Research Article
Optimizing Nitrogen Management in Food and Energy Production
and Environmental Protection: Proceedings of the 2nd International
Nitrogen Conference on Science and Policy
TheScientificWorld (2001) 1(S2), 658–663
ISSN 1532-2246; DOI 10.1100/tsw.2001.390

Influence of Different Organic Waste Materials on the Transformation of Nitrogen in Soils

D.K. Das1,* and A.M. Puste2
1Department of Agricultural Chemistry and Soil Science, Bidhan Chandra
Krishi Viswavidyalaya (BCKV), Mohanpur–741 252, Nadia, West Bengal, India; 2Department of Agronomy, Bidhan Chandra
Krishi Viswavidyalaya (BCKV), Mohanpur–741 252, Nadia, West Bengal, India

Organic waste materials like crop residues, well-decomposed cow dung, composts, and other rural and urban wastes are considered highly useful resources in enhancing soil fertility and also in build-up of soil organic matter. Organic matter decomposition provides plant nutrients in soil, which in turn increases crop productivity. Availability of nutrients and nitrogen (N) and phosphorus from organic waste materials is dependent upon the nature of organic residues, climatic conditions, and soil moisture activity. Keeping these factors in view, the present investigation was undertaken to study the transformation of N from different organic waste materials in two contrasting soils from an eastern India, subtropical region. The results showed that the amounts of ammoniacal-N (NH₄-N), nitrate-N (NO₃-N), hydrolysable N (HL-N), and nonhydrolysable (NHL-N) were increased for up to 60 days of soil submergence and increased further with the increase (1% by weight of soil) of organic residue application.

Considering the effect of various organic waste materials, it was found that the amounts of NH₄-N, NO₃-N, HL-N, and NHL-N were higher with the application of groundnut hull as compared to wheat straw and potato skin, which may be due to relatively narrow carbon:N ratio of groundnut (22:43) than that of wheat straw (62:84) and potato skin (71:32); however, the results showed that the release of NH₄-N, NO₃-N, HL-N, and NHL-N was in the order of groundnut hull > wheat straw > potato skin.

KEY WORDS: ammoniacal nitrogen, hydrolysable nitrogen, nitrate nitrogen, nonhydrolysable nitrogen, organic waste materials, submerged soil, transformation

DOMAIN: waste management policy

INTRODUCTION

Different types of organic waste materials, like crop residues or rural and urban wastes, are useful in augmenting soil fertility and increasing crop productivity. Most of the Indian subtropical soils are deficient in organic carbon (C) as well as nitrogen (N). Application of these organic waste materials in soils, therefore, helps the building up of plant nutrient status, especially N; however, such build-up of soil fertility status depends upon the nature of waste materials added and the dynamics of mineralisation immobilisation of nutrients (N, phosphorus [P], and sulphur[S]) in soils being mediated by soil microorganisms[1,2,3].

The status of organic N fractions in soils can be determined by hydrolysing the soil with 6N HCl[4]. Bremner[5] reported that more than 95% of the total N was in organic combination, a portion of which, on hydrolysis, is liberated as ammonium (10 to 25%), a greater portion as amino acids (25 to 40%), and a smaller fraction (1 to 5%) as amino sugars. These hydrolysable (HL-N) fractions are the main source of the availability of N for the nutrition of organisms in the soil[6]. Dhillon et al.[7] reported that the total N, HL-N, and nonhydrolysable N (NHL-N) correlated significantly with the yield and N uptake by rice. Considering some of these factors, the present study was undertaken with an objective to investigate the influence of different organic materials on the transformation of N in soils of the Indian sub tropics.
MATERIALS AND METHODS

The surface (0- to 15-cm depth) soil samples from Mohitnagar (Inceptisol) and Bolpur (Alfisol) in the districts of Jalpaiguri and Birbhum, respectively, were collected. Then soils were crushed and sieved through a 20-mesh sieve. The relevant physicochemical properties of soils viz. pH, EC, organic C, cation exchange capacity (CEC), and available N (Table 1) were determined following the method described by Jackson[8]. In the present investigation, potato skin, groundnut hull, and wheat straw were used as organic wastes, and these organic wastes were dried, ground, and analysed for total C and N (Table 2). The levels of all three organic waste materials used at 0.5 and 1.0% by weight of the soil. The experiment was conducted in a laboratory at room temperature (25 ± 2°C) with seven treatments and three replications in a randomised block design. The seven treatments were T₁ = control (no application of organic waste materials); T₂ and T₃ = application of potato skin at 0.5 and 1.0% by weight of the soil, respectively; T₄ and T₅ = application of wheat straw at 0.5 and 1.0% by weight of the soil, respectively; and T₆ and T₇ = application of groundnut hull at 0.5 and 1.0% by weight of the soil, respectively. All the soils receiving the above seven treatments were kept submerged in standing water 5 + 0.5 cm above the soil surface, simulating lowland rice conditions. Soils from all three replications were analysed at 15-, 30-, 45-, and 60-day intervals after the treatment for different fractions of N.

RESULTS AND DISCUSSION

Ammoniacal Nitrogen (NH₄-N)

The results (Table 3) show that the amount of NH₄-N increased with the period of submersion; however, the magnitude of such increase varied with the type of soil as well as applied organic waste materials. Comparing the result of different organic waste materials in both the soils, it was observed that the amount released with respect to NH₄-N was highest in the T₄ and T₇ treatments, ranging between 60.2 and 88.1 mg kg⁻¹ at 60 days of submergence. These amounts of release of NH₄-N in groundnut were twice as high as was observed in potato skin and wheat straw treatments. The order of NH₄-N release from these materials was groundnut hull > wheat straw > potato skin. The lower rate of NH₄-N release from potato skin and wheat straw treatments can be attributed to narrower C:N ratios of these additives (Table 2), which limits mineralisation of N[9]. The percent increase of NH₄-N in both the soils over the control progressively increased up to 60 days of submergence in all organic waste materials and was highest in the case of alfisol treated with 1.0% groundnut hull.

Nitrate-Nitrogen (NO₃-N) Content

The results (Table 4) show that the amount of NO₃-N content in both soils gradually increased mineralisation of organic waste

TABLE 1

Physicochemical Properties of the Soil Used for the Experiment	Inceptisol (Mohitnagar Soil)	Alfisol (Bolpur Soil)
pH	6.02	5.70
EC (dsm⁻¹)	0.17	0.49
Organic C (%)	0.92	0.58
CEC [Cmol(p)kg⁻¹]	23.70	7.86
Available NO₃-N (mg kg⁻¹)	1.52	0.87
Available NH₄-N (mg kg⁻¹)	8.34	7.50
Available P (mg kg⁻¹)	10.38	8.20

TABLE 2

Chemical Properties	Potato Skin	Wheat Straw	Groundnut Hull
Total C (%)	48.50	38.96	35.45
Total P (%)	0.38	0.60	0.44
Total N (%)	0.68	0.62	1.58
C:N ratio	71.32	62.84	22.43
C:P ratio	127.63	64.93	80.56
TABLE 3
Effect of Potato Skin, Wheat Straw, and Groundnut Hull on the Availability of NH$_4$-N (mg kg$^{-1}$ soil) in Inceptisol and Alfisol

Inceptisol (Mohitnagar Soil)	Period of Submergence (days)	% Increase Over Control	15	30	45	60	Mean
T$_1$			9.2	10.5	12.5	14.6	11.7
T$_2$			11.8	14.0	15.4	17.5	14.7
T$_3$			14.8	17.5	19.5	20.7	18.1
T$_4$			14.1	16.8	18.9	20.3	17.5
T$_5$			19.4	25.8	27.4	29.6	25.5
T$_6$			42.1	48.2	52.4	60.2	50.7
T$_7$			55.2	65.7	72.8	647.5	68.0
Mean			23.8	28.4	31.3	34.5	
C.D. (5%)			0.2	0.2	1.3	0.8	

Alfisol (Bolpur)							
T$_1$			8.1	9.2	11.2	12.6	10.3
T$_2$			8.7	9.8	12.3	14.0	11.2
T$_3$			9.8	11.5	13.9	16.7	12.9
T$_4$			12.5	16.2	18.1	21.6	17.1
T$_5$			18.8	29.9	32.1	34.1	28.7
T$_6$			43.4	51.7	68.3	83.2	61.6
T$_7$			50.7	57.3	73.4	755.7	67.4
Mean			21.7	26.5	32.8	38.6	
C.D. (5%)			0.3	0.2	0.2	0.8	

materials with time. The increase in the NO$_3$-N value was much lower as compared to the increase in the amount of NH$_4$-N in both soils. The results further revealed that the release of NO$_3$-N content in both soils showed a similar pattern to that of NH$_4$-N content. A slow increase in NO$_3$-N content in soils with the period of flooding might be the result of constant release of inorganic N from the slow mineralisation of organic resource materials as well as relatively greater thickness of the oxidised soil layer. As a result, it is possible that a higher rate of biological oxidation of NH$_4$-N results in a greater NO$_3$-N content in the oxidised soil layer with the simultaneous decrease in diffusion of NO$_3$-N to the anaerobic, reduced soil layer. Although NH$_4$-N is stable in the reduced zone of the soil, basal application of organic waste materials is usually placed deep enough to avoid immediate nitrification; however, diffusion of NH$_4$-N from the reduced zone to the oxidised zone cannot be prevented[10]. Beri et al.[11] observed that the use of amendment in the soil with Sesbania aculeata resulted in the formation of NO$_3$-N under both field-capacity and saturated-soil conditions. In the case of both inceptisol and alfisol, with up to 60 days of submergence with the application of groundnut hull, wheat straw, and potato skin at 1.0%, the percent increase of NO$_3$-N over control was 174.2, 83.9, and 28.2 (inceptisol), and 118.8, 55.7, and 35.0 (alfisol), for each application, respectively.

HL-N and NHL-N

The results (Table 5) revealed that the amount of HL-N and NHL-N initially increased significantly; thereafter, the amounts decreased with the progress of submergence irrespective of treatments. The magnitude of such changes, however, varied with treatments and was highest in the treatment with groundnut hull at its highest level (1.0% by weight of soil). This result may be because the organic N of groundnut hull has a relatively low C:N
TABLE 4
Effect of Potato Skin, Wheat Straw, and Groundnut Hull on the Availability of NO₃-N (mg kg⁻¹ soil) in Inceptisol and Alfisol

Inceptisol (Mohitnagar Soil)	15	30	45	60	Mean
Treatments	% Increase Over Control	Mean			
T₁	2.1	2.7	3.5	4.2	3.1
T₂	2.6	5.4	3.2	4.5	3.9
T₃	3.4	13.9	4.2	14.3	5.1
T₄	3.6	15.2	4.2	14.8	5.1
T₅	7.7	56.2	11.1	83.8	5.7
T₆	11.9	98.5	14.7	119.5	10.8
T₇	13.7	116.0	16.7	139.6	18.0
Mean	6.4	8.1	9.8	11.3	
C.D. (5%)	0.3	0.1	0.2	0.2	

Alfisol (Boipur)	15	30	45	60	Mean		
Treatments	% Increase Over Control	Mean					
T₁	1.4	2.2	3.4	4.8	3.0		
T₂	1.7	2.5	2.7	4.2	14.7	3.7	
T₃	2.4	9.6	3.2	9.6	8.3	4.8	
T₄	3.5	20.2	4.2	20.2	7.6	5.4	
T₅	4.8	33.7	6.3	40.8	10.4	7.6	
T₆	5.8	43.8	7.1	49.5	13.3	9.3	
T₇	9.8	83.3	13.3	110.8	16.7	118.8	13.8
Mean	4.2	5.5	7.8	9.6			
C.D. (5%)	0.2	0.2	0.2	0.3			

CONCLUSION

From the present investigation it may be concluded that organic agricultural waste materials are very beneficial not only for maintaining soil fertility—particularly in respect to augmenting N content in soils—but also a source of C, which may improve soil physical conditions.

REFERENCES

1. Das, D.K. (1989) Efficiency of different urea materials for rainy season rice (Oryza sativa). Indian J. Agric. Sci. 59, 534–536.
2. Das, M., Singh, B.P., Ram, M., Dwivedi, B.S., and Prasad, R.N. (1991) Influence of organic manures on native plant nutrient availability in an acid alfisol. J. Indian Soc. Soil Sci. 39, 286–291.
3. Das, R., Das, D.K., and Das, B. (1995) Transformation of nitrogen in soil as affected by different sources and methods of nitrogen application under flooded rice ecosystem. Int. Rice Res. Notes 20, 20.
TABLE 5
Influence of Organic Waste Materials on the Changes of HL-N and NHL-N (mg kg⁻¹ soil) in Inceptisol and Alfisol

Treatments	Period of Submergence (days)							
	15	30	45	60				
	HL-N	NHL-N	HL-N	NHL-N	HL-N	NHL-N	HL-N	NHL-N
T₁	553.2	186.5	508.4	169.7	485.5	137.2	441.4	100.83
T₂	643.1	211.4	630.3	192.9	589.8	152.3	503.6	117.8
T₃	667.4	242.6	644.4	208.8	602.4	167.5	561.3	141.1
T₄	725.4	221.5	698.9	198.8	621.2	156.5	579.8	130.0
T₅	785.7	278.4	718.6	225.9	669.8	176.8	604.9	140.7
T₆	807.2	268.6	714.9	215.7	658.8	171.4	617.9	134.7
T₇	825.7	284.7	779.9	245.7	694.9	203.4	642.7	151.9
C.D. (5%)	204.7	18.4	27.7	16.9	22.4	13.8	17.3	12.9

Treatments	Period of Submergence (days)							
	15	30	45	60				
	HL-N	NHL-N	HL-N	NHL-N	HL-N	NHL-N		
T₁	481.9	138.7	403.3	118.6	387.4	100.4	300.9	89.7
T₂	502.4	149.1	431.9	130.7	412.4	106.8	381.7	94.7
T₃	529.0	158.4	502.7	139.9	473.4	119.4	404.5	101.7
T₄	539.4	154.5	509.2	141.4	419.8	110.2	389.4	99.1
T₅	585.4	171.9	532.5	158.4	488.5	126.8	428.9	114.6
T₆	558.7	161.7	515.7	149.3	451.7	113.5	417.4	103.4
T₇	591.7	185.7	536.8	164.7	498.4	144.7	442.6	131.7
C.D. (5%)	12.7	9.8	9.3	10.1	16.7	8.3	12.7	9.9

Inceptisol (Mohitnagar Soil)

Alfisol (Bolpur)

4. Bremner, J.M. (1965) Soil Nitrogen. Agronomy Monograph. American Society of Agronomy, Madison, WI.
5. Bremner, J.M. (1965) Organic forms of nitrogen. In Methods of Soil Analysis: Part 2. Black, C.A., Ed. Agronomy Series 9, American Society of Agronomy, Madison, WI, pp. 1238–1254.
6. Flagg, W., Nagar, B.R., Sochtig, H., and Tietjen, C. (1977) Organic materials and soil productivity. Food and Agriculture Organization of the United Nations, Rome. Soils Bull. 35, 23.
7. Dhillon, N.S., Gupta, R.K., and Dev, G. (1987) Effect of soil N on rice yield in Punjab. Int. Rice Res. Newsl. 12, 53–54.
8. Jackson, M.L. (1967) In Soil Chemical Analysis. Prentice Hall of India, New Delhi.
9. Chakraborty, P.K., Mandal, L.N., and Mazumder, A. (1988) Organic and chemical sources of nitrogen: its effect on nitrogen transformation and rice productivity under submerged conditions. J. Agric. Sci. Cambridge 111, 91–94.
10. Narain, P. and Datta, N.P. (1974) Influence of nitrification inhibitors and some insecticides on nitrification of urea under aerobic and waterlogged conditions. Agrochimica 18, 79–89.
11. Beri, V., Meelu, O.P., and Khind, C.S. (1989) Studies on Sesbania aculeata pers as green manure for N accumulation and substitution of fertilizer- N in wetland rice. Trop. Agric. 66, 209–212.
12. Kai, H., Ahmad, Z., and Harada, T. (1973) Factors affecting immobilization and release of nitrogen in soil and chemical characteristics of the nitrogen newly immobilized. III. Transformation of the nitrogen immobilized in soil and its chemical characteristics. Soil Sci. Plant Nutr. 19, 275–286.
13. Tusneem, M.E. and Patrick, W.H., Jr. (1971) Nitrogen transformation in water logged soil. La. State Univ. Agric. Exp. Stn. Bull. 657, 75.
14. Chakravorty, P.K. and Mandal, L.N. (1992) Effects of organic and chemical sources of nitrogen on nitrogen transformation, growth and yield of rice under submerged condition. Indian Agric. 36, 131–140.
15. Patel, M.S., Chouhan, N.P., Patal, J.G., and Patel, I.D. (1990) Effect on rice yield of biolifiers plus inorganic fertilizer. Int. Rice Res. Newsl. 15, 24.

This article should be referenced as follows:

Das, D.K. and Puste, A.M. (2001) Influence of different organic waste materials on the transformation of nitrogen in soils. In Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy. TheScientificWorld 1(S2), 658–663.

Received: July 28, 2001
Revised: November 10, 2001
Accepted: November 12, 2001
Published: December 8, 2001
BIOSKETCH

Dr. Dilip Kumar Das is Professor, Department of Agricultural Chemistry & Soil Science, Bidhan Chandra Krishi Viswavidyalaya. He holds B.Sc.(Ag) Hons, M.Sc(Ag), and Ph.D. degrees. Professor Das has made his contribution to the field of soil science, primarily in soil chemistry, soil fertility, and plant nutrition with particular reference to nitrogen and micronutrients including some heavy metal pollution problems in Indian sub-tropics. He has evaluated various channels of nitrogen losses in lowland rice soils vis-à-vis suggested methods for the minimization of those losses (ammonia volatilization, leaching, and denitrification), research that has been included in *Advances in Soil Science*. In addition, Prof. Das has done exhaustive research on micronutrients in soils and crops. He has published two important books on soil science, namely, *Introductory Soil Science* (1996) and *Micronutrients: Their Behaviour in Soils and Plants* (2000) (both published by Kalyani Publishers, India). These books are useful for students engaged in agricultural education in India and abroad. Prof. Das received the Crop Research Award in 1997, conferred by the Agricultural Research Information Centre, Hisar, India, for his significant contribution in the field of research on various crops and promoting agricultural literature. He was also awarded the 20th Century Agricultural Development National Award in 1999, conferred by the Gaurav Society of Agricultural Research Information Centre, Hisar, India, for his significant contribution in the field of research on soils and crops.