A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems

M. A. Louka · N. M. Missirlis

Received: 1 August 2012 / Revised: 9 April 2014 / Published online: 14 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper we study the impact of two types of preconditioning on the numerical solution of large sparse augmented linear systems. The first preconditioning matrix is the lower triangular part whereas the second is the product of the lower triangular part with the upper triangular part of the augmented system’s coefficient matrix. For the first preconditioning matrix we form the Generalized Modified Extrapolated Successive Overrelaxation (GMESOR) method, whereas the second preconditioning matrix yields the Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method, which is an extrapolated form of the Symmetric Successive Overrelaxation method. We find sufficient conditions for each aforementioned iterative method to converge. In addition, we develop a geometric approach, for determining the optimum values of their parameters and corresponding spectral radii. It is shown that both iterative methods studied (GMESOR and GMPSD) attain the same rate of convergence. Numerical results confirm our theoretical expectations.

Mathematics Subject Classification 65F10 · 65N20 · CR:5.13

1 Introduction

Let $A \in \mathbb{R}^{m \times m}$ be a symmetric positive definite matrix and $B \in \mathbb{R}^{m \times n}$ be a matrix of full column rank, where $m \geq n$. Then, the augmented linear system is of the form
\[\mathbf{A} \mathbf{u} = \mathbf{b} \] \hspace{1cm} (1)

where

\[\mathbf{A} = \begin{pmatrix} A & B \\ -B^T & 0 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ -b_2 \end{pmatrix} \] \hspace{1cm} (2)

with \(B^T \) denoting the transpose of the matrix \(B \).

When \(\mathbf{A} \) and \(\mathbf{B} \) are large and sparse matrices, iterative methods for solving (1)–(2) are effective and more attractive than direct methods, because of storage requirements and preservation of sparsity. There are several approaches to the iterative solution of (1)–(2). First, we mention multigrid methods [13, 35], which are often the most efficient and effective methods for solving large, sparse, linear systems [15, 47]. For example, one can apply multigrid techniques to the whole system (1)–(2) to solve problems in areas of computational fluid dynamics [22, 24, 25, 30, 40, 50, 52] constrained optimization [43–46], mixed finite elements [1, 23] and elsewhere. For parallel multigrid see e.g. [26–28].

On the other hand the difficulty in applying iterative methods such as the Successive Overrelaxation (SOR) method [54] to the system (1)–(2) is the singularity of the block diagonal part of the coefficient matrix. Various methods have been developed to overcome this problem such as the Uzawa and the Preconditioned Uzawa methods [2, 14, 16]. In 2001, Golub et al. [21] generalized the Uzawa and the Preconditioned Uzawa methods by introducing an additional acceleration parameter and produced the SOR-like method. When a good preconditioning matrix is easily computed one can consider the MINRES and GMRES methods [14, 20] for solving (1)–(2). In case the matrix \(\mathbf{A} \) in (2) is symmetric and positive definite, the Preconditioned Conjugate Gradient (PCG) method [31] can be applied. This was done with an SOR-like preconditioner in the work by Li et al. in [33]. In 2005, Bai et al. [8] studied the Generalized SOR (GSOR) method by introducing an additional parameter to the SOR-like method and proved that it possesses the same rate of convergence but lower complexity than the PCG method. Furthermore, the Generalized Modified Extrapolated SOR (GMESOR) method was also proposed for further study. The latter is a generalization of the GSOR method as it uses one additional parameter. The way of introducing parameters resembles the one followed for the formulation of the Modified SOR method [29, 36–38, 54] in case of two-cyclic linear systems.

The present paper was motivated by the work in [8]. We develop the convergence analysis of the Generalized Modified Extrapolated SOR (GMESOR) method and the Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method. These methods introduce more parameters with the hope to further increase their rate of convergence. The goal of our work was to study the impact of two different preconditioning matrices to the convergence rate of the associated iterative method for solving the augmented linear system (1)–(2). First, we use the preconditioning matrix which is formed by the lower triangular part of \(\mathbf{A} \) and formulate the GMESOR method which is an extrapolated form of the GSOR method. Secondly, we consider as preconditioning matrix the product of the lower with the upper triangular part of \(\mathbf{A} \) and construct the GMPSD method. The reason for studying the latter form of preconditioning matrix is
to obtain a better approximation to the matrix A than the former and as such it is hoped to produce an iterative method with a faster rate of convergence. The construction of both methods resembles the one followed for the MESOR and MPSD methods studied in [37,38], respectively, for two-cyclic matrices. Our starting point, for studying these iterative methods, is the derivation of functional relationships which relate the eigenvalues of their iteration matrices with those of the matrix $J = Q^{-1}B^T A^{-1}B$.

Assuming that the matrix Q is symmetric positive or negative definite, the eigenvalues of the matrix J are real and either positive or negative, respectively. Under these assumptions we find sufficient conditions for the convergence of the GMESOR and GMPSD methods and determine the optimum values of their parameters. The study of GMESOR and GMPSD becomes interesting as these methods can be used either as preconditioners to Krylov subspace methods [7,20,21,31] or as smoothers to multilevel methods [3–5]. Traditionally, multigrid methods utilize stationary iterative methods (such as Jacobi, Gauss–Seidel) to smooth out high-frequency errors and accelerate the convergence. In [32] a semi-iterative method, namely the Chebyshev–Jacobi method, was used as smoother. Similarly, the GMESOR method or the GMPSD method in combination with semi-iterative techniques can be used as smoothers to accelerate the rate of convergence of multigrid methods. Recent work for the application of algebraic multigrids for saddle point systems is presented in [35] and the references therein.

The contributions of our paper can be summarized as follows.

(i) We present a simple and unified approach for developing the convergence analysis of the GMESOR and GMPSD methods. In particular, we develop a geometrical approach for the determination of the optimum values of the parameters in GMESOR and GMPSD methods which is similar to Varga [49, p. 111], for finding the optimum value of the parameter ω in SOR. The difference, in our case, is that now the functional relationship contains more than two parameters and consequently we had to extend the proof of [49]. There is a different algebraic approach in [54, pp. 279] for the determination of the two optimum values for ω and ω' in the Modified SOR (MSOR) method which, with some additional modifications, will solve the problem as far as the GSOR method is concerned. Nevertheless, it is doubtful whether this approach works also for the determination of the optimum value for more than two parameters as is the case for the GMESOR and GMPSD methods. This is also the case if one adopts the approach of [8].

(ii) From our theoretical and experimental analysis it is shown that both aforementioned forms of preconditioning matrices have the same impact on the convergence rate of the induced iterative method for the numerical solution of the augmented linear system (1)–(2). More specifically, the GMESOR and GMPSD methods attain the same convergence rate since their spectral radii are identical for the optimum values of their parameters. In particular, we show that GMESOR degenerates to GSOR, whereas a simplified version of the GMPSD method is identical to a backward form of the GSOR method.

Furthermore, we compare the effectiveness of our methods in relation to the PHSS [6,7,9–11,51] and Krylov subspace methods [41,42,48].
The paper is organized as follows. In Sect. 2 we study the convergence of the GME-SOR method. In particular, we find sufficient conditions for GMESOR to converge under the assumption that the eigenvalues of the J matrix are real. We also determine optimum values for its parameters. A similar convergence analysis for the GMPSD method is developed in Sect. 3. In Sect. 4, we present our numerical results and finally in Sect. 5 we state our remarks and conclusions.

2 The Generalized Modified Extrapolated SOR (GMESOR) method

Let the coefficient matrix A of (1) be defined by the splitting

$$A = D - L - U$$ \hspace{1cm} (3)

where

$$D = \begin{pmatrix} A & 0 \\ 0 & Q \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 0 \\ B^T & a Q \end{pmatrix}, \quad U = \begin{pmatrix} 0 & -B \\ 0 & (1-a)Q \end{pmatrix},$$ \hspace{1cm} (4)

with $Q \in \mathbb{R}^{n \times n}$ be a prescribed nonsingular and symmetric matrix and $a \in \mathbb{R}$. Furthermore, we denote by T, the diagonal matrix $T = \text{diag}(\tau_1 I_{m}, \tau_2 I_{n})$ with $\tau_1, \tau_2 \in \mathbb{R} - \{0\}$, $I_m \in \mathbb{R}^{m \times m}$ and $I_n \in \mathbb{R}^{n \times n}$ be identity matrices.

For the numerical solution of (1), we consider the following iterative scheme

$$\begin{pmatrix} x^{(k+1)} \\ y^{(k+1)} \end{pmatrix} = \mathcal{H}(\tau_1, \tau_2) \begin{pmatrix} x^{(k)} \\ y^{(k)} \end{pmatrix} + \eta(\tau_1, \tau_2) \begin{pmatrix} b_1 \\ -b_2 \end{pmatrix}$$ \hspace{1cm} (5)

where

$$\mathcal{H}(\tau_1, \tau_2) = I - R^{-1}T \bar{A}, \quad \eta(\tau_1, \tau_2) = R^{-1}T \bar{b},$$ \hspace{1cm} (6)

R is a nonsingular matrix to be defined and $I = \text{diag}(I_m, I_n)$.

In the sequel we consider two different types of preconditioning matrices R and study the corresponding iterative methods derived by (5) and (6).

2.1 The functional relationship

As a first step we consider the preconditioning matrix which is formed by the parameterized diagonal and lower triangular part of \bar{A}

$$R = D - \Omega L, \hspace{1cm} (7)$$

where $\Omega = \text{diag}(\omega_1 I_{m}, \omega_2 I_{n})$ with $\omega_1, \omega_2 \in \mathbb{R}$.

If R is given by (7), then (6) becomes

$$\mathcal{H}(\tau_1, \tau_2, \omega_2, a) = I - (D - \Omega L)^{-1}T \bar{A}$$
or
\[\mathcal{H}(\tau_1, \tau_2, \omega_2, a) = (\mathcal{D} - \Omega \mathcal{L})^{-1}[(I - T)\mathcal{D} + (T - \Omega)\mathcal{L} + TU] \] (8)
and
\[\eta(\tau_1, \tau_2, \omega_2, a) = (\mathcal{D} - \Omega \mathcal{L})^{-1} Tb. \] (9)

Note that the parameter \(\omega_1 \) is absent in \(\mathcal{H} \) and \(\eta \). This is because the first \(m \) rows of \(\mathcal{L} \) are zeros a fact which is carried over in matrix \(\Omega \mathcal{L} \) also.

The iterative scheme given by (5), (6), (8) and (9) will be referred to as the Generalized Modified Extrapolated SOR (GMESOR) method. In case \(a = 0 \) this method was introduced in [8] and proposed for further study.

In the sequel to distinguish the dependence of GMESOR upon the parameter \(a \) we use the notation GMESOR\((a)\).

For \((\mathcal{D} - \Omega \mathcal{L})^{-1}\) to exist we require
\[\det(\mathcal{D} - \Omega \mathcal{L}) \neq 0. \]

Because of (4)
\[R = \mathcal{D} - \Omega \mathcal{L} = \begin{pmatrix} A & 0 \\ -\omega_2 B^T & (1 - a\omega_2)Q \end{pmatrix}. \]

Therefore,
\[\det(\mathcal{D} - \Omega \mathcal{L}) = (1 - a\omega_2)^n \det(A) \det(Q) \neq 0 \]
or
\[a\omega_2 \neq 1 \] (10)

since the matrix \(A \) is symmetric positive definite and the matrix \(Q \) is nonsingular. In the sequel we require (10) to hold.

The GMESOR\((a)\) method has the following algorithmic form.

The GMESOR\((a)\) Method: Let \(Q \in \mathbb{R}^{n \times n} \) be a nonsingular and symmetric matrix. Given initial vectors \(x^{(0)} \in \mathbb{R}^m \) and \(y^{(0)} \in \mathbb{R}^n \), and the parameters \(\tau_1, \tau_2 \neq 0, \omega_2, a \in \mathbb{R} \) with \(a\omega_2 \neq 1 \). For \(k = 0, 1, 2, \ldots \) until the iteration sequence \(\{(x^{(k)}^T, y^{(k)}^T)^T\} \) is convergent, compute
\[x^{(k+1)} = (1 - \tau_1)x^{(k)} + \tau_1 A^{-1}(b_1 - By^{(k)}), \]
\[y^{(k+1)} = y^{(k)} + \frac{1}{1 - a\omega_2} Q^{-1}[B^T [\omega_2 x^{(k+1)} + (\tau_2 - \omega_2)x^{(k)}] - \tau_2 b_2], \]
where \(Q \) is an approximation of the Schur complement matrix \(B^T A^{-1} B \).
For special values of its parameters GMESOR(a) degenerates into known methods. Indeed, if $\omega = \tau_1 = \tau_2 = \omega_2$ and $a = 0$ then GMESOR becomes the SOR-like method [21]; if $\omega = \tau_1 = \tau_2 = \omega_2 = 1$ and $a = 0$ then it becomes the preconditioned Uzawa method [16]; and if $\tau_1 = \omega_1$, $\tau_2 = \omega_2$ and $a = 0$, then it becomes the GSOR method [8]. By comparing the algorithmic structures of GMESOR(a) and GSOR, one can verify that the former has an additional matrix times a vector computation. Finally, if
\[
\tau_1 = \omega, \quad \omega_2 = \gamma, \quad \text{and} \quad \frac{\tau_2}{1 - a\omega_2} = \tau
\]
then the GMESOR(a) method becomes the Generalized Inexact Accelerated Overrelaxation (GIAOR) method [8] and if
\[
\tau_1 = \omega, \quad \tau_2 = \omega_2 \quad \text{and} \quad \frac{\tau_2}{1 - a\omega_2} = \tau
\]
the GMESOR(a) method becomes the Parameterized Inexact Uzawa (PIU) method [12] when $P = A$.

The following theorem establishes the functional relationship between the eigenvalues λ of the iteration matrix $H(\tau_1, \tau_2, \omega_2)$ and the eigenvalues μ of the associated matrix $J = Q^{-1}B^T A^{-1}B$.

Theorem 2.1 Let $A \in \mathbb{R}^{m \times m}$ be symmetric positive definite, $B \in \mathbb{R}^{m \times n}$ be of full column rank and $Q \in \mathbb{R}^{n \times n}$ be nonsingular and symmetric. If $\lambda \neq 1 - \tau_1$ is an eigenvalue of the matrix $H(\tau_1, \tau_2, \omega_2)$ of the GMESOR(a) method and if μ satisfies
\[
\lambda^2 + \lambda \left(\tau_1 - 2 + \frac{\tau_1 \omega_2}{1 - a\omega_2} \right) + 1 - \tau_1 + \frac{\tau_1 (\tau_2 - \omega_2)}{1 - a\omega_2} \mu = 0, \tag{13}
\]
where $a\omega_2 \neq 1$, then μ is an eigenvalue of the matrix $J = Q^{-1}B^T A^{-1}B$. Conversely, if μ is an eigenvalue of J and if $\lambda \neq 1 - \tau_1$ satisfies (13), then λ is an eigenvalue of $H(\tau_1, \tau_2, \omega_2, a)$. In addition, $\lambda = 1 - \tau_1$ is an eigenvalue of $H(\tau_1, \tau_2, \omega_2)$ (if $m > n$) with the corresponding eigenvector $(x^T, 0)^T$, where $x \in N(B^T)$ and $N(B^T)$ is the null space of B^T.

Proof It is an immediate consequence of Theorem 7.1 of [8] and (11).

- \[\square \]

2.2 Convergence

In this section we develop the convergence analysis of the GMESOR method. In particular, we derive sufficient conditions for the GMESOR method to converge under the assumption that the eigenvalues of the matrix J are all real. The sign of J’s eigenvalues depends upon the properties of the matrix Q. Specifically, we assume that the matrix Q is symmetric positive or negative definite.
2.2.1 The GMESOR method

The next theorem provides sufficient conditions for the GMESOR method to converge if the matrix Q is symmetric positive definite and $a = 0$. The study of the case $a \neq 0$ follows a similar but cumbersome approach as it requires many cases to be examined. This study will not have any substantial contribution since the minimum value of the spectral radius of the GMESOR(a) method is independent of a (Theorem 2.3), meaning that for, say $a = 0$, the GMESOR method will attain the maximum rate of convergence. So, we are interested to find the convergence ranges of the parameters of the GMESOR(a) method for the simplified case when $a = 0$.

Theorem 2.2 Consider the GMESOR method. Let $A \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $B \in \mathbb{R}^{m \times n}$ be of full column rank. Denote the minimum and the maximum eigenvalues of the matrix $J = Q^{-1}B^TA^{-1}B$ by μ_{\min} and μ_{\max}, respectively. Then $\rho(H(\tau_1, \tau_2, \omega_2)) < 1$ if

$$0 < \tau_1 < 2, \quad 0 < \tau_2 < \tau_2(\mu_{\max}) \quad \text{and} \quad \omega_2(\mu_{\max}) < \omega_2 < \tilde{\omega}_2(\mu_{\max})$$

where

$$\tilde{\tau}_2(\mu_{\max}) = \frac{4}{\tau_1\mu_{\max}}, \quad \omega_2(\mu_{\max}) = \tau_2 - \frac{1}{\mu_{\max}} \quad \text{and} \quad \tilde{\omega}_2(\mu_{\max}) = \frac{2 - \tau_1}{\tau_1\mu_{\max}} + \frac{\tau_2}{2}.$$

Proof See Theorem 7.2 of [8]. \hfill \square

Analogous results hold when $Q \in \mathbb{R}^{n \times n}$ is symmetric negative definite.

2.3 Optimum parameters

In this section we determine optimum values for the parameters of the iterative methods studied in the present section under the hypothesis that $a \neq 0$ and the eigenvalues of the matrix J are real. We assume that Q is a symmetric positive or negative definite matrix.

2.3.1 The GMESOR(a) method

In the sequel we determine the optimum parameters for the GMESOR(a) method.

Theorem 2.3 Consider the GMESOR(a) method. Let $A \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $B \in \mathbb{R}^{m \times n}$ be of full column rank. Denote the minimum and the maximum eigenvalues of the matrix $J = Q^{-1}B^TA^{-1}B$ by μ_{\min} and μ_{\max}, respectively. Then the spectral radius of the GMESOR(a) method, $\rho(H(\tau_1, \tau_2, \omega_2, a))$, is minimized for any $a \neq -\sqrt{\mu_{\min}\mu_{\max}}$ at

$$\omega_{2_{\text{opt}}} = \tau_{2_{\text{opt}}}.$$
\[
\tau_{1_{\text{opt}}} = \frac{4\sqrt{\mu_{\min}\mu_{\max}}}{(\sqrt{\mu_{\min}} + \sqrt{\mu_{\max}})^2} \quad \text{and} \quad \tau_{2_{\text{opt}}} = \frac{1}{a + \sqrt{\mu_{\min}\mu_{\max}}}
\] (17)

and its corresponding value is
\[
\rho(\mathcal{H}(\tau_{1_{\text{opt}}}, \tau_{2_{\text{opt}}}, \omega_{2_{\text{opt}}}, a)) = \frac{\sqrt{\mu_{\max}} - \sqrt{\mu_{\min}}}{\sqrt{\mu_{\max}} + \sqrt{\mu_{\min}}}.
\] (18)

Proof The functional relationship of the GMESOR\((a)\) method is given by (13) or
\[
(\lambda + \tau_1 - 1)(\lambda - 1) = \frac{\tau_1(\omega_2 - \tau_2 - \lambda\omega_2)\mu}{1 - a\omega_2}.
\] (19)

The optimum values of \(\tau_1\), \(\tau_2\) and \(\omega_2\) will be determined such that
\[
\rho(\mathcal{H}(\tau_1, \tau_2, \omega_2, a)) = \max_{\mu_{\min} \leq \mu \leq \mu_{\max}} |\tilde{\lambda}|
\] (20)

is minimum. The real roots of (13) are the intersection points of the parabola
\[
g(\lambda) = \frac{(\lambda + \tau_1 - 1)(\lambda - 1)}{\tau_1}
\] (21)

and the straight lines
\[
h(\lambda) = \frac{\omega_2 - \tau_2 - \lambda\omega_2}{1 - a\omega_2}\mu, \quad 0 < \mu_{\min} \leq \mu \leq \mu_{\max}.
\] (22)

Following a similar argument as in [49, page 111], \(h(\lambda)\) are straight lines through the point \((0, \frac{\omega_2 - \tau_2}{1 - a\omega_2}\mu)\) and \(g_{\tau_1}(\lambda)\) is a parabola passing through the points \((1, 0)\) and \((1 - \tau_1, 0)\) (see Fig. 1).

The spectral radius is given by
\[
\rho(\mathcal{H}(\tau_1, \tau_2, \omega_2, a)) = \max\{|\tilde{\lambda}_1|, |\tilde{\lambda}_N|\}
\] (23)

where \(\tilde{\lambda}_1, \tilde{\lambda}_N\) are the abscissas of the points of tangent of \(h_1(\lambda), h_N(\lambda)\), respectively, where now \(h_1(\lambda) = (\omega_2 - \tau_2 - \lambda\omega_2)\mu_{\max}\) and \(h_N(\lambda) = (\omega_2 - \tau_2 - \lambda\omega_2)\mu_{\min}\). Therefore,
\[
|\tilde{\lambda}_1| = \left(1 - \tau_1 + \tau_1\frac{\tau_2 - \omega_2}{1 - a\omega_2}\mu_{\max}\right)^{1/2}
\] (24)

and
\[
|\tilde{\lambda}_N| = \left(1 - \tau_1 + \tau_1\frac{\tau_2 - \omega_2}{1 - a\omega_2}\mu_{\min}\right)^{1/2}.
\] (25)
A comparison of the ESOR and PSD methods for augmented linear systems

Fig. 1 Graphs of $g_{\tau_1}(\lambda), h_1(\lambda)$ and $h_N(\lambda)$ in case the roots of (19) are real

From (23) it follows that the minimum value of $\rho(\mathcal{H}(\tau_1, \tau_2, \omega_2, a))$ is attained when

$$|\tilde{\lambda}_1| = |\tilde{\lambda}_N|$$

which, because of (24) and (25), implies

$$\omega_2 = \tau_2.$$ \hfill (27)

In case $\tilde{\lambda}_1$ and $\tilde{\lambda}_N$ are the two conjugate complex roots of (19), it follows from (13) that (26) must also hold for $\rho(\mathcal{H}(\tau_1, \tau_2, \omega_2, a))$ to be minimized. So, (27) holds if either (19) has real or conjugate complex roots. However, if (27) holds, then (13) becomes

$$\lambda^2 + \lambda(\tau_1 - 2 + \tau_1 \hat{\tau}_2 \mu) + 1 - \tau_1 = 0,$$

which is the functional relationship of the GSOR with

$$\hat{\tau}_2 = \frac{\tau_2}{1 - a \tau_2}.$$ \hfill (28)

Therefore the optimum values of τ_1 and $\hat{\tau}_2$ are given by ω_{opt} and τ_{opt} of [8], respectively, whereas the minimum value of $\rho(\mathcal{H}(\tau_1, \tau_2, \omega_2, a))$ is given by $\rho(\mathcal{H}(\omega_{opt}, \tau_{opt}))$ of [8]. Finally, using (28) we find (17).
So, for the optimum values of its parameters, GMESOR(a) degenerates to the GSOR method [8]. Clearly, following the above geometric approach one can also determine the optimum values for the parameters of the GSOR method. This was included in our original version but was eliminated due to volume constraints.

3 The Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method

The Preconditioned Simultaneous Displacement (PSD) method was introduced in [19]. When the coefficient matrix A is two-cyclic the Modified PSD (MPSD) method was studied in [34,38]. Motivated by our previous work we introduce the Generalized Modified PSD (GMPSD) method and study its convergence rate for the numerical solution of the augmented linear system (1)–(2).

3.1 The functional relationship

In the sequel, we let the preconditioning matrix R be the product of the lower triangular part with the upper triangular part of A in an attempt to obtain a better approximation of A and consequently an increase in the rate of convergence of the corresponding iterative method. Let

$$R = (D - \Omega L)D^{-1}(D - \Omega U).$$

(29)

From (6) and (29) it follows that the iteration matrix of (5) now is

$$\hat{G}(\tau_1, \tau_2, \omega_1, \omega_2, a) = I - (D - \Omega U)^{-1}D(D - \Omega L)^{-1}T A$$

(30)

whereas $\eta(\tau_1, \tau_2)$ in (6) corresponds to

$$\gamma(\tau_1, \tau_2, \omega_1, \omega_2, a) = (D - \Omega U)^{-1}D(D - \Omega L)^{-1}T b.$$

(31)

Note that this method has four parameters τ_1, τ_2, ω_1 and ω_2 instead of three in the GMESOR method. The iterative scheme given by (5), (30) and (31) will be referred to as the Generalized Modified Preconditioned Simultaneous Displacement (GMPSD) method. For $(D - \Omega U)^{-1}D(D - \Omega L)^{-1}$ to exist we require

$$\det[(D - \Omega L)D^{-1}(D - \Omega U)] \neq 0.$$

(32)

Because of (4)

$$R = (D - \Omega L)D^{-1}(D - \Omega U)$$

$$= \begin{pmatrix} \left(A - \omega_2 B^T (1 - a \omega_2)(1 - (1 - a)\omega_2)Q - \omega_1 \omega_2 B^T A^{-1} B \right)
\end{pmatrix}. $$

(33)
Theorem 3.1

Let \(A \)

Therefore,

\[
\det(D - \Omega L)D^{-1}(D - \Omega U) = (1 - a\omega_2)^n[1 - (1 - a)\omega_2]^n \det(A) \neq 0
\]

or

\[
a \neq \frac{1}{2} \text{ and } \omega_2 \neq 2
\]

since the matrix \(A \) is symmetric positive definite and the matrix \(Q \) is nonsingular. The GMPSD method has the following algorithmic form.

The GMPSD Method: Let \(Q \in \mathbb{R}^{n \times n} \) be a nonsingular and symmetric matrix. Given initial vectors \(x^{(0)} \in \mathbb{R}^m \) and \(y^{(0)} \in \mathbb{R}^n \), and relaxation factors \(\tau_1, \tau_2 \neq 0 \), \(\omega_1, \omega_2, a \in \mathbb{R} \) with \(a \neq \frac{1}{2} \) and \(\omega_2 \neq 2 \). For \(k = 0, 1, 2, \ldots \) until the iteration sequence \(\{x^{(k)}^T, y^{(k)}^T\} \) is convergent, compute

\[
y^{(k+1)} = y^{(k)} + \frac{1}{(1 - a\omega_2)[1 - (1 - a)\omega_2]}Q^{-1}\left(B^T[(\tau_2 - \tau_1\omega_2)x^{(k)} + \tau_1\omega_2A^{-1}(b_1 - B^Ty^{(k)})] - \tau_2b_2\right)
\]

\[
x^{(k+1)} = (1 - \tau_1)x^{(k)} + A^{-1}\left(B[(\omega_1 - \tau_1)y^{(k)} - \omega_1y^{(k+1)}] + \tau_1b_1\right),
\]

where \(Q \) is an approximation of the Schur complement matrix \(B^T A^{-1} B \).

Note that in the above algorithm we first compute \(y^{(k+1)} \) and then \(x^{(k+1)} \), whereas in the GMESOR method we had the reverse computations.

If \(\omega_2 = 0 \) then the algorithmic form of the GMPSD method simplifies to

\[
y^{(k+1)} = y^{(k)} + \tau_2 Q^{-1}(B^T x^{(k)} - b_2)
\]

\[
x^{(k+1)} = (1 - \tau_1)x^{(k)} + \tau_1 A^{-1}(b_1 - By^{(k+1)}).
\]

The above form is the same as that of the GSOR method if we use \(D - \Omega U \) instead of \(D - \Omega L \) as the preconditioning matrix in the GSOR method and will be referred as the simplified GMPSD method.

In the following theorem we find the functional relationship for the GMPSD method which associates the eigenvalues \(\lambda \) of the iteration matrix \(G(\tau_1, \tau_2, \omega_1, \omega_2, a) \) and the eigenvalues \(\mu \) of the matrix \(J \).

Theorem 3.1 Let \(A \in \mathbb{R}^{m \times m} \) be symmetric positive definite, \(B \in \mathbb{R}^{m \times n} \) be of full column rank and \(Q \in \mathbb{R}^{n \times n} \) be nonsingular and symmetric. If \(\lambda \neq 1 - \tau_1 \) is an eigenvalue of the matrix \(G(\tau_1, \tau_2, \omega_1, \omega_2, a) \) and if \(\mu \) satisfies

\[
\lambda^2 + \lambda \left(\tau_1 - 2 + \frac{\tau_1\omega_2 + \tau_2\omega_1 - \tau_1\omega_1\omega_2}{(1 - a\omega_2)[1 - (1 - a)\omega_2]}\mu\right) + 1 - \tau_1
\]

\[
+ \frac{\tau_1\tau_2 - \tau_1\omega_2 - \tau_2\omega_1 + \tau_1\omega_1\omega_2}{(1 - a\omega_2)[1 - (1 - a)\omega_2]}\mu = 0,
\]

\(\Box \) Springer
where \(a \neq \frac{1}{2} \) and \(\omega_2 \neq 2 \), then \(\mu \) is an eigenvalue of the matrix \(J = Q^{-1} B^T A^{-1} B \). Conversely, if \(\mu \) is an eigenvalue of \(J \) and if \(\lambda \neq 1 - \tau_1 \) satisfies (36), then \(\lambda \) is an eigenvalue of \(\mathcal{G}(\tau_1, \tau_2, \omega_1, \omega_2, a) \). In addition, \(\lambda = 1 - \tau_1 \) is an eigenvalue of \(\mathcal{G}(\tau_1, \tau_2, \omega_1, \omega_2, a) \) (if \(m > n \)) with the corresponding eigenvector \((x^T, 0)^T\), where \(x \in \mathcal{N}(B^T) \).

Proof Clearly, the eigenvalues \(\mu \) of the matrix \(J = Q^{-1} B^T A^{-1} B \) are real and non-zero. Let \(\lambda \) be a nonzero eigenvalue of the iteration matrix \(\mathcal{G}(\tau_1, \tau_2, \omega_1, \omega_2, a) \) defined in (30), and \((x, y)^T \in \mathbb{R}^{m+n} \) be the associated eigenvector. Then, we have

\[
\mathcal{G}(\tau_1, \tau_2, \omega_1, \omega_2, a) \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}
\]
or because of (30)

\[
[(D - \Omega L)D^{-1}(D - \Omega L) - TA]\begin{pmatrix} x \\ y \end{pmatrix} = \lambda(D - \Omega L)D^{-1}(D - \Omega L)\begin{pmatrix} x \\ y \end{pmatrix}. \quad (37)
\]

From (37), because of (4), we have

\[
\begin{pmatrix} (1 - \tau_1)A \\ (\tau_2 - \omega_2)B^T \end{pmatrix} \begin{pmatrix} (\omega_1 - \tau_1)B \\ (1 - a\omega_2)[1 - (1 - a)\omega_2]Q - \omega_1\omega_2B^T A^{-1}B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} A \\ -\omega_2 B^T \end{pmatrix} \begin{pmatrix} (1 - a\omega_2)B \\ (1 - (1 - a)\omega_2)Q - \omega_1\omega_2B^T A^{-1}B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.
\]

Decoupling we have

\[
\begin{cases}
(1 - \tau_1)Ax + (\omega_1 - \tau_1)By = \lambda Ax + \lambda \omega_1 By \\
(\tau_2 - \omega_2)B^Tx + [(1 - a\omega_2)B - \omega_1\omega_2B^T A^{-1}B)y]
\end{cases}
\]
or equivalently

\[
\begin{cases}
(1 - \tau_1 - \lambda)x = [(\lambda - 1)\omega_1 + \tau_1]A^{-1}By \\
(\tau_2 - \omega_2 + \lambda\omega_2)Q^{-1}B^T x = (\lambda - 1) [(1 - a\omega_2)B - \omega_1\omega_2I - \omega_1\omega_2J]y.
\end{cases} \quad (38)
\]

From the first equality in (38) we get

\[
(1 - \tau_1 - \lambda)Q^{-1}B^T x = [(\lambda - 1)\omega_1 + \tau_1]Jy,
\]

and hence, when \(\lambda \neq 1 - \tau_1 \),

\[
Q^{-1}B^T x = \frac{(\lambda - 1)\omega_1 + \tau_1}{1 - \tau_1 - \lambda} Jy. \quad (39)
\]
It then follows from (39) and the second equality in (38) that
\[
(\lambda - 1)(1 - a\omega_2)[1 - (1 - a)\omega_2](1 - \tau_1 - \lambda)y
= \{(\lambda - 1)\omega_2 + \tau_2\}[\omega_1 + \tau_1] + (\lambda - 1)(1 - \tau_1 - \lambda)\omega_1\omega_2 Jy.
\]

If \(\lambda = 1 - \tau_1 \neq 0\), then from the first and the second equality of (38) we have, respectively, \(By = 0\) and \(\tau_1\{(1 - a\omega_2)[1 - (1 - a)\omega_2]Q - \omega_1\omega_2B^TA^{-1}B\}y = (\tau_1\omega_2 - \tau_2)B^Tx\). It then follows that \(y = 0\) and \(x \in \mathcal{N}(B^T)\), where \(\mathcal{N}(B^T)\) is the null space of the matrix \(B^T\). Hence, \(\lambda = 1 - \tau_1\) is an eigenvalue of \(G(\tau_1, \tau_2, \omega_1, \omega_2, a)\) with the corresponding eigenvector \((x^T, 0)^T\), where \(x \in \mathcal{N}(B^T)\). Therefore, the eigenvalues \(\lambda\) (except for \(\lambda = 1 - \tau_1\)) of the matrix \(G(\tau_1, \tau_2, \omega_1, \omega_2, a)\) and the eigenvalues \(\mu\) of the matrix \(J\) satisfy the functional relationship
\[
(\lambda - 1)(1 - a\omega_2)[1 - (1 - a)\omega_2](1 - \tau_1 - \lambda)
= \{(\lambda - 1)\omega_2 + \tau_2\}[\omega_1 + \tau_1] + (\lambda - 1)(1 - \tau_1 - \lambda)\omega_1\omega_2 \mu.
\]

This means that \(\lambda\) satisfies the quadratic equation (36).

3.2 Convergence

If the matrix \(Q\) is positive definite and \(a = 0\) sufficient conditions for the GMPSD method to converge are given by the following theorem.

Theorem 3.2 Consider the GMPSD method. Let \(A \in \mathbb{R}^{m \times m}\) and \(Q \in \mathbb{R}^{n \times n}\) be symmetric positive definite and \(B \in \mathbb{R}^{m \times n}\) be of full column rank. Denote the minimum and the maximum eigenvalues of the matrix \(J = Q^{-1}B^TA^{-1}B\) by \(\mu_{\min}\) and \(\mu_{\max}\), respectively. Then, \(\rho(G(\tau_1, \tau_2, \omega_1, \omega_2)) < 1\) if the parameters \(\tau_1, \tau_2, \omega_1\) and \(\omega_2\) lie in the region defined in the cases of Table 1 with \(0 < \tau_1 < 2\) and

\[
\begin{align*}
\omega_{11}^*(\mu) &= \frac{\tau_1(2\omega_2 - \tau_2)}{2(\tau_1\omega_2 - \tau_2)} + \frac{(\tau_1 - 2)(1 - \omega_2)}{\mu}, \\
\omega_{12}^*(\mu) &= \frac{\tau_1(\omega_2 - \tau_2)}{\tau_1\omega_2 - \tau_2} + \frac{(1 - \omega_2)}{\mu}, \\
\omega_{21}^*(\mu) &= \frac{\tau_2}{\tau_1}, \\
\omega_{22}^*(\mu) &= 1 - \frac{\tau_1\tau_2\mu}{4}.
\end{align*}
\]

Table 1 Sufficient conditions for the GMPSD method to converge

Cases	\(\omega_2\)-Domain	\(\omega_1\)-Domain	\(\tau_2\)-Domain
1	\(\omega_{21}^* < \omega_2 < \omega_{22}^*\) & \(\omega_{11}^*(\mu_{\max}) < \omega_1 < \omega_{12}^*(\mu_{\min})\)	\(0 < \tau_2 < \frac{4\tau_1}{4 + \tau_1^2\mu_{\max}}\)	
2	\(\omega_2 < \omega_{21}^*\)		\(\frac{4\tau_1}{4 + \tau_1^2\mu_{\min}} < \tau_2< \tau_2< 0\)
3	\(\omega_2 < \omega_{22}^*(\mu_{\max})\)	\(\omega_{12}^*(\mu_{\min}) < \omega_1 < \omega_{11}^*(\mu_{\max})\)	
4	\(1 < \omega_2 < \omega_{22}^*(\mu_{\min})\)		

\(\odot\) Springer
Proof Recall that \(\lambda = 1 - \tau_1 \neq 0 \) is an eigenvalue of \(G(\tau_1, \tau_2, \omega_1, \omega_2) \) and if \(\lambda \neq 1 - \tau_1 \) then the eigenvalues of \(G(\tau_1, \tau_2, \omega_1, \omega_2) \) are given by (36). If \(\lambda = 1 - \tau_1 \neq 0 \), then the GMPSD method is convergent if and only if \(|\lambda| < 1\), that is \(|1 - \tau_1| < 1\), or

\[
0 < \tau_1 < 2. \tag{41}
\]

If \(\lambda \neq 1 - \tau_1 \), then (36) holds and by Lemma 2.1 page 171 of [54], it follows that the GMPSD method is convergent if and only if

\[
|c| < 1 \quad \text{and} \quad |b| < 1 + c \tag{42}
\]

where

\[
c = 1 - \tau_1 + \frac{\tau_1 \omega_1 \omega_2 - \tau_1 \omega_2 - \tau_2 \omega_1 + \tau_1 \tau_2 \mu}{1 - \omega_2} \tag{43}
\]

and

\[
b = 1 + c - \frac{\tau_1 \tau_2 \mu}{1 - \omega_2}. \tag{44}
\]

From the first inequality of (42) it follows that

\[
0 < 1 + c < 2. \tag{45}
\]

From the second inequality of (42), because of (44), we have

\[
0 < \frac{\tau_1 \tau_2 \mu}{2(1 - \omega_2)} < 1 + c. \tag{46}
\]

Combining (45) and (46) it follows that

\[
0 < \frac{\tau_1 \tau_2 \mu}{2(1 - \omega_2)} < 1 + c < 2. \tag{47}
\]

In order for (47) to hold we must have that

\[
0 < \frac{\tau_1 \tau_2 \mu}{2(1 - \omega_2)} < 2,
\]

or because of (41)

\[
0 < \frac{\tau_2}{1 - \omega_2} < \frac{4}{\tau_1 \mu}. \tag{48}
\]

Inequalities (47), because of (43), become

\[
\frac{\tau_1 (2 \omega_2 - \tau_2) \mu}{2(1 - \omega_2)} + \tau_1 - 2 < \frac{\tau_1 \omega_2 - \tau_2}{1 - \omega_2} \mu < \tau_1 + \frac{\tau_1 (\omega_2 - \tau_2) \mu}{1 - \omega_2}. \tag{49}
\]
In the sequel we distinguish the following two cases to study (49). Case I: \(\tau_2 > 0 \) and \(1 - \omega_2 > 0 \) and Case II: \(\tau_2 < 0 \) and \(1 - \omega_2 < 0 \). In addition, we distinguish the following two subcases for each of the above cases. (i): \(\tau_1 \omega_2 - \tau_2 > 0 \) and (ii): \(\tau_1 \omega_2 - \tau_2 < 0 \). Next, we will study only the subcase (i) of Case I, since the other cases can be treated similarly.

For this case, we have that

\[
\frac{\tau_2}{\tau_1} < \omega_2 < 1, \quad \text{if } 0 < \tau_2 < \tau_1
\]

and from the second part of (48)

\[
\omega_2 < 1 - \frac{\tau_1 \tau_2 \mu}{4}.
\]

From (50) and (51) it follows that

\[
\frac{\tau_2}{\tau_1} < \omega_2 < \min \left\{ 1, 1 - \frac{\tau_1 \tau_2 \mu}{4} \right\}, \quad 0 < \tau_2 < \tau_1
\]

or

\[
\frac{\tau_2}{\tau_1} < \omega_2 < 1 - \frac{\tau_1 \tau_2 \mu}{4}, \quad 0 < \tau_2 < \tau_1
\]

which holds if \(\frac{\tau_2}{\tau_1} < 1 - \frac{\tau_1 \tau_2 \mu}{4} \). Therefore, we have that (52) holds if

\[
\omega_{21}^* < \omega_2 < \omega_{22}^*(\mu), \quad 0 < \tau_2 < \frac{4 \tau_1}{4 + \tau_1^2 \mu}
\]

where \(\omega_{21}^*, \omega_{22}^*(\mu) \) are given by (40). Furthermore, from (49), we have that

\[
\omega_{11}^*(\mu) < \omega_1 < \omega_{12}^*(\mu)
\]

where \(\omega_{11}^*(\mu), \omega_{12}^*(\mu) \) are given by (40). Studying the monotonicity of \(\omega_{22}^*(\mu), \omega_{11}^*(\mu) \) and \(\omega_{12}^*(\mu) \) with respect to \(\mu \) we have that \(\text{sign} \frac{\partial \omega_{22}^*(\mu)}{\partial \mu} = -1 \), \(\text{sign} \frac{\partial \omega_{11}^*(\mu)}{\partial \mu} = +1 \) and \(\text{sign} \frac{\partial \omega_{12}^*(\mu)}{\partial \mu} = +1 \). Hence, case 1 of Table 1 is proved. Treating similarly subcase (ii) of Case I and subcases (i) and (ii) of Case II, we can prove the rest of the cases in Table 1.

Note that analogous results hold when \(Q \in \mathbb{R}^{n \times n} \) is symmetric negative definite.

3.3 Optimum parameters

In the following theorem the optimum parameters of the GMPSD method are determined assuming that the matrix \(Q \) is symmetric positive definite and \(\alpha \neq 0 \).
Theorem 3.3 Consider the GMPSD method. Let $A \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $B \in \mathbb{R}^{m \times n}$ be of full column rank. Denote the minimum and the maximum eigenvalues of the matrix $J = Q^{-1}B^TA^{-1}B$ by μ_{\min} and μ_{\max}, respectively. Then the spectral radius of the GMPSD method, $\rho(\mathcal{G}(\tau_1, \tau_2, \omega_1, \omega_2, a))$, is minimized for any $\omega_2 \neq \frac{\tau_{2, opt}}{\tau_{1, opt}}$ at

$$\omega_{1, opt} = \frac{\tau_{1, opt}(\tau_{2, opt} - \omega_2)}{\tau_{2, opt} - \tau_{1, opt}} \omega_2,$$

$$\tau_{1, opt} = \frac{4\sqrt{\mu_{\min}\mu_{\max}}}{(\sqrt{\mu_{\min}} + \sqrt{\mu_{\max}})^2} \text{ and } \tau_{2, opt} = \frac{(1 - a\omega_2)[1 - (1 - a)\omega_2]}{\sqrt{\mu_{\min}\mu_{\max}}},$$

and its corresponding value is

$$\rho(\mathcal{G}(\tau_{1, opt}, \tau_{2, opt}, \omega_{1, opt}, \omega_2, a)) = \frac{\sqrt{\mu_{\max}} - \sqrt{\mu_{\min}}}{\sqrt{\mu_{\max}} + \sqrt{\mu_{\min}}}.$$

Proof Following a similar approach as in Theorem 2.3, using the functional relationship (36) and requiring $|\tilde{\lambda}_1| = |\tilde{\lambda}_N|$ we find

$$\tau_1 \omega_1 \omega_2 - \tau_2 \omega_1 - \tau_1 \omega_2 + \tau_1 \tau_2 = 0.$$

Therefore, (36) because of (58), becomes

$$\lambda^2 + \lambda(\tau_1 - 2 + \tau_1 \tilde{\tau}_2 \mu) + 1 - \tau_1 = 0.$$

with

$$\tilde{\tau}_2 = \frac{\tau_2}{(1 - a\omega_2)[1 - (1 - a)\omega_2]}.$$

which is the functional relationship of the GSOR method [8] with the only difference that now we have $(1 - a\omega_2)[1 - (1 - a)\omega_2]$ instead of $1 - a\omega_2$ in the denominator of $\tilde{\tau}_2$ [see (28)], hence (55), follows from (58) whereas (56) and (57) hold because of (59), (60) and Theorem 4.1 in [8]. \qed

Corollary 3.1 Consider the simplified GMPSD method. Let $A \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ be symmetric positive definite and $B \in \mathbb{R}^{m \times n}$ be of full column rank. Denote the minimum and the maximum eigenvalues of the matrix $J = Q^{-1}B^TA^{-1}B$ by μ_{\min} and μ_{\max}, respectively. Then the spectral radius of the simplified GMPSD method, $\rho(\mathcal{G}(\tau_1, \tau_2, \omega_1, 0, 0))$, is minimized at

$$\omega_{1, opt} = \tau_{1, opt},$$

$$\tau_{1, opt} = \frac{4\sqrt{\mu_{\min}\mu_{\max}}}{(\sqrt{\mu_{\min}} + \sqrt{\mu_{\max}})^2} \text{ and } \tau_{2, opt} = \frac{1}{\sqrt{\mu_{\min}\mu_{\max}}}.$$

Springer
and its corresponding value is

$$
\rho(G(\tau_{1_{opt}}, \tau_{2_{opt}}, \omega_{1_{opt}}, 0, 0)) = \frac{\sqrt{\mu_{\text{max}} - \sqrt{\mu_{\text{min}}}}}{\sqrt{\mu_{\text{max}}} + \sqrt{\mu_{\text{min}}}}.
$$

(63)

Proof Letting $\omega_2 = 0, (55), (56)$ and (57) yield (61), (62) and (63), respectively. □

It is worth noting here that the optimum values of $\tau_{1_{opt}}$ and $\tau_{2_{opt}}$ of the simplified GMPSD method are identical to the optimum values of $\omega_{1_{opt}}$ and $\omega_{2_{opt}}$ of the GSOR method, respectively.

Analogous results hold in case where the matrix Q is symmetric negative definite.

4 Numerical results

In this section we study the numerical solution of the following linear Stokes equation

$$
\begin{cases}
-\mu \Delta u + \nabla w = \tilde{f}, & \Omega \\
\nabla \cdot u = \tilde{g}, & \Omega \\
u = 0, & \partial \Omega \\
f_{\Omega} w(x)dx = 0,
\end{cases}
$$

(64)

where $\Omega = (0, 1) \times (0, 1) \subset \mathbb{R}^2$, $\partial \Omega$ is the boundary of Ω, Δ is the componentwise Laplace operator, u is a vector-valued function representing the velocity and w is a scalar function representing the pressure. Furthermore, we assume that the functions \tilde{f}, \tilde{g} are constant. By discretizing (64) with the upwind scheme, we obtain the system of linear equations (1), in which [7]

$$
A = \begin{pmatrix}
I \otimes T + T \otimes I & 0 \\
0 & I \otimes T + T \otimes I
\end{pmatrix} \in \mathbb{R}^{2p^2 \times 2p^2},
$$

$$
B = \begin{pmatrix}
I \otimes F \\
F \otimes I
\end{pmatrix} \in \mathbb{R}^{2p^2 \times p^2}
$$

with

$$
T = \frac{\mu}{h^2} \cdot \text{tridiag}(-1, 2, -1) \in \mathbb{R}^{p \times p}, \quad F = \frac{1}{h} \cdot \text{tridiag}(-1, 1, 0) \in \mathbb{R}^{p \times p},
$$

$h = \frac{1}{p+1}$ being the discretization mesh size and \otimes the Kronecker product symbol.

For this example, we let $\mu = 1$, $m = 2p^2$ and $n = p^2$. Hence, the total number of variables is $m + n = 3p^2$.

We choose the matrix Q to be an approximation to $B^T A^{-1} B$. The reason being that if $Q \simeq B^T A^{-1} B$ then $J = Q^{-1} B^T A^{-1} B \simeq I$. In this case the ratio of the maximum to the minimum eigenvalue of the matrix J becomes minimum and its value is approximately 1. As a consequence, the spectral radius of the iteration matrix
Table 2 Experimental results showing that $\omega_{2\text{opt}} = \tau_{2\text{opt}}$ in GMESOR

	m	n	m+n
	128	512	1,152
	64	256	576
	192	768	1,728

Case 1

$\tau_{1\text{opt}}$	0.663309	0.442911	0.330674
$\tau_{2\text{opt}}$	0.499375	0.285422	0.198468
$\omega_{2\text{opt}}$	0.499375	0.285422	0.198468
ρ_{opt}	0.580251	0.746384	0.811229
$\tau_{2\text{opt}}(\text{exp})$	0.5	0.286	0.199
$\rho(\tau_{2\text{opt}}(\text{exp}))$	0.582936	0.750508	0.823517
$\omega_{2\text{opt}}(\text{exp})$	0.499	0.285	0.198
$\rho(\omega_{2\text{opt}}(\text{exp}))$	0.581866	0.749401	0.822877

Case 2

$\tau_{1\text{opt}}$	0.757767	0.631420	0.558518
$\tau_{2\text{opt}}$	1.950825	2.529944	2.974309
$\omega_{2\text{opt}}$	1.950825	2.529944	2.974309
ρ_{opt}	0.492171	0.607108	0.664441
$\tau_{2\text{opt}}(\text{exp})$	1.951	2.530	2.975
$\rho(\tau_{2\text{opt}}(\text{exp}))$	0.492374	0.607155	0.664925
$\omega_{2\text{opt}}(\text{exp})$	1.950	2.529	2.974
$\rho(\omega_{2\text{opt}}(\text{exp}))$	0.493127	0.607901	0.664657

of the GMESOR and GMPSD methods attains its minimum value. We choose Q, according to the following two cases:

1. $Q = B^T \hat{A}^{-1} B$, $\hat{A} = \text{tridiag}(A)$
2. $Q = B^T \hat{A}^{-1} B$, $\hat{A} = \text{diag}(A)$,

where \hat{A} is the tridiagonal or the diagonal part of A. The choice of the matrix \hat{A} instead of A is due to the difficulty in computing the inverse matrix of A. In this example the eigenvalues of Q are real and positive.

In actual computations, we choose the right-hand-side vector $(b^T, q^T)^T \in \mathbb{R}^{m+n}$ such that the exact solution of the augmented linear system (1) is $((x^*), (y^*))^T = (1, 1, \ldots, 1)^T \in \mathbb{R}^{m+n}$, and perform all runs in MATLAB (version R_{2012b}) with a machine precision 10^{-16}. The machine used was an Intel i5 personal computer with 6G memory. In our computations, all runs are started from the initial vector $((x^{(0)}), (y^{(0)}))^T = 0$, and terminated if the current iterations satisfy

$$RES = \frac{\sqrt{||b - Ax^{(k)} - By^{(k)}||_2^2 + ||q - B^T x^{(k)}||_2^2}}{\sqrt{||b - Ax^{(0)} - By^{(0)}||_2^2 + ||q - B^T x^{(0)}||_2^2}} \leq 10^{-9},$$
Table 3 Computation of $\rho(H(\tau_{1_{\text{opt}}}, \tau_{2_{\text{opt}}}, \omega_{2_{\text{opt}}}, a))$ for various values of the parameter a (Case 1, $p = 40$)

a	$\tau_{1_{\text{opt}}}$	$\tau_{2_{\text{opt}}} = \omega_{2_{\text{opt}}}$	$\rho(H(\tau_{1_{\text{opt}}}, \tau_{2_{\text{opt}}}, \omega_{2_{\text{opt}}}, a))$
0	2.18851E−001	1.229935E−001	0.883807
10	2.18851E−001	5.515564E−002	0.883808
10^2	2.18851E−001	9.248083E−003	0.883808
10^3	2.18851E−001	9.919351E−004	0.883809
10^4	2.18851E−001	9.991876E−005	0.883810
10^5	2.18851E−001	9.999187E−006	0.883807
10^6	2.18851E−001	9.999919E−007	0.883807
10^7	2.18851E−001	9.999992E−008	0.883807
10^8	2.18851E−001	9.999999E−009	0.883815
10^9	2.18851E−001	1.000000E−009	0.86425
10^{10}	2.18851E−001	1.000000E−010	0.88379

where RES is the norm of absolute residual vectors, or if the numbers of the prescribed iterations $k_{\text{max}} = 1.200$ are exceeded. We also use the same example to compare our methods with the PHSS [7] and Krylov subspace methods [41,42,48]. In Table 2 we computed the optimal parameters $\tau_{1_{\text{opt}}}$, $\tau_{2_{\text{opt}}}$ and $\omega_{2_{\text{opt}}}$ and the optimal spectral radius ρ_{opt} of the GMESOR method, for various problem sizes (m,n) using (16), (17) and (18). Furthermore, we computed the optimum parameters $\tau_{2_{\text{opt}}}(\text{exp})$, $\omega_{2_{\text{opt}}}(\text{exp})$ and the spectral radii $\rho(\tau_{2_{\text{opt}}}(\text{exp}))$ and $\rho(\omega_{2_{\text{opt}}}(\text{exp}))$, experimentally by trial and error. The parameter τ_1 was kept fixed and was given its optimum value. Our results show that $\rho_{\text{opt}} \simeq \rho(\tau_{2_{\text{opt}}}(\text{exp})) \simeq \rho(\omega_{2_{\text{opt}}}(\text{exp}))$ and $\omega_{2_{\text{opt}}}(\text{exp}) \simeq \tau_{2_{\text{opt}}}(\text{exp}) \simeq \omega_{2_{\text{opt}}}(\text{exp})$ thus verifying Theorem 2.3. The numerical results in Table 3 verify that the parameter a may be chosen arbitrary, while the minimum value of $\rho(H(\tau_{1_{\text{opt}}}, \tau_{2_{\text{opt}}}, \omega_{2_{\text{opt}}}, a))$ remains approximately the same. $\rho(H(\tau_{1_{\text{opt}}}, \tau_{2_{\text{opt}}}, \omega_{2_{\text{opt}}}, a))$ was computed using Matlab. The slightly different values are due to rounding errors. Finally, in Table 4 we list numerical results with respect to the number of total iteration steps (denoted by “ITER”), the elapsed CPU time in seconds (denoted by “CPU”) and RES for the GSOR, GMESOR and Simplified GMPsd iterative methods. We remark that our numerical results verify the validity of Theorem 2.3 and Corollary 3.1, since GSOR, GMESOR and Simplified GMPsd methods require the same number of iterations for convergence. Indeed, this was expected since all these methods have the same spectral radius for the optimum values of their parameters. Note that all the aforementioned methods require approximately the same computing time. Furthermore, for comparison purposes we also considered the PHSS(a^*), GMRES, GMRES(#), PGMRES and PGMRES(#) methods. The integer # in GMRES(#) and PGMRES(#) methods denotes the number of restarting steps, while the integer a^* denotes the theoretical optimal parameter of the PHSS method. We also list numerical results with respect to the number of total iteration steps and the elapsed CPU time in seconds for these methods. The
Case	Method	ITER	CPU	RES
	GSOR	46	0.05	6.79E−10
		86	0.36	9.04E−10
		126	3.71	9.79E−10
		167	22.47	8.97E−10
		207	86.47	9.74E−10
		248	258.28	9.44E−10
	GMESOR	46	0.05	6.79E−10
		86	0.36	9.04E−10
		126	3.71	9.79E−10
		167	22.61	8.97E−10
		207	86.78	9.74E−10
		248	258.93	9.44E−10
	Simplified GMPSD	46	0.05	6.79E−10
		86	0.35	9.12E−10
		126	3.71	9.83E−10
		167	22.59	8.99E−10
		207	86.54	9.75E−10
		248	258.28	9.45E−10
	PHSS(α*)	24	0.34	6.19E−10
		35	5.24	9.62E−10
		44	34.52	7.63E−10
		51	147.95	7.36E−10
		57	472.87	9.63E−10
		63	1,247.80	8.82E−10
	GMRES	73	0.33	7.03E−10
		176	9.24	9.12E−10
		285	155.67	9.83E−10
		386	1,240.62	8.99E−10
		506	6,352.04	9.75E−10
		606	22,214.42	9.45E−10
	GMRES(100)	73	0.26	6.19E−10
		327	16.12	9.62E−10
		831	404.70	7.63E−10
		1,794	5,417.99	7.36E−10
		3,436	41,626.66	9.63E−10
		9,965	356,831.22	8.82E−10
	PGMRES	76	0.50	7.03E−10
		143	11.35	9.12E−10
		207	130.19	9.83E−10
		275	1,956.58	8.99E−10
		344	4,557.29	9.75E−10
		410	15,684.49	9.45E−10
	PGMRES(100)	76	0.36	7.03E−10
		178	11.02	9.12E−10
		321	172.80	9.83E−10
		509	1,615.68	8.99E−10
		1,038	12,838.90	9.75E−10
		1,281	46,595.50	9.45E−10

Table 4 ITER, CPU and RES for the testing methods

p	8	16	24	32	40	48
n	64	256	576	1,024	1,600	2,304
m	128	512	1,152	2,048	3,200	4,608
m+n	192	768	1,728	3,072	4,800	6,912

Case 2

Method	ITER	CPU	RES
GSOR	65	0.07	8.35E−10
	124	0.42	8.25E−10
	182	4.11	9.32E−10
	241	24.55	9.14E−10
	300	93.24	9.19E−10
	359	278.67	9.35E−10
GMESOR	65	0.06	8.35E−10
	124	0.40	8.25E−10
	182	4.08	9.32E−10
	241	24.41	9.14E−10
	300	93.14	9.19E−10
	359	278.48	9.35E−10
A comparison of the ESOR and PSD methods for augmented linear systems

Table 4 continued

Method	Iterations	CPU (s)	Residual
Simplified GMPSD	ITER	CPU	RES
	65	0.07	8.55E−10
	124	0.39	8.30E−10
	182	4.11	9.35E−10
	241	24.51	9.15E−10
	300	93.20	9.20E−10
	359	278.08	9.35E−10
PHSS(a*)	ITER	CPU	RES
	29	0.34	9.88E−10
	43	5.28	6.53E−10
	53	34.64	7.99E−10
	62	148.51	8.48E−10
	69	474.44	9.61E−10
	76	1,261.96	9.72E−10
GMRES	ITER	CPU	RES
	73	0.33	155.67
	176	9.24	1,240.62
	285	386	6,352.04
	506	606	22,214.42
GMRES(100)	ITER	CPU	RES
	73	0.26	1,794
	327	16.12	3,436
	831	404.70	41,626.66
	1,794	5,417.99	356,831.22
PGMRES	ITER	CPU	RES
	75	0.50	253
	164	12.18	1,168.31
	253	151.43	5,761.78
	347	1,168.31	20,131.99
PGMRES(100)	ITER	CPU	RES
	75	0.36	544
	275	15.31	997
	544	279.17	*
	997	3.072,70	*
		*	*

The preconditioned matrix Q in PHSS(a*) is given by the aforementioned cases 1 and 2. The preconditioner, say K, for the PGMRES and PGMRES(#) methods is given by \cite{17,18,39,53}

$$ K = \begin{bmatrix} \hat{A} & 0 \\ 0 & I \end{bmatrix}. $$

We remark that the GSOR, GMESOR and Simplified GMPSD methods always outperform the other testing methods, except of the PHSS(a*) method, with respect to iteration steps as p increases. However, the overall computing time of the GSOR, GMESOR and Simplified GMPSD methods is much smaller than that of all the other testing methods. With $*$ we denote that the method converges but after too many hours. With regard to the matrix Q, Case 1 is the best choice for all methods tested as it requires the least iteration steps and CPU times.

5 Remarks and conclusions

In this paper we studied the impact of two different preconditioning matrices on the convergence of iterative methods for the solution of the augmented linear system (1) when the coefficient matrix A is of the form (2). We assumed that $A \in \mathbb{R}^{m \times m}$ was a symmetric positive definite matrix and $B \in \mathbb{R}^{m \times n}$ was a matrix of full column rank,
where \(m \geq n \), whereas \(Q \) was a symmetric positive or negative definite matrix. Under these assumptions we were able to find sufficient conditions for the GMESOR and GMPSD iterative methods to converge. Further, using a geometric analysis analogous to Varga [49] we determined the optimum values of the parameters of all methods studied such as to attain the maximum rate of convergence. From our analysis it was shown that GMESOR and GMPSD are equivalent since they have the same spectral radius for the optimum values of their parameters, which is given by (18).

This result was verified by our numerical experiments, where the simplified GMPSD, the GMESOR and the GSOR methods require approximately the same computing time. Moreover, all the aforementioned methods outperform the PHSS(\(a^* \)), GMRES, GMRES(\(# \)), PGMRES and PGMRES(\(# \)) methods considerably with respect to CPU times. It is worth mentioning that, for the saddle point problem, the GMPSD method has a similar behavior as the Modified PSD (MPSD) method for two-cyclic matrices [34]. Indeed, in [34] we proved the equivalence of MPSD and MSOR methods for two-cyclic matrices in case the eigenvalues of the Jacobi matrix are either all real or all imaginary. However, it is believed that this equivalence will not hold for the case where the eigenvalues of the \(J \) matrix are complex.

Acknowledgments The authors would like to thank the referees for their constructive comments and suggestions which improved considerably the original form of the paper. The second author would like to thank the Department of Applied Mathematics and Statistics of State University of New York at Stony Brook for its warm hospitality while working on the paper.

References

1. Arbogast, T., Gomez, M.S.M.: A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13, 331–348 (2009)
2. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford, CA (1958)
3. Bacuta, C., Monk, P.: Multilevel discretization of symmetric saddle point systems without the discrete LBB condition. Appl. Numer. Math. 62(6), 667–681 (2012)
4. Bacuta, C., Shu, L.: Multilevel gradient Uzawa algorithms for symmetric saddle point problems. J. Sci. Comput. 57, 105–123 (2013)
5. Bacuta, C.: Cascadic multilevel algorithms for saddle point systems. Math. Numer. Anal. (2013). arXiv:1305.2449v1
6. Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
7. Bai, Z.Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)
8. Bai, Z.Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1–38 (2005)
9. Bai, Z.Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28(2), 583–603 (2006)
10. Bai, Z.Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems.IMA J. Numer. Anal. 27(1), 1–23 (2007)
11. Bai, Z.Z., Golub, G.H., Li, C.-K.: Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices. Math. Comput. 76(257), 287–298 (2007)
12. Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11–12), 2900–2932 (2008)
13. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
14. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34(3), 1072–1092 (1997)
15. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM (2000)
16. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)
17. Elman, H.C., Schultz, M.H.: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations. SIAM J. Numer. Anal. 23(1), 44–57 (1986)
18. Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 665–688 (2002)
19. Evans, D.J., Missirlis, N.M.: The preconditioned simultaneous displacement method (PSD method) for elliptic difference equations. Math. Comput. Simul. 22(3), 256–263 (1980)
20. Fischer, B., Ramage, R., Silvester, D.J., Wathen, A.J.: Minimum residual methods for augmented systems. BIT 38(3), 527–543 (1998)
21. Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT 41(1), 71–85 (2001)
22. Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Vabishchevich, P.: An efficient multigrid solver for a reformulated version of the poroelasticity system. Comput. Methods Appl. Mech. Eng. 196(8), 1447–1457 (2007)
23. Gordon, A., Powell, C.: On solving stochastic collocation systems with algebraic multigrid. IMA J. Numer. Anal. 32(3), 1051–1070 (2012)
24. Griebel, M., Dornseifer, T., Neunhoffer, T.: Numerical Simulation in Fluid Dynamics, A Practical Introduction. SIAM, Philadelphia (1998)
25. Griebel, M., Metsch, B., Schweitzer, M.A.: An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comput. 25(2), 385–407 (2003)
26. Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.: Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods. Numer. Linear Algebra Appl. 13(2–3), 193–214 (2006)
27. Griebel, M., Metsch, B., Schweitzer, M.A.: Coarse grid classification—Part II: automatic coarse grid agglomeration for parallel AMG. Preprint 271, Sonderforschungsbereich 611, Universität Bonn (2006)
28. Griebel, M., Metsch, B., Schweitzer, M.A.: Coarse grid classification: AMG on parallel computers. In: Münster, G., Wolf, D., Kremer, M. (eds.) NIC Symposium 2008. NIC Series, vol. 39, pp. 299–306 (2008)
29. Hadjidimos, A.: Accelerated overrelaxation methods. Math. Comput. 32(141), 149–157 (1978)
30. Hamilton, S., Benzi, M., Haber, E.: New multigrid smoothers for the Oseen problem. Numer. Linear Algebra Appl. 17(2–3), 557–576 (2010)
31. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)
32. Lu, C., Jiao, X., Missirlis, N.M.: A hybrid geometric + algebraic multigrid method with semi-iterative smoothers. Numer. Linear Algebra Appl. 21(2), 221–238 (2014)
33. Li, C.J., Li, Z., Evans, D.J., Zhang, T.: A note on an SOR-like method for augmented systems. IMA J. Numer. Anal. 23(4), 581–592 (2003)
34. Louka, M.A., Missirlis, N.M., Tzaferis, F.I.: Is modified PSD equivalent to modified SOR for two-cyclic matrices? Linear Algebra Appl. 432(11), 2798–2815 (2010)
35. Metsch, B.: Algebraic multigrid (AMG) for saddle point systems. Ph.D thesis, Mathematisch Naturwissenschaftlichen Fakultät, Universität Bonn (2013)
36. Missirlis, N.M., Evans, D.J.: On the convergence of some generalised preconditioned iterative methods. SIAM J. Numer. Anal. 18(4), 591–596 (1981)
37. Missirlis, N.M.: Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear systems. Numer. Math. 45, 447–458 (1984)
38. Missirlis, N.M., Evans, D.J.: The modified preconditioned simultaneous displacement (MPSD) method. Math. Comput. Simul. 26(3), 257–262 (1984)
39. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)
40. Oosterlee, C.W., Gaspar, F.J.: Multigrid relaxation methods for systems of saddle point type. Appl. Numer. Math. 58(12), 1933–1950 (2008)
41. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
42. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
43. Schulz, V., Wittum, G.: Transforming smoothers for PDE constraint optimization problems. Comput. Vis. Sci. 11, 207–219 (2008)
44. Simon, R., Zulehner, W.: On Schwarz-type smoothers for saddle point problems with applications to PDE-constrained optimization problems. Numer. Math. 111, 445–468 (2009)
45. Takacs, S., Zulehner, W.: Multigrid methods for elliptic optimal control problems with Neumann boundary conditions. In: Proceedings of ENUMATH 2009 the 8th European Conference on Numerical Mathematics and Advanced Applications, Uppsala, pp. 855–863 (2009)
46. Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14, 131–141 (2011)
47. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, New York (2001)
48. Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, London (2003)
49. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Inc., Englewood Cliffs (1962)
50. Volker, J.: On the efficiency of linearization schemes and coupled multigrid methods in a simulation of a 3D flow around a cylinder. Int. J. Numer. Methods Fluids 50(7), 845–862 (2006)
51. Wang, C.L., Bai, Z.Z.: Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra Appl. 330(1–3), 215–218 (2001)
52. Wang, M., Chen, L.: Multigrid methods for the Stokes equations using distributive Gauss–Seidel relaxation based on the least squares commutator. J. Sci. Comput. 56, 409–431 (2013)
53. Wathen, A.J., Silvester, D.J.: Fast iterative solution of stabilized Stokes systems. Part I: using simple diagonal preconditioners. SIAM J. Numer. Anal. 30(3), 630–649 (1993)
54. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)