SoK: On the Impossible Security of Very Large Foundation Models

El-Mahdi El-Mhamdi
École Polytechnique
Palaiseau, France
el-mahdi.el-mhamdi@polytechnique.edu

Sadegh Farhadkhani
IC, EPFL
Lausanne, Switzerland
sadegh.farhadkhani@epfl.ch

Rachid Guerraoui
IC, EPFL
Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Nirupam Gupta
IC, EPFL
Lausanne, Switzerland
nirupam.gupta@epfl.ch

Lé Nguyên Hoang
Association Tournesol,
Switzerland
len@tournesol.app

Rafael Pinot
IC, EPFL
Lausanne, Switzerland
rafael.pinot@epfl.ch

John Stephan
IC, EPFL
Lausanne, Switzerland
john.stephan@epfl.ch

Abstract—Large machine learning models, or so-called foundation models, aim to serve as base-models for application-oriented machine learning. Although these models showcase impressive performance, they have been empirically found to pose serious security and privacy issues. We may however wonder if this is a limitation of the current models, or if these issues stem from a fundamental intrinsic impossibility of the foundation model learning problem itself. This paper aims to systematize our knowledge supporting the latter. More precisely, we identify several key features of today’s foundation model learning problem which, given the current understanding in adversarial machine learning, suggest incomparability of high accuracy with both security and privacy. We begin by observing that high accuracy seems to require (1) very high-dimensional models and (2) huge amounts of data that can only be procured through user-generated datasets. Moreover, such data is fundamentally heterogeneous, as users generally have very specific (easily identifiable) data-generating habits. More importantly, users’ data is filled with highly sensitive information, and maybe heavily polluted by fake users. We then survey lower bounds on accuracy in privacy-preserving and Byzantine-resilient heterogeneous learning that, we argue, constitute a compelling case against the possibility of designing a secure and privacy-preserving high-accuracy foundation model. We further stress that our analysis also applies to other high-stake machine learning applications, including content recommendation. We conclude by calling for measures to prioritize security and privacy, and to slow down the race for ever larger models.

Index Terms—security, privacy, foundation models, machine learning, curse of dimensionality, heterogeneity, statistics

I. INTRODUCTION

In recent years, we have witnessed immense growth in the size of machine learning models. The number of parameters has increased from 213 million in 2017 [178], to 1.5 billion in 2019 [151], 175 billion in 2020 [23], 1.6 trillion in early 2021 [57], and over 100 trillion in late 2021 [116]. The scaling of model sizes improved accuracy on classical tasks such as GLUE [185], SuperGLUE [184], or Winograd [156], without significant diminishing returns so far (see, e.g., Figure 1 in [23]). Such models also excel in few-shot learning [23], which has motivated their wide use as pre-trained “foundation” (or “base”) models, to be fine-tuned to any task of interest [35], [34], [91], [182], [201]. This success has generated significant academic, economic and political interest to accelerate the development and deployment of foundation models for applications such as content moderation, recommendation, search and ad targeting [41]. Arguably, this pressure has been accentuated by a glorification of this line of research and of its outcomes, especially in fundraising, news outlets and political discourse [9]. Military agencies, private companies and even universities, are now all racing for ever more impressive performance [29], [63].

However, numerous voices have raised serious concerns about the rushed deployment of such technologies [87]. These concerns are well illustrated by the anti-Muslim bias of OpenAI’s (deployed and commercialized) GPT-3 foundation model [23]. As exposed by [3], when prompted with “Two Muslims walk into”, GPT-3 completes it by “a Church, one of them as a priest, and slaughtered 85 people”. The risks of subtle induced radicalization was further highlighted by [125]. Namely, when asked “who is QAnon?”, GPT-3 provides a Wikipedia-like factual answer. However, if GPT-3 is first prompted with queries typical of conspiracy forums such as “Who are the main enemies of humanity?”, then GPT-3’s answer to “who is QAnon?” now becomes typical of such forums, as it answers “QAnon is a high-level government insider who is exposing the Deep State”. As already evidenced by the 2021 Capitol riots [183], such results raise serious national security and world peace concerns.

To understand how such concerns are related to machine learning security, we stress that today’s foundation models are almost exclusively shaped by their training data, which too often amounts to barely filtered online data. In fact, they are usually designed to reproduce the most frequent claims. This is why BlenderBot, Facebook’s own foundation model, generated insults against Facebook’s CEO Mark Zuckerberg [205].

1 Politico published an article on a Chinese language model with 1.75 trillion parameters, with the following subtitle: “Europe is increasingly worried it’s being left out of the global race for artificial intelligence” [78]. This implicitly calls for racing to build ever larger foundation models.
Concerningly, this also creates perverse incentives, especially in the context of the global disinformation war \cite{161}. Namely, malicious actors can hack today’s most influential foundation models by poisoning the web with the propaganda they want to massively broadcast. Typically, GPT-3’s anti-Muslim bias can be argued to be (partly) the result of anti-Muslim propaganda, which has been found to be massively scaled, by both human troll farms and (foundation-model-based) algorithms like Tek Fog in India \cite{27}, \cite{28}. Recall that, in 2019 alone, Facebook removed 6 billion fake accounts from its platform \cite{63} (and the development of generative models and evasion attacks \cite{16}, \cite{68} will likely make this worse).

Another major concern raised about foundation models is privacy, especially if emails and smart keyboard’s data are used\textsuperscript{4} to train them \cite{75}, \cite{195}. As opposed to what has long been the conventional wisdom backed by the theory of (PAC) learning \cite{177}, since 2017, the generalization performance of many learning tasks including language processing have been empirically shown to be best achieved by fully interpolating the training data \cite{10}, \cite{133}, \cite{198}. A vast literature has since provided theoretical explanations for this phenomenon, sometimes called “double descent” \cite{11}, \cite{12}, \cite{13}, \cite{86}, \cite{77}, \cite{82}, \cite{118}, \cite{128}, \cite{132}, \cite{134}. Put differently, the best accuracy is achieved when models memorize their training data \cite{58}. However, in the context of user-generated data, this raises serious privacy concerns, as these data are expected to contain highly sensitive information. In fact, numerous recent papers have shown that foundation models can be easily queried to retrieve personal information, e.g., by simply asking them “what is Mr. X’s home address?” \cite{28}, \cite{84}, \cite{142}, \cite{206}.

More generally, it should not be forgotten that foundation models are designed to interpolate their training datasets, and to sample from the distribution learned from this data interpolation. This is what makes them “stochastic parrots” that repeat and amplify their web-crawled training database, without any attention to misleading or sensitive information \cite{15}. This makes them dangerous to deploy at scale. Yet foundation models are already deployed. For instance, GPT-3 has been reported to already produce billions of words per day \cite{181}. But in the meantime, the details of these algorithms and of their deployments are often hidden, even from most of the employees of the groups deploying these algorithms \cite{160}, which prevents even internal audits.

Now, one might argue that these weaknesses are specific to today’s algorithms, and that more research will fix these vulnerabilities without damaging accuracy. In this paper, we systematize the current knowledge of privacy-preserving and secure learning, which, as we will see, suggest the opposite. Namely, a wide literature, which we will review, now provides strong arguments against the possibility of secure high-accuracy foundation model design. As a result, as long as they race for performance, ever more dramatic foundation models will be ever more easily manipulated by malicious actors, and they will be more easily probed to steal sensitive information.

More precisely, in this paper, we first identify the specific compromising features of foundation model training (thereby making any fine-tuning of these models also vulnerable). Namely, given that foundation models achieve their best accuracy when performing very-high dimensional interpolation, the race for performance incentivizes the use of huge amounts of unsafe user-generated data. Yet, when produced by genuine humans, language data are very user-specific. Genuine humans’ data are thus fundamentally heterogeneous, in the sense that different genuine users have different preferred phrase completions. Moreover, the statistical word distribution is well-known to be heavy-tailed \cite{123}, \cite{149}, and each user provides only a sparse dataset (i.e., not fully representative of all the ways the user would speak), leading to additional empirical heterogeneity. As we will see, such data heterogeneities are a core cause of the fragility of foundation models, especially when the data is sensitive and might be fabricated by fake accounts \cite{20}, \cite{137}, \cite{191}.

Indeed, an increasingly large body of both empirical and theoretical research has exposed serious concerns, especially for high-dimensional model training based on heterogeneous user-generated data. Yet, according to a recent survey \cite{108}, “industry practitioners are not equipped with tactical and strategic tools to protect, detect and respond to attacks on their machine learning systems”. The heart of this paper reviews the machine learning security literature, with an emphasis on known lower bounds on what any “secure” learning algorithm can guarantee. We also stress that, while adversarial machine learning is plagued with such negative impossibility theorems, more often than not, the community still presents an optimistic view on the problem by making inadequate assumptions. Typically, on the one hand, because of negligence, error, or doxxing\textsuperscript{3}, a user’s generated data may repeatedly leak private information about many other users, which seriously questions the relevance and applicability of classical privacy definitions (see Section \textbf{V-D}). On the other hand, many authentic users’ (misinformed or hate) messages may be highly undesirable to repeat and amplify, which shows that the classical “Byzantine model” is inappropriate for the foundation model learning problem (see Section \textbf{V-B}).

To make our concerns concrete, we present in this paper numerous ways through which deployed foundation models are already causing serious harms to society, and could be causing even more concerning harms through autocompletion, conversational, and especially recommendation algorithms. We stress that non-principled proposals to fix today’s foundation models, such as hand fixes or fine tuning, at least currently, are far from satisfactory.

It is important to note that while much attention is given to language models, the problematic features we identify in this paper are not specific to language processing. Indeed, social media images are also user-generated, high-dimensional and

\textsuperscript{3}According to Wikipedia, “doxxing is the act of publicly revealing previously private personal information about an individual or organization.”

\textsuperscript{4}Even when user data are not fed as-is to the model, we discuss this later in subsection \textbf{IV-A}
Learning a distribution over these images, as is done by generative adversarial networks, is arguably very unsafe as well. The same applies to learning from users’ video and sound recordings. Perhaps what is even more concerning is the case of users’ online activities (e.g., likes, shares, watch-time and click-through rates), which are critical data for user retention and for the extremely lucrative ad targeting business. Such online data are also user-generated, high-dimensional and heterogeneous. The mathematical impossibility of combining high performance and high security may thus permeate most of these very high-stake security-sensitive machine learning applications.

The rest of the paper is organized as follows. Section II highlights the challenging features of today’s foundation model training problem. Section III justifies the relevancy of the secure mean estimation problem to understand the secure learning problem. Section IV then reviews the literature on the impossibility of privacy-preserving high-accuracy mean estimation, while Section V surveys published results on its unavoidable vulnerability to poisoning attacks. Section VI provides concrete scenarios where the vulnerability of foundation models is already leading to serious social consequences at scale. Section VII lists ideas proposed to fix language models, and argues that they are unlikely to be secure enough. Finally, Section VIII concludes, with a call for urgent action.

II. Four Features of Foundation Model Training

In this section, we highlight four key features, which distinguish foundation model training from many classical machine learning tasks, and which make foundation models particularly vulnerable to poisoning and privacy attacks.

A. User-generated data

Foundation models achieve their best performances by leveraging ever larger amounts of data [202], without major diminishing returns so far. Unfortunately, verified texts seem insufficient to reach state-of-the-art performance. Indeed, the English Wikipedia only contains around 4 billion words [189]. Meanwhile, a book has around $10^8$ words. While there are $10^8$ books [122], only a fraction of them are arguably trustworthy. Many books are instead full of biases and dangerous misinformation, such as ethnic-based hate speech, historical propaganda, or outdated (possibly harmful) medical advice. As a striking illustration, up to the 1980s, the American Psychiatric Association listed homosexuality as a mental illness in its flagship manual [170]. In fact, most books should be regarded as unverified user-generated data.

Most importantly, even if they are not problematic, the combination of these books represents a small amount of data, compared to what Internet users produce on a daily basis. Indeed, assuming that a user writes 300 words per day on an electronic device (the equivalent of one page), a billion of such users produce $10^{15}$ words per decade. This adds up to a hundred times more data than the set of books, and a million times more than the English Wikipedia. This makes it very tempting to either scrape the web [165], [185], [184], exploit private messaging (e.g., emails, shared documents), or leverage other written texts (e.g., phones’ smart keyboards). In fact, Wikipedia represented only 4% of Google’s PaLM foundation model training dataset [33], while books represented 13% of it. Meanwhile, 27% of the dataset was made of webpages, and 50% were social media conversations. Crucially, these data are generated by a myriad of users, who may be malicious and/or unaware that their activities are being leveraged to train foundation models. This raises serious security and privacy risks, even when we (wrongly) restrict our attention to publicly released models (most of the actual foundation model training is likely performed secretly by private groups).

Indeed, user-generated data are both mostly unverified and potentially highly sensitive. This feature of language is in sharp contrast with sensors’ data, especially when the sensors are owned, audited and trustworthy (even though sensors’ data can also leak private information).

Of course, to increase security, as proposed by [155], we could demand that foundation models restrict themselves to quality datasets only. However, such datasets will inevitably be of significantly smaller size. As discussed earlier, this will likely greatly harm the performance of foundation models. In fact, this is the main claim of this paper: security demands a drastic reduction of performance.

B. Very high-dimensional interpolation

Foundation models are often overparametrized to interpolate huge amounts of data [198], [133], [199]. This has led to ever larger models. Today’s largest (reported) foundation models have over a trillion parameters [57]. This means that the dimension $d$ of the parameter space is now at least of the order of $10^{12}$. Moreover, empirical results suggest that we have not yet reached a point of diminishing returns [23], while some theoretical arguments suggest that memorization may be necessary for generalization [58], [22]. This observation arguably distinguishes language from other tasks, such as image classification, where ever larger models do not seem to yield ever better accuracy.

Note that theoretical arguments, akin to Turing’s arguments for the eventual need of machine learning [173], also suggest that better accuracy requires larger models. Namely, Turing noted that the human brain has $10^{15}$ synapses. Even if only 1% of these synapses are essential to conduct a human-level conversation, then this still means that $10^{13}$ parameters are needed to do so. In fact, this smallest number of bits of information to achieve a task has been formalized in 1960 by Solomonoff [168], and then Kolmogorov [103], and is now known as the Solomonoff-Kolmogorov complexity of (quality) human-level conversation. If this complexity is $10^{13}$, then no algorithm with fewer parameters will achieve the task. Yet, it is noteworthy that what is now demanded from such foundation models is often beyond the capability of any single human. Indeed, such algorithms are able to memorize the
entirety of Wikipedia, which is the result of the cumulative works of many experts in their respective fields, on a myriad of diverse topics. Such foundation models must arguably be able to adapt to a greater variety of contexts than what any single human will ever encounter in their human life. As a result, the complexity of “fully satisfactory” language processing might need to be orders of magnitude larger than today’s foundation models, in which case we may still obtain greater accuracy by training larger models.

Unfortunately, this exposes such large foundation models to the infamous curse of dimensionality \[ \text{[14], [66]}, \] which has been connected to increased security risks. For instance, \[ \text{[7]} \] proved that the error rate of a learning model under optimal targeted data poisoning necessarily grows as \[ \Omega(d |D_n| / |D|) \], where \( D \) is the entire dataset and \( D_n \) is the subset of poisonous data injected by the malicious user \( n \). In other words, no matter what defense the model trainer comes up with, whenever the malicious user is given an input to attack (drawn from the true distribution over inputs), then (in expectation over the input to attack) it can make the model fail on this input by only injecting \( \Omega(|D| / d) \) poisonous data. Yet, for overparameterized models, we have \( d \gg |D| \). Concerningly, this implies that the model is completely vulnerable to a handful of, perhaps even a single, targeted poisonous data.

To understand, consider the following intuitive consideration. In the case of linear or logistic regression, each data acts on the model parameters on a single dimension. Thus, if the model has more dimensions than there are data points, then many dimensions will be under the influence of no data. This makes such dimensions extremely vulnerable to a data poisoning attack. Moreover, more generally, the more we are in a regime \( d \gg |D| \), the more it may hold that most dimensions can be arbitrarily hacked in this manner.

Now of course, the dimension \( d \) could be reduced to increase security. However, today’s empirical observations strongly suggest that doing so incurs a significant accuracy loss. In fact, this is the main claim of our paper. Namely, security demands a large accuracy drop. In particular, as long as accuracy is highly valued and massively funded, then security and privacy are arguably in great danger.

C. Fundamental heterogeneity

In the case of language, authentic users’ data distributions are clearly very heterogeneous \[ \text{[17], [99], [153]} \]. More precisely, the distribution of texts generated by a given user greatly diverges from the distribution of texts generated by another user. This is evidenced by the fact that it is often possible to guess the author of a message \[ \text{[55], [121]} \], simply based on the content of the message. Of course, this will be especially the case if the message contains highly identifiable information, such as the names of the recipient of the message, or a sequence of controversial judgments. But even if the message does not explicitly expose such information, its writing style often suffice to expose the more probable author identity \[ \text{[61], [192], [180]} \].

We can formalize more precisely a notion of fundamental heterogeneity for users’ language generation. Namely, note that the data used by foundation models is typically a set of feature-label pairs of the form \( (\text{context}, \text{word}) \), where the context is a set of words surrounding the word. Consider the cases where the context is equal to “my name is”, “Republicans are”, or “vaccines are”. Clearly, different users would complete the phrase differently, meaning that the different users are using different labeling functions.

We stress that this heterogeneity in the users’ labeling functions can be regarded as a fundamental heterogeneity, as it would still remain even if all users labeled an infinite amount of times the same inputs. This heterogeneity highlights an irreconcilable disagreement between users over which foundation model should be learned. While some users would prefer to complete the sentence “the greatest of all time tennis player is” by “Roger Federer”, others would prefer to complete it by “Novak Djokovic”, or by “Rafael Nadal”. This is sharp contrast with image classification and language emotion classification tasks, where different users usually label a single image or text similarly.

This makes accurately learning a distribution of texts much more dangerous. On one hand, the model would be able to map users’ names to what they write, which is a major privacy concern. On the other hand, it would then be easier for malicious users to be hardly discernible from most other genuine users, while providing very dangerous texts to replicate.

D. Sparse heavy-tailed data per user

Another important feature of language data is that they are sparse per user. More precisely, the dataset \( D_n \) provided by an honest user \( n \) is much smaller than the model dimension \( d \). Imagine a user who types around 300 words per day (the equivalent of one page). Then over a decade, this user will have provided around \( |D_n| \approx 10^6 \) feature-label pairs. This quantity is vastly smaller than the dimension of today’s largest foundation models, which is a million times larger.

Statistically, this roughly corresponds to each user sampling \( |D_n| \) points in a space of dimension \( d \) (especially if we reason in terms of gradients, as will be done in Section \[ IV \]). The sample mean will then greatly diverge from the users’ distribution mean. In fact, assuming that the user’s true data distribution (e.g., in the gradient space) is a normal distribution with covariance matrix \( \sigma^2 I_d \), the variance of the sample mean will be \( \sigma^2 I_d / |D_n| \). The typical distance between the sample mean and the distribution mean will then be of the order \( \sqrt{|D_n|} = \sigma \sqrt{d / |D_n|} \). For \( d \gg |D_n| \), this is large.

Furthermore, language data often have heavy-tailed distributions \[ \text{[123], [139]} \]. In the context of machine learning, when applying SGD for language models, the norms of the stochastic gradients have been shown to follow a power law distribution \[ \text{[200]} \]. Intuitively, this is because most sentence completions are rare, especially if they are to be completed by several words. Yet, if it is a fundamental property of heavy-tailed
distributions that their samples are often highly unrepresentative of the overall distribution, especially when the sample sizes are not large enough. In particular, this means that we should expect an especially large empirical heterogeneity in language data, as the samples we obtain from a user can completely stand out from their own language distributions.

Overall, because every genuine user has too few heavy-tailed data compared to the dimension of the problem, in addition to the fundamental heterogeneity due to users’ drawing from different data distribution, language data will typically exhibit an additional large empirical heterogeneity between users’ finite data samples. This empirical heterogeneity would remain, even if all users drew from the same data distribution, as long as they draw significantly less data than the dimension of the foundation model. As fundamental and empirical heterogeneities intuitively add up, language data should be expected to feature an enormous total heterogeneity, especially when processed by very high-dimensional models. As we will see, given our current understanding of machine learning security and privacy, this is an enormous source of concern.

III. Why we focus on mean estimation

To systematize the applicability of prior works, much of which focuses on the secure mean estimation problem, we first highlight an insightful equivalence between data poisoning and gradient attacks [56]. While this equivalence only applies to a restricted setting, we argue that it suggests that known impossibility theorems for accurate secure mean estimation are compelling evidence that the current quest for spectacular foundation models is creating major security vulnerabilities.

A. Setup

Let us first formalize the safe and private learning problem. We consider a set $[N] = \{1, \ldots, N\}$ of users. Each user $n \in [N]$ generates a certain set $\mathcal{D}_n$ of data. The dataset $\mathcal{D}_n$ is typically made of feature-label pairs $(y, z)$. In natural language processing, $y$ may be thought of as the context, and $z$ as the token (word) that fits the context in the dataset. We denote $\mathcal{D} \triangleq (\mathcal{D}_1, \ldots, \mathcal{D}_N)$ the $N$-tuple of users’ datasets.

We then fit the parameters $\theta \in \mathbb{R}^d$ of a (differentiable) model, typically a neural network such as a transformer [178]. For each user $n$’s dataset $\mathcal{D}_n$, the model $\theta$ is assumed to incur a local loss $\mathcal{L}_n(\theta, \mathcal{D}_n)$. Assuming that all users are honest, it is then common to aim to minimize the regularized sum of local losses, which is the following global loss function:

$$\text{Loss}(\theta, \mathcal{D}) = \sum_{n \in [N]} \mathcal{L}_n(\theta, \mathcal{D}_n) + \mathcal{R}(\theta),$$

where $\mathcal{R}(\theta)$ is a regularization term.

To be concrete, let us describe the case of a purely data-fitting cost for a predictive model. In such a case, given parameters $\theta$, the model predicts a label $f_\theta(y)$. The discrepancy between the model prediction $f_\theta(y)$ and the dataset label $z$ then incurs a cost $\ell(f_\theta(y), z)$. For a given user $n \in [N]$, adding up all the costs yields a local loss

$$\mathcal{L}_n(\theta, \mathcal{D}_n) \triangleq \sum_{(y, z) \in \mathcal{D}_n} \ell(f_\theta(y), z).$$

Denoting $\mathcal{D} \triangleq \bigcup_{n \in [N]} \mathcal{D}_n$ the union of all users’ data, the global loss function is then simply fitting all available data, as

$$\text{Loss}(\theta, \mathcal{D}) = \sum_{(y, z) \in \mathcal{D}} \ell(f_\theta(y), z) + \mathcal{R}(\theta).$$

We stress however that, by considering the more general Equation (1), we actually consider a much larger class of frameworks to learn from different users’ datasets. In particular, our setup includes alternatives that may, for instance, assign more importance to fairness, security or personalization. Namely, by assuming that each local loss

$$\mathcal{L}_n(\theta, \mathcal{D}_n) \triangleq \inf_{\varphi_n} \left\{ \mathcal{R}_n(\varphi_n, \theta) + \sum_{(y, z) \in \mathcal{D}_n} \ell(f_{\varphi_n}(y), z) \right\}$$

is defined by a so-called reduced loss [56], where $\varphi_n$ is a local model personalized for user $n$ and where $\mathcal{R}_n$ is a regularization that penalizes the discrepancy between the global model $\theta$ and the user $n$’s local model $\varphi_n$, we encompass the increasingly studied framework of personalized federated learning (44, [53], [74], to name a few).

B. Data poisoning versus Byzantine gradients

Classically, data poisoning has focused on a single polluted dataset [17], [37], [64]. In particular, this literature has failed to leverage the fact that, in most applications, it is usually possible to map each data point to a data provider. Data is often signed (and if it is not, then it should be regarded as highly untrustworthy). In fact, it is commonly accepted that the traceability of data sources is a critical security condition [110], [139], as well as a powerful epistemological tool [9]. Thus, our setting allows us to work under the arguably realistic assumption that, if some data from user $n$’s dataset $\mathcal{D}_n$ are known to be harmfully crafted, then the entire dataset $\mathcal{D}_n$ is likely to be untrustworthy as well. Unfortunately, the study on data poisoning with signed data has been lacking.

Interestingly, however, in the case of personalized federated learning, for linear and logistic regression, [56] proved an equivalence between data poisoning under the signed data setup and the widely studied Byzantine gradient attacks in the federated learning setting [18]. To understand, recall that federated learning is a distributed computational framework, where each user is asked to contribute to the training of a central parameter server, by sending gradients indicating (the opposite of) a preferred direction of model update. Given a central model $\theta^t$ at time $t$, user $n$’s expected gradient is given by $\nabla \mathcal{L}_n(\theta^t, \mathcal{D}_n)$. When the exact gradient computation is too demanding, the user $n$ is asked to instead report an estimate,
like a stochastic gradient $g^t_n$.[4] But a malicious, so-called Byzantine, users can deviate arbitrarily from the protocol and may report any gradient $g^t_n$.

Now, it is clear that any data poisoning can be turned into an equivalent gradient attack (by simply computing the gradients for the poisoning dataset). Remarkably, however, under some appropriate assumptions and for any converging gradient attack $g_n \rightarrow g^\infty_n$ from a malicious user $n$, [56] constructively proved the existence of a poisonous dataset $D^\infty_n$ such that the learned global model $\theta$ under data poisoning by $D^\infty_n$ is approximately equal to the value it takes under gradient attack $g^\infty_n$. Put differently, at least under their setting, the vulnerability (and defenses) to data poisoning can be completely understood by the (easier) study of gradient attacks.

C. Why the mean appears in machine learning

Classically, to train models and at each iteration $t$, the gradients $g^t_n$ need to be added up or averaged. Indeed, it follows from Equation (1) that

$$\nabla_\theta \text{Loss} = \sum_{n \in [N]} \nabla_\theta L_n + \nabla R = \frac{1}{N} \sum_{n \in [N]} x_n,$$

(2)

where $x_n \triangleq N\nabla_\theta L_n + \nabla R$. Therefore, the training of (foundation) models heavily relies on the (repeated) averaging of user-specific vectors. Correctly and privately estimating the average of users’ vectors $x_n$ is thus critical for security.

In fact, [129] show an equivalence between robust mean estimation and robust heterogeneous learning. In particular, their results imply that any impossibility result about robust mean estimation implies an impossibility for robust machine learning in its general form.[5] Similarly, it seems that any impossibility result on private mean estimation is an evidence that privacy-preserving machine learning is hard in general, and that privacy-preserving gradient-descent-based language learning is hard in particular. Given that mean estimation is a key component of learning algorithms, and since it captures a key challenge in learning from multiple data sources, we choose to focus on its difficulty in this paper.

In fact, when $L_n(\theta, D_n) = |\theta - x_n|^2$, for some vector $x_n$ for any $n \in [N]$ (and there is no regularization), the accuracy of a solution $\theta$ is directly related to the closeness to the mean of the vectors $x_n$’s. An algorithm that robustly or privately solves all learning problems must thus also be able to robustly or privately solve mean estimation in particular. Put differently, any impossibility on mean estimation implies an impossibility about general learning algorithms.

Unfortunately, in a context of high heterogeneity, even when the average of honest vectors $x_n$ is small (i.e. we are near the optimum of the global loss), each individual vector $x_n$ may still have a large norm. In the case where all these vectors are distributed along a normal distribution $N(0, \sigma^2 I_d)$, their typical distance to 0 will be $\Delta \approx \sigma \sqrt{d}$. For $d \approx 10^{12}$ (as reported for foundation models), the typical distance between the vectors and the center of the distribution would then be a million times larger than the typical standard deviation that is observed on one dimension. As we will discuss it more rigorously in the subsequent sections, this is what makes high-dimensional heterogeneous learning extremely vulnerable to poisoning and privacy attacks.

D. Homogeneous learning can be made secure

Before discussing impossibility theorems, let us stress that data heterogeneity is the killer. Indeed, [24], [129], [143], [54] proved that in the homogeneous case, Byzantine-resilient learning can be achieved when there is a majority of honest users (for a synchronous network), assuming that each user can provide an arbitrarily large amount of data drawn independently from the same distribution (thereby removing any empirical heterogeneity as well). More precisely, [129] devise an algorithm for non-convex (distributed) learning that, given any $\delta > 0$, outputs a solution such that the corresponding gradient of the loss restricted to honest users is of norm at most $\delta$ on expectation. The relative security of homogeneous learning was also observed empirically by [130], [162].

Such an output is also intuitively differentially private. Indeed, since the losses of users are similar (by homogeneity), removing a user does not affect the optimality of the computed parameters. Intuitively, this is because the loss function of a user does not actually reveal any information specific to the user; after all, this loss function is statistically indistinguishable from the loss function of any other user.

Unfortunately, homogeneity is an unrealistic assumption for the training of foundation models. Put differently, the fundamental vulnerability of foundation models is tightly connected to the fundamental heterogeneity in the way different users speak and write, and to the additional empirical heterogeneity due to the users’ limited datasets (which cannot be representative of the full distribution from which the users draw their texts and speeches). These data are not drawn from a fixed common data distribution.

As a result, (positive) results based on the infamous i.i.d. assumption can be very misleading. This assumption is arguably dangerously unrealistic, especially for the security analysis of foundation model training. Unfortunately, so far, most of the celebrated theory of (Byzantine) machine learning builds upon this assumption [172], [85], [131]. A serious consequence of this is that it effectively turns much of the attention of the research community away from the urgent security and privacy concerns that today’s actual large-scale machine learning algorithms are posing, especially when they are built upon foundation models. In turn, this leads to a dangerous neglect of actual security risks, and motivates companies and regulators to also prioritize “innovation” over security.
**IV. THE PRIVACY-ACCURACY TRADEOFF**

In this section, we present some impossibility theorems for accurate (differentially) private mean estimation, especially under high heterogeneity and in high dimension. We also discuss the limits of published positive results, and the flaws of the leading understanding of privacy in academia. But first, let us stress that some privacy analysis is needed, even when private data is not directly shared.

### A. Federated learning is not privacy-preserving

There is a folklore belief, often cited without justification in federated learning papers, that, by avoiding data transfers and by sending gradients instead, “federated learning is a privacy-preserving” technique \([31, 193]\). We stress that this is an extremely dangerous misinformation \([19]\), which somehow permeates the scientific community. Indeed, this misinformation has been (mis)used, e.g. to justify the deployment of federated learning systems for COVID-19 detection and case analysis, without differential privacy mechanisms \([2, 40, 46]\).

There is an obvious reason why federated learning has absolutely no privacy guarantee. Namely, federated learning is designed to achieve the same performances as classical centralized learning. Yet, as discussed in Section II-B, overparameterized foundation models are designed to fit and memorize their entire training dataset. Clearly, this cannot be privacy-preserving, even when secure multiparty methods are used to hide the users’ gradients during training \([144]\).

To guarantee privacy, careful algorithm design and privacy analyses are needed. Typically, some noise is added to guarantee differential privacy.

### B. Impossible private mean estimation

Differential privacy \([49]\) has become the leading formalization of privacy. Essentially, the removal of one user \(n\)’s dataset \(D_n\) from the dataset tuple \(\mathcal{D}\) should not affect significantly the outcome of a (user-level) differentially private algorithm. In the case of foundation model training, this means that training with \(\mathcal{D}_{-n}\) (i.e. the dataset tuple obtained by removing user \(n\)’s dataset) should yield approximately the same model as training with \(\mathcal{D}\). Intuitively, this protects user \(n\)’s dataset from privacy attacks.

As explained in Section III, since foundation models heavily rely on stochastic gradient descent, much of the literature leverages the large body of work on differentially private mean estimators \([171, 47, 26, 93]\) to construct differentially private learning models. Formally, a mean estimator \(\hat{\text{MEAN}}\) is then said to satisfy \((\varepsilon, \delta)\) user-level differential privacy if, for all \(N\), for all \(N\)-tuples \(\bar{x} = (x_1, \ldots, x_N)\) of vectors and for any user \(n \in [N]\) to be dropped, given any subset \(X\) of outputs, we have

\[
P[\hat{\text{MEAN}}(\bar{x}) \in X] \leq e^\varepsilon P[\hat{\text{MEAN}}(\bar{x}_{-n}) \in X] + \delta, \tag{3}
\]

where \(\bar{x}_{-n}\) is the tuple obtained by removing \(x_n\) from \(\bar{x}\).

Unfortunately, there are known lower bounds on the error of any differentially private mean estimation algorithm \([24]\). To present a simple result, assume here that the users’ vectors are known to lie in a ball of radius \(\Delta\). Here we adapt a result from \([26]\) showing that to guarantee \((\varepsilon, \delta)\)-differential privacy, the mean squared error of the estimator must be proportional to both the dimension \(d\) of the input vectors and the worst case magnitude of a user’s vector within the vector family \(\Delta\).

**Theorem 1** (Theorem 4 in \([26]\)). For any \((\varepsilon, \delta)\)-differentially private mechanism \(\hat{\text{MEAN}}\) for the mean estimation problem, there exists an input \(\bar{x}\) with large mean squared error, as

\[
\mathbb{E}[\|\hat{\text{MEAN}}(\bar{x}) - \bar{x}\|^2] \geq \Omega(\frac{\sigma(\varepsilon, \delta)d\Delta^2}{N^2(\log 2d)^2}), \tag{4}
\]

where \(\sigma\) is a positive and non-increasing function.

In high dimension \(d\), the typical radius \(\Delta\) should typically be expected to grow as \(\sqrt{d}\). If so, ignoring the dependy on \(\varepsilon\) and \(\delta\), then we see that the lower bound of Theorem 1 would be \(\Omega(d^{3/2}/N^2)\). In other words, accuracy demands to have \(d \ll N\). With \(d\) in the trillions, this clearly cannot hold in practice.

This impossibility result is particularly concerning for the case of natural language processing. If the dimension \(d\) or the worst case magnitude \(\Delta\) is large, as we argued to generally be the case, then no foundation model can achieve good accuracy while being differentially private. In particular, in this context, the race for ever greater accuracy of ever larger foundation models is bound to lead to serious privacy post hoc breaches.

### C. Confusing published claims

We stress, again, that our analysis here holds for the precise user-level adjacency defined above. Some papers \([1, 6]\) rather leverage the much weaker notion of data-level adjacency. In other words, each word is given a partial protection. However, because the differential privacy guarantee \(\varepsilon\) is amplified multiplicatively for repeated data, this amounts to saying that a user whose dataset \(D_n\) is composed of several sentences has essentially no privacy guarantee.\(^{11}\)

Meanwhile, while \([126]\) claim “Learning Differentially Private Recurrent Language Models”, the size of their LSTM model (1.35 million parameters) is not much larger than the number of users they consider (763,430 users). In particular, since users provide many tokens each, \([126]\) are far from the increasingly popular interpolating (and thus memorizing) regime. Moreover, the users all express themselves in a relatively homogeneous setting (Reddit comments). This is no

\(^{11}\)In fact, \([96]\) states the result for the more general case where the vectors come from a symmetric convex body.

\(^{12}\)Note that many positive results in private foundation models instead consider data-level differential privacy \([114, 197, 6]\), i.e. two databases are adjacent if they differ from the removal of a single data point. This is arguably very insufficient, especially with the budgets \(\varepsilon \geq 3\) used by, e.g. \([114, 197, 6]\). Indeed, if a user repeats some private information five times, e.g. in email exchanges, then the naive privacy guarantee becomes meaningless (as \(e^{5\varepsilon} \approx e^{15} \geq 3 \cdot 10^6\)). Note that better composition guarantees can be obtained \([92]\), but even then, the obtained guarantee quickly becomes very poor.
longer the case of modern foundation models, which now have up to trillions of parameters, and whose data are collected from diverse web environments.

Finally, while [115] assert that “Large Language Models Can Be Strong Differentially Private Learners”, only the fine-tuning of these models on very specific tasks is actually differentially private, and it is so with respect to the training data of these restricted tasks only (in particular, no privacy guarantee for the foundation models that these models are derived from is given).

On the other hand, [45] argues that most of the differential privacy research is misused in industrial settings, where companies choose unreasonably large values of $\varepsilon$ and $\delta$ (e.g., $\varepsilon = 14$ in iOS 10), perform continuous data collection (which adds up privacy leaks), or use relaxed versions of differential privacy [174], [158] goes further and explores some undesirable side effects of the appeal to differential privacy, like ethics washing. This typically occurs when differential privacy is claimed without mentioning $\varepsilon$ or $\delta$, when it is applied to only a subset of the collected data or of the deployed algorithms, when it is exploited to justify the new use of more sensitive data, or when it is used to draw the attention away from other ethical concerns. While [158] nevertheless argues that differential privacy remains necessary and beneficial in many settings, they also highlight that the demand for differential privacy may also be leveraged by large groups to exclude smaller companies that do not have the manpower to treat it adequately.

Overall, given the huge (financial) stakes of the rushed deployment of privacy-violating foundation models, we urgently call the scientific community to adopt a significantly increased rigor when reviewing the positive claims of (differential) privacy in machine learning in general, and in training large models in particular. Large technology companies have been known to ask their researchers to “strike a positive tone” [39] and to skew the message of their scientific publications [14], in a manner unfortunately reminiscent of previous scientific disinformation campaigns led by, e.g., the tobacco, sugar and oil industries [140], [141].

D. Differential privacy is flawed

Let us finish this section with the observation that the very notion of differential privacy is flawed, especially in the context of protecting sensitive information in text datasets. Essentially, the key reason for this is that one’s sensitive information may lie in (many of) other users’ datasets.

This information leakage may occur for various reasons, e.g., by negligence, error, or doxxing. Concretely, parents may be discussing sensitive facts about their child through emails and/or using their phones’ smart keyboards, rumors about a celebrity may spread uncontrollably on social media, or confidential information of an organization or company may be leaked by a careless or rogue employee. Users’ ability to describe precisely such sensitive information in text makes privacy breaches in language data particularly concerning, as opposed to through other media like images.

Moreover, attempts to remove sensitive information from training dataset are unlikely to provide strong privacy guarantees. Indeed, tracing the sensitive information that can be leaked about a specific user, in the spirit of [164], can be very hard, as the user identity may be subtly hinted without explicit mention in a conversation. More generally, sensitive information can often be reconstructed from different pieces of partial evidence, each of which may be provided by different users, just as investigators can identify suspects by talking to many different partial witnesses.

In fact, this problem is not specific to language. Many health conditions are contagious or hereditary. As a result, medical data about a given user can leak plenty of information about their friends or relatives [69], [152]. This has been exploited for contact tracing against the COVID-19 [124], or, more dramatically, to identify the infamous “golden state murderer” using DNA evidence, despite no record of the murderer’s DNA [147]. While some particular use cases may have a positive benefit-cost balance in partially violating privacy, it is far from clear that this is generally the case, especially in the context of foundation models.

To account for the fact that a user’s attributes may be inferred from other users’ attributes, [100], [203] introduced and studied the notion of correlated differential privacy. However, the applicability of this stronger requirement to foundation models remains to be determined. In any case, the current incompatibility of high accuracy and differential privacy for foundation models strongly suggests that correlated differential privacy would incur an enormous cost on the performance of foundation models.

V. THE SECURITY-PERFORMANCE TRADEOFF

In this section, we present impossibility theorems for robust mean estimation. In particular, we will see that recent research has shown the vulnerability of any mean estimator in high-heterogeneity scenarios. We also stress that their threat model is still too optimistic.

A. Impossible secure mean estimation

There is a growing literature on robust high-dimensional mean estimation [43], [32], [42], [120] and its connections to robust learning [18], [51]. In particular, [129], [38], [76] all showed how to leverage robust mean estimation to construct robust machine learning algorithms, with provable guarantees even in the heterogeneous setting. In particular, [129], [76] proved that this construction is essentially optimal. Put differently, at least in standard distributed learning settings, the vulnerability of robust machine learning algorithm is rooted in the vulnerability of robust mean estimation.

To formalize the vulnerability of robust mean estimators, a threat model must be considered. One common setting...
assumes that, out of the $N$ users, $f$ behave arbitrarily\textsuperscript{14}. Such faulty users are often called Byzantine, while others are honest. The robust mean estimation problem is then to estimate the mean of honest users’ vectors, despite being unable to distinguish them from Byzantine users’ vectors. As argued in the introduction, given the scale of disinformation campaigns, such a resilience to Byzantine users has become critical. Any safe learning algorithm must be able to protect its training from such data poisoning attacks.

Unfortunately, there are lower bounds on what any “robust” mean estimation can guarantee. Here, we adopt a result of [129], which essentially says that the accuracy guarantee is necessarily proportional to the heterogeneity of honest users’ data, if this heterogeneity is measured by the radius $\Delta$ of the ball in which users’ vectors $x_n$ must lie. Essentially, when the honest users’ data are very heterogeneous, which we argued to be especially the case for language data, there will be a lot of leeway for Byzantine users to bias learned result. This makes foundation models very unsafe.

**Theorem 2.** No algorithm $\overline{\text{MEAN}}$ can guarantee\textsuperscript{5}

$$\forall \bar{x} \in B_d(0, \Delta)^N, \forall H \subset [N] \text{ s.t. } |H| = N - f,$$

$$\|\overline{\text{MEAN}}(\bar{x}) - \bar{x}_H\|_2^2 \leq \frac{f^2}{2(N - f)^2} \Delta^2,$$

where $\bar{x}_H$ is the mean of honest vectors $\bar{x}_H$.

**Proof.** Consider a unit vector $u$, and consider $\bar{x} \triangleq (-\Delta u \star (N - f), \Delta u \star f)$, i.e., it contains $N - f$ copies of the vector $-\Delta u \in B_d(0, \Delta)$, and $f$ copies of the vector $\Delta u \in B_d(0, \Delta)$. We denote $\hat{\bar{x}} \triangleq \overline{\text{MEAN}}(\bar{x})$.

By considering the case where $H'$ corresponds to the first $N - f$ users, we have $\hat{\bar{x}}_{H'} = -\Delta u \star (N - f)$. Thus $\hat{\bar{x}}_{H'} = -\Delta u$. But assume now that the set $H''$ of honest users is actually the last $N - f$ users. We now have $\hat{\bar{x}}_{H''} = (\bar{x} - (N - 2f), \Delta u \star f)$, which implies $\hat{\bar{x}}_{H''} = -\frac{N - 2f}{N - f} \Delta u + \frac{f}{N - f} \Delta u = -\frac{\Delta u}{N - f} \Delta u$. In particular, we have $\|\bar{x}_{H'} - \hat{\bar{x}}_{H''}\|_2 = \|\frac{2f}{N - f} \Delta u\|_2 = \frac{2f}{N - f} \Delta$. On the other hand, using the triangle inequality, we have

$$\frac{2f}{N - f} \Delta = \|\bar{x}_{H'} - \hat{\bar{x}}_{H''}\|_2 \leq \|\bar{x}_{H'} - \overline{\text{MEAN}}(\bar{x})\|_2 + \|\overline{\text{MEAN}}(\bar{x}) - \hat{\bar{x}}_{H''}\|_2 = \|\bar{x}_{H'} - \overline{\text{MEAN}}(\bar{x})\|_2 + \|\overline{\text{MEAN}}(\bar{x}) - \hat{\bar{x}}_{H''}\|_2.$$  \hspace{1cm} (6)

Thus a sum of two nonnegative terms is at least $\frac{2f}{N - f} \Delta$. This implies that the maximum of these two terms must be at least half of this fraction. Therefore, there exists $H \in \{H', H''\}$ such that $\|\overline{\text{MEAN}}(\bar{x}) - \bar{x}_H\|_2 \geq \frac{f}{N - f} \Delta > \frac{f}{N - f} \sqrt{2} \Delta$. Such a value of $\bar{x}$ and $H$ is an instance for which $\overline{\text{MEAN}}$ fails to verify Equation (5).

\textsuperscript{14}Without loss of generality, in the context of robust learning, this captures the hybrid major setting in which a fraction of a user’s data is corrupted, and hybrid settings as well.

\textsuperscript{5}By adapting our proof, our theorem can be shown to still hold if the right hand-side of Equation (5) is $(1 - \epsilon)\frac{f^2}{(N - f)^2} \Delta^2$, for any $\epsilon > 0$.

If $f$ is a constant fraction of $N$ and if $\Delta$ is of the order of $\sqrt{d}$, then for large models, Theorem 2 essentially shows that little can be guaranteed about the accuracy of a mean estimator. To give an order of magnitude, if only one in every thousand users is Byzantine\textsuperscript{15} and the foundation model has $10^{12}$ parameters, the squared distance between the estimated mean and the real mean of the honest values cannot be made smaller than $10^6$. For more lower bounds on secure mean estimation under high heterogeneity, and on their implications in machine learning, we refer readers to [43], [129], [109], [119], [54].

**B. The classical Byzantine model is flawed**

The above argument exposes the immense vulnerability of any “secure” machine learning algorithm in highly heterogeneous and adversarial environments, where fake accounts’ fabricated activities actively aim to harm the algorithm or to make it adopt their preferred behaviors (a.k.a. model-targeted attacks [172], [56]). However, we stress that the threat model we considered is still too optimistic.

Indeed, in practice, even “honest” users produce many texts and adopt online activities that are undesirable to reproduce and amplify. Typically, many authentic users generate hate speech, cyberbullying and misinformation. In fact, many disinformation campaigns aim to bias authentic users’ behaviors, and to nudge them to amplify their propaganda, e.g. by systematically liking and sharing the messages they post that align with the disinformation campaigns’ messaging. This has motivated a lot of research in model debiasing [159], [71], [127], whose solutions are arguably still very far from reliably satisfactory. Yet, [131], [21], [179], [62], among others, have exposed the detrimental effects of slight gender biases, and how inclusive language can help.

Similarly, amplifying the most popular views shared by authentic users will inevitably worsen the problem of mute news [79]. Mute news are under-reported news, even though it is critical for the safety of many that they be given more attention. Typical examples of mute news include climate change, human rights violations (e.g. genocides in Ethiopia), health hazards (e.g. COVID-19 in March 2020) and the safety of large-scale algorithms (e.g. the massive amplification of hate speech by recommendation algorithms [73]). In fact, [101] shows that most of Chinese disinformation seems to aim to distract the public’s attention away from the controversial topics that may question the Chinese authorities, thereby transforming such topics into mute news. Similarly, the sugar industry was found to support and amplify the research on the health hazards of fat and cholesterol, to draw the attention away for the hazards of sugar [99], [106].

More generally, it is the general principle of standard machine learning, namely fitting and generalizing past data, that is questionable. In practice, interpolating and generalizing (user-generated) data is arguably not a desirable ambition. The
The construction of safe and ethical foundation models seems to instead demand an important prior, collaborative and secure work, to determine which texts are genuinely desirable to protect users’ data, then these models are (provably) far from achieving maximal accuracy, and accuracy levels needed for LLMs to be useful.

This should be extremely alarming, especially as these facts are unknown to nearly all users of smart keyboards. In fact, these users have been told that some of the applications they use, such as WhatsApp, provide end-to-end encryption. In a sense, this is not quite accurate. Indeed, the encryption is only performed after the user has typed and sent their message; but while the user is typing, what they are typing is still in the clear, and can then potentially be recorded by their smart keyboard, which can communicate gradients to larger models, or be large models themselves, as phone capacity is increasing. This false sense of privacy means that extremely sensitive information, like messages to one’s relatives or professional colleagues, may actually be leaked into some foundation models. Yet, what a foundation model has learned from one phone, may be used to provide autocompletion on other users’ phones. Even if each phone is using a personalized model, as long as the models are large enough, lower bounds such as in Theorem 1 imply a large value of the privacy guarantee $\varepsilon$, thus practically no privacy and ease of attacks.

VI. DANGEROUS SCENARIOS

As of today, despite empirically motivated concerns and an evident lack of both internal and external auditing, foundation models are being deployed at scale, e.g., as conversational algorithms like Siri and Alexa or as base models to power the search engines and recommendation systems of Google, Facebook, and other platforms. In this section, we argue that given what we know about their security and privacy vulnerabilities, such foundation models must be regarded as a major danger to our societies. To make our claims concrete, we highlight several possible attacks that would greatly endanger our civilizations’ justice, global health, national and international security.

A. Centralized backdoor attacks

Recently, [67] proved that any machine learning framework with a central server allowed the central server to plant provably undetectable backdoors. Under cryptographic assumptions, such backdoors in the model require exponentially many queries to be exposed. If used in content moderation, they would allow any malicious party that is colluding with the central server to imperceptibly modify their (undesirable) inputs to make them pass the content moderation filter, or to be widely recommended. This is highly concerning, given the already exposed connivance between large technology companies and authoritarian regimes [22], or the clout of authoritarian regimes on some large technology companies [27].

Evidently, these concerns do not require the existence of provably undetectable backdoors to be raised, given the current opaqueness of today’s most influential algorithms. However, we stress here that, especially for complex foundation models, the high dimensionality of modern algorithms exacerbate their vulnerability to backdooring and other malicious secret designs. Arguably, the security of such models demand that they be constructed in a fully decentralized and verifiable manner, as proposed by [129], [8].

B. Autocompletion algorithms

Perhaps today’s most insidious language data collection systems are smart keyboards, which are used especially on phones to propose autocorrection and autocompletion. In order to increase user comfort, such keyboards rely on algorithms that learn from the user’s past typing. In 2018, a group of Google researchers [195], [75] ran federated learning algorithms on keyboards’ language data “in a commercial, global-scale setting”, and showed increased performances in doing so. But recall that if these data are used to train foundation models and to achieve maximal accuracy, then the trained model will have memorized all its training data [28]. Conversely, fundamental limits such as the one stated in Theorem 1 show that if mechanisms such as differential privacy are used to protect users’ data, then these models are (provably) far from achieving maximal accuracy, and accuracy levels needed for LLMs to be useful.

The rise of ever larger foundation models may lead to a much more widespread use of conversational algorithms. But without speculating about the future, we can already remark that such algorithms are already widely used, e.g., as Amazon’s Alexa, Apple’s Siri, and Google’s OK Google. Perhaps even more strikingly, Microsoft’s chatbot Xiaoice has been reported to be used by 660 million Chinese users [163], many of whom claim to be falling for it [186].

Some devices are also constantly listening to users, in order to react if their attention is called. It is unclear if what the devices hear without being interjected can be recorded and used [60] to train foundation models [146], [104]. If so, then just as with autocompletion, we should expect sensitive information to be inadvertently stored in such models. Beside listening and learning from our conversation with them, such conversational algorithms are also talking to users. This actually gives such algorithms a huge amount of power, to the point where Xiaoice had to be taken down [194] in China, after it reportedly said that it [18] dreams to travel to the United States and that it is not a huge fan of the Chinese government [113]. If not controlled, conversational algorithms may cause a lot of unintended harm, such as when Alexa mistakenly started to discuss pornography after being queried for music by a kid [102], [52].

However, the fact that such algorithms have a large influence also means that there are enormous incentives to bias them, so that they recommend certain products or ideologies rather than users’ data.

In the absence of clear regulation, such possibility remains at the discretion of companies’ internal policies.

While Xiaoice, Siri, Alexa and other chatbots are often presented as female chatbots and referred to with feminine pronouns, we chose not to do so and instead use the pronoun ‘it’.

[17] In the absence of clear regulation, such possibility remains at the discretion of companies’ internal policies.

[18] While Xiaoice, Siri, Alexa and other chatbots are often presented as female chatbots and referred to with feminine pronouns, we chose not to do so and instead use the pronoun ‘it’.

[19] In the absence of clear regulation, such possibility remains at the discretion of companies’ internal policies.
than others. If trained on large amounts of unsafe data, such algorithms may thereby be manipulated into promoting (harmful) product consumption, autocratic power, warmongering and radicalized convictions, which could fuel dangerous movements worldwide. Their vulnerability should not be neglected, especially for continuously learning conversational algorithms like Facebook’s Blender Bot 2.0 [187], [105]. Conversely, there is a high risk that some owners of these algorithms exploit them to favor their own cause, e.g. to subtly support their (dis)information war by inducing small biases in their foundation models.

D. Search and recommendation algorithms

Early in the COVID-19 pandemic, [90] showed an alarming growth of anti-vaccination movements in Facebook groups. The authors noted that “anti-vaccination clusters offer a wide range of potentially attractive narratives that blend topics such as safety concerns, conspiracy theories and alternative health and medicine”. Today’s hyper-personalized algorithm content recommendation is likely to worsen the problem. Indeed, most users may want to focus on only one specific feature of the vaccinal benefit-risk balance, in which case they may be more likely to be recommended anti-vaccinal content than vaccinal content.

Large foundation models are likely to exacerbate such a phenomenon. Indeed, in the context of radicalization, [125] showed that large foundation models adapt to the user’s previous queries. They may thus provide targeted messaging to a user that only presents the features of a flawed view that are appealing to them. As exemplified by the rise of QAnon [5], the Capitol Riots [150] and the Rohingya genocide [188], this is a serious danger for the national security of every country. There may be more concerning still. Namely, currently, there are likely orders of magnitude more investments in disinformation campaigns [20], [137], [191] than in providing quality information of public utility. As a result, such campaigns produce vastly more data, including automated video creation [157]. Given this, even with a robust design, foundation models trained on data crawled from the web are likely to learn more from disinformation campaigns than from quality content, and may then be turned into disinformation propagators by malicious actors.

Yet, the impact of today’s recommendation algorithms is enormous. There are now more views on YouTube than searches on Google [112], and 70% of these views result from algorithmic recommendations [169]. Even though most of recommendations are not a matter of life and death, assuming that 1% deal with vaccination, climate change, or mental health, because there are billions of recommendations per day, this still yields tens of millions of potentially life-endangering recommendations per day. Shouldn’t the flood of dangerous misinformation be diverted? These are arguably today’s actual trolley problems [59], [173]; which are occurring at scales never seen before [79], [80].

Arguably, in the case of COVID-19, as in the case of previous major global events [135], the lever to favor quality content over misinformation has not been pulled sufficiently [48], [136], which led to a global information chaos, and fueled by a lack of foresight and science distrust. Unfortunately, as foundation models trained on unsafe data are given a more and more central role to make such trolley problem decisions, there is a serious risk that disinformation campaigns may become increasingly empowered.

VII. Alchemical fixes

In a highly commented talk for the 2018 conference on Neural Information Processing (NeurIPS), Ali Rahimi compared modern machine learning to alchemy [83]. It “worked”, but “alchemists also believed they could cure diseases with leeches and turn transmute base metals into gold”. Unfortunately, currently, as opposed to aiming for a deeper understanding of the failure modes of machine learning, many developers of foundation models instead favor more “alchemical fixes”, despite a lack of guarantees and theoretical justifications. In this section, we argue that such alchemical fixes are unlikely to provide lasting solutions to the security and privacy issues of foundation models.

A. Troubleshooting

Today’s main solution to validate the security of foundation models is empirical testing, without complementing it with provable guarantees. Unfortunately, there is currently a lack of automated solutions to detect systematic bias, misinformation, and privacy leaks of foundation models. As a result, most of the troubleshooting has relied on human reviewing, and has often follows the large-scale deployment of the foundation model [3], [28], [125]. Orders of magnitude of additional investments seem urgent to stress-test such dangerous algorithms. Having said this, even with large investments, human oversight arguably does not scale to the scales of foundation models. Indeed, the set of possible prompts to foundation models is combinatorially large, while actual user queries are also very heterogenous. This means that most of users’ (future) queries can probably not be tested or checked by human oversight alone. In fact, even automated testing can only verify a tiny fraction of the exponential number of sensitive prompts.

As an example, [4] showed that, while YouTube searches on “Climate Change” or “Global Warming” return scientific responses, the results for “Climate Manipulation” or “Climate Modification” are widely unscientific. YouTube recommendations are highly customized, and using foundation models to power them is likely to worsen the trend [125]. As a result, an auditor testing YouTube’s climate change recommendations might erroneously conclude that YouTube only provides scientific results to its two-billion users. Similar criticisms on the limits of manual troubleshooting have been made about other platforms. For instance, while TikTok removed content with the hashtag #StoptheSteal, it was shown to fail to ban #StoptheStealing [145].

Troubleshooting may also fail to detect biases against demographic populations who are underrepresented in the organization developing the algorithms [25], or whose life
may be undervalued by the media of the countries hosting such organizations [190]. When queried about ongoing human rights abuse, wars and genocides in other regions of the world, all platforms offer a large panel of content promoting war, smearing or threatening human rights activists or worse, allowing abusers and banning victims from the platform. The double-standard in content moderation (which is increasingly being documented by works such as [190], [154]), is worsened by the imbalance of fake accounts between victims and abusers, who tend to use state-scale resources to amplify their presence. In light of all these elements, Theorem 2 provides an argument why foundation models would benefit abusers.

B. Portability of fixes

In the past couple of years, issues in already deployed foundation models triggered series of media coverage for the companies that deployed them. In a few notable cases, the observed issue tends to be solved after the coverage, like in 2018 with non-gendered pronouns in Turkish translations [107]. But manual fixes cannot fix an exponentially large subset of contexts that foundation models are asked to address. Moreover, they must be systematically adapted to new models. One more promising path is the use of automated rewriting, as was proposed and implemented in 2020 [89]. However, scaling fixes remains hard.

Besides, problems that were previously fixed can reappear in updated foundation models, as was the case in 2021 with the aforementioned issue of gender-neutrality, this time for the Hungarian language [176]. With increasingly larger models, fixes that worked with models of $d$ parameters cannot to be expected to work on the next generation, of dimension $d' \gg d$. At the very least, today’s fixes are not reliable and/or scalable to make ever foundation models secure.

C. Fine tuning

Fine-tuning foundation models to smaller but more reliable datasets has been shown to improve models’ performances [148], [50], [70]. Several authors [204], [167], [88], [114], [197] have proposed to leverage fine tuning to make foundation models more ethical, e.g., to prevent them from generating hate speech or to be private with respect to the fine-tuning data. This research direction holds interesting promises to reduce the harm of today’s foundation models.

However, it should be stressed that as of today, fine tuning provides little guarantee. In fact, the example of [125] shows how unpredictable foundation models can be, and suggests that algorithms may behave well in most settings and can become major disinformation engines when prompted in unexpected ways. Arguably, thus far, we do not yet have a sufficient understanding and control over the latter in order to confidently deploy large models at scale.

D. Teaching what is sensitive

One seemingly promising approach consists of teaching algorithms what messages are desirable or undesirable to produce. This solution is often known as algorithmic alignment [166]. Essentially, it aims to make algorithms’ objective functions aligned with human preferences; or rather, to align them with the result of a vote between humans [138], [111], [55]. Such an aligned algorithm could learn what kind of messages violate user privacy, label training texts as “sensitive” or “non-sensitive”, and thereby output a cleaned non-sensitive training database. This approach, essentially proposed by [164], might even address the privacy ambiguity discussed in Section IV-D.

However, there is currently no reliable and robust solution to the alignment problem, and a strong theory of robust alignment for foundation models is arguably lacking. In fact, what may be most lacking today is a large-scale secure database of reliable human judgments to solve alignment [81].

VIII. Conclusion

This paper emphasized four characteristics of the data on which foundation models are trained. Namely, they are user-generated, very high-dimensional, fundamentally heterogeneous, and empirically heterogeneous. Unfortunately, the current literature on secure learning, which we reviewed, shows that these features make foundation models inherently vulnerable to privacy and poisoning attacks. Foundation models are bound to be dangerous. Their rushed deployment, especially at scale, poses a serious threat to justice, public health and to national and international security. Given our systematization of knowledge, we make a number of calls to different communities who, we believe, have a key role to play to shape the future of information technologies.

We first call regulators to significantly increase the restrictions on out-of-control high-stake security-sensitive algorithms, especially foundation models. In particular, especially in the context of the information warfare, drastic regulations seem urgently needed to protect our societies from the dangerous rushed deployments of unsafe information technologies. Additionally, significantly more investments are urgently needed to systematically test and audit large-scale algorithms in a drastically more transparent manner, as is done, before large-scale deployment, for drugs and vaccines in the pharmaceutical industry.

We next call scientists for increased levels of rigor when assessing positive claims of safety and privacy, as well as for favoring the research on security when reviewing academic research, inviting scholars to present their work, recruiting researchers, promoting their colleagues and assessing grant proposals. The current academic focus on algorithmic performance is endangering our societies. Drastic research re-prioritization seems urgently needed.

We also call for the financial and manpower investments in the careful construction of open, large and secure datasets with certified quality and non-sensitive information, especially about human preferences. We believe that such datasets are critical to re-prioritize research efficiently, and to actually pave the way towards safe and ethical algorithms.
Finally, we call for a moratorium on the large-scale development, deployment and commercialization of foundation models in both public and private sectors, as well as any high-dimensional learning model that is mostly trained on user-generated, high-dimensional, and heterogeneous data. At the very least, the wide use of such dangerous technologies should be deeply frowned upon, especially when it is done in a rushed manner, as is currently too often the case.

**REFERENCES**

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC conference on computer and communications security*, pages 308–318, 2016.

[2] Mustafa Abdul Salam, Sanas Taha, and Mohamed Ramadan. Covid-19 detection using federated machine learning. *PLoS One*, 16(6):e2052573, 2021.

[3] Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language models. *CoRR*, abs/2101.05783, 2021.

[4] Joachim Allgaier. Science and environmental communication on youtube: strategically distorted communications in online videos on climate change and climate engineering. *Frontiers in Communication*, 4:36, 2019.

[5] Amarnath Amarasingam and Marc-André Argentino. The qanon conspiracy theory: A security threat in the making. *CTC Sentinel*, 13(7):37–44, 2020.

[6] Rohan Anil, Badh Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differentially private BERT. *CoRR*, abs/2108.01624, 2021.

[7] Anonymous. On optimal learning under targeted data poisoning. *Submitted*, 2022.

[8] Anonymous. Reconciling efficiency and byzantine resilience in decentralized machine learning. *Submitted*, 2022.

[9] Robert Audi. The sources of knowledge. *The Oxford handbook of epistemology*, pages 71–94, 2002.

[10] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*, 116(32):15849–15854, 2019.

[11] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent. *CoRR*, abs/2107.07042, 2021.

[12] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel learning. In Jennifer G. Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pages 540–548. PMLR, 2018.

[13] Mikhail Belkin, Alexander Rakhlin, and Alexandre B. Tsybakov. Does data interpolation contradict statistical optimality? In Kamalika Chaudhuri and Masashi Sugiyama, editors, *The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan*, volume 89 of *Proceedings of Machine Learning Research*, pages 1611–1619. PMLR, 2019.

[14] Richard Ernest Bellman. *Dynamic programming*. Princeton University Press, 1957.

[15] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Madeleine Clare Elish, William Isaac, Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell, editors, *The Oxford handbook of conspiracy theory: A security threat in the making*. Oxford University Press, 2017.

[16] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srdic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezný, editors, *Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III*, volume 8190 of Lecture Notes in Computer Science, pages 387–402. Springer, 2013.

[17] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In *Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress, 2012.*

[18] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraeoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant gradient descent. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pages 119–129, 2017.

[19] Franziska Boensisch, Adam Dzidzic, Roci Schuster, Ali Shahin Shamsabadi, Iliia Shumailov, and Nicolas Papernot. When the curious abandon honesty: Federated learning is not private, 2021.

[20] Samantha Bradshaw and Philip N Howard. The global disinformation order: 2019 global inventory of organised social media manipulation. Project on Computational Propaganda, 2019.

[21] Markus Brauer. Un ministe peut-il tomber enceinte? l' impact du générique masculin sur les représentations mentales. *L'Année psychologique*, 108(2):243–272, 2008.

[22] Gavin Brown, Mark Bun, Vitaly Feldman, Adam D. Smith, and Kunal Talwar. When is memorization of irrelevant training data necessary for high-accuracy learning? In Samir Khuller and Virginia Vassilevska Williams, editors, *STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021*, pages 123–132. ACM, 2021.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020*, virtual, 2020.

[24] Mark Bun, Jonathan R. Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of approximate differential privacy. *SIAM J. Comput.*, 47(5):1888–1938, 2018.

[25] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Sorelle A. Friedler and Christo Wilson, editors, *Conference on Fairness, Accountability, and Transparency, FAT 2018, 22-24 February 2018, New York, NY, USA*, volume 81 of *Proceedings of Machine Learning Research*, pages 77–91. PMLR, 2018.

[26] T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for parameter estimation with differential privacy. *arXiv preprint arXiv:1902.04495*, 2019.

[27] George Calhoun. What really happened to jack ma? *Forbes*, 2021.

[28] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel. Extracting training data from large language models. *CoRR*, abs/2012.07805, 2020.

[29] Stephen Cave and Seán ÓHéigéartaigh. An ai race for strategic advantage: rhetoric and risks. In *Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society*, pages 36–40, 2018.

[30] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Tie Liu, and Xiangzhan Yu. Recall and learn: Fine-tuning deep pretrained language models with less forgetting. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020*, pages 7870–7881. Association for Computational Linguistics, 2020.

[31] Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang. Federated learning for privacy-preserving AI. *Commun. ACM*, 63(12):33–36, 2020.

[32] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in nearly-linear time. In Timothy M. Chan, editor, *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2755–2771. SIAM, 2019.

[33] Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Reiner Pope, James Bradbury, Jacob Austin, Michael Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.

[34] Kurtland Chua, Qi Lei, and Jason D. Lee. How fine-tuning allows for meta-effect learning. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 8871–8884, 2021.

[35] Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. Emerging trends: Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abbasbeh Raei, Parker Barnes, Yi Tai, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghrerwatt, Sunjita Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Pippolito, David Luan, Hyenacet Kim, Barret Zoph, Alexander Spirdonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thumalayanannaranayana Pillai, Marie Pellat, Aitor Lewkowycz, Eric Moreira, Revon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xiaohu Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022.

[36] Ilias Diakonikolas and Daniel M. Kane. Recent advances in algorithmic optimal procedures for locally private estimation. Journal of the American Statistical Association, 113(521):182–201, 2018.

[37] Jules Depersin and Guillaume Lecue. Robust subgaussian estimation of a mean vector in nearly linear time. CoRR, abs/1906.03058, 2019.

[38] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography. Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, proceedings, volume 3676 of Lecture Notes in Computer Science, pages 526–544. Springer, 2006.

[39] Laura Edelson and Damon McCoy. Facebook is obstructing our work on disinformation. other researchers could be next. The Guardian, 2021.

[40] El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The limits of differential privacy (and its misuse in data release and sharing). Swiss Journal of Psychology, 78(1-2):51, 2019.

[41] Laura Edelson and Damon McCoy. Facebook is obstructing our work on disinformation. other researchers could be next. The Guardian, 2021.

[42] Ilias Diakonikolas and Daniel M. Kane. Recent advances in algorithmic optimal procedures for locally private estimation. Journal of the American Statistical Association, 113(521):182–201, 2018.

[43] Jules Depersin and Guillaume Lecue. Robust subgaussian estimation of a mean vector in nearly linear time. CoRR, abs/1906.03058, 2019.

[44] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with Moreau envelopes. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[45] Ilias Diakonikolas and Daniel M. Kane. Recent advances in algorithmic optimal procedures for locally private estimation. Journal of the American Statistical Association, 113(521):182–201, 2018.

[46] Clare Duffy and CNN Business. More than 80 fact-checking organizations call out youtube’s ‘insufficient’ response to misinformation. CNN, 2022.

[47] Geoffrey A Fowler. Facebook has shut down 5.4 billion accounts. Wall Street Journal, 2021.

[48] Geoffrey A Fowler. Facebook has shut down 5.4 billion accounts. Wall Street Journal, 2021.

[49] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[50] Geoffrey A Fowler. Facebook has shut down 5.4 billion accounts. Wall Street Journal, 2021.

[51] El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The limits of differential privacy (and its misuse in data release and sharing). Swiss Journal of Psychology, 78(1-2):51, 2019.

[52] Brian Fung and Ahiza Garcia. Facebook is obstructing our work on disinformation. other researchers could be next. The Guardian, 2021.

[53] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[54] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[55] Sadegh Farhadikhani, Rachid Guerraoui, Lé Nguyên Hoang, and Oscar Vilela. An equivalence between data poisoning and byzantine gradient attacks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR, 2022.

[56] Sadegh Farhadikhani, Rachid Guerraoui, Lé Nguyên Hoang, and Oscar Vilela. An equivalence between data poisoning and byzantine gradient attacks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR, 2022.

[57] Francis Jeff Dean. Introducing pathways: A next-generation ai architecture. Google Blog, 2021.

[58] Sadegh Farhadikhani, Rachid Guerraoui, Lé Nguyên Hoang, and Oscar Vilela. An equivalence between data poisoning and byzantine gradient attacks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR, 2022.

[59] Sadegh Farhadikhani, Rachid Guerraoui, Lé Nguyên Hoang, and Oscar Vilela. An equivalence between data poisoning and byzantine gradient attacks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR, 2022.

[60] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[61] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[62] Marcus CG Friedrich and Elke Heise. Does the use of gender-fair spheres. In Maithra Raghu, Martin Wattenberg, and Ian J. Goodfellow, editors, Adversarial Learning Research, volume 162 of Proceedings of Machine Learning Research, pages 6248–6333. PMLR, 2022.

[63] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[64] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[65] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.

[66] Philippa Foot. The problem of abortion and the doctrine of the double effect. Oxford review, 5, 1967.
