Dengue Fever Dynamics in Bali, Indonesia 2010-2018: An Interplay of Population Density and Climatic Factors

Ririh Yudhastuti1,2, Muhammad Farid Dimjati Lusno1,2, Yudied Agung Mirasa3, Zida Husnina1,2

1 Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
2 Research Center for Tropical Diseases, Infectious Diseases and Traditional Herbal Medicines, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
3 Center for Disease Control and Prevention (BBTKLPP), Surabaya, Indonesia

Abstract: Dengue Fever (DF) incidence in Bali has been the highest in Indonesia for decades. This study describes the annual distribution of DF and analyzes its association with population density, number of rainy days, and average humidity during 2010-2018 at the district level. The choropleth maps and Poisson regression were employed to provide geographical distribution and quantify the association. The P, 95% confidence interval (CI), and Akaike Information Criterion (AIC) were adopted to assess the significance and the goodness of the association. During 2010-2018 there were 55215 new DF cases notified. The annual incidence of dengue cases in Bali increased with IRR: 1.000186 (95% CI:1.000183:1.000189) for every increment of population density per kilometers square and increased by IRR: 1.01043 (95% CI: 1.01019: 1.01078) for every additional one rainy day annually. The dengue cases also increased with IRR 1.0172 (95% CI: 1.0137: 1.0208) for every 1% increase in average humidity. Population density and climate factors are positively associated with dengue cases incidence in Bali from 2010 to 2018. The results underline the urgency of integrating population dynamics and climatic determinants into the DF control program and customizing the intervention program based on local characteristics.

Keywords: Dengue fever; Bali; Population density; Climatic; Rainy days; Humidity

Introduction

Dengue fever (DF) is a public health threat with rapid transmission worldwide, particularly in the tropical region (1). The disease is found in most Southeast Asia (SEA) countries with an increasing trend in population health burden (2). Indonesia, as DF endemic tropical region, has been significantly impacted by the transmission since the first cases were notified in 1968 only in the two biggest cities of Jakarta and Surabaya. In 2018, all 34 provinces and 85.60% of total districts in Indonesia were affected by this mosquito-borne disease, with a national IR was 24.73 (per 100,000 population) and CFR was 0.70% (3). Bali Province has had rapid DF transmission for decades. The incidence rates (IR) in 2015, 2016, and 2017 were 257.75, 515.9, and 105.95 (per 100,000 population), respectively, which were multiple times above national IRs (50.75, 78.85, and 22.55 per 100000 population) (4).

Bali Island is the top destination for national and international tourism. The Provincial Bureau of Tourism reported total visitors in 2018 were 1.743,474 and 186.436 from domestic and international, respectively. These numbers increased by 248% from the previous year in 2017. Moreover, 184 countries of origins of foreign visitors were recorded by Bali Province Tourism Authority until October 2019 (5). From 2009-to 2010, imported DF cases from Bali were reported in Italy (6) and Japan (7), and it was associated with DF incidence in 5 territories in Australia (8). Moreover, the study of DENV2 in India found the Asian I genotype as one of the circulating variances (9). Thus, DF cases occurring in Bali would threaten national and international health
The density of the population is one of the driving forces for vector-borne diseases (VBD) incidence as the existence of mosquitoes vectors in the population closely depends on the availability of the hosts (10). The ecological change and increasing population density are also responsible for cross-species transmission (11). While climatic factors have long been studied to play an essential role in DF incidence to provide the favorable biological and ecological conditions for mosquitoes as vectors and dengue virus as an agent (12) and initiates outbreaks in Indonesia (13). Any variability in climatic and weather conditions is a crucial element in projecting the survival and movement of vectors as well as predicting the DF transmission (14).

Regardless of the urgency of DF monitoring in Bali Province to avert any potential threats to global health. It is, however, still limited studies to examine the secondary datasets at a larger scale. The forerunner research analyzed the data for the period 2001-2010, completed with interviews with health officers in Buleleng, Gianyar, and Badung districts (15), while the most recent study analyzed surveillance data from 2012-2017 to quantify climatic and demographic factors (16). This research purpose to continue the previous studies in describing the DF annual case occurrence during 2010-2018 and analyze its association with yearly explanatory variables from demographic factors of population density and climate factors of average humidity and total of rainy days during the observation period. The hypothesis to be examined is there is an association of DF cases number with the socio-demographic factors (population density) and climate factors (average humidity and total of rainy days) during 2010-2018 in Bali Province.

Materials and Methods

Study design and variables

This research used an ecological study design with secondary population datasets at the district level as the unit of analysis. The outcome variable of interest was the number of DF cases in each district. While the explanatory variables were first, the population density was calculated by the number of registered residents of each district divided by the area size (in Kilometer squares). The second was the average humidity, and the third number of rainy days was extracted from the monthly data for each district.

Data source

Dengue fever surveillance datasets 2010-2018 were extracted from provincial and districts’ health profiles. The data was validated by confirmation with the latest report from the Bali Province health office. The demographic data on population density was extracted from the Indonesian Bureau of Statistics (BPS). The climatic data of average humidity and the number of rainy days were obtained directly from the Bureau of Meteorology, Climatology, and Geophysics (BMKG) office in Bali Province. Classification based on climatic zone was used to determine the climate datasets in each district.

Data analysis

The choropleth maps were generated for each consecutive 9 years to see the geographical pattern of IR, population density, average humidity, and the number of rainy days. The 4 layers were overlaid to visually describe the pattern of DF incidence rates and explanatory variables simultaneously. Categorization of values was based on normal classification. The maps were generated using ArcMap/ArcGIS 10.4 by ESRI.

A statistical test was employed to examine the geographical structure of DF IR values dependency distribution. This detection examines whether the adjacent IRs values are distributed randomly, clustered, or dispersed throughout Bali Province. Global Moran, I autocorrelation is formulated as below:

\[I = n \frac{\sum_i \sum_j W_{ij} C_{ij}}{\sum_i \sum_j W_{ij} \sum_i (Z_i - \bar{Z})^2} \]

\[n = \text{the number of districts in Bali province} \]

\[i, j = \text{any of two districts} \]

\[Z_i = \text{the IR value of district } i \]

\[C_{ij} = \text{the similarity of IR values of district } i \text{ and } j \]

\[W_{ij} = \text{the similarity of locations of districts } i \text{ and } j \]

\[(Z_i - \bar{Z})^2 = \text{the difference of IR values between two districts compared with average IRs} \]

This analysis was performed by using ArcGIS/ArcMap 10.4 software certified by ESRI.

The preliminary analysis of univariate Poisson regression was conducted to select the variables to be included in the model and examine the association of DF case numbers with every single explanatory variable. The \(P<0.05 \), 95% confidence interval (CI), and Akaike Information Criterion (AIC) was employed to assess the significance of the association. The missing data from incomplete reported datasets was handled using the
Dengue fever in Bali Indonesia

imputation mean of neighboring values. The analysis was performed using STATA 14 by Stata Corp, College Station, Texas, USA.

The number of dengue fever cases occurrence is assumed to follow Poisson distribution under frequentist statistics as below:

\[\theta_{ij} \sim \text{Poisson} \mu_{ij} \]

\[\log \theta_{ij} = \alpha + \beta_1 \times \text{pop density}_{ij} + (\beta_2 \times \text{average humidity}_{ij}) + (\beta_3 \times \text{number of rainy days}_{ij}) \]

\(\theta_{ij} \) is the number of DF cases in Bali Province in year \(i \), and district \(j \), while \(\alpha \) is the intercept, \(\beta_1 \), \(\beta_2 \), and \(\beta_3 \) are the coefficients for the three independent variables (population density, average humidity, and the number of rainy days).

The goodness of fit of the model is examined by looking at the \(P<0.05 \), 95% Confidence Interval (CI), Akaike Information Criterion (AIC) and Deviance goodness of fit, and Pearson goodness of fit. The analysis was performed using STATA 14 by Stata Corp, College Station, Texas, USA.

Ethical clearance

These research protocols have been approved by the Health Research Ethics Committee, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia, with reference number: No.208/EA/KEPK/2019 on October 1st, 2019.

Results

Descriptive frequency distribution and choropleth mapping

During 9 observed years from 2010 to 2018, there were 55,215 new DF cases notified by Bali Provincial Health Office for the entire Islands. The smallest number of cases was 19, and the highest was 4199 (median 847.95 cases). The IR range was 4.58-786.33 per 100000 population (with a median value of 194.30). The density of the population varied from 312 to 7,283 per kilometer squares (with a median value of 1,367.84). The climate determinants of the rainy days range from 100 to 239 (with a median value of 153.44) per year, while the average humidity ranges from 71.58 to 86.67 (with a median value of 80.29) (Table 1).

The DF IR reached its peaks in 2015 and 2016, where the IRs for the entire nine districts in Bali were above 125/100000 population and above 200/100000 population, respectively. The choropleth maps of IR were darker as the density dots for population and rainy days were more rapid. Inversely, the IR values were darker as the circles of average humidity were smaller.

The districts impacted by DF were changing over time, whereas in 2010, Denpasar, Badung, and Buleleng were positioned as the highest IRs. Denpasar, Badung, and Gianyar are frequently positioned as the most impacted by DF transmission. In 2018, it was Klungkung the highest, followed by Badung and Buleleng (Figure 1, 2).

Aside from the values of the dynamic throughout 9 years, Denpasar and Badung consistently had IR above 100/100000 population until 2017; only after 2018 did their IRs decrease. The population density in Denpasar was the highest during 9 years of observation, where the density minimum in 2010 amounted to 6206 population/kilometer square and reached its peak in 2018 in the amount of 7282.83 population/kilometer square. Jembrana has the consistent lowest population density ranging from 312 population/kilometer square in 2010 to 328.58 population/kilometer square in 2018 (Supplement 1).

Buleleng was the district with total rainy days always the highest each year from 2010 (239 days) until 2018 (155 days). Buleleng was also recorded as the most humid region in Bali Province, the maximum humidity was in 2018 (86.67%), and the minimum was in 2014 (82.25%). While Tabanan and Bangli were frequently positioned as the districts with the lowest total rainy days throughout 9 years of observation. In 2015, it was recorded as the driest year, where total rainy days in Tabanan and Bangli were 103 and 107, respectively (Supplement 2).

Global Moran I

The result of the Global Moran I test suggested that the significant cluster autocorrelation was only detected in 2012 (The Global Moran I index value=0.330654, \(P < 0.019985 \)). 2010, 2011, 2013, 2014, 2016 showed positive Moran I index values; however, it did not show any spatial statistics significance as the \(P>0.1 \). While 2015, 2017, and 2018 have negative Moran I index values (Supplement 4).

Univariate analysis of Poisson regression

The three explanatory variables (population density, number of rainy days, and average humidity) were significantly associated with yearly DF cases number in Bali Province. The result of the multicollinearity test after multiple regression showed that all of the variables have a variance inflation factor (VIF) below 4. It indicated there was no multicollinearity among these variables (Supplement 3).
Multivariate non spatial Poisson regression model

All of the explanatory variables included in the model were significantly and positively associated with the number of DF cases in Bali Province. The DF case Incidence Rates Ratio (IRR) was elevated by 1.000186 (95% CI: 1.0000183 : 1.000189) for every increment of population density per kilometers square and increased by IRR: 1.01043 (95% CI: 1.01019: 1.01078) for every additional one rainy day annually. The dengue cases also increased with IRR 1.0172 (95% CI: 1.0137: 1.0208) for every 1% increase in average humidity (Table 2).

Table 1. Descriptive Frequency Distribution of Yearly Variables and Covariates 2010-2018

Variables and covariates	Median	Min	Max
Number of Cases	847.95	19	4199
Population Density	1,367.84	312	7,283
Number of Rainy Days	153.44	100	239
Average Humidity	80.29	71.58	86.67
Case Fatality Rates (CFR)	0.148	0	1.2
Incidence Rates (IR)	194.30	4.58	786.33
Population Number	445,960	175,430	930,619
Mortality Number	1.91	0	24

Figure 1. Geographical Distribution of Yearly Incidence Rates (IR), Population Density, Average Humidity, and Number of Rainy Days 2010 – 2015 in Bali Province
Dengue fever in Bali Indonesia

Figure 2. Geographical Distribution of Yearly Incidence Rates (IR), Population Density, Average Humidity, and Number of Rainy Days 2016 – 2018 in Bali Province

Table 2. The Results of Multi-variates Analysis with Multiple Poisson Regression of DF Case Number with All Explanatory Variables (Population Density, Number of Rainy Days, and Average Humidity) in Bali Province 2010-2018

Variables	IRR	95% CI	P
Constant	29.919	23.158:38.655	0.000
Population Density*	1.000186	1.000183:1.000189	0.000
Number of Rainy Days*	1.01043	1.01019:1.01078	0.000
Average Humidity*	1.0172	1.0137:1.0208	0.000

*statistically significant

Discussion

The trend of DF incidence in Bali Province increased from 2010-to 2016 and sloped down from 2017-to 2018. Denpasar and Badung were the districts with the highest intensity of DF transmission. This study linear with the previous findings that 2016 was recorded as the heaviest transmission in Bali Province (16). El Nino Southern Oscillation (ENSO) by the end of 2015, followed by the La Nina 2016 event, could be the underlying condition that brought the high intensity of rainfall (17).

Each of the nine districts in Bali Province has its own characteristics. Denpasar and Badung are the districts with the highest population density as recorded in 9 years of observation. The pattern of the high population density of both districts has coincided with the high IRs in most of the observed years. This condition is linear with a previous study of the 2014-2015 outbreak in Taiwan that the population density gradient of urban and suburban along with population mobility are significant predictors of the dengue epidemic (18). Moreover, both districts were reported as the most visited destination until 2019 (5) hence it is most likely that population mobility is also high in both areas regardless of their area size. The geographical feature of Buleleng is closer to equators; therefore, the tropical climate characteristics are more profound. On the other side, Klungkung, Gianyar, and Tabanan locations are varied from northern parts that are dominated by hills and mountains while the southern parts are coastal areas.

The cluster autocorrelation was found in 2012, which is similar to the previous study; however, the
The average humidity during nine observed years was positively associated with the DF case occurrence number in 9 districts in Bali Province. The different phenomena were captured in the subtropical region of Brazil that found a negative association between humidity and vector population (28). On the other side, a study from Sri Lanka reported a similar result with Bali, a positive association between average humidity and dengue fever incidence (24). This discrepancy result might be driven by different parameters, whereas in Bali and Sri Lanka, the observed variables were average humidity and DF occurrence. Meanwhile, a study in Brazil used vector population as a proxy of the outcome, and Vietnam research used total hours of sunshine as the explanatory variable.

Aside from its wide coverage of time units observed, there are some areas of improvement in this research. First, the analysis of the unit used was at the district level, and yearly that it is challenging to derive causation inference at a lower scale due to ecological fallacy. Second, the validation of surveillance data process quality was not confirmed. Nevertheless, this study could comprehend the current discussion concerning DF distribution in the most visited tourist area. In brief, the intervention program for DF monitoring, controlling, and prevention need to be customized for each district based on their local characteristics in order to avoid any outbreak. Further study at a finer unit analysis scale is highly recommended to provide comprehensive results and recommendations.

Acknowledgments

The authors sincerely thank to Bali Province Health Office and Meteorology, Climatology and Geophysics Bureau (BMKG) for providing the datasets.
Dengue fever in Bali Indonesia

Supplement 1. Descriptive Frequency Distribution of Incidence Rates (IR) and Social Factor of Population Density in Bali Province 2010-2018

Kabupaten	2010	2011	2012	2013	2014					
Density	IR	Density	IR	Density	IR	Density	IR			
Buleleng	300.13	459.00	72.97	462.00	19.11	494.56	155.73	467.32	254.77	470.25
Jembrana	37.99	312.00	23.32	314.00	9.46	326.38	63.69	318.37	56.96	320.50
Tabanan	114.81	417.00	26.08	419.00	68.13	525.33	187.59	513.03	112.37	516.25
Badung	755.07	3306.00	212.60	1340.00	118.78	1383.9	311.12	1407.34	294.38	1440.07
Denpasar	762.64	6206.00	180.17	6346.00	132.83	6632.5	211.38	6622.32	217.72	6758.49
Gianyar	213.05	1282.00	50.47	1295.00	61.31	1380.8	172.00	1320.65	381.67	1332.88
Bangli	54.85	440.00	35.49	443.00	23.16	422.8	48.14	422.42	117.89	424.92
Klungkung	285.01	543.00	47.31	546.00	26.99	592.03	142.64	552.06	138.34	554.92
Karangasem	94.11	474.00	28.94	476.00	27.44	482.52	70.26	481.57	66.26	484.31

Supplement 2. Descriptive Frequency Distribution of Incidence Rates (IR) and Climatic Factor of Number of Rainy Days and Average Relative Humidity in Bali Province 2010-2018

Kabupaten	2010	2011	2012	2013	2014						
IR	Rain	Humid	IR	Rain	Humid	IR	Rain	Humid	IR	Rain	Humid
Buleleng	297.11	473.10	560.61	475.96	136.17	478.52	19.63	481.16			
Jembrana	125.90	322.64	311.30	324.66	50.93	326.56	13.02	328.58			
Tabanan	200.13	519.34	217.16	522.44	72.10	525.42	9.92	528.40			
Badung	362.24	1472.81	664.93	1505.30	146.23	1537.56	55.71	1569.58	--	--	
Denpasar	216.11	6891.53	390.94	7022.23	101.61	7155.27	12.25	7282.83			
Gianyar	452.26	1345.38	785.36	1357.61	101.41	1369.29	14.17	1380.71			
Bangli	140.47	427.41	561.99	429.72	142.16	432.21	15.92	434.32			
Klungkung	258.01	557.78	629.48	560.95	123.45	563.17	82.46	566.03			
Karangasem	193.30	486.81	786.33	489.32	53.54	491.70	4.58	494.08			

Supplement 3. The results of Uni-Variate analysis of Poisson Regression of case number with each of explanatory variables (population density, number of rainy days and average humidity)

Variables	IRR	95% CI	P	VIF
Population Density	1.000002	1.000002:1.000002	0.000	1.13
Number Rainy Days	1.008975	1.008751:1.009198	0.000	1.61
Average Humidity	1.03607	1.033327:1.03882	0.000	1.77

Note:
- IR: Incidence Rates per 100,000 Population
- Density: Population density (number of residents per kilometer square of administrative area)
- Rain: Number of rainy days per year (days)
- Humid: Average humidity per year (%)
Supplement 4. The Result of Moran I Test for Each Year to Detect Autocorrelation or Cluster in Bali Province 2010-2018

Year	Moran’s Index	Z Score	Variance	P
2010	0.144206	1.402867	0.036825	0.160656
2011	0.158101	1.539830	0.033802	0.123602
2012	0.306654	2.326629	0.038354	0.019985*
2013	0.126071	1.331231	0.035570	0.183113
2014	0.042597	0.847887	0.039071	0.396501
2015	-0.149305	-0.128276	0.035901	0.897930
2016	0.134838	1.295253	0.195233	0.195233
2017	-0.148262	-0.112865	0.042480	0.910138
2018	-0.315876	-1.146561	0.027714	0.251563

References

1. Dengue and Severe Dengue, Global Burden of Dengue. WHO. 2019 (Accessed 18 October, 2019, at. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.)
2. Nagpal BN, Knox TB, Risintha P, Yadav RS, Ghosh SK, Uragayala S, et al. Strengthening of vector control in South-East Asia: Outcomes from a WHO regional workshop. J Vector Borne Dis 2018;55:247-57.
3. MOH. Indonesia Health Profile 2018. Jakarta: Ministry of Health; 2018.
4. MOH. Dengue Fever Situation in Indonesia 2017. Jakarta: Ministry of Health; 2018.
5. Statistical Data 2019. Direct Foreign Tourist Arrivals to Bali. The Tourism Office of Bali Province, 2019 (Accessed 19 October, 2019, at https://disparda.baliprov.go.id/category/data-statistik-tahun-2019/)
6. Rovida F, Percivalle E, Campanini G, Piralla A, Novati S, Muscatello A, et al. Viremic dengue virus infections in travelers: potential for local outbreak in Northern Italy. J Clin Virol 2011;50:76-86.
7. Yoshikawa M. Dengue virus infection in Bali: a challenge to a popular tourist destination in Southeast Asia. J Jpn Soc Travel Health 2010;4:19-23.
8. Xu Z, Bambrick H, Yakob L, Devine G, Frentiu FD, Marina R, et al. Using dengue epipemics and local weather in Bali, Indonesia to predict imported dengue in Australia. Environ Res 2019;175:213-20.
9. Ujwal S, Sabeeha S, Bhaskar R, D’Souza G, Santhosha D, Autio A, et al. Circulation of Asian-I and Cosmopolitan genotypes of Dengue-2 virus in northeast India. 2016-2017. J Vector Borne Dis 2019;56:231-6.
10. Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kitron UD. Blood feeding patterns of mosquitoes: random or structured? Front Zool 2010;7:39.
11. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 2011;9:532-41.
12. Thai KT, Anders KL. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med 2011;236:944-54.
13. Arcari P, Tapper N, Pfueller S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr 2007;28:251-72.
14. Murray NEA, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 2013;5:299-309.
15. Yoshikawa MJ, Kusriastuti R. Surge of dengue virus infection and chikungunya Fever in Bali in 2010: the burden of mosquito-borne infectious diseases in a tourist destination. Trop Med Health 2013:2011-05.
16. Dhewantara PW, Marina R, Puspita T, Ariati Y, Purwanto E, Hananto M, et al. Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Med Infect Dis 2019;32:101437.
17. Rossita A, Witono A, Darusman T, Lestari DP, Risdiyanto I. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan. 2018:129, Indonesia.
18. Wen TH, Hsu CS, Hu MC. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics. Int J Health Geogr 2018;17:9.
19. Oyana TJ, Margai FM. Spatial Analysis, Statistics, Visualization and Computational Methods. New York: CRC Press; 2016.
20. Burattini MN, Chen M, Chow A, Coutinho F, Goh K, Lopez L, et al. Modelling the control strategies against dengue in Singapore. Epidemiol Infect 2008;136:309-19.
Dengue fever in Bali Indonesia

21. Sharmin S, Glass K, Viennet E, Harley D. Interaction of mean temperature and daily fluctuation influences dengue incidence in Dhaka, Bangladesh. PLoS Negl Trop Dis 2015;9:e0003901.

22. Sunahara T. Simulation Study of the Effects of Host Availability on Bite Rate of Aedes albopictus (Skuse)(Diptera: Culicidae) and Risk of Dengue Outbreaks in Non-Endemic Areas. Jpn J Infect Dis 2018;71:28-32.

23. Domingo E, Parrish CR, Holland JJ. Origin and evolution of viruses. New York: Elsevier; 2008.

24. Ehelepola N, Ariyaratne K, Buddhadasa W, Ratnayake S, Wickramasinghe M. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003-2012) and lessons learned. Infect Dis Poverty 2015;4:42.

25. Sharmin S, Glass K, Viennet E, Harley D. A Bayesian approach for estimating under-reported dengue incidence with a focus on non-linear associations between climate and dengue in Dhaka, Bangladesh. Stat Methods Med Res 2016;27:991-1000.

26. Liu K, Hou X, Wang Y, Sun J, Xiao J, Li R, et al. The driver of dengue fever incidence in two high-risk areas of China: A comparative study. Sci Rep 2019;9:19510.

27. Méndez-Lázaro P, Muller-Karger F, Otis D, McCarthy M, Peña-Orellana M. Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. Int J Environ Res Public Health 2014;11:9409-28.

28. da Cruz Ferreira DA, Degener CM, de Almeida Marques-Toledo C, Bendati MM, Fetzer LO, Teixeira CP, et al. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasit Vectors 2017;10:78.