RELATION BETWEEN THE DIMENSIONS OF THE
RING GENERATED BY A VECTOR BUNDLE OF
DEGREE ZERO ON AN ELLIPTIC CURVE AND A
TORSOR TRIVIALIZING THIS BUNDLE

SILKE LEKAUS

1. Introduction and Notations

Let X be a complete, connected, reduced scheme over a perfect field k. We define $\text{Vect}(X)$ to be the set of isomorphism classes $[V]$ of vector bundles V on X. We can define an addition and a multiplication on $\text{Vect}(X)$:

$$[V] + [V'] = [V \oplus V']$$
$$[V] \cdot [V'] = [V \otimes V'].$$

The (naive) Grothendieck ring $K(X)$ (see [1]) is the ring associated to the additive monoid $\text{Vect}(X)$, that means

$$K(X) = \frac{\mathbb{Z}[\text{Vect}(X)]}{H},$$

where H is the subgroup of $\mathbb{Z}[\text{Vect}(X)]$ generated by all elements of the form $[V \oplus V'] - [V] - [V']$.

The indecomposable vector bundles on X form a free basis of $K(X)$. Since $H^0(X, \text{End}(V))$ is finite dimensional, the Krull-Schmidt theorem ([3]) holds on X. This means that a decomposition of a vector bundle in indecomposable components exists and is unique up to isomorphism.

We want to generalize a theorem of M. Nori on finite vector bundles. A vector bundle V on X is called finite, if the collection $S(V)$ of all indecomposable components of $V^\otimes n$ for all integers $n \in \mathbb{Z}$ is finite. In the following, we denote by $R(V)$ the \mathbb{Q}-subalgebra of $K(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by the set $S(V)$. Thus a vector bundle V is finite if and only if the ring $R(V)$ is of Krull dimension zero.

In [1], Nori proves the following theorem:

For every finite vector bundle V on X there exists a finite group scheme G and a principal G-bundle $\pi : P \to X$, such that π^*V is trivial on P. In particular, the equality

$$\dim R(V) = \dim G (= 0)$$
holds.
As every vector bundle V on X of rank r trivializes on its associated principal $\text{GL}(r)$-bundle, we can look for a group scheme G of smallest dimension and a principal G-bundle on which the pullback of the vector bundle V is trivial. We might also compare the dimension of the group scheme to $\dim R(V)$.
In this article we consider the family of vector bundles of degree zero on an elliptic curve. We will prove in propositions 2 and 3 that they trivialize on a principal G-bundle with G a group scheme of smallest dimension one.
As in the situation of Nori’s theorem, this dimension turns out to be equal to the dimension of the ring $R(V)$.
I am grateful to Hélène Esnault for suggesting the problem treated here and for many useful discussions.

2. Dimension relation for vector bundles of degree zero on an elliptic curve

Let X be an elliptic curve over an algebraically closed field k of characteristic zero. We consider vector bundles of degree zero on X which can be classified according to Atiyah (see [2]). By $E(r, 0)$ we denote the set of indecomposable vector bundles of rank r and degree zero.

Theorem 1. (Atiyah [2])

1. There exists a vector bundle $F_r \in E(r, 0)$, unique up to isomorphism, with $\Gamma(X, F_r) \neq 0$.
 Moreover we have an exact sequence
 $\begin{align*}
 0 & \rightarrow \mathcal{O}_X \rightarrow F_r \rightarrow F_{r-1} \rightarrow 0.
 \end{align*}$

2. Let $E \in E(r, 0)$, then $E \cong L \otimes F_r$ where L is a line bundle of degree zero, unique up to isomorphism (and such that $L' \cong \det E$.)

Proposition 2.

i) The \mathbb{Q}-subalgebra $R(F_r)$ of $K(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by $S(F_r)$ is $\mathbb{Q}[x]$, where $x = [F_2]$, if r is even, and $x = [F_3]$, if r is odd. In particular, $R(F_r)$ is of Krull dimension zero.

ii) There exists a principal \mathbb{G}_a-bundle $\pi : P \rightarrow X$ such that $\pi^*(F_r)$ is trivial for all $r \geq 2$.

Remark: As in Nori’s case we have a correspondence of dimensions

$$\dim R(F_r) = \dim \mathbb{G}_a = 1.$$
Proof:
As proved by Atiyah in [2], the vector bundles \(F_r \) are self-dual and fulfill the formula
\[
F_r \otimes F_s = F_{r-s+1} \oplus F_{r-s+3} \oplus \cdots \oplus F_{(r-s)+(2s-1)} \quad \text{for } s \leq r.
\]
For even \(r \), it follows by induction that there exist integers \(a_i(n) \) such that
\[
F_r^\otimes_n = a_2(n)F_2 \oplus a_4(n)F_4 \oplus \cdots \oplus a_{(r-1)n-1}(n)F_{(r-1)n-1} \oplus F_{(r-1)n+1}
\]
for odd \(n \geq 3 \), and
\[
F_r^\otimes_n = a_1(n)O_X \oplus a_3(n)F_3 \oplus \cdots \oplus a_{(r-1)n-1}(n)F_{(r-1)n-1} \oplus F_{(r-1)n+1}
\]
for even \(n \geq 2 \).
Therefore we obtain
\[
S(F_r) = \{ F_i \mid i = 1, 2, 3, \ldots \}, \text{ if } r \text{ even,}
\]
and \(S(F_r) \) generates the subring \(\mathbb{Q}[F_2] \) of \(K(X) \otimes \mathbb{Q} \), because inductively we can write every vector bundle \(F_i \) as \(p(F_2) \) for some polynomial \(p \in \mathbb{Z}[x] \).
For odd \(r \), Atiyah’s multiplication formula gives
\[
F_r^\otimes_n = a_1(n)O_X \oplus a_3(n)F_3 \oplus \cdots \oplus a_{(r-1)n-1}(n)F_{(r-1)n-1} \oplus F_{(r-1)n+1}
\]
for all \(n \geq 2 \). It follows that
\[
S(F_r) = \{ F_i \mid i \text{ odd} \}, \text{ if } r \text{ odd.}
\]
For odd \(r \), the set \(S(F_r) \) generates the ring \(R(F_r) = \mathbb{Q}[F_3] \), as for odd \(i \) each \(F_i \) is \(p(F_3) \) for a polynomial \(p \in \mathbb{Z}[x] \).

The vector bundle \(F_2 \) is an element of \(H^1(X, GL(2, \mathcal{O})) \). Because of the exact sequence
\[
0 \rightarrow \mathcal{O}_X \rightarrow F_2 \rightarrow \mathcal{O}_X \rightarrow 0,
\]
\(F_2 \) is even an element of \(H^1(X, \mathbb{G}_a) \). Here we embed \(\mathbb{G}_a \) into \(GL(2, \mathcal{O}) \) via \(u \rightarrow \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \). Hence \(F_2 \) trivializes on a principal \(\mathbb{G}_a \)-bundle. As \(F_r = S^{r-1}F_2, r \geq 3 \), each \(F_r \) trivializes on the same principal \(\mathbb{G}_a \)-bundle as \(F_2 \).

As the classes \([F_r]\) are not torsion elements in \(H^1(X, GL(2, \mathcal{O})) \), none of the bundles \(F_r \) can trivialize on a principal \(G \)-bundle with \(G \) a finite group scheme. \(\square \)

Remark: In the given examples of vector bundles \(E \) there was so far not only a correspondence of the dimensions of the group scheme
and the ring $R(E)$. The algebra $R(E)$ was also the Hopf algebra corresponding to the group scheme. The following proposition shows that this is not true in general.

Proposition 3. Let $E \cong L \otimes F_r \in \mathcal{E}(r,0)$ (see theorem 1).

1. If L is not torsion, the ring $R(E)$ is isomorphic to $\mathbb{Q}[x, x^{-1}] \otimes \mathbb{Q}[y]$ and E trivializes on a principal $\mathbb{G}_m \times \mathbb{G}_a$-bundle.

2. If L is torsion, let $n \in \mathbb{N}, n \geq 1$, be the minimal number such that $L^\otimes n \cong \mathcal{O}_X$. If n and r are both even, the ring $R(E)$ is isomorphic to

$$\mathbb{Q}[x]/ < x^{n/2} - 1 > \otimes \mathbb{Q}[y]$$

and E trivializes on a principal $\mu_n \times \mathbb{G}_a$-bundle. There is no principal $\mu_{n/2} \times \mathbb{G}_a$-bundle where E is trivial.

If n and r are not both even, the ring $R(E)$ is isomorphic to

$$\mathbb{Q}[x]/ < x^n - 1 > \otimes \mathbb{Q}[y]$$

and E trivializes on a principal $\mu_n \times \mathbb{G}_a$-bundle.

Proof: Let $E \in \mathcal{E}(r,0)$ with $\Gamma(X, E) = 0$. (If $\Gamma(X, E) \neq 0$, then $E \cong F_r$. This case was already dealt with in proposition 2.)

First we consider the case that L is not torsion.

We must distinguish between odd and even r.

For odd r, Atiyah's multiplication formula (see proof of proposition 4) gives the following result:

For $m \in \mathbb{N}, m \geq 2$, the tensor power $E^{\otimes m} \cong L^{\otimes m} \otimes F_r^{\otimes m}$ has the indecomposable components $L^{\otimes m} \otimes \mathcal{O}_X, L^{\otimes m} \otimes F_3, \ldots, L^{\otimes m} \otimes F_{(r-1)m+1}$, the tensor power $E^{\otimes -m} \cong L^{\otimes -m} \otimes F_r^{\otimes m}$ has the indecomposable components $L^{\otimes -m} \otimes \mathcal{O}_X, L^{\otimes -m} \otimes F_3, \ldots, L^{\otimes -m} \otimes F_{(r-1)m+1}$.

Thus we obtain

$$S(E) = \left\{ \mathcal{O}_X, L \otimes F_r, L^{-1} \otimes F_r, L^{\otimes i} \otimes F_3, L^{\otimes i} \otimes F_5, \ldots, L^{\otimes i} \otimes F_{(r-1)i+1}, i \in \mathbb{N} \right\}.$$

The algebra $R(E)$ which is generated by $S(E)$ is the subalgebra of $K(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by L, L^{-1} and F_3, thus

$$R(E) = \mathbb{Q}[L, L^{-1}] \otimes_{\mathbb{Z}} \mathbb{Q}[F_3].$$

For even r, a similar computation gives that

$$S(E) = \left\{ \mathcal{O}_X, L \otimes F_r, L^{-1} \otimes F_r, L^{\otimes 2i} \otimes F_3, L^{\otimes 2i} \otimes F_5, \ldots, L^{\otimes 2i} \otimes F_{(r-1)2i+1}, i \in \mathbb{N} \\
L^{\otimes (2i+1)} \otimes F_2, L^{\otimes (2i+1)} \otimes F_4, \ldots, \\
L^{\otimes (2i+1)} \otimes F_{(r-1)(2i+1)+1}, i \in \mathbb{N} \right\}.$$
The ring $R(E)$, generated by $S(E)$, is the subring of $K(X) \otimes \mathbb{Z} \mathbb{Q}$ which is generated by the elements $L^\otimes 2$, $L^{\otimes -2}$, $L^{-1} \otimes F_2$, therefore

$$R(E) = \mathbb{Q}[L^\otimes 2, L^{\otimes -2}] \otimes \mathbb{Z} \mathbb{Q}[L^{-1} \otimes F_2].$$

If L is not a torsion bundle, it is clear that L trivializes on a principal \mathbb{G}_m-bundle P_L. The vector bundle $E \cong L \otimes F_2$ trivializes on the $\mathbb{G}_m \times \mathbb{G}_a$-bundle $P_L \times_X P$, where P is the principal \mathbb{G}_a-bundle from proposition 2, where F_2 and hence all the F_r trivialize.

Let now L be torsion and $n \in \mathbb{N}$, $n \geq 2$, the minimal number with $L^{\otimes n} \cong O_X$. As the F_r are selfdual and $L^{\otimes n-1} = L^{-1}$, it suffices to consider positive tensor powers.

Again we compute the tensor powers using Atiyah’s formula to find the indecomposable components.

If r is even and n is odd, the set $S(E)$ contains the following bundles:

$$S(E) = \{O_X, L^{\otimes i} \otimes F_j \mid i = 0, 1, \ldots, n-1, j \in \mathbb{N}\}.$$

With the help of the multiplication formula for F_2 it is easy to show that all elements of $S(E)$ can be generated by L and F_2. In addition, the relation $L^{\otimes n} \cong O_X$ holds. Hence we obtain

$$R(E) = \frac{\mathbb{Q}[L]}{< L^{\otimes n-1} >} \otimes \mathbb{Z} \mathbb{Q}[F_2].$$

If r is odd and n is even or odd, the result is

$$S(E) = \{L^{\otimes i} \otimes F_j \mid i = 0, 1, \ldots, n-1, j \in \mathbb{N} \text{ odd}\}.$$

The bundles L and F_3 are in $S(E)$ and generate all elements of $S(E)$. Because of the relation $L^{\otimes n} \cong O_X$, the algebra $R(E)$ is

$$R(E) = \frac{\mathbb{Q}[L]}{< L^{\otimes n-1} >} \otimes \mathbb{Z} \mathbb{Q}[F_3].$$

If r and n are both even

$$S(E) = \{L^{\otimes 2i} \otimes F_{2j-1}, L^{\otimes 2i+1} \otimes F_{2j} \mid i = 0, 1, \ldots, n/2, j \in \mathbb{N}\}.$$

The algebra $R(E)$ is generated by $L^{\otimes 2}$ and $L \otimes F_2$. The generators are subject to the relation $L^{\otimes n} \cong O_X$, thus

$$R(E) = \frac{\mathbb{Q}[L^{\otimes 2}]}{< (L^{\otimes 2})^{\otimes m-1} >} \otimes \mathbb{Q}[L \otimes F_2],$$

where $m = n/2$.

Recall that $n \geq 2$ is the minimal number such that $L^{\otimes n} \cong O_X$. Thus the bundle L trivializes on a μ_n-bundle P_L and not on a μ_m-torsor for $m < n$.

The bundle $E \cong L \otimes F_r$ then trivializes on the $\mu_n \times \mathbb{G}_a$-bundle $P_L \times_X P$,
where P is again the principal \mathbb{G}_a-bundle from proposition 2. We will now show that the bundle E does not trivialize on a $\mu_{n/2} \times \mathbb{G}_a$-bundle: If $E \cong L \otimes F$, trivializes on $Q \times_X P$, where Q is a μ_n-torsor and P a \mathbb{G}_a-torsor, then $\det(L \otimes F) = L$ is the identity element in the group $\text{Pic}(Q \times_X P)$. But one has $\text{Pic}(Q \times_X P) = \text{Pic}(Q)$ by homotopy invariance. Thus L must trivialize on the μ_n-torsor Q, which is impossible for $m < n$.

Remark: The correspondence between the dimension of the “minimal” group scheme and the dimension of the ring $R(E)$ also occurs in the case of vector bundles on the projective line, as one easily sees.

Let X be the complex projective line \mathbb{P}^1 and $E := \mathcal{O}(a)$ a line bundle. If $a = 0$ we have $S(E) = \{\mathcal{O}\}$ and $R(E) = \mathbb{Q}$.

We define the group scheme G to be $G = \text{Spec } \mathbb{Q}$ and the trivializing torsor is simply \mathbb{P}^1.

If $a \neq 0$ we can easily compute that $S(E) = \{\mathcal{O}(\lambda \cdot a) | \lambda \in \mathbb{Z}\}$ and $R(E) = \mathbb{Q}[x, x^{-1}]$. We define the group scheme to be $G = \mathbb{G}_m = \text{Spec } \mathbb{Q}[x, x^{-1}]$.

The given line bundle E trivializes on a principal \mathbb{G}_m-bundle P_a, which depends on a.

Thus we get the correspondence of $\dim R(E)$ and $\dim G$ in the case of a line bundle on \mathbb{P}^1. This computation can easily be generalized to the case of vector bundles of higher rank. We illustrate this for bundles of rank two.

Let now E be a vector bundle of rank 2 on \mathbb{P}^1, $E = \mathcal{O}(a) \oplus \mathcal{O}(b)$.

The case $(a, b) = (0, 0)$ is trivial. We can see at once that $S(E) = \{\mathcal{O}\}$ and therefore $R(E) = \mathbb{Q}$.

The vector bundle E trivializes on the principal $\text{Spec } \mathbb{Q}$-bundle \mathbb{P}^1.

If $(a, b) \neq (0, 0)$ the computation gives that $S(\mathcal{O}(a) \oplus \mathcal{O}(b)) = S(\mathcal{O}(c))$, where $c = (a, b)$ (with $(a, 0) = a$ and $(0, b) = b$) and therefore $R(E) = \mathbb{Q}[x, x^{-1}]$. E trivializes on the principal \mathbb{G}_m-bundle P_c that belongs to $\mathcal{O}(c)$ as $\mathcal{O}(a) = \mathcal{O}(c)^\lambda$ and $\mathcal{O}(b) = \mathcal{O}(c)^\mu$ for appropriate integers λ and μ.

References

[1] Nori, M.V.: On the representations of the fundamental group, Compositio Mathematica 33, Fasc. 1, 1976, 29-41

[2] Atiyah, M.F.: Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7, 1957, 414-452

[3] Atiyah, M.F.: On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84, 1956, 307-317
FB 6 - Mathematik, Universität Essen, 45117 Essen, Germany
E-mail address: silke.lekaus@uni-essen.de