Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common cause of gastroenteritis in humans. Here, we report the draft genome sequences of 10 isolates of an S. Typhimurium phage type 135 variant that is linked to egg-associated outbreaks in Tasmania, Australia.
Whole-Genome Shotgun projects at DDBJ/EMBL/GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

This work was supported by an Early Career researcher grant from the University of Melbourne and a Victorian Life Sciences Computation Initiative (VLSCI) grant (no. VR0082). K.E.H. was supported by a fellowship from the NHMRC of Australia (no. 628930). The MDU is funded by the Department of Health, Victoria, Australia.

We thank the MDU staff for their contributions.

REFERENCES

1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. The global burden of nontyphoidal salmonella gastroenteritis. Clin. Infect. Dis. 50:882–889.
2. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB, Wegener HC, Aarestrup FM. 2011. Global monitoring of salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 8:887–900.
3. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856.
4. Pang S, Octavia S, Reeves PR, Wang Q, Gilbert GL, Sintchenko V, Lan R. 2012. Genetic relationships of phage types and single nucleotide polymorphism typing of Salmonella enterica serovar Typhimurium. J. Clin. Microbiol. 50:727–734.
5. Sintchenko V, Wang Q, Howard P, Ha CW, Kardamaminis K, Musto J, Gilbert GL. 2012. Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA). BMC Infect. Dis. 12:78.
6. OxFoodNet Working Group. 2009. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OxFoodNet network, 2008. Commun. Dis. Intell. 33:389–413.
7. Stephens N, Coleman D, Shaw K. 2008. Recurring outbreaks of Salmonella Typhimurium phage type 135 associated with the consumption of products containing raw egg in Tasmania. Commun. Dis. Intell. Q Rep. 32:466–468.
8. Stephens N, Sault C, Firestone SM, Lightfoot D, Bell C. 2007. Large outbreaks of Salmonella Typhimurium phage type 135 infections associated with the consumption of products containing raw egg in Tasmania. Commun. Dis. Intell. Q Rep. 31:118–124.
9. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829.
10. Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A, Yu J, Sangal V, Brown DJ, Coia JE, Kim DW, Choi SY, Kim SH, da Silveira WD, Pickard DJ, Farrar JJ, Parkhill J, Dougan G, Thomson NR. 2012. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat. Genet. 44:1056–1059.
11. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res. 39:W347–W352.
12. Mankovich JA, Hsu CH, Konisky J. 1986. DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J. Bacteriol. 168:228–236.
13. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147.