Obesity and kidney transplantation

Jae-Hyung Chang, Vladimir Mushailov and Sumit Mohan

Purpose of review
Obesity has reached epidemic proportions in the United States. It is a risk factor for developing, among others, heart disease, stroke, type 2 diabetes, and chronic kidney disease (CKD), and thus a major public health concern and driver of healthcare costs. Although the prevalence of obesity in the CKD/end-stage kidney disease population is increasing, many obese patients are excluded from the benefit of kidney transplant based on their BMI alone. For this reason, we sought to review the experience thus far with kidney transplantation in obese patients and associated outcomes.

Recent findings
Obesity is associated with a lower rate of referral and waitlisting, and lower likelihood of kidney transplantation. Despite increased risk for early surgical complications and delayed graft function, experience from multiple centers demonstrate a clear survival benefit of transplantation over dialysis in most obese patients, and comparable graft and patient survival rates to nonobese recipients.

Summary
Data suggest that long-term transplant outcomes among obese recipients are similar to those among nonobese. Strategies to achieve pretransplant weight reduction and minimally invasive surgical techniques may further improve results of kidney transplantation in obese recipients.

Keywords
kidney transplantation, obesity, outcome, weight loss

INTRODUCTION
Obesity defined as a BMI of at least 30 kg/m² is increasingly common in the United States. In 2015–2016, approximately 39.8% of the United States adult population was obese [1]. It is a major public health concern that is associated with heart disease, stroke, type 2 diabetes, and certain cancers as well as chronic kidney disease (CKD). As a result, the prevalence of obesity among the CKD/end-stage kidney disease (ESKD) population is also increasing [2]. A United Network for Organ Sharing (UNOS) data analysis of 1,084,816 waitlisted adults showed that mean BMI of incident dialysis population in the United States increased from 28.1 kg/m² in 2007 to 29.2 kg/m² in 2016 whereas the adjusted prevalence of class 1 obesity (BMI of 30–34.9 kg/m²) or higher increased from 31.9 to 38.2% [3*]. The rapid increase in the prevalence of obesity among waitlisted patients has occurred despite the fact that many transplant centers continue to use BMI as a single criterion to exclude obese patients with advanced kidney disease from the benefit of kidney transplant because of concerns about higher perioperative and postoperative complications despite evidences that obese individuals with ESKD also experience a significant survival advantage with a kidney transplantation [4**,5]. Currently, in the United States, there is no single universally accepted BMI cutoff across transplant programs allowing centers to determine their own thresholds thus adversely impacting access to transplantation in a manner that is often opaque to patients. Herein, we review the experience thus far with transplantation in obese patients as well as associated outcomes (Table 1).

SURVIVAL BENEFIT OF KIDNEY TRANSPLANTATION
Transplantation is considered the best treatment for ESKD in the general setting given the dramatic
improvement in long-term survival and quality of life compared with dialysis. Using data from the United States Renal Data System (USRDS) between 1995 and 2007, Gill et al. [6] demonstrated a clear survival benefit of transplantation over remaining waitlisted in obese patients. The survival benefit varied by BMI and donor type: while the reduction in the risk of death was at least 66% in all BMI groups for living donor transplantation, even in the heaviest patients with a BMI of at least 40 kg/m², they noted a 48% reduction in mortality with the use of a standard criteria deceased donor kidney – and 46% with the use of the erstwhile expanded criteria donor kidneys underscoring the clear benefit of transplantation in these individuals [6]. Concerningly, this analysis failed to demonstrate a survival benefit for black patients with BMI at least 40 kg/m² but the reasons for this remain unclear and may be the result of residual confounding rather than a true absence of a survival benefit. In another retrospective analysis from the United Kingdom, a survival benefit of transplant over remaining on the waiting list was observed in patients with all BMI categories (from <18.5 to ≥40 kg/m²), even when living donor transplants were excluded [7]. In Cox proportional hazards adjusted analyses, there was no significant effect of recipient gender or ethnicity on patient survival [7]. In contrast, a recent French time-dependent propensity score-matching study reported no significant life expectancy gain for patients with BMI at least 35 kg/m² who were transplanted versus those who remained on dialysis [8]. However, this conclusion was based on a small sample size (n = 212 per group). Also, possible confounders, such as ethnicity and socioeconomic status may have been missed as these were not collected in this registry study [8]. Together, these results support the notion that most obese patients also experience a survival benefit from transplantation and while there is a paucity of quality-of-life data in this population, presumably elimination of dialysis provides a significant improvement in quality of life for all individuals.

ACCESS TO KIDNEY TRANSPLANTATION

Despite the obvious benefits, obese patients experience a lower rate of referral and waitlisting, longer waiting time, and a lower likelihood of transplantation when compared with the nonobese [3,9]. In the United States, between 2012 and 2014, nearly 40 000 dialysis patients had obesity reported as the sole contraindication to waitlisting [10]. In a recent analysis of over a million incident dialysis patients between 2007 and 2016 in the United States, class 2 obesity [subhazard ratio (SHR) 0.92; 95% CI 0.90–0.95] and class 3 obesity (SHR 0.41; 95% CI 0.40–0.43) were associated with dramatically lower access to the waitlist [3,9]. Given differences in the prevalence of obesity across racial groups in the United States, these BMI thresholds likely exacerbate existing racial disparities in access to transplantation. Similar barriers to transplantation exist in other countries as well. For example, in a national survey sent to all transplant centers in Germany (n = 39), 96% considered obesity an important issue, and 69% reported an absolute BMI threshold for waitlisting, with at least 35 kg/m² as the most commonly applied threshold [11].

Once listed, obese candidates continue to have decreased access to transplantation. In an analysis of a prospective cohort of 132 353 adults who were listed for deceased donor kidney transplantation in the United States between 1995 and 2006, the likelihood of receiving a transplant decreased with increasing BMI (adjusted hazard ratio 0.93, 0.72, and 0.56 for class 1, class 2, and class 3 obesity, respectively, when compared with a reference group of patients with a normal BMI) [9]. At the same time, the likelihood of being bypassed when an organ became available increased with BMI (adjusted incidence rate ratios 1.05, 1.11, and 1.22 for class 1, class 2, and class 3 obesity, respectively, when compared with nonobese candidates). Another UNOS data analysis on 702 456 adult incident ESKD patients showed that a higher BMI is associated with a lower

KEY POINTS

- Although the prevalence of obesity among general population and patients with kidney disease continues to rise, obese CKD and ESKD patients have decreased access to transplantation including lower rate for referral and waitlisting, longer waiting time, and a lower likelihood of transplantation when compared with the nonobese candidate.

- There is currently no universal consensus for exclusion of obese patients from receiving kidney transplants. Many transplant centers establish their own threshold for BMI to use it as a contraindication to transplantation.

- Although obesity represents a risk factor for DGF and surgical complications, kidney transplantation still provides survival benefit over dialysis in most obese patients, with comparable graft and patient survival rates to nonobese recipients.

- Modern minimally invasive surgical techniques including RAKT allow an improved surgical complication rate with comparable graft and patient survival outcome in obese patients when compared with open kidney transplants; RAKT may represent a promising alternative for obese candidates.
BMI at least 40 kg/m² and at least 35 kg/m² was 95% CI 0.72–0.77). In contrast, among men, only a
0.77), and from a living donor (hazard ratio 0.75; 95% CI 0.72–
0.75; 95% CI 0.73–0.77), from a
dead donor (hazard ratio 0.74; 95% CI 0.72–
educated donor, respectively [12]. Further studies
are needed to understand the factors contributing
to the differential association of BMI with access to
transplantation in men and women.

SURGICAL COMPLICATIONS
Performing transplant procedure on obese patients
can be technically more difficult and may result in
longer total procedure time and longer warm ischémia time [13]. Complications in the perioperative
period are a significant concern in obese recipients,
especially concerns for increased risk of surgical site
infections (SSI), wound dehiscence, need for re-
exploration, development of lymphoceles and vas-
cular complications such as venous or arterial thrombosis [14]. Several studies have identified an
increased risk for surgical complications associated

Study	Study year	Country	Design	Patients (n)	BMI (kg/m²)	Outcomes in obese recipients
Tsapepas et al., 2022	2004-2020	US	Retrospective	2806	≥35	Higher DGF rate; higher incidence of surgical site infection; no difference in graft survival.
Zhang et al., 2022	2016-2019	China	Retrospective	831	>24	Higher incidence of abnormal graft function in early posttransplantation period.
Yemini et al., 2022	2005-2019	Israel	Retrospective	1403	≥30	Higher DGF rate; worse 1-year, 5-year, and 10-year graft and patient survival.
Buemi et al., 2022	2010-2018	Belgium	Retrospective	306	≥30	Higher DGF rate; higher incidence of surgical site infection and surgical complications; worse patient survival; no difference in graft survival.
Castelli et al., 2022	2005-2018	France	Time-dependent propensity score matching study	27 037	30–35	Increased 10-year life expectancy in kidney transplantation group versus awaiting-kidney transplantation group.
Dobrzycka et al., 2022	2014-2017	Poland	Retrospective	433	≥30	Higher DGF rate; higher incidence of early surgical complications; worse 1-year death-censored graft survival.
Scheuermann et al., 2022	1993-2017	Germany	Retrospective	578	≥30	Higher DGF rate; higher incidence of surgical site infection and surgical complications; worse death-censored graft survival.
Axelrod et al., 2022	2005-2016	US	Retrospective	193 984	≥30	Higher incidence of posttransplant DM.
Yin et al., 2021	1991-2019	Multinational	Meta-analysis	326 550	BMI with the lowest risk of graft loss: 25.2 kg/m². BMI with the lowest risk of patient death: 24.7 kg/m².	
Fouche et al., 2021	2005-2016	France	Retrospective	4691	≥30	Higher incidence of serious bacterial infections and cardiac complications; worse patient survival.
Sureshkumar et al., 2021	2001-2016	US	Retrospective	44 560	>35	Higher DGF rate; worse death-censored graft survival in recipients with BMI ≥30.
Jarv et al., 2021	After 2000	Estonia	Retrospective	706	≥25	Worse 5-year graft survival; worse 5-year and 10-year patient survival.
Bellini et al., 2017	2014-2016	UK	Prospective	370	30	No difference in DGF rate and graft survival.
Lafranca et al., 2015	2014	Multinational	Meta-analysis	209 000	≥30	Higher DGF rate; higher incidence of surgical site infection and surgical complications; higher incidence of posttransplantation DM; higher incidence of acute rejection; worse graft and patient survival.
Nicoletto et al., 2014	1990-2013	US	Meta-analysis	9296		Higher DGF rate; no difference in graft and patient survival for patients who received kidney transplant after year 2000.
Gill et al., 2013	1995-2007	US	Retrospective	208 498	≥40 and <40	Survival benefit in kidney transplantation group versus nonkidney transplantation group; no survival benefit in Black patients with BMI ≥40.

Table 1. Summary of published reports of kidney transplant outcomes in obese recipients

DGF, delayed graft function; **DM**, diabetes mellitus.
with obesity [13,14*,15–18]. However, experiencing these complications was not associated with adverse long-term graft survival [15,16]. Despite the increase in perioperative complications, observational analyses have suggested no clinically meaningful differences in the length of stay during the transplant admission [19*,20].

Minimally invasive surgical techniques allow minimized trauma related to surgical access, reduced wound complications, and earlier onset of patient mobilization [21,22]. Robotic surgery allows minimally invasive approach while maintaining higher resolution visual system, and the ability to maneuver within a three-dimensional orientation. The global experience to date with robotic-assisted kidney transplantation (RAKT) is promising and shows a lower incidence of SSI and comparable graft and patient survival outcome in obese patients when compared with open kidney transplants [23*,24].

DELAYED GRAFT FUNCTION

Obesity is associated with increased risk for delayed graft function (DGF), defined as the need for dialysis within 7 days after transplantation but the underlying cause for this remains unclear [13,14*,15–18,19*,25–29]. Although obesity is associated with a proinflammatory environment with elevated levels of cytokines and chemokines, technical challenges encountered in performing the transplantation may lead to a longer warm ischemic time and other anatomical challenges. Together, these can lead to an increased risk of DGF. A retrospective analysis reported that DGF rates were 51% higher for patients with BMI greater than 36 kg/m² when compared with recipients with BMI 24–26 kg/m² [30]. Another UNOS database analysis showed the highest risk of DGF among the heaviest patients (BMI >35 kg/m²) and a graded association of lower DGF risk with decreasing BMI, with adjusted odds ratio for DGF of 0.73 (95% CI 0.64–0.83), 0.55 (95% CI 0.48–0.62) and 0.42 (95% CI 0.36–0.48) for patients with BMI greater than 30–35, greater than 25–30, and 18–25 kg/m², respectively (P < 0.001 for all) [19*]. Prospective studies are needed to evaluate impacts of minimally invasive surgical techniques and different types of induction immunosuppression therapies on DGF risk in obese recipients.

ACUTE REJECTION

The association between obesity and acute rejection is controversial. Although some groups have suggested an association with an increased risk of acute rejection [17,26], others have not [18,25,27]. A retrospective single-center study reported that while the main reason for graft failure were acute and chronic rejection for all three BMI groups (18.5–24.9, 25–29.9, and ≥30 kg/m²), no statistical difference could be observed between the three groups with regard to graft loss secondary to rejection [18]. Higher rate of DGF with initiation of immune response toward the graft, a ‘state of chronic low-grade inflammation’, and a more difficult maintenance of an appropriate level of immunosuppression in obese patients could be reasons for the enhanced rate of acute rejection. Observed discrepancies in rejection rates in different cohorts may be in part related to differences in how centers approach dosing for immunosuppressive agents, in particular dosing of induction agents such as thymoglobulin. Although some centers use ideal body weight given the expected volume of distribution, other centers continue to use actual body weight for dosing.

MEDICAL COMPLICATIONS

Obesity leads to physiologic changes in the kidney, including renal hyperfiltration and increased tubular reabsorption of sodium, leading to the development of glomerular hypertension and podocyte hypertrophy. This is not any different after transplantation, especially given that patients receive in most instances only a single allograft thus exaggerating the potential impact of obesity leading to possible allograft injury [31]. A UNOS data analysis showed higher incidence of posttransplant diabetes mellitus (PTDM) in obese (BMI ≥30 kg/m²) recipients, regardless of the immunosuppression regimen [32]. Inflammation and altered immune response may contribute to the insulin resistance. Another meta-analysis reported that every five-unit increment of BMI was associated with a 43% higher risk of PTDM. In a French study, a BMI at least 30 kg/m² was associated with a 1.2-fold increase in the risk of PTDM within 2 years after transplantation compared with nonobese patients. After the 2 years, the hazard ratio increased to 4.24 (95% CI 2.46–7.29, P < 0.0001) [27]. Another single-center study in 1102 kidney transplant recipients showed that each five-unit increment increase in BMI was associated with a 19% increase in relative risk of composite cardiac events including myocardial infarction, congestive heart failure, and atrial fibrillation [33]. Together, these findings underline the importance of close follow-up care with intensive control of diabetes and hypertension in obese recipients.

GRAFT AND PATIENT SURVIVAL

Conflicting data have been published about the association of BMI with posttransplant outcomes
in obese recipients. The higher prevalence of comorbidities such as cardiovascular disease, dyslipidemia, diabetes, and hypertension in obese individuals may negatively affect long-term allograft survival. Although some studies reported a negative impact of obesity on graft and patient survival [13,17,26–28], others found no association [15,20,34,35]. A meta-analysis that compared outcomes of obese and nonobese patients who underwent kidney transplantation suggested that obesity was associated with increased risks for graft loss and death only in the analysis of studies that evaluated patients who received a transplant before year 2000 [25]. No such association was found in the analysis of studies that evaluated patients who received a graft after year 2000. It is conceivable that this is because of improvement in general posttransplant care including advances in immunosuppressive therapy. A recent single-center study reported that recipients with a BMI greater than 30 kg/m² had higher risk of both graft and patient loss at 1, 5, and 10 years after transplantation compared with control group (BMI ≤30 kg/m²) [28]. This is in contrast to the retrospective study by Jarv that reported that obesity (BMI ≥25 kg/m²) was associated with worse short-term (5-year) graft (BMI <25 versus ≥25 kg/m², 67 versus 61%, P < 0.05) and patient survival (BMI <25 versus ≥25 kg/m², 80 versus 70%, P < 0.05), but no statistically significant difference in long-term (10-year) graft survival, and only minimal difference in long-term patient survival [36]. A U-shaped relationship between BMI and both graft loss and patient death was suggested by a meta-analysis of 50 observational studies which showed that, referring to a BMI of 22 kg/m², the risk of graft loss was 1.088, 0.981, 1.003, and 1.685 for a BMI of 18, 24, 28, and 40 kg/m², respectively [17]. Similarly, referring to a BMI of 22 kg/m², the death risk was 1.115, 0.981, 1.032, and 2.634 for a BMI of 18, 24, 28, and 40 kg/m², respectively. Using UNOS database, Sureshkumar et al. [19*] found that death-censored graft failure at a median follow-up of 3.9 years, when compared with recipients with a BMI greater than 35 kg/m² as a reference, was less frequent for BMI 25 or less and greater than 25–30 kg/m² [hazard ratio 0.66 (95% CI 0.59–0.74) and 0.79 (95% CI 0.70–0.88)] whereas there was no significant difference for patients with a BMI greater than 30–35 kg/m². Patient survival did not differ by recipient BMI. Together, these data implicate that patients with obesity and kidney disease have acceptable transplant outcomes if they are otherwise suitable candidates.

WEIGHT LOSS BEFORE TRANSPLANT

Although obesity is clearly a barrier to access to kidney transplantation, higher BMI might confer survival benefits to ESKD patients treated with dialysis [37]. In dialysis patients, weight loss may signal protein-wasting malnutrition and progressive sarcopenia, which are associated with increased mortality. Although some literature suggests pretransplant weight reduction to the BMI less than 30 kg/m² might allow a better short-term course of transplantation as well as long-term graft survival [13], there are no prospective studies to date to demonstrate clear benefit of weight loss before kidney transplantation on posttransplant outcomes [38,39]. In a prospective cohort study, unintentional, but not intentional, weight loss prior to transplant was associated with higher graft loss and mortality [39].

Bariatric surgery is the most effective treatment to achieve long-term weight loss. The most commonly performed procedures are laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass (RYGB). In a single-center retrospective study of 13 patients with BMI at least 35 kg/m² who underwent bariatric surgery as preparation for kidney transplantation, the authors reported that gastric bypass procedures (RYGB, n = 6; laparoscopic RYGB, n = 1; omega loop GB, n = 3; laparoscopic omega loop GB, n = 3) did not increase complications after transplantation or negatively affect graft and patient survival [14*]. In this study, DM underwent remission in 67% of cases after bariatric surgery, and PTDM was not observed. As RYGB is a restrictive/malabsorptive procedure, it may affect intestinal drug absorption, which can lead to significant changes of pharmacokinetics of tacrolimus and mycophenolate mofetil. Thus, RYGB patients may need higher doses of these medications [40]. In contrast, sleeve gastrectomy is mainly a restrictive procedure, and therefore, does not affect the oral bioavailability of immunosuppressive drugs.

In the absence of prospective, randomized controlled trial data to date to support weight loss before kidney transplantation, the decision on timing of weight loss and surgical procedure of choice should account for the need to decrease peri-transplant risks, but not at the expense of delaying or excluding the patient from transplant which confers survival benefit to the recipient.

CONCLUSION

As the risk of dialysis, even for obese patients, far exceeds those of transplantation, it is crucial to address any existing bias and/or barriers that cause nephrologists to delay or forgo kidney transplantation. BMI is
a simple index of weight-for-height, and does not take into account age, ethnicity, muscle mass, fat distribution, and body fluid accumulation. Currently, there is no common BMI cutoff across transplant programs to exclude obese candidates from transplantation, but instead, arbitrary thresholds are applied unevenly across transplant centers. This raises several controversies; should BMI be used as a sole parameter to exclude patients from life-saving transplantation, and what would be the ideal threshold? There is an imminent need for transplant communities to redefine transplant eligibility for obese patients by including individualized patient assessment of health and weight status rather than establishing absolute contraindications based on BMI alone as kidney transplantation confers a significant survival advantage over dialysis even for obese patients.

Although current data on graft and patient survival in obese recipient are encouraging, further long-term and multidisciplinary management strategies are needed to improve outcomes. These include healthcare professional (HCP)-patient engagement, training of HCP in obesity counseling techniques (such as motivational interviewing), integration of digital technology (such as electronic reminders to prompt BMI measurement), and integration of community resources for obesity management. Also, prospective multicenter trials are required to examine the impact of pretransplant versus posttransplant medical and surgical weight loss, and minimally invasive techniques such as RAKT on the early surgical complication rate and long-term transplant outcomes.

Acknowledgements
None.

Financial support and sponsorship
S.M. reports having consultancy agreements with eGenesis and Health Services Advisory Group; reports serving as Deputy Editor of Kidney International Reports, and reports receiving research funding from the Kidney Transplant Collaborative and the National Institutes of Health.

Conflicts of interest
There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been highlighted as: ■ of special interest ■■ of outstanding interest

1. Diwan TS, Cuffy MC, Lineares-Cervantes I, Govil A. Impact of obesity on dialysis and transplant and its management. Semin Dial 2020; 33:279–285.
2. Friedman AN. Obesity in CKD: a promising path forward. Clin J Am Soc Nephrol 2022; 17:1817–1819.
3. Lavenburg LU, Kim Y, Weinhandl ED, et al. Trends, social context, and transplant implications of obesity among incident dialysis patients in the United States. Transplantation 2022; 106:e488–e498.
4. A large retrospective cohort study, which showed that waistline scores for obese patients varied substantially by region, patient characteristics (age/sex/race/ethnicity), and socioeconomic context.
5. Omisic GC, Abramowicz D, Bolignano D, et al. Management of obesity in kidney transplant candidates and recipients: a clinical practice guideline by the DESCARTES Working Group of ERA-Nephrol Dial Transplant 2021; 37: i1–i15. A guideline for management of obesity in kidney transplant candidates and recipients developed by the Developing Education Science and Care for Renal Transplantation in European States scientific working group of the European Renal Association.
6. Lee JH, McDonald EO, Harhay MN. Obesity management in kidney transplant candidates: current paradigms and gaps in knowledge. Adv Chronic Kidney Dis 2021; 28:528–541.
7. Gill JS, Lan J, Dong J, et al. The survival benefit of kidney transplantation in obese patients. Am J Transplant 2013; 13:2083–2090.
8. Krishnan N, Higgins R, Short A, et al. Kidney transplantation significantly improves patient and graft survival irrespective of BMI: a cohort study. Am J Transplant 2015; 15:2378–2386.
9. Castelli C, Foucar Y, Boucquememet, et al. Impact of kidney transplantation in obese candidates: a time-dependent propensity score matching study. Nephrol Dial Transplant 2022; 37:1768–1776.
10. Segel DL, Simpkins CE, Thompson RE, et al. Obesity impacts access to kidney transplantation. J Am Soc Nephrol 2008; 19:349–355.
11. Freeman J, Kondraten H, Lindhard K, Hansen D. Weight loss challenges in achieving transplant eligibility in patients with kidney failure: a qualitative study. Kidney Med 2021; 4:100988.
12. Dazio R, Hilebrandt K, Knitter S, et al. German Bariatric Surgery, Kidney Transplantation Group. Body mass index thresholds and the use of bariatric surgery in the field of kidney transplantation in Germany. Obes Surg 2022; 32:1641–1648.
13. Gill JS, Hendren E, Dong J, et al. Differential association of body mass index with access to kidney transplantation in men and women. Clin J Am Soc Nephrol 2014; 9:951–959.
14. Dobrzynka M, Bzoma B, Bieniaszewski K, et al. Pretransplant BMI significantly affects perioperative course and graft survival after kidney transplantation: a retrospective analysis. J Clin Med 2022; 11:4393.
15. Kostro JZ, Bzoma B, Proczo-Stepaniak M, et al. Kidney transplantation in patients after bariatric surgery: high-volume bariatric and transplant center experience. Transplant Proc 2022; 54:955–956.
16. A report of single-center’s experience with obese kidney transplant candidates who underwent gastric bypass operation prior transplantation.
17. Tsapepas D, Sandros V, Dale LA, et al. Retrospective analysis of the impact of severe obesity on kidney transplant outcomes. Nephrol Dial Transplant 2022; doi: 10.1093/ndt/gfac169. [Epub ahead of print]
18. Buemi A, Romero L, Zech F, et al. Impact of recipient obesity on kidney transplantation outcome: a retrospective cohort study with a matched comparison. Transplant Proc 2022; 54:1786–1794.
19. Yin S, Wu L, Huang Z, et al. Nonlinear relationship between body mass index and clinical outcomes after kidney transplantation: a dose-response meta-analysis of 50 observational studies. Surgery 2022; 171:1396–1405.
20. Scheuermann U, Babel J, Pietsch UC, et al. Recipient obesity as a risk factor in kidney transplantation. BMC Nephrol 2022; 23:37.
21. Suresh Kumar KK, Chopra B, Josephson MA, et al. Recipient obesity and kidney transplant outcomes: a meta-kidney analysis. Am J Kidney Dis 2021; 78(5):501.e1–510.e1.
22. A recent national observational cohort study, which showed encouraging long-term kidney transplant outcomes among recipients with high BMI.
23. Bellini MI, Koutrousos K, Galliford J, Herbert PE. One-year outcomes of a cohort of renal transplant patients related to BMI in a steroid-sparing regimen. Transplant Direct 2017; 3:e330.
24. Giulianotti P, Gorodner V, Sbrana F, et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant 2010; 10:1478–1482.
25. Vranic G, Cooper M. But why weight: understanding the implications of obesity in kidney transplant. Semin Nephrol 2021; 41:380–391.
26. Tzvetanov IG, Tulla KA, Di Cocco P, et al. Robotic kidney transplant: the modern era technical revolution. Transplantation 2022; 106:479–488.
27. A comprehensive review of robotic-assisted kidney transplant.
28. Tzvetanov IG, Spaggiari M, Tulla KA, et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. Am J Transplant 2020; 20:430–440.
29. Nicoletto BB, Fonseca NK, Manro RC, et al. Effects of obesity on kidney transplantation outcomes: a systematic review and meta-analysis. Transplantation 2014; 98:167–176.
30. Lafraance JA, Lermans JN, Beites MG, Dor FJ. Body mass index and outcome in renal transplant recipients: a systematic review and meta-analysis. BMC Med 2015; 13:111.
31. Foucar Y, Lorent M, Albano L, et al. DIVAT consortium. Renal transplantation outcomes in obese patients: a French cohort-based study. BMC Nephrol 2021; 22:79.
28. Yemini R, Rahamimov R, Nesher E, et al. The impact of obesity and associated comorbidities on the outcomes after renal transplantation with a living donor vs. deceased donor grafts. J Clin Med 2022; 11:3069.
29. Weissenbacher A, Jara M, Ulmer H, et al. Recipient and donor body mass index as important risk factors for delayed kidney graft function. Transplantation 2012; 93:524–529.
30. Meier-Kriesche HU, Amdorfer JA, Kaplan B. The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. Transplantation 2002; 73:70–74.
31. Tan A, Wilson S, Sumithran P. The application of body mass index-based eligibility criteria may represent an unjustified barrier to renal transplantation in people with obesity. Clin Obes 2022; 12:e13505.
32. Axelrod DA, Cheungpasitporn W, Bunnapradist S, et al. Posttransplant diabetes mellitus and immunosuppression selection in older and obese kidney recipients. Kidney Med 2021; 4:100377.
33. Lentine KL, Rocca-Rey LA, Bacchi G, et al. Obesity and cardiac risk after kidney transplantation: experience at one center and comprehensive literature review. Transplantation 2008; 86:303–312.
34. Streja E, Molnar MZ, Kovesdy CP, et al. Associations of pretransplant weight and muscle mass with mortality in renal transplant recipients. Clin J Am Soc Nephrol 2011; 6:1469–1473.
35. Thongprayoon C, Mao SA, Jadlowiec CC, et al. Machine learning consensus clustering of morbidly obese kidney transplant recipients in the United States. J Clin Med 2022; 11:3288.
36. Järve L, Pechter U, Kuudeberg A, et al. Effect of pretransplant body mass index on kidney transplant recipient and graft long-term survival. Transplant Proc 2021; 53:2879–2887.
37. Chang TI, Ngo V, Streja E, et al. Association of body weight changes with mortality in incident hemodialysis patients. Nephrol Dial Transplant 2017; 32:1549–1558.
38. Harhay MN, Ranganna K, Boyle SM, et al. Association between weight loss before deceased donor kidney transplantation and posttransplantation outcomes. Am J Kidney Dis 2019; 74:361–372.
39. Harhay MN, Chen X, Chu NM, et al. Prekidney transplant unintentional weight loss leads to worse postkidney transplant outcomes. Nephrol Dial Transplant 2021; 36:1927–1936.
40. Di Cocco P, Okoye O, Almano J, et al. Obesity in kidney transplantation. Transpl Int 2020; 33:581–589.