Study of Temperature-dependent Conduction Mechanisms in Au/0.8nm-GaN/n-GaAs Schottky Diode

Hicham Helal (✉ hichamwartilani@yahoo.com)
Universite Djillali Liabes de Sidi Bel Abbes https://orcid.org/0000-0002-3682-1957

Zineb Benamara
Universite Djillali Liabes de Sidi Bel Abbes

M. A. Wedemi
Institut Superieur des Sciences Appliquees et de Technologie de Kasserine

Sabrine Mourad
Universite de Gabes

Kamel Khirouni
Universite de Gabes

Guillaume Monier
Pascal Institute: Institut Pascal

Christine Robert-Goumet
Institut Pascal

Abdelaziz Rabehi
Universite Djillali Liabes de Sidi Bel Abbes

Arslane Hatem Kacha
Universite Djillali Liabes de Sidi Bel Abbes

Research Article

Keywords: nitridation, GaN/n-GaAs, Schottky diode, I-V-T, conduction mechanisms, barrier height

Posted Date: February 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-220299/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Study of temperature-dependent conduction mechanisms in Au/0.8nm-GaN/n-GaAs Schottky diode

Hicham Helal a, Zineb Benamara a, M.A. Wederni b, Sabrine Mourad c, Kamel Khirouni c, Guillaume Monier d, Christine Robert-Goumet d, Abdelaziz Rabehi a, Arslane Hatem Kacha a

(a) Laboratoire de Microélectronique Appliquée Université de Sidi Bel Abbès BP 89, 22000 Sidi Bel Abbès, Algérie.

(b) Unité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Institut Supérieur des Sciences Appliquées et de Technologie de Kasserine, Université de Kairouan, BP 471, Kasserine 1200, Tunisie.

(c) Laboratory of Physics of Materials and Nanomaterials Applied to the Environment, Faculty of Sciences of Gabes, University of Gabes, 6079 Erriadh City, Gabès, Tunisia.

(d) Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.

* Corresponding author: hichamwartilani@yahoo.com

Abstract

Passivation of interface states in the Schottky barrier is an approach to enhance the properties of the Schottky devices. In this work, Au/0.8nm-GaN/n-GaAs Schottky structure is studied electrically in a wide temperature range. With increasing temperature, the reverse current I_{rev} increases from 1×10^{-7} A to 1×10^{-5} A, and the saturation current I_s increases from 1×10^{-32} A to 5×10^{-7} A. The series resistance R_s decreases with increasing temperature from 13.44 Ω to 4.25 Ω. The ideality factor n decreases from 10.64 to 1.15. The barrier height Φ_b increases abnormally with increasing temperature from 0.54 eV at 80 K to 1.03 eV at 180 K, then decreases to 0.82 eV at 420 K. The abnormal behavior of Φ_b and the high values of n in low temperature are due to the tunnel mechanisms effects, such as FE and TFE currents. FE mechanism is the dominant process at low temperatures (80-300 K) and TFE mechanism is the dominant one at high temperatures (300-420K). Finally, our structure presents an inhomogeneous barrier height, maybe caused by the thin GaN interface layer.

Keywords: nitridation; GaN/n-GaAs; Schottky diode; I-V-T; conduction mechanisms; barrier height;

Introduction

Metal-semiconductor (MS) contacts are very important in microelectronics [1-4]. Such as optoelectronic devices, bipolar integrated circuits, high-temperature, and high-frequency applications [5, 6]. The thermionic emission (TE) theory is the
principal theory used to determine the parameters of the Schottky contact. However, some anomalies were reported at low temperatures and found that the Schottky barrier height and the ideality factor extracted from the current-voltage (I-V) characteristics are evolved with temperature [5, 7-10]. This implies that there is a deviation of the thermionic emission theory induced by other mechanisms, such as the thermionic field emission TFE and the emission field FE currents [5, 11]. The presence of these anomalies is confirmed by the spatial barrier inhomogeneities [7, 12-15], which were proved by ballistic electron emission microscopy studies [16, 17]. Many researchers described the spatial barrier inhomogeneities by Gaussian distribution function and this approach is widely accepted to analyze the experimental data [12, 18-24]. In addition, the abnormal behavior can also be due to the existence of interface states [7, 25], which act as recombination centers and generate local electric fields, causing random metallic paths, reducing carrier lifetime, and inducing large leakage current [26, 27]. These interface states come from surface dislocations and surface contaminations incorporated during the elaboration process [27-29]. Also, the Schottky metallization step generally causes interfacial modifications [29-32]. So, the interface quality has an essential impact on device behavior and performance. In this context, surface passivation is the best method to control the defective states [27-29, 33-37]. Many studies have been done to improve the interface properties by nitridation of GaAs surface [27, 28, 35, 36, 38-41]. The nitride layers have good stability against the formation of amorphous surface oxides, high electronegativity, and thermal stability [27, 42]. In this work, we report a study on the current transport mechanism in Au/0.8 nm-GaN/n-GaAs Schottky diode using a glow discharge plasma source (GDS) as nitridation processes. The I–V characterizations and the extracted electrical parameters are investigated in a temperature range of (80–420 K).

Experimental part

The Schottky contacts are elaborated using commercially available Si-doped n-GaAs (100) substrates, of a thickness of 400 µm and doping density $N_d=4.9\times10^{15}cm^{-3}$. The surface cleaning, the Schottky contacts, and the ohmic contacts processes were carried out as described in refs. [28, 38]. After surface cleaning, the substrates heated at 500 °C were nitrided using a glow discharge nitrogen plasma source, running at 5 W for 30 min in an ultra-high vacuum chamber. This process allows for creating a 0.8 nm-thick undoped GaN layer. Following the nitridation step, the substrate was annealed at 620 °C for 1 hour in view to crystallize the GaN layer [37, 43, 44]. The current-voltage measurements were investigated under different temperatures (80–420 K), using an automatic standard apparatus based on a current source Keithely 220, a high impedance voltmeter Agilent 34401 A, and a liquid nitrogen cryostat Janis VPF 400.

Results part

Figure 1 shows the semi-logarithmic scale and linear scale of I-V characteristics of Au/0.8nm-GaN/n-GaAs structure, in (80-420 K) temperature range.
As can be seen, from the semi-logarithmic scale, in low bias voltages the current varies linearly with increasing bias voltage and decreases with decreasing of temperature. The reverse current I_{rev} increases with increasing temperature, from 1×10^{-7} A for 80 K to 1×10^{-5} A for 420 K. In the linear scale, the threshold voltage V_0 increases with decreasing temperature.

The expression of the current for non-ideal Schottky diodes is expressed as [45]:

$$I = I_s \left(\exp \left(\frac{q(V - IR_s)}{nkT} \right) - 1 \right)$$ \hspace{1cm} (1)

$$I_s = A A^* T^2 \exp \left(- \frac{q \phi_b}{kT} \right)$$ \hspace{1cm} (2)

where I_s is the saturation current, R_s is the series resistance, n is the ideality factor, k is the Boltzmann constant, A is the effective diode area, A^* is the effective Richardson constant and ϕ_b is the barrier height.

The slope and y-axis intercept of ln(I) versus V give the values of n and I_s respectively, where,

$$\ln(I) = \frac{q}{nkt} V + \ln(I_s)$$ \hspace{1cm} (3)

and ϕ_b is calculated by:

$$\phi_b = \frac{kT}{q} \ln \left(\frac{AA^* T^2}{I_s} \right)$$ \hspace{1cm} (4)

The values of R_s are extracted using Cheung and Cheung method [45] which is based on:

$$G(I) = \frac{\partial V}{\partial (\ln I)} = R_s I + \frac{n kT}{q}$$ \hspace{1cm} (5)
Figures 2 and 3 show the variations of the series resistance R_s and the saturation current I_s versus temperature.

![Figure 2: The variation of R_s versus temperature.](image1)

![Figure 3: The variation of I_s versus temperature.](image2)

As can be seen, the structure exhibits low resistance series R_s which decreases from 13.44 Ω at 80 K to 4.25 Ω at 420 K, showing the good quality of the interface, improved by the nitridation process. In addition, I_s increases with temperature from 1.11×10^{-32} A at 80 K to 5.57×10^{-7} A at 420 K.

The extracted values of the ideality factor and barrier height are plotted in figure 4.

![Figure 4: n and ϕ_b extracted for different temperatures.](image3)

In this figure, n decreases with increasing temperature from 10.64 at 80 K to 1.15 at 420 K, in accordance with the literature [5-7, 11, 26]. ϕ_b increases abnormally with increasing temperature from 0.54 eV at 80 K to 1.03 eV at 180 K and then decreases to 0.82 eV at 420 K. These results are similar to several studies [7, 12, 20, 46-48]. For Schottky contacts, the barrier height should decrease with increasing temperature, in accordance with the variation of the bandgap with temperature [1, 2, 7, 45, 47, 49-51]. The abnormal behavior of ϕ_b and the high values of n in low temperature can be
explained by the effect of the tunnel mechanisms, such as thermionic field emission (TFE) current and emission field (FE) current [5, 11].

The tunneling current can be expressed as following [1, 12, 52, 53]:

\[I = I_{\text{tun}} \left[\exp \left(\frac{e(V-I_R)}{E_0} \right) - 1 \right] \]

(6)

\[\frac{E_0}{kT} = \frac{E_{00}}{kT} \cot \hbar \left(\frac{E_{00}}{kT} \right) \]

(7)

\[E_{00} = \frac{\hbar}{4\pi} \left(\frac{N_D}{m^*_e \varepsilon} \right)^{\frac{1}{2}} \]

(8)

where \(E_{00} \) is the characteristic tunneling energy, \(h \) is the Planck constant, \(m^*_e \) is the effective mass of electron and \(\varepsilon_s \) is the dielectric constant of GaAs.

Figure 5 shows the variation of \((E_0 = n kT/q) \) versus \(kT/q \).

From figure 5, \(E_0 \) is approximately 2 to 10 times higher than \(kT/q \), in the temperature range of 80 K-300 K. This indicates that the dominant current is the FE mechanism at low temperatures [5]. In the temperature range 300 K-420 K, \(E_0 \) remains almost equal to \(kT/q \). This confirms that the TFE mechanism is dominant in high temperatures [5]. These results are in good agreement with a simulation study of Au/1nm-GaN/n-GaAs structure [5].

To further study the abnormal behavior of the barrier height, the Richardson characteristic \(\ln(I_s/T^2) \) versus \(q/kT \) is presented in figure 6.
Figure 6: variation of Richardson characteristic \(\ln(I_s/T^2) \) versus \(q/kT \). Red lines are linear fits of experimental data according to the root mean square method.

Figure 6 gives two linear regions which due to the inhomogeneity of the barrier height of the structure [12]. \(\Phi_b \) and \(A^* \) are estimated at 1.18 eV and \(1.22 \times 10^6 \text{A/cm}^2 \text{K}^2 \) in region 1 and at 0.16 eV and \(2.25 \times 10^{-24} \text{A/cm}^2 \text{K}^2 \) in region 2, respectively. The extracted values of \(A^* \) are very far from the theoretical value for n-GaAs, which is equal to \(8.16 \text{A/cm}^2 \text{K}^2 \) [49].

Figure 7 presents the variation of \(\Phi_b \) versus \(n \).

The structure has two linear regions, which are explained by the inhomogeneity of the barrier height [54, 55]. By extrapolation, the values of \(\Phi_b \) for \(n=1 \) is equal to 0.80 eV, in region 1 and equal to 1.25 eV, in region 2. These results are in good agreement with Richardson’s characteristics.
The inhomogeneity of the barrier height showed in the Richardson characteristics and in the plot \(\phi_b \) versus \(n \), is probably due to the presence of the 0.8 nm GaN interfacial layer. Helal et al. [5] have studied in simulation work, Au/n-GaAs Schottky in a wide temperature range 80 K-400K, with and without thin GaN (1 nm) interfacial layer. They found that Au/n-GaAs shows a homogeneous barrier height and Au/1nm-GaN/n-GaAs structure shows an inhomogeneous one.

Conclusion

In this paper, the current-voltage of an Au/0.8nm-GaN/n-GaAs structure is measured, in (80-420 K). With increasing temperature, the reverse current \(I_{rev} \) increases, and the ideality factor \(n \) decreases. The barrier height \(\phi_b \) increases abnormally with increasing temperature from 0.54 eV at 80 K to 1.03 eV at 180 K and then decreases to 0.82 eV at 420 K. We explained the abnormal behavior of \(\phi_b \) and the high \(n \) values in low temperature, by the tunnel mechanisms effects, such as FE and TFE currents. Finally, the structure presents an inhomogeneous barrier height, caused probably by the thin GaN interface layer.

Acknowledgement

The authors wish to thank Mrs. Soumaya AYACHI, Mrs. Oumayma AMORRI and the entire team of the Laboratory of Physics of Materials and Nanomaterials Applied to the Environment, Gabes University, Tunisia.

References

[1] E. Rhoderick and R. Williams, "Metal–Semiconductor Contacts, Clarendon Press, Oxford 1988."

[2] S. M. Sze and K. K. Ng, *Physics of semiconductor devices*: John wiley & sons, 2006.

[3] Ö. Demircioğlu, Ş. Karataş, N. Yıldırım, Ö. Bakkaloglu, and A. Türüt, "Temperature dependent current–voltage and capacitance–voltage characteristics of chromium Schottky contacts formed by electrodeposition technique on n-type Si," *Journal of Alloys and Compounds*, vol. 509, pp. 6433-6439, 2011.

[4] D. Korucu, A. Turut, and Ş. Altındal, "The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range," *Current Applied Physics*, vol. 13, pp. 1101-1108, 2013.

[5] H. Helal, Z. Benamara, M. B. Arbia, A. Khetou, A. Rabehi, A. H. Kacha, and M. Amrani, "A study of current-voltage and capacitance-voltage characteristics of Au/n-GaAs and Au/GaN/n-GaAs Schottky diodes in wide temperature range," *International Journal of Numerical Modelling: Electronic Networks, Devices and Fields*, p. e2714, 2020.

[6] S. Zeyrek, M. Bülbül, Ş. Altındal, M. Baykul, and H. Yüzer, "The double gaussian distribution of inhomogeneous barrier heights in Al/GaN/p-GaAs (MIS) schottky diodes in wide temperature range," *Brazilian Journal of Physics*, vol. 38, pp. 591-597, 2008.

[7] S. Hardikar, M. Hudait, P. Modak, S. Krupanidhi, and N. Padha, "Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures," *Applied Physics A*, vol. 68, pp. 49-55, 1999.
[8] A. Kumar, S. Arafin, M. C. Amann, and R. Singh, "Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation," *Nanoscale research letters*, vol. 8, p. 481, 2013.

[9] J. Osvald and Z. J. Horvath, "Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an inverse near-surface layer," *Applied surface science*, vol. 234, pp. 349-354, 2004.

[10] S. M. Tunhuma, F. D. Auret, M. J. Legodi, and M. Diale, "The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes," *Physica B: Condensed Matter*, vol. 480, pp. 201-205, 2016.

[11] E. Özavcı, S. Demirezen, U. Aydemir, and Ş. Altındal, "A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range," *Sensors and Actuators A: Physical*, vol. 194, pp. 259-268, 2013.

[12] J. H. Werner and H. H. Güttler, "Barrier inhomogeneities at Schottky contacts," *Journal of applied physics*, vol. 69, pp. 1522-1533, 1991.

[13] J. Sullivan, R. Tung, M. Pinto, and W. Graham, "Electron transport of inhomogeneous Schottky barriers: A numerical study," *Journal of applied physics*, vol. 70, pp. 7403-7424, 1991.

[14] R. Tung, "Electron transport at metal-semiconductor interfaces: General theory," *Physical Review B*, vol. 45, p. 13509, 1992.

[15] R. Schmitsdorf, T. Kampen, and W. Mönch, "Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers," *Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena*, vol. 15, pp. 1221-1226, 1997.

[16] H. Palm, M. Arbes, and M. Schulz, "Fluctuations of the Au-Si (100) Schottky barrier height," *Physical review letters*, vol. 71, p. 2224, 1993.

[17] G. Vanalme, L. Goubert, R. Van Meirhaeghe, F. Cardon, and P. Van Daele, "A ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/III-V semiconductor Schottky barrier contacts by chemical pretreatments," *Semiconductor science and technology*, vol. 14, p. 871, 1999.

[18] V. W. Chin, M. Green, and J. W. Storey, "Evidence for multiple barrier heights in P-type PtSi Schottky-barrier diodes from IVT and photoresponse measurements," *Solid-state electronics*, vol. 33, pp. 299-308, 1990.

[19] A. Singh, K. Reinhardt, and W. Anderson, "Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions," *Journal of applied physics*, vol. 68, pp. 3475-3483, 1990.

[20] S. Chand and J. Kumar, "Current transport in Pd 2 Si/n-Si (100) Schottky barrier diodes at low temperatures," *Applied Physics A*, vol. 63, pp. 171-178, 1996.

[21] P. McCafferty, A. Sellai, P. Dawson, and H. Elabd, "Barrier characteristics of PtSi-Si Schottky diodes as determined from IVT measurements," *Solid-State Electronics*, vol. 39, pp. 583-592, 1996.

[22] S. Zhu, R. Van Meirhaeghe, C. Detavernier, G.-P. Ru, B.-Z. Li, and F. Cardon, "A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes," *Solid state communications*, vol. 112, pp. 611-615, 1999.

[23] S. Zhu, R. Van Meirhaeghe, C. Detavernier, F. Cardon, G.-P. Ru, X.-P. Qu, and B.-Z. Li, "Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111)," *Solid-State Electronics*, vol. 44, pp. 663-671, 2000.

[24] D. Korucu, A. Turut, and H. Efekoglu, "Temperature dependent I–V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model," *Physica B: Condensed Matter*, vol. 414, pp. 35-41, 2013.
[25] C. Crowell, "The physical significance of the T0 anomalies in Schottky barriers," *Solid-State Electronics*, vol. 20, pp. 171-175, 1977.

[26] M. Hudait, P. Venkateswarlu, and S. Krupanidhi, "Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures," *Solid-State Electronics*, vol. 45, pp. 133-141, 2001.

[27] H. Helal, Z. Benamara, A. H. Kacha, M. Amrani, A. Rabehi, B. Akkal, G. Monier, and C. Robert-Goumet, "Comparative study of ionic bombardment and heat treatment on the electrical behavior of Au/GaN/n-GaAs Schottky diodes," *Superlattices and Microstructures*, p. 106276, 2019.

[28] A. Rabehi, M. Amrani, Z. Benamara, B. Akkal, A. Hatem-Kacha, C. Robert-Goumet, G. Monier, and B. Gruzza, "Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode," *The European Physical Journal Applied Physics*, vol. 72, p. 10102, 2015.

[29] Ö. Güllü, M. Biber, S. Duman, and A. Türüt, "Electrical characteristics of the hydrogen pre-annealed Au/n-GaAs Schottky barrier diodes as a function of temperature," *Applied surface science*, vol. 253, pp. 7246-7253, 2007.

[30] E. Ayyildiz, H. Çetin, and Z. J. Horvath, "Temperature dependent electrical characteristics of Sn/p-Si Schottky diodes," *Applied surface science*, vol. 252, pp. 1153-1158, 2005.

[31] Z. J. Horvath, V. Rakovics, B. Szentpali, S. Püspöki, and K. Žďárský, "InP Schottky junctions for zero bias detector diodes," *Vacuum*, vol. 71, pp. 113-116, 2003.

[32] Ş. Altındal, S. Karadeniz, N. Tuğluoğlu, and A. Tataroğlu, "The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes," *Solid-State Electronics*, vol. 47, pp. 1847-1854, 2003.

[33] V. Matolín, S. Fabík, J. Glosík, L. Bideux, Y. Ould-Metidji, and B. Gruzza, "Experimental system for GaN thin films growth and in situ characterisation by electron spectroscopic methods," *Vacuum*, vol. 76, pp. 471-476, 2004.

[34] Y. Ould-Metidji, L. Bideux, D. Baca, B. Gruzza, and V. Matolin, "Nitridation of GaAs (1 0 0) substrates and Ga/GaAs systems studied by XPS spectroscopy," *Applied surface science*, vol. 212, pp. 614-618, 2003.

[35] Z. Benamara, N. Mecirdi, B. B. Bouiadjra, L. Bideux, B. Gruzza, C. Robert, M. Miczek, and B. Adamowicz, "XPS, electric and photoluminescence-based analysis of the GaAs (1 0 0) nitridation," *Applied surface science*, vol. 252, pp. 7890-7894, 2006.

[36] A. Kacha, B. Akkal, Z. Benamara, M. Amrani, A. Rabhi, G. Monier, C. Robert-Goumet, L. Bideux, and B. Gruzza, "Effects of the GaN layers and the annealing on the electrical properties in the Schottky diodes based on nitrated GaAs," *Superlattices and Microstructures*, vol. 83, pp. 827-833, 2015.

[37] H. Mehdi, G. Monier, P. Hoggan, L. Bideux, C. Robert-Goumet, and V. Dubrovskii, "Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide," *Applied Surface Science*, vol. 427, pp. 662-669, 2018.

[38] A. Rabehi, M. Amrani, Z. Benamara, B. Akkal, and A. Kacha, "Electrical and photoelectrical characteristics of Au/GaN/GaAs Schottky diode," *Optik*, vol. 127, pp. 6412-6418, 2016.

[39] M. Ambrico, M. Losurdo, P. Capezzuto, G. Bruno, T. Ligonzo, and H. Haick, "Probing electrical properties of molecule-controlled or plasma-nitried GaAs surfaces: Two different tools for modifying the electrical characteristics of metal/GaAs diodes," *Applied surface science*, vol. 252, pp. 7636-7641, 2006.

[40] L. Bideux, G. Monier, V. Matolin, C. Robert-Goumet, and B. Gruzza, "XPS study of the formation of ultrathin GaN film on GaAs (1 0 0)," *Applied Surface Science*, vol. 254, pp. 4150-4153, 2008.
A. Kacha, B. Akkal, Z. Benamara, C. Robert-Goumet, G. Monier, and B. Gruzza, "Study of the surface state density and potential in MIS diode Schottky using the surface photovoltage method," *Molecular Crystals and Liquid Crystals*, vol. 627, pp. 66-73, 2016.

V. Berkovits, T. L'vova, and V. Ulin, "Chemical nitridation of GaAs (100) by hydrazine-sulfide water solutions," *Vacuum*, vol. 57, pp. 201-207, 2000.

G. Monier, L. Bideux, C. Robert-Goumet, B. Gruzza, M. Petit, J. Lábár, and M. Menyhárd, "Passivation of GaAs (001) surface by the growth of high quality c-GaN ultra-thin film using low power glow discharge nitrogen plasma source," *Surface Science*, vol. 606, pp. 1093-1099, 2012.

H. Mehdi, F. Réveret, C. Bougerol, C. Robert-Goumet, P. Hoggan, L. Bideux, B. Gruzza, J. Leymarie, and G. Monier, "Study of GaN layer crystallization on GaAs (100) using electron cyclotron resonance or glow discharge N2 plasma sources for the nitriding process," *Applied Surface Science*, vol. 495, p. 143586, 2019.

S. Cheung and N. Cheung, "Extraction of Schottky diode parameters from forward current-voltage characteristics," *Applied Physics Letters*, vol. 49, pp. 85-87, 1986.

Z. J. Horváth, "A New Approach to Temperature Dependent Ideality Factors in Schottky Contacts," *MRS Online Proceedings Library Archive*, vol. 260, 1992.

R. Hackam and P. Harrop, "Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes," *IEEE Transactions on Electron Devices*, vol. 19, pp. 1231-1238, 1972.

A. Bhuiyan, A. Martinez, and D. Esteve, "A new Richardson plot for non-ideal schottky diodes," *Thin Solid Films*, vol. 161, pp. 93-100, 1988.

A. Bengí, S. Altındal, S. Özçelik, and T. Mammadov, "Gaussian distribution of inhomogeneous barrier height in Al0. 24Ga0. 76As/GaAs structures," *Physica B: Condensed Matter*, vol. 396, pp. 22-28, 2007.

J. H. Werner, "Schottky barrier and pn-junctionI/V plots—Small signal evaluation," *Applied physics A*, vol. 47, pp. 291-300, 1988.

M. Panish and H. Casey Jr, "Temperature dependence of the energy gap in GaAs and GaP," *Journal of Applied Physics*, vol. 40, pp. 163-167, 1969.

F. Padovani and G. Sumner, "Experimental Study of Gold-Gallium Arsenide Schottky Barriers," *Journal of Applied Physics*, vol. 36, pp. 3744-3747, 1965.

F. Padovani, "Graphical determination of the barrier height and excess temperature of a Schottky barrier," *Journal of Applied Physics*, vol. 37, pp. 921-922, 1966.

R. Schmitsdorf, T. Kampen, and W. Mönch, "Correlation between barrier height and interface structure of AgSi (111) Schottky diodes," *Surface Science*, vol. 324, pp. 249-256, 1995.

M. Soylu and F. Yakuphanoglu, "Analysis of barrier height inhomogeneity in Au/n-GaAs Schottky barrier diodes by Tung model," *Journal of Alloys and Compounds*, vol. 506, pp. 418-422, 2010.
Figure 1

I-V measurements of Au/0.8nm-GaN/n-GaAs structure at different temperatures, (a) semi-logarithmic scale and (b) linear scale.
Figure 2

The variation of Rs versus temperature.

Figure 2

The variation of Is versus temperature.
Figure 3

The variation of Is versus temperature.

Figure 4

n and Φb extracted for different temperatures.
Figure 5

The variation of $E_0 (nKT/q)$ versus kT/q.

Au/GaN (0.8nm)/n-GaAs

FE

TFE
Figure 6

variation of Richardson characteristic $\ln(I_s/T^2)$ versus q/kT. Red lines are linear fits of experimental data according to the root mean square method.
Figure 7

plot of Φ_b versus n.

Region 1

$\Phi_{b1} = 0.09n + 0.71$

$n=1$, $\Phi_{b1} = 0.80$ eV

Region 2

$\Phi_{b2} = -0.08n + 1.33$

$n=1$, $\Phi_{b2} = 1.25$ eV