On the resolving strong domination number of graphs: a new notion

Dafik1,2, Slamin1,3, Ika Hesti Agustin1,4, Dwi Agustin Retnowardani1,5, Elsa Yuli Kurniawati1

1CGANT-University of Jember, Indonesia
2Department of Mathematics Education, University of Jember, Indonesia
3Informatics Department, Faculty of computer science, University of Jember, Indonesia
4Department of Mathematics, University of Jember, Indonesia
5Department of Mathematics Education, IKIP PGRI Jember, Indonesia

E-mail: d.dafik@unej.ac.id

Abstract. The study of metric dimension of graph G has widely given some results and contribution of graph research of interest, including the domination set theory. The dominating set theory has been quickly growing and there are a lot of natural extension of this study, such as vertex domination, edge domination, total domination, power domination as well as the strong domination. In this study, we initiate to combine the two above concepts, namely metric dimension and strong domination set. Thus we have a resolving strong domination set. We have obtained the resolving strong domination number, denoted by $\gamma_{rst}(G)$, of some graphs.

1. Introduction
Let $G = (V,E)$ be a finite, simple and undirected graph, no loops and multiple edges. The order and size of G are denoted by n and m respectively. The sets $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G. For a further reference please see Chartrand et. al \cite{1}.

A vertex $u \in V(G)$ resolves a pair $x, y \subset V(G)$ if $d(u,x) \neq d(u,y)$. A set of vertices $S \subseteq V(G)$ is a resolved set of G if every pair of vertices of G is resolved by some vertex in S. The metric dimension of G, denoted by $\text{dim}(G)$, is the minimum cardinality of a resolving set of G. The resolving number, written as $\text{res}(G)$, is the minimum k such that every k-subset of $V(G)$ is a resolving set of G. Obviously, every set $S \subseteq V(G)$ with $|S| \geq \text{res}(G)$ is a resolving set of G. A strong dominating set of a graph G is a set $D \subseteq V(G)$ with the property that for all vertices $x \in V(G)$ there is a vertex $y \in N(x) \cap D$ with $d(x) \leq d(y)$, i.e. every vertex not in D is dominated by a vertex in D having at least the same degree. In this case we say that y strongly dominates x. The strong domination number $\gamma_{st}(G)$ of a graph G is defined as the minimum cardinality of a strong dominating set of G \cite{2}.

A resolving strong dominating set is a set $R_D \subset V(G)$ which R_D satisfies the definition of strong dominating set and resolving set. The strong domination number of graph G, denoted by $\gamma_{rst}(G)$ is the minimum cardinality of resolving strong dominating set of G. This study is working on a new notion of the combination of two concept, thus the research results are mostly referred to the strong dominating set of G \cite{3} and the new results on the domination number study in \cite{4, 5, 6, 7}. The study on resolving domination number of graphs can be seen in \cite{8}.
In this study, we obtained the $\gamma_{rst}(G)$ on some graphs, namely path graph P_n, cycle graph C_n, complete graph K_n, fan graph F_n, and wheel graph W_n.

2. Resolving Strong Domination Number of Graphs
The some results on resolving strong domination number are showed in the following Theorems.

Definition 2.1 A resolving strong dominating set is a set $R_D \subset V(G)$ which R_D satisfies the definition of strong dominating set and resolving set. The strong domination number of graph G, denoted by $\gamma_{rst}(G)$ is the minimum cardinality of resolving strong dominating set of G.

Lemma 2.1 Let G be a connected graph with γ_{st} is strong domination of G, γ_{rst} is resolving strong domination of G, and $\dim(G)$ is the resolving number of G,

$$\max\{\gamma_{st}(G), \dim(G)\} \leq \gamma_{rst}(G) \leq \min\{\gamma_{st}(G) + \dim(G), |V(G)| - 1\}.$$

Proof. Let R_D be the minimum resolving strong dominating set with $|R_D| = \gamma_{rst}(G)$. Since R_D is resolving set and strong dominating set, thus $\dim(G) \leq |R_D|$ and $\gamma_{st}(G) \leq |R_D|$, so $\max\{\gamma_{st}(G), \dim(G)\} \leq \gamma_{rst}(G)$.

Let D be a minimum strong dominating set with $|D| = \gamma_{st}(G)$ and W be a minimum resolving set with $|W| = \dim(G)$. Therefore $D \cup W$ is resolving strong dominating set, thus $\gamma_{rst}(G) \leq |D \cup W| \leq \gamma_{st}(G) + \dim(G)$ Since every subset of $V(G)$ with the cardinality $|V(G)| - 1$ is a resolving set and strong dominating set, thus $\gamma_{rst}(G) \leq |V(G)| - 1$. Therefore $\gamma_{rst}(G) \leq \min\{\gamma_{st}(G) + \dim(G), |V(G)| - 1\}$. Hence $\max\{\gamma_{st}(G), \dim(G)\} \leq \gamma_{rst}(G) \leq \min\{\gamma_{st}(G) + \dim(G), |V(G)| - 1\}$. \hfill \blacksquare

Theorem 2.1 Let P_n be a path graph. For every positive integer $n \geq 2$,

$$\gamma_{rst}(P_n) = \begin{cases} 2, & \text{if } n = 3 \\ \lceil \frac{n}{3} \rceil, & \text{otherwise} \end{cases}$$

Proof. Let P_n be a path graph with vertex set $V(P_n) = \{v_i; i \in [1, n]\}, |V(P_n)| = n$ and edge set $E(P_n) = \{v_iv_{i+1}; i \in [1, n-1]\}, |E(P_n)| = n - 1$. Based on Maryam et al [11] $\dim(P_n) = 1$ and [9] $\gamma_{st}(P_n) = \lceil \frac{n}{3} \rceil$. Based on Lemma 2.1, $\gamma_{st}(P_n) \leq \gamma_{rst}(P_n) \leq \gamma_{st}(P_n) + 1$.

For $n = 3$ $V(P_n) = \{v_1, v_2, v_3\}$ and $E(P_n) = \{v_1v_2, v_2v_3\}$. There is one strong dominating set of P_3, that is $\{v_2\}$ and $\{v_2\}$ is not resolving set of P_3 but every resolving set $|W(P_3)| \geq 2$ is resolving set then $|R_D| \geq 2$ is resolving strong dominating set. Therefore $\gamma_{st}(P_3) \geq 2$, so $\gamma_{rst}(P_3) = 2$.

For $n \neq 3$ we have $R_D = \{v_i: \equiv 2 \mod 3\}$ so based on Vaidya et al [9] $|D| = \lceil \frac{n}{3} \rceil$ and the superset of resolving set is resolving set. Thus $\gamma_{rst}(P_n) = \lceil \frac{n}{3} \rceil$.

For illustration, we can depict in the following picture.

![Figure 1. The illustration of resolving strong dominating set on P_{10}](image)

(1,4,7,8) (1,2,5,6) (3,0,3,4) (5,2,1,2) (7,4,1,0)
(0,3,6,7) (2,1,4,5) (4,1,2,3) (6,3,0,1) (8,4,2,1)

v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10}
Theorem 2.2 Let C_n be a cycle graph. For every positive integer $n \geq 3$,

$$\gamma_{rst}(C_n) = \begin{cases} 2, & \text{if } n = 3 \\ \lceil \frac{n}{3} \rceil, & \text{otherwise} \end{cases}$$

Proof. Let C_n be a cycle graph with vertex set $V(C_n) = \{v_i : i \in [1, n]\}, |V(C_n)| = n$ and edge set $E(C_n) = \{v_i v_{i+1} : i \in [1, n-1] \} \cup \{v_1 v_n\}, |E(C_n)| = n$. Based on Murtaza et al [12] $\dim(C_n) = 2$ and $\lceil \frac{n}{3} \rceil$. Based on Lemma 2.1, $\gamma_{rst}(C_n) \leq \gamma_{rst}(C_n) \leq \gamma_{rst}(C_n) + 2$.

For $n = 3$ $V(C_n) = \{v_1, v_2, v_3\}$ and $E(C_n) = \{v_1 v_2, v_2 v_3, v_3 v_1\}$. There is one strong dominating set of C_3, that is $\{v_1\}$ and $\{v_2\}$ is not resolving set of C_3 but every resolving set $|W(C_3)| \geq 2$ is resolving set then $|R_D| \geq 2$ is resolving strong dominating set. Therefore $\gamma_{rst}(C_3) \geq 2$, so $\gamma_{rst}(C_3) = 2$.

For $n \neq 3$ we have $R_D = \{v_i : i \equiv 2 \mod 3\}$ so based on Dieter $[3] |D| = \lceil \frac{n}{3} \rceil$ and the superset of resolving set is resolving set. Thus $\gamma_{rst}(C_n) = \lceil \frac{n}{3} \rceil$.

To have a good understanding of this concept, we give an illustration in Figure 2.

![Figure 2](image)

Figure 2. The illustration of resolving strong dominating set on C_{12}

Theorem 2.3 Let K_n be a complete graph. For every positive integer $n \geq 3$, $\gamma_{rst}(K_n) = n - 1$.

Proof. Let K_n be a complete graph with vertex set $V(K_n) = \{v_i : i \in [1, n]\}, |V(K_n)| = n$ and edge set $E(K_n) = \{v_i v_j : i \neq j\}, |E(K_n)| = \frac{n(n-1)}{2}$. Based on Saputro et al [13] $\dim(K_n) = n - 1$ and $\gamma_{st}(K_n) = 1$. Based on Lemma 2.1, $\dim(K_n) \leq \gamma_{rst}(K_n) \leq n - 1$. Since $\dim(K_n) = n - 1$ thus $n - 1 \leq \gamma_{rst}(K_n) \leq n - 1$. Therefore $\gamma_{rst}(K_n) = n - 1$. See the Figure 3 for an illustration.

Theorem 2.4 Let F_n be a friendship graph. For every positive integer $n \geq 2$, $\gamma_{rst}(F_n) = n + 1$.

Proof. Let F_n be a friendship graph with vertex set $V(F_n) = \{a, x_i, y_i : i \in [1, n]\}, |V(F_n)| = 2n + 1$ and edge set $E(F_n) = \{ax_i, ay_i, x_i y_i : i \in [1, n]\}, |E(F_n)| = 3n$. Based on $\dim(F_n) = n$ and $\gamma_{st}(F_n) = 1$. Based on Lemma 2.1, $\dim(F_n) \leq \gamma_{rst}(F_n) \leq \dim(F_n) + \gamma_{st}(F_n)$. We have $R_D = \{v_i : 1 \leq i \leq n\}$ so R_D is a resolving set but not strong dominating set because a as a vertex with maximum degree is not a dominating set, that is not satisfied the definition of strong dominating set. Thus, $R_D = \{x_i : 1 \leq i \leq n\} \cup \{a\}$ and R_D is resolving strong dominating set with cardinality $|R_D| = n + 1$. Therefore $\gamma_{rst}(F_n) = n + 1$.

For illustration, we can draw a friendship graph of order 8 with their representation of resolving set in Figure 4.
Theorem 2.5 Let F_n be a fan graph. For every positive integer $n \notin \{2, 3, 6\}$, $\gamma_{rst}(F_n) = \left\lfloor \frac{2n+2}{5} \right\rfloor + 1$.

Proof. Let F_n be a fan graph with vertex set $V(F_n) = \{a, x_i : i \in [1, n]\}$, $|V(F_n)| = n + 1$ and edge set $E(F_n) = \{ax_i : i \in [1, n]\} \cup \{x_ix_{i+1} : i \in [1, n-1]\}$, $|E(F_n)| = 2n - 1$. Based on Yero et al [14] $\dim(F_n) = \left\lfloor \frac{2n+2}{5} \right\rfloor$ and [10] $\gamma_{st}(F_n) = 1$. Based on Lemma 2.1, $\dim(F_n) \leq \gamma_{rst}(F_n) \leq \dim(F_n) + \gamma_{st}(F_n)$. We have $R_D = \{x_i : 2 \leq i \leq n - 1 \text{ and } i \text{ is even}\}$ so R_D is a resolving set but not strong dominating set because a as a vertex with maximum degree is not a strong dominating set, that is not satisfied the definition of strong dominating set. Thus $R_D = \{x_i : 2 \leq i \leq n - 1 \text{ and } i \text{ is even}\} \cup \{a\}$ and R_D is a resolving strong dominating set with cardinality $|R_D| = \left\lfloor \frac{2n+2}{5} \right\rfloor + 1$. Therefore $\gamma_{rst}(F_n) = \left\lfloor \frac{2n+2}{5} \right\rfloor + 1$. See Figure 5 for an illustration. □

![Figure 3](image3.png)

Figure 3. The illustration of resolving strong dominating set on K_{14}

![Figure 4](image4.png)

Figure 4. The illustration of resolving strong dominating set on F_8

For illustration, we can draw a wheel graph of order 16 with their representation of resolving set in Figure 6.
Figure 5. The illustration of Resolving Strong Dominating Set on F_{14}

Theorem 2.6 Let W_n be a wheel graph. For every positive integer $n \notin \{3, 6\}$, $\gamma_{rst}(W_n) = \left\lceil \frac{2n+2}{5} \right\rceil + 1$.

Proof. Let W_n be a wheel graph with vertex set $V(W_n) = \{a, x_i : i \in [1, n]\}$, $|V(W_n)| = n + 1$ and edge set $E(W_n) = \{ax_i : i \in [1, n]\} \cup \{x_ix_{i+1} : i \in [1, n-1]\} \cup \{x_nx_1\}$, $|E(F_n)| = 2n$. $dim(W_n) = \left\lceil \frac{2n+2}{5} \right\rceil$ and $\gamma_{st}(W_n) = 1$. Based on Lemma 2.1, $dim(W_n) \leq \gamma_{rst}(W_n) \leq dim(W_n) + \gamma_{st}(W_n)$. We have $R_D = \{x_i : 2 \leq i \leq n-1 \text{ and } i \text{ is even} \}$ so R_D is a resolving set but not strong dominating set because a as a vertex with maximum degree is not a strong dominating set, that is not satisfied the definition of strong dominating set. Thus $R_D = \{x_i : 2 \leq i \leq n-1 \text{ and } i \text{ is even} \} \cup \{a\}$ and R_D is resolving strong dominating set with cardinality $|R_D| = \left\lceil \frac{2n+2}{5} \right\rceil + 1$. Therefore $\gamma_{rst}(W_n) = \left\lceil \frac{2n+2}{5} \right\rceil + 1$. □

3. Concluding Remark
We have determined the exact values of resolving strong domination number of some graphs, namely path, cycle, complete, friendship, fan, and wheel. Since this study is a new notion,
namely the combination of two concepts of dominating and metric dimension, thus there exists many problems. Therefore, we propose the following open problems.

Open problems are given in the following:

(i) Determine the exact value of resolving strong domination number of any family graphs apart from graphs in this paper.

(ii) Determine the exact value of resolving strong domination number of any operation graphs.

Acknowledgments
We gratefully acknowledge the support from Combinatorics, Graph Theory, and Network Topology (CGANT) Research Group, University of Jember of year 2021.

References
[1] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, sixth ed., Taylor and Francis Group, Boca Raton, New York
[2] Gayla S Domke, Johannes H Hattingh, Lisa R Markus, Elna Ungerer, On parameters related to strong and weak domination in graphs, Discrete Mathematics 258 (2002) 1-11.
[3] Dieter Rautenbach, Bounds on the strong domination number, Discrete Mathematics 215 (2000) 201-212.
[4] Wardani, D.A.R., Dafik, Agustin, I.H., The locating dominating set (LDS) of generalized of corona product of path graph and any graphs, 2020, Journal of Physics: Conference Series 1465(1).
[5] Dafik, Agustin, I.H., Retno Wardani, D.A., Kurniawati, E.Y., A study of local domination number of $S_n H$ graph, 2018, Journal of Physics: Conference Series 943(1).
[6] Dafik, Agustin, I.H., Wardani, D.A.R., The number of locating independent dominating set on generalized corona product graphs, 2020, Advances in Mathematics: Scientific Journal 9(7), pp. 4873-4891.
[7] Yuliana, I., Dafik, Agustin, I.H., Wardani, D.A.R. On the power domination number of corona product and join graphs, 2019, Journal of Physics: Conference Series 1211(1).
[8] R Alfarisi, Dafik and Al Kristiana, Resolving domination number of graphs, Discrete Mathematics Algorithms and Applications 11 No. 06
[9] S. K. Vaidya, S. H. Karkar, On Strong Domination Number of Graphs, Applications and Applied Mathematics: An International Journal (AAM) 12 pp. 604-612
[10] Maryam M. AlHoli, Omar A. AbuGhneim, Hasan Al-Ezeh, 2017, Metric Dimension of Some Path Related Graphs, Global Journal of Pure and Applied Mathematics 13 No. 2, pp. 149-157
[11] Murtaza Ali, Gohar Ali, Usman Ali, M. T. Rahim, 2012, On Cycle Related Graphs with Constant Metric Dimension, Open Journal of Discrete Mathematics pp.21-23
[12] S.W. Saputro, Edy Tri Baskoro, A. N. M. Salman, Djoko Suprijanto, 2009, The metric dimensions of a complete n-partite graph and its Cartesian product with a path, Journal of Combinatorial Mathematics and Combinatorial Computing 71.
[13] I.G. Yero, D Kuziak, J.A.Rodriguez-Velázquez, On the metric dimension of corona product graphs, Elsevier Computers Mathematics with Applications 61, Issue 9 (2011) 2793-2798