Open Problems in Fuzzing RESTful APIs: A Comparison of Tools

MAN ZHANG, Kristiania University College, Norway
ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Norway

RESTful APIs are a type of web service that are widely used in industry. In the past few years, a lot of effort in the research community has been spent in designing novel techniques to automatically fuzz those APIs to find faults in them. Many real faults were automatically found in a large variety of RESTful APIs. However, usually the analyzed fuzzers treat the APIs as black-box, and no analysis of what is actually covered in these systems is done. Therefore, although these fuzzers are clearly useful for practitioners, we do not know their current limitations and actual effectiveness. Solving this is a necessary step to be able to design better, more efficient, and effective techniques. To address this issue, in this article we compare seven state-of-the-art fuzzers on 18 open source—1 industrial and 1 artificial—RESTful APIs. We then analyze the source code for which parts of these APIs the fuzzers fail to generate tests. This analysis points to clear limitations of these current fuzzers, listing concrete follow-up challenges for the research community.

CCS Concepts: • Software and its engineering → Software verification and validation; Search-based software engineering;

Additional Key Words and Phrases: Automated test generation, SBST, fuzzing, REST, comparison

ACM Reference format:
Man Zhang and Andrea Arcuri. 2023. Open Problems in Fuzzing RESTful APIs: A Comparison of Tools. ACM Trans. Softw. Eng. Methodol. 32, 6, Article 144 (September 2023), 45 pages.
https://doi.org/10.1145/3597205

1 INTRODUCTION

RESTful APIs are widely used in industry. Arguably, REST is the most common kind of web service, used to provide functionality (i.e., an API) over a network. Many companies worldwide provide services via a RESTful API, like Google [8], Amazon [1], LinkedIn [12], Twitter [22], and Reddit [14], among others. The websites (such as APIs.guru1 and RapidAPI Hub2) currently list thousands of APIs available on the Internet, where most of them are implemented with REST. Furthermore,

1https://apis.guru/. Accessed on May 31, 2023.
2https://rapidapi.com/hub. Accessed on May 31, 2023.

This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (EAST project, grant agreement 864972).
Authors’ addresses: M. Zhang, Kristiania University College, Kirkegata 24-26, 0153 Oslo, Norway; email: man.zhang@kristiania.no; A. Arcuri, Kristiania University College and Oslo Metropolitan University, Kirkegata 24-26, 0153 Oslo, Norway; email: andrea.arcuri@kristiania.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2023 Copyright held by the owner/author(s).
1049-331X/2023/09-ART144 $15.00
https://doi.org/10.1145/3597205

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.
REST APIs are also commonly used when developing backend enterprise applications using a microservice architecture [64].

Due to their wide use in industry, in recent years there has been large interest in the research community [48] to design novel techniques to automatically test this kind of applications (e.g., [27, 37, 54, 60, 66, 67]). Compared to other kinds of applications (e.g., data parsers) and types of testing (e.g., unit testing), system testing of RESTful APIs has some unique challenges, like dealing with network communications (e.g., HTTP over TCP) and with accesses to databases (e.g., Postgres and MySQL).

In the literature, different techniques have been proposed [48], which have been able to automatically find many faults in existing APIs (e.g., [27, 37, 54, 60, 66, 67]). However, so far, most of the investigated techniques are black-box, applied on remote web services on the internet. Although those fuzzers have been useful to detect several faults, it is unclear how effective they truly are at testing these APIs. For example, most studies do not report any form of code coverage, as the System Under Tests (SUTs) are typically remote black-boxes with no access to their source code. For example, it can be possible that most found faults are simply in the first layer of input validation of these SUTs, with little to no code of their businesses logic executed [57]. Without an in-depth analysis of which parts of the SUT code are not exercised by these fuzzers, it is not possible to understand their limitations. This hinders further research development for novel techniques to achieve better results.

To address these issues, in this article we compare seven state-of-the-art fuzzers, namely (in alphabetic order) bBOXRT [54], EvoMASTER [27], RESTest [60], RestCT [67], RESTler [37], RestTestGen [66], and Schemathesis [50]. We applied them on 13 RESTful APIs running on JVM (i.e., 12 open source and one industrial) and 6 open source RESTful APIs running on NodeJS, for which we collected line coverage metrics using JaCoCo [10] (for JVM) and c8 [5] (for NodeJS). Experiments are carried out both for black-box and white-box testing. To compare the effectiveness of black-box fuzzers at finding faults, also a new artificial REST API was implemented specifically for this study.

This large set of experiments (which takes roughly 120 days if run in sequence) enables us to analyze in detail the current limitations of the state of the art in fuzzing RESTful APIs. These tools achieve different degrees of code coverage, but there are still many issues that need to be addressed to achieve better results. These include, for example, how to deal with underspecified schemas, and how to deal with interactions with external services.

In this article, we provide the following novel research contributions:

- We carried out one of the largest and most variegated to date empirical comparisons of fuzzers for RESTful APIs.
- Instead of using black-box metrics, we report actual coverage results on the employed APIs.
- We provide in-depth analyses of the current challenges in this testing domain.

The article is organized as follows. Section 2 provides background information on the seven compared tools. Related work is discussed in Section 3. Section 4 presents the details of the tool comparisons. Section 4.7 provides the main scientific contribution of this work, with an analysis of the current open problems identified by our empirical study (with in-depth analyses on each studied API provided in the appendix). Threats to validity are discussed in Section 5. Finally, Section 6 concludes the article.

2 BACKGROUND: USED TOOLS
In this article, we compare seven different fuzzers for RESTful APIs, namely bBOXRT, EvoMASTER, RESTest, RestCT, RESTler, RestTestGen, and Schemathesis. In this section, they are described.
briefly in alphabetic order. For the tool comparisons, we used their latest released versions, as per May 23, 2022.

To the best of our knowledge, this selection represents the current state of the art in fuzzing RESTful APIs, as those are the most used, most popular (e.g., number of stars and download stats from GitHub), and most cited works in the literature. For example, some tools in the literature like QuickRest [52] do not seem available online, whereas others like ApiTester [45] have no documentation and have not been updated in years [3]. The recent tool Moster [55] is not open source, and its replication package appears to provide no executable nor code to replicate its experiments but only the data analysis. Thus, no comparison seems possible with these other tools. In addition, there exist some open source fuzzers made by practitioners in industry, such as APIFuzzer [2], Dredd [11], and Tcases [21]. However, since these fuzzers do not appear in the scientific literature (i.e., they do not have scientific articles describing the techniques they use to generate test cases), and considering that in a previous study [53] these tools achieve worse results compared to the other fuzzers, we do not include them in this study.

All of these tools require an OpenAPI/Swagger schema to operate. Based on such a schema, these tools send syntactically valid HTTP requests, using different strategies (e.g., random and search based) to choose how to create the input data (e.g., query parameters and JSON body payloads).

bBOXRT [54] aims at black-box robustness testing of RESTful APIs. The tool is written in Java, and its source code has been available online on the authors’ institute pages since 2020. We could not find any released version, so we used the latest version on its Git master branch (commit 7c894247).

EvoMASTER [27–30, 32–34, 70, 75] is a search-based tool that uses evolutionary computation to generate test cases for RESTful APIs. It supports both black-box and white-box testing but (the latter only for programs running on JVM and JavaScript/TypeScript). The tool is written in Kotlin, open sourced on GitHub since 2016. For this study, we used version 1.5.0. We are the authors of this tool.

RESTEST [59–62, 65] is black-box testing tool, open sourced on GitHub since 2018. One of the main features of this tool is the ability to analyze interdependencies among input parameters. The tool is written in Java. We used its 1.2.0 version.

RESTCT [67] uses Combinatorial Testing for black-box testing of RESTful APIs. It has been open sourced on GitHub since 2022. The tool is written in Python. We used its 1.0 version.

RESTler [37, 38, 46, 47] is a black-box fuzzer for RESTful APIs. It has been open sourced on GitHub since 2020. The tool is written in Python and F#. It does not have any published release, although its Git repository has tagged commits. We use the version of the repository with the latest tag v8.5.0.

RESTTestGen [44, 66] is another black-box fuzzer for RESTful APIs. It is written in Java, but the original versions used in the work of Viglianisi et al. are not open source. Since late 2021, a new rewrite of the tool as open source has been available on GitHub. Then, in this study, we use the version with the latest tag v22.01.

Schemathesis [50] is a black-box fuzzer that employs property-based testing techniques, whose development started in 2019. The fuzzer is capable of deriving structure and semantics of SUTs based on their API schemas, such as OpenAPI. It is written in Python and can be installed with pip. In this study, we use the version 3.15.2.

These seven tools have different levels of maturity, usability, and quality of documentation. On the one hand, achieving high code coverage and fault detection might not be so important for

3The website https://anonymous.4open.science/r/morest-rest-8CAE/ currently gives a “The repository is expired” error.
practitioners if a tool cannot be used because it is too complex to set up and does not have documentation. On the other hand, most of these tools are academic prototypes, primarily meant to study research questions, and not for wide use by practitioners.

As we are the authors of EvoMASTER, we are too biased to comment on its maturity and usability. We can only state that it is the oldest of these seven, and it is actively maintained.

Among the other six tools, Schemathesis is clearly the one that puts the most emphasis on usage by practitioners, with its user-friendliness (e.g., GitHub Actions support) and extensive documentation. For example, tools like RESTler and RestTestGen require cloning of their Git repositories and building the tools locally (e.g., in contrast to Schemathesis that can be installed with \texttt{pip}, or EvoMASTER that provides installers for all major operating systems, such as \texttt{.msi} for Windows). RESTest provides released jars and useful documentation, but in our experiments it was not as user-friendly as Schemathesis (e.g., it requires a few manual steps to set it up). At the time of this writing, the other tools (i.e., bBOXRT, and RestCT) have not been updated for several months (according to the commit history in their Git repositories). Therefore, they may no longer be maintained.

3 RELATED WORK

To achieve better results (e.g., higher code coverage and fault detection), we need to understand the limitations of current testing techniques. Throughout the years, different studies have been carried out to provide this insight, such as studying the limitations of Dynamic Symbolic Execution (DSE) \cite{68,69} and Search-Based Software Testing (SBST) for unit testing \cite{24,26,49}. However, to the best of our knowledge, no work has been carried out to study the limitations of fuzzing RESTful APIs (most work is for black-box testing, where achieved code coverage is usually not reported, and no analysis of what was not covered is carried out).

Regarding tool comparisons for fuzzing RESTful APIs, there has been some work in the literature. For example, the authors of RestTestGen compared four black-box tools (RestTestGen, RESTler, bBOXRT, and RESTest) on 14 APIs \cite{43}. These APIs are written in different languages (e.g., Java, C#, PHP, JavaScript, and Go), with the largest having up to 24,044 Lines of Code (LOCs). However, no code coverage was reported. From this comparison, RestTestGen seems the most effective tool, whereas RESTler is the most robust (i.e., could be used on more APIs without crashing).

The authors of RESTest and EvoMASTER compared the two tools \cite{58}, aiming at studying the tradeoffs between black-box and white-box testing. For example, they studied the impact on performance of using “custom generators,” with test data provided by the users.

The authors of RestCT, when they introduced their tool \cite{67}, compared it with RESTler on 11 APIs coming from two projects (i.e., GitLab and Bing Maps), showing better results for RestCT.

The authors of Morest \cite{55} compared it against black-box EvoMASTER, RestTestGen, and RESTler on six APIs. They claimed that Morest gives the best results. However, as Morest is not available for comparisons (in contrast to EvoMASTER, RestTestGen, and RESTler), such claims cannot be independently verified.

In previous work, we compared EvoMASTER’s black-box and white-box mode on eight SUTs \cite{30}, seven open source and one industrial, showing better results for its white-box mode. The SUTs used in this work are a super-set of the open source SUTs used in the work of Arcuri \cite{30} (i.e., for the experiments on JVM, we used the same SUTs plus another five).

In parallel, at the same time of the first arXiv version of this work \cite{71}, Kim et al. \cite{53} made a comparison of tools for fuzzing RESTful APIs. A total of nine different tools (the same as here, minus the recent RestCT, but plus the aforementioned APIFuzzer \cite{2}, Dredd \cite{11}, and Tcases \cite{21}) were compared on 20 APIs running on JVM (where half of them are the same as here, which come from our own EMB \cite{7} repository of APIs we use to experiment with EvoMASTER). To better
differentiate from this existing work that was done in parallel, and to better generalize our results, here we include 6 JavaScript/TypeScript APIs running on NodeJS, as well as 1 industrial API coming from one of our industrial partners. Furthermore, where the focus of Kim et al. [53] seems to be the comparison of tools, our focus is on the in-depth analysis of the open problems in fuzzing RESTful APIs (Section 4.7). The comparison of tools is only a means to identify the one that gives the best results, as the tests generated by such a tool are the starting point of the in-depth analyses. In both studies [53, 71], black-box EvoMaster gives the best results, closely followed by Schemathesis, and white-box testing gives better results than black-box. Kim et al. [53] do not seem to be authors of any of the compared tools. On the one hand, their comparison is therefore unbiased. This is different from our case, as we are the authors of EvoMaster, which turned out to be the best in all of these comparisons. One should always be a bit skeptical of studies where the tool of the authors gives the best results, especially if such results are not possible to be replicated by third parties. This is one of the main reasons EvoMaster is open source, with all of its experiment scripts stored in its Git repository, automatically updated on Zenodo for long-term storage at each new release (e.g., version 1.5.0 [35]), as well preparing all SUTs for experiments in a single repository (i.e., EMB [7]). On the other hand, being the authors of the most performant tool gives us a unique insight when analyzing and discussing the current open problems in fuzzing RESTful APIs (Section 4.7).

4 EMPIRICAL ANALYSIS

In this article, we aim at answering the following research questions:

- **RQ1**: How do the seven compared black-box fuzzers fare in terms of line coverage?
- **RQ2**: What is the impact of the time budget on the performance of the black-box fuzzers?
- **RQ3**: What kind of faults can the compared black-box fuzzers find?
- **RQ4**: What line coverage and fault detection results are obtained with white-box fuzzing?
- **RQ5**: What are the main open problems currently hindering the results?

To answer these research questions, we carried out three different sets of experiments on the case study described in Section 4.1. The first set is for black-box testing aimed at code coverage (RQ1 and RQ2, in Sections 4.3 and 4.4, with the common setup described in Section 4.2), then for fault finding (RQ3, Section 4.5), and then for white-box testing (RQ4, Section 4.6). From the results of these experiments, the in-depth analysis of the results for RQ5 follows in Section 4.7.

4.1 Case Study

To carry out experiments in this work, we used a collection of 19 RESTful APIs plus one artificial case study named rest-faults for the experiment on fault detection. Table 1 shows the statistics of these 20 APIs.

As we need to measure code coverage and analyze the source code to check which parts are not covered, we needed open source APIs that we could run on a local machine. Furthermore, to simplify the collection of code coverage results, it is easier to use APIs written in the same programming language (e.g., Java), or at least use not too many different languages, as each programming language would need to configure its own code coverage tool to analyze the test results. Considering that we wanted to do comparisons with white-box testing as well, which currently only EvoMaster supports, and that requires some manual configurations (e.g., to set up bytecode instrumentation for the white-box heuristics), we decided to use the same case study that we maintain for EvoMaster. In particular, we maintain a repository of RESTful APIs called EMB [7], which is stored as well on Zenodo [36]. Note that one of these APIs is coming from one of our industrial partners, which of course we are not allowed to store on EMB. These 19 APIs are written in four
Table 1. Statistics on 18 RESTful APIs from EMB [7], 1 Industrial API, and 1 Artificial API

SUT	Language	Endpoints	Files	File LOCs	c8/JaCoCo LOCs
cyclotron	JavaScript	50	25	5803	2458
disease-sh-api	JavaScript	34	57	3343	2997
js-rest-ecs	JavaScript	6	8	775	768
js-rest-scs	JavaScript	11	13	1046	1044
realworld-app	TypeScript	19	37	1229	1077
space-api	JavaScript	94	63	4966	3144
catwatch	Java	23	106	9636	1835
cwa-verification	Java	5	47	3955	711
features-service	Java	18	39	2275	457
gestaohospital-rest	Java	20	33	3506	1056
ind0	Java	20	75	5687	1674
languagetool	Java	2	1385	174781	45445
ocvn-rest	Java	258	526	45521	6868
proxyprint	Java	115	73	8338	2958
rest-ncs	Java	6	9	605	275
rest-news	Kotlin	7	11	857	144
rest-scs	Java	11	13	862	295
restcountries	Java	22	24	1977	543
scout-api	Java	49	93	9736	2673
rest-faults	Java	8	3	115	26

Total (X, Y)\(^*\) 778 (214,564) 2640 (203,2437) 285013 (17162,267851) 76448 (11488,64960)

\(^*\) Note that, regarding Total (X, Y), Total represents the total of the statistic on all case studies, whereas X represents the total on just JavaScript/TypeScript APIs and Y represents the total on JVM APIs.

different languages: Java, Kotlin, JavaScript, and TypeScript. They run on two different environments/runtimes: JVM and NodeJS. For each SUT, we report the number of total source files (i.e., ending in either .java, .kt, .js, or .ts), and their number of lines (LOCs). As these also include import statements, empty lines, comments, and tests, for the APIs running on JVM we also report the number of actual line targets for code coverage (measured with the tool JaCoCo [10]).

For the APIs running on NodeJS, the code coverage is measured with the tool c8, which uses native V8 coverage. By default, the tool c8 will count code coverage only for the files that are loaded by the engine [5]. For instance, regarding cyclotron, different LOCs between Files and c8 are due to unreachable files (i.e., api.analyticselasticsearch.js, api.analytics.js, api.statistics-elasticsearch.js). However, all of the files will be only reached by manually modifying a configuration in config.js (i.e., the default value is false). Therefore, we report the number of line targets measured by c8 that could be loaded with the default SUT settings.

For the experiments on fault detection for the black-box fuzzers (Section 4.5), we created a small artificial API, written in Java, with 10 seeded faults. This API is open source, currently available on GitHub.\(^4\)

4.2 Black-Box Testing Experiment Settings: Code Coverage

For each SUT, we created Bash scripts to start them, including any needed dependency (e.g., as ocvn-rest uses a MongoDB database, this is automatically started with Docker). Each SUT is started with either JaCoCo (for JVM) or c8 (for NodeJS) instrumentation, to be able to collect code coverage results at the end of each tool execution.

\(^4\)https://github.com/EMResearch/rest-faults.
Each of the seven compared tools was run on each of the 19 SUTs, repeated with different seeds a certain amount of times (e.g., repeated 10 times for a budget setting of 1 hour), to keep into account the randomness of these tools. Each script starts a SUT as a background process and then one of the tools. Each script runs the SUT on a different TCP port, to enable running any of these scripts in parallel on the same machine.

The code coverage is computed based on all HTTP calls done during the fuzzing process and not on the output of the generated test files (if any). This was done for several reasons: not all tools generate test cases in JUnit on JavaScript format, the generated tests might not compile (i.e., bugs in the tools), and setting up the compilation of the tests and running them for collecting coverage would be quite challenging to automate (as each tool behaves differently). This also means that if a tool crashes, we are still measuring what code coverage it achieves. If a tool crashes immediately at startup (e.g., due to failures in parsing the OpenAPI/Swagger schemas), we are still measuring the code coverage achieved by the booting up of the SUT.

All experiments for this article were run on a Windows 10 machine with a 2.40-GHz, 24-core Intel Xeon processor with 192 GB of RAM. To avoid potential issues in running jobs in parallel (e.g., exhausting the resources of the operating system, which could lead to possible timeout issues), we only ran eight jobs at a time. This means that each experiment had 3 cores (six virtual threads) and 24 GB of RAM.

Regarding the selected seven fuzzers, fuzzers exist that do not provide an option to configure a global time budget to terminate fuzzing (e.g., Schemathesis [19] and RESTest [16]). Additionally, although some fuzzers provide the option of a timeout (e.g., RestTestGen), they might terminate much earlier than the specified timeout value [44]. To make the comparison of the fuzzers more fair by applying the same time budget, given the same time budget X (e.g., 1 hour), for each fuzzer we run it in a loop with the same X timeout (i.e., if the fuzzer runs out of time, it would be terminated, and if the fuzzer completes but there is still some time remaining, it would be restarted to generate more tests). Thus, all coverage we collected is based on the same time budget for all fuzzers.

To compare these tools, we use the line coverage reported by JaCoCo and c8 as the metric. Another important metric would be fault detection. However, how to compute fault detection in an unbiased way, applicable for all compared tools, is far from trivial. Each tool can self-report how many faults they find, but how such fault numbers are calculated might be quite different from tool to tool, making any comparison nearly meaningless. Manually checking (possibly tens of) thousands of test cases is not a viable option either. Therefore, for this type of experiment, line coverage was the most suitable metric for the comparisons. Still, fault detection is a very important metric needed to properly compare fuzzers. For the black-box fuzzers, this will be evaluated with an ad hoc API, as explained in more detail in Section 4.5. For the white-box experiments (Section 4.6), this is not a problem, as we use the same tool (i.e., EvoMaster).

Regarding experiment setup, as a black-box testing tool for fuzzing REST APIs, all tools are required to configure where the schema of the API is located. In all of these SUTs used in our case study, the schemas are provided by the SUTs directly via an HTTP endpoint. However, we found that most of the tools do not support fetching the schema with a given URL, such as http://localhost:8080/v2/api-docs. To conduct the experiments with these tools, after the SUT starts, we developed a Bash script that manages to fetch the schema and download it to the local file system, and then configure a file path for the tools to specify where the schema can be accessed.

Regarding additional setups to execute the tools, EvoMaster, RestCT, and Schemathesis were the simplest to configure because they require only one setup step, as all of their options can be specified with command line arguments. However, RestCT currently does not work directly on Windows [15]. Therefore, for these experiments, we simply ran it via the Windows Subsystem for Linux. This might introduce some time delays compared to running it directly on a Linux
machine. However, RestCT is the only tool that has constraints on the type of operating system on which it can run, and practitioners in industry who use Windows would have to run it with the Windows Subsystem for Linux (or Docker) as well. RestTestGen requires having a JSON file (i.e., rtg_config.json) to configure the tool with available options [18]. Restler requires multiple setup steps—for example, Restler needs to generate grammar files first and then employ such grammars for fuzzing. However, with its online available documentation, we could write a Python script about how to run the tool. For RESTest, it requires a pre-step to generate a test configuration to employ the tool, and such generation could be performed automatically by a utility CreateTestConf provided by the tool. To use bboxRT, a Java class file is required to load and set up the API specification. At the time of writing this article, specific documentation about how to specify such Java class does not exist. However, in its open source repository, there exist many examples that helped us create these Java classes for the SUTs in our case study. Note that for these experiments in this article, all of the preceding setups were performed automatically with our Bash scripts.

All manual steps to configure the tools that we automated in our Bash scripts take some time. However, such time was not taken into account in the time budget (e.g., 1 hour) used in the experiments. In other words, each tool was run for the same amount of time regardless of the time it took to set it up. There are two main reasons for this. First, evaluating the cost of each manual step in a sound way would require empirical studies with human subjects, taking into account several different properties (e.g., experience/seniority of the participants and familiarity with the existing fuzzers). But this kind of empirical study would be beyond the scope of this work. Second, tool setups on an API are a one-time cost. The same API would be tested continuously throughout its lifecycle (e.g., on a Continuous Integration server), each time new changes/features are introduced. In this context, such one-time setup cost would be negligible. Furthermore, when dealing with several APIs to test (e.g., in a microservice architecture), it can well be that the setups are quite similar, and it could be just a trivial matter of copy&paste when setting up the fuzzers for a new API (e.g., this is what we have experienced when applying EvoMaster in large companies like Meituan [73]). As anyway those manual costs were small in terms of time (in order of minutes) but excluding the time to study the documentation of these tools, we do not consider this as a major threat to the validity of our study.

The first time we ran the experiments, we could collect results only for EvoMaster, Restler, and Schemathesis. All of the other tools failed to make any HTTP calls. For example, this was due to a mismatched schema format or missing/misconfigured information in the schemas. More specifically, bboxRT only allows a schema with YAML format. In the SUTs used in this study, there is only 1 specified with YAML (i.e., restcountries) out of the 19 schemas (the remaining ones use JSON). RestTestGen only accepts a schema with OpenAPI v3 in JSON format [18]. There are only 2 (i.e., cwa-verification and spacex-api) out of the 19 SUTs that expose OpenAPI v3 in JSON format. In addition, RESTest and RestTestGen need the protocol information (e.g., http or https with the servers/schemes tag) in the OpenAPI/Swagger schema. But since the servers/schemes tag is not mandatory, such information might not always be available in the schema. For example, 7 (i.e., cyclotron, disease-sh-api, js-rest-ncs, js-rest-scs, realworld-app, features-service, and restcountries) out of the 19 SUTs have such protocol information specified in their schemas. Additionally, to create HTTP requests, RestCT, RESTest, and RestTestGen require information specified in host (for schema version 2) and servers (for schema version 3), but such information (typically related to TCP port numbers) might not be fully correct (e.g., the host and TCP port might refer to the production settings of the API and not reflecting when the API is running on the local host on an ephemeral port for testing purposes). Those three tools do not seem to provide ways to override such information. For instance, in 19 SUTs, 10 SUTs (i.e., cyclotron, disease-sh-api, js-rest-ncs,
js-rest-scs, realworld-app, spacex-api, cwa-verification, features-service, languagetool, and restcountries) are specified with a hard-coded TCP port, and in 1 SUT (i.e., scout-api), the TCP port is unspecified. To avoid these issues in accessing the SUTs, we developed a utility using the swagger-parser library that facilitates converting formats of schemas between JSON and YAML (only applied for bBOXRT and RestTestGen), converting OpenAPI v2 to OpenAPI v3 (only applied for RestTestGen), adding missing schemes information, and correcting/adding host and server's information in the schemas.

Once these changes in the schemas were applied, we repeated the experiments, to collect data from all the seven tools. Ideally, these issues should be handled directly by the tools. However, as they are rather minor and only required changes in the OpenAPI/Swagger schemas, we decided to address them, to be able to collect data from all seven tools and not just from three of them.

In addition, we needed to configure authentication information for five APIs, namely proxyprint, scout-api, ocvn-rest, realworld-app, and spacex-api. For proxyprint, scout-api, and spacex-api, they need static tokens sent via HTTP headers. This was easy to set up in RestCT, EvoMASTER, and Schemathesis, just by calling these tools with a --header input parameter. RESTest required to rewrite the test configuration file by appending authentication configuration. RESTler and RestTestGen required writing some script configurations. bBOXRT has no documentation to setup authentication, but we managed to set it up by studying the examples it provides in its repository.

Regarding ocvn-rest and realworld-app, for authentication, it requires making a POST call to a form-login endpoint and then using the received cookie in all following HTTP requests. Out of the seven compared tools, it seems that RESTler, bBOXRT, Schemathesis, and RestTestGen could directly support this kind of authentication by setting it up with an executable script. Given the provided documentation, we did not manage to configure it, as it requires writing different scripts for different fuzzers to manually make such HTTP login calls and then handle responses. Technically, by writing manual scripts, it could be possible to use EvoMASTER, RestCT, and RESTest as well, by passing the obtained cookie with the --header option or the test configuration file. As doing all of this was rather cumbersome, and considering that for this API the authentication is needed only for admin endpoints, we decided to not spend significant time trying to set up this kind of dynamic authentication token.

4.3 RQ1: Black-Box Testing Experiments

To answer RQ1, each of the seven compared tools was run on each of the 19 SUTs, repeated 10 times to take into account the randomness of these tools. This resulted in a total of $7 \times 19 \times 10 = 1330$ Bash scripts.

In each script, each tool was run for 1 hour, for a total of 1,330 hours (i.e., 55.4 days of computation efforts). Note that the choice of the runtime for each experiment might impact the results of the comparisons. The choice of 1 hour is technically arbitrary, but based on what practitioners might want to use these fuzzers in practice, and also not too long to make running all of these experiments unviable in reasonable time.

Table 2 shows the results of these experiments. For each tool, we report the average (i.e., arithmetic mean) line coverage, as well as the min and max values out of the 10 runs. Each tool is then ranked (from 1 to 7) based on their average performance on each SUT (where 1 is the best rank). A Friedman test is conducted to analyze the variance of these techniques, based on ranks of their performance on the SUTs.

From these results, we can infer a few interesting observations. First, regarding the ranking, EvoMASTER seems to be the best black-box fuzzer (best in 11 out of 19 SUTs, with an average coverage of 56.8%), closely followed by Schemathesis (best in 7 SUTs, with an average coverage...
Table 2. Experiment Results of the Seven Black-Box Fuzzers on the 19 RESTful APIs

SUT	bBOXRT	EvoMaster BB	RestCT	RESTler	RESTest	RestTestGen	Schemathesis
cyclotron	41.3	70.3 [70.1,72.3]	41.3	41.3	41.3	41.3 [41.3,41.3]	69.1 [67.7,69.7]
disease-sh-api	56.4	60.8 [60.8,60.9]	48.4	48.5	48.5	48.5 [48.4,48.5]	61.5 [61.4,61.6]
js-rest-ncs	70.2	69.0 [89.8,95.8]	43.3	44.3	44.3	44.3 [44.3,44.3]	88.6 [85.8,93.0]
disease-sh-api	83.2	88.7 [87.5,89.5]	51.4	81.4	84.6	86.4 [85.8,87.1]	86.1 [85.9,87.4]
js-rest-scs	64.2	69.4 [69.4,69.4]	45.4	46.5	46.5	46.5 [46.4,46.5]	88.6 [85.3,86.5]
realworld-app	71.6	84.7 [84.7,84.8]	76.1	76.3	76.3	76.3 [76.3,76.4]	95.4 [95.0,95.8]
catwatch	31.0	35.9 [34.3,36.9]	9.7	17.3	20.8	15.1 [12.3,18.3]	35.8 [33.6,39.1]
cwa-verification	43.4	49.4 [49.1,49.6]	21.9	21.9	21.9	21.9 [21.9,21.9]	43.8 [43.3,43.9]
features-service	35.7	59.7 [58.4,62.1]	21.0	21.5	21.5	21.5 [21.5,21.6]	52.0 [46.6,57.1]
gestahospital-rest	36.2	50.8 [48.4,54.3]	19.9	21.5	21.5	21.5 [21.5,21.6]	58.7 [55.9,62.3]
indio	8.2	8.2 [8.2,8.2]	7.6	7.6	8.2	8.2 [8.2,8.2]	8.2 [8.2,8.2]
language tool	1.7	32.6 [26.0,35.1]	1.5	1.9	2.5	1.9 [1.9,1.9]	2.2 [2.1,2.5]
ocvn-rest	10.1	27.5 [27.5,27.6]	10.1	10.1	10.1	10.1 [10.1,10.1]	27.5 [27.5,27.7]
proxprint	4.2	34.0 [32.5,35.0]	4.2	4.2	4.2	4.2 [4.2,4.2]	4.4 [4.4,4.4]
rest-ncs	55.0	64.5 [64.4,64.7]	85.5	40.7	5.1	5.1 [5.1,5.1]	94.1 [93.1,94.5]
rest-news	34.9	69.4 [69.4,69.4]	13.9	44.4	13.9	13.9 [13.9,13.9]	68.8 [67.4,70.8]
rest-scs	60.9	66.9 [64.4,70.2]	60.5	58.3	61.7	61.7 [61.4,62.4]	64.8 [64.6,65.1]
restcountries	65.3	76.1 [76.1,76.1]	3.5	50.6	73.0	73.0 [71.5,74.2]	73.9 [72.4,75.0]
scout-api	18.1	36.7 [32.8,41.1]	12.0	26.5	20.0	20.0 [20.0,20.0]	23.0 [22.1,25.1]

Average 41.9 [41.6,42.2] 35.4 [35.1,35.7] 34.6 [34.5,34.7] 33.6 [33.5,33.7] 45.4 [45.3,45.5] 54.5 [54.4,54.6]

Friedman Test $\chi^2 = 71.845$, p-value < 0.001

For each tool, we report the average line coverage, as well as its [min,max] values out of the 10 runs. Each tool also has a (rank) based on its performance on each SUT. Ties are broken by reporting the average rank. For each SUT, the results of the best tools (e.g., rank (1)) are in bold. We also report the χ^2 and p-value of the Friedman test for variance analysis by the ranks.
of 54.5%). The variance of the techniques is statistically significant at the significance level 0.05 (i.e., $p \leq 0.05$) with the Friedman test. EvoMaster BB achieves the best average rank (i.e., 1.6), whereas Schemathesis has the second best average rank (i.e., 1.9). Then, the remaining tools can be divided into two groups: BBoxRT (average rank 4.6) and RestTestGen (average rank 3.9) with similar coverage of 41.6% to 45.4%, then RESTler (average rank 5.1), RESTest (average rank 5.0), and RestCT (average rank 5.8) with similar coverage of 33.6% to 35.4%. These results confirm a previous study [43] showing that RESTTestGen gives better results (in terms of black-box criteria) than RESTler and RESTest, as well as RESTCT being better than RESTler [67] (although in this case, the difference in average coverage is small, only 0.8%). Compared to the analyses in the work of Kim et al. [53], interestingly the ranking of the tools is exactly the same (recall that out of the combined 29 APIs between our study and their study, only 10 APIs used in these empirical studies are the same).

On all APIs but one of them, either EvoMaster or Schemathesis gives the best results. The exception is the industrial API, where five tools achieve the same coverage of 8.2% on all 10 runs. We will discuss this interesting case in more detail in Section 4.7. In 12 APIs, either EvoMaster is the best followed by Schemathesis or the other way round. There is no single API in which EvoMaster and Schemathesis were not at least the third best.

The other seven APIs (including the industrial one) show some interesting behavior for the other five tools. For example, for js-rest-scs, RestTestGen gives the second best results, with an average 86.4%, compared to 86.1% of Schemathesis. The interesting aspect here is that out of the 10 runs, RestTestGen has worse minimum coverage (85.4% vs. 85.9%) and worse maximum coverage (87.1% vs. 87.4%), although the average is higher (86.4% vs. 86.1%). This can happen when randomized algorithms are used. In gestaohospital-rest, RestTestGen and Schemathesis have similar performance (i.e., 57.2% and 58.7%), whereas EvoMaster is quite behind (i.e., 50.8%). Similarly, the performance of RestTestGen and Schemathesis are quite similar on rest-scs (65.3% and 64.8%) and restcountries (75.4% and 73.9%), where EvoMaster is better only by a small amount (66.9% on rest-scs and 76.1% on restcountries). In languageTool, RESTest is better than Schemathesis, but the difference is minimal (only 0.3%). In rest-ncs, there is a large gap in performance between EvoMaster (64.5%) and Schemathesis (94.1%), where the second best results are given by RestCT (85.5%). Finally, on scout-api, RESTler is better than Schemathesis (26.5% vs. 23.0%), although it is way behind EvoMaster (36.7%).

Another interesting observation is that there is quite a bit variability in the results of these fuzzers, as they use randomized algorithms to generate test cases. We highlight some of the most extreme cases in Table 2, for EvoMaster and Schemathesis. On languageTool, out of the 10 runs, EvoMaster has a gap of 9.1% between the best (35.1%) and worst (26.0%) runs. On scout-api, the gap is 8.3%. For Schemathesis, the gap on features-service is 10.5%, and 6.4% on gestaohospital-rest. This is yet another reminder of the peculiar nature of randomized algorithms, as well as the importance of how to properly analyze them. For example, doing comparisons based on a single run is unwise.

Statistical tests [31] are needed when claiming with high confidence that one algorithm/tool is better than another one. In this particular case, EvoMaster BB achieved the overall best performance based on the significant p-value (i.e., <0.05) with the Friedman test and the best average rank over all of the 19 APIs (i.e., 1.6) as shown in Table 2. Additionally, we compare EvoMaster’s performance with all of the other tools, one at a time on each SUT (so 6 \times 19 = 114 comparisons), and report the p-values of the Mann-Whitney-Wilcoxon U-Test in Table 3. Apart from very few cases, the large majority of comparisons are statistically significant at level $\alpha = 0.05$. Often, 10 repetitions might not be enough to detect statistically significant differences, and higher repetition values like 30 and 100 are recommended in the literature [31]. However, here the performance gaps are large.
Table 3. p-Values of the Mann-Whitney-Wilcoxon U-Test of EvoMaster’s Results Compared to All the Other Tools, on Each SUT (114 Pairwise Comparisons in Total)

SUT	bBOXRT	RestCT	RESTler	RESTest	RESTTestGen	Schemathesis
cyclotron	0.001	0.001	0.001	0.001	0.001	0.001
disease-sh-api	0.001	0.001	0.001	0.001	0.001	0.001
js-rest-ncs	0.001	0.721	0.001	0.001	0.003	0.001
js-rest-scs	0.001	0.001	0.001	0.001	0.001	0.001
realworld-app	0.001	0.001	0.001	0.001	0.001	0.001
spacex-api	0.001	0.001	0.001	0.001	0.001	0.001
catwatch	0.001	0.001	0.001	0.001	0.001	0.909
cwa-verification	0.001	0.001	0.001	0.001	0.001	0.434
features-service	0.001	0.001	0.001	0.001	0.001	0.001
gestaohospital-rest	0.001	0.001	0.001	0.001	0.001	0.001
ind0	NaN	0.001	NaN	NaN	NaN	NaN
languagetool	0.001	0.001	0.001	0.001	0.001	0.001
ocvn-rest	0.001	0.001	0.001	0.001	0.001	0.001
proxyprint	0.001	0.001	0.001	0.001	0.001	0.001
rest-ncs	0.001	0.001	0.001	0.001	0.001	0.001
rest-news	0.001	0.001	0.001	0.001	0.001	0.001
rest-scs	0.001	0.001	0.001	0.001	0.001	0.001
restcountries	0.001	0.001	0.001	0.001	0.001	0.001
scout-api	0.001	0.001	0.001	0.001	0.001	0.001

Values lower than the $\alpha = 0.05$ threshold are reported in bold. NaN values happen when there is no difference in the compared datasets (they are exactly the same). They can be interpreted as a p-value equal to 1.

enough that 10 repetitions were more than enough in most cases. Note that, as explained in more detail in the work of Arcuri and Galeotti [31], we have not applied any p-value correction on these multiple comparisons (as they are controversial). We rather report the raw values (rounded up to 0.001 for readability) in case readers still want to apply such corrections when analyzing such data. For completeness, as Schemathesis achieves the best results on few APIs, Table 4 reports the same kind of analysis, in which Schemathesis is pairwise compared with all of the other tools.

When looking at the obtained coverage values, all of these tools achieve at least 30% coverage on average. Only two of them (i.e., EvoMaster and Schemathesis) achieve more than 50%. But no tool goes above 60% coverage. This means that although these tools might be useful for practitioners, there are still several research challenges that need to be addressed (we will go into more detail about this in Section 4.7). However, what level of coverage can be reasonably expected from black-box tools (which have no information on the source code of the SUTs) is a question that is hard to answer.

RQ1: All compared tools achieve at least 30% line coverage on average, but none goes above 60%.

Of the seven compared tools, EvoMaster seems to be the one giving the best results, closely followed by Schemathesis.

4.4 RQ2: Time Budget

The choice of running experiments for 1 hour is arbitrary, and different results could be obtained when using different time budgets. In the end, what to use as the time budget should be based on how practitioners in industry would actually use these fuzzers in their daily jobs. However, as far as we know, there is no scientifically sound data in the literature on how practitioners use these tools.
tools in practice. The choice of 1 hour is based on our anecdotal experience of collaborating and having a discussion with some engineers in industry.

Still, it is interesting to see how results would vary when using different time budgets. These would still represent realistic scenarios, such as engineers who would like to get some results quickly (e.g., in just a few minutes) or running fuzzing sessions on a Continuous Integration server for several hours during the night. To address RQ2, we hence ran a new set of experiments, in which we used 1/10 of the budget (i.e., 6 minutes) and 10 times the budget (i.e., 10 hours). Unfortunately, running each experiment for 10 hours would take a huge amount of time, even when parallelizing the running of the experiments (unless a large number of machines can be used). For this reason, for these experiments we only used the two most performing tools (i.e., EvoMaster and Schemathesis), with the experiments repeated only three times. Still, with these reduced settings, these experiments took $2 \times 19 \times ((6 \times 10) + (600 \times 3))m = 49$ days of computational effort.

Table 5 shows the results of these experiments. A graphical representation is given in Figure 1. Statistical analyses in which the results of how the different time budgets compare with each other are reported in Table 6.

From this data, a few key observations can be made:

- In most cases, increasing the time budget does increase the achieved code coverage.
- Increases in coverage can be substantial (e.g., +20.5% for EvoMaster on languagetool) or very minimal (e.g., only +0.2% for spacex-api).
- When there is high variability in the results, experiments with longer time budgets might give worse results by chance. This is not common, but it can happen (e.g., this is the case for EvoMaster on scout-api).
Fig. 1. Average (y-axis) and standard deviation (bold value) of coverage achieved by EvoMASTER BB and SCHEMATHESS with various time budgets (i.e., {6m, 1h, 10h}) on all of the 19 REST APIs.
We report average, minimum, and maximum of coverage (i.e., mean [min, max]) achieved by the best two black-box fuzzers (i.e., EvoMaster and Schemathesis) with each time budget setting on each of the 19 REST APIs.

- Relatively, already with a low time budget (i.e., 6 minutes), reasonable coverage results can be achieved. This is important to take into account considering that many faults in these REST APIs lay in the first layer of input validation [57].
- There are cases in which there is no difference in results even when using a 100 times larger time budget (i.e., 10 hours vs. 6 minutes). This is the case for the industrial API (i.e., ind0).

Interestingly, white-box testing does achieve much better results than using black-box techniques (we will show this in Section 4.6). Although giving more time does improve the performance of black-box fuzzers, there are cases in which it is not enough, and more advanced techniques like white-box testing are required.

RQ2: Already with a small time budget of 6 minutes, good results can be achieved. Longer time budgets can provide better results, but the magnitude of the improvements can vary significantly among the tested APIs.

4.5 RQ3: Black-Box Fault Detection

4.5.1 Issues in Measuring Fault Detection. As stated previously, each tool can self-report how many faults they find, but how such fault numbers are calculated might be quite different from tool to tool, making any comparison nearly meaningless. Manually checking (possibly tens of) thousands of test cases is not a viable option either, especially when they are generated in different programming languages (e.g., Java and Python).

Some authors, such as Kim et al. [53], use the number of unique exception stack traces in the SUT’s logs as a proxy of detected faults. On the one hand, a tool that leads the SUT to throw more exceptions could be considered better. On the other hand, using such a metric as proxy for fault detection has many shortcomings, such as the following: (1) not all exceptions reported in the logs are related to faults; (2) not all SUTs actually print any logs by default (e.g., this is the case for several SUTs in our study); and (3) crashes (which lead to responses with HTTP status code 500) are only one type of fault in RESTful APIs detected by these fuzzers [57], where, for example, all faults related to response mismatches with the API schema would leave no trace in the logs. For all of
To compare the settings of \(a \) and \(b \) (i.e., \(a \) vs. \(b \)), where \(a \) is longer than \(b \), e.g., \(1\,\text{h} \) vs. \(6\,\text{m} \), we report the \(p \)-value using Mann-Whitney-Wilcoxon U-tests and effect sizes (\(\hat{A}_{12} \)) using Vargha-Delaney statistics. Values in bold indicate that \(p \)-value happens when \(A_{12} \). We also report the difference and relative difference between average \(a \) and average \(b \) (i.e., \(\text{Diff} = \text{mean}(a) - \text{mean}(b) \) and \(\text{Relative} = (\text{mean}(a) - \text{mean}(b)) / \text{mean}(b) \)).
these reasons, we did not do this kind of analysis on the logs, as we do not believe that they provide much more information compared to line coverage—especially considering that the infrastructure to do such analysis would need to be implemented, which might not be a trivial task.

An alternative that we considered was to build a proxy HTTP server, to be used between the fuzzer and the SUT. With such a proxy, it would be possible to record all responses from the SUT—for example, to log all the endpoints returning a 500 HTTP status code—regardless of the employed fuzzer. We discarded this idea for two main reasons: (1) it could introduce a not trivial delay to all test case evaluations, which could bias the experiments (slower fuzzers would get a relative advantage if each HTTP call takes artificially longer to execute because going through a proxy), and (2) such an approach would not be able to distinguish between different faults triggered in the same endpoint.

Another alternative was to use some Mutation Testing tool. However, we are not aware of any such tool aimed at system testing (i.e., they all seem to be tailored for unit testing). Furthermore, there could be major technical challenges in using a Mutation Testing tool when the generated tests and the SUT are written in different programming languages (e.g., Python and Java). Designing a novel Mutation Testing tool for RESTful APIs would be useful, but that is outside the scope of this work.

Existing work on comparing fuzzers in different domains, such as for data parsers (e.g., [41]), use SUT crashes as an oracle to detect faults. Those are easy to identify (the SUT is no longer running), although smart techniques need to be used to distinguish possible different faults in the same SUT when it crashes. This does not happen in RESTful APIs, as crashes in the business logic do not crash the HTTP servers they run on. The HTTP servers catch these exceptions and return a HTTP response with status 500. Additionally, as already stated, this is only one type of fault that can be automatically detected in RESTful APIs [57]. Different kinds of automated oracles have been defined in the literature [48]. Only focusing on that type of fault could be too restrictive.

4.5.2 Experiment Setup. In the end, for a more fair comparison on fault detection among the different fuzzers for RESTful APIs, we created an artificial API, with 10 distinctive types of artificial faults in it (as mentioned in Section 4.1). We then ran each black-box fuzzer on it and manually evaluated their generated test cases to check if the faults were identified.

The API is designed in a way that triggering faults in it should be trivial. In other words, just calling an endpoint would trigger a fault, regardless of any input. The goal here is to check if the fuzzers are able to identify if the obtained responses are indeed faulty. In other words, we are empirically checking which range of automated oracles each fuzzer employs.

Regardless of the achieved code coverage, a fuzzer could be extended with more automated oracles from the literature. But how to integrate them is not necessarily trivial. For example, consider robustness faults, in which wrong data (according to the schema) is sent, and a fuzzer then verifies if the HTTP response has status code in the 4xx family (i.e., representing a user error). Sending invalid data might negatively impact the efforts on maximizing code coverage in the SUT, as input validation is done in the first layer of the API. How often and when to send invalid inputs to check this type of automated oracle is hence a non-trivial design decision in a fuzzer.

In our artificial API, we have injected the following 10 different types of faults for which an automated oracle can be defined. Note that this is not meant to be an exhaustive list of all possible faults that can be automatically detected with an oracle. For example, we have not considered security-related faults (e.g., based on access policies). This selection is only meant as a starting point, to shed more light on this important issue.
The 10 fault types are the following:

1. Thrown exception in the business logic of the API, which results in a returned 500 HTTP status code.
2. An endpoint returns a payload, where a field has wrong type, based on the schema.
3. An endpoint returns a success status code (i.e., in the 2xx family) that is not declared in the schema.
4. A payload requires a numeric field to be constrained within a certain maximum value, but this constraint is ignored in the API.
5. A payload requires a string field to be constrained within a certain enumeration of values, but this constraint is ignored in the API.
6. A payload requires a Boolean field to be present, but this constraint is ignored in the API.
7. A POST endpoint returns a location header (pointing to the newly created resource) that is invalid, resulting in a 404 status code if it is used in a GET call.
8. A DELETE endpoint returns status code 200, but it does not delete anything (i.e., a GET on the same URL would still return the non-deleted resource).
9. A PUT endpoint wrongly applies a partial update (with similar semantics to RFC 7396 JSON Merge Patch) instead of doing a full resource replacement (which can be detected by fetching the modified resource with a GET), as per HTTP semantics.
10. A PUT endpoint wrongly applies a non-idempotent modification. Therefore, calling the same endpoint more than once leads to different results, which can be checked by fetching the modified resource with a GET. Recall that all HTTP verbs are idempotent except POST and PATCH.

We ran each of the seven black-box fuzzers on the artificial API. As the endpoints of such APIs are trivial to cover, we ran each tool only once, for just 6 minutes. Then, we manually checked all the generated test cases to see which of the 10 faults were correctly identified.

4.5.3 Experiment Results. Table 7 shows the results of these experiments. On this API, RESTCT did not manage to generate any test case, as it seems like it has issues when dealing with endpoints not having query or path parameters. Although the API is trivial, RESTest and RestTestGen did not manage to achieve full coverage, in contrast to the other four fuzzers.

Of the 10 faults, only #1 is reliably found by most tools. Fault #2 was found only by bBOXRT. For fault #3, it was found only by EvoMaster and Schemathesis. None of the other 7 faults was properly identified by any of the fuzzers. However, there are some clarifications to make:

bBOXRT: According to Laranjeiro et al. [54], this fuzzer should be able to find robustness testing faults, (i.e., #4, #5, and #6), but it did not. It seems that it tried to send different kinds of faulty inputs, but with wrong payload types, where all of these HTTP requests ended up with a 415 status code (i.e., Unsupported Media Type). However, it was the only fuzzer correctly identifying fault #2.

RESTler: According to Atlidakis et al. [38], this fuzzer should be able to find #8, but it did not.

RESTest: We were not able to determine if this fuzzer finds any fault. It generated 121 JUnit files, containing 968 test cases. But none of the test cases shows what faults it detects in its source code. They need to be run, where faults are checked via custom log statements in the used HTTP library (i.e., RestAssured). Running such tests requires a library from RESTest, which is released on Maven Central. But such a library, at the time of this writing, seems to be missing some transitive dependencies, and so it was not possible to run any of the generated tests.

RestTestGen: Like bBOXRT, according to Corradini et al. [44], this fuzzer should be able to detect faults #4, #5, and #6. It might have, but it is unclear which faults it finds.
Table 7. Results of the Experiment on Fault Detection Using All Selected Black-Box Fuzzers on rest-faults

Fuzzer	Line Coverage %	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
bBOXRT	100.0	✓	✓								
EvoMASTER BB	100.0	✓	✓								
RestCT	26.9										
RESTler	100.0	✓									
RESTest	61.5										
RestTestGen	92.3	✓									
Schemathesis	100.0	✓	✓								

For each fuzzer, we report the achieved line coverage and the type of detected faults.

example, it can generate test sequences with 20 HTTP calls, with a final comment stating, “The erroneous test sequence was accepted as valid by the server.” But there is no information on what makes the test sequence “erroneous.”

The results of this experiment clearly show that current fuzzers only detect a small subset of possible fault types in RESTful APIs. As reported in a recent survey by Golmohammadi et al. [48], most fuzzers are able to find hundreds/thousands of faults in existing APIs. This is typically done by detecting 500 HTTP status codes (i.e., like in fault #1). However, not all faults have the same severity. For example, many cases of the 500 status code is simply wrong handling of invalid inputs [57]. Returning a 500 instead of 400 on wrong inputs is not as serious as a fault like #10. In this case, this latter type of fault can have catastrophic consequences, as it not only can corrupt the data of the API but also would be hard to reproduce and debug due to the non-determinism and low frequency of re-executing idempotent methods on the HTTP stack.

RQ3: Existing fuzzers detect only a small number of types of faults in RESTful APIs.

4.6 RQ4: White-Box Testing Experiments

Out of the seven compared tools, only EvoMASTER supports white-box testing. EvoMASTER uses evolutionary computation techniques, where the bytecode of the SUTs is instrumented to compute different kinds of heuristics. Due to possible conflicts with JaCoCo and c8 instrumentation, and due to the fact that EvoMASTER uses its own driver classes (which need to be written manually) to start and stop the instrumented SUTs, this set of experiments was run differently compared to the black-box ones.

We ran EvoMASTER on each SUT for 10 repetitions (so, 190 runs), each one for 1 hour (like for the black-box experiments). However, JaCoCo and c8 are not activated. After each run, EvoMASTER generates statistic files, including information on code coverage and fault detection. However, as there can be differences on how line coverage is computed between EvoMASTER and JaCoCo/c8, it would be difficult to reliably compare with the results in Table 2. Therefore, for the comparisons, we ran EvoMASTER as well in gray-box mode (for another 190 runs). This mode generates test cases in exactly the same way as black-box mode, with the difference that the SUT is instrumented, and coverage metrics are computed at each test execution. A further benefit is that besides code coverage, we can reliably compare fault detection as well, as this metric is computed in exactly the same way (as it is the same tool). As EvoMASTER is the black-box fuzzer that gives the highest code coverage (Section 4.3), it is not a major validity threat to compare white-box results only with EvoMASTER. These 380 runs added a further 15.8 days of computational effort.
Table 8. Experiment Results for White-Box Evolutionary Search (WB) and Random Search (RS), Using EvoMaster on the 19 RESTful APIs

SUT	RS Line Coverage %	WB Line Coverage %	\(\hat{A}_{12} \)	p-Value	RS # Detected Faults	WB # Detected Faults	\(\hat{A}_{12} \)	p-Value
cyclotron	31.2	31.3	0.69	0.158	32.2	30.9	0.13	0.004
disease-sh-api	18.1	19.5	1.00	0.001	30.0	36.2	1.00	0.001
js-rest-ncs	60.7	83.2	1.00	0.001	6.0	6.0	0.50	1.000
js-rest-scs	60.9	76.2	1.00	0.001	1.0	1.0	0.50	1.000
realworld-app	24.6	24.4	0.03	0.001	25.0	30.5	1.00	0.001
spacex-api	41.5	41.5	0.58	0.540	52.2	50.9	0.32	0.170
catwatch	41.1	50.0	1.00	0.001	18.0	23.7	1.00	0.001
cwa-verification	40.4	46.9	1.00	0.001	4.0	4.0	0.50	1.000
features-service	68.8	81.8	1.00	0.001	22.2	31.4	1.00	0.001
gestaohospital-rest	39.4	39.5	0.72	0.024	15.0	22.0	1.00	0.001
ind0	8.4	18.8	1.00	0.001	1.0	48.1	1.00	0.001
languagetool	28.9	39.5	0.93	0.001	16.6	12.8	0.55	0.731
ovcn-rest	35.3	24.8	0.00	0.001	279.9	257.9	0.00	0.001
proxyprint	53.3	51.6	0.28	0.120	84.1	86.3	0.59	0.531
rest-ncs	61.9	93.0	1.00	0.001	5.0	6.0	1.00	0.001
rest-news	55.4	66.5	1.00	0.001	5.0	7.8	1.00	0.001
rest-scs	63.3	86.2	1.00	0.001	1.0	12.0	1.00	0.001
restcountries	74.9	77.1	1.00	0.001	2.0	2.0	0.50	1.000
scout-api	54.7	53.4	0.37	0.346	94.0	88.6	0.14	0.008

We report the average line coverage measured with EvoMaster itself (not JaCoCo, nor c8), as well as the number of faults detected in these APIs. When the differences are statically significant at the \(\alpha = 0.05 \) level, the effect sizes \(\hat{A}_{12} \) are reported in bold.

Table 8 shows these results. A few things appear quite clearly. First, on average, line coverage goes up by 7.5% (from 45.4% to 52.9%). Even with just 10 runs per API, results are statistically significant in most cases.

For APIs like rest-ncs, average coverage can go even higher than 90%. For other APIs like features-service, improvements are more than 13% (e.g., from 68.8% to max 81.1%). In the case of ind0, although achieved coverage is relative low (i.e., \(<20\%)\), it still more than double (i.e., from 8.4% to 18.8%).

Although results are significantly improved compared to black-box testing, for nearly half of these SUTs it was still not possible to achieve more than 50% line coverage. Additionally, there are two interesting cases in which results with white-box testing are actually significantly worse (i.e., for realworld-app and ovcn-rest). In the former case, the difference is minimal, just 0.2%. In the latter case, however, the difference is substantial, as it is 10.5% (from 35.3% down to 24.8%). This is not an unusual behavior for search algorithms, as it all depends on the quality of the fitness function and the properties of the search landscape [42]. If a fitness function gives no gradient to the search algorithm, it can easily get stuck in local optima. In such cases, a random search can give better results. EvoMaster uses several heuristics in its fitness function to try to maximize code coverage, but those do not work for ovcn-rest, as we will discuss in more detail in Section 4.7.
However, improving the fitness function in this case can be done (which we will address in future versions of EvoMASTER).

Regarding fault detection, white-box testing leads to detection of more faults. In the context of REST API testing, a 500 status code is regarded as a potential fault occurring in the SUT, which can be identified by both black-box and white-box approaches, by extracting information from the HTTP responses. It is not unexpected that a white-box approach achieves better performance, as usually there is a strong correlation between code coverage and fault detection [41]. For example, you cannot detect a fault if the code it hides in is never executed. However, it also relies on the employed fitness functions and heuristics, such as whether they focus more on fault detection than on other test criteria (e.g., code coverage and schema-related coverage [48]). The interesting aspect here is that the improvement is not much, just 3.4 more faults on average. In these experiments, random testing can find 36.5 faults on average, and so the relative improvement is less than 10%. For the problem domain of fuzzing RESTful APIs (and likely web APIs in general), this is not surprising [57]. Many of these APIs do crash as soon as an invalid input is provided, instead of returning a proper user error response (e.g., with the HTTP status code in the 4xx family). Additionally, random search is quite good at generating invalid input values. Therefore, many faults can be easily found this way with a fuzzer at the very first layer of input validation in the SUT’s code, even when the achieved code coverage is relatively low.

RQ4: White-box fuzzing leads to significantly higher results compared to black-box fuzzing, up to 7.5% more code coverage and 3.4 more detected faults on average. However, still, for many APIs, coverage results were less than 50%.

4.7 RQ5: Open Problems

To identify open problems, we performed detailed analysis based on results of existing fuzzers on real APIs (18 open source and 1 industrial). We ran seven tools/configurations on 19 RESTful APIs, with a budget of 1 hour per experiment. However, only in one single case was it possible to achieve 100% line coverage (i.e., SCHEMATHEIS on js-rest-ncs, recall Table 2). In general, it might not be possible to achieve 100% line coverage, as some code can be unreachable. For example, this is a common case for constructors in static-method-only classes, as well as catch blocks for exceptions that cannot be triggered with a test. However, for several of these SUTs, it was not even possible to reach 50% line coverage.

It is not within the scope of this work to define a good coverage target to aim for (80%? 90%?). However, clearly, the higher the code coverage, the better it would be for practitioners using these fuzzers. Therefore, to improve those fuzzers, it is of paramount importance to understand their current limitations. To answer this question, we studied in detail the logs of the tools in Section 4.7.1 and large parts of the source code of the SUTs in Section 4.7.2 (recall that those are more than 280,000 LOCs; see Table 1). An in-depth analysis of the current open problems in fuzzing RESTful APIs is an essential scientific step to gain more insight into this problem. This is needed to be able to design novel and more effective techniques.

Here, we do two different types of analyses. First, we look at the logs generated by the tools (Section 4.7.1), which helps in pointing out possible major issues in these fuzzers (e.g., when they crash, they might generate log messages with stack traces). Second, we run the generated tests and manually check the code they execute (Section 4.7.2), to analyze what was not covered. This helps provide hypotheses to explain why that was the case, which is needed to be able to design new techniques to achieve higher coverage. Finally, we summarize all of these findings (Section 4.7.3).

It is important to stress that the goal of these analyses is to identify general problems, or instances of problems that are likely going to be present in other SUTs as well. Designing novel
techniques that just overfit for a specific benchmark is of little to no use. Ultimately, what is important will be the results that the practitioners can obtain when using these fuzzers on their APIs.

4.7.1 Analysis of the Logs. From the tool logs, at least four common issues are worthy of discussion. First, OpenAPI/Swagger schemas might have some errors (e.g., this is the case for cyclotron, disease-sh-api, cwa-verification, features-service proxyprint, and ocvn-rest). This might happen when schemas are manually written, as well as when they are automatically derived from the code with some tools/libraries (as those tools might have faults). In these cases, most fuzzers just crash, without making any HTTP call or generating any test case. It is important to warn the users of these issues with their schema, but likely fuzzers should be more robust and not crash (e.g., endpoints with schema issues could be simply skipped).

The second issue can be seen in languagetool. Most fuzzers for RESTful APIs support HTTP body payloads only in JSON format. However, in HTTP, any kind of payload type can be sent. JSON is the most common format for RESTful APIs [63], but there are others as well, like XML and the application/x-www-form-urlencoded used in languagetool. From the results in Table 2, it looks like only EvoMaster supports this format. On this API, EvoMaster achieves between 26% and 35.1% code coverage, whereas no other fuzzer achieves more than 2.5%.

The third issue is specific to scout-api, which displays a special case of the JSON payloads. Most tools assume a JSON payload to be a tree—for example, a root object A that can have fields that are object themselves (e.g., A.B), and so on recursively (e.g., A.B.C.D and A.F.C), in a tree-like structure. However, an OpenAPI/Swagger schema can define objects that are graphs, as in the case for scout-api. For example, an object A can have a field of type B, but B itself can have a field of type A. This recursive relation creates a graph that needs to be handled carefully when instantiating A (e.g., optional field entries can be skipped to avoid an infinite recursion, which otherwise would lead the fuzzers to crash).

The fourth issue is related to the execution of HTTP requests toward the SUTs. To test a REST API, the fuzzers build HTTP requests based on the schema and then use different HTTP libraries to send the requests toward the SUT—for example, JerseyClient is used in EvoMaster. By analyzing the logs, we found that for several case studies, some fuzzers seem to not have problems in parsing schemas, but they fail to execute the HTTP requests. For instance, javax.net.ssl.SSLException: Unsupported or unrecognized SSL message was thrown when RestTestGen processed realworld-app with OkHttpClient. For js-rest-ncs, js-rest-sc, and ind0, we found that 404 Not Found responses were always returned when fuzzing them with RESTler v8.5.0. By checking the logs obtained by RESTler, we found that it might be due to a problem in generating the right URLs for making the HTTP requests. For the SUT whose basePath is /, RESTler seems to generate double slash (i.e., //) in the URL of the requests. However, whether to accept the double slash to match a real path depends on the SUTs (i.e., js-rest-ncs, js-rest-sc, and ind0 do not allow it). In Figure 2, we provide the logs obtained by RESTler, representing the processed requests that contain the double slash and responses returned by js-rest-ncs (Figure 2(a)) and rest-ncs (Figure 2(b)).

4.7.2 Analysis of the Source Code. For each SUT, we manually ran the best (i.e., highest code coverage) test suite (which are the ones generated by EvoMaster) with code coverage activated. Then, in an IDE, we manually looked at which branches (e.g., if statements) were reached by the test case execution but not covered, as well as looking at the cases in which the test execution is halted in the middle of a code block due to thrown exceptions. This is done to try to understand what are the current issues and challenges that these fuzzers need to overcome to get better results.
To be useful for researchers, these analyses need to be of a “low level”, with concrete discussions about the source code of these APIs. No general theories can be derived without first looking at and analyzing the single instances of a scientific/engineering phenomenon. As such software engineering discussions might depend on different groups of readers who might target different levels of detail in the software, or considering readers who might not be currently active in the development of a fuzzer, here we provide only a summary. Full analyses for each SUT are provided in Appendix A. Table 9 summarizes all identified main issues for each SUT. There can be many reasons a higher coverage was not achieved. Here, based on our analyses, we have categorized six main issues:

Authentication: In some cases, there is the need to provide authentication information with specific roles, using specific types of authentication (e.g., an API can provide different ways to authenticate).

Databases: The execution might depend on the data returned by database queries, but those return nothing, as constraints are not satisfied (e.g., the content of WHERE clauses in SQL SELECT queries). It might be hard to generate the right data to satisfy those constraints.

External services: The API depends on specific interactions with external services (e.g., other APIs on the internet). However, from the point of view of the fuzzers, there is no way to control what those external services return.

Schema inconsistencies: The schema of the API might be underspecified (e.g., some data constraints are missing, and some query parameters used in the API might not be described) or also might provide wrong information (e.g., wrong types for input parameters).

String constraints: String input data might need to match specific formats (e.g., based on regular expressions), which is not simple to infer.

Unreachable code: Some code can be simply unreachable via the entry points of the API. It might be dead code, or code executed by other scripts or functionality (e.g., a GUI and background threads).
Table 9. Main Issues Preventing Higher Coverage, Reported for Each SUT

SUT	Authentication	Databases	External Services	Schema Inconsistencies	String Constraints	Unreachable Code
catwatch	✓					
cwa-verification	✓	✓		✓		
cyclotron	✓	✓				
disease-sh-api	✓	✓				
features-service	✓	✓				
gestahospital-rest	✓					
ind0						
js-rest-ncs						
js-rest-scs						
languagetool					✓	
ocvn-rest					✓	
proxyprint					✓	✓
realworld-app	✓				✓	✓
rest-ncs					✓	
rest-news					✓	
rest-scs						
restcountries	✓					
scout-api						
spacex-api	✓					
Total	3	6	1	5	7	7

Note that these are only the main issues we currently face. Solving them does not imply maximizing code coverage. As more code is executed, more issues could be identified. A concrete example is cwa-verification. Such an API does connect to an external service, but the code doing this is currently not executed by any of the fuzzers. Dealing with external services would hence currently give no improvement on cwa-verification. However, when the other issues in cwa-verification are solved (recall Table 9), then dealing with external services will be needed to improve coverage results further.

4.7.3 Discussion. Based on the analyses of the logs and tests generated for the 19 APIs, some general observations can be made:

- Many research prototypes are not particularly robust and can crash when applied on new SUTs. For example, we have faced this issue with EvoMASTER many times, such as when adding a new API to EMB [7]. Although we add new APIs to EMB each year, EMB has been available as open source since 2017, and anyone can use it for their empirical studies and make sure their tools do not crash on it. However, it is important to stress that in this work, we have compared tool implementations rather than techniques. For example, a tool with low performance (e.g., due to crashes) could still feature novel techniques that could be quite useful (e.g., if integrated or re-implemented in a more mature tool).

- Like software, schemas can also have faults and/or omissions (e.g., constraints on some inputs might be missing). This issue seems quite common, especially when schemas are written manually. Although this problem could be addressed by white-box testing (currently supported only by EvoMASTER) by analyzing the source code of the SUTs, it looks like a major issue for black-box testing, which might not have a viable solution.
• Interactions with databases are common in RESTful APIs. To execute the code to fetch some data, such data should first be present in the database. The data could be created with endpoints of the API itself (e.g., POST requests), as well as inserted directly into the database with SQL commands. Both approaches have challenges, such as how to properly link different endpoints that work on the same resources, and how to deal with data constraints that are specified in the code of the API and not in the SQL schema of the database. The compared fuzzers provide different solutions to address this problem, but it is clear that more still need to be done.

• Currently, no fuzzer deals with the mocking of external web services (e.g., using libraries like WireMock). Testing with external live services has many shortcomings (e.g., the generated tests can become flaky), but it might be the only option for black-box strategies. For white-box strategies, mocking of web services will be essential when testing industrial enterprise systems developed with a microservice architecture (as in this class of software, interactions between web services are quite common).

• Authentication information needs to be provided when fuzzing APIs that require different users to login. Even with a white-box fuzzer, it might not be feasible to automatically create different users with different roles. For example, typically passwords in databases are hashed, and reverse engineering on how to create valid hashed passwords (e.g., when creating data into the database as part of the tests [32]) is out of reach from current fuzzers. To reach specific parts of the code, there might be the need of specific users with specific roles. If those are not provided/set up before the fuzzing is done, then such code cannot be executed. A tester might provide different user profiles for fuzzing, but some important roles/setups might be missing from these manual configurations.

• Constraints on strings input seem quite common in RESTful APIs. Those constraints might be missing in the schema (e.g., a specific string input needs to satisfy a given regular expression). White-box fuzzers can analyze the code to see how such strings are manipulated, but it is not trivial. Black-box fuzzers could try to infer these constraints with natural language processing (e.g., based on the names of these inputs, and possibly their description, if any is provided).

Many of the challenges we have identified (e.g., dealing with databases and underspecified schemas) are specific for RESTful APIs, although they would likely apply to the fuzzing of other types of web services as well (e.g., GraphQL [39, 40] and RPC [72, 73]). These challenges would not be meaningful in different testing contexts (e.g., unit test generation or fuzzing of parser libraries). Issues with providing manual auth configurations would likely apply to any kind of software that needs authentication information. Dealing with constraints on string data is likely the most general challenge, as it applies as well, for example, to unit testing.

This means that solving these challenges would not only help in the testing of RESTful APIs, but it likely can have positive effects on other testing domains as well.

RQ5: There are several open challenges in fuzzing RESTful APIs, including, for example, how to deal with underspecified schemas, and how to deal with interactions with their environment (e.g., databases and other external APIs).

5 THREATS TO VALIDITY

Internal Validity. Besides writing the scaffolding to run and analyze the experiments, before running the experiments we did not make code modifications in any existing tool for this study. Although we are the authors of EvoMASTER, to try to be fair, we used the latest release before running
these experiments, without re-running them after fixing any new issues. However, as we have used all of these APIs in our previous studies, EvoMaster did not crash on any of them.

The use of EMB [7] as the case study might bias the results toward EvoMaster. To avoid EvoMaster overfit on it, EMB has been extended each year with new APIs, of different size and complexity. Furthermore, as EMB has been open source for a few years, anyone can use it as case study to evaluate the effectiveness of their fuzzers.

We used seven existing tools, with their latest release versions when possible. However, there is a possibility that we might have misconfigured them, especially considering that some of those tools have minimal documentation. To avoid such a possibility, we carefully look at their execution logs to see if there was any clear case of misconfiguration. Furthermore, we release all of our scripts as open source in the repository of EvoMaster, so anyone can review them and replicate the study if needed.

Any comparison of tools made by the authors of one of these tools is bound to be potentially biased, especially if the tool turns out to give the best results (as in our case with EvoMaster). However, the relative performance of the other six tools among them would be not affected by this issue. Likewise, the in-depth analysis of the SUTs is not affected by this issue either.

All of the compared fuzzers use randomized algorithms. To take this into account, each experiment was repeated either 3 times (budget of 10 hours) or 10 times (budgets of 6 minutes and 1 hour), and we analyzed them with the appropriate statistical tests.

External Validity. The chosen seven fuzzers are arguably representing the state of the art in testing RESTful APIs. However, results on 19 APIs might not generalize to other APIs as well, although we also selected different programming runtimes (e.g., JVM and NodeJS) including 1 industrial API. This kind of system testing experiments is expensive (more than 120 days of computational effort in our case), which makes using more APIs challenging. Furthermore, finding RESTful APIs in open source repositories is not so simple, and considerable effort might then be needed to configure them (e.g., set up external dependencies like databases and find out how/if they use any form of authentication).

6 CONCLUSION

RESTful APIs are widely used in industry, so several techniques have been developed in the research community to automatically test them [48]. Several reports in the literature show the usefulness in practice of these techniques, by reporting actual faults automatically found with these fuzzers. However, not much has been reported on how the different techniques compare, nor on how effective they are at covering different parts of the code of these APIs. This latter is usually the case due to the testing of remote APIs, for which researchers do not have access to their source code.

To address these issues, in this article we compared the state of the art in fuzzing RESTful APIs, using seven fuzzers to test 20 APIs (18 open source, 1 industrial, and 1 artificial used only for fault analysis). This totaled more than 280,000 LOCs (for their business logic, but not including the millions of LOCs of all third-party libraries they use). Each fuzzer was run for 1 hour, and each experiment was repeated 10 times, to take into account the randomness of these tools. To get a better understanding of the results, the best fuzzers were also run for 6 minutes and 10 hours (but the latter was repeated only 3 times).

The results showed different degrees of coverage for the different black-box testing tools, where EvoMaster seems to be the tool giving the best results (i.e., highest code coverage on average) on this case study, closely followed by Schemathesis. However, no black-box fuzzer was able to achieve more than 60% line coverage on average. Furthermore, the experiments show that white-box testing gives better results than black-box testing. Still, large parts of these APIs are left
uncovered, as the fuzzers do not manage to generate the right data to maximize code coverage. Additionally, only a small number of types of faults were detected by these fuzzers. Although these fuzzers are already useful for practitioners in industry, more needs to be done to achieve better results.

To address this issue, this large empirical analysis was then followed by an in-depth analysis of the source code of each of the 19 APIs, to understand the main issues that prevent the fuzzers from achieving better results. Several issues were identified, including, for example, how to deal with underspecified schemas, and how to deal with interactions with external services (e.g., other APIs and databases). This provides a useful list of common problems that researchers can use to drive new research efforts in improving performance in this problem domain.

For a few of these issues, we discussed possible solutions, but those will need to be empirically validated. Future work will aim at using the new knowledge and insight provided in this work to design new variants of these tools, to be able to achieve better results (in terms of code coverage and fault detection). In particular, the insight provided in this study is shaping the current research efforts in EvoMASTER, pointing to clear research issues that need to be prioritized.

Comparing existing tools provides insight on the current limitations of fuzzing RESTful APIs. Although comparing results on code coverage is not particularly complex, there are major issues when trying to do fair comparisons based on fault detection, especially in an automated way. Future work will be needed to design automated code infrastructure and scaffolding to run experiments based on fault detection.

All tools and APIs used in this study are available online. To enable the replicability of this study, all of our scripts used in our experiments are published as open source, available online in the repository of EvoMASTER, at www.evomaster.org. Documentation is provided to specify how to use them (e.g., in the “Replicating studies” section of the website). These scripts are automatically stored on Zenodo at each new release (e.g., version 1.5.0 [35]).

APPENDIX

A SOURCE CODE ANALYSIS

In this appendix, we discuss the execution of test cases on each SUT, in alphabetic order, one at a time. Hypotheses are then provided to explain why higher coverage was not achieved.

Note that when we refer to the code coverage achieved by white-box EvoMASTER, we refer to the results in Table 8. These coverage values are computed with the instrumentation of EvoMASTER itself, and they are not exactly the same as what other coverage tools like JaCoCo and c8 would report (as there can be differences on how coverage is computed). For example, coverage results reported by c8 might be significantly higher, as those are computed only on the script files that are loaded (based on all of the experiments), whereas for EvoMASTER, all source files were considered. In other words, if on each run i a tool covers \(X_i \) lines out of \(N_i \) total reported, then the coverage percentage \(c_i \) is computed as \(c_i = X_i / N \), where \(N = \max(N_i) \). Furthermore, a current limitation of EvoMASTER for JavaScript is that the recorded coverage does not include the coverage achieved at boot time, but only from when the search starts. This was an issue that has been fixed for JVM, but not yet for JavaScript. Therefore, the numbers in Table 8 are not directly comparable with the numbers in Table 2.

A.1 catwatch

With an average line coverage of 50%, catwatch can be considered a non-trivial API. The main issue is that this SUT makes a call to an external service (more specifically, to the GitHub APIs to fetch project information). But such call seems to get stuck for a long time (and possibly timeout),

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.
which leads to none of the code parsing the responses (and do different kind of analyses) being executed. Calling external services is a problem for fuzzers. External services can go down or change at any time. They can return different data at each call, making assertions in the generated tests become flaky. Although testing with the actual external services is useful and should be done, the generated tests would likely not be suitable for regression testing. This is a known problem in industry, and there are different solutions to address it, like mocking the external services (e.g., in the JVM ecosystem, WireMock \[23\] is a popular library to do that). Enhancing fuzzers to deal with mocked services (e.g., to setup the mock data they should return) is going to be an important venue of future research.

A.2 cwa-verification

On the cwa-verification API, achieved coverage is less than 50% (i.e., 46.9%). There are two interesting cases to discuss here, which have major impact on the achieved coverage.

First, Figure 3 shows a snippet of code for one of the endpoint handlers (i.e., ExternalTanController, but the same issue happens as well in ExternalTestStateController and InternalTanController). Here, the condition actual.isPresent() is never satisfied, which leads to missing a large part of the code. A token is given as input as part of the body payload, and then a record matching such token in the database is searched for. However, none is found, and EvoMaster is unable to create it directly. In theory, a case like this should be trivial to handle with SQL support \[32\], but this was not the case. The reason is the peculiar properties of such token. This type of token has the given constraint in the OpenAPI schema:

```json
"registrationToken": {
  "pattern": "^[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{3}-[89aAbB][a-f0-9]{3}-[a-f0-9]{12}$",
  "type": "string"
}
```

This results in the token having a length of 36 characters. EvoMaster has no problem in sampling strings that match such a regular expression, like bfe8b80b-dca1-458d-b312-96ecae446be0. However, such constraint is not present in the SQL database, where the column for these tokens is simply declared with the following:

```sql
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.
```
@PostMapping(value = TELE_TAN_ROUTE,
 produces = MediaType.APPLICATION_JSON_VALUE)
)

public ResponseEntity<TeleTan> createTeleTan(
 @RequestHeader(JwtService.HEADER_NAME_AUTHORIZATION) @Valid AuthorizationToken authorization,
 @RequestHeader(value = TELE_TAN_TYPE_HEADER, required = false) @Valid TeleTanType teleTanType)
{
 List<AuthorizationRole> requiredRoles = new ArrayList<>();

 if (teleTanType == null) {
 teleTanType = TeleTanType.TEST;
 requiredRoles.add(new AuthorizationRole(AUTH_C19_HOTLINE_TRANSPORT_KEY));
 } else if (teleTanType == TeleTanType.EVENT) {
 requiredRoles.add(new AuthorizationRole(AUTH_C19_HOTLINE_EVENT_TRANSPORT_KEY));
 }
}

Fig. 4. A function snippet from the InternalTanController class in the API cwa-verification.

When EvoMaster generates data directly into the database, they would be random strings that do not satisfy such regular expression. Again, this should not be a problem thanks to taint analysis [33]. The reason it is not working is due to the length of the string, which is 36 characters. By default, EvoMaster does not generate random strings with more than 16 characters. Even if with taint analysis we could inject the right string into the database, currently this does not happen due to 36 being greater than 16.

Note that having a constraint on the length of strings is essential. Sampling unbound random strings with billions of characters would have too many negative side effects. The choice of the value 16 is arbitrary: it could have been higher or lower. Still, whatever limit is chosen, an SUT could need strings longer than such a limit, as happens in this case for cwa-verification.

A solution to address this issue is to distinguish between two different max-length limits: a hard one that should never be violated (e.g., a constraint in the OpenAPI or SQL schemas) and a soft one (e.g., 16). The soft limit would be used when sampling random strings but could be violated in some specific circumstances (e.g., in taint analysis).

The second interesting case to discuss is present in the endpoint handler InternalTanController, shown in Figure 4. Here, an HTTP header with the value TELE_TAN_TYPE_HEADER="X-CWA-TELETAN-TYPE" can be provided as input. However, such information is missing from the OpenAPI schema. Therefore, the object teleTanType is always null. This is an example of underspecified schema.

A.3 cyclotron

On the cyclotron API, there is not much difference between white-box and gray-box testing. There are at least three major issues worthy of discussion.

First, a non-negligible amount of code is executed only if some configuration settings are on. But those are off by default (e.g., like config.analytics.enable and config.enableAuth in config.js). All code related to these functionalities cannot be tested via the RESTful endpoints.
Second, like for several other APIs in this study, the schema here is not fully correct/complete. For example, Figure 5 shows a snippet for the handler of the endpoint /data/{key}/upsert, where the two fields data and keys are read from the input object in the HTTP body payload of the request. However, the schema has no formal definition about those fields, as they are just mentioned as a comment (see line 17 in Figure 6).

Third, the API does several accesses to a MongoDB database. Several endpoints start by retrieving data from the database, such as with commands like `Dashboards.findOne({ name: dashboardName })`. If the data is missing, no following code is then executed. But it is hard to get the right ID (e.g., dashboardName in this example) by chance. Although EvoMASTER has support for SQL databases (i.e., to analyze all executed queries at runtime), it does not for MongoDB, and not for NodeJS (i.e., SQL support is currently only implemented for JVM).
Fig. 7. A function snippet from the ConfigurationEvaluator class in the API features-service.

A.4 disease-sh-api

On disease-sh-api, there is not much difference between EvoMSTR (both black-box and white-box) and SCHEMATHESIS. After an analysis of the generated tests, practically all achievable coverage is obtained, as the remaining code is not reachable through the REST endpoints in the API.

First, the schema refers only to version v3 of the API, but in the source code there is still all the implementation of the endpoints for version v2. Those endpoints are not executable based on the information in the schema. Second, large part of the code deals with the fetching of disease records from online databases, and storing them in a local Redis instance. But such code is executed only via scripts and not from the RESTful endpoints. Note that when the experiments are run, the database was populated with a selection of valid data, as there is no REST endpoint to add it.

A.5 features-service

With an average line coverage of 81.8%, features-service can be considered one of the easier APIs. Quite a bit of code cannot be reached with any generated system test, such as getters/setters that are never called or some functions that are only used by the manually written unit tests. There are still some branches that are not covered, related to properties of data in the database. In other words, when a GET is fetching some data, some properties are checked one at a time, but to be able to pass all of these checks, a previous POST should have created such data. Figure 7 shows one such case, where the code inside the if statement does not get executed. Tracing how database data is impacting the control flow execution, and which operations should be called first to create such data, is a challenge that needs to be addressed.

A.6 gestaohospital-rest

On the gestaohospital-rest API, there is not much difference between white-box and gray-box EvoMSTR (i.e., average coverage 39.5% vs. 39.4%; recall Table 8). Furthermore, RESTTestGen and SCHEMATHESIS give better results than EvoMSTR (recall Table 2).

One specific property of this API compared to most of the other SUTs in our empirical study is that this type of API uses a MongoDB database. In contrast to SQL databases, white-box EvoMSTR has no support for NoSQL databases (like MongoDB). As this API does many interactions with the database (e.g., there are a lot of calls like service.findByHospitalId(hospital_id)), not much coverage is achieved if such accessed data is not present in the database, and the evolutionary search has no gradient to create it. In this regard, it seems that RESTTestGen and SCHEMATHESIS give better results than EvoMSTR.
ESIS do a better job at creating resources with POST commands and use such created data for their following GET requests. Still, although quite good, the coverage is at most 62.3% (measured with JaCoCo for SCHEMATHESIS), which means that there remain some challenges to overcome.

We could not analyze in detail the output of these tools in an IDE for the Java program gestaohospital-rest (e.g., using a debugger), as RESTTestGen generated only JSON files with the descriptions of the tests (and no JUnit file), and the outputs of SCHEMATHESIS are in YAML for the VCR-Cassette format (which is mainly for Ruby and Python, where ports in Java for handling tests with VCR-Cassette format seem to have not been under maintenance for several years).

A.7 ind0

The closed-source API ind0 was provided by one of our industrial partners. Therefore, we cannot provide any code example for it, but we can still discuss it at a high level. This API is a service in a microservice architecture. Although in terms of size it is not particularly big (recall Table 1), it is the most challenging API in our case study. No black-box fuzzer achieves more than 8.2% line coverage, and white-box testing goes only up to 18.8% (on average).

Out of 20 endpoints, all but 1 endpoint require string inputs satisfying a complex regular expression, but such information is not present in the OpenAPI schema. Therefore, a random string is extremely unlikely to satisfy such constraint. Furthermore, the constraint is expressed in a @ annotation, which is handled by the Spring framework before any of the HTTP handlers are executed.

Thanks to taint analysis, EvoMaster can handle these cases [33], even when constraints are evaluated in third-party libraries (and not just in the business logic of the SUT). Still, there is quite a bit of variability in the results—that is, given the average coverage 18.8%, the standard variation is 7.0, with coverage going from a minimum of 11.9% to a maximum of 32.6% (out of the 10 repeated experiment runs). EvoMaster manages to solve these constraints, although not in all runs, as such strings not only get matched with a regular expression, but they then are checked further with other constraints. However, as the regular expression is exactly the same for all of these 19 endpoints, applied on a URL path variable with the same name, it should be possible to design strategies to re-use such information to speed up the search, instead of resolving the same constraints each time for each endpoint. Even with the run with the highest coverage of 32.6%, many endpoints are not covered due to this issue.

A.8 js-rest-ncs

The artificial API js-rest-ncs uses numerical computation functions (e.g., Triangle Classification [25]) behind REST endpoints. As this is a re-implementation in JavaScript of rest-ncs, we will defer to Section A.14 for the analyses.

One thing to notice, however, is that the coverage values are higher for a very simple reason: the fetching of the OpenAPI schema is part of business logic of the API, and code coverage is computed for it (as the schema is inside a JavaScript file as a string inside an HTTP endpoint declaration), whereas for Java, the schema is handled as a JSON resource.

A.9 js-rest-scs

Similarly to the case of js-rest-ncs, js-rest-scs is a JavaScript re-implementation of rest-scs, which involved string-based computation functions. We therefore will defer to Section A.16 for the analyses.

As for js-rest-ncs, the fetching of the schema impacts the computed code coverage. However, for white-box EvoMaster, coverage is worse for js-rest-scs than for rest-scs. The reason is rather simple: the support for white-box testing of JavaScript code in EvoMaster is a much more recent
Fig. 8. A function snippet from the ApiV2 class in the API languagetool.

addition [74], and not all features implemented for JVM (e.g., different forms of taint analysis [33]) are supported currently.

A.10 languagetool

On the languagetool API, coverage is up to 39.5%. This is the largest and most complex API in our study (recall Table 1). This is a CPU-bound (e.g., no database) application, doing complex text analyses. This API has only two endpoints: /v2/languages, which is a simple GET with no parameters (and so it is trivially covered by just calling it once), and /v2/check, which is a POST with 11 input parameters. However, looking at the source code of ApiV2.handleRequest, it seems that there are some more endpoints, although those are not specified in the OpenAPI/Swagger schema. Without an extensive analysis of this SUT, it is unclear how much of its code would not be coverable due to this issue.

Following the execution from the entry point /v2/check, there are a few missed branches worthy of discussion. In Figure 8, the last statement crashes due to mapper.readTree throwing an exception (and so all statements after it cannot be executed). Here, when a form in an application/x-www-form-urlencoded payload is received, 1 out of the 11 parameters is treated as JSON data (i.e., the input called data). Such information is written in the schema as a comment, although the type is registered as a simple string. It is unlikely that a random string would represent a valid JSON object. Another issue is when entering in the class TextChecker. Several if statements refer to input parameters that are undefined in the schema, such as textSessionId, noopLanguages, preferredLanguages, enableTempOffRules, allowIncompleteResults, enableHiddenRules, ruleValues, sourceText, sourceLanguage, and multilingual. Dealing with underdefined schemas is a major issue with fuzzers, especially black-box ones. Technically, these can be considered as faults in the schemas, which should be fixed by the users. However, schemas can be considered as documentation, and issues in the documentation might receive less priority compared to faults in the API implementation. Still, as fuzzers heavily rely on such schemas, a more widespread use of fuzzers might lead to changes in industrial practice by giving compelling reasons to timely update and fix those schemas.

As there are tens of thousands of lines that were not covered in this SUT, there are many other missed branches that would be interesting to discuss in detail. However, it is unclear how
related or independent they are from the aforementioned issues. Once the issue of dealing of underdefined schemas is solved, it will be important to re-run these experiments to identify which major issues remain.

A.11 ocvn-rest

On the ocvn-rest API, with black-box testing line, coverage was up to 35.3%, which is significantly higher than the 24.8% achieved by white-box testing. It is the second largest API in our study, following languagetool, based on the number of LOCs. However, in terms of endpoints, it is the largest, with 192 of them. It would not be possible, given the space, to discuss each of these 192 endpoints. To analyze the achieved coverage, we hence used the test suites generated with both white-box and black-box testing. These have hundreds of test cases. Even calling each endpoint just once would result in at least 192 HTTP calls in the generated tests. Considering the complexity of this SUT, maybe using a larger search budget over 1 hour could be recommended.

More than 35% of the codebase (packages org.devgateway.ocvn and org.devgateway.ocds.persistence) deal with connections to databases such as SQL and MongoDB, but such code does not seem to be executed. This might happen if the endpoint executions fail before writing/reading from the databases (e.g., due to input validation). The definitions of HTTP handlers in the package org.devgateway.ocds.web.rest.controller take up more than 30% of the codebase. But only half of it (i.e., around 15%) gets covered by the tests. Few endpoints (e.g., in the class UserDashboardRestController) were not covered because they require admin authentication, which was not set up for these experiments (recall the discussion about authentication in Section 4.3). The class CorruptionRiskDashboardIndicatorsStatsController defines several HTTP endpoints, but none of them appears in the OpenAPI/Swagger schema. Therefore, they cannot be called by the fuzzers.

Around 5% of the codebase seems to deal with the generation of Excel charts, but that code is not covered. Out of the 14 HTTP endpoints dealing with this functionality, they all fail on the very first line (and so a substantial part of the codebase is not executed, possibly much higher than 5%), which is a variation of the following statement with different string inputs as the second parameter:

```java
final String chartTitle = translationService.getValue(
    filter.getLanguage(),
    "charts:cancelledFunding:title";
```

Here, the language is given as input in the HTTP requests, which then gets matched with a regular expression. This makes the translationService.getValue call crash when the regular expression is not satisfied. White-box testing can analyze these cases, but it can be hard for black-box techniques if the information on such regular expressions is not available in the OpenAPI/Swagger schemas.

Another large part of the code that is not covered (around another 5%) is in the package org.devgateway.ocds.web.spring. However, most of this code seems to only be called by the frontend of the OCVN application (and the jar file for ocvn-rest does not include this type of module). From the point of view of the HTTP endpoints, this can be considered dead code, because it cannot be reached from those endpoints.

It might be surprising that white-box testing gives significantly worse results than gray-box testing, by a large margin (i.e., 10.5%). In a combinatorial optimization problem, this can happen when the fitness function provides little to no gradient to the search, generating the so-called fitness plateaus. Mutation operators that only do small changes to the chromosome of an individual (i.e., an evolved test case in this context) would have lower chances to escape from such local optima. Evo-Master has some advance mechanisms to address these cases, such as adaptive hypermutation [70].
However, it was not enough to handle ocvn-rest. The problem here is that most endpoints take a JSON object as input, with several constraints that must be satisfied. However, those constraints are not evaluated in the business logic of the SUT but rather in a third-party library. These constraints are not specified in the OpenAPI schema. Figure 9 shows an example, in which the JSON input is unmarshalled into a YearFilterPagingRequest instance. Because this input is marked with the annotation @Valid, its validity is evaluated before the method countTendersByYear() is called. If it is not valid, then the Spring framework returns an HTTP response with status 400 (i.e., user error), without calling the method countTendersByYear().

As shown in Figure 10, the class YearFilterPagingRequest has nine fields on which javax.validation constraints are declared. Only one (out of nine) violated constraints is needed to invalidate the whole object. Because the constraints are evaluated in a third-party library, the fitness function has no gradient to guide the search to solve all of them. Looking at the results, it seems like generating valid instances at random is feasible, albeit with low probability. However, small mutations on an existing invalid instance have little to no chance to make the object valid.

To address these issues, there could be at least three strategies:

- **White-box**: Compute the fitness function to optimize the coverage (using different search heuristics) on all code, including third-party libraries, and not just the business logic of the SUT. In this way, there would be gradient for generating tests in which the code that evaluates @Valid constraints returns true. Although theoretically possible, this does not sound like a very promising approach (unless only the needed code in the third-party libraries is instrumented). In most cases, the code of the business logic of the SUT is just tiny compared to the source code of all used third-party libraries, which includes application frameworks such as Spring, HTTP servers such as Tomcat, and ORM libraries such as Hibernate. Instrumenting everything to compute advance heuristics on all third-party libraries would likely have huge performance overhead. This is particularly the case for all code that is executed before the business logic (e.g., the unmarshalling of incoming HTTP requests).

- **White-box**: Natively support @Valid in the fitness function, by creating a branch distance for each field, with the objective of minimizing the distance for all fields. Different branch distances can be computed for the different constraints that are part of the standard javax.validation (e.g., javax.validation.constraints.Min). A new testing target (to optimize for) could be created for each @Valid annotation in the business logic of the SUT. However, one major challenge here is that javax.validation allows the creation of custom constraint annotations. This is, for example, the case for @EachPattern and @EachRange used in Figure 10.

- **Black-box**: Even if the information on the field constraints are missing in the OpenAPI schema, it can be detected in the schema that the same object type is used as input in more than one endpoint. If that is the case, and if for an endpoint it is difficult to create a valid
instance (e.g., all evaluated HTTP calls so far return a response with HTTP status 400), then a possible strategy could be to re-use as input an instance created for another endpoint for which a 2xx status code was returned (if any has been created so far during the search).

A.12 realworld-app

On the realworld-app API, there is a small difference between EvoMaster black-box and Schemathesis (c8 instrumentation: 69.4% vs. 69.7%), and between gray-box and white-box EvoMaster (EvoMaster instrumentation without bootstrap coverage: 24.6% vs. 24.4%).

Most of the code is covered. What is left are either unfeasible branches or branches related to fetching data from the database (MySQL in this case) with some given properties. Figure 11 shows one such example, where three queries into the database are executed, based on the two inputs id and slug. The condition of the if statement at the end of that code snippet is never satisfied, as it depends on these three SQL queries. Recall that although EvoMaster has support for SQL query analyses (which could help in this case), it is currently only for JVM and not NodeJS.

A.13 proxyprint

With a line coverage of up to 53.3%, proxyprint is an API in which reasonable results are achieved, but more could be done. Several functions in this API are never called, and therefore they are impossible to cover, such as the methods sendEmailFinishedPrintRequest and sendEmailCancelledPrintRequest in the class MailBox, and the private methods singleFile
Open Problems in Fuzzing RESTful APIs: A Comparison of Tools

Fig. 11. A function snippet from the `article.service.js` file in the API `realworld-app`.

```javascript
unFavorite(id, slug) {
    return _awaiter(this, void 0, void 0, function* () {
        let article = yield this.articleRepository.findOne({ slug });
        const user = yield this.userRepository.findOne(id);
        const deleteIndex = user.favorites.findIndex(_article => _article.id === article.id);
        if (deleteIndex >= 0) {
            delete user.favorites[deleteIndex];
            yield this.userRepository.save(user);
        }
    });
}
```

Fig. 11. A function snippet from the `article.service.js` file in the API `realworld-app`.

@Secured("ROLE_USER")
@RequestMapping(value = "/consumer/requests",
 method = RequestMethod.GET)
public String getRequests(Principal principal) {
 JSONObject response = new JSONObject();
 Consumer consumer = consumers.findByUsername(
 principal.getName());
 if (consumer == null) {
 response.addProperty("success", false);
 return Gson.toJson(response);
 }
 return null;
}

Fig. 12. Snippet of function handler for the endpoint `/consumer/request` in `proxyprint`.

Handle and calcBudgetsForPrintShops in the class ConsumerController. Thus, 100% coverage is not possible on this API.

This API provides a selection of various branches that are not covered. However, it is not straightforward to discover the interesting challenges here. One problem is that the number of HTTP calls on this API is low, and therefore not much search is actually carried out compared to the other SUTs when using a 1-hour budget. For example, the generated statistic files of EvoMaster report an average of 37393 HTTP calls per experiment on `proxyprint`, whereas for `rest-news`, it is 372733 (i.e., nearly 10 times more). Thus, many of these missed branches could be covered if running EvoMaster for a longer amount of time. Still, some of these branches seem quite unlikely to be covered even with larger search budgets. Let us discuss a few of them. Some are related to authentication. For example, in Figure 12, the code inside the if statement is never executed. To reach that statement, an HTTP call with valid authentication information needs to be provided. Such authentication information is validated with the database when the Principal object is instantiated by the framework (Spring Security in this case). Authentication information needs to be available when the SUT starts (unless the API has some way to register new users directly on-the-fly from the API itself). Therefore, to deal with security (especially when involving hashed passwords), some initialization script is required (e.g., to register a set of users with valid username/password information). In the case of `proxyprint`, some other data in other tables is created as well (e.g., in the Consumer table). To be able to cover this type of branch, a fuzzer should find a way to either create new valid users or modify the existing data in the database (e.g., EvoMaster can add new data but not modify the existing one [32]).

Figure 13 shows an example in which the line defining the variable quantity throws an exception, due to `Double.valueOf` being called on a null input. Here, an HTTP object request is passed as input to the constructor of IPNMessage, which is part of the PayPal SDK library. Inside this type of library, `request.getParameterMap()` is called to extract all parameters of the HTTP request, which are used to populate the map object returned by `ipnlistener.getIpnMap()`. How-
ever, as such parameters are read dynamically at runtime, the OpenAPI/Swagger schema has no knowledge of them (as for this SUT, the schema is created automatically with a library when the API starts). Therefore, there is no information to use an HTTP parameter called mc_gross of type double. As this kind of parameter is used directly without being transformed, testability transformations with taint analysis might be able to address this problem [33], but such techniques would need to be extended to support getParameterMap() and Map.get.

Figure 14 shows another interesting example, where the value of a string field in a JSON payload is used directly to instantiate an enum value (i.e., the statement Item.RingType.valueOf(-rti.getRingType())). This fails, as a random string is extremely unlikely to represent a valid value from a restricted set. This might be handled by providing such information in the OpenAPI/Swagger schema (which supports defining enumerations on string fields), or also by handling valueOf() in enumeration by extending the techniques in the work of Arcuri and Galeotti [33] to support it.

The handler calcBudgetForPrintRequest for the endpoint /consumer/budget is never called (and so all business logic related to this endpoint remains uncovered by the tests). This type of endpoint requires a payload with type multipart/form-data as input, but the schema wrongly specifies the application/json type. A fuzzer might be able to handle this case automatically, but it could be considered as a major issue in the schema, which should be fixed by the users like a fault in the SUT. In other words, there is a big difference between not providing all information (e.g., missing enum value constraints like in the case of /printshops/{id}/pricetable/rings) and providing wrong information (i.e., wrong payload type as in the case of /consumer/budget).

A.14 rest-ncs
On the rest-ncs SUT, white-box testing with EvoMaster achieves an average of 93%. An analysis of the non-covered lines shows that those are not possible to reach (i.e., dead code). An example is checking twice if a variable is lower than 0, and returning an error if so. In this case, it is impossible to make the second check true. Therefore, as the maximum achievable coverage is obtained in each single run, this can be considered as a solved problem.
Regarding black-box testing, all but two fuzzers achieve more than 50% line coverage, with Schemathesis achieving 94.1% coverage (computed with JaCoCo), followed by RestCT achieving 85.5% average coverage. On this API, black-box EvoMaster gives worse results (i.e., 64.4%).

This is a rather interesting phenomenon, which is strongly dependent on some design choices these fuzzers make. For example, some branches in this API depend on whether two or more integer inputs are equal (e.g., in the case of Triangle Classification). Given two 32-bit integers X and Y, there is only a $1/2^{32}$ chance that $X = Y$. On average, it will need to sample more than 2 billion values before obtaining $X = Y$. With such constraints, it will be quite difficult for a black-box fuzzer to cover this kind of branch if integer inputs are sampled at random. However, a fuzzer does not need to sample from the whole spectrum of all possible integers. For example, it could sample from a restricted range (e.g., $[-100, 100]$). On the one hand, the shorter the range, the higher the chances to sample $X = Y$. On the other hand, a short range could make it impossible to cover branches that require values outside such range (e.g., 12345). This is a tradeoff that needs to be made.

On this API, it was possible to achieve up to 66.5% line coverage. As for the other SUTs, most of the missing coverage is due to dead code, which is impossible to execute. However, there are some branches that should be possible to cover, but they were not. All of these seem to be related to the same issue, which is the update of existing data in the database. Databases allow the defining of constraints on their data (e.g., a number should be within a certain range), using SQL commands such as CHECK. White-box EvoMaster can generated test data directly into SQL databases [32], taking into account all of these constraints (as all of this information is available in the schema of the database). If any constraint is not satisfied, then the INSERT SQL commands will fail. The problem here is that the SUT might define further constraints on such data. In JVM projects, this is commonly done with javax.validation annotations when using ORM libraries such as Hibernate [9]. But EvoMaster does not seem to handle this and generates data that is valid for the database (as all of the CHECK operations pass and the INSERTs do not fail) but not for these further constraints. Therefore, in an update endpoint, invalid (from the point of view of javax.validation constraints) data can be read from the database, which the SUT then fails to write back (as these javax.validation constraints are checked on each write operation) when the update endpoint has done its computations.

A.15 rest-news

On this API, it was possible to achieve up to 66.5% line coverage. As for the other SUTs, most of the missing coverage is due to dead code, which is impossible to execute. However, there are some branches that should be possible to cover, but they were not. All of these seem to be related to the same issue, which is the update of existing data in the database. Databases allow the defining of constraints on their data (e.g., a number should be within a certain range), using SQL commands such as CHECK. White-box EvoMaster can generated test data directly into SQL databases [32], taking into account all of these constraints (as all of this information is available in the schema of the database). If any constraint is not satisfied, then the INSERT SQL commands will fail. The problem here is that the SUT might define further constraints on such data. In JVM projects, this is commonly done with javax.validation annotations when using ORM libraries such as Hibernate [9]. But EvoMaster does not seem to handle this and generates data that is valid for the database (as all of the CHECK operations pass and the INSERTs do not fail) but not for these further constraints. Therefore, in an update endpoint, invalid (from the point of view of javax.validation constraints) data can be read from the database, which the SUT then fails to write back (as these javax.validation constraints are checked on each write operation) when the update endpoint has done its computations.
With a line coverage of up to 86.2%, rest-scs is an API in which white-box testing is highly effective. Two types of branches were not covered: the ones involving regex checks with Pattern.matches and the other involving the dot character (\'.\'). In this latter case, it is due to EvoMASTEr not using this type of character when sampling random strings, which makes the if statement in Figure 15 impossible to cover. This might sound like something rather simple to fix. However, as soon as special characters are used in random strings, extra care needs to be taken into consideration when outputting test cases (e.g., the character '$' has special meaning in Kotlin and would need to be escaped when used in strings, which is not the case for Java). Character escaping rules can be quite different based on the context in which they are used in a test case (e.g., inside a URL, inside a JSON object passed as HTTP body payload, or data injected into a SQL database). All of these cases have to be handled, as otherwise the tools would end up generating test cases that do not compile.

A.17 restcountries

On the restcountries API, high coverage is achieved (i.e., 77.1%). Like the other SUTs, there is quite a bit of dead code due to getters/setters that are never called and catch blocks for exceptions that might not be possible to throw via test cases. The class StripeRest presents an interesting case, as it defines the endpoint /contribute, but its information is not in the schema (and thus this type of endpoint is never called).

Figure 16 shows a code snippet that is repeated several times with small variations in a few endpoints. Here, this API returns a list of countries based on different filtering criteria, such as country codes. However, the response with NOT_FOUND is never returned. The problem is that even if the HTTP requests provide invalid inputs (e.g., a country code that does not exist), the countries list is wrongly populated with null values, and thus the list is never empty. This is an interesting bug in the API, which then results in a crash (i.e., a returned 500 status code), as parsedCountries throws an exception. However, until this fault in the API is fixed, all of these statements with NOT_FOUND are technically dead code that cannot be reached with the tests.

Similarly to rest-ncs, the fuzzing of this API might be considered as a solved problem, at least for its current faulty version.
A.18 scout-api

On scout-api, white-box EvoMaster achieves slightly worse results (53.4% vs. 54.7%), although the difference is not statistically significant (based on 10 runs). A large part of its codebase (more than a third) cannot be executed. For example, in the background, scout-api can start a thread to fetch and analyze some data, independently from the RESTful endpoints (i.e., the whole module data-batch-jobs). This type of thread is deactivated by default, and therefore nearly 30% of the whole codebase is not executed. Another non-negligible part of the codebase (around 5%) is related to authentication using OAuth via Google APIs (scout-api provides different ways to authenticate).

There is a large part of the codebase that could be executed, but it is not due to an if statement at the beginning of one of the HTTP endpoints. This is shown in Figure 17. Here an incoming JSON payload is unmarshalled into a MediaFile object, which has a string field that is treated as a URI. Most random strings are a valid URI, as a URI can just be a name. However, it is extremely unlikely that a random string would represent a URI with a valid scheme component, and so uri.getScheme() returns null. However, this is a case that likely would be trivial to solve with taint analysis (e.g., by extending the techniques in the work of Arcuri and Galeotti [33] to support URI objects). However, this does not mean that much higher coverage would be achieved; it depends on all remaining code that is executed once that predicate is satisfied.

Even without code analyses, this type of challenge could also be addressed with black-box techniques. For example, in this API, the string field representing the URI is called uri. An analysis of the names of the fields can be used to possibly infer their expected type. For example, any field whose name starts or ends with uri could be treated as an actual URI when data is generated. Additionally, some types are quite common in RESTful APIs, like strings representing URLs and dates. Instead of sampling strings completely at random, it could make sense to sample with some probability strings with given types that are commonly used. This might now work in all cases, but it is something worthy of investigation.

A.19 spacex-api

Similarly to realworld-app, on spacex-api, there is only a small difference between EvoMaster black-box and Schemathesis (c8 instrumentation: 84.7% vs. 85.4%), and between gray-box and white-box EvoMaster (EvoMaster instrumentation without bootstrap coverage: 41.5% vs. 41.5%, but with $\hat{A}_{12} = 0.58$). There are two main issues affecting the coverage results here.

First, this API requires authentication, where each API endpoint requires specific authorization roles for execution. For these experiments, a user with the right credentials was created in the database, and the fuzzers were given the authorization information to send HTTP messages on behalf of this user. The setting up of this user was done manually, in a script. However, after running the experiments and analyzing the generated tests, we realized that some authorization...
roles were missing (e.g., capsule:create). Therefore, a few endpoints were not covered due to misconfigured authentication.

The second main issue is related to the database. Figure 18 shows an example in which a record is searched by ID. No test generated by EvoMaster was able to make a call that returned a 200 HTTP status code. For white-box testing, EvoMaster fails to do this because it is not able to analyze queries on MongoDB databases. Even with black-box testing, it could be possible to create a new record with a POST and use its ID for a following GET. Fuzzers can exploit this kind of information to create sequences of HTTP calls where ids are linked. However, this all depends on how the link is defined. Figure 19 shows the implementation of the POST endpoint to create this type of record. EvoMaster has no issue in fully covering the code of such an endpoint and creating valid records. Additionally, EvoMaster uses different strategies to link endpoints that manipulate the same resources [29, 75]. However, those are based on the recorded interactions with the database (not done here for NodeJS and MongoDB), and on best practices in RESTful API design. For example, it is a recommended practice that POSTs on collections of resources (e.g., /cores) create a new resource, whose id (chosen on the server, to guarantee it is unique, unless it is a UUID) is present in the location HTTP header of the response (e.g., location: /cores/42). EvoMaster can use these location headers to create POST requests followed with the appropriate linked GET. However, on this API, the POST implementation in Figure 19 does not seem to follow best practices in REST API design. For example, it does not set up the location header in the response, and neither does it return the generated id (e.g., in the body payload). However, it could still be possible to test this kind of API by doing the following: create a new resource with POST /cores, followed by a GET of the whole collection (i.e., GET /cores), and then extract the id fields from this response to call GET /cores/:id with a valid id. Note that this is assuming that the collection is empty. If it is not, then the first POST is not even necessary. However, this also assumes that the name of the field representing the ID is the same (or at least very similar) in both the body payload and endpoint path parameter (so they can be matched).
REFERENCES

[1] Amazon Gateway API. n.d. Working with REST APIs. Retrieved May 20, 2022 from https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html.

[2] GitHub. n.d. APIFuzzer—HTTP API Testing Framework. Retrieved May 23, 2022 from https://github.com/KissPeter/APIFuzzer.

[3] GitHub. n.d. ApiTester. Retrieved May 20, 2022 from https://github.com/opendata-for-all/api-tester.

[4] Nuno Laranjeiro. n.d. bBOXRT. Retrieved May 23, 2023 from https://git.dei.uc.pt/cnl/bBOXRT.

[5] GitHub. n.d. C8. Retrieved May 20, 2022 from https://github.com/bcoe/c8.

[6] GitHub. n.d. EvoMaster. Retrieved May 23, 2023 from https://github.com/EMResearch/EvoMaster.

[7] GitHub. n.d. EvoMaster Benchmark (EMB). Retrieved May 20, 2022 from https://github.com/EMResearch/EMB.

[8] Google Drive. n.d. Introduction to Google Drive API. Retrieved May 20, 2022 from https://developers.google.com/drive/api/v3/about-sdk.

[9] Hibernate. n.d. Hibernate Home Page. Retrieved May 20, 2022 from http://hibernate.org.

[10] JaCoCo. n.d. JaCoCo Home Page. Retrieved May 20, 2022 from https://www.jacoco.org/.

[11] GitHub. n.d. Language-Agnostic HTTP API Testing Tool. Retrieved May 23, 2023 from https://github.com/apiaryio/dredd.

[12] Microsoft. n.d. LinkedIn API. Retrieved May 20, 2022 from https://docs.microsoft.com/en-us/linkedin/.

[13] Swagger. n.d. OpenAPI/Swagger. Retrieved May 20, 2022 from https://swagger.io/.

[14] Reddit. n.d. Reddit API. Retrieved May 20, 2022 from https://www.reddit.com/dev/api.

[15] GitHub. n.d. RESTest. Retrieved May 23, 2023 from https://github.com/isa-group/RESTest.

[16] GitHub. n.d. RESTler. Retrieved May 23, 2023 from https://github.com/microsoft/restler-fuzzer.

[17] GitHub. n.d. RestCT. Retrieved May 23, 2023 from https://github.com/SeUniVe/RestTestGen.

[18] Schemathesis. n.d. Command Line Interface. Retrieved May 23, 2023 from https://schemathesis.readthedocs.io/en/stable/cli.html.

[19] Schemathesis. n.d. Schemathesis: Property-Based Testing for API Schemas. Retrieved May 23, 2023 from https://schemathesis.readthedocs.io/.

[20] Twitter Developer Platform. n.d. Twitter API. Retrieved May 20, 2022 from https://developer.twitter.com/en/docs/twitter-api.

[21] WireMock. n.d. WireMock Home Page. Retrieved May 20, 2022 from https://wiremock.org/.

[22] Nasser Albunian, Gordon Fraser, and Dirk Sudholt. 2020. Causes and effects of fitness landscapes in unit test generation. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO’20). 1204–1212.

[23] Andrea Arcuri. 2009. Full theoretical runtime analysis of alternating variable method on the triangle classification problem. In Proceedings of the International Symposium on Search Based Software Engineering (SSBSE’09). 113–121.

[24] Andrea Arcuri. 2009. Insight knowledge in search based software testing. In Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO’09). 1649–1656.

[25] Andrea Arcuri. 2017. RESTful API automated test case generation. In Proceedings of the IEEE International Conference on Software Quality, Reliability, and Security (QRS’17). IEEE, Los Alamitos, CA. 9–20.

[26] Andrea Arcuri. 2018. EvoMaster: Evolutionary multi-context automated system test generation. In Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation (ICST’18). IEEE, Los Alamitos, CA.

[27] Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster. ACM Transactions on Software Engineering and Methodology 28, 1 (2019), 3.

[28] Andrea Arcuri. 2020. Automated black-and white-box testing of RESTful APIs with EvoMaster. IEEE Software 38, 3 (2020), 72–78.

[29] Andrea Arcuri and L. Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Software Testing, Verification and Reliability 24, 3 (2014), 219–250.

[30] Andrea Arcuri and Juan P. Galeotti. 2020. Handling SQL databases in automated system test generation. ACM Transactions on Software Engineering and Methodology 29, 4 (2020), 1–31.

[31] Andrea Arcuri and Juan P. Galeotti. 2021. Enhancing search-based testing with testability transformations for existing APIs. ACM Transactions on Software Engineering and Methodology 31, 1 (2021), 1–34.

[32] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2021. EvoMaster: A search-based system test generation tool. Journal of Open Source Software 6, 57 (2021), 2153.

[33] Andrea Arcuri, Zhang Man, asma89, Bogdan, Amid Gol, Juan Pablo Galeotti, Seran, et al. 2022. EMResearch/EvoMaster. https://doi.org/10.5281/zenodo.6651631

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.
[36] Andrea Arcuri, Zhang Man, Amid Golmohammadi, and asma b89. 2022. EMResearch/EMBi. Retrieved May 23, 2023 from https://doi.org/10.5281/zenodo.6106830

[37] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTer: Stateful REST API fuzzing. In Proceedings of the ACM/IEEE International Conference on Software Engineering (ICSE’19). 748–758.

[38] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking security properties of cloud service rest APIs. In Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation (ICST’20). IEEE, Los Alamitos, CA, 387–397.

[39] Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. Evolutionary-based automated testing for GraphQL APIs. In Proceedings of the 2022 Genetic and Evolutionary Computation Conference (GECCO’22).

[40] Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. White-box and black-box fuzzing for GraphQL APIs. arXiv:2209.05833 [cs.SE] (2022). https://doi.org/10.48550/ARXIV.2209.05833

[41] Marcel Böhme, László Székeres, and Jonathan Metzmann. 2022. On the reliability of coverage-based fuzzer benchmarking. In Proceedings of the 44th IEEE/ACM International Conference on Software Engineering (ICSE’22). 1621–1633.

[42] José Campos, Yan Ge, Nasser Al-Bunan, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test suite generation. Information and Software Technology 104 (2018), 207–235.

[43] Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato. 2021. Empirical comparison of black-box test case generation tools for RESTful APIs. In Proceedings of the 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM’21). IEEE, Los Alamitos, CA, 226–236.

[44] Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Vigliani, Michael Dallago, and Mariano Ceccato. 2022. Automated black-box testing of nominal and error scenarios in RESTful APIs. Software Testing, Verification and Reliability 32, 5 (2022), e1808.

[45] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Automatic generation of test cases for REST APIs: A specification-based approach. In Proceedings of the 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC’18). 181–190.

[46] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent REST API data fuzzing. In Proceedings of the ACM Symposium on the Foundations of Software Engineering (FSE’20). ACM, New York, NY, 725–736.

[47] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential regression testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 312–323.

[48] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2022. Testing RESTful APIs: A Survey. arXiv:2212.14604 (2022). https://doi.org/10.48550/ARXIV.2212.14604

[49] M. Harman and P. McMinn. 2010. A theoretical and empirical study of search based testing: Local, global and hybrid search. IEEE Transactions on Software Engineering 36, 2 (2010), 226–247.

[50] Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving semantics-aware fuzzers from web API schemas. In Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion’22). IEEE, Los Alamitos, CA, 345–346.

[51] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of mutation testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649–678.

[52] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST: Property-based test generation of Open Source Software. In Proceedings of the 20th ACM on Interactive, Mobile, Intelligent and Distributed Systems (ASONAM’20). IEEE, Los Alamitos, CA, 231–241.

[53] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated test generation for REST APIs. In Proceedings of the 2022 ACM SIGSOFT International Symposium on Software Testing and Analysis (IST’22). 289–301. https://doi.org/10.48550/ARXIV.2204.08348

[54] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A black box tool for robustness testing of REST services. IEEE Access 9 (2021), 24738–24754.

[55] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-based RESTful API testing with execution feedback. In Proceedings of the ACM/IEEE International Conference on Software Engineering (ICSE’22).

[56] David R. MacIver and Zac Hatfield-Dodds. 2019. Hypothesis: A new approach to property-based testing. Journal of Open Source Software 4, 43 (2019), 1891.

[57] Bogdan Marculescu, Man Zhang, and Andrea Arcuri. 2022. On the faults found in REST APIs by automated test generation. ACM Transactions on Software Engineering and Methodology 31, 3 (2022), 1–43.

[58] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés. 2021. Black-box and white-box test case generation for RESTful APIs: Enemies or allies? In Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE’21). IEEE, Los Alamitos, CA, 231–241.

[59] Alberto Martin-Lopez, Sergio Segura, Carlos Muller, and Antonio Ruiz-Cortés. 2022. Specification and automated analysis of inter-parameter dependencies in web APIs. IEEE Transactions on Services Computing 15, 4 (2022), 2342–2355.
Open Problems in Fuzzing RESTful APIs: A Comparison of Tools

[60] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest: Black-box constraint-based testing of RESTful web APIs. In Proceedings of the International Conference on Service-Oriented Computing.

[61] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest: Automated black-box testing of RESTful web APIs. In Proceedings of the ACM International Symposium on Software Testing and Analysis (ISSTA’21). ACM, New York, NY, 682–685.

[62] A. Giuliano Mirabella, Alberto Martin-Lopez, Sergio Segura, Luis Valencia-Cabrera, and Antonio Ruiz-Cortés. 2021. Deep learning-based prediction of test input validity for RESTful APIs. In Proceedings of the 2021 IEEE/ACM 3rd International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest’21). IEEE, Los Alamitos, CA, 9–16.

[63] Andy Neumann, Nuno Laranheiro, and Jorge Bernardino. 2021. An analysis of public REST web service APIs. IEEE Transactions on Services Computing 14, 4 (2021), 957–970.

[64] Sam Newman. 2015. Building Microservices. O’Reilly Media.

[65] Juan Carlos Alonso Valenzuela, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and Antonio Ruiz-Cortes. 2023. ARTE: Automated generation of realistic test inputs for web APIs. IEEE Transactions on Software Engineering 49, 1 (2023), 348–363.

[66] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. REStTESTGEN: Automated black-box testing of RESTful APIs. In Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation (ICST’20). IEEE, Los Alamitos, CA.

[67] Huayao Wu, Lixin Xu, Xiantao Niu, and Changhai Nie. 2022. Combinatorial testing of RESTful APIs. In Proceedings of the IEEE/ACM International Conference on Software Testing, Verification, and Validation (ICSE’22).

[68] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Characteristic studies of loop problems for structural test generation via symbolic execution. In Proceedings of the 35th International Conference on Software Engineering (ICSE’13). IEEE, Los Alamitos, CA, 246–256.

[69] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise identification of problems for structural test generation. In Proceeding of the 33rd International Conference on Software Engineering (ICSE’11). ACM, New York, NY, 611–620.

[70] Man Zhang and Andrea Arcuri. 2021. Adaptive hypermutation for search-based system test generation: A study on REST APIs with EvoMaster. ACM Transactions on Software Engineering and Methodology 31, 1 (2021), Article 2, 52 pages.

[71] Man Zhang and Andrea Arcuri. 2022. Open problems in fuzzing RESTful APIs: A comparison of tools. arXiv preprint arXiv:2205.05325 (2022).

[72] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2023. White-box fuzzing RPC-based APIs with EvoMaster: An industrial case study. ACM Transactions on Software Engineering and Methodology. Published online, February 22, 2023. https://doi.org/10.48550/ARXIV.2208.12743

[73] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2023. White-box fuzzing RPC-based APIs with EvoMaster: An industrial case study. ACM Transactions on Software Engineering and Methodology. Published online, February 22, 2023. https://doi.org/10.1145/3585009

[74] Man Zhang, Asma Belhadi, and Andrea Arcuri. 2022. JavaScript instrumentation for search-based software testing: A study with RESTful APIs. In Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation (ICST’22). IEEE, Los Alamitos, CA.

[75] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2021. Resource and dependency based test case generation for RESTful web services. Empirical Software Engineering 26, 4 (2021), Article 76, 61 pages.

Received 12 July 2022; revised 13 April 2023; accepted 19 April 2023