Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development

Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K.; Gudmand-hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A.; Thomassen, Mads; Troelsen, Jesper; Hasselbalch, Hans K; Ottesen, Johnny T.

Published in:
PLOS ONE

DOI:
10.1371/journal.pone.0183620

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen, M., Sajid, Z., Pedersen, R. K., Gudmand-hoeyer, J., Ellervik, C., Skov, V., ... Ottesen, J. T. (2017). Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. DOI: 10.1371/journal.pone.0183620
Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development

Morten Andersen¹, Zamra Sajid¹, Rasmus K. Pedersen¹, Johanne Gudmand-Hoeyer¹, Christina Ellervik², Vibe Skov³, Lasse Kjær³, Niels Pallisgaard⁴, Torben A. Kruse⁵, Mads Thomassen⁵, Jesper Troelsen¹, Hans Carl Hasselbalch³*, Johnny T. Ottesen¹

¹ Department of Science and Environment, Roskilde University, Roskilde, Denmark, 2 Department of Laboratory Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America, 3 Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark, 4 Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark, 5 Department of Clinical Genetics, Odense University Hospital, Odense, Denmark

* hans.hasselbalch@gmail.com

Abstract

The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as “A Human Inflammation Model for Cancer Development”. This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs. The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model.

Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Introduction

The classic chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) include essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF), which are acquired stem cell neoplasms [1]. Most patients live with their MPNs for decades although with a huge morbidity burden due to a high risk of thrombosis with cardiovascular complications and a massive comorbidity burden as well due to an increased propensity to develop autoimmune and chronic inflammatory diseases [2–4], including a 40% increased risk of second cancers [5,6]—not only after the MPN-diagnosis but also prior to the MPN-diagnosis [7]. Several years prior to the MPN-diagnosis these patients also have an increased risk of cardiovascular, autoimmune and inflammatory diseases [8,9]. Furthermore, the MPNs have an inherent risk of transformation to acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) [10].

During the last decade major breakthroughs have occurred in the understanding of the pathogenesis of the MPNs, the most important being the identification of the somatic clonal markers—JAK2, MPL and CALR [11–18]. The findings of several other mutations already at the time of MPN-diagnosis, with the emergence of additional mutations in the advanced transforming stages of MPNs [17,18], all support the concept of a biological continuum from the early cancer stages (ET/PV) to the advanced cancer stages (myelofibrosis or AML) [1,19,20]. Chronic inflammation is the common link between common diseases such as atherosclerosis, the metabolic syndrome, type II diabetes mellitus and cancer, in which the JAK-STAT- signalling and the NF-kB pathways are activated and have major roles in disease progression [21–28]. These pathways are activated in MPNs as well. Most recently, the MPNs have been described as “Inflammatory Diseases ”[4] and “A Human Inflammation Model For Cancer Development”[29] reflecting chronic inflammation to be a major driving force for clonal evolution and disease progression in MPNs [30–39].

This novel concept is built upon a platform, which has combined data from studies in several research fields and disciplines within MPNs—clinical [3–9,29–53], experimental [54–63], genomic [64–70], immunological [71–74] and not least epidemiological studies [3,5–7,75–77].

Another research field—mathematical modelling of cancer development—has not been applied to a similar extent within MPNs until very recently [78,79] and not in the context of investigating the concept of MPNs as “A Human Inflammation Model for Cancer Development”. Mathematical modelling of cancer development has provided new insights regarding cancer initiation and progression [80–89]. In this context, mathematical modelling has a huge potential to support or disprove understanding of research data on pathogenetic factors of significance for cancer development but also in regard to providing supportive evidence for a drug to be used in cancer therapy and accordingly a novel tool in evidence-based medicine [90–92]. Mathematical modelling of chronic inflammation as the trigger and driver of MPNs has never been investigated. Although the concept of MPNs as “inflammatory diseases” is being increasingly recognized, additional proof of this novel concept by mathematical modelling might be of utmost importance not only for our understanding of the pathogenesis of these neoplasms, but also in regard to diagnosis and treatment. Herein, we for the first time by mathematical modelling add further proof of the concept that MPNs may be both triggered and driven by chronic inflammation. We discuss the perspectives of our findings, which might implicate intervention at the earliest stage of cancer development (ET, PV) to target the malignant clone and dampen concomitant inflammation when the tumor burden is minimal, and accordingly, the outcome of treatment is logically most favorable.
Methods

The system describes the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include regulatory interactions (e.g. niche growth effects) and inflammation coping with cell death, inflammatory cytokines, and neutrophils. In order to design an inflammatory MPN model, we build on the coupled dynamics of inflammation and cancer progression as depicted in Fig 1.

The model

Most previous studies attempting to model the role of inflammation and immune deregulation in cancer progression consider solid tumors and couple the T-cell and natural killer (NK) cell dynamics to a logistic growth of a tumor. They mainly describe quite simplified versions of the adaptive immune response without explicitly considering the underlying cancer growth dynamics [93–98]. In contrast to all these models, our model is the first which couples the principles underlying actual cell dynamics to a basal inflammatory response. This response is seen for a normal infection, where the amount of dead cells provokes the immune response and stimulates the renewal of stem cells. Despite this complex coupling, the model is kept as simple as possible still allowing the relevant quantities to be described. Thus, the goal is to describe an important coupling between MPN development and the inflammatory response at

Fig 1. The conceptual model. Light gray boxes (symbolized \(x_0, x_1, y_0,\) and \(y_1\)) illustrate the compartments of the basic model, and the black arrows the rates of the flows between these compartments. Here \(x_0\) denotes the number of HSC, \(x_1\) that of HMS, \(y_0\) that of MPN SC, and \(y_1\) the number of MPN MC. The light blue compartment (symbolized \(a\)) contains all dead cells and the light orange compartment (symbolized \(s\)) the inflammatory level, i.e. the immune response. Blue arrows from these represent related rates of flows. Red stipulated arrows going from the inflammatory compartment represent effects of the cytokines (or neutrophils when eliminating dead cells) modulating rates of the basic model. Two additional rates (depending on \(x_0\) and \(y_0\)) appearing as red stipulated arrows represent the bone marrow niches symbiosis with the stem cells modulating the self-renewal rates. Note, stem cells leaving their respective compartments enter the corresponding mature cell-pools as multiplied by the progenitor amplification factor (A).

https://doi.org/10.1371/journal.pone.0183620.g001
a quantitatively conceptual level. Hence, the complicated mathematical question of model identifiability and accurate parameter estimation will be addressed elsewhere. Nevertheless, we include some model calibration and validation after presenting the model to justify and demonstrate the strength of the model.

Basically, our model consists of four pools of cells; the hematopoietic stem cells (HSC), the hematopoietic mature cells (HMC), the MPN-mutated stem cells (MPN SC) and the MPN mature cells (MPN MC). The number of these cells are denoted x_0, x_1, y_0, and y_1 respectively, where x refers to normal hematopoietic cells and y to MPN hematopoietic cells, while index 0 refers to stem cells and index 1 to mature cells. A single stem cell (SC) may proliferate in three ways; symmetric self-renewal (having two stem cells as offspring), asymmetric self-renewal (turning into one stem cell and one progenitor cell), and symmetric differentiation (giving rise to two progenitor cells). The progenitor cells cannot be ignored, however, we consider the progenitor cells simply as intermedia multiplication steps describing the way stem cells generate mature cells. In the model, the generations or continuum of progenitor cells will be implicitly accounted for as each stem cell will generate a number of mature cells by an amplification factor, $A (= 2^k$ if there are k generations of progenitor cells). Feedbacks from or to progenitor cells are ignored or integrated into the other included feedbacks.

The present focus is on the ensemble of each cell type and not the individual cells; thus the governing laws will be for the pools of cells, in science denoted compartments [99]. Mathematically, the dynamics will be described by non-linear ordinary differential equations respecting conservation laws. The HSC self-renews with rate r_x and the malignant MPN SC self-renews with rate r_y. Furthermore, HSC may be transformed by cell division by a rate a_x whereas the MPN SC does so with a rate a_y. The mature cells are multiply generated, i.e. the HMC are generated with a rate a_xA, and the MPN MC with a rate a_yA. Finally, all cell types may die; stem cells with a lower rate and mature cells with a higher rate. The turnover (or mortality) rates are $d_{0x}, d_{1x}, d_{0y},$ and d_{1y} for the HSC, HMC, MPN SC, and MPN MC, respectively. Except for the mutation part, this duplicates the structure of the model proposed by Dingli and Michor (they silently used $A = 1$) [92].

A small probability r_m describes the mutation of HSC into MPN SC. In that case, r_m is not the probability of a single mutation but possibly a serial sequence of mutations turning the HSC into a cancer cell capable of self-renewal, by definition an MPN SC, where a mutation is expected to be described by a Poisson process [100]. The probability for one mutation is about 10^{-7} per year per cell [101]. However, not all mutations are malignant; only mutations which happen on particular locations (i.e. at specific nucleic acids) of the DNA cause MPN relevant mutations. Inflammation increases the risk of mutations, including smoking, exposure to ultraviolet light or certain chemicals [49,50,101–104]. It is this small probability which violates a possible deterministic description with a simple mutation rate. Except for the mutation part, the model will be deterministic and continuous. In most of our work, we studied the development right after the first malignant mutation has occurred (denoted the first insult). In these cases, the simulations start with one malignant stem cell. Meanwhile, the number of all other cells are in a healthy steady state with the mutation rate put to zero. The approach is justified by the fact that including a non-zero mutation rate did not affect the outcome of the model.

The equations are all of the general form,

$$\text{Change in amount of a compartment per time} = \left\{ \begin{array}{c} \text{rate of generation times the generating source} \\ \text{rate of elimination times the amount in the compartment considered} \end{array} \right\}$$

resulting in specific systems of ordinary differential equations as given in SI Appendix.
Whenever cells die the debris have to be engulfed by phagocytic cells, e.g. neutrophils and macrophages while a hierarchic cascade of pro- and anti-inflammatory cytokines are released [96–98,110]. Following the parsimonious principle, we let the dead cells (a) up-regulate the amount of phagocytic cells (s) with rate constant r_s per dead cell while they are eliminated with a rate e_s. In addition, endotoxins, smoking and other environmental factors may add to the inflammatory response; thus we add such a term (characterized by the lightning symbol in Fig 1). Since MPNs develop on time-scale years and inflammatory immune processes are fast (on time-scale hours-days), we assume that the amount of phagocytic cells is balanced by the cytokines levels in a fixed ratio. Thus, the cytokine level is proportional to the phagocytic level why the inflammatory compartment (s) represents both (up to a possible proportionality constant which may be incorporated into the rate constants). Meanwhile, the amount of dead cells is down-regulated as a second order elimination process, $-e_a a s$, with rate constant e_a. Dead cells are produced by $d_x x_0 + d_y y_0 + d_x x_1 + d_y y_1$, per time denoted the turnover, which is assessed by the plasma concentration of lactic dehydrogenase (LDH). It is well-known that the inflammatory level affects the mutation rate [104] and the self-renewal rates [105]. For simplicity, we take these to be proportional with the inflammatory level (of course saturation may occur) but since the level (a) settles at constant levels so does the inflammatory level (s), which may be thought of as the amount of inflammatory cytokines which have been shown to be increased in patients with MPNs and several in a step-wise manner from controls over the early cancer stages (ET, PV) to the advanced cancer stage–myelofibrosis (PMF) (S1 Appendix) [40–46]. Thus, it turns out that various specific cytokines (IL-1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12) and C-reactive protein (CRP)—a conventional biomarker of inflammation—are linearly correlated with the inflammatory level (s). These cytokines have been chosen for validation of our model since elevated levels of several of these cytokines have been associated with an inferior survival [44]. Likewise, elevated levels of CRP have been shown to be associated with shortened leukemia-free survival in patients with myelofibrosis [42]. Of note, the inflammatory cytokine IL-8 have been reported to be of particular interest in the context of MPN pathogenesis [57–60]. These extra pools of cells are depicted in Fig 1 along with the rates governing the dynamics. This establishes the coupled inflammatory-MPN model. The full system of mathematical equations, representing the model is described in Table B in S1 Appendix including default parameter values.

Model calibration, validation, and results
The model is inspired by Dingli and Michor, and therefore the parameter values are based upon their values [92]. However, we have adjusted them to obtain more appropriate saturation levels in agreement with data (see Fig 2 and the reported values in Table C in S1 Appendix). First, the model is calibrated to the situation of no MPN cancer cells ($y_{0i} = 0$ and $y_{1i} = 0$). In this situation, we expect a stable steady state such that the number of HSC is approximately 10^4 and that of HMC is approximately 10^{10}. These choices are compromises between reported values for the number of HSC [78, 86, 88, 89, 92].

From the steady state condition we have the number of dead cells to be $a_s = \frac{d_x x_0 + d_y y_0 + d_x x_1 + d_y y_1}{r_s} \approx 10^3$. We further expect $r_y > d_{x0} + a_s$ and $d_{x0} \ll d_{x1}$. When allowing for MPN development the healthy state becomes unstable when perturbed by the malignant stem cells. Thus, we expect $r_y > r_x$.

In the final stage the in silico patient will have vanishing hematopoietic cells and the MPN cells will approach a stable steady state with a higher amount of MPN cells than normal hematopoietic cells in the healthy steady state. This is accomplished by choosing all the c-
values equal in order to keep the model as simple as possible and the number of parameters as few as possible. Likewise, the parsimonious principle suggests $d_{y0} = d_{x0}$, $a_y = a_x$ and $A_y = A_x$.

The JAK2V617F allele burden has been reported to have median values of 7% (95% CL 2–15%; range 1–39%), 33% (95% CL 20–40%; range 1–92%) and 67% (95% CL 52–95%; range 37–99%) in ET, PV and PMF patients, respectively [19]. It follows that the model output perfectly resamples these dynamic changes in the JAK2V617F mutational load (Fig 3). Additional details are given in the S1 Appendix section.

All these attempts in calibrating the model may simultaneously be considered as validation since they performed successfully. However, the model may be validated further by predicting affected cytokine levels from the inflammatory level. As indicators of the inflammatory level, we refer to those cytokines, which are considered most important in the context of MPNs: IL-1β, IL-1RA, IL-2R, IL-6, IL-8, IL-10, IL-12 and the inflammation biomarker CRP which all turned out to be linearly correlated with the inflammatory level (s).

For the specific cytokines (C_i) tabulated in the S1 Appendix, we have ‘Normal’, ‘PV’, and ‘PMF’ median values (m_{ij} where index i specifies the cytokine and index j refers to ‘Normal’, ‘PV’ and ‘PMF’ states) for each. Then we find k_1 and k_2 such that $m_{ij} = k_1 s_j + k_2$ where s_j is the value of s at year t_j. Similarly, LDH values were demonstrated to be correlated and compared to the total rate of dying cells $DL = dx_0 x_0 + dx_1 x_1 + dy_0 y_0 + dy_1 y_1$. The results are summarized.
in Fig 4 which shows that the model predicts data very well. Only IL-6 seems to be less well predicted.

Disallowing potential mutations and having no MPN-stem cells initially forces the model system into a steady state where solutions are all constant after a possible initial transient event. Introducing a mutation probability introduces a fatal malignant state; the higher the mutation probability is the faster the malignant state develops. A typical scenario is shown in Fig 3A along with a curve of the allele burden development (Fig 3B). The Figure depicts both

Fig 3. Left: Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells (stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage, the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline. Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an approximately exponential increase in the MPN stem cells, and the development is closely followed by the mature MPN cells. Right: B) The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV, and PMF, respectively) defined as the ratio of MPN mature cells to the total number of mature cells.

https://doi.org/10.1371/journal.pone.0183620.g003

in Fig 4 which shows that the model predicts data very well. Only IL-6 seems to be less well predicted.

Disallowing potential mutations and having no MPN-stem cells initially forces the model system into a steady state where solutions are all constant after a possible initial transient event. Introducing a mutation probability introduces a fatal malignant state; the higher the mutation probability is the faster the malignant state develops. A typical scenario is shown in Fig 3A along with a curve of the allele burden development (Fig 3B). The Figure depicts both

Fig 4. Model validation. Cytokines A) IL-1β, B) IL-1RA, C) IL-2R, D) IL-6, E) IL-8, F) IL-10, G) IL-12 and H) C-reactive proteins (CRP) are approximately linearly correlated with the inflammatory levels. For the specific cytokines, we have from left to right ‘Normal’, ‘PV’, and ‘PMF’ median values (yellow columns) for comparison based on the predicted inflammatory levels (full blue curve) as a function of time after the first insult. I) Similarly, LDH is correlated with and compared to the total rate of dying cells $\frac{DI}{c} = \frac{dx_0}{c}x_0 + \frac{dx_1}{c}x_1 + \frac{dy_0}{c}y_0 + \frac{dy_1}{c}y_1$.

https://doi.org/10.1371/journal.pone.0183620.g004
modeling of the development of MPN from normal HSC and the early MPN diseases stages (ET/PV) to the advanced myelofibrosis stage.

Having a continuous mutation rate, it will take 24 years for the disease to develop to an allele burden of 7% (e.g. ET) and after additional four years the allele burden reaches 33% (e.g. transformation of ET to PV) to become 67% (e.g. transformation of PV to post-PV myelofibrosis) at year 36 after the first stem cell mutation. Disallowing mutations in the model and initially including a single malignant stem cell and no malignant mature cells shifts the allele burden curve by one year to the left on the time axis.

Thus, the mutation of an HSC to MPN SC triggers the disease. Once an MPN stem cell is established the disease can progress without further mutations.

The baseline inflammatory load (stimulus) is arbitrarily set to 7 pg/ml per day during normal circumstances. It is an exogenous stimulation of the immune system, which leads to an inflammatory level of 3.61 pg/ml, increasing to 3.66 pg/ml in MPNs. This corresponds to a baseline of 700 dead cells (in the hematopoietic steady state) before MPN develops remarkably. A doubling of the baseline inflammatory level is directly affecting the inflammation load (cytokine level) and thereby affecting the rest of the system as dictated by the model equations. In Fig 5 is depicted that shortening the exposure time of inflammation load is associated with deceleration of disease progression.

Discussion

Chronic inflammation is characterized by persistently activated immune cells, DNA damage, tissue destruction, remodeling and fibrosis [106]. In patients with MPNs, these processes are exemplified by the advanced myelofibrosis stage [4, 29], which accordingly might be considered to develop as the consequence of chronic inflammation in the bone marrow—“the inflamed bone marrow” and “the wound that won’t heal” [4, 29,107,108]. Herein, we for the first time use mathematical modelling to substantiate the concept that MPN progression is facilitated by chronic inflammation and that ET and PV are linked through increasing JAK2V617F allele burden [19] which is destined to happen as time increases without interference. Importantly, we were able to create the inflammation-MPN model based upon current knowledge on the interactions between inflammatory cytokines, hematopoietic stem cells and progenitors, and the bone marrow microenvironment [31–33,35–37,105]. By mathematical modelling of all these interactions, our integrated inflammation-MPN model was created. The model was validated from current data on circulating inflammatory cytokines in MPNs [40,44–46], thereby substantiating inflammation to be a highly potent stimulus for clonal evolution and cancer progression in MPNs. In the context that elevated CRP levels have been shown to be associated with shortened leukemia-free survival in myelofibrosis [42], it is of interest that our model was excellently validated by data on CRP levels in the different MPN disease stages as well.

Mathematical modelling has been used to describe the impact of chronic inflammation and immune deregulation in aging [109] and several diseases, including type 1 diabetes mellitus [110], rheumatoid arthritis [96] and colitis-associated colon cancer [111]. Based upon the known association between respiratory infections and chronic inflammation, Herald described a general model of inflammation [97]. In this model, a system of nonlinear ordinary differential equations was used to describe interactions between macrophages, inflammatory and anti-inflammatory cytokines and bacteria. Though initiated by bacteria as the stimulus to trigger chronic inflammation, their study focused on chronic inflammation in the absence of pathogens as well [97]. Of note, even small changes in parameters of importance for inflammatory cytokine production and macrophage sensitivity to cytokines resulted in dramatically different
model behaviors [97]. According to this model chronic inflammation is not triggered when
the immune system is functioning properly. However, in patients with a dysfunction of the
immune system positive feedback of the inflammatory cytokine network is prone to induce
chronic inflammation. Furthermore, if the macrophage population is more sensitive to inflam-
matory cytokines small perturbations initiated by the inflammation stimulus will also lead to
chronic inflammation [97]. In this context, it is intriguing to consider if the inherited genetic
predisposition to acquire the JAK2V617F-mutation due to the haplotype 46/1 [112–117],
which also confers an increased risk of (other) inflammatory diseases (e.g. Crohn’s disease)
[118,119] and/or acquired genetic instability due to sustained chronic inflammation (chronic
inflammatory diseases or toxin exposure (e.g. smoking) might further increase the risk of
developing MPN—a hypothesis originally proposed by Hermouet et al [33,35]. Importantly,
the hypersensitivity of clonal MPN-cells to exogenous and endogenous growth factors and
inflammatory cytokines might also more easily lead to a chronic inflammatory state—similar to
the increased sensitivity of the macrophage population leading to chronic inflammation in the

Fig 5. Investigation of increased inflammatory load at various onsets and durations. Blue curve is default
parameters corresponding to Fig 3, red dotted is a doubling of inflammatory load, full red curve is a doubling of
inflammatory load in year 0–20, then back to default level, black dotted curve is inflammatory doubling from year 10,
the full black is inflammatory doubling year 10–30. Upper: Increasing inflammatory load has a boosting effect on
MPN MC (A) as well as on HMC (B). Lower: Displaying the results in terms of the clinically available quantity, total
blood cell count, also shows a boosted effect with increasing inflammatory load (C). The allele burden of JAK2
mutated blood cells similarly shows that increased inflammation increases disease development (D). There is a clear
effect of MPN promotion with increasing inflammatory load, earlier onset, and exposure time. Lowering inflammatory
load makes disease progression less rapid. Maintaining a doubling (red dotted curve) shifts the allele burden curve to
the left by two years. Shortening the exposure time of inflammatory load weakens the disease progression. The
inflammation has a fast impact on the total number of blood cells, which typically changes by 25% within the first year
after doubling or reducing the inflammatory load by 50%.

https://doi.org/10.1371/journal.pone.0183620.g005
In the Herald model and the model described by Nielsen et al in regard to type 1 diabetes mellitus, the macrophages constituted an important compartment [97,110]. The monocyte-macrophage cell lineage is of major importance in the context of inflammation and cancer development. In our MPN-inflammation model bone marrow macrophages are also of utmost importance—both in regard to release of inflammatory cytokines, but also in regard to the development of myelofibrosis. Thus, in MPNs the monocyte-macrophage cell—together with the megakaryocyte (MK) cell lineage—are considered to be responsible for the development of myelofibrosis by the release of a number of growth factors and inflammatory cytokines that stimulate fibroblast proliferation [36,120,121]. The “Herald Model” is in several aspects equivalent to our model when considering substituting “bacteria” in the “Herald Model” by any noxious inflammatory stimulus. In fact, we implement yet another cell lineage—the MKs—as the source of a continuous release of products that stimulate the vicious inflammation circle, implying ultimately the development of cancer—the MPNs. As previously outlined, our mathematical modelling of the concept of chronic inflammation in MPNs is also supported by the elegant model described by Hermouet and co-workers [33,35], in which the JAK2 46/1 haplotype was proposed as a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasms, and impaired defense against infection [33]. Indeed, the Hermouet model for chronic inflammation [33,35] fits exceedingly well with the Herald model of general inflammation [97] and our mathematical modelling of MPNs as “A Human Inflammation Mode for Cancer Development [29–32]. In this regard, chronic inflammation and immune deregulation in MPNs might act as a trigger for later development of AML and MDS in line with the known association of inflammatory signaling and cancer [24–27]. The above models are additionally supported by the hypothetical model by Takizawa et al. (2010) [122], describing how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, including MPNs. By inducing high proliferation of most HSCs, chronic inflammation might give rise to both exhaustion of the HSC pool and an even greater risk to accumulate genetic alterations in HSCs. Furthermore, by inflammatory stimuli from the bone marrow microenvironment these genetically altered HSCs might be rescued or “cancer cell niche” for later development of a hematological cancer [122].

The perspectives of our study are several. In the context that myelomonocytic cells (granulocytes, macrophages, monocytes) and MKs are all deeply involved in cancer development and progression [123,124], chronic inflammation is associated with premature atherosclerosis (atherothrombosis) [21–23, 29,30], in which both platelets and monocytes are highly important (monocytes a link between atherosclerosis and cancer [28]) and platelets are intimately involved in the metastatic process in cancer [124]—and likely in MPNs as well [125]—the avenue is opened for studying all these aspects by using mathematical modelling of current knowledge of the impact of chronic inflammation and immune deregulation in patients with MPNs. Ultimately, mathematical modelling may also be able to substantiate which agents to be used in MPNs in order to induce “minimal residual disease”[125–129] and the importance of early intervention with agents that directly target both the malignant clone (interferon-alpha2) [126–129] and the inflammatory process (JAK1-2 inhibition with e.g. ruxolitinib) [130].

In conclusion, we have for the first time applied mathematical modelling as a tool to deliver the proof of concept that chronic inflammation is closely linked to the development of the MPNs—myeloproliferative cancers which today are considered to be “chronic inflammatory diseases”, in which chronic inflammation may be a driving force for clonal expansion and
ultimately the development of AML [4, 29–32,39]. Studies are ongoing to elucidate the above perspectives by mathematical modelling. In this regard, mathematical modelling of resolution of inflammation may be highly important [98] and useful to support the decision-making which agents to use in the future for patients with MPNs in order to induce minimal residual disease and hopefully cure.

Supporting information

S1 Appendix.

(DOCX)

Author Contributions

Conceptualization: Morten Andersen, Christina Ellervik, Vibe Skov, Lasse Kjær, Niels Pallisgaard, Torben A. Kruse, Mads Thomassen, Jesper Troelsen, Hans Carl Hasselbalch, Johnny T. Ottesen.

Data curation: Morten Andersen, Johnny T. Ottesen.

Formal analysis: Morten Andersen, Zamra Sajid, Rasmus K. Pedersen, Johanne Gudmand-Hoeyer, Johnny T. Ottesen.

Investigation: Morten Andersen, Hans Carl Hasselbalch, Johnny T. Ottesen.

Methodology: Morten Andersen, Christina Ellervik, Vibe Skov, Lasse Kjær, Niels Pallisgaard, Torben A. Kruse, Mads Thomassen, Jesper Troelsen, Hans Carl Hasselbalch, Johnny T. Ottesen.

Resources: Morten Andersen, Johnny T. Ottesen.

Software: Morten Andersen, Zamra Sajid, Rasmus K. Pedersen, Johanne Gudmand-Hoeyer, Johnny T. Ottesen.

Supervision: Hans Carl Hasselbalch, Johnny T. Ottesen.

Validation: Morten Andersen, Vibe Skov, Lasse Kjær, Hans Carl Hasselbalch, Johnny T. Ottesen.

Visualization: Morten Andersen, Hans Carl Hasselbalch, Johnny T. Ottesen.

Writing – original draft: Morten Andersen, Hans Carl Hasselbalch, Johnny T. Ottesen.

Writing – review & editing: Morten Andersen, Zamra Sajid, Rasmus K. Pedersen, Johanne Gudmand-Hoeyer, Christina Ellervik, Vibe Skov, Lasse Kjær, Niels Pallisgaard, Torben A. Kruse, Mads Thomassen, Jesper Troelsen, Hans Carl Hasselbalch, Johnny T. Ottesen.

References

1. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006; 355 (23): 2452–2466. https://doi.org/10.1056/NEJMra063728 PMID: 17151367

2. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005; 23: 2224–2232. https://doi.org/10.1200/JCO.2005.07.062 PMID: 15710945

3. Kristinsson SY, Landgren O, Samuelsson J Björkholm M, Goldin LR. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010; 95(7): 1216–1220. https://doi.org/10.3324/haematol.2009.020412 PMID: 20053870

4. Hasselbalch HC, Bjørn ME. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediators Inflamm. 2015: 102476. https://doi.org/10.1155/2015/102476 PMID: 26604428
5. Frederiksen H, Farkas DK, Christiansen CF, Hasselbalch HC, Sørensen HT. Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study. Blood. 2011; 118(25): 6515–6520. https://doi.org/10.1182/blood-2011-04-348755 PMID: 22039256

6. Frederiksen H, Farkas DK, Christiansen CF, Larsen TS, Hasselbalch HC, Stentoft J, et al. Survival of patients with chronic myeloproliferative neoplasms and new primary cancers: a population-based cohort study. Lancet Haematol. 2015; 2(7): e289–296. https://doi.org/10.1016/S2352-3026(15)00092-7 PMID: 26688384

7. Pettersson H, Knutsen H, Holmberg E, Andreasson B. Increased incidence of another cancer in myeloproliferative neoplasms patients at the time of diagnosis. Eur J Haematol. 2015; 94(2): 152–156. https://doi.org/10.1111/ejh.12410 PMID: 25039361

8. Enblom A, Lindskog E, Hasselbalch HC, Hersby D, Bak M, Tetu J, et al. High rate of abnormal blood values and vascular complications before diagnosis of myeloproliferative neoplasms. Eur J Intern Med. 2015; 26(5): 344–347. https://doi.org/10.1016/j.ejim.2015.03.009 PMID: 25863408

9. Sørensen AL, Hasselbalch HC. Antecedent cardiovascular disease and autoimmunity in Philadelphia-negative chronic myeloproliferative neoplasms. Leuk Res. 2016; 41: 27–35. https://doi.org/10.1016/j. leukres.2015.11.017 PMID: 26718091

10. Bjorkholm M, Derolf AR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011; 29(17): 2410–2415. https://doi.org/10.1200/JCO.2011.34.7542 PMID: 21537037

11. James C, Ugo V, Le Couédic J-P, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434: 1144–1148. https://doi.org/10.1038/nature03546 PMID: 15793561

12. Nangalia J, Massie CE, Baxter EJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365(9464): 1054–1061. https://doi.org/10.1056/NEJMoa0512542 PMID: 15858167

13. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Activating mutation in the tyrosine kinase JAK2 in polycythaemia vera, essential thrombocythaemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005; 7(4): 387–397. https://doi.org/10.1016/j.ccr.2005.03.023 PMID: 15837627

14. Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014; 123(24): 3714–3719. https://doi.org/10.1182/blood-2014-03-508865 PMID: 24786775

15. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369(25): 2379–2390. https://doi.org/10.1056/NEJMoa1311347 PMID: 24325356

16. Barosi G, Rosti V, Bonetti E, Campanelli R, Carolei A, Catarsi P, et al. Evidence that Prefibrotic Myelofibrosis Is Aligned along a Clinical and Biological Continuum Featuring Primary Myelofibrosis. PLoS One. 2012; 7(4): e35631. https://doi.org/10.1371/journal.pone.0035631 PMID: 22536419

17. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1): 57–70. PMID: 10647931
25. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation associated cancer. Nature. 2004; 431(7007): 461–466. https://doi.org/10.1038/nature02924 PMID: 15329734

26. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005; 5(10): 749–759. https://doi.org/10.1038/nri1703 PMID: 16175180

27. Mantovani A, Garlanda C, Allavena P. Molecular pathways and targets in cancer-related inflammation. Ann Med. 2010; 42(3): 161–170. https://doi.org/10.3109/07853890903405753 PMID: 20384432

28. Pittet MJ, Swirski FK. Monocytes link atherosclerosis and cancer. Eur J Immunol. 2011. 41(9): 2519–2522. https://doi.org/10.1002/eji.2011141727 PMID: 21952809

29. Hasselbalch HC. Chronic inflammation as a promoter of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013; 37(2): 214–220. https://doi.org/10.1016/j.leukres.2012.10.020 PMID: 23174192

30. Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012; 119: 3219–3225. https://doi.org/10.1182/blood-2011-11-394775 PMID: 22318201

31. Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013; 24(2): 133–145. https://doi.org/10.1016/j.cytogfr.2013.01.004 PMID: 23415024

32. Hasselbalch HC. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis? Leuk Res. 2014; 38(2): 263–266. https://doi.org/10.1016/j.leukres.2013.07.002 PMID: 23932394

33. Hermouet S, Vilaine M. The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasms, and impaired defense against infection? Haematologica. 2011; 96(11): 1575–1579. https://doi.org/10.3324/haematol.2011.055392 PMID: 22058280

34. Hermouet S, Hasselbalch HC, Čokić V. Mediators of Inflammation in Myeloproliferative Neoplasms: State of the Art. Mediators Inflamm. 2015; 2015/145293. https://doi.org/10.1155/2015/964613 PMID: 26681841

35. Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediators Inflamm. 2015; 145293. https://doi.org/10.1155/2015/145293 PMID: 26538820

36. Desterke C, Martinaud C, Ruzehaji N, Le Bousse-Kerdilès MC. Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators Inflamm. 2015; 415024. https://doi.org/10.1155/2015/415024 PMID: 26640324

37. Čokić VP, Mitrović-Ajtić O, Beleslin-Čokić BB, Marković D, Buač M, Diklić M, et al. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms. Mediators Inflamm. 2015; 453020. https://doi.org/10.1155/2015/453020 PMID: 26491227

38. Geyer HL, Dueck AC, Scherber RM, Mesa R. Impact of Inflammation on Myeloproliferative Neoplasm Symptom Development. Mediators Inflamm. 2015; 284706. https://doi.org/10.1155/2015/284706 PMID: 26538823

39. Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valpent P, Kiladjian JJ, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016; 30(5): 1018–1024. https://doi.org/10.1038/leu.2016.12 PMID: 26854026

40. Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005; 130: 709–715. https://doi.org/10.1111/j.1365-2457.2005.05674.x PMID: 16115126

41. Barbui T, Carobbio A, Finazzi G, Vannucchi AM, Barosi G, Antonioli E et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica. 2011; 96: 315–318. https://doi.org/10.3324/haematol.2010.031070 PMID: 21173097

42. Barbui T, Carobbio A, Finazzi G, Guglielmelli P, Salmoiraghi S, Rosti V et al., Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis. Leukemia. 2013; 27(10): 2084–6. https://doi.org/10.1038/leu.2013.207 PMID: 23826261

43. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010; 363: 1117–1127. https://doi.org/10.1056/NEJMoa1002028 PMID: 20843246
44. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 29. 2011; 1356–1363. https://doi.org/10.1200/JCO.2010.32.9490 PMID: 21300928

45. Vaidya R, Gangat N, Jimma T, Finke CM, Lasho TL, Pardanani A, et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol. 2012; 87(11): 1003–5. https://doi.org/10.1002/ajh.23295 PMID: 22965887

46. Pourcelot E, Trocmé C, Mondet J, Bailly S, Toussaint B, Mossu P. Cytokine profiles in polycythemia vera and essential thrombocytopenia patients: Clinical implications. Experimental Hematol. 2014; 42: 360–368.

47. Christensen AS, Møller JB, Hasselsbalch HC. Chronic kidney disease in patients with the Philadelphia-negative chronic myeloproliferative neoplasms. Leuk Res. 2014; 38(4): 490–495. https://doi.org/10.1016/j.leukres.2014.01.014 PMID: 24630365

48. Bak M, Sørensen TL, Meulengracht Flachs E, Zwisler AD, Juel K, Frederiksen H, et al: Age-Related Macular Degeneration in Patients with Chronic Myeloproliferative Neoplasms: A Nationwide Population-Based Cohort Study. JAMA Ophthalmol. 2017; 135(8):835–843. https://doi.org/10.1001/jamaophthalmol.2017.1101 PMID: 28655032

49. Hasselsbalch HC. Smoking as a contributing factor for development of polycythemia vera and related neoplasms. Leuk Res. 2015; 015 Sep 9.

50. Lindholm Sørensen A, Hasselsbalch HC. Smoking and Philadelphia-negative chronic myeloproliferative neoplasms. Eur J Haematol. 2016; 97(1): 63–69. https://doi.org/10.1111/ejh.12684 PMID: 26384085

51. Andersen CL, Bjern ME, McMullen MF, Harrison C, Samuelsson J, Ejerblad E et al. Circulating YKL-40 in patients with essential thrombocytopenia and polycythemia vera treated with the novel histone deacetylase inhibitor vorinostat. Leuk Res. 2014; 38(7): 816–821. https://doi.org/10.1016/j.leukres.2014.04.002 PMID: 24936761

52. Bjern ME, Andersen CL, Jensen MK, Hasselsbalch HC. Circulating YKL-40 in myelofibrosis a potential novel biomarker of disease activity and the inflammatory state. Eur J Haematol. 2014; 93(3): 224–228. https://doi.org/10.1111/ejh.12332 PMID: 24689875

53. Bjern ME, Hasselsbalch HC. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediators Inflamm. 2015; 648090. https://doi.org/10.1155/2015/648090 PMID: 26538833

54. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S, et al: TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011; 118: 6392–6398. https://doi.org/10.1182/blood-2011-04-348144 PMID: 21860020

55. Lu M, Xia L, Liu YC, Hochman T et al: Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and narrow microenvironmental cells. Blood. 2015; 126: 972–982. https://doi.org/10.1182/blood-2014-12-618595 PMID: 26022338

56. Kleppe M, Kwak M, Koppiak P, Riester M, Keller M, Bastian L et al: JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015; 5: 316–331. https://doi.org/10.1158/2159-8290.CD-14-0736 PMID: 25572172

57. Kaufmann KB, Grunder A, Hadlich T, Wehrle J, Gothwal M, Bogeska R, et al: A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med. 2012; 209: 35–50. https://doi.org/10.1084/jem.20110540 PMID: 22231305

58. Jutzi JS, Bogeska R, Nikoloski G, Schmid CA, Seeger TS, Stegelmann F et al: MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med. 2013; 210: 1003–1019. https://doi.org/10.1084/jem.20120521 PMID: 23989569

59. Jutzi JS, Pahl HL. The hen or the egg: inflammatory aspects of murine MPN models. Mediators Inflamm. 2015; 2015:101987. https://doi.org/10.1155/2015/101987 PMID: 26534325

60. Wehrle J, Seeger TS, Schwemmers S, Pfeifer D, Bulashevskas A, Pahl HL. Transcription factor nuclear factor erythroid-2 mediates expression of the cytokine interleukin 8, a known predictor of inferior outcome in patients with myeloproliferative neoplasms. Haematologica. 2013; 98: 1073–1080. https://doi.org/10.3324/haematol.2012.071183 PMID: 23445878

61. Roelz R, Pilz I, Mutschler M, Pahl HL. Of mice and men: human RNA polymerase III promoter U6 is more efficient than its murine homologue for shRNA expression from a lentiviral vector in both human and murine progenitor cells. Exp Hematol. 2010; 38: 792–797. https://doi.org/10.1016/j.exphem.2010.05.005 PMID: 20988233

62. Zhang Y, Liu X, McHale C, Li R, Zhang L, Wu Y et al. Bone marrow injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS One. 2013; 8: e74974. https://doi.org/10.1371/journal.pone.0074974 PMID: 24040969
63. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al: Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015; 525: 389–393. https://doi.org/10.1038/nature15252 PMID: 26287468

64. Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, et al: Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis. Eur J Haematol. 2011; 87(1): 54–60. https://doi.org/10.1111/j.1600-0609.2011.01618.x PMID: 21447007

65. Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, et al: Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocytopenia, polycythemia vera and myelofibrosis. Leuk Lymphoma. 2013; 54(10): 2269–2273. https://doi.org/10.3109/10428194.2013.764417 PMID: 23302045

66. Skov V, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, et al: Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocytopenia over polycythemia vera to myelofibrosis. Exp. Hematol. 2012; 40(9): 771–780. https://doi.org/10.1016/j.exphem.2012.05.011 PMID: 22659388

67. Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012; 36(11): 1387–1392. https://doi.org/10.1016/j.leukres.2012.07.009 PMID: 22877729

68. Hasselbalch HC, Thomassen M, Riley CH, Kjaer L, Larsen TS, Jensen MK, et al. Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression. PLoS One. 2014; 14; 9(11):e112786. https://doi.org/10.1371/journal.pone.0112786 PMID: 25397683

69. Skov V, Burton M, Thomassen M, Larsen TS, Riley CH, Madelung AB et al. A 7-Gene Signature Depicts The Biochemical Profile of Early Prefibrotic Myelofibrosis. Plos One. 2016; 11(8):e0161570. https://doi.org/10.1371/journal.pone.0161570 PMID: 27579896

70. Ciaffoni F, Cassella E, Varricchio L, Massa M, Barosi G, Migliaccio AR. Activation of non-canonical TGF-β1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis. Blood Cells Mol Dis. 2015; 54(3): 234–41. https://doi.org/10.1016/j.bcmd.2014.12.005 PMID: 25703685

71. Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Stratén PT, et al. Increase in circulating CD4(+) CD25(+) Foxp3(+) T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-alpha. Blood. 2011; 118(8): 2170–2173. https://doi.org/10.1182/blood-2011-03-340992 PMID: 21708889

72. Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Svane IM, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol. 2015; 94(3): 227–234. https://doi.org/10.1111/ejh.12420 PMID: 25082025

73. Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjaer L, et al: Interferon-alpha induces marked alterations in circulating regulatory T cells, NK cell subsets and dendritic cells in patients with JAK2-positive essential thrombocytopenia and polycythemia vera. Eur J Haematol. 2016; 97(1): 83–92. https://doi.org/10.1111/ejh.12687 PMID: 25397683

74. Barosi G. An immune dysregulation in MPN. Curr Hematol Malig Rep. 2014; 9(4): 331–339. https://doi.org/10.1007/s11899-014-0227-0 PMID: 25139710

75. Tittmarsh GJ, McMullin MF, McShane CM, Clarke M, Engels EA, Anderson LA, et al: Community-acquired infections and their association with myeloid malignancies. Cancer Epidemiol. 2014; 38(1): 56–61. https://doi.org/10.1016/j.canep.2013.10.009 PMID: 24275260

76. Nielsen C, Birgins HS, Nordestgaard BG, Kjaer L, Bojesen SE. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica. 2011; 96(3): 450–453. https://doi.org/10.3324/haematol.2010.031919 PMID: 21160067

77. Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF, Birgins HS. JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate. Haematologica. 2014; 99(9): 1448–1455. https://doi.org/10.3324/haematol.2014.107631 PMID: 24907396

78. Haeno H, Levine RL, Gilliland DG, Michor F. A progenitor cell origin of myeloid malignancies. Proc Natl Acad Sci U S A. 2009; 106(39): 16616–16621. https://doi.org/10.1073/pnas.0908107106 PMID: 19805346

79. Attolini CS, Cheng YK, Beroukhim R, Getz G, Abdel-Wahab O, Levine RL, et al. A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc Natl Acad Sci U S A. 2010; 107(41): 17604–17609. https://doi.org/10.1073/pnas.1009117107 PMID: 20864632
80. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nature Reviews Cancer. 2004; 4: 197–205. https://doi.org/10.1038/nrc1295 PMID: 14993901

81. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL. Dynamics of chronic myeloid leukaemia. Nature. 2005; 435: 1267–1270. https://doi.org/10.1038/nature03669 PMID: 15988530

82. De Pillis LG, Radunskaya AE, Wiseman CL. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Research. 2005; 65(17): 7950–7958. https://doi.org/10.1158/0008-5472.CAN-05-0564 PMID: 16140967

83. Michor F. Mathematical models of cancer stem cells. J Clin Oncol. 2008; 26(17): 2854–2861. https://doi.org/10.1200/JCO.2007.15.2421 PMID: 18539964

84. Stiehl T, Marciniak-Czochra A. Characterization of stem cells using mathematical models of multistage cell lineages. Mathematical and Computer Modelling. 2011; 53(7–8): 1505–1517.

85. Stiehl T, Marciniak-Czochra A. Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics. Math Model Nat Phenom. 2012; 7(1): 166–202.

86. Gentry SN, Jackson TL. A mathematical model of cancer stem cell driven tumor initiation: implications of niche size and loss of homeostatic regulatory mechanisms. Plos One. 2013; 8(8): e71128. https://doi.org/10.1371/journal.pone.0071128 PMID: 23990931

87. Walenda T, Stiehl T, Braun H, Fröbel J, Ho AD, Schroder T, et al: Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis. PLoS Comput Biol. 2014; 10(4): e1003599. https://doi.org/10.1371/journal.pcbi.1003599 PMID: 24763223

88. Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell Division Patterns in Acute Myeloid Leukemia Stem-like Cells Determine Clinical Course: A Model to Predict Patient Survival. Cancer Research. 2015; 75(6): 940–994. https://doi.org/10.1158/0008-5472.CAN-14-2508 PMID: 25614516

89. Stiehl T, Lutz C, Marciniak-Czochra A. Emergence of heterogeneity in acute leukemias. Biology Direct. 2016; 11: 51. https://doi.org/10.1186/s13062-016-0154-1 PMID: 27733173

90. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports. 1979; 63: 1727–1733. PMID: 526911

91. Goldie JH, Coldman AJ. Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treatment Reports. 1983; 67: 923–931. PMID: 6627236

92. Dingli D, Michor F. Successful therapy must eradicate cancer stem cells. Stem Cells. 2006; 24(12): 2603–2610. https://doi.org/10.1634/stemcells.2006-0136 PMID: 16931779

93. De Pillis LG and Radunskaya A: The dynamics of an optimal controlled tumor model: a case study. Mathematical and computer modelling. 2003; 37: 1221–1244.

94. Saleem M, Agrawal T: Complex dynamics in a mathematical model of tumor growth with time delays in cell proliferation. International Journal of Scientific and Research Publications. 2012; 2(6): 1–7.

95. Nielsen KH, Pociot FM, Ottesen JT. Bifurcation Analysis of an Existing Mathematical Model Reveals Novel Treatment Strategies and Suggests Potential Cure for Type 1 Diabetes. Mathematical Medicine and Biology. 2014; 31(3): 205–225. https://doi.org/10.1093/imammb/dqt006 PMID: 23620354

96. Baker M, Denman-Johnson S, Brook BS, Gaywood I, Owen MR. Mathematical modelling of cytokine-mediated inflammation in rheumatoid arthritis. Mathematical Medicine and Biology. 2013. 30: 311–337. https://doi.org/10.1093/imammb/dqs026 PMID: 23002057

97. Herald MC. General Model of Inflammation. Bulletin of Mathematical Biology. 2010; 72: 765–779. https://doi.org/10.1007/s11538-009-9468-9 PMID: 19851812

98. Dunster JL, Byrne HM, King JR. The Resolution of Inflammation: A Mathematical Model of Neutrophil and Macrophage Interactions. Bull Math Biol. 2014; 76: 1953–1980. https://doi.org/10.1007/s11538-014-9987-9 PMID: 25053556

99. Jacquez JA, Simon CP. Qualitative Theory of Compartmental Systems. SIAM Review. 1993; 35(1): 43–79.

100. Michor F, Iwasa Y, Nowak MA. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. Proc Natl Acad Sci USA. 2006; 103: 14931–14934. https://doi.org/10.1073/pnas.0607060103 PMID: 17001000

101. Jackson AL, Loeb LA. The mutation rate and cancer. Genetics. 1998; 148: 1483–1490. PMID: 9560368

102. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17: 1195–1214. https://doi.org/10.1096/fj.02-0752rev PMID: 12832285

103. Ferguson LR. Chronic inflammation and mutagenesis. Mutat Res. 2010; 690: 3–11. https://doi.org/10.1016/j.mrfmm.2010.03.007 PMID: 20223251
104. Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations in Vivo. Plos Genet. 2015; 11(2):e100490.

105. King KY, Goodell MA. Inflammatory modulation of hematopoietic stem cells: viewing the hematopoietic stem cell as a foundation for the immune response. Nat Rev Immunol. 2014; 11(10): 685–692.

106. Rockey DC, Bell PD, Hill JA. Fibrosis—A Common Pathway to Organ Injury and Fibrosis. N Engl J Med. 2015; 372: 1138–1149. https://doi.org/10.1056/NEJMra1300575 PMID: 25785971

107. Dvorak HF. Tumors: wounds that do not heal, Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986; 315(26): 1650–1659. https://doi.org/10.1056/NEJM198612253152603 PMID: 25785971

108. Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunology Research. 2015; 3(1): 1–11. https://doi.org/10.1158/2326-6066.CIR-14-0209 PMID: 25658067

109. Nielsen KH, Pociot FM, Ottesen JT. Bifurcation analysis of an existing mathematical model reveals novel treatment strategies and suggests potential cure for type 1 diabetes. Math Med Biol. 2014; 31(3): 205–225. https://doi.org/10.1093/imammb/dqt006 PMID: 23620354

110. Lo WC, Martin EW Jr, Hitchcock CL, Friedman A. Mathematical model of colitis-associated colon cancer. J Theor Biol. 2013; 317: 20–29. https://doi.org/10.1016/j.jtbi.2012.09.025 PMID: 22160036

111. Cross NC. Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematol Am Soc Hematol Educ Program. 2011; 208–214. https://doi.org/10.1182/asheducation-2011.1.208 PMID: 22160036

112. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al: Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015; 6: 6691. https://doi.org/10.1038/ncomms7691 PMID: 25849990

113. Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet. 2008; 40(8): 955–962. https://doi.org/10.1038/ng.175 PMID: 18587394

114. Fergusson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, et al: Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population. Mutat Res. 2010; 690(1–2): 108–115. https://doi.org/10.1016/j.mrfmmm.2010.01.017 PMID: 20109474

115. Martyre MC, Romquin N, Le Bousse-Kerdiles MC, Chevillard S, Benyahia B, Dupriez B, et al. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis. Br J Haematol. 1994; 88(1): 9–16. PMID: 7803262

116. Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000; 27: 342(17): 1255–1265. https://doi.org/10.1056/NEJM200004273421706 PMID: 10781623

117. Takizawa H, Boettcher S, Manz MG. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood. 2012; 119(13): 2991–3002. https://doi.org/10.1182/blood-2011-12-380113 PMID: 22246037

118. Parihar A, Eubank TD, Dossett AL. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun. 2010; 2: 204–215. https://doi.org/10.1159/000296507 PMID: 20375558

119. Leblanc R, Peyruchaud O. Metastasis: new functional implications of platelets and megakaryocytes. Blood. 2016; 128(1): 24–31. https://doi.org/10.1182/blood-2016-01-636399 PMID: 27154188

120. Hasselbalch HC. The platelet-cancer loop in myeloproliferative cancer. Is thromboctemia an enhancer of cancer invasiveness and metastasis in essential thromboctemia, polycythemia vera
126. Hasselbalch HC. A new era for IFN-α in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Expert Rev Hematol. 2011; 4(6): 637–655. https://doi.org/10.1586/EHM.11.63 PMID: 22077528

127. Silver RT, Kiladjian J-J, Hasselbalch HC. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol. 2013; 6(1): 49–58. https://doi.org/10.1586/ehm.12.69 PMID: 23373780

128. Rank C, Bjerrum O, Larsen T, Kjær L, de Stricker K, Riley CH, et al: Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2015; 1–7.

129. Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016; 30(4): 776–781. https://doi.org/10.1038/leu.2015.326 PMID: 26601783

130. Hasselbalch HC. Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol. 2014; 7(2): 203–216. https://doi.org/10.1586/17474086.2013.876356 PMID: 24524202