Relating Jack wavefunctions to \mathcal{WA}_{k-1} theories

Benoit Estienne1 and Raoul Santachiara2

1 LPTHE, CNRS, UPMC Univ Paris 06, Boîte 126, 4 place Jussieu, F-75252 Paris Cedex 05, France
2 LPTMS, CNRS, UMR 8626, Université Paris-Sud, Bâtiment 100, 91405 Orsay, France

E-mail: estienne@lpthe.jussieu.fr and raoul.santachiara@lptms.u-psud.fr

Received 13 July 2009, in final form 12 September 2009
Published 16 October 2009
Online at stacks.iop.org/JPhysA/42/445209

Abstract
The (k, r) admissible Jack polynomials, recently proposed as many-body wavefunctions for non-Abelian fractional quantum Hall systems, have been conjectured to be related to some correlation functions of the minimal model $\mathcal{WA}_{k-1}(k+1,k+r)$ of the \mathcal{WA}_{k-1} algebra. By studying the degenerate representations of this conformal field theory, we provide a proof for this conjecture.

PACS numbers: 73.43.+f, 11.25.Hf

1. Introduction
The conformal symmetry is extremely powerful in the study of two-dimensional (2D) massless quantum field theories because the algebra of its generators, the Virasoro algebra, is infinite dimensional [1, 2]. The Hilbert space of the simplest family of conformal field theories (CFTs) is built from the representations of this algebra. In these theories, the correlation functions satisfy differential equations which are related to conformal invariance and to the degeneracy of the representations of the Virasoro algebra [1, 2]. In particular, among these representations, there are fields which obey a so-called second-order null-vector condition. This condition implies that any correlation function involving these fields satisfies a second-order differential equation. As has been pointed out in different works (see for instance [3, 4] and references therein), these differential equations can be related to differential operators which define the Calogero–Sutherland quantum Hamiltonian ([5]). The eigenstates of these many-body Hamiltonians, which describe n particles interacting with a long-range potential with coupling α, are Jack polynomials (Jacks, defined below) [6, 7]. These are symmetric functions in n variables indexed by partitions λ and by parameter α.

For a given number of variables n and for each pair of positive integers (k, r) such that $k+1$ and $r-1$ are coprime, one can define a Jack, which we denote by $P^{(k,r)}_{\alpha}$, characterized by a negative rational parameter $\alpha = -(k+1)/(r-1)$ and by some specific partition (given
below). The $P^{(k,r)}_n$ Jack satisfies the so-called (k,r) clustering conditions [8–11], i.e. it does not vanish when k variables have the same value but it vanishes with power r when the $k + 1$-st variable approaches a cluster of k particles. Due to these properties, these Jacks have been considered as trial many-body wavefunctions for fractional quantum Hall ground states. In particular, the $P^{(k,r)}_n$ states have been proposed as possible generalizations of Z_k Read–Rezayi states [16, 17] for describing new non-Abelian states [10, 11].

In [8, 9] it has been conjectured that $P^{(k,r)}_n$ can be written in terms of certain correlators of a family of CFTs, the $W_{A_{k-1}}$ theories. This is a family of CFTs with W extended symmetry: in addition to the conformal symmetry, generated by the stress–energy tensor $T(z) = W^{(2)}(z)$ of spin $s = 2$, the $W_{A_{k-1}}$ theories enjoy additional symmetries generated by a set of chiral currents $W^{(s)}$ of spin $s = 2, \ldots, k$ [12, 13]. The W_1 algebra coincides with the Virasoro one. The representations of the $W_{A_{k-1}}$ algebras are naturally associated with the simple Lie algebra A_{k-1}, and the series of minimal models $W_{A_{k-1}}(p, q)$ is indexed by two integers p and q [12, 13]. The theories $W_1(p, q)$ correspond to the Virasoro minimal models $M(p, q)$. For general $k > 2$, however, the $W_{A_{k-1}}$ theories are much more complicated. This is mainly because, contrary to the case of the Virasoro algebra, the null-vector conditions characterizing a degenerate field do not in general lead to differential equations for the corresponding correlation functions. For these reasons, the problem of computing correlation functions of these higher spin symmetry CFTs is a hard problem [14, 15].

The conjecture that some correlation functions of the $W_{A_{k-1}}$ theory can be written in terms of a single Jack polynomial is then quite remarkable. To be more precise, the conjecture states that the $P^{(k,r)}_n$ Jack is directly related to the n-point correlation functions of certain fields (given below) of the theory $W_{A_{k-1}}(k+1, k+r)$. This is known to be true for the case $k = 2$ corresponding to the Virasoro algebra. For general k, strong evidences supporting this conjecture have been provided in [10, 11, 18, 19] but a rigorous proof was still missing.

We consider the n-point correlation function of certain operators of the $W_{A_{k-1}}(k+1, k+r)$ theory. Using the approach described in [14], we show that these correlation functions satisfy a second-order differential equation which is directly related to the Calogero–Sutherland quantum Hamiltonian. This provides a proof for the above conjecture.

2. Symmetric polynomials and Jack polynomials at $\alpha = -(k+1)/(r-1)$

A general characterization of symmetric polynomials which vanish when $k + 1$ variables take the same value was initiated in the work of Feigin et al [8]. In this section, we briefly review their results and fix our notations.

The Jack polynomials $J_\alpha^\mu(z_1, \ldots, z_n)$ are symmetric polynomials of n variables depending rationally on a parameter α and indexed by partitions λ, $\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n]$, where λ_i are a set of positive and decreasing integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. For more details on Jack polynomials see [20]. Defining the monomial functions m_λ as

$$m_\lambda(z_i) = S \left(\prod_{i} z_i^{\lambda_i} \right),$$

where S stands for the symmetrization over the n variables, the expansion of a Jack over the m_λ basis takes the form [20]

$$J_\alpha^\mu = m_\lambda + \sum_{\mu < \lambda} u_{\lambda \mu}(\alpha) m_{\mu}.$$
The dominance ordering $\mu \leq \lambda$ in the sum is defined as $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ ($1 \leq i \leq n$). The Jacks J^μ_λ are eigenfunctions of a Calogero–Sutherland Hamiltonian $H^{CS}(\alpha)$ of coupling α [6, 7]:
\[
H^{CS}(\alpha) = \left[\sum_{i=1}^{n} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i<j} \frac{z_i + z_j}{z_i - z_j} (z_i \partial_i - z_j \partial_j) \right].
\]

More specifically, one has [6, 7]
\[
H^{CS}(\alpha) J^\mu_\lambda (z_1, \ldots, z_n) = \epsilon_{\lambda} J^\mu_\lambda (z_1, \ldots, z_n),
\]
where the eigenvalues ϵ_{λ} are given by the following formula:
\[
\epsilon_{\lambda} = \sum_{i=1}^{n} \lambda_i \left[\lambda_i + \frac{1}{\alpha} (n + 1 - 2i) \right].
\]

3. WAA_{k-1} theories: definitions and main results

A complete construction of W symmetry algebras and their representation theories can be found in [12, 13]. Here we briefly review the main results of a particular family of W theories, the WAA_{k-1} ones, already mentioned in section 1. Particular attention is paid to the series of minimal models WA$A_{k-1}(p, p')$ with p and p' being the coprime integers and to the degeneration properties of the operators of the theory.

The WAA_{k-1} model can be realized by a $(k-1)$-component Coulomb gas. The chiral currents $W(s)$ can be expressed in terms of polynomials in derivatives of a $k-1$ component-free bosonic field $\vec{\psi}(z) = (\psi_1, \psi_2, \ldots, \psi_{k-1})$, [12] with the correlation functions normalized as
\[
\langle \psi_a(z, \bar{z})\bar{\psi}_{a'}(z', \bar{z}') \rangle = \log \frac{1}{|z - z'|^2} \delta_{ab}.
\]
The stress–energy operator $T(z)$ of the theory WA$A_{k-1}(p, p')$ takes the form
\[
T(z) = -\frac{k}{2} : \partial \vec{\psi} \partial \vec{\psi} : + i\vec{a}_0 \vec{a}^2 \vec{\psi}.
\]
The vector \vec{a}_0 in the above equation is the background charge [21] which is defined as
\[
\vec{a}_0 = (\alpha_+ + \alpha_-) \sum_{a=1}^{k-1} \vec{\omega}_a,
\]
where $\vec{\omega}_a$ are the fundamental weights of the A_{k-1} Lie algebra and the parameters α_{\pm} are expressed in terms of p and p' by
\[
\alpha_+^2 = \frac{p}{p'}, \quad \alpha_- = -1.
\]
From equation (7), the central charge $c(p, p')$ of the WA$A_{k-1}(p, p')$ models is
\[
c(p, p') = k - 1 - 12(\vec{a}_0)^2 = (k - 1) \left(1 - \frac{k(k + 1)(p - p')^2}{pp'} \right).
\]
operators and their correlation functions. In this sense, the conformal theories \mathcal{WA}_{k-1} are fully defined.

The primary fields $\Phi_{\bar{\beta}}$ of the theory are parametrized by the $k - 1$ component vector $\bar{\beta}$. The behavior of a primary field $\Phi_{\bar{\beta}}$ under the action of the symmetry generators $W^{(s)}$ is encoded in the operator product expansions (OPE):

$$T(z)\Phi_{\bar{\beta}}(w) = \frac{\Delta_{\bar{\beta}}\Phi_{\bar{\beta}}(w)}{(z - w)^2} + \frac{\partial \Phi_{\bar{\beta}}(w)}{z - w} + \cdots \quad W^{(s)}(z)\Phi_{\bar{\beta}}(w) = \frac{\omega_{\bar{\beta}}^{(s)}\Phi_{\bar{\beta}}(w)}{(z - w)^s} + \cdots . \quad (11)$$

The action of the chiral currents $T(z)$ and $W^{(s)}(z)$ can be expressed in terms of their modes L_a and $W^{(s)}_a$ defined as

$$T(z)\Phi_{\bar{\beta}}(w) = \sum_{n=-\infty}^{\infty} L_a\Phi_{\bar{\beta}}(w) \quad \frac{W^{(s)}(z)\Phi_{\bar{\beta}}(w)}{(z - w)^{s+1}} = \sum_{n=-\infty}^{\infty} \frac{W^{(s)}_a\Phi_{\bar{\beta}}(w)}{(z - w)^{s+1}} . \quad (12)$$

or equivalently:

$$L_a\Phi_{\bar{\beta}}(w) = \frac{1}{2\pi i} \oint_{C_w} dz (z - w)^{s+1} T(z)\Phi_{\bar{\beta}}(w)$$

$$W^{(s)}_a\Phi_{\bar{\beta}}(w) = \frac{1}{2\pi i} \oint_{C_w} dz (z - w)^{s+1} W^{(s)}(z)\Phi_{\bar{\beta}}(w). \quad (13)$$

The conformal dimension $\Delta_{\bar{\beta}}$ and the $\omega_{\bar{\beta}}^{(s)}$ are, respectively, the eigenvalues of the zero modes L_0 and $W^{(s)}_0$, operators, $L_0\Phi_{\bar{\beta}} = \Delta_{\bar{\beta}}\Phi_{\bar{\beta}}$ and $W^{(s)}_0\Phi_{\bar{\beta}} = \omega_{\bar{\beta}}^{(s)}\Phi_{\bar{\beta}}$. $\Delta_{\bar{\beta}}$ together with the set of the $k - 2$ quantum numbers $\omega_{\bar{\beta}}^{(s)}$ characterize each representation $\Phi_{\bar{\beta}}$. In particular, the conformal dimension $\Delta_{\bar{\beta}}$ is given by

$$\Delta_{\bar{\beta}} = \frac{1}{2}\bar{\beta}\cdot (\bar{\beta} - 2\bar{\alpha}_0). \quad (14)$$

Note also that, from the above definitions, $L_{-1}\Phi_{\bar{\beta}}(z) = \partial_z \Phi_{\bar{\beta}}(z)$.

The allowed values of the vectors $\bar{\beta}$ are defined by the condition of complete degeneracy of the modules of $\Phi_{\bar{\beta}}(z)$ with respect to the chiral algebra. The Kac table is based on the weight lattice of the Lie algebra \mathcal{A}_{k-1}, and the position of the vectors $\bar{\beta}$ is found to be given by [12]

$$\bar{\beta} = \sum_{a=1}^{k-1} \left((1 - n_a)\alpha_a + (1 - n'_a)\alpha_a\right) \bar{\omega}_a. \quad (15)$$

Each primary operator $\Phi_{\bar{\beta}}$ is then characterized by the sets of integers $(n_1, \ldots, n_{k-1}|n'_1, \ldots, n'_{k-1})$. One can show that the representation $\Phi_{(n_1, \ldots, n_{k-1}|n'_1, \ldots, n'_{k-1})}$ presents $k - 1$ null-vectors χ_{α} ($\alpha = 1, \ldots, k - 1$) at level $n_a n'_a$. This directly generalizes the well-known case of the degenerate representations of the Virasoro algebra (= \mathcal{WA}_1 algebra) [1].

The principal domain of the Kac table contains the set of primary operators which form a closed fusion algebra and is delimited as follows:

$$\sum_a n_a \leq p - 1; \quad \sum_a n'_a \leq p - 1. \quad (16)$$

As can directly be seen from the symmetries of the conformal dimensions $\Delta_{\bar{\beta}} = \Delta_{(n_1, \ldots, n_{k-1}|n'_1, \ldots, n'_{k-1})}$, the operators in the Kac table are identified, up to a multiplicative factor.
[14], via the transformations \(\tau, \tau^2 \cdots \tau^{k-1}, \Phi_{\theta_1, \ldots, \theta_k} (|n_1' \cdots n_{k-1}'\rangle) = \Phi_{\tau \{(n_1, \ldots, n_k, |n_1' \cdots n_{k-1}'\rangle\}} \) (\(j = 1, 2, \ldots, k - 1 \)), \(\Phi_{\theta_1, \ldots, \theta_k} (|n_1' \cdots n_{k-1}'\rangle) = \Phi_{\tau \{(n_1, \ldots, n_k, |n_1' \cdots n_{k-1}'\rangle\}} \)

\[
\tau \{(n_1, \ldots, n_{k-1}, |n_1' \cdots n_{k-1}'\rangle)\} = \left(p' - \sum_{a=1}^{k-1} n_a, n_1, \ldots, n_{k-2} \right) p - \sum_{a=1}^{k-1} n_a', n_1', \ldots, n_{k-2}' \right) \quad .
\]

(17)

4. Parafermionic operators in \(W A_{k-1}(k+1, k+r) \) theory, correlation functions and Jacks

According to Coulomb gas rules, the fusion of two operators \(\Phi_{\beta_1} \) and \(\Phi_{\beta_2} \) produces an operator \(\Phi_{\beta_3} \), in the principal channel with \(\beta_3 = \beta_1 + \beta_2 \), namely \(\Phi_{\beta_1} \times \Phi_{\beta_2} = \Phi_{\beta_3} + \cdots \) where the dots indicate the non-principal fusion channels. The non-principal channels follow the principal one by shifts realized by the roots \(e_i \) (\(i = 1, \ldots, k - 1 \)) of the \(A_{k-1} \) Lie algebra. A channel associated with an operator which lies outside the Kac table (16) does not enter the fusion (i.e. the associated structure constant vanishes). The operator algebra can then easily be determined.

Let us now consider the model \(W A_{k-1}(k+1, k+r) \) where \(p = k+1 \) and \(p' = k+r \). By using the Coulomb gas rules, one can verify that the set of operators,

\[
\Psi_i = \Phi_{-\alpha_i, \beta \omega_i} = \Phi_{-\alpha_i, \beta \omega_{k-i}} \quad i = 1, \ldots, k - 1, \quad \Delta_i = \frac{r}{2} \frac{i(k - i)}{k},
\]

(18)

forms a subalgebra, namely \(\Psi_i \times \Psi_j = \Psi_{(i+j) \mod k} \). These fusion rules are only valid when \(p = k+1 \), because in that case the fields \(\Psi_i \) belong to the boundary of the Kac table, namely

\[
\Psi_i = \Phi_{(1, \ldots, 1, 1, 0, \ldots, 0)} = \Phi_{(1, \ldots, 1, 1, 0, \ldots, 0)} \quad i = \frac{1}{k-1},
\]

(19)

and the usual fusion rules are truncated accordingly. The set of operators \(\Psi_i \), which are degenerate representations of the \(W A_{k-1} \) algebras, forms then an associative \(\mathbb{Z}_k^{(r)} \) parafermionic algebra [22–26] with a fixed central charge given by \(c(k+1, k+r) \); see equation (10). In particular, the \(\Psi_i \) operators can be identified with the parafermionic chiral currents with \(\mathbb{Z}_k^{(r)} \) charge equal to \(i \). Note that the dimensions of the fields \(\Psi_i \) and \(\Psi_{k-i} \) are the same. This reflects the fact that the correlation function of \(\Psi_i \) operators is symmetric under the conjugation of charge \(i \rightarrow k - i \).

In the following, we will use quite often the notation \(\Psi \) for the field \(\Psi_i \) or its conjugate \(\Psi_{k-i} \), and we will use \(\Delta \) and \(\omega_j^{(r)} \) for the corresponding eigenvalues of \(L_0 \) and \(W_0^{(r)} \). The correlation function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \) we will consider denotes then the correlation function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle = \langle \Psi_{k-1}(z_1) \cdots \Psi_{k-1}(z_n) \rangle \). It should be noted that for these correlators to be non-zero, \(n \) should be a multiple of \(k \).

It has been conjectured [8, 9, 11, 18] that these \(n \)-point correlation functions \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \) can be written in terms of a single Jack polynomial. Namely the conjecture is that

\[
\langle \Psi(z_1) \cdots \Psi(z_n) \rangle = P_n^{(k,r)}(\{z_i\}) \prod_{i<j} (z_i - z_j)^{-r/k},
\]

(20)

\(P_n^{(k,r)} \) is the following Jack in \(n \) variables:

\[
P_n^{(k,r)}(\{z_i\}) = J_{\lambda}^{(k+1)/(r-1)}(\{z_i\}),
\]

(21)

where

\[
\lambda = \left[N_0, \ldots, N_0, N_0 - r, \ldots, N_0 - r, \cdots, r, \cdots, r \right] \quad \text{k times}
\]

(22)
and

\[N_\phi = \frac{r(n-k)}{k}. \]

(23)

Note that the above notation has been inherited from the FQH notations, where \(N_\phi \) denotes the magnetic flux. \(P_n^{(k,r)} \) describes lowest Landau-level bosonic particles at filling fraction \(\nu = r/k \).

5. Second-order differential equations for the \(n \)-point functions \(\langle \Psi(z_1)\Psi(z_2) \cdots \Psi(z_n) \rangle \)

We consider the \(n \)-point correlation function \(\langle \Psi(z_1)\Psi(z_2) \cdots \Psi(z_n) \rangle \) of the \(\text{WA}_{k-1}(k+1, k+r) \) theory, and we show that these functions satisfy a particular second-order differential equation. We can prove then that these correlation functions are written in terms of a single Jack.

5.1. \(\text{WA}_{k-1} \) symmetry: Ward identities

The possible form of a general correlation function is restricted by the \(\text{WA}_{k-1} \) symmetry. More specifically, each correlation function satisfies a Ward identity associated with each symmetry current \(T(z) \) and \(W(s), s = 3, \ldots, k \). These identities can easily be obtained from equation (11). For the stress–energy tensor \(T(z) \) and \(W(3)(z) \) we have

\[
\langle T(z)\Psi(z_1) \cdots \Psi(z_n) \rangle = \sum_{j=1}^{n} \left(\frac{\Delta}{(z-z_j)^2} \langle \Psi(z_1) \cdots \partial_j \Psi(z_j) \cdots \rangle \right) + \frac{1}{(z-z_j)} \langle \Psi(z_1) \cdots \partial_j \Psi(z_j) \cdots \rangle \tag{24}
\]

\[
\langle W(3)(z)\Psi(z_1) \cdots \Psi(z_n) \rangle = \sum_{j=1}^{n} \left(\frac{\omega(3)}{(z-z_j)^3} \langle \Psi(z_1) \cdots W(3)(z_j) \cdots \rangle \right) + \frac{1}{(z-z_j)^2} \langle \Psi(z_1) \cdots W(3)(z_j) \cdots \rangle + \frac{1}{(z-z_j)} \langle \Psi(z_1) \cdots W(3)(z_j) \cdots \rangle \tag{25}
\]

By demanding that the functions \(\langle T(z)\Psi(z_1) \cdots \Psi(z_n) \rangle \) and \(\langle W(3)(z)\Psi(z_1) \cdots \Psi(z_n) \rangle \) be regular at \(z \to \infty \) and using the transformations law of \(T(z) \) and \(W(3)(z) \) under a conformal map, one can easily verify that the functions \(\langle T(z) \cdots \rangle \) and \(\langle W(3)(z) \cdots \rangle \) behave, respectively, like

\[T(z) \sim \frac{1}{z^4} \quad \text{and} \quad W(3)(z) \sim \frac{1}{z^6} \quad \text{as} \quad z \to \infty. \]

(26)

Comparing the asymptotics (26) and the Ward identities (24) and (25), one can derive a set of relations satisfied by the correlation functions \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \). For instance, using equation (26) in equation (24) one has

\[
\sum_{j=1}^{n} \partial_j \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = 0 \tag{27}
\]

\[
\sum_{j=1}^{n} (z_j \partial_j + \Delta) \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = 0 \tag{28}
\]
\[
\sum_{j=1}^{n} \left(z_j^2 \partial_j + 2z_j \Delta_j \right) \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = 0.
\] (29)

Relations 27–29 take the form of simple differential equations and impose the invariance of the correlation function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \) under global conformal transformations [1]. As shown in [14], analogously to the case of the conformal symmetry, one can derive a set of relations associated with the symmetry generated by the spin 3 current \(W_3(z) \). Again, using equation (26) in equation (25) one obtains the following five relations:

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots W_3(z_j) \cdots \Psi(z_n) \rangle = 0 \] (30)

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots (z_j^2 W_3(z_j) + 2z_j W_3(z_j) + \omega(z_j)) \cdots \Psi(z_n) \rangle = 0 \] (31)

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots (z_j^2 W_3(z_j) + 3z_j^2 W_3(z_j) + 3z_j \omega(z_j)) \cdots \Psi(z_n) \rangle = 0 \] (32)

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots (z_j^4 W_3(z_j) + 4z_j^3 W_3(z_j) + 6z_j^2 \omega(z_j)) \cdots \Psi(z_n) \rangle = 0. \] (33)

We stress that the above set of relations are very general constraints of the WA_{k-1} theory. Although we have written down these relations for the specific case of the correlation function under consideration, any primary fields correlation function of the WA_{k-1} theory satisfies constraints of the same kind.

5.2. WA_1(3, 2 + r): minimal models of the Virasoro algebra

The WA_1(3, 2 + r) theories, corresponding to \(k = 2 \), coincide with the minimal model \(M(3, 2 + r) \). Notwithstanding the fact that in this case the relation between correlation functions in Virasoro minimal models and Jacks is quite well known, we discuss briefly the \(k = 2 \) case since we shall investigate the more complicated cases \(k > 2 \) in an analogous fashion.

As has been observed in [23, 24], the \(\mathbb{Z}_2 \) parafermionic operator \(\Psi_1 \) (18) coincides with the \(\Phi_1(1) \) operator, \(\Psi = \Psi_1 = \Phi_1(1) \). The operator \(\Psi \) has conformal dimension \(\Delta = \Delta_{1(2)} = r/4 \) and the \(\Psi \Psi \) fusion realizes the \(\mathbb{Z}_2^{(r)} \) parafermionic algebra with central charge \(c = 1 - 2(r - 1)^2/(2 + r) \); see equation (10). Moreover, the operator \(\Psi \) satisfies a second-level null-vector \(\chi_2 \) condition [1]:

\[
\left(L_{-2} - \frac{3}{r + 2} L_{-1}^2 \right) \Psi = 0. \] (35)

The degeneracy condition (35) implies that correlation functions containing \(\Psi \) obey a second-order differential equation. Let us consider a general correlation function \(\langle \Phi(z)\Phi_1(w_1)\Phi_2(w_2) \cdots \rangle \) involving some primary operators \(\Phi, \Phi_1, \ldots \). By using equations
(11), (13) and the Cauchy theorem, one can always express the action of the L_n modes for $n \leq 1$ on the primary Φ in terms of differential operators acting on the others primaries Φ_i:

\[
\langle (L_n/\Phi_1(z))/\Phi_1 \rangle \langle \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle = -\sum_j (n+1)(w_j - z_i)^n \Delta_j \langle \Phi(z_1)\Phi(1)\Phi_2(w_2) \cdots \rangle.
\]

Note that equation (36) is a more general form of the Virasoro Ward identity (24).

Summing over the singular vector equation (35) resulting from each field Ψ_1 and using equation (36), one obtains the following differential equation satisfied by the n-point correlation function $\langle \Psi_1(z_1)\Psi_2(z_2) \cdots \rangle$. Defining H_{vir} as

\[
H_{\text{vir}}(r) = \sum_{i=1}^{n} \left(z_i^2 \partial_i^2 - \frac{r+2}{3} \sum_{j \neq i} \left(\frac{r z_j^2}{4(z_i - z_j)^2} + \frac{z_i^2 \partial_j}{z_i - z_j} \right) \right)
\]

one has

\[
H_{\text{vir}}(r) \langle \Psi(z_1)\Psi(z_2) \cdots \rangle = 0.
\]

Using the result from the appendix, this can be put in the following form:

\[
H_{\text{WA}}(r) \langle \Psi(z_1)\Psi(z_2) \cdots \rangle = 0,
\]

where

\[
H_{\text{WA}} = \sum_j (z_j \partial_j)^2 + \gamma_1(r) \sum_{i \neq j} \frac{z_j^2}{(z_j - z_i)^2} + \gamma_2(r) \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} + n\gamma_3(r)
\]

\[
\gamma_1 = -\frac{r(r+2)}{12}, \quad \gamma_2 = \frac{r+2}{6}, \quad \gamma_3 = -\frac{r(r-1)}{12}.
\]

Let us introduce the function $\phi^{(r,k)}([z_i])$:

\[
\phi^{(r,k)}([z_i]) = \prod_{i<j} (z_i - z_j)^{r/k}.
\]

After some algebraic manipulations, conjugation with the function $\phi^{(r,2)}$ transforms the second-order differential operators H_{WA}, defined in equation (40), into the Calogero Hamiltonian $H_{\text{CS}}(\alpha)$ equation (3):

\[
[\phi^{(r,2)}([z_i])] H_{\text{WA}}[\phi^{(r,2)}([z_i])]^{-1} = H_{\text{CS}}(\alpha) - E(r)
\]

with

\[
\alpha = -\frac{3}{r-1}, \quad E(r) = \frac{1}{36r}rn(n-2) [2 + n + r(2n - 5)].
\]

One can easily verify by comparing equations (42) and (43) with equations (3)–(5) that the Jack solution (4) of the eigenvalue equation (3) is the only solution with monodromies consistent with the OPE of the operators Ψ, i.e. with the $Z_3^{(r)}$ parafermionic algebra.

In the more general case of the W_{k-1} theories with $k = 3, 4, \ldots$, it is in general impossible to write down differential equations for correlation functions containing one completely degenerate field and other arbitrary fields. Generally speaking, the null-vector conditions of the W_{k-1} theory present for $k > 2$, in addition to the L_n Virasoro modes, the modes $W_n^{(s)}$ of the higher spin currents. The action of the modes $W_n^{(s)}$ does not have a
geometrical interpretation, i.e. they cannot be written as differential operators. This is the essential difficulty in the analysis of the \(W \) theory correlation functions.

In the following, we will closely use the approach of \[14\]. We will first give a detailed analysis of the case \(k = 3 \). From the degeneracy properties of the parafermionic operators \(\Psi \), we show that the correlation functions involving \(n \) operators \(\Psi \) satisfy a second-order differential equation. This equation allows us to prove the conjecture 20 for the theory \(W_{A_2}(4, 3 + r) \) (i.e. \(k = 3 \)). Then we show how to generalize this result for the general case.

5.3. \(W_{A_2}(4, 3 + r) \) models

The chiral algebra contains the stress–energy operator \(T(z) \) and the \(W^{(3)}(z) \) current of spin 3. The explicit form of the \(W_{A_2} \) algebra, written in terms of the commutators between the chiral current modes, is

\[
[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}
\]

\[
[L_n, W_m^{(3)}] = (2n - m) W_{n+m}^{(3)}
\]

\[
[W_n^{(3)}, W_m^{(3)}] = \frac{16}{22 + 5c} (n - m)\Lambda_{n+m} + \frac{c}{360}n(n^2 - 1)(n^2 - 4)\delta_{n+m,0} + (n - m) \left[\frac{1}{15}(n + m + 2)(n + m + 3) - \frac{1}{6}(n + 2)(m + 2) \right] L_{n+m}
\]

with

\[
\Lambda_n = d_n L_n + \sum_{m=-\infty}^{\infty} : L_m L_{n-m} :
\]

\[
d_{2m} = \frac{(1 - m^2)}{5}
\]

\[
d_{2m-1} = \frac{(1 + m)(2 - m)}{5}
\]

The \(A_2 \) weight lattice is two dimensional and the representations of the \(W_{A_2} \) algebra \(\Phi_{\tilde{\beta}} = \Phi_{(n_1, n_2; n'_1, n'_2)} \) are indexed by the couple of integers \((n_1, n_2; n'_1, n'_2)\). The Kac table is delimited by

\[
n_1 + n_2 \leq p' - 1 \quad n'_1 + n'_2 \leq p - 1.
\]

The \(\Psi_1 \) and \(\Psi_2 \) operators, which are identified in equation (19) as

\[
\Psi_1 = \Phi_{(1,p+1)|1,1)} = \Phi_{(1,1)|2,1)}
\]

\[
\Psi_2 = \Phi_{(p+1,1)|1,1)} = \Phi_{(1,1)|2,1)}
\]

generate the \(\mathbb{Z}_3 \) parafermionic theory. In equations (51) and (52), the identifications (17) are used. The operators \(\Psi_1 \) and \(\Psi_2 \) are \(\mathbb{Z}_3 \)-charge conjugates and have the same dimension \(\Delta \):

\[
\Delta = \Delta_{(1,1)|2,1}) = \Delta_{(1,1)|1,2}) = \frac{r}{3}.
\]

Note that \(\Psi_1 \) and \(\Psi_2 \) are distinct \(W_{A_2} \) representations as one can directly see from the fact that the associated \(W_{A_2}^{(1)} \) eigenvalues \(\omega_{(1,1)|1,2)}^{(3)} \) and \(\omega_{(1,1)|2,1)}^{(3)} \), see equation (11), have an opposite sign, \(\omega_{(1,1)|1,2)}^{(3)} = -\omega_{(1,1)|2,1)}^{(3)} \) \[14\]. Their value is given by

\[
(\omega_{(1,1)|1,2)}^{(3)})^2 = \frac{2\Delta^2}{9} \left(\frac{32}{22 + 5c}(\Delta + \frac{1}{5}) - \frac{1}{5} \right).
\]
5.3.1. \(W_{A2} \) null-vectors conditions

The fields \(\Psi_1 \) and \(\Psi_2 \), identified in equations (51) and (52) respectively to the degenerate representations \(\Phi_{(1,1,2,1)} \) and \(\Phi_{(1,1,1,2)} \), are expected to have two null-vectors at levels 1 and 2. From the commutation relations (46), one can show [12, 14] that the fields \(\Psi_1 \) and \(\Psi_2 \), defined in equations (51) and (52), satisfy the following null-vector conditions:

\[
\begin{align*}
\left(W^{(3)}_{-2} - \frac{3\omega^{(3)}}{2\Delta} L_{-1} \right) \Psi &= 0 \\
\left(W^{(3)}_{-1} - \frac{12\omega^{(3)}}{\Delta(5\Delta + 1)} L^{2}_{-1} - \frac{6\omega^{(3)}(\Delta + 1)}{\Delta(5\Delta + 1)} L_{-2} \right) \Psi &= 0,
\end{align*}
\]

where \(\omega^{(3)} \) stands for \(\omega^{(3)}_{(1,1,2,1)} \) (respectively \(\omega^{(3)}_{(1,1,1,2)} \)) when \(\Psi_1 \) (\(\Psi_2 \)) is concerned. We remark that the fields \(\Psi_1 \), \(\Psi_2 \)) satisfy an additional third-level null-vector condition which directly comes from the conditions (55) and the algebra (46) [14]. For our purposes, we do not need such a condition.

Here we are interested in the \(n \)-point correlation function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \); see section (4). As is explicitly shown in equation (55), the modes of the additional current \(W^{(3)}(z) \) appear in the null-vector conditions (55).

5.3.2. Second-order differential equation for \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \)

We show here that the null-vector conditions (55) allow us to derive a second-order differential equation for \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \). To take care of the modes \(W^{(3)}_{-2} \) and \(W^{(3)}_{-1} \), one can use any of the relations (30)–(34), together with the null-vector conditions (55), to obtain a relation involving purely the Virasoro modes \(L_{-2} \) and \(L_{-1} \). This allows us to obtain five different differential equations for the \(n \)-point functions. As suggested by the results known for the Jacks [27], all these differential equations are not independent and can be obtained from one another by commutation with \(27–29 \). Of particular interest to us is the following equation, obtained by using equation (55) in equation (32):

\[
0 = \sum_{j=1}^{n} \langle \Psi(z_1) \cdots (z_j^2 W^{(3)}_{-2} + 2z_j W^{(3)}_{-1} + \omega^{(3)}) \Psi(z_j) \cdots \Psi(z_n) \rangle =
\]

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots \left[-8a \left(\frac{\Delta + 1}{2\Delta} \right) - 2\alpha z_j \partial_j - \frac{2}{3} a \Delta \right] \Psi(z_j) \cdots \Psi(z_n) \rangle
\]

where \(a = -3\omega^{(3)}/(2\Delta) \). Note that the constant \(a \) factorizes in the above equations, and we are left with

\[
\sum_{j=1}^{n} \langle \Psi(z_1) \cdots \left[z_j^2 \left(\frac{\Delta + 1}{2} \right) - \frac{5\Delta + 1}{4} z_j \partial_j + \frac{\Delta(5\Delta + 1)}{12} \right] \Psi(z_j) \cdots \Psi(z_n) \rangle = 0.
\]

This means that the sign of \(\omega^{(3)} \) does not modify the differential equation. This is consistent with the fact that, as previously mentioned, correlation functions are invariant under the charge conjugation \(\Psi_1 \leftrightarrow \Psi_2 \). Taking into account the following relations:

\[
\sum_{k} z_j \partial_j \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = -n \Delta \langle \Psi(z_1) \cdots \Psi(z_n) \rangle
\]

\[
\langle \Psi(z_1) \cdots L_{-2} \Psi(z_j) \cdots \Psi(z_n) \rangle \equiv \sum_{\substack{i,j=1 \ldots n \\ i \neq j \\ i \neq j}} \frac{\partial_i}{(z_j - z_i)^2} \langle \Psi(z_1) \cdots \Psi(z_j) \cdots \Psi(z_n) \rangle,
\]

where \(L_{-2} \) stands for \(\Delta \), and \(\partial_i \) stands for \(\partial_i \), respectively.
and using equation (53), we can write down the second-order differential equation for
\(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \) where the coefficients \(\gamma_i(r) \) \((i = 1, 2, 3) \) are given as functions of \(r \). We have found
\[
\mathcal{H}^{WA_2}_{\Psi}(z_1, \ldots, z_n) = 0,
\]
where \(\mathcal{H}^{WA_2}_\Psi \) is
\[
\mathcal{H}^{WA_2}_\Psi = \frac{\gamma_1(r) \sum_{i \neq j} (z_i \partial_j z_j)^2 + \gamma_2 \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} + n \gamma_3(r)}{18}
\]
\(\gamma_1(r) = -\frac{r(r + 3)}{12}, \gamma_2(r) = \frac{3 + r}{12}, \gamma_3(r) = -\frac{r(4r - 3)}{27}. \) (63)

Analogously to what we have seen in section (5.2), we use the function \(\phi^{(r,3)}([z_i]) \) defined in equation (41) to transform the above second-order differential equation into the Calogero Hamiltonian (3)(see the appendix):
\[
[\phi^{(r,3)}([z_i])] \mathcal{H}^{WA_2}_\Psi(r) [\phi^{(r,3)}([z_i])]^{-1} = \mathcal{H}^{CS}_\Psi - E(r)
\]
with
\[
\alpha = -\frac{4}{r - 1}, E(r) = \frac{nr}{216} (-3 + n)(9 - 21r + n(3 + 5r)).
\]
By comparing equations (64) and (65) with equations (3)–(5), it is straightforward to see that equations (21)–(23) are verified for \(r = 3 \). As we have said for the case \(k = 2 \), the Jack solution (4) of the eigenvalue equation (3) is the only solution consistent with the single-channel fusion rules of the \(\mathbb{Z}_3^{(r)} \) parafermionic algebra, i.e. it is the only polynomial solution.

5.4. \(WA_{k-1}(k + 1, k + r) \) models

We complete the proof of equations (21)–(23) for general \(k \), i.e. for the general theory \(WA_{k-1}(k + 1, k + r) \). The parafermions operators \(\Psi_1 \) and \(\Psi_{k-1} \) are identified with the following primary fields:
\[
\Psi_1 = \Psi_{(1,1,\ldots,r+1)[1,1,\ldots,1]} = \Phi_{(1,1,\ldots,1)[1,1,\ldots,1]}
\]
\[
\Psi_{k-1} = \Psi_{(r+1,1,\ldots,1)[1,1,\ldots,1]} = \Phi_{(1,1,\ldots,1)[1,1,\ldots,2]}
\]
with conformal dimension \(\Delta \):
\[
\Delta = \Delta_{(1,\ldots,1)[1,\ldots,1]} = \Delta_{(1,\ldots,1)[1,\ldots,2]} = \frac{r}{2} - \frac{1}{k},
\]
where we have used the identifications (17). In the following, we set \(\Psi_\Psi \Psi_1 \) and we compute the \(n \)-point function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \). The results we obtain are valid also for the \(n \)-point correlation functions of the conjugate field \(\Psi_{k-1} \).

The field \(\Psi \) is expected to have \(k - 2 \) null-vectors at level 1 and one null-vector at level 2. But the situation is slightly more complex since the descendants of these null states also decouple from the theory, and in general the embedding of these null-state modules is non-trivial. Nevertheless, using the characters of the \(WA_{k-1} \) theories [12, 13], or equivalently the reflections along the roots in the Coulomb gas language, it is rather straightforward to count the number of remaining independent fields at a given level. In particular, we showed that the representation module of \(\Psi_1 \) (or \(\Psi_{k-1} \)) only has one state at level 1, and two independent states at level 2. This statement does not hold for the other parafermionic fields \(\Psi_n, n = 2, \ldots, k - 2 \); in that case there are three independent states at level 2. This is not surprising because the
conjecture relating parafermionic correlation functions and Jack polynomials only holds for the parafermions with the lowest dimension: Ψ_1 and Ψ_{k-1}.

For these two fields, the first two levels are completely spanned by the Virasoro modes, and all the additional modes corresponding to the currents $W(s), s = 3, \ldots, k - 1$ only appear in null-vectors. In particular, the fields $W^{(3)}_1\Psi$ and $W^{(3)}_{k-1}\Psi$ can be written as linear combination of Virasoro modes:

$$
\left(W^{(3)}_{-1} + aL_{-1} \right) \Psi = 0
$$

$$
\left(W^{(3)}_{-2} + \mu L^2_{-2} + v L_{-2} \right) \Psi = 0,
$$

where the constants a, μ and v are computed below. This result is consistent with the works [28, 29], where it was shown that starting precisely from the null-vector conditions (69) (and a chain of other conditions for the other currents) as hypotheses, one can rebuild the WA$k-1$ algebra.

The constants a, μ and v can be determined by acting with positive Virasoro modes on the null-vectors (69). We have obtained

$$
a = -\frac{3\omega^{(3)}}{2\Delta},
$$

$$
\mu = a \frac{2(2\Delta + c)}{(-10\Delta + 16\Delta^2 + 2c\Delta + c)} = a \frac{2k(1+k)}{rk^2 + k^2 - 2k - 4r},
$$

$$
v = a \frac{16\Delta(\Delta - 1)}{(-10\Delta + 16\Delta^2 + 2c\Delta + c)} = -\frac{2(k+r)}{k(1+k)},
$$

where $\omega^{(3)} = \pm\omega^{(3)}_{1,1,\ldots,1} |_{2,1,\ldots,1}$, for $\Psi = \Psi_{\pm 1}$.

Replacing $k = 3$ in the above equation, one obtains those given in equation (55). Note however that the coefficients given above are different from those obtained by replacing the values of Δ of equation (68) into the coefficients of equation (55). This is quite natural as one expects that the presence of the higher spin currents in the chiral algebra modifies the coefficients of the null-vector conditions.

The differential equation satisfied for $\langle \Psi(z_1) \cdots \Psi(z_n) \rangle$ for the general theory WA$k-1$ can then be obtained in the same fashion as in the case $k = 3$; see section (5.3.2). By using equations (69)–(72) into equation (32) we obtain

$$
\mathcal{H}^{WA_{k-1}}(\Psi(z_1) \cdots \Psi(z_n)) = 0,
$$

where the differential operator $\mathcal{H}^{WA_{k-1}}$, whose coefficients are given as functions of r and k, is defined as

$$
\mathcal{H}^{WA_{k-1}} = \sum_i (z_i \partial_i)^2 + \gamma_1(k,r) \sum_{i \neq j} \frac{z_i^2}{(z_j - z_i)^2} + \gamma_2(k,r) \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} + n \gamma_3(k,r),
$$

$$
\gamma_1 = -\frac{r(k - r + k^2 - k)}{k^2(k + 1)}, \quad \gamma_2 = \frac{r + k}{k(k + 1)}, \quad \gamma_3 = -\frac{r(k - 1)(2rk - k - 2r)}{6k^2}.
$$

As we have seen in the case $k = 3$, see section (5.3.2), the constant a can be simplified during the derivation of the above equation. Equation (75) is then independent of the sign of $\omega^{(3)} = \pm\omega^{(3)}_{1,1,\ldots,1|2,1,\ldots,1}$. Once again, this is consistent with the invariance of the parafermionic correlation functions under charge conjugation ($i \rightarrow k - i$). As expected, we recover the pure Virasoro case when $k = 2$.

J. Phys. A: Math. Theor. 42 (2009) 445209 B. Estienne and R. Santachiara
Using the function $\phi^{(r,k)}$, defined in equation (41), we can transform the above differential equation into the Calogero Hamiltonian. We have

$$\left[\phi^{(r,k)}(\{z_i\})\right]^{-1} \mathcal{H}_{W^{A_{k-1}}}^{(r,k)} = \mathcal{H}_{CS}(\alpha) - E(r)$$

(76)

with

$$\alpha = \frac{k+1}{r-1} \quad E(r) = \frac{nr(k-n)[n-2nr+k^2(-1+2r)-k(n-r+nr)]}{6k^2(1+k)}.$$

(77)

By comparing equations (76) and (77) with equations (3)–(5), it is straightforward to see that equations (21)–(23) are verified for each k. This completes the proof of the conjecture relating Jack wavefunctions to $W_{A_{k-1}}(k+1, k+r)$ theories.

6. Conclusion

In this paper, we computed the n-point correlation function of the field $\Psi_1 = \Phi_{(1,\ldots,1|2,\ldots,1)}$ and of the field $\Psi_{k-1} = \Phi_{(1,\ldots,1|1,\ldots,2)}$ belonging to the Kac table of the minimal model $W_{A_{k-1}}(k+1, k+r)$. By using the Ward identities associated with the spin 3 current $W^{(3)}(z)$ and the degeneracy properties of the Ψ_1 and Ψ_{k-1} representations, we showed that their n-point correlation functions satisfy a second-order differential equation. This equation can be transformed into a Calogero Hamiltonian with negative rational coupling $\alpha = -(k+1)/(r-1)$. This completes the proof of the conjecture which states that the n-point correlation functions of Ψ_1 (Ψ_{k-1}) can be written in terms of a single Jack polynomial.

Acknowledgments

The authors would like to thank E Ardonne, VI Dotsenko and N Regnault for very helpful discussions. BE also wishes to thank B A Bernevig for explaining the nature of the additional differential equations satisfied by the Jack polynomials. RS acknowledges conversations with N Cooper, Th Jolicoeur, V Fateev and S Ribault.

Appendix

In order to derive the Hamiltonians $\mathcal{H}_{W^{A_{k-1}}}$ from the null-vector conditions, the following relation is quite useful:

$$\sum_{i \neq j} \left(\frac{z_i^2}{z_i - z_j} \frac{\partial_j}{z_j - z_i} \right) \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = \left(n\Delta - \frac{1}{2} \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} \right) \langle \Psi(z_1) \cdots \Psi(z_n) \rangle.$$

(A.1)

In order to derive this relation, it is convenient to introduce the following differential operators:

$$\mathcal{D} = \sum_{j=1}^{n} z_j \partial_j$$

(A.2)

$$T = \sum_{i=1}^{n} \partial_i$$

(A.3)

$$O = \sum_{i,j=1 \atop i < j}^{n} \frac{z_i z_j (\partial_i - \partial_j)}{(z_i - z_j)}$$

(A.4)
one has
\[\sum_{i,j}^{n} \left(\frac{z_j^2 \partial_i}{z_j - z_i} \right) = \sum_{i \neq j} \left(\frac{\partial_i}{z_j - z_i} \right) \tag{A.5} \]
\[= \sum_j z_j \sum_{i \neq j} \partial_i - \frac{1}{2} \sum_{i \neq j} \frac{z_i z_j (\partial_i - \partial_j)}{(z_j - z_i)} \tag{A.6} \]
\[= \sum_j z_j \left[\sum_i \partial_i - \frac{1}{2} \right] - \frac{1}{2} \mathcal{O} \tag{A.7} \]
\[= -D + \left(\sum_j z_j \right) \mathcal{T} - \frac{1}{2} \mathcal{O}. \tag{A.8} \]

The action on a correlation function \(\langle \Psi(z_1) \cdots \Psi(z_n) \rangle \) greatly simplifies since
\[T \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = 0 \tag{A.9} \]
\[D \langle \Psi(z_1) \cdots \Psi(z_n) \rangle = -n \Delta \langle \Psi(z_1) \cdots \Psi(z_n) \rangle, \tag{A.10} \]

and one obtains A.1.

References

[1] di Francesco P, Mathieu P and Senechal D 1997 Conformal Field Theory (New York: Springer)
[2] Dotsenko VI. Série de cours sur la théorie conforme http://cel.archives-ouvertes.fr/cel-00092929/en/
[3] Cardy J 2004 Phys. Lett. B 582 121
[4] Doyon B and Cardy J 2007 J. Phys. A: Math. Theor. 40 2509
[5] Calogero F 1969 J. Math. Phys. 10 2191
[6] Sutherland B 1971 J. Math. Phys. 12 246
Sutherland B 1971 J. Math. Phys. 12 251
[7] Sutherland B 1971 Phys. Rev. A 4 1372
Sutherland B 1972 Phys. Rev. 5 1382
[8] Feigin B, Jimbo M, Miwa T and Mukhin E 2002 Int. Math. Res. Not. 1223
[9] Feigin B, Jimbo M, Miwa T and Mukhin E 2003 Int. Math. Res. Not. 1015 (arXiv:math/0209042)
[10] Bernevig B A and Haldane F D M 2008 Phys. Rev. Lett. 100 246802
[11] Bernevig B A and Haldane F D M 2008 Phys. Rev. Lett. 101 246806
[12] Fateev V A and Lykyanov S L 1988 Int. J. Mod. Phys. A 3 507
[13] Bouwknegt P and Schoutens K 1993 Phys. Rep. 223 183–276
[14] Fateev V A and Litvinov S L 2007 J. High Energy Phys. JHEP11(2007)002
[15] Fateev V A and Litvinov S L 2009 J. High Energy Phys. JHEP01(2009)033
[16] Moore G and Read N 1991 Nucl. Phys. B 360 362
[17] Read N and Rezayi E 1999 Phys. Rev. B 59 8084
[18] Bernevig B A, Gurarie V and Simon S H 2009 J. Phys. A: Math. Theor. 42 245206
[19] Ardonne E 2009 Phys. Rev. Lett. 102 180401
[20] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (New York: Oxford University Press)
[21] Dotsenko VI S and Fateev V A 1984 Nucl. Phys. B 324 312
Dotsenko VI S and Fateev V A 1985 Nucl. Phys. B 281 691
Dotsenko VI S and Fateev V A 1985 Phys. Lett. B 154 291
[22] Zamolodchikov A and Fateev V 1985 Sov. Phys. JETP 62 215–25
[23] Jacob P and Mathieu P 2006 Nucl. Phys. B 733 205–32
[24] Jacob P and Mathieu P 2005 Phys. Lett. B 627 224
[25] Estienne B, Regnault N and Santachiara R 2009 arXiv:0904.3702
[26] Mathieu P 2009 arXiv:0906.0949
[27] Bernevig B A 2009 private communication
[28] Hornfeck K 1994 Nucl. Phys. B 411 307
[29] Bajnok Z 1999 Lett. Math. Phys. 49 325