Evaluating the Effects of Reducing Voltage Margins for Energy-Efficient Operation of MPSoCs

Diego V. Cirilo do Nascimento, Kyriakos Georgiou, Kerstin I. Eder, and Samuel Xavier-de-Souza, Senior Member, IEEE

Abstract—Voltage margins, or guardbands, are imposed on DVFS systems to account for process, voltage, and temperature variability effects. While necessary to assure correctness, guardbands reduce energy efficiency, a crucial requirement for embedded systems. The literature shows that error detection techniques can be used to maintain the system’s reliability while reducing or eliminating the guardbands. This letter assesses the practically available margins of a commercial RISC-V MPSoC while violating its guardband limits. The primary motivation of this work is to support the development of an efficient system leveraging the redundancy of multicore architectures for an error detection and correction scheme capable of mitigating the errors caused by aggressive voltage margin reduction. For an equivalent performance, we achieved up to 27% energy reduction while violating the manufacturer’s defined guardband, leaving reasonable energy margins for further development.

Index Terms—Energy, guardband, overclocking, undervolting.

I. INTRODUCTION

E
ergy efficiency is crucial for mobile and embedded systems, where battery size, autonomy, and power dissipation are under hard constraints. Such systems must comply with these limitations while being capable of delivering the high performance needed by demanding edge computing and IoT devices [1].

The supply voltage significantly impacts the total power consumption, hence should be kept at a minimum. Signal propagation delays, however, are inversely proportional to the operating voltage and are a limiting factor for the maximum clock frequency [2].

Dynamic voltage and frequency scaling (DVFS) techniques have been developed as means to meet processing requirements at minimal power dissipation [3]. These operating voltage/frequency points are defined a priori and must comply with critical-path timing limitations [4]. The critical path delays are affected by the process, voltage, and temperature (PVT) variability, so safety voltage margins or “guardbands” are imposed on the DVFS system, assuring a reliable operation. Critical path violation errors may occur if the system is otherwise allowed to run too close to the physical limits. Ongoing miniaturization increases variability during chip manufacture, and these guardbands are vital for lower-technology nodes. Consequently, the addition of voltage guardbands trades energy efficiency for correctness [5].

Seeking aggressive guardband reduction, error-detection-based circuits, such as Razor [6], use special delayed-path flip-flops to detect and correct timing failures. These failures are then reported and used for adaptive voltage scaling. The main advantage is that the voltage guardbands are effectively removed at the expense of deep circuit modifications, which add design and verification overheads, limiting its application in existing designs.

Bacha and Teodorescu [7] proposed a less intrusive architectural approach, leveraging the existing error detection and correction (EDAC) hardware in Intel Itanium processors for voltage margin elimination. The system is allowed to run in a configuration susceptible to timing errors but is kept functional by relying on the EDAC features. By keeping the system at an operating point where the error rate is low enough, the energy gains surpass the recovery costs with a negligible performance penalty.

Simevski et al. [8] and Silva et al. [9] have proposed on-demand EDAC functionalities based on core redundancy of multiprocessor system-on-chip (MPSoC), where cores in the architecture can be arranged in lockstep execution for dual or triple redundancy when needed. To the best of our knowledge, this type of EDAC has not been used for guardband reductions. The advantage comes from the possibility of switching off EDAC and using the redundant cores for regular computations in noncritical code or noncritical environments.

In the interest of assessing the viability of using MPSoC core-redundancy-based EDAC schemes for voltage guardband reduction, this letter presents characterization experiments of a commercial MPSoC, the Greenwaves Technologies GAP8. This characterization consists of violating the published manufacturer’s voltage guardbands by overclocking the chip and measuring the available energy margins, practical voltage/frequency limits, and error characteristics.

Our experiments achieved frequencies up to 2.5× higher than those specified in the datasheet before any errors or lockups were detected. When comparing performance-equivalent
operating points, we were able to reduce the energy by 27%, confirming that margins are available for implementing an EDAC scheme to ensure reliability and energy efficiency in these extreme settings.

In the remainder of the text, Section II presents related works and supporting literature data, Section III presents the experimental methodology, Section IV details the results, and Section V contains our conclusions.

II. RELATED WORKS

Two main topics are of interest to this letter, the aggressive voltage margin elimination and error detection methods in multiprocessor chips.

A. Voltage Margins Elimination

Bacha and Teodorescu [7] used a firmware-based solution on an Intel Itanium 9560, aggressively reducing operating voltage until the on-chip EDAC system started reporting recoverable errors. Actively controlling the voltage to keep the error rate between set boundaries, they achieved an average reduction of 20% in power consumption, with an error-recovery time overhead of less than 1%. In a subsequent paper, a more efficient approach, with dedicated hardware targeting sensitive cache lines, achieved a power reduction of 33% [10].

Leng et al. [11] reduced voltage margins in NVIDIA GPUs by predicting the V_{min}, or minimal error-free voltage. Based on the observation that this V_{min} primarily depends on voltage droops caused by software operation, i.e., the available margins are application dependent, they derived a prediction scheme based on the analysis of performance counters. They found that voltage can be reduced by up to 20% without errors.

Papadimitriou et al. [12], [13] exploited the available margins at multiple platforms in a series of papers, using available EDAC hardware error reporting as a guideline. They ran benchmarks from the SPEC2600 suite and collected information about multiple margins, from error-free operation up to system lockup. By reducing the voltage margins, they achieved power savings of 18% in ARMv8 processors, 20% in Intel processors, 25% on NVIDIA Fermi and Kepler GPUs, and up to 90% for FPGA on-chip memories [14].

In our review, no equivalent tests were performed on MPSoCs, probably due to the lack of EDAC features in devices readily available on the market.

B. Error Detection in MPSoCs

Simevski et al. [8] investigated the usage of idle cores in multiprocessors for N-modular redundancy schemes. Subsequently, they developed the Waterbear framework, a fault-tolerant multicore architecture with switchable operating modes, using parallelism or redundancy-based fault-tolerance on demand.

Silva et al. [9] presented the CEVERO architecture, a fault-tolerant MPSoC based on the open-source PULP Platform [15]. This architecture uses a switchable dual-modular redundancy (DMR) scheme aided by “safe” status registers, which can return the cores to the last-known-good state and resume operation.

Rogenmoser et al. [16] developed an on-demand redundancy grouping (ODRG) scheme for the PULP platform, where cores in a cluster can be arranged either for parallel computing or fault-tolerant mode, running a triple modular redundancy (TMR) block with three cores in lockstep. Their approach uses a voter, maintaining execution in the event of a mismatch in the output of one of the cores and later synchronizing the faulty core.

Both Waterbear and ODRG approaches need three cores for error recovery. In comparison, the CEVERO architecture uses two cores and extra state registers, saving on area and power consumption at the cost of a minor performance penalty during the recovery process.

Our present work aims to assess the available energy margins when exceeding guardband parameters in an architecture similar to the one used by Silva et al., supporting the development of a guardband reduction methodology based on the CEVERO architecture.

III. EXPERIMENTAL METHODOLOGY

Using a PULP-based MPSoC, two experiments were arranged, one for detecting computation errors and lockups while exceeding the published voltage and frequency guardbands and the other using a real-world application to measure energy consumption in extreme settings. The goal was to assess the available margins for these use cases, serving as supporting evidence for the future development of an error-detection-based methodology to reduce voltage margins.

A. Hardware Setup

The base hardware is the Greenwaves Technologies GAP8, a commercial implementation of the PULP’s Mr. Wolf [15] chip. The main benefits of using this architecture are the open nature of most of the design, facilitating further development, modularity, and state-of-the-art energy efficiency features.

It is composed of a fabric controller (FC) core and an eight-core cluster. The FC and Cluster are on separate clock domains, which can be controlled by an on-chip frequency-locked loop (FLL) device. The system also has an onboard dc–dc converter able to supply voltages from 1.0 V up to 1.2 V in 50 mV steps. Table I shows the datasheet guardbands.

Voltage	FC_{max}	$\text{Cluster}_{\text{max}}$
1200 mV	250 MHz	170 MHz
1150 mV	225 MHz	149 MHz
1100 mV	200 MHz	129 MHz
1050 mV	175 MHz	108 MHz
1000 mV	150 MHz	87 MHz

A GPIO port is used as a trigger to start the time and power measurement. The measurements are performed using

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
a MAGEEC Power Measurement board [18], based on ST Discovery STM32F407VG. The power is measured by a shunt resistor available at the GAP8 power supply path, isolated from the rest of the board but including the on-chip dc–dc converter. The energy of the operation is calculated using execution time and average power.

C. Experiment A Setup

The first experiment aims to discover the operating limits of the chip. As no hardware EDAC features are present on-chip, we used a pseudorandom number generator (PRNG) producing known sequences of N numbers in variable frequency/voltage settings, which could be later verified for correctness. A flowchart of the test can be seen in Fig. 1.

We proposed this workload due to its susceptibility to data corruption, deviating the output sequence in the event of any error in the calculations. To counter the lack of hardware error-detection capabilities, periodic checking of the results was necessary, comparing the last value of the generated sequence with known-good values. Any mismatch in these values results from calculation or memory errors during the execution.

The test control happens in the FC core, which is set as a safe core, and the PRNG is run in a Cluster core, where the clock can be set to extreme values independently.

After each R run, the last value is returned to be compared to the reference. If different, the test is flagged as an error. The test is flagged as a lockup if no response is received after a timeout.

The tests were run for all available voltages and frequencies starting at 200 MHz, increasing in 2 MHz steps until the chip stopped responding. The starting frequency was decided empirically in preliminary tests, where errors only started to occur beyond this frequency, even for the lowest voltage.

For any given frequency/voltage pair, the test was run with increasing problem sizes, from 50 thousand to 1 million numbers in 50 thousand steps, to check if error probability was related to runtime. The test duration depended on the problem size and set frequency, ranging from approximately 35 ms to 32 s.

A total number of 678 440 tests were executed.

D. Experiment B Setup

The second experiment uses the same hardware setup as Experiment A, and a real-world application as a workload, aiming to collect data on the energy gains achievable by running the system in extreme settings.

The application is a satellite communications algorithm developed by de Lima et al. [19] for the GAP8 platform. This algorithm runs in parallel, using all eight cores of the cluster, and performs multiple operations, including data movement and integer FFT.

The tests ran in all available voltage levels and frequencies ranging from 80 MHz, inside the guardband for all voltages, to 200 MHz, outside the guardband for all voltages. These settings were defined based on the maximum frequencies reached at 1 V in Experiment A.

IV. RESULTS

Fig. 2 presents the error and lockup figures of the whole dataset of Experiment A, with a guardband reference line at the bottom of the graph. It is possible to observe that, apart from a few outliers, the failures occur in a narrow band, without much margin between the point where the error rate starts to rise and the total loss of response. The error probability did not grow with the problem size, being primarily dependent on the critical operating points. Hence, the narrow failure points distribution is shown in Fig. 2. As the voltage increases, the lockups started to occur before the errors are detected. For lower voltages, the data shows a tendency that the errors start to happen at even lower voltages than the lockups, probably due to the critical path violations being the primary source of errors.

In any case, from the guardband to the minimum value, we have at least two times the clock frequency, reaching $2.5 \times$ for the lowest tested voltage (1 V).

Being able to reach higher frequencies for the same voltage can be translated to reduced energy consumption as execution times decrease. A caveat in this approach is the temperature increase in the components, which could be handled by treating temperature violations as errors. With the proper hardware setup, further voltage reduction could be...
exploited while respecting applications’ timing requirements. Core-redundancy-based EDAC methodologies could mitigate the errors and lockups, and the reported error rate used to control an active voltage scaling scheme.

For Experiment B, Fig. 3 presents the energy consumption characteristic of the circuit for a given performance. Up to 27% of energy can be saved by overclocking the system, as the time reduction compensates for the power increase.

The flattening of the energy consumption between the 1.15 and 1.2 V settings is probably due to power circuitry effects. We are not able to measure the core voltages, but this voltage change can be confirmed by the increased maximum “error-free” frequency.

V. CONCLUSION

This letter presented experiments characterizing the GAP8 MPSoC when violating the manufacturer-defined voltage guardband, providing evidence and motivation for developing novel guardband reduction techniques.

For multicore architectures, the inherent redundancy of cores can be exploited in a fault-tolerant arrangement, which in turn can be used to warrant correct operation in guardband-violating settings. These extreme settings can improve energy efficiency, for example, in applications unfit for parallelization.

The energy reduction of about 27% achieved in the experiments provides a target consumption for the complete system. We can expect more significant gains if we consider that the maximum energy reduction was in a safe configuration for the energy measurement experiment as no fault-tolerant system was employed. Therefore, considering the failure threshold shown in Experiment A, there are still available margins to be harvested. Additionally, due to the limitations of the on-chip dc-dc converter, it was not possible to go lower than 1 V. Fig. 3 shows a trend of higher-energy efficiency toward lower voltages. Further energy reductions could be possible by allowing errors in suitable applications, such as image processing or signal processing algorithms, in an approximate computing approach.

REFERENCES

[1] K. Georgiou, S. Xavier-de-Souza, and K. Eder, “The IoT energy challenge: A software perspective,” IEEE Embedded Syst. Lett., vol. 10, no. 3, pp. 53–56, Sep. 2018.
[2] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proc. 33rd Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO-33), Dec. 2000, pp. 191–201.
[3] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.
[4] F. Xia et al., “Voltage, throughput, power, reliability, and multicore scaling,” Computer, vol. 50, no. 8, pp. 34–45, Aug. 2017.
[5] S. Das, D. Blaauw, D. Bull, K. Flautner, and R. Aitken, “Addressing design margins through error-tolerant circuits,” in Proc. 46th Annu. Des. Autom. Conf. (ZZZ-DAC), 2009, p. 11.
[6] D. Blaauw et al., “Razor II: In situ error detection and correction for PVT and SER tolerance,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 400–401.
[7] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage margins by leveraging on-chip ECC in Raniun II processors,” in Proc. 40th Annu. Int. Symp. Comput. Archit. (ISCA), vol. 41, 2013, pp. 297–307.
[8] A. Simevski, O. Schrape, C. Benitoy, M. Krsic, and M. Andjeljkovic, “PISA: Power-robust multiprocessor design for space applications,” in Proc. IEEE 26th Int. Symp. On-Line Test. Robust Syst. Des. (IOLTS), Jul. 2020, pp. 1–6.
[9] I. Silva, O. D. E. Santo, D. do Nascimento, and S. Xavier-de-Souza, “CEVERO: A soft-error hardened SoC for aerospace applications,” in Proc. Companion 10th Brazil. Symp. Comput. Syst. Eng. (SBC), Nov. 2020, pp. 121–126.
[10] A. Bacha and R. Teodorescu, “Using ECC feedback to guide voltage speculation in low-voltage processors,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Cambridge, U.K., 2014, pp. 306–318.
[11] J. Leng, A. Buyuktsouoglou, R. R. Erther, P. Bose, Y. Z., and V. J. Reddi, “Predictive guardbanding: Program-driven timing margin reduction for GPUs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 1, pp. 171–184, Jan. 2021.
[12] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, C. Magdalinos, and D. Gizopoulos, “Voltage margins identification on commercial X86-64 multicore microprocessors,” in Proc. IEEE 23rd Int. Symp. On-Line Test. Robust Syst. Des. (IOLTS), Jul. 2017, pp. 51–56.
[13] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, P. Lawthers, and S. Das, “Harnessing voltage margins for energy efficiency in multicore CPUs,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO-50), 2017, pp. 503–516.
[14] G. Papadimitriou et al., “Exceeding conservative limits: A consolidated analysis on modern hardware margins,” IEEE Trans. Device Mater. Rel., vol. 20, no. 2, pp. 341–350, Jun. 2020.
[15] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr. Wolf: A 1 GFLOP/s energy-proportional parallel ultra low-power SoC for IOT edge processing,” in Proc. IEEE 44th Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2018, pp. 274–277.
[16] M. Roggenmoser, N. Wistof, P. Vogel, F. Gürkaynak, and L. Benini, “On-demand redundancy grouping: Selectable soft-error tolerance for a multicore cluster,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), May 2022, pp. 398–401.
[17] GAP8 Hardware Reference Manual, GreenWaves Technol., SAS, Grenoble, France, Nov. 2018.
[18] Power Sensing Shield for ST Discovery STM32F407VG-Based Board: MAGEEC/Powersense-Shield, Machine Guided Energy Efficient Compilation, Bristol, U.K., Feb. 2016.
[19] R. S. C. G. de Lima, J. M. L. Duarte, D. V. C. do Nascimento, R. A. de Souza Filho, and S. Xavier-de-Souza, “A parallel software-defined ultra-low-power receiver for a satellite message forwarding system,” in Proc. 11th Brazil. Symp. Comput. Syst. Eng. (SBESC), Nov. 2021, pp. 1–8.