Coumarins effectively inhibit bacterial α-carbonic anhydrases

Simone Giovannuzzi, Chad S. Hewitt, Alessio Nocentini, Clemente Capasso, Daniel P. Flaherty, and Claudiu T. Supuran

ABSTRACT
Coumarins are known to act as prodrug inhibitors of mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) but were not yet investigated for the inhibition of bacterial α-CAs. Here we demonstrate that such enzymes from the bacterial pathogens Neisseria gonorrhoeae (NgCA2) and Vibrio cholerae (VchCA2) are inhibited by a panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system. The nature and the position of the substituents in the coumarin ring were the factors which strongly influenced inhibitory efficacy. NgCA2 was inhibited with KiS in the range of 28.6–469.5 μM, whereas VchCA2 with Ks in the range of 39.8–438.7 μM. The two human (h)CA isoforms included for comparison reason in the study, hCA I and II, were less prone to inhibition by these compounds, with Ks of 137–948.9 μM for hCA I and of 296.5–961.2 μM for hCA II, respectively. These findings are relevant for discovering coumarin bacterial CA inhibitors with selectivity for the bacterial over human isoform, with potential applications as novel antibacterial agents.

1. Introduction
Bacterial genomes encode for at least four genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1), the α-, β-, γ- and i-CAs. These enzymes catalyse the interconversion between CO2 and bicarbonate, generating H+ ions which have a role in pH regulation processes in prokaryotes and eukaryotes. However, CAs possess other crucial functions in bacteria, participating in metabolic processes that encompass carboxylating reactions in which both CO2 and bicarbonate may act as substrates, but also in photosynthesis in the case of cyanobacteria. These relevant functions that CAs play in bacteria led to the proposal of using their inhibitors as novel antibacterial agents, considering the well-known and prevalent phenomenon of drug resistance to clinically used antibiotics. In fact, relevant inhibition of growth has been reported for several pathogenic bacteria (e.g. Helicobacter pylori, vancomycin-resistant enterococci, Neisseria gonorrhoeae, etc.) with sulphonamides, the most investigated class of CA inhibitors (CAIs) for targeting the 15 mammalian CAs known to date, due to the fact that they bind at the entrance of the active site, where the highest variability in the composition of amino acid residues is found in the different human (h)CA isoforms. However, as mentioned above no bacterial α-CAs have been investigated until now for their interaction with coumarins, and this gap in the field is filled here by our report that a small panel of simple coumarin derivatives indeed inhibit two bacterial α-class enzymes from two human pathogens of urgent concern, Vibrio cholerae and Neisseria gonorrhoeae. It should be mentioned that the esterase activity of CAs is only documented and investigated in detail for the α-class of CAs. We have shown previously that β-, δ- and γ-CAs (also present in some bacteria) do not possess esterase activity, whereas for other genetic CA families only scarce or inconclusive data are available in the literature. Thus, due to the lack of esterase activity observed in other bacterial CA isoforms we chose to investigate only bacterial α-CAs for their possible inhibition with coumarins.

2. Materials and methods
2.1. Enzymology and CA activity and inhibition measurements
An Applied Photophysics stopped-flow instrument was used to assay the CA-catalysed CO2 hydration activity. Phenol red (0.2 mM) was used as a pH indicator, working at the absorbance maximum of 557 nm, with 10 mM HEPES (pH 7.4) as a buffer, and in the presence of 10 mM NaClO4 to maintain constant ionic concentration.
strength, in order to follow the initial rates of the CA-catalysed CO$_2$ hydration reaction for a period of 10–100 s. The CO$_2$ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5–10% of the reaction were used to determine the initial velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitors (10–20 mM) were prepared in distilled-deionized water, and dilutions up to 10 mM were done thereafter with the assay buffer. Inhibitor and enzyme solutions were preincubated together for 1–6 h at 4 °C prior to the assay, in order to allow for the formation of the E-I complex. The inhibition constants were obtained by non-linear least-squares methods using Prism 3 and the Cheng-Prusoff equation, as reported previously$^{13–15}$, and represent the mean from at least three different determinations. The NgCAα concentration in the assay system was 6.8 nM whereas the VChCAα was 9.2 nM. The used enzymes were recombinant proteins obtained in-house, as described earlier5,6.

2.2. Chemistry

Coumarins 1–14, buffers, acetazolamide AAZ and other reagents were of > 99% purity and were commercially available from Sigma-Aldrich (Milan, Italy).

3. Results and discussion

Bacterial CAs were thoroughly investigated for their inhibition with the two main types of classical CAs, the sulphonamides (and their isosteres) and the metal complexing anions$^{2–8}$. However, no inhibition data with the many other classes of inhibitors, including the coumarins, are available so far in the literature for these enzymes11,12.

Thus, we decided to investigate a series of simple coumarin derivatives of type 1–14 (Table 1) with their interaction with two bacterial α-CAs, NgCAα and VChCAα, for which sulphonamide/

![Figure 1. Surface representation of hCA II in adduct with the superimposed hydrolized (and active) coumarin species (cyan from 5BNL, green from PDB 3F8E). The hydrophobic half of the active site is coloured in red, the hydrophilic one in blue. His64, the proton shuttle residue, is in green.](image)

Anion inhibition data have already been reported in the literature5,6. Both enzymes have been proposed as potential antibacterial drug targets and their inhibitors might be useful to address the antibiotic drug resistance which constitutes a serious medical problem worldwide6. Being the first investigation of coumarins as potential bacterial CAs, we have chosen relatively simple scaffolds in order to delineate the structure-activity relationship (SAR) of this underexplored class of CAI. As seen from Table 1, the simple unsubstituted coumarin 1 as well as its mono- and di-substituted derivatives in various positions of the ring system were included in our study. The moieties present in these derivatives were again rather simple but derivatizable ones, such as hydroxyl, primary/tertiary amino, ketone, carboxylic acid ester, and they are found in diverse combinations and positions on the ring system. In fact, we have demonstrated earlier, for mammalian CAs, that the nature of these moieties and the substitution pattern on the coumarin ring are the most prominent features connected with efficient inhibitory action$^{13–15}$.

We observed that as for the mammalian CAs for which coumarins were reported to act as inhibitors$^{13–15}$, the inhibition process of bacterial enzymes is different compared to inhibition with sulphonamides/anions that was reported previously$^{2–5}$. For sulphonamide inhibitors the rapid equilibration between the enzyme and inhibitor to form the enzyme-inhibitor complex typically is achieved in a few minutes, thus, this is the reason why the enzyme and the sulphonamide/anion inhibitors are generally incubated for 15 min prior to assay5,9,19. However, for coumarins and mammalian CAs, which require catalytic cleavage of the lactone ring prior to the enzyme-inhibitor complex being formed, such an inhibition period led to weak millimolar inhibitory activity for a range of structurally diverse coumarins13. For this reason, the inhibition was investigated with longer incubation times, of 1–24 h, which led to the observation that the process is time-dependent, with an inhibitory action increasing over time, and typically an equilibrium is achieved after 6 h incubation between enzyme coumarin13. X-ray crystallography and detailed kinetic measurements thereafter confirmed the fact that the coumarin is hydrolysed by the esterase CA activity leading to the formation of the 2-hydroxy-cinnamic acids shown in Figure 1, which in fact are the de facto CAs. The same situation was observed here for the inhibition of the two investigated bacterial enzymes with coumarins 1–14: a time dependency of the inhibition has been observed, with a steady inhibitory effect being achieved after 6 h incubation of the enzymes and the coumarin (data not shown). Thus, all coumarins were investigated as CAs in the same conditions as for hCAs, and data of Table 1 report Ks obtained after 6 h incubation time. The following SAR can be drawn from data of Table 1:

i. All coumarins 1–14 inhibited the two bacterial enzymes with inhibition constants in the medium–high micromolar range. The modest potency is not unexpected considering the simple structures, but as our intention was to provide a proof-of-concept study that bacterial CAs are inhibited by non-sulphonamide compounds, the modest inhibition was acceptable. For NgCAα the Ks were in the range of 28.6–469.5 μM, whereas for VChCAα in the range of 39.8–438.7 μM. It should be observed that the two human isoforms included for comparison reason in the study, hCA I and II, were also weakly inhibited by these compounds, as the Ks were in the range of 137–948.9 μM for hCA I and of 296.5–961.2 μM for hCA II, respectively. It is in fact well-known that the cytosolic hCAs show a poor inhibitory effect with coumarins (as also reconfirmed here) whereas many trans-membrane, tumor-
Table 1. Inhibition data of hCA I and II and bacterial enzymes NgCA\textalpha{} and VchCA\textalpha{} using AAZ as standard drug by a stopped-flow CO\textsubscript{2} hydrase assay at 6 h incubation time between enzyme and inhibitor.

Name	Structure	\(K_i \) (\(\mu \text{M} \))	hCA I	hCA II	NgCA\textalpha{}	VchCA\textalpha{}
1	![Structure 1](attachment:image1.png)	160.0 (3.1) extsuperscript{b}	600.0 (9.2) extsuperscript{b}	81.6	94.7	
2	![Structure 2](attachment:image2.png)	192.0	683.0	92.4	77.5	
3	![Structure 3](attachment:image3.png)	263.5	690.6	77.1	68.5	
4	![Structure 4](attachment:image4.png)	393.5	513.1	94.7	92.2	
5	![Structure 5](attachment:image5.png)	489.8	625.2	110.0	289.5	
6	![Structure 6](attachment:image6.png)	646.3	485.7	70.9	71.1	
7	![Structure 7](attachment:image7.png)	939.6	733.5	97.1	95.0	
8	![Structure 8](attachment:image8.png)	516.5	558.9	28.6	53.9	
9	![Structure 9](attachment:image9.png)	948.9	646.2	42.5	39.8	
10	![Structure 10](attachment:image10.png)	137.0	296.5	68.0	66.8	
11	![Structure 11](attachment:image11.png)	748.9	875.6	469.5	438.7	
12	![Structure 12](attachment:image12.png)	181.8	758.4	77.6	66.0	
Table 1. Continued.

Name	Structure	hCA I	hCA II	NgCAx	VchCAx
13	![Structure](image1)	900.1	961.2	394.5	431.9
14	![Structure](image2)	469.7	786.2	394.5	302.7
AAZ	-	0.25	0.012	0.075	0.0068

*Mean from three different assays, by a stopped flow technique (errors were in the range of ± 5–10% of the reported values); †Data from ref. 13, with a longer incubation time between enzyme and coumarin.

associated CAs, such as hCA IX and XII, lead in many cases to low nanomolar inhibitors.

ii. The substitution pattern of the coumarin seems to be the most relevant factor connected with inhibitory efficacy. This was observed for both bacterial CAs investigated here and the panel of coumarins 1–14, similar to what was previously reported for hCAs. Thus, substituents bulkier than H or Me in position 3, led to ineffective bacterial CAs (e.g. coumarins 13 and 14 against both bacterial enzymes; 5 against VchCAx), the same was also observed for 11, possessing a bulky group in position 4, which was the least effective coumarin against bacterial CAs in the investigated series. Smaller and more compact moieties in position 4, such as OH (compounds 4 and 12), methyl (compounds 6 and 8), CF₃ (derivative 7) were tolerated and led to effective micromolar inhibitors (Table 1).

iii. Substituents in positions 6, 7 and/or 8 of the coumarin ring generally led to effective CAs against both bacterial enzymes, a situation also observed for hCA IX/XII; as those groups do not interfere with the hydrolysis of the lactone ring, being further away from carbonyl site of hydrolysis. Thus, 4-methyl-7-diethylamino-coumarin 8 was the most effective NgCAx inhibitor in the series (Kᵢ of 28.6 μM) whereas 7-hydroxy-8-acetyl-coumarin 9 was the most effective VchCAx inhibitor (Kᵢ of 39.8 μM). With respect to placement of the substituents on the coumarin rings there are a couple factors to consider regarding potency. First, steric hinderance by substituents nearby the hydrolysable bond of the lactone may reduce the ability of the CA to cleave the ester. Second, there may be electronic considerations with the substituents they could make the carbonyl more electrophilic for attack by water to provide the corresponding cinnamic acids. Alternatively, these substituents may also be involved in the binding interaction of the resulting cinnamic acids, and either improve inhibition of reduce it.

iv. A range of the tested coumarins had a behaviour of medium potency inhibitors against both bacterial isoforms, with Kᵢ values < 100 μM, being thus amenable to be considered as viable hit compounds for developing tighter binding compounds. Indeed, some of these derivatives such as 2, 3, 4, 6, 7, 9, 10, and 12 incorporate free OH or NH₂ moieties which are easy to derivatize in a multitude of ways, and in the case of hCAs led to much more effective CAs compared to the lead.

v. The sulphonamide CAI acetazolamide (AAZ) used as standard compound was much more effective for the inhibition of the bacterial enzymes as expected. However, an interesting observation is that some of the coumarins investigated here do show a much better inhibitory profile for the bacterial over the human isoforms (e.g. 8 and 9), which may prove beneficial for obtaining potential antibacterials with selectivity over human isoforms, such as hCA I and II.

4. Conclusions

This is the first report demonstrating that bacterial α-class CAs are susceptible to inhibition by coumarins, a class of inhibitors investigated previously only for their interaction with human CA isoforms. Our data indicate that a panel of simple coumarin derivatives inhibit two enzymes from human bacterial pathogens with a medium efficacy in the low–medium micromolar range. This proof-of-concept study demonstrates that coumarins possess inhibitory potential and lays groundwork to further explore SAR modifications to probe steric and electronic contributions to bacterial CA hydrolysis of the lactone prodrg and/or contributions to binding and inhibition of the resulting cinnamic acids. Additionally, significant selectivity for inhibiting the bacterial over the human isoforms hCA I and II was observed suggesting promising data for obtaining more effective and bacterial CA–selective coumarin inhibitors. Bacterial CA active sites are slightly more voluminous compared to the mammalian CA isoforms active sites, which may explain why bacterial enzymes are more effectively inhibited by this class of compounds. Indeed, many of the effective bacterial CA inhibitory coumarins incorporate easily derivatizable moieties of the phenol, amine, ketone or carboxylate type, which in principle can be used for obtaining better inhibitors. This investigation warrants further studies in order to find effective non-sulphonamide CAs which may be useful for exploring antibacterials that can revert the extensive drug resistance observed with the clinically used antibiotics.

Acknowledgements

CTS thank the Italian Ministry for University and Research (MIUR), project FISR2019_04819 BacCAD.

Disclosure statement

CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors
have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

The research program was also partially funded by a Purdue Institute for Drug Discovery Programmatic Grant (to D.P.F.) and NIH/NIAID [1R01AI148523] (to D.P.F.).

ORCID

Alessio Nocentini http://orcid.org/0000-0003-3342-702X

Clemente Capasso http://orcid.org/0000-0003-3314-2411

Daniel P. Flaherty http://orcid.org/0000-0002-8305-0606

Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. (a) Smith KS, Jakubzick C, Whittam TS, Ferry JG. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci U S A 1999;96:15184–9.(b) Abuaita BH, Withey JH. Bicarbonate induces *Vibrio cholerae* virulence gene expression by enhancing ToxT activity. Infect Immun 2009;77:4111–20.(c) Merlin C, Masters M, McAteer S, Coulson A. Why is carbonic anhydrase essential to *Escherichia coli*? J Bacteriol 2003;185:6415–24.(d) Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial \(\gamma \)-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium *Burkholderia* *t* *erritorii*. J Enzyme Inhib Med Chem 2020;35:1060–8.

2. (a) Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011;2:34.(b) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexplored antibiotic therapeutic targets. Future Med Chem 2021;13:1619–22.(c) Petreni A, De Luca V, Scalon A, et al. Anion inhibition studies of the Zn(II)-bound \(\gamma \)-carbonic anhydrase from the Gram-negative bacterium *Burkholderia* *t* *erritorii*. J Enzyme Inhib Med Chem 2021;36:372–6.(d) Supuran CT, Capasso C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017;7:56.

3. (a) Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat 2018;28:745–54.(b) Capasso CT, Supuran C. Anti-bacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963–82.(c) Campestre CD, Luca V, Carradori S, et al. Carbonic anhydrases: new perspectives on protein functional role and inhibition in *Helicobacter pylori*. Front Microbiol 2021;12:629163.(d) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32.

4. (a) Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetzolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococci. J Med Chem 2020;63:9540–62.(b) Abutaleb NS, Elkashif A, Flaherty DP, Seleem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother 2021;65:e01715–20.(c) Abutaleb NS, Elhassanny AEM, Flaherty DP, Seleem MN. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ 2021;9:e11059.

5. (a) Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against *Neisseria gonorhoeae*. ACS Infect Dis 2021;7:1969–84.(b) Nocentini A, Hewitt CS, Mastrolucento MD, et al. Anion inhibition studies of the \(\gamma \)-carbonic anhydrases from *Neisseria gonorhoeae*. J Enzyme Inhib Med Chem 2021;36:1061–6.

6. (a) Del Prete S, Isik S, Vullo D, et al. DNA cloning, characterization, and inhibition studies of an \(\gamma \)-carbonic anhydrase from the pathogenic bacterium *Vibrio cholerae*. J Med Chem 2012;55:10742–8.(b) Del Prete S, De Luca V, Scozzafava A, et al. Biochemical properties of a new \(\gamma \)-carbonic anhydrase from the human pathogenic bacterium, *Vibrio cholerae*. J Enzyme Inhib Med Chem 2014;29:23–7. (c) Angeli A, Del Prete S, Osman SM, et al. Activation studies of the \(\gamma \)- and \(\beta \)-carbonic anhydrases from the pathogenic bacterium *Vibrio cholerae* with amines and amino acids. J Enzyme Inhib Med Chem 2018;33:227–33.(d) Ferraroni M, Del Prete S, Vullo D, et al. Crystal structure and kinetic studies of a tetrameric type II \(\beta \)-carbonic anhydrase from the pathogenic bacterium *Vibrio cholerae*. Acta Crystallogr D Biol Crystallogr 2015;71:2449–56.

7. (a) Urbanski LJ, Bua S, Angeli A, et al. Sulphonamide inhibition profile of *Staphylococcus aureus* \(\beta \)-carbonic anhydrase. J Enzyme Inhib Med Chem 2020;35:1834–9.(b) Fan SH, Ebner P, Reichert S, et al. MpsAB is important for *Staphylococcus aureus* virulence and growth at atmospheric CO2 levels. Nat Commun 2019;10:3627.(c) Supuran CT. Novel carbonic anhydrase inhibitors. Future Med Chem 2021;13:1935–7.(d) Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci 2021;135:1233–49.

8. (a) Matsumoto Y, Miyake K, Ozawa K, et al. Bicarbonate and unsaturated fatty acids enhance capsular polysaccharide synthesis gene expression in oral streptococci, *Streptococcus anginosus*. J Biosci Bioeng 2019;128:511–7.(b) Capasso C, Supuran CT. An overview of the carbonic anhydrases from two pathogens of the oral cavity: *Streptococcus mutans* and *Porphyromonas gingivalis*. Curr Top Med Chem 2016;16:2359–68.(c) Dedeoglu N, De Luca V, Isik S, et al. Cloning, characterization and anion inhibition study of a \(\beta \)-class carbonic anhydrase from the caries producing pathogen *Streptococcus mutans*. Bioorg Med Chem 2015;23:2995–3001.(d) Burghout P, Vullo D, Scozzafava A, et al. Inhibition of the \(\beta \)-carbonic anhydrase from *Streptococcus pneumoniae* by inorganic anions and small molecules: Toward innovative drug design of antiinfectives? Bioorg Med Chem 2011;19:243–8.

9. (a) Del Prete S, De Luca V, Capasso C, et al. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from *Thermosynechococcus elongatus* and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAS) for the conversion of CO2 to oxaloacetate. Bioorg Med Chem 2016;24:2220–5.(b) De Luca V, Del Prete S, Vullo D, et al. Expression and characterization of a recombinant psychrophilic \(\gamma \)-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus *Nostoc*. J Enzyme Inhib Med Chem 2016;31:810–7.(c) Vullo D, De Luca V, Del Prete S, et al. Sulfonamide inhibition studies of the \(\gamma \)-carbonic anhydrase from the Antarctic
cyanobacterium *Nostoc commune*. Bioorg Med Chem 2015; 23:1728–34.(d) De Luca V, Vullo D, Del Prete S, et al. Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium *Pseudoalteromonas haloplanktis*. Bioorg Med Chem 2015;23:4405–9.

10. (a) Rahman MM, Tikhomirova A, Modak JK, et al. Antibacterial activity of ethoxzolamide against *Helicobacter pylori* strains SS1 and 26695. Gut Pathog 2020;12:20.(b) Modak JK, Tikhomirova A, Gorrell RJ, et al. Anti-*Helicobacter pylori* activity of ethoxzolamide. J Enzyme Inhib Med Chem 2019;34:1660–7. (c) Modak JK, Liu YC, Supuran CT, Roujejnikova A. Structure-activity relationship for sulfonamide inhibition of *Helicobacter pylori* γ-carbonic anhydrase. J Med Chem 2016;59:11098–109.

11. (a) Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020;15:671–86.(b) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.(c) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020;40:2485–565.

12. (a) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.(b) Ozersoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2016;31:689–94.(c) Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021;36:561–80. (d) Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72.(e) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.

13. (a) Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009;131:3057–62.(b) Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010;53:3335–44.

14. (a) Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem 2020;35:1462–70.(b) Maresca A, Supuran CT. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 2010;20:4511–4.(c) Maresca A, Scozzafava A, Supuran CT. 7,8-Disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 2010;20:7255–8.(d) Sharma A, Tiwari M, Supuran CT. Novel coumarins and benzocoumarins acting as isoform-selective inhibitors against the tumor-associated carbonic anhydrase IX. J Enzyme Inhib Med Chem 2014;29:292–6.(e) Touisson N, Maresca A, McDonald PC, et al. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 2011;54:8271–7.

15. (a) Petreni A, Osman SM, Alasmry FA, et al. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021;226:113875.(b) Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem 2021;36:1702–14.(c) Fois B, Distinto S, Meleddu R, et al. Coumarins from *Magydaris pastinacea* as inhibitors of the tumour-associated carbonic anhydrases IX and XII: isolation, biological studies and in silico evaluation. J Enzyme Inhib Med Chem 2020;35:539–48.(d) Melis C, Distinto S, Bianco G, et al. Targeting tumor associated carbonic anhydrases IX and XII: highly isozyme selective coumarin and psoralen inhibitors. ACS Med Chem Lett 2018;9:725–9.(e) Meleddu R, Deplano S, Maccioni E, et al. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021;36:685–92.

16. (a) Innocenti A, Supuran CT. Paraoxon, 4-nitrophosphoryl phosphate and acetate are substrates of γ- but not of β, γ- and δ-carbonic anhydrases. Bioorg Med Chem Lett 2010;20:6208–12.(b) Innocenti A, Scozzafava A, Parkkila S, et al. Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg Med Chem Lett 2008;18:2267–71.(c) Lopez M, Vu H, Wang CK, et al. Promiscuity of carbonic anhydrase II. Unexpected ester hydrolysis of carbohydrate-based sulfamate inhibitors. J Am Chem Soc 2011;133:18452–62.

17. (a) Kaul T, Reddy PS, Mahanty S, et al. Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C(4) plant, *Pennisetum glaucum*. J Plant Physiol 2011;168:601–10. (b) Lee RB, Smith JA, Rickaby RE. Cloning, expression and characterization of the δ-carbonic anhydrase of *Thalassiosira weissflogii* (Bacillariophyceae). J Phycol 2013;49:170–7.

18. Del Prete S, Vullo D, De Luca V, et al. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom *Thalassiosira weissflogii*, TweCA. J Enzyme Inhib Med Chem 2014;29:906–11.

19. Khalifa RG. The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.

20. (a) Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev 2018;38:1799–836.(b) Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.(c) Thacker PS, Tiwari PL, Angeli A, et al. Synthesis and biological evaluation of coumarin-linked 4-anilinomethyl-1,2,3-triazoles as potent inhibitors of carbonic anhydrases IX and XII involved in tumorigenesis. Metabolites 2021;11:225.

21. (a) Peperidou A, Bua S, Bozdağ M, et al. Novel 6- and 7-substituted coumarins with inhibitory action against lipooxygenase and tumor-associated carbonic anhydrase IX. Molecules 2018;23:153.(b) Kartsev V, Geronikaki A, Bua S, et al. Extending the inhibition profiles of coumarin-based compounds against human carbonic anhydrases: synthesis, biological, and in silico evaluation. Molecules 2019;24:3580.