Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila

Patrick Morcillo, Christina Rosen, Mary K. Baylies, and Dale Dorsett¹

Molecular Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 USA

The mechanisms allowing remote enhancers to regulate promoters several kilobase pairs away are unknown but are blocked by the Drosophila suppressor of Hairy-wing protein (Suhw) that binds to gypsy retrovirus insertions between enhancers and promoters. Suhw bound to a gypsy insertion in the cut gene also appears to act interchromosomally to antagonize enhancer-promoter interactions on the homologous chromosome when activity of the Chip gene is reduced. This implicates Chip in enhancer-promoter communication. We cloned Chip and find that it encodes a homolog of the recently discovered mouse Nli/Ldb1/Clim-2 and Xenopus Xldb1 proteins that bind nuclear LIM domain proteins. Chip protein interacts with the LIM domains in the Apterous homeodomain protein, and Chip interacts genetically with apterous, showing that these interactions are important for Apterous function in vivo. Importantly, Chip also appears to have broad functions beyond interactions with LIM domain proteins. Chip is present in all nuclei examined and at numerous sites along the salivary gland polytene chromosomes. Embryos without Chip activity lack segments and show abnormal gap and pair-rule gene expression, although no LIM domain proteins are known to regulate segmentation. We conclude that Chip is a ubiquitous chromosomal factor required for normal expression of diverse genes at many stages of development. We suggest that Chip cooperates with different LIM domain proteins and other factors to structurally support remote enhancer-promoter interactions.

[Key Words: apterous; even-skipped; gap genes; homeodomain; LIM domain-binding protein; suppressor of Hairy-wing]

Received June 27, 1997; revised version accepted August 12, 1997.

Development of multicellular organisms requires precise temporal and spatial regulation of gene expression. Much of this regulation depends on proteins that bind transcription enhancers. For enhancers separated by a few hundred base pairs from their promoter, DNA looping may be sufficient to allow interactions between basal factors at the promoter and the enhancer-binding proteins. Many complex developmentally regulated genes, however, contain multiple enhancers, which can be many kilobase pairs from the promoter. Enhancers require more than DNA looping to interact with the promoter over such remote distances. For instance, either a UAS or a higher eukaryotic enhancer must be upstream and promoter-proximal to activate transcription in yeast cells, yet both will function downstream of the gene in higher eukaryotic cells (Struhl 1989). This suggests that, in contrast to yeast, higher eukaryotes have factors that facilitate remote enhancer-promoter interactions.

The effects of insertions of the gypsy retrovirus on enhancer activity in Drosophila lend support to the enhancer-facilitator hypothesis. Gypsy insertions block enhancer-promoter communication, without inactivating either the enhancer or promoter, when, and only when, they are between the enhancer and promoter (for review, see Dorsett 1996; Geyer 1997). The Suhw protein encoded by suppressor of Hairy-wing [su(Hw)] that binds to specific sequences in gypsy insertions is necessary and sufficient to block enhancers.

A common domain in Suhw is required for gypsy insertions to block enhancers in several different genes (Harrison et al. 1993; Kim et al. 1996), suggesting that Suhw blocks all enhancers by the same mechanism. Enhancer blocking is distance independent and reversible (Dorsett 1993), and blocked enhancers remain active because they can activate a second promoter in the other direction (Cai and Levine 1995; Scott and Geyer 1995). These observations rule out an epigenetic chromatin structure, or interference with enhancer-binding factors as blocking mechanisms. Although Suhw distorts DNA
(Shen et al. 1994), this is not sufficient to block enhancers in Drosophila (Kim et al. 1996) or an upstream activating sequence (UAS) in yeast (Kim et al. 1993). We postulate, therefore, that the Suhw enhancer-blocking domain interacts and interferes with higher eukaryotic proteins that facilitate interactions between the enhancer and promoter. We envision that enhancer–facilitators help form chromatin structures that bring enhancers and promoters closer together, and that they are different from enhancer-binding activators, coactivators, and basal factors in that they do not participate directly in the activation reaction. It can be inferred that the facilitating chromatin structure needs to be continuous, without interruptions, from the ability of Suhw to block the wing margin enhancer in cut from positions scattered throughout the 85-kb region between the enhancer and promoter (Jack et al. 1991), as well as the observation that blocking by gypsy insertions near the cut promoter or wing margin enhancer is qualitatively and quantitatively identical (Dorsett 1993).

To identify potential enhancer–facilitators, we conducted a screen for mutations that reduce activity of the remote wing margin enhancer in the cut locus (Morcillo et al. 1996a). The screen identified two known genes, scalloped (sd) and mastermind (mam), and a novel gene, Chip. The data suggest that sd and mam encode enhancer-binding factors and that Chip may encode an enhancer–facilitator. Both sd and mam mutants display stronger genetic interactions with wing margin enhancer deletions than with gypsy insertions in cut, consistent with roles as transcription activators (Fig. 1). Supporting this view, the sd protein (Sd) is homologous to the TEF-1 mammalian enhancer-binding factor (Campbell et al. 1992) and binds several sites in the wing margin enhancer DNA (Morcillo et al. 1996a), whereas Mam protein binds a limited number of sites in polytene chromosomes, including one near the cut locus (Bettler et al. 1996).

Chip is also needed for wing margin enhancer activity, but appears to play a unique role (Morcillo et al. 1996a). Chip mutations dominantly enhance the mutant phenotypes displayed by partially suppressed gypsy insertions in both cut and Ultrabithorax (Ubx) and are homozygous larval lethal, indicating that Chip regulates multiple genes. Chip is normally required for wing margin enhancer function because Chip mutations also enhance the cut wing phenotype of a cut mutation that lacks a gypsy insertion, and flies wild type for cut and heterozygous for Chip display cut wing phenotypes when either sd or mam are also heterozygous mutant. In contrast to sd and mam mutants, however, Chip mutants display stronger genetic interactions with gypsy insertions than with wing margin enhancer deletions. Thus, in a heterozygous Chip mutant, a heterozygous gypsy insertion in cut displays a cut wing phenotype, whereas a heterozygous enhancer deletion does not (Fig. 1). Dependence on the nature of the heterozygous lesion in the regulatory region strongly suggests that Chip directly regulates cut. More strikingly, it indicates that in a Chip heterozygote, a gypsy insertion is more deleterious to enhancer function than deletion of the enhancer. The simplest explanation is that Suhw bound to gypsy in one cut allele acts in a transvection-like manner to block the wing margin enhancer in the wild-type cut allele on the other chromosome (Fig. 1). This implies that Chip plays a crucial role in enhancer–promoter communication.

If Chip encodes an enhancer–facilitator as suggested by genetics, its products should be widely expressed, be localized in the nucleus, and affect expression of multiple genes. We cloned Chip to address these questions. On the basis of sequence and physical interactions, Chip is a homolog of vertebrate factors that interact with the LIM domains of nuclear proteins. Our results also indicate that beyond the specific interaction with LIM domain proteins, Chip is a ubiquitous chromosomal protein required for gene expression beginning early in embryogenesis.

Results

Cloning Chip by transposon tagging

Chip maps by recombination to 2-106.8 between orange and speck near the tip of chromosome 2R (Morcillo et al.
1996a). In a screen with γ-rays, we isolated a deficiency, Df(2R)Chipg370, that deletes Chip. The visible breakpoints of Chipg370 (60A3.7; 60B4.7) correlate well with the recombination mapping.

A lethal P-element insertion listed in FlyBase, l(2)k04405 (Torok et al. 1993), was localized by in situ hybridization to 60B1-2, in the region deleted by Chipg370. l(2)k04405 fails to complement the larval lethality of Chip mutants. Like Chip mutations (Moricillo et al. 1996a), l(2)k04405 also dominantly enhances the cut wing phenotype displayed by partially suppressed mutations, l(2)k04405/(Torok et al. 1993), was localized by in situ hybridization to 60B1-2, in the region deleted by Chipg370. Conceptual translation indicates that it contains the essential portions of the gene. We conclude that the 2.2-kb RNA is the P- element insertion detected a 2.2-kb polyadenylated RNA rescues the chromosome fragment containing the probe fragment (Fig. 2A) near the EcoRI genomic fragment (Fig. 2A) and a poly(A) tail. The ORF encodes a protein of 577 amino acids (Fig. 2B). Comparison of the cDNA and genomic DNA sequences revealed a single small intron upstream of the ORF and a putative nuclear localization signal. The intron is indicated by a V. The protein encoded by the ORF is homologous to vertebrate nuclear LIM domain-binding proteins.

The visible deletions in l(2)k04405, and the small deletions in Chipg371, and Chipg1 are indicated by arrows. The boxes below indicate the sequences present in the Chip cDNA clones, with the solid box indicating the ORF. The ORF is homologous to vertebrate nuclear LIM domain-binding proteins.

The putative nuclear localization signal is underlined. The protein encoded by the ORF is homologous to vertebrate nuclear LIM domain-binding proteins.

The protein encoded by the Chip ORF is homologous to the mouse Nli/Ldb1/Clim-2 (Agulnick et al. 1996; Jurata et al. 1996a), as well as to a putative mouse homeodomain protein, Chipe5.5 (Agulnick et al. 1996). In a screen with γ-rays, we isolated a deficiency, Df(2R)Chipg370, that deletes Chip. The visible breakpoints of Chipg370 (60A3.7; 60B4.7) correlate well with the recombination mapping.
et al. 1996; Bach et al. 1997), mouse Clim-1 (Bach et al. 1997), and frog Xldb1 (Agulnick et al. 1996) vertebrate proteins that bind to the LIM domains of nuclear proteins. Chip residues 205–577 display 58% identity with the mouse Nli/Ldb1/Clim-2 protein (Fig. 2B). All of these proteins have a potential nuclear localization signal (Fig. 2B). There are no yeast homologs of Chip, suggesting that Chip and its relatives are specific to higher eukaryotes.

The major difference between Chip and the vertebrate homologs is that Chip has a proline-rich amino-terminal domain of ∼200 amino acids (Fig. 2B). Thus, the truncated protein encoded by Chip[55] does not contain the conserved domain, consistent with the observation that it behaves like a null allele (Morcillo et al. 1996a).

The Nli/Ldb1/Clim-2, Clim-1, and Xldb1 proteins were isolated because they physically interact with nuclear LIM domains (Agulnick et al. 1996; Jurata et al. 1996; Bach et al. 1997). There are mutants available for the aperous (ap) gene in Drosophila, which encodes a LIM–homeodomain (HD) protein involved in wing and muscle development (Bourgouin et al. 1992; Cohen et al. 1992). We tested whether Chip interacts genetically with ap. Flies heterozygous for either Chip[55] or ap[56] have normal wings, but flies heterozygous for both display margin defects (Fig. 3A). Chip[55]/ap[56] male progeny of Chip[55] mothers and ap[56] fathers have 2.5 ± 0.2 (n = 261; error value is the standard error) margin gaps per fly, whereas progeny with the same genotype from ap[56] mothers and Chip[55] fathers have 1.0 ± 0.2 (n = 47) gaps per fly. Chip[55] also interacts with ap[4] (not shown).

We believe it is unlikely that Ap directly regulates the cut wing margin enhancer because Ap is detected only in the dorsal half of the cells in which this enhancer is active (Blair 1993).

The interaction between Chip and ap and the homology between Chip and the vertebrate LIM domain-binding proteins raised the question of whether Chip interacts directly with the Ap LIM domains. This was tested in a yeast double-hybrid fusion experiment, in which full-length Chip was fused to the bacterial LexA DNA-binding protein, and the Ap LIM domains were fused to the transcription activation domain of the yeast GAL4 protein. The two fusion proteins were coexpressed in a yeast strain containing two reporter genes with LexA-binding sites in the promoter (Hollenberg et al. 1995). One reporter expresses the lacZ gene detected by X-gal staining, and the other expresses the HIS3 gene, detected by selection on media lacking histidine. When the two fusion proteins are coexpressed, both reporters are activated (Fig. 3B). The reporters are not expressed when the GAL4 activation domain alone, or the GAL4 activation domain fused to Chip, is coexpressed with the LexA-Chip fusion. We conclude that Chip interacts with the Ap LIM domains.

CHIP is a widely expressed chromosomal factor

Ap is expressed in a tissue-specific pattern during development (Bourgouin et al. 1992; Cohen et al. 1992). If Chip, as suggested by genetic studies, plays a more general role in gene expression than regulating Ap activity, it should be more widely expressed. A Northern blot of total RNA reveals that Chip mRNA is present at all developmental stages (Fig. 4). Strikingly, early embryos (0–30 min old, lane EE) have ~10-fold higher levels than later developmental stages. Because this is before zygotic gene expression, we conclude that Chip mRNA is maternally contributed during oogenesis.

To investigate expression of Chip protein, anti-Chip antibodies were raised in rabbits. The Chip cDNA was expressed in E. coli, producing a 70-kD protein used as antigen. Affinity-purified antibodies recognize a major band of 68 kD and minor bands of 82 and 22 kD in Western blots (not shown) of proteins extracted with 0.35 M NaCl from nuclei of cultured Schneider 2 Drosophila cells (Dorsett 1990). Embryos stained with these antibodies reveal that from the early cellular blastoderm stage (Fig. 5A) through gastrulation (Fig. 5C) to the end of

Figure 3. Interactions between Chip and the Ap LIM protein. (A) Genetic interaction between Chip and ap. The wing from a y* w*; Chip[55]/ap[56] male has gaps in the posterior margin. (B) Interaction between Chip and the Ap LIM domain in yeast. Yeast were transformed with a plasmid expressing the full length Chip ORF with the lexA DNA-binding protein fused to the amino terminus, and a second plasmid expressing the indicated protein containing the Gal4 activation domain (GAD, Gal4 activation domain alone; GAD–Chip, the Gal4 activation domain fused to the Chip ORF; GAD–APLIM, the Gal4 activation domain fused to the amino terminus of the Ap LIM domains). Interaction between Chip and the Ap LIM domains is indicated by the activation of the lexA operator–HIS3 reporter gene as detected by growth on histidine omission plates (his−), and expression of the lexA operator–lacZ fusion gene as detected by X-Gal staining (X-Gal). The GAD–APLIM protein does not activate the reporters when coexpressed with the LexA DNA-binding domain alone (not shown).
embryogenesis (not shown), Chip protein is present in most, if not all, nuclei, including the pole cell nuclei. Staining is undetectable or very weak in syncytial blastoderm nuclei until just before cellularization (not shown) although Chip must be present at low levels, because lack of Chip activity affects expression of segmentation genes at this stage (see below). Embryos produced from germ-line clones homozygous mutant for Chip^{95.5} (see below) do not stain at any stage (Fig. 5B), showing that the staining is Chip-specific. Chip is also present in the nuclei of larval tissues including imaginal discs (Fig. 5D–F), fat body (Fig. 5G), and salivary glands (Fig. 5H). These observations indicate that Chip is essentially a ubiquitous nuclear factor during embryogenesis and larval development.

Examination of the larval salivary glands stained with anti-Chip antibodies revealed that the polytene chromosomes stain in banded patterns (Fig. 5I). From examination of several nuclei, it is evident that Chip is present at many sites along the entire lengths of all chromosomes. The nucleoli and nonchromosomal portions of the nuclei do not display significant staining. Attempts to stain the polytene chromosomes after spreading were unsuccessful, indicating that the reagents used to spread the chromosomes either denature the Chip epitopes or remove Chip from the chromosomes. Although we cannot identify the specific loci with which Chip associates, the very large number of sites with which Chip associates is consistent with a general role in gene expression.

Chip is required for accurate expression of segmentation genes

Most homozygous Chip mutants die prior to the third instar larval stage (Morcillo et al. 1996a). If Chip is re-
quired for the activity of many enhancers, one might expect that homozygous mutants would be embryonic lethal. We considered the possibility that maternally loaded Chip mRNA allows survival into the larval stages. To test this, germ-line clones homozygous mutant for Chip^e5.5, which is the only lethal mutation on its chromosome, were generated with the dominant female sterile yeast flip recombinase system (Chou and Perrimon 1996). The embryos from Chip^e5.5 germ-line clones fail to hatch. The cuticles exhibit normal dorsal–ventral polarity, but severe segmentation defects. At 18°C, most have a single fused, irregularly shaped patch of ventral denticles (Fig. 6B). At 25°C, the phenotype is slightly less severe and most have a large fused denticle patch and one or two denticle bands resembling A7 and A8 of wild type (Fig. 6C). A few rare embryos at 25°C display a pair-rule-like phenotype with approximately half the normal number of segments (not shown).

We tested whether a wild-type paternal allele could influence the phenotype of Chip^e5.5 germ-line clone embryos. Germ-line mosaic females were mated to males with Chip^e5.5 on one chromosome and a P element containing a fushi tarazu (ftz)-lacZ fusion gene on the homolog with a wild-type Chip allele. The resulting embryos were stained with anti-β-galactosidase antibodies. We observed roughly equal numbers of staining and nonstaining developing embryos with indistinguishable segmentation defects (not shown), indicating that a wild-type paternal Chip allele does not substantially alter development.

The unsegmented phenotype of Chip^e5.5 germ-line clone embryos resembles that displayed by embryos homozygous for null alleles of the pair-rule gene even-skipped (eve) (Nüsslein-Volhard et al. 1985). To determine whether the phenotype reflects a lack of eve expression, we stained Chip^e5.5 germ-line clone embryos raised at 18°C with anti-Eve antibodies. Eve is expressed, although the pattern is abnormal. There are stripes (Fig. 7D), but the number is often less than the seven in wild type (Fig. 7C). Furthermore, the first stripe to appear (Fig. 7B) is often wider and stronger than in wild type (Fig. 7A), whereas later-appearing stripes (Fig. 7D) are narrower, weaker, and more uneven than wild type (Fig. 7C). All seven stripes are affected, although the effects on stripes 1 and 7 are less dramatic.

The Eve expression defects are insufficient to explain the unsegmented phenotype of Chip^e5.5 germ-line clone embryos because hypomorphic eve mutations exhibit
pair-rule phenotypes (Nüsslein-Volhard et al. 1985). Embryos homozygous mutant for two pair-rule genes can also have an unsegmented phenotype (Nüsslein-Volhard et al. 1985). Expression of a ftz-lacZ fusion gene, however, is also only partially defective in Chip^{os-5.5} germ-line embryos, displaying an abnormal stripe pattern that alternates with the Eve pattern (not shown). This suggests that pair-rule gene defects alone are insufficient to explain the cuticle phenotype.

Pair-rule genes are regulated by gap genes. The observation that Eve and ftz-lacZ are expressed in abnormal alternating stripe patterns suggests that gap gene expression might also be partially defective in embryos lacking Chip activity. To confirm this, we stained Chip^{os-5.5} germ-line clone embryos incubated at 18°C with antibodies against the four gap proteins Krüppel (Kr), Knirps (Kni), Giant (Gt), and Hunchback (Hb). The Hb pattern is indistinguishable from wild type (Fig. 8A, B), and there are mild defects in the Kr and Kni patterns. At the cellular blastoderm stage, the Kr (Fig. 8C, D) and posterior Kni bands (Fig. 8E, F) are both slightly narrower, weaker, and more uneven in Chip^{os-5.5} germ-line clone embryos than in wild-type. Despite these mild abnormalities, the expression patterns of these three gap genes indicate that the maternally derived anterior-posterior Bicoid and Nanos protein gradients are present in embryos lacking active Chip.

Lack of active Chip affects Gt more severely than the other gap proteins. In wild-type precellular and early cellular blastoderm embryos, Gt is restricted to two broad bands (Fig. 8G), whereas in Chip^{os-5.5} germ-line clone embryos, Gt is expressed at low to moderate levels in the entire embryo, including the pole cells (Fig. 8H). Expression in domains to which Gt is restricted in wild type varies from moderate to high. In later stages, when Gt resolves into multiple bands of expression in wild-type, Gt expression in mutant embryos is similar to wild type (not shown).

Misexpression of Gt in embryos lacking active Chip can explain the decreased expression of Kr and Kni because Gt represses Kr and kni (Kraut and Levine 1991; Capovilla et al. 1992). Because Gt helps define the anterior border of Eve stripe 2 by repression (Small et al. 1991), it is conceivable that abnormal Gt expression also weakens Eve stripe 2. Misexpression of Gt, however, should not weaken other Eve stripes because some of these overlap wild-type Gt domains. We conclude that at least some of the effects on Eve expression in embryos lacking active Chip are independent of the effects on Gt expression.

The observed defects in gap gene and eve expression would be more consistent with partial segmentation than the observed unsegmented cuticle phenotype. We postulate, therefore, that the mutant cuticle phenotype reflects expression defects in multiple genes at different levels in the segmentation pathway. Importantly, however, the effects on the expression of gap genes, among the first zygotic genes expressed, shows that Chip is required for accurate gene expression very early in development. The fact that embryos lacking active Chip express segmentation genes also shows that Chip is not required for basal promoter activity.

Discussion

Chip is a unique general transcription factor

The Chip gene was identified in a genetic screen designed to identify factors that facilitate communication between remote enhancers and promoters (Morcillo et al. 1996a). We postulate that enhancer–facilitator proteins are not directly involved in the transcription activation reaction, but help form chromatin structures that bring the enhancer and promoter closer together. We infer that Chip is a potential enhancer–facilitator because in Chip mutants, the SuHz protein that binds gypsy insertions and blocks enhancer–promoter communication can act interchromosomally to block the remote wing margin enhancer in the cut gene (Morcillo et al. 1996a).

The observations reported here support the view that Chip, as expected for an enhancer–facilitator, plays a general role in gene expression. Chip mRNA is present at all stages of development, and Chip is a virtually ubiquitous nuclear protein. In contrast, other transcription factors that support cut wing margin enhancer activity, such as Sd (Campbell et al. 1992; Williams et al. 1993) and Mam (Bettler et al. 1996; Schmid et al. 1996), are expressed in specific temporal and spatial patterns. Chip protein also associates with numerous sites along the entire lengths of the salivary gland polytene chromosomes as expected for a general factor, and in contrast to a more gene- and tissue-specific factor like Mam, which associates with a limited number of sites (Bettler et al. 1996). Furthermore, reductions in Chip activity affect expression of diverse sets of genes at various stages of development, including gap genes, which are among the first genes expressed.

Chip is unlikely to be a basal transcription factor because lack of Chip activity does not cause a loss of promoter activity for any of the segmentation genes examined. However, mutations in the TATA-binding protein (TBP)–associated factors (TAF,F) associated with the basal transcription apparatus drastically reduce expression of some segmentation genes and have no effects on others (Sauer et al. 1996). Thus, we cannot entirely rule out the possibility that Chip is a basal factor that affects a promoter’s response to specific enhancers, although this would not explain why reduced Chip activity allows interchromosomal enhancer blocking by SuHz.

The possibility that Chip creates an open chromatin structure, thereby improving the access of transcription factors to DNA, is also unlikely. In contrast to other factors proposed to have this function, such as the modulatory (mdg4) [E(var)3-93D] proteins (Dorn et al. 1993) or GAGA factor (Farkas et al. 1994), mutations reducing Chip activity do not modify the position effect variegation that occurs when chromosomal rearrangements cause a euchromatic gene next to heterochromatin (Morcillo et al. 1996a).

The predicted amino acid sequence further supports...
that view that Chip plays a unique role in enhancer function because it is not homologous to any cloned transcription factors such as enhancer-binding proteins, basal factors, or coactivators, and does not contain any known protein motifs. Moreover, Chip homologs were detected in higher eukaryotes but not in yeast. Part of the motivation for the hypothesis that higher eukaryotes have factors that facilitate enhancer-promoter interactions is the observation that a yeast UAS can behave like an enhancer in higher eukaryotic cells but acts only promoter-proximal in yeast (Struhl 1989).

Chip–LIM protein interactions in development

The vertebrate homologs of Chip provide clues to some of Chip’s molecular activities. The mouse Nll/Ldb1/Clim-2, Xenopus Xld1b, and mouse Clim-1 proteins were isolated because they bind to LIM domains of nuclear proteins (Jurata et al. 1996; Agulnick et al. 1997; Bach et al. 1997). The LIM domain is a class of Zn2+-chelating protein motifs involved in a variety of protein–protein interactions (for review, see Sanchez-Garcia and Rabbits 1994; Dawid et al. 1995). LIM domains are found in both nuclear and cytoplasmic proteins and there are several subclasses of LIM domains. Many nuclear LIM domain proteins also contain the HD DNA-binding motif, whereas others (LMO proteins) consist primarily of LIM domains. Nll/Ldb1/Clim-2, Clim-1, and Xld1b bind LIM domains of the subclass found in LIM–HD and nuclear LMO proteins (Agulnick et al. 1996; Jurata et al. 1996; Bach et al. 1997).

LIM domains appear to have negative effects on the activities of LIM–HD proteins. Thus, mutation or truncation of the LIM domains increases the DNA-binding activity of the Islet-1 (ISL-1) and Mec-3 LIM–HD proteins (Sanchez-Garcia et al. 1993; Xue et al. 1993). Mutation of the LIM domains also allows injected Xlim-1, a LIM–HD protein, to induce secondary axes in Xenopus development (Taira et al. 1994). Similar to mutation of the LIM domains, coinjection of the Xld1b Chip homolog with Xlim-1 leads to axis duplication (Agulnick et al. 1996). This suggests that binding of Xld1b overcomes the negative effects of the LIM domains.

Although the coinjection experiment indicates that Xld1b can interact with Xlim-1 in vivo and affect development, it does not show that this interaction is required for normal development, or that Xld1b is an essential protein. The homozygous larval lethality of mutant Chip alleles (Morcillo et al. 1996a) and the embryonic lethality of ChipE5.5 germ-line clones, therefore, is the first demonstration that a member of this class of LIM domain-binding proteins is an essential developmental factor. The interaction between Chip and the Ap LIM domains in a yeast double-hybrid fusion experiment shows that Chip is a functional homolog of Nll/Ldb1/Clim-2, Clim-1, and Xld1b. More importantly, the synergistic wing margin phenotype displayed by flies heterozygous for both apterous and Chip mutations indicates that the Chip–Ap interaction is normally required in vivo.

Do LIM domain and LIM domain-binding proteins have broad roles in gene expression and development?

Like Chip, Xld1b is nuclear (Agulnick et al. 1996) and Nll/Ldb1/Clim-2 is expressed in a variety of tissues (Agulnick et al. 1996; Jurata et al. 1996; Bach et al. 1997). In contrast, LIM domain proteins such as Ap and Xlim-1 are expressed in tissue-specific patterns and have specific developmental tasks (for review, see Dawid et al. 1995). Curiously, Chip plays a key role in segmentation, yet no LIM domain proteins are known to be involved in segmentation. Dlmo, a LMO protein, is present during Drosophila embryogenesis (Zhu et al. 1995), but there are no Dlmo mutants and its functions are unknown. The direct targets of Chip regulation during embryogenesis are unknown, but gt and eve are two candidates on the basis of the evidence presented here; however, they are not known to be regulated by LIM domain proteins. Moreover, Chip regulates expression of cut and Ubx during imaginal disc development (Morcillo et al. 1996a), and these genes are also not known to be regulated by LIM domain proteins. It is possible, therefore, that LIM domain proteins play broader roles in development than appreciated previously, and that there are several unknown LIM domain proteins required for segmentation and imaginal disc development. Consistent with this idea, additional Drosophila LIM–HD proteins have recently been discovered. The Arrowhead protein is involved in establishment of some imaginal precursor cells (Curtiss and Heilig 1995, 1997a,b), the Islet protein governs axon pathfinding and neurotransmitter identity (Thor and Thomas 1997), and a Drosophila Lim-3 homolog is involved in embryonic nervous system development (A. Tomlinson, S. Thor, and J. Thomas, pers. comm.).

Another possible explanation for the broad functions of Chip is that it may interact with other proteins without LIM domains. The two mouse Chip homologs, Nll/Ldb1/Clim-2 and Clim-1 interact directly with P-Otx, a HD protein that lacks LIM domains (Bach et al. 1997). There are several non-LIM HD proteins involved in Drosophila segmentation and regulation of Ubx, and it is feasible that Chip interacts with one or more of these proteins.

How do Chip and its homologs regulate enhancer activity?

LIM–HD proteins are likely to function like other homeodomain proteins. Because HD proteins are commonly thought of as activators and repressors that bind to enhancers, the interaction between Chip and the Ap LIM–HD protein appears at first to suggest that Chip is a coactivator. Recent evidence, however, indicates that the vertebrate Chip homologs may regulate interactions between different activator proteins. Both mouse Chip homologs potentiate synergistic activation of transcription by the P-LIM/LH3a and P-Otx HD proteins in transfection experiments with reporter gene constructs (Bach et al. 1997). Nll/Ldb1/Clim-2 also blocks syner-
Materials and methods

Screen for new Chip alleles

Approximately 220,000 progeny were screened after γ ray mutagenesis for enhancers of the cR-32; su(Hw)32 cut wing phenotype as described previously (Morcillo et al. 1996a) except the second chromosome was marked with a P[w+]/E. coli Tn7 insertion site at Df(2R)Kr4, Kr B80, Dp(1;2)y males were crossed to females with the l(2)k04405; CyO, HOP2 transposon insertional mutation (provided by W. Gelfert, Harvard University, Boston, MA). F1 CyO, HOP2/l(2)k04405 males were crossed to yellow+ (y+) w+; CyO, Df(2R)Kr4, Kr B80, Dp(1;2)y+ females. Three independent y+w+; CyO, Df(2R)Kr4, Kr B80, Dp(1;2)y+y+ females were crossed to Chipg230/CyO, Df(2R)Kr4, Kr B80, Dp(1;2)y−, and Chipg35.5/CyO, Df(2R)Kr4, Kr B80, Dp(1;2)y− females to test for complementation of Chip lethality.

Rescue of the l(2)k04405 P-element insertion from genomic DNA

The P-lacW (Bier et al. 1989) element in l(2)k04405 (Torok et al. 1993) was designed to be rescued by transformation of E. coli with genomic DNA. Three micrograms of genomic DNA from homozygous l(2)k04405 second instar imaginal disc larvae were digested with SacII, religated, and used to transform DH5α E. coli. The rescued plasmid contains ~4.5 kb of genomic DNA.

Isolation of Chip genomic DNA

P1 phage DNA was prepared as described by Hartl et al. (1994). Southern blots of EcoRI-digested P1 phage DNA were prepared as described in Sambrook et al. (1987). A 4.5-kb HindIII fragment of the rescued l(2)k04405 plasmid containing the flanking genomic DNA was gel-purified, labeled with 32P by random priming (Sambrook et al. 1987), and used as probe. A 10-kb fragment of the DSO0543 P1 phage insert hybridizing to the probe was gel-purified and cloned into the EcoRI site of pBlueScript (SK−) (Stratagene). Several kilobase pairs around the P-element insertion site were sequenced with Sequenase v. 2 (U.S. Biochemical) according to the manufacturer’s protocols.

RNA preparation and Northern blots

RNA isolation and Northern blot hybridization were performed as described previously (Dorsett et al. 1989). Single-stranded 32P-labeled RNA probes were prepared with the 1-kb EcoO109-BamHI fragment (Fig. 2A) as template. Northern blots were quantitated with a PhosphorImager. As an internal standard, rRNA was quantitated by densitometric scanning of a photographic negative.

P-element rescue of Chip

A 7.4-kb BglII–EcoRI fragment (Fig. 2A) was cloned into the BamHI and EcoRI sites of pCasper (Pirrotta 1988). The resulting plasmid was used for P element-mediated germ-line transformation (Rubin and Spradling 1982). Transformant flies were crossed to Chipg55.5 flies to test for complementation of Chip lethality.

Chip cDNA cloning

A third instar imaginal disc cDNA library in λgt10 (provided by J. Kim, University of Wisconsin, Madison) was screened by use of standard protocols (Sambrook et al. 1987) with probes prepared by random-priming of the 1-kb EcoO109-BamHI genomic DNA fragment (Fig. 2A). Eight hybridizing plaques were plaque-purified and DNA prepared. The EcoRI inserts were cloned into CHIP chromosomal protein regulates diverse genes

...
pBluescript (SK−), restriction mapped, and full-length clones were sequenced.

Sequence of Chip mutant alleles

The Chip ORF was amplified from genomic DNA isolated as described elsewhere (Levis et al. 1982) from homozygous mutant Chip56, Chip57, and Chip58 second instar larvae by PCR (primer 1 (5′-ATTAGAGTTCAAGCTGTTAGGGAAGTTTGG-AH-3′) and primer 2 (5′-ATTAGATCTGGTGTAGTGAAGACAC-3′)) (Saiki et al. 1988). Amplified DNA was digested with BglII and EcoRI, cloned into the BamHI and EcoRI sites of pBluescript (SK−), and sequenced.

Genetic interaction between Chip and ap

y*w*; CyO, Df(2R)Kr4, Kr B80, Dp(1;2)y

Yeast double-hybrid fusion experiments

Yeast double-hybrid fusion experiments were conducted as described by Bartel and Fields (1995). The Chip ORF was amplified by PCR (primer 1 and primer 2), digested with BglII and EcoRI, and cloned into the BamHI and EcoRI sites of pBTM116 (Bartel and Fields 1995), fusing it to the carboxyl terminus of the bacterial lexA reading frame. The segment of ap encoding the two LIM domains (Cohen et al. 1992) was amplified by PCR (primer 3 (5′-ATTAGATCATGAAATACCGCGCAACG-3′) and primer 4 (5′-ATTAGATCCGGTTAGGTTGCGCTCAT-3′)) from a cDNA clone (provided by D. Segal, University of Tel Aviv, Israel), digested with BamHI, and cloned into the BamHI site of pGAD10 (provided by S. Fields, University of Washington, Seattle), thereby fusing the Gal4 activation domain to the amino terminus of the LIM domains. To provide a control plasmid, the Chip ORF was amplified by PCR (primer 2 and primer 5 (5′-ATTAGATCTGAAATACCGCGCAACG-3′), digested with BglII, and cloned into the BamHI site of pGAD10. L40 yeast (MATα, his3Δ200, trp1-901, leu2-3,112, ade2, LYS2::(lexAop)4-HIS3, URA3::(lexAop)4-ac2) (Hollenberg et al. 1995) were transformed by use of the LiCl method (Sherman et al. 1986) with the indicated plasmids by selection on leucine and tryptophan double omission plates containing 2% glucose (Sherman et al. 1986) at 30°C. To evaluate ac2 reporter expression, colonies were spotted onto X-Gal. Activation of the HIS3 reporter was evaluated by growth on leucine, tryptophan, and histidine triple omission plates at 25°C.

Expression of Chip in E. coli and antibody preparation

Chip protein was expressed in E. coli as a fusion with glutathione S-transferase (GST). Part of the Chip cDNA open reading was amplified by PCR from a cdNA clone (primer 5 and primer 6 (5′-ATTAGATCTGAAATACCGCGCAACG-3′)). The 1.4-kb PCR product was digested with BglII and EcoRI and cloned into the BamHI and EcoRI sites of pGEX-2T (Phar- macia Biotech). The BamHI-EcoRI fragment of the resulting clone was replaced by the 0.7-kb BamHI-EcoRI fragment of the Chip cDNA clone to produce the expression plasmid.

Seven liters of DH5α E. coli with the Chip expression plasmid were grown to saturation in Luria broth at 30°C and protein expression induced by 0.5 mM IPTG for 3 hr. All subsequent steps were conducted at 4°C. The E. coli pellets were suspended in 11 ml/liter of culture in EB (20 mM HEPES at pH 7.5, 0.1 mM NaCl, 1 mM 2-mercaptoethanol, 0.1% NP-40, 50 mM phenylmethylsulfonyl fluoride (PMSF), 1 μg/ml each of leupeptin and pepstatin, 2 μg/ml of aproatin, 10% glycerol). The cells were lysed by sonication, and the lysate was clarified by centrifugation at 13,000g for 15 min. The pellet was suspended in EB, sonicated, clarified by centrifugation, and the two supernatants were pooled. The supernatant was incubated with 4 ml glutathione-agarose beads (Sigma, equilibrated with EB) overnight with gentle agitation. The beads were washed twice with 50 ml of EB for 10 min, twice with TB (20 mM Tris-HCl at pH 8.4, 0.15 M NaCl, 1 mM 2-mercaptoethanol, and 10% glycerol), and twice with TB containing 0.1 M CaCl2. The beads were suspended in 6 ml of TB containing 0.1 M CaCl2 and Chip protein eluted by thrombin cleavage. Fresh thrombin (1.5 U/ml) was added every hour during the 3-hr incubation at 25°C with gentle agitation. PMSF (1 mM) and EDTA (2 mM) were added prior to dialysis of the supernatant against 100 volumes of 25 mM HEPES at pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 1 mM dithiothreitol, and 0.2 mM PMSF, and then against the same buffer lacking PMSF. The dialysate was concentrated with a centriftricon filter. The final extract (0.6 ml) contained 1.44 mg/ml of protein (40% Chip, as estimated by SDS-PAGE). The major contaminant appeared to be E. coli GroEL.

Antibody staining

Embryos were dechorionated with bleach and fixed in a 1:1 solution of heptane and 4% paraformaldehyde in PBS (1 mM KH2PO4, 10 mM Na2HPO4, 137 mM NaCl, and 2.7 mM KCl2 at pH 7.0) for 20 min with gentle agitation. The embryos were washed with heptane, devitellinized with a 1:1 mix of heptane and methanol, and dehydrated with methanol. Larval tissues were dissected in cold PBS (pH 7.2) containing 0.3% Triton X-100 in PBS (pH 7.2) containing 4% paraformaldehyde, and dehydrated in methanol. Embryos and larval tissues were rehydrated in PBST (pH 7.4 PBS containing 0.3% Triton X-100), blocked with PBST containing 0.5% bovine serum albumin (PBSTB) for 30 min, and incubated with primary antibodies overnight at 4°C in PBSTB with gentle agitation. After several washes in PBST and blocking with PBSTB for 30 min, the tissues were incubated with a 1:200 dilution of the secondary antibodies (Vector Laboratories) for 45 min. The colorimetric reaction was conducted according to instructions provided with the Vectastain kit (Vector Laboratories). The anti-Eve (provided by Y. Hiromi, Princeton University, NJ) and anti-β-galactosidase antibodies were used as described previously (Baylies et al. 1995) and affinity-purified anti-Chip antibody was diluted 1:100. For the anti-gap protein antibodies (provided by J. Reinitz, Mount Sinai Medical School, New York, NY) the following dilutions were used: Hb, 1:200; Kr, 1:2000; Kni, 1:1000, and Gt, 1:2000. Embryos and larval tissues were mounted in araldite and photographed with a 20x objective and bright-field or Nomarski optics. Salivary gland nuclei were photographed with bright field optics with a 100x oil immersion objective and a 2x Barlow lens.
Generation of germ-line clones and cuticle preparation

Female y w1188 P[w+1]/FRT40A.FLP Bos w+mC > G13 FRT 42B P[w+mW.hs] w+mW.hs > G13 FRT 42B P[w+mW hs] w+mW.hs > G13 P[w+mW enc] = ovoD1-182R1 P[w+m w] = ovoD1-182R2 third instar larvae were heat shocked to generate germ-line clones as described by others (Chou and Perrimon 1996). Ecloding females were mated to males heterozygous for Chipo5.5 and embryos collected on apple juice agar plates. Cuticles were prepared by dechorionating and devitellinizing embryos as described above. Devitellinized embryos were rehydrated twice with PBST, and clarified by addition of a 1:1 solution of Hoyer’s medium (Ashburner 1989) and 85% lactic acid and incubation at 70°C overnight. Mutant cuticles were photographed by use of Nomarski optics with a 20× objective and wild-type cuticles were photographed with dark field optics.

Acknowledgments

We thank Bruce Reed for generously sharing unpublished results, confirming the Chipo30 breakpoints, and providing several fly stocks; Kathy Matthews and Bill Gelbart for providing flies; Jaseob Kim and Sean Carroll for providing an imaginal disc cDNA library and P1 phages; Rob and Yvonne Delotto for assistance with microinjections; David Weisbrot for assistance in PCR of Chip mutants; Danny Segal and Steve Cohen for ap cDNA clones; Kathryn Anderson for helpful discussions, analysis of the Chip embryonic phenotype, and helpful comments on the manuscript; John Reinitz and Yash Hiromi for providing anti-gp and anti-Eve antibodies; and Steve Small for helpful discussions about Eve expression and comments on the manuscript. This work was supported by National Science Foundation research grant 9404771 to D.D. and National Institutes of Health Cancer Center Support grant NC-I-P30-CA-08748 to Memorial Sloan-Kettering Cancer Center. The sequence data described in this paper were deposited in GenBank under accession numbers AF010325–AF010328.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Agulnick, A.D., M. Taira, J.J. Breen, T. Tanaka, I.B. Dawid, and H. Westphal. 1996. Interactions of the LIM-domain binding factor Ldb1 with LIM homeodomain proteins. Nature 384: 270–272.

Ashburner, M. 1989. Drosophila: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Bach, I.C., C. Carriere, H.P. Ostendorff, B. Andersen, and M.G. Rosenfeld. 1997. A family of LIM-domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes & Dev. 11: 1370–1380.

Bartel, P.L. and S. Fields. 1995. Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol. 254: 241–263.

Baylies, M.K., A. Martinez-Arias, and M. Bate. 1995. wingless is required for the formation of a subset of muscle founder cells during Drosophila embryogenesis. Development 121: 3829–3837.

Bettler, B., S. Pearson, and B. Yedvobnick. 1996. The nuclear protein encoded by the Drosophila neurogenic gene mastermind is widely expressed and associated with specific chromosomal regions. Genetics 143: 859–875.

Bier, E., H. Vaessin, S. Shepherd, K. Lee, K. McCall, S. Barbeler, L. Ackerman, R. Carretto, T. Uemura, E. Grell, L.Y. Jan, and Y.N. Jan. 1989. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes & Dev. 3: 1273–1287.

Blair, S.S. 1993. Mechanisms of compartment formation: Evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development 119: 339–351.

Bourguin, C., S.E. Lundgren, and J.B. Thomas. 1992. apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9: 549–561.

Cai, H. and M. Levine. 1995. Modulation of enhancer–promoter interactions by insulators in the Drosophila embryo. Nature 376: 533–536.

Campbell, S.M. Inamdar, V. Rodrigues, V. Raghavan, M. Palazozo, and A. Chovnick. 1992. The scarified gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes & Dev. 6: 367–379.

Caponi, M., E.D. Eldon, and V. Pirrotta. 1992. The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. Development 114: 99–112.

Chou, T.B. and N. Perrimon. 1996. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144: 1673–1679.

Cohen, B., M.E. McGuffin, C. Pfefle, D. Segal, and S.M. Cohen. 1992. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes & Dev. 6: 715–729.

Curtiss, J. and J.S. Heilig. 1995. Establishment of Drosophila imaginal precursor cells is controlled by the Arrowhead gene. Development 121: 3819–3825.

———. 1997a. Arrowhead encodes a LIM homeodomain protein that distinguishes subsets of Drosophila imaginal cells. Dev. Biol. (in press).

———. 1997b. Delimiting development. BioEssays (in press).

Dawid, I.B., R. Toyama, and M. Taira. 1995. LIM domain proteins. C.R. Acad. Sci. Paris 318: 295–306.

Desplan, C., J. Theis, and P.H. O’Farrell. 1988. The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081–1090.

Dorn, R., V. Krauss, G. Reuter, and H. Saumweber. 1993. The enhancer of position-effect variegation of Drosophila, El(var)3–93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc. Natl. Acad. Sci. 90: 11376–11380.

Dorsett, D. 1990. Potentiation of a polyadenylylation site by a downstream protein-DNA interaction. Proc. Natl. Acad. Sci. 87: 4373–4377.

———. 1993. Distance-independent inactivation of an enhancer by the suppressor of Hairy-wing DNA-binding protein of Drosophila. Genetics 134: 1135–1144.

———. 1996. The suppressor of Hairy-wing protein and long distance enhancer promoter interactions. Mol. Cells 6: 381–387.

Dorsett, D., G.A. Viglianti, B.J. Rutledge, and M. Meselson. 1989. Alteration of hsp82 gene expression by the gypsy transposon and suppressor genes in Drosophila melanogaster. Genes & Dev. 3: 454–468.

Farkas, G., J. Gausz, M. Galonii, G. Reuter, H. Gyrurkovics, and F. Karch. 1994. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371: 806–808.

Geyer, P.K. 1997. The role of insulator elements in defining chromosomal regions. Nature 383: 361–363.
domains of gene expression. Curr. Opin. Genet. Dev. 7: 242–248.

Harlow, E. and D. Lane. 1988. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Harrison, D.A., D.A. Gdula, R.S. Coyne, and V.G. Corces. 1993. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. Genes & Dev. 7: 1966–1978.

Hartl, D.L., D.I. Nurminsky, R.W. Jones, and E.R. Lozovskaya. 1994. Genome structure and evolution in Drosophila: Applications of the framework P1 map. Proc. Natl. Acad. Sci. 91: 6824–6829.

Hoej, T. and M. Levine. 1988. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature 332: 858–861.

Hollenberg, S.M., R. Stengland, P.F. Cheng, and H. Weintraub. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15: 3013–3022.

Jack, J., J. Dorsett, Y. Deng, and S. Liu. 1991. Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer. Development 113: 735–747.

Jurata, L.W. and G.N. Gill. 1997. Functional analysis of the nuclear LIM domain interactor, NLLI. Mol. Cell. Biol. (in press).

Jurata, L.W., D.A. Kenney, and G.N. Gill. 1996. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc. Natl. Acad. Sci. 93: 11693–11698.

Kim, J., B. Shen, and D. Dorsett. 1993. The Drosophila melanogaster suppressor of Hairy-wing zinc finger protein has minimal effects on gene expression in Saccharomyces cerevisiae. Genetics 135: 343–355.

Kim, J., B. Shen, C. Rosen, and D. Dorsett. 1996. The DNA-binding and enhancer-blocking domains of the Drosophila suppressor of Hairy-wing protein. Mol. Cell. Biol. 16: 3381–3392.

Kraut, R. and M. Levine. 1991. Mutually repressive interactions between the gap genes giant and Kruppel define medullary body regions of the Drosophila embryo. Development 111: 611–622.

Levis, R., P.M. Bingham, and G.M. Rubin. 1982. Physical map of the white locus of Drosophila melanogaster. Proc. Natl. Acad. Sci. 79: 564–568.

Morcillo, P., C. Rosen, and D. Dorsett. 1996a. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics 144: 1143–1154.

Morcillo, P., R. Tuttle, and R.J. MacIntyre. 1996b. The use of transposable P-elements of Drosophila melanogaster for introductory genetics laboratory courses. J. Hered. 87: 399–403.

Nüsslein-Volhard, C., H. Kluding, and G. Jurgens. 1985. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harbor Symp. Quant. Biol. 50: 145–154.

Orlando, V., H. Strutt, and R. Paro. 1997. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11: 205–214.

Pirrotta, V. 1988. Vectors for P-mediated transformation in Drosophila. BioTechnology 10: 437–456.

Rubin, G.M. and A. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 213: 348–353.

Sakl, R.K., D.H. Gefland, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1987. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in *Drosophila*

Patrick Morcillo, Christina Rosen, Mary K. Baylies, et al.

Genes Dev. 1997. 11:
Access the most recent version at doi:10.1101/gad.11.20.2729

References
This article cites 55 articles, 33 of which can be accessed free at: http://genesdev.cshlp.org/content/11/20/2729.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.