Thermal Expansion in Layered Na$_x$MO$_2$

Wataru Kobayashi1,2,3, Ayumu Yanagita1, Takahiro Akaba1, Takahiro Shimono1, Daiki Tanabe1 & Yutaka Moritomo1,2,3

Layered oxide Na$_x$MO$_2$ (M: transition metal) is a promising cathode material for sodium-ion secondary battery. Crystal structure of O3- and P2-type Na$_x$MO$_2$ with various M against temperature (T) was systematically investigated by synchrotron x-ray diffraction mainly focusing on the T-dependences of α- and c-axis lattice constants (a and c) and z coordinate (z) of oxygen. Using a hard-sphere model with minimum Madelung energy, we confirmed that c/a and z values in O3-type Na$_x$MO$_2$ were reproduced. We further evaluated the thermal expansion coefficients (α$_x$, and α$_z$) along α- and c-axis at 300 K. The anisotropy of the thermal expansion was quantitatively reproduced without adjustable parameters for O3-type Na$_x$MO$_2$. Deviations of z from the model for P2-type Na$_x$MO$_2$ are ascribed to Na vacancies characteristic to the structure.

Sodium-ion-secondary battery (SIB) stores electrochemical energy through Na$^+$ intercalation/deintercalation process. Due to large Clark number (≈2.63) of Na compared with that (≈0.006) of Li, SIBs can be a promising next-generation battery for storage of natural energy at a power plant and for a large-scale device such as electrical vehicle. Layered oxide Na$_x$MO$_2$ (M: transition metal) is a typical cathode material for SIBs$^{1–3}$. Crystal structure of this material is categorized into two typical structures: O3 and P2 types. Figure 1 shows schematic structures of (a) O3-type and (b) P2-type NaMO$_2$. Red, yellow, and blue spheres represent O, Na, and M, respectively. M is surrounded by six oxygens, and a MO$_6$ octahedron is formed. The edge-sharing MO$_6$ octahedra form a MO$_2$ layer. Both O3- and P2-type NaMO$_2$ exhibit alternately stacked MO$_2$ layers and Na sheets. The sodium sheet, upper and lower oxygen sheets stack as BAB resulting in the octahedral Na site. In the P2-type NaMO$_2$, the sodium and oxygen sheets stack as BAB resulting in the prismatic Na site. O3-type NaMO$_2$ (M = Ti, Cr, Mn, Co, Ni) and P2-type Na$_x$MO$_2$ (M = Mn and Co) were found to exhibit Na$^+$ intercalation/deintercalation in early 1980s$^{5–9}$. Concerning the discovery of hard carbon (≥200 mAh/g) as anode material of SIB10, electrochemical properties of Na$_x$MO$_2$ are extensively reported$^{11–20}$. Very recently, substitution effects on the battery properties in O3-type structure$^{21–27}$ and P2-type structure$^{28–45}$ were extensively studied to reduce expensive element and improve the cyclability and capacity.

Not only electrochemical properties but also superconductivity46, crystal structure$^{47–57}$, magnetism$^{58–61}$, thermoelectric effect62,63, and first-principle calculation$^{64–67}$ of the end family are also studied. Fujita et al. found that Na$_x$CoO$_2$ single crystal shows a large dimensionless figure-of-merit of ZT = 1 at 800 K63, which has motivated practical use for waste heat recovery at high temperatures (T). An isostructural O3-type LiMO$_2$ is widely used as a cathode material in lithium-ion-secondary battery (LIB$^{68–69}$). This family is also studied as a thermoelectric material70 and a cathode material of solid oxide fuel cell (SOFC)71. In particular, Lan and Tao found that Li$_2$Al$_{0.5}$Co$_{0.5}$O$_2$ shows good proton conductivity of 0.1 Scm$^{-1}$ at 773 K72, which is the highest among those of known polycrystalline proton-conducting materials. During operation of energy devices such as LIB(SIB), thermoelectric device, and SOFC, these materials are exposed to a variation and/or a gradient of temperature. A mismatch in thermal expansion coefficients in between the components can result in high stresses around the interface leading to deterioration of the device. Thus, evaluation and systematical comprehension of thermal expansion behaviors in this class of materials are important.

In this paper, we report systematic structural analysis of four O3- and five P2-type Na$_x$MO$_2$ samples against T (300 K ≤ T ≤ 800 K) performed by synchrotron x-ray diffraction focusing on thermal expansion. To understand the thermal expansion behavior, we constructed a hard-sphere model with constraint that M, upper and lower oxygens are connected each other. We confirmed that the calculated d/a [d: interlayer distance, a: α-axis lattice constant]...
constant]; and z well reproduced the experimental values for O3-type Na$_{x}$MO$_y$O$_z$. By introducing T-linear expansion of the hard sphere, the anisotropy of the thermal expansion was quantitatively reproduced without adjustable parameter for O3-type Na$_{x}$MO$_y$O$_z$.

Results

Temperature dependence of a(c)-axis lattice constants and z coordinate of oxygen. Figure 2(a) and (b) show a-axis lattice constant (a), and (b) c-axis lattice constant (c) of O3-type Na$_{0.99}$CrO$_2$, Na$_{0.99}$FeO$_2$, Na$_{0.99}$CoO$_2$, Na$_{0.98}$Fe$_{0.5}$Co$_{0.5}$O$_2$, Na$_{0.99}$Fe$_{0.5}$Ni$_{0.5}$O$_2$, and Na$_{0.99}$Th$_{0.5}$Ni$_{0.5}$O$_2$ against T. With T, a and c monotonically increase. Raw x-ray diffraction data and results of Rietveld refinements at 300 K are shown in Figs S1–S3. The solid line represents a least-square fitting with use of a degree 3 polynomial function. By using $\alpha_a(a) = \frac{d \ln(a)}{dT}$, a linear thermal expansion coefficient along a- and c-axis was evaluated. Figure 2(c) and (d) show a and c of P2-type Na$_{1.00}$CoO$_2$, Na$_{0.50}$MnO$_2$, Na$_{0.59}$CoO$_2$, Na$_{0.70}$Ni$_{0.33}$Mn$_{0.67}$O$_2$, Na$_{0.69}$Ni$_{0.33}$Mn$_{0.5}$Ti$_{0.17}$O$_2$, Na$_{0.70}$Ni$_{0.33}$Mn$_{0.67}$Ti$_{0.34}$O$_2$, and Na$_{0.48}$Mn$_{0.5}$Fe$_{0.5}$O$_2$. The P2-type compounds also show monotonical T-dependences of a and c. In Table 1, the values of a, c at 300 K, α_a, and α_c of O3- and P2-type Na$_{x}$MO$_y$O$_z$ at 300 K were listed.

Figure 3(a) shows z coordinate of oxygen for O3- and P2-type structure (z_{O3} and z_{P2}) against a at 300 and 700 K. Blue and red circles represent z_{O3} at 300 and 700 K, respectively. Light green and pink triangles represent z_{P2} at 300 and 700 K, respectively. The values were almost independent of T. Figure 3(b) shows a ratio of interlayer distance (d) to a against a at 300 K, where d is $c/3$ for O3-type and $c/2$ for P2-type structure. Light blue and purple circles represent d/a of O3-type compounds at 300 and 700 K, respectively. Green and yellow triangles represent d/a of P2-type compounds at 300 and 700 K, respectively. d/a slightly decreases with an increase in a.

Thermal expansion coefficients. Figure 4 shows (a) α_{az}, (b) α_{cz}, and (c) α_{az}/α_{cz} against a. α_{az} and α_{cz} of O3-type Na$_{1.00}$CoO$_2$ were 0.98×10^{-3} K$^{-1}$ and 1.71×10^{-3} K$^{-1}$, respectively. These values are comparable to those of inorganic compounds; $\alpha_{az} = 1.44 \times 10^{-3}$ K$^{-1}$ for LiMn$_2$O$_4$, and $\alpha_{az}(\alpha_c) = 0.85(2.5) \times 10^{-3}$ K$^{-1}$ for layered BaFe$_{1.6}$Co$_{0.4}$As$_2$. α_{az}/α_{cz} in Fig. 4 is rather scattered against a around the averaged value of $0.92(1.96) \times 10^{-3}$ K$^{-1}$. The ratio α_{az}/α_{cz} is also scattered around the averaged value (≈ 2.30). However, the data point for P2-Na$_{0.59}$CoO$_2$ are seriously deviated from the averaged value. This is probably due to the Na ordering.

Discussion

A hard-sphere model with minimum Madelung energy. We have constructed a hard-sphere structural model for O3- and P2-type NaMO$_2$ to reproduce the experimental results (d/a, z, α_{az}/α_{cz}). Firstly, imagine a sheet consists of hard spheres that were arrayed on triangular lattice, and then the sheet is alternately stacked as shown in Fig. 1. In the model, hard spheres of Na, M, and O were assumed to have Shannon’s ionic radius; $R_{Na} = 1.02$ Å, $R_{M} = 1.40$ Å, and R_{O} is a variable parameter that takes 0.58–0.7 Å, respectively. Since the ionic radius of the hard sphere is different from one another, the structure can not be the hexagonal close-packed structure, and several
structures with different a are possible for the unique value of R_M. Here, we adopted a constraint that M, upper, and lower oxygens coroneted each other, because the constraint minimizes the Madelung energy against a (vide infra).

For a calculation of thermal expansion coefficient, the hard sphere is assumed to expand in proportion to the temperature difference (ΔT). ΔT dependence of R_{Na} is expressed as

$$\Delta = +\Delta - R_{TNa}$$

where $m_{Na} (=22.99)$ is atomic weight of Na atom. Similarly, ΔT dependences of R_{O} and R_{M} are expressed as

$$\Delta = +\Delta - R_{TO}$$

and

$$\Delta = +\Delta - R_{TM}$$

where $m_{O} (=16.00)$ and $m_{M} (=55.85)$ (We used 55.85 of the atomic weight of Fe as m_M although M is not only Fe but also mixture of Ti, Mn, Fe, and Co. When we used 47.88 of the atomic weight of Ti as m_M, the calculated a_c/a_a worse reproduces the experiments.) are atomic weights of O and M, respectively.

Now, let us derive the expression (a^{abc}) of a-axis lattice constant as a function of ΔT. Note that the in-plane nearest-neighbor oxygen distance is a for both the P2- and O3-structure. Considering the above-mentioned constraint, $a^{abc}(\Delta T)$ for both O3- and P2-structures is expressed as

\[\text{Figure 2. Temperature (T) dependence of (a) a-axis, (b) c-axis lattice constants (a and c) of O3-type Na}_x\text{MO}_2. \]

\[\text{T dependence of (c) a, and (d) c of P2-type Na}_x\text{MO}_2. \]

The solid line represents a least-square fitting with use of a degree 3 polynomial function for a and c. a and c values of O3-Na$_{0.99}$CrO$_2$, O3-Na$_{0.99}$FeO$_2$, P2-Na$_{0.52}$MnO$_2$, and P2-Na$_{0.59}$CoO$_2$ were referred from our previous reports.56,57
Δ = Δ+ Δ− Δ.

\[(1) \]

This equation is easily derived using Pythagorean theorem. As shown in Eq. 1, \(a_{\text{calc}} \) strongly depends on \(R_M \) value. Due to the finite ionic radius of oxygen (\(R_O = 1.40 \) Å), minimum value of \(a_{\text{calc}} \) is 2.80 Å. At \(a_{\text{calc}} = 2.80 \) Å, \(R_M \) is evaluated to be \(\approx \) 0.5799 Å using Eq. 1. With an increase in \(R_M \), the oxygen triangular lattice expands in order to keep the connection between M, upper and lower oxygens.

Table 1. \(a \)-axis, \(c \)-axis lattice constants (\(a \) and \(c \)), \(z \) coordinate of oxygen (\(z \)) at 300 K, the linear thermal expansion coefficient \([\alpha_a, \alpha_c]\) along \(a \)(\(c \))-axis, and \(\alpha_c/\alpha_a \) of O3- and P2-type Na\(_x\)MO\(_2\) at 300 K. The original data were referred from previous reports\(^{56,57}\). *\(\alpha_a \) and \(\alpha_c \) were reevaluated in a \(T \)-range of 300–800 K.

Compound	\(a(\text{Å}) \)	\(c(\text{Å}) \)	\(z \)	\(\alpha_a(10^{-5} \text{K}^{-1}) \)	\(\alpha_c(10^{-5} \text{K}^{-1}) \)	\(\alpha_c/\alpha_a \)
O3-Na\(_{0.99}\)CrO\(_2\)	2.97247(3)	15.96540(18)	0.23213(13)	0.73	1.52	2.07
O3-Na\(_{0.99}\)FeO\(_2\)	3.02477(2)	16.09135(10)	0.23389(12)	1.07	1.63	1.52
O3-Na\(_{0.99}\)CoO\(_2\)	2.88627(2)	15.58680(12)	0.23046(9)	0.98	1.71	1.74
O3-Na\(_{0.99}\)Fe\(_2\)O\(_3\)	2.94748(3)	15.93844(23)	0.23238(12)	0.79	1.37	0.73
O3-Na\(_{0.99}\)Fe\(_2\)Ni\(_x\)O\(_3\)	2.98463(9)	15.94545(63)	0.23334(17)	1.01	1.76	0.74
O3-Na\(_{0.99}\)Fe\(_2\)Ni\(_x\)O\(_3\)	3.00358(4)	16.12273(24)	0.23382(13)	1.06	1.61	1.51
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.87311(9)	11.1287(5)	0.08583(8)	0.81	2.11	2.59
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.82748(4)	10.9319(2)	0.08813(11)	0.48	2.70	5.61
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.82459(5)	11.20617(33)	0.08704(24)	0.84	2.42	2.87
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.88835(5)	11.15881(29)	0.09120(28)	0.67	1.51	2.26
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.90101(3)	11.12868(16)	0.09263(17)	1.07	2.20	2.05
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.92173(4)	11.13896(22)	0.09381(21)	1.12	2.72	2.42
O3-Na\(_{0.99}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_2\)	2.92452(8)	11.24690(48)	0.08592(32)	1.30	2.26	1.74

Figure 3. (a) \(z \) coordinate of oxygen for O3- (\(z_{O3} \)) and P2-type (\(z_{P2} \)) structure against \(a \)-axis lattice constant (\(a \)). Blue and red circles represent \(z_{O3} \) at 300 and 700 K, respectively. Light green and pink triangles represent \(z_{P2} \) at 300 and 700 K, respectively. The broken lines represent \(z \) calculated by the hard sphere model with minimum Madelung energy for O3- and P2-type compounds (\(z_{O3}^{\text{calc}} \) and \(z_{P2}^{\text{calc}} \)) against \(a \), respectively. (b) The ratio of interlayer distance (\(d \)) to \(a \) against \(a \). Light blue and purple circles represent \(d/a \) of O3-type compounds at 300 and 700 K, respectively. Green and yellow triangles represent \(d/a \) of P2-type compounds at 300 and 700 K, respectively. The broken line represents \(d/a \) calculated by the hard sphere model with minimum Madelung energy (\(d^{\text{calc}}/a^{\text{calc}} \)) against \(a \). The inset of Fig. 3(b) shows a schematic view of the local atomic configuration around M.
Na sheet is sandwiched by the MO$_2$ layers as BAC (BAB) in the O$_3$-type (P$_2$-type) structure. We noted that the expression (d_{calc}) of interlayer distance is independent of the stacking manner, and the ΔT-dependence of d_{calc} for O$_3$- and P$_2$-type structure is expressed as,$\Delta = \Delta_0 - \Delta_a - \Delta_a + \Delta_0$.

The first and the second terms correspond to $d_{\text{MO}_2}^{\text{calc}}$ and $d_{\text{NaO}_2}^{\text{calc}}$, where $d_{\text{MO}_2}^{\text{calc}}$ and $d_{\text{NaO}_2}^{\text{calc}}$ are the thicknesses of MO$_2$ and NaO$_2$ layers, respectively. A relationship between d_{calc} and the expression of c (c_{calc}) is expressed as $\Delta = \Delta_0 - \Delta_a - \Delta_a + \Delta_0$ for O$_3$- and P$_2$-type structures. By using Pythagorean theorem, Eq. 2 is easily derived. Expressions of Δ (Δ_{calc}) for O$_3$- and P$_2$-type structures are derived as

$$\Delta_{\text{O}_3}^{\text{calc}} = \frac{1}{6} + \frac{1}{6d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2} \left[2R_0(\Delta T)\right]^2 - \frac{d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2}{3}$$

and

$$\Delta_{\text{P}_2}^{\text{calc}} = \frac{1}{4d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2} \left[2R_0(\Delta T)\right]^2 - \frac{d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2}{3}$$

respectively.

Now, let us consider the stability of the hard-sphere model with the constraint that M, upper and lower oxygens coronated to each other. For this purpose, we calculated the Madelung energy at a specific R_M ($=0.65 \, \text{Å}$) against a. We show that this model exhibits minimum Madelung energy (E_{ME}). Figure 5 shows E_{ME} of O$_3$- and P$_2$-type NaMO$_2$ against a. Our constraint gives $a_{\text{calc}}^\text{O}_3 \approx 2.995 \, \text{Å}$ at $R_M = 0.65 \, \text{Å}$. With the O$_3$ structure, the $a_{\text{calc}}^\text{O}_3$ value corresponds to the minimum position of E_{ME} ($-8.67 \, \text{eV}$). With an increase in a from $a_{\text{calc}}^\text{O}_3$, M becomes isolated from the surrounding oxygens (the right-side inset of Fig. 5), and E_{ME} increases (Note that the oxygen positions were controlled by Eqs 3 and 4). With a decrease in a from $a_{\text{calc}}^\text{O}_3$, the upper and lower oxygens are separated (the left-side inset of Fig. 5), and E_{ME} increases as well (We used $d_{\text{calc}}^{\text{O}_3} = \frac{1}{6} + \frac{1}{6d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2} \left[2R_0(\Delta T)\right]^2 - \frac{d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2}{3}$, $z_{\text{O}_3}^{\text{calc}} = \frac{1}{6} + \frac{1}{6d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2} \left[2R_0(\Delta T)\right]^2 - \frac{d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2}{3}$, and $z_{\text{P}_2}^{\text{calc}} = \frac{1}{4d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2} \left[2R_0(\Delta T)\right]^2 - \frac{d_{\text{calc}}^{\text{MO}_2}^{\text{calc}}(\Delta T)^2}{3}$ for the calculation below $a = 2.995 \, \text{Å}$). Similar results are obtained for the P$_2$ structure. Thus, our model is energetically stable against the variation of a. Our constraint that M, upper and lower oxygens connected to each other causes the compact layered structure and minimized the long-range Coulomb energy between the layers. We call our model “hard-sphere model with minimum Madelung energy”.

Figure 4. Linear thermal expansion coefficient (a) along a-axis (α_a), (b) along c-axis (α_c), and (c) α_c/α_a against a-axis lattice constant (a). The broken lines in Fig. 4(a,b and c) represent $\alpha_a^\text{O}_3$, $\alpha_a^\text{P}_2$, and $\alpha_c/\alpha_a^\text{O}_3$ calculated by the hard-sphere model with minimum Madelung energy (α_a^calc, α_c^calc, and $\alpha_c/\alpha_a^\text{calc}$).
Companion of the structural parameters and the thermal expansion coefficients with the model. The broken line in Fig. 3(b) is the calculated \(d/a \) based on the hard-sphere model with minimum Madelung energy (see Eqs 1 and 2). \(\alpha_{c}^{\text{calc}} / \alpha_{c}^{\text{obs}} \) decreases with an increase in \(\alpha_{c}^{\text{calc}} \), which reproduces experimental results. The decrease in \(\alpha_{c}^{\text{calc}} / \alpha_{c}^{\text{obs}} \) is schematically depicted in the inset of Fig. 3(b). When O-O distance along in-plane direction elongates due to increase in \(R_{\text{M}} \), Na atoms relatively sink down along out-of-plane direction. (Decrease in \(d_{\text{NaO}}/(2a) \) against \(a \) is displayed in Fig. S5). We further calculated \(z \) and plotted them in Fig. 3(a). In the O3-type compounds, \(z^{\text{calc}} \) well reproduces the experimental data. In the P2-type compounds, however, \(z^{\text{calc}} \) is slightly smaller than \(z^{\text{calc}} \). We ascribed the smaller \(z^{\text{calc}} \) to the Na vacancies characteristic to the P2 structure. With the vacancies, the nominal valence of M became higher, and hence \(R_{\text{Na}} \) became smaller. Our model tells us that \(z^{\text{calc}} \) becomes smaller if \(R_{\text{M}} \) becomes smaller.

The broken lines in Fig. 4 represent the calculated \(\alpha_{x}^{\text{calc}}, \alpha_{y}^{\text{calc}}, \alpha_{c}^{\text{calc}} \), and \(\alpha_{c}^{\text{calc}} / \alpha_{c}^{\text{obs}} \), respectively. \(\alpha_{c}^{\text{calc}} / \alpha_{c}^{\text{obs}} \) was evaluated by using the equation, \[
\frac{\alpha_{c}^{\text{calc}}}{\alpha_{c}^{\text{obs}}} = \frac{\frac{2R_{\text{O}}}{a_{0}}}{\frac{2R_{\text{O}}}{a_{0}} + \frac{R_{\text{M}}^{2}}{2}}
\]
where \(a_{0} = \sqrt{2R_{\text{O}}R_{\text{M}} + R_{\text{O}}^{2}} \). The hard-sphere model examined in this paper gives intuitive and easy comprehension of the thermal expansion behavior of the layered oxides. The density-functional-theory (DFT) calculation successfully reproduces the linear thermal expansion coefficients of several materials such as Al\(_{2}\)O\(_{3}\), Si\(_{2}\)O\(_{5}\), 4d transition metals\(^{27,28}\), Os\(_{2}\)\(_{5}\), MgO\(_{2}\), CaO\(_{2}\), and ZnO\(_{2}\), which is beyond the scope of this paper.

Conclusion
We systematically determined the temperature dependent lattice constant and \(z \)-coordinates of P2- and O3-type NaMO\(_{2}\). We proposed a simple hard-sphere model with constraint that M, upper and lower oxygens are corona
ted to each others. The model quantitatively reproduced \(a, c, z, \alpha_{x}, \) and \(\alpha_{c} \) for O3-type NaMO\(_{2}\). On the other hand, \(z \)-coordinate of P2-type NaMO\(_{2}\) deviates from the hard-sphere model possibly due to Na vacancies. This simple model can be easily applied for the other layered compounds to intuitively understand and design the thermal expansion behaviors.

Methods
Sample preparation. Powders of O3- and P2-Na\(_{2}\)MO\(_{2}\) (M: transition metal) were synthesized by using conventional solid state reaction. For O3-Na\(_{1.00}\)CoO\(_{2}\), Na\(_{2}\)O\(_{2}\) and Co\(_{3}\)O\(_{4}\) were mixed under the molar ratio of Na:Co = 1.1:1, and calcined at 550°C in O\(_{2}\) for 16 h. Then, the product was finely ground, and again calcined in the same condition (this process was repeated once again.). For O3-Na\(_{0.98}\)Fe\(_{0.5}\)Co\(_{0.5}\)O\(_{2}\), Na\(_{2}\)CO\(_{3}\), Fe\(_{3}\)O\(_{4}\) and Co\(_{4}\)O\(_{4}\) were mixed under the molar ratio of Na:Fe:Co = 1.05:0.5:0.5, and calcined at 900°C in air for 15 h. For
O3-Na0.99Fe0.5Ni0.5Ti0.17O2, Na2O2, Mn2O3 and NiO are mixed under the molar ratio of Na:Fe:Ni = 1.2:0.5:0.5, and calcined at 650°C in air for 15 h. Then the product was finely ground and again calcined in the same condition. For O3-Na0.94Ti0.5Ni0.5O2, Na2O2, TiO2 and NiO were mixed under the molar ratio of Na:Ti:Ni = 1.05:0.5:0.5, and calcined at 650°C in air for 15 h. Then the product was finely ground and again calcined in the same condition.

For P2-Na0.70Ni0.33Mn0.67O2, Na2CO3, Na2O2, Mn2O3, MnCO3 and CO2 were mixed under the molar ratio of Na:Mn:CO = 0.7:0.5:0.5, and calcined at 900°C in air for 12 h. Then, the product was finely ground and again calcined in the same condition. For P2-Na0.70Ni0.33Mn0.67O2, Na2CO3, NiO and Mn2O3 were mixed in ethanol under the molar ratio of Na:Ni:Mn = 0.7:0.33:0.67, and calcined at 900°C in air for 24 h. Then, the product was finely ground and again calcined in the same condition. For P2-Na0.69Ni0.33Mn0.5Ti0.17O2, Na2CO3, NiO, Mn2O3 and TiO2 were mixed under the molar ratio of Na:Ni:Mn:Ti = 0.7:0.33:0.5:0.17, and calcined at 900°C in air for 18 h. For P2-Na0.70Ni0.33Mn0.5Ti0.17O2, Na2CO3, NiO, Mn2O3 and TiO2 were mixed under the molar ratio of Na:Ni:Mn:Ti = 0.7:0.33:0.33:0.34, and calcined at 900°C in air for 12 h. For P2-Na0.48Mn0.5Fe0.5O2, Na2O2, Mn2O3 and Fe2O3 were mixed under the molar ratio of Na:Mn:Fe = 0.7:0.5:0.5, and calcined at 900°C in air for 12 h. Then, the product was finely ground and again calcined in the same condition. All the samples were taken out from the hot furnace (>200°C), and then immediately transferred into a vacuum desiccator to avoid moisture in air.

X-ray diffraction. The synchrotron radiation x-ray diffraction (XRD) patterns were measured at BL02B2 beamline5 at SPring-8. The capillary was placed on the Debye-Scherrer camera at the beamline. The XRD patterns were controlled by blowing a hot N2 in the temperature range of 300 K ≤ T ≤ 800 K. The XRD patterns were detected with an imaging plate (IP). The exposure time was 5 min. The wavelength of the x-ray was 0.499420 Å for P2-Na0.48Mn0.5Fe0.5O2 and P2-Na0.50Mn0.5Co0.5O2, and 0.499892 Å for O3-Na0.98Fe0.5Co0.5O2 and Na2O2, Fe2O3 and NiO for Na0.94Ti0.5Ni0.5O2. All the structural parameters against T (300 K ≤ T ≤ 800 K) were listed in Tables S1–S9. During the heating process, any extra impurity peaks were not appeared. We observed no tendency of Na deintercalation due to heating (Fig. S4).

The actual Na concentrations in the compound were determined by the Rietveld refinement based on the synchrotron XRD patterns at 300 K. We note that ref.45 reported a consistency of Na contents determined by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) and Rietveld refinement using synchrotron x-ray diffraction for P2-Na0.51Fe1/2O2 phase.

Madelung energy calculation. Madelung energy (Emad) was computed by the MADEL program in the VESTA software using the Fourier method48. The site potential φi is calculated by the formula φi = ∑ gji εgZj/Wi, where g is the occupancy of the j th ion, Zj is the valence of the j th ion, εg is the vacuum permittivity, and l depends on the distance between ions i and j. Emad is calculated by using the formula Emad = εM ∑ EM ≈ εM ∑ EM, where EM is a factor depending on g and the number of equivalent atomic positions at the site i in the unit cell. For O3-type structure (space group: R3m), we put +1, +3, and −2 charges on 3a Na (0,0,0), 3b M (0,0,1), and 6c O (0,0,z) sites in stoichiometric NaMnO2. In the calculation of the P2-type structure (P6/mmc), we assume a stoichiometric NaMnO2 with fully occupied 2d Na site. We put +1, +3, and −2 charges on 2d Na (1/3,1/3,0), 2a M (0,0,0), and 4f O (1/3,2/3,0); a radius (s) of the hard sphere was set to 0.3 Å, and Fourier coefficients are summed up to 10 Å−1 in the reciprocal space.

References
1. Kim, S. W., Seo, D. H., Ma, X., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Advanced Energy Materials 2, 710–721 (2012).
2. Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2388–2360 (2013).
3. Yabuuchi, N., Kubota, K., Dubli, M. & Komaba, S. Research Development on Sodium- Ion Batteries. Chem. Rev. 114, 11636–11682 (2014).
4. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica 99B, 81–85 (1980).
5. Parant, J. P., Olazcuaga, R., Devalette, M., Fouassier, C. & Hagenmuller, P. Sur quelques nouvelles phases de formule Na3MnO4 (x < 1). J. Solid State Chem. 3, 1–11 (1971).
6. Delmas, C., Brachonner, J. J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in Na2CoO3 bronzes. Solid State Ionics 17, 165–169 (1981).
7. Brachonner, J. J., Delmas, C. & Hagenmuller, P. Etude par Desintercalation Electrochimique des Systemes Na3CrO4 et Na2NiO2, Mat. Res. Bull. 17, 993–1000 (1982).
8. Mazzaz, A., Delmas, C. & Hagenmuller, P. A study of the Na2TiO3 system by electrochemical deintercalation. J. Incl. Phenom. 1, 45–51 (1983).
9. Mendiboure, A., Delmas, C. & Hagenmuller, P. Electrochemical Intercalation and Deintercalation of Na3MnO4. J. Solid State Chem. 57, 323–331 (1985).
10. Komaba, S. et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Adv. Energy Mater. 21, 3859–3867 (2011).
11. Komaba, S., Takei, C., Nakayama, T., Ogata, A. & Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. Li2CrO4. Electrochem. commun. 12, 355–358 (2010).
12. Didier, C. et al. Electrochemical Na-Deintercalation from NaVO3. Electrochem. Solid-State Lett. 14, A75–A78 (2011).
13. Ma, X., Chen, H. & Ceder, G. Electrochemical Properties of Monoclinic NaMnO2. J. Electrochem. Soc. 158, 1307–1312 (2011).
14. Nohira, T., Ishibashi, T. & Hagihara, R. Properties of an intermediate temperature ionic liquid NaTFSA-CsTFSA and charge-discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery. J. Power Sources 205, 506–509 (2012).
44. Zhao, W.
37. Shanmugam, R. & Lai, W. \(\text{Na}_{2/3}\text{Ni}_{1/3}\text{Ti}_{2/3}\text{O}_2\): \text{e}-\text{bi-functional f electrode materials for Na-ion batteries.}

49. Viciu, L.
24. Singh, G.
16. Wu, D.
56. Tanabe, D., Shimono, T., Kobayashi, W. & Moritomo, Y. Temperature dependence of anisotropic displacement parameters in O3-type Na\(\text{MO}_2\) (M = Fe, Co) as cathode materials for Na-ion batteries. J. Mater. Chem. A 3, 862–868 (2015).

42. Zhao, J.
51. Kubota, K.
53. Lu, X.
17. Caballero, A. et al. Synthesis and characterization of high-temperature hexagonal P2-Na\(_{0.2}\)MnO\(_2\) and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002).

15. Lee, E. et al. New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe\(^{3+}\)/Fe\(^{2+}\) Redox in \(\text{NaFeO}_2\). Chem. Mater. 27, 6755–6764 (2015).

16. Wu, D. et al. Na\(\text{TiO}_2\): a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195–202 (2015).

17. Caballero, A. et al. Synthesis and characterization of high-temperature hexagonal P2-Na\(_{0.2}\)MnO\(_2\) and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002).

18. Hamani, D., Aït, M., Tarascon, J. M. & Rozier, P. P2-Na\(_2\text{V}_2\text{O}_7\) as possible electrode for Na-ion batteries. Electrochem. Commun. 13, 938–941 (2011).

D’Arienzo, M. et al. Layered Na\(_{1+x}\)Co\(_x\)O\(_2\): a powerful candidate for viable and high performance Na-batteries. Phys. Chem. Chem. Phys. 14, 5945–5952 (2012).

Zhu, K. et al. A New Layered Sodium Molybdenum Oxide Anode for Full Intercalation-Type Sodium-Ion Batteries. J. Mater. Chem. A 3, 22012–22016 (2015).

42. Zhao, J.
51. Kubota, K.
53. Lu, X.
17. Caballero, A. et al. Synthesis and characterization of high-temperature hexagonal P2-Na\(_{0.2}\)MnO\(_2\) and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002).

18. Hamani, D., Aït, M., Tarascon, J. M. & Rozier, P. P2-Na\(_2\text{V}_2\text{O}_7\) as possible electrode for Na-ion batteries. Electrochem. Commun. 13, 938–941 (2011).

D’Arienzo, M. et al. Layered Na\(_{1+x}\)Co\(_x\)O\(_2\): a powerful candidate for viable and high performance Na-batteries. Phys. Chem. Chem. Phys. 14, 5945–5952 (2012).

Zhu, K. et al. A New Layered Sodium Molybdenum Oxide Anode for Full Intercalation-Type Sodium-Ion Batteries. J. Mater. Chem. A 3, 22012–22016 (2015).

42. Zhao, J.
51. Kubota, K.
53. Lu, X.
17. Caballero, A. et al. Synthesis and characterization of high-temperature hexagonal P2-Na\(_{0.2}\)MnO\(_2\) and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 12, 1142–1147 (2002).

18. Hamani, D., Aït, M., Tarascon, J. M. & Rozier, P. P2-Na\(_2\text{V}_2\text{O}_7\) as possible electrode for Na-ion batteries. Electrochem. Commun. 13, 938–941 (2011).

D’Arienzo, M. et al. Layered Na\(_{1+x}\)Co\(_x\)O\(_2\): a powerful candidate for viable and high performance Na-batteries. Phys. Chem. Chem. Phys. 14, 5945–5952 (2012).
82. Izumi, F. & Momma, K. Three-Dimensional Visualization in Powder Diffraction.

80. Wang, Z., Wang, F., Wang, L., Jia, Y. & Sun, Q. First-principles study of negative thermal expansion in zinc oxide.

77. Souvatzis, P. & Eriksson, O.

59. McQueen, T. M.

74. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.

76. George, J.

60. McQueen, T. M.

61. Onoda, M. Geometrically frustrated triangular lattice system Na$_2$CO$_3$ superparamagnetism in x=1 and trimerization in x=0.7. J. Phys. Condens. Matter 20, 145205 (2008).

62. Lee, M. et al. Large enhancement of the thermopower in Na$_2$CoO$_3$ at high Na doping. Nat. Mater. 5, 537 (2006).

63. Fujita, K., Mochida, T. & Nakamura, K. High-Temperature Thermoelectric Properties of Na$_2$CoO$_3$. Single Crystals. Jpn. J. Appl. Phys. 40, 4644–4647 (2001).

64. Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparison of destabilization mechanisms of the layered Na$_2$MO$_3$ and Li$_2$MO$_3$ compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).

65. Mo, Y., Ong, S. P. & Ceder, G. Insights into Diffusion Mechanisms in 2D Layered Oxide Materials by First-Principles Calculations. Chem. Mater. 26, 5208–5214 (2014).

66. Toumar, A. J., Ong, S. P., Richards, W. D., Dacek, S. & Ceder, G. Vacancy Ordering in O3-Type Layered Metal Oxide Sodium-Ion Battery Cathodes. Phys. Rev. Appl. 4, 064002(9) (2015).

67. Hinuma, Y., Meng, Y. S. & Ceder, G. Temperature-concentration phase diagram of Na$_2$CoO$_3$ from first-principles calculations. Phys. Rev. B 77, 224111 (2008).

68. Goodenough, J. B. & Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 22, 587–603 (2010).

69. Park, I. K. Principles and Applications of Lithium Secondary Batteries. Wiley-VCH Verlag GmbH & Co. KGaA (2012).

70. Motohashi, T. et al. Impact of lithium composition on the thermoelectric properties of the layered cobalt oxide system Li$_x$CoO$_2$. Phys. Rev. B 83, 195128 (2011).

71. Lan, R. & Tao, S. Novel Proton Conductors in the Layered Oxide Material Li$_x$CoO$_2$. J. Mater. Chem. A 3, 751 (2015).

72. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scripta Mater. 108, 1–5 (2015).

73. George, J. et al. Lattice thermal expansion and anisotropic displacements in α-sulfur from diffraction experiments and first-principles theory. J. Chem. Phys. 145, 234512 (2016).

74. Souvatzis, P. & Eriksson, O. Ab initio calculations of the phonon spectra and the thermal expansion coefficients of the 4d metals. Phys. Rev. B 77, 024110 (2008).

75. Palumbo, M. & Dal Corso, A. Lattice dynamics and thermophysical properties of h.c.p. Os and Ru from the quasi-harmonic approximation. J. Phys.: Condens. Matter 29, 395401 (2017).

76. Erba, A., Shabrokhí, M., Moradian, R. & Dovesi, R. On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of perovskite and lime. J. Chem. Phys. 142, 044114 (2015).

77. Wang, Z., Wang, F., Wang, L., Jia, Y. & Sun, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 114, 063508 (2013).

78. Nishihara, E. et al. The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Methods A 467-468, 1045 (2001).

79. Izu, F. & Momma, K. Three-Dimensional Visualization in Powder Diffraction. Solid State Phenom. 140, 15 (2007).

80. Momma, K. & Izu, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystal. 44, 1272–1276 (2011).

Acknowledgements
This work was supported by Grant-in-Aids for Scientific Research (No. 23684022, No. 15K13513) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The synchrotron-radiation X-ray powder diffraction experiments were performed at the SPring-8 BL02B2 beamline with the approval (2012A1094, 2013A1649, 2014A1056, 2015B1077) of the Japan Synchrotron Radiation Research Institute (JASRI).

Author Contributions
W.K. measured synchrotron XRD patterns, analyzed the XRD data, calculated linear thermal expansion coefficient based on a hard-sphere model, and wrote the manuscript. A.Y. synthesized O3-type layered oxides, and measured synchrotron XRD patterns. T.A., T.S., and D.T. synthesized P2-type layered oxides, and measured synchrotron XRD patterns. Y.M. contributed discussion and critically examined the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-22279-9.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018