Revisiting Interval Graphs for Network Science

CHUAN WEN, LOE*
Department of Mathematics and Centre for Complexity Science,
Imperial College London, London, SW7 2AZ, UK
*Corresponding author: c.loe11@imperial.ac.uk

AND

HENRIK JELDTOFT JENSEN
Department of Mathematics and Centre for Complexity Science,
Imperial College London, London, SW7 2AZ, UK

[Received on 11 September 2015]

The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The higher-dimensional analogue is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science.

Keywords: Interval Graph, Multiplex

1. Introduction

The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. For example interval graphs was introduced to deduce the linearity of genes when Benzer noticed that the behavior of mutated strains of bacteriophage T4 (virus) forms an interval graph [5].

The higher-dimensional analogue of interval graphs consists vertices of d-dimensional axis-parallel hyper-boxes such that intersecting boxes implies that their corresponding vertices are adjacent in the graph G [55]. The connection between the intervals and hyperboxes is that the latter can be expressed as a finite set of d interval graphs on the same vertex set, i.e. $\mathcal{B} = \{I^1, \ldots, I^d\}$ such that $G = (V, E_1 \cap \ldots \cap E_d)$ where the interval graph $I^k(V, E_k)$ is the projection of the boxes onto the k^{th} axis.

One of the earliest applications of interval graphs is to model the stability and complexity of ecological system by studying the number of factors (dimensions) the species in the ecology depend on [22, 25, 36]. The hyperboxes represent the species in an ecology and each of the axes measures a different environmental factor like temperature, soil acidity, amount of sunlight, etc. Each species are enclosed in their unique environment phase space where they are adaptable, and the boxes that intersect implies that the species can coexist in a common environment. Other applications of interval graphs arise naturally in many time dependent problems like task scheduling [14, 42] or other linear structures like pavement deterioration analysis [31] and Bioinformatics [7, 37].
After 20 years of research, the mathematics of interval graph went out of fashion during the 1980s and was not revisited when Network Science recently expressed interests on multi-relational networks like multiplex [9, 41]. Multiplexes and interval graphs belong to the same mathematical object known as graphs on the same vertex set, where a multiplex is a collection of graphs \(\mathcal{M} = \{ G^1(V,E_1), \ldots, G^d(V,E_d) \} \) with each graph representing the different relationships of a system.

For example in a social multiplex, people are connected by specific relationship categories like friends, colleagues or family. Other examples include the different modes of transportations in a transport system and the different ways researchers are connected in citation networks [41]. It is the modern outlook of Network Science to preserve the rich relational data of the system.

The motivation of this paper is to show that the tools/perspectives from Network Science can benefit interval graphs research, vice versa.

2. Preliminaries

2.1 Interval Graphs

Definition 2.1 An interval graph \(I(V,E) \) maps a set of intervals \(\{ J_1, \ldots, J_n \} \) as vertices such that adjacent vertices \((a, b) \) denotes \(J_a \cap J_b \neq \emptyset \) [29] (Fig. 1).

The sequential nature of the intervals implies that there is a linear ordering \(\prec \) on the vertices where for all vertex triples \(v_1, v_2, v_3 \in V \) with \(v_1 \prec v_2 \) and \(v_2 \prec v_3 \), if \((v_1, v_3) \in E \) then by transitivity \((v_1, v_2), (v_2, v_3) \in E \). This colloquially states that there is no “shortcut” in the graph, i.e. there is no independent vertex triples where every two of them are connected by a path avoiding all neighbors of the third. This property is known as asteroid-triple free (AT-free).

Theorem 2.2 An interval graph is chordal and AT-free [45].

The lack of “shortcut” in AT-free graphs restricts the number of paths among the vertices in the graph and hence limits the search space for a variety of problems. Thus the AT-free property presents useful algorithmic structure on interval graphs such that some NP-complete graph problems are tractable in polynomial time [18].

2.2 Interval Graphs As Hyper-Boxes

The graph from the intersection of interval graphs \(I(V,E_i) \), i.e. \(G(V, E_1 \cap \ldots \cap E_m) \) forms a set of axis-parallel hyper-boxes as vertices in \(m \) dimensions, and the adjacent vertices implies that their corresponding hyper-boxes intersects. The minimum \(m \) interval graphs to represent \(G \) is its boxicity and it is a measure of complexity (Fig. 2) [22, 60].

For instance the food webs in ecology is a competition graph, where two species (vertices) are connected if they compete over the same food source. Although ecology is generally known to be a complex system, Cohen showed that food webs are generally low dimensional and simple. In fact many food webs are interval graphs where the ordering of the intervals (as predators) correlates to the size of their preys [22].

\(^1\) Although we observed less interests from Graph Theory, there are still applied research based on interval graphs. For example in ecology it is more commonly known as niche models [25, 36, 64].
FIG. 1. The duality of an interval graph (above) and a set of intervals (below). There is a bijective map between the vertices of the graph and the intervals where overlapping intervals denote the adjacency of their corresponding vertices. For example interval A overlaps interval B implies that vertex A is adjacent to vertex B, vice versa.
FIG. 2. The set of 2-dimensional boxes A, \ldots, F corresponds to the graph on its right, and they are from the intersection of 2 interval graphs with vertex labels A^0, \ldots, F^0 (dimensional 1) and A^00, \ldots, F^00 (dimensional 2). Adjacent vertices are equivalent to saying that their respective boxes intersect. However a graph constructed from m-dimensional boxes does not necessary implies that it has boxicity m. For instance the top graph with vertex labels X, \ldots, Z is constructed with $m = 2$-dimensional boxes, but since it can be represented with a 1-dimensional interval graph, its boxicity is one.
A marine food web is an example of a food web that is not an interval graph as a predator feeds on species based on two environment niches — the size of the prey and the depth of the water. Since each of the niches can be expressed as an interval graph, two predators are in competition if they feed on the same preys, i.e. their 2-dimensional boxes intersect. An alternative perspective consists in hyper-boxes is to embedding the graph in \(m \)-dimensional Minkowski \(r \)-metric space \(M_m^r \) such that for all adjacent vertices \(u, v \in V \), their distance in the metric space is bounded by some length \(l_u + l_v \):

\[
d_{uv}(\langle f_1(u), \ldots, f_m(u) \rangle, \langle f_1(v), \ldots, f_m(v) \rangle) \leq l_u + l_v,
\]

(2.1)

where \(l_u \) and \(l_v \) are length given for their respective vertices, and \(\langle f_1(u), \ldots, f_m(u) \rangle \) is a vector mapping \(u \) to the metric space with the real-value functions \(f_1, \ldots, f_m \). In addition the functions \(f_i \) on all \(u, v \in V \) is conditioned by Minkowski \(r \)-metric space:

\[
d_{uv} = \left[\sum_{i=1}^{m} |f_i(u) - f_i(v)|^r \right]^{1/r}.
\]

(2.2)

The arbitrary constant \(r \) is a weighting parameter where all components \(|f_i(u) - f_i(v)| \) are equally weighted for \(r = 1 \) (i.e. Manhattan Distance). For \(r = 2 \) (i.e. Euclidean Distance), the components that are greater contribute more to the Minkowski Distance. Hence by letting \(r = \infty \) to complete the metric space, the greatest component will dominate the distance where \(d_{uv} = \max_{i=1}^{m} |f_i(u) - f_i(v)| \), and each point is a hyper-box with sides parallel to the axes.

2.3 Topology of an Unknown Structure (Example)

Benzer deduced the linearity of genes by rejecting the hypothesis that it is a non-linear structure with interval graphs. Suppose there are two hypotheses of a gene’s structure — linear and branched (Fig. 3). The vertices are the different mutated variants of the T4 virus such that they do not have the complete genome to kill bacterias independently. In this case vertex \(A \) refers to the variant where segment \(A \) of T4 is changed. If viruses with overlapping segments do not have the entire information to kill the bacterias, then an edge is placed between them. Since the graph on the left is constructed from a linear structure, it is an interval graph.

However if T4 genes was a branched structure, then the resultant graph will not be an interval graph. In the same figure, vertices 3, 5 and 6 form an asteroid-triple — the path 3-1-6 (3-4-5 and 5-2-6) avoids the neighbors of vertex 5 (respectively 6 and 3). It is noteworthy to observe that by removing any of the vertices 1, 2 or 4, the graph will be an interval graph. It is also possible to get an interval graph by removing edges \{1,3\} and \{1,4\} from the original graph. Thus interval graphs only supports the hypothesis of a linear structure, but it is insufficient to prove the linearity of a system.

2.4 Analytical Bounds of the Hyper-boxes

Although to identify an interval graph is of linear computational complexity [11], it is significantly much harder (NP-complete) to determine if a graph has boxicity \(\geq 2 \). Table 1 compiles some of the analytical bounds of boxicity based on the structure of the graph.

Amongst the list of analytical bounds, there is an interesting relationship between boxicity and graph genus. The genus of a graph is defined as the minimum number of holes on a surface such that the graph can be embedded without crossing edges (planar). What is noteworthy is that the genus of a graph affects
Fig. 3. A comparison of a linear structure (left) and a branched structure (right). Adjacent vertices denote that their respective segments overlap (e.g., vertex C is adjacent with vertex F as segment C overlaps with segment F). Since the graph on the left corresponds to a linear structure, it is an interval graph. The graph on the right is not an interval graph as vertices 3, 5 and 6 form an asteroid-triple — path 3-1-6 (3-4-5 and 5-2-6) avoids the neighbors of vertex 5 (respectively 6 and 3).
Graph	Boxicity
Cycle [55] | $= 2$
Tree [16] | $= 2$
Outerplanar graph [57] | ≤ 2
Planar graph [63] | ≤ 3
Bipartite graph with independent sets V_1 and V_2 [16] | $\leq \min \left\{ \left\lceil \frac{|V_1|}{2} \right\rceil, \left\lceil \frac{|V_2|}{2} \right\rceil \right\}$
Graph with minimum vertex cover of size t [16] | $\leq \left\lfloor \frac{t}{2} + 1 \right\rfloor$
Turan graph on n vertices with $n/2$ partitions [16] | $= n/2$
Split graph with clique K [16] | $\leq \left\lfloor \frac{|K|}{2} \right\rfloor$
Complete multipartite graph K_{n_1, \ldots, n_p} [55] | $= \left\lfloor \frac{1}{2} \right\rfloor$
Graph with genus g [26] | $\leq 5g + 3$
Line graph of a multigraph with maximum degree d [17] | $\leq 2d(\lceil \log_2(\log_2 d) \rceil + 3) + 1$
Graph on n vertices with average degree d [18] | $= O(d \ln n)$
Graph on n vertices with Maximum degree d [62] | $\leq \min(n/2, d^2 + 2, \lceil (d + 2) \ln n \rceil)$
Graph on n vertices with Minimum degree d [1] | $\geq n/(2(n - d - 1))$

Table 1. Boxicity of different graphs ensembles.

the scaling properties from large-world (small genus) to ultrasmall-world (large genus) networks [2]. Consequently a graph with large boxicity implies an ultrasmall-world network, although low boxicity does not imply large-world network (e.g. a complete graph has boxicity 1, but with maximum genus on n vertices).

2.5 Multiplex

DEFINITION 2.3 A multiplex is a finite set of networks, $\mathcal{M} = \{G^1, \ldots, G^m\}$, where every graph $G^i(V, E_i)$ has a distinct edge set $E_i \subseteq V \times V$.

Multiplex is a natural transition from network as a model to preserve the rich relational properties in the data. Each of the networks refers to a distinct relationship in the complex system, e.g. a transportation complex system has different modes of transport and each type can be represented by one of the networks in the multiplex. However the relationships in many multiplexes are not well defined by physical infrastructures like the transportation complex systems. For instance the relationships in a social multiplex like colleagues, family, friends, etc are chosen based on the researchers’ opinions or by the limitation of their data.

De Domenico et al. recognized that the number of relationships in a multiplex cannot be arbitrarily large [23]. Not only it is not objective, it is computationally inefficient. Thus they proposed that the graphs in the multiplex can be aggregated (union of the edge set) such that the Von Neumann entropy of a multiplex is maximized. However the assumption is that the pre-aggregated multiplex has all the necessary relationships so that the number of relationships in the resultant multiplex is “sufficient”.

If the pre-aggregated multiplex do not have all the necessary relationships or the edges are assigned to the wrong relationship, then the resultant multiplex will be erroneous. Therefore interval graphs can be an alternative model to study the granularity of such relationships, especially when the relationships are not easy to define a priori. If we assume that a linear structure like an interval graph is the simplest relational behavior of a complex system, then by using the concept of boxicity, the guideline is that the number of relationships of a multiplex should not be more than the boxicity of the multiplex’s projection.
3. Structural Connection Between Interval Graphs and Multiplexes

3.1 The Union of a Multiplex

DEFINITION 3.1 The projection of a multiplex $\mathcal{M} = \{G^1(V, E_1), \ldots, G^m(V, E_m)\}$ is the resultant graph from the union of all the edge sets, i.e. $\tilde{G}(V, E_1 \cup \ldots \cup E_m)$.

Before the recent popularity of multiplex research, scientists tend to simplify their multivariate data by projection. For example the Zachary Karate Club Network is the projection of 8 networks (relationships) [65]. The reason why the number of relationships in a multiplex should not exceed the boxicity of its projection is the following: If it is possible to express the same (projected) network with a simpler model like low dimensional hyperboxes, then a multiplex with a higher number of relationships will appear unnecessarily complex without reasonable justifications.

Another argument for this guideline is to assume that most dynamics of a system are measurable by some metric. E.g. the acquaintanceship of a school alumni social network can be “measured” by the time when the members attended the school. Friends within the alumni are often schoolmates at around the same period. However some dynamics are more complex and require more than one metric to measure them, for instance the dynamics of prey-and-predator in a marine ecology (section 2.2). Thus we posit that if every dynamics is measurable by at least one (linear) metric, then the number of metrics is the upper bound to the number of dynamics. Hence a multiplex with significantly more relationships than the boxicity of its projection suggests that some of the relationships are driven by the same dynamics and it may be more appropriate to combine these relationships.

The above arguments are not rigorous and hence we emphasize that it should be taken as a guideline. However the challenge to this approach is that to determine the boxicity of an arbitrary network is an NP-complete problem and could be the same reason to why boxicity is not widely used. The degree distribution and clustering coefficient of the union of networks ensembles can be found in [46].

3.2 The Intersection of a Multiplex

DEFINITION 3.2 The intersection of a multiplex $\mathcal{M} = \{G^1(V, E_1), \ldots, G^m(V, E_m)\}$ is the graph from the intersection of all the edge sets, i.e. $H(V, E_1 \cap \ldots \cap E_m)$.

The projection of a multiplex appears to be the counter-thesis of modern Network Science by reducing the problem back to a network. However in order to understand the connection between multiplexes and networks, it is important to study the process from both sides. Hence without compromising too much relational information for simplicity, the analysis of the overlapping edges from the projection is pivotal [6], i.e. the graph $H(V, E_1 \cap \ldots \cap E_m)$.

3.2.1 Statistical Structural Properties The distribution of the overlapping edges is an essential characteristic to distinguish multiplex ensembles from random [6, 19, 44, 54]. For example a multiplex ensemble is defined to be correlated if the expected number of overlapping edges deviates from the behavior of a collection of random Erdős-Rényi graphs [6]. The degree of correlation in turn affects the phase transition of the emergence of a giant component [44].

However besides the trivial case on the intersection of Erdős-Rényi networks [46], we have little understanding on the statistical properties like degree distribution or clustering coefficient of the intersection of the different network ensembles. In this paper, we will present the intersection of two combinations — Erdős-Rényi network with Barabási-Albert network, and Watts-Strogatz network with Barabási-Albert network.
Erdős-Rényi network with Barabási-Albert: Barabási-Albert graph $B_{n,m}$ on n vertices is an error-free model to simulate the preferential attachment phenomenon in real-world networks, where m new edges are added at each iteration [4]. Therefore to make it more relevant to real-world problems, this has lead to Barabási-Albert variants with experimental noise [24, 53] in which preferential and random uniform (noise) attachment are combined. Similarly in the projection of a multiplex with Erdős-Rényi and Barabási-Albert graph, the former adds the uniform attachment noise to the scale-free system [46].

Let p be the probability that a pair of vertices are connected in the Erdős-Rényi network. When the Erdős-Rényi network intersects a Barabási-Albert network, only a fraction (i.e. p) of the edges that is incident to vertex v are in the edge set of both networks. Hence if v has degree k, then after the intersection its resultant degree is $\approx kp$.

Define P_r and P_b to be the degree distribution of the resultant network and Barabási-Albert respectively. Suppose we want to find $P_r(\text{deg} = x)$, we can group all the vertices in Barabási-Albert that are most likely to have degree x after the intersection, i.e. $[kp] = x$. Thus:

$$P_r(\text{deg} = [kp]) \approx \sum_{i=0}^{[1/p]} P_b(\text{deg} = [kp] + i), \quad (3.1)$$

or

$$P_r(\text{deg} = x) \approx \sum_{i=0}^{[1/p]} P_b(\text{deg} = [x/p] + i), \quad (3.2)$$

where $P_b(\text{deg} = k) \sim k^{-3}$ is scale-free.

Note that $P_b(\text{deg} = [x/p] + i) \sim [x/p]^{-3}$ as x/p dominates all values of i. Hence $P_r(\text{deg} = x) \approx [1/p] \cdot [x/p]^{-3}$, implying that the subgraph is also scale-free. However this does not contradict the conclusion of [61] where “the subgraphs of scale-free networks are not scale-free”. What Stumpf had done was to derive a subgraph by removing vertices of a scale-free network whereas in our case it is only the edges of a scale-free network that are removed.

Watts-Strogatz network with Barabási-Albert network: A real-world characteristic that Barabási-Albert ensemble fails to model is the likelihood that vertices tend to cluster together in graphs, i.e. high clustering coefficient. This characteristic can be modeled with a Watts-Strogatz $W_{n,w,q}$ on n vertices where w is the degree of a ring lattice for the initial construction, and q is the rewiring probability.

The union of these networks exhibit real-world statistical properties like power-law degree distribution and high clustering coefficient [46]. Although this time we are not able to analytically determine the properties of the intersection, simulations suggest a power-law-like degree distribution (Fig. 4). Since the clustering coefficient of a subgraph is less than the graph itself, the intersection has low clustering coefficient given that the clustering coefficient of Barabási-Albert network is low.

3.2.2 Interval graphs as Substructure of Multiplex Since each graph in a multiplex is the intersection of interval graphs, i.e. $G^i(V,E_i) \in \mathcal{M} = I_1 \cap \ldots \cap I_m$, thus the set of overlapping edges is also the hyperbox representation of the system. Specifically the set of overlapping edges form the graph $H(V,E_1 \cap \ldots \cap E_m) = (I_1 \cap \ldots \cap I_m) \cap \ldots \cap (I_1 \cap \ldots \cap I_m)$.

Using the same idea as the previous section, we can interpret the boxicity of H as the number of metrics to describe the phenomenon when information follows through all the relationships in the multiplex simultaneously. If H is an interval graph, then there is a linear way for information to follow such that the conditions for all the relationships are met.
For example we have a social multiplex with two types of relationships — work and friends. Suppose there is a rumor regarding a company-wide action like retrenchment and there are discussions (information flow) regarding the situation. Due to the sensitivity/relevance of the issue, the discussions between colleagues are more likely to be close friends too, i.e. the rumor that spread between two people have to be connected in both relationships. Thus the boxicity of H indicates the complexity of such information flow (details in section 4).

4. Information Propagation of Interval Graphs

Information propagation is the behavior in which a property on the vertices is spread across the graph. In the infection model, a vertex passes the property to its neighbors probabilistically at each iteration. This models the behavior of a virus epidemic where there is a probability for an entity to catch the virus from its neighbor [3, 35]. In the influence model, a vertex adopts the property under the influence of its neighbors when the ratio of its neighbors with the property exceeds a threshold. This is used to describe the nature of social trends like product recommendations [8, 34]. Vertices with the information (e.g. infection) are labeled as active vertices (inactive if otherwise).

There is a common notion with these models that information propagate along the edges of the network. However it is not possible in general to consider all the relationships in the system to map the full topology of the network. Thus there is a situation where information flow between non-adjacent vertices. This discontinuous flow of information is often assumed to be the actions of some confounding
variables in the system and is often simulated by passing the information probabilistically to a random non-adjacent vertex [33, 50]. This paper proposes the hyper-boxes representation of a graph as a deterministic linear framework to model the discontinuous flow of information.

4.1 Linear Fine Structures

4.1.1 Overview The linear fine structures of a graph G is the set of m interval graphs $\{I^1(V, E_1), \ldots, I^m(V, E_m)\}$ as hyper-boxes where $G(V, E) = (V, E_1 \cap \ldots \cap E_m)$. The set of edges from the intervals graphs that are not in G, i.e. $E' = (E_1 \cup \ldots \cup E_m) \setminus E$, are the confounding edges unobserved from the graph G. Thus when information propagate through the edges in E', it will appear from the perspective of G that there is a discontinuous flow of information.

In Fig. 2, the box representation of the graph on vertices $\{A, \ldots, F\}$ has boxicity 2. The box (graph) is the intersection of the bottom and left intervals, where box A is enclosed by intervals A^0 and A^00. Suppose interval A^0 (vertex A) is active and infects adjacent interval F^0. Although A^0 and F^0 are adjacent, their respective boxes (vertex) are not adjacent, i.e. A is not adjacent to F. Hence from the perspective of the graph, there is a discontinuous flow of infection between non-adjacent vertices.

For example in a marine food web, a predator feeds on species based on two environment niches — the size of the prey and the depth of the ocean where the predator hunts. Since each of the niches can be expressed as an interval graph, and two predators are in competition if they feed on the same preys, i.e. their hyper-boxes overlaps.

Hypothetically suppose there is an increase of toxin deposits in the ocean and since the toxin builds up in the food chain (bioaccumulation), the toxin level of a fish is proportional to its size. Therefore the spread of the toxin in the ecology will appear discontinuous since the feeding patterns of the deep ocean marine is different from the species near the surface.

This framework does not obscure the context of the propagation’s dynamics with random process, i.e. the flow of the information is well defined either by the flow through E or E'. However the trade-off is the computational intractability to derive the hyper-box representation from a given graph. Thus to demonstrate the discontinuous behavior with this linear model, random interval graphs are first constructed and then their intersection forms the observable graph G.

4.1.2 Evolutionary Interval Graphs An evolutionary interval graph, J_r, parameterized by variable r is to choose the mid-point of the intervals uniformly at random between $[0, 1]$, and assign their length randomly from $[0, 2r]$ [58]. The variable r is also known as the “radius” of the random mid-points. It is similar to the Erdős-Rényi graph where increasing r changes the graph from an empty (sparse) graph to a complete (dense) graph. Similarly there is a phase transition for the evolutionary interval graph where the graph is connected with high probability. This interval graph ensemble allows us to parameterized the model such that the rate of discontinuous flow can be varied.

4.1.3 Phase Transition

THEOREM 4.1 Let J_r be an evolutionary interval graph where the intervals’ length are chosen randomly from $[0, 2r]$. If $\lim_{n \to \infty} nr / \log n > 1$, then with high probability J_r is connected. If otherwise J_r is disconnected [58].

Therefore the threshold of the phase transition is at $r \sim \log n / n$, and the following provides a more detailed structural understanding at the threshold:
THEOREM 4.2 Let J_r be an evolutionary interval graph where the intervals’ length are chosen randomly from $[0, 2r]$. If c is a real constant where $r = (\log n + c)/n$, then
\[\Pr(J_r \text{ is connected}) \rightarrow e^{-e^{-c}}.\] (4.1)

To model the discontinuity of information flow, it is simpler to assume that the graph $G(V,E) = J_1^r \cap \ldots \cap J_m^r$ is connected. Since the edge set of interval graph $E_k \supseteq E$, if G is connected then J_k^r is connected for all k. Therefore to construct a connected graph G, it is necessarily (but insufficient) that the set of evolutionary interval graphs are connected (Corollary 4.1).

COROLLARY 4.1 Let graph $G = J_1^r \cap \ldots \cap J_m^r$, where J_k^r is the k^{th} evolutionary interval graph and its intervals’ length are chosen randomly from $[0, 2r]$.
\[\Pr(G \text{ is connected}) < \Pr(J_1^r \text{ is connected}) \cdot \ldots \cdot \Pr(J_m^r \text{ is connected}) \rightarrow e^{-mc - c},\] (4.2)

where c is a real constant given $r = (\log n + c)/n$.

Since $\lim_{m \to \infty} e^{-mc - c} \to 0$, it is increasing harder to generate a connected graph of increasing dimension from a set of random evolutionary interval graphs with fixed r. Hence in the experiments we incrementally increase r such that the graph is connected for sufficiently large r (Fig. 5).
4.2 Propagation Models

Given a connected graph $G = J_1 \cap \ldots \cap J_N$, the dynamics of the infection model and influence model are applied to one of the interval graphs J_k. For example in the infection model, the active vertices in J_k infect their adjacent inactive vertices with a fixed probability. Since the adjacent vertices in J_k are not necessarily adjacent in G, the discontinuity of information flow can be observed from the perspective of G, which means that information flow is disrupted in G.

4.2.1 Infection Model

The framework of a typical infection model is the process where active vertices can transmit the infection to inactive vertices with a fixed probability per unit time. Concurrently, active vertices can recover at a constant rate. The ratio between the infection rate and the recovery rate determines the spread of the infection (epidemic) across the network. This is also known as the SIR (susceptible-infectious-recovered) process [20].

However in this study the rate of recovery is not relevant at this stage to understand the discontinuous flow of information (infection). This simplification is analogous to the spread of news or gossips across social networks via word of mouth [59]. The rate of infection follows the assumption that an inactive vertex v is more susceptible to be infected if most of its neighbors are active. Thus

$$\Pr(v \text{ will be infected}) = \frac{\text{No. of active neighbors}}{\text{No. of neighbors}}.$$ \hspace{1cm} (4.3)

An instance of discontinuity is when a vertex is infected despite having no active neighbors, i.e. infected with zero probability on Eq. 4.3.

4.2.2 Influence Model

In the influence process, an inactive vertex in a network becomes active if a sufficient ratio of its adjacent vertices are active. At each time step, all inactive vertices update their status based on the number of active vertices in their neighborhood. This is similar to the behavior of fashion trends in social networks where “non-adopters” (inactive) vertices follows the style under the influence of their peers.

Typically a fixed threshold τ is given in the influence model where an inactive vertex becomes active if the ratio of the number of active neighbors to neighbors is greater than τ. Hence much more active vertices are required to influence a high degree vertex than a vertex with fewer neighbors. Therefore it is possible to reach an equilibrium when information no longer spread across the network, where there are insufficient active vertices to influence inactive high degree vertices [40].

Let v be one of the inactive vertex in a network with threshold τ_v and the set of its neighbors be N_v. In the generalized model, each neighbor $u \in N$ has a weighted influence $w_{u,v}$ on vertex v, such that $\sum_{u \in N_v} w_{u,v} = 1$. Hence in each iteration v will be active if

$$\sum_{u \in N'_v} w_{u,v} \geq \tau_v,$$ \hspace{1cm} (4.4)

where N'_v is the set of active neighbors of v.

In the experiments, the following simplifications are assumed. The thresholds for every vertex are equal, i.e. $\tau_1 = \ldots = \tau_n = \tau = 0.5$, and the weighted influence is balance, i.e. $w_{u,v} = 1/|N_v|$. From the perspective of the graph G, if an inactive vertex becomes active despite not fulfilling Eq. 4.4, then this phenomenon is defined as an instance of discontinuity in the information flow. In this model, discontinuity is also defined if v remains inactive even when it is above the threshold.
4.3 Experimental Results

Fig. 6 is a proof of concept that it is possible to simulate any rate of discontinuity with evolutionary interval graphs. We define the rate of discontinuity \(r = 1 \) when the graph is disconnected so that the plot fits a Sigmoid-like function. Moreover if we assume that all the vertices eventually have to be active, then isolated vertices that becomes active must be under the influence of some discontinuity. Regardless it is more meaningful (at this point) to look at the propagation when \(r \) is large.

As \(r \) increases, the graph (from the intersection of all the interval graphs) becomes denser and thus the effects of discontinuity is not apparent. For example under the infection model, a vertex tends to have more neighbors in the interval graph than the graph itself. This affects Eq. 4.3, i.e. the probability that a vertex will be infected from the perspective of the graph is different from the “true” measurement from the perspective of the interval graph.

Although in real-world system, the interval graphs do not necessarily belong to the ensemble of evolutionary interval graphs. The experiments is simply to support the hypothesis that the framework of interval graphs is a deterministic way to model discontinuity in network propagation. However Fig. 6 also allows us to suggest that the greater the boxicity (complexity), the more likely we expect the network to exhibit discontinuity.

The explanation is that it is unlikely (by random chance) the edges in one of the interval graphs to be in all the other interval graphs. Hence the greater the boxicity, the more likely an edge will not be reflected on the graph itself. Therefore there will be many edges from all the interval graphs that are not on the graph and increase the change of discontinuity.

However most importantly it is also possible that the propagation “switch” dimension, i.e. instead of continuing to follow the edges of a particular interval graph, the information can spread via the edges of another interval graph. For example in Fig. 2, information can flow from the horizontal interval \(A' \) to \(B' \) and then “jump” to \(E'' \) via the vertical interval. Thus the greater the boxicity, the more dimensions (degree of freedom) for the propagation to switch about and further increase the rate of discontinuity.

4.4 Discussion

Although in principle interval graphs can be used as a framework to simulate the discontinuity of information propagation, it is important to figure out its role in our existing understanding of Network Science. For example what insights it can deliver that existing models fail to, vice versa. More importantly even if a model fits the data, it must have meaningful contexts to relate to the dynamics of the system.

One of the advantages of a deterministic model is that the simulations can easily be repeatable once the direction of the flow is chosen. This property can be mimic easily by other probabilistic models by choosing a pseudo-random number generator with a fixed seed. However the slight difference is that in our deterministic framework, the dynamics of Eq. 4.3 and Eq. 4.4 can remain probabilistic. This implies this model (as oppose to others) can control the general direction of the information flow, but not the propagation dynamics.

We emphasized that this framework is an alternative and not a replacement for existing models as we understand the subjectivity of embedding relational information in networks. Given that there are meaningful contexts of intervals graphs with complex systems like Ecology and Bioinformatics, we believe that there should be valid applications in the broader scope of Network Science such that this framework aptly models the system. For example time dependent systems like the EEG or fMRI time series of brain networks.
Fig. 6. The rate of discontinuity observed in $G = J_1 \cap \ldots \cap J_m$ when the infection (top plot) dynamics is applied to a random interval graph J_m. Similarly the bottom plot shows the rate of discontinuity when the influence dynamics is applied to a random evolutionary interval graph.
5. “Approximating” Boxicity Using Communities Detection

In the previous sections, we presented an alternative perspective of complexity using interval graphs. However, the applicability for real-world systems will remain limited since to determine a network’s boxicity is an NP-complete problem. Although boxicity can be bounded by the graph’s structure (section 2.4), the bound might not be tight. Moreover, the boxicity of a network is an unstable and non-monotonous function where it fluctuates unpredictably when new edges/nodes are added to the network. Hence the intolerance to experimental errors further challenges the applicability of boxicity.

5.1 Minimum Boxicity of Network from its Communities

We propose that communities detection is a key strategy to resolve the above problems. It is similar to optimizing the Hamiltonian Walk problem by simplifying a network into modular structures [13]. Firstly, the boxicity of a community (induced subgraph) is a simpler problem since it is a smaller network. This can be more meaningful for problems where the understanding of the individual communities is more important than the entire network. Since the boxicity of a graph is at least the boxicity of its subgraph [55], thus:

\[
\text{Lemma 5.1} \quad \text{Boxicity}(G) \geq \max_{C \in G} \text{Boxicity}(g), \text{ where } C \text{ is the set of communities in graph } G.
\]

For instance, there are two communities in the Zachary Karate Club Network with 17 vertices in community A and 16 vertices in community B (Top diagram in Fig. 7). The network is not an interval graph as vertices \{24, 25, 26, 28\} is not chordal (theorem 2.2). Now that the communities are small, we are able to easily deduce that community A has boxicity = 2 and community B has boxicity > 2 (no solution found via exhaustive search).

But given that community B is a planar graph, its boxicity \(\leq 3 \) [63]. This implies the boxicity of community B is 3. Therefore the boxicity of the Zachary Karate Club Network \(\geq 3 \) (lemma 5.1). The bottom diagram in Fig. 7 shows one of the possible hyperbox representations of the communities. Since we have to eventually combine these partial solutions, it will be useful to constrain the partial solutions where the vertices of a community that connects to the other communities have to be aligned along the boundaries of the hyperboxes.

Fig. 8 slightly rearranged the hyperboxes in Fig. 7 such that the boxes at the boundaries the communities can be easily combined. From the figure, we can conclude that it does not take more than 3-dimensions to combine the communities. Hence the boxicity of Zachary Karate Club Network is 3.

5.2 Boxicity of the Communities’ Interaction Network

Lastly, communities detection allows us to look at the problem from a more general perspective. It represents a broad overview on how information flows from one community to another. The complexity (boxicity) of this modular structure is important to understand the information propagation of a network.

This is done by coarsening the network \(G \) with a new network \(H \) where the vertices in \(H \) represents the communities of \(G \), and the vertices in \(H \) are adjacent if and only if their corresponding communities in \(G \) are connected. Since \(H \) is a smaller network than \(G \), the computation of the boxicity of \(H \) is easier. This process can be repeated on \(H \) until we get the desired granularity.

In our previous example, the Zachary Karate Club Network, there is only two communities and they are connected. Hence the coarse network is just a complete graph on two vertices, i.e., an interval graph with boxicity = 1. This implies that the information flow has low complexity where there is a linear flow from one community to another.
5.3 Boxicity with Experimental Noise

The conclusion from the previous example is trivial since there are only two communities. However it is interesting to note that the conclusion remains the same when we remove/add (a small number of) edges from/to the network. These modifications can represent the noise in the experiments and hence more relevant for scientific applications.

The instability of boxicity due to noise is the reason to why Quasi-Interval Graph, Q, was introduced. It is a graph with boxicity > 1 that can be expressed as an interval graph by adding or subtracting some edges as experimental errors from Q. It is useful for systems where there are strong qualitative evidences that they have linear structure [15, 49, 60]. This can be done by finding the minimum number of edges to 1) add to Q [38, 39, 51], 2) remove from Q [32] or 3) a mixture of both types of errors [47]. For example community B in the Zachary Karate Club Network will have boxicity $= 2$ (instead of 3) if vertices 26 and 34 are adjacent (Fig. 7).

However it is still a hard problem to minimize the number of modification over the entire network such that its boxicity is also minimized. Thus is more intuitive and easier to understand the general dynamics of a system with the coarsen network than the precise boxicity of the network.

6. Summary and Discussions

The benefits of interval graphs were presented in various parts of this paper as interval graphs can arise in somewhat unrelated parts of network research. Therefore it is important to consolidate these ideas to understand the role of interval graphs in the bigger field of network science. In particular the connection between network geometry and multiplexes, which are relatively popular research in the recent years, is of interest.

Network geometry typically studies the connectivity of vertices that lies on a given manifold where vertices closer in space are more likely to be connected [2, 10, 67]. It allows us to model networks with real-world characteristics, e.g. scale-free degree distribution and strong clustering, using simple dynamics. In addition placing networks within a topological framework allows us to explore networks with sophisticated ideas like Minkowskii metric [21] and the genus of surfaces [2]. These ideas were also studied with interval graphs in section 2.2 and 2.4.

However the main focus of interval graph is to determine the dimension of a network as a measure of complexity, which is less studied in network science. Clough and Evans compared different citation networks (as directed acyclic graphs) and noticed that the dimension (in Minkowski spacetime) of a network corresponds to the nature of the literature [21]. For example diverse disciplines like court judgments citation network have higher dimension than a focused literature on String Theory. Thus the dimension of a network is an estimation to the number of factors contributing to the citation behavior. This is similar to our motivation to use boxicity as a guideline to bound the number of relationships in a multiplex (section 3.1).

Many papers on multiplexes, model the relationships in a system based on domain knowledge and it can be arbitrary at times. De Domenico et al. showed that many multiplexes in fact over-defined the number of relationships. Therefore we proposed interval graphs as a geometric approach to determine the number of factors in a system contributing to the realization of the network. This is useful as the boxicity/dimension is an important parameter when we need to construct synthetic multiplexes [12, 52] to simulate a system.
Fig. 7. (Top) The Zachary Karate Club Network where communities A and B are the shaded and non-shaded nodes respectively. (Bottom) The hyperbox representation of community A and B. The dashed line represents Community B in 2-dimension (boxicity = 2) if vertex 34 is adjacent to vertex 26. Since it is not, hence we need the third dimension such that the box 34 can overlap box 28 while “bridging over” (bypass) box 26. The boxes are aligned in a way such that vertices that connects to the other communities are near the center. For example the vertices in community A have to route via vertices \{1, 2, 3, 9, 14, 20\} to get to community B. Similarly the vertices in community B have to route via vertices \{10, 28, 29, 31, 32, 33, 34\} to reach community A. Since we divide the network into two smaller communities, this constrain is more sensible when we try to “join” the communities’ hyperboxes.
Fig. 8. The hyperbox representation of the Zachary Karate Club Network. The boxes have to be transformed such that the connection between communities A and B is complete. The dashed line refers to the extension of box 34 to overlap box 28 such that it bypass box 26. The dotted line refers to the extension of box 2 to overlap box 31 such that it bypass box 10. The dot-dashed line refers to the extension of box 32 to overlap box 1 such that it bypass box 3.
The final connection between multiplexes and interval graph is that the intersection of the edge sets in a multiplex forms hyperboxes (section 3.2.2). Given that the statistical properties of overlapping edges (from the intersection of edge sets) in multiplexes are important areas of research [6, 44], it will be equally interesting to study the statistical mechanics of hyperboxes in the future.

Section 4 and 5 present interval graphs in the information propagation and communities detection of networks. Although these topics appear to be unrelated to the above discussions, the main insight is that the non-trivial geometries of networks allow us to have a richer framework to study complex systems. For example, in the case of information propagation, interval graphs provide a possible explanation to the discontinuity of information flow in real systems.

Lastly, we will make a slight deviation from the main topic of interval graphs. For completeness, it will be informative to know that interval graph belongs to an even more general class of graphs known as intersection graphs, where a vertex pair is connected if they have overlapping attributes. Other interesting examples of intersection graphs include circle graph, line graph, and trapezoid graph [48]. Although there are complex network studies on these variants of intersection graphs [27, 43, 56, 66], they are not as extensively studied as interval graphs. Furthermore, in some cases like the trapezoid graph, it is possible to represent the graph as (2-dimensional) interval graphs [28]. Therefore, this paper focuses on interval graphs and hopes that its geometry complements the research on complex networks.

REFERENCES

1. Adiga, A., Chandran, L. & Sivadasan, N. (2014) Lower bounds for boxicity. Combinatorica, 1, 1–25.
2. Aste, T., Gramatica, R. & Di Matteo, T. (2012) Exploring complex networks via topological embedding on surfaces. Physical Review E, 86(3), 036109.
3. Bailey, N. T. et al. (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd.
4. Barabási, A. L. & Albert, R. (1999) Emergence of scaling in random networks. Science, 286, 509–512.
5. Benzer, S. (1959) On the topology of the genetic fine structure. Proceedings of the National Academy of Sciences of the United States of America, 45(11), 1607.
6. Bianconi, G. (2013) Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E, 87, 062806.
7. Biedl, T., Brejová, B., Demaine, E. D., Hamel, A. M., López-Ortiz, A. & Vinař, T. (2004) Finding hidden independent sets in interval graphs. Theoretical Computer Science, 310(1), 287–307.
8. Bikhchandani, S., Hirshleifer, D. & Welch, I. (1992) A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 1, 992–1026.
9. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z. & Zanin, M. (2014) The structure and dynamics of multilayer networks. Physics Reports, 1.
10. Boguñá, M., Papadopoulos, F. & Krioukov, D. (2010) Sustaining the Internet with hyperbolic mapping. Nature Communications, 1(6), 1–8.
11. Booth, K. & Lueker, G. (1976) Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. of Comp. & Sys. Sci.
12. Brödka, F. & Grecki, T. (2014) mLFR Benchmark: Testing Community Detection Algorithms in Multi-layered, Multiplex and Multiple Social Networks.
13. Bui-Xuan, B.-M. & Jones, N. S. (2014) How modular structure can simplify tasks on networks: parameterizing graph optimization by fast local community detection. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 470(2170).
14. Carlisle, M. C. & Lloyd, E. L. (1995) On the k-coloring of intervals. Discrete Applied Mathematics, 59(3), 225–235.
15. Cattin, M.-F., Bersier, L.-F., Banašek-Richter, C., Baltensperger, R. & Gabriel, J.-P. (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature, 427(6977), 835–839.
16. Chandran, L., Das, A. & Shah, C. (2009) Cubicity, boxicity, and vertex cover. *Discrete Math.*, **309**(8), 2488–2496.
17. Chandran, L., Mathew, R. & Sivadasan, N. (2011) Boxicity of line graphs. *Discrete Mathematics*, **311**(21), 2359–2367.
18. Chandran, L. S., Francis, M. C. & Sivadasan, N. (2010) Geometric representation of graphs in low dimension using axis parallel boxes. *Algorithmica*, **56**(2), 129–140.
19. Chen, A. L., Zhang, F. J. & Li, H. (2012) The degree distribution of the random multigraphs. *Acta Mathematica Sinica, English Series*, **28**(5), 941–956.
20. Christley, R. M., Pinchbeck, G. L., Bowers, R. G., Clancy, D., French, N. P., Bennett, R. & Turner, J. (2005) Infection in Social Networks: Using Network Analysis to Identify High-Risk Individuals. *American Journal of Epidemiology*, **162**(10), 1024–1031.
21. Clough, J. R. & Evans, T. S. (2014) What is the dimension of citation space?. *arXiv preprint arXiv:1408.1274*.
22. Cohen, J. E. (1978) *Food webs and niche space*. Monographs in population biology. Princeton Univ. Press.
23. Clough, J. R. & Evans, T. S. (2014) What is the dimension of citation space?. *arXiv preprint arXiv:1408.1274*.
24. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. (2015) Structural reducibility of multilayer networks. *Nature communications*, **6**.
25. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. (2000) Structure of growing networks with preferential linking. *Physical Review Letters*, **85**(21), 4633.
26. Eklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro-Urgal, R., Chacoff, N. P., Dalsgaard, B., Sassi, C., Galetti, M., Guimarães, P. R. et al. (2013) The dimensionality of ecological networks. *Ecology letters*, **16**(5), 577–583.
27. Esperet, L. & Joret, G. (2013) Boxicity of Graphs on Surfaces. *Graphs and Combinatorics*, **29**(3), 417–427.
28. Evans, T. S. & Lambiotte, R. (2009) Line graphs, link partitions, and overlapping communities. *Phys. Rev. E*, **80**, 016105.
29. Felsner, S., Müllner, R. & Wernisch, L. (1997) Trapezoid graphs and generalizations, geometry and algorithms. *Discrete Applied Mathematics*, **74**(1), 13–32.
30. Fishburn, P. C. (1985) Interval graphs and interval orders. *Discrete mathematics*, **55**(2), 135–149.
31. Freeman, L. C. (1983) Spheres, cubes and boxes: Graph dimensionality and network structure. *Social Networks*, **5**(2), 139 – 156.
32. Goldberg, P. W., Cullum, M. C., Kaplan, H. & Shamir, R. (1995) Four strikes against physical mapping of DNA. *Journal of Computational Biology*, **2**(1), 139–152.
33. Gomez Rodriguez, M., Leskovec, J. & Krause, A. (2010) Inferring networks of diffusion and influence. In *Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1019–1028. ACM.
34. Granovetter, M. (1978) Threshold models of collective behavior. *American J. of sociology*, **1**, 1420–1443.
35. Hethcote, H. W. (2000) The mathematics of infectious diseases. *SIAM review*, **42**(4), 599–653.
36. Jordán, F. & Scheuring, I. (2004) Network ecology: topological constraints on ecosystem dynamics. *Physics of Life Reviews*, **1**(3), 139–172.
37. Jungck, J. R., Dick, G. & Dick, A. G. (1982) Computer-assisted sequencing, interval graphs, and molecular evolution. *BioSystems*, **15**(3), 259–273.
38. Kaplan, H. & Shamir, R. (1999) Bounded degree interval sandwich problems. *Algorithmica*, **24**(2), 96–104.
39. Kaplan, H., Shamir, R. & Tarjan, R. E. (1999) Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. *SIAM Journal on Computing*, **28**(5), 1906–1922.
40. Kempe, D., Kleinberg, J. & Tardos, É. (2003) Maximizing the spread of influence through a social network. In *International conference on Knowledge discovery and data mining*, pages 137–146. ACM.
41. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014) Multilayer networks. *Journal of Complex Networks*, **1**.
42. Kolen, A. W., Lenstra, J. K., Papadimitriou, C. H. & Spieksma, F. C. (2007) Interval scheduling: A survey. *Naval Research Logistics (NRL)*, **54**(5), 530–543.
43. Kuramochi, T., Okada, N., Tanikawa, K., Hijikata, Y. & Nishida, S. (2012) Community Extracting Using
Intersection Graph and Content Analysis in Complex Network. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International Conferences on, volume 1, pages 222–229. IEEE.

44. Lee, K.-M., Kim, J. Y., kkw Cho, W., Goh, K.-I. & Kim, I.-M. (2012) Correlated multiplexity and connectivity of multiplex random networks. New Journal of Physics, 14(3), 033027.

45. Lekkerkerker, C. & Boland, J. (1962) Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae, 51(1), 45–64.

46. Lee, C. W. & Jensen, H. J. (2013) Edge union of networks on the same vertex set. Journal of Physics A: Mathematical and Theoretical, 46(24), 245002.

47. Lu, W.-F. & Hsu, W.-L. (2003) A clustering algorithm for interval graph test on noisy data. In Experimental and Efficient Algorithms, pages 195–208. Springer.

48. McKee, T. A. & McMorris, F. R. (1999) Topics in Intersection Graph Theory. Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics.

49. Mouillot, D., Krasnov, B. R. & Poulin, R. (2008) High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89(7), 2043–2051.

50. Myers, S. A., Zhu, C. & Leskovec, J. (2012) Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 33–41. ACM.

51. Natanzon, A., Shamir, R. & Sharan, R. (2000) A polynomial approximation algorithm for the minimum fill-in problem. SIAM Journal on Computing, 30(4), 1067–1079.

52. Nicosia, V., Bianconi, G., Latora, V. & Barthelemy, M. (2013) Growing Multiplex Networks. Phys. Rev. Lett., 111, 058701.

53. Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E. J. & Giles, C. L. (2002) Winners don’t take all: Characterizing the competition for links on the web. Proceedings of the national academy of sciences, 99(8), 5207–5211.

54. Ranola, J. M. O., Ahn, S., Sehl, M. E., Smith, D. J. & Lange, K. (2010) A Poisson model for random multigraphs. Bioinformatics, 26(16), 2004–2011.

55. Roberts, F. S. (1969) On the boxicity and cubicity of a graph. Recent Progress in Combinatorics (W. T. Tutte, ed.), I, 301–310.

56. Rybarczyk, K. (2012) The degree distribution in random intersection graphs. In Challenges at the interface of data analysis, computer science, and optimization, pages 291–299. Springer.

57. Scheinerman, E. (1984) Intersection Classes and Multiple Intersection Parameters of Graphs. Princeton University.

58. Scheinerman, E. R. (1990) An evolution of interval graphs. Discrete Mathematics, 82(3), 287–302.

59. Sela A., O. H. & I., B.-G. (2014) Information Spread in a Connected World. In Proceedings of Collective Intelligence 2014. MIT Boston.

60. Stouffer, D. B., Camacho, J. & Amaral, L. A. N. (2006) A robust measure of food web intervality. Proceedings of the National Academy of Sciences, 103(50), 19015–19020.

61. Stumpf, M. P. H., Wiuf, C. & May, R. M. (2005) Subnets of scale-free networks are not scale-free: Sampling properties of networks. Proc. of the National Academy of Sciences, 102(12), 4221–4224.

62. Sunil Chandran, L. Franci, M. C. & Sivadasan, N. (2008) Boxicity and maximum degree. Journal of Combinatorial Theory, Series B, 98(2), 443–445.

63. Thomassen, C. (1986) Interval representations of planar graphs. Journal of Combinatorial Theory, Series B, 40(1), 9–20.

64. Williams, R. J. & Martinez, N. D. (2000) Simple rules yield complex food webs. Nature, 404(6774), 180–183.

65. Zachary, W. W. (1977) An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.

66. Zhao, J., Yağan, O. & Gligor, V. (2015) Random intersection graphs and their applications in security, wireless communication, and social networks. arXiv preprint arXiv:1504.03161.

67. Zuev, K., Boguñá, M., Bianconi, G. & Krioukov, D. (2015) Emergence of Soft Communities from Geometric Preferential Attachment. Scientific reports, 5.