Research Paper
A Comparative Study of Plantar Arch Index, Weight Distribution, Equilibrium Performance, and Selected Musculoskeletal Disorders in Active and Non-active Adolescences

Ali Fattahi1, *, Haniyeh Zehtab Asghari1, Zahra Koreili1

1. Departement of Sports Biomechanics, Faculty of Sports Sciences and Physical Education, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Abstract

Objective: Musculoskeletal disorders cause the loss of beauty and decrease the mechanical performance of individuals. The functions of the steps on the floor are the attraction and distribution of forces and the provision of the body's stability. The study aimed to compare arch index, weight distribution, balance, and selected musculoskeletal disorders in active and non-active adolescents.

Methods: The sample consisted of 50 teenagers (28 active and 22 no actives) who were randomly targeted. The subjects demographics included the non-active adolescence with Mean±SD of Age: 12.46±1.10, Mean±SD of Height: 157.69±8.48 cm, and Mean±SD of Weight: 46.65±8.45; the active group with Mean±SD of Age: 12.26±1.13, Mean±SD of Height: 153.91±10.09, and with Mean±SD of Weight: 44.52±7.76. For statistical analysis of data, K-S test for normal distribution of data and used t-test to compare the two groups of active and non-active and U Mann–Whitney at the significance level of 0.05.

Results: The descriptive findings indicate that the mean musculoskeletal system in adolescences is more active than active. The independent t-test for comparing the balance performance among the active and non-active groups showed a significant correlation (P=0.04). Still, there was no significant difference in the foot index parameters and weight distribution.

Conclusion: Musculoskeletal diseases play a critical role in the mechanical function of individuals. The posture and balance performance in the active group was better than in non-active adolescences. Still, no difference was observed between the foot index and weight distribution in active and non-active juveniles. More complex research is needed to test this hypothesis.

Key words: Arch index, Balance musculoskeletal, Adolescences, Active and Non-active

Extended Abstract

1. Introduction

Adolescence is defined as the period of developmental processes of transition from childhood to adulthood. One of the aspects of adolescence is the physical and psychological changes of puberty from the beginning of this period. At this stage of puberty, a person’s skeletal condition is affected for various reasons, which can also affect the person’s balance somehow. Musculoskeletal abnormalities affect posture and stability. Maintaining balance and postural control is one of the essential tasks of the human locomotor system. From a biomechanical point of view, the foot is a functional unit that aims to maintain body weight and provide leverage to move forward when walking and running.
Biomechanical changes in the base of support and disruption of different information of any joint or structure located along the lower extremity motor chain can affect postural control strategy [1]. Despite their small surface area, the soles play an important role in maintaining the body’s balance. The anatomical structure of transverse, internal longitudinal, and external longitudinal arches cause the formation of stable operations and the production of force to move the body forward in all human activities [2].

Due to the determining role of balance factor in the process of growth and motor development in childhood and adolescence, the effect of deformity or structural deformities of the foot on maintaining body balance during this period has not been studied by researchers. Since providing treatment and correction programs for plantar deformities in childhood and adolescence is more effective, it is more important to address this issue. This study aimed to compare the ‘plantar arch index’, ‘weight distribution’, ‘equilibrium performance’, and selected ‘musculoskeletal disorders’ in the active and non-active adolescents.

2. Materials and Methods

This is a quasi-experimental and descriptive study. The statistical population consisted of adolescents in Tehran City who were randomly selected. The statistical sample included 50 persons with the age range of 11-14 years, among which 25 subjects with the Mean±SD age of 12.46±1.10 years, the Mean±SD height of 157.69±8.48 cm, and the Mean±SD weight of 46.65±8.45 kg were located in the “non-active” group, and 25 others with Mean±SD age of 12.26±1.13 years, the Mean±SD height of 153.91±10.09 cm, and the Mean±SD weight of 44.52±7.76 kg were located in the “active” group.

To evaluate the normality of data distribution, the Kolmogorov–Smirnov test was used. Spearman’s correlation and Mann–Whitney U test were used to assess the relationships between variables at a significance level of 0.05. All subjects were healthy at the time of the study, and they completed a personal satisfaction questionnaire to participate in the study. The test procedure was described in detail for each subject. Subjects’ skeletal abnormalities were first assessed manually by the New York test. Based on this test and using the visual method using a checkerboard, different parts of the body were evaluated, and then the results were recorded in a particular table.

To evaluate the feet’ soles, first, the observational method was used. Using the American-made 3BODY VIEW foot scanner, the subjects’ type of complication and INDEX were determined. Also, to measure the dynamic balance, an ENC device made by “Danesh Salar Iranian Co.” was used.

3. Results

The independent t-test revealed that the two groups had a significant difference in equilibrium performance (P=0.04), but there was no significant difference in weight distribution parameters. Also, the Mann-Whitney test results did not reveal a significant difference between the two groups in the variables of the ‘plantar arch index’ and ‘musculoskeletal abnormalities’ (P>0.05).

As you can see in Table 1, the dynamic balance had a significant difference (P=0.04) only in the “forward head” complication of the “non-active” group. “Pronation” anomaly had a positive correlation with “forward head” complication, and a significant level (P<0.03) was observed, but “supination” anomaly was negatively correlated with “forward head” complication in the “active” group and positively correlated with the “non-active” group; however, no significant level was observed.

The arch of the sole of the foot with dynamic balance and weight distribution on the left foot, supination and varus has a negative correlation in the active group; Also in the inactive group, this negative correlation is observed only in the weight distribution on the left foot and supination. Besides, there was a significant difference between the “plantar arch index” with “active” group “pronation” (P>0.01) and “active” group “varus” (P<0.05) and “active” group “valgus” (P<0.05) as well as “non-active” group “pronation” (P>0.01). “Dynamic balance” in the “active” group had a negative correlation in weight distribution on the right foot, “pronation,” “varus,” and “valgus”.

“Kyphosis” negatively correlated with other lower limb abnormalities, but no significant difference was observed. The correlation between “varus” and “valgus” was also negative in both “active” and “non-active” groups, with only a significant difference in the “active” group (P<0.00).

4. Discussion and Conclusion

The ability to maintain postural control is an essential factor in performing many daily activities. Motor skills play a significant role in children’s learning and provide a basis for developing other critical understandings such as academic and social skills. As a result, any disruption in the motor skills process can lead to weakness and difficulty in academic, social, individual, and learning skills in adolescents. The results of this study revealed that in the variables of “plantar arch index” with selected upper limb abnormali-
ties, no difference was observed between the “active” and “non-active” groups.

“Lordosis” had a negative correlation with other upper limb abnormalities in the “active” group. The “plantar arch index” with “dynamic balance” and “weight distribution” on “supination” and “varus” had a negative correlation in the “active” group. Still, in the “non-active” group, this negative correlation was observed only in the “weight distribution” on the “supination”. “Kyphosis” was also negatively correlated with other lower limb abnormalities.

This study revealed the difference between dynamic balance and musculoskeletal abnormalities in active and non-active adolescents. However, many factors affect the ankle’s posture and structure during activity and balance function,

Table 1. Spearman correlation coefficient between “plantar arch index”, “weight distribution”, “balance function”, and “selected musculoskeletal abnormalities” variables in active and non-active adolescents (significance level)

Variables	Groups	Weight Distribution (right)	Pronation	Supination	Varus	Valgus	Kyphosis	Forward Head
Plantar arch index	Active	0.14	0.50	-0.28	-0.40	0.40	0.01	0.09
	Non-active	0.52	0.01*	0.18	0.05*	0.05*	0.96	0.68
		0.01	0.54	-0.14	0.11	0.22	0.03	0.11
Dynamic balance	Active	-0.13	-0.27	0.02	-0.05	-0.15	-0.35	0.11
	Non-active	0.07	0.29	0.22	0.06	0.25	-0.30	0.43
Weight distribution (left)	Active	-1.00	-0.08	0.21	0.13	0.02		0.00
	Non-active	-0.02	0.91	0.31	0.54	0.91		1.00
Lordosis	Active	0.05	0.34	-0.34	0.25	0.33	-0.50	-0.02
	Non-active	-0.02	-0.10	0.11	0.16	-0.13	-0.29	0.27
Pronation	Active	---	1.00	-0.69	-0.08	0.25		0.27
	Non-active	---	1.00	-0.41	0.15	0.37		0.45
Varus	Active	---	---	1.00		0.55		-0.04
	Non-active	---	---	1.00		0.08		0.87

* Significant difference (P≤0.05).
causing impaired balance, decreased stability, the prevalence of skeletal abnormalities, and reduced performance. To test these hypotheses requires more extensive research with more sophisticated equipment.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed of the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
مقایسه شاخص کف پا، توزیع وزن، عملکرد تعادلی و ناهنجاری های اسکلتی عضلانی منتخب در نوجوانان فعال و غیرفعال

نام‌های زبان‌توان: ۱. هانیه زهتاب اصغری

تهران، دانشگاه آزاد اسلامی، واحد تهران مرکزی، گروه بیومکانیک ورزشی

نقطه تماس: +۹۸ (۸) ۸۱۲۰۲۸۵۵۹۰۵، تلفن

پست الکترونیک: hanizehtabr@gmail.com

کلیدواژه‌ها: تغییرات کف پا، تعادل، ناهنجاری‌های اسکلتی-عضوی، نوجوانان فعال و غیرفعال

مقدمه
تغییرات بیومکانیکی در پایه پشتیبانی و عملکرد تکاندهای سطحی و راهبردی سطح پایه نتایج از اندازه‌گیری نیرو، ناهنجاری وزن و ناهنجاری تماس کف پا با پایه می‌باشد. کف پا در عملکرد پایه بسزایی دارد و اهمیت بسزایی در حفظ تعادل بدن دارد. شکل‌گیری، اندازه و حجم کف پا می‌تواند به طور طبیعی محدود یا به‌صورت طبیعی ناشی از ناهنجاری‌های فیزیکی یا انفجاری باشد.

目的
مقایسه‌ی شاخص‌های کفپا، توزیع وزن، عملکرد تعادلی و ناهنجاری‌های اسکلتی عضلانی منتخب در نوجوانان فعال و غیرفعال

نوع‌ی مطالعه: طراحی بافتی

مکان: تهران، ایران

مصرف: ۱۵۳/۰۹ ± ۱۰/۰۹ سال، قد ۱۲/۲۶ ± ۱/۱۳ سانتی‌متر، وزن ۱۵۷/۶۹ ± ۸/۴۸ کیلوگرم

روش‌ها
برای بررسی نرمال بودن توزیع داده‌ها از آزمون کولموگروف اسمیرنوف و برای مقایسه متغیرها بین دو گروه از آزمون تی مستقل استفاده شد.

نتایج
یافته‌های توصیفی نشان می‌دهد که میانگین ناهنجاری‌های اسکلتی عضلانی در نوجوان غیرفعال بیشتر از نوجوانان فعال است.

پاسچر حالت واحدی از ساختار بدن در کلیه موقعیت‌های حرکتی مثل نشستن، ایستادن، راه رفتن و دویدن است که شاخص و معیاری برای بیان سطح سلامتی، کارایی در حرکت‌ها و فعالیت‌ها است. یکی از عواملی که حالت طبیعی بدن را تغییر می‌دهد، ناهنجاری‌های عملکردی و ساختاری بدن است.

تشکیل‌دادن مسئول منتقد: ۱۵۸/۰۴، دکتر زهرا کریلی

شناسه: ۱۳۹۹/۰۲/۱۱، روز دریافت: ۱۳۹۹/۰۲/۱۱

شماره: ۶، دوره ۱۳۹۹ آذر
ناهنجاری های بدن

در قرن هفدهم، فیلسوف ها به بدن رفتار می‌کردند. فردیک هافمن، در سال 1779، نهایتی را بر کار بیشتری برای درمان نشان داد. او معتقد بود که حرکت‌های روزمره زندگی از نوعی تمرین بوده و تا اندازه‌یی برباخت قدرت بدن را افزایش می‌دهد. در ادامه فعالیت‌های هافمن، نیکولاس اندرو و دارلی سارجنت، از آنکه بیماری‌ها باعث غیرطبیعی شدن قسمتی از بدن می‌شوند، پیشنهاد کرد که به نوعی بررسی شود. در سال 1879، نوریلی سرچرانی در اختیار خود رفت. در مطالعات خود، او نشان داد که خاصیت‌های انحرافی در انتظار بازخورده و درمان می‌شوند. به وسیله فیزیولوژیک، افراد باید عملکرد سیستم حرکتی را بهینه‌سازی کنند.

در بررسی‌های آزمایشگاهی، هنگامی که افراد ایستاده‌اند، سلسله‌ی آزمایش‌های مختلفی بر روی سیستم‌های مختلفی انجام می‌شود. این آزمایش‌ها شامل داربستی، نمک‌نشینی، نمک‌نشینی در سطح داخل پا، و ماهیت‌های آناتومیکی و بیماری‌های سلولی می‌باشد. در واقع، تمام این تنش‌ها در حین ایستادن می‌باشد. در این فرایند، ماهیت‌های آناتومیکی و بیماری‌های سلولی می‌باشد.

به عنوان مثال، قوس پاها در حین ایستادن و حرکت بدن، نقش مهمی دارد. این قوس‌ها شامل سه قسمت اصلی یعنی ریشه، ماده و سطح داخلی می‌باشد. آنها به این ترتیب، همکاری کرده و باعث تعادل و نگهداری بدن می‌شوند. در این فرایند، سیستم‌های عصبی و لغزندی نیز نقش مهمی دارند.

در مطالعات آزمایشگاهی، افرادی که در حین ایستادن و حرکت بدن، قوس‌ها و ماهیت‌های آناتومیکی می‌باشند، سطح تعادل خود را نگه می‌دارند. در حالی که افرادی که در حین ایستادن و حرکت بدن، قوس‌ها و ماهیت‌های آناتومیکی می‌باشند، سطح تعادل خود را نگه می‌دارند. در حالی که افرادی که در حین ایستادن و حرکت بدن، قوس‌ها و ماهیت‌های آناتومیکی می‌باشند، سطح تعادل خود را نگه می‌دارند.

1. Friedrich Hoffmann
2. Nicholas Andre
3. Darley Sargent
با توجه به شاخص‌های کف پا، وزن و تعادل و ناهنجاری‌های اسکلتی و عضلانی در نوجوانان

7. INDEX
8. Dynamic Balance (ENC)
استنباطی به منظور ارزیابی روابط میان متغیرها از آزمون های اسپیرمن و یومن ویتنی به دلیل ناپارامتریک داده ها، در استفاده شد.

نتایج

نتایج آزمون توصیفی در جدول شماره 1، شاخصهای جامعی درونی آزمودنی‌ها را در دو گروه فعال و غیرفعال نشان می‌دهد.

در جدول شماره 2، تفاوت آزمون میان میانگین برای متغیرهای شاخص قوس کف و گرفتاری، ورودی و دیده بودن ارائه شده است. بر اساس این جدول، قلوی متغیرهای بین خود گروه در متغیرهای شاخص قوس کف و گرفتاری، ورودی و دیده بودن مشاهده نشده است.

میزان طویل که در جدول شماره 3 مشاهده می‌شود در پارامترهای اندام تحتانی، شاخص قوس کف و گرفتاری، ورودی و دیده بودن بر روی چپ، سوپینیشن و واروس دارای همبستگی منفی در بر اساس جدول شماره 2، قله‌ پرونیشن گروه فعال و تفاوت معنی‌داری در توزیع وزن بر روی پایین چپ در گروه فعال مشاهده می‌شود. به علاوه تفاوت معنی‌داری بین پرونیشن و والگوس گروه فعال و غیرفعال مشاهده می‌شود.

علاوه بر این، کایفوز نیز با سایر ناهنجاری‌های اندام تحتانی در همبستگی منفی دارد. معنی‌داری نیز در توزیع وزن بر روی پایین چپ در گروه فعال مشاهده می‌شود.

جدول 1. ویژگی فردی آزمودنی‌ها

متغیرها	دو گروه F	Taf	P	مستند	مانند	ارزیابی دو گروه	P	مستند	دو گروگوش	P	مستند	دو گروگوش	P	مستند	دو گروگوش
قله (سال)	156/918	148/644	0/01	0/26	157/479	156/708	0/01	0/26							
وزن (کیلو)	43/777	37/362	0/01	0/26	43/777	37/362	0/01	0/26							
تلف	14/20	13/50	0/01	0/26	14/20	13/50	0/01	0/26							
بحث
توانایی حفظ کنترل پا در جلو میانگین هر دو گروه به‌طور مشابه نشد. تمام بی‌پای یکی در هر دو گروه مشاهده نشد. تمام بی‌پای یکی در هر دو گروه مشاهده نشد.

شاخص‌ها	گروه‌ها	میانگین رتبه‌ها	انحراف استاندارد
فشار کوس کافی (درصد)	غیرفعال	92.34 ± 3.67	88.43 ± 3.77
	فعال	92.34 ± 3.67	88.43 ± 3.77
لوروز (درجه)	غیرفعال	18.52 ± 0.45	18.52 ± 0.45
	فعال	18.52 ± 0.45	18.52 ± 0.45
کایفوز (درجه)	غیرفعال	20.12 ± 0.45	20.12 ± 0.45
	فعال	20.12 ± 0.45	20.12 ± 0.45
پرونیشن (درجه)	غیرفعال	26.98 ± 0.82	26.98 ± 0.82
	فعال	26.98 ± 0.82	26.98 ± 0.82
سوپینیشن (درجه)	غیرفعال	0.92 ± 0.86	0.92 ± 0.86
	فعال	0.92 ± 0.86	0.92 ± 0.86
واروس (درجه)	غیرفعال	0.94 ± 0.68	0.94 ± 0.68
	فعال	0.94 ± 0.68	0.94 ± 0.68
والگوس (درجه)	غیرفعال	0.95 ± 0.30	0.95 ± 0.30
	فعال	0.95 ± 0.30	0.95 ± 0.30
شانه نابرابر (درجه)	غیرفعال	1.52 ± 0.34	1.52 ± 0.34
	فعال	1.52 ± 0.34	1.52 ± 0.34
سر به جلو	غیرفعال	0.72 ± 0.46	0.72 ± 0.46
	فعال	0.69 ± 0.47	0.69 ± 0.47

نتایج آزمون ویتنی به منظور مقایسه عملکرد تعادلی و توزیع وزن در دو گروه فعال و غیرفعال نشان داد که تنها در عارضه سر به جلو قابل قبولی در توزیع وزن با P = 0.04 در گروه فعال مشاهده شد. همچنین در عارضه سر به جلو کابوس و والگوس، پرونیشن و سوپینیشن همبستگی منفی با گروه فعال داشتند. این نتایج نشان می‌دهد که بهترین روش برای کنترل وزن و تعادل در نوجوانان به گروه فعال اختصاص داده شود. چنین گروهی از نظر عارضه سر به جلو همبستگی منفی با گروه فعال داشتند. این نتایج نشان می‌دهد که بهترین روش برای کنترل وزن و تعادل در نوجوانان به گروه فعال اختصاص داده شود.
جدول \(\L_4 \) شرایط گمیسکی لیسپرمن بین متغیرهای شاخص کف پا، توزیع وزن و میانگین-
\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{متغیر} & \text{شاخص کف پا} & \text{توزیع وزن (جنسیت)} & \text{توزیع وزن (جنسیت)} & \text{کمایل پویا} & \text{شیمی‌ال‌حیاتی} \\
\hline
\text{دریافت‌رسانی} & -0.60 & -0.78 & -0.80 & -0.60 & -0.50 \\
\text{ریشه‌گیری} & -0.53 & -0.68 & -0.71 & -0.53 & -0.33 \\
\text{کافیگرایش آسیب‌دیدگی} & -0.21 & -0.33 & -0.43 & -0.21 & -0.01 \\
\text{درد و خشکی} & -0.03 & -0.20 & -0.34 & -0.03 & -0.10 \\
\text{تخلیه پرور} & -0.47 & -0.77 & -0.80 & -0.47 & -0.50 \\
\text{تغییر وانیلا} & -0.41 & -0.47 & -0.31 & -0.41 & -0.39 \\
\text{گیری کافیگرایش آسیب‌دیدگی} & -0.30 & -0.19 & -0.34 & -0.30 & -0.01 \\
\text{تغییر وانیلا} & -0.14 & -0.03 & -0.20 & -0.14 & -0.10 \\
\text{گیری کافیگرایش آسیب‌دیدگی} & -0.10 & -0.02 & -0.14 & -0.10 & -0.01 \\
\text{تغییر وانیلا} & -0.05 & -0.01 & -0.14 & -0.05 & -0.01 \\
\text{گیری کافیگرایش آسیب‌دیدگی} & -0.01 & -0.01 & -0.10 & -0.01 & -0.01 \\
\text{تغییر وانیلا} & -0.01 & -0.01 & -0.10 & -0.01 & -0.01 \\
\text{گیری کافیگرایش آسیب‌دیدگی} & -0.01 & -0.01 & -0.10 & -0.01 & -0.01 \\
\hline
\end{array}
\]
ضریب همبستگی اسپیرمن بین متغیرهای شاخص کف پا، توزیع وزن و عملکرد تعادلی و ناهنجاری های اسکلتی-عضلانی منتخب در اندام فوقانی نوجوانان

حاضر با بخشی از نتایج تحقیقات احمدی و چویونگ در عدم

که تنها تفاوت در گروه فعال مشاهده شد. تعادل پویا در گروه فعال دارای همبستگی منفی در توزیع والگوس گروه فعال و پرونیشن گروه غیرفعال تفاوت مشاهده شد. در حالی که در گروه فعال این همبستگی فقط در توزیع چپ و سوپینیشن و والگوس گروه غیرفعال منفی است. همچنین بین شاخص قوس کف پا و گروه فعال و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه فعال دارای همبستگی منفی در توزیع وازون بر روی پای چپ و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه فعال و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه فعال دارای همبستگی منفی در توزیع وازون بر روی پای چپ و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه غیرفعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه‌روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه انتخاب کردن این به‌دست آمده به دو گروه در عملکرد تغییرات متغیران بود. بتواند در پارامترهای توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه فعال و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه فعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه غیرفعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه غیرفعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه غیرفعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه فعال و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه فعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه فعال و گروه غیرفعال تفاوت مشاهده شد. درحالی که در گروه فعال دارای همبستگی منفی در توزیع وازون بر روی پای یکچه و سوپینیشن مشاهده شد. مهم‌ترین بین شاخص قوس کف پا و گروه فعال و گروه غیرفاعل
نتایج نهایی از اسکلرال مفصلی هموگفتاهی نشان داده می‌کند که تفاوت‌های تغییرات عضلانی و مفصلی در طول زندگی دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

تحقیقات دیگر نیز نشان داده‌اند که تALTERATION در تغییرات عضلانی و مفصلی در سال‌های مختلف به دلیل تغییرات در ساختار و شکل جسم سبک زندگی و تعادل نیز نقش می‌بازد.

در این تحقیق، بررسی شد که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

در این تحقیق، بررسی شد که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

بررسی نشان داد که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

دیوار نویسنده که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

در این تحقیق، بررسی شد که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

بررسی نشان داد که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.

دیوار نویسنده که تALTERATION در مفصل‌های پا و دست در دختران ۱۶ تا ۱۸ ساله به دلیل تنوع و پژوهش‌های انجام شده با عناصر مختلف عضلانی و مفصلی می‌باشد.
و عملکرد تمامی تأثیرگذار است و موجب برهم خوردن تماس، کاهش ثبات، شیوع ناهنجاری‌های اسکلتی و کاهش عملکرد افراد می‌شود که باید آزمون‌های فرضی با تحقیقات و سمپل‌برداری‌های دقیق‌تری استفاده کنند.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

شرکت‌کنندگان در مطالعه حاضر نمی‌توانند از دستگاه‌هایی استفاده کنند که امکان آزمودن به صورت کامل بهره‌مند نباشد و از آزمودن به صورت کامل نمی‌توانند استفاده کنند. همچنین تمامی اطلاعات از دستگاه‌ها به صورت کامل و محرمانه ارائه می‌شود و همچنین هرگونه ارائه اطلاعات به صورت کامل مجاز نمی‌گردد.

حامی مالی

نویسندگان هیچ حمایت مالی در اجرای این مطالعه ندارند.

مشارکت نویسندگان

تمامی نویسندگان در این پژوهش به بهترین سهیمی پیوستند و همکاری کردند.

تعارض منافع

پناه دیدگان به اظهار نویسندگان این مقاله پاکیزه و تعارض منافعی پناه دیده نمی‌شود.
References

[1] Aminian G, Safaeepour Z, Farhoodi M, Pezeshk AF, Saeedi H, Majdoodleslam B. The effect of prefabricated and proprioceptive foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking. Prosthet Orthot Int. 2013; 37(3):227-32. [DOI:10.1177/0309364112461671] [PMID]

[2] Hertel J, Gay MR, Denegar CR. Differences in postural control during single-leg stance among healthy individuals with different foot types. J Athl Train. 2002; 37(2):129-32. [PMCID]

[3] Havanloo F, Akbari H, Khademinejad S. [The relationship between spinal curvatures and dynamic postural control (Persian)]. J Rehabil Train. 2005; 40(1):41-6. [DOI:10.14238/jrtr.2005.7343]

[4] Daneshmandi H, Alizadeh MH, Gharakhanloo R. [Corrective exercises (Identification and practice) (Persian)]. Tehran: SAMT; 2004. [https://www.gisoom.com/book/1820613/%DA%A9%D8%A7%D8%AA]

[5] Winter DA, Prince F, Stergiou P, Powell C. Medial-lateral and anterior-posterior motor responses associated with centre of pressure changes in quiet standing. Neurosci Res Commun. 1993; 12(3):141-8. [https://www.semanticscholar.org/paper/Medial-lateral-and-anterior-posterior-postural-stability-and-Winter-Prince/4fae12d52747df83f871ac168d3269ca07acd893]

[6] Wright WG, Ikenenyo YP, Gurfinkel VS. Foot anatomy specialization for postural sensation and control. J Neurophysiol. 2012; 107(5):1513-21. [DOI:10.1152/jn.00256.2011] [PMID] [PMCID]

[7] Fan Y, Fan Y, Li Z, Lu C, Luo D. Natural gaits of the non-pathological flat foot and high-arched foot. PLoS One. 2011; 6(3):e17749. [DOI:10.1371/journal.pone.0017749] [PMID] [PMCID]

[8] Vareka I, Vareková RJ AUPOG. The height of the longitudinal foot arch assessed by Chippaux-Smirak index in the compensated and uncompensated foot types according to Root. Acta Univ Palacki Olomuc Gymn. 2008; 38(1):35-41. [https://www.gymnica.upol.cz/pdfs/gym/2008/01/04.pdf]

[9] Idris FH. The growth of foot arches and influencing factors. Paediatr Indones. 2005; 45(3):111-7. [DOI:10.14238/p45.3.2005.111-7]

[10] Emery CA, Cassidy JD, Klassen TP, Roschuk RJ, Rowe BB. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents. Phys Ther. 2005; 85(6):502-14. [DOI:10.1093/ptj/85.6.502] [PMID]

[11] Tsung BYS, Zhang M, Fan YB, Boone DA. Quantitative comparison of plantar foot shapes under different weight-bearing conditions. J Rehabil Res Dev. 2000; 37(1):517-26. [DOI: 10.1682/jrdr.2003.11.0517]

[12] Cote KP, Brunet ME, Gansneder BM, Schultz SL. Effects of pronated and supinated foot postures on static and dynamic postural stability. J Athl Train. 2005; 40(1):41-6. [PMCID]

[13] Daneshmandi H, Sardar MA, Pour HH. [A comparative study of spinal abnormalities in male and female students (Persian)]. Harakat. 2005; 23(23):143-56. [https://joh.ut.ac.ir/article_10354.html]

[14] Cho C.Y. Survey of faulty postures and associated factors among Chinese adolescents. J Manipulative Physiol Ther. 2008; 31(3):224-9. [DOI:10.1016/j.jmpt.2008.02.003] [PMID]

[15] Nolan D. Single-leg standing abilities of adolescent athletes and non-athletes. Boston: MGH Institute of Health Professions; 2008. [https://www.semanticscholar.org/paper/Single-leg-standing-abilities-of-adolescent-and-Nolan/95f65deaee4310ea81d0bece212dd5323626d98]

[16] Hopkins JT, Palmieri R. Effects of ankle joint effusion on lower leg function. Clin J Sport Med. 2004; 14(1):1-7. [DOI:10.1097/00042752-200401000-00001] [PMID]

[17] Esmaeili H, Anbarian M, Salari Esker F, Hajloo B, Sanjari MA. Long-term effects of foot orthoses on leg muscles activity in individuals with pesplanus during walking. SJKU. 2014; 19(1):88-98. [DOI: 10.22102/19.1.88]

[18] Tasoojian E, Dizaji E, Memar R, Alizade F. [The comparison of plantar pressure and ground reaction force in male and female elite karate practitioners (Persian)]. J Paramed Sci Rehabil. 2016; 5(3):42-54. [DOI: 10.22038/jpsr.2016.7343]

[19] Fu GQ, Wah YC, Sura S, Jagadeesan S, Chinnaven E, Judson JP. Influence of rearfoot alignment on static and dynamic postural stability. Int J Ther Rehabil. 2018; 25(12):628-35. [DOI:10.12968/jitr.2018.25.12.628]

[20] Cobb SC, Tis LL, Johnson BF, Higbie EJ. The effect of forefoot varus on postural stability. J Orthop Sports Phys Ther. 2004; 34(2):79-85. [DOI:10.2519/jospt.2004.34.2.79] [PMID]

Fattahi A, et al. Arch Index, Weight, Balance & Selected MusculoSkeletal Disorders in Adolescences. J Sport Biomech. 2020; 6(3):154-169.
This Page Intentionally Left Blank