WNK1 Is a Novel Regulator of Munc18c-Syntaxin 4 Complex Formation in Soluble NSF Attachment Protein Receptor (SNARE)-mediated Vesicle Exocytosis*

Received for publication, August 8, 2007, and in revised form, September 4, 2007 Published, JBC Papers in Press, September 11, 2007, DOI 10.1074/jbc.M706591200

Eunjin Oh†, Charles J. Heise§, Jessie M. English¶, Melanie H. Cobb‡ and Debbie C. Thurmond∥

From the †Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, the ‡Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, §Pfizer Research Technology Center, Cambridge, Massachusetts 02139, and the ¶Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, the ∥Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.

‡ This work was supported by National Institutes of Health (NIH) Grant DK-067912 and American Diabetes Association Grant 1-03-CD-10 (to D. C. T.), American Heart Association Postdoctoral Fellowship 070042Z (to E. O.) and NIH grant GM53032 (to M. H. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence and reprint requests should be addressed: 635 Barnhill Dr., MS4053, Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202. Tel.: 317-274-1551; Fax: 317-274-4686; E-mail: dthurmon@iupui.edu.

DEFECTS IN SOLUBLE NSF ATTACHMENT PROTEIN RECEPTOR (SNARE)-mediated granule exocytosis occur in islet beta cells, adipocytes, and/or skeletal muscle cells correlate with increased susceptibility to insulin resistance and diabetes. The serine/threonine kinase WNK1 (with no K(lysine)) has recently been implicated in the regulation of SNARE complex assembly by WNK1-Munc18c interaction, although a paucity of Munc18c-binding factors has precluded discovery of its precise functions. To validate WNK1 as a new Munc18c-interacting partner, the direct interaction between WNK1 and Munc18c was confirmed using in vitro binding analysis, and endogenous WNK1-Munc18c complexes were detected in the cytosolic and plasma membrane compartments of the islet beta cell line MIN6. This binding interaction is mediated through the N-terminal 172 residues of Munc18c and the kinase domain residues of WNK1 (residues 159–491). Expression of either of these two minimal interaction domains resulted in inhibition of glucose-stimulated insulin secretion, consistent with a functional importance for the endogenous WNK1-Munc18c complex in exocytosis. Interestingly, Munc18c failed to serve as a WNK1 substrate in kinase activity assays, suggesting that WNK1 functions in SNARE complex assembly outside its role as a kinase. Taken together, these data support a novel role for WNK1 and a new mechanism for regulation of SNARE complex assembly by WNK1-Munc18c complexes.

WNK is an unusual novel member of the Ser/Thr kinase family, named WNK (with no K(lysine)), based upon its lack of an otherwise highly conserved lysine residue present within kinase core domains (1). Although three additional WNK family members have been identified in humans, named WNK2, WNK3, and WNK4 (2), WNK1 in particular has been linked to the inherited hypertension syndrome termed pseudohypoaldosteronism II (3). WNK1 heterozygous (+/-) knock-out mice are viable but display reduced blood pressure, consistent with the role of WNK1 in regulation of blood pressure in humans (4). WNK1 is a large ~230-kDa soluble protein that is widely expressed in diverse cell types and tissues and as such has been proposed to function outside this role in ion channel regulation (1, 5). WNK1 contains a kinase domain near its N terminus between residues 218 and 490 and a long C terminus with predicted coiled-coils (5). Analyses of protein kinase activities of various WNK1 truncation mutants also revealed the presence of an autoinhibitory domain located between residues 491 and 555 (6). Human WNK1 has been shown to become activated on Thr60(7) (rodent residue is Thr58(8)) in response to insulin-like growth factor and to insulin in adipocytes (9), although the function of WNK1 signaling in this endocrine cell type remains unknown.

In another endocrine cell type, insulin-secreting INS-1 beta cells, WNK1 has been implicated in vesicular trafficking via its ability to phosphorylate the calcium sensor protein synaptotagmin 2 (10, 11). Endogenous WNK1 and synaptotagmin 2 were shown to co-localize on a subset of secretory granules, and synaptotagmin 2 phosphorylation was enhanced by coexpression of WNK1 (10). Since synaptotagmin 2 is known to facilitate fusion of vesicles with the plasma membrane in neuronal cells (11), it is predicted that WNK1, by association, may be involved in this process as well.

The identification of synaptotagmin 2 as a WNK1 substrate was made by using the unique kinase domain of WNK1 as bait in a yeast two-hybrid screen (10). Using the same screening strategy, a second vesicular trafficking protein was also identified: Munc18c. Munc18c is a member of the SM (Sec1/Munc18) family of syntaxin-binding proteins and binds selectively to the syntaxin 4 isoform, whereas Munc18a and Munc18b isoforms bind to syntaxins 1–3 (12). Like synaptotagmin 2, Munc18c functions in insulin granule fusion, such that islets from Munc18c heterozygous (+/-) mice show impaired glucose-stimulated insulin secretion (13). However, distinct from synaptotagmin 2 localization to the granule, Munc18c is...
Munc18c-WNK1 Complexes Function in Exocytosis

a soluble ∼67-kDa protein that exists in the cytosolic compartment and also at the plasma membrane, associated with membrane proteins syntaxin 4 and Doc2β (14). These differences in cellular locale of WNK1 substrates in islet beta cells suggest that WNK1 may function at multiple steps in vesicle trafficking and fusion. In addition, Munc18c functions in insulin-stimulated GLUT4 vesicle translocation and fusion in 3T3L1 adipocytes (15–17) and thus may be part of the mechanism by which WNK1 participates in insulin signaling. Although the precise role of Munc18c in vesicle/granule fusion has remained elusive, in part due to the lack of predictable domain structure and paucity of interacting partners, there is consensus that it functions as a scaffold to regulate syntaxin 4 conformation and availability for participation in SNARE core complex assembly (14, 18–20). Interestingly, Munc18c function and interaction with syntaxin 4 is altered by stimulus-induced tyrosine phosphorylation (21, 22) and protein kinase C-induced serine/threonine phosphorylation (23), supporting the idea that Munc18c associates with a kinase, such as WNK1.

In this study, we demonstrate that Munc18c is a WNK1-interacting protein and that endogenous Munc18c-WNK1 complexes are important for glucose-stimulated insulin secretion via a syntaxin 4-dependent mechanism. The complex association requires the N-terminal 172 residues of Munc18c and the kinase domain of WNK1. Paradoxically, although the kinase domain of WNK1 is essential for Munc18c association, activation by autophosphorylation of WNK1 is not required. These data provide new insight into the function of WNK1 in vesicle/granule exocytosis, outside its known function as a kinase, and reveal the identity of a novel Munc18c-interacting protein.

EXPERIMENTAL PROCEDURES

Materials—The rabbit polyclonal anti-WNK1 (Q256) and Munc18c antibodies were generated as described (1, 15). The monoclonal FLAG (M2) antibody was obtained from Sigma. Rabbit and mouse anti-GFP2 antibodies and pEGFP plasmids were acquired from Abcam (Cambridge, MA) and Clontech, respectively. The rabbit polyclonal anti-syntaxin 4 and mouse monoclonal anti-VAMP2 antibodies were purchased from Chemicon (Temecula, CA) and Synaptic Systems (Gottingen, Germany), respectively. The rabbit polyclonal anti-Myc antibody was purchased from Upstate Biotechnology, Inc. (Lake Placid, NY). The monoclonal anti-Myc (9E10) antibody and protein G-Plus-agarose were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). The MIN6 cells were a gift from Dr. John Hutton (University of Colorado Health Sciences Center). Goat anti-mouse and anti-rabbit horseradish peroxidase secondary antibodies and Transfectin lipid reagent were acquired from Bio-Rad. Enhanced chemiluminescence reagent and also at the plasma membrane, associated with membrane proteins syntaxin 4 and Doc2β (14). These differences in cellular locale of WNK1 substrates in islet beta cells suggest that WNK1 may function at multiple steps in vesicle trafficking and fusion. In addition, Munc18c functions in insulin-stimulated GLUT4 vesicle translocation and fusion in 3T3L1 adipocytes (15–17) and thus may be part of the mechanism by which WNK1 participates in insulin signaling. Although the precise role of Munc18c in vesicle/granule fusion has remained elusive, in part due to the lack of predictable domain structure and paucity of interacting partners, there is consensus that it functions as a scaffold to regulate syntaxin 4 conformation and availability for participation in SNARE core complex assembly (14, 18–20). Interestingly, Munc18c function and interaction with syntaxin 4 is altered by stimulus-induced tyrosine phosphorylation (21, 22) and protein kinase C-induced serine/threonine phosphorylation (23), supporting the idea that Munc18c associates with a kinase, such as WNK1.

In this study, we demonstrate that Munc18c is a WNK1-interacting protein and that endogenous Munc18c-WNK1 complexes are important for glucose-stimulated insulin secretion via a syntaxin 4-dependent mechanism. The complex association requires the N-terminal 172 residues of Munc18c and the kinase domain of WNK1. Paradoxically, although the kinase domain of WNK1 is essential for Munc18c association, activation by autophosphorylation of WNK1 is not required. These data provide new insight into the function of WNK1 in vesicle/granule exocytosis, outside its known function as a kinase, and reveal the identity of a novel Munc18c-interacting protein.

EXPERIMENTAL PROCEDURES

Materials—The rabbit polyclonal anti-WNK1 (Q256) and Munc18c antibodies were generated as described (1, 15). The monoclonal FLAG (M2) antibody was obtained from Sigma. Rabbit and mouse anti-GFP2 antibodies and pEGFP plasmids were acquired from Abcam (Cambridge, MA) and Clontech, respectively. The rabbit polyclonal anti-syntaxin 4 and mouse monoclonal anti-VAMP2 antibodies were purchased from Chemicon (Temecula, CA) and Synaptic Systems (Gottingen, Germany), respectively. The rabbit polyclonal anti-Myc antibody was purchased from Upstate Biotechnology, Inc. (Lake Placid, NY). The monoclonal anti-Myc (9E10) antibody and protein G-Plus-agarose were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). The MIN6 cells were a gift from Dr. John Hutton (University of Colorado Health Sciences Center). Goat anti-mouse and anti-rabbit horseradish peroxidase secondary antibodies and Transfectin lipid reagent were acquired from Bio-Rad. Enhanced chemiluminescence reagent was obtained from Amersham Biosciences (Pittsburgh, PA).

The human C-peptide radioimmunoassay (RIA) kit was purchased from Linco Research Inc. (St. Charles, MO).

Plasmids—The pCMV5-Myc-WNK1 truncation mutants 1–491, 1–555, 1–220, and 159–555 were generated as previously described (1). An additional construct, pCMV5-Myc-WNK1-(1–491) K233M, was made by subcloning the K233M-mutagenized 1–491 fragment from pGEX-KS WNK1-(1–491) K233M (1) into the EcoRI and HindIII sites of the pCMV5 vector. The pMCM18c-GFP deletion constructs 1–172, 173–255, 256–332, and 333–592 and pcDNA3.1-FLAG-Munc18c were generated as previously described (14, 22). The pGEX4T-1-Munc18c construct was made by subcloning a PCR-generated full-length Munc18c fragment, using pcDNA3.1-Munc18c DNA as template, engineered with the 5’ SalI site and 3’ EcoRI site for insertion into the pGEX-4T-1 vector. Human proinsulin DNA was obtained as a gift from Dr. Chris Newgard (Duke University). All constructs were verified by DNA sequencing.

Cell Culture, Transient Transfection, and Secretion Assays—MIN6 beta cells were cultured as described previously (24). MIN6 beta cells at 50–60% confluence were transfected with 40 μg of plasmid DNA/10-cm2 dish using Transfectin (Bio-Rad) to obtain ∼50% transfection efficiency. After 48 h of incubation, cells were incubated for 2 h in modified Krebs-Ringer bicarbonate buffer (MKRBB; 5 mM KCl, 120 mM NaCl, 15 mM HEPES, pH 7.4, 24 mM NaHCO3, 1 mM MgCl2, 2 mM CaCl2, and 20 μg/ml bovine serum albumin) and stimulated with 20 mM glucose.

Cells were subsequently lysed in Nonident P-40 lysis buffer (25 mM Tris, pH 7.4, 1% Nonidet P-40, 10% glycerol, 50 mM sodium fluoride, 10 mM sodium pyrophosphate, 137 mM sodium chloride, 1 mM sodium vanadate, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 1 μg/ml leupeptin, and 5 μg/ml leupeptin), and lysates were cleared by microcentrifugation for 10 min at 4 °C for subsequent use in co-immunoprecipitation experiments. For measurement of human C-peptide release, MIN6 beta cells were transiently co-transfected with each plasmid plus human proinsulin cDNA, using transfectin with 2 μg of each DNA per 35-mm dish of cells at 50–60% confluence. Forty-eight hours later, cells were preincubated for 2 h in MKRBB buffer and stimulated with 20 mM glucose for 1 h, and human C-peptide was released into the buffer quantitated by RIA. CHO-K1 cells were cultured and electroporated as previously described (15). After 48 h of incubation, cleared detergent cell lysates were prepared for subsequent use in co-immunoprecipitation experiments.

Subcellular Fractionation—Subcellular fractions of beta cells were prepared as described previously (25). Briefly, MIN6 beta cells at 80–90% confluence were harvested into 1 ml of homogenization buffer (20 mM Tris-HCl, pH 7.4, 0.5 mM EDTA, 0.5 mM EGTA, 250 mM sucrose, 1 mM dithiothreitol, and 1 mM sodium orthovanadate containing protease inhibitors) and disrupted by 10 strokes through a 27-gauge needle. Homogenates were centrifuged at 900 × g for 10 min. Postnuclear supernatants were centrifuged at 5,500 × g for 15 min, and the subsequent supernatant was centrifuged at 25,000 × g for 20 min to obtain the secretory granule fraction in the pellet. The supernatant was further centrifuged at 100,000 × g for 1 h to obtain the cytosolic fraction. Plasma membrane (PM) fractions were obtained by mixing the postnuclear pellet with 1 ml of Buffer A

2 The abbreviations used are: GFP, green fluorescent protein; EGFP, enhanced green fluorescence protein; IP, immunoprecipitation; IB, immunoblot; MKRBB, modified Krebs-Ringer bicarbonate buffer; PM, plasma membrane; SNARE, soluble NSF attachment protein receptor; GST, glutathione S-transferase; WT, wild type; RIA, radioimmunoassay; CHO, Chinese hamster ovary.
Co-immunoprecipitation and Immunoblotting—Antibodies were combined with cleared detergent lysate protein for 2 h at 4 °C followed by a second incubation with protein G-Plus-agarose for 2 h. Immunoprecipitates were subjected to 8.5 or 12% SDS-PAGE, followed by transfer to polyvinylidene difluoride membranes for immunoblotting. Chemiluminescence was detected using a Chemi-Doc gel documentation system (Bio-Rad).

Recombinant Proteins and Interaction Assays—Recombinant proteins GST-WNK1-(1–491) WT, GST-WNK1-(1–491) K233M, and GST-Munc18c were expressed in Escherichia coli and purified by glutathione-agarose affinity chromatography. Recombinant WNK1-(1–491) was obtained following thrombin cleavage (Novagen) of GST-WNK1-(1–491). The interaction of GST-Munc18c with thrombin-cleaved WNK1 was performed by incubating 2 μg of GST-Munc18c linked to Sepharose beads with 2 μg of recombinant WNK1 protein in Nonidet P-40 lysis buffer for 2 h at 4 °C. Following three washes with lysis buffer, proteins were eluted from the Sepharose beads and subjected to 10% SDS-PAGE followed by transfer to polyvinylidene difluoride membranes for immunoblotting.

In Vitro Kinase Assays—Kinase assays were performed using recombinant WNK1-(1–491) and/or Munc18c proteins in 30 μl of 1× kinase buffer containing 20 mM Heps (pH 7.6), 10 μM ATP, 10 mM MgCl₂, 10 mM, 10 μM β-glycerophosphate, 1 mM dithiothreitol, 1 mM benzamidine, and 10 μCi of [γ-32P]ATP. GST-Munc18c and WNK1 were incubated for 15 and 30 min at 30 °C as described (10). Reactions were stopped by adding 7.5 μl of 5× SDS sample buffer followed by boiling for 2 min. Reactions (20 μl) were analyzed by SDS-PAGE and autoradiography.

Statistical Analysis—All data are expressed as mean ± S.E. Data were evaluated for statistical significance using Student’s t test.

RESULTS

WNK1 and Munc18c Associate in MIN6 Beta Cells—The kinase domain of WNK1 was used in the pLexA-bait strain (Clontech) to screen a library of pAD42-prey strains containing rat brain cDNA, as described previously (10, 26). Munc18c was detected in this screen. To confirm the WNK1-Munc18c interaction, a truncated form of WNK1-(1–491) containing the kinase domain (amino acids 218–490) fused to a C-terminal Myc tag (Fig. 1A) was co-electroporated with full-length Munc18c fused to EGFP (Munc18c-EGFP) or EGFP vector control into CHO-K1 cells for subsequent immunoprecipitation analyses. The CHO-K1 cells have high transfection efficiency (>70%) and contain undetectable levels of endogenous Munc18c protein. Anti-Myc (WNK1) immunoprecipitation resulted in specific co-immunoprecipitation of Munc18c-EGFP (Fig. 1B), confirming the yeast two-hybrid screen and indicating that the WNK1 truncation containing the N-terminal 491 residues was sufficient to confer association with Munc18c in mammalian cells.

We next sought to determine if WNK1-Munc18c complexes formed in islet beta cells. WNK1 has previously been shown to localize to insulin granules and cytotoxic fractions in INS-1 beta cells (10), whereas we and others have found Munc18c localized principally to plasma membrane and cytotoxic compartments, with only trace amounts in the granule fraction of MIN6 beta cells (14, 27, 28). Given that both Munc18c and WNK1 reportedly exist in the cytotoxic compartment, we investigated whether they associated in this locale. The MIN6 beta cell line was used for preparation of subcellular fractions and determination of WNK1 and Munc18c localization (Fig. 2A). Consistent with the locale of WNK1 in the INS-1 beta cells, WNK1 was found principally localized to the cytotoxic (Cyt) fraction, with some presence in the storage granule (SG) and PM fractions. In the same fractions, Munc18c was also present, but its relative distribution in the cytotoxic and PM fractions was reversed relative to that of WNK1. Immunodetection of the plasma membrane protein syntaxin 4 was used to validate integrity of subcellular fractionation in MIN6 beta cells (14).

The fractions were subsequently divided for use in parallel immunoprecipitation reactions with Munc18c and WNK1 antibodies. Immunoprecipitation with anti-Munc18c antibody was capable of reproducibly co-immunoprecipitating WNK1 from the cytotoxic and PM fractions (Fig. 2B, lanes 1–3). In two of the five cytotoxic co-immunoprecipitation experiments, a glucose-induced decrease in Munc18c-WNK1 association was observed (data not shown). The lack of consistent detection of a decrease with glucose is reminiscent of that observed with
Munc18c-WNK1 Complexes Function in Exocytosis

FIGURE 2. WNK1 associates with Munc18c in MIN6 beta cells. A, lysate prepared from cytosol (Cyt), storage granule (SG), and PM fractions isolated from MIN6 cells were resolved on 8.5% SDS-polyacrylamide gel (40 μg), transferred to polyvinylidene difluoride membrane, and immunoblotted with anti-WNK1, anti-Munc18c and anti-syntaxin 4 antibodies. B, cytosol fractions (2 mg) and granule (400 μg) were used for immunoprecipitation with anti-Munc18c antibody. One plasma membrane fraction preparation divided into two portions (200 μg each) was used for immunoprecipitation with anti-Munc18c or anti-WNK1 antibodies in parallel reactions. Proteins were resolved on 8.5% SDS-PAGE for subsequent immunoblotting with anti-WNK1, anti-Munc18c, and anti-syntaxin 4 antibodies. Data are representative of three independent experiments.

FIGURE 3. The N terminus of Munc18c is sufficient for mediating the Munc18c-WNK1 interaction. A, four fragments traversing the length of Munc18c were linked at the C terminus to EGFP. B, DNA constructs were co-electroporated into CHO-K1 cells with WNK1-(1–491)-Myc, and 48 h later, detergent lysates were prepared for immunoprecipitation with anti-Myc antibody. Proteins were subjected to 12% SDS-PAGE and immunoblotted with anti-EGFP antibody to detect binding of Munc18c fragments. Equal precipitation of WNK1-Myc was confirmed by anti-Myc immunoblotting. Lysate proteins (50 μg/lane) show the expression of each Munc18c-EGFP fragment (left). Data are representative of at least three independent experiments.

Munc18c-syntaxin 4 complexes, which transiently associate/dissociate with changes in the phosphorylation state of Munc18c (22). In addition, reciprocal immunoprecipitation of WNK1 similarly resulted in co-precipitation of Munc18c from the PM fraction (Fig. 2B, lane 4). Anti-Munc18c co-immunoprecipitated syntaxin 4 from the PM fraction as expected, although anti-WNK1 failed to precipitate syntaxin 4. These data suggest that Munc18c-WNK1 complexes existed primarily in the PM and cytosolic compartments and that those located at the PM excluded syntaxin 4.

Residues 1–172 of Munc18c Are Sufficient to Confer Binding to WNK1—To determine the minimal binding domain of Munc18c required for its interaction with WNK1, a series of Munc18c-EGFP truncation constructs (Fig. 3A) was used as previously described (14, 22). Truncation constructs were co-electroporated with WNK1-(1–491)-Myc into CHO-K1 cells, and lysates were prepared for use in anti-Myc (WNK1) immunoprecipitation reactions. Although all four truncations of Munc18c were found to be expressed in cell lysates (Fig. 3B, lanes 1–4), only the truncation containing residues 1–172 of Munc18c was capable of co-precipitating with WNK1-Myc (Fig. 3B, lanes 5–8). This indicated that the N-terminal Munc18c-(1–172) residues are sufficient to confer interaction with WNK1.

Endogenous WNK1-Munc18c Complexes Are Essential for Syntaxin 4-mediated Insulin Granule Exocytosis—To determine whether WNK1-Munc18c complexes were functionally required for insulin secretion, we used the minimal binding domain of Munc18c (residues 1–172) to competitively inhibit formation of endogenous WNK1-Munc18c complexes. Co-immunoprecipitation assays revealed that 10-fold more Munc18c-(1–172) truncation protein was precipitated by WNK1-Myc compared with full-length Munc18c and that its overexpression reduced endogenous WNK1-Munc18c complex formation (n = 4; data not shown), suggesting its utility as a competitive inhibitor. Moreover, this small fragment of Munc18c fails to bind to syntaxin 4 (22) and thus should not perturb that association. MIN6 cells were co-transfected with pcDNA3.1-Munc18c-(1–172) or pcDNA3.1 vector control together with human proinsulin cDNA, and effects upon glucose-stimulated human C-peptide were assessed. Human C-peptide, cleaved from expressed human proinsulin, is synthesized and packaged in the MIN6 beta cells yet is immunologically distinct from endogenous mouse C-peptide and serves as a reporter of secretion from transfectable cells (29, 30). MIN6 cells transfected with vector control showed 141% of glucose-stimulated secretion (Fig. 4B, lanes 1 and 2). However, MIN6 cells overexpressing Munc18c-(1–172)-EGFP exhibited significantly less syntaxin 4-VAMP2 association,
Reported that expression of the Munc18c-(173–255) region VAMP2/syntaxin 4 ratio was unique, since we previously alone (Fig. 4).

Quantitation of the VAMP2/syntaxin. Data in each of three independent experiments revealed the equivalent expression levels of EGFP and Munc18c-(1–172)-EGFP proteins, indicating that the effect of the Munc18c-(1–172) protein was specific. Quantitation of the VAMP2/syntaxin 4 ratio from three independent experiments revealed the decreases in SNARE complexes to be on the order of 75% or ~3-fold fewer than those formed in cells expressing vector alone (Fig. 4C). This effect of the 1–172 region upon the basal VAMP2/syntaxin 4 ratio was unique, since we previously reported that expression of the Munc18c-(173–255) region impaired only the glucose-stimulated syntaxin 4–VAMP2 association (14). Since the abundance of SNARE complexes associated under basal conditions has been correlated with the abundance of insulin granules predocked at the PM for first phase insulin release (31), the data presented here suggest that endogenous WNK1-Munc18c complexes regulate syntaxin 4-mediated granule docking/fusion for both phases of glucose-stimulated insulin secretion. This would be consistent with our published data showing that syntaxin 4, a specific binding partner of Munc18c, is required in both first and second phase insulin release from islets (27).

The WNK1 Kinase Domain but Not Kinase Activity Is Required for Binding and Function with Munc18c—Our initial studies showed that the N-terminal 491 residues of WNK1, containing the kinase domain (residues 218–490) and an upstream proline-rich domain, located within the first 220 residues, were sufficient for interaction with Munc18c. Since WNK1 has previously been shown to bind proteins through the kinase and autoinhibitory domain (10) or through just the first 220 residues (8), we sought to further delineate the minimal binding domain of WNK1 needed for interaction with Munc18c using WNK1 truncations tagged with a C-terminal Myc epitope (Fig. 5A). The autoinhibitory domain spans residues 491–555 and inhibits the activation by autophosphorylation of WNK1 (6). Many protein kinases contain such a domain just beyond their catalytic domain as a means to suppress kinase activity until a stimulus displaces it from its inhibitory site (32, 33). CHO-K1 cells were co-electroporated with Munc18c-(1–172)-EGFP or vector control and left unstimulated (open bars) or stimulated with 20 mM glucose (black bars). Human C-peptide secreted into the media was measured by RIA and subsequently prepared and immunoprecipitated with anti-Myc antibody. Proteins were subjected to 10% SDS-PAGE and immunoblotted with anti-Myc and anti-EGFP antibodies. Hc, antibody heavy chain. Data are representative of three independent experiments.
WNK1 Functions as a Munc18c Binding Partner Independent of Its Role as a Kinase—We next tested the ability of WNK1 to function as a Munc18c-binding protein within the cell. Although little is understood of the true physiological function of Munc18c to date, the identification of Munc18c binding partners can be made based upon their ability to “rescue” the inhibition of exocytosis that is caused by overexpression of Munc18c; non-Munc18c binding proteins or a non-PM-localized form of syntaxin 4 fails to rescue exocytosis (16, 22). As shown in Fig. 7A, Munc18c overexpression reduced glucose-stimulated human C-peptide release by ~75% (108% of basal versus 142% attained in vector-expressing cells, p < 0.001). However, the addition of WNK1 protein resulted in full restoration of glucose-stimulated human C-peptide release (Fig. 7A), consistent with its putative role as a Munc18c binding partner. Correspondingly, the addition of WNK1 to Munc18c-overexpressing cells also restored VAMP2-syntaxin 4 association in the co-immunoprecipitation assay (Fig. 7B). Compared with the normal levels of VAMP2 co-immunoprecipitated with syntaxin 4 in vector-transfected MIN6 cell lysates, levels of VAMP2 co-immunoprecipitated by syntaxin 4 from Munc18c-overexpressing cells were reduced substantially under both basal and glucose-stimulated conditions, as we have reported previously (14, 22). Quantitatively, the overexpression of Munc18c reduced the VAMP2/syntaxin 4 ratio by ~75% or greater under both basal and glucose-stimulated conditions and negated the glucose-stimulated increase in VAMP2/syntaxin 4 ratio normally observed (Fig. 7C). The addition of WNK1 restored VAMP2/syntaxin 4 association to levels observed in vector control cells. In all, these results suggested that WNK1, like syntaxin 4 and Doc2β, functions as a Munc18c-regulatory protein in SNARE complex assembly.

To investigate the relationship between WNK1 function as a Munc18c-regulatory protein and its known function as a kinase, we tested the ability of kinase-dead K233M WNK1 overexpression to relieve the inhibition upon glucose-stimulated insulin secretion caused by increased Munc18c expression in the human C-peptide secretion assay. Consistent with our data showing that K233M binds Munc18c as does WT WNK1, K233M WNK1 rescued glucose-stimulated secretion equally well as did WT WNK1 (Fig. 8A). In contrast, WNK1-(1–220) failed to rescue secretion when added to Munc18c-overexpressing cells, consistent with its failure to bind to Munc18c (Fig. 8A). In parallel, the addition of WNK1 K233M restored the levels of VAMP2 co-precipitated by syntaxin 4 under both unstimulated and stimulated conditions, matching those levels attained by the addition of WT WNK1 (Fig. 8B, lanes 3–6). As expected, WNK1-(1–220) was without effect in restoring VAMP2 levels (Fig. 8B, lanes 7 and 8) and demonstrated that the rescue effect was specific for Munc18c-binding proteins. Immunoblotting showed that FLAG-Munc18c expression was unaltered by expression of vector or WNK1 proteins and that the various WNK1 proteins were similarly expressed. Quantitation of the VAMP2/syntaxin 4 ratio con-

![Figure 6](image1.png)

FIGURE 6. WNK1 kinase activity is not required for interaction with Munc18c. **A,** bacterially expressed GST-Munc18c or GST proteins were purified and linked to beads for *in vitro* binding studies with purified WNK1 WT and WNK1 K233M kinase-dead proteins. GST-precipitated proteins were subjected to 10% SDS-PAGE for subsequent immunoblotting with anti-WNK1 and anti-GST antibodies. *B,* *in vitro* kinase assays were performed with purified WNK1-(1–491) and Munc18c proteins. Assays were terminated with Laemmlli sample buffer and resolved by 10% SDS-PAGE. WNK1 autophosphorylation was detected at 15 min and increased at 30 min (lanes 1 and 2), yet no significant 32P incorporation in Munc18c (lanes 5–8) was observed in five independent experiments.
Munc18c-WNK1 Complexes Function in Exocytosis

Munc18c complexes were localized to PM and cytosolic compartments. WNK1 is the third binding partner identified for the Munc18c protein but only the first to bind to the cytosolic pool of Munc18c. Residues 1–172 of Munc18c and residues 159–491 containing only the kinase domain of WNK1 were sufficient to confer association, although mutation of the critical Lys233 residue in the kinase domain of WNK1 failed to impair its binding to Munc18c. Consistent with this, activation of WNK1 autophosphorylation was not required for its interaction with Munc18c, and virtually no phosphorylation of Munc18c was detected in WNK1 kinase assays. Competitive inhibition of endogenous WNK1-Munc18c complexes significantly reduced glucose-stimulated insulin release, correlated with a reduction in the abundance of VAMP2-granules associated with syntaxin 4. Last, WNK1 was found to function as a Munc18c binding protein in a “rescue assay,” with the K233M mutant function equal to that of the wild-type WNK1. Taken together, these data support a model whereby WNK1 binds Munc18c and functions in syntaxin 4-mediated insulin granule exocytosis in a manner independent of its role as a kinase.

The inability to detect phosphorylation of Munc18c by WNK1 was surprising, given that Munc18c has been reported to undergo Ser/Thr phosphorylation in endothelial cells (23) and adipocytes (35), combined with at least two algorithms predicting that the N terminus of Munc18c was rich in potential sites for this modification. Moreover, its neuronal counterpart Munc18-1 has been shown to undergo Ser/Thr phosphorylation, which then impacts its association with syntaxin 1A (36). Although it remains possible that Munc18c phosphorylation occurred at very low levels, which was obscured by the abundant phosphorylation of the similarly sized WNK1-(1–491) protein, immunoblotting consistently showed clear separation of these proteins on SDS-PAGE and therefore support the conclusion that Munc18c failed to function as a clear substrate for WNK1 in the in vitro kinase assays.

Notably, Munc18c is the first direct interacting protein of WNK1 that does not appear to function necessarily as a WNK1 substrate. WNK1 has been shown to bind directly to and phosphorylate the following substrates: synaptotagmin 2 (10), MEKK2 and MEKK3 (37), SGK1 (26), SPAK/OSR1 (38), WNK2 and WNK4 (39), Smad2 (40). A related family member and WNK1 substrate, WNK4, has been shown to bind to ROMK, and this interaction was independent of WNK4 kinase activity (41). However, ROMK bound to a region of WNK4 outside its kinase domain, unlike Munc18c, which binds to the kinase domain of WNK1. What is the purpose of the binding of a nonsubstrate protein through the specialized kinase domain? One possibility may be that WNK1 functions as a scaffold, recruiting Munc18c as a substrate for another kinase or phosphatase, as has been shown for other factors (42–44). In support of a role for WNK1 as a scaffold, WNK1 is known to contain 29 PXXP motifs, which could potentially attract other Src homology 3 domain-containing proteins. Further studies will be required to explore the role of WNK1 as a scaffold for Munc18c in fostering Munc18c post-translational modifications and/or cellular compartmentalization.

WNK1 is the third protein to be characterized as a Munc18c binding partner, the others being syntaxin 4 and Doc2β. How-

firmed that WNK1 addition restored the ability of glucose to increase the amount of VAMP2 associated with syntaxin 4 (Fig. 8C). Thus, these results suggest that WNK1 functions as a Munc18c-interacting protein in cells but that an intact kinase domain and ability to function as a kinase are not necessary for its role as a Munc18c-regulatory protein in insulin granule exocytosis.

DISCUSSION

In this study, we have identified a new role for WNK1 in vesicle/granule exocytosis, as a novel binding partner for the syntaxin 4-regulatory protein Munc18c. Endogenous WNK1-
ever, unlike the other Munc18c-binding proteins, increased WNK1 expression alone failed to augment insulin secretion above normal levels, and small interfering RNA-mediated depletion of WNK1 may have preferentially eliminated a less essential pool of WNK1, since WNK1 exists in multiple cellular compartments. Further studies examining the distribution of WNK1 in control and small interfering RNA-depleted cells will provide insight as to whether there exist “essential” and “nonessential” pools of WNK1 in the cell.

WNK1 also differed from Doc2β function in Munc18c regulation in that disruption of the WNK1-Munc18c complex using the Munc18c-(1–172) competitive inhibitor caused a 75% reduction in VAMP2 association with syntaxin 4 under both basal and stimulated conditions (Fig. 4), whereas disruption of the endogenous Doc2β-Munc18c complex with the Munc18c-(173–255) competitive inhibitor abolished only the glucose-induced increase in VAMP2 association with syntaxin 4 and was entirely without effect upon basal level association (14). This difference may reflect the ability of the 1–172 competitive inhibitor to simultaneously disrupt Munc18c interactions with WNK1 and somewhat with Doc2β (data not shown), given that this region of Munc18c was able to support some binding to Doc2β, albeit the majority of Doc2β bound through the 173–255 region of Munc18c.

A key distinction between WNK1-Munc18c and Doc2β-Munc18c complexes is their cellular locale. Although both syntaxin 4 and Doc2β exclusively bind Munc18c in the PM compartment, WNK1 binds Munc18c in both the PM and cytosolic compartments. The Munc18 proteins are fairly equally distrib-
Munc18c-WNK1 Complexes Function in Exocytosis

REFERENCES

1. Xu, B., English, J. M., Wilsbacher, J. L., Stippec, S., Goldsmith, E. J., and Cobb, M. H. (2000) J. Biol. Chem. 275, 16795–16801
2. Verissimo, F., and Jordan, P. (2011) Oncogene 30, 5562–5569
3. Wilson, F. H., Disse-Nicodeme, S., Choate, K. A., Ishikawa, K., Nelson-Williams, C., Desitter, I., Gunel, M., Milford, D. V., Lipkin, G. W., Achard, J. M., Feely, M. P., Dussol, B., Berland, T., Urwin, R. J., Mayan, H., Simon, D. B., Farfel, Z., Jeunemaitre, X., and Lifton, R. P. (2001) Science 293, 1107–1112
4. Zambrowicz, B. P., Abuin, A., Ramirez-Solis, R., Richter, L. I., Piggott, J., Beltrand-Rio, H., Buxton, E. C., Edwards, J., Finch, R. A., Friddle, C. J., Gupta, A., Hansen, G., Hu, Y., Huang, W., Jaing, C., Key, B. W., Jr., Kipp, P., Kohlhoff, B., Ma, Z. Q., Marksich, D., Payne, R., Potter, D. G., Qian, N., Shaw, J., Schrick, J., Shi, Z. Z., Sparks, M. J., Van Sligtenhorst, I., Vogel, P., Walke, W., Xu, N., Zhu, Q., Person, C., and Sands, A. T. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 14109–14114
5. Xu, B. E., Lee, B. H., Min, X., Lenertz, L., Heise, C. J., Stippec, S., Goldsmith, E. J., and Cobb, M. H. (2005) Cell Res. 15, 6–10
6. Xu, B. E., Min, X., Stippec, S., Lee, B. H., Goldsmith, E. J., and Cobb, M. H. (2002) J. Biol. Chem. 277, 48456–48462
7. Vitari, A. C., Deak, M., Collins, B. J., Morrice, N., Prescott, A. R., Phelan, A., Humphreys, S., and Alessi, D. R. (2004) Biochem. J. 378, 257–268
8. Xu, B. E., Stippec, S., Lazrank, A., Huang, C. L., and Cobb, M. H. (2005) J. Biol. Chem. 280, 34218–34223
9. Jiang, Z. Y., Zhou, Q. L., Holik, J., Patel, S., Leszyk, J., Coleman, K., Chouinard, M., and Czech, M. P. (2005) J. Biol. Chem. 280, 21622–21628
10. Lee, B. H., Min, X., Heise, C. J., Xu, B. E., Chen, S., Shu, H., Luby-Phelps, K., Goldsmith, E. J., and Cobb, M. H. (2004) Mol. Cell 15, 741–751
11. Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., and Sudhoff, T. C. (1994) Cell 79, 717–727
12. Tellmann, J. T., McIntosh, S., and James, D. E. (1995) J. Biol. Chem. 270, 5857–5863
13. Oh, E., Spurful, B. A., Pessin, J. E., and Thurmond, D. C. (2005) Diabetes 54, 638–647
14. Ke, B., Oh, E., and Thurmond, D. C. (2007) J. Biol. Chem. 282, 21786–21797
15. Thurmond, D. C., Ceresa, B. P., Okada, S., Elmendorf, J. S., Coker, K., and Pessin, J. E. (1998) J. Biol. Chem. 273, 33876–33883
16. Thurmond, D. C., Kanzaki, M., Khan, A. H., and Pessin, J. E. (2000) Mol. Cell Biol. 20, 379–388
17. Thurmond, D. C., and Pessin, J. E. (2000) EMBO J. 19, 3565–3575
18. Hu, S. H., Latham, C. F., Gee, C. L., James, D. E., and Martin, J. L. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 8773–8778
19. D’Andrea-Merrins, M., Chang, L., Lam, A. D., Ernst, S. A., and Stuenkel, E. L. (2007) J. Biol. Chem. 282, 16553–16566
20. Rickman, C., Medine, C. N., Bergmann, A., and Duncan, R. R. (2007) J. Biol. Chem. 282, 12097–12103
21. Schmelzel, K., Kane, S., Gridley, S., Lienhard, G. E., and White, F. M. (2006) Diabetes 55, 2171–2179
22. Oh, E., and Thurmond, D. C. (2006) J. Biol. Chem. 281, 17624–17634
23. Fu, J., Naren, A. P., Gao, X., Ahmed, G. U., and Malik, A. B. (2005) J. Biol. Chem. 280, 3178–3184
24. Thurmond, D. C., Gonnelle-Gispert, C., Furukawa, M., Halban, P. A., and Pessin, J. E. (2003) Mol. Endocrinol. 17, 732–742
25. Nevins, A. K., and Thurmond, D. C. (2005) J. Biol. Chem. 280, 1944–1952
26. Xu, B. E., Stippec, S., Chu, P. Y., Lazrank, A., Lee, B. H., English, J. M., Ortega, B., Huang, C. L., and Cobb, M. H. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10315–10320
27. Spurful, B. A., and Thurmond, D. C. (2006) Mol. Endocrinol. 20, 183–193
28. Wheeler, M. B., Sheu, L., Ghati, M., Bouquillon, A., Grondin, G., Weller, U., Beaudoin, A. R., Bennett, M. K., Trimble, W. S., and Gaisano, H. Y. (1996) Endocrinology 137, 1340–1348
29. Kashima, Y., Miki, T., Shibasaki, T., Ozaki, N., Miyazaki, M., Yan, H., and Seino, S. (2001) J. Biol. Chem. 276, 46046–46053
30. Mulder, H., Lu, D., Finley, J. T., An, J., Cohen, J., Antinouzzi, P. A., McCurry, J. D., and Newburg, C. B. (2001) J. Biol. Chem. 276, 6479–6484
31. Daniel, S., Noda, M., Straub, S. G., Sharp, G. W., Komatsu, M., Schermerhorn, T., and Aizawa, T. (1999) Diabetes 48, 1686–1690
32. Knighton, D. R., Pearson, R. B., Sowadski, J. M., Feely, M. P., Dussol, B., Berland, Y., Unwin, R. J., Mayan, H., Simon, D. B., Farfel, Z., Jeunemaitre, X., and Lifton, R. P. (2001) Science 293, 1107–1112
33. Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Sowadski, J. M., Means, A. R., Ten Eyck, L. F., Taylor, S. S., and Kemp, B. E. (1992) Science 258, 130–135
34. Biondi, R. M., and Nebreda, A. R. (2003) Biochem. J. 372, 1–13
35. Macauley, S. L., Grusovin, J., Stoichevska, V., Ryan, J. M., Castelli, L. A., and Ward, C. W. (2002) FEBS Lett. 528, 154–160
36. Fujita, Y., Sasaki, T., Fukui, K., Kotani, H., Kimura, T., Hata, Y., Sudhoff, T. C., Scheller, R. H., and Takai, Y. (1996) J. Biol. Chem. 271, 7265–7268
37. Xu, B. E., Stippec, S., Lenertz, L., Lee, B. H., Zhang, W., Lee, Y. K., and Cobb, M. H. (2004) J. Biol. Chem. 279, 7826–7831
38. Vitari, A. C., Deak, M., Morrice, N. A., and Alessi, D. R. (2005) Biochem. J. 391, 17–24
39. Wang, Z., Yang, C. L., and Ellison, D. H. (2004) Biochem. Biophys. Res. Commun. 317, 939–944
40. Lee, B. H., Chen, W., Stippec, S., and Cobb, M. H. (2007) J. Biol. Chem. 282, 17985–17996
41. Cahle, K. T., Wilson, F. H., Leng, Q., Lalioti, M. D., O’Connell, A. D., Dong, K., Rayson, A. K., MacGregor, G. G., Giebisch, G., Hebert, S. C., and Lifton, R. P. (2003) Nat. Genet. 35, 372–376
42. Bhattacharyya, R. P., Remenyi, A., Good, M. C., Bashor, C. J., Falick, A. M., and Lim, W. A. (2006) Science 311, 822–826
43. Bhattacharyya, R. P., Remenyi, A., Yeh, B. J., and Lim, W. A. (2006) Annu. Rev. Biochem. 75, 655–680
44. Coghlan, V. M., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., Gallatin, W. M., and Scott, J. D. (1995) Science 267, 108–111
45. Nagamatsu, S., Nakamichi, Y., Yamamura, C., Matsushima, S., Watanabe, T., Ozawa, S., Furukawa, H., and Ishida, H. (1999) Diabetes 48, 2367–2373
46. Chan, C. B., MacPhail, R. M., Sheu, L., Wheeler, M. B., and Gaisano, H. Y. (1999) Diabetes 48, 997–1005
47. Houng, A., Polgar, J., and Reed, G. L. (2003) J. Biol. Chem. 278, 19627–19633
48. Perez-Branguli, F., Muhaisen, A., and Blasi, J. (2002) Mol. Cell. Neurosci. 20, 169–180