Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression

Annunziata Di Domenico, Christodoulos P. Pipinikas, Renaud S. Maire, Konstantin Bräutigam, Cedric Simillion, Matthias S. Dettmer, Erik Vassella, Chrissie Thirlwell, Aurel Perren & Ilaria Marinoni

Recent data suggest that Pancreatic Neuroendocrine Tumours (PanNETs) originate from α- or β-cells of the islets of Langerhans. The majority of PanNETs are non-functional and do not express cell-type specific hormones. In the current study we examine whether tumour DNA methylation (DNAme) profiling combined with genomic data is able to identify cell of origin and to reveal pathways involved in PanNET progression. We analyse genome-wide DNAme data of 125 PanNETs and sorted α- and β-cells. To confirm cell identity, we investigate ARX and PDX1 expression. Based on epigenetic similarities, PanNETs cluster in α-like, β-like and intermediate tumours. The epigenetic similarity to α-cells progressively decreases in the intermediate tumours, which present unclear differentiation. Specific transcription factor methylation and expression vary in the respective α/β-tumour groups. Depending on DNAme similarity to α/β-cells, PanNETs have different mutational spectra, stage of the disease and prognosis, indicating potential means of PanNET progression.
Pancreatic neuroendocrine tumours (PanNETs) are tumours of the islets of Langerhans. The cell of origin is unclear, and mechanisms associated with progression are largely unknown. Surgery is currently the only curative option; however, 5-year disease free survival is ~50% in patients following an R0 resection. To date, there is no validated risk prediction tool to accurately guide follow-up and select patients at high risk of recurrence who might benefit from adjuvant therapy. PanNETs are clinically and genetically heterogeneous; ~40% of patients present with mutations in either DAXX or ATRX and MEN1, which encode for proteins involved in epigenetic regulation. PanNETs with mutations in DAXX or ATRX have a shorter disease free survival compared to wild-type tumours.

The islets of Langerhans include five different cell types producing specific hormones: glucagon is produced by α-cells, insulin by β-cells, somatostatin by δ-cells, ghrelin by ε-cells and pancreatic polypeptide by PP-cells. Only a minority of PanNETs are functional, secreting inadequate hormones that are insulinomas. Whether functional tumours and non-functional tumours originate from the same cell type remains uncertain.

Recent studies of gene expression and master regulator analysis alongside investigation of super-enhancer signatures have suggested both α- and β-cells as two possible cells of origin for non-functioning (NF)-PanNETs. On the other hand, Sadanandam et al. reported that a group of aggressive PanNET, namely, “metastasis-like primary”, have a phenotype characterised by “stemness” transcripts (in terms of pancreatic progenitor-specific genes) compared to well-differentiated tumours, also suggesting a common progenitor cell origin. Similarly, based on the identification of master regulator proteins, dedifferentiation and acquisition of stem cell characteristics seem to be one of the pathways associated with tumour progression.

The cell of origin in cancer refers to the normal cell that acquires the initial cancer-promoting genetic hit(s). During development, cell lineage fate is determined by cell-type-specific transcription factor (TF) expression, which in turn is dependent on the type of epigenetic markers that are located at the relative regulatory regions (e.g. super-enhancer activation). The five endocrine cell types derive from a common endocrine precursor, which has segregated from a ducto-endocrine bipotent cell population. The TFs, Pax4 (Paired Box 4) and Arx (Aristaless Related Homeobox), are required for β- and α-cell fates, respectively. Lineage decision is determined via cross-inhibitory interactions. Pdx1 (Pancreatic And Duodenal Homebox 1) expression becomes restricted to cells at the stage of initiating insulin expression and, in the pancreatic islets of Langerhans, remains up-regulated exclusively in β-cells. Integrative analysis of human epigenomes including histone modification patterns, DNA accessibility, DNA methylation and RNA expression has revealed that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks. In the context of tumour biology, epigenetic states of cell lineages shape the vulnerability for specific genetic alterations and thereby reveal a distinct class of lineage-associated cancer genes. Therefore, determining the cell of origin is crucial to understand tumour specific carcinogenesis and progression. Cancer DNA-methylation profiles have been utilised to determine the cell of origin of several tumour types. In this study, we set out to determine the putative cell of origin of PanNETs through DNA-methylation analysis. We also identified genetic driver mutations specific to different cells of origin which are related to clinical outcome. Based on our findings we propose a new model of PanNET origin and progression.

Results

DNA-methylation signature of PanNETs showed similarities to α- and β-cells. We analysed the methylation of 125 PanNETs and of isolated normal α- and β-cells to determine which of these is the cell of origin (cohort details are summarised in Table 1 and reported in Supplementary Data 1). All samples were processed on the HumanMeth450 BeadChip platform (Illumina HM450). We carried out the assays for 45 primary PanNETs (UCL and UB cohorts), while DNA-methylation data for the additional 80 samples (ICGC cohort) were produced by the International Cancer Genome Consortium (ICGC). A flow chart of the analysis performed is provided in Supplementary Fig. 1. The comparison between sorted normal α- (n = 2) and β-cells (n = 2) resulted in 2703 differentially methylated CpG sites (adj. p value < 0.001 and more than 20% difference between the mean β-values of each group—|Δβ| > 0.2). Supplementary Data 2), 2131 of them were retained, after filtering and normalization, in the tumour

Table 1 Patient cohort used for methylome analysis (cohort 1).
Total number of patients
Sex
Females
Males
Grade (WHO 2010)
G1
G2
Tumour Stage (AJCC 8th ed.)
T1
T2
T3
T4
No data
N stage
N0
N1
No data
M stage
M0
M1
No data
DAXX/ATRX
Wild-type
Mutated
Not applicable
ALT
Negative
Positive
Not Applicable
MEN1 (somatic mutations)
Wild-type
Mutated
Hormone functionality
F-PanNETs
NF-PanNETs
Not Applicable
Syndromic—MEN1
Median follow-up time (mths)
DNA-methylation table (including the values of methylation for 363,665 CpG sites and 125 samples). Phyloepigenetic analysis of the 2131 identified CpG sites using either normal β- or normal α-cells as roots, indicated clear hierarchical relationships between normal cells and tumour specimens (Fig. 1a, Supplementary Fig. 2a). We defined PanNETs that grouped together with normal α- or β-cells as α-like or β-like PanNETs, respectively (Fig. 1a and Supplementary Data 1). We compared these phyloepigenetic groups to cell type similarity obtained from cell-type deconvolution analysis: using the algorithm of Houseman et al.21 (a method similar to regression calibration), we inferred the contribution of DNA-methylation profiles of sorted normal pancreatic cell types (α, β, acinar, ductal20, fibroblastic pancreatic cells22) and hematopoietic cells23 to the methylation profiles of
PanNETs (Supplementary Fig. 2b). Notably, phyloepigenies of tumours that were close to normal α/β-cells showed similarity >65% and an average of 72 and 73% of similarity to α and β-cells, respectively (SD for α-like ±15% and for β-like ±9%, Supplementary Data 1). T-distributed stochastic neighbour embedding (t-SNE) analysis, using the identified 2131 CpGs and including normal cells and PanNET samples, showed a consistent segregation, according to the groups defined via similarity scores and phyloepigeny analysis (Supplementary Fig. 2c). These results showed at least two groups of tumours with clear and high similarity to either α- or β-cells (Fig. 1a, Supplementary Fig. 2a and Supplementary Fig. 2c). The majority of tumours, however, revealed an intermediate differentiation profile. Intermediate tumours clustered between α- and β-cells and showed weak similarities to α- (as average 51 ± 20% of similarity) and very weak similarity to β-cells (as average 14 ± 16% of similarity), respectively.

Regulatory sites of α- and β-cell-specific transcription factor checkpoints were differentially methylated. We used previously published data to select 10 α- and 10 β-cell-type associated TF checkpoints (genes reported to function as RNA polymerase II—regulating DNA-binding transcription factors and included in the TFcheckpoint database26). As methylation of enhancers and regulatory chromatin states are important elements of epigenetic guidance of cell states, these regions were selected based on integrated ChIP-seq, DNA-methylation and ATAC-seq experiments of normal islets26. After selection of regulatory regions on autosomal chromosomes, probes retained for the analysis were related to 7 α-specific and 9 β-specific TF checkpoints (listed in Table 2). Specifically, the selection resulted in 49 CpGs for the α-cell TF checkpoints and 51 CpGs for the β-cell TF checkpoints (list and relative features of the selected CpG sites are reported in Supplementary Data 3 and 4). Consensus clustering of the 125 PanNETs according to each cell-specific TF-checkpoint signature (k-means = 2, reflecting one cell-type enriched cluster and one nonspecific cluster) showed clear and consistent cluster formation. The β-specific cluster separated very clearly and included all the β-like tumours. Interestingly, the α-specific cluster showed a broader inclusion of tumours. While the α-like (phyloepigenies with >65% of similarities to alpha cells) tumours clustered mainly close to each other on one extreme, intermediate PanNETs were included to this group as well but progressively distant from the α-like tumours (Fig. 1b).

Table 2 Specific cell-type TF checkpoints.

Alpha	Beta
FEV	MAFB
IRX2	PDX1
LDB2	SMAD9
MAFB	CDKNIC
PGR	TFCP2L
PTGER3	SIX2
RFX6	SIX2
	MNX1
	BMP5

DNA-methylation signatures associated with cell of origin correlated with transcription factor expression. To confirm the methylation-based cell lineage similarity, we performed immunostaining for ARX and PDX1 on a subset of samples for which formalin-fixed paraffin-embedded tissue was available (n = 61, Supplementary Data 1; for n = 39 cases also glucagon and insulin expression was assessed; results are reported in Supplementary Data 1). Nuclear positivity for ARX and PDX1 was present in the expected distribution in normal islets (Supplementary Fig. 4). We identified ARX positivity in 47/61 PanNETs (Supplementary Data 1 and Fig. 1c). As expected, the majority of insulinomas expressed PDX1, except one malignant and one DAXX/ATRX mutated insulinomas, which showed nuclear positivity for ARX but not for PDX1 (Supplementary Data 1 and Fig. 1c). None of the 61 tumours were double positive and only four PanNETs were double negative (Supplementary Data 1 and Fig. 1c).

Immunohistochemistry confirmed the same group segregation as was determined by the methylation analysis: (1) α-like tumours expressed ARX (Fig. 1c, Supplementary Data 1), (2) β-like tumours expressed PDX1, with only one sample positive for ARX and PDX1 negative (Fig. 1c, Supplementary Data 1), (3) 38/44 (86%) intermediate PanNETs were positive for ARX and only two cases were PDX1 positive and ARX negative. A minority of
intermediate tumours (4/44, 9%) were negative for both PDX1 and ARX (Fig. 1c, Supplementary Data 1).

These results indicate that cell type assigned by DNA methylation, corresponded to the cell type assigned by TF expression.

PDX1 and ARX immunopositivity correlates with mutation spectrum of PanNETs in an independent cohort. To validate the correlation of putative cell of origin to mutational status, we performed immunostaining for ARX, PDX1, insulin, glucagon and DAXX/ATRX on an independent cohort of 65 G1/G2 PanNETs (cohort details are summarised in Table 3 and reported in Supplementary Data 5). We scored nuclear positivity for ARX in both TFs (Figs. 2a, b). Notably, all the DAXX/ATRX-negative samples expressed ARX, confirming the α-like tumour susceptibility for these mutations (Figs. 1a, 2c). While only a subset of ARX+ tumours secreted glucagon (n = 7, 20% of all the ARX+ tumours, Fig. 2c), almost all the PDX1+ tumours produced insulin (n = 18, 95% of all PDX1+ tumours, Fig. 2c).

We observed that advanced stage PanNETs either expressed ARX or none of the TFs and often showed DAXX/ATRX loss (Fig. 2c, Supplementary Fig. 5a and Supplementary Data 5). Tumours positive for PDX1 had the lowest risk of relapse (Supplementary Fig. 5b and c). However, DAXX/ATRX status did not improve stratification of ARX+ samples for risk of relapse (Supplementary Fig. 5b).

Epigenetic differentiation status determines clinical outcome of PanNETs. In order to determine clinical utility, we reviewed clinical outcome and prognosis for α-like, β-like and intermediate tumours (from cohort 1). Fourteen of 19 α-like PanNETs were G1 and 15/19 were of low stage (T1 or T2, Fig. 1a and Supplementary Data 1). Similarly, 7/14 β-like PanNETs were G1 and 11/13 (1 without data) were T1 or T2 (Fig. 1a and Supplementary Data 1). Only one patient with an α-like tumour and none of the patients with a β-like tumour had relapse (Figs. 1a, 3a and Supplementary Data 1). Tumours that belonged to the intermediate phyloepigeneties, were instead enriched for high stage (65/91 were T3 or T4, 1 without data) and higher grade (67/92 are G2) PanNETs and had increased relapse risk (35/67, 25 had not available data—Figs. 1a, 3a and Supplementary Data 1). Intermediate tumours showed generally higher Ki-67 positivity (Supplementary Fig. 6). Disease free survival in intermediate tumours was significantly shorter than in α-like and β-like tumours (p < 0.001, Fig. 3a). To assess if epigenetic profile can stratify patients better than TF and DAXX/ATRX expression we performed disease free survival analysis on all samples where DNA-methylation and TF expression data were available. We determined time to relapse, using either expression of ARX, PDX1 and DAXX/ATRX or the epigenetic status as discriminant (Fig. 3b, c). Epigenetic profiles could predict more accurately the risk of relapse as shown in Fig. 3b, c and Supplementary Fig. 5c.

Further, to identify a tumour dependent signature, suitable for stratification in clinical practice, we have compared the three cell-type specific clusters, α-like, β-like and intermediate. The comparison revealed 6364 unique differentially methylated sites (Supplementary Data 6–8; adj. p value < 0.001 and Δβ > 0.2). Consensus clustering of the 6364 CpG sites showed the maximal stability for k = 4 (Supplementary Fig. 7a). The existence of α-like and β-like clusters was confirmed (Fig. 3d and Supplementary Data 1). The intermediate subgroup was divided into two further groups, one enriched for DAXX/ATRX/MEN1 mutations, intermediate-ADM, (61/76 had mutations in at least one of the three genes; Fig. 3d and Supplementary Data 1) and the other enriched for DAXX/ATRX/MEN1 wild-type samples, intermediate-WT (15/16, only 1 DAXX/ATRX mutated; Fig. 3d and Supplementary Data 1). PanNETs included in the intermediate-ADM and intermediate-WT showed comparable risk to relapse (Supplementary Fig. 7b). To prove the stability of the signature, we repeated the analysis including 32 new G1/G2 PanNETs, for which DNA-methylation data were public available (Supplementary Data 9). After filtering and normalization processes, 6359/6364 of the previously identified differentially methylated sites were used in the consensus clustering algorithm. The results confirmed the 4 PanNET subgroups with similar relapse risks to the previous analysis (Supplementary Fig. 7c–e).

Discussion
This study identified at least two cells of origin for PanNETs (α-like/β-like) and demonstrated that DNA-methylation analysis can discriminate α-like, β-like and intermediate (-ADM and -WT) PanNETs. Additionally, this study identified that relapses and metastases occurred most commonly in the intermediate (-ADM and -WT) PanNET groups.

Phyloepigenetic analysis of PanNETs, according to differentially methylated CpG sites between normal α- and β- cells, showed two clusters around normal α- and β- cells, which we named α-like and β-like. PanNET sample segregation was
consistent in the t-SNE analysis. Using a similar approach, in a recent study, methylation-based subclasses of colorectal cancer were explained as clonal amplifications of one specific epigenotype, confirmed by the enrichment of different mutations in the particular subtypes and by the investigation of methylation signatures in serial tumour xenografts and derived spheroids. Similarly, in medulloblastoma subtypes with distinct developmental origin, DNA-methylation signatures were able to stratify tumours according to the specific subtype, to provide information about the cell of origin and also to demonstrate acquired epigenetic changes during tumour progression. Even if in the aforementioned studies tumours were not directly compared to the putative normal cells of origin, the epigenetic and mutational landscape of the malignancies reflected the tumour classes and cells of origin defined via in vivo studies. Altogether the data confirm the valuable use of DNA-methylation profiles for the identification of tumour cells of origin.

Cell-type deconvolution analysis of methylome data from ductal, acinar, inflammatory and pancreatic stromal cells together with α- and β- cells found that α-like and β-like PanNETs are largely similar (at ~73%) to α- and β- cells, respectively. This figure is comparable to other studies: Houseman and Ince demonstrated the application of their algorithm to estimate normal cell proportions in breast cancer heterogeneous tissues. Similarly, cell-type deconvolution analysis based on DNA methylation for mantel cell lymphoma (MCL), showed a minimum of similarity between MCL and B cell samples of 40%. When a similar algorithm (L1-regularized logistic regression) is used to classify cancers of unknown origin (CUPs) based on DNA methylation, a probability >30% was used to ascribe CUPs to a specific tumour type. The deconvolution of the methylation estimates for PanNETs identified two important aspects of the tumour methylomes: that the results were not influenced by the composition of non-tumoral cells within the PanNET samples and that the composition of early stage α-like and β-like PanNETs is abundant for either α- or β-cells.

Analysis of methylation status of α- and β-cell-specific TF checkpoints regulating differentiation might help to better identify the intermediate groups of PanNET. While β-like samples separated very clearly according to β-cell TF-checkpoint methylation sites, α-cell similarity decreased gradually among the
remaining samples. Seventy of seventy-six intermediate-ADM PanNETs clustered together with the α-like tumours (Supplementary Data 1). Twelve of sixteen intermediate-WT PanNETs did cluster neither with α-like nor with β-like tumours (Supplementary Data 1). Additionally, intermediate-ADM PanNETs were on average more similar to α-(53 ± 17%) than β-cells (12 ± 13%). Ninety-five percent of the intermediate-ADM tumours were positive for ARX (36/38) and none for PDX1. This might indicate that intermediate-ADM PanNETs are more related to α-cells rather than β-cells. The PanNET methylation subgroups that we have identified reflect the groups A (tumours that most likely originate form α-cells), B (tumours that most likely originate form β-cells) and C (tumours with intermediate phenotype) recently described by Cejas et al., via the analysis of super-enhancer signatures. Comparable to our study, the analysis of TF expression via IHC performed by Cejas et al. revealed mutually exclusive expression of either ARX or PDX1 in the majority of the cases. Additionally, while PDX1 expression appears to be specific for benign and low stage tumours, ARX expression is retained at early and at advanced stages and only DAXX/ATRX status provides more information about stage and risk of disease progression.
We identified a clear correlation between driver mutation status and epigenetic profiles across all PanNETs. Alpha-like PanNETs and intermediate-ADM PanNETs harboured MEN1 mutations, this is supported by the results of Chan et al. and Cejas et al. Fifty-eight percent of the clinically indolent α-like PanNETs were characterized by MEN1 mutations only. MEN1 inactivation, is an early event in PanNET progression, which enhances endocrine cell proliferation, hence it might be a tumour initiating event for the α-like PanNETs and for the intermediate-ADM. In turn Intermediate-ADM PanNETs might progress upon acquisition of DAXX/ATRX inactivation. In addition, CNA increased from α-like and β-like PanNETs to intermediate-ADM tumours. All these data together suggest a potential progression from α-like to intermediate-ADM PanNET. We cannot exclude, however, that the two intermediate PanNET clusters might originate from putative endocrine precursor cells.

During islet cell development, ARX is already expressed in endocrine precursors, furthermore different endocrine cell types, as α- and γ-cells share ARX expression. Conversely PDX1 expression is restricted to differentiated β-cells, within the endocrine lineages. Of the intermediate-WT tumours for which IHC data were available (n = 6), two were positive for PDX1, two for ARX and two were negative for both TFs. Additionally, similarly to the β-lux tumours, intermediate-WT PanNETs showed only few copy-number events (group 1, Supplementary Data 1). Currently our data only weakly support progression from β-like to intermediate-WT PanNETs, nevertheless this possibility cannot be excluded.

While the vast majority of β-like PanNETs expressed PDX1 and insulin, the two malignant (N1 and/or M1) insulinomas of our cohort, showed one intermediate-ADM (DAXX/ATRX mutated) and one α-like (DAXX/ATRX wild-type) methylation signatures (Supplementary Data 1). Only for the intermediate-ADM insulinoma, data on PDX1 and ARX were available; it resulted positive for ARX, and negative for PDX1 expression. Accordingly, the only malignant insulinoma of the Chan et al. cohort was mutated for ATRX and clustered with the intermediate-ADM tumours. In line with this observation, a recent study including 37 sporadic insulinomas (35 primary and 2 liver metastases) showed that all the five insulinomas which metastasized were ARX positive and 4/5 had ALT activation (3 primary and 2 liver metastases). These data suggest that malignant insulinomas may arise from α-cells or stem-cells rather than β-cells. Under certain conditions and stimuli α-cells are able to trans-differentiate into β-cells. Additionally, α-cell-specific Men1 knockout in mice leads to the development of glucagonomas, which evolve into mixed glucagonoma/insulinoma to ultimately become insulinomas, possibly via trans-differentiation of the Men1-deleted α-cells. Beta-like and/or PDX1 positive tumours are strongly enriched for benign insulinomas in both the first and second cohort. They generally show no mutations in any of the most commonly mutated genes for PanNETs (DAXX, ATRX and MEN1). These data confirm the genetic difference between non-functioning tumours and insulinomas. Off the thirteen wild-type PanNETs obtained from Chan et al., five were included in the β-like cluster (two insulinomas and three NF-PanNETs), six in the intermediate-WT cluster and only two in the intermediate-ADM cluster. All the ADM-mutant PanNETs were included in the intermediate-ADM cluster (Supplementary Data 9). These data and the few β-like NF-PanNETs included in the cohort 1, demonstrate that occasionally also NF-PanNETs might originate from β-cells.

Our methylation data support the possibility of two evolutionary pathways for PanNET development, originating from α- and β-cells (Fig. 3e). Beta-like PanNETs usually manifest as insulinomas. The α-like PanNETs are susceptible to MEN1 mutations in early tumorigenesis. Tumour progression occurs upon DAXX/ATRX mutations, coupled with ALT activation and a characteristic CNA profile. Progressive loss of differentiation might further predispose the tumours to enhanced proliferation and higher cell plasticity (Fig. 3e). Alternatively or additionally to this dedifferentiation model, potential endocrine progenitor cells might be the cell of origin of intermediate tumours (Fig. 3e). While CNA, genetic background and epigenetic suggest a progression from α-cells to α-like tumours first and then to intermediate-ADM, we do not have the same evidence supporting an evolution from β-like tumours to intermediate-WT, even if we cannot completely exclude it. In fact, while a progression from β-like benign insulinoma to aggressive intermediate-WT tumours is, based on clinical evidences, very unlikely; a direct origin of these tumours from normal adult β-cells or from a common progenitor is more plausible. Expression of cell type TFs such PDX1 and ARX is equally distributed in α-like and β-like tumours which evolve into mixed glucagonoma/insulinoma to ultimately become insulinomas, possibly via trans-differentiation of the Men1-deleted α-cells. Beta-like and/or PDX1 positive tumours are strongly enriched for benign insulinomas in both the first and second cohort. They generally show no mutations in any of the most commonly mutated genes for PanNETs (DAXX, ATRX and MEN1). These data confirm the genetic difference between non-functioning tumours and insulinomas. Off the thirteen wild-type PanNETs obtained from Chan et al., five were included in the β-like cluster (two insulinomas and three NF-PanNETs), six in the intermediate-WT cluster and only two in the intermediate-ADM cluster. All the ADM-mutant PanNETs were included in the intermediate-ADM cluster (Supplementary Data 9). These data and the few β-like NF-PanNETs included in the cohort 1, demonstrate that occasionally also NF-PanNETs might originate from β-cells.

Our methylation data support the possibility of two evolutionary pathways for PanNET development, originating from α- and β-cells (Fig. 3e). Beta-like PanNETs usually manifest as insulinomas. The α-like PanNETs are susceptible to MEN1 mutations in early tumorigenesis. Tumour progression occurs upon DAXX/ATRX mutations, coupled with ALT activation and a characteristic CNA profile. Progressive loss of differentiation might further predispose the tumours to enhanced proliferation and higher cell plasticity (Fig. 3e). Alternatively or additionally to this dedifferentiation model, potential endocrine progenitor cells might be the cell of origin of intermediate tumours (Fig. 3e). While CNA, genetic background and epigenetic suggest a progression from α-cells to α-like tumours first and then to intermediate-ADM, we do not have the same evidence supporting an evolution from β-like tumours to intermediate-WT, even if we cannot completely exclude it. In fact, while a progression from β-like benign insulinoma to aggressive intermediate-WT tumours is, based on clinical evidences, very unlikely; a direct origin of these tumours from normal adult β-cells or from a common progenitor is more plausible. Expression of cell type TFs such PDX1 and ARX is equally distributed in α-like and β-like tumours which evolve into mixed glucagonoma/insulinoma to ultimately become insulinomas, possibly via trans-differentiation of the Men1-deleted α-cells. Beta-like and/or PDX1 positive tumours are strongly enriched for benign insulinomas in both the first and second cohort. They generally show no mutations in any of the most commonly mutated genes for PanNETs (DAXX, ATRX and MEN1). These data confirm the genetic difference between non-functioning tumours and insulinomas. Off the thirteen wild-type PanNETs obtained from Chan et al., five were included in the β-like cluster (two insulinomas and three NF-PanNETs), six in the intermediate-WT cluster and only two in the intermediate-ADM cluster. All the ADM-mutant PanNETs were included in the intermediate-ADM cluster (Supplementary Data 9). These data and the few β-like NF-PanNETs included in the cohort 1, demonstrate that occasionally also NF-PanNETs might originate from β-cells.

Our methylation data support the possibility of two evolutionary pathways for PanNET development, originating from α- and β-cells (Fig. 3e). Beta-like PanNETs usually manifest as insulinomas. The α-like PanNETs are susceptible to MEN1 mutations in early tumorigenesis. Tumour progression occurs upon DAXX/ATRX mutations, coupled with ALT activation and a characteristic CNA profile. Progressive loss of differentiation might further predispose the tumours to enhanced proliferation and higher cell plasticity (Fig. 3e). Alternatively or additionally to this dedifferentiation model, potential endocrine progenitor cells might be the cell of origin of intermediate tumours (Fig. 3e). While CNA, genetic background and epigenetic suggest a progression from α-cells to α-like tumours first and then to intermediate-ADM, we do not have the same evidence supporting an evolution from β-like tumours to intermediate-WT, even if we cannot completely exclude it. In fact, while a progression from β-like benign insulinoma to aggressive intermediate-WT tumours is, based on clinical evidences, very unlikely; a direct origin of these tumours from normal adult β-cells or from a common progenitor is more plausible. Expression of cell type TFs such PDX1 and ARX is equally distributed in α-like and β-like tumours which evolve into mixed glucagonoma/insulinoma to ultimately become insulinomas, possibly via trans-differentiation of the Men1-deleted α-cells. Beta-like and/or PDX1 positive tumours are strongly enriched for benign insulinomas in both the first and second cohort. They generally show no mutations in any of the most commonly mutated genes for PanNETs (DAXX, ATRX and MEN1). These data confirm the genetic difference between non-functioning tumours and insulinomas. Off the thirteen wild-type PanNETs obtained from Chan et al., five were included in the β-like cluster (two insulinomas and three NF-PanNETs), six in the intermediate-WT cluster and only two in the intermediate-ADM cluster. All the ADM-mutant PanNETs were included in the intermediate-ADM cluster (Supplementary Data 9). These data and the few β-like NF-PanNETs included in the cohort 1, demonstrate that occasionally also NF-PanNETs might originate from β-cells.

Our methylation data support the possibility of two evolutionary pathways for PanNET development, originating from α- and β-cells (Fig. 3e). Beta-like PanNETs usually manifest as insulinomas. The α-like PanNETs are susceptible to MEN1 mutations in early tumorigenesis. Tumour progression occurs upon DAXX/ATRX mutations, coupled with ALT activation and a characteristic CNA profile. Progressive loss of differentiation might further predispose the tumours to enhanced proliferation and higher cell plasticity (Fig. 3e). Alternatively or additionally to this dedifferentiation model, potential endocrine progenitor cells might be the cell of origin of intermediate tumours (Fig. 3e). While CNA, genetic background and epigenetic suggest a progression from α-cells to α-like tumours first and then to intermediate-ADM, we do not have the same evidence supporting an evolution from β-like tumours to intermediate-WT, even if we cannot completely exclude it. In fact, while a progression from β-like benign insulinoma to aggressive intermediate-WT tumours is, based on clinical evidences, very unlikely; a direct origin of these tumours from normal adult β-cells or from a common progenitor is more plausible. Expression of cell type TFs such PDX1 and ARX is equally distributed in α-like and β-like tumours which evolve into mixed glucagonoma/insulinoma to ultimately become insulinomas, possibly via trans-differentiation of the Men1-deleted α-cells. Beta-like and/or PDX1 positive tumours are strongly enriched for benign insulinomas in both the first and second cohort. They generally show no mutations in any of the most commonly mutated genes for PanNETs (DAXX, ATRX and MEN1). These data confirm the genetic difference between non-functioning tumours and insulinomas. Off the thirteen wild-type PanNETs obtained from Chan et al., five were included in the β-like cluster (two insulinomas and three NF-PanNETs), six in the intermediate-WT cluster and only two in the intermediate-ADM cluster. All the ADM-mutant PanNETs were included in the intermediate-ADM cluster (Supplementary Data 9). These data and the few β-like NF-PanNETs included in the cohort 1, demonstrate that occasionally also NF-PanNETs might originate from β-cells.
Methods

Patient cohorts. A cohort of primary PanNETs was assembled from two international centres: 19 samples previously analyzed33 from UCL Cancer Institute (London, UK) and 26 from Institute of Pathology (Bern, Switzerland). All cases were classified according to WHO 2017 criteria34. TNM staging is based on the 8th edition UICC/AJCC. Inclusion criteria were histopathologic diagnosis of well-differentiated G1/G2 PanNETs, availability of tissue material and sufficient tumour purity (>70%). Fifteen of 45 tumour samples (33%) were classified as G1, 31/45 (69%) as G2 (Table 1). Two samples derived from MEN1-patients. All analyses were performed on Formalin-Fixed Paraffin-Embedded (FFPE) tissue specimens obtained from routine pathological work-up. Additional clinico-pathological characteristics are reported in Supplementary Data 1. The study on this cohort was approved by the local Research Ethics Committee (Bern: number 105/2015; London: number 09/H072272). Patients recruited through the Inselspital with operation data before 2015 did not object to use of data and biological material for research, all patients included after 2015 did sign a written broad institutional consent. Informed written consent for patients recruited through the Royal Free Hospital Neuroendocrine Unit was obtained before entering the study. All samples were fully anonymised.

Clinical and molecular data of 80 PanNETs were provided by the International Cancer Genome Consortium (ICGC, https://icgc.org/, projects: PAEN-AU and PAEN-IT). Cohort features are summarised in Table 1 and Supplementary Data 1. Genomic and molecular analysis of the samples were performed within Scarpa et al.37.

As immunohistochemical validation cohort, 65 PanNET samples were assembled at the Institute of Pathology (Bern, Switzerland). All cases were reclassified according to the WHO 2017 criteria34. TNM staging is based on the 8th edition UICC/AJCC35. As for the previous cohorts, only well-differentiated G1/G2 PanNETs were included. Cohort features are summarised in Table 3 and extensively reported in Supplementary Data 5. The study on this cohort was approved according to the protocol approved by the ethical committee (number 103/2015) according to Swiss Human research Act. Patients with operation data before 2015 did not object to use of data and biological material for research, all patients included after 2015 did sign a written broad institutional consent. A flow chart of the analysis performed on the 2 cohorts is provided in Supplementary Fig. 1.

Immunohistochemistry (IHC) and telomeric-fluorescence in situ hybridization (Telo-FISH).

All samples were assessed for DAXX (1:40, anti-DAXX, polyclonal rabbit; Sigma-Aldrich, St. Gallen, Switzerland) and ATRX (1:400, anti-ATRX, polyclonal rabbit; Sigma-Aldrich) expression via IHC and ALT activation via Telomere FISH. For both DAXX and ATRX scoring, only nuclear protein staining was considered positive. Since 7.5 µm sections were used, DAXX or whole blocks were used for ARX (1:1500, R&D Systems, sheep, AF7068), PDX1 (1:100, R&D Systems, mouse, MAR2419), insulin (1:12000, Sigma–Aldrich, mouse, I-2018) and glucagon (1:20000, Sigma–Aldrich, mouse, G-2654) immunostainings. Antigen retrieval was performed by heating Tris buffer at 95° C for 30 min. The primary antibody was incubated for 30 min at the specified dilutions. Visualization was performed using the avidin–biotin complex method. For both DAXX and ATRX scoring, only nuclear protein staining was considered positive. ATRX 7.5 µm sections were used. DAXX or whole blocks were used for ARX (1:1500, R&D Systems, sheep, AF7068), PDX1 (1:100, R&D Systems, mouse, MAR2419), insulin (1:12000, Sigma–Aldrich, mouse, I-2018) and glucagon (1:20000, Sigma–Aldrich, mouse, G-2654) immunostainings. Antigen retrieval was performed by heating Tris30 buffer at 95° C for 30 min. The primary antibody was incubated for 30 min at the specified dilutions. Visualization was performed using Bond Polymer Refine Detection kit, using DAB as chromogen (3,3′-Diaminobenzidine).

Samples showing single cell positivity of any of the TFs were finally scored as negative, most of the cases were indeed strong positive for one of the two TFs with only few exceptions (single cell positivity is reported for each sample in Supplementary Data 1 and 5). Only strong positivity for insulin and glucagon was considered for classification of the tumours as hormone producing PanNETs. Nuclear positivity for ARX and PDX1 was first assessed on normal islets, proving the selectivity for endocrine α- and β-cells (Supplementary Fig. 4).

The immunostaining for all antigens was performed on an automated staining system (Leica Bond RX, Leica Biosystems, Nunningen, Switzerland).

DNA-methylation analysis. We extracted DNA from FFPE tissues according to manufacturer recommendations (QiAamp DNA minikit, Qiagen). Serial sections were cut and macrodissected using a razor blade upon histological evaluation (5 × 6 µm), to make sure to achieve >70% tumour purity. We assessed DNA quality using the Illumina FFPE QC Kit. Ligation of FFPE DNA and bisulfite conversion were performed as described38. Efficiency of bisulfite conversion was confirmed by quantitative PCR as previously shown39. Converted DNA was processed on the HumanMeth540 BeadChip (Illumina HiM450). We analysed all the DNA-methylation data included in this study using the ChAMP pipeline (v2.12.4, manifi method was used for raw data loading)39,37. Filtering was performed as implemented in the ChAMP pipeline40. Only probes located on autosomal chromosomes were retained. Type II probe bias was corrected using the BMMQ method as part of the ChAMP pipeline41. Batch correction was performed using the ComBat algorithm as part of the ChAMP pipeline42,43.

We identified differentially methylated sites between normal α- and β-cells, as well as between α-like β-like and intermediate PanNETs, according to the ChAMP Pipeline44,45. To build phyloepigenetic trees, distances between samples were calculated according to pearson correlation and the neighbour-joining tree estimation was used within the ChAMP pipeline. We performed as implemented in the R package using the following parameters: perplexity = 50, max_iter = 50000.

We used the RnBeads pipeline46 for calculating cell-type contribution according to the Houseman et al. method47. Sorted normal hematopoietic cell-type data (granulocytes, CD4+ and CD8+ T cells, CD14 + monocytes, CD19 + B cells, CD56 + natural killer cells, neutrophils and eosinophils) were downloaded from Reinius et al.23 (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE35069). Sorted acinar, duct, alpha and beta pancreatic cancer cell DNA-methylation profiles were downloaded from Jakel et al.20 (European Genome-Phenome Archive, https://ega-archive.org/, accession number: EGAS00001002533). DNA-methylation data for sorted normal pancreatic fibroblast cells were downloaded from Xiao et al.22 (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE80369). Marker selection was performed by screening 10,000 CpG positions and the final number of selected cell-type markers was set to 500 (as for default).

Consensus clustering was performed following the ConsensusClusterPlus pipeline (maxK = 20, reps = 1000, pFeature = 0.8 and 1 = distance = pearson)39. Samples were clustered according to the hierarchical clustering algorithm, ward.D2 method was used for inner linkage and average method was used for the final linkage.

Based on genomic position, the 450 K probes were annotated with the chromatin state, as assigned to normal pancreatic islets (obtained from the integration of ATAC-Seq DNAme and ChiP-seq data)36. Probes associated with the cell-specific transcription factor (TF) checkpoints and associated to the epigenetic states "closed weak enhancer", "closed strong enhancer", "open weak enhancer", "open strong enhancer", "genic enhancer", "insulator" and "polycomb repressed states" were included for looking at the specific TF-checkpoint methylation. Enhancer regions were associated to the nearest gene in the genome using the GenomicRanges R package48.

Known Imprinting Control Regions (ICRs) were retrieved from WAIMDEX and igc.otago.ac.nz (extended annotations reported in A-GEOD-18889 - Illumina HumanMethylation450 BeadChip v1.2, extended annotation).

DNA-methylation analysis clearly bears advantages over ChIPseq assays, it is easily performed on diagnostic routine FFPE specimens. We foresee a potential clinical use of epigenetic profiling for PanNETs similar to CNS tumor classification, able to define clinically relevant groups28,39,41. In addition, DNA methylation remains stable in circulating tumor cells (CTCs) and might help in assessing whether intermediate-ADM and intermediate-WT aggressive PanNETs have different origins or respond differently to therapies.

tumours, with high risk of relapse. Only the DNA-methylation profile is able to separate ARX+ PanNETs with low risk from high risk of relapse. The intermediate groups of PanNETs are characterized by high risk of relapse but are molecularly different (ADM and WT) (Fig. 3d and Supplementary Fig. 7d). Further work is needed to assess whether intermediate-ADM and intermediate-WT aggressive PanNETs have different origins or respond differently to therapies.

DNA-methylation analysis clearly bears advantages over ChIPseq assays, it is easily performed on diagnostic routine FFPE specimens. We foresee a potential clinical use of epigenetic profiling for PanNETs similar to CNS tumor classification, able to define clinically relevant groups28,39,41. In addition, DNA methylation remains stable in circulating tumor cells (CTCs) and might help in assessing whether intermediate-ADM and intermediate-WT aggressive PanNETs have different origins or respond differently to therapies.

DNA-methylation analysis clearly bears advantages over ChIPseq assays, it is easily performed on diagnostic routine FFPE specimens. We foresee a potential clinical use of epigenetic profiling for PanNETs similar to CNS tumor classification, able to define clinically relevant groups28,39,41. In addition, DNA methylation remains stable in circulating tumor cells (CTCs) and might help in assessing whether intermediate-ADM and intermediate-WT aggressive PanNETs have different origins or respond differently to therapies.
Next-generation sequencing. We sequenced MEN1, DAXX and ATRX genes by semi-conductive sequencing using two Ion Torrent AmpliSeq NGS custom made panels (Life Technologies), one for ATRX and one for MEN1 and DAXX, covering whole protein-coding exons. Protein-coding exons were amplified by multiplex polymerase chain reaction using two pools designed by the Ion AmpliSeq Designer and the Ion AmpliSeq Library kit 2.0 according to the manufacturer’s recommendations (Life Technologies). Template preparation was performed using the Ion Chef System. Sequencing was performed using the Ion S5. The Torrent Suite 5.10 platform was used for sequence alignment with the hg19 human genome reference. Variant calling was performed with the variant caller and the IonReporter 5.10 software (Life Technologies). The coverage depth was sufficient (quality criteria for a sample to be analysed was minimum 500 reads). The 80 IGCC samples were sequenced by whole-genome sequencing (WGS) within the Scarpa et al. study.27

Copy-number aberration analysis. Genome-wide CNAs were inferred from HM450 signal intensities using the Conumee R package. Chromosome bins and segments were measured (bin size: 50,000 to 5,000,000 bp; minimum number of probes per bin: 15). CNA profile zero-threshold was manually adjusted according to FISH results for the UB-UCL cohort (FISH for chr4 and chr17 was performed for detecting gains, FISH for MEN1 and chr11 was used for detecting losses; see Supplementary Fig. 3a–d). Zero-threshold of the CNA profiles obtained from the IGCC cohort was manually adjusted according to the results obtained from Scarpa et al.27. Copy number (CN) of each chromosomal arm for each tumour was obtained calculating the median of the relative copy-number arms. Arm level copy-number data were clustered using Ward’s method, Euclidean distance.

Statistical analysis and graphical representation. Statistical analysis and graphical representations were performed within the R environment (v. 3.5.0)29. Specific packages used in the study and parameters selected are mentioned in the relevant method chapters. For disease free survival analysis, the “survival” and “survminer” packages were used33,34.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within the article and its supplementary data and figures. The datasets generated during the current study (UB-UCL cohort) are available in an ArrayExpress repository (EMBL-EBI, https://www.ebi.ac.uk/arrayexpress/, accession number: E-MTAB-7924). The datasets analysed during the current study (IGCC cohort) are available in the IGCC repository (IGCC, https://igcc.org/, projects: PAEN-AU and PAEN-IT). The datasets of sorted normal hematopoietic cells are available in the GEO repository (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE35609). The datasets of sorted acinar, duct, alpha and beta pancreatic cells are available in the EGA repository (European Genome-Phenome Archive, https://ega-archive.org/, accession number: EGAS00001002533). The datasets of sorted normal pancreatic fibroblastic cells are available in the GEO repository (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE80369). Chan et al. dataset is available in the GEO repository (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession number: GSE11782).

Code availability
Details of publicly available software and packages used in the study are given in the “Methods”. No custom code or mathematical algorithm that is deemed central to the conclusions was used.

Received: 17 April 2020; Accepted: 12 November 2020; Published online: 07 December 2020

References
1. Bonisegna, L. et al. Malignant pancreatic neuroendocrine tumour: lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur. J. Cancer 48, 1608–1615 (2012).
2. Falconi, M. et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103, 153–171 (2016).
3. Di Domenico, A., Wiedmer, T., Marinoni, I. & Perren, A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr. Relat. Cancer 24, R315–R334 (2017).
4. Marinoni, I. et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumours. Gastroenterology 143, e530–e425 (2012).
5. Sadanandam, A. et al. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics. Cancer Discov. 5, 1296–1313 (2015).
6. Alvarez, M. J. et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumours. Nat. Genet. 50, 979–989 (2018).
7. Chan, C. S. et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat. Commun. 9, 4158 (2018).
8. Cejas, P. et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumours. Nat. Med. 25, 1260–1265 (2019).
9. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
10. Jennings, R. E. et al. Development of the human pancreas from foregut to endoderm commitment. Diabetes 62, 3514–3522 (2013).
11. Napolitano, T. et al. Pax4 acts as a key player in pancreas development and plasticity. Semin. Cell Dev. Biol. 44, 107–114 (2015).
12. Guy, Z. et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–19 (1995).
13. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
14. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).
15. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma subtypes. Nature 547, 317–321 (2017).
16. Azzarelli, R., Simons, B. D. & Pugh, A. The developmental origin of brain tumours: a cellular and molecular framework. Development 145, dev162693 (2018).
17. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).
18. Bormann, F. et al. Cell-of-origin DNA methylation signatures are maintained during colorectal carcinogenesis. Cell Rep. 23, 3407–3418 (2018).
19. Gaiti, F. et al. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature 569, 576–580 (2019).
20. Jäkälä, C. et al. Genome-wide genetic and epigenetic analyses of pancreatic acinar cell carcinomas reveal aberrations in genome stability. Nat. Commun. 8, 1–10 (2017).
21. Housman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 13, 86 (2012).
22. Xiao, Q. et al. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res. 76, 5395–5404 (2016).
23. Reinis, L. E. et al. Discrepant DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7, e41361 (2012).
24. Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394.e3 (2016).
25. Chawla, K., Tripathi, S., Thommesen, L., Legreid, A. & Kuiper, M. F Chopcheck: a curated compendium of specific DNA-binding polymerase II transcription factors. Bioinformatics 29, 2519–2520 (2013).
26. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. eLife 7, e43162 (2018).
27. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2018).
28. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).
29. Houseman, E. A. & Ince, T. A. Normal cell-type epigenetics and breast cancer classification: a case study of cell mixture–adjusted analysis of DNA methylation data in tumours. Cancer Inf. 13, 53–64 (2014).
30. Queiros, A. C. et al. Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage. Cancer Cell 30, 806–821 (2016).
31. Fernandez, A. F. et al. DNA methylation fingerprint of 1628 human samples. Genome Res. 22, 407–419 (2012).
32. Perren, A. et al. Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J. Clin. Endocrinol. Metab. 92, 1118–1128 (2007).
33. Hackeng, W. M. et al. Aberrant Menin expression is an early event in pancreatic neuroendocrine tumorigenesis. Hum. Pathol. 56, 93–100 (2016).
34. Schotz, K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).
57. Morris, T. J. et al. ChAMP: 450k chip analysis methylation pipeline.
58. Aryee, M. J. et al. Min
56. Thirlwell, C. et al. Genome-wide DNA methylation analysis of archival
60. Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization,
59. Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: subset-quantile within array
COMMUNICATIONS BIOLOGY | (2020) 3:740 | https://doi.org/10.1038/s42003-020-01479-y | www.nature.com/commsbio
35. Segerstolpe, Å. et al. Single-cell transcriptome pro
30
39. Chakravarthy, H. et al. Converting adult pancreatic islet
64. Smyth, G. K. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.
3, Article3 (2004).
52. Pixberg, C. F., Schulz, W. A., Stoecklein, N. H. & Neves, R. P. L.
53. Pipinikas, C. P. et al. Epigenetic dysregulation and poorer prognosis in
45. Lichtenauer, U. D. et al. Frequency and clinical correlates of somatic Ying
61. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
65. Peters, T. J. et al. De novo identification of differentially methylated regions in
the human genome. Epigenetics Chromatin 8, 6 (2015).
66. Paradis, E. & Schlöp, K. ape 5.0: an environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
60. Huang, S. et al. Alternative lengthening of telomeres and differential
expression of endoreplication transcription factors distinguish metastatic and non-
metastatic insulinomas. Endocr. Pathol. https://doi.org/10.1007/s12020-020-
09611-8 (2020).
37. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to beta-cells after
expression of human beta-cell factors. Nature 464, 1149–1154 (2010).
48. Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine
tumours. Nature 543, 65–71 (2017).
36. Shen, H.-C. et al. Multiple endocrine neoplasia type 1 deletion in pancreatic
alpha-cells leads to development of insulinomas in mice. Endocrinology 151, 4024–4030 (2010).
49. Cao, Y. et al. Whole exome sequencing of insulinoma reveals recurrent T372R
mutations in YY1. Nat. Commun. 4, 1–6 (2013).
50. Lichtenauer, U. D. et al. Frequency and clinical correlates of somatic Ying
Yang 1 mutations in sporadic insulinomas. J. Clin. Endocrinol. Metab. 100, E776–E782 (2015).
51. Hong, X. et al. Whole-genome sequencing reveals distinct genetic bases for
insulinomas and pancreatic neuroendocrine tumours leading to a new
classification system. Gut https://doi.org/10.1136/gutjnl-2018-317233 (2019).
52. Scarpa, A. et al. Whole-genome landscape of pancreatic neuroendocrine
tumours. Nature 543, 65–71 (2017).
53. Lawrence, B. et al. Recurrent loss of heterozygosity correlates with clinical
outcome in pancreatic neuroendocrine cancer. npj Genomic Med. 3, 18 (2018).
54. Pea, A. et al. Genetic analysis of small well-differentiated pancreatic
neuroendocrine tumours identifies subgroups with differing risks of liver
metastases. Ann. Surg. https://doi.org/10.1097/SLA.0000000000003322 (2018).
55. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic
and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).
56. Ceccherelli, M. et al. Molecular profiling reveals biologically discrete subsets
and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).
57. Pixonberg, C. F., Schulz, W. A., Stoecklein, N. H. & Neves, R. P. L.
Characterization of DNA methylation in circulating tumor cells. Genes (Basel)
6, 1053–1075 (2015).
58. Pipinikas, C. P. et al. Epigenetic dysregulation and poorer prognosis in
DAXX-deficient pancreatic neuroendocrine tumours. Endocr. Relat. Cancer
22, L13–L18 (2015).
59. Lloyd, R. V., Osamura, R. Y., Kloppel, G. & Rosai, J. WHO Classification of
Tumours of Endocrine Organs (WHO), 4th edition, Volume 10 (2017).
60. Amin, M. B. & Edge, S. B. AJCC cancer staging manual, 8th edn. (Springer, 2017).
61. Thirwell, C. et al. Genome-wide DNA methylation analysis of archival
formalin-fixed paraffin-embedded tissue using the illumina Infinium HumanMethylation27 BeadChip.
Methods 52, 248–254 (2010).
62. Norris, T. J. et al. CHAMP: 450k chip analysis methylation pipeline.
Bioinformatics 30, 428–430 (2014).
63. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Illumina DNA methylation microarrays. Bioinformatics 30,
1363–1369 (2014).
64. Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: subset-quantile within array
normalization for illumina infinium HumanMethylation450 BeadChips.
Genome Biol. 13, R44 (2012).
65. Zhou, W., Laird, P. W. & Shen, H. Comprehensive characterization,
annotation and innovative use of Infinum DNA methylation BeadChip
probes. Nucleic Acids Res. 45, e22 (2017).
66. Teschendorf, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in illumina infinium 450 k DNA methylation data.
Bioinformatics 29, 189–196 (2013).
67. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray
extression by empirical Bayes methods. Biostatistics 8, 118–127 (2007).
68. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva
package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28, 882–883 (2012).
69. Smyth, G. K. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.
3, Article3 (2004).