Changes of thrombelastography in patients undergoing elective primary total knee and total hip replacement with low molecular heparin prophylaxis

Yi Yang1†, Zhenjun Yao1†, Wenda Dai1, Peng Shi2, Lei Luo3 and Chi Zhang1*

Abstract

Background: There has been no effective method to monitor the changes of blood coagulation after thromboprophylaxis for elective arthroplasty patients. The objective of this study is to assess the coagulation status of patients undergoing arthroplasty with thromboelastograph (TEG).

Methods: Ninety patients undergoing primary elective unilateral arthroplasty were investigated. Thromboprophylaxis continued for at least 10 days. TEG was performed on the day before the operation and on postoperative days 1, 4, and 9.

Results: The total hip and total knee groups showed significant changes in the distribution of different hypercoagulable states on days 1–4 and on days 4–9. On day 9 after operation, 34 out of 90 (37.8%) of the total hip and total knee patients were found with hypercoagulable state. Of these 34 patients with hypercoagulable state, 26 (76.5%) demonstrated platelet or mixed hypercoagulability.

Conclusions: Thrombelastography was an effective way to identify hypercoagulability in patients undergoing elective primary total knee and total hip replacement. Platelet may play an important role in the progress of blood hypercoagulability.

Keywords: Thromboprophylaxis, Low molecular weight heparin, Arthroplasty, Thrombelastography, Hypercoagulability

Background

Venous thromboembolism (VTE), including pulmonary embolism (PE) and deep vein thrombosis (DVT), is a severe complication in major orthopedic surgery. The incidence of venous thromboembolism following total joint replacement (TJR) has diminished over the last three decades [1]. The routine use of anticoagulants after total knee and total hip replacement is strongly recommended by, at present, the guidelines by the American Association of Chest Physicians (ACCP) [2]. However, with the routine use of thromboprophylaxis, some patients still develop DVT of the lower extremity and PE, while a minority of them may be at risk for bleeding complications [2-4]. This suggests that it is important to accurately monitor the changes of coagulation after anticoagulation during perioperative period.

Thromboelastograph (TEG) is a point-of-care test for evaluation of hemostasis, which has been widely used in the field of liver transplantation and coronary bypass surgery as an intraoperative hemostatic monitoring device [5-7]. By measuring the dynamic process of blood coagulation, with defined parameters reflecting integrity of specific hemostatic components, this device can differentiate hypercoagulable state into different types—platelet, enzymatic, and mixed, according to the manufacturer [8]. But monitoring blood coagulation with thromboelastograph had not gained popularity in the field of orthopedics [9,10].

The objective of this study is to assess the coagulation status of patients undergoing arthroplasty with TEG.
Patients and methods
This study was conducted prospectively and approved by the hospital’s ethics committee. Ninety patients (mean age 64 ± 2 years) undergoing primary elective unilateral total knee or total hip replacement were investigated, with 48 patients for knee and 42 for hip. Informed consent was obtained from each patient. The coagulation functions of all patients were normal before operation. None of the patients has a history of heparin-induced thrombocytopenia (HIT) or kidney insufficiency (CrCl < 30 ml/min).

All total knee and total hip replacements were performed by the same group of surgeons, Genesis II knee system of Smith & Nephew was used in the knee replacements, Synergy hip system of Smith & Nephew, and Summit hip system of Johnson & Johnson were used in the hip replacements. All operations were performed under general anesthesia. No transfusion of more than 2 units of RBC within 6 h in perioperative period was done.

Fraxiparine, a type of low weight molecular heparin (nadroparin calcium, 9,500 anti-Xa IU/mL), was used as routine thromboprophylaxis after joint replacement. Single daily doses of Fraxiparine were adjusted according to the patient’s body weight as follows: 38 anti-Xa IU/kg administered 12 h after surgery, 38 anti-Xa IU/kg re-administered on a daily basis, up to and including postoperative day 3, and 57 anti-Xa IU/kg administered since postoperative day 4. Thromboprophylaxis continued for at least 10 days.

TEG was performed on the day before the operation; 0.36 mL of whole blood was pipetted into a disposable plastic cup within 4 min of blood sampling. A stationary pin attached to a wire which can monitor movements is immersed into the sample. The cup oscillates back and forth six times per minute. A computerized thromboelastograph coagulation analyzer (TEG model 5000; Haemoscope Corporation, Niles, IL, USA) was used in this study. After the subcutaneous injection of nadroparin sodium, TEG was performed at 4 h on postoperative days 1, 4, and 9.

TEG values include R (reaction time; time to initial thrombus formation), K (rate of thrombus formation), MA (maximum amplitude; thrombus strength), α-angle (rate of thrombus formation), and CI (coagulation index). CI is a computer-calculated linear combination of the R, K, MA, and α-angle values, and reflects overall coagulation status.

TEG-hypercoagulability was classified into three types: (1) enzymatic hypercoagulability, CI > 3, R ≤ 5 min, MA ≤ 70 mm; (2) platelet hypercoagulability, CI > 3, R > 5 min, MA > 70 mm; (3) mixed hypercoagulability: CI > 3, R ≤ 5 min, MA > 70 mm, according to the manufacturer.

Statistical analysis
Data were presented as means ± standard deviation for continuous variables with normal distribution and n (%) for category variables. Student t test was used to compare the means of continuous variable with normal distribution, and Chi-square test was used to compare the proportion of category variable between the total hip group and total knee group. Linear mixed model and estimating equations (GEE) approach was used to analyze the repeated measurement of continuous data and categorical

Table 1 The baseline characteristics of patients before operation

	Total hip group	Total knee group	Total	P value
	n = 42	n = 48	n = 90	
Age (years)				
Mean ± SD	66.7 ± 9.7	71.5 ± 7.6	69.2 ± 8.9	0.0104
Min, max	43, 81	54, 82	43, 82	
Sex, n (%)				
Male	13 (31.0)	7 (14.6)	20 (22.2)	0.0624
Female	29 (69.0)	41 (85.4)	70 (77.8)	
Height (cm)				
Mean ± SD	163.2 ± 7.7	161.2 ± 7.7	162.2 ± 7.7	0.2427
Min, max	150, 183	150, 186	150, 186	
Weight (kg)				
Mean ± SD	63.3 ± 9.9	65.1 ± 10.3	64.3 ± 10.1	0.4208
Min, max	46, 82	43, 89	43, 89	
BMI (kg/m2)				
Mean ± SD	23.8 ± 3.2	24.4 ± 3.4	24.6 ± 3.5	0.1074
Min, max	19.1, 32.5	18.9, 35.8	18.9, 35.8	

P value was calculated by Chi-square test for category variable and one-way ANOVA for continuous variable.
data, respectively. The proportion of different kinds of hypercoagulability at four time points was compared using Fisher’s exact test.

All statistical analysis was conducted using SAS 9.1.3 (SAS Institute Inc., Cary, NC, USA). \(P < 0.05 \) was regarded as statistically significant.

Results

The characteristics of patients before operation were shown in Table 1. The mean age of patients was 66.7 and 71.5 years for total hip group and total knee group, respectively (\(P < 0.0166 \)). The proportion of sex and means of height, weight, and BMI between these two groups were not statistically significant (\(P > 0.05 \)).

1. Change of TEG between the two patients groups.
 The differences in values of \(R \), \(K \), \(MA \), \(\alpha \)-angle, and coagulation index (CI) between the two patient groups were not statistically significant before operation and on days 1, 4, and 9 after operation (Table 2). There were no significant differences in the response categories (normal, enzymatic, platelet, and mixed hypercoagulability) between the total hip and total knee group (\(P = 0.0893 \)).

2. Changes of hypercoagulable states. There were no significant changes in the \(R \), \(K \), \(MA \), \(\alpha \)-angle, CI before operation, and day 1 after operation. However, significant change in the \(K \), \(MA \), \(\alpha \)-angle, and CI was observed on days 1–4 after operation. The changes in the \(MA \) and \(\alpha \)-angle were significant on days 4–9 after operation (Figure 1).

The distribution of different hypercoagulable states before and after operation in the total hip group and total knee group were shown in Figure 2. As there were no significant differences in the response categories between the two patient groups, the pooled total hip and total knee groups showed significant changes in the distribution of different hypercoagulable states on days 1–4 and on days 4–9 (Figure 2). On day 9 after operation, 34 out of 90 (37.8%) of the total hip and total knee patients were found with hypercoagulable state. Of these 34 patients with hypercoagulable state, 26 (76.5%) demonstrated platelet or mixed hypercoagulability.

Discussion

In patients undergoing elective total hip and total knee arthroplasty, multiple factors disrupt the regulatory mechanisms of hemostasis, such as endothelial injury, stasis, and platelet activation [10-12]. These factors may result in a hypercoagulable state. As we know, hypercoagulability has been implicated in the pathogenesis of VTE events [9,10,12,13]. So both the AAOS and the ACCP9 recommended to prevent VTE after elective joint replacement [2,3]. But even with appropriate thromboprophylaxis, a certain proportion of patients still showed hypercoagulable tendency. Patel et al. concluded in multicenter study that most VTE’s occurred due to prophylaxis failure rather than failure to provide prophylaxis [14].

Until now, there has been no effective method to ensure adequate thromboprophylaxis with careful monitoring. Because the curve of TEG reflects the different phases of the clotting process and enables a qualitative evaluation of the individual steps involved, recent studies suggested that TEG could be used to identify hypercoagulable state in a variety of clinical settings, and have revealed an association between hypercoagulability measured by thrombelastography and postoperative/postinterventional thromboembolic complications [5,8-10,13]. Park et al. reported that thromboelastography could be taken as a better indicator of postinjury hypercoagulable state than

Table 2 Effect of low molecular heparin prophylaxis on the thrombelastography between the two patient groups at different time points
Total hip group
n = 42
\(R \) (mm)
Before
Day1
Day4
Day9
\(K \) (mm)
Before
Day1
Day4
Day9
\(MA \) (mm)
Before
Day1
Day4
Day9
\(\alpha \)-angle
Before
Day1
Day4
Day9
CI
Before
Day1
Day4
Day9

Data are reported as mean ± SD.
prothrombin time or activated partial thromboplastin time [15]. It was also suggested that evoked hypercoagulability in the early postoperative period was important for predicting TE complications [16]. An observational study in patients undergoing major noncardiac surgery found that 8 out of 95 (8.4%) of TEG-hypercoagulable patients had a postoperative thromboembolic complication, while only 2 out of 145 (1.4%) of such patients experienced thromboembolic episodes \((P = 0.016) \) [17].

According to the classification of the TEG standard, hypercoagulable patients fall into different types, including enzymatic, platelet, and mixed hypercoagulability. Our study found 38.1% total hip patients and 37.5% total knee patients with hypercoagulable states on day 9 postoperation. For most of these patients, their hypercoagulable states could be classified into mixed hypercoagulability or platelet hypercoagulability, which means MA values are greater than 70 mm. MA is dependent on platelet concentration, platelet function, and platelet-fibri interaction [6].

These findings indicated a marked increase in the platelet factors related to the hypercoagulability while thromboprophylaxis was performed with low weight molecular heparin. Traditionally, endothelial injury and platelet activation are known to be triggers for arterial thromboemboli. Arterial and venous thromboses have been viewed as distinct conditions, with differences in risk...
factors, pathology, and treatment [18]. But several lines of evidence suggested that activation of platelets did indeed contribute to the development and propagation of venous thrombi [19]. Chirinos et al. reported that activation of the endothelium, platelets, and leukocytes occurred in patients with VTE, and the formation of platelet-leukocyte conjugates regulated leukocyte activation and participated in linking thrombosis with inflammation in vivo [20]. In a rabbit model of VTE, Takahashi et al. [21] demonstrated that an antibody against von Willebrand factor (vWF) (AJW200), which inhibited interactions between A1 domain and platelet GPIb, significantly reduced venous thrombus formation and pulmonary thromboembolism. Moreover, inhibition of P-selectin, a signaling action played a significant role in venous thrombus formation and pulmonary thromboembolism. (AJW200), which inhibited interactions between A1 domain and platelet GPIb, significantly reduced venous thrombus formation and pulmonary thromboembolism.

The authors declare that they have no competing interests.

Competing interests

The design of the study and preparation of the manuscript were done by YY, CZ, and ZY. WD assisted in the manuscript preparation. PS performed the statistical analysis. LL assisted in the study processes and data collections. All authors read and approved the final manuscript.

Authors’ contributions

The authors declare that they have no competing interests.

References

1. Freedman KB, Brookenthal KR, Fitzgerald RH Jr, Williams S, Lonner JH: A meta-analysis of thromboembolic prophylaxis following elective total hip arthroplasty. J Bone Joint Surg Am 2000, 82-A(7):929–938.
2. Falck-Ytter Y, Francis CW, Johanson NA, Curley C, Dahl OE, Schulman S, Orlot TL, Pauker SG, Colwell CW Jr: American College of Chest Physicians. Prevention of VTE in orthopedic surgery patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141(2 Suppl):e278S–e325S.
3. Mont MA, Jacobs JJ, Boggio NJ, Bozic KJ, Della Valle CJ, Goodman SB, Lewis CG, Yates AJ Jr, Watters WC 3rd, Turkelson CM, Wies J, Donnelly P, Patel N, Sluka P, AAGS: Preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. J Am Acad Orthop Surg 2011, 19(2):76–86.
4. Bloomfield MR, Patterson RW, Froimson MI: Complications of anticoagulation for thromboembolism in early postoperative total joint arthroplasty. Am J Orthop (Belle Mead NJ) 2011, 40(8):E148–E151.
5. Reif S, Johannson PI, Ostrovski SR, Stessing T, Steinbrüchel DA: Hypercoagulability in patients undergoing coronary artery bypass grafting: prevalence, patient characteristics and postoperative outcome. Eur J Cardiothorac Surg 2012, 41(3):550–555.
6. Rekirm H, Steien E, Hauge B, Liesth K, Hagen KG, Starkson R, Hervig T: Thrombelastography. Transfus Apher Sci 2009, 40(2):119–123.
7. Koutestis A, Blundell M, Sargentis T, Papoulias A, Aghi M, Theodorakopoulou A: Heparin induced thrombocytopenia diagnosis in cardiac surgery: is there a role for thrombelastography? Interact Cardiovasc Thorac Surg 2008, 7(4):560–563.
8. Gonzalez E, Kashuk JL, Moore EE, Stillman CC: Differentiation of enzymatic from platelet hypercoagulability using the novel thrombelastography parameter delta (A). J Surg Res 2010, 163(3):96–101.
9. Hlepner DL, Concepcion M, Bhavani-Shankar K: Coagulation status using thrombelastography in patients receiving warfarin prophylaxis and epidural analgesia. J Clin Anesth 2002, 14(6):405–410.
10. Wilson D, Cooke EA, McNally MA, Wilson HK, Yeates A, Mollan RA: Changes in coagulability as measured by thrombelastography following surgery for proximal femoral fracture. Injury 2001, 32:7650.
11. Munz J: Thromboembolism in orthopedic surgery: how long is long enough? Am J Orthop (Belle Mead NJ) 2009, 38(3):394–401.
12. Martiniello B, Bucciarelli P, Mannucci PM: Thrombotic risk factors: basic pathophysiology. Crit Care Med 2010, 38(2 Suppl):S53–S59.
13. Kashuk JL, Moore EE, Sabel A, Barnett C, Haezel J, Le T, Perzold M, Lawrence J, Biffi WL, Cothren CC, Johnson JL: Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery 2009, 146(4):764–772.
14. Patel R, Cook DJ, Meade MO, Griffith LE, Mehta G, Rocker GM, Marshall JC, Hodder R, Martin CM, Heyland DK, Peters S, Muscedere J, Soth M, Campbell N, Guyatt GH; Burden of Illness in venous ThromboEmbolism in Critical care (BITEC) Study Investigators; Canadian Critical Care Trials Group: Burden of illness in venous thromboembolism in critical care: a multicenter observational study. J Crit Care 2005, 20:341–347.

15. Park MS, Martini WZ, Dubick MA, Salinas J, Butenas S, Kheirabadi BS, Pusateri AE, Yos JA, Guymon CH, Wolf SE, Mann KG, Holcomb JB: Thromboelastography as a better indicator of postinjury hypercoagulable state than prothrombin time or activated partial thromboplastin time. J Trauma 2009, 67(2):266–276.

16. Dai Y, Lee A, Critchley LA, White PF: Does thromboelastography predict postoperative thromboembolic events? A systematic review of the literature. Anesth Analg 2009, 108(3):734–742.

17. Rafiq S, Johansson PL, Zacho M, Stissing T, Kofod K, Lilleør NB, Steinbüchel DA: Thrombelastographic haemostatic status and antiplatelet therapy after coronary artery bypass surgery (TEG-CABG trial): assessing and monitoring the antithrombotic effect of clopidogrel and aspirin versus aspirin alone in hypercoagulable patients: study protocol for a randomized controlled trial. Trials 2012, 13:48.

18. Lowe GDO: Common risk factors for both arterial and venous thrombosis. Br J Haematol 2008, 140(4):48–495.

19. López JA, Kearon C, Lee AY: Deep venous thrombosis. Hematology Am Soc Hematol Educ Program 2004, 2004(1):439–455.

20. Chirinos JA, Heresi GA, Velasquez H, Jy W, Jimenez JJ, Ahn E, Horstman LL, Soriao AO, Zambrano JP, Ahn YS: Elevation of endothelial microparticles, platelet, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 2005, 45(9):1467–1471.

21. Takahashi M, Yasuhita A, Moriguchi-Coto S, Manatsuka K, Sato Y, Yamamoto H, Koshimoto C, Asada Y: Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histo Histochemol 2009, 24(11):1391–1398.

22. Myers DD Jr, Rectenwald JE, Bedard PW, Kaila N, Shaw GD, Schaub RG, Farris DM, Hawley AE, Wrobleski SK, Henke PK, Wakefield TW: Decreased venous thrombosis with an oral inhibitor of P selectin. J Vasc Surg 2005, 42(2):329–336.

23. Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD: Does aspirin have a role in venous thromboembolism prophylaxis in total knee arthroplasty patients? J Arthroplasty 2010, 25(7):1053–1060.

doi:10.1186/s13018-014-0052-0
Cite this article as: Yang et al.: Changes of thrombelastography in patients undergoing elective primary total knee and total hip replacement with low molecular heparin prophylaxis. Journal of Orthopaedic Surgery and Research 2014 9:52.