Supplementary Material

Synthesis, characterization and antimicrobial activity of a bidentate NS Schiff base of S-benzyl dithiocarbazate and its divalent complexes

MD. AL-AMIN-AL-AZADUL ISLAM*, MD. CHANMIYA SHEIKH*, MOHAMMAD ABDUL MUMIT, RYUTA MIYATAKE, MD. ASHRAFUL ALAM and MD. OMAR ALI MONDAL

Table 1S: Minimum inhibitory concentrations (MICs) against test bacteria for complex 2.

Test tube No.	Nutrient broth medium added (mL)	compound-2 (μg/mL)	Inoculum added (μL)	S. -β-haemolyticus	K. pneumonia	E. coli
1	1	512	10	-	-	-
2	1	256	10	-	-	-
3	1	128	10	-	128	-
4	1	64	10	-	-	+
5	1	32	10	+	-	+
6	1	16	10	+	+	+
7	1	8	10	+	+	+
8	1	4	10	+	+	+
9	1	2	10	+	+	+
10	1	1	10	+	+	+
Cm	1	0	0	-	-	-
Cs	1	512	0	-	-	-
Ci	1	0	10	+	+	+

Results of MIC values in (μg/ml) 64 32 128

“+” = Growth “-” = No growth
Figure 1S. Crystal packing of 1 showing pair of molecules connected by N-H…S interactions (dashed line). The C-H---π interactions are shown as green lines.
Figure 2S. Crystal packing viewed down axis b of the CuL₂ complex 5; H atoms not shown for clarity.)
Figure 3S: Solution UV-visible spectrum of the ligand in chloroform (1)

Figure 4S: Solution UV-visible spectrum of nickel(II) complex in chloroform (2)
Figure 5S: Solution UV-visible spectrum of zinc(II) complex in chloroform (3)

Figure 6S: Solution UV-visible spectrum of palladium(II) complex in chloroform (4)
Figure 7S: Solution UV-visible spectrum of copper(II) complex in chloroform (5)
Figure 8S: Solid state IR spectrum of ligand 1 as KBr Pellet
Figure 9S: Solid state IR spectrum of nickel(II) complex 2 as KBr Pellet
Figure 10S: Solid state IR spectrum of zinc(II) complex 3 as KBr Pellet
Figure 11S: IR spectrum of palladium(II) complex 4 as KBr Pellet
Figure 12S: Solid state IR spectrum of copper(II) complex 5 as KBr Pellet
Figure 13S: Low Resolution Mass spectrum of ligand 1 by FAB\(^+\) method.

Figure 14S: Low Resolution Mass spectrum of ligand 1 by FAB\(^+\) method.
Figure 15S: High Resolution Mass spectrum of ligand 1 by FAB⁺ method.

Figure 16S: Low Resolution Mass spectrum of Nickel(II) complex 2 by FAB⁺ method.
Figure 17S: Low Resolution Mass spectrum of Nickel(II) complex 2 by FAB⁺ method.

Figure 18S: Low Resolution Mass spectrum of Nickel(II) complex 2 by FAB[−] method.
Figure 19S: High Resolution Mass spectrum of Nickel(II) complex 2 by FAB\(^+\) method.

Figure 20S: Low Resolution Mass spectrum of zinc(II) complex 3 by FAB\(^+\) method.
Figure 21S: Low Resolution Mass spectrum of zinc(II) complex 3 by FAB⁻ method.

Figure 22S: Low Resolution Mass spectrum of zinc(II) complex 3 by FAB⁺ method.
Figure 23S: High Resolution Mass spectrum of zinc(II) complex 3 by FAB\(^+\) method.

Figure 24S: Low Resolution Mass spectrum of palladium(II) complex 4 by FAB\(^+\) method.
Figure 25S: Low Resolution Mass spectrum of palladium(II) complex 4 by FAB$^+$ method.

Figure 26S: Low Resolution Mass spectrum of palladium(II) complex 4 by FAB$^+$ method.
Figure 27S: High Resolution Mass spectrum of palladium(II) complex 4 by FAB⁺ method.

Figure 28S: Low Resolution Mass spectrum of copper(II) complex 5 by FAB⁻ method.
Figure 29S: Low Resolution Mass spectrum of copper(II) complex 5 by FAB$^+$ method.

Figure 30S: Low Resolution Mass spectrum of copper(II) complex 5 by FAB$^+$ method.
Figure 31S: 1H-NMR spectrum of ligand 1 in CDCl$_3$

Figure 32S: 1H-NMR spectrum of ligand 1 in CDCl$_3$
Figure 33S: 1H-NMR spectrum of ligand 1 in CDCl$_3$

Figure 34S: 1H-NMR spectrum of nickel(II) complex 2 in CDCl$_3$
Figure 35S: 1H-NMR spectrum of nickel(II) complex 2 in CDCl$_3$

Figure 36S: 1H-NMR spectrum of zinc(II) complex 3 in CDCl$_3$
Figure 37S: 1H-NMR spectrum of zinc(II) complex 3 in CDCl$_3$

Figure 38S: 1H-NMR spectrum of zinc(II) complex 3 in CDCl$_3$
Figure 39S: 1H-NMR spectrum of zinc(II) complex 3 in CDCl$_3$

Figure 40S: 1H-NMR spectrum of zinc(II) complex 3 in CDCl$_3$
Figure 41S: 1H-NMR spectrum of palladium(II) complex 4 in CDCl$_3$

Figure 42S: 1H-NMR spectrum of palladium(II) complex 4 in CDCl$_3$
Figure 43S: 1H-NMR spectrum of palladium(II) complex 4 in CDCl$_3$

Figure 44S: 1H-NMR spectrum of palladium(II) complex 4 in CDCl$_3$
Figure 45S: 1H-NMR spectrum of palladium(II) complex 4 in CDCl$_3$