Clinical genomic profiling of novel grey zone lymphoma paired lesions with sequential central nervous system involvement in two adolescent patients

Grey zone lymphoma (GZL), defined as B-cell lymphoma, unclassifiable, with features intermediate between large B-cell lymphoma (LBCL) and classic Hodgkin lymphoma (cHL) (BCL-U-IND) is a rare diagnostic entity. Synchronous GZL, LBCL and cHL occurring simultaneously in the same patient, and sequential GZL, LBCL preceding or following a diagnosis of cHL, are even less common. We identified two adolescent patients, a 17-year-old male (17M, case #1) and 16-year-old female (16F, case #2), who were diagnosed with stage IV nodular sclerosis cHL (NS-cHL) with primary mediastinal location and subsequent central nervous system (CNS) LBCL. Copy-number alterations were assessed using Affymetrix OncoScan® microarray analysis, and targeted next-gener-

Table 1. Clinicopathological summary of sequential grey zone lymphomas.

Case/age (yr)/sex	Presentation (time after initial diagnosis)	Biopsy site	Diagnosis	Morphology	Immunophenotype	Therapy	Outcome (follow-up period)
#1/17/M	Large mediastinal and supraclavicular masses with spleen, liver, abdominal and bone lesions	Bone Marrow	LBCL-like synchronous GZL	Focal sheets of large lymphoma cells with large round nuclei, smooth nuclear contours, vesicular chromatin, and prominent centrally located nucleoli with eosinophilic cytoplasm	Large lymphoma cells: Positive: CD19, CD79a, CD45; Negative: CD3, Cytokeratin, TdT, CD30.	NA	NA
#2/16/F	Large mediastinal mass with cervical LN, multiple supraclavicular bilateral pulmonary and renal nodules	Deep right supraventricular LN	cHL, nodular sclerosis subtype, stage IVB	Characteristic mononucleated Hodgkin and binucleated Reed-Sternberg cells (HRS) in the background of lymphocytes, histiocytes, neutrophils, and eosinophils; the nodules separated by thick collagen band	HRS cells: Positive: CD30, CD15, Pax-5 (weak); Negative: CD45, CD20, CD79a, LMP-1, EBER and EMA	ABVE-PC	Complete remission
	Solitary right temporal lobe brain lesion (7 months)	Right temporal lobe brain lesion	LBCL-like sequential GZL	Diffuse sheets of large lymphoma cells having open chromatin, prominent centrally located nucleoli and a moderate amount of clear to eosinophilic cytoplasm.	Large lymphoma cells: Positive: CD45, CD20, CD30, PAX-5; Negative: CD79a, EBER, ALK	POG9917 Arm	Alive with no evidence of disease (13.5 months)

1Outside bone marrow with limited slides reviewed as consultation. ABVE-PC: adriamycin, bleomycin, vincristine sulfate, etoposide phosphate, prednisone, cyclophosphamide; BMT: bone marrow transplant; cHL: classic Hodgkin lymphoma; F: female; GZL: grey zone lymphoma; HRS: Hodgkin and Reed-Sternberg; LBCL: large B-cell lymphoma; LN: lymph node; M: male; MMUD: mismatched unrelated donor; NA: not applicable.
Table 2. Tissue-based cancer microarray and next-generation sequencing analysis of sequential grey zone lymphomas.

Cytobands	Size (Mbp)	Array Nomenclature	Interpretation
Xp22.13-q24.33	133.6		
Yp11.11-q11.23	26.1		

Case Report

Case #1, 16M, Paired NS-cHL and CNS LBCL Microarray

Gene	**Pos (hg19)**	**RefSeq RNA**	**CDS; Protein; VAF (NS-cHL/LBCL)**	**Interpretation**
APC	chr5:11202044	NM_000038.5	c.157G>A; p.Gly53Arg; 0.05	III, CNS LBCL only
FAT4	chr4:12639844	NM_024582.4	c.2287T>G; p.Leu761Trp; 0.37	III, CNS LBCL only
NOTCH3	chr15:2572111	NM_000435.2	c.632G>A; p.Arg204Glu; 0.48	III, CNS LBCL only
CREBBP	chr16:3819311	NM_004380.2	c.2921C>A; p.Ahr745Asn; 0.44/0.47	III, Shared, Reported in GZL
APC	chr5:1120215	NM_000038.5	c.3802T>A; p.Ile130Tyr; 0.56/0.45	III, Shared
OARAI	chr12:10220647	NM_032790.3	c.58G>A; p.Gly20Ser; 0.62/0.29	III, Shared
SETX	chr9:15145055	NM_015465.6	c.7234A>G; p.Leu2412Val; 0.47/0.28	III, Shared
SOS1	chr3:9521525	NM_006333.3	c.1098T>G; p.Asp366Glu; 0.44/0.48	III, Shared
SYNE1	chr6:15625191	NM_182861.3	c.3540C>T; p.Asn1181Lys; 0.47/0.38	III, Shared
SYNE1	chr6:15625090	NM_182861.3	c.1717C>T; p.Thr572Asn; 0.42/0.51	III, Shared
SYNE1	chr6:15625079	NM_182861.3	c.1903G>T; p.Arg645Ser; 0.44/0.46	III, Shared
SYNE1	chr6:15342686	NM_182861.3	c.2509C>T; p.Pro8364Leu; 0.47/0.51	III, Shared

Case #2, 17T, Paired NS-cHL and CNS LBCL Microarray

Gene	**Pos (hg19)**	**RefSeq RNA**	**CDS; Protein; VAF (NS-cHL/LBCL)**	**Interpretation**
FAT4	chr4:12639844	NM_024582.4	c.1098T>A; p.Glu366Val; 0.44/0.48	III, Shared
CBL	chr11:1191047	NM_005188.3	c.1055A>G; p.Asn352Ser; 0.51/0.49	III, Shared
FGFR1	chr16:382212	NM_005435.2	c.1856C>T; p.Pro619Leu; 0.47/0.37	III, Shared
ERG	chr21:1584571	NM_000058.5	c.2447G>A; p.Glu815Val; 0.44/0.48	III, Shared

Case #3, 18F, Paired NS-cHL and CNS LBCL NGS

Gene	**Pos (hg19)**	**RefSeq RNA**	**CDS; Protein; VAF (NS-cHL/LBCL)**	**Interpretation**
TP53	chr7:757569	NM_000564.5	c.712T>C; p.Cys237Arg; 0.51	III, Shared, Reported in GZL

Detected in both CNS LBCL cases. NS-cHL: classic Hodgkin lymphoma; nodular sclerosis subtype; CNS: central nervous system; LBCL: large B-cell lymphoma; NGS: next-generation sequencing; Pos: genomic coordinate; RefSeq: reference transcript ID; CDS: coding sequence; VAF: variant allele frequency; Mbp: mega basepairs; GZL: grey zone lymphoma; CG-LOH: copy-gain loss of heterozygosity; CNS: CNS LBCL; CN-LOH: copy-neutral loss of heterozygosity.
Figure 1. Representative pathologic findings of sequential grey zone lymphomas (Case #1). Initial cervical lymph node biopsy shows classic Hodgkin lymphoma (upper panel, A to C). (A) Characteristic Hodgkin and Reed–Sternberg (HRS) cells are present in a polymorphous inflammatory background (hematoxylin and eosin stain [H&E]); the HRS cells are negative for EBER (inset A). (B) The neoplastic HRS cells are positive for CD30 (red, membranous) and weakly positive for PAX-5 (brown, nuclear). (C) They are negative for CD20. (D to F) Lesional brain biopsy shows sequential central nervous system large B-cell lymphoma (lower panel). (D) Diffuse sheets of large lymphoma cells shows centrally located prominent nucleoli (H&E); they are negative for EBER (inset D). (E) The lymphoma cells are diffusely positive for CD30 (red, membranous) with strong nuclear PAX-5 (brown) expression, (F) and express strong and homogeneous CD20.

Molecular findings. The microarray and NGS results are summarized in Table 2. In both NS-cHL, near-diploid male or female genomes and no variants of established or potential clinical significance (Tier I/II, Table 2) were detected consistent with “negative” genomic profiles reported in bulk cHL lesions without Reed-Sternberg cell enrichment.6,7 In case #2, a shared 3.0 MB region of copy-neutral loss of heterozygosity (LOH) in chromosome 1p36.11-p35.3 was observed that was most likely germline in origin. Both CNS LBCL harbored complex cytogenomic arrays including 2p16.1 and 9p24.1 gains (detected in both cases, Table 2, denoted by *) and 16p13.3 copy-number abnormalities (case #2 only). LOH of chromosome 6p and gain of chromosome 12p were also observed in both CNS LBCL (Table 2, denoted by *). NGS revealed shared NS-cHL/CNS LBCL variants of uncertain significance (VUS, Tier III) in CREBBP p.T974N (case #1) and RELN p.N352S and KMT2D p.E4694Q (case #2). The sequential CNS LBCL in case #1 harbored addi-
tional Tier III variants including APC p.G53R, FAT1 p.L761W, and NOTCH3 p.R2109Q. The sequential CNS LBCL in case #2 harbored pathogenic (Tier I/II) TFB3 p.C238R and FBXW7 p.R465H missense variants.

In this report, we detailed the clinicopathologic and molecular features of two adolescent patients with sequential GZL involving the CNS. Notably, this is the first report describing CNS involvement as a manifestation of sequential GZL, a finding which expands the clinicopathologic spectrum of this rare pediatric disease. Consistent with previous reports, both patients presented with mediastinal NS-cHL and advanced extranodal disease with similar histopathologic and immunophenotypic findings, and developed GZL in a similar chronologic fashion.4,8 The sequential CNS lesions showed differing morphologic and immunohistochemical profiles with strong and diffuse expression of several B-cell markers and CD30, the latter arguing against an extramediatinal primary mediastinal B-cell lymphoma (PMBCL) diagnosis, and the NS-cHL diagnosis preceded the diagnosis of LBCL temporally establishing the sequential GZL diagnosis. Additionally, the findings of synchronous GZL with subsequent development of sequential GZL in the first patient is also exceptional. Furthermore, unlike previous reports, an early evolution (e.g., second lymphoma diagnosis within 1 year) may not necessarily portend a poor clinical outcome given the favorable clinical responses in our two patients and a relatively long term follow-up in the first.

Recent molecular characterization of GZL supports the classification of two distinct subtypes of GZL: a “thymic” subtype that occurs in the anterior mediastinum and resembles Epstein-Barr virus (EBV)-negative cHL and PMBCL, and a “non-thymic” subtype which occurs outside the thymus and harbors TP53 mutations in a subset of cases.9,10 In our two patients, the CNS location and mutations in TP53 (case #2) and other associated genes (e.g., CREBBP, RELN, and KMT2D) support a “non-thymic” GZL classification. The presence of complex genomic profiles is also consistent with dysregulated TP53 signaling, and both CNS LBCL harbored complex cytogenomic arrays with copy number abnormalities previously reported in GZL11-13 and frequently reported in cHL and PMBCL.14,15 We acknowledge that a thorough investigation of enriched Reed-Sternberg cells from the CHL lesions and specific subsets of lesional cells may yield valuable molecular insights but this was beyond the scope of the current study.

In summary, we present the first report of sequential GZL with CNS involvement in two adolescent patients, and the first clinical genomic profiling of such paired lesions. These lesions showed chromosome aberrations identified in GZLs and NGS mutations associated with non-thymic GZL. These findings expand the clinicopathologic and genomic spectrum of this rare pediatric disease.

Cagla Yasa-Benkli,* Andrea N. Marcogliese,† Jennifer E. Agrusa,‡ Adekunle M. Adesina,§ Howard L. Weiner,* Kevin E. Fisher,* and Choladda V. Curry* #KEF and CVC contributed equally as co-senior authors.

*Department of Pathology & Immunology, Baylor College of Medicine and Texas Children’s Hospital; †Department of Pediatrics, Baylor College of Medicine and Texas Children’s Cancer Center and a Division of Pediatric Neurosurgery, Department of Surgery, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA

Correspondence: CHOLADDA V. CURRY - curry@bcm.edu
doi:10.3324/haematol.2021.278936
Received: April 8, 2021.
Accepted: June 16, 2021.
Pre-published: June 24, 2021.
Disclosures: no conflicts of interest to disclose.
Contributions: CYB researched the literature, wrote the manuscript, and constructed the tables/figures; ANM, JEA, AMA, and HLW assisted with reviewing medical and pathological records of patients involved, as well as manuscript editing; KEF and CVC conceived the study, interpreted the data, provided feedback and supervision. All authors contributed to patient care, manuscript editing, and evaluation.

References

1. Liang X, Greffe B, Cook B, et al. Gray zone lymphomas in pediatric patients. Pediatr Dev Pathol. 2011;14(5):57-63.
2. Oschlies I, Burkhardt B, Salaverria I, et al. Clinical, pathological and genetic features of primary mediastinal large B cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96(2):262-269.
3. Swerdlov SH, Campo E, Harris NL, et al. (Eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed.; IARC: Lyon, France, 2017.
4. Assaad G, Traverse-Glehen A, Stamatoullas A, et al. Composite and sequential lymphoma between classical Hodgkin lymphoma and primary mediastinal lymphoma/diffuse large B-cell lymphoma, a clinicopathological series of 25 cases. Br J Haematol. 2020;189(2):244-256.
5. Zhou T, Bloomquist MS, Ferguson LS, et al. Pediatric myeloid sarcoma: a single institution clinicopathologic and molecular analysis. Pediatr Hematol Oncol. 2020;37(7):66-99.
6. Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23.
7. Tiacci E, Döring C, Brune V, et al. Analysing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood. 2012;120(25):4609-4620.
8. Pewein T, Lackner H, Etschberger-Dach G, et al. Management of children and adolescents with gray zone lymphoma: a case series. Pediatr Blood Cancer. 2020;67(5):e28206.
9. Sarkozy C, Chong L, Takata K, et al. Gene expression profiling of gray zone lymphoma. Blood Adv. 2020;4(11):2529-2535.
10. Sarkozy C, Hung SS, Chavez EA, et al. Mutational landscape of grey zone lymphoma. Blood. 2021;137(13):1765-1776.
11. Quintanilla-Martinez L, de Jong D, de Mascarel A, et al. Gray zones around diffuse large B cell lymphoma. Conclusions based on the workshop of the XIV meeting of the European Association for Hematopathology and the Society of Hematopathology in Bordeaux, France. J Hematopathol. 2009;2(4):211-256.
12. Sarkozy C, Molina T, Ghesquière H, et al. Mediastinal gray zone lymphoma: clinico-pathological characteristics and outcomes of 99 patients from the Lymphoma Study Association. Haematologica. 2017;102(1):150-159.
13. Wilson WH, Pittaluga S, Nicola A, et al. A prospective study of mediastinal gray-zone lymphoma. Blood. 2014;124(10):1563-1569.
14. Joos S, Otaño-Joos M, Ziegler S, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571-1578.
15. Kimm LR, deLeeuw RJ, Savage KJ, et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosomes Cancer. 2007;46(12):1090-1097.