PconsC4: fast, free, easy, and accurate contact predictions.

Mirco Michel¹,* David Menéndez Hurtado¹,* and Arne Elofsson¹,†

¹Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden.
†To whom correspondence should be addressed
*Contributed equally.

August 2, 2018

Abstract

Motivation: Residue contact prediction was revolutionized recently by the introduction of direct coupling analysis (DCA). Further improvements, in particular for small families, have been obtained by the combination of DCA and deep learning methods. However, existing deep learning contact prediction methods often rely on a number of external programs and are therefore computationally expensive.

Results: Here, we introduce a novel contact predictor, PconsC4, which performs on par with state of the art methods. PconsC4 is heavily optimized, does not use any external programs and therefore is significantly faster and easier to use than other methods.

Availability: PconsC4 is freely available under the GPL license from https://github.com/ElofssonLab/PconsC4. Installation is easy using the pip command and works on any system with Python 3.5 or later and a modern GCC compiler.

Contact: arne@bioinfo.se

Introduction

To predict the structure of a protein from no other information than its sequence has been a major challenge in bioinformatics for decades. With the introduction of direct coupling analysis (DCA) to improve contact predictions [Wang et al., 2017, Ovchinnikov et al., 2017] significant progress in protein structure prediction was reported in 2011 [Morcos et al., 2011, Marks et al., 2011]. These methods have then been used to predict the structure of hundreds of protein families with high accuracy to an unprecedented accuracy [Michel et al., 2017a]. One disadvantage of DCA methods is that they require very large multiple sequence alignments to provide accurate contact predictions. This problem has been overcome by refining the initial DCA prediction with deep learning methods [Skwark et al., 2014]. Although the structure can accurately be predicted for many protein families, there still exist many families where the predictions are not sufficiently accurate. Although predictions are better for larger families, many other factors also seem to be important [Michel et al., 2017a].

Implementation

Below follows a short description of PconsC4, for details see the supporting information. PconsC4 is trained on a set of 2791 proteins culled from PDB and benchmarked on two datasets without any
homology to the training set. One validation set is identical to the benchmark set in PconsC3 [Michel et al. (2017)]. Additionally, we benchmarked PconsC4 on 44 proteins from CASP12, see Tables S2-S5. Multiple sequence alignments are created using three iterations of HHblits [Remmert et al. (2011)] and an e-value threshold of 1.0. Other alignment methods and cut-offs as well as combinations of different alignments were tested but did not provide significant improvements.

From each position in the multiple sequence alignments 72 features are calculated and fed into the PconsC4 network. These include: 68 one-dimensional sequential features and four pairwise features; the GaussDCA score [Baldassi et al. (2014)], APC-corrected mutual information, normalized APC-corrected mutual information, and cross-entropy.

At the core of PconsC4 is the U-net architecture [Ronneberger et al. (2015)], designed for image segmentation. It is composed of a series of convolutional layers, down- and up-sampling, with shortcut connections to help convergence.

To include secondary structure information but remain independent of external predictors, we took the pre-trained network from ProQ4 [Menéndez Hurtado et al. (2018)], that takes all the one-dimensional inputs and predicts secondary structure, dihedral angles, and surface accessibility for each residue. PconsC4 takes the output of the second to last layer, transforms them into two-dimensional features via an outer product, and concatenates them to the rest of the inputs.

Finally, the network produces four outputs: the probability of a contact for the thresholds of 6, 8, or 10 Å, and the distance measured as S-score.

To reduce the number of dependencies and overall run time, we re-implemented GaussDCA as a Python package using Pythran [Guelton et al. (2015)] resulting in a speedup of a factor of three. Optimization details are in section 2 of the supplementary information.

Table 1: Performance in PPV for the L top-ranked contact with a sequence separation of > 5 residues. Results for all, small families with Meff [Baldassi et al. (2014)] < and for short-, (5, 12), medium- (12, 23) and long: (23, ∞) ranges. Average runtime and external dependencies.

Method	All	Small	Short	Med	Long	Time [s]	Deps.
PlmDCA	0.36	0.12	0.14	0.15	0.26	84	-
GaussDCA	0.34	0.12	0.14	0.15	0.25	27	-
PSICOV	0.34	0.11	0.13	0.14	0.22	114	-
PhyCMAP	0.32	0.29	0.24	0.19	0.18	718	1,3
PconsC3	0.57	0.36	0.25	0.25	0.37	2931	1,2,3,4,5,6
Metapsicov	0.59	0.39	0.27	0.26	0.36	1158	1,3,7,8,9
PconsC4	0.65	0.42	0.29	0.28	0.45	12 (56∗)	-

Table 1: Performance in PPV for the L top-ranked contact with a sequence separation of > 5 residues. Results for all, small families with Meff [Baldassi et al. (2014)] < and for short-, (5, 12), medium- (12, 23) and long: (23, ∞) ranges. Average runtime and external dependencies.

Method	All	Small	Short	Med	Long	Time [s]	Deps.
PlmDCA	0.36	0.12	0.14	0.15	0.26	84	-
GaussDCA	0.34	0.12	0.14	0.15	0.25	27	-
PSICOV	0.34	0.11	0.13	0.14	0.22	114	-
PhyCMAP	0.32	0.29	0.24	0.19	0.18	718	1,3
PconsC3	0.57	0.36	0.25	0.25	0.37	2931	1,2,3,4,5,6
Metapsicov	0.59	0.39	0.27	0.26	0.36	1158	1,3,7,8,9
PconsC4	0.65	0.42	0.29	0.28	0.45	12 (56∗)	-

Table 1: Performance in PPV for the L top-ranked contact with a sequence separation of > 5 residues. Results for all, small families with Meff [Baldassi et al. (2014)] < and for short-, (5, 12), medium- (12, 23) and long: (23, ∞) ranges. Average runtime and external dependencies.

1: PSIPRED, 2: NetSurfP, 3: PSI-BLAST, 4: PhyCMAP, 5: PlmDCA, 6: GaussDCA, 7: PSICOV, 8: Freecontact, 9: CCMpred.

∗ Timing without pre-loading the network.

Results and Discussion

Table 1 shows a performance comparison of different methods running on the same alignments. PconsC4 performs 14% better than PconsC3 on the benchmark dataset and 10% better than Metapsicov. These improvements are consistent across short, medium, and long range contacts and for all thresholds (Figures S1-2). Additional evaluations are also presented in the supplementary information. As shown in Figures S3-4, the predicted scores are well calibrated, i.e. the reported scores reflect the real probability for a contact to exist. This enables easy comparison of alternative alignments.

All machine learning methods perform significantly better than the DCA methods for smaller families. PconsC4 approaches maximum performance at around 10⁵ effective sequences compared with 10⁶ for the DCA methods (Figure S5).

The overall performance is comparable to meta-meta predictors such as DNCON2 [Adhikari et al. (2018)] or other deep learning methods [Wang et al. (2017)]. However, a direct comparison is difficult as these programs are either not available for download, to slow to run for large scale experiments, or cannot be used with a specific multiple sequence alignment.

The main advantage of PconsC4 is that it is fast and easy to use. Starting from a single input alignment PconsC4 predicts the contacts in less than one minute (or 12 s if the network is preloaded).
This is more than 25 times faster than PconsC3 or Metapsicov, while still consistently outperforming them. Since PconsC4 is not tied to any specific alignment method, it can directly take advantage of any improvement on this front, such as the use of alternative alignment strategies (Buchan and Jones [2017]) or metagenomics data (Ovchinnikov et al. [2017]), and thus be easily integrated into pipelines.

Acknowledgements

Our thanks to Serge Guelton for his swift fixes to Pythran and to Nikos Tsardakas Renhuldt for discussion. This work was supported by grants from the Swedish Research Council (VR-NT 2016-03798 to AE). This research was conducted using the resources of High Performance Computing Center North (HPC2N).

References

Adhikari, B., Hou, J., and Cheng, J. (2018). DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics, 34(9), 1466–1472.

Baldassi, C., Zamparo, M., Feinauer, C., Procaccini, A., Zecchina, R., Weigt, M., and Pagnani, A. (2014). Fast and accurate multivariate gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PLOS ONE, 9(3), 1–12.

Buchan, D. W. A. and Jones, D. T. (2017). Improved protein contact predictions with the metapsicov2 server in casp12. Proteins: Structure, Function, and Bioinformatics, 86(S1), 78–83.

Guelton, S., Brunet, P., Amini, M., Merlini, A., Corbillion, X., and Raynaud, A. (2015). Pythran: Enabling static optimization of scientific python programs. Computational Science & Discovery, 8(1), 014001.

Marks, D., Colwell, L., Sheridan, R., Hopf, T., Pagnani, A., Zecchina, R., and Sander, C. (2011). Protein 3d structure computed from evolutionary sequence variation. PLoS One, 6(12), e28766.

Menéndez Hurtado, D., Uziela, K., and Elofsson, A. (2018). Deep transfer learning in the assessment of the quality of protein models. ArXiv e-prints.

Michel, M., Menendez Hurtado, D., Uziela, K., and Elofsson, A. (2017a). Large-scale structure prediction by improved contact predictions and model quality assessment. Bioinformatics, 33(14), i23–i29.

Michel, M., Skwark, M. J., Menendez Hurtado, D., Ekeberg, M., and Elofsson, A. (2017b). Predicting accurate contacts in thousands of pfam domain families using pconsC3. Bioinformatics, 33(18), 2859–2866.

Morcos, F., Pagnani, A., Lunt, B., Bertolino, A., Marks, D., Sander, C., Zecchina, R., Onuchic, J., Hwa, T., and Weigt, M. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A, 108(49), 1293–301.

Ovchinnikov, S., Park, H., Varghese, N., Huang, P., Pavlopoulos, G., Kim, D., Kamarsetty, H., Kyrpides, N., and Baker, D. (2017). Protein structure determination using metagenome sequence data. Science, 355(6322), 294–298.

Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2011). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173–175.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham. Springer International Publishing.

Skwark, M., Raimondi, D., Michel, M., and Elofsson, A. (2014). Improved contact predictions using the recognition of protein like contact patterns. PLoS Comput Biol, 10(11), e1003889.

Wang, S., Sun, S., Li, Z., Zhang, R., and Xu, J. (2017). Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol, 13(1), e1005324.
Weigt, M., White, R., Szurmant, H., Hoch, J., and Hwa, T. (2009). Identification of direct residue contacts in protein-protein interaction by message passing. *Proc Natl Acad Sci U S A*, 106(1), 67–72.
Supplementary materials to "PconsC4: fast, free, easy, and accurate contact predictions."

Mirco Michel, David Menéndez-Hurtado and Arne Elofsson

August 2, 2018

Contents

1 Results 1
 1.1 ROC and calibration curves 3
 1.2 Precision as a function of the alignment depth 6

2 GaussDCA optimization 6
 2.1 GaussDCA and compressed alignments 6
 2.2 Fast estimation of the expected similarity threshold, θ, in Gauss-

3 Training 7
 3.1 Description of inputs 7
 3.1.1 One-dimensional inputs 7
 3.1.2 Two-dimensional inputs 8
 3.2 Training and testing sets 8

4 Pipeline 8

5 Instructions 11
 5.1 Installation 11
 5.2 Example usage 11
 5.3 Supported formats 11

6 Training and test sets 12

1 Results

Here we report more detailed comparisons on the test sets. First, in Table S1 we compare short, medium, and long range contacts, showing that PconsC4 is better than previous methods at all ranges. Figures S1 and S2 show the receiver operating characteristic curves.

We also include an expanded version of the Table 1, Table S1 including CASP12 and other methods. For benchmarking GaussDCA we used the Julia implementation and CCMpred for PlmDCA. The times were measured on a machine with an Intel i7-4770 CPU and a NVIDIA 1070Ti GPU for CCMpred.
PconsC4 seems to be better calibrated than earlier methods, as shown in Figures S3 and S4. This means that a predicted score of 0.2 indicates that there is a 20% chance for a contact to exist. A perfectly calibrated predictor would lie on the diagonal (dotted line).

Table S1: Precision for the top L contacts, where L is the sequence length, at different distance thresholds. Short: (5, 12], medium: (12, 23], long: (23, ∞).

Method	Benchmark set	Short	Medium	Long
PlmDCA	Short	0.14	0.15	0.26
	Medium	0.14	0.15	0.25
	Long	0.13	0.14	0.22
GaussDCA	Short	0.14	0.15	0.25
PSICOV	Short	0.13	0.14	0.22
	Medium	0.24	0.19	0.18
	Long	0.27	0.26	0.36
PconsC3	Short	0.14	0.15	0.26
	Medium	0.14	0.15	0.25
	Long	0.13	0.14	0.22
MetaPSICOV	Short	0.13	0.14	0.22
	Medium	0.24	0.19	0.18
	Long	0.27	0.26	0.36
PconsC4	Short	0.29	0.28	0.45
	Medium	0.29	0.28	0.45
	Long	0.29	0.28	0.45

Table S2: Performance in PPV for the L top-ranked contact with a sequence separation of >5 residues, average runtime in seconds on the benchmark set, and external dependencies (except for alignment methods).

Benchmark set	CASP12	Time [s]	Deps.
PlmDCA (CCMpred, GPU)	0.36	0.26	84
PlmDCA (CCMpred, CPU)	0.36	0.26	393
GaussDCA (Julia)	0.34	0.25	27
GaussDCA (Pythran)	0.34	0.25	10
PSICOV	0.34	0.20	114
PhyCMAP	0.32	0.22	718
PconsC3	0.57	0.39	2931
Metapsicov	0.59	0.43	1158
PconsC4	0.65	0.46	56
PconsC4 (pre-loaded)	0.65	0.46	12

1: PSIPRED, 2: NetSurfP, 3: PSI-BLAST, 4: PhyCMAP, 5: PlmDCA, 6: GaussDCA, 7: PSICOV, 8: Freecontact, 9: CCMpred.
1.1 ROC and calibration curves

Figure S1: ROC curves on the Benchmark set
Figure S2: ROC curves on CASP12

Figure S3: Calibration curves on the Benchmark set
Figure S4: Calibration curves on CASP12
1.2 Precision as a function of the alignment depth

The Figure S5 shows performance vs. number of effective sequences. Here we use the same definition as in (Baldassi et al., 2014a): the number of sequences that are significantly different from each other. While statistical methods, like DCA, benefit from a constant improvement for larger number of effective sequences, PconsC4 starts to plateau at around 10^2 sequences. This suggests that it is capable of learning to ignore the noise in DCA methods, even when the signal is weak.

Figure S5: PPV vs. number of effective sequences on the benchmark set. The top L contacts are considered.

2 GaussDCA optimization

In the reimplementation of GaussDCA we made two differences with respect to the reference implementation that improve the speed, while keeping the results exactly the same.

2.1 GaussDCA and compressed alignments

Much of the CPU time is spent computing sequence weights, which means we need to compute all pairwise Hamming distances between sequences in the multiple sequence alignment. In a naive implementation, we store the alignment as a 2D array of int8. The compiler can then use SIMD instructions to combine several numbers to fit them in the word size of the CPU.

The Julia implementation of Gaussdca, (Baldassi et al., 2014b), uses a manually compressed alignment: since we have only 21 states, we only need 5 bits
per symbol, so we can manually pack up to 12 amino acids in a single 64 bits int, that fits our CPU optimally. To compute the distance, we need to XOR the sequences, and count the number of 5-bit regions where it differs. This gives us a 50% increase in packing efficiency with respect to the naive 8-bit storage.

In our re-implementation we found that the naive version is actually faster, probably because it is easier for the compiler (GCC 7) to optimize. Further improvements can be obtained activating auto-vectorization (GCC flag -f\texttt{tree}-\texttt{vectorize}), suggesting that the code emitted by Pythran is more suitable for vectorization.

2.2 Fast estimation of the expected similarity threshold, θ, in GaussDCA

Two sequences are considered similar if their Hamming distance is below a given threshold. Baldassi et al. (2014a) introduced an automatic estimation as the average fraction of differences across the alignment, and implemented it by directly counting them, which is $O(m^2)$ on the number of sequences in the alignment.

The same result can be obtained in linear time by counting the number of occurrences of each symbol in each column (called the bincount function), and computing the 2-combination $\binom{n}{2}$. For an alignment of C columns and an alphabet of size Q:

$$n_{\text{matches}} = \sum_c \sum_q \binom{\#\text{alignment}_c = q}{2}$$

3 Training

3.1 Description of inputs

3.1.1 One-dimensional inputs

From the columns of the multiple sequence alignment we can compute the probability of finding each amino acid or gap, p_i. For amino acids, we compute the average frequency $\langle p_i \rangle$ as the observed frequency of the amino acid on the Uniref50 dataset. The expected probability of gap $\langle p_\cdot \rangle$ is estimated from each alignment. We consider a total of 23 amino acid states, the usual 20, plus the gap state, plus B (asparagine or aspartic acid) and X (unknown).

For each column we can compute self-information as the vector of entries:

$$I_i = \log_2(p_i/\langle p_i \rangle),$$

and the partial entropies are defined as:

$$S_i = p_i \log_2(p_i/\langle p_i \rangle)$$

The sequence is given as one hot encoding.
3.1.2 Two-dimensional inputs

The two-dimensional inputs are mutual information (MI), normalized mutual information (NMI), cross entropy (H), and GaussDCA.

Mutual information is defined as:

\[MI(x, y) = \sum_{x,y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right) \]

(4)

We also include two more inputs that are adjusted versions of MI. The first is normalized mutual information, where we think of \(MI \) as an analogue of a covariance, and \(NMI \) is the Pearson correlation coefficient. The entropies of the columns play the role of the variances:

\[NMI(x, y) = \frac{MI(x, y)}{\sqrt{S(x)S(y)}} \]

(5)

And lastly, cross entropy is calculated as an additive normalization of mutual information:

\[H(x, y) = S(x) + S(y) - MI(x, y) \]

(6)

The Average Product Correction (APC) \((\text{Dunn et al., } 2008)\) is applied to all two-dimensional inputs except for cross entropy.

3.2 Training and testing sets

PconsC4 is trained on a set of 2891 proteins culled from PDB using PISCES \((\text{Wang and Dunbrack, Jr., } 2003)\) with a maximum sequence identity 20%, minimum resolution 2.0 Å, maximum R-factor 0.3. Furthermore, chains from the same ECOD \((\text{Cheng et al., } 2014)\) H-group as any protein in the benchmark dataset or dating from after 2016-05-01 was removed to avoid potential overlap with the test datasets. Out of these 2891 proteins, 100 randomly selected proteins were used as a validation set for optimization, see Table S3 and S4. For benchmarking, two datasets are used, the same 180 proteins, Table S5 as in \((\text{Michel et al., } 2017)\) and the 44 proteins from CASP12 with available structures, Table S6.

4 Pipeline

We include a schematic of the complete pipeline, see Figure S6.

In the upper left corner are the 1D inputs being fed to the pre-trained model taken from ProQ4 \((\text{Menéndez Hurtado et al., } 2018)\). It is pre-trained to predict secondary structure and surface accessibility for each residue (golden outputs in the middle left).

The 128 output channels of the second to last layer are used to extract relevant 1D features. These are then transformed into 2D features by the outer product and combined with the remaining 2D features (GaussDCA, Mutual Information, Normalized Mutual Information, and Cross Entropy). The concatenation is then passed on to the U-net block (lower rectangle).

U-net was developed for image segmentation and combines convolutional layers, max pooling (downwards arrows) to increase the effective receptive field,
upsampling (upwards arrows) to recover the original size, and skip connections (horizontal arrows) to help convergence.

The final predictions are shown on the upper right: contact maps at the three distance thresholds and distance as S-score. The branch predicting S-score is solving a regression problem with a Mean Squared Error loss, whereas the other three output branches are classifying the probability of a contact for the thresholds of 6, 8, or 10 Å, and use a cross entropy loss.

All intermediate convolutional layers are followed by an ELU (Clevert et al., 2015) non linearity, Batch Normalization (Ioffe and Szegedy, 2015), and a Dropout layer (Srivastava et al., 2014) with a probability of 0.1. Weights are initialized using the He distribution as described in the ResNet paper (He et al., 2016). A weight decay of 10^{-12} on the L^2-norm is applied for regularization. All output layers have an appropriate function to ensure the output is in the valid range, sigmoid in our case.

The model is trained for 100 epochs (full passes over the training data) using the Adam optimizer at an initial learning rate of 0.001. The learning rate is decreased by a factor of 0.5 if the S-score training loss did not decrease over the last five epochs. The training dataset is shuffled after each epoch. The final model was selected by taking the epoch with minimum S-score loss on the validation dataset (epoch 29).
Figure S6: The example is the protein 2AV5 chain D from the benchmark set.
5 Instructions

5.1 Installation

On a machine with Python 3.5 or higher and pip, PconsC3 can be installed using the following commands:

```bash
pip install numpy Cython pythran
wget https://github.com/ElofssonLab/PconsC4/releases/download/0.2/
pconsc4-0.2.tar.gz
pip install pconsc4-0.2.tar.gz
```

Once additional space is granted in PyPI (Python Package Index), a simple `pip install pconsc4` will be sufficient.

A deep learning backend compatible with Keras will also be needed. We recommend Tensorflow:

```bash
pip3 install -U tensorflow
```

5.2 Example usage

```python
import pconsc4

# Load the deep learning model
model = pconsc4.get_pconsc4()

# It is possible to re-use on different alignments
pred_1 = pconsc4.predict(model, 'path/to/alignment1')
pred_2 = pconsc4.predict(model, 'path/to/alignment2')

# Show pred_1 on the screen:
import matplotlib.pyplot as plt
plt.imshow(pred_1['contacts']['cmap'])
plt.show()

# Save pred_2 in CASP format:
from pconsc4.utils import format_contacts_casp
print(format_contacts_casp(pred_2['contacts']['cmap'], seq_2, min_sep=5))
```

5.3 Supported formats

The program accepts alignments in .fasta, .a3m, or .aln, without line wrapping.
6 Training and test sets

PconsC4 is trained on a set of 2891 proteins culled from PDB using PISCES (Wang and Dunbrack, Jr. 2003) on 2017-09-14 with the following criteria: maximum sequence identity 20%, minimum resolution 2.0 Å, maximum R-factor 0.3. Furthermore, chains from the same ECOD (Cheng et al. 2014) H-group as any protein in the benchmark dataset or dating from after 2016-05-01 was removed to avoid potential overlap with the test datasets. Out of these 2891 proteins, 100 randomly selected proteins were used as a validation set for optimization.
Table S3: PDB code and chain identification for proteins in the training set

13
Table S4: PDB code and chain identification for proteins in the validation set

Table S5: PDB code and chain identification for proteins in the benchmark set

Table S6: PDB code and chain identification for CASP12 targets
References

Baldassi, C., Zamparo, M., Feinauer, C., Procaccini, A., Zecchina, R., Weigt, M., and Pagnani, A. (2014a). Fast and accurate multivariate gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. *PLoS ONE, 9*(3), 1–12.

Baldassi, C., Pagnani, A., Weigt, M., Feinauer, C., Procaccini, A., Zecchina, R., and Zamparo, M. (2014b). Gaussdca.jl - first release.

Cheng, H., Schaeffer, R., Liao, Y., Kinch, L., Pei, J., Shi, S., Kim, B., and Grishin, N. (2014). ECOD: an evolutionary classification of protein domains. *PLoS Comput Biol, 10*(12), e1003926.

Clevert, D., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs). *CoRR.*

Dunn, S., Wahl, L., and Gloor, G. (2008). Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. *Bioinformatics, 24*(3), 333–340.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. *CoRR, abs/1502.03167.*

Menéndez Hurtado, D., Uziela, K., and Elofsson, A. (2018). Deep transfer learning in the assessment of the quality of protein models. *ArXiv e-prints.*

Michel, M., Skwark, M. J., Menéndez Hurtado, D., Ekeberg, M., and Elofsson, A. (2017). Predicting accurate contacts in thousands of pfam domain families using pcons3. *Bioinformatics, 33*(18), 2859–2866.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research, 15*(1), 1929–1958.

Wang, G. and Dunbrack, Jr., R. L. (2003). PISCES: a protein sequence culling server. *Bioinformatics, 19*(12), 1589–1591.