An electronic nematic liquid in BaNi_2As_2

Understanding the organizing principles of interacting electrons and the emergence of novel electronic phases is a central endeavor of condensed matter physics. Electronic nematicity, in which the discrete rotational symmetry in the electron fluid is broken while the translational one remains unaffected, is a prominent example of such a phase. It has proven ubiquitous in correlated electron systems, and is of prime importance to understand Fe-based superconductors. Here, we find that fluctuations of such broken symmetry are exceptionally strong over an extended temperature range above phase transitions in $\text{BaNi}_2(\text{As}_{1-x}\text{P}_x)_2$, the nickel homologue to the Fe-based systems. This lends support to a type of electronic nematicity, dynamical in nature, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.

The normal state of unconventional superconductors generally exhibits a variety of exotic electronic states emerging out of the interplay between intertwined orders. It is at least as intriguing as the superconducting state itself. The electronic nematic state is one such exotic state, which has proven particularly insightful in unveiling the properties of Fe-based superconductors. In these materials, nematicity is a canonical example of vestigial order which grows out of the magnetic state, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.

The normal state of unconventional superconductors generally exhibits a variety of exotic electronic states emerging out of the interplay between intertwined orders. It is at least as intriguing as the superconducting state itself. The electronic nematic state is one such exotic state, which has proven particularly insightful in unveiling the properties of Fe-based superconductors. In these materials, nematicity is a canonical example of vestigial order which grows out of the magnetic state, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.
reported so far, and it has been argued that the CDW plays a role similar to that of magnetism in the Fe-based superconductors\(^9\), suggesting that BaNi\(_2\)As\(_2\) could be seen as a charge analogue of BaFe\(_2\)As\(_2\). Here we investigate the lattice and electron dynamics of BaNi\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\), and report on an exceptionally large splitting of the doubly degenerate Raman active planar vibrations of the NiAs tetraedra. In sharp contrast to the behavior in the iron-based systems, where this splitting was taken as evidence for nematic symmetry breaking, in BaNi\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\), it occurs well above any reported structural phase transition temperatures. This calls for a distinction between the lifting of a degeneracy and a dynamical spectral splitting. We show that our observation can be accounted for by a particularly strong coupling of electronic \(B_{\text{eg}}\) nematic fluctuations, likely of orbital nature\(^8\), to the lattice degrees of freedom in this material. This indicates that the tetragonal phase of BaNi\(_2\)As\(_2\) hosts an electronic nematic phase, dynamical in nature. We show that the broadening and splitting of the planar phonons can be described in terms of an entangled superposition of the two degenerate Ising-nematic states that are coupled to a cloud of vibrational quanta. This bears analogies with the phenomenology of spin liquids—a cloud of vibrational quanta. This bears analogies with the phenomenology of spin liquids—dynamical states without long-range magnetic order but long-range entanglement—and suggests in turn that similarly rich physics could be expected in such nematic liquids.

Results

From a point group analysis follows that the tetragonal phase of BaNi\(_2\)As\(_2\) hosts four Raman-active optical phonons of \(A_{1g}\), \(B_{1g}\), and \(E_{g}\) symmetry at the Brillouin zone center. The corresponding eigen-displacements are shown in Fig. 1a. In this figure, we further report on room temperature Raman scattering measurements performed on BaNi\(_2\)As\(_2\) single crystals. The experiments were carried out in backscattering geometry with \(XZ\), \(ZZ\), \(XX\) and \(XY\) configurations, where the first (respectively second) letter refers to the orientation of the incident (resp. scattered) light polarization with respect to the axis of the tetragonal unit cell (Supplementary Note 3). All four Raman active optical phonon modes were detected. The \(A_{1g}\) mode is seen in the \(ZZ\) configuration at 172.9 \(\text{cm}^{-1}\), as well as in the \(XX\) channel, where it partially overlaps with the \(B_{1g}\) mode, at 158.6 \(\text{cm}^{-1}\). The two modes observed in the \(XZ\) channel are the doubly degenerate \(E_{g}\) modes referred to as \(E_{g,1}\) (41.4 \(\text{cm}^{-1}\)) and \(E_{g,2}\) (235.2 \(\text{cm}^{-1}\)). With the notable exception of the lowest \(E_{g,1}\) mode, these energies are in good agreement with the predictions of ab initio calculations (see Supplementary Note 3). These calculations also allowed us to estimate the strength of the electron–phonon coupling for the different modes and revealed that the phonon exhibiting the largest coupling is the \(A_{1g}\) mode, which consistently displays a weak Fano asymmetry. On the other hand, despite the rather modest calculated electron–phonon coupling, the \(E_{g,1}\) mode is very broad (full-width-at-half-maximum (FWHM) ~ 22 \(\text{cm}^{-1}\)) at room temperature, indicating additional decay channels.

The singular behavior of the \(E_{g,1}\) phonon is confirmed upon cooling. The conventional behavior of phonon is exhibited by the \(A_{1g}\) (Fig. 1b) mode which harden and narrow at low temperatures. In contrast, the \(E_{g,1}\) mode initially softens upon cooling, starts broadening around \(T \sim 200 \text{K}\) before splitting at lower temperatures, where two peaks can be resolved; see Fig. 1c and Supplementary Note 3. Just above the first-order transition\(^{18}\) to a triclinic phase at \(T_{\text{Tr}} = 133 \text{K}\) (on cooling), within which the phonon spectra qualitatively change (Supplementary Note 3 and Fig. 2), the splitting is as large as 22 \(\text{cm}^{-1}\), that is, more than 50% of the mode’s original frequency.

The degeneracy of an \(E_{g}\) phonon can only be lifted if the four-fold symmetry of the Ni planes is broken. This occurs across the tetragonal-to-orthorhombic structural transition in the Fe-based compounds Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\),\(^8,10\) EuFe\(_2\)As\(_2\),\(^11\) or FeSe\(_2\),\(^12\), where \(E_{g}\) modes split into \(B_{2g}\), and \(E_{g}\) modes. The largest reported splitting in AF (\(A = \text{Ba or Eu}\)) is \(-10 \text{cm}^{-1}\), significantly larger than in FeSe\(_2\) (~2.6 \(\text{cm}^{-1}\)). In both cases, this splitting is already considered unusually large, in the sense that it exceeds the expectation based on the lattice distortion. The splitting in our measurements is quantitatively much larger and moreover onsets (with a broadening of the mode) at a temperature significantly higher than that at which the four-fold symmetry breaking takes place.

Before discussing the doping dependence of the effect in BaNi\(_2\)As\(_2\), we briefly review the potential sources of symmetry breaking that could yield a splitting of the \(E_{g,1}\) phonon. As FeSe\(_2\), BaNi\(_2\)As\(_2\) does not exhibit any magnetic order but a unidirectional, biaxial, incommensurate CDW (i-CDW) above \(T_{\text{Tr}}\) has recently been reported\(^{19,20}\). We performed a

![Fig. 1 | Raman scattering from BaNi\(_2\)As\(_2\). a Raman active phonons of BaNi\(_2\)As\(_2\), and room temperature Raman spectra obtained in the different incoming and scattered photon polarizations. Detailed view of the temperature dependencies of the \(A_{1g}\) (b) and \(E_{g,1}\) (c) phonons above \(T_{\text{Tr}}\) in BaNi\(_2\)As\(_2\).](https://doi.org/10.1038/s41467-022-32112-7)
Fig. 2 | Doping dependence. a temperature dependence of the resistivity and its derivative measured upon cooling in BaNi$_2$As$_2$, b of the integrated intensity of the $q_{i\text{-CDW}} = (0.28, 0, 0)$ and $q_{j\text{-CDW}} = (1/3, 0, 1/3)$ superstructure peaks (measured upon cooling) in BaNi$_2$As$_2$, c temperature dependence of the $E_{g,2}$ phonon intensity in BaNi$_2$As$_2$ (after background subtraction and Bose-factor correction, Supplementary Note 3), d temperature dependence of the $E_{g,1}$ phonon intensity in BaNi$_2$As$_2$ (after background subtraction and Bose correction, Supplementary Note 3). e, f, g, h same as (a, b, c, d) for BaNi$_2$(As$_{1-x}$P$_x$)$_2$($x = 0.076$), i, j, l same as (a, b, c, d) for BaNi$_2$(As$_{1-x}$P$_x$)$_2$($x = 0.035$), k, m, o, p same as (a, b, c, d) for BaNi$_2$(As$_{1-x}$P$_x$)$_2$($x = 0.10$). In each panel we have indicated the position of the triclinic transition (upon cooling) T_{Tri}, of the local minimum of $\frac{dT}{dT}$ and of the temperature at which the I-CDW intensity starts to grow $T_{\text{I-CDW}}$. The shaded area corresponds to the uncertainty on the determination of T at which the E_{g} phonon starts to broaden.
gigantic energy splitting of the E_g phonons reported here (Supplementary Note 3). Furthermore, in stark contrast to Fe-based materials,12,13 the $E_{g,1}$ mode splitting increases linearly and does not show any sign of saturation down to T_{Tri}. In the same temperature range, a subtle broadening of the $E_{g,2}$ mode (of much lower intensity) occurs.}

Next, we confirmed the behavior of the E_g modes by studying the impact of arsenic substitution with phosphorus. This has previously been reported to suppress the triclinic transition2,26 and to enhance the orthorhombic distortion2,27. In Fig. 2, we show the results for BaNi$_2$(As$_{x}$P$_{1-x}$)$_2$ with $x = 3.5\%$ ($T_{Tri} = 95 \, K$) and $x = 7.6\%$ ($T_{Tri} = 55 \, K$), for which we observe a similar splitting of the $E_{g,1}$ mode, which increases linearly as temperature decreases reaching almost 30 cm$^{-1}$ at T_{Tri} (~65\% of the mode frequency). Upon further increase of the P-concentration ($x = 10\%$), for which the triclinic (and therefore the C-CDW) transition is completely suppressed, the maximal amplitude of the splitting is reduced and appears to saturate at the lowest temperatures. In all doped samples, the strong increase of the I-CDW satellite intensity at q_{I-CDW} is smoother than in the parent compound and occurs at a temperature very close to T_{Tri}. The observation of the E_g phonon broadening and splitting above any lowering of the symmetry of the compound, strongly suggests a coupling of the mode to fluctuations. Given the lack of magnetism in BaNi$_2$As$_2$, orbital degrees of freedom are the most likely candidates. This can directly be tested using electronic Raman scattering, which is a particularly sensitive probe of the charge fluctuations. In Fig. 3, we show the temperature dependence of the electronic Raman response in the B_{1g} and B_{2g} channels for the $x = 6.5\%$ sample (for clarity, the Raman active phonon has been subtracted from the B_{1g} spectrum—Supplementary Note 3). In both channels, the electronic response consists of a broad continuum, extending up to 1500 cm$^{-1}$, akin to the particle-hole excitations seen in many correlated metals28-30. It apparently displays a conventional metallic behavior, with a smooth increase of the low frequency (\leq250 cm$^{-1}$) response upon cooling, reflecting the decrease of the quasiparticle scattering rate Γ (which is inversely proportional to the slope of the Raman response, $\chi''(\omega)/\omega|_{\omega=0}$ in the static limit). The main difference between the two channels is quantitative: the low energy B_{1g} intensity gain spans over a broader energy range (\geq500 cm$^{-1}$) than the B_{2g}, it is overall larger and accelerates significantly at temperatures where the E_g-p phonon splitting becomes evident, below ~140 K. This observation is in line with recent elasto resistivity measurements30-33 and can be interpreted as a signature of B_{1g} nematic fluctuations in BaNi$_2$As$_2$. In contrast to the electronic nematicity of the Fe-based superconductors, observed in the B_{2g} channel, the respective B_{1g} response in BaNi$_2$As$_2$ appears overdamped, suggesting a strong coupling of the lattice to the nematic fluctuations.

Next, we develop a qualitative understanding of the ‘splitting’ of the E_g phonon spectrum, in the absence of a structural phase transition. While the latter would lift the degeneracy and naturally cause such a splitting, we show how when it does not occur, the coupling of nematic fluctuations to the lattice can yield a spectral splitting of a doubly degenerated mode that bears striking similarities to our experimental observation. We first focus on three phonon branches, a transverse acoustic (TA) mode that couples to nematic order and the two degenerate optical E_g modes with lattice Hamiltonian $H_{latt} = \frac{1}{2} \sum_{q} \omega_{q} a_{q}^{\dagger} a_{q}$. Here, κ refers to the phonon branch of frequency ω_{q}. Since nematic fluctuations take place at small momenta, we ignore the momentum dependence of the optical modes ω_{q}. The TA mode frequency $\omega_{q,\text{TA}} = c_{s} q$ possesses a direction-dependent sound velocity c_{s}. For momenta q along [100], [010], c_{s}^2 is proportional to the B_{1g} elastic constant $C_{66} = C_{11} - C_{12}$. In our consideration, we include electronic degrees of freedom with nematic magnetic order. Having in mind the absence of magnetic order in this system as well as recent observation of orbital fluctuations above the triclinic transition32, suggest that orbital degrees of freedom are the most relevant here. A natural
The electronic object of proper symmetry is the orbital polarization \(O_i = \sum_q (d_{i,x}^\dagger d_{i,x}^\dagger - d_{i,y}^\dagger d_{i,y}^\dagger) \) at lattice site \(i \); or its Fourier transform in momentum space \(Q \). The Ni 3d, and 3d\(_o \) orbitals are symmetry related in the tetragonal phase and broken nematic symmetry implies \(O_Q = (\delta_{Q,0} = 0) \). In the following, we draw general conclusions that do not rely on the microscopic origin of such ordering (these go beyond the scope of this paper and will be developed in a subsequent work), nor of its microscopic nature providing that its symmetry allows a coupling to the relevant phonons.

The most direct coupling of the orbital polarization \(O_Q \) to elastic modes occurs through TA phonons with displacements \(u_{q,y} \)

\[
H_{c,TA} = -\frac{g_T}{2} \sum_q O_q (q_{tx} u_{q,x} - q_{ty} u_{q,y}).
\]

This interaction imposes that orbital ordering and the tetragonal-to-orthorhombic transition occur simultaneously. Such coupling between a degenerate electronic state to TA phonons can in principle cause nematic order, akin to a cooperative Jahn–Teller effect\(^{31}\). Even when the nematicity is primarily of electronic origin, the nematic-elastic coupling of Eq. (1) will always increase the tendency towards nematic order\(^{32}\), consistent with the Jahn-Teller argument. It leads in any event to a lattice softening near the transition and allows probing the nematic susceptibility via measurements of the elastic constant \(C_{\text{el}}\)\(^{33,34}\), the elasto-resistivity\(^{35}\) or the \(\theta_g \)-Raman response\(^{36}\).

By symmetry, the coupling of the orbital polarization to optical \(E_g \) phonon modes is given by

\[
H_{c,E_g} = \frac{g_{E_g}}{2N} \sum_{k,\lambda} \Omega_{\lambda} (u_{k,z} u_{q,x} - u_{k,y} u_{q,y}).
\]

In the case of a finite nematic order parameter \(O_T \neq 0 \), the degeneracy of the \(E_g \) phonons is lifted \(\omega_0 \to \sqrt{\omega_0^2 + g_{E_g}^2 (O_T)} \), as the protecting symmetry is broken. The splitting of the squared frequencies is directly proportional to the order parameter.

While symmetry breaking is necessary to lift the degeneracy and to induce a nematic order parameter, it is not the only approach to achieve spectral splitting. Next, we show that this can indeed arise from a purely dynamical effect, which relates to the dynamic Jahn-Teller effect\(^{37}\), albeit rather originating from fluctuations of electronic degrees of freedom than from a large zero-point energy of vibronic modes. Similar phenomena have been reported in the half-field Holstein model\(^{38}\).

In order to get a qualitative understanding of such a dynamic splitting we consider a simple toy model that directly follows from our above description. We assume that \(O_T \) behaves as an effective Ising variable \(O = A_0 \sigma \), with typical amplitude \(A_0 \). The Ising pseudospin states \(| \uparrow \rangle \) and \(| \downarrow \rangle \) —defining the basis for the Pauli matrix \(\tau \)— describe the two orbital polarizations. Then the Hamiltonian takes the form

\[
H_{c,E_g} = A_0 \sqrt{\omega_0^2 \sum_{q,\lambda} \tau_\lambda^2 (u_{q,x}^2 - u_{q,y}^2)} + \sum_{\lambda} \frac{\Omega_{\lambda}}{2} \tau_\lambda.
\]

Here, \(\lambda = g_{E_g} A_0 / \sqrt{\omega_0^2} \) is a dimensionless nematic-elastic coupling constant. In the ordered state, the two modes become \(\omega_0 \to \omega_0 \sqrt{1 \pm \lambda} \) in agreement with the discussion above. Note that the model can be easily adapted to the coupling of \(B_{2g} \) nematicity, relevant for Fe-based superconductors, using \(u_{x,y} \) instead of \(u_{x,y} \) in the previous equation. This yields exactly the same results, albeit with a different strain dependence. From the splitting of the \(E_g \) phonons\(^6\) we can estimate \(\lambda \approx 0.08 \) for \(\text{BaFe}_2\text{As}_2 \), much weaker than \(\lambda \approx 0.7 \) of the Ni system. To model quantum fluctuations, we introduced the last term that gives rise to tunneling processes between the two degenerate states\(^8\). Using a variational approach\(^{29,30}\), one can show that the tunneling rate can be thought of as a renormalized quantity \(\Omega_0 \to \Omega = \Omega_0 e^{-\sum_{\lambda} \tau_\lambda^2 / \lambda^2} \) rooted in a more complex dynamic nematic susceptibility of the form \(\chi_{\text{nem}}(\Omega) = (\Omega \omega_0^2 + 1)^{-2} \), similar to other pseudospin problems\(^{39}\).

The electronic degrees of freedom will now give rise to some coupling of the \(\tau_\lambda^2 \) at different lattice sites, responsible for actual nematic order. If we assume a mean field description of the tetragonal phase, different lattice sites decouple. Still \(H_{\text{tet},s} + H_{\text{nem}} \), that describes the \(E_g \) phonons, is a many-body model of interacting pseudospin and lattice vibrations. It is possible to obtain an exact solution of the model with many-body eigenenergies:

\[
E_{m_1,m_2} = \epsilon_s (m_1 + m_2 + 1/2) + s \sqrt{c_1^2 (m_1 - m_2)^2 + \Omega^2 / \tau},
\]

where \(\tau = \omega_0 / (1 + \lambda^2) \), the indices \(m_1,2 = 0,1,2 \), \(\cdots \) refer to phonon occupations of the \(E_g \) and \(E_g \) modes, and \(s = \pm 1 \) corresponds to the pseudospin states \(| \uparrow \rangle \pm | \downarrow \rangle \) with \(\Delta \). From an analysis of the spectral functions follows that both phonon modes are degenerate and at \(T = 0 \) have two dominant peaks at \(\omega_0 = E_{0,0} = E_{1,0} = E_{1,1} = E_{0,1} \), with splitting \(\Delta \omega = \omega_0 - \omega_0 \) (see Fig. 4a, b). For \(\lambda = 0 \), \(\omega_0 = \omega_0 = 0 \), i.e. there is no splitting. However, since the pseudospin splitting \(E_{m_1,m_2} - E_{m_0,m_2} \) of the many-body eigenstates depends on the phonon-population via \(c_1 (m_1 - m_2)^2 \), both \(E_g \) modes split in two main satellites by \(\Delta \omega = \sqrt{\omega_0^2 + 2 \omega_0 (1 - 1 + \lambda^2)} \). For weak coupling \(\lambda \ll \Omega / \omega_0 \) (relevant for Fe-based systems) holds \(\Delta \omega = \lambda \omega_0^2 / \Omega \) such that the splitting is small \(\Delta \omega / \omega_0 \ll 1 \). However, as soon as \(\lambda > \Omega / \omega_0 \) we have \(\Delta \omega = \lambda \omega_0 \), and the splitting of both \(E_g \) modes is order unity (note that the system becomes unstable as \(\lambda \to 1 \), which signals a structural instability).

To obtain a qualitative understanding of the origin of this behavior we use our earlier result for the static lifting \(-\lambda \tau^2 / \omega_0 \) of the degeneracy and replace it by \(\sqrt{\lambda^2 (\tau^2)} \omega_0 - \omega_0 \). This simply indicates that when the fluctuations between degenerate nematic configurations are strongly coupled and slow compared to the timescale of phonons \((\Omega \ll \omega_0) \), a split spectral structure for the phonons similar to that induced by static ordering can be obtained. In Fig. 4a, b we also show the behavior at finite \(T \) where several additional satellites enter the analysis, but the overall behavior remains unchanged. Finally, we can include externally applied stress \(\sigma_{\text{ext}} \) that explicitly breaks the four-fold symmetry via \(H_s = -\sum_{\text{ext}} \sigma_{\text{ext}} \tau^2 \). Now, the degeneracy of the two \(E_g \) phonons is lifted. We then observe merely a gradual transfer of weight between the split peaks, see Fig. 4c.

The precise nature of the orbital fluctuations and of the electronic state coupling to the phonon in \(\text{BaNi}_2\text{As}_2 \) remains to be clarified experimentally. Nevertheless, it is possible to experimentally investigate the symmetry-lifting for \(\text{BaNi}_2\text{As}_2 \) by performing measurements under strain, in a comparative study with \(\text{FeSe} \). Quite generally, Fe-based superconductors are particularly soft and can be detwinned with very modest stress. This can be seen in a Raman experiment through the suppression in the intensity of one of the two degenerate \(B_{2g} \) or \(B_{3g} \) modes\(^{41}\). Here, we used the approach proposed in ref. 40, gluing a \(\text{BaNi}_2\text{As}_2 \) sample onto a glass-fiber reinforced plastic substrate with the edges of the tetragonal unit cell aligned with the fibers. The resulting symmetry breaking strain is estimated to 0.4% at 150 K, which decreases the triclinic transition temperature by about 5K and yields a small but measurable shift of the \(A_\text{g} \) phonon of \(-0.5 \text{ cm}^{-1} \) (Supplementary Information). In sharp contrast to the Fe-based compounds (Fig. 4f), the intensity ratio between the two \(E_g \) features barely changes in \(\text{BaNi}_2\text{As}_2 \) (Fig. 4e), as we only observe a small spectral weight transfer between the two satellites, in line with the above prediction.
hereby confirming the dynamical nature of the nematic electronic phase of BaNi$_2$As$_2$.

Discussion

We summarize our findings on the phase diagram shown in Fig. 5 in which we report the doping dependence of the characteristic temperatures of the BaNi$_2$(As$_{1-x}$P$_x$)$_2$ system determined from a combination of XRD, Raman, resistivity and specific heat experiments. The main result of this study is the pronounced broadening and splitting of the E_g modes which occurs at temperatures significantly larger than that of static structural distortions and/or of the appara- tion of CDW orders. The effect is qualitatively and quantitatively very different from that associated with nematicity in Fe-based compounds. Indeed, rather than manifesting itself at a symmetry breaking phase transition or via long-wavelength fluctuations (probed e.g. through the softening of elastic constants or Raman scattering in the symmetry channel of the nematic order parameter), the behavior of the E_g modes can be explained by a strong symmetry-allowed coupling between the lattice and dynamic B_{1g} local nematic fluctuations visible even without phase transition. We argue that the E_g phonons follow the dynamics of an Ising variable, likely related to resonant transitions between distinct electronic orbital states, which causes a splitting in the phonon spectrum even in the absence of broken symmetry. These transitions can in principle be driven both by quantum and thermal fluctuations, and disentangling their effects is generally not trivial at finite temperature. We note however that the splitting of the E_g modes can be as large as ~30 cm$^{-1}$. This effectively corresponds to a temperature scale of ~45 K, above which fluctuations between the two configurations of the system can in principle be thermally driven. This is most likely the case for most of the investigated samples, with the notable exception of the one containing 10% of phosphorus, in which triclinic transition is completely suppressed and T_c is enhanced. We note that the splitting amplitude remains essentially temperature independent below ~50 K (Supplementary Note 3), where quantum fluctuations can in principle be expected to take the lead, calling for further investigation on this interesting regime.

We end our discussion by drawing an analogy with generalized liquids states, strongly correlated states that do not break a symmetry, such as the Fermi4, orbital4 or the spin4 liquids. The regime of strong fluctuations between degenerate nematic states that splits the E_g phonons without breaking the rotational symmetry in BaNi$_2$(As$_{1-x}$P$_x$)$_2$ discussed here can therefore be understood as a nematic liquid. The case of spin liquids in which strong zero-point fluctuations between degenerate configurations prevent long-range magnetic ordering4 might bear the strongest conceptual similarity with the present case. One can therefore expect that some of the phenomenology of the quantum spin liquid might carry over to nematic liquids and give rise to related phenomena, such as unconventional superconductivity or exotic quantum states with long-range entanglement. It strongly supports the view that the much-enhanced superconducting transition temperature of the studied materials upon doping is closely tied to the emergence of dynamic nematic fluctuations uncovered in our measurements.

Methods

Single crystal growth

Single crystals of BaNi$_2$(As$_{1-x}$P$_x$)$_2$ were grown using a self-flux method. NaAs binary was synthesized by mixing the pure elements Ni (powder, Alfa Aesar 99.999%) and As (lumps, Alfa Aesar 99.9999%) that were ground and sealed in a fused silica tube and annealed for 20 h at 730 °C. All sample handlings were performed in an argon glove box (O$_2$...
were heated to 500 °C. Plate-like single crystals with typical sizes 3 × 2 × 0.5 mm³ were having shiny brass-yellow metallic lustre. Electron microscope analysis easily removed from the remaining ingot. The crystals were brittle.

For the growth of BaNi₂(Pₓ − C₀)x₂ crystals was performed using a benchtop α-radiation⁴. Detailed temperature dependencies of the I- and C-CDW superstructure peaks were obtained using a four circle diffractometer. The samples were cooled under vacuum in a DE-202SG/700K closed-cycle cryostat from ARS, surrounded by a Beryllium dome. The incoming beam was generated from a Molybdenum X-ray tube with a voltage of 50 kV and a current of 40 mA. The beam was collimated and cleaned up by a 0.8 mm pinhole before hitting the samples. We specifically followed the superstructure reflections close to the (4, 1, 1) and (1, 0, 3) Bragg peaks for the I- and C-CDW, respectively.

Polarization-resolved confocal Raman scattering

Confocal Raman scattering experiments were performed with a Jobin-Yvon LabRAM HR Evolution spectrometer in backscattering geometry, with a laser power of ≤0.5 mW that was focused on the sample with a >50 magnification long-working-distance (10.6 mm) objective. The laser spot size was ~2 μm in diameter. Low-resolution mode (1.54 cm⁻¹) of the spectrometer with 600 grooves/mm was used to maximize the signal output. For the phonon measurements, a He−Ne laser (λ = 632.8 nm) was used as the incident source, whereas the electronic background was best observed using the 532 nm line of a Nd:YAG solid state laser. Direct comparison of the structural phase transition temperature upon cooling as measured in specific heat and Raman indicated a laser-induced heating limited to less than 2 K. The Raman spectrum used a Bose corrected and the phonons analyzed using a damped harmonic oscillator profile (with the exception of the A₄u mode that displayed a Fano asymmetry and was treated accordingly).

Additional details on the experiment, phonon calculations or on the theoretical model presented here are given in Supplementary Notes 3 and 4.

Data availability

The Raman data reported in this study have been deposited at the KIT Open, under the following identification number KITopen-ID: 100148276. The data that support the findings of this study are available from the corresponding author, Matthieu Le Tacon, upon reasonable request.

References

1. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
2. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).
3. Böhmer, A. E. & Meingast, C. Electronic nematic susceptibility of iron-based superconductors. C. R. Physique 17, 90–112 (2016).
4. Chu, J.-H., Analytis, J. G., Kucharczyk, C. & Fisher, I. R. Determination of the phase diagram of the electron-doped superconductor Ba(Feₓ₋₁ₓ)Co₂As₂. Phys. Rev. B 79, 014506–014506 (2009).
5. Weber, F. et al. Soft phonons reveal the nematic correlation length in Ba(Feₓ₋₀.₀₆)As₂. Phys. Rev. B 88, 014516 (2018).
6. Merritt, A. M. et al. Nematic correlation length in iron-based superconductors probed by inelastic x-ray scattering. Phys. Rev. Lett. 124, 157001 (2020).
7. Wu, S. et al. Short-range nematic fluctuations in Sr₁₋ₓNaₓFe₂As₂ superconductors. Phys. Rev. Lett. 126, 107001 (2021).
8. Chauvière, L. et al. Doping dependence of the lattice dynamics in Ba(Feₓ₋₀.₀₆)As₂ studied by Raman spectroscopy. Phys. Rev. B 80, 094504–094506 (2009).
9. Ren, X. et al. Nematic crossover in BaFe₂As₂ under uniaxial stress. Phys. Rev. Lett. 115, 197002 (2015).
10. Baum, A. et al. Interplay of lattice, electronic, and spin degrees of freedom in detwinned BaFe₂As₂: a Raman scattering study. Phys. Rev. B 98, 075113 (2018).
11. Zhang, W. L. et al. Stress-induced nematicity in EuFe₂As₂ studied by Raman spectroscopy. Phys. Rev. B 94, 014513 (2016).
12. Hu, Y. et al. Nematic magnetoelastic effect contrasted between Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and FeSe. Phys. Rev. B 93, 060504 (2016).
13. Ronning, F. et al. The first order phase transition and superconductivity in BaNi$_2$As$_2$ single crystals. J. Physics: Condens. Matter 20, 342203 (2008).
14. Subedi, A. & Singh, D. J. Density functional study of BaNi$_2$As$_2$: electronic structure, phonons, and electron-phonon superconductivity. Phys. Rev. B 78, 132511 (2008).
15. Kurita, N. et al. Low-temperature magnetothermal transport investigation of a Ni-based superconductor BaNi$_2$As$_2$: evidence for fully gapped superconductivity. Phys. Rev. Lett. 102, 147004 (2009).
16. Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020).
17. Frachet, M. et al. Elastoresistivity in the incommensurate charge density wave phase of BaNi$_2$(As$_{1-x}$P$_x$)$_2$. Preprint at https://arxiv.org/abs/2207.02462 (2022).
18. Eckberg, C. et al. Evolution of structure and superconductivity in Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$. Phys. Rev. B 97, 224505 (2018).
19. Lee, S. et al. Unconventional charge density wave order in the pnictide superconductor Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$. Phys. Rev. Lett. 112, 147601 (2019).
20. Merz, M. et al. Rotational symmetry breaking at the incommensurate charge-density-wave transition in Ba(Ni,Co)$_2$(As,P)$_2$: Possible nematic phase induced by charge/orbital fluctuations. Phys. Rev. B 104, 184509 (2021).
21. Meingast, C. et al. Charge-density-wave transitions, phase diagram, soft phonon and possible electronic nematicity: a thermodynamic investigation of BaNi$_2$(As,P)$_2$. Preprint at https://arxiv.org/abs/2207.02294 (2022).
22. Pokharel, A. R. et al. Dynamics of collective modes in an unconventional charge density wave system BaNi$_2$As$_2$. Commun. Phys. 5, 141 (2022).
23. Lee, S. et al. Multiple charge density waves and superconductivity nucleation at antiphase domain walls in the nematic pnictide Ba$_3$Sr$_x$Ni$_2$As$_2$. Phys. Rev. Lett. 127, 027602 (2021).
24. Lederer, S., Berg, E. & Kim, E.-A. Tests of nematic-mediated superconductivity applied to Ba$_3$Sr$_x$Ni$_2$As$_2$. Phys. Rev. Res. 2, 023122 (2020).
25. Kudo, K. et al. Giant phonon softening and enhancement of superconductivity by phosphorus doping of BaNi$_2$As$_2$. Phys. Rev. Lett. 109, 097002 (2012).
26. Deverreaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–159 (2007).
27. Le Tacon, M. et al. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nat. Phys. 2, 837 (2006).
28. Gallais, Y. et al. Observation of incipient charge nematicity in Ba(Fe$_{0.8}$Co$_{0.2}$)$_2$As$_2$. Phys. Rev. Lett. 111, 267001 (2013).
29. Kretzschmar, F. et al. Critical spin fluctuations and the origin of nematic order in Ba(Fe$_{0.8}$Co$_{0.2}$)$_2$As$_2$. Nat. Phys. 12, 560–563 (2016).
30. Sen, K. et al. Strange semimetal dynamics in SrIrO$_3$. Nat. Commun. 11, 4270 (2020).
31. Gehring, G. A. & Gehring, K. A. Co-operative Jahn-Teller effects. Rep. Prog. Phys. 38, 1 (1975).
32. Fernandez, R. M. et al. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett. 105, 157003 (2010).
33. Gallais, Y. & Paul, I. Charge nematicity and electronic Raman scattering in iron-based superconductors. C. R. Physique 17, 113–139 (2016).
34. Liehr, A. D. Topological aspects of conformational stability problem.1. Degenerate electronic states. J. Phys. Chem. 67, 389 (1963).
35. Cohner-Stead, B. et al. Langevin simulations of the half-filled cubic Holstein model. Phys. Rev. B 102, 161108 (2020).
36. Costi, T. A. & Kieffer, C. Equilibrium dynamics of the dissipative two-state system. Phys. Rev. Lett. 76, 1683 (1996).
37. Silbey, R. & Harris, R. A. Variational calculation of the dynamics of a two level system interacting with a bath. J. Chem. Phys. 80, 2615 (1983).
38. Silbey, R. & Harris, R. A. Tunneling of molecules in low-temperature media: an elementary description. J. Chem. Phys. 93, 7062 (1989).
39. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987).
40. He, M. et al. Dichotomy between in-plane magnetic susceptibility and resistivity anisotropies in extremely strained BaFe$_2$As$_2$. Nat. Commun. 8, 504 (2017).
41. Pines, D. Theory of Quantum Liquids (CRC Press, 1989).
42. Khalilullin, S. & Maekawa, S. Orbital liquid in three-dimensional Mott insulator: LaTiO$_3$. Phys. Rev. Lett. 85, 3950 (2000).
43. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

Acknowledgements
The authors are grateful to P. Abbamonte, A. E. Boehmer, J. Demsar, F. Hardy, C. W. Hicks, and J. Paglione and L. Wang for valuable discussions. We further thank Y. Li for allowing us to reproduce his data in Fig. 4f. The contribution from M.M. was supported by the Karlsruhe Nano Micro Facility for Information (KNMFI). We further acknowledge the support of the KNMFI and Dr. Torsten Scherer for the EDX measurements. We acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) Project-ID 422134777-TRR 288 (Projects B01, B03, and A02) and support by the state of Baden-Württemberg through bwHPC. K.W. acknowledges funding by the SNF through a postdoc mobility fellowship. S.M.S. acknowledges funding by the Deutsche Forschungsgemeinschaft-Projektnummer 441231589.

Author contributions
M.L.T. conceived and supervised the project. Y.Y. and T.L. acquired and analyzed the Raman scattering data. A.A.H. and T.L. grew the single crystals. T.L., S.M.S., F.W., and M.M. carried out XRD experiments and analysis. M.F. performed transport experiments. C.M. performed dilatometry experiments. K.W. performed specific heat experiments. R.H. performed first-principle calculations and R.W. and J.S. developed the theoretical model. M.L.T., R.W., and J.S. wrote the manuscript with inputs from all the co-authors.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32112-7.

Correspondence and requests for materials should be addressed to Matthieu Le Tacon.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
