma in salmonids is a result of holobiont evolution. Indeed, we show that these salmonid Mycoplasmas harbour genes able to degrade long-chain polymers, such as chitin, which is often abundant in insects and crustaceans that make up an important proportion of the natural diet of juvenile salmonids48. This ability of Mycoplasma could be beneficial for its host since the degradation of long-chain polymers boosts the nutritional value of a chitin rich diet and therefore could be a co-evolutionary driver between the salmonid hosts and Mycoplasma. This hypothesis may also explain the increase of Mycoplasma in salmonid cohoes, whereas an increase of Mycoplasma was shown in the intestinal region of rainbow trout reared on an insect-based diet5 and an insect-based diet has subsequently proven beneficial in aquaculture49. We note that our findings could represent the foundation for an optimised production that exploits the beneficial functions of Mycoplasma presence by targeting not only the essential requirements of the fish host but also the requirements of the salmonid specific Mycoplasma.

While several previous studies have demonstrated that Mycoplasma species are commonly found in salmonids using gene marker technologies, our study resolves the phylogeny and functionality of three MAGs of two species of Mycoplasma related to aquaculturally relevant species. Our study facilitates a deeper understanding of the functionality of Mycoplasma in salmonids. Furthermore, our results are in accordance with a mutualistic relationship between Mycoplasma and its salmonid host and imply that Mycoplasmas likely play an important role in nutrition utilisation and possibly health.

Methods
Sample collection and DNA extraction. Sample collections for rainbow trout were carried out at the Research facility of BioMar in Hirtshals, Denmark. Samples from eight individual Atlantic salmon were obtained from a production site in a fjord near Bergen, Norway. The entire gastrointestinal tract was carefully dissected out with sterile tools and gut content was then sampled and preserved in Zymo DNA/RNA shield (Zymo Research). Extraction of DNA from three individuals, including mid and distal intestinal region, of rainbow trout was carried out using ZymoBiosci DNA miniPrep (Zymo Research), following the protocol of the manufacturer. Extraction of DNA from Atlantic salmon was carried out using MagAttract® PowerSoil® DNA Kit, following the protocol of the manufacturer. Samples from a single individual of European whitefish were taken from Lake Suohpatjavri, Norway. The entire gastrointestinal tract was carefully dissected out with sterile tools and gut content was then sampled and preserved in 90% Ethanol. Extraction of DNA from European whitefish was carried out in technical triplicates, using MagAttract Power Soil DNA Kit (Qiagen) with a modified protocol49.

Ethical approval. The methods for rainbow trout were performed in accordance with relevant guidelines and regulations and approved by The Danish Animal Experiments Inspectorate, under license No. 2015-15-0201-00645. The study is thus approved under the Danish law regarding experimental animals. Atlantic salmon and European whitefish included in this study were sacrificed immediately upon catch with a solid hit to the neck region resulting in instant death before tissue and gut content samples were taken. While no particular license is required for such sampling, we stress that all fish handling was supervised by experienced and trained staff in accordance with normal and legal procedures in Norway. We obtained permission for gill net fishing in Lake Suohpatjavri from the County Governor of Finnmark with legal authority through LOV 1992-05-15 nr 47, 113. Fish were euthanised by means of a cerebral concussion prior to sample collection. No ethical permission is required from the Norwegian Animal Research Authority for collection with gill nets and the associated sacrifice of fish (FOR 1996-01-15 nr 23, the Norwegian Ministry of Agriculture and Food).
Biomass monitoring of bacteria in rainbow trout, using real-time PCR of bacterial V3-V4 16S rRNA gene. Real-time PCR (qPCR) was performed in 20 μl reactions containing either 0.1 μM of each biotinylated primer, 110 μM of dNTPs, and 1× AccPrime SuperMix II (Invitrogen), 6.5 μl ddH2O, 0.1 μM forward, and reverse primers (341 F: 5′-CCTAYGGGRBGCASCAG-3′, 805R: 5′-GGACTACNNGGGATYTATTATT-3′), and 1 μl of SYBR Green/ROX solution (Invitrogen). qPCR amplifications were performed on an Mx3005P qPCR machine (Agilent Technologies) and analysed under the following cycling condition: 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 55°C for 20 s, and 72°C for 40 min.

Imaging bacteria in mid- and distal gut sections of rainbow trout. To visualise bacteria in the fish gut sections, formalin-fixed tissue sections were depairedфинised with xylene, dehydrated with 70 and 96% ethanol, respectively, for 3 min each time, and air dried. Vetscaffold (Vector Laboratories), an antifade mounting medium with DAPI as an auxiliary agent with a coverslip and fluorescent index and image analysis were with an Axiosplan II epifluorescence microscope (Carl Zeiss) equipped for epifluorescence with a 100-W mercury lamp. Confocal images were captured on a Leica SPX-5 (Supplementary Fig. 4).

DNA sequencing. Fragmentation of DNA was carried out, using Covaris M220 with microTUBE-50 AFA Fibre Screw-Cap. Samples were normalised prior to library preparation. Library preparation was based on Single-tube library preparation. Library preparation was analysed with quantitative PCR to estimate optimal cycle settings on a Mx3005P qPCR System (Agilent Technologies). Indexed libraries were quality controlled with a bioanalyzer 2100 (Agilent Technologies) and sequenced 100PE and 150PE on a BGISEQ-500 or MGI 2000 at BGI Europe.

Genome-resolved metagenomics. Raw sequence reads were quality controlled, using FastQC/v0.11.8 to assess filtering and quality steps. Saturation of sequencing depth to obtain >5X coverage for all reads were estimated for available data, using khmer. Removal of adapters and low-quality reads was done with Adapter-Removal/v2.2.4, with quality base of 30 and a minimum length of 50 bp. Duplexes were removed, and reads were re-paired to remove singletons, using bbmap/v.38.35. In order to increase assembly efficiency by reducing eukaryotic contaminants, data were filtered for the phix174 genome, Human (HG19) genome, and the respective host genome (Supplementary Table 2), using minimap2.25, using default parameters for short accurate genomic reads. Filtered data were initially single assembled to investigate individual variations of Mycoplasma and were also co-assembled to obtain highest completeness of MAGs for comparative and phylogenomic analysis, using MegaHIT/v.1.1.1 with a minimal length of 1000 bp per scaffold, using meta-sensitive flag for metagenomic purpose and assembled contigs were quality controlled with Quast/v.5.0.2. To increase effective binning, we used the anvio pipeline (available from http://merenlab.org/software/anvio). The subsequent workflow is outlined at http://merenlab.org/2016/06/22/anvio-tutorial-v2/. Briefly, (I) anvio was used to profile the scaffolds using Prodigal/v2.6.354 with default parameters to identify genes and HMMER/v.3.3 from each of these additional scaffolds. The subsequent code was used to infer the taxonomic classification.

Statistical analysis. Statistical support for branches was estimated using an Shimodaira–Hasegawa-like approximate likelihood-ratio test (aLRT)69. Branch support were examined further using internode certainty support metrics, which are based on Shannon’s entropy and indicate the degree of certainty for each branch considering the two most prevalent branches in the data. Internode certainties for gene trees and for sites were calculated independently, using estimates of site- and gene-concordance factors from IQ-TREE70.

Comparative genomics of Mycoplasma. Mycoplasma genomes from different species were selected based on an open access database71, with a coverage of ≥80%, completion and below 10% redundancy were selected from Genbank. Selected genomes are referred to as external genomes (Supplementary Data 1).

Functional description of salmonid MAGs. Functional classification of a pangenome was carried out using the MAGs from each of the genomes, we annotated functions, using Pfam79, COG80, KEGG81 for each MAG. The subsequent workflow is outlined at http://merenlab.org/software/anvio. For each MAG, a summary of the pangenome generated for this study is available at https://doi.org/10.6084/m9.figshare.13019543 and https://doi.org/10.6084/m9.figshare.13019477, respectively.

Network analysis. Network analysis of genomes based on amino acid metabolism was based on RAST subsystems. Gene functional classification was generated using a functional neural network using the context-free grammar learned from the database. To generate a FOCUS MAG, RAST functions with hand curated nodes related to amino acid metabolism were kept for analysis.
10. Lyons, P. P., Turnbull, J. F., Dawson, K. A. & Crumlish, M. Phylogenetic and
 M. salmoninae salar (MSS), and
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 41. Heys, C. et al. Neutral processes dominate microbial community assembly in
 22. Wang, Y. et al. Phylogenomics of expanding uncultured environmental
 19. Barré, A., de Daruvar, A. & Blanchard, A. MolliGen, a database dedicated to
 26. Keinänen, M. et al. The thiamine de
 175
 –
 3002 (2020).
 87
 –
 185, 363 (2019).
 31. Begley, M. et al. Analysis of the isoprenoid biosynthesis pathways in
 35. Pritchard, R. E. & Balish, M. F. Mycoplasma iowae: relationships among
 23. Wei, S. et al. Genome sequence of Mycoplasma iowae strain 695, an unusual
 42. Lian, C.-A. et al. Genomic characterization of a novel gut symbiont from the
 39. Rimoldi, S., Antonini, M., Gasco, L., Moroni, F. & Terova, G. Intestinal
 21. Nadkarni, M. et al. The thiamine deficiency syndrome M74, a reproductive
 16. Razin, S. Peculiar properties of mycoplasmas: the smallest self-replicating
 16. Razin, S. Peculiar properties of mycoplasmas: the smallest self-replicating
 15. Helsen, J. et al. Gene loss predictably drives evolutionary adaptation. Mol.
 181
 –
 347 (2019).
 43. Berge, G. E., Sveier, H. & Lied, E. Effects of feeding Atlantic salmon (Salmo
 17. Razin, S., Yoge, D. & Naot, Y. Molecular biology and pathogenicity of
 17. Razin, S., Yoge, D. & Naot, Y. Molecular biology and pathogenicity of
 20. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 43. Berge, G. E., Sveier, H. & Lied, E. Effects of feeding Atlantic salmon (Salmo
 14. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 21. Nadkarni, M., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of
 30. Sangari, F. J., Pérez-Gil, J., Carretero-Paulet, L., García-Lobo, J. M. &
 7. Ciric, M., Waite, D., Draper, J. & Jones, J. B. Characterisation of gut
 3. Perry, W. B., Lindsay, E., Payne, C. J., Brodie, C. & Kazlauskaite, R. The role of
 19. Barré, A., de Daruvar, A. & Blanchard, A. MolliGen, a database dedicated to
 4. Lowrey, L., Woodhams, D. C., Tachí, L. & Salinas, I. Topographical mapping
 5. Keinänen, M. et al. The thiamine de
 26. Keinänen, M. et al. The thiamine de
 19. Barré, A., de Daruvar, A. & Blanchard, A. MolliGen, a database dedicated to
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 42. Lian, C.-A. et al. Genomic characterization of a novel gut symbiont from the
 38. Meziti, A. et al. The reliability of metagenome-assembled genomes (MAGs) in
 22. Wang, Y. et al. Phylogenomics of expanding uncultured environmental
 26. Keinänen, M. et al. The thiamine de
 19. Barré, A., de Daruvar, A. & Blanchard, A. MolliGen, a database dedicated to
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 24. Oshima, K. & Nishida, H. Phylogenetic relationships among mycoplasmas
 16. Razin, S. Peculiar properties of mycoplasmas: the smallest self-replicating
 17. Razin, S., Yoge, D. & Naot, Y. Molecular biology and pathogenicity of
 17. Razin, S., Yoge, D. & Naot, Y. Molecular biology and pathogenicity of

44. Andersen, S. M. et al. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar). Br. J. Nutr. 110, 1968–1977 (2013).
45. Nguyen, T. L. et al. Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichthys olivaceus). Front. Microbiol. 9, 2059 (2018).
46. Li, P., Mai, K., Trushenski, J. & Wu, G. New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53 (2009).
47. Rubino, J. G., Zimmer, A. M. & Wood, M. C. An in vitro analysis of intestinal ammonia handling in fasted and fed freshwater rainbow trout (Oncorhynchus mykiss). J. Comp. Physiol. B 184, 91–105 (2014).
48. Olov, A. V., Gerasimov, V. Y. & Laphan, O. M. The feeding behaviour of cultured and wild Atlantic salmon, Salmo salar L., in the Louvenga River, Kola Peninsula, Russia. ICES J. Mar. Sci. 63, 1297–1303 (2006).
49. Hildonen, M., Kodama, M., Puetz, L. C., Gilbert, M. T. P. & Limborg, M. T. AustraL-III: polynomial time sequence similarity searching. Nucleic Acids Res. 35, 4162–4164 (2017).
50. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
51. Finn, R. D., Clements, J. & Eddy, S. R. HMmer web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
52. Lee, M. D. GtOTree: a user-friendly workflow for phylogenomics. Bioinformatics 31, e4162–e4164 (2015).
53. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
54. Hyatt, D. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
55. Albaneg, J. et al. Rinning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
56. Delmont, T. O. & Eren, A. M. Linking pangenes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018).
57. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
58. Ranwez, V., Harispe, S., Deluc, F. & Douzery, E. J. P. MACSE: multiple sequence alignment for metagenomics with Kaiju. Bioinformatics 35, 4000–4002 (2019).
59. Hildonen, M., Kodama, M., Puetz, L. C., Gilbert, M. T. P. & Limborg, M. T. AustraL-III: polynomial time sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
60. Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the ITEP: an integrated toolkit for exploration of microbial pan-genomes. PeerJ 6, e4278 (2018).
61. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
62. Duchêne, D. A. et al. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 37, 1202–1210 (2020).
63. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
64. Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).
65. Salsejos, L. & Rokas, A. Inferring ancient recombination events requires genes with strong phylogenetic signals. Nature 497, 327–331 (2013).
66. Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors for phylogenetic datasets. Mol. Biol. Evol. 37, 2727–2733 (2020).
67. Zhang, C., Rabie, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19, 153 (2018).
68. Bryant, D. & Moulton, V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255–265 (2004).
69. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998).
70. Benedict, M. N., Henrikson, J. R., Metcalf, W. W., Whitaker, R. J. & Price, N. D.ITEP: an integrated toolkit for exploration of microbial pan-genomes. BMC Genomics 15, 8 (2014).
71. van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. 804, 281–295 (2012).
72. Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. K. Genomics and taxonomy in diagnostics for food security: soft-trotting enterobacterial pathogen. Anal. Methods 8, 12–24 (2015).
73. Snipen, L. & Liland, K. H. microman: an R-package for microbial pan-genomes. BMC Bioinf. 16, 79 (2015).
74. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).
75. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).
76. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).
77. Inamine, J. M., Ho, K. C., Loechel, S. & Hu, P. C. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172, 504–506 (1990).
78. Obi, T., Andachi, Y., Muto, A. & Osawa, S. Translation in vitro of codon UGA as tryptophan in Mycoplasma capricolum. Biochimie 73, 1109–1112 (1991).

Acknowledgements

The research was funded by The Independent Research Fund Denmark ("HappyFish", grant No. 8022-00005B), GUDP ("Pra-Pro-Fisk", grant No. 34009-17 and 12) and the FHF—Norwegian Seafood Research Fund ("Holofish", grant No. 901436). We would like to thank Anni Nielsen, BioMar Trial coordinator, ATC Hirtshals, Denmark and Torunn Forberg, Bomsar RD, Trondheim, Norway for assisting with sampling and feeding trials, Cathrine Kalgrafl from Lerøy is thanked for assisting with salmon samples.

Author contributions

M.T.L. and J.A.R. conceived the study with input from A.M.B., M.T.P.G. and K.K. Sampling was organised and performed by J.A.R., K.R.V., M.T.L., M.T.P.G., M.D.M., L.C.P., H.S. and K.P. J.A.R., L.C.P., K.R.V., L.V.G.J. and A.M.B. carried out laboratory work. J.A.R., T.O.D and D.A.D. performed the computational analysis. J.A.R. wrote the paper with input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-02105-1.

Correspondence and requests for materials should be addressed to J.A.R. or M.T.L.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021