Present Status of GRACE/SUSY

FUJIMOTO Junpei a, ISHIKAWA Tadashi a, JIMBO Masato b, KANEKO Toshiaki a, KON Tadashi c, KURODA Masaaki d

a KEK, Oho, Tsukuba, Ibaraki 305-0801 Japan
b Tokyo Management College, Ichikawa, Chiba 272-0001, Japan
c Seikei University, Musashino, Tokyo 180-8633, Japan
d Meiji Gakuin University, Totuka, Yokohama 244-8539, Japan

Abstract

We have developed the system for the automatic computation of cross sections, GRACE/SUSY, including the one-loop calculations for processes of the minimal supersymmetric extension of the standard model. For an application, we investigate the pair-production of the heavy chargino in electron-positron collisions.

1 Introduction

From the theoretical point of view, it has been a promising hypothesis that there exists a symmetry called supersymmetry (SUSY) between bosons and fermions at the unification-energy scale [1]. In particular, the minimal supersymmetric extension of the standard model (MSSM) has been extensively studied in the past decade, because it has the simplest structure and contains the least number of particles, and yet it is complex enough to describe the most essential feature characteristic to any theory of SUSY.

Since it is a broken symmetry at the electroweak-energy scale, the relic of SUSY is expected to remain as a rich spectrum of SUSY particles, partners of usual matter fermions, gauge bosons and Higgs scalars, named sfermions, gauginos and higgsinos, respectively. The quest of these new particles has been one of the most important issues of the high-energy physics at future colliders of sub-TeV-region or TeV-region energies.

For the simulations of the experiments, we have to calculate the cross sections for the processes with more than three final particles because most kinds of particles decay to two or more particles. Several groups independently developed computer systems which automate the perturbative calculation in the standard model (SM) with different methods [2, 3, 4, 5, 6], and also have been developing the systems of the automatic computation in the MSSM, GRACE/SUSY [7, 8, 9], FeynArts-FormCalc [10] and CompHEP [11].

For more than five years, the minami-tateya group has been developing the system of the automatic computation of the supersymmetric processes [7, 8]. Compared with GRACE [2] for the SM, GRACE/SUSY [9] for the MSSM has very complicated structure. This is caused not only by the complicity of the MSSM lagrangian itself but also by the several historical reasons in the course of the development of GRACE and GRACE/SUSY.

(1) In GRACE for the SM, the so-called Kyoto convention [12] is used for the Feynman rule, in which, for example, the fermion propagator is given by $\frac{1}{p^2 - m^2}$, while in GRACE/SUSY the international convention of the Feynman rules is adopted. The Feynman rule of the interaction vertex differs also in two conventions.
At the first phase of the construction of GRACE/SUSY, we referred to the MSSM model lagrangian presented by Hikasa and coded the model definition files based on it. The first paper on the MSSM processes are computed based on these model definition files. Later, we noticed that the European people, in particular, the package of the generator SUSYGEN defines the allowed region of the parameters μ and $\tan \beta$ differently from the Hikasa’s manuscript. This caused some confusion in the international collaborations. Therefore, we have decided to have our own model lagrangian for the MSSM at hand. Kuroda has computed the complete lagrangian of the MSSM using the European convention: namely, the positive chargino is called a particle and the ranges of μ and $\tan \beta$ are defined as $0 \leq \tan \beta \leq 1$ and $-\infty \leq \mu \leq +\infty$.

In addition, the GRACE system consists of several components, for example, the package for the Feynman-graph generation, the module for the calculation of the helicity amplitudes. We had to modify and expand them for the construction of GRACE/SUSY. For the loop calculation, we also needed to expand the package for the loop calculations in GRACE/1LOOP.

In this paper, we provide the present status of GRACE/SUSY, especially on the development of the loop calculations for the MSSM.

2 GRACE/SUSY/1LOOP

For discovery experiments, we have to calculate cross sections not only for processes of new-particle productions but also for their background processes. For this purpose, GRACE/SUSY is well established at the tree level, and is widely used (for example, see [20]). On the other hand, we need loop corrections for precise measurements. The first step to apply GRACE/SUSY to calculations at the one-loop level was a process of the SM-particle production. Recently, we have been developing the system for the automatic computation of the MSSM at the one-loop level GRACE/SUSY/1LOOP, which is applicable to processes of the MSSM-particle production.

We adopt the renormalization scheme of the MSSM as follows:

- the gauge-boson sector: the conventional approach [22] (Renormalization constants of wavefunctions are introduced to unmixed bare states and mass counterterms are introduced to mixed mass eigenstates.)

- the Higgs sector: the Dabelstein’s approach [23]; the chargino sector and the neutralino sector: the Kuroda’s approach [24] (see also [25]) (Renormalization constants of wavefunctions are introduced only to unmixed bare states.)

- the matter-fermion sector and the sfermion sector: the Kyoto approach [12] (Renormalization constants of wavefunctions are introduced only to mixed mass eigenstates.)

As an application of GRACE/SUSY/1LOOP, we consider chargino-pair productions in electron-positron collisions [26, 27]. For the calculations of cross sections, we use the same
Figure 1: Cross-sections at the tree-level for $e^+e^- \to \tilde{\chi}_i^+\tilde{\chi}_j^- \; (i, j = 1 \text{ or } 2)$. Solid line, dashed line and dotted line indicate cross sections for chargino1-pair production, chargino1-chargino2 production and chargino2-pair production, respectively.

input parameters as in ref. \cite{26}, $M_{\tilde{\chi}_1^+} = 150 \text{ GeV}$, $M_{\tilde{\chi}_2^+} = 420 \text{ GeV}$, $M_{\tilde{\chi}_1^0} = 75 \text{ GeV}$, $\tan\beta = 5$, $A_f = M_F = 500 \text{ GeV}$, $M_{\tilde{\nu}} = 500 \text{ GeV}$ and $M_{A^0} = 150 \text{ GeV}$.

First, we calculate cross sections at the tree-level. The numerical results shown in Figure 1 indicate that the cross sections for the production of chargino2 (heavy chargino) pair are comparable to those for the production of chargino1 (light chargino) pair in the TeV region. Thus we investigate the loop calculation for the production of chargino2 pair.

C_{UV}	1-loop (pb)
0	-0.1913091178482273
100	-0.1913091178449565
λ	1-loop + softγ (pb)
1.0×10^{-20}	$-7.433338646007673 \times 10^{-2}$
1.0×10^{-23}	$-7.433338646189581 \times 10^{-2}$
k_c	1-loop + softγ + hardγ (pb)
1.0×10^{-1}	0.1374×10^{-2} ($\pm 0.000345 \times 10^{-2}$)
1.0×10^{-3}	0.1368×10^{-2} ($\pm 0.000473 \times 10^{-2}$)

Table 1. The invariance checks of cross sections on C_{UV}, λ and k_c.

For the one-loop calculations, we have to check the invariance of cross sections varying three parameters, the UV constant (C_{UV}), the fictitious photon mass (λ) and the cutoff energy of the soft photon (k_c). The invariance checks at $\sqrt{s} = 1900 \text{ GeV}$ are shown in
Table 1.

In Figure 2 numerical results are shown for the cross sections at the tree-level and the cross sections at the one-loop level which include all contributions from loop diagrams, soft-photon and hard-photon emissions.

3 Conclusion and outlook

We have developed the system GRACE/SUSY/1LOOP for the automatic computation of cross sections of the MSSM-particle production, including the one-loop calculations. For an application, we have investigated the pair-production of the heavy chargino in electron-positron collisions, and tuned up our system.

Remaining tasks for us are:

- checking GRACE/SUSY/1LOOP with the non-linear gauge in the MSSM.
 (Checking GRACE with the non-linear gauge has already been done in the SM [28].)
- checking GRACE/SUSY/1LOOP for the invariance on the UV constant with other processes.

Acknowledgements

This work was partly supported by Japan Society for Promotion of Science under the Grant-in-Aid for Scientific Research B (No.14340081).
References

[1] H.P. Nilles, Phys. Rep. 110 (1984), 1.
H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985), 75.

[2] T. Kaneko, in New Computing Techniques in Physics Research, edited by D. Perret-Gallix and W. Wojcik, (Édition du CNRS, Paris, 1990), p.555.
T. Kaneko and H. Tanaka, in Proceedings of the Second Workshop on Japan Linear Collider (JLC), KEK, November 6-8, 1990, edited by S. Kawabata, KEK Proceedings 91-10 (1991), p.250.
T. Kaneko, in New Computing Techniques in Physics Research II, edited by D. Perret-Gallix, (World Scientific, Singapore, 1992), p.659.
T. Ishikawa, T. Kaneko, K. Kato, S. Kawabata, Y. Shimizu and H. Tanaka (Minami-Tateya group), GRACE manual Version 1.0, KEK Report 92-19 (1993), and References therein.

[3] E. Boos, M. Dubinin, V. Edneral, V. Ilyin, A. Kryukov, A. Pukov, V. Savrin, S. Shichanin and A. Taranov, in New Computing Techniques in Physics Research, edited by D. Perret-Gallix and W. Wojcik, (Édition du CNRS, Paris, 1990), p.573.
E. Boos, M. Dubinin, V. Edneral, V. Ilyin, A. Kryukov, A. Pukov and S. Shichanin, in New Computing Techniques in Physics Research II, edited by D. Perret-Gallix, (World Scientific, Singapore, 1992), p.665.
A. Pukov, in New Computing Techniques in Physics Research III, edited by K.-H. Becks and D. Perret-Gallix, (World Scientific, Singapore, 1994), p.473.

[4] J. Küblbeck, M. Böhm and A. Denner, Comput. Phys. Commun. 60 (1990), 165.
R. Mertig, M. Böhm and A. Denner, Comput. Phys. Commun. 64 (1991), 345.
A. Denner, H. Eck, O. Hahn and J. Küblbeck, Phys. Lett. B 291 (1992), 278.
A. Denner, H. Eck, O. Hahn and J. Küblbeck, Nucl. Phys. B 387 (1992), 467.
R. Mertig, in New Computing Techniques in Physics Research III, edited by K.-H. Becks and D. Perret-Gallix, (World Scientific, Singapore, 1994), p.467.
H. Eck and J. Küblbeck, ibid., p.565.

[5] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81 (1994), 357.
F. Maltoni and Tim Stelzer, JHEP 0302 (2003), 027.

[6] T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118 (1999), 153.

[7] M. Jimbo, H. Tanaka, T. Kaneko, T. Kon and Minami-Tateya collaboration, in Physics of e^+e^-, $e^-\gamma$ and $\gamma\gamma$ collisions at linear accelerators — Proceedings of the INS Workshop, INS, December 20-22, 1994, edited by Z. Hioki, et al., INS-J-181 (1995), p.222.
M. Jimbo, T. Kon and Minami-Tateya collaboration, in Proceedings of the YITP Workshop on Particle Physics and its Future Perspective, YITP, January 17-20, 1995, edited by K. Suehiro, Soryushiron Kenkyu 92 (1995), p.31.
M. Jimbo and Minami-Tateya collaboration, in Proceedings of the Fifth Workshop on Japan Linear Collider (JLC), Kawatabi, Miyagi, February 16-17, 1995, edited by Y. Kurihara, KEK Proceedings 95-11 (1995), p.98.
T. Kon, in ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES —

5
Proceedings of XXXth Rencontres de Moriond, Les-Arcs, Savoie, France, March 11-18, 1995, edited by J. Tran Thanh Van, (Éditions Fronties, Gif-sur-Yvette Cedex, 1996), p.287.

M. Jimbo, T. Kon, H. Tanaka, T. Kaneko and Minami-Tateya collaboration, in New Computing Techniques in Physics Research IV — Proceedings of the Fourth International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics (AIHENP95), Pisa, Italy, April 3-8, 1995, edited by B. Denby and D. Perret-Gallix, (World Scientific, Singapore, 1995), p.149.

T. Kaneko, H. Tanaka, M. Jimbo, T. Kon and Minami-Tateya collaboration, in Proceedings of the Workshop on Physics and Experiments with Linear Colliders, Morioka-Appi, Iwate, Japan, September 8-12, 1995, edited by A. Miyamoto et al., (World Scientific, Singapore, 1996), p.579.

M. Jimbo, H. Tanaka, T. Kon and T. Kaneko, in Proceedings of the Xth International Workshop on High Energy Physics and Quantum Field Theory, Zvenigorod, Russia, September 20-26, 1995, edited by B.B. Levchenko and V.I. Savrin, (Moscow State University, Moscow, 1996), p.154.

[8] H. Tanaka, M. Kuroda, T. Kaneko, M. Jimbo, T. Kon and Minami-Tateya collaboration, Nucl. Instrum. Meth. A 389 (1997), 295.

[9] J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, K. Kon, M. Kuroda, Y. Kurihara, Y. Shimizu and H. Tanaka, Comput. Phys. Commun. 153 (2003), 106.

Program package GRACE/SUSY (GRACE v2.2.0) is available from http://minami-home.kek.jp/.

[10] T. Hahn, Nucl. Phys. Proc. Suppl. 89 (2000), 231.

T. Hahn, Comput. Phys. Commun. 140 (2001), 418.

T. Hahn and C. Schappacher, Comput. Phys. Commun. 143 (2002), 54.

[11] D.S. Gorbunov and A.V. Semenov, hep-ph/0111291.

A. Semenov, Nucl. Instrum. Meth. A502 (2003), 558.

[12] K-I. Aoki, Z. Hioki, R. Kawabe, M. Komuma and T. Muta, Prog. Theor. Phys. Suppl. 73 (1982), 1.

[13] K. Hikasa, SUSY manuscript, version July 5, 1995, unpublished.

[14] J. Fujimoto, K. Hikasa, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, M. Kuroda, Y. Kurihara, T. Munehisa, D. Perret-Gallix, Y. Shimizu, H. Tanaka, Comput. Phys. Commun. 111 (1998), 185.

[15] S. Katsanévas, P. Morawitz, Comput. Phys. Commun. 112 (1998), 227.

[16] M. Kuroda, KEK CP-080 (1999), hep-ph/9902340.

See also, J. Rosiek, Phys. Rev. D41 (1990), 3464; erratum KA-TP-8-1995 (1995), hep-ph/9511250.

[17] T. Kaneko, Comput. Phys. Commun. 92 (1995), 127.

[18] H. Tanaka, Comput. Phys. Commun. 58 (1990), 153.

[19] J. Fujimoto, Y. Shimizu, K. Kato, Y. Oyanagi, Prog. Theor. Phys. 87 (1992), 1233.

J. Fujimoto, T. Ishikawa, Y. Shimizu, K. Kato, N. Nakazawa, T. Kaneko, Nucl. Instrum. Meth. A389 (1997), 301.
[20] Y. Yasui, S. Kanemura, S. Kiyoura, K. Odagiri, Y. Okada, E. Senaha, and S. Yamashita, in Proceedings of International Workshop on Linear Colliders (LCWS 2002), Jeju Island, Korea, 26-30 Aug 2002, hep-ph/0211047.
S. Kiyoura, S. Kanemura, K. Odagiri, Y. Okada, E. Senaha, S. Yamashita, and Y. Yasui, ibid., hep-ph/0301172.

[21] J. Fujimoto, T. Ishikawa, Y. Shimizu, T. Kaneko, M. Kuroda, K. Kato, in Proceedings of the XVth International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 2000), Tver, Russia, 14-20 Sep 2000, edited by M.N. Dubinin and V.I. Savrin. (Moscow, SINP MSU, 2000), p.198.

[22] M. Böhm, W. Hollik and H. Spiesberger, Fortschr. Phys. C34 (1986), 687.

[23] A. Dabelstein, Z. Phys. C67 (1995), 495.

[24] M. Kuroda, in Research report to the Ministry of Education, Science and Culture, Japan, the Grant-in-Aid for Scientific Research C (No.08640391), (1999), p.127.

[25] T. Fritzsche and W. Hollik, Eur. Phys. J. C24 (2002), 619.

[26] M.A. Diaz, S.F. King and A. Ross, Nucl. Phys. B529 (1998), 23.

[27] T. Blank and W. Hollik, hep-ph/0011092.
W. Öller, H. Eberl, W. Majerotto and C. Weber, hep-ph/0304006.

[28] G. Bélanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato and Y. Shimizu, LAPTH-982-03, KEK-CP-138 (2003), hep-ph/0308080.