Small Intestine but Not Liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) Deficiency Has a Dominant Effect on Plasma Lipid Metabolism*

Inamul Kabir§, Zhiqiang Li†, Hai H. Bui§, Ming-Shang Kuo§, Guangping Gao, and Xian-Cheng Jiang‡

From the Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, the Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209, the Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 46285, and the Horace Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605

Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specific Lpcat3 gene knock-out mice. We produced Lpcat3-Flox/villin-Cre-ER** mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to delete Lpcat3 specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to deplete Lpcat3 in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.

The majority of lipids on the cell membrane as well as the plasma lipoproteins are phospholipids, in particular phosphatidylcholines (PCs)2 (1, 2). Monounsaturated and saturated fatty acids are usually esterified at the sn-1 position of PCs, whereas polyunsaturated fatty acids are esterified at the sn-2 position (3). The asymmetric distribution of fatty acids at the sn-1 and sn-2 positions of PCs is maintained in part by a deacylation-reacylation process known as the Lands cycle or PC remodeling (3, 4). One key enzyme in this remodeling is lysophosphatidylcholine acyltransferase (Lpcat), which utilizes lyso-PC and polyunsaturated acyl-CoA to produce sn-2 polyunsaturated PCs. There are four isoforms of this enzyme (5), and Lpcat3 is the major isoform in the small intestine and liver (6–8).

Lpcat3 is one of the downstream targets of liver X receptor (8) and peroxisome proliferator-activated receptor α (6). Acute knockdown of Lpcat3 expression in the liver of genetically obese mice exacerbates lipid-induced endoplasmic reticulum (ER) stress (8). Moreover, global Lpcat3 knock-out (KO) mice exhibit neonatal lethality and have an abnormal small intestine (9, 10). Liver-specific deletion of Lpcat3 has no effect on ER stress but results in a reduction of plasma triglycerides and induction of hepatosteatosis under high fat feeding conditions (9). Because of neonatal lethality (non-inducible approach was utilized), only 1-week-old newborns were analyzed for the impact of intestine-specific Lpcat3 deficiency on lipid metabolism (9). Very recently, we found that the neonatal lethality of global Lpcat3 KO mice could be rescued by oral administration of PC plus olive oil. However, the KO mice had shorter and wider small intestinal villi and a longer and larger small intestine (11). Thus, the following remains to be investigated: 1) the impact of small intestine Lpcat3 deficiency in adult mice on lipid metabolism; and 2) the respective contribution of small intestine and liver Lpcat3 to plasma lipid levels.

In this study, we specifically ablated Lpcat3 in the small intestine of mice using an inducible Cre-LoxP approach. Our results indicate that this ablation reduces the levels of plasma cholesterol, triglycerides, and phospholipids. We also evaluate the effect of liver-specific Lpcat3 deficiency on plasma lipid metabolism. We found that small intestine but not liver Lpcat3 deficiency has a dominant effect on plasma lipid metabolism.

Materials and Methods

Generation of Intestine-specific Lpcat3-deficient Mice—Lpcat3-Flox mice (prepared by inGenious Targeting Laboratory) were crossed with Villin-Cre-ER** transgenic mice. A 9-kb segment of the regulatory region of the mouse Villin gene drives expression of Cre recombinase fused to a mutated
Lpcat3 Deficiency and Lipid Metabolism

ligand-binding domain of the human estrogen receptor. Cre recombination is inducible with tamoxifen treatment in epithelial cells all along the crypt-villus axis and in undifferentiated progenitor cells in the crypt region. We established Lpcat3-Flox/Villin-Cre-ERT2 mice according to the strategy shown in Fig. 1A. The genotype was confirmed by polymerase chain reaction (PCR) (Fig. 1B). To delete the gene in the small intestine, tamoxifen (2 mg/mouse, dissolved in 200 μl of corn oil (Sigma C8267)) was injected intraperitoneally on four alternate days. Lpcat3-Flox mice injected with tamoxifen were used as controls. Both male and female 12-week-old mice on a C57BL6J background were used in this study. All studies were approved by the Institutional Animal Care and Use Committee of State University of New York Downstate Medical Center and conformed with the “Guide for the Care and Use of Laboratory Animals” published by the National Institutes of Health (publication 85-23, revised in 1996).

Isolation—Mice were used as a loading control. Relative gene expression is expressed as the mean ± S.D. Mouse Lpcat3 primers forward, TTTCTGTGTTCCGCTGCATGT, and reverse, CCGACAGAATGCACACT-7652

JOURNAL OF BIOLOGICAL CHEMISTRY

Results

Production of Intestine-specific Inducible Lpcat3 KO Mice—To prepare intestine-specific Lpcat3-deficient mice, tamoxifen (2 mg/mouse), dissolved in corn oil, was injected intraperitoneally into female mice at days 1, 3, 5, and 7. Tamoxifen-treated Lpcat3-Flox mice were used as controls. We collected plasma and tissues on day 9 after the first treatment and measured Lpcat3 mRNA in the small intestine, liver, kidney, and adipose tissue. Compared with controls, Lpcat3 mRNA level was decreased by 90% in the small intestine but no other tissues (Fig. 1C). The levels of the remaining Lpcat isoforms (Lpcat1, -2, and -4) did not change in these Lpcat3-deficient mice (Fig. 1D). We then measured total Lpcat activity in the small intestine homogenate and found it was decreased by 85% in the Lpcat3-deficient mice compared with controls (Fig. 1E). Moreover, we did not observe morphological changes in the small intestine of Lpcat3-deficient mice (Fig. 1F). Similar results were obtained with male mice (data not shown).

Lpcat3 Deficiency in the Small Intestine Significantly Decreases Body Weight and Plasma Lipid Levels—Lpcat3-deficient female mice underwent a significant loss of body weight compared with the controls (Fig. 2A) at day 9 after tamoxifen treatment. We next measured fasting plasma lipid levels in the Lpcat3 KO and control female mice. Lpcat3 deficiency significantly decreased plasma levels of total cholesterol (47%, p < 0.01), total phospholipids (51%, p < 0.01), and triglycerides (81%, p < 0.01) as compared with controls (Fig. 2, B–D). The lipid reduction was also observed at day 12 after tamoxifen treatment (Fig. 2, B–D). Similar results were obtained with male mice (data not shown).

Assessment of plasma apolipoprotein levels in Lpcat3 KO and control female mice by Western blotting revealed that Lpcat3 deficiency (day 9 after tamoxifen treatment) in the gut significantly reduced plasma apoB48 (86%, p < 0.001), apoB100 (55%, p < 0.01), and apoA-I (75%, p < 0.001) levels compared
with the controls (Fig. 2E). There was no significant difference in plasma apoE levels (Fig. 2E).

Plasma lipid distributions in pooled plasma were examined by fast protein liquid chromatography (FPLC). Cholesterol level was dramatically decreased in both high density lipoprotein (HDL) and non-HDL fractions from the Lpcat3-deficient mice compared with controls (Fig. 2F). Triglyceride in non-HDL was dramatically decreased in the deficient mice (Fig. 2F). Similar results were obtained with male mice (data not shown).

We also measured small intestine lipids, including triglyceride, total cholesterol, phosphatidylcholine, and sphingomyelin, and we did not find significant changes (Fig. 2G).

To evaluate the effect of Lpcat3 deficiency on plasma polyunsaturated PCs, we used LC-MS/MS to measure PCs in the mice at day 9 after tamoxifen treatment. The sn-2 polyunsaturated PCs (16:0/18:2, 18:1/18:2, 18:1/18:3, and 18:0/20:4) were significantly decreased \((p < 0.01; \text{Table 1}) \) in Lpcat3-deficient mice, suggesting that small intestine Lpcat3 contributes significantly to the spectrum of circulating polyunsaturated PCs.

Lpcat3 Deficiency Significantly Decreases Lipid Absorption in the Small Intestine—A defect in lipid uptake could be one of the major reasons for the observed lower plasma lipid profiles. We thus measured cholesterol absorption using a conventional fecal dual-isotope ratio method at day 9 after tamoxifen treatment. This involved the gavage of a single bolus of 0.1 \(\mu \text{Ci} \) of \([14^C] \)cholesterol and 0.2 \(\mu \text{Ci} \) of \([3^H] \)sitostanol in 20 \(\mu \text{l} \) of olive oil, with feces being collected after 48 h. We found that the Lpcat3 KO mice absorbed significantly less cholesterol than controls (Fig. 3A). Moreover, there was much less \([14^C] \)cholesterol in the plasma of Lpcat3 KO mice (Fig. 3B). We also measured triglyceride and PC absorption using \([3^H] \)triolein and \([14^C] \)arachidonyl-PC. The mice were gavaged with both radiolabeled lipids, and blood radioactivity was monitored 2, 4, and 8 h later. Lpcat3 deficiency significantly decreased \([3^H] \)glycerolipids (Fig. 3C) and \([14^C] \)glycerolipids in blood (Fig. 3D).

We hypothesized that Lpcat3 deficiency might decrease polyunsaturated PCs in the enterocyte apical membrane, resulting in diminished receptor density or membrane-associated transporter levels, thus reducing dietary lipid uptake and plasma lipid levels. We analyzed the populations of PC subspecies in the enterocyte plasma membrane using LC-MS/MS and found that Lpcat3 deficiency decreased the amount of polyunsaturated PCs (16:0/18:2, 18:1/18:2, 18:1/18:3, and 18:0/20:4) in the plasma membrane (Table 1). These changes could impact lipid uptake by the apical membrane. We also measured lyso-PCs but did not find significant changes (data not shown). We measured PC subspecies in the liver and kidney homogenates of the deficient mice and controls, and we did not find significant changes (Table 1).

We next used Western blotting to measure levels of NPC1L1, CD36, ABCA1, and ABCG8 in enterocyte homogenates; the level of each of these proteins was significantly decreased in

FIGURE 1. Generation and characterization of inducible intestine-specific Lpcat3 KO mice. A, strategy used to disrupt mouse Lpcat3 in the small intestine. B, mouse genotyping. Two-month-old wild-type (WT) and Lpcat3 KO female mice were treated with tamoxifen. C, Lpcat3 mRNA in different tissues was measured by real time PCR at day 9. D, Lpcat mRNA levels in the small intestine on day 9 post-tamoxifen treatment. E, total Lpcat activity in the small intestine measured on day 9. F, hematoxylin and eosin staining of the small intestine. Values are means \(\pm \) S.D., \(n = 7, ^* p < 0.01 \).
Lpcat3-deficient primary enterocytes compared with controls (Fig. 4, A and B). We also measured MTP and FATP4 levels and did not find any significant differences in MTP. Interestingly, however, Lpcat3 deficiency increased FATP4 levels as a compensatory mechanism.

To rationalize the defects in lipid absorption, we performed immunofluorescence staining for the localization of NPC1L1 in the small intestine. NPC1L1 co-localized with the plasma membrane marker villin in the small intestine of control mice (Fig. 4C). This co-localization was greatly reduced, however, in the

![Image of Figure 2](https://example.com/image2.png)

TABLE 1

Measurement of PC subspecies by LC-MS/MS

Values are means ± S.D.; n = 5; *, p < 0.05; **, p < 0.01.

	16:0/16:0	16:0/18:0	18:0/18:0	18:1/18:0	18:0/20:4
Plasma (μg/ml)					
Control	5 ± 1	5 ± 2	33 ± 7	216 ± 20	78 ± 10
Lpcat3 KO	4 ± 1	27 ± 6	187 ± 39	29 ± 5**	16 ± 3**
Enterocyte plasma membrane (ng/mg protein)					
Control	113 ± 18	92 ± 17	81 ± 13	4539 ± 634	612 ± 75
Lpcat3 KO	164 ± 22*	316 ± 57**	388 ± 41**	5954 ± 851	396 ± 63*
Small intestine homogenate (ng/mg protein)					
Control	163 ± 29	66 ± 11	132 ± 19	6231 ± 701	832 ± 91
Lpcat3 KO	209 ± 42*	196 ± 31**	299 ± 28**	6602 ± 981	501 ± 79*
Liver homogenate (ng/mg protein)					
Control	268 ± 38	106 ± 19	340 ± 55	8782 ± 917	718 ± 73
Lpcat3 KO	298 ± 27	129 ± 33	389 ± 42	9021 ± 1102	750 ± 90
Kidney homogenate (ng/mg protein)					
Control	815 ± 105	202 ± 32	166 ± 26	4519 ± 434	591 ± 57
Lpcat3 KO	933 ± 87	251 ± 20	180 ± 30	4705 ± 378	606 ± 71

To rationalize the defects in lipid absorption, we performed immunofluorescence staining for the localization of NPC1L1 in the small intestine. NPC1L1 co-localized with the plasma membrane marker villin in the small intestine of control mice (Fig. 4C). This co-localization was greatly reduced, however, in the
FIGURE 3. Lipid absorption in Lpcat3 KO and control mice. Lpcat3-Flox/Villin-Cre-ERT2 and control female mice were treated with tamoxifen. At day 9 post-treatment, the mice were gavaged with 0.1 μCi of [14C]cholesterol and 0.2 μCi of [3H]sitostanol in 20 μl of olive oil. A, feces were collected at 48 h post-treatment, and lipids were extracted for counting. B, [14C]cholesterol in blood. C and D, female mice were gavaged with 0.2 μCi of [3H]triolein and 0.1 μCi of [14C]PC in 20 μl of olive oil. Blood was collected over 8 h and assayed for the presence of [3H]glycerolipids (C) and [14C]glycerolipid (D). Values are means ± S.D., n = 7, *, p < 0.01.

FIGURE 4. Western blotting and immunostaining. A and B, Western blot fluorograms (A) and quantitation (B) of NPC1L1, ABCA1, ABCG8, CD36, FATP4, and MTP in enterocyte homogenates from Lpcat3 KO and control small intestine. GAPDH was used as a loading control. Values are means ± S.D., n = 5, *, p < 0.05. C, immunostaining for small intestine NPC1L1 and Villin. The data are representative of three independent experiments. D, primary enterocytes were isolated and treated with cycloheximide (20 μg/ml), and cells were harvested at 0, 1.5, and 3 h after treatment. Western blot was performed on cell homogenates. The signal was scanned and decay curve was drawn. Values are means ± S.D., n = 3.
small intestine of Lpcat3-deficient mice, especially at the tip of the villus. We also isolated primary enterocytes from both control and Lpcat3 KO mice and treated the cells with cycloheximide to block protein biosynthesis. Then we did Western blot for NPC1L1 at different time points. We did not find significant changes in the NPC1L1 protein decay curve within 3 h, suggesting Lpcat3 deficiency might not influence NPC1L1 protein stability (Fig. 4D).

We next immuno-stained stem cells in the crypt, using leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) antibody (18), and we did not find significant changes (Fig. 5). We also measured SREBP-1c and PPARγ levels, as well as their downstream target mRNA levels, and we did not find significant changes (data not shown).

Enterocytes secrete cholesterol as a part of apoB lipoproteins into lymph and as a part of HDL into the circulation (14, 19). The latter is influenced by the ABCA1 level (19). Because we found that both NPC1L1 and ABCA1 levels were significantly reduced in enterocytes (Fig. 4, A and B), we next assessed the two aspects of cholesterol absorption, uptake and secretion. Primary enterocytes were incubated with [14C]cholesterol for 1 h, after which Lpcat3 KO enterocytes were found to contain significantly less [14C]cholesterol compared with controls (25%, p < 0.05; Fig. 6A), indicating a defect in cholesterol uptake. The radiolabeled cells were then chased in the presence of oleic acid for 2 h. Lpcat3 KO enterocyte medium contained much less [14C]cholesterol compared with control medium (45%, p < 0.01; Fig. 6B). The conditioned medium was then subjected to density gradient ultracentrifugation to determine the effect of Lpcat3 ablation on cholesterol secretion with chylomicrons and HDL. Cholesterol secreted by control enterocytes was distributed in two separate fractions that corresponded to chylomicrons (fractions 1 and 2) and HDL (fractions 8–10) (Fig. 6C). Similar analyses with Lpcat3 KO enterocytes revealed that cholesterol secretion as part of chylomicron and HDL was significantly reduced (81 and 80% respectively, p < 0.01, Fig. 6C). These studies indicated that cholesterol uptake and secretion (through the chylomicron and HDL pathways) were diminished in the Lpcat3-deficient animals.

It has been reported that Lpcat3 protects against ER stress in the liver (8). To determine whether this also applies to the small

FIGURE 5. Stem cell staining. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) antibody was used to immuno-stain stem cells in the crypt of the small intestine. The staining was indicated by red arrows. The data are representative of three independent experiments.

FIGURE 6. Decreased cholesterol transport across Lpcat3 KO enterocytes. Lpcat3-Flox/Villin-Cre-ERT2 and control female mice were treated with tamoxifen. At day 9 post-treatment, primary enterocytes were isolated and incubated with 0.05 μCi/ml of [14C]cholesterol as well as unlabeled cholesterol (0.5 mg/ml) for 1 h and washed, and then the radioactivity was counted (A). Cells were also incubated with medium supplemented with oleic acid-containing micelles. After 2 h, the medium was collected and radioactivity counted (B). The conditioned medium was subjected to density gradient ultracentrifugation to determine the distribution of secreted cholesterol in different lipoproteins. Fractions were collected from the top and used to measure cholesterol in triplicate (C). Fractions 1 and 2 represent large and small chylomicrons, respectively. Fractions 8–10 represent intestinal HDL. Values are means ± S.D., n = 3, * p < 0.01.
In this study, we used an inducible intestine-specific Lpcat3-deficient and a liver-specific Lpcat3-deficient mouse model to investigate the role of PC remodeling on plasma lipoprotein metabolism. Our major findings are as follows. 1) Small intestine-specific Lpcat3 deficiency in adult mice have dramatically reduced all plasma lipid and lipoprotein levels, whereas liver deficiency only reduces plasma triglyceride levels at a lower extent compared with intestinal deficiency (40% versus 81%) (Figs. 2D and 8B). A previous report indicated that albumin-Cre-mediated liver Lpcat3 deficiency only caused about 25% reduction of plasma triglyceride levels with no changes of other lipids (9). Thus, manipulation Lpcat3 activity in the small intestine has a dominant effect on plasma lipid metabolism. 2) Under a chow diet-fed condition, Lpcat3 deficiency in adult mice do not cause lipid accumulation in the small intestine and liver. 3) The small intestine deficiency results in a significant reduction of NPC1L1, CD36, ABCA1, and ABCG8 in the enterocyte plasma membrane, thus reducing lipid uptake and reducing cholesterol secretion through both apoB-dependent and apoB-independent pathways. It is conceivable that inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.

It has been reported that ablation of Lpcat3 reduces arachidonoyl-PCs in the embryonic and postnatal small intestine (9, 10). We found that Lpcat3 deficiency in the small intestine significantly decreased polysaturated PCs, including 16:0/18:2, 18:1/18:2, 18:1/18:3, and 18:0/20:4 (Table 1), and this modification could disrupt the structural integrity and fluidity of the plasma membrane. We also found that intestinal Lpcat3 deficiency significantly decreased all circulating lipids and lipoproteins (Fig. 2, B–D). These phenotypes are the manifestation of the lipid absorption defects in the Lpcat3-deficient small intestine (Fig. 3, A–D) because liver Lpcat3 expression was not influenced (Fig. 1C).

Dietary lipid absorption occurs in the lumen of the small intestine and on the apical surface of enterocytes. NPC1L1 and ABCG5/8 are the two major factors mediating net cholesterol uptake. The former mediates cholesterol uptake, and the latter mediates excretion of excessive cholesterol into the intestinal lumen (22, 23). CD36 also participates in cholesterol uptake at the brush border of enterocytes (24, 25). Three proteins, namely CD36 (25), plasma membrane-associated fatty acid-binding protein (26), and FATP4 (27), are involved in free fatty acid uptake by enterocytes. The former two proteins are located on the apical surface of enterocytes, and the latter is located on the ER membrane (24). It is conceivable that ablation of Lpcat3 may reduce the incorporation of polysaturated PCs in the enterocyte plasma membrane with a consequent increase in membrane rigidity, which may perturb endocytosis and protein recruitment to the plasma membrane and ultimately lead to defective lipid uptake and secretion. Indeed, intestinal cholesterol absorption is mediated by endocytosis of NPC1L1 (28), and change in the composition of polysaturated PCs affects the endocytosis process (29, 30). Although the Lpcat3-deficient small intestine did not show obvious morphological alterations (Fig. 1F), the levels of both NPC1L1 and CD36 were significantly reduced in Lpcat3-deficient primary enterocytes compared with control mice (Fig. 4,
A and B). Immunofluorescence staining revealed that NPC1L1 abundance was significantly reduced in Lpcat3-deficient villi compared with the control (Fig. 4C). These results represent a plausible explanation for the observed reduction in cholesterol and triglyceride absorption. The reduction of ABCG8 abundance (Fig. 4, A and B) could explain the compensation for defective cholesterol uptake in Lpcat3-deficient enterocytes. It has been shown that global deletion of Lpcat3 at an early stage of development results in the accumulation of lipid droplets in enterocytes (9, 10). However, we did not find any difference in lipid levels in the small intestine of Lpcat3-deficient and control mice (Fig. 2G). Thus, the effects of Lpcat3 deletion differ depending on whether the gene is deleted in utero or in adult tissues. This is not an uncommon phenomenon; indeed, depleting liver kinase B1 at different stages of life results in completely different phenotypes (31, 32).

Lpcat3 deficiency in the small intestine significantly decreased the concentration of plasma apoA-I (Fig. 2E). It has been demonstrated that the small intestine is one of the sources of apoA-I in blood (33, 34). Plasma apoA-I levels in healthy humans increases after ingestion of a fatty meal (35). Moreover, apoA-I can be transferred from chylomicrons to HDL (36). Thus, in our Lpcat3 KO mice, the observed significant reduction in plasma apoA-I level is the major outcome of defective absorption of cholesterol, triglycerides, and phospholipids (Fig. 3, A–D).

Does Lpcat3 deficiency affect lipid secretion? Based on studies of the small intestine in neonatal mice, two groups of researchers proposed models for the assembly of Lpcat3-related apoB-containing lipoproteins (9, 10). However, cholesterol secretion in cultured primary enterocytes is mediated by both apoB-dependent and -independent pathways (14). In this study, we found that Lpcat3 deficiency in primary enterocytes reduced not only cholesterol uptake (Fig. 6A) but also secretion (Fig. 6B). Moreover, the deficiency reduced cholesterol secretion through both the chylomicron and HDL pathways (Fig. 6C). This reflects the fact that Lpcat3 deficiency, at least in part, reduces polyunsaturated PCs within the enterocyte plasma membrane (Table 1). This modification influences basal as well as apical membrane PC composition. Indeed, we found a significant reduction in the level of ABCA1 (Fig. 4, A and B), which is located on the basal membrane of enterocytes and is a major player in the apoB-independent pathway (14, 37).

The results obtained from our liver Lpcat3-deficient mice (Fig. 8, A–D) echoed what has been reported previously (9), showing a reduction in total liver Lpcat activity and plasma triglyceride but no other lipid levels. Importantly, we also confirmed that Lpcat3 deficiency in the liver does not cause signif-
ificant lipid accumulation in the liver under chow diet conditions (Fig. 8E) (9). Why then does liver deficiency have a smaller effect than that of the small intestine in terms of plasma lipid metabolism? One explanation could be due to the compensation of other Lpcats. Indeed, we previously reported that global Lpcat3 deficiency causes about 90% reduction of total Lpcat activity in the small intestine, whereas the deficiency only causes about a 70% reduction of total activity in the liver (11). We confirmed this phenomenon in this study (Fig. 1E and 8B).

Acute knockdown of liver Lpcat3 in genetically obese mice exacerbates lipid-induced ER stress (8). However, the same group recently reported that Lpcat3 deficiency in the liver does not affect the expression of ER stress markers (9). We also recently reported that global Lpcat3 deficiency has no impact on ER stress (11). In this study, we again measured the expression of liver Lpcat3 deficiency small intestine markers and found that the deficiency attenuated (rather than enhanced) the expression of PERK and IRE-1α (Fig. 7).

In this study, the Lpcat3 depletion was achieved by tamoxifen treatment in adult Lpcat3-Flox/Villin-Cre-ER^{T2} mice over a period of 9 days so that the effect was acute, similar to drug intervention. Given the fact that small intestine Lpcat3 deficiency has 1) a much bigger impact on plasma lipid levels than that of liver deficiency, 2) no effect on lipid retention in the tissue, and 3) a marginal effect on ER stress, selective inhibition of Lpcat3 activity in the small intestine could be a novel approach for treating hyperlipidemia.

Author Contributions—I. K. and Z. L. designed and performed experiments, analyzed data, interpreted results, discussed implications, and critically evaluated the manuscript. H. H. B. and M. S. K. used measured PC subspecies using LC/MS/MS and reviewed the manuscript. G. G. provided AAV-LacZ and AAV-Cre and reviewed the manuscript. X. C. J. conceived the study, supervised the project, interpreted results, discussed implications, and wrote the manuscript.

Acknowledgments—We are grateful to Drs. Jahangir Iqbal and Mahmood Hussain for their technical support and Villin-Cre-ER^{T2} transgenic mice.

References

1. van Meir, G., Voelker, D. R., and Feigenson, G. W. (2008) Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124

2. Schiller, J., Zschörnig, O., Petković, M., Müller, M., Arnhold, J., and Arnold, K. (2001) Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and (31)P-NMR. J. Lipid Res. 42, 1501–1508

3. Lands, W. E. (2000) Stories about acyl chains. Biochim. Biophys. Acta 1483, 1–14

4. Lands, W. E. (1958) Metabolism of glycerolipids; a comparison of lecithin and triglyceride synthesis. J. Biol. Chem. 231, 883–888

5. Hishikawa, D., Shindou, H., Kobayashi, S., Nakashima, H., Taguchi, R., and Shimizu, T. (2008) Discovery of a lysophosphatidylcholine acyltransferase family essential for membrane asymmetry and diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 2830–2835

6. Zhao, Y., Chen, Y. Q., Bonacci, T. M., Bredt, D. S., Li, S., Bensch, W. R., Moller, D. E., Kowala, M., Konrad, R. J., and Cao, G. (2008) Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J. Biol. Chem. 283, 8258–8265

7. Li, Z., Ding, T., Pan, X., Li, Y., Li, R., Sanders, P. E., Kuo, M. S., Hussain, M. M., Cao, G., and Jiang, X. C. (2012) Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J. Biol. Chem. 287, 20122–20131

8. Rong, X., Albert, C. J., Hong, C., Duerr, M. A., Chamberlain, B. T., Tarling, E. J., Ito, A., Gao, J., Wang, B., Edwards, P. A., Jung, M. E., Ford, D. A., and Tontonoz, P. (2013) LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18, 685–697

9. Rong, X., Wang, B., Dunham, M. M., Hedde, P. N., Wong, J. S., Gratton, E., Young, S. G., Ford, D. A., and Tontonoz, P. (2015) Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 10.7554/eLife.06557

10. Hashidate-Yoshida, T., Harayama, T., Hishikawa, D., Morimoto, R., Hamano, F., Tokuoka, S. M., Eto, M., Tamura-Nakano, M., Yanobu-Takashina, R., Mukumoto, Y., Kiyonari, H., Okamura, T., Kita, Y., Shindou, H., and Shimizu, T. (2015) Fatty acid remodeling by Lpcat3 enriches phospholipid membranes and regulates triglyceride transport. eLife 4, e06328

11. Li, Z., Jiang, H., Ding, T., Lou, C., Bui, H. H., Kuo, M. S., and Jiang, X. C. (2015) Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 149, 1519–1529

12. Hayashi, Y., Mori, Y., Janssen, O. E., Sunthornthepvarakul, T., Weiss, R. E., Takeda, K., Weinberg, M., Seo, H., Bell, G. I., and Refetoff, S. (1993) Human thyroxine-binding globulin gene: complete sequence and transcriptional regulation. Mol. Endocrinol. 7, 1049–1060

13. Kitajima, K., Marchadier, D. H., Miller, G. C., Gao, G. P., Wilson, J. M., and Rader, D. J. (2006) Complete prevention of atherosclerosis in apoE-deficient mice by hepatic human apoE gene transfer with adeno-associated virus serotypes 7 and 8. Arterioscler. Thromb. Vasc. Biol. 26, 1852–1857

14. Iqbal, J., and Hussain, M. M. (2005) Evidence for multiple complementary pathways for efficient cholesterol absorption in mice. J. Lipid Res. 46, 1491–1501

15. Liu, R., Iqbal, J., Yeang, C., Wang, D. Q., Hussain, M. M., and Jiang, X. C. (2007) Phospholipid transfer protein-deficient mice absorb less cholesterol. Arterioscler. Thromb. Vasc. Biol. 27, 2014–2021

16. Jiang, X. C., Qin, S., Qiao, C., Kawano, K., Lin, M., Skold, A., Xiao, X., and Tall, A. R. (2001) Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat. Med. 7, 847–852

17. Li, Z., Zhang, H., Liu, J., Liang, C. P., Li, Y., Teitelman, G., Beyer, T., Bui, H. H., Peake, D. A., Zhang, Y., Sanders, P. E., Kuo, M. S., Park, T. S., Cao, G., and Jiang, X. C. (2011) Reducing plasma membrane sphingomyelin increases insulin sensitivity. Mol. Cell. Biol. 31, 4205–4218

18. Barker, N., and Clevers, H. (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681–1696

19. Iqbal, J., Parks, J. S., and Hussain, M. M. (2013) Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J. Biol. Chem. 288, 30432–30444

20. Vance, D. E. (2002) Phospholipid Biosynthesis in Eukaryotes, 4th Ed., Elsevier Science B.V.

21. Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H., Bandyopadhyay, S., Jones, K. N., Kelly, S., Shaner, R. L., Sullards, C. M., Wang, E., Murphy, R. C., Barkley, R. M., Leiker, T. J., et al. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299–3305

22. Altmann, S. W., Davis, H. R., Jr., Zhu, L. J., Yao, X., Huang, L. M., Tetzloff, G., Iyer, S. P., Maguire, M., Golovko, A., Zeng, M., Wang, L., Morgolo, N., and Graziano, M. P. (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204

23. Yu, L., York, J., von Bergmann, K., Lutjohann, D., Cohen, J. C., and Hobbs, H. H. (2003) Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J. Biol. Chem. 278, 15565–15570
24. Pan, X., and Hussain, M. M. (2012) Gut triglyceride production. Biochim. Biophys. Acta 1821, 727–735
25. Nassir, F., Wilson, B., Han, X., Gross, R. W., and Abumrad, N. A. (2007) CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J. Biol. Chem. 282, 19493–19501
26. Stremmel, W., Lotz, G., Strohmeyer, G., and Berk, P. D. (1985) Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J. Clin. Invest. 75, 1068–1076
27. Stahl, A., Hirsch, D. J., Gimeno, R. E., Punreddy, S., Ge, P., Watson, N., Patel, S., Kotler, M., Raimondi, A., Tartaglia, L. A., and Lodish, H. F. (1999) Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308
28. Li, P. S., Fu, Z. Y., Zhang, Y. Y., Zhang, J. H., Xu, C. Q., Ma, Y. T., Li, B. L., and Song, B. L. (2014) The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat. Med. 20, 80–86
29. Koeberle, A., Shindou, H., Koeberle, S. C., Laufer, S. A., Shimizu, T., and Werz, O. (2013) Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl. Acad. Sci. U.S.A. 110, 2546–2551
30. Pinot, M., Vanni, S., Pagnotta, S., Lacas-Gervais, S., Payet, L. A., Ferreira, T., Gautier, R., Goud, B., Antonny, B., and Barelli, H. (2014) Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345, 693–697
31. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646
32. Woods, A., Heslegrave, A. J., Muckett, P. J., Levene, A. P., Clements, M., Mobberley, M., Ryder, T. A., Abu-Hayyeh, S., Williamson, C., Goldin, R. D., Ashworth, A., Withers, D. J., and Carling, D. (2011) LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem. J. 434, 49–60
33. Glickman, R. M., and Kirsch, K. (1973) Lymph chylomicron formation during the inhibition of protein synthesis. Studies of chylomicron apoproteins. J. Clin. Invest. 52, 2910–2920
34. Glickman, R. M., and Green, P. H. (1977) The intestine as a source of apolipoprotein A1. Proc. Natl. Acad. Sci. U.S.A. 74, 2569–2573
35. Glickman, R. M., Green, P. H., Lees, R. S., and Tall, A. (1978) Apoprotein A-I synthesis in normal intestinal mucosa and in Tangier disease. N. Engl. J. Med. 299, 1424–1427
36. Tall, A. R., Green, P. H., Glickman, R. M., and Riley, J. W. (1979) Metabolic fate of chylomicron phospholipids and apoproteins in the rat. J. Clin. Invest. 64, 977–989
37. Hussain, M. M. (2014) Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 25, 200–206