Hybrid tomography for conductivity imaging

Thomas Widlak and Otmar Scherzer

1 Computational Science Center, University of Vienna, Nordbergstr. 15, A-1090 Vienna, Austria
2 RICAM, Austrian Academy of Sciences, Altenberger Str. 69, A-4040 Linz, Austria

E-mail: thomas.widlak@univie.ac.at and otmar.scherzer@univie.ac.at

Received 13 December 2011, in final form 13 March 2012
Published 30 July 2012
Online at stacks.iop.org/IP/28/084008

Abstract

Hybrid imaging techniques utilize couplings of physical modalities—they are called hybrid, because typically, the excitation and measurement quantities belong to different modalities. Recently there has been an enormous research interest in this area because these methods promise very high resolution. In this paper, we give a review on hybrid tomography methods for electrical conductivity imaging. The reviewed imaging methods utilize couplings between electric, magnetic and ultrasound modalities. By this it is possible to perform high-resolution electrical impedance imaging and to overcome the low-resolution problem of electric impedance tomography.

(Some figures may appear in colour only in the online journal)

1. Introduction

The spatially varying electrical conductivity, denoted by \(\sigma = \sigma (\mathbf{x}) \) in the following, provides important functional information for diagnostic imaging—it is an appropriate parameter for distinguishing between malignant and healthy tissue [31, 38, 48, 49, 52, 65, 75, 90, 97, 111]. Although almost never stated explicitly, but very relevant for this work, the conductivity is frequency dependent, that is, \(\sigma = \sigma (\mathbf{x}, \omega) \). The dependence on \(\omega \) is typically neglected, since the imaging devices operate at a fixed frequency. However, one should be aware that different image devices record conductivities in different frequency regimes. In figures 1(a) and (b), respectively, the specific values for \(\sigma \) in healthy and malignant tissues are plotted, and it can be observed that cancerous tissue reveals a higher conductivity, in general.

The standard approach for determining the electrical conductivity is electrical impedance tomography (EIT). This approach is based on the electrostatic equation

\[
\nabla \cdot (\sigma \nabla u) = 0,
\]

which describes the relation between the conductivity \(\sigma \) and the electrostatic potential \(u = u(\mathbf{x}) \). For imaging, EIT is realized by inserting a series of currents at a certain frequency \(\omega \) on the surface \(\partial \Omega \) of the probe and measuring the according series of voltages there.
Figure 1. Contrast of conductivity in biological tissue. (a) Low frequency contrast of σ [38, 52, 97]. (b) Radio-frequency contrast of σ [48].

Table 1. Conductivities of different types of tissue or materials, respectively, at 1 kHz [31], [28, table 9.11], [26].

Tissue type/material	Conductivity σ (S m$^{-1}$)
Skin (wet)	3×10^{-3}
Blood	7×10^{-1}
Fat	2×10^{-2}
Liver	5×10^{-2}
Copper	6×10^7
Granite (dry)	10^{-8}

In mathematical terms, the EIT problem accounts for computing σ from the Dirichlet-to-Neumann mapping $\Lambda_\sigma: f \mapsto g$, which relates the components of all possible pairs ($f = u|_{\partial\Omega_1}$, $g = \sigma \partial u|_{\partial\Omega_1}$).

Precursors of EIT were for geological prospecting [45, 94]. Current applications of EIT are in geology [2, 85, 89], but the applications in non-destructive testing for industry are of growing importance [104]. There has been considerable effort in adapting EIT for medical applications [18, 23].

In mathematical terms, the EIT problem was formulated first in 1980 by Calderón [21]. Uniqueness and stability have been studied extensively (see e.g. [1, 20, 100]). The recovery of the electrical conductivity from the Dirichlet-to-Neumann map is heavily ill-conditioned, and the modulus of continuity is at most logarithmic [3, 74]. This result is consistent with the abilities of classical EIT to differentiate between conductors and insulators in geological prospecting (see table 1). On the other hand, the material differences in human and biological tissues are smaller, and logarithmic stability in this case guarantees only very low resolution.

Recently, coupled physics imaging methods (this is another name for hybrid imaging, which is more self-explanatory) have been developed, which can serve as alternatives for estimating the electrical conductivity. Passive coupled physics electrical impedance imaging utilizes that electrical currents in the interior of a probe manifest themselves in different modalities. In contrast, active coupled physics imaging is by local excitement of the tissue.

3 The first step to prove unique recovery of σ from Λ_σ for smooth conductivities was the result in [98]. Now, there exist results for less regular conductivities (see the references in [1, 14.2.1.7] and [100, 6.1]). For planar domains, one even has uniqueness for L^∞-conductivities [11].
Table 2. Electromagnetic quantities.

Symbol	Name	Unit
\(\rho(x)\)	Electrical charge density	As m\(^{-3}\)
\(E(x, t)\)	Electrical field strength	V m\(^{-1}\)
\(H(x, t)\)	Magnetic field strength	A m\(^{-1}\)
\(D(x, t)\)	Electrical displacement field	As m\(^{-2}\)
\(B(x, t)\)	Magnetic flux density	Vs m\(^{-2}\) = T
\(J(x, t)\)	Electrical current density	A m\(^{-2}\)
\(\sigma(x, \omega)\)	Electrical conductivity	A Vm\(^{-1}\) = 1 \(\Omega\) m\(^{-1}\) = S m\(^{-1}\)
\(\varepsilon(x, \omega)\)	Electrical permittivity	As Vm\(^{-1}\) = F m\(^{-1}\)
\(\mu(x, \omega)\)	Magnetic permeability	Vs Am\(^{-1}\) = H m\(^{-1}\)

sample. Mathematically, in most cases, coupled physics imaging decouples into two inverse problems, which, in total, are expected to be better well conditioned than the EIT problem [4]. Coupled physics imaging led to a series of new results in inverse problems theory (see [13, 56]).

Coupled physics imaging should not be confused with multi-modal imaging (actually both are sometimes called hybrid imaging), which is based on co-registering or fusing images of different modalities. In contrast to multi-modal imaging, the techniques described here all involve interaction of physical processes, and therefore they have to use the correct modeling of the physics and chemistry involved.

In this paper, we survey mathematical models for coupled physics electrical impedance imaging. We provide the principal mathematical modeling tools in section 2, which are various electromagnetic equations in different frequency ranges, basic equations of acoustics and basics of magnetic resonance imaging (MRI). Based on this, we derive mathematical models for multiphysics imaging models in section 4. Bibliographic references are provided, covering experimental and mathematical research.

2. Background

In the following, we provide basic background information on mathematical equations in electromagnetism, acoustics, and MRI. This overview is required to survey coupled physics impedance imaging techniques in section 4.

2.1 Electromagnetic theory

We use as a starting point Maxwell’s equations, which couple the physical quantities summarized in table 2.

Maxwell’s equations

These are the basic formulas of electromagnetism, and read as follows (see for instance [47]):

\[
\begin{align*}
\nabla \times E &= -\frac{\partial B}{\partial t}, & \nabla \cdot D &= \rho, \\
\nabla \times H &= J + \frac{\partial D}{\partial t}, & \nabla \cdot B &= 0.
\end{align*}
\]

(2.1)

For later reference, we recall two equations relating the fields \(E, B\) with the charge density \(\rho\) and the current density \(J\).
• First, the fields \(\mathbf{E} \) and \(\mathbf{B} \) act on free charges and electrical currents by the \textit{Lorentz force}. The force per unit volume is given by (see [47, (5.12)])

\[
f(x, t) = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}. \tag{2.2}
\]

• Secondly, the work of the electromagnetic fields per unit volume and unit time is the power density [47, (6.103)], which in formulas expresses as

\[
H(x, t) = \mathbf{J} \cdot \mathbf{E}. \tag{2.3}
\]

In electromagnetism, in many applications, it is observed that the vector fields in (2.1) have the form

\[
\begin{align*}
\mathbf{E}(x, t) &= \left(E_0^k(x) \cos \left(\omega t + \phi_1^k \right) \right)_{k=1,2,3}, \\
\mathbf{B}(x, t) &= \left(B_0^k(x) \cos \left(\omega t + \phi_1^k \right) \right)_{k=1,2,3}, \\
\mathbf{D}(x, t) &= \left(D_0^k(x) \cos \left(\omega t + \phi_1^k \right) \right)_{k=1,2,3}, \\
\mathbf{H}(x, t) &= \left(H_0^k(x) \cos \left(\omega t + \phi_1^k \right) \right)_{k=1,2,3}, \\
\mathbf{J}(x, t) &= \left(J_0^k(x) \cos \left(\omega t + \phi_1^k \right) \right)_{k=1,2,3}.
\end{align*}
\]

Often the complex phasors

\[
\begin{align*}
\tilde{\mathbf{E}}(x) &= \left(E_0^k(x)e^{i\omega \phi_1^k} \right)_{k=1,2,3}, \\
\tilde{\mathbf{B}}(x) &= \left(B_0^k(x)e^{i\omega \phi_1^k} \right)_{k=1,2,3}, \\
\tilde{\mathbf{D}}(x) &= \left(D_0^k(x)e^{i\omega \phi_1^k} \right)_{k=1,2,3}, \\
\tilde{\mathbf{H}}(x) &= \left(H_0^k(x)e^{i\omega \phi_1^k} \right)_{k=1,2,3}, \\
\tilde{\mathbf{J}}(x) &= \left(J_0^k(x)e^{i\omega \phi_1^k} \right)_{k=1,2,3}
\end{align*}
\]

are used to rewrite (2.1) into a system of equations for complex functions without time-differentiation:

\[
\begin{align*}
\nabla \times \tilde{\mathbf{E}} &= -i\omega \tilde{\mathbf{B}}, & \nabla \cdot \tilde{\mathbf{D}} &= \rho, \\
\nabla \times \tilde{\mathbf{H}} &= \mathbf{J} + i\omega \tilde{\mathbf{D}}, & \nabla \cdot \tilde{\mathbf{B}} &= 0. \tag{2.4}
\end{align*}
\]

The real physical fields, which are time dependent, can be uniquely recovered from the complex but time-independent phasors via the formula \(\mathbf{E}(x, t) = \text{Re} \left(\tilde{\mathbf{E}}(x) \cdot e^{i\omega t} \right) \). We do not distinguish between \(\mathbf{E}(x, t) \) and \(\tilde{\mathbf{E}}(x) \) in the following.

For a variety of materials, including biological tissue, the vector fields \(\mathbf{E}, \mathbf{D}, \mathbf{B} \) and \(\mathbf{H} \) and \(\mathbf{J} \) are connected by simple constitutive equations. In these \textit{linear} media, the following material relations obtain

\[
\mathbf{J} = \sigma \mathbf{E}, \quad \mathbf{D} = \varepsilon \mathbf{E}, \quad \mathbf{B} = \mu \mathbf{H}, \tag{2.5}
\]

through which the material parameters \(\sigma = \sigma(x, t), \varepsilon = \varepsilon(x, t) \) and \(\mu = \mu(x, t) \) are defined. These are in general matrix-valued functions, depending on space and time.

For biological tissue, the parameter conductivity and permittivity parameters have been investigated thoroughly [31, 90]. These parameters are considered mostly as \textit{scalar}, although rarely also anisotropy is investigated. A salient feature of the electrical parameters in tissue is their \textit{dispersion}. That is, \(\sigma = \sigma(x, \omega) \) and \(\varepsilon = \varepsilon(x, \omega) \) are functions of the frequency \(\omega \) of the electrical field, respectively [31, 90]. However, as already stated above, this feature is mostly neglected, since the experiments usually operate in a fixed frequency regime.

In biological tissue, the electrical conductivity \(\sigma \) varies from \(10^{-4} \) to \(10^{2} \) S m\(^{-1}\). The permittivity \(\varepsilon \) and the permeability \(\mu \) are always scalar multiples of the fundamental constants
\[\varepsilon_0 \approx 8.9 \times 10^{-12} \text{ F m}^{-1}, \mu_0 \approx 1.3 \times 10^{-6} \text{ H m}^{-1}, \text{ respectively (see [47, table A.3]). Moreover, in biological tissue, the ratio } \varepsilon/\varepsilon_0 \text{ is between 10 and } 10^8 [31]. \text{ Permeability is usually regarded as a constant [105, p 151]. In the rest of the paper, we assume that } \mu = \mu_0. \]

For the introduction of potential functions, we consider the following two equations of Maxwell’s system (2.4):

\[\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -i\omega \mathbf{B}. \quad (2.6) \]

Note that we identified \(\mathbf{E}, \mathbf{B} \) and \(\tilde{\mathbf{E}}, \tilde{\mathbf{B}} \), respectively. The first equation already guarantees that there exists a vector potential \(\mathbf{A} \) satisfying

\[\mathbf{B} = \nabla \times \mathbf{A}. \quad (2.7) \]

Consequently, by using (2.7) in the second equation of (2.6), it follows that there also exists a scalar potential \(u \), such that

\[\mathbf{E} = -i\omega \mathbf{A} - \nabla u. \quad (2.8) \]

Through (2.8), the scalar potential \(u \) is determined by the observable field \(\mathbf{E} \) up to an additive constant. Similarly, the vector potential \(\mathbf{A} \) is not uniquely determined by the observable field \(\mathbf{B} \) in (2.7). In fact, one is free to choose \(\nabla \cdot \mathbf{A} \) (see [10, theorem in 1.16]), e.g.

\[\nabla \cdot \mathbf{A} = 0. \quad (2.9) \]

By choosing a particular constant for \(u \) and requiring (2.9), the two equations in (2.6) are equivalent to (2.7) and (2.8). The requirement (2.9) is called Coulomb’s gauge [47, 6.3], and we will use it in the rest of the paper.

2.2 Approximations for lower frequencies

In the following, we restrict attention to linear media, such as biological tissue. In mathematical terms, this means that (2.5) are satisfied.

Quasistatic approximation. We consider the third equation in (2.4), which is called the Ampère–Maxwell law. For linear media, it reads

\[\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} \right) = \sigma \mathbf{E} + i\omega \varepsilon \mathbf{E}. \]

If \(\omega \) satisfies

\[\omega \ll \sigma / \varepsilon, \quad (2.10) \]

one can neglect the term \(i\omega \varepsilon \mathbf{E} \) (because it is small compared with \(\sigma \mathbf{E} \)). We replace the equation with the classical version of Ampère’s law,

\[\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} \right) = \mathbf{J}. \quad (2.11) \]

Using (2.11) together with the other three equations in (2.4), we get the following quasistatic approximation to Maxwell’s equations:

\[\nabla \times \mathbf{E} = -i\omega \mu_0 \mathbf{H}, \quad \nabla \cdot (\varepsilon \mathbf{E}) = \rho, \]

\[\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} \right) = \sigma \mathbf{E}, \quad \nabla \cdot \mathbf{B} = 0. \quad (2.12) \]

The quantities \(\mathbf{J} := \sigma \mathbf{E} \) and \(\mathbf{B} \) appearing in (2.12) are related by the Biot–Savart law of magnetostatics [47, 5.3]:

\[\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} \mathbf{J}(\mathbf{y}) \times \frac{\mathbf{x} - \mathbf{y}}{|\mathbf{x} - \mathbf{y}|^3} d^3\mathbf{y}, \quad \mathbf{x} \in \mathbb{R}^3. \quad (2.13) \]
This law determines the magnetic field which is generated by a current density \(J \). It is derived from the third and fourth equation in (2.12), i.e. Ampère’s law and \(\nabla \cdot \mathbf{B} = 0 \) (see, for example, [68, 5.1]). Similarly, one can determine the vector potential corresponding to \(\mathbf{B} \) (with Coulomb’s gauge) as

\[
A(\mathbf{x}) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} \frac{J(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \, d^3y. \tag{2.14}
\]

Certain dispersion models for \(\sigma \) and \(\varepsilon \), like [31], suggest that the quasistatic condition (2.10) holds for a wide range of tissue types even at frequencies about 1–2 MHz. Note, however, that the available data on \(\sigma \) and \(\varepsilon \) have been obtained using \textit{in vitro} measurements.

At present, condition (2.10) is often also assumed because it simplifies the subsequent inverse problem of determining \(\sigma \). Whether the displacement current \(\omega \varepsilon \mathbf{E} \) should be taken into the model or not depends on the specific application and the available data on \(\sigma \) and \(\varepsilon \).

For frequencies about 1 kHz, simulation studies have been conducted using a head resp. spine model [27, 101], in order to decide whether the displacement current can be neglected. To the knowledge of the authors, there are at present no studies for higher frequencies, though further empirical and numerical research is necessary to determine the validity of the quasistatic regime in conductivity imaging.

Electrostatic approximation. We consider the first equation in (2.4), also called Faraday’s law. In linear media, it reads

\[
\nabla \times \mathbf{E} = -i\omega \mathbf{B}. \tag{2.15}
\]

It can be shown by a dimensional analysis (see [23, A.2]) that if

\[
\sqrt{\omega \mu_0 \sigma} \ll R, \tag{2.16}
\]

where \(R \) denotes a reference length of \(\mathbf{x} \), then Faraday’s law can be replaced by the electrostatic equation \(\nabla \times \mathbf{E} = 0 \). From the latter equation, in turn, it follows that the electrical field can be represented as a gradient field, i.e.

\[
\mathbf{E} = -\nabla u. \tag{2.17}
\]

The electrostatic representation (2.17) is inserted into the complex time harmonic Ampère–Maxwell equation \(\nabla \times \mathbf{H} = \sigma \mathbf{E} + i\omega \varepsilon \mathbf{E} \) from (2.4). Taking the divergence, one gets

\[
\nabla \cdot (\kappa \nabla u) = 0. \tag{2.18}
\]

Here, the quantity

\[
\kappa(\mathbf{x}, \omega) = \sigma(\mathbf{x}, \omega) + i\omega \varepsilon(\mathbf{x}, \omega) \tag{2.19}
\]

is called complex conductivity and is measured in \(\text{S m}^{-1} \) as well.

Often, though, one combines the quasistatic with the electrostatic approximation. If we apply the divergence to \(\mathbf{J} \) in the quasistatic version of Ampère’s law (2.11), this yields the real-valued elliptical equation in (1.1):

\[
\nabla \cdot \mathbf{J} = \nabla \cdot \sigma \mathbf{E} \tag{2.17} - \nabla \cdot (\sigma \nabla u) = 0. \tag{2.20}
\]

In this case, the magnetic field generated by the current \(\mathbf{J} = \sigma \mathbf{E} \) is given by the law of Biot–Savart (2.13). Similarly, the vector potential generated by \(\mathbf{J} \) can be calculated by (2.14).

Experiments suggest that for \(\omega \) larger than 1 MHz, the electrostatic simplifications are no longer valid and it is reasonable to use a more accurate model like the quasistatic approximation or the whole set of Maxwell’s equations [95].
2.3 A reduced eddy current model

In this section, we derive a simplified mathematical model of the full Maxwell equations (2.4) resp. the quasistatic Maxwell equations (2.12). Such a model was developed in [34] to describe eddy currents in biological tissues (see also [29]), with the prime goal for improvement of induced current electrical impedance tomography (ICEIT).

Here, we assume the knowledge of a current distribution \(J_i \) with compact support in a set \(F \), where \(F \) is a bounded domain outside the conducting material in the domain \(\Omega \). For instance, in ICEIT, \(J_i \) is the excitation current, and \(F \) is the domain of the excitation coil (see figure 2).

We start from the time-harmonic Maxwell equations (2.4) in the source-free case \(\rho = 0 \). These are simplified below. With an imposed current density \(J_i \), the equations read as follows:

\[
\begin{align*}
\nabla \times \mathbf{E} &= -i \omega \mu_0 \mathbf{H}, & \nabla \cdot (\epsilon \mathbf{E}) &= 0, \\
\nabla \times \left(\frac{1}{\mu_0} \mathbf{B} \right) &= \kappa \mathbf{E} + \mathbf{J}_i, & \nabla \cdot \mathbf{B} &= 0,
\end{align*}
\]

(2.21)

where we use the complex conductivity \(\kappa \) as in (2.19).

We separate the electrical field \(\mathbf{E} \) into primary and secondary components, and describe those via their potentials (cf (2.8)):

\[
\mathbf{E} = \mathbf{E}_p + \mathbf{E}_s \quad \text{with} \quad \mathbf{E}_p = -i \omega \mathbf{A}_p, \quad \mathbf{E}_s = -i \omega \mathbf{A}_s - \nabla u.
\]

(2.22)

Here, \(\mathbf{A}_p \) is the vector potential generated by the imposed current \(\mathbf{J}_i \) (see (2.14)). \(\mathbf{A}_p \) is assumed not to depend on the tissue conductivity. The secondary field \(\mathbf{A}_s \) is the vector potential generated by \(\sigma \mathbf{E} \).

For the representation of \(\mathbf{E}_p \), we do not need a scalar potential, whereas for \(\mathbf{E}_s \) we do. Indeed, assume that \(\mathbf{E}_p = -i \omega \mathbf{A}_p - \nabla u_p \). Because the permittivity \(\epsilon \) is constant in vacuum, we have \(\nabla \cdot (\epsilon \mathbf{E}_p) = \epsilon \nabla \cdot \mathbf{E}_p = 0 \) (second equation in (2.21)). We use Coulomb’s gauge (2.9) for \(\mathbf{A}_p \), yielding

\[
0 = \nabla \cdot \mathbf{E}_p = \nabla \cdot (-i \omega \mathbf{A}_p - \nabla u_p) = -i \omega \nabla \cdot \mathbf{A}_p - \nabla \cdot \nabla u_p \overset{\text{(2.9)}}{=} -\Delta u_p.
\]

(2.23)

In the source-free case \(\rho = 0 \), the only solutions making physical sense are constant, and without loss of generality we can take \(u_p = 0 \) [47, 5.4, 6.3]. In particular, this means that \(\mathbf{E}_p \) is completely determined by the vector potential \(\mathbf{A}_p \).

Now for a biological tissue, it was observed in [34] that \(\kappa \mathbf{E} \approx -\kappa (i \omega \mathbf{A}_p + \nabla u) \). Therefore, we can work with

\[
\mathbf{E}^\text{new} := -i \omega \mathbf{A}_p - \nabla u
\]

(2.24)
as an approximation for the electrical field. Using the third equation in (2.21), we have \(\nabla \cdot (\nabla \times B) = \nabla \cdot J = 0 \). Consequently, the following condition holds for the scalar potential \(u \):

\[
\nabla \cdot (\kappa \nabla u) = -i \omega A_p \cdot \nabla \kappa.
\]

(2.25)

At the boundary \(\partial \Omega \) of the conducting region, we have \(\kappa E_{\text{new}} \cdot n = 0 \), as there is no current flux through the boundary. This yields the condition

\[
\partial_n u = -i \omega A_p
\]

(2.26)

at the boundary. Note that in the later applications, equation (2.25) will only be considered on a bounded domain /\(\Omega \). To ensure uniqueness for the problem (2.25), (2.26), one usually requires a scaling condition for \(u \), e.g. \(\int_{\partial \Omega} u \, dS = 0 \).

For practical simulation and reconstructions, one often restricts oneself to the quasistatic version of the eddy current model. That is, one neglects the imaginary part in \(\kappa \) and can therefore work with the real electrical conductivity \(\sigma \). Then, one uses the model:

\[
\nabla \cdot (\sigma \nabla u) = -i \omega A_p \cdot \nabla \sigma.
\]

(2.27)

As noted in the discussion of the quasistatic condition (2.10), which model is to be used depends on the specific application and the available empirical data on the material parameters \(\sigma \) and \(\varepsilon \).

2.4 Acoustics

Equations for the acoustic pressure are obtained by linearization from the fundamental equations of fluid dynamics, which relate the pressure \(p(x, t) \), the density \(\rho(x, t) \) and the velocity \(v(x, t) \) of the fluid, respectively.

Because it is a linearized model, the variations of these parameters relative to a ground state \((p_0(x), \rho_0(x), 0) \) [64, section 64] have to be small to be consistent with reality.

In particular, the standard wave equation

\[
\square p := \frac{1}{c^2} \partial_t^2 p - \Delta p = 0
\]

(2.28)

is derived from the linearized conservation principles for impulses, mass and a relation between pressure and density, which read as follows:

\[
\rho_0 \partial_t v + \nabla p = 0, \quad (2.29)
\]

\[
\partial_t \rho + \rho_0 \nabla \cdot v = 0, \quad (2.30)
\]

\[
p = c^2 \rho. \quad (2.31)
\]

Here, \(c = c(x) = \sqrt{\partial_\rho p(\rho_0(x))} \) denotes the speed of sound in fluid dynamics (see [64, section 64]). Applying the divergence to (2.29) and calculating the time derivative of (2.30), we eliminate \(v \) to get \(\Delta p = \partial_t \rho \). Substituting the time derivative of (2.31), we obtain the wave equation (2.28).

In the following, we assume that the fluid is perturbed by electromagnetic fields, causing the Lorentz force (2.2) and Joule heating (2.3). We incorporate these effects into the equations for the ultrasound pressure \(p \). We first observe that the Lorentz force density \(f \) enters as a source term into the balance equation for the impulse (2.29), and we get

\[
\rho_0 \partial_t v + \nabla p - f = 0.
\]

(2.32)
Secondly, the linearized expansion equation describes the relation between the energy absorption, described by the power density function H, and the pressure

$$\partial_t p = \Gamma H + c^2 \partial^2 p.$$ \hspace{1cm} (2.33)

Here, Γ is the dimensionless Grüneisen parameter. Very frequently it is assumed constant, but in fact is material dependent, and thus $\Gamma = \Gamma(x)$. Equation (2.33) can be derived from thermodynamic relations and the principle of energy conservation [40, 0.1]. We emphasize that (2.33) is a generalization of (2.31).

The wave equation with outer force and energy absorption is now derived from (2.32), (2.33) and the mass conservation principle (2.30). We arrive at the following inhomogeneous wave equation

$$\Box p = -\nabla \cdot f(x, t) + \frac{\Gamma}{c^2} \partial_t H(x, t).$$ \hspace{1cm} (2.34)

We will use this equation with $f(x, t) = \delta(t)\phi(x)$ and $H(x, t) = \delta(t)\psi(x)$ in sections 4.2.1 and 4.2.3.

Remark 1. By Duhamel’s principle (see [30, p 81]), the solution of

$$\Box p = \delta(t)\phi(x) + \partial_t \delta(t)\psi(x),$$ \hspace{1cm} (2.35)

where δ is the δ-distribution, is the sum of the solutions of the inhomogeneous wave equations

$$\Box P_1(x, t) = 0 \hspace{1cm} \Box P_2(x, t) = 0$$

$$P_1(x, 0) = 0 \hspace{1cm} P_2(x, 0) = \psi(x)$$

$$\partial_t P_1(x, 0) = \phi(x) \hspace{1cm} \partial_t P_2(x, 0) = 0,$$ \hspace{1cm} (2.36)

respectively.

3. MRI imaging

General comments and modeling of MRI

MRI is frequently used as the basis for coupled physics imaging.

Since the modeling of MRI is not so common in inverse problems, it is reviewed here: MRI visualizes the nuclear magnetization $M = M(x, t)$ resulting from selectively induced magnetic fields $B = B(x, t)$. These two quantities are related by the simplified Bloch equation4

$$\partial_t M = \gamma M \times B.$$ \hspace{1cm} (3.1)

Here, γ denotes the gyromagnetic ratio specific to a proton. For instance, for hydrogen, one has $\gamma = 4.6 \times 10^7$ T$^{-1}$ s$^{-1}$ (T ... Tesla).

For a stationary magnetic field in the z-axis direction, $B(x, t) = B(x) = (0, 0, B(x))$, the solution of the simplified Bloch equation with initial data $M(x, 0) = M_0(x)$ is given by [37, 2.3.2]

$$M(x, t) = \begin{pmatrix}
M_0^y \cos(-\gamma B(x)t) - M_0^z \sin(-\gamma B(x)t) \\
M_0^y \sin(-\gamma B(x)t) + M_0^z \cos(-\gamma B(x)t) \\
M_0^z
\end{pmatrix}.$$ \hspace{1cm} (3.2)

This identity shows the rotation of the magnetization M around the z-axis when applying the stationary magnetic field $(0, 0, B(x))$. The quantity

$$\omega(x) = -\gamma B(x)$$ \hspace{1cm} (3.3)

is called the Larmor frequency and is an essential ingredient for MRI.

4 We restrict our discussion to the influence of B on the precessional motion of M. More adequately, the motion of M depends on the material-specific relaxation parameters T_1, T_2 [37, 4.4]. For the discussion of hybrid techniques, it suffices to study the simplified Bloch equation, and subsequently, the simplified MRI signal in (3.7).
We explicitly introduce two particular magnetic fields and their Larmor frequency.

- For the static field \(B_0 := (0, 0, B_0) \),
 \[
 \omega_0 := -\gamma B_0. \tag{3.45}
 \]
 For the case of hydrogen, and with \(|B_0| = 1.5 \text{ T}\), one has \(|\omega_0| = 63.9 \text{ MHz}\).

- By a gradient field corresponding to the vector \(\mathbf{G} \), we mean the field \(B = (0, 0, \mathbf{G} \cdot \mathbf{x}) \).

If \(B \) is applied along with \(B_0 \), the Larmor frequency is \(\omega(x) = \omega_0 - \gamma \mathbf{G} \cdot \mathbf{x} \).

Let now \(B(x, t) = B(x) \) be a static magnetic field and \(M(x, t) \) the resulting magnetization due to (3.1). The MRI signal is collected from voltage measurements of a detector coil.

It is known that the voltage \(V(t) \) received in a detector coil satisfies
\[
V(t) \propto \int M(x, t) \cdot B^{\text{rec}}(x) \, d^3x,
\]
where \(B^{\text{rec}} \) is the Biot–Savart field (2.13) corresponding to a unit current in the detection coil [37, 7.2].

Let us assume that \(B^{\text{rec}} = (r \cos(\theta_B), r \sin(\theta_B), 0) \). Then, using (3.2) and trigonometric identities, one finds that the voltage is
\[
V(t) = K \int M_0 \sin(\omega(x)t + \theta_B - \phi_0) \, d^3x.
\]
Here, \(M_0(x) \) and \(\phi_0(x) \) are the polar coordinates of the transverse magnetization in the complex representation
\[
M_0 e^{i\phi_0} = M_0^x + iM_0^y.
\]

Here, the terms on the right-hand side are the \(x \)- and \(y \)-components of the magnetization vector \(M_0 = (M_0^x, M_0^y, M_0^z) \).

In a signal analyzing step, one multiplies this voltage with the reference fields \(\sin(\omega_0 t) \) and \(\cos(\omega_0 t) \), respectively. After filtering, one finds the real and complex part of the following quantity (up to a fixed complex proportionality factor \(K \)):
\[
S(t) = \int_{\mathbb{R}^3} M_0(x)e^{i\phi_0(x)}e^{i\omega_0 t} \, d^3x. \tag{3.7}
\]

\(S(t) \) will be referred to as the MRI signal [37, 23.7].

For MRI imaging, we need only the expression for the signal for the case of a static field \(B(x) \) as in (3.7), because the signal is only measured while a static field is applied (see figure 3).

The signal \(S(t) \) depends both on \(\omega(x) \) as well as on \(M \). In actual experiments in MRI, both quantities are varied to collect data.
Figure 3. Time shape of a pulse sequence with three different gradient fields $B^{G_x}, B^{G_y}, B^{G_z}$. The signal is measured during application of B^{G_z}.

Experiment

In MRI experiments, one applies different fields B in order to vary $\omega(x)$ and M, such that sufficient data of $S(t)$ can be collected to image the interior of the specimen. In a general pulse sequence of MRI, a superposition of three magnetic fields, B_0, B_1, B^G, is applied:

$$B(x,t) = B_0(x) + B_1(x,t) + B^G(x,t).$$ \hspace{1cm} (3.8)

B_0 and B^G are as in (3.5) and (3.6), respectively. Moreover, $B_1 = (B_1(t) \cos(\omega_0 t), B_1(t) \sin(\omega_0 t), 0)$ is a radio-frequency field. The time-shapes of the applied fields are depicted in figure 3.

The field B_1 is responsible for creating a nontrivial M_0 as initial data: at every point where the resonance condition

$$\omega_1 = \omega(x)$$ \hspace{1cm} (3.9)

holds, the magnetization vector is flipped away from the z-axis about a certain angle, and in consequence, a non-zero transverse magnetization $M_0 e^{i \phi_0}$ results.

Gradient fields with different vectors G are induced at different times (see figure 3). Applying B^G with $G_z = (0, 0, G_z)$ during the radio-frequency field, the resonance condition (3.9) is restricted to a small slice around the plane $z = 0$ (and only there $M_0 \neq 0$). Every signal (3.7) recorded subsequently can be approximated by a 2D integral (cf [37, (10.34)]).

One applies B^G with $G_y = (0, G_y, 0)$ between the radio-frequency pulse and the measurement for a certain time t'. At this time, the Larmor frequency changes to $\omega(x) = \omega_0 + G_y y$. Afterward, the phase of the transverse magnetization has changed from ϕ_0 to $\phi_0 + t' G_y y$.

Now after making these preparations, measurements are taken and the signal (3.7) is recorded. During the measurements, though, a gradient field B^G with $G_x = (G_x, 0, 0)$ is applied, which changes the Larmor frequency in (3.7) to $\omega(x) = \omega_0 + G_x x$.

11
The upshot of applying these three types of gradient fields is that one can modify \(\phi_0 \) and \(\omega(x) \) in (3.7), such that one has access to the data

\[
D(tG_x, t'G_y) = \int_{\mathbb{R}^2} M_0(x, y, 0) e^{i\phi_0} e^{i\gamma(tG_x + t'G_y)} d(x, y).
\]

(3.10)

Introducing the 2D vector \(k = (tG_x, t'G_y) \), (3.10) is just the 2D-Fourier transform with respect to \(k \) of the transverse magnetization \(M_0(x, y, 0) e^{i\omega_0} \), sampled at the frequency vector \(k \). By repeating the pulse sequence and varying \((G_x, G_y)\), and thus \(k \), one collects samples of the Fourier transform of \(M_0(x, y, 0) e^{i\omega_0} \),

\[
\int_{\mathbb{R}^2} M_0(x, y, 0) e^{i\omega_0} e^{i k \cdot x} d(x, y).
\]

(3.11)

The inverse Fourier transform allows us to recover \(M_0(x, y, 0) e^{i\omega_0} \).

Remark 2. The modeling assumes that the magnetic fields in (3.8) have an ideal shape and are not affected by the body tissue, in particular. In fact, the radio-frequency field \(B_1 \) is affected by electrical properties of the tissue. This effect can be utilized to reconstruct the conductivity \(\sigma(x, \omega_0) \) using the Larmor frequency \(\omega_0 \) [50, 51, 109]. This is one of the several examples of imaging the electrical conductivity, or the current density, at the Larmor frequency, using the measurement setup of MRI (for other approaches, see [83, 102]).

4. Coupled physics models for conductivity imaging

In this section we review coupled physics techniques for imaging the scalar conductivity \(\sigma \) from (2.5).

4.1 Magnetic coupling

Here, we discuss two sorts of methods for conductivity imaging based on magnetic coupling. One set of methods uses coupling of magnetic and electrical phenomena described by Maxwell’s equations. The other set of methods uses MRI and exploits the influence of electrical currents on the MRI signal. Both kinds of methods have either contactless excitation or contactless measurement (or both). This is a practical advantage in clinical experiments.

4.1.1 Magnetic resonance-EIT/current density impedance imaging. In magnetic resonance-EIT (MREIT) and current density impedance imaging (CDII), respectively, one perturbs the MRI signals by injecting an electrical current.

Experiment. The measurement setup consists of an MRI machine and, additionally, electrodes on the surface of the specimen (within the MR machine). The MRI pulse sequences are performed, and an electrical current is injected for a short period, before the induction measurement. The injection perturbs the Larmor frequency and leads to a change in the nuclear magnetization, which alters the MRI signal. In CDII, in addition, the experiment is repeated with the probe rotated relative to the MRI machine.

Mathematical modeling. The mathematical modeling of these two imaging techniques is very similar to the modeling of MRI in section 3. The difference is that the injected electrical currents manifest themselves in an additional magnetic field, namely the Biot–Savart field \(B_J = (B_1^J, B_J^y, B_J^z) \) from (2.13). This field has to be taken into account in (3.8),
in the mathematical model of MRI. Thus, the total magnetic field in MREIT/CDII is given by
\[B(x, t) = B_0 + B_J(x, t) + B^{\text{CDII}}(x, t) + \overline{B_J(x, t)}. \]

The current \(J \) is injected before the induction measurement. As \(J \) is a direct current or has very low frequency, the Biot–Savart field \(B_J \) acts like an additional gradient field \(B^{\text{CDII}} \). As discussed in section 3, this results in a change of the Larmor frequency, \(\Delta \omega = -\gamma |B_J| \), while the current \(J \) is applied. After application of the current for a time \(T_J \), the transverse magnetization therefore accumulates an additional phase difference \(\Delta \phi = \gamma |B_J| T_J \), which in this situation is approximately \(\gamma B_J^2 T_J \) (see [37, 27.3.6]).

Compared with the signals (3.11) recorded in MRI, the signals in MREIT/CDII reveal a phase shift. Because in the experiments two currents of opposite sign are applied [92, 93, 106], one collects the following data:

\[S_{\pm}(k_x, k_y) = \int_{R^2} M_0(x, y, 0) e^{i k \cdot d} e^{i \pm \gamma B^{\text{CDII}} (x, y, 0) T_J} e^{i k x} d(x, y). \]

(4.1)

Here, \(\pm \) indicates two currents of opposite signs. Using the inverse Fourier transforms of (4.1), and denoting

\[m_{\pm} = M(x, y, z_0) e^{i \pm \gamma B^{\text{CDII}} (x, y, z_0) T_J}, \]

one finds that

\[B_J^2(x, y, z_0) = \frac{1}{2 \gamma T_J} \Im \left(\log \left(\frac{m_+ (x, y, z_0)}{m_- (x, y, z_0)} \right) \right), \]

(4.3)

which is the component of \(B_J \) in the direction of the main magnetic field \(B_0 \).

Other components of \(B_J \) can be obtained by rotating the sample relative to the MRI machine. Then, one determines the current density by Ampère’s law (2.11) applied to \(B = B_J \), that is, \(J = \frac{\mu_0}{\rho} \nabla \times B_J \).

Imaging. \(B^J \) and \(J \) depend nonlinearly on the conductivity \(\sigma \). Depending on the acquired MRI data, it is common to differ between MREIT, that uses values of \(B^J \), and CDII, where the knowledge of the current density \(J \) is assumed. CDII, in order to obtain the three-dimensional vector \(B^J \), requires rotating the probe relative to the MRI machine three times.

Problem 1 (CDII). For a given domain \(\Omega \), representing the domain of the probe to be imaged, let boundary data \(f, g \) be given. Moreover, assume that on the whole of \(\Omega \), \(\frac{1}{\rho} \nabla \times B_J = J = -\sigma \nabla u \), or \(|J| \), respectively, are given, where \(u \) and \(\sigma \) are related by

\[\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in} \quad \Omega \subset \mathbb{R}^3 \]

\[u = f \quad \text{on} \quad \partial \Omega \]

\[\sigma \partial_n u = g \quad \text{on} \quad \partial \Omega. \]

(4.4)

The imaging problem consists in determining \(\sigma \).

Problem 2 (MREIT). Let boundary data \(f, g \) be given. Let \(\sigma \) and \(u \) be related by (4.4). The imaging problem consists in determining \(\sigma \) from \(B_J \), which is related to \(\sigma \) and \(u \) via the Biot–Savart relation (2.13),

\[B_J(x) = -\frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} \sigma(y) \nabla u(y) \times \frac{x-y}{|x-y|^3} \, d^3y. \]

MREIT/CDII have been suggested in the late 1980s [91]. Since then, efficient algorithms have been developed for solving the two problems. There also exist a variety of experimental biomedical studies [93, 106]. In practice, the experiments are repeated at least twice times with different boundary data, which provides more independent information on \(\sigma \).
Mathematics of MREIT and CDII. For CDII, many uniqueness and stability results have been obtained.

- Let $|J_1|$, $|J_2|$ and corresponding Neumann data $\sigma \partial_n u = g_i$, $i = 1, 2$, be given, where the currents satisfy $J_1 \parallel J_2$ everywhere in Ω. Then, σ can be recovered uniquely [53, 54, 63].
- For two given vector-valued current densities, there exists an analytical reconstruction formula, which determines σ up to a multiplicative constant [41, 67].
- With one current density vector J and Dirichlet data $u|_{\partial\Omega}$ given, the unique recovery of σ for the two-dimensional version of problem 1 is guaranteed [62].
- Recently, it was observed that the absolute value of one current, $|J|$, and Dirichlet data $[79, 80]$ are sufficient for recovering σ. These uniqueness results for CDII have been proven by interpreting level sets of u as minimal surfaces or by exploiting an energy-minimizing property of u [78–81]. They require u to be free of singularities. Stability results of the $|J|$-based reconstruction have been given in [82, 78].

For MREIT:

- Uniqueness and stability results for MREIT are given in special cases by the authors of [71, 72].
- Various numerical algorithms have been developed, which reconstruct σ using Bz and Neumann data g_i, $i \geq 2$. For an overview, see [93, section 3].

4.1.2 Magnetic detection impedance tomography. Magnetic detection impedance tomography (MDEIT) uses magnetic boundary detection to recover currents and conductivity inside the tissue.

Experiment. The equipment consists of electrodes to inject currents and several coils to record the magnetic field. A current is injected into the probe and the strength of the magnetic field is measured by detector coils at different positions of the boundary. This technique is discussed in [46, 55]; for practical applications, see [73].

Mathematical modeling. The mathematical model is the electrostatic model, $\nabla \cdot (\sigma \nabla u) = 0$ from (2.20), which relates the electrical potential u and the conductivity σ. Neumann boundary conditions are given by the injected currents. The Biot–Savart law (2.13) provides the relation between $J = -\sigma \nabla u$ and the magnetic field B measured by the detector coils.

Imaging. The imaging problem can be decomposed into two subproblems. In the first part, one reconstructs the current density J inside Ω from measurements of B at the boundary $\partial \Omega$. In the second part, one faces exactly the same problem as in CDII, namely to reconstruct σ from interior data of J (problem 2).

The inverse problem in the first step is a linear one: to recover J given the Biot–Savart law. We can restrict ourselves to current densities satisfying $\nabla \cdot J = 0$, see (2.20).

Problem 3 (Inverse problem MDEIT, first step). Determine $J|_{\Omega}$ from $B|_{\partial \Omega}$ using the Biot–Savart relation
\[
B(x) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} J(y) \times \frac{x - y}{|x - y|^3} \, dy, \quad x \in \mathbb{R}^3, \tag{4.5}
\]
taking into account that $\nabla \cdot J = 0$.

The second problem is analogous to CDII (problem 2).

Problem 4 (Inverse problem MDEIT, second step). Given are data f and g on $\partial \Omega$. Determine σ from $J = -\sigma \nabla u$, which are related by (4.4).

14
Mathematical analysis. The mathematical investigations relating to the linear problem concern uniqueness issues and development of numerical algorithms. The kernel of the Biot–Savart operator has been investigated in [42, 55]. Uniqueness in the reconstruction problem has been shown for particular cases, such as directed currents in layered media [42, 55, 87]. Different regularization methods have been applied to solve problem 3 and tested using real and simulated data [43, 46].

4.1.3 EIT with induced currents. EIT with induced currents (ICEIT) excites currents by magnetic induction and generates a voltage, which is measurable at the boundary of the probe.

Experiment. For the experiments, one uses coils and electrodes. A time harmonic current is produced in the excitation coil and eddy currents are induced in the tissue. The voltages are detected at the boundary of the probe [34, 110].

Modeling. We recall the setting of the reduced eddy current model in section 2.3, referring to figure 2. The excitation coil lies in a domain \(F \) where the excitation current \(J_i \) is supported. The conducting tissue is in the domain \(\Omega_1 \), disjoint from \(F \).

In (2.24), we have introduced a reduced version of the electrical field as

\[
E = -i \omega A_p - \nabla u,
\]

where \(A_p \) is the primary vector potential generated by the excitation current \(J_i \) (see (2.14)). The scalar potential is governed by (2.27) with the boundary condition \(E \cdot n = 0 \) on \(\partial \Omega \). To ensure a unique solution, we require that \(\int_{\partial \Omega} u \, dS = 0 \). This gives the description of the eddy currents inside the tissue.

The measurement data consist of (finitely many) line integrals \(\int_{x_1}^{x_2} E \cdot d \ell \). Because the determination of \(A_p \) via (2.14) does not depend on inhomogeneities of \(\sigma \), one obtains line integrals of \(\nabla u \), which are potential differences. As in classical EIT, these correspond approximately to the knowledge of Dirichlet data \(u|_{\partial \Omega} \), if one chooses a voltage reference. For this, we assume \(\int_{\partial \Omega} u \, dS = 0 \).

Imaging. The imaging problem in ICEIT is an inverse boundary value problem.

Problem 5 (Inverse problem ICEIT). Let \((\sigma, u)\) satisfy

\[
\nabla \cdot (\sigma \nabla u) = -i \omega A_p \cdot \nabla \sigma \quad \text{in} \ \Omega
\]

\[
\partial_n u = -i \omega A_p \cdot n \quad \text{on} \ \partial \Omega
\]

\[
\int_{\partial \Omega} u \, dS = 0.
\]

Given are boundary data \(u|_{\partial \Omega} \) and the primary potential \(A_p|_{\Omega} \) in \(\Omega \), which is related to the excitation current \(J_i \) on \(\mathbb{R}^2 \) by

\[
A_p(x) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}^2} \frac{J_i(y)}{|x - y|} \, d^2 y.
\]

Determine \(\sigma \).

Mathematics and Numerics. ICEIT has been investigated numerically: different regularization procedures have been applied, e.g., in [34, 110].

4.1.4 Magnetic induction tomography. In magnetic induction tomography (MIT), eddy currents are induced, and the resulting magnetic fields are measured at the boundary.
Experiment. The measurement equipment consists of coils placed at the boundary of the conducting tissue. Electrical currents in the coils induce eddy currents in the tissue. These currents generate a secondary magnetic field, which is measured by detection coils [36, 96], outside of the probe.

Modeling. The mathematical model is based on the reduced eddy current model (2.21) in section 2.3, as in the previous section.

By (2.24), the electrical field is represented as \(E = -i \omega A_p - \nabla u \), where \(A_p \) is the primary vector potential, generated by the excitation current \(J_i \) (see (2.14)). The scalar potential \(u \) is determined by (2.27).

The signal recorded in a detection coil is the electrical voltage induced by \(E |/\Omega \). Special types of detectors can be constructed, which are not influenced by the primary excitation field \(E_p = -i \omega A_p \), but only by the reaction field [36]. As in (2.22), the electrical reaction field is \(E_s = -i \omega A_s - \nabla u \), where \(A_s \) is the vector potential generated by the current \(\sigma E \) (see also [29, (25)]).

The measured voltage in a coil with surface \(C \) is then

\[
\oint_{\partial C} E_s \cdot dl = \int_C n \cdot (\nabla \times E_s) = -i \omega \int_C n \cdot B_s .
\]

In the last equation, we have applied Faraday’s law (2.15) to \(E = E_s \) and \(B = B_s \). \(B_s \) is the magnetic field generated by the current \(\sigma E |/\Omega \), see (2.13).

Imaging. The reconstruction problem of MIT is as follows.

Problem 6 (Inverse problem MIT). Let \(A_p \) be the vector potential generated by the excitation current \(J_i \), given by (4.7). Let \(u \) satisfy the Poisson equation (4.6) with the parameter \(\sigma \).

The given data are different voltage measurements

\[
V_k = \int_{C_k} n \cdot B_s
\]

acquired with detector coils on the surface \(C_k \). Here, \(B_s \) is a function of \(\sigma \), \(u \) and \(A_p \) as

\[
B_s(x) = - \frac{\mu_0}{4\pi} \int_{\Omega} \sigma (i \omega A_p(y) + \nabla u(y)) \times \frac{x - y}{|x - y|^3} dy, \quad x \in \mathbb{R}^3.
\]

The imaging problem consists in determining \(\sigma \).

Eddy current imaging techniques play an important role for non-destructive evaluation in industry [99]. Actually, MIT has been developed for industrial nondestructive evaluation and geological surveying [19, 77, 86]. For these applications, the reduced model of magnetic induction is not valid. However, also biomedical applications of MIT have been proposed later and the reduced model is now in general use. But MIT does not provide high resolution [36]. The primary importance of biomedical MIT is for contactless monitoring of physiological processes such as respiration [96]. However, it was observed recently that coupling MIT with ICEIT (section 4.1.3) and classical EIT leads to a better resolution of the corresponding linearized inverse problem [35].

4.1.5 MREIT with magnetic induction/current density impedance imaging with magnetic induction. In MREIT with magnetic induction (ICMREIT) and current density impedance imaging with magnetic induction (CDII-MI), one perturbs the MRI signals by an electrical current, which is produced by magnetic induction.
Experiment. The measurement apparatus is an MRI machine with one or more coils for inducing eddy currents in the probe. MRI pulse sequences are performed. Additionally, eddy currents are produced before the induction measurement, and the perturbation of the MRI signal is recorded.

The technique has been first proposed in [84].

Modeling. The modeling of these techniques is similar to MREIT/CDII discussed in section 4.1.1, except that we use the reduced eddy current model (2.27) from section 2.3 to model the electric field.

By (2.24), the eddy current inside the tissue is \(\mathbf{J} = -\sigma (i \omega \mathbf{A}_p + \nabla u) \), with \(\mathbf{A}_p \) determined as the vector potential generated by the impressed current density \(\mathbf{J}_i \). This (low frequency) eddy current generates a magnetic field component \(\mathbf{B}_I \) as in (4.8).

As discussed in section 4.1.1 on MREIT/CDII, the signal measured has information of one component of the magnetic field, as in (4.3); this information is used in ICMREIT. By rotating the probe, one can obtain the full vector field \(\mathbf{B}_I \), which is used in CDII-MI.

Problem 7 (Inverse problem CDII-MI). Let \(\mathbf{A}_p \) be the vector potential generated by the excitation current \(\mathbf{J}_i \), given by (4.7). Let \(u \) satisfy the Poisson equation (4.6) with the parameter \(\sigma \).

Given are data \(\mathbf{J} = -\sigma (i \omega \mathbf{A}_p + \nabla u) \). Determine \(\sigma \).

Problem 8 (Inverse problem ICMREIT). Let \(\mathbf{A}_p \) be the vector potential generated by the excitation current \(\mathbf{J}_i \), given by (4.7). Let \(u \) satisfy the Poisson equation (4.6) with parameter \(\sigma \).

Given are data \(\mathbf{B}_I \) with \(\mathbf{B}_J \), as in (4.8). Determine \(\sigma \).

Mathematics and numerics. Algorithms for MREIT/CDII have been adapted for the numerical solution of these problems, thereby using measurements involving \(\mathbf{B}_J \) [33, 84], or measurements involving \(\mathbf{J} \) [72].

4.2 Coupling involving acoustic modalities

Up to now, we have discussed how the conductivity distribution behaves under the influence of electric and magnetic fields. In the last 10 years, there have been several proposals to utilize couplings between electrical and acoustical properties. Ultrasound propagation translates well from outer measurements to inner quantities of the probe. It has long been used well for other hybrid techniques such as photo-acoustic imaging. Therefore, high resolution can be expected. We explain the proposals in the following, and draw especially on background in section 2.4.

4.2.1 Impedance-acoustic tomography. Impedance-acoustic tomography (IAT) exploits Joule heating due to electric currents to produce an ultrasound wave.

Experiments. The measurement equipment are electrodes and ultrasound transducers. The electrodes are attached to the surface of the tissue, and an electric current is injected into the tissue. Joule heating results and the tissue emit an ultrasound wave due to thermal expansion. Ultrasound transducers record this pressure wave at the surface of the probe or in a contact medium, e.g. water. The method has been proposed in [32].
Modeling. We use the quantitative description of the ultrasound wave incorporating electric effects from section 2.4. Since there is no additional outer force \(f \), the relevant wave equation is
\[
\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}(x, t) - \Delta p(x, t) = \frac{\Gamma}{c^2} H.
\]
The model has to be supplied with the initial data \(p(x, t) = 0 \) and \(\frac{\partial}{\partial t} p(x, t) = 0 \). The equation can be considered in \(\mathbb{R}^n \times (0, \infty) \) if one notes that \(H \) has its support in \(\Omega_1 \).

We assume that \(H(x, t) = \bar{H}(x)g(t) \), and that \(g(t) \) can be assumed as the delta pulse. This is because the time of the electrical pulse multiplied with the sound speed in the tissue is negligible. We therefore obtain an inhomogeneous wave equation as outlined in remark 1 in section 2.4:
\[
\frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}(x, t) - \Delta p(x, t) = 0, \quad (x, t) \in \mathbb{R}^n \times (0, \infty),
\]
\[
p = \frac{\beta}{C_p} |E|^2, \quad (x, t) \in \mathbb{R}^n \times \{0\},
\]
\[
\frac{\partial}{\partial t} p = 0, \quad (x, t) \in \mathbb{R}^n \times \{0\},
\]
(4.9)
where \(\sigma \) vanishes outside the domain \(\Omega \).

The power density \(H \) can be related to the conductivity with Joule’s law (2.3), that is,
\[
H = J \cdot E = \sigma |E|^2,
\]
(4.10)
with unit \(\text{W m}^{-3} \), quantifying the energy converted per unit volume and unit time. The power density \(H \) is the intermediate link between the electrical excitation and the acoustical detection, and it appears in the wave equation as a source term.

Imaging. Recovery of the initial pressure from boundary data is a long-established technique. Reconstruction is possible with different measurement geometries, and it has been mainly developed for photo-acoustic tomography, a hybrid technique combining laser excitation and ultrasound detection [59, 69].

If we assume that the quantities \(\beta \) and \(C_p \) are constants, then this gives knowledge of the power density \(\sigma |E|^2 \).

The second step is the reconstruction of conductivity from the interior data \(\sigma |E|^2 = J \cdot E \) throughout \(\Omega_1 \). Obviously, we have to indicate how the electrical field entering this problem as the initial source state is to be described. Here it makes a difference which kind of frequency is employed.

In the electrostatic case of impedance-acoustic tomography [32], we can use the approximation (1.1) known from classical impedance tomography, including Dirichlet data. Then we end up with the following inverse problem with interior data:

Problem 9 (IAT, conductivity reconstruction). Let
\[
\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in} \; \Omega,
\]
\[
u_{\partial \Omega} = f \quad \text{on} \; \partial \Omega,
\]
\[
\sigma \frac{\partial}{\partial n} u = g \quad \text{on} \; \partial \Omega.
\]
Given are \(f, g \), as well as interior data \(H = \sigma |\nabla u|^2 \). Determine the conductivity \(\sigma \) from these.

Mathematical analysis. The unique recovery of \(\sigma \) was shown in [22] for the two-dimensional version of problem 9, using \(H_{11}, H_{12}, H_{22} \) for \(H_{ij} = \sigma |\nabla u_1 \cdot \nabla u_2| \). (The term \(H_{12} \) can be obtained using \(\sigma |\nabla u_1|^2, \sigma |\nabla u_1|^2, \sigma |\nabla (u_1 + u_2)|^2 \) by polarization.) This result was generalized in [14] to
three dimensions, using multiple measurement data to guarantee unique global reconstruction. Reconstruction of σ using one power density $H = \sigma |\nabla u|^2$, based on the nonlinear PDE $\nabla \cdot (H \nabla u) = 0$, was investigated in [12]. Numerical reconstruction procedures have been applied to simulated data in [22, 32, 58]. The stability result from [60] applies to reconstructions of σ from two or more power densities.

4.2.2 Quantitative thermo-acoustic tomography (qTAT). In thermo-acoustic tomography, one exploits Joule heating due to microwave excitation to produce an ultrasound wave.

Experiment. The measurement equipment consists of a microwave generator and ultrasound transducers. Microwaves pulses are generated with a frequency in the GHz range. They propagate within the tissue sample and energy absorption causes Joule heating. The tissue reacts with a short expansion wave which is recorded outside the tissue, either on its surface or in a contact medium such as water. Measurement setups are described, e.g., in [69].

Modeling. The general principles of the technique are the same as for IAT, described in section 4.2.1. We use again the inhomogeneous wave equation (2.36) with $f = 0$. Assuming that the power density is of the form $H(x, t) = H(x)g(t)$ with $g(t) = \delta(t)$ a delta pulse. Therefore, we arrive at the same wave equation (4.9) with initial pressure $\tilde{H}(x) = J(x) \cdot E(x) = \sigma(x)|E(x)|^2$.

A high-frequency description is necessary for modeling the oscillating field E evoked by microwaves. Here one starts from the time derivative of the Ampère–Maxwell law in (2.1),

$$\nabla \times \partial_t \mathbf{B} = \mu_0 \partial_t \mathbf{J} + \mu_0 \partial_x \mathbf{D} - \mathbf{S},$$

and couples it with Faraday’s law $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$ to get the radiation equation

$$\varepsilon \mu_0 \partial_t \mathbf{E} + \sigma \mu_0 \partial_x \mathbf{E} + \nabla \times \nabla \times \mathbf{E} = \mathbf{S}. \tag{4.11}$$

Here, \mathbf{S} is a known term, representing the induced electromagnetic field of the excitation. By vector analysis identities, (4.12) is equivalent with

$$\varepsilon \mu_0 \partial_t \mathbf{E} + \sigma \mu_0 \partial_x \mathbf{E} + \nabla (\nabla \cdot \mathbf{E}) - \nabla \mathbf{E} = \mathbf{S}, \tag{4.12}$$

where Δ is the Laplace operator applied componentwise.

Imaging. The initial pressure distribution can be obtained by acoustic reconstruction formulas. To calculate the conductivity σ, we have now the quantitative aspect of TAT.

Problem 10 (qTAT). Let

$$\varepsilon \mu_0 \partial_t \mathbf{E} + \sigma \mu_0 \partial_x \mathbf{E} + \nabla (\nabla \cdot \mathbf{E}) - \Delta \mathbf{E} = \mathbf{S}$$

with known \mathbf{S} and constant ε, μ_0.

Determine the conductivity σ from the knowledge of \mathbf{S} and $\sigma|\mathbf{E}|^2$.

In [15], the unique recovery of σ from $H = \sigma(x)|\mathbf{E}(x)|^2$ is shown for a class of bounded conductivity distributions (assuming that $\varepsilon \equiv \text{const.}$, such that $\nabla \cdot \mathbf{E} = 0$ by the second equation in (2.1)). Also, the following scalar model is investigated

$$\varepsilon \mu_0 \partial_t u + \sigma \mu_0 \partial_x u - \Delta u = S,$$

which is converted by the Fourier transform into

$$\Delta u + k^2 u + iku = S.$$

Here, $k = \frac{1}{\sqrt{\varepsilon \mu_0}}$ is the wave number, and $q = -\sigma \sqrt{\mu_0 \varepsilon}$. An exact reconstruction formula for q in this equation is developed in [8] (also assuming ε is constant).
4.2.3 Magneto-acoustic tomography with magnetic induction (MAT-MI). Magneto-acoustic tomography exploits the Lorentz force effect to create a pressure wave.

Experiment. The measurement equipment consists of an excitation coil, a static magnet and ultrasound transducers. While the tissue is kept in the static magnetic field, electrical pulses in the excitation coil induce an eddy current in the tissue. These, in turn, are affected by the Lorentz force due to the static field. The force causes the tissue to displace locally, and a pressure wave results. This wave reaches the boundary, where ultrasound transducers record the signal, either at the surface of the body or in a contact medium, such as water.

Experimental setups with different arrangements of induction coils are documented in [44, 107].

Mathematical modeling. We model the ultrasound wave motion with the wave equation with outer force f. Applying (2.2) with vanishing charge density $\rho = 0$ to the static field $B = B_0$, we obtain the expression for the Lorentz force density $f = J \times B_0$ (see also [88]). Following the discussion in section 2.4, the quantitative description of the acoustic wave is governed by

$$\frac{1}{c^2} \partial_t^2 p(x, t) - \Delta p(x, t) = -\nabla \cdot (J \times B_0) + \frac{1}{c^2} \partial_t H,$$

where H quantifies the absorbed energy due to eddy currents. Notwithstanding, the energy absorption effect can be ignored in the experiments of [107]. There, magnetic induction is used for excitation of electrical currents, and this entails smaller field strengths. Considering the usual scale of conductivity in biological tissue, the pressure due to the thermo-acoustic effect can be neglected compared with pressure due to Lorentz force [112] (see also [107, p 5179]).

Therefore, the model is

$$\frac{1}{c^2} \partial_t^2 p(x, t) - \Delta p(x, t) = -\nabla \cdot (J \times B_0),$$

(4.13)

together with the initial and boundary conditions

$$p(0) = 0, \quad \partial_t p(0) = 0.$$

(4.14)

We assume that the time- and space variables can be separated. The inhomogeneity f is therefore $\nabla \cdot \tilde{f}(x) g(t)$, where \tilde{f} is the force density $-J \times B_0 = -\sigma(x) E(x) \times B_0(x)$. Due to the different frequency ranges of the electrical and the acoustical pulse, we assume again that g is a delta distribution. According to Duhamel’s principle (2.36), the inhomogeneous problem (4.13) and (4.14) can be converted to a Cauchy problem for the homogeneous wave equation [7, 9]:

$$\frac{1}{c^2} \partial_t^2 p - \Delta p = 0, \quad (x, t) \in \Omega \times (0, \infty)$$

$$p = 0, \quad x \in \partial \Omega, \quad t = 0$$

$$\partial_t p = -\nabla \cdot (\sigma E \times B_0), \quad t = 0$$

(4.15)

Imaging. The first step is the reconstruction of the source term $\nabla \cdot (\sigma E \times B_0)$. In contrast to the techniques of IAT and TAT, we now look for the initial velocity of the pressure, which can be recovered as well.

As a quantitative problem, it remains to recover the distribution of the conductivity σ over Ω. For this purpose, one has to describe the electrical field E. For this, we use the eddy current model (2.27) discussed in section 2.3, adapted here for the pulsed excitation current (see also [70]). Therefore, the hybrid imaging problem is
Problem 11 (Inverse problem MAT-MI). Let
\[\nabla \cdot (\sigma \nabla u) = -\partial_t A_p \cdot \nabla \sigma \quad \text{in } \Omega \]
\[\partial_n u = -\partial_t A_p \cdot n \quad \text{on } \partial \Omega \]
\[\int_{\partial \Omega} u \, dS = 0. \]
The vector potential \(A_p \mid_{\partial \Omega} \) on \(\mathbb{R}^3 \) is determined from the excitation current \(J_i \mid_F \) by
\[A_p(x, t) = \frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} \frac{J_i(y, t)}{|x - y|} \, d^3y. \]
Given are \(B_0 \) and \(\nabla \cdot (\sigma (\partial_t A_p + \nabla u) \times B_0) \), from which we determine \(\sigma \).

4.2.4 Magneto-acoustic-electrical tomography (MAET). In MAET, pressure waves excite the tissue, and a voltage is produced due to the Lorentz force effect.

Experiment. The measurement equipment in MAET consists of a permanent magnet, a waveform generator and electrodes to measure the voltage at the boundary. The sample is put into the static magnetic field, and exposed to different ultrasound waves. Due to frictional forces, the ions in the tissue move. As there is a magnetic field present, the electrical charges separate by the Lorentz force mechanism. A voltage results, which is detected on the surface of the probe. The experiment is repeated with different arrangements of the static field.

The physical effect underlying this technique has been studied in [76, 103]; further imaging experiments have been reported in [39].

Modeling. To model MAET, we follow the approach in [61]. We assume that the static magnetic field \(B \) in the experiments is homogeneous, that is, \(B(x) = B \). The Lorentz force exerted upon the moving particles gives rise to an impressed current density \(J_L \) which is approximately [61, 76]
\[J_L(x, t) = \sigma(x)B \times v(x, t), \]
where \(v \) is the velocity field of the fluid.

For each time \(t \), the electrical field inside the domain \(\Omega \) is described by an electrical potential, \(E(x, t) = -\nabla u(x, t) \). In the absence of any other free charges, the potentials can be described by the conditions \(\nabla \cdot J = 0 \) and \(J \cdot n = 0 \) for the total current \(J = -\sigma \nabla u + J_L \), that is,
\[\nabla \cdot (\sigma \nabla u) = -\nabla \cdot (\sigma B \times v), \quad \text{in } \Omega \]
\[\partial_n u = -(B \times v) \cdot n \quad \text{on } \partial \Omega. \quad (4.16) \]

The voltage measured at the boundary gives knowledge of \(u(x, t) \mid_{\partial \Omega} \). One can also assume that only a weighted average of \(u \) is known, that is,
\[M(t) = \int_{\partial \Omega} I(x)u(x, t) \, dS(x). \quad (4.17) \]

Mathematical analysis. Using identities from vector analysis, it can be shown that the measurements in (4.17) are
\[M(t) = -B \cdot \int_{\Omega} J_L \times v \, d^3x, \quad (4.18) \]
with the current density \(J_I(x) = -\sigma \nabla u_I(x) \) satisfying the electrostatic equation
\[
\nabla \cdot (\sigma \nabla u_I) = 0, \quad x \in \Omega \\
\sigma \partial_n u_I = I(x), \quad x \in \partial \Omega.
\]

The inverse problem is

Problem 12 (MAET). Let \(u_I \) satisfy (4.19). Determine \(\sigma \) from the knowledge of \(M(t) \) in (4.18), by possibly varying \(B \), \(I \) and \(v \).

Reconstructions for the case of general acoustic waves have been given in [61]. The procedure leads to the knowledge of several vector-valued current densities \(J_I \), which in the last step are converted to \(\sigma \). This is a problem of current density impedance imaging (CDII), discussed in section 4.1.1. Reconstructions for the case of focused ultrasound excitation are given in [7].

4.2.5 Acousto-electrical tomography (AET).

An EIT experiment is performed and, in addition, the conductivity values are perturbed via ultrasound excitation in parallel.

Experiment. For the measurements, one needs the typical EIT electrode setup and a device to produce ultrasound waves to excite the probe. The standard EIT measurement protocol is performed. For the perturbation of the conductivity, a set of various ultrasound waves is applied. The boundary voltages due to the perturbation are then compared with the standard voltages.

The method was proposed in [108]. The underlying physical effect is treated in [66].

Modeling. The standard electrostatic equation from (2.20) is used to model the electrical potential \(u \),
\[
\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in} \ \Omega \\
\sigma \partial_n u = g \quad \text{on} \ \partial \Omega.
\]

We now assume that the probe is excited by focused ultrasound beams. Therefore, the conductivity (which depends on the pressure) is perturbed in a domain \(D = z + \delta B \), where \(B \) is the unit disk and \(z \) is the center of focus. The perturbed conductivity is denoted \(\sigma^\delta z \); the new potential \(u^\delta z \) is therefore described by
\[
\nabla \cdot (\sigma^\delta z \nabla u^\delta z) = 0 \quad \text{in} \ \Omega \\
\sigma^\delta z \partial_n u^\delta z = g \quad \text{on} \ \partial \Omega.
\]

As measurement data, we have the difference of the measured voltages at the boundary, i.e. \(u^\delta z - u|_{\partial \Omega} \).

Mathematical analysis. It is shown in [5] that for \(\delta \to 0 \), one has the asymptotic formula
\[
\int_{\partial \Omega} (u^\delta - u) g \, dS = |\nabla u(z)|^2 \int_D \sigma(y) \left(\frac{\eta(y) - 1}{\eta(y) + 1} \right)^2 \, d^3 y + o(\text{vol}(D)).
\]

Here, \(\eta \) is a known function in \(\Omega \).

From this formulation, one notes that the measurement data give knowledge of the power density at \(z \), \(\sigma(z)|\nabla u(z)|^2 \), up to a small error.

Imaging. The inverse problem is to recover the conductivity \(\sigma \) from the interior information \(\sigma|\nabla u| \). This problem is identical to problem 9 of IAT.
Table 3. Electromagnetic variants of the Calderón problem in different frequency ranges.

Technique	Equation in \(\Omega \)	Boundary data	Remarks		
EIT	\(\nabla \cdot (\sigma \nabla u) = 0 \)	\(u, \sigma \partial_n u \)			
IC – EIT	\(\nabla \cdot (\sigma \nabla u) = -i\omega A \cdot \nabla \sigma \)	\(u, \sigma \partial_n u = -i\omega A \cdot n \)	Excitation \(A \) known		
MIT	\(\nabla \cdot (\sigma \nabla u) = -i\omega A \cdot \nabla \sigma \)	\(\int_{C} n \cdot B \sigma \partial_n u = -i\omega A \cdot n \)	Excitation \(A \) known, \(B = B(\sigma, u, A) \), \(C \) is a coil surface outside \(\Omega \).		
MD – EIT	\(B = \int_{\Omega} \frac{J}{	R	^3} \)	\(B \)	Recover \(J \), not \(\sigma \)

Problem 13 (AET, conductivity determination). Let

\[
\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in} \ \Omega \\
\left. u \right|_{\partial \Omega} = f \quad \text{on} \ \partial \Omega \\
\sigma \partial_n u = g \quad \text{on} \ \partial \Omega.
\]

Given are \(f \), \(g \), as well as interior data \(H = \sigma |\nabla u|^2 \). Determine \(\sigma \).

Mathematical analysis. In the modeling of AET, we have assumed that \(\sigma^2 - \sigma \) are approximately delta-distributions. But this restriction can be overcome and other more practical forms of ultrasound perturbation (such as plane waves, e.g.) can be used [57], [58, section 2].

For this we consider

\[
L_\sigma (f)(y) = \int_{\Omega} k(x, y) f(x) \, d^3x
\]

where \(L_\sigma \) maps an increment \(f = d\sigma \) of conductivity to the corresponding perturbation \(L_\sigma f \) in the boundary voltage. As perfect focusing of ultrasound waves correspond to \(\delta \)-distributions \(f \), this would correspond to simple evaluation of the kernel \(k(x, y) \). It is more realistic that ultrasound waves of other, unfocused type, trigger the corresponding conductivity changes, proportional to the pressure. So the intermediate step (synthetic focusing) corresponds to finding the values of the kernel \(k(x, y) \) by measurements of

\[
\int_{\Omega} k(x, y) w_\alpha(x) \, d^3x
\]

for a particular class of waves \(w_\alpha \). Synthetic focusing for spherical waves, plane waves has been discussed in [57, section 2]; numerical calculations are performed in [58].

5. Summary

The hybrid imaging techniques and mathematical models discussed above are summarized in tables 3, 4 and 5. These contain the imaging data, the overspecified data of the quantitative inverse problem and the equations of the forward problems. In mathematical terms, the problems in tables 4 and 5 are inverse problems with interior data. The table, however, does not summarize unique identifiability and unique reconstructability of the quantitative imaging data. Hybrid models coupling magnetic resonance effects with current densities are listed in table 4. Some of these, like MREIT/CDII, rely on the low-frequency description \(\nabla \cdot (\sigma \nabla u) = 0 \), others use radiofrequency currents, where the electrostatic approximation is not available and quasistatic approximations are used. Coupling hybrid techniques with
ultrasound modalities are summarized in Table 5. They also range from low-frequency or quasistatic to high-frequency ranges.

In addition to coupled physics (hybrid) techniques with interior information, we also summarize the standard EIT problem (the Calderón problem) together with techniques using electromagnetic coupling in several frequency ranges (see Table 3). The corresponding reconstruction cannot be separated into two imaging problems with interior data.

Acknowledgments

We thank Barbara Kaltenbacher for helpful discussions and Yuan Xu, Eung Je Woo, Doga Gürsoy and Hermann Scharfetter for information concerning the special techniques. This work has been supported by the Austrian Science Fund (FWF) within the national research network Photoacoustic Imaging in Biology and Medicine, project S10505-N20.

References

[1] Adler A, Gaburro R and Lionheart W 2011 Electrical impedance tomography Handbook of Mathematical Methods in Imaging ed O Scherzer (Berlin: Springer) pp 599–652 (available at www.springerlink.com/content/978-0-387-92920-0#sections=836310)

5 Briefly, we also mention some hybrid imaging techniques using other physical parameters, which nevertheless are formally related to the models using the electrostatic regime. \(\nabla \cdot (\sigma \nabla u) = 0 \). In quantitative photoacoustic tomography (qPAT) in the diffusion regime, the diffusivity \(\kappa \) is reconstructed, while the absorption \(\mu \) in the elliptic equation \(\nabla \cdot (\sigma \nabla u) + \mu u = 0 \) is known. The imaging data are \(H = \mu I \) [17, 24]. In microwave tomography, the generalization of AET, one recovers the parameters \(a \) and \(q \) in \(\nabla \cdot (a \nabla u) + k^2 q u = 0 \), with \(a |\nabla u|^2 \) and \(q |u|^2 \) given [9, 6]. In optoacoustic tomography one also recovers \(\sigma \) in \(\nabla \cdot (\sigma \nabla u) = 0 \) with \(\sigma |\nabla u|^2 \) given, where \(\sigma \) is the optical absorption [16].
[2] Aizebeokhai A P 2010 2D and 3D geoelectrical resistivity imaging: theory and field design Sci. Res. Essays 23 3592–605 (available at www.academicjournals.org/sre/abstracts/abstracts/abstracts2010/4Dec/Aizebeokhai.htm)
[3] Alessandrini G 1988 Stable determination of conductivity by boundary measurements Appl. Anal. 27 153–72
[4] Ammari H 2008 An Introduction to Mathematics of Emerging Biomedical Imaging (Mathématiques et Applications) (Berlin: Springer)
[5] Ammari H, Bonnetier E, Capdeboscq Y, Tanter M and Fink M 2008 Electrical impedance tomography by elastic deformation SIAM J. Appl. Math. 68 1557–73
[6] Ammari H, Capdeboscq Y, de Gournay F, Rozanova A and Triki F 2011 Microwave imaging by elastic perturbation SIAM J. Appl. Math. 71 2112–30
[7] Ammari H, Capdebecq Y, Kang H and Kozhemyak A 2009 Mathematical models and reconstruction methods in magneto-acoustic imaging Eur. J. Appl. Math. 20 303–17
[8] Ammari H, Garnier J, Jing W and Nguyen L 2012 Quantitative thermo-acoustic imaging: and exact reconstruction formula arXiv:1201.0619v1
[9] Ammari H and Kang H 2011 Expansion methods Handbook of Mathematical Methods in Imaging ed O Scherzer (Berlin: Springer) pp 447–500
[10] Arfken G B and Weber H J 2001 Mathematical Methods for Physicists 5th edn (New York: Academic)
[11] Astala K and Päiväranta L 2006 Calderón’s inverse conductivity problem in the plane Ann. Math. 163 265–99
[12] Bal G 2011 Cauchy problem for ultrasound modulated EIT arXiv:1201.0972v1
[13] Bal G 2011 Hybrid inverse problems and internal information arXiv:1110.4733v1
[14] Bal G, Bonnetier E, Monard F and Triki F 2011 Inverse diffusion from knowledge of power densities arXiv:1110.4577v1
[15] Bal G, Ren K, Uhlmann G and Zhou T 2011 Quantitative thermo-acoustics and related problems Inverse Problems 27 055007
[16] Bal G and Schotland J C 2010 Inverse scattering from knowledge of power densities arXiv:1012.5423v1
[17] Bal G and Uhlmann G 2010 Inverse diffusion from knowledge of power densities arXiv:1012.5423v1
[18] Bayford R H 2006 Bioimpedance tomography (electrical impedance tomography) Annu. Rev. Biomed. Eng. 8 63–91
[19] Binns R, Lyons A R A, Peyton A J and Pritchard W D N 2001 Imaging molten steel flow profiles Meas. Sci. Technol. 12 1132–8
[20] Borcea L 2002 Electrical impedance tomography Inverse Problems 18 R99–136
[21] Calderón A P 1980 On an inverse boundary value problem Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro: Soc. Brasil. Mat.) pp 65–73 (reprint available at www.scielo.br/pdf/cam/v25n2-3/a02v2523.pdf)
[22] Capdeboscq Y, Fehrenbach J, de Gournay F and Kavian O 2009 Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements SIAM J. Imag. Sci. 2 1003–30
[23] Cheney M, Isaacson D and Newell J C 1999 Electrical impedance tomography SIAM Rev. 41 85–101
[24] Cox B T, Laufer J G and Beard P C 2009 The challenges for quantitative photoacoustic imaging Proc. SPIE 7177 717713
[25] De Geeter N, Crevecoeur G and Dupré L 2010 Low-parametric induced current-magnetic resonance electrical impedance tomography for quantitative conductivity estimation of brain tissues using a priori information: a
simulation study Engineering in Medicine and Biology Society (EMBC), 2010 Annual Int. Conf. of the IEEE
Trans. Med. Imag. 13 338–50
[35] Gürsoy D, Mamatjan Y, Adler A and Scharfetter H 2011 Enhancing impedance imaging through multimodal
tomography IEEE Trans. Biomed. Eng. 58 3215–24
[36] Gürsoy D and Scharfetter H 2009 Optimum receiver array design for magnetic induction tomography IEEE
Trans. Biomed. Eng. 56 1435–41
[37] Haacke E M, Brown R W, Thompson M R and Venkatesan R 1999 Magnetic Resonance Imaging: Physical
Principles and Sequence Design (New York: Wiley)
[38] Haemmerich D, Stalin S T, Tsai J Z, Tungjitkusolmun S, Mahvi D M and Webster J G 2003 In vivo electrical
cconductivity of hepatic tumours Physiol. Meas. 24 251–60
[39] Haider S, Hrbek A and Xu Y 2008 Magneto-acousto-electrical tomography: a potential method for imaging
current density and electrical impedance Physiol. Meas. 29 S41–30
[40] Haltmeier M 2010 Mathematical Methods in Photoacoustic Image Reconstruction Habilitation, University of
Vienna, Austria
[41] Hasanov K F, Ma A W, Nachman A I and Joy M L G 2008 Current density impedance imaging IEEE Trans.
Med. Imag. 27 1301–9
[42] Hauer K-H, Kühn L and Potthast R 2005 On uniqueness and non-uniqueness for current reconstruction from
magnetic fields Inverse Problems 21 955–67
[43] Hauer K-H, Potthast R and Wannert M 2008 Algorithms for magnetic tomography—on the role of a priori
knowledge and constraints Inverse Problems 24 045008
[44] Hu G, Li X and He B 2010 Imaging biological tissues with electrical conductivity contrast below 1 S m
−1 by
means of magnetoacoustic tomography with magnetic induction Appl. Phys. Lett. 97 103705
[45] Hummel J N 1930 Der scheinbare spezifische Widerstand Z. Geophys. 5 89–104
[46] Ireland R H, Tozer J C, Barker A T and Barber D C 2004 Towards magnetic detection electrical impedance
tomography: data acquisition and image reconstruction of current density in phantoms and in vivo Physiol.
Meas. 25 775–96
[47] Jackson J D 1998 Classical Electrodynamics 3rd edn (New York: Wiley)
[48] Joines W, Zhang Y, Li C and Jirtle R 1994 The measured electrical properties of normal and malignant human
tissues from 50 to 900 MHz Med. Phy. 21 547–50
[49] Jossinet J 1998 The impedivity of freshly excised human breast tissue Physiol. Meas. 19 61–75
[50] Katscher U, Dorniok T, Findeklee C, Vernickel P and Nehrke K 2007 In vivo determination of electric
cconductivity and permittivity using a standard MR system 13th Int. Conf. on Electrical Bioimpedance
and 8th Conf. on Electrical Impedance Tomography 2007 (IFMBE Proc. vol 17) ed H Scharfetter and
R Merwa (Berlin: Springer) pp 508–11
[51] Katscher U, Voigt T, Findeklee Ch, Vernickel P, Nehrke K and Dössel O 2009 Determination of electric
conductivity and local SAR via B1 mapping IEEE Trans. Med. Imag. 28 1365–74
[52] Keshkka A, Keshkka A and Smallwood R H 2006 Electrical impedance spectroscopy and the diagnosis of
bladder pathology Physiol. Meas. 27 585–96
[53] Kim S, Kwon O, Seo J K and Yoon J-R 2002 On a nonlinear partial differential equation arising in magnetic
resonance impedance tomography SIAM J. Math. Anal. 34 511–26
[54] Kim Y J, Kwon O, Keun Seo J and Woo E J 2003 Uniqueness and convergence of conductivity
image reconstruction in magnetic resonance electrical impedance tomography Inverse Problems 19 1213–25
[55] Kress R, Kühn L and Potthast R 2002 Reconstruction of a current distribution from its magnetic field Inverse
Problems 18 1127–46
[56] Kuchment P 2011 Mathematics of hybrid imaging, A brief review arXiv:1107.2447v1
[57] Kuchment P and Kunyansky L 2010 Synthetic focusing in ultrasound modulated tomography Inverse Problem
Imaging 4 665–73
[58] Kuchment P and Kunyansky L 2011 2D and 3D reconstructions in acousto-electric tomography Inverse Problems
27 055013
[59] Kuchment P and Kunyansky L 2011 Mathematics of photoacoustic and thermoacoustic tomography
Handbook of Mathematical Methods in Imaging ed O Scherzer (Berlin: Springer) pp 817–67 (available
at www.springerlink.com/content/978-0-387-92920-0#section=836315)
[60] Kuchment P and Steinhauer D 2011 Stabilizing inverse problems by internal data arXiv:1100.1819v2
[61] Kunyansky L 2011 A mathematical model and inversion procedure for magneto-acousto-electric tomography
(MAET) arXiv:1108.0376v1
[62] Kwon O, Lee J-Y and Yoon J-R 2002 Equipotential line method for magnetic resonance electrical impedance tomography Inverse Problems 18 1089–100

[63] Kwon O, Woo E J, Yoon J-R and Seo J K 2002 Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm IEEE Trans. Biomed. Eng. 48 160–7

[64] Landau L D and Lifshitz E M 1987 Course of Theoretical Physics. Volume 6: Fluid Mechanics 2nd edn (New York: Pergamon)

[65] Laufner S, Ivorra A, Reuter V E, Rubinsky B and Solomon S B 2010 Electrical impedance characterization of normal and cancerous human hepatic tissue Physiol. Meas. 31 995–1009

[66] Lavander B, Josinett J and Caghnalli D 2000 Quantitative assessment of ultrasound-induced resistance change in saline solution Med. Biol. Eng. Comput. 38 150–5

[67] Lee J-Y 2004 A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions Inverse Problems 20 847–58

[68] Lehner G 2008 Elektromagnetische Feldtheorie 6th edn (Berlin: Springer)

[69] Li C and Wang L V 2009 Photoacoustic tomography and sensing in biomedicine Phys. Med. Biol. 54 R59–97

[70] Li X, Maniapan L and He B 2010 Three-dimensional multiexcitation magnetoacoustic tomography with magnetic induction J. Appl. Phys. 108 124702

[71] Liu J J, Seo J K, Sin M and Woo E J 2007 On the convergence of the harmonic B_r algorithm in magnetic resonance electrical impedance tomography SIAM J. Appl. Math. 67 1259–82

[72] Liu Y, Zhao S and He B 2009 Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study Phys. Med. Biol. 54 4561–73

[73] Lustfeld H, Reißel M and Steffen B 2009 Magnetotomography and electric currents in a fuel cell Fuel Cells 9 474–8

[74] Mandache N 2001 Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems 17 1435–44

[75] Miklavicevic D, Pasaelj N and Hart F X 2006 Electric properties of tissues Wiley Encyclopedia of Biomedical Engineering (New York: Wiley) pp 1–12

[76] Montalibet A, Josinett J, Matias A and Cathignol D 2001 Electric current generated by ultrasonically induced Lorentz force in biological media Med. Biol. Eng. Comput. 39 15–20

[77] Moran J H and Kunz K S 1962 Basic theory of induction logging and application to study of two-coil sondes Geophysics 27 829–58

[78] Nachman A, Tamasan A and Timonov A 2007 Conductivity imaging with a single measurement of boundary and interior data Inverse Problems 23 2551–63

[79] Nachman A, Tamasan A and Timonov A 2009 Recovering the conductivity from a single measurement of interior data Inverse Problems 25 035014

[80] Nachman A, Tamasan A and Timonov A 2010 Reconstruction of planar conductivities in subdomains from incomplete data SIAM J. Appl. Math. 70 3342–62

[81] Nachman A, Tamasan A and Timonov A 2011 Current density impedance imaging Tomography and Inverse Transport Theory (Contemporary Mathematics vol 559) ed G Bal, D Finch, P Kuchment, J Schotland, P Stefanov and G Uhlmann (Providence, RI: American Mathematical Society)

[82] Nashed M Z and Tamasan A 2011 Structural stability in a minimization problem and applications to conductivity imaging Inverse Problem Imaging 5 219–36

[83] Negishi M, Tong T and Constable R T 2011 Magnetic resonance driven electrical impedance tomography: a simulation study IEEE Trans. Med. Imaging. 30 828–37

[84] Özpirlak L and Ider Y Z 2005 Induced current magnetic resonance-electrical impedance tomography Physiol. Meas. 26 S289–305

[85] Pellerin L 2002 Applications of electrical and electromagnetic methods for environmental and geotechnical investigations Surv. Geophys. 23 101–32

[86] Peyton A J et al 1996 An overview of electromagnetic inductance tomography: description of three different systems Meas. Sci. Technol. 7 261–71

[87] Pothast R and Wannert M 2009 Uniqueness of current reconstructions for magnetic tomography in multitarget devices SIAM J. Appl. Math. 70 563–78

[88] Roth B J and Wikswo J P 1998 Comments on ‘Hall effect imaging’ IEEE Trans. Biomed. Eng. 45 1294–5

[89] Samouelian A, Cousin I, Tabbagh A, Bruand A and Richard G 2005 Electrical resistivity survey in soil science: a review Soil. Till. Res. 83 173–93

[90] Schwab H P 1963 Electric characteristics of tissues Biophysik 1 198–208

[91] Scott G C, Joy M L G, Armstrong R L and Henkelman R M 1991 Measurement of nonuniform current density by magnetic resonance IEEE Trans. Med. Imag. 10 362–74

[92] Scott G C, Joy M L G, Armstrong R L and Henkelman R M 1992 Sensitivity of magnetic-resonance current-density imaging J. Magn. Reson. 97 235–54
[93] Seo J K and Woo E J 2011 Magnetic resonance electrical impedance tomography (MREIT) SIAM Rev. 53 40–68
[94] Slichter L B 1933 The interpretation of the resistivity prospecting method for horizontal structures J. Appl. Phys. 4 307–22
[95] Soni N K, Paulsen K D, Dehghani H and Hartov A 2006 Finite element implementation of Maxwell’s equations for image reconstruction in electrical impedance tomography IEEE Trans. Med. Imag. 25 55–61
[96] Steffen M and Leonhardt St 2007 Development of the multichannel simultaneous magnetic induction measurement system Musimitos 13th Int. Conf. on Electrical Bioimpedance and 8th Conf. on Electrical Impedance Tomography 2007 (IFMBE Proc. vol 17) ed H Scharfetter and R Merwa (Berlin: Springer) pp 448–51
[97] Surowiec A J, Stuchly S S, Barr J R and Swarup A 1988 Dielectric properties of breast carcinoma and the surrounding tissues IEEE Trans. Biomed. Eng. 35 257–63
[98] Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann. Math. 125 153–69
[99] Takagi T, Bowler J R and Yoshida Y (ed) 1997 Electromagnetic Nondestructive Evaluation (Amsterdam: IOS Press)
[100] Uhlmann G 2009 Electrical impedance tomography and Calderón’s problem Inverse Problems 25 123011
[101] Wagner T A, Zahn M, Grodzinsky A J and Pascual-Leone A 2004 Three-dimensional head model simulation of transcranial magnetic stimulation IEEE Trans. Biomed. Eng. 51 1586–98
[102] Wang D, Ma W, DeMonte T P, Nachman A I and Joy M L G 2011 Radio-frequency current density imaging based on a 180° sample rotation with feasibility study of full current density vector reconstruction IEEE Trans. Med. Imag. 30 327–37
[103] Wen H, Shah J and Balaban R S 1998 Hall effect imaging IEEE Trans. Biomed. Eng. 45 119–24
[104] Williams R A 2010 Landmarks in the application of electrical tomography in particle science and technology Particuology 8 493–7
[105] Williamson S J and Kaufman L 1981 Biomagnetism J. Magn. Magn. Mater. 22 129–201
[106] Woo E J and Seo J K 2008 Magnetic resonance electrical impedance tomography (MREIT) for high resolution conductivity imaging Physiol. Meas. 29 R1–26
[107] Xu Y and He B 2005 Magnetoacoustic tomography with magnetic induction (MAT-MI) Phys. Med. Biol. 50 5175–87
[108] Zhang H and Wang L 2004 Acousto-electric tomography Proc. SPIE 5320 145–9
[109] Zhang X, Zhu S and He B 2010 Imaging electric properties of biological tissues by RF field mapping in MRI IEEE Trans. Med. Imag. 29 474–81
[110] Zlochiver S, Rosenfeld M and Abboud S 2003 Induced-current electrical impedance tomography: a 2D theoretical simulation IEEE Trans. Med. Imag. 22 1550–60
[111] Zou Y and Guo Z 2003 A review of electrical impedance techniques for breast cancer detection Med. Eng. Phys. 25 79–90
[112] Xu Y 2010 personal communication