The following manuscript was accepted for publication in Pharmaceutical Sciences. It is assigned to an issue after technical editing, formatting for publication and author proofing. Citation: Horishny VY, Zadorozhnii PV, Horishnia IV, Matiychuk VS. Synthesis, anti-inflammatory activity and molecular docking studies of 1,4,5,6-tetrahydropyrimidine-2-carboxamides, Pharm. Sci. 2020, doi: 10.34172/PS.2020.100

Synthesis, anti-inflammatory activity and molecular docking studies of 1,4,5,6-tetrahydropyrimidine-2-carboxamides.

Volodymyr Ya. Horishny¹, Pavlo V. Zadorozhnii²*, Ivanna V. Horishnia¹, Vasyl S. Matiychuk³

¹Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine

²Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine

³Department of Organic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodia, Lviv, 79005, Ukraine

*Corresponding Author: Pavlo V. Zadorozhnii, E-mail: torfp@i.ua; Tel: +38(067) 425-27-10; Fax: +38(056) 746-26-68

Abstract

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. The widespread use of NSAIDs is associated with a number of serious side effects and complications observed for both selective and non-selective COX inhibitors. Therefore, the search for new COX inhibitors, which along with their effectiveness will have minimal side effects, is a very important and urgent task.

Methods: This work studied the synthesis of new 1,4,5,6-tetrahydropyrimidine-2-carboxamides based on the reaction of 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides with 1,3-diaminopropane. All obtained compounds were tested for anti-inflammatory activity in vitro and in silico conditions. All synthesized 1,4,5,6-tetrahydropyrimidine-2-carboxamides were tested for influence on the course of the exudative phase of the inflammatory process based on the carrageenan model of paw edema of laboratory nonlinear heterosexual white rats weighing 220-250 g, using Diclofenac as a reference. Optimization of the geometry of the studied structures and molecular docking was carried out using the ArgusLab 4.0.1 software package.
Results: The target products were obtained with yields of 71-98% and easily isolated from the reaction mixture. The best anti-inflammatory activity was found in N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide and in N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide, suppression of the inflammatory response was 46.7 and 46.4%, respectively. The results of molecular docking with COX-1 and COX-2 enzymes were in good agreement with the experimental data, $R^2 > 0.92$ and $R^2 > 0.83$, respectively.

Conclusion: The compounds under study were shown to be promising as potential anti-inflammatory agents.

Keywords: Tetrahydropyrimidine, COX-1, COX-2, Antiinflammatory activity, SAR analysis, Molecular docking

Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. Their anti-ability to alleviate the symptoms of inflammation and pain is usually due to the inhibition of cyclooxygenases (COX) - enzymes involved in the synthesis of prostanoids. COX-1 and COX-2 isoforms of the enzyme form the greatest interest as biological targets for NSAIDs. COX-1 is a constitutive enzyme, that is, it works almost constantly and performs physiologically important functions, while COX-2 is an inducible enzyme, that is, it begins to function in certain situations.

The widespread use of NSAIDs is associated with a number of serious side effects and complications observed for both selective and non-selective COX inhibitors. Therefore, the search for new COX inhibitors, which along with their effectiveness will have minimal side effects, is a very important and urgent task. Work is underway to find potential NSAIDs among substances of natural origin, as well as synthetic derivatives of azepine, benzimidazole, triazole, 1,3,4-oxadiazole, xanthone, coumarin, quinazoline, pyrrolidinone, pyrrolidine, pyrazole, 1,3-thiazole, pyridazine, and other cyclic and acyclic systems.

Recently, pyrimidine derivatives have been of increasing interest as potential COX inhibitors. Usually, they exhibit anti-inflammatory and analgesic activity in vivo, and also give good results in in silico studies.

This work is devoted to the synthesis and study of the anti-inflammatory properties of 1,4,5,6-tetrahydropyrimidine-2-carboxamides. It should be noted that this class of amides is practically unexplored, methods for their preparation have not been developed and nothing is known about their biological activity either. At the same time, derivatives of 6-oxo-1,4,5,6-tetrahydropyrimidine-2-
carboxylic acid and compounds obtained by transformation of the 6-oxo group in their structure as well as condensed analogues based on them are well studied. In particular, they are inhibitors of various enzymes,49,50 exhibit antimicrobial51,52 and anti-inflammatory properties.53 These facts indicate a high pharmacological potential of the compounds of 1,4,5,6-tetrahydropyrimidine series, and therefore, further research in this direction is an urgent and promising task.

Material and Methods

Chemistry

All starting materials were purchased from Merck and used without purification. NMR spectra were determined with «Varian Mercury VX-400 », (400 MHz and 100 MHz) spectrometer, in DMSO-d_6. Melting points were determined in open capillary tubes and are uncorrected. MS (ESI) spectra were recorded on an LC-MS system - HPLC Agilent 1100 (Agilent Technologies Inc., Santa, Clara, CA USA) equipped with a diode array detector Agilent LC/MSD SL. Parameters of analysis: Zorbax SB - C18 column (1.8 μm, 4.6-15 mm, PN 821975-932), solvent water – acetonitrile mixture (95:5), 0.1% of aqueous trifluoroacetic acid; eluent flow 3 mL/min; injection volume 1 μL. IR spectra were recorded on a Vertex 70 Bruker” (Bruker, Karlsruhe, Germany) spectrometer in KBr pellets.

The general procedure for the preparation 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides 2a-k, 6a,b

A suspension of 0.009 mol of crushed sulfur in 9 mL of morpholine was stirred for 5 minutes. A solution of 0.003 mol of the corresponding chloroacetamide 1a-k or 5a, b in 3 mL of DMF was added in portions to the formed cherry-brown solution. The reaction mixture was continued to stir for 60 minutes, and then it was poured into 100 mL of water and left for 1 day. The precipitate formed was filtered off, washed with water, dried and recrystallized from alcohol.

2-Morpholin-4-yl-N-phenyl-2-thioxoacetamide (2a). White crystals; yield 0.41g (55%); mp 168-170°C; IR (cm$^{-1}$): 3313.55 (NH), 1655.81 (C=O), 1599.88 (C=S). 1H NMR (400 MHz, DMSO-d_6): $\delta = 3.69$ (s, 4H, morpholine), 3.74 – 3.79 (m, 2H, morpholine), 4.07 – 4.17 (m, 2H, morpholine), 7.11 (t, $J = 7.4$ Hz, 1H, C$_6$H$_5$), 7.34 (t, $J = 7.9$ Hz, 2H, C$_6$H$_5$), 7.62 (d, $J = 7.7$ Hz, 2H, C$_6$H$_5$), 10.50 – 10.82 (br.s, 1H, NH). 13C NMR (100 MHz, DMSO-d_6): $\delta = 46.94$, 52.07, 65.42, 65.96, 119.55, 124.06, 128.83, 138.10, 162.93, 191.06. LC-MS (ESI) [m/z]: [M + H]$^+$ = 251.0; [M – H]$^-$ = 249.2. Anal. Calcd. for C$_{12}$H$_{14}$N$_2$O$_2$S: C, 57.58; H, 5.64; N, 11.19. Found: C, 57.34; H, 5.79; N, 11.24.

N-(3-Methylphenyl)-2-morpholin-4-yl-2-thioxoacetamide (2b). White crystals; yield 0.69g (87%); mp 111-112°C; IR (cm$^{-1}$): 3327.05 (NH), 1666.42 (C=O), 1615.31 (C=S). 1H NMR (400 MHz, DMSO-d_6): $\delta = 2.28$ (s, 1H, 2H, CH$_3$), 3.67 (s, 4H, morpholine), 3.72 – 3.79 (m, 2H,
N-(4-Methylphenyl)-2-morpholin-4-yl-2-thioxoacetamide (2c). White crystals; yield 0.63g (79%); mp 180-182°C; IR (cm⁻¹): 3274.01 (NH), 1647.13 (C=O), 1597.95 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 2.26 (s, 3H, CH₃), 2.48 – 2.52 (m, 4H, morpholine), 3.73 – 3.78 (m, 2H, morpholine), 4.09 – 4.15 (m, 2H, morpholine), 7.14 (d, J = 8.4 Hz, 2H, C₆H₄), 7.50 (d, J = 8.4 Hz, 2H, C₆H₄), 10.49 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 20.46, 46.91, 52.06, 65.43, 65.96, 119.51, 133.09, 135.59, 162.78 191.14. LC-MS (ESI) [m/z]: [M + H]⁺ = 265.0; [M – H]⁻ = 263.0. Anal. Calcd. for C₁₃H₁₆N₂O₂S: C, 59.07; H, 6.10; N, 10.60. Found: C, 59.18; H, 6.01; N, 10.49.

N-(3,4-Dimethylphenyl)-2-morpholin-4-yl-2-thioxoacetamide (2d). White crystals; yield 0.65g (78%); mp 140-142°C; IR (cm⁻¹): 3311.62 (NH), 1667.38 (C=O), 1618.2 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 2.17 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 3.67 (s, 4H, morpholine), 3.71 – 3.77 (m, 2H, morpholine), 4.07 – 4.14 (m, 2H, morpholine), 7.08 (d, J = 8.2 Hz, 1H, C₆H₅), 7.31 (dd, J = 8.1, 1.8 Hz, 1H, C₆H₅), 7.40 (s, 1H, C₆H₅), 10.46 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 18.80, 19.57, 46.90, 52.03, 65.42, 65.93, 117.09, 120.69, 129.62, 131.90, 135.78, 136.50, 162.77, 191.22. LC-MS (ESI) [m/z]: [M + H]⁺ = 279.2; [M – H]⁻ = 277.2. Anal. Calcd. for C₁₄H₁₈N₂O₂S: C, 60.41; H, 6.52; N, 10.06. Found: C, 60.53; H, 6.43; N, 10.12.

N-(4-Fluorophenyl)-2-morpholin-4-yl-2-thioxoacetamide (2e). Yellow crystals; yield 0.52g (64%); mp 168-170°C; IR (cm⁻¹): 3254.72 (NH), 1649.06 (C=O), 1614.34 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.68 (s, 4H, morpholine), 3.71 – 3.77 (m, 2H, morpholine), 4.09 – 4.15 (m, 2H, morpholine), 7.19 (t, J = 8.9 Hz, 1H, C₆H₅), 7.64 (dd, J = 9.1, 5.0 Hz, 2H, C₆H₄), 10.71 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ = 46.93, 52.08, 65.43, 65.99, 115.48 (d, J = 22.4 Hz), 121.36 (d, J = 8.0 Hz), 134.46 (d, J = 2.5 Hz), 158.44 (d, J = 240.8 Hz), 162.83, 190.82. LC-MS (ESI) [m/z]: [M + H]⁺ = 269.2; [M – H]⁻ = 267.2. Anal. Calcd. for C₁₂H₁₂FN₂O₂S: C, 53.72; H, 4.88; N, 10.44. Found: C, 53.84; H, 4.96; N, 10.31.

N-(3-Chlorophenyl)-2-morpholin-4-yl-2-thioxoacetamide (2f). White crystals; yield 0.74g (87%); mp 135-137°C; IR (cm⁻¹): 3323.19 (NH), 1670.2 (C=O), 1596.98 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.69 (s, 4H, morpholine), 3.76 (t, J = 4.9 Hz, 2H, morpholine), 4.09 – 4.15 (m, morpholine), 7.17 (dd, J = 7.8, 1.8 Hz, 1H, C₆H₄), 7.37 (t, J = 8.1 Hz, 1H, C₆H₄), 7.50 (d, J = 8.2 Hz,
1H, C₆H₅), 7.80 (t, J = 2.0 Hz, 1H, C₆H₅), 10.78 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 46.93, 52.11, 65.43, 66.01, 118.02, 119.03, 123.82, 130.59, 133.13, 139.52, 163.06, 190.37. LC-MS (ESI) [m/z]: [M + H]⁺ = 285.0; [M − H]⁻ = 283.0. Anal. Calcd. for C₁₂H₁₂ClN₂O₂: C, 50.61; H, 4.60; N, 8.84. Found: C, 50.70; H, 4.55; N, 9.88.

N-(4-Chlorophenyl)-2-morpholin-4-yl-2-thioxoacetamide (2g). White crystals; yield 0.63g (74%); mp 184-186°C; IR (cm⁻¹): 3298.12 (NH), 1651.95 (C=O), 1604.7 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.68 (s, 4H, morpholine), 3.72 – 3.80 (m, 2H, morpholine), 4.08 – 4.15 (m, 2H, morpholine), 7.41 (d, J = 8.9 Hz, 2H, C₆H₅), 7.65 (d, J = 8.9 Hz, 2H, C₆H₅), 10.81 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 46.96, 52.09, 65.42, 65.98, 121.14, 127.75, 128.75, 162.93, 190.68. LC-MS (ESI) [m/z]: [M + H]⁺ = 285.0; [M − H]⁻ = 283.0. Anal. Calcd. for C₁₂H₁₂ClN₂O₂: C, 50.61; H, 4.60; N, 8.84. Found: C, 50.55; H, 4.67; N 9.79.

N-(3,4-Dichlorophenyl)-2-morpholin-4-yl-2-thioxoacetamide (2h). Light yellow crystals; yield 0.88g (92%); mp 188-190°C; IR (cm⁻¹): 3331.87 (NH), 1678.95 (C=O), 1589.27 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.68 (s, 4H, morpholine), 3.72 – 3.79 (m, 2H, morpholine), 4.09 – 4.14 (m, 2H, morpholine), 7.53 (dd, J = 8.8, 2.4 Hz, 1H, C₆H₅), 7.61 (d, J = 8.8 Hz, 1H, C₆H₅), 7.99 (d, J = 2.3 Hz, 1H, C₆H₅), 10.97 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 46.95, 52.13, 65.43, 66.03, 119.66, 120.80, 125.66, 130.80, 131.09, 138.16, 163.03. LC-MS (ESI) [m/z]: [M + H]⁺ = 319.0. Anal. Calcd. for C₁₂H₁₂Cl₂N₂O₂S: C, 45.15; H, 3.79; N, 8.78. Found: C, 45.02; H, 3.84; N, 8.69.

N-(4-Bromophenyl)-2-morpholin-4-yl-2-thioxoacetamide (2i). White crystals; yield 0.84g (85%); mp 190-192°C; IR (cm⁻¹): 3298.12 (NH), 1652.92 (C=O), 1601.8 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.67 (s, 4H, morpholine), 3.73 – 3.77 (m, 2H, morpholine), 4.08 – 4.14 (m, 2H, morpholine), 7.53 (d, J = 8.9 Hz, 2H, C₆H₅), 7.59 (d, J = 8.9 Hz, 2H, C₆H₅), 10.79 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 46.92, 52.10, 65.43, 65.98, 115.81, 121.45, 131.68, 137.49, 162.92, 190.55. LC-MS (ESI) [m/z]: [M + H]⁺ = 329.0. Anal. Calcd. for C₁₂H₁₂BrN₂O₂S: C, 43.78; H, 3.98; N, 8.51. Found: C, 43.72; H, 4.03; N, 8.56.

N-[3-Chloro-4-(trifluoromethyl)phenyl]-2-morpholin-4-yl-2-thioxoacetamide (2j). Light yellow crystals; yield 0.96g (91%); mp 178-180°C; IR (cm⁻¹): 3325.12 (NH), 1677.99 (C=O), 1612.41 (C=S). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.64 – 3.69 (m, 2H, CH₂, morpholine), 3.69 – 3.74 (m, 2H, CH₂, morpholine), 3.74 – 3.78 (m, 2H, CH₂, morpholine), 4.10 – 4.15 (m, 2H, CH₂, morpholine), 7.72 (d, J = 8.8 Hz, 1H, C₆H₅), 7.87 (dd, J = 8.8, 2.4 Hz, 1H, C₆H₅), 8.21 (d, J = 2.5 Hz, 1H, C₆H₅), 11.14 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 47.00, 52.15, 65.43, 66.05.
118.32 (q, J = 5.7 Hz), 122.61 (q, J = 273.1 Hz), 124.41, 124.91 (q, J = 1.7 Hz), 126.80 (q, J = 30.8 Hz), 132.24, 137.61, 163.10, 190.01. LC-MS (ESI) [m/z]: [M + H]^+ = 353.2; [M − H]^− = 351.0. Anal. Calcd. for C_{13}H_{12}ClF_{3}N_{2}O_{2}S: C, 52.19, 65.27, 65.79, 128.48, 130.21, 131.84, 134.69, 139.23, 156.50, 162.57, 189.06. LC-MS (ESI) [m/z]: [M+ H]^+ = 295.0; [M − H]^− = 293.0. Anal. Calcd. for C_{13}H_{14}N_{2}O_{4}S: C, 53.05; H, 4.79; N, 9.52. Found: C, 53.11; H, 4.70; N, 9.58.

4-[[Morpholin-4-yl(thioxo)acetyl]amino]benzoic acid (2k). White crystals; yield 0.71g (80%); mp 237-238°C; IR (cm⁻¹): 3226.75 (NH), 1720.42 (C=O), 1645.2 (C=O), 1597.95 (C=S). 1H NMR (400 MHz, DMSO-d₆): δ = 3.69 (s, 4H, CH₂, morpholine), 3.73 – 3.79 (m, 2H, morpholine), 4.09 – 4.16 (m, 2H, morpholine), 7.74 (d, J = 8.7 Hz, 2H, C₆H₄), 7.93 (d, J = 8.7 Hz, 2H, C₆H₄), 10.98 (s, 1H, NH), 12.39 – 13.16 (br. s, 1H, COOH). 13C NMR (100 MHz, DMSO-d₆): δ = 46.91, 52.13, 65.41, 65.96, 118.91, 125.94, 130.42, 142.13, 163.10, 166.76, 190.36. LC-MS (ESI) [m/z]: [M+ H]^+ = 380.0. Anal. Calcd. for C_{16}H_{16}ClN_{3}O_{4}S: C, 53.02; H, 4.22; N, 11.00. Found: 50.39; H, 4.13; N, 10.91.

N-[[4-Chlorobenzyl]-thiazol-2-y]l-2-morpholin-4-yl-2-thiooxacetamide (6a). White crystals; yield 0.96g (84%); mp 238-240°C; IR (cm⁻¹): 3173.71 (NH), 1669.31 (C=O), 1574.8 (C=S). 1H NMR (400 MHz, DMSO-d₆): δ = 3.58 (s, 2H, morpholine), 3.64 (s, 2H, CH₂), 3.73 (s, 2H, morpholine), 4.07 (s, 2H, morpholine), 4.10 (s, 2H, ArCH₂), 7.26 – 7.34 (m, 3H, thiazole, C₆H₄), 7.36 (d, J = 8.2 Hz, 2H, C₆H₄), 12.65 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆): δ = 30.87, 46.91, 52.19, 65.27, 65.79, 128.48, 130.21, 131.84, 134.69, 139.23, 156.50, 162.57, 189.06. LC-MS (ESI) [m/z]: [M+ H]^+ = 382.0; [M − H]^− = 380.0. Anal. Calcd. for C_{16}H_{16}ClN_{3}O_{2}S_{2}: C, 50.32; H, 4.22; N, 11.00. Found: 50.39; H, 4.13; N, 10.91.

N-[[4-Bromobenzyl]-thiazol-2-y]l-2-morpholin-4-yl-2-thiooxacetamide (6b). White crystals; yield 1.22g (95%); mp 231-233°C; IR (cm⁻¹): 3171.79 (NH), 1670.27 (C=O), 1573.84 (C=S). 1H NMR (400 MHz, DMSO-d₆): δ = 3.57 (c, 2H, morpholine), 3.64 (d, J = 3.2 Hz, 2H, morpholine), 3.73 (s, 2H, morpholine), 4.08 (s, 2H, morpholine), 4.09 (s, 2H, ArCH₂), 7.17 – 7.27 (d, J = 8.3 Hz, 2H, C₆H₄), 7.33 (s, 1H, thiazole), 7.46 – 7.57 (d, J = 8.4 Hz, 2H, C₆H₄), 12.52 – 12.78 (br.s, 1H, NH). 13C NMR (100 MHz, DMSO-d₆): δ = 31.20, 46.91, 52.19, 65.27, 65.79, 119.56, 130.60, 131.41, 131.76, 139.62, 189.06. LC-MS (ESI) [m/z]: [M+ H]^+ = 426.0; [M − H]^− = 424.0. Anal. Calcd. for C_{16}H_{16}BrN_{3}O_{2}S_{2}: C, 45.07; H, 3.78; N, 9.86. Found: C, 45.18; H, 3.84; N, 9.78.

The general procedure for the preperation 1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k, 7a,b

4 mL of 1,3-diaminopropane were added to 0.0015 mol of the corresponding morpholin-4-yl-N-(het)aryl-2-thiooxacetamide 2a-k or 6a, b and stirred for 5 minutes at room temperature. The resulting solution was heated to 50°C and continued stirring for 40-50 minutes at that temperature.
Then, it was cooled, poured into 30 mL of water and left for 1 day. The precipitate was filtered off, washed with water, dried and recrystallized from alcohol (3k, 7a, b) or diluted alcohol (3a-j).

N-Phenyl-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3a). White crystals; yield 0.27g (89%); mp 131-133°C; IR (cm⁻¹): 3266.29 (NH), 1673.17 (C=O), 1629.77 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.57 – 1.88 (m, 2H, CH₂), 3.32 (t, J = 5.6 Hz, 4H, CH₂), 7.08 (t, J = 7.4 Hz, 1H, C₆H₅), 7.32 (t, J = 7.9 Hz, 2H, C₆H₅), 7.76 (d, J = 8.3 Hz, 2H, C₆H₅). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.76, 40.91, 119.74, 123.70, 128.63, 137.92, 147.98, 159.91. LC-MS (ESI) [m/z]: [M + H]⁺ = 204.2. Anal. Calcd. for C₁₂H₁₃N₃O: C, 65.01; H, 6.45; N, 20.67. Found: C, 65.12; H, 6.49; N, 20.74.

N-(3-Methylphenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3b). White crystals; yield 0.23g (71%); mp 115-117°C; IR (cm⁻¹): 3374.3 (NH), 1671.24 (C=O), 1631.7 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.61 – 1.70 (m, 2H, CH₂), 2.50 (s, 3H, CH₃), 3.32 (t, J = 5.6 Hz, 4H, 2CH₂), 6.90 (d, J = 7.4 Hz, 1H, C₆H₅), 7.19 (t, J = 7.8 Hz, 1H, C₆H₅), 7.53 (d, J= 8.2 Hz, 1H, C₆H₅), 7.59 (s, 1H, C₆H₅). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.74, 21.15, 40.92, 116.84, 120.14, 124.42, 128.50, 137.77, 137.88, 147.94, 159.78. LC-MS (ESI) [m/z]: [M + H]⁺ = 218.2. Anal. Calcd. for C₁₂H₁₅N₃O: C, 66.34; H, 6.96; N, 19.34. Found: C, 66.44; H, 7.05; N, 19.27.

N-(4-Methylphenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3c). White crystals; yield 0.31g (95%); mp 137-139°C; IR (cm⁻¹): 3357.91 (NH), 1689.56 (C=O), 1636.52 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.59 – 1.70 (m, 2H, CH₂), 2.25 (s, 3H, CH₃), 3.31 (t, J = 5.6 Hz, 4H, 2CH₂), 7.11 (d, J = 8.3 Hz, 2H, C₆H₅), 7.63 (d, J = 8.3 Hz, 2H, C₆H₅). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.76, 20.43, 40.86, 119.66, 129.03, 132.69, 135.40, 147.98, 159.72. LC-MS (ESI) [m/z]: [M + H]⁺ = 218.2. Anal. Calcd. for C₁₂H₁₅N₃O: C, 66.34; H, 6.96; N, 19.34. Found: C, 66.25; H, 7.01; N, 19.42.

N-(3,4-dimethylphenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3d). White crystals; yield 0.33g (94%); mp 129-131°C; IR (cm⁻¹): 3279.79 (NH), 1673.17 (C=O), 1632.66 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.48 – 1.83 (m, 2H, CH₂), 2.16 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 3.31 (t, J = 5.6 Hz, 4H, 2CH₂), 7.06 (d, J = 8.2 Hz, 1H, C₆H₅), 7.46 (d, J = 8.1 Hz, 1H, C₆H₅), 7.51 (s, 1H, C₆H₅). ¹³C NMR (100 MHz, DMSO-d₆): δ = 18.73, 19.54, 19.75, 40.87, 117.06, 120.76, 129.52, 131.57, 135.50, 136.32, 148.00, 159.56. LC-MS (ESI) [m/z]: [M + H]⁺ = 232.2. Anal. Calcd. for C₁₃H₁₇N₃O: C, 67.51; H, 7.41; N, 18.17. Found: C, 67.63; H, 7.32; N, 18.29.

N-(4-fluorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3e). White crystals; yield 0.29g (88%); mp 116-117°C; IR (cm⁻¹): 3252.79 (NH), 1677.99 (C=O), 1632.66 (C=N). ¹H

Pharmaceutical Sciences (Indexed in ISI and Scopus)
https://ps.tbzmed.ac.ir

NMR (400 MHz, DMSO-d₆): δ = 1.52 – 1.73 (m, 2H, CH₂), 3.32 (t, J = 5.6 Hz, 4H, CH₂), 7.15 (t, J = 8.9 Hz, 2H, C₆H₄), 7.79 (dd, J = 8.6, 5.2 Hz, 2H, C₆H₄), 8.69 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.74, 40.88, 115.14 (d, J = 22.2 Hz), 121.69 (d, J = 7.8 Hz), 134.55 (d, J = 2.5 Hz), 147.99, 158.25 (d, J = 240.4 Hz), 159.92. LC-MS (ESI) [m/z]: [M + H]⁺ = 222.2. Anal. Calcd. for C₁₁H₁₂FN₃O: C, 59.72; H, 5.47; N, 18.99. Found: C, 59.85; H, 5.41; N, 19.12.

N-(3-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3f). White crystals; yield 0.34g (96%); mp 118-119°C; IR (cm⁻¹): 3375.27 (NH), 1675.1 (C=O), 1635.56 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.52 – 1.85 (m, 2H, CH₂), 3.32 (t, J = 5.6 Hz, 4H, CH₂), 7.12 (d, J = 8.0 Hz, 1H, C₆H₄), 7.33 (t, J = 8.1 Hz, 1H, C₆H₄), 7.71 (d, J = 8.3 Hz, 1H, C₆H₄), 7.96 (s, 1H, C₆H₄), 8.84 (br.s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.64, 40.48, 118.59, 119.52, 123.23, 130.19, 132.91, 140.09, 148.20, 160.05. LC-MS (ESI) [m/z]: [M + H]⁺ = 238.0. Anal. Calcd. for C₁₁H₁₂ClN₃O: C, 55.59; H, 5.09; N, 17.68. Found: C, 55.54; H, 5.03; N, 17.73.

N-(4-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3g). White crystals; yield 0.35g (98%); mp 158-159°C; IR (cm⁻¹): 3358.87 (NH), 1690.53 (C=O), 1637.49 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.58 – 1.78 (m, 2H, CH₂), 3.33 (t, J = 5.7 Hz, 4H, CH₂), 7.36 (d, J = 8.9 Hz, 2H, C₆H₄), 7.80 (d, J = 8.9 Hz, 2H, C₆H₄), 8.90 (br.s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.68, 40.84, 121.54, 127.26, 128.46, 137.27, 148.04, 160.02. LC-MS (ESI) [m/z]: [M + H]⁺ = 238.0. Anal. Calcd. for C₁₁H₁₂ClN₃O: C, 55.59; H, 5.09; N, 17.68. Found: C, 55.54; H, 5.11; N, 17.63.

N-(3,4-Dichlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3h). White crystals; yield 0.39g (96%); mp 161-163°C; IR (cm⁻¹): 3370.44 (NH), 1698.24 (C=O), 1643.27 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.52 – 1.85 (m, 2H, CH₂), 3.32 (t, J = 5.6 Hz, 4H, CH₂), 7.12 (d, J = 8.0 Hz, 1H, C₆H₄), 7.33 (t, J = 8.1 Hz, 1H, C₆H₄), 7.71 (d, J = 8.3 Hz, 1H, C₆H₄), 7.96 (s, 1H, C₆H₄), 8.84 (s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.30, 40.39, 120.79, 121.78, 124.59, 130.31, 130.68, 140.21, 149.20, 159.45. LC-MS (ESI) [m/z]: [M + H]⁺ = 272.0. Anal. Calcd. for C₁₁H₁₁Cl₂N₃O: C, 48.55; H, 4.07; N, 15.44. Found: C, 48.64; H, 3.97; N, 15.30.

N-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3i). White crystals; yield 0.35g (83%); mp 157-158°C; IR (cm⁻¹): 3357.91 (NH), 1692.45 (C=O), 1636.52 (C=N). ¹H NMR (400 MHz, DMSO-d₆): δ = 1.52 – 1.77 (m, 2H, CH₂), 3.31 (t, J = 5.6 Hz, 4H, 2 CH₂), 7.49 (d, J = 8.8 Hz, 2H, C₆H₄), 7.76 (d, J = 8.8 Hz, 2H, C₆H₄), 8.80 (br.s, 1H, NH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 19.67, 40.82, 115.35, 121.94, 131.37, 137.72, 148.08, 160.02. LC-MS (ESI) [m/z]:

Pharmaceutical Sciences (Indexed in ISI and Scopus)
https://ps.tzbmed.ac.ir
[M + H]^+ = 284.0. Anal. Calcd. for C_{11}H_{12}BrN_3O: C, 46.83; H, 4.29; N, 14.89. Found: C, 46.89; H, 4.33; N, 14.94.

N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j). White crystals; yield 0.40g (88%); mp 141-143°C; IR (cm\(^{-1}\)) 3286.34 (NH), 1684.74 (C=O), 1634.59 (C=N). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 1.65 - 1.81\) (m, 2H, CH\(_2\)), 3.34 (t, J = 5.7 Hz, 4H, CH\(_2\)), 7.61 (d, J = 8.8 Hz, 1H, C\(_6\)H\(_5\)), 8.03 (dd, J = 8.8, 2.4 Hz, 1H, C\(_6\)H\(_5\)), 8.34 (d, J = 2.4 Hz, 1H, C\(_6\)H\(_5\)), 8.81 – 9.36 (br.s, 1H, NH). \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta = 19.25, 40.26, 119.74\) (q, J = 5.6 Hz), 122.82 (q, J = 273.0 Hz), 123.41 (q, J = 1.8 Hz), 125.71, 126.43 (q, J = 30.7 Hz), 131.62, 140.52, 149.71, 159.38. LC-MS (ESI) [m/z]: [M + H]^+ = 306.0. Anal. Calcd. for C\(_{12}\)H\(_{11}\)ClF\(_3\)N\(_3\)O: C, 47.15; H, 3.63; N, 13.75. Found: C, 47.24; H, 3.56; N, 13.64.

4-[(1,4,5,6-Tetrahydropyrimidin-2-ylcarbonyl)amino]benzoic acid (3k). White crystals; yield 0.36g (96%); mp > 260°C; IR (cm\(^{-1}\)) 3410.95 (OH), 3303.9 (NH), 1708.85 (C=O), 1666.42 (C=O), 1608.56 (C=N). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 1.93\) (s, 2H, CH\(_2\)), 3.50 (s, 4H, 2CH\(_2\)), 7.36 (d, J = 7.6 Hz, 2H, C\(_6\)H\(_4\)), 7.80 (d, J = 7.6 Hz, 2H, C\(_6\)H\(_4\)), 11.45 – 11.52 (br.s, 1H, COOH). \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta = 16.87, 38.36, 119.91, 127.22, 130.34, 141.02, 152.02, 154.55, 166.63. LC-MS (ESI) [m/z]: [M + H]^+ = 248.2; [M − H]− = 246.0. Anal. Calcd. for C\(_{12}\)H\(_{13}\)N\(_3\)O: C, 58.29, H 5.30, N 16.99; Found C 58.36, H 5.27, N 16.91.

N-[5-(4-Chlorobenzyl)-1,3-thiazol-2-yl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (7a). Light yellow crystals; yield 0.42g (84%); mp 252-254°C; IR (cm\(^{-1}\)) 3161.18 (NH), 1667.38 (C=O), 1567.09 (C=N). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 1.83\) (s, 2H, CH\(_2\)), 3.35 (s, 4H, 2CH\(_2\)), 4.01 (s, 2H, ArCH\(_2\)), 7.12 (s, 1H, thiazole), 7.26 (d, J = 8.2 Hz, 2H, C\(_6\)H\(_4\)), 7.34(d, J = 8.2 Hz, 2H, C\(_6\)H\(_4\)), 9.50 (s, 1H, NH). \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta = 17.64, 32.21, 38.15, 128.24, 128.90, 130.16, 130.64, 135.27, 140.03, 155.27, 156.25, 167.88. LC-MS (ESI) [m/z]: [M + H]^+ = 335.0. Anal. Calcd. for C\(_{15}\)H\(_{13}\)ClN\(_2\)OS: C, 53.81; H, 4.52; N, 16.73. Found: C, 53.93; H, 4.46; N, 16.79.

N-[5-(4-Bromobenzyl)-1,3-thiazol-2-yl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (7b). Light yellow crystals; yield 0.48g (85%); mp 243-245°C; IR (cm\(^{-1}\)) 3162.14 (NH), 1667.38 (C=O), 1567.09 (C=N). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta = 1.83\) (s, 2H, CH\(_2\)), 3.35 (s, 4H, 2CH\(_2\)), 4.00 (s, 1H), 7.11(s, 1H, thiazole), 7.20 (d, J = 8.4 Hz, 2H, C\(_6\)H\(_4\)), 7.48 (d, J = 8.4 Hz, 2H, C\(_6\)H\(_4\)), 9.45 (s, 1H, NH). \(^13\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta = 17.64, 32.27, 38.15, 119.09, 128.81, 130.56, 131.16, 135.33, 140.47, 155.27, 156.25, 167.89. LC-MS (ESI) [m/z]: [M + H]^+ = 379.0. Anal. Calcd. for C\(_{15}\)H\(_{13}\)BrN\(_4\)OS: C, 47.50; H, 3.99; N, 4.77. Found: C, 47.41; H, 4.04; N, 4.84.

Biological activity

Pharmaceutical Sciences (Indexed in ISI and Scopus)
https://ps.tbzmed.ac.ir
The effect of the synthesized substances on the course of the exudative phase of the inflammatory process was studied on the basis of the carrageenan model of the paw edema of non-linear heterosexual white rats weighing 220-250 g, against the background of the reference anti-inflammatory drug Diclofenac. The animals were divided into 14 groups, five rats each. One group was kept as a control, and the remaining 13 (test groups) were used to determine the anti-inflammatory activity exhibited by Diclofenac and another 12 test substances. Before the experiment, the rats were kept in an animal shelter under standard lighting and temperature conditions, on a standard diet. The reference anti-inflammatory drug Diclofenac, at a therapeutic dose of 10 mg/kg, and the test substances, at a dose of 50 mg/kg body weight, were administered intraperitoneally to the animals of only test groups in the form of a suspension with tween 80. Thirty minutes later, all animals were caused edema by introducing 0.1 mL of a 2% solution of carrageenin in saline solution into aseptic conditions under the aponeurosis of the sole of the right hind limb of the rats. The presence of an inflammatory reaction among the animals of the control and test groups was established by measuring the volume of their limbs by the oncometric method at the beginning of the experiment and 4 hours after the administration of the phlogogenic agent. The inhibition of the inflammatory reaction was determined by the degree of reduction of limb edema among the animals of the test groups in comparison with the control one. It was calculated according to equation (1.1).

\[
\% \text{ Inhibition} = \frac{V_{\text{control}} - V}{V_{\text{control}}} \times 100\% \quad (1.1)
\]

where \(V_{\text{control}}\) is the increase in paw volume in the control group animals; \(V\) is the increase in paw volume in animals injected with the test substances.

Molecular Docking Studies

Ligand preparation:

Prior to molecular docking, the structures of all test compounds 1-14 were optimized in the semi-empirical PM3 method\(^{54}\) using the ArgusLab 4.0.1 software package.\(^{55-64}\)

Protein preparation:

We used a number of different crystal structures of the COX-1 and COX-2 enzymes from LC-MS for molecular docking studies. The best correlation between biological test results and calculated values was observed for structures 1EQG\(^{65}\) and 1CX2.\(^{66}\) Three-dimensional crystal structures of COX-1 enzyme cocrystallization and Ibuprofen (PDB ID: 1EQG), as well as COX-2 enzyme cocrystallization and inhibitor (S58) 4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-
1-yl) benzenesulfonamide (PDB ID: 1CX2), were downloaded in PDB format from the protein molecule database (http://www.rcsb.org). Before docking, the molecules of all non-protein components, except for these inhibitors and hemes, were removed. Water molecules were also removed from the binding site.

Molecular docking procedure:

Ligand groups with the name Ligand_X-ray were created based on Ibuprofen molecule (COX-1 enzyme), the code in the cocrystallizate 701 IBP, and the molecule of 4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl) benzenesulfonamide (S58) (COX-2 enzyme), the code in cocrystallizate 2238 S58. Based on these groups, three-dimensional models of binding sites were created, the dimensions of which were calculated automatically and were for the enzyme COX-1 along the X axis - 17.098000, the Y axis - 14.533000 and the Z axis - 18.345000 Å and for the enzyme COX-2 along the X axis - 23.613000, the Y axis - 19.421000 and the Z axis - 23.120000 Å, respectively. The docking was performed with a flexible ligand. The semi-empirical AScore function (based on the XScore function was used to calculate the scores. The lattice pitch was set at 0.250 Å. Type of calculation - Dock; Docking Engine - ArgusLab. Visualization of the results was performed using the program PyMOL 0.99rc6.

Results and Discussion

The starting materials for the synthesis of the target 1,4,5,6-tetrahydropyrimidine-2-carboxamides were 2-morpholin-4-yl-N-(het)aryl-2-thioxoacetamides 2a-k, which were obtained by the interaction of chloroacetanilides 1a-k with sulfur and morpholine by the method described in. Their characteristics and 1H NMR spectroscopy data are given in the experimental part.

We studied the interaction of morpholin-4-yl-N-(het)aryl-2-thioxoacetamides 2a-k with 1,3-diaminopropane. It was found that heating at a temperature of 50-70°C for 40-50 minutes in 1,3-diaminopropane medium was required for the successful interaction. N-aryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k were isolated as a result of the reaction with yields of 71-98%.

The 1H NMR spectrum of the resulting product 3a-k was in agreement with the given structure. In particular, the protons of the CH₂ group in the 5th position of the pyrimidine cycle appeared at 1.57-1.93 ppm, and the protons of the CH₂ groups in the 4th and 6th positions - at 3.32-3.50 ppm.
We also developed a method for the synthesis of \(N-[5-(4-R-benzyl)-1,3\text{-thiazol-2-yl}]-1,4,5,6\text{-tetrahydropyrimidine-2-carboxamides} \ 7a, b. \) 5-(4-R-benzyl) thiazol-2-ylamines \(4a, b \), which were obtained by the method described in.70 were used as starting reagents in this transformation. By acylation of \(4a, b \) with chloroacetyl chloride, the corresponding chloroacetamides \(5a, b \) were formed,71 which upon interaction with sulfur and morpholine were converted to \(N-[5-(4-R-benzyl)\text{-thiazol-2-yl}]-2\text{-morpholin-4-yl-2-thioxoacetamides} \ 6a, b. \) By the reaction \(6a, b \) with 1,3-diaminopropane according to the above procedure, \(N-[5-(4-R-benzyl)-1,3\text{-thiazol-2-yl}]-1,4,5,6\text{-tetrahydropyrimidine-2-carboxamides} \ 7a, b \) were obtained.

The effect of synthesized substances on the course of the exudative phase of the inflammatory process was studied on the basis of the carrageenan model of the paw edema of non-linear heterosexual white rats.

The results of the study of anti-inflammatory activity are shown in Table 1. It was found that the test substances showed different levels of activity. The most active compounds were \(3g \) and \(3j \). Their effect was superior to the reference drug Diclofenac. An effect commensurate with this drug was observed in compounds \(3d, 3f, 3h, 7a \). At the same time, the antiexudative activity of the remaining compounds was somewhat lower than the standard. An analysis of the data allowed us to draw some conclusions regarding the patterns of “the structure – action” relationship in a series of synthesized compounds. The introduction of substituents, both electron-donating and electron-withdrawing, in the aromatic nucleus always led to an increase in antiexudative activity, in comparison with basic phenylamide \(3a \). Comparative characterization of the effect of electron-donating methyl substituents in aromatics (compounds \(3b-d \)) was in favor of disubstituted \(3d \) relative to monosubstituted analogues \(3b, c \). The transition from electron-donating to electron-withdrawing substituents (halogen atoms), with rare exceptions (bromine derivative \(3i \)), was accompanied by an increase in activity. This was especially pronounced in the case of chlorine-substituted \(3f, g \) and the asymmetric dihalogen derivative \(3j \). It should also be noted that in general, chloro derivatives \((3f-h) \) were preferable to fluoro and especially bromo derivatives \((3e, i) \).

The ability of substances to show anti-inflammatory activity is usually associated with the inhibition of COX-1 and COX-2 enzymes, with which we conducted molecular docking studies. The results of the molecular docking were in good agreement with the experimental data (Table 1, Fig. 1), \(R^2 > 0.92 \) and 0.83 for COX-1 and COX-2, respectively. Most likely, compounds \(3a-k \) and \(7a, b \) inhibited the activity of both enzymes. According to the results of the molecular docking, the most stable complexes with active sites of both enzymes formed compounds \(N-(4\text{-chlorophenyl})-1,4,5,6-\)tetrahydropyrimidine-2-carboxamides.
tetrahydropyrimidine-2-carboxamide (3g) and N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j) (Fig. 2). Compounds 3g and 3j were superior to the reference drug Diclofenac in the strength of complexes formed with COX-1 and COX-2 (see Table 1).

\[N-(4-Chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide \] (3g) was further fixed in the active site of the enzyme COX-1 due to the formation of an intermolecular hydrogen bond between the oxygen atom of the amide group and the hydroxyl group of the amino acid Tyr 355, the bond length -NHC=O...HO (Tyr 355) was 2.9 Å (Fig. 2a). In turn, in the active site of COX-2, this compound was additionally fixed due to the formation of two hydrogen bonds with a length of about 3.0 Å, which were formed between the amide group and the peptide bonds of amino acids Val 523 and Ala 527 (Fig. 2b).

\[N-[4-Chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide \] (3j) was additionally fixed in the active sites of the enzymes COX-1 and COX-2 due to the formation of hydrogen bonds with the hydroxyl group of the amino acid Tyr 355. In the case of COX-1, the hydrogen bond formed a Nitrogen atom of the pyrimidine ring, the bond length N...HO (Tyr 355) was 2.7 Å (Fig. 2c), and in the case of COX-2 — a Nitrogen atom of the amide group, the bond length of NH...HO (Tyr 355) was 2.8 Å (Fig. 2d).

It is noteworthy that for \(N-(3-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide \) (3f), the energies of complexes with the enzymes COX-1 and COX-2 were practically equal and amounted to about 11.0 kcal/mol. Most likely, this compound could equally inhibit both enzymes.

Conclusion

This work studied the synthesis of new 1,4,5,6-tetrahydropyrimidine-2-carboxamides based on the reaction of 2-morpholin-4-yl-N-(het)aryl-2-thioacacetamides with 1,3-diaminopropane. The target products were obtained with yields of 71-98% and easily isolated from the reaction mixture. All synthesized 1,4,5,6-tetrahydropyrimidine-2-carboxamides were tested for effects on the exudative phase of the inflammatory process based on the carrageenan model of paw edema of laboratory nonlinear heterosexual white rats weighing 220-250 g, using Diclofenac as a reference. The best anti-inflammatory activity was found in \(N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide \) and \(N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide \), suppression of the inflammatory response was 46.7 and 46.4%, respectively. The ability of the synthesized compounds to exhibit anti-inflammatory activity was most likely related to the inhibition of COX-1 and COX-2 enzymes with which molecular docking studies had been performed. The
results of the molecular docking are in good agreement with the experimental data, $R^2 > 0.92$ and 0.83 for COX-1 and COX-2, respectively.

Compliance with ethical standards.

Ethical approval. All animal experiments were conducted in keeping with European Convention on Protection of Vertebrate Animals (Strasbourg 1986) and the corresponding Law of Ukraine (N944, 14.12.2009). Structure of this study and experimental procedures were approved by the Ethics Committee of Lviv National Medical University (N2, 16.02.2015).

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest.
The authors declare that they have no conflict of interest.

References

1. Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals. 2010;3(7):2291-2321. https://doi.org/10.3390/ph3072291

2. Clària J. Cyclooxygenase-2 Biology. Curr Pharm Design. 2003;9(27):2177-2190. https://doi.org/10.2174/1381612033454054

3. Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2. J Immunol. 2001;167(5):2831-2838. https://doi.org/10.4049/jimmunol.167.5.2831

4. Limongelli V, Bonomi M, Marinelli L, Gervasio LF, Cavalli A, Novellino E, Parrinello M. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition. Proc Natl Acad Sci USA. 2010;107(12):5411-5416. https://doi.org/10.1073/pnas.0913377107

5. Vitale P, Scilimati A, Perrone MG. Update on SAR Studies Toward New COX-1 Selective Inhibitors. Curr Med Chem. 2015;22(37):4271-4292. https://doi.org/10.2174/0929867322666151029104717

6. Turini ME, DuBois RN. Cyclooxygenase-2: A Therapeutic Target. Annu Med Rev. 2002;53:35-57. https://doi.org/10.1146/annurev.med.53.082901.103952

7. Mohammed NA, El-Aleem SA, El-Hafiz HA, McMahon RFT. Distribution of constitutive (COX-1) and inducible (COX-2) cyclooxygenase in postviral human liver cirrhosis: a possible role for COX-2 in the pathogenesis of liver cirrhosis. J Clin Pathol. 2004;57(4):350-354. https://doi.org/10.1136/jcp.2003.012120
8. Ungprasert P, Kittanamongkolchai W, Price Ch, Ratanapo S, Leephorn N, Chongnarungsin D, Cheungpasitporn W. What Is The „Safest” Non-Steroidal Anti-Inflammatory Drugs? Am Med J. 2012;3(2):115-123. https://doi.org/10.3844/amjmsp.2012.115.123

9. Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women’s Health. Pharmacol Rev. 2016;68(4):1026-1073. https://doi.org/10.1124/pr.115.010843

10. Shukla A, Sharma P, Prakash O, Singh M, Kalani K, Khan F, Bawankule DU, Luqman S, Srivastava SK. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity. PLoS ONE. 2014;9(7):e100797. https://doi.org/10.1371/journal.pone.0100797

11. Rathore A, Sudhakar R, Ahsan MJ, Ali A, Subbarao N, Jadav SS, Sadiq U, Yar MSh. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg Chem. 2017;70:107-117. https://doi.org/10.1016/j.bioorg.2016.11.014

12. García-Aranda MI, Gonzalez-Padilla JE, Gómez-Castro CZ, Gómez-Gómez YM, Rosales-Hernández MC, García-Báez EV, Franco-Hernández MO, Castrejón-Flores JL, Padilla-Martínez II. Anti-inflammatory effect and inhibition of nitric oxide production by targeting COXs and iNOS enzymes with the 1,2-diphenylbenzimidazole pharmacophore. Bioorg Med Chem. 2020;28(9):115427. https://doi.org/10.1016/j.bmc.2020.115427

13. Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP, Goyal S, Grover A, Sundar D. Computational Structure-Based De Novo Design of Hypothetical Inhibitors against the Anti-Inflammatory Target COX-2. PLoS ONE. 2015;10(8):e0134691. https://doi.org/10.1371/journal.pone.0134691

14. de O Assis ShP, da Silva MT, da Silva FT, Sant’Anna MP, de Albuquerque Tenório CMB, dos Santos CFB, da Fonseca CSM, Seabra G, Lima VLM, de Oliveira RN. Design and Synthesis of Triazole-Phthalimide Hybrids with Antiinflammatory Activity. Chem Pharm Bull. 2019;67(2):96-105. https://doi.org/10.1248/cpb.c18-00607

15. Li S-M, Tsai Sh-E, Chiang Ch-Y, Chung Ch-Y, Chuang T-J, Zeng Y-H, Hsiao R-H, Tseng Ch-Ch, Jiang W-P, Huang G-J, Li Ch-Y, Wong F-F. New methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates as selective COX-2 inhibitors and anti-inflammatory agents: design, synthesis, biological evaluation, and docking study. Bioorg Chem. 2020;104:104333. https://doi.org/10.1016/j.bioorg.2020.104333

16. Chawla G, Naaz B, Siddiqui AA. Exploring 1,3,4-Oxadiazole Scaffold for Anti-inflammatory and Analgesic Activities: A Review of Literature From 2005-2016. Mini Rev Med Chem. 2018;18(3):216-233. https://doi.org/10.2174/1389557517666170127121215

17. Akhter M, Akhter N, Alam MM, Zaman MS, Saha R, Kumar A. Synthesis and biological evaluation of 2,5-disubstituted 1,3,4-oxadiazole derivatives with both COX and LOX inhibitory
activity. J Enzyme Inhibit Med Chem. 2011;26(6):767-776. https://doi.org/10.3109/14756366.2010.550890

18. Bala S, Kamboj S, Saini V, Prasad DN. Anti-Inflammatory, Analgesic Evaluation and Molecular Docking Studies of N-Phenyl Anthranilic Acid-Based 1,3,4-Oxadiazole Analogues. J Chem. 2013;ID412053. https://doi.org/10.1155/2013/412053

19. Zadorozhnii PV, Kiselev VV, Teslenko NO, Kharchenko AV, Pokotylo IO, Okhtina OV, Kryshchyk OV. In Silico Prediction and Molecular Docking Studies of N-Amidoalkylated Derivatives of 1,3,4-Oxadiazole as COX-1 and COX-2 Potential Inhibitors. Res J Pharm Technol. 2017;10(11):3957-3963. https://doi.org/10.5958/0974-360X.2017.00718.1

20. Zheng X-J, Li Ch-Sh, Cui M-Y, Song Z-W, Bai X-Q, Liang Ch-W, Wang H-Y, Zhang T-Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg Med Chem Lett. 2020;30(13):127237. https://doi.org/10.1016/j.bmcl.2020.127237

21. Feng Zh, Lu X, Gan L, Zhang Q, Lin L. Xanthones, A Promising Anti-Inflammatory Scaffold: Structure, Activity, and Drug Likeness Analysis. Molecules. 2020;25(3):598. https://doi.org/10.3390/molecules25030598

22. El-Haggar R, Al-Wabli RI. Anti-Inflammatory Screening and Molecular Modeling of Some Novel Coumarin Derivatives. Molecules. 2015;20(4):5374–5391. https://doi.org/10.3390/molecules20045374

23. Alshibl HM, Al-Abdullah ES, Haiba ME, Alkahtani HM, Awad GEA, Mahmoud AH, Ibrahim BMM, Bari A, Villinger A. Synthesis and Evaluation of New Coumarin Derivatives as Antioxidant, Antimicrobial, and Anti-Inflammatory Agents. Molecules. 2020;25(14):3251. https://doi.org/10.3390/molecules25143251

24. Irfan A, Rubab L, Rehman MU, Anjum R, Ullah S, Marjana M, Qadeer S, Sana S. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents. Heterocycl Commun. 2020;26(1):46-59. https://doi.org/10.1515/hc-2020-0008

25. Zayeda MF, Hassan MH. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm J. 2014;22(2):157-162. https://doi.org/10.1016/j.jsps.2013.03.004

26. Shaaban MA, Kamal AM, Faggal SI, Farag NA, Aborehab NM, Elsahar AE, Mohamed KO. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX-2/LOX inhibitors. Arch Pharm (Weinheim). 2020;e2000027 (in press). https://doi.org/10.1002/ardp.202000027

27. Neophytou N, Leonis G, Stavrinoudakis N, Simcic M, Grdadolnik SG, Papavassilopoulou E, Michas G, Moutevelis-Minakakis P, Papadopoulos MG, Zing M, Mavromoustakos T. Docking and
Molecular Dynamics Calculations of Pyrrolidinone Analog MMK16 Bound to COX and LOX Enzymes. Mol Inf. 2011;30(5):473-486. https://doi.org/10.1002/minf.201000131

28. Jan MS, Ahmad S, Hussain F, Ahmad A, Mahmood F, Rashid U, Abid O-U-R, Ullah F, Ayaz M, Sadiq A. Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. Eur J Med Chem. 2020;186:111863. https://doi.org/10.1016/j.ejmech.2019.111863

29. Gouda AM, Ali HI, Almalki WH, Azim MA, Abourehab MAS, Abdelazeem AH. Design, Synthesis, and Biological Evaluation of Some Novel Pyrrolizine Derivatives as COX Inhibitors with Anti-Inflammatory/Analgesic Activities and Low Ulcerogenic Liability. Molecules, 2016;21(2):201-222. https://doi.org/10.3390/molecules21020201

30. Eweas AF, El-Nezhawy AOH, Abdel-Rahman RF, Baiuomy AR. Design, Synthesis, In Vivo Anti-inflammatory, Analgesic Activities and Molecular Docking of Some Novel Pyrazolone Derivatives. Med Chem. 2015;5(10):458-466. https://doi.org/10.4172/2161-0444.1000301

31. Zhang B, Hu X-T, Zhou K-M, Yang Y-Sh, Zhu H-L. Discovery of novel aminophosphonate derivatives containing pyrazole moiety as potential selective COX-2 inhibitors. Bioorg Chem. 2020;102:104096. https://doi.org/10.1016/j.bioorg.2020.104096

32. Gedawy EM, Kassab AE, Kerdawy AME. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur J Med Chem. 2020;189:112066. https://doi.org/10.1016/j.ejmech.2020.112066

33. Sağlık BN, Osmaniye D, Levent S, Çevik UA, Çavuşoğlu BK, Özay Yu, Kaplancıklı ZA. Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. Eur J Med Chem. 2020; 112918 (in press). https://doi.org/10.1016/j.ejmech.2020.112918

34. Ahmed EM, Hassan MSA, El-Malah AA, Kassab AE. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg Chem. 2020;95:103497. https://doi.org/10.1016/j.bioorg.2019.103497

35. Zarghi A, Arfaei S. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. Iran J Pharm Res. 2011;10(4):655-683.

36. Amir M, Javed SA, Kumar H. Pyrimidine as antiinflammatory agent: A review. Indian J Pharm Sci. 2007;69(3):337-343. https://doi.org/10.4103/0250-474X.34540

37. Mohamed MS, Kamel R, Abd El-hameed RH. Evaluation of the anti-inflammatory activity of some pyrrolo[2,3-d]pyrimidine derivatives. Med Chem Res. 2013;22(5):2244-2252. https://doi.org/10.1007/s00044-012-0217-5
38. Zhou JP, Dinga YW, Zhanga HB, Xu L, Dai Y. Synthesis and anti-inflammatory activity of imidazo[1,2-a]pyrimidine derivatives. Chin Chem Lett. 2008;19(6):669-672. https://doi.org/10.1016/j.ccl.2008.04.020

39. Abdelgawad MA, Bakr RB, Azouz AA. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg Chem. 2018;77:339-348. https://doi.org/10.1016/j.bioorg.2018.01.028

40. Orjales A, Mosquera R, López B, Olivera R, Labeaga L, Núñez MT. Novel 2-(4-methylsulfonylphenyl)pyrimidine derivatives as highly potent and specific COX-2 inhibitors. Bioorg Med Chem. 2008;16(5):2183-2199. https://doi.org/10.1016/j.bmc.2007.11.079

41. Beswick PJ, Blackaby AP, Bountra C, Brown T, Browning K, Campbell IB, Corfield J, Gleave RJ, Guntrip SB, Hall RM, Hindley S, Lambeth PF, Lucas F, Mathews N, Naylor A, Player H, Price HS, Sidebottom PJ, Taylor NL, Webb G, Wiseman J. Identification and optimisation of a novel series of pyrimidine based cyclooxygenase-2 (COX-2) inhibitors. Utilisation of a biotransformation approach. Bioorg Med Chem Lett. 2009;19(15):4509-4514. https://doi.org/10.1016/j.bmcl.2009.02.089

42. Bakr RB, Azouz AA, Abdellatif KR. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives. J Enzyme Inhib Med Chem. 2016;31(Suppl.2):6-12. https://doi.org/10.1080/14756366.2016.1186018

43. Bakr RB, Ghoneim AA, Azouz AA. Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo[4,5-d]pyrimidine scaffold. Bioorg Chem. 2019;88:102964. https://doi.org/10.1016/j.bioorg.2019.102964

44. Tietz O, Kaur J, Bhardwaj A, Wuest FR. Pyrimidine-based fluorescent COX-2 inhibitors: synthesis and biological evaluation. Org Biomol Chem. 2016;14(30):7250-7257. https://doi.org/10.1039/C6OB00493H

45. Amr AE-GE, Al-Omar MA, Abdalla MM. A Potent Cyclooxygenase-2 Inhibitor for Synthesized Pyrimidine and Thiazolopyrimidine Derivatives. Int J Pharmacol. 2016;12(2):86-91. https://doi.org/10.3923/ijp.2016.86.91

46. Akhtar W, Nainwal LM, Khan MF, Verma G, Chashoo G, Bakht A, Iqbal M, Akhtar M, Shaquiuzzaman M, Alam MM. Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents. J Fluor Chem. 2020;236:109579. https://doi.org/10.1016/j.jfluchem.2020.109579

47. Deepthi D.K., Jainey P.J., Deepthi K., Pankaj K., Chinchumol C., Gopika K.V. ADMET, Molecular docking studies and binding energy calculations of Pyrimidine-2-Thiol Derivatives as Cox Inhibitors. Res. J. Pharm. Technol. 2020;13(9):4200-4206. https://doi.org/10.5958/0974-360X.2020.00742.8

Pharmaceutical Sciences (Indexed in ISI and Scopus) https://ps.tbzmed.ac.ir
48. 36. Yousif OA, Mahdi MF, Raauf AMR. Design, synthesis, preliminary pharmacological evaluation, molecular docking and ADME studies of some new pyrazoline, isoxazoline and pyrimidine derivatives bearing nabumetone moiety targeting cyclooxygenase enzyme. J Contemp Med Sci. 2019;5(1):41-50.

49. Nara H, Sato K, Naito T, Mototani H, Oki H, Yamamoto Y, Kuno H, Santou T, Kanzaki N, Terauchi Y, Uchikawa O, Kori M. Discovery of Novel, Highly Potent, and Selective Quinazoline-2-carboxamide-Based Matrix Metalloproteinase (MMP)-13 Inhibitors without Zinc Binding Group Using Structure-Based Design Approach. J Med Chem. 2014;57(21):8886-8902. https://doi.org/10.1021/jm500981k

50. Nara H, Sato K, Naito T, Mototani H, Oki H, Yamamoto Y, Kuno H, Santou T, Kanzaki N, Terauchi Y, Uchikawa O, Kori M. Thieno[2,3-d]pyrimidine-2-carboxamides bearing a carboxybenzene group at 5-position: Highly potent, selective, and orally available MMP-13 inhibitors interacting with the S1`binding site. Bioorg Med Chem. 2014;22(19):5487-5505. https://doi.org/10.1016/j.bmc.2014.07.025

51. Nepomuceno GM, Chan KM, V. Huynh V, Martin KS, Moore JT, O’Brien TE, Pollo LAE, Sarabia FJ, Tadeus C, Yao Z, Anderson DE, Ames JB, Shaw JT. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ. ACS Med Chem Lett. 2015;6(3):308-312. https://doi.org/10.1021/ml500497s

52. Hassanein HH, El Nahal HM, Gerges FR. Synthesis of some non-antimonial compounds bioisosteric to praziquantel. Eur J Med Chem. 1995;30(6):525-529. https://doi.org/10.1016/0223-5234(96)88265-1

53. Hanna MM. New pyrimido[5,4-e]pyrrolo[1,2-c]pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies. Eur J Med Chem. 2012;55:12-22. https://doi.org/10.1016/j.ejmech.2012.06.048

54. Thiel W. Semiempirical quantum-chemical methods. Wiley Interdisciplinary Reviews: Computational Mol Sci. 2014;4(2):145-157. https://doi.org/10.1002/wcms.1161

55. Thompson M. ArgusLab 4.0.1. Planaria software LLC, Seattle, Wash, USA. 2004. http://www.arguslab.com

56. Thompson MA, Glendening ED, Feller D. The Nature of K +/Crown Ether Interactions: A Hybrid Quantum Mechanical-Molecular Mechanical Study. J Phys Chem. 1994;98(41):10465-10476. https://doi.org/10.1021/j100092a015

57. Thompson MA, Schenter GK. Excited States of the Bacteriochlorophyll b Dimer of Rhodopseudomonas viridis: A QM/MM Study of the Photosynthetic Reaction Center That Includes MM Polarization. J Phys Chem. 1995;99(17):6374-6386. https://doi.org/10.1021/j100017a017

Pharmaceutical Sciences (Indexed in ISI and Scopus) https://ps.tbzmed.ac.ir
58. Thompson MA, Zerner MC. A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc. 1991;113(22):8210-8215. https://doi.org/10.1021/ja00022a003

59. Thompson MA. QM/MMpol: A Consistent Model for Solute/Solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone. J Phys Chem. 1996;100(34):14492-14507. https://doi.org/10.1021/jp960690m

60. Zadorozhnii PV, Kiselev VV, Titova AE, Kharchenko AV, Pokotylo IO, Okhtina OV. Molecular Docking Studies of N-5-Aryl-1,3,4-oxadiazolo-2,2-dichloroacetamidines as Inhibitors of Enoyl-ACP Reductase Mycobacterium tuberculosis. Res J Pharm Technol. 2017;10(4):1091-1097. https://doi.org/10.5958/0974-360X.2017.00198.6

61. Zadorozhnii PV, Pokotylo IO, Kiselev VV, Okhtina OV, Kharchenko AV. Molecular Docking Studies of N-((5-Aryl-1,3,4-oxadiazol-2-yl)amino)methyl)- and N-(2,2,2-Trichloro-1-((5-aryl-1,3,4-oxadiazol-2-yl)amino)ethyl)carboxamides as Potential Inhibitors of GSK-3β. Res J Pharm Technol. 2019;12(2):523-530. https://doi.org/10.5958/0974-360X.2019.00092.1

62. Zadorozhnii PV, Pokotylo IO, Kiselev VV, Okhtina OV, Kharchenko AV. Molecular docking studies of salubrinal and its analogs as inhibitors of the GADD34:PP1 enzyme. ADMET DMPK. 2019;7(2):140-150. https://doi.org/10.5599/admet.632

63. Aliabadi A, Mohammadi-Farani A, Ahmadvand MJ, Rahmani-Khajouei M. Synthesis, docking and acetylcholinesterase inhibitory evaluation of (E)-3-(4-(diethylamino)phenyl)-1-phenylprop-2-en-1-one derivatives with probable anti-Alzheimer effects. J Rep Pharm Sci. 2017;6(2):134-141.

64. Mahendran R, Jeyabasker S, Francis A, Manoharan Sh. Insights into the Identification of p38-alpha Mitogen activated Protein Kinase against Pyridazinopyridinone Derivatives in the Treatment of Rheumatoid Arthritis. Res J Pharm Technol. 2017;10(9):2875-2879. https://doi.org/10.5958/0974-360X.2017.00507.8

65. Selinsky BS, Gupta K, Sharkey CT, Loll PJ. Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry. 2001;40(17):5172-5180. https://doi.org/10.1021/bi010045s

66. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384(6610):644-648. https://doi.org/10.1038/384644a0

67. Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002;16(1):11-26. https://doi.org/10.1023/a:1016357811882

68. DeLano WL. The PyMOL Molecular Graphics System, DeLano Scientific: Palo Alto, CA. 2003 (http://www.pymol.org)

Pharmaceutical Sciences (Indexed in ISI and Scopus) https://ps.tbzmed.ac.ir
69. Yarovenko VN, Kosarev SA, Zavarzin IV, Krayushkin MM. Reactions of monothiooxamides with N-nucleophiles. Synthesis of 4,5-dihydroidazole-2-carboxanilides. Rus Chem Bull. 1999;48(4):749-753. https://doi.org/10.1007/BF02496262

70. Obushak ND, Matiichuk VS, Vasylyshin RY, Ostapyuk YuV. Heterocyclic syntheses on the basis of arylation products of unsaturated compounds: X. 3-aryl-2-chloropropanals as reagents for the synthesis of 2-amino-1,3-thiazole derivatives. Rus J Org Chem. 2004;40(3):383-389. https://doi.org/10.1023/B:RUJO.0000034976.75646.85

71. Ostapiuk YV, Obushak MD, Matiychuk VS, Naskrent M, Gzella AK. A convenient method for the synthesis of 2-[(5-benzyl-1,3-thiazol-2-yl)imino]-1,3-thiazolidin-4-one derivatives. Tetrahedron Lett. 2012;53(5):543-545. https://doi.org/10.1016/j.tetlet.2011.11.093
Scheme 1. Synthesis of \(N\)-aryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k

1-3: \(R = H(a), 3-\text{CH}_3(b), 4-\text{CH}_3(c), 3,4-(\text{CH}_3)_2(d), 4-\text{F(e)}, 3-\text{Cl(f)}, 4-\text{Cl(g)}, 3,4-\text{Cl}_2(h), 4-\text{Br(i)}, 3-\text{CF}_3-4-\text{Cl(j)}, 4-\text{COOH(k)}\)
Scheme 2. Synthesis of N-het-1,4,5,6-tetrahydropyrimidine-2-carboxamides 7a,b

4-7: R = Cl(a), Br(b).
Fig. 1. a) linear correlation between the binding energy (kcal/mol) with COX-1 and the rate of suppression of the inflammatory response (%); b) linear correlation between the binding energy (kcal/mol) of COX-2 and the rate of suppression of the inflammatory response (%).
Fig. 2. Position of molecules of hit compounds in the active sites of COX according to the results of the molecular docking: a) N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3g) in the active site of the enzyme COX-1; b) N-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3g) in the active site of the enzyme COX-2; c) N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j) in the active site of the enzyme COX-1; d) N-[4-chloro-3-(trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine-2-carboxamide (3j) in the active site of the enzyme COX-2. Heme is shown in pink.

Table 1 Results of anti-inflammatory activity and molecular docking study of N-aryl-1,4,5,6-tetrahydropyrimidine-2-carboxamides 3a-k and N-het-1,4,5,6-tetrahydropyrimidine-2-carboxamides 7a,b

Comp.	Structure	Inhibition of the inflammatory response, %	ArgusLab 4.01 ∆G, kcal/mol	
			COX-1	COX-2
3a	![Structure](as.png)	12.9	-8.2	-9.0
Comp.	Structure	Inhibition of the inflammatory response, %	ArgusLab 4.01 \(\Delta G \), kcal/mol	
-------	-----------	--	--	
			COX-1	COX-2
3b	![Structure](image)	30.2	-10.1	-9.7
3c	![Structure](image)	15.9	-9.1	-9.2
3d	![Structure](image)	38.2	-10.8	-10.4
3e	![Structure](image)	26.4	-9.4	-9.5
3f	![Structure](image)	41.8	-11.0	-11.0
3g	![Structure](image)	46.7	-11.7	-11.2
3h	![Structure](image)	36.0	-9.8	-10.7
3i	![Structure](image)	8.6	-7.3	-9.2
3j	![Structure](image)	46.4	-11.6	-11.5
3k	![Structure](image)	25.2	-8.7	-9.4
Comp.	Structure	Inhibition of the inflammatory response, %	ArgusLab 4.01 ΔG, kcal/mol	
-------	-----------	--	-----------------------------------	
			COX-1	COX-2
7a	![Structure 7a](image)	37.5	-10.7	-10.6
7b	![Structure 7b](image)	29.3	-10.4	-11.0
Diclofenac	![Structure Diclofenac](image)	43.6	-10.8	-11.1
Graphical abstract

The carrageenan model of the paw edema white rats

Molecular docking with COX-1 and COX-2

hit compounds