Dust and Metal Column Densities in Gamma-Ray Burst Host Galaxies

P. Schady, M.J. Page, S.R. Oates, M. Still, M.De Pasquale, T. Dwelly, N.P.M. Kuin, S.T. Holland, F.E. Marshall and P.W.A. Roming

Abstract

In this paper we present the results from the analysis of a sample of 28 gamma-ray burst (GRB) afterglow spectral energy distributions, spanning the X-ray through to near-infrared wavelengths. This is the largest sample of GRB afterglow spectral energy distributions thus far studied, providing a strong handle on the optical depth distribution of soft X-ray absorption and dust-extinction systems in GRB host galaxies. We detect an absorption system within the GRB host galaxy in 79% of the sample, and an extinction system in 71% of the sample, and find the Small Magellanic Cloud (SMC) extinction law to provide an acceptable fit to the host galaxy extinction profile for the majority of cases, consistent with previous findings. The range in the soft X-ray absorption to dust-extinction ratio, \(\frac{N_{H,X}}{A_V} \), in GRB host galaxies spans almost two orders of magnitude, and the typical ratios are significantly larger than those of the Magellanic Clouds or Milky Way. Although dust destruction could be a cause, at least in part, for the large \(\frac{N_{H,X}}{A_V} \) ratios, the good fit provided by the SMC extinction law for the majority of our sample suggests that there is an abundance of small dust grains in the GRB environment, which we would expect to have been destroyed if dust destruction were responsible for the large \(\frac{N_{H,X}}{A_V} \) ratios. Instead, our analysis suggests that the distribution of \(\frac{N_{H,X}}{A_V} \) in GRB host galaxies may be mostly intrinsic to these galaxies, and this is further substantiated by evidence for a strong negative correlation between \(\frac{N_{H,X}}{A_V} \) and metallicity for a subsample of GRB hosts with known metallicity. Furthermore, we find the \(\frac{N_{H,X}}{A_V} \) ratio and metallicity for this subsample of GRBs to be comparable to the relation found in other more metal-rich galaxies.

Key words: gamma-rays: bursts - gamma-ray: observations - galaxies: ISM - dust, extinction

1 INTRODUCTION

To unravel the properties of gamma-ray burst (GRB) progenitors and the fundamental conditions required within a galaxy to form a GRB, an understanding of the GRB circumburst and host galaxy environment is essential. The faint optical magnitudes and large distances of GRB hosts limit the amount of information obtained from host galaxy observations, and thus studying the spectral properties of the afterglow provide the most direct and sensitive method of probing the surrounding environments of GRBs.

Both optical and X-ray spectroscopic observations have provided detailed information on the metal abundances and column densities in GRB local environments (e.g. Prochaska et al. 2007; Savaglio et al. 2003; Savaglio & Fall 2004), and broadband analysis of the GRB afterglow spectral energy distribution (SED) allows the host galaxy dust extinction curve to be well modelled, and thus provides a measure of the host visual extinction. Galama & Wijers (2001) combined these two techniques to compare the soft X-ray absorption with the visual dust extinction in the local environment of a sample of eight GRBs. In their analysis, they found that whereas the distribution of equivalent neutral hydrogen column density within GRB host galaxies was...
comparable to that observed in Galactic molecular clouds, the measured host galaxy visual extinction was 10–100 times smaller than expected for GRBs embedded in Galactic-
lke molecular clouds. Stratta et al. (2004) expanded on this work, and found the gas column density to dust extinction ratio to not only be larger than that of the Milky Way, but also to be around an order of magnitude larger than that of the gas rich Large and Small Magellanic Clouds (LMC and SMC, respectively). In both Galama & Wijers (2001) and Stratta et al. (2004) the large column density to visual extinction ratios measured in GRB local environments was taken to be evidence of dust destruction by the GRB, causing the visual extinction to decrease. In addition to this, Stratta et al. (2004) also found that the optical to near-infrared (NIR) GRB afterglow data showed little evidence of the strong 2175 Å absorption feature present in the Milky Way extinction law, and less prominently in the LMC. Indeed, they found the mean SMC or the Calzetti et al. (1994) starburst galaxy dust extinction law to provide the best fit to their sample of GRB SEDs, both of which have no 2175 Å absorption feature. These results are supported by the more recent work done by Kann et al. (2006) and Starling et al. (2007). In each of these cases the mean SMC, LMC and Galactic extinction curves were assumed. However, a range in the total-to-selective extinction, $R_V = A_V/E(B-V)$, which relates the reddening to extinction, and 2175 Å bump strength is observed along different lines-of-sight through the Milky Way (Cardelli et al. 1989) and the Magellanic Clouds (Gordon et al. 2003), and observations of higher redshift supernovae and quasars ($z > 5$) also suggest differences between the dust extinction properties in higher redshift galaxies and the local universe (e.g. Maiolino et al. 2004; Tdini & Ferrara 2001). However, the degeneracy that exists between the best-fit GRB spectral index and the host galaxy’s total-to-selective extinction means that to accurately determine the host galaxy’s extinction law properties, good quality, broadband data are needed, preferentially stretching out into the negligibly extinguished far infrared (FIR) wavelength bands.

In the current era of *Swift* and rapid-response ground-based telescopes, prompt arcsecond GRB positions have provided a wealth of high quality, early-time X-ray, ultraviolet (UV), optical and NIR data. Accurate soft X-ray absorption measurements are now available for the large fraction of GRBs (Campana et al. 2006a; Butler & Kocevski 2007; Grupe et al. 2007; Schady et al. 2007; Evans et al. 2009). and well-sampled, high signal-to-noise SEDs are providing strong constraints on the best-fit extinction law models (e.g. Perley et al. 2008). There have now been some examples of GRB host galaxies with the 2175 Å absorption feature (e.g. GRB 070802, Elías-Díaz et al. 2009, Krühler et al. 2008; GRB 080607, Prochaska et al. 2009), as well as GRB host galaxies with R_V values larger than the mean SMC, LMC and MW values (e.g. Perley et al. 2008), a possible indicator of grey dust, as suggested to be present in some GRB host galaxies (e.g. Savaglio et al. 2003). However, such analysis on the detailed properties of GRB extinction curves are typically still only possible for a handful of well-sampled, bright GRBs (e.g. GRB050525A, Heng et al. 2008; GRB 061126, Perley et al. 2009; GRB 070802, Elías-Díaz et al. 2009, Krühler et al. 2008; GRB 080607, Prochaska et al. 2009).

In Schady et al. (2007) we used X-ray and UV/optical simultaneous observations taken with the X-ray Telescope (XRT; Burrows et al. 2005a) and Ultraviolet and Optical Telescope (UVOT; Roming et al. 2005) onboard Swift (Gehrels et al. 2004) to analyse the SEDs for a sample of 7 GRBs. The dust extinction in the GRB host galaxies was modelled on the mean SMC, the LMC and the Milky Way extinction curves using the parameterisations given in Pei (1992), which cover a range in 2175 Å bump strengths and R_V values. The SMC and LMC extinction curves were found to provide the best-fit model for the majority of the sample, in agreement with previous studies (e.g. Stratta et al. 2004; Kann et al. 2008; Starling et al. 2007). However, we also found that, although the gas-to-dust ratio in Swift GRB host galaxies were typically larger than those of the Milky Way and Magellanic Clouds, the weighted mean was within 90% confidence of the Magellanic Clouds and Milky Way X-ray absorption to optical extinction ratios.

In this paper we aim to further our previous work, using a larger sample of 28 GRBs, and increasing the wavelength range of the afterglow SEDs to better constrain the absorption and extinction within the GRB host galaxy. In Schady et al. (2007) Swift data alone were used to produce the SEDs, and UVOT data with a rest-frame wavelength $\lambda < 1215$ Å were not included in the SED fits in order to avoid the absorption caused by the Lyman forest being confused for dust-extinction. In this paper we now model the absorption resulting from the Lyman forest such that all rest frame UV data redward of the Lyman edge is included in our spectral analysis. Furthermore, we also include additional ground-based NIR data if available, further increasing the spectral range of the SEDs and the degrees of freedom of the spectral fits. This provides better sampled SEDs and extends the redshift range within our sample, which was previously restricted to $z < 1.7$ to ensure that the SED modelling was sufficiently well constrained within the optical wavelength range.

In §2 we present the new, extended GRB sample and describe the X-ray, UV/optical and NIR data reduction and analysis, and in §3 we describe the models used to fit the data. We present the results of our spectral modelling in §4 followed by an analysis of the possible selection effects and systematic biases that may be present in our work in §5. A discussion on the implications of our findings is presented in §6. Our conclusions are summarised in §7. Throughout the paper temporal and spectral indices, α and β, respectively, are denoted such that $F(\nu, t) \propto \nu^{-\beta} t^{\alpha}$, and all errors are 1σ unless specified otherwise.

2 DATA REDUCTION AND ANALYSIS

The selection criteria for our sample is that the GRB must be long (i.e. $T_{90} > 2$ s, where T_{90} is the time-interval over which 90% of the high-energy radiation ($\gtrsim 15$ keV) is emitted), it must have a spectroscopic redshift measurement, have been observed by the XRT and UVOT within an hour of the prompt emission, have a peak UVOT ν-band magnitude $\nu \leq 19$, and be detected by the XRT and in at least three UV–IR filters (UVOT and/or ground based). The final requirement is needed in order to provide sufficient constraints for spectral fitting. A total of 28 *Swift* GRBs satisfied our selection criteria up to and including
Table 1. Table listing the 28 GRBs in our sample with their redshift, Galactic column density, and visual extinction in the line-of-sight to the GRB, the corresponding SED epoch, the UV, optical, and NIR band passes included in the GRB afterglow SED, and the rest frame coverage of the SED.

GRB	z	N_{HI} (Gal) (10^{21} cm^{-2})	A_V (Gal)	Epoch (s)	UV/optical/NIR bandpasses	Restframe Band Coverage (Å)
050318	1.44	0.28	0.05	T^1+3600	v,b,u	1260–2400
050319	3.24	0.11	0.03	T+20,000	f_{23}, v, b	920–2090
050525A	0.69	0.91	0.29	T+20,000	K_{4.5}, H_{4.8}, R_{4.9.10}, v,b,u,w1,m2,w2	1000–1450
050730	3.96	0.30	0.16	T+10,000	K_{11}, J_{14}, R_{21}, v,b	780–4700
050802	1.71	0.18	0.06	T+20,000	f_{12}, v,b,u,w1,m2,w2	590–3270
050820A	2.144	0.47	0.14	T+10,000	f_{18}, z_{14}, R_{14}, v,b,u,w1	620–3710
050922C	1.98	0.54	0.32	T+10,000	R_{15}–20, v,b,u,w1,m2	620–2360
051109A	2.34	1.61	0.59	T+5000	K_{24}, H_{21}, J_{21}, R_{23.24}, v,b,u,w1	670–6980
061214	2.296	0.92	0.42	T+100,000	f_{23}, v, b	1180–2690
061206	0.404	0.09	0.04	T+10,000	K_{36}, R_{26}, R_{27–29}, v,b	770–4630
061418	1.49	0.92	0.69	T+5000	K_{36}, R_{36}, J_{0.30–0.31}, I_{11}, R_{23.25}, v,b,u,w1,m2	800–9380
060502A	1.51	0.30	0.10	T+10,000	R_{54}, v,b,u,w1	900–3010
060513	0.448	0.14	0.05	T+10,000	K_{38.38}, R_{38.38}, v,b,u	2130–16180
060526	3.21	0.55	0.21	T+20,000	f_{30}, f_{39}, R_{40–45}, v,b,u	930–3180
060605	3.71	0.51	0.15	T+10,000	R_{45–53}, v,b	830–1600
06067A	3.08	0.27	0.09	T+10,000	H_{30}, J_{54}, R_{34–54}, g, v,b,u	750–4200
061714	2.71	0.61	0.24	T+5000	R_{50}, v,b	1050–2040
061729	0.54	0.48	0.17	T+70,000	R_{60}, v,b,u,w1,m2,w2	1040–4900
060904B	0.703	1.21	0.53	T+5000	K_{57}, f_{57}, R_{57}, v,b,u,w1,m2,w2	940–13710
060908	2.43	0.27	0.09	T+5000	R_{60.61}, v,b,u,w1	660–2200
060912	0.97	0.42	0.16	T+1500	v,b,u,w1,m2	1030–3020
061107	1.314	0.42	0.06	T+6000	f_{62}, R_{62}, v,b,u,w1,m2,w2	710–3850
061126	1.159	1.00	0.56	T+2000	K_{56}, f_{56}, f_{56.57}, R_{56.68.69}, v,b,u,w1,m2	920–10820
070110	2.352	0.18	0.04	T+10,000	R_{70}, v,b,u	920–2250
070318	0.836	0.25	0.05	T+1500	v,b,u,w1,m2	870–3190
070411	2.954	2.63	0.88	T+5000	R_{72}, v,b	990–1900
070529	2.496	1.90	0.93	T+6000	v,b,u,w1	640–1670

a Berger & Mulchaen (2003); b Fynbo et al. (2003); c Foleli et al. (2003); d Starling et al. (2003); e Fynbo et al. (2003); f Ledoux et al. (2005); g Jakobsson et al. (2005a); h Quimby et al. (2005); i Prochaska et al. (2006); j Prochaska et al. (2006); k Dupree et al. (2006); l Cucchiara et al. (2005b); m Bloom et al. (2005); n Berger & Gladstone (2005); o Ferrero et al. (2005); p Ledoux et al. (2005); q Jakobsson et al. (2006d); r Thoene et al. (2006); s Fusco et al. (2006); t Rol et al. (2006); u Jakobsson et al. (2006c); v Jakobsson et al. (2006a); w Bloom et al. (2007); x Perley et al. (2008); y Jaunsen et al. (2007); z Jaunsen et al. (2007); † Jakobsson et al. (2007); ‡ Berger et al. (2007)

† T is time at which the BAT triggered on the GRB

GRB 070529. By requiring that the GRBs in our sample have both a spectroscopic redshift measurement and UVOT v-band magnitude ν ≤ 19 we are introducing a bias against highly extinguished GRBs, that occur in very dusty regions of their host galaxy and/or along a line-of-sight with high foreground extinction. A number of previous studies have already shown that subsamples of GRBs with spectroscopic redshifts are biased against high obscuration (e.g. Fiore et al. 2007; Fynbo et al. 2009). Further to this, there is also a selection effect in the redshift distribution that biases against certain redshift ranges that have few prominent absorption lines in the observer frame optical bandpass, thus making it difficult to acquire an accurate spectroscopic redshift measurement. However, there is currently no evidence to suggest that there is a strong redshift dependence on the environmental conditions of GRB host galaxies, and therefore, for
the purposes of this paper, where we are primarily interested in studying the dust and metal contents in the environments of GRBs, this selection effect in the GRB redshift distribution should not degrade our results. Due to the independence between foreground and host galaxy extinction, the bias against high foreground extinction should also not have any impact on our results on the GRB host extinction and absorption properties, and we therefore need to only worry about the selective effects introduced by large host galaxy extinction, which we explore in detail in section 5.1.

In order to measure the level of host galaxy dust-extinction and absorption in the GRB optical, UV and X-ray afterglows, we produced an SED at a single epoch for each of the 28 Swift detected GRBs in our sample, where the SED epoch was GRB dependent. All Swift data used to produce these SEDs were taken from the UK Swift data archive\(^1\). NIR data reported in refereed papers and GCNs were used to extend the afterglow SED to longer wavelengths, where preference was given to photometry from refereed journals. Furthermore, unlike in Schady et al. (2007), UVOT data with rest frame wavelengths $\lambda < 1215$ Å were also used. Absorption at these wavelengths caused by the Lyman forest was modelled using the work described in Madau (1995), which provides a statistical estimate of the number of intervening absorption systems in the line-of-sight as a function of redshift and column density, and thus opacity of the Lyman forest as a function of wavelength.

The epoch of the SED was chosen to minimise the total amount of interpolation required for each UV, optical and NIR photometric data point used in the SED. Since XRT and UVOT observations are taken simultaneously, this condition also limited the amount of interpolation required in the X-ray band, in which the GRB afterglow is typically detected for longer than in the UVOT (e.g. Oates et al. 2008; Evans et al. 2009). A further condition on the selected epoch of the afterglow SED was that there could not be any apparent spectral evolution in either the UVOT or XRT energy ranges during the interval used for photometric interpolation, as it is sometimes observed during the early-time steep decay phase of the X-ray light curve (Nousek et al. 2006), during flares (Falcone et al. 2007), or in the presence of a supernova component (e.g. GRB 060218, Campana et al. 2006). The 28 GRBs in the sample are listed in Table I together with their spectroscopic redshifts, the Galactic hydrogen column density and visual extinction in the line-of-sight to the GRB, the epoch of the SED, the UVOT and ground-based filters used in the SED, and the rest frame wavelength coverage.

2.1 UVOT and Ground-Based Data

The UVOT contains three optical and three UV lenticular filters, which cover the wavelength range between 1600 Å and 6000 Å, in addition to a clear white filter that covers the wavelength range between 1600 Å and 8000 Å (Poole et al. 2008). The data available to download at the Swift data archive\(^1\) are reduced by the science data centre at Goddard Space Flight Center, and photometric analysis can be carried out immediately on the level 2 products, which are already in sky co-ordinates and aspect corrected. In order to convert UVOT images into spectral files compatible with the spectral fitting package, XSPEC, we used the tool uvot2pha (v1.1). The response matrices used for the UVOT filters were taken from the Swift/UVOT calibration files swa**20041120v104.rsp, where ** is the code for the appropriate filter.

When ground-based optical or NIR data were available to use in the SED, spectral files were produced for each filter using the appropriate responsivity curves. Cousins R and I responsivity curves were taken from Bessell (1990), and the J, H and K-band responsivity curves were taken from Cohen et al. (1992a,b) and Bessell et al. (1998). For the Sloan Digital Sky Survey (SDSS) ugriz filters (Fukugita et al. 1996), responsivity curves provided in the SDSS data release 6 were used\(^2\).

To produce an SED at an instantaneous epoch the magnitude of the afterglow at the epoch of the SED was measured by interpolating or extrapolating the UVOT and ground-based filter dependent light curves to the epoch of interest. The spectral files were then set to the extrapolated/interpolated magnitude measured in each corresponding filter.

For the UVOT filter light curves, source photometric measurements were extracted from the UVOT imaging data using the tool uvotmaghist (v1.0) with a circular source extraction region that ranged from 3′–5′ radius, depending on the brightness of the source. In order to remain compatible with the effective area calibrations, which are based on 5′ aperture photometry (Poole et al. 2008), an aperture correction was applied where necessary. The background was taken from a source-free region close to the target with a radius of between 10′′ and 20′′. The light curves were then binned into groups $\Delta T_{\text{bin}}/T = 0.1$, where ΔT_{bin} is the time interval of the bin, and T is the time since the BAT trigger.

For the ground-based optical and NIR data, filter dependent light curves were produced using the data from the literature. Both for data taken from refereed publications, or from GCNs, which are subject to systematic uncertainties in absolute calibration, the calibration systematic error was added in quadrature to the photometric error on each measurement. Where no error was provided, either on the magnitude or calibration, an error of 0.3 magnitudes was assumed.

When interpolating or extrapolating each filter dependent light curve to the SED epoch, the same decay index was fit over the same time interval for all the filter light curves within each GRB (for both UVOT and ground-based data). Both the time interval and decay index used were determined from the combined UVOT and ground-based light curve, where all filters were normalised to the UVOT white band, if available, and if not, to the v-band, to produce a single light curve. The time interval was chosen such that it covered the epoch of the SED and could be well-fitted by a power-law, and this ranged from $\Delta T/T_{\text{SED}} = 0.5$ to $\Delta T/T_{\text{SED}} = 5$, where ΔT is the time interval used, and T_{SED} is the epoch of the SED. The best-fit decay index to this time interval was then used to fit each independent filter light curve. Having set the spectral files to the extrapo-

1 http://www.swift.ac.uk/swift_portal/

2 http://www.sdss.org/dr6/instruments/imager/
lated/interpolated magnitude measured in each corresponding UVOT and ground-based filter, a further 10% systematic error was added to each ground-based spectral data point to account for uncertainties in the responsivity curves.

2.2 X-Ray Data

The XRT is well-calibrated in the 0.3–10 keV energy range, and has two primary observing modes: window timing (WT), which has a 1.7 ms time resolution and 1-dimensional imaging, and photon counting (PC), which has a 2.5 s time resolution and full imaging capabilities [Burrows et al. 2005a]. Both modes have spectroscopic capabilities. All data were reduced with the XRTPIPELINE tool (v0.11.6) using the most current XRT calibration files, version 20080509. In most cases PC mode data were used, with the exceptions being GRB 060206 and GRB 061007, which only had WT mode data at the epoch of the SEDs (10 ks and 600 s after the BAT trigger, respectively). For PC data, both for the spectral and temporal analysis, source counts were extracted from a circular region centred on the source with a radius ranging from 20 to 64 pixels, where 1 XRT pixel is 2.36”. When the source was piled-up we fitted the source PSF profile with XRT’s known PSF [Moretti et al. 2005] to determine the radius at which pile-up becomes important, and used an annular extraction region to exclude data within this radius, which ranged from 4 to 6 pixels. The background count rate was estimated from a circular, source-free area in the field of view (FOV) with a radius ranging from 42 to 64 pixels. For WT mode data, the extraction regions used for the source and background were slits positioned over the source and in a source free region of the FOV, with lengths ranging from 20 to 80 pixels, respectively. For both PC and WT data, we used XSELECT (v2.4)”to extract light curves and spectral files from the event data in the energy ranges 0.3–10 keV, which is the band required for compatibility with the current calibration files [Schady et al. 2007]. The spectral files were grouped to ⩾ 20 counts per energy channel, and the light curves were binned into time intervals of ΔT/T = 0.1. Effective area files corresponding to the spectral files were created using the XRTPMKARF tool (v0.5.6), where exposure maps were taken into account in order to correct for bad columns. Response matrices from version 10 of the XRT calibration files were used for both WT and PC mode data. The spectra were normalised to correspond to the 0.3–10 keV flux of the GRB afterglow at the epoch of the SED. This flux was determined from the best-fit power-law decay model to the afterglow light curve, in the same way as was done for the UVOT and ground-based data.

3 THE MODEL

The SEDs were fitted within XSPEC (v12.4.0)” using the same spectral models as those used in [Schady et al. 2007], with the exception that in this paper absorption due to the Lyman forest is also accounted for.

For each SED we tried both a power-law and a broken power-law to fit the afterglow spectral continuum. In the latter case the change in spectral slope was fixed to Δβ = 0.5 to correspond to the change in slope caused by the cooling frequency [Sari et al. 1998] lying within the observed frequency range at the epoch of the SED. In both the power-law and broken power-law models, two independent dust and gas components were included to correspond to the Galactic and the host galaxy photoelectric absorption and dust extinction. The Galactic components were frozen to the column density and reddening values taken from [Kalberla et al. 2003] and [Schlegel et al. 1998], respectively, which although uncertain, in particular for lines-of-sight with large Galactic reddening, we found to be typically an order of magnitude smaller than the errors on the measured host galaxy absorption and extinction values. Furthermore, the uncertainty in the Galactic values becomes negligible when propagated to the additional error on the measured rest frame absorption and extinction values. The dependence of dust extinction on wavelength in the GRB host galaxy was modelled on the SMC, the LMC and the Milky Way (MW) empirical extinction laws using the XSPEC tool ZDUST, which is based on the extinction coefficients and extinction laws from [Pel 1992]. The total-to-selective extinction was taken to be RV = 2.93, 3.16 and 3.08 for the SMC, LMC and Galactic extinction laws, respectively [Pel 1992]. From here onwards we shall refer to each of the spectral models as the SMC, LMC and MW model, where the name corresponds to the extinction law used to describe the dust extinction properties in the GRB host galaxy. The equivalent neutral hydrogen column density in the host galaxy was determined from the soft X-ray absorption, where solar abundances were assumed, and is denoted throughout this paper as NH,X.

There have been a number of examples where intervening systems have been detected in the line-of-sight to GRBs (e.g. GRB 050730: Starling et al. 2005; D’Elia et al. 2007), GRB 050922C: Piranomonte et al. 2008), GRB 060418; Ellison et al. 2006; Vreeswijk et al. 2007, GRB 070802: Elaisdottir et al. 2009), although in the majority of cases, the dominant absorption system has been reported as originating at the host galaxy. The largest reported absorption from an intervening system to date corresponds to an absorption system at z = 2.077 in the line-of-sight to GRB 050922C, which had a column density of NH = 2.0 × 1020 cm−2 [Piranomonte et al. 2008], which is an order of magnitude less than the host galaxy neutral hydrogen column density. A notable exception to this was in the case of GRB 060418, which had a strong foreground absorber at z = 1.118 with an estimated lower limit on the hydrogen column density of NH > 1.7 × 1021 cm−2 and a marginally larger extinction than at the host galaxy. Nevertheless, the percentage of GRBs with reported strong intervening systems is small (e.g. Prochter et al. 2006, ApJ, 648, 93; Sudilovsky et al. 2007), and not including their intervening systems in our SED modelling is, therefore, unlikely to affect the overall results of this paper.

To model the Lyman-series absorption in the 912–1215 Å rest frame wavelength range, we wrote a local model
Figure 1. The unabsorbed spectral energy distributions for the 28 GRBs in our sample in units of mJy against Hz. In each figure, we plot the best-fit absorption and extinction corrected spectral model (solid lines) and data (black data points), as well as the host galaxy absorbed and extinguished spectral model (dashed lines) and data (open data points). The extinction curve used in the fit is labelled for each SED, as well as the underlying continuum fit to the SED; either a power-law (pow) or a broken power-law (bknp).
71% of the sample with 90% confidence, with a range in extinction of $0.03 < A_V < 0.75$. We note here that the best-fit visual extinction is dependent on the shape of the extinction law used to fit the data, and Cardelli et al. (1989) found a linear correlation between the total-to-selective extinction, R_V, and the amount of UV extinction along different lines-of-sight within the Milky Way. For those GRBs best-fit by a broken power-law continuum, the additional free parameter in the fit introduces some degeneracy between the location of the spectral break and the total-to-selective extinction, R_V, and in these cases, extinction laws with larger total-to-selective extinction, R_V, than those considered in our analysis could result in larger best-fit extinction values than those listed in Table 4 (e.g. see Watson et al. 2006; Eliasdóttir et al. 2009). If we, therefore, only consider those results from the GRBs best-fit by a power-law continuum, we find that the largest host galaxy visual extinction measured in the sample is still $A_V = 0.75$.

Our measured distribution of host galaxy logarithmic dust column densities for GRBs with a host galaxy x-ray absorption system detected at 90% confidence is shown in Fig. 2 in units of cm$^{-2}$ (solid histogram), and has a mean of 21.7 and a standard deviation of 0.3. For those GRBs that do not have a host absorption system detected at 90% confidence, the $N_{H,X}$ 3σ upper limit distribution is shown by the dotted histogram. As well as plotting the measured $N_{H,X}$ distribution, we also show the expected $N_{H,I}$ column density distribution in the line-of-sight to GRBs within Galactic-like molecular clouds (dashed histogram; Reichart & Price 2002). The expected $N_{H,I}$ distribution will only equate to...
an $N_{H,X}$ distribution in the case of solar metallicity GRB host galaxies. However, the host galaxies of GRBs typically have sub-solar metallicities that range from $1/10^{th}$ solar to solar (Prochaska et al. 2007; Savaglio et al. 2009). Combining the metallicity estimates from Prochaska et al. (2007) and Savaglio et al. (2009) gives a distribution with median value of $1/4^{th}$ solar, covering over two orders of magnitude. The effect of this on the expected GRB host galaxy $N_{H,X}$ distribution shown in Fig. 2 would be to broaden it to the left of the figure, down to values of $log N_{H/X} = 19$, and shift the logarithm of the expected peak $N_{H,X}$ value down to 21.2. However, due to the small number of GRB host galaxies with accurate metallicity measurements, the GRB host metallicity distribution is poorly known. We therefore feel that for the time being it is not feasible to apply a correction to the expected N_{HI} distribution shown in Fig. 2 to convert it into an accurate expected $N_{H,X}$ distribution.

Despite the above caveat with the expected $N_{H,X}$ distribution, it appears from Fig. 2 that those GRBs with host galaxy column densities at the very low and very high end of the distribution are missing from our sample. The lack of GRBs in our sample with measurements of host galaxy $N_{H,X}$ smaller than $\sim 10^{21}$ cm$^{-2}$ is likely to be due to the sensitivity limit of the XRT at measuring soft X-ray absorption. In which case those GRBs with expected host galaxy $N_{H,X}$ smaller than $\sim 10^{21}$ cm$^{-2}$ may be accounted for by those GRBs in our sample with just upper limits on their host galaxy soft x-ray absorption. The absence of GRBs in our sample with host galaxy $N_{H,X} > 10^{22}$ cm$^{-2}$, on the other hand, is likely to be a consequence of our selection effects. By selecting only those GRBs with observed $V < 19$ we exclude highly extinguished GRBs from our sample, which would simultaneously exclude those with large X-ray absorption values. We shall address the effect that this bias has on our results later, in section 4.3. Nevertheless, there is generally a good agreement between the two histograms, suggesting that our selection effects on the distribution of host galaxy column densities in the line-of-sight to GRBs is not highly significant.

The measured optical extinction distribution for GRBs with a host dust extinction system detected at 90% confidence is shown in Fig. 3 (solid histogram), and has a mean A_V of 0.3 with a standard deviation of 0.2. The dotted histogram shows the A_V 3σ upper limit distribution for those GRBs with no host extinction system detected at 90% confidence. In this figure we also show the expected GRB host galaxy A_V distribution when selection effects are taken into account (dashed histogram), the details of which we describe in section 5.2.

4.2 Host Galaxy Extinction Curves

The extinction properties of dust are dependent on the dust composition and grain size distribution. The extinction curve models that best-fit the data, therefore, provide information on the dust properties of the GRB circumburst medium. For 18% of the sample no distinction could be made in the quality of the fits between extinction curve models, and this is a consequence of the lack of absorbing dust in the local environments of these GRBs, as well as the low signal to noise of some of the data. Evidence of this is provided in Fig. 4 where we plot the GRB host galaxy $N_{H,X}$ against A_V in log – log space, using the best-fit values from the SMC (top panel), the LMC (middle panel), and the MW spectral model (bottom panel). Those GRBs where no distinction was possible between dust model fits are shown as grey circles, all of which only have upper limit measurements on the host galaxy extinction value.

For those GRB SEDs best-fit by a broken power-law, a degeneracy exists between the total-to-selective extinction, R_V, and the location of the spectral break, thus limiting our knowledge of the shape of the host galaxy extinction law in these cases. Where the optical and X-ray afterglow emission lie on the same power-law component, however, the fewer number of variable parameters provides a greater handle on the shape of the host galaxy extinction law. Of those GRBs for which a distinction between model fits was possible, 21 were best-fit by a power-law spectral model, the large majority of which have a rest-frame wavelength range that safely covers the location of the 2175˚A absorption feature, and all have data blueward of 1500˚A in the rest-frame. The data available for this subset of GRBs therefore covers the wavelength range over which the three extinction laws modelled in this paper can be most effectively discriminated between, and we therefore use this subset of GRBs to study the distribution in best-fit extinction laws.

We find that the SMC extinction curve provided the best-fit in 56% of cases, and the LMC and MW extinction curve both provided the best-fit to 22% of cases. Of the four GRBs where the MW extinction law provided the best-fit to the SED, three have optical data that span the wavelength range of the 2175˚A absorption bump at the rest frame of the host galaxy (GRB 050802, GRB 050922C, GRB 070110), making the detection of the 2175˚A feature possible. Nevertheless, in all three cases the SMC and LMC spectral models also provide acceptable fits, and we, therefore, cannot claim a robust detection of the 2175˚A absorption feature in the host galaxy of these three GRBs. The question of how typical the Milky Way absorption feature is in GRB host galaxies is beyond the scope of this paper, and an issue that we are looking to investigate in future work. That the host galaxy dust extinction properties for the majority of our sample are best-fit by the SMC extinction law is consistent with several previous studies in this field (e.g. Stratta et al. 2004; Kann et al. 2006; Starling et al. 2007). It is not yet clear what is responsible for the Milky Way absorption feature at 2175˚A, although small carbonaceous dust grains are thought to play an important role (e.g. Draine & Lee 1984), suggesting that such grains are not typical in the environments of GRBs, at least not once the GRB has occurred.

4.3 $N_{H,X}/A_V$ Ratio In GRB Host Galaxies

In Fig. 4 the dashed lines in each panel represent the mean hydrogen column density to extinction ratios in the SMC (top; Martin et al. 1989), LMC (middle; Koornneef 1982; Fitzpatrick 1985) and Milky Way (bottom; Predel & Schmitt 1993), which have been converted from N_{HI}/A_V to an $N_{H,X}/A_V$ ratio relating to the column density that would be measured from X-ray observations of each of these galaxies if solar abundances were assumed. We did this by assuming a metallicity of 0.25 solar for the SMC, and 0.5 solar for the LMC (Wood et al. 1998), and the $N_{H,X}/A_V$ ratio was then a fraction 0.25 and 0.5 the N_{HI}/A_V ratio.
for the SMC and LMC, respectively. As well as the mean, we also show the root-mean square deviation of the sample used to derive the mean SMC, LMC and Milky Way N_{H}/A_V ratios, also converted into the equivalent $N_{H,X}/A_V$ ratio. The subsample of GRBs that were analysed in Schady et al. (2007) are shown as open squares.

From Fig. 4 there does not appear to be any strong correlation between the dust and gas column density in GRB host galaxies. Using only those GRBs with an extinction and absorption system detected with 90% confidence, a spearman rank test between the best-fit A_V and $N_{H,X}$ measurements from the SMC, LMC and MW models indicates a weak correlation at the 1σ level, with coefficients 0.39, 0.37 and 0.48, respectively. It is also notable that most of the data points lie to the right of the dashed lines, corresponding to $N_{H,X}/A_V$ ratios that are larger than those of the SMC, LMC and MW. In Schady et al. (2007), the GRB $N_{H,X}/A_V$ ratios were also typically larger than those of the MW and Magellanic Clouds, although they were still consistent at the 68% confidence level with the SMC, LMC and MW $N_{H,X}/A_V$ ratios.

The larger sample used in this paper shows a spread in gas-to-dust ratios that covers nearly two orders of magnitude. This is better illustrated in Fig. 5 where we plot the $N_{H,X}/A_V$ ratio from the SMC (top), LMC (middle) and MW (bottom) model fits for each GRB in the sample with a host galaxy absorption and/or extinction system detected with 90% confidence. In each case the data points shown are the results from the best-fit model to the continuum, i.e. either a power-law or broken power-law fit to the SED. The dashed lines are the mean $N_{H,X}/A_V$ ratio of our sample determined from our spectral analysis for each of the extinction curve models fitted. These correspond to $\langle N_{H,X}/A_V \rangle = 3.3 \times 10^{22} \text{ cm}^{-2}$, $3.4 \times 10^{22} \text{ cm}^{-2}$ and $2.1 \times 10^{22} \text{ cm}^{-2}$, which is a factor of 8.3, 9.7 and 11.7 larger than the mean $N_{H,X}/A_V$ ratios measured in the SMC, LMC and MW (dotted lines) in the top, middle and bottom panels in Fig. 5 respectively. The standard deviation of the data about the dashed lines is $2.8 \times 10^{22} \text{ cm}^{-2}$, $5.9 \times 10^{22} \text{ cm}^{-2}$ and $1.8 \times 10^{22} \text{ cm}^{-2}$ for the SMC, the LMC and the MW spectral model results, respectively.

5 SELECTION AND SYSTEMATIC EFFECTS

5.1 Selection effects in A_V

Those GRBs located in very dusty regions are less likely to be detected at optical wavelengths than those GRBs with a small host galaxy extinction, and could, therefore, be missing in our sample, as was pointed out in section 4.1. A possible indication of this selection effect is the small number of GRBs that have $A_V \geq 1$ in all three panels of Fig. 4. To ascertain better the impact of these selection effects on our results we compared our measured distribution of host galaxy A_V and $N_{H,X}$ with the distribution resulting from a Monte Carlo simulation of 1000 GRBs with host galaxy neu-
central hydrogen column densities, $N_{H,X}$, and host visual extinctions, A_V taken at random, where a Gaussian $N_{H,X}/A_V$ distribution was assumed.

We selected at random an equivalent neutral hydrogen column density, $N_{H,X}$, from the expected GRB host galaxy $N_{H,X}$ distribution shown in Fig. 2. For a given $N_{H,X}$, the host galaxy visual extinction, A_V, was then determined by assuming a random column density to visual extinction ratio, $N_{H,X}/A_V$, taken from a Gaussian distribution with a mean $N_{H,X}/A_V$ ratio and standard deviation equal to that of the SMC. We chose to use the SMC $N_{H,X}/A_V$ distribution since the majority of our sample are best-fit by an SMC host galaxy extinction law. In addition to selecting a host galaxy $N_{H,X}$ and A_V, we also selected at random a redshift with $z \leq 4$ from the known Swift distribution, and a Galactic visual extinction and extinction corrected GRB apparent v-band magnitude from our sample distribution, shown in Fig. 6. With these parameters we could then determine the extinguished v-band magnitude that would be observed in each case, thus allowing us to calculate the fraction of simulated GRBs with observed v-band magnitudes $v > 19$ that would thus be rejected by our sample selection criteria. Using only those generated GRBs with observed v-band magnitudes $v < 19$, we then performed a two-dimensional Kolmogorov-Smirnov (KS) test between the simulated and measured $N_{H,X}$ and A_V data sets, and found that they had less than a 1.2×10^{-5} probability of coming from the same parent population. The generated distribution of A_V against $N_{H,X}$ is shown in log-log space in the top panel of Fig. 7 (small, open circles and triangles), together with our measured A_V, $N_{H,X}$ values (solid circles). The poor agreement between the generated and observed data points can be clearly seen in this plot, with the generated data points typically lying above the observed data points.

We, therefore, re-ran our Monte Carlo simulation, but this time we used a Gaussian $N_{H,X}/A_V$ distribution with a standard deviation two times that observed in the SMC, as well as trying a distribution with a mean $N_{H,X}/A_V$ ratio 0.5 dex, 1.0 dex and 1.5 dex larger than that of the SMC, each with a standard deviation equal to and two times that observed in the SMC. The mean $N_{H,X}/A_V$ ratios and standard deviations of the Gaussian distributions used in each of our Monte Carlo simulations are listed in Table 2 along with the results from a KS test between our measured $N_{H,X}$ and A_V distribution and the simulated $N_{H,X}$ and A_V data. In the last column of Table 2, we also give the fraction of data points from each of the Monte Carlo simulations rejected by our selection criteria as a consequence of having an extinguished v-band magnitude $v > 19$.

![Figure 6](image-url)

Figure 6. Our sample distribution of the extinction corrected GRB v-band magnitude.

Model number	mean $N_{H,X}/A_V$ (1022)	σ (1022)	KS stat. D	KS Prob	Fraction of sample with \(v > 19 \)
1*	0.4	1.0	0.622	0.000	57.20%
2	0.4	2.0	0.430	0.007	57.30%
3	1.3	1.0	0.311	0.095	31.10%
4	1.3	2.0	0.306	0.108	35.20%
5	4.0	1.0	0.344	0.047	85.80%
6	4.0	2.0	0.386	0.188	19.80%
7	13	1.0	0.581	0.000	7.90%
8	13	2.0	0.587	0.000	11.30%

* SMC mean $N_{H,X}/A_V$ and standard deviation.
GRBs, Perley et al. (2009) estimated that at least 45% of those GRBs with an apparent peak magnitude \(v > 19 \) were ‘dark’ as a result of dust extinction. They also estimated that at least 20% of all Swift GRBs have a host galaxy \(A_V > 0.8 \), and at least 10% have \(A_V > 2.5 \). The host galaxy \(A_V \) distribution produced by our model 4 is in closest agreement with the results from Perley et al. (2004), generating a host galaxy visual extinction \(A_V > 0.8 \) 29% of the time, and \(A_V > 2.5 \) 12% of the time. Of all our Monte Carlo simulations, the fraction of GRBs rejected in model 4 by our selection criteria (35%) was also the most consistent with the fraction of GRBs with observed \(v > 19 \) estimated by Perley et al. (2009). Given the similarity between the host galaxy \(A_V \) and observed \(v \)-band distribution produced by our model 4 and the estimates from Perley et al. (2009), we take the results from model 4 to be the most representative of the true host galaxy \(N_{H,X} \) and \(A_V \) distribution, and thus use these to quantify our selection effects.

In Fig. 7 we plot the distribution of simulated host galaxy \(N_{H,X} \) and \(A_V \) values resulting from model 4 in the bottom panel, together with model 1 in the top panel for comparison. Those GRBs with \(v < 19 \) are plotted as open stars, and those with \(v > 19 \) are shown as small open circles. Also shown are the best-fit host galaxy \(N_{H,X} \) and \(A_V \) values for our observed sample of GRBs (large circles), as well as the mean SMC \(N_{H,X}/A_V \) ratio (dashed line) and standard deviation (dotted line). The distribution of simulated data points for both GRBs with \(v > 19 \) and \(v < 19 \) shown in the bottom panel of Fig. 7 suggest that even when selection effects are taken into account, the majority of GRBs continue to have host galaxy \(N_{H,X}/A_V \) ratios that are larger than the SMC distribution. In fact, \(\sim 80\% \) of simulated GRBs have \(N_{H,X}/A_V \) host galaxy ratios larger than the mean SMC value, and cover nearly four orders of magnitude in \(N_{H,X}/A_V \). We therefore conclude that the results from our analysis that the distribution in the \(N_{H,X}/A_V \) ratio in GRB host galaxies is broad and typically larger than those of the Milky Way and Magellanic Clouds applies even when dust selection effects are taken into account.

5.2 Systematic effects in measuring \(N_{H,X} \)

Any spectral curvature present within the X-ray energy range, such as when the cooling frequency, \(\nu_c \), or the prompt emission peak energy, \(E_{pk} \), lies within the X-ray band, can result in an over-estimation of the measured \(N_{H,X} \) if it is not taken into account in the spectral model fit. By fitting all our SEDs with a power-law continuum as well as with a spectral break corresponding to the cooling frequency, we tested for the possibility of \(\nu_c \) lying within the observing band and used the results from the best-fit model. This, therefore, removes the probability that any spectral curvature resulting from \(\nu_c \) lying within the X-ray band was incorrectly interpreted as soft X-ray absorption at the host galaxy. However, there may still be spectral curvature within the X-ray band if there was ongoing X-ray emission from the GRB during the time interval over which the spectrum was extracted. From the analysis of 59 GRBs, Butler & Kocsis (2007) found such a prompt emission contribution out to a maximum of \(T_{90} + 10^5 \) s, after which none of the GRBs in their sample showed evidence of spectral evolution. The systematic effect that such spectral curvature would have on our SED analysis, therefore, only applies for those GRBs in our sample for which we produced SEDs at an epoch earlier than \(T + 10^5 \) s. For the twelve GRBs in our sample for which this applies, we fit the hardness ratio for each GRB (Evans et al. 2009) from the start of the time interval over which the XRT spectrum was extracted onwards, and found no evidence for spectral evolution over the time interval fitted. We therefore do not believe that spectral curvature in the X-ray band is systematically overestimating the host galaxy \(N_{H,X} \), in agreement with the results found by Nardini et al. (2009), who concluded that intrinsic curvature in the spectrum could not be considered as a general solution for the large GRB host galaxy \(N_{H,X} \).
Figure 8. Host galaxy A_V resulting from spectral modelling of the SED where only those optical/NIR data redward of 1215 Å in the rest frame were fitted, against the best-fit A_V from fits to the complete SED. The spectral results for an SMC, LMC and MW host galaxy extinction law are plotted in the top, middle and bottom panels, respectively, and the dashed lines correspond to where there is no difference between the visual extinctions plotted along the x and y-axes.

5.3 Systematic effects in measuring A_V

5.3.1 Hydrogen absorption versus dust attenuation

If our Lyman forest model is overestimating the attenuation of UV light, this would result in a systematic underestimation of the extinction of UV light from dust. Therefore, to test the accuracy with which we model the Lyman-series absorption in our spectral analysis, we re-fitted the SEDs using only those optical/NIR data redward of 1215 Å in the rest frame, where Lyman-series absorption no longer applies. In Fig. 8 we plot the best-fit dust-extinction yielded when optical data blueward of 1215 Å were excluded, against the best-fit host galaxy dust-extinction values determined from the method outlined in section 5.3. The data points plotted in the three panels of Fig. 8 correspond to the best-fit dust-extinction values resulting from the SMC (top), LMC (middle) and MW (bottom) models, where the dashed lines correspond to where there is no difference between the visual extinctions plotted along the x and y-axes. In all three panels the data points are evenly distributed about the dashed line. There is, therefore, no evidence to suggest that our modelling of the optical depth from the Lyman-series is resulting in a systematic effect on our best-fit A_V values. The larger scatter around the dashed line in the bottom panel of Fig. 8 is due to the typically poorer fits given by the MW model compared to the SMC and LMC spectral models. It is worth pointing out that Fig. 8 also suggests that the lack of a host galaxy neutral hydrogen absorption component in our SED model is not overly affecting our results.

5.3.2 Dust Extinction Cross-Section

By only considering the mean SMC, LMC and MW extinction laws in our spectral analysis, we may be introducing another systematic effect on our results. The amount of UV, optical and NIR radiation that is extinguished by dust is dependent on the density of dust in the environment (Perna & Lazzati 2002), as well as the grain size distribution, the grain morphology, and the chemical composition, all of which influence the dust extinction cross-section as a function of wavelength (e.g. Cardelli et al. 1989). The measured visual extinction, A_V, will therefore depend strongly on the extinction law fit to the data (e.g. Cardelli et al. 1989). This is illustrated by the differences in the best-fit A_V values measured between the spectral fits to the GRB SEDs. The total-to-selective extinction, R_V, in the local environment of the GRB may be larger than the three mean values that we have considered (e.g. Perley et al. 2008), representative of an environment with a dust size distribution skewed to larger grains. This would produce an extinction curve that is flatter in the NIR wavelength range than the SMC, LMC and MW extinction laws. Such an extinction law could account for the discrepancy that exists between the small amount of reddening observed in GRB SEDs (e.g. Stratta et al. 2003), and the larger host galaxy dust column densities derived from dust depletion studies (e.g. Savaglio et al. 2003). Such an extinction law is caused by a dust distribution skewed towards larger grains, which may result if there is ongoing dust destruction, or if the GRB itself preferentially destroys the smaller dust grains during its initial outburst. In the case where the dust in the GRB surrounding environment has such a grain size distribution, modelling the optical afterglow SED with an SMC extinction law would underestimate A_V, since the steepness of the SMC extinction law over the NIR, optical and UV range, would yield a smaller value of A_V for the same amount of UV extinction.

An estimate of the host galaxy visual extinction that does not require knowledge of the host galaxy extinction law is provided from GRB optical spectral analysis, where measured metal column densities and dust depletion models are used to estimate the fraction of metals locked up in grains. From the analysis of three GRB optical spectra, Savaglio et al. (2003) measured a mean host galaxy visual extinction of $(A_V) \sim 1.0$, which is several times larger than the typical host galaxy extinction values measured from SEDs (Stratta et al. 2003; Starling et al. 2007; Kann et al. 2004), such as in this paper. One explanation for this difference in the visual extinction estimates between SED and optical spectroscopic analysis could be the presence of grey dust, which produces a flat extinction law. In such a case the near-uniform dust extinction across the optical and UV wavelength range would leave the observed optical/UV spectral slope relatively unchanged, and this may thus result in an underestimation of the best-fit A_V when fitting the SED. However, in the case where the GRB SED is best-fit by a single power-law component, the reduced effect of dust-extinction on the X-ray and NIR bands allows the underlying spectral index to be well pinned, and in such a case grey extinction should be well detected. Of the 28 GRBs in our sample, 21 were statistically better-fit by a power-law spectral model, and the majority of our sample should therefore have well-determined measurements of the host galaxy.
extinction. Furthermore, the results from our MW extinction model, which has a flatter extinction law than the SMC and LMC, and hence yields a larger A_V value for a given amount of dust absorption in the UV, still gives $N_{H,X}/A_V$ ratios that are around an order of magnitude larger than that observed in the MW.

Another important point to consider is that extinction estimates from optical spectroscopic analysis require certain assumptions to be made on the local environment of the GRB, such as the dust depletion pattern and ionisation state of the surrounding gas. In Savaglio et al. (2003), both the GRB host galaxy dust depletion chemistry and the N_{HI} to A_V ratio were assumed to be the same as in the Milky Way. In particular, if an LMC or SMC N_{HI}/A_V ratio were assumed, the A_V estimates in Savaglio et al. (2003) would decrease by a factor of more than 3 and 8, respectively. Prochaska et al. (2007) estimated the GRB host galaxy extinction for a sample of GRBs using the metal column densities that they measured in the GRB optical spectra, but they assumed an SMC gas-to-dust ratio, and for those GRBs where a visual extinction estimate was possible, they estimated a maximum extinction value of $A_V = 0.18$.

Finally, even if we were to adopt an extinction of $A_V \sim 1.0$, as estimated by Savaglio et al. (2003), it is still considerably smaller than would be expected in environments with similar $N_{H,X}/A_V$ ratios as in the Milky Way and Magellanic Clouds given the mean GRB host galaxy column density, $N_{H,X}$. GRB host galaxy extinctions would need to be around an order of magnitude larger than the values that we measure in our analysis in order to be consistent with the $N_{H,X}/A_V$ ratios measured in the Milky Way and Magellanic Clouds (see Fig. 5).

6 DISCUSSION

In Schady et al. (2007) we proposed that the general consistency between GRB host galaxy gas-to-dust ratios and those of the Milky Way and Magellanic Clouds was evidence that the level of photo-ionisation caused by the GRB was of the same order as the amount of dust destroyed by the prompt emission, as indicated by Perna & Lazzati (2002). However, our analysis presented in this paper on a sample four times the size indicates that GRB host galaxies have typically larger gas-to-dust ratios than those of the SMC, LMC and MW. This is partly as a result of the larger sample in this paper, but is also due to the inclusion of the UV and red data in the SED, which has improved the determination of the rest frame extinction. In two cases our choices of SED epoch in this paper have also improved the analysis, where in Schady et al. (2007) the epochs of our SEDs for GRB 050525A and GRB 050802 were at times when Swift data were poorly sampled. Nevertheless, the host galaxy $N_{H,X}$ and A_V values determined in this paper are consistent at 90% confidence with the best-fit host $N_{H,X}$ and A_V values in Schady et al. (2007).

In the rest of this section we shall explore the reasons that could account for the relatively large gas-to-dust ratios measured in GRB host galaxies. In section 6.1 we investigate the effect that the GRB has on its surrounding environment, in section 6.2 we look at the differences in the regions of gas probed by X-ray and optical observations, and in section 6.3 we explore the effect that the metallicity of GRB host galaxies has on the $N_{H,X}/A_V$ ratios.

6.1 Effect of GRB on Local Environment

To investigate how the GRB prompt emission alters its surrounding environment, and in particular how it affects X-ray and optical observations of the afterglow, Perna & Lazzati (2002; here onwards PL02) simulated the photo-ionisation and dust destruction caused by a GRB within a molecular cloud. The more dust in the line-of-sight that is destroyed, and the more gas that is photo-ionised, the smaller the measured values of A_V and $N_{H,X}$, respectively. Differences in the efficiency of the dust destruction and photo-ionisation can bring about an overall change in the $N_{H,X}/A_V$ ratio measured before and after the GRB event.

PL02 modelled the effect that a GRB would have on its surrounding environment when embedded within a Galactic-like molecular cloud with a column density of $N_H = 10^{22}$ cm$^{-2}$ and $A_V = 4.5$ mag, and varied the particle density by changing the radius of the cloud from $R = 10^{18}$ cm to $R = 10^{20}$ cm. They then simulated the soft X-ray absorption and visual extinction that would be measured with time along the line-of-sight to the GRB during its prompt emission phase, as the high energy radiation photo-ionised the gas and destroyed the dust within the molecular cloud. They found that in a large and diffuse region, photo-ionisation is more efficient than dust destruction, and as a result, the $N_{H,X}/A_V$ ratio measured after the GRB would be smaller than the value prior to the GRB. On the other hand, as the density becomes larger and the region more compact, dust destruction gradually becomes more efficient with respect to the photo-ionisation, and the $N_{H,X}/A_V$ ratio measured after the GRB is thus larger than the initial value. They repeated their work using a GRB with a softer spectrum, and found a similar result but with the cross-over, when dust destruction becomes more efficient than the photo-ionisation, occurring at a lower circumburst density. PL02 also investigated how an increase by a factor of 50 in the density within a cloud of radius $R = 10^{19}$ cm would effect the X-ray absorption and optical extinction, and they found that there was a greater difference in the efficiency in the dust destruction and photo-ionisation processes, where the former was the more effective.

The relatively large gas-to-dust ratios measured in our sample of GRBs could, therefore, be a consequence of them being embedded in dense molecular clouds with column densities on the order of $N_H = 10^{23}$ cm$^{-2}$, which has already been suggested by several authors (e.g. Galama & Wijers 2001; Reichart & Price 2002; Campana et al. 2006b; Vergani et al. 2004). If dust destruction is the cause for the large $N_{H,X}/A_V$ ratios, then the range observed in A_V and $N_{H,X}$ values for GRB host galaxies could result from differences in the initial column densities and sizes of the molecular cloud. A further parameter to consider is the location of the GRB within the cloud, where GRBs located closer to the outer edges nearest to the observer would destroy and photo-ionise a greater fraction of dust and gas along the line-of-sight than a GRB embedded deeper within the molecular cloud.

One consequence of dust destruction by the GRB is the colour evolution of the afterglow as the dust is destroyed.
This is because smaller dust grains are destroyed more easily than larger ones, such that the opacity to blue light will decrease sooner than the opacity to red light. However, in order to observe the spectral evolution caused by dust destruction, multi-wavelength observations in the optical and infrared range are required during the dust destruction period. During the first \(\sim 600 \) s of the UVOT observing sequence followed when a GRB occurs, only two filters are used. The multi-wavelength observations that are necessary to observe any spectral evolution in the UV-NIR afterglow only begin to observe any spectral evolution in the UV-NIR afterglow therefore only begin \(\sim 600 \) s after the BAT trigger, by which time the high energy emission responsible for the dust destruction is over (Fruchter et al. 2001). Robotic ground-based telescopes, such as the Rapid Eye Mount (REM; Zerbi et al. 2004), and the RAPid Telescope for Optical Response (RAPTOR; Salgado & McDavid 2008), can be taking multi-wavelength data of a GRB a mere \(\sim 20 \) s after the GRB trigger (e.g. Antonelli et al. 2008). However, thus far there have not been any clear instances of GRB light curves with observed colour evolution resulting from dust destruction. It may be possible to detect evidence of dust destruction in single filter observations by the increase in the observed flux within that filter that should observed as the dust opacity decreases. However, in a detailed analysis on the optical early-rise of a sample of six GRBs, five of which are in the GRB sample studied in this paper, Oates et al. (2009) found no evidence of the brightening of the afterglow to be the result of dust destruction for any of the GRBs in their sample.

It is likely that even at 20 s after the prompt emission, the bulk of the dust destruction has already occurred (PL02), making such direct observations of dust destruction highly challenging for the current generation of telescopes and satellites. Therefore, another way of identifying a recent period of dust destruction is in the grain size distribution in the local environment of the GRB. A consequence of dust destruction is a grain size distribution skewed towards larger grains due to the preferential destruction of small dust grains, which will result in a flattening of the extinction law (Perna et al. 2004). Although large dust grains may be broken down into smaller grains, these would, subsequently, be shattered promptly by the GRB, keeping the population of small dust grains small (e.g. Perna et al. 2003). The best-fit extinction laws to our sample of GRBs should therefore provide an indication of the grain size distribution of the extinguishing dust within the GRB environment. The fact that 56% of GRBs with a well-constrained host galaxy extinction law are best-fit by the SMC extinction law (see section 4.2), which has the steepest UV extinction of all the extinction curves fitted to our data, indicates that there is an abundance of small dust grains in the GRBs’ surrounding environments. The flattest extinction law that we fitted to our data was the MW extinction law, which also has the most prominent 2175Å absorption feature. It is, therefore, possible that the typically poorer fits provided by the MW model are due to the absence of the 2175Å absorption feature in GRB SEDs, rather than a poor agreement between the slope of the MW extinction law and the GRB hosts’ extinction law. However, the LMC extinction law is flatter than the SMC extinction law, and has a relatively weak 2175Å feature, and yet it was the best-fit model to only 22% of the sub-sample of GRBs with well-constrained power-law spectral fits. The fact that more than two times as many GRB SEDs are better fit with an SMC extinction law than with an LMC extinction law for the host galaxy suggests that there remains an abundance of small, UV absorbing dust grains in the surrounding environments of GRBs. The dust responsible for the UV and optical extinction must, therefore, lie in regions of the GRB host galaxy that have not been subjected to significant amounts of dust destruction.

6.2 Comparison between \(N_{H/1}/A_{V} \) and \(N_{H,X}/A_{V} \)

\(N_{H,X} \) provides a measurement of the optical depth of metals in the line-of-sight to the GRB, and in comparing the neutral hydrogen column density, \(N_{H/1} \), with \(N_{H,X} \), for a sample of 17 GRBs, Watson et al. (2007) found \(N_{H/1} \) to be systematically smaller than \(N_{H,X} \). They ascribed this to X-ray absorption and Lyα absorption observations probing different regions of gas. Estimates of the distance of the UV/optical absorbing dust from GRBs range from 100 pc to 1.7 kpc (Prochaska et al. 2006; Vreeswijk et al. 2007), whereas there are likely to be partially ionised medium weight metals absorbing the soft X-ray emission within a few parsecs of the GRB (Fruchter et al. 2001). Although this does not necessarily mean that all the neutral hydrogen out to 100 pc is ionised, it does suggest that all the neutral hydrogen within the molecular cloud surrounding the GRB has been ionised.

So whereas \(N_{H/I} \) will probe the host galaxy ISM outside of the molecular cloud, \(N_{H,X} \) will, in addition, probe the gas within the molecular cloud, where densities of partially ionised oxygen and other medium weight metals remain relatively high. These differences in the gas probed by \(N_{H/I} \) and \(N_{H,X} \) measurements provide information on the conditions of the environment at varying radii from the GRB. Having compared \(A_{V} \) to \(N_{H,X} \), we now look at the relation between \(A_{V} \) and \(N_{H/I} \) to investigate the relative location of the regions of dust and gas probed by these two measurements.

We took \(N_{H/I} \) values reported in the literature for all GRBs that overlapped with our sample (Jakobsson et al. 2006 and references therein), of which there are eight (see Table 3). Fig. 9 shows \(A_{V} \) from the SMC (top panel), LMC (middle panel) and MW (bottom panel) spectral model fits plotted against \(N_{H/I} \), in log – log space. The dashed line in each panel, from top to bottom, represent the \(N_{H/I}/A_{V} \) ratios for the SMC (Martin et al. 1989), LMC (Koornneef 1982; Fitzpatrick 1985) and MW (Predehl & Schmitt 1993), respectively.

For each GRB plotted in Fig. 9, \(N_{H/I} \) is typically an order of magnitude smaller than \(N_{H,X} \) as was noted in Watson et al. (2007), and the GRB \(N_{H/I}/A_{V} \) ratios span at least an order of magnitude to each side of the Milky Way and Magellanic Cloud \(N_{H/I}/A_{V} \) ratios. This is in contrast to the GRB \(N_{H,X}/A_{V} \) ratios, which were mostly larger than those of the Milky Way and Magellanic Clouds. A spearman rank test between \(N_{H/I} \) and the best-fit \(A_{V} \) from the SMC, the LMC and MW models gives the spearman coefficients 0.34, 0.25 and 0.09 respectively, indicating that there is only a weak correlation, if any, between these two parameters.

Where the GRB data points lie relative to the dashed lines in Fig. 9 is the result of two competing effects. Host galaxy metallicities that are smaller than the Magellanic Clouds, as well as any significant dust destruction caused by the GRB, will move the data points downwards, below
the dashed lines, and counteracting this effect will be the amount of photo-ionisation of hydrogen in the surrounding environment of the GRB that will move the data towards the left of Fig. 9. The mean logarithmic metallicity of those GRBs plotted in Fig. 9 with known metallicity is \(([M/H]) = -1.37 \) (i.e. 0.04 \(Z_\odot \)), which is almost 1.0 dex smaller than the SMC, in which case we would expect the majority of the data points in Fig. 9 to lie below the dashed lines. The fact that the data points are fairly evenly distributed about the dashed lines, therefore, indicates that a greater volume of gas has been photo-ionised by the GRB, thus reducing \(N_{HI} \), than the volume of dust destroyed, which reduces \(AV \). This is consistent with the analysis of high-resolution spectroscopic data, which indicates that GRBs can photo-ionise all gas within the molecular cloud surrounding the GRB [Prochaska et al. 2007; Vreeswijk et al. 2007], whereas a GRB is only expected to fully destroy dust out to a few parsecs at most [Perna & Lazazzera 2002]. The typically larger values of \(N_{H,X} \) compared to \(N_{HI} \) discussed by [Watson et al. 2007], and the distribution in \(N_{HI}/AV \) plotted in Fig. 9, therefore, suggest that measurements of \(N_{H,X} \) and \(AV \) probe regions of gas and dust within the molecular cloud, much closer to the GRB than measurements of \(N_{HI} \).

6.3 GRB host galaxies and Dwarf Irregulars

It has been noted that for a large range of galaxy types, the gas-to-dust ratio of galaxies is inversely proportional to the metallicity, down to the most metal-poor systems (Draine et al. 2007). The range in column density to extinction ratio in GRB host galaxies may, therefore, be accounted for if those host galaxies with lower metallicities have larger \(N_{H,X}/AV \) ratios. Evidence of such a correlation in our GRB sample is indicated in Fig. 9. Here we have plotted \(N_{H,X}/AV \) against the host metallicity, \([M/H]\), for a subsample of GRBs (solid circles) that have an estimate of the host metallicity as well as a host galaxy soft X-ray absorption system and/or a dust extinction system detected with 90% confidence. The top, middle and bottom panels show the \(N_{H,X}/AV \) ratios determined from the SMC, LMC and MW spectral model fits, respectively. Those GRBs in our sample with host metallicity measurements are listed in Table 3 along with their metallicity and corresponding reference. Although listed in Table 3, GRB 060206 and GRB 060526 are not included in Fig. 9 since they only have upper limits for both \(N_{H,X} \) and \(AV \). The open circles in Fig. 9 correspond to the SMC, LMC and Milky Way from left to right, respectively.

If very low metallicities are the over-riding reason that GRB host galaxies typically have larger \(N_{H,X}/AV \) ratios than the Magellanic Clouds and Milky Way, then there should be a correlation between the metallicity and \(N_{H,X}/AV \) ratio for the combined sample of GRB host galaxies and other, more metal-rich galaxies. A spearman rank test between the \(N_{H,X}/AV \) ratio and the metallicity, \([M/H]\), for the four GRBs shown in Fig. 9 together with the SMC, LMC and MW data points gives a coefficient of -0.89 with 90% confidence for each of the spectral models. This indicates a strong anti-correlation with a high level of significance. The dashed line in each panel is the best-fit power-law to the data.

It such a correlation is confirmed in the future with a greater sample of GRB host galaxies with a measured metallicity and \(N_{H,X}/AV \) ratios, this would imply that low-metallicity galaxies are less efficient at forming dust from their metals than high-metallicity galaxies. One possible cause of this is an increase in supernovae dust destruction efficiencies in low metallicity environments, resulting from intermittent periods of star formation [Hirashita et al. 2002].

Table 3. Subsample of GRBs with \(N_{HI} \) and metallicity, \([M/H]\), measurements available in the literature.

GRB	\(\log N_{HI} \)	\([M/H]\)
050319	20.9 ± 0.2	
050730	22.1 ± 0.1	-2.26±0.14
050820A	21.1 ± 0.1	-0.63±0.11
050922C	21.6 ± 0.1	-2.03±0.14
060124	18.5 ± 0.5	
060206	20.9 ± 0.1	-0.85±0.18
060418	-	-1.65±1.00
060526	20.0 ± 0.2	-1.09±0.24
060607A	< 19.5	
070114	21.80 ± 0.10	
070110	21.70 ± 0.10	
070411	19.30 ± 0.30	

1 Jakobsson et al. (2006a)
2 Fynbo et al. (2009)
3 Prochaska et al. (2007)
4 Thone et al. (2008)
for a subsample of five GRBs (solid circles) with a soft X-ray absorption system and/or dust extinction system detected with 90% confidence.

7 SUMMARY & CONCLUSIONS

In this paper we have presented the results from the spectral analysis of 28 GRB SEDs. We measured the equivalent neutral hydrogen column density and visual extinction at the host galaxy, and found 79% of the GRBs in our sample to have a detectable soft X-ray absorption system and/or dust extinction system detected with 90% confidence. The $N_{\text{H},X}$ and A_V values are the best-fit parameters from the SMC (top), LMC (middle), and MW (bottom) spectral fits. Open circles correspond to the SMC, LMC and Milky Way from left to right, respectively. The dashed line is the line of best fit to the SMC, LMC, Milky Way, and the four GRBs with a soft X-ray absorption and dust extinction system detected with 90% confidence.

Figure 10. Host galaxy $N_{\text{H},X}/A_V$ against metallicity, $[M/H]$, for a subsample of five GRBs (solid circles) with $[M/H]$ values available from the literature (see Table 3 and a soft X-ray absorption system and/or dust extinction system detected with 90% confidence. The $N_{\text{H},X}$ and A_V values are the best-fit parameters from the SMC (top), LMC (middle), and MW (bottom) spectral fits. Open circles correspond to the SMC, LMC and Milky Way from left to right, respectively. The dashed line is the line of best fit to the SMC, LMC, Milky Way, and the four GRBs with a soft X-ray absorption and dust extinction system detected with 90% confidence.

There is no evidence to suggest that the large host galaxy $N_{\text{H},X}/A_V$ ratios measured in our GRB sample is the result of any systematic error in the way that we measure A_V. One possibility is that dust destruction by the GRB has reduced the visual extinction, A_V, relative to the equivalent neutral hydrogen column density, $N_{\text{H},X}$. However, there are currently no observations that clearly show the early time colour evolution expected from dust destruction. Although such observations are limited by the quality and promptness of the data, we also found that the majority of our sample had host dust properties best-fit by the UV steep, SMC extinction law, indicating an abundance of small dust grains in the GRB surrounding environment. In the event of a significant phase of dust destruction, a grey extinction law should be observed, where the differential change in extinction from UV to NIR energy bands is small. The dust probed by our A_V measurements must, therefore, lie in regions of the GRB host galaxy that have not been subjected to significant amounts of dust destruction.

For a subset of eight GRBs we were also able to study how the neutral hydrogen column density, N_{HI}, compared with A_V, and we found N_{HI}/A_V to extend to both larger and smaller values than those of the Magellanic Clouds and the Milky Way by up to an order of magnitude. The distribution in N_{HI}/A_V can be accounted for by the competing effects that alter the values of N_{HI} and A_V. Firstly, differences in the host galaxy metallicities and in the amount of dust destroyed by the GRB will affect the value of A_V. On the other hand, the value of N_{HI} will be dependent on the amount of photo-ionised hydrogen along the line-of-sight to the GRB. The mean logarithmic metallicity of the GRB sample with both N_{HI} and A_V measurements is almost 1.0 dex smaller than that of the SMC ($0.04 \ Z_\odot$), and we would therefore expect the GRB host galaxy N_{HI}/A_V ratio to be significantly smaller than the SMC N_{HI}/A_V ratio. The roughly even number of GRBs with smaller and larger N_{HI}/A_V ratios than the Magellanic Clouds and Milky Way therefore implies that the level of photo-ionised hydrogen along the line-of-sight to the GRB is greater than the fraction of dust destroyed by the GRB. This would suggest that measurements of $N_{\text{H},X}$ and A_V probe regions of dust and gas much closer to the GRB than N_{HI}.

It has been suggested that differences in the gas-to-dust ratios in galaxies of different types are correlated with the metallicity of the galaxy (e.g. Draine et al. 2007), whereby smaller metallicity systems have larger gas-to-dust ratios. From a subsample of four GRBs with measured metallicity and a soft X-ray absorption and visual extinction system detected with 90% confidence, together with the Small and Large Magellanic Clouds and Milky Way, we found a strong negative correlation between the $N_{\text{H},X}/A_V$ ratio and the metallicity, $[M/H]$. The spearman rank coefficient was -0.89 with 90% confidence. The large $N_{\text{H},X}/A_V$ ratios measured in GRB host galaxies could, therefore, be an indication of their very low, although broad, range of metallicities. A greater sample of GRB hosts with measured metallicities are needed to verify such a correlation, which if confirmed would suggest that low-metallicity environments are less efficient at forming dust from their metals than high-metallicity galaxies.

ACKNOWLEDGEMENTS

We thank the anonymous referee for very helpful comments that have improved the quality of this paper, and we also gratefully acknowledge the contribution of all members of the Swift team. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), the UK Swift Science Data Centre at the University of Leicester, and the Leicester Data base and Archive Service (LEDAS), provided by NASAs Goddard Space Flight Center and the Depart-
REFERENCES

Akerlof, C. W., & Swan, H. F. 2007, ApJ, 671, 1868
Alatalo, K., Perley, D., & Bloom, J. S. 2006, GCN 4702, Andreev, M., & Pozanenko, A. 2005, GCN 4016
Antonelli, L. A., et al. 2006, GCN 5546
Antonelli, L. A., et al. 2008, GCN 8239
Asfandyarov, I., Pozanenko, A., & Ibrahimov, M. 2006, GCN 5434
Baliyan, K. S., Ganesh, S., Vats, H. O., & Jain, J. K. 2006, GCN 5185
Berger, E., & Mulchaey, J. 2005, GCN 3122
Berger, E., Fox, D. B., & Cucchiara, A. 2007, GCN 6470
Berger, E., & Gladders, M. 2006, GCN 5170
Bessell, M. S. 1990, P ASP, 102, 1181
Bessell, M. S. 1998, A&A, 333, 231
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Bloom, J. S., Foley, R. J., Koceveki, D., & Perley, D. 2006, GCN 5171
Bloom, J. S., Blake, C. H., Starr, D., & Alatalo, K. 2005, GCN 4216
Bloom, J. S., Foley, R. J., Koceveki, D., & Perley, D. 2006, GCN 5217
Bloom, J. S., Perley, D. A., & Chen, H. W. 2006, GCN 5826
Burrows, D. N., et al. 2005a, Space Sci. Rev., 120, 165
Butler, N. R., & Kocevski, D. 2007, ApJ, 663, 407
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Campana, S., et al. 2006, Nature, 442, 1008
Campana, S., et al. 2006b, A&A, 449, 61
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cenko, S. B., et al. 2006, ApJ, 652, 490
Cenko, S. B., Ofek, E. O., & Fox, D. B. 2006, GCN 5048
Cenko, S. B. 2006a, GCN 5125
Cenko, S. B. 2006b, GCN 5844
Cobb, B. E., & Bailyn, C. D. 2005, GCN 3506
Cobb, B. E. 2006a, GCN 4972
Cobb, B. E. 2006b, GCN 5180
Cobb, B. E. 2006c, GCN 5878
Cobb, B. E., & Bailyn, C. D. 2006, GCN 5525
Cohen, M., Walker, R. G., Barlow, M. J., & Deacon, J. R. 1992a, AJ, 104, 1650
Cohen, M., Walker, R. G., & Witteborn, F. C. 1992b, AJ, 104, 2030
Covino, S., Israel, G. L., Ghinassi, F., & Pinilla, N. 2006, GCN 5167
Cucchiara, A., Price, P. A., Fox, D. B., Cenko, S. B., & Schmidt, B. P. 2006, GCN 5052
Curran, P. A., et al. 2007, MNRAS, 381, L65
Dai, X., Halpern, J. P., Morgan, N. D., Armstrong, E., Mirabal, N., Haislip, J. B., Reichart, D. E., & Stanek, K. Z. 2007, ApJ, 658, 509
D’Elia, V., et al. 2005, GCN 4044
D’Elia, V., et al. 2007, A&A, 467, 629
Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89
Draine, B. T., et al. 2007, ApJ, 663, 866
Dupree, A. K., Falco, E., Prochaska, J. X., Chen, H.-W., & Bloom, J. S. 2006, GCN 4969
Durig, D. T., & Price, A. 2005, GCN 4023
Eliasdottir, A., et al. 2009, ApJ, 697, 1725
Ellison, S. L., et al. 2006, MNRAS, 372, L38
Evans, P. A., et al. 2009, MNRAS, 397, 1177
Falcke, H. M., et al. 2007, ApJ, 671, 1921
Ferrero, P., et al. 2006, GCN 5489
Fitzpatrick, E. L. 1985, ApJ, 299, 219
Flasher, J., et al. 2005, GCN 3567
Foley, R. J., Chen, H.-W., Bloom, J., & Prochaska, J. X. 2005, GCN 3483
Fox, D. B., Frail, D. A., Cameron, P. B., & Cenko, S. B. 2005, GCN 3585
Fruchter, A., Kroll, J. H., & Rhoads, J. E. 2001, ApJ, 563, 597
Fugazza, D., et al. 2006, GCN 5513
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Fynbo, J. P. U., Hjorth, J., Jensen, B. L., Jakobsson, P., Møller, P., & Naranan, J. 2005, GCN 3136
Fynbo, J. P. U., et al. 2005, GCN 3749
Fynbo, J. P. U., et al. 2009, submitted to ApJS (arXiv:0907.3449)
Galama, T. J., & Wijers, R. A. M. J. 2001, ApJ 549, L209
Gehrels, N., et al. 2004, ApJ, 611, 1005
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff, M. J. 2003, ApJ, 594, 279
Greco, G., et al. 2006, GCN 5171
Grupé, D., Nousek, J. A., vanden Berk, D. E., Roming, P. W. A., Burrows, D. N., Godet, O., Osborne, J., & Gehrels, N. 2007, AJ, 133, 2216
Hearty, F., et al. 2006, GCN 5126
Henych, T., Kocka, M., Hroch, F., Jelinek, M., & Hudec, R. 2005, GCN 4026
Hirashita, H., Tajiri, Y. Y., & Kamaya, H. 2002, A&A, 388, 439
Homewood, A., Hartmann, D. H., Garimella, K., Hanson, G., McLaughlin, J., & Brimeyer, A. 2005, GCN 3491
Huang, F. Y., Huang, K. Y., Ip, W. H., Urama, Y., Qiu, Y., & Lou, Y. Q. 2005, GCN 4230
Huang, K. Y., et al. 2007, ApJ, 654, L25
Jakobsson, P., Fynbo, J. P. U., Paraficz, D., Teltig, J., Jensen, B. L., Hjorth, J., & Castro Cerón, J. M. 2005a, GCN 4029
Jakobsson, P., Paraficz, D., Teltig, J., Fynbo, J. P. U., Jensen, B. L., Hjorth, J., & Castro Cerón, J. M. 2005b, GCN 4015
Jakobsson, P., et al. 2006a, A&A, 460, L13
Jakobsson, P., Fynbo, J. P. U., Tankvir, N., & Rol, E. 2006b, GCN 5716
Jakobsson, P., Levan, A., Chapman, R., Rol, E., Tankvir, N., Vreeswijk, P., & Watson, D. 2006c, GCN 5617
Jakobsson, P., Vreeswijk, P., Fynbo, J. P. U., Hjorth, J., Starling, R., Kann, D. A., & Hartmann, D. 2006d, GCN 5320
Jakobsson, P., Malesani, D., Thoene, C. C., Fynbo, J. P. U., Hjorth, J., Jaunsen, A. O., Andersen, M. I., & Vreeswijk, P. M. 2007, GCN 6283
Jaunsen, A. O., Fynbo, J. P. U., Andersen, M. I., & Vreeswijk, P. 2007, GCN 6216
Jaunsen, A. O., Malesani, D., Fynbo, J. P. U., Sollerman, J., & Vreeswijk, P. M. 2007, GCN 6010
Jelinek, M., et al. 2005, GCN 4227
Kamble, A., Resmi, L., & Misra, K. 2007, ApJ, 664, L5
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arna, E. M., Bajaja, E., Morris, R., Pömmelpe, W. G. L. 2005, A&A, 440, 775
Kann, D. A., Klose, S., & Zeh, A. 2006, ApJ, 641, 993
Kann, D. A., Laux, U., Klose, S., Meusinger, H., Schulze, S., & Greiner, J. 2007, GCN 6295
Karska, A., & Garnavich, P. 2006, GCN 5260
Khamitov, I., et al. 2006a, GCN 5173
Khamitov, I., et al. 2006b, GCN 5235
Khamitov, I., et al. 2006c, GCN 5224
Kinugasa, K., & Torii, K. 2005, GCN 4295
Klose, S., et al. 2000, ApJ, 545, 271
Koornneef, J. 1982, A&A, 107, 247
Koppelman, M. 2006, GRB Coordinates Network, 4977, 1
Koornneef, J. A., et al. 2006, ApJ, 642, 389
Koornneef, J. A., et al. 2007, ApJ, 660, 489
Koornneef, J. A., et al. 2006, GRB Coordinates Network, 5237, 1
Koornneef, J. A., et al. 2005, GRB Coordinates Network, 3744, 1
Koornneef, J. A., et al. 2005, GRB Coordinates Network, 4273, 1
Pei, Y. C. 1992, ApJ, 395, 130
Perley, D. A., et al. 2008, ApJ, 672, 449
Perley, D. A., et al. 2009, submitted to AJ (arXiv:0905.0001)
Perley, D. A., et al. 2009, submitted to AJ (arXiv:0905.0001)
Perna, R., & Lazzati, D. (PL02) 2002, ApJ, 580, 261
Perna, R., Lazzati, D., & Fiore, F. 2003, ApJ, 585, 775
Piranomonte, S., et al. 2005, GRB Coordinates Network, 4032, 1
Piranomonte, S., et al. 2008, A&A, 492, 775
Poon, T. S., et al. 2008, MNRAS, 383, 627
Predelli, P., & Schmitt, J. H. M. M. 1995, A&A, 293, 889
Prochaska, J. X., Chen, H.-W., & Bloom, J. S. 2006, ApJ 648, 95
Prochaska, J. X., Foley, R., Tran, H., Bloom, J. S., & Chen, H.-W. 2006, GRB Coordinates Network, 4593, 1
Prochaska, J. X., Wong, D. S., Park, S.-H., Filippenko, A. V., Foley, R. J., & Li, W. 2006, GRB Coordinates Network, 4701, 1
Prochaska, J. X., Chen, H.-W., Dessauges-Zavadsky, M., & Bloom, J. S. 2007, ApJ, 666, 267
Prochaska, J. X., et al. 2009, ApJ, 691, L27
Prymak, N., Kanbach, G., Steinle, H., Stefancescu, A., Dusch, S., Schrey, F., & Muehlegger, M. 2006, GRB Coordinates Network, 5541, 1
Quinby, R., & Rykov, E. S. 2006, GRB Coordinates Network, 5377, 1
Quinby, R., Fox, D., Hoeflich, P., Roman, B., & Wheeler, J. C. 2005, GRB Coordinates Network, 4221, 1
Reichart, D. E., & Price, P. A. 2002, ApJ, 565, 174
Rol, E., Jakobsson, P., Tanvir, N., & Levan, A. 2006, GRB Coordinates Network, 5555, 1
Roming, P. W. A., et al. 2005, Space Sci. Rev, 120, 95
Rosenberg, J., Garnavich, P. 2005, GCN 3471, 1
Rumyantsev, V., Pozanenko, A., Ibrahimov, M., & Asfandiyarov, I. 2006, GRB Coordinates Network, 5306, 1
Salgado, C., & McDavid, D. 2008, Bulletin of the American Astronomical Society, 40, 221
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
Savaglio, S., Fall, S. M., & Fiore, F. 2003, ApJ, 585, 638
Savaglio, S., & Fall, S. M. 2004, ApJ, 614, 293
Savaglio, S., Glazebrook, K., & Le Borgne, D. 2009, ApJ, 691, 182
Schady, P., et al. 2007, MNRAS, 377, 273
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sharapov, D., Djupvik, A., Pozanenko, A., & Cummings, J. 2006, GRB Coordinates Network, 5267, 1
Sharapov, D., Augusteijn, T., & Pozanenko, A. 2006, GRB Coordinates Network, 5263, 1
Skvarec, J. 2006, GRB Coordinates Network, 5511, 1
Smith, R., Melandri, A., Gomboc, A., & Bersier, D. 2006, GRB Coordinates Network, 5857, 1
Stanek, K. Z., et al. 2007, ApJ, 654, L21
Starling, R. L. C., et al. 2005, A&A, 442, L21
Starling, R. L. C., Wijers, R. A. M. J., Wiersema, K., et al. 2006, GRB Coordinates Network, 5857, 1
Staneck, K. Z., et al. 2007, ApJ, 654, L21
Stratta, G., Fiore, F., Antonelli, L. A., Polo, L., & De
Pasquale, M. 2004, ApJ, 608, 846
Stratta, G., Perna, R., Lazzati, D., Fiore, F., Antonelli, L. A., & Conciatore, M. L. 2005, A&A, 441, 83
Tanaka, I., Kawai, N., Tokoku, C., Akiyama, M., Ichikawa, T., Koyano, T., Yoshikawa, T., & Konishi, M. 2006, GRB Coordinates Network, 5129, 1
Terra, F., et al. 2006, GRB Coordinates Network, 5192, 1
Thoene, C. C., et al. 2006, GRB Coordinates Network, 5373, 1
Thoene, C. C., et al. 2008, submitted to A&A (arXiv:0806.1182)
Todini, P., & Ferrara, A. 2001, MNRAS, 325, 726
Torii, K. 2005, GRB Coordinates Network, 4219, 1
Torii, K. 2006a, GRB Coordinates Network, 5845, 1
Torii, K. 2006b, GRB Coordinates Network, 5868, 1
Uemura, M., Arai, A., & Uehara, T. 2006, GRB Coordinates Network, 5828, 1
Vergani, S. D., Molinari, E., Zerbi, F. M., & Chincarini, G. 2004, A&A, 415, 171
Vreeswijk, P. M., et al. 2007, A&A, 468, 83
Watson, D., et al. 2006, ApJ, 652, 1011
Watson, D., Hjorth, J., Fynbo, J. P. U., Jakobsson, P., Foley, S., Sollerman, J., & Wijers, R. A. M. J. 2007, ApJ, 660, L101
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296
Wiersma, K., Thoene, C. C., & Rol, E. 2006, GRB Coordinates Network, 5552, 1
Williams, G. G., & Milne, P. A. 2006, GRB Coordinates Network, 5869, 1
Wood, P. R., Habing, H. J., & McGregor, P. J. 1998, A&A, 336, 925
Woosley, S. E. 1993, ApJ, 405, 273
Woźniak, P. R., Vestrand, W. T., Wren, J. A., White, R. R., Evans, S. M., & Casperson, D. 2005, ApJ, 627, L13
Woźniak, P. R., Vestrand, W. T., Wren, J. A., White, R. R., Evans, S. M., & Casperson, D. 2006, ApJ, 642, L99
Yanagisawa, K., Toda, H., & Kawai, N. 2005, GRB Coordinates Network, 3489, 1
Zerbi, F. M., et al. 2004, SPIE, 5492, 1590
Zhai, M., Qiu, Y. L., Wei, J. Y., Hu, J. Y., Deng, J. S., & Zheng, W. K. 2006, GRB Coordinates Network, 5230, 1
Table 4. Results from simultaneous UV/optical and X-ray spectral fits for the SMC, LMC and MW dust-extinction law models, for both a power-law (pow) and a broken power-law (bknp) continuum. The third and fourth columns give the host galaxy equivalent column density and visual extinction, the fifth column gives the break energy for the broken power-law spectral models, the χ^2 and degree of freedom (dof) of the fit are given in the sixth column, and the seventh gives the null hypothesis probability.

GRB	Model	$N_{H, X}$ $^{10^{21}}$ cm$^{-2}$	A_V (mag)	E_{bk} (Hz)	χ^2 (dof)	Null Hypothesis Probability
050318	SMC/pow	1.40 ± 0.42	0.53 ± 0.06	-	108 (88)	0.068
	LMC/pow	1.91 ± 0.49	0.78 ± 0.09	-	113 (88)	0.039
	MW/pow	1.67 ± 0.49	0.88 ± 0.13	-	147 (88)	8.3e-05
	SMC/bknp	1.41 ± 0.43	0.54 ± 0.04	8.616	108 (87)	0.059
	LMC/bknp	1.92 ± 0.36	0.79 ± 0.09	8.971	113 (87)	0.034
	MW/bknp	1.67 ± 0.52	0.88 ± 0.12	9.158	147 (87)	6.2e-05
050319	SMC/pow	<3.40	0.07 ± 0.04	-	81 (80)	0.448
	LMC/pow	<4.36	0.12 ± 0.05	-	80 (80)	0.492
	MW/pow	<5.2	0.21 ± 0.08	-	77 (80)	0.588
	SMC/bknp	<4.16	<0.09	2.541	71 (79)	0.714
	LMC/bknp	<4.45	<0.21	2.566	71 (79)	0.722
	MW/bknp	<5.01	<0.35	2.636	70 (79)	0.755
050525A	SMC/pow	2.25 ± 0.41	0.06 ± 0.01	-	50 (37)	0.069
	LMC/pow	2.24 ± 0.41	0.07 ± 0.02	-	56 (37)	0.024
	MW/pow	2.15 ± 0.36	0.06 ± 0.02	-	68 (37)	0.001
	SMC/bknp	2.96 ± 0.48	0.16 ± 0.02	0.017	46 (36)	0.119
	LMC/bknp	3.12 ± 0.53	0.21 ± 0.03	0.022	57 (36)	0.014
	MW/bknp	3.82 ± 0.73	0.10 ± 0.04	0.724	84 (36)	1.0e-05
050730	SMC/pow	14.88 ± 2.26	0.16 ± 0.03	-	163 (133)	0.040
	LMC/pow	15.51 ± 2.31	0.22 ± 0.03	-	163 (133)	0.039
	MW/pow	16.26 ± 2.38	0.30 ± 0.05	-	164 (133)	0.036
	SMC/bknp	17.79 ± 2.35	0.23 ± 0.02	0.001	159 (132)	0.055
	LMC/bknp	18.31 ± 2.48	0.31 ± 0.03	0.001	159 (132)	0.053
	MW/bknp	18.14 ± 2.45	0.39 ± 0.04	0.001	160 (132)	0.047
050802	SMC/pow	1.28 ± 0.59	0.06 ± 0.02	-	90 (69)	0.043
	LMC/pow	1.43 ± 0.56	0.10 ± 0.03	-	89 (69)	0.056
	MW/pow	1.74 ± 0.60	0.19 ± 0.06	-	84 (69)	0.101
	SMC/bknp	1.56 ± 0.58	0.05 ± 0.01	3.150	81 (68)	0.138
	LMC/bknp	1.67 ± 0.59	0.08 ± 0.02	3.168	80 (68)	0.155
	MW/bknp	1.89 ± 0.63	0.15 ± 0.02	3.233	77 (68)	0.212
050820A	SMC/pow	<0.46	0.18 ± 0.01	-	224 (139)	6.2e-06
	LMC/pow	<0.67	0.29 ± 0.03	-	208 (139)	1.3e-04
	MW/pow	<1.45	0.43 ± 0.04	-	193 (139)	0.002
	SMC/bknp	5.07 ± 1.25	0.14 ± 0.03	0.209	144 (138)	0.350
	LMC/bknp	5.04 ± 1.21	0.23 ± 0.04	0.143	142 (138)	0.386
	MW/bknp	5.35 ± 1.19	0.32 ± 0.06	0.139	143 (138)	0.365
050922C	SMC/pow	1.62 ± 0.89	0.07 ± 0.02	-	36 (48)	0.902
	LMC/pow	1.73 ± 0.96	0.11 ± 0.03	-	35 (48)	0.915
	MW/pow	1.85 ± 0.92	0.16 ± 0.05	-	35 (48)	0.925
	SMC/bknp	3.03 ± 1.56	0.14 ± 0.02	0.005	34 (47)	0.915
	LMC/bknp	3.13 ± 1.58	0.21 ± 0.04	0.005	34 (47)	0.926
	MW/bknp	3.58 ± 1.31	0.28 ± 0.06	0.007	37 (47)	0.851
Table 4. Continued

GRB	Model	$N_{H, x}$ 10^{21} cm$^{-2}$	A_V (mag)	E_{bb} (Hz)	χ^2 (dof)	Null Hypothesis Probability
051109A	SMC/pow	< 3.64	< 0.14	-	239 (145)	1.3e-06
	LMC/pow	< 3.64	< 0.19	-	239 (145)	1.3e-06
	MW/pow	< 3.64	< 0.25	-	239 (145)	1.3e-06
	SMC/bkn	8.71$^{+ 1.58}_{- 1.46}$	< 0.10	0.090	162 (144)	0.141
	LMC/bkn	8.75$^{+ 1.59}_{- 1.55}$	< 0.13	0.092	162 (144)	0.141
	MW/bkn	8.80$^{+ 1.55}_{- 1.55}$	< 0.17	0.096	162 (144)	0.140
060124	SMC/pow	2.60$^{+ 0.87}_{- 0.92}$	0.08 ± 0.03	-	182 (115)	6.6e-05
	LMC/pow	3.24$^{+ 0.86}_{- 1.13}$	0.17 ± 0.04	-	174 (115)	3.0e-04
	MW/pow	5.83$^{+ 1.02}_{- 1.02}$	0.56$^{+ 0.05}_{- 0.05}$	-	144 (115)	0.034
	SMC/bkn	9.41$^{+ 1.37}_{- 1.37}$	0.13$^{+ 0.04}_{- 0.04}$	0.233	116 (114)	0.439
	LMC/bkn	9.39$^{+ 1.35}_{- 1.34}$	0.22$^{+ 0.06}_{- 0.06}$	0.156	114 (114)	0.483
	MW/bkn	9.68$^{+ 1.34}_{- 1.31}$	0.52$^{+ 0.13}_{- 0.13}$	0.060	113 (114)	0.498
060206	SMC/pow	< 6.72	< 0.04	-	97 (53)	2.0e-04
	LMC/pow	< 6.72	< 0.05	-	97 (53)	2.0e-04
	MW/pow	< 6.72	< 0.05	-	97 (53)	2.0e-04
	SMC/bkn	13.65$^{+ 3.38}_{- 2.79}$	< 0.18	0.618	60 (52)	0.218
	LMC/bkn	14.06$^{+ 2.95}_{- 2.92}$	< 0.05	0.604	60 (52)	0.218
	MW/bkn	13.69$^{+ 3.35}_{- 2.83}$	< 0.22	0.617	60 (52)	0.218
060418	SMC/pow	3.60$^{+ 1.83}_{- 1.46}$	< 0.06	-	41 (24)	0.017
	LMC/pow	3.53$^{+ 1.82}_{- 1.46}$	< 0.09	-	42 (24)	0.014
	MW/pow	3.44$^{+ 1.80}_{- 1.44}$	< 0.10	-	42 (24)	0.013
	SMC/bkn	4.02$^{+ 2.12}_{- 1.34}$	0.09$^{+ 0.01}_{- 0.01}$	0.002	21 (23)	0.591
	LMC/bkn	4.24$^{+ 2.17}_{- 1.36}$	0.12$^{+ 0.02}_{- 0.02}$	0.001	23 (23)	0.461
	MW/bkn	3.65$^{+ 1.33}_{- 1.21}$	0.08$^{+ 0.01}_{- 0.01}$	0.001	29 (23)	0.186
060502A	SMC/pow	3.42$^{+ 0.90}_{- 0.90}$	0.51$^{+ 0.12}_{- 0.10}$	-	33 (31)	0.368
	LMC/pow	4.03$^{+ 0.86}_{- 1.01}$	0.74$^{+ 0.14}_{- 0.13}$	-	35 (31)	0.299
	MW/pow	3.88$^{+ 0.93}_{- 1.03}$	0.79$^{+ 0.18}_{- 0.17}$	-	55 (31)	0.005
	SMC/bkn	5.07$^{+ 1.24}_{- 1.33}$	0.50$^{+ 0.10}_{- 0.13}$	0.031	30 (30)	0.467
	LMC/bkn	4.10$^{+ 0.66}_{- 1.03}$	0.76$^{+ 0.14}_{- 0.16}$	0.002	34 (30)	0.297
	MW/bkn	6.18$^{+ 1.48}_{- 1.30}$	0.50$^{+ 0.19}_{- 0.26}$	0.432	57 (30)	0.002
060512	SMC/pow	< 0.85	0.47 ± 0.05	-	84 (23)	7.4e-09
	LMC/pow	< 0.85	0.56 ± 0.06	-	99 (23)	2.1e-11
	MW/pow	< 0.82	0.67 ± 0.08	-	122 (23)	2.0e-15
	SMC/bkn	< 1.74	0.66 ± 0.09	0.007	77 (22)	4.8e-08
	LMC/bkn	< 1.79	0.79 ± 0.13	0.011	99 (22)	1.0e-11
	MW/bkn	< 2.03	0.95 ± 0.15	0.015	131 (22)	2.1e-17
060526	SMC/pow	< 45.39	< 0.07	-	9 (8)	0.344
	LMC/pow	< 45.61	< 0.10	-	9 (8)	0.344
	MW/pow	< 45.67	< 0.21	-	9 (8)	0.345
	SMC/bkn	< 47.14	< 0.16	0.002	7 (7)	0.476
	LMC/bkn	13.23$^{+ 12.85}_{- 7.69}$	0.10 ± 0.04	0.002	6 (7)	0.486
	MW/bkn	14.69$^{+ 11.18}_{- 8.45}$	0.18$^{+ 0.06}_{- 0.09}$	0.002	6 (7)	0.554
Table 4. Continued

GRB	Model	$N_{H, X}$ (1021 cm$^{-2}$)	A_V (mag)	E_{bk} (Hz)	χ^2 (dof)	Null Hypothesis Probability	
060605	SMC/pow	7.80\pm2.70	0.25$^{+0.06}_{-0.07}$	-	62 (68)	0.670	
	LMC/pow	7.79\pm3.74	0.32$^{+0.07}_{-0.07}$	-	62 (68)	0.673	
	MW/pow	6.47\pm2.64	0.35$^{+0.08}_{-0.08}$	-	63 (68)	0.662	
	SMC/bknp	7.70\pm2.73	0.24$^{+0.06}_{-0.06}$	4.892	62 (67)	0.662	
	LMC/bknp	7.61\pm2.72	0.31$^{+0.07}_{-0.09}$	4.971	62 (67)	0.664	
	MW/bknp	6.13\pm2.53	0.31$^{+0.10}_{-0.09}$	3.947	62 (67)	0.666	
060607A	SMC/pow	6.19\pm1.79	< 0.15	-	116 (117)	0.506	
	LMC/pow	6.16\pm1.83	< 0.21	-	116 (117)	0.499	
	MW/pow	5.96\pm1.82	< 0.26	-	117 (117)	0.489	
	SMC/bknp	6.27\pm1.58	< 0.11	9.787	116 (116)	0.479	
	LMC/bknp	6.22\pm1.61	< 0.14	9.786	116 (116)	0.472	
	MW/bknp	6.04\pm1.61	< 0.14	9.832	117 (116)	0.462	
060714	SMC/pow	5.98\pm4.03	0.46$^{+0.17}_{-0.17}$	-	20 (17)	0.284	
	LMC/pow	6.48\pm4.41	0.64$^{+0.26}_{-0.23}$	-	20 (17)	0.268	
	MW/pow	< 20.04	0.79$^{+0.39}_{-0.35}$	-	22 (17)	0.196	
	SMC/bknp	< 17.07	< 0.91	2.341	19 (16)	0.283	
	LMC/bknp	< 17.86	< 1.28	2.241	19 (16)	0.261	
	MW/bknp	< 16.87	< 1.66	2.121	20 (16)	0.211	
060729	SMC/pow	0.80\pm0.09	0.03\pm0.01	-	184 (178)	0.367	
	LMC/pow	0.82\pm0.09	0.04\pm0.02	-	183 (178)	0.373	
	MW/pow	0.83$^{+0.10}_{-0.09}$	0.06\pm0.03	-	184 (178)	0.354	
	SMC/bknp	1.09$^{+0.13}_{-0.11}$	0.13$^{+0.01}_{-0.01}$	0.006	176 (177)	0.496	
	LMC/bknp	1.10$^{+0.14}_{-0.13}$	0.18$^{+0.03}_{-0.02}$	0.006	178 (177)	0.465	
	MW/bknp	0.97$^{+0.09}_{-0.12}$	0.15$^{+0.03}_{-0.05}$	0.004	179 (177)	0.453	
060904B	SMC/pow	1.84$^{+0.41}_{-0.37}$	0.06\pm0.02	-	83 (46)	7.3e-04	
	LMC/pow	1.85$^{+0.41}_{-0.37}$	0.08\pm0.03	-	83 (46)	6.3e-04	
	MW/pow	1.84$^{+0.41}_{-0.37}$	0.09\pm0.04	-	85 (46)	3.7e-04	
	SMC/bknp	3.72$^{+0.66}_{-0.76}$	0.12$^{+0.05}_{-0.06}$	0.174	74 (45)	0.004	
	LMC/bknp	3.65$^{+0.74}_{-0.69}$	0.17\pm0.06	0.129	75 (45)	0.003	
	MW/bknp	4.05$^{+0.57}_{-0.68}$	0.14$^{+0.08}_{-0.07}$	0.392	80 (45)	0.001	
060908	SMC/pow	< 8.74	< 0.17	-	15 (8)	0.061	
	LMC/pow	< 8.95	< 0.38	-	15 (8)	0.060	
	MW/pow	< 8.71	< 0.22	-	15 (8)	0.061	
	SMC/bknp	< 25.95	< 0.21	1.287	12 (7)	0.111	
	LMC/bknp	< 13.77	< 0.26	1.212	12 (7)	0.109	
	MW/bknp	< 25.82	< 0.18	1.288	12 (7)	0.111	
060912	SMC/pow	3.23$^{+0.58}_{-0.52}$	0.44$^{+0.12}_{-0.10}$	-	60 (42)	0.037	
	LMC/pow	3.52$^{+0.66}_{-0.52}$	0.62$^{+0.15}_{-0.14}$	-	59 (42)	0.040	
	MW/pow	3.74$^{+0.72}_{-0.65}$	0.81$^{+0.19}_{-0.18}$	-	61 (42)	0.027	
	SMC/bknp	3.23$^{+0.59}_{-0.52}$	0.44$^{+0.10}_{-0.11}$	-	5.975	60 (41)	0.029
	LMC/bknp	3.53$^{+0.62}_{-0.52}$	0.62$^{+0.06}_{-0.08}$	8.717	59 (41)	0.031	
	MW/bknp	3.70$^{+0.60}_{-0.42}$	0.82$^{+0.07}_{-0.19}$	7.695	61 (41)	0.021	
Table 4. Continued

GRB	Model	\(N_{H,X}\) \(10^{21}\) cm\(^{-2}\)	\(A_V\) (mag)	\(E_{bb}\) (Hz)	\(\chi^2\) (dof)	Null Hypothesis Probability
061007	SMC/pow	\(4.58^{+0.19}_{-0.18}\)	0.45 ± 0.01	-	380 (274)	2.2e-05
	LMC/pow	\(5.41^{+0.29}_{-0.26}\)	0.75 ± 0.02	-	325 (274)	0.019
	MW/pow	\(6.82 \pm 0.23\)	1.26 ± 0.03	-	1157 (274)	0.0e+00
	SMC/bknp	\(5.10^{+0.19}_{-0.23}\)	0.53^{+0.01}_{-0.01}	0.004	337 (273)	0.005
	LMC/bknp	\(5.74 \pm 0.21\)	0.82^{+0.01}_{-0.03}	0.003	315 (273)	0.004
	MW/bknp	\(6.70 \pm 0.26\)	1.26 ± 0.03	9.992	1157 (273)	0.0e+00
061121	SMC/pow	\(3.64^{+0.43}_{-0.40}\)	0.34 ± 0.03	-	176 (131)	0.005
	LMC/pow	\(4.04^{+0.34}_{-0.30}\)	0.49 ± 0.04	-	167 (131)	0.018
	MW/pow	\(4.46^{+0.47}_{-0.44}\)	0.71 ± 0.06	-	163 (131)	0.031
	SMC/bknp	\(3.87^{+0.46}_{-0.44}\)	0.28 ± 0.03	2.738	139 (130)	0.272
	LMC/bknp	\(4.13^{+0.46}_{-0.49}\)	0.40 ± 0.04	2.829	138 (130)	0.305
	MW/bknp	\(4.32^{+0.52}_{-0.49}\)	0.55 ± 0.07	2.865	139 (130)	0.270
061126	SMC/pow	\(3.14^{+0.42}_{-0.39}\)	0.13^{+0.03}_{-0.03}	-	190 (133)	8.9e-04
	LMC/pow	\(3.35^{+0.46}_{-0.44}\)	0.21^{+0.04}_{-0.04}	-	186 (133)	0.002
	MW/pow	\(3.50^{+0.47}_{-0.44}\)	0.26^{+0.06}_{-0.06}	-	186 (133)	0.002
	SMC/bknp	\(5.95^{+0.72}_{-0.67}\)	0.10 ± 0.04	0.135	144 (132)	0.225
	LMC/bknp	\(5.97^{+0.68}_{-0.73}\)	0.14^{+0.05}_{-0.07}	0.122	145 (132)	0.209
	MW/bknp	\(6.10^{+0.73}_{-0.35}\)	0.14^{+0.02}_{-0.07}	0.170	149 (132)	0.153
070110	SMC/pow	\(< 3.29\)	0.29^{+0.06}_{-0.05}	-	55 (50)	0.306
	LMC/pow	\(< 4.23\)	0.44^{+0.09}_{-0.08}	-	51 (50)	0.432
	MW/pow	\(< 5.34\)	0.64^{+0.14}_{-0.12}	-	50 (50)	0.472
	SMC/bknp	\(< 3.48\)	0.23^{+0.06}_{-0.05}	2.408	45 (49)	0.656
	LMC/bknp	\(< 4.07\)	0.34^{+0.09}_{-0.08}	2.530	44 (49)	0.692
	MW/bknp	\(< 4.69\)	0.45^{+0.14}_{-0.13}	2.828	44 (49)	0.662
070318	SMC/pow	\(8.52^{+0.84}_{-0.73}\)	0.52 ± 0.02	-	69 (44)	0.010
	LMC/pow	\(8.96 \pm 0.77\)	0.73 ± 0.03	-	94 (44)	1.5e-05
	MW/pow	\(9.49 \pm 0.81\)	1.05 ± 0.04	-	213 (44)	4.8e-24
	SMC/bknp	\(8.78^{+1.02}_{-0.65}\)	0.59^{+0.01}_{-0.06}	0.003	65 (43)	0.017
	LMC/bknp	\(9.21 \pm 1.14\)	0.82 ± 0.05	0.003	86 (43)	1.1e-04
	MW/bknp	\(9.21 \pm 1.13\)	0.82 ± 0.05	0.003	86 (43)	1.1e-04
070411	SMC/pow	\(< 32.05\)	\(< 0.21\)	-	24 (17)	0.117
	LMC/pow	\(< 31.93\)	\(< 0.30\)	-	24 (17)	0.117
	MW/pow	\(< 31.93\)	\(< 0.47\)	-	24 (17)	0.117
	SMC/bknp	\(< 32.81\)	\(< 0.20\)	5.026	24 (16)	0.089
	LMC/bknp	\(< 32.68\)	\(< 0.28\)	5.026	24 (16)	0.089
	MW/bknp	\(< 32.71\)	\(< 0.44\)	5.026	24 (16)	0.089
070529	SMC/pow	\(14.12^{+6.51}_{-6.32}\)	\(< 0.52\)	-	20 (25)	0.728
	LMC/pow	\(14.23^{+5.38}_{-5.37}\)	\(< 0.68\)	-	20 (25)	0.729
	MW/pow	\(13.76^{+6.36}_{-6.39}\)	\(< 0.84\)	-	20 (25)	0.724
	SMC/bknp	\(13.52^{+5.26}_{-5.26}\)	\(< 0.45\)	3.734	18 (24)	0.780
	LMC/bknp	\(13.61^{+5.32}_{-5.32}\)	\(< 0.58\)	3.698	18 (24)	0.780
	MW/bknp	\(13.41^{+5.12}_{-5.12}\)	\(< 0.70\)	3.713	18 (24)	0.781