ON THE EMBEDDING OF CENTRAL EXTENSIONS INTO WREATH PRODUCTS

ANDREI V. ZAVARNITSINE

ABSTRACT. We find a necessary condition for the embedding of a central extension of a group G with elementary abelian kernel into the wreath product that corresponds to a permutation action of G. The proof uses purely group-theoretic methods.

KEYWORDS: permutation module, central extension, wreath product.

MSC2010: 20D99

The finite group $G = \text{PSL}_2(q)$, q odd, acts naturally by permutations on the projective line of order $q + 1$. In [5], we studied the embedding of $\text{SL}_2(q)$ into the wreath product of $\mathbb{Z}/2\mathbb{Z}$ and G that corresponds to this permutation action. This problem was generalized in [6] to arbitrary groups $\text{PSL}_n(q)$ and their central extensions with kernel of prime order. In this paper, we obtain a further generalisation of these results.

Let G be a finite group, Ω a finite set, and let $\rho : G \to \text{Sym}(\Omega)$ be a permutation representation. For $\omega \in \Omega$ we denote by $\text{St}(\omega)$ the stabilizer of ω in G.

For a commutative unital ring A of prime characteristic p, consider the (right) AG-module V corresponding to ρ with basis (identified with) Ω and its submodule $0 \to I \to 'V$ generated by $\omega_0 = \sum_{\omega \in \Omega} \omega$. Clearly, there is an AG-module isomorphism $\alpha : A \to I$ defined by $\alpha : 1 \mapsto \omega_0$. Let $G \rtimes 'V$ denote the natural semidirect product.

Assume that we also have a central extension

$$1 \to A \to H \xrightarrow{\pi} G \to 1,$$

i.e. one with $\text{Im} \, \iota \leq \text{Z}(H)$, where we identify A with its additive group A^+. A subgroup $S \leq G$ is liftable to H if the full preimage $S\pi^{-1}$ splits over $\text{Im} \, \iota$. We say that H is a subextension of $G \rtimes 'V$ with respect to the embedding (1), if there is an embedding $\beta : H \to G \rtimes 'V$ such that the following diagram commutes

$$
\begin{array}{ccccccc}
1 & \rightarrow & A & \xrightarrow{\iota} & H & \xrightarrow{\pi} & G & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \| & & \\
1 & \rightarrow & V & \rightarrow & G \rtimes 'V & \rightarrow & G & \rightarrow & 1,
\end{array}
$$

where we identify $I = \text{Im} \, \alpha$ with its image in V under (1).

The main result to be proved in Section 4 is the following necessary condition.

Theorem 1. In the above notation, if a central extension H is a subextension of $G \rtimes 'V$ with respect to the embedding (1) then $\text{St}(\omega)$ is liftable to H for every $\omega \in \Omega$.

The proof generalises some ideas presented in [5] [6]. In particular, we also prove an auxiliary result about presentations of p-groups.
Let $F = F\langle X \rangle$ be a free group with basis X. Every $w \in F$ can be written in the form
\[w = x_{i_1}^{e_1} \ldots x_{i_t}^{e_t}, \]
where $x_i \in X$ and $\varepsilon = \pm 1$. For $x \in X$, we define
\[\mu_x(w) = \sum_{x_i = x} \varepsilon_i. \]

The following fact is proven in Section 3.

Proposition 2. Every finite p-group P has a finite presentation $\langle X \mid R \rangle$ such that $\mu_x(r) \equiv 0 \pmod{p}$ for all $x \in X$ and $r \in R$.

1. Fox derivatives

Let $X = \{x_1, \ldots, x_n\}$ and let $F = F\langle X \rangle$ be a free group with basis X. Recall that the (right) Fox derivative $\partial / \partial x_i : F \to \mathbb{Z}F$ is the map satisfying $\partial x_j / \partial x_i = \delta_{ij}$, $1 \leq j \leq n$ and
\[\partial(\mu v) / \partial x_i = \partial u / \partial x_i v + \partial v / \partial x_i \]
for all $u, v \in F$ and $1 \leq i \leq n$. Let $w = w(x_1, \ldots, x_n) \in F$ and write
\[w = x_{i_1}^{e_1} \ldots x_{i_t}^{e_t}, \]
where $x_{ik} \in X$ and $\varepsilon_k = \pm 1$ for all k. It can be shown [2, Proposition 2.73] that
\[\frac{\partial w}{\partial x_i} = \sum_{\{k \mid i_k = i\}} \varepsilon_k f_k, \]
where
\[f_k = \begin{cases} x_{i_{k+1}}^{e_{k+1}} x_{i_j}^{e_j} & \varepsilon_k = 1, \\ x_{i_{k+1}}^{e_{k+1}} x_{i_j}^{e_j} & \varepsilon_k = -1. \end{cases} \quad (4) \]

Let G be a group and V a G-module. Fixing a homomorphism $F \to G \times V$ we write the image of each x_i as $g_i v_i$ for suitable $g_i \in G$, $v_i \in V$. Then using the additive notation in V we can write
\[w(g_1 v_1, \ldots, g_n v_n) = w(g_1, \ldots, g_n)(v_1 \frac{\partial w}{\partial y_1} + \ldots + v_n \frac{\partial w}{\partial y_n}), \quad (5) \]
where $\partial / \partial g_i$ is the short-hand notation for the composition of $\partial / \partial x_i$ and the homomorphism $\mathbb{Z}F \to \mathbb{Z}G$ which extends the map $x_i \mapsto g_i, i = 1, \ldots, n$. For details, see [3, §1.9].

2. Presentations of group extensions

Let
\[1 \to N \to G \to Q \to 1 \]
be a short exact sequence of groups. Suppose that N has presentation $\langle Y \mid S \rangle$ and Q has presentation $\langle X \mid R \rangle$. Using this information it is possible to describe a presentation of G. Let Y be the image of Y under $\iota : \overline{Y} \mapsto y$ and let
\[S = \{ s \mid s \in \overline{S} \}, \]
where s is the word in Y obtained from \overline{s} by replacing each \overline{y} with y. Choose $X \subseteq G$ so that $x \pi = \overline{x} \in \overline{X}$ for all $x \in X$. For every $\overline{r} \in \overline{R}$, let r be the word in X.
obtained from \(\tau \) by replacing each \(\tau \) with \(x \). Clearly, \(r \) as an element of \(G \) lies in \(\text{Ker} \pi = \text{Im} \iota \) and so is a word, say \(w_{r} \), in \(Y \). Define
\[
R = \{ r w_{r}^{-1} \mid r \in \overline{R} \}.
\]
Also, since \(\text{Im} \iota \trianglelefteq G \), the element \(x^{-1}y x \) lies in \(\text{Im} \iota \) for all \(y \in Y, x \in X \) and so is a word, say \(w_{xy} \), in \(Y \). We set
\[
T = \{ x^{-1}y x w_{xy}^{-1} \mid x \in \overline{X}, y \in \overline{Y} \}.
\]

Proposition 3. [3 Proposition 10.2.1], [2 Proposition 2.55] In the above notation,
\[
\langle X \cup Y \mid R \cup S \cup T \rangle
\]
is a presentation of \(G \).

3. **Proof of Proposition 2**

Recall that \(\Omega_{1}(P) \) denotes the subgroup of a \(p \)-group \(P \) generated by all elements of order \(p \).

Proof. We use induction on \(|P|\). If \(|P| = 1\), the claim holds. Assume \(|P| > 1\) and let \(N = \Omega_{1}(\text{Z}(P)) \). Note that \(N \) is a nontrivial elementary abelian \(p \)-group and
\[
1 \rightarrow N \rightarrow P \rightarrow Q \rightarrow 1
\]
is a central extension. By induction, \(Q \) has a finite presentation \(\langle \overline{X} \mid \overline{R} \rangle \) that satisfies the required property. Clearly, \(N \) also has a presentation \(\langle \overline{Y} \mid \overline{S} \rangle \), where \(\overline{Y} \) is finite and
\[
\overline{S} = \{ y^{p}, [y_{1}, y_{2}] \mid y, y_{1}, y_{2} \in \overline{Y} \},
\]
which has the required property. Note that we may take any basis of \(N \) as \(\overline{Y} \). We define the sets of generators \(X \) and \(Y \) and relators \(R, S, \) and \(T \) as before Proposition 3 where \(G = P \). Since the relators in \(S \) are rewritten from those of \(\overline{S} \), they have the required property, i.e., the exponent sum for each generator in each relator is a multiple of \(p \). Also, since \(\text{Im} \iota \) is central in \(P \), we have \(w_{xy} = y \) for all \(x \in X, y \in Y \), and so \(T \) consists of commutators which have the required property.

We now consider the relators \(rw_{r}^{-1} \) in \(R \). Some of them will be eliminated, while in others we will replace the subwords \(w_{r} \) with ones satisfying the required property. Indeed, we can choose a maximal linearly independent subset of
\[
W = \{ w_{r} \mid r \in R \} \subseteq \text{Im} \iota
\]
and complete it to a basis of \(\text{Im} \iota \). As we have mentioned, without loss of generality we may assume that this basis coincides with \(Y \). All generators \(y = w_{r} \in W \cap Y \) may be eliminated, because we have a relation \(w_{r} = r \) and \(r \) does not involve any \(y \in Y \). The remaining words \(w_{r} \in W \setminus Y \) are linear combinations of such generators, hence after the elimination they will become words in \(R \) which satisfy the needed property by induction. The words in \(S \cup T \) are commutators and powers \(y^{p} \), hence will retain the needed property, too. The resulting presentation of \(P \) clearly has the required property. \(\square \)
4. Proof of main theorem

The following result will be used.

Proposition 4 (Gaschütz’ Theorem [11, (10.4)]). Let \(p \) be a prime, \(V \) a normal abelian \(p \)-subgroup of a finite group \(G \), and \(P \in \text{Syl}_p(G) \). Then \(G \) splits over \(V \) if and only if \(P \) splits over \(V \).

We are now ready to prove Theorem 1.

Proof. We denote \(\omega_0 = \sum_{\omega \in \Omega} \omega \). Assume to the contrary that there is \(\omega \in \Omega \) such that \(S = \text{St}(\omega) \) is not liftable to \(H \). Let \(P = \text{Syl}_p(S) \). Since \(A \) is an abelian \(p \)-group, Proposition 4 implies that \(P \) is not liftable to \(H \). Let \(\langle X \mid R \rangle \) be a finite presentation for \(P \) with the property that \(\mu_x(r) \equiv 0 \pmod{p} \) for every \(x \in X \), \(r \in R \). Such a presentation exists by Proposition 2.

Let \(F = F(X) \) be the free group with basis \(X = \{x_1, \ldots, x_n\} \). For every \(x \in X \), we denote \(\bar{x} = x\gamma \in P \), where \(\gamma : F \rightarrow P \) is the presentation homomorphism, and choose \(\bar{x} \in H \) so that
\[
\bar{x} \pi = x. \tag{7}
\]

There exists a relator \(r = r(x_1, \ldots x_n) \in R \) such that \(\bar{x} = r(\bar{x}_1, \ldots, \bar{x}_n) \neq 1 \) in \(H \).

Indeed, otherwise the subgroup
\[
\bar{T} = \langle \bar{x} \mid x \in X \rangle \leq H
\]
would satisfy the same relations as \(P \) and so the map \([x \mapsto \bar{x}], x \in X \), would give rise to a homomorphism \(\sigma : P \rightarrow \bar{T} \) with the property \(\sigma \pi = \text{id}_P \). But this means that \(\bar{T} \) would be a splitting of the full preimage \(P \pi^{-1} \) contrary to the assumption.

Since
\[
\bar{x} \pi = x,
\]
we see that \(\bar{x} = a\bar{t} \) for a nonzero \(a \in A \). By assumption, \(H \) is a subextension of \(G \times V \) with respect to \([1]\). Hence \(\bar{x} \beta = a\omega_0 \), where the embedding \(\beta \) is as in \([4]\).

Also, we can write \(\bar{x}_i = g_i v_i, i = 1, \ldots, n \), for suitable \(g_i \in G \), \(v_i \in V \). Observe that \(g_i = x_i \) due to \([7]\) and the commutativity of diagram \([3]\). Let \(r = x_{i_1}^{\varepsilon_1} \cdots x_{i_l}^{\varepsilon_l} \) with \(k = 1, \ldots, l \). Define a homomorphism \(F \rightarrow G \times V \) by extending the map \(x_i \mapsto x_i v_i, i = 1, \ldots, n \). Using \([5]\) and \([8]\), we have
\[
\epsilon \omega_0 = \bar{x} \pi = r(\bar{x}_1 \beta, \ldots, \bar{x}_n \beta) = r(\bar{x}_1 v_1, \ldots, \bar{x}_n v_n) = r(\bar{x}_1, \ldots, \bar{x}_n)
\]
\[
\times (v_1 \frac{\partial r}{\partial \bar{x}_1} + \cdots + v_n \frac{\partial r}{\partial \bar{x}_n} - v_1 \sum_{\{k \mid \epsilon_k = 1\}} \varepsilon_k f_k \gamma + \cdots + v_n \sum_{\{k \mid \epsilon_k = n\}} \varepsilon_k f_k \gamma), \tag{9}
\]
where \(f_k \in F \) is given by \([4]\) and \(f_k \gamma \in P \). We can decompose
\[
V = A\omega \oplus V_0,
\]
where \(V_0 \) the \(A \)-linear span of \(\Omega \setminus \omega \), and write \(v_i = a_i \omega + w_i, i = 1, \ldots, n \), for suitable \(a_i \in A \) and \(w_i \in V_0 \). Since \(f_k \gamma \in S \) stabilizes \(\omega \), it also stabilizes \(V_0 \).

Therefore, the right-hand side of \([9]\) can be rewritten as
\[
a_1 \left(\sum_{\{k \mid \epsilon_k = 1\}} \varepsilon_k \right) \omega + w_1' + \cdots + a_n \left(\sum_{\{k \mid \epsilon_k = n\}} \varepsilon_k \right) \omega + w_n', \tag{10}
\]
where $w'_i = \sum_k \varepsilon_k w_{i, f_k}$ lies in V_0 for each i. Observe that
\[\sum_{\{k \mid i_k = i\}} \varepsilon_k = \mu_{x_i}(r) \equiv 0 \pmod{p} \]
for every i by assumption. Since A has characteristic p, (10) equals $\sum_i w'_i = w'$, an element of V_0. We now compare the coefficients of ω for w' and $a\omega_0$. Since V is free as an A-module, these coefficients must coincide. However, the former is 0 and the latter is $a \neq 0$, a contradiction. \[\Box\]

References

[1] M. Aschbacher, Finite group theory. 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000.

[2] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC Press, Boca Raton, FL, 2005.

[3] D. L. Johnson, Presentations of groups. 2nd ed., London Math. Soc. Student Texts, vol. 15, Camb. Univ. Press, Cambridge, 1997.

[4] Yu. V. Kuzmin, Homological group theory, Advanced Studies in Mathematics and Mechanics, vol. 1, Factorial Press, Moscow, 2006.

[5] A.V. Zavarnitsine, Subextensions for a permutation $\text{PSL}_2(q)$-module, Sib. Elect. Math. Reports 10 (2013), 551–557.

[6] ____, Embedding central extensions of simple linear groups into wreath products, Sib. Elect. Math. Reports 13 (2016), 361–365.

Andrei V. Zavarnitsine, Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia,
E-mail address: zav@math.nsc.ru