Review Article

BRCA1 promoter methylation in peripheral blood cells and predisposition to breast cancer

Nisreen M. Al-Moghrabi, PhD

Cancer Epigenetic Section, Molecular Oncology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA

Received 15 November 2016; revised 19 January 2017; accepted 22 January 2017; Available online 22 February 2017

Abstract

Early onset breast cancer is a common malignancy and cause of death among young women in KSA. In addition, the data from women have demonstrated that most patients present late with an advanced stage. The early detection of this disease would not only save patients’ lives but would also have the potential to reduce the budget and the time required for treating and nursing advanced breast cancer patients. This review highlights the risk of developing breast cancer in women with the methylated BRCA1 promoter in their white blood cells and proposes the potential use of this epigenetic modification as a powerful molecular marker for the early detection of breast cancer.

Keywords: BRCA1; Breast cancer; Epigenetic; Epigenetic modification; Methylation

© 2017 The Author. Production and hosting by Elsevier Ltd on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Breast cancer among Arab women, as elsewhere in the world, is a common malignancy and cause of death, and its incidence is increasing. In KSA, 26.4% of all female breast cancers develop before the age of 40 compared to 6.5% in the USA. The breast cancer susceptibility gene, BRCA1, was discovered in 1994 as the first major gene associated with breast cancer.1 The hereditary type of breast cancer has been found to be attributed to germline mutations in BRCA1.2,3 Furthermore, DNA methylation is the mechanism by which BRCA1 is inactivated during sporadic carcinogenesis.4 Both types of tumours occur at an early age and exhibit poor histological differentiation, Oestrogen and Progesterone receptor negativity and similar global gene expression profiles.5

The detection of the methylated BRCA1 promoter in DNA from peripheral blood and tumour tissues in breast cancer patients6 has suggested the involvement of this epigenetic modification, which occurs in normal non-epithelial tissue, in the development of breast cancer with...
BRCA1-like characteristics. However, it is still undetermined whether women carrying the methylated *BRCA1* promoter in their WBC are at a high risk of breast cancer predisposition.

In this review, we explore the possible implication of *BRCA1* promoter methylation in the development of breast cancer and propose the potential use of this aberrant methylation as a powerful non-invasive molecular marker for detecting predisposed individuals at an early age.

Breast cancer susceptibility gene: *BRCA1*

The human *BRCA1* gene is a tumour suppressor gene that is located on the long (q) arm of chromosome 17. *BRCA1* is expressed in cells in the breast and other tissues. *BRCA1* plays a crucial role in the process of DNA repair, the control of cell cycle checkpoints and transcription. The loss of *BRCA1* activity leads to tumour formation in specific target tissues. As *BRCA1* is involved in the potentially error-free pathway of homologous recombination, which repairs double-strand breaks, cells that lack the *BRCA1* protein tend to repair DNA damage by alternative error-prone mechanisms. This results in the generation of mutations and gross chromosomal rearrangements that can lead to carcinogenesis. Hence, females carrying germline *BRCA1* mutations are at an increased risk of developing aggressive breast and ovarian tumours characterized by poor histologic differentiation, high grade, aneuploidy, and hormone receptor negativity at an early age (<50%).

DNA methylation is an alternative mechanism for *BRCA1* inactivation

Both *BRCA1* mRNA and protein levels were found to be under-expressed in a subset of sporadic human breast cancers. These sporadic early onset breast cancers have aggressive pathologic features that are similar to those observed with mutated *BRCA1*. This finding suggested that, in the nonhereditary forms of breast cancer, alterations in *BRCA1* or *BRCA1*-related pathway(s) might also play a role in the aggressiveness and pathogenesis of sporadic breast cancer. As no somatic mutations in *BRCA1* were detected in the sporadic form of breast cancer, it was suggested that an epigenetic mechanism might be an alternative means by which *BRCA1* is inactivated during this form of breast carcinogenesis. Indeed, the results from several studies revealed that 9–44% of sporadic breast cancer samples harboured methylated *BRCA1* promoter.

Structure of the 5' regulatory region of *BRCA1*

The 5' regulatory promoter region of *BRCA1* has been shown to contain 30 CpG sites overlying the area from −567 to +44 relative to the exon 1A transcription start site (Figure 1). A bi-directional core promoter (−218 to +1), which is located within this region, has been found to regulate the transcription of both the *BRCA1* and the *NBR2* genes. This 218 bp region is a CpG-rich area containing 11 CpG sites with a strong promoter activity that has been shown to be aberrantly hyper-methylated in human breast cancer cells and tissues but not in normal human mammary epithelial cells.

Methylated *BRCA1* promoter in peripheral blood DNA from breast cancer female patients

In 2008, Snell et al. have demonstrated the presence of the methylated *BRCA1* promoter in normal non-epithelial tissues in patients from breast-ovarian cancer families. This finding suggested that the methylated *BRCA1* promoter occurring in this tissue of the body is linked with *BRCA1*-like breast cancer development. This led the author to hypothesize that the deactivation of *BRCA1* by promoter hyper-methylation might occur as a germline or an early somatic event, leading to breast cancer predisposition with a phenotype that is similar to that linked with *BRCA1* germ-line mutations. Subsequent to Snell’s study, several investigators have reported the detection of methylated *BRCA1* in very young breast cancer patients suggesting the potential use of methylated *BRCA1* as a predictor of cancer risk.

In 2011, we have reported that 27.6% of primary sporadic breast carcinomas in Arab women comprise the hyper-methylated *BRCA1* promoter. This occurrence is in the higher end of previously reported incidences of 7–44%. Notably, the methylation of the *BRCA1* promoter was found to be strongly associated with an early age onset of ≤40 years and is more common in high-grade tumours.

![Figure 1: Schematic representation of the *BRCA1* promoter region.](image)
Subsequently, in 2014, we have reported that 14.2% of breast cancer patients harboured the methylated BRCA1 promoter in their WBC. This was also significantly associated with the early onset of the disease. A high proportion of those patients (66.7%) exhibited methylated BRCA1 in matching tumour DNA. This result suggests that the presence of BRCA1 promoter methylation in WBC may elicit the development of breast cancer. Certainly, it has been postulated that constitutional BRCA1 promoter methylation may represent the “first-hit” predisposing and initiating tumourigenesis with morphologic features similar to those associated with BRCA1 germline mutations.

Methylated BRCA1 promoter in peripheral blood DNA from cancer-free women

Snell et al. were the first to observe the presence of BRCA1 methylation in WBC DNA from a healthy female. This result led to the question of whether this female has a high risk of breast cancer predisposition in the future. Subsequently, several studies have reported the detection of methylated BRCA1 in WBC from normal healthy individuals. We also have shown the presence of the methylated BRCA1 promoter in WBC of 9.7% of healthy cancer-free women (carriers). The majority of those carriers are ≤40 years old, and 77% of them have cancer family histories, including breast and/or ovarian cancer.

Detection of methylation-related mutations throughout the BRCA1 promoter CpG Island

The use of high-resolution sodium bisulfite genomic sequencing of the BRCA1 promoter region has shown the presence of methylation-related mutations in WBC DNA from carriers and breast cancer patients. These types of mutations involve an association between cytosine methylation and T>C transitions, leading to the formation of novel CpG methylated sites. A number of these methylation-related mutations were found throughout the entire CpG Island, including the BRCA1 core promoter region (Figure 1). Although the functional significance of these mutations remains unknown, these mutations contribute to the overall methylation of the BRCA1 promoter region, suggesting their possible involvement in carcinogenesis. Indeed, several methylation-related mutations in the TP53 gene, which included those leading to the formation of new CpG sites, were found to predominate during lung carcinogenesis. Recently, the origin of T>C transition mutations in breast cancer has been revealed. It has been shown that these transition mutations are caused by DNA damage induced by Nitric Oxide, which is synthesized by the enzyme Nitric Oxide Synthase. This enzyme is enhanced in certain inflammatory environments and by oestrogen, and it is found to be over-expressed in the normal tissue adjacent to breast cancer. DNA damage caused by nitric oxide leads to the deamination of adenine to form hypoxanthine, which is then excised by the thymine DNA glycosylase base excision repair enzyme and repaired to C, resulting in the T>C transition. The majority of these mutations are observed in histologically normal tissues adjacent to breast cancer, and they occur most frequently in the 5'-ATG-3', 5'-CTG-3', and 5'-ATA-3' sites.

Methylated BRCA1 promoter in peripheral blood DNA and the risk of breast cancer predisposition

The following is an important question that still awaits a definite answer: Are carriers of the methylated BRCA1 promoter at a high risk of breast cancer predisposition? To answer this question, we hypothesized that if BRCA1 methylation in WBC presents a high risk of breast cancer predisposition, WBC from carriers should demonstrate molecular changes that are comparable, to some extent, to those identified in BRCA1-methylated WBC from breast cancer patients. Interestingly, we have demonstrated that cancer-free females harbouring the methylated BRCA1 promoter in their WBC have several breast cancer-related molecular changes that may provoke their potential predisposition for the development of breast cancer. We have reported that nine different breast cancer-related genes, in addition to BRCA1, were found to be epigenetically modified in WBC from both breast cancer patients and carriers. These genes are involved in various aspects of breast carcinogenesis, including tumour suppression (HIC1, CDH129, CDH130, CDKN2), DNA repair (MGMT, apoptosis (PYCARD, TNFRSF10C), and cell cycle regulation (CCNA1, CDH13). Furthermore, we have also reported that fifteen cancer-related genes in addition to BRCA1 were found to be differentially expressed in the WBC from breast cancer patients and carriers. Two of these genes, ATM and insulin-like growth factor receptor (IGFIR), were found to be highly expressed in the WBC from carriers compared to that from the breast cancer cases. An elevation in the expression of either of these genes has been reported to be associated with an increase in the risk of future breast cancer. We have also investigated the signature of plasma proteins in the carriers group and compared it with those in breast cancer patients and controls. In total, 35 proteins were found to be differentially expressed in the plasma from breast cancer patients, carriers, and controls. One of these proteins is Apolipoprotein CIII, which has been found to be down regulated in the plasma from pancreatic patients compared to that from controls. Hence, this protein was reported to be a potential marker for the early detection of pancreatic cancer. Intriguingly, we have reported the down regulation of Apolipoprotein CIII to be 3- and 1.5-fold in plasma from breast cancer patients and carriers compared to controls, respectively. Altogether, these findings suggest the existence of a robust correlation between the methylated BRCA1 promoter in WBC and breast cancer-related molecular changes. Accordingly, these findings may infer that women carrying the methylated BRCA1 promoter in their peripheral blood DNA are at a high risk of breast cancer predisposition.

Conclusions

BRCA1 promoter methylation occurring in WBC appears to be linked with a high risk of BRCA1-like breast cancer development. The high prevalence of this epigenetic modification in WBC DNA of cancer-free women may contribute to...
the high proportion of early onset breast cancer in women in KSA. Recently, a meta-analysis involving 40 studies, including our 2011 study, was performed to obtain a more precise estimate of the association between BRCA1 methylation and sporadic breast cancer. The study indicated that BRCA1 promoter methylation emerged as a useful predictive biomarker for breast cancer in clinical assessments. This strongly suggests the potential use of BRCA1 promoter methylation in WBC as a molecular biomarker for the early prediction of breast cancer predisposition.

Author’s contribution

NM is the sole author who conceived the idea of this review, revised the literature, wrote the initial draft, and edited the second draft. NM proofread the article and approved the final draft. NM is solely responsible for the content and the similarity index of this article.

Conflict of interest

The author has no conflict of interest to declare.

Acknowledgements

I would like to acknowledge Dr. Abdelilah Aboussekhra for proofreading the review.

References

1. Bell R, Rosenthal J, Hussey C, Tran T, McClure M, Frye C, Hattier T, Phelps R, Haugen-Strano A, Katcher H, Yakumo K, Gholami Z, Shaffer D, Stone S, Bayar S, Wray C, Bogden R. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. *Science* 1994; 266: 66–71.
2. Balmana J, Diez O, Rubio IT, Cardoso F, Group EGW. BRCA1 in breast cancer: ESMO clinical practice guidelines. *Ann Oncol Off J Eur Soc Med Oncol/ESMO* 2011; 22(Suppl 6): vi31–4.
3. Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. *Hum Genet* 2008; 124: 31–42.
4. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. *Breast Cancer Res* 2006; 8: R38.
5. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Melzer P, Gusterson B, Esteller M, Raffeld M, Yakhini Z, Ben-Dor A, Dougherty E, Fonnes J, Babendorf L, Fehrle W, Pittaluga S, Grubaver S, Loman N, Johannsson O, Olson H, Wilfond B, Sauter G, Kallioniemi O-P, Borg A, Trent J. Gene-expression profiles in hereditary breast cancer. *N. Engl J Med* 2001; 345: 539–548.
6. Snell C, Krypuy M, Wong EM, kConFab i, Loughrey MB, Dobrovic A. BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. *Breast Cancer Res BCR* 2008; 10: R12.
7. Jacinto FV, Esteller M. Mutator pathways unleashed by epigenetic silencing in human cancer. *Mutagenesis* 2007; 22: 247–253.
8. Arber B, Du Q, Chen J, Luo L, Lindblom A. Hereditary breast cancer: a review. *Seminars Cancer Biol* 2000; 10: 271–288.
9. Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. *Nat Genet* 1995; 9: 444–450.
10. Butcher DT, Rodenhisser DI. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. *Eur J Cancer* 2007; 43: 210–219.
11. Al-Moghrabi N, Al-Qasem AJ, Aboussekhra A. Methylation-related mutations in the BRCA1 promoter in peripheral blood cells from cancer-free women. *Int J Oncol* 2011; 39: 129–135.
12. Xu CF, Brown MA, Nicolai H, Chambers JA, Griffiths BL, Solomon E. Isolation and characterisation of the NBR2 gene which lies head to head with the human BRCA1 gene. *Hum Mol Genet* 1997; 6: 1057–1062.
13. Xu CF, Chambers JA, Solomon E. Complex regulation of the BRCA1 gene. *J Biol Chem* 1997; 272:20994-7.
14. Dobrovic A, Simplesdorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. *Cancer Res* 1997; 57: 3347–3350.
15. Mancini DN, Rodenhisser DI, Ainsworth PJ, O’Malley FP, Singh SM, Xing W, Archer TK. CpG methylation within the 5′ regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. *Oncogene* 1998; 16: 1161–1169.
16. Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. *Oncogene* 1999; 18: 1957–1965.
17. Bianco T, Chenevix-Trench G, Walsh DC, Cooper JE, Dobrovic A. Tumour-specific distribution of BRCA1 promoter methylation supports a pathogenetic role in breast and ovarian cancer. *Carcinogenesis* 2000; 21: 147–151.
18. Rice JC, Massey-Brown KS, Futscher BW. Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. *Oncogene* 1998; 17: 1807–1812.
19. Gupta S, Jaworska-Bieniek K, Narod SA, Lubinski J, Wojdacz TK, Jakubowska A. Methylation of the BRCA1 promoter in peripheral blood DNA is associated with triple-negative and medullary breast cancer. *Breast Cancer Res Treat* 2014; 148: 615–622.
20. Bosvriel R, Garcia S, Lavediaux G, Michard E, Dravers M, Kwiatkowski F, Bignon YJ, Bernard-Gallon DJ. BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls. *Cancer Epidemiol* 2012; 36: e177–82.
21. Bosvriel R, Michard E, Lavediaux G, Kwiatkowski F, Bignon YJ, Bernard-Gallon DJ. Peripheral blood DNA methylation detected in the BRCA1 or BRCA2 promoter for sporadic ovarian cancer patients and controls. *Clin Chimica Acta Int J Clin Chem* 2011; 412: 1472–1475.
22. Iwamoto T, Yamamoto T, Taguchi T, Tamaki Y, Noguchi S. BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. *Breast Cancer Res Treat* 2011: 129: 69–77.
23. Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, Santella RM. Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. *Anticancer Res* 2010; 30: 2489–2496.
24. Al-Moghrabi N, Nofel A, Al-Yousef N, Madkhalhi S, Bin Amer SM, Aliaia A, Shimzari W, Al-Tweigeri T, Karakas B, Tulbah A, Aboussekhra A. The molecular significance of methylated BRCA1 promoter in white blood cells of cancer-free females. *BMC Cancer* 2014; 14: 830.
25. Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, Giles GG, Hopper JL, Dobrovic A. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. *Cancer Prev Res* 2011; 4: 23–33.
26. Choi MRM, Brown C, Clare SE. Abstract P6-07-11: on the origin of T>C transition mutations in breast cancer. Cancer Res 2016; 76.

27. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 2015; 7. 283ra54.

28. Wales MM, Biel MA, el Deiry W, Nelkin BD, Issa JP, Cavenee WK, Kuerbitz SJ, Baylin SB. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1995; 1: 570–577.

29. Guilford PJ, Hopkins JBW, Grady WM, Markowitz SD, Willis J, Lynch H, Rajput A, Wiesner GL, Lindor NM, Burgart LJ, Toro TT, Lee D, Limacher J-M, Shaw DW, Findlay MPN, Reeve AE. E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat 1999; 14: 249–255.

30. Lee SW. H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 1996; 2: 776–782.

31. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 1995; 375: 503–506.

32. Pegg AE. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 1990; 50: 6119–6129.

33. Sririvasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 2002; 277: 21119–21122.

34. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

35. Yang R, Muller C, Huynh V, Fung YK, Yee AS, Koeffler HP. Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol 1999; 19: 2400–2407.

36. Tamimi RM, Colditz GA, Wang Y, Collins LC, Hu R, Rosner B, Irie HY, Connolly JL, Schnitt SJ. Expression of IGFlR in normal breast tissue and subsequent risk of breast cancer. Breast cancer Res Treat 2011; 128: 243–250.

37. Angele S, Hall J. The ATM gene and breast cancer: is it really a risk factor? Mutat Res 2000; 462: 167–178.

38. Chen J, Anderson M, Misek DE, Simeone DM, Luhman DM. Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 2007; 1162: 117–125.

39. Honda K, Okusaka T, Felix K, Nakamori S, Sat N, Nagai H, Ioka T, Tsuchida A, Shimahara T, Shimahara M, Yasunumi Y, Kuwabara H, Sakuma T, Otsuka Y, Ota N, Shitashige M, Kosuge T, Bühler MW, Yamada T. Altered plasma apolipoprotein modifications in patients with pancreatic cancer: protein characterization and multi-institutional validation. PLoS One 2012; 7: e46908.

40. Zhang L, Long X. Association of BRCA1 promoter methylation with sporadic breast cancers: evidence from 40 studies. Sci Rep 2015; 5: 17869.

How to cite this article: Al-Mohrabi NM. BRCA1 promoter methylation in peripheral blood cells and predisposition to breast cancer. J Taibah Univ Med Sc 2017;12(3):189–193.