Photon Polarization in the $b \rightarrow s\gamma$ processes in the Left-Right Symmetric Model

Fu-Sheng Yu,a,b,c Emi Kou,b Cai-Dian Lüc

aSchool of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
bLaboratoire de l’Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3(UMR 8607) 91405 Orsay, France
cInstitute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

E-mail: yufsh@lzu.edu.cn, kou@lal.in2p3.fr, lucd@ihep.ac.cn

ABSTRACT: The circular-polarization of the photon in the radiative B decays is dominantly left-handed in the Standard Model (SM), but the right-handed polarization may be enhanced in some new physics models with right-handed currents, such as the Left-Right Symmetric Model (LRSM). In this article, we investigate how large this wrong polarization could be within the allowed parameter space of the LRSM. We show that in the LRSM, the right-handed polarization of the photon in the $b \rightarrow s\gamma$ processes could be largely enhanced by the $W_L - W_R$ mixing contributions because of the helicity flip on the internal top quark line of the penguin diagrams and the enhancement by the CKM factor V_{ts}^R/V_{ts}^L. We discuss the sensitivity of the proposed methods to determine the $b \rightarrow s\gamma$ photon polarization to the LRSM as well as their complementary role compared to the direct search of right-handed charged gauge bosons at LHC.

KEYWORDS: Photon Polarization, Left-Right Symmetric Model
1 Introduction

The circular-polarization of the photon in the radiative B decays has an unique sensitivity to the physics beyond the Standard Model (SM). There have been various methods proposed to measure this polarization but its precise measurement has never been achieved so far. Therefore, it is an important challenge for the on-going experiments such as LHCb or the future projects such as Belle II experiment. For this reason, there are many theoretical works in this subject recently [1–10].

The $b \to s\gamma$ processes come from the magnetic-operators, $\bar{s}_L\sigma_{\mu\nu}b_R$ or $\bar{s}_R\sigma_{\mu\nu}b_L$. The photons induced by these operators have left- and right-handed polarization, respectively. In the SM, these operators are induced by the loop diagrams with the W bosons. Due to the fact that the W bosons couple only left-handedly to the quarks, the first operator receives a
bottom quark mass factor, \(i.e \), \(m_b \sigma_{\mu\nu} b_R \), while the second one has a strange quark mass factor, \(i.e \), \(m_s \sigma_{\mu\nu} b_L \). As a result, the circular-polarization of the photon in the \(b \to s\gamma \) processes is predicted to be predominantly left-handed in the SM. Thus, a measurement of the photon polarization can serve as a test of a fundamental property of the SM. On the other hand, an observation of wrong polarization (right-handed in \(\bar{b} \) quark decay or left-handed in \(b \)) is a clear indication from the physics beyond the SM, in particular, from the models which contain right-handed couplings (see [11–14] for the SM uncertainty).

In this article, we investigate one of the models in this category, the Left-Right Symmetric Model (LRSM). This model contains a \(W \)-type boson which has right-handed charged coupling to the quarks. The LHC experiments, namely ATLAS and CMS, are intensively searching for this type of particles and the latest limit on its mass and coupling is obtained as: \(g_R/g_L m_W^2 > 2.5 \text{ TeV} \) [15, 16]. The right-handed charged couplings to different quarks, which are represented by the right-handed CKM matrix elements, can be constrained, on the other hand, by various flavour physics experiments. By now, the minimal LRSM with a symmetry between the left- and right-handed sector [17], \(i.e \), the so-called manifest- and pseudo-manifest-models motivated by the spontaneous CP violation [18–23], are becoming difficult to realize [24, 26, 27], whereas in this work, we use a more general right-handed CKM matrix. We first revisit the constraints on these parameters of the LRSM, namely, new particle masses, their couplings and the right-handed CKM matrix elements, from various flavour experiments (\(K, B_d, B_s \) oscillation and \(B \to X_s\gamma \) branching ratio). Then, we investigate how large the wrong polarization could be using the allowed ranges of these parameters. We show the effect of the so-called chiral-enhancement factor, which is expected to play a crucial role in enhancing the wrong polarization: the two \(W \) boson mass eigenstates in this model being mixing states of left- and right-handed \(W \) bosons can induce the chirality change without a flip on the external \(b \) or \(s \) quark lines, which provide an internal quark mass factor \(m_t \) instead of external quark mass factor mentioned above. As a result, the operator \(s_R \sigma_{\mu\nu} b_L \) is enhanced by a factor \(m_t/m_s \) with respect to the SM.

At the end, we discuss the prospect of the LHCb and the future Belle II experiments for constraining the LRSM parameters by using some of their observables, the time dependent CP asymmetry of \(B \to K_S\pi^0\gamma \) [28, 29], the angular distribution of \(B \to K^*l^+l^- \) (at low \(q^2 \)) [30, 31], and \(B \to K\gamma \) [32–35].

In section 2, we introduce the LRSM where we also give our model for the right-handed CKM matrix. In section 3 and 4, we describe the \(b \to s\gamma \) and meson mixings in the LRSM. We show our numerical results in section 5 and conclude in section 6.

2 Left-Right Symmetric Model

The Left-Right Symmetric Model (LRSM) is based on the extended gauge group \(SU(2)_L \times SU(2)_R \times U(1)_{\tilde{Y}} \), which involves additional charged and neutral gauge bosons [36–39]. The electric charge can be also extended as \(Q = T_{L3} + T_{R3} + \tilde{Y} \). Then, for the ordinary quarks and leptons, the hypercharge gets a physical meaning, \(i.e \), \(\tilde{Y} = (B - L)/2 \) in this model, where \(B \) and \(L \) are baryon and lepton numbers.
The left-handed fermions are $SU(2)_L$ doublets and $SU(2)_R$ singlets as in the SM while the right-handed fermions are $SU(2)_R$ doublets and $SU(2)_L$ singlets. Thus, the charge assignments $(T_{L3}, T_{R3}, \tilde{Y})$ of left- and right-handed quarks and leptons yields:

$$ Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix} \sim \begin{pmatrix} 1/2 & 0 \\ 0 & 1/6 \end{pmatrix}, \quad Q_R \equiv \begin{pmatrix} u_R \\ d_R \end{pmatrix} \sim \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}, \quad (2.1) $$

$$ L_L \equiv \begin{pmatrix} \nu_L \\ \ell_L \end{pmatrix} \sim \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}, \quad L_R \equiv \begin{pmatrix} \nu_R \\ \ell_R \end{pmatrix} \sim \begin{pmatrix} 0 & 1 \\ 1 & -0 \end{pmatrix}, \quad (2.2) $$

The gauge symmetry in the LRSM is spontaneously broken in two steps

$$ SU(2)_L \times SU(2)_R \times U(1)_{\tilde{Y}} \rightarrow SU(2)_L \times U(1)_{\tilde{Y}} \rightarrow U(1)_{\text{EM}}. \quad (2.3) $$

The first step $SU(2)_R \times U(1)_{\tilde{Y}} \rightarrow U(1)_{\tilde{Y}}$ is parity and $B-L$ violating while the second step is equivalent to the standard electroweak symmetry breaking. Let us first see the scalar multiplet Φ, which triggers the second step symmetry breaking. Consulting the Yukawa interaction of the form, $\mathcal{L}_Y \Phi Q_R$, Φ should be a 2×2 unitary matrix. Moreover, to be invariant under $SU(2)$ transformation, this term requires Φ to be bi-doublet scalar fields with charge assignment:

$$ \Phi \equiv \begin{pmatrix} \varphi_1^0 & \varphi_2^- \\ \varphi_2^+ & \varphi_1^- \end{pmatrix} \sim \begin{pmatrix} 1 & 1/2 \\ 1/2 & 0 \end{pmatrix}. \quad (2.4) $$

The scalar field Φ can not trigger the first step symmetry breaking because (i), Φ couples to both of $SU(2)_L$ and $SU(2)_R$ and does not distinguish these two groups. Therefore Φ could not break parity. (ii) Φ does not couple to $U(1)_{\tilde{Y}}$ which would be unbroken and would leave a massless gauge boson which is not observed. Thus, we must introduce other scalar multiplets to break the parity symmetry, namely the $SU(2)_R$, and also $U(1)_{\tilde{Y}}$. In particular, the scalar multiplet with charge $B-L=2$ is attractive since it can generate right-handed Majorana neutrino masses $[40-42]$. As a result, we introduce the scalar triplet:

$$ \Delta_R \equiv \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \delta_R^- & -\delta_R^+/ \sqrt{2} \end{pmatrix} \sim (0, 1, 2), $$

Note that in this model another scalar field $\Delta_L \sim (1, 0, 2)$ is also introduced in order to ensure the parity conservation at a high energy before the symmetry is broken.

Now the symmetry breaking (2.3) can be undertaken by the non-zero vacuum expectation values (VEV). It is known that two of four complex phases can be eliminated and remaining two phases are assigned conventionally to the VEV of Φ, Δ_L and Δ_R $[24]$:

$$ \langle \Phi \rangle = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' e^{i\omega} \end{pmatrix}, \quad \langle \Delta_L \rangle = \begin{pmatrix} 0 & \nu_L e^{i\theta_L} \\ 0 & 0 \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ 0 & \nu_R \end{pmatrix}, \quad (2.5) $$

where, $\nu_{L,R}, \kappa$ and κ' are real numbers. The symmetry breaking of $SU(2)_R \times U(1)_{\tilde{Y}} \rightarrow U(1)_{\tilde{Y}}$ is achieved at a high scale, i.e. multi-TeV, by non-zero $\langle \Delta_R \rangle$. If $\nu_L \neq \nu_R$, the left-right symmetry is spontaneously broken. The standard electroweak symmetry breaking is triggered by non-zero κ, κ'.

– 3 –
There are some hierarchies among the vacuum expectation values κ, κ' and $v_{L,R}$. First of all, $\kappa, \kappa', v_L \ll v_R$ is needed to suppress the right-handed currents at low energy scales. On the other hand, we would expect another hierarchy $v_L \ll v_R$ in order to generate the neutrino masses through the see-saw mechanism, namely $v_L \lesssim$ a few MeV [40–42] for $v_R \sim$ multi-TeV. And also the constraints from electroweak ρ-parameter requires $v_L \lesssim 10\text{GeV}$[43]. In this work, we shall use the limit $v_L \to 0$, which is usually used in literatures. Note that the Higgs potential allows such a limit since $v_L \propto \kappa^2/v_R$[42]. Therefore the phase θ_L has no physical consequence, while ω could trigger a spontaneous CP violation. According to the hierarchy described above, we introduce an expansion parameter ϵ as:

$$\epsilon = v/v_R, \text{ with } v^2 = \kappa^2 + \kappa'^2,$$

where $v = 174$ GeV is the scale of the standard electroweak symmetry breaking and $v_R = \mathcal{O}(\text{TeV})$ as discussed above. The ratio of κ and κ' is defined by the usual parameter β, i.e.

$$\kappa = v \sin \beta, \quad \kappa' = v \cos \beta, \quad \tan \beta = \frac{\kappa}{\kappa'}.$$ (2.7)

Then $\tan \beta$ is a free parameter in this model. $\tan \beta \neq 1$ is required by the difference of the masses of the fermions. On the other hand, the mass hierarchy $m_t \gg m_b$ implies large $\tan \beta$. However, the large value of $\tan \beta$ as $\mathcal{O}(\frac{m_t}{m_b})$ in some literatures, is disfavored by the electroweak precision observables [44]. $1 < \tan \beta < 10$ is used in [44]. In this work, we consider the range of $\tan \beta > 1$.

In the low energy processes, the discrete left-right symmetry breaks down, then the gauge coupling constants g_L and g_R are in general unequal, $g_L \neq g_R$. As g_L is the coupling constant in the SM, the ratio of $r = g_R/g_L$ is not allowed to be arbitrarily large, otherwise the interactions between right-handed gauge bosons and fermions would become nonperturbative. Having the latest direct search result, $r m_W > 2.5$ TeV [15, 16], and assuming v_R to be multi-TeV or higher, we use $r < 2$ in this work.

The charged gauge bosons are mixture of the mass eigenstates,

$$\begin{pmatrix} W_L^- \\ W_R^- \end{pmatrix} = \begin{pmatrix} \cos \zeta - \sin \zeta e^{i \omega} \\ \sin \zeta e^{-i \omega} \cos \zeta \end{pmatrix} \begin{pmatrix} W_1^- \\ W_2^- \end{pmatrix},$$

where the masses of $W_{1,2}^{\pm}$ up to the order of $\mathcal{O}(\epsilon^2)$ are

$$M_{W_1} \approx g_L v \sqrt{2} (1 - \epsilon^2 \sin^2 \beta \cos^2 \beta), \quad M_{W_2} \approx g_R v_R (1 + \frac{1}{4} \epsilon^2),$$ (2.9)

and the mixing angle

$$\sin \zeta \approx \frac{g_L}{g_R} \frac{\kappa}{v_R} \frac{||\kappa||}{\kappa'} = \frac{g_L}{g_R} \frac{1}{2} \epsilon^2 \sin 2\beta \approx \frac{M_{W_1}^2}{M_{W_2}^2} \frac{g_R}{g_L} \sin 2\beta.$$ (2.10)

The full Lagrangian for the neutral currents and the charged currents associated with gauge bosons and Goldstone bosons in the LRSM are given in Appendix A.
In the LRSM, there are charged Higgs bosons H^\pm and heavy flavor-changing neutral Higgs bosons H^0 and A^0. In [24], it is shown that the masses of these bosons are nearly the same. To the leading order, their masses are equal to each other [44],

$$M_{H^\pm} = M_{H^0} = M_{A^0}.$$ \hspace{1cm} (2.11)

For simplicity, we use M_H representing the masses of charged and heavy neutral Higgs bosons. The Lagrangians for the interactions between H^0, A^0, H^\pm and fermions are given in Appendix A. As we will see later-on, the tree-level flavor changing neutral current due to H^0 and A^0 will affect the $\Delta F = 2$ processes very much unless M_H is sufficiently large [44]. In this work, we consider the cases of $M_H = 20\text{TeV}$ and 50TeV. For such heavy mass, the contributions on $b \rightarrow s\gamma$ and $\Delta F = 2$ processes from charged Higgs in the loop diagrams become negligibly small.

Concerning the quark mixing matrices (CKM matrices), we have one left-handed coupling V^L_{CKM} and one right-handed V^R_{CKM} for the left- and right-handed quarks respectively. We take V^L_{CKM} the same as the Standard Model one, defined by usual three rotation angles and one phase. In this way, the right-handed CKM matrix V^R_{CKM} is in general written by nine parameters remained after imposing the unitarity condition. There are many models on the right-handed CKM matrix. A general study of the quark sector is done in the minimal Left-Right Symmetric Model, where there is a symmetry between the left- and right-handed sector [17]. The authors in [17] shows that the only possibilities in the minimal LRSM are either P or C (LR+parity or LR+charge conjugation), with the consequences that V^R_{CKM} is equal or very close to V^L_{CKM}. These two cases correspond to the scenarios in the early works of LRSM with the ideas of spontaneous CP violation. In the so-called manifest LRSM[18, 19], where the VEVs in the Higgs sector are all real, the right-handed matrix is exactly the same as the left-handed one, $V^R_{\text{CKM}} = V^L_{\text{CKM}}$, and hence there are only explicit CP violations from the phases in CKM matrices. While in the pseudo-manifest LRSM[20–23], where the Yukawa couplings are taken to be real, the right-handed CKM matrix is related to the left-handed one by diagonal phase matrices $K^{u,d}$, $V^R_{\text{CKM}} = K^u V^L_{\text{CKM}} K^d$, leading to spontaneous CP violation from the complex Higgs VEV. Both scenarios confront strong constraints from the the flavor and Higgs physics [24–27]. More general right-handed CKM matrix have been studies in [17, 24, 44–48]. Motivated by the $K^0 - \overline{K^0}$ mass difference, Langacker and Sankar proposed two simple formulae of right-handed CKM matrix [48],

$$V^R_{(A)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_\alpha \pm s_\alpha & 0 \\ 0 & s_\alpha \mp c_\alpha & 0 \end{pmatrix}, \quad V^R_{(B)} = \begin{pmatrix} 0 & 1 & 0 \\ c_\alpha & 0 \pm s_\alpha & 0 \\ s_\alpha & 0 \mp c_\alpha & 0 \end{pmatrix},$$ \hspace{1cm} (2.12)

where $c_\alpha \equiv \cos \alpha$, $s_\alpha \equiv \sin \alpha$ with α an arbitrary angle. As we will see in the following sections, for the purpose of this work, i.e. enhancing the right-handed polarization of the photon in $b \rightarrow s\gamma$, the scenario (A) is more interesting as it keeps a possibility to have a large $|V^R_{ts}|$. In this work, we also investigate the CP violating observable, thus, we keep the

– 5 –
CP violating phases with the following parametrization,

\[V_{CKM}^R = \begin{pmatrix} e^{-i\phi_1} & 0 & 0 \\ 0 & c_{23}e^{-i\phi_1} - s_{23}e^{i(\phi_2 - \phi_1)} & 0 \\ 0 & s_{23}e^{-i\phi_2} & c_{23} \end{pmatrix}, \tag{2.13} \]

where \(s_{23} \equiv \sin \theta_{23}, \ c_{23} \equiv \cos \theta_{23} \), \(\theta_{23} \) represents the mixing angle between the second and the third generations of quarks. This formula is also a simple version of [44] in the limit of \(\theta_{12} = \theta_{13} = 0 \).

So far, we have briefly introduced the LRSM. We summarize the free parameters used in this work: (i) the mass of heavy charged gauge boson \(W_2^\pm \), and the masses of heavy charged and neutral Higgs bosons,

\[M_{W_2}, \ M_H, \tag{2.14} \]

(ii) the right-handed CKM matrix elements, \(V_{CKM}^R \), in our formula, they are

\[\theta_{23}, \ \phi_1, \ \phi_2, \tag{2.15} \]

(iii) the ratio of right- and left-handed gauge coupling constants,

\[g_R/g_L, \tag{2.16} \]

(iv) the ratio of VEVs in the scalar bidoublet \(\phi \),

\[\tan \beta, \tag{2.17} \]

and (v) the spontaneous CP violating phase \(\omega \). In this work, one will find that the observables we used are not very sensitive to \(\omega \), therefore we will fix it to be \(\omega = 0 \) in the discussions for simplicity.

3 The \(C_{7\gamma} \) and \(C'_{7\gamma} \) in the LRSM

The effective Hamiltonian of \(b \to s\gamma \) is [49]

\[\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^L V_{tb}^L \sum_{i=1}^{8} \left[C_i(\mu)Q_i(\mu) + C'_i(\mu)Q'_i(\mu) \right] , \tag{3.1} \]

where the operators \(Q'_i \) are obtained from \(Q_i \) by replacing \(P_L \leftrightarrow P_R \). The leading contribution to the \(b \to s\gamma \) decay is from the operators of

\[Q_{7\gamma} = \frac{e}{16\pi^2} m_b \tilde{s} \tilde{\sigma}^{\mu\nu} P_R b F_{\mu\nu}, \quad Q'_{7\gamma} = \frac{e}{16\pi^2} m_b \tilde{s} \tilde{\sigma}^{\mu\nu} P_L b F_{\mu\nu}. \tag{3.2} \]

We can find that the polarization of the photon radiated from \(Q_{7\gamma} \) is left-handed, but right-handed from \(Q'_{7\gamma} \). In the SM, \(C_{7\gamma}/C_{7\gamma} \approx m_s/m_b \ll 1 \), and hence the photon polarization is dominantly left-handed. To test the \(\text{wrong} \) polarization in the LRSM, we will study \(C'_{7\gamma}/C_{7\gamma} \) in this work.
Note that the photon polarization is not directly related to the ratio of \(C'_{7,\gamma}/C_{7,\gamma}\), but can also be affected by other operators. It was discussed in [50] that the wrong polarization in the SM could be as large as ten percent contributed by the operator of \(Q_2 = \bar{c} \gamma_\mu P_L b \bar{s} \gamma^\mu P_L c\).

Therefore, the new physics effects on the polarization could be determined in experiments only if the wrong polarization was larger than ten percent. Besides, the LRSM contributions to \(Q_2\) and \(Q'_6\) are negligible due to the large mass of heavier charged gauge bosons. Hence, within the leading effects, we investigate the ratio of \(C'_{7,\gamma}/C_{7,\gamma}\) to study the wrong polarization in the following discussions.

In the LRSM, the penguin diagrams with charged gauge bosons \(W^+_1, W^-_2\) and charged Higgs \(H^\pm\) in the loops, can contribute to the \(b \rightarrow s \gamma\) processes. The full formulae of \(C_{7,\gamma}\) and \(C'_{7,\gamma}\) are shown in Appendix B. Using the approximation of expansion to the order of \(\mathcal{O}(\epsilon^4)\) for \(C_{7,\gamma}\), the Wilson coefficients are

\[
C_{7,\gamma}(\mu W_1)_{W_1} = \frac{1}{2} \left[\left(1 - \frac{g^2_R}{g^2_L} \frac{M^4_{W_1}}{M^2_{W_2}} \sin^2 2\beta \right) A_{SM}(x_t) \right. \\
+ \frac{m_t g^2_R V^R_{tb}}{m_b g^2_L V^R_{tb}} \frac{M^2_{W_1}}{M^2_{W_2}} \sin 2\beta e^{i\omega} \left(1 + \frac{g^2_R M^2_{W_1}}{g^2_L} \frac{M^2_{W_2}}{M^2_{W_2}} \sin 2\beta \right) A_{LR}(x_t) - \left(2 \frac{M^2_{W_1}}{M^2_{W_2}} A_{LR}(\bar{x}_t) \right) \right], \tag{3.3}
\]

\[
C_{7,\gamma}(\mu H^\pm)_{H^\pm} = \frac{1}{2} \left[\frac{m_t \tan 2\beta}{m_b} \frac{V^R_{tb} V^L_{tb}}{V^L_{tb}} A^1_{H^\pm}(y) + \tan^2 2\beta A^2_{H^\pm}(y) \right], \tag{3.4}
\]

\[
C'_{7,\gamma}(\mu W_1)_{W_1} = \frac{1}{2} \left[\frac{m_t g^2_R V^R_{ts} M^2_{W_1}}{m_b g^2_L V^L_{ts} M^2_{W_2}} \sin 2\beta e^{-i\omega} A_{LR}(x_t) \right], \tag{3.5}
\]

\[
C'_{7,\gamma}(\mu H^\pm)_{H^\pm} = \frac{1}{2} \left[\frac{m_t \tan 2\beta}{m_b} \frac{V^R_{ts} V^L_{tb}}{V^L_{ts} V^L_{tb}} A^1_{H^\pm}(y) \right] + \frac{V^R_{ts} V^R_{tb}}{V^L_{ts} V^L_{tb}} \frac{1}{\cos^2 2\beta} A^2_{H^\pm}(y) \right], \tag{3.6}
\]

where \(x_t = m_t^2/M^2_{W_1}, \bar{x}_t = m_t^2/M^2_{W_2}, i = c, t, y = m_y^2/M^2_{H^\pm}\), and the loop functions are shown in Appendix B. The first term in Eq.(3.3) is the SM contribution. Since the contribution of \(C'_{7,\gamma}\) to branching ratio is of order \(\mathcal{O}(\epsilon^4)\), we have to consider the LRSM contribution up to the order of \(\mathcal{O}(\epsilon^4)\) for \(C_{7,\gamma}\) in which the contributions from LRSM and SM are interfered with each other. We neglect the contributions from the penguin diagrams with \(W_2\) in the loops since they are at a higher order than \(\epsilon^4\). Note that the dependence on the \(W_2\) mass of Eqs. (3.3, 3.5) is from the mixing between \(W^\pm_1\) and \(W^\pm_2\) in \(W^\pm_1\) in Eq.(2.10). In this work, the contribution from charged Higgs is also negligible unless \(\tan \beta \sim 1\), because we choose its mass to be higher than several TeV. The loop functions \(A_{H^\pm}^{1,2}(y)\) are two or three orders smaller than \(A_{SM}(x_t)\) or \(A_{LR}(x_t)\). Besides, the charm contribution cannot be neglected in the LRSM as explained in the Appendix B.

The dominant contribution from the LRSM is \(C'_{7,\gamma}(\mu W_1)_{W_1}\) in Eq.(3.5), from the penguin diagram with \(W^\pm_1\) and top quark in the loop, in which the \(W^\pm_1\) couples to \(b\) quark and \(W^\pm_2\) couples to \(s\) quark, as shown in Fig.1. It is enhanced by the factor of \(m_t/m_b\) since the helicity flip occurs in the internal top quark line which is resulted by the mass eigenstate \(W^\pm_1\) as a mixture of \(W^\pm_1\) and \(W^\pm_2\). Compared to the SM contribution, another effect of
mechanism of enhancement of the Wolfenstein formula of left-handed CKM matrix. In [51], the authors show that the effective Hamiltonian for 4 Meson mixings in LRSM one.

σ where

oscillations [52, 53], taking Kaon mixing as example, due to the helicity flip in the internal top quark line, and ii) |V_{ts}^R/V_{ts}^L| at the vertex $W_R t_R s_R$ if we allow a large value for |V_{ts}^R|.

enhancement is the factor of $|V_{ts}^R/V_{ts}^L|$ from the vertex of $W_R t_R s_R$. Thus, the value of V_{ts}^R is the key element to have a large $C'_{\gamma\gamma}/C_{\gamma\gamma}$. If we allow a large value of $|V_{ts}^R|$, this factor of enhancement could be as large as $1/\lambda^2$, where $\lambda \approx 0.2$ is one of the parameters in the Wolfenstein formula of left-handed CKM matrix. In [51], the authors show that the mechanism of enhancement of $C'_{\gamma\gamma}/C_{\gamma\gamma}$ in the LRSM is the same as the chromomagnetic one.

4 Meson mixings in LRSM

The effective Hamiltonian for $\Delta F = 2$ transitions can be written in a general form [52, 53]

$$H_{\text{eff}}^{\Delta F=2} = \frac{G_F^2 M_W^2}{16\pi^2} \sum_i C_i(\mu) Q_i(\mu),$$

(4.1)

where the CKM matrix elements are involved in the Wilson coefficients C_i. Here we factored out M_W for convenience. There are 8 operators responsible for $M^0 - \bar{M}^0$ ($M^0 = K, B_d, B_s$) oscillations [52, 53], taking Kaon mixing as example,

$$Q_1^{\text{YLL}}(K) = (\bar{s}^\alpha \gamma_\mu P_L d^\alpha)(\bar{s}^\beta \gamma_\mu P_L d^\beta),$$

$$Q_1^{\text{YRR}}(K) = (\bar{s}^\alpha \gamma_\mu P_L d^\alpha)(\bar{s}^\beta \gamma_\mu P_R d^\beta),$$

$$Q_1^{\text{SRR}}(K) = (\bar{s}^\alpha \gamma_\mu P_R d^\alpha)(\bar{s}^\beta \gamma_\mu P_R d^\beta),$$

(4.2)

$$Q_2^{\text{YLL}}(K) = (\bar{s}^\alpha \gamma_\mu P_L d^\alpha)(\bar{s}^\beta \gamma_\mu P_L d^\beta),$$

$$Q_2^{\text{SRR}}(K) = (\bar{s}^\alpha \gamma_\mu P_R d^\alpha)(\bar{s}^\beta \gamma_\mu P_R d^\beta),$$

$$Q_2^{\text{SRR}}(K) = (\bar{s}^\alpha \gamma_\mu P_R d^\alpha)(\bar{s}^\beta \gamma_\mu P_R d^\beta),$$

where $\sigma_{\mu\nu} = \frac{1}{2}[(\gamma_\mu, \gamma_\nu)$ and $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$. We can readily write the corresponding operators for the B_d^0 or B_s^0 mixings by replacing $s \to b$ and $d \to d$ or s, respectively. In the SM, only the one operator, Q_1^{YLL}, contributes to this process.

The amplitude for $M - \bar{M}$ mixing is then

$$A(M \to \bar{M}) = \frac{G_F^2 M_W^2}{16\pi^2} \sum_{i,a} C_i^a(\mu) \langle \bar{M} | Q_i^a(\mu) | M \rangle.$$

(4.3)

- 8 -
The hadronic matrix elements of these operators are shown in [53], in case of $K^0 - \bar{K}^0$ mixing,

$$
\langle Q_1^{VLL}(\mu) \rangle = \frac{2}{3} m_K^2 F_K^2 B_1^{VLL}(\mu), \\
\langle Q_1^{LR}(\mu) \rangle = -\frac{1}{3} R(\mu)m_K^2 F_K^2 B_1^{LR}(\mu), \quad \langle Q_2^{LR}(\mu) \rangle = \frac{1}{2} R(\mu)m_K^2 F_K^2 B_2^{LR}(\mu), \tag{4.4}
$$

$$
\langle Q_1^{SLL}(\mu) \rangle = -\frac{5}{12} R(\mu)m_K^2 F_K^2 B_1^{SLL}(\mu), \quad \langle Q_2^{SLL}(\mu) \rangle = -R(\mu)m_K^2 F_K^2 B_2^{SLL}(\mu),
$$

where

$$
R(\mu) = \left(\frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 \tag{4.5}
$$

is the chiral enhancement factor and B_i are bag parameters which is given in Appendix D.

The hadronic matrix elements of the operators VRR and SRR are the same as their corresponding VLL and SLL ones because of the chiral conservation of QCD. It should be noted that the $K^0 - \bar{K}^0$ system provides the most severe constraints on new physics models, due to the large enhancement factor $1/m_s$ in $R(\mu)K$ comparing to the B_{ds} systems.

At the high energy scale in the LRSM, there are three kinds of contributions to the $\Delta F = 2$ processes: box diagrams with two charged gauge bosons $W_{1,2}^\pm$, box diagrams with charged Higgs bosons H^\pm, and tree diagram with flavor-changing neutral Higgs bosons. We found that the contributions from box diagrams with charged Higgs bosons are always smaller than those with gauge bosons, because of $M_H > M_{W^\pm}$. Therefore they are neglected in this work.

Now, let us see the box diagram with $W_{1,2}^\pm$. The Wilson coefficients for the box diagrams with two W_1 (i.e. SM contribution), one W_1^\pm and one W_2^\pm, and two W_2^\pm are written respectively as

$$
\Delta_{\text{gauge}} C_1^{VLL}(\mu_{W_1}) = \sum_{i,j=c,t} \lambda_i^{LL} \lambda_j^{LL} S_{LL}(x_i, x_j), \tag{4.6}
$$

$$
\Delta_{\text{gauge}} C_2^{LR}(\mu_{W_2}) = \sum_{i,j=u,c,t} \lambda_i^{LR} \lambda_j^{RL} S_{LR}(x_i, x_j, \eta), \tag{4.7}
$$

$$
\Delta_{\text{gauge}} C_1^{VRR}(\mu_{W_2}) = \sum_{i,j=c,t} \lambda_i^{RR} \lambda_j^{RR} S_{RR}(\tilde{x}_i, \tilde{x}_j), \tag{4.8}
$$

where $\lambda_i^{AB} = V_{iq}^A V_{q'i}^B$, $q, q' = d, s, b$, $A, B = L, R$, $x_i = m_i^2/M_{W_1}^2$, $\tilde{x}_i = m_i^2/M_{W_2}^2$, $i = u, c, t$, $\eta = M_{W_1}^2/M_{W_2}^2$. In the LL and RR sectors, the GIM mechanism has been used and then the contribution from λ_u is eliminated, while in the LR sector, the GIM mechanism is invalid because of the combination of left- and right-handed CKM matrix elements. The loop functions can be found in the Appendix C. We find that $\Delta_{\text{gauge}} C_2^{LR}$ dominates the LRSM contribution, while $\Delta_{\text{gauge}} C_1^{VRR}$ is negligible due to the high mass of W_2^\pm. Our results agree with those in [17, 24, 44]. Considering the right-handed CKM matrix in (2.13) with some elements as zero, the dominant contributions to the box diagrams to Kaon, B_d and B_s mixing yield:

$$
\Delta C_2^{LR}(\mu_{W_2})^{K}_{\text{Box}} = V_{us}^{Ls} V_{ud}^{Rd} V_{cs}^{Rc} V_{cd}^{SR} S_{LR}(x_u, x_c, \eta) + V_{us}^{Ls} V_{ud}^{Rd} V_{ts}^{Rs} V_{td}^{SL} S_{LR}(x_u, x_t, \eta), \tag{4.9}
$$
\[\Delta C_{2}^{LR}(\mu W_2)^{B_d}_{\Box} = V_{ub}^{Ls}V_{ud}^{Rc}V_{cb}^{Rt}V_{td}^{Ls}S_{LR}(x_u, x_c, \eta) + V_{ub}^{Ls}V_{ud}^{Rc}V_{cb}^{Rt}V_{td}^{Ls}S_{LR}(x_t, x_t, \eta) \] (4.10)

\[\Delta C_{2}^{LR}(\mu W_2)^{B_s}_{\Box} = V_{tb}^{Ls}V_{ts}^{Rc}V_{cs}^{Rt}V_{ts}^{Ls}S_{LR}(x_c, x_t, \eta) + V_{tb}^{Ls}V_{ts}^{Rc}V_{cs}^{Rt}V_{ts}^{Ls}S_{LR}(x_t, x_t, \eta). \] (4.11)

Due to \(V_{cd}^R = V_{td}^R = 0 \) in (2.13), only the box diagrams with at least one up quark contribute to the Kaon and \(B_d \) mixing, as shown in Eqs. (4.9) and (4.10). Although the loop functions with an up quark in the box diagrams are numerically small, we consider this contribution to the Kaon mixing system because of the effect of enhancement in Eq. (4.5). On the other hand, such enhancement is absent for the \(B_d^0 - \bar{B}_d^0 \) mixing. Thus, together with the suppression by \(V_{ub}^R \), we neglect the contribution from box diagrams to \(B_d^0 - \bar{B}_d^0 \) oscillation. For the system of \(B_s^0 - \bar{B}_s^0 \) mixing, the dominant contributions in box diagrams are from the charm quark or top quark in the loops. In Eq. (4.11), we neglect the small contribution from two charm quarks in the box diagram because of the small value of the loop function. One more diagram with one charm quark and one top quark is also neglected due to the suppression of corresponding left-handed CKM matrix elements.

The tree-level contributions from the flavor-changing neutral Higgs (NH) are expected to dominate the \(\Delta F = 2 \) processes. The corresponding Wilson coefficient is

\[\Delta_{NH}C_{2}^{LR}(\mu_H) = \frac{-128\pi^2}{\sqrt{2}M_W^2 G_F M_H^2} \sum_{i,j=u,c,t} \lambda_i^{LR} \lambda_j^{RL} \sqrt{x_i(\mu_H)x_j(\mu_H)}, \] (4.12)

where the up-type quark masses are evaluated at the scale of \(\mu_H \) due to the renormalization of Yukawa couplings. Because of \(V_{us}^R = V_{cd}^R = V_{td}^R = 0 \) in our right-handed CKM matrix elements in (2.13), similarly to the case of box diagrams, only two terms contribute to Kaon mixing, and \(B_s^0 \) mixing. Due to the tiny mass of up quark, the flavor-changing neutral Higgs contribution in the LRSM to \(B_s^0 - \bar{B}_s^0 \) system is much smaller than the SM one, thus it can be neglected. Thereby we will not consider the \(B_d^0 - \bar{B}_d^0 \) mixing in the following discussion in this work. For the Kaon mixing, the LRSM effects do not change the mass difference very much. However, since the indirect CP violation \(\epsilon_K \) is very small in the SM, the LRSM contribution to \(\epsilon_K \) has to be examined very carefully. The flavor-changing neutral Higgs (NH) contributions to the \(K^0 - \bar{K}^0 \) and \(B_s^0 - \bar{B}_s^0 \) mixing are

\[\Delta C_{2}^{LR}(\mu_H)^{K}_{NH} = \frac{-128\pi^2}{\sqrt{2}M_W^2 G_F M_H^2} \left(m_u(\mu_H)m_c(\mu_H)V_{us}^{Ls}V_{cd}^{Rc}V_{cb}^{Rt}V_{td}^{Ls} + m_u(\mu_H)m_t(\mu_H)V_{us}^{Ls}V_{cd}^{Rc}V_{cb}^{Rt}V_{td}^{Ls} \right), \] (4.13)

\[\Delta C_{2}^{LR}(\mu_H)^{B_s}_{NH} = \frac{-128\pi^2}{\sqrt{2}M_W^2 G_F M_H^2} \left(m_c(\mu_H)m_t(\mu_H)V_{ts}^{Ls}V_{cs}^{Rc}V_{cs}^{Rt}V_{ts}^{Ls} + m_t(\mu_H)^2 V_{ts}^{Ls}V_{cs}^{Rc}V_{cs}^{Rt}V_{ts}^{Ls} \right), \] (4.14)

where the up-type quark masses are evaluated at the scale of \(\mu_H \). With the same argument to the case of box diagrams above, we neglect two terms in the \(B_s^0 - \bar{B}_s^0 \) mixing. As the quark masses don’t change too much at \(\mu_H = (20 \sim 50) \)TeV, we fix them as

\[m_u(\mu_H) = 0.001 \text{GeV}, \quad m_c(\mu_H) = 0.5 \text{GeV}, \quad m_t(\mu_H) = 120 \text{GeV}. \] (4.15)
5 Numerical Analysis

5.1 $C_{7\gamma}'/C_{7\gamma}$

$C_{7\gamma}$ and $C_{7\gamma}'$ are mainly constrained by the branching ratio of $B \rightarrow X_s \gamma$ whose current world average value is$^{[54]}
\begin{equation}
Br(B \rightarrow X_s \gamma)^{\text{exp}}_{E_\gamma > 1.6 \text{GeV}} = (3.43 \pm 0.22) \times 10^{-4}. \tag{5.1}
\end{equation}

The SM prediction within next-to-next-to-leading order of QCD is$^{[55]}
\begin{equation}
Br(B \rightarrow X_s \gamma)^{\text{SM}}_{E_\gamma > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}, \tag{5.2}
\end{equation}

Adding the LRSM contributions, the $C_{7\gamma}'$ term is extended to:

\begin{equation}
C_{7\gamma}(\mu_b) = C_{7\gamma}^{\text{SM}}(\mu_b) + C_{7\gamma}^{\text{NP}}(\mu_b), \quad C_{7\gamma}'(\mu_b) = C_{7\gamma}^{\text{NP}}(\mu_b), \tag{5.3}
\end{equation}

where the components of NP terms are already expressed in the previous section. Note that the left-handed and the right-handed polarization terms, i.e., $C_{7\gamma}$ and $C_{7\gamma}'$, do not interfere with each other. In the branching ratio of $B \rightarrow X_s \gamma$ in the SM, the contribution from tree level operator, i.e. C_2^{SM} is very large. Therefore, the overlap of $C_{7\gamma}'^{\text{NP}}$ and the C_2^{SM} is not negligible. On the other hand, the new tree-level contribution in the LRSM (see Eq. (A.8) in Appendix A for the full expression) turns out to be less than a few percent of C_2^{SM} due to the high mass of the W_2^\pm. For the LR and RL operators, they could contribute with the chirality flip by the charm quark mass which is much smaller than top quark mass. Thus, the tree level contributions from the LRSM can be safely neglected.

While we use the full equation in our numerical study, we show a simplified formula using typical input parameters for illustration. The branching ratio of $b \rightarrow s \gamma$ can be written in terms of new physics (NP) Wilson coefficients at the scale of $\mu_b = 4.6 \text{GeV}$

\begin{equation}
Br(B \rightarrow X_s \gamma)_{E_\gamma > 1.6 \text{GeV}} \simeq 3.15 + 18.83 \left(|C_{7\gamma}^{\text{NP}}(\mu_b)|^2 + |C_{7\gamma}'^{\text{NP}}(\mu_b)|^2 \right) - 11.79 \text{Re} \left(C_{7\gamma}^{\text{NP}}(\mu_b) \right) \times 10^{-4}. \tag{5.4}
\end{equation}

In this formula, we update the NLO analysis from$^{[56]}$ by the new results of quark masses and CKM matrix elements in$^{[57]}$, and by the NNLO SM result for this branching ratio from$^{[55, 58]}$. For the Wilson coefficients, we use the leading-order (LO) formulae for the W_1^\pm and H^\pm contributions at the matching scale of μ_W and μ_H, and then evolve them down to the μ_b scale separately at the leading logarithm (LL), as is done in$^{[44]}$. The procedures of evolution are the same for $C_{7\gamma}$ and $C_{7\gamma}'$, because QCD is conserved to the left-right symmetry. The mixing between O_7 and other operators are considered in the evolution. Besides, $C_{7\gamma}$ and $C_{7\gamma}'$ are actually the effective $C_{7\gamma}^{\text{eff}}$ and $C_{7\gamma}'^{\text{eff}}$, but we use $C_{7\gamma}'$ in this article for simplicity without ambiguity.

Numerically, $C_{7\gamma}'(\mu_b)$ and $C_{7\gamma}(\mu_b)$ can be expressed as a function of the parameters in the LRSM:

\begin{equation}
C_{7\gamma}'(\mu_b) \simeq 466 \frac{g_2^2}{g_L^2} \frac{M_{W_1}^2}{M_{W_2}^2} \sin 2\beta V_{ts}^R e^{-i\omega}, \tag{5.5}
\end{equation}

\begin{equation}
C_{7\gamma}(\mu_b) \simeq -0.32 + \frac{g_2^2}{g_L^2} \frac{M_{W_1}^2}{M_{W_2}^2} \sin 2\beta \left(7.5 V_{cb}^R - 18.9 V_{tb}^R \right) e^{i\omega}. \tag{5.6}
\end{equation}
The first term in $C_{7\gamma}$ is from the SM contribution, while the second term in $C_{7\gamma}$ is from the LRSM contribution which is suppressed by $M_{W_2}^2/M_{W_1}^2$, and can be neglected. So $C_{7\gamma}$ can be taken as the SM one in an approximation, $C_{7\gamma} \approx C_{7\gamma}^{SM}$. Then

$$C_{7\gamma}'(\mu_b)/C_{7\gamma}(\mu_b) \approx -1455 \frac{g_R^2}{g_L^2} \frac{M_{W_1}^2}{M_{W_2}^2} \sin 2\beta \sin (\phi_2 - \omega).$$

(5.7)

We can find that $|C_{7\gamma}'/C_{7\gamma}|$ could be as large as 0.5 if $\sin 23 \sim 1$, $M_{W_2} \sim 2$ TeV, $g_R/g_L \sim 1$ and $\tan \beta \sim 10$.

5.2 Meson mixings

To constrain the LRSM, we use the mass difference ΔM_s and the CP violating phase ϕ_s in $B_s^0-\bar{B}_s^0$ system, and the indirect CP violation in neutral Kaon mixing system. The current average values of mass difference and CP violating phase of $B_s^0-\bar{B}_s^0$ mixing are [54]

$$\Delta M_{B_s} = 17.719 \pm 0.043 \text{ ps}^{-1},$$

$$\phi_{cs} = -0.013^{+0.083}_{-0.090}.$$

(5.8)

(5.9)

The indirect CP violation in neutral Kaon mixing is [57]

$$|\epsilon_K|_\text{exp} = (2.228 \pm 0.011) \times 10^{-3}. \quad (5.10)$$

The mass difference and the CP violating phase of B_s^0 systems are

$$\Delta M_{B_s} = 2|\epsilon_{12}|, \quad \phi_{s} = -\arg (M_{12}^s),$$

(5.11)

where the matrix element M_{12}^s is defined by

$$2m_{B_s} M_{12}^s = \langle B_s^0 | \mathcal{H}_{\text{eff}} | \bar{B}_s^0 \rangle.$$

(5.12)

The LRSM contribution to the tree-level two-body hadronic decays is suppressed by the high mass of W_2 and hence negligible. Therefore we take the weak phase difference ϕ_{cs}' between the $B_s^0-\bar{B}_s^0$ mixing and the $b \to c \bar{c}s$ decay amplitudes as the phase in the mixing.

The CP violation in the neutral Kaon meson decays is defined as [59][60]

$$\varepsilon_K = \frac{\kappa \epsilon^{cs} e^{i\phi_{cs}}}{\sqrt{2} (\Delta M_K)_{\text{exp}}} \text{Im}(M_{12}^K),$$

(5.13)

where $\varphi_e = (43.51 \pm 0.05)^\circ$[57] and $\kappa_e = 0.94 \pm 0.02$ are corrections due to long-distance effect.

Finally, at the μ_K scale, the matrix element of M_{12}^K is summarized as

$$M_{12}^K = M_{12}^{SM}(K) + M_{12}^{Box}(K) + M_{12}^{NH}(K),$$

(5.14)

where $M_{12}^{SM}(K)$, $M_{12}^{Box}(K)$, $M_{12}^{NH}(K)$ are from the contributions of the SM, box diagrams with W_2^\pm and flavor-changing neutral Higgs bosons, respectively. They can be expressed
by the parameters in the LRSM,

\[
M_{12}^{SM}(K) = 1.58 \times 10^{-15} - (1.19 \times 10^{-17})i, \tag{5.15}
\]

\[
M_{12}^{Box}(K) = r^2 \eta \left[-22 \ln \eta \cos \theta_{23} + (208 + 97 \ln \eta) \sin \theta_{23} e^{\epsilon(\phi_2 - \phi_1 - \beta_{CKM})} \right] \times 10^{-17}, \tag{5.16}
\]

\[
M_{12}^{NH}(K) = \eta_H \left[(4137 - 339 \ln \eta_H) \cos \theta_{23} - (41573 - 3402 \ln \eta_H) \sin \theta_{23} e^{\epsilon(\phi_2 - \phi_1 - \beta_{CKM})} \right] \times 10^{-17}, \tag{5.17}
\]

where \(r \equiv g_R / g_L, \eta \equiv M_{W_1}^2 / M_{W_2}^2, \eta_H \equiv M_{W_1}^2 / M_{H}^2, \) and \(\beta_{CKM} \) is the CP violating phase \(\beta \) in the left-handed CKM matrix, to be distinguished by the \(\beta \) parameter in the Higgs sector in the LRSM. We can find that the real part of contribution from the LRSM are much smaller than the SM one, and hence the LRSM would not affect \(\Delta M_K \). However, the imaginary part of contributions from the LRSM are in the same order as the SM one, so that \(\epsilon_K \) can be significantly affected by the LRSM.

For the \(B_s^0 - \bar{B}_s^0 \) system, the hadronic matrix element \(M_{12}^{BS} \) can be expressed similarly as \(M_{12}^{K} \),

\[
M_{12}^{SM}(B_s) = (55.4 + 2.0i) \times 10^{-13}, \tag{5.18}
\]

\[
M_{12}^{Box}(B_s) = r^2 \eta \left[(-453 - 141 \ln \eta) \cos \theta_{23} \sin \theta_{23} e^{-i\phi_2} + (-61 - 28 \ln \eta) \sin^2 \theta_{23} e^{i(\phi_1 - 2\phi_2)} \right] \times 10^{-11}, \tag{5.19}
\]

\[
M_{12}^{NH}(B_s) = \eta_H \left[(1466 - 120 \ln \eta_H) \cos \theta_{23} \sin \theta_{23} e^{-i\phi_2} + (144 - 12 \ln \eta_H) \sin^2 \theta_{23} e^{i(\phi_1 - 2\phi_2)} \right] \times 10^{-9}, \tag{5.20}
\]

where \(r \equiv g_R / g_L, \eta \equiv M_{W_1}^2 / M_{W_2}^2, \) and \(\eta_H \equiv M_{W_1}^2 / M_{H}^2. \) We can find that the contributions from \(W_2^\pm \) and neutral Higgs bosons are at the same order of, or even larger than the SM contribution, within the region of values of parameter we discussed. Then the constraints from \(B_s^0 - \bar{B}_s^0 \) mixing are severe. The CP violating phases \(\phi_1 \) and \(\phi_2 \) become important to provide solutions without fine-tuning.

In summary, concerning \(\theta_{23}, \) if \(\theta_{23} \simeq 0 \) (or \(\pi \)), i.e. \(\sin \theta_{23} \simeq 0, \) we found that all the constraints from the meson mixings can be neglected as long as \(M_{W_2}, M_H \) are not quite small, because \(M_{12}^{LRSM}(B_s) \propto \sin \theta_{23}, \) and the terms with \(\cos \theta_{23} \) in \(M_{12}^{LRSM}(K) \) are without CP violating phase and hence lose the constraint from \(\epsilon_K \). However in order to have a large \(|C_{7\gamma}^* / C_{7\gamma}|, \) we need \(\sin \theta_{23} \) to be large. If so, the contributions from the second terms in Eq. (5.17,5.20) become dominant. Interestingly, these terms depend on the \(\phi_1 \) and \(\phi_2. \) Thus, we can find some solutions in terms of \(\phi_{1,2} \), which satisfy \(M_{12}^{SM} + M_{12}^{Box} + M_{12}^{NH} \) to be within the experimental bounds. Indeed such solutions exist as long as \(M_H > 20 \) TeV and/or \(M_{W_2} > 2 \) TeV.

5.3 Impacts of the future photon polarization measurement on the LRSM

In this section, we attempt to estimate how large the \(|C_{7\gamma}^* / C_{7\gamma}| \) could be in the LRSM fully taking into account the various flavour constraints discussed in the previous sections. As we have already seen, \(|C_{7\gamma}^* / C_{7\gamma}| \) has a simple dependence on the parameters: it becomes larger
for a lower W^\pm_2 mass and/or for a larger $\sin \theta_{23}$. However, such a choice of parameter could make the LRSM contributions to the meson oscillation observables inconsistently large. Thus, we need a careful test of the whole parameter space of $(\theta_{23}, M_{W_2}, M_H, \phi_1, \phi_2)$. Let us set our target to find the maximum possible $|C_\gamma^d/C_\gamma^s|$ value for given values of M_{W_2} (here, we chose $M_{W_2} = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0$ TeV), and M_H (we fix it as 20 TeV or 50 TeV). Then, our first goal is to find a combination of ϕ_1 and ϕ_2 which satisfies all the experimental constraints while keeping $\sin \theta_{23}$ to be large.

It should be mentioned that in order to find that the allowed parameter space from the meson mixing and $B \to X_s \gamma$ branching ratio, we consider not only the experimental errors but also the theoretical errors. The input parameters and their uncertainties taken into account here is listed in Table 1\footnote{The hadronic parameters $B^{LR}_2(K)$, $B^{LL}_2(B)$, $B^{LR}_2(B)$ are calculated by Lattice QCD, but their values are sometimes inconsistent by different lattice QCD groups, such as in [62] and [63], so that there are large uncertainties of these parameters. We take the center values of these parameters from [64] for Kaon system and [62] for B^0_s system, and take their uncertainty as almost 10%. The other B parameters are either determined very well such as $B^{LV,LL}_1(K)$, or do not affect the observables in our work, so we do not consider their uncertainties. The bag parameters used in this work are shown in Appendix D.}.

Some comments on the left-handed CKM matrix are in [57]. Besides, $|C_\gamma^d/C_\gamma^s|$ is obtained assuming $|V_{tb}^L| = 1$, but we use the experimental result of $|V_{td}^L|$ in this work, so we normalize $|V_{td}^L|$ by $|V_{tb}^L|$. We fix the values of M_{W_2} and M_H and scan the (ϕ_1, ϕ_2) space, which is chosen in $[-\pi, \pi]$ with $\pi/50$ interval (total of 10^4)

Table 1. Input parameters

hadronic parameters	CKM parameters [57]
$B^{LR}_2(K)$	$B^{LL}_2(B)$
$B^{LR}_2(B)$	η_{ct} [61].
0.82 ± 0.08	0.87 ± 0.08
1.15 ± 0.12	0.496 ± 0.047
points for each mass combination). Then, we find the minimum of the χ^2 defined in the appendix E. The number of points which did not exceed any of the experimental constraints or the input parameter ranges are (for $M_{W_2} = (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5)$ TeV, respectively):

\[
(0.01, 0.8, 0.8, 0.9, 0.9, 1.0, 1.1, 1.1, 1.2) \times 10^3 \text{ points for } M_H = 20 \text{ TeV} , \quad (5.21)
\]
\[
(0.06, 1.4, 1.8, 2.6, 3.1, 4.2, 5.2, 5.7, 6.2) \times 10^3 \text{ points for } M_H = 50 \text{ TeV} . \quad (5.22)
\]

As we have mentioned in the previous sections, $M_{W_2} \simeq 1.5$ TeV is allowed only for a fine-tuned parameter combinations while for $M_{W_2} > 2.0$ TeV, we find sizable number of allowed points.

Using these allowed parameter points, we arrive to compute $|C'_7/\gamma|$. All other parameters are optimized to the values which give the minimum of χ^2 described in the appendix E. The LRSM corresponds approximately to the scenario II of [65] where $C^{NP}_{7/\gamma} \simeq 0$, $C^{(NP)}_{7/\gamma} \in \mathbb{C}$ (c.f. Eq. (5.5)). Then we could investigate the effect of the LRSM in a plan of $Re[C'_7/\gamma]$ and $Im[C'_7/\gamma]$, as shown in Figure 2. The left and right figures correspond to the cases that the heavy Higgs mass is 20 and 50 TeV respectively. The white circle represents the constraint from the measured branching ratio of $B \rightarrow X_s\gamma$ with three standard deviation. The points with different colors represent the cases that the mass of W_2 is taken to be 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 TeV respectively, with the circles from the outside to the inside in the figure. The points represents the solutions that are mainly constrained by ϵ_K, ΔM_s, ϕ_s and $Br(B \rightarrow X_s\gamma)$. $|C'_7/\gamma|$ would be larger as the mass of W_2 decreases. One can see that $|C'_7/\gamma|$ can reach to $\sim (0.5, 0.35, 0.25, 0.15, 0.1)$ for W_2 being (2.0, 2.5, 3.0, 3.5, 4.0) TeV.

Finally, we discuss briefly the discovery potential of the LRSM by the future photon polarization measurements. There have been various proposals for the experimental method to determine the photon polarization of the $b \rightarrow s\gamma$. Here, following the discussion in [65], we study the three types of methods; i) The time-dependent CP-asymmetry of $B \rightarrow K_S\pi^0\gamma$ ($S_{K_S\pi^0\gamma}$), ii) The angular distribution of the $\overline{B} \rightarrow K^-\gamma \rightarrow K\pi\pi\gamma$ decay (λ_γ), and iii) The angular analysis of $\overline{B} \rightarrow \overline{K}^* \rightarrow K\pi^\pm \pi^\mp$ ($A_T^{(2)}, A_T^{(im)}$). Detailed descriptions of these observables are given in Appendix F.

i) In the LRSM, $S_{K_S\pi^0\gamma}$ can be written as

\[
S_{K_S\pi^0\gamma} \simeq \frac{-2Re[C'_7/C_7] \sin 2\beta_{\text{CKM}} + 2Im[C'_7/C_7] \cos 2\beta_{\text{CKM}}}{1 + Re[C'_7/C_7]^2 + Im[C'_7/C_7]^2}, \quad (5.23)
\]

where β_{CKM} is the CP violating phase from the left-handed CKM matrix. This formula is obtained by assuming $C^{NP}_{7/\gamma} \simeq 0$ and also absence of new physics contributions to the $B_d^0 - \overline{B}_d^0$ mixing, which have been derived in the previous sections. In Figure 3(a), we overlap the curve representing the center value, 1σ, 2σ, 3σ, of the experimental result of $S_{K_S\pi^0\gamma}$ on top of the possible LRSM effects obtained in Figure 2. We can find that $S_{K_S\pi^0\gamma}$ is approximately a linear combination of $Re[C'_7/C_7]$ and $Im[C'_7/C_7]$.
ii) In the LRSM, the polarization parameter λ_γ can be written as

$$\lambda_\gamma = \frac{\text{Re} \left[C'_7/\gamma/C_7/\gamma \right]^2 + \text{Im} \left[C'_7/\gamma/C_7/\gamma \right]^2 - 1}{\text{Re} \left[C'_7/\gamma/C_7/\gamma \right]^2 + \text{Im} \left[C'_7/\gamma/C_7/\gamma \right]^2 + 1}. \tag{5.24}$$

The future sensitivity of λ_γ is shown in Figure 3(b). The λ_γ constraint is circle and insensitive to the complex phases. The SM prediction stands at the central point. As stated in [65], in the region inside the circle of $\lambda_\gamma \simeq -0.8$, i.e. $|C'_7/\gamma/C_7/\gamma| \simeq 0.3$ we cannot distinguish the LRSM contribution from the SM one. Therefore, if the discovery of photon polarization using this method in experiments is distinguished from the SM, we can conclude that the mass of W_2^\pm is smaller than 2.5 TeV in case of $g_R/g_L \sim 1$ and $\tan \beta \sim 10$.

iii) In the LRSM, the transverse asymmetries can be written as

$$A_T^{(2)}(0) = \frac{2\text{Re} \left[C'_7/\gamma/C_7/\gamma \right]}{1 + \text{Re} \left[C'_7/\gamma/C_7/\gamma \right]^2 + \text{Im} \left[C'_7/\gamma/C_7/\gamma \right]^2}, \tag{5.25}$$

$$A_T^{(im)}(0) = \frac{-2\text{Im} \left[C'_7/\gamma/C_7/\gamma \right]}{1 + \text{Re} \left[C'_7/\gamma/C_7/\gamma \right]^2 + \text{Im} \left[C'_7/\gamma/C_7/\gamma \right]^2}. \tag{5.26}$$
These two observables can combine together to determine the magnitude and phase of $C'_7\gamma/C_7\gamma$, shown in Figure. 3(c) and 3(d).

![Figure 3](image)

Figure 3. Prospect of the future constraints on $C'_7\gamma/C_7\gamma$ in the LRSM. The four figures (a,b,c,d) correspond to $S_{K^0\pi^0\gamma}$, λ_γ, $A_T^{(0)}$ and $A_T^{(im)}$ respectively, allowed by a $\pm 3\sigma$ error of $Br(B \to X_s\gamma)_{\text{exp}}$. The points in the figures are the same as those in Fig.2(b) with $M_H = 50$ TeV. The figure (a) is our result for $S_{K^0\pi^0\gamma}$ in a range including $\pm 3\sigma$. The uncertainty of measurement for $S_{K^0\pi^0\gamma}$ can be reduced down to 2% in the future Belle II experiment, in which the contours will be 10 times narrow than those in figure (a). In figures (b,c,d), the contours are the uncertainty for λ_γ, $A_T^{(0)}$ and $A_T^{(im)}$ in the future measurements at LHCb and Belle II, which can be achieved with the errors as small as 0.2.
5.4 Complementary to the direct search at LHC

The direct search of W'_R or W', which also provides an important constraint on the LRSM, is carried out at the high energy colliders, such as Tevatron and LHC. Relevant results have been obtained by the CDF and the D0 collaborations [66, 67] and more recently by the ATLAS and the CMS collaborations [68–71] in terms of the W_R or W' bosons or heavy charged right-handed bosons searches (not necessarily LRSM). So far, most of the works are done in the Sequential Standard Model (SSM) in which the coupling of $W'WZ$ is set to be zero, and the W' has the same couplings to fermions as the SM W boson[72]. In the LRSM, the coupling of W_2 (or say W') to W_1Z_1 (or say WZ) is zero, because the left- and right-handed quantum numbers of Z_1 is zero, then it can not couple to W_LW_R and hence not to W_1W_2. In addition, if $g_R = g_L$, the coupling of W_2 to fermions is identical to the one of W_1 to fermions. Therefore, the LRSM in the case of $g_R/g_L = 1$ corresponds to the SSM. The current limit for $M_{W'}$ in the case of the SSM is obtained as $M_{W'} > 2.5$ TeV at the 95% confidence level by ATLAS and CMS, using its decay into a charged lepton and a neutrino at $\sqrt{s} = 7$ TeV [15, 16].

Now, let us include this limit to our analysis in the previous sections. In Figure 4, we plot the dependence of $|C'_L/C_7|$ on the mass M_{W_2} and on the gauge coupling ratio g_R/g_L, i.e. Eq. (5.7). In this figure, we fix $\tan \beta = 10$ and $\sin \theta_{23} = 1$ (which is allowed by the $\Delta F = 2$ observables). Looking at the horizontal line, $g_R/g_L = 1$, we find that the LHC limit $M_{W'} > 2.5$ TeV allows $|C'_L/C_7|$ to be $\lesssim 0.3$, as we have seen in the previous section. As the LHC experiments will push this mass limit to a higher value, the possible size for $|C'_L/C_7|$ will decrease rapidly. Let’s say, for $M_{W'} > 5$ TeV, $|C'_L/C_7| \lesssim 0.1$. On the other hand, in order to investigate the full range of the LRSM parameter space, we also need the mass limit for different values of g_R/g_L. For example, if we assume a larger value of g_R/g_L, a limit on $|C'_L/C_7|$ can be relaxed. In this sense, these two experiments are complementary. We should also note that so far, we have assumed $\tan \beta = 10$ though $|C'_L/C_7|$ strongly depends on $\tan \beta$ (see Figure 5). From Figure 5, the odd behavior at $\tan \beta \sim 1$ is from the charged Higgs contribution to $|C'_L/C_7|$, which is divergent at $\tan \beta = 1$. Thus, measurements of $|C'_L/C_7|$ and the mass limit from the direct search should be used exhaustively to constrain the whole parameter space.

6 Conclusions

In this work, we investigate possible right-handed photon polarization in the $b \rightarrow s \gamma$ processes with the allowed range of parameters in the Left-Right Symmetric Model (LRSM). The circular-polarization of the photon in the radiative B decays are dominantly left-handed in the Standard Model (SM). But we find that in the LRSM, the right-handed polarization can be enhanced by the $W_L - W_R$ mixing contributions because of the helicity flip on the internal top quark in the penguin diagrams and the enhancement by the CKM factor $V_{ts}R/V_{ts}L$. Note that for the right-handed CKM matrix, we extended the previously proposed parameterization in the literature by incorporating the additional CP violating phase.

We first constrained the parameter space of the LRSM by the observables of $b \rightarrow s \gamma$ and $\Delta F = 2$ processes, such as the inclusive branching ratio of $\overline{B} \rightarrow X_s \gamma$, the mass differences
Figure 4. The dependence of $|C'_7/C_7|$ on the mass M_{W_2} and the gauge coupling ratio g_R/g_L.

Figure 5. The dependence of $|C'_7/C_7|$ on M_{W_2} and $\tan \beta$.

and CP asymmetries in the $K^0 - \bar{K}^0$, $B_d^0 - \bar{B}_d^0$, and $B_s^0 - \bar{B}_s^0$ mixing systems. In order to find the allowed parameter space, we consider not only the experimental errors, but also the theoretical uncertainties carefully. We find that the observables in the neutral meson
mixing systems are significantly affected by the tree-level contributions from the heavy neutral Higgs bosons \(H_0^1, A_0^1 \), as well as the box diagrams with the charged gauge bosons \(W_R^\pm \).

Our numerical analysis shows that the ratio of right-handed and left-handed polarization of the photon in the \(b \to s \gamma \) processes, i.e. \(|C_{7\gamma}^\prime / C_{7\gamma}| \), could be much larger than the SM prediction, with its value as large as \((0.5, 0.35, 0.25)\) for the mass of \(W^\pm_2 \) as \((2.0, 2.5, 3.0)\) TeV in the case of \(g_R / g_L = 1 \) and \(\tan \beta = 10 \).

We also investigate the impact of the future photon polarization measurements on the LRSM, such as the time-dependent CP asymmetry in the decay of \(\bar{B} \to K_S \pi^0 \gamma \) (\(S_{K_S \pi^\gamma} \)), the angular distribution in the \(\bar{B} \to K_1^3 \gamma \to K \pi \pi \gamma \) decay (\(\lambda_{\gamma} \gamma \)), and the angular analysis of \(\bar{B} \to K^\pm (\to K \pi^{\pm} \ell^0 \ell^-) \) \(A_{T}^{(2)} \) and \(A_{T}^{(im)} \) which are easily accessible by the LHCb and the future BELLE II experiments. We finally showed that the measurement of the \(b \to s \gamma \) photon polarization plays a complementary role to the direct search of the right-handed charged gauge boson at the LHC.

Acknowledgements

The work of E.K. and F.S.Y. was supported in part by the ANR contract “LFV-CPV-LHC” ANR-NT09-508531 and France-China corporation of IN2P3/ CNRS FCPPL-LIA. The work of C.D.L. and F.S.Y. is partly supported by the National Science Foundation of China under the Grant No. 11228512, 11235005 and 11311130102.

A Interactions in the LRSM

The charged-current associated with \(W_{1,2}^\pm \) bosons is

\[
\mathcal{L}_cc^W = \bar{u}_i \gamma\mu \left(\frac{g_L}{\sqrt{2}} V_{ij}^L \cos \zeta P_L + \frac{g_R}{\sqrt{2}} V_{ij}^R \sin \zeta e^{iw} P_R \right) d_j W_{1\mu}^+ \\
+ \bar{u}_i \gamma^\mu \left(-\frac{g_L}{\sqrt{2}} V_{ij}^L \sin \zeta e^{-iw} P_L + \frac{g_R}{\sqrt{2}} V_{ij}^R \cos \zeta P_R \right) d_j W_{2\mu}^+ + h.c.. \tag{A.1}
\]

where \(\zeta \) is the mixing angle between \(W_L^\pm \) and \(W_R^\pm \), \(P_{L,R} \equiv \frac{1}{2} \pi_{L,R} \), \(g_{L,R} \) are the gauge coupling constants in the \(SU(2)_L \) and \(SU(2)_R \) groups, \(V_{ij}^{L,R} \) are the left- and right-handed CKM matrices, and \(w \) is the spontaneous CP violating phase. The charged-current associated
with charged Goldstone bosons is

\[
\mathcal{L}_cc^G = \frac{1}{\sqrt{2}M_W^+}u_i \left[(m_u g_L V^L_{ij} \cos \zeta - m_d g_R V^R_{ij} \sin \zeta e^{i\omega}) P_L
- (m_d g_L V^L_{ij} \cos \zeta - m_u g_R V^R_{ij} \sin \zeta e^{i\omega}) P_R \right] d_j G^+_i
+ \frac{1}{\sqrt{2}M_W^2}u_i \left[(m_d g_L V^L_{ij} \sin \zeta e^{-i\omega} + m_u g_R V^R_{ij} \cos \zeta) P_R
- (m_u g_L V^L_{ij} \sin \zeta e^{-i\omega} + m_d g_R V^R_{ij} \cos \zeta) P_L \right] d_j G^+_2
+ \text{h.c.},
\]

(A.2)

The charged-current with charged Higgs boson is

\[
\mathcal{L}_{cc}^H = N_{H+}u_i \left[(\tan 2\beta e^{-i\omega} m_d V^L_{ij} - \frac{1}{\cos 2\beta} m_u V^R_{ij}) P_R
- (\tan 2\beta e^{-i\omega} m_u V^L_{ij} - \frac{1}{\cos 2\beta} m_d V^R_{ij}) P_L \right] d_j H^+
+ \text{h.c.},
\]

(A.3)

with \(N_{H+} = \frac{1}{v} (1 - \frac{1}{4} v^2 \cos^2 2\beta) \), where \(v, \epsilon, \) and \(\beta \) are defined in Eqs. (2.6) and (2.7).

The Lagrangian of couplings between charged gauge bosons, charged Goldstone bosons and photons are

\[
\mathcal{L}_{WWA} = ie \left[A_\mu W^{+\mu} \left(\partial_\mu W^-_{1\nu} - \partial_\nu W^-_{1\mu} \right) + A_\nu W^{+\nu} \left(\partial_\mu W^-_{1\mu} - \partial_\nu W^-_{1\nu} \right) \right] + (W_1 \leftrightarrow W_2),
\]

(A.4)

\[
\mathcal{L}_{GGA,HHA} = ie A_\mu \left[(G^-_1 \partial_\mu G^+_1 - G^+_1 \partial_\mu G^-_1) + (G^+_1 \leftrightarrow G^-_1) + (H^+ \leftrightarrow H^-) \right],
\]

(A.5)

\[
\mathcal{L}_{GWA} = eM_{W_1} A_\mu \left(G^+_1 W^-_{1\mu} + G^-_1 W^+_{1\mu} \right) + eM_{W_2} A_\mu \left(G^+_2 W^-_{2\mu} + G^-_2 W^+_{2\mu} \right).
\]

(A.6)

The Yukawa coupling between heavy neutral Higgs and quarks are [24]

\[
\mathcal{L}_{NH} = (\sqrt{2} G_F)^{1/2} \left[\bar{u}_{Li} \left(V_{LM} M_D V^\dagger_{Rj} \right) \right]_{ij} \left(H^0 - i A^0 \right) u_{Rj} + \bar{d}_{Li} \left(V^\dagger_{LM} M_U V_{Rj} \right)_{ij} \left(H^0 + i A^0 \right) d_{Rj}
+ \text{h.c.}
\]

(A.7)

The effective Hamiltonian of \(b \to c\bar{c}s \) in the LRSM at the tree level is

\[
\mathcal{H}_{\text{tree}} = \frac{g_L^2}{2} V^{LS}_{cs} V^{LS}_{cb} \frac{1}{M_1^2} \bar{c}\gamma^\mu P_L b \cdot s\gamma_\mu P_L c
+ \frac{g_L^2}{2} V^{RS}_{cs} V^{RS}_{cb} \frac{1}{M_2^2} \bar{c}\gamma^\mu P_R b \cdot s\gamma_\mu P_R c
+ \frac{g_L g_R}{2} V^{LS}_{cs} V^{LS}_{cb} e^{i\omega} \frac{1}{M_1^2} \sin \zeta \bar{c}\gamma^\mu P_L b \cdot s\gamma_\mu P_R c
+ \frac{g_L g_R}{2} V^{RS}_{cs} V^{RS}_{cb} e^{i\omega} \frac{1}{M_2^2} \sin \zeta \bar{c}\gamma^\mu P_R b \cdot s\gamma_\mu P_L c.
\]

(A.8)
B Wilson coefficients $C_{7\gamma}$ and $C'_{7\gamma}$

In the LRSM, the Wilson coefficients for the $b \rightarrow s\gamma$ processes are

\[
C_{7\gamma}(\mu_R) = \frac{1}{2} \left[\cos^2 \zeta \text{SM}(x_t) + \sin^2 \zeta \frac{M^2_t}{M^2_2} \text{SM}(\tilde{x}_t) \\
+ \frac{m_t}{m_b} \frac{g_R}{g_L} \frac{V^R_{tb}}{V^L_{tb}} \sin \zeta \cos \zeta e^{i\omega} \left(A_{LR}(x_t) - \frac{M^2_t}{M^2_2} A_{LR}(\tilde{x}_t) \right) \\
+ \frac{m_c}{m_b} \frac{g_R}{g_L} \frac{V^L_{ts} V^R_{cb}}{V^L_{tb}} \sin \zeta \cos \zeta e^{i\omega} \left(A_{LR}(x_c) - \frac{M^2_t}{M^2_2} A_{LR}(\tilde{x}_c) \right) \\
+ \frac{m_t}{m_b} \tan 2\beta e^{i\omega} \frac{V^R_{tb}}{V^L_{tb}} A^1_H(y) + \tan^2 2\beta A^2_H(y) \right] \tag{B.1}
\]

\[
C'_{7\gamma}(\mu_R) = \frac{1}{2} \left[\frac{g^2}{g_L} \frac{V^R_{ts} V^R_{tb}}{V^L_{ts} V^L_{tb}} \left(\sin^2 \zeta \text{SM}(x_t) + \cos^2 \zeta \frac{M^2_t}{M^2_2} \text{SM}(\tilde{x}_t) \right) \\
+ \frac{m_t}{m_b} \frac{g_R}{g_L} \frac{V^R_{ts}}{V^L_{ts}} \sin \zeta \cos \zeta e^{i\omega} \left(A_{LR}(x_t) - \frac{M^2_t}{M^2_2} A_{LR}(\tilde{x}_t) \right) \\
+ \frac{m_c}{m_b} \frac{g_R}{g_L} \frac{V^L_{ts} V^R_{cb}}{V^L_{tb}} \sin \zeta \cos \zeta e^{i\omega} \left(A_{LR}(x_c) - \frac{M^2_t}{M^2_2} A_{LR}(\tilde{x}_c) \right) \\
+ \frac{m_t}{m_b} \tan 2\beta e^{i\omega} \frac{V^R_{ts} V^R_{tb}}{V^L_{ts} V^L_{tb}} \frac{1}{\cos^2 2\beta} A^2_H(y) \right] \tag{B.2}
\]

where $x_i = m^2_i/M^2_{W_i}$, $\tilde{x}_i = m^2_i/M^2_{W_2}$, $i = c, t$, $y = \frac{m^2_t}{M^2_R}$, with the loop functions

\[
A_{\text{SM}}(x) = \frac{-8x^3 - 5x^2 + 7x}{12(x-1)^3} + \frac{3x^3 - 2x^2}{2(x-1)^4} \ln x = 2C^2_{7\gamma}, \tag{B.3}
\]

\[
A_{LR}(x) = \frac{-5x^2 + 31x - 20}{6(x-1)^2} - \frac{3x^2 - 2x}{(x-1)^3} \ln x, \tag{B.4}
\]

\[
A^1_H(y) = \frac{-5y^2 + 3y}{6(y-1)^3} + \frac{3y^2 - 2y}{3(y-1)^2} \ln y, \tag{B.5}
\]

\[
A^2_H(y) = \frac{22y^3 - 53y^2 + 25y}{36(y-1)^3} - \frac{3y^3 - 8y^2 + 4y}{6(y-1)^4} \ln y. \tag{B.6}
\]

Note that there is a constant term in $A_{LR}(x)$, that is $A_{LR}(x \rightarrow 0) = -10/3$, because there is no GIM mechanism for the corresponding terms in Eqs.(B.1,B.2) with one left-handed CKM matrix element and one right-handed CKM matrix element. Whilst the constant term in $A_{SM}(x)$ is canceled by the GIM mechanism. Therefore we have to consider the contribution from charm quarks in the loops, as shown in Eqs.(B.1,B.2). The up quark contribution is neglected due to its tiny mass. Numerically, in Eq.(B.1), $m_t V^L_{ts} A_{LR}(x_t^1) = 10.5$, while $m_c V^L_{cb} A_{LR}(x_c^1) = -4.2$, it is clear that the charm contribution has to be considered. We could neglect the charm contribution in Eq.(B.2) because of a suppression by $m_c V^L_{cb}$.

\[\text{--- 22 ---}\]
C Box loop functions for LRSM

The box loop functions for the LRSM in Eqs.(4.6) are the following:

\[
S_{LL}(x_i, x_j) = F(x_i, x_j) + F(x_u, x_u) - F(x_i, x_u) - F(x_j, x_u),
\]
\[
S_{LR}(x_i, x_j, \eta) = 8\pi^2 \eta \sqrt{x_i x_j} [(4 + x_i x_j) I_1(x_i, x_j, \eta) - (1 + \eta) I_2(x_i, x_j, \eta)],
\]
\[
S_{RR}(\tilde{x}_i, \tilde{x}_j) = r^4 \eta S_{LL}(\tilde{x}_i, \tilde{x}_j),
\]
with \(r \equiv g_R/g_L \), \(\eta \equiv M_{W_1}^2/M_{W_2}^2 \), \(x_i \equiv m_i^2/M_{W_1}^2 \), \(\tilde{x}_i \equiv m_i^2/M_{W_2}^2 \), and \(i = u, c, t \),
\[
F(x_i, x_j) = (4 + x_i x_j) I_2(x_i, x_j, 1) - 8 x_i x_j I_1(x_i, x_j, 1),
\]
\[
I_1(x_i, x_j, \eta) = \frac{x_i \ln(x_i)}{(1 - x_i)(1 - x_i \eta)(x_i - x_j)} + (i \leftrightarrow j) - \frac{\eta \ln(\eta)}{(1 - \eta)(1 - x_i \eta)(1 - x_j \eta)},
\]
\[
I_2(x_i, x_j, \eta) = \frac{x_i^2 \ln(x_i)}{(1 - x_i)(1 - x_i \eta)(x_i - x_j)} + (i \leftrightarrow j) - \frac{\ln(\eta)}{(1 - \eta)(1 - x_i \eta)(1 - x_j \eta)}.
\]

D Bag parameters

The bag parameters are always calculated in the regularization-independent (RI) scheme by Lattice QCD. But the Wilson coefficients are always obtained in the naive dimension regularization (NDR) scheme in the perturbative theory. Therefore the bag parameters obtained by the lattice QCD should be transformed into the NDR scheme. In this work, we use the bag parameters in the NDR scheme for Kaon mixing at \(\mu = 2 \text{GeV} \) given in [62]
\[
B_{1\text{VLL}}^1(K)_{\text{NDR}} = 0.52,
B_{1\text{LR}}^1(K)_{\text{NDR}} = 0.63, \quad B_{2\text{LR}}^1(K)_{\text{NDR}} = 0.82,
B_{1\text{SLL}}^1(K)_{\text{NDR}} = 0.54, \quad B_{2\text{SLL}}^1(K)_{\text{NDR}} = 0.27,
\]
and for the \(B_d \) and \(B_s \) case at \(\mu_b = 4.6 \text{GeV} \) given in [64]
\[
B_{1\text{VLL}}^1(B)_{\text{NDR}} = 0.87,
B_{1\text{LR}}^1(B)_{\text{NDR}} = 1.72, \quad B_{2\text{LR}}^1(B)_{\text{NDR}} = 1.15,
B_{1\text{SLL}}^1(B)_{\text{NDR}} = 0.84, \quad B_{2\text{SLL}}^1(B)_{\text{NDR}} = 0.79,
\]
with an approximation that the bag parameters are the same for \(B_d \) and \(B_s \) systems within the uncertainties.

E Procedure to find the allowed parameter space

To simplify the task of finding the allowed parameter space, we introduce the following \(\chi^2 \) including \(|\epsilon_K|, \Delta M_s, \phi_s, Br(B \rightarrow X_s \gamma) \) as well as the variables listed in Table 1:
\[
\chi^2 = \frac{(|\epsilon_K| - |\epsilon_K|^{\text{exp}})^2}{(\sigma_{|\epsilon_K|})^2} + \frac{(\Delta M_{s}^{\text{th}} - \Delta M_{s}^{\text{exp}})^2}{(\sigma_{\Delta M_s})^2} + \frac{(|\phi_s| - |\phi_s|^{\text{exp}})^2}{(\sigma_{\phi_s})^2} + \frac{(Br_{b \rightarrow s \gamma}^{\text{th}} - Br_{b \rightarrow s \gamma}^{\text{exp}})^2}{(\sigma_{Br_{b \rightarrow s \gamma}})^2}
+ \sum_i \frac{(\text{var}_i - \text{var}_i^{\text{exp}})^2}{(\sigma_{\text{var}_i})^2},
\]
(E.1)
where the variates are $|V_{td}|, |V_{ts}|, |V_{tb}|, \beta_{\text{CKM}}, B_2^{LR}(K), B_1^{VL}(B), \text{and } B_2^{LR}(B)$. In addition, as our target is to maximize $|C_7|/C_7$, which can be achieved only when $\theta_{23} \simeq \pm \pi/2$, we also include θ_{23} to be a variable and vary in the region of $\theta_{23} = -\pi/2 \pm 0.3$ (we found that the result does not change for $\pm \pi/2$). For the given point on the (ϕ_1, ϕ_2) space, which is chosen in $[-\pi, \pi]$ with $\pi/50$ interval, we minimize this χ^2. We chose the point which give the χ^2 to be less than a certain value as an allowed point. This value is chosen conservatively so that any components of χ^2 in Eq. (E.1) do not exceed its three sigma range.

F Observables to determine the photon polarization

We describe the three observables proposed in order to determine the photon polarization.

i) The time dependent CP-asymmetry, $S_{K_S\pi^0\gamma}$:

The time-dependent CP-asymmetry in the radiative decays of the neutral B mesons is an indirect method to measure the photon polarization. It arises from the interference between $\bar{B} \rightarrow f_{CP}\gamma$ and $\bar{B} \rightarrow B \rightarrow f_{CP}\gamma$ amplitudes where f_{CP} is a CP eigenstate.

The amplitudes with the photon with left- and right-handed helicity can not interfere with each other since the photon polarization is measurable in principle. Then the CP-asymmetry is defined as [28, 72]

$$A_{CP}(t) \equiv \frac{\Gamma(\bar{B}(t) \rightarrow f_{CP}\gamma) - \Gamma(B(t) \rightarrow f_{CP}\gamma)}{\Gamma(\bar{B}(t) \rightarrow f_{CP}\gamma) + \Gamma(B(t) \rightarrow f_{CP}\gamma)} \approx S_{f_{CP}\gamma} \sin(\Delta mt), \quad (F.1)$$

with

$$S_{f_{CP}\gamma} = \frac{2Im\left[e^{-i\phi_M} \mathcal{M}(\bar{B} \rightarrow f_{CP}\gamma_L)\mathcal{M}(\bar{B} \rightarrow f_{CP}\gamma_R)\right]}{|\mathcal{M}(\bar{B} \rightarrow f_{CP}\gamma_L)|^2 + |\mathcal{M}(\bar{B} \rightarrow f_{CP}\gamma_R)|^2} \approx \xi \frac{2Im\left[e^{-i\phi_M} C_7 C_7'\right]}{|C_7|^2 + |C_7'|^2}, \quad (F.2)$$

where $\xi(= \pm 1)$ is the CP-eigenvalue of f_{CP}, and ϕ_M is the phase in the $B - \bar{B}$ mixing, which in the SM is $\phi_d = 2\beta_{\text{CKM}} \simeq 0.75$ and $\phi_s \simeq 0$ for the B_0^0 and B_0^0 mixing respectively. In the SM $S_{f_{CP}\gamma}$ are always quite small because of the smallness of C_7^{SM}. Specifically, the SM prediction for the $\bar{B} \rightarrow K^{(*)0} \rightarrow K_S\pi^0\gamma$ decay is [73]

$$S_{K_S\pi^0\gamma}^{SM} = -(2.3 \pm 1.6)\%, \quad (F.3)$$

while its current world average value is [54]

$$S_{K_S\pi^0\gamma}^{exp} = -0.16 \pm 0.23. \quad (F.4)$$

In the future Belle II experiment, the error of $S_{K_S\pi^0\gamma}$ will be significantly reduced down to 2%.

ii) The polarization parameter λ_γ using the $\bar{B} \rightarrow K_1\gamma \rightarrow K\pi\pi\gamma$ process:

Compared to the CP-asymmetry, a direct method to measure the photon polarization is to study the three-body decays of K_1 ($\bar{B} \rightarrow K_1\gamma \rightarrow K\pi\pi\gamma$) [32, 33]. The
polarization can be studied by the angular distribution in the \(\bar{B} \to K_{1}\gamma \to K\pi\pi\gamma \) decay, extracting the polarization parameter \(\lambda_{\gamma} \)

\[
\lambda_{\gamma} = \frac{|M(\bar{B} \to K_{1}\gamma R)|^{2} - |M(\bar{B} \to K_{1}\gamma L)|^{2}}{|M(\bar{B} \to K_{1}\gamma)|^{2}} \approx \frac{|C'_{7\gamma}|^{2} - |C_{7\gamma}|^{2}}{|C'_{7\gamma}|^{2} + |C_{7\gamma}|^{2}}.
\] (F.5)

In the SM, \(\lambda_{\gamma} \simeq -1(+1) \) for \(\bar{B}(B) \) decays. In the future, Belle II / LHCb experiment can measure this observable at the precision of \(\sigma(\lambda_{\gamma}) \simeq 0.2 \).

iii) The angular analysis of \(\bar{B} \to K^{*} \to K\pi)\ell^{+}\ell^{-} \):

Among various angular coefficients, the most interesting observables are the transverse asymmetries defined as \([74][75]\)

\[
A_{T}^{(2)}(q^{2}) = \frac{I_{3}(q^{2})}{2I_{2}^{2}(q^{2})}, \quad A_{T}^{(im)}(q^{2}) = \frac{I_{9}(q^{2})}{2I_{2}^{2}(q^{2})},
\] (F.6)

where \(q^{2} \) is the \(\ell^{+}\ell^{-} \) invariant mass, \(I_{i}(q^{2}) \) are differential decay amplitudes which can be found in [1][65]. In the limit of \(q^{2} = 0 \), only the \(O_{T_{7\gamma}}^{(l)} \) operators contribute to this process, so that the above asymmetries are only related to \(C_{7\gamma}^{(l)} \)[65],

\[
A_{T}^{(2)}(0) = \frac{2Re[C_{7\gamma}^{'}C_{7\gamma}^{*}]}{|C_{7\gamma}|^{2} + |C_{7\gamma}^{'}|^{2}},
\] (F.7)

\[
A_{T}^{(im)}(0) = \frac{2Im[C_{7\gamma}^{'}C_{7\gamma}^{*}]}{|C_{7\gamma}|^{2} + |C_{7\gamma}^{'}|^{2}}.
\] (F.8)

In the future, Belle II / LHCb experiments can measure this observable at the precision of \(\sigma(A_{T}^{(2)}) \simeq \sigma(A_{T}^{(im)}) \simeq 0.2 \).

References

[1] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, Symmetries and Asymmetries of \(B \to K^{*}\mu^{+}\mu^{-} \) Decays in the Standard Model and Beyond, JHEP 0901, 019 (2009) [arXiv:0811.1214 [hep-ph]].

[2] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay mode \(\bar{B} \to K^{0}\ell^{+}\ell^{-}, \) JHEP 1010, 056 (2010) [arXiv:1005.0571 [hep-ph]].

[3] A. Khodjamirian, T. Mannel, A. A. Pivovarov and Y. -M. Wang, Charm-loop effect in \(B \to K^{(*)}\ell^{+}\ell^{-} \) and \(B \to K^{*}\gamma \), JHEP 1009, 089 (2010) [arXiv:1006.4945 [hep-ph]].

[4] D. Becirevic and E. Schneider, On transverse asymmetries in \(B \to K^{*}\ell^{+}\ell^{-} \), Nucl. Phys. B 854, 321 (2012) [arXiv:1106.3283 [hep-ph]].

[5] F. Beaujean, C. Bobeth, D. van Dyk and C. Wacker, Bayesian Fit of Exclusive \(b \to s\ell\ell \) Decays: The Standard Model Operator Basis, JHEP 1208, 030 (2012) [arXiv:1205.1838 [hep-ph]].
[6] D. Becirevic, N. Kosnik, F. Mescia and E. Schneider, Complementarity of the constraints on New Physics from $B_s \rightarrow \mu^+ \mu^-$ and from $B \rightarrow K \ell^+ \ell^-$ decays, Phys. Rev. D 86, 034034 (2012) [arXiv:1205.5811 [hep-ph]].

[7] S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables for the binned analysis of $B \rightarrow K^* \mu^+ \mu^-$ at large recoil, JHEP 1301, 048 (2013) [arXiv:1207.2753 [hep-ph]].

[8] D. Becirevic and A. Tayduganov, Impact of $B \rightarrow K^* \ell^+ \ell^-$ on the New Physics search in $B \rightarrow K^* \ell^+ \ell^-$ decay, Nucl. Phys. B 868, 368 (2013) [arXiv:1207.4004 [hep-ph]].

[9] M. Jung, X.-Q. Li and A. Pich, Exclusive radiative B-meson decays within the aligned two-Higgs-doublet model, JHEP 1210, 063 (2012) [arXiv:1208.1251 [hep-ph]].

[10] S. Jager and J. M. Camalich, On $B \rightarrow V \ell \ell$ at small dilepton invariant mass, power corrections, and new physics, JHEP 1212, 043 (2013) [arXiv:1212.2263 [hep-ph]].

[11] A. Khodjamirian, R. Ruckl, G. Stoll and D. Wyler, QCD estimate of the long distance effect in $B \rightarrow K^* \gamma$, Phys. Lett. B 402, 167 (1997) [hep-ph/9702318].

[12] B. Grinstein and D. Pirjol, The CP asymmetry in $B^0(t) \rightarrow K_S^0 \pi^0 \gamma$ in the standard model, Phys. Rev. D 73, 014013 (2006) [hep-ph/0510104].

[13] M. Matsumori and A. I. Sanda, The Mixing-induced CP asymmetry in $B \rightarrow K^* \gamma$ decays with perturbative QCD approach, Phys. Rev. D 73, 114022 (2006) [hep-ph/0512175].

[14] P. Ball and R. Zwicky, Time-dependent CP Asymmetry in $B \rightarrow K^* \gamma$ as a (Quasi) Null Test of the Standard Model, Phys. Lett. B 642, 478 (2006) [hep-ph/0609037].

[15] G. Aad et al. [ATLAS Collaboration], ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 72, 2241 (2012) [arXiv:1209.4446 [hep-ex]].

[16] S. Chatrchyan et al. [CMS Collaboration], Search for leptonic decays of W' bosons in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 1208, 023 (2012) [arXiv:1204.4764 [hep-ex]].

[17] A. Maiezza, M. Nemevsek, F. Nesti and G. Senjanovic, Left-Right Symmetry at LHC, Phys. Rev. D 82, 055022 (2010) [arXiv:1005.5160 [hep-ph]].

[18] G. Senjanovic, Spontaneous Breakdown of Parity in a Class of Gauge Theories, Nucl. Phys. B153, 334 (1979).

[19] M. A. B. Beg, R. V. Budny, R. N. Mohapatra, A. Sirlin, Manifest Left-Right Symmetry and Its Experimental Consequences, Phys. Rev. Lett. 38, 1252 (1977).

[20] R. N. Mohapatra, F. E. Paige and D. P. Sidhu, Symmetry Breaking and Naturalness of Parity Conservation in Weak Neutral Currents in Left-Right Symmetric Gauge Theories, Phys. Rev. D 17, 2462 (1978).

[21] D. Chang, A Minimal Model of Spontaneous CP Violation with the Gauge Group $SU(2)_L \times SU(2)_R \times U(1)_{(B-L)}$, Nucl. Phys. B 214, 435 (1983).

[22] G. C. Branco, J. M. Frere and J. M. Gerard, The Value Of Epsilon-prime / Epsilon In Models Based On $SU(2)_L \times SU(2)_R \times U(1)$, Nucl. Phys. B 221, 317 (1983).

[23] H. Harari, M. Leurer, Left-Right Symmetry and the Mass Scale of a Possible Right-Handed Weak Boson, Nucl. Phys. B233, 221 (1984).
[24] Y. Zhang, H. An, X. Ji and R. N. Mohapatra, General CP Violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802, 247 (2008) [arXiv:0712.4218 [hep-ph]].

[25] G. Beall, M. Bander and A. Soni, Constraint on the Mass Scale of a Left-Right Symmetric Electroweak Theory from the $K_L - K_S$ Mass Difference, Phys. Rev. Lett. 48, 848 (1982).

[26] P. Ball, J. M. Frere and J. Matias, Anatomy of mixing induced CP asymmetries in left-right symmetric models with spontaneous CP violation, Nucl. Phys. B 572, 3 (2000) [hep-ph/9910211].

[27] G. Barenboim, M. Gorbahn, U. Nierste and M. Raidal, Higgs sector of the minimal left-right symmetric model, Phys. Rev. D 65, 095003 (2002) [hep-ph/0107121].

[28] D. Atwood, M. Gronau and A. Soni, Mixing induced CP asymmetries in radiative B decays in and beyond the standard model, Phys. Rev. Lett. 79, 185 (1997) [hep-ph/9704272].

[29] D. Atwood, T. Gershon, M. Hazumi and A. Soni, Clean Signals of CP-violating and CP-conserving New Physics in $B \to P \, V \, \gamma$ Decays at B Factories and Hadron Colliders, [hep-ph/0701021].

[30] D. Melikhov, N. Nikitin and S. Simula, Probing right-handed currents in $B \to K^* l^+ l^-$ transitions, Phys. Lett. B 442, 381 (1998) [hep-ph/9807464].

[31] F. Kruger and J. Matias, Probing new physics via the transverse amplitudes of $B^0 \to K^{*0}(\to K^- \pi^+) \ell^+\ell^-$ at large recoil, Phys. Rev. D 71, 094009 (2005) [hep-ph/0502060].

[32] M. Gronau, Y. Grossman, D. Pirjol and A. Ryd, Measuring the photon polarization in $B \to K \pi \pi \gamma$, Phys. Rev. Lett. 88, 051802 (2002) [hep-ph/0107254].

[33] M. Gronau and D. Pirjol, Photon polarization in radiative B decays, Phys. Rev. D 66, 054008 (2002) [hep-ph/0205065].

[34] E. Kou, A. Le Yaouanc and A. Tayduganov, Determining the photon polarization of the $b \to s \gamma$ using the $B \to K_1(1270) \gamma \to (K\pi)\gamma$ decay, Phys. Rev. D 83, 094007 (2011) [arXiv:1011.6593 [hep-ph]].

[35] H. Yang et al. [Belle Collaboration], Observation of $B^+ \to K_1(1270)^+ \gamma$, Phys. Rev. Lett. 94, 111802 (2005) [hep-ex/0412039].

[36] J. C. Pati, A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10, 275-289 (1974).

[37] R. N. Mohapatra and J. C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation, Phys. Rev. D 11, 566 (1975).

[38] R. N. Mohapatra and J. C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11, 2558 (1975).

[39] G. Senjanovic and R. N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12, 1502 (1975).

[40] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44, 912 (1980).

[41] O. Khasanov and G. Perez, On neutrino masses and a low breaking scale of left-right symmetry, Phys. Rev. D 65, 053007 (2002) [hep-ph/0108176].

[42] R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23, 165 (1981).
U. Amaldi, A. Bohm, L. S. Durkin, P. Langacker, A. K. Mann, W. J. Marciano, A. Sirlin and H. H. Williams, A Comprehensive Analysis of Data Pertaining to the Weak Neutral Current and the Intermediate Vector Boson Masses, *Phys. Rev. D* **36**, 1385 (1987).

M. Blanke, A. J. Buras, K. Gemmler and T. Heidsieck, $\Delta F = 2$ observables and $B \to X_s \gamma$ decays in the Left-Right Model: Higgs particles striking back, *JHEP* **1203**, 024 (2012) [arXiv:1111.5014 [hep-ph]].

G. Barenboim, J. Bernabeu, J. Prades and M. Raidal, Constraints on the W_R mass and CP violation in left-right models, *Phys. Rev. D* **55**, 4213 (1997) [hep-ph/9611347].

K. Kiers, J. Kolb, J. Lee, A. Soni and G. -H. Wu, Ubiquitous CP violation in a top inspired left-right model, *Phys. Rev. D* **66**, 095002 (2002) [hep-ph/0205082].

G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. **68**, 1125 (1996) [hep-ph/9512380].

B. Grinstein, Y. Grossman, Z. Ligeti and D. Pirjol, *Phys. Rev. D* **71**, 011504 (2005) [hep-ph/0412019].

S. Bertolini, J. O. Eeg, A. Maienza and F. Nesti, New physics in ϵ' from gluomagnetic contributions and limits on Left-Right symmetry, *Phys. Rev. D* **86**, 095013 (2012) [arXiv:1206.0668 [hep-ph]].

A. J. Buras, M. Misiak and J. Urban, Two-loop QCD anomalous dimensions of flavour-changing four-quark operators within and beyond the standard model, *Nucl. Phys. B* **586**, 397 (2000) [arXiv:hep-ph/0005183].

A. J. Buras, S. Jager and J. Urban, Master formulae for $\Delta(F) = 2$ NLO-QCD factors in the standard model and beyond, *Nucl. Phys. B* **605**, 600 (2001) [arXiv:hep-ph/0102316].

Y. Amhis *et al.* [Heavy Flavor Averaging Group Collaboration], Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv:1207.1158 [hep-ex].

M. Misiak, H. M. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia and P. Gambino *et al.*, Estimate of $B(\bar{B} \to X_s \gamma)$ at $O(\alpha_s^2)$, *Phys. Rev. Lett.* **98**, 022002 (2007) [hep-ph/0609232].

A. L. Kagan and M. Neubert, QCD anatomy of $B \to X_s \gamma$ decays, *Eur. Phys. J. C* **7**, 5 (1999) [hep-ph/9805303].

J. Beringer *et al.* [Particle Data Group Collaboration], Review of Particle Physics (RPP), *Phys. Rev. D* **86**, 010001 (2012).

M. Misiak and M. Steinhauser, NNLO QCD corrections to the $\bar{B} \to X_s \gamma$ matrix elements using interpolation in $m(c)$, *Nucl. Phys. B* **764**, 62 (2007) [hep-ph/0609241].

A. J. Buras and D. Guadagnoli, Correlations among new CP violating effects in $\Delta F = 2$ observables, *Phys. Rev. D* **78** (2008) 033005 [arXiv:0805.3887 [hep-ph]].

A. J. Buras, D. Guadagnoli and G. Isidori, On ϵ_K beyond lowest order in the Operator Product Expansion, *Phys. Lett. B* **688**, 309 (2010) [arXiv:1002.3612 [hep-ph]].
[61] J. Brod, M. Gorbahn, ϵ_K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution, Phys. Rev. D 82, 094026 (2010) [arXiv:1007.0684 [hep-ph]].

[62] V. Bertone, N. Carrasco, M. Ciuchini, P. Dimopoulos, R. Frezzotti, V. Gimenez, V. Lubicz and G. Martinelli et al., Kaon Mixing Beyond the SM from $N_f = 2$ tmQCD and model independent constraints from the UTA, JHEP 1303, 089 (2013) [Erratum-ibid. 1307, 143 (2013)] [arXiv:1207.1287 [hep-lat]].

[63] P. A. Boyle, N. Garron and R. J. Hudspith, Neutral kaon mixing beyond the standard model with $n_f = 2 + 1$ chiral fermions, Phys. Rev. D 86, 054028 (2012) [arXiv:1206.5737 [hep-lat]].

[64] D. Becirevic, V. Gimenez, G. Martinelli, M. Papinutto and J. Reyes, B parameters of the complete set of matrix elements of $\Delta B = 2$ operators from the lattice, JHEP 0204, 025 (2002) [hep-lat/0110091].

[65] D. Becirevic, E. Kou, A. Le Yaouanc and A. Tayduganov, Future prospects for the determination of the Wilson coefficient C_7', JHEP 1208, 090 (2012) [arXiv:1206.1502 [hep-ph]].

[66] T. Aaltonen et al. [CDF Collaboration], Search for a New Heavy Gauge Boson W' with Electron + missing ET Event Signature in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D 83, 031102 (2011) [arXiv:1012.5145 [hep-ex]].

[67] V. M. Abazov et al. [D0 Collaboration], Search for W' bosons decaying to an electron and a neutrino with the D0 detector, Phys. Rev. Lett. 100, 031804 (2008) [arXiv:0710.2966 [hep-ex]].

[68] G. Aad et al. [ATLAS Collaboration], Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, Phys. Lett. B 705, 28 (2011) [arXiv:1108.1316 [hep-ex]].

[69] V. Khachatryan et al. [CMS Collaboration], Search for a heavy gauge boson W' in the final state with an electron and large missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 698, 21 (2011) [arXiv:1012.5945 [hep-ex]].

[70] S. Chatrchyan et al. [CMS Collaboration], Search for a W' boson decaying to a muon and a neutrino in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 701, 160 (2011) [arXiv:1103.0030 [hep-ex]].

[71] G. Aad et al. [ATLAS Collaboration], Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys. Lett. B 701, 50 (2011) [arXiv:1103.1391 [hep-ex]].

[72] D. Atwood, T. Gershon, M. Hazumi and A. Soni, Mixing-induced CP violation in $B \to P_1 P_2 \gamma$ in search of clean new physics signals, Phys. Rev. D 71, 076003 (2005) [hep-ph/0410036].

[73] P. Ball, G. W. Jones and R. Zwicky, $B \to V\gamma$ beyond QCD factorisation, Phys. Rev. D 75, 054004 (2007) [hep-ph/0612081].

[74] F. Kruger and J. Matias, Probing new physics via the transverse amplitudes of $B^0 \to K^{*0} \to K^- \pi^0 l^+ l^-$ at large recoil, Phys. Rev. D 71, 094009 (2005) [hep-ph/0502060].

[75] D. Becirevic and E. Schneider, On transverse asymmetries in $B \to K^* l^+ l^-$, Nucl. Phys. B 854, 321 (2012) [arXiv:1106.3283 [hep-ph]].