The Eigensharp Property for Unit Graphs Associated with Some Finite Rings

Heba Adel Abdelkarim 1, Eman Rawashdeh 2,* and Edris Rawashdeh 3

Abstract: Let R be a commutative ring with unity. The unit graph $G(R)$ is defined such that the vertex set of $G(R)$ is the set of all elements of R, and two distinct vertices are adjacent if their sum is a unit in R. In this paper, we show that for each prime, p, $G(Z_p)$ and $G(Z_{2p})$ are eigensharp graphs. Likewise, we show that the unit graph associated with the ring $\mathbb{Z}[x]/(x^2)$ is an eigensharp graph.

Keywords: commutative ring; unit graph; graph join; biclique; biclique partition number; eigensharp graph

MSC: 3A99; 05C25; 05C50; 05C70; 05C76

1. Introduction

Studying rings by associating various graphs with the ring via its algebraic structure has attracted the attention of many researchers. Beck [1] introduced the zero-divisor graph; Anderson and Badawi [2] introduced the total graph. Grimaldi [3] defined the unit graph $G(Z_n)$ associated with the finite ring \mathbb{Z}_n, where the author studied some properties of a graph, such as the Hamilton cycles, covering number, independence number, and chromatic polynomial. The units of a ring play a crucial role in determining the structure of the ring, and many features of a ring can be known from these units. So, it is natural to make a connection between a ring with a graph whose edges have a strong relationship with the units of the ring. The unit graph of a ring is one of such graphs.

In 2010, Ashrafi et al. [4] generalized the unit graph $G(Z_n)$ to $G(R)$ for an arbitrary (commutative) ring R, and considered standard concepts of graph theory such as connectedness, chromatic index, diameter, girth, and planarity of $G(R)$. Akbari et al. [5] studied the unit graph of a noncommutative ring. Maimani et al. [6] showed that the unit graphs is Hamiltonian if and only if the ring R is generated by its units. Heydari and Nikmehr [7] investigated the case when the ring R is a left Artinian ring. Afkhami and Khosh-Ahang [8] studied the unit graphs of rings of polynomials and power series.

A biclique is a complete bipartite subgraph of G. The complete bipartite graphs $K_{1,n}$ are called stars, denoted by S_n. A collection $\mathcal{H}_G = \{B_1, B_2, \ldots, B_k\}$ of subgraphs of G is called a biclique partition covering of a graph G if B_i is a biclique subgraph for all $i = 1, 2, \ldots, k$, and for every edge $e \in E(G)$, there exists exactly one $B_i \in \mathcal{H}_G$, such that $e \in E(B_i)$. The biclique partition number of a graph G, denoted by $bp(G)$, is given by

$$bp(G) = \min \{ |\mathcal{H}_G| : \mathcal{H}_G \text{and is a biclique partition covering of } G \}.$$
for example, [9–13]). When Graham and Pollak [14] first studied this parameter for the complete graph, they were motivated by a network addressing problem. For more details about graph addressing, please see [15]. The adjacency matrix of G, denoted by $A(G)$, is a square matrix of order $|V(G)|$, with the ijth entry equaling 1 if v_i, v_j is an edge of G and 0 otherwise. Witsenhausen (see, for example, [14]) showed that for a graph G

$$\max\{a_+(G), a_-(-G)\} \leq bp(G),$$

where $a_+(G)$ and $a_-(G)$ are the number of positive and negative eigenvalues of the adjacency matrix $A(G)$, respectively. We repeatedly use this fact below. We say that G is an eigensharp graph if $bp(G) = \max\{a_+(G), a_-(G)\}$, and it is almost eigensharp if $bp(G) = \max\{a_+(G), a_-(G)\} + 1$. Certain families of graphs, including complete graphs K_n, complete bipartite graphs $K_{m,n}$, trees, cycles C_n with $n = 4$ or $n \neq 4k$, and various graph products, are eigensharp (see, for example, [16–19]).

The unit graph $G(R)$ is defined such that the vertex set of $G(R)$ is the set of all elements of the ring R, and two distinct vertices are adjacent if their sum is a unit in R. In this paper, we show that for each prime p, $G(Z_p)$, $G(Z_{2p})$, and $G(Z_{4p}/\langle x^2 \rangle)$ are eigensharp graphs.

2. Preliminaries

In this paper, R is assumed to be a commutative ring with unity. An element a is said to be a unit in R if a has a multiplicative inverse. The set $U(R)$ is defined to be the set of all units in R. Moreover, the polynomial ring over Z_n is denoted by $Z_n[x]$. In particular, a is a unit in Z_n if the greatest common divisor between n and a is equal to 1. For example, $U(Z_5) = \{1, 2, 3, 4\}$ and $U(Z_6) = \{1, 5\}$.

Several properties of the unit graph are provided in [4], from which we cite the following Theorem:

Theorem 1. [4] Let R be a finite ring. If $2 \in U(R)$, then for every $x \in U(R)$, degree $(x) = |U(R)| - 1$ and for every $x \in R - U(R)$, degree $(x) = |U(R)|$.

All graphs in this paper are finite undirected simple graphs. For a graph $G = (V(G), E(G))$, the set $V(G)$ denotes the vertex set of G, and $E(G)$ denotes the edge set of G. The degree of a vertex in G is defined as the number of edges emanating from the vertex. A graph G is said to be (n, m)-semiregular if each vertex in G has a degree n or m.

For a simple graph G, the adjacency matrix $A(G)$ is a symmetric matrix with real eigenvalues such that the algebraic multiplicity is equal to geometric multiplicity for each eigenvalue. We refer to it as multiplicity. It can be proved that $a_+(G) > 0$ and $a_-(G) > 0$ for any non-null graph G.

The multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with it. If $\lambda_i, 1 \leq i \leq j$ are the distinct eigenvalues of the adjacency matrix $A(G)$ with multiplicity r_i, then $\sigma(A(G)) = \left(\begin{array}{ccc} \lambda_1 & \lambda_2 & \ldots & \lambda_j \\ r_1 & r_2 & \ldots & r_j \end{array} \right)$ is called the spectrum of G. For example,

$$\sigma(A(K_n)) = \left(\begin{array}{cc} n-1 & -1 \\ 1 & n-1 \end{array} \right) \quad \text{and} \quad \sigma(A(K_{n,m})) = \left(\begin{array}{cc} \sqrt{nm} & 0 & -\sqrt{nm} \\ 1 & nm-2 & 1 \end{array} \right).$$

The join of two graphs G and H, denoted by $G \vee H$, is the graph with vertex set $V(G \vee H) = V(G) \cup V(H)$ and $E(G \vee H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$. $G \vee H$ is a complete bipartite graph if both G and H are independent vertices. The following Theorem was proved in [20].

Theorem 2. [20] Suppose that G and H are two regular graphs. Then, $a_-(G \vee H) = a_-(G) + a_-(H) + 1$ and $a_+(G \vee H) = a_+(G) + a_+(H) - 1$. Consequently, if each G and H are eigensharp graphs with $bp(G) = a_-(G)$ and $bp(H) = a_-(H)$, then $G \vee H$ is an eigensharp graph.
3. Unit Graph Associated with Rings \(Z_p \) and \(Z_{2p} \)

In this section, we obtain the biclique partition number of \(G(Z_p) \), and we prove that \(G(Z_p) \) is an eigensharp graph.

Theorem 3. For each prime \(p \), the graph \(G(Z_p) \) is eigensharp.

Proof. If \(p = 2 \) and 3, then \(G(Z_p) \) is isomorphic to \(P_2 \) and \(P_3 \), respectively. Hence, \(bp(G(Z_2)) = bp(G(Z_3)) = 1 \) with

\[
\sigma(A(G(Z_2))) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \sigma(A(G(Z_3))) = \begin{pmatrix} 0 & \sqrt{2} \\ 1 & -\sqrt{2} \end{pmatrix}.
\]

Hence, for \(p = 2 \) or 3, \(G(Z_p) \) is an eigensharp graph. Now, for \(p \geq 5 \), let \(V = \{0, 1, \ldots, p - 1\} \) and \(E = \{e_{r,s} : r + s \in U(Z_p)\} \) be the vertex set and the edge set of \(G(Z_p) \), respectively. Because \(U(Z_p) = \{1, 2, \ldots, p - 1\} \) and 2 \(\in U(Z_p) \), then \(|U(Z_p)| = p - 1 \). From Theorem 1, it follows that for every \(x \in U(Z_p) \), degree \((x) = p - 2 \); for every \(x \notin U(Z_p) \), degree \((x) = p - 1 \). We notice that the vector \(i \in \{0, 1, \ldots, (p - 1)\} \) is an eigenvector for \(H \) with multiplicity 1. Hence, for \(p - 3 \)–regular graph. It has been found and from several computations for different \(p \)'s that \(A(H) \) is a \((p - 1) \times (p - 1)\) matrix that has the form

\[
A(H) = \begin{pmatrix} 0 & 1 & 1 & \cdots & \cdots & 1 & 1 & 0 \\ 1 & 0 & 1 & \cdots & \cdots & 1 & 0 & 1 \\ \vdots & \vdots & \ddots & \ddots & \cdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \ddots & \ddots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \cdots & \ddots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \cdots & \cdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & \cdots & 1 & 0 & 1 \\ 0 & 1 & 1 & \cdots & \cdots & 1 & 1 & 0 \end{pmatrix}.
\]

The entries of \(A(H) \) are all 1, except 0 on the main and secondary diagonals. Notably, the first \(\frac{p - 1}{2} \) columns are linearly independent. The \(\frac{p - 1}{2} \)th column is the same as the \(\frac{p - 3}{2} \)th column. The \(\frac{p - 3}{2} \)th column is the same as the \(\frac{p - 5}{2} \)th column, \ldots, the last column is the same as the first column. Thus, the column rank is \(\frac{p - 1}{2} = \left\lfloor \frac{p}{2} \right\rfloor \). We show that \(H \) is eigensharp graph with \(bp(H) = a_-(H) \).

Because nullity \((A(H)) = \left\lfloor \frac{p}{2} \right\rfloor \), then \(\lambda = 0 \) is an eigenvalue of \(A(H) \) with multiplicity \(\left\lfloor \frac{p}{2} \right\rfloor \). We notice that the vector \(D^0 \), where \(r = 2, 3, \ldots, \left\lfloor \frac{p}{2} \right\rfloor \) is defined as a \((p - 1) \times 1\) vector, and all entries are 0 except the first and last entries, which are 1; the \(r \)th and \((p - r)\)th entries are \(-1\), which is an eigenvector for \(A(H) \) with eigenvalue \(\lambda = 2 \). Moreover, because \(\text{trace}(A(H)) = 0 \), then the value \((p - 3)\) is an eigenvalue of \(A(H) \) of multiplicity 1. Hence,

\[
\sigma(A(H)) = \begin{pmatrix} 0 & -2 & 0 \\ \left\lfloor \frac{p}{2} \right\rfloor & \left\lfloor \frac{p}{2} \right\rfloor - 1 & \frac{p - 3}{2} \end{pmatrix}.
\]

Therefore, \(a_-(H) = \left\lfloor \frac{p}{2} \right\rfloor - 1 \geq \sigma_+ (H) \), and so \(bp(H) \geq \left\lfloor \frac{p}{2} \right\rfloor - 1 \).
Let \(\mathcal{H}_H = \{ B_i(X_i, Y_i) : 1 \leq i \leq \left\lfloor \frac{p}{2} \right\rfloor - 1 \} \) be a collection of subgraphs of \(H \) such that, for each \(i, X_i = \{ i, p - i \} \) and \(Y_i = \{ i + 1, i + 2, \ldots, (p - i) \} \) and

\[
E(B_i) = \{ e_{i+j}, e_{p-i-j} : i + 1 \leq j \leq (p - i) \}.
\]

For each \(j : 1 \leq j \leq (p - 2i) - 1, i + j = 0 \mod p \) only if \(j = p - i \), which is completely impossible. Similarly, \((p - i) + (i + j) \neq 0 \mod p \). So, \(E(B_i) \) is a nonempty set.

Hence, \(B_i \) is isomorphic to \(K_{2, (p-1) - 2i} \). Note that no pair of edges of \(H \) belongs to a common \(B_i(X_i, Y_i) \), and

\[
\sum_{i=1}^{\left\lfloor \frac{p}{2} \right\rfloor - 1} |E(B_i)| = \sum_{i=1}^{\left\lfloor \frac{p}{2} \right\rfloor - 1} 2((p - 1) - 2i) = \frac{1}{2} (p - 1)(p - 3) = |E(H)|.
\]

Thus, \(\mathcal{H}_H = \{ B_i(X_i, Y_i) : 1 \leq i \leq \left\lfloor \frac{p}{2} \right\rfloor - 1 \} \) is a biclique partition of \(H \) with cardinality \(\left\lfloor \frac{p}{2} \right\rfloor - 1 \), which implies that \(G(Z_p) \) is an eigensharp graph. □

Now, we show that \(G(Z_{2p}) \) is an eigensharp graph.

Remark 1. If \(M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \), where \(A, B, C, \) and \(D \) are block matrices, and if \(CD = DC \), then

\[
\det(M) = \det(AD - BC).
\]

See [21], Theorem 3.

Theorem 4. The graph \(G(Z_{2p}) \) is eigensharp.

Proof. Note that the graph \(G(Z_{2p}) \) is a graph with \(2p \) vertices. Suppose that the vertex set is \(V(G(Z_{2p})) = \{ 0, 1, 2, \ldots, 2p - 1 \} \). Then, the two distance vertices in \(G(Z_{2p}) \) are adjacent if their sum is an odd number less than \(2p \) and not equal to \(p \).

Now, the adjacency matrix of \(A(G(Z_{2p})) = \begin{bmatrix} 0 & A(K_p) \\ A(K_p) & 0 \end{bmatrix} \) where \(A(K_p) \) is the adjacency matrix of the complete graph \(K_p \). Using Remark 1, we claim that the spectrum of \(\sigma(A(G(Z_{2p}))) = \left(\begin{array}{ccc} p - 1 & 1 & -p \\ 1 & 1 & p - 1 \\ -p & p - 1 & 1 \end{array} \right) \). To prove this claim, we notice that

\[
\det(\lambda I - A(G(Z_{2p}))) = \det(\lambda^2 I - A^2(K_p)) = \sigma(A(K_p)) \sigma(-A(K_p)) = \left(\begin{array}{ccc} p - 1 & 1 & -p \\ 1 & 1 & p - 1 \\ -p & p - 1 & 1 \end{array} \right).
\]

So, \(bp(G(Z_{2p})) \geq p \). On the other hand, let \(\mathcal{H}_G(Z_{2p}) = \{ S_{2k} : 0 \leq k \leq p - 1 \} \) be the set of \(p \) disjoint stars in \(G(Z_{2p}) \) generated by the vertices \(2k, 0 \leq k \leq p - 1 \). Then, \(\mathcal{H}_G(Z_{2p}) \) is a biclique partition of cardinality \(p \). Hence, the graph \(G(Z_{2p}) \) is eigensharp. □

4. Unit Graph Associated with the Ring \(\mathbb{Z}_n[x]/(x^2) \)

In this section, we consider the ring \(\mathbb{Z}_n[x]/(x^2) = \{ a + bX : a, b \in \mathbb{Z}_p, X = x + \langle x^2 \rangle \} \), where \(\langle x^2 \rangle = \{ x^2P(x) : P(x) \in \mathbb{Z}_n[x] \} \) is the ideal of \(\mathbb{Z}_n[x] \) generated by \(x^2 \). We show that the unit graph \(G(\mathbb{Z}_n[x]/(x^2)) \) is eigensharp. We denote the graph \(G(\mathbb{Z}_p[x]/(x^2)) \) by \(G_p(x^2) \).

Let \(s = p^2 - p \) and \(I_p \) be a \(p \times p \) matrix, where all entries are ones; let \(I_p \) be a \(p \times 1 \) matrix, where all entries are ones, \(N_p \) be the zero matrix of size \(p \times p \), and \(0_p \) be the zero matrix of size \(p \times 1 \). For \(m = 1, 2, \ldots, \frac{p^2 - 1}{2} \) define the partition matrix \(F(m) \) as the \(s \times 1 \) matrix such that all the submatrices entries are \(0_p \), except for the \(m \)th row, which is the submatrix \(I_p \), and the \((p - m) \)th row is the submatrix \(-1_p \). Furthermore, for \(r = 2, 3, \ldots, \frac{p^2 - 1}{2} \), defines the partition matrix \(H(r) \) as the \(s \times 1 \) matrix, where all the submatrices are \(0_p \), except the
Theorem 5. For each prime \(p \), \(G_p(x^2) \) is an eigensharp graph.

Proof. Let \(a + bX \in Z_p[x]/\langle x^2 \rangle \). Then, \(a + bX \) is a unit if and only if \(a \) is a unit in \(Z_p \). Thus,

\[
U(Z_p[x]/\langle x^2 \rangle) = \{ r + sX : r, s \in Z_p, r \neq 0 \},
\]

hence, \(|U(Z_p[x]/\langle x^2 \rangle)| = p\). Because \(2 \in U(Z_p[x]/\langle x^2 \rangle) \), then, by Theorem 1, \(G_p(x^2) \) is a \((p(p-1), p(p-1)-1) \)–semiregular graph.

\(T = \{ 0, X, 2X, \ldots, (p-1)X \} \) is an independent set of \(G_p(x^2) \) with each vertex of \(T \) having a degree \(p(p-1) \). For \(v = a + bX \notin T \) and \(u = t + sX \in V(G_p(x^2)) \), such that \(v \neq u \) and \(t \in Z_p \setminus \{ p-a \} \), we have \(v + u \in U(G_p(x^2)) \). Thus, \(v \) is adjacent with each vertex in \(G_p(x^2) \), except \(\{ a + bX, (p-a), (p-a) + X, \ldots, (p-a) + (p-1)X \} \), i.e., \(v \) has a degree \(p^2 - (p+1) = p(p-1) \).

Now, we consider the subgraph \(W \) of \(G_p(x^2) \) induced by \(V(W) = V(G_p(x^2)) \setminus T \). Let \(m = (p(p-1) - p-1) \). Then, \(W \) is an \(m \)–regular graph with

\[
|E(W)| = \frac{1}{2} (p(p-1) - 1 - p)(p(p-1)) = \frac{1}{2} p^4 - 3p^3 + p^2 + p.
\]

It is clear that \(G_p(x^2) \) is isomorphic to \(T \vee W \). Mainly, we show that \(W \) is an eigensharp graph with \(bp(W) = a_-(W) \) and, by Theorem 2, \(G_p(x^2) \) is an eigensharp.

The adjacency matrix of \(W \) is

\[
A(W) = \begin{bmatrix}
A(K_p) & I_p & I_p & \cdots & I_p & I_p & N_p \\
I_p & A(K_p) & I_p & \cdots & I_p & N_p & I_p \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & I_p & \cdots & \cdots \\
\vdots & \vdots & \vdots & \cdots & I_p & \cdots & \cdots \\
N_p & I_p & I_p & \cdots & I_p & A(K_p) & I_p \\
I_p & N_p & I_p & \cdots & I_p & I_p & A(K_p)
\end{bmatrix}.
\]

Now, we show that

\[
\sigma(A(W)) = \begin{pmatrix}
p^2 - 2p - 1 & p - 1 & -(p+1) & -1 \\
1 & p^3 & (p-1)^2\end{pmatrix}.
\]

First, because each row of \(A(W) \) has \(p^2 - 2p - 1 \) ones entries, then \(A(W)1_s = (p^2 - 2p - 1)1_s \).
Second, because $\lambda = -1$ is an eigenvalue of $A(K_p)$ of multiplicity $p - 1$, then, it is clear that $\lambda = -1$ is an eigenvalue of $A(W)$ of multiplicity $(p - 1)^2$.

Third, if we look to the submatrix in the $(j, 1)$ entry of $A(W)F^{(m)}$, we obtain

\[
\begin{cases}
0_p, & \text{if } j \notin \{m, p-m\}, \\
(p-1)1_p, & \text{if } j = m \\
-(p-1)1_p, & \text{if } j = p-m.
\end{cases}
\]

where $j = 1, 2, \ldots, p-1$ and $m = 1, 2, \ldots, \frac{p-1}{2}$. Thus, $F = \{F^{(m)} : m = 1, 2, \ldots, \frac{p-1}{2}\}$ is a set of linearly independent eigenvectors of $A(W)$ corresponding to the eigenvalue $\lambda = p - 1$.

Fourth, similar to the third case, the $(j, 1)$ entry of $A(W)H^{(r)}$ is

\[
\begin{cases}
0_p, & \text{if } j \notin \{1, m, p-m, p-1\}, \\
(p+1)1_p, & \text{if } j \in \{1, p-1\} \\
(p+1)1_p, & \text{if } j \in \{p-m, m\}.
\end{cases}
\]

where $j = 1, 2, \ldots, p-1$ and $r = 2, 3, \ldots, \frac{p-1}{2}$. Thus, $H = \{H^{(m)} : r = 2, 3, \ldots, \frac{p-1}{2}\}$ is a set of linearly independent eigenvectors of $A(W)$ corresponding to the eigenvalue $\lambda = -(p + 1)$. Therefore, the set

\[
Q = \{1, s, F^{(1)}, F^{(2)}, \ldots, F^{(\frac{p-1}{2})}, H^{(2)}, H^{(3)}, \ldots, H^{(\frac{p-1}{2})}\}
\]

consists of $p - 1$ linearly independent eigenvectors, and because the multiplicity of $\lambda = -1$ is $(p - 1)^2$, then

\[|Q| + (p - 1)^2 = s = p^2 - p.\]

Hence, we obtain s linearly independent eigenvectors of the matrix $A(W)$, which is of size $s \times s$.

Therefore, the characteristic polynomial of $A(W)$ is

\[
P(\lambda) = (\lambda + 1)(p-1)^2(\lambda - p^2 + 2p + 1)(\lambda + p + 1)^{\frac{p-3}{2}}(\lambda - p + 1)^{\frac{p-1}{2}},
\]

which gives $\sigma(A(W)) = \left\{\frac{p^2 - 2p - 1}{1}, \frac{p - 1}{p - 1}, \frac{-2p + 1}{\frac{p-3}{2}}, \frac{p - 1}{(p - 1)^2}\right\}$, thus

\[bp(W) \geq (p - 1)^2 + \frac{p - 3}{2} = \left\lfloor \frac{p}{2} \right\rfloor + (p - 1)^2 - 1.\]

Let $[i] : 1 \leq i \leq \left\lfloor \frac{p}{2} \right\rfloor - 1$ denote the class of vertices

\[\{i, i + X, i + 2X, \ldots, i + (p - 1)X\}.
\]

Let $[p - i] = \{p - i, p - i + X, p - i + 2X, \ldots, p - i + (p - 1)X\}$. Define $\varphi = [i] \cup [p - i]$, $\ell = \bigcup_{j=1}^{\left\lfloor \frac{p}{2} \right\rfloor} [i + j]$. Then, $|\varphi| = 2p$ and $|\ell| = p - 2l - 1$. Now, define $F_i : 1 \leq i \leq \left\lfloor \frac{p}{2} \right\rfloor - 1$ be a biclique subgraph of W, such that

\[V(F_i) = \varphi \cup \ell\]

and

\[E(F_i) = \{e_{rs} : r \in \varphi, s \in \ell\}.
\]
Then, F_i is isomorphic to $K_{2p,p(p−2i−1)}$ with no pair of edges of $E(W)$, which belongs to a common F_i and

$$\sum_{i=1}^{\lfloor \frac{p}{2} \rfloor -1} |E(F_i)| = 2p^2 \sum_{i=1}^{\lfloor \frac{p}{2} \rfloor -1} (p−2i−1) = \frac{1}{2} p^2 (p−1)(p−3).$$

Moreover, $B_j = \{ j + tx : 1 ≤ j ≤ p−1, 0 ≤ t ≤ p−2 \}$ is a complete subgraph of W. Now, consider the disjoint stars S_{j+tx} in B_j generated by the vertices

$$\{ j + tx : 1 ≤ j ≤ p−1, 0 ≤ t ≤ p−2 \}.$$

Then,

$$\sum_{j=1}^{p−1} \sum_{t=0}^{p−2} |E(S_{j+tx})| = \sum_{j=1}^{p−1} \left(\frac{p}{2} \right) = \frac{1}{2} p(p−1)^2.$$

and

$$\sum_{i=1}^{\lfloor \frac{p}{2} \rfloor -1} |E(F_i)| + \sum_{j=1}^{p−1} \sum_{t=0}^{p−2} |E(S_{j+tx})| = \frac{1}{2} p^2 (p−1)(p−3) + \frac{1}{2} p (p−1)^2 = |E(W)|,$$

which implies that

$$\mathcal{H}_W = \left\{ F_i, S_{j+tx} : 1 ≤ i ≤ \left\lfloor \frac{p}{2} \right\rfloor −1, 1 ≤ j ≤ p−1, 0 ≤ t ≤ p−2 \right\}$$

is a biclique partition of W with cardinality $\left\lfloor \frac{p}{2} \right\rfloor + (p−1)^2 −1$. Therefore, W is an eigensharp graph with $bp(W) = \left\lfloor \frac{p}{2} \right\rfloor + (p−1)^2 −1$, which implies that $G_p(x^2)$ is an eigensharp graph. \square

5. Conclusions

In this study, for each prime p, we proved that the graphs $G(Z_p), G(Z_{2p})$ and $G\left(\frac{Z_p[x]}{(x^2)}\right)$ are eigensharp. We showed that $G(Z_p)$ is isomorphic to a graph $K_1 \vee H$, where H is a certain subgraph of $G(Z_p)$ and $G\left(\frac{Z_p[x]}{(x^2)}\right)$ is isomorphic to $T \vee W$, where T is a certain independent set of $G\left(\frac{Z_p[x]}{(x^2)}\right)$ and W is a certain subgraph of $G\left(\frac{Z_p[x]}{(x^2)}\right)$. Then, the adjacency matrices for H and W were studied to show that $a_-(H) = bp(H)$ and $a_-(W) = bp(W)$, which yields, by Theorem 2, that both graphs $G(Z_p)$ and $G\left(\frac{Z_p[x]}{(x^2)}\right)$ are eigensharp. The spectrum of the graph $A(G(Z_{2p}))$ was found to demonstrate that $bp(G(Z_{2p})) ≥ p$. We also described a biclique partition for $G(Z_{2p})$ with cardinality p; we hence concluded that $G(Z_{2p})$ is eigensharp.

Finally, we raise the following question: Does the eigensharp property hold for Z_{p^2}, Z_{pq} and $Z_{p[x]}(x^2)$? We have attempted several examples to answer this question, but our research is still ongoing.

Author Contributions: Conceptualization and methodology H.A.A., E.R. (Eman Rawshdeh) and E.R. (Edris Rawashdeh); validation, H.A.A., E.R. (Eman Rawshdeh); formal analysis, E.R.(Eman Rawshdeh); investigation, H.A.A., E.R.(Eman Rawshdeh) and E.R. (Edris Rawashdeh); writing original draft preparation, H.A.A. and E.R(Eman Rawshdeh); writing review and editing, E.R.(Eman Rawshdeh); All authors have read and agreed to the published version of the manuscript.

Funding: The third author is supported by the Scientific Research and Graduate Studies at Yarmouk University.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Beck, I. Coloring of commutative rings. *J. Algebra* 1988, 116, 208–226.
2. Anderson, D.F.; Badawi, A. The total graph of a commutative ring. *J. Algebra* 2008, 320, 2706–2719.
3. Grimaldi, R.P. Graphs from rings. In Proceedings of the 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, USA, 20–24 February 1989; Volume 71, pp. 95–103.
4. Ashrafi, N.; Maimani, H.R.; Pournaki, M.R.; Yassemi, S. Unit graphs associated with rings. *Commun. Algebra* 2010, 38, 2851–2871.
5. Akbari, S.; Estaji, E.; Khorsandi, M.R. On the unit graph of a noncommutative ring. *Algebra Colloq.* 2015, 22, 817–822.
6. Maimani, H.R.; Pournaki, M.R.; Yassemi, S. Necessary and sufficient conditions for unit graphs to be Hamiltonian. *Pacific J. Math.* 2011, 249, 419–429.
7. Heydari, F.; Nikmehr, M.J. The unit graph of a left Artinian ring. *Acta Math. Hungar.* 2013, 139, 134–146.
8. Afkhami, M.; Khosh-Ahang, F. Unit graphs of rings of polynomials and power series. *Arabian J. Math.* 2013, 2, 233–246.
9. Cioabă, S.M.; Tait, M. Variations on a theme of Graham and Pollak. *Discrete Math.* 2013, 13, 665–676.
10. Graham, R.L.; Pollak, H.O. On embedding graphs in squashed cubes. In *Graph Theory and Applications*; Springer: Berlin/Heidelberg, Germany, 1972; pp. 99–110.
11. Monson, S.D.; Pullman, N.J.; Rees, R. A survey of clique and biclique coverings and factorizations of (0,1)-matrices. *Bull. Inst. Combin. Appl.* 1995, 14, 17–86.
12. Radhakrishnan, J.; Sen, P.; Vishwanathan, S. Depth-3 arithmetic for $S^2_3(X)$ and extensions of the Graham-Pollack theorem. In *FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science*; Springer: Berlin/Heidelberg, Germany, 2000; pp. 176–187.
13. Zaks, J. Nearly-neighborly families of tetrahedra and the decomposition of some multigraphs. *J. Combin. Theory Ser. A* 1988, 48, 147–155.
14. Graham, R.L.; Pollak, H.O. On the addressing problem for loop switching. *Bell Syst. Tech. J.* 1971, 50, 2495–2519.
15. Cioabă, S.M.; Elzinga, R.J.; Markiewitz, M.; Kevin, V.M.; Vanderwoerd, T. Addressing graph products and distance-regular graphs. *Discret. Appl. Math.* 2017, 229, 46–54.
16. Ghorbani, E.; Maimani, H.R. On eigensharp and almost eigensharp graphs. *Linear Algebra Its Appl.* 2008, 429, 2746–2753.
17. Kratzer, T.; Reznick, B.; West, D. Eigensharp graphs: Decomposition into complete bipartite subgraphs, *Trans. Amer. Math. Soc.* 1988, 308, 637–653.
18. Pinto, T. Biclique Covers and Partitions. *Electron. J. Comb.* 2014, 21, 1–19.
19. Rawshdeh, E.; Abdelkarim, H.; Rawashdeh, E. On the Eigensharp of Corona Product. *Int. J. Math. Comput. Sci.* 2022, 17, 865–874.
20. Gregory, D.A.; Shader, B.L.; Watts, V.L. Biclique decomposition and Hermitian rank. *Linear Algebra Appl.* 1999, 292, 267–280.
21. Silvester, J.R. Determinants of block matrices. *Math. Gaz.* 2000, 84, 460–467.