Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation

Bridget Y. Huang1 and Israel S. Fernández1,*

Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved December 9, 2019 (received for review September 20, 2019)

Translation initiation controls protein synthesis by regulating the delivery of the first aminoacyl-tRNA to messenger RNAs (mRNAs). In eukaryotes, initiation is sophisticated, requiring dozens of protein factors and two GTP-regulated steps. The GTPase eIF5B gates progression to elongation during the second GTP-regulated step. Using electron cryomicroscopy (cryo-EM), we imaged an in vitro initiation reaction which is set up with purified yeast components and designed to stall with eIF5B and a nonhydrolyzable GTP analog. A high-resolution reconstruction of a “dead-end” intermediate at 3.6 Å allowed us to visualize eIF5B in its ribosome-bound conformation. We identified a stretch of residues in eIF5B, located close to the γ-phosphate of GTP and centered around the universally conserved tyrosine 837 (Saccharomyces cerevisiae numbering), that contacts the catalytic histidine of eIF5B (H480). Site-directed mutagenesis confirmed the essential role that these residues play in regulating ribosome binding, GTP hydrolysis, and translation initiation both in vitro and in vivo. Our results illustrate how eIF5B transmits the presence of a properly delivered initiator aminoacyl-tRNA at the P site to the distant GTPase center through interdomain communications and underscore the importance of the multidomain architecture in translation factors to sense and communicate ribosomal states.

Significance

Translation is a key regulatory step in the control of gene expression. The first stage of translation, initiation, establishes the foundation for the sequential synthesis of a protein. In eukaryotes, 2 GTP-regulated checkpoints ensure the efficiency and fidelity of translation initiation. The GTPase eIF5B is responsible for the correct functioning of the second checkpoint. Molecular interactions of eIF5B with other correctly assembled components on the ribosome lead to GTP hydrolysis that allows the machinery of protein production to transition from initiation into elongation. Here, we show how a highly conserved stretch of residues in eIF5B, identified using electron cryomicroscopy, coordinates the gating into elongation, underscoring the importance of modular architecture in translation factors to sense and communicate ribosomal states.

Author contributions: B.Y.H. and I.S.F. designed research, performed research, analyzed data, and wrote the paper. The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Data deposition: The electron cryomicroscopy maps have been deposited in the Electron Microscopy Data Bank under accession code EMD-20592. Atomic coordinates have been deposited in the Protein Data Bank (PDB ID code 6UZ7).

1To whom correspondence may be addressed. Email: isf2106@columbia.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916436117/-/DCSupplemental.

First published January 3, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1916436117

PNAS | January 21, 2020 | vol. 117 | no. 3 | 1429–1437
The G-domain and domain II of eIF5B are functionally associated and are responsible for the bulk of the binding to the ribosome and the GTP/GDP regulation (18, 19, 21). Conversely, domain III, domain IV, and the linker helix h12 are responsible for Met-tRNA\textsubscript{Met} engagement (22). The current model for how eIF5B works involves a “domain release” mechanism, which is induced by an initial, off-ribosome GTP-binding event (19). Upon GTP binding, domains III and IV gain flexibility as they are “released” from a rigid, GDP-bound conformation. Key elements of the G-domain are also structured upon GTP binding, which allows ribosome binding of eIF5B in the GTP form (21). The first eIF5B-ribosome association occurs in the context of the 40S: immediately after eIF2/eIF1 are released from the 48S complex, eIF5B interacts with its domain II with the 40S, and the flexible unit formed by domains III and IV “senses” the presence of Met-tRNA\textsubscript{Met} at the P site (23). If domain IV is stabilized due to proper recognition of the initiator aminoacyl-tRNA, 60S recruitment will proceed via the increased 60S/40S-interacting surface due to the presence of eIF5B (15, 21).

The large subunit is docked to the 40S subunit in the presence of P-site Met-tRNA\textsubscript{Met}, eIF5, eIF1A, eIF3, and GTP-bound eIF5B (24). Correct positioning of the Met-tRNA\textsubscript{Met} upon 60S subunit recruitment promotes GTP hydrolysis by eIF5B. Specific elements of the 60S ribosomal RNA (rRNA), located at the Sarcin-Ricin Loop (SRL), align a universally conserved histidine residue in the G-domain of eIF5B closer to the γ-phosphate of the GTP molecule, thereby promoting hydrolysis (21, 25). eIF5B then leaves the ribosome due to its reduced affinity for the ribosome in its GDP form.

Recent studies employing single-molecule FRET experiments with Saccharomyces cerevisiae components revealed a long residence time of eIF5B on the 80S complex prior to GTP hydrolysis (26). The study suggested the idea that structural rearrangements within the 80S Initiation Complex (80S-IC) were essential to induce GTP hydrolysis and the subsequent dissociation of eIF5B. Once the A site is available, elongation can proceed by the delivery of the second aminoacyl-tRNA by eEF1A and GTP (27).

Since its discovery, a second function of eIF5B, beyond large subunit recruitment and related to start-codon selection accuracy, was suggested (17, 23). A yeast strain lacking the gene coding for eIF5B was unable to derepress the starvation transcription factor GCN4. The 5′-Untranslated Region (5′-UTR) of the GCN4 gene contains 4 upstream AUG (uAUG) codons (28). In nonstarvation conditions, the TC (eIF2/Met-tRNA\textsubscript{Met}/GTP) complex recognizes these uAUG codons as bona fide start codons, thereby preventing the expression of GCN4 from the canonical AUG codon. Leaky scanning from uAUG codons is prevented by eIF5B and only in starvation conditions, when eIF2 is phosphorylated and cannot be employed for Met-tRNA\textsubscript{Met} delivery, uAUG codons are bypassed, which results in recognition of the canonical AUG and the expression of GCN4. It is well established that deregulation and increase in leaky scanning is associated with the absence or mutations of eIF5B (14). Therefore, eIF5B seems to play an essential role in canonical initiation (23) by promoting efficient and accurate loading of Met-tRNA\textsubscript{Met} as well as in noncanonical conditions when phosphorylation of eIF2 prevents regular delivery of Met-tRNA\textsubscript{Met} (29). These important roles place eIF5B as a key regulator of protein synthesis. Recent reports link eIF5B expression with developmental transitions (30), regulation of translation programs under stress conditions (31), and cancer (32).

Much is known about the ribosome-binding determinants of eIF5B (21) as well as how the Met-tRNA\textsubscript{Met} is recognized (22). However, less is known regarding the global behavior of the protein and how ribosome binding and initiator aminoacyl-tRNA recognition activities are integrated into a unified response in activating GTP hydrolysis. Using a high-resolution electron cryomicroscopy (cryo-EM) reconstruction of an 80S/eIF5B intermediate, we identified a highly conserved group of residues that is outside of the G-domain and strategically positioned at the junction between 3 of the 4 domains of eIF5B in its ribosome-bound conformation. This cluster of residues is able to regulate GTP hydrolysis and ribosome binding, highlighting the importance of intradomain communications within eIF5B to regulate gating to elongation.

Results

In Vitro Initiation Reaction and Cryo-EM. We sought to assemble a late initiation complex with eIF5B stalled at the 80S ribosome by employing purified yeast components and mimicking an initiation reaction in vitro (Fig. 1A). A preincubation of 40S with initiation factors eIF1 and eIF1A and mRNA was followed by the addition of Met-tRNA\textsubscript{Met} as a TC with eIF2 and GTP. A final addition of eIF5B and 60S preincubated with the non-hydrolyzable GTP analog (GDP-PCP) effectively stalls the factor on the ribosome. As reported, eIF5B’s affinity for GTP/GDP is very similar, so no GTP-Exchanging Factor (GEF) is needed either in vitro or in vivo (33). After large cryo-EM dataset collection and extensive maximum likelihood classifications in RELION (34, 35), we identified a homogeneous class of particles where density for the expressed construct of eIF5B could be identified, reaching a global resolution of 3.6 Å (Fig. 1 and SI Appendix, Fig. S1 and Table S1).

The reconstruction exhibits a slightly rotated configuration of the 40S (~3°) and contains a tRNA in hybrid p/PE configuration (36), where the Anti-codon Stem Loop (ASL) of the tRNA is deeply inserted in the P site of the small subunit, and it is base-paired with the AUG codon. The acceptor stem is populating a space in between the space normally populated by P and E tRNAs in their canonical states (SI Appendix, Fig. S24). The L1-stalk is
displaced inward, stabilizing the tRNA in this hybrid configuration (37). Density for the 4 domains of eIF5B could be identified in the maps, with the G-domain anchored to the 60S, domain II anchored to the 40S, and the unit formed by domain III, h12, and domain IV projected toward the Peptidyl Transfer Center (PTC). This tRNA/eIF5B configuration is peculiar, as there are no direct tRNA/eIF5B contacts. The initial Met-tRNA\textsubscript{Met} added to the reaction has suffered a deacylation event after its delivery to the P site, and its acceptor stem has transition halfway toward the E site, where it has been stabilized by the L1 stalk (37). Unexpectedly, eIF5B has been trapped in its active conformation, even in the absence of contacts with Met-tRNA\textsubscript{Met}. We reasoned this peculiar “dead end” intermediate of the initiation route has been stabilized due to differences in composition and buffer conditions used to mimic the in vitro initiation reaction from previously reported reactions (13). *Kluyveromyces lactis* subunits and eIF5B in a slightly acidic (pH 6) buffer background were used in this work. These conditions have been previously used for other 40S initiation complexes studied by cryo-EM (12, 38), but not for a late intermediate with eIF5B and 60S. In these conditions, a large subpopulation of particles contains eIF5B stabilized in the active conformation, allowing the visualization of this conformation at high resolution by cryo-EM. In our maps, side-chains for eIF5B could be confidently assigned, and the determinants of eIF5B/ribosome interaction could be unambiguously defined (Fig. 2). The global ribosome-bound eIF5B conformation is identical to our previous lower-resolution reconstruction; thus we used this high-resolution reconstruction as a proxy for a bona fide late initiation complex (21).

eIF5B Domain III Plays a Direct Role in GTP Hydrolysis. How the ribosome activates GTPases involved in translation is well understood (16, 25). The G-domains present in these GTPases protect the γ-phosphate of GTP via 2 structured loops, named switch 1 and 2. These loops form a “hydrophobic gate,” which prevents the access of a universally conserved catalytic histidine located at the base of h12 that is adjacent to domain III and within interacting distance with the catalytic histidine of eIF5B (Fig. 2C). A stacking interaction with the sugar of the 23S rRNA nucleotide 2997 aligns tyrosine 837 (S. cerevisiae numbering) toward the catalytic histidine, which is in its “active” conformation, inserted through the hydrophobic gate (25). This tyrosine residue was previously tentatively suggested to be relevant in GTP hydrolysis by eIF5B based on a low-resolution cryo-EM reconstruction (21) and given it is universally conserved in eukaryotes (Fig. 3 D and E). It has also been suggested to be relevant in bacterial (40) and mitochondrial initiation (41).

The interactions established by domain III with the 60S and the 40S also orient the domain in a specific direction relative to domain II in Figs. 3 A and B). In this orientation, a stretch of residues flanking tyrosine 837 seems to exert a relevant role in establishing interactions between the G-domain and domain III (Fig. 3 A-C). These residues are also located at the base of h12, the long α-helix-orienting domain IV to stabilize the Met-tRNA\textsubscript{Met} at the P site (20). We reasoned this stretch of residues, given its high conservation in eukaryotes (Fig. 3 D and E), could act as a signal integrator that communicates the presence of a properly delivered Met-tRNA\textsubscript{Met} at the P site to the G-domain of eIF5B and thus regulates GTP hydrolysis (9).

Mutant eIF5B in Tyrosine 837 or Its Flanking Residues Is Defective In Vitro and In Vivo. In order to test this hypothesis, we generated a set of mutants to test the in vitro and in vivo relevance of the residues identified in our high-resolution cryo-EM reconstruction (Fig. 4A). A point mutant substituting tyrosine 837 to alanine (eIF5B-YxA mutant) and a mutant additionally replacing the 2 residues flanking the tyrosine 837 at both sides to alanine (eIF5B-DII-h12-Loop mutant) were created (Fig. 4A). Both mutants could be produced recombinantly in *Escherichia coli* and can be purified following the same protocol as the wild-type protein (eIF5B-WT) with minor adjustment (Fig. 4B). The mutant proteins exhibit a hydrodynamic behavior in analytical gel filtration experiments similar to the WT protein, and their secondary structure contents are analogous to the WT as judged by circular dichroism (CD) spectrometry (Fig. 4C). We thus concluded the substitution of eIF5B tyrosine 837 for alanine, both in isolation or integrated in a stretch of 5 residues, does not perturb the folding or stability of the protein in isolation.

Next, we wanted to test the ability of the mutant proteins to engage ribosomes in a productive binary interaction. Purified 80S ribosomes, eIF5B, and nonhydrolyzable GTP analog were incubated and sedimented through a sucrose cushion. The sedimented ribosomal complexes were analyzed by SDS/PAGE and

![Fig. 2. Intramolecular interactions of eIF5B in the ribosome-bound conformation. (A) Overall view of eIF5B (red), p/PE tRNA (green) bound to the inter-subunit space of the ribosome (cyan) and the 40S subunit (yellow). (B) Zoomed-in view of eIF5B showing h12 contacting the G-domain and domain III (DII) “clamped” between the 60S and the 40S. (C) Zoomed-in view of the area around tyrosine 837 of eIF5B in the vicinity of the γ-phosphate of the GTP analog molecule (green). Tyrosine 837 is oriented toward the catalytic histidine of eIF5B (His480) which is inserted through the “hydrophobic gate” formed by eIF5B residues ile438 and Val414 (maroon spheres).](Image 130x106 to 451x205)
quantified. The results show the WT protein binds tightly to the 80S ribosomes in the presence of a nonhydrolyzable GTP analog, which is in excellent agreement with previously reported work (Fig. 4 E and F and ref. 42). Both mutants eIF5B-YxA and eIF5B-DIII-h12-Loop showed an approximately 2-fold reduction in ribosomal binding under the same experimental conditions (Fig. 4 E and F). In contrast to the WT protein, these results suggest a distorted ability of the mutant proteins to acquire an active, ribosome-bound conformation that is stable enough to be analyzed by pelleting assays (42).

We then assayed the in vitro, ribosome-dependent GTPase activity of eIF5B-WT, as well as the mutants, using a radiometric GTP hydrolysis assay. Briefly, we incubated eIF5B-WT and mutants with purified yeast 80S ribosomes in the presence of [γ-32P]-GTP and quenched the reaction at various time points (15). The products were separated into GTP and GDP using thin-layer chromatography (TLC) (Fig. 5A). The GTP-hydrolyzed were quantified and plotted against time (Fig. 5E). The eIF5B-WT protein hydrolyzed GTP at an initial rate of 31 pmol/min in the presence of 80S ribosomes (Fig. 5C). No significant GTP hydrolysis was observed in the absence of ribosomes (SI Appendix, Fig. S3). Mutant proteins exhibited a marked defect in ribosome-induced GTP hydrolysis. eIF5B-YxA exhibited a reduction of approximately half in the initial rate of GTP hydrolysis compared with the WT protein (16.7 pmol/min), whereas the eIF5B-DIII-h12-Loop mutant showed a dramatic 23-fold reduction (1.34 pmol/min, Fig. 5C).

With the previously described in vitro experiments, we demonstrated defects in both mutants in the 2 main functions of eIF5B, namely, ribosome binding and GTP hydrolysis. In order to relate these in vitro defects of the mutant proteins with defects in translation initiation in vivo, we made used of a previously established assay employing a yeast strain with a deletion in the gene fun12 (Δfun12), which encodes the eIF5B protein (43). This deletion is not lethal in yeast, but generates a severe growth defect (44). Reintroducing the gene in trans from a vector to rescue the severe growth phenotype allows in vivo testing of eIF5B mutants (42).

We thus introduced recombinant eIF5B by transforming the Δfun12 strain with vectors carrying the eIF5B-WT gene or the mutant versions of it under an inducible galactose (GAL) promoter into strains with the fun12 gene deleted. In this background, the Δfun12 yeast strain transformed with an empty vector showed slow-growth phenotype with doubling time of 5.5 h, which is comparable with previously reported values of 5.1 h (14). The slow-growth phenotype is rescued by the recombinantly expressed eIF5B-WT to a doubling time of 3.0 h (Fig. 6A). The Δfun12 yeasts expressing the eIF5B-YxA mutant grew at a doubling time of 7.3 h, while the Δfun12 yeasts expressing the eIF5B-DIII-h12-Loop mutant showed the most severe growth defects, with doubling time of 13.7 h (Fig. 6A).

In parallel, we used a standard spot colony assay to evaluate the efficiency in slow-growth rescue of the mutant versions of eIF5B in solid culture (Fig. 6B). In agreement with the liquid culture doubling time estimations, the eIF5B-YxA mutant was unable to rescue the slow-growth defect phenotype, while the eIF5B-DIII-h12-Loop mutant exhibited an exacerbated slow-growth phenotype, which reflects an additional toxic effect of the mutant eIF5B-DIII-h12-Loop. A similar effect was observed for mutants of the catalytic histidine of eIF5B (39).

To examine the effect of these eIF5B mutations on general translation, we made use of polysome profile analysis (Fig. 6D). Yeasts transformed with eIF5B-WT exhibit a polysome profile in agreement with previously reported data (39) with a polysomes/monosomes ratio (P/M) of 1 (Fig. 6 D, Left). The eIF5B-YxA mutant protein exhibited moderate distortion in its ability to promote transition into elongation. Polysome profiles from yeasts transformed with this mutant exhibited an altered P/M ratio of 0.6 and a general decrease in the amount of polysomes (Fig. 6 D, Middle). However, in accordance with the in vitro data, the most prominent effect impacting the ability of monosomes to transit into polysomes was observed for the eIF5B-DIII-h12-Loop mutant (Fig. 6 D, Right). Polysome profiles corresponding to this mutant exhibited a significant accumulation of monosomes and a P/M ratio of 0.5. In agreement with the toxic effect impairing rescue of the severe growth phenotype both in liquid and solid culture, the expression of eIF5B-DIII-h12-Loop blocks the progression into elongation, “trapping” ribosomes in a late initiation state that is unable to assemble polysomes.
Discussion

Ribosomes contain multiple binding sites intended to accommodate substrates of different natures: tRNAs, mRNAs, or protein factors (7). Communication and signal propagation between functional sites are essential for a correct, processive ribosome (16). A well-studied example of how distant ribosome-binding sites communicate is exemplified by the discrimination between cognate and noncognate codon/anticodon pairs during elongation (45). Other mechanisms, especially in the larger, more complex mammalian ribosomes, operate in a similar logic (4): multidomain protein factors recognize a specific state of the ribosome, and if certain criteria are met, a signal is propagated and amplified by the coupling of the ribosomal movements with conformational changes of the protein factor to regulate that particular pathway.

Initiation can be integrated in this paradigm (9, 46). Met-tRNA_{Met} has to be delivered to the P site to recognize a particular AUG codon in the mRNA. A signal of proper delivery triggers the recruitment of the large ribosomal subunit, and protein synthesis transitions into elongation. The GTPase eIF5B is responsible for coordinating these events, integrating inputs of different natures in varying contexts.

As a classic GTPase, eIF5B is activated off the ribosome by GTP binding (15, 33). This event causes the transition from an autoinhibited, GDP-bound state to an activated, GTP-bound state. The active state involves the restructuring of the elements surrounding the GTP in the G-domain and the “release” of domains III and IV from the autoinhibited conformation in a mechanism termed “domain release” (19). However, a simple GTP-ON/GDP-OFF mechanism cannot comprehensively explain the multiple inputs eIF5B has to integrate in order to determine the final outcome: transition or not into elongation.

In order to allow progress into elongation, eIF5B is thus responsible for integrating inputs of very different natures, such as cellular GTP concentration, 40S conformation, Met-tRNA_{Met} presence at the P site, and, finally, an appropriate recruitment of the 60S (Fig. 7A). Additionally, eIF5B has to operate in different ribosomal contexts as it initially binds the post-48S complex and after eIF2/eIF1 release and 60S recruitment, in a full (80S) ribosome context (14, 23). All this could only be accomplished through the multidomain nature of eIF5B, where specific domains “sense” specific inputs (Fig. 7B). Domain IV of eIF5B is projected deep into the intersubunit space to recognize a properly delivered Met-tRNA_{Met} (22). This domain is also responsible for interaction with other important initiation factors like eIF1A and eIF5 (47). Domain III couples the rotational state of the 40S to the G-domain. Domain II contributes additional anchoring points to the 40S (39), and, finally, the G-domain is responsible for GTP binding and the bulk of interactions with the large subunit (21).

Recent real-time, single-molecule experiments have uncovered the dynamics of euakaryotic initiation, demonstrating significant differences with its prokaryotic counterpart (26, 48). Notably, a long residence time was observed for eIF5B on the 80S complex after 60S recruitment and prior to GTP hydrolysis.
Met-tRNAi conditions, where eIF2 is phosphorylated and is unable to deliver initiation complexes in upstream AUGs (uAUGs). Under stress, AUG codons, forcing the scanning machinery to assemble initiation complexes in conjunction with eIF5, eIF1A, and the 40S subunit, eIF5B exerts a regulatory role in preventing the identification of the correct start-codon identification and AUG selection accuracy (28). In doing so, it participate in the progress of the 80S-IC during this eIF5B long residence time has been proposed to occur. With the ability of eIF5B in integrating multiple inputs through its multidomain architecture, we speculate that this rearrangement of the 80S-IC involves the positioning of the conserved tyrosine 837 toward the catalytic histidine of eIF5B, such that this rearrangement of the 80S-IC involves the positioning of the conserved tyrosine 837 toward the catalytic histidine of eIF5B, once all inputs are checked and approved. Thus, tyrosine 837 and its flanking residues are key in coordinating the different inputs needed to allow progression into elongation, further underscoring the importance of interdomain communications in eIF5B for proper discrimination of ribosomal states (Fig. 7C).

An additional role for eIF5B has been described, related to start-codon identification and AUG selection accuracy (28). In conjunction with eIF5, eIF1A, and the 40S subunit, eIF5B exerts a regulatory role in preventing the identification of the correct AUG codons, forcing the scanning machinery to assemble initiation complexes in upstream AUGs (uAUGs). Under stress conditions, where eIF2 is phosphorylated and is unable to deliver Met-tRNAi Met to the P site of the 40S subunit, eIF5B is able to substitute eIF2 and operate the eukaryotic initiation machinery in a “bacterial-like” mode (29). As these events take place in the context of the 40S and involve mainly domain IV, we believe the mechanism described here for tyrosine 837 and its surrounding residues is likely not involved. However, given the critical role DIII of eIF5B plays in the interaction with the 40S, it is probably a prerequisite for a successful 60S recruitment a correct positioning of the tyrosine 837 and its flanking residues, which is influenced by the interactions established by the distant domain IV.

Fig. 5. Ribosome-induced GTP hydrolysis activity of eIF5B and mutants. (A) Examples of radiographs of [32P]-GDP and [32P]-GTP separated from eIF5B GTP hydrolysis reactions using TLC. Each reaction contains 20 pmol of purified eIF5B proteins, 10 pmol of 80S ribosome (or no 80S for eIF5B-only reactions), and 200 pmol of GTP in 20 µL. Each lane is a time point taken and quenched from the reaction. Time points from 1 to 40 min are shown. (B) Quantification of GTP hydrolyzed by eIF5B proteins from TLC. The data points represent the average of 3 independent experiments (n = 3), and the error bars represent the SD of the experiments. The circle symbols represent the reaction with eIF5B-WT, the triangle symbols represent the reaction with eIF5B-YxA proteins, the diamond symbols represent the reaction with eIF5B-DIII-h12-Loop, and the square symbols represent the reaction with the 80S ribosome and no eIF5B. The linear lines represent linear fit of the corresponding dataset. The exponential lines (WT and YxA) represent single exponential fit of the datasets. (C) Quantification of the initial velocity of the reactions. The linear phase of the data was used to determine the initial velocity of each reaction. The error bars represent the SE of the fits.

Fig. 6. eIF5B Tyr837 mutants impact translation initiation in vivo. (A) A yeast strain lacking the fun12 gene (Δfun12 strain) was transformed with the pRS415 vector carrying nothing (vector control) or different eIF5B mutants under an inducible GAL promoter. On the Left, growth curves of yeast strains expressing the different eIF5B mutants in a Δfun12 background in liquid cultures. On the Right, estimates of doubling time for each transformant. The recombinant expression of eIF5B-WT rescues the growth defect phenotype characteristic of the Δfun12 strain (circles). eIF5B-YxA mutants are incapable of rescuing the defective phenotype (triangles). Additional mutation of flanking residues of Tyr837 yields an exacerbated toxic effect (diamond, mutant eIF5B-DIII-h12-Loop). (B) Solid culture experiments for the different transformants were grown on selection medium supplemented with 2% galactose to induce expression of the recombinant eIF5B proteins. Ten-fold serial dilutions were spotted on solid media and incubated for 6 d. In agreement with liquid culture experiments, eIF5B-YxA are unable to rescue the severe growth defect characteristic of the Δfun12 yeast strain. The image shown is representative of 3 replicates. (C) Western blot analysis of eIF5B expression. Cell lysates prepared were subjected to immunoblot analysis using anti-CBD for eIF5B presence and antihistone H2B antibodies to confirm similar expression levels for all constructs. (D) Polysome profiles of whole-cell extracts of Δfun12 yeast strain expressing eIF5B-WT (Left), eIF5B-YxA (Middle), and eIF5B-DIII-h12-Loop (Right). The WT protein exhibits a polysome/monosome ratio of 1, with a UV260 trace similar to previous studies (39). Expression of eIF5B-YxA induces a decrease in the amount of monosomes progressing into polysomes, reflected in a PM ratio of 0.5. This behavior is exacerbated in yeast expressing the eIF5B-DIII-h12-Loop mutant (Right), where it can be observed a significant decrease in the number of polysomes with a concomitant accumulation of ribosomes in the monosome fraction (80S peak).
In summary, our results complement previous studies on eIF5B and represent a step forward in the understanding, within a structural framework, of how this key initiation factor functions. These operations involve tasks beyond large subunit recruitment, as it has been demonstrated that eIF5B exerts a critical role in initiation AUG codon selection accuracy or Met-tRNA\textsubscript{Met} delivery in noncanonical scenarios like viral infection or cellular stress (29, 49). How eIF5B is able to mediate these expanded roles will demand further studies.

Materials and Methods

In Vitro Initiation Reaction Components and Reaction Setup. Ribosomal subunits were purified from \textit{K. lactis} (strain GG799) and used in an in vitro initiation reaction as previously described for \textit{S. cerevisiae} (21). Briefly, 80S ribosomes were pelleted through a sucrose cushion and purified from sucrose gradients consisting of 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) pH 6, 50 mM KCl, 8 mM Mg-acetate, 2 mM DTT, and 10 to 40% sucrose. The 80S ribosomes were split into subunits by dialysis against 20 mM MES pH 6, 600 mM KCl, 8 mM Mg-acetate, and 2 mM DTT and separated through sucrose gradients consisting of the same splitting buffer with 10 to 30% sucrose. The 40S and 60S ribosomal subunits were flash-frozen and stored in −80 °C. Unstructured mRNA with sequence 5′-GGAAUCCUCUCUAUGGCUCCUCUC-3′ was synthesized by Integrated DNA Technology. Yeast Met-tRNA\textsubscript{Met} was purified as previously described (13). Initiation factors eIF1, eIF1A, eIF2, and eIF5 were added and mixed with 10 μM GTP and incubated at 30 °C for 2 min. Subsequently, 0.3 μM eIF2 and 0.3 μM eIF5 were added and incubated for an additional 2 min. At the final step, 0.3 μM 60S subunit, 3 μM eIF5B, and 1 mM GDP/CPP (SIGMA) were added in the mixture and incubated for 2 min prior to chilling on ice.

Electron Microscopy. The 80S initiation complex was diluted to −80 nM, and 3 μL were spotted on glow-discharged holey carbon grids (Quantifoil R2/2) deposited with a homemade continuous thin carbon film (estimated to be −30 Å thick) for 30 s. Each grid was blotted for 2.5 s and flash-frozen in liquid ethane using an FEI Vitrobot. The grids were imaged with an FEI Polara G2 microscope operating at 300 kV. Defocus values in the final dataset ranged from 1.6 to 3.6 μm. Images were recorded manually on a back-thinned FEI Falcon III detector at a pixel size of 1.07 Å in linear mode. The individual frames from the detector (36 frames for each 1-x exposure) were captured and stored on disk. All electron micrographs were evaluated for astigmatism and drift.

Image Processing. CTF estimation was performed with GCTF (50), and automatic particle picking was done with Gautomatch without a specific template using a diameter of 280 pixels. All 2-dimensional (2D) and 3-dimensional (3D) refinements were performed using RELION (34). We used reference-free 2D class averaging to discard 60S subunits and defective particles, resulting in 64,815 particles of the final dataset for subsequent 3D refinement and classification. Refinement of all particles against a single model (a 60 Å low-pass filtered version of EMDB-2275) yielded a preliminary, consensus reconstruction with local fuzzy density for the 40S subunit, the L1 stalk, and the factor. Subsequently, we employed local classification with masks covering the 40S subunit, the L1 stalk, and drift. Prior to visualization, all density maps were corrected for the modulation transfer function (MTF) of the detector and then sharpened by applying a negative B′-factor that was estimated using automated procedures. Manual rebuilding was done using COOT (53), and the final model was refined with REFMAC (54) following previously established protocols.
GTP Hydrolysis Assay. Reactions containing 10 pmol K. lactis 805 ribosomes, 20 pmol elF5B, and 10 μM GTP (with 0.01 μCi [32P]GTP in 20 μL) were buffered with 20 mM Hepes pH 7.4, 50 mM KCl, 2 mM DTT, 2.5 mM Mg acetate) were incubated at 30 °C. Reactions were quenched by taking out 2 μL aliquots and mixed with 6 μL of 50 mM EDTA and 90% formamide. The products were analyzed by TLC on PEI-F cellulose plates (EMD chemicals) with 0.85 M potassium phosphate [pH 3.4] as the mobile phase. The TLC plates were exposed on a phosphorimag. The amount of GTP hydrolyzed at various time points was plotted against time and fitted with a logistic growth model: $y = \frac{K_1}{1 + (K_2 - y_0) \cdot np \cdot \exp(-r \cdot t)}$. The doubling times during exponential growth in liquid medium were reported (44). The expression of recombinant elF5B is determined by immunoblot. Briefly, harvested yeast pellets were lysed with glass beads and spun down at 14,000 rpm for 10 min. The total protein concentration of the cell lysate was determined by BCA assay and run on an SDS/PAGE gel. The separated proteins were transferred to a 0.2-μm nitrocellulose membrane and blotted with primary antibodies against CBP (Genscript) or Histone H2B (Active Motif), followed by blotting with Alexa Fluor 488 conjugated secondary antibody (ThermoFisher) prior to imaging.

Polysome Analysis. Polysomes were analyzed by sedimentation in sucrose gradients using a previously described protocol with slight modifications (39, 42). Briefly, yeast cells were grown in selection medium supplemented with 1% galactose to 1 OD as described in the previous section. The cultures were incubated with 50 μg/mL of cycloheximide for 10 min at 30 °C and collected in centrifuge bottles containing crushed ice. The cell pellets were resuspended in lysis buffer containing 20 mM Tris HCl, pH 7.5, 50 mM KCl, 10 mM MgCl2, 2 mM DTT and lysed by vortexing with glass beads for 1 min and incubating on ice for 1 min, for a total of 5 cycles. The lysates were spun at 14,000 rpm for 10 min at 4 °C. The OD of the supernatant was measured by UV–Vis Spectrophotometer at 260 nm, and 6 OD of each sample was loaded to Beckman SW40 7 to 47% sucrose gradients. The samples were centrifuged at 39,000 rpm for 4 h at 4 °C and analyzed with a gradient analyzer equipped with UV detector set at 260 nm. A Sivitz-Golay filter was applied to remove the noise from the detector.

Data availability. Atomic coordinates have been deposited in the RSCB PDB with accession code 6U27 and cryo-EM maps have been deposited in the EMDB with accession code EMDB-20952.

ACKNOWLEDGMENTS. We are thankful to V. Ramakrishnan in whose laboratory at the MRC-LMB the initial phases of this project were performed. We are also thankful for his continuous support and critical reading of the manuscript. We are thankful to R. J. Gonzalez at Columbia University for his support and input in the biochemical experiments. We thank the Precision Biomolecular Characterization Facility at Columbia University for technical support and access to the CD spectrometer, which is supported by NIH Award 1S10OD025102-01.

1. M. Weisser, N. Ban, Extensions, extra factors, and extreme complexity: Ribosomal structures provide insights into eukaryotic translation. Cold Spring Harb. Perspect. Biol. 11, a032367 (2019).
2. N. Sonenberg, A. G. Hinnebusch, New modes of translational control in development, behavior, and disease. Mol. Cell 78, 271–729 (2020).
3. Y. Hashem, J. Frank, The jigsaw puzzle of mRNA translation initiation in eukaryotes: A complex view. Nucleic Acids Res. 48, 2730–2743 (2020).
4. S. Shao et al., Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167, 1229–1240 e15 (2016).
5. A. des Georges et al., Structure of mammalian elf3 in the context of the 43S pre-initiation complex. Nature 525, 491–495 (2015).
6. B. Eliseev et al., Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Res. 46, 2678–2689 (2018).
7. T. M. Schmeing, V. Ramakrishnan, What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009).
8. R. J. Lorsch, T. V. Pestova, The mechanism of elf5B activation of GTP hydrolysis on the ribosome. Nature 490, 468–473 (2012).
9. A. G. Hinnebusch, The structural significance of ribosomal A-site accommodation. Nature 514, 257–264 (2014).
10. A. G. Hinnebusch, Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochem. Sci. 42, 589–611 (2017).
11. B. Eliseev et al., Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 159, 597–607 (2014).
12. J. R. Lorsch, D. Hershlag, Kinetic dissection of fundamental processes of eukaryotic translation initiation in vitro. EMBO J. 18, 6705–6717 (1999).
13. J. H. Lee et al., Initiation factor elF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc. Natl. Acad. Sci. U.S.A. 99, 16689–16694 (2002).
14. T. V. Pestova et al., The joining of ribosomal subunits in eukaryotes requires elF5B. Nature 403, 332–335 (2000).
15. R. M. Voorhees, V. Ramakrishnan, Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82, 203–236 (2013).
16. S. P. Fink, J. H. Lee, W. L. Zoll, T. E. Dever, Promotion of met-tRNAiMet binding to ribosomes by yf2, a bacterial IF2 homolog in yeast. Science 280, 1757–1760 (1998).
17. A. Roll-Mecak, C. Cao, T. E. Dever, S. K. Burley, X-ray structures of the universal translation initiation factor IIeF5B: Conformational changes on GDP and GTP binding. Proc. Natl. Acad. Sci. U.S.A. 103, 781–792 (2006).
18. B. Kuhle, R. Ficner, elF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J. 33, 1177–1191 (2014).
19. B. S. Shin et al., Structural integrity of alpha-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability. RNA 17, 687–696 (2011).
20. I. S. Fernandez et al., Molecular architecture of a eukaryotic translational initiation complex. Science 342, 1240585 (2013).
21. B. Kuhle, R. Ficner, Structural insight into the recognition of amino-acylated initiator tRNA by elF5B in the 80S initiation complex. BMC Struct. Biol. 14, 20 (2014).
22. V. P. Pisareva, A. V. Pisarev, elF5 and elF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Res. 42, 12052–12069 (2014).
23. F. Voigts-Hoffmann, S. Klinge, N. Ban, Structural insights into eukaryotic ribosomes and the initiation of translation. Curr. Opin. Struct. Biol. 22, 768–777 (2012).
24. R. M. Voorhees, T. M. Schmeing, A. C. Kelley, V. Ramakrishnan, The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).
25. J. Wang et al., elF5B gates the transition from translation initiation to elongation. Nature 573, 605–608 (2019).
26. J. Frank, R. L. Gonzalez, Jr, Structure and dynamics of a processive Brownian motor: The translocating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).
27. A. G. Hinnebusch, Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450 (2005).
28. I. M. Terenin, S. E. Dmitriev, D. E. Andreev, I. N. Shatsky, Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat. Struct. Mol. Biol. 15, 836–841 (2008).
29. S. Lee et al., Upregulation of elF5B controls cell-cycle arrest and specific developmental stages. Proc. Natl. Acad. Sci. U.S.A. 111, E4315–E4322 (2014).
31. E. Kim et al., eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B. Cell. Mol. Life Sci. 75, 4287–4300 (2018).
32. J. A. Ross et al., Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis. Cell Death Dis. 10, 57 (2019).
33. V. P. Pisareva, C. U. Hellen, T. V. Pestova, Kinetic analysis of the interaction of guanine nucleotides with eukaryotic translation initiation factor eIF5B. Biochemistry 46, 2622–2629 (2007).
34. S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
35. S. H. Scheres, Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).
36. A. H. Ratje et al., Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).
37. J. Fei, P. Kosuri, D. D. MacDougall, R. L. Gonzalez, Jr, Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).
38. J. L. Liácer et al., Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 7, e39273 (2018).
39. B. S. Shin et al., rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol. Cell. Biol. 29, 808–821 (2009).
40. T. Sprink et al., Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci. Adv. 2, e1501502 (2016).
41. E. Kummer et al., Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 566, 263–267 (2018).
42. B. S. Shin et al., Uncoupling of initiation factor eIF5B/eIF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111, 1015–1025 (2002).
43. B. S. Shin, T. E. Dever, Molecular genetic structure-function analysis of translation initiation factor eIF5B. Methods Enzymol. 429, 185–201 (2007).
44. J. H. Lee, S. K. Choi, A. Roll-Mecak, S. K. Burley, T. E. Dever, Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc. Natl. Acad. Sci. U.S.A. 96, 4342–4347 (1999).
45. J. M. Ogle, V. Ramakrishnan, Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).
46. A. Marintchev, G. Wagner, Translation initiation: Structures, mechanisms and evolution. Q. Rev. Biophys. 37, 197–294 (2004).
47. K. Y. Lin, N. Nag, T. V. Pestova, A. Marintchev, Human eIF5 and eIF1A compete for binding to eIF5B. Biochemistry 57, 5910–5920 (2018).
48. A. Tsai et al., Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390–393 (2012).
49. H. Yamamoto et al., Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat. Struct. Mol. Biol. 21, 721–727 (2014).
50. K. Zhang, GCTF: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
51. P. B. Rosenthal, R. Henderson, Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
52. A. Kucukelbir, F. J. Sigworth, H. D. Tagare, Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 62–65 (2014).
53. P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
54. G. N. Murshudov, A. A. Vagin, E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).