Energy distribution of solutions to defocusing semi-linear wave equation in higher dimensional space *

Liang Li, Ruipeng Shen

Centre for Applied Mathematics
Tianjin University
Tianjin, China

May 9, 2021

Abstract

The topic of this paper is a semi-linear, defocusing wave equation $u_{tt} - \Delta u = -|u|^{p-1}u$ in sub-conformal case in the higher dimensional space whose initial data are radical and come with a finite energy. We prove some decay estimates of the solutions if initial data decay at a certain rate as the spatial variable tends to infinity. A combination of this property with a method of characteristic lines give a scattering result if the initial data satisfy

$$E_\kappa (u_0, u_1) = \int_{\mathbb{R}^d} (|x|^{\kappa} + 1) \left(\frac{1}{2} |\nabla u_0(x)|^2 + \frac{1}{2} |u_1(x)|^2 + \frac{1}{p+1} |u_0(x)|^{p+1} \right) dx < +\infty.$$

Here $\kappa = \frac{(2-d)p+(d+2)}{p+1}$.

1 Introduction

1.1 Background

In this work we consider the defocusing nonlinear wave equation in dimensions $d \geq 3$.

$$\begin{cases}
\partial_t^2 u - \Delta u = -|u|^{p-1}u, & (x, t) \in \mathbb{R}^d \times \mathbb{R}; \\
u(\cdot, 0) = u_0; \\
u_t(\cdot, 0) = u_1.
\end{cases}$$ (CP1)

The conserved energy is defined by

$$E (u, u_t) = \int_{\mathbb{R}^d} \left(\frac{1}{2} |\nabla u(x, t)|^2 + \frac{1}{2} |u_t(x, t)|^2 + \frac{1}{p+1} |u(x, t)|^{p+1} \right) dx.$$

Local theory Defocusing nonlinear wave equations

$$\partial_t^2 u - \Delta u = -|u|^{p-1}u, \quad (x, t) \in \mathbb{R}^d \times \mathbb{R}$$

have been extensively studied, especially in the 3 or higher dimensional space. The existence and uniqueness of solutions to semi-linear wave equation like (CP1) follows a combination of suitable Strichartz estimates and a fixed-point argument, Kapitanski [1] and Lindblad-Sogge [2] give more details.

*MSC classes: 35L05, 35L71.
Conjecture 1.1. Any solution to (CP1) with initial data \((u_0, u_1) \in \dot{H}^{s_p} \times \dot{H}^{s_p-1}\) must exist for all time \(t \in \mathbb{R}\) and scatter in both two time directions.

This is still an open problem. Although there are many related results by different methods.

Scattering results with a priori estimates It has been proved that if a solution \(u\) with a maximal lifespan \(I\) satisfies an a priori estimate

\[
\sup_{t \in I} \|(u(\cdot, t), u_t(\cdot, t))\|_{\dot{H}^{s_p} \times \dot{H}^{s_p-1}(\mathbb{R}^d)} < +\infty,
\]

then \(u\) is defined for all time \(t\) and scatters. In fact, there are many works for different range of \(d\) and \(p\), sometimes with a radial assumption. Different methods were used for different range of \(d\) and \(p\). The details can be found in Kenig-Merle [4], Killip-Visan [14] (3 dimension), Killip-Visan [15] (all dimensions) for energy supercritical case and R.Shen [5], Dodson-Lawrie [6] (3 dimension), Rodriguez [16] (dimension 4 and 5) for energy subcritical case.

Strong Assumption on initial data There are multiple scattering results if we assume that the initial data satisfy stronger regularity and/or decay conditions. These results are usually proved via a suitable global space-time integral estimate. In \(d \geq 3\) case, if the initial data \((u_0, u_1)\) satisfy

\[
\int_{\mathbb{R}^d} (1 + |x|)^2 \left(\frac{1}{2} |\nabla u_0(x)|^2 + \frac{1}{2} |u_1(x)|^2 + \frac{1}{p+1} |u_0(x)|^{p+1}\right) < +\infty
\]

the conformal conservation law (see Ginibre-Velo [18] and Hidano [19]) leads to the scattering of solutions for \(1 + \frac{4}{d-1} \leq p < 1 + \frac{4}{d-2}\). In 3-dimension case, R.Shen [17] proved the scattering result for \(3 \leq p \leq 5\) if initial data \((u_0, u_1)\) are radial and satisfy

\[
\int_{\mathbb{R}^3} (|x|+1) \left(\frac{1}{2} |\nabla u_0|^2 + \frac{1}{2} |u_1|^2 + \frac{1}{p+1} |u_0|^{p+1}\right) dx < +\infty,
\]

here \(\kappa > \kappa_0(p) = \frac{5-p}{p+1}\). In \(d = 3, p = 3\) case, Dodson [10] gives a proof of the conjecture above for (CP1) with radial data.

But most of these results above are in the conformal case or super-conformal case.

1.2 Main tools

Next we introduce main tools of this paper. The first tool is still a Morawetz-type estimate, and the second tool is the method of characteristic lines.

Morawetz estimates This kind of estimates were first found by Morawetz [3] for wave/Klein-Gordon equations. Lin-Strauss [7] then generalized Morawetz estimates to Schrödinger equations. Colliander-Keel-Staffilani-Takaoka-Tao [8] introduced interaction Morawetz estimates for Schrödinger equations. Nowadays the Morawetz estimate has been one of the most important tools in the study of dispersive equations.

Method of characteristic lines R.Shen [9] generalizes the 3D method to higher dimensions. Let \(u\) be a radial solution to (CP1) with a finite energy, reduce the equation to a one-dimensional one by defining \(w(r, t) = r^{\frac{d-1}{2}} u(r, t)\), and considering the equation that \(w\) satisfies

\[
(\partial_t + \partial_r)(w_t - w_r) = \partial_r^2 w - \partial_t^2 w = -\frac{(d-1)(d-3)}{4} r^{\frac{d-1}{2}} u - r^{\frac{d-1}{2}} |u|^{p-1} u.
\]

This enable us to evaluate the variation of \(w_{\pm} w_r\) along characteristic lines \(t \mp r = Const\) and obtain plentiful information about the asymptotic behaviour of solutions.
1.3 Main Results

Now we give the main results of this work. Throughout this paper we always assume \(d \geq 3 \) and \(p < 1 + \frac{4}{d-1} \). In this case it is well known that if the initial data come with a finite energy, then the solution exist for all time. Please refer to Ginibre-Velo [21]. Our first result is about the energy distribution of solutions to \((CP1)\).

Theorem 1.1. Assume \(d \geq 3, 1 + \frac{4}{d-1} > p > 1 + \frac{2}{d-1} \). Let \(u \) be a solution to \((CP1)\) with a finite energy. Then

(a) The following limits hold as time tends to infinity

\[
\lim_{t \to \pm \infty} \int_{|x| < |t|} \frac{|t| - |x|}{|t|^2} e(x,t) \, dx = 0.
\]

(b) The inward/outward part of energy vanishes as time tends positive/negative infinity.

\[
\lim_{t \to \pm \infty} \int_{\mathbb{R}^d} \left(|u_r \pm u_t|^2 + |\nabla u|^2 + |u|^{p+1} \right) \, dx = 0.
\]

(c) Furthermore, if the initial data satisfy \(E_\kappa (u_0, u_1) < +\infty \) for a constant

\[
\kappa \in \left(0, \left(\frac{d-1}{d} \right) - \frac{1}{2} \right), \quad \text{if } 1 + \frac{4}{d-1} > p > 1 + \frac{2}{d-1};
\]

then we have the following decay estimates

\[
\lim_{t \to \pm \infty} \int_{|x| < |t|} \frac{|t| - |x|}{|t|^{1-\kappa}} e(x,t) \, dx = 0;
\]

\[
\lim_{t \to \pm \infty} |t|^\kappa \int_{\mathbb{R}^d} \left(|u_r \pm u_t|^2 + |\nabla u|^2 + |u|^{p+1} \right) \, dx = 0.
\]

As an application of the theory on energy distribution, we also prove the following scattering result.

Theorem 1.2. Assume \(d \geq 3, 1 + \frac{4}{d-1} > p > \frac{3-d+2d-d+2}{d-1} \). Let \(u \) be a radial solution to \((CP1)\) with a finite energy and the initial data \((u_0, u_1)\) satisfy \(E_{\frac{2-d+2d-d+2}{p+1}} (u_0, u_1) < +\infty \), then the solution \(u \) scatters in both two time directions. More precisely, there exist two radial finite-energy free waves \(\tilde{u}^+, \tilde{u}^- \), so that

\[
\lim_{t \to \pm \infty} \left\| \left(\tilde{u}^+(\cdot, t) - u(\cdot, t) \right) - \tilde{u}^-(\cdot, t) \right\|_{\mathcal{H}^1 \times L^2(\mathbb{R}^d)} = 0.
\]

Here \(E_{\frac{2-d+2d-d+2}{p+1}} (u_0, u_1) = \int_{\mathbb{R}^d} \left(|x|^{\frac{(2-d+2d-d+2)}{p+1}} + 1 \right) \left(\frac{1}{2} |\nabla u_0(x)|^2 + \frac{1}{2} |u_1(x)|^2 + \frac{1}{p+1} |u_0(x)|^{p+1} \right) \, dx \).

1.4 The Structure of This Paper

This paper is organized as follows. We first give a few preliminary results in section 2. In section 3 we give a Morewetz identity and a Morawetz inequality, which is the main tool of this paper. Next in section 4 we prove the energy distribution properties of the solutions. Finally we prove the scattering theory of the solution \(u \) under an additional decay assumption in the last section.

2 Preliminary Results

Notations In this work we will use the notation \(e(x,t) \) for the energy density

\[
e(x,t) = \frac{1}{2} |\nabla u(x,t)|^2 + \frac{1}{2} |u_t(x,t)|^2 + \frac{1}{p+1} |u(x)|^{p+1}.
\]
We use \(u_r, \nabla u \) for the derivative in the radial direction and the covariant derivative on the sphere centred at the origin, respectively:

\[
 u_r(x, t) = \frac{x}{|x|} \cdot \nabla u(x, t); \quad \nabla u = \nabla u - u_r \frac{x}{|x|}; \quad |\nabla u|^2 = |u_r|^2 + |\nabla u|^2.
\]

We also define the weighted energy

\[
 E_A(u_0, u_1) = \int_{\mathbb{R}^d} \left(|x|^{s} + 1 \right) \left(\frac{1}{2} |\nabla u_0(x)|^2 + \frac{1}{2} |u_1(x)|^2 + \frac{1}{p+1} |u_0(x)|^{p+1} \right) dx.
\]

In this work \(\sigma_R \) represents the regular measure of the sphere \(\{ x \in \mathbb{R}^d : |x| = R \} \). We also define \(c_d \) to be the area of the united sphere \(S^{d-1} \). Thus we have the following identities for any radial function \(f(x) \)

\[
 \int_{|x|=r} f(x) r^{d-1} dr = c_d r^{d-1} f(0); \quad \int_{\mathbb{R}^d} f(x) dx = c_d \int_0^\infty f(r) r^{d-1} dr.
\]

The notation \(A \lesssim B \) means that there exists a constant \(c \), so that the inequality \(A \leq cB \) holds. We may also put subscript \((s) \) to indicate that the constant \(c \) depends on the given subscript \((s) \) but nothing else. In particular, the symbol \(\lesssim_1 \) is used if \(c \) is an absolute constant.

Lemma 2.1. *(Pointwise Estimate)* Assume \(d \geq 3 \). all radial \(\dot{H}^1(\mathbb{R}^d) \) functions \(u \) satisfy

\[
 |u(r)| \lesssim_d r^{-\frac{d-2}{2}} \|u\|_{\dot{H}^1}, \quad r > 0.
\]

If \(u \) also satisfy \(u \in L^{p+1}(\mathbb{R}^d) \), then its decay is stronger as \(r \to +\infty \).

\[
 |u(r)| \lesssim_d r^{-\frac{2(d-1)}{d+1}} \|u\|_{\dot{H}^1} \|u\|_{L^{p+1}}, \quad r > 0.
\]

This lemma has been known for many years, more details can be found, for example, in C.E. Kenig and F. Merle [4] for \(d = 3 \) and R. Shen [9] for \(d \geq 3 \).

Lemma 2.2. *(Radiation Field)* Assume that \(d \geq 3 \) and let \(u \) be a solution to the free wave equation \(\partial_t^2 u - \Delta u = 0 \) with initial data \((u_0, u_1) \in H^1 \times L^2(\mathbb{R}^d) \). Then

\[
 \lim_{t \to +\infty} \int_{\mathbb{R}^d} \left(|\nabla u(x, t)|^2 - |u_r(x, t)|^2 + \frac{|u(x, t)|^2}{|x|^2} \right) dx = 0,
\]

and there exists a unique function \(G_+ \in L^2(\mathbb{R} \times S^{d-1}) \) such that

\[
 \lim_{t \to +\infty} \int_0^\infty \int_{S^{d-1}} \left| \frac{d}{dt} \partial_r u(r \theta, t) - G_+(r - t, \theta) \right|^2 d\theta dr = 0;
\]

\[
 \lim_{t \to +\infty} \int_0^\infty \int_{S^{d-1}} \left| \frac{d}{dt} \partial_r u(r \theta, t) + G_+(r - t, \theta) \right|^2 d\theta dr = 0.
\]

In addition, the map

\[
 (u_0, u_1) \to \sqrt{2} G_+
\]

\[
 \dot{H}^1 \times L^2(\mathbb{R}^d) \to L^2(\mathbb{R} \times S^{d-1})
\]

is a bijective isometry.

This result was known many years ago, please see Friedlander [11] [12]. Duyckaerts-Kenig-Merle [13] gives a proof for all dimensions \(d \geq 3 \).
3 Morawetz identity and Moroetz inequality

3.1 Morawetz identity

Proposition 3.1. (Morawetz identity) Let u be a solution to (CP1) with a finite energy E. Then the following identity holds for any $R > 0$ and time $t_1 < t_2$.

\[
\frac{1}{2R}\int_{t_1}^{t_2} \int_{|x| < R} (|\nabla u|^2 + |u|^2 + \frac{(d-1)(p-1) - 2}{p+1} |u|^{p+1}) \, dx \, dt + \frac{d-1}{4R^2} \int_{t_1}^{t_2} \int_{|x|=R} |u|^2 \, d\sigma(x) \, dt
\]

\[
+ \int_{t_1}^{t_2} \int_{|x| > R} \left| \frac{|\nabla u|^2}{|x|} + \frac{(d-1)(p-1)}{2(p+1)} \frac{|u|^{p+1}}{|x|} + \frac{(d-3)(d-1)}{4} \frac{|u|^2}{|x|^3} \right| \, dx \, dt
\]

\[
+ \sum_{i=1,2} \int_{|x| < R} \left| \frac{1}{2} |u_x + \frac{d-1}{2} \frac{u}{|x|} + (-1)^i u_t |^2 + \left| \frac{|\nabla u|^2}{2} + \frac{|u|^{p+1}}{p+1} + \frac{(d-1)(d-3)}{8|x|^2} u(x,t)^2 \right| \right| \bigg|_{t=t_i} \bigg| \bigg| \, dx = 2E.
\]

Proof. We follow a similar argument to the given by Perthame and Vega in the final section of their work [20]. Let us first consider solutions with compact support. Given a constant R, we define two radian functions Ψ and φ by

\[
\nabla \Psi = \begin{cases} \nu, & \text{if } |x| \leq R; \\
R \nu/|x|, & \text{if } |x| \geq R; \end{cases} \quad \varphi = \begin{cases} 1/2, & \text{if } |x| \leq R; \\
0, & \text{if } |x| > R. \end{cases}
\]

Since u is defined for all time t, we may also define a function on R

\[
\mathcal{E}(t) = \int_{\mathbb{R}^d} u_t(x,t) \bigg(\nabla u(x,t) \cdot \nabla \Psi + u(x,t) \left(\frac{\Delta \Psi}{2} - \varphi \right) \bigg) \, dx.
\]

We may differentiate \mathcal{E}, utilize the equation

\[
u_{tt} - \Delta u = -|u|^{p-1} u,
\]

apply integration by parts and obtain

\[
-\mathcal{E}'(t) = \int_{\mathbb{R}^d} \left(\sum_{i,j=1}^{d} u_i \Psi_{ij} u_j - \varphi \nabla u_i^2 + \varphi |u_t|^2 \right) \, dx + \frac{1}{4} \int_{\mathbb{R}^d} \nabla (|u|^2) \cdot \nabla (\Delta \Psi - 2\varphi) \, dx
\]

\[
+ \int_{\mathbb{R}^d} |u|^{p+1} \left(\frac{p-1}{2(p+1)} \Delta \Psi - \varphi \right) \, dx
\]

\[
= I_1 + I_2 + I_3.
\]

Here we have

\[
\Psi_{ij} = \begin{cases} \frac{\delta_{ij}}{|x|}, & \text{if } |x| < R; \\
\frac{R \delta_{ij}}{|x|^2}, & \text{if } |x| > R; \end{cases} \quad \Delta \Psi = \begin{cases} d, & \text{if } |x| < R; \\
R(d-1)/|x|, & \text{if } |x| > R; \end{cases}
\]

\[
\Delta \Psi - 2\varphi = \begin{cases} d - 1, & \text{if } |x| \leq R; \\
R(d-1)/|x|, & \text{if } |x| \geq R; \in C(\mathbb{R}^d). \end{cases}
\]

When $|x| > R$, we may calculate

\[
\sum_{i,j=1}^{d} u_i \Psi_{ij} u_j = \sum_{i,j=1}^{d} u_i \left(\frac{R \delta_{ij}}{|x|} - \frac{R x_i x_j}{|x|^3} \right) u_j = \frac{R}{|x|} \nabla u_i^2 - \frac{R |\nabla u| \cdot x_i}{|x|^3} u_j = \frac{R}{|x|} |\nabla u|^2.
\]

5
Thus we have

$$I_1 = \frac{1}{2} \int_{|x| < R} \left(|\nabla u|^2 + |u_t|^2 \right) dx + R \int_{|x| > R} \frac{|\nabla u|^2}{|x|} dx.$$ \hspace{1cm} (4)

The last term in the equality above, a basic computation shows

$$I_3 = \frac{(d - 1)(p - 1) - 2}{2(p + 1)} \int_{|x| < R} |u|^{p+1} dx + \frac{(p - 1)(d - 1)R}{2(p + 1)} \int_{|x| > R} \frac{|u|^{p+1}}{|x|} dx.$$ \hspace{1cm} (5)

Let us calculate the left hand carefully

$$\begin{align*}
J_2 &= \frac{1}{4} \int_{\mathbb{R}^d} \nabla \left(|u|^2 \right) \cdot \nabla (\Delta \Psi - 2\varphi) dx \\
&= \frac{1}{4} \int_{|x| > R} \nabla \left(|u|^2 \right) \cdot \frac{-R(d - 1)x}{|x|^3} dx \\
&= \frac{1}{4} \int_{|x| > R} \left[\text{div} \left(|u|^2 \cdot \frac{-R(d - 1)x}{|x|^3} \right) + (d - 3)(d - 1) \frac{R}{|x|^3} |u|^2 \right] dx \\
&= \frac{d - 1}{4R} \int_{|x| = R} |u|^2 d\sigma_R(x) + \frac{(d - 3)(d - 1)}{4} \int_{|x| > R} \frac{|u|^2}{|x|^3} dx.
\end{align*}$$ \hspace{1cm} (6)

Since $-\mathcal{E}'(t) = I_1 + I_2 + I_3$, we have

$$\int_{t_1}^{t_2} (I_1 + I_2 + I_3) dt = \mathcal{E} (t_1) - \mathcal{E} (t_2).$$ \hspace{1cm} (7)

We rewrite in the form of

$$\begin{align*}
\mathcal{RE} (t_1) &= \int_{\mathbb{R}^d} R u_t(x, t) \left(\nabla u(x, t) \cdot \nabla \Psi + u(x, t) \left(\frac{\Delta \Psi}{2} - \varphi \right) \right) dx \\
&= \frac{1}{2} \int_{\mathbb{R}^d} \left(R^2 |u_t|^2 + |\nabla u(x, t_1)|^2 + \left| \nabla u(x, t_1) \cdot \nabla \Psi + u(x, t_1) \left(\frac{\Delta \Psi}{2} - \varphi \right) \right|^2 \right) dx \\
&\quad - \frac{1}{2} \int_{\mathbb{R}^d} \left| \nabla u(x, t_1) \cdot \nabla \Psi + u(x, t_1) \left(\frac{\Delta \Psi}{2} - \varphi \right) - R u_t(x, t_1) \right|^2 dx \\
&= J_1 - J_2.
\end{align*}$$ \hspace{1cm} (8)

Then we calculate J_1, J_2

$$\begin{align*}
J_1 &= \frac{1}{2} \int_{\mathbb{R}^d} \left(R^2 |u_t|^2 + |\nabla u \cdot \nabla \Psi|^2 + \left(\frac{\Delta \Psi}{2} - \varphi \right) \nabla (|u|^2) \cdot \nabla \Psi + \left(\frac{\Delta \Psi}{2} - \varphi \right)^2 |u|^2 \right) dx \\
&= \frac{1}{2} \int_{\mathbb{R}^d} \left(R^2 |u_t|^2 + |\nabla u \cdot \nabla \Psi|^2 - \text{div} \left(\left(\frac{\Delta \Psi}{2} - \varphi \right) \nabla \Psi \right) |u|^2 + \left(\frac{\Delta \Psi}{2} - \varphi \right)^2 |u|^2 \right) dx.
\end{align*}$$ \hspace{1cm} (9)

A basic calculation shows

$$\text{div} \left(\left(\frac{\Delta \Psi}{2} - \varphi \right) \nabla \Psi \right) = \begin{cases}
\frac{d(d - 1)/2}{2|x|^2}, & \text{if } |x| < R; \\
\frac{(d - 1)(d - 2)R^2}{2|x|^2}, & \text{if } |x| > R.
\end{cases}$$ \hspace{1cm} (10)
Thus we have
\[J_1 = \frac{1}{2} \int_{|x|<R} \left[R^2 |u|^2 + |x \cdot \nabla u|^2 + \frac{1-d^2}{4} |u|^2 \right] dx
+ \frac{1}{2} \int_{|x|>R} \left[R^2 |u|^2 + R^2 |u_r|^2 + \frac{R^2(3-d)|u|^2}{4|x|^2} \right] dx
- \frac{R^2}{2} \int_{|x|<R} \left[\frac{R^2 - |x|^2}{2R^2} |u|^2 + \frac{1}{2} \left(R^2 - \frac{|x|^2}{2} \right) |u_r|^2 + \frac{R^2(3-d)|u|^2}{4|x|^2} \right] dx
+ \frac{(d-1)(3-d)R^2}{8} \int_{|x|>R} \frac{|u|^2}{|x|^2} dx - \frac{R^2}{2} \int_{|x|>R} \left(\frac{1}{2} \frac{\nabla u}{|u|} + \frac{1}{p+1} |u_r|^2 \right) dx. \]

(11)

In addition we have
\[J_2 = \frac{1}{2} \int_{|x|<R} \left| x \cdot \nabla u + \frac{d-1}{2} u - Ru_t \right|^2 dx + \frac{R^2}{2} \int_{|x|>R} \left| \frac{x}{|x|} \cdot \nabla u + \frac{d-1}{2} \frac{u}{|x|} - u_t \right|^2 dx. \]

(12)

Combining \(J_1, J_2 \), we obtain
\[RE(t_1) = R^2 E - R^2 \int_{|x|>R} \left[\frac{1}{2} \left(u_r + \frac{d-1}{2} \frac{u}{|x|} - u_t \right)^2 + \frac{\nabla u}{2} + \frac{|u_r|}{2} + \frac{|u|^{p+1}}{p+1} + \frac{(d-1)(d-3)|u|^2}{8|x|^2} \right] dx
- R^2 \int_{|x|<R} \left[\frac{R^2 - |x|^2}{2R^2} |u|^2 + \frac{1}{2} \frac{|x|}{R} u_r + \frac{d-1}{2} \frac{u}{2} - u_t \right]^2 + \frac{\nabla u}{2} + \frac{|u_r|}{2} + \frac{|u|^{p+1}}{p+1} + \frac{(d-1)|u|^2}{8R^2} dx. \]

Finally we find a similar expression of \(-RE(t_2)\)
\[-RE(t_2) = R^2 E - R^2 \int_{|x|>R} \left[\frac{1}{2} \left(u_r + \frac{(d-1)u}{2|x|} + u_t \right)^2 + \frac{\nabla u}{2} + \frac{|u_r|}{2} + \frac{|u|^{p+1}}{p+1} + \frac{(d-1)(d-3)|u|^2}{8|x|^2} \right] dx
- R^2 \int_{|x|<R} \left[\frac{R^2 - |x|^2}{2R^2} |u|^2 + \frac{1}{2} \frac{|x|}{R} u_r + \frac{(d-1)u}{2R} + u_t \right]^2 + \frac{\nabla u}{2} + \frac{|u_r|}{2} + \frac{|u|^{p+1}}{p+1} + \frac{(d-1)|u|^2}{8R^2} dx. \]

Then plug all the expressions of \(I_1, I_2, I_3 \) and \(-RE(t_2), -RE(t_2)\) into the integral identity to finish the proof if \(u \) is compactly supported. In order to deal with the general solution \(u \), we fix a smooth radial cut-off function \(\phi: \mathbb{R}^2 \to [0, 1] \) so that
\[\phi(x) = \begin{cases} 1, & \text{if } |x| \leq 1; \\ 0, & \text{if } |x| > 2; \end{cases} \]
define initial data \((u_{0,R'}(x), u_{1,R'}(x)) = \phi(x/R') (u(x,t_1), u_t(x,t_1))\) and consider the corresponding solution \(u_{R'} \) to (CP1). The argument above shows that \(u_{R'} \) satisfies Morawetz identity. We observe
1) The identity \(u_{R'}(x,t) = u(x,t) \) holds if \(|x| < R' + t_1 - t\) by finite speed of propagation;
2) \(E(u_{0,R'}, u_{1,R'}) \to E \) as \(R' \to \infty \).
3) The energies of \(u_{R'} \) and \(u \) in the region where \(u_{R'} \neq u \) both converge to zero as \(R' \to +\infty \) by finite speed of propagation and energy conservation law.
These facts enable us to take the limit \(R' \to +\infty \) and prove Morawetz identity for general solutions \(u \).

\[\square \]

3.2 Morawetz inequalities

A combination of Morawetz identity and finite speed of propagation gives a few useful inequalities, which is the main tool of this paper. The key observation here is that if \(R \) is large, the first term in the Morawetz identity is almost \(2E \) when \(t_1 \leq -R \) and \(t_2 \leq R \), thus all other terms must be small.
Corollary 3.2. Let u be a solution to (CP1) with initial data $(u_0, u_1) \in \left(\dot{H}^1 (\mathbb{R}^d) \cap L^{p+1} (\mathbb{R}^d) \right) \times L^2 (\mathbb{R}^d)$. Given any $R > 0, r \geq 0$ we have

$$\sum_{j=1}^{6} M_j \leq \int_{\mathbb{R}^d} \min \{|x|/R, 1\} \left(|\nabla u_0|^2 + |u_1|^2 + \frac{2}{p+1} |u_0|^{p+1} \right) dx.$$

The notations M_j are defined by

$$M_1 = \frac{1}{2R} \int_{|x|<|R+r+1|} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{(d-1)(p-1) - 2}{p+1} |u|^{p+1} \right) dxdt;$$

$$M_2 = \frac{d-1}{2(p+1)R} \int_{|x|=R} |u_t|^2 dxdt;$$

$$M_3 = \frac{d-1}{4R^2} \int_{-R-r}^{R+r} \int_{|x|=R} |u|^2 d\sigma(x) dt;$$

$$M_4 = \int_{-R-r}^{R+r} \int_{|x|>R} \left(\frac{\nabla u^2}{|x|} + \frac{(d-1)(p-1) |u|^{p+1}}{2(p+1)} |x| + \frac{(d-3)(d-1) |u|^2}{4} \right) dxdt;$$

$$M_5 = \sum_{\pm} \int_{|x|<R} \left(\frac{R^2 - |x|^2}{2R^2} |u_t|^2 + \frac{1}{2} \left| \frac{|x|}{R} u_t + \frac{(d-1)u}{2R} \pm u_t \right|^2 + \frac{(d-1)u_t^2}{2} + \frac{|u_t|^2}{8} + \frac{|u_t|^{p+1}}{2(p+1)} \right)_{t=\pm(R+r)} dx;$$

$$M_6 = \sum_{\pm} \int_{|x|>R} \left(\frac{1}{2} |u_t + \frac{(d-1)u}{2x} \pm u_t|^2 + \frac{|\nabla u|^2}{2} + \frac{1}{p+1} |u|^{p+1} + \frac{(d-1)(d-3) |u|^2}{8} \right)_{t=\pm(R+r)} dx.$$

Proof. We first choose $t_1 = -R - r, t_2 = R + r$ in the Morawetz identity, the first term above can be written as a sum of three terms

$$\frac{1}{2R} \int_{-R-r}^{R+r} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{(d-1)(p-1) - 2}{p+1} |u|^{p+1} \right) dx dt$$

$$= M_1 + \frac{1}{2R} \int_{-R}^{R} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{(d-1)(p-1) - 2}{p+1} |u|^{p+1} \right) dx dt$$

$$= M_1 + M_2 + \frac{1}{2R} \int_{-R}^{R} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx dt.$$

Thus

$$\frac{1}{2R} \int_{-R}^{R} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx dt + \sum_{j=1}^{6} M_j = 2E. \quad (13)$$

In order to prove the first inequality we only need to show

$$I = 2E - \frac{1}{2R} \int_{-R}^{R} \int_{|x|<R} \left(|\nabla u|^2 + |u_t|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx dt$$

$$\leq \int_{\mathbb{R}^d} \min \{|x|/R, 1\} \left(|\nabla u_0|^2 + |u_1|^2 + \frac{2}{p+1} |u_0|^{p+1} \right) dx.$$
This follows energy conservation law and finite speed of propagation of energy

\[
I = \frac{1}{R} \int_{-R}^{R} \int_{|x| > R} \left(\frac{1}{2} |\nabla u|^2 + \frac{1}{2} |u_t|^2 + \frac{1}{p+1} |u|^{p+1} \right) \, dx \, dt
\]

\[
\leq \frac{1}{R} \int_{-R}^{R} \int_{|x| > R - |t|} \left(\frac{1}{2} |\nabla u_0|^2 + \frac{1}{2} |u_1|^2 + \frac{1}{p+1} |u_0|^{p+1} \right) \, dx \, dt
\]

\[
= \frac{1}{R} \int_{\mathbb{R}^d} \min\{||x|, R\} \left(|\nabla u_0|^2 + |u_1|^2 + \frac{2}{p+1} |u_0|^{p+1} \right) \, dx.
\]

\[\square\]

4 Energy Distribution

In this section we prove Theorem 1.1. It suffices to consider the positive time direction \(t > 0 \), since the wave equation is time-reversible.

We choose \(R = t, r = 0 \) in corollary 3.3. The following inequalities hold for large time \(t > 0 \).

\[
\sum_{\pm} \int_{|x| < t} \left(\frac{t^2 - |x|^2}{2t^2} |u_r|^2 + \frac{1}{2} \frac{|x|}{t} u_r + \frac{(d-1)u}{2t} \pm u_t \right)^2 + \frac{(d^2 - 1) |u_t|^2}{8t^2} + \frac{\nabla u_t^2}{2} + \frac{|u|^{p+1}}{p+1} \, dx
\]

\[
+ \sum_{\pm} \int_{|x| > t} \left(\frac{1}{2} u_r + \frac{(d-1)u}{2|x|} \pm u_t \right)^2 + \frac{|\nabla u|^2}{2} + \frac{1}{p+1} |u|^{p+1} + \frac{(d-1)(d-3) |u_t|^2}{8} \, dx
\]

\[
\leq \frac{4 - (d-1)(p-1)}{2(p+1)t} \int_{-t}^{t} \int_{|x| < t} |u(x, t')|^{p+1} \, dx \, dt' + \int_{\mathbb{R}^d} \min\{|x|/R, 1\} \left(|\nabla u_0|^2 + |u_1|^2 + \frac{2}{p+1} |u_0|^{p+1} \right) \, dx.
\]

We observe that

\[
|\nabla u|^2 + |u_t|^2 \lesssim_1 |u_r|^2 + \frac{|x|}{t} u_r + \frac{(d-1)u}{2t} + u_t \, dx
\]

and

\[
|u_r + u_t|^2 \lesssim_1 \frac{(t - |x|)^2}{t^2} |u_r|^2 + \frac{|x|}{t} u_r + \frac{(d-1)u}{2t} + u_t \, dx, \quad \text{if } |x| < t;
\]

\[
|u_r + u_t|^2 \lesssim_1 \frac{1}{2} u_r + \frac{(d-1)u}{2|x|} + u_t \, dx + \frac{(d-1)(d-3) |u_t|^2}{8 |x|^2}, \quad \text{if } |x| > t.
\]

Then obtain

\[
\frac{1}{p+1} \int_{\mathbb{R}^d} (|u(x, t)|^{p+1} + |u(x, t^+)|^{p+1}) \, dx + c_1 \sum_{\pm} \int_{|x| < t} \frac{t - |x|}{t} \left(|\nabla u(x, \pm t)|^2 + |u_t(x, \pm t)|^2 \right) \, dx
\]

\[
+ c_2 \sum_{\pm} \int_{\mathbb{R}^d} \left((u_r \pm u_t)(x, \pm t)^2 + |\nabla u(x, \pm t)|^2 \right) \, dx
\]

\[
\leq \frac{4 - (d-1)(p-1)}{2(p+1)t} \int_{-t}^{t} \int_{|x| < t} |u(x, t')|^{p+1} \, dx \, dt' + 2 \int_{\mathbb{R}^d} \min\{|x|/t, 1\} c(x, 0) \, dx.
\]

Here \(c_1, c_2 > 0 \) are absolute constants. For convenience we introduce the notation

\[
Q(t) = \frac{1}{p+1} \int_{\mathbb{R}^d} (|u(x, t)|^{p+1} + |u(x, t^+)|^{p+1}) \, dx + c_1 \sum_{\pm} \int_{|x| < t} \frac{t - |x|}{t} \left(|\nabla u(x, \pm t)|^2 + |u_t(x, \pm t)|^2 \right) \, dx
\]

\[
+ c_2 \sum_{\pm} \int_{\mathbb{R}^d} \left((u_r \pm u_t)(x, \pm t)^2 + |\nabla u(x, \pm t)|^2 \right) \, dx.
\]
Then the inequality above implies that \(Q(t) \) satisfies the recurrence formula

\[
Q(t) \leq \frac{\lambda}{t} \int_0^t Q(t') dt' + 2 \int_{\mathbb{R}^d} \min\{|x|/t, 1\} e(x, 0) dx.
\]

Here

\[0 < \lambda = \frac{4 - (d - 1)(p - 1)}{2} < 1.\]

Proof of part (a)(b) We may rewrite the recurrence formula as

\[
Q(t) \leq \frac{\lambda}{t} \int_0^t Q(t') dt' + o(1).
\]

We may take upper limits of both sides and obtain an inequality

\[
\limsup_{t \to +\infty} Q(t) \leq \limsup_{t \to +\infty} \frac{\lambda}{t} \int_0^t Q(t') dt' \leq \lambda \limsup_{t \to +\infty} Q(t).
\]

We recall the fact \(\lambda \in (0, 1) \) and observe that \(Q(t) \lesssim E \) is uniformly bounded, therefore we have

\[
\limsup_{t \to +\infty} Q(t) = 0.
\]

This verifies (a)(b).

Proof of part (c) Now we assume that initial data satisfy additional decay assumption. We start by multiplying both sides by \(t^{k-1} \) and integrate from \(t = 1 \) to \(t = T \), utilize our assumption on initial data, then obtain

\[
\int_1^T t^{k-1} Q(t) dt \leq \int_1^T t^{k-1} \left(\frac{\lambda}{t} \int_0^t Q(t') dt' \right) dt + C_{\kappa} \int_{\mathbb{R}^d} \min\{|x|, |x|^\kappa\} e(x, 0) dx
\]

\[
\leq \frac{\lambda}{1 - \kappa} \int_0^T \min\{(t')^{k-1}, 1\} Q(t') dt' + C_{\kappa} \int_{\mathbb{R}^d} \min\{|x|, |x|^\kappa\} e(x, 0) dx
\]

\[
\leq \frac{\lambda}{1 - \kappa} \int_1^T (t')^{k-1} Q(t') dt' + C_{\kappa} \int_{\mathbb{R}^d} \min\{|x|, |x|^\kappa\} e(x, 0) dx + C_k E.
\]

Here

\[
\frac{\lambda}{1 - \kappa} = \frac{4 - (d - 1)(p - 1)}{2(1 - \kappa)} < 1,
\]

since we have assumed \(\kappa < \frac{(d-1)(p-1)}{2} \). Therefore we have

\[
\int_1^T t^{k-1} Q(t) dt \lesssim_{\rho, \kappa} \int_{\mathbb{R}^d} \min\{|x|, |x|^\kappa\} e(x, 0) dx + E.
\]

Because neither the right hand side nor the implicit constant here depends on \(T \), we make \(T \to +\infty \) to conclude

\[
\int_1^\infty t^{k-1} Q(t) dt < +\infty.
\]

Combining this with the fact \(Q(t) \lesssim E \), we have

\[
\int_0^\infty t^{k-1} Q(t) dt < +\infty.
\]

We may multiply both sides of the recurrence formula by \(t^\kappa \):

\[
t^\kappa Q(t) \leq \lambda \int_0^t t^{k-1} Q(t') dt' + 2 \int_{\mathbb{R}^d} \min\{|x|/t^{\kappa-1}, t^\kappa\} e(x, 0) dx.
\]

Finally we apply dominated convergence theorem to finish the proof of Theorem 1.1.
Remark 4.1. When \(d > 3 \), we have
\[
|u_r + u_t|^2 \lesssim \left| u_r + \frac{(d-1)u}{2|x|} + u_t \right|^2 + \frac{(d-1)(d-3)}{8} \frac{|u|^2}{|x|^2}, \quad \text{if } |x| > t.
\]
But the term \(\frac{(d-1)(d-3)}{8} \frac{|u|^2}{|x|^2} = 0 \) when \(d = 3 \), so the inequality above does not hold. We can redefine
\[
Q(t) = \frac{1}{p+1} \int_{\mathbb{R}^d} \left(|u(x,t)|^{p+1} + |u(x,-t)|^{p+1} \right) dx + c_1 \sum_{\pm} \int_{|x|<t} \frac{t-|x|}{t} \left(|\nabla u(x, \pm t)|^2 + |u_t(x, \pm t)|^2 \right) dx
+ c_2 \sum_{\pm} \int_{|x|\geq t} \left(|u_r + (d-1)u| \pm u_t \right)^2 + |\nabla u(x, \pm t)|^2 \right) dx.
\]
We also have
\[
\limsup_{t \to +\infty} Q(t) = 0,
\]
and
\[
t^\kappa Q(t) \leq \lambda \int_0^t t^{\kappa-1} Q(t') dt' + 2 \int_{\mathbb{R}^d} \min\{|x|/t^{\kappa-1}, t^\kappa\} e(x,0) dx.
\]
Because
\[
|u_r + u_t|^2 \lesssim \left| u_r + \frac{(d-1)u}{2|x|} + u_t \right|^2 + c \frac{|u|^2}{|x|^2}, \quad \text{if } |x| > t.
\]
We can finish the proof of Theorem 1.1 by an estimate.
\[
\int_{|x|>t} \frac{|u|^2}{|x|^2} dx \lesssim \left(\int_{|x|>t} (|u|^2)^{\frac{\kappa+5}{\kappa+1}} dx \right)^{\frac{\kappa+1}{\kappa+5}} \left(\int_{|x|>t} (|x|^{-2})^{\frac{\kappa+5}{\kappa+1}} dx \right)^{\frac{\kappa+5}{\kappa+1}}.
\]
When \(d = 3 \), we have \(p \in (2,3) \) and the inequality
\[
t^{\frac{\kappa+5}{\kappa+1}} \ll t^{-\kappa},
\]
thus
\[
\int_{|x|>t} \frac{|u|^2}{|x|^2} dx \ll t^{-\kappa}.
\]

5 Scattering Theory

5.1 Transformation to 1D

In order to take full advantage of our radial assumption, we use the following transformation: if \(u \) is a radial solution to (CP1), then \(w(r,t) = r^{\frac{d-4}{4}} u(r,t) \), where \(|x| = r \), is a solution to one-dimensional wave equation
\[
(\partial_t^2 + \partial_r^2) (w_t - w_r) = \partial_r^2 w - \partial_r^2 w = -\frac{(d-1)(d-3)}{4} \frac{r^{d-4}}{r^4} u - r^{d-4} |u|^{p-1} u.
\]
We define
\[
v_+(r,t) = w_t(r,t) - w_r(r,t); \quad v_-(r,t) = w_t(r,t) + w_r(r,t).
\]
A simple calculation shows that \(v_\pm \) satisfy the equation
\[
(\partial_t \pm \partial_r) v_\pm(r, t) = \partial_r^2 w - \partial_r^2 w = -\frac{(d - 1)(d - 3)}{4} r^{\frac{d - 5}{2}} u - r^{\frac{d - 1}{2}} |u|^{p - 1} u.
\]
This gives variation of \(v_\pm \) along characteristic lines \(t \pm r = \text{Const.} \)
\[
v_+ (t_2 - \eta, t_2) - v_+ (t_1 - \eta, t_1) = \int_{t_1}^{t_2} f(t - \eta, t) dt, \quad t_2 > t_1 > \eta; \quad (15)
v_- (s - t_2, t_2) - v_- (s - t_1, t_1) = \int_{t_1}^{t_2} f(s - t, t) dt, \quad t_1 < t_2 < s. \quad (16)
\]
Here the function \(f(r, t) \) is defined by
\[
f(r, t) = -\frac{(d - 1)(d - 3)}{4} r^{\frac{d - 5}{2}} u(r, t) - r^{\frac{d - 1}{2}} |u|^{p - 1} u(r, t).
\]
Then we give the upper bounds of the integral above. According to Lemma 2.1 we have
\[
\int_{t_1}^{t_2} (t - \eta)^{\frac{d - 5}{2}} |u(t - \eta, t)| dt
\leq \left\{ \int_{t_1}^{t_2} \left[(t - \eta)^{\frac{d - 3}{2}} |u(t - \eta, t)| \right]^2 dt \right\}^{1/2} \left\{ \int_{t_1}^{t_2} \left[(t - \eta)^{-1/2} \right]^2 dt \right\}^{1/2}
\leq \left\{ \int_{\eta}^{t_2} (t - \eta)^{d - 3} |u(t - \eta, t)|^2 dt \right\}^{1/2} (t_2 - t_1)^{-1/2}
\lesssim_2 E^{1/2} (t_1 - \eta)^{-1/2}.
\]
In addition we have
\[
\int_{t_1}^{t_2} (t - \eta)^{\frac{d - 5}{2}} |u(t - \eta, t)|^p dt
\leq \left\{ \int_{t_1}^{t_2} \left[(t - \eta)^{\frac{(d - 1)p}{p + 1}} |u(t - \eta, t)|^p \right]^\frac{p + 1}{p} dt \right\}^{\frac{p}{p + 1}} \left\{ \int_{t_1}^{t_2} \left[(t - \eta)^{\frac{(d - 1)(p - 1)}{2(p + 1)}} \right]^{p + 1} dt \right\}^{\frac{1}{p + 1}}
\leq \left\{ \int_{\eta}^{t_2} (t - \eta)^{d - 1} |u(t - \eta, t)|^{p + 1} dt \right\}^{\frac{p}{p + 1}} \left\{ \int_{t_1}^{t_2} (t - \eta)^{-\frac{(d - 1)(p - 1)}{2(p + 1)}} dt \right\}^{\frac{1}{p + 1}}
\lesssim_2 E^{\frac{d - 1}{2}} (t_1 - \eta)^{-\frac{(d - 1)(p - 1) - 2}{2(p + 1)}}.
\]
we combine these estimates above with (15) and (16) to obtain

Lemma 5.1. Let \(u \) be a radial solution wave equation with a finite energy \(E \). Then we have
\[
|v_+ (t_2 - \eta, t_2) - v_+ (t_1 - \eta, t_1)| \lesssim_2 E^{1/2} (t_1 - \eta)^{-1/2} + E^{\frac{p}{p + 1}} (t_1 - \eta)^{-\beta(d, p)/2};
\]
\[
|v_- (s - t_2, t_2) - v_- (s - t_1, t_1)| \lesssim_2 E^{1/2} (s - t_2)^{-1/2} + E^{\frac{p}{p + 1}} (s - t_2)^{-\beta(d, p)/2}.
\]
Here \(\beta(d, p) = \frac{(d - 1)(p - 1) - 2}{p + 1} \).

5.2 Scattering by energy decay

In this section we prove Theorem 1.2. Let us recall the lemma 5.1, we obtain there exists a function \(g_+(\eta) \in L^2(\mathbb{R}) \) with \(\|g_+\|^2_{L^2(\mathbb{R})} \leq E/c_d, \) so that
\[
v_+ (t - \eta, t) \to 2g_+(\eta) \quad \text{in} \quad L^2_{loc}(\mathbb{R}), \quad \text{as} \quad t \to +\infty.
\]
The asymptotic behaviour of v_- is similar as $t \to -\infty$

$$v_-(s - t, t) \to 2g_-(s) \quad \text{in } L^2_{\text{loc}}(\mathbb{R}), \quad \text{as } t \to -\infty,$$

let $t_2 \to +\infty$ in the first inequality of lemma 5.1, we have

$$|2g_+(\eta) - v_+(t - \eta, t)| \lesssim_{d,p,E} (t - \eta)^{-\beta(d,p)/2}, \quad \eta < t - 1.$$

We apply a change of variable $r = t - \eta$ and rewrite this in the form

$$|v_+(r, t) - 2g_+(t - r)| \lesssim_{d,p,E} r^{-\beta(d,p)/2}, \quad r > 1.$$

Similarly we have

$$|v_-(r, t) - 2g_-(t + r)| \lesssim_{d,p,E} r^{-\beta(d,p)/2}, \quad r > 1.$$

These gives the following upper limits

$$\limsup_{t \to +\infty} \int_{t - c|\beta(d,p)|}^{t + R} \left(|v_+(r, t) - 2g_+(t - r)|^2 + |v_-(r, t) - 2g_-(t + r)|^2 \right) dr \lesssim_{d,p,E} c.$$ \hfill (17)

We ignore $g_-(t + r)$ in the upper limits above because

$$\lim_{t \to +\infty} \int_0^\infty |g_-(t + r)|^2 dr = \lim_{t \to +\infty} \int_0^\infty |g_-(s)|^2 ds = 0.$$

We recall $v_{\pm} = w_t \mp w_r$ and rewrite the upper limits above in term of w

$$\limsup_{t \to +\infty} \int_{t - c|\beta(d,p)|}^{t + R} \left(|w_r(r, t) + g_+(t - r)|^2 + |w_t(r, t) - g_+(t - r)|^2 \right) dr \lesssim_{d,p,E} c.$$ \hfill (18)

Next we utilize the identities $r^{d-1} u_r = w_r - (d - 1)r^{d-2} u/2, r^{d-1} u_t = w_t$ and a direct consequence of the pointwise estimate $|u(r,t)| \lesssim_{d,E} r^{-\frac{2(d-1)}{d}}$ (lemma 2.1) to conclude

$$\limsup_{t \to +\infty} \int_{t - c|\beta(d,p)|}^{t + R} \left(|r^{d-1} u_r(r, t) + g_+(t - r)|^2 + |r^{d-1} u_t(r, t) - g_+(t - r)|^2 \right) dr \lesssim_{d,p,E} c.$$ \hfill (22)

By lemma 1.2 (radiation fields), there exists a radial free wave \tilde{u}_r^+, so that

$$\lim_{t \to +\infty} \int_0^\infty \left(|r^{d-1} \tilde{u}_r^+(r, t) + g_+(t - r)|^2 + |r^{d-1} \tilde{u}_t^+(r, t) - g_+(t - r)|^2 \right) dr = 0.$$ \hfill (19)

Therefore we have

$$\limsup_{t \to +\infty} \int_{t - c|\beta(d,p)|}^{t + R} r^{d-1} \left(|u_t(r, t) - \tilde{u}_t^+(r, t)|^2 + |u_r(r, t) - \tilde{u}_r^+(r, t)|^2 \right) dr \lesssim_{d,p,E} c.$$ \hfill (20)

Finite speed of propagation of energy implies

$$\limsup_{R \to \infty} \int_0^\infty \left(|u_t(r, t) - \tilde{u}_t^+(r, t)|^2 + |u_r(r, t) - \tilde{u}_r^+(r, t)|^2 \right) dr = 0.$$ \hfill (21)

We combine (20) with (21) and obtain

$$\limsup_{t \to +\infty} \int_{t - c|\beta(d,p)|}^{t + R} r^{d-1} \left(|u_t(r, t) - \tilde{u}_t^+(r, t)|^2 + |u_r(r, t) - \tilde{u}_r^+(r, t)|^2 \right) dr \lesssim_{d,p,E} c.$$ \hfill (22)
Finally we consider the region \(\{ x : |x| < t - c \cdot t^{\beta(p)} \} \). We utilize the conclusion of Theorem 1.1.(c), and obtain

\[
\lim_{t \to +\infty} \int_{|x| < t - c \cdot t^{\beta(p)}} e(x, t)dx \lesssim_{c} \lim_{t \to +\infty} t^{\frac{(2-p)(d+2)}{p+1}} \int_{|x| < t} \frac{|x|}{t} e(x, t)dx = 0.
\]

Please note that in the sub-conformal range our assumption \(p > \frac{3-d+\sqrt{d^2-d+1}}{d-1} \) guarantees that \(\frac{(2-dp+(d+2)}{p+1} < \frac{(d-1)(p-1)−2}{2} \).

We also have

\[
\lim_{t \to +\infty} \int_{|x| < t - ct^{\beta(p)}} \left(|\nabla \tilde{u}^+(x, t)|^2 + |\tilde{u}^+_t(x, t)|^2 \right) dx = 0.
\]

Combining these two limits we obtain

\[
\lim_{t \to +\infty} \int_{|x| < t - ct^{\beta(p)}} \left(|\nabla \tilde{u}^-(x, t) - \nabla u(x, t)|^2 + |\tilde{u}^-_t(x, t) - u_t(x, t)|^2 \right) dx = 0.
\]

We combine this with stronger exterior scattering to conclude

\[
\limsup_{t \to +\infty} \int_{\mathbb{R}^3} \left(|\nabla \tilde{u}^-(x, t) - \nabla u(x, t)|^2 + |\tilde{u}^-_t(x, t) - u_t(x, t)|^2 \right) dx \lesssim_{d, p, E} c.
\]

We make \(c \to 0^+ \) and finish the proof.

Acknowledgement

The second author is financially supported by National Natural Science Foundation of China Projects 12071339, 11771325.

References

[1] L.Kapitanski.“Weak and yet weaker solutions of semilinear wave equations.” *Communications in Partial Differential Equations* 19(1994):1629-1676.

[2] H.Lindblad, and C.Sogge.“On existence and scattering with minimal regularity for semilinear wave equations.” *Journal of Functional Analysis* 130(1995):357-426.

[3] C.S.Morawetz.“Time decay for the nonlinear Kelein-Gordon equations.” *Proceedings of the Royal Society.London. Series A* 306(1968):291-296.

[4] C.E.King, and F.Merle.“Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications.” *American Journal of Mathematics* 133, No 4(2011):1029-1065.

[5] R.Shen.“On the energy subcritical, nonlinear wave equation in \(\mathbb{R}^3 \) with radial data.” *Analysis and PDE* 6(2013):1929-1987.

[6] B.Dodson and A.Lawrie.“Scattering for the radial 3d cubic wave equation.” *Analysis and PDE* 8(2015):467-497.

[7] J.Lin, and W.Strauss.“Decay and scattering of solutions of a nonlinear Schrödinger equation.” *Journal of Functional Analysis* 30(1987): 245-263.

[8] J.Collander, M.Keel, G.Staffilani, H.Takaoka, and T.Tao.“Global existence and scattering for rough solutions to a nonlinear Schrödinger equation in \(\mathbb{R}^3 \).” *Communications on Pure and Applied Mathematics* 57(2004):987-1014.
[9] R. Shen. “Long time behaviour of finite-energy radial solutions to energy subcritical wave equation in higher dimensions.” arXiv Preprint 1912.12913.

[10] B. Dodson. “Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation.” arXiv Preprint 1809.08284.

[11] F. G. Friedlander. “On the radiation field of pulse solutions of the wave equations of the wave equation.” Proceedings of the Royal Society A 269(1962):53-65.

[12] F. G. Friedlander. “Radiation fields and hyperbolic scattering theory.” Mathematical Proceedings of Cambridge Philosophical Society 88(1980):483-515.

[13] T. Duyckaerts, C. E. Kenig, and F. Merle. “Scattering profile for global solutions of the energy-critical wave equation.” Journal of European Mathematical Society 21(2019):2117-2162.

[14] R. Killip, and M. Visan. “The defocusing energy-supercritical nonlinear wave equation in three space dimensions.” Transactions of the American Mathematical Society 363(2011):3893-3934.

[15] R. Killip, and M. Visan. “The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions.” Proceedings of the American Mathematical Society 139(2011):1805-1817.

[16] C. Rodriguez. “Scattering for radial energy-subcritical wave equations in dimensions 4 and 5.” Communications in Partial Differential Equations 42(2017):852-894.

[17] R. Shen. “Energy distribution of radial solutions to energy subcritical wave equation with an application on scattering theory.” Transactions of the American Mathematical Society 374 (2021), 3827-3857.

[18] J. Ginibre, and G. Velo. “Conformal invariance and time decay for nonlinear wave equations.” Annales de l’institut Henri Poincaré (A) Physique théorique 47(1987):221-276.

[19] K. Hidano. “Conformal conservation law, time decay and scattering for nonlinear wave equation.” Journal D’analyse Mathématique 91(2003):269-295.

[20] B. Perthame, and L. Vega. “Morrey-Campanato estimates for Helmholtz equation.” Journal of Functional Analysis. 164(1999):340-355.

[21] J. Ginibre and G. Velo. “The global Cauchy problem for the non linear Klein-Gordon equation.” Math Z. 189 (1985):487-505.