On PM-factorizable topological groups *

Meng Baoa, Xiaoquan Xub,*

aCollege of Mathematics, Sichuan University, Chengdu 610064, China
bFujian Key Laboratory of Granular Computing and Applications, Minnan Normal University, Zhangzhou 363000, China

Abstract

A topological group G is called PM-factorizable if for every continuous real-valued function f on G, there exists a perfect homomorphism $\pi : G \to H$ onto a metrizable topological group H such that $f = g \circ \pi$, for some continuous real-valued function g on H. It is proved that a topological group is PM-factorizable if and only if it is feathered M-factorizable, and a topological group is PR-factorizable if and only if it is PM-factorizable and ω-narrow. The two results deduce that a topological group G is PR-factorizable if and only if G is feathered R-factorizable. Moreover, some properties about products of PM-factorizable topological groups are investigated. In particular, some interesting properties of M-factorizable topological groups in \cite{8, 10} are strengthened to PM-factorizable topological groups.

Keywords: Topological groups, metrizable, feathered, PM-factorizable, PR-factorizable.

2000 MSC: 22A05; 54A25; 54H11.

1. Introduction

In the field of Topological Algebra, topological groups are standard researching objects and have been studied for many years, see \cite{1}. A topological group is a group equipped with a topology such that the multiplication on the group is jointly continuous and the inverse mapping is also continuous. It is well-known that for every continuous real-valued function f on a compact topological group G, there exists a continuous homomorphism $p : G \to L$ onto a second-countable topological group L and a continuous real-valued function h on L such that $f = h \circ p$. Then, Tkachenko posed the concept of R-factorizable topological groups, see \cite{4}. A topological group G is called R-factorizable if for every continuous real-valued function f on G, we can find a continuous homomorphism $\pi : G \to H$ onto a second-countable topological group H such that $f = g \circ \pi$, for some continuous real-valued function g on H. We know that R-factorizable topological groups are generalizations of compact groups and separable metrizable groups. For more interesting properties about R-factorizable topological groups, see \cite{2, 3, 4}. However, since a metrizable topological group need not to be R-factorizable, it follows that H. Zhang, D. Peng and W. He in \cite{10} posed the notion of M-factorizable topological group. A topological group G is called M-factorizable if for every continuous real-valued function f on G, there is a continuous homomorphism $\varphi : G \to H$ onto a metrizable topological group H such that $f = g \circ \varphi$, for some continuous real-valued function g on H. Since all first-countable topological groups are metrizable, it is trivial to see that all first-countable topological groups are M-factorizable. Moreover, it was proved in \cite{10} Theorem 3.2] that a topological group is R-factorizable if and only if it is M-factorizable and ω-narrow.

By the further research of R-factorizable topological groups, L. Peng and Y. Liu introduced the concept of PR-factorizable topological groups, that is, a topological group G is called PR-factorizable if for every

*This research was supported by the National Natural Science Foundation of China (Nos. 12071199, 11661057), the Natural Science Foundation of Jiangxi Province, China (No. 20192ACBL20045).
*Corresponding author.

Email addresses: mengbao952130163.com (Meng Bao), xiqxu20020163.com (Xiaoquan Xu)

Preprint submitted to Topology and its Applications May 4, 2022
continuous real-valued function \(f \) on \(G \), there exists a perfect homomorphism \(\pi : G \to H \) onto a second-countable topological group \(H \) such that \(f = g \circ \pi \), for some continuous real-valued function \(g \) on \(H \). They gave the characterizations of \(\mathbb{PR} \)-factorizable topological groups in \[3\] Theorem 2.6. In particular, a topological group is \(\mathbb{PR} \)-factorizable if and only if it is Lindelöf feathered. Moreover, since every \(\omega \)-narrow feathered topological group is Lindelöf (see \[1\], 4.3.A], it is easy to see that a topological group is \(\mathbb{PR} \)-factorizable iff it is \(\omega \)-narrow and feathered. Then, we introduce the following notion.

Definition 1.1. A topological group \(G \) is called \(\mathbb{PM} \)-factorizable if for every continuous real-valued function \(f \) on \(G \), there exists a perfect homomorphism \(\pi : G \to H \) onto a metrizable topological group \(H \) such that \(f = g \circ \pi \), for some continuous real-valued function \(g \) on \(H \).

Clearly, each \(\mathbb{PR} \)-factorizable topological group is \(\mathbb{PM} \)-factorizable. L. Peng and Y. Liu introduced an example \[3\] Example 3.13 which is a \(\mathbb{R} \)-factorizable topological group, but not \(\mathbb{PR} \)-factorizable. Indeed, the topological group \(G \) in \[3\] Example 3.13 is not feathered. Since all \(\mathbb{R} \)-factorizable topological groups are \(\mathcal{M} \)-factorizable, it is a \(\mathcal{M} \)-factorizable topological group. However, by the definition of \(\mathcal{M} \)-factorizability, it is easy to that every \(\mathbb{PM} \)-factorizable topological group is feathered, hence the topological group \(G \) of \[3\] Example 3.13 is not \(\mathbb{PM} \)-factorizable.

In this paper, we give some characterizations of \(\mathbb{PM} \)-factorizable topological groups, such as a topological group \(G \) is \(\mathbb{PM} \)-factorizable if and only if \(G \) is feathered \(\mathcal{M} \)-factorizable. We also shown that a topological group \(G \) is \(\mathbb{PR} \)-factorizable if and only if \(G \) is \(\mathbb{PM} \)-factorizable and \(\omega \)-narrow. Then it is natural to deduce that a topological group \(G \) is \(\mathbb{PR} \)-factorizable if and only if \(G \) is feathered \(\mathbb{R} \)-factorizable. W. He et al. in \[8\] Proposition 2.1 proved the following proposition.

Proposition 1.2. Let \(G = \prod_{i \in I} G_i \) be the product of an uncountable family of non-compact separable metrizable topological groups. Then the group \(G \) is \(\mathbb{R} \)-factorizable, but it fails to be feathered.

Therefore, the result also can presents that the product group \(G \) is not \(\mathbb{PR} \)-factorizable. Of course, \(G \) is an \(\mathcal{M} \)-factorizable topological group, but not \(\mathbb{PM} \)-factorizable. Moreover, some interesting properties of \(\mathcal{M} \)-factorizable topological groups in \[8, 10\] are strengthened to \(\mathbb{PM} \)-factorizable topological groups. For example, the product \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many \(\mathbb{PM} \)-factorizable topological groups is \(\mathbb{PM} \)-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is \(\mathbb{PR} \)-factorizable, the product of a \(\mathbb{PM} \)-factorizable topological group with a compact metrizable topological group is \(\mathbb{PM} \)-factorizable.

2. Preliminary

Throughout this paper, all topological spaces are assumed to be Hausdorff, unless otherwise is explicitly stated. Let \(\mathbb{N} \) be the set of all positive integers and \(\omega \) the first infinite ordinal. The readers may consult \[1\] for notation and terminology not explicitly given here. Next we recall some definitions and facts.

A continuous mapping \(f : X \to Y \) is called **perfect** if it is a closed onto mapping and all fibers \(f^{-1}(y) \) are compact subsets of \(X \) \[2\], p. 182]. A Tychonoff topological space \(X \) is **Čech-complete** if \(X \) is a \(G_\delta \)-set in every compactification \(cX \) of the space \(X \) \[2\], p. 192].

Then we some notions about topological groups. A topological group \(G \) is called **feathered** if it contains a non-empty compact set \(K \) of countable character in \(G \). It is well-known in \[1\], Theorem 4.3.20] that a topological group \(G \) is feathered if and only if it contains a compact subgroup \(H \) such that the left quotient space \(G/H \) is metrizable. Similarly, the group \(G \) is Čech-complete if and only if it contains a compact subgroup \(H \) such that the left quotient space \(G/H \) is metrizable by a complete metric. The class of feathered topological group is countably productive and is closed under closed-heredity. Moreover, all Čech-complete topological groups are feathered and every metrizable (or locally compact) topological group is feathered.

A topological group is **Raïkov complete** if it is complete with respect to its two-sided uniform group structure. Every topological group \(G \) can be embedded into a unique Raïkov complete topological group as a dense subgroup, which is called the **Raïkov completion** of \(G \) and denoted by \(gG \). Topological groups with compact completions are called **precompact**. As we all know, every Čech-complete topological group is
Raikov complete and a feathered topological group is Raikov complete if and only if it is Čech-complete, see [10, Theorem 4.3.15].

We call a topological group G ω-narrow if for any neighborhood U of the identity e in G, there exists a countable subset C of G such that $G = UC = CU$. A topological group G is called ω-balanced if for each neighborhood U of the identity e in G, there exists a countable family γ of open neighborhoods of e such that for each $x \in G$, there exists $V \in \gamma$ satisfying $xVx^{-1} \subseteq U$. [11, Proposition 3.4.10] showed that every ω-narrow topological group is ω-balanced.

3. Some properties of PM-factorizable topological groups

In this section, we give some characterizations of PM-factorizable topological groups, such as a topological group G is PM-factorizable if and only if G is feathered M-factorizable. We also shown that a topological group G is PR-factorizable if and only if G is PM-factorizable and ω-narrow. Then it is natural to deduce that a topological group G is PR-factorizable if and only if G is feathered R-factorizable.

Recall that a paracompact p-space are the preimages of metrizable spaces under perfect mappings. By the definitions of PM-factorizable topological groups, the following result is clear.

Proposition 3.1. Every PM-factorizable topological group is a paracompact p-space.

It was proved in [11, Theorem 4.3.35] that a topological group is feathered iff it is a p-space, and iff it is a paracompact p-space.

Proposition 3.2. Every PM-factorizable topological group is feathered.

Then according to the concept of PR-factorizable topological groups, every PR-factorizable topological group is PM-factorizable. Therefore, every compact topological group is PM-factorizable. Moreover, we show that each ω-narrow PM-factorizable topological group is PR-factorizable.

Theorem 3.3. A topological group G is PR-factorizable if and only if G is PM-factorizable and ω-narrow.

Proof. Since every PR-factorizable topological group is ω-narrow, the necessity is trivial.

Let’s prove the sufficiency. Suppose that G is a PM-factorizable and ω-narrow topological group, $f : G \rightarrow \mathbb{R}$ is a continuous real-valued function. Then there exists a perfect homomorphism $\varphi : G \rightarrow K$ onto a metrizable topological group K such that $f = g \circ \varphi$, where $g : K \rightarrow \mathbb{R}$ is continuous. Since G is ω-narrow, so is K. Since every first-countable ω-narrow topological group is second-countable, we obtain that G is PR-factorizable.

It was proved in [3, Theorem 2.6] that a topological group G is PR-factorizable if and only if G is feathered and ω-narrow.

Proposition 3.4. Let G be an ω-narrow topological group. Then G is feathered if and only if G is PM-factorizable if and only if G is PR-factorizable.

Theorem 3.5. A topological group G is PM-factorizable if and only if one of the following holds:

1. G is metrizable;
2. G is PR-factorizable.

Proof. Since every PR-factorizable topological group is PM-factorizable and every metrizable topological group is also PM-factorizable, the sufficiency is clear.

Then suppose that a PM-factorizable topological group G is not metrizable. By Proposition 3.2, G is feathered, then it contains a compact subgroup N such that the quotient space G/N is metrizable. Then N is not metrizable, otherwise, G will be metrizable, this is a contradiction. It follows from [10, Lemma 4.6] that we can find a family $\{V_\alpha : \alpha \in \omega_1\}$ of open neighborhoods of the identity e_N in N such that $\bigcap_{\alpha \in \omega_1} V_\alpha$ is not a G_δ-set in N. For every $\alpha \in \omega_1$, we can choose a neighborhood U_α of the identity e_G in G with $V_\alpha = U_\alpha \cap N$. If $\bigcap_{\alpha \in \omega_1} U_\alpha$ contains a G_δ-subgroup M in G, then $\bigcap_{\alpha \in \omega_1} V_\alpha$ contains a G_δ-subgroup $M \cap N$.

3
Corollary 3.6. A topological group \(G \) is PR-factorizable if and only if \(G \) is a feathered Lindelöf \(\Sigma \)-group.

Proof. The sufficiency is clear. Indeed, a feathered Lindelöf \(\Sigma \)-group \(G \) is Lindelöf feathered, so \(G \) is PR-factorizable, as a topological group is Lindelöf feathered if and only if it is PR-factorizable by [2, Theorem 2.5].

Then we show the necessity. Let \(G \) be a PR-factorizable topological group. It follows from [2, Theorem 2.6] that \(G \) is \(\omega \)-narrow and feathered. Then, by [3, Theorem 3.4], for a feathered topological group \(G \), \(G \) is \(\omega \)-narrow if and only if \(G \) is a Lindelöf \(\Sigma \)-group.

Theorem 3.7. A topological group \(G \) is PM-factorizable if and only if \(G \) is feathered \(\mathcal{M} \)-factorizable.

Proof. The necessity is trivial, it suffices to claim the sufficiency.

Let \(G \) be a feathered \(\mathcal{M} \)-factorizable topological group and \(f \) a continuous real-valued function on \(G \). Then we can find a continuous homomorphism \(\pi : G \to H \) onto a metrizable topological group \(H \) and a continuous real-valued function \(g \) on \(H \) such that \(f = g \circ \pi \). Since every \(\mathcal{M} \)-factorizable group is \(\omega \)-balanced by [10, Theorem 3.1] and \(G \) is feathered, there exists a perfect homomorphism \(p : G \to K \) onto a metrizable topological group \(K \). Let \(\varphi \) be the diagonal product of the homomorphisms \(\pi \) and \(p \) and \(M = \varphi(G) \subseteq H \times K \).

Since \(p \) is perfect, the homomorphism \(\varphi \) is also perfect by [2, Theorem 3.7.11]. By the definition of \(\varphi \), we can find continuous homomorphisms \(q_H : M \to H \) and \(q_K : M \to K \) satisfying \(\pi = q_H \circ \varphi \) and \(p = q_K \circ \varphi \).

Then from [2, Proposition 3.7.5], it follows that \(q_K \) is perfect.

Then the subgroup \(M \) of \(H \times K \) is metrizable. Indeed, since \(H \) and \(K \) are both first-countable and the property of first-countability is hereditary, it is clear that the subgroup \(M \) of \(H \times K \) is first-countable, hence \(M \) is metrizable.

![Diagram]

We define a continuous real-valued function \(h \) on \(M \) by \(h = g \circ q_H \). Then, for each continuous real-valued function \(f \) on \(G \), we can find a perfect homomorphism \(\varphi : G \to M \) onto a metrizable topological group \(M \) and a continuous function \(h : M \to \mathbb{R} \) such that \(f = h \circ \varphi \). Therefore, we conclude that \(G \) is PM-factorizable.

By Theorems 3.3 and 3.7, we obtain the following result.

Corollary 3.8. A topological group \(G \) is PR-factorizable if and only if \(G \) is feathered \(\mathbb{R} \)-factorizable.

Indeed, it was proved in [3, Theorem 3.4] that for a feathered topological group \(G \), \(G \) is \(\omega \)-narrow if and only if it is \(\mathbb{R} \)-factorizable. Moreover, [3, Theorem 2.6] presented that a topological group \(G \) is PR-factorizable if and only if \(G \) is \(\omega \)-narrow and feathered. As a topological group \(G \) is \(\mathbb{R} \)-factorizable if and only if it is \(\mathcal{M} \)-factorizable and \(\omega \)-narrow by [10, Theorem 3.2], the Corollary 3.8 also can be obtained.

Proposition 3.9. A topological group is PM-factorizable whenever it contains a dense PM-factorizable subgroup.
Proof. Let G be a topological group with a dense subgroup H such that H is PM-factorizable. It follows from [10, Theorem 5.8] that whenever a topological group has a dense openly M-factorizable topological group, then it is also openly M-factorizable. Since H is a PM-factorizable group, it is clear that H is openly M-factorizable, which deduces that G is openly M-factorizable. Then G is a M-factorizable topological group. By Proposition 3.2 the dense subgroup H is feathered, and G is also feathered since a topological group is feathered if it contains a dense feathered subgroup. Therefore, G is a PM-factorizable topological group by Theorem 3.7.

Since for a feathered topological group G, G is Čech-complete if and only if it is Raïkov complete, it is easy to see the following by Proposition 3.9.

Corollary 3.10. Every PM-factorizable topological group is a dense subgroup of a PM-factorizable Čech-complete topological group.

For a topological group G, if G contains a dense ω-narrow subgroup, G is also ω-narrow. Therefore, the following corollary is deduced by Theorem 3.3 and Proposition 3.9.

Corollary 3.11. A topological group is PR-factorizable whenever it contains a dense PR-factorizable subgroup.

Then from [11, Theorem 4.8], a locally compact group G is M-factorizable if and only if G is metrizable or G is σ-compact. Then, it is well-known that every locally compact topological group is feathered, so the characterization also holds for PM-factorizable topological groups by Theorem 3.7.

Proposition 3.12. A locally compact group G is PM-factorizable if and only if one of the following conditions holds:

1. G is metrizable;
2. G is σ-compact.

From [1, Example 8.2.1], there is an Abelian P-group G and a dense subgroup H of G such that G is Lindelöf, hence R-factorizable, but H is not R-factorizable. In particular, H is ω-narrow. Therefore, H is not M-factorizable. Moreover, W. He et al. showed that every subgroup of an M-factorizable feathered group is M-factorizable, it also means that every subgroup of a PM-factorizable is M-factorizable.

Proposition 3.13. Every closed subgroup of a PM-factorizable topological group is PM-factorizable.

Proof. Let G be a PM-factorizable topological group and H a closed subgroup of G. By Theorem 3.7, G is M-factorizable and feathered. According to [8, Lemma 4.1], every subgroup of an M-factorizable feathered group is M-factorizable, so H is a M-factorizable topological group. Moreover, it is well-known that a closed subspace of a feathered space is feathered. Hence, H is M-factorizable and feathered. We have that H is PM-factorizable by Theorem 3.7.

From [1, Theorem 3.4.4], every subgroup of an ω-narrow topological group is ω-narrow, so the following is clear.

Corollary 3.14. Every closed subgroup of a PR-factorizable topological group is PR-factorizable.

Theorem 3.15. If $f : G \to H$ is an open continuous homomorphism of a PM-factorizable topological group onto a topological group H, then H is PM-factorizable.

Proof. Indeed, it was proved in [10, Corollary 3.8] that a quotient group of a M-factorizable topological group is also M-factorizable. Moreover, by [1, Corollary 4.3.24], if $f : G \to H$ is an open continuous homomorphism of a feathered topological group onto a topological group H, then H is also feathered. Therefore, if G is PM-factorizable, that is, feathered and M-factorizable by Theorem 3.7, then the topological group H is also PM-factorizable as an open continuous homomorphic image.
From [1, Proposition 3.4.2], if a topological group \(H \) is a continuous homomorphic image of an \(\omega \)-narrow topological group \(G \), then \(H \) is also \(\omega \)-narrow. The following corollary is follows from Theorem 3.3.

Corollary 3.16. [3, Theorem 2.9] If \(f : G \rightarrow H \) is an open continuous homomorphism of a \(\mathcal{P} \mathcal{R} \)-factorizable topological group onto a topological group \(H \), then \(H \) is \(\mathcal{P} \mathcal{R} \)-factorizable.

4. Products of \(\mathcal{P} \mathcal{M} \)-factorizable topological groups

In this section, we investigate some properties about products of \(\mathcal{P} \mathcal{M} \)-factorizable topological groups. In particular, some interesting properties of \(\mathcal{M} \)-factorizable topological groups in [8, 10] are strengthened to \(\mathcal{P} \mathcal{M} \)-factorizable topological groups. For example, the product group \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many \(\mathcal{P} \mathcal{M} \)-factorizable topological groups is \(\mathcal{P} \mathcal{M} \)-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is \(\mathcal{P} \mathcal{R} \)-factorizable, the product of a \(\mathcal{P} \mathcal{M} \)-factorizable topological group with a compact metrizable topological group is \(\mathcal{P} \mathcal{M} \)-factorizable.

First, according to the result that a locally compact group \(G \) is \(\mathcal{M} \)-factorizable if and only if \(G \) is metrizable or \(G \) is \(\sigma \)-compact, H. Zhang et al. gave an example to show that a product of two \(\mathcal{M} \)-factorizable topological groups may fail to be \(\mathcal{M} \)-factorizable. By further observation about the example, we find that a product of two \(\mathcal{P} \mathcal{M} \)-factorizable topological groups may not be \(\mathcal{M} \)-factorizable, so naturally not be \(\mathcal{P} \mathcal{M} \)-factorizable.

Example 4.1. Assume that \(G \) is a metrizable locally compact group which is not \(\sigma \)-compact and \(H \) is a compact and non-metrizable group. Obviously, both \(G \) and \(H \) are \(\mathcal{M} \)-factorizable. Moreover, each locally compact topological group is feathered, then \(G \) and \(H \) both are \(\mathcal{P} \mathcal{M} \)-factorizable. However, the product group \(G \times H \) is neither metrizable nor \(\sigma \)-compact, which deduces that \(G \times H \) is not \(\mathcal{M} \)-factorizable since a locally compact group is \(\mathcal{M} \)-factorizable if and only if it is metrizable or it is \(\sigma \)-compact. Therefore, the product group \(G \times H \) is not \(\mathcal{P} \mathcal{M} \)-factorizable by Proposition 3.12. (Indeed, since \(G \times H \) is feathered but not \(\mathcal{M} \)-factorizable, it can also be yielded that it is not \(\mathcal{P} \mathcal{M} \)-factorizable by Theorem 3.7.)

Theorem 4.2. The product \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many \(\mathcal{P} \mathcal{M} \)-factorizable topological groups is \(\mathcal{P} \mathcal{M} \)-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is \(\mathcal{P} \mathcal{R} \)-factorizable.

Proof. It follows from [1, Proposition 4.3.13] that the product space \(G \) is feathered. If \(G \) is \(\mathcal{P} \mathcal{M} \)-factorizable, by Theorem 3.10 \(G \) is either metrizable or \(\mathcal{P} \mathcal{R} \)-factorizable. If \(G \) is metrizable, each \(G_n \) is also metrizable. If \(G \) is \(\mathcal{P} \mathcal{R} \)-factorizable, so is every \(G_n \) by Corollary 3.14.

On the contrary, if every \(G_n \) is metrizable, it is clear that \(G \) is also metrizable. If every \(G_n \) is a \(\mathcal{P} \mathcal{R} \)-factorizable topological group, it is easy to see that \(G \) is \(\mathcal{R} \)-factorizable. Moreover, \(G \) is feathered, we conclude that \(G \) is \(\mathcal{P} \mathcal{R} \)-factorizable by Corollary 3.8. \(\square \)

The product of countably many \(\mathcal{P} \mathcal{R} \)-factorizable topological groups is also \(\mathcal{P} \mathcal{R} \)-factorizable, see [3, Proposition 2.7], then it is clear to achieve the following by Theorems 3.5 and 4.2.

Proposition 4.3. If \(G \) is a \(\mathcal{P} \mathcal{M} \)-factorizable topological group, then so is \(G^\omega \).

Remark 4.4. Let \(G \) be a compact group with \(w(G) > \omega \) and \(D \) an uncountable discrete group. Since \(G \) and \(D \) both are feathered, it is clear that \(G \times D \) is feathered. However, \(G \) is not metrizable and \(D \) is not \(\mathcal{P} \mathcal{R} \)-factorizable, then \(G \times D \) is not \(\mathcal{P} \mathcal{M} \)-factorizable, hence is also not \(\mathcal{M} \)-factorizable by Theorem 5.7.

By Lemma 3.1 and Theorem 4.7 of [8], an \(\mathcal{M} \)-factorizable topological group which contains a non-metrizable pseudocompact subspace is \(\omega \)-narrow.

Theorem 4.5. Let \(G \) and \(H \) be topological groups, where \(G \) contains a non-metrizable pseudocompact subspace. If \(G \times H \) is \(\mathcal{P} \mathcal{M} \)-factorizable, then \(G \times H \) is \(\mathcal{P} \mathcal{R} \)-factorizable.
By [3, Theorem 2.6], a topological group is feathered and is a
by Theorem 3.8, hence is P
If G
feathered, then K
factorizable if and only if either both G
and P
is not metrizable, it follows from Theorem 3.5 that G
P
factorizable, hence G
R
-factorizable topological group is
P
M
-factorizable if and only if either both G
and K
are metrizable or G
is P
R
-factorizable.

Proof. Let the product group G × K be P
M
-factorizable. Then the factors G and K are P
M
-factorizable
as the open continuous images by Theorem 3.15. If G × K is not metrizable, then either G or K is not
metrizable. If G is not metrizable, it follows from Theorem 3.5 that G is P
R
-factorizable. On the other case, if K is not metrizable, K is a non-metrizable pseudocompact topological group, then G is ω-narrow.

By [3, Theorem 2.6], a topological group is feathered and ω-narrow if and only if it is P
R
-factorizable, hence G is a P
R
-factorizable topological group.

On the contrary, if G and K are metrizable topological groups, it is clear that G × K is P
M
-factorizable. If G is P
R
-factorizable, then G × K is R-factorizable as K is pseudocompact. Moreover, both G and K are feathered, then G × K is also feathered, which deduces that G × K is a P
R
-factorizable topological group by Theorem 3.8 hence is P
M
-factorizable.

Theorem 4.7. Let G and H be topological groups, where the Raïkov completion ρG of G contains a non-metrizable compact subspace. If G × H is P
M
-factorizable, then H is P
R
-factorizable.

Proof. Since every P
M
-factorizable topological group is M-factorizable, it follows from [1, Theorem 3.11] that H is pseudo-ω1-compact, hence H is ω-narrow by [1, Proposition 3.4.31]. Since the product G × H is P
M
-factorizable, so is H by Theorem 3.15. Therefore, we have that H is a P
R
-factorizable topological group by Theorem 3.8.

Proposition 4.8. If the product G × H of topological groups is P
M
-factorizable and the group G is precompact, then either G is second countable or H is P
R
-factorizable.

Proof. The first part that G is second countable follows just from [1, Proposition 3.12] and the second part is deduced by Theorem 4.7.

Theorem 4.9. Let G be a feathered group and H a precompact feathered group. Then G × H is P
M
-factorizable if and only if either both G and H are metrizable or G is Lindelöf Σ-group.

Proof. The necessity is claimed in [1, Theorem 3.13], where H just need to be precompact.

It suffices to prove the sufficiency. On the first case, if both G and H are metrizable, it is trivial that G × H is P
M
-factorizable. On the other case, let G be a feathered Lindelöf Σ-group and H a precompact feathered group. Then the Raïkov completion ρG of H is compact. G × H is R-factorizable as a subgroup of the Lindelöf Σ-group G × ρH. Moreover, since both G and H are feathered, G × H is also feathered, hence is P
R
-factorizable by Theorem 3.8. We obtain that G × H is a P
M
-factorizable topological group.

W. He et al. proved that the product of an M-factorizable topological group with a locally compact separable metrizable topological group is M-factorizable, see [1, Theorem 3.14]. Then we revise the proof to show that the product of a P
M
-factorizable topological group with a locally compact separable metrizable topological group is P
M
-factorizable.

Theorem 4.10. Let G be a P
M
-factorizable topological group and H a locally compact separable metrizable topological group. Then G × H is P
M
-factorizable.

Proof. Since H is a locally compact separable metrizable topological group, H is σ-compact. Then there is an increasing sequence \{H_n : n ∈ N\} of compact subsets of H such that H = \bigcup_{n ∈ N} H_n and H_n is contained in the interior of H_{n+1} for each n ∈ N. Let f be a continuous real-valued function on G × H. Denote by C(H_n) the space of continuous real-valued functions on H_n with sup-norm, for each n ∈ N. Then define a
mapping \(\Psi_n : G \to C(H_n) \) by \(\Psi_n(x)(y) = f(x, y) \) for all \(x \in G \) and \(y \in H_n \). Since \(H_n \) is compact and second countable, \(\Psi_n \) is continuous and \(C(H_n) \) is second countable. Put \(\Psi \) the diagonal product of \(\{\Psi_n : n \in \mathbb{N}\} \). Since \(\prod_{n \in \mathbb{N}} C(H_n) \) is second countable, it is clear that \(\Psi(G) \) is also second countable.

By the hypothesis, \(G \) is \(PM \)-factorizable, we can find a perfect homomorphism \(\pi \) of \(G \) onto a metrizable group \(K \) and a continuous mapping \(\psi \) of \(K \) to \(\Psi(G) \) such that \(\Psi = \psi \circ \pi \). Take \(y \in H \) and choose \(n \in \mathbb{N} \) with \(y \in H_n \). Let \(x, x' \in G \). If \(\pi(x) = \pi(x') \), then \(\Psi(x) = \Psi(x') \). Then \(\Psi_n(x) = \Psi_n(x') \), that is, \(f(x, y) = f(x', y) \). Therefore, we can define a mapping \(h : K \times H \to \mathbb{R} \) such that \(f = h \circ (\pi \times id_H) \). It is not difficult to verify that \(h \) is continuous. Since both \(K \) and \(H \) are metrizable topological groups, \(G \times H \) is also metrizable. Moreover, \(\pi \) is a perfect mapping, so is the mapping \(\pi \times id_H \). Thus, we conclude that the product \(G \times H \) is \(PM \)-factorizable.

Theorem 4.11. Let \(G \) be a \(PR \)-factorizable topological group and \(H \) a locally compact separable metrizable topological group. Then \(G \times H \) is \(PR \)-factorizable.

Proof. First, \(G \times H \) is \(PM \)-factorizable by Theorem 4.10. Moreover, since both \(G \) and \(H \) are \(\omega \)-narrow, then \(G \times H \) is \(\omega \)-narrow and it is achieved that it is \(PR \)-factorizable by Theorem 3.3.

Corollary 4.12. Let \(G \) be a \(PM \)-factorizable topological group and \(H \) a compact metrizable topological group. Then \(G \times H \) is \(PM \)-factorizable.

Corollary 4.13. Let \(G \) be a \(PR \)-factorizable topological group and \(H \) a compact metrizable topological group. Then \(G \times H \) is \(PR \)-factorizable.

A topological space \(X \) is called pseudo-\(R_1 \)-compact if every discrete family of open subsets of \(X \) is countable. As we all know, every separable space is pseudo-\(R_1 \)-compact and every pseudo-\(R_1 \)-compact topological group is \(\omega \)-narrow. Therefore, the following follows from Theorem 3.3.

Corollary 4.14. A pseudo-\(R_1 \)-compact \(PM \)-factorizable topological group is \(PR \)-factorizable.

Corollary 4.15. A product of a pseudo-\(R_1 \)-compact \(PM \)-factorizable topological group and a compact group is \(PR \)-factorizable.

Proof. Indeed, let \(G \) be a pseudo-\(R_1 \)-compact \(PM \)-factorizable topological group and \(H \) a compact group. It was proved in [10] Corollary 5.2] that a product of a pseudo-\(R_1 \)-compact \(M \)-factorizable topological group and a compact group is \(IR \)-factorizable. Then the product \(G \times H \) is \(IR \)-factorizable. Moreover, \(G \) is feathered by Proposition 4.2] and \(H \) is also feathered, so \(G \times H \) is a feathered group, which deduces that \(G \times H \) is \(PR \)-factorizable by Theorem 3.3.

It was proved in [11] Theorem 5.4] that if \(G \times K \) is \(M \)-factorizable, where \(G \) is an \(M \)-factorizable group and \(K \) is compact group, then \(G \) is pseudo-\(R_1 \)-compact or \(K \) is metrizable. Then we have the following by Corollaries 4.12 and 4.15.

Theorem 4.16. Let \(G \) be a \(PM \)-factorizable topological group and \(K \) a compact group. Then \(G \times K \) is \(PM \)-factorizable if and only if one of the following conditions holds:

1. \(K \) is metrizable;
2. \(G \) is pseudo-\(R_1 \)-compact.

Recall that a mapping \(f : X \to Y \) is \(d \)-open if for every open set \(U \in X \), the image \(f(U) \) is contained in the interior of the closure of \(f(U) \). The following results was proved in [8], see Proposition 6.3 and Theorem 6.5.

Proposition 4.17. An image of a feathered topological group under a continuous \(d \)-open homomorphism is feathered.

Proposition 4.18. Let \(p \) be a continuous \(d \)-open homomorphism from a topological group \(G \) onto a topological group \(H \). If \(G \) is \(M \)-factorizable, so is \(H \).
Since it is proved in Theorem 3.7 that a topological group G is PM-factorizable if and only if G is feathered M-factorizable, the following is deduced by two propositions above.

Corollary 4.19. If a topological group H is a continuous d-open homomorphic image of a PM-factorizable topological group G, then H is also PM-factorizable.

References

[1] A.V. Arhangel’skiı̆, M. Tkachenko, *Topological Groups and Related Structures*, Atlantis Press and World Sci., 2008.
[2] R. Engelking, *General Topology (revised and completed edition)*, Heldermann Verlag, Berlin, 1989.
[3] L. Peng, Y. Liu, *On Lindelöf feathered topological groups*, Topol. Appl., 285 (2020) 107405.
[4] M. G. Tkachenko, *Factorization theorems for topological groups and its applications*, Topol. Appl., 38 (1991) 21–37.
[5] M. G. Tkachenko, *Homomorphic images of R-factorizable groups*, Comment. Math. Univ. Carol., 47 (3) (2006) 525–537.
[6] M. G. Tkachenko, *Hereditarily R-factorizable paratopological groups*, Topol. Appl., 157 (2010) 1548–1557.
[7] M. G. Tkachenko, *Products of R-factorizable groups*, Topol. Proc., 39 (2012) 167–184.
[8] W. He, D. Peng, M. Tkachenko, H. Zhang, *M-factorizable feathered topological groups*, Topol. Appl., 289 (2021) 107481.
[9] W. He, D. Peng, M. Tkachenko, H. Zhang, *M-factorizability of products and τ-fine topological groups*, Topol. Appl., 296 (2021) 107674.
[10] H. Zhang, D. Peng, W. He, *On M-factorizable topological groups*, Topol. Appl., 274 (2020) 107126.