A note on estimating minimal changeover time

Dror Hermel1*, Oded Medina1 and Nir Shvalb1

Abstract: We propose a novel approach for the estimation of change-over times in a continuous production environment, and discuss the importance and prospects of our suggested framework through an illustrative example.

Keywords: setup time; changeover time; shortest path; SMED

1. Introduction

Setup times and their crucial role in the efficiency and costs associated with production and manufacturing systems have been extensively studied (e.g. Allahverdi, Gupta, & Aldowaisan, 1999; Allahverdi, Ng, Cheng, & Kovalyov, 2008; Leon & Peters, 1996; Smed, Salonen, Johnsson, Johtela, & Nevalainen, 2003, among others). The importance of shortening these setup times is discussed in a recent editorial by Allahverdi and Soroush (2008), and has been a focal point in applications of Shingo’s “Single Minute Exchange of Die” (SMED) method Shingo (1985), e.g. Cakmakci and Karasu (2006), Shinde, Jahagirdar, Sane, and Karandikar (2014), and Stadnicka (2015) to name a few. However, to the best of our knowledge, in many settings these setup times are given as model parameters (c.f. Baker and Trietsch (2013) and references therein).

In this note we set-forth a new approach with respect to setup times, and present a novel procedure for estimation of a minimal changeover time. Our approach is an adaptation of recent advances in the field of real-time motion planning when avoiding obstacles (Shvalb, Moshe, & Medina, 2013). While applications of our idea are abundant in process manufacturing settings, we were motivated through our cooperation with a leading manufacturer from the non-woven cloths industry, where production is a continuous process (ongoing 24/7), and a variety of different
products (i.e. with a set of different desired properties—see for example http://www.avgol.com/technology-product/general.aspx) may be manufactured in the same facility and using the same process. The importance of minimizing changeover (or setup) times is both in the maximization of capacity (better utilization of time), and in minimizing production of waste. Both of these aspects, and the importance of the SMED method, are discussed in a recent comprehensive review of the relevant literature by Panwar, Nepal, Jain, and Rathore (2015).

The production process that our industry partner carries out is one where melted polypropylene filaments are injected onto a moving conveyor belt, creating a sheet of fiber, which is then pressed and treated to give it a desired set of properties, rolled, and eventually cut to desired size. The difference between products is achieved using a combination of certain production parameters (e.g. the temperature, diameter of the thread being injected, pressure, speed, etc.). We refer to a specific set of production parameters as a configuration. There is a unique mapping between a configuration and a product. Further, a change between products is a change between configurations, and the product produced during the changeover period is waste—i.e. there is a clear benefit from minimizing the changeover time. It turns out that changing between configurations is a challenging and possibly delicate issue. Specifically, if certain configurations occur while changeover takes place, there is a greater probability, and in some settings even certainty, that the resulting final configuration (i.e. product) will be defective. In our example this means that there would be a rips in the threads that makeup the fabric, and in-turn, the final fabric will not achieve the desired properties.

While there is a large variety of products, it turns out that due to years of trial and error, there is vast knowledge of which configurations should be avoided (i.e. it is possible to construct functions describing which configurations should be avoided). Further, when changeover occurs, the production technicians control the changeover by manipulating production parameters one-by-one, avoiding certain “areas” of configurations, in order to minimize probability of producing defects.

As system configuration change is required to achieve the change between products, and since the longer it takes to changeover the more waste is created, we need to find a feasible shortest path between these combinations. This change needs to account for the fact that there are parameter combinations that we need to avoid, as these result in product defects. Further, there are parameter combination that are infeasible due to physical constraints on the system (e.g. certain combinations of temperature and pressure, certain combinations of thread diameter and velocity, etc.). These constraints are formulated and we are able to identify a short path satisfying them, while minimizing the time that garbage is produced (i.e. reaching the required production configuration). To illustrate our intention see Figure 1.
Currently, changeover between products (or configurations) in our example setting is done in a manual fashion, where operators change configurations by changing parameters in a step-wise manner (i.e. moving between different parameter values until the desired final value is reached), while avoiding parameter combinations that are, based on prior knowledge gained through experience, associated with product defect. Our understanding is, that while there is a potential of automating this process, there would still be a need for some control ensuring avoidance of system configurations that are undesirable (either due to a feasibility constraint, or to avoid product defects). We limit our focus to systems where the configurations are vectors of continuous parameter values, and a functional form of a specific type can be used for both the objective function and constraints on parameter relationships. In the motivating example, it is easy to think of the objective of minimizing the time the change in configuration as it is directly related to the amount of product we must discard (product produced on the conveyor while the system has yet to reach the desired configuration). The constraints that need to be accounted for are both feasibility constraints—e.g. certain temperatures are not sufficient for certain thread diameters, and certain pressure can not accommodate certain speed requirements (for the conveyor belt). We are able to formulate these constraints as functions of the parameters. Finally, as there are certain combinations of parameters that result in defective products we can add these as infeasible combinations. For example, we can put in place a function on parameters representing all configurations that result in at least 95% probability of product defect.

In what follows we outline our mathematical framework, and a Pseudo-algorithm, that provides a detailed path of change between configurations in polynomial time, $O(N^3)$, accounting for constraints. The intuition behind the suggested algorithm is that the shortest path, in case a direct line between the starting configuration and required configuration encounters a constraint (i.e. visiting certain undesirable configurations), is a “crawl” along the constraint until we can continue the change in a “straight line”. This is illustrated in Figure 3. This approach is an extension of Shvalb et al. (2013) to more than 8-dimensional configuration space, as the original algorithm is limited to, and restricting ourselves to systems with continuous parameters defining the configurations, a reduced effort in calculating how to avoid constraints.

2. Mathematical model—Estimating change over time using a feasible “shortest” path

A configuration c is an ordered list of N independent variables (or parameter values). A configuration space C is the totality of all such configurations (for a more detailed discussion about configuration spaces see Blanc and Shvalb (2012)). There is a position of C which is forbidden, we shall denote it by $F \subset C$ and suppose F is comprised of n connected components such that $F = \bigcup_{i=1}^{n} F_i$.

We assume that F_i are defined implicitly as the varieties $f_i(x_1, \ldots, x_N) = 0$. Recall that a level set a is defined as $f_i(x_1, \ldots, x_N) = a$ which we think of as the distance from all F_i. Let c_i and c_g be the initial and the goal configurations respectively and obviously motion between them should be performed within C avoiding F. Following a similar point of view of CPRM (see Shvalb et al., 2013), we can identify the set of constraints as forbidden sets in C on which one would like to crawl as the configuration changes (see Figure 2). Given a configuration c, motion on the boundary of g_i (or of a set of constraints $g_i, i \in I$) is achieved by calculating the normal vector $\hat{n} = \nabla g$ (or a set of normals $\hat{n}_i, i \in I$) to g_i (respectively) at c. We define a matrix G where each column in it is \hat{n}_i. We restrict the motion in C to its (their) null space $K_i = \text{Null}(G)$. We call such a motion scheme
“crawling”. We set \(\vec{V} \) to be the normalized motion direction \(\vec{V}_d = \frac{\vec{c}_g - \vec{c}}{\|\vec{c}_g - \vec{c}\|} \) projected on \(\mathcal{K}_p \). So, motion proceeds by:

\[
c_{k+1} - c_k = \epsilon \vec{V}
\]

where \(\epsilon << 1 \) is the step size in \(\mathcal{C} \). We calculate \(\vec{V} \) by:

\[
\vec{V} = \sum_{i \in I} \vec{K}_i \cdot \vec{V}_d \cdot \vec{K}_i^T
\]

where \(\vec{K}_i \) is the \(i \)-th base vector of \(\mathcal{K}_p \). Hence motion in \(\mathcal{C} \) is obtained by repetitively calculating (Equation (1)) until reaching the desired configuration. Algorithm 1 depicts the crawling procedure described.

Algorithm 1: Constrained-Crawling Pseudo-code

Data Inputs:	\(c_i, c_g, g, i = 1, \ldots, m \)
Output:	A path between \(c_i \) and \(c_g \).
	\(c \in \mathcal{C} \) current configuration.
While: \(c \neq c_g \), do:	calculate:
	Matrix \(G = \nabla g, i \in I \)
	Null space of the space spanned by columns of \(G \).
	Project \(\vec{V}_d \) on \(\mathcal{K}_i \) using Eq. 2 and move using Eq. 1.

Using Algorithm 1, and assuming that there is a simple mapping from path length to setup time, we achieve a simple way to estimate a minimal changeover time.
3. Conclusions

To highlight the potential of our approach, we carried out a numeric analysis using simulated data based on our collaboration with an industry partner a non-woven fabric manufacturer. Based on our collaboration we constructed a set of five constraints by randomly selecting coefficients for polynomials of the following form: \(\sum_{i \in N} A_i X_i^a \). For each polynomial \(X_i \) are our parameters, \(N \) is the dimension of our parameter space, and \(A_i \)s are drawn from uniform distributions on the range \([-9, 9]\), and \(a_i \)s are drawn from uniform distributions on the range \((0, 4]\). We carried out hundreds of repetitions for our analysis, and the dimension of our parameter space, for sake of analysis, was from 3 to 10. We compare our results to those achieved by a feasible rectilinear path. A summary of the results, showing the prospects of our approach, are presented in Figure 3. It highlights the not-very-surprising conclusion that choice of how to change configurations effects the change-over time. Further, we note that on average the distance of our approach was approximately \(\frac{1}{2} \) of the rectilinear distance, which our industry partner suggested as a relevant bench mark for path length. In order to verify that the results are indeed different with statistical significance we choose a random set of 100 repetitions used for the above analysis, and used a standard \(t \)-test for two-samples assuming unequal variances, with the hypothesis that the means are the same. This was done, separately, for every value of dimension, \(N \in [3, 10] \). The results show that the average length is statistically significantly different. These results are summarized in Table 1.

Note that using our approach potentially allows for a more accurate estimation of sequence dependent setup times. In a relatively short time our algorithm can provide a (close to) minimal change-over time between any two configurations.
Number of dimensions, N	3	4	5	6	7	8	9	10
Mean	20.93862	34.93827	44.82189	64.61505	80.77579	103.25605	80.77579	95.22656
Variance	8.95179	26.93933	34.59699	48.52152	59.12667	67.12714	73.98648	85.23501
Hypothesized mean difference	0	0	0	0	0	0	0	0
df	158	146	136	130	126	123	120	118
t stat	-23.36812	-32.69954	-44.53757	-57.3447	-54.48159	-56.63824	-81.33440	-86.87199
$p(T <= t)$ one-tail	1.93908E-53	4.29807E-69	2.77319E-83	3.81589E-84	9.48758E-90	4.21973E-97	4.1093E-107	4.198E-109
t critical one-tail	1.65455	1.65453	1.65613	1.65666	1.65704	1.65734	1.65765	1.65787
$p(T <= t)$ two-tail	3.87817E-53	8.59613E-69	5.54638E-83	7.63179E-84	1.89752E-89	8.43946E-97	8.2186E-107	8.396E-109
t critical two-tail	1.97509	1.97646	1.97756	1.97838	1.97897	1.97944	1.97993	1.98027
To summarize, in this note we complement the focus given to minimizing and accounting for change-over (and setup) times, by illustrating another facet of this issue, which we find relevant for LEAN manufacturing products—especially, minimizing setup and change over times—in the process industry. We show the potential that lies in introduction of readily available minimal path approaches which account for feasibility constraints, to quickly estimate minimal change-over times, while providing a detailed roadmap of how to achieve this minimal time. Future research into this prospect includes implementing our approach into manufacturing control systems, and further analysis on how these can be used to improve scheduling of multiple jobs at a production facility.

Supplementary material
Supplementary material for this article can be accessed here https://doi.org/10.1080/23311916.2017.1330911

Funding
The authors received no direct funding for this research.

Author details
Dror Hermel
E-mails: drorhe@ariel.ac.il, drorher1@gmail.com
Oded Medina
E-mail: odedmedina@gmail.com
Nir Shvalb
E-mail: nirsh@ariel.ac.il
1 Department of Industrial Engineering and Management, Ariel University, Ariel, Israel.
† Authors Contributed Equally to Manuscript and are Listed Alphabetically.

Citation information
Cite this article as: A note on estimating minimal changeover time, Dror Hermel, Oded Medina & Nir Shvalb, Cogent Engineering (2017), 4: 1330911.

References
Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27, 219–239.
Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187, 985–1032.
Allahverdi, A., & Soroush, H. (2008). The significance of reducing setup times/setup costs. European Journal of Operational Research, 187, 978–984.
Baker, K. R., & Trietsch, D. (2013). Principles of sequencing and scheduling. New York, NY: John Wiley & Sons.
Blanc, D., & Shvalb, N. (2012). Generic singular configurations of linkages. Topology and its Applications, 159, 877–890.
Cakmakci, M., & Karasu, M. K. (2006). Set-up time reduction process and integrated predetermined time system mtm-us: A study of application in a large size company of automobile industry. The International Journal of Advanced Manufacturing Technology, 33, 334–344.
Leon, V. J., & Peters, B. A. (1996). Replanning and analysis of partial setup strategies in printed circuit board assembly systems. International Journal of Flexible Manufacturing Systems, 8, 389–411.
Panwar, A., Nepal, B. P., Jain, R., & Rathore, A. P. S. (2015). On the adoption of lean manufacturing principles in process industries. Production Planning & Control, 26, 564–587.
Shinde, S., Jahagirdar, S., Sane, S., & Karandikar, V. (2014). Set-up time reduction of a manufacturing line using smed technique. International Journal of Advanced Industrial Engineering, 2, 50–53.
Shingo, S. (1985). A revolution in manufacturing: The SMED system. New York, NY: Productivity Press.
Shvalb, N., Moshe, B. B., & Medina, O. (2013). A real-time motion planning algorithm for a hyper-redundant set of mechanisms. Robotics, 31, 1327–1335.
Smed, J., Salonen, K., Johansson, M., Johtela, T., & Nevalainen, O. S. (2003). Grouping pcbs with minimum feeder changes. International Journal of Flexible Manufacturing Systems, 15, 19–35.
Stadnicka, D. (2015). Setup analysis: Combining smed with other tools. Management and Production Engineering Review, 6, 36–50.