Evaluation Al-Safeena and Sayed Jawda Intersections in Kerbala City

Huda M. Al-Murshidy¹, Hussein A. Ewadh² and Raid R. A. Almuhanna³*

¹ MSc Student, College of Engineering, University of Kerbala, Kerbala, Iraq.
² College of Engineering, University of Babylon, Hilla, Iraq.
³ College of Engineering, University of Kerbala, Kerbala, Iraq.

*Corresponding author, email: raidalmuhanna@yahoo.com

Abstract: Increase of traffic volumes at intersections is one of the significant reasons that cause congestion. The current study aims to analyze, assess and improve traffic performance of (Al-Safeena roundabout) and (Sayed Jawda intersection) in Kerbala city. In order to implement these goals, data of the traffic volume and geometric layout for (Al-Safeena roundabout) and (Sayed Jawda intersection) are manually collected. To achieve the traffic analysis process, (SIDRA version 7) traffic program was used. Al-Safeena intersection improved by adding a new lane for each approach, this reduce the delay times, fuel consumption, and stops. This process will reduce ratio of volume to capacity (v/c) to value 0.7 and the delay rate value to 15.3 sec and LOS to C. On other hand, traffic operation at Sayed Jawda intersection is relatively enhanced by dividing the width of approach to four lanes, however, level of service is not upgraded satisfactorily. Change Sayed Jawda intersection to roundabout reduces the value of v/c to 0.8, and the value of average delay to 24 sec and LOS C.

Keywords: Traffic congestion, Roundabout, Intersection, Peak Hour Factor, LOS.

1. Introduction
Traffic congestion is of great concern in many big cities. The intersection is characterized by slow speed, long journey times and an increase in the number of vehicles in the queue [2]. The delay is a significant problems happen in any mean of traffic, the delay can be defined “the additional travel time experienced by a driver, passenger, or pedestrian” Two factors that affect delay are lane group volume and lane group capacity [3]. A roundabout is defined as "a circular traffic intersection featuring yield control on all entering legs, one-way continuous flow within the circulatory roadway, channelization of approaches, and appropriate geometric curvature to keep circulating speeds low" [4]. When analyzing intersections, the capacity, level of service and delay are considered as fundamental factors, therefore, the capacity and level
of service should be taken fully into account when evaluating traffic performance at intersections [5]. Al-Safeena roundabout and Sayed Jawda intersection in Karbala city are an important intersection and are heavily congested as they connecting major streets. Al-Saffena and Sayed Jawda intersections have the following characteristics:
1. They have a very high traffic volume on each approaches.
2. Many activities are located around these intersections.
The SIDRA software, up on methodology extension in Australia, also employ a gap acceptance approach to model roundabout operations [1].

2. Objective of the Study:
The current traffic study aims at several basic objectives
1. Find the exist LOS at both intersections to evaluate the traffic performance.
2. Improve the current LOS for Al-Safeena and Sayed Jawda intersections.

3. Description of Site:
Al-Safeena intersection is a four-leg roundabout intersection located in Karbala city, this roundabout very important due to connection two major street Fatima Al-Zahraa street with Al-Iskan street as shown in Figure (1).
Sayed Jawda intersection is a four leg intersection located in Karbala city as shown in Figure (2).

Figure 1. Satellite Image of Al-Safeena roundabout (satellite photographs for Kerbala, 2016).
Figure 2. Satellite Image of Sayed Jawda Intersection (satellite photographs for Kerbala, 2016).

4. Methodology
The steps required to complete the analysis of intersections shown in Figure (3).

- Calculation of the traffic volume and finding the peak hour factor (PHF).
- Studing the current traffic volume condition and finding the LOS.
- Suggestion different alternatives to enhance the LOS.
- Finding LOS for intersections after the improvements.

Figure 3. Steps Required to Complete the Analysis of Intersections.

5. Data Collection
The data collection for Al-Safeena roundabout and Sayed Jawda include traffic volume and geometric data.

5.1 Traffic Volume
The calculation of traffic volume distribution by movements was done manually for each approach in four days namely (Sunday, Tuesday, Thursday and Friday) starting on (3/4/ 2018 for five hours (730-830, 830-930, 1330-1430, 1430-1530, 1530-1630) for each day, the reason for choosing these hour is the highest traffic volumes falling within those periods. For calculating PHF, traffic volumes were recorded for every 15 minutes at each approach. Tables (1) and (2) show the traffic volume at each approach across Al-Safeena roundabout and Sayed Jawda intersection.
5.2 Geometrical Data
The current geometric design that includes the number of lane and width of lane for Al-Safeena roundabout and Sayed Jawda intersection as shown in Tables (3 and 4).

Table 1. Traffic Volume for Al-Safeena Roundabout.

Time	W	N	S
E			
R			
TH			
L			
730-745	60	336	45
745-800	83	156	42
800-815	84	155	43
815-830	80	163	43
830-845	86	203	40
845-900	62	168	38
900-915	84	165	38
915-930	79	166	33
1330-1345	99	361	18
1345-1400	110	199	27
1400-1415	107	203	27
1415-1430	123	186	25
1430-1445	117	172	20
1445-1500	80	202	12
1500-1515	53	137	13
1515-1530	60	152	11
1530-1545	54	126	12
1545-1600	67	155	17
1600-1615	77	175	20
1615-1630	74	86	23
Table 2. Traffic Volume for Al-Sayed Jawda Intersection.

Time	E	W	N	S								
	R	TH	L	R	TH	L	R	TH	L			
730-745	88	293	74	55	110	33	211	116	43	46	224	118
745-800	84	229	71	53	138	49	196	68	50	53	148	49
800-815	82	215	67	47	136	50	180	115	57	46	144	95
815-830	85	245	65	49	141	61	179	113	62	50	142	104
830-845	99	140	29	39	96	41	134	98	275	41	212	140
845-900	80	246	39	37	80	29	112	127	62	50	185	94
900-915	84	199	38	25	92	22	101	133	62	57	144	91
915-930	83	190	29	33	88	22	100	120	58	46	170	91
1330-1345	67	242	68	38	99	33	185	72	36	38	202	93
1345-1400	78	230	56	39	78	36	201	93	35	39	191	36
1400-1415	69	243	69	41	78	47	183	81	47	44	192	66
1415-1430	62	231	68	44	82	48	184	88	47	36	183	78
1430-1445	48	207	76	36	70	38	165	74	78	36	168	52
1445-1500	59	197	57	32	85	35	173	76	79	35	169	52
1500-1515	60	193	64	31	79	31	167	68	69	34	170	57
1515-1530	67	200	72	35	67	34	172	85	68	36	177	55
1530-1545	33	196	65	34	67	34	163	81	71	38	177	49
1545-1600	47	41	68	37	63	25	167	82	53	40	187	50
1600-1615	41	53	75	46	70	47	174	72	63	44	195	59
1615-1630	36	51	77	54	68	58	174	74	77	145	204	72

Table 3. Geometric Characteristics for Al-Safeena Roundabout

Approach direction	No. lane	Width of lane(m)
E	3	4
W	3	3.5
N	3	3.5
S	3	2.9

Table 4. Geometric Characteristics for Sayed Jawda intersection

Approach direction	No. lane	Width of lane(m)
E	4	3.2
W	3	3.5
N	3	3.5
S	3	3.5
6. Analysis and Results.
To evaluate and analyze the performance of intersections, the SIDRA program version 7 was used and through this program the following information was calculated:
- The degree of saturation (v/c)
- Average delay
- LOS

6.1 Determine Peak Hour Volume:
The traffic account every 15 min. is carried out from (7:30-9:30) a.m. and (13:30-16:30) p.m. for Al-Safeena roundabout and Sayed Jawda intersection. The peak hour for Al-Safeena and for Sayed Jawda located in (7:30-8:30) p.m. The PHF for Al-Safeena roundabout and Sayed Jawda intersection shown in Tables (5 and 6), where the number of vehicles accounted is equal to 5628 veh./hr for Al-Safeena roundabout. the number of vehicles for Sayed Jawda intersection is 5282 veh./hr.

6.2 Calculation of the PHF (Peak Hour Factor):
The peak hour factor defined as “the ratio of total hourly volume to the maximum 15- min rate of flow within the hour” as following equations (1) and (2) (HCM, 2000).

\[
PHF = \frac{\text{Hourly volume}}{\text{peak rate of flow (within hour)}} \quad (1)
\]

\[
PHF = \frac{\text{Hourly volume}}{4 \times V_{15 \text{min}}} \quad (2)
\]

\(V_{15}\) = The volume that is through peak 15 minutes of peak hour, on veh/15min

Variation of Traffic volume for Al-Safeena and Sayed Jawda intersections during peak period shown in Figure (4 and 5).

Table 5. PHF for Each Direction for Al-Safeena Roundabout.
Direction
E
W
N
S

Table 6. PHF for Each Direction for Al-Sayed Jawda Intersection.
Direction
E
W
N
S
6.3. Existing LOS

The program SIDRA version 7 was invented to analyze the traffic conditions and to obtain the current capacity as well as to obtain the ratio of speed to volume as well as calculating the delay for each approach of each traffic movement. After setting the peak hour that represents the design hour volume, it is very important to guess the level of service in the current flow and geometric properties at Al-Safeena roundabout and Sayed Jawda intersection. When the service level is set to the current case, the delay rate must be calculated at Al-Safeena and Sayed Jawda because for LOS account, the average delay perform the major parameter. By using SIDRA 7 program, the average delay for AL-Safeena intersection at its existing geometric is (71) sec./veh. this mean, Al-Safeena will operate in LOS (F). Table (7) show the average delay
The average delay for Al-Sayed Jawda intersection at existing geometric is (123) sec/veh so Sayed Jawda intersection will operate in LOS (F). Table (8) shows the average delay and LOS for Sayed Jawda intersection for each approach that connected with this Intersection.

The Geometric layout for Al-Safeena roundabout and Sayed Jawda intersection shown in Figure (6 and 7).

![Figure 6. Geometric Layout of Al-Safeena Roundabout.](image)

![Figure 7. Geometric Layout of Sayed Jawda Intersection.](image)
Table 7. LOS at Al-Safeena Roundabout.

Direction	Approach Delay (sec)	LOS	Intersection Delay (sec)	LOS
Northbound	178	F	71	F
Eastbound	78	F		
Southbound	154	F		
Westbound	60	F		

Table 8. LOS at Sayed Jawda Intersection.

Direction	Approach Delay (sec)	LOS	Intersection Delay (sec)	LOS
Northbound	110	F	123.5	F
Eastbound	147	F		
Southbound	92	F	123.5	F
Westbound	147	F		

7. Design of Proposals

7.1 Design of proposal for Al-Safeena roundabout.

The level of service of Al Safeena intersection improve by decrease the width of middle island for east approach from 9.8 to 4.5 so this increase the no of lane for the east approach (when the no of lane increase the approach capacity increase so the LOS enhanced). The no of lanes for the north and west approach increase in same method for east approach as shown in Figure (8). The north approach increase through the increase of entry radius this lead to increase flare length and entry width and consequently the capacity of approach increase. The improvement of Al Safeena shown in Figure (8). In these improvement v/c reduce to 0.7 and the LOS for this intersection enhanced to (C), as shown in Table (9) and Figure (9).
Figure 8. Improvement Proposal for Al-Safeena Intersection.

Figure 9. Shown the Movement Intersection for Al-Safeena Roundabout after the Improvement.

Table 9. LOS at Al-Safeena Roundabout by SIDRA 7.

Direction	Approach	Intersection		
	Delay (sec)	LOS	Delay (sec)	LOS
Northbound	17	C	15.4	C
Eastbound	13.3	B	15.1	C
Southbound	15.5	C		
Westbound				

10
7.2 Design of Proposals for Sayed Jawda

The LOS at Sayed Jawda Intersection was enhanced by remarking approaches pavement into four lanes instead of three. The traffic lanes that have low traffic volume are assigned to be shared. In this proposal the LOS enhanced to E, which is not enhanced to accepted level as shown in Figure (10), the LOS and delay for this intersection are shown in Table (10).

Direction	Approach	Delay (sec)	LOS	Delay(sec)	LOS
Northbound	U	65	E		
	L2	78			
	T1	84	F	78	E
Westbound	U	77	E		

Figure 10. The Intersection Movements and LOS for Sayed Jawda Intersection after Pavement Remarkering.

Table 10. LOS for Sayed Jawda intersection after Pavement Remarkering by SIDRA 7
Changing Sayed Jawda intersection to roundabout reduced the v/c to 0.8 and LOS to C as shown in Figure 11 and Table 11. This roundabout with circulatory width 14m and island diameter of 30m, the improvement for Sayed Jawda is shown in Figure 12.

Figure 11. LOS at Sayed Jawda Intersection after Pavement Remarking and Changing to Roundabout.

Table 11. LOS for Sayed Jawda after Pavement Remarking and Changing to Roundabout by SIDRA.

Movement	Performance	Vehicles								
	Max Delay	Avg Delay	Min Delay							
	(sec)	(sec)	(sec)							
South Roadname										
3a	35	0.0	0.000	22.2	LOS C	4.4	33.1	0.80	1.02	47.1
5	12	0.0	0.000	16.2	LOS C	4.4	33.1	0.80	1.02	46.1
10	12	0.0	0.000	7.7	LOS D	4.2	32.0	0.85	1.11	40.6
Approach	1722	0.0	0.000	15.1	LOS C	4.4	33.1	0.81	1.01	46.9
East Roadname										
3a	35	0.0	0.000	32.2	LOS D	2.6	19.5	0.88	1.04	42.7
5	12	0.0	0.000	23.0	LOS C	2.6	19.5	0.88	1.04	41.8
10	12	0.0	0.000	26.2	LOS D	5.1	30.5	0.96	1.20	43.6
Approach	1429	0.0	0.000	31.2	LOS D	6.2	47.0	0.91	1.21	46.6
North Roadname										
3a	39	0.0	0.000	29.2	LOS D	2.4	18.2	0.84	0.98	44.9
5	12	0.0	0.000	19.3	LOS C	2.4	18.2	0.84	0.98	43.7
10	12	0.0	0.000	26.4	LOS C	4.0	30.7	0.86	1.11	46.7
Approach	1550	0.0	0.000	33.5	LOS D	7.0	52.9	0.94	1.37	35.5
West Roadname										
3a	36	0.0	0.000	24.4	LOS C	3.2	24.4	0.83	1.01	40.9
5	12	0.0	0.000	19.2	LOS C	3.5	26.4	0.82	1.00	40.2
10	12	0.0	0.000	15.7	LOS C	3.6	27.2	0.88	0.97	40.1
Approach	1475	0.0	0.000	22.8	LOS C	6.1	46.4	0.84	1.08	44.3
All Vehicles	6216	0.0	0.000	24.1	LOS C	7.0	52.8	0.85	1.11	43.7
8. Conclusions

The results indicated that the LOS for Al-Safeena roundabout was unacceptable. The level of service of al Safeena intersection was improved by decreasing the width of the middle island for east approach from 9.8m to 4.5m which increases the no of lane for the east approach (When the no of lanes increases, the approach capacity also increases and the LOS enhanced). The no of lanes for the south and west approach increases in the same manner as of the east approach. The north approach width increases through the increase of entry radius this lead to increase flare length, and entry width and consequently the capacity of approach capacity increases. Following these improvements, the LOS for this intersection enhanced to (C). Also the unacceptable LOS for Sayed Jawda was enhanced by dividing the width of the approaches to four lanes so each movement in each lane is isolated and the low traffic lanes are shared, the level of service of Sayed Jawda intersection was not enhanced and still work in LOS E. Changing Sayed Jawda intersection to roundabout will enhance the LOS to (C).
References

[1] Akcelik R 1986 SIDRA version 2.2 input and output (Austrian road research board) Technical manual, ATM No. 19.

[2] Federal Highway Administration 1995 Improving Traffic Signal Operations (U.S. Department of Transportation), p 1.

[3] Khisty C J and Lall B k 1998 Transportation Engineering Handbook Second edition (Prentice – hall International) Inc.

[4] Kittelson & Associates Inc Roundabouts an Informational Guide Report FHWSRD-00-067 FHWA, U.S. Department of Transportation, 2000. I am at, Federal Highway Administration, Publication No. FHWA-RD-00-067, June 2000.

[5] Zegeer D.C 1986 Field Validation of Intersection Capacity Factors (Transportation Research record 1091, Transportation research Board Washington, DC).