INTRODUCTION

Interleukin (IL)-6 is an autocrine growth factor for mesangial cells. It is not known whether high glucose influences IL-6 production in mesangial cells. Angiotensin II (AGII) is involved in the progression of renal diseases including diabetic nephropathy. Therefore, we evaluated the effects of high glucose in concert with AGII on IL-6 production in human mesangial cells and the modulation by blocking AGII. After 48 hr of culture, IL-6 mRNA expression was analyzed by reverse transcription and polymerase chain reaction (PCR). Quantitative determination of IL-6 concentrations in the culture supernatants of mesangial cells was performed using a sandwich enzyme immunosassay kit. Incubation of mesangial cells with high glucose (450 mg/dL) reduced the ratio of PCR products for IL-6 to ß-actin on densitometric results, while AGII (10⁻⁷ M) increased it. The IL-6 secretion in the supernatant was also increased by AGII and decreased by high glucose. The IL-6 mRNA expression and IL-6 secretion in combination of high glucose and AGII were higher than those in high glucose and similar with those in control media. The addition of losartan (10⁻⁶ M) or captopril (10⁻⁴ M) to high glucose had no additional effects on IL-6 production. These results suggest that whereas AGII increases IL-6 production, high glucose decreases it. The IL-6 production of mesangial cells in diabetic milieu may be complicated and depend on the local effects of high glucose and/or AGII.

Key Words: Glucose; Angiotensin II; Interleukin-6

MATERIALS AND METHODS

Human mesangial cell culture

Portions of normal renal cortex were obtained from human kidneys immediately after surgical nephrectomy. Collagenase (Gibco BRL, Gaithersburg, MD, U.S.A.) treated glomeruli were plated on culture dishes in DMEM medium (Gibco BRL) containing 17% heat-inactivated fetal bovine serum (Sigma Chemical Co., St. Louis, MO, U.S.A.) (14). Cells displayed the typical spindle or stellate morphology. Immunofluorescent staining of the cells with antibodies to common leukocyte antigen and factor VIII was negative, and the cells were...
capable of growth in D-valine substituted medium. Near confluent mesangial cells in the third to fifth passage were transferred to a 24-well plate, and were rested in serum-free medium for 72 hr. Then mesangial cells were cultured in the media containing 0.5% heat-inactivated fetal bovine serum with D-glucose (Sigma, Louis, U.S.A.), AGII (Sigma, Louis, U.S.A.), captopril (Sigma, Louis, U.S.A.), or losartan (Merck, Whitehouse Station, U.S.A.). The concentrations of AGII (10^{-7} M), captopril (10^{-6} M), or losartan (10^{-6} M) were used as previously described (15, 16). Each group had three to four separate experiments.

Reverse transcription (RT)-polymerase chain reaction (PCR)

Mesangial cells were resuspended in RNAzol (Cinna/Biotec, Houston, TX, U.S.A.) and RT was performed using RT kit (Boehringer, Mannheim, Melbourne, Australia), as previously described (17). The reaction mixture was incubated for 60 min at 42°C and heated for 7 min at 90°C in thermocycler (Crocodile III, Oncor Inc., Gaithersburg, MD, U.S.A.). In order to quantitate the PCR products comparatively and confirm the integrity of the products, we coamplified β-actin in a companion tube. The primers based on the known sequences of human cDNAs were as follows. β-actin: sense was 5′ CCC CAG GCA CCA GGG CGT GAT 3′ and antisense 5′ GGT CAT CTT CTC GCG GTT GGC CTT GGG GT 3′. IL-6: sense was 5′ GCG CCT TCG GTC CAG TTG 3′ and antisense 5′ CTC CTT TCT CAG GGC TGA G 3′. RT products were amplified with sense and antisense primers in a reaction mixture: 10 mM Tris HCl (pH 8.3), 200 μM dNTP, 1.25 U Taq DNA polymerase, 1.5 mM MgCl2, 40 pmol for IL-6 and 20 pmol for β-actin primer. The mixture was heated for 3 min at 94°C, and the PCR cycle consisted of 1 min denaturation at 94°C, 1 min annealing at 60°C for β-actin and 55°C for IL-6, 3 min extension at 72°C and final extension for 7 min at 72°C. After amplification, PCR products were electrophoresed through a 1% agarose gel with 0.5 g/mL ethidium bromide to visualize the DNA bands. The gel was photographed with Polaroid Type 665 positive/negative film (Polaroid Corporation, Cambridge, Massachusetts, U.S.A.) (18). The ratio of PCR products for IL-6 to β-actin according to densitometric results also showed maximal sensitivity at 2 ρL of cDNA and 38 cycles of PCR that we used in this study.

Sandwich enzyme immunoassay

Quantitative determination of IL-6 concentrations in the culture supernatants of mesangial cells was performed using a sandwich enzyme immunoassay kit (Quantikine; R&D Inc., Minneapolis, MN, U.S.A.). Standards and samples were pipetted into the wells. After washing away unbound substances, an enzyme-linked polyclonal antibody was added to the wells. Following a wash, a substrate solution was added to the wells and the intensity of the color was measured.

Statistics

Results are expressed as the mean ± SD. Comparisons among groups were made by analysis of variance, and comparisons between groups were made using the Student’s unpaired t-test or the Mann-Whitney test. Significance was assigned at the p<0.05 levels.

RESULTS

Effects of high glucose or AGII on IL-6 mRNA expression

PCR products, 211 bp in length corresponding to IL-6 mRNA and 263 bp to β-actin mRNA, were detected from mesangial cells. We evaluated the effects of high glucose and AGII on IL-6 expression in mesangial cells. After 48 hr of culture, IL-6 mRNA expression was measured by RT-PCR. Incubation with AGII (10^{-7} M) enhanced IL-6 expression by 30%, but in contrast, high glucose (450 mg/dL) reduced IL-6 expression by 33% (Media 0.86 ± 0.14, AGII 1.12 ± 0.05, high glucose 0.58 ± 0.15; p<0.05) (Fig. 1, 2). The IL-6 mRNA expression (0.95 ± 0.25) in combination of high glucose and AGII was similar to those in media (0.86 ± 0.14) and higher than those in high glucose (0.58 ± 0.15).

![Fig. 1. Representative agarose gel analyzes of RT-PCR assays performed to detect IL-6 message in human mesangial cells incubated with media alone, angiotensin II (AGII) (10^{-7} M), high glucose (HG; 450 mg/dL), or high glucose with angiotensin II, captopril (C; 10^{-6} M) or losartan (L; 10^{-6} M).](image-url)
Effects of high glucose or AGII on IL-6 secretion

Similar to the results of IL-6 mRNA expression, the IL-6 secretion in the supernatant was increased by AGII and decreased by high glucose (Media 18.0±3.2, AGII 28.0±4.0, high glucose 9.9±1.0 pg/mL) (Fig. 3). The IL-6 secretion (20.0±4.0 pg/mL) in combination of high glucose and AGII was also similar to those in media (18.0±3.2 pg/mL) and higher than those in high glucose (9.9±1.0 pg/mL).

Effects of losartan or captopril

Furthermore, we tested the effects of losartan (10^{-6} M) or captopril (10^{-6} M) administration on IL-6 production by mesangial cells in the presence of high glucose and fetal bovine serum. The administration of these drugs at these concentrations to high glucose had no additional effects on the IL-6 mRNA expression (high glucose 0.58±0.15, high glucose+captopril 0.63±0.25, high glucose+losartan 0.68±0.20; p>0.05) and secretion (high glucose 9.9±1.0 pg/mL, high glucose+captopril 10.7±2.0 pg/mL, high glucose+losartan 12.2±5.0 pg/mL; p>0.05) (Fig. 1-3).

DISCUSSION

Various factors such as IL-1, tumor necrosis factor α, lipopolysaccharide, or immune complex stimulate IL-6 production in human mesangial cells has not been reported yet. In peripheral mononuclear cells there are controversies about the effect of high glucose on IL-6 production. The results of one study demonstrated that IL-6 production was suppressed by elevated glucose concentration dose- and time-dependently (6). Elevated glucose levels significantly alter the cytokine production and concomitantly inhibit cellular proliferation. In contrast, other study showed that hyperglycemia or advanced glycosylation end products stimulated IL-6 synthesis and secretion (7). IL-6 levels of culture supernatants incubated with 22 mM or 33 mM glucose showed considerable increase over basal levels incubated with 11 mM glucose, whereas those levels incubated with high concentration of mannitol showed no increase.

In our study, high glucose reduces IL-6 mRNA expression and IL-6 secretion in human mesangial cells. It was reported that high glucose increases the production of transforming growth factor (TGF) β and decreases the cellularity of mesangial cells (4, 5). High glucose-induced decrease of IL-6 may also be related to the decrease of cellularity in mesangial cells when incubated in high glucose. The results in other cells indicated that TGF β1 production is preceding the reduced IL-6 production in condition of high glucose concentration (6). Therefore, the decrease of IL-6 production in concert with increase of TGF β1 may be involved in the early development of diabetic glomerular hypertrophy. This may be different from the data in the late stage of diabetic nephropathy that in situ IL-6 mRNA expression was associated with mesangial cell proliferation in the patients with diabetic nephropathy (3). It is, however, unclear how high glucose reduced IL-6 expression. Further studies are necessary to investigate the underlying mechanisms including intracellular transduction pathway.

There is evidence that the intrarenal renin-angiotensin system is activated in diabetic nephropathy (8) and that signals for renin, angiotensinogen and ACE mRNA are stronger in mesangial cells of patients with diabetes mellitus (20). It has
been reported that AGII receptors are present in abundance in mesangial cells (21). Our study showed that AGII induced the increase in IL-6 mRNA expression or IL-6 secretion. Other study showed that AGII enhances DNA synthesis of mouse mesangial cells through the mediation of IL-6 (10). AGII has been also observed to induce cell hypertrophy (11).

It has been reported that hyperglycemia enhances the expression of AGII receptors and the local effects of AGII (22). These suggest that hyperglycemia can act in synergy with locally increased AGII levels in inducing diabetic glomerular hypertrophy (23). Therefore, the combined administration of high glucose and AGII may be useful to understand the mechanisms in the development of diabetic nephropathy. Our study showed that the IL-6 mRNA expression or IL-6 secretion in combination of high glucose and AGII were higher than those in high glucose alone and similar to those in media. These indicate that the local effect of AGII may be antagonistic to that of high glucose on IL-6 expression in diabetes. In situ hybridization study showed that IL-6 mRNA is expressed by glomerular resident cells and interstitial cells in the renal tissue of patients with diabetic nephropathy and that its expression may be associated with mesangial proliferation (5). The IL-6 production of mesangial cells in diabetic milieu may thus be complicated and depend on the local effects of high glucose and/or AGII. We can speculate that localized IL-6 production in mesangial cells may be decreased at the stage of early diabetes and increased, at least partly by AGII, at the late stage of diabetic nephropathy. At the late stage the combined effects of AGII and IL-6 may aggravate mesangial injury.

Our study showed that the administration of losartan or captopril to mesangial cells cultured with high glucose and fetal bovine serum had no additional effects on IL-6 mRNA expression and IL-6 secretion. These indicate that AGII may be not directly involved in the high glucose-induced alterations in IL-6 production. In other study administration of valsartan in therapeutic dosages in normal glucose concentrations did not influence stimulated production of IL-6 by whole blood (13). It’s unclear whether these findings may reflect in vivo state and whether other concentrations of these drugs may have some effects.

REFERENCES

1. Iwano M, Dohi K, Hirata E, Horii Y, Shiiki H, Ishikawa H. Induction of interleukin 6 synthesis in mouse glomeruli and cultured mesangial cells. Nephron 1992; 62: 58-65.
2. Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspect of interleukin 6. Immuno Today 1990; 11: 443-9.
3. Suzuki D, Miyazaki M, Naka R, Koji T, Yagame M, Jinde K, Endoh M, Nomoto Y, Sakai H. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetologia 1995; 44: 1233-8.
4. Wolf G, Sharma K, Chen Y, Erickson M, Ziyadeh FN. High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-β. Kidney Int 1992; 42: 467-56.
5. Ibm CG, Park JK, Ahn JH, Lee TW, Kim MJ. Effects of glucose, insulin and somatostatin on collagen production by glomerular mesangial cell. Korean J Nephrol 1992; 11: 200-6.
6. Reinhold D, Ansorge S, Schlechter ED. Elevated glucose levels stimulate transforming growth factor-beta 1 (TGF-beta 1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res 1996; 28: 267-70.
7. Morohoshi M, Fujisawa K, Uchimura I, Numano F. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann N Y Acad Sci 1995; 748: 562-70.
8. Kenefick TM, Anderson S. Role of angiotensin II in diabetic nephropathy. Semin Nephrol 1997; 17: 441-7.
9. Fogo AB. The role of angiotensin II and plaminogen activator inhibitor-1 in progressive glomerulosclerosis. Am J Kidney Dis 2000; 35: 179-88.
10. Wolf G, Haberstroh U, Neilson EG. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured mesangial cells. Am J Pathol 1992; 140: 95-107.
11. Anderson PW, Do YS, Hseau A. Angiotensin II causes mesangial hypertrophy, Hypertension (Dallas) 1993; 21: 29-35.
12. Moriyma T, Fujibayashi M, Fujiwara Y, Kaneko T, Xia C, Imai E, Kamata T, Ando A, Yeda N. Angiotensin II stimulates interleukin-6 release from cultured mouse mesangial cells. J Am Soc Nephrol 1995; 6: 95-101.
13. Peeters AC, Netea MG, Kullberg BJ, Thien T, van der Meer JW. The effect of renin-angiotensin system inhibitors on pro- and anti-inflammatory cytokine production. Immunology 1998; 94: 376-9.
14. Border WA, Okuda S, Languino LR. Rouslalite E. Transforming growth factor-β regulates production of proteoglycans by mesangial cells. Kidney Int 1990; 37: 689-95.
15. Gomez-Garre D, Ruiz-Ortega M, Ortego M, Largo R, Lopez-Armada MJ, Plaza JJ, Gonzalez E, Egido J. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension 1996; 27: 885-92.
16. Kang MM, Lee SY, Han SY, Guahk JY, Jo SK, Yoon JW, Cho WY, Kim HK, Ihm CG, Chu DR. The effects of high glucose, angiotensin II and ACE inhibitor on the expression of TGF mRNA in cultured human mesangial cells. Korean J Nephrol 1999; 18: 513-22.
17. Moriyma T, Murphy HR, Martin BM, Garcia-Perez G. Detection of specific mRNAs in single nephron segments by use of the polymerase chain reaction. Am J Physiol 1990; 258: F1470-4.
18. Kaneto H, Morrisey K, Kilhar S. Increased expression of TGF-β mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 1993; 44: 313-21.
19. van den Dobbelsteen ME, van der Woude FJ, Schroegers WE, van Es LA, Daha MR. Soluble aggregates of IgG and immune complexes enhance IL-6 production by renal mesangial cells. Kidney Int 1993; 43: 544-53.
20. Lai KN, Leung JCK, Lai KB, To WY, Yeung VTF, Lai F M. Gene expression of the renin-angiotensin system in human kidney. J Hypertens 1998; 16: 91-102.
21. Ardaillou R. Angiotensin II receptors. J Am Soc Nephrol 1999; 10: S30-9.
22. Thaiss F, Wolf G, Assad N, Zahner G, Stahl RA. Angiotensinase A gene expression and enzyme activity in isolated glomeruli of diabetic rats. Diabetologia 1996; 39: 275-80.
23. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 1999; 56: 393-405.