Dissection of Closely Linked QTLs Controlling Grain Size in Rice

Pao Xue
China National Rice Research Institute

Yu-yu Chen
China National Rice Research Institute

Xiao-xia Wen
China National Rice Research Institute

Bei-fang Wang
China National Rice Research Institute

Qin-qin Yang
China National Rice Research Institute

Ke Gong
China National Rice Research Institute

Yi-wei Kang
China National Rice Research Institute

Lian-ping Sun
China National Rice Research Institute

Ping Yu
China National Rice Research Institute

Li-yong Cao
China National Rice Research Institute

Ying-xin Zhang (✉️ zhangyingxin@caas.cn)
China National Rice Research Institute https://orcid.org/0000-0002-9424-7412

Xiao-deng Zhan
China National Rice Research Institute

Shi-hua Cheng
China National Rice Research Institute

Research Article

Keywords: Rice, Quantitative trait locus, Small effect, Residual heterozygous population

DOI: https://doi.org/10.21203/rs.3.rs-660149/v1
Dissection of closely linked QTLs controlling grain size in rice

Pao Xue1, Yu-yu Chen1,2, Xiao-xia Wen1, Bei-fang Wang1, Qin-qin Yang1, Ke Gong1, Yi-wei Kang1, Lian-ping Sun1, Ping Yu1, Li-yong Cao1, Ying-xin Zhang1,*, Xiao-deng Zhan1*, Shi-hua Cheng1*

1 Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
2 Department of Resource and Environment, Moutai Institute, Renhuai 564507, China

* Corresponding authors:
Shi-hua Cheng: E-mail: chengshihua@caas.cn, Tel: +86-571-633-701-88
Xiao-deng Zhan: E-mail: zhanxiaodeng@caas.cn, Tel: +86-571-633-702-65
Ying-xin Zhang: E-mail: zhangyingixn@caas.cn, Tel: +86-571-633-702-18

Key message
Two small-effect QTLs, qTGW7.2a for grain width consequently affect grain weight was fine mapped to a 21.10-kb interval, and qTGW7.2b was limited within a 52.71-kb interval for grain length and width with opposite allelic directions, exhibiting little influence on grain weight.

Abstract
Grain size is a key constituent of grain weight and appearance in rice. However, insufficient attention has been paid to the small-effect QTLs on grain size. In the present study, residual heterozygous populations were developed for mapping two genetically linked small-effect QTLs for grain size. After genotyping and phenotyping of five successive generations, qGS7.1 was dissected into three QTLs and two were selected for further analysis. qTGW7.2a was finally mapped into a 21.10-kb interval containing four annotated candidate genes. Transcript levels assay showed that the expression of candidates LOC_Os07g39490 and LOC_Os07g39500 were significantly reduced in the NIL-qTGW7.2aBG1. Cytological observation indicated that qTGW7.2a regulated grain width through controlling cell expansion. Use the same strategy, qTGW7.2b was fine mapped into a 52.71-kb interval, showing a significant effect on grain length and width with opposite allelic directions but little on grain weight. Our study provides new genetic resources for yield improvement and fine-tunes of grain size in rice.

Keywords
Rice, Quantitative trait locus, Small effect, Residual heterozygous population

Introduction
Rice (Oryza sativa L.) is one of the most important staple crops which feeding half of the world’s population. Therefore, grain yield became a prime target for breeders. Grain yield is characterized by three components: panicle number, filled grain number
per panicle, and grain weight. Grain weight is mainly determined by grain size, which simultaneously affects appearance (Zuo and Li 2014). Thus, grain size is a primary target for yield improvement.

Grain length and grain width determine grain size, and both are complex traits controlled by quantitative trait locus (QTL). To date, 20 grain size related QTLs with large-effect have been cloned and characterized. Several signals and regulatory pathways controlling grain size have been identified in rice, such as the G-protein signaling pathway, the ubiquitin-proteasome pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, the phytohormone signaling, and transcriptional regulators (Fan and Li 2019; Li and Li 2016). GS3 and DEP1 encode G-protein γ-subunits and regulate grain size and weight (Fan et al. 2006; Huang et al. 2009). OsLG3b encodes a MADS-domain transcription factor OsMADS1 which acts as a key downstream effector of G-protein βγ dimers in controlling grain size and appearance (Yu et al. 2018). HGW, GW2, WTG1, and OsUBP15 regulate grain size and weight via the ubiquitin-proteasome pathway (Huang et al. 2017; Li et al. 2012; Shi et al. 2019; Song et al. 2007). OsMKK10, OsMKK4/SMG1, and OsMAPK6 are involved in the MAPK signaling pathway (Duan et al. 2014; Guo et al. 2018; Liu et al. 2015a). OsRac1 and GSN1 directly interact with OsMAPK6, inactivate and activate OsMAPK6 via dephosphorylation and phosphorylation (Guo et al. 2018; Zhang et al. 2019). Furthermore, ERECTA1 acts upstream of the OsMKK10-OsM KK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice (Guo et al. 2020). Some proteins participate in the brassinosteroids (BR) signal pathway: GW5 encodes a calmodulin-binding protein, GS5 encodes a putative serine carboxypeptidase, GL3.1 encodes a protein phosphatase kelch (PPKL), GS2 encodes transcription factor OsGRF4, and GSK2 kinase has multiple substrates that carry out various BR responses (Hu et al. 2015; Li et al. 2011; Liu et al. 2017; Qi et al. 2012). Besides, TGW6, BG1, GL3.3/TGW3/qTGW3, GSA1, and RBG1 are involved in the auxins signaling pathway (Dong et al. 2020; Hu et al. 2018; Ishimaru et al. 2013; Liu et al. 2015b; Lo et al. 2020; Xia et al. 2018; Ying et al. 2018). GNP1 encodes GA20ox1, increased grain number and yield by increasing cytokinin activity. GW6 encodes a GA-regulated GAST family protein, positively regulates grain width and weight through the gibberellins pathway (Shi et al. 2020; Wu et al. 2016). Additionally, many other major QTLs regulate grain size and weight through the transcriptional levels, such as GW8, GL7/GW7, GW6a, GLW7, GL4, OsLG3, GS9, GL6, TGW2, and SG3 (Li et al. 2020; Ruan et al. 2020; Si et al. 2016; Song et al. 2015; Wang et al. 2012; Wang et al. 2015a; Wang et al. 2015b; Wang et al. 2019a; Wu et al. 2017; Xiong et al. 2018; Yu et al. 2017; Zhao et al. 2018).

Small-effect QTLs also play important roles in regulating grain size and are widely utilized in commercial rice varieties (Kinoshita et al. 2017). Many QTLs with small-effect are responsible for quantitative genetic variation, these QTLs are often unexpected based on prior knowledge of the trait or correspond to computationally predicted genes (Mackay et al. 2009). Therefore, it is beneficial to validate these small-effect QTLs for breeding. In recent years, more than 400 small-effect QTLs for grain size and weight were reported (Huang et al. 2013). However, only a few were
fine-mapped or cloned. *DTH2* encodes a CONSTANS-like protein that promotes heading by inducing the florigen genes *Hd3a* and *RFLT1* (Wu et al. 2013). *qTGW1.2b* regulates grain weight through encodes a VQ-motif protein OsVQ4 (Chan et al. 2020). A naturally varying QTL, *qTGW12a*, which encodes the multidrug and toxic compound extrusion (MATE) transporter, regulates grain weight in rice (Du et al. 2021).

The residual heterozygous method (Du et al. 2008) was mainly used for QTL mapping in this study. Residual heterozygote, which shows heterozygosity of the target region and high homozygosity in the background. The progeny population obtained by selfing is equal to the natural near-isogenic line (NIL)-F2 population, which applies to validating, resolving, and fine mapping of QTL. To date, a series of small-effect QTLs have been fine mapped using this method (Dong et al. 2018; Wang et al. 2019b; Zhang et al. 2020; Zhu et al. 2019).

In a previous study, a grain size QTL, *qGS7.1* has been identified on chromosome 7 (Xue et al. 2019). Then, *qGS7.1* was dissected into two QTLs, named *qTGW7.1* and *qTGW7.2*. In the present study, we aimed to fine map the *qTGW7.2* using a set of backcross recombinant inbred lines between BG1 (Big Grain 1) and XLJ (Xiaolijing). Two independent QTLs named *qTGW7.2a* and *qTGW7.2b* regulate grain size were genetically dissected in the target region. Finally, *qTGW7.2a* was located into a 21.10-kb region controlling grain width and weight, while *qTGW7.2b* was mapped to a 52.71-kb interval affecting grain length and width, not the grain weight.

Materials and methods

Plant materials

Five runs and a total of 23 residual heterozygous populations were used to map the target QTL in this study. The populations were derived from two BC4F6 individuals from the cross of XLJ///XLJ///XLJ///XLJ///XLJ//BG1(Fig.S1).

In the first run, two single plants with heterozygous regions of *qGS7.1* were selected and developed two BC4F7 populations consisting of 137 plants (R7) and 142 plants (R8) used for QTL validation and mapping. New polymorphic markers were designed and used to test genotypes of these populations.

In the second run, six resultant BC4F8 populations, R9 to R14, consisting of 189, 193, 198, 151, 116, and 213 plants respectively were developed from six residual heterozygous BC4F7 single plants with updated target regions. Then, the BC4F9 population contains 3989 individuals derived from the R9 population was constructed and used for selecting recombinants.

In the third run for QTL validation and mapping, eleven single plants were selected from the BC4F9 generation to develop eleven BC4F10 populations, R15 to R25, totally consisting of 794 plants.

In the fourth run, three NIL populations with homozygous in the segregating region, namely N1 to N3, were developed to validate the QTL. Two single plants
without qTGW7.2b target region were selected and selfed to develop populations named R26 and R27, made up of 209 and 223 plants, respectively. Meanwhile, a BC4F11 population including 6128 individuals derived from the R23 population was constructed and used for further mapping.

In the fifth run, two single plants were selected from BC4F11 plants in the XP7-12-XP7-23 interval to develop progeny populations consisting of 233 (R28) and 98 plants (R29) for validation and fine-mapping of qTGW7.2a.

Field experiments and traits measurement

Plants were grown at the field stations of the China National Rice Research Institute in Lingshui, Hainan province, and Fuyang, Zhejiang province. After harvesting, 300 dry seeds were randomly selected for measuring thousand-grain weight (TGW, g), grain length (GL, mm), grain width (GW, mm), and the ratio of grain length to width (RLW) using an automatic seed counting and analyzing instrument (Model SC-G, Wanshen Ltd., Hangzhou, China).

DNA extraction and molecular markers development

Total DNA was extracted from fresh leaf samples by the CTAB method (Murray and Thompson 1980). The PCR products were visualized on 8% non-denaturing polyacrylamide gels by silver staining. A total of 31 polymorphic DNA markers were used (Table S1).

RNA extraction and qRT-PCR

Total RNA was extracted from rice panicles using RNAprep pure Plant Kit (TIANGEN). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was performed using SYBR Premix Ex Taq II (TAKARA). Data analysis used the 2−ΔΔCt method and the UBQ10 was used as the internal reference to normalize the gene expression (Livak and Schmittgen 2001). The qRT-PCR primers used in this study are listed in Table S1.

Cytological observation

During the heading stage, young spikelet hulls of NIL-qTGW7.2aBG1 and NIL-qTGW7.2aXL2 were fixed in 2.5% glutaraldehyde for 12 hours at 4°C and then dehydrated in serial graded ethanol (30%, 50%, 70%, 80%, 90%, 95%, and 100%), and last preserved in 100% ethanol. The samples were dried in a Hitachi HCP-2 critical point drier, and cell length and width of the inner glumes were observed by scanning electron microscopy (Hitachi SU-8010). ImageJ software was used to measure cell numbers and cell size.

Data analysis
Three genotypes could obtain after genotyping this population. Two homozygous genotype plants which carried alleles from XLJ and BG1 were used to detect the phenotypic differences by student’s t-test. We deduce there was a QTL when \(p < 0.05 \). Subsequently, the heterozygous individual harboring target QTL was used for developing a new residual heterozygous population.

All of the analysis data, including the additive effect (\(A \)) and the proportion of phenotypic variance explained by the QTL (\(R^2 \)) were obtained from the Windows QTL Cartographer Version 2.5 software to estimate the genetic effects.

Results

Validation and mapping of \(qGS7.1 \)

We have identified a grain size QTL, \(qGS7.1 \), in the X7-9-RM351 interval on chromosome 7 (Fig. 1a). To narrow down the target region, 12 polymorphic markers were designed based on the sequence differences between BG1 and XLJ. RM21758 became the new boundary when all plants were homozygous for it. R7 and R8 populations were derived from two segregated single plants selected from the R6 population (Fig. 1b) to validate \(qGS7.1 \) and exclude the non-target interval. Both were showed significant enhancement of GW, GL, and TGW from XLJ alleles. In the R7 population, the additive effects were -0.445g for TGW, -0.082mm for GL, and -0.011mm for GW, explaining 21.95%, 30.35%, and 8.31% of the phenotypic variance, respectively. In the R8 population, the additive effects were -0.439g for TGW, -0.075mm for GL, and -0.010mm for GW, having \(R^2 \) of 28.01%, 25.40%, and 8.91%, respectively (Table 1). The effects detected in the two populations were comparable indicated that \(qGS7.1 \) was located in the region between RM21758 and Chr07MM3011.

Dissection of \(qGS7.1 \) into three QTLs controlling grain size

To validate and narrow down the update region, six progeny populations with sequential segregating regions jointly covering the entire QTL region (Fig. 1c) were developed. In the R9, R10, and R11 populations, significant enhancements were discovered in XLJ alleles for TGW, GW, and GL. The additive effects for TGW were -0.477g, -0.670g and -0.531g, for GL were -0.051mm, -0.114mm and -0.063mm, for GW were -0.014mm, -0.029mm and -0.021mm, respectively. The additive effects for TGW in R10 and R11 populations were higher than that in the R9 population. Meanwhile, significant genotypic variances were detected for TGW and GW in the R13 and R14 populations that enhancing alleles derived from XLJ. The additive effects for TGW in R13 and R14 populations were -0.265g and -0.180g, for GW were -0.031mm and -0.018mm, respectively. There were no significant differences in the R12 population (Table 2).

The above results showed that \(qGS7.1 \) was a composite of two independent QTLs (Fig. 1c). The first QTL, named \(qTGW7.1 \), explaining 11.19% and 4.06% of the phenotypic variance for TGW, 11.28% and 7.25% for GW in the R13 and R14 populations, respectively. The second QTL, named \(qTGW7.2 \), with the \(R^2 \) values of
32.37%, 26.54% and 21.55% for TGW, 18.92%, 14.27% and 13.96% for GL, 7.63%, 12.63% and 11.95% for GW in the R9-R11 populations, respectively.

qTGW7.2 was selected for further analysis. Eleven populations (R15-R25) were developed from 11 heterozygous individuals in BC4F9 populations (Fig. 1d). In the R15 population, significant genotypic effects were detected in TGW and GW with the positive allele from XLJ. The additive effects for TGW and GW in the R15 population were -0.604g and -0.034mm, with the R² values of 42.48% and 49.12%. There were no significant differences in R16, R17, R18, R19, and R20 populations. Similarly, significant genotypic variances were detected for GL and RLW in R21 and R22 populations. The additive effects for GL were -0.050mm and -0.053mm, explaining 8.32% and 20.81% of the genotypic variance in both populations. For RLW, the additive effects were -0.030 and -0.018, having R² of 19.61% and 6.62%, respectively; in R23, R24, and R25 populations, significant genotypic effects were showed for TGW, GL, and GW. The additive effects for TGW were -0.558g, -0.505g and -0.504g, for GL were -0.087mm, -0.065mm and -0.095mm, for GW were -0.011mm, -0.020mm and -0.020mm, respectively (Table 3).

To sum up, qTGW7.2 was dissected into two separate QTLs (Fig. 1d). The first QTL, qTGW7.2a had considerable effects on TGW and GW within a 53.96-kb region spanning XP7-12 to XP7-16. The second QTL, qTGW7.2b, was located between Chr07MM2985 and RM21891, a 52.71-kb interval and affected GL and RLW but had little effect on TGW.

Three NIL populations (N1-N3) derived from the R15, R16, and R21 populations were developed to validate the function of qTGW7.2a and qTGW7.2b (Table S2); meanwhile, two progeny populations, R26 and R27, derived from two recombinants containing qTGW7.2a only were used in this study (Fig. S2). In the N1 population, significant genotypic effects were showed for TGW and GW, the additive effects for TGW and GW were -0.421g and -0.021mm, explaining 31.59% and 40.05% of phenotypic variance, respectively, and which was coincident with R26 and R27 populations. However, in the N3 population, highly significant genotypic effects were detected for GL, GW, and RLW, the additive effects were -0.070 mm, 0.020 mm, and -0.051, explaining 25.78%, 34.30%, and 54.26% of phenotypic variance, respectively, and which was not coincident with the results of the R21 population. There was no significant difference in the N2 population (Table S2).

qTGW7.2a mainly controls TGW through regulating GW, with enhancing alleles derived from XLJ. qTGW7.2b simultaneously affected GL and GW in opposite ways with no significant effect on TGW (Fig. S3). The former was selected for further analysis for the stable function and considerable effect.

Fine-mapping qTGW7.2a into a 21.10-kb region

For further mapping of qTGW7.2a, we constructed a BC4F11 population consisting of 6128 individuals. Two recombinants in the RM21871-XP7-23 interval were utilized to develop two progeny populations, R28 and R29. Highly significant phenotypic effects were detected in TGW and GW in the R28 population. The additive effects were
-0.213g and -0.013mm, having R^2 of 11.29% and 9.70%, respectively. There were no significant differences in the R29 population (Table 4). According to the mapping results of the BC4F12 population, we mapped $qTGW7.2a$ to the 21.10-kb interval between Chr07MM2954 and XP7-16 (Fig. 1e). $qTGW7.2a$ increased TGW and GW with the allele from XLI as compared grain size and weight between NIL-$qTGW7.2a^{XLJ}$ and NIL-$qTGW7.2a^{BG1}$ (Fig. 2), was same as the R28 population.

Grain size is restricted by the size of the spikelet hull in rice, which is determined by both cell proliferation and expansion. Therefore, we compared the cell number and cell size of the outer glume epidermal cells between NIL-$qTGW7.2a^{XLJ}$ and NIL-$qTGW7.2a^{BG1}$ (Fig. 3a). There was no significant difference in cell number or cell length between NIL-$qTGW7.2a^{XLJ}$ and NIL-$qTGW7.2a^{BG1}$ (Fig. 3b, c). However, the cell width of NIL-$qTGW7.2a^{XLJ}$ was greater than NIL-$qTGW7.2a^{BG1}$ (Fig. 3d). These findings suggest that the grain size increase in NIL-$qTGW7.2a^{XLJ}$ is predominantly due to cell width expansion.

Candidate genes of $qTGW7.2a$

There are four ORFs located in the region spanning $qTGW7.2a$. $LOC_{Os07g39470}$ encodes a rice GRAS family protein, CIGR2, which suppresses cell death in rice inoculated with rice blast via activation of a Heat Shock Transcription Factor, OsHsf23 (Tanabe et al. 2016). $LOC_{Os07g39480}$ encodes WRKY78, a transcriptional factor that is involved in regulating plant height and seed size (Zhang et al. 2011). $LOC_{Os07g39490}$ and $LOC_{Os07g39500}$ are unknown functional proteins (Table S3).

Sequences of the coding domain sequence (CDS) in four genes between the NIL-$qTGW7.2a^{XLJ}$ and NIL-$qTGW7.2a^{BG1}$ were compared (Fig. 4a). Two synonymous SNPs were detected in $LOC_{Os07g39470}$, indicating that there were no differences between the two alleles. For $LOC_{Os07g39480}$, there were four polymorphism sites, three of which were synonymous and one 3-bp deletion in the XLI allele, resulting in a serine deletion. For $LOC_{Os07g39490}$, three SNPs include one synonymous and two non-synonymous resulting in two amino acids substituted; especially, a 2-bp deletion in NIL-$qTGW7.2a^{BG1}$ resulting in NIL-$qTGW7.2a^{BG1}$ producing an alternatively spliced protein, in which the terminal 62 residues were truncated. Finally, there were 18 SNP variations in $LOC_{Os07g39500}$ between two NILs, including thirteen non-synonymous mutations and a premature stop codon at T784C in the BG1 allele. These results suggest that either $LOC_{Os07g39490}$ or $LOC_{Os07g39500}$ is the candidate gene for $qTGW7.2a$.

Subsequently, the expression levels of four candidates in panicles of NIL-$qTGW7.2a^{XLJ}$ and NIL-$qTGW7.2a^{BG1}$ were analyzed (Fig. 4b). The expression levels of $LOC_{Os07g39490}$ and $LOC_{Os07g39500}$ were significantly higher in NIL-$qTGW7.2a^{XLJ}$ than that in NIL-$qTGW7.2a^{BG1}$, while there were no significant differences in $LOC_{Os07g39470}$ and $LOC_{Os07g39480}$. These results repeatedly indicated that the candidate gene of $qTGW7.2a$ was more likely to be either $LOC_{Os07g39490}$ or $LOC_{Os07g39500}$.
Discussion

Remarkable progress has been achieved by the discovery of large-effect QTLs affecting yield and quality in recent years, however, rarely small-effect QTLs have been cloned in rice (Chan et al. 2020; Du et al. 2021). In our study, two small-effect QTLs regulating grain size were identified and fine mapped. \(q_{TGW7.2a} \) was limited between Chr07MM2954 and XP7-16 with a 21.10-kb interval, affecting grain width and weight. \(q_{TGW7.2b} \) inversely affects the ratio of grain length to width was mapped into the 52.71-kb region between Chr07MM2985 and RM21891.

All the populations used in this study were derived from a single plant with the same background and were cultivated in Fuyang and Lingshui followed the chronological order. \(q_{TGW7.2a} \) could be detected in both environments, but the effects on TGW and GW were not stable. The additive effects on TGW and GW increased by XLJ allele were in the range of -0.604 to -0.213g, and -0.034 to -0.013mm, respectively (Table 3, 4 and Table S2). Especially for \(q_{TGW7.2b} \), in R21 and R22 populations, \(q_{TGW7.2b} \) regulates grain length, has little influence on grain width and grain weight, but in the N3 population, \(q_{TGW7.2b} \) was detected affecting grain length and grain width with opposite allelic directions and had little effect on grain weight (Table 3 and Table S2). These results suggested that small-effect QTLs could be steadily detected using the residual heterozygous method, but the effects of QTL could be affected by environmental interaction.

In the present study, four annotated genes were found in the 21.1-kb interval covering \(q_{TGW7.2a} \). Firstly, \(LOC_Os07g39470 \) encodes CIGR2 belonging to the rice GRAS family, and members of this family encode transcriptional regulators with functions in a wide range of signaling mechanisms such as growth and development, hormone signaling, and plant defense (Tanabe et al. 2016). However, there were only two synonymous SNPs between the \(CIGR2 \) alleles. Secondly, \(LOC_Os07g39480 \) encodes a transcriptional factor, WRKY78, which was involved in regulating plant height and seed size. Knocking-down of \(WRKY78 \) led to a semi-dwarf and small seed phenotype by reducing cell length (Zhang et al. 2011). However, except for three SNPs showing synonymous mutation, there was just one serine deletion in the CDS of NIL-\(q_{TGW7.2a}^{XLJ} \). The expression level of \(WRKY78 \) was comparable between the two NILs. These results suggest that \(CIGR2 \) and \(WRKY78 \) may not be candidate genes for \(q_{TGW7.2a} \). Previous studies showed that introducing a premature stop codon and preventing transcription of a mature protein influencing grain size, such as \(GW2 \), \(GS3 \), \(qLGY3/GW3p6 \), \(WTG1 \), \(OsMAPK6 \), \(TGW6 \), and \(GL6 \) (Fan et al. 2006; Huang et al. 2017; Ishimaru et al. 2013; Liu et al. 2015a; Liu et al. 2018; Song et al. 2007; Wang et al. 2019a; Wang et al. 2019c). In our study, \(LOC_Os07g39490 \) and \(LOC_Os07g39500 \) encode hypothetical proteins. In its coding region, a non-synonymous mutation existed as a premature stop codon and preventing transcription of a mature protein in NIL-\(q_{TGW7.2a}^{BG1} \). Therefore, more studies in gene editing such as CRISPR/Cas9-targeted mutagenesis and gene overexpression need to be done to confirm the gene for \(q_{TGW7.2a} \).

Among QTLs with large effect, \(GW2 \), \(GS5 \), \(GW5/GSE5 \), and \(GW6 \), those regulate
grain weight through controlling grain width (Duan et al. 2017; Li et al. 2011; Liu et al. 2017; Shi et al. 2020; Song et al. 2007; Xu et al. 2015). In our study, \(q_{TGW7.2a} \) increased grain width and weight. These suggest that \(q_{TGW7.2a} \) could be used for yield improvement. For large-effect QTLs such as \(GL7/GW7, GW8, \) and \(GS9 \), those have similar effects with \(q_{TGW7.2b} \) on grain length and width that regulate grain size (Wang et al. 2012; Wang et al. 2015a; Wang et al. 2015b; Zhao et al. 2018). \(q_{TGW7.2b} \) in the XLJ allele increased grain length but decreased grain width, which has little effect on grain weight indicated that \(q_{TGW7.2b} \) could be used to fine-tune grain size.

Conclusion

Two small-effect QTLs for grain size and grain shape, \(q_{TGW7.2a} \) and \(q_{TGW7.2b} \), were fine-mapped in this study. \(q_{TGW7.2a} \) was limited to a 21.10-kb region containing four genes. This QTL regulates grain width and weight, which has potential for yield improvement. \(q_{TGW7.2b} \) which inversely regulates grain length and width was within a 52.71-kb interval. This QTL has potential for fine-tuning grain shape and grain appearance. These results provide a basis for QTL cloning and offer new resources for yield and quality improvement.

Acknowledgements

This work was supported by Projects of International Cooperation NSFC (31961143016), Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-CNRRI), and Fundamental Research Funds for central public welfare research institutes of Chinese Rice Research Institute (CPSIBRF-CNRRI-202102).

Author contribution statement

PX performed most of the experiments, analyzed the data, and wrote the manuscript; YYC and contributed to sequencing and constructed the populations; XXW, BFW, QQY analyzed the data collection the phenotypes, and revised this manuscript; KG and YWK conducted the field trials; LPS, PY, LYC, YXZ, XDZ, and SHC designed the experiments, supervised and completed the writing, and reviewed the manuscript. All authors read and approved the final manuscript.

Conflict of interest

The authors declare no conflict of interests regarding the publication of this paper. All authors have read the manuscript carefully.

References
Chan AN, Wang LL, Zhu YJ, Fan YY, Zhuang JY, Zhang ZH (2020) Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice. Theor Appl Genet 1:327-337

Dong NQ, Sun Y, Guo T, Shi CL, Zhang YM, Kan Y, Xiang YH, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Wang Y, Ye WW, Shan JX, Lin HX (2020) UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun 11:2629

Dong Q, Zhang ZH, Wang LL, Zhu YJ, Fan YY, Mou TM, Ma LY, Zhuang JY (2018) Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice. Rice 11:44

Du JH, Fan YY, Wang L, Zhuang JY (2008) Dissection of QTLs for yield traits by using near isogenic lines derived from residual heterozygous lines in rice. Chinese J Rice Sci 1:1-7

Du ZX, Huang Z, Li JB, Bao JZ, Tu H, Zeng CH, Wu Z, Fu HH, Xu J, Zhou DH, Zhu CL, Fu JR, He HH (2021) qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet. doi:10.1007/s00122-021-03857-4

Duan PG, Rao YC, Zeng DL, Yang YL, Xu R, Zhang BL, Dong GJ, Qian Q, Li YH (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J 77:547-557

Duan PG, Xu JS, Zeng DL, Zhang BL, Geng MF, Zhang GZ, Huang K, Huang LJ, Xu R, Ge S, Qian Q, Li YH (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685-694

Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164-1171

Fan YW, Li YB (2019) Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Mol Breeding 39:1-25

Guo T, Chen K, Dong NQ, Shi CL, Ye WW, Gao JP, Shan JX, Lin HX (2018) GRAIN SIZE AND NUMBER1 negatively regulates the OsMKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30:871-888

Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX (2020) ERECT1 acts upstream of the OsMKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32:2763-2779

Hu J, Wang YX, Fang YX, Zeng LJ, Xu J, Yu HP, Shi ZY, Pan JJ, Zhang D, Kang SJ, Zhu L, Dong GJ, Guo LB, Zeng D, Zhang GH, Xie LH, Xiong GS, Li JY, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455-1465

Hu ZJ, Lu SJ, Wang MJ, He HH, Sun L, Wang HR, Liu XH, Jiang L, Sun JL, Xin XY, Kong W, Chu C, Xue HW, Yang JS, Luo XJ, Liu JX (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11:736-749

Huang K, Wang DK, Duan PG, Zhang BL, Xu R, Li N, Li YH (2017) WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J 91:849-860

Huang RY, Jiang LR, Zheng JS, Wang TS, Wang HC, Huang YM, Hong ZL (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218-226
Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494-497

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707-711

Kinoshita N, Kato M, Koyasai K, Kawashima T, Nishimura T, Hirayama Y, Takamure I, Sato T, Kato K (2017) Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza sativa L. subsp. japonica cultivars grown near the northernmost limit for rice paddy cultivation. Breeding Sci 67:191-206

Li J, Chu HW, Zhang YH, Mou TM, Wu CY, Zhang QF, Xu J (2012) The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One 7:e34231

Li N, Li YH (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23-32

Li QP, Lu L, Liu HY, Bai XF, Zhou X, Wu B, Yuan MQ, Yang L, Xing YZ (2020) A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice. Theor Appl Genet 133:2387-2399

Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shiao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266-1269

Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043

Liu LC, Tong HN, Xiao YH, Che RH, Xu F, Hu B, Liang CZ, Chu JF, Li JY, Chu CC (2015b) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. P Natl Acad Sci USA 112:11102-11107

Liu Q, Han RX, Wu K, Zhang JQ, Ye YF, Wang SS, Chen JF, Pan YJ, Li Q, Xu XP, Zhou JW, Tao DY, Wu YJ, Fu XD (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 9:852

Liu SY, Hua L, Dong SJ, Chen HQ, Zhu XD, Jiang JE, Zhang F, Li YH, Fang XH, Chen F (2015a) OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J 84:672-681

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408

Lo SF, Cheng ML, Hsing YIC, Chen YS, Lee KW, Hong YF, Hsiao Y, Hsiao AS, Chen PJ, Wong LI, Chen NC, Reuzeau C, Ho THD, Yu SM (2020) Rice Big Grain 1 promotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnol J 18:1969-1983

Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565-577

Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321-4325

Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang LW, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1:3. Cell Res 22:1666-1680

Ruan BP, Shang LU, Zhang B, Hu J, Wang YX, Lin H, Zhang AP, Liu CL, Peng YL, Zhu L, Ren DY,
Shen L, Dong GJ, Zhang GH, Zeng DL, Guo LB, Qian Q, Gao ZY (2020) Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol 227:629-640

Shi CL, Dong NQ, Guo T, Ye WW, Shan JX, Lin HX (2020) A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J 103:1174-1188

Shi CL, Ren YL, Liu LL, Wang F, Zhang H, Tian P, Pan T, Wang YF, Jing RN, Liu TZ, Wu FQ, Lin QB, Lei CL, Zhang X, Zhu SS, Guo XP, Wang JL, Zhao ZC, Wang J, Zhai HQ, Cheng ZJ, Wan JM (2019) Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol 180:381-391

Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu Y, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447-456

Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623-630

Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. P Natl Acad Sci USA 112:76-81

Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagiio T, Toki S, Shibuya N, Nishizawa Y, Minami E (2016) The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotech Bioch 80:145-151

Wang AH, Hou QQ, Si LZ, Huang XH, Luo JH, Lu DF, Zhu JJ, Shangguan YY, Miao JS, Xie YF, Wang YC, Zhao Q, Feng Q, Zhou CC, Li Y, Fan DL, Lu YQ, Tian QL, Wang ZX, Han B (2019a) The PLATZ transcription factor GL6 affects grain length and number in Rice. Plant Physiol 180:2077-2090

Wang CS, Tang SC, Zhan QL, Hou QQ, Zhao Y, Zhao Q, Feng Q, Zhou CC, Lyu DF, Cui LL, Li Y, Miao JS, Zhu CR, Lu YQ, Wang YC, Wang QZ, Zhu JJ, Shangguan YY, Gong JY, Yang SH, Wang WQ, Zhang JF, Xie HA, Huang XH, Han B (2019c) Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 10:2982

Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD (2015b) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949-954

Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950-954

Wang WH, Wang LL, Zhu YJ, Fan YY, Zhuang JY (2019b) Fine-mapping of qTGW1.2a, a quantitative trait Locus for 1000-grain weight in rice. Rice Sci 4:220-228

Wang YX, Xiong GS, Hu J, Jiang L, Yu H, Xu J, Fang YX, Zeng LJ, Xu EB, Xu J, Ye WJ, Meng XB, Liu RF, Chen HQ, Jing YH, Wang YH, Zhu XD, Li JY, Qian Q (2015a) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944-948

Wu WG, Liu XY, Wang MH, Meyer RS, Luo XJ, Ndijjondjop M, Tan LB, Zhang JW, Wu JZ, Cai HW, Sun CQ, Wang XK, Wing RA, Zhu ZF (2017) A single-nucleotide polymorphism causes smaller
grain size and loss of seed shattering during African rice domestication. Nat Plants 3:17064

Wu WX, Zheng XM, Lu GW, Zhong ZZ, Gao H, Chen LP, Wu CY, Wang HJ, Wang Q, Zhou KN, Wang JL, Wu FQ, Zhang X, Guo XP, Cheng ZJ, Lei CL, Lin QB, Jiang L, Wang HY, Ge S, Wan JM (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. P Natl Acad Sci USA 8:2775-2780

Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet 12:e1006386

Xia D, Zhou H, Liu RJ, Dan WH, Li PB, Wu B, Chen JX, Wang LQ, Gao GJ, Zhang QL, He YQ (2018) GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains in Rice. Mol Plant 11:754-756

Xiong HY, Yu JP, Miao JL, Li JJ, Zhang HL, Wang X, Liu PL, Zhao Y, Jiang CH, Yin ZG, Li Y, Guo Y, Fu BY, Wang WS, Li ZK, Ali J, Li ZC (2018) Natural variation in OsLG3 increases drought tolerance in Rice by inducing ROS scavenging. Plant Physiol 178:451-467

Xu CJ, Liu Y, Li YB, Xu XD, Xu CG, Li XH, Xiao JH, Zhang QF (2015) Differential expression of GS5 regulates grain size in rice. J Exp Bot 66:2611-2623

Xue P, Zhang YX, Lou XY, Zhu AK, Chen YY, Sun B, Yu P, Cheng SH, Cao LY, Zhan XD (2019) Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.). J Integr Agr 8:1838-1850

Ying JZ, Ma M, Bai C, Huang XH, Liu JL, Fan YY, Song XJ (2018) TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant 11:750-753

Yu JP, Miao JL, Zhang ZY, Xiong HY, Zhu XY, Sun XM, Pan YH, Liang YT, Zhang Q, Abdul Rehman RM, Li JJ, Zhang HL, Li ZC (2018) Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnol J 16:1667-1678

Yu JP, Xiong HY, Zhu XY, Zhang HL, Li HH, Miao JL, Wang WS, Tang ZS, Zhang ZY, Yao GX, Zhang Q, Pan YH, Wang X, Rashid MAR, Li JJ, Gao YM, Li ZK, Yang WC, Fu XD, Li ZC (2017) OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol 15:28

Zhang CQ, Xu Y, Lu Y, Yu HX, Gu MH, Liu QQ (2011) The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 234:541-554

Zhang H, Zhu YJ, Zhu AD, Fan YY, Huang TX, Zhang JF, Xie HA, Zhuang JY (2020) Fine-mapping of qTGW2, a quantitative trait locus for grain weight in rice (Oryza sativa L.). PeerJ 8:e8679

Zhang Y, Xiong Y, Liu RY, Xue HW, Yang ZB (2019) The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. P Natl Acad Sci USA 116:16121-16126

Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240

Zhu YJ, Zhang ZH, Chen JY, Fan YY, Mou TM, Tang SQ, Zhuang JY (2019) Fine mapping of qTGW10-20.8, a QTL having important contribution to grain weight variation in rice. Crop J 7:587-597

Zuo JR, Li JY (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99-118
Figures

Figure 1

Genotypic compositions of residual heterozygous populations in the target regions. a Composition of R1 population in previous study. b Two residual heterozygous populations in BC4F7. c Six residual
heterozygous populations in BC4F8. d Eleven residual heterozygous populations in BC4F10. e Two residual heterozygous populations in BC4F12.

Figure 2

qTGW7.2a regulates grain weight and width. a Grain phenotypes of rice NIL plants. Bar, 1 cm. b Comparison of thousand grain weight. c Comparison of grain length. d Comparison of grain width. e Comparison of the ratio of grain length to width. Data are given as mean ± SD. Student’s t-test was used to generate P value.
Scanning electron microscopic observation and analysis of the glume. a Scanning electron micrograph of the outer glume epidermal cells between NIL-qTGW7.2a XLJ and NIL-qTGW7.2a BG1. Bar, 100 μm. b Cell number of outer epidermal cells. c Cell length of outer epidermal cells. d Cell width of outer epidermal cells. Data are given as mean ± SD. Student’s t-test was used to generate P value; *, P < 0.05; **, P < 0.01.
The coding domain sequence alignment and transcript levels of annotated genes between NIL-qTGW7.2aXLJ and NIL-qTGW7.2aBG1. a The red words represent variants, the red frame represent premature stop, +, the variant sites in the coding domain sequence. Bar, 200bp. b The experiment was performed using panicles of $1 \leq P < 3$ cm (P3) and $5 \leq P < 8$ cm (P8) collected from NIL-qTGW7.2aXLJ and NIL-qTGW7.2aBG1. Data are given as mean ± SD. Student’s t-test was used to generate P value; *, $P < 0.05$; **, $P < 0.01$.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Tables.pdf
- FigureS.pdf
- TableS.pdf