1 Introduction and Statement of Results

In 1937 Vinogradov proved that any sufficiently large odd number could be written as the sum of three primes. In addition, he managed to provide an asymptotic for the number of ways to do so, proving (as stated in [3] Theorem 19.2)

Theorem 1 (Vinogradov, statement taken from [3] Theorem 19.2). For N a positive integer and A any real number then

$$\sum_{n_1+n_2+n_3=N} \Lambda(n_1)\Lambda(n_2)\Lambda(n_3) = \varnothing_3(N)N^2 + O(N^2\log^{-A}(N)).$$

(1)

Where

$$\varnothing_3(N) = \frac{1}{2} \prod_{p|N}(1-(p-1)^{-2}) \prod_{p\nmid N}(1+(p-1)^{-3}),$$

$\Lambda(n)$ is the Von Mangoldt function, and the asymptotic constant in the O depends on A.

It is easy to see that the contribution to the left hand side of Equation (1) coming from one of the n_i a power of prime is negligible, and thus this side of the equation may be replaced by a sum over triples p_1, p_2, p_3 of primes that sum to N of $\log(p_1)\log(p_2)\log(p_3)$. This implies that any sufficiently large odd number can be written as a sum of three primes since $\varnothing_3(N)$ is bounded below by a constant for N odd.

It should also be noted that the main term, $N^2\varnothing_3(N)$ can be written as

$$C_\infty \prod_p C_p.$$

Where

$$C_\infty = \frac{N^2}{2}.$$
When written this way, there is a reasonable heuristic explanation for Theorem 1. To begin with, the Prime Number Theorem says that the Von Mangoldt function, is approximated by the distribution assigning 1 to each positive integer. C_∞ provides an approximation to the number of solutions based on this heuristic. The C_p can be thought of as corrections to this heuristic. They can be thought of as local contributions coming from congruential information about the primes p_i. C_p can easily be seen to be equal to

$$p\# \left\{ (n_1, n_2, n_3) \in \left(\mathbb{Z}/p\mathbb{Z}\right)^3 : n_1 + n_2 + n_3 \equiv N \pmod{p} \right\} \cdot \frac{(p-1)^3}{(p-1)^3}.$$

This can be thought of as a correction factor coming from the fact that no prime (except for p) is a multiple of p. This term is the ratio of the probability that three randomly chosen non-multiples of p add up to N modulo p divided by the probability that three randomly chosen (arbitrary) numbers add up to N modulo p.

A number of generalizations of Vinogradov’s Theorem have since been proven. Some, such as [9] and [10], deal with restrictions on the relative sizes of the primes involved. In particular, [9] shows that one of the primes can be taken to be as small as $N^{7/120+\varepsilon}$. It is shown in [10] that the primes involved can all be taken to be relatively close to each other.

In [7] and [8], the problem is generalized to number fields, and the question is asked which elements of the ring of integers can be written as a sum of elements that generate prime ideals.

Several more papers deal with problems where the primes involved are required to be taken from specified subsets of the set of all prime numbers. In [4] it is shown that for any three sets of prime numbers with sufficient density that any sufficiently large odd N can be written as a sum of primes, one from each set. A number of papers, including [11], [5], [2] and [6], deal with the case where the primes involved are required to be taken from specified arithmetic progressions.

In this paper, we prove a new generalization of Theorem 1 counting solutions to similar equations where in addition the primes p_i are required to lie in specified Chebotarev classes. In particular, after fixing Galois extensions K_i/\mathbb{Q} and conjugacy classes C_i of $\text{Gal}(K_i/\mathbb{Q})$, we find an asymptotic for the sum of $\prod_{i=1}^k \log(p_i)$ over primes $p_1, \ldots, p_k \leq X$ so that $[K_i/\mathbb{Q}, p_i] = C_i$ for each i and $\sum_{i=1}^k a_i p_i = N$. Note that the results on writing N as a sum of primes from arithmetic progressions, will follow as a special case of this when K_i is abelian over \mathbb{Q} (although our bounds are probably worse). In particular we prove:

In this paper, we generalize the above result to count solutions to similar equations where in addition the primes p_i are required to lie in specified Chebotarev classes. In particular, after fixing Galois extensions K_i/\mathbb{Q} and conjugacy
classes C_i of $\text{Gal}(K_i/\mathbb{Q})$, we find an asymptotic for the sum of $\prod_{i=1}^{k} \log(p_i)$ over primes $p_1, \ldots, p_k \leq X$ so that $[K_i/\mathbb{Q}, p_i] = C_i$ for each i and $\sum_{i=1}^{k} a_ip_i = N$. In particular we prove:

Theorem 2. Let $k \geq 3$ be an integer. Let K_i/\mathbb{Q} be finite Galois extensions $(1 \leq i \leq k)$ and $G_i = \text{Gal}(K_i/\mathbb{Q})$. Let a_1, \ldots, a_k be non-zero integers with no common divisor. Let C_i be a conjugacy class of G_i for each i. Let K_i^a be the maximal abelian extension of \mathbb{Q} contained in K_i, and let D_i be its discriminant. Let D be the least common multiple of the D_i. Let H_i^0 be the subgroup of $(\mathbb{Z}/DZ)^*$ corresponding to K_i^a via global class field theory. Let H_i be the coset of H_i^0 corresponding to the projection of an element of C_i to $\text{Gal}(K_i^a/\mathbb{Q})$. Additionally let N be an integer and let A and X be positive numbers, then

$$\sum_{\substack{p_i \leq X \\ [K_i/\mathbb{Q}, p_i] = C_i \\ \sum_{i=1}^{k} a_ip_i = N}} \prod_{i=1}^{k} \log(p_i) = \left(\prod_{i=1}^{k} \frac{|C_i|}{|G_i|} \right) C_{\infty} C_D \left(\prod_{p | D} C_p \right) + O \left(X^{k-1} \log^{-A}(X) \right).$$

(2)

Where the sum of the right hand side is over sets of prime numbers $p_1, \ldots, p_k \leq X$ so that $\sum_{i=1}^{k} a_ip_i = N$, and so that the Artin symbol $[K_i/\mathbb{Q}, p_i]$ lands in the conjugacy class C_i of G_i for all $1 \leq i \leq k$. On the right hand side,

$$C_{\infty} = \int_{x_i \in [0, X]} \left(\sum_{i=1}^{k} \frac{a_i \partial}{\partial x_i} \right) dx_1 \wedge dx_2 \wedge \ldots \wedge dx_k,$$

$$C_D = D \left(\frac{\# \{(x_i) \in ((\mathbb{Z}/DZ)^*)^k : x_i \in H_i, \sum_{i=1}^{k} a_i x_i \equiv N \pmod{D} \}}{\prod_{i=1}^{k} |H_i|} \right),$$

and the second product is over primes p not dividing D of

$$C_p = p \left(\frac{\# \{(x_i) \in ((\mathbb{Z}/p\mathbb{Z})^*)^k : \sum_{i=1}^{k} a_i x_i \equiv N \pmod{D} \}}{(p-1)^k} \right).$$

The implied constant in the O term may depend on $k, K_i, C_i, a_i,$ and A, but not on X or N. Additionally, if $k = 2$ and K_i, C_i, a_i, A, X are fixed, then Equation 3 holds for all but $O(\log^{-A}(X))$ values of N.

The introduction of Chebotarev classes leads to two main differences between our asymptotic and the classical one. For one, the Chebotarev Density Theorem tells us that there are fewer primes in these Chebotarev classes than out of them and causes us to introduce a factor of $\prod_{i=1}^{k} \left(\frac{|C_i|}{|G_i|} \right)$. Secondly, Global Class Field Theory tells us that the prime p_i will necessarily lie in the subset H_i of $\mathbb{Z}/DZ)^*$, giving us the correction factor C_D rather than $\prod_{p | D} C_p$ to account for required congruence relations that these primes satisfy.

It should be noted that the error term is $o(X^{k-1} \log(X)^{-1})$, whereas if N is bounded away from both the largest and smallest possible values that can
be taken by \(\sum a_i x_i\) for \(x_i \in [0, X]\), then \(C_\infty\) will be on the order of \(X^{k-1}\). For \(K_i, C_i\) fixed, the first term on the right hand side is a constant. \(C_D\) is either 0 or is bounded away from both 0 and \(\infty\). Lastly, for \(p \nmid D \prod_i a_i\), inclusion-exclusion tells us that \(C_p = 1 + O(p^{-1})\), and for \(p|N\), \(p \nmid D \prod_i a_i\), \(C_p = 1 + O(p^{-1})\). This means that unless \(C_p = 0\) for some \(p\), \(\prod_p C_p\) is within a bounded multiple of \(\prod_{p|N}(1 + O(p^{-1})) = \exp(O(\log \log \log N))\). Therefore, unless \(C_D = 0\), \(C_p = 0\) for some \(p\), or \(N\) is near the boundary of the available range, the main term on the right hand side of Equation 2 dominates the error.

2 Overview

Our proof will closely mimic the proof in [3] of Theorem 1. We provide a brief overview of the proof given in [3], discuss our generalization and provide an outline for the rest of the paper.

2.1 The Proof of Theorem 1

On a very generally level, the proof given in [3] depends on writing

\[\Lambda = \Lambda^\sharp + \Lambda^\flat. \]

Here \(\Lambda^\sharp\) is a nice approximation to the Von Mangoldt function obtained essentially by Sieving out multiples of small primes and \(\Lambda^\flat\) is an error term. It is relatively easy to deal with the sum

\[\sum_{n_1 + n_2 + n_3 = N} \Lambda^\sharp(n_1)\Lambda^\sharp(n_2)\Lambda^\sharp(n_3), \]

yielding the main term in Equation 1. This leaves additional terms, each involving at least one \(\Lambda^\flat\). These terms are dealt with by showing that \(\Lambda^\flat\) is small in the sense that its generating function has small \(L^\infty\) norm.

To prove this bound on \(\Lambda^\flat\), they make use of [3] Theorem 13.10, which states that for any \(A\)

\[\sum_{m \leq x} \mu(m)e^{2\pi i \alpha m} \ll x \log^{-A}(x) \]

(\(\mu\) is the Möbius function) with the implied constant depending only on \(A\). This in turn is proved by splitting into cases based on whether or not \(\alpha\) is near a rational number of small denominator.

If \(\alpha\) is close to a rational number, the sum can be bounded through the use of Dirichlet \(L\)-functions. They prove bounds on \(\sum_{n \leq x} \chi(n)\mu(n)\) for \(\chi\) a Dirichlet character ([3] (5.80)). To prove this, their main ingredients are their Theorem 5.13, which gives bounds on the sums of coefficients of the logarithmic derivative of an \(L\)-function, along with some bounds on zero-free regions and Siegel zeroes.

If \(\alpha\) is not well approximated by a rational number with small denominator, their bound is proved by rewriting the sum using some combinatorial identities
and using the quadratic form trick. (Their actual bound is given in \[3\] Theorem 13.9.)

2.2 Outline of Our Proof

Our proof of Theorem 2 is similar in spirit to the proof of Theorem 1 given in \[3\]. We differ in a few ways, some just in the way we choose to organize our information and some from necessary complications due to the increased generality. We provide below and outline of our proof and a comparison of our techniques to those used in \[3\].

Instead of dealing directly with Λ, $\Lambda^\#$, and Λ^\flat as is done in \[3\], we instead deal directly with their generating functions. In Section 3.1, we define G, which is our equivalent of the generating function for Λ. As it turns out, G is somewhat difficult to deal with directly, so we define a related function F, that is better suited for techniques involving Hecke L-functions. In Proposition 3, we prove that we can write G approximately as an appropriate sum of F’s.

In Section 3.2, we define $G^\#$ and G^\flat, which are analogues of the generating functions for $\Lambda^\#$ and Λ^\flat. We also define analogous $F^\#$ and F^\flat. We do our sieving to write G^\flat slightly differently than the way \[3\] does to define Λ^\flat, essentially writing our version of Λ^\flat as a product of local factors. This will later on produce some sums over smooth numbers, so in Lemma 6 we bound the number of smooth numbers, so that we may bound errors coming from sums over them.

We next work on proving that F^\flat has small L^∞ norm (this is somewhat equivalent to \[3\] showing that generating functions of Λ^\flat or μ are small). As in \[3\], we split into two cases based on whether or not we are near a rational number.

In Section 4.1, we deal with the approximation near rationals. First, in Section 4.1.1, we generalize some necessary results about L-functions and Siegel zeroes. In Section 4.1.2, we use these to produce an approximation of F, and in Section 4.1.3, we show that this also approximates F^\flat.

In Section 4.2, we deal with showing that F^\flat is small away from rationals. It should be noted that while the rest of this paper generalizes the corresponding proof in \[3\] in a relatively straightforward way and by use of standard results, something new is needed for this Section. The primary reason for this is that while Vinogradov’s bound on exponential sums over prime numbers reduces the sum in question to exponential sums over arithmetic progressions, the analogous argument in our case requires bounding sums of the form $\sum e^{2\pi i \alpha N(a)}$ over ideals a in a number field. To deal with this issue, we will make use of results about exponential sums of polynomials. Unfortunately, standard results of this type will not be strong enough when the leading term of the polynomial is approximated by a rational number with relatively small (polylogarithmic) denominator. Thus we require a new bound of this type which is given by Lemma 10 below. In the process of deriving this Lemma, we need some results about when multiples of a number with poor rational approximation have a good rational approximation, which we prove in Section 4.2.2. In Section 4.2.3, we use this result to prove bound on sums of the type described above, and in Section...
use these bounds to prove bounds on \(F \). In Section 4.2.1 we prove bounds for \(F^\sharp \). Combining these bounds, we obtain bounds on \(F^\flat \).

In Section 5 we use our bounds on \(F^\flat \) to prove bounds on \(G^\flat \). Finally, in Section 6, we use this bound to prove Theorem 2. In Section 6.1 we introduce the appropriate product generating functions, and deal with the terms coming from \(G^\flat \)’s. In Section 6.2 we produce the main term of our Theorem.

Finally, in Section 7, we show an application of our Theorem to constructing elliptic curves whose discriminants split completely over specified number fields.

3 Preliminaries

In this Section, we introduce some of the basic terminology and results that will be used throughout the rest of the paper. In Section 3.1 we define the functions \(F \) and \(G \) along with some of the basic facts relating them. In Section 3.2, we define \(F^\sharp \) and \(G^\sharp \) along with some related terminology and again prove some basic facts. Finally, in Section 3.3 we prove a result on the distribution of smooth numbers that will prove useful to us later.

3.1 \(G \) and \(F \)

We begin with a standard definition:

Definition. Let \(e(x) \) denote the function \(e(x) = e^{2\pi ix} \).

We now define \(G \) as the generating function for the set primes \(p \leq X \) with \([K/\mathbb{Q}, p] = C\) each weighted by \(\log(p) \).

Definition. Suppose that \(K/\mathbb{Q} \) is a finite Galois extension with \(G = \text{Gal}(K/\mathbb{Q}) \), \(C \) a conjugacy class of \(G \), and \(X \) a positive real number. We then define the generating function

\[
G_{K,C,X}(\alpha) = \sum_{p \leq X \atop [K/\mathbb{Q}, p] = C} \log(p)e(\alpha p).
\]

Where the sum is over primes, \(p \), with \(p \leq X \) and \([K/\mathbb{Q}, p] = C\).

\(G \) is a little awkward to deal with and we would rather work with a related function defined in terms of characters. We first need one auxiliary definition:

Definition. Let \(L/\mathbb{Q} \) be a number field. Let \(\Lambda_L \) be the Von Mangoldt function on ideals of \(L \), \(\Lambda_L : \{\text{Ideals of } L\} \to \mathbb{R} \) defined by

\[
\Lambda_L(a) = \begin{cases}
\log(N(p)) & \text{if } a = p^n \\
0 & \text{otherwise}
\end{cases}
\]

which assigns \(\log(N(p)) \) to a power of a prime ideal \(p \), and 0 to ideals that are not powers of primes.
We now define

Definition. If \(L/\mathbb{Q} \) is a number field, \(\xi \) a Grossencharacter of \(L \), and \(X \) a positive number, define the function

\[
F_{L,\xi,X}(\alpha) = \sum_{N(a) \leq X} \Lambda_L(a)\xi(a)e(\alpha N(a)).
\]

Where the sum above is over ideals \(a \) of \(L \) with norm at most \(X \).

Notice that the sum in the definition of \(F \) is determined up to \(O(\sqrt{X}) \) by the terms coming from \(a \) a prime splitting completely over \(\mathbb{Q} \).

For both \(F \) and \(G \), we will often suppress some of the subscripts when they are clear from context. We now demonstrate the relationship between \(F \) and \(G \).

Proposition 3. Let \(K \) and \(C \) be as above. Pick a \(c \in C \). Let \(L \subseteq K \) be the fixed field of \(c \). Then we have that

\[
G_{K,C,X}(\alpha) = |C|\left(\sum_{\chi} \overline{\chi}(c)F_{L,\chi,X}(\alpha) \right) + O(\sqrt{X}). \tag{3}
\]

Where the sum is over characters \(\chi \) of the subgroup \(\langle c \rangle \subset G \), which, by global class field theory, can be thought of as characters of \(L \).

Proof. We begin by considering the sum on the right hand side of Equation (3). It is equal to

\[
\sum_{\chi} \overline{\chi}(c)F_{L,\chi,X}(\alpha) = \sum_{\chi} \sum_{N(a) \leq X} \Lambda_L(a)\overline{\chi}(c)e(\alpha N(a))
\]

\[
= \sum_{N(a) \leq X} \Lambda_L(a)e(\alpha N(a)) \sum_{\chi} \overline{\chi}(\sum_{[K/L,a] = c} N(a))
\]

\[
= \text{ord}(c) \sum_{N(a) \leq X} \Lambda_L(a)e(\alpha N(a)).
\]

Up to an error of \(O(\sqrt{X}) \), we can ignore the contributions from elements whose norms are powers of primes, because there are \(O(\sqrt{X}/\log(X)) \) higher powers of primes with norm at most \(X \). Therefore the above equals

\[
\text{ord}(c) \sum_{N(p) \leq X} \log(N(p))e(\alpha N(p)) + O(\sqrt{X}).
\]

We need to determine now which primes \(p \in \mathbb{Z} \) are the norm of an ideal \(a \) of \(L \) with \([K/L,p] = c \), and for such \(p \), how many such \(p \) lie over it. Each such \(p \) must have only one prime \(q \) of \(K \) over it and it must be the case that
\([K/Q, q] = c\). Hence the \(p\) we wish to find are exactly those that have a prime \(q\) lying over them with \([K/Q, q] = c\). These are exactly the primes \(p\) so that \([K/Q, p] = C\). Hence the term \(e(\alpha n)\) appears in the above sum if and only if \(n\) is a prime \(p\) with \([K/Q, p] = C\). We next need to compute the coefficient of this term. The coefficient will be \(\text{ord}(c) \log(p)\) times the number of primes \(p\) of \(L\) over \(p\) with \([K/Q, p] = C\). These primes are in 1-1 correspondence with primes \(q\) of \(K\) over \(p\) with \([K/Q, q] = c\). Now for such \(p\), there will be \(\frac{|G|}{[C: \text{ord}(c)]}\) primes of \(K\) over it, and \(\frac{|G|}{[C: \text{ord}(c)]}\) of them will have the correct Artin symbol. Hence the coefficient of \(e(\alpha p)\) for such \(p\) will be exactly \(\frac{|G|}{[C: \text{ord}(c)]} \log(p)\). Therefore the sum on the right hand side of Equation (3) is

\[
\frac{|G|}{|C|} \sum_{p \leq X, [K/Q, p] = C} \log(p) e(\alpha p) + O(\sqrt{X}).
\]

Multiplying by \(\frac{|C|}{|G|}\) completes the proof of the Proposition.

3.2 Local Approximations

Here we define some simpler functions meant to approximate \(F\) and \(G\). In order to do so we will need a number of auxiliary definitions:

Definition. For \(p\) a prime let

\[
\Lambda_p(n) = \begin{cases}
0 & \text{if } p | n \\
\frac{1}{1 - p^{-1}} & \text{else}
\end{cases}.
\]

\(\Lambda_p\) can be thought of as a local approximation to the Von Mangoldt function, based only on the residue of \(n\) modulo \(p\). Putting these functions together we get

Definition. Let \(z\) be a positive real. Define a function \(\Lambda_z\) by

\[
\Lambda_z(n) = \prod_{p \leq z} \Lambda_p(n) = \begin{cases}
0 & \text{if } p | n \text{ for some prime } p < z \\
\prod_{p < z} \frac{1}{1 - p^{-1}} & \text{otherwise}
\end{cases}.
\]

Note that by slight abuse of notation we have already defined several functions denoted by \(\Lambda\) with some subscript. We will disambiguate these by context and by consistently using subscripts either the same as or nearly identical to those used in the original definition (so \(\Lambda_z\) will always use \(z\) as its subscript, even though this represents a variable).

There are also some related definitions which will prove useful later.

Definition. Let

\[
C(z) = \prod_{p \leq z} \frac{1}{1 - p^{-1}}.
\]
\[P(z) = \prod_{p \leq z} p. \]

\[P(z, q) = \prod_{p \leq z, p \nmid q} p. \]

We note that

\[\Lambda_z(n) = C(z) \sum_{d|(n, P(z))} \mu(d), \]

that

\[\Lambda_z(n) = C(z) \sum_{d|(n, P(z, q))} \mu(d) \cdot \left(\begin{array}{c} 1 \\ 0 \end{array} \right) , \]

and that

\[C(z) = \Theta(\log(z)). \]

We will need some other local contributions to the Von Mangoldt function to take into account splitting information. In particular we define:

Definition. Let \(K/\mathbb{Q} \) be a Galois extension and \(C \subset G = \text{Gal}(K/\mathbb{Q}) \) a conjugacy class of the Galois group. Let the image of \(C \) in \(G^b \) correspond via Global Class Field Theory to a coset \(H \) of some subgroup of \((\mathbb{Z}/D_K \mathbb{Z})^* \) for \(D_K \) the discriminant of \(K \). We define \(\Lambda_{K,C} \) to be the arithmetic function:

\[\Lambda_{K,C}(n) = \left\{ \begin{array}{ll} \phi(D_K) & \text{if } n \in H \\ 0 & \text{otherwise} \end{array} \right. . \]

This accounts for the congruence conditions implied by \(n \) being a prime with Artin symbol \(C \).

Definition. Let \(L \) be a number field. Consider the image of \(\text{Gal}(\overline{\mathbb{Q}}/L) \) in \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \). By global class field theory, this corresponds to a subgroup \(H_L \) of \((\mathbb{Z}/D_L \mathbb{Z})^* \) for \(D_L \) the discriminant of \(L \). Let

\[\Lambda_{L/\mathbb{Q}}(n) = \left\{ \begin{array}{ll} \phi(D_L) & \text{if } n \in H_L \\ 0 & \text{otherwise} \end{array} \right. . \]

\(\Lambda_{L/\mathbb{Q}} \) accounts for the congruence conditions that are implied by being a norm from \(L \) down to \(\mathbb{Q} \).

We are now prepared to define our approximations \(F^\# \) and \(G^\# \) to \(F \) and \(G \).

Definition. For \(K/\mathbb{Q} \) Galois, \(C \) a conjugacy class in \(\text{Gal}(K/\mathbb{Q}) \), and \(z \) and \(X \) positive real numbers, we define the generating function

\[G^\#_{K,C,X,z}(\alpha) = \frac{|C|}{|G|} \sum_{n \leq X} \Lambda_{K,C}(n) \Lambda_z(n) e(\alpha n). \]

We also let

\[G^\#_{K,C,X,z}(\alpha) = G_{K,C,X}(\alpha) - G^\#_{K,C,X,z}(\alpha). \]
Definition. For L/Q a number field, ξ a Grossencharacter of L, X and z positive numbers, we define the function

$$F^\dagger_{L,\xi,X,z}(\alpha) = \left\{ \begin{array}{ll} \sum_{n \leq X} \Lambda_{L/Q}(n)\Lambda_z(n)\chi(n)e(\alpha n) & \text{if } \xi = \chi \circ N_{L/Q} \\ 0 & \text{otherwise} \end{array} \right.$$.

We note that although there may be several Dirichlet characters χ so that $\xi = N_{L/Q} \circ \chi$, that the product of $\chi(n)$ with $\Lambda_{L/Q}(n)$ is independent of the choice of such a χ. We also let

$$F^\flat_{L,\xi,X,z}(\alpha) = F_{L,\xi,X}(\alpha) - F^\dagger_{L,\xi,X,z}(\alpha).$$

Again for these functions we will often suppress some of the subscripts.

We claim that F^\dagger and G^\dagger are good approximations of F and G, and in particular we will prove that:

Theorem 4. Let K/Q be a finite Galois extension, and let C be a conjugacy class of $\text{Gal}(K/Q)$. Let A be a positive integer and B a sufficiently large multiple of A. Then if X is a positive number, $z = \log^B(X)$, and α any real number, then

$$\left| G^\dagger_{K,C,X,z}(\alpha) \right| = O \left(X \log^{-A}(X) \right),$$

where the implied constant depends on K, C, A, and B, but not on X or α.

Theorem 5. Given L/Q a number field, and ξ a Grossencharacter of L, let A be a positive number and B a sufficiently large multiple of A. Then if X is a positive number, $z = \log^B(X)$, and α any real number, then

$$\left| F^\dagger_{L,\xi,X,z}(\alpha) \right| = O \left(X \log^{-A}(X) \right),$$

where the implied constant depends on L, ξ, A, and B, but not on X or α.

The proofs of these Theorems will be the bulk of Sections 4 and 5.

3.3 Smooth Numbers

We also need some results on the distribution of smooth numbers. We begin with a definition:

Definition. Let $S(z,Y)$ be the number of $n \leq Y$ so that $n\mid P(z)$. In other words the number of $n \leq Y$ so that n is squarefree and has no prime factors bigger than z.

We will need the following bound on $S(z,Y)$:

Lemma 6. If $z = \log^B(X)$ and $Y \leq X$, then

$$S(z,Y) \ll Y^{1-1/(2B)} \exp \left(O(\log(X)) \right)$$
\textbf{Proof.} Notice that
\[\int_{y=0}^{Y} S(z,y)dy = \frac{1}{2\pi} \int_{1-i\infty}^{1+i\infty} (s(s+1))^{-1} \prod_{p \leq z} (1 + p^{-s}) Y^{s+1} ds. \]

Note that for \(\Re(s) > \frac{1}{2} \),
\[\left| \prod_{p \leq z} (1 + p^{-s}) \right| = \left| \exp \left(\sum_{p \leq z} p^{-s} + O(1) \right) \right| \ll \exp \left(\frac{z^{1-\Re(s)}}{1-\Re(s)} \right). \]

Changing the line of integration to \(1 - \Re(s) = \frac{1}{2B} \), we get that the integrand is at most \(s^{-2} Y^{2-1/(2B)} \exp \left(O(\sqrt{\log(Y)}) \right) \). Integrating and evaluating at \(2Y \), we get that
\[Y^{2-1/(2B)} \exp \left(O(\sqrt{\log(Y)}) \right) \gg \int_{y=0}^{2Y} S(z,y)dy \gg Y S(z,Y), \]
proving our result. \(\square \)

\section{Approximation of \(F \)}
In this Section, we will prove Theorem 5, restated here:

\textbf{Theorem 5.} Given \(L/Q \) a number field, and \(\xi \) a Grossencharacter of \(L \), let \(A \) be a positive number and \(B \) a sufficiently large multiple of \(A \). Then if \(X \) is a positive number, \(z = \log B \left(X \right) \), and \(\alpha \) any real number, then
\[\left| F_{L,\xi,X,z}^{\rightarrow}(\alpha) \right| = O \left(X \log^{-A}(X) \right), \]
where the implied constant depends on \(L, \xi, A, \) and \(B \), but not on \(X \) or \(\alpha \).

In order to prove Theorem 5, we will split into cases based upon whether \(\alpha \) is well approximated by a rational number of small denominator. If it is (the smooth case), we proceed to use the theory of \(L \)-functions to approximate \(F \). If \(\alpha \) is not well approximated (the rough case), we generalize results on exponential sums over primes to show that \(|F| \) is small. In either case, \(F^{\rightarrow} \) is not difficult to approximate.

We note that by Dirichlet’s approximation Theorem, we can always find a pair \((a,q) \) with \(a \) and \(q \) relatively prime and \(q < M = \Theta(X \log^{-B}(X)) \) with \(\left| \alpha - \frac{a}{q} \right| \leq \frac{1}{qM} \). We consider the smooth case to be the one where \(q \leq z \).

\subsection{\(\alpha \) Smooth}
In this Section, we will prove the following Proposition:
Proposition 7. Let L be a number field, and ξ a Grossencharacter. If $z = \log^B(X)$, $Y \leq X$ and $\alpha = \frac{a}{q}$ with a and q relatively prime and $q \leq z$, then for some constant $c > 0$ (depending only on L, ξ and B),

$$|F_{L,\xi,Y,z}^b(\alpha)| = O \left(X \exp \left(-c\sqrt{\log(X)} \right) \right).$$

We note that this result can easily be extended to all smooth α. In particular we have:

Corollary 8. Let L and ξ be as above. Let A be a constant, and B a sufficiently large multiple of A. Let $z = \log^B(X)$. Suppose that $\alpha = \frac{a}{q} + \theta$ with a and q relatively prime, $q \leq z$ and $|\theta| \leq \frac{1}{qM}$. Then

$$|F_{L,\xi,X,z}^b(\alpha)| = O \left(X \log^{-A}(X) \right).$$

Proof (Given Proposition 7). Noting that if $F_{L,\xi,X}^b(\alpha) = \sum_{n \leq X} a_n e(\alpha n)$, then by Abel summation and Proposition 7,

$$F_{L,\xi,X}^b(\alpha) = \sum_{n \leq X} a_n e \left(\frac{na}{q} \right) e(n\theta)$$

$$= (1 - e(\theta)) \left(\sum_{Y \leq X} F_{L,\xi,Y}^b \left(\frac{a}{q} \right) e(Y\theta) \right) + F_{L,\xi,X}^b \left(\frac{a}{q} \right) e((X+1)\theta)$$

$$= O \left(X^{-1} \log^B(X) \right) \left(\sum_{Y \leq X} O \left(X \log^{-A-B}(X) \right) \right) + O \left(X \log^{-A-B}(X) \right)$$

$$= O \left(X \log^{-A}(X) \right).$$

\(\square\)

In order to prove Proposition 7, we will need to separately approximate F and F^\sharp. For the former, we will also need to review some basic facts about Hecke L-functions.

4.1.1 Results on L-functions

Fix a number field L and a Grossencharacter ξ. We consider Hecke L-functions of the form $L(\chi, s)$ where χ is a Dirichlet character of modulus $q \leq z = \log^B(X)$ thought of as a Grossencharacter via $\chi(a) = \chi(N_{L/\mathbb{Q}}(a))$. We let d be the degree of L over \mathbb{Q}, and let D_L be the discriminant. We let m be the modulus of the character ξ, and q the modulus of χ. We note that $\xi \chi$ has modulus at most qm. Therefore by [3], in the paragraph above Theorem 5.35, $L(\xi \chi)$ has conductor $q \leq 4^d|d_K|N(m)q^d$, and by Theorem 5.35 of [3], for some constant c depending only on L, $L(\xi \chi, s)$ has no zero in the region

$$\sigma > 1 - \frac{c}{d \log(|d_K|N(m)q^d|t| + 3))}$$

12
except for possibly one Siegel zero. Note also that $L(\xi \chi, s)$ has a simple pole at $s = 1$ if $\xi = \overline{\chi}$, and otherwise is holomorphic. Noting that
\[
\frac{-L'(\xi \chi, s)}{L(\xi \chi, s)} = \sum_a \Lambda_L(a) \xi \chi(a) N(a)^{-s},
\]
and that the n^{-s} coefficient of the above is at most $d \log(n)$, we may apply Theorem 5.13 of [3] and obtain for a suitable constant $c > 0$,
\[
\sum_{N(a) \leq Y} \Lambda_L(a) \xi \chi(a) = rY - \frac{Y^\beta}{\beta} + O \left(Y \exp \left(\frac{-c \log Y}{\sqrt{\log Y} + 3 \log(q^d) + O(1)} \right) (\log(q^d) + O(1))^4 \right),
\]
where the term $\frac{Y^\beta}{\beta}$ should be taken with β the Siegel zero if it exists; $r = 0$ unless $\xi \chi = 1$, in which case, $r = 1$; and the implied constants may depend on L, ξ but not on χ or Y.

In order to make use of Equation 6, we will need to prove bounds on the size of Siegel zeroes. In particular we show that:

Lemma 9. For all L and ξ, and all $\epsilon > 0$, there exists a $c(\epsilon) > 0$ so that for every Dirichlet character χ of modulus q and every Siegel zero β of $L(\xi \chi, s)$,
\[
\beta > 1 - c(\epsilon).
\]

Proof. We follow the proof of Theorem 5.28 part 2 from [3], and note the places where we differ. We note that Theorem 5.35 states that we only need by concerned when $\xi \chi$ is totally real. We then consider two such χ having Siegel zeros. We use, $L(s) = \zeta_L(s)L(\xi \chi_1, s)L(\xi \chi_2, s)L(\xi^2 \chi_1 \chi_2)$, which has conductor $O(q_1 q_2)^2 d$ instead of the analogous one from [3]. This gives us a convexity bound on the integral term of $O((q_1 q_2)^d x^{1-\beta})$, instead of the one listed. Again assuming that $\beta > 3/4$, we take $x > c(q_1 q_2)^d$. We notice that we still have (5.64) for $\sigma > 1 - 1/d$ sufficiently large by noting that $|\sum_{N(a) \leq x} \xi \chi(a)| = O(x^{1-1/d} + \max(x, q))$. Therefore, Equation (5.75) of [3] becomes
\[
L(\xi \chi_2, 1) \gg (1 - \beta_1)(q_1 q_2)^{-4d(1-\beta_1)}(\log(q_1 q_2))^{-2}.
\]
The rest of the argument from [3] carries over more or less directly. \qed

4.1.2 Approximation of F

We prove

Proposition 10. With L, ξ, χ, Y, r as above, $X \geq Y$ and $z = \log^B(X)$,
\[
F_{L, \xi \chi, Y}(0) = rY + O \left(X \exp(-c\sqrt{X}) \right). \tag{7}
\]

Where again c depends on L, ξ but not χ, Y.

Proof. Applying Lemma \[9\] with \(\epsilon = 1 - 1/(2B) \) to Equation \[6\] we get that

\[
\sum_{N(a) \leq Y} \Lambda_L(a) \xi(a) \chi(a) = rY - \frac{Y^\beta}{\beta} + O \left(X \exp(-c\sqrt{\log(X)}) \right)
\]

\[
= rY + O \left(Y \exp\left(-c(\epsilon)\sqrt{\log(Y)}\right) \right) + O \left(X \exp\left(-c\sqrt{\log(X)}\right) \right)
\]

\[
= rY + O \left(X \exp\left(-c\sqrt{\log(X)}\right) \right).
\]

4.1.3 Approximation of \(F^2 \)

Proposition 11. With \(L, \xi, \chi, X, Y, r \) as above, \(z = \log^B(X) \),

\[
F^2_L,\xi,\chi,Y(0) = rY + O \left(X \exp\left(-c\sqrt{X}\right) \right).
\]

Proof. If \(\xi \chi \) is not of the form \(\chi' \circ N_{L/Q} \), then \(F^2 = 0 \) and we are done. Otherwise let \(\xi \chi \) be as above with \(\chi' \) a character of modulus \(q' \). We have that

\[
F^2_L,\xi',Y(0) = \sum_{\nu \leq Y} \Lambda_{L/Q}(n) \Lambda_{z}(n) \chi'(n)
\]

\[
= C(z) \sum_{\nu \leq Y} \sum_{d \mid (P, q'D_L, n)} \mu(d) \Lambda_{L/Q}(n) \chi'(n)
\]

\[
= C(z) \sum_{d \mid (P, q'D_L)} \sum_{n \leq Y/d} \mu(d) \Lambda_{L/qD_L}(n) \chi'(n)
\]

\[
= C(z) \sum_{d \mid (P, q'D_L)} \mu(d) \chi'(d) \sum_{m \leq Y/d} \Lambda_{L/qD_L}(dm) \chi'(m).
\]

Consider for a moment the inner sum over \(m \). It is periodic with period dividing \(q'D_L \). Note that the sum over a period is 0 unless \(\chi' \) is trivial on \(H_L \), in which case the average value is \(\chi'(d) \phi(q'D_L)/q'D_L \). Since \(r = 1 \) if \(\chi' \) vanishes on \(H_L \) and \(r = 0 \) otherwise, we have that:

\[
F^2_L,\xi',Y(0) = C(z) \left(\phi(q'D_L)/q'D_L \right) \sum_{d \mid (P, q'D_L)} \left(r\mu(d)Y/d + O(q'D_L) \right).
\]

The sum of error term here is at most \(O(C(z)qS(z,Y)) \) which by Lemma \[6\] is \(O \left(Y^{1-1/(2B)} \log^2(z)q \exp(O(\sqrt{\log(X)})) \right) \). The remaining term is

\[
rY C(z) \phi(q'D_L)/q'D_L \sum_{d \mid (P, q'D_L)} \mu(d)/d.
\]
The error introduced by extending the sum to all \(d\) is at most

\[
O \left(YC(z) \int_{\sqrt{Y}}^\infty S(z, y) y^{-2} dy \right)
\].

By Lemma 6 this is

\[
O \left(Y^{1-1/(2B)} \log(z) \exp(O(\sqrt{\log(Y)})) \right).
\]

Once we have extended the sum we are left with

\[
rYC(z) \frac{\phi(q'D_L)}{q'D_L} \sum_{d|P(z,q'D_L)} \mu(d) \frac{1}{d} = rYC(z) \left(\frac{\phi(q'D_L)}{q'D_L} \left(\frac{\phi(P(z,q'D_L))}{P(z,q'D_L)} \right) \right)
\]

\[
= rYC(z) \left(\frac{\phi(P(z))}{P(z)} \right)
\]

\[
= rY.
\]

Hence

\[
F_{L,\xi,Y,z}^\sharp(0) = rY + O \left(Y^{1-1/(2B)} \log(z) q^2 \exp(O(\sqrt{\log(X)})) \right)
\]

\[
= rY + O \left(X \exp(-c\sqrt{X}) \right).
\]

4.1.4 Proof of Proposition 7

Proof. Combining Propositions 10 and 11 we obtain that

\[
F_{L,\xi,Y,z}^\flat(0) = O \left(X \exp(-c\sqrt{X}) \right).
\]

Our Proposition follows immediately after noting that

\[
F_{L,\xi,Y,z}^\flat \left(\frac{a}{q} \right) = \sum_{\chi \mod q} e_\chi F_{L,\xi,Y,z}^\flat(0).
\]

Where \(e_\chi\) is the appropriate Gauss sum.

\[\square\]

4.2 \(\alpha\) Rough

In this Section, we will show that \(|F^\flat(\alpha)|\) is small for \(\alpha\) not well approximated by a rational of small denominator. We will do this by showing that both \(|F(\alpha)|\) and \(|F^\sharp(\alpha)|\) are small. The proof of the latter will resemble the proof of Proposition 11. The proof of the former will require some machinery including some Lemmas about rational approximations and exponential sums of polynomials.
\[|F_{L, \xi, z}(\alpha)| = O \left(X \log(X) \log(z)q^{-1} + q \log(q) \log(z) + X^{1-1/(4B)} \exp(O(\sqrt{\log(X)})) \right). \]

Proof. We note that the result is trivial unless \(\xi = N_{L/Q}(\chi) \) for some Dirichlet character \(\chi \) of modulus \(Q \). Hence we may assume that

\[F_{L, \xi, z}(\alpha) = \sum_{n \leq X} \Lambda_{L/Q}(n)\Lambda_z(n)\chi(n)e(\alpha n). \]

Let \(D_L \) be the discriminant of \(L \). We note that

\[F_{L, \xi, z}(\alpha) = \sum_{n \leq X} \Lambda_{L/Q}(n)\Lambda_z(n)\chi(n)e(\alpha n) \]

\[= C(z) \sum_{n \leq X} \sum_{d \mid (n, P(z, QD_L))} \mu(d) \Lambda_{L/Q}(n)\chi(n)e(\alpha n) \]

\[= C(z) \sum_{d \mid P(z, QD_L)} \mu(d)\chi(d) \sum_{m \equiv n \pmod{D_L}} \Lambda_{L/Q}(dm)\chi(m)e(\alpha dm) \]

\[= O \left(C(z) \sum_{d \mid P(z, QD_L)} \left| \sum_{m \leq X/d} \Lambda_{L/Q}(dm)\chi(m)e(\alpha dm) \right| \right). \]

In order to analyze the last sum, we split it up based on the conjugacy class of \(d \) modulo \(QD_L \). Each new sum is geometric series with ratio of terms \(e(\alpha QD_L d) \). Hence we can bound this sum as \(\min \left(\frac{X}{d}, \frac{QD_L}{2||d||QD_L \alpha||} \right) \), where \(||x|| \) is the distance from \(x \) to the nearest integer. Therefore we have that

\[|F_{L, \xi, z}(\alpha)| = O \left(C(z) \sum_{d \leq X^{1-1/(4B)}} \min \left(\frac{X}{d}, \frac{QD_L}{2||d||QD_L \alpha||} \right) + C(z)X^{1/4B}S(z, X) \right). \]

We bound the sum in the first term by looking at what happens as \(d \) ranges over an interval of length \(\frac{q}{3QD_L} \). We get that \(dQD_L \alpha = x_0 + kQ\alpha \) for \(x_0 \) the value at the beginning of the interval and \(k \) an integer at most \(\frac{q}{3QD_L} \). Notice that \(kQD_L \alpha \) is within \(\frac{1}{3q} \) of \(\frac{KQD_L \alpha}{q} \), which must be distinct for different values of \(k \). Hence none of the fractional parts of \(dQD_L \alpha \) can be within \(\frac{1}{3q} \) of each other. Hence the sum over this range of \(d \) is at most \(\frac{X}{d} + \frac{2QD_L}{2/(3q)} + \frac{2QD_L}{2/(3q)} + \ldots = O \left(\frac{X}{d} + 3qQD_L \log(q) \right) \). Furthermore the \(\frac{X}{d} \) term does not show
up in the first such interval, since when $d = 0$, $dQDL\alpha$ is an integer. We have $3QDLX^{1-1/(4B)}/q + 1$ of these intervals. Therefore, the first term is at most

$$O \left(\frac{X}{(q/(3QDL))} + \frac{X}{2(q/(3QDL))} + \ldots + 9Q^2D_L^2 \log(q)X^{1-1/(4B)} + 3qQDL \log(q) \right)$$

$$= O \left(X \log(X)q^{-1} + \log(q)X^{1-1/(4B)} + q \log(q) \right).$$

The other term is bounded by Lemma 6 as

$$O \left(\log(z)X^{1-1/(4B)} \exp \left(O(\sqrt{\log(X)}) \right) \right).$$

Putting these bounds together, we get that

$$|F_{\xi,\zeta}(\alpha)| = O \left(X \log(X) \log(q) \log(z) + X^{1-1/(4B)} \exp(O(\sqrt{\log(X)})) \right).$$

4.2.2 Lemmas on Rational Approximation

In the coming Sections, we will need some results on rational approximation of numbers. In particular, we will need to know how often multiples of a given α have a good rational approximation. In order to discuss these issues, we first make the following definition:

Definition. We say that a real number α has a rational approximation with denominator q if there exist relatively prime integers a and q so that

$$\left| \frac{a}{q} - \alpha \right| < \frac{1}{q^2}.$$

We now prove a couple of Lemmas about this definition.

Lemma 13. Let X, Y, A be positive integers. Let α be a real number with rational approximation of denominator q. Suppose that for some B, that $XYB^{-1} > q > B$. Then for all but $O(Y \left(A^{3/2}B^{-1/2} + A^2B^{-1} + \log(AY)A^3X^{-1} \right))$ of the integers n with $1 \leq n \leq Y$, $n\alpha$ has a rational approximation with denominator q' for some $XA^{-1} > q' > A$.

Proof. By Dirichlet’s approximation theorem, $n\alpha$ always has a rational approximation $\frac{a}{q}$ with $q' < QA^{-1}$ and

$$\left| n\alpha - \frac{a}{q'} \right| < \frac{1}{q'XA^{-1}}.$$

Therefore, $n\alpha$ lacks an appropriate rational approximation only when the above has a solution for some $q' \leq A$. If such is the case then, dividing by n, we find that α is within $(q')^{-1}n^{-1}X^{-1}A$ of some rational number of denominator d so that $d\mid nq'$. Note that this error is at most $d^{-1}X^{-1}A$.

17
Given such a rational approximation to \(\alpha \) with denominator \(d \), we claim that it contributes to at most \(Y A^2 d^{-1} \) bad \(n \)'s. This is because there are at most \(A \) values of \(q' \), and for each value of \(q' \), we still need that \(n \) is a multiple of \(\frac{d}{(d,q')} \geq dA^{-1} \). Hence for each \(q' \), there are at most \(Y A^2 d^{-1} \) bad \(n \).

Next, we pick an integer \(n_0 \). We will now consider only \(Y \geq n \geq n_0 \) so that \(\alpha n \) has no suitable rational approximation. We do this by analyzing the denominators \(d \) for which some rational number of denominator \(d \) approximates \(\alpha \) to within \(X^{-1} \). Suppose that we have some \(d \neq q \) which does this. \(\alpha \) is within \(q^{-2} \) of a number with denominator \(q \), and within \(X^{-1} n_0^{-1} A \) of one with denominator \(d \). These two rational numbers differ by at least \((dq)^{-1} \) and therefore

\[
(dq)^{-1} \leq q^{-2} + X^{-1} n_0^{-1}.
\]

Hence either \(dq^{-1} \) or \(X^{-1} n_0^{-1} dq \) is at least \(\frac{1}{2} \). Hence either \(d \geq \frac{q}{2} \), or

\[
d \geq \frac{X n_0}{2Aq} \geq \frac{n_0 B}{2AY}.
\]

Therefore the smallest such \(d \) is at least the minimum of \(\frac{q}{2} \) and \(\frac{n_0 B}{2AY} \).

Next suppose that we have two different such denominators, say \(d \) and \(d' \). The fractions they represent are separated by at least \((dd')^{-1} \) and yet are both close to \(\alpha \). Therefore

\[
(dd')^{-1} \leq X^{-1} A (d^{-1} + d'^{-1}).
\]

Therefore we have that \(\max(d,d') \geq \frac{X}{2} \). Hence there is at most one such denominator less than \(\frac{X}{2} \).

Next we wish to bound the number of such denominators \(d \) in a dyadic interval \([K,2K]\). We note that the corresponding fractions are all within \(X^{-1} A K^{-1} \) of \(\alpha \), and that any two are separated from each other by at least \((2K)^{-2} \). Therefore the number of such \(d \) is at most \(1 + 8 K X^{-1} A \).

To summarize we potentially have the following \(d \) each giving at most \(Y A^2 d^{-1} \) bad \(n \)'s.

- One \(d \) at least \(\min \left(\frac{q}{2}, \frac{n_0 B}{2AY} \right) \).
- For each diadic interval \([K,2K]\) with \(K \geq \frac{X}{2} \) at most \(10 K X^{-1} A \) such \(d \)'s.

Notice that there are \(\log(2AY) \) such diadic intervals, and that each contributes at most \(10 Y A^3 X^{-1} \) bad \(n \)'s. We also potentially have \(n_0 \) bad \(n \)'s from the numbers less than \(n_0 \). Hence the number of \(n \) for which there is no suitable rational approximation of \(n \alpha \) is at most

\[
O \left(n_0 + Y A^2 B^{-1} + Y^2 A^3 B^{-1} n_0^{-1} + \log(AY) Y A^3 X^{-1} \right).
\]

Substituting \(n_0 = Y A^{3/2} B^{-1/2} \) yields our result.

We will also need the following related Lemma:
Lemma 14. Let X, A, C be positive integers. Let α be a real number with rational approximation of denominator q. Suppose that for some $B > 2A$, that $XB^{-1} > q > B$. Then there exists a set S of natural numbers so that

- elements of S are of size at least $\Omega(BA^{-1})$.
- The sum of the reciprocals of the elements of S is $O(A^2B^{-1} + X^{-1}A^4C)$.
- for all positive integers $n \leq C$, either n is a multiple of some element of S or $n\alpha$ has a rational approximation with some denominator q' with $XA^{-1}n^{-1} > q' > A$.

Proof. We use the same basic techniques as the proof of Lemma 13. We note that $n\alpha$ always has a rational approximation $\frac{a}{q'}$ accurate to within $\frac{1}{q'XA^{-1}n}$ with $q' < XA^{-1}n^{-1}$. This means that we have an appropriate rational approximation of $n\alpha$ unless this q' is less than A. If this happens, it is the case that

$$|\alpha - \frac{a}{nq'}| \leq \frac{1}{q'XA^{-1}}.$$

Hence to each such n we can assign a rational approximation $\frac{a}{nq'}$ of α. The n that are assigned to a rational approximation $\frac{a}{q'}$ are those so that

$$|\alpha - \frac{a}{d}| \leq \frac{1}{XA^{-1}D}$$

where $D = \frac{d}{(n,d)} \leq A$. Hence it suffices to let S be the set of all $\frac{d}{D}$ where $A \geq D$, $D|d$ and

$$|\alpha - \frac{a}{d}| \leq \frac{1}{XA^{-1}D} \leq \frac{1}{XA^{-1}}.$$

We have to show that the elements of S are big enough and that the sum of their reciprocals satisfies the appropriate bound. Note that for each such d, it contributes at most $O(\frac{A^2}{d})$ to the sum of reciprocals.

We note that if we have any such denominator d other than q, α is within q^{-2} of a rational number of denominator q and within $X^{-1}A$ of one of denominator d. Hence we have that

$$(dq)^{-1} \leq q^{-2} + X^{-1}A.$$

Hence

$$d \geq \min \left(\frac{q}{2}, \frac{X}{2A} \right) \geq \frac{q}{2}.$$

Note that in any case $\frac{d}{A} = \Omega(BA^{-1})$, and hence all of the terms in S are sufficiently large. Additionally, this s contributes at most $O(A^2B^{-1})$ to the sum of reciprocals.

Next note that if we have two of these approximations with denominators d and d' that

$$(dd')^{-1} \leq 2XA^{-1}.$$

19
Therefore the second largest such \(d \) is at least \(\sqrt{2XA^{-1}} \).

Next we consider the contribution from all such approximations with \(d \) lying in a diadic interval \([K, 2K]\) all of these approximations are within \(X^{-1}A \) of \(\alpha \) and are separated from each other by at least \(\frac{1}{4K^2} \). Therefore, there are at most \(1 + 8X^{-1}A^2K^2 \). If we ensure that \(K \) is at least \(\sqrt{2XA^{-1}} \), this is \(O(X^{-1}A^4K^2) \). Hence all of these \(d \)'s contribute at most \(O(X^{-1}A^3K) \) to the sum of reciprocals. Furthermore we can ignore terms with \(K > AC \).

Hence all of these \(d \)'s contribute at most \(O(X^{-1}A^3K) \) to the sum of reciprocals.

Furthermore we can ignore terms with \(K > AC \). Taking the sum of this over \(K \) a power of 2, we get at most \(O(X^{-1}A^4C) \).

We will be using Lemma 14 to bound the number of ideals of \(L \) so that \(N(a) \alpha \) has a good rational approximation. In order to do this we will also need the following:

Lemma 15. Fix \(L \) be a number field. Let \(n \) be a positive integer, and let \(X \) and \(\epsilon \) be positive real numbers. Then we have that:

\[
\sum_{n|N(a) \atop N(a) < X} \frac{1}{N(a)} = O \left(\frac{X \log(X)n^\epsilon}{n} \right),
\]

\[
\sum_{n|N(ab) \atop N(ab) < X} \frac{1}{N(ab)} = O \left(\frac{X \log^2(X)n^\epsilon}{n} \right).
\]

(The first sum is over ideals \(a \) so that \(n|N(a) \) and \(N(a) \leq X \), the second over pairs of ideals \(a \) and \(b \), so that \(N(a \cdot b) \) satisfies the same conditions).

Proof. We will prove the first of the two equations and note that the second follows from a similar argument. Let \(d = [L: \mathbb{Q}] \). Let \(p_1, \ldots, p_k \) be the distinct primes dividing \(n \). We claim that for such an ideal \(a \) must be a multiple of some ideal \(a_0 \) with \(N(a_0) = nm \) with \(m = \prod_{i=1}^k p_i^{a_i} \) for some \(0 \leq a_i < d \). We obtain this by starting with the ideal \(a_0 = (1) \) and repeatedly multiplying by primes of \(a/a_0 \) whose norm is a power of one of the \(p_i \) that do not yet divide \(N(a_0) \) sufficiently many times. Since this prime has norm no bigger than \(p_i^d \) we cannot overshoot by more than \(d - 1 \) factors of any \(p_i \). We note that the number of possible values of \(m \) is \(k^d \). Since \(k = O(\log(n)) \) this is \(O(n^\epsilon) \). For each value of \(m \) there are \(O(n^\epsilon) \) ideals of norm exactly \(nm \), and hence there are \(O(n^\epsilon) \) possible ideals \(a_0 \).

We now need to bound the sum over ideals \(b \) so that the norm of \(a_0b \) is at most \(X \) of \(\frac{1}{N(a_0b)} \). This is at most \(\frac{1}{n} \) times the sum over ideals \(b \) of norm at most \(X \) of \(\frac{1}{N(b)} \). This latter sum is \(O(\log(X)) \). This completes the proof.

4.2.3 Lemmas on Exponential Sums

We will need a Lemma on the size of exponential sums of polynomials along the lines of Lemma 20.3 of [3]. Unfortunately, the \(X^\epsilon \) term that shows up there will be unacceptable for our application. So instead we prove:
Lemma 16. Pick a positive integer X. Let $[X] = \{1, 2, \ldots, X\}$. Let P be a polynomial with leading term cx^k for some integer $c \neq 0$. Let α be a real number with a rational approximation of denominator q. Then

$$\left| \sum_{x \in [X]} e(\alpha P(x)) \right| \ll |c| X \left(\frac{1}{q} + \frac{1}{X} + \frac{q}{X^k} \right)^{10^{-k}},$$

where the implied constant depends on k, but not on the coefficients of P.

Note that the 10^{-k} in the exponent is not optimal and was picked for convenience.

Proof. We proceed by induction on k. We take as a base case $k = 1$. Then we have that P is a linear function with linear term c. α is within q^{-2} of a rational number of denominator between qc and q. If $c \geq q/2$, there is nothing to prove. Otherwise, α cannot be within $q^{-1} - cq^{-2} = O(q^{-1})$ of an integer. Therefore the sum is at most $O(\min(X,q))$, which clearly satisfies the desired inequality.

We now perform the induction step. We assume our inequality holds for polynomials of smaller degree. Squaring the left hand side of our inequality, we find that

$$\left(\sum_{x \in [X]} e(\alpha P(x)) \right)^2 = \left(\sum_{a,b \in [X]} e(\alpha (P(a) - P(b))) \right)^{1/2}.$$

Breaking the inner sum up based on the value of $n = a - b$, we note that $P(n + b) - P(b)$ is a polynomial of degree $k - 1$ with leading term $nckx^{k-1}$. Letting $[X_n]$ be the interval of length $X - |n|$ that b could be in given that $b \in [X]$ and $b + n \in [X]$, we are left with at most

$$\left(\sum_{n \in [-X,X]} \left| \sum_{b \in [X_n]} e(\alpha (P(b + n) - P(b))) \right| \right)^{1/2}.$$

Let $B = \min(q, X^k/q)$. We consider separately the terms in the above sum where na has no rational approximation with denominator between $B^{1/5}$ and $X^{k-1}B^{-1/5}$. By Lemma 13 with parameters $A = B^{1/5}, B = B, Y = X, X = X^{k-1},$ the number of such n is at most $O(X(B^{-1/5} + \log(X)B^{3/5}X^{1-k})).$ Each of those terms contributes $O(X)$ to the sum and hence together they contribute at most

$$O(X(B^{-1/10} + \log(X)B^{3/10}X^{1-k/2})).$$

Which is within the required bounds.
For the other terms, the inductive hypothesis tells us that the sum for fixed \(n \) is at most

\[
O \left(\frac{|c|X}{|n|} \left(B^{-1/5} + \frac{1}{X - |n|} + \frac{X^{k-1} B^{-1/5}}{(X - |n|)^{k-1}} \right)^{-10^{k-1}} \right).
\]

Summing over \(n \) and taking a square root gives an appropriate bound.

We apply this Lemma to get a bound on exponential sums of norms of ideals of a number field. In particular we show that:

Lemma 17. Fix \(L \) a number field of degree \(d \), and \(\xi \) a Grossencharacter of modulus \(m \). Then given a positive number \(X \) and a real number \(\alpha \) which has a rational approximation of denominator \(q \), we have that

\[
\left| \sum_{N(a) \leq X} \xi(a) e(\alpha N(a)) \right| = O \left(X \left(\frac{1}{q} + \frac{1}{X^{1/d}} + \frac{q}{X} \right)^{10^{-d/2}} \right).
\]

Where the implied constant depends only on \(L \) and \(\xi \).

Proof. First, we split the sum up into ideal classes modulo \(m \). In order to represent an element of such a class we note that for \(a_0 \) a fixed element of such a class then other elements \(a \) in the same class correspond to points \(\frac{a}{a_0} \) in some lattice in \(L \otimes \mathbb{R} \). Note that points in this lattice overcount these ideals since if two differ by an element of \(O_L^* \), they correspond to the same ideal. On the other hand, if we take some fundamental domain of the elements of unit norm in \(L \otimes \mathbb{R} \) modulo the elements of \(O_L^* \) that are 1 modulo \(m \), and consider its positive multiples, we get a smoothly bounded region, \(R \) so that ideals in this class correspond to lattice points in \(R \). Notice that the norm is a polynomial form of degree \(d \) on \(R \). By taking the intersection of \(R \) with the set of points of norm at most \(X \) we get a region \(R_X \) whose lattice points correspond exactly to the ideals in this class of norm at most \(X \). Let \(Y = (qX)^{1/2d} \).

We attempt to partition these lattice points into segments of length \(Y \) with a particular orientation. The number that we fail to include is proportional to \(Y \) times the surface area of \(R_X \), which is \(O(YX^{1-1/d}) \). On each segment, we attempt to approximate \(\xi \) by a constant. We note that on this region \(\xi \) is a smoothly varying function of \(x/(N(x))^{1/d} \). Therefore the error introduced at each point, \(x \), is \(O(YN(x)^{-1/d}) \). The sum over points in \(R_X \) of \(N(x)^{-1/d} \) is, by Abel Summation, \(O(\int_{x=0}^{X} x^{-1/d} dx) = O(X^{1-1/d}) \), thus producing another error of size at most \(O(YX^{1-1/d}) \). We are left with a sum over \(O(XY^{-1}) \) segments of length \(Y \) of the exponential sum of \(e(\alpha N(x)) \). Recalling that \(N(x) \) is a polynomial of degree \(d \) with rational leading coefficient with bounded numerator and denominator, we may (perhaps after looking at only every \(k \)th point to make the leading coefficient integral) apply Lemma 16 and get that the sum over each segment is

\[
O \left(Y \left(\frac{1}{q} + \frac{1}{Y} + \frac{q}{Y^d} \right)^{10^{-d}} \right).
\]
Noting that each of the error terms we introduced is less than the bound given, we are done.

Abel summation yields the following Corollary.

Corollary 18. Fix L a number field of degree d, and ξ a Grossencharacter of modulus m. Then given a positive number X and a real number α which has a rational approximation of denominator q, we have that

$$\left| \sum_{N(a) \leq X} \log(N(a))\xi(a)e(\alpha N(a)) \right| = O \left(X \log(X) \left(\frac{1}{q} + \frac{1}{X^{1/d}} + \frac{q}{X} \right)^{10^{-d/2}} \right).$$

4.2.4 Bounds on F

We are finally ready to prove our bound on F.

Proposition 19. Fix a number field L of degree d and a Grossencharacter ξ. Let $X \geq 0$ be a real number. Let α be a real number with a rational approximation of denominator q where $XB^{-1} > q > B$ for some $B > 0$. Then $F_{L,\xi,X}(\alpha)$ is

$$O \left(X \left(\log^2(X)B^{-10^{-d/12}} + \log^2(X)X^{-10^{-d/60}} + \log^2(X)X^{-10^{-d/10d}} + \log^{2+d^2/2}(X)B^{-1/12} \right) \right).$$

Where the asymptotic constant may depend on L and ξ, but not on X, q, B or α.

Note that a bound for $F_{L,\xi,X}(\alpha)$ is already known for the case when L/\mathbb{Q} is abelian. In [1], they prove bounds on exponential sums over primes in an arithmetic progression. By Class Field Theory, this is clearly equivalent to proving bounds on F (or more precisely, G) when L is abelian over \mathbb{Q}. Proposition 19 can be thought of as a generalization of this result.

Proof. Our proof is along the same lines as Theorem 13.6 of [3]. We first note that the suitable generalization of Equation (13.39) of [3] still applies. Letting $y = z = X^{2/5}$ (y and z are variables used in (13.39) of [3]), we find that $F_{L,\xi,X}(\alpha)$ equals

$$\sum_{\substack{N(ab) \leq X \\ N(a) < X^{2/5}}} \mu(a)\xi(a) \log(N(b))\xi(b)e(\alpha N(a)N(b))$$

$$- \sum_{\substack{N(abc) \leq X \\ N(b), N(c) \leq X^{2/5}}} \mu(b)\Delta_L(c)\xi(bc)e(\alpha N(bc)N(a))$$

$$+ \sum_{\substack{N(abc) \leq X \\ N(b), N(c) \geq X^{2/5}}} \mu(b)\xi(b)\Delta_L(c)\xi(ac)e(\alpha N(b)N(ac)) + O(X^{2/5}).$$

23
The first term, we bound using Corollary 18 on the sum over \(b \). Let \(A = B^{1/4} \leq X^{1/8} \). By Lemmas 14 and 15 we can bound the sum over terms where \(\alpha N(a) \) has no rational approximation with denominator between \(A \) and \(X \) by

\[
O \left(X \left(\log^2(X) \left(A^3 B^{-1} + X^{-3/5} A^4 \right) \left(\frac{B}{A} \right)^\epsilon \right) \right) = O \left(X \log^2(X) B^{-1/4 + \epsilon} \right).
\]

For other values of \(b \), Corollary 18 bounds the sum as

\[
O \left(X \log^2(X) \left(B^{-1/4} + X^{-3/5} d \right)^{10^{-d/2}} \right).
\]

The second term is bounded using similar considerations. We let \(A = \min(B^{1/4}, X^{1/4}) \), and use Lemmas 14 and 15 to bound the sum over terms with \(b \) and \(c \) such that \(N(bc) \alpha \) has no rational approximation with norm between \(A \) and \(X \) by

\[
O \left(X \log^3(X) \left(\frac{B}{A} \right)^\epsilon \left(B^{-1/4} + X^{-1} A^4 X^{4/5} \right) \right) = O \left(X \log^3(X) \left(B^{-1/4 + \epsilon} + X^{-1/10} \right) \right)
\]

Using Lemma 17 we bound the sum over other values of \(b \) and \(c \) as

\[
O \left(X \log^2(X) \left(A^{-1} + X^{-1/5} d \right)^{10^{-d/2}} \right)
\]

To bound the last sum, we first change to a sum over \(b \) and \(d = a \cdot c \). We have coefficients

\[
x(b) = \mu(b) \xi(b),
\]

and

\[
y(d) = \sum_{\alpha \cdot c = d, N(c) \geq X^{2/5}} \Lambda_L(c) \xi(ac).
\]

We note that \(|y(d)| \leq \log(N(d)) \leq \log(X)\). Our third term then becomes

\[
\sum_{N(bd) \leq X, N(b), N(d) \geq X^{2/5}} x(b) y(d) e(\alpha N(b) N(d)).
\]

To this we apply the bilinear form trick. First, we split the sum over \(b \) into parts based on which diadic interval (of the form \([K, 2K]\)), the norm of \(b \) lies in. Next, for each of these summands, we apply Cauchy-Schwartz to bound it.
by

\[
\left(\sum_{N(b) \in [K:2K]} |x(b)|^2 \right) \left(\sum_{N(b) \in [K:2K]} \left(\sum_{N(d) \leq X/N(b)} \left(\sum_{N(nf) \geq X^{2/5}} y(\mathfrak{d})e(\alpha N(b)N(\mathfrak{d})) \right) \right)^2 \right)^{1/2} = O(K^{1/2}) \left(\sum_{N(b) \in [K:2K]} \frac{x(\mathfrak{d})x(\mathfrak{d}')}e(\alpha N(b)(N(\mathfrak{d}) - N(\mathfrak{d}'))) \right)^{1/2} \leq O(K^{1/2} \log(X)) \left(\sum_{X^{2/5} \leq N(\mathfrak{d}), N(\mathfrak{d}')} \left(\sum_{N(b) \in [K:2K]} \left(\sum_{N(b) \leq X/N(\mathfrak{d})} e(\alpha (N(\mathfrak{d}) - N(\mathfrak{d}'))N(b)) \right) \right)^2 \right)^{1/2} .
\]

We let \(A = \min(B^{1/6}, X^{1/16}) \). We bound terms separately based on whether or not \(\alpha (N(\mathfrak{d}) - N(\mathfrak{d}'')) \) has a rational approximation with denominator between \(A \) and \(KA^{-1} \). Applying Lemma 13 with \(X = K, Y = XK^{-1}, A = A \) and \(B = B \), we get that the number of values of \(N(\mathfrak{d}) - N(\mathfrak{d}') \) that cause this to happen is

\[
O \left(XK^{-1} \left(B^{-1/6} + X^{3/32}B^{-1/2} + \log(X)A^4K^{-1} \right) \right) = O(XK^{-1}B^{-1/6}).
\]

For each such difference, by the rearrangement inequality the number of \(\mathfrak{d}, \mathfrak{d}' \) with norms at most \(X/2K \) with \(N(\mathfrak{d}) - N(\mathfrak{d}') \) equal to this difference is at most

\[
\frac{X}{2K} \sum_{n=1}^{X/2K} (\text{Number of ideals with norm } n)^2 .
\]

Letting \(W(n) \) be the number of ideals of \(L \) with norm \(n \), we have that \(W^2(n) \) is at most \(\tau_d^2(n) \), where \(\tau_d(n) \) is the number of ways of writing \(n \) as a product of \(d \) integers. This is because \(W \) is multiplicative and if we write a power of a prime \(p \) as the norm of an ideal, \(\mathfrak{a} \), factoring \(\mathfrak{a} \) into its primary parts gives a representation of \(n \) as a product of \(d \) integers. We therefore have that \(W^2(n) \leq \tau_d(n) \) and hence the above sum is \(O(XK^{-1}\log^d(X)) \). Hence the total contribution from terms with such \(\mathfrak{d} \) and \(\mathfrak{d}' \) is at most

\[
O \left(\left(K^{1/2}\log(X) \right) \left(K \left(XK^{-1}B^{-1/6} \right) \left(XK^{-1}\log^d(X) \right) \right)^{1/2} \right) = O \left(X \log^{1+d^2/2}(X)B^{-1/12} \right).
\]
The sum over the \(O(\log(X)) \) possible values for \(K \) of the above is

\[
O \left(X^{\log^2+\frac{d^2}{2}} B^{-1/12} \right).
\]

On the other hand, the sum over \(d \) and \(d' \) so that \(\alpha(N(\mathfrak{d}) - N(\mathfrak{d}')) \) has a rational approximation with appropriate denominator is bounded by Lemma 17 by

\[
O \left(\left(K^{1/2} \log(X) \right) \left((XK^{-1})^2 K \left(A^{-1} + K^{-1/d} \right)^{10^{-d/2}} \right)^{1/2} \right)
= O \left(X \log(X) \left(A^{-1} + K^{-1/d} \right)^{10^{-d/4}} \right).
\]

Summing over all of the intervals we get

\[
O \left(X \log^2(X) \left(A^{-1} + X^{-2/5d} \right)^{10^{-d/4}} \right).
\]

Putting this all together, we get the desired bound for \(F \).

4.3 Putting it Together

We are finally prepared to prove Theorem 5.

Proof. We note that \(\alpha \) can always be approximated by \(\frac{a}{q} \) for some relatively prime integers \(a, q \) with \(q \leq X \log^{-B}(X) \) so that

\[
\left| \alpha - \frac{a}{q} \right| \leq \frac{1}{qX \log^{-B}(X)}.
\]

We split into cases based upon whether \(q \leq z \).
- If \(q \leq z \) our result follows from Corollary 8.
- If \(q \geq z \), our result follows from Propositions 12 and 19.

5 Approximation of \(G \)

In this Section, we prove Theorem 4. We restate it here:

Theorem 4. Let \(K/\mathbb{Q} \) be a finite Galois extension, and let \(C \) be a conjugacy class of \(\text{Gal}(K/\mathbb{Q}) \). Let \(A \) be a positive integer and \(B \) a sufficiently large multiple of \(A \). Then if \(X \) is a positive number, \(z = \log^{B}(X) \), and \(\alpha \) any real number, then

\[
\left| G_{K,C,X,z}^{\mathfrak{d}}(\alpha) \right| = O \left(X \log^{-A}(X) \right),
\]

where the implied constant depends on \(K, C, A, B \), but not on \(X \) or \(\alpha \).
Proof. Recall Proposition 3 which states that

\[G_{K,C,X}(\alpha) = \frac{|C|}{|G|} \left(\sum_{\chi} \chi(c) F_{L,\chi,X}(\alpha) \right) + O(\sqrt{X}). \]

Where \(c \) is some element of \(C \), and \(L \) is the fixed field of \(\langle c \rangle \subset \text{Gal}(K/Q) \).

Therefore we know that \(G_{K,C,X}(\alpha) \) is within \(O(\sqrt{X}) \) of

\[\frac{|C|}{|G|} \left(\sum_{\chi} \chi(c) F_{L,\chi,X}(\alpha) \right). \]

Applying Theorem 5, this is within \(O(X \log^{-A}(X)) \) of

\[\frac{|C|}{|G|} \left(\sum_{\chi} \chi(c) F_{L,\chi,X}(\alpha) \right) \sum_{n \leq X} \Lambda_{L/Q}(n) \chi(n) e(an) \]

Note that in the above, \(\chi \) is summed over characters of \(\text{Gal}(K/L) \) and that \(\chi(n) \) is taken to be 0 unless \(\chi \) can be extended to a character of \(\text{Gal}(K/Q)^{ab} \). We wish to evaluate the inner sum over \(\chi \) for some \(n \in H_L \).

Let the kernel of the map \(\langle c \rangle \to \text{Gal}(K/Q)^{ab} \) be generated by \(c^k \) for some \(k | \text{ord}(c) \). Then \(\chi(n) \) is 0 unless \(\chi(c^k) = 1 \). Therefore we can consider the sum as being over characters \(\chi \) of \(\langle c \rangle/c^k \). Taking \(K^a \) to be the maximal abelian subextension of \(K \) over \(Q \), this sum is then \(k \) if \([K^a/Q,n] = c \) and 0 otherwise. Hence the sum over \(\chi \) is non-zero if and only if \(n \in H_C \). The index of \(H_C \) in \(H_L \) is \([H_L : H_K] \), which is in turn the size of the image of \(\langle c \rangle \) in \(\text{Gal}(K/Q)^{ab} \), or \(|\langle c \rangle/\langle c^k \rangle| = k \). Hence \(\Lambda_{L}(n) \sum_{\chi} \chi(c) \chi(n) = \Lambda_{K,C}(n) \). Therefore \(G_{K,C,X}(\alpha) \) is within \(O(X \log^{-A}(X)) \) of

\[\frac{|C|}{|G|} \sum_{n \leq X} \Lambda_{K,C}(n) \Lambda_{z}(n) e(an) = G_{K,C,X,z}^2(\alpha). \]

\[\Box \]

6 Proof of Theorem 2

We now have all the tools necessary to prove Theorem 2. Our basic strategy will be as follows. We first define a generating function \(H \) for the number of ways to write \(n \) as \(\sum a_i p_i \) for \(p_i \) primes satisfying the appropriate conditions. It is easy to write \(H \) in terms of the function \(G \). First, we will show that if \(H \) is replaced by \(H^2 \) by replacing these \(G \)'s by \(G^2 \)'s, this will introduce only a small
change (in an appropriate norm). Dealing with H^2 will prove noticeably simpler than dealing with H directly. We will essentially be able to approximate the coefficients of H^2 using sieving techniques. Finally we combine these results to prove the Theorem.

6.1 Generating Functions

We begin with some basic definitions.

Definition. Let K_i, C_i, a_i, X be as in the statement of Theorem 2. Then we define

$$S_{K_i, C_i, a_i, X}(N) := \sum_{p_i \leq X} \prod_{i=1}^{k} \log(p_i),$$

(i.e. the left hand side of Equation 4). We define the generating function

$$H_{K_i, C_i, a_i, X}(\alpha) := \sum_{N} S_{K_i, C_i, a_i, X}(N)e(N\alpha).$$

Notice that this is everywhere convergent since there are only finitely many non-zero terms.

We know from basic facts about generating functions that

$$H_{K_i, C_i, a_i, X}(\alpha) = \prod_{i=1}^{k} G_{K_i, C_i, X}(a_i\alpha).$$

(8)

We would like to approximate the G's by corresponding G^2's. Hence we define

Definition.

$$H^2_{K_i, C_i, a_i, z, X}(\alpha) := \prod_{i=1}^{k} G^2_{K_i, C_i, z, X}(a_i\alpha).$$

$$H^{2*}_{K_i, C_i, a_i, z, X}(\alpha) := H_{K_i, C_i, a_i, X}(\alpha) - H^2_{K_i, C_i, a_i, z, X}(\alpha).$$

We now prove that this is a reasonable approximation.

Lemma 20. Let A be a constant, and $z = \log^B(X)$ for B a sufficiently large multiple of A. If $k \geq 3$,

$$\left| H^2_{K_i, C_i, a_i, z, X}(\alpha) \right|_1 = O(X^{k-1} \log^{-A}(X)).$$

If $k = 2$,

$$\left| H^{2*}_{K_i, C_i, a_i, z, X}(\alpha) \right|_2 = O(X^{3/2} \log^{-A}(X)).$$

Where in the above we are taking the L^1 or L^2 norm respectively of $H^2_{K_i, C_i, a_i, X}$ as a function on $[0, 1]$. 28
Proof. Our basic technique is to write each of the G’s in Equation 8 as $G^\# + G^\flat$ and to expand out the resulting product. We are left with a copy of $H^\#$ and a number of terms which are each a product of $k G^\#$ or G^\flat’s, where each such term has at least one G^\flat. We need several facts about various norms of the $G^\#$ and G^\flat’s. We recall that the squared L^2 norm of a generating function is the sum of the squares of it’s coefficients.

- By Theorem 4, the L^∞-norm of G^\flat is $O \left(X^2 \log^{-2A-k}(X) \right)$.
- The L^∞ norm of $G^\#$ is clearly $O \left(X \log \log(X) \right)$.
- $|G^\#|^2 = O \left(X \log \log 2(X) \right)$.
- $|G|^2 = O \left(X \log(X) \right)$.
- Combining the last two statements, we find that $|G^\flat|^2 = O \left(X \log(X) \right)$.

For $k \geq 3$, we note that by Cauchy-Schwartz, the L^1 norm of a product of k functions is at most the products of the L^2 norms of two of them times the products of the L^∞ norms of the rest. Using this and ensuring that at least one of the terms we take the L^∞ norm of is a G^\flat, we obtain our bound on $|H^\flat|_1$.

For $k = 2$, we note that the L^2 norm of a product of two functions is at most the L^2 norm of one times the L^∞ norm of the other. Applying this to our product, ensuring that we take the L^∞ norm of a G^\flat we get the desired bound on $|H^\flat|_2$.

6.2 Dealing with $H^\#$

Now that we have shown that $H^\#$ approximates H, it will be enough to compute the coefficients of $H^\#$.

Proposition 21. Let A be a constant, and $z = \log^B(X)$ for B a sufficiently large multiple of A. The $e(N\alpha)$ coefficient of $H_{K_i,C_i,a_i,z,X}(\alpha)$ is given by the right hand side of Equation 2, or

$$\left(\prod_{i=1}^k \frac{|C_i|}{|G_i|} \right) C_\infty C_D \left(\prod_{p \nmid D} C_p \right) + O \left(X^{k-1} \log^{-A}(X) \right).$$

Proof. We note that the quantity of interest is equal to

$$\left(\prod_{i=1}^k \frac{|C_i|}{|G_i|} \right) \sum_{n_1, \ldots, n_k \leq X} \left(\prod_{i=1}^k \Lambda_{K_i,C_i}(n_i) \right) \left(\prod_{i=1}^k \Lambda_z(n_i) \right).$$

First, we consider the number of tuples of n_i that we are summing over. Making a linear change of variables with determinant 1 so that one of the coordinates is $x = \sum_i a_i n_i$, we notice that we are summing over the lattice points of
some covolume 1 lattice in a convex region with volume C_∞ and surface area $O(X^{k-2})$. Therefore if some affine sublattice L of the set of tuples of integers (n_i) so that $\sum_i a_i n_i = n$ of index I is picked, the number of tuples (n_i) in our sum in this class is $C_\infty/I + O(X^{k-2})$. We can write $\Lambda_{K_i,C_i}(n)$ as a sum of indicator functions for congruences classes of n modulo D. We can also write $\Lambda_2(n) = C(z) \sum_{d \mid (n,P(z))} \mu(d)$ another sum of indicator functions of congruence conditions. Hence we can write the expression in Equation 9 as a constant (which is $O(C(z))^k$) times the sum over certain affine sublattices of L of ± 1 times the number of points of the intersection of this sublattice with our region. These sublattices are of the following form:

$$\{n_i : \sum_i a_i n_i = n, n_i \equiv x_i \pmod{D}, d_i|n_i\},$$

where x_i are chosen elements of $H_i \subseteq (\mathbb{Z}/D\mathbb{Z})^*$, and $d_i|P(z)$ are integers.

We first claim that the contribution from terms with any d_i bigger than $X^{1/(2k)}$ is negligible. In fact, these terms cannot account for more than

$$O(C(z)^k) \sum_{d \mid P(z)} \frac{X^{k-1}}{d} = O(\log \log(X)^k) \int_0^\infty X^{k-1} S(z,y)y^{-2}dy$$

$$= O \left(X^{k-1/(2B)} \right) \exp \left(O \left(\sqrt{\log(X)} \right) \right).$$

(Using Lemma 4 to bound the integral above). Throwing out these terms, we would like to approximate the number of tuples in our sum in each of these sublattices by C_∞ over the index. The error introduced is $O \left(\log \log^k(X) X^{k-2} \right)$ per term times $O \left(\sqrt{X} \right)$ terms. Hence we can throw this error away. So we have a sum over sets of $d_i|P(z), d_i \leq X^{1/(2k)}$ and x_i of an appropriate constant times C_∞/I. We would like to remove the limitation that $d_i \leq X^{1/(2k)}$ in this sum. We note that once we get rid of the parts of the d_i that share common factors with $D \prod_i a_i$ (for which there are finitely many possible values), the value of I is at least $\prod d_i$. This is because we can compute the index separately for each prime p. If p divides some set of d_i other than all of them, we are forcing the corresponding x_i to have specified values modulo p, when otherwise these values could have been completely arbitrary. If we let $d = \gcd(d_i)$, then we can bound the sum of the reciprocals of the values of I that we are missing as

$$k \sum_d d^{k-1} \left(\int_0^\infty S(z,y)y^{-2}dy \right)^{k-1} \left(\int_{X^{1/(2k)}/d}^\infty S(z,y)y^{-2}dy \right).$$

This is small by Lemma 6 and a basic computation.

We now wish to evaluate the sum over all x_i and d_i the sum of the appropriate
constant times $\frac{1}{T}$. We note that if we were instead trying to evaluate

$$\frac{1}{M^{k-1}} \sum_{\substack{n_i \pmod{M} \\ \sum a_i n_i \equiv N \pmod{M}}} \left(\prod_{i=1}^{k} \Lambda_{K_i, C_i}(n_i) \right) \left(\prod_{i=1}^{k} \Lambda_z(n_i) \right),$$

for $M = DP(z) \prod a_i$, we would get exactly the above sum of $\frac{1}{T}$. This is because the same inclusion exclusion applies to each computation and the number of points in each sublattice here would be exactly $\frac{1}{T}$ of the total points. Hence our final answer up to acceptable errors is

$$C_{\infty} \left(\frac{\prod_{i=1}^{k} |C_i|}{|K_i|} \right) \left(\sum_{\substack{n_i \pmod{M} \\ \sum a_i n_i \equiv N \pmod{M}}} \left(\prod_{i=1}^{k} \Lambda_{K_i, C_i}(n_i) \right) \left(\prod_{i=1}^{k} \Lambda_z(n_i) \right) \right).$$

Note that $\Lambda_z(n) = \prod_{p \leq z} \Lambda_p(n)$ is a product of terms over the congruence class of n modulo p. Similarly $\Lambda_{K_i, C_i}(n)$ only depends on n modulo D. Therefore we may use the Chinese Remainder Theorem to write the fraction above as a product of p-primary parts and a D-primary part.

For $p \nmid D$, $p|P(z)$, the p-primary factor is

$$\sum_{\substack{n_i \pmod{p^n} \\ \sum a_i n_i \equiv N \pmod{p^n}}} \left(\prod_{i=1}^{k} \Lambda_p(n_i) \right)$$

for some n. In fact we can use $n = 1$ since $\Lambda_p(n_i)$ only depends on n_i modulo p, and since p does not divide all the a_i, any solution to $\sum a_i n_i \equiv N \pmod{p}$ lifts to a solution modulo p^n in exactly $p^{(n-1)(k-1)}$ different ways. Hence the local factor is

$$\sum_{\substack{n_i \pmod{p} \\ \sum a_i n_i \equiv N \pmod{p}}} \left(\prod_{i=1}^{k} \Lambda_p(n_i) \right)$$

$$= \left(\frac{p}{p-1} \right)^k \# \{(n_i) \pmod{p} : n_i \equiv 0 \pmod{p}, \sum a_i n_i \equiv N \pmod{p} \}$$

$$= C_p.$$
Next we will consider the function $\Lambda_{K_i,C_i}(n) \prod_{p|D} \Lambda_p(n)$. This is 0 unless n is in H_i. Otherwise it is
\[
\left(\prod_{i=1}^{k} \frac{D}{|H_i|}\right) \left(\#\{(n_i) \mod D : n_i \in H_i, \sum_i a_i n_i \equiv N \mod D\}\right) = C_D.
\]

Putting these factors together we obtain our result.

6.3 Putting it Together

We are finally able to prove Theorem 2.

Proof. Let B be a sufficiently large multiple of A, and $z = \log^B(X)$.

For $k \geq 3$ we have that
\[
S_{K_i,C_i,a_i,X}(N) = \int_0^1 H_{K_i,C_i,a_i,X}(\alpha)e(-N\alpha).
\]

By Lemma 20 this is
\[
\int_0^1 H_{K_i,C_i,a_i,X}^2(\alpha)e(-N\alpha)
\]
up to acceptable errors. This is the $e(N\alpha)$ coefficient of $H_{K_i,C_i,a_i,z,X}(\alpha)$, which by Proposition 21 is as desired.

For $k = 2$, we let $T_{K_i,C_i,a_i,X}(N)$ be the corresponding right hand side of Equation 2. It will suffice to show that
\[
\sum_{|n| \leq \sum |a_i|X} (S_{K_i,C_i,a_i,X}(N) - T_{K_i,C_i,a_i,X}(N))^2 = O(X^{3/2}\log^{-A}(X)).
\]

If we define the generating function
\[
J_{K_i,C_i,a_i,X}(\alpha) = \sum_{|N| \leq \sum |a_i|X} T_{K_i,C_i,a_i,X}(N)e(N\alpha)
\]
we note that the above is equivalent to showing that
\[
|H_{K_i,C_i,a_i,X} - J_{K_i,C_i,a_i,X}|^2 = O(X^{3/2}\log^{-A}(X)).
\]

But by Lemma 20 we have that
\[
|H_{K_i,C_i,a_i,X} - H_{K_i,C_i,a_i,z,X}|^2 = O(X^{3/2}\log^{-A}(X)),
\]
and by Proposition 21 we have
\[
|H_{K_i,C_i,a_i,z,X} - J_{K_i,C_i,a_i,X}|^2 = O(X^{3/2}\log^{-A}(X)).
\]

This completes the proof. □
7 Application

We present an application of Theorem 2 to the construction of elliptic curves whose discriminants are divisible only by primes with certain splitting properties.

Theorem 22. Let K be a number field. Then there exists an elliptic curve defined over \mathbb{Q} so that all primes dividing its discriminant split completely over K.

Proof. We begin by assuming that K is a normal extension of \mathbb{Q}. We will choose an elliptic curve of the form:

$$y^2 = X^3 + AX + B.$$

Here we will let $A = pq/4, B = npq^2$ where n is a small integer and p, q are primes that split over K. The discriminant is then

$$-16(4A^3 + 27B^3) = -64p^3q^3/64 - 432n^2p^2q^4$$

$$= -p^2q^3(p + 432n^2q).$$

Hence it suffices to find primes p, q, r that split completely over K with $p + 432n^2q - r = 0$. We do this by applying Theorem 2 with $k = 3, K_l = K, C_i = \{e\}$, and X large. As long as $C_D > 0$ and $C_p > 0$ for all p, the main term will dominate the error and we will be guaranteed solutions for sufficiently large X. If $n = D$, this will hold. This is because for C_D to be non-zero we need to have solutions $n_1 + 0n_2 - n_3 \equiv 0 \pmod{D}$ with n_i all in some particular subgroup of $(\mathbb{Z}/D\mathbb{Z})^\times$. This can clearly be satisfied by $n_1 = n_3$. For $p = 2, C_p$ is non-zero since there is a solution to $n_1 + 0n_2 - n_3 \equiv 0 \pmod{2}$ with none of the n_i divisible by 2 (take $(1, 1, 1)$). For $p > 2$, we need to show that there are solutions to $n_1 + 432D^2n_2 - n_3 \equiv 0 \pmod{p}$ with none of the n_i 0 modulo p. This can be done because after picking n_2, any number can be written as a difference of non-multiples of p.

8 Acknowledgements

This work was done with the support of an NDSEG graduate fellowship.

References

[1] Antal Balog, Alberto Perelli, *Exponential Sums Over Primes in an Arithmetic Progression* Proc. of the AMS, Vol. 93 no. 4 (1985) pp. 578-582.

[2] Karin Halupczok *On the Ternary Goldbach Problem with Primes in Arithmetic Progressions Having a Common Modulus* Journal de Théorie des Nombres de Bordeaux, Vol. 21 no. 1, (2009) pp. 203-213.
[3] Henryk Iwaniec, Emmanuel Kowalski, *Analytic Number Theory*, American Mathematical Society, 2004.

[4] Hongze Li and Hao Pan *A Density Version of Vinogradov’s Three Primes Theorem* Forum Math. Vol. 22 no. 4 (2010) pp. 699-714.

[5] Jianya Liu and Tao Zhan *The Ternary Goldbach Problem in Arithmetic Progressions* Acta Arith. Vol. 82 no. 3 (1997) pp. 197-227.

[6] Xianmeng Meng *A Mean Value Theorem on the Binary Goldbach Problem and its Application* Monatsh. Math. Vol. 151 no. 4 (2007) pp. 319-332.

[7] Takumi Noda *On the Goldbach Problem in Algebraic Number Fields and the Positivity of the Singular Integral* Vol. 20 no. 1 (1997) pp. 8-21.

[8] M. I. Tuljaganova *The Euler-Goldbach Problem for an Imaginary Quadratic Field* Vol. 7 no. 1 (1963) pp. 11-17.

[9] Tao Zhan, *A Generalization of the Goldbach-Vinogradov Theorem* Acta Arith. Vol. 71 no. 2 (1995) pp. 95-106.

[10] Tao Zhan, *On the Representation of a Large Odd Integer as the Sum of Three Almost Equal Primes*, Acta Mathematica Sinica, New Series Vol. 7 no. 3 (1991) pp. 259–272.

[11] Achim Zulauf *Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov (German)* J. Reine Angew. Math., Vol. 190 (1952) pp. 169-198.