Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan

Tomoyuki Shinohara,1 Kosuke Saida,1 Shigeya Tanaka1 and Akihiko Murayama2

1Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Takasaki, Japan
2Department of Physical Therapy, Faculty of Rehabilitation, Gunma University of Health and Welfare, Maebashi, Japan

Correspondence
Associate professor, Tomoyuki Shinohara, PhD, Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, 501 Naka Orui-machi, Takasaki-shi, Gunma 370-0033, Japan. Email: shinohara-t@takasaki-u.ac.jp

Received: 18 August 2020
Revised: 13 October 2020
Accepted: 30 October 2020

Introduction

The coronavirus disease 2019 (COVID-19) has spread worldwide, and has affected the health and lifestyle of many people. The Japanese government issued a state of emergency on 16 April 2020 and lifted the declaration in all prefectures on 25 May 2020.1 Many older adults were less likely to undergo lifestyle changes according to this request for restraint. In Japan, which has a hyper-aged society, there is a need to facilitate healthy aging and maintain functional capacity;2 so frailty is a geriatric problem. Lifestyle changes implemented as COVID-19 countermeasures, such as decreased activity, increased anxiety and decreased communication, resulted in increased frailty. We called this frailty “corona-frailty”.3 It is important to determine what changes in lifestyle and physical or psychological conditions affect frailty, so that policy-makers and local government commissioners can consider strategies to prevent frailty during a pandemic. However, there are few reports regarding frailty and lifestyle changes among uninfected older adults affected by COVID-19 countermeasures.

We hypothesized that changes in lifestyle and physical or psychological conditions affect frailty status. The present study aimed to clarify the association between frailty and changes in lifestyle and physical or psychological conditions among community-dwelling older adults affected by COVID-19 countermeasures in Japan.

Methods

Study design and participants

The present cross-sectional study was carried out between 8 May and 12 June 2020 in Takasaki City, Gunma Prefecture, Japan. Gunma Prefecture requested older adults to refrain from going out until 12 June 2020. The participants were 1353 community-dwelling older adults aged ≥65 years who live in local housing and who were helped on a regular basis by local volunteers. The participants were not excluded due to the presence of specific types of comorbidities and/or disorders, to enable a broad investigation of the actual condition of older adults. We distributed the self-
reported questionnaires to the participants by local volunteers. The questionnaires contained written informed consent and were returned by post. The present study was carried out in accordance with the tenets of the Declaration of Helsinki. This study was registered with the University Hospital Medical Information Network (UMIN00004035).

Measurements

We created a questionnaire that older adults can answer without support, to avoid contact and to ensure social distancing. Frailty was assessed using the Frailty Screening Index (FSI), which is comprised of five items answerable with yes/no responses. The FSI was used to assess physical/psychological frailty, and had predictive validity for disability and concurrent validity for social frailty among Japanese older adults. The FSI is a questionnaire that comprises five items; “Have you lost 2 kg or more in the past 6 months?”, “Do you think you walk slower than before?”, “Do you go for a walk for your health at least once a week?”, “Have you lost 2 kg or more in the past 6 months?”, “Do you recall what happened 5 minutes ago?” and “In the past 2 weeks, have you felt tired without a reason?”.

These items are answered with simple yes/no responses, and scoring ranged from 0 to 5. It does not require an actual measurement of grip strength or walking speed. The frailty status was based on the participant’s score, where a score of ≥3 was defined as frailty, 1–2 as prefrailty and 0 as robust.

The FSI questioned the participants about their weight loss in the past 6 months and decreased walking speed. However, recent changes affected by the COVID-19 countermeasures were not clarified. The recent changes are important to assess, and allow us to examine the impact of current and future risks to frailty; therefore, the Questionnaire for Change of Life (QCL) was prepared to evaluate the impact of COVID-19 countermeasures on changes in lifestyle and physical or psychological conditions. The QCL was created with a 5-point Likert scale, and contained five items about lifestyle and physical or psychological conditions related to frailty: amount of daily movement, “How about the amount of movement in your life?”; leg muscle strength, “How strong are your legs?”; meal size, “How’s your food intake?”; worry or anxiety, “How’s your worry and

Table 1	Characteristics of participants in the frailty and non-frailty groups			
Overall	Frailty	Non-frailty	P-value	Effect size
Age (mean ± SD)	78.4 ± 6.2	80.1± 6.0*	0.009	0.291
Female, n (%)	649 (75.8%)	62 (74.7%)	587 (75.9%)	0.802 0.009
QCL, n (%)	6 (%)	0 (%)	13 (%)	0.178
(1) Amount of daily movement, median (IQR)	3.0 (2.0–3.0)	2.0** (1.0–3.0)	3.0 (2.0–3.0)	<0.001 0.178
1. Decreased	137 (16.0)	29 (34.9)	108 (14.0)	0.146
2. Slightly decreased	231 (27.0)	22 (26.5)	209 (27.0)	0.343
3. Unchanged	444 (51.9)	29 (34.9)	415 (53.7)	0.234
4. Slightly increased	31 (3.6)	3 (3.6)	28 (3.6)	0.356
5. Increased	13 (1.5)	0 (0.0)	13 (1.7)	0.356
(2) Leg muscle strength, median (IQR)	3.0 (2.0–3.0)	2.0** (1.0–2.0)	3.0 (2.0–3.0)	<0.001 0.333
1. Weaker	90 (10.5)	32 (38.6)	58 (7.5)	0.029
2. Slightly weaker	304 (35.5)	37 (44.6)	267 (34.5)	0.318
3. Unchanged	449 (52.5)	13 (15.7)	436 (56.4)	0.258
4. Slightly stronger	10 (1.2)	1 (1.2)	9 (1.2)	0.453
5. Stronger	3 (0.4)	0 (0.0)	3 (0.4)	0.453
(3) Meal size, median (IQR)	3.0 (3.0–3.0)	3.0** (2.0–3.0)	3.0 (3.0–3.0)	<0.001 0.24
1. Decreased	23 (2.7)	11 (13.3)	12 (1.6)	0.356
2. Slightly decreased	106 (12.4)	18 (21.7)	88 (11.4)	0.356
3. Unchanged	677 (79.1)	49 (59.0)	628 (81.2)	0.234
4. Slightly increased	43 (5.0)	4 (4.8)	39 (5.0)	0.356
5. Increased	7 (0.8)	1 (1.2)	6 (0.8)	0.356
(4) Worry or anxiety, median (IQR)	3.0 (2.0–3.0)	2.0 (2.0–3.0)	3.0 (2.0–3.0)	0.353 0.146
1. Increased	67 (7.8)	11 (13.3)	56 (7.2)	0.318
2. Slightly increased	302 (35.3)	31 (37.3)	271 (35.1)	0.318
3. Unchanged	453 (52.9)	32 (38.6)	421 (54.5)	0.258
4. Slightly decreased	31 (3.6)	8 (9.6)	23 (3.0)	0.356
5. Decreased	3 (0.4)	1 (1.2)	2 (0.3)	0.356
(5) Opportunities to talk to people, median (IQR)	2.0 (1.0–3.0)	2.0 (1.0–3.0)	2.0 (1.0–3.0)	0.435 0.054
1. Decreased	257 (30.0)	29 (34.9)	228 (29.5)	0.258
2. Slightly decreased	258 (30.1)	22 (26.5)	236 (30.5)	0.258
3. Unchanged	328 (38.3)	32 (38.6)	296 (38.3)	0.258
4. Slightly increased	8 (0.9)	0 (0.0)	8 (1.0)	0.258
5. Increased	5 (0.6)	0 (0.0)	5 (0.6)	0.258

*Effect size was estimated using Cohen’s d for age and Cramer’s V for sex and items of the Questionnaire for Change of Life (QCL).

**P < 0.05.

**P < 0.001.

IQR, interquartile range.
anxiety?”; and opportunities to talk to people. “How about an opportunity to communicate with people?”. Frailty has three dimensions. Physical frailty is related to the amount of daily movement, leg muscle strength and meal size; cognitive frailty is related to the amount of daily movement, including worry or anxiety; and social frailty is related to opportunities to talk to people. All authors and community supporters involved with the target participants consulted each other to prepare these five questions that were easy to answer for older adults without anyone’s support at home, which is important to maintain social distancing as a preventive measure against infection. The participants were asked about the subjective changes in the previous month to evaluate changes in their lifestyle due to the measures implemented to prevent the spread of COVID-19. Each item was scored in the following scale: decreased or weaker = 1, slightly decreased or weaker = 2, unchanged = 3, slightly increased or stronger = 4 and increased or stronger = 5 on all items except for those about worry or anxiety, which were scored as: increased = 1, slightly increased = 2, unchanged = 3, slightly decreased = 4 and decreased = 5. The application of QCL was further confirmed by questioning seven older adults, who did not participate formally, but agreed to answer the QCL before this study was carried out. Furthermore, they could answer all the questions.

Statistical analysis

Cronbach’s α was calculated as a measure of internal consistency of QCL. The relationships among all item scores of the QCL were tested using Spearman’s rank correlation coefficient. We defined FSI scores of ≥3 as frailty and 0–2 as non-frailty. We compared ages using the t-test, sex using the χ^2-test, and each item score of the QCL between frailty and non-frailty using the Mann–Whitney U-test. To assess the degree of difference, effect size was estimated using or Cramer’s V. Multiple logistic regression analysis based on forced entry methods was used. Frailty status was the dependent variable, and age, sex and each item score of the QCL were the independent variables. All statistical analyses were carried out using IBM SPSS Statistics for Windows, version 26 (IBM Corp., Armonk, NY), with P-values < 0.05 showing statistical significance.

Results

In total, 886 older adults returned the questionnaires with written consent, and the response rate was 65.5%. We analyzed 856 older adults who answered all questions (63.3%). The percentage of participants able to respond to all the questions was 96.6%.

Cronbach’s α for QCL was 0.552. Spearman’s rank correlation coefficient among all item scores of the QCL ranged from 0.051 to 0.438.

A total of 83 participants (9.7%) had frailty and 773 participants (90.3%) did not. There was a significant difference in age ($P < 0.05$) and three items in the QCL – amount of daily movement, leg muscle strength and meal size – between frailty and non-frailty groups ($P < 0.001$; Table 1).

Table 2 shows the results of multiple logistic regression. Leg muscle strength (odds ratio 3.257, 95% confidence interval 2.236–4.746) was negatively correlated with frailty – a decrease in subjective leg muscle strength in a month was associated with frailty.

Discussion

The internal consistency of QCL was poor, and correlations among each item of the QCL were low, because we integrated QCL aspects from the three dimensions of frailty and included just five items. We suggest that each individual QCL item, and not just the total score, should be used in analyses involving the QCL. Zhang and Ma reported on the impact of COVID-19 on mental health and quality of life by using the internet. The internet usage rate of older adults in Japan was 45.8% in households with only older adults. Internet-based surveys might fail to assess older people. The questionnaire we developed was answered by >95% of the older adults who returned their responses; therefore, it was useful for self-assessment during a pandemic to avoid contact with others.

Both the FSI and the QCL were prepared to assess the frailty-related conditions and changes. The difference was that the FSI assessed the current conditions and long-term changes, whereas the QCL assessed the changes over the past month that might have been more affected by the COVID-19 countermeasures. The QCL assessment showed that the COVID-19 countermeasures might lead to a reduction in the extent of daily movement, leg muscle strength and meal size among older adults with frailty compared with non-frail older adults. In particular, subjective decreased leg muscle strength had a significant negative relationship with frailty. Yamada et al. reported that the time spent doing physical activity significantly decreased as a result of the COVID-19 pandemic affecting older adults in Japan. For healthy older adults and older adults with frailty, muscular weakness is decreased by physical activity, ranging from low intensity walking to more vigorous sports and resistance exercise. However, it is difficult to increase physical activity by conventional approaches in pandemics. New models of movement, such as telehealth

Table 2 Results of multivariate logistic regression for determining frailty and non-frailty

Independent variables	β	P-value	Odds ratio	95% CI	Lower	Upper
Age	−0.009	0.672	0.991		0.951	1.033
Sex	−0.037	0.898	0.963		0.543	1.708
QCL						
(1) Amount of daily movement	0.272	0.119	1.313		0.932	1.849
(2) Leg muscle strength	1.181	0.000	3.257		2.236	4.746
(3) Meal size	0.378	0.052	1.459		0.997	2.136
(4) Worry or anxiety	−0.057	0.729	0.944		0.682	1.307
(5) Opportunities to talk to people	−0.103	0.537	0.902		0.650	1.251

CI, confidence interval; QCL, Questionnaire for Change of Life.
exercise programs and mobile technology, to help maintain mobility, are being developed. The physical activity levels of community-dwelling older adults should be increased by using new methods that also consider infection control. Dietary intake, along with physical activity, also plays a significant role in the onset and progression of frailty. The current study showed the importance of physical activity and diet. Policy-makers and local government commissioners should prioritize these aspects to help improve the quality of life of community-dwelling older adults.

The interaction between age-related chronic diseases, the aging process, oxidative stress and inflammation might lead to frailty. Age has been considered to be related to frailty, but the results of multiple logistic regression analysis in the present study did not show a relationship between age and frailty. The participants with frailty were significantly older, but the effect size was small (d = 0.291). Furthermore, the mean age and standard deviation of the participants were 78.4 years and 6.2 years, respectively, and the participants were relatively older and around the mean age. Therefore, we suggested that the effect of age was minimal between frail and non-frail individuals, and frailty was affected more by changes in lifestyle and physical or psychological conditions among older adults aged approximately 80 years.

The present study had several limitations. First, it is necessary to identify the changes over time in frail and non-frail individuals to understand how lifestyle changes affect frailty status; therefore, we plan to carry out a cohort study in the future. Second, we had to use an easy questionnaire and did not collect data regarding underlying diseases and other factors related to frailty. The present study was carried out under limited conditions while taking infection control measures. Third, we could not measure physical activity and muscle strength quantitatively using any instruments or monitor actual meal size.

In conclusion, the current study made a novel contribution that the subjective amount of daily movement, leg muscle strength and meal size decreased among older adults with frailty during the COVID-19 pandemic in Japan. In particular, subjective decreased leg muscle strength had a significant negative relationship with frailty. As community-dwelling older adults were aware of the decrease in leg muscle strength in a month, they were significantly more frail.

Acknowledgements

We express our sincere gratitude to Kenichi Sudo, Munehisa Sudo, Atsushi Kuwabara, Satoshi Tanaka, Chieko Mesaki, Junko Ishii, Kumi Aoki, Norie Torizuka, Miyuki Ogawa, Yumi Ino, Izumi Tsutsumi, Susumu Shimomura, Nobuko Kaseda, Kazuaki Kuwabara, Yuriko Yoshiara, Ryo Koike, Masaaki Arai and Ayako Yamazaki. A part of this work was supported by JSPS KAKENHI (Grant Number 19K19712). We thank Editage (www.editage.com) for free English language editing for supporting COVID-19 research.

Disclosure statement

The authors declare no conflict of interest.

References

1. Loei MK. Covid-19: Japan prepares to extend state of emergency nationwide as “untraceable” cases soar. BMJ 2020; 369: m1543.
2. Muramatsu N, Akiyama H. Japan: super-aging society preparing for the future. Gerontologist 2011; 5: 425–432.
3. Shinohara T, Saida K, Tanaka S, Murayama A. Impact of the COVID-19 pandemic on frailty in the elderly citizen; corona-frailty. BMJ 2020; 369: m1543.
4. Yamada M, Arai H. Predictive value of frailty scores for healthy life expectancy in community-dwelling older Japanese adults. J Am Med Dir Assoc 2015; 16: e7–e11.
5. Yamada M, Arai H. Social frailty predicts incident disability and mortality among community-dwelling Japanese older adults. J Am Med Dir Assoc 2018; 19: 1099–1103.
6. Okura M, Ogita M, Yamamoto M, Nakai T, Numata T, Arai H. Community activities predict disability and mortality in community-dwelling older adults. Geriatr Gerontol Int 2018; 18: 1114–1124.
7. Fried LP, Tangen CM, Walston J et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146–M156.
8. O’Connell ML, Coppinger T, McCarthy AL. The role of nutrition and physical activity in frailty: a review. Clin Nutr ESPEN 2020; 35: 1–11.
9. Shimada H, Makizako H, Lee S et al. Impact of cognitive frailty on daily activities in older persons. J Nutr Health Aging 2016; 20: 729–735.
10. Makizako H, Shimada H, Doi T et al. Physical frailty predicts incident depressive symptoms in elderly people: prospective findings from the Obu study of health promotion for the elderly. J Am Med Dir Assoc 2015; 16: 194–199.
11. Kojima G, Taniguchi Y, Kitamura A, Fujiyara Y. Is living alone a risk factor of frailty? A systematic review and meta-analysis. Ageing Res Rev 2020; 59: 101048.
12. Zhang Y, Ma ZF. Impact of the COVID-19 pandemic on mental health and quality of life among local residents in Liaoning province, China: a cross-sectional study. Int J Environ Res Public Health 2020; 17: 2381.
13. Statistics of Japan. Communication usage trend survey. [Cited 2 August 2020]. Available from: https://www.e-stat.go.jp/stat-search/files?page=1&output=dataset&outputkey=02000356&statid=000001129917&cycle=0&year=201808&month=0&classt=000001129920&stat_infmt=00001831224.
14. Yamada M, Kimura Y, Ishitaya D et al. Effect of the COVID-19 epidemic on physical activity in community-dwelling older adults in Japan: a cross-sectional online survey. J Nutr Health Aging 2020: 1–3.
15. McPhee JS, French DP, Jackson D et al. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology 2016; 17: 567–580.
16. Middleton A, Simpson KN, Betterg JP, Bowden MG. COVID-19 pandemic and beyond: considerations and costs of telehealth exercise programs for older adults with functional impairments living at home. Lessons learned from a pilot case study. Phys Ther 2020; 100: 1278–1288.
17. Banskota S, Healy M, Goldberg EM. 15 smartphone apps for older adults to use while in isolation during the COVID-19 pandemic. BMJ Open 2020; 10: e040341.

How to cite this article: Shinohara T, Saida K, Tanaka S, Murayama A. Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan. Geriatr. Gerontol. Int. 2021;21:39–42. https://doi.org/10.1111/ger.14092