Free-living wrist and hip accelerometry forecast cognitive decline among older adults without dementia over 1- or 5-years in two distinct observational cohorts

Chengjian Shi1,2, Niser Babiker1, Jacek K. Urbanek1,5, Robert L. Grossman2,4, Megan Huisingh-Scheetz2,6,5 and Andrey Rzhetsky2,3,5,6

The prevalence of major neurocognitive disorders is expected to rise over the next 3 decades as the number of adults ≥65 years old increases. Noninvasive screening capable of flagging individuals most at risk of subsequent cognitive decline could trigger closer monitoring and preventive strategies. In this study, we used free-living accelerometry data to forecast cognitive decline within 1- or 5-years in older adults without dementia using two cohorts. The first cohort, recruited in the south side of Chicago, wore hip accelerometers for 7 continuous days. The second cohort, nationally recruited, wore wrist accelerometers continuously for 72 h. Separate classifier models forecasted 1-year cognitive decline with over 85% accuracy using hip data and forecasted 5-year cognitive decline with nearly 70% accuracy using wrist data, significant improvements compared to demographics and comorbidities alone. The proposed models are readily translatable to clinical practices serving ageing populations.

npj Aging (2022) 8:7 ; https://doi.org/10.1038/s41514-022-00087-w

INTRODUCTION

Alzheimer’s disease and related major neurocognitive disorders (ADRD) affect over 50 million people worldwide, with an increase of 10 million new cases per year1. The ADRD disease burden is expected to increase as the world population ages2,3. ADRD disproportionately affects socioeconomically disadvantaged groups and minorities4 and is associated with lower quality of life, increased mortality, care dependence, and institutionalization. Preservation of cognitive abilities and a positive mindset may maintain quality of life in later years5. Few US Food and Drug Administration (FDA) approved treatment options exist at this time; therefore, the mainstay of current management remains on the prevention side6. Cognitive trajectories vary widely among older adults, with recent studies showing that different races experience varying rates of decline7,8. Finding sensitive forecasters of early decline could trigger more frequent monitoring and aggressive preventative interventions, advance care planning, and even ADRD research study eligibility9.

There is an acute need for easily deployed, noninvasive, clinical tools to identify cognitively intact older adults most at risk of subsequent cognitive decline. Certain clinical and environmental factors including age, gender, education, body mass index, neighborhood socioeconomic status, and history of stroke or diabetes are easy to gather clinically during a visit or even during a telephone screen10. In a meta-analysis, structural and functional aspects of one’s social environment (including network size, social activity, and loneliness) are also predictive of cognitive decline among older adults11. Genetic susceptibilities, such as APOE carrier status, can improve forecast models but are more invasive for patients to collect12.

Wearable sensors have been gaining attention for their ability to remotely collect free-living activity and sleep patterns and the association of these patterns with other important age-related conditions: frailty13–15, disability16, social disengagement17, and death18. The relationship between free-living activity and cognitive performance has been less studied. In cross-section, greater activity volume (highest and middle tertiles of active minutes/day) was associated with better processing speed among cognitively intact adults at risk of mobility disability19 and steps/day were associated with better executive functioning in healthy older adults20. Longitudinally, cognitively intact older adults with a higher percentage of moderate to vigorous physical activity (MVPA) per week had a lower risk of cognitive impairment and better maintenance of executive function and memory over an average of 3 years21. However, these findings were not consistent across racial/ethnic groups. A higher percent of MVPA predicted maintenance of only memory and not executive function in African American/Black adults, as compared to White adults21.

Few prior studies have leveraged the high-resolution nature of accelerometer data in analyses to maximize unique pattern recognition that may differentiate health risk across individuals, a concept familiar to those studying precision medicine. While accelerometry is not currently used in routine clinical care, it has been increasingly used in major research studies to remotely assess older adult health and poses significant advantages in the era of telehealth22–28. Translation of accelerometry in clinical practice has been challenging by the lack of accelerometry tools with clear clinical applications and the inability to apply research findings across device body locations and manufacturers.

The objective of this study was to significantly advance the prior work on forecasting early cognitive decline among older adults without dementia by discovering prognostic, free-living accelerometry patterns using 24-h data. We considered 98 accelerometry measures, the most comprehensive set of movement-related

14Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 2Department of Medicine, University of Chicago, Chicago, IL 60637, USA. 3Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA. 4Department of Computer Science, University of Chicago, Chicago, IL 60637, USA. 5Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. 6These authors jointly supervised this work: Megan Huisingh-Scheetz, Andrey Rzhetsky.

Email: megan.huisingh-scheetz@uchospitals.edu; andrey.rzhetsky@uchicago.edu
The characteristics of the two study cohorts are shown in Table 1. The hip accelerometry cohort was older (mean age 73.2), had a slightly higher baseline Montreal Cognitive Assessment (MoCA) score (mean 25.4), and included a larger proportion of females (80.9%) and those self-identifying as African American (81.7%) than the wrist accelerometry cohort (mean age 70.0, mean MoCA score (mean 23.4), proportion female 59.1%, proportion African American/Black 11.3%).

Demographic and clinical predictors of cognitive decline

As we observe in Table 2, the clinical characteristics had somewhat limited capability to distinguish between those with stable/improving cognition versus those with declining cognition at 1 and 5 years in the local and national cohorts, respectively. We provided a full dictionary of features in the Supplemental Data.

RESULTS

Cohort characteristics

The characteristics of the two study cohorts are shown in Table 1. The hip accelerometry cohort was older (mean age 73.2), had a slightly higher baseline Montreal Cognitive Assessment (MoCA) score (mean 25.4), and included a larger proportion of females (80.9%) and those self-identifying as African American (81.7%) than the wrist accelerometry cohort (mean age 70.0, mean MoCA 23.4, proportion female 59.1%, proportion African American/Black 11.3%).

Demographic and clinical predictors of cognitive decline

As we observe in Table 2, the clinical characteristics had somewhat limited capability to distinguish between those with stable/improving cognition versus those with declining cognition at 1 and 5 years in the local and national cohorts, respectively. We provided a full dictionary of features in the Supplemental Data.

Combining demographic, clinical, and accelerometer predictors of cognitive decline

To investigate the importance of the accelerometry activity measures in a study of its kind to date. With a screening clinical application in mind, we chose a simple, binary clinical outcome that is most relevant to triggering clinical or research decision making: any cognitive decline versus stable or improving cognition. We further probed into the generalizability of the developed methodology, by applying it to data from two studies that gathered data from two different accelerometers worn at different body locations and with different wear protocols.

Table 1. Demographic composition of the two accelerometry cohorts.

Characteristics	Hip accelerometry cohort (N = 115)	Wrist accelerometry cohort (N = 575)
Age (year)	73.2 (5.9)	67.0 (7.9)
Gender (female)	93 (80.9 %)	340 (59.1 %)
Race	94 (81.7 %)	65 (11.3 %)
Black	11.3%	94 (81.7 %)
White	21 (18.3 %)	423 (73.6 %)
Hispanic	None	67 (11.7 %)
Other	None	20 (3.5 %)
Education	45 (31.9 %)	211 (36.7 %)
Some college or junior college	27 (23.5 %)	137 (23.8 %)
College graduate	11 (9.6 %)	135 (23.5 %)
High School graduate or GED (grade 12)	4 (3.5 %)	92 (16.0 %)
Income ($/month)	<2000	65 (50.0 %)
	2000–3999	40 (30.8 %)
	4000–5999	16 (12.3 %)
	≥6000	9 (6.9%)
Charlson Comorbidity Index Score	1 (1.3)	0.9 (1.2)
MoCA (baseline)	25.4 (2.6)	23.4 (4.0)
(Hip: 1 year; Wrist: 5 years)	25.6 (3.0)	22.6 (4.4)

Table 2. Effect size of predictors of 1- and 5-year cognitive function, the values shown for each feature are Cohen’s D/odds ratio with 95% confidence intervals.

Characteristics	Δ, Vs Δ hip-worn (N = 115)	Δ, Vs Δ wrist-worn (N = 575)
Age (year)a	0.457 (0.103, 0.810)	0.284 (0.119, 0.449)
Gender (female)b	3.533 (1.223, 10.207)	0.865 (0.620, 1.207)
Raceb	African American/Black 1.124 (0.472, 2.680)	0.897 (0.741, 1.086)
White	-	1.014 (0.795, 1.293)
Hispanic	-	1.143 (0.873, 1.499)
Other	-	1.344 (0.769, 2.345)
Educationb	Some college or junior college	2.265 (1.092, 4.697)
Post-graduate	0.973 (0.443, 2.134)	0.909 (0.619, 1.335)
College graduate	0.532 (0.233, 1.215)	1.018 (0.652, 1.591)
High School graduate or GED	0.437 (0.110, 1.726)	1.018 (0.652, 1.591)
Some high school (grades 9–11)	0.821 (0.132, 5.088)	1.337 (0.908, 1.969)
Income ($/month)b	<2000	1.283 (0.641, 2.566)
	2000–3999	0.656 (0.306, 1.405)
	4000–5999	0.715 (0.244, 2.101)
	≥6000	2.653 (0.634, 11.110)
Charlson Comorbidity Index Scorea	0.135 (−0.213, 0.485)	−0.008 (−0.172, 0.156)
MoCA (baseline)a	0.572 (0.216, 0.928)	0.418 (0.252, 0.584)

Table 3. Number of predictors in the three hip and wrist accelerometry models.

Model	Hip-worn	Wrist-worn
CDPred	7	6
CDPred-4	9	8
CDPred-4+	105	104
Performance of the models
The model performance metrics on the hold-out samples are shown in Table 4. The CDPred-4+ model including all measures predicted cognitive decline 1 year later with an accuracy of over 85% (hip accelerometer cohort) and predicted cognitive decline 5 years later with nearly 70% accuracy (wrist accelerometer cohort).

DISCUSSION
Our model significantly expands work previously published in this space. Casanova et al. (2020) similarly used a Random Forest Classifier to distinguish cognitive trajectories\(^{12}\). Three classes, low-, medium-, and high-risk trajectories were created using a combination of baseline and repeated cognitive performance scores. This study found that age, gender, education, BMI, stroke, diabetes, neighborhood socioeconomic status, and APOE carrier status were among the top predictors of cognitive trajectories. They did not include accelerometry assessments. We found that the accelerometry pattern features outperformed many demographic and clinical features, the two baseline accelerometer metrics, and all extracted 98 accelerometer harmonic features.

Table 4. Predicting cognitive decline: performance of classifier models with an increasing number of predictors.
Model

CDPred (hip device)
CDPred-4 (hip device)
CDPred-4+ (hip device)
CDPred (wrist device)
CDPred-4 (wrist device)
CDPred-4+ (wrist device)

\(^{a}\)Standard deviation.

Fig. 1 Confusion matrix and ROC-AUC curve summarizing experiments with data recorded for the hip accelerometer cohort. The figure shows a confusion matrix and b ROC-AUC curve for the held-out sample.

Our analyses have shown that, compared to simpler, clinical models predicting cognitive decline (e.g., using only demographic and clinical characteristics), our accelerometry-based classifier model performs significantly better. This model uniquely identifies preclinical cognitive decline among older adults without a diagnosis of dementia over short (1-year) and longer-term (5-year) follow-up. The model was robust to varying wear protocols (7 days versus 72 h), device location (hip versus wrist), and device manufacturer. In both models, many accelerometry features were rated more ‘important’ in distinguishing those who experienced any decline in cognition than many demographic and clinical characteristics including age. We are hopeful that the current level of model performance may be useful to flag older adults most vulnerable to subsequent cognitive decline. We note and emphasize that accelerometry currently has no diagnostic capacity for any clinical diseases; its role in the current study is restricted to an assessment of day-to-day movement (accelerations and decelerations) which seems to reflect some level of health, here cognitive, risk.

Limitations
This study has several limitations worth mentioning. It is not technically possible to guarantee (or test) that there was no overlap between the two cohorts used in this study. The NSHAP dataset did collect zip code information on participants, but the FACE Aging dataset did not collect any address information. Since the FACE Aging dataset is composed of study participants residing in the few neighborhoods surrounding the University of Chicago and NSHAP sampled across the nation using a complex sampling design based on census tracts, if overlap occurred, it would have been a very small number of participants.

Another limitation of the current study is, despite the importance of understanding ADRD for socio-demographically disadvantaged groups, the datasets for this study were not sufficient in size for understanding the relative predictive power of the models for different sociodemographic groups. We did include effect size measures for different race/ethnicities in Table 2 and the effect size of accelerometer features on race/ethnicity in Supplementary Table 1 as the first step in this direction. We show ranked effect sizes of individual features in Supplemental Fig. 1.
Our forecast model was only 70–80% accurate leaving room for improvement. It is likely that our forecast model could be enhanced in future work to reach higher and more consistent accuracy. This can be achieved by including additional metrics derived from accelerometry data, possibly using additional physiologic sensors such as heart rate monitoring to capture richer data, and incorporating additional clinical data, such as blood or genetic markers, family history of dementia, and current medications.

The wrist accelerometry model did not perform as well as the hip accelerometry model. The weaker performance of the wrist accelerometry location might be due to the shorter wear protocols, increased motion "noise" related to the position, and longer follow-up cognitive assessments. Future work comparing more similar wear protocols and devices, even if worn at different body locations, would be of value.

Our experiments show that this predictive model can forecast preclinical cognitive decline using data from dissimilar accelerometry device locations, wear protocols, follow-up times, and unique cohorts. Hip- and wrist-worn accelerometers are subject to unique patterns of movements in space, yet data from both accelerometry devices improved the predictive capacity of the respective models. The somewhat inferior performance of the wrist accelerometry, among other factors, may be related to the shorter wear protocol (72 h versus 7 days versus "noisy" data at the wrist) and longer follow-up (5 years). A major challenge to accelerometry research and clinical translation has been the reliance on a particular device location, protocol duration, and/or proprietary data processing software for generating accelerometry measures. These limitations have stimulated movement toward using open source programs or approaches for generating accelerometry metrics, as we have done in this study, and identifying methodologic approaches applicable across multiple devices and varying wear protocols.

METHODS

Study populations

To evaluate the robustness of our proposed methodology, we used information about two non-overlapping cohorts of community-dwelling older adults, one cohort equipped with hip-based and another with wrist-based accelerometers.

Hip accelerometry cohort: frailty, aging, body composition and energy expenditure in aging (FACE aging) study. Study participants (n = 151) were recruited from the community around the primary geriatrics practice site for the University of Chicago located on the south side of Chicago. The sample was limited to community-dwelling (not living in residential care) older adults, 65 or older. Exclusion criteria included hospitalization, surgery, or procedure within 2 months of participating in the study; addition or change in dose of the thyroid (e.g., levothyroxine) or a diuretic (e.g., furosemide, hydrochlorothiazide, or spironolactone) medication within 2 months of participating in the study; use of oral steroids; use of beta-blockers (e.g., metoprolol, atenolol, or carvedilol); persistent hyperglycemia greater than 250; life expectancy less than 1 year; and history of moderate or advanced dementia or Montreal Cognitive Assessment (MoCA) less than or equal to 18. Hospital, surgery, medication, and hyperglycemia exclusion criteria were required to optimize resting metabolic rate testing at baseline (data not used in this analysis). Data collection occurred over multiple evaluations: (1) baseline survey and physical exam in the clinic, (2) a 7-day free-living hip accelerometry protocol immediately following the exam, (3) fasting resting metabolic rate measurement with indirect calorimetry and DEXA scan for body composition within 2 months of participating in the study; use of oral steroids; use of beta-blockers (e.g., metoprolol, atenolol, or carvedilol); persistent hyperglycemia greater than 250; life expectancy less than 1 year; and history of moderate or advanced dementia or Montreal Cognitive Assessment (MoCA) less than or equal to 18. Hospital, surgery, medication, and hyperglycemia exclusion criteria were required to optimize resting metabolic rate testing at baseline (data not used in this analysis). Data collection occurred over multiple evaluations: (1) baseline survey and physical exam in the clinic, (2) a 7-day free-living hip accelerometry protocol immediately following the exam, (3) fasting resting metabolic rate measurement with indirect calorimetry and DEXA scan for body composition within 2 weeks of baseline assessment, (4) a 1-year follow-up survey and physical exam in the clinic. We restricted the study sample to participants with complete clinical data and one or more valid (>10 daytime hours) accelerometer-wear days, which left us with 115 participants eligible for our classifier development.

Hip accelerometer protocol. Hip accelerometry data were collected from all participants at baseline. Following the baseline survey and physical exam, an Actigraph wGT3X+ hip accelerometer was placed over the participant’s mid, anterior right hip and secured with an elastic belt. Study participants were asked to keep the device on their hip continuously for 7 full days (including during bathing or showering). The accelerometers
participants eligible for our class.

Clinical data and analysis. The study sample was restricted to participants with complete data. The 24-h time interval was used to generate the wrist accelerometry features for this study. Days with less than 10 h of daytime recording were excluded. The 24-h accelerometer data were collected in 2010–11 along with a baseline MoCA. The MoCA was repeated in 2015–16.

In both cohorts, we calculated cognitive change as a difference in MoCA scores between the baseline and follow-up assessments (1 year for the hip accelerometry cohort and 5 years for the wrist accelerometry cohort):

\[\Delta = \text{MoCA}_{\text{follow-up}} - \text{MoCA}_{\text{baseline}} \] (1)

Patients with deteriorating MoCA scores (\(\Delta < 0 \)) were assigned to the cognitively declined group, denoted as \(\Delta \). The remaining participants were assigned to the group with a lack of cognitive decline, denoted as \(\Delta \). The ratio of \(\Delta /\Delta \) was 67/48 in hip-worn and 279/296 in wrist-worn accelerometer cohorts. The range of 1-year cognitive change (hip) was –8 to 6. The range of 5-year cognitive change (wrist) was –14.9 to 14.9.

Covariates. The covariates were measured similarly across cohorts.

Hip accelerometry cohort: In the hip accelerometry cohort, age, race, gender (female vs. male), education (high school vs. < high school graduate), and monthly income category ($0–$2000, $2000–$3999, $4000–$9999, and $6000+) were recorded through self-reported measures. Options for the race included Black or African American and Other (White, American Indian or Alaska Native, Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian, Native Hawaiian, Guamanian or Chamorro, Samoan, Other Pacific Islander, or Other). No participants reported Hispanic ethnicity. Information on previously diagnosed comorbidities (self-reported and chart review) was recorded and scored using the Charlson Comorbidity Index and included heart attack, asthma, emphysema, chronic bronchitis, a chronic obstructive pulmonary disorder, peripheral vascular disease, liver disease, diabetes, and cancer (continuous, range 0–30).

Wrist accelerometry cohort: In the wrist accelerometry cohort, age (centered, continuous) was calculated using the reported date of birth and interview date. Gender (female versus male), race (White/Caucasian, Black/African American, other), and Hispanic ethnicity were calculated using self-reported measures. Respondents were asked whether they had ever been told by a doctor that they had any of the following conditions (number of points given in parentheses): congestive heart failure (1), heart attack (1), coronary procedure (1), stroke (1), diabetes (1), rheumatoid arthritis (1), asthma, emphysema, chronic obstructive pulmonary disease, or chronic bronchitis (1), dementia (1), non-metastatic cancer excluding skin cancer (2), or metastatic cancer excluding skin cancer (6).
vector magnitude count (VMC) for each participant using the hip and wrist data. To calculate these metrics, the accelerometry data needed to be in the form of the vector magnitude/Euclidean norm. The subsecond-level wrist accelerometry data were already converted to the vector magnitude/Euclidean norm by the manufacturer’s software, 1 data point for every 15-s epoch, where $N = 24$ h per day × 60 min per hour × 4 samples per minute = 5760 samples per day for wrist-worn accelerometer data.

The hip accelerometer data were in the form $(x(t), y(t), z(t))$, where $x(t)$, $y(t)$, and $z(t)$ are dimensionless data provided by the accelerometry device, which are approximately proportional to the (x-, y-, and z-axis) directional acceleration. Time t is discrete, which for each day t runs from 1 to N, where $N = 24$ h per day × 60 min per hour × 60 s per minute × 30 samples per second = 2,592,000 samples per day for hip-worn accelerometer data. The vector magnitude/Euclidean norm $r(t)$ was computed in the hip accelerometry data as follows:

$$ r(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}. $$

(2)

To normalize the vector magnitude/Euclidean norm $r(t)$ to a consistent length across both the wrist and hip accelerometry cohorts, the vector magnitude/Euclidean norm $r(t)$ was reshaped to a $D \times T$ matrix $R = R_{dt}$ where D represents the total number of wear days and T represents collected samples per day. The average, normalized vector magnitude/
Table 5. Statistic and harmonic features extracted from CPM (t) and VMC (t).

Feature	Description
Statistical features	Mean and median
	Standard deviation
Minimum and maximum	25th and 75th percentile
Skewness and kurtosis	Entropy
	Beta distribution shape (α,β)
Harmonic features	Top 15 FFT* Coefficients (frequency/signal)
	FFT* entropy
	Periodogram frequency mean, Standard deviation
	RMSb amplitude
	Periodogram frequency Kurtosis and Skewness

*Fast fourier transformation (FFT).

npj Aging (2022) 7

Euclidean norm \(T(t) \) is computed as follows:

\[
T(t) = \frac{1}{D} \sum_{d=1}^{D} |{R_d}_t|.
\]

We then used non-overlapping 1-minute, sliding windows to extract the Euclidean norm minus one (ENMO), the counts per minute (CPM), and the vector magnitude count (VMC), both formally defined below. The ENMO was used to remove noise and gravitation effects from subminute and subsecond-level data. Letting \(H \) denote the number of time measurements in a one-minute sliding window, we can write ENMO as:

\[
\text{ENMO}(t) = \frac{1}{H} \sum_{h=0}^{H-1} \max[|{t} + h| - 1, 0].
\]

The feature CPM was further derived as:

\[
\text{CPM}(t) = H \cdot \text{ENMO}(t)
\]

Note that \(H = 60 \) s per sliding window \(\times 30 \) samples per second = 1800 samples per sliding window for hip accelerometer data and \(H = 60 \) s per sliding window \(\times 4 \) samples per minute = 4 samples per sliding window for wrist accelerometer data.

The VMC was used to evaluate the mean amplitude deviation in the sliding window period with size \(H \), defined as:

\[
\text{VMC}(t) = \frac{1}{H} \sum_{h=0}^{H-1} |{t} + h| - T(t)|,
\]

where \(t \) now varies over the minutes each day, from \(1 \) to \(N \), with \(N = 24 \) h per day \(\times 60 \) min per hour = 1440 min per day.

Accelerometry activity level measures (C4 and V4). Two categorical activity measures that we call C4 and V4 were computed. After extracting CPM and VMC measures from the accelerometer data, we generated the 75th percentile for CPM and VMC data points for each participant denoted as CPM_{75} and VMC_{75}. The sample-based distribution of the CPM_{75} and the VMC_{75} were then categorized into four levels at each quartile to create a C4 and V4, respectively. Figure 5 shows the cohort-specific-based quartiles for CPM_{75} and VMC_{75} labeled as: inactive [0–25%], moderately active [25–50%], active [50–75%], and extremely active [75–100%].

Accelerometer pattern measures. After obtaining minute-level ENMO(t) and VMC(t), we then computed 98 statistical and harmonic features. This resulted in 105 features for those wearing the hip accelerometers (study population \(N = 115 \)) and 104 features for those wearing the wrist accelerometers (study population \(N = 575 \)). The number of features for the wrist- and hip-worn devices differed because the income and ethnicity/race categories in the two datasets were not identical. The specific features for ENMO(t) and VMC(t) are listed in Table 5.

We illustrated the meaning of the individual harmonic features in Fig. 6. While we computed a relatively large number of harmonic features, the features belong to just a few categories: differential entropy (flatness of a distribution), fast Fourier transform (revealing periodicity in activity), and statistics describing shapes of a distribution, such as mean, variance, skewness, and kurtosis.

Statistical analysis. First, we computed characteristics of the two cohorts: means (±standard error, SE) for continuous measures and proportions (±SE) for categorical variables. Second, to analyze the statistical significance of the covariates for distinguishing between the two classes (\(\Delta_1 \), \(\Delta_2 \)), we evaluated the predictive importance of each of the demographic, comorbidity, and accelerometer measure in both cohorts. Third, we built a binary classifier called CDPred to distinguish \(\Delta_1 \) from \(\Delta_2 \) in the two cohorts using XGBoost (Extreme Gradient Boosting). To evaluate the performance of the model in each cohort, we randomly chose 10% of the hip accelerometer cohort and 15% of the sample from the wrist accelerometer cohort as a hold-out sample. The CDPred hyperparameters...
were fine-tuned using 5-fold cross-validation, to maximize the area under the curve (AUC) score. We then reported the performance of each model in terms of predicted accuracy and AUC on a hold-out sample. The feature importance of distinguishing Δ_k and $\Delta_{\bar{k}}$ were then listed in descending order of importance for the best-performing model in each dataset.

Ethics. The study was approved by the University of Chicago Institutional Review Board (IRB # 13-0443). Study participants provided written informed consent.

DATA AVAILABILITY

The NSHAP data are publicly available and can be obtained from the National Archive of Computerized Data on Aging (http://rcpsr.umich.edu/rcpsrweb/NACDA/studies/34921) after completing a Data Use Agreement and Institutional Review Board assessment.

DATA AVAILABILITY

The study was approved by the University of Chicago Institutional Review Board (IRB # 13-0443). Study participants provided written informed consent.

REFERENCES

1. Prince, M. in An Analysis of Prevalence, Incidence, Cost, and Trends (ed. Wimo, A) (Alzheimer’s Disease International, 2015).
2. Institute of Medicine of the National Academies (n.d.) Institute of Medicine of the National Academies. Accessed November 13, 2008. http://www.iom.edu/ Milessen, M. L. Evidence of a need for change. Miller-McCune, 1, 34–39 (2008).
3. Federal Interagency Registry on Aging-related Statistics. (U.S. Government Printing Office, 2016).
4. Babulal, G. M. et al. Perspectives on ethnic and racial disparities in Alzheimer’s disease and related dementias: Update and areas of immediate need. Alzheimers Dement. 15, 292–312 (2019).
5. Hse, J. et al. Changes in the quality of life of people with dementia living in care homes. Alzheimer Dis. Assoc. Disord. 23, 285–290 (2009).
6. U.S. Preventive Services Task Force. Cognitive impairment in older adults: screening https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/cognitive-impairment-in-older-adults-screening (2020).
7. Aamariglio, R. E. et al. Examining cognitive decline across Black and White participants in the Harvard aging brain study. J. Alzheimers Dis. 75, 1437–1446 (2020).
8. Lee, H. B. et al. Race and cognitive decline among community-dwelling elders with mild cognitive impairment: findings from the Memory and Medical Care Study. Aging Ment. Health 16, 372–377 (2012).
9. National Institute of Aging. Strategic directions for research, 2020–2025. https://www.nia.nih.gov (2020).
10. Castanho, T. C. et al. Telephone-based screening tools for mild cognitive impairment and dementia in aging studies: a review of validated instruments. Front. Aging Neurosci. 6, 16 (2014).
11. Kuiper, J. S. et al. Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. Int. J. Epidemiol. 45, 1169–1206 (2016).
12. Casanova, R. et al. Investigating predictors of cognitive decline using machine learning. J. Gerontol. B Psychol. Sci. Soc. Sci. 75, 734–742 (2020).
13. Huisingsh-Scheetz, M. et al. Wrist accelerometry in the health, functional, and social assessment of older adults. J. Am. Gerontol. Soc. 64, 889–891 (2016).
14. Huisingsh-Scheetz, M. et al. The relationship between physical activity and frailty among U.S. older adults based on hourly accelerometry data. J. Gerontol. A. Biol. Sci. Med. Sci. 73, 622–629 (2018).
15. Huisingsh-Scheetz, M. et al. International Conference on Frailty and sarcopenia Research (2020).
16. Huisingsh-Scheetz, M. J. et al. Relating wrist accelerometry measures to disability in older adults. Arch. Gerontol. Geriatr. 62, 68–74 (2016).
17. Hu, C. C., Hawkley, L., Dale, W., Waite, L. & Huisingsh-Scheetz, M. Social capital predicts accelerometry-measured physical activity among older adults in the U.S.: a cross-sectional study in the National Social Life, Health, and Aging Project. BMC Public Health 18, 804 (2018).
18. Saint-Maurice, P. F. et al. Association of daily step count and step intensity with mortality among US adults. JAMA 323, 1151–1160 (2020).
19. Waniagatunga, A. A. et al. Community-based activity and sedentary patterns are associated with cognitive performance in mobility-limited older adults. Front. Aging Neurosci. 10, 341 (2018).
20. Sparatto, N. L. et al. Accelerometer-determined physical activity and cognitive function in middle-aged and older adults from two generations of the Framingham Heart Study. Alzheimers Dement. 5, 618–626 (2019).
21. Zhu, W. et al. Objectively measured physical activity and cognitive function in older adults. Med. Sci. Sports Exerc. 49, 47–53 (2017).
22. Committee on Technology of the National Science and Technology Council. Executive office of the President of the United States (2019).
23. Glogeris, H., Rashkovska, A., Kozina, S., Lustrek, M. & Gams, M. “Telehealth using ECG sensor and accelerometer,” 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 270–274, https://doi.org/10.1109/MIPRO.2014.6859575 (2014).
24. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
25. Ferrucci, L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J. Gerontol. A. Biol. Sci. Med. Sci. 63, 1416–1419 (2008).
26. Michos, E. D. et al. Rationale and design of the Study To Understand Fall Reduction and Vitamin D in You (STURDY): A randomized clinical trial of Vitamin D supplement doses for the prevention of falls in older adults. Contemp. Clin. Trials 73, 111–122 (2018).
27. Waite, L. et al. Inter-university consortium for political and social research [distributed] (2019).
28. Huisingsh-Scheetz, M. et al. Genetic syndromes and functional status in NSHAP: rationale, measurement, and preliminary findings. J. Gerontol. B Psychol. Sci. Soc. Sci. 69, S177–S190 (2014).
29. Smirnova, E. et al. The predictive performance of objective measures of physical activity derived from accelerometry data for 5-year all-cause mortality in older adults: National Health and Nutritional Examination Survey 2003–2006. J. Gerontol. Series A 75, 1779–1785 (2020).
30. Shiroma, E. J., Schrack, J. A. & Harris, T. B. Accelerating accelerometer research in aging. J. Gerontol. Series A 73, 619–621 (2018).
31. O’Muircheartaigh, C., English, N., Pedlow, S. & Kwok, P. K. Sample design, sample augmentation, and estimation for wave 2 of the NSHAP. J. Gerontol. B Psychol. Sci. Soc. Sci. 69, S51–S56 (2014).
32. PhillipsRespiratics. Actrivate. http://www.healthcare.philips.com/main/homehealth/sleep/activtate/default.jsp#6&6=6=EWAQQUY3Y3ycmdRHRbHbGgFCU9d3WhdGvbrs77D4d8xvFnbrbMnM07UJP6033x (2013).
33. Nasreddine, Z. S. et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).
34. Kotwal, A. A. et al. Evaluation of a brief survey instrument for assessing subtle differences in cognitive function among older adults. Alzheimer Dis. Assoc. Disord. 29, 317–324 (2015).
35. Shega, J. W. et al. Measuring cognition: the chicago cognitive function measure in the national social life, health and aging project, wave 2. J. Gerontol. B Psychol. Sci. Soc. Sci. Sci. 69, S166–S176 (2014).
36. Charlson, M. E., Pompei, P., Ales, K. L. & Mackenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).
37. World Health Organization. WHO: global database on body mass index. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (2022).
38. Vasilopoulos, T. et al. Comorbidity and chronic conditions in the National Social Life, Health and Aging Project (NSHAP), wave 2. J. Gerontol. B Psychol. Sci. Soc. Sci. 69, S154–S165 (2014).
39. Karas, M. et al. Estimation of free-living walking cadence from wrist-worn sensor accelerometry data and its association with SF-36 quality of life scores. Physiol. Meas. https://doi.org/10.1088/1361-6579/ac067b (2021).

ACKNOWLEDGEMENTS

This work was funded by NIA K23AG049106 and NIA R01AG043538-06 (M.H.S.), the DARPA Big Mechanism program under ARO contract W911NF1410333 (A.R.), by National Institutes of Health grants R01HL122712 (A.R.), 1P50MH094267 (A.R.), and U01HL108634-01 (A.R.), and by a gift from Liz and Kent Dauten (A.R.).
AUTHOR CONTRIBUTIONS
Conceptualization, methodology, supervision, project administration, and funding acquisition: A.R., M.H.S., and R.L.G.; Software: C.S.; Validation: C.S. and N.B.; Formal analysis and investigation: C.S., N.B., M.H.S., R.L.G., A.R., and J.K.U.; Resources: J.K.U. (R package, expertise), M.H.S. (hip-worn device data), and N.B. (hip-worn device data); Data curation: M.H.S., N.B., and C.S.; Writing—original draft: C.S., A.R., M.H.S., R.L.G., N.B., and J.K.U.; Writing—editing: C.S., A.R., M.H.S., R.L.G., N.B., and J.K.U.; Visualization: C.S.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41514-022-00087-w.

Correspondence and requests for materials should be addressed to Megan Huisingh-Scheetz or Andrey Rzhetsky.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022