The Dual Role of Platelets in the Cardiovascular Risk of Chronic Inflammation

Carlos Zamora, Elisabet Cantó and Silvia Vidal*

Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain

Patients with chronic inflammatory diseases often exhibit cardiovascular risk. This risk is associated with the systemic inflammation that persists in these patients, causing a sustained endothelial activation. Different mechanisms have been considered responsible for this systemic inflammation, among which activated platelets have been regarded as a major player. However, in recent years, the role of platelets has become controversial. Not only can this subcellular component release pro- and anti-inflammatory mediators, but it can also bind to different subsets of circulating lymphocytes, monocytes and neutrophils modulating their function in either direction. How platelets exert this dual role is not yet fully understood.

Keywords: platelet, chronic inflammation, cardiovascular risk, leukocytes, systemic inflammation

INTRODUCTION

Systemic inflammation (SI) has been described as a consequence of increased levels of the circulating pro-inflammatory mediators that activate endothelial cells (EC). Endothelial activation is part of a normal immune system defense, but a prolonged inflammatory stimulus induces a sustained endothelial activation/dysfunction that is often associated with atherogenesis and cardiovascular events. The role of SI on cardiovascular (CV) risk has been explored in autoimmune diseases. Systemic lupus erythematosus (SLE)-like mouse models display endothelial dysfunction and cardiac hypertrophy, mediated through IL-6 and IL-1α (1). In these patients, it has been shown that B lymphocyte stimulator induced apoptosis of endothelial progenitors cells and EC (2). In addition, it has been suggested that autoantibodies play a role in endothelial dysfunction, possibly by modulating the adhesion of neutrophils (3, 4). In a model of arthritis, endothelial dysfunction was only observed in rats with a persisting imbalance between NOS and COX-2 pathways, higher plasma levels of IL-1β and tumor necrosis factor-α (TNF-α) (5). The presence of diabetes mellitus type 2 in patients with metabolic syndrome impairs the endothelial function (6). In a model of SI, the levels of endothelin-1 and endocan are related to endothelial dysfunction (7). However, there are some circumstances in which the relationship between SI and endothelial dysfunction is less clear. In Systemic Inflammatory Response syndrome, the levels of dysfunctional EC were associated with mortality and organ dysfunction independently of inflammatory markers (8).

The link between inflammation and endothelial dysfunction has been confirmed by the inhibition of molecules related to SI. Anti-TNFα antibodies reduces sE-selectin and sVCAM expression (9) and decreases endothelium-dependent relaxation (10, 11). EC treated with etanercept revert the apoptosis induced by TNF-α (12). JAK inhibitors improve endothelium dependent vasorelaxation, endothelial cell differentiation and lipoprotein profiles, while decreasing pro-inflammatory cytokines in SLE-like syndrome (13). Glucocorticoids decrease IL-1β and TNF-α...
levels, improving the function of endothelium in rheumatoid arthritis (RA) (14). Patients with CV risk factors had increased levels of IL-1β and its gene expression signature and blocking IL-1β with canakinumab was observed to prevent recurrent cardiovascular disease (CVD) (15). Agents with nucleoside triphosphate hydrolase activity decrease platelet-leukocyte-endothelium interaction, the transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets (PLTs) and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage (16). Furthermore, dihydroartemisinin inhibits the occludin downregulation induced by TNF-α, improving the permeability of EC (17) and the inhibition of cannabinoid receptors reduces leukocyte-adhesion and improves microvascular blood flow (18). The pre-treatment of primary cultured human umbilical vein endothelial cells (HUVECs) with sevoflurane reduces ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) IκBα, and NF-κB activation, and blocks the adhesion of leukocytes (19).

Products with anti-inflammatory properties can improve endothelial function. Lactobacillus plantarum 299v supplements decreased inflammatory markers (20), while the active form of vitamin D diminishes IL-6 secretion and increases the angiogenic capacity of myeloid angiogenic cells via CXCL10 down-regulation (21).

FEATURES OF ENDOTHELIAL DYSFUNCTION

The inflammatory phase that leads to endothelial dysfunction is initiated by TNF-α and subsequently amplified by IL-1, IL-6 and downstream mediators. Endothelial dysfunction refers to the failure by ECs to perform their physiological functions, often due to a maladaptive response to pathological stimuli. The phenotypic features of endothelial dysfunction include the upregulated expression of endothelial leukocyte adhesion molecules (ELAMs) [E-selectin, ICAM-1 and VCAM-1]. On leukocytes, activated ECs induce the affinity of counter-receptors for ELAMs and secrete and display chemokines on the luminal surface. Endothelial dysfunction also includes a compromised barrier function, the secretion of microvesicles, an increased vascular smooth muscle tone, and the increased production of vasoconstrictor substances, the reduced resistance to thrombosis via platelet aggregation and oxidative stress upregulation (22–24). It was described that high levels of IL-8 and TNF-α up-regulate CX3CR1 expression on platelet-monocyte aggregates, increasing adhesion to activated endothelium (25). In mouse models, increased IL-17 was associated with reactive oxygen species formation, circulating inflammatory leukocytes and endothelial dysfunction (26), while higher levels of resistin, TNF-α, IL-1β, and MMP-9 expression were associated with the levels of inflammatory infiltrates in artery walls (27).

Beyond the activation of the well-known signaling cascades, the stimulation of EC induces gene expression via microRNAs (miRNA) and epigenetic modifications. The overexpression of miR100 in ECs attenuates leukocyte-endothelial interaction, represses the mammalian target of rapamycin complex 1 signaling, stimulating endothelial autophagy, and attenuates NF-κB signaling. Local miR100 expression is inversely correlated with an inflammatory cell content (28). miR181b inhibits downstream and upstream NF-κB signaling in response to activation (29), while the NF-κB target genes (VCAM-1, ICAM-1, E-selectin, and tissue factor) (30) and miR223 are associated with HUVEC dysfunction (31). Additionally, IFN-α, through miR155, promotes an endothelial dysfunction signature in HUVECs characterized by transcription suppression and the mRNA instability of eNOS and by the upregulation of MCP-1 and VCAM-1 and enhanced neutrophil adhesion (32).

Endothelial microparticles (MPs), shed as a result of the activation of EC are considered a source of important information on the status of ECs and vascular function (33, 34). Circulating levels of endothelial MPs reflect a balance between cell stimulation, proliferation, apoptosis, and cell death (35) and are increased by inflammatory stimuli, mediated by the activation of NF-κB and associated with oxidative stress intensity (36, 37). Endothelial MPs are increased in autoimmune diseases (38) and serve as markers for vascular dysfunction and their effects depend on their cargo and on the surface molecules. Recently, levels of endothelial MPs have been associated with disease activity in SLE patients and CV risk (39).

MPs from RA patients had higher expression of TNF-α on the surface compared to healthy donors (HD), increasing apoptosis and autophagy levels on EC and correlating with clinical RA activity (40).

PLATELETS AND SYSTEMIC INFLAMMATION

PLTs have come to be recognized as active players in SI. After activation, PLTs participate in the vasculature inflammation and damage, atherogenesis and thrombosis (41–45). Wide ranges of stimulus are able to activate PLTs. The strong PLT activation was achieved with the ligation of the agonist thrombin, collagen and ADP to the PLTs receptors: protease-activated receptor 1, GPVI and P2Y1 or P2Y12 respectively (46–48). Other non-classical pathways are able to activate PLTs due to the expression of Toll-like receptors (TLR), TNF-α receptor, IL-1β receptors and C-type lectin-like receptors (49–53). Some autoantibodies presents in autoimmune disease patients such as anti-citrullinated protein, anti-β2 glycoprotein I and anti-D4GDI have also the ability to induce PLT activation through FcγRIIa (54–56).

However, PLTs also participate in the resolution of inflammation as anti-inflammatory elements. How PLTs sense the signal to exert pro- or anti-inflammatory functions is not yet fully known. However, it is known that PLTs exert their functions by releasing soluble factors and interacting with cells. The dual role of PLTs in inflammation (57, 58) may be the result of differences in the PLT packing of molecules, activated-dependent release by different stimuli, the kinetics of
release and the de novo synthesis of soluble factors and their binding to certain molecules on the surface of leukocytes.

Pro-inflammatory and Anti-inflammatory Soluble Factors Released by PLTs

Some of the released factors of PLTs are synthesized de novo, whereas others are stored and are secreted from granules as pro-thrombotic, immunoregulatory molecules and growth factors immediately after activation. Molecules from dense granule components contribute to hemostasis and coagulation. Molecules from α-granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive molecules that are essential regulators in the complex microenvironment (Table 1).

TABLE 1	Evidences of dual role of expressed/secreted platelet factors.	
Factor	Pro-inflammatory	Anti-inflammatory
PF4	Monocytes: phagocytosis (59)	T lymphocytes: proliferation (61)
	Respiratory burst (59)	Th17 differentiation (62)
	pro-inflammatory cytokines (59)	granzyme B (61)
	Neutrophils: NETs formation (63)	In vitro: neutrophil adhesion to activated EC (67)
IL-1	Endothelial activation (63, 64)	Monocytes: Correlation with IDO, Treg (68)
	EC damage (63)	T lymphocytes: cell function and proliferation (72, 73)
	Neutrophil adhesion (63)	Th1, Th17 response (72)
	sCD40L	IFN-γ production (72, 73)
	Plasmatic levels correlated CV risk and pro-inflammatory cytokines (68, 69)	granzyme B and perforin (73)
	B cell isotype switching (70)	Treg differentiation (72)
TGF-β	Monocytes: Th cell function and proliferation (72, 73)	Th1, Th17 response (72)
	sCD40L	IFN-γ production (72, 73)
	sCD40L	granzyme B and perforin (73)
	HMGB1	Treg differentiation (72)
	Monocytes: migration and accumulation in tissues (74, 75)	Monocytes: Correlation with IDO, Treg (68)
	Neutrophils: NETs formation (76, 77)	T lymphocytes: cell function and proliferation (72, 73)

PLTs also release the damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) contributing to thrombosis process (87) promoting monocytes migration, suppressing monocyte apoptosis via TLR4-ligation and the monocyte accumulation at the site of vascular thrombosis (74, 75) and promote NETs formation (76, 77).

PF4 also acts as an anti-inflammatory factor on T lymphocytes (83), limiting Th17 differentiation by suppressing RORγ expression (62). A lack of PF4 induces the rejection of cardiac transplantation by increasing levels of IL-17 and T cell mediated inflammation. We has observed that PF4 decreases T lymphocyte proliferation and granzyme B expression in CD8+ T lymphocytes (61), explaining how higher levels of PF4 in a malignant context can limit T lymphocyte stimulation (61).

Stimulated PLTs are able to secrete and store IL-1β (63). PLT levels were closely associated with plasmatic IL-1β levels (15). This cytokine activates HUVECs, inducing neutrophil adhesion and endothelium damage (63). The co-culture of PLTs from SLE with HUVECs increased EC damage and inflammatory marker expression in an IL-1β dependent manner (64). In experimental models of inflammation, IL-1α secreted by activated PLTs also played a crucial role in SI (84–86).

The soluble P-selectin secreted from α-granules is also implicated in inflammatory responses. P-selectin from activated PLTs induces the release of 3-10 folds of inflammatory cytokines by monocytes (65) and also promotes NETs formation (66). Elevated levels of circulating soluble P-selectin may contribute to early vascular disease by promoting the adhesion of leukocytes to the endothelium (87). However, soluble P-selectin can prevent in vitro adhesion of neutrophils to activated endothelium (67).

Circulating soluble CD40L (sCD40L) is secreted mainly by activated PLTs. In human immunodeficiency virus (HIV) patients, sCD40L levels correlated with pro-inflammatory cytokines (68). Moreover, PLTs support B cell isotype switching through CD40L-CD40 binding (70). In patients with an increased CV risk plasmatic sCD40L was increased and correlated with disease activity and with pro-inflammatory cytokines (69). The addition of thrombin-activated PLTs to TLR-stimulated monocytes has been seen to reduce TNF-α and IL-6 secretion and induce IL-10 production, and were abolished by blocking sCD40L (71). In HIV, sCD40L levels were correlated with IDO enzymatic activity and Treg frequency, in addition to induced Treg expansion and differentiation (68).

TGF-β is a potent anti-inflammatory factor, produced mainly by PLTs, which suppresses T lymphocytes function and is involved in Treg differentiation. The culture of CD4+ T lymphocytes with PLTs enhances Th1 and Th17 cytokine production but the TGF-β secreted by PLTs activates Treg suppressing Th1 and Th17 response (72). PLTs inhibit CD4+ and CD8+IFN-γ production, proliferation and granzyme B and perforin expression in a TGF-β dependent manner (73).

PLTs also release the damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) contributing to thrombosis process (87) promoting monocytes migration, suppressing monocyte apoptosis via TLR4-ligation and the monocyte accumulation at the site of vascular thrombosis (74, 75) and promote NETs formation (76, 77).
 Binding of PLTs to Leukocytes and Endothelial Cells

The interaction of PLTs with leukocytes and EC contributes to SI by favoring the arrest of leukocytes on endothelium, the production of inflammatory cytokines and NETs formation. Under certain circumstances, the binding of PLTs to leukocytes decreases the inflammatory response, participating in the resolution of thrombo-inflammation (Table 2).

Under inflammatory stress, PLTs have a firm adhesion to endothelium via GPIIb/IIIa-ICAM1 in a fibrinogen dependent manner (88). CD40L expressed by PLTs induces the expression of E-selectin, VCAM-1 and ICAM-1 on endothelium and the secretion of IL-8 and MCP-1 (89), increasing the recruitment of leukocytes.

Although the P-selectin-PSGL-1 (P-selectin glycoprotein 1) axis is essential to the binding of PLTs to leukocytes, other pathways are involved in this process: P-selectin-ALCAM, GPIIb-IIIa-Mac1, CD40L-CD40, P-selectin-CD15, JAM-C-Mac1, TREM1-TREM1, CD36-trombospondin-CD36, and CD147 pathway (94, 106, 107).

The interaction of PLTs with neutrophils through GPIIb-IIIa-Mac1 and P-selectin-PSGL-1 is crucial for the development of thrombo-inflammation and vascular damage by arresting neutrophils to endothelium and the induction of NETs formation (66, 90–93). The neutrophil-platelet aggregates can also be seen in tissues in acute coronary syndrome and the skin of psoriatic patients (108, 109). Stymulated TLR4 PLTs, through the binding with neutrophils, induced robust neutrophil activation and formation of NETs (93). Induced NETs formation by PLTs was abolished blocking their binding with neutrophils (110). The increase of neutrophil-platelet aggregates in the circulation of autoimmune disease patients correlates with neutrophil activation (111) and vascular abnormalities (112) which was abolished with intravenous immunoglobulins plus prednisolone treatment (112). However, even all the current evidences supports that interaction of PLTs with neutrophils are involved in inflammatory process and vasculature damage, this interaction could have also anti-inflammatory consequences depending on the neutrophil status. The addition of PLTs to previously stimulated TLR-neutrophils downregulates degranulation markers expression and the secretion of elastase (113).

Although monocyte-PLT aggregates are increased in CVD (114), the interaction of PLTs with monocytes have pro- or anti-inflammatory consequences depending on the experimental assay and the activation status of monocytes. As pro-inflammatory consequence, thrombin-activated PLTs through P-selectin-PSGL-1 binding induces the expression of MCP-1 and IL-8 in resting monocytes (95). P-selectin expressed on the surface of PLTs induced a rapid tissue factor expression by monocytes (96). The binding of PLTs to monocytes through GPIIb-CD11b induces a M1 macrophage phenotype that produce TNF-α (97). Via CD147 axis, RA patients had more circulating intermediate monocytes-PLTs aggregates, increasing the TNF-α and MMP-9 secretion (94). Autoimmune patients with a higher CV risk have more monocyte-PLT aggregates and its associated with the activated state of monocytes (115). As anti-inflammatory consequences, it has been observed that the binding of PLTs to activated monocytes induces IL-10 production and decreases TNF-α and IL-1β production, and were abolished by the blocking of P-selectin-PSGL-1, CD40L-CD40 axis and Ca2+ chelator (71, 98, 99).

Although the binding of PLTs to lymphocytes has preferably anti-inflammatory consequences, it was demonstrated a contribution in inflammatory process. High levels of lymphocytes-PLTs aggregates were observed in SLE and psoriasis. In SLE, lymphocytes-PLTs aggregates had an up-regulation of CD86, B cell activation factor receptor and IL-10 production and correlated positively with plasmatic levels of IgG, IgA, IL-10, sCD40L and renal manifestation, and correlated negatively with IgM levels (100). In psoriasis, the IL-17+ CD4+ had higher levels of bound PLTs and anti-TNF-α drugs normalize the numbers (101), while in HIV there are more lymphocytes-PLTs aggregates and are associated to D-dimer levels, increasing the CV risk (116).

We observed that CD4+ T lymphocytes-PLT aggregates had a reduced proliferation and production of pro-inflammatory cytokines. A less severe phenotype and a decreased CV risk was observed in RA patients with higher levels of circulating CD4+T lymphocytes-PLTs aggregates (102). The addition of PLTs to lymphocytes from RA synovial fluids decreased their proliferation and the secretion of IFN-γ, IL-17, and increased IL-10 production (103). PLTs MPs cultured with Tregs prevented the differentiation into IL-17+ and IFN-γ-producing cells in a P-selectin dependent manner (104). The co-culturers of CD4+ CD25- T cells with PLTs induced Tregs and this effect was abolished by the blocking of glycoprotein A repetitions predominant (105).

Table 2 | Effects of PLT binding to other cells.

Ligands of interaction	Effect on bound cells
Endothelial cells	Adhesion (89)
	Expression E-selectin
	VCAM-1 (89)
	Secretion IL-8 MCP-1
Neutrophils	Arrest to endothelium
	(90–92)
	NETs formation (66, 93)
Monocytes	Secretion MCP-1, IL-8,
	TNF-α, MMP9 (94, 95)
	Expression TF (96)
	Differentiation M1
	macrophages (97)
	Secretion IL-10 (71, 98, 99)
	Reduction TNF-α, IL-1β
Lymphocytes	• (GLB 8 cells:
	Upregulation CD86,
	BAFF (100)
	Secretion IL-10 (100)
	• (Psoriasis) CD4+:
	Secretion IL-17 (101)
	• Healthy donors:
	Less proliferation
	(102–105)
	Less pro-inflammatory
	cytokines (102–103)

The addition of monocytes to SI by favoring the arrest of leukocytes on endothelium, the production of inflammatory cytokines and NETs formation. Under certain circumstances, the binding of PLTs to leukocytes decreases the inflammatory response, participating in the resolution of thrombo-inflammation (Table 2). Under inflammatory stress, PLTs have a firm adhesion to endothelium via GPIIb/IIIa-ICAM1 in a fibrinogen dependent manner (88). CD40L expressed by PLTs induces the expression of E-selectin, VCAM-1 and ICAM-1 on endothelium and the secretion of IL-8 and MCP-1 (89), increasing the recruitment of leukocytes.

Although the P-selectin-PSGL-1 (P-selectin glycoprotein 1) axis is essential to the binding of PLTs to leukocytes, other pathways are involved in this process: P-selectin-ALCAM, GPIIb-IIIa-Mac1, CD40L-CD40, P-selectin-CD15, JAM-C-Mac1, TREM1-TREM1, CD36-trombospondin-CD36, and CD147 pathway (94, 106, 107).

The interaction of PLTs with neutrophils through GPIIb-IIIa-Mac1 and P-selectin-PSGL-1 is crucial for the development of thrombo-inflammation and vascular damage by arresting neutrophils to endothelium and the induction of NETs formation (66, 90–93). The neutrophil-platelet aggregates can also be seen in tissues in acute coronary syndrome and the skin of psoriatic patients (108, 109). Stymulated TLR4 PLTs, through the binding with neutrophils, induced robust neutrophil activation and formation of NETs (93). Induced NETs formation by PLTs was abolished blocking their binding with neutrophils (110). The increase of neutrophil-platelet aggregates in the circulation of autoimmune disease patients correlates with neutrophil activation (111) and vascular abnormalities (112) which was abolished with intravenous immunoglobulins plus prednisolone treatment (112). However, even all the current evidences supports that interaction of PLTs with neutrophils are involved in inflammatory process and vasculature damage, this interaction could have also anti-inflammatory consequences depending on the neutrophil status. The addition of PLTs to previously stimulated TLR-neutrophils downregulates degranulation markers expression and the secretion of elastase (113).

Although monocyte-PLT aggregates are increased in CVD (114), the interaction of PLTs with monocytes have pro- or anti-inflammatory consequences depending on the experimental assay and the activation status of monocytes. As pro-inflammatory consequence, thrombin-activated PLTs through P-selectin-PSGL-1 binding induces the expression of MCP-1 and IL-8 in resting monocytes (95). P-selectin expressed on the surface of PLTs induced a rapid tissue factor expression by monocytes (96). The binding of PLTs to monocytes through GPIIb-CD11b induces a M1 macrophage phenotype that produce TNF-α (97). Via CD147 axis, RA patients had more circulating intermediate monocytes-PLTs aggregates, increasing the TNF-α and MMP-9 secretion (94). Autoimmune patients with a higher CV risk have more monocyte-PLT aggregates and its associated with the activated state of monocytes (115). As anti-inflammatory consequences, it has been observed that the binding of PLTs to activated monocytes induces IL-10 production and decreases TNF-α and IL-1β production, and were abolished by the blocking of P-selectin-PSGL-1, CD40L-CD40 axis and Ca2+ chelator (71, 98, 99).

Although the binding of PLTs to lymphocytes has preferably anti-inflammatory consequences, it was demonstrated a contribution in inflammatory process. High levels of lymphocytes-PLTs aggregates were observed in SLE and psoriasis. In SLE, lymphocytes-PLTs aggregates had an up-regulation of CD86, B cell activation factor receptor and IL-10 production and correlated positively with plasmatic levels of IgG, IgA, IL-10, sCD40L and renal manifestation, and correlated negatively with IgM levels (100). In psoriasis, the IL-17+ CD4+ had higher levels of bound PLTs and anti-TNF-α drugs normalize the numbers (101), while in HIV there are more lymphocytes-PLTs aggregates and are associated to D-dimer levels, increasing the CV risk (116).

We observed that CD4+ T lymphocytes-PLT aggregates had a reduced proliferation and production of pro-inflammatory cytokines. A less severe phenotype and a decreased CV risk was observed in RA patients with higher levels of circulating CD4+T lymphocytes-PLTs aggregates (102). The addition of PLTs to lymphocytes from RA synovial fluids decreased their proliferation and the secretion of IFN-γ, IL-17, and increased IL-10 production (103). PLTs MPs cultured with Tregs prevented the differentiation into IL-17+ and IFN-γ-producing cells in a P-selectin dependent manner (104). The co-cultures of CD4+ CD25- T cells with PLTs induced Tregs and this effect was abolished by the blocking of glycoprotein A repetitions predominant (105).
In HIV, the aberrant function of CD8+ T lymphocytes was abolished when these cells were co-cultured with PLTs from HD, implying that direct contact with PLTs and TGF-β secretion contributed to this functional improvement (117). In later stages of experimental autoimmune encephalomyelitis (EAE), there was an increase CD4+ T lymphocytes-PLTs aggregates through the interaction of P-selectin-ALCAM, down-regulating their activation, proliferation and the production of IFN-γ, crucial for the spontaneous resolution of EAE. The blocking of CD4+-PLT aggregates exacerbate EAE (118).

Platelet to Lymphocyte Ratio in Systemic Inflammation

The platelet to lymphocyte ratio (PLR) has emerged as a reliable marker of SI. Although elevated counts of PLTs and low counts of lymphocytes per se has been associated with worse prognosis of CVD, increase CM mortality and morbidity and SI (119, 120), PLR predicts better the outcomes of CVD. The role of PLR as an independent marker in CVD and SI has been extensively reviewed (121, 122). In patients with chronic inflammatory diseases, PLR is elevated and it correlates with markers of SI (122–125).

However, there are confounding factors that alter PLR. Sex and ethnic origin also modulates PLR (126) as well as drugs that affect blood cell maturation in the bone marrow (127, 128). Other confounding factors of PLR may be the technical limitations of PLR measurements, such as EDTA dependent agglutination (129, 130).

CONCLUSIONS

PLTs have been considered to play a pro-inflammatory role in SI. However, their binding to leukocytes and EC and the secretion of immunomodulatory molecules during activation also have anti-inflammatory consequences. Different effects were observed with platelets from healthy donors or chronic inflammatory patients. In addition, the binding to each subpopulation of leukocytes has distinctive consequences. Further research is necessary to reveal how platelets exert their dual function.

AUTHOR CONTRIBUTIONS

CZ and EC: literature review, manuscript preparation. SV: oversight, editing, and planning. All authors contributed to the article and approved the submitted version.

FUNDING

This study is supported by Instituto de Salud Carlos III and Fondos FEDER (PI17/00072 and PI20/00184). SV was supported by Fondo Investigaciones Sanitarias and a participant in the Program for Stabilization of Investigators the Direcció i d’Estratègia i Coordinació del Departament Salut de la Generalitat de Catalunya.

REFERENCES

1. Akbar N, Nanda S, Belch J, Cohen P, Khan F. An important role for A20-binding inhibitor of nuclear factor-kB-1 (ABIN1) in inflammation-mediated endothelial dysfunction: an *in vivo* study in ABIN1 (D48SN) mice. *Arthritis Res Ther.* (2015) 17:1–10. doi: 10.1186/s13075-015-0543-3

2. Spinelli FR, Barbati C, Cecarelli F, Morello F, Colasanti T, Vomero M, et al. B lymphocyte stimulator modulates number and function of peripheral CD8+ T lymphocytes in systemic lupus erythematosus. *Arthritis Res Ther.* (2019) 21:1–11. doi: 10.1186/s13075-019-2057-7

3. Khawaja AA, Pericleous C, Ripoll VM, Porter JC, Giles IP. Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium. *Sci Rep.* (2019) 9:1–13. doi: 10.1038/s41598-018-37852-5

4. Bugala K, Mazurek A, Gryga K, Komar M, Kopeć G, Musial J, et al. Influence of autoimmunity and inflammation on endothelial function and thrombosis in systemic lupus erythematosus patients. *Clin Rheumatol.* (2018) 37:2087–93. doi: 10.1007/s10067-018-4104-4

5. Totoson P, Maguin-Gaté K, Nappey M, Wendling D, Demougeot C. Endothelial dysfunction in rheumatoid arthritis: mechanistic insights and correlation with circulating markers of SI. *PLoS ONE.* (2016) 11:e0146744. doi: 10.1371/journal.pone.0146744

6. Walther G, Obert P, Dutheil F, Chapier R, Lesourd B, Naughton G, et al. Metabolic syndrome individuals with and without type 2 diabetes mellitus present generalized vascular dysfunction: cross-sectional study. *Arterioscler Thromb Vasc Biol.* (2015) 35:1022–9. doi: 10.1161/ATVBAHA.114.304591

7. Cox LAE, Van Eijk LT, Ramakers BPC, Dorrestein MJ, Gerretsen J, Kox M, et al. Inflammation-induced increases in plasma endocan levels are associated with endothelial dysfunction in humans *in vivo.* *Shock.* (2015) 43:322–6. doi: 10.1097/SHK.00000000000000320

8. Mikačenić C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, et al. Biomarkers of endothelial activation are associated with poor outcome in critical illness. *PLoS One.* (2015) 10:e141251. doi: 10.1371/journal.pone.0141251

9. Benhamou Y, Miranda S, Armengol G, Harouki N, Drouot L, Zahr N, et al. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress. *Vasc Pharmacol.* (2015) 71:93–101. doi: 10.1016/j.vph.2015.03.014

10. Genre F, López-Mejías R, Miranda-Filloy JA, Ubilla B, Mijares V, Carnero-López B, et al. Anti-TNF-α therapy reduces endothelial cell activation in non-diabetic ankylosing spondylitis patients. *Rheumatol Int.* (2015) 35:2069–78. doi: 10.1007/s00296-015-3314-1

11. Pérez-Sánchez C, Cecchi I, Barrosoja N, Patiño-Trives AM, Luque-Tévar M, Pérez-Sánchez L, et al. Early restoration of immune and vascular phenotypes in systemic lupus erythematosus and rheumatoid arthritis patients after B cell depletion. *J Cell Mol Med.* (2019) 23:6308–18. doi: 10.1111/jcmm.14517

12. Barbati C, Colasanti T, Vomero M, Cecarelli F, Celia AI, Perricone C, et al. Up-regulation of autophagy by etanercept treatment results in TNF-induced apoptosis reduction in EA.hy926 endothelial cell line. *Clin Exp Rheumatol.* (in press).

13. Thacker SG, Abdalrahman Z, Sciumè G, Tsai WL, Anna M, Tofacitinib ameliorates murine lupus and its associated vascular. *Arthritis Rheumatol.* (2019) 69:148–160. doi: 10.1002/art.39818

14. Verhoeven F, Totoson P, Maguin-Gaté K, Prigent-Tessier A, Marie C, Wendling D, et al. Glucocorticoids improve endothelial function in rheumatoid arthritis: a study in rats with adjuvant-induced arthritis. *Clin Exp Immunol.* (2017) 188:208–18. doi: 10.1111/cei.12938

15. Tunjungputri RN, Li Y, De Groot PG, Dinarello CA, Smeekens SP, Jaeger M, et al. The inter-relationship of platelets with interleukin-1β-mediated inflammation in humans. *Thromb Haemost.* (2018) 118:2112–25. doi: 10.1055/s-0038-1675603
16. Granja T, Körner A, Glück C, Höhnemann JD, Wang X, Köhler D, et al. Targeting CD39 toward activated platelets reduces SI and improves survival in sepsis: a preclinical pilot study. Crit Care Med. (2019) 47:e420–e7. doi: 10.1097/CCM.0000000000003682

17. Cheng Z, Qi R, Li L, Liu Q, Zhang W, Zhou X, et al. Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression. Biomed Pharmacother. (2018) 99:313–8. doi: 10.1016/j.biopha.2018.01.078

18. Toguri JT, Mosrom S, Szczesiak AM, Zhou J, Kelly MEM, Lehmann C. Cannabinoid 2 receptor activation reduces leukocyte adhesion and improves capillary perfusion in the iridial microvasculature during SI. Clin Hemorheol Microcirc. (2015) 61:237–49. doi: 10.3233/CH-151996

19. Li S, Xu J, Yao W, Li H, Liu Q, Xiao F, et al. Sevoflurane pretreatment attenuates TNFα-induced human endothelial cell dysfunction through activating eNOS/NO pathway. Biochem Biophys Res Commun. (2015) 460:879–86. doi: 10.1016/j.bbrc.2015.03.126

20. Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res. (2018) 123:1091–102. doi: 10.1161/CIRCRESAHA.118.331356

21. Reynolds JA, Haque S, Williamson K, Ray DW, Alexander MY, Bruce IN. Vitamin D improves endothelial dysfunction and restores myoeid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus. Sci Rep. (2016) 6:1–11. doi: 10.1038/srep22241

22. Zhang H, Park Y, Wu J, Chen XP, Lee S, Yang J, et al. Role of TNF-α in vascular dysfunction. Clin Sci. (2009) 116:219–30. doi: 10.1042/CS080196

23. Pober JS. Endothelial activation: intracellular signaling pathways. Arthritis Res. (2002) 4:S109–S16. doi: 10.1186/ar576

24. Jimenez JY, Jy W, Mauro LM, Soderlund C, Horstman E, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. (2003) 109:175–80. doi: 10.1016/S0049-3848(03)00064-1

25. Marques P, Collado A, Martinez-Hervás S, Domingo E, Benito E, Piqueras L, et al. Si in metabolic syndrome: increased platelet and leukocyte activation, and key role of CX3CL1/CX3CR1 and CCL2/CCR2 axes in arterial platelet-proinflammatory monocyte adhesion. J Clin Med. (2019) 8:708. doi: 10.3390/jcm8050708

26. Karpbach S, Croxford AL, Oelze M, Schüler R, Schüler R, Minwegen D, Wegner J, et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol. (2014) 34:2638–68. doi: 10.1161/ATvbaha.114.304108

27. Gao F, Si F, Feng S, Yi Q, Liu R. Resinolin enhances inflammatory cytokine production in coronary artery tissues by activating the NF-κB pathway. Biochem Biophys Res Commun. (2016) 469:329–37. doi: 10.1016/j.bbrc.2015.12.005

28. Pankratz F, Hohlocher B, Bemtgen X, Kreuzaler F, Eppinger S, et al. TNFα expressed on the surface of microparticles modulates endothelial cell fate in rheumatoid arthritis. Arthritis Res Ther. (2018) 20:12. doi: 10.1186/s13075-018-1768-8

29. Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. (2011) 127:391–4. doi: 10.1016/j.thromres.2010.10.013

30. Koppova M, Clancy L, Correyk HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. (2018) 122:337–51. doi: 10.1161/CIRCRESAHA.117.310795

31. Langer HE, Gawaz M. Platelet-vascular wall interactions in atherosclerotic disease. Thromb Haemost. (2009) 99:480–6. doi: 10.1160/TH07-11-0685

32. Smyth SS, Mcver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, et al. Platelet function beyond hemostasis. J Thromb Haemost. (2009) 7:1759–66. doi: 10.1111/j.1538-7836.2009.03586.x

33. Page CP. Platelets as inflammatory cells. Immunopharmacology. (1989) 17:51–9. doi: 10.1016/0162-3109(89)90008-8

34. Murugappan S, Kunapuli SP. The role of ADP receptors in platelet function. Am J Physiol - Heart Circ Physiol. (2002) 4:S109–S16. doi: 10.1186/ar576

35. Surin WR, Barthwal MK, Dikshit M. Platelet collagen receptors, signaling and antagonism: Emerging approaches for the prevention of intravascular thrombosis. Thromb Res. (2008) 122:786–803. doi: 10.1016/j.thromres.2007.10.005

36. Ofosu FA, Nyarko KA. Human platelet thrombin receptors: Roles in platelet activation. Hematol Oncol Clin North Am. (2004) 18:1185–98. doi: 10.1016/S0889-5858(03)07108-7

37. May F, Hagedorn I, Fleisch E, Vogt M, Tble E, et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood. (2009) 114:4346–72. doi: 10.1182/blood-2009-05-222273

38. Boulanger CM, Leroyer AS, Amabile N, Tedgui A. Circulating endothelial microparticles: A new marker of vascular injury. Ann Cardiol Angeiol (Paris). (2008) 57:149–54. doi: 10.1016/j.ancard.2008.02.016

39. Boyle IJ, Credere DP, Jenkins NT, Padilla J, Leidy HJ, Thyfault JP, et al. Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. J Appl Physiol. (2013) 115:1519–25. doi: 10.1152/japplphysiol.00837.2013

40. Spencer DM, Mobarez F, Wallén H, Pisetsky DS. The expression of HMGB1 on microparticles from jurkat and HL-60 cells undergoing apoptosis in vitro. Scand J Immunol. (2014) 80:101–10. doi: 10.1111/sji.12191

41. Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA. Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res. (2007) 67:186–93. doi: 10.1158/0008-5472.CAN-06-3292

42. Mezentsev A, Merks RMH, O’Riordan E, Chen J, Menedelov N, Goligorsky MS, et al. Endothelial microparticles affect angiogenesis in vitro role of oxidative stress. Am J Physiol - Heart Circ Physiol. (2005) 289:1106–14. doi: 10.1152/aphyf.00265.2005

43. Wu YJ, Hua CC, Chen JY, Chung YW, Tseng JC. The role of endothelial microparticles in autoimmune disease patients with Raynaud’s phenomenon. J Microbiol Immunol Infect. (2017) 50:857–62. doi: 10.1016/j.jmii.2015.12.010

44. Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. (2011) 127:391–4. doi: 10.1016/j.thromres.2010.10.013
54. Barbati C, Stefanini L, Colasanti T, Cipriano E, Celia A, Gabriele G, et al. Anti-DAGLI antibodies activate platelets in vitro: a possible link with thrombocytopenia in primary antiphospholipid syndrome. Arthritis Res Ther. (2019) 21:2. doi: 10.1186/s13073-019-1947-2

55. Hollerbach A, Müller-Calleja N, Ritter S, Häuser F, Canisius A, Orning C, et al. Platelet Activation by Antiphospholipid Antibodies Depends on Epitope Specificity and is Prevented by mTOR Inhibitors. Thromb Haemost. (2019) 119:1147–53. doi: 10.1055/s-0039-1685453

56. Habets KLL, Trouw LA, Levarht EWN, Levarht PAM, Habets PAM, Heijnen H, van der Sluijs P. Platelet secretory behaviour: As

57. Vajen T, Koenen RR, Werner I, Staudt M, Projahn D, Curaj A, et al. Kasper B, Brandt E, Brandau S, Petersen F. Platelet factor 4 (CXCL4) in

58. Gudbrandsdottir S, Hasselbach HC, Nielsen CH. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. J Immunol. (2013) 191:4059–67. doi: 10.4049/jimmunol.1201103

59. Habets K, Trouw LA, Levarht EWN, Levarht PAM, Habets PAM, Heijnen H, van der Sluijs P. Platelet secretory behaviour: As

60. Arthritis Res Ther. de Groot P, et al. Anti-citrullinated protein antibodies contribute to Arthritis Res. (2019) 21:2. doi: 10.1186/s13075-019-1947-2

61. Vajen T, Koenen RR, Werner I, Staudt M, Projahn D, Curaj A, et al.

62. Kasper B, Brandt E, Brandau S, Petersen F. Platelet factor 4 (CXCL4) in

63. Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Gamble JR, Skinner MP, Berndt MC, Vadas MA. Prevention of activated platelets by blocking CCL5-CXCL4 heteromerization preserves heart function in patients with systemic autoimmune diseases. J Autoimmun. (2015) 65:30–7. doi: 10.1016/j.jaut.2015.08.001

64. Rossaint J, Herter JM, Van Aken H, Napiere I, Zernecke A, Liehn JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Clin Rheumatol. (2016) 22:257–67. doi: 10.1007/s10067-016-3386-7

65. Vajen T, Koenen RR, Werner I, Staudt M, Projahn D, Curaj A, et al.

66. Vetteri S, Irace R, Riccardi A, Iacono D, Pellechia L, Vicedomini L, et al. Serum CXCL4 increase in primary Sjögren’s syndrome characterizes patients with microvascular involvement and reduced salivary gland infiltration and lymph node involvement. Clin Rheumatol. (2016) 35:2591–6. doi: 10.1007/s10067-016-3386-7

67. Rossaint J, Herter JM, Van Aken H, Napiere I, Zernecke A, Liehn JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Clin Rheumatol. (2016) 22:257–67. doi: 10.1007/s10067-016-3386-7

68. Rossaint J, Herter JM, Van Aken H, Napiere I, Zernecke A, Liehn JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Clin Rheumatol. (2016) 22:257–67. doi: 10.1007/s10067-016-3386-7

69. Goules A, Tzioufas AG, Manousakis MN, Kirou KA, Crow MK, Routsias JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Autoimmun. (2005) 26:165–71. doi: 10.1016/j.jauto.2005.02.002

70. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard et al. Cognasse F, Hamzeh-Cog
Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Fenrette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. *Nat Med.* (2009) 15:384–91. doi: 10.1038/nm.1939

Kim K, Li J, Tseng A, Andrews RK, Cho J. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. *Blood.* (2015) 126:1952–64. doi: 10.1182/blood-2014-10-605261

von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. *J Exp Med.* (2012) 209:819–35. doi: 10.1084/jem.20112322

Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. *Nat Med.* (2007) 13:463–9. doi: 10.1038/nm1565

Rong MY, Wang CH, Wu ZB, Zeng W, Zheng ZH, Han Q, et al. Platelet-lymphocyte cross-talk. *J Leukoc Biol.* (2010) 87:1609–18. doi: 10.1189/jlb.0709565

Hally KE, Bird GK, la Flamme AC, Harding SA, Larsen PD. Platelets modulate multiple markers of neutrophil function in response to in vitro Toll-like receptor stimulation. PLoS One. (2019) 14: doi: 10.1371/journal.pone.0223444

Herster F, Bittner Z, Codrea MC, Archer NK, Heister M, Loßler MW, et al. Platelets aggregate with neutrophils and promote skin pathology in psoriasis. *Front Immunol.* (2019) 10:1867. doi: 10.3389/fimmu.2019.01867

Adrover JM, Hidalgo A. Activated platelets jam up the plaque. *Circ Res.* (2015) 116:557–59. doi: 10.1161/CIRCRESAHA.115.305823

Caretia S, Kaufman T, Rivadeneira L, Landoni V, Pozner RG, Negrotto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. *J Leukoc Biol.* (2016) 99:153–62. doi: 10.1189/jlb.3a0415-161r

Otto I, Neumann F-J, Gawaz M, Schmitt M, Schömig A. Increased neutrophil-platelet adhesion in patients with unstable angina. *Circulation.* (1996) 94:1239–46. doi: 10.1161/01.CIR.94.6.1239

Ueno K, Nomura Y, Morita Y, Eguchi T, Masuda K, Kawanoe Y. Circulating platelet- neutrophil aggregates play a significant role in Kawasaki disease. *Circ J.* (2015) 79:1349–56. doi: 10.1253/circj.CJ-14-1323

Green SA, Smith M, Hasleby RB, Stephens D, Harned A, Nagashima K, et al. Activated platelet-T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells. *AIDS.* (2015) 29:1297–308. doi: 10.1097/QAD.0000000000000701

Muñoz JC, Panigrahi S, Kiyi B, Moon SH, Manion MM, Younes SA, et al. Inflammatory function of cx3c1+ cd8+ t cells in treated HIV infection is modulated by platelet interactions. *J Infect Dis.* (2016) 214:1808–16. doi: 10.1093/infdis/jiw063

Starossom SC, Veremeiko T, Yung AW, Dukhinita M, Au C, Lau AY, et al. Platelets play differential role during the initiation and propagation of autoimmune neuroinflammation. *Circ Res.* (2015) 117:779–92. doi: 10.1161/CIRCRESAHA.115.306847

Ly H, Kirtane AJ, Murphy SA, Busros J, Cannon CP, Braunwald E, et al. Association of platelet counts on presentation and clinical outcomes in ST-elevation myocardial infarction (from the TIMI Trials). *Am J Cardiol.* (2006) 98:1–5. doi: 10.1016/j.amjcard.2006.01.046

Núñez J, Minana G, Bodí V, Núñez E, Sanchis J, Husser O, et al. Low lymphocyte count and cardiovascular diseases. *Curr Med Chem.* (2011) 18:3226–3233. doi: 10.2174/092986711793691633

Kurtul A, Ornek E. Platelet to lymphocyte ratio in cardiovascular diseases: a systematic review. *Angiology.* (2019) 70:802–18. doi: 10.1177/0003381918451816

Gasparian AY, Agyavzan L, Mukanova U, Yessirkepov M, Kitas GD. The platelet to lymphocyte ratio as an inflammatory marker in rheumatoid diseases. *Ann Lab Med.* (2016) 39:345–57. doi: 10.3343/alm.2016.39.4.345

Akpinar MY, Özün YO, Kaplan M, Ates I, Kalkan IH, Kılıc ZMY, et al. Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio predict mucosal disease severity in ulcerative colitis. *J Med Biochem.* (2018) 37:155–62. doi: 10.1515/jmb-2017-0050

Abdulrahman MA, Afifi N, El-Ashry M. Neutrophil/lymphocyte and platelet-to-lymphocyte ratios are useful predictors comparable to serum IL6 mucosal disease severity in ulcerative colitis. *Ann Lab Med.* (2019) 39:606–13. doi: 10.3343/alm.2019.39.6.13

Deng YF, Cao L, Zeng YH, Zhang ZX, Chen D, Zhang Q, et al. Platelet to lymphocyte ratio and neutrophil to lymphocyte ratio in patients with rheumatoid arthritis. *Open Med.* (2015) 10:249–53. doi: 10.1515/med-2015-0037

Wu L, Zou S, Wang C, Tan X, Yu M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in Chinese Han population from
Chaoshan region in South China. BMC Cardiovasc Disord. (2019) 19:7. doi: 10.1186/s12872-019-1110-7

127. Bromberg L, Roufosse F, Pradier O, Delporte C, Van Antwerpen P, De Maertelaer V, et al. Methylprednisolone-induced lymphocytosis in patients with immune-mediated inflammatory disorders. Am J Med. (2016) 129:746–52.e3. doi: 10.1016/j.amjmed.2016.02.013

128. Taillan B, Garnier G, Castanet J, Ferrari E, Pesce A, Dujardin P. Lymphoma developing in a patient with rheumatoid arthritis taking methotrexate. Clin Rheumatol. (1993) 12:93–4. doi: 10.1007/BF02231567

129. Ohashi-Fukuda N, Inokuchi R, Sato H, Nakamura K, Iwagami M, Wada T, et al. Poorer prognosis with ethylenediaminetetraacetic acid-dependent pseudothrombocytopenia. Med (United States). (2015) 94:674. doi: 10.1097/MD.0000000000000674

130. Uslu AU, Inal S, Baltal S. Assessment of platelet-lymphocyte ratio based on EDTA-dependent pseudothrombocytopenia. Angiology. (2016) 67:96–7. doi: 10.1177/0003319715591331

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zamora, Cantó and Vidal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.