CASE REPORT

Does oral care contribute to brain activation?: One case of functional near-infrared spectroscopy study in patients with a persistent disturbance of consciousness

Wataru Fujii1,2, Daisuke Kanamori2, Chisato Nagata1, Kiyomi Sakaguchi1 & Risa Watanabe3

1Department of Dental Surgery, Fujita Health University Nanakuri Sanatorium, Tsu, Mie, Japan
2Department of Dental Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
3Department of Dental Surgery, Fujita Health University Hospital, Toyoake, Aichi, Japan

Correspondence
Wataru Fujii, Department of Dental Surgery, Fujita Health University Nanakuri Sanatorium, 424-1 Ohtori, Tsu, Mie 514-1295, Japan. Tel: +81-59-252-1555; Fax: +81-59-252-1383; E-mail: wataru@fujita-hu.ac.jp

Key Clinical Message
We used functional near-infrared spectroscopy (fNIRS) to measure cerebral blood flow during oral care in a patient with persistent disturbance of consciousness. We experienced that cerebral blood flow to frontal area increased during oral care, suggesting that oral care may have a potential role in rehabilitation for the brain.

Keywords
Functional near-infrared spectroscopy, oral care, persistent disturbance of consciousness, prefrontal area.

Introduction
In order to examine the effect of oral care on the brain, we used functional near-infrared spectroscopy (fNIRS) to measure cerebral blood flow in the prefrontal area during oral care in a patient with persistent disturbance of consciousness. With respect to brain activity resulting from oral stimulation, and so on, showed to increase cerebral blood flow in healthy individuals. However, it remains unknown whether oral care contributes to brain activation in patients with persistent disturbance of consciousness. The patient with persistent disturbance of consciousness was a 75-year-old man who had suffered a brain stem infarction 7 months previously. Cerebral blood flow is seen in the prefrontal area during oral care measurements made with a functional near-infrared imaging device. In this report, we experienced that cerebral blood flow to the frontal area increased during oral care, suggesting that oral care may be useful not only for preventing pneumonia and maintaining oral function, but also might have a potential role in rehabilitation for the brain as a whole, by improving the state of consciousness and cognitive function. Our reports suggest that oral care may contribute to brain activation. The fNIRS is useful for measuring variations in cerebral blood flow as a result of oral care.

Oral care and training to improve oral function have been reported to contribute to the prevention of pneumonia, [1, 2] improvement of cognitive function [3], and improvement of nutritional status [4]. With respect to brain activity resulting from oral stimulation, taste stimuli [5], stimulation of the oral cavity by tooth brushing [6], and fitting partial dentures [7] have been shown to increase cerebral blood flow in healthy individuals. However, it remains unknown whether oral care contributes to brain activation in patients with persistent disturbance of consciousness. In order to examine the effect of oral care on the brain, we used fNIRS to measure cerebral blood flow in the prefrontal area during oral care in a patient with persistent disturbance of consciousness, which we report here.

Patient and Methods
The patient was a 75-year-old man who had suffered a brain stem infarction 7 months previously. He was
bedridden with persistent disturbance of consciousness, scoring 4 on the Glasgow Coma Scale (GCS), required total assistance with activities of daily living (ADL), and was unable to communicate even by answering “Yes” or “No.” He was fed via a gastrostomy tube. His mouth contained five remaining maxillary and seven mandibular teeth, and he did not use either upper or lower partial dentures, and anytime open. Everyday oral care was performed with the assistance of a nurse.

Oral care was performed by a dental hygienist and comprised the same oral routine as was normally used, consisting of cleaning the tooth surfaces with a toothbrush, cleaning between the teeth with an interdental brush, cleaning the tongue with a tongue brush, and cleaning the palate and buccal mucosa with a sponge brush. The procedure took ~10 min.

Cerebral blood flow measurements were made with a functional near-infrared imaging device (SMARTNIRS; Shimadzu Corporation, Kyoto, Japan) at three wavelengths: 780, 805, and 830 nm. A forehead holder (Flexible Adjustment Surface Holder [FLASH]; Shimadzu Corporation) was used for the fNIRS probe (Figs. 1, 2). The probe used a 3×7 rectangular grid (30 mm between light transmitters and detectors), which was fitted so that the center of the top row coincided with T3 according to the international 10–20 electrode system, with measurements performed using 32 measurement channels. “Rest” was defined as the resting condition, during which oral care was not performed and variations in oxygenated hemoglobin concentrations (oxyHb) were measured. The time delay in detecting elevated oxyHb associated with neural activity was set at 4 sec in accordance with the Gaussian theorem, on the basis of previous reports [8].

This case report was screened and approved by the ethics committee of our hospital (No. 108). Because the patient was unable to express his wishes himself, measurements were performed after a family member had provided an informed consent in writing as his representative.

Results

Cerebral brain flow in the prefrontal area of a patient with persistent disturbance of consciousness exhibited an increased oxyHb in 19/32 (59.4%) channels, while oral care was being performed, compared with at rest (Fig. 3).

Discussion

Variations in cerebral blood flow

Increased cerebral blood flow in the prefrontal area during oral care was evident in a patient with persistent disturbance of consciousness. This result is similar to the findings of previous functional magnetic resonance imaging (fMRI) and fNIRS studies that have demonstrated that cerebral brain flow increases in healthy individuals during taste stimulation, stimulation of the oral cavity by tooth brushing, and wearing partial dentures. Functional magnetic resonance imaging has also revealed brain activation in patients with persistent disturbance of consciousness similar to that seen in healthy individuals, even...
though this may not be superficially visible [9]. Musicokineti-
netic therapy has also been reported to have improved
the state of consciousness [10]. The prefrontal region has
near connections to the thalamus, other associative
areas, the cingulate gyrus, the nucleus accumbens, and
the lower brain stem, and has been shown to be involved
in a wide range of fields, including reading aloud, calcula-
tions, language acquisition, associative learning, attention
and time perception, emotional expression, goal-directed
behavior, psychological interactions, voluntary movement,
and mastication [11].

In this case, we experienced that cerebral blood flow to
the frontal area increased during oral care, suggesting that
oral care may be useful not only for preventing pneumo-
nia and maintaining oral function, but also might have a
potential role in rehabilitation for the brain as a whole,
by improving the state of consciousness and cognitive
function. Our results also suggest that the investigation
and development of more effective methods of oral care
may be worth pursuing.

Oral care may, however, result in excessive fluctuations
in blood pressure. Increased blood flow to the cerebral
area is also reported to occur during uncomfortable visual
stimulation [12]. In this case, we did not investigate dif-
ferences due to different locations and intensities of stim-
ulation during oral care, and further detailed studies are,
therefore, required. Moreover, since our study only
involved a single patient, further studies should both
examine changes over time in single patients and investi-
gate multiple subjects in a clinical trial.

Usefulness of fNIRS

There have been a few reports of investigations of brain
activity during oral stimulation using fMRI or position
emission tomography (PET); however, these are large
devices and scanning is performed with patients in the
supine position inside the cylinder during measurements,
meaning that they cannot be used for measurements dur-
ing oral care in actual clinical settings. The fNIRS used in
this study is a comparatively small device compared with
fMRI and PET, and is easily operated for measurements
at the bedside and elsewhere [13, 14]. Because measure-
ments are made only with the probe, it is also completely
noninvasive. This means it can be used for measurements
at washbasins and in dental treatment rooms, making it
suitable for clinical use. Changes in cerebral blood flow
during the performance of oral care in everyday situations
can therefore be measured in real time in a way that has
hitherto been impossible, making fNIRS an extremely use-
ful method.

Conclusion

Our case report suggests that oral care may contribute to
brain activation. Moreover, further studies should both
examine changes over time in single patients and investi-
gate multiple subjects in a clinical trial. The fNIRS is use-
ful for measuring variations in cerebral blood flow as a
result of oral care.

Acknowledgment

We wish to thank Imai Y. in Shimadzu Corporation
(Kyoto, Japan) for help in conducting the measurement.

Conflict of Interest

None declared.

References

1. Yoneyama, T., M. Yoshida, T. Matsui, et al. 1999. Oral
care and Pneumonia. Lancet 354:515.
2. Bassim, C. W., G. Gibson, T. Ward, et al. 2008.
Modification of the risk of mortality from pneumonia with
oral hygiene care. J. Am. Geriatr. Soc. 56:1601–1607.
3. Kikutani, T., T. Yoneyama, K. Nishiwaki, et al. 2010. Effect
of oral care on cognitive function in patients with
dementia. Geriatr. Gerontol. Int. 10:327–328.
4. Kikutani, T., R. Enomoto, F. Tamura, et al. 2006. Effects
of oral functional training for nutritional improvement in
Japanese older people requiring long-term care.
Gerodontology 23:93–98.
5. Masako, O., D. Haruka, C. Lester, et al. 2009. Activation in ventro-lateral prefrontal cortex during the act of tasting: an fNIRS study. Neurosci. Lett. 451:129–133.

6. Shimazaki, T., T. Otsuka, S. Akimoto, et al. 2012. Comparison of brain activation via tooth stimulation. J. Dent. Res. 91:759–763.

7. Narita, N., K. Kamiya, K. Yamamura, et al. 2009. Chewing-related prefrontal cortex activation while wearing partial denture prosthesis pilot study. J. Prosthodont. Res. 53:126–135.

8. Jasdzewski, G., G. Strangman, J. Wagner, et al. 2003. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. Neuroimage 20:479–488.

9. Owen, A. M., and M. R. Coleman. 2008. Using neuroimaging to detect awareness in disorders of consciousness. Funct. Neurol. 23:189–194.

10. Noda, R., Y. Maeda, and A. Yoshino. 2004. Therapeutic time window for musicokinetic therapy in a persistent vegetative state after severe brain damage. Brain Inj. 18:509–515.

11. Grafman, J. 2002. Handbook of Neuropsychology, 2nd ed. Elsevier, Amsterdam.

12. Hoshi, Y., J. Huang, S. Kohri, et al. 2011. Recognition of human emotions from cerebral blood flow changes in the frontal region: a study with event-related near-infrared spectroscopy. J. Neuroimaging 21:e94–e101.

13. Taussky, P., B. O’Neal, W. P. Daugherty, et al. 2012. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg. Focus 32: E2.

14. M. J. H., Aries, Coumou, A. D., and J. W. J. Elting, et al. 2012. Near infrared spectroscopy for the detection of desaturations in vulnerable ischemic brain tissue a pilot study at the stroke unit bedside. Stroke 43:1134–1136.