Galleria mellonella Infection Model Demonstrates High Lethality of ST69 and ST127 Uropathogenic E. coli

Alghoribi, MF

http://hdl.handle.net/10026.1/4513

10.1371/journal.pone.0101547
PLoS ONE
Public Library of Science (PLoS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Galleria mellonella Infection Model Demonstrates High Lethality of ST69 and ST127 Uropathogenic *E. coli*

Majed F. Alghoribi
Tarek M. Gibreel
Andrew R. Dodgson
Scott A. Beatson
Mathew Upton

Abstract

Galleria mellonella larvae are an alternative in vivo model for investigating bacterial pathogenicity. Here, we examined the pathogenicity of 71 isolates from five leading uropathogenic *E. coli* (UPEC) lineages using *G. mellonella* larvae. Larvae were challenged with a range of inoculum doses to determine the 50% lethal dose (LD$_{50}$) and for analysis of survival outcome using Kaplan-Meier plots. Virulence was correlated with carriage of a panel of 29 virulence factors (VF). Larvae inoculated with ST69 and ST127 isolates (10^5 colony-forming units/larvae) showed significantly higher mortality rates than those infected with ST73, ST95 and ST131 isolates, killing 50% of the larvae within 24 hours. Interestingly, ST131 isolates were the least virulent. We observed that ST127 isolates are significantly associated with a higher VF-score than isolates of all other STs tested ($P<0.0001$), including ST69 ($P<0.02$), but one ST127 isolate (strain EC18) was avirulent. Comparative genomic analyses with virulent ST127 strains revealed an IS1 mediated deletion in the O-antigen cluster in strain EC18, which is likely to explain the lack of virulence in the larva infection model. Virulence in the larva was not correlated with serotype or phylogenetic group. This study illustrates that *G. mellonella* are an excellent tool for investigation of the virulence of UPEC strains. The findings also support our suggestion that the incidence of ST127 strain should be monitored, as these isolates have not yet been widely reported, but they clearly have a pathogenic potential greater than that of more widely recognised clones, including ST73, ST95 or ST131.

Introduction

Escherichia coli is the major cause of extraintestinal infections including urinary tract infection (UTI), Gram-negative bacteraemia and neonatal meningitis. Uropathogenic *E. coli* (UPEC) are the most frequent cause of UTI, being responsible for up to 85% of community acquired UTI and 40% of nosocomial UTI [1–3].

Multilocus sequence typing (MLST) is the current method used to investigate the genetic differences between isolates of UPEC. This method has been used to good effect to identify UPEC as well as other important pathogenic *E. coli* [1,4–6]. Our own work and that of others has highlighted the importance of several leading lineages of UPEC (e.g. Sequence Type 69 (ST69), ST73, ST95, ST127 and ST151) and we have recently suggested that ST127 is a newly evolved clone, with particularly high virulence potential [4]. Numerous other recent studies have highlighted the virulence and antimicrobial resistance of members of these clones [6–10].

Based on PCR surveillance of virulence factors, UPEC have been shown to possess multiple virulence-associated determinants that include diverse adhesins, toxins, siderophores, capsule variants and other miscellaneous traits [11–14]. Although a great deal of research effort has been devoted to understanding UPEC virulence mechanisms, much remains for further investigation and animal models of UTI are resource intensive.

The larvae of the wax moth *Galleria mellonella* have been used as an infection model to describe and evaluate microbial pathogenicity for a number of bacterial pathogens, including enteropathogenic *E. coli* (EPEC) [15–19]. The virulence mechanisms of many pathogens in *G. mellonella* show a high degree of similarity to mammals, including humans [20,21]. Previous studies have shown a strong and positive correlation of virulence of different pathogens between mouse infection systems and *G. mellonella* [22–24]. In this study, *G. mellonella* larvae were used as an in vivo model to investigate the virulence of the major lineages of UPEC.

Material and Methods

Bacterial strains

A total of 71 non-duplicate isolates of *E. coli* from patients with UTI were examined in this study. The patients included those presenting in the community and nosocomial infections. All isolates were recovered at clinical bacteriology laboratories at Central Manchester Foundation Trust, Preston Royal Hospital and the Mid Yorkshire Hospital Trust, Wakefield, between 2007
and 2011. The MLST and virulence typing of 57 of these isolates has been previously described [4]. The isolates were selected on the basis of assignment to the major lineages of UPEC, as determined by using the Achtman MLST scheme, and were from ST69 \((n = 11) \), ST73 \((n = 20) \), ST95 \((n = 10) \), ST127 \((n = 10) \) and ST131 \((n = 20) \), using previous methods [5]. PCR based detection of 29 uropathogen associated virulence factors (previously defined by Johnson et al., 2000 [12]) was carried out for each of the examined isolates.

Phylogenetic grouping

Phylogenetic grouping was determined by triplex PCR reaction targeting three DNA markers \(\text{chuA}, \text{yjaA} \) and TSPE4.C2, as described previously by Clermont and colleagues [25].

Serotyping

Molecular serotyping was performed on all the isolates using a multiplex PCR method to detect 14
\textit{Escherichia coli} serogroups associated with UTI (O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83), as described previously [26]. Isolates that were not able to be typed using this method (i.e. gave negative results with all primer pairs) were classified as nontypable (nt).

Identification of LD50 in \textit{G. mellonella} larvae infection

Larvae of the Greater Wax Moth, \textit{G. mellonella} (GM) were obtained from Live Foods Ltd (Rooks Bridge, UK). Larvae were stored in the dark and used within 10 days of receipt. Larvae were selected to be 15–25 mm in length, having a cream colour with minimal speckling and no grey markings. To prepare UPEC inoculum, strains were grown in nutrient broth overnight at 37°C and collected by centrifugation at 13,000g for two minutes. The cell suspensions were normalised using optical density (OD600) and the colony forming units (cfu/ml) were confirmed by viable count assay.

A minimum of three biological replicates of 10 larvae were injected per serial dilution of UPEC \((10^7, 10^6, 10^5, 10^4, 10^3 \text{ and } 10^2 \text{ cfu}/10 \mu l) \) using a Hamilton syringe (26G gauge, 50 μl capacity). Larvae were then incubated at 37°C in the dark and the dilution that killed 50% of the larvae (LD50) for each replicate was determined after 24 hours. Larvae were monitored for an additional 120 hours and survival outcome was determined; larvae were considered dead when no response was observed following touch. In addition, 10 larvae were injected with non-pathogenic \textit{E. coli} DH5α to evaluate whether \textit{G. mellonella} larvae were killed by non-infection related reactions and a control inoculation \((n = 10) \) was performed with 10 μl of PBS to measure any lethal effects due to physical injury. An additional control group \((n = 10) \) had no manipulation.

Survival analysis and statistical significance were determined using the log-rank test and the Kaplan–Meier survival curves were plotted using SPSS v.20. The LD50 was calculated using probit regression model implemented in SPSS v.20 at a significance level of \(P = 0.05 \).

Assessment of virulence of UPEC strains in vivo

Having identified the LD50 for each isolate, we investigated the virulence of each strain over 120 hrs to assess the utility of the model for comparison of virulence of the UPEC strains. Larvae were inoculated with a dose corresponding to the LD50 and survival followed over 120 hrs, as described above.

Correlation analyses

In order to investigate correlations between the LD50 and virulence profiles of the isolates from the five STs, data were examined by using the Kruskal-Wallis test, followed by pairwise analysis of differences performing Mann-Whitney U-tests in Prism v.6 (www.graphpad.com/).

The LD50 was taken to be a continuous variable and the values for all isolates were used to divide them into three groups; low LD50 \((\sim 10^2-10^3 \text{ cfu}/10 \mu l) \), medium LD50 \((\sim 10^3-10^4 \text{ cfu}/10 \mu l) \) and high LD50 \((\sim 10^4-10^5 \text{ cfu}/10 \mu l) \). Virulence factors were correlated with LD50 using Prism v.6 by fitting Pearson’s correlation coefficients between the three LD50 groups and virulence factors. The correlation was used to describe the virulence factors that are associated with each group.

Genome sequencing and annotation of \textit{E. coli} EC18 and EC41

Genomic DNA of ST127 strains EC18 and EC41 (virulent and virulent in GM larvae, respectively) was sequenced using Illumina MiSeq by the Centre for Genomic Research, University of Liverpool. Velvet 1.2.10 software [27] was used to assemble sequence reads of both genomes into contigs. For each strain (EC18 and EC41), a total of 6,666,026 and 4,165,821 sequence reads were assembled into 149 and 178 contigs greater than 200 bp in length with and average depth of coverage of 196.71 and 114.92, respectively. Contigs were ordered according to the complete genome of UPEC ST127 strain 536 (Accession ref NC_008253; [28]) and annotated using Prokka 1.7 [Prokka: Prokaryotic Genome Annotation System - http://vichoinformatics.com/] [29]. The Illumina sequence reads are available under the Bioproject PRJEB6308/ERP005824 (Accession Numbers: EC18, ERS497039; EC4, ERS497040). Comparison and visualization of UPEC genomes were carried out using BLAST [30], Artemis comparison tool (ACT) [31], BLAST Ring Image Generator (BRIG) [32], Easyfig [33] and Tablet [34].

Gap Region Amplification and Sequencing of the O-antigen deletion region in EC18

Primers were design to target the gap of the O-antigen deletion region in EC18 strains (gap-F 5′-TCA AGG ACC GAA TAA CCT -3′) and (gap-R 5′-TAC CTG AAG TAC GTA GCC-3′). The primers were designed based on the sequence of the two contigs adjacent to the O-antigen deletion region, for which no direct linkage information was available from the genome sequence. As the size of the expected product was not immediately clear from the genome assembly alone, long-range PCR was performed using Q5 High-Fidelity 2X Master Mix (New England Biolabs). PCR was performed as follows; 98°C for 30 sec, 30 cycles of 98°C for 10 sec, 52°C for 30 sec and 72°C for 30 sec, and a final extension at 72°C for 2 min. Electrophoresis in a 1% agarose gel was used to determine the size of the PCR product by running with Quick-Load 1 kb Extend DNA Ladder (New England Biolabs). The DNA sequence of the amplified product was determined by Sanger sequencing at the Plymouth University Systems Biology Centre using an Applied Biosystems 3130 Genetic Analyzer. Sequence data were assembled using CLC Main Workbench v.6.9.1.
Results
Phylogenetic grouping

Phylogenetic analysis of the 71 strains examined indicated that they belonged to groups B2 (51%), D (48%) and B1 (1%). All ST69 strains belonged to phylogenetic group D, ST73 to both group D (13 strains) and B2 (7 strains), ST95 to both group D (4 strains) and B2 (6 strains), ST127 belonged to groups D (4 strains) and B2 (6 strains), and ST131 belonged to groups D (2 strains), B2 (17 strains) and B1 (1 strain) (Table S1).

Serotyping

Serotyping of the 71 strains indicated that they belonged to several serogroups with O6 being the most prevalent (32%) followed by O25 (25%), O15 (13%), O2 (7%), O16 (4%), O18 (3%), O22 (1%); 14% were classified as nt (Table S1). Serogroup O6 was seen for all of the ST127 strains, except EC18, which was nt. ST73 (9 strains) and ST95 (5 strains) were also O6. Fifteen strains of ST131 belonged to O25, with the remainder (3 strains) belonging to O16. O25 was also observed for ST73 (2 strains) and ST69 (1 strain). Most of the ST69 strains (n = 6) and 3 ST95 strains were O15. Nontypable strains were observed for all STs (Table S1).

UPEC from ST69 and ST127 are significantly more pathogenic towards G. mellonella than those from other STs

The larvae were injected with a range of inoculum doses to determine the mortality rates of each isolate. An example of the Kaplan-Meier survival analysis for 2.87 × 10^5 cfu/10 μl of a strain from each ST investigated is shown in Figure 1. The survival outcome of the tested UPEC clones varied, where ST69 and ST127 showed high mortality rates compared to ST73 (P ≤ 0.248), ST95 (P ≤ 0.303) and ST131 (P ≤ 0.054). Isolates of ST131 were observed to be the least virulent in this model. Larvae injected with non-pathogenic E. coli DH5α showed no sign of stress, with an insignificant level of larval death recorded, indicating that larval death is related to overt pathogenic mechanisms in the UPEC strains. However, an interesting result to emerge from the data was the observation that one of the ST127 isolates (strain EC18) did not show any lethal effects, even for high inoculum doses (up to 2.33 × 10^7 cfu/10 μl).

Lethality tests conducted to investigate LD50 confirmed that isolates of ST69 and ST127 were significantly more virulent than those of the other STs tested (Table 1). The median LD50 for ST69 and ST127 isolates was 1.59 × 10^4 cfu/10 μl (P ≤ 0.0021) and 1.17 × 10^4 cfu/10 μl (P ≤ 0.047), respectively (Figure 2A). Isolate EC18 was not included in statistical calculations, as it had no recordable LD50 value.

Deletion of O-antigen gene cluster in UPEC strain EC18 results in avirulence in G. mellonella

Comparative genomic analysis was carried between strains EC18, EC41 and 536, the only completely sequenced ST127 strain available in the public databases [28]. This analysis indicated an insertion-sequence (IS1) mediated deletion (from glaE to weeA) within the O-antigen gene cluster in strain EC18. UPEC 536 is a model UPEC strain used for studies on ExPEC pathogenesis and belongs to serogroup O6 [8]. The O-antigen gene cluster, which is involved in the synthesis of the O-antigen, is encoded by the constituent genes glaE to gnd [35–37]. In EC18, there is a deletion of the majority of the O-antigen gene cluster, which results in a contig break in the assembly and sequence evidence of an insertion sequence (IS1) at the position where the deletion occurs (Figure 3). In contrast the O-antigen region was completely assembled into a single contig in the EC41 assembly (Figure 3). To ensure that the missing EC18 O-antigen genes were not encoded elsewhere in the EC18 assembly we carried out a whole genome comparison between the 536 complete genome and the EC18 and EC41 draft genomes (data not shown). Furthermore, BLASTn and BLASTp comparisons with 95 O-antigen sequences, as described by DebRoy and colleagues [36], showed that none of the known O-antigen regions were present in the EC18 assembly. Due to the short insert size of Illumina paired-end sequence data it was not immediately clear from the draft genome assembly of EC18 if there was a single IS1 sequence, or if two or more IS1 along with intervening sequence were arranged in tandem within the O-antigen region. PCR and subsequent Sanger end-sequencing of the product confirmed the presence of a single IS1 sequence replacing the O-antigen region in EC18 from gafE to the 3′ end of weeA, inclusive (Fig 3). The IS1 sequence in EC18 is 100% identical to an IS1 annotated in Salmonella enterica subsp. enterica serovar Typhimurium str. T000240 (dbj|AP011957). The closest match in the ISFinder database is 96% nucleotide identity to IS1X2 from E. vulneris ATCC29943 (gb|Z11605).

Comparison of the virulence genes carried by ST127 strains, using a PCR survey, indicated no other missing gene targets that could clearly explain the difference in virulence between EC18 and other strains (Fig. 4).

Lethality in the G. mellonella model is correlated with carriage of specific virulence determinants

The virulence profile of the UPEC strains examined here was determined by PCR based surveillance of 29 virulence factors (Table 2), which indicated that ST127 isolates are significantly associated with a higher VF-score (the sum of positive PCR test results; Figure 2B) than isolates of the other STs tested (ST73, ST95 & ST131, P ≤ 0.0001; ST69, P < 0.02) (Table 1). All isolates tested were positive for the fragment of the fimH gene sought using PCR, so data are not presented in Table 2.

This supports our previous reports for ST127 strains [4] and the data presented here corroborate the suggested low virulence capacity of ST131 isolates [38,39].

In order to assess the correlation between the LD50 and carriage of specific virulence factors, the continuous variable of LD50 was divided into three groups: low, medium and high. The medium of a high number of VFs (Figure 2B). The mechanism underlying a low LD50.

Isolates of ST69 were not significantly associated with carriage of a high number of VFs (Figure 2B). The mechanism underlying the pronounced virulence of ST69 isolates in this model has not yet been determined. Previous work has correlated growth rate with lethality in G. mellonella, where mortality was associated with proliferation of Burkholderia species, Klebsiella pneumoniae, Staphylococcus aureus or Streptococcus pneumoniae within the larvae [19,21,40,41]. However, we investigated growth rate in LB medium and the ST69 isolates we have examined here were in fact...
Figure 1. Kaplan-Meier survival analysis of *G. mellonella* larvae following injection of UPEC cells (2.87×10^6 cfu/ml) of different sequence types (ST). Data presented are the mean of three independent assays with each UPEC isolate. Low larvae mortality was recorded following injection of DH5α. Non-injected larvae and PBS injected larvae showed no mortality. Survival outcome of larvae injected with ST69 and ST127 isolates recorded the highest mortality compared to ST73 ($P < 0.248$), ST95 ($P < 0.303$) and ST131 ($P < 0.054$).

doi:10.1371/journal.pone.0101547.g001

Figure 2. Correlation analysis between the five UPEC sequence types: (A) Low LD$_{50}$ shows significant lethal effects with larvae inoculated with ST69 and ST127 strains. (B) ST127 shows high virulence capacity compared to that of other STs and ST131 shows relatively low virulence capacity.

doi:10.1371/journal.pone.0101547.g002
seen to have the slowest growth rate, or longest doubling time (data not shown).

Discussion

UPEC are a major cause of UTI and the severity of the infection is due to the contribution of many virulence factors including adhesins, toxins, siderophores and capsule. The diversity of the virulence factors enable UPEC to escape host immune responses and persist to cause infection [13,14]. In the current study, G. mellonella larvae were used as an in vivo model to investigate the virulence of UPEC from the leading lineages known to cause UTI. Previous studies indicate that the G. mellonella model is a powerful tool to investigate the virulence of a range of bacterial and fungal pathogens [40,42,43]. Of most relevance to the current study is the work of Leuko and colleagues, who demonstrated that pathogenicity of EPEC could be dissected using G. mellonella larvae, and that E. coli K12 was non-pathogenic [18]. The innate immune systems of insects such as G. mellonella display a high degree of similarity to the mammalian immune systems, which make G. mellonella an attractive alternative to animal models for investigation of pathogenicity [19,42,44,45]. Plasmatocytes and granulocytes have been identified in G. mellonella as types of haemocytes that are involved in phagocytosis, encapsulation and nodule formation, which are important elements in the defence against pathogenic bacteria [46], as suggested for EPEC [18]. In addition, larvae of G. mellonella are large enough to allow easy handling, inexpensive to purchase and, being invertebrates, investigations do not require ethical permission.

The findings presented here illustrate different levels of virulence among isolates from the leading UPEC lineages and reveal that these phenotypes are largely conserved within the tested clones. We observed a significant association between lethality and carriage of specific virulence factors, but not with growth rate in vitro.

Based on virulence factor surveillance, ST127 has the highest virulence potential, which is consistent with our previous findings [4]. The median LD50 of virulent ST127 strains was 1.17 x 10^4 cfu, almost one log higher than that recently reported for a single strain of EPEC [18]. A previous study by Johnson and colleagues showed that ST127 causes extraintestinal infections in

STs	ST69	ST127		
VF (P value)	LD50 (P value)	VF (P value)	LD50 (P value)	
ST69	-	-	0.02	0.401
ST73	0.0124	0.0023	0.6985	0.0024
ST95	0.0185	0.0079	0.3653	0.0051
ST127	0.02	0.401	-	-
ST131	0.0115	0.0021	0.0001	0.0004

Table 1. Statistical analysis indicates the significant difference in carriage of virulence factors (based on a PCR survey) and lethal effects (Low LD50 with larvae inoculated with ST69 and ST127 strains.

Figure 3. BLASTn comparison of O-antigen gene cluster (green) and colanic acid gene cluster (red) from UPEC ST127 strains 536, EC18 and EC41. The gray shading indicates high nucleotide identity between the sequences (99–100%). In EC18, there is an insertion-sequence (IS1) mediated deletion of most of the O-antigen gene cluster and the colanic acid gene cluster (vertical dotted line denotes contig boundaries in EC18). Figure was prepared using Easyfig [33].

doi:10.1371/journal.pone.0101547.t001

doi:10.1371/journal.pone.0101547.g003

O-antigen gene cluster
Colanic acid gene cluster
other strains examined had some degree of lethality and the G. mellonella recognized human pathogen, our observations support the use of this insect for investigation of the pathogenicity of ST127 isolates with significant lethal effects in mammals. Virulence profiles, which showed that ST127 isolates with virulence of UPEC were it was demonstrated that the O-antigen, part of lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria, is a major virulence factor of UPEC. Previous studies have demonstrated that bacterial LPS is important for virulence in the nematode model of infection [52–54]. In one study, it was demonstrated that Salmonella Typhimurium required an intact LPS to resist the immune response, persist and multiply within G. mellonella [52]. A recent study by Browning and others (2013) showed the essential nature of O-antigen production as a key virulence determinant mediating killing of Caenorhabditis elegans worms by E. coli [53]. Browning demonstrated that regeneration of the O-antigen biosynthesis cluster renders E. coli K-12 strain MG1655 pathogenic in C. elegans. In this study we demonstrate the importance of the O-antigen gene cluster in the ability of UPEC strain EC18 to kill G. mellonella. Given that the VF score for the avirulent ST127 strain EC18 was similar to that for the virulent ST127 strains (Fig. 4), it is clear that loss of O-antigen can supersede the virulence potential of UPEC in G. mellonella. The normal bactericidal effects of the innate immune system of higher animals, including G. mellonella, play a crucial protective role during bacterial infection [55–57]. Antimicrobial peptides in the G. mellonella hemolymph are key factors in the humoral immune response against invading microorganisms [38,59]. Several antimicrobial peptides that are effective against Gram-negative bacteria, including apolipophorin III (apoLp-III), lysozyme and anionic peptide 2, have been identified in the G. mellonella hemolymph [60,61]. It has been suggested that O-antigens and colanic acid provide an effective protective barrier against desiccation, phagocytosis and serum complement-mediated killing, including the action of antimicrobial peptides [62–66]. A recent study by Phan and others demonstrated the importance of the O-antigen and colanic acid to serum resistance in ST131 UPEC strain EC958 [67]. The study identified 56 serum resistance genes, of which the majority encode membrane proteins or factors involved in LPS biosynthesis. In addition, another study by Sarkar and colleagues showed the important role of O-antigen in the virulence of UPEC were it was demonstrated that the O6 antigen has a major impact on the colonization of the mouse urinary tract [51]. In our study, serotype O6 was the most prevalent (32%) among the 71 examined isolates, which were distributed across

humans, dogs, and cats [8]. The clonal group ST127 includes the reference strain 536, which is a model organism of extraintestinal E. coli infections and the first ST127 complete genome to be reported [8,28]. Other than strain 536, members of ST127 have not been widely reported, presumably because it is a recently evolved clone. Due to its pathogenic potential, ST127 may represent a significant health problem in the future, especially if strains were to acquire extensive antimicrobial resistance.

Comparative genomic analyses were carried out by Hochhut and colleagues between 536 and another reference strain, CFT073, which revealed at least five pathogenicity islands (PAI I-V536) specific to strain 536 [28,47,48]. Strain 536 (O6:K15:H31) is well-characterized and it has been demonstrated that it produces various types of fimbrial adhesins, such as S fimbriae (sfa) and type 1 and P-related fimbriae [49]. The P-related fimbriae genes and S fimbrial adhesins are located on PAI 1536 and PAI II536, respectively and deletion mutants in these regions show decreased potency in vivo [49,50]. These observations are supported by our correlation analysis between LD50 and virulence profiles, which showed that ST127 isolates with significant lethal effects in G. mellonella are associated with the fimbrial adhesins bmaE (M fimbriae), gafD (G fimbriae) papAH, papC, papEF (P fimbriae) and sfaS (S fimbriae).

It has been demonstrated that EPEC with a defective type III secretion system (T3SS) have reduced virulence in G. mellonella [18]. The same paper describes how activation of the Cpx envelope stress response pathway, removing all significant cell envelope associated virulence factors, including T3SS and the bundle forming pilus, will render EPEC avirulent. The data we present here regarding the VFs selected for analysis by PCR, indicate that additional virulence factors contribute to pathogenicity of UPEC in the G. mellonella model, but support suggestions that this insect is a valid tool for investigation of the pathogenicity of E. coli. We also suggest that, as the ST127 strain 536 is a recognized human pathogen, our observations support the use of G. mellonella as a model to indicate potential for causing disease in mammals.

The discovery of a single avirulent ST127 strain, EC18, has allowed a deeper investigation of the mechanisms contributing to survival, a prerequisite for virulence, of E. coli in the larvae. All other strains examined had some degree of lethality and the observation of a single avirulent strain in ST127 was rather

VFs	VF SCORE
112	14
304	16
275	17
72	12
318	9
224	17
323	11
41	12
21	14
18	13

Figure 4. Virulence profile of ST127 strains based on PCR detection of 29 uropathogen associated virulence factors. EC18 (avirulent strain) shows a similar profile compared to other ST127 virulent strains. Black blocks represent positive PCR results and strain numbers are in the left hand column. doi:10.1371/journal.pone.0101547.g004
Table 2. Prevalence of various UPEC associated virulence factors in the strains studied.

Category	Specific VF	Total no.	ST69	ST73	ST95	ST127	ST131
		(n = 11)	(n = 20)	(n = 10)	(n = 10)	(n = 20)	
Adhesion	papA	41 (58)	8 (73)	13 (65)	9 (90)	10 (100)	1 (5)
	papC	41 (58)	7 (64)	14 (70)	10 (100)	10 (100)	0
	papEF	40 (56)	9 (82)	13 (65)	7 (70)	10 (100)	1 (5)
	papGII,III	42 (59)	7 (64)	16 (80)	10 (100)	8 (80)	1 (5)
	allele-II	27 (38)	6 (55)	11 (55)	9 (90)	1 (10)	0
	allele-III	15 (21)	0	4 (20)	0	10 (100)	1 (5)
	sfa/foc DE	20 (28)	0	13 (65)	0	7 (70)	0
	sfa/draBC	10 (14)	0	0	0	0	10 (50)
	sfaS	7 (10)	0	2 (10)	0	5 (50)	0
	focG	12 (17)	0	10 (50)	1 (10)	1 (10)	0
	bmaE	2 (3)	1 (9)	0	0	1 (10)	0
	gadD	2 (3)	1 (9)	0	0	1 (10)	0
Toxins	hlyA	21 (30)	0	15 (75)	0	5 (50)	1 (5)
	cnfT	19 (27)	0	12 (60)	0	6 (60)	1 (5)
	cdhB	5 (7)	0	4 (20)	1 (10)	0	0
Siderophore	fyuA	69 (97)	10 (91)	19 (95)	10 (100)	10 (100)	20 (100)
	iutA	49 (69)	8 (73)	16 (80)	5 (50)	2 (20)	18 (90)
Capsule	kpsM II	49 (69)	6 (55)	12 (60)	10 (100)	10 (100)	11 (55)
	kpsM III	6 (8)	3 (27)	1 (5)	0	2 (20)	0
	K1	16 (25)	2 (18)	5 (25)	8 (80)	1 (10)	0
	K5	31 (44)	4 (36)	6 (30)	2 (20)	8 (80)	11 (55)
Miscellaneous	cvaC	6 (8)	1 (9)	0	5 (50)	0	0
	lbeA	7 (10)	0	2 (10)	0	2 (20)	3 (15)
	traT	54 (76)	11 (100)	12 (60)	9 (90)	7 (70)	15 (75)
	PAI	53 (75)	2 (18)	18 (90)	7 (70)	8 (80)	18 (90)
different STs in strains that demonstrated different levels of lethality. This indicates that, although the O6 antigen may be important for bacterial survival during UTI, it is not correlated with virulence in the *G. mellonella* hemolymph. Our results suggest that the absence of a functional O antigen and colanic acid gene cluster in EC18 renders the bacteria sensitive to the activity of *G. mellonella* hemolymph. However, the mechanisms that lead to the pronounced lethality of some strains from the ST127 lineage are yet to be deciphered. The genome sequence data we have generated, in combination with publically available sequences for ST69 strains will allow us to begin to explore this in greater depth.

We have also demonstrated a correlation between carriage of certain virulence factors with low LD50, which warrants further experiments with mutant strains, and their complemented derivatives, to investigate the role of individual virulence factors in pathogenicity in the *G. mellonella* model.

The ST69 lineage is part of phylogenetic group D and is also described as clonal group A (CGA), which has been identified as an important cause of UTI, with CGA-D-ST69 strains being responsible for up to 50% of infections caused by trimethoprim-sulfamethoxazole-resistant isolates [68–70]. Analysis of the virulence profile of CGA strains has indicated similarity to O15:K52:H1 isolates, which were found to be more virulent than other *E. coli* [71,72]. The O15:K52:H1 clonal group is considered to be a widely disseminated and important UPEC lineage [73]. In the current study, ST69 isolates were highly lethal in *G. mellonella*.

This may be associated with specific adhesins in this clone, including the *pap* alleles. Interrogation of the VF data recorded during this study did not reveal any obvious similarity in VF profile between the low LD50 isolates from ST69 and ST127.

In conclusion, this is the first study to investigate the virulence of UPEC using *G. mellonella* as an *in vivo* model. The findings demonstrate that ST69 and ST127 isolates are, with one exception, highly virulent. We have demonstrated that the O-antigen cluster is essential for resistance to the action of the innate immune response in *G. mellonella*. Given previous studies with ST69 (CGA) and ST127 (strain 536) UPEC, and our demonstration of the correlation between lethality and specific virulence factors, we suggest that the *G. mellonella* model is a good model to study virulence of UPEC strains, and is a useful tool for discovery of candidate vaccine targets. The high virulence potential and lethality of ST127 isolates emphasises the need to perform a comprehensive analysis of the genetics underlying the virulence of members of this clonal group and suggests that increased surveillance for the clone is justified.

Supporting Information

Table S1 Serotyping, Phylo-grouping, median lethal value LD50 and virulence factors of each strain examined from the five UPEC lineages.

(XLSX)

Acknowledgments

The authors wish to acknowledge the assistance of laboratory staff in the bacteriology laboratories in Manchester, Preston and the Mid-Yorkshire Hospital Trust, who were invaluable in provision of the isolates included in this study and thank Dr Nouri Ben Zakour, Mitchell Stanton-Cook, Brian Wee and Mitchell Sullivan for assistance with bioinformatics analysis. This work was presented in part at the 23rd European Congress of Clinical Microbiology and Infectious Disease, Berlin, April 2013.

Table 3. Association of LD50 with selected virulence factor.

LD50 category	Number of isolates	Number of isolates carrying selected virulence factor
Low LD50	6	0.0013*
Medium LD50	51	0.0379, 0.0249, 0.0036, 0.001
High LD50	1	0.0013*

Underlining indicates a negative association.

Table S1 Serotyping, Phylo-grouping, median lethal value LD50 and virulence factors of each strain examined from the five UPEC lineages.

(XLSX)
Author Contributions
Conceived and designed the experiments: MU MG SB AD. Performed the experiments: MA MU SB AB. Analyzed the data: MA MU TG SB AD. Contributed reagents/materials/analysis tools: MA MU TG SB AD. Wrote the paper: MA MU TG SB AD.

References
1. Tarlo SF, Solberg OD, Manues AR, Riley IW (2005) Analysis of a uropathogenic Escherichia coli clone: insight by multilocus sequence typing. J Clin Microbiol 43: 5860–5864.
2. Ronald A (2003) The etiology of urinary tract infection: traditional and emerging pathogens. Dia Mon 49: 71–82.
3. Berry RE, Klampf DJ, Schaefer AJ (2009) Urothelial cultures support intracellular bacterial cell community formation by uropathogenic Escherichia coli. Infect Immun 77: 2762–2772.
4. Gibeau TM, Dodgson AR, Chesnough, J, Fox AJ, Bolton JF, et al. (2012) Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob Chemother 67: 346–356.
5. Lau SH, Reddy S, Chesnough J, Bolton JF, Willhaze G, et al. (2000) Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol 46: 1076–1080.
6. Bengtsson S, Naseer U, Sundsfjord A, Kahlmeter G, Sundqvist M (2012) Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. J Antimicrob Chemother 67: 69–73.
7. Banerjee R, Johnston B, Lohse C, Chattopadhyay S, Tchenoskova V, et al. (2013) The clonal distribution and diversity of extraintestinal Escherichia coli varies according to patient characteristics. Antimicrob Agents Chemother 57: 5912–5917.
8. Johnson JR, Johnston B, Clabots CR, Kukowski MA, Roberts E, et al. (2009) Virulence phenotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. J Clin Microbiol 46: 417–422.
9. Nicolas-Chanoine M-H, Blanc P, Leffort-Chivot V, Damarty R, Alonso MP, et al. (2008) Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61: 273–281.
10. Croxall G, Hale J, Weston V, Manning G, Cheetham P, et al. (2011) Molecular epidemiology of extraintestinal pathogenic Escherichia coli isolates from a regional cohort of elderly patients highlights the prevalence of ST131 strains with increased antimicrobial resistance in both community and hospital care settings. J Antimicrob Chemother 66: 2501–2508.
11. Johnson JR (1991) Virulence factors in uropathogenic Escherichia coli strain infection. Clin Microbiol Rev 4: 80–128.
12. Johnson JR, Stefl AL (2000) Extended virulence genotypes of Escherichia coli strain from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181: 261–272.
13. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123–140.
14. Lloyd AL, Rasko DA, Mobley HLT (2007) Defining genomic islands and pathogenic-specific genes in uropathogenic Escherichia coli. J Bacteriol 189: 3532–3546.
15. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, et al. (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14: 195–202.
16. Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338: 2503–2519.
17. Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC, et al. (2009) Mechanisms of O-antigen structural variation of bacterial lipopolysaccharide (LPS): The Complete World of Polysaccharide, Karunaratne DN, ed. InTech.
18. Stiles GD, Rozen DE (2012) A Streptococcus pneumoniae infection model in Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. J Med Microbiol 62: 1790–1798.
19. Christensen J, Møller P, Rossau R, Sharrad R, Wirth TF, et al. (2011) Characterization of O-antigen Virulence Factors in the Galleria mellonella infection model. Front Microbiol 2: 1–10.
20. Johnson JR, Stefl AL (2000) Extended virulence genotypes of Escherichia coli strain from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181: 261–272.
21. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl Environ Microbiol 66: 4535–4558.
22. Li D, Liu B, Chen M, Guo D, Guo X, et al. (2010) A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J Microbiol Methods 82: 71–77.
23. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829.
24. Hochholt R, Wilde G, Balling G, Middenhoff D, Robindrit U, et al. (2006) Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 61: 584–595.
25. Prokka: Prokaryotic Genome Annotation System (n.d.). Available: http://vimbioinformatics.com/. Accessed 20 November 2013.
26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
27. Curver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrett BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: i324–i325.
28. Alkhan N-F, Petty NK, Ben Zakour NL, Beaton SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402.
29. Sullivan MJ, Petty NK, Beaton SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009–1010.
30. Milne I, Stephen G, Mayer M, Cock PJ, Pritchard L, et al. (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14: 195–202.
31. Samuel G, Reeves P (2003) Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 338: 2503–2519.
32. DeBroy C, Roberts E, Fratamico PM (2011) Detection of O antigens in Escherichia coli species. Anim Health Res Rev 12: 169–185.
33. Reyes RE, González CR, Jiménez RG, Herrera MO, Andrade AA, et al. (2012) Mechanisms of O-antigen structural variation of bacterial lipopolysaccharide (LPS). The Complete World of Polysaccharide, Karunaratne DN, ed. InTech.
34. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, et al. (2013) Molecular Epidemiology of Escherichia coli Sequence Type 131 and Its H30 and H30-Rx Subclones among Extended-Spectrum-β-Lactamase-Positive and -Negative E. coli Clinical Isolates from the Chicago Region, 2007 to 2010. Antimicrob Agents Chemother 60: 25–33.
35. Evans BA, Rosen DE (2012) Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. Eur J Clin Microbiol Infect Dis 31: 2653–2660.
36. Kavanagh K, Reeves EP (2004) Exploiting the potential of insects for in vivo pathogenesis of microbial pathogens. FEMS Microbiol Rev 28: 101–112.
37. Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC, et al. (2009) Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53: 2605–2609.
38. Salzet M (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune immune response. Trends Immunol 22: 285–288.
39. Ratschläpp NA (1983) Invertebrate immunity—a primer for the non-specialist. Immun Lett 10: 253–270.
40. Walters JB, Ratcliffe NA (1983) Studies on the in vivo cellular reactions of insects: Fate of pathogenic and non-pathogenic bacteria in Galleria mellonella nodules. J Insect Physiol 29: 417–424.
41. Schneider G, Dobrinth U, Bruggemann H, Nagy G, Janke B, et al. (2004) The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect Immun 72: 5993–6001.
42. Blum G, Ott M, Lischewski A, Ritter A, Imrich H, et al. (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62: 606–614.
43. Hacker J, Bender L, Ott M, Wingender J, Lund B, et al. (1998) Deletions of chromosomal regions coding for fimbrae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8: 212–225.
51. Sarkar S, Ulett GC, Totsika M, Phan M-D, Schembri MA (2014) Role of Capsule and O Antigen in the Virulence of Uropathogenic Escherichia coli. PLoS One 9: e94716.

52. Bender JK, Wille T, Blank K, Lange A, Gerlach RG (2013) LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galliera mellonella infection model. PLoS One 8: e73287.

53. Browning DF, Wells TJ, Franca FLS, Morris FC, Sevastsyanovich YR, et al. (2013) Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 87: 939–950.

54. Aballay A, Drenkard E, Hilbun LR, Ausubel FM (2003) Caenorhabditis elegans

55. Browning DF, Wells TJ, Franca FLS, Morris FC, Sevastsyanovich YR, et al. (2013) Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 87: 939–950.

56. Phipps DJ, Chadwick JS, Aston WP (n.d.) Gallysin-1, an antibacterial protein organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes. Gene 534: 204–217.

57. Tichaczek-Goska D, Witkowska D, Cisowska A, Jankowski S, Hendrich AB (2012) Anti-Legionella dumoffii Activity of Galleria mellonella Defensin-1 and PhoQ activity are important for Salmonella Typhimurium virulence in the Galliera mellonella infection model. PLoS One 8: e73287.

58. Noh JY, Patnaik BB, Tindwa H, Seo GW, Kim DH, et al. (2014) Genomic and metabolomic comparison of pathogenicity-related proteins from Salmonella Typhimurium. PLoS One 9: e94786.

59. Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Defensin and Apolipophorin III. Int J Mol Sci 13: 17048–17064.

60. Zdybicka-Barabas A, Stańczek S, Mak P, Skrzypiec K, Mendyk E, et al. (2013) Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis. Mol Microbiol 87: 939–950.

61. Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2009) A monocytogenes. Gene 534: 204–217.

62. Ramamoorthy A, Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (Endotoxin)-LPS and Is Mediated by a MAPK Signaling Pathway. Current Biology 13: 47–52.

63. Ortega X, Sáliño A, Saldías MS, Bates CC, Molinaro A, et al. (2009) Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide: truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J Biol Chem 284: 21738–21751.

64. Vincent C, Dados B, Grangasse C, Vaganay E, Ribeery M, et al. (2000) Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304: 311–321.

65. Vincent C, Dados B, Grangasse C, Vaganay E, Ribeery M, et al. (2000) Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304: 311–321.

66. Phan M-D, Peters KM, Sarkar S, Lukowski SW, Alhopp LP, et al. (2013) The serum resistance of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 9: e1003534.

67. Phan M-D, Peters KM, Sarkar S, Lukowski SW, Alhopp LP, et al. (2013) The serum resistance of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 9: e1003534.

68. Bert F, Johnson JR, Ouattara B, Leflon-Guibout V, Johnston B, et al. (2010) Genetic diversity and virulence profiles of Escherichia coli isolates causing spontaneous bacterial peritonitis and bacteremia in patients with cirrhosis. J Clin Microbiol 48: 2709–2714.

69. Johnson JR, Manges AR, O’Brien TT, Riley LW (2002) A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis. Lancet 359: 2249–2254.

70. Blanco J, Mora A, Maman A, Lopéz C, Blanco M, et al. (2011) National survey of uropathogenic Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J Antimicrob Chemother 66: 2011–2021.

71. Johnson JR, Stell AL, O’Brien TT, Kusowski M, Nowicki B, et al. (2002) A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis. Lancet 359: 2249–2254.

72. Johnson JR, Manges AR, O’Brien TT, Riley LW (2002) A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis. Lancet 359: 2249–2254.

73. Prats G, Navarro F, Mirelis B, Dalmau D, Margall N, et al. (2000) Escherichia coli clonal group: evidence of distribution beyond Europe. J Clin Microbiol 40: 1913–1923.

74. Prats G, Navarro F, Mirelis B, Dalmau D, Margall N, et al. (2000) Escherichia coli clonal group: evidence of distribution beyond Europe. J Clin Microbiol 40: 1913–1923.

75. Johnson JR, Menard M, Johnston B, Kuskowski MA, Nicol N, et al. (2009) Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother 53: 2733–2739.