ACHIEVEMENT STUDENT SUPPORT SYSTEM USING WEIGHTED PRODUCT METHOD

Dewi Rahayu1, Muhammad Idris2
1Program Information System, FTIKOM, Bakti Nusantara Institute, Lampung
2Management of Islamic Education, STIT Pringsewu, Lampung, Indonesia
1Wisma Rini Street, No.09 Pringsewu, Lampung, Indonesia
2Desa Wonodadi Street, Gadingrejo, Pringsewu, Lampung, Indonesia
E-mail: Dewirahayu2812@gmail.com, muhammadidrisstitpringsewu@gmail.com

Abstract
Constitution of the Republic of Indonesia No 12 of 2012 that higher education in part of the national education system has a strategic role in educating the life of the nation. Students are people who try to develop themselves through the educational process on a particular path, level and type of education. The Weighted Product method is chosen because the method of completion uses multiplication to connect the attribute value, where the value must be raised with the value of the attribute weight in question. Criteria that have been determined include average value, discipline, attendance, extracurricular, and Non-Academic. The results of this study there are 6 alternatives, that A2 alternative with the value 0.145790734 as students with the lowest value and alternative A3 0.212196782 as students with the best value.

Keywords: Weighted Product Decision Support Systems, Students Achieving

INTRODUCTION
Everyone has different knowledge, and abilities. This knowledge and ability can develop and evolve, becoming someone who is accomplished is something that is very proud of itself and others. People who excel have a very large development of science and knowledge. (Undang-Undang RI 2012) Constitution of the Republic of Indonesia Number 12 Year 2012 THAT higher education as part of the national education system has a strategic role in the intellectual life of the nation and promote science and technology by observing and applying the value of the humanities as well as the cultivation and empowerment of the nation Indonesia sustained. However, choosing schools also can influence education in exploring achievements. This school gives predicate to student achievement based on academic values obtained and fulfills the criteria determined by the school. In managing data on high achieving students, they still use manual methods, namely using Microsoft Excel, so that it takes a longer time and the results obtained are not maximal.

The study conducted by (Muslihudin et al. 2018), a decision support system for receiving Bidik Misi scholarships in Pringsewu University. It can help and facilitate universities in determining whether or not students are eligible for scholarships based on criteria. -the criteria that have been determined. From the results obtained, alternative 1 gets the greatest value, namely with the highest IPK and is included in the category of students from poor families. Research conducted by (Muhammad Faisal 2017), a decision
support system for outstanding students in PGRI 3 Junior High School uses the method *Weighted Product* (2018), information generated from this system is ranking high achieving students based on criteria data and weighting data. The resulting ranking can be used to assist teachers in making decisions on the determination of high achieving students.

Using the method *Weighted Product* is more efficient because the time needed in the calculation is shorter. This method was chosen because it can determine the weight value for each attribute, then proceed with a ranking process that will determine the students who are performing according to the criteria. Based on the background described above, the problem that will be discussed is how to design a decision-making system in determining achievement students using the method *Weighted Product*.

RESEARCH METHOD

Methods Weighted Product

(Kusnini 2007) Decision support systems are systems interactive information that provides information, modeling and sweetening of data. This system is used to help decision making in semi-structured situations and unstructured situations, where no one knows for certain how decisions should be made (Turban, Aronson, dan Liang 2005) The purpose of decision support systems is:

- Helping managers in semi-structured decision-making or problems
- Providing support for manager's benefit and not intended to replace manager's functions.
- Increasing the effectiveness of decisions made by managers more than improving efficiency
- Da allows decision makers to do computing quickly and at a low cost.
- Increased productivity.
- Quality support
- Competitiveness
- Overcomes cognitive limitations in processing and storage.

Fuzzy Multiple Attribute Decision Making

(Kusumadewi et al. 2013) FMADM is a method used to find optimal alternatives from a number of alternatives with certain criteria. The essence of FMADM is to determine the weight values for each attribute, then proceed with a ranking process that will select the alternatives that have been given. Basically, there are 3 approaches to find attribute weight values, namely subjective approaches, objective approaches and integration approaches between subjective and objective. There are several methods that can be used to solve FMADM problems, among others:

- Simple Additive Weighting Method
- Weighted Product (WP)
- ELECTRE
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- Analytic Hierarchy Process (AHP)

(Andino Maseleno, K. Shankar, Miftachul Huda, Marini Othman, Prayugo Khoir 2019) *Weighted Product* is one method used to solve the problem of Multi Attribute Decision Making (MADM). Weighted Product Method (WP) uses multiplication to connect attribute values (criteria), where the value of each attribute (criteria) must be raised first with the weight of the attribute (criteria) concerned. Preference for alternative Ai is given as follows:

\[S_i = \sum_{j=1}^{n} X_{ij} w_j \]
Where:

S: Alternative preference is analogous as vector S
X: Criteria Value
W: Weight Criteria / subcriteria
I: Alternative
J: Criteria
N: Number of Criteria

where Wj = 1.Wj is a positive value for the profit attribute and is negative for the cost attribute. The relative preference of each alternative is given as:

\[V_i = \sum_1^n X_{ij}W_{jj} = \sum_1^n (X_j^*) \]

Where:

V: Alternative preference is analogous as vector V
X: Criteria Value
W: Weight Criteria / subcriteria
I: Alternative
J: Number of Criteria
N: Number of Criteria

*: Number of Criteria that have been assessed in vector S

Criteria

Required criteria that will be used as material for calculation in determining the achievement at school.

Criteria	Description	Range	Weight
C1	The average value	Very Low	1
C2	Discipline	Low	2
C3	Attendance	Enough	3
C4	Extra curricular	Good	4
C5	NonAcademic	Very Good	5

DISCUSSION

Manual Test

To solve the problem with the method *Weighted Product*, determine the criteria that will be used as a reference in decision making criteria used to determine the achievements to be given to students.

Code Criteria	Provisions Criteria	Weight Value
C1	Average Value	30%
C2	Discipline	20%
C3	Attendance	20%
C4	Extracurricular	10%

Table 2: Criteria for Average Value (C1)

Criteria Average	Weight	Value
90-100	Very Good	5
70-80	Good	4
50-60	Low	2
<50	Very Low	1
Table 3: Discipline (C2)

Criteria Discipline	Weight	Value
Duty	Very Low	1
Uniform	Very Good	5
Writing Tools	Low	2
Cleanliness	Good	4

Table 4: Attendance (C3)

Attendance Criteria	Weight	Value
A1 > 5	Low	2
Permit < 3	Very Good	5
Pain < 5	Good	4
Bolos > 10	Very Low	1

Table 5: Extracurricular (C4)

Extracurricular Kindergarten	Weight	Values
Scout	Enough	3
Futsal Inter School	Very Low	1
National Volly	Good	4
PASI KIBRA Nasional	Very Good	5
Drum Band Regional	Low	2

Table 6: Non-Academic (C5)

Non-Academic	Weight	Value
ILC Regional	Enough	3
of the National Robotics	Very Good	5
Arabic National	Good	4
LKS Regional	Low	2

Determining Suitability Rating

The first step is to determine the alternatives to the value criteria already determined. The alternatives that will be studied are A1 Candra, A2 Agus, A3 Diamond, A4 Salsa, A5 Bella, A6 Nisa.

Alternative	Criteria				
	C1	C2	C3	C4	C5
A1	5	4	1	3	2
A2	2	5	1	4	3
A3	4	2	4	3	5
A4	4	4	2	4	1
A5	1	2	5	5	4
A6	5	1	5	3	2

The second step is the calculation of the WP method which starts by making improvements to the weight of the criteria where the value of wj = 1, and the value of W = 0.3 0.2 0.1 0.2. Data on manual weight repairs can be seen as follows:

W1 = 0.30.3 + 0.2 + 0.2 + 0.1 = 0.31 = 0.3
W2 = 0.20.3 + 0.2 + 0.2 + 0.1 = 0.21 = 0.2
W3 = 0.20.3 + 0.2 + 0.2 + 0.1 = 0.21 = 0.2
W4 = 0.10.3 + 0.2 + 0.2 + 0.1 + 0.2 = 0.11 = 0.1
Determining the Value of Vector S and V

The third step is to determine the value of the vector S first. By way of multiplying the data for each alternative value a match rating that has a positive rating from the results of the weight improvement. The manual calculation data for determining the S vector value of each alternative can be seen as follows:

- **Candra** $S_1 = (50.3) (40.2) (10.2) (30.1) (20.2) = 2,741707526$
- **Agus** $S_2 = (20.3) (50.2) (10.2) (40.1) (30.2) = 2,430710571$
- **Intan** $S_3 = (40.3) (20.2) (40.2) (30.1) (50.2) = 3.537872041$
- **Salsa** $S_4 = (40.3) (40.2) (20.2) (40.1) (10.2) = 2.639015822$
- **Bella** $S_5 = (10.3) (20.2) (50.2) (50.1) (40.2) = 2,456456052$
- **Nisa** $S_6 = (50.3) (10.2) (50.2) (30.1) (20.2) = 2.866837831$

The fourth step is to determine the value of vector V. Value vector V is used to get the highest alternative value from each vector V. The process of manually searching for vector V values can be seen as follows:

- **Candra** $V_1 = 2,741707526 \div 16.67259984 = 0.164443911$
- **Agus** $V_2 = 2,430710571 \div 16.67259984 = 0.145790734$
- **Intan** $V_3 = 3,537872041 \div 16.67259984 = 0.212196782$
- **Salsa** $V_4 = 2.639015822 \div 16.67259984 = 0.158284601$
- **Bella** $V_5 = 2,456456052 \div 16.67259984 = 0.147334913$
- **Nisa** $V_6 = 2.866837831 \div 16.67259984 = 0.171949058$

From the above results it can be concluded that the alternative achievement given is $V_3 = 0.212196782$. The results of manual system calculations above using the WP method can be concluded that the alternative selection of high achieving students is with $V_6 = 0.171949058$ highest on the Intan alternative.

CONCLUSION

The conclusions obtained by the author are as follows method Weighted product can help in making decisions to determine the selection of outstanding students. With the existence of a decision-making system for the selection of outstanding students in the processing of teaching and learning. Of the 6 students obtained the value of $V_3 2.01610.212196782$ as the student with the lowest score and the value of $A6 0.171949058$ as the best student.

REFERENCE

Andino Maseleno, K. Shankar, Miftachul Huda, Marini Othman, Prayugo Khoir, Muhammad Muslihudin. 2019. “CEL: Citizen Economic Level using SAW.” In Expert Systems in Finance: Smart Financial Applications in Big Data Environments, , 97–111.

Kusuri. 2007. Konsep dan Aplikasi Sistem Pendukung Keputusan. Ed. 1. ed. Fl. Sigit Suyantoro. Yogyakarta: Penerbit Andi Yogyakarta.

Kusumadewi, Sri, Sri Hartati, Agus Harjoko, dan Retanto Wardoyo. 2013. Fuzzy Multi-Attribute Decision Making (Fuzzy MADM). Yogyakarta: Graha Ilmu.

Muhammad Faisal. 2017. “Sistem Pendukung Keputusan Seleksi Siswa Berprestasi di SMK PGRI 3 Malang Menggunakan Metode Weighted Product (WP).” Journal of information and Technology 5(Juni): 1–8.

Muslihudin, Muhamad et al. 2018. “Implementasi Metode Weighted Product Menentukan Beasiswa Bidik Misi Stmik Pringsewu.” Jatisi 4(2).
Turban, By Efraim, Jay E Aronson, dan Ting-peng Liang. 2005. *Decision Support System and Intelligent System*. 7th Ed. Ji. Yogyakarta: Penerbit Andi Yogyakarta.

Undang-Undang RI. 2012. “Undang-Undang Republik Indonesia Nomor 12 Tahun 2012 tentang Pendidikan Tinggi.” *Undang-Undang PENDIDIKAN TINGGI*: 1–97.