ON GEOMETRICAL PROPERTIES OF STARLIKE
LOGHARMONIC MAPPINGS OF ORDER α

ZAYID ABDULHADI AND LAYAN EL HAJJ

Abstract. In this paper, we find the radius of the disk Ω_r such that every
starlike logharmonic mapping $f(z)$ of order α, is starlike in $|z| \leq r$ with respect
to any point of Ω_r. We also establish a relation between the set of starlike
logharmonic mappings and the set of starlike logharmonic mappings of order
alpha. Moreover, the radius of starlikeness and univalence for the set of close
to starlike logharmonic mappings of order α is determined.

1. Introduction

Let $H(U)$ be the linear space of all analytic functions defined in the unit disk
$U = \{z : |z| < 1\}$ of the complex plane \mathbb{C} and let B denote the set of functions $a \in
H(U)$ satisfying $|a(z)| < 1$ in U. A logharmonic mapping defined on U is a solution
of the nonlinear elliptic partial differential equation

\[(1.1) \quad \frac{f_z}{f} = a \frac{f_z}{f},\]

where the second dilatation function a belongs to the class B. Thus the Jacobian

\[J_f = |f_z|^2 (1 - |a|^2)\]

is positive and hence, all non-constant logharmonic mappings are sense-preserving
and open on U. If f is a non-constant logharmonic mapping of U and vanishes only
at $z = 0$, then f admits the representation

\[(1.2) \quad f(z) = z^m |z|^{2\beta m} h(z)g(z),\]

where m is a nonnegative integer, $\text{Re}(\beta) > -1/2$, and h and g are analytic functions
in U satisfying $g(0) = 1$ and $h(0) \neq 0$ (see [1]). The exponent β in (1.2) depends
only on $a(0)$ and can be expressed by

\[\beta = a(0) \frac{1 + a(0)}{1 - |a(0)|^2}.\]

Note that $f(0) \neq 0$ if and only if $m = 0$, and that a univalent logharmonic
mapping on U vanishes at the origin if and only if $m = 1$, that is, f has the form

\[f(z) = z|z|^{2\beta h(z)g(z)},\]

where $\text{Re}(\beta) > -1/2$ and $0 \notin (hg)(U)$. This class has been studied extensively in
recent years, for instance in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 21, 22, 26].
As further evidence of its importance, note that $F(\zeta) = \log f(e^{i\zeta})$ are univalent harmonic mappings of the half-plane $\{\zeta : \text{Re}(\zeta) < 0\}$. Studies on univalent harmonic mappings can be found in [10, 13, 14, 15, 16, 17, 18, 19, 20]. Such mappings are closely related to the theory of minimal surfaces (see [24, 25]).

When f is a nonvanishing logharmonic mapping in U, it is known that f can be expressed as

$$f(z) = h(z)g(z),$$

where h and g are nonvanishing analytic functions in U.

Let $f = zh(z)g(z)$ be a univalent logharmonic mapping. We say that f is a starlike logharmonic mapping of order α if

$$\frac{\arg f(re^{i\theta})}{\theta} = \Re \frac{zf_z - \overline{zf_z}}{f} > \alpha, \quad 0 \leq \alpha < 1$$

for all $z \in U$. Denote by $ST_{lh}(\alpha)$ the set of all starlike logharmonic mappings of order α. If $\alpha = 0$, we get the class of starlike logharmonic mappings. We also denote $ST(\alpha) = \{f \in ST_{lh}(\alpha) \text{ and } f \in H(U)\}$. A detailed study of the class $ST_{lh}(\alpha)$ to be found in [4]. In particular, the following are representation theorem and distortion theorem for mappings in the set $ST_{lh}(\alpha)$.

Theorem A. (Representation Theorem) Let $f(z) = zh(z)g(z)$ be a logharmonic mapping on U, $0 \notin hg(U)$. Then $f \in ST_{lh}(\alpha)$ if and only if $\varphi(z) = zh(z)/g(z) \in ST(\alpha)$ and it follows that

$$f(z) = \varphi(z) \exp 2\Re \int_0^z \frac{a(s)\varphi'(s)}{\varphi(s)(1 - a(s))} ds.$$

Theorem B. (Distortion Theorem) Let $f(z) = zh(z)g(z) \in ST_{lh}(\alpha)$ with $a(0) = 0$. Then for $z \in U$ we have

$$\frac{|z|}{(1 + |z|)^{2\alpha}} \exp \left((1 - \alpha)\frac{4|z|}{1 + |z|}\right) \leq |f(z)| \leq \frac{|z|}{(1 + |z|)^{2\alpha}} \exp \left((1 - \alpha)\frac{4|z|}{1 - |z|}\right).$$

The equalities occur if and only if $f(z) = \zeta f_0(\zeta)$,

$$f_0(z) = \frac{z(1 - \zeta)}{(1 - z)(1 - \zeta)^{2\alpha}} \exp(1 - \alpha)\Re \frac{4z}{1 - z}.$$

Denote by P_{lh} the set of all logharmonic mappings R defined on the unit disk U which are of the form $R = HG$, where H and G are in $H(U)$, $H(0) = G(0) = 1$ and such that $\text{Re}(R(z)) > 0$ for all $z \in U$. In particular, the set P of all analytic functions $p(z)$ in U with $p(0) = 1$ and $\text{Re}(p(z)) > 0$ in U is a subset of P_{lh} (for more details see[2]).

In Section 2, we consider a relation between $ST_{lh}(\alpha)$ and $ST_{lh}(0)$ and obtain the radius of the disk Ω_r such that every starlike logharmonic mapping $f(z)$ of order α, is starlike in $|z| < r$ with respect to any point of Ω_r. In section 3, the radius of univalence and starlikeness is determined for the set of close to starlike logharmonic mappings of order α.
2. Geometrical properties of the class $ST_{Lh}(\alpha)$

In the following two propositions we establish a relationship between the classes $ST_{Lh}(\alpha)$ and $ST_{Lh}(0)$.

Proposition 1. Let $f(z) = z h(z) g(z) \in ST_{Lh}(\alpha)$ with respect to $a \in B$ and

$$K(z) = z \exp 2 \Re \int_0^z \frac{a(z)}{1 - a(z)} \frac{dz}{z}.$$

Then $F(z) = f(z)^{1-\alpha} K(z)^{-\alpha} \in ST_{Lh}(0)$.

Proof. Let $f(z) = z h(z) g(z) \in ST_{Lh}(\alpha)$ with respect to $a \in B$ and

$$K(z) = z \exp 2 \Re \int_0^z \frac{a(z)}{1 - a(z)} \frac{dz}{z}.$$

We consider the function

$$F(z) = f(z)^{1-\alpha} K(z)^{-\alpha}.$$

Direct calculations yield

$$\frac{\bar{F}_z - \bar{F} \bar{F}}{F} = \frac{1}{1-\alpha} \frac{\bar{f} \bar{f}}{f} + \frac{-\alpha}{1-\alpha} \frac{\bar{K} \bar{K}}{K} = \frac{1}{1-\alpha} a \frac{\bar{f} \bar{f}}{f} + \frac{-\alpha}{1-\alpha} a \frac{\bar{K} \bar{K}}{K} = a \frac{\bar{f} \bar{f}}{f}.$$

Hence F is logharmonic with respect to the same a. Moreover,

$$\Re z F_z - z F = \frac{1}{1-\alpha} \Re z f_z - \bar{f} z f + \frac{-\alpha}{1-\alpha} \Re z K_z - \bar{K} z K > \frac{\alpha}{1-\alpha} + \frac{-\alpha}{1-\alpha} = 0.$$

Thus, $F \in ST_{Lh}(0)$. □

Proposition 2. Let $f(z) = z h(z) g(z) \in ST_{Lh}(0)$ with respect to $a \in B$ and

$$K(z) = z \exp 2 \Re \int_0^z \frac{a(z)}{1 - a(z)} \frac{dz}{z}.$$

Then $F(z) = f(z)^{1-\alpha} K(z)^{\alpha} \in ST_{Lh}(\alpha)$.

Proof. Let $f(z) = z h(z) g(z) \in ST_{Lh}(0)$ with respect to $a \in B$ and

$$K(z) = z \exp 2 \Re \int_0^z \frac{a(z)}{1 - a(z)} \frac{dz}{z}.$$

Consider the function

$$F(z) = f(z)^{1-\alpha} K(z)^{\alpha}.$$

Straightforward calculations give that

$$\frac{\bar{F}_z - \bar{F} \bar{F}}{F} = (1-\alpha) \frac{\bar{f} \bar{f}}{f} + \alpha \frac{\bar{K} \bar{K}}{K} = (1-\alpha) a \frac{\bar{f} \bar{f}}{f} + \alpha a \frac{\bar{K} \bar{K}}{K} = a \frac{\bar{f} \bar{f}}{f},$$

and

$$\Re z F_z - z F = (1-\alpha) \Re z f_z - \bar{f} z f + \alpha \Re z K_z - \bar{K} z K > \alpha.$$

Hence $F \in ST_{Lh}(\alpha)$ with respect to the same a. □
In what follows next, our objective is to find the region Ω_r in the $w-$plane such that every $f \in ST_{Lh}(\alpha)$ is starlike with respect to any point of Ω_r. Since $ST_{Lh}(\alpha)$ is compact (see[4]), it follows that Ω_r is a closed set. Therefore, Ω_r is a closed disk with center at $w = 0$ and the determination of Ω_r is equivalent to the determination of the radius of the disk Ω_r.

Our main result is the following theorem

Theorem 1. Let $f \in ST_{Lh}(\alpha)$, then the radius of the disk Ω_r such that f is starlike with respect to any point of Ω_r is given by

$$
\lambda_\alpha(r_0) = \frac{r_0}{(1 + r_0)^2} \exp \left(-\frac{(1 - \alpha)4r_0}{1 + r_0} \right) \frac{\left(\alpha + (1 - \alpha) \frac{1 - r_0}{1 + r_0} \right)}{\left(\alpha + (1 - \alpha) \frac{1 - r_0}{1 - r_0} \right)^{\alpha}},
$$

where $r_0 \in (0, 1)$ and r_0 is the smallest positive root of the equation

$$8r^5\alpha^3 - 12r^5\alpha^2 + 6r^5\alpha - 5r^5 - 16r^4\alpha^3 + 12r^4\alpha^2 + 4r^4\alpha - 3r^4 + 8r^3\alpha^3 - 36r^3\alpha^2 + 32r^3\alpha - 8r^3 + 4r^2\alpha^2 - 4r^2\alpha + 4r^2 - 6r\alpha + 9r - 1 = 0.$$

Proof. Let $U_r(f) = f(z) \leq r < 1$, $w = f(z) \in ST_{Lh}(\alpha)$. $U_r(f)$ is starlike with respect to w_0 if and only if

$$\frac{\partial \arg \left(f(re^{i\theta}) - w_0 \right)}{\partial \theta} = \Re\frac{zf_z(z) - e^{i\theta}zf_z(z)}{f(z) - w_0} > 0 \text{ for } |z| \leq r < 1.$$

This is equivalent to

$$\Re\frac{f(z) - w_0}{zf_z(z) - \overline{zf_z(z)}} > 0 \text{ for } |z| \leq r < 1,$$

or

$$\Re\frac{f(z)}{zf_z(z) - \overline{zf_z(z)}} > \frac{w_0}{zf_z(z) - \overline{zf_z(z)}} \text{ for } |z| \leq r < 1.$$

It follows from (2.1) that

$$|f(z)|^2\Re\frac{zf_z(z) - \overline{zf_z(z)}}{f(z)} > |w_0|^2\Re\frac{zf_z(z) - \overline{zf_z(z)}}{w_0} \text{ for } |z| \leq r < 1.$$

Now if $f(z) \in ST_{Lh}(\alpha)$, we have $e^{i\theta}f(e^{-i\theta}z) \in ST_{Lh}(\alpha)$. It follows that if $w_0 \in \Omega_r$ then $we^{i\theta} \in \Omega_r$, with $\rho = |w_0|$ and $-\pi < \theta \leq \pi$.

Therefore, if $w_0 \in \Omega_r$, (2.2) must holds for all points $w = |w_0|e^{i\theta}$, $-\pi < \theta < \pi$ and so

$$|f(z)|^2\Re\frac{zf_z(z) - \overline{zf_z(z)}}{f(z)} \geq |w_0||zf_z(z) - \overline{zf_z(z)}| \text{ for } |z| \leq r < 1,$$

and hence

$$\frac{|f(z)|^2}{zf_z(z) - \overline{zf_z(z)}} \Re\frac{zf_z(z) - \overline{zf_z(z)}}{f(z)} \geq |w_0| \text{ for } |z| \leq r < 1.$$

We next consider the function
(2.3) \[\Psi(f, z) = \left| \frac{f(z)^2}{z f_z(z) - \overline{f(z)}} \right| \Re \frac{zf_z(z) - \overline{f(z)}}{f(z)}, \]

where \(f \in ST_{Lh}(\alpha) \) and \(z \) is fixed, \(|z| = r \). Clearly, \(\min_{f \in ST_{Lh}(\alpha)} \Psi(f, z) \) is independent of the choice of \(z = re^{i\theta}, -\pi < \theta \leq \pi \). Let \(|z| = r, r > 0 \), then \(\lambda_\alpha(r) = \min_{f \in ST_{Lh}(\alpha)} \Psi(f, z) \) is the radius of \(\Omega_r \). Since \(f \in ST_{Lh}(\alpha) \) by Theorem A we obtain

(2.4) \[\Re zf_z(z) - \overline{f(z)} = \Re \frac{\phi'(z)}{\phi(z)} = \Re((1 - \alpha)p(z) + \alpha), \]

where \(p \in P_{Lh}. \) From Theorem B, it follows that if \(f \in ST_{Lh}(\alpha) \) then

(2.5) \[|f(z)| \geq \frac{r}{(1 + r)^{2\alpha}} \exp \left(\frac{-(1 - \alpha)4r}{(1 + r)}\right). \]

Substituting (2.4) and (2.5) into (2.3), we get

\[
\Psi(f, z) = \left| \frac{f(z)}{z f_z(z) - \overline{f(z)}} \right| \Re \frac{zf_z(z) - \overline{f(z)}}{f(z)} \\
\geq \frac{r}{(1 + r)^{2\alpha}} \exp \left(\frac{-(1 - \alpha)4r}{(1 + r)}\right) \left[\frac{1}{1 - a} [\alpha + (1 - \alpha)p(z)] - \frac{|a|}{1 - a} [\alpha + (1 - \alpha)p(z) - 1] \right] \\
\geq \frac{r}{(1 + r)^{2\alpha}} \exp \left(\frac{-(1 - \alpha)4r}{(1 + r)}\right) \left[\frac{\alpha + (1 - \alpha) \frac{1 - r}{1 + r}}{1 - a} \left[\alpha + (1 - \alpha) |p(z)| \right] + \frac{|a|}{1 - a} [\alpha + (1 - \alpha) |p(z)|] \right] \\
\geq \frac{r}{(1 + r)^{2\alpha}} \exp \left(\frac{-(1 - \alpha)4r}{(1 + r)}\right) \left[\frac{\alpha + (1 - \alpha) \frac{1 - r}{1 + r}}{1 - a} \left(\frac{1 + r}{1 - r} \right) \left(\frac{1 + r}{1 - r} \right) \right].
\]

We set

\[\lambda_\alpha(r) = \frac{r}{(1 + r)^{2\alpha}} \exp \left(\frac{-(1 - \alpha)4r}{(1 + r)}\right) \left[\frac{\alpha + (1 - \alpha) \frac{1 - r}{1 + r}}{1 - a} \left(\frac{1 + r}{1 - r} \right) \left(\frac{1 + r}{1 - r} \right) \right]. \]

Then \(\lambda_\alpha(r_0) \) is the radius of \(\Omega_r \), where \(r_0 \in (0, 1) \) and \(r_0 \) is the smallest positive root of the equation \(8r^5\alpha^3 - 12r^5\alpha^2 + 6r^5\alpha - r^5 - 16r^4\alpha^3 + 12r^4\alpha^2 + 4r^4\alpha - 3r^4 + 8r^3\alpha^3 - 36r^3\alpha^2 + 32r^3\alpha - 8r^3 + 4r^2\alpha^2 - 4r^2\alpha + 4r^2 - 6r\alpha + 9r - 1 = 0. \)

We note that \(\min_{f \in ST_{Lh}(\alpha)} \Psi(f, z) \) is attained in \(ST_{Lh}(\alpha) \) by a function of the form \(f(z) = \overline{f_0(\eta z)} \), where

(2.6) \[f_0(z) = \frac{z(1 - \overline{z})}{(1 - z) (1 - \overline{z})} \exp(1 - \alpha) \Re \frac{4z}{1 - z}. \]

\[\square \]
For the particular case, where \(f \in ST_{Lh}(0) \) we establish the following corollary.

Corollary 1. Let \(f \in ST_{Lh}(0) \), then \(f \) is starlike with respect to any point of \(\Omega_r \), where \(\Omega_r \) is a disk \(\{ w : |w| < \lambda_\alpha(r_0) \} \) with \(\lambda_\alpha(r_0) = 8.7462 \times 10^{-2} \).

Proof. Let \(U_r(f) = f(|z| \leq r < 1), w = f(z) \in ST_{Lh}(0) \). Proceeding in a similar fashion as in the above proof, we show that \(U_r(f) \) is starlike with respect to \(w_0 \) if and only if \(|w_0| \leq \Psi(f, z) \), where

\[
\Psi(f, z) = \left| \frac{f(z)}{zf_z(z) - zf_\alpha(z)} \right| \Re^2f_z(z) - \Re f_\alpha(z). \]

In particular \(|w_0| \leq \lambda_\alpha(r) = \min_{f \in ST_{Lh}(0)} \Psi(f, z), \) with \(z \) fixed, \(|z| = r \). Since \(f \in ST_{Lh}(0) \), we have

\[
\lambda_\alpha(r) \geq r \exp\left(\frac{-4r}{1 + r}\right) \left(\frac{1 - r}{1 + r}\right)^3
= r \exp\left(\frac{-4r(1 - r)^3}{(1 + r)^4}\right).
\]

We can minimize \(\lambda_\alpha(r) \) by taking the smallest positive root of the equation

\[
r^3 + 3r^2 + 9r - 1 = 0
\]

which is \(r_0 = 0.10715 \). Hence \(\lambda_\alpha(r_0) = 8.7462 \times 10^{-2} \). We note that \(\min_{f \in ST_{Lh}(0)} \Psi(f, z) \) is attained in \(ST_{Lh}(0) \) by a function of the form \(f(z) = \pi f_0(\eta z) \), where

\[
f_0(z) = \frac{z(1 - \pi)}{(1 - z)} \exp \Re \frac{4z}{1 - z}.
\]

\[\square \]

3. Close to starlike logharmonic mappings of order \(\alpha \)

In this section, we consider the set of all logharmonic mappings \(F(z) \) which can be factorized as \(\alpha \) product of a logharmonic mapping \(f(z) \in ST_{Lh}(\alpha) \) with respect to \(a \in B \) and a logharmonic mapping \(R(z) \in P_{Lh} \) with respect to the same \(a \).

Definition 1. We say \(F(z) \) is close to starlike of order \(\alpha \), if \(F(z) = f(z)R(z) \), where \(f \in ST_{Lh}(\alpha) \) with respect to \(a \in B \) and \(R \in P_{Lh} \) with respect to the same \(a \). We denote by \(CST_{Lh}(\alpha) \) the set of all close to starlike logharmonic mappings of order \(\alpha \).

Note that, if \(\alpha = 0 \), we get the class of close to starlike logharmonic mappings and if \(R(z) = 1 \) then \(F \in ST_{Lh}(\alpha) \).

Close to starlike logharmonic mappings have the following geometrical property: Under the mapping \(F(z) \), the radius vector of the image of \(|z| = r < 1 \), never turns back by an amount more than \(\pi \). Observe \(F \) is not necessarily univalent starlike on \(U \). For example, take \(F(z) = z(1 - z) \), where \(z \in ST(\alpha) \) and \(1 - z \in P \).

In the next result we determine the radius of univalence and starlikeness for these mappings \(F \in CST_{Lh}(\alpha) \).
Theorem 2. Let \(F \in CST_{Lh}(\alpha) \). Then \(F \) maps the disk \(|z| < \rho\) onto a starlike domain, where \(\rho \leq \frac{2 - \alpha - \sqrt{\alpha^2 - 2\alpha + 3}}{1 - 2\alpha} \) for \(\alpha \neq \frac{1}{2} \), and \(\rho \leq \frac{1}{3} \) for \(\alpha = \frac{1}{2} \). The upper bound is best possible for all \(a \in B \).

Proof. Let \(F(z) = f(z)R(z) \in CST_{Lh}(\alpha) \), where \(f = \varphi \in ST_{Lh}(\alpha) \) with respect to \(a \in B \) and \(R = \frac{H}{G} \in P_{Lh} \) with respect to the same \(a \). \(F(z) \) is logharmonic with respect to the same \(a \) and we have

\[
(3.1) \quad \Re \left(\frac{zF_z(z) - zF_z(z)}{F(z)} \right) = \Re \left(\frac{zf_z(z) - z\varphi(z)}{f(z)} \right) + \Re \left(\frac{zR_z(z) - z\varphi(z)}{R(z)} \right).
\]

From Theorem A, we have

\[
(3.2) \quad f(z) = \varphi(z) \exp 2\Re \int_0^z \frac{a(s)\varphi'(s)}{(1 - a(s))\varphi(s)} ds,
\]

where \(\varphi(z) = \frac{zh}{g} \in ST(\alpha) \). Moreover, from [2], it follows that

\[
(3.3) \quad R(z) = p(z) \exp 2\Re \int_0^z \frac{a(s)p'(s)}{(1 - a(s))p(s)} ds,
\]

where \(p = \frac{H}{G} \in P \).

Substituting (3.2), (3.3) into (3.1), simple calculations lead to

\[
\Re \left(\frac{zF_z(z) - zF_z(z)}{F(z)} \right) = \Re \left(\frac{zf_z(z) - z\varphi(z)}{f(z)} \right) + \Re \left(\frac{zR_z(z) - z\varphi(z)}{R(z)} \right)
\]

\[
= \Re \left(\frac{z\varphi'(z)}{\varphi(s)} \right) + \Re \left(\frac{zp'(z)}{p(z)} \right).
\]

But since

\[
\Re \left(\frac{zp'(z)}{p(z)} \right) \geq \frac{-2|z|}{1 - |z|^2}, \quad \text{and} \quad \Re \left(\frac{z\varphi'(z)}{\varphi(s)} \right) > (1 - \alpha) \frac{1 - |z|}{1 + |z|} + \alpha,
\]

we get

\[
\Re \left(\frac{zF_z(z) - zF_z(z)}{F(z)} \right) \geq (1 - \alpha) \frac{1 - |z|}{1 + |z|} + \alpha - \frac{2|z|}{1 - |z|^2} = \frac{(1 - 2\alpha)|z|^2 + (2\alpha - 4)|z| + 1}{1 - |z|^2}.
\]

Hence, \(\Re \left(\frac{zF_z(z) - zF_z(z)}{F(z)} \right) > 0 \) if

\[
(1 - 2\alpha)|z|^2 + (2\alpha - 4)|z| + 1 > 0.
\]

In the case \(\alpha = \frac{1}{2} \), the above is satisfied for \(|z| < \frac{1}{2}\), so the radius of starlikeness is \(\rho = \frac{1}{2} \). For \(\alpha \neq \frac{1}{2} \), the radius of starlikeness \(\rho \) is the smallest positive root (less than 1) of \((1 - 2\alpha)p^2 + (2\alpha - 4)p + 1 = 0\) which is \(\frac{2 - \alpha - \sqrt{\alpha^2 - 2\alpha + 3}}{1 - 2\alpha} \). Therefore, \(F \) is univalent on \(|z| < \frac{2 - \alpha - \sqrt{\alpha^2 - 2\alpha + 3}}{1 - 2\alpha} \) and maps

\[
\left\{ z : |z| < \frac{2 - \alpha - \sqrt{\alpha^2 - 2\alpha + 3}}{1 - 2\alpha} \right\}
\]

onto a starlike domain. We consider the analytic function \(F(z) = \frac{f(z)}{(1 - z)^2 - 2\alpha} \in ST(\alpha) \subset ST_{Lh}(\alpha) \) and \(p(z) = \frac{1 + z}{1 - z} \in P \subset P_{Lh} \). We
have $F'(\frac{2 - \alpha - \sqrt{\alpha^2 - 2\alpha + 3}}{1 - 2\alpha}) = 0$ for $\alpha \neq \frac{1}{2}$ and $F'(\frac{1}{3}) = 0$ for $\alpha = \frac{1}{2}$. Hence, the upper bound is best possible for the class $ST_{Lh}(\alpha)$ and P_{Lh}. Since $f(z) = zh^F \in ST_{Lh}(\alpha)$ if and only if $\varphi(z) = zh/g \in ST(\alpha)$ and $R(z) = H/G \in P_{Lh}$ if and only if $p = H/G \in P$ (see[2]), the same bound is best possible for all $a \in B$. □

Corollary 2. Let $F \in CST_{Lh}(\alpha)$, then $F \in ST_{Lh}(\alpha)$ in $|z| < \rho$, for $\rho \leq 2 - \alpha - \sqrt{-2\alpha + 3}$.

Proof. $F \in ST_{Lh}(\alpha)$ if $\Re\frac{zF'(z) - \sqrt{zF'(z)}}{F(z)} > \alpha$. Using the proof of the previous theorem, this will be satisfied for

$$\frac{(1 - 2\alpha)|z|^2 + (2\alpha - 4)|z| + 1}{1 - |z|^2} > \alpha,$$

that is for $(1 - \alpha)|z|^2 + (2\alpha - 4)|z| + 1 - \alpha > 0$, the radius of starlikeness ρ is the smallest positive root (less than 1) of $(1 - \alpha)|z|^2 + (2\alpha - 4)|z| + 1 - \alpha = 0$ which is $\frac{2 - \alpha - \sqrt{-2\alpha + 3}}{1 - \alpha}$.

Theorem 3. Let $F \in CST_{Lh}(\alpha)$ with respect to a given a. Let $f^* \in ST_{Lh}(\alpha)$ with respect to the same a. Then $Q(z) = F(z)^{\lambda}f^*(z)^{1-\lambda}$, $0 < \lambda < 1$, is univalent and starlike in

$$|z| < \frac{1 + \lambda - \alpha - \sqrt{\alpha^2 - 2\lambda\alpha + \lambda^2 + 2\lambda}}{1 - 2\alpha}$$

for $\alpha \neq \frac{1}{2}$, and in

$$|z| < \frac{1}{2\lambda + 1},$$

for $\alpha = \frac{1}{2}$. The bound is best possible for all $a \in B$.

Proof. Let $Q(z) = F(z)^{\lambda}f^*(z)^{1-\lambda}$, $0 < \lambda < 1$, where $F(z) = f(z)R(z)$, $f \in ST_{Lh}(\alpha)$, $R \in P_{Lh}$, and $f^* \in ST_{Lh}(\alpha)$. All functions are logharmonic with respect to the same $a \in B$. Then $Q(z)$ is logharmonic with respect to the same a. Moreover, we have

$$\Re\frac{zQ'(z) - \sqrt{zQ'(z)}}{Q(z)} = \lambda\Re\frac{zF'(z) - \sqrt{zF'(z)}}{f(z)} + \lambda\Re\frac{zR'(z) - \sqrt{zR'(z)}}{R(z)} + (1 - \lambda)\Re\frac{zf^*(z) - \sqrt{zf^*(z)}}{f^*(z)}$$

$$\geq \lambda \frac{(1 - 2\alpha)|z|^2 + (2\alpha - 4)|z| + 1}{1 - |z|^2} + (1 - \lambda) \left(1 - \alpha\right) \frac{1 - |z|}{1 + |z| + \alpha}$$

$$= \frac{(1 - 2\alpha)|z|^2 + 2(\alpha - \lambda - 1)|z| + 1}{1 - |z|^2}.$$

Hence, $\Re\frac{zQ'(z) - \sqrt{zQ'(z)}}{Q(z)} > 0$ if

$$(1 - 2\alpha)|z|^2 + 2(\alpha - \lambda - 1)|z| + 1 > 0.$$

For $\alpha = \frac{1}{2}$, the last inequality is satisfied for $|z| < \frac{1}{1 + 2\alpha}$. Hence, $Q(z)$ is univalent in $|z| < \frac{1}{1 + 2\alpha}$ and maps that circle onto a starlike domain. For $\alpha \neq \frac{1}{2}$, the last
inequality is satisfied for \(|z| < \frac{1 + \lambda - \alpha + \sqrt{\lambda^2 - 2\lambda\alpha + 2\lambda}}{1 - 2\alpha} \). Hence, \(Q(z) \) is univalent in \(|z| < \frac{1 + \lambda - \alpha - \sqrt{\lambda^2 - 2\lambda\alpha + \lambda^2 + 2\lambda}}{1 - 2\alpha} \) and maps that circle onto starlike domain. We consider the function

\[
Q(z) = f_0(z)^\lambda f_0^*(z)^{1-\lambda},
\]

where

\[
f_0(z) = \frac{z}{1 - z}, \quad f_0^*(z) = \frac{z}{1 + z}.
\]

and

\[
Q(z) = \frac{z}{1 - 2\alpha}.
\]

For the particular case where \(f^* \in ST_{Lh}(0) \), we have the following theorem:

Theorem 4. Let \(F \in CST_{Lh}(\alpha) \) with respect to a given \(a \) and let \(f^* \in ST_{Lh}(0) \) with respect to the same \(a \). Then \(Q(z) = F(z)^\lambda f^*(z)^{1-\lambda}, 0 < \lambda < 1, \) is univalent and starlike in \(|z| < \frac{1 + \lambda - \alpha - \sqrt{\lambda^2 - 2\lambda\alpha + \lambda^2 + 2\lambda}}{1 - 2\alpha} \) for \(\alpha \neq \frac{1}{2} \) and in \(|z| < \frac{1}{2\lambda + 1}, \) for \(\alpha = \frac{1}{2\lambda} \). The bound is best possible for all \(a \in B \).

References

1. Z. Abdulhadi and R. M. Ali, Univalent logarithmic mappings in the plane, Abstr. Appl. Anal. 2012, Art. ID 721943, pp.1-32.
2. Z. Abdulhadi, Close-to-starlike logarithmic mappings, Internat. J. Math. Math. Sci. 19 (1996), no. 3, 563-574.
3. Z. Abdulhadi, Typically real logarithmic mappings, Int. J. Math. Math. Sci. 31 (2002), no. 1, 1-9.
4. Z. Abdulhadi and Y. Abunnahuna, “Starlike logarithmic mappings of order alpha”, Journal of Inequalities in Pure and Applied Mathematics. 7(4) Art.123, (2006), 1-6.
5. Z. Abdulhadi and D. Bshouty, Univalent functions in \(H \cdot \mathcal{P}(D) \), Trans. Amer. Math. Soc. 305 (1988), no. 2, 841-849.
6. Z. Abdulhadi and W. Hengartner, Spirallike logarithmic mappings, Complex Variables Theory Appl. 9 (1987), no. 2-3, 121-130.
7. Z. Abdulhadi, W. Hengartner and J. Szynal, Univalent logarithmic ring mappings, Proc. Amer. Math. Soc. 119 (1993), no. 3, 735-745.
8. Z. Abdulhadi and W. Hengartner, One pointed univalent logarithmic mappings, J. Math. Anal. Appl. 203 (1996), no.2, 333-351.
9. Z. Abdulhadi and W. Hengartner, Polynomials in \(H\mathcal{P} \), Complex Variables Theory Appl. 46 (2001), no. 2, 89-107.
10. Y. Abu-Muhanna and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), no. 1, 1-20.
11. M. Aydogan , Some results on a starlike log-harmonic mapping of order alpha, J. Comput. Appl. Math. 256 (2014), 77-82.
12. M. Aydogan and Y. Polatoğlu, A certain class of starlike log-harmonic mappings. J. Comput. Appl. Math. 270 (2014), 506-509.
[13] X. Chen and T. Qian, Non-stretch mappings for a sharp estimate of the Beurling-Ahlfors operator. J. Math. Anal. Appl. 412 (2014), no. 2, 805-815.
[14] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.
[15] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[16] P. Duren and G. Schober, A variational method for harmonic mappings onto convex regions, Complex Variables Theory Appl. 9 (1987), no. 2-3, 153–168.
[17] P. Duren and G. Schober, Linear extremal problems for harmonic mappings of the disk, Proc. Amer. Math. Soc. 106 (1989), no. 4, 967–973.
[18] W. Hengartner and G. Schober, On the boundary behavior of orientation-preserving harmonic mappings, Complex Variables Theory Appl. 5 (1986), no. 2-4, 197–208.
[19] W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), no. 3, 473–483.
[20] S. H. Jun, Univalent harmonic mappings on $\Delta = \{z: |z| > 1\}$, Proc. Amer. Math. Soc. 119 (1993), no. 1, 109–114.
[21] P. Li, S. Ponnusamy and X. Wang, Some properties of planar p-harmonic and log-p-harmonic mappings. Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 595-609.
[22] Zh. Mao, S. Ponnusamy, and X. Wang, Schwarzian derivative and Landau’s theorem for logharmonic mappings. Complex Var. Elliptic Equ. 58 (2013), no. 8, 1093-1107.
[23] Z. Nehari, The elliptic modular function and a class of analytic functions first considered by Hurwitz, Amer. J. Math. 69 (1947), 70–86.
[24] J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge Univ. Press, Cambridge, 1989.
[25] R. Osserman, A survey of minimal surfaces, second edition, Dover, New York, 1986.
[26] H.E. Özkan and Y. Polatoğlu, Bounded log-harmonic functions with positive real part. J. Math. Anal. Appl. 399 (2013), no. 1, 418-421.

DEPARTMENT OF MATHEMATICS AND STATISTICS, AMERICAN UNIVERSITY OF SHARJAH, SHARJAH, BOX 26666, UAE
E-mail address: zhadi@aus.edu

DEPARTMENT OF MATHEMATICS, AMERICAN UNIVERSITY OF DUBAI, DUBAI, UAE.
E-mail address: lhajj@aud.edu