解説

希土類永久磁石のための新しい粉体粉末冶金技術

高木 健太*, 平山 悠介, 岡田 周祐, 山口 禧, 尾崎 公洋

(国研) 産業技術総合研究所磁性粉末冶金研究センター, 〒463-8560 名古屋市守山区下志段味字穴ヶ淵2266-98。

Novel Powder Processing Technologies for Production of Rare-earth Permanent Magnets

Kenta TAKAGI*, Yusuke HIRAYAMA, Shusuke OKADA, Wataru YAMAGUCHI and Kimihiro OZAKI

Magnetic Powder Metallurgy Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan.

Received March 29, 2021; Revised May 6, 2021; Accepted May 7, 2021

ABSTRACT

Post-neodymium magnets that possess high heat resistance, coercivity, and \((BH)_{\text{max}}\) are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm\(_2\)Fe\(_{17}\)N\(_3\) and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm\(_2\)Fe\(_{17}\)N\(_3\) anisotropic sintered magnets at elevated temperatures, deterioration of coercivity during sintering, and advances in chemical powder synthesis techniques have been successful in producing Sm\(_2\)Fe\(_{17}\)N\(_3\) fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets.

KEY WORDS

rare-earth permanent magnets, sintering, powder synthesis, coercivity, Sm\(_2\)Fe\(_{17}\)N\(_3\)

1 緒言

現代社会には不可欠となったハイブリッド自動車やエコ家電は、飛躍的な高効率化を実現した埋込磁石型同期モーター（IPMSM）の登場によって生み出された。このモーターの性能は永久磁石の性能に依るところが大きく、次世代モーターに向けては更に高性能な磁石の登場が求められている。加えて、現行のネオジム磁石には常に資源問題が付きまとう。NdFe\(_{14}\)B 磁石の耐熱性を向上させるために必要な添加物である Dy や Tb 元素は地殻存在率が低いうえに産出地の地域偏在性が強いため、価格が国際情勢に影響されやすい。以上のから、現状を超える磁石性能をもち、かつ原料調達の安定化ができるポストNdFe\(_{14}\)B 磁石の開発が望まれている。

Fig.1 は各磁性化合物の永久磁石として潜在力を、飽和磁化 \(J_s\) と異方性磁界 \(H_{K}\) を指標として比較した。飽和磁化と異方位磁界が高い化合物ほど高磁化と飽和磁界をもつ高磁性磁石が期待できる。また、モーター設計には磁石から取り出すことのできる最大エネルギーである \((BH)_{\text{max}}\) が重要なため、その理論価 \((=j_s^2/4\mu_0)\) を Fig.1 の横軸として併用した。

現在までに NdFe\(_{14}\)B 磁石と同等以上の残留磁化および異方位磁界を持つ化合物は Sm\(_2\)Fe\(_{17}\)N\(_3\) や TbCu\(_{17}\) 型希土類遷移金属化合物（例えば (SmZr)(FeCo)\(_{10}\)N）, ThMn\(_{12}\) 型希土類遷移金属化合物（例えば Sm(FeCo)\(_3\)や NdFe\(_{14}\)N）の 3 種類しか見られていない。例えば、Sm\(_2\)Fe\(_{17}\)N\(_3\)は 1990 年に Iriyama や Coey らにより初めて報告された磁性化合物であり、その飽和磁化は NdFe\(_{14}\)B と同等なら、異方位磁界は約 3 倍となる 20.7 MA/m を示す。最近のモーターには大きな保磁力が要求されることから、この巨大異方位磁界は大変魅力的である。また、キュリーテン度は NdFe\(_{14}\)B よりも 160 K 以上も高く、優れた耐熱性も期待できる。一方で、他の 2 種類の補充化合物については Fig.1 から分かるように、さらに高い飽和磁化化を有する。Fig.2 は上記の 3 つの化合物の理論 \((BH)_{\text{max}}\) の温度依存性を文献値から予測した図である。そこで、理論 \((BH)_{\text{max}}\) は \(B_s = 0.8j_s\) と仮定して計算している。図から分
Fig. 1 Comparison of magnetic properties of various magnetic compounds. The rectangle, triangle, and circle symbols represent rare-earth alloys, non-rare-earth alloys, and oxides. The same color (except black) means the same crystal structure. Open symbols represent alloys, non-rare-earth alloys, and oxides. The same color (except black) means the same crystal structure. Open symbols represent a compound for which a single crystal powder has never been obtained [15].

Fig. 2 Comparison of temperature dependencies of (BH)_{max}. The values of Dy-added and hot-deformed Nd_{2}Fe_{14}B sintered magnets are experimental [16]. The (BH)_{max} values of the other materials are theoretical values that are calculated with 0.8 BH_{max}.

It is noteworthy that Sm_{2}Fe_{17}N_{3} is 120°C above what is typically observed. This is because of the high BH_{max} of the material, which is 600°C or higher. Therefore, it is difficult to form a Sm-based compound with a high BH_{max}. On the other hand, Sm_{2}Fe_{17}N_{3} can be heated to 600°C without causing any change in the material. Therefore, it is suitable for use in a high-temperature environment.

2.1 Sintered Sm_{2}Fe_{17}N_{3} and Sm_{2}Fe_{17}N_{3} vs. Sm_{3}Fe_{17}N_{3}

Sm_{2}Fe_{17}N_{3} is a rare-earth compound that has been studied extensively. Although Sm_{2}Fe_{17}N_{3} has a high BH_{max}, it is difficult to form a high-temperature material with this compound. Therefore, it is necessary to use Sm_{3}Fe_{17}N_{3}, which has a high BH_{max} and is stable at high temperatures.
Table 1 Properties of Sm₂Fe₁₇N₃ magnets consolidated by various methods. T_{cons}, H_c, and ρ represent the consolidation temperature, coercivity, and density, respectively.

Consolidation method	T_{cons} (°C)	H_c (kA/m)	ρ (%)	(BH)_{max} (kJ/m³)	Ref.		
Powder bulk sintering	550	700	453	97	88	[17]	
Hot isostatic pressing	450	600	300	90	118	[18]	
Spark plasma sintering	500	≈680	≈310	89	-	[19]	
Current sintering	420	≈850	≈200	85	50	[28]	
Low-oxygen process	420	720	730	85	167	[28]	
Cold compaction processes	77	700	34	77	88	[21]	
Shock/explosion compaction	-	-	400	97	84	[22]	
Aerosol deposition	-	923	1480	77	-	[25]	
Compression shearing	-	860	920	84	-	[26]	
Raw powder	>10μm	Jet-milling	Storage	Molding	Compaction	Sintering	Connected glove-boxes (O₂<0.5ppm)

Fig. 3 Low oxygen powder metallurgy process for Sm₂Fe₁₇N₃ sintered magnets³³.

Table 1 Properties of Sm₂Fe₁₇N₃ magnets consolidated by various methods. T_{cons}, H_c, and ρ represent the consolidation temperature, coercivity, and density, respectively.

- **Ultra high-pressure sintering**: 550°C, 700 kA/m, 453 kA/m, 97%, 88 kJ/m³ (Ref. 17)
- **Hot isostatic pressing**: 450°C, 600 kA/m, 300 kA/m, 90%, 118 kJ/m³ (Ref. 18)
- **Spark plasma sintering**: 500°C, ≈680 kA/m, ≈310 kA/m, 89%, (Ref. 19)
- **Current sintering**: 420°C, ≈850 kA/m, ≈200 kA/m, 85%, 50 kJ/m³ (Ref. 28)
- **Low-oxygen process**: 420°C, 720 kA/m, 730 kA/m, 85%, 167 kJ/m³ (Ref. 28)

Sm₂Fe₁₇N₃ + Fe₂O₃ → Sm₂O₃ + 19Fe + (3N) (1)

湿成形法も試みられた²¹⁻²⁷. これらのうちいくつかの方法では保磁力低下のない固化成形に成功しており、特に圧縮せん断法では Sm₂Fe₁₇N₃パルク磁石としては最高となる228 J/m³の (BH)_{max}を達成した²⁷. しかし、これらの常温成形法は量産性の低さや製品形状制約の問題から、実用技術として用いるのは難しい。

一方で、近年になって焼結による保磁力低下の原因は熱分解ではなく、粉末表面の酸化膜に起因することが見出された²⁸. Sm₂Fe₁₇N₃粉末の表面酸化膜は通常は Sm₂O₃ と Fe₂O₃ から構成され、加熱すると Sm₂Fe₁₇N₃母相との間に次のような酸化還元反応が生じる:

```
Sm₂Fe₁₇N₃ + Fe₂O₃ → Sm₂O₃ + 19Fe + (3N)  (1)
```

この反応により、粉末表面に酸化膜が形成され、保磁力低下を防止する効果がある。したがって、高品質なSm₂Fe₁₇N₃磁石の製造には、粉末の酸化を防ぐことが重要である。

Fig. 3 Low oxygen powder metallurgy process for Sm₂Fe₁₇N₃ sintered magnets³³.

【粉末および粉末冶金】第69巻 Supplement
希土類永久磁石のための新しい粉体粉末冶金技術

Fig. 4 Demagnetization curves of powder and sintered magnets produced by the low-oxygen powder metallurgy process

酸化を抑制した粉末を焼結することにより、磁石低下のないSm$_2$Fe$_{17}$N$_3$焼結磁石が実現できることが実証された。また、焼結時の磁石低下問題は類似組成である(SmZr)(FeCo)$_3$N$_3$にも起こることが予測されることから、低酸素粉末冶金技術はこの化合物にも有効と考えられる。

一方で、最近のSm$_2$Fe$_3$N$_3$焼結磁石の開発、いくつかの新たな課題も明らかにした。先述したように、これで多く多々の低温成形方法が試みられたが、未だ高密度成形には至っていない。Table 1 に示したように、焼結法により得られたSm$_2$Fe$_3$N$_3$磁石の相対密度は最大でも91％に留まっている。また、表面酸化の抑制により大幅な磁石低下は回避できたものの、Fig. 4 に示すように焼結密度の上昇に伴う磁石低下は見られる。これは微細化に伴う粒子間の磁気結合によるものと考えられる、さらなる調査が必要である。加えて、最も検討すべき課題はSm$_2$Fe$_3$N$_3$の磁石の磁石の磁石を引き出すことである。低酸素粉末冶金技術は磁石低下を回避できるものの、その磁石密度は1 MA/mであり、20.7 MA/mの異方性磁界に比べるとかっ低く、従って、磁石の潜電力を引き出すための開発が必要であり、次節以下においてその開発の現状について紹介する。

2.2 保磁力向上のための焼結添加物の開発

Nd$_3$Fe$_5$B 磁石においては、結晶粒界に特定の他元素を添加すると保磁力が大きく改善することが知られており、Sm$_2$Fe$_3$N$_3$においても同様な元素が得られる可能性がある。これまでに、Nd$_2$Fe$_{14}$Bに対して様々な元素を添加して保磁力を向上させる試みが行われてきた。とりわけ、Zn 添加が大幅に保磁力を向上することが多くの研究で示されており(39)。中でもKuhlらはZn添加によって3.5 MA/mの巨大保磁力を得ている(40)。しかし、Zn添加はSm$_2$Fe$_3$N$_3$粒子の飽和磁化を大幅に低下させるため、結果的に(BH)$_{max}$の改善には至っていない。従って、Znに代わる新たな添加元素を探索する必要がある。これまでにも、Zn以外の元素としてInやSn、AlGaなどが調べられてきたが、保磁力向上に効果のある元素は見つかっていない(41)。しかし、これまでの研究では、熱分解温度の制約のために調査は低融点金属を中心に行われてお

り、他の元素は殆ど調べられていない。保磁力を向上させるためだけに添加剤の効果を調査する場合は、触媒の高い材料有機合成を採用する必要がある(37,38)。また、これまでの研究では表面酸化膜を持つSm$_2$Fe$_3$N$_3$粉末が使用されていたことから、Sm$_2$Fe$_3$N$_3$と添加元素の直接接続による効果が調査されたかは疑わしい。つまり、前述の低酸素粉末冶金技術を活用すれば、酸化膜のない粒子表面や粒界に直接元素を添加できる。また、このアプローチは最小限の添加で最大の効果を達成する可能性もある。

Matsuura らは、磁性粉末の表面に金属膜を形成するために、プラズマ蒸着を利用した低酸素粉末焼結技術を開発した(35)。彼らは、この技術を用いてZnボンド磁石を作製し、残留磁気の低下を抑えながら保磁力の向上に成功しており、結果的に200 kJ/m2の優れた(BH)$_{max}$を持つ焼結磁石を作製した(35)。

一方で、この技術を拡張しながらスパッタリングする技術を報告している(41)。この技術は粉末を拡散しながらスパッタリングすることにより、粒子表面にナノオーダーの被膜を均一に形成することができる。また、スパッタリング装置は格ロープボックスと接続されているために、Sm$_2$Fe$_3$N$_3$粉末を大気暴露することなく、酸化膜を介さずに被覆処理が可能である。実際にFig. 5 に関与する TEM 写真からも分かるように、Sm$_2$Fe$_3$N$_3$粒子に金属層が均一に被覆されている。また、XPS 表面分析により、酸化物がなく単相の表面被膜であることも実証されている。これまでもに、磁性粉末に蒸着による金属成膜の技術は報告されているが(37,38)。本技術はこれらに比べ材料の制約が少なく、均一成膜が可能である。

Fig. 5 は20種類の非磁性金属元素を、酸化膜のないSm$_2$Fe$_3$N$_3$粉末表面に被覆し、熱処理したときの保磁力変化をまとめたものである(42)。現在のところ、AlやTi、Mnといった元素が保磁力を向上させることが見出されている。興味深いことに、これらの元素は、Nd$_2$Fe$_3$Bで有効とするCuやDy、Gaなどの元素と一致しており、この技術を用いた更なる研究により、保磁力向上に効果のある新たな元素や合金が見つかることが期待される。また、本技術はSm$_2$Fe$_3$N$_3$以外の希土類磁石の添加物を探索する手法としても有効と考えられる。

3 高保磁力希土類磁石のための粉末作製技術

3.1 化学的合成方法

先述した通り、ネオジム磁石は高温に加熱を伴う液相焼結が可能なため、焼結磁石の保磁力は粉末から大幅に上昇する。しかし、Sm$_2$Fe$_3$N$_3$などの熱分解性化合物や安定相化合物などは液相焼結の適用が難しいため、Table 1 に示したように、焼結磁石の保磁力は原料粉末の保磁力に依存する。従って、高い保磁力を保持する粉末を準備することが重要となる。

異方性焼結粒子を作製するためには、各粒子内の結晶方位が一方向に揃っている。つまり単結晶粒子からなる粉末が必要である。従って、異方向焼結磁石のための粉末は、一般的
Fig. 5 Summary of the effects of coating 20 non-magnetic metals on the coercivity of Sm$_2$Fe$_{17}$N$_3$ powders\(^{36}\). All coated powders were heat-treated at 500°C. The inset shows a cross-sectional TEM image of a Zn-coated powder\(^{36}\).

Fig. 6 Dependencies of coercivity on particle size for Sm$_2$Fe$_{17}$N$_3$ fine powders prepared by the mechanical pulverization and reduction diffusion methods\(^{11,41-43}\).
とを実証しており、これは最新のネオジム磁石と比べても高い値である。また、最近ではKClを還元剤であるCaのフラクションとして用い、かつ反応場における反応密度を減らすことにより粒成長を抑圧し、5.7 MA/mの巨大保磁力をを持つSmCo粉末の報告もある。

上記で概説したように、還元拡散法は年々発展し続けており、さらに大きな保磁力を持つ希土類磁石粉末の創製が期待される。ただし、現在の還元拡散法は水洗工程を含むため、粉末の表面酸化を回避することは困難である。従って、還元拡散法による粉末を焼結磁石の原料粉末として利用するためには、表面酸化を抑制する洗浄工程を開発する必要がある。

3.2 物理的合成手法

前述の通り、粒径微細化は磁材料の保磁力向上に非常に効果的である。また、粒径微細化は焼結を促進する効果もある。焼結微細化の難しいSmFe₅N₃や準安定系磁石に有効に働くと期待される。従って、ナノサイズの希土類磁石粉末を作製できれば、保磁力と粒微細化の問題を同時に解決できる可能性が高い。また、希土類磁石のナノ粉末は、究極の磁石をさせるナノコンボジット磁石の原料粉末としての適用も期待できる。

希土類磁石のナノ粉末を作製する試みはいくつか報告されている。Hadjipanayisらのグループは、表面活性剤を使ったポールミル粉砕を用いて10nm以下のSmCo₅やNd₂Fe₁₄Bのナノ粉末を作製し、それぞれ1.48MA/mと0.3 MA/mの保磁力を得ている(43,44)。彼らは物理合成法であるクラスター成膜法を用いて数nmのSm-Coナノ粉末の合成に成功しているが、非常に小さい保磁力しか得られていない。

最近、Hirayamaらは熱プラズマ法による希土類磁石材料のナノ粒子合成を試みている。熱プラズマ法では、Fig.9に示すように、高周波電力で励起させたプラズマを10000Kに達することから、原料粉をプラズマ中で送り、蒸発させる(45,46)。次に、下流気流によってプラズマ炎の外に出た金属蒸気は核発生・凝集過程を経て最終的にナノ粒子となった。ここで、プラズマ炎を出したナノ融滴は10⁴K/secの超急冷下で凝固する。この冷却速度はメルトスピニングのそれ（10⁴-10⁵K/sec）に近いため、準安定相のナノ粒子形成も期待できる。ここで、易酸化性である希土類合金のナノ粒子を作製するには、わずかな酸素にも暴露させることなく合成および回収することが肝要である。そこで、熱プラズマ装置の一部をグローブボックスで覆い、極低酸素雰囲気とすることで、易酸化金属のナノ粒子の酸化防止を考慮すること可能であることも実証されている(47)。

Fig.10は熱プラズマ法で合成した希土類磁石ナノ粒子の一例であり、平均粒径70nmのSm-Co合金ナノ粒子である。他の組織、Y-FeやNd-Fe、Sm-Co合金のナノ粒子合成に成功している。特に、Nd-FeにおいてはTbCu₅型合金の単結晶ナノ粒子の合成にも成功しており、これまで困難であった準安定相合金の単結晶粉末の作製も期待できる。

4 結 言

NdFe₅B磁石の代替として、SmFe₅N₃やTbCu₅型化合物などの準安定相材料が注目されているが、これらの材料の実用的な磁石を実現するためには、焼結の難しさや低保磁力など
のプロセス上の問題を克服する必要がある。これらの問題を克服するために、様々な粉末作製および粉末冶金の手法が試みられてきた。Sm$_2$Fe$_{17}$N$_3$の焼結磁石開発は長きに渡り熱分解と焼結力低下に傾きが見られたが、最近になって焼結力低下を克服するための低炭素粉末冶金アプローチが発見され、Sm$_2$Fe$_{17}$N$_3$焼結磁石の実現可能性が示唆された。しかし、高性能磁石の達成に向けては、高保磁力の原料粉末も必要である。そのため、新たな粉末作製技術として還元拡散や熱プラズマプロセスなどの化学的および物理的合成法が開発されており、その結果は従来の機械的粉砕手段を上回っている。特に、還元拡散プロセスでは、2.5 MA/mという巨大保磁力を示すSm$_2$Fe$_{17}$N$_3$粉末を作製できるに至っている。

このように、新しい粉末プロセスの開発により、これまで困難であった高保磁力Sm$_2$Fe$_{17}$N$_3$粉末とバルク磁石が作製されている。さらに、これらの新しいプロセスは、準安定TbCu型磁石への適用も期待できる。一方で、焼結材構造が十分であるなどの問題は未だ解決されていないが、新たな粉末プロセスへの挑戦により、高性能希土類永久磁石への新たな道が開かれることが期待できる。

文献
1) Y. Seo, S. Morimoto: Resour. Policy, 39 (2014) 15-20.
2) Y. Watanabe: Shigen Chishitsu, 60 (2010) 103-122. (in Japanese).
3) T. Iriyama, K. Kobayashi, N. Imaoka, T. Fukuda, H. Kato, Y. Nakagawa: IEEE Trans. Magn., 28 (1992) 2326-2331.
4) J. M. D. Coey, H. Sun: J. Magn. Magn. Mater., 87 (1990) 251-254.
5) S. Sakurada, A. Tsutai, T. Hirai, Y. Yanagida, M. Sahashi, S. Abe, T. Kaneko: J. Appl. Phys., 79 (1996) 4611-4613.
6) K. Ohashi, Y. Tawara, R. Osugi, M. Shimao: J. Appl. Phys., 64 (1988) 5714-5716.
7) Y. Hirayama, Y. K. Takahashi, S. Hirosawa, K. Hono: Scripta Mater., 138 (2017) 62-65.
8) Y. Hirayama, Y. K. Takahashi, S. Hirosawa, K. Hono: Scripta Mater., 95 (2015) 70-72.
9) K. Schnitzke, L. Schultz, J. Wecker, M. Katter: Appl. Phys. Lett., 57 (1990) 2853-2855.
10) K. Takagi, H. Nakayama, K. Ozaki, K. Kobayashi: J. Magn. Magn. Mater., 324 (2012) 1337-1341.
11) M. Kime, T. Tomimoto, S. Yamamoto, K. Ihara, H. Yoshihara, S. Tada, M. Sumimoto: J. Jpn Inst. Met. Mater., 76 (2012) 107-111 (in Japanese).
12) M. Katter, J. Wecker, L. Schultz: Appl. Phys. Lett., 70 (1991) 3188-3196.
13) W. Liu, Q. Wang, X. K. Sun, X. G. Zhao, T. Zhao, Z. D. Zhang, Y. C. Chuang: J. Magn. Magn. Mater., 131 (1994) 413-416.
14) K. Takagi, M. Jinno, K. Ozaki: J. Magn. Magn. Mater., 454 (2018) 170-175.
15) E. W. Singleton, J. Strzeszewski G. C. Hadjipanayis, D. J. Sellmyer: J. Appl. Phys., 64 (1988) 5717.
39) W. Yamaguchi, K. Takagi: J. Magn. Magn. Mater., 516 (2020) 167327.
40) R. Ramesh, G. Thomas, M. Ma: J. Appl. Phys., 64 (1988) 6416-6423.
41) Y. Hiyama, A. K. Panda, T. Okubo, K. Hono: Scripta Mater., 120 (2016) 27-30.
42) S. Okada, K. Suzuki, E. Node, K. Takagi, K. Ozaki, Y. Enokido: J. Alloy Compd., 695 (2017) 1617-1623.
43) S. Okada, E. Node, K. Takagi, Y. Fujiwara, Y. Enokido: J. Alloy Compd., 804 (2019) 237-242.
44) Press release of National Institute of Advanced Industrial Science and Technology: https://www.aist.go.jp/aist_j/press_release/pr2019/pr20191021/pr20191021.html
45) H. Sepehri-Amin, L. Liu, T. Okubo, M. Yano, T. Shoji, A. Kato, T. Schreff, K. Hono: Acta Mater., 99 (2015) 297-306.
46) Y. Dong, T. Zhang, Z. Xia, H. Wang, Z. Ma, X. Liu, W. Xia, J. M. D. Coey: 11 (2019) 16962.
47) B. Balamurugan, D. J. Sellmyer, G. C. Hadjipanayis, R. Skomski: Scripta Mater., 67 (2012) 542-547.
48) N. G. Akdogan, G. C. Hadjipanayis, D. J. Sellmyer: J. Appl. Phys., 105 (2009) 07A710.
49) N. G. Akdogan, G. C. Hadjipanayis, D. J. Sellmyer: Nanotechnology, 21 (2010) 1-5.
50) S. Stoyanov, V. Skumryev, Y. Zhang, Y. Huang, G. Hadjipanayis, J. Nogues: J. Appl. Phys., 93 (2003) 7592-7594.
51) M. Kambara, A. Kitayama, K. Homma, T. Hidetaka, M. Kaga, K.-Y. Sheem, S. Ishida, T. Hono: J. Appl. Phys., 115 (2014) 143302.
52) A. Pant, T. Seth, V. B. Raut, V. P. Gajbhiye, S. P. Newale, A. K. Nandi, H. Prasanth, R. K. Pandey: Cent. Eur. J. Energ. Mater., 13 (2016) 53e71.
53) V. I. Tkatch, A. I. Limanovskii, S. N. Denisenko, S. G. Rassolov: Mater. Sci. Eng. A, 323 (2002) 91-96.
54) Y. Hiyama, K. Suzuki, W. Yamaguchi, K. Takagi: J. Alloy Compd., 768 (2018) 608-612.
55) Y. Hiyama, M. Sigeta, Z. Liu, N. Yodoshi, A. Hosokawa, K. Takagi: J. Alloy Compd., (2021) (in press)
56) Y. Hiyama, T. Miyake, K. Hono: JOM, 67 (2015) 1344-1349.
57) Web site of Hitachi Metals Ltd.: http://www.hitachi-metals.co.jp/products/auto/el/pdf/nmx.pdf
58) H. Yamamoto, et al., Technical Report: Properties, stability and applications of high-performance permanent magnets. Tokyo: The Institute of Electrical Engineers of Japan, 1999. Japanese.
59) K. Takagi: KINZOKU, 90 (2020) 889-897. (in Japanese)