Phase Transitions for One-Dimensional Lorenz-Like Expanding Maps

Márcio Gouveia · Juliano G. Oler

Received: 29 September 2021 / Accepted: 29 July 2022 / Published online: 25 August 2022
© Sociedade Brasileira de Matemática 2022

Abstract
Given an one-dimensional Lorenz-like expanding map we describe a class \mathcal{A} of potentials $\phi : [0, 1] \to \mathbb{R}$ admitting at most one equilibrium measure and we construct a family of continuous but not weak-Hölder continuous potentials for which we observe phase transitions. This give a certain generalization of the results proved in Pesin and Zhang (J Stat Phys 122(6):1095–1110, 2006), where the authors have proved this for a smaller class of potentials, that is, for uniformly expanding maps and weak-Hölder continuous potentials. Indeed, the class \mathcal{A} form an open and dense subset of $C([0, 1], \mathbb{R})$, with the usual C^0 topology.

Keywords Equilibrium measure · Lorenz maps

Mathematics Subject Classification Primary 37D25; Secondary 37D30 · 37D20

Contents

1 Introduction .. 1404
Organization .. 1407
2 Background and Preliminary Results 1407
2.1 One-Dimensional Lorenz-Like Expanding Map 1407
2.2 Birkhoff Averages Properties 1408
2.3 Topological Pressure 1410
2.4 Countable Markov Subshifts 1411
3 Proof of Theorem A .. 1412
3.1 Proof of Theorem A 1417
4 Proof of Theorem B .. 1418

Juliano G. Oler
jgoler@ufu.br

Márcio Gouveia
mra.gouveia@unesp.br

1 IBILCE-UNESP, S. J. Rio Preto, São Paulo CEP 15054-000, Brazil
2 FAMAT-UFU, Uberlândia, Minas Gerais CEP 38400-902, Brazil
1 Introduction

An one-dimensional Lorenz-like expanding map is a map $\ell : [0, 1]\setminus \{d\} \to [0, 1]$, where $d \in (0, 1)$ is the discontinuity point, together with a “partition” $\mathcal{P} = \{(0, d), (d, 1)\}$. The boundary of such a system is $\mathcal{P} = \{(0, d), (d, 1)\}$ (see, Sect. 2.1, for more details).

Let $\phi : [0, 1] \to \mathbb{R}$ be a continuous function. As d is a point of discontinuity of ℓ we could define alternatively $\phi : [0, 1]\setminus \{d\} \to \mathbb{R}$ so that $\phi(d^+) = \lim_{x \to d^+} \phi(x)$ and $\phi(d^-) = \lim_{x \to d^-} \phi(x)$ but for convenience, we consider ϕ defined at $[0, 1]$. A Borel invariant measure μ_ϕ is called an equilibrium state for system (ℓ, ϕ) if it is solution of the equation

$$P_{\text{top}}(\ell, \phi) = \sup \left\{ h_\mu(\ell) + \int_{[0,1]} \phi \, d\mu \mid \mu \in \mathcal{M}_{\text{inv}}(\ell) \right\},$$

where $P_{\text{top}}(\ell, \phi)$ denotes the topological pressure of (ℓ, ϕ) (see Sect. 2.3 for more details for pressure) and the supremum is taken over all Borel invariant probability measures. We denote by $H^\gamma([0, 1], \mathbb{R})$, the set of Hölder-continuous potential, where by an element belonging to $H^\gamma([0, 1], \mathbb{R})$ we mean a function $\phi : [0, 1] \to \mathbb{R}$ satisfying $|\phi(x) - \phi(y)| \leq K|x - y|^\gamma$, for all $x, y \in [0, 1]$, and some constants $\gamma > 0$, $0 < K < \infty$.

In Bronzi and Oler (2018) using the results Buzzi and Sarig (see Buzzi and Sarig 2003) the authors proved that if

$$\max \left\{ \limsup_{n \to \infty} \frac{1}{n}(S_n\phi)(0), \limsup_{n \to \infty} \frac{1}{n}(S_n\phi)(1) \right\} < P_{\text{top}}(\phi, \ell)$$

then ϕ admits a unique equilibrium measure. The proof of this result is obtained by noting that the system is a particular case of topologically transitive countable Markov shifts. At this point, it is natural for us to ask the following question.

Question 1 Is there a class of potentials admitting a unique equilibrium measure which is larger than the class of Hölder continuous potentials?

Let $V_n(\phi)$ be given $V_n(\phi) = \sup_{x, y \in C_n} \{|\phi(x) - \phi(y)|\}$ where C_n are cylinders defined by partition \mathcal{P} (see, Sect. 2.1, for more details). We consider $WH^\gamma([0, 1], \mathbb{R})$ the set of functions $\phi : [0, 1] \to \mathbb{R}$ satisfying

$$V_n(\phi) \leq A\gamma^n, \text{ for all } n \geq 1$$

with $A > 0$ and $0 < \gamma < 1$. An element $\phi \in WH^\gamma([0, 1], \mathbb{R})$ we call a weak-Hölder-continuous potential.
In this context, Pesin and Zhang (2006) gave a positive answer to this question. More precisely, authors describe a large class of potentials (denoted by \mathcal{H}) admitting unique equilibrium measures. This class \mathcal{H} includes all Hölder continuous potentials but goes far beyond them, i.e., $WH^\gamma([0,1],\mathbb{R}) \subset \mathcal{H}$.

The first goal here is to build a class of potentials, admitting the unique equilibrium measure, substantially larger than the class of potentials \mathcal{H} studies by Pesin and Zhang (2006). Such a class we want to build we will denote by \mathcal{A}. More precisely, we say that $\phi \in qWH^\gamma([0,1],\mathbb{R})$ is quasi-weak-Hölder-continuous if there exists $0 < \gamma < 1$ such that for all $n \geq 1$, $V_n(\phi) \leq A(n)\gamma^n$, for all $n \geq 1$, where A is a function depending on n and satisfying $0 < \lim_{n \to \infty} \frac{A(n+1)}{A(n)} < L$, for some positive constant L.

Observe that $WH^\gamma([0,1],\mathbb{R}) \subset qWH^\gamma([0,1],\mathbb{R})$. In this context, defining the set $\mathcal{A} = \{ \phi : [0,1] \to \mathbb{R} | \phi \in qWH^\gamma([0,1],\mathbb{R})$ and $P_{top}(\phi, \partial \mathcal{P}, \ell) < P_{top}(\phi, \ell) \}$

we announce our first theorem.

Theorem A Let $\ell : [0,1] \setminus \{d\} \to [0,1]$ be an one-dimensional Lorenz-like expanding map and consider $\phi \in \mathcal{A}$. Then ϕ admits a unique equilibrium measure.

We say that $\phi \in SV([0,1],\mathbb{R})$ has summable variation if

$$\sum_{n \geq 2} V_n(\phi) < +\infty.$$ We define $\Phi : \Sigma(\ell) \to \mathbb{R}$ by $\Phi(C) = \lim_{n \to \infty} \inf (\phi(C_n))$, where $\phi : [0,1] \to \mathbb{R}$ is a continuous potential. The proof of Theorem A is based on a reduction to the symbolic dynamics σ of ℓ (see Sect. 2.4). First we show that if ϕ is a continuous potential then ϕ satisfies condition (1.1). Next, we show that Φ satisfies $\sup_{\Sigma(\ell)}(\Phi) < \infty$, $P(\Phi, \sigma) < \infty$ and $\sum_{n \geq 0} V_n(\Phi) < \infty$, where $\sup_{\Sigma(\ell)}(\Phi) = \sup \{|\Phi(C)| : C \in \Sigma(\ell)\}$. Thus by Theorem 2.2, (σ, Φ) admits a unique equilibrium measure. To complete the proof of Theorem A, we apply the Proposition 2.2 in order to obtain a map π which is bi-measurable, injective, surjective and satisfies $\pi \circ \sigma = \ell \circ \pi$. Next, to finish the proof, it is enough to observe that if $\phi \in \mathcal{A}$, then $\phi \in SV([0,1],\mathbb{R})$.

Recall that in Pesin and Zhang (2006), based on Sarig’s results (see Sarig 2001), constructed a family of continuous (but not Hölder continuous) potentials φ_c exhibiting phase transitions, i.e., there exists a critical value $c_0 > 0$ such that for every $0 < c < c_0$ there is a unique equilibrium measure for φ_c which is supported on $(0,1]$ and for $c > c_0$ the equilibrium measure is the Dirac measure at 0. Here we also build a family of continuous potentials (but not Hölder continuous and not weak-Hölder continuous) $\phi_t \in \mathcal{A}$ where the phase transition phenomenon occurs. With this in mind we can establish our second result as follow.
Theorem B There exists a critical value $t_1 > 0$ such that the family of continuous potentials $\phi_t \in \mathcal{A}$ such that $\phi_t \notin (H^\alpha([0, 1], \mathbb{R}) \cap WH^\gamma([0, 1], \mathbb{R}))$ presents phase transitions, i.e:

1. if $t \in (-\infty, t_1)$, then there are at least two equilibrium measures for ϕ_t. The Dirac measure at p_k^+ and p_k^- are the equilibrium states;
2. if $t = t_1$, then there is no equilibrium state for ϕ_{t_1};
3. if $t \in (t_1, \infty)$, then there is a unique equilibrium measure for ϕ_t. This measure is supported on $(0, 1)$.

To prove Theorem B, we first define the one-parameter family of functions $\phi_t : [0, 1] \to \mathbb{R}$, by

$$
\phi_t(x) = \begin{cases}
\frac{1}{[r(1 - \log(x))]^n}, & x \in \left[\bigcup_{n=0}^{\infty} \mathcal{C}_n\right] - \{0\} \\
0, & x = 0,
\end{cases}
$$

for all $t \in (t_0, +\infty)$, and some fixed $t_0 > 0$. Next, using the definition of Hölder-continuous and weak-Hölder-continuous potentials we show that we cannot find a parameter t, such that $\phi_t \in (H^\alpha([0, 1], \mathbb{R}) \cap WH^\gamma([0, 1], \mathbb{R}))$. Finally, the phenomenon of phase transitions occurs when we study the properties of $P_{\text{top}}(\ell, \phi)$.

We have already seen that \mathcal{A} contains a large amount of continuous potentials that have a single equilibrium measure, but they are not Hölder neither weak-Hölder continuous. One of the main objectives of the theory of dynamic systems has been to study the typical properties of a system. Such studies can be directed toward understanding and discovering dynamic properties from both topological and ergodic points of view, whose are satisfied for a “large” set of dense or residual systems. In [2] the authors proved that if ℓ is an one-dimensional Lorenz-like expanding map and considering $H^\alpha([0, 1], \mathbb{R})$ with the usual C^0 topology, than there exists an open and dense subset \mathcal{H}_0 of $H^\alpha([0, 1], \mathbb{R})$ such that each $\phi \in \mathcal{H}_0$ admits exactly one equilibrium state. In this context we can establish our third theorem which can be seen as a generalization of Bronzi and Oler’s result from Bronzi and Oler (2018).

Theorem C Let $\ell : [0, 1]\{d\} \to [0, 1]$ be an one-dimensional Lorenz-like expanding map and consider $\mathcal{A} \subset C([0, 1], \mathbb{R})$ as defined at (1.2). Then \mathcal{A} is an open and dense set, in the C^0 topology.

The basic idea in order to prove Theorem C is to consider

$$
\mathcal{A} = S(\phi) \cap D(\phi),
$$

where

$$
S(\phi) = \left\{ \phi \in C([0, 1], \mathbb{R}) \mid \sum_{n \geq 2} V_n(\phi) < \infty \right\}.
$$
and

\[D(\phi) = \{ \phi \in C([0, 1], \mathbb{R}) \mid P_{top}(\phi, \partial P, \ell) < P_{top}(\phi, \ell) \} . \]

In order to prove that \(A \) is open and dense in \(C([0, 1], \mathbb{R}) \) it is enough to show that \(S(\phi) \) and \(D(\phi) \) are open and dense in \(C([0, 1], \mathbb{R}) \). By Theorem A in Bronzi and Oler (2018), \(D(\phi) \) is open and dense in \(C([0, 1], \mathbb{R}) \). Thus we only need to show that \(S(\phi) \) is open and dense in \(C([0, 1], \mathbb{R}) \).

Organization

In Sect. 2 we review some standard facts about one-dimensional Lorenz-like expanding map and equilibrium states. Sect. 3 is dedicated to the proof of Theorem A. Theorem B is proved in Sect. 4. Section 5 is devoted to proof Theorem C.

2 Background and Preliminary Results

2.1 One-Dimensional Lorenz-Like Expanding Map

Lorenz maps originally arise from the study of geometric models for the Lorenz equations (Guckenheimer 1976; Guckenheimer and Williams 1979; Lorenz 1963; Sparrow 1982; Williams 1979). This model induces an one-dimensional Lorenz-like expanding map. Here we are considering the maps studied by Glendinning (1990).

Definition 2.1 An one-dimensional Lorenz-like expanding map is a function \(\ell : [0, 1] \to [0, 1] \) satisfying the following properties:

1. \(\ell \) has a unique discontinuity at \(x = d \) and \(\ell(d^+) = \lim_{x \to d^+} \ell(x) = 0, \ell(d^-) = \lim_{x \to d^-} \ell(x) = 1; \)
2. For any \(x \in [0, 1]\setminus\{d\} \), \(\ell'(x) > \sqrt{2} \)
3. Each inverse branch of \(\ell \) extends to a \(C^{1+\theta} \) function on \([\ell(0), 1]\) or on\([0, \ell(1)]\), for some \(\theta > 0 \), and if \(g \) denotes any of these inverse branches, then \(g'(x) \leq \lambda < 1 \) (Fig. 1).

We denote by \(\mathcal{P} \) the natural partition of \([0, 1]\setminus\{d\} \), i.e., \(\mathcal{P} = \{(0, d), (d, 1)\} \). The boundary of \(\mathcal{P} \) is \(\partial \mathcal{P} := \{0, d, 1\} \). Also, we define

\[\mathcal{P}^{(n)} = \{C_n = P_0 \cap L^{-1}(P_1) \cap \cdots \cap L^{-n+1}(P_{n-1}) \neq \emptyset \mid P_i \in \mathcal{P}\}. \]

In order to find a periodic point for an one-dimensional Lorenz-like expanding map we define \(C^{\pm}_{n} \) and \(C^{-}_{n} \) as the cylinders on the right and left hand side of the discontinuity \(d \), respectively, i.e., \(d \in \partial C^{\pm}_{n} \). For this purpose we introduce an auxiliary family \(A_{n} \) by recursively as follows: let \(A_{0} := (d, 1) \),

\[\text{if } d \notin T^i(A_0) \text{ we define } A_i = T(A_{i-1}) \text{ for each } 0 < i \leq n - 1 \]

or
Fig. 1 One-dimensional Lorenz-like expanding map

\[
\begin{align*}
\text{if } d \in T^i(A_0) \text{ we define } & \quad \begin{cases}
A_n = T^n(A_0), \\
A_{n+1} = T^n(A_n^*),
\end{cases} \\
\text{where } A_n^* & \text{ is the connected component of } A_n \setminus \{d\} \text{ which contains } T^n(d^+).
\end{align*}
\]

Definition 2.2 (see Bronzi and Oler 2018; Graczyk and Swipolhk atek 1998) An integer \(N \) is a cutting time for \(T \) if \(d \in AN \).

We show that there are sequences of integers \(\{N_k^{\pm}\}_{k \in \mathbb{N}} \) and sequences of periodic points \(\{p_k^{\pm}\} \) such that \(p_k^{\pm} \rightarrow d^\pm \), where \(d^\pm \in \partial C_{N_k^{\pm}} \), and \(\ell_{N_k^{\pm}}(p_k^{\pm}) = p_k^{\pm} \) with \(p_k^{\pm} \in C_{N_k^{\pm}}, \forall k \geq 1 \). Moreover, we show that \(P(\phi, \partial \mathcal{P}, \ell) \) can be calculated by the average of \(p_k^{\pm} \).

Lemma 2.1 (see Bronzi and Oler 2018) For every \(k \in \mathbb{N} \) there exist \(p_k^{\pm} \in C_{N_k^{\pm}} \) such that \(\ell_{N_k^{\pm}}(p_k^{\pm}) = p_k^{\pm} \).

2.2 Birkhoff Averages Properties

Given a map \(\phi \in C([0, 1], \mathbb{R}) \), we have a notion of Birkhoff averages defined by

\[
(S_n\phi)(x) = \phi(x) + \phi(\ell(x)) + \cdots + \phi(\ell^{n-1}(x)) = \sum_{j=1}^{n-1} \phi(\ell^j(x)).
\]

Lemma 2.2 Let \(\ell : [0, 1]\setminus\{d\} \to [0, 1] \) be an one-dimensional Lorenz-like expanding map and \(\phi : [0, 1] \to \mathbb{R} \) a continuous map. Then there exists a constant \(C > 0 \) such that

\[
\left| \frac{1}{n} ((S_n\phi)(x) - (S_n\phi)(y)) \right| \leq C,
\]

for all \(x, y \in [0, 1] \).
Proof Note that, \(\phi \) is bounded. Then \(\frac{1}{n} \left| (S_n \phi)(x) - (S_n \phi)(y) \right| \leq 2|\phi|_\infty \), for all \(x, y \in [0, 1] \). Thus, it is sufficient to consider \(C = 2|\phi|_\infty \) where \(|\phi|_\infty \) is the norm of supremum.

As \(\ell \) is not continuous in \(d \in [0, 1] \) we make the following convention: \(S_n \phi(d^+) \) is the right-hand side limit of the function \(S_n \phi(z) \) at \(d \) and \(S_n \phi(d^-) \) is the left-hand side limit of \(S_n \phi(z) \) at \(d \). More precisely, for any \(n \in \mathbb{N} \) we define

\[
S_n \phi(d^\pm) = \lim_{z \to d^\pm} \sum_{i=0}^{n-1} \phi(\ell^i(z)).
\]

By definition \(\ell(d^+) = 0 \) and \(\ell(d^-) = 1 \), so we conclude that:

\[
\lim_{n \to \infty} \frac{1}{n} S_n \phi(d^+) = \lim_{n \to \infty} \frac{1}{n} S_n \phi(0) \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} S_n \phi(d^-) = \lim_{n \to \infty} \frac{1}{n} S_n \phi(1).
\]

The following Lemma 2.3 guaranties that the above relations are well defined.

Lemma 2.3 (see Bronzi and Oler 2018) Let \(\ell : [0, 1] \setminus \{d\} \to [0, 1] \) be an one-dimensional Lorenz-like expanding map and consider \(\phi \in H^\gamma ([0, 1], \mathbb{R}) \).

(i) If does not exist \(n_0 \in \mathbb{N} \) such that \(\ell^{n_0}(0) = d \), then

\[
\lim_{n \to \infty} \frac{1}{n} S_n \phi(d^+) = \lim_{n \to \infty} \frac{1}{n} S_n \phi(0).
\]

(ii) If there exists \(n_0 \in \mathbb{N} \) such that \(\ell^{n_0}(0) = d \), then

\[
\lim_{n \to \infty} \frac{1}{n} S_n \phi(d^+) = \frac{1}{n_0} S_{n_0} \phi(0).
\]

The same conclusion holds for \(d^- \) replacing 0 for 1.

Remark 2.1 From now on we use \(\lim_{n \to \infty} \frac{1}{n} S_n \phi(0) \) or \(\lim_{n \to \infty} \frac{1}{n} S_n \phi(1) \) to refer one of the items in the above Lemma 2.3.

Lemma 2.4 Let \(\ell : [0, 1] \setminus \{d\} \to [0, 1] \) be an one-dimensional Lorenz-like expanding map and a potential \(\phi \in C([0, 1], \mathbb{R}) \). If \(N_k^+ \in \mathbb{N} \) is such that \(d \in \partial C_{N_k^+}, p_k^+ \in C_{N_k^+} \) and \(\ell^{N_k^+}(p_k^+) = p_k^+ \), then

\[
\lim_{k \to \infty} \frac{1}{N_k^+} S_{N_k^+} \phi(p_k^+) = \lim_{n \to \infty} \frac{1}{n} S_n \phi(0).
\]

If \(N_k^- \in \mathbb{N} \) is such that \(d \in \partial C_{N_k^-}, p_k^- \in C_{N_k^-} \) and \(\ell^{N_k^-}(p_k^-) = p_k^- \), then

\[
\lim_{k \to \infty} \frac{1}{N_k^-} S_{N_k^-} \phi(p_k^-) = \lim_{n \to \infty} \frac{1}{n} S_n \phi(1).
\]
2.3 Topological Pressure

According to Buzzi and Sarig (2003), the pressure of a subset \(S \subset [0, 1] \) and a potential \(\phi \in C([0, 1], \mathbb{R}) \) is defined by

\[
P_{\text{top}}(\phi, S, \ell) = \limsup_{n \to \infty} \frac{1}{n} \log \left(\sum_{C_n \in \mathcal{P}(n) : S \cap C_n \neq \emptyset} \sup_{x \in C_n} e^{S_n \phi(x)} \right),
\]

where the Birkhoff average is well defined.

The topological pressure of \(\ell \) for \(\phi \in C([0, 1], \mathbb{R}) \) is defined by

\[
P(\phi, \ell) = P_{\text{top}}(\phi, [0, 1], \ell).
\]

Corollary 2.1 Let \(\ell : [0, 1] \setminus \{d\} \to [0, 1] \) be an one-dimensional Lorenz-like expanding map, \(\phi \in C([0, 1], \mathbb{R}) \), and

\[
M(\phi, \ell) = \max \left\{ \limsup_{n \to \infty} \frac{1}{n} (S_n \phi)(0), \limsup_{n \to \infty} \frac{1}{n} (S_n \phi)(1) \right\}.
\]

Then there exists a constant \(C > 0 \) such that

\[
M(\phi, \ell) - C \leq P_{\text{top}}(\phi, \partial \mathcal{P}, \ell) \leq M(\phi, \ell) + C.
\]

Proof We just use Lemma 2.2 and make the superficial modifications to the proof of Proposition 3.1 of Bronzi and Oler (2018).

Proposition 2.1 (see Buzzi and Sarig 2003) Consider \(\ell \) a piecewise expanding Lorenz-like map and a piecewise uniformly continuous potential \(\phi \). Let \(\nu \) be an ergodic probability measure. If \(\nu(S) > 0 \), then

\[
P_{\text{top}}(\phi, S, \ell) \geq h_{\nu}(\ell) + \int \phi \, d\nu,
\]

where \(h_{\nu}(\ell) \) is the metric entropy of \(\nu \).

Furthermore, let \(\mathcal{M}_{\ell}([0, 1]) \) denote the collection of \(\ell \)-invariant Borel probability measures on \([0, 1]\). A measure \(\mu_{\phi} \in \mathcal{M}_{\ell}([0, 1]) \) is called an equilibrium state for \(\phi \) if

\[
\sup_{\mu \in \mathcal{M}_\ell([0,1])} \left\{ h_{\mu}(\ell) + \int \phi \, d\mu \right\} = h_{\mu_{\phi}}(\ell) + \int \phi \, d\mu_{\phi}.
\]

Theorem 2.1 (Buzzi and Sarig 2003) Let \(\ell : [0, 1] \setminus \{d\} \to [0, 1] \) be an one-dimensional Lorenz-like expanding map be a piecewise expanding map such that for all non-empty open sets \(U \) we have \(\ell([0, 1]) \subset \bigcup_{k \geq 0} \ell^k(U) \), and consider a potential \(\phi \in C([0, 1], \mathbb{R}) \) satisfying \(P_{\text{top}}(\phi, \partial \mathcal{P}, \ell) < P_{\text{top}}(\phi, \ell) \). Then \(P_{\text{top}}(\phi, \ell) = \sup_{\mu \in \mathcal{M}_\ell([0,1])} \left\{ h_{\mu}(\ell) + \int \phi \, d\mu \right\} \) and there is a unique measure equilibrium state for potential \(\phi \).
2.4 Countable Markov Subshifts

Here we follow the notations, definitions and results of Buzzi and Sarig (2003). Let \(\text{dom}(\ell^n) \subset [0, 1] \) denote the domain of definition of \(\ell^n \). The symbolic dynamics of \(((0, 1), P, \ell)\) is the left-shift \(\sigma \) defined on the set:

\[
\Sigma(\ell) = \left\{ P = (P_0, P_1, \ldots) \in P^{\mathbb{N} \cup \{0\}} \mid \exists n \geq 0, x \in \text{dom}(\ell^n) \text{ and } \ell^n(x) \in P_n \right\},
\]

where \(\left\{ \cdot \right\} \) denotes the closure in the compact space \(P^{\mathbb{N} \cup \{0\}} \). We using the cylinder notation \(C_n = \bigcap_{i=0}^{n} \ell^{-i}(P_i) \). For all \(C \in \Sigma(\ell) \), the map \(\pi : \Sigma(\ell) \rightarrow [0, 1] \) is defined by \(\pi(C) = \bigcap_{n \geq 0} C_n \). Indeed, we define \(\Phi : \Sigma(\ell) \rightarrow \mathbb{R} \) to be \(\Phi(C) = \lim_{n \rightarrow \infty} \inf (\phi(C_n)) \), where \(\phi : [0, 1] \rightarrow \mathbb{R} \) is continuous potential. As \(\ell \) is piecewise expanding, \(\pi \) and \(\Phi \) are well defined.

Proposition 2.2 (see Buzzi and Sarig 2003) Define \(\Delta = (\pi^{-1}(\partial P)) \). If \(P_{top}(\phi, \partial P, \ell) < P_{top}(\phi, \ell) \) then

\[
\pi : \Sigma(\ell) \setminus \left\{ \bigcup_{k \geq 0} \sigma^k(\Delta) \right\} \rightarrow [0, 1] \setminus \left\{ \bigcap_{k \geq 0} \ell^{-k}(\partial P) \right\}
\]

is a measure-theoretic isomorphism and satisfies \(\pi \circ \sigma = \ell \circ \pi \).

A shift invariant probability measure \(m \) is called an equilibrium measure for \(\Phi : \Sigma(\ell) \rightarrow \mathbb{R} \) if \(h_m(\sigma) + \int \Phi \, dm \) is well defined and maximal. The Gurevich pressure of \(\Phi \) is given by

\[
P_{G}(\Phi, \sigma) = \lim_{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{\sigma^n(x) = x} e^{(S_n \Phi_n)(x)} [a](x) \right),
\]

where \(a \in S \) is fixed, \([a] = \{ x \in \Sigma : x_0 = a \} \) and \((S_n \Phi) = \sum_{i=0}^{n} \Phi \circ \sigma^i \).

Let \(P_\sigma(\Sigma) \) denote the collection of \(\sigma \)-invariant Borel probability measure on \(\Sigma \). The pressure of \(m \in P_\sigma(\Sigma) \) is given by \(P_m(\Phi, \sigma) = h_m(\sigma) + \int \Phi \, dm \). Note that this is not always well-defined, \(\Phi \) might not be integrable, or it might happen that \(h_m(\sigma) = +\infty \) and \(\int \Phi \, dm = -\infty \). If \(\sigma \) is topologically mixing and \(\sup(\Phi) < \infty \), then

\[
P(\Phi) = \sup \{ P_m(\Phi) : m \in P_\sigma(\Sigma), \ P_m(\Phi) \text{ is well defined} \}.
\]

The condition \(\sup_{\Sigma(\ell)}(\Phi) < \infty \) guarantees that \(\int \Phi \, dm \) is well defined (possibly infinite), so the well defined condition reduces to a preclusion of the \(m \) for which \(h_m(\sigma) = \infty \) and \(\int \Phi \, dm = -\infty \). In this the authors prove the following:
Theorem 2.2 (see Buzzi and Sarig 2003) Let \((\Sigma, \sigma)\) be a topological transitive countable Markov shift and suppose \(\Phi: \Sigma \to \mathbb{R}\) satisfies \(\sup_{\omega \in \Sigma(\ell)} \Phi < \infty\), \(P(\Phi, \sigma) < \infty\) and \(\sum_{n \geq 0} V_n(\Phi) < \infty\). Then there exists at most one invariant probability measure \(m\) such that \(\int \Phi \, dm\) is well defined and maximal.

3 Proof of Theorem A

We have divided the proof into a sequence of propositions, lemmas and corollaries.

Proposition 3.1 Let \(\ell : [0, 1] \setminus \{d\} \to [0, 1]\) be an one-dimensional Lorenz-like expanding map and consider \(\phi : [0, 1] \to \mathbb{R}\) a continuous potential. Then \(\phi\) satisfies \(P_{\text{top}}(\phi, \partial P, \ell) < P_{\text{top}}(\phi, \ell)\).

Proof Let \(\phi \in C([0, 1], \mathbb{R})\), be a continuous potential. The function \(\phi_k^\pm\) is defined by \(\phi_k^\pm(x) = \phi(x) + \phi_0^\pm(x)\), for all \(x \in \mathcal{P}\), where the behavior of the family \(\phi_0^\pm\) is defined as follows. Recall that by Corollary 2.1, there exists a subsequence \(N_k^\pm \to \infty\) such that \(d \in \partial C_{N_k^\pm}, p_k^\pm \in C_{N_k^\pm}\) and \(\ell^N(p_k) = p_k^\pm\). Let \(I_j^\pm = (\ell^j(p_k^\pm) - \delta_k^\pm, \ell^j(p_k^\pm) + \delta_k^\pm)\) be intervals, where \(0 \leq j \leq N_k^\pm - 1\). Since the orbit of \(p_k^\pm\) is a finite set, there exists \(\delta_k^\pm > 0\) such that \(I_i^\pm \cap I_j^\pm = \emptyset\), for all \(0 \leq j < i \leq N_k^\pm - 1\) with \(i \neq j\). Fix \(\delta_k^\pm > 0\) and consider a periodic point \(p_k^\pm \in [0, 1]\) with period \(N_k^\pm\), of the one-dimensional Lorenz-like expanding map \(\ell\).

The function \(\phi_{j,k}^\pm\) is defined by

\[
\phi_{j,k}^\pm(x) = \begin{cases}
-1 \left(\frac{x - \ell^j(p_k^\pm) + \delta_k^\pm)(x - \ell^j(p_k^\pm) - \delta_k^\pm)}{(x - \ell^j(p_k^\pm) + \delta_k^\pm)(x - \ell^j(p_k^\pm) - \delta_k^\pm)}\right), & x \in I_j^\pm \\
0, & x \in (I_j^\pm)^c,
\end{cases}
\]

for all \(j \in \{0, 1, \ldots, N_k^\pm - 1\}\) and \(x \in [0, 1]\). Here for simplicity of notation, we write \(M = \exp\left(\frac{1}{\delta_k^\pm}\right)\). Note that for each \(j \in \{0, 1, \ldots, N_k^\pm - 1\}\), \(\ell^j(p_k^\pm)\) is a maximum local point of \(\phi_{j,k}\) in \(I_{j,k}\) and \(\phi_{j,k}(\ell^j(p_k^\pm)) = M\).

Let \((a_n)\) be a sequence of real numbers such that \(a_n\) tends monotonically to zero and \(\frac{1}{n} \sum_{j=0}^{\infty} a_j < \infty\) (e. g \(a_n = \frac{1}{n}\)). In this way we construct \(\phi_{j,k}^\pm\) by

\[
\phi_{j,k}^\pm(x) = \begin{cases}
a_j M \cdot \phi_j(x), & x \in I_j^\pm \\
0, & x \in (I_j^\pm)^c.
\end{cases}
\]

Observe that the largest value assumed by \(\phi_{j,k}^\pm\) on \(I_j\) is \(a_j\). Finally we define
\[
\phi_0^\pm(x) = \begin{cases}
\sum_{j=1}^{N_k^\pm-1} \phi_{j,k}^\pm(x), & x \in \bigcup_j I_j^\pm \\
0, & x \in \left(\bigcup_j I_j^\pm \right)^c
\end{cases}
\]

Remark 3.1 As the map \(\phi_0^\pm\) is \(C^\infty\) we have that \(\phi_k^\pm\) is uniformly continuous. Indeed, as each \(\phi_{j,k}\) is built on the orbit of the periodic point \(p_k^\pm\), we have \(\phi_k^\pm(\ell (p_k^\pm)) = \sum_{j=0}^{N_k^\pm-1} a_j\). Now by definition \(\phi_k^\pm(x) = \phi(x) + \phi_0^\pm(x)\), have that \(S_n \phi_k^\pm(x) = S_n \phi(x) + S_n \phi_0^\pm(x)\). Thus,

\[
S_n \phi_k^\pm(p_k^\pm) = S_n \phi(p_k^\pm) + \sum_{j=0}^{N_k^\pm-1} a_j.
\]

By Proposition 2.1 and Lemma 2.4, we have

\[
P_{top}(\phi, S, \ell) = \max \left\{ \limsup_{k \to \infty} \frac{1}{N_k^+} S_{N_k^+} \phi(p_k^+) + \limsup_{k \to \infty} \frac{1}{N_k^-} S_{N_k^-} \phi(p_k^-) \right\}.
\] (3.1)

where \(p_k^+ \in C_{N_k^+}, p_k^- \in C_{N_k^-}\) are such that \(\ell^N_k(p_k^+) = p_k^+, \ell^N_k(p_k^-) = p_k^-\) and \(d \in \partial C_{N_k^+} \cap \partial C_{N_k^-}\).

First we consider \(k\) fixed. Considering \(C_{N_k^+} \in \mathcal{P}(N_k^+ - 1)\) as in Corollary 2.1, then there exists \(p_k^+ \in C_{N_k^+}\) such that \(\ell^N_k(p_k^+) = p_k^+.\) Furthermore one can construct a measure \(\mu_k^+(\cdot) = \left(\frac{1}{N_k^+} \sum_{j=0}^{N_k^+ - 1} \delta_{\ell^j(p_k^+)}(\cdot) \right)\), where \(\delta_{\ell^j(p_k^+)}\) is the Dirac measure with \(\delta_{\ell^j(p_k^+)}(\ell^j(p_k^+)) = 1, j \in \{0, 1, \ldots, N_k^+ - 1\}\). As \(\mu_k^+(C_{N_k}) > 0\) by Proposition 2.1 we have

\[
P_{top}(\phi_k^+, \ell) \geq P_{top}(\phi_k^+, C_{N_k^+}, \ell) \geq h_{\mu_k^+}(\ell) + \int \phi_k^+ d\mu_k^+
\]

\[
= \frac{1}{N_k^+} \left(\sum_{j=0}^{N_k^+ - 1} \phi_k^+(\ell^j(p_k^+)) \right) + \frac{1}{N_k^-} \left(\sum_{j=0}^{N_k^- - 1} \phi_0^+(\ell^j(p_k^+)) \right)
\]

\[
= \frac{1}{N_k^+} \left(\sum_{j=0}^{N_k^+ - 1} (\phi(\ell^j(p_k^+)) + \phi_0^+(\ell^j(p_k^+))) \right) + \frac{N_k^- - 1}{N_k^-} \left(\sum_{j=0}^{N_k^- - 1} (\phi_0^+(\ell^j(p_k^+))) \right)
\]

\[\square\ Springer\]
\[
= \frac{1}{N_k^+} S_N \phi(p_k^+) + \frac{1}{N_k^+} \left(\sum_{j=0}^{N_k^+ - 1} \phi_0^+ (\ell^j (p_k^+)) \right)
= \frac{1}{N_k^+} S_N \phi(p_k^+) + \frac{1}{N_k^+} \sum_{j=0}^{N_k^+ - 1} a_j.
\] (3.2)

Using the same arguments for \(\mu_k^-(\cdot) = \left(\frac{1}{N_k^-} \sum_{j=0}^{N_k^- - 1} \delta_{\ell^j (p_k^-)} \right)(\cdot) \), where \(\delta_{\ell^j (p_k^-)} \) is the Dirac measure with \(\delta_{\ell^j (p_k^-)}(\ell^j (p_k^-)) = 1 \), \(j \in \{0, 1, \ldots, N_k^- - 1\} \), we obtain

\[
P_{top}(\phi_k^-, \ell) \geq \frac{1}{N_k^-} S_N \phi(p_k^-) + \frac{1}{N_k^-} \sum_{j=0}^{N_k^- - 1} a_j.
\] (3.3)

By using (3.2) and (3.3), we get

\[
P_{top}(\phi_k^\pm, \ell) \geq \max \left\{ \frac{1}{N_k^+} (S_N^+ \phi)(p_k^+) + \frac{1}{N_k^+} \sum_{j=0}^{N_k^+ - 1} a_j, \right.
\[
\left. \frac{1}{N_k^-} (S_N^- \phi)(p_k^-) + \frac{1}{N_k^-} \sum_{j=0}^{N_k^- - 1} a_j \right\}.
\] (3.4)

As

\[
P_{top}(\phi, \ell) + P_{top}(\phi_0^\pm, \ell) \geq P_{top}(\phi + \phi_0^\pm, \ell) = P_{top}(\phi_k^\pm, \ell).
\]

we have that

\[
P_{top}(\phi, \ell) + P_{top}(\phi_0^\pm, \ell) \geq \max \left\{ \frac{1}{N_k^+} (S_N^+ \phi)(p_k^+) + \frac{1}{N_k^+} \sum_{j=0}^{N_k^+ - 1} a_j, \right.
\[
\left. \frac{1}{N_k^-} (S_N^- \phi)(p_k^-) + \frac{1}{N_k^-} \sum_{j=0}^{N_k^- - 1} a_j \right\}.
\]

Now we need to compute \(P_{top}(\phi_0^\pm, \ell) \). To do this, observe that

\[
Z_n(\phi_0^\pm, S) = \sum_{C_n \in \mathcal{P}(n-1)} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)} = \sum_{C_n \in \mathcal{P}(n-1)} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)}
+ \sum_{C_n \in \mathcal{P}(n-1)} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)}.
\]
By definition of ϕ_0^\pm, we have $\phi_0^\pm(x) = 0$, for all $x \notin O(p^\pm)$. Thus

$$ \sum_{C_n \in \mathcal{P}(n-1) : C_n \cap O(p^\pm) = \emptyset} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)} = 0. $$

So

$$ Z_n(\phi_0^\pm, S) = \sum_{C_n \in \mathcal{P}(n-1) : C_n \cap O(p^\pm) \neq \emptyset} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)}. $$

By Remark 3.1, as $\phi_0^\pm(\ell^j(p_k^\pm)) = \sum_{j=0}^{N_k^\pm-1} a_j$, we obtain that

$$ \frac{1}{n} \log(Z_n(\phi_0^\pm, S)) = \frac{1}{n} \log \left(\sum_{C_n \in \mathcal{P}(n-1) : C_n \cap O(p^\pm) \neq \emptyset} \sup_{x \in C_n} e^{S_n(\phi_0^\pm)(x)} \right) \leq \frac{1}{n} \log \left(N_k^\pm e^n \sup_{k \in \mathbb{N}} \{a_k\} \right) = \sup_{k \in \mathbb{N}} \{a_k\}. $$

(3.5)

Letting $n \to \infty$ in the inequation (3.5), for all $k \geq 1$ we get

$$ P_{top}(\phi_0^\pm, \ell) \leq \sup_{k \in \mathbb{N}} \{a_k\}. $$

(3.6)

Combining inequalities (3.4) and (3.6), we obtain

$$ P_{top}(\phi, \ell) + \sup_{k \in \mathbb{N}} \{a_k\} \geq \max \left\{ \frac{1}{N_k^+} (S_{N_k^+} \phi)(p_k^+) + \frac{1}{N_k^+} \sum_{j=0}^{N_k^+-1} a_j, \frac{1}{N_k^-} (S_{N_k^-} \phi)(p_k^-) + \frac{1}{N_k^-} \sum_{j=0}^{N_k^--1} a_j \right\}. $$

(3.7)

Letting $k \to \infty$ at inequality (3.7), we have that

$$ P_{top}(\phi, \ell) \geq \max \left\{ \limsup_{k \to \infty} \frac{1}{N_k^+} S_{N_k^+} \phi(p_k^+), \limsup_{k \to \infty} \frac{1}{N_k^-} S_{N_k^-} \phi(p_k^-) \right\} + \frac{3c}{2}. $$

(3.8)

Combining (3.1) and (3.8) we obtain $P_{top}(\phi, S, \ell) < P_{top}(\phi, \ell)$. \qed
Lemma 3.1 Let $\ell : [0, 1] \setminus \{d\} \rightarrow [0, 1]$ be an one-dimensional Lorenz-like expanding map. Then ℓ is topologically transitive.

Proof Consider $U, V \subset [0, 1]$ non-empty open sets. Being ℓ uniformly piecewise expanding map we could find $k_0 \in \mathbb{N}$, such that $[0, 1] \subset \ell^{k_0}(U)$. As $V \subset [0, 1] \subset \ell^{k_0}(U)$ then there exists $k_0 \in \mathbb{N}$, such that $V \cap \ell^{k_0}(U) \neq \emptyset$. Thus we have proved that ℓ is topologically transitive. \qed

Lemma 3.2 Let $\Phi_1 : \Sigma(\ell) \rightarrow \mathbb{R}$ defined as in Sect. 2.4. Then $\sup_{\Sigma(\ell)}(\Phi_1) < \infty$.

Proof Remember that $\Phi_1 : \Sigma(\ell) \rightarrow \mathbb{R}$ to be $\Phi_1(C) = \lim_{n \rightarrow \infty} \inf (\phi(C_n))$, where $\phi : [0, 1] \rightarrow \mathbb{R}$ is continuous potential. Thus

$$|\Phi(C)| = \left| \lim_{n \rightarrow \infty} \inf (\phi(C_n)) \right| \leq \lim_{n \rightarrow \infty} |\inf (\phi(C_n))| \leq \lim_{n \rightarrow \infty} |\sup (\phi(C_n))|.$$

As $\sup_{[0,1]}(\phi) = \sup \{|\phi(x)| : x \in [0, 1]\} < \infty$, we have that $|\Phi(C)| < \infty$ and obtain $\sup_{\Sigma(\ell)}(\Phi_1) < \infty$. \qed

Now, we will prove that $P_G(\Phi, \sigma) < \infty$.

Lemma 3.3 Let $\Phi : \Sigma(\ell) \rightarrow \mathbb{R}$ defined as in Sect. 2.4. Then $P_G(\Phi, \sigma) < \infty$.

Proof To do this, observe that by Proposition 2.2 we have that $P_G(\Phi, \sigma) = P_{top}(\phi, \ell)$. Hence, we have

$$Z_n(\phi, [0, 1]) = \sum_{C_n \in P^{(n-1)} : S \cap \overline{C_n} \neq \emptyset} \sup_{x \in C_n} e^{S_n \phi(x)} \leq \# \left\{ C_n \in P^{(n-1)} : S \cap \overline{C_n} \neq \emptyset \right\} e^{n \sup_{[0,1]}(\phi)} \leq 2^n e^{n \sup_{[0,1]}(\phi)}.$$

Thus,

$$P_G(\Phi, \sigma) = P_{top}(\phi, \ell) = \lim_{n \rightarrow \infty} \sup \frac{1}{n} \log Z_n(\phi, [0, 1]) \leq \lim_{n \rightarrow \infty} \sup \frac{1}{n} \log \left(2^n e^{n \sup_{[0,1]}(\phi)}\right) = \log(2) + \sup_{[0,1]}(\phi).$$

As $\sup_{[0,1]}(\phi) < \infty$ we obtain $P_G(\Phi, \sigma) < \log(2) + \sup_{[0,1]}(\phi) < \infty$. \qed

The next step, is to prove that $\sum_{n \geq 0} V_n(\Phi) \leq \infty$. \hfill \&
Lemma 3.4 Let \(\Phi : \Sigma(\ell) \to \mathbb{R} \) defined as in Sect. 2.4. Then \(\sum_{n \geq 0} V_n(\Phi) \leq \infty \).

Proof Our proof starts with the observation that if \(\phi \in q W^r([0, 1], \mathbb{R}) \) then

\[
\sum_{n \geq 2} V_n(\phi) \leq \sum_{n \geq 2} A(n) \gamma^n < \infty
\]

since the series \(\sum_{n \geq 2} A(n) \gamma^n \) is convergent.

Now if \(C_1, C_2 \in \Sigma(\ell) \), then:

\[
|\Phi(C_1) - \Phi(C_2)| = \left| \lim_{n \to \infty} \inf \left(\phi\left(C_1^n\right) \right) - \lim_{n \to \infty} \inf \left(\phi\left(C_2^n\right) \right) \right|
\]

\[
\leq \lim_{n \to \infty} \left| \inf \left(\phi\left(C_1^n\right) \right) - \inf \left(\phi\left(C_2^n\right) \right) \right|
\]

On the other hand,

\[
\left| \inf \left(\phi\left(C_1^n\right) \right) - \inf \left(\phi\left(C_2^n\right) \right) \right| \leq |\phi(x_1) - \phi(x_2)|, \ x_1 \in C_1^n, x_2 \in C_2^n.
\]

Thus,

\[
|\Phi(C_1) - \Phi(C_2)| \leq |\phi(x_1) - \phi(x_2)|, \ x_1 \in C_1^n, x_2 \in C_2^n.
\]

Therefore,

\[
\sum_{n \geq 2} V_n(\phi) = \sum_{n \geq 2} \sup_{C_1, C_2 \in \Sigma(\ell)} \{|\Phi(C_1) - \Phi(C_2)|\}
\]

\[
\leq \sum_{n \geq 2} \sup_{x_1 \in C_1, x_2 \in C_2} \{|\phi(x_1) - \phi(x_2)|\}
\]

\[
\leq \sum_{n \geq 2} \sup_{x_1, x_2 \in C_n} \{|\phi(x_1) - \phi(x_2)|\}
\]

\[
= \sum_{n \geq 2} V_n(\phi).
\]

Now since, \(\sum_{n \geq 2} V_n(\phi) \leq \infty \), we get \(\sum_{n \geq 2} V_n(\Phi) \leq \infty \).

Now to finish the proof, it is enough to observe that if \(\phi \in \mathcal{A} \), then \(\phi \in SV([0, 1], \mathbb{R}) \).

If \(\phi \in \mathcal{A} \), then \(\phi \in q WH([0, 1], \mathbb{R}) \). \(\square \)

3.1 Proof of Theorem A

As \(\phi : [0, 1] \to \mathbb{R} \) is a continuous potential, then by Lemma 3.1 and Proposition 3.1, we have that \(\ell \) is topologically transitive and \(\phi \) satisfies \(P_{\text{top}}(\phi, \partial P, \ell) < P_{\text{top}}(\phi, \ell) \).
Thus by Proposition 2.2 there exists a measure-theoric isomorphism \(\pi \) such that
\[
\pi \circ \sigma = \ell \circ \pi \quad \text{and} \quad P_{top}(\Phi, \ell) = P_{top}(\phi, \ell). \tag{3.9}
\]

On the other hand, it follows from the Lemmas 3.1, 3.2, 3.3 and 3.4 that \(\Phi \) satisfies the hypotheses of the Theorem 2.2, i.e, \(\Phi \) admits a unique equilibrium states. Therefore, by (3.9) we conclude that \(\phi \) admits a unique equilibrium states, which proves the theorem.

4 Proof of Theorem B

Assume that \(C_n \) are the cylinders defined in Sect. 2.1. For all \(t \in (t_0, +\infty) \), for some fixed \(t_0 > 0 \), define the one-parameter family of functions \(\phi_t : [0, 1] \to \mathbb{R} \), by
\[
\phi_t(x) = \begin{cases}
\frac{1}{[t(1 - \log(x))]^n}, & x \in \left(\bigcup_{n=0}^{\infty} C_n \right) \setminus \{0\} \\
0, & x = 0.
\end{cases}
\]

We have divided the proof of the Theorem B into a sequence of Lemmas.

Lemma 4.1 \(\phi_t \notin H^\alpha([0, 1], \mathbb{R}) \).

Proof Suppose that there exists \(s \in \mathbb{R} \) such that \(\phi_s \) is a Hölder continuous map. Thus
\[
|\phi_s(x) - \phi_s(y)| \leq [\phi_s]_\alpha |x - y|^\alpha,
\]
where \([\phi_s]_\alpha\) is a positive constant. In particular, since \(\phi_s(0) = 0 \), we have that \([\phi_s]_\alpha \geq |\phi_s(x)|\). Therefore,
\[
[\phi_s]_\alpha \geq \frac{|\phi_s(x)|}{x^\alpha} = \frac{1}{x^\alpha[t(1 - ln(x))]^n}
\]

This is absurd, since the right-hand side diverges as \(x \to 0 \). \(\square \)

Lemma 4.2 \(\phi_t \notin WH^\gamma([0, 1], \mathbb{R}) \).

Proof Suppose that there exists \(r \in \mathbb{R} \) such that \(\phi_r \) is a weak Hölder continuous map. Thus \(V_n(\phi_r) \leq A\gamma^n \), where \(A \) is a positive constant. Therefore,
\[
A \geq V_n(\phi_r) \gamma^n = \sup_{x, y \in C_n} |\phi_r(x) - \phi_r(y)|
\]

In particular, since \(\phi_r(0) = 0 \), we have that
\[
A \geq \sup_{x \in C_n} |\phi_r(x)| \gamma^n \geq \frac{1}{\gamma^n[t(1 - ln(x))]^n}
\]

This is absurd, since the right-hand side diverges as \(x \to 0 \). \(\square \)
Lemma 4.3 \(\phi_t \in qWH^\gamma ([0, 1], \mathbb{R}) \).

Proof The derivative of \(\phi_t \) is given by

\[
\left(\frac{d\phi_t}{dx} \right) (x) = \frac{d}{dx} \left(\frac{1}{t(1 - \log(x))^n} \right) = \frac{n}{xt^n(1 - \ln(x))^{n+1}}.
\]

Thus,

\[
V_n(\phi_t) = \sup_{x,y \in C_n} \{|\phi_t(x) - \phi_t(y)|\}
\]

\[
= \sup_{x,y \in C_n} \left\{ \left\| \left(\frac{d\phi_t}{dx} \right)(\bar{x})(x - y) \right\| \right\}
\]

\[
= \sup_{x,y \in C_n} \left\{ \left\| \frac{n}{\bar{x}t^n(1 - \ln(\bar{x}))^{n+1}}(x - y) \right\| \right\}
\]

\[
\leq \sup_{\bar{x} \in C_n} \left\{ \left\| \frac{n}{\bar{x}t^n(1 - \ln(\bar{x}))^{n+1}} \right\| \right\} \sup_{x,y \in C_n} \{ |(x - y)| \}
\]

\[
= \sup_{\bar{x} \in C_n} \left\{ \left\| \frac{n}{\bar{x}t^n(1 - \ln(\bar{x}))^{n+1}} \right\| \right\} \text{diam}(C_n)
\]

where \(\bar{x} \) is a point between \(x \) and \(y \) given by the Mean Value Theorem. By definition 2.1, item 3 we get \(\text{diam}(C_n) \leq \lambda^n \), where \(\lambda \in (0, 1) \). Thus,

\[
V_n(\phi_t) \leq \sup_{\bar{x} \in C_n} \left\{ \left\| \frac{n}{\bar{x}t^n(1 - \ln(\bar{x}))^{n+1}} \right\| \right\} \lambda^n
\]

\[
= A(n)\lambda^n,
\]

where \(A(n) = \sup_{x \in C_n} \left\{ \left\| \frac{n}{x^n(1 - \ln(x))^{n+1}} \right\| \right\} \).

As

\[
\frac{A(n+1)}{A(n)} = \sup_{\bar{x} \in C_{n+1}} \left\{ \left| \frac{n+1}{\bar{x}t^{n+1}(1 - \ln(\bar{x}))^{n+2}} \right| \right\} \leq \sup_{\bar{x} \in C_n} \left\{ \left| \frac{n+1}{\bar{x}t^{n+1}(1 - \ln(\bar{x}))^{n+2}} \right| \right\}
\]

\[
\leq \sup_{\bar{x} \in C_n} \left\{ \left| \frac{n+1}{\bar{y}t^{n+1}(1 - \ln(\bar{y}))^{n+2}} \right| \right\} = \sup_{\bar{x} \in C_n} \left\{ \left| \frac{(n + 1)\bar{y}t^{n+1}(1 - \ln(\bar{y}))^{n+1}}{n\bar{y}t^{n+1}(1 - \ln(\bar{y}))^{n+2}} \right| \right\}
\]
\[
\sup_{y \in C_n} \left\{ \frac{n + 1}{n} \left(1 - \ln(y) \right) \right\} = \frac{n + 1}{n} \left(1 - \ln(\bar{y}) \right) \\
\leq \frac{n + 1}{n} \frac{1}{|t|},
\]

we have \(0 < \lim_{n \to \infty} \frac{A(n+1)}{A(n)} \leq \frac{1}{|t|} \) and, therefore, \(\phi_t \in qWH([0, 1], \mathbb{R}) \), for all \(t > t_0 \). \qed

Lemma 4.4 If \(t \in (t_1, +\infty) \), where \(t_1 = \frac{\lambda}{1 - \ln(\bar{x})} \) and \(\bar{x} \in (0, 1) \), then \(\phi_t \in SV(P, \mathbb{R}) \).

So, there is a unique equilibrium measure for \(\phi_t \). This measure is supported on \((0, 1)\).

Proof Note that

\[
\sum_{n=2}^{\infty} |V_n(\phi_t)| \leq \sum_{n=2}^{\infty} \sup_{y \in C_n} \left\{ \frac{n}{\bar{x} t^n (1 - \ln(\bar{x}))^{n+1}} \right\} \lambda^n,
\]

On the other hand

\[
\lim_{n \to \infty} \left| \sup_{y \in C_{n+1}} \left\{ \frac{n + 1}{\bar{x} t^{n+1} (1 - \ln(\bar{x}))^{n+2}} \right\} \lambda^{n+1} \right| \\
\leq \lim_{n \to \infty} \left| \sup_{y \in C_n} \left\{ \frac{n}{\bar{y} t^n (1 - \ln(\bar{y}))^{n+1}} \right\} \lambda^n \right| \lambda,
\]

\[
= \lim_{n \to \infty} \left| \sup_{y \in C_n} \left\{ \frac{(n+1)}{n} \frac{\bar{x} t^n (1 - \ln(\bar{x}))^{n+1}}{\bar{y} t^{n+1} (1 - \ln(\bar{y}))^{n+2}} \right\} \lambda \right|
\]

\[
= \lim_{n \to \infty} \left(\sup_{y \in C_n} \left\{ \frac{n + 1}{n} \frac{\lambda}{t \left(1 - \ln(\bar{y}) \right)} \right\} \right).
\]
As \(t > \frac{\lambda}{1-\ln(\lambda)} \) we have that
\[
\lim_{n \to \infty} \sup_{y \in C_n} \left| \frac{n}{N^+ + 1} \left(n + 1 \right) \right| < 1
\]
and, therefore, \(\phi_t \in SV(P, \mathbb{R}) \). Thus \(\phi_t \in \mathcal{A} \) and by Theorem A, we conclude that \(\phi_t \) admits a unique equilibrium measure. \(\square \)

Lemma 4.5 If \(t \in (-\infty, t_1) \), where \(t_1 = \frac{\lambda}{1-\ln(\lambda)} \) and \(\lambda \in (0, 1) \), then there are at least two equilibrium measures for \(\phi_t \). The Dirac measure at \(p_k^+ \) and \(p_k^- \) are the equilibrium states.

Proof Note that if \(t \in (-\infty, t_1) \), then \(\phi_t \notin SV(P, \mathbb{R}) \), i.e, \(\sum_{n=2}^{\infty} V_n(\phi_t) = \infty \) because
\[
\sum_{n=2}^{\infty} V_n(\phi_t) \geq \sum_{n=2}^{\infty} \left| \frac{n}{\lambda n + 1} \right| \left(n + 1 \right)
\]
and
\[
\lim_{n \to \infty} \left(\left| \frac{n + 1}{\lambda n + 1} \right| \left(n + 1 \right) \right) \geq \frac{1}{|t|} \frac{1}{1-\ln(\lambda)} > 1.
\]

On the other hand, we fixed \(k \) and consider \(p_k^\pm \in C^\pm_{N_k} \) such that \(\ell_{N_k}^\pm (p_k^\pm) = p_k^\pm \) (see Corollary 2.1). Furthermore one can construct a measure \(\mu_k^\pm (\cdot) = \left(\frac{1}{N_k^\pm} \sum_{j=0}^{N_k^\pm - 1} \delta_{\ell_j(p_k^\pm)} \right) (\cdot) \), where \(\delta_{\ell_j(p_k^\pm)} \) is the Dirac measure with \(\delta_{\ell_j(p_k^\pm)}(\ell_j(p_k^\pm)) = 1, j \in \{0, 1, \ldots, N_k^\pm - 1\} \). Indeed we can write \(n = q_n^+ N_k^+ + r_n^+, 0 \leq r_n^+ \leq N_k^+ - 1 \). Hence,
\[
P_{top}(\phi_t, \ell) = P_{top}(\phi_t, [0, 1], \ell) \geq P_{top}(\phi_t, C^\pm_{N_k}, \ell)
\]

\[
\geq \lim_{n \to \infty} \frac{1}{n} \log \left(\sup_{x \in C^\pm_{N_k}} e^{S_n \phi_t(x)} \right)
\]

\[
\geq \lim_{n \to \infty} \frac{1}{n} \log \left(e^{S_n \phi_t(p_k^\pm)} \right)
\]

\(\square \) Springer
\[
\limsup_{n \to \infty} \frac{1}{n} S_n \phi_t(p_k^\pm) = \lim_{n \to \infty} \left(\frac{q_n^\pm}{q_n^\pm {N_k^\pm} + N_k^\pm} S_{N_k^\pm} \phi_t(p_k^\pm) + \frac{1}{q_n^\pm N_k^\pm} S_{r_n^\pm} \phi_t(p_k^\pm) \right) = \frac{1}{N_k^\pm} S_{N_k^\pm} \phi_t(p_k^\pm) = \sum_{j=0}^{N_k^\pm-1} \frac{1}{N_k^\pm} = \infty.
\]

Thus,

\[
h_{\mu^\pm}(\ell) + \int \phi_t \, d\mu^\pm = \frac{1}{N_k^\pm} \left(\sum_{j=0}^{N_k^\pm-1} \phi_t(\ell^j(p_k^\pm)) \right) = \frac{1}{N_k^\pm} \sum_{j=0}^{n-1} \frac{1}{N_k^\pm} = \infty
\]

So,

\[
P_{\text{top}}(\phi_t, \ell) = \infty = h_{\mu^\pm}(\ell) + \int \phi_t \, d\mu^\pm.
\]

Lemma 4.6 If \(t = \frac{\lambda}{1 - \ln(x)} \), then there is no equilibrium state.

Proof If \(t = \frac{\lambda}{1 - \ln(x)} \), then \(\phi(x) = \left(\frac{1 - \ln(x)}{\lambda} \right)^n \left(\frac{1}{1 - \ln(x)} \right)^n \). Indeed,

\[
\sum_{n=2}^{\infty} V_n(\phi_t) = \sum_{n=2}^{\infty} \frac{n}{\lambda(1 - \ln(x))} = \infty.
\]

Suppose that

\[
P_{\text{top}}(\phi, \ell) = \sup_{\mu \in \mathcal{M}_\ell(X)} \left\{ h_{\mu}(\ell) + \int \phi \, d\mu \right\}.
\]

As \(\phi \) is continuous, we get \(\sup_{[0,1]}(\phi) < \infty \). Thus there exists \(M > 0 \) such that \(P_{\text{top}}(\phi, \ell) \leq M \). Repeating the same arguments used in the proof of Lemma 4.5, we obtain

\[
P_{\text{top}}(\phi, \ell) \geq h_{\mu^\pm}(\ell) + \int \phi \, d\mu^\pm
\]

\[
= \frac{1}{N_k^\pm} \left(\sum_{j=0}^{N_k^\pm-1} \phi_t(\ell^j(p_k^\pm)) \right)
\]
\[
\frac{1}{N_k^\pm} \sum_{j=0}^{N_k^\pm-1} \left(\frac{1 - \ln(x)}{\lambda} \right)^{N_k^\pm} \left(\frac{1}{1 - \ln(\ell j (p_k^\pm)))} \right)^{N_k^\pm}
\]

So, doing \(k \to \infty \) we have \(M \geq P_{top}(\phi_t, \ell) \geq \infty \) which is a contradiction. Therefore, the variational principle cannot occurs. This shows that the potential \(\phi \) has no equilibrium state.

\[\square \]

5 Proof of Theorem C

Consider \(\phi \in \mathcal{A} \). By definition of \(\mathcal{A} \) we have that

\[\mathcal{A} = \{ \phi \in C([0, 1], \mathbb{R}) : \phi \in SV([0, 1], \mathbb{R}) \text{ and } P_{top}(\phi, \partial P, \ell) < P_{top}(\phi, \ell) \} = S(\phi) \cap D(\phi), \]

where

\[S(\phi) = \left\{ \phi \in C([0, 1], \mathbb{R}) \left| \sum_{n \geq 2} V_n(\bar{\phi}) < \infty \right. \right\}, \]

and

\[D(\phi) = \left\{ \phi \in C_P([0, 1], \mathbb{R}) \left| P_{top}(\phi, \partial P, \ell) < P_{top}(\phi, \ell) \right. \right\}. \]

In order to prove that \(\mathcal{A} \) is open and dense in \(C([0, 1], \mathbb{R}) \) it is sufficient to show that \(S(\phi) \) and \(D(\phi) \) are open and dense in \(C([0, 1], \mathbb{R}) \). By Theorem A in Bronzi and Oler (2018), \(D(\phi) \) is open and dense in \(C([0, 1], \mathbb{R}) \). Thus we only need to show that \(S(\phi) \) is open and dense in \(C([0, 1], \mathbb{R}) \). For this we observe that

\[S(\phi) = \left\{ \phi \in C([0, 1], \mathbb{R}) \left| \sum_{n \geq 2} V_n(\bar{\phi}) < \infty \right. \right\} \]

\[= \left\{ \phi \in C([0, 1], \mathbb{R}) \left| \lim_{n \to \infty} \sum_{j=2}^{n} V_j(\phi) = s \right. \right\} \]

\[\subset \left\{ \phi \in C([0, 1], \mathbb{R}) \left| \forall n \geq 0, \exists M > 0 : \sum_{j=2}^{n} V_j(\phi) < M \right. \right\}. \]
Fix $n \geq 0$ and define $F, G : C([0, 1], \mathbb{R}) \to \mathbb{R}$, by $F(\phi) = V_n(\phi)$ and $G(\phi) = M - \left[\sum_{j=2}^{n} V_j(\phi) \right]$. If $\phi_0, \phi_1, \phi_2 \in C([0, 1], \mathbb{R})$ then

$$
\| F(\phi_1) - F(\phi_2) \|_{C^0} = \| V_n(\phi_1) - V_n(\phi_2) \|_{C^0} \\
= \sup_{x,y \in C_n} \{ |\phi(x) - \phi(y)| \} - \sup_{x,y \in C_n} \{ |\phi(x) - \phi(y)| \} \\
= \| (\phi_1)_{C_n} - (\phi_2)_{C_n} \|_{C^0} \leq \| (\phi_1 - \phi_2)_{C_n} \|_{C^0}
$$

and

$$
\lim_{\phi \to \phi_0} G(\phi) = \lim_{\phi \to \phi_0} \left(M - \left[\sum_{j=2}^{n} V_j(\phi) \right] \right) = M - \lim_{\phi \to \phi_0} \left(\sum_{j=2}^{n} V_j(\phi) \right) \\
= M - \left[\sum_{j=2}^{n} \lim_{\phi \to \phi_0} V_j(\phi) \right] = M - \left[\sum_{j=2}^{n} V_j(\phi_0) \right] \\
= G(\phi_0).
$$

Thus

$$
S(\phi) \subset \left\{ \phi \in C([0, 1], \mathbb{R}) \mid \forall n \geq 0, \exists M > 0 : \sum_{j=2}^{n} V_j(\phi) < M \right\} = G^{-1}(\mathbb{R}^+). \tag{2.4}
$$

Recall that by Corollary 2.4, there exists a subsequence $N_k^+ \to \infty$ such that $d \in \partial C_{N_k^+}$, $p_k^+ \in C_{N_k^+}$ and $L_{N_k^+}(p_k) = p_k^+$. Let $I_j^\pm = (L_j(p_k^+) - \delta_k^\pm, L_j(p_k^+) + \delta_k^\pm)$ be intervals, where $0 \leq j \leq N_k^-$ - 1. Since the orbit of p_k^+ is a finite set, there exists $\delta_k^+ > 0$ such that $I_i^\pm \cap I_j^\pm = \emptyset$, for all $0 \leq i, j \leq N_k^-$ - 1 with $i \neq j$. Consider

$$
B_{\varepsilon,k}^\pm(x) = \begin{cases}
N_k^+ - 1 \\
\sum_{j=0}^{N_k^+ - 1} B_{\varepsilon,k,j}^\pm(x), & x \in \bigcup_{j=0}^{N_k^+ - 1} I_j^\pm \\
0, & \text{otherwise}
\end{cases}
$$

where $B_{\varepsilon,k,j}^\pm$ is a bump function defined by Fig. 2.

Consider $\phi_{\varepsilon,k}^\pm(x) = \phi(x) + B_{\varepsilon,k}^\pm(x)$, where $\phi \in S(\phi)$. Then we have the following properties:

1. $\phi_{\varepsilon,k}^\pm$ is continuous;
2. $\| \phi_{\varepsilon,k}^\pm - \phi \|_{C^0} < \varepsilon$, for all $\phi \in H^\prime([0, 1], \mathbb{R})$.

\(\S \) Springer
We need show that \(\phi_{\epsilon,k}^\pm \in S(\phi) \). First, note that

\[
\sum_{n \geq 2} V_n(\phi_{\epsilon,k}^\pm) = \sum_{n \geq 2} \sup_{x, y \in C_n} \left\{ \left| \phi_{\epsilon,k}^\pm(x) - \phi_{\epsilon,k}^\pm(y) \right| \right\} \\
= \sum_{n \geq 2} \sup_{x, y \in C_n} \left\{ \left| (\phi(x) - \phi(y)) - \left(B_{\epsilon,k}^\pm(x) - B_{\epsilon,k}^\pm(y) \right) \right| \right\} \\
= \sum_{n \geq 2} \sup_{x, y \in C_n} \left\{ |\phi(x) - \phi(y)| \right\} + \sum_{n \geq 2} \sup_{x, y \in C_n} \left\{ \left| B_{\epsilon,k}^\pm(x) - B_{\epsilon,k}^\pm(y) \right| \right\} \\
= \sum_{n \geq 2} V_n(\phi) + \sum_{n \geq 0} V_n(B_{\epsilon,k}^\pm).
\]

On the other hand, by definition of \(B_{\epsilon,k,l}^\pm \), we get

\[
V_n(B_{\epsilon,k,l}^\pm) = \sup_{x, y \in C_n} \left\{ \left| B_{\epsilon,k}^\pm(x) - B_{\epsilon,k}^\pm(y) \right| \right\} \\
\leq \sup_{x, y \in C_n} \left\{ \left| B_{\epsilon,k}^\pm(x) \right| \right\} + \sup_{x, y \in C_n} \left\{ \left| B_{\epsilon,k}^\pm(y) \right| \right\} \\
\leq 2\epsilon.
\]

So we have that \(\sum_{n \geq 2} V_n(\phi_{\epsilon,k}^\pm) < \infty \), which completes the proof.

Acknowledgements We thank Krerley Oliveira for proposing the problem and for many helpful suggestions during the preparation of the paper. Also, we thank Omri Sarig and Ali Messaoudi for some helpful conversations and comments on the formulation and proof of Theorem B.

Funding This article was possible thanks to the scholarship granted from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), in the scope of the Program CAPES-Print, process number 88887.310463/2018-00, International Cooperation Project number 88881.310741/2018-01. Márcio Gouveia is also partially supported by São Paulo Research Foundation (FAPESP) grant 2019/10269-3.
References

Bronzi, M. A., Oler, J. G.: Equilibrium state for one-dimensional Lorenz-like expanding maps. Bull. Braz. Math. Soc. (N.S.) 49(4), 873–892 (2018)

Buzzi, J., Sarig, O.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod. Theory Dyn. Syst. 23(5), 1383–1400 (2003)

Glendinning, P.: Topological conjugation of Lorenz maps by β-transformations. Math. Proc. Camb. Philos. Soc. 107(2), 401–413 (1990)

Graczyk, J., Swiapolhek, G.: The Real Fatou Conjecture, Annals of Mathematics Studies, vol. 144. Princeton University Press, Princeton (1998)

Guckenheimer, J.: A strange, strange attractor. In: Marsden, J., McCracken, M. (eds.) The Hopf Bifurcation Theorem and Its Applications, pp. 368–381. Springer, Berlin (1976)

Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)

Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci 20, 130–141 (1963)

Pesin, Y., Zhang, K.: Phase transitions for uniformly expanding maps. J. Stat. Phys. 122(6), 1095–1110 (2006)

Sarig, O.M.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical Sciences, vol. 41. Springer, New York (1982)

Williams, R.F.: The structure of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 73–99 (1979)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.