Construction and testing of a parametric criterion of mechanical damage of an employee or an athlete based on the model "impact - weakening - carrying capacity"

Yu V Esipov¹, N S Mamatchenko¹², and E A Bochkova¹
¹ Don State Technical University, Gagarin sq., 1, Rostov on Don, 344003, Russia
E-mail: ²voleyboll.94@mail.ru

Abstract. The issues of concretization and expansion of the parametric model “impact - weakening - carrying capacity” application for describing injuries to workers in both mechanical engineering and sports are considered. Based on previously obtained results from other studies, injuries were selected and described by severity (mild, moderate, severe). For quantitative assessment of injuries that often occur both in production and in sports, the article developed and tested a parametric criterion for mechanical damage of an employee or an athlete based on the model “fuzzy impact - fuzzy bearing capacity”. The results obtained can be useful for a comparative analysis of working and sports conditions and substantiation of methods and means of protection against the negative action of mechanical factors.

1. Formulation of the problem
According to the general algorithm [1], a measure of the certainty of mechanical damage to a person can be found by classifying possible outcomes, establishing and (or) choosing their parametric models based on the classical model “impact (load) - weakening - susceptibility (strength)” and calculating the probability or possibility of outcomes implementation according to expected values and intervals of their spread [1,2].

In this formulation, the development of a parametric criterion for mechanical damage to an employee or athlete based on the “impact - weakening - carrying capacity” model is the main issue for a unified quantitative description of injuries in both machine-building and sports spheres.

2. Introduction and description of the main outcomes of mechanical damage
Let us introduce and consider the following unfavorable outcomes (UO) that can occur in the work or competition area, where y (x) = 1 is a logical condition for the occurrence of an accident or outcome, examples of which for athletes - volleyball players were systematized in the dissertation of Mamatchenko N.S. [4] and are presented in table 1:

x1	UO 1	injury with loss of ability to work (crack / fracture of one finger when the worker’s hand is in the stamp space during the operation of the press);
x2	UO 2	injury with long-term disability (fractures of two or more fingers / hand when the worker’s hands are in the stamp space during the press operation);
x3	UO 3	lethal outcome (fracture of the bones of the skull base when the worker’s head is in the stamp space during the work of the press).

By definition, taking these outcomes into account, the general logical model of an incident of the type under consideration is:
3. Introduction and description of the factorial parametric model of the incident

Most often, a safety examination is carried out in the absence of accurate and (or) complete information about the prerequisites for incidents in the technical system.

Since the “impact parameter” is a characteristic of the “environment”, the expert uses calculation and analytical methods to find it. Whereas the “susceptibility parameter” is a characteristic of the ability of an object (or subject), expressed in terms and values of the impact parameters, to occur in the system of an incident (an unfavorable outcome). Moreover, the parameters of susceptibility are established, as a rule, experimentally.

Table 1. Time of disability for volleyball players of different roles.

Variety of roles	1	2	3	4	5	6	Total
Shoulder	1	5	25	21	23	5	79
Toes	2	0	25	0	0	5	37
Back	1	13	40	40	45	13	151
Knees	2	0	25	0	0	5	37
Ankle	3	2	20	9	9	6	46
Wrist	1	17	14	14	30	17	89
Total	6	0	25	0	0	7	32
Total	5	0	40	0	0	28	68

It should be noted that, as a rule, an expert is able to establish such parameters of exposure and susceptibility in the form of fuzzy intervals indicating the level of distinguishability.

In this case, any unfavorable outcome (UO) is standardly determined on the basis of the condition of exceeding the exposure (load or dose) over the susceptibility (strength or resistance, or the parameter of the effect) and, moreover, it is simplified to take into account that the protection monotonically weakens the effect.

The problem of determining the possible measure of the parametric prerequisite of the incident is solved as the problem of comparing two fuzzy numbers with triangular membership functions

\[y = x_1 \lor x_2 \lor x_3, \quad \text{(1)} \]

\[T = \{ \tau_i \}, \quad i = 1, 2, \ldots, I \text{[days]} \]

where respectively \(s \) and \(r \) — cores; and intervals \(\{ s - \Delta s, s + \Delta s \} \) and \(\{ r - \Delta R, r + \Delta R \} \) — fuzzy range \(\mu_s(x), \mu_R(x) \).

Moreover, the values \(\Delta_s, \Delta_R \) express the absolute errors in setting the parameters of exposure and susceptibility (Figure 1). In this case, the criterion for the excess of the fuzzy effect over the fuzzy susceptibility on the regions of existence of these parameters is presented in the form \(s > r \) s < r.
In the first approximation, under the assumption of a linear approximation of fuzzy parameters (in the least informative version of their obtainment), the dependence

\[\pi'_L = 1 - \bar{z}b, \quad (3) \]

where \(\bar{z}b \) – reduced parametric safety margin (4):

\[\bar{z}b = \frac{\bar{r} - \bar{s}}{\Delta r + \Delta s}, \quad (4) \]

in which \(\bar{r} \) and \(\bar{s} \) – respectively, the “cores” of fuzzy susceptibility parameters \(r \) and impact \(s \); \(\Delta_r \) and \(\Delta_s \) – “blurring intervals” of fuzzy parameters of susceptibility \(r \) and impact \(s \).

4. Modeling of unfavorable outcomes based on the excess criterion

In order to universalize the parametric modeling of any unfavorable outcomes on the basis of the exceeding criterion, a dimensionless representation of the parametric model of the incident was introduced using hygienic indicators such as MAC (maximum allowable concentration), MPE (maximum permissible exposure), SEL (safe exposure level) [2].

As a parameter of susceptibility, the pressure \(p \) (Pa) is taken when a press fragment hits an employee or when athletes are hit. The impact parameter during the hit is defined as the amplitude of mechanical stress \(\sigma \) (Pa) from the impact of the stamp on the worker or protection.

5. Selection and description of susceptibility parameters

From the textbook of Kapustin A.V. [3] bone fractures in the form of a crack in the inner bone plate (the beginning of the formation of a fracture) occur during impacts with a force of 900 to 1100 N. At a force of impacts from 7257.1 to 10689.6 N, along with cracks, bone fractures occur. And with an impact force of over 100,000 N, a lethal outcome occurs in almost 100% of cases. Based on these data, we will simplify the following "ruler" presented in Figure 2:

\[p_1 = 1, \quad p_2 = 10, \quad p_3 = 100, \quad p, \text{kPa} \]

Figure 2. Simplified (deterministic) presentation of the values of the susceptibility parameters of the summit outcomes SO₁, SO₂, SO₃.

When the impact force is from 1 kPa to 10 kPa, the top outcome 1 occurs, the worker will have a finger fracture, i.e. disability injury.

With the magnitude of the impact force from 10 kPa to 100 kPa, the peak outcome 2 occurs, the employee will be injured with a long-term disability.

With the magnitude of the impact force from 100 kPa and above, the summit outcome 3 occurs, an accident with a fatal outcome occurs.
We represent these statements using the membership function of the fuzzy parameter of the employee’s susceptibility to impact at three levels (outcomes), where the cores and blur intervals according to Kapustin are approximately equal, respectively (5) (6):

$$\bar{r}_1 = 1, \quad \bar{r}_2 = 10, \quad \bar{r}_3 = 100 \quad \text{(kPa)} $$

$$\Delta_1 = 0.2; \quad \Delta_2 = 3; \quad \Delta_3 = 50 \quad \text{(kPa)}$$

Figure 3. Three-level representation of the susceptibility of an object and (or) subject to the impact of hazardous or harmful factors and corresponding outcomes (hazards).

Examples of fuzzy assessment of the risks of mechanical shock and the implementation of the three summit outcomes of an accident.

1) Analysis of the condition at the lower boundary. If the impact force is less than $r_1 - \Delta_1$, then there will be no fracture of the finger and the possible measure (PM) of SO1 is 0.

2) If the impact force is greater than r_1, but less than r_2, then the possible measure of SO1 is equal to 1, and the value PM of SO2 is calculated by formulas (5) and (6) and depends on the values of characteristics of the fuzzy parameters of the impact and susceptibility r, s, Δ_r, Δ_s.

For example, if $\bar{r}_2 = 10$, $s = \bar{r}_1$, then at $1) \Delta_r = \Delta_s = 0.5 (\bar{r}_2 - \bar{r}_1)$

We get, that $zb = 1$, and the value PM of SO2 (π_{L_2}) equals 0.

At 2) $\Delta_r = \Delta_s = 0.6 (\bar{r}_2 - \bar{r}_1)$ we get, that $zb = 0.83$, and the value PM of SO2 (π_{L_2}) equals 0.17.

3) If $s = 60; \quad \Delta_r = 20; \quad \Delta_s = 50 \quad \text{(kPa)}$, then PM of SO3 (at $r_3 = 100 \quad \text{kPa}$) equals $\pi_{L_3} = 0.43$.

4) If the exposure parameters were set absolutely precisely: $\Delta_s = 0$, $s = 0.9 \cdot \bar{r}_2$, then the problem of finding the PM of SO2 taking into account the relations $\bar{r}_2 = 10$ and $\Delta_2 = 3 \quad \text{(kPa)}$, can be solved either using the graph, Figure 3, or analytically $\pi_{L_2} = 1 - zb = 1 - 1/3 = 0.67$.

As you can see, the graphical and analytical presentation of the model of impact and susceptibility makes the procedure for calculating the possible measures of top outcomes according to the increasing degree of severity clear and allows you to avoid “gross” errors.

Thus, for the quantitative assessment of injuries that often occur, both in production and in sports, a parametric criterion of mechanical damage to an employee or athlete was developed and tested on the basis of the “impact - carrying capacity” model. The results obtained can be useful both for a comparative analysis of working conditions and sports, and for substantiating the methods and means of protection against the negative action of mechanical factors.

References

[1] Gutierrez F A, Santos V C, Silva M B 2020 Genetic variation, inflammatory and muscle injury response in rugby players to different positions in the field. *Gazzetta Medica Italiana Archivio per le Scienze Mediche*. Vol 179, #1-2 Pp 59-66

[2] Fagher K, Lexell J 2020 Prevalence of sports-related injuries and illnesses in paralympic athletes Vol 12. #3 pp 271-280

[3] Heiss R, Roemer F W 2019 Prevalence of mri-detected ankle injuries in athletes in the rio de janeiro 2016 summer olympics *Academic Radiology* Vol 26 pp 1605-1617
[4] Esipov Yu V 2017 Development of an algorithm for calculating the probabilistic safety indicator of the technical system "protection - object - environment" Safety of technogenic and natural systems Vol 1 pp 75-89

[5] Mamatchenko N 2017 Substantiation of injury safety of volleyball players on the example of the national team of DSTU Safety of technogenic and natural systems. Vol 4 Pp 46-63

[6] Robles-Palazon F J, Cejudo A A 2019 systematic review about lower extremities injuries prevention programs for young athletes Journal of Sport and Health Research Vol 11 № 1. P. 1-16.

[7] Karpov V Y, Zavalishina S Y 2019 Physiological basis of physical rehabilitation of athletes after ankle injuries Indian Journal of Public Health Research and Development Vol 10 № 10 pp 2051-2055

[8] Sevbitov A V, Zhadko S I 2019 Analysis of the issue of injuries in athletes cheerleaders Indo American Journal of Pharmaceutical Sciences Vol 6 № 5 pp 10988-10990

[9] Milewski M D, Pace J L 2014 Chronic lack of sleep is associated with increased sports injuries in adolescent athletes Journal of Pediatric Orthopaedics Vol 34 № 2 pp 129-133

[10] Kazimova V 2019 The effects of ankle baring to the volleyball players performance. Scientific bulletin of the Academy of Physical Culture and Sports Vol 1-2 pp 23-29

[11] Beloded V G, Spivak E V, Ilyutina T M, Trengulov K R 2018 Materials of the All-Russian scientific-practical conference of students and scientific-pedagogical workers, dedicated to the 150th anniversary of the birth of V.N. Voikova pp 175-178

[12] Andreeva L A, Akilov V S 2019 PREVENTION OF SPORTS INJURIES IN TRAINING LESSONS. In the collection: Physical culture: problems of training and education. Digest of articles. Ekaterinburg pp 4-9

[13] Sokolova N G, Lebedeva A O 2015 In the collection: Psychological, pedagogical and physiological aspects of building health and fitness programs and ensuring their safety. Collection of materials of the second international scientific conference pp 365-371

[14] Prokopyeva Yu V 2018 problems of theory and practice of physical culture, sports and tourism. Materials of the VI All-Russian scientific-practical conference of young scientists, graduate students, undergraduates and students, dedicated to the tenth anniversary of Kazan's victory in the bid campaign for the right to host the XXVII World Summer Universiade in 2013 and the 5th anniversary of the 2013 Universiade. In 3 volumes pp 416-420

[15] Bykov A V 2016 NATURE OF INJURIES IN TEAM PLAYING SPORTS. Electronic scientific journal No 8 (11) pp 203-206

[16] Zhurin A V 2015 FEATURES OF INJURY IN VOLLEYBALL. In the collection: SCIENTIFIC ASPECTS OF PHYSICAL CULTURE IN HIGHER SCHOOL. Collection of articles from the scientific-practical and educational-methodical international conference dedicated to the 70th anniversary of the victory in the Great Patriotic War. FSBEI HPE "Moscow State University of Civil Engineering", Belgorod State Technological University named after V.G. Shukhov, Kharkiv National Pedagogical University named after G.S. Skovoroda, Casimir the Great University, Graduate School of Environmental Protection pp 201-206