Effects of somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonists on the growth of human small-cell and non-small-cell lung carcinomas in nude mice

J. Pinski, A.V. Schally, G. Halmos, K. Szepeshazi, K. Groot, K. O'Byrne & R.-Z. Cai

Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, and Department of Medicine, Tulane University Medical School, New Orleans, Louisiana 70146, USA.

Summary We investigated the effects of our synthetic bombesin gastrin-releasing peptide (GRP) antagonists and somatostatin analogue RC-160 on the growth of human small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (non-SCLC) lines in nude mice. Athymic nude mice bearing xenografts of the SCLC NCI-H157 line and non-SCLC NCI-H160 line treated for 5 and 4 weeks, respectively, with somatostatin analogue RC-160 or various bombesin GRP antagonists. RC-160, administered s.c. peritumorally at a dose of 100 μg per animal per day, inhibited the growth of H169 SCLC xenografts as shown by more than 70% reduction in tumour volumes and weights, as compared with the control group. Bombesin GRP antagonists, RC-3400, RC-3095, and RC-3950-II, given s.c. peritumorally at a dose of 20 μg per animal per day, also inhibited the growth of H169 SCLC tumours. RC-3950-II had the greatest inhibitory effect and decreased tumour volume and weights by more than 80%. The growth of H-157 non-SCLC xenografts was significantly reduced by treatment with RC-160, but not with bombesin/GRP antagonist RC-3095. In mice bearing either tumour model, administration of RC-160 significantly decreased serum growth hormone and gastrin levels. Specific high-affinity receptors for bombesin and somatostatin were found on membranes of SCLC H69 tumours, but not on non-SCLC H157 tumours. Receptor analyses demonstrated high-affinity binding sites for epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on the membranes of H69 and H157 tumours. EGF receptors were down-regulated on H69 tumours after treatment with RC-160 and bombesin/GRP antagonists. The concentration of binding sites for EGF and IGF-I on the H157 tumours was decreased after treatment with RC-160, but bombesin/GRP antagonist RC-3095 had no effect. These results demonstrate that bombesin/GRP antagonists inhibit the growth of H-69 SCLC, but not of H-157 non-SCLC xenografts in nude mice, whereas somatostatin analogue RC-160 is effective in both tumour models. This raises the possibility that these peptide analogues could be used selectively in the treatment of various subcellular types of lung cancer.

Lung carcinoma is the leading cause of cancer-related deaths in the western world. It is estimated that in 1992 there were approximately 168,000 new cases of lung cancer in the US and that about 146,000 deaths occurred from this disease (Boring et al., 1992). Treatment of lung cancer is based on surgery and chemotherapy, but is far from satisfactory, and new approaches must be explored to improve the therapy. The growth factors such as bombesin/gastrin-releasing peptide (GRP), epidermal growth factor, (EGF), transforming growth factor α (TGF-α) and insulin-like growth factor I (IGF-I) appear to play a role in the proliferation and progression of lung cancer (Cutitta et al., 1985; Veale et al., 1987; Minuto et al., 1988; Siegfried & Owens, 1988; Macauley et al., 1990; Tadepalli et al., 1991; Damstrup et al., 1992; Sethi & Rozengurt, 1992; Rabiasz et al., 1993). Bombesin-like peptides have been shown to act as autocrine growth factors for certain SCLC cell lines (Cutitta et al., 1985; Sethi & Rozengurt, 1992; Moody & Cutitta, 1993). It has also been demonstrated that several human SCLC and non-SCLC cell lines secrete and respond to IGF-1, EGF and related polypeptides, including TGF-α (Minuto et al., 1988; Siegfried & Owens, 1988; Macauley et al., 1990). Several groups have reported that the growth of SCLC can be inhibited in vitro or in vivo by various bombesin/GRP antagonists (Rayon et al., 1988; Mahmoud et al., 1991; Staley et al., 1991; Langdon et al., 1992; Thomas et al., 1992), monoclonal antibodies to bombesin (Cutitta et al., 1985) and somatostatin analogues (Bogden et al., 1990; Taylor et al., 1991).

Many potent somatostatin analogues such as d-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂ (RC-160; Octatstatin) and bombesin/GRP antagonists including [d-Trp⁶, Leu¹⁰]bombesin (6-14), [d-Trp⁶, Leu¹⁰, ω(CH₂NH)Leu¹⁴] bombesin (6-14), RC-3440 (TPr⁶, Leu¹⁰) bombesin (6-16), RC-3950-II (d-Phe⁶, Leu¹⁰, ω(CH₂NTH)TPr¹⁴) bombesin (6-16), RC-3005 (His(Bz)²O, TPr², D-Phe²) bombesin (6-16), RC-3009 (d-Phe², D-Phe², Leu², GRP(14-27)) and RC-3009 (d-Phe², D-Phe², Leu², GRP(14-27)) were synthesised in our laboratory (Radulovic et al., 1991a; Cai et al., 1992, 1994). These peptides can act to suppress the growth of prostate, gastric, pancreatic, colorectal, and mammary cancers in vivo (Radulovic et al., 1991b; Szepeshazi et al., 1991, 1992; Pinski et al., 1994a, b). The anti-tumour effects of RC-3095 and RC-160 could be linked to a significant decrease in the maximal binding capacity of EGF receptors in these tumours. In this study, we have evaluated the effects of somatostatin analogue RC-160 and three bombesin/GRP antagonists, including RC-3095, on the growth of xenografts of the human lung cell line NCI-H69 and the non-SCLC cell line NCI-H157 in athymic nude mice. In view of the presence of oestrogen and progesterone receptors in human lung cancer (Cagle et al., 1990), we also examined whether castration or administration of the LH-RH antagonist SB-75 (Cetrorelix) can affect the growth of non-SCLC H157 tumours.

Materials and methods

Peptides

Somatostatin analogue RC-160 (d-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH₂) originally synthesised by us (Cai et al., 1986) was made by classical synthesis and supplied by Debiopharm, Lausanne, Switzerland. Bombesin/GRP antagonists RC-3095 ([d-Trp⁶, Leu¹⁰, ω(CH₂NH)Leu¹⁴] bombesin (6-14), RC-3440 (TPr⁶, Leu¹⁰) bombesin (6-16), RC-3950-II (d-Phe⁶, Leu¹⁰, ω(CH₂NTH)TPr¹⁴) bombesin (6-14), RC-3005 (His(Bz)²O, TPr², D-Phe²) bombesin (6-16), RC-3009 (d-Phe², D-Phe², Leu², GRP(14-27)) and RC-3009 (d-Phe², D-Phe², Leu², GRP(14-27)) were synthesised in our laboratory (Radulovic et al., 1991a; Cai et al., 1992, 1994). Tpi is 2,3,4,9-tetrahydro-
1H-pyridine [3,4-l]indol-3-carboxylic acid, a conformationally constrained secondary amine derivate of tryptophan and Tac is thiazolidine-4-carboxylic acid. The LH-RH antagonist, [D-D-Nal(2), D-Phe(4Cl)]2, D-Pal(3), D-Cit4, D-Ala6]LH-RH (Cetrorelix, SB-75) was synthesised by solid-phase methods in our laboratory as well as by Asta Medica (Frankfurt/Main, Germany) and carefully repurified by high-performance liquid chromatography (HPLC) (Bajusz et al., 1988). For subcutaneous administration, RC-160, RC-3095, RC-3440 and RC-3950-II were dissolved in 0.1% dimethylsulphoxide in saline solution and Cetrorelix in 5% mannitol in water.

Animals
Male athymic NCr nu/nu nude mice, approximately 6 weeks old on arrival, were obtained from the NCI (Bethesda, MD, USA) and maintained under pathogen-limited conditions.

Cell lines
The human SCLC cell line NCI-H69, was obtained from the American Type Cell Culture (ATCC), Rockville, MD, USA and the non-SCLC cell line NCI-H157, from Dr H. Oie, NCI-Navy Medical Oncology Branch, Bethesda, MD, USA. These cell lines were cultured in RPMI-1640 medium supplemented with 4 mM L-glutamine, 50 units ml−1 penicillin G sodium, 50 μg ml−1 streptomycin sulphate, 0.125 μg ml−1 amphotericin B and 10% fetal bovine serum at 37°C in a humidified 95% air/5% carbon dioxide atmosphere. Cells were passaged weekly and routinely monitored for mycoplasma contamination using a detection kit (Boehringer-Mannheim, Mannheim, Germany). All culture media components were purchased from Gibco (Grand Island, NY, USA).

Receptor assays
Preparation of membranes for receptor studies was described previously (Halmonos et al., 1993). Iodinated EGF and IGF-I were purchased from Amersham (Arlington Heights, IL, USA). Radioiodination of other peptides and receptor binding of EGF, IGF-I, somatostatin and bombesin/GRP were performed as previously described (Srkalovic et al., 1989; Szepeshazi et al., 1992). Complete displacement assays on tumour membranes were done only once because of the shortage of tumour material. The LIGAND PC computerised curve-fitting programme of Munson and Rodbard (1980) was used to determine the types of receptor binding, dissociation constant (Kd) values, and the maximal binding capacity (Bmax) of receptors. In order to determine the specificity of the binding sites for radiolabelled EGF, IGF-I, somatostatin and bombesin to lung cancer membranes, various structurally related and unrelated peptides were tested for their ability to inhibit the binding of the tracers.

Histological procedure
The histological procedures were the same as described previously (Szepeshazi et al., 1991, 1992). The number of mitotic and apoptotic cells per 1,000 cells was determined, and the percentage area of necrosis in tumour sections was examined using the point-counting method (Szepeshazi et al., 1991, 1992), in which the crossing points of an ocular net that coincide with necrosis in various sections are counted.

Radioimmunoassays
Serum levels of growth hormone were determined by double-antibody radioimmunoassay (RIA) using materials supplied by the National Hormone and Pituitary Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Inter-assay and intra-assay coefficients of variation were less than 15% and 10% respectively. Serum gastrin levels were measured by double-antibody RIA with a kit provided by Becton Dickinson (Orangeburg, NY, USA). The inter-assay variation was less than 7.0% and the intra-assay variation about 4.0%.

\[^{3}P\]Thymidine incorporation assay
The ability of peptide analogues to inhibit the incorporation of \[^{3}P\]Thymidine into DNA in monolayer cultures of the human SCLC cell line H69 was assayed as described by Sondak et al. (1984).

Statistical methods
Statistical analyses of the tumour data were performed using Duncan’s new multiple range test (Steel & Torrie, 1976).

Experimental protocol
In the first experiment, xenografts were initiated by s.c. injection of 1 x 10^5 H69 SCLC cells into the right flanks of five male mice. Tumours resulting after 7 weeks were aseptically dissected and mechanically minced; 3 mm^3 pieces of tumour tissue were transplanted s.c. by trocar needle into 60 male animals under methoxyflurane (Metofane, Pittman-Moore, Mundelein, IL, USA) anaesthesia. Two weeks after transplantation, when tumours had grown to a volume of approximately 10 mm^3, the mice were randomised and divided into five experimental groups of ten animals each, which received the following treatment: group 1, saline only; group 2, RC-160 at a dose of 100 μg day−1 per animal s.c.; group 3, RC-3095 at a dose of 20 μg day−1 per animal s.c. group 4, RC-3440 at a dose of 20 μg day−1 per animal s.c.; group 5, RC-3950-II at a dose of 20 μg day−1 per animal s.c. The compounds were injected s.c. at about 5 mm distance from the tumour. The doses of analogues were in the oncologically useful range selected on the basis of previous extensive studies in various animal tumour models (Radulovic, 1991b; Szepeshazi, 1991, 1992; Pinski, 1994a, b).

In the second experiment, xenografts were initiated by s.c. injection of 1 x 10^5 H157 non-SCLC cells into the right flanks of five male mice. Tumours resulting after 6 weeks were aseptically dissected and mechanically minced; 3 mm^3 pieces of tumour tissue were transplanted by trocar needle into 60 male nude mice under methoxyflurane anaesthesia. One week after transplantation, when tumours had grown to a volume of approximately 10 mm^3, the mice were randomised and divided into five experimental groups of ten animals each, which received the following treatments: group 1, saline only; group 2, castration; group 3, RC-160 at a dose of 100 μg day−1 per animal s.c.; group 4, RC-3095 at a dose of 20 μg day−1 per animal s.c.; group 5, LH-RH antagonist SB-75 at a dose of 100 μg day−1 per animal s.c. The compounds were injected s.c. at about 5 mm distance from the tumour. In both experiments, the tumours were measured once a week. Tumour volume was calculated as length x width x height x 0.5236. Tumour volume doubling time was calculated as previously described (Radulovic et al., 1991b; Pinski et al., 1994b). At the end of both experiments, mice were anaesthetised with methoxyflurane, killed by decapitation, trunk blood was collected for analyses, body weights were recorded and various organs removed and weighed. Tumours were cleaned and weighed, and samples were taken for histology and receptor studies.

Results
The effects of various treatments on final tumour volume, body and tumour weights, and tumour doubling time in both experiments, are shown in Table I. At the end of the experiments, there were no significant differences in body weights between the groups.

In experiment I, all three bombesin/GRP antagonists significantly suppressed growth of SCLC H-69 tumours. RC-
Table 1 Effect of treatment with various peptide analogues on body and tumour weight, tumour volume and tumour doubling time in nude mice bearing xenografts of the human SCLC H69 and non-SCLC H157 cell lines.

Treatment group	Tumour volume (mm³)	Body weight (g)	Tumour weight (g)	Tumour doubling time (days)	
	Initial	Final			
Experiment I (SCLC-H69)					
Control	10.5 ± 1.6	249.7 ± 182.3	26.3 ± 2.3	0.27 ± 0.19	7.5
RC-3440	10.0 ± 3.3	74.1 ± 84.1*	26.2 ± 1.3	0.076 ± 0.04*	12.1
RC-3095	11.2 ± 1.8	80.2 ± 61.0*	24.0 ± 2.4	0.081 ± 0.06*	12.2
RC-160	9.8 ± 1.8	66.0 ± 26.5*	24.6 ± 1.2	0.038 ± 0.04*	12.7
RC-3950-II	11.6 ± 4.1	49.0 ± 47.1*	25.2 ± 1.7	0.03 ± 0.03*	16.8
Experiment II (non-SCLC H157)					
Control	10.0 ± 2.0	1580.3 ± 455.7	26.5 ± 1.0	1.9 ± 0.3	3.88
Castration	9.6 ± 1.8	1326.7 ± 321.3	25.0 ± 2.2	1.35 ± 0.5	3.95
RC-160	11.1 ± 2.6	291.0 ± 207.8*	24.2 ± 4.7	0.64 ± 0.2*	6.06
RC-3095	11.2 ± 3.1	913.1 ± 412.3	25.1 ± 4.5	1.1 ± 0.6	4.42
SB-75	9.7 ± 2.0	1301.0 ± 709.8	27.0 ± 2.0	1.4 ± 0.7	4.0

Values are means ± s.d. *P<0.05 vs control.

3440 and RC-3095 appeared to inhibit tumour growth to a similar extent. Therapy with bombesin/GRP antagonist RC-3950-II was the most effective and resulted in the greatest inhibition of tumour weight and volume (Figure 1a, Table I).

Growth of SCLC H69 tumours in animals treated with the bombesin/GRP antagonists was significantly (P<0.01) inhibited within 14 days from start of the experiment. Tumour volume doubling time was prolonged by RC-3950-II treatment to 16.8 days, as compared with the control group, which has a doubling time of 7.5 days. Administration of somatostatin analogue RC-160 also significantly (P<0.01) inhibited tumour growth from day 14 until the end of the experiment (Figure 1a, Table I). The mean tumour weight was reduced significantly (P<0.01) by RC-160 compared with the control group (Table I). Tumour volume doubling time in mice receiving RC-160 was extended to 12.7 days (Table I).

In experiment II, only the therapy with somatostatin analogue RC-160 inhibited growth of non-SCLC H157 tumours (Figure 1b, Table I). The final tumour volume and tumour weight were significantly (P<0.01) reduced in animals receiving RC-160, compared with those of the controls (Table I). Tumour volume doubling time was prolonged by RC-160 to 3.88 days, as compared to 3.88 days for the control group. No significant reduction in final tumour volume, tumour weight and tumour growth could be found in the groups treated with bombesin/GRP antagonist RC-3095 or LH-RH antagonist SB-75. Castration also had no effect (Figure 1b).

Histologically, the SCLC H69 tumours were composed of uniform undifferentiated cells that were arranged in large solid nests. The highly cellular tumours contained very little stroma. The cells were elongated and the oval shaped and chromatin-rich nuclei were surrounded by narrow dark cytoplasm. Some of the tumour contained necrotic areas with inflammatory cell infiltration. The extent of necrosis was determined with a point counting method using a microscope ocular net. Mitotic and apoptotic indices were calculated and the data are shown in Table II. The necrosis was less extensive in the tumours treated with RC-3095 and RC-3950-II, but these differences from control were not significant statistically. The number of mitotic and apoptotic cells did not differ significantly from control data. However, the ratio of apoptotic to mitotic indices was significantly higher in the group receiving RC-160.

The non-SCLC H157 tumours consisted of large epithelial cells arranged in solid nests surrounded by very little stroma. The nuclei of tumour cells were pale, oval, slightly polymorphic, containing prominent nucleoli. Necrotic areas and a granulocytic infiltration could be seen in almost all tumours. There was no significant difference in the extent of necrosis among groups. The number of mitoses was not significantly changed by the treatments, but apoptosis was significantly enhanced after castration and especially after treatment with SB-75. The ratio of apoptotic to mitotic indices was significantly higher only in the group treated with SB-75.

The levels of serum growth hormone (GH) and gastrin in control nude mice and in animals treated with peptide analogues in both experiments are shown in Table III. In both experiments, GH and gastrin levels in animals treated with RC-160 were significantly decreased compared with control.
controls. There were no changes in levels of GH and gastrin after chronic treatment with bombesin/GRP antagonists or luteinising hormone-releasing hormone (LH-RH) antagonist SB-75 (Table III).

The characteristics of receptors for bombesin, somatostatin, EGF and IGF-I in H69 and H157 tumours were analysed following treatment with peptide analogues in both experiments, and the results are presented in Table IV. In experiment I, receptor assays on H69 tumour membranes showed high-affinity binding sites for bombesin/GRP, somatostatin, EGF and IGF-I. At the end of the experiment, concentration of receptors for bombesin/GRP was markedly decreased by treatment with bombesin/GRP antagonist RC-3400 and receptors were reduced to non-detectable levels by antagonists RC-3095 and RC-3950-II (Table IV). The binding capacity of EGF receptors was decreased after treatment with somatostatin analogue RC-160 or the bombesin/GRP antagonists. Therapy with RC-160 increased the binding capacity of receptors for somatostatin in membranes of H69 tumours (Table IV).

In experiment II, the results of receptor assays on membranes of non-SCLC H157 tumours demonstrated high-affinity binding sites for EGF and IGF-I, but the receptors for bombesin/GRP and somatostatin were absent (Table IV). A marked reduction in EGF binding capacity was observed after the treatment with RC-160, but not with bombesin/GRP antagonist RC-3095 or LH-RH antagonist SB-75. Somatostatin analogue RC-160 also decreased the binding capacity of IGF-I receptors in membranes of this tumour (Table IV). No changes in IGF-I binding capacity and affinity occurred after treatment with RC-3095, SB-75 or castration (Table IV).

In order to determine the specificity of the binding sites for EGF, IGF-I, bombesin/GRP and somatostatin on membranes of H-69 SCLC and H-157 non-SCLC, several structurally related and unrelated peptides such as GRP(14-27), [d-Trp]LH-RH, somatostatin-14, hEGF and IGF-I were tested for their ability to inhibit binding of the radioligands. None of the peptides tested inhibited the binding of radiolabelled ligands at concentrations as high as 1 μM.

In studies in vitro, somatostatin analogue RC-160 added to the medium during the 5 days of incubation at concentrations of 0.001 to 10.0 μg ml⁻¹ significantly inhibited [³H]thymidine incorporation into DNA of H69 SCLC cells (Table V). At 10.0 μg ml⁻¹ RC-160, DNA synthesis was suppressed by about 43%. In the presence of bombesin/GRP antagonists RC-3005 or RC-3099 in the medium at concentrations of 5.0 and 25.0 μg ml⁻¹ during the 3 days of incubation, [³H]thymidine incorporation into the DNA of H69 cells (Table V) was also significantly suppressed.

Discussion

In the present study, we documented a significant growth-inhibitory effect of somatostatin analogue RC-160 (Octastatin) on the growth of the xenografts of human SCLC H69 cell line in nude mice. This effect was noted after 2 weeks of administration of RC-160 and persisted for the remaining treatment period of 3 weeks. Our results are in agreement with those previously reported by other groups, demonstrating inhibitory effects of different somatostatin analogues on the growth of SCLC cell lines, including H69, in vivo and in vitro (Bogden et al., 1990; Taylor et al., 1991). In our in vitro studies, we demonstrated that RC-160 significantly

Table II

Groups	Mitotic index	Apoptotic index	Ratio of apoptotic to mitotic indices
Experiment I (SCLC H69)			
Control	37.9 ± 2.9	35.4 ± 2.6	0.96 ± 0.1
RC-160	23.0 ± 4.6	42.3 ± 3.2	2.27 ± 0.5*
RC-3440	38.5 ± 4.8	32.5 ± 3.4	0.93 ± 0.2
RC-3095	28.8 ± 3.8	36.6 ± 0.8	1.31 ± 0.3
RC-3950-II	49.8 ± 4.8	41.5 ± 1.5	0.85 ± 0.1
Experiment II (non-SCLC H157)			
Control	17.3 ± 4.0	2.87 ± 0.5	0.19 ± 0.04
Castration	24.2 ± 6.5	5.00 ± 0.5*	0.29 ± 0.11
RC-160	12.9 ± 1.2	4.00 ± 0.7	3.05 ± 0.08
RC-3095	19.9 ± 2.4	4.36 ± 0.2	2.54 ± 0.04
SB-75	11.8 ± 1.5	6.31 ± 0.8*	0.57 ± 0.15*

Values are means ± s.e. *P<0.05 vs control.

Table III

Treatment group (SCLC H69)	Gastrin (pg ml⁻¹)	Growth hormone (ng ml⁻¹)
Experiment I (SCLC H69)		
Control	130.0 ± 10.8	3.8 ± 0.5
RC-160	68.0 ± 5.5**	2.0 ± 0.5*
RC-3440	92.7 ± 8.2	3.5 ± 0.3
RC-3095	100.7 ± 6.3	4.6 ± 0.5
RC-3950-II	128.2 ± 20.5	5.5 ± 1.2
Experiment II (non-SCLC H157)		
Control	113.7 ± 4.5	6.8 ± 0.8
Castration	98.9 ± 3.4	7.8 ± 2.5
RC-160	57.5 ± 8.7**	3.5 ± 0.3*
RC-3095	136.9 ± 12.4	8.0 ± 1.2
SB-75	141.2 ± 13.8	5.0 ± 1.3

Values are means ± s.e. *P<0.05, **P<0.01 vs control.

Table IV

Groups	Kₐ (nM)	EGF	Bₐ₀ (fmol mg⁻¹ protein)	Kₐ (nM)	IGF-I	Bₐ₀ (fmol mg⁻¹ protein)	Kₐ (nM)	Bombesin/GRP	Bₐ₀ (fmol mg⁻¹ protein)	Kₐ (nM)	Somatostatin
Experiment I (SCLC H69)											
Control	1.3	278	1.0	294	1.1	420	3.5	450			
RC-160	1.6	174	0.9	176	1.3	435	5.5	570			
RC-3440	1.0	134	0.9	255	0.9	255	5.0	501			
RC-3095	0.7	102	1.7	300	ND	ND	4.7	480			
RC-3950-II	0.6	93	0.9	226	ND	ND	3.6	390			
Experiment II (non-SCLC H157)											
Control	0.7	249	0.5	257	ND	ND	ND	ND			
Castration	0.7	210	0.6	233	ND	ND	ND	ND			
RC-3095	0.6	207	0.5	270	ND	ND	ND	ND			
RC-160	0.5	100	0.7	129	ND	ND	ND	ND			
SB-75	0.7	192	0.6	160	ND	ND	ND	ND			

Binding characteristics were obtained from ten-point displacement experiments in triplicate tubes. No s.e. values provided because complete displacement assays on tumour membranes were done only once because of shortage of tumour material. ND, not detectable.
inhibited tritiated thymidine incorporation into H-69 cells, indicating some direct effect of this analogue on tumour growth.

Antineoplastic actions of somatostatin analogues appear to involve multiple mechanisms. A significant fall in growth hormone (GH) levels induced by RC-160 could, through mechanisms involving suppression of endogenous growth factors such as IGF-I and IGF-II, be of major importance for the inhibition of tumour growth (Schally, 1988). Macauley et al. (1991) previously demonstrated that somatostatin analogue octreotide reduced IGF-I levels in patients with SCLC. Membrane receptors for IGF-I were demonstrated in human SCLC cell lines, and these cells could also be stimulated by IGF-I (Minuto et al., 1988; Macaulay et al., 1990). It was reported that immunoreactive IGF-I is detectable in primary and metastatic SCLC tumour tissue and in most SCLC cell lines (Macauley et al., 1988; Minuto et al., 1988). In our study, serum GH levels in mice treated with RC-160 were decreased by about 48% as compared with control mice. The marked variation of serum GH levels between H-69 and H-157 control groups could be caused by different production and/or secretion of growth factors such as IGF-I by these two lung cancers. High levels of serum IGF-I might suppress the release of GH through a negative feedback on the hypothalamus or the anterior pituitary. In addition, since blood samples from animals bearing H-157 tumours were taken in the morning whereas those from mice with H-69 tumours were collected in the afternoon, the difference in GH levels between the two control groups might also be attributed to diurnal fluctuations of GH levels in those animals. Sinha et al. (1975) showed previously that serum levels of GH in two different strains of mice were usually high during the morning hours.

On the basis of our receptor assay results, which indicate the presence of high-affinity receptors for somatostatin on tumour membranes, analogues of somatostatin could also directly inhibit the growth of lung cancer cells. The inhibitory effect of somatostatin analogue RC-160 on [3H]thymidine incorporation was shown on LNCaP prostate cancer cells in culture (Gattani et al., 1990). In the MIA PaCa-2 human pancreatic cancer cell line, somatostatin and its analogue RC-160 reversed the stimulatory effect of EGF on phosphorylation of the tyrosine kinase domain of the EGF receptors and on cell growth (Liebow et al., 1989). These and other observations (Schally, 1988) suggest that somatostatin analogues can act as endogenous growth inhibitors in cancer cells through the activation of tyrosine phosphatase (Liebow et al., 1989). Furthermore, somatostatin analogues may inhibit the secretion of bombesin-like peptides and the cAMP response to vasoactive intestinal peptide (Taylor et al., 1991).

The inhibitory effect of RC-160 on the growth of non-SCLC H157 tumours observed in our study is probably mainly due to suppression of GH and IGF-I secretion, since we did not find somatostatin receptors in membranes of this tumour. The absence of somatostatin receptors was also observed in tumour specimens obtained from patients with non-SCLC (Reubi et al., 1990).

The present study demonstrates a significant inhibitory effect of bombesin/GRP antagonists RC-3095, RC-3440 and RC-3950-II on the growth of the SCLC H69 cell line xenografted into nude mice. In studies in vitro, we found that structurally related bombesin/GRP antagonists RC-3005 and RC-3009 significantly inhibited the incorporation of tritiated thymidine into DNA of H-69 cells, indicating that the inhibitory effects of this class of bombesin/GRP antagonists can be attributed at least in part to a direct action. RC-3095 and RC-3950-II also induced a reduction of bombesin/GRP receptors to non-detectable levels in membranes of this tumour. Previous studies have shown that bombesin and GRP are secreted from SCLC cells into tissue culture medium and that high-affinity receptors for bombesin/GRP are present in several SCLC cell lines including H69 (Rayton et al., 1988; Mahmoud et al., 1991; Thomas et al., 1992; Moody & Cutti, 1993). Since bombesin stimulates the clonal growth of SCLC and DNA synthesis in vitro (Carney et al., 1987) and the growth of SCLC xenografts in nude mice (Alexander et al., 1988), the inhibition of H69 tumour growth by bombesin/GRP antagonists appears to be brought about by blockade of bombesin/GRP receptors on H69 cells.

Previously, we have shown that inhibition of growth of various cancers, including pancreatic, prostatic, mammary and colorectal by antagonist RC-3095, was associated with a major decrease in EGF receptor levels in tumour membranes (Radulovic et al., 1991a; Szepeshazi et al., 1991, 1992; Pinski et al., 1994a, b). Thus, bombesin/GRP antagonists may act locally by various mechanisms which result in a reduction in the available binding sites for EGF. Most non-SCLC and SCLC cell lines express the EGF receptor (Veale et al., 1987; Tateishi et al., 1991; Damstrup et al., 1992; Rabiasz et al., 1992).

The exact molecular mechanism of action of bombesin/GRP antagonists on EGF receptors is still not well understood. Bombesin initiates a series of intracellular signals, which cause an increase in inositol 1,4,5-triphosphate, a mobilisation of Ca"÷ and diacylglycerol production, leading to activation of protein kinase C (Zachary et al., 1986; Langdon et al., 1992; Szepeshazi et al., 1992). Activation of protein kinase C causes phosphorylation of EGF receptors on threonine residues. Bombesin and GRP have been shown

Table V

Peptide analogues	Dose (µg ml⁻¹ day⁻¹)	Treatment time (days)	[³H]Thymidine incorporation (%)
I Somatostatin analogue			
Control		5	100.0 ± 3.5
RC-160	0.001		81.6 ± 4.6*
	0.01		80.0 ± 4.1*
	0.1		71.6 ± 3.4**
	1.0		73.3 ± 5.0**
	10.0		36.6 ± 12.0**
II Bombesin GRP antagonists			
Control		3	100.0 ± 1.5
RC-3005	1.0		100.0 ± 2.0
	5.0		80.1 ± 1.5**
	25.0		81.6 ± 1.3**
RC-3009	1.0		98.4 ± 0.8
	5.0		92.7 ± 2.0*
	25.0		78.3 ± 2.6**

[³H]Thymidine (1–3 µCi) was added 24 h before harvesting. Values are mean ± s.e.

* P < 0.05, ** P < 0.01 vs control.
References

ALEXANDER, R.W., UPP, Jr., J.R., POSTON, G.J., GUPTA, V., TOWNSEND, Jr., C.M., & THOMPSON, I.C. (1988). Effects of bombesin on growth of human small cell lung carcinoma in vivo. Cancer Res., 48, 1439–1441.

BAJUSZ, S., CSERNUSS, V.J., JANAKY, T., BOKER, L., FEKETE, M., & SCHALLY, A.V. (1988). New antagonists of LHRH: II. Inhibition and potentiation of LHRH by closely related analogues. Int. J. Peptide. Protein. Res., 32, 425–435.

BEATTIE, C.W., HANSEN, N.W., & THOMAS, P.A. (1985). Steroid receptors in human lung cancer. Cancer Res., 45, 4206–4214.

BENAD, A.E., & TAYLOR, J.E., MORÉAU, J.P., COY, D.H., & LEPAGE, D.J. (1990). Response of human lung tumour xenografts to treatment with a somatostatin analogue (Somatuline). Cancer Res., 50, 4360–4365.

BORING, C.C., SQUIRES, T.S., & TONG, T. (1992). Cancer statistics, 1992. CA-A Cancer J. Clin., 42, 19–38.

CAGLE, P.T., MOODY, D.R., & SCHWARTZ, M.R. (1990). Estrogen and progesterone receptors in brochogenic carcinoma. Cancer Res., 50, 6632–6635.

CAI, R.Z., SOKOLOF, B., LU, R., FU, D., REDDING, T.W., & SCHALLY, A.V. (1986). Synthesis and biological activity of highly potent octapeptide analogs of somatostatin. Proc. Natl Acad. Sci. USA, 83, 1896–1900.

CAI, R.Z., RADULOVIC, S., PINSKI, J., NAGY, A., REDDING, T.W., OLSEN, D.B., & SCHALLY, A.V. (1992). Pseudononapeptide bombesin antagonists containing C-terinal Trp or Trp. Peptides, 13, 267–271.

CAI, R.Z., REILE, H., ARMATIS, P., & SCHALLY, A.V. (1994). Potent bombesin antagonists with a Leu\(^ {1}\) ψ(CH\(_ {2}\)N)TAC- terminal. J. Peptide. Protein. Res., 43, 113–115 (in press).

CARDOZA, C., RABBITTS, P.H., SPINDELL, E.R., GHATEL, M.A., BLEEHEN, N.M., BLOOM, S.R., & REEVES, J.G. (1991). Production of neuretinin B and neuretinin B gene expression in human lung tumor cell lines. Cancer Res., 51, 5205–5211.

CARNEY, D.A., MOODY, D.R., & MINNA, J.D. (1987). Selective stimulation of small cell lung cancer human growth by bombesin and gastrin releasing peptide. Cancer Res., 47, 821–825.

CUTITTA, F., CARNEY, D.N., MULSHINE, J.W., MOODY, T.W., FEDORKO, J., FISCHLER, A., & MINNA, J.D. (1985). Bombesin-like peptides can function as autocrine growth factors in human small cell lung cancer. Nature, 316, 823–826.

DAMSTRUP, L., RYGAARD, K., SPANG-THOMSEN, M., POUlsON, H.S. (1992). Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res., 52, 3089–3093.

GATTANI, A., BROWER, S., PLATICA, M., SCHALLY, A.V., & HOLANDER, V. (1990). The inhibition of thymidine incorporation by LHRH and somatostatin analogs on prostate cancer cell line LNCAP in culture. Proc. Am. Assoc. Cancer Res., 1299, 219.

HALMOS, G., REKASI, Z., SOKOLOF, B., & SCHALLY, A.V. (1993). Use of radioreceptor assay and cell superfusion system for in vitro screening of analogs of growth hormone-releasing hormone. Receptor, 3, 87–97.

LAMBERT, S., SEITTL, T., RITCHIE, A., MUIR, M., SMYTHE, J., & ROZENGURT, E. (1992). Broad spectrum neuropeptide antagonists inhibit the growth of small cell lung cancer in vivo. Cancer Res., 52, 4554–4557.

LAYTON, J.E., SCANLON, D.B., SOVENEY, C., & MORTSTYN, G. (1988). Effects of bombesin antagonists on the growth of small cell lung cancer cells in vitro. Cancer Res., 48, 4783–4789.

LIEBOW, C., REILLY, C., SERRANO, M., & SCHALLY, A.V. (1989). Somatostatin analogs inhibit growth of pancreatic cancer by stimulating tyrosine phosphorylation. Proc. Natl Acad. Sci. USA, 86, 2063–2067.

LIEBOW, C., LEE, M.T., KREBS, I.J., & SCHALLY, A.V. (1992). Bombesin may stimulate growth through up-regulation of EGF receptors. Pancreas, 7, 746.

MACAULAY, V.M., TEALE, J.D., EVERARD, M.J., JOSHI, G.P., SMITH, J.E. & MILLAR, J.L. (1988). Somatostatin-C-coupled growth factor-1 is a mitogen for human small cell lung cancer. Br. J. Cancer, 57, 91–93.

MACAULAY, V.M., EVERARD, M.J., TEALE, D., TROUTT, P.A., VAN WYK, J.J., SMITH, E. & MILLAR, J.L. (1990). Autocrine function of insulin-like growth factor I in human small cell lung cancer cell lines and fresh tumor cells. Cancer Res., 50, 2511–2517.
MAUCALAY, V.M., SMITH, I.E., EVERARD, M.J., TEALE, J.D., REUBI, J.C. & MILLAR, J.L. (1991). Experimental and clinical studies with somatostatin analogue octreotide in small cell lung cancer. Br. J. Cancer, 64, 451–456.

MAHMOUD, S., STALEY, J., TAYLOR, J., BODGEN, A., MOREAU, J.-P., COY, D., AVIS, I., CUTUITTA, F., MULSHINE, J.L. & MOODY, T.W. (1990). Inhibitory growth effect of bombesin on an established human lung cancer cell line. Cancer Res., 51, 1798–1802.

MINUTO, F., DEL MONTE, P., BARRAECA, A., ALAMA, M., CARIOLA, G. & GIORDANO, G. (1988). Evidence for autocrine mitogenic stimulation by somatomedin-C insulin-like growth factor I on an established human lung cancer cell line. Cancer Res., 48, 3716–3719.

MOODY, T.W. & CUTUITTA, F. (1993). Growth factor and peptide receptors in small cell lung cancers. Life Sci., 52, 1161–1173.

MUTTONI, P.J. & RODBARD, D. (1980). LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem., 107, 220–239.

NORONHA, R.F.X. & GOODALL, C.M. (1983). Enhancement of testosterone of dimethylhydrazine carcinogenesis in lung, liver and kidney of inbred NZR Gd female rats. Carcinogenesis, 4, 613–616.

PINISKI, J., REILE, H., HALMOS, G., GROOT, K. & SCHALLY, A.V. (1994a). Inhibitory effects of somatostatin analogue RC-160 and bombesin gastrin-releasing peptide antagonist RC-3095 on the growth of the androgen-independent Dunning R-3327-AT-1 rat prostate cancer. Cancer Res., 54, 169–174.

PINISKI, J., HALMOS, G., YANO, T., SZEPESH AZI, K., QIN, Y., ERTL, T. & SCHALLY, A.V. (1994b). Inhibition of growth of MKN45 human xenograft bombesin antigen in nude mice by treatment with bombesin gastrin releasing peptide antagonist (RC-3095), and somatostatin analogue RC-160. Int. J. Cancer, 57, 574–580.

RABIASZ, G.J., LADGON, S.P., BARTLETT, J.M.S., CREW, A.J., MILLER, E.P., SCOTT, W.N., SMYTH, J.F. & MILLER, W.R. (1992). Growth control by epidermal growth factor and transforming growth factor-α in human lung squamous carcinoma cells. Br. J. Cancer, 66, 254–259.

RADULOVIC, S., RADULOVIC, S., RADOVIĆ, S., MILANOVIĆ, S. & SOKOLOVIĆ, S. (1991). Inhibitory effect of bombesin/GRP antagonist RC-3095 and high dose of somatostatin analog RC-160 on nitrosamine-induced pancreatic cancers in hamsters. Cancer Res., 51, 5980–5986.

SZEPEHSAZI, K., SCHALLY, A.V., CAI, R.Z., RADULOVIC, S., MILANOVIĆ, S. & SOKOLOVIĆ, S. (1991). Inhibitory effect of bombesin gastrin releasing peptide inhibits growth of estrogen dependent and independent MXT mammary cancers in mice. J. Natl Cancer Inst., 84, 1915–1921.

TATEISHI, M., ISHIDA, T., MITSUDOMI, T. & SUGIMACHI, K. (1991). Prognostic implication of transforming growth factor α in adenocarcinoma of the lung – an immunohistochemical study. Br. J. Cancer, 63, 130–133.

TAYLOR, J.E., MOREAU, J.P., BAPTISTE, L. & MOODY, T.W. (1991). Octapeptide analogues of somatostatin inhibit the clonal growth and vasoactive intestinal peptide-stimulated cyclic AMP formation in human small cell lung cancer cells. Peptides, 12, 839–843.

THOMAS, F., ARVELO, F., ANTOINE, E., JACROT, M. & POUPON, M.F. (1992). Antitumor activity of bombesin analogues on small cell lung cancer xenografts: relationship with bombesin receptor expression. Cancer Res., 52, 4872–4877.

VALE, S., ASHCROFT, T., MARCH, C., GIBSON, G.J. & HARRIS, A.L. (1987). Epidermal growth factor receptors in non-small cell lung cancer. Br. J. Cancer, 55, 513–516.

WOLL, P.J. & ROZENGURT, E. (1988). [α-Arg6, D-Phe9] D-TRP analogues. Leu7 substitution. A potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cell lines in vitro. Proc. Natl Acad. Sci. U.S.A., 85, 1859–1863.

ZACHARY, I., SINNETT-SMITH, J.W. & ROZENGURT, E. (1986). Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding. J. Cell Biol., 102, 2111–2222.

SIEGFRIED, J.M. & OWENS, S.E. (1988). Response of primary human lung carcinomas to autocrine growth factors produced by a lung carcinoma cell line. Cancer Res., 48, 4076–4981.

SINHA, Y.N., SALOCKS, C.B., VANDERLAAN, W.P. (1975). Prolactin and growth hormone levels in different inbred strains of mice: patterns in association with estrous cycle, time of day, and peripubertal stimulation. Endocrinology, 97, 1112–1121.

SONDAK, V.K., BERTelsen, C.A., TANIGAWA, N., HILDEBRAND-ZANKI, S.U., MORTON, D.L., KORN, E.L. & KERN, D.H. (1984). Clinical correlations with chemosensitivities measured in a rapid thymidine incorporation assay. Cancer Res., 44, 1725–1728.

STALEY, J., COY, D., TAYLOR, J.E., KIM, S. & MOODY, T.W. (1991). [Des-Met1, Leu6]bombesin analogues function as small cell lung cancer bombesin receptor antagonists. Peptides, 12, 145–149.

STEEL, R.G.D. & TORRIE, J. (1976). Principles and procedures of statistics. p. 114. McGraw-Hill, New York.

SRKALOVIC, G., SZENDE, B., REDDING, T.W., GROOT, K. & SCHALLY, A.V. (1989). Receptors for D-Trp6-leutinizing hormone-releasing hormone, somatostatin and insulin-like growth factor I in MXT mouse mammary carcinoma. Proc. Soc. Exp. Biol. Med., 192, 209–218.

SZEPEHSAZI, K., SCHALLY, A.V., CAI, R.Z., RADULOVIC, S., MILANOVIĆ, S. & SOKOLOVIĆ, S. (1991). Inhibitory effect of bombesin/GRP antagonist RC-3095 and high dose of somatostatin analog RC-160 on nitrosamine-induced pancreatic cancers in hamsters. Cancer Res., 51, 5980–5986.

SZEPEHSAZI, K., SCHALLY, A.V., HALMOS, G., GROOT, K. & RADULOVIC, S. (1992). Antagonist of bombesin Gastrin releasing peptide inhibits growth of estrogen dependent and independent MXT mammary cancers in mice. J. Natl Cancer Inst., 84, 1915–1921.