Spin-orbit coupling (SOC) and its symmetry breaking provide versatile opportunities for materials design and bring relativistic phenomena to the fore of the condensed matter physics [1–6]. While for decades SOC was primarily studied to elucidate and manipulate normal-state properties, including applications in spintronics and quantum computing [7–15], there is a growing interest to examine its role on superconductivity [16–21].

Through the coexistence of SOC and Zeeman field, a conventional spin-singlet superconductivity can acquire spin-dependent long-range proximity effects [20, 23, 24, 96] as well as support topological superconductivity and host Majorana bound states, a building block of PSH [45–47], a more complex picture is emerging. An experimental cSOC tunability enables both tunable anomalous phase shift and supercurrent, which flows even at the zero-phase difference in the junction. A fingerprint of cSOC in Josephson junctions is the f-wave spin-triplet superconducting correlations, important for superconducting spintronics and supporting Majorana bound states.

Spin-orbit coupling in two-dimensional systems is usually characterized by Rashba and Dresselhaus spin-orbit coupling (SOC) linear in the wave vector. However, there is a growing class of materials which instead support dominant SOC cubic in the wave vector (cSOC), while their superconducting properties remain unexplored. By focusing on Josephson junctions in Zeeman field with superconductors separated by a normal cSOC region, we reveal a strongly anharmonic current-phase relation and complex spin structure. An experimental cSOC tunability enables both tunable anomalous phase shift and supercurrent, which flows even at the zero-phase difference in the junction. A fingerprint of cSOC in Josephson junctions is the f-wave spin-triplet superconducting correlations, important for superconducting spintronics and supporting Majorana bound states.

To address this situation and motivate further cSOC studies of superconducting properties, we consider JJs depicted in Fig. 1(b), where s-wave superconductors (S) are separated by a normal region with cSOC which is consistent with the two-dimensional (2D) electron or hole gas, confined along the z-axis [48, 53]. We find that the interplay between Zeeman field and cSOC results in an anomalous Josephson effect with a spontaneous supercurrent. While the commonly-expected current-phase relation (CPR) is \(I(\varphi) = I_c \sin(\varphi + \varphi_0) \) [19, 58], where \(I_c \) is the JJ critical current and \(\varphi_0 \) the anomalous phase (\(\varphi_0 \neq 0, \pi \)), we reveal that CPR can be strongly anhar-
monic and host Majorana bound states. Instead of the p-wave superconducting correlations for linear SOC, their f-wave symmetry is the fingerprint of cSOC. To study cSOC, we consider an effective Hamiltonian

$$H = \frac{1}{2} \int dp \; \hat{\psi}^\dagger(p) H(p) \hat{\psi}(p),$$

(1)

where $H(p) = p^2/2m^* + \mathbf{\sigma} \cdot \mathbf{h} + H_{cSOC}(p)$, with momentum, $p = (p_x, p_y, 0)$, effective mass, m^*, Pauli matrices, $\mathbf{\sigma}$, effective Zeeman field, \mathbf{h}, realized from an externally applied magnetic field or through magnetic proximity effect [6, 59], and cSOC term [48, 49, 53, 54]

$$H_{cSOC}(p) = \frac{i \alpha_c}{2 \hbar^3} (p^3 x + p^3 y - \beta_c \hbar^2 (p^2 z + \sigma z^2 z - \sigma y^2 z) + \beta_c (p^2 z + \sigma y^2 x - \sigma x z^2),$$

(2)

expressed using cSOC strengths α_c and β_c, for Rashba and Dresselhaus terms, where $p_z = p_x \pm i p_y$, and $\sigma_z = \sigma x \pm i \sigma y$. The field operator in spin space is given by $\hat{\psi}(p) = \left(\psi_\uparrow(p), \psi_\downarrow(p) \right)^T$, with \uparrow, \downarrow, spin projections.

To describe S regions in Fig. 1(b), we use an s-wave BCS model with a two-electron amplitude in spin-Nambu space $\Delta(\psi_\downarrow, \psi_\uparrow) + H.c.$, given by the effective Hamiltonian in particle-hole space

$$\mathcal{H}(p) = \left(\begin{array}{cc} H(p) - \mu & -\frac{\Delta}{\Delta^*} \\ -\frac{\Delta^*}{\Delta} & -H(-p) + \mu \end{array} \right),$$

(3)

where μ is the chemical potential and Δ is a 2×2 gap matrix in spin space. The field operators in the rotated particle-hole and spin bases are $\hat{\psi} = (\psi_\uparrow, \psi_\downarrow, \psi_\downarrow^\dagger, -\psi_\uparrow^\dagger)^T$.

To calculate the charge current, we use its quantum definition where no charge sink or source is present. Therefore, the time variation of charge density vanishes, $\partial_t \rho_c \equiv 0 = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^3} \sum_{\sigma, \tau} \psi_{\sigma \tau}(r') \partial_{\sigma \tau} \mathcal{H}(r') \psi_{\sigma \tau}(r) - \psi_{\sigma \tau}(r') \partial_{\sigma \tau} \mathcal{H}(r') \psi_{\sigma \tau}(r)$. $\mathcal{H}_{\sigma \tau \sigma ' \tau '}$ is the component form of \mathcal{H}, with spin (particle-hole) label $\sigma (\tau)$, and $r \equiv (x, y, 0)$. From the current conservation, the charge current density is, $J = \int d\mathbf{r} \left(\hat{\psi}^\dagger(\mathbf{r}) \mathcal{H}(\mathbf{r}) \hat{\psi}(\mathbf{r}) - \hat{\psi}(\mathbf{r}) \mathcal{H}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \right)$, where $\mathcal{H}(\mathbf{r})$ is obtained by substituting $p \equiv -i\hbar (\partial_x, \partial_y, 0)$. The arrow directions indicate the specific wavefunctions that the \mathcal{H} operates on. By an exact diagonalization of \mathcal{H}, we obtain spinor wavefunctions $\psi_{\downarrow, \tau, m}(p)$ within the left ($x < 0$) and right ($x > d$) S region and the middle normal region ($0 < x < d$) in Fig. 1(b). The wavefunctions and generalized velocity operators $v_{\downarrow, \tau, m}(p)$ are continuous at the junctions, i.e., $\psi_{\downarrow, \tau, m}|_{x = 0} = \psi_{\uparrow, \tau, m}|_{x = d}$, $v_{\downarrow, \tau, m}^\dagger \psi_{\uparrow, \tau, m}|_{x = 0} = v_{\uparrow, \tau, m}^\dagger \psi_{\downarrow, \tau, m}|_{x = d}$, and $v_{\downarrow, \tau, m}^\dagger \hat{v}_{\uparrow, \tau, m}^\dagger |_{x = 0} = v_{\uparrow, \tau, m}^\dagger \hat{v}_{\downarrow, \tau, m}^\dagger |_{x = d}$. The spinor wavefunctions are given in the Supplemental Material [60].

The complexity of \mathcal{H} precludes simple solutions and we evaluate the wavefunctions and supercurrent numerically. To reduce the edge effects, we consider Fig. 1(b) geometry with $W/d \gg 1$ [61]. This approach has been successfully used to study supercurrent in junctions with PSH, Weyl semimetals, phosphorene, and twisted bilayer graphene [62–68]. The calculated supercurrent is normalized by $I_0 = 2e\Delta/h$, where e is the electron charge, and Δ the energy gap in S. The energies are normalized by Δ, lengths by $L = \hbar/\sqrt{2m^*\Delta}$, cSOC strengths by $\Delta \zeta^c$. The junction length is set at $d = 0.3L$.

To investigate the role of cSOC on the ground-state Josephson energy, E_{GS}, and the CPR obtained from the supercurrent $I(\varphi) = \partial E_{GS}/\partial \varphi$, we first consider a simple situation with only Rashba cSOC ($\alpha_c \neq 0, \beta_c = 0$) and effective Zeeman field h_x ($h_y = h_z = 0$). The evolution of E_{GS} with $|h_x|$, where its minima are denoted by dots in Fig. 2(a), shows a continuous transition from $\varphi = 0$ to π state (blue to green dot).

While our previous results suggest no direct cSOC influence on CPR, a simple in-plane rotation of h, $h_x = 0$, $h_y \neq 0$, drastically changes this behavior. This is shown in Figs. 3(b) where, at fixed $|h_y| = 2.4\Delta$, we see a peculiar influence of a finite Rashba cSOC which is responsible for the anomalous Josephson effect with spontaneous current, $I(\varphi = 0) \neq 0$, and strong anharmonic CPR that cannot be described by $I(\varphi) = I_0 \sin(\varphi + \varphi_0)$. Unlike in Fig. 3(a), a relative sign between α_c and h alters the CPR

![FIG. 2](image-url)
where τ_{σ}^α is the normal region transparency for spin channel σ. With only few lowest terms in this expansion ($N = 1, 2, 3$), shown in Fig. 3(c) with the corresponding errors, it is possible to very accurately describe strong CPR anharmonicities for anomalous Josephson effect. To achieve the relative error from $N = 3$ expansion in Eq. (4), in a standard $\{\sin, \cos\}$ expansion, with the corresponding phase shifts as extra fitting parameters, requires $N > 20$ [60].

Key insights into the CPR and an explicit functional dependence for the φ_0 state is obtained by a systematic $I(\varphi)$ symmetry analysis with respect to the cSOC (α_c, β_c) and Zeeman field or, equivalently, magnetization ($h_{x,y,z}$) parameters [60]. We find that h_z plays no role in inducing the φ_0 state, it only produces $I(\varphi)$ reversals, explaining our focus on $h_z = 0$ [Figs. 2 and 3].

These properties are expressed as an effective phase shift to the a sinusoidal CPR, $\sin(\varphi + \varphi_0)$, extracted from Eq. (4). We again distinguish small- and large-μ regime ($\mu = \Delta$ v.s. $\mu = 10\Delta$). In the first case, for the JJ geometry from Fig. 1, we obtain

$$\varphi_0 \propto \Gamma_y(\alpha_c^2 + \Gamma_1\beta_c^2)h_z\beta_c + \Gamma_2(\alpha_c^2 - \Gamma_2\beta_c^2)h_y\alpha_c,$$

(5)

where the parameters $\Gamma_{1,2,x,y}$ are introduced through their relations, $\Gamma_2 > \Gamma_1, \Gamma_1 < 1, \Gamma_2 > 1, \Gamma_y(h_y = 0) = \Gamma_x(h_x = 0) = 1, \Gamma_y(h_y \neq 0) < 1, \Gamma_x(h_x \neq 0) < 1$. These relations are modified as μ and h change. For $\mu \gg \Delta$, the functional dependence for the φ_0 state is simplified

$$\varphi_0 \propto \left(\alpha_c^2 - \Gamma_1\beta_c^2\right)h_z\beta_c + \left(\alpha_c^2 - \Gamma_2\beta_c^2\right)h_y\alpha_c,$$

(6)

where $\Gamma_2 > \Gamma_1$ and $\Gamma_{1,2} > 1$. Therefore, φ_0 state occurs when h shifts $p \perp$ to $I(\varphi)$ and thus alters the SOC [60].

Taken together, these results reveal that cSOC in JJ supports a large tunability of the Josephson energy, anharmonic CPR, and the anomalous phase, key to many applications, from post-CMOS logic, superconducting spintronics, quiet qubits, and topological quantum computing. Realizing π states in JJs is desirable for improving rapid single flux quantum (RSFQ) logic, with operation > 100 GHz [81, 82] and enhancing coherence by decoupling superconducting qubits from the environment [83]. However, common approaches for π states using JJs combining s- and d-wave superconductors or JJs with ferromagnetic regions [78, 79] pose various limitations. Instead, extensively studied gate-tunable SOC [10, 38, 45, 53, 54, 84], could allow not only a fast transformation between 0 and π states in JJs with cSOC, but also an arbitrary φ_0 state to tailor desirable CPR.

An insight to the phase evolution and circuit operation of JJs with cSOC is provided by generalizing the classical model of resistively and capacitively shunted junction (RSCJ) [85]. The total current, i, is the sum of the displacement current across the capacitance, C, normal...
current characterized by the resistance, R, and $I(\phi)$,
\[
\frac{\phi_0}{2\pi} C \frac{d^2 \phi}{dt^2} + \frac{\phi_0}{2\pi R} \frac{d\phi}{dt} + I(\phi) = i,
\]
where ϕ_0 is the magnetic flux quantum and $I(\phi)$ yields a generally anharmonic CPR, as shown from Eq. (4), which can support 0, π, and tunable ϕ_0 states. As we have seen from Figs. 2 and 3, this CPR tunability is accompanied by the changes in Josephson energy, which in turn is responsible for the changes in effective values of C, R, and the nonlinear Josephson inductance. This JJ tunability complements using voltage or flux control [86, 87].

In JJs with ferromagnetic regions, I_c is the tunable I_c by changing the underlying magnetic state [32, 88, 89]. In JJs with cSOC, tuning I_c could be realized through gate control by changing the relative strengths of α_c and β_c, even at zero Zeeman field. This is shown in Fig. 4 by calculating $\text{Max}[I(\phi)]$ with $\phi \in [0, 2\pi]$. In the low-μ regime, the maximum L_c occurs at slightly curved region near the symmetry lines $|\alpha_c| = |\beta_c|$. For the high-μ regime, the region of maximum I_c evolves into inclined symmetry lines, $|\alpha_c| = |\beta_c|, A < 1$. Similar to linear SOC, in the diffusive regime for cSOC, one expects that the minimum in I_c occurs near these symmetry lines because of the presence of long-range spin-triplet supercurrent [63, 90].

We expect that a hallmark of JJs with cSOC goes beyond CPR and will also influence the spin structure and symmetry properties of superconducting proximity effects. Linear SOC is responsible for mixed singlet-triplet superconducting pairing [16], while with Zeeman or exchange field it is possible to favor spin-triplet proximity effects which can become long-range [20, 33] or host Majorana bound states [25, 26]. To explore the proximity effects in the cSOC region, we calculate superconducting pair correlations using the Matsubara representation for the anomalous Green function, $F(\tau; r, r')$ [92],
\[
F_{s,s'}(\tau; r, r') = +(T_r \psi_s(\tau, r) \psi_{s'}(0, r')) \langle -i \sigma^y_{s'_s} \rangle,
\]
where s, s', s_1 are spin indices, the summation is implied over s_1, τ is the imaginary time, ψ_s is the field operator, and T_r denotes time ordering of operators [60].

FIG. 4. Normalized critical supercurrent as a function of cSOC strength α_c and β_c for (a) $\mu = \Delta$ and (b) $\mu = 10\Delta$. The Zeeman field is set to zero.

For a translationally invariant SOC region, spin-triplet correlations in Fig. 5, obtained from Eq. (8), provide a striking difference between linear and cubic SOC. Unlike the p-wave symmetry for linear Rashba SOC [Figs. 5(a), 5(b)], we see that the f-wave symmetry is the fingerprint for cSOC, retained with only $\alpha_c \neq 0$ [Figs. 5(c), 5(d)] or both $\alpha_c, \beta_c \neq 0$ [Figs. 5(e), 5(f)]. Remarkably, unlike the commonly-sought p-wave symmetry, we confirm that with a suitable orientation of the Zeeman field cSOC also supports Majorana flat bands [60].

While we are not aware of any Josephson effect experiments in 2D systems dominated by cSOC, our studied parameters are within the range of already reported measurements. Choosing m^* of an electron mass, and $\Delta = 0.2\text{meV}$, which is similar for both Al and proximity-induced superconductivity [38, 93], the characteristic length becomes $\xi_S \approx 14\text{nm}$. The resulting cSOC strength from Fig. 3(b) with $\alpha_c \Delta^3 S \approx 50\text{eVÅ}^3$ is compatible with the values in 2D electron and hole gases [55, 56]. The Zeeman splitting $2.4 \times 0.2\text{meV}$ is available by applying magnetic field in large g-factor materials [10], or from magnetic proximity effects, measured in 2D systems to reach up to $\approx 20\text{meV}$ [6]. Even though we have mostly focussed on the tunable Rashba SOC, the Dresselhaus SOC can also be gate tunable [45, 94], offering a further control of the anomalous Josephson effect.

Our results reveal that the cSOC in JJs provides versatile opportunities to design superconducting response and test its unexplored manifestations. The anomalous Josephson effect could serve as a sensitive probe to quantify cSOC. While identifying the relevant form of SOC is a challenge even in the normal state [10, 12], in the superconducting state already a modest SOC can give a strong anisotropy in the transport properties [24, 95–97] and enable extracting the resulting SOC. Identifying SOC, either intrinsic, or generated through magnetic textures, remains important for understanding which systems could host Majorana bound states [37, 98–111].
With the advances in gate-tunable structures and novel materials systems [38, 53–56, 93, 112], the functional dependence of the anomalous phase φ_0 and the f-wave superconducting correlations could also enable decoupling of the linear and cubic SOC contributions [60]. For the feasibility of such decoupling, it would be useful to consider methods employed in the studies of the nonlinear Meissner effect [113–120]. Even small corrections to the supercurrent from the magnetic anisotropy of the non-linear Meissner response offer a sensitive probe to distinguish different paring-state symmetries.

C.S. and I.Ž. were supported by NSF ECCS-1810266, and I.Ž. by DARPA DP18AP900007, and the UB Center for Computational Research.

[1] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
[2] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science 318, 766 (2007).
[3] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).
[4] A. A. Burkov and L. Balents, Weyl Semimetal in a Topological Insulator Multilayer, Phys. Rev. Lett. 107, 127205 (2011).
[5] N. P. Armitage, E. J. Mele, A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015011 (2018).
[6] I. Žutić, A. Matos-Abiague, B. Scharf, H. Dery, K. Belashchenko, Proximitized materials, Mater. Today 22, 85 (2019).
[7] Y. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas with lifted spectral degeneracy, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 (1984) [JETP Lett. 39, 78 (1984)].
[8] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, New York, 2003).
[9] S. Das Sarma, J. Fabian, X. Hu, I. Žutić, Spin electronics and spin computation, Solid State Commun. 119, 207 (2001).
[10] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004).
[11] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007).
[12] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Semiconductor Spintronics, Acta Phys. Slov. 57, 565 (2007).
[13] Di Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
[14] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).
[15] J. Schliemann, Colloquium: Persistent spin textures in semiconductor nanostructures, Rev. Mod. Phys. 89, 011001 (2017).
[16] L. P. Gor’kov and E. I. Rashba, Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-Triplet State, Phys. Rev. Lett. 87, 037004 (2001).
[17] K. V. Samokhin, Paramagnetic Properties of Non-centrosymmetric Superconductors: Application to CePt$_3$Si, Phys. Rev. Lett. 94, 027004 (2005); P. M. R. Brydon, L. Wang, M. Weinert, and D. F. Agterberg, Pairing of $j = 3 = 2$ Fermions in Half-Heusler Superconductors, Phys. Rev. Lett. 116, 177001 (2016).
[18] A. A. Reynoso, G. Usaj, C. A. Balseiro, D. Feinberg, and M. Avignon, Anomalous Josephson Current in Junctions with Spin Polarizing Quantum Point Contacts, Phys. Rev. Lett. 101, 107001 (2008).
[19] A. Buzdin, Direct Coupling Between Magnetism and Superconducting Current in the Josephson φ_0 Junction, Phys. Rev. Lett. 101, 107005 (2008); F. Konschelle and A. Buzdin, Magnetic Moment Manipulation by a Josephson Current, Phys. Rev. Lett. 102, 017001 (2009).
[20] M. Eschrig, Spin-polarized supercurrents for spintronics: A review of current progress, Rep. Prog. Phys. 78, 104501 (2015).
[21] M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review, Rep. Prog. Phys. 80, 036501 (2017).
[22] I. Martínez, P. Högl, C. González-Ruano, J. P. Cascales, C. Tiusan, Y. Lu, and M. Hehn, A. Matos-Abiague, J. Fabian, I. Žutić, and F. G. Aliev Interfacial Spin-Orbit Coupling: A Platform for Superconducting Spintronics, Phys. Rev. Applied 13, 014030 (2020).
[23] K.-R. Jeon, X. Montiel, S. Komori, C. Ciccarelli, J. Haigh, H. Kurebayashi, L. F. Cohen, A. K. Chan, K. D. Stenning, C.-M. Lee, M. G. Blamire, and J. W. A. Robinson, Tunable Pure Spin Supercurrents and the Demonstration of Their Gateability in a Spin-Wave Device, Phys. Rev. X 10, 031020 (2020).
[24] C. González-Ruano, L. G. Johnsen, D. Caso, C. Tiusan, M. Hehn, N. Banerjee, J. Linder, and F. G. Aliev, Superconductivity-induced change in magnetic anisotropy in epitaxial ferromagnet-superconductor hybrids with spin-orbit interaction, Phys. Rev. B 102, 020405(R) (2020).
[25] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures, Phys. Rev. Lett. 105, 077001 (2010).
[26] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105, 177002 (2010).
[27] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones Toward Majorana-Based Quantum Computing, Phys. Rev. X 6, 031016 (2016).
[28] R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. A. Gupta, A spin triplet supercurrent through the half-metallic ferromagnet CrO$_2$, Nature 439, 825 (2006).
[29] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire,
Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet, Science 329, 59 (2010).

T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and N. O. Birge, Observation of Spin-Triplet Superconductivity in Co-Based Josephson Junctions, Phys. Rev. Lett. 104, 137002 (2010).

N. Banerjee, J. W. A. Robinson, and M. G. Blamire, Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions, Nat. Commun. 5, 4771 (2014).

E. C. Gingrich, B. M. Niedzieski, J. A. Glick, Y. Wang, D. L. Miller, R. Loolee, W. P. Pratt, Jr., and N. O. Birge, Controllable $0-\pi$ Josephson junctions containing a ferromagnetic spin valve, Nat. Phys. 12, 564 (2016).

J. Linder and J. W. A. Robinson, Superconducting spintronics, Nat. Phys. 11, 307 (2015).

L. P. Rokhinson, X. Liu, and J. K. Furdyna, The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles, Nat. Phys. 8, 795 (2012).

A. Forneri, A. M. Whiticar, F. Setiawan, E. Portolés, A. C. C. Drachmann, A. Keselman, S. Gronin, C. Thomas, T. Wang, R. Kallalher, G. C. Gardner, E. Berg, M. J. Manfra, A. Stern, C. M. Marcus, and F. Nichele, Evidence of topological superconductivity in planar Josephson junctions, Nature 569, 89 (2019).

H. Ren, F. Pientka, S. Hart, A. Pierce, M. Kosowsky, L. Lunczer, R. Schlereth, B. Scharf, E. M. Hankiewicz, L. W. Molenkamp, B. I. Halperin, and A. Yacoby, Topological superconductivity in a phase-controlled Josephson junction, Nature 569, 93 (2019).

M. M. Desjardins, L. C. Contamin, M. R. Delbecq, M. C. Dartiailh, L. E. Bruhat, T. Cubaynes, J. J. Viennot, F. Mallet, S. Rohart, A. Thiaville, A. Cottet, and T. Kontos, Synthetic spin-orbit interaction for Majorana devices, Nat. Mater. 18, 1060 (2019).

M. C. Dartiailh, W. Mayer, J. Yuan, K. S. Wickramasinghe, A. Matoe-Abiague, I. Zutić, and J. Shabani, Phase signature of topological transition in Josephson junctions, arXiv:1906.01179.

A. P. Mackenzie, Y. Maeno, The superconductivity of Sr$_2$RuO$_4$ and the physics of spin-triplet pairing, Rev. Mod. Phys. 75, 657 (2003).

A. Pustogow, Y. Luo, A. Chonister, Y.-S. Su, D. A. Sokolov, F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S. Raghu, E. D. Bauer and S. E. Brown, Pruned drop of 17O NMR Knight shift in superconducting state of Sr$_2$RuO$_4$, Nature 574, 72 (2019); I. Zutić and I. Mazin, Phase-Sensitive Tests of the Pairing State Symmetry in Sr$_2$RuO$_4$, Phys. Rev. Lett. 95, 217004 (2005).

R. Sharma, S. D. Edkins, Z. Wang, A. Kostin, C. Sow, Y. Maeno, A. P. Mackenzie, J. C. S. Davis, and V. Madhavan, Momentum-resolved superconducting energy gaps of Sr$_2$RuO$_4$ from quasiparticle interference imaging, Proc. Natl. Acad. Sci. U.S.A. 117, 5222 (2020).

J. Schliemann, J. C. Eguíluz, and D. Loss, Nonballistic Spin-Field-Effect Transistor, Phys. Rev. Lett. 90, 146801 (2003).

B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System, Phys. Rev. Lett. 97, 236601 (2006).

J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C. Zhang, S. Mack, and D. D. Awschalom, Emergence of the persistent spin helix in semiconductor quantum wells, Nature 458, 610 (2009).

F. Dettwiler, J. Fu, S. Mack, P. J. Weigele, J. C. Eguíluz, D. D. Awschalom, and D. M. Zumbuhl, Stretchable Persistent Spin Helices in GaAs Quantum Wells, Phys. Rev. X 7, 031010 (2017).

M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Direct mapping of the formation of a persistent spin helix, Nat. Phys. 8, 757 (2012).

D. Izasa, M. Kohda, U. Zülicke, J. Nitta, and M. Kammermeier, Enhanced longevity of the spin helix in low-symmetry quantum wells, Phys. Rev. B 101, 245417 (2020).

R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Anomalous Rashba spin splitting in two-dimensional hole systems, Phys. Rev. B 65, 155303 (2002).

J. J. Krich and B. I. Halperin, Cubic Dresselhaus Spin-Orbit Coupling in 2D Electron Quantum Dots, Phys. Rev. Lett. 98, 226802 (2007).

P. Altmann, F. G. G. Hernandez, G. J. Ferreira, M. Kohda, C. Reichl, W. Wegscheider, and G. Salis, Current-Controlled Spin Precession of Quasistationary Electrons in a Spin-Cubed Orbit Field, Phys. Rev. Lett. 116, 196802 (2016).

K. Yoshizumi, A. Sasaki, M. Kohda, and J. Nitta, Gate-controlled switching between persistent and inverse persistent spin helix states, Appl. Phys. Lett. 108, 132402 (2016).

M. Kammermeier, P. Wenk, and J. Schliemann, Control of Spin Helix Symmetry in Semiconductor Quantum Wells by Crystal Orientation, Phys. Rev. Lett. 117, 236801 (2016).

H. Nakamura, T. Koga, and T. Kimura, Experimental Evidence of Cubic Rashba Effect in an Inversion-Symmetric Oxide, Phys. Rev. Lett. 108, 206601 (2012).

R. Moriya, K. Sawano, Y. Hoshi, S. Masubuchi, Y. Shikaki, A. Wild, C. Neumann, G. Abstreiter, D. Bougeard, T. Koga, and T. Machida, Cubic Rashba Spin-Orbit Interaction of a Two-Dimensional Hole Gas in a Strained Ge/Ge$_x$Si$_{1-x}$ Quantum Well, Phys. Rev. Lett. 113, 086601 (2014).

R. J. Cottier, B. D. Koehne, J. T. Miracle, D. A. Currie, N. Theodoropoulou, L. Pantelidis, A. Hernandez-Robles, and A. Ponce, Strong spin-orbit interactions in a correlated two-dimensional electron system formed in SrTiO$_3$ (001) films grown epitaxially on p-Si(001), Phys. Rev. B 102, 125423 (2020).

H. Liu, E. Marcellina, A. R. Hamilton, and D. Culcer, Strong Spin-Orbit Contribution to the Hall Coefficient of Two-Dimensional Hole Systems, Phys. Rev. Lett. 121, 087701 (2018).

V. Brosco, L. Benfatto, E. Cappelluti, C. Grimaldi, Unconventional dc Transport in Rashba Electron Gases, Phys. Rev. Lett. 116, 166602 (2016).

E. Strambini, A. Iorio, O. Durante, R. Citro, C. Sanz-Fernández, C. Guercello, I. V. Tokatly, A. Braggio, M. Rocci, V. Zannier, L. Sorba, F. S. Bergeret, and F. Giazotto, A Josephson phase battery, Nat. Nanotechnol. 15, 656 (2020).

K. Takiguchi, Le Duc Anh, T. Chiba, T. Koyama, D. Chiba, and M. Tanaka, Giant gate-controlled proximity magnetoresistance in semiconductor-based ferromagnetic/non-magnetic bilayers, Nat. Phys. 15,
M. Alidoust, M. Willatzen, and A.-P. Jauho, Strain-phosphorus with strain and disorder, Phys. Rev. B 98, 184505 (2018).

M. Alidoust and K. Halterman, Evolution of pair correlation symmetries and supercurrent reversal in tilted Weyl semimetals, Phys. Rev. B 101, 035120 (2020).

M. Alidoust, M. Willatzen, and A.-P. Jauho, Strain-engineered Majorana zero energy modes and \(\phi_0 \) Josephson state in black phosphorus, Phys. Rev. B 98, 085144 (2018).

M. Alidoust, M. Willatzen, and A.-P. Jauho, Fraunhofer response and supercurrent spin switching in black phosphorus with strain and disorder, Phys. Rev. B 98, 184505 (2018).

M. Alidoust, A.-P. Jauho, and J. Akola, Josephson effect in graphene bilayers with adjustable relative displacement, Phys. Rev. Res. 2, 032074(R) (2020).

H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohstedd, D. Koelle, R. Kleiner, and E. Goldobin, Experimental Evidence of a \(\phi_0 \) Josephson Junction, Phys. Rev. Lett. 109, 107002 (2012).

T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephani-dis, and R. Boursier, Josephson Junction through a Thin Ferromagnetic Layer: Negative Coupling, Phys. Rev. Lett. 89, 137007 (2002).

V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Coupling of Two Superconductors Through a Ferromagnet: Evidence for a \(\pi \) Junction, Phys. Rev. Lett. 86, 2427 (2001).

F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures, Rev. Mod. Phys. 77, 1321 (2005).

M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schön, Theory of Half-Metal/Superconductor Heterostructures, Phys. Rev. Lett. 90, 137003 (2003).

K. Halterman, O. T. Valls, and C.-T. Wu, Charge and spin currents in ferromagnetic Josephson junctions Phys. Rev. B 92, 174516 (2015).

C.-T. Wu and K. Halterman, Spin transport in half-metallic ferromagnet-superconductor junctions, Phys. Rev. B 98, 054518 (2018).

E. Moen and O. T. Valls Quasiparticle conductance in spin valve Josephson structures, Phys. Rev. Lett. 101, 184522 (2020).

T. Yokoyama, M. Eto, Y. V. Nazarov, Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires, Phys. Rev. B 89, 195407 (2014).

A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, The current-phase relation in Josephson junctions, Rev. Mod. Phys. 76, 411 (2004).

S. Kashiyawa and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63, 1641 (2000).

S. Hart, Z. Cui, G. Ménard, M. Deng, A. E. Antipov, R. M. Lutchyn, P. Kroesstrup, C. M. Marcus, and K. A. Moler, Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes, Phys. Rev. B 100, 064523 (2019).

K. K. Likharev and V. K. Semenov, RSFQ Logic/Memory Family: A New Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems, IEEE Trans. Appl. Supercond. 1, 3 (1991).

E. Terzioglu and M. R. Beasley, Complementary Josephson Junction Devices and Circuits: A Possible New Approach to Superconducting Electronics, IEEE Trans. Appl. Supercond. 8, 48 (1998).

T. Yamashita, K. Tanikawa, S. Takahashi, and S. Maekawa, Superconducting Qubit with a Ferromagnetic Josephson Junction, Phys. Rev. Lett. 95, 097001 (2005).

J. Nitta, T. Akazaki, H. Takayamagi, and T. Enoki, Gate Control of Spin-Orbit Interaction in an Inverted \(\text{In}_{0.53}\text{Ga}_{0.48}\text{As}/\text{In}_{0.52}\text{Al}_{0.48}\text{As} \) Heterostructure, Phys. Rev. Lett. 78, 1335 (1997).

W. C. Stewart, Current-voltage characteristics of Josephson junctions, Appl. Phys. Lett. 12, 277 (1968).

L. Casparis, M. R. Connolly, M. Kjaergaard, N. J. Pearson, A. Kringboj, T. W. Larsen, F. Kuemmeth, T. Wang, C. Thomas, S. Gronin, G. C. Gardner, M. J. Manfra, C. M. Marcus, and K. D. Petersson, Nat. Nanotechnol. 13, 915 (2018).

P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A Quantum Engineer’s Guide to Superconducting Qubits, Appl. Phys. Rev. 6, 021318 (2019).

B. Baek, W. H. Rippard, S. P. Benz, S. E. Russek, and P. D. Dresselhaus, Hybrid superconducting-magnetc memory device using competing order parameters, Nat. Commun. 5, 3888 (2014).

A. Costa, P. Högl, and J. Fabian Magnetoanisotropic Josephson effect due to interfacial spin-orbit fields in superconductor/ferromagnet/superconductor junctions, Phys. Rev. B 95, 024514 (2017).

M. Alidoust and K. Halterman, Spontaneous edge accumulation of spin currents in finite-size two-dimensional diffusive spin-orbit coupled SFS heterostructures, New J. Phys. 17, 033001 (2015).

M. Alidoust and K. Halterman, Long-range spin-triplet correlations and edge spin currents in diffusive spin-orbit coupled SNS hybrids with a single spin-active interface, J. Phys: Cond. Matt. 27, 235301 (2015).

A. Zagoskin, Quantum Theory of Many-Body Systems, 2nd Ed. (Springer, New York, 2014).

W. Mayer, M. C. Dartiailh, J. Yuan, K. S. Wickramasinghe, E. Rossi, and J. Shabani, Gate controlled anomalous phase shift in Al/InAs Josephson junctions, Nat. Commun. 11, 21 (2020).

S. V. Iordanskii, Y. B. Lyanda-Geller, and G. E. Pikus, Weak Localization in Quantum Wells with Spin-Orbit Interaction, JETP Lett. 60, 206 (1994).

I. Högl, A. Matos-Abiague, I. Zutić, and J. Fabian, Magnetoanisotropic Andreev Reflection in Ferromag-
[96] I. Martínez, P. Höggl, C. González-Ruano, J. Pedro Cascáles, C. Tiusan, Y. Lu, M. Hehn, A. Matos-Abiague, J. Fabian, I. Žutić and F. G. Aliev, Interfacial Spin-Orbit Coupling: A Platform for Superconducting Spintronics, Phys. Rev. Applied 13, 014030 (2020).
[97] T. Vezin, C. Shen, J. E. Han, and I. Žutić, Enhanced spin-triplet pairing in magnetic junctions with s-wave superconductors, Phys. Rev. B 101, 014515 (2020).
[98] B. Scharf, F. Pientka, H. Ren, A. Yacoby, and E. M. Hankiewicz, Tuning topological superconductivity in phase-controlled Josephson junctions with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 99, 214503 (2019).
[99] J. D. Pakizer, B. Scharf, and A. Matos-Abiague, Crystalline Anisotropic Topological Superconductivity in Planar Josephson Junctions, arXiv:2007.03498.
[100] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Žutić, Wireless Majorana Bound States: From Magnetic Tunability to Braiding, Phys. Rev. Lett. 117, 077002 (2016).
[101] A. Matos-Abiague, J. Shabani, A. D. Kent, G. L. Fatin, B. Scharf, and I. Žutić, Tunable magnetic Textures: From Majorana bound states to braiding, Solid State Commun. 262, 1 (2017).
[102] F. Ronetti, P. Plekhanov, D. Loss, and J. Klinovaja, Magnetically confined bound states in Rashba systems, Phys. Rev. Research 2, 022052(R) (2020).
[103] J. Klinovaja, P. Stano, and D. Loss. Transition from fractional to Majorana Fermions in Rashba Nanowires, Phys. Rev. Lett. 109, 236801 (2012).
[104] T. Zhou, N. Mohanta, J. E. Han, A. Matos-Abiague, and I. Žutić, Tunable magnetic textures in spin valves: From spintronics to Majorana bound states, Phys. Rev. B 99, 134505 (2019).
[105] N. Mohanta, T. Zhou, J.-W. Xu, J. E. Han, A. D. Kent, J. Shabani, I. Žutić, and A. Matos-Abiague, Electrical Control of Majorana Bound States Using Magnetic Stripes, Phys. Rev. Applied 12, 034048 (2019).
[106] S. Turcotte, S. Boutin, J. Camirand Lemyre, I. Garate, and M. Pioro-Ladrière, Optimized micromagnet geometries for Majorana zero modes in low g-factor materials, Phys. Rev. B 102, 125425 (2020).
[107] Y. Jiang, E. J. de Jong, V. van de Sande, S. Gazibegovic, G. Badawy, E. P. A. M. Bakkers, and S. M. Frolov, Hysteretic magnetoresistance in nanowire devices due to stray fields induced by micromagnets, Nanotechnology 32, 095001 (2021).
[108] S. Rex, I. V. Gornyi, and A. D. Mirlin, Majorana modes in emergent-wire phases of helical and cycloidal magnet-superconductor hybrids, Phys. Rev. B 102, 224501 (2020).
[109] V. Kornich, M. G. Vavilov, M. Friesen, M. A. Eriksson, and S. N. Coppersmith, Majorana bound states in nanowire-superconductor hybrid systems in periodic magnetic fields, Phys. Rev. B 101, 125414 (2020).
[110] N. Mohanta, S. Okamoto, and E. Dagotto, Skyrmion Control of Majorana States in Planar Josephson Junctions, arXiv:2012.13502.
[111] N. Mohanta, A. P. Kampf, and T. Kopp, Supercurrent as a probe for topological superconductivity in magnetic adatom chains, Phys. Rev. B 97, 214507 (2018).
[112] A. Assouline, C. Feuillet-Palma, N. Bergeal, T. Zhang, A. Mottaghizadeh, A. Zimmers, E. Lhuillier, M. Marangolo, M. Eddrief, P. Atkinson, M. Aprili, H. Aubin, Spin-Orbit induced phase-shift in Bi$_2$Se$_3$ Josephson junctions, Nat. Comm. 10, 126 (2019).
[113] D. Xu, S. K. Yip, and J. A. Sauls, The Nonlinear Meissner Effect in Unconventional Superconductors, Phys. Rev. B 51, 16233 (1995).
[114] S. Bae, Y. Tan, A. P. Zhuravel, L. Zhang, S. Zeng, Y. Liu, T. A. Lograsso, Ariando, T. Venkatesan, and S. M. Anlage, Dielectric resonator method for determining gap symmetry of superconductors through anisotropic nonlinear Meissner effect, Rev. Sci. Instrum. 90, 043901 (2019).
[115] A. P. Zhuravel, B. G. Ghamsari, C. Kurter, P. Jung, S. Remillard, J. Abrahams, A. V. Lukashenko, A. V. Ustnov, and S. M. Anlage, Imaging the Anisotropic Nonlinear Meissner Effect in Nodal YBa$_2$Cu$_3$O$_7$ – δ Thin-Film Superconductors, Phys. Rev. Lett. 110, 087002 (2013).
[116] R. Prozorov and R. W Giannetta, Magnetic penetration depth in unconventional superconductors, Supercond. Sci. Technol. 19, R41 (2006).
[117] K. Halterman, O. T. Valls, and I. Žutić Angular Dependence of the penetration depth in unconventional superconductors, Phys. Rev. B 63, 014501 (2000).
[118] A. Bhattacharya, I. Žutić, A. M.Goldman, O. T. Valls, U. Welp, and B. Veal, Angular Dependence of the Nonlinear Magnetic Moment of YBa$_2$Cu$_3$O$_6.95$in the Meissner State, Phys. Rev. Lett. 82, 3132 (1999).
[119] I. Žutić and O. T. Valls, Superconducting-gap-node spectroscopy using nonlinear electrodynamics, Phys. Rev. B 56, 11279 (1997).
[120] I. Žutić and O. T. Valls, Low-frequency nonlinear magnetic response of an unconventional superconductor, Phys. Rev. B 58, 8738 (1998).