HFLAV τ branching fractions fit and measurements of $|V_{us}|$ with τ lepton data

A. Lusiani1*

1 Scuola Normale Superiore and INFN sezione di Pisa, Italy
* alberto.lusiani@pi.infn.it

March 2, 2022

Abstract

We report the status of the Heavy Flavour Averaging Group (HFLAV) averages of the τ lepton measurements. We then update the latest published HFLAV global fit of the τ lepton branching fractions (Spring 2017) with recent results by BaBar. We use the fit results to update the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ measurements with the τ branching fractions. We combine the direct τ branching fraction measurements with indirect predictions using kaon branching fractions measurements to improve the determination of $|V_{us}|$ using τ branching fractions. The $|V_{us}|$ determinations based on the inclusive branching fraction of τ to strange final states are about 3σ lower than the $|V_{us}|$ determination from the CKM matrix unitarity.

Contents

1 Introduction 2
2 New τ branching fraction measurements 2
3 $|V_{us}|$ determination including the 2018 BaBar results 2
4 τ branching fraction predictions from kaon measurements 3
5 Consistency of $|V_{us}|$ with the CKM matrix unitarity 3
6 Conclusions 4
References 4
1 Introduction

The τ subgroup of the Heavy Flavour Averaging Group (HFLAV) provides a global fit of the τ branching fractions, the lepton universality tests and the $|V_{us}|$ determination based on τ measurements. The latest published report for the τ lepton is labelled “Spring 2017” [1]. A version of the HFLAV τ branching fractions fit with unitarity constraint is published on the Review of Particle Physics [2] (RPP). There are additional minor differences between the two fits [1,3]. The fit results are used to test lepton universality and to compute $|V_{us}|$ [1].

The HFLAV-Tau group collects and combines also a list of upper limits set by searches of lepton-flavour-violating τ decays [1].

In the following, we update the HFLAV-Tau global fit input with two $BA\bar{B}AR$ measurements that became public in 2018 [4,5] and we update the $|V_{us}|$ determinations based on τ data. The new results have a negligible effect on the lepton universality tests.

Finally, we add to the fit input measurements of three τ branching fractions that are indirectly determined using measurements of kaon branching fractions [6], in order to improve the precision on $|V_{us}|$.

2 New τ branching fraction measurements

Since the last HFLAV report, $BA\bar{B}AR$ published [4] a measurement of

$$B(\tau^- \to K^- K^0 \nu_\tau) = (14.78 \pm 0.22 \pm 0.40) \cdot 10^{-4}$$

and presented [5] preliminary measurements of

$$B(\tau^- \to K^- \nu_\tau) = (7.174 \pm 0.033 \pm 0.213) \cdot 10^{-3},$$
$$B(\tau^- \to K^- \pi^0 \nu_\tau) = (5.054 \pm 0.021 \pm 0.148) \cdot 10^{-3},$$
$$B(\tau^- \to K^- 2\pi^0 \nu_\tau \text{ (ex. } K^0) = (6.151 \pm 0.117 \pm 0.338) \cdot 10^{-4},$$
$$B(\tau^- \to K^- 3\pi^0 \nu_\tau \text{ (ex. } K^0, \eta) = (1.246 \pm 0.164 \pm 0.238) \cdot 10^{-4},$$
$$B(\tau^- \to \pi^- 3\pi^0 \nu_\tau \text{ (ex. } K^0, \eta) = (1.168 \pm 0.006 \pm 0.038) \cdot 10^{-2},$$
$$B(\tau^- \to \pi^- 4\pi^0 \nu_\tau \text{ (ex. } K^0, \eta) = (9.020 \pm 0.400 \pm 0.652) \cdot 10^{-4}.$$.

3 $|V_{us}|$ determination including the 2018 $BA\bar{B}AR$ results

We add the measurements listed in the previous section to the HFLAV-Tau global fit, removing a former $BA\bar{B}AR$ measurement of $B(\tau^- \to K^- \pi^0 \nu_\tau)$ [7] that has been superseded [5]. The new measurements of the branching fractions τ decaying to a kaon and 0, 1, 2, 3 π^0’s improve the experimental resolution on several modes that most contribute to the uncertainty on $|V_{us}|$.

We compute $|V_{us}|_{\tau_s}$ using the total branching fraction of the τ to strange final states following Ref. [8]:

$$|V_{us}|_{\tau_s} = \sqrt{R_s/\left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}} \right]} = 0.2195 \pm 0.0019,$$
where $|V_{ud}| = 0.97420 \pm 0.00021$ [9], R_s and R_{VA} are the τ hadronic partial widths to strange and to non-strange hadronic final states (Γ_s and Γ_{had}) divided by the universality-improved branching fraction $B(\tau \rightarrow e\nu\bar{\nu}) = B_{e}^{\text{uni}} = (17.814 \pm 0.022)\%$ [13], and the SU(3)-breaking term $\delta R_{\text{theory}} = 0.242 \pm 0.033$ is computed using inputs from Ref. [8] and $m_s = (95.00 \pm 6.70)\text{ MeV}$ [2] (the uncertainties on m_s have been symmetrized).

We compute also

$$|V_{us}|_{\tau K/\pi} = |V_{ud}| \frac{f_{\pi \pm}^2 - m_{\pi}^2}{f_{K \pm}^2 - m_{K}^2} \sqrt{\frac{B(\tau^{-} \rightarrow K^{-}\nu_{\tau}) R_{\tau K/\pi}}{B(\tau^{-} \rightarrow \pi^{-}\nu_{\tau}) R_{\tau K/\pi} R_{\tau K/\tau\pi}}} = 0.2236 \pm 0.0016\, ,$$

where $f_{K \pm}/f_{\pi \pm} = 1.193 \pm 0.003$ from the FLAG 2016 Lattice averages with $N_f = 2 + 1 + 1$ [10,13] (the same value persists in the FLAG 2017 web update). The radiative correction terms are $R_{\tau K} = 1 + (0.90 \pm 0.22)\%$, $R_{\tau/\pi} = 1 + (0.16 \pm 0.14)\%$ [14,17], $R_{\tau K/\tau\pi} = 1 + (-0.69 \pm 0.17)\%$ [18,20]. The third value differs from the one quoted in the Spring 2017 HFLAV-Tau report [1], which incorrectly included a strong isospin-breaking correction that is not needed when using $f_{K \pm}/f_{\pi \pm}$ rather than its isospin-limit variant. The other parameters are taken from the Review of Particle Physics (RPP) 2018 [2].

Averaging the two above $|V_{us}|$ determinations, we obtain $|V_{us}|_{\tau} = 0.2220 \pm 0.0014$.

4 τ branching fraction predictions from kaon measurements

Assuming the validity of the Standard Model (SM), three τ branching fractions have been computed using the precisely measured $K_{\ell 2}$ and $K_{\ell 3}$ branching fractions and the measured $\tau^{-} \rightarrow (K\pi)^{-}\nu_{\tau}$ spectra [6]:

$$B(\tau^{-} \rightarrow K^{-}\nu_{\tau}) = (0.713 \pm 0.003)\%\, ,$$
$$B(\tau^{-} \rightarrow K^{-}\pi^{0}\nu_{\tau}) = (0.471 \pm 0.018)\%\, ,$$
$$B(\tau^{-} \rightarrow K^{0}\pi^{-}\nu_{\tau}) = (0.857 \pm 0.030)\%\, .$$

The uncertainties on the last two results are fully correlated. It has been observed [6,18] that all the above indirect values are higher than the corresponding directly measured τ branching fractions. If the indirect values replace the direct ones, $|V_{us}| = 0.2207 \pm 0.027$ [6].

We add the kaon-indirect determinations of the three above τ branching fractions to the data set used in the previous section in order to obtain improved calculations of $|V_{us}|_{\tau s} = 0.2202 \pm 0.0018$, $|V_{us}|_{\tau K/\pi} = 0.22546 \pm 0.00097$ and their average $|V_{us}|_{\tau} = 0.22439 \pm 0.00088$.

5 Consistency of $|V_{us}|$ with the CKM matrix unitarity

Assuming the CKM matrix unitarity,

$$|V_{us}|_{\text{uni}} = \sqrt{1 - |V_{ud}|^2 - |V_{ub}|^2} = 0.22565 \pm 0.00089\, ,$$

using $|V_{ud}| = 0.97420 \pm 0.00021$ [9] and $|V_{ub}| = (0.3940 \pm 0.0360) \cdot 10^{-2}$ [2]. Table 1 summarizes the residuals, expressed as numbers of standard deviations, of the above mentioned $|V_{us}|$ determinations with respect to the $|V_{us}|_{\text{uni}}$ computation from the CKM matrix unitarity. $|V_{us}|_{\text{uni}}$ computed with the τ-inclusive method is significantly lower, but the significance of the discrepancy is mildly reduced alongside a mild progress in the experimental resolution.
Table 1: Deviations of $|V_{us}|$ computed with τ data with respect to $|V_{us}|$ obtained with CKM unitarity. The second and third row use the $|V_{us}|$ determinations performed in this paper.

| | $\Delta |V_{us}|_{\tau s} / \sigma$ | $\Delta |V_{us}|_{\tau K/\pi} / \sigma$ | $\Delta |V_{us}| / \sigma$ |
|--------------------------|----------------------------------|-------------------------------------|----------------------|
| HFLAV Spring 2017 | −3.0 | −1.0 | −2.3 |
| HFLAV + BaBar 2018 | −2.9 | −1.1 | −2.3 |
| HFLAV + BaBar 2018 + kaon predictions | −2.7 | −0.1 | −0.9 |

6 Conclusions

Figure 1 reports the $|V_{us}|_{\tau s}$ determinations described above, a determination of $|V_{us}|_{\tau s}$ obtained replacing some τ branching fractions measurements with the indirect predictions based on kaon branching fractions [6], and other more complex determinations that use the τ spectral functions [21] and Lattice QCD techniques [22]. Updates on the last two determinations have been presented at the Tau 2018 workshop [23]. The last four determinations use an older and in some cases partial set of experimental τ branching fractions measurements.

The τ based $|V_{us}|$ determinations use the $|V_{ud}|$ measurements as input. The dependence on $|V_{ud}|$ is however very small, and there is just a small correlation between $|V_{us}|$ and $|V_{ud}|$ when doing a simultaneous fit. Figure 2 shows the results of a $|V_{ud}|$-$|V_{us}|$ simultaneous fit on the τ measurements corresponding to the HFLAV Spring 2017 fit and the BaBar 2018 results. The fit results are:

$$|V_{ud}| = 0.97420 \pm 0.00021$$
$$|V_{us}| = 0.2223 \pm 0.0014$$
$$|V_{ud}|$-$|V_{us}|$ correlation = 0.035

Tables 2 and 3 report the contributions to the $|V_{us}|_{\tau s}$ uncertainty before and after the BaBar 2018 results. The largest contributions come from the τ branching fractions to strange final states and from the theory. The BaBar 2018 measurements reduced significantly several large contributions. High multiplicity τ decays to strange final states dominate the $|V_{us}|_{\tau s}$ uncertainty. The Belle II super flavour factory will offer the opportunity to improve the experimental precision on the τ strange branching fractions. More precise τ branching fractions and spectral function measurements will help improving also the theory uncertainty.

References

[1] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, Eur. Phys. J. C77(12), 895 (2017), doi:10.1140/epjc/s10052-017-5058-4, 1612.07233.

[2] M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D98(3), 030001 (2018), doi:10.1103/PhysRevD.98.030001
Figure 1: $|V_{us}|_{\tau s}$ determinations obtained in this document, from the top: $|V_{us}|_{\text{uni}}$, $|V_{us}|_{\tau s}$ with the HFLAV Spring 2017 fit, after adding the BABAR 2018 data, after adding both the BABAR 2018 and the kaon indirect predictions, from Ref. [6], from Ref. [21], and two determinations from Ref. [22].
Figure 2: Results of a $|V_{ud}|$-$|V_{us}|$ simultaneous fit. The bands describe the constraints corresponding to the $|V_{ud}|$ measurement, the $|V_{us}|_{\tau s}$ and the $|V_{us}|_{\tau K/\pi}$ determinations that use the τ measurements. The oblique line corresponds to the CKM matrix unitarity constraint. The ellipse corresponds to 1σ uncertainty on the $|V_{ud}|$ and $|V_{us}|$ fit results.

Table 2: Contributions to the $|V_{us}|_{\tau s}$ uncertainty in percent before the $BaBar$ 2018 results.

Contribution	Uncertainty
$\pi^- K^0 \pi^0 \nu_\tau$ (ex. K^0)	0.3963
$K^- 2\pi^0 \nu_\tau$ (ex. K^0)	0.3789
$K^- 3\pi^0 \nu_\tau$ (ex. K^0, η)	0.3714
$K^0 h^- h^+ \nu_\tau$	0.3478
$K^- \pi^0 \nu_\tau$	0.2561
$K^- \pi^- \pi^0 \nu_\tau$ (ex. K^0, ω, η)	0.2456
$\pi^- K^0 \nu_\tau$	0.2424
$\pi^- K^0 \pi^0 \nu_\tau$	0.2219
$K^- \nu_\tau$	0.1646
$K^- \omega \nu_\tau$	0.1585
$K^- \pi^- \pi^0 \nu_\tau$ (ex. K^0, ω)	0.1157
$\pi^- K^0 \eta \nu_\tau$	0.0256
$K^- \pi^0 \eta \nu_\tau$	0.0200
$K^- \eta \nu_\tau$	0.0138
$K^- \phi \nu_\tau$ ($\phi \to K^+ K^-$)	0.0138
$K^- \phi \nu_\tau$ ($\phi \to K^0 K^0$)	0.0096
$K^- 2\pi^- 2\pi^0 \nu_\tau$ (ex. K^0)	0.0021
$K^- 2\pi^- 2\pi^0 \pi^0 \nu_\tau$ (ex. K^0)	0.0010
$\tau \to$ non-strange	0.0896
B_s^{univ}	0.0045
theory	0.4861
[3] A. Lusiani, *HFAG 2016 and PDG 2016 τ lepton averages and |V_{us}| determination from τ data*, Nucl. Part. Phys. Proc. **287-288**, 29 (2017), doi:10.1016/j.nuclphysbps.2017.03.038.

[4] J. P. Lees et al., *Measurement of the spectral function for the τ⁻ → K⁻K⁻ν_τ decay*, Phys. Rev. **D98**(3), 032010 (2018), doi:10.1103/PhysRevD.98.032010, 1806.10280.

[5] T. Lueck, *Recent results on τ-lepton decays with the BABAR detector*, Talk given at the 'XXXIX International Conference On High Energy Physics, Seoul, South Korea' (2018).

[6] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, *Predicting the τ strange branching ratios and implications for V_{us}*, JHEP **10**, 070 (2013), doi:10.1007/JHEP10(2013)070, 1304.8134.

[7] B. Aubert et al., *Measurement of the τ⁻ → K⁻π⁰ν_τ branching fraction*, Phys. Rev. **D76**, 051104 (2007), doi:10.1103/PhysRevD.76.051104, 0707.2922.

[8] E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, *|V_{us}| and m(s) from hadronic tau decays*, Nucl. Phys. Proc. Suppl. **169**, 85 (2007), doi:10.1016/j.nuclphysbps.2007.02.053, hep-ph/0612154.

[9] J. Hardy and I. S. Towner, *|V_{ud}| from nuclear β decays*, PoS CKM2016, 028 (2016), doi:10.22323/1.291.0028.

[10] S. Aoki et al., *Review of lattice results concerning low-energy particle physics*, Eur. Phys. J. **C77**, 112 (2017), doi:10.1140/epjc/s10052-016-4509-7. See also http://itpwiki.unibe.ch/flag/, 1607.00299.

[11] A. Bazavov et al., *Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks*, Phys. Rev. **D90**(7), 074509 (2014), doi:10.1103/PhysRevD.90.074509, 1407.3772.

[12] R. J. Dowdall, C. T. H. Davies, G. P. Lepage and C. McNeile, *V_{us} from pi and K decay constants in full lattice QCD with physical u, d, s and c quarks*, Phys. Rev. **D88**, 074504 (2013), doi:10.1103/PhysRevD.88.074504, 1303.1670.

[13] N. Carrasco et al., *Leptonic decay constants f_{K}, f_{D}, and f_{Ds} with N_{f} = 2 + 1 + 1 twisted-mass lattice QCD*, Phys. Rev. **D91**(5), 054507 (2015), doi:10.1103/PhysRevD.91.054507, 1411.7908.

[14] W. J. Marciano and A. Sirlin, *Radiative corrections to πℓ2 decays*, Phys. Rev. Lett. **71**, 3629 (1993), doi:10.1103/PhysRevLett.71.3629.

[15] R. Decker and M. Finkemeier, *Radiative corrections to the decay τ → π(K)ν_τ*, Phys. Lett. **B334**, 199 (1994), doi:10.1016/0370-2693(94)90611-4.

[16] R. Decker and M. Finkemeier, *Short and long distance effects in the decay τ → πν_τ(γ)*, Nucl. Phys. **B438**, 17 (1995), doi:10.1016/0550-3213(95)00597-L, hep-ph/9403385.

[17] R. Decker and M. Finkemeier, *Radiative corrections to the decay τ → πν_τ*, Nucl. Phys. Proc. Suppl. **40**, 453 (1995), doi:10.1016/0920-5632(95)00170-E, hep-ph/9411316.

[18] A. Pich, *Precision Tau Physics*, Prog. Part. Nucl. Phys. **75**, 41 (2014), doi:10.1016/j.ppnp.2013.11.002, 1310.7922.
[19] V. Cirigliano and H. Neufeld, *A note on isospin violation in Pl2(\(\gamma\)) decays*, Phys. Lett. **B700**, 7 (2011), doi:10.1016/j.physletb.2011.04.038, [1102.0563](https://arxiv.org/abs/1102.0563).

[20] W. J. Marciano, *Precise determination of |\(V(us)|\) from lattice calculations of pseudoscalar decay constants*, Phys. Rev. Lett. **93**, 231803 (2004), doi:10.1103/PhysRevLett.93.231803, [hep-ph/0402299](https://arxiv.org/abs/hep-ph/0402299).

[21] R. J. Hudspith, R. Lewis, K. Maltman and J. Zanotti, *A resolution of the inclusive flavor-breaking \(\tau\) \(|V_{us}|\) puzzle*, Phys. Lett. **B781**, 206 (2018), doi:10.1016/j.physletb.2018.03.074, [1702.01767](https://arxiv.org/abs/1702.01767).

[22] P. Boyle, R. J. Hudspith, T. Izubuchi, A. Jüttner, C. Lehner, R. Lewis, K. Maltman, H. Ohki, A. Portelli and M. Spraggs, *|\(V_{us}|\) determination from inclusive strange tau decay and lattice HVP*, EPJ Web Conf. **175**, 13011 (2018), doi:10.1051/epjconf/201817513011, [1803.07228](https://arxiv.org/abs/1803.07228).

[23] K. Maltman, *The status of the inclusive tau determination of \(V_{us}\)*, Talk given at the ’15th International Workshop on Tau Lepton Physics, Amsterdam, The Netherlands’ (2018).
Table 3: Contributions to the $|V_{us}|_{\tau s}$ uncertainty in percent after the BABAR 2018 results.

Contribution	Contribution (ex. K^0)	0.3931
$\pi^- K^0 \pi^0 \nu_\tau$		
$K^0 h^- h^+ \nu_\tau$		0.3450
$K^- \pi^- \pi^0 \nu_\tau$ (ex. K^0, ω, η)		0.2436
$\pi^- K^0 \nu_\tau$		0.2372
$\pi^- K^0 \pi^0 \nu_\tau$		0.2200
$K^- \omega \nu_\tau$		0.1572
$K^- \pi^0 \nu_\tau$		0.1554
$K^- \nu_\tau$		0.1459
$K^- \pi^- \pi^+ \nu_\tau$ (ex. K^0, ω)		0.1147
$K^- 2\pi^0 \nu_\tau$ (ex. K^0)		0.0460
$K^- 3\pi^0 \nu_\tau$ (ex. K^0, η)		0.0449
$\pi^- K^0 \eta \nu_\tau$		0.0254
$K^- \pi^0 \eta \nu_\tau$		0.0198
$K^- \eta \nu_\tau$		0.0137
$K^- \phi \nu_\tau (\phi \rightarrow K^+ K^-)$		0.0136
$K^- \phi \nu_\tau (\phi \rightarrow K^0 K^0_{\ell})$		0.0095
$K^- 2\pi^- 2\pi^+ \nu_\tau$ (ex. K^0)		0.0021
$K^- 2\pi^- 2\pi^+ \pi^0 \nu_\tau$ (ex. K^0)		0.0010
$\tau \rightarrow$ non-strange		0.0855
K^0_{univ}		0.0045
theory		0.4863