Original Research Article

Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*

Malek Taher Maghsoodlou¹*, Nasrin Kazemipoor², Jafar Valizadeh³, Mohsen Falak Nezhad Seifi¹, Nahid Rahneshan¹

¹Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
²Department of Agriculture, Shiraz University, Shiraz, Iran
³Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran

Article history:
Received: Nov 13, 2014
Received in revised form: Feb 7, 2015
Accepted: June 14, 2015
Vol. 5, No. 6, Nov-Dec 2015, 540-552.

* Corresponding Author:
Tel: +985418052269
Fax: +985412446565
mt_maghsoodlu@chem.usb.ac.ir

Keywords:
Essential oil
Eucalyptus microtheca
Eucalyptus viminalis
Myrtaceae
Hydro-distillation, GC/MS

Abstract

Objective: *Eucalyptus* (Fam. Myrtaceae) is a medicinal plant and various *Eucalyptus* species possess potent pharmacological actions against diabetes, hepatotoxicity, and inflammation. This study aims to investigate essential oil composition from leaves and flowers of *E. microtheca* and *E. viminalis* leaves growing in the Southeast of Iran.

Materials and Methods: The aerial parts of these plants were collected from Zahedan, Sistan and Baluchestan province, Iran in 2013. After drying the plant materials in the shade, the chemical composition of the essential oils was obtained by hydro-distillation method using a Clevenger-type apparatus and analyzed by GC/MS.

Results: In the essential oil of *E. microtheca* leaves, 101 compounds representing 100%, were identified. Among them, α-phellandrene (16.487%), aromadendrene (12.773%), α-pinene (6.752%), globulol (5.997%), ledene (5.665%), P-cymen (5.251%), and β-pinene (5.006%) were the major constituents. In the oil of *E. microtheca* flowers, 88 compounds representing 100%, were identified in which α-pinene (16.246%), O-cymen (13.522%), β-pinene (11.082%), aromadendrene (7.444%), α-phellandrene (7.006%), globulol (5.419%), and 9-octadecenamide (5.414%) were the major components. Sixty six compounds representing 100% were identified in the oil of *E. viminalis* leaves. The major compounds were 1, 8-cineole (57.757%), α-pinene (13.379%), limonene (5.443%), and globulol (3.054%).

Conclusion: The results showed the essential oils from the aerial parts of *Eucalyptus* species are a cheap source for the commercial isolation of α-phellandrene, α-pinene, and 1, 8-cineole compounds to be used in medicinal and food products. Furthermore, these plants could be an alternative source of insecticide agents.

Please cite this paper as:
Maghsoodlou MT, Kazemipoor N, Valizadeh J, Falak Nezhad Seifi M, Rahneshan N. Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*. Avicenna J Phytomed, 2015; 5 (6): 540-552.
Introduction
Plants and their derivatives such as essential oils have long been used as food flavoring, beverages, and antimicrobial agents (Ghasemi et al., 2005). Nowadays, developing countries pay more attention to herbal medicines due to the noxious side effects of synthetic medicines on patients. In addition, the application of natural antioxidants in food factories has attracted a growing interest (Asghari and Mazaheritehrani, 2010) to minimize such oxidative damages in human body. Therefore, research works concerning essential oils as potential antioxidants for treatment of human diseases and free radical-related disorders are important. Concomitantly, public attention to natural antioxidants has been increased during the last years, and it is necessary to find natural sources of antioxidants that could replace synthetic antioxidants or at least reduce their use as food additives. For these reasons, numerous researches have been conducted in the extraction field of biologically active compounds from the herbs (Shahidi, 2000). Eucalyptus (Fam. Myrtaceae) is a genus of evergreen aromatic flowering trees, which has over 600 species (Jahan et al., 2011; Nagpal et al., 2010). It is indigenous in Australia and its Northern islands (Mozaffarian, 1996). Because of their economic value, various species of Eucalyptus are cultivated in sub-tropical and warm temperate regions (Sastri, 2002). Some of the Eucalyptus species are used for feverish conditions (malaria, typhoid, and cholera) and skin problems such as burns, ulcers, and wounds (Reynolds and Prasad, 1982). Eucalyptus species contain volatile oils that are most plentiful in the plant leaves (Pearson, 1993). Anticancer, antifungal, anti-inflammatory (Sadlon and Lamson, 2010), and antioxidant properties (Grassmann et al., 2000) have been attributed to the leaf extracts of this plant.

For this reason, the importance of these plants as an herbal medicine, the aim of the present study was to investigate the chemical composition of the essential oil from leaves and flowers of Eucalyptus microtheca and E. viminalis leaves from Zahedan (with latitude of 29° 29’ N and longitude of 60° 51’ E and 1352 m above sea level in summer of 2013) in Sistan and Baluchestan province, Iran as an important geographical zone for medicinal plants.

Material and Methods
Plant materials
Eucalyptus microtheca and E. viminalis were collected in June, 2013 from Zahedan in Sistan and Baluchestan province (GPS coordinates: 60.8628, 29.4964), Iran during the flowering stage. The taxonomic identification of each plant was confirmed by Professor V. Mozaffarian, Research Institute of Forests and Ragelands, Tehran, Iran. The voucher specimens were deposited in the national herbarium of Iran (TARI). Collected plant materials were separated with a meticulous care and dried in the shade to avoid extra damaging and minimizing cross-contamination of the plant leaves.

Isolation of the essential oil
The leaves and flowers of E. microtheca and E. viminalis leaves were dried and milled into a fine powder. The volatile oils were isolated by hydrodistillation method using a Clevenger-type apparatus. For the extraction, 50 g of the cleaned, air-dried and powder of leave samples of E. microtheca and E. viminalis were hydro-distilled with 500 mL water in a Clevenger-type apparatus for 4 h. Moreover, 30 g of the E. microtheca flower samples were hydro-distilled with 300 mL water for 4 h. The oils were dried over anhydrous Na₂SO₄ (Merck), stored in a dark glass bottle and kept at -8 °C until analysis.
Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*

Essential oil analysis

The essential oils were analyzed on an Agilent 6890 gas chromatograph interfaced to an Agilent 5973 N mass selective detector (Agilent Technologies, Palo Alto, USA). A fused silica capillary column (30 m length × 0.025 mm internal diameter × 0.25 μm film thickness; HP-1; silica capillary column, Agilent Technologies) was used. The data were acquired under the following conditions: The oven temperature increased from 40 °C to 250 °C at a rate of 3 °C/min.

The temperatures of injector and detector also were 250 °C and 230 °C, respectively. The carrier gas was helium (99.999%) with a flow rate of 1 ml/min and the split ratio was 50 ml/min. For GC–MS detection, an electron ionization system with ionization energy of 70 eV was used. The retention indices were calculated for all volatile constituents using retention time of *n*-alkanes (C₈–C₂₂) which were injected at the same chromatographic conditions. The components were identified by comparing retention indices with those of standards. The results were also confirmed by comparing their mass spectra with the published mass spectra or Wiley library.

Results

The oils were isolated by hydrodistillation and analyzed by capillary gas chromatography, using flame ionization and mass spectrometric detection. The obtained results of the identified compounds in the essential oil of leaves and flowers of *E. microtheca* and *E. viminalis* leaves with their percentage, retention index (RI), and retention time (tR) are shown in Tables 1, 2, and 3, respectively. The chromatographic analysis of extracted volatile oil of *E. microtheca* leaves revealed the presence of sesquiterpenes (47.852%), monoterpenes (46.844%), polyketides and fatty acids (3.496%), diterpene (0.140%), alkanes (0.085%), aromatic compounds (0.029%), and other compounds (1.521%).

Table 1. Composition of the volatile oil of *Eucalyptus microtheca* leaves.

No.	Compound	%	RI	tR (min)
1	α–thujene	0.742	742	9.381
2	α -pinene	6.752	767	9.716
3	comphene	0.079	792	10.063
4	β - pinene	5.006	817	11.33
5	β -myrcene	0.533	850	12.025
6	α-phellandrene	16.487	871	12.755
7	α -terpinene	0.832	892	13.103
8	p -cymene	5.251	913	13.374
9	β-phellandrene	2.194	934	13.626
10	Limonene	1.503	955	13.722
11	Cis-ocimene	1.655	976	14.144
12	β–ocimene Y	0.101	997	14.546
13	γ -terpinene	1.235	1018	14.976
14	Cymene	0.024	1038	16.021
15	α -terpinolene	0.425	1054	16.267
16	Roesfuran	0.024	1073	16.499
17	Cycloheptanmethanol	0.061	1092	16.581
18	Linalool L	0.093	1112	16.806

1 Compound percentage 2 Retention index 3 Retention time
Continued table 1.

No.	Compound	%	RI	RT (min)
19	Isoamyl isovalerate	0.529	1131	17.038
20	Isoamyl valerate	0.056	1151	17.152
21	Fenchol	0.076	1170	17.222
22	Trans-pinene hydrate	0.062	1190	17.598
23	Allocimene	0.049	1209	18.247
24	1-terpineol	0.045	1229	18.412
25	1-methylnorcarane	0.051	1267	19.229
26	Ethylbenzoate	0.124	1287	19.367
27	1-(adamantyl) cyclohexene	2.028	1507	23.545
28	cis-fenchol	0.224	1404	21.183
29	Thiophene, 2-ethyl-5-methyl	0.085	1448	21.866
30	Ascaridole	0.042	1429	21.729
31	Dicyclobutylidene oxide	0.084	1527	24.404
32	Divinyldimethylsilane	0.114	1507	23.545
33	1-methoxyhept-1-yne	1.809	1478	22.992
34	Citronellyl formate	0.287	1516	24.67
35	Carvacrol	0.120	1428	21.729
36	Δ-cubebene	0.160	1927	28.309
37	Isolatedene	0.124	1287	19.367
38	Lapine	0.224	1404	21.183
39	Alloarmadendrene	0.224	1404	21.183
40	Acaridol	0.042	1429	21.866
41	Dicyclobutylidene oxide	0.084	1527	24.404
42	1-methoxyhept-1-yne	1.809	1478	22.992
43	Citronellyl formate	0.287	1516	24.67
44	Carvacrol	0.120	1428	21.729
45	Δ-cubebene	0.160	1927	28.309
46	Isolatedene	0.124	1287	19.367
47	Lapine	0.224	1404	21.183
48	Alloarmadendrene	0.224	1404	21.183
49	Acaridol	0.042	1429	21.866
50	Dicyclobutylidene oxide	0.084	1527	24.404
51	1-methoxyhept-1-yne	1.809	1478	22.992
52	Citronellyl formate	0.287	1516	24.67
53	Carvacrol	0.120	1428	21.729
54	Δ-cubebene	0.160	1927	28.309
55	Isolatedene	0.124	1287	19.367
56	Lapine	0.224	1404	21.183
57	Alloarmadendrene	0.224	1404	21.183
58	Acaridol	0.042	1429	21.866
59	Dicyclobutylidene oxide	0.084	1527	24.404
60	1-methoxyhept-1-yne	1.809	1478	22.992
61	Citronellyl formate	0.287	1516	24.67
62	Carvacrol	0.120	1428	21.729
63	Δ-cubebene	0.160	1927	28.309
64	Isolatedene	0.124	1287	19.367
65	Lapine	0.224	1404	21.183
66	Alloarmadendrene	0.224	1404	21.183

1 Compound percentage 2 Retention index 3 Retention time
Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*

Continued table 1.

No.	Compound	%	RI	RT (min)
67	Globulol	5.997	2786	37.554
68	Veridiflorol	1.243	2816	37.74
69	1, 3-dimethyl-5-ethyladamantane	0.285	2845	37.80
70	Ledol	0.753	2875	38.036
71	γ-curcumene	0.391	2963	38.965
72	Isospathulenol	0.300	2992	39.259
73	Tau-murolol	1.580	2509	39.495
74	δ-cadinol	0.231	2529	39.562
75	Guaia-3, 9-diene	0.292	2548	39.767
76	α-cadinol	0.806	2568	39.908
77	Vulgarol A	0.129	2587	40.375
78	Hexadecanoic acid	0.093	2886	51.074
79	2-tridecanol	0.028	2909	51.382
80	Hexadecanoic acid ethyl ester	0.025	2932	51.755
81	Decyltetraglycol	0.025	2955	59.356
82	Tricosane	0.012	2979	61.218
83	Benzoinitrile, m-phenethyl	0.032	-	-
84	Pentacosane	0.073	-	0.046
85	Pentaoxyethylated pentadecyl alcohol	0.036	-	-
86	1-cyclohexene-1-carboxaldehyde, 4-(1-methylethyl)	0.170	-	-
87	Cyclohexene, 3-methyl-6-(1-methylethyl)	0.108	-	-
88	2- cyclohexene-1-ol, 2-methyl-5-(1-methylethyl)-, trans-	0.059	-	-
89	2, 3-dimethyl-cyclohexa-1, 3-diene	0.390	-	-
90	α-campholic acid	0.049	-	-
91	Furan, 2, 3-dihydro-4-(1-methylpropyl)	0.458	-	-
92	(E)-3-isopropyl-6-oxo-2-heptenal	0.058	-	-
93	1, 5, 5-trimethyl-6-methylene-cyclohexene	0.056	-	-
94	2, 6, 10-trimethyl-2, 5, 7, 10-dioxido-dodeca-3, 11-diene-5-ol	0.268	-	-
95	Tricyclo [6.3.0.1(2, 3)]undec-7-ene, 6, 10, 11, 11-tetramethyl	0.138	-	-
96	1-methyl-4-isopropyl-cis-3-hydroxyxyclohex-1-ene-6-one	0.230	-	-
97	1H-cycloprop[a]napthalene, decahydro-1,1,3-a-trimethyl-7-methylene-\[1a[1.alphal,5a.alphal,7a.beta,7b.alphal.]]	0.235	-	-
98	Naphthalene, 1, 2, 3, 4, 4alpha, 7hexahydro-1, 6-dimethyl-4-(1-methylethyl)	0.139	-	-
99	Bicyclo[3.1.0]hex-2-ene,2-methyl-5-(1-methylethyl)	0.026	-	-
100	(++)-1R, 2S, 4R, 7R-7-isopropyl-5-methyl-5-bicycle [2.2.2]octen-2-ol	0.140	-	-
101	1, 6-dimethyl-2-cyano-3-ethyl-3-piperidine	0.612	-	-

1 Compound percentage
2 Retention index
3 Retention time

Table 2. Composition of the volatile oil of *Eucalyptus microtheca* flowers.

No.	Compound	%	RI	RT (min)
1	α-pinene	0.504	817	9.331
2	α-pinene	0.246	841	9.652
3	α-terpinene	0.078	866	9.976
4	Comphene	0.271	891	10.028
5	Verbenene	0.051	916	10.198
6	β-pinene	11.082	940	11.256
7	β-myrcene	0.263	955	11.957
8	α-Phoenixene	0.086	976	12.477
9	α-terpinene	0.367	997	12.983
10	α-cymene	13.522	1018	13.246

1 Compound percentage
2 Retention index
3 Retention time
No.	Compound	%	RI²	RT³ (min)
11	Sabinene	2.131	1038	13.465
12	Limonene	2.713	1059	13.586
13	cis-cimene	0.149	1080	13.993
14	γ -terpinene	0.868	1101	14.857
15	Isoeicosapentadecane-cymene	0.093	1122	15.942
16	α -terpinolene	0.189	1143	16.195
17	Linalool L	0.058	1151	16.669
18	Appel oil	0.113	1170	16.956
19	D-fenchyl alcohol	0.085	1190	17.108
20	Hexadecane	0.147	2639	38.511
21	Trans-pinocarveol	0.365	1229	18.155
22	Pinocarveone	0.303	1248	18.779
23	4-methyl-1,3-heptadiene (c,t)	0.088	1267	19.161
24	2, 4-hexadiene, 2, 5-dimethyl-	0.070	1287	19.351
25	4-terpineol	1.052	1306	20.011
26	Myrcenol	0.202	1326	20.218
27	α -terpineol	0.425	1345	20.561
28	Myrtenol	0.160	1365	20.916
29	Dodecane	0.392	1408	21.584
30	β -citronellol	0.365	1428	22.624
31	Piperitone	0.167	1448	22.879
32	Citronol	0.063	1487	23.727
33	Citronellol formate	0.115	1507	24.60
34	Dicyclo dimethacrylate	0.787	1527	25.673
35	Carvacrol	0.494	1546	25.898
36	2-butylpyridine	0.129	1750	29.074
37	Isolatedene	0.170	1779	29.249
38	Copene	0.150	1809	29.322
39	Tetradecane	0.063	1839	29.463
40	β -elemene	0.063	1815	29.933
41	α -gurjunene	0.542	1631	30.707
42	Seychelene	0.040	1647	30.833
43	Trans-Caryophyllene	0.227	1664	30.967
44	γ - selinene	0.122	1680	31.272
45	Calarene	0.112	1697	31.524
46	β - gurjunene	0.073	1713	31.621
47	Aromadendrene	7.444	1729	31.901
48	α -humulene	0.080	1746	32.31
49	Alloaromadendrene	1.632	1762	32.619
50	α -amorphene	0.400	1779	33.272
51	β -selinene	0.311	1795	33.58
52	α -guaiene	0.320	1811	33.744
53	Ledene	2.135	1828	34.051
54	α -murolene	0.318	1844	34.225
55	γ -cadinene	0.667	1861	34.686
56	Calamene	0.248	1877	34.81
57	δ -cadinene	1.040	1893	36.28
58	Cadina-1, 4-diene	0.045	1910	35.395
59	α -calacore	0.070	1926	35.507
60	Epiglobulol	0.975	2374	36.334
61	β -maaliene	0.253	2403	36.482
62	Plustrol	0.221	2433	36.637
63	Spathulenol	1.848	2462	36.864
64	Globulol	5.419	2492	37.288
65	Veridiflorol	1.044	2521	37.497
66	Ledol	0.631	2580	37.867
67	Hexadecane	0.212	2698	38.735
68	α -ylangene	0.196	2727	38.826
69	Isopatuleneol	0.217	2757	39.071
70	Tau-cadinol	0.791	2786	39.268
71	α -cadinol	0.444	2372	39.708
72	Cadalene	0.120	2392	40.257
73	N-octadecane	0.246	3211	45.874
74	Tetradecanamide	0.321	2653	50.157
75	n-hexadecanoic acid	0.375	2676	50.804
76	Ecosane	0.167	2700	52.389
77	Hexadecanamide	0.918	2723	56.50
78	Octadecanoic acid	0.425	2746	56.848
79	Docosan	0.145	2769	58.363
80	9-octadecanamide	5.414	2793	61.623

¹ Compound percentage
² Retention index
³ Retention time
The presence of monoterpenes (60.899%), sesquiterpenes (28.328%), polyketides and fatty acids (1.714%), alkanes (1.372%), amides (6.653%), aromatic (0.115%), and other compounds (0.871%) was revealed for *E. microtheca* flower oils. In *E. viminalis* leaf oils, monoterpenes (83.037%) were the major components followed by sesquiterpenes (14.97%) and other minor components such as polyketides and fatty acids (0.496%), alkanes (0.046%), aromatic compounds (0.013%), and other compounds (1.404%).

The results showed in the essential oil of *E. microtheca* leaves, 101 compounds representing 100%, were identified. Among them, α-phellandrene (16.487%), aromadendrene (12.773%), α-pinene (6.752%), globulol (5.997%), ledene (5.665%), P-cymen (5.251%), and β-pinene (5.006%) were the major constituents (Table 1).

In the oil of *E. microtheca* flowers, 88 compounds representing 100%, were identified in which α-pinene (16.246%), O-cymen (13.522%), β-pinene (11.082%), aromadendrene (7.444%), α-phellandrene (7.006%), globulol (5.419%), and 9-octadecenamide (5.414%) were the major components (Table 2). Sixty six compounds representing 100% were identified in the essential oil of *E. viminalis* leaves. The major compounds were 1, 8-cineole (57.757%), α-pinene (13.379%), limonene (5.443%), and globulol (3.054%) (Table 3).
Continued table 3.

No	Compound	%³	RF²	RT³ (min)
15	Calenate	0.407	1631	31.367
16	Selma-3, 7 (11)-diene	0.057	1647	31.657
17	Arocamadrene	3.925	1664	31.949
18	Alloaromadrene	2.023	1680	32.707
19	Isoamyl phenyl acetate	0.202	1697	33.12
20	β -selinene	0.156	1713	33.617
21	Leucene	0.639	1729	34.089
22	α - murolene	0.089	1746	34.258
23	γ -cadinene	0.201	1762	34.723
24	calamenene	0.279	1774	34.848
25	δ -cadinene	0.233	1795	35.119
26	Epiglobulol	0.555	2138	36.403
27	γ –gurjene	0.169	2168	36.538
28	Palustrol	0.142	2197	36.688
29	Globulol	3.054	2227	37.369
30	Veridiflorol	0.881	2256	37.586
31	1, 3-dimethyl-5-ethyladamantane	0.250	2286	37.674
32	Trans-β -farnesene	0.070	2374	38.289
33	α –cadinol	0.106	2138	39.765
34	Citronellyl acetate	0.063	2158	42.108
35	N-hexadecanoic acid	0.030	2327	50.917
36	Pentacosane	0.046	2351	66.562
37	Octanal	0.019	866	7.611
38	2-methyl-1, 3-cycloheptadiene	0.041	891	8.907
39	α -thujene	0.035	916	9.373
40	α -pinene	13.379	940	9.732
41	α -fenchene	0.018	965	10.009
42	compheene	0.063	990	10.055
43	β -pinene	0.555	1014	11.191
44	β -myrcene	0.857	1018	12.001
45	α -phellandrene	0.169	1038	12.443
46	α -cymene	0.118	1059	13.283
47	1, 8-cineole	5.757	1080	13.919
48	Limonene	5.443	1101	13.98
49	Cis-ocimene	0.013	1122	14.113
50	β -cimene Y	0.011	1143	14.56
51	isoamyl butyrate	0.013	1164	14.686
52	γ –terpinene	0.514	1185	14.941
53	Dehydro-p-cymen	0.094	1206	16.012
54	α -terpinol	0.771	1209	16.276
55	Linalool L	0.099	1229	16.784
56	Appel oil	0.668	1248	17.031
57	Isoamyl valerate	0.028	1267	17.14
58	Freesol	0.035	1287	17.275
59	Valeric acid 4-pentenyl ester	0.119	1306	17.407
60	Trans-punocarveol	0.212	1326	18.248
61	(+)-2S, 4R)-p-mentha-1(7), 8-			
	dien-2-ol	0.067	1507	22.283
62	1H-indene, 1-ethylideneoctahydro-7a-methyl-,	0.466	2315	37.931
	(IE, 3a, alpha. 7a, beta)			
63	Bicyclo [4.4.0] dec-1-ene, 2-			
	isopropyl-5-methyl-9-methylene	0.191	2433	39.327
64	Caryophylla-2(12), 6(13)-dien-5-	0.230	2344	38.107
	one			
65	1-2′-hydroxy-3′, 4′-dime thylphenyl)ethane	0.598	2403	38.692
66	2-propenoic acid, 2-methyl-1,2-	0.068	1527	25.832
	ethanediyl ester			

1 Compound percentage
2 Retention index
3 Retention time

Table 4. Comparison of the composition of the volatile oil of *E. microtheca* leaves and flowers with *E. viminalis* leaves from Zahedan.

No	Compound	%³	%³	%³
1	α –thujene	0.742	0.504	0.035
2	α –pinene	6.752	16.246	13.379
3	Comphene	0.079	0.271	0.63
4	β - pinene	5.006	11.082	0.555
5	β -myrcene	0.533	0.263	0.857
6	α –phellandrene	16.487	7.006	0.169
7	α -terpinene	0.832	0.367	-
8	P - cymene	5.251	-	-
9	β –phellandrene	2.194	-	-
10	Limonene	1.503	2.713	5.443
11	Cis-ocimene	1.655	0.149	0.013

1 *E. microtheca* leaves
2 *E. microtheca* flower
3 *E. viminalis* leave

AJP, Vol. 5, No. 6, Nov-Dec 2015 547
Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*

Continued table 4.

No	Compound	%[^1]	%[^2]	%[^3]
12	β-ocimene Y	0.101	-	0.011
13	γ-terpinene	1.235	0.868	0.514
14	Cymene	0.024	-	-
15	α-terpinolene	0.425	0.189	0.771
16	Roseluran	0.024	-	-
17	Cycloheptanemethanol	0.061	-	-
18	Linalool L	0.093	0.058	0.099
19	Isoamyl isovalerate	0.529	-	-
20	Isoamyl valerate	0.056	-	0.028
21	Fenchol	0.076	-	-
22	Trans-pinene hydrate	0.062	-	-
23	Allocimene	0.049	-	-
24	1-terpineol	0.045	-	-
25	1-methylnorcarane	0.051	-	-
26	Ethylbenzoate	0.124	-	-
27	4-terpineol	1.256	1.052	0.722
28	1-(adamantly) cyclohexene	0.042	-	-
29	β-fenchol	0.203	-	-
30	cis-sabinol	0.224	-	-
31	Thiophene, 2-ethyl-5-methyl	0.120	-	-
32	Ascaridole	0.085	-	-
33	Dicyclobutylidene oxide	0.084	-	-
34	Divinylidimethylsilane	0.114	-	-
35	Piperitone	0.196	-	-
36	1-methoxyhept-1-yn	1.809	-	-
37	Citronellol formate	0.029	0.115	-
38	Carvacrol	0.420	0.494	-
39	α-cubebene	0.160	-	-
40	Isolatedene	0.278	0.170	-
41	Copaene	0.308	0.150	0.059
42	2-pentene-1-ol, 2-methyl	0.215	-	-
43	α-gurjunene	1.897	0.542	1.372
44	Trans-caryophyllene	0.539	0.227	-
45	Aromadendrene	12.773	7.444	3.925
46	Epizonaren	0.067	-	-
47	α-humulene	0.142	0.080	-
48	alloaromadendrene	2.520	1.632	2.023
49	γ-gurjunene	0.327	-	0.169
50	α-copaene	0.755	-	-
51	β-selinene	0.525	-	0.156
52	β-panasinsene	0.702	-	-
53	ledene	5.665	-	0.639
54	α-murolene	0.398	-	0.089
55	Gerermacrene B	0.099	-	-
56	α-amorphene	1.666	0.4	-
57	cis-calamenene	0.207	-	-
58	δ-cadinene	2.663	-	0.233
59	Cadina-1, 4-diene	0.103	0.045	-
60	α-calacorene	0.087	0.070	-
61	α-cadinene	0.163	-	-
62	Ledane	0.092	-	-
63	Epiglobulol	1.167	0.975	0.555
64	β-maaliene	0.306	0.253	-
65	Palustrol	0.190	0.221	0.142
66	Spathulenol	1.915	1.848	-
67	Globulol	5.997	5.419	3.054
68	Veridiflorol	1.243	1.044	0.881
69	1, 3-dimethyl-5-ethyladamantane	0.285	-	0.250
70	Ledol	0.753	0.631	-
71	γ-curcumene	0.391	-	-
72	Isoisopathulene	0.300	0.217	-
73	Taumuurolol	1.580	-	-
74	δ-cadinol	0.231	-	-
75	Guai-3, 9-diene	0.292	-	-
76	α-cadin	0.806	0.444	0.106
77	Vulgarol A	0.129	-	-
78	Hexadecanoic acid	0.093	0.375	0.030
79	2-tridecanol	0.028	-	-
80	Hexadecanoic acid ethyl ester	0.025	-	-
81	Dectytretraglycol	0.025	-	-
82	Tricosane	0.012	-	-

[^1]: *E. microtheca* leaves
[^2]: *E. microtheca* flower
[^3]: *E. viminalis* leaf
Continued table 4.

No	Compound	%	%	%
83	Benzothinitrate, m-phenethyl	0.032	-	-
84	Pentacosane	0.073	-	-
85	Pentaethoxylated pentadecyl alcohol	0.036	-	-
86	1-cyclohexene-1-carboxaldehyde, 4-(1-methylthyl)	0.170	-	-
87	Cyclohexene, 3-methyl-6-(1-methylthyl)	0.108	-	-
88	2-cyclohexene-1-ol, 2-methyl-5-(1-methylthyl)-, trans-	0.059	-	-
89	2, 3-dimethyl-cyclohexa-1, 3-diene	0.390	-	-
90	α–cantholnic acid	0.049	-	-
91	Furan, 2, 3-dihydro-4-(1-methylpropyl)	0.458	-	-
92	(E)-3-isopropyl-6-oxo-2-heptenal	0.058	-	-
93	1, 5, 5-trimethyl-6-methylene- cyclohexene	0.056	-	-
94	2, 6, 10-trimethyl-2, 5, 7, 10-dioxido-dodeca-3, 11-diene-5-ol	0.268	-	-
95	Tricyclo[6.3.0.1(2, 3)] undec-7-ene, 6, 10, 11-tetramethyle	0.138	-	-
96	1-methyl-4-isopropyl-cis-3-hydroxycyclohex-1-ene-6-one	0.230	-	-
97	1H-cyclopropa[1]naphthalene, decahydro-1,1,3a-trimethyl-7-methylene-	0.235	-	-
	[1a.1a.alpha.,3a.alpha.,7a.beta.,7b.alpha.]			
98	Naphthalene, 1, 2, 3, 4, 4a, 7-hexahydro-1, 6-dimethyl-4-(1-methylthyl)	0.139	-	-
99	Bicyclo[3.1.0]hex-2-ene,2-methyl-5-(1-methylthyl)	0.026	-	-
100	(+)-(1R, 2S, 4R, 7R)-7-isopropyl-5-methyl-5-bicycle [2.2.2] octen-2-ol	0.140	-	-
101	1, 6-dimethyl-2-cyano-3-ethyl-3-piperidine	0.612	-	-

* E. microtheca leaves
* E. microtheca flower
* E. viminalis leave

Discussion

The comparison of results showed that there are some differences and similarities between the oil compositions of these Eucalyptus species. These results are shown in Table 4. The percentages of sesquiterpene and monoterpen compounds were similar in E. microtheca leaf oils, but the percentages of these components were less than those of E. viminalis leaf and E. microtheca flower oil. Studies have revealed that monoterpenes have insecticidal activities against the stored-product insects (Rajendran and Sriranjini, 2008; Papachristos et al., 2004). Our study showed that the major monoterpen compounds were in E. microtheca leaf and E. microtheca flower oil. These compounds consist of 1, 8-cineole, α-pinene, and β-pinene which have been shown to have insecticidal effects against some major insects that infect the stored crops (Rajendran and Sriranjini, 2008). Therefore, the essential oil of E. viminalis leaves and E. microtheca flowers from Zahedan, Iran could be a valuable alternative to chemical control strategies which have undesirable effects such as environmental pollution and direct toxicity to people. As it is evident from Table 3, the main component of the essential oils of E. viminalis leaves was 1, 8-cineole (57.757%), but it was not identified in E. microtheca leaf and flower oils. 1, 8-cineole, which is a terpenoid oxide present in many plant essential oils, displays antimicrobial, anti-inflammatory, and antinociceptive effects (Juergens et al., 2003; Santos and Rao, 2000).

The percentage of α-pinene in the oil of E. microtheca flowers and E. viminalis leaves was 16.246% and 13.379%, respectively, while in E. microtheca leaf oil it was less than 10%. Results indicated that some of E. microtheca leaf oil compounds such as α-phellandrene (16.487%) and aromadendrene (12.773%) were higher compared with E. microtheca flower and E. viminalis leaf oils. The oil
Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis

of E. microtheca flower contained β-pinene (11.082%), while it was less than 10% in other oils (E. microtheca and E. viminalis leave oil). The compounds such as α-pinene and β-pinene were the main components in the essential oil of E. microtheca flowers (16.246% and 11.082%) and E. viminalis leaves (13.379% and 0.555%), respectively. These compounds have been proven to be strong antioxidant and antimicrobial agents as emphasized elsewhere (Ho, 2010).

Chemical composition of the essential oil of Eucalyptus microtheca leaves growing in different geographical locations has been widely studied. Ogunwande et al., (2003) reported that in the volatile oil of Eucalyptus microtheca leaves from Nigeria, 1, 8-cineole (53.80%) was the main constituent in leaves (Ogunwande et al., 2003). Sefidkon et al., (2007) identified 22 components in the oil of E. microtheca from Kashan in the central region of Iran. The major components were 1, 8-cineole (34.0%), P-cymene (12.40%), α-pinene (10.70%), β-pinene (10.50%), and viridiﬁlore (5.20%) (Sefidkon et al., 2007). In another study, the major constituent of E. microtheca leaf oils from Semnan province was 1, 8-cineole (48.51%), followed by aromadendrene (18.31%), α-pinene (9.47%), and alloaromadendrene (4.67%) as the other dominant constituent (Hashemi-Moghaddam et al., 2013). There are many references about the composition of other Eucalyptus species in the literature. For example, the main constituents of the oil of E. sargentii from Isfahan province were 1, 8-cineole (55.48%), α-pinene (20.95 %), aromadendrene (6.45 %), and trans-pinocarveol (5.92%) (Safaei and Batooli, 2010). Assareh et al., (2007) also reported chemical composition of the essential oils of six Eucalyptus species from South West of Iran. The main components identified in E. intertexta oil were 1, 8-cineole (64.80%), terpinen-1-ol (7.20%), and α-pinene (5.70%); in E. largiflorens were 1, 8-cineole (47.0%), P-cymene (10.60%), and α-terpineol (8.50%); in E. kingsmillii were 1, 8-cineole (77.0%), α-pinene (8.70%), and camphene (3.80%); in E. dealbata were 1, 8-cineole (70.60%), α-pinene (13.0%), and terpinen-1-ol (3.70%). The major components of the oil of E. largiflorens were 1, 8-cineole (41.90%), α-pinene (13.70%), and aromadendrene (3.70%), while the major components of E. kruseana were bicyclogermacrene (28.80%), α-pinene (17.70%), and 1, 8-cineole (12.10%) (Assareh et al., 2007). Abd El-Mageed et al., (2011) identified chemical composition of the essential oils of some Eucalyptus species from Egypt. The major components identified in E. citridora oil were 3-hexen-1-ol (31.26%), cis-geraniol (19.66%), citronellol acetate (13.68%), 5-hepten-1-ol, 2, 6-dimethyl (13.14%), and citronellal (9.36%); in E. gomphocephala were dihydrocarveol acetate (50.82%) and P-cymene (10.62%); and the major components of E. resinifera were eucalyptol (51.97%), spathulenol (9.22%), α-terpineol acetate (8.78%), and trans-nerolidol (8.75%) (Abd El-Mageed et al., 2011). Mubarak et al., (2014) reported γ-terpinene (71.36%) and O-cymene (17.63%) as the major components of E. camaldulensis from Malaysia (Mubarak et al., 2014). Comparing the results of different studies showed that although 1, 8-cineole has not been identified in E. microtheca leaf and flower oil from Zahedan, it was as the major constituent of E. microtheca leaf oil from Nigeria (53.80%), Semnan (48.51%), Kashan (34.0%), and other Eucalyptus species (E. kingsmillii 77.0%, E. dealbata 70.60%, E. intertexta 64.80%, E. viminalis 57.75%, E. sargentii 55.48%, E. largiflorens 47.0%, and E. loxophleba 41.90%). The essential oil of some Eucalyptus species rich in 1, 8-cineole are widely used as a flavoring agent in production of softeners, soap, toothpaste, and other medicines (Sefidkon et al., 2007), but the percentage of this compound is different in species. This can
be related to the type of the plant, the plant parts (aerial or flower and leaf parts), the geographical regions of the plant growing places, and also the ecological conditions of the plant. In addition, α-pinene compound, which appeared as the major constituent in the oil of *E. sargentii* (20.95%), *E. kruseana* (17.70%), *E. viminalis* (13.379%), *E. loxophleba* (13.70%), *E. dealbata* (13.0%), and *E. microtheca* from Kashan (10.70%) and Semnan (9.47%), were present in low concentration in *E. microtheca* leaf oils (6.752%) from Zahedan. The amount of P-cymene compound in the oil of *E. microtheca* leave from Kashan (12.40%) also was much higher than that of *E. gomphocephala* (10.62%), *E. largiflorens* (10.60%), and *E. microtheca* (5.21%) from Zahedan.

In general, great quantitative and qualitative variations in volatile composition of *E. viminalis* and *E. microtheca* were seen between this and other studies. These variations may be due to the influence of geographical differences, environmental and growing conditions, physiological and biochemical states of plants, genetic factors, and different extraction and analytical procedures (Kokkini et al., 2004; Hassanpouraghdam et al., 2011).

It can be concluded that the oils of these two *Eucalyptus* species are good sources of natural antioxidants to be used in medicinal and food products to promote human health and prevent diseases, which should be investigated in further studies. In addition, regarding environmental problem and human health, these plants could be an alternative source of insecticide agents because many of their components have little or no harmful effects on humans and environment.

Acknowledgments

We are thankful to the University of Sistan and Baluchestan Research Council for the partial support of this research.

Conflict of interest

There is not any conflict of interest in this study.

References

Abd El-Mageed AA, Osman AK, Tawfik AQ, Mohammed HA. 2011. Chemical composition of the essential oils of four *Eucalyptus* species (Myrtaceae) from Egypt. Res J Phytochem, 5: 115-122.

Asghari J, Mazaheritehrani K. 2010. Pinacol coupling of carbonyl compounds by using microwave irradiation. Iran J Med Aromatic, 26: 184-195.

Assareh MH, Jaimand K, Rezaee MB. 2007. Chemical compositions of the essential oils of six *Eucalyptus* species (Myrtaceae) from South West of Iran. J Essent oil Res, 19: 8.

Ghasemi Y, Faridi P, Mehregan I, Mohaghehzadeh A. 2005. Ferula gummosa fruits: an aromatic antimicrobial agent. Chem Nat Comp, 41: 311-314.

Grassmann J, Hippeli S, Dornisch K, Rohnert U, Beuscher N, Elstner EF. 2000. Antioxidant properties of essential oils. Possible explanations for their anti-inflammatory effects. Arzneimittelforschung, 50: 135-139.

Hashemi-Moghaddam H, Kalatejari A, Afshari H, Ebadi AH. 2013. Microwave accelerated distillation of essential oils from the leaves of *Eucalyptus microtheca*: Optimization and comparison with conventional hydrodistillation. Asian J Chem, 25: 5423-5427.

Hassanpouraghdam MB, Akhgari AB, Aazami MA, Emarat-Pardaz J. 2010. New menthone type of *Mentha pulegium* L. volatile oil from Northwest Iran. Czech J Food Sci, 29: 285-290.

Ho JC. 2010. Chemical composition and bioactivity of essential oil of seed and leaf from *Alpinia speciosa* grown in Taiwan. J Chinese Chem Soc, 57:758-757.

Jahan M, Warsi MK, Khatoon F. 2011. Studies on Antibacterial Property of *Eucalyptus-The Aromatic Plant*. Int J Pharm Sci Rev Res, 7:86-88.

Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. 2003. Anti-inflammatory activity of 1, 8-cineole (eucalyptol) in bronchial asthma: a double
Essential oil composition of *Eucalyptus microtheca* and *Eucalyptus viminalis*

blind placebo-controlled trial. Respiratory Med, 97: 250-6.

Kokkini S, Hanlidou E, Karousou R, Lanaras T. 2004. Clinical variation of Mentha pulegium essential oils along the climatic gradient of Greece. J Essent Oil Res, 16: 588-593.

Mozaffarian V. 1996. A dictionary of Iranian plant names, pp. 56. Tehran: Farhang Moaser publisher.

Mubarak EE, Mohajer S, Ahmed I, Mat Taha R. 2014. Essential oil compositions from leaves of Eucalyptus camaldulensis and Callistemon viminalis originated from Malaysia. Int Proc Chem Biol Environ Eng, 70: 137-141.

Nagpal N, Shah G, Arora NM, Shri R, Arya Y. 2010. Phytochemical and Pharmacological aspects of Eucalyptus genus. Int J Pharm Sci Rev Res, 1: 28–36.

Ogunwande IA, Olawore NO, Adeline KA, Konig WA. 2003. Chemical composition of the essential oils from the leaves of three Eucalyptus species growing in Nigeria. J Essent Oil, 15: 297-301.

Papachristos DP, Karamanoli KL, Stamopoulos DC, Menkissoglu-Spiroudi U. 2004. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag Sci, 60: 514-20.

Pearson M. 1993. Eucalyptus oil distilleries in Australia. J Australas Historical Archaeol, 11: 99-107.

Rajendran S, Sriranjini V. 2008. Plant products as fumigant for stored-product insect control. J Store Pro Res, 44: 126-35.

Reynolds JEF, Prasad AB. 1982. Martindale-the extra pharmacopoeia, pp. 1017-1018. London, Pharmaceutical Press.

Sadlon AE, Lamson DW. 2010. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern Med Rev, 15: 33–47.

Safaei J, Batooli H. 2010. Chemical composition and antimicrobial activity of the volatile oil of Eucalyptus sargentii cultivated in central Iran. Int J Green Pharm, 4: 174-177.

Santos FA, Rao VS. 2000. Anti-inflammatory and antinociceptive effects of 1, 8-cineole, a terpenoid oxide present in many plant essential oils. Phytother Res, 14: 240-244.

Sastri BN. 2002. The Wealth of India. A Dictionary of India Raw Materials and Industrial Products. Raw Materials. New Delhi: Council of Scientific and Industrial Research, pp. 203-204.

Sefidkon F, Assareh MH, Abravesh Z, Barazandeh MM. 2007. Chemical composition of the essential oils of four cultivated Eucalyptus species in Iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iran J Pharm Res, 6: 135-140.

Shahidi F. 2000. Antioxidants in food and food antioxidants. Nahrung, 44: 158-163.