α-tocopherol supplementation prevents lead acetate and hypoxia-induced hepatic dysfunction

Kusal K. Das, Jameel G. Jargar¹, Sikha Saha², Saeed M. Yendigeri³, Shashi Bala Singh⁴

ABSTRACT

Objective: Lead (Pb) is a long-known poison of environment and industrial origin. Its prolonged exposure affects cellular material and alters cellular genetics and produces oxidative damages. In this study, we investigated the exposure of chronic sustained hypoxia or lead acetate alone or in combination with or without supplementation of α-tocopherol on hepatic oxidative and nitrosative stress in rats.

Materials and Methods: The rats weighing 165 ± 5 g were exposed to chronic sustained hypoxia (10% oxygen) or lead acetate (25 mg/kg of body weight, intraperitoneally) alone or in combination with or without supplementation of α-tocopherol (10 mg/100 g b.wt, intramuscularly). The body weight of all the rats was recorded on the day 1 of the treatment and the day of sacrifice. Serum lipid profile was estimated by using a biochemical analyzer. Oxidant and enzymatic antioxidants status was evaluated by using spectrophotometer. Serum levels of hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by using ELISA technique. Histopathological assessments of hepatic tissue were also done.

Results: Exposure of both lead and hypoxia showed decreased body weight, altered serum lipid profile, oxidant and enzymatic antioxidants status, serum HIF-1α and VEGF concentrations. Simultaneous α-tocopherol supplementation showed beneficial effects to all these alterations. Histopathological observations also showed hepatic degenerative changes after lead or hypoxia exposure either alone or in combination, but remarkable improvement has been noticed after α-tocopherol supplementation.

Conclusion: Supplementation of α-tocopherol is beneficial to counter both lead acetate and hypoxia induced hepatic cytotoxicities possibly by reducing oxidative and nitrosative stress.

KEY WORDS: α-tocopherol, hypoxia, lead acetate, nitrosative stress, oxidative stress

Introduction

Lead (Pb) is one of the most widely scattered toxic metals in the world. Levels of lead vary widely throughout the world and depend upon the degree of industrial development, urbanization, and lifestyle factors.[1] Lead causes oxidative stress by inducing the generation of reactive oxygen species (ROS), reducing the antioxidant defense system and increasing susceptibility of cells to oxidative attack by altering membrane integrity and fatty acid composition.[2]

Hypoxia is a pathological condition, which causes systemic inflammation response syndrome, multiple organ dysfunctions, and multiple organ failure.[3] Its effects are usually mediated via the activation of hypoxia inducible factor 1 (HIF-1). Another key molecule within this hypoxia-induced response is the presence of nitric oxide (NO). It is synthesized by nitric oxide synthases (NOS) and its release can be stimulated as a result of inflammatory responses, sympathetic activation and drop in oxygen levels.[4]

In this study, we have shown the mechanisms of toxicities caused by heavy metal lead acetate emphasizing on the involvement of the hypoxia signaling pathway by metal-induced generation of ROS and oxidative stress generation. It has been observed that ROS are produced during the exposure of cells...
to metals that mimic hypoxia.14 The \(\alpha\)-tocopherol is a powerful major membrane bound antioxidant employed by the cell.5,9 The protective effect of Vitamin E is a result of the inhibition of free radical formation and activation of endonucleases. Hence, this study was designed to assess the effect of \(\alpha\)-tocopherol against hepatic oxidative and nitrosative stress in male albino rats exposed to lead acetate or chronic hypoxia or in both.

Materials and Methods

Animals

Adult (age 60–70 days) laboratory-bred male Wister rats, weighing \(165 \pm 5\) g fed with laboratory stock diet and water \textit{ad libitum}. They were acclimatized for 7 days to the laboratory conditions at 22°C–24°C and a 12 h light: Dark (circadian) cycle. The acclimatized rats were divided into eight groups of six rats each. Three rats were kept in each metabolic wire cage (60 cm × 30 cm × 20 cm). All the animals were taken care of as per the CPCSEA guidelines and the experimental protocol was duly approved by Institutional Animal Ethics Committee (Ref. No. AMC/GNL/128-A/2008-2009 Dated 4/08/2009).

Experimental Groups

Rats in Group I served as a normal control. Group II rats treated with lead acetate alone (2.5 mg/100 g b.wt, intraperitoneally \{i.p.\}) on alternate days until the 10th dose6 and Group III rats administered with \(\alpha\)-tocopherol alone (10 mg/100 g b.wt, intramuscularly \{i.m.\}).5,7 Group IV rats were given both lead acetate at a dose of 2.5 mg/100 g b.wt, i.p. on alternate days until the 10th dose and i.m. with \(\alpha\)-tocopherol at a dose of 10 mg/100 g b.wt for the same period. Group V rats were exposed to chronic normobaric hypoxic stimulation for the period of 21 days. Group VI rats were exposed to normobaric hypoxic stimulation and simultaneously treated with lead acetate (i.p.) until the tenth doses. Group VII rats were treated with \(\alpha\)-tocopherol during exposure with chronic normobaric hypoxic stimulation for the same period. Group VIII rats were exposed to normobaric hypoxic stimulation and simultaneously treated with lead acetate (i.p.) and \(\alpha\)-tocopherol (i.m.) for ten doses (21 days).

Exposure of Animals to Chronic Normobaric Hypoxia

Caged rats (4/cage) were put inside a 300-L acrylic chamber, which held a maximum of 4 cages (16 rats), and given inspired oxygen (10% \(O_2\) and 90% \(N_2\)) to induce normobaric hypoxia. The hypoxic environment was established with the inflow of a mixture of room air and nitrogen that was regulated by an oxygen analyzer (model 175518A, Gold Edition, Vacuum Med. Sanchung, Taipei). \(CO_2\) was absorbed by soda lime 27 granules, and excess humidity was removed by a desiccator. Temperature was maintained at 24–26°C. The chamber was opened twice a week for 1 h to clean the cages and replenish food and water. Rats were exposed to hypoxia for 21 days.

Gravimetry

The body weight of all the rats was recorded on the day 1 of the lead acetate treatment and the day of sacrifice in a single pan electronic balance (ATCO. Model D2RS02-W).

Biochemical Analysis

Serum lipid profile estimated by using a semi-automated biochemical analyzer (ERBA Star 21 plus) according to manufacturer’s protocol.8,5 Erythrocyte lipid peroxide (LPO) was measured as the production of malondialdehyde (MDA) by using the method of Okhawa \textit{et al.}9 Total erythrocyte glutathione (GSH) was estimated by the method of Beutler \textit{et al.}10 Superoxide dismutase (SOD) activity was determined according to the method of Mishra and Fridovich.11 Catalase (CAT) activity was determined by the method of Aebi12 glutathione peroxidase (GSH-Px) activity was determined using a modification of the method of Flohe and Gunzler.13 The GSH level was measured by the method of Moron \textit{et al.}14 LPO levels were estimated in terms of 2-thio-barbituric acid reactants, using, 1,1,3,3-tetramethoxypropane as standard by the method of Okhawa \textit{et al.}15

To determine nitrosative stress we estimated serum inducible-NOS (i-NOS) by ELISA kit (KT-23675, Kamiya Biomedical Company, USA),15,16 serum and liver NO by using Greiss Reagent spectrophotometrically.16 Serum vascular endothelial growth factor (VEGF) was measured using commercially available ELISA kit (KT-EK0540, Boster Biological Company, USA). Serum HIF-1\(z\) was estimated by using commercially available ELISA kit (KT-17920, Kamiya, Biomedical Company, USA).17

Histopathology of the Hepatic Tissues

For the evaluation of histopathology liver from each rat was stored in 10% neutral buffered formalin solution. Fixed tissues were cut and stained with hematoxylin and eosin.18 The preparations were evaluated under a photomicroscope and photo-graphed Olympus BH-2 (Olympus Optical Company Ltd., Tokyo, Japan) with Samsung Digital Color Camera, Model No. SDC-242, N.J 07094, USA.

Statistical Analysis

Results were presented as mean ± standard deviation values calculated for each group. Statistical analysis of the data was performed to determine the significance of inter-group differences; one-way analysis (ANOVA), followed by “post-hoc t-test” were done.

Results

Gravimetry

Table 1 shows lead acetate treated Group II and rats exposed to hypoxia Group V were found significant less final body weight gain when compared to normal control Group I. The percentage change gain of final body weight of rats exposed to hypoxia and treated with lead acetate simultaneous (Group VI) were found the least among all the groups. We also observed that \(\alpha\)-tocopherol supplementation improved b.wt gain percentage in lead acetate treated rats (Group IV), Group VII and Group VIII in comparison to Group II.

Serum Lipid Profile

In Table 2, Group II and Group IV showed a significant increase in serum low density lipoprotein (LDL)-cholesterol, very low density lipoprotein (VLDL)-cholesterol, total cholesterol, and triglyceride levels and a significant decrease in the serum high density lipoprotein (HDL)-cholesterol level and HDL/LDL ratio in comparison with Group I. However, the serum LDL-cholesterol level, VLDL-cholesterol, total cholesterol and triglyceride levels were significantly lower and HDL-cholesterol and HDL/LDL ratio were significantly
Table 1: Effect of α-tocopherol (10 mg/100 g of body weight, i.m.) supplementation on lead acetate (25 mg/kg b. wt., i.p.) and chronic normobaric hypoxia (10% oxygen) induced alteration of body weight changes in rats

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
Initial body weight (g)	167.86±5.95a	165.49±8.25a	165.17±7.22a	165.67±6.38a	167.42±8.21a	167.45±10.0a	163.17±8.38a	162.17±9.70a
Final body weight (g)	260.25±13.57a	260.83±5.50a	260.83±10.68a	260.50±5.05a	237.50±17.82a	187.50±10.37a	235.67±8.69a	202.33±6.12a
% Body weight gain	55.26±8.82a	13.18±4.23a	58.36±12.68a	24.21±5.95a	41.89±8.52a	12.42±8.00a	44.86±11.20a	25.14±8.30a

Each value is mean±SD of six observations in each group. Groups: I-control; II-lead; III-α-tocopherol; IV-lead + α-tocopherol; V-hypoxia; VI-lead+Hypoxia; VII-α-tocopherol+Hypoxia; VIII-lead + α-tocopherol+Hypoxia. Values with all the superscripts are statistically significant with each other (P<0.05). Post-hoc t-test analysis was used to test for differences among the means when ANOVA indicated a significant P<0.05. ANOVA=Analysis of variance, SD=Standard deviation, i.p.=Intraperitoneally, i.m.=Intramuscularly.

Table 2: Effect of α-tocopherol (10 mg/100 g of body weight, i.m.) supplementation on lead acetate (25 mg/kg b. wt., i.p.) and chronic normobaric hypoxia (10% oxygen) induced alteration of serum lipid profile in rats

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
TG (mg/dL)	34.92±3.29a	53.16±3.93a	34.25±1.72a	42.12±1.32a	34.39±2.13a	50.28±1.52a	35.35±3.31a	39.10±2.36a
LDL-C (mg/dL)	15.39±2.82a	32.20±4.35b	15.58±1.06a	23.47±3.43a	11.72±1.02a	24.83±2.18a	15.63±0.97a	22.91±1.91a
VLDL-C (mg/dL)	8.74±0.65a	14.23±0.78b	8.57±0.40a	11.79±0.91a	7.35±0.44d	11.73±1.45a	8.48±0.49a	11.68±0.72a
HDL-C (mg/dL)	12.52±0.92c	9.23±0.43a	12.97±1.64c	12.10±0.48c	14.80±0.66a	11.42±0.74a	12.78±0.88a	12.10±1.19a
HDL/Total cholesterol	0.83±0.12a	0.29±0.03a	0.83±0.12a	0.52±0.08c	1.27±0.10d	0.46±0.04a	0.81±0.08a	0.53±0.09a

Each value is mean±SD of six observations in each group. Groups: I-control; II-lead; III-α-tocopherol; IV-lead + α-tocopherol; V-hypoxia; VI-lead+Hypoxia; VII-α-tocopherol+Hypoxia; VIII-lead + α-tocopherol+Hypoxia. Values with all the superscripts are statistically significant with each other (P<0.05). Post-hoc t-test analysis was used to test for differences among the means when ANOVA indicated a significant P<0.05. TC=Total cholesterol, LDL-C=Low density lipoprotein cholesterol, VLDL-C=Very low density lipoprotein cholesterol, HDL-C=High density lipoprotein cholesterol, TG=Triglyceride, ANOVA=Analysis of variance, SD=Standard deviation, i.p.=Intraperitoneally, i.m.=Intramuscularly.

Table 3 shows elevated serum HIF-1α and VEGF concentrations in Group II rats as compared to Group I. Group IV showed a significant decrease of both serum HIF-1α and VEGF concentrations when compared with Group II rats. In Group IV rats showed significant increase of both serum HIF-1α and VEGF concentrations.
and VEGF concentrations as compared to both Group I control and Group II rats. Interestingly in case of Group VI rats did not show any significant difference in comparison to Group V rats although their values were significantly higher than Group II rats. A remarkable significant decrease of both serum HIF-1α and VEGF concentrations were noticed in case of Group VII rats when it compared with Group V rats. A significant reduction of both serum HIF-1α and VEGF concentrations were also noticed in case of Group VIII rats when it compared with either Group V or Group VI rats. But when Group VIII rats were compared with Group II both serum HIF-1α and VEGF concentrations were noticed in case of Group VII rats reduced when it compared with Group VIII rats.

Histopathology of the Hepatic Tissues

In Figure 1, Group I showed normal hepatic parenchymal tissue (shown), cords of hepatocytes (arrows) and blood containing sinusoid radiate from central vein to the peripheral portal triads. In Group II hepatic parenchymal tissue showed distorted lobular architecture (circle), Kupffer cell hyperplasia (arrows), dilatation and congestion of central vein. In Group III showed thickening of basement membrane (arrow) of the blood vessels and normal regenerating hepatocytes (circle). No obvious significant changes noticed. Group IV emphasized normal lobular architecture of hepatic tissue (shown) and hepatocytes (arrows). Group V showed the hepatocytes with swollen mild narrowing of the sinusoidal spaces (A, B) and foci of necrosis and inflammatory reaction (circle). Section study in Group Vl showed distorted lobular architecture of hepatic parenchyma (circle), foci of fatty change (fine arrows) and ballooning degeneration and necrosis of hepatocytes (A) in zone 3 (centrilobular) areas, moderate proliferation of portal area with fibrous tissue with infiltration of mixed acute and chronic inflammatory cells (B); variable widening of sinusoidal spaces; Kupffer cell hyperplasia; dilatation and congestion of central vein (block arrow). Group VII showed normal architecture of hepatic parenchyma (circle), little swollen hepatocytes with granular cytoplasm (block arrow), mild narrowing sinusoidal spaces (fine arrows). Hepatic tissue section of Group VIII showed hepatic tissue altered lobular architecture (circle), little swollen hepatocytes with vacuolated cytoplasm (block arrow), ballooning degeneration (fine arrow) and mitotic figure (M).

Discussion

Gravimetry

Our observation indicates that lead acetate has an adverse effect on total body weight gain of rats. It may be due to low

Table 3:

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
Erythrocyte MDA	226.95±3.29⁴	401.11±17.91⁶	237.05±12.01⁴	329.87±15.89⁶	343.06±10.86⁴	467.88±40.18⁴	304.88±17.23⁴	375.54±11.32⁴
Erythrocyte GSH	23.24±3.46⁴	9.53±1.94⁴	23.44±6.33⁶	14.83±1.66⁴	14.10±1.70⁴	13.50±2.48⁴	17.11±1.24⁴	16.9±1.67⁴
Hepatic lipid peroxide	4.13±0.74⁴	8.29±0.34⁴	4.08±0.62⁴	6.59±0.67⁴	6.19±0.30⁴	9.26±0.55⁴	5.16±0.39⁴	6.44±0.38⁴
Hepatic GSH	5.63±0.48⁴	8.29±0.34⁴	5.32±0.47⁴	4.22±0.43⁴	2.78±0.50⁴	4.86±0.57⁴	3.86±0.33⁴	
Hepatic CAT	55.89±4.08⁴	29.76±3.74⁴	54.95±3.16⁴	38.94±5.79⁴	42.73±1.79⁴	42.68±4.64⁴	53.89±2.90⁴	47.45±2.46⁴
Hepatic SOD (units/mg)	52.50±6.64⁴	34.97±3.92⁴	51.55±3.45⁴	44.94±3.52⁴	36.20±3.48⁴	32.92±3.38⁴	44.58±6.50⁴	39.71±1.44⁴
Hepatic GSH-Px (units/mg)	0.072±0.004	0.024±0.005⁴	0.072±0.008⁴	0.043±0.007⁴	0.034±0.003⁴	0.021±0.006⁴	0.043±0.006⁴	0.042±0.004⁴
Hepatic lipid peroxide	4.13±0.74⁴	8.29±0.34⁴	4.08±0.62⁴	6.59±0.67⁴	6.19±0.30⁴	9.26±0.55⁴	5.16±0.39⁴	6.44±0.38⁴

Each value is mean±SD of six observations in each group. Groups: I-control; II-lead; III-α-tocopherol; IV-lead + α-tocopherol; V-hypoxia; VI-lead+Hypoxia; VII-α-tocopherol+Hypoxia; VIII-α-tocopherol+hypoxia. Values with all the superscripts are statistically significant with each other (P<0.05). Post-hoc I-test analysis was used to test for differences among the means when ANOVA indicated a significant P<0.05. Unit for hepatic lipid peroxide: μm TBA reactants/g protein; Erythrocyte MDA=μmols/g Hb; Erythrocyte GSH=μmols/g Hb; Hepatic Glutathione=μmol/g tissue. GSH-Px=Glutathione peroxidase, CAT=Catalase, GSH=Glutathione, SOD=Superoxide dismutase, MDA=Malondialdehyde, ANOVA=Analysis of variance, SD=Standard deviation, i.p.=Intraperitoneally, i.m.=Intramuscularly.

Table 4:

Parameters	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
Serum i-NOS (nmol/mL)	6.76±1.11⁴	59.06±3.56⁴	7.56±0.57⁴	38.17±2.29⁴	60.75±2.36⁴	80.95±3.44⁴	40.50±2.41⁴	62.33±5.65⁴
Serum nitrite (μmol/L)	24.65±4.04⁴	103.87±20.60⁴	26.25±1.84⁴	62.58±6.66⁴	103.11±5.75⁴	114.96±5.32⁴	67.75±4.05⁴	72.33±7.20⁴
Liver nitrite (μmol/g of wet tissue)	26.92±4.13⁴	46.85±5.24⁴	26.28±2.63⁴	31.30±6.44⁴	63.48±11.30⁴	61.75±13.41⁴	40.95±5.11⁴	45.08±5.45⁴
Serum HIF-1α (pg/mL)	155.50±8.38⁴	350.33±22.38⁴	159.13±5.71⁴	204.7±2.54⁴	652.50±25.71⁴	675.08±8.25⁴	416±9.19⁴	594.66±31.79⁴
Serum VEGF (pg/mL)	301.33±6.55⁴	426±25.10⁴	327.50±17.55⁴	352.50±22.30⁴	612±35.50⁴	632.67±15.53⁴	501.83±14.97⁴	548.50±21.68⁴

Each value is mean±SD of six observations in each group. Groups: I-control; II-lead; III-α-tocopherol; IV-lead + α-tocopherol; V-hypoxia; VI-lead+Hypoxia; VII-α-tocopherol+Hypoxia; VIII-α-tocopherol+hypoxia. Values with all the superscripts are statistically significant with each other (P<0.05). Post-hoc I-test analysis was used to test for differences among the means when analysis of variance (ANOVA) indicated a significant P<0.05. i-NOS=Inducible nitric oxide synthase, HIF-1α=Hypoxia inducible factor-1α, VEGF=Vascular endothelial growth factor, SD=Standard deviation, i.m.=Intramuscularly, i.p.=Intraperitoneally.
Das, et al.: α-tocopherol on lead and hypoxia-induced hepatic oxidative and nitrosative stress

Figure 1: Hepatic sections of Group I to Group VIII rats: Group I: Hepatic tissue (shown) and hepatic cords (arrows) appeared normal. Group II: Distorted hepatic tissue architecture (circle) and Kupffer cell hyperplasia (arrows). Group III: Thick basement membrane (arrow) and normal regenerating hepatocytes (circle). Group IV: Normal hepatic tissue (shown) and hepatocytes (arrows). Group V: Hepatocytes with swollen mild narrowing sinusoidal spaces (A and B) and foci of necrosis with inflammatory reaction (circle). Group VI: Distorted hepatic parenchyma (circle), foci of fatty change (fine arrows), ballooning degeneration and necrosis of hepatocytes (a), chronic inflammatory cells (b), dilatation and congestion of central vein (block arrow). Group VII: Normal hepatic tissue (circle), little swollen hepatocytes with granular cytoplasm (block arrow), mild narrowing sinusoidal spaces (fine arrows). Group VIII: Hepatic tissue altered lobular architecture (circle), swollen hepatocytes with vacuolated cytoplasm (block arrow), ballooning degeneration (fine arrow), mitotic figure (M).

food consumption, hormonal imbalance and reduction in protein levels. Lead induced growth retardation is already reported. Lead (Pb) causes severe gastritis and malabsorption, which ultimately leads to less calorie consumption and depresses the body weight. Simultaneous treatment with α-tocopherol had cut down the percentage decrease in body weight.
Serum Lipid Profile

In this study, significant alteration observed in lipid profile, could be due to changes in the gene expression of hepatic enzymes like hydroxy-methylglutaryl-CoA reductase (HMG-CoA reductase). This in turn depresses LDL-receptor gene expression. Defects in the LDL-receptor interfere with cholesterol uptake from the blood stream, which in turn causes excess cholesterol synthesis in the liver and high levels of serum total cholesterol and LDL-cholesterol. A significant improvement of lipid profiles in lead acetate induced α-tocopherol supplemented rats in comparison to only lead acetate treated rats may be due to the presence of Vitamin E in all cellular membrane near cytochrome P450, which can sweep the free radicals formed there. α-Tocopherol could counteract lead-induced changes in HMG-CoA reductase activities to some extent and thereby improve the serum lipid profile. Decreased level of serum LDL and VLDL after hypoxia exposure to rats in our study may be due to hypoxia-induced elevation of low density lipoprotein receptor-related protein 1 (LRP1) expression through HIF-1α and that LRP1 over expression mediates hypoxia-induced VLDL-CE uptake by the hepatic and other cells.

Oxidant and Enzymatic Antioxidant Status

The present study reveals that treatment with lead acetate or exposed chronic sustained hypoxia increase lipid peroxidation by increasing MDA concentration in erythrocytes of rats. Increased erythrocyte MDA concentration of rats definitely accompanied by increased ROS formation. Decreased activities of hepatic SOD, CAT, and GSH-Px in lead acetate treated and/or hypoxic rats suggests an interaction between the accumulated free radicals and the active amino acids of these enzymes. During hepatotoxicity, these enzymes are structurally and functionally impaired by free radicals, resulting in liver damage. Different mechanisms could be involved in Pb-induced oxidative damage. Lead (Pb) interacts with negatively charged phospholipids in membranes and through the induction of changes in membrane physical properties could facilitate the propagation of lipid oxidation. Lead affects membrane-related processes such as the activity of membrane enzymes, endo- and exocytosis, transport of solutes across the bilayer, and signal transduction processes by causing lateral phase separation. Secondary injury from lead or hypoxia exposure may be also due to activation of Kupffer cells (as supported by our histopathological studies) and a cascade of events involving several types of hepatic cells and a large number of inflammatory and cytoxic mediators. It has been reported that α-tocopherol can be useful in preventing hepatocellular damage by inhibiting lipid peroxidation by free radicals generated by heavy metals. α-Tocopherol acting in conjugation with GSH-Px could directly reduce phospholipids hydroperoxides within the membrane and lipoproteins to inhibit lipid peroxidation induced by either lead acetate treatment or chronic sustained hypoxia.

In our study, α-tocopherol found to be effective to combat i-NOS activities and reduced serum and liver nitrite concentration by reducing excessive NO production in lead acetate treated or hypoxia exposed or lead acetate treated hypoxia exposed rats. Lead acetate or chronic sustained hypoxia produce liver and endothelial cellular oxidative stress through an increased rate of hydroxyl radical generation, which may lead to lysosomal, mitochondrial, and microsomal damage, resulting in organelle dysfunction. In addition to direct cellular oxidant injury, ROS and reactive nitrogen species may constitute signals regulating (i) protein function through reversible oxidation and/or nitrosation of protein sulfhydryls or (ii) gene expression, in the hepatic sinusoid. The mechanism by which antioxidant Vitamin E (α-tocopherol) works to counteract lead (Pb) or hypoxia-induced overproduction of NO by inducing i-NOS in endothelial or metabolically active tissues are shown in Figure 2. There is a relationship exists between NO production and regulation of VEGF gene expression. Our results from the present study on i-NOS activities in serum with serum and hepatic NO levels give indications of possibility of alteration of VEGF gene expression through HIF-1 transcription factors by lead acetate treatment alone or chronic hypoxia exposure alone or in combined exposure of both in male albino rats. Supplementation of α-tocopherol on modification of VEGF gene expression through i-NOS in either lead acetate induced or hypoxia exposed or both (lead acetated + hypoxia) treated rats may also be a possibility.

Serum Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor Concentrations

Hypoxia inducible factor-1α transcription factor expressed in chronic sustained hypoxic condition to adapt in hypoxic conditions by increase expressing VEGF gene or i-NOS gene in metabolically active tissues. The results from the present study show both lead acetate and chronic sustained hypoxia stimulates the production of HIF-1α transcription factor and VEGF gene expression in hepatic tissue, which is reflected by increased serum HIF-1α and VEGF levels. VEGF expression has also been known to be up regulated in the presence of heavy metal ions. Divalent metals such as cobalt and nickel have also been shown to stabilize HIF proteins and promote transcription of HIF-1α-mediated genes. VEGF over expression in our study due to lead exposure or chronic hypoxia exposure in rats is actually causes a protective measure against hypoxia and lead acetate induced cellular hypoxia. Role of α-tocopherol supplementation are found to be interesting to counteract excessive HIF-1α transcription factor expression, followed by VEGF gene expression. Their roles are mainly decrease ROS production and improve intracellular hypoxic status by stimulating heme biosynthesis and reduction of nitrite levels.

Histopathology of the Hepatic Tissues

Histological examination to evaluate the impact of lead acetate and hypoxia on hepatic tissues showed notable changes. Hepatic tissue hypoxia showed two types of cell death-necrosis or apoptosis, where the cells swell, plasma and nuclear membranes disrupt cellular lysis occurred, and there is an associated acute inflammatory response that in it may exacerbate the initial hypoxic injury response.

Conclusion

Both lead and hypoxia stimulate VEGF pathways for cellular adaptability. Excessive nitrite generates due to hyper activities of i-NOS or through HIF-1α either by lead acetate or hypoxia exposure, or simultaneous exposure of both heavy metal (Pb) and chronic hypoxia causes cytotoxicities by alteration of cell
metabolism. The supplementation of α-tocopherol was found beneficial to counteract both lead acetate and hypoxia-induced cytotoxicities by the generation of oxidative and nitrosative stress.

References

1. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profiles. In: Abadin H, Ashizawa A, Stevens YW, Llios F, Diamond G, Sage G, et al., editors. Toxicological Profile for Lead. Atlanta, GA: US Government Printing; 2007. p. 301-81.

2. Gautam P, Flora SJ. Oral supplementation of gossypin during lead exposure protects alteration in heme synthesis pathway and brain oxidative stress in rats. Nutrition 2010;26:563-70.

3. Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012;31:2448-60.

4. Chervona Y, Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 2012;53:1041-7.

5. Novotny JA, Fadel JG, Holstege DM, Furr HC, Clifford AJ. This kinetic, bioavailability, and metabolism study of RRR-α-tocopherol in healthy adults suggests lower intake requirements than previous estimates. J Nutr 2012;142:2105-11.

6. Arif M, Kabir Y, Hassan F, Waise TM, Mazumder ME, Rahman S. Increased copper and zinc levels in blood and 24-hour urine of lead-polluted workers in Bangladesh. J Pharmacol 2006;3:97-101.

7. Cancor N, Úek R, Atamer A, Dursun M, Turgut C, Gnelü E, et al. Protective effects of vitamin E, selenium and allopurinol against stress-induced ulcer formation in rats. Turk J Med Sci 2001;31:199-203.

8. Burtis CA, Ashwood E. Text Book of Clinical Chemistry. 3rd ed. Philadelphia, Pennsylvania, USA: WB Saunders Co.; 1999. p. 840-1.

9. Okhawa H, Ohishi N, Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acids. Anal Biochem 1979;85:351-4.

10. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:892-8.

11. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170-5.

12. Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. 3rd ed. Weinheim: Verlag Chemie; 1983. p. 273-86.

13. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984;105:114-21.

14. Moron MS, Delpero JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979;582:67-78.

15. Moncada S. Nitric oxide: Discovery and impact on clinical medicine. J R Soc Med 1998;91:164-9.

16. Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: A critical evaluation. Clin Chem 1995;41:892-6.

17. Gyöngyösi M, Hemetsberger R, Posa A, Charwat S, Pavo N, Petnehazy O, et al. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction. J Cardiovasc Transl Res 2010;3:114-21.

18. Culling CF, Ellison RT, Barr WT. Cellular Pathology Techniques. 4th ed. London: Butterworth and Co.; 1985. p. 600-50.

19. Allouche L, Hamadouche M, Touabli A. Effect of long-term exposure to low or moderate lead concentrations on growth, lipid profile and liver function in albino rats. Adv Biol Res 2011;5:339-47.

20. Liu CM, Ma JQ, Sun YZ. Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol 2011;49:3119-27.

21. Bruder ED, Raff H. Cardiac and plasma lipid profiles in response to acute hypoxia in neonatal and young adult rats. Lipids Health Dis 2010;9:3.

22. Das KK, Das SN, Dhundasi SA. Nickel, its adverse health effects and oxidative stress. Indian J Med Res 2008;128:412-25.

23. Khalaf AA, Moselhy WA, Abdel-Hamed MI. The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology 2012;33:280-9.

24. Gupta AD, Dhundasi SA, Dhara PC. Das KK. Influence of α-tocopherol on nickel induced alteration of serum lipid profile in male albino rats. Asian J Exp Biol 2006;1:14-8.

25. Baeuerle PA, Baltimore D. NF-kappa B: Ten years after. Cell 1996;87:13-20.

26. Wang D, Wang LH, Zhao Y, Lu YP, Zhu L. Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) in human liver. Free Radic Res 2012;46:629-36.

Cite this article as: Das KK, Jargar JG, Saha S, Yendigeri SM, Singh SB. α-tocopherol supplementation prevents lead acetate and hypoxia-induced hepatic dysfunction. Indian J Pharmacol 2015;47:285-91.

Source of Support: Defense Institute of Physiology and Allied Sciences, Delhi, DRDO, Ministry of Defense, Government of India. Conflict of Interest: No.