\[I(J^P) = 1(\frac{1}{2}^+) \] Status: ******

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Σ^- MASS

The fit uses Σ^+, Σ^0, Σ^-, and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1197.449 ± 0.030 OUR FIT				
1197.45 ± 0.04 OUR AVERAGE				
1197.417 ± 0.040	GUREV	93	SPEC	Σ^- C atom, crystal diff.
1197.532 ± 0.057	GALL	88	CNTR	Σ^- Pb, Σ^- W atoms
1197.43 ± 0.08	SCHMIDT	65	HBC	See note with Λ mass
1197.24 ± 0.15	1 DUGAN	75	CNTR	Exotic atoms

1 GALL 88 concludes that the DUGAN 75 mass needs to be reevaluated.

$m_{\Sigma^-} - m_{\Sigma^+}$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
8.08 ± 0.08 OUR FIT				
8.09 ± 0.16 OUR AVERAGE				
7.91 ± 0.23	BOHM	72	EMUL	
8.25 ± 0.25	DOSCH	65	HBC	
8.25 ± 0.40	BARKAS	63	EMUL	

$m_{\Sigma^-} - m_{\Lambda}$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
81.766 ± 0.030 OUR FIT				
81.69 ± 0.07 OUR AVERAGE				
81.64 ± 0.09	HEPP	68	HBC	
81.80 ± 0.13	SCHMIDT	65	HBC	See note with Λ mass
81.70 ± 0.19	BURNSTEIN	64	HBC	

Σ^- MEAN LIFE

Measurements with an error $\geq 0.2 \times 10^{-10}$ s have been omitted.

VALUE ($\times 10^{-10}$ s)	EVTS	DOCUMENT ID	TECN	COMMENT
1.479 ± 0.011 OUR AVERAGE				
1.480 ± 0.014	MARRAFFINO	80	HBC	$K^- p$ 0.42–0.5 GeV/c
1.49 ± 0.03	CONFORTO	76	HBC	$K^- p$ 1–1.4 GeV/c
1.463 ± 0.039	ROBERTSON	72	HBC	$K^- p$ 0.25 GeV/c
1.42 ± 0.05	BAKKER	71	DBC	$K^- N \rightarrow \Sigma^- \pi \pi$
1.41 ± 0.09	TOVEE	71	EMUL	

HTTP://PDG.LBL.GOV Page 1 Created: 6/29/1998 12:17
Σ^- Mean Life (10^{-10} s)

Σ^- Magnetic Moment

See the "Note on Baryon Magnetic Moments" in the Λ Listings. Measurements with an error $\geq 0.3 \, \mu_N$ have been omitted.

Value (μ_N)	EVTS	DOCUMENT ID	TECN	COMMENT
-1.160 ± 0.025 OUR AVERAGE	Error includes scale factor of 1.7. See the ideogram below.			
$-1.105 \pm 0.029 \pm 0.010$	HERTZOG 88 CNTR	Σ$^-$ Pb, Σ$^-$ W atoms		
$-1.166 \pm 0.014 \pm 0.010$	ZAPALAC 86 SPEC	n^-, ν, n^- decays		
$-1.23 \pm 0.03 \pm 0.03$	WAH 85 CNTR	$pCu \rightarrow \Sigma^- X$		
-0.89 ± 0.14	DECK 83 SPEC	$pBe \rightarrow \Sigma^- X$		

We do not use the following data for averages, fits, limits, etc. • • •

2 We have increased the CHANG 66 error of 0.018; see our 1970 edition, Reviews of Modern Physics 42 No. 1 (1970).
\[\Sigma^- \] magnetic moment (\(\mu_N \))

\[\Sigma^- \text{ DECAY MODES} \]

Mode	Fraction \(\Gamma_i / \Gamma \)
\(\Gamma_1 \) \(n \pi^- \)	(99.848 ± 0.005) %
\(\Gamma_2 \) \(n \pi^- \gamma \)	\([a] \ (4.6 \pm 0.6) \times 10^{-4}\)
\(\Gamma_3 \) \(n e^- \bar{\nu}_e \)	\((1.017 \pm 0.034) \times 10^{-3}\)
\(\Gamma_4 \) \(n \mu^- \bar{\nu}_\mu \)	\((4.5 \pm 0.4) \times 10^{-4}\)
\(\Gamma_5 \) \(\Lambda e^- \bar{\nu}_e \)	\((5.73 \pm 0.27) \times 10^{-5}\)

\[[a] \text{ See the Particle Listings below for the pion momentum range used in this measurement.} \]
CONSTRANDED FIT INFORMATION

An overall fit to 3 branching ratios uses 16 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2 = 8.7$ for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i, \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

\[
\begin{array}{c|ccc}
& x_3 & x_4 & x_5 \\
\hline
x_3 & -64 & & \\
x_4 & -77 & 0 & \\
x_5 & -5 & 0 & 0 \\
\end{array}
\]

Σ^- BRANCHING RATIOS

$\Gamma(n\pi^-\gamma) / \Gamma(n\pi^-)$ Γ_2 / Γ_1

The π^+ momentum cuts differ, so we do not average the results but simply use the latest value for the Summary Table.

$\Gamma(n\pi^-\nu_e) / \Gamma(n\pi^-)$ Γ_3 / Γ_1

Measurements with an error $\geq 0.2 \times 10^{-3}$ have been omitted.

An additional negative systematic error is included for internal radiative corrections and latest form factors; see BOURQUIN 83C.
See the “Note on Baryon Decay Parameters” in the neutron Listings.
Older, outdated results have been omitted.

\(g_A/g_V \) FOR \(\Sigma^- \rightarrow ne^-\bar{\nu}_e \)

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the “Note on Baryon Decay Parameters” in the neutron Listings. What is actually listed is \(|g_1/f_1| \) -
0.237 \frac{g_2}{f_1} \right| \cdot This reduces to \frac{g_A}{g_V} \equiv \frac{g_1(0)}{f_1(0)} on making the usual assumption that \(g_2 = 0 \). See also the note on HSUEH 88.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.340 ± 0.017 OUR AVERAGE	6	HSUEH 88	SPEC	250 GeV
+0.327 ± 0.007 ± 0.019	50k	BOURQUIN 83c	SPEC	SPS hyperon beam
+0.34 ± 0.05	4456	TANENBAUM 74	ASPK	

TRIPLE CORRELATION COEFFICIENT D FOR \(\Sigma^- \rightarrow ne^-\nu_e \)

The coefficient \(D \) of the term \(D \mathbf{P}(\mathbf{p}_e \times \mathbf{p}_\nu) \) in the \(\Sigma^- \rightarrow ne^-\nu_e \) decay angular distribution. A nonzero value would indicate a violation of time-reversal invariance.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.11 ± 0.10 OUR AVERAGE	6	HSUEH 88	SPEC	250 GeV

\(g_V/g_A \) FOR \(\Sigma^- \rightarrow \Lambda e^-\nu_e \)

For the sign convention, see the “Note on Baryon Decay Parameters” in the neutron Listings. The value is predicted to be zero by conserved vector current theory. The values averaged assume CVC-SU(3) weak magnetism term.

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.01 ± 0.10 OUR AVERAGE	9	BOURQUIN 82	SPEC	SPS hyperon beam
+0.034 ± 0.080	1620	THOMPSON 80	ASPK	BNL hyperon beam
+0.29 ± 0.29	114	TANENBAUM 75b	SPEC	BNL hyperon beam
+0.45 ± 0.20	186	FRANZINI 72	HBC	

6 The sign is, with our conventions, unambiguously positive. The value assumes, as usual, that \(g_2 = 0 \). If \(g_2 \) is included in the fit, than (with our sign convention) \(g_2 = -0.56 \pm 0.37 \), with a corresponding reduction of \(g_A/g_V \) to \(+0.20 \pm 0.08 \).

7 BOURQUIN 83c favors the positive sign by at least 2.6 standard deviations.

8 TANENBAUM 74 gives \(0.435 \pm 0.035 \), assuming no \(q^2 \) dependence in \(g_A \) and \(g_V \). The listed result allows \(q^2 \) dependence, and is taken from HSUEH 88.

9 The sign has been changed to agree with our convention.

10 The FRANZINI 72 value includes the events of earlier papers.
We have omitted some papers that have been superseded by later experiments. See our earlier editions.

\[g_V / g_A \text{ for } \Sigma^- \rightarrow \Lambda e^- \nu_e \]

\[g_{WM} / g_A \text{ FOR } \Sigma^- \rightarrow \Lambda e^- \nu_e \]

The values quoted assume the CVC prediction \(g_V = 0 \).

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
1.75 ± 3.5	114	THOMPSON 80 ASPK	BNL hyperon beam	
3.5 ± 4.5	55	TANENBAUM 75B SPEC	BNL hyperon beam	
2.4 ± 2.1	186	FRANZINI 72 HBC		

Σ^- REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.
Name	Year	Journal	Additional Information
Tanenbaum	74	PRL 33 175	Hungerbuhler+ (Yale, FNAL, BNL)
Ebenhoh	73	ZPHY 264 413	Eisele, Filthuth, Hepp, Leitner, Thouw+ (HEIDT)
Sechizorn	73	PR D8 12	Snow (UMD)
Bohm	72	NP B48 1	(BERL, KIDR, BRUX, IASD, DUUC, LOUC+)
Franzini	72	PR D6 2417	(COLU, HEID, UMD, STON)
Robertson	72	Thesis UMI 78-00877	(IIT)
Bakker	71	LNC 1 37	Hoogland, Kluiver, Massard+ (SABRE Collab.)
Cole	71	PR D4 631	Lee-Franzini, Loveless, Baltay+ (STON, COLU)
Also	69	Thesis Nevis 175	Norton (COLU)
Tovee	71	NP B33 493	(LOUC, KIDR, BERL, BRUX, DUUC, WARS)
Berley	70B	PR D1 2015	Yamin, Hertzbach, Kofler+ (BNL, MASA, YALE)
Bogert	70	PR D2 6	Lucas, Taft, Willis, Berley+ (BNL, MASA, YALE)
Eisele	70	ZPHY 238 372	Filthuth, Hepp, Presser, Zech (HEID)
PDG	70	RMP 42 No. 1	Barbara-Galtieri, Derenzo, Price+ (LRL, BRAN, CERN+)
Ang	69	ZPHY 223 103	Eisele, Engelmann, Filthuth+ (HEID)
Ang	69B	ZPHY 228 151	Ebenhoh, Eisele, Engelmann, Filthuth+ (HEID)
Baggett	69	PRL 23 249	Kehoe, Norton+ (UMD)
Baltay	69	PRL 22 615	Franzini, Newman, Norton+ (COLU, STON)
Bangerter	69	Thesis UCRL 19244	Norton (LRL)
Bangerter	69B	PR 187 1821	Alston-Garnjost, Galtieri, Gershwin+ (PRIN)
Barloutaud	69	NP B14 153	DeBellefon, Granet+ (SACL, CERN, HEID)
Eisele	69	ZPHY 221 1	Engelmann, Filthuth, Fohlsch, Hepp+ (HEID)
Bierman	68	PRL 20 1459	Kounosu, Nauenberg+ (PRIN)
Hepp	68	ZPHY 214 71	Schleich (HEID)
Whiteside	68	NC 54A 537	Gollub (BER)
Barash	67	PRL 19 181	Kehoe, Knop+ (UMD)
Chang	66	PR 151 1081	Kehoe, Zorn, Snow (UMD)
Bazin	65B	PR 140B 1358	Plano, Schmidt+ (PRIN, RUTG, COLU)
Dosch	65	PL 14 239	Engelmann, Filthuth, Hepp, Kluge+ (HEID)
Also	66	PR 151 1081	Chang (COLU)
Schmidt	65	PR 140B 1328	(COLU)
Burnstein	64	PRL 13 66	Day, Hepp, Zorn, Snow (UMD)
Courant	64	PR 136B 1791	Filthuth+ (CERN, HEID, UMD, NRL, BNL)
Barkas	63	PRL 11 26	Dyer, Heckman (COLU)
Humphrey	62	PR 127 1305	Ross (LRL)

HTTP://PDG.LBL.GOV Page 8 Created: 6/29/1998 12:17