Genetic Variability Studies Based on Morpho-Physiological Traits Related to Temperature; Seedling Growth; Development and Phenology of Soybean [(Glycine max (L.) Merrill]

Subhash Bijarania¹, Anil Pandey¹, Monika Shahani¹*, Ashutosh Kumar², Vinay Rojaria¹, Avinash Kumar¹ and Madhu Choudhary³

¹Department of Plant Breeding and Genetics, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar-848125, India.
²Department of Genetics and Plant Breeding, College of Agriculture, Lovely Professional University, Phagwara, Punjab, India.
³Department of Plant Breeding and Genetics, SKNAU, Jobner, Rajasthan, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

The present experiment was conducted with an aim to understand genetic variability and heritability among 30 soybean genotypes of different geographical locations during Kharif 2019 at TCA, Dholi, Bihar in Randomized Complete Block Design accommodating 30 genotypes randomly in three replicates. These genotypes evaluated for twenty-seven traits: five phenological, nine agromorphological, eight physiological traits (from field trial) and five physiological traits from laboratory experiment recorded and subjected to statistical and biometrical analyses. Considerable variability was observed for these traits which revealed usefulness of existing genetic variability for all 27 attributes amongst which vigour index II, seedling dry weight, specific leaf weight and 100-seed weight was trustworthy (GCV in close correspondence with PCV; high h^2bs & high GAM reflecting additive gene action) for selection criteria.

*Corresponding author: E-mail: monikashahani04@gmail.com;
Keywords: Seedling; germination; phenotypic; heritability; growth.

1. INTRODUCTION

Golden bean and miracle crop are most commonly used synonym for soybean [(Glycine max (L.) Merrill]. A fast horizontally expanding, protein + oil source miracle crop, increasingly adopted by farmers, offers opportunity under diverse growing situations in different cropping systems, against abiotic stresses and also as contingent crop, utilized for diversified food and feed purposes. Although it had 40% quality protein (glycine, tryptophan and lysine) and comparatively lesser quantity of (20%) quality oil, it is mainly popular as oilseed crop rather than a pulse crop because of its extraordinary oil qualities viz., no cholesterol, essential heart friendly omega-3 fats etc. Soybean, is globally oldest cultured plant. Historical evidences indicate its use for over 5000 years by human [1].

At present, soybean has acquired global importance and India is the fourth largest country in the world after United States of America, Brazil and Argentina regarding area but fifth regarding total production after China. The productivity of soybean is quite low in our country as compare to top soybean producing countries of the world which is probably due to narrow genetic base of the released varieties as well as their lower genetic yielding potential are the major reasons for low genetic yielding potential. Development of stable genotypes with enhanced seed yield is the most important goal of many soybean breeding programmes. Morphological traits/markers indicate the genetic composition of the cultivar and also the interaction of the genotype with the environment in which it is expressed. The information on genetic variability helps in selecting parents out of new land races, local selection, elite cultivars and exotic germplasm of crop plants for development of new varieties, continuous evaluation for important traits, which in earlier days was exclusively based on the available morphological data [2].

2. MATERIALS AND METHODS

The experiment was carried out during kharif 2019 at the farm of Tirhut College of Agriculture, Dholi (25.5°N, 35.40°S and 52.2m MSL) in Muzaffarpur District (North Bihar) located in eco-geographical region I Sub region IV of Bihar. Thirty entries (including 3 checks) were sown in Randomized Complete Block Design. Each plot consisted three rows of 3-meter length. The row to row and plant to plant distance was 45cm and 5cm, respectively. Trial laid out for 27 (22 field based on the ant differences among 0

2. MATERIALS AND METHODS

3. RESULTS AND DISCUSSION

The ANOVA of various traits (Table 1) revealed that there were significant differences among genotypes for all the traits under study. This indicates that exploitable level of genetic variability has been created and genetic base is broadened for most of the important characters among different genotypes developed through hybridization and selection involving diverse parents. The utilization of these diverse genotypes may lead to development of potential and suitable genotypes in future. Similar results have been reported by [4-9] for number of pods per plant and seed yield per plant.

Genetic variability: The results (Table-3) revealed that the phenotypic coefficient of variation was found higher in magnitude than that of genotypic coefficient of variation for all the characters under study. Vigour index II recorded the highest genotypic coefficient of variance and phenotypic coefficient of variance followed by seedling dry weight, specific leaf weight, grain yield per plant, effective rainfall use efficiency, leaf area index, 100-seed weight (g), harvest-index (%), dry matter efficiency, effective rainfall use efficiency, seed yield plant-1 (g). Data for individual characters observed, replication-wise and mean data was used for statistical analyses. Genetic variability parameters were calculated as per Burton and de vane [3].
for improvement of these characters through selection programme. In agreement with the present findings [4,7,10] for number of pods per plant and seed yield per plant, [5] for plant height, [11] for plant height, seed yield per plant and number of pods per plant and [12] for seed yield per plant.

Mean and range of 27 character (Table 2) exhibited considerably wide range of variation among 30 genotypes for studied traits. Many different genotypes in variable number were significantly superior over best check for each character. Harvest index, dry matter efficiency and cluster per plant accommodated highest 7 different genotypes which were significantly superior over best check. Genotype NRC-142 and SL-688 were significantly superior over best check for 8 characters which was highest, followed by both SL-955, VLS-94 for 6 characters.

Low genotypic coefficient of variance and phenotypic coefficient of variance were recorded for dry matter efficiency, days to tubercle, days to flower budding, days to cessation, days to physiological maturity, days to first flowering, and growing degree days indicating that they are very difficult to improve via selection programme.

These results are in confirmation with the findings of [11] for days to 50% flowering and days to maturity.

Heritability and genetic advance as percentage of mean: To adjust the variation over environment heritability was calculated and presented in Table 3. High heritability coupled with high genetic advance as percentage of mean was observed for seedling dry weight, vigour index-II, specific leaf weight and 100-seed weight whereas high heritability along with moderate genetic advance was recorded for plant height, main shoot length, secondary branches, seed per pod, leaf area index, effective rainfall use efficiency, vigour index-I and seed yield per plant these results indicate the preponderance of additive gene action may be responsible in the inheritance of the above traits.

Table 1. ANOVA for all the 27 traits of soybean [Glycine max (L.) Merrill]

SL. No.	Character	Replications (df = 2)	Genotypes (df = 29)	Error (df = 58)
1	DT	0.63	12.67**	1.01
2	DFB	0.57	18.81**	0.58
3	DFF	0.41	11.05**	0.50
4	DC	0.87	39.22**	0.59
5	DPM	1.43	130.37**	2.51
6	PH (cm)	40.13	423.18**	31.27
7	MSL (cm)	5.03	551.13**	31.72
8	PB	5.30	5.22**	1.50
9	SB	1.36	2.09**	0.44
10	C/P	2.29	46.25**	5.07
11	P/C	0.08	0.32**	0.04
12	P/P	50.84	438.82**	92.80
13	PL (cm)	0.03	0.68**	0.03
14	S/P	0.02	0.96**	0.07
15	GDD (°C)	35x10^4	0.21**	41x10^4
16	SLW (g/cm²)	5x10^7	83x10^6**	4x10^6
17	LAI	0.25	11.09**	1.78
18	SW(g)	74x10^4	9.84**	0.03
19	HI (%)	0.49	129.47**	9.76
20	DME	26x10^6	0.03**	11x10^4
21	ERUE (kg/ha)	0.45	0.93**	0.13
22	GYPP (g)	18.62	36.67**	5.05
23	GER	57.70	212.37**	15.34
24	SL (cm)	19.33	98.98**	25.34
25	SDW (g)	13x10^3	0.19**	44x10^4
26	V1	27565.47	1077907.94**	244787.37
27	V2	127.54	1551.38**	46.34

& * Significant of P = 0.01 and P = 0.05 F-value at .01=5.42 & .05=3.33
Table 2. Range and mean performance of 30 soybean genotypes for 27 characters

CHARACTERS	DT	DFB	DFF	DC	DPM	PH	MSL	PB	SB
Mean	30.067	37.889	43.289	55.222	107.733	65.167	54.700	7.479	3.425
Range	25.667-32.667	40.000-50.000	93.667-116.333	42.667-92.667	33.667-81.000	4.683-1.527	10.447	4.930	
Minimum	25.667	32.667	40.000	50.000	93.667	42.667	33.667	4.683	1.527
Genotype	VLS-94	VLS-94	NRC 142	NRC 142	Shalimar Soy 1	VLS-94	RKS-18	PS - 1374	
Maximum	35.000	41.667	47.000	66.333	116.333	92.667	81.000	10.447	4.930
Genotype	RSC 11-17	RSC 1071	NRC-128	AMS-12	SL 1074	NRC-137	RSC-1071	SL 955	SL 955
No. of significantly Superior Genotypes (vis-à-vis best check)	3	4	4	3	3	4	5	3	4
Name(s) of Genotypes	VLS-94	VLS-94	NRC-142	NRC-142	NRC-137	NRC-137	RSC-1071	SL 955	SL 955
Best Check	JS-9752, RKS-18	JS-9752	JS-335	RKS-18	JS-335	JS-9752	JS-9752	JS-9752	JS-335

Cont...
CHARACTERS	C/P	P/C	P/P	PL	S/P	GDD	SLW	LAI	SW
	10	11	12	13	14	15	16	17	18
Mean	26.227	3.120	78.756	3.328	2.797	18.244	0.015	6.819	7.179
Range	19.733-34.057	2.467-4.200	62.399-105.041	2.400-4.400	1.773-3.887	17.891-18.812	0.007-0.031	4.790-4.500	11.007-11.197
Minimum	19.733	2.467	62.399	2.400	1.773	17.891	0.007	4.790	4.500
Genotype	NRC 142	PS-1572	RSC 1103	AMS-2014	RSC 11-7	SL 1074	NRC-12	RKS-18	Shalimar Soy-1
Maximum	34.057	4.200	105.041	4.400	3.887	18.812	0.031	11.007	11.197
Genotype	SL 955	NRC-136	NRC-136	NRCSL-1	Pusa 9712	NRC 142	RSC 1071	SL 955	SL 1028
No. of significantly Superior Genotypes (vis-à-vis best check)	7	6	6	6	2	5	1		
Name(s) of Genotypes	SL-688	NRC-136	NRC-136	NRCSL-1	Pusa 9712	NRS-142	RSC-1071	SL 955	SL 1028
	MACS-1493	VLS-94	ShalimarSoy1	ShalimarSoy1	NRCSL-1	RSC 11-7	RSC 11-7	SL 688	
	AMS-2014	PS-1092	SL-688	NRC-12	PS-1092	RSC 1103	Pusa 9712	JS 9305	
	Pusa 9712	RSC-117-17	NRC-137	PS-1092	RSC 1071	ShalimarSoy1	JS 9305		
	ShalimarSoy1	SL-688	MACS-1493	PS-1572	SL 955	RSC 11-17	SL-1074		
	NRC-128	SL-1028	AMS-2014	PS-1347	PS-1572	VLS-94			
Best Check	NRC-137	JS-335	JS-335	RKS-18	JS-9752	RKS-18	JS-335	JS-9752	JS-335

Cont...
CHARACTERS	HI	DME	ERUE	GYPP	GER	SL	SDW	V1	V2
Mean	39.85	1.33	1.89	11.53	86.76	28.24	0.56	2463.34	49.27
Range	29.27-50.34	1.18-1.52	1.21-3.51	6.54-21.00	62.66-96.33	15.83-38.70	0.17-1.05	1495.60-3503.70	6.05-93.17
Minimum	29.27	1.18	1.21	6.54	62.66	15.83	0.17	1495.60	6.05
Genotype	NRCSL1	NRCSL1	RKS-18	RSC 11-17	NRCSL1	RSC	RSC 1052	VLS-94	NRCSL-1103
Maximum	50.34	1.52	3.51	21.00	96.33	38.70	1.05	3503.70	93.17
Genotype	NRC-136	ShalimarSoy1	NRC-136	NRC-136	JS-9752	SL 955	NRC 142	SL 955	NRC 142
No. of significantly Superior Genotypes (vis-à-vis best check)	7	7	5	5	4	3	4	3	1(At par)
Name(s) of Genotypes	NRC-136	Shalimar soy 1	NRC-136	NRC-136	PS-1572	SL-955	NRC-142	SL-955	NRC-142
	RSC-11-17	SL-955	SL-955	PS-1347	NRC-137	NRC-137	JS-20-116	NRC-137	
	PS-1092	RSC-11-7	NRC-137	NRC-137	JS-20-116	NRC-137	MACS1493	NRC-137	
	RSC-11-17	RSC-11-03	NRC-128	MACS1493	RSC11-03	RSC1071			
	RSC 11-15	NRC-136	MACS1493	NRC-128					
Best Check	JS-9752	JS-9752	JS-9752	JS-9752	JS-9752	JS-335	JS-9752	JS-335	JS-9752
Table 3. Genetic parameters of 27 morpho-physiological parameters of soybean [Glycine max (L.) Merrill]

SN	Character	Genotypic Variance (σ^2_g)	Phenotypic Variance (σ^2_p)	Genotypic coefficient of Variance (GCV)	Phenotypic coefficient of Variance (PCV)	Heritability Broad Sense (h²)	Genetic Advance (G A) at 5%	Genetic advance as per cent of Mean
1	DT	3.888	4.900	6.558	7.363	79.30	3.618	12.033
2	DFB	6.074	6.664	6.505	6.813	91.20	4.847	12.794
3	DFF	3.516	4.019	4.332	4.631	87.50	3.613	8.346
4	DC	12.879	13.469	6.499	6.646	95.60	7.229	13.090
5	DPM	42.621	45.135	6.060	6.236	94.40	13.069	12.131
6	PH	130.64	161.911	17.539	19.526	80.70	21.150	32.455
7	MSL	173.137	204.860	24.055	26.166	84.50	24.919	45.556
8	PB	1.242	2.745	14.901	22.153	45.20	1.544	20.648
9	SB	0.549	0.997	21.641	29.158	17.539	6.523	33.087
10	C/P	13.727	18.798	14.127	16.532	73.00	6.522	24.868
11	P/C	0.094	0.140	9.833	12.010	67.00	0.517	16.583
12	P/P	115.34	208.149	13.637	18.319	55.40	16.469	20.911
13	PL	0.216	0.249	13.956	14.999	86.60	0.890	26.749
14	S/P	0.296	0.372	19.449	21.808	79.50	1.000	35.732
15	GDD	0.069	0.074	1.444	1.486	94.50	0.528	2.892
16	SLW	3.101	4.888	25.823	32.421	85.90	0.010	65.120
17	LAI	3.271	3.308	25.191	25.334	98.90	3.705	51.600
18	SW	39.903	49.666	15.851	17.683	80.30	11.664	29.268
19	HI	0.008	0.009	6.868	7.311	88.30	0.177	13.291
20	DME	0.266	0.404	27.194	33.535	65.80	0.861	45.426
21	ERUE	10.538	15.593	28.132	34.221	67.60	5.498	47.642
22	GYPP	65.676	81.020	9.340	10.374	81.10	15.031	17.323
23	GER	24.545	49.893	17.538	25.004	49.20	7.158	25.340
24	SL	501.679	548.025	45.458	47.512	84.50	44.146	89.597
25	SDW	277706.800	522494.200	21.393	29.344	91.50	32.128	39.912

Note: DT=Days to tubercle formation, DFB=Days to flower budding, DFF=Days to cessation, DPM=Days to Physiological maturity, PH=Plant height (cm), MSL=Main shoot length (cm), PB=Number of primary branches per plant, SB=Number of secondary branches per plant, C/P=Number of cluster per plant, P/C=Number of pods per cluster, P/P=Number of pods per plant, PL=Pod length (cm), S/P=Seed per pod, GDD=Growing degree days, SLW=Specific leaf weight, LAI=Leaf area index, SW = 100 - seed weight (g), HI = Harvest index (%), GY = Grain yield per plant (g), DME=Dry matter efficiency, ERUE=Effective rainfall use efficiency, GER=Germination relative index, SL=Seedling length, SDW=Seedling dry weight, VI=Vigour index I, VII=Vigour index II
High heritability with low genetic advance for days to tubercle formation, days to first flowering, days to flowering, days to physiological maturity, growing degree days, pods per cluster, pods per plant, pod length, harvest index, dry matter efficiency and germination relative index and medium heritability with low genetic advance was recorded for primary branches and seedling length. These findings indicate that in the inheritance of these traits non-additive gene action may be involved. In agreement with the present investigation, high heritability was also reported by [13] high heritability coupled with high genetic advance have also been reported by [6] for plant height, 100 seed weight, pod length, seeds per pod, seed yield per plant, harvest index and biological yield. [14] for seed yield per plant and biological yield per plant. [15] for plant height, number of seeds per plant, 100-seed weight. [6] observed high heritability for seed yield, seed dry weight, days to maturity, and 100-seed weight. [17] for days to 50% flowering observed, high heritability and moderate genetic advance.

On the basis of heritability and genetic advance as % of mean, the present investigation suggests that selection may be effective for the improvement of traits viz., plant height, main stem length, cluster per plant, pod length, seed per pod, specific leaf weight, 100-seed weight, harvest index, seedling dry weight and vigour index I, days to tubercles formation, days to flowering, days to cessation, days to physiological maturity, dry matter efficiency, germination relative index, secondary branches per plant, pod per plant, leaf area index, effective rainfall use efficiency, grain yield per plant, vigour index I, pod per cluster because these traits are governed by additive gene action. Whereas, later generation selection may be effective for days to first flowering, growing degree days, no. of primary branches and seedling length because in the inheritance of these traits preponderance of non-additive gene action was found.

4. CONCLUSION

Present study offers scope for utilizing variability present in studied 30 soybean genotypes, including three checks, for 27 pheno-morphophysiological traits for genetic enhancement of soybean. Variability, in general and its heritable part, in particular is important than total phenotypic variability for any selection targeted trait. Vigour index-I, seedling dry weight, specific leaf weight and 100-seed weight were predominantly governed by additive gene action (GCV in close correspondence with PCV, high h^2bs and high GAM). Selection for these traits would be more realistic as both h^2bs and GAM explain the genetic gain over unselected base population.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENT

Authors are thankful to different crop research stations-IISR Indore, IKGV Raipur, IARI New Delhi, PAU Ludhiana, JNKVV Jabalpur, CSKHPKV Palampur, GBPUAT Pantnagar, MACS Pune, VPKAS Almora, Amaravati and AU Kota for providing genotypes of soybean.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Wang JL. Soybean ecotype. Agricultural Science Press. 1991:1-6.
2. Shadakshari TV, Kalaimagal T, Senthil N, Boranayaka MB, Kambegowda R, Rajesh G. Genetic diversity studies in soybean [Glycine max (L.) Merrill] based on morphological characters. Asian Journal of Biological Sciences. 2011;6(1):7-11.
3. Burton GW, Devene EH. Estimating heritability in Jali Fesche. (Festuca arundinaces) from replicated clonal material. Agronomy Journal. 1953;4(5):478-481.
4. Aditya JP, Bhartiya P, Bhartiya A. Genetic variability, heritability and character association for yield and component characters in soybean (Glycine max (L.) Merrill). Journal of Central European Agriculture. 2011;12(1):27-34.
5. Khan S, Latif A, Ahmed SQ, Ahmed F, Fida M. Agronomic characters, genetic variations, seed yield in soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\). Asian Journal of Agricultural sciences. 2011;3(2):138-141.

6. Reni YP, Rao YK. Genetic variability in soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\). International Journal of Plant, Animal and Environment Science. 2013;3 (4):35-38.

7. Sureshrao SS, Singh VJ, Gampala S, Rangare NR. Assessment of genetic variability of the main yield related characters in soybean. International Journal of Food, Agriculture and Veterinary Sciences. 2014;4(2):69-74.

8. Ghiday T, Amogne A, Tefera G, Maleda M. Heritability, genetic advance and path coefficient analysis for grain yield and its component characters in soybean \([\text{Glycine max} \ L. \ \text{Merrill}]\). International Journal of Research Studies in Agricultural Sciences. 2017;3(5):1-11.

9. Getnet BE. Genetic variability, heritability and expected genetic advance in soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\) Genotypes. Agriculture, Forestry and Fisheries Journal. 2018;7(5):108.

10. Chandra K, Pandey A, Mishra SB. Characterization and genetic variability of Indian mustard genotypes for branching behaviour, yield and its attributes under rainfed condition. International Journal of current Microbiology and Applied sciences. 2018;7(6):828-846.

11. Patil SS, Naik MR, Patil PP, Shinde DA. Genetic variability, correlation and path analysis in soybean. Navsari Agricultural University Journal. 2011;34(1):36-40.

12. Mahbub MM, Rahman MM, Hussain MS, Nahar L, Shirazy BJ. Morphophysiologica variation in soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\). American-Eurasian Journal of Agricultural and Environmental Sciences. 2016;16(2):234-238.

13. Kuswantoro. Performance, similarity and genetic parameters of agronomical characters of soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\) germplasms. Agriculture and Natural Resources. 2019;53(3):228-236.

14. Kumar A, Lal GM, Mishra PK. Genetic variability and character association for yield and its components in soybean. Annals of Plant and Soil Research. 2013;16(1):48-52.

15. Mahbub MM, Shirazy BJ. Evaluation of genetic diversity in different genotypes of soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\). American Journal of Plant Biology. 2016;1(1):24-29.

16. Osekita OS, Ajayi AT. Character expression and selection differential for yield and its components in soybean \([\text{Glycine max} \ (L) \ \text{Merrill}]\). Academia Journal of Agricultural Research. 2013;1(9):167-171.

17. Zinaw Dilnesaw, Seleten Abadi, Fitsum Merkeb, Neguse Dechassa and Habtam Zelek. Global Advanced Research Journal of Food Science and Technology. 2012;3(5):135-140.