EMBEDDING OF A MAXIMAL CURVE IN A HERMITIAN VARIETY

GÁBOR KORCHMÁROS AND FERNANDO TORRES

Abstract. Let X be a projective geometrically irreducible non-singular algebraic curve defined over a finite field \mathbb{F}_{q^2} of order q^2. If the number of \mathbb{F}_{q^2}-rational points of X satisfies the Hasse-Weil upper bound, then X is said to be \mathbb{F}_{q^2}-maximal. For a point $P_0 \in X(\mathbb{F}_{q^2})$, let π be the morphism arising from the linear series $D := |(q+1)P_0|$, and let $N := \dim(D)$. It is known that $N \geq 2$ and that π is independent of P_0 whenever X is \mathbb{F}_{q^2}-maximal. The following theorems will be proved:

Theorem 0.1. If X is \mathbb{F}_{q^2}-maximal, then $\pi : X \to \pi(X)$ is a \mathbb{F}_{q^2}-isomorphism. The non-singular model $\pi(X)$ has degree $q+1$ and lies on a Hermitian variety defined over \mathbb{F}_{q^2}.

Theorem 0.2. If X is \mathbb{F}_{q^2}-maximal, then it is \mathbb{F}_{q^2}-isomorphic to a curve Y in $\mathbb{P}^M(\overline{\mathbb{F}_{q^2}})$, with $2 \leq M \leq N$, such that Y has degree $q+1$ and lies on a non-degenerate Hermitian variety defined over \mathbb{F}_{q^2} of $\mathbb{P}^M(\overline{\mathbb{F}_{q^2}})$. Furthermore, $\text{Aut}_{\mathbb{F}_{q^2}}(X)$ is isomorphic to a subgroup of the projective unitary group $\text{PGU}(M+1, q^2)$.

Theorem 0.3. If X is \mathbb{F}_{q^2}-birational to a curve Y embedded in $\mathbb{P}^M(\overline{\mathbb{F}_{q^2}})$ such that Y has degree $q+1$ and lies on a non-degenerate Hermitian variety defined over \mathbb{F}_{q^2} of $\mathbb{P}^M(\overline{\mathbb{F}_{q^2}})$, then X is \mathbb{F}_{q^2}-maximal and X is \mathbb{F}_{q^2}-isomorphic to Y.

1. Introduction

Let X be a projective geometrically irreducible non-singular algebraic curve defined over \mathbb{F}_ℓ, the finite field of order ℓ. There is a natural way to define a \mathbb{F}_ℓ-linear series D on the curve X provided that $X(\mathbb{F}_\ell) \neq \emptyset$, and geometrical and arithmetical properties of X may be investigated by using D. This linear series D arises from the characteristic polynomial $h(t)$ of the Jacobian J (over \mathbb{F}_ℓ) of X in the following way, see [2, Section 1.3]. Let $\prod_{i=1}^r h_i^{\alpha_i}(t)$ be the factorization of $h(t)$ over $\mathbb{Z}[t]$. Since the Frobenius morphism Fr_J (over \mathbb{F}_ℓ) on J is semisimple and the representation of endomorphisms

This research was carried out within the activity of GNSAGA of the Italian CNR with the support of the Italian Ministry for Research and Technology. The present paper was partly written while the second author was visiting ICTP-Italy (July-August 1999), as a Regular Associate, and the University of Basilicata at Potenza-Italy (July 1999).
of \mathcal{J} on the Tate module is faithful [21, Theorem 2], [16, VI, Section 3], we have
\[\prod_{i=1}^{T} h_i(\text{Fr}_J) = 0 \quad \text{on} \quad \mathcal{J}. \]

Now let $P_0 \in \mathcal{X}(\mathbb{F}_\ell)$ and set $m := |\prod_{i=1}^{T} h_i(1)|$. Then the foregoing equation is equivalent to the following linear equivalence of \mathbb{F}_ℓ-divisors on \mathcal{X}:
\[\sum_{i=1}^{T} \alpha_i \text{Fr}_X^{T-i}(P) + \text{Fr}_X(P) \sim mP_0 \quad P \in \mathcal{X}, \tag{1.1} \]
where $\sum_{i=1}^{T} \alpha_i t^{T-i} + t^T := \prod_{i=1}^{T} h_i(t)$; see [3, Section 1.3].

Assume from now on that ℓ is a square, and let $q := \sqrt{\ell}$. Then $h(t) = (t + q)^2g$ if and only if \mathcal{X} is \mathbb{F}_{q^2}-maximal, that is, $\#\mathcal{X}(\mathbb{F}_{q^2})$ attains the Hasse-Weil upper bound
\[1 + q^2 + 2qg, \]
where g is the genus of \mathcal{X}. From (1.1), every \mathbb{F}_{q^2}-maximal curve \mathcal{X} is equipped with a \mathbb{F}_{q^2}-linear series $\mathcal{D} = \mathcal{D}_X = [(q + 1)P_0]$ which is independent of $P_0 \in \mathcal{X}(\mathbb{F}_{q^2})$ and satisfies the so-called “Fundamental Equivalence” [3, Corollary 1.2]:
\[qP + \text{Fr}_X(P) \sim (q + 1)P_0 \quad \text{for any} \ P \in \mathcal{X}. \tag{1.2} \]

In particular, $(q + 1)P \sim (q + 1)P_0$ for all points $P \in \mathcal{X}(\mathbb{F}_{q^2})$, see [18, Lemma 1].

Maximal curves have been intensively studied also in connection with coding theory and cryptography. The pioneer work by Störh and Voloch [20], giving among other things an alternative proof of the Hasse-Weil bound via Weierstrass Point Theory, has been widely used to investigate maximal curves, their \mathcal{D}-Weierstrass points and the support of the \mathbb{F}_{q^2}-Frobenius divisor associated to \mathcal{D}. However, the fundamental question in this context, namely whether the \mathbb{F}_{q^2}-morphism $\pi : \mathcal{X} \to \pi(\mathcal{X})$ associated to \mathcal{D} is an isomorphism, has only had a partial answer so far [3, Proposition 1.9]. Our Theorem 2.5 (which is the first statement in Theorem 0.1) states that π is indeed an isomorphism. (This result was originally stated in [3, Section 2.3] but the proof giving there was not correct.) Hence the maximal curve \mathcal{X} may be identified with a curve of degree $q + 1$ embedded in the projective space $\mathbb{P}^N(\overline{\mathbb{F}}_{q^2})$ with $N = \dim(\mathcal{D})$.

This allows to investigate in some more details the geometric behaviour of \mathcal{X}. In the smallest case, $N = 2$, \mathcal{X} is a non-degenerate Hermitian curve, according to the Rück-Stichtenoth theorem, see [15]. Our Theorem 3.4 (which is actually the second statement in Theorem 0.1) is a generalization for $N > 2$ as it states that \mathcal{X} lies on a Hermitian variety $\mathcal{H} \subseteq \mathbb{P}^N(\overline{\mathbb{F}}_{q^2})$ defined over \mathbb{F}_{q^2}. It might be that \mathcal{H} is degenerate in some cases, such a possibility occurring when \mathcal{X} is $(N - 1)$-strange that is the osculating hyperplanes to \mathcal{X} at generic points have a non-empty intersection. This kind of pathology in positive characteristic has been considered by several authors after Lluis and Samuel, see the most recent papers [15], [14], [3], [11] on this subject. What we are able to prove in this
direction is the existence of a projection $\phi : \mathbf{P}^N(\overline{\mathbf{F}}_{q^2}) \to \mathbf{P}^M(\overline{\mathbf{F}}_{q^2})$ such that $\phi(\pi(\mathcal{X}))$ lies on a non-degenerate Hermitian variety defined over \mathbf{F}_{q^2}, see Theorem 0.2 and Section 3. Here M is the dimension of the smallest linear series \mathcal{R} containing all divisors $qP + \text{Fr}_X(P)$ with P ranging over \mathcal{X}. In other words, M is the dimension of the smallest \mathbf{F}_{q^2}-vector subspace V of the function field $\mathbf{F}_{q^2}(\mathcal{X})$ such that for any two points $P_1, P_2 \in \mathcal{X}$ there exists $f \in V$ satisfying $qP_1 + \text{Fr}_X(P_1) = qP_2 + \text{Fr}_X(P_2) + \text{div}(f)$. The converse of the first statement of Theorem 0.2 also holds, see Theorem 0.3 and Section 4. Putting together these two theorems we see that the study of \mathbf{F}_{q^2}-maximal curves is equivalent to that of projective geometrically irreducible non-singular curves of degree $q + 1$ lying on a non-degenerate Hermitian variety defined over \mathbf{F}_{q^2} in a projective space over $\overline{\mathbf{F}}_{q^2}$. Note that $q + 1$ is the minimum degree that a non-singular curve of degree bigger than one lying on a non-degenerate Hermitian variety can have.

2. Maximal curves and their natural embedding in a projective space

Our terminology in this and subsequent sections is the same as employed in section 2 of [20], and in [3].

In this section we assume that \mathcal{X} is a \mathbf{F}_{q^2}-maximal curve. Our aim is to show that \mathcal{X} is \mathbf{F}_{q^2}-isomorphic to a curve in $\mathbf{P}^N(\overline{\mathbf{F}}_{q^2})$, N being the dimension of the linear series $\mathcal{D} = \mathcal{D}_X = |(q + 1)P_0|$ with $P_0 \in \mathcal{X}(\mathbf{F}_{q^2})$. Let $\pi : \mathcal{X} \to \mathbf{P}^N(\overline{\mathbf{F}}_{q^2})$ be the morphism associated to \mathcal{D}. Then

Lemma 2.1. ([5, Prop. 1.9]) The following statements are equivalent:

1. \mathcal{X} is \mathbf{F}_{q^2}-isomorphic to $\pi(\mathcal{X})$;
2. For $P \in \mathcal{X}$, $\pi(P) \in \mathbf{P}^N(\overline{\mathbf{F}}_{q^2}) \iff P \in \mathcal{X}(\mathbf{F}_{q^2})$;
3. For $P \in \mathcal{X}$, q is a Weierstrass non-gap at P.

Hence we can limit ourselves to prove the above statement (2). To do this we need some previous results concerning \mathcal{D}-orders and Frobenius \mathcal{D}-orders.

Let $\epsilon_0 = 0 < \epsilon_1 = 1 < \ldots < \epsilon_N$ (resp. $\nu_0 = 0 < \nu_1 < \ldots < \nu_{N-1}$) denote the \mathcal{D}-orders (resp. the \mathbf{F}_{q^2}-Frobenius orders) of \mathcal{D}.

Lemma 2.2. ([5, Thm. 1.4]) The \mathcal{D}-orders and Frobenius \mathcal{D}-orders of \mathcal{X} have the following properties:

1. $\epsilon_N = q$;
2. $\nu_{N-1} = q$;
3. $\nu_1 = 1$ iff $N \geq 3$;
4. $0, 1$, and q (resp. $q + 1$) are (\mathcal{D}, P)-orders provided that $P \notin \mathcal{X}(\mathbf{F}_{q^2})$ (resp. $P \in \mathcal{X}(\mathbf{F}_{q^2})$).
Let \(\pi = (f_0 : \ldots : f_N) \) where each projective coordinate \(f_i \) belongs to \(\mathbb{F}_{q^2}(X) \), the function field over \(\mathbb{F}_{q^2} \) of \(X \). As in [20], we will consider \(\pi : X \to \mathbb{P}^N(\mathbb{F}_{q^2}) \) as a parametrized curve in \(\mathbb{P}^N(\mathbb{F}_{q^2}) \), and the points \(P \in X \) will be viewed as its places (or branches). Then the intersection divisor \(\pi^{-1}(H) \) of \(X \) arising from a hyperplane \(H \) of \(\mathbb{P}^N(\mathbb{F}_{q^2}) \) is defined in the usual manner, and \(D \) turns out to be the linear series of hyperplane sections, see [20, p.3]. In particular, the osculating hyperplane at \(P \) is the hyperplane in \(\mathbb{P}^N(\mathbb{F}_{q^2}) \) which intersects the branch \(P \) with multiplicity \(j_N \), where \((j_0, j_1, \ldots, j_N) \) is the \((D, P) \)-order sequence, see [20, p.4].

Put \(\mathcal{L}((q + 1)P_0) = \langle f_0, \ldots, f_N \rangle \). By Lemma 2.2(1) and [1], Thm.1, there exist \(z_0, \ldots, z_N \in \mathbb{F}_{q^2}(X) \), not all zero, such that

\[
(2.1) \quad z_0^q f_0 + \ldots + z_N^q f_N = 0.
\]

Some features of the homogeneous \(N \)-tuple \((z_0, \ldots, z_N) \) are stated in the following lemma.

Lemma 2.3. (1) The osculating hyperplane at \(P \in X \) has equation

\[
w_0^q(P)X_0 + w_1^q(P)X_1 + \ldots + w_N^q(P)X_N = 0,
\]

where \(w_i := t^{e_P} \zeta_i \), \(t \) a local parameter at \(P \), and \(e_P := -\min\{v_P(z_0), \ldots, v_P(z_N)\} \);

(2) The following relation also holds:

\[
(2.2) \quad z_0^q f_0 + \ldots + z_N^q f_N = 0;
\]

(3) The \(\mathbb{F}_{q^2} \)-rational functions \(z_0, z_1, \ldots, z_N \) are uniquely determined by Eq. (2.1) up to a non-zero factor in \(\mathbb{F}_{q^2}(X) \);

Proof. (1) For \(i = 0, \ldots, N \), let

\[
w_i(t) = \sum_{j=0}^{\infty} a_j^{i}(t^j) \in \mathbb{F}_{q^2}[t]
\]

be the local expansion of \(w_i \) at \(P \). As there exists \(i \in \{0, \ldots, N\} \) such that \(a_0^{(i)} \neq 0 \) (e.g. \(i \) satisfying \(e_P = -v_P(z_i) \)), we can consider the following hyperplane in \(\mathbb{P}^N(\mathbb{F}_{q^2}) \):

\[
H : \sum (a_0^{(i)})^q X_i = 0.
\]

Then, thanks to Lemma 2.2(4), Item (1) follows, once we have shown that \(v_P(\pi^{-1}(H)) \geq q \). Taking into consideration Eq. (2.1),

\[
(2.3) \quad v_P(\sum_{i=0}^{N} (a_0^{(i)})^q f_i) = v_P(t^q \sum_{i=0}^{N} \sum_{j=1}^{\infty} a_j^{(i)} t^{aj-q} f_i),
\]

yielding the desired relation \(v_P(\pi^{-1}(H)) \geq q \).
(2) By the Fundamental Equivalence (1.2), $F r_X(P)$ belongs to the osculating hyperplane at P for every $P \in X$. Then from Eq. (2.1) we infer for all but a finitely many points $P \in X$ that
\[\sum_{i=0}^{N} z_i(P)^{q} f_i(P)^{q^2} = 0 \]
and Item (2) follows.

(3) This is clear because once the projective coordinates are fixed, then the osculating hyperplane at any point is uniquely determined modulo a non-zero element of \overline{F}_{q^2}.

Lemma 2.4. Let $P \in X$ be such that $\pi(P) \in P^N(F_{q^2})$. Then $P \in X(F_{q^2})$.

Proof. Since $\pi(P)$ is F_{q^2}-rational we can take it to the point $(1 : 0 : \ldots : 0)$ by means of a F_{q^2}-linear transformation. The new coordinates still satisfy Eqs. (2.1) and (2.2). In addition, we can assume that $\pi = (1 : f_1 : \ldots : f_N)$ so that $v_P(f_i) \geq 1$ for $i \geq 1$. Now, the set up and the results of the computation involving local expansion in the proof of Lemma 2.3(2) together with Lemma 2.2(4) allow us to limit ourselves to check that $v_P(\pi^{-1}(H)) \geq q + 1$ for every point P chosen such that $\pi(P) \in P^N(F_{q^2})$. As we have already noted, $v_P(f_i) \geq 1$ for $i \geq 1$. Then, taking also into consideration Eq. (2.3), we only need to see that $a_1^{(0)} = 0$. As a matter of fact, this follows from Eq. (2.2), and hence the proof of the lemma is complete.

As a corollary to the Lemmas 2.1 and 2.4 we obtain the following result.

Theorem 2.5. The morphism π is a closed embedding, i.e., X is F_{q^2}-isomorphic to $\pi(X)$.

Remark 2.6. (1) As it was showed in [3, Sect. 2], [4, Sect. 2.3], a class of F_{q^2}-maximal curves can be characterized by the type of the Weierstrass semigroup at some F_{q^2}-rational point of the curve. The semigroups involved in such a characterization belong to a special family of numerical semigroups H defined by the following two properties: (1) $q, q + 1 \in H$ and (2) there exist $r, s \in H$ so that each $h \in H$ with $h \leq q + 1$ is generated by r and s. Indeed, if a F_{q^2}-maximal curve has a F_{q^2}-rational point P_0 such that the Weierstrass semigroup $H(P_0)$ at P_0 satisfies each of the above two conditions, then $H(P_0) = \langle r, s \rangle$. In particular, the genus of such a curve is $(r - 1)(s - 1)/2$. Other interesting properties of maximal curves depending on the behavior of their Weierstrass points were pointed out in [3, Sect. 2.4].

(2) Theorem 2.3 implies that
\[\text{Aut}_{F_{q^2}}(X) \cong \{ A \in PGL(N + 1, q^2) : A \pi(X) = \pi(X) \} \]
For a stronger result on $\text{Aut}(X)$, see Theorem 3.4.
Remark 2.7. For an application of Theorem 2.5 in Section 3 we stress that the condition of \mathcal{D} being a complete linear series was not used. Hence Theorem 2.5 holds true if \mathcal{D} is replaced by a (non-complete) linear subseries \mathcal{R} of \mathcal{D} as long as \mathcal{R} contains all divisors $qP + \text{Fr}_\mathcal{X}(P)$ with $P \in \mathcal{X}$, and π means the morphism associated to \mathcal{R}.

3. ON THE DUAL OF $\pi(\mathcal{X})$

The dual curve (also called strict dual) \mathcal{Z}^* of a non-degenerate projective geometrically irreducible algebraic curve \mathcal{Z} of a projective space \mathcal{P} is the closure in the dual projective space \mathcal{P}^* of the subset of points which represent the osculating hyperplane L_P^{N-1} to \mathcal{Z} at some general point $P \in \mathcal{Z}$, see for instance [11] and [3].

In this section, we assume that \mathcal{X} is a maximal curve over \mathcal{F}_{q^2}, and identify \mathcal{X} with $\pi(\mathcal{X})$ according to Theorem 2.5. Let $\pi^* : \mathcal{X} \to \mathcal{P}^N(\mathcal{F}_{q^2})$ be the morphism with coordinate functions z_0, z_1, \ldots, z_N introduced in the previous section. By Lemma 2.3(1), $\pi^* \circ \text{Fr}_\mathcal{X}$ is the Gauss map $P \mapsto L_P^{(N-1)}$. This leads us to consider the curve $\pi^*(\mathcal{X})$ in $\mathcal{P}^N(\mathcal{F}_{q^2})$. Note that, $\pi^*(\mathcal{X})$ might be a degenerate curve in the sense that it might happen that $\pi^*(\mathcal{X})$ is contained and non-degenerated in a subspace \mathcal{P}^M of $\mathcal{P}^N(\mathcal{F}_{q^2})$. By a result due to Kaji [13, Prop. 1], if this is the case then there is a $(N - M)$-dimensional subspace \mathcal{P}^{N-M} of $\mathcal{P}^N(\mathcal{F}_{q^2})$ which is the intersection of the osculating hyperplane to \mathcal{X} at general points $P \in \mathcal{X}$, that is apart from a finite number of points $P \in \mathcal{X}$.

In our situation, no point of \mathcal{X} lies on \mathcal{P}^{N-M}. In fact, let $R \in \mathcal{P}^{N-M}$, and assume on the contrary that $R \in \mathcal{X}$. Choose a point $Q \in \mathcal{X}$ such that $Q \neq R$ but the osculating hyperplane L_Q to \mathcal{X} at Q contains \mathcal{P}^{M-N}. Since L_Q meets \mathcal{X} in $\{Q, \text{Fr}_\mathcal{X}(Q)\}$ we have that $\text{Fr}_\mathcal{X}(Q) = R$, and hence Q is uniquely determined by R. But this is a contradiction, as we can choose Q in infinite different ways.

Furthermore, \mathcal{P}^M is invariant under the Frobenius collineation $(X_0 : \ldots : X_N) \mapsto (X_0^{q^2} : \ldots : X_N^{q^2})$. This yields that \mathcal{P}^M is defined over \mathcal{F}_{q^2}. Take a new \mathcal{F}_{q^2}-invariant frame in $\mathcal{P}^N(\mathcal{F}_{q^2})$ in such a way that \mathcal{P}^M has equation $X_{M+1} = 0, \ldots, X_N = 0$. Then $z_{M+1} = 0, \ldots, z_N = 0$ and $\pi^* : \mathcal{X} \to \mathcal{P}^M$ is given by $(z_0 : \ldots : z_M)$. Hence, according to Lemma 2.3(1), the equation of the osculating hyperplane to \mathcal{X} at Q is $\gamma_0^q X_0 + \ldots + \gamma_M^q X_M = 0$, where $\pi^*(Q) = (\gamma_0 : \ldots : \gamma_M)$.

Lemma 3.1. We have $\deg(\pi^*(\mathcal{X})) = q + 1$, and the linear series cut out on $\pi^*(\mathcal{X})$ by hyperplanes of \mathcal{P}^M contains all divisors $qP + \text{Fr}_\mathcal{X}(P)$ with $P \in \mathcal{X}$.

Proof. Choose a point $P_0 = (\alpha_0 : \ldots : \alpha_N) \in \mathcal{X}(\mathcal{F}_{q^2})$. Here, $\alpha_i \neq 0$ for some i with $0 \leq i \leq M$. In fact, if $\alpha_i = 0$ for $i = 0, \ldots, M$, then P_0 would belong to the hyperplane osculating at general points of \mathcal{X} and so P_0 would be in the above \mathcal{P}^{N-M} which is impossible as we have shown before. Now consider the hyperplane H of equation $\alpha_0^q X_0 + \ldots + \alpha_M^q X_M = 0$ which can be regarded as a hyperplane of \mathcal{P}^M. Let $P \in \mathcal{X}$ such that $\pi^*(P) = (\gamma_0 : \ldots : \gamma_M) \in H \cap \pi^*(\mathcal{X})$. $\gamma_i \in \mathcal{F}_{q^2}$. We have that
\[
\alpha_0^q \gamma_0 + \ldots + \alpha_M^q \gamma_M = 0 \quad \text{so that} \quad \gamma_0^q \alpha_0 + \ldots + \gamma_M^q \alpha_M = 0. \]
This shows that the osculating hyperplane to \(\mathcal{X} \) at \(P \) passes through \(P_0 \) (Lemma 2.3(1)). Since \(P_0 \in \mathcal{X}(\mathbb{F}_{q^2}) \), this is only possible when \(P = P_0 \). Thus we have proved that \(H \cap \pi^*(\mathcal{X}) \) contains no point different from \(\pi^*(P_0) \). We want to show next that the divisor \((\pi^*)^{-1}(H)\) of \(\mathcal{X} \) is \((q+1)P_0 \). To do this we have to show that
\[
v_{P_0}((\pi^*)^{-1}(H)) = v_{P_0}(\alpha_0^q w_0 + \ldots + \alpha_N^q w_N) = q + 1,
\]
where \(v_{P_0} \) denotes the valuation at \(P_0 \), \(w_i := t^{e_{P_0}} z_i \), \(t \) is a local parameter at \(P_0 \) and \(e_{P_0} := -\min\{v_{P_0}(z_0), \ldots, v_{P_0}(z_N)\} \). (Recall that \(z_{M+1} = \ldots = z_N = 0 \).)

After a \(\mathbb{F}_{q^2} \)-linear transformation of \(\mathbb{P}^N(\mathbb{F}_{q^2}) \) we may assume that \(P_0 = (1 : 0 : \ldots : 0) \) and that
\[
f_0 = 1, \quad f_1 = t^{j_1} + \ldots, \quad f_N = t^{j_N} + \ldots,
\]
where \(f_i = f_i/f_0 \) and \((0, j_1, \ldots, j_N)\) is the \((\mathcal{D}, P_0)\)-order sequence of \(\mathcal{X} \). Then we have to show that \(v_{P_0}(w_0) = q + 1 \).

From Eq. (2.2) we deduce that
\[
(*) \quad w_0(t) + w_1(t)(t^{j_1} + \ldots)^q + \ldots + w_N(t)(t^{j_N} + \ldots)^q = 0.
\]
On the other hand, we claim that \(v_{P_0}(w_1(t)) = 1 \). By (2.1)
\[
w_0(t)^q + w_1(t)^q(t^{j_1} + \ldots) + \ldots + w_N(t)^q(t^{j_N} + \ldots) = 0.
\]
From the definition of \(w_i \) it follows that \(v_{P_0}(w_i(t)) = 0 \) for almost one index \(i \). Since \(1 = j_1 < j_2 < \ldots < j_N = q + 1 \) and \(j_{N-1} \leq q \) the only possibility is \(i = N \), and \(w_1(t) = ut + \ldots \) with \(u \neq 0 \). The latter relation proves the claim. Now, this together with Eq. (*) yield that \(v_{P_0}((\pi^*)^{-1}(H)) = q + 1 \). Hence, \((\pi^*)^{-1}(H)\) of \(\mathcal{X} \) is \((q+1)P_0 \) from which the first part of the Lemma 3.1 follows. The second part follows from the Fundamental Equivalence (1.2).

The above Lemma together with Remark 2.7 have the following corollary.

Lemma 3.2. The curves \(\mathcal{X} \) and \(\pi^*(\mathcal{X}) \) are \(\mathbb{F}_{q^2} \)-isomorphic.

Also, since \(\mathcal{D} \) is a complete linear series, Lemma 3.1 gives the following result:

Lemma 3.3. Every \(z_i, 0 \leq i \leq N \), is an \(\mathbb{F}_{q^2} \)-linear combination of \(f_0, \ldots, f_N \).

Now, we are in a position to prove the following theorem.

Theorem 3.4. The curve \(\mathcal{X} \) lies on a Hermitian variety defined over \(\mathbb{F}_{q^2} \) of \(\mathbb{P}^N(\mathbb{F}_{q^2}) \).

Proof. Without loss of generality we may suppose that \(f_0 = z_0 = 1 \). For \(i = 0, \ldots, N \), let \(z_i = \sum_{j=0}^N c_{ij} f_j \) with \(c_{ij} \in \mathbb{F}_{q^2} \). Note that \(c_{ij} = 0 \) for \(M + 1 \leq i \leq N \) and that the
matrix $C = (c_{ij})$ has rank $M + 1$. We prove that C is actually a Hermitian matrix over \mathbb{F}_{q^2}. To do this, we re-write Eq. (2.2) in the following manner:

$$1 + \left(\sum_{i=0}^{N} (c_{0i} f_i)^q f_1 + \ldots + \sum_{i=0}^{N} (c_{Ni} f_i)^q f_N \right) = 0.$$

Taking into account the uniqueness of the N-tuple $(z_0 = 1, z_1, \ldots, z_N)$ proved in Lemma 2.3(3), comparison with Eq. (2.1) gives

$$\sum_{i=0}^{N} c_{0i} f_i = \sum_{i=0}^{N} c_{1i} f_i, \ldots, \sum_{i=0}^{N} c_{Ni} f_i = \sum_{i=0}^{N} c_{Ni} f_i.$$

Since $f_0 = 1, f_1, \ldots, f_N$ are linearly independent over \mathbb{F}_{q^2}, this yields $c_{ij} = c_{ji}$ for every $0 \leq i, k \leq N$. This proves that C is Hermitian. After a \mathbb{F}_{q^2}-linear transformation of $P_N(\mathbb{F}_{q^2})$ we may assume that the matrix C is the diagonal matrix with M units. Then (2.1) becomes

$$f_0^{q+1} + \ldots + f_M^{q+1} = 0,$$

and hence \mathcal{X} lies on the Hermitian variety of equation $X_0^{q+1} + \ldots + X_M^{q+1} = 0$.

Remark 3.5. From the proof above, $z_i = f_i$ for $0 \leq i \leq M$. Hence $\pi^*(\mathcal{X})$ is the projection $(f_0 : \ldots : f_N) \to (f_0 : \ldots : f_M)$, and $\pi^*(\mathcal{X})$ lies on a non-degenerate Hermitian variety defined over \mathbb{F}_{q^2} of $P_M(\mathbb{F}_{q^2})$.

Taking into account Lemma 3.2 we obtain the following result.

Theorem 3.6. \mathcal{X} admits a non-singular model given by a curve defined over \mathbb{F}_{q^2} which has degree $q + 1$ and lies on a non-degenerate Hermitian variety defined over \mathbb{F}_{q^2} of $P_M(\mathbb{F}_{q^2})$ of dimension $M \leq N$.

From the above arguments, it also turns out that the osculating hyperplane to \mathcal{X} at any point $P \in \mathcal{X}$ coincides with the tangent hyperplane to the non-degenerate Hermitian variety at the same point P. This allows us to improve the previous result (2.4) on $\text{Aut}_{\mathbb{F}_{q^2}}(\mathcal{X})$:

Theorem 3.7. $\text{Aut}_{\mathbb{F}_{q^2}}(\mathcal{X})$ is isomorphic to a subgroup of the projective unitary group $PGU(M + 1, \mathbb{F}_{q^2})$.

Proof. By a way of contradiction, assume that \mathcal{X} lies not only on \mathcal{H} but also on the non-degenerate Hermitian variety \mathcal{H}' which is assumed to be the image of \mathcal{H} by a non-trivial \mathbb{F}_{q^2}-linear collineation fixing \mathcal{X}. Choose any point $P \in \mathcal{X}$. Then the \mathcal{H} and \mathcal{H}' have the same tangent hyperplane at P, as each of these tangent hyperplanes coincides with the osculating hyperplane to \mathcal{X} at P. To express this geometric condition in algebraic terms, set $P := (x_0 : \ldots : x_M)$, and write the equations of \mathcal{H} and \mathcal{H}' explicitly:
\(\mathcal{H} := X_0^{q+1} + \ldots + X_N^{q+1} = 0; \mathcal{H}' := X^t C(\mathbf{X})^q = 0 \) where \(\mathbf{X} := (X_0, \ldots, X_M) \), and \(C \) is a non-singular non-identity unitary matrix of rank \(M + 1 \). Then the above geometric condition in algebraic terms is that the homogeneous \((M + 1)\)-tuples \((x_0^q, \ldots, x_M^q)\) and \((c_{0,0} x_0^q + \ldots + c_{M,0} x_M^q, \ldots, c_{0,M} x_0^q + \ldots + c_{M,M} x_M^q)\) are equal up to a non-zero factor. Another meaning of the latter relation is that the non-trivial \(F_{q^2} \)-linear collineation associated to the matrix \(C \) fixes \(\mathcal{X} \) pointwise. But this is impossible as \(\mathcal{X} \) is not contained in a hyperplane of \(\mathbb{P}^M \); a contradiction which proves the theorem.

4. Curves lying on a Hermitian variety

The aim of this section is to show that the property given in Theorem 3.6 characterizes \(F_{q^2} \)-maximal curves. For this purpose, we assume from now on that \(\mathcal{X} \) is a projective geometrically irreducible non-singular algebraic curve defined over a finite field \(F_{q^2} \) which is equipped with a non-degenerated \(F_{q^2} \)-birational morphism \(\pi = (f_0 : \ldots : f_M) : \mathcal{X} \to \mathbb{P}^M(\bar{F}_{q^2}) \) such that the curve \(\mathcal{Y} := \pi(\mathcal{X}) \) has the following properties:

- It has degree \(q+1 \), and it lies on a non degenerate Hermitian variety \(\mathcal{H} \subseteq \mathbb{P}^M(\bar{F}_{q^2}) \) defined over \(F_{q^2} \).

The main result in this section is the following theorem.

Theorem 4.1. The curve \(\mathcal{X} \) is \(F_{q^2} \)-maximal.

The Hermitian variety \(\mathcal{H} \) of \(\mathbb{P}^M(\bar{F}_{q^2}) \) is assumed to be in its canonical form \(X_0^{q+1} + \ldots + X_M^{q+1} = 0 \). By our hypothesis,

\[
(f_0^{q+1} + \ldots + f_M^{q+1} = 0).
\]

For any point \(P \in \mathcal{X} \), let \(\pi(P) = (\alpha_0 : \ldots : \alpha_M) \). Choose a local parameter \(t \) at \(P \), and arrange the coordinate functions to have \(v_P(f_i) \geq 0 \) for \(i = 0, \ldots, M \) and \(v_P(f_k) = 0 \) for at least one index \(k \in \{0, \ldots, M\} \). Then

\[
f_i(t) = \sum_{j=0}^{\infty} a_{ij} t^j \in \bar{F}_{q^2}[[t]]
\]

is the local expansion of \(f_i \) at \(P \). Here, \(\alpha_i = a_{i,0} \) and \(a_{k,0} \neq 0 \). The tangent hyperplane \(H_P \) to the Hermitian variety at \(\pi(P) \) has equation \(\alpha_0^q X_0 + \ldots + \alpha_M^q X_M = 0 \).

The first step toward Theorem 4.1 is the following lemma.

Lemma 4.2. The linear series \(\mathcal{R} \) cut out on \(\mathcal{Y} \) by hyperplanes contains the divisor \(qP + \text{Fr}_X(P) \) for every \(P \in \mathcal{X} \).
Proof. We show that H_P cuts out on \mathcal{Y} the divisor $qP + \text{Fr}_X(P)$. From Eq. (1.1),

\begin{equation}
(\sum_{j=0}^{\infty} a_{0,j}t^j)f_0 + \ldots + (\sum_{j=0}^{\infty} a_{M,j}t^j)f_M = 0.
\end{equation}

Writing the lower order terms in t, we have

$$\sum_{i=0}^{M} a_{i,0}^q f_i + t^q \sum_{i=0}^{M} a_{i,0} a_{i,1}^q + t^{q+1} \sum_{i=0}^{R} a_{i,1}^{q+1} + t^{q+2}[\ldots] = 0.$$

Hence $v_P(\pi^{-1}(H_P)) \geq q$ and equality holds if and only if $\sum_{i=0}^{M} a_{i,1}^{q+1} a_{i,0} \neq 0$. We show that if $P \in \mathcal{X}(F_{q^2})$, then $\sum_{i=0}^{M} a_{i,1}^{q+1} a_{i,0} = 0$. From (4.2),

$$\sum_{i=0}^{M} a_{i,0}^{q+1} + t \sum_{j=0}^{M} a_{i,0} a_{i,1} + t^q[\ldots] = 0.$$

Thus, $\sum_{i=0}^{M} a_{i,0} a_{i,1} = 0$. Since $(\sum_{i=0}^{M} a_{i,0}^{q+1})q = \sum_{i=0}^{M} a_{i,0} a_{i,1}$ for $P \in \mathcal{X}(F_{q^2})$, the claim follows. Since π is birational and $\deg(\mathcal{Y}) = q + 1$, we obtain $\pi^{-1}(H_P) = (q + 1)P$ for every $P \in \mathcal{X}(F_{q^2})$, which shows the lemma for every $P \in \mathcal{X}(F_{q^2})$. For the case $P \notin \mathcal{X}(F_{q^2})$, we also need to check that $\text{Fr}_X(P) \in H_P$. This inclusion occurs when $\sum_{i=0}^{M} a_{i,1}^{q+q} = 0$. Since the latter relation is a consequence of (4.2), the claim follows. Hence, $\pi^{-1}(H_P) = qP + \text{Fr}_X(P)$ because π is birational and $\deg(\mathcal{Y}) = q + 1$. \hfill \Box

Then from Remark 2.7 and Lemma 4.2 follow that \mathcal{X} and $\mathcal{Y} = \pi(\mathcal{X})$ are F_{q^2}-isomorphic. Hence if $M = 2$, \mathcal{Y} is the Hermitian curve and so \mathcal{X} is F_{q^2}-maximal. From now on we assume $M \geq 3$.

Our approach is based on a certain relationship between the Wronskians determinants of \mathcal{Y} and of its projection on a $(M - 1)$-dimensional subspace of $P^{M}(F_{q^2})$. More precisely, let $\bar{\pi} : \mathcal{X} \to P^{M-1}(F_{q^2})$ defined by $\mathcal{X} \to (f_0 : \ldots : f_{M-1})$, that is $\bar{\mathcal{Y}}$ is the projection of \mathcal{Y} from the point $(0 : \ldots : 0 : 1)$ on the hyperplane $X_M = 0$. It might happen that \mathcal{Y} and $\bar{\mathcal{Y}}$ are not F_{q^2}-birationally equivalent. However, it is always possible avoid this situation by changing the coordinate system in $P^{M}(F_{q^2})$, see Appendix. So we assume that \mathcal{Y} is F_{q^2}-birationally equivalent to $\bar{\mathcal{Y}}$.

Choose a separating variable t of \mathcal{X}, and define D_t as the Hasse derivative with respect to t, see [10]. Then [20, Section 1]:

$$Wr(f_0, \ldots, f_{M-1}) := \det \begin{bmatrix} D_t f_0 & D_t f_1 & \ldots & D_t f_{M-1} \\ \vdots & \vdots & \ddots & \vdots \\ D_t^{M-1} f_0 & D_t^{M-1} f_1 & \ldots & D_t^{M-1} f_{M-1} \end{bmatrix},$$
and
\[
Wr(f_0, \ldots, f_M) := \det \begin{bmatrix}
D_t^{\epsilon_0} f_0 & D_t^{\epsilon_0} f_1 & \ldots & D_t^{\epsilon_0} f_M \\
\vdots & \vdots & \ddots & \vdots \\
D_t^{\epsilon_M} f_0 & D_t^{\epsilon_M} f_1 & \ldots & D_t^{\epsilon_M} f_M
\end{bmatrix}.
\]
Note that in our case \(\epsilon_0 = 0, \epsilon_1 = 1, \ldots, \epsilon_M = q\).

Lemma 4.3. We have that
\[
div(Wr(f_0, \ldots, f_M)) = div(Wr(f_0, \ldots, f_{M-1})) - q div(f_M) + div(f_0 D_t^q f_0 + \ldots + f_M D_t^q f_M^q).
\]

Proof. Multiplying the last column by \(f_M^q\) and adding to it \(f_0^q\) times the first column plus \(f_1^q\) times the second column etc. plus \(f_{M-1}^q\) times the penultimate column gives
\[
f_M^q Wr(f_0, \ldots, f_M) = \begin{bmatrix}
f_0 & f_1 & \ldots & f_0^{q+1} + \ldots + f_M^{q+1} \\
D_t f_0 & D_t f_1 & \ldots & f_0^q D_t f_0 + \ldots + f_M^q D_t f_M \\
\vdots & \vdots & \ddots & \vdots \\
D_t^q f_0 & D_t^q f_1 & \ldots & f_0^q D_t^q f_0 + \ldots + f_M^q D_t^q f_M
\end{bmatrix}.
\]
Each element but the last one in the last column is actually 0. In fact, this follows from the relation (4.1) by derivation. Furthermore, the \(q\)-th Hasse derivative of the same relation gives
\[
f_0^q D_t f_0 + \ldots + f_M^q D_t f_M + f_0 D_t^q f_0^q + \ldots + f_M D_t^q f_M^q = 0,
\]
and this completes the proof. \(\square\)

Let \(R_M\) be the ramification divisor of the linear series cut out on \(\mathcal{Y}\) by hyperplanes of \(\mathbf{P}^M(\mathbf{F}_{q^2})\). The following result comes from [20, p.6]:

Lemma 4.4. Let \(P \in \mathcal{X}\). If \(t\) is a local parameter of \(\mathcal{X}\) at \(P\), then
\[
v_P(R_M) = v_P(Wr(f_0, \ldots, f_M)).
\]

Similarly, let \(R_{M-1}\) be the ramification divisor of the linear series cut out on \(\mathcal{Y}\) by hyperplanes of \(\mathbf{P}^{M-1}(\mathbf{F}_{q^2})\).

Lemma 4.5. Let \(P \in \mathcal{X}\). If \(t\) is a local parameter of \(\mathcal{X}\) at \(P\), then
\[
v_P(R_{M-1}) = v_P(Wr(f_0, \ldots, f_{M-1})).
\]

Proof. By [20, p.6],
\[
v_P(R_{M-1}) = v_P(Wr(f_0, \ldots, f_{M-1})) + (\epsilon_0 + \epsilon_1 + \ldots + \epsilon_{M-1}) v_P(dt) + M \bar{e}_P,
\]
where \(\bar{e}_P := -\min\{v_P(f_0), \ldots, v_P(f_{M-1})\}\). Actually, \(\bar{e}_P = 0\). In fact, \(\bar{e}_P > 0\) together with \(e_P = 0\) would imply that the point \(U_M := (0 : \ldots : 0 : 1)\) lies on \(\mathcal{Y}\) but this contradicts (4.1). Since \(t\) is a local parameter at \(P\), we also have \(v_P(dt) = 0\), and the claim follows. \(\square\)
The following result will play a crucial role in the sequel.

Lemma 4.6.

\[v_P(f_0 D^{q^0}_{t} f_0 + \ldots + f_M D^{q^M}_{t} f_M) = \begin{cases}
1 & \text{when } P \in \mathcal{X}(\mathbb{F}_{q^2}), \\
0 & \text{when } P \not\in \mathcal{X}(\mathbb{F}_{q^2}).
\end{cases} \]

Proof. From the proof of Lemma 4.2 we obtain the following result. For any point \(P \in \mathcal{X}, \)

- \(P \not\in \mathcal{X}(\mathbb{F}_{q^2}) \) if and only if \(\sum_{i=0}^{M} a_{i,1}^q a_{M,1} \neq 0, \)
- \(P \in \mathcal{X}(\mathbb{F}_{q^2}) \) if and only if \(\sum_{i=0}^{M} a_{i,1}^q a_{M,1} = 0 \) but \(\sum_{i=0}^{M} a_{i,1}^{q+1} \neq 0. \)

On the other hand,

\[f_0 D^{q^0}_{t} f_0 + \ldots + f_M D^{q^M}_{t} f_M = \left(\sum_{j=0}^{\infty} a_{0,j}^q t^j \right)(a_{0,1}^q + t^q[\ldots]) + \ldots + \left(\sum_{j=0}^{\infty} a_{M,j}^q t^j \right)(a_{M,1}^q + t^q[\ldots]). \]

Hence

- \(v_P(f_0 D^{q^0}_{t} f_0 + \ldots + f_M D^{q^M}_{t} f_M) = 0 \) if and only if \(\sum_{i=0}^{M} a_{i,0}^q a_{i,1} \neq 0. \)
- \(v_P(f_0 D^{q^0}_{t} f_0 + \ldots + f_M D^{q^M}_{t} f_M) = 1 \) if and only if \(\sum_{i=0}^{M} a_{i,0}^q a_{i,1} = 0 \) but \(\sum_{i=0}^{M} a_{i,1}^{q+1} \neq 0. \)

Now, comparison with the previous result proves Lemma 4.6. \(\square \)

Now we are in a position to finish the proof of Theorem 4.1. By [20, p.6],

\[\sum v_P(R_M) = (\epsilon_0 + \epsilon_1 + \ldots \epsilon_M)(2g - 2) + (M + 1)(q + 1), \]

and

\[\sum v_P(R_{M-1}) = (\epsilon_0 + \epsilon_1 + \ldots \epsilon_{M-1})(2g - 2) + M(q + 1). \]

Hence \((v_P(R_M) - v_P(R_{M-1})) = q(2g - 2) + q + 1. \) Lemmas 4.3, 4.4, 4.5, and 4.6 together with \(\sum v_P(f_M) = q + 1 \) give Theorem 4.1.

5. Examples

We will show how each of the known examples of maximal curves with \(\deg(D) = 3 \) can be embedded in a non-degenerate Hermitian variety defined over \(\mathbb{F}_{q^2} \) of \(\mathbb{P}^3(\mathbb{F}_{q^2}). \) In this way we obtain an independent proof of the maximality of these curves.

Example 5.1. ([3, Thm. 2.1.(IV)(2)]) Let \(q \equiv 2 \pmod{3}, \) and fix a primitive third root of unity \(\epsilon \in \mathbb{F}_{q^2}. \) For \(i = 0, 1, 2, \) let \(C_i \) be a projective geometrically irreducible non-singular curve defined over \(\mathbb{F}_{q^2} \) whose function field over \(\mathbb{F}_{q^2} \) is generated by \(x \) and \(y \) satisfying the irreducible polynomial relation

\[\epsilon^i x^{(q+1)/3} + \epsilon^{2i} x^{2(q+1)/3} + y^{q+1} = 0. \]

Let

\[f_0 := x; f_1 := x^2; f_2 := y^3; f_3 := xy \]
be the coordinate functions of a morphism \(\pi = C_i \rightarrow \mathbb{P}^3(F_{q^2}) \). Note that the three curves \(\pi(C_i) \) are pairwise projectively equivalent in \(\mathbb{P}^3(F_{q^2}) \). In fact, the linear transformation induced by the matrix

\[
T^{(i)}_4 = \begin{bmatrix}
e^i & 0 & 0 & 0 \\
0 & e^{2i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^i \end{bmatrix}
\]

maps \(\pi(C_0) \) to \(\pi(C_i) \). We show that \(\pi(C_i) \) is projectively equivalent to a projectively irreducible non-singular curve defined over \(F_{q^2} \) and contained in the non-degenerate Hermitian surface \(\mathcal{H}_3 \) of equation \(X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0 \). To do this we start with the relation in \(F_{q^2}[X, Y] \)

\[
(X^{(q+1)/3} + X^{2(q+1)/3} + Y^{q+1})(\epsilon X^{(q+1)/3} + \epsilon^2 X^{2(q+1)/3} + Y^{q+1})
\]

\[
(\epsilon^2 X^{(q+1)/3} + \epsilon X^{2(q+1)/3} + Y^{q+1}) = X^{q+1} + X^{2(q+1)} + Y^{3(q+1)} - 3X^{q+1}Y^{q+1}
\]

which yields \(x^{q+1} + x^{2(q+1)} + y^{3(q+1)} - 3x^{q+1}y^{q+1} = 0 \). Thus, \(f_0^{q+1} + f_1^{q+1} + f_2^{q+1} - 3f_3^{q+1} = 0 \). This shows that \(\pi(C_i) \) lies on the non degenerate Hermitian variety \(\mathcal{H} \) of equation \(X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0 \), up to the linear transformation \((X_0, X_1, X_2, X_3) \rightarrow (X_0, X_1, X_2, wX_3) \) with \(w^{q+1} = -3 \). Furthermore, \(\pi(C_i) \) is contained in the cubic surface \(\Sigma_3 \) of \(P^3(F_{q^2}) \) of equation \(X_3^3 + w^3X_0X_1X_2 = 0 \). More precisely, the intersection curve of \(\mathcal{H} \) and \(\Sigma_3 \) splits into the above three pairwise projectively equivalent curves, namely \(\pi(C_0) \), \(\pi(C_1) \), and \(\pi(C_2) \), each of degree \(q + 1 \). By Theorem 0.3, \(\pi(C_i) \) is a non-singular maximal curve defined over \(F_{q^2} \). According to [3, Thm. 2.1.(IV)(2)], its genus is equal to \((q^2 - q + 4)/6 \).

Example 5.2. ([4, sect. 6]) A similar but non isomorphic example is given in [4]. Again, assume that 3 divides \(q + 1 \), and fix a primitive third root of unity \(\epsilon \in F_{q^2} \). For \(i = 0, 1, 2 \), let \(C_i \) be curves as in Example 5.1 whose function field over \(F_{q^2} \) is generated by \(x \) and \(y \) satisfying the irreducible polynomial relation

\[
\epsilon^i y x^{(q-2)/3} + y^q + \epsilon^{2i} x^{(2q-1)/3} = 0.
\]

Let

\[
f_0 := x; f_1 := x^2; f_2 := y^3; f_3 := -3xy
\]

be the coordinate functions of a morphism \(\pi = C_i \rightarrow \mathbb{P}^3(F_{q^2}) \). Note that the these three curves \(\pi(C_i) \) are pairwise projectively equivalent in \(\mathbb{P}^3(F_{q^2}) \). In fact, the linear transformation induced by the matrix

\[
T^{(i)}_4 = \begin{bmatrix}
e^i & 0 & 0 & 0 \\
0 & e^{2i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^i \end{bmatrix}
\]
maps \(\pi(C_0) \) to \(\pi(C_1) \).

We show that \(\pi(C_i) \) is projectively equivalent to a projectively irreducible non-singular curve defined over \(\mathbb{F}_{q^2} \) and contained in the non-degenerate Hermitian surface \(\mathcal{H}_3 \) of equation \(X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0 \). To do this we start with the relation in \(\mathbb{F}_{q^2}[X,Y] \)

\[
(YX^{q-3} + Y^q + X^{(2q-1)/3})(\epsilon YX^{q-3} + Y^q + \epsilon^2 X^{(2q-1)/3})(\epsilon^2 YX^{q-3} + Y^q + \epsilon X^{(2q-1)/3})
\]

which implies \(y^3 x^{q-2} + y^3 q + x^{2q-1} - 3x^{q-1}y^{q+1} = 0 \). This, \(y^3 x^q + y^{3q+2} + x^{2q+1} - 3x^{q+1}y^{q+1} = 0 \), and hence \(f_2 f_0^2 + f_2^q f_1 + f_1^q f_0 - 3f_3^{q+1} = 0 \). This shows that \(\pi(C_i) \) lies on the surface \(\Sigma_{q+1} \) of equation \(X_0^q X_1 + X_1^q X_2 + X_2^q X_0 - 3X_3^{q+1} = 0 \). Furthermore, \(\pi(C_i) \) is contained in the cubic surface \(\Sigma_3 \) of \(P^3(\mathbb{F}_{q^2}) \) of equation \(X_0^q + 27X_0 X_1 X_2 = 0 \). More precisely, the intersection curve of \(\Sigma_{q+1} \) and \(\Sigma_3 \) splits into the above three pairwise projectively equivalent curves, namely \(\pi(C_0), \pi(C_1), \) and \(\pi(C_2) \), each of degree \(q + 1 \).

To prove that \(\Sigma_{q+1} \) is projectively equivalent to \(\mathcal{H}_3 \), we use the same argument employed in [2]. Choose a root \(a \) of the polynomial \(p(X) := X^{q+1} + X + 1 \). Then \(a^{q^2+q+1} = 1 \), and hence \(a \in \mathbb{F}_{q^2} \). By [2 Lemma 4], \(a^{q+1} + a^{q+q+1} + a = 0 \) and \(a^{q+q+2} + a^{q+1} + 1 = 0 \), but \(a^{q+2} + a^{q+1} + a^2 \neq 0 \) as \(a^{q+2} + a^{q+1} + a^q = a^{-1} \). Furthermore, the matrix

\[
M_3 = \begin{bmatrix}
 a & 1 & a^{q+1} \\
 a^{q+1} & a & 1 \\
 1 & a^{q+1} & a
\end{bmatrix}
\]

is non-singular. Also, choose an element \(\mu \in \mathbb{F}_q \) satisfying \(-3\mu^{q+1} = a^{q^2+q+1} + a^{q+1} + a^q \), and define \(\kappa \) as the projective linear transformation \(\kappa : P^3(\mathbb{F}_q) \to P^3(\mathbb{F}_q) \) induced by the non-singular matrix

\[
M_4 = \begin{bmatrix}
a & 1 & a^{q+1} & 0 \\
 a^{q+1} & a & 1 & 0 \\
 1 & a^{q+1} & a & 0 \\
 0 & 0 & 0 & -\mu
\end{bmatrix}.
\]

A straightforward computation shows that \(\kappa^{-1} \) maps \(\Sigma_{q+1} \) to \(\mathcal{H}_3 \), and \(\Sigma_3 \) to the cubic surface \(\Sigma_3 \) of equation

\[
(X_0^3 + X_1^3 + X_2^3) + Tr[a^{q+1}](X_0^q X_1 + X_1^q X_2 + X_2^q X_0) + Tr[a](X_0^2 X_2 + X_1^2 X_0 + X_2^2 X_1) + (3 + Tr[a^{q-1}])X_0 X_1 X_2 - a^{q-1} \mu^3 X_3^3 = 0
\]

where \(Tr[u] := u + u^q + u^{q^2} \) is the trace of \(u \in \mathbb{F}_{q^2} \). Furthermore \(a^{q-1} \mu^3 \in \mathbb{F}_{q^2} \), and this shows that \(\Sigma_3 \) is actually defined over \(\mathbb{F}_{q^2} \). Now, \(\pi(C_i) \) is mapped under \(\kappa^{-1} \) to a projectively irreducible algebraic curve of degree \(q + 1 \) defined over \(\mathbb{F}_{q^2} \) and contained in \(\mathcal{H}_3 \). By Theorem 0.3 \(\kappa^{-1}(C_i) \) is a non-singular maximal curve defined over \(\mathbb{F}_{q^2} \). By 2 Lemma 6.1.(5)], its genus is equal to \((q^2 - q - 2)/6 \).
Example 5.3. (I) Let q be odd and for $i = 1, 2$, let $C_i(F_{q^2})$ be curves as in Example 5.1 whose function field over F_{q^2} is generated by x and y such that

$$y^q + y + (-1)^i x^{(q+1)/2} = 0.$$

The functions

$$f_0 := 1; f_1 := x; f_2 := y; f_3 := y^2$$

define a morphism $\pi = C_i \rightarrow \mathbb{P}^3(F_{q^2})$. The resulting curves $\pi(C_i)$ are projectively equivalent, since the linear transformation induced by the matrix

$$T_4^{(i)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \epsilon & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with $\epsilon^{(q+1)/2} = -1$, maps $\pi_0(C_0)$ to $\pi(C_1)$. The polynomial relation

$$(Y^q + Y - X^{(q+1)/2})(Y^q + Y + X^{(q+1)/2}) = Y^{2q} + 2Y^{q+1} + Y^2 - X^{q+1}$$

implies that $y^{2q} + 2y^{q+1} + y^2 - x^{q+1} = 0$ in $C_i(F_{q^2})$. Hence $f_3^q + f_3 + 2f_2^{q+1} - f_1^{q+1} = 0$ in $C_i(F_{q^2})$. This proves that $\pi(C_i)$ lies on the surface Σ of equation $X_3^2 X_0 + X_3 X_0^q + 2X_2^{q+1} - X_1^{q+1} = 0$ which is actually a non degenerate Hermitian variety defined over F_{q^2} of $\mathbb{P}^3(F_{q^2})$. Also, C_i lies on the quadratic cone K of equation $X_3^2 - X_0 X_3 = 0$, and hence the intersection of Σ and K splits into the curves $\pi(C_0)$ and $\pi(C_1)$. By Theorem 0.3, $\pi(C_i)$ is a non-singular maximal curve defined over F_{q^2}. Its genus is equal to $(q - 1)^2/4$, according to [5].

Example 5.4. (II) Let $q = 2^i$, and put $Tr[Y] := Y + Y^2 + \ldots + Y^q$. For $i = 0, 1 \in F_2 \subset F_{q^2}$, let C_i be curves as in Example 5.1 whose function field over F_{q^2} is generated by x and y such that

$$Tr[y] + x^{q+1} + i = 0.$$

Let $\pi = C \rightarrow \mathbb{P}^3(F_{q^2})$ be given by the coordinate functions

$$f_0 := 1; f_1 := x; f_2 := y; f_3 := x^2.$$

Since

$$(Tr[Y] + X^{q+1}) + (Tr[Y] + X^{q+1} + 1) = Y^q + Y + X^{q+1} + X^{2q+2}$$

we have $y^q + y + x^{q+1} + x^{2q+2} = 0$ in $C(F_{q^2})$. This implies that $\pi(C_i)$ lies on the non degenerate Hermitian variety H of equation $X_3^2 X_0 + X_2 X_0^q + X_1^{q+1} + X_0^{q+1} = 0$. Furthermore, the quadratic cone K of equation $X_3 X_0 = X_1^2$ also contains $\pi(C_i)$. Hence $H \cap K$ splits into $\pi(C_0)$ and $\pi(C_1)$. Note that $\pi(C_0)$ and $\pi(C_1)$ are projectively equivalent curves in $\mathbb{P}^3(F_{q^2})$, and hence both have degree $q + 1$. Again by Theorem 0.3, $\pi(C_i)$ is a non-singular maximal curve defined over F_{q^2}. Its genus is equal to $q(q - 2)/4$.

MAXIMAL CURVES IN A HERMITIAN VARIETY 15
Example 5.5. (III) Let $q = 3^i$, and put $Tr[Y] := Y + Y^3 + \ldots + Y^{q/3}$. For $i = 0, 1, 2 \in F_3 \subset F_{q^2}$, let C_i be curves as in Example 5.1 whose function field over F_{q^2} is generated by x and y such that

$$Tr[y]^2 - x^q - x + i(Tr[y] + i) = 0.$$

Since $(Tr[Y]^2 + X^q - X)(Tr[Y]^2 - X^q - X + Tr[Y] + 1)(Tr[Y]^2 - X^q - X - Tr[Y] + 1) = (X^q + X)(X^q + X - 1)^2 - (Y^q - Y)^2$, we have

$$(*) \quad (x^3 + x^2 - y^2 + x)^q + (x^3 + x^2 - y^2 + x) - x^{q+1} - y^{q+1} = 0.$$

Let $\pi = C_i \to \Pi^3(F_{q^2})$ be given by the coordinate functions $f_0 := 1; f_1 := x; f_2 = y, f_3 := x^3 + x^2 - y^2 + x$. It can be checked that these three curves are pairwise projectively equivalent in $\Pi^3(F_{q^2})$. From Eq. $(*)$, $\pi(C)$ lies on the non degenerate Hermitian variety of equation $X_0X_3^q + X_0^qX_3 - X_1^{q+1} = 0$. Furthermore, the cubic surface of equation $X_3X_0^2 - X_3^q + X_0^qX_3 + X_0^2X_0 - X_1X_0^2$ also contains $\pi(C_i)$. It turns out that $\pi(C_i)$ has degree $q + 1$, and Theorem 0.3 ensures that $\pi(C)$ is a non-singular maximal curve defined over F_{q^2}. Its genus is equal to $q(q - 1)/6$.

Remark 5.6. In all the above examples \mathcal{X} lies not only on a non-degenerate Hermitian surface but also on a cubic surface. This is related to a classical result of Halphen on reduced and irreducible complex algebraic curves in Π^3 not lying on a quadratic surface which states that the degree d and the genus g satisfy of such a curve satisfy the following inequality:

$$g \leq \pi_1(d, 3) = \begin{cases} d^2/6 - d/2 + 1 & \text{for } d \equiv 0 \mod 3; \\ d^2/6 - d/2 + 1/3 & \text{for } d \not\equiv 0 \mod 3. \end{cases}$$

A rigorous proof of the Halphen theorem and its extension to higher dimensional spaces is found in the book [4]. Rathmann [17] pointed out that the proof also works in positive characteristic apart from some possible exceptional cases related to the monodromy group of the curve.

6. Appendix

For $M \geq 3$, in Section 4 we have claimed that the curves $\mathcal{Y} \subseteq \Pi^M(F_{q^2})$ and $\mathcal{Y} \subseteq \Pi^{M-1}(F_{q^2})$ are F_{q^2}-birationally equivalent, up to a change of coordinates in $\Pi^M(F_{q^2})$. Now we give the proof. Notation and terminology being as in Section 4, two technical lemmas are needed.

Lemma 6.1. The space $\Pi^M(F_{q^2})$ contains a point P satisfying each of the following three conditions:

- P is not on \mathcal{H};
- no tangent line to \mathcal{Y} at a F_{q^2}-rational point passes through P;
• no chord through two \(F_{q^2} \)-rational points of \(Y \) passes through \(P \).

Proof. Take a \(F_{q^2} \)-rational point \(Q \in Y \). Since the number of \(F_{q^2} \)-rational points of \(X \) is \(q^2 + 1 + 2gq \leq q^3 + 1 \), there are at most \(q^3 \) chords through \(Q \) and another \(F_{q^2} \)-rational point of \(Y \). But, since \(M \geq 3 \), the number of \(F_{q^2} \)-rational lines through \(Q \) is at least \(q^4 + q^2 + 1 \) and hence one of these lines is neither a line contained in \(H \), nor a tangent line to \(Y \) at \(Q \), nor a chord through \(Q \) and another \(F_{q^2} \)-rational point of \(Y \). Now, any \(F_{q^2} \)-rational point \(P \) outside \(H \) is a good choice for \(P \). \(\square \)

Lemma 6.2. Let \(r \) be a \(F_{q^2} \)-rational line through a \(F_{q^2} \)-rational point \(R \) of \(Y \). Then \(r \cap Y \) only contains \(F_{q^2} \)-rational points from \(Y \).

Proof. Assume on the contrary that \(r \) meets \(Y \) in a non \(F_{q^2} \)-rational point \(S \). Then \(r \) is the line joining \(S \) and \(Fr(S) \). This implies that \(r \) is contained in the osculating hyperplane of \(Y \) at \(S \). Hence the common points of \(r \) with \(Y \) are only two, namely \(S \) and \(Fr(S) \). But this contradicts the hypothesis that \(R \in r \cap Y \). \(\square \)

Take a point \(P \) as in Lemma 6.1. By a classical result (see [19], and also [13, 23.4]), the linear collineation group \(PGU(M + 1, q^2) \) preserving \(H \) acts transitively on the set of all points of \(P^M(\bar{F}_{q^2}) \) not on \(H \). Hence a linear collineation of \(P^M(\bar{F}_{q^2}) \) can be applied which preserves \(H \) and maps \(P \) to \((0 : \ldots : 0 : 1) \). Lemmas 6.1 and 6.2 ensure now that \(Y \) and \(\bar{Y} \) are \(F_{q^2} \)-birationally equivalent.

References

[1] M. Abdón and F. Torres, On maximal curves in characteristic two, Manuscripta Math. 99 (1999), 39-53.
[2] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1999), 56-76.
[3] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, to appear in Comm. Algebra.
[4] D. Eisenbud and J. Harris, “Curves in projective space”, Les Presses de l’Université de Montréal, Montréal, 1982.
[5] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, J. Number Theory 67 (1997), 29-51.
[6] R. Fuhrmann and F. Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo 51, (1998), 25–46.
[7] A. Garcia and J.F. Voloch, Wronskians and independence in fields of prime characteristic, Manuscripta Math. 59(1987), 457-469.
[8] A. Garcia and J.F. Voloch, Duality for projective curves, Bol. Soc. Brazil. Mat (N.S.) 21, (1991) 159-175.
[9] G. van der Geer and M. van der Vlugt, Generalized Reed-Müller codes and curves with many points, preprint.
[10] A. Heffez, Non-reflexive curves, Compositio Math. 69 (1989), 3-35.
[11] A. Heffez and N. Kakuta, Tangent envelopes of higher order duals of projective curves, Rend. Circ. Mat. Palermo, Suppl. 51 (1998), 47-56.
[12] A. Hefez and J.F. Voloch, *Frobenius non classical curves*, Arch. Math. 54 (1990), 263-273.

[13] J.W.P. Hirschfeld and J.A. Thas, “General Galois geometries,” Oxford University Press, Oxford, 1991.

[14] M. Homma, *Space curves with degenerate strict duals*, Comm. Algebra 20 867-874.

[15] H. Kaji, *Strangeness of higher order space curves*, Comm. Algebra 20 (1992), 1535-1548.

[16] S. Lang, “Abelian Varieties”, Interscience, New York, 1959.

[17] J. Rathmann, *The uniform position principle for curves in characteristic p*, Math. Ann. 276 (1987), 565-579.

[18] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, *J. Reine Angew. Math.* 457 (1994), 185–188.

[19] B. Segre, *Forme e geometrie Hermitiane, con particolare riguardo al caso finito*, Ann. Mat. Pura Appl. 70 (1965) 1-201.

[20] K.O. Stöhr and J.F. Voloch, *Weierstrass points and curves over finite fields*, Proc. London Math. Soc. 52 (1986), 1-19.

[21] J. Tate, *Endomorphisms of abelian varieties over finite fields*, Inventiones Math. 2 (1966), 134-144.

Dipartimento di Matematica, Università della Basilicata, via N. Sauro 85, 85100 Potenza, Italy

E-mail address: korchmaros@unibas.it

IMECC-UNICAMP, Cx. P. 6065, Campinas-13083-970-SP, Brazil

E-mail address: ftorres@ime.unicamp.br