Synthesis and Characterisation of Luminescent
[Cr$^{III}_2$L(μ-carboxylato)]$^{3+}$ Complexes with High-Spin $S = 3$
Ground States ($L = N_6S_2$ donor ligand)

Martin Börner, Jennifer Klose, Matias E. Gutierrez Suburu, Cristian A. Strassert,
Fangshun Yang, Kirill Yu. Monakhov, Bernd Abel, and Berthold Kersting*
Supporting Information

Contents

1. ESI MS Data for 1 and 2.
2. IR spectra for 1 and 2.
3. Molecular structure of the [Cr$^{III}_{2}$L(μ-O$_2$CPh)]$^{3+}$ cation in crystals of 2·3MeCN.
4. Magnetic susceptibility data for 1 and 2.
5. Diffuse-reflectance spectroscopy for 1 and 2.
6. Photoluminescence excitation and emission spectra for 1 and 2 at 77 K.
7. Time resolved photoluminescence decay measurements for 1 and 2 at 77 K.
8. Photoluminescence excitation and emission spectra for 1 and 2 at 298 K.
9. Time resolved photoluminescence decay measurements for 1 and 2 at 298 K.
10. Photoluminescence spectra of 1 and 2 at 298 K.
11. PLIM (phosphorescence lifetime microscopy) for complex 2.
12. Cartesian coordinates / Å of geometry optimized [Cr$^{III}_{2}$L(μ-O$_2$CMe)]$^{3+}$ (1, gas phase).
13. Cartesian coordinates / Å of geometry optimized [Cr$^{III}_{2}$L(μ-O$_2$CPh)]$^{3+}$ (2, gas phase).
14. Cartesian coordinates / Å of [Cr$^{III}_{2}$L]$^{4+}$ (1′, gas phase).
15. Cartesian coordinates / Å of [Cr$^{III}_{2}$L]$^{4+}$ (2′, gas phase).
1. ESI MS Data for 1 and 2

Figure S1. ESI(−) mass spectrum of [Cr$_{2}$(μ-O$_{2}$CMe)][ClO$_{4}$]$_{3}$ (1) in MeCN ($c \sim 10^{-3}$ M).

Figure S2. ESI(−) mass spectrum of [Cr$_{2}$(μ-O$_{2}$CPh)][ClO$_{4}$]$_{3}$ (2) in MeCN ($c \sim 10^{-3}$ M).
2. IR spectra for 1 and 2.

Figure S3. FT-IR spectrum of $\text{[Cr}^{\text{III}}_2\text{L(μ-O}_2\text{CMe)}\text{]}\text{(ClO}_4\text{)}_3$ (1, KBr pellet).

Figure S4. FT-IR spectrum of $\text{[Cr}^{\text{III}}_2\text{L(μ-O}_2\text{CPh)}\text{]}\text{(ClO}_4\text{)}_3$ (2, KBr pellet).
Figure S5. Molecular structure of the $\text{[Cr}^{III}_2\text{L(μ-O}_2\text{CPh)}]^{3+}$ cation (one of two crystallographically independent cations) in crystals of 2:xMeCN ($x \sim 4.5$). Thermal ellipsoids are drawn at the 50% probability level. Only one orientation of a disordered tert-butyl group is shown. Hydrogen atoms are omitted for reasons of clarity.
4a. Magnetic susceptibility data for 1\(\text{H}_2\text{O} \) and 2\(\text{4.5MeCN} \).

Table S1. Experimental and calculated susceptibility data for 1\(\text{H}_2\text{O} \) and 2\(\text{4.5MeCN} \). The susceptibility data were fitted with the program PHL."
Complex 12H2O
==
Finished Simplex with 363 iterations
 24.198286508554695 +/- 0.14373563133094
EX 1 2 4
 1.9848197219152126 +/- 0.00057248861705
GF 1 4 0
GF 2 4 0
 -0.0053281506032641 +/- 0.00026154325851
ZJ 0 0 0
--------- Parameter Correlations ---------
 If magnitude of correlation is > 0.8,
then a strong correlation is present.
1 2 -0.6
1 3 0.3
2 3 -0.5

Residual: 0.58284969746703105E-003
Residual reduced by: 0.08226134107584269
or: 99.296450732361052%
==
Complex 24.5MeCN
==
Finished Simplex with 368 iterations
 34.781805912573134 +/- 0.38320658978043
EX 1 2 4
 1.9791253199624190 +/- 0.00041132430980
GF 1 4 0
GF 2 4 0
 -0.0057419642080043 +/- 0.00046403439556
ZJ 0 0 0
--------- Parameter Correlations ---------
 If magnitude of correlation is > 0.8,
then a strong correlation is present.
1 2 -0.3
1 3 0.0
2 3 -0.2

Residual: 0.00126862152004810
Residual reduced by: 0.25585760976702432
or: 99.506615286313689%
Figure S6. Plot of the magnetization (M) versus field (B) for compound \textbf{1·2H}_2\textbf{O} at \(T = 2\text{K}\). The solid line was fitted with the program PHI (option opmode fit sm, parameters: J, g, zJ). Resultant fit parameters are given above. The plot was generated with the program PHI.

Figure S7. Plot of the magnetization (M) versus field (B) for compound \textbf{2·4.5MeCN} at \(T = 2\text{K}\). The solid line was fitted with the program PHI (option opmode fit sm, parameters: J, g, zJ). Resultant fit parameters are given above. The plot was generated with the program PHI.
Figure S8. Pairs of “magnetic orbitals” for 1 derived from the corresponding orbital transformation of the broken-symmetry DFT determinant. The S values correspond to the values of overlap integrals for the corresponding orbital pairs.
Figure S9. Pairs of “magnetic orbitals” for 2 derived from the corresponding orbital transformation of the broken-symmetry DFT determinant. The S values correspond to the overlap integrals for the corresponding orbital pairs.
4b. Results of Broken-symmetry DFT calculations for complexes 1 and 2.

Table S2. Calculated Mulliken spin density and J values of complexes 1 and 2 at the B3LYP/def2-TZVPP level of theory.

Compd	state	Cr1	Cr2	S1	S2	O1	O2	N1-N6	Total spin	J / cm$^{-1}$
1	HS	3.295	3.294	-0.143	-0.152	-0.0149	-0.0144	-0.061 to -0.073	6	+31.07
	BS	3.276	-3.276	0.0005	0.0012	-0.0359	0.03469	-0.066 to -0.073 (3x)	0	
2	HS	3.285	3.291	-0.0143	-0.0153	-0.0136	-0.0141	-0.060 to -0.073	0	
	BS	3.263	-3.268	0.0004	0.0003	-0.032	0.033	-0.065 to -0.073 (3x)	0	

*a) The J values are based on the energy difference between the high-spin and broken-symmetry solutions as calculated by the Yamaguchi formula, i.e. $J = -(E_{HS} - E_{BS}) / (\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{BS})$.

4c. Results of Broken-symmetry DFT calculations for complexes 1’ and 2’.

In order to evaluate the coupling through the thiophenolato and carboxylato bridges in the present complexes, we utilized a breakdown approach, in which the carboxylate ligands were virtually removed from the optimized structures of 1 and 2 to obtain the hypothetical $[\text{Cr}_2(L)]^{4+}$ dications 1’ and 2’, respectively. These cations were also subjected to broken symmetry DFT density functional theory calculations. This method has previously shown to be a powerful tool to unravel the contribution of the various bridging co-ligands for dinuclear nickel complex of the type $[\text{Ni}_2L(\mu-L')]^+$, where $L = \text{F}^-$, Cl^-, Br^-, N_3^-, and OH^-. The coupling constants (J_{SR}) calculated for the $[\text{Cr}_2(L)]^{4+}$ cations 1’ ($J = +39.85$ cm$^{-1}$) and 2’ ($J = +41.13$ cm$^{-1}$) were found to be slightly larger than for the carboxylato-bridged species, indicative of an orbital counter-complementary effect. A similar effect was observed for the series of carboxylato-bridged chromium(III) complexes reported by Rajaraman and Brechin.

Table S3. Calculated Mulliken spin density and J values of complexes 1’ and 2’ at the B3LYP/def2-TZVPP level of theory.

Compd	state	Cr1	Cr2	S1	S2	N1-N6	Total spin	J / cm$^{-1}$
1’	HS	3.450	3.451	-0.316	-0.281	-0.076 to -0.142	6	+39.85
	BS	3.212	-3.213	-0.0009	0.00107	-0.031 to -0.078 (3x)	0	
2’	HS	3.458	3.464	-0.1601	-0.1669	-0.076 to -0.155	6	+41.13
	BS	3.400	-3.400	-0.0010	0.0004	-0.080 to -0.144 (3x)	0	

*a) The J values are based on the energy difference between the high-spin and broken-symmetry solutions as calculated by the Yamaguchi formula, i.e. $J = -(E_{HS} - E_{BS}) / (\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{BS})$.
5. Diffuse-reflectance spectroscopy for 1 and 2.

Figure S10. Kubelka-Munk converted diffuse reflectance UV-vis spectrum for 1 (solid black curve) and 2 (blue dashed curve) (~ 5 wt% finely dispersed in BaSO₄ powder) at 298 K.

6. Photoluminescence excitation and emission spectra for 2 at 77 K.

Figure S11. Photoluminescence excitation (λ_{obs} = 750 nm, dotted curve) and emission spectra (λ_{exc} = 405 nm, solid line) of complex 2 at 77 K in CH₂Cl₂/MeOH (1:1) glassy matrix.
7. Time resolved photoluminescence decay measurements for 1 and 2 at 77 K.

Figure S12. Left: Time-resolved photoluminescence decay of 1 in a frozen glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals (λ_{exc} = 402.5 nm, λ_{em} = 750 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Figure S13. Left: Time-resolved photoluminescence decay of 2 in a frozen glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals (λ_{exc} = 402.5 nm, λ_{em} = 750 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Table S4. Photophysical data for 1 and 2 in a frozen CH₂Cl₂/MeOH 1:1 glassy matrix at 77 K.

R	τ (μs)	\(\lambda_{\text{exc}} \) (nm)	\(\lambda_{\text{em}} \) (nm)	\(\Phi_L \) (%)	\(k_r / 10^3 \) (s⁻¹)	\(k_{nr} / 10^3 \) (s⁻¹)
CH₃	113.0±0.8	405	750	45±2	3.98 ± 0.03	4.87 ± 0.03
C₆H₅	114.6±0.9	405	750	44±2	3.84 ± 0.03	5.90 ± 0.04
8. Photoluminescence excitation and emission spectra for 1 and 2 at 298 K.

![Photoluminescence spectra](image1.png)

Figure S14. Photoluminescence emission spectra for [Cr₂L(μ-O₂CR)](ClO₄)₃ (R = Me, red curve 1; R = Ph blue curve 2) at 298 K in deaerated MeOH solution.

9. Time resolved photoluminescence decay measurements for 1 and 2 at 298 K.

![Time-resolved decay](image2.png)

Figure S15. Left: Time-resolved photoluminescence decay of 1 in deaerated MeOH solution at 298 K, including the residuals (λ_{exc} = 372.5 nm, λ_{em} = 710 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.
Figure S16. Left: Time-resolved photoluminescence decay of 2 in deaerated MeOH solution at 298 K, including the residuals ($\lambda_{\text{exc}} = 372.5$ nm, $\lambda_{\text{em}} = 710$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Table S5. Photophysical data for 1 and 2 in degassed MeOH at 298 K.

Compound	τ (ns)	Φ_L (%)	$k_r / 10^5$ (s$^{-1}$)	$k_{nr} / 10^7$ (s$^{-1}$)
1	75.3 ± 0.3	< 2	< 2.6	1.33 > k_{nr} > 1.30
2	94.8 ± 0.4	< 2	< 2.1	1.05 > k_{nr} > 1.03

10. Photoluminescence spectra of 1 and 2 at 298 K.

Figure S17. Emission spectra ($\lambda_{\text{exc}} = 355$ nm) of powdered solid samples of complexes 1 and 2 at 298 K obtained with an iHR320, synapse CCD, HORIBA JobinY spectrometer. The splitting of the signal ($\lambda_{\text{max}} = 706$ nm, 725 nm) may be due to emission from the $^2T_1^4A_2$ and $^2E^4A_2$ states.
11. PLIM (phosphorescence lifetime microscopy) for complex 2.

To measure the luminescence lifetime of solid 2 at ambient temperature, Phosphorescence lifetime microscopy (PLIM) was used. PLIM is based on the combination of local imaging using a microscope and luminescence lifetime detection based of time-correlated single photon counting (TCSPC). TCSPC detects the time difference between the excitation pulse and the photon emitted by the sample during the transition from the excited state to the energetically lower state. A TCSPC histogram is generated from the multiple repetitions of the time measurement and accumulation of the detected time differences, since the emission of photons follows a Poisson distribution, there is an exponential drop for the histogram. This histogram can be adapted to the exponential function (eq. 1).

\[I(t) = I_0 \times e^{-\frac{t}{\tau}} \]

(1)

Since the initial luminescence intensity of the sample \(I_0 \), the time \(t \) and the luminescence intensity \((I(t)) \) after the time \(t \) are known, the luminescence lifetime \(\tau \) can be extracted therefrom. At the same time, the luminescence lifetime is inversely proportional to the sum of all deactivated states \(k_i \) (eq. 2). \(k_i \) includes e.g. the lattice relaxation, the electron transfer between different states etc. According to the Becker & Hickl application note, burst mode (burst of multiple laser pulses) was applied to TCSPC to increase the excitation efficiency of phosphorescence and to improve the detection of the phosphorescence lifetime.

\[\frac{1}{\tau} = \sum k_i \]

(2)

The luminescence lifetime is measured as a function of the position of the sample, so several \(\tau \) values are assigned to each xy position in order to build up the luminescence lifetime image. The service life is coded in a color scheme.
Figure S18. PLIM investigations of a powdered sample of complex 2 under ambient conditions:
a) time decay profile (black) and the mono-exponential fit function (Becker & Hickl, red) of its
luminescence under 405 nm excitation (diode laser, 60 ps pulse duration, 80 MHz repetition rate,
60 µs burst duration, Becker & Hickl) with a 542 nm long pass filter, b) spatially resolved PLIM
image for τ1 transient, c) phosphorescence lifetime distribution of complex 2 based on image b,
the averaged phosphorescence lifetime was determined at 35 µs.

12. Cartesian coordinates / Å of geometry optimized [CrIII2L(μ-O2CMe)]3+ (1, gas phase).

Table S6. Cartesian coordinates / Å of geometry optimized [CrIII2L(μ-O2CMe)]3+ (1, gas
phase, B3LYP/def2-TZVPP).

Atom	x (Å)	y (Å)	z (Å)
C	5.42035752591941	12.59651182236640	8.59415089835852
C	5.87724780519012	13.17382092970474	9.78259974779086
C	6.75848324949109	12.46211454747514	10.58805753792097
H	7.06410351419183	12.91043872333443	11.52320610117925
C	7.17631972312593	11.16177223872840	10.288744326287508
C	6.67927942101886	10.60853197377671	9.11228925314978
C	6.91551979919126	9.58488449749747	8.8631650810132
C	5.81128952236335	11.29918944836357	8.26787939165447
C	5.10376426510658	10.53375945994515	7.20205683659817
H	4.03941912078201	10.63576313703607	7.36198369594896
H	5.36624889797280	9.47638129461854	7.31752724647865
C	6.7505376777580	10.3962417595743	5.45484098217942
C	6.94349889551726	10.4665742043166	4.3897180426058
H	7.47190502626959	11.00090401054879	5.93629910175451
H	6.86033673778473	9.35150443628145	5.75132851209968
C	4.36759842245456	10.9057563614247	4.9567142952322
H	4.74508516234941	9.90809021679097	3.9833115823269
C	4.21765041041058	9.11524121855014	5.4421329595794
H	3.06253927083989	10.8528958247638	4.96059403836106
C	2.66044537357938	10.96366932549854	5.96450626723742
C	2.31676331966969	10.3103466802111	4.37632892736642
C	1.99820247281566	12.999084982606826	4.66193548032011
H	1.83491215950544	13.05206329464091	5.73421612479510
H	2.09329604624383	13.99932044082325	4.2656103465569
C	1.14355673657658	12.49446564001610	4.19873056710186
C	3.4603898909813	12.13621644803172	2.91251460175183
C	2.98190039095786	13.0087234898566	2.46411424908436
C	2.94520151362393	11.25985237839145	2.51684268612872
C	4.92690452752520	12.09167322979756	2.51840885265278
C	5.00608558843668	12.18401476969508	1.4319943170328
C	5.3903691190685	11.5209282897875	2.7807310919894
C	7.1435707851022	12.9877622988741	2.9872887330303
13. Cartesian coordinates / Å of geometry optimized [CrII(μ-O2CPh)]+ (2, gas phase).

Table S7. Cartesian coordinates / Å of geometry optimized [CrII(μ-O2CPh)]+ (2, gas phase, B3LYP/def2-TZVPP).

Atom	x	y	z
C	4.9738...	9.7964...	12.738...
C	3.7947...	9.4226...	13.375...
C	3.8565...	8.6306...	14.518...
H	9.2670...	8.3344...	14.981...
H	5.5607...	1.8152...	15.038...
H	6.2233...	8.5243...	14.351...
H	7.1782...	8.1408...	14.685...
H	6.1970...	9.3198...	13.210...
H	7.4299...	9.4901...	12.383...
H	7.2177...	9.1499...	11.373...
H	8.2215...	8.8540...	12.783...
H	8.3540...	11.2901...	13.647...
H	9.6037...	10.5738...	14.007...
H	4.7507...	11.3167...	14.285...
H	8.8062...	12.2735...	13.678...
H	9.2080...	11.9963...	11.439...
H	9.8522...	9.9843...	11.779...
H	9.7729...	11.7146...	11.572...
H	8.8345...	10.5893...	9.983...
H	8.4379...	9.5656...	8.503...
H	9.7224...	10.6457...	9.354...
H	6.9249...	10.8149...	8.4891...
H	6.1806...	11.5105...	8.1112...
H	6.4228...	9.9748...	8.9565...
H	7.5325...	7.1049...	7.6551...
H	6.4078...	12.6762...	8.8010...
H	7.6149...	13.2157...	8.2865...
H	9.1042...	12.3195...	8.0392...
H	9.1157...	13.5779...	7.9834...
H	9.9597...	13.0768...	10.2449...
H	9.5244...	14.4471...	9.2642...
H	8.9140...	14.4574...	12.0477...
H	9.4867...	13.6369...	12.4621...
H	8.2105...	14.6222...	12.7995...
H	6.9083...	12.5757...	11.7833...
H	7.4578...	13.2317...	10.3054...
H	7.7139...	15.0007...	9.2801...
H	8.1966...	16.0341...	10.2689...
H	6.2440...	15.7167...	11.0385...
H	5.0083...	15.1167...	10.7751...
H	3.9163...	15.7725...	11.1474...
H	2.9938...	17.4195...	12.1833...
H	5.1300...	17.4686...	12.3637...
H	6.2854...	16.8712...	11.9833...
H	7.2461...	17.3532...	10.5760...
H	2.5306...	15.9497...	9.5355...
14. Cartesian coordinates / Å of \([\text{Cr}^{\text{III}}_2\text{L}]^{4+}\) (1′, gas phase).

Table S8. Cartesian coordinates / Å of \([\text{Cr}^{\text{III}}_2\text{L}]^{4+}\) (1′).

atom	x	y	z
C	5.4258	12.5973	8.59531
C	5.88027	13.17455	9.78393
C	6.76004	12.46303	10.59122
H	7.06444	12.91168	11.52674
C	7.17733	11.16264	10.29207
C	6.68226	10.60921	9.11489
H	6.91668	9.58594	8.86558
C	5.81506	11.30002	8.27086
C	5.10568	10.5357	7.2052
H	4.03562	10.64115	7.36712
H	4.42124	9.12091	5.44766
C	3.66047	10.86202	4.96791
C	2.65966	10.97633	5.97208
H	2.31145	10.32295	4.38481
C	2.00474	13.00336	4.66486
H	1.8425	13.06958	5.73762
H	2.10225	14.00434	4.25849
H	1.14849	12.50712	4.20491
C	3.46391	12.13973	2.91828
H	2.98775	13.00465	2.46756
C	2.94644	11.26374	2.52482
C	4.92989	12.09088	2.52436
H	5.00947	12.18341	1.43804
H	5.3987	11.15003	2.78636
C	7.14911	12.97397	2.99253
H	7.68326	13.8403	3.38015
H	7.48197	12.09147	3.52176
H	7.37126	12.86098	1.92964
C	5.32714	14.44961	2.4654
H	5.62222	14.31266	1.42353
H	4.2441	14.54127	2.4857
C	5.91654	15.72668	2.9705
C	5.47962	16.27772	4.17632
C	5.79705	17.59672	4.48665
C	6.59028	18.3378	3.61207
H	6.78866	19.37013	3.85936
C	7.08141	17.80891	2.41879
C	6.72092	16.48852	2.12972
H	7.02759	16.05383	1.18856
C	5.13207	18.27864	5.63885
H	4.05705	18.13634	5.55794
C	5.32859	19.35032	5.57453
C	7.00316	18.14596	7.13323
H	7.5517	17.54298	6.41931
H	7.18146	19.20232	6.92279
H	7.35818	17.91861	8.12992
C	4.77858	16.6707	7.9745
H	4.81246	19.72175	7.67633
H	5.26877	18.6096	8.9384
C	3.33006	18.2181	8.03073
H	2.80757	18.74132	8.83262
H	2.82184	18.48544	7.10942
C	1.93955	16.28388	7.53229
C	2.0184	16.47708	8.46683
15. Cartesian coordinates / Å of [CrIII2L4+ (2′, gas phase).

atom	x	y	z
C	4.97368	9.7965	12.73808
C	3.79447	9.4227	13.37538
C	3.85658	8.63069	14.519
H	2.92671	8.33445	14.98109
C	5.06008	8.15826	15.03863
C	6.22333	8.52435	14.35103
C	7.1782	8.14089	14.68267
C	6.19707	9.31987	13.21075
C	7.42996	9.49013	12.38363
H	7.21771	9.14919	11.37379
H	8.22158	8.85403	12.78378
C	8.35404	11.29014	13.67432
C	9.06073	10.57385	14.09753
H	7.45791	11.31588	14.28245
H	8.80626	12.27351	13.6789

Table S9. Cartesian coordinates / Å of [CrIII2L4+ (2′).

atom	x	y	z	
C	4.97368	9.7965	12.73808	
C	3.79447	9.4227	13.37538	
C	3.85658	8.63069	14.519	
H	2.92671	8.33445	14.98109	
C	5.06008	8.15826	15.03863	
C	6.22333	8.52435	14.35103	
C	7.1782	8.14089	14.68267	
C	6.19707	9.31987	13.21075	
C	7.42996	9.49013	12.38363	
H	7.21771	9.14919	11.37379	
H	8.22158	8.85403	12.78378	
C	8.35404	11.29014	13.67432	
C	9.06073	10.57385	14.09753	
H	7.45791	11.31588	14.28245	
H	8.80626	12.27351	13.6789	
C	9.2081	10.79963	11.43923	
H	9.85222	9.9844	11.77928	
H	9.77295	11.71465	11.57224	
C	8.83459	10.56594	9.98377	
H	8.4571	9.56666	9.85389	
H	9.72242	10.64573	9.35491	
C	6.92498	10.815	8.48917	
H	6.18061	11.51106	8.11128	
H	6.42285	9.97485	8.95674	
H	7.53258	10.45988	7.65517	
C	8.40784	12.67672	8.80106	
H	7.61497	13.21575	8.28665	
H	9.1043	12.31953	8.0924	
C	9.11573	13.57792	9.78341	
H	9.95976	13.07681	10.24495	
H	9.52447	14.44713	9.2643	
C	8.91403	14.45746	12.04777	
H	9.48872	13.56933	12.4621	
H	8.21306	14.82626	12.78951	
C	6.90844	15.25777	11.78338	
C	7.45798	15.23171	10.30543	
H	7.17397	15.00701	9.28021	
H	8.19696	16.03412	10.2689	
C	6.24401	15.71675	11.03386	
C	5.00834	15.11673	10.77751	
C	3.8338	15.77251	11.14744	
C	3.91635	16.92544	11.91913	
H	2.99388	17.41956	12.18337	
C	5.13007	17.46866	12.32638	
H	6.28544	16.87129	11.80675	
H	7.24661	17.33525	11.98337	
C	2.53069	15.34995	10.57561	
H	2.07753	15.06919	9.5355	
H	1.8403	16.19119	10.59297	
C	1.30638	14.69527	12.54463	
C	H	0.67838	15.57423	12.38697
H	2.13797	14.95879	13.18898	
H	0.70249	13.93149	13.02112	
C	0.7142	13.82273	10.34005	
H	0.28496	14.71982	9.88579	
H	-0.08188	13.36341	10.9144	
C	1.23486	12.89901	9.26658	
H	1.97116	13.40665	8.64788	
H	0.42456	12.57834	8.60868	
C	2.58362	10.97919	8.75284	
H	1.85573	10.6676	8.00203	
H	3.09579	10.10695	9.1442	
H	3.30901	11.64182	8.28808	
C	0.87544	10.79891	10.48066	
H	1.19964	9.77625	10.31798	
H	-0.07456	10.90883	9.95609	
C	0.67739	11.05088	11.96641	
H	0.16876	11.9873	12.1602	
H	0.04361	10.26228	12.3802	
C	1.79792	11.51554	14.08645	
H	1.37831	12.51203	14.13061	
H	2.75888	11.51641	14.58605	
H	1.1231	10.82748	14.59859	
C	2.47542	9.66455	12.71993	
C	1.71104	9.07968	13.23454	
H	2.53036	9.2999	11.65786	
C	5.11773	7.20258	16.22966	
C	3.76241	7.07517	16.93798	
H	3.39476	8.03711	17.29971	
H	3.87074	6.4208	17.80104	
H	3.00559	6.6254	16.25367	
C	5.50947	5.82048	15.7066	
H	4.80023	5.45156	14.9561	
H	5.50025	5.09169	16.52353	
H	6.5057	5.79016	15.26273	
C	6.16369	7.69604	17.24652	
H	7.16568	7.74048	16.81795	
H	6.20408	7.01145	18.09249	
---	---	---	---	
H	5.90906	8.68561	17.62841	
C	5.20812	18.69276	13.23309	
C	3.8288	19.08657	13.77839	
H	3.3639	18.26892	14.46376	
H	3.15207	19.40754	12.98589	
C	5.77383	19.88146	12.43247	
H	5.83768	20.76043	13.07319	
H	5.12562	20.12574	11.59113	
H	6.7711	19.67737	12.04119	
C	6.12809	18.36242	14.42292	
H	6.20302	19.22468	15.08436	
H	7.13768	18.10303	14.10336	
H	5.7312	17.52664	15.00025	
N	7.99203	10.88276	12.29264	
N	7.77628	11.51238	9.4883	
N	8.1624	14.01603	10.84872	
N	1.83406	14.19845	11.25273	
N	1.90281	11.70295	9.86049	
N	1.98262	11.08286	12.67798	
S	4.90256	10.72508	11.23013	
S	4.9182	13.51468	10.00072	
Cr	6.73009	12.31965	11.20674	
Cr	3.20193	12.43261	11.44426	

1. N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, *J. Comput. Chem.* **2013**, *34*, 1164-1175.
2. A. Jeremies, S. Gruschinski, S. Schmorl, T. Severin, B. Kersting, *New J. Chem.* **2018**, *42*, 7630-7639.
3. H. W. L. Fraser, L. Smythe, S. Dey, G. S. Nichol, S. Piligkos, G. Rajaraman, E. K. Brechin, *Dalton Trans.* **2018**, *47*, 8100-8109.