Historical and projected changes in the Southern Hemisphere surface westerlies

Rishav Goyal¹, Alexander Sen Gupta¹, Martin Jucker¹, and Matthew H. England¹

¹University of New South Wales

November 21, 2022

Abstract

Changes to the Southern Hemisphere (SH) surface westerlies not only affect air temperature, storm tracks and precipitation; they are also pivotal in controlling global ocean circulation, ocean heat transport, and ocean carbon uptake. Wind-forced ocean perturbation experiments have commonly applied idealized poleward wind shifts ranging between 0.5 and 10 degrees of latitude, and wind intensification factors of between 10 and 300%. In addition, changes in winds are often prescribed ad-hoc without consistently accounting for physical constraints and can neglect important regional and seasonal differences. Here we quantify historical and future projected SH westerly wind changes based on examination of CMIP5, CMIP6 and reanalysis data. Under a high emission scenario, we find a projected end of 21st Century annual mean westerly wind increase of ~10% and a poleward shift of ~0.8° latitude, although there are also significant seasonal and regional variations.
Historical and projected changes in the Southern Hemisphere surface westerlies

Rishav Goyal1,2,*, Alex Sen Gupta1,2, Martin Jucker1,2 and Matthew H. England1,2

1. Climate Change Research Centre, University of New South Wales, NSW, 2052 Australia
2. ARC Centre of Excellence for Climate Extremes, University of New South Wales, NSW, Australia

*Corresponding author: rishav.goyal@unsw.edu.au

Key points

1. Recent observational record is dominated by internal variability and is not a good indicator of forced changes in the westerlies

2. With reduced mean state biases compared to CMIP5, CMIP6 models provide a more credible estimate of past and future changes in surface westerlies.

3. There are significant regional and seasonal differences in wind changes that need to be considered when simulating past and future trends
Abstract

Changes to the Southern Hemisphere (SH) surface westerlies not only affect air temperature, storm tracks and precipitation; they are also pivotal in controlling global ocean circulation, ocean heat transport, and ocean carbon uptake. Wind-forced ocean perturbation experiments have commonly applied idealized poleward wind shifts ranging between 0.5 and 10 degrees of latitude, and wind intensification factors of between 10 and 300%. In addition, changes in winds are often prescribed ad-hoc without consistently accounting for physical constraints and can neglect important regional and seasonal differences. Here we quantify historical and future projected SH westerly wind changes based on examination of CMIP5, CMIP6 and reanalysis data. Under a high emission scenario, we find a projected end of 21st Century annual mean westerly wind increase of ~10% and a poleward shift of ~0.8° latitude, although there are also significant seasonal and regional variations.

Plain Language Summary

The westerly winds in the Southern Hemisphere have increased in speed and shifted towards Antarctica in the last few decades, and these are projected to intensify and move further poleward in the future. Changes in the westerly winds are of great importance because they control ocean carbon uptake, ocean circulation and ocean heat transport. To understand the impacts of changes in the westerlies on the Southern Ocean, ocean model simulations are often run by artificially increasing and shifting winds towards Antarctica to approximate future changes in the winds. However, there is no consistency in the way these changes are incorporated, with large variations in the applied shift and strengthening. In this study, we quantify recent observed and projected changes in the surface westerlies, aiming
to provide guidance as to what wind perturbations should be applied in ocean models. We further show that the latest generation of coupled climate models provides a more credible estimate of past and future changes in the surface westerly winds.

1. Introduction

The Southern Hemisphere (SH) surface westerlies are the strongest time averaged surface winds on the planet. The surface westerlies affect the distribution of clouds, precipitation and the position and intensity of storm tracks in the Southern Hemisphere high latitudes (e.g. Bracegirdle, 2013; Thompson et al., 2011). Changes in these westerlies also have a strong imprint on ocean circulation including the Atlantic Meridional Overturning (Hall & Visbeck, 2002; Toggweiler et al., 2006; Waugh et al., 2013), water mass formation (Oke & England, 2004), Antarctic sea-ice and ice shelves (Holland et al., 2019), oceanic uptake of heat and carbon (Sen Gupta & England, 2006; Lovenduski et al., 2007; Le Quere et al., 2007) and future changes in the western boundary current extensions (H. Yang et al., 2016).

The surface westerlies in the SH mid-latitudes have intensified and shifted poleward over the past few decades through the combined influence of an increase in greenhouse gases and stratospheric ozone depletion (Arblaster & Meehl, 2006; Thompson et al., 2011), with the latter thought to be the dominant driver for the recent poleward intensification (Roscoe & Haigh, 2007; Drew T Shindell, 2004; Thompson, 2002). While ozone concentrations are expected to recover in the future, the westerly winds are projected to continue to shift poleward and intensify based on high emission climate model experiments. Under these
conditions, the effect of greenhouse gases is expected to dominate the opposing influence of ozone recovery (Thompson et al., 2011). Hence, understanding the impact of changing westerly winds on the ocean circulation remains an ongoing focus of research.

Several studies using ocean and coupled climate models ranging from coarse to eddy permitting resolutions have been conducted in the past to understand the influence of projected 21st Century poleward intensification of the surface westerlies on the Southern Ocean and Antarctica (e.g. Delworth & Zeng, 2008; Frankcombe et al., 2013; Spence et al., 2014). Most of these studies apply an idealized zonally symmetric intensification and/or poleward shift in the westerly winds in the SH extratropics (generally between 40-60°S). These prescribed changes cause significant impacts on various features of the SH, including the distribution of projected sea level rise (Frankcombe et al., 2013), subsurface warming and circulation changes around the Antarctic continental margin (Spence et al., 2014). However, the applied wind changes tend to be idealized and ad hoc, with no common protocol for applying these wind perturbations to ocean models, including the chosen magnitude of the wind shift and its intensification.

To examine the effect of future changes in surface westerlies, previous studies have applied a broad range of poleward shifts and intensifications, with the poleward shift ranging between 0.5 and 10 degrees latitude and wind intensification factors ranging from 10 up to 300%, and sometimes more. Given the wide range of perturbations that have been applied in past studies, some guidance regarding a reasonable estimate of the past and projected changes in the location and strength of the westerly winds in the SH is needed to better facilitate model intercomparison.
In this study, we analyze the historical and projected intensification and poleward shift in the SH surface westerlies across an ensemble of models from the Coupled Model Intercomparison Project 5 & 6 (CMIP5 and CMIP6) along with reanalysis products. We also examine the seasonality and regional variations in these wind stress changes. These details are important for correctly simulating certain aspects of change in the ocean and in Antarctic sea ice. We also examine whether reanalysis products can be used to provide a reliable estimate of the forced anthropogenic change in SH surface westerlies over the last few decades.

2. Data and Methods

Surface monthly averaged zonal winds (at 10m elevation) from the CMIP5 and CMIP6 archives as well as reanalysis products are used to examine the latitude and strength of the SH surface westerlies. Ocean model simulations employ surface winds to calculate both the surface wind stress and air-sea turbulent heat fluxes; both are primary boundary conditions for ocean models. Surface winds also determine sea-ice advection and wind-driven mixed layer deepening and are therefore central to ocean-sea-ice model forcing fields.

Data spanning 1850 through to 2099 from the first ensemble from each of multiple CMIP5 and CMIP6 models are used to provide equal weight to each climate model. Data from pre-industrial control simulations (200-year runs from 27 CMIP5 and 23 CMIP6 models), historical simulations (1850-2005 for CMIP5 and 1850-2014 for CMIP6) and future projections (2006-2099 for CMIP5 and 2015-2099 for CMIP6) are used in this study (Table S1, S2). For the future projections, data from both the intermediate emissions scenario
(Representative Concentration Pathway (RCP) 4.5 for CMIP5 and the Shared Socio-economic Pathway (SSP) 245 for CMIP6) and the high emissions scenario (RCP8.5 for CMIP5 and SSP585 for CMIP6) are analyzed. Both SSP585 (SSP245) and RCP8.5 (RCP4.5) scenarios are designed so that radiative forcing increases by 8.5 W/m2 (4.5 W/m2) by 2100 relative to pre-industrial, although the emission rates of various greenhouse gases are different while achieving the same radiative forcing by 2100 (O’Neill et al., 2016). The differences in high emissions and moderate emissions scenarios arise because of differences in the projected concentrations of greenhouse gases, aerosols and stratospheric ozone.

Reanalysis datasets from 1979-2019 for monthly averaged surface zonal winds (at 10m elevation) from the European Centre for Medium Range Weather Forecasts (ECMWF) Re-analysis (ERA5, Hersbach et al., 2020), and the Japanese reanalysis (JRA-55, Kobayashi et al., 2015) are also analyzed. Because of sparse measurements over the Southern Ocean before the satellite era, reanalysis data before the year 1979 are not considered as they do not provide a reliable estimate of the westerly wind changes over the SH. Even though satellite measurements of winds only started in the late 1980s, satellite measurements of other physical quantities help to appreciably improve the quality of the reanalysis products post 1979. Therefore, the reanalysis wind fields from 1979 on are used in this study. Close agreement was found between ERA-5 and JRA-55 for all analyses presented in this study; hence for simplicity we only present results from the ERA5 reanalysis. We also considered the National Centre for Environmental Prediction-National Centre for Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay et al., 1996), however, in agreement with Marshall (2003), we found that this dataset contains spuriously large trends in high latitude Southern Hemisphere winds that are inconsistent with station-based observations. All data are first
mapped to a common $1^\circ \times 1^\circ$ latitude-longitude grid before conducting the analyses shown below.

The maximum jet strength is defined as the maximum surface zonal wind at each longitude in the SH extratropics between 30-70$^\circ$S (consistent with the definition of Bracegirdle et al., 2013). The position of the westerly jet is then defined as the latitude where the maximum zonal surface wind speed is located at each longitude between 30-70$^\circ$S.

3. Historical Era

A poleward intensification of the SH surface westerlies is found over the last few decades in both models and reanalysis (Fig. 1a, 1b). This poleward intensification can be described as a positive trend in the SAM (Fig. S1) over the last few decades. Based on single forcing experiments, this change has been attributed primarily to stratospheric ozone depletion, with greenhouse gases playing a secondary role (Thompson et al., 2011).

CMIP5 and older generation climate models are known to have a large equatorward bias (Fig. 1a) in the zonal mean location of the SH surface westerlies (Bracegirdle et al., 2013) possibly due to biases in the shortwave cloud forcing in the models as compared to reanalysis (Ceppi et al., 2012). Biases in the shortwave cloud forcing can induce surface temperature anomalies in the midlatitudes which affect the meridional temperature gradient, which in turn affects the mean latitude of the westerlies. Negative biases in shortwave cloud forcing correspond to equatorward biases in the latitude of the westerlies. There is a notable reduction in the equatorward bias (compared to ERA5) in the zonal mean
location of the maximum SH surface westerlies (see also Bracegirdle et al., 2020) reducing
from 1.3° in CMIP5 models down to 0.3° in the CMIP6 multi-model mean, averaged over
1979 to 2005. While the bias has been reduced, two-thirds of models still have a zonal
maximum situated further north than the reanalysis estimate (Fig. 1a). In contrast, the
CMIP5 multi-model mean (MMM) has an almost identical mean strength for the SH surface
westerlies as compared to ERA5, while the CMIP6 MMM is 4% too strong (see Fig. 1b).
When limiting this inter-generational CMIP comparison to include just the subset of models
that are common to both CMIP5 and CMIP6 (i.e., 12 models; see Table S1, S2), we again find
a significant reduction in the equatorward bias (reduced bias of ~0.7° latitude; Fig. S2a). In
contrast, we do not find any significant inter-generational difference in the strength of SH
surface westerlies between CMIP5 and CMIP6 (Fig. S2b).

Studies examining the ocean response to historical changes in surface winds usually rely on
atmospheric reanalyses for their forcing fields. However, changes over the relatively short
reanalysis period may be strongly influenced by internal climate variability and may be a
poor representation of the anthropogenic forced change. To test if the trends in the zonal
mean location and strength in the ERA5 reanalysis lie outside the range of internal climate
variability, a Monte-Carlo analysis was carried out by calculating trends over large numbers
of random 41-year periods from the 200-year pre-industrial control simulations of 50 CMIP
models (27 CMIP5 and 23 CMIP6; Fig. S3). This test assumes that the model variability is
representative of the observed internal climate variability. The trend in the location of the
SH westerlies calculated from the ERA5 reanalysis lies well within the distribution of trends
associated with internal variability. However, the trend in the strength of the westerlies is
unlikely to be explained by internal variability alone (P<0.1). Given the model differences in
the representation of internal variability we repeat the analysis using individual CMIP5 and
CMIP6 models. Similar results are obtained in more than 90% of the models for both the
position and strength of the surface westerlies (Fig. S4-7). A seasonal analysis further finds
that trends in both position and strength and for both model generations are significant in
summer (DJF, Fig. S8, S9). In all other seasons and for both metrics, the reanalysis trends are
within the range expected from internal variability. This is consistent with recent pacemaker
model simulations by Schneider et al. (2015) and Yang et al. (2020), who found that a
substantial component of recent multi-decadal westerly wind variability could be accounted
for in model experiments forced by observed tropical SST variations, independent of
anthropogenic forcing.

Most previous ocean model studies that have examined the effects of SH wind changes
have done so by prescribing zonally symmetric changes in wind latitude and strength (e.g.
Delworth & Zeng, 2008; Downes et al., 2017; Frankcombe et al., 2013; Hogg et al., 2017;
Spence et al., 2014; Waugh et al., 2019). Zonal differences in the changes in SH westerlies
has only been examined in a few studies (e.g. Bracegirdle et al., 2013; Waugh et al., 2020).
The climatological zonal mean location of the surface westerlies is more poleward in the
Pacific and western Indian Ocean compared to the Atlantic and eastern Indian basins (Fig.
2a). This is also a consistent feature in the climate models. In the ERA5 reanalysis, there is
an 8° meridional difference in the most poleward (~56°S) and equatorward locations (~48°S)
of the climatological mean surface westerlies observed over 2000-2019 (Fig. 2a). The CMIP5
MMM shows an equatorward bias in the latitude of the westerlies at all longitudes (Fig. 2a)
consistent with the zonal average analysis (Fig. 1a). However, consistent with the
improvement in the location of the zonal mean climatological surface westerlies, the CMIP6
MMM shows a better agreement with the ERA5 reanalysis at almost all longitudes compared to CMIP5 MMM, although biases of up to 0.9° persist in the region centered south of New Zealand (Fig. 2a).

We next examine recent regional trends in the ERA5 reanalysis to examine whether they can be accounted for by intrinsic variability, or whether they can provide a reliable estimate of the forced signal. To do this, we compute regional trends in the location and strength of surface westerlies in the ERA5 reanalysis, as well as in CMIP5 and CMIP6 models, for the modern period (1979-2019). Major regional differences between ERA5 and modelled trends in the meridional location of the westerlies can be seen (Fig 2b). Regional differences in trends in the meridional location of westerlies from either model generations are not consistent with the ERA5 trends. Indeed, even though the MMM averages over a large component of the internal variability inherent in individual models, we still find no consistency in the regional pattern of trends between the CMIP5 and CMIP6 MMM (Fig 2b). For example, in the east Pacific ERA5 shows a strong positive trend, in contrast to the CMIP5 MMM which shows a negative trend and CMIP6 MMM which has almost no trend (Fig. 2b).

We conclude that over the relatively short reanalysis period (i.e. 41 years from 1979-2019), the regional differences in trends in both the latitude and the strength of westerlies are likely dominated by natural interannual to decadal climate variability. Indeed, because of large intermodel differences, presumably linked to each model’s intrinsic variability, the MMM trends obtained from CMIP5 and CMIP6 are not significant at almost all longitudes (Fig. 2b, 2c).
For the models we extend the above analysis to cover the full 20th Century, to see if robust regional patterns in the trends emerge. Using the longer period for both the CMIP6 and CMIP5 models, similar regional patterns in MMM trends in the position of westerlies are found, with significant poleward trends identified everywhere except in the western Pacific, (Fig. 3b), with spatial correlation coefficient of 0.7 (P<0.05) between CMIP5 and CMIP6 MMM trends. Similar regional patterns are also found in trends in the strength of the westerlies (spatial correlation coefficient of 0.8 (P<0.05) between CMIP5 and CMIP6 MMM trends) with strong trends found in the eastern Indian and western Atlantic Oceans basins (Fig. 3c).

Changes in the zonal mean position and strength of the westerlies also show consistent seasonal differences over the historical time period (1900-1999, Fig. S10). While a poleward shift is found in all four seasons in both CMIP5 and CMIP6 MMM (Fig. S10a), the strongest trends are found during summer and weakest trends during winter (Fig. S10a). Similar seasonality is also found in the wind strength trends, with stronger trends in summer compared to winter (Fig. S10b).

4. Future Projections

Future changes in the SH surface westerlies are expected to be affected by the competing effects of increasing greenhouse gases (GHGs) and stratospheric ozone recovery (Thompson et al., 2011). While both GHGs and ozone have acted in concert in the past, as ozone recovers it is expected that the two effects will tend to cancel each other out in the future (e.g. Eyring et al., 2010; Goyal et al., 2019; Newman et al., 2006). After ozone recovery
stabilizes, it is expected that changes in the westerlies will be largely determined by changes in GHGs.

Projected 21st Century (2000-2099) changes in the high emissions scenario of CMIP5 and CMIP6 show a significant poleward shift (by ~1.5°/100yr latitude in CMIP5 & by 0.8°/100yr in CMIP6 MMM) and intensification (~0.8m/s/100yr in CMIP6 MMM and ~0.7 m/s/100yr in CMIP5 MMM) in the zonal mean location and strength of SH westerlies (Fig. 1, Table S3). As with the historical period, there are also major differences in these trends by season (Fig. 4). In particular, a poleward shift is found in all seasons with the largest shift projected during autumn and summer (compared to only in summer during the historical era), and a weaker shift projected for winter and spring (Fig. 4a, Fig. S10a). Strengthening of the westerlies is also projected in all seasons with the weakest trends in summer, in contrast to the historical era, when summertime trends were the strongest (Fig. 4b, Fig. S10b). As discussed earlier, the projected changes in the SH westerlies are expected to be affected by the competing effects of increasing GHGs and stratospheric ozone recovery. While the effect of GHGs acts in all seasons, stratospheric ozone primarily affects the SH during summer because of the breakdown of the stratospheric polar vortex during spring (Arblaster & Meehl, 2006). Weaker summertime trends in the 21st Century are therefore expected because of the opposing contributions of GHGs and stratospheric ozone forcing in that season (Fig. 4). This suggests that the role of GHGs becomes much more important in the future under a high emission scenario, particularly given the expected recovery of stratospheric ozone. Consistent results are found for projected changes in both the latitude and the strength of westerlies in CMIP5 models, although trends are stronger in the CMIP5 MMM (Fig. 4). It is interesting to note that the projected strengthening of westerlies in the high emission
scenarios of both CMIP5 and CMIP6 models during the 21st Century occurs throughout the year, but is strongest in winter and spring, whereas the projected shift in westerlies is considerably larger in summer and autumn compared to winter and spring (Fig. 4). This is counter to the expectation that the changes in the latitude and strength of westerlies operates in tandem (Bracegirdle et al., 2013), suggesting that different factors might be affecting the projected seasonal trends in both the poleward shift and the strengthening of westerlies in the SH.

In contrast to the high emission scenario, no significant trends are found in the moderate emissions scenario in both CMIP6 (SSP245) and CMIP5 (RCP45) MMM for both the latitude (except during autumn in CMIP5) and strength (except during autumn and spring in CMIP5) of the surface westerlies. In these cases, greenhouse forcing stabilizes at a much lower level and stratospheric ozone forcing can largely compensate the increase in greenhouse gases.

Projected 21st Century trends from CMIP6 models in the latitude of the maximum westerlies also show large regional differences, with the strongest poleward trends over the Atlantic and east Pacific Oceans, and somewhat weaker poleward trends in the Indian Ocean (Fig. 3b). Both CMIP5 and CMIP6 show similar regional patterns in the MMM trends in the meridional location of the westerlies (with a spatial correlation, R=0.83). However, CMIP6 MMM trends in the meridional location are weaker as compared to CMIP5 MMM trends (Fig. 3b). The weaker poleward shift in CMIP6 MMM as compared to CMIP5 MMM is consistent with the reduction in the equatorward bias in the meridional location of westerlies in CMIP6 MMM as compared to CMIP5 MMM, as models with a larger equatorward bias also tend to show a larger projected poleward shift (Bracegirdle et al.,
Significant projected trends in the strength of westerlies under the SSP585 scenario of CMIP6 are evident at all longitudes, with stronger trends centered south of Australia and within the Drake Passage (Fig. 3c). Again, consistent regional patterns are found between both the model generations (R=0.9, Fig. 3c). However, the projected 21st Century trends are stronger in the CMIP5 MMM as compared to CMIP6 MMM in all regions except for the Atlantic (Fig. 3c).

5. Summary and Discussion

In the past a wide range of wind shifts and accelerations have been used to force ocean models in order to examine the response of the Southern Ocean and the Antarctic margin to past and projected changes in SH westerlies. Understanding future changes has also been hampered by the fact that CMIP5 models showed a significant equatorward bias in the location of the SH westerlies. Previous work has shown that projected wind changes are sensitive to the model’s mean state. In particular, models with larger equatorward biases tend to show larger projected poleward wind shifts (Bracegirdle et al., 2013). As such, an anomalous wind shift based on a climate model projection (or from an ensemble of models) will retain a signature of the model’s mean state bias (e.g. Duran et al., 2020).

In this study we found a significant reduction in the equatorward bias in the location of SH westerlies in CMIP6 models as compared to CMIP5 models, with the location of maximum surface westerlies in closer agreement with the position of maximum surface westerlies in the ERA5 reanalysis. Given the sensitivity of model projections to mean state biases, CMIP6 models thus likely offer a more credible estimate of past and future changes in SH westerlies for forcing ocean model simulations. We also found that the reanalysis time
period (41 years from 1979-2019) is too short to provide an estimate of the forced trends in
the SH westerlies, as the trends over this multi-decadal period appear to be strongly
influenced by internal climate variability (see also Schneider et al., 2015; D. Yang et al.,
2020). Moreover, it is likely that any anthropogenic forced component of regional or
seasonal differences in the reanalysis trends is dominated by internal variability. MMM
regional and seasonal trend patterns in both the latitude and strength of the maximum
winds only become consistent between CMIP5 and CMIP6 when considering centennial
time-scale trends.

Based on the discussion above, we can provide a set of recommendations for forcing ocean
model simulations with past and projected changes in SH surface winds: 1) Recent observed
wind trends over the Southern Ocean likely include a substantial component of internal
decadal variability, and thus should not be assumed to be indicative of forced changes
alone. 2) CMIP6 models should be used instead of CMIP5 models for guiding the forcing
used in ocean model simulations, for both past and future changes in the SH westerlies,
given the much reduced mean state biases. 3) Seasonal variations in trends in both the
location and the strength of the westerlies should be considered for simulations where
seasonal changes are important (e.g., for studies examining seasonal changes in mode water
formation, or Antarctic sea ice variability). 4) As ocean circulation is sensitive to the position
of the wind maximum/wind stress curl, prescribed wind forcing should also include regional
variations in surface wind trends. This is particularly relevant for projections where regional
differences in trends can be as large as 150% for the location and 90% for the strength of
the westerlies (Fig. 3b,3c).
While we have focused on ensemble average hindcasts and projections for CMIP5 and CMIP6 simulations, using the multi-model mean to construct zonal-mean wind forcing anomalies presents some problems. For example, only prescribing a zonal wind anomaly is not dynamically consistent if no changes are made to the meridional winds. In addition, the application of a zonal wind perturbation to daily reanalysis fields will distort the geometry of storms. Tapering regions by applying wind anomalies over a particular latitude band in the SH extratropics can also create spurious wind stress curl anomalies (e.g. Maher et al., 2018). One option to minimize these limitations is to use output from individual models as boundary forcing (e.g. Naughten et al., 2018), something commonly done for atmospheric downscaling projects (e.g. Evans et al., 2014). This is a more viable option now that CMIP6 models have minimal equatorward bias in the SH westerlies as compared to CMIP5. Using multiple models would also provide a means to estimate uncertainty in the projections.

Under a high emission scenario, a poleward intensification of the SH surface westerlies is projected to continue in the future despite the projected recovery of stratospheric ozone, because greenhouse gas forcing dominates the future trends across all seasons. We have provided quantitative information on the past and projected future changes in zonal mean position and strength of the surface westerlies over both annual and seasonal time scales (Table S3). This can be used to guide the forcing of idealized ocean model simulations with zonally averaged past and future changes in the SH westerlies.

Data Availability Statements

The datasets analyzed in this study are all publicly available. Data for CMIP5 and CMIP6 models can be obtained from the Earth Systems Grid Federation website.
CMIP5-https://esgf-node.llnl.gov/projects/cmip5/ and CMIP6-https://esgf-node.llnl.gov/projects/cmip6/). ERA5 data can be downloaded from ECMWF website (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5).

Acknowledgements
This study was supported by the Australian Research Council (grants CE170100023, FL150100035). R.G. is supported by the Scientia PhD scholarship from the University of New South Wales. M.H.E. is also supported by the Earth Science and Climate Change Hub of the Australian Government's National Environmental Science Programme (NESP) and the Centre for Southern Hemisphere Oceans Research (CSHOR), a joint research centre between QNLM, CSIRO, UNSW and UTAS. Analysis were conducted on the National Computational Infrastructure (NCI) facility based in Canberra, Australia.

References
Arblaster, J. M., & Meehl, G. A. (2006). Contributions of External Forcings to Southern Annular Mode Trends. Journal of Climate, 19(12), 2896–2905. https://doi.org/10.1175/JCLI3774.1

Austin, J., & Wilson, R. J. (2006). Ensemble simulations of the decline and recovery of stratospheric ozone. Journal of Geophysical Research: Atmospheres, 111(D16). https://doi.org/10.1029/2005JD006907

Bauer, S. E., Tsagaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L., et al. (2020).
Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS
ModelE2.1 contribution to CMIP6. *Journal of Advances in Modeling Earth Systems*, e2019MS001978. https://doi.org/10.1029/2019MS001978

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL-CM6A-LR climate model. *Journal of Advances in Modeling Earth Systems*, e2019MS002010. https://doi.org/10.1029/2019MS002010

Bracegirdle, T J, Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M., Patterson, M., & Rackow, T. (2020). Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5. *Earth and Space Science*, 7(6), e2019EA001065. https://doi.org/10.1029/2019EA001065

Bracegirdle, Thomas J. (2013). Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. *International Journal of Climatology*, 33(4), 843–851. https://doi.org/10.1002/joc.3473

Bracegirdle, Thomas J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N., et al. (2013). Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. *Journal of Geophysical Research: Atmospheres*, 118(2), 547–562. https://doi.org/10.1002/jgrd.50153

Cao, J., Wang, B., Yang, Y.-M., Ma, L., Li, J., Sun, B., et al. (2018). The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. *Geosci. Model Dev.*, 11(7), 2975–2993. https://doi.org/10.5194/gmd-11-2975-2018

Cariolle, D., & Teyssèdre, H. (2007). A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations. *Atmos.*
Ceppi, P., Hwang, Y.-T., Frierson, D. M. W., & Hartmann, D. L. (2012). Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. *Geophysical Research Letters*, 39(19). https://doi.org/10.1029/2012GL053115

Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., et al. (2011). Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. *Atmospheric Chemistry and Physics*, 11(21), 11267–11292. https://doi.org/10.5194/acp-11-11267-2011

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., et al. (2011). Development and evaluation of an Earth-System model – HadGEM2. *Geosci. Model Dev.*, 4(4), 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

Delworth, T. L., & Zeng, F. (2008). Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation. *Geophysical Research Letters*, 35(20), L20708. https://doi.org/10.1029/2008GL035166

Dix, M., Vohralik, P., Bi, D., Rashid, H., Marsland, S., O’Farrell, S., et al. (2013). The ACCESS coupled model: Documentation of core CMIP5 simulations and initial results. *Australian Meteorological and Oceanographic Journal*, 63(1), 83–99. https://doi.org/10.22499/2.6301.006

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., et al. (2011). The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. *Journal of Climate*, 24(13), 3484–3519. https://doi.org/10.1175/2011JCLI3955.1

Downes, S. M., Langlais, C., Brook, J. P., & Spence, P. (2017). Regional Impacts of the Westerly Winds on Southern Ocean Mode and Intermediate Water Subduction. *Journal*
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. *Climate Dynamics, 40*(9), 2123–2165. https://doi.org/10.1007/s00382-012-1636-1

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., et al. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. *Journal of Climate, 25*(19), 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Duran, E. R., England, M. H., & Spence, P. (2020). Surface Ocean Warming Around Australia Driven by Interannual Variability and Long-Term Trends in Southern Hemisphere Westerlies. *Geophysical Research Letters, 47*(9), e2019GL086605. https://doi.org/10.1029/2019GL086605

Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., & Fita, L. (2014). Design of a regional climate modelling projection ensemble experiment - NARClM. *Geoscientific Model Development*. https://doi.org/10.5194/gmd-7-621-2014

Eyring, V., Cionni, I., Bodeker, G. E., Charlton-Perez, A. J., Kinnison, D. E., Scinocca, J. F., et al. (2010). Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. *Atmospheric Chemistry and Physics, 10*(19), 9451–9472. https://doi.org/10.5194/acp-10-9451-2010

Frankcombe, L. M., Spence, P., Hogg, A. M., England, M. H., & Griffies, S. M. (2013). Sea level changes forced by Southern Ocean winds. *Geophysical Research Letters, 40*(21), 5710–5715. https://doi.org/10.1002/2013GL058104
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., et al. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the 476 Coupled Model Intercomparison Project phase 5. *Journal of Advances in Modeling Earth Systems*, 5(3), 572–597. https://doi.org/10.1002/jame.20038

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. *Climate Dynamics*, 16(2), 147–168. https://doi.org/10.1007/s003820050010

Goyal, R., England, M. H., Sen Gupta, A., & Jucker, M. (2019). Reduction in surface climate change achieved by the 1987 Montreal Protocol. *Environmental Research Letters*, 14(12), 124041. https://doi.org/10.1088/1748-9326/ab4874

Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., et al. (2019). Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). *Geosci. Model Dev.*, 12(7), 3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

Hall, A., & Visbeck, M. (2002). Synchronous Variability in the Southern Hemisphere Atmosphere, Sea Ice, and Ocean Resulting from the Annular Mode*. *Journal of Climate*, 15(21), 3043–3057. https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2

Hansen, J., Sato, M., Ruedy, R., Kharecha, P., Lacis, A., Miller, R., et al. (2007). Climate simulations for 1880–2003 with GISS modelE. *Climate Dynamics*, 29(7), 661–696. https://doi.org/10.1007/s00382-007-0255-8

He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., et al. (2019). CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kawase, H., Nagashima, T., Sudo, K., & Nozawa, T. (2011). Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs). Geophysical Research Letters, 38(5). https://doi.org/10.1029/2010GL046402

Kobayashi, S., OTA, Y., HARADA, Y., EBITA, A., MORIYA, M., ONODA, H., et al. (2015). The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001

Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8597

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., et al. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys., 10(15), 7017–7039. https://doi.org/10.5194/acp-10-7017-2010

Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., et al. (2012). CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5(2), 369–411. https://doi.org/10.5194/gmd-5-369-2012

Le Quere, C., Rodenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., et
al. (2007). Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change. Science, 316(5832), 1735–1738. https://doi.org/10.1126/science.1136188

Lee, J., Kim, J., Sun, M.-A., Kim, B.-H., Moon, H., Sung, H. M., et al. (2020). Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). Asia-Pacific Journal of Atmospheric Sciences, 56(3), 381–395. https://doi.org/10.1007/s13143-019-00144-7

Li, F., Orsolini, Y. J., Keenlyside, N., Shen, M.-L., Counillon, F., & Wang, Y. G. (2019). Impact of Snow Initialization in Subseasonal-to-Seasonal Winter Forecasts With the Norwegian Climate Prediction Model. Journal of Geophysical Research: Atmospheres, 124(17–18), 10033–10048. https://doi.org/10.1029/2019JD030903

Lovenduski, N. S., Gruber, N., Doney, S. C., & Lima, I. D. (2007). Enhanced CO 2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochemical Cycles, 21(2). https://doi.org/10.1029/2006GB002900

Maher, N., England, M. H., Gupta, A. Sen, & Spence, P. (2018). Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal. Climate Dynamics. https://doi.org/10.1007/s00382-017-3923-3

Marshall, G. J. (2003). Trends in the Southern Annular Mode from Observations and Reanalyses. Journal of Climate, 16(24), 4134–4143. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., et al. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4(3), 723–757. https://doi.org/10.5194/gmd-4-723-2011

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019).
Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. *Journal of Advances in Modeling Earth Systems, 11*(4), 998–1038. https://doi.org/10.1029/2018MS001400

Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., & Hellmer, H. H. (2018). Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios. *Journal of Climate, 31*(13), 5243–5261. https://doi.org/10.1175/JCLI-D-17-0854.1

Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., & Schauffler, S. M. (2006). When will the Antarctic ozone hole recover? *Geophysical Research Letters, 33*(12), 1–5. https://doi.org/10.1029/2005GL025232

O’Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., et al. (2014). Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. *Geosci. Model Dev., 7*(1), 41–91. https://doi.org/10.5194/gmd-7-41-2014

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. *Geoscientific Model Development, 9*(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

Oke, P. R., & England, M. H. (2004). Oceanic Response to Changes in the Latitude of the Southern Hemisphere Subpolar Westerly Winds. *Journal of Climate, 17*(5), 1040–1054. https://doi.org/10.1175/1520-0442(2004)017<1040:ORTCIT>2.0.CO;2

Rong, X., Li, J., Chen, H., Xin, Y., Su, J., Hua, L., et al. (2018). The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. *Journal of Meteorological Research, 32*(6), 839–861. https://doi.org/10.1007/s13351-018-8058-x

Roscoe, H. K., & Haigh, J. D. (2007). Influences of ozone depletion, the solar cycle and the
QBO on the Southern Annular Mode. *Quarterly Journal of the Royal Meteorological Society*, 133(628), 1855–1864. https://doi.org/10.1002/qj.153

Rotstayn, L. D., Jeffrey, S. J., Collier, M. A., Dravitzki, S. M., Hirst, A. C., Syktus, J. I., & Wong, K. K. (2012). Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. *Atmos. Chem. Phys.*, 12(14), 6377–6404. https://doi.org/10.5194/acp-12-6377-2012

Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., et al. (2006). Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. *Journal of Climate*, 19(2), 153–192. https://doi.org/10.1175/JCLI3612.1

Schneider, D. P., Deser, C., & Fan, T. (2015). Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds. *Journal of Climate*, 28(23), 9350–9372. https://doi.org/10.1175/JCLI-D-15-0090.1

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al. (2019). Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. *Journal of Advances in Modeling Earth Systems*, 11(12), 4182–4227. https://doi.org/10.1029/2019MS001791

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., et al. (2019). UKESM1: Description and Evaluation of the U.K. Earth System Model. *Journal of Advances in Modeling Earth Systems*, 11(12), 4513–4558. https://doi.org/10.1029/2019MS001739

Semmler, A.-T., Danilov, S., Gierz, P., Goessling, H., Hegewald, J., Hinrichs, C., et al. (2020). Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. *Earth and Space Science Open Archive*. https://doi.org/10.1002/essoar.105001538.1
Sen Gupta, A., & England, M. H. (2006). Coupled Ocean–Atmosphere–Ice Response to Variations in the Southern Annular Mode. *Journal of Climate, 19*(18), 4457–4486. https://doi.org/10.1175/JCLI3843.1

Shindell, D T, Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., et al. (2013). Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations. *Atmos. Chem. Phys.*, *13*(5), 2653–2689. https://doi.org/10.5194/acp-13-2653-2013

Shindell, Drew T. (2004). Southern Hemisphere climate response to ozone changes and greenhouse gas increases. *Geophysical Research Letters, 31*(18), L18209. https://doi.org/10.1029/2004GL020724

Spence, P., Griffies, S. M., England, M. H., Hogg, A. M., Saenko, O. A., & Jourdain, N. C. (2014). Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. *Geophysical Research Letters, 41*(13), 4601–4610. https://doi.org/10.1002/2014GL060613

Stouffer, R. (2019). U of Arizona MCM-UA-1-0 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2421

Swart, N. C., Cole, J. N. S., Kharin, V. V, Lazare, M., Scinocca, J. F., Gillett, N. P., et al. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3). *Geosci. Model Dev.*, *12*(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Fortems-Cheiney, A., et al. (2013). Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. *Climate Dynamics, 40*(9), 2223–2250. https://doi.org/10.1007/s00382-012-1408-y

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogoshi, K., Takemura, T., et al. (2019). Description and basic evaluation of simulated mean state, internal variability, and
climate sensitivity in MIROC6. *Geosci. Model Dev.*, 12(7), 2727–2765.

https://doi.org/10.5194/gmd-12-2727-2019

Thompson, D. W. J. (2002). Interpretation of Recent Southern Hemisphere Climate Change. *Science*, 296(5569), 895–899. https://doi.org/10.1126/science.1069270

Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., & Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. *Nature Geoscience*, 4(11), 741–749. https://doi.org/10.1038/ngeo1296

Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO₂, and climate change during the ice ages. *Paleoceanography*, 21(2).

https://doi.org/10.1029/2005PA001154

Vichi, M., Navarra, A., & Fogli, P. G. (2013). Adjustment of the natural ocean carbon cycle to negative emission rates. *Climatic Change*, 118(1), 105–118.

https://doi.org/10.1007/s10584-012-0677-0

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., et al. (2013). The CNRM-CM5.1 global climate model: description and basic evaluation. *Climate Dynamics*, 40(9), 2091–2121. https://doi.org/10.1007/s00382-011-1259-y

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. *Journal of Advances in Modeling Earth Systems*, 11(7), 2177–2213. https://doi.org/10.1029/2019MS001683

Volodin, E., & Gritsun, A. (2018). Simulation of observed climate changes in 1850-2014 with climate model INM-CM5. *Earth System Dynamics*, 9(4), 1235–1242.

https://doi.org/10.5194/esd-9-1235-2018

Volodin, E M, Dianskii, N. A., & Gusev, A. V. (2010). Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations.
Volodin, Evgenii M, Mortikov, E. V, Kostrykin, S. V, Galin, V. Y., Lykossov, V. N., Gritsun, A. S., et al. (2018). Simulation of the modern climate using the INM-CM48 climate model. *Russian Journal of Numerical Analysis and Mathematical Modelling*, 33(6), 367–374. https://doi.org/https://doi.org/10.1515/rnam-2018-0032

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., et al. (2011). MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. *Geosci. Model Dev.*, 4(4), 845–872. https://doi.org/10.5194/gmd-4-845-2011

Waugh, D. W., Primeau, F., DeVries, T., & Holzer, M. (2013). Recent Changes in the Ventilation of the Southern Oceans. *Science*, 339(6119), 568–570. https://doi.org/10.1126/science.1225411

Waugh, D. W., McC. Hogg, A., Spence, P., England, M. H., & Haine, T. W. N. (2019). Response of Southern Ocean Ventilation to Changes in Midlatitude Westerly Winds. *Journal of Climate*, 32(17), 5345–5361. https://doi.org/10.1175/JCLI-D-19-0039.1

Waugh, D. W., Banerjee, A., Fyfe, J. C., & Polvani, L. M. (2020). Contrasting recent trends in Southern Hemisphere Westerlies across different ocean basins. *Earth and Space Science Open Archive*. https://doi.org/10.1002/essoar.10503156.1

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., et al. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. *Geoscientific
Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., et al. (2020). Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. *Geoscientific Model Development, 13*(3), 977–1005. https://doi.org/10.5194/gmd-13-977-2020

Yang, D., Arblaster, J. M., Meehl, G. A., England, M. H., Lim, E.-P., Bates, S., & Rosenbloom, N. (2020). Role of Tropical Variability in Driving Decadal Shifts in the Southern Hemisphere Summertime Eddy-Driven Jet. *Journal of Climate, 33*(13), 5445–5463. https://doi.org/10.1175/JCLI-D-19-0604.1

Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., & Liu, J. (2016). Intensification and poleward shift of subtropical western boundary currents in a warming climate. *Journal of Geophysical Research: Oceans, 121*(7), 4928–4945. https://doi.org/10.1002/2015JC011513

Yukimoto, S., Adachi, Y., Hosaka, M., Tomonori, S., Yoshimura, H., Hirabara, M., et al. (2012). A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3; Model Description and Basic Performance; *Journal of the Meteorological Society of Japan, 90A*, 23–64. https://doi.org/10.2151/jmsj.2012-A02

Yukimoto, S., Hideaki, K., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., et al. (2019). The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. *Journal of the Meteorological Society of Japan. Ser. II, advpub*. https://doi.org/10.2151/jmsj.2019-051
Figure 1 | Position (panel a) and strength (panel b) of maximum Southern Hemisphere surface westerly winds for CMIP5, CMIP6 models and ERA5. Thick lines represent multi-model mean and the shading indicates the inter-quartile range based on CMIP5 and CMIP6 ensembles. Red dotted line represents 5-year running mean jet latitude and strength from the ERA-5 reanalysis from 1979-2019.
Figure 2 | Zonal differences in the wind latitude and strength in CMIP5, CMIP6 and ERA5.

Panel a) shows the mean jet position for 2000-2019. Panel b) and c) respectively show the 1979-2019 trends in westerly jet shift and strength. Solid black and blue lines in panels b) and c) represent multi-model mean from CMIP5 and CMIP6 respectively and shading represents the inter-quartile range. White circles represent the regions where trends are significant.
Figure 3 | Past and projected zonal and seasonal differences in wind latitude and strength in CMIP5 and CMIP6 models. Panel a) shows the multi-model mean jet position during the pre-industrial scenario (1860-1880 average), historical (1980-1999 average) and SSP5-8.5 (2080-2099 average). Panel b) and c) respectively show the trends in latitude and strength of
westerlies during the 20th (1900-1999) and 21st (2000-2099) Century. Solid lines in panels b) and c) represent multi-model mean and shading represents inter-quartile range from CMIP6 models. White circles show the locations where trends are significant. Black dots on solid red lines in panels b) and c) represent the locations where trends during the 21st Century are significantly different from trends during the 20th Century. Panels d) and e) respectively show trends in maximum zonally averaged zonal wind location and strength calculated over 2000-2099. Colored bars in panels d) and e) represent multi-model mean trends, circles represent the multi-model median and dashed bars represent the inter-quartile range.
Historical and Projected changes in the Southern Hemisphere surface westerlies

Rishav Goyal¹,²*, Alex Sen Gupta¹,², Martin Jucker¹,², Matthew H. England¹,²

1. Climate Change Research Centre, University of New South Wales, NSW, 2052 Australia
2. ARC Centre of Excellence for Climate Extremes, University of New South Wales, NSW, Australia

Contents of this file

Figures S1 to S10
Tables S1 to S3

*Corresponding author: rishav.goyal@unsw.edu.au
Figure S1 | Southern Annular Mode (SAM) index in CMIP5, CMIP6 models and reanalysis.

SAM index is defined as the difference in the normalized zonal mean sea level pressure between 40°S and 65°S. Thick grey and black lines respectively represent the SAM index for CMIP5 and CMIP6 multi-model mean for historical period (1900-2005 for CMIP5 and 1900-2014 for CMIP6). Thick light blue and orange lines represent the multi-model mean for RCP4.5 and RCP8.5 scenarios of CMIP5 respectively. Thick blue and red lines respectively represent the multi-model mean for SSP245 and SSP585 scenario of CMIP6. Shading around the multi-model mean shows the inter-quartile range from multiple CMIP5 and CMIP6 models. Thin orange line represents 5-year running mean SAM index calculated from ERA-5 reanalysis.
Figure S2 | Zonal mean westerly jet location (panel a) and strength (panel b) in models from common modelling groups from CMIP5 and CMIP6. Details about the models used is given in table S1 and S2.
Figure S3 | Histogram represents the probability density function of 41-year annual mean trends calculated from pre-industrial control simulations from 28 CMIP5 and 23 CMIP6 models (200 years for each model). Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. All the 41-year trends from each model (10,000 for each model) are then concatenated and probability density function is plotted. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S4 | Histogram represents the probability density function of 41-year annual mean trends in the zonal mean location of SH westerlies calculated from the pre-industrial control simulations from 27 CMIP5 models (200 years for each model). Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S5 | Histogram represents the probability density function of 41-year annual mean trends in the zonal mean strength of SH westerlies calculated from the pre-industrial control simulations from 27 CMIP5 (200 years for each model). Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S6 | Histogram represents the probability density function of 41-year annual mean trends in the zonal mean location of SH westerlies calculated from the pre-industrial control simulations from 23 CMIP6 models (200 years for each model). Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S7 | Histogram represents the probability density function of 41-year annual mean trends in the zonal mean strength of SH westerlies calculated from the pre-industrial control simulations from 23 CMIP6 models (200 years for each model). Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S8 | Histogram represents the probability density function of 41-year trends in the zonal mean location of SH westerlies calculated from pre-industrial control simulations from 28 CMIP5 and 23 CMIP6 models (200 years for each model) for each season. Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. All the 41-year trends from each model (10,000 for each model) are then concatenated and probability density function is plotted. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S9 | Histogram represents the probability density function of 41-year trends in the zonal mean strength of SH westerlies calculated from pre-industrial control simulations from 28 CMIP5 and 23 CMIP6 models (200 years for each model) for each season. Monte Carlo method is used to calculate the trend over a random chunk of 41 years of data from 200-year simulation of each model and the process is repeated 10,000 times for each model. All the 41-year trends from each model (10,000 for each model) are then concatenated and probability density function is plotted. Dashed blue line represents the trend calculated from ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines represent 5th and 95th percentile (i.e. bounds for 90% confidence) of the density function. The trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line does not fall between the two dotted black lines.
Figure S10 | Historical seasonal trends in position and strength in maximum zonal winds.

Trends in maximum zonally averaged zonal wind latitude (panel a) strength (panel b) over historical (1900-1999) for CMIP5 and CMIP6 models. Colored bars represent multi-model mean trends, circles represent the multi-model median and dashed bars represent the inter-quartile range.
Table S1 | CMIP5 models used in the study. Models marked with asterisk are the models used for comparison between CMIP5 and CMIP models

Model	Modeling Center	Scenario	Scenario	Scenario	Scenario		
		Historical	RCP4.5	RCP8.5	Ozone dataset reference	Main reference	
CanESM2	Canadian Centre for Climate Modeling and Analysis, Canada	✓	✓	✓	(Cionni et al., 2011)	(von Salzen et al., 2013)	
CMCC-CESM	Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy	✓	✓	✓	(Cionni et al., 2011)	(Vichi et al., 2013)	
CMCC-CM		✓	✓	✓	(Cionni et al., 2011)	(Vichi et al., 2013)	
CMCC-CMS		✓	✓	✓	(Cionni et al., 2011)	(Vichi et al., 2013)	
CNRM-CM5-2	Centre National de Recherches Meteorologiques, France	✓	-	-	(Carolle & Teyssèdre, 2007)	(Voldoire et al., 2013)	
CNRM-CM5		✓	-	-	(Carolle & Teyssèdre, 2007)	(Voldoire et al., 2013)	
INMCM4*	Russian Institute for Numerical Mathematics, Russia	✓	✓	✓	(Cionni et al., 2011)	(E M Volodin et al., 2010)	
IPSL-CM5A-LR*	Institut Pierre Simon Laplace, France	✓	✓	✓	(Szopa et al., 2013)	(Dufresne et al., 2013)	
IPSL-CM5A-MR		✓	✓	✓	(Szopa et al., 2013)	(Dufresne et al., 2013)	
IPSL-CM5B-LR		✓	✓	✓	(Szopa et al., 2013)	(Dufresne et al., 2013)	
MIROC-ESM-CHEM	Japan Agency for Marine-Earth Science and Technology,	✓	✓	✓	(Watanabe et al., 2011)	(Watanabe et al., 2011)	
MIROC-ESM	Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan	✓	✓	✓	(Watanabe et al., 2011)	(Watanabe et al., 2011)	
MIROC5*	Japan	✓	✓	✓	(Kawase et al., 2011)	(Watanabe et al., 2011)	
HadGEM2-CC	Met Office Hadley Centre, UK	-	✓	✓	(Cionni et al., 2011; Jones et al., 2011)	(Martin et al., 2011)	
HadGEM2-ES		-	✓	✓	(Jones et al., 2011; O’Connor et al., 2014)	(Collins et al., 2011)	
HadCM3		✓	-	-	(Cionni et al., 2011; Jones et al., 2011)	(Gordon et al., 2000)	
HadGEM2-AO		✓	✓	✓	(Cionni et al., 2011; Jones et al., 2011)	(Martin et al., 2011)	
MPI-ESM-LR*	Max Planck Institute for Meteorology, Germany	✓	-	-	(Cionni et al., 2011; Jones et al., 2011)	(Giorgetta et al., 2013)	
MPI-ESM-MR*		✓	✓	✓	(Cionni et al., 2011; Jones et al., 2011)	(Giorgetta et al., 2013)	
MPI-ESM-P		✓	✓	✓	(Cionni et al., 2011; Jones et al., 2011)	(Giorgetta et al., 2013)	
MRI-CGCM3	Meteorological Research Institute, Japan Norwegian Climate Centre, Norway	✓	✓	✓	(Cionni et al., 2011)	(Yukimoto et al., 2012)	
NorESM1-M*		✓	-	-	(Lamarque et al., 2010, 2012)	(Iversen et al., 2013)	
NorESM1-ME		✓	✓	✓	(Lamarque et al., 2010, 2012)	(Iversen et al., 2013)	
MRI-ESM1*		✓	-	✓	(Cionni et al., 2011)	(Yukimoto et al., 2012)	
Model	Institution & Location	Baseline	Observation	Historical	Notes		
--------------------	---	----------	-------------	------------	---		
GISS-E2-H-CC*	NASA Goddard Institute for Space Studies, USA	✓	✓	✓	(Shindell et al., 2013)	(Schmidt et al., 2006)	
GISS-E2-H*		✓	✓	✓	(Hansen et al., 2007)	(Schmidt et al., 2006)	
GISS-E2-R-CC		✓	✓	✓	(Shindell et al., 2013)	(Schmidt et al., 2006)	
GISS-E2-R*		✓	✓	✓	(Hansen et al., 2007)	(Schmidt et al., 2006)	
GFDL-CM2p1	NOAA Geophysical Fluid Dynamics Laboratory, USA	✓	-	-	(Austin & Wilson, 2006; Horowitz et al., 2003)	(Donner et al., 2011)	
GFDL-CM3*		✓	✓	✓		(Cionni et al., 2011)	(Donner et al., 2011)
GFDL-ESM2G*		✓	✓	✓		(Cionni et al., 2011)	(Dunne et al., 2012)
GFDL-ESM2M		✓	✓	✓		(Cionni et al., 2011)	(Dunne et al., 2012)
ACCESS1-0	Centre for Australian Weather and Climate Research, Australia	✓	✓	✓		(Cionni et al., 2011)	(Dix et al., 2013)
ACCESS1-3		✓	✓	✓		(Cionni et al., 2011)	(Dix et al., 2013)
CSIRO-Mk-3-6-0	Organization in collaboration with Queensland Climate Change Centre of Excellence, Australia	✓	✓	✓		(Cionni et al., 2011)	(Rotstayn et al., 2012)
Model	Modeling Centre	Scenario	Historical	SSP2-4.5	SSP5-8.5	Main reference	
---------------	--	----------	------------	----------	----------	--	
AWI-CM-1-1-MR	Alfred Wegener Institute and Helmholtz Centre for Polar and Marine Research, Germany		-			(Semmler et al., 2020)	
BCC-CSM2-MR	Beijing Climate Centre, China		-			(Wu et al., 2019)	
BCC-ESM1	Beijing Climate Centre, China					(Wu et al., 2020)	
CAMS-CSM1-0	Chinese Academy of Meteorological Sciences, China					(Rong et al., 2018)	
FGOALS-f3-L	Chinese Academy of Sciences, China					(He et al., 2019)	
CanESM5	Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change		-			(Swart et al., 2019)	
CNRM-CM6-1-HR	CNRM (Centre National de Recherches Meteorologiques) and CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique), France		-			(Voldoire et al., 2019)	
CNRM-CM6-1	CNRM (Centre National de Recherches Meteorologiques) and CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique), France		-			(Voldoire et al., 2019)	
CNRM-ESM2-1	CNRM (Centre National de Recherches Meteorologiques) and CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique), France		-			(Séférian et al., 2019)	
MPI-ESM1-2-HAM	ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland					(Gutjahr et al., 2019)	
INM-CM4-8*	Institute for Numerical Mathematics, Russian Academy of Science, Russia					(Eugenii M Volodin et al., 2018)	
INM-CM5-0	Institut Pierre Simon Laplace, France		-			(E. Volodin & Gritsun, 2018)	
IPSL-CM6A-LR*	Institut Pierre Simon Laplace, France		-			(Boucher et al., 2020)	
MIROC6*	JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Japan), NIES (National Institute for Environmental Studies, Japan), and R-CCS (RIKEN Centre for Computational Science, Japan)					(Tatebe et al., 2019)	
MPI-ESM1-2-HR*	Max Planck Institute for Meteorology, Germany; Deutsches Klimarechenzentrum, Germany; Deutscher Wetterdienst, Germany					(Gutjahr et al., 2019)	
MPI-ESM1-2-LR*	Max Planck Institute for Meteorology, Germany and Alfred Wegener Institute and Helmholtz Centre for Polar and Marine Research, Germany					(Mauritsen et al., 2019)	
MRI-ESM2-0*	Meteorological Research Institute, Japan				-	(Yukimoto et al., 2019)	
GISS-E2-1-G-CC*	NASA-GISS (Goddard Institute for Space Studies), USA		-		-	(Bauer et al., 2020)	
GISS-E2-1-G*	NASA-GISS (Goddard Institute for Space Studies), USA		-		-	(Bauer et al., 2020)	
GISS-E2-1-H*	NASA-GISS (Goddard Institute for Space Studies), USA		-		-	(Bauer et al., 2020)	
Model	Description	E-Val	MO-Val	F-Val	Reference		
--------------	--	-------	--------	-------	----------------------------		
NorCPM1*	NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research), MET-Norway (Norwegian Meteorological Institute), NERSC (Nansen Environmental and Remote Sensing Center), NILU (Norwegian Institute for Air Research), UiB (University of Bergen), UiO (University of Oslo) and UNI (Uni Research), Norway	✓	-	-	(Li et al., 2019)		
KACE-1-0-G	National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Republic of Korea	✓	-	-	(Lee et al., 2020)		
GFDL-CM4*	National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, USA	✓	✓	✓	(Held et al., 2019)		
GFDL-ESM4*	National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, USA	✓	✓	✓	(Krasting et al., 2018)		
NESM3	Nanjing University of Information Science and Technology, China	✓	✓	✓	(Cao et al., 2018)		
MCM-UA-1-0	Department of Geosciences, University of Arizona, USA	✓	✓	✓	(Stouffer, 2019)		
UKESM1-0-LL	Met Office Hadley Centre, UK; Natural Environment Research Council, UK; National Institute of Meteorological Sciences/Korea Meteorological Administration, Republic of Korea; National Institute of Water and Atmospheric Research, New Zealand	-	✓	✓	(Sellar et al., 2019)		
Table S3 | Annual and seasonal trends in the westerly jet shift and strength during the 20th and 21st Century in CMIP5 and CMIP6 models.

Trends are shown as multi-model mean trend ± one standard deviation. Trends are represented from CMIP5 models (not inside brackets) and from CMIP6 models (inside brackets). Trends in red are from 2000-2099 in RCP8.5 (CMIP5) and SSP5-8.5 (CMIP6) and in blue from 2000-2099 in RCP4.5 (CMIP5) and SSP2-4.5 (CMIP6). Bold values represent trends which are significant at 95% confidence level.

	Annual	DJF	MAM	JJA	SON
Shift (° latitude)					
1900-1999	-0.47 ± 0.37	-0.73 ± 0.7	-0.63 ± 0.55	-0.12 ± 0.58	-0.29 ± 0.71
	(-0.46 ± 0.36)	(-0.73 ± 0.53)	(-0.36 ± 0.49)	(-0.16 ± 0.47)	(-0.54 ± 0.77)
Strength (m/s)	0.17 ± 0.08	0.2 ± 0.15	(0.21 ± 0.14)	0.15 ± 0.16	0.12 ± 0.21
	(0.14 ± 0.09)	(0.18 ± 0.15)	(0.10 ± 0.15)	(0.11 ± 0.13)	(0.18 ± 0.15)
2000-2099	-1.62 ± 0.86	-1.9 ± 1.22	-2.24 ± 1.22	-0.7 ± 1.05	-0.81 ± 1.2
	(-1.54 ± 0.82)	(-1.18 ± 1.02)	(-1.45 ± 1.25)	(-0.31 ± 1.17)	(-0.07 ± 1.6)
	-0.56 ± 0.89	-0.42 ± 1.29	-0.85 ± 0.92	-0.28 ± 0.97	-0.11 ± 1.09
	(-0.46 ± 0.99)	(0.25 ± 1.85)	-0.28 ± 1.38	(-0.16 ± 0.99)	0.15 ± 1.34
Strength (m/s)	0.79 ± 0.52	0.49 ± 0.56	0.70 ± 0.51	0.83 ± 0.6	0.82 ± 0.60
	(0.66 ± 0.46)	(0.47 ± 0.43)	(0.68 ± 0.43)	(0.74 ± 0.64)	(0.74 ± 0.53)
	0.24 ± 0.37	0.08 ± 0.48	0.25 ± 0.50	0.34 ± 0.46	0.24 ± 0.47
	(0.21 ± 0.46)	(0.12 ± 0.39)	(0.22 ± 0.48)	(0.23 ± 0.62)	(0.27 ± 0.50)
References

Austin, J., & Wilson, R. J. (2006). Ensemble simulations of the decline and recovery of stratospheric ozone. *Journal of Geophysical Research: Atmospheres, 111*(D16).
https://doi.org/10.1029/2005JD006907

Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L., et al. (2020). Historical (1850-2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. *Journal of Advances in Modeling Earth Systems, e2019MS001978*. https://doi.org/10.1029/2019MS001978

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL-CM6A-LR climate model. *Journal of Advances in Modeling Earth Systems, e2019MS002010*. https://doi.org/10.1029/2019MS002010

Cao, J., Wang, B., Yang, Y.-M., Ma, L., Li, J., Sun, B., et al. (2018). The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. *Geosci. Model Dev., 11*(7), 2975–2993. https://doi.org/10.5194/gmd-11-2975-2018

Cariolle, D., & Teyssèdre, H. (2007). A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations. *Atmos. Chem. Phys.*, 7(9), 2183–2196. https://doi.org/10.5194/acp-7-2183-2007

Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., et al. (2011). Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. *Atmospheric Chemistry and Physics, 11*(21), 11267–11292. https://doi.org/10.5194/acp-11-11267-2011

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., et al. (2011). Development and evaluation of an Earth-System model – HadGEM2. *Geosci.*
Dix, M., Vohralik, P., Bi, D., Rashid, H., Marsland, S., O’Farrell, S., et al. (2013). The ACCESS coupled model: Documentation of core CMIP5 simulations and initial results. *Australian Meteorological and Oceanographic Journal, 63*(1), 83–99. https://doi.org/10.22499/2.6301.006

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., et al. (2011). The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. *Journal of Climate, 24*(13), 3484–3519. https://doi.org/10.1175/2011JCLI3955.1

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. *Climate Dynamics, 40*(9), 2123–2165. https://doi.org/10.1007/s00382-012-1636-1

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., et al. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. *Journal of Climate, 25*(19), 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., et al. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. *Journal of Advances in Modeling Earth Systems, 5*(3), 572–597. https://doi.org/10.1002/jame.20038

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. *Climate Dynamics, 16*(2), 147–168.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., et al. (2019). Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). \textit{Geosci. Model Dev.}, 12(7), 3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

Hansen, J., Sato, M., Ruedy, R., Kharecha, P., Lacis, A., Miller, R., et al. (2007). Climate simulations for 1880–2003 with GISS modelE. \textit{Climate Dynamics}, 29(7), 661–696. https://doi.org/10.1007/s00382-007-0255-8

He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., et al. (2019). CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. \textit{Advances in Atmospheric Sciences}, 36(8), 771–778. https://doi.org/10.1007/s00376-019-9027-8

Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J., et al. (2019). Structure and Performance of GFDL’s CM4.0 Climate Model. \textit{Journal of Advances in Modeling Earth Systems}, 11(11), 3691–3727. https://doi.org/10.1029/2019MS001829

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., et al. (2003). A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. \textit{Journal of Geophysical Research: Atmospheres}, 108(D24). https://doi.org/10.1029/2002JD002853

Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., et al. (2013). The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections. \textit{Geosci. Model Dev.}, 6(2), 389–415. https://doi.org/10.5194/gmd-6-389-2013

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., et al. (2011).
The HadGEM2-ES implementation of CMIP5 centennial simulations. *Geosci. Model Dev.*, 4(3), 543–570. https://doi.org/10.5194/gmd-4-543-2011

Kawase, H., Nagashima, T., Sudo, K., & Nozawa, T. (2011). Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs). *Geophysical Research Letters*, 38(5). https://doi.org/10.1029/2010GL046402

Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., et al. (2018). NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8597

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., et al. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. *Atmos. Chem. Phys.*, 10(15), 7017–7039. https://doi.org/10.5194/acp-10-7017-2010

Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., et al. (2012). CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. *Geosci. Model Dev.*, 5(2), 369–411. https://doi.org/10.5194/gmd-5-369-2012

Lee, J., Kim, J., Sun, M.-A., Kim, B.-H., Moon, H., Sung, H. M., et al. (2020). Evaluation of the Korea Meteorological Administration Advanced Community Earth-System model (K-ACE). *Asia-Pacific Journal of Atmospheric Sciences*, 56(3), 381–395. https://doi.org/10.1007/s13143-019-00144-7

Li, F., Orsolini, Y. J., Keenlyside, N., Shen, M.-L., Counillon, F., & Wang, Y. G. (2019). Impact of Snow Initialization in Subseasonal-to-Seasonal Winter Forecasts With the Norwegian Climate Prediction Model. *Journal of Geophysical Research: Atmospheres*, 124(17–18), 10033–10048. https://doi.org/10.1029/2019JD030903
Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., et al. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. *Geoscientific Model Development, 4*(3), 723–757. https://doi.org/10.5194/gmd-4-723-2011

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. *Journal of Advances in Modeling Earth Systems, 11*(4), 998–1038. https://doi.org/10.1029/2018MS001400

O’Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., et al. (2014). Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. *Geosci. Model Dev., 7*(1), 41–91. https://doi.org/10.5194/gmd-7-41-2014

Rong, X., Li, J., Chen, H., Xin, Y., Su, J., Hua, L., et al. (2018). The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. *Journal of Meteorological Research, 32*(6), 839–861. https://doi.org/10.1007/s13351-018-8058-x

Rotstayn, L. D., Jeffrey, S. J., Collier, M. A., Dravitzki, S. M., Hirst, A. C., Syktus, J. I., & Wong, K. K. (2012). Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. *Atmos. Chem. Phys., 12*(14), 6377–6404. https://doi.org/10.5194/acp-12-6377-2012

von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S., Plummer, D., et al. (2013). The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of Physical Processes. *Atmosphere-Ocean, 51*(1), 104–125. https://doi.org/10.1080/07055900.2012.755610

Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N., Bauer, M., et al. (2006). Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., et al. (2019). Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. *Journal of Advances in Modeling Earth Systems, 11*(12), 4182–4227. https://doi.org/10.1029/2019MS001791

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., et al. (2019). UKESM1: Description and Evaluation of the U.K. Earth System Model. *Journal of Advances in Modeling Earth Systems, 11*(12), 4513–4558. https://doi.org/10.1029/2019MS001739

Semmler, A.-T., Danilov, S., Gierz, P., Goessling, H., Hegewald, J., Hinrichs, C., et al. (2020). Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. *Earth and Space Science Open Archive*. https://doi.org/10.1002/essoar.10501538.1

Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., et al. (2013). Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations. *Atmos. Chem. Phys.*, 13(5), 2653–2689. https://doi.org/10.5194/acp-13-2653-2013

Stouffer, R. (2019). U of Arizona MCM-UA-1-0 model output prepared for CMIP6 CMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2421

Swart, N. C., Cole, J. N. S., Khairin, V. V, Lazare, M., Scinocca, J. F., Gillett, N. P., et al. (2019). The Canadian Earth System Model version 5 (CanESM5.0.3). *Geosci. Model Dev.*, 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Fortems-Cheiney, A., et al. (2013). Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., et al. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. *Geosci. Model Dev.*, 12(7), 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

Vichi, M., Navarra, A., & Fogli, P. G. (2013). Adjustment of the natural ocean carbon cycle to negative emission rates. *Climatic Change*, 118(1), 105–118. https://doi.org/10.1007/s10584-012-0677-0

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., et al. (2013). The CNRM-CM5.1 global climate model: description and basic evaluation. *Climate Dynamics*, 40(9), 2091–2121. https://doi.org/10.1007/s00382-011-1259-y

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. *Journal of Advances in Modeling Earth Systems*, 11(7), 2177–2213. https://doi.org/10.1029/2019MS001683

Volodin, E., & Gritsun, A. (2018). Simulation of observed climate changes in 1850-2014 with climate model INM-CM5. *Earth System Dynamics*, 9(4), 1235–1242. https://doi.org/10.5194/esd-9-1235-2018

Volodin, E M, Dianskii, N. A., & Gusev, A. V. (2010). Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. *Izvestiya, Atmospheric and Oceanic Physics*, 46(4), 414–431. https://doi.org/10.1134/S000143381004002X

Volodin, Evgenii M, Mortikov, E. V, Kostrykin, S. V, Galin, V. Y., Lykossov, V. N., Gritsun, A. S., et al. (2018). Simulation of the modern climate using the INM-CM48 climate model. *Russian Journal of Numerical Analysis and Mathematical Modelling*, 33(6), 367–374.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., et al. (2011). MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. *Geosci. Model Dev.*, 4(4), 845–872. https://doi.org/10.5194/gmd-4-845-2011

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., et al. (2019). The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. *Geoscientific Model Development*, 12(4), 1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

Wu, T., Zhang, F., Zhang, J., Jie, W., Zhang, Y., Wu, F., et al. (2020). Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. *Geoscientific Model Development*, 13(3), 977–1005. https://doi.org/10.5194/gmd-13-977-2020

Yukimoto, S., Adachi, Y., Hosaka, M., Tomonori, S., Yoshimura, H., Hirabara, M., et al. (2012). A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3: Model Description and Basic Performance. *Journal of the Meteorological Society of Japan*, 90A, 23–64. https://doi.org/10.2151/jmsj.2012-A02

Yukimoto, S., Hideaki, K., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., et al. (2019). The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. *Journal of the Meteorological Society of Japan. Ser. II, advpub*. https://doi.org/10.2151/jmsj.2019-051