The National Security Implications of Cyberbiosecurity

Asha M. George*

Blue Ribbon Study Panel on Biodefense, Washington, DC, United States

The cyber- and biological sciences are converging rapidly, creating benefits, new and advantageous applications, and increasing risks to all nations. The parts of the public and private sectors that should be responsible for cyberbiosecurity are not yet sufficiently organized or supported financially. This article addresses the need to ensure that national security policy: (1) assesses cyberbiological risk and incorporates deterrent and enforcement measures; (2) sets forth clear consequences for those individuals and countries that conduct cyberbiological attacks or otherwise compromise cyberbiosecurity, without imperiling the legitimate sharing of scientific data and information; (3) establishes voluntary cyberbiosecurity standards in partnership with the private sector; (4) identifies cyberbiosecurity threats, vulnerabilities, consequences, and solutions; and (5) results from the combined efforts of all branches of government and the private sector.

Keywords: cyberbio, cyberbiosecurity, cybersecurity, biosecurity, convergence

INTRODUCTION

Many fields of science depend on and are affected by the cyber revolution. The far older field of biology is no exception. In fact, the two fields of biology (the science of life and living organisms, including their physical, chemical, molecular, physiological, and developmental characteristics) and cyberology (the science, study, and theory of cyberspace and cybernetics, including communications over computer networks, Internet-connected systems and data centers, computerized systems, communications and automatic control systems in both machines, and living things) are not only interrelated, each can offer perspectives on the other, enabling greater understanding while simultaneously multiplying the possibilities for new, combined threats, previously unanticipated vulnerabilities, and unintended consequences. Murch et al. (2018) defined cyberbiosecurity as "understanding the vulnerabilities to unwanted surveillance, intrusions, and malicious and harmful activities which can occur within or at the interfaces of comingled life and medical sciences, cyber, cyber-physical, supply chain and infrastructure systems, and developing and instituting measures to prevent, protect against, mitigate, investigate, and attribute such threats as it pertains to security, competitiveness, and resilience." Adequate cyberbiosecurity can only be achieved by taking both cyber- and biological perspectives into consideration simultaneously.

CYBERBIO CONVERGENCE

Lateral thinking intentionally connects disparate subjects to generate new ideas, products, and solutions (de Bono, 1970). Additionally, different scientific areas also converge as we gain greater understanding of their most basic, often elemental characteristics, and comprehend their similarities and sometimes, equivalence (Sharp et al., 2011). Convergence also occurs through the
CONSEQUENCES WITHOUT IMPERILING LEGITIMATE INFORMATION SHARING

The biological research community depends on digital systems to store and analyze data (Schatz, 2015). Of great concern are the huge amounts of data accessible via the Internet and various Cloud applications, with inadequate cybersecurity (Schneier, 2012). Intellectual property and proprietary information losses associated with digitized biological information could rise to the millions or billions, eventually resulting in economic decreases and reduced international competitiveness (Heus et al., 2017). Other national security concerns include loss of privacy, discrimination, data loss or theft, industrial and commercial sabotage, industrial hacking, exploitation of research to increase disease severity, targeting based on specific DNA patterns, and the production of dangerous and novel pathogens without physical samples (Bajema et al., 2018).

Many of the same countries that are investing large amounts in cutting-edge biological research and dual-use activities that could be used to produce biological weapons are also thought to be responsible for many of the cyber incidents with which the public and private sectors throughout the world struggle today. Advances in cyber- and biological science depend in large part on information systems and management, data storage, and the increased efficiency that computational analysis affords. Some countries may want data and information to feed their growing cyber- and biological weapons programs, increase disease and cyber-attack severity on enemy populations, target specific groups for attack, harm other economies, and boost their own economic competitiveness. Evidence of and information regarding cyberbio convergence and related products may well be the most valuable of all, allowing for the acceleration of nascent, ineffective, or slow-to-develop programs.

While we must encourage the legitimate sharing of scientific data and information, and comprehend that there are not yet reasonable or better alternatives to current cyber communications and data storage options, we must also recognize that all nations and their biological and cyberbiological research, development, science, and technology are at great risk. As a matter of national security, each country must require additional biosecurity and cybersecurity in this arena and set forth clear consequences for individuals and countries who intentionally breech whatever security measures they already utilize to obtain biological and cyberbiological data and information. We must also set forth clear consequences for individuals who do not take enough care to protect the data they generate. Increased cyberbiosecurity may make information sharing more difficult, but it will not make the legitimate sharing of data and information impossible.

ESTABLISHMENT OF VOLUNTARY CYBERBIOSECURITY STANDARDS

The public and private sectors agree with the need for increased cyberbiosecurity. No one is interested in losing their work to their competitors within or outside their organization, company, or country. No one is so naïve as to believe that the nobility of their
efforts somehow serves as a protective shield against those who want to further their own agenda.

Considering the vast number of cyber-, biological, and cyberbiological efforts currently underway, and the inability of the private sector to protect itself against all national security threats, national governments should work with their private sectors to establish voluntary standards for cybersecurity. Even if governments possess enough knowledge of the breadth and specificity of private sector research and development, they generally have few mechanisms with which to force the private sector to protect against cyberbiological threats.

There are many models for the development and implementation of standards that both the public and private sectors agree to meet (National Research Council., 2015). Fewer models exist to successfully develop incentives for meeting, and agree upon penalties for not meeting, standards. The government must work with the private sector to develop cybersecurity standards, incentives, and penalties within a specified, relatively short period (e.g., 1 year). The speed at which benevolent and malevolent activity is occurring defies the protracted consensus-driven processes in which many governments, such as that of the United States, engage (The White House., 1998).

IDENTIFICATION OF CYBERBIOLOGICAL RISK AND OTHER SOLUTIONS

While both cybersecurity and biosecurity efforts are underway (with more money and resources currently going to the former), there is an obvious gap when it comes to cybersecurity. For example, even within the U.S. Department of Defense, which now possess two powerful cybersecurity organizational elements (i.e., National Security Agency, U.S. Cyber Command) as well as several organizations that conduct biological research and development using highly dangerous pathogens (e.g., U.S. Army Medical Research Institute of Infectious Diseases), efforts to ensure cybersecurity are insufficient (Knapp, 2018). Governmental agencies throughout the world with responsibilities for agriculture, defense, energy, justice, labor, natural resources, and transportation address cyber- and biological threats separately. Departments of justice and other departments that investigate criminal and terrorism financing are also hobbled by weak or non-existent laws for cyberbiological and other new threats.

Some nations combine their military and intelligence activities. Others are fortunate enough to have enough resources to support both separately. In either case, military and intelligence communities throughout the world must acknowledge ongoing cyberbiological activities. These communities often lack the scientific and technological expertise needed to understand the state of science in the cyber- and biological fields, impact of their convergence, intended outcomes for investments in these areas, and how they could and do impact national security. Given the speed with which advances are occurring, intelligence communities throughout the world must assess cyberbiological capabilities, applications, and abilities to do harm. Military and other national security departments must utilize this intelligence to determine how best to protect national assets.

Each country needs a large-scale program to identify and assess cyberbiological risk. At a minimum, such a program should identify new cyberbio threats, vulnerabilities, and consequences (e.g., those associated with pathogen and biomunufacturing data systems, dual-use synthetic biology, biological intellectual property, bioeconomy). This program should result from a public-private partnership among all government agencies, and private sector companies, academic institutions, and other non-governmental organizations. Risk analysis should be rigorous, independent, critical, and comprehensive, utilizing the same or similar methodologies already developed for systems analysis.

As with all areas which are converging presently, expertise is usually very hard to come by. There are some, however, who have worked in or with both fields, who could serve as effective translators between the cyber- and biological communities. Lateral thinkers, who know how to expertly apply knowledge gained in one area to that of another to come up with new insights can also be effectively utilized. As with all relatively new threats, few experts exist now with operational expertise, but they can be developed through academic and operational training and education programs. Intelligence communities should seek to develop insiders involved in cyberbio activities. Public and private sector organizations that address futures must develop scenarios that are used to develop agricultural, diplomatic, healthcare, public health, and military requirements. Governmental and non-governmental scientists must work together to understand and address the problem, while simultaneously contributing to the cyberbio body of knowledge.

COMBINED GOVERNMENTAL EFFORTS

The legislative bodies and those government agencies responsible for implementing laws must work together to reduce national cyberbiological risk.

Legislative bodies must authorize national cyberbiosecurity programs that:

- Address cyberbiological risk and incorporate deterrent and enforcement measures;
- Set forth clear consequences for individuals or countries that undertake such actions without imperiling the legitimate sharing of scientific data and information;
- Allow for the establishment of voluntary standards in partnership with the private sector;
- Identify new cyberbiosecurity threats, vulnerabilities, and consequences; and
- Develop and implement solutions.

Knowing what a government must authorize is less difficult than determining legislative jurisdiction in the cyberbio arena. It is unrealistic to expect that different elements of legislative bodies that have historically addressed either cyber- or biological risk separately will suddenly or automatically work together to

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 March 2019 | Volume 7 | Article 51
CONCLUSION

All countries, including the United States, face risks from many sources. Collective dependence on the Internet and electronic communications, cyber- and biological contributions to national and global economies, competitive participation in the biorevolution, and new types of combinational weapons make the need to reduce cyberbiological risk both imperative and vital. We must take the opportunity afforded to us now to eliminate this transnational security gap, before it is exploited by our enemies.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

REFERENCES

Bajema, N. E., DiEuliis, D., Lutes, C., and Lim, Y. (2018). The Digitization of Biology: Understanding the New Risks and Implications for Governance. Available online at: https://wmdcenter.nrdu.edu/DesktopModules/ArticleCS/Print.aspx?PortalId=97&ModuleId=444728&ArticleId=1569539

Blue Ribbon Study Panel on Biodefense. (2015). A National Blueprint for Biodefense: Leadership and Major Reform Needed to Optimize Efforts—Bipartisan Report of the Blue Ribbon Study Panel on Biodefense. Washington, DC: Blue Ribbon Study Panel on Biodefense. doi: 10.13140/RG.2.1.4407.6240

de Bono, E. (1970). Lateral Thinking. New York, NY: Harper and Row.

Findlay, T. (2006). Verification and the BWC: Last Gasp or Signs of Life? Arms Control Today. Available online at: https://www.armscontrol.org/act/2006_09/BWCVerification

Heus, J. J., de Pauw, E. S., Leloux, M., Morpugo, M., Hamblin, M. R., and Heger, M. (2017). Importance of intellectual property generated by biomedical research at universities and academic hospitals. J. Clin. Transl. Res. 3:5. doi: 10.18053/jctres.03.201702.005

Hodge, J. G. (2012). The evolution of law in biopreparedness. Biosecurity Bioterror. 10, 38–48. doi: 10.1089/bsp.2011.0094

Irving, M. (2017). Artificial Evolution Aims to Create Life Out of Non-Living Matter. New Atlas. Available online at: https://newatlas.com/recreating-evolution-test-tube/48856/

Knapp, B. (2018). Researchers are Sounding the Alarm on Cyberbiosecurity, 5th Domain. Available online at: https://www.fifthdomain.com/dod/2018/02/08/researchers-are-sounding-the-alarm-on-cyberbiosecurity/

Murch, R. S., So, W. K., Buchholz, W. G., Raman, S., and Pecoud, J. (2018). Cyberbiosecurity: an emerging new discipline to help safeguard the bioeconomy. Front. Bioeng. Biotechnol. 6:39. doi: 10.3389/fbioe.2018.00339

Nakashima, E. (2018). Pentagon Launches First Cyber Operation to Deter Russian Interference in Midterm Elections. Washington Post. Available online at: https://www.washingtonpost.com/world/national-security/pentagon-launches-first-cyber-operation-to-deter-russian-interference-in-midterm-elections/2018/10/23/12ce6e7e-d6df-11e8-83a2-d1c3da28d6b6_story.html?utm_term=.fc466ec038f

National Research Council. (2015). Standards, Conformity Assessment, and Trade: Into the 21st Century. Washington, DC: National Academies Press. doi: 10.17226/4921

Roco, M. C., and Bainbridge, W. S. (2002). Converging technologies for improving human performance: integrating from the nanoscale. J. Nanopart. Res. 4, 281–295. doi: 10.1023/A:1021152023349

Schatz, M. C. (2015). Biological data sciences in genome research. Genome Res. 25, 1417–1422. doi: 10.1101/gr.191684.115

Schneier, B. (2012). Securing medical research: a cybersecurity point of view. Science 336, 1527–1529. doi: 10.1126/science.124321

Sharp, P. A., Cooney, C. L., Kastner, M. A., Lees, J., Sasekharan, R., Yaffe, M. R., et al. (2011). The third revolution: the convergence of the life sciences, physical sciences, and engineering. Cambridge, MA: Massachusetts Institute of Technology.

Sherden, W. A. (2011). Best Laid Plans: The Tyranny of Unintended Consequences and How to Avoid Them. Santa Barbara, CA: Praeger.

The White House. (1998). Memorandum for Heads of Executive Departments and Agencies (Circular No. A-119 Revised). Washington, DC: The White House.

US Government Accountability Office (2017). High-Containment Laboratories: Coordinated Actions Needed to Enhance the Select Agent Program’s Oversight of Hazardous Pathogens. Washington, DC: Government Accountability Office.

Conflict of Interest Statement: The author was employed by the Blue Ribbon Panel on Biodefense.