A New Type of ξ-Open Sets Based on Operations

Haji M. Hasan
College of Basic Education
University of Duhok

Received on: 22/12/2011 Accepted on: 15/02/2012

The aim of this paper is to introduce a new type of ξ-open sets in topological spaces which is called ξ_{γ}-open sets and we study some of their basic properties and characteristics.

1. Introduction

Ogata [9], introduced the concept of an operation on a topology, then after authors defined some other types of sets such as γ-open [9], γ-semi-open [6], γ-pre semi-open [6] and γ-β-open [1] sets in a topological space by using operations. In [4] the concept of ξ-open set in a topological space is introduced and studied.

The purpose of this paper is to introduce a new class of ξ-open sets namely ξ_{γ}-open sets and establish basic properties and relationships with other types of sets, also we define the notions of ξ_{γ}-neighbourhood, ξ_{γ}-derived, ξ_{γ}-closure and ξ_{γ}-interior of a set and give some of their properties which are mostly analogous to those properties of open sets. Throughout this paper, (X, τ) or briefly (X) mean a topological space on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space X, $\text{Cl}(A)$ and $\text{Int}(A)$ are denoted respectively the closure and interior of A.

2. Preliminaries.

We start this section by introducing some definitions and results concerning sets and spaces which will be used later.

Definition 2.1. A subset A of a space (X, τ) is called:
1) semi-open [7], if $A \subseteq \text{Cl}(\text{Int}(A))$.
2) regular open [2], if $A = \text{Int}(\text{Cl}(A))$.

The complement of semi-open (resp., regular open, preopen and α-open) set is said to be semi-closed (resp., regular closed, preclosed and α-closed).

Definition 2.2. [4] An open subset U of a space X is called ξ-open if for each $x \in U$, there exists a semi-closed set F such that $x \in F \subseteq U$. The family of all ξ-open subsets of a topological space (X, τ) is denoted by $\xi O(X, \tau)$ or (briefly $\xi O(X)$). The complement of each ξ-open set is called ξ-closed set. The family of all ξ-closed subsets of a topological space (X, τ) is denoted by $\xi C(X, \tau)$ or (briefly $\xi C(X)$).
Definition 2.3. [5] Let \((X, \tau)\) be a topological space. An operation \(\gamma\) on the topology \(\tau\) is a mapping from \(\tau\) into power set \(P(X)\) such that \(V \subseteq \gamma(V)\) for each \(V \in \tau\), where \(\gamma(V)\) denotes the value of \(\gamma\) at \(V\).

Definition 2.4. [8]
1) A subset \(A\) of a topological space \((X, \tau)\) is called \(\gamma\)-open set if for each \(x \in A\) there exists an open set \(U\) such that \(x \in U\) and \(\gamma(U) \subseteq A\). Clearly \(\tau_\gamma \subseteq \tau\).
2) The point \(x \in X\) is in the \(\gamma\)-closure of a set \(A \subseteq X\), if \(\gamma(U) \cap A \neq \emptyset\), for each open set \(U\) containing \(x\). The \(\gamma\)-closure of a set \(A\) is denoted by \(Cl_\gamma(A)\).
3) Let \((X, \tau)\) be a topological space and \(A\) be subset of \(X\), then \(\tau_\gamma \text{-Cl}(A) = \bigcap \{F: A \subseteq F, X \setminus F \in \tau_\gamma\}\).

Definition 2.5. [11] Let \((X, \tau)\) be a topological space and \(A\) be subset of \(X\), then \(\tau_\gamma \text{-Int}(A) = \bigcup \{U: U\ is \ \gamma\text{-open set and } U \subseteq A\}\).

Definition 2.6. [1] Let \((X, \tau)\) be a topological space with an operation \(\gamma\) on \(\tau\):
1) The \(\gamma\)-derived set of \(A\) is defined by \(\{x: \ for \ every \ \gamma\text{-open set } U \ containing \ x, \ U \cap (A \setminus \{x\}) \neq \emptyset\}\).
2) The \(\gamma\)-boundary of \(A\) is defined as \(\tau_\gamma \text{-Cl}(A) \cap \tau_\gamma \text{-Cl}(X \setminus A)\).

Definition 2.7. [4] Let \((X, \tau)\) be a topological space and \(A \subseteq X\), then:
1) \(\xi\text{-interior of } A\) is the union of all \(\xi\text{-open sets contained in } A\).
2) \(\xi\text{-closure of } A\) is the intersection of all \(\xi\text{-closed sets containing } A\).

Lemma 2.8. [4]
1) Let \((Y, \tau_Y)\) be a subspace of \((X, \tau)\). If \(F \in SC(X, \tau)\) and \(F \subseteq Y\), then \(F \in SC(Y, \tau_Y)\).
2) Let \((Y, \tau_Y)\) be a subspace of \((X, \tau)\). If \(F \in SC(Y, \tau_Y)\) and \(Y \in SC(X, \tau)\), then \(F \in SC(X, \tau)\).

Lemma 2.9 [4]
1) Let \(Y\) be a regular open subspace of a space \(X\). If \(G \in \xi O(Y)\), then \(G \in \xi O(X)\).
2) Let \(Y\) be a subspace of a space \(X\) and \(Y \in SC(X)\). If \(G \in \xi O(X)\) and \(G \subseteq Y\), then \(G \in \xi O(Y)\).

3. \(\xi_\gamma\)-Open Sets

In this section, a new class of \(\xi\text{-open sets}\) called \(\xi_\gamma\text{-open sets}\) in topological spaces is introduced. We define \(\gamma\) to be a mapping on \(\xi O(X)\) into \(P(X)\) and we say that \(\gamma: \xi O(X) \rightarrow P(X)\) is an \(\xi\text{-operation}\) on \(\xi O(X)\) if \(\forall V \subseteq \gamma(V)\), for each \(V \in \xi O(X)\).

Definition 3.1 A subset \(A\) of a space \(X\) is called \(\xi_\gamma\text{-open}\) if for each point \(x \in A\), there exist an \(\xi\text{-open set } U\) such that \(x \in U \subseteq \gamma(U) \subseteq A\).

The family of all \(\xi_\gamma\text{-open subset of a topological space } (X, \tau)\) is denoted by \(\xi_\gamma O(X, \tau)\) or (briefly \(\xi_\gamma O(X)\)).

A subset \(B\) of a space \(X\) is called \(\xi_\gamma\text{-closed}\) if \(X \setminus B\) is \(\xi_\gamma\text{-open}.\) The family of all \(\xi_\gamma\text{-closed subsets of a topological space } (X, \tau)\) is denoted by \(\xi_\gamma C(X, \tau)\) or (briefly \(\xi_\gamma C(X)\)).

Remark 3.2 From the definition of the operation \(\gamma\), it is clear that \(\gamma(X) = X\) for any \(\xi\text{-operation } \gamma\). For competence, it is assumed that \(\gamma(\phi) = \phi\) for any \(\xi\text{-operation } \gamma\).
Remark 3.3 It is clear from the definition that every ξ_γ-open subset of a space X is ξ-open, but the converse is not true in general as shown in the following example:

Example 3.5. Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$. Define an ξ-operation γ by

$$\gamma(A) = \begin{cases} A & \text{if } a \in A \\ X & \text{if } a \notin A \end{cases}$$

Then $\{c\}$ is open and ξ_γ-open but $\{c\} \notin \xi_\gamma O(X)$.

Proposition 3.6. Every ξ_γ-open set of a space X is γ-open.

Proof. Let A be ξ_γ-open in a topological space (X, τ), then for each point $x \in A$, there exists an ξ-open set U such that $x \in U \subseteq \gamma(U) \subseteq A$. Since every ξ-open set is open, this implies that A is a γ-open set.

The following example shows that the converse of the above proposition is not true in general.

Example 3.7 Consider $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{a\}\}$. Define an ξ-operation γ by $\gamma(A) = A$, for any subset A of X. Then, $\{a\}$ is γ-open set but not ξ_γ-open set. Hence, it is not $\xi_\gamma O(X)$.

The following result shows that any union of ξ_γ-open sets in a topological space (X, τ) is ξ_γ-open.

Proposition 3.8 Let $\{A_\lambda\}_{\lambda \in \Delta}$ be a collection of ξ_γ-open sets in a topological space (X, τ). Then, $\bigcup_{\lambda \in \Delta} A_\lambda$ is ξ_γ-open.

Proof. Let $x \in \bigcup_{\lambda \in \Delta} A_\lambda$, then $x \in A_\lambda$ for some $\lambda \in \Delta$. Since, A_λ is an ξ_γ-open set, then there exists an ξ_γ-open set U containing x and $\gamma(U) \subseteq A_\lambda \subseteq \bigcup_{\lambda \in \Delta} A_\lambda$. Therefore, $\bigcup_{\lambda \in \Delta} A_\lambda$ is an ξ_γ-open set in a topological space (X, τ).

The following example shows that the intersection of two ξ_γ-open sets need not be an ξ_γ-open set.

Example 3.9 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an ξ-operation γ by

$$\gamma(A) = \begin{cases} \{a, b\} & \text{if } A = \{a\} \text{ or } \{b\} \\ A & \text{otherwise} \end{cases}$$

Let $A = \{a, b\}$ and $B = \{b, c\}$, it is clear that A and B are ξ_γ-open sets, but $A \cap B = \{b\}$ is not ξ_γ-open set.

From the above example, we notice that the family of all ξ_γ-open subsets of a space X is a supratopology and need not be a topology in general.

Proposition 3.10 The set A is ξ_γ-open in the space (X, τ) if and only if for each $x \in A$, there exists an ξ-open set B such that $x \in B \subseteq A$.

183
Proposition 3.14 Let \((X, \tau)\) be a topological space. A mapping \(\gamma : \xi O(X) \rightarrow P(X)\) is said to be:

1) \(\xi\)-identity on \(\xi O(X)\) if \(\gamma(A) = A\) for all \(A \in \xi O(X)\).
2) \(\xi\)-monotone on \(\xi O(X)\) if for all \(A, B \in \xi O(X)\), \(A \subseteq B \implies \gamma(A) \subseteq \gamma(B)\).
3) \(\xi\)-additive on \(\xi O(X)\) if \(\gamma(\bigcup_{i \in I} A_i) = \gamma(A_1) \cup \ldots \cup \gamma(A_i)\).
4) \(\xi\)-open on \(\xi O(X)\) if \(\gamma(A \cup B) = \gamma(A) \cup \gamma(B)\) for all \(A, B \in \xi O(X)\).

Conversely, suppose that for each \(x \in A\), there exists an \(\xi\)-open set \(B_x\) such that \(x \in B_x \subseteq A\), thus \(A = \bigcup_{x \in A} B_x \in \xi \gamma O(X)\) for each \(x \in A\). Therefore, \(A\) is an \(\xi\)-open set.

Definition 3.11 Let \((X, \tau)\) be a topological space. A mapping \(\gamma : \xi O(X) \rightarrow P(X)\) is said to be:

1) \(\xi\)-identity on \(\xi O(X)\) if \(\gamma(A) = A\) for all \(A \in \xi O(X)\).
2) \(\xi\)-monotone on \(\xi O(X)\) if for all \(A, B \in \xi O(X)\), \(A \subseteq B \implies \gamma(A) \subseteq \gamma(B)\).
3) \(\xi\)-additive on \(\xi O(X)\) if \(\gamma(\bigcup_{i \in I} A_i) = \gamma(A_1) \cup \ldots \cup \gamma(A_i)\).
4) \(\xi\)-open on \(\xi O(X)\) if \(\gamma(A \cup B) = \gamma(A) \cup \gamma(B)\) for all \(A, B \in \xi O(X)\).

If \(\bigcup_{i \in I} \gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)\) for any collection \(\{A_i\}_{i \in I} \subseteq \xi O(X)\), then \(\gamma\) is said to be \(\xi\)-subadditive on \(\xi O(X)\).

Proposition 3.12. Let \(\gamma\) be an \(\xi\)-operation. Then, \(\gamma\) is \(\xi\)-monotone on \(\xi O(X)\) if and only if \(\gamma\) is subadditive on \(\xi O(X)\).

Proof. Let \(\gamma\) be \(\xi\)-monotone on \(\xi O(X)\) and let \(\{A_i\}_{i \in I} \subseteq \xi O(X)\). Then, for each \(i \in I\), \(\gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)\), and thus \(\bigcup_{i \in I} \gamma(A_i) \subseteq \gamma(\bigcup_{i \in I} A_i)\). Therefore, \(\gamma\) is \(\xi\)-subadditive on \(\xi O(X)\).

Conversely, if \(\gamma\) is subadditive on \(\xi O(X)\), and \(A, B \subseteq \xi O(X)\) with \(A \subseteq B\), then \(\gamma(\bigcup_{i \in I} A_i) \subseteq \gamma(A) \cup \gamma(B)\). Hence, \(\gamma\) is \(\xi\)-monotone on \(\xi O(X)\).

The following result shows that if \(\gamma\) is \(\xi\)-operation, then the family of \(\xi\)-open sets is a topology on \(X\).

Proposition 3.13 If \(\gamma\) is \(\xi\)-monotone, then the family of \(\xi\)-open sets is a topology on \(X\).

Proof. Clearly \(\phi, X \in \xi \gamma O(X)\) and by Proposition 3.8, the union of any family \(\xi\)-open sets is \(\xi\)-open set. To complete the proof, it is enough to show that the finite intersection of \(\xi\)-open sets is an \(\xi\)-open set. Let \(A\) and \(B\) be two \(\xi\)-open sets and let \(x \in A \cap B\), then \(x \in A\) and \(x \in B\), so there exists \(\xi\)-open sets namely \(U\) and \(V\) such that \(x \in U \subseteq \gamma(U) \subseteq A\) and \(x \in V \subseteq \gamma(V) \subseteq B\). Since \(U\) and \(V\) are \(\xi\)-open sets then \(U \cap V\) is \(\xi\)-open set, but \(\gamma(U \cap V) \subseteq \gamma(U) \cap \gamma(V) \subseteq A \cap B\). Thus, \(A \cap B\) is an \(\xi\)-open set. This completes the proof.

Proposition 3.14 Let \(Y\) be a semi-closed subspace of a space \(X\). If \(A \in \xi \gamma O(X, \tau)\) and \(A \subseteq Y\), then \(A \in \xi \gamma O(Y, \tau_Y)\), where \(\gamma\) is \(\xi\)-identity on \(\xi O(Y)\).

Proof. Let \(A \in \xi \gamma O(X, \tau)\), then \(A \in \xi \gamma O(X, \tau)\) and for each \(x \in A\) there exists an \(\xi\)-open set \(U\) in \(X\) such that \(x \in U \subseteq \gamma(U) \subseteq A\). Since, \(A \in \xi \gamma O(X, \tau)\) and \(A \subseteq Y\), where \(Y\) is semi-closed in \(X\), then by Proposition 2.14, \(U \in \xi \gamma O(Y, \tau_Y)\). Hence, \(A \in \xi \gamma O(Y, \tau_Y)\).

Proposition 3.15 Let \(Y\) be a regular open subspace of a space \((X, \tau)\) and \(\gamma\) is an \(\xi\)-identity on \(\xi O(X)\). If \(A \in \xi \gamma O(Y, \tau_Y)\) and \(Y \in \xi O(X, \tau)\), then \(A \in \xi \gamma O(X, \tau)\).

Proof. Let \(A \in \xi \gamma O(Y, \tau_Y)\), then \(A \in \xi O(Y, \tau_Y)\) and for each \(x \in A\) there exists an \(\xi\)-open set \(U\) in \(Y\) such that \(x \in U \subseteq \gamma'(U) \subseteq A\). Since, \(Y \in \xi O(X, \tau)\) and \(A \in \xi O(Y, \tau_Y)\), then by Proposition 2.13, \(U \in \xi O(X, \tau)\). Hence, \(A \in \xi \gamma O(X, \tau)\).
4. Other Properties of ξ-γ-Open Sets

In this section, we define and study some properties of ξ-γ-neighbourhood of a point, ξ-γ-derived, ξ-γ-closure and ξ-γ-interior of sets via ξ-γ-open sets.

Definition 4.1 Let (X, τ) be a topological space and $x \in X$, then a subset N of X is said to be ξ-γ-neighbourhood of x, if there exists an ξ-γ-open set U in X such that $x \in U \subseteq N$.

Proposition 4.2 Let (X, τ) be a topological space. A subset A of X is ξ-γ-open if and only if it is an ξ-γ-neighbourhood of each of its points.

Proof. Let $A \subseteq X$ be an ξ-γ-open set. Since, for every $x \in A$, $x \in A \subseteq A$ and A is ξ-γ-open, then A is an ξ-γ-neighbourhood of each of its points. Conversely, suppose that A is an ξ-γ-neighbourhood of each of its points. Then, for each $x \in A$, there exists $B_x \in \xi$-γ-$O(X)$ such that $B_x \subseteq A$. Then, $A = \bigcup \{ B_x : x \in A \}$. Since, each B_x is ξ-γ-open, it follows that A is an ξ-γ-open set.

Definition 4.3 Let (X, τ) be a topological space with an operation γ on ξ-$O(X)$. A point $x \in X$ is said to be ξ-γ-limit point of a set A if for each ξ-γ-open set U containing x, then $U \cap (A \setminus \{x\}) \neq \emptyset$. The set of all ξ-γ-limit points of A is called ξ-γ-derived set of A and denoted by ξ-γ-$D(A)$.

Proposition 4.5 Let A and B be subsets of a space X. If $A \subseteq B$, then ξ-γ-$D(A) \subseteq \xi$-γ-$D(B)$.

Proof. Obvious.

Some properties of ξ-γ-derived sets are stated in the following proposition.

Proposition 4.6 Let A and B be any two subsets of a space X, and γ be an operation on ξ-$O(X)$. Then, we have the following properties:

1) ξ-γ-$D(\emptyset) = \emptyset$.
2) If $x \in \xi$-γ-$D(A)$, then $x \in \xi$-γ-$D(A \setminus \{x\})$.
3) ξ-γ-$D(A) \cup \xi$-γ-$D(B) \subseteq \xi$-γ-$D(A \cup B)$.
4) ξ-γ-$D(A \cap B) \subseteq \xi$-$\gamma$-$D(A) \cap \xi$-$\gamma$-$D(B)$.
5) ξ-γ-$D(\xi$-γ-$D(A)) \setminus A \subseteq \xi$-$\gamma$-$D(A)$.
6) ξ-γ-$D(A \cup \xi$-γ-$D(A)) \subseteq A \cup \xi$-$\gamma$-$D(A)$.

Proof. Straightforward.

In general, the equalities of (3), (4) and (6) of the above proposition do not hold, as is shown in the following examples.

Example 4.7 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an operation γ on ξ-$O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{a, c\} \\ X & \text{otherwise} \end{cases}$$

Now, if $A = \{a, b\}$ and $B = \{a, c\}$, then ξ-γ-$D(A) = \{c\}$, ξ-γ-$D(B) = \{c\}$ and ξ-γ-$D(A \cup B) = \{a, c\}$, where $A \cup B = X$, this implies that ξ-γ-$D(A) \cup \xi$-γ-$D(B) \neq \xi$-γ-$D(A \cup B)$.

Example 4.8 Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on ξ-$O(X)$ by.
Now, if we let \(A = \{a, b\} \) and \(B = \{c, d\} \), then \(\xi D(A) = \{a, c, d\} \), \(\xi D(B) = \{d\} \), hence \(\xi D(A) \cap \xi D(B) = \{d\} \), but \(\xi D(A \cap B) = \emptyset \), where \(A \cap B = \emptyset \), this implies that \(\xi D(A \cap B) \neq \xi D(A) \cap \xi D(B) \). Also \(\xi D(A) = \{d\} \), therefore \(\xi D(A) \not\subseteq \xi D(A) \).

Definition 4.9 Let \(A \) be a subset of a topological space \((X, \tau)\) and \(\gamma \) be an operation on \(\mathcal{O}(X) \). The intersection of all \(\xi \gamma \)-closed sets containing \(A \) is called the \(\xi \gamma \)-closure of \(A \) and denoted by \(\xi \gamma Cl(A) \).

Here, we introduce some properties of \(\xi \gamma \)-closure of the sets.

Proposition 4.10 Let \((X, \tau)\) be a topological space and \(\gamma \) be an operation on \(\mathcal{O}(X) \). For any subsets \(A \) and \(B \) of \(X \), we have the following:

1) \(A \subseteq \xi \gamma Cl(A) \).
2) \(\xi \gamma Cl(A) \) is an \(\xi \gamma \)-closed set in \(X \).
3) \(A \) is an \(\xi \gamma \)-closed set if and only if \(A=\xi \gamma Cl(A) \).
4) \(\xi \gamma Cl(\emptyset) = \emptyset \) and \(\xi \gamma Cl(X) = X \).
5) \(\xi \gamma Cl(A) \cup \xi \gamma Cl(B) \subseteq \xi \gamma Cl(A \cup B) \).
6) \(\xi \gamma Cl(A \cap B) \subseteq \xi \gamma Cl(A) \cap \xi \gamma Cl(B) \).

Proof. They are obvious.

In general, the equalities of (5) and (6) of the above proposition does not hold, as is shown in the following examples:

Example 4.11 Consider \(X = \{a, b, c\} \) with discrete topology on \(X \). Define an operation \(\gamma \) on \(\mathcal{O}(X) \) by

\[
\gamma (A) = \begin{cases}
 A & \text{ if } A=\{a,b\} \text{ or } \{a,c\} \\
 X & \text{ otherwise}
\end{cases}
\]

Then, \(\xi \gamma O(X) = \{\emptyset, X, \{a, b\}, \{a, c\}\} \). Now, if we let \(A = \{b\} \) and \(B = \{c\} \), then \(\xi \gamma Cl(A) = A \), \(\xi \gamma D(B) = B \) and \(\xi \gamma Cl(A \cup B) = X \), where \(A \cup B = \{b, c\} \), this implies that \(\xi \gamma Cl(A \cup B) \neq \xi \gamma Cl(A \cup B) \).

Example 4.12 Consider \(X = \{a, b, c, d\} \) with the topology \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Define an operation \(\gamma \) on \(\mathcal{O}(X) \) by

\[
\gamma (A) = \begin{cases}
 A & \text{ if } b \in A \\
 X & \text{ otherwise}
\end{cases}
\]

It is clear that \(\xi \gamma O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}\} \). Now, if we let \(A = \{c\} \) and \(B = \{d\} \), then \(\xi \gamma Cl(A) = \{c, d\} \) and \(\xi \gamma Cl(B) = \{d\} \), hence \(\xi \gamma Cl(A) \cap \xi \gamma Cl(B) = \{d\} \), but \(\xi \gamma Cl(A \cap B) = \emptyset \), where \(A \cap B = \emptyset \), this implies that \(\xi \gamma Cl(A \cap B) = \xi \gamma Cl(A \cap B) \).

Now, if we let \(A = \{b\} \), we see that \(\xi Cl(A) = \{b, d\} \), but \(\xi \gamma Cl(A) = X \). Hence, \(\xi \gamma Cl(A) \not\subseteq \xi Cl(A) \).
Proposition 4.13 A subset A of a topological space X is an ξ_r-closed set if and only if it contains the set of its ξ_r-limit points.

Proof. Assume that A is an ξ_r-closed set and if possible that x is an ξ_r-limit point of A which belongs to $X \setminus A$, then $X \setminus A$ is an ξ_r-open set containing the ξ_r-limit point of A, therefore, $A \cap (X \setminus A) \neq \emptyset$, which is contradiction.

Conversely, assume that A is containing the set of its ξ_r-limit points. For each $x \in X \setminus A$, there exists an ξ_r-open set U containing x such that $A \cap U = \emptyset$, implies that $x \in U \subseteq X \setminus A$, so by Proposition 3.10, $X \setminus A$ is an ξ_r-open set hence, A is an ξ_r-closed set.

Proposition 4.14 Let A be a subset of a topological space (X, τ) and γ be an ξ-operation. Then, $x \in \xi_\gamma Cl(A)$ if and only if for every ξ_γ-open set V of X containing x, $A \cap V \neq \emptyset$.

Proof. Let $x \in \xi_\gamma Cl(A)$ and suppose that $A \cap V = \emptyset$, for some ξ_γ-open set V of X containing x. Then, $(X \setminus V)$ is ξ_γ-closed and $A \subseteq (X \setminus V)$, thus $\xi_\gamma Cl(A) \subseteq (X \setminus V)$. But, this implies that $x \in (X \setminus V)$ which is contradiction. Therefore, $A \cap V \neq \emptyset$.

Conversely, Let $A \subseteq X$ and $x \in X$ such that for each ξ_γ-open set V of X containing x, $A \cap V \neq \emptyset$. If $x \notin \xi_\gamma Cl(A)$, then there exists an ξ_γ-closed set F such that $A \subseteq F$. Then, $(X \setminus F)$ is an ξ_γ-open set with $x \in (X \setminus F)$, and thus $(X \setminus F) \cap A \neq \emptyset$, which is a contradiction.

The proof of the following two results is obvious.

Proposition 4.15 Let A be a subset of a topological space (X, τ) and γ be an ξ-operation on $\xi O(X)$. Then, $\xi_\gamma Cl(A) = A \cup \xi_\gamma D(A)$.

Proposition 4.16 If A and B are subsets of a space X with $A \subseteq B$. Then, $\xi_\gamma Cl(A) \subseteq \xi_\gamma Cl(B)$.

Definition 4.17 Let A be a subset of a topological space (X, τ) and γ be an operation on $\xi O(X)$. The union of all ξ_γ-open sets contained in A is called the ξ_γ-Interior of A and denoted by $\xi_\gamma Int(A)$.

Here, we introduce some properties of ξ_γ-Interior of the sets.

Proposition 4.18 Let (X, τ) be a topological space and γ be an operation on $\xi O(X)$. For any subsets A and B of X, we have the following:
1) $\xi_\gamma Int(A)$ is an ξ_γ-open set in X.
2) A is ξ_γ-open if and only if $A = \xi_\gamma Int(A)$.
3) $\xi_\gamma Int(\xi_\gamma Int(A)) = \xi_\gamma Int(A)$.
4) $\xi_\gamma Int(\emptyset) = \emptyset$ and $\xi_\gamma Int(X) = X$.
5) $\xi_\gamma Int(A) \subseteq A$.
6) If $A \subseteq B$, then $\xi_\gamma Int(A) \subseteq \xi_\gamma Int(B)$.
7) $\xi_\gamma Int(A) \cup \xi_\gamma Int(B) \subseteq \xi_\gamma Int(A \cup B)$.
8) $\xi_\gamma Int(A \cap B) \subseteq \xi_\gamma Int(A \cap \xi_\gamma Int(B)$.

Proof. Straightforward.

In general, the equalities of (7) and (8) of the above proposition do not hold, as is shown in the following examples:

Example 4.19 Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an ξ-operation γ by.

187
It is clear that $\xi_\gamma^\ast O(X) = \{\phi, X, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Now, if we let $A = \{a\}$ and $B = \{b\}$, then $\xi_\gamma^\ast \text{Int}(A) = \phi$ and $\xi_\gamma^\ast \text{Int}(B) = \{b\}$, hence $\xi_\gamma^\ast \text{Int}(A) \cup \xi_\gamma^\ast \text{Int}(B) = \{b\}$, but $\xi_\gamma^\ast \text{Int}(A \cup B) = \{a, b\}$, where $A \cup B = \{a, b\}$, this implies that $\xi_\gamma^\ast \text{Int}(A \cup B) \neq \xi_\gamma^\ast \text{Int}(A) \cup \xi_\gamma^\ast \text{Int}(B)$.

Example 4.20 Consider $X = \{a, b, c\}$ with discrete topology on X. Define an ξ-operation γ on $\xi O(X)$ by

$$
\gamma(A) = \begin{cases}
A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \\
X & \text{otherwise}
\end{cases}
$$

Then, $\xi\gamma^\ast O(X) = \{\phi, X, \{a, b\}, \{a, c\}\}$. Now, if we let $A = \{a, b\}$ and $B = \{a, c\}$, then $\xi_\gamma^\ast \text{Int}(A) = \{a, b\}$ and $\xi_\gamma^\ast \text{Int}(B) = \{a, c\}$, therefore $\xi_\gamma^\ast \text{Int}(A) \cap \xi_\gamma^\ast \text{Int}(B) = \{a\}$, but $\xi_\gamma^\ast \text{Int}(A \cap B) = \phi$, where $A \cap B = \{a\}$, this implies that $\xi_\gamma^\ast \text{Int}(A) \cap \xi_\gamma^\ast \text{Int}(B) \neq \xi_\gamma^\ast \text{Int}(A \cap B)$.

The following two results can be easily proved.

Proposition 4.21 For any subset A of a topological space X, $\xi_\gamma^\ast \text{Int}(A) \subseteq \xi \text{Int}(A) \subseteq \text{Int}(A)$.

Proposition 4.22 Let A be any subset of a topological space X, and γ be an operation on $\xi O(X)$. Then, $\xi_\gamma^\ast \text{Int}(A) = A \setminus \xi_\gamma^\ast D(X \setminus A)$.
REFERENCES

[1] Basu, C. K., Afsan, B. M. U. and Ghosh, M. K., (2009), A class of functions and separation axioms with respect to an operation. Hacettepe journal of Mathematics and Statistics, 38 (2), 103-118.

[2] Dugundji, J., (1966), Topology, Allyn and Bacon Inc., Boston.

[3] El-Deeb, S. N., Hasanein, I. A., Mashhour, A. S. and Noiri, T., (1983), On P-regular spaces, Ball. Math. Sci. Math. R. S. Rounmanie, 27 (4), 311-315.

[4] Hasan M. Haji, (2010), On Some Types of Continuity, Separation Axioms and Dimension Functions, Ph.D. Thesis, Duhok Univ., Duhok.

[5] Kasahara, S., (1979), Operation compact spaces, Math. Japonica, 24 (1), 97-105.

[6] Krishnan, G. S. and Balachandran, K., (2006), On γ-semi-open sets in topological space, Bull. Cal. Math. Soc., 98 (6), 517-530.

[7] Liven, N., (1963), Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1), 36-41.

[8] Moiz K., (1997), Weak forms of continuity, compactness and connectedness, Ph.D. Thesis, Multan Univ., Pakistan.

[9] Ogata, H., (1991), Operation on topological spaces and associated topology, Math. Japonica, 36 (1), 175-184.

[10] Reilly, I. L. and Vamanmurthy, M.K., (1985), On α-continuity in topological spaces, Acta Math. Hungar., 45 (1-2), 27-32.

[11] Sia sundra Krishnan, G., (2003), A new class of semi-open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, 305-311.