On the Jaśkowski Models for Intuitionistic Propositional Logic

R.D. Arthan

September 19, 2018

Abstract

In 1936, Stanislaw Jaśkowski [1] gave a construction of an interesting sequence J_0, J_1, \ldots of what he called “matrices”, which we would today call “finite Heyting Algebras”. He then gave a very brief sketch of a proof that if a propositional formula holds in every J_i then it is provable in intuitionistic propositional logic (IPL). The sketch just describes a certain normal form for propositional formulas and gives a very terse outline of an inductive argument showing that an unprovable formula in the normal form can be refuted in one of the J_i. Unfortunately, it is far from clear how to recover a complete proof from this sketch.

In the early 1950s, Gene F. Rose [4] gave a detailed proof of Jaśkowski’s result, still using the notion of matrix rather than Heyting algebra, based on a normal form that is more restrictive than the one that Jaśkowski proposed. However, Rose’s paper refers to his thesis [3] for additional details, particularly concerning the normal form.

This note gives a proof of Jaśkowski’s result using modern terminology and a normal form more like Jaśkowski’s. We also prove a semantic property of the normal form enabling us to give an alternative proof of completeness of IPL for the Heyting algebra semantics. We outline a practical decision procedure for IPL based on our proofs and illustrate it in action on some simple examples.

Let $H = (H, f, t, \sqcap, \sqcup, \rightarrow)$ be a Heyting algebra. We will define $\Gamma(H)$ to be an extension of H as a $(f, t, \sqcap, \sqcup, \rightarrow)$-algebra that adds a new co-atom (i.e., a new element \ast such that $x < \ast < t$ for $x \in H \setminus \{t\}$) and preserves as many joins as possible. To do this, we choose some object $\ast = \ast_H$ that is not an element of H and let $\Gamma(H) = (H \cup \{\ast\}, f, t, \sqcap, \sqcup, \rightarrow)$, where the operations \sqcap, \sqcup and \rightarrow are derived from those of H as shown in the operation tables below, in which x and y range over $H \setminus \{t\}$ and where $\alpha : H \rightarrow (H \setminus \{t\}) \cup \{\ast\}$ satisfies $\alpha(x) = x$ for $x \neq t$ and $\alpha(t) = \ast$.

\[
\begin{array}{cccc|cccc|cccc}
\sqcap & y & \ast & t & \sqcup & y & \ast & t & \rightarrow & y & \ast & t \\
x & x \sqcap y & x & x & x & \alpha(x \sqcup y) & \ast & t & x & x \rightarrow y & t & t \\
\ast & y & \ast & \ast & \ast & \ast & \ast & t & \ast & y & t & t \\
t & y & \ast & t & t & t & t & t & t & y & \ast & t \\
\end{array}
\]
Let \mathbb{B} be the two-element Heyting algebra and, as usual, let us write H^i for the i-fold power of a Heyting algebra H. Then define a sequence J_0, J_1, \ldots of finite Heyting algebras as follows:

$$J_0 = \mathbb{B}$$

$$J_{k+1} = \Gamma(J_k^{k+1})$$

We take the language \mathcal{L} of intuitionistic propositional calculus, IPL, to be constructed from a set $\mathcal{V} = \{P_1, P_2, \ldots\}$ of variables, the constants \perp, \top, and the binary connectives \land, \lor and \Rightarrow. We do not take negation as primitive: $\neg A$ is an abbreviation for $A \Rightarrow \perp$. The metavariables A, B, \ldots, M (possibly with subscripts) range over formulas. E and F are reserved for formulas that are either variables or \perp. P, Q, \ldots, Z range over variables. We assume known one of the many ways of defining the logic of IPL and write $\text{IPL} \vdash A$, if A is provable in IPL. IPL has an algebraic semantics in which, given a Heyting algebra H and an interpretation $I : \mathcal{V} \rightarrow H$, we extend I to a mapping $v_I : \mathcal{L} \rightarrow H$ by interpreting \perp, \top, \land, \lor and \Rightarrow as f, t, \sqcap, \sqcup and \rightarrow respectively. As usual we write $I \models A$ if $v_I(A) = t$, $H \models A$ if $I \models A$ for every interpretation $I : \mathcal{V} \rightarrow H$ and $\models A$ if $H \models A$ for every Heyting algebra H. We assume known the fact that IPL is sound with respect to this semantics in the sense that, if $\text{IPL} \vdash A$, then $\models A$. The converse statement, i.e., the completeness of IPL with respect to the semantics is well-known, but we do not use it: in fact we will give an alternative to the usual proofs.

We write $A \iff B$ for $(A \Rightarrow B) \land (B \Rightarrow A)$ and $A[B/X]$ for the result of substituting B for each occurrence of X in A. We have the following substitution lemma:

Lemma 1 (substitution) For any formulas A, B and C and any variable X we have:

(i) if $\text{IPL} \vdash C$, then $\text{IPL} \vdash C[A/X]$;

(ii) if $\text{IPL} \vdash A \iff B$, then $\text{IPL} \vdash C[A/X] \iff C[B/X]$;

Proof: (i) is proved by induction on a proof of C. (ii) is proved by induction on the structure of C. □

We say a formula A is **reduced** if \top does not appear in A as the operand of any connective and \perp does not appear in A as the operand of any connective other than as the right-hand operand of \Rightarrow. Thus the only reduced formula containing \top is \top itself.

Lemma 2 Any formula is equivalent to a reduced formula.

Proof: This follows by repeated use of the substitution lemma and the provable equivalences $\top \land A \iff A$, $\perp \land A \iff \perp$ etc. □

We define a formula to be **basic** if it is reduced and is either a variable or has one of the forms $P \Rightarrow A$ or $A \Rightarrow P$ where P is a variable and A contains at
most one connective. Thus a basic formula has one of the following forms:

\[
\begin{align*}
P & \Rightarrow Q \\
\neg P & \Rightarrow \neg Q \\
P &
\Rightarrow \neg Q
\end{align*}
\]

Note that if \(A \) is a basic formula of a form other than \(P \), \((P \Rightarrow Q) \Rightarrow R \) or \(\neg P \Rightarrow Q \), then \(V_I(A) = t \) in any Heyting algebra under the interpretation \(I \) that maps every variable to \(t \). Our convention for the metavariables \(E \) and \(F \) allows us to write, for example, \((P \Rightarrow E) \Rightarrow R \) as a metanotation for the forms \((P \Rightarrow Q) \Rightarrow R \) and \(\neg P \Rightarrow R \).

We say a formula is a **basic context** if it is reduced and is a conjunction of one or more pairwise distinct basic formulas. We say a formula is regular if it is an implication \(K \Rightarrow F \) where \(K \) is a basic context (and following our convention \(F \) is a variable or \(\bot \)).

We say \(A \) and \(B \) are equiprovable and write \(A \vdash B \) if \(\text{IPL} \vdash A \) iff \(\text{IPL} \vdash B \).

Lemma 3 Every formula \(A \) is equiprovable with a regular formula \(M \Rightarrow Z \) such that if \(H \) is any Heyting algebra and \(I \) is an interpretation in \(H \) with \(V_I(M) = t \), then \(V_I(A) \leq V_I(Z) \).

Proof: By Lemma 2, we may assume \(A \) is reduced. If \(A \) is \(\top \), let \(Z \) be any variable and let \(M \equiv Z \), then \(A \) and \(M \Rightarrow Z \) are both provable and hence they are equiprovable. If \(A \) is \(\bot \), take \(M \) and \(Z \) to be distinct variables, then neither \(A \) nor \(M \Rightarrow Z \) is provable, and hence they are equiprovable. Otherwise, choose some variable \(Z \) that does not occur in \(A \). Then it is easy to see that \(A \vdash (A \Rightarrow Z) \Rightarrow Z \) (for the right-to-left direction, use the substitution lemma to substitute \(A \) for \(Z \)). Our plan is to replace \(K \equiv A \Rightarrow Z \) by a basic context by “unnesting” all its non-atomic subformulas. Assume \(K \) contains \(k \) non-atomic subformulas. Starting with \(K \equiv A_1 \equiv B_1 \circ_1 C_1 \), enumerate the \(k \) non-atomic sub-formulas, \(A_1 \equiv B_1 \circ_1 C_1, \ldots, A_k \equiv B_k \circ_k C_k \). Choose fresh variables \(P_i \), \(i = 1, \ldots, k \). Define atomic formulas, \(G_i, H_i \), for \(i = 1, \ldots, k \) as follows: \(G_i \) is \(B_i \) if \(B_i \) is atomic and is \(P_j \) if \(B_i \) is the \(j \)-th non-atomic subformula; \(H_i \) is \(C_i \) if \(C_i \) is atomic and is \(P_j \) if \(C_i \) is the \(j \)-th non-atomic subformula. Now define formulas \(L \) and \(M \) as follows:

\[
L \equiv \bigwedge_{i=1}^{k} (P_i \iff (G_i \circ_i H_i))
\]

\[
M \equiv P_1 \land L
\]

Recalling that \(B \iff C \) is just shorthand for \((B \Rightarrow C) \land (C \Rightarrow B) \), and using the fact that \(A \) and hence \(K \) are reduced, we see that \(M \) is a basic context, so \(M \Rightarrow Z \) is regular.

We must show that \(K \Rightarrow Z \vdash M \Rightarrow Z \). To see this, first assume \(\text{IPL} \vdash K \Rightarrow Z \). By induction on the size of the \(A_i \), we have that \(\text{IPL} \vdash L \Rightarrow (P_i \iff A_i) \),
Lemma 4 If B is a basic formula that is not of the form P or $P \Rightarrow Q \land R$ and P occurs in B, then $\text{IPL} \vdash P \land B \iff P \land C$ where C has fewer connective occurrences than B and is either a basic formula, an atom or a basic context comprising a conjunction of two variables.

Proof: Routine using the fact that $\text{IPL} \vdash P \land B \Rightarrow P \land B[\top/P]$ (which may be proved for arbitrary B by induction on the structure of B).

Lemma 5 If $\text{IPL} \vdash K \land A \land (B \Rightarrow C) \Rightarrow B$, then

$\text{IPL} \vdash ((K \land ((A \Rightarrow B) \Rightarrow C)) \Rightarrow D) \iff (K \land C \Rightarrow D)$.

Proof: \Rightarrow: easy using $\text{IPL} \vdash C \Rightarrow ((A \Rightarrow B) \Rightarrow C)$.

\Leftarrow: the following gives the highlights of the natural deduction proof.

1. $K \land A \land (B \Rightarrow C) \Rightarrow B$ [Given] (1)
2. $K \land C \Rightarrow D$ [Assume] (2)
3. $K \land (B \Rightarrow C) \Rightarrow A \Rightarrow B$ [By (1)] (3)
4. $K \land ((A \Rightarrow B) \Rightarrow C) \Rightarrow A \Rightarrow B$ [By (3)] (4)
5. $K \land ((A \Rightarrow B) \Rightarrow C) \Rightarrow C$ [By (2)] (5)
6. $K \land ((A \Rightarrow B) \Rightarrow C) \Rightarrow D$ [By (5) and (2)] (6)
7. $(K \land C \Rightarrow D) \Rightarrow ((K \land ((A \Rightarrow B) \Rightarrow C)) \Rightarrow D)$ [By (6), discharge (2)] (7)

Here in step (2) we use $\text{IPL} \vdash ((A \Rightarrow B) \Rightarrow C) \Rightarrow (B \Rightarrow C)$. ■

Lemma 6 Let B be a basic formula that is not a variable and let I be an interpretation in a non-trivial Heyting algebra H such that $V_I(B) = t$. Let $\alpha : H \rightarrow (H \setminus \{\top\}) \cup \{\ast_H\}$ be as in the definition of $\Gamma(H)$. Define an interpretation J in $\Gamma(H)$ by $J = \alpha \circ I$.
(i) If \(B \) does not have the form \((P \Rightarrow E) \Rightarrow R\) then \(V_I(B) = t \).
(ii) If \(B \) has the form \((P \Rightarrow E) \Rightarrow R\) and if in addition \(V_I(P) = V_I(E \Rightarrow R) = t \) while \(V_I(E) \neq t \), then also \(V_I(B) = t \).

Proof: (i): This is easily checked for the case \(P \Rightarrow E \) and for the cases \(P \circ Q \Rightarrow R \) and \(P \Rightarrow Q \circ R \) when \(\circ \in \{\wedge, \vee\} \). In the remaining case \(B \equiv P \Rightarrow Q \Rightarrow E \). As \(B \) is equivalent to \(P \wedge Q \Rightarrow E \), we have already covered the case when \(E \) is a variable, while if \(E \) is \(\perp \), \(V_I(B) = \alpha(p) \wedge \alpha(q) \Rightarrow f \), where \(p = I(P) \) and \(q = I(Q) \), but then, by inspection of the operation tables, we have \(\alpha(p) \wedge \alpha(q) = p \wedge q \) unless \(p = q = t \), but as \(H \) is non-trivial and \(V_I(B) = t \), the case \(p = q = t \) cannot arise.

(ii): we have \(V_I(B) = (\alpha(p) \rightarrow \alpha(e)) \rightarrow \alpha(r) \), where \(p = V_I(P), e = V_I(E) \) and \(r = V_I(R) \). By assumption, \(p = t \) and \(e \neq t \), so \(\alpha(p) = * \) and \(\alpha(e) = e \), hence \(\alpha(p) \rightarrow \alpha(e) = * \rightarrow e = e \), so that \(V_I(B) = e \rightarrow \alpha(r) \) which is \(e \rightarrow * = t \), if \(r = t \), and is \(e \rightarrow r \) otherwise, in which case, as we are given that \(V_I(E \Rightarrow R) = t \), we have \(e \rightarrow r = V_I(E \Rightarrow R) = t \).

To state our main theorem, we define an interpretation \(I \) to be a strong refutation of a formula of the form \(K \Rightarrow C \), if \(V_I(K) = t \) while \(V_I(C) \neq t \).

Theorem 7 Let \(A \equiv K \Rightarrow F \) be a regular formula (so that \(F \) is either a variable or \(\perp \)), let \(K \equiv B_1 \wedge \ldots \wedge B_k \) display \(K \) as a disjunction of basic formulas and let \(d = d(A) \) be the number of \(B_i \) of the form \((P \Rightarrow E) \Rightarrow R\). Either \(\text{IPL} \vdash A \) or \(A \) has a strong refutation in \(J_d \).

Proof: The proof is by induction on the sum \(s(A) = c(A) + d(A) + v(A) \), where \(c(A) \) is the number of connective occurrences in \(K \), \(d(A) \) is as in the statement of the theorem and \(v(A) \) is the number of conjuncts of \(K \) comprising a single variable.

Case (i): \(v(A) = d(A) = 0 \): in this case, the interpretation in \(J_0 = \mathbb{B} \) that maps every variable to \(f \) is easily seen to be a strong refutation of \(A \) (which is therefore unprovable, by the soundness of \(\text{IPL} \)).

Case (ii): \(v(A) > 0 \): in this case at least one \(B_i \) is a variable. If all the \(B_i \) are variables and if \(B_i \neq F \) for any \(i \), then \(A \) has strong refutation such that \(I(B_i) = t \), \(i = 1, \ldots, k \) and \(I(F) = f \). Otherwise, rearranging the \(B_i \) if necessary, we may assume that \(K \equiv P \wedge L \) where \(P \) is a variable and \(L \equiv B_2 \wedge \ldots \wedge B_k \).

If \(P \equiv F \), we are done: \(F \wedge L \Rightarrow F \) is provable. If \(P \neq F \) and \(P \) does not occur in \(L \), then it is easy to see that \(A \vdash A' \) where \(A' : \equiv L \Rightarrow F \). As \(s(A') < s(A) \), by induction, if \(\text{IPL} \nvdash L \Rightarrow F \), we can find a strong refutation \(I \) of \(L \Rightarrow F \), but then, because \(P \) does not occur in \(L \Rightarrow F \), by adjusting \(I \) if necessary to map \(P \) to \(t \) we obtain a strong refutation of \(A \). If \(P \) occurs in \(L \), let us rearrange the \(B_i \) again so that \(K \equiv P \wedge B \wedge M \) where \(M \equiv B_3 \ldots, B_k \) and \(P \) occurs in \(B \).

If \(B \) does not have the form \(P \Rightarrow Q \vee R \), then, by Lemma \[5\] we may replace \(P \wedge B \) by an equivalent formula \(P \wedge C \) where \(C \) is either a basic formula, an atom or a basic context comprising a conjunction of two variables and contains fewer connectives then \(B \). If \(C \) is \(\perp \), \(A \) is provable and we are done. Otherwise, we may replace \(A \) by the equivalent regular formula \(A' : \equiv P \wedge C \wedge M \Rightarrow F \)
(or \(P \land M \Rightarrow F \), if \(C \) is \(\top \)) and we are done by induction, since \(s(A') < s(A) \).

If \(B \) has the form \(P \Rightarrow Q \lor R \), then \(\text{IPL} \vdash P \land B \land M \iff K' \lor K'' \) where \(K' \equiv P \land Q \land M \) and \(K'' \equiv P \land R \land M \), and hence \(\text{IPL} \vdash A \Leftrightarrow A' \land A'' \) where \(A' \equiv K' \Rightarrow F \) and \(A'' \equiv K'' \Rightarrow F \). If \(A \) is not provable, then one of \(A' \) and \(A'' \) is not provable, in which case, as \(s(A') < s(A) \) and \(s(A'') < s(A) \), by induction we have a strong refutation in \(J_d \) of either \(A' \) or \(A'' \) and this will also strongly refute \(A \).

Case (iii): \(v(A) = 0 \) and \(d = d(A) > 0 \): Let \(X = \{j_1, \ldots, j_d\} \) be the set of \(i \) such that \(B_i \) has the form \((P \Rightarrow E) \Rightarrow R \). For each \(i \in X \), let \(K_i \equiv B_1 \land \ldots \land B_{i-1} \land B_{i+1} \land \ldots \land B_k \) and let \(P_i, E_i \) and \(R_i \) be such that \(B_i \equiv (P_i \Rightarrow E_i) \Rightarrow R_i \). We now have two subcases depending on the provability of the formulas \(C_i \equiv K_i \land P_i \land (E_i \Rightarrow R_i) \Rightarrow E_i \):

Subcase (iii)(a): for some \(i \in X \), \(\text{IPL} \not\vdash C_i \): By Lemma 3, \(A \), which is equivalent to \(K_i \land ((P_i \Rightarrow E_i) \Rightarrow R_i) \Rightarrow F \), is equivalent to \(A' \equiv K_i \land R_i \Rightarrow F \). As \(s(A') < s(A) \), we are done by induction.

Subcase (iii)(b): for every \(i \in X \), \(\text{IPL} \not\vdash C_i \): By induction, as \(s(C_i) < s(A) \) and \(d(C_i) = d - 1 \), for each \(i \in X \) there is an interpretation \(I_i \) in \(J_{d-1} \) that strongly refutes \(C_i \), i.e., \(K_i \land P_i \land (E_i \Rightarrow R_i) \Rightarrow E_i \). Now define an interpretation \(I \) in \(J_{d-1} \), by \(I(U) = (I_{j_1}(U), \ldots, I_{j_d}(U)) \). Then \(V_I(B_i) = t \) for \(i = 1, \ldots, k \) (because, for \(i \in X \), \(V_I(P_i) = V_I(E_i \Rightarrow R_i) = t \) and \(B_i \equiv (P_i \Rightarrow E_i) \Rightarrow R_i \)). But then applying Lemma 3 to \(I \) gives us an interpretation \(J \) in \(J_d = \Gamma(J_{d-1}) \) that strongly refutes \(A \).

Corollary 8 Let \(A \equiv K \Rightarrow F \) be a regular formula and let \(d \) be the number of conjuncts of \(K \) of the form \((P \Rightarrow E) \Rightarrow R \). Then \(\text{IPL} \vdash K \) iff \(J_d \models K \).

Proof: Immediate from the theorem given the soundness of \(\text{IPL} \) for the Heyting algebra semantics.

Corollary 9 \(\text{IPL} \) is complete for the Heyting algebra semantics.

Proof: Assume \(\models A \). We have to show that \(\text{IPL} \vdash A \). Consider the regular formula \(A' \equiv M \Rightarrow Z \) such that \(A \vdash A' \) whose existence is given by Lemma 3. If \(\text{IPL} \not\vdash A' \), then \(\text{IPL} \not\vdash \text{IPL}' \), whence by the theorem, \(A' \) has a strong refutation in \(J_k \) for some \(k \), i.e., an interpretation \(I \) in \(J_k \) such that \(V_I(M) = t \), but \(V_I(Z) < t \). But then Lemma 3 gives us that \(V_I(A) \leq V_I(Z) < t \), so \(I \not\models A \) contradicting our assumption that \(\models A \).

Corollary 10 \(\text{IPL} \) has the finite model property.

Proof: It is immediate from the theorem and soundness that a refutable regular formula has a refutation in a finite model. Argue as in the proof of Corollary 9 to reduce the general case to the case of regular formulas.

If \(H_0, H_1, \ldots \) is a sequence of Heyting algebras, let us define \(\bigoplus_k H_k \) to be the subalgebra of \(\prod_k H_k \) comprising sequences \((p_0, p_1, \ldots) \) such that for all sufficiently large \(k \), the \(p_k \) are either all \(f \) or all \(t \). Our final corollary shows that there is countably infinite Heyting algebra \(J \), such that for any formula \(\phi \), \(J \models \phi \) iff \(\text{IPL} \vdash \phi \).
Corollary 11 For any formula A, $\text{IPL} \vdash A$ iff $J \models A$, where $J = \bigoplus J_k$.

Proof: The left-to-right direction is just the soundness of IPL for Heyting algebras. For the right-to-left direction argue as in the proof of Corollary 9 and note that a refutation in J_d gives a refutation in the subalgebra of J comprising the sequences (p_0, p_1, \ldots) such that p_i is constant for $i > d$.

The statement of Theorem 7 leads to a decision procedure for IPL that involves a search through all interpretations of a formula in one of the J_d for a certain d. As Rose [4] observes, the size of the J_k grows very rapidly with k, so this decision procedure is impractical. However, the proof of the theorem leads to a much better algorithm: given any formula A, we first apply the algorithm of Lemma 3 if necessary to convert A into an equiprovable regular formula and then follow the case analysis of the proof: if we are in Case (i), A is unprovable and we are done; if we are in Case (ii), the proof shows us how to produce one or two simpler formulas whose conjunction is equivalent to A and we may proceed recursively to decide these formulas; if we are in Case (iii), we can derive the formulas C_i described in the proof and decide them recursively; if any C_i is provable, we are in Subcase (iii)(a) and we may replace A by an equivalent and simpler formula that we can decide recursively; if no C_i is provable, we are in Subcase (iii)(b) and A is unprovable. In the appendix, we show some example calculations using this decision procedure.

The proof of Theorem 7 and in particular its use of Lemma 3 is largely due to Rose [3, 4]. Rose’s analogue of our basic formulas admits only 6 forms: P, $\neg P$, $P \Rightarrow Q$, $P \Rightarrow Q \lor R$, $P \land Q \Rightarrow R$ and $(P \Rightarrow Q) \Rightarrow R$. To prove his analogue of our Lemma 3 involves a lengthy case analysis, whereas our more liberal notion of basic formula admits the simpler and more intuitive proof given here. As far as I know, the observations that the main theorem leads to an alternative proof of the completeness of IPL and that its proof leads to a practical decision procedure for IPL are new.

References

[1] S. Jaśkowski. Recherches sur le système de la logique intuitionistique. In Actes du Congrès International de Philosophie Scientifique 6, pages 58–61. Paris, 1936. http://gallica.bnf.fr/ark:/12148/bpt6k383699 (Also available in an English translation in [2] pp. 259–263).

[2] Storrs McCall, editor. Polish Logic 1920–1939. Oxford University Press, 1967.

[3] Gene F. Rose. Jaśkowski’s Truth-Tables and Realizability. PhD thesis, University of Wisconsin, 1952.

[4] Gene F. Rose. Propositional calculus and realizability. Trans. Am. Math. Soc., 75:1–19, 1953.
Appendix: examples of the decision procedure

Throughout the examples “Case” and “Subcase” refer to the proof of Theorem 7.

We use the following tabular format for regular formulas $A \equiv B_1 \land \ldots B_k \Rightarrow F$ occurring as the goals we are trying to decide:

\[
\begin{array}{c}
B_1, \ldots, B_k \\
F
\end{array}
\]

Example 1: $A \equiv (P \lor Q) \land \lnot Q \Rightarrow P$

Noting that A already has the form $B \Rightarrow Q$, we can skip the first step in the algorithm of Lemma 3 and simply “unnest” B. Listing the subformulas of $(P \lor Q) \land 1 \lnot Q$ as shown by the subscripts, our initial goal is:

\[
\begin{array}{c}
P_1, P_1 \leftrightarrow P_2 \land P_3, P_2 \leftrightarrow P \lor Q, P_3 \leftrightarrow \lnot Q \\
P
\end{array}
\]

We are in Case (ii) and we replace the occurrence of P_1 in $P_1 \leftrightarrow P_2 \land P_3$ by \top and simplify giving:

\[
\begin{array}{c}
P_1, P_2, P_3, P_2 \leftrightarrow P \lor Q, P_3 \leftrightarrow \lnot Q \\
P
\end{array}
\]

We are again in Case (ii), but now P_2 appears in a subformula of the form $P_2 \Rightarrow P \lor Q$ and replacing P_2 by \top in that formula gives us two subgoals:

\[
\begin{array}{c}
P_1, P_2, P_3, P_5 \leftrightarrow \lnot Q \\
P
\end{array}
\]
\[
\begin{array}{c}
P_1, P_2, P_3, Q, P_3 \leftrightarrow \lnot Q \\
P
\end{array}
\]

Both subgoals are in Case (ii). In the first, the succedent of the goal appears in the antecedent while in the second, replacing first P_3 and then Q by \top in $P_3 \leftrightarrow \lnot Q$ and simplifying gives the antecedent \bot. So in both cases, the subgoals and hence our original formula are provable.

Example 2: Peirce’s law: $A \equiv ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$

A is already regular, so we take it as our initial goal:

\[
\begin{array}{c}
(P \Rightarrow Q) \Rightarrow P \\
P
\end{array}
\]

We are in Case (iii) and our next step is to decide the goal:

\[
\begin{array}{c}
P, Q \Rightarrow P \\
Q
\end{array}
\]
This is in Case (ii) and replacing P by \top in $Q \Rightarrow P$ and simplifying leads to

\[
\begin{array}{c}
P \\
Q
\end{array}
\]

This is again in Case (ii) and is refuted by the interpretation $\{P \mapsto t, Q \mapsto f\}$. Following Lemma 8, this lifts to the refutation $\{P \mapsto \ast, Q \mapsto f\}$ of Peirce’s law in $J_1 = \mathbb{B} \cup \{\ast\}$.

Example 3: prelinearity: $A \equiv (P \Rightarrow Q) \lor (Q \Rightarrow P)$

Following the first part of Lemma 9, we replace A by the equiprovable formula $((P \Rightarrow Z) \Rightarrow Z$ and list its subformulas as indicated by the subscripts in $((P \Rightarrow_3 Q) \lor_2 (Q \Rightarrow_4 P) \Rightarrow_1 Z) \Rightarrow Z$. This gives us the following initial goal:

\[
\begin{array}{c}
P_1, P_2 \iff P_3 \lor P_4, P_3 \iff P \Rightarrow Q, P_4 \iff (Q \Rightarrow P)
\end{array}
\]

This is in Case (ii) and replacing P_1 by \top in $P_1 \iff P_2 \Rightarrow Z$ and simplifying we get:

\[
\begin{array}{c}
P_1, P_2 \Rightarrow Z, P_2 \iff P_3 \lor P_4, P_3 \iff P \Rightarrow Q, P_4 \iff (Q \Rightarrow P)
\end{array}
\]

This is now in Case (iii) with $d = 2$. This leads to two subgoals:

C_1:

\[
\begin{array}{c}
P_1, P_2 \Rightarrow Z, P_2 \iff P_3 \lor P_4, P_3 \iff P \Rightarrow Q, P_4 \iff (Q \Rightarrow P), P_1 \Rightarrow Z
\end{array}
\]

C_2:

\[
\begin{array}{c}
P_1, P_2 \Rightarrow Z, P_2 \iff P_3 \lor P_4, P_5 \iff P \Rightarrow Q, P_4 \Rightarrow (Q \Rightarrow P), Q, P \Rightarrow P
\end{array}
\]

Either continuing to follow Theorem 7 or by inspection, we find the following strong refutations of these subgoals in \mathbb{B}.

\[
\begin{align*}
C_1: & \quad ((P, P_1, P_2, P_3, Z) \times \{t\}) \cup (\{Q, P_3\} \times \{f\}) \\
C_2: & \quad ((Q, P_1, P_2, P_3, Z) \times \{t\}) \cup (\{P, P_4\} \times \{f\})
\end{align*}
\]

Combining these we should obtain a refutation $I = \{P \mapsto (t, f), Q \mapsto (f, t)\}$ of A in $\Gamma(\mathbb{B}^2) \subseteq J_2$. And, indeed, in $\Gamma(\mathbb{B}^2)$ we have:

\[
\begin{align*}
(t, f) \lor (f, t) & = (f, t) \lor (t, f) \\
& = \alpha((f, t) \lor_{\mathbb{B}^2} (t, f)) \\
& = \alpha((t, t)) = \ast \neq t.
\end{align*}
\]