A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

Abbas Y. Al-Bayati
Ivan S. Latif

College of Computer Sciences and Mathematics
College of Scientific Education
University of Mosul/Iraq
University of Salahaddin

Received on: 18/12/2006
Accepted on: 16/04/2007

ABSTRACT

In this paper, we study the global convergence properties of the new class of preconditioned conjugate gradient descent algorithm, when applied to convex objective non-linear unconstrained optimization functions. We assume that a new inexact line search rule which is similar to the Armijo line-search rule is used. It's an estimation formula to choose a large step-size at each iteration and use the same formula to find the direction search. A new preconditioned conjugate gradient direction search is used to replace the conjugate gradient descent direction of ZIR-algorithm. Numerical results on twenty five well-know test functions with various dimensions show that the new inexact line-search and the new preconditioned conjugate gradient search directions are efficient for solving unconstrained nonlinear optimization problem in many situations.

Keywords: Preconditioned CG, Unconstrained Optimization, Self-Scaling VM-update, inexact Line-Search.

1. Introduction

Some important global convergence result for various methods using line-search procedures have been given [1], [4] the above mentioned line search methods are monotone descent for unconstrained optimization [10], [11]. Non monotone line-searches have been investigated also by many authors see [6], [9]. The Barzilai-Borwein method [2], [8] is a non monotone descent method which is an efficient algorithm for solving some special problem, Zirilli [12] extend the Armijo line search rule ant analyze the global convergence of the corresponding method.
In this paper, we extend the Armijo line-search rule so that we can design a new inexact line search technique and we choose the search directions of AL-Bayati Self-Scaling [3] variable metric update which based on two parameter family of rank-two updating formulae. Numerical results show that the new algorithm which enables us to choose large step-size at each iteration and reduce the number of functions. The new algorithm is efficient for solving unconstrained optimization problems.

We consider the following unconstrained optimization problem of \(n \) variables,

\[
\text{Min } f(x), \quad x \in \mathbb{R}^n, \quad (1)
\]

where \(f(x) \) is twice continuously differentiable and its gradient \(g \) is exist available. We consider iterations of the form

\[
x_{k+1} = x_k + \alpha_k d_k \quad (2)
\]

where \(d_k \) is a search direction and \(\alpha_k \) is the step-length obtained by means of one-dimensional search. In conjugate gradient method when the function is quadratic and the line search is exact, another broad class of methods may be defined by the following search direction:

\[
d_k = -H_k^{-1}g_k \quad (3)
\]

where \(H_k \) is a non singular symmetric matrix. Important special cases are given by

\[
H_k = I \quad \text{(Steepest descent direction)}
\]

\[
H_k = \nabla^2 f(x_k) \quad \text{(Newton's direction)}
\]

Variable Metric (VM) methods are also of the form (3) and in this case \(H_k \) is not only a function of \(x_k \), but depends also on \(H_{k-1} \) and \(x_{k-1} \).

All these methods are implemented so that \(d_k \), is a descent direction, i.e.

\[
d_k^Tg_k < 0 \quad \text{(4)}
\]

which guarantees that the function can be decreased by taking a small step along \(d_k \) for the Newton type method (3). We can ensure that \(d_k \) is a descent direction by defining \(H_k \) to be positive definite.

For conjugate gradient method, obtaining descent direction is not easy and requires a careful choice properties of line search methods and it can be studied by measuring the goodness of the search direction and by considering the length of the step. The quality of the angle between the steepest descent direction \(-g_k \) and the search direction. We can define:

\[
\cos(g_k, d_k) = -\frac{g_k^T d_k}{\|g_k\|\|d_k\|} \geq \eta_0 \quad \text{(5)}
\]

The length of the step is determined by the line search iteration. A strategy that will play a central role in this paper is to set scalars \(s_k \), \(\beta \), \(L \), \(\sigma > 0 \) with:

\[
s_k = -g_k^T d_k \sqrt{\|L\|d_k^2} \quad \beta \in (0, 1); \quad \sigma \in (0, 1/2).
\]

Let \(\alpha \) be the largest \(\alpha \) in \(\{s_k, \beta s_k, \beta^2 s_k, \ldots\} \) such that

\[
f_k - f(x_k + \alpha d_k) \geq -\sigma \alpha g_k^T d_k \quad \text{(6)}
\]
The inequality ensures that the function is reduced sufficiently, we will call these relations as Armijo condition.

2. Zirlli Inexact Line-Search Algorithm (Zir):

Inexact line-search rule was implemented the following assumptions [7], [11].

\[L(x_0) = \{ x \in \mathbb{R}^n \mid f(x) - f(x_0) \} \]

where \(x_0 \) is given

(H2) The gradient \(g(x) \) of \(f(x) \) is Lipschitz continuous in an open convex set \(B \) that contains \(L_0 \); i.e., there exists \(L \) such that

\[\|g(x) - g(y)\| \leq L\|x - y\|, \quad \forall x, y \in B \]

The modified Armijo line search rule as [1):

Set scalars \(\mu, \beta, \alpha, \sigma \) with \(s_k = -g_k^T L_k, \beta \in (0, 1), L_k > 0, \mu \in [0, 2) \) and \(\sigma \in (0, 1/2) \).

Let \(\alpha_k \) be the largest \(\alpha \) in \(\{s_k, \beta s_k, \beta^2 s_k, \ldots\} \) such that

\[f(x_k + \alpha d_k) - f_k \leq \sigma \alpha \left[g_k^T d_k + \left(\frac{1}{2} \right) \alpha \mu \|d_k\|^2 \right] \]

2.1. Outlines of the Zir Algorithm:

The implementable inexact line search algorithm is stated as follows [12]:

Step1: Given some parameters, \(\sigma \in (0, 1/2), \quad x_0 \in \mathbb{R}^n, \quad \beta \in (0, 1), \quad \mu \in (0, 2), \quad L_0 = 1 \)

let and set \(K = 0, \varepsilon \) is a small parameter.

Step2: If \(\|g_k\| \leq \varepsilon \) then stop. Else go to step3.

Step3: Choose \(d_k \), to satisfy the angle property (5) and set \(d_k = -g_k \).

Step4: Set \(x_{k+1} = x_k + \alpha_k d_k \), where \(\alpha_k \) is defined by the modified Armijo line search rule (8).

Step5: Set \(V_k = x_{k+1} - x_k \); \(Y_k = g_{k+1} - g_k \) and \(L_{k+1} \) is determined by

\[L_{k+1} = \frac{\|Y_k\|}{\|V_k\|} \]

Step6: Set \(k = k + 1 \) and go to step 2.

2.2. Some Properties of the Zir Algorithm:

Theorem 2.2.1: Assume that (H1) and (H2) hold, the search direction \(d_k \) satisfies (4) and \(\alpha_k \) is determined by the modified Armijo line-search rule. Zir Algorithm generates an infinite sequence \(\{x_n\} \) with

\[0 < L_k < m_k L \]

where \(m_k \) is an appositive integer and \(m_k \leq M_0 \leq \infty \) with \(M_0 \) being large positive constant then

\[\sum_{k=1}^{\infty} \left(\frac{g_k^T d_k}{\|d_k\|} \right)^2 < +\infty \]
Corollary 2.2.1: If the condition in theorem 2.2.1 hold then
\[
\lim_{k \to \infty} \left(\frac{g_k^T d_k}{\|d_k\|} \right) = 0
\]
\[\ldots(12)\]

In fact, Assumption (H2) can be replaced by the following weaker assumption.
(H2') the gradient \(g(x) \) of \(f(x) \) is uniformly continuous on an open convex set \(B \) that contains \(L_0 \) see [9].

3. A New Proposed Preconditioned Inexact Line-Search Algorithm (New):

In this section we propose a new algorithm which implements the step-size \(\alpha_k \) with inexact line search rule. This formula is implemented with AL-Bayati self-scaling [3] variable metric update.

3.1. Outlines of the New Algorithm:

The outlines of the new proposed Algorithm are stated as follows:

Step1: Given some parameters \(\sigma \in (0, \frac{1}{2}) \), \(x_0 \in \mathbb{R}^n \), \(\beta \in (0,1) \), \(M=10^9 \), \(H_0 \) is identity positive definite matrix and \(L^* = 0.1 \). Let, \(\varepsilon \) is a small parameter and set \(K = 0 \).

Step2: If \(\|g_k\| \leq \varepsilon \) then stop. Else go to step3.

Step3: Choose \(d_k \) to satisfy the angle property (5) and satisfy the new search direction.

\[
d_k = \begin{cases}
-H_k g_k, & \text{if } k = 1, \\
-H_k g_k + L_k^* d_k, & \text{if } k \geq 1,
\end{cases}
\]
\[\ldots(13)\]

Step4: Set \(x_{k+1} = x_k + \alpha_k d_k \) where \(\alpha_k \) is defined later by a new modified line search rule (19), (20).

Step5: Set \(V_k = x_{k+1} - x_k \), \(Y_k = g_{k+1} - g_k \) and \(L_{k+1} \) is determined by

\[
L_{k+1}^* = \min \left\{ L_k^*, \frac{\|g_k^T H_k Y_k\|}{\|V_k\|^2}, \frac{\|Y_k^T H_k Y_k\|}{\|V_k\|^2} \right\},
\]
\[\ldots(14)\]

Step6: Update \(H_k \) by \(H_{k+1} \), see [3]

\[
H_{k+1} = \left(H_k - \frac{H_k Y_k^T H_k}{Y_k^T H_k Y_k} \right) + \mu_k \frac{V_k}{V_k^T Y_k} V_k^T Y_k
\]
\[\ldots(15)\]

\[
W_k = \left(Y_k^T H_k Y_k \right)^{1/2} \left[\frac{V_k}{V_k^T Y_k} - \frac{H_k Y_k}{Y_k^T H_k Y_k} \right]
\]
\[\ldots(16)\]

\[
\mu_k = \frac{Y_k^T H_k Y_k}{V_k Y_k}
\]
\[\ldots(17)\]

Step7: If available storage is exceeded then employ a restart option either with \(k = n \) or \(g_{k+1} g_k > g_{k+1} g_k \) i.e. orthogonality condition is not satisfy see [7].

Steps: Set \(k = k + 1 \) and go to step2.
3.2. Some Theoretical Properties of the New Algorithm:

We analyze the global convergence of the proposed new inexact line-search algorithm. For the proof of convergence we adopt the assumptions (H1), (H2') on the function f which is commonly used and we suppose that $\{H_k\}$ is a sequence of positive definite matrices. Assume also that there exist parameters $v_{\text{min}} > 0$ and $v_{\text{max}} > 0$ such that $\forall d \in \mathbb{R}^n$

$$v_{\text{min}} d^T d \leq d^T H_k d \leq v_{\text{max}} d^T d \quad \ldots(18)$$

this condition would be satisfied for instance, if $H_k \equiv H$ and H is positive definite as in Al-Bayati VM-update [3]. We analyze the conjugate gradient algorithm that use the following modified line-search formula: Set scalars μ_k, β_k, σ_k with

$$s_k = -g_k^T d_k \left(L_k \left\| d_k \right\|_{H_k}^2 \right) \quad \ldots(19)$$

where, $\beta \in (0, 1)$, $L_\alpha > 0$ is a new parameter, $\mu \in [0, 2)$ and $\sigma = (0, v_{\text{min}} / \mu)$. Note that the specification of σ ensures $\frac{PH}{v_{\text{min}}} < 1$.

Let α_k be the largest α in $\{s_k, \beta s_k, \beta^2 s_k, \ldots\}$ such that

$$f(x_k + \alpha d_k) - f_k \leq \sigma \alpha \left[g_k^T d_k + \frac{1}{2} \alpha \mu L_k \left\| d_k \right\|^2 \right] \quad \ldots(20)$$

where $\left\| d_k \right\|_{H_k} = \sqrt{d_k^T H_k d_k}$

Lemma 3.2.1: Suppose that x_k is given by the new proposed algorithm defined by \{(2), (13), (14) and (19)\} then $g_{k+1}^T d_k = \rho_k g_k^T d_k \quad \ldots(21)$

holds for all k ,where

$$\rho_k = 1 - \frac{\phi_k g_k^T d_k}{L_k \left\| d_k \right\|_{H_k}^2} \quad \ldots(22)$$

and L_α is known as a new scalar defined in (14). Let

$$\phi_k = \begin{cases} 0 & \text{for } \alpha_k = 0 \\ \frac{y_k^T V_k}{\left\| V_k \right\|} & \text{for } \alpha_k \neq 0 \end{cases} \quad \ldots(23)$$

Proof:

The case of $\alpha_k = 0$ implies that $\rho_k = 1$ and $g_{k+1} = g_k$ hence (21) is valid, we now prove for the case of $\alpha_k \neq 0$ from (2) and new modified inexact line search α_k we have

$$g_{k+1}^T d_k = g_k^T d_k + (g_{k+1} - g_k)^T d_k$$

$$= g_k^T d_k + \alpha_k^{-1}(g_{k+1} - g_k)(x_{k+1} - x_k)$$

from (2) we have $d_k = \alpha_k^{-1}(x_{k+1} - x_k)$
\[g^T d_k + \alpha_k^{-1} \phi_k \| x_{k+1} - x_k \|^2 \] from (23)

\[= g^T d_k + \alpha_k^{-1} \phi_k \| d_k \|^2 \]

\[= g^T d_k - \left(\frac{g^T d_k}{L_k \| d_k \|^2} \right) \phi_k \| d_k \|^2 \]

\[= \left(1 - \frac{1}{L_k} \phi_k \right) \| d_k \|^2 g^T d_k \] from (23)

\[= \rho_k g^T d_k \]

The proof is complete.

Theorem 3.2.1: If (H1) and (H2') hold, then the new algorithm generates an infinite number of sequences \(\{ \alpha_k \} \) and satisfy

\[0 < L_k^* < mL < M \]

where \(m \) is a positive integer, \(M \) is a large positive constant then

\[\lim_{k \to \infty} \left(\frac{-g^T d_k}{\| d_k \|^2} \right) = 0 \]

Proof:

Let \(K_1 = \{ k \mid \alpha_k = s_k \} \), \(K_2 = \{ k \mid \alpha_k < s_k \} \)

Case (I):

If \(k \in K_1 \) then

\[f(x_k + \alpha d_k) - f_k = \alpha \sigma \left[g^T d_k + \left(\frac{1}{2} \right) \alpha_k L_k^* \| d_k \|^2 \right], \]

where \(L^* \) is a new parameter defined by (41)

\[= -\sigma \left[g^T d_k / L_k^* \| d_k \|^2 \right] \left[g^T d_k - \left(\frac{1}{2} \right) \phi_k d_k \right] \]

\[= -\left[\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / L_k^* \right] (g^T d_k)^2 / \| d_k \|^2 \]

Thus

\[f(x_k + \alpha d_k) - f_k \leq \left[\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / L_k^* \right] (g^T d_k)^2 / \| d_k \|^2, \quad k \in K_1 \]

\[\ldots(27) \]

Let

\[\eta_k = -\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / L_k^*, \quad k \in K_1 \]

By (24) we have

\[\eta_k = -\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / L_k^* \]
A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

\[-\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / mL \leq -\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / ML \]

\[\eta' \leq -\sigma \left(1 - \left(\frac{1}{2} \right) \mu \right) / ML \]

This and (27) imply that \(\eta_k \leq \eta' \) and

\[f_{k+1} - f_k \leq \eta' \left(g_k^T d_k / \| d_k \|^2 \right)^2, \quad k \in K_1 \]

Thus if \(k \in K_1 \), from (28) we can prove that

\[\lim_{k \to k_k} \left(-g_k^T d_k / \| d_k \| \right) = 0. \]

Case (2):

If \(k \in K_2 \) then \(\alpha_k < s_k \) this show that \(s_k \), can not satisfy the new suggested line search and thus \(\alpha_k < \beta s_k \) we show that \(\alpha = \alpha_k / \beta \) were \(\alpha_k \) be the largest \(\alpha \) in \(\{ s_k, \beta s_k, \beta^2 s_k ... \} \) can not satisfy (14) and thus

\[f(x_k + \alpha_k d_k / \beta) - f_k \leq \sigma \alpha_k / \beta \left[g_k^T d_k + \left(\frac{1}{2} \right) \alpha_k \mu L_k \| d_k \|^2 / \beta \right] \]

using the mean-value theorem on the left hand side of the above inequality, we see that there exists \(\theta_k \in [0,1] \) such that

\[g \left(x_k + \theta_k \alpha_k d_k / \beta \right) > \sigma \alpha_k / \beta \left[g_k^T d_k + \left(\frac{1}{2} \right) \alpha_k \mu L_k \| d_k \|^2 / \beta \right] \]

Therefore

\[g \left(x_k + \theta_k \alpha_k d_k / \beta \right)^T d_k > \rho \left[g_k^T d_k + \left(\frac{1}{2} \right) \alpha_k \mu L_k \| d_k \|^2 / \beta \right] \]

\[\text{in this case of } k \in K_2, \text{ by (19) and (20) we have} \]

\[f(x_k + \alpha d_k) - f_k \leq \sigma \alpha \left[g_k^T d_k + \left(\frac{1}{2} \right) \alpha_k \mu L_k \| d_k \|^2 \right] \]
\[\leq \sigma \alpha \left[g_k^T d_k + \left(\frac{1}{2} \right) s_k L_k \| d_k \|^2 \right] \]

\[\leq \sigma \alpha_k \left[1 + \left(\frac{1}{2} \right) \mu \right] g_k^T d_k \]

By (H1) we have

\[\lim_{k \to \infty} \frac{-g_k^T d_k}{\| d_k \|} = 0 \quad \text{...}(31) \]

If there exist \(\varepsilon > 0 \) and an infinite subset \(K_3 \subseteq K_2 \) such that

\[\frac{-g_k^T d_k}{\| d_k \|} \geq \varepsilon, \quad \forall k \in K_3 \quad \text{...}(32) \]

then by (31), (32) we have

\[\lim_{k \to \infty} \alpha_k \| d_k \| = 0 \quad \text{...}(33) \]

by (30) we have

\[g \left(x_k + \frac{\theta_k \alpha_k d_k}{\beta} \right) \leq g_k^T d_k, \quad k \in K_3 \quad \text{...}(34) \]

where \(\theta_k \in [0,1] \) is defined in the proof. By the Cauchy Schwarz inequality and (34) we have

\[\left\| g \left(x_k + \frac{\theta_k \alpha_k d_k}{\beta} \right) - g_k \right\| \geq g_k^T \frac{\| d_k \|^2}{\| d_k \|^2} \]

\[\geq \frac{\left[g \left(x_k + \frac{\theta_k \alpha_k d_k}{\beta} \right) - g_k \right]^T d_k}{\| d_k \|^2} \]

\[\geq \frac{-(1 - \rho) g_k^T d_k}{\| d_k \|^2}, \quad k \in K_3 \]

by (H2') and (31) we obtain

\[\lim_{k \to \infty} \frac{-g_k^T d_k}{\| d_k \|} = 0 \]

which contradicts (32) this show that

\[\lim_{k \to \infty} \frac{-g_k^T d_k}{\| d_k \|} = 0 \quad \text{...}(35) \]

by (29), (35) and noting that \(K_1 \cup K_2 = \{1,2,...\} \) we show that (25) holds. #

Lemma 3.2.2. Suppose that (H1), (H2') holds and \(x_k \) is given by the new proposed algorithm defined by \{ (2), (13), (14) and (19) \} then
\[\sum_{d_k
eq 0} -g_k^T \frac{d_k}{\|d_k\|} < \infty \] (36)

Proof:

By the mean value theorem we have

\[f(x_{k+1}) - f(x_k) = g^T (x_{k+1} - x_k) \]

from (19) we have

\[f(x_{k+1}) - f(x_k) \leq -\sigma \left[1 - \left(\frac{1}{2} \right) \mu L_k \right] \left\| g_k^T d_k \right\|^2 \|d_k\|^2 \] (37)

which implies that \(f(x_{k+1}) \leq f(x_k) \). It follows by assumption (H1), (H2') that \(\lim_{k \to \infty} f(x_k) \) exists thus from (18) and (37) we have

\[\left(\frac{g_k^T d_k}{\|d_k\|^2} \right) \leq \left(\frac{g_k^T d_k}{\|d_k\|^2} \right) \leq \frac{v_{\max}}{\sigma} \left[1 - \left(\frac{1}{2} \right) \mu L_k \right] \]

this finishes our proof. #

4. Numerical results:

In this section, we compare the numerical behavior of the new algorithm with the Zir algorithm for different dimensions of test functions. Comparative test were performed with (25) (specified in the Appendices 1 and 2) well-Known test function see [5]. All the results are obtained with newly-programmed FORTRAN routines which employ double precautions. We solve each of these test function by the:

1. Zirlli algorithm (Zir).
2. The new algorithm (New).

and for each algorithm we used the following stopping criterion \(\| g_{k+1} \| < 1 \times 10^{-5} \).

All the numerical results are summarized in Table (1), Table (2) and Table (3). They present the numbers of iterations (NOI) versus the numbers of function evaluations (NOF) that are need to obtain the condition \(\| g_{k+1} \| < 1 \times 10^{-5} \) while Table (3) gives the percentage performance of the new algorithm based on both NOI and NOF against the original Zit algorithm.

The important thing is that the new algorithm solves each particular problem measured by NOI and NOF respectively, while the other algorithm may fail in some cases. Moreover, the new proposed algorithm always performs more stably and efficiently.

Namely there are about (50-52)% on NOI for all dimensions also there are (63-78)% improvements on NOF for all test functions.
Table (1). Comparison between the New and Zri algorithms using different values of $12 < N < 5000$ for 1^{st} test functions

N. OF Test	TEST FUNCTION	Zir NOF(NOI)	New NOF(NOI)																						
	N= 12	N= 36	N= 160	N= 1000	N= 4320	N= 5000	N= 12	N= 36	N= 160	N= 1000	N= 4320	N= 5000													
1	EX-beal	804	644	855	684	956	764	1004	802	1073	855	1086	872	137	115	142	128	153	141	158	146	165	159	168	152
2	GEN-edger	53	52	55	24	59	29	61	27	63	28	65	29	24	21	25	23	27	25	28	26	31	28	31	29
3	Full Hessian	85	19	116	22	183	25	265	32	154	16	154	16	25	21	30	27	38	25	42	35	47	39	44	45
4	GEN-Q3	164	162	164	162	160	157	159	156	159	156	159	156	160	137	137	160	137	160	137	160	137	160	137	
5	Digonal	91	17	97	18	103	19	109	20	115	21	118	22	22	15	22	23	23	23	23	16	16	16		
6	GEN-quadratic	243	169	241	225	241	225	243	225	241	225	243	225	243	194	104	107	118	124	126	122	123	124		
7	Digonal	20	17	21	19	24	22	25	23	26	24	26	24	15	16	18	19	20	18	20					
8	GEN-Wolf	207	166	277	254	301	289	364	324	382	354	394	352	274	250	286	313	336	361	313	361				
9	GEN-Shallow	763	422	817	449	931	506	985	533	952	554	998	556	155	153	160	158	177	175	177					
10	Quadratic	106	30	531	94	3043	373	3149	433	3289	482	3328	506	19	15	35	32	233	224	291	224	243	298	247	
	General TOTAL of 7 functions	2336	1668	3174	1961	6001	2416	6353	2185	6485	2699	6569	2748	935	823	993	1185	1271	1360	1224	1295	1442	1303		

Table (2). Comparison between the New and Zir algorithms using different values of $12 < N < 5000$ for 2^{nd} test functions

N. OF Test	TEST FUNCTION	Zir NOF(NOI)	New NOF(NOI)																
	N= 12	N= 36	N= 360	N= 1080	N= 4320	N= 5000	N= 12	N= 36	N= 360	N= 1080	N= 4320	N= 5000							
1	GEN-Hedical	F	F	F	F	F	F	70	53	71	57	73	59	74	60	76	62	76	62
2	Fred	F	F	F	F	F	F	139	125	142	136	147	144	149	153	150	153		
3	tariwhid	F	F	F	F	F	F	107	95	694	424	240	227	214	214	200	200		
4	starcase	F	F	F	F	F	F	22	17	52	44	462	1279	1392					
5	TDP	F	F	F	F	F	F	144	130	211	183	1179	1087	2467	2163	2616	2282	2616	
6	Biggsb	F	F	F	F	F	F	16	10	32	23	232	214	668	656	702	654		
7	Miele	F	F	F	F	F	F	184	146	194	160	269	187	268	195	268			
8	GEN-Powell	F	F	F	F	F	F	196	177	199	191	204	201	206	203	208	204		
9	EX-Fredenr & Roth	F	F	F	F	F	F	196	177	199	191	204	201	206	203	208	204		
10	TRI	F	F	F	F	F	F	74	61	260	230	1311	1001	1770	1196	1820	1204		
11	Almost Peturbed quadric	F	F	F	F	F	F	20	16	38	32	247	201	470	354	482	402	404	
12	QDP	F	F	F	F	F	F	23	13	43	25	112	57	171	88	192	91	198	
13	Gen-Center	F	F	F	F	F	F	91	75	92	78	78	79	96	79	96	79		
14	sinquadrtic	F	F	F	F	F	F	146	75	224	124	385	206	190	161	190	161		
15	OSP	F	F	F	F	F	F	433	483	2674	1918	2720	1964	3842	1981	2689	2018	2596	2068
Table (3). Percentage performance of the New algorithm against Zri algorithm for 100% in both NOI and NOF

N	Costs	NEW
12	NOF	63.13
	NOI	50.06
36	NOF	68.72
	NOI	52.93
360	NOF	78.82
	NOI	50.95
1080	NOF	78.59
	NOI	52.26
4320	NOF	78.12
	NOI	52.02
5000	NOF	78.05
	NOI	52.44

5. Conclusions:

In this paper, a new PCG-algorithm with a self-scaling VM-update and a new search direction formula is proposed. A modified formula of an inexact line search is implemented to solve a large-scale unconstrained optimization test functions. Our numerical results supports our claim and also indicate that the new algorithm sufficiently decrease the function values and iterations and it needs an extra line search conditions satisfied near the stationary point of the proposed line search procedure.

Appendix 1:

All the test functions used in Table (1) for this paper arc from general literature. See [5]:

1. Generalized Beale Function:
 \[f(x) = \sum_{j=1}^{n/2} \left(1.5 - x_{2j} + (1 - x_{2j}^2) \right)^2 + \left(2.25 - x_{2j-1} (1 - x_{2j}^2) \right)^2 + \left(2.625 - x_{2j-1} (1 - x_{2j}^2) \right)^2, \]
 \[x_0 = [-1,-1,...,-1]. \]

2. Generalized Edger Function:
 \[f(x) = \sum_{j=1}^{n/2} (x_{2j-1} - 2)^4 + (x_{2j-1} - 2)^2 x_{2j} + (x_{2j} + 1)^2, \]
 \[x_0 = [1,0,...,1]. \]

3. Full Hessian Function:
 \[f(x) = \left(\sum_{i=1}^{n} x_i \right)^2 + \sum_{i=1}^{n} \left(x_i \exp(x_i) - 2x_i - x_i^2 \right), \]
 \[x_0 = [1,1,...,1]. \]

4. Generalized quadratic Function GQ2:
\[f(x) = (x_1^2 - 1)^2 + \sum_{i=2}^{n}(x_i^2 - x_{i-1} - 2)^2, \]

\[x_0 = [1,1,...,1]. \]

5. Diagonal 4 Function:
\[f(x) = \sum_{i=1}^{\sqrt{2}} \left(x_{2i-1}^2 + cx_{2i}^2 \right), \]

\[x_0 = [1,1,...,1], \quad c = 100. \]

6. Generalized quadratic Function GQ1
\[f(x) = \sum_{i=1}^{n-1} x_i^2 + (x_{i+1} + x_i^2)^2, \]

\[x_0 = [1,1,...,1]. \]

7. Diagonal 6 Function:
\[f(x) = \sum_{i=1}^{n} (\exp(x_i) - (1 + x_i)), \]

\[x_0 = [1,1,...,1,1]. \]

8. Generalized Wolfe Function:
\[f(x) = (-x_1(3-x_1/2)+2x_2-1)^2 + \sum_{i=1}^{n-1} (x_{i+1}^2 - x_i(3-x_i/2 + 2x_{i+1}-1))^2 + (x_{n-1} - x_n(3-x_n/2 -1))^2, \]

\[x_0 = [-1,...,-1]. \]

9. Generalized Shallow function:
\[f(x) = \sum_{i=1}^{\sqrt{3}} (x_{2i-1}^2 - x_{2i})^2 + (1 - x_{2i-1})^2, \]

\[x_0 = [-2,-2,...,-2]. \]

10. Quadratic Function QF2:
\[f(x) = \frac{1}{2} \sum_{i=1}^{n} l(x_i^2 - 1)^2 - x_n, \]

\[x_0 = [0.5,0.5,...,0.5]. \]

Appendix 2:

All the test Functions used in Table (2) for this paper are from general literature. See [5]:

1. General Helical Function:
\[f(x) = \sum_{i=1}^{\sqrt{3}} \left(100x_{3i} - 10^9 H_i \right)^2 + 100(R_i - 1)^2 + x_{3i}^2, \]
A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

where \(R_i = \sqrt{x_{3i-2}^2 + x_{3i-1}^2} \), \(H_i = 0.5 + (2\pi)^{-1} \tan^{-1} \frac{x_{3i-1}}{x_{3i-2}} \) if \(x_{3i-2} > 0 \)

\(x_0 = [-1.0,0,...,-1.0] \).

2. Extended Fred Function:

\[
f(x) = \sum_{i=1}^{n/2} (-13 + x_{2i-1} + (5 - x_{2i}))(x_{2i} - 2)(x_{2i})^2 + \sum_{j=1}^{n/2} (-29 + x_{2j-1} + (1 - x_{2j}))(x_{2j} - 14)(x_{2j})^2,
\]

\(x_0 = [1.2,3,...,n] \).

3. Liarwhd Function (cut):

\[
f(x) = \sum_{i=1}^{n} 4(-x_i + x_i^2)^2 + \sum_{i=1}^{n} (x_i - 1)^2,
\]

\(x_0 = [4,4,...,4] \).

4. Staircase2 Function:

\[
f(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{l} x_i - i \right)^2,
\]

\(x_0 = [0,0,...,0] \).

5. Tridiagonal Perturbed Quadratic Function:

\[
f(x) = x_i^2 + \sum_{i=2}^{N-1} i x_i^2 + (x_{i-1} + x_i + x_{i+1})^2,
\]

\(x_0 = [0.5,0.5,...,0.5] \).

6. Biggsbl Function (CUTE):

\[
f(x) = (x_i - 1)^2 + \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2 + (1 - x_n)^2,
\]

\(x_0 = [1,1,...,1] \).

7. Mill and Cornwell function:

\[
f(x) = \sum_{i=1}^{n/4} [\exp(x_{4i-3} + 10x_{4i-2})^2 + 5(x_{4i-1} - x_{4i})^2(x_{4i-2} - 2x_{4i-1})^4 + 10(x_{4i-3} - x_{4i})^4],
\]

\(x_0 = [1,2,2,2,...,1,2,2,...] \).

8. Generalized Powell function:

\[
f(x) = \sum_{i=1}^{n/3} \left\{ 3 - \left[\frac{1}{1+(x_i-x_{2i})^2} \right] - \sin\left(\frac{x_{3i}+x_{4i}}{2} \right) - \exp\left[-\left(\frac{x_{3i}+x_{4i}}{2} - 2 \right)^2 \right] \right\},
\]

\(x_0 = [0,1,2,...,0,1,2] \).

9. Extended Freudenstein & Roth Function:
10. Extended Tridigonal-1 Function:
\[f(x) = \sum_{i=1}^{\frac{n}{2}} (-13 + x_{2i-1} + ((5 - x_{2i})x_{2i} - 2)x_{2i})^2 + (-29 + x_{2i-1} + ((x_{2i} + 1)x_{2i} - 14)x_{2i})^2, \]
\[x_0 = [0.5,-2,0.5,-2,...,0.5,-2]. \]

11. Almost Perturbed Quadratic Function:
\[f(x) = \sum_{i=1}^{n} x_i^2 + \frac{1}{100} (x_i + x_{i+1})^2, \]
\[x_0 = [0.5,0.5,...,0.5]. \]

12. Quadratic Diagonal Perturbed Function:
\[f(x) = \left(\sum_{i=1}^{n} x_i \right)^2 + \sum_{i=1}^{n} \frac{1}{100} x_i^2, \]
\[x_0 = [0.5,0.5,...,0.5]. \]

13. Generalized Cant real Function:
\[f(x) = \sum_{i=1}^{\frac{n}{4}} \left[\exp(x_{4i} - 3) - x_{4i-2} \right]^4 + 100(x_{4i-2} - x_{4i-1})^6 + (\arctan(x_{4i-1} - x_{4i}))^4 + x_{4i-3}, \]
\[x_0 = [1,2,2,2,...,1,2,2,2]. \]

14. Sinquad Function (CUTE):
\[f(x) = (x_i - 1)^4 + \sum_{i=1}^{n/2} \left\{ \sin(x_i - x_{i+1}) - x_i^2 + x_{i+1}^2 \right\}^2 + (x_n^2 - x_1^2)^2, \]
\[x_0 = [0.1,0.1,...,0.1]. \]

15. Generalized OSP (Oren and Spedicato) Function:
\[f(x) = \left(\sum_{i=1}^{n} x_i^2 \right)^2, \]
\[x_0 = [1,...,1]. \]
A New Preconditioned Inexact Line-Search Technique for Unconstrained Optimization

REFERENCES

[1] L. Armijo, "Minimization of function having Lipschitz continuous first partial derivatives", pacific. J. Math., Vol.(16), pp. 1-13, (1966).

[2] Barzilai and J. M. Borwein, "Tow-point size gradient methods", IMA J. Numer. Anal., Vol.(8), PP. 141-148, (1988).

[3] A.Y. Al-Bayati, "A new family of self-scaling VM-algorithms", Journal of Education and Science, Mosul University, Mosul, Iraq (1991).

[4] A.I. Cohen, "Stepsize analysis for descent Methods", J. Optim. theo. & Appli., Vol. (33), PP. 187-205, (1981).

[5] J. Nocedal, "Unconstrained Optimization Test Function Research Institute for Informatics", Center for advanced Modeling and Optimization, Bucharestl, Romania. April 28, (2005).

[6] J. Nocedal, "Theory of Algorithms for Unconstrained Optimization", Acta. Numer., Vol. (1), pp. 199-242, (1992).

[7] J. Nocedal and J. S. Wright, "Numerical Optimization", Spring-Verlag, New York, (1999).

[8] M. Raydan, "On the Barazilai Borwein Gradient Choice of Steplength for the Gradient Method", IAM J. Numer. Anal., Vol.(13), pp.321-326, (1993).

[9] W.Y. Sun; J.Y. Han and J. Sun, "Global Convergence of Nonmonotone Descent Methods for Unconstrained Optimization Problems", J. Copmut. &c Appli. Math., Vol.(14), pp. 89-98, (2002).

[10] M.N. Vrahatis; G.S. Androulakis, and G.E. Manoussakis, "A New Unconstrained Optimization Method for Imprecise Function and Gradient Values", J Math. Anal tic Appl., Vol.(197), PP. 586-607, (1996).

[11] Y. Yuan, "Numerical Methods for Nonlinear Programming", Shanghai Scientific Technical Publishers, (1993).

[12] F. Zirilli, "New Inexact Line Search Method for Unconstrained Optimization", J. Optim. Theo. & Appl., Vol. (127), PP. 425-446, (2005).