Research Paper
Effect of 8 Weeks of High Intensity Interval Training (HIIT) With and Without Calorie Restriction on Gene Expression of Caspase-3 and Caspase-9 Proteins in Male Rats

Mohammadreza Zarali1, *Zaher Etemad1, Kamal Azizbeigi1, Pouran Karimi2
1. Department of Exercise Physiology, School of Physical Education and Sport Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
2. Department of Clinical Biochemistry, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

Citation: Zarali M, Etemad Z, Azizbeigi K, Karimi P. [Effect of 8 Weeks of High Intensity Interval Training (HIIT) With and Without Calorie Restriction on Gene Expression of Caspase-3 and Caspase-9 Proteins in Male Rats (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(3):300-313. https://doi.org/10.32598/JAMS.23.3.5960.1

Background and Aim: Apoptosis or programmed death is active biological process and reversible that the balance between growth and cell death in various tissues, particularly myocardial tissue is essential role. The aim of this study was the effect of 8 weeks High Intensity Interval Training (HIIT) with and without food restriction on gene expression of Caspase 3 and 9 in rats.

Methods & Materials: This study was experimental multi group design with control group which conducted on 30 rats with two months old male. Subjects were divided in to five homogenous groups including base control, control, caloric restriction, interval exercise training and caloric restriction+interval exercise training. Training groups five sessions in weeks were participated in interval exercise training for 8 weeks. The level of gene expression of the proteins Caspase 3 and 9 was evaluated by Real Time-PCR. Dates were analyzed using the 1-way ANOVA at the level of (P<0.05).

Ethical Considerations: The protocol of this study was approved by the Medical Committee of Sanandaj University of Medical Sciences (Code: IR.MYK.REC.1397.5022).

Result: The results showed that the training group had a significant decrease in gene expression of Caspase 3 in comparison with caloric restriction+exercise training (P<0.05). Also, exercise training and exercise training+caloric restriction significantly decrease in the gene expression of Caspase 9 compared to caloric restriction, base control and control (P<0.05) and significantly decrease in the gene expression of Caspase 3 compared to base control and control (P<0.05).

Conclusion: According to the results, it seems that high intensity interval training with and without calorie restriction provides the necessary adaptations to inhibit or stop apoptosis induced by aerobic exercise.

Key words: High intensity interval training, Caloric restriction, Caspase

Extended Abstract

1. Introduction

Apoptosis is a biologically active and reversible process that plays a key role in regulating the balance between cell growth and death in various tissues, especially the myocardium. This process begins with the compression and fragmentation of chromatin and the condensation of the cellular cytoplasm and ends with the crumpling of the cell nucleus and membranes and the production of vacuoles containing apoptotic particles [1-3]. Apoptosis occurs through the intracellular and extracellular pathways [1, 2, 4].

* Corresponding Author: Zaher Etemad, PhD.
Address: Department of Exercise Physiology, School of Physical Education and Sport Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
Tel: +98 (918) 1741523
E-mail: zetemad2002@yahoo.com
The internal pathway, as the most important pathway for apoptosis, is associated with changes in mitochondrial permeability and release of apoptotic agents. Molecular events of apoptosis are determined by the balance between pro- and anti-apoptotic specific regulatory proteins. In the meantime, Bax and Bcl2 proteins are involved as major proteins in the formation of apoptosis and mitochondrial apoptotic messages. The aim of the present study was to investigate the effect of 8 weeks of High-Intensity Interval Training (HIIT) with and without calorie restriction on gene expression of caspase-3 and caspase-9 proteins in male rats.

2. Materials and Methods

The present research was an experimental study performed in a field and laboratory method in which the effect of 8 weeks of high-intensity interval training with and without calorie restriction on gene expression of caspase-3 and caspase-9 proteins in male rats was investigated. Considering the suitable conditions of the animal model for the present study, 30 two-month-old male Wistar rats were purchased from the Pasteur Institute of Iran. After familiarizing the rats with the laboratory environment, they were divided into five groups of six (“basic control”, “control”, “calorie restriction”, “exercise”, and “exercise and calorie restriction”) (Table 1). In order to control the baseline variables and to determine the reference group, the “baseline control” group underwent surgery at the beginning of the research period using the specified laboratory method. All rats were placed on a treadmill for 14 days under a training program.

The subjects in the “control” and “exercise” groups freely used standard food and water during the study period. To determine the amount of food consumed by the “calorie restriction” and “exercise” groups, along with the application of calorie restriction to them, the amount of food consumed by the other subjects was measured daily and the restricted groups received 50% of the food consumed by the other groups.

3. Results

The results of one-way ANOVA showed that there was a significant difference between the expression of myocardial caspase-3 protein in male rats (P=0.001). Also, the results of Tukey post hoc test showed that the “basic control” and “control” groups had a significant increase in the expression of myocardial caspase-3 protein compared to the “exercise

Table 1. Descriptive characteristics of the rats

Groups	Body Weight	Heart Weight	Ratio of Heart Weight to Body Weight
Basic control	173.37±11.96	0.556±0.06	3.10±0.24
Control	399.13±18.67	1.04±0.07	2.62±0.17
Calorie restriction	323.03±7.69	1.06±0.05	3.20±0.22
Exercise	345.26±8.97	1.20±0.06	3.49±0.21
Exercise and calorie restriction	322.93±10.41	1.10±0.02	3.40±0.13

Figure 1. Changes in caspase-3 in different groups

*significant difference compared to basic control, control and calorie restriction groups.
and calorie restriction” and “exercise” groups (P<0.05). The results of one-way ANOVA showed that there was a significant difference between the expression rate of myocardial caspase-9 protein in male rats (P=0.001).

Also, the results of Tukey post hoc test showed that the “basic control”, “control” and “calorie restriction” groups had a significant increase in the expression of myocardial caspase-9 protein compared to the “exercise and calorie restriction” and “exercise” groups (P<0.05). On the other hand, the “exercise” group had a significant decrease in the expression of myocardial caspase-9 protein compared to the “exercise and calorie restriction” group (P<0.05) (Figures 1 and 2).

4. Discussion

Although the exact mechanisms of exercise-induced apoptosis are unclear, there are many possible hypotheses that need further investigation. One of the important hypotheses in this regard is that during exercise, muscle metabolism increases, which leads to the production of ROS [5]. High quantities of ROS can produce oxidative damage and thus lead to apoptosis via the internal pathway [15].

It has been reported that a significant decrease in caspase-3 protein expression following aerobic exercise was associated with a decrease in pre-apoptotic factors such as Bax protein expression and Bax to Bcl2 ratio as well as a significant increase in Bcl2 anti-apoptotic protein. This decrease in mitochondrial apoptotic potential following aerobic exercise in elderly rats may be associated with decreased release of apoptotic agents such as cytochrome c and Apaf1 into skeletal muscle, which significantly reduced caspase-3 expression [14].

In the internal pathway, mitochondria and endoplasmic reticulum play a major role in this process, in which the role of mitochondria in apoptosis is the most important and have been focused in many studies [5, 16, 17]. Under stressful conditions, factors such as glucocorticoids, ROS, nitrogen monoxide, chemotherapy drugs, radiation, reduced growth stimulants, and cytokines cause changes in mitochondrial permeability by causing stress; and cytochrome c which is located in the inner membrane of the mitochondria and interstitial space, is released into the cytosol and binds to apoptosis-activating protease factor 1 (Apaf-1) inside the release cytosol to form a compound called dATP. This compound then induces apoptosis by activating procaspase-9, caspase-9, and caspase-3 [18]. The most important step in controlling this pathway is the release of cytochrome c. Cell death pathway inhibitory proteins such as Bcl-2 and Bcl-XL inhibit the release of cytochrome c and thus play a role [19].

5. Conclusion

According to the results, it seems that high-intensity interval exercise with and without calorie restriction provides the necessary adaptations to inhibit or stop apoptosis caused by aerobic exercise. In addition, in this study, the contribution of caspase-8, especially caspase-6, and even bad protein as pathways for possible interactions was not investigated. Therefore, activation of caspase-3 might have originated externally, which was one of the limitations of the present study.

Ethical Considerations

Compliance with ethical guidelines

The protocol of this study was approved by the Medical Committee of Sanandaj University of Medical Sciences (Code: IR.MYK.REC.1397.5022).
Funding

The present paper was extracted from the PhD. thesis of the first author, Department of Exercise Physiology, School of Physical Education and Sport Sciences, Sanandaj Branch, Islamic Azad University.

Authors' contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
تأثیر آپوپتوز با و بدون تمرين تناوبی (HIIT) بر بیان پروتئین‌های کاسپاز ۲ و ۳ موش‌های نر صحرایی

محرر: پوران کرمی

کلیدواژه‌ها: تمرین تناوبی با شدت بالا، محدودیت کالری، کاسپاز

مقدمه

آپوپتوز یا مرگ برنامه‌ریزی‌شده یک فرآیند زیستی فعال و برگشت‌پذیر است که در تعادل بین رشد و مرگ سلولی نقش مهمی دارد. این روند شامل فشرده‌سازی و یا تکه‌تکه کردن کروماسوم‌ها و تولید سیتوپلسم غنی از بروز اپوپتوز کاسپاز (cp) می‌باشد. کاسپاز‌ها نقش مهمی در مکانیسم‌های مختلفی از جمله مرگ برنامه‌ریزی‌شده (آپوپتوز) و ایجاد اپوپتوز کاسپاز (apoptosis) دارند. تاثیر عوامل درونی یا خارجی مانند پرتوایکین، ایسکمی/خونریزی، داروهای مختلف، سالخوردگی و فشارهای جسمانی (مکانیکی و متابولیکی) بر آپوپتوز تأثیر گذار است.

نتایج مطالعه

در این مطالعه، به توضیح نقش تمرین تناوبی با شدت بالا (HIIT) و محدودیت کالری در جلوگیری از آپوپتوز در میوکارد موش‌های نر صحرایی پرداخته شد.

میزان بیان پروتئین‌های کاسپاز ۲ و ۳ در گروه تمرین با و بدون محدودیت کالری با توجه به آزمون آنالیز واریانس از جمله معنی‌دار بود.

نتیجه گیری

نتیجه‌گیری از این مطالعه نشان داد که تمرین تناوبی با شدت بالا می‌تواند در جلوگیری از آپوپتوز کاسپاز ۲ و ۳ و حتی در جلوگیری از آپوپتوز کاسپاز ۳ و ۲ باعث کاهش معنی‌دار در بیان این پروتئین‌ها در برخی از گروه‌های آزمایشی شود.

کلیدواژه‌های مقاله:
- تمرین تناوبی با شدت بالا
- محدودیت کالری
- کاسپاز

اطلاعات مبادلات

تاریخ دریافت: ۱۳۹۷.۰۸.۲۱
تاریخ پذیرش: ۱۳۹۸.۰۱.۲۱
تاریخ انتشار: ۱۳۹۹.۰۶.۱۱

اطلاعات مجله

 مجله به روش استاندارد قابل قبول بود.
لیم‌های کلی‌ای، گروه‌های محدودیت یا تمرین (HIIT) در هنگام کاهش آلودگی به گروه‌های کنترل نتیجه‌گیری شد. در این مطالعه، در انتهای هر اکستراورژنیک، مهم‌ترین پروتئین‌ها نشان دهنده آپوپتوز را با استفاده از انستیتو پاستور ایران بررسی کرده‌اند. این پژوهش به این نتیجه رسید که دوازده هفته تمرین هوازی باید بر بیان ژن‌های کاسپاز سه و نه اثر بی‌ارزشی باشد و در نتیجه، تمرین‌های تناوبی با شدت بالا باعث کاهش غیرمعنی‌دار پروتئین کاسپاز سه در موش‌های صحرایی می‌شود.

1. Cleavage
جله چهارم و هشتم: تأثیر تمرین تناوبی با شدت بالا بر بیان ژن پروتئین های کاسپاز سه و نه (caspase 3 و 8) در روده های کاسپاز در سرتاسر برنامه تمرین معادل (HIIT)

جدول 1: توصیفات محیطی موردها

گروه	وزن بدن	وزن قلب	نسبت وزن قلب به وزن بدن
کنترل پایه	173/37 ± 11/96	1/04 ± 0/07	90/62 ± 0/17
کنترل	399/13 ± 18/67	1/04 ± 0/07	92/62 ± 0/17
محدودیت کالری	332/03 ± 7/69	1/06 ± 0/05	93/20 ± 0/21
تمرین	345/26 ± 8/97	1/20 ± 0/06	93/49 ± 0/21
تمرین و محدودیت کالری	322/93 ± 10/41	1/10 ± 0/02	93/40 ± 0/13

جدول 2: مراحل تمرین

زمان کار (دقیقه)	شدت حرکت	زمان کار	زمان استراحت
0-30	80-100	24	24
31-60	60-80	24	24
61-90	40-60	24	24

دانشنامه اینستیتوی سلامت و بهداشت الحیوانات (Fermentas, Canada)

طبق قوانین دانشگاه علوم پزشکی اراک

هدف: جلوگیری از استرس و تغییر شرایط فیزیولوژیکی نمونه‌ها به وسیله تحت شرایط جدید تهیه‌شده.

در این مطالعه، بیش از 200 موش صحرایی در شرایط مختلف نگهداری شدند. در طول مدت دو هفته، نمونه‌ها تحت شرایط جدید نگهداری شدند. درصد) و چرخه 50 ± 5(سانتی‌گراد)، رطوبت محیط 22 ± 2(دما و قدرت حرکتی موش‌ها با استفاده از روش‌های مختلفی در این دوره، شیب نوار گردان صفر درصد، دقیقه در 10-5 متر بر دقیقه و مدت تمرین 15-10 سرعت و 40-50 درصد اکسیژن مصرفی بیشینه در طول این دوره، موش‌ها پس از مطابقت وزنی به طور تصادفی به 5 گروه کنترل، کنترل پایه، محدودیت غذایی، تمرین و تمرین + محدودیت غذایی تقسیم شدند. دو گروه تمرین و تمرین + محدودیت غذایی برای پنج روز در هفته (یکشنبه، دوشنبه، سه شنبه، پنجشنبه و جمعه) و به مدت 80-90 هفته ای، تمرین تناوبی با شدت در حدود 60-50 درصد اکسیژن مصرفی به 100% مصرفی در طول این دوره انجام داده شد. (جدول شماره 3)

صحنه ب: تمرین تناوبی با شدت بالا

دیروی 1/5 میلی‌لیتری ریخته شد و وسط محیطی موردها. سپس برای حفظ شرایط حیاتی، موش‌ها در کامپوست در نیتروژن مایع قرار گرفتند و برای بررسی میزان بیان ژن‌ها میکروکوپی‌روپلیمترازی (RT-PCR) استفاده شد.

جدول 3: مشخصات توصیفی موش‌ها

گروه	وزن بدن	وزن قلب	نسبت وزن قلب به وزن بدن
کنترل پایه	173/37 ± 11/96	1/04 ± 0/07	90/62 ± 0/17
کنترل	399/13 ± 18/67	1/04 ± 0/07	92/62 ± 0/17
محدودیت کالری	332/03 ± 7/69	1/06 ± 0/05	93/20 ± 0/17
تمرین	345/26 ± 8/97	1/20 ± 0/06	93/49 ± 0/21
تمرین و محدودیت کالری	322/93 ± 10/41	1/10 ± 0/02	93/40 ± 0/13

شماره 3: مراحل تمرین

شدت حرکت	زمان کار (دقیقه)	زمان استراحت (دقیقه)
80-100	0-60	24
60-80	61-90	24
40-60	91-120	24
20-40	121-150	24
0-20	151-180	24
میکروانیتر رسید. برای از بین بردن آلودگی احتمالی با برای حجم 9 میکروانیتر سریع یک ذره از میکروانیتر 30 میلی لیتر از اتانول مطلق به تیوب اضافه و پس از افزودن یک DNase یک میکروانیتر DNA دقیقه در فریزر 30 درجه و 4 دقیقه در شرایط 20 درجه قرار گرفت. سپس به مدت 70 دقیقه در شرایط و 10 به دقت اتانول آن خالی شد و حدود 7000 میکروانیتر برای و یک میکروانیتر پرایمر (dt) یک میکروانیتر DNA یک میکروانیتر درجه روی 70 دقیقه در دمای 5 افزوده شد و 5x 5x و دو میکروانیتر reaction buffer درجه انکوبه شد. چهار میکروانیتر Ribo lock Ribo nuclease یک میکروانیتر 37 مختصر، به مدت پنج دقیقه در به تیوب Rverert AidTM H Minus M-MuLV. Reverse یک میکروانیتر قبل افزوده شد. در ادامه در صورت استفاده از پرایمر Random hexamer قبل افزوده شد و به مدت پنج دقیقه در و در صورت استفاده از پرایمر Random hexamer قبل افزوده شد و به مدت پنج دقیقه در 90 درجه و به دنبال آن 25 دقیقه در 5 درجه نگهداری شد. 70 درجه و در شرایط 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA یک میکروانیتر 37 مختصر، به مدت پنج دقیقه در 90 درجه و به دنبال آن 25 دقیقه در 5 درجه نگهداری شد. 70 درجه و در شرایط 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقة در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش ها بر مبنای استفاده از رنگ Syber green ین حرارت و حالت گرمایی اولیه با آغاز انکوباسیون صورت گرفت. واکنش با قرار دادن تیوب به 42 درجه پایان پذیرفت و نمونه در فریزر با دمای 70 دقیقه در 10 میکروانیتر پرایمر (dt) یک میکروانیتر DNA رنگ Syber green واکنش H
نتایج پژوهش حاضر با پیشنهاد استریور و همکاران، در مورد میوکارد موش های نر صحرایی وجود دارد. نتایج آزمون تعقیبی تورکی نشان داد که گروه تمرین پایه، کنترل و محدودیت غذایی نسبت به گروه تمرین و محدودیت غذایی و تمرین افزایش می‌یافت در میزان بیان پروتئین کاسپاز 9 میکروگر داشتند (P<0.05). از سوی دیگر گروه تمرین نیز کاهش معنی‌داری در میزان بیان پروتئین کاسپاز 9 میکروگر نسبت به گروه تمرین و محدودیت غذایی داشتند (P<0.05).

بحث
نتایج پژوهش حاضر نشان داد گروه تمرین کلسیم می‌داره در بیان پروتئین کاسپاز نسبت به گروه محدودیت غذایی و تمرین نشان داد. همچنین گروه تمرین و محدودیت غذایی کلاه معنی‌داری در میزان بیان پروتئین کاسپاز نسبت به گروه محدودیت غذایی، کنترل پایه و کنترل و کاهش معنی‌داری در میزان بیان پروتئین کاسپاز نسبت به گروه کنترل پایه و کنترل داشت.

نتایج پژوهش حاضر نشان داد که نسبت به گروه تمرین کلسیم معنی‌داری در میزان بیان پروتئین کاسپاز نسبت به گروه محدودیت غذایی و تمرین نشان داد. همچنین گروه تمرین و محدودیت غذایی کلاه معنی‌داری در میزان بیان پروتئین کاسپاز نسبت به گروه محدودیت غذایی، کنترل پایه و کنترل و کاهش معنی‌داری در میزان بیان پروتئین کاسپاز نسبت به گروه کنترل پایه و کنترل داشت.
مهم ترین مرحله کنترل این مسیر، آزاد سازی سیتوکروم
Bcl-2
75
افزایش یافت و موجب تشدید بروز فرآیند آپوپتوز از طریق مسیر داخلی شود.

موسی و همکاران نیز نشان دادند که دوازده هفته برنامه تمرین هوازی با شدت نسبی انجام داده شد. پروتئین های مهارکننده مسیر مرگ سلولی مانند
SIRT 3
9
و
Bcl-XL
18
مانع آزاد سازی سیتوکروم
Apaf-1
24
آپوپتوز میتوکندریایی متعاقب تمرین هوازی در موش های کاهشی است. این کاهش پتانسیل
حفره کاهشی
5
و نیز افزایش معنی‌دار
مسیر داخلی، میتوکندری و رتیکلوم اندوپلاسمی محوریت
کاهش
درصد اکسیژن مصرفی بیشینه، موجب کاهش سطح کاسپاز
غشایی
11
در اکسیژن مصرفی بیشینه بود. نتایج نشان داد که دوازده هفته تمرین استقامتی با شدت نسبی (پنج جلسه در هفته) به طور معنی‌داری موجب کاهش
گزارش شده است که کاهش
تکیه‌گیری بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.

گزارش شده است که کاهش مصرفی بیشتری پروتئین
Bax
8
و
Bax
17
نقش آن تمرکز کرده‌اند.
تنویع ژن های کاسپازهای در ورزشکاران می‌تواند به ویژه برای حفاظت از عضله قلبی به خصوص در افرادی که تحت استرس قلبی قرار دارند، اهمیت داشته باشد.

در این مطالعه، میزان بیان ژن‌های کاسپازهای در موش‌های نر صحرایی با و بدون محدودیت کالری به مدت سه روز پس از دویدن در سراشیبی بررسی شد. نتایج نشان داد که در مدل‌های مشترک شده در این راستا، سه کاسپاز مورد بررسی قرار گرفتند.

به طور کلی، این نتایج نشان می‌دهند که تمرینات ورزشی می‌توانند به دنبال تغییراتی در ایجاد استرس باشند که ممکن است باعث فعال شدن کاسپاز به وسیله فعال شدن کاسپاز دوازده از طریق مسیر آزادسازی کلسیم یا به وسیله سرم TNF-α شود.

این مطالعه، پیروی از اصول اخلاق پژوهشی و پروتکل این مطالعه در کمیته پزشکی دانشگاه علوم پزشکی سنندج به تأیید رسیده است.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

پروتکل این مطالعه در کمیته پزشکی دانشگاه علوم پزشکی سنندج به تأیید رسیده است.
References

[1] Favaloro B, Allocati N, Graziano V, Ilio CD, Laurenzi V.D. Role of Apoptosis in disease. Aging. 2012; 4(5):330-49. [DOI:10.18632/aging.100459] [PMID] [PMCID]

[2] Kwak HB. Effects of aging and exercise training on apoptosis in the heart. J of Exer Rehabi. 2013; 9(2):219-22. [DOI:10.1295/v/jr-130002] [PMCID]

[3] Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, et al. Exercise protects cardiac mitochondria against ischemia reperfusion injury. MedSci Sports Exerc. 2012; 44(3):397-405. [DOI:10.1249/MSS.0b013e318231d07] [PMID]

[4] Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Med Sci Sports Exerc. 2001; 33(3):393-6. [DOI:10.1097/00005768-200103000-00010] [PMID]

[5] Peterson JM, Bryner RW, Sindler A, Frisbee JC, Alway SE. Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise. J Appl Physiol. 2008; 105(6):1934-43. [DOI:10.1152/japplphysiol.00337.2008] [PMCID]

[6] Zhong N, Chen H, Zhao Q, Wang H, Yu X, Eaves AM, et al. Effects of griseofulvin on apoptosis through caspase-3- and caspase-9-dependent pathways in KS62 leukemia cells: An in vitro study. Curr Ther Res Clin Exp. 2010; 71(16):384-97. [DOI:10.1016/S0011-393X(10)80004-9]

[7] Rodríguez-Berrigue G, Galvis L, Fraile B, de Bethencourt FR, Martínez-Onsurbe P, Olmedilla G, et al. Immunoreactivity to caspase-3, caspase-7, caspase-8, and caspase-9 forms is frequently lost in human prostate tumors. Hum Pathol. 2012; 43(2):229-37. [DOI:10.1016/j.humpath.2011.04.024] [PMID]

[8] Harada H, Hiraoka M, Kizaka-Kondoh S. Antitumor effect of TAT-oxygendependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res. 2002; 62(7):2013-8. [PMID]

[9] Javid Tabrizi N, Bashiri J, Narimani Rad M. Effect of 12 weeks of treadmill aerobic training on cytochrome C and Caspase-9 gene expression of left ventricle myocardium in rats. Eur J Appl Physiol. 2012; 107(6):697. [DOI:10.1007/s00421-009-1177-4] [PMID]

[10] Siahkohian M, Asgharpour-arshad M, Bolboli L, Jafari A, Sheikhzadeh Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, et al. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal. 2010; 10:340-9. [DOI:10.1100/tsw.2010.27] [PMCID]

[11] Viña J, Gomez-Cabrera MC, Borras C, Froio T, Sanchis-Gomar F, Martinez-Bello VE et al. Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev. 2009; 61(14):1369-14. [DOI:10.1016/j.addr.2009.06.006] [PMID]

[12] Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biol Int. 2005; 29(7):489-96. [DOI:10.1016/j.cellbi.2005.04.001] [PMID]

[13] Youle RJ, Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9(1):47-59. [DOI:10.1038/nrm2308] [PMCID]

[14] Qiu X, Brown K, Hirschy MD, Verdin E, Chen D. Mitochondrial KATP channels and LEF1 upregulation in skeletal muscle following a bout of downhill running. J Physiol Sci. 2014; 64(1):1-11. [DOI:10.1007/s10495-013-0284-5] [PMID]

[15] Rastogi RP, Rajeshwar R, Sinha RP. Apoptosis: Molecular mechanisms and pathogenicity. EXCU J. 2009; 8:155-88.

[16] Marzetti E, Privitera G, Simili V, Wohlgemuth SE, Aulisa L, Pahor M, et al. Exhaustive exercise-induced apoptosis is reduced in cardiac mitochondria in humans compared to young subjects. J Appl Physiol (1985). 2012; 112(8):2943-55. [DOI:10.1152/japplphysiol.00421-2011] [PMID]

[17] Kwon SD, Shyu WC, Cheng IS, Kuo CH, Chan YS, Lin YM, et al. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal. 2010; 10:340-9. [DOI:10.1100/tsw.2010.27] [PMCID]

[18] Pursley DM. The Effect of Training on Caspase 3 and 9. JAMS. 2020; 23(3):300-313.
