Efficient Post-Quantum TLS Handshakes using Identity-Based Key Exchange from Lattices

Utsav Banerjee and Anantha P. Chandrakasan
Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—Identity-Based Encryption (IBE) is considered an alternative to traditional certificate-based public key cryptography to reduce communication overheads in wireless sensor networks. In this work, we build on the well-known lattice-based DLP-IBE scheme to construct an ID-based certificate-less authenticated key exchange for post-quantum Transport Layer Security (TLS) handshakes. We also propose concrete parameters for the underlying lattice computations and provide detailed implementation results. Finally, we compare the combined computation and communication cost of our ID-based handshake with the traditional certificate-based handshake, both using lattice-based algorithms at similar post-quantum security levels, and show that our ID-based handshake is more energy-efficient, thus highlighting the advantage of ID-based key exchange for post-quantum TLS.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of electronic devices connected together and exchanging confidential data, and public key cryptography (PKC) is widely used to secure these communication channels. Traditional PKC uses key exchange, digital signatures and digital certificates to perform mutual authentication and generate shared encryption keys. However, using certificates pose significant storage and communication overheads [1]. While it is possible to cache certificates locally if each sensor node communicates only with a fixed small set of other nodes, this method quickly becomes impractical as the network grows larger and more nodes talk to each other. Furthermore, addition of new nodes in the network requires updating such local certificate caches, which can be a problem in wireless ad-hoc networks where nodes are allowed to join or leave the network on-the-fly. Identity-based encryption (IBE) has been proposed as a potential solution to such problems [1]. IBE uses unique digital identities (such as IP addresses) of sensor nodes to perform public key cryptography, thus avoiding the use of certificates altogether and reducing communication overheads. The most well-known IBE construction is based on bilinear pairings from elliptic curves [21]. However, pairing computations are an order of magnitude more expensive than traditional elliptic curve cryptography (ECC) [24], which makes the benefits of using pairing-based IBE only marginal.

With the advent of quantum computing, new public key cryptography algorithms are being developed which are secure against quantum attacks [2], and lattice-based cryptography has emerged as a prime candidate [3]. The DLP-IBE scheme [7] is the most efficient lattice-based IBE construction till date. In this work, we build on this IBE scheme to construct quantum-secure certificate-less authenticated key exchange which is integrated with the Transport Layer Security (TLS) protocol [13] to save communication costs by eliminating the need to exchange certificates. This is the first demonstration of post-quantum ID-based certificate-less TLS handshake. We also propose concrete parameters for the IBE scheme, and report measured performance as implemented on a custom chip with hardware accelerator for lattice cryptography [11]. We compare the combined computation and communication cost of our ID-based handshake with the traditional certificate-based handshake, both using lattice-based algorithms at similar security levels, and show that our ID-based handshake is more energy-efficient, thus demonstrating the superiority of ID-based TLS in the post-quantum scenario.

II. BACKGROUND

A. Lattice-based Cryptography using Ring-LWE

Throughout this paper, we will work over the polynomial ring \(\mathcal{R}_q = \mathbb{Z}_q[x]/(x^n + 1) \), where \(n \) is a power of 2 and \(q = 1 \mod 2n \) to allow fast polynomial multiplications in \(\mathcal{R}_q \) using the number theoretic transform (NTT) [4], [5]. Polynomials in \(\mathcal{R}_q \) are written using lower-case symbols, \(\ast \) denotes concatenation, \(\ast \) denotes polynomial multiplication and \(\lfloor \cdot \rfloor \) denotes coefficient-wise rounding of polynomials.

The ID-based schemes described in this paper are based on the Ring-LWE problem [3] which states that given \((a, a \ast s + e) \), it is difficult to determine secret polynomial \(s \in \mathcal{R}_q \), where polynomial \(a \in \mathcal{R}_q \) is sampled uniformly at random and the coefficients of error polynomial \(e \) are small samples from an error distribution \(\chi \).

B. Overview of Identity-Based Encryption

Identity-Based Encryption (IBE) is a type of public-key encryption where public keys of users are derived from their identities, e.g., e-mail, IP addresses, etc. Unlike traditional protocols where user public keys are obtained from certificates, IBE has the unique advantage of not requiring certificate storage and verification. A trusted third party, known as Private Key Generator (PKG), is required to generate user keys, analogous to Certificate Authority (CA) in the traditional setting. Given security parameter \(\lambda \), an IBE scheme consists of the following four probabilistic polynomial time algorithms:

- **Setup** \((1^\lambda) \rightarrow (mpk, msk) \): used to generate master public key \(mpk \) and master secret key \(msk \) of the PKG.
- **Extract** \((mpk, msk, ID) \rightarrow sk_{ID} \): used by the PKG to generate secret key \(sk_{ID} \) of an user with identity \(ID \).

978-1-7281-5089-5/20/$31.00 ©2020 IEEE
by constrained embedded devices such as low-power wireless
Section III-C, along with the choice of
scheme, and we describe our parameter selection in detail in
[7], and we exclude any discussion on them since only the
are sampled uniformly from
the DLP-IBE scheme are described in Algorithms 1 and 2.

The
Once the keys are set up and stored, the
steps are used for ID-based encryption and decryption.

A. Original CPA-Secure IBE Scheme

The first lattice-based IBE crypto-system was proposed by
Gentry et al. [6], but had ciphertexts of the order of millions
of bits, thus making it impractical. Several improvements have
been proposed over the past years, and the most efficient
goals were provided, otherwise the algorithm aborts. Here,
$c \leftarrow \frac{w}{\sqrt{q/2}}$ since the master public key and user secret key satisfy the
in
counterpart. The CCA-secure decryption actually performs
decryption followed by re-encryption to verify that the correct

B. Proposed CCA-Secure IBE Scheme

The original DLP-IBE scheme is only IND-CPA-secure,
that is, indistinguishable under chosen plaintext attacks, so
the same key-pair cannot be used for multiple encryptions.
This is not only a problem from a security perspective, but
also makes it inefficient because the Setup and Extract steps
need to be repeated every time an ID-based encryption is
performed. Here, we describe how to make this scheme IND-
CCA2-secure, that is, indistinguishable under adaptive chosen
ciphertext attacks, using the standard Fujisaki-Okamoto transform [10]. The IND-CCA2-secure scheme allows key reuse
so that keys can be cached long-term in the sensor nodes.

The key generation phase remains unchanged, and our
proposed IND-CCA2-secure IBE scheme is described in
Algorithms 3 and 4. The CCA-secure encryption determin-
istically derives the error polynomials r, e_1 and e_2 from
k instead of sampling them randomly like its CPA-secure
counterpart. The CCA-secure decryption actually performs
decryption followed by re-encryption to verify that the correct
inputs were provided, otherwise the algorithm aborts. Here,
F is a hash function which generates error polynomials from
k, and G is another hash function which computes a $hlen$-bit
digest of the polynomial k. Proof of IND-CCA2 security in
the random oracle model follows from [10].

\begin{algorithm}
\begin{algorithmic}
\State \textbf{function IND-CPA-Decrypt (skID, (u, v, c))}
\State $v \leftarrow 2^l \cdot v$
\State $w \leftarrow v - u \cdot skID \in \mathcal{R}_q$
\State $k \leftarrow \left\lfloor \frac{w}{\sqrt{q/2}} \right\rfloor$
\State \textbf{return} $m = c \oplus H'(k)$
\end{algorithmic}
\end{algorithm}

Fig. 1. Summary of steps in ID-based encryption scheme.

- Encrypt $(mpk, ID, m) \rightarrow c$: sender encrypts message
 m using mpk and receiver’s public key derived from
 their identity ID, and outputs ciphertext c.
- Decrypt $(skID, c) \rightarrow \{m, \bot\}$: receiver decrypts cipher-
text c using their secret key $skID$, and outputs either
 message m or $ot$ if the ciphertext is invalid.

These algorithms are summarized in Fig. 1. The IBE scheme
is correct if, for any message m and identity ID, the following
equality holds with overwhelming probability:

\begin{equation}
\text{Decrypt (skID, Encrypt (mpk, ID, m))} = m
\end{equation}

The Setup and Extract steps are performed very infrequently.
Once the keys are set up and stored, the Encrypt and Decrypt
steps are used for ID-based encryption and decryption.

III. LATTICE-BASED IBE AND IMPLEMENTATION

The first lattice-based IBE crypto-system was proposed by
Gentry et al. [6], but had ciphertexts of the order of millions
of bits, thus making it impractical. Several improvements have
been proposed over the past years, and the most efficient
construction till date is the DLP-IBE scheme [7] which
uses NTRU lattices for key generation and Ring-LWE for
encryption to achieve public keys of size $O(n)$ and ciphertexts
of size $O(2n)$, where n is the degree of polynomial ring \mathcal{R}_q.

A. Original CPA-Secure IBE Scheme

The Ring-LWE-based Encrypt and Decrypt functions of
the DLP-IBE scheme are described in Algorithms 1 and 2.
Details of the Setup and Extract algorithms are available in
[7], and we exclude any discussion on them since only the
Encrypt and Decrypt algorithms are expected to be executed
by constrained embedded devices such as low-power wireless
sensor nodes.

In the Encrypt step, coefficients of the error polynomials r,
e$_1$ and e_2 are sampled from a discrete probability distribution
with support $\{-1, 0, 1\}$, and the coefficients of polynomial
k are sampled uniformly from $\{0, 1\}$. The distribution pa-
terms directly affect security and efficiency of the IBE
scheme, and we describe our parameter selection in detail in
Section III-C, along with the choice of n and q. H is a hash
function which maps an arbitrary-length identity string ID to
a polynomial in \mathcal{R}_q, and H' is another hash function which
converts $k \in \mathcal{R}_q$ to a one-time pad of length mlen (equal to
the length of message m). The polynomial v is compressed by
dropping l least significant bits of each of its coefficients. This
causes negligible increase in decryption failure probability as
long as $l \leq \lfloor \log_2 q \rfloor - 3$, according to [7].

To verify that the decryption works correctly (with an
infinitesimally small probability of failure), we note:

\begin{equation}
w \approx r \cdot H(ID) + e_2 + \frac{q/2}{k} - (r \cdot mpk + e_1) \cdot skID
\end{equation}

since the master public key and user secret key satisfy the
property: $mpk \cdot skID + s = H(ID)$, where s is a short element
in \mathcal{R}_q [7]. Decryption is correct as long as all coefficients of
$r \cdot s + e_2 - e_1 \cdot skID$ lie in the range $(-q/4, q/4)$.

The original DLP-IBE scheme is only IND-CPA-secure,
that is, indistinguishable under chosen plaintext attacks, so
the same key-pair cannot be used for multiple encryptions.
This is not only a problem from a security perspective, but
also makes it inefficient because the Setup and Extract steps
need to be repeated every time an ID-based encryption is
performed. Here, we describe how to make this scheme IND-
CCA2-secure, that is, indistinguishable under adaptive chosen
ciphertext attacks, using the standard Fujisaki-Okamoto trans-
form [10]. The IND-CCA2-secure scheme allows key reuse
so that keys can be cached long-term in the sensor nodes.

The key generation phase remains unchanged, and our
proposed IND-CCA2-secure IBE scheme is described in
Algorithms 3 and 4. The CCA-secure encryption determin-
istically derives the error polynomials r, e_1 and e_2 from
k instead of sampling them randomly like its CPA-secure
counterpart. The CCA-secure decryption actually performs
decryption followed by re-encryption to verify that the correct
inputs were provided, otherwise the algorithm aborts. Here,
F is a hash function which generates error polynomials from
k, and G is another hash function which computes a $hlen$-bit
digest of the polynomial k. Proof of IND-CCA2 security in
the random oracle model follows from [10].
Algorithm 3 IND-CCA2-Secure ID-based Encryption
1: function IBE-CCA-ENCRYPT (mpk, ID, m)
2: \(k \leftarrow \{0,1\}^n \) (uniform)
3: \(r \leftarrow F(k || 0x00) \in \{-1,0,1\}^n \)
4: \(e_1 \leftarrow F(k || 0x01) \in \{-1,0,1\}^n \)
5: \(e_2 \leftarrow F(k || 0x02) \in \{-1,0,1\}^n \)
6: \(u \leftarrow r \ast mpk + e_1 \in \mathcal{R}_q \)
7: \(v \leftarrow r \ast H(ID) + e_2 + [q/2] \cdot k \in \mathcal{R}_q \)
8: \(u' \leftarrow \lfloor v/2^l \rfloor \)
9: return \((u,v,c=m \oplus H'(k),d=G(k))\)

Algorithm 4 IND-CCA2-Secure ID-based Decryption
1: function IBE-CCA-DECRYPT (sk_{ID}, (u,v,c,d))
2: \(v' \leftarrow 2^l \cdot v \)
3: \(w \leftarrow v - u \ast sk_{ID} \subseteq \mathcal{R}_q \)
4: \(k' \leftarrow \frac{w}{2^l} \)
5: \(r' \leftarrow F(k' || 0x00) \in \{-1,0,1\}^n \)
6: \(e_1' \leftarrow F(k' || 0x01) \in \{-1,0,1\}^n \)
7: \(e_2' \leftarrow F(k' || 0x02) \in \{-1,0,1\}^n \)
8: \(u' \leftarrow r' \ast mpk + e_1' \in \mathcal{R}_q \)
9: \(v' \leftarrow r' \ast H(ID) + e_2' + [q/2] \cdot k' \in \mathcal{R}_q \)
10: \(u' \leftarrow \lfloor v'/2^l \rfloor \)
11: if \(d = G(k') \) and \((u,v) = (u',v')\) then
12: return \(m = c \oplus H'(k')\)
13: else
14: return \(\perp\)

C. Selection of Efficient and Secure Parameters

Unlike classical public key cryptography, Ring-LWE parameter selection is a complex task because of the multitude of parameters involved and their varying effects on security, efficiency and correctness of the encryption scheme. Concrete parameters for the DLP-IBE scheme were proposed in [7], [8], [9] for 80-bit and 192-bit security level. In this work, we target 128-bit security level, where \(n = 1024\) and \(q \approx 2^{203}\), as recommended in [7] and [8]. To ensure that prime \(q\) allows efficient modular multiplication, we choose \(q = 8380417 = 2^{203} - 2^{11} + 1\) which supports fast Barrett reduction due to its special structure [11]. Also, \(q \equiv 1 \mod 2^n\), thus allowing fast polynomial multiplication using NTT.

We explore two options for choosing the error probability distribution \(\text{Pr}[x] \text{ for } x \in \{-1,0,1\}: (1)\) uniform distribution with \(\text{Pr}[x = -1] = \text{Pr}[x = 0] = \text{Pr}[x = 1] = 1/3\), and (2) trinary distribution with \(\text{Pr}[x = -1] = \text{Pr}[x = 1] = \rho/2\) and \(\text{Pr}[x = 0] = 1 - \rho\) for \(\rho \in \{1/2,1/4,1/8,\ldots\}\). We use the methodology proposed in [12] to analyze security of the IBE scheme for different error distributions with varying standard deviation (\(\sigma\)). In Table I, we show the security levels (in bits) provided by these distributions for our parameters \((n,q) = (1024, 8380417)\). Clearly, the uniform distribution provides highest security, while security provided by the trinary distribution decreases with smaller \(\rho\). Since sampling of error polynomials accounts for bulk of the computation cost of Ring-LWE [11], we also analyze the number of pseudo-random bits required to generate samples from these distributions as an indicator of their efficiency. For sampling a polynomial coefficient from distribution (1), we need to generate 2 uniformly random bits and use rejection sampling, that is, output \(-1, 0\) and 1 when these bits are \(00, 01\) and \(10\) respectively, and reject (and repeat the process with 2 more random bits) when they are \(11\). Then, the expected number of random bits to sample uniformly in \(\{-1,0,1\}\) is

\[
\frac{2 \cdot 3}{4} + \frac{4 \cdot 1}{4} + \frac{2}{4} + 6 \cdot \left(\frac{3}{4}\right)^2 \cdot \frac{3}{4} + 8 \cdot \left(\frac{3}{4}\right)^3 \cdot \frac{3}{4} + 10 \cdot \left(\frac{3}{4}\right)^4 \cdot \frac{3}{4} + \cdots
\]

and the total number of random bits required for sampling \(n\) such polynomial coefficients is \(8n/3\) on average. For sampling a polynomial coefficient from distribution (2) where \(1/\rho\) is a power of two, we need to generate \(\log_2(2/\rho)\) uniformly random bits and then output \(-1\) when these bits are all zeros, 1 when they are all ones, and 0 otherwise. Rejection sampling is not necessary in this case, and sampling \(n\) such polynomial coefficients always requires \(n \log_2(2/\rho)\) random bits. We choose the trinary distribution with \(\rho = 1/2\) because it requires the smallest number of random bits, as shown in Table I. There is slight reduction in security of the IBE scheme compared to using the uniform distribution, but it still remains well above our target 128-bit security level.

Finally, we summarize the sizes of the master public key and the ciphertext for both CPA-secure and CCA-secure IBE schemes with our proposed parameters:

IBE Scheme	Public Key Size (bytes)	Ciphertext Size (bytes)
IND-CPA-Secure	2,944	3,712
IND-CCA-Secure	2,944	3,744

where the ciphertext compression parameter is set to \(l = 18\), similar to [8]. The size of the public key is \(n \log_2 q\) bits, while the ciphertext is \(n (2 \log_2 q - l) + mlen\) and \(n (2 \log_2 q - l) + mlen + hlen\) bits long for the CPA-secure and CCA-secure IBE schemes respectively, with \(mlen = 1024\) bits and \(hlen = 256\) bits.

\(D.\) Implementation Results

We implement the IBE scheme on a custom chip [11] we have designed to accelerate lattice-based cryptography. It consists of a 32-bit RISC-V micro-processor (Dhrystone performance comparable to ARM Cortex-M0) with a programmable lattice-crypto accelerator which supports configurable parameters \((n,q)\), choice of several error distributions

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Distribution} & \rho & \sigma & \text{Security Level} & \text{Random Bits} \\
\hline
\text{Uniform} & - & \sqrt{2} \cdot 2731 & 143 & \approx 2731 \\
\text{Trinary} & 1/2 & 1/\sqrt{2} & 141 & 2048 \\
& 1/4 & 1/2 & 134 & 3072 \\
& 1/8 & 1/2/\sqrt{2} & 129 & 4096 \\
\hline
\end{array}
\]

TABLE I SECURITY OF IBE SCHEME WITH DIFFERENT ERROR DISTRIBUTIONS FOR PROPOSED PARAMETERS \((n,q) = (1024, 8380417)\)
TABLE II
PERFORMANCE AND ENERGY CONSUMPTION OF IBE IMPLEMENTATION

IBE Scheme	Encrypt Cycles	μJ	Decrypt Cycles	μJ
IND-CPA-Secure	95,369	10.15	111,652	11.91
IND-CCA2-Secure	106,980	11.45	194,171	20.75

with flexible standard deviations and uses a fast SHA-3 core for pseudo-random number generation and hashing.

For our NTT implementation, we choose the n-th and $2n$-th roots of unity modulo q to be $\omega = 10730$ and $\psi = 1306$ respectively. We instantiate the hash functions $H : \{0, 1\}^* \rightarrow \mathcal{R}_q$, $H' : \mathcal{R}_q \rightarrow \{0, 1\}^{\text{mlen}}$ and $F : \mathcal{R}_q \times \{0, 1\}^8 \rightarrow \mathcal{R}_q$ using the SHA-3-based extendable output function SHAKE-256, and $G : \mathcal{R}_q \rightarrow \{0, 1\}^{\text{hlen}}$ using SHA3-256. The cycle counts and energy consumption of ID-based encryption decryption, both CPA-secure and CCA-secure, are reported in Table II as measured on our chip operating at 1.1 V and 72 MHz. Our hardware-accelerated CCA-secure ID-based encryption and decryption take 1.5 ms and 2.7 ms respectively, which are fast enough for practical applications. Also, our implementation is constant-time and secure against timing and simple power analysis side-channel attacks [11].

IV. IDENTITY-BASED KEY EXCHANGE FOR TLS

The Transport Layer Security (TLS) protocol [13] is widely used to provide end-to-end network security for internet communications. It guarantees the three most important security attributes – authentication, confidentiality and integrity of the communications channel, even in the presence of malicious network infrastructure. TLS 1.2 is currently the most used version of TLS, and TLS 1.3 has recently been standardized with several improvements over its predecessor [13].

Fig. 2 shows the TLS 1.3 handshake with certificate-based mutually authenticated key exchange. The ClientHello and ServerHello messages contain respective shares of the key exchange, while the CertificateVerify messages contain signatures over the handshake transcript used for authentication. Each Certificate message contains the respective party’s public key signed by the certificate authority (CA) (assuming a single-level certification hierarchy). The CA public key, known to both parties, is used to verify these certificates. The public keys in these certificates are then used to verify the CertificateVerify signatures. Table III shows the key share, certificate public key and signature sizes for a standard pre-quantum TLS handshake which uses elliptic curve cryptography [14]. We assume that the NIST P-256 curve is used for both Elliptic Curve Diffie-Hellman Key Exchange (ECDHE) and Elliptic Curve Digital Signature Algorithm (ECDSA).

There have been some recent efforts in implementing post-quantum TLS [15], [16], [17], [18] and post-quantum certificates [19]. We focus on lattice-based cryptography not only due to its computational efficiency but also because it is the only family of post-quantum public key cryptography algorithms offering efficient ID-based encryption, key encapsulation and signature schemes. We consider Ring-LWE-based NewHope-512 [4] and qTesla-I [5] (similar security level as our IBE scheme) as the key encapsulation and signature schemes respectively for post-quantum TLS handshake. The corresponding key sizes are shown in Table III.

We refer to [14] for typical TLS message sizes and calculate the total communication costs for certificate-based pre-quantum and post-quantum TLS handshake as 1,820 bytes and 43,452 bytes respectively, that is, post-quantum TLS is 24× more expensive. This is the motivation for our ID-based certificate-less authenticated key exchange for post-quantum TLS, where each party stores only the master public key and certificates need not be exchanged. While ID-based TLS was proposed long ago in [20], where the core IBE scheme was based on bilinear pairings from elliptic curves, it was not particularly beneficial since keys were already small. Next, we describe our lattice-based construction of ID-based authenticated key exchange and show that ID-based TLS is a great candidate in the post-quantum scenario where signatures and public keys are significantly larger.

First, we convert the CCA-secure IBE scheme from Section III-B into a CCA-secure ID-based key encapsulation mechanism (KEM), based on the generic constructions from [21]. Key encapsulation consists of the following algorithms:

- **KeyGen**: $(1^\lambda) \rightarrow (pk, sk) :$ used to generate public key pk and secret key sk.

![Fig. 2. The TLS 1.3 handshake with mutual authentication and key exchange](Image)

TABLE III
KEY SHARE, PUBLIC KEY AND SIGNATURE SIZES FOR TLS HANDSHAKE

	Pre-Quantum	Post-Quantum
Client Key Share Size (bytes)	64	928
Server Key Share Size (bytes)	64	1,088
Cert. Public Key Size (bytes)	64	14,880
Signature Size (bytes)	64	2,592
In case of decryption failure, the ID-based Decapsulation is

Algorithm 5 IND-CCA2-Secure ID-based Encapsulation

1: function ID-KEM-CCA-ENCAPS (mpk,I D)
2: \(k \leftarrow \{0,1\}^n \) (uniform)
3: \(r \leftarrow F(k \| 0x000) \in \{\{-1,0,1\}^n\}
4: e_1 \leftarrow F(k \| 0x001) \in \{\{-1,0,1\}^n\}
5: e_2 \leftarrow F(k \| 0x002) \in \{\{-1,0,1\}^n\}
6: u \leftarrow r \ast mpk + e_1 \in \mathcal{R}_q
7: v \leftarrow r \ast H(ID) + e_2 + [q/2] \ast k \in \mathcal{R}_q
8: \(v \leftarrow \lfloor v/2 \rfloor \)
9: \(c \leftarrow H'(k) \)
10: return \(\mathcal{K} = G'(u \| v \| c \| k), (u,v,c) \)

Algorithm 6 IND-CCA2-Secure ID-based Decapsulation

1: function ID-KEM-CCA-DECAPS (sk_{ID},s,(u,v,c))
2: \(v \leftarrow 2^l \cdot v \)
3: \(w \leftarrow v - u \ast sk_{ID} \in \mathcal{R}_q \)
4: \(k' \leftarrow \frac{w}{q/2} \)
5: \(r' \leftarrow F(k' \| 0x000) \in \{\{-1,0,1\}^n\}
6: e'_1 \leftarrow F(k' \| 0x001) \in \{\{-1,0,1\}^n\}
7: e'_2 \leftarrow F(k' \| 0x002) \in \{\{-1,0,1\}^n\}
8: u' \leftarrow r' \ast mpk + e'_1 \in \mathcal{R}_q
9: \(v' \leftarrow v' \ast H(ID) + e'_2 + [q/2] \ast k' \in \mathcal{R}_q \)
10: \(v' \leftarrow \lfloor v'/2 \rfloor \)
11: if \((u,v,c) = (u',v',H'(k'))\) then
12: return \(\mathcal{K} = G'(u \| v \| c \| k') \)
13: else
14: return \(\mathcal{K} = G'(u \| v \| c \| s) \)

- **Encaps** \((pk) \rightarrow (\mathcal{K},c)\): encapsulates shared secret \(\mathcal{K} \) into ciphertext \(c \) using public key \(pk \).

- **Decaps** \((sk,c) \rightarrow \mathcal{K}\): decapsulates ciphertext \(c \) into shared secret \(\mathcal{K} \) using secret key \(sk \).

For ID-based KEM, the key generation step comprises the **Setup** and **Extract** algorithms described in Section III, along with a secret polynomial \(s \) sampled uniformly from \(\{0,1\}^n \). The ID-based **Encaps** and **Decaps** steps are shown in Algorithms 5 and 6 respectively. In case of decryption failure, \(\mathcal{K} \) is generated using \(s \) instead of \(k' \) in the decapsulation algorithm.

Size of the ciphertext \(c \) is 3,712 bytes, the shared secret \(\mathcal{K} \) is 256 bits long and the hash function \(G' : \{0,1\}^* \rightarrow \{0,1\}^{256} \) is instantiated using SHA3-256.

To construct our ID-based authenticated key exchange (AKE) scheme, we combine this CCA-secure ID-KEM with a CPA-secure KEM (in our case, NewHope-512 [4]), as proposed in the generic ID-AKE construction in [22]. Our ID-AKE protocol is shown in Fig. 3(a) and proof of security in the standard Canetti-Krawczyk model follows from [22]. We profiled our ID-AKE on the same platform mentioned in Section III-D, and our hardware-accelerated implementation takes 9.25 ms and consumes 57.43 μJ energy at 1.1 V and 72 MHz. The corresponding ID-based TLS handshake is shown in Fig. 3(b). Since the client and the server are respectively the initiator and the responder in our protocol, the key shares in **ClientHello** and **ServerHello** are \((pk,c_1)\) and \((c_2)\) respectively, and the corresponding shared secret is \(ss \). Since the ID-KEM is used for authentication, the **CertificateRequest**, **Certificate** and **CertificateVerify** messages can be omitted altogether. The total communication cost of our proposed ID-based certificate-less post-quantum TLS handshake is 9,731 bytes, which is 4.5\times smaller than certificate-based post-quantum TLS handshake at similar security level.

We compare the total client-side energy consumption (computation and communication) for pre-quantum and post-quantum TLS 1.3 handshakes, both traditional certificate-based and certificate-less ID-based. Since public key cryptography accounts for 99% of TLS handshake computations [23], we consider the total handshake compute energy to be equal to that of the AKE protocol. To better understand the impact of communication cost reduction in ID-based TLS, we consider only hardware-accelerated cryptography computations since most embedded micro-controllers have dedicated hardware for standard cryptographic primitives. For certificate-based pre-quantum TLS with ECDHE and ECDSA, the compute energy is obtained from [23]. For ID-based pre-quantum TLS with ECDHE and elliptic curve pairing-based ID-KEM [21], the compute costs are from [23] and [24]. For certificate-based post-quantum TLS with NewHope-512-CPA-KEM and qTesla-I, we refer to [11] for the computation costs. Finally,
In this work, we demonstrate quantum-secure ID-based
CCA-secure encryption, key encapsulation and authenticated
key exchange from lattices, based on the CPA-secure DLPL-
IBE scheme. We propose secure and efficient parameters and
also provide implementation results. We integrate this key
exchange from lattices, based on the CPA-secure DLP-
IBE scheme. We propose secure and efficient parameters and
also provide implementation results. We integrate this key
exchange from lattices, based on the CPA-secure DLP-
IBE scheme. We propose secure and efficient parameters and
also provide implementation results. We integrate this key
exchange from lattices, based on the CPA-secure DLP-
IBE scheme. We propose secure and efficient parameters and
also provide implementation results. These are compared with our ID-based post-quantum TLS handshake implemented on the same platform as [11]. For all communications, we consider a 1 Mbps Bluetooth Low Energy link and refer to the state-of-the-art transceiver in [25] for power numbers. All these results are summarized in Table IV, and Fig. 4 shows the total client-side handshake energy consumption. Clearly, pre-quantum TLS is dominated by computation costs even after cryptographic hardware ac-
celeration, while handshake communications dominate post-
quantum TLS with hardware-accelerated cryptography. In fact, ID-based TLS is $2.8 \times$ costlier than certificate-based TLS in the pre-quantum scenario since pairing computations are an order of magnitude more expensive than traditional ECC [24]. However, in the post-quantum case, ID-based TLS provides a clear advantage over using certificates, with $3.7 \times$ reduction in total handshake energy consumption.

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrate quantum-secure ID-based
CCA-secure encryption, key encapsulation and authenticated
key exchange from lattices, based on the CPA-secure DLPL-
IBE scheme. We propose secure and efficient parameters and
also provide implementation results. We integrate this key
exchange from the TLS 1.3 protocol to allow certificate-less authentication. Comparison of total post-quantum TLS hand-
shake costs (with hardware-accelerated cryptography) shows that our proposed ID-based scheme is $3.7 \times$ more energy-
efficient than traditional certificate-based authentication. Our CCA-secure IBE scheme can also be used to implement different post-quantum network security protocols for WSNs.

TABLE IV

TLS 1.3 Handshake Computation and Communication Costs on the Client Side (Certificate-Based and ID-Based)
Pre-Quantum (pairing-based)

cert

Handshake (bytes)
Comp. Time (ms)†
Comp. Energy (μJ)†
Comm. Time (ms)
Comm. Energy (μJ)

† All computation time and energy normalized at 20 MHz and 1.1 V.

ACKNOWLEDGMENT

The authors thank Texas Instruments for funding this work.

REFERENCES

[1] L. B. Oliveira et al., “Identity-Based Encryption for Sensor Networks,” in IEEE Int. Conf. on Pervasive Computing and Commun. Workshops (PerComW), pp. 290-294, Mar. 2007.
[2] G. Alagic et al., “Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process,” NIST Technical Report, no. 8240, Jan. 2019.
[3] C. Peikert, “A Decade of Lattice Cryptography,” in New Publishers – Foundations and Trends in Theoretical Computer Science, vol. 10, no. 4, pp. 283-424, Mar. 2016.
[4] T. Poppelmann et al., “NewHope – Algorithm Specifications and Supporting Documentation,” NIST Technical Report, 2019.
[5] N. Bindel et al., “qTESLA – Algorithm Specifications and Supporting Documentation,” NIST Technical Report, 2019.
[6] C. Gentry et al., “Trapdoors for Hard Lattices and New Cryptographic Constructions,” in ACM Symp. on Theory of Computing (STOC), pp. 197-206, May 2008.
[7] L. Ducas et al., “Efficient Identity-Based Encryption over NTRU Lattices,” in IACR ASIACRYPT, pp. 22-41, Dec. 2014.
[8] S. McCarty et al., “A Practical Implementation of Identity-Based Encryption Over NTRU Lattices,” in IMACC Int. Conf. on Cryptography and Coding (IMACC), pp. 227-246, Dec. 2017.
[9] T. Gunsely and T. Oder, “Towards Lightweight Identity-Based Encryption for the Post-Quantum-Secure Internet of Things,” in Int. Symp. on Quality Electronic Design (ISQED), pp. 319-324, Mar. 2017.
[10] D. Hofheinz et al., “A Modular Analysis of the Fujisaki-Okamoto Transformation,” in Theory of Crypto. (TCC), pp. 341-371, Nov. 2017.
[11] U. Banerjee, T. S. Ukyab and A. P. Chandrakasan, “Trapsdoors for Hard Lattices and New Cryptographic Constructions,” in ACM Symp. on Quality Electronic Design (ISQED), pp. 319-324, Mar. 2017.
[12] M. R. Albrecht et al., “On the Concrete Hardness of Learning with Errors,” in J. of Math. Crypto., vol. 9, no. 3, pp. 169-203, Oct. 2015.
[13] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” IETF RFC 8446, Aug. 2018.
[14] U. Banerjee et al., “eDTLS: Energy-Efficient Datagram Transport Layer Security for the Internet of Things,” in IEEE Global Commun. Conf. (GLOBECOM), pp. 1-6, Dec. 2017.
[15] J. W. Bos et al., “Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem,” in IEEE Symp. on Security and Privacy, pp. 553-570, May 2016.
[16] X. Gao et al., “Efficient Implementation of Password-Based Authenticated Key Exchange from RLWE and Post-Quantum TLS,” in IACR Cryptology ePrint Archive, Report 2017/192, Dec. 2017.
[17] E. Crockett et al., “Prototyping Post-Quantum and Hybrid Key Exchange and Authentication in TLS and SSH,” in NIST 2nd PQC Standardization Conference, Aug. 2019.
[18] J. Sepulveda et al., “Post-Quantum Enabled Cyber Physical Systems,” in IEEE Embedded Sys. Letters, vol. 11, no. 4, pp. 106-110, Dec. 2019.
[19] P. Kampanakis et al., “The Viableness of Post-Quantum X.509 Certifi-
cates,” in IACR Cryptology ePrint Archive, Report 2018/063, Jan. 2018.
[20] C. Peng et al., “Improved TLS Handshake Protocols using Identity-
Based Cryptography,” in Int. Symp. on Information Engineering and
Electronic Commerce, pp. 135-139, May 2009.
[21] K. Bentahar et al., “Generic Constructions of Identity-Based and Certificateless KEMs,” in Journal of Cryptology, vol. 21, no. 2, pp. 178-199, Apr. 2008.
[22] A. Fujioka et al., “Strongly SecureAuthenticated Key Exchange from Factoring, Codes, and Lattices,” in Int. Workshop on Public Key Cryptography (PKC), pp. 467-484, May 2012.
[23] U. Banerjee et al., “An Energy-Efficient Reconfigurable DTLS Crypto-
graphic Engine for End-to-End Security in IoT Applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 42-44, Feb. 2018.
[24] T. Unterluggauer and E. Wenger, “Efficient Pairings and ECC for Embedded Systems,” in Int. Workshop on Cryptographic Hardware and Embedded Systems (CHES), pp. 298-315, Sep. 2014.
[25] H. Liu et al., “An ADPLL-centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC), pp. 444-446, Feb. 2018.