Insertion of Pex5p into the Peroxisomal Membrane Is Cargo Protein-dependent*

Received for publication, November 20, 2002, and in revised form, December 23, 2002 Published, JBC Papers in Press, December 26, 2002, DOI 10.1074/jbc.C200650200

Alexandra M. Gouveia‡§, Carla P. Guimarães‡§, Márcia E. Oliveira‡§, Clara Sá-Miranda‡§, and Jorge A. Azevedo†§

From the ‡Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal, §Instituto de Ciências Biomédicas Abel Salazar, Largo do Prof. Abel Salazar, 2, 4099-003 Porto, Portugal, and †Instituto de Genética Médica Jacinto Magalhães, Praça Pedro Nunes, 88, 4050-466 Porto, Portugal

It is now generally accepted that Pex5p, the receptor for most peroxisomal matrix proteins, cycles between the cytosol and the peroxisomal compartment. According to current models of peroxisomal biogenesis, this intracellular trafficking of Pex5p is coupled to the transport of newly synthesized peroxisomal proteins into the organelle matrix. However, direct evidence supporting this hypothesis was never provided. Here, using an in vitro peroxisomal import system, we show that insertion of Pex5p into the peroxisomal membrane requires the presence of cargo proteins. Strikingly the peroxisomal docking/translocation machinery is also able to catalyze the membrane insertion of a Pex5p truncated molecule lacking any known cargo-binding domain. These results suggest that the cytosol/peroxisomal cycle in which Pex5p is involved is directly or indirectly regulated by Pex5p itself and not by the peroxisomal docking/translocation machinery.

Peroxisomal matrix proteins are synthesized on free ribosomes and post-translationally imported into the organelle (for review, see Refs. 1 and 2). The vast majority of proteins destined to this compartment are recognized by Pex5p, the peroxisomal targeting signal 1 (PTS1) receptor (3–5). Structurally Pex5p can be divided into two domains. The first half of the protein has been shown to be involved in an intricate network of protein-protein interactions (6–10). This domain has been shown to be involved in an intricate network of protein-protein interactions (6–10). The peroxisomal targeting information of Pex5p resides in this domain (7). The C-terminal half of Pex5p is involved in binding the so-called PTS1 sequence, a degenerate tripeptide present at the C terminus of practically all peroxisomal matrix proteins (11–14). This constraint is difficult to reconcile with recent observations showing that Pex5p molecules lacking any known cargo-binding domain are specifically targeted to the peroxisome in vivo (7). Obviously several hypotheses can be forwarded to explain this phenomenon even in the light of the cycling receptor model. However, such a hypothesis will only be valid, and probably of utmost importance in understanding the mechanism of peroxisomal docking of Pex5p, when definite proof for a cargo-induced peroxisomal targeting of Pex5p is provided.

Recently we described a peroxisomal in vitro import system particularly suited to study Pex5p trafficking (19). In this work, using the same experimental approach, we present data strongly suggesting that insertion of Pex5p into the peroxisomal membrane is PTS1-dependent. Strikingly a truncated Pex5p molecule lacking any known cargo-binding domain is also a substrate for the machinery that drives insertion of Pex5p into the peroxisomal membrane. These results suggest that no crucial protein-protein interactions occur between the peroxisomal docking/translocation machinery (20–22) on one side and the cargo proteins or the Pex5p C-terminal receptor domain on the other. The implications of these observations on the mechanism regulating the docking/insertion of Pex5p into the peroxisomal membrane are discussed.

EXPERIMENTAL PROCEDURES
In vitro import experiments using rat liver PNS fractions were performed in import buffer (0.25 M sucrose, 50 mM KCl, 5 mM MOPS-KOH, pH 7.2, 3 mM MgCl2, 1 mM EDTA-NaOH, pH 7.2, 0.2% (w/v) lipid-free bovine serum albumin, and 20 μM methionine) exactly as described previously (19). The synthesis of 53S-labeled Pex5p (the large isoform) has already been described (19). cDNAs encoding ΔC1Pex5p and ΔC2Pex5p preceded by the T7 RNA polymerase promoter were obtained.

* This work was supported by Grants PRAXIS XXI/BD/20043/99 (to A. M. G. J.), SFRH/BD/1445200 (to C. P. G.), PRAXIS XXI/BD/21819/99 (to M. E. O.), and POCTI/BME/34648/99 from Fundação para a Ciência e Tecnologia, Portugal. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†To whom correspondence should be addressed: Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. Tel.: 351-226074900; Fax: 351-226099157; E-mail: jazevedo@ibmc.up.pt.

‡The abbreviations used are: PTS, peroxisomal targeting sequence; GST, glutathione S-transferase; PNS, rat liver postnuclear supernatant; TPRs, Pex5p domain (amino acid residues 312–639) comprising its tetra tripeptide repeats; MOPS, 4-morpholinepropanesulfonic acid.

This paper is available on line at http://www.jbc.org
by PCR amplification of pGEM-Pex5 (19) using the forward primer
5'-AGTCATGACCGGAGGACGGAGAAG-3' and the reverse primer
5'-CCGTCGCTTCATATATGTCGGGAGATA-3' (for ΔC1Pex5p)
or 5'-AGTCATGACGGCGGAGAAG-3' (for ΔC2Pex5p). These cDNA fragments were then subjected to in vitro transcription/translation as described previously (19).

A recombinant protein containing GST fused to amino acid residues 312–639 of Pex5p (GST-TPRs) was obtained as follows. Plasmid pGEM-Pex5p was subjected to PCR using the primers 5'-GCCGAGAA-
TTAGATGACGGCGGAGAAG-3' (for GST-SKL) and 5'-GGGTGCT-
AGTAGAGGCAGCACAGTACGCTACGAT-3' (for GST-LKS). The amplified fragment was inserted into the EcoRI and NolI sites of pGEX-5×1 plasmid (Amersham Biosciences). GST-TPRs and GST were expressed as described previously (19).

For the production of the fusion proteins GST-SKL and GST-LKS, the primers 5'-GATCCCCAATTCACCGGATTCTGATACG-3' (for GST-SKL) and 5'-GATCCCCAATTCACCGGATTCTGATACG-3' (for GST-LKS) were annealed. The DNA dimers were purified by non-denaturing PAGE, eluted from the gel, and ligated to pGEX-4T-3 (Amersham Biosciences) previously digested with the BamHI and NolI restriction enzymes. The fusion proteins were expressed and purified as described above. The peptides CRYHLKPQLQSKL (Pep-SKL) and CRYHLKPQLQSKL (Pep-LKS) were synthesized by Sigma Genosys.

RESULTS AND DISCUSSION

Insertion of Pex5p into the Peroxisomal Membrane Is PTS1-dependent—In a recent work, we described a cell-free in vitro import system to study Pex5p association with and release from the peroxisomal biogenesis (19). In this work, we have used this experimental system to address a crucial issue in the field of peroxisomal biogenesis: is the intracellular cycling of Pex5p coupled to the transport of PTS1-containing proteins across the peroxisomal membrane?

As an attempt to solve this question, we first tried to determine whether or not import of Pex5p into the peroxisome could be stimulated by supplementing the import reaction with a PTS1-containing recombinant protein, GST-SKL. The concentration of GST-SKL in the import assays was 8 µM, a value more than 100-fold the dissociation constant reported for the Pex5p-PTS1 complex (14). Considering that Pex5p is a low abundance protein in rat liver (0.008% of total liver protein; 25) and 2) peroxisomal proteins are not processed across the peroxisomal membrane (26), we reasoned that the second possibility should be tested.

If insertion of Pex5p into the peroxisomal membrane occurs only when the PTS1 receptor is in a complex with cargo proteins, then sequestration of these cargo proteins should inhibit the peroxisomal import of [35S]-labeled Pex5p. For this purpose a GST recombinant protein containing amino acid residues 312–639 of Pex5p was synthesized. This domain of Pex5p contains the PTS1 binding activity of Pex5p but lacks its peroxisomal targeting information (7, 10).

As shown in Fig. 2, when in vitro synthesized Pex5p was subjected to an import reaction in the presence of 0.17 µM GST-TPRs, no protease-resistant Pex5p can be detected (Fig. 2, A and B, lanes 6). Adding the same amount of GST to the import reaction has no effect on the import of Pex5p into the organelle (Fig. 2, lanes 3; see also Fig. 3B). When these import assays are performed in the presence of a GST fusion protein (GST-SKL) or a peptide (Pep-SKL), both containing a non-functional PTS1-like sequence, the inhibitory properties of GST-TPRs on the in vitro import of Pex5p remain unchanged (Fig. 2, lanes 5). In sharp contrast, when GST-SKL or Pep-SKL are used under the same conditions this inhibition is partially reverted (Fig. 2, lanes 4; see legend to Fig. 2). The reason why a complete reversion is not observed is not known at the moment. It is possible that addition of GST-TPRs to PNS fractions not only titrates PTS1-containing proteins but also some other(s) component(s) necessary for the efficient targeting of Pex5p to the peroxisomal compartment. Although additional work will be necessary to clarify this matter the data presented here are clear in one point: insertion of Pex5p into the peroxisomal membrane is PTS1-dependent.

C-terminal Truncated Versions of Pex5p Are Substrates for the Peroxisomal Docking/Insertion Machinery—Recently Dodt et al. (7) have mapped the region of Pex5p responsible for its peroxisomal targeting. After transfection of human fibroblasts with plasmids encoding epitope-tagged N-terminal fragments of Pex5p the authors were able to show a peroxisomal location for a recombinant protein containing just the first 214 amino acid residues of Pex5p. Although the exact peroxisomal location of this recombinant protein was not defined in that study (i.e., no distinction between Pex5p molecules inserted into the peroxisomal membrane or just adsorbed at the surface of the organelle was made), the fact that this domain of Pex5p lacks any cargo protein-interacting domain and yet is correctly tar-
Fig. 2. Insertion of Pex5p into the peroxisomal membrane is PTS1-dependent. In vitro synthesized Pex5p was incubated with PNS fractions in the presence of 0.17 μM GST (lanes 1–3) or GST-TPRs (lanes 4–6). In A, GST-SKL (lanes 1 and 4) or GST-LKS (lanes 2 and 5) fusion proteins were also included in the import reactions (8 μM final concentration). In B, import reactions received Pep-SKL (lanes 1 and 4), Pep-LKS (lanes 2 and 5), or no peptide (lanes 3 and 6). Peptides were used at 25 μM final concentration. All import reactions were performed in the presence of 5 mM ATP. After 30 min at 26 °C, protein samples were processed as described in the legend to Fig. 1. The ratio of stage 2 Pex5p in lanes 4 to lanes 1 is 0.64 ± 0.11 (n = 4) and 0.31 ± 0.08 (n = 4) in A and B, respectively. Stage 2 and Lane L, see the legend to Fig. 1.

Fig. 3. C-terminal truncated Pex5p molecules are substrates for the peroxisomal docking/insertion machinery. A, in vitro synthesized ΔC1Pex5p and ΔC2Pex5p were subjected to import reactions in the presence (lanes +) or absence (lanes −) of exogenous ATP. After 30 min at 26 °C, protein samples were processed as described in the legend to Fig. 1. Stage 3, a peroxisomal population of Pex5p completely resistant to the action of protease K (19); Stage 2, see the legend to Fig. 1. Lanes L, 35S-labeled ΔC1Pex5p or ΔC2Pex5p (% of the input in each import reaction). The numbers at the left indicate the molecular masses of the applied standards in kDa. B, insertion of ΔC1Pex5p and ΔC2Pex5p into the peroxisomal membrane is not inhibited by GST-TPRs. 35S-Labeled full-length Pex5p (FL) or the truncated versions ΔC1Pex5p (ΔC1) or ΔC2Pex5p (ΔC2) were incubated with PNS fractions in the absence (lanes −) or in the presence of GST (lanes GST) or GST-TPRs (lane TPRs) fusion proteins. Import reactions were performed in the presence of 5 mM ATP. After protease K treatment, the organelles were isolated and subjected to SDS-PAGE. Lanes L, reticulocyte lysates containing 35S-labeled full-length Pex5p (panel FL) or the ΔC1Pex5p and ΔC2Pex5p truncated versions (panels ΔC1 and ΔC2, respectively).

The results of this experiment are shown in Fig. 3B. GST-TPRs has no effect on the peroxisomal import of both ΔC1Pex5p and ΔC2Pex5p. Thus, our data confirm and extend the observations made by Dodt et al. (7): the N-terminal domain of Pex5p can be targeted to and inserted into the peroxisomal membrane. This observation may have major implications on the mechanism regulating the process of docking/insertion of Pex5p into the peroxisomal membrane. Indeed, the fact that ΔC2Pex5p is a substrate for the docking/insertion machinery suggests that no crucial protein-protein interactions occur between this machinery on one side and the receptor domain of Pex5p or the cargo proteins on the other. If this proves to be the case, then how is cycling of Pex5p regulated? We can think of only one possibility: Pex5p itself directly or indirectly regulates this cycle. Many different hypotheses can be envisaged to explain such a mechanism. For instance, binding of cargo proteins to the receptor domain of Pex5p could induce conformational alterations on the PTS1 receptor, activating (e.g. exposing) its peroxisomal targeting domain; this regulatory mechanism would have been lost in both ΔC1Pex5p and ΔC2Pex5p (i.e. the peroxisomal targeting domain in these truncated molecules would be constitutively active). Data suggesting that Pex5p N-terminal and C-terminal domains interact with each other are already available and could support this hypothesis (27). Alternatively cytosolic Pex5p is kept away from the peroxisomal compartment due to an interaction with some (still unknown) protein. Such a putative factor would only bind to cargo-unloaded Pex5p molecules through an interaction requiring the receptor domain of Pex5p (which is not present in both ΔC1Pex5p and ΔC2Pex5p).

REFERENCES

1. Sacksteder, K. A., and Gould, S. J. (2000) Annu. Rev. Genet. 34, 623–652
2. Purdie, P. E., and Lazarow, P. B. (2001) Annu. Rev. Cell Dev. Biol. 17, 701–752
3. McCellum, D., Monoseov, E., and Subramani, S. (1995) J. Cell Biol. 121, 761–774
4. Van der Leij, I., Franse, M. M., Elgersma, Y., Distel, B., and Tabak, H. F. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 11782–11786
5. Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H. W., Watkins, P., Van de Velde, D., and Gould, S. J. (1995) Nat. Genet. 9, 115–125
6. Otera, H., Harano, T., Honsho, M., Ghaedi, K., Mukai, S., Tanaka, A., Kawai, A., Shimizu, N., and Fujiki, Y. (2000) J. Biol. Chem. 275, 21703–21714
7. Dodt, G., Warren, D., Becker, R., Rehling, P., and Gould, S. J. (2001) J. Biol. Chem. 276, 41769–41781
8. Einwachter, H., Sowski, S., Kunau, W. H., and Schliebs, W. (2001) EMBO Rep. 2, 1035–1039
9. Klein, A. T., van den Berg, M., Bottger, G., Tabak, H. F., and Distel, B. (2002) J. Biol. Chem. 277, 25011–25019
10. Otera, H., Taragachi, K., Hamashiki, M., Kamashiro, T., Shimizu, N., and Fujiki, Y. (2002) Mol. Cell. Biol. 22, 1639–1655
11. Gould, S. J., Keller, G. A., Hoshen, N., Wilkinson, J., and Subramani, S. (1989) J. Cell Biol. 108, 1657–1664
12. Elgersma, Y., Vos, A., van den Berg, M., van Roermund, C. W., van der Sluijs, P., Distel, B., and Tabak, H. F. (1996) J. Biol. Chem. 271, 26375–26382
13. Lametschwandtner, G., Brocard, C., Fransen, M., Van Veldhoven, P., Berger, J., and Hartig, A. (1998) J. Biol. Chem. 273, 33635–33643
14. Gatto, G. J., Jr., Geisbrecht, B. V., Gould, S. J., and Berg, J. M. (2000) Nat. Struct. Biol. 7, 1091–1095

\[\text{ATP can be easily detected (see legends to Figs. 1 and 3 and Ref. 19). This result could suggest that amino acid residues 1–197 of Pex5p are sufficient to drive insertion of Pex5p into the peroxisomal membrane. There is, however, another possibility. In our experimental system import of these truncated forms of Pex5p is performed in the presence of endogenous rat liver Pex5p. Recently it was suggested that Pex5p may form a homodimer or a homotetramer and that this polymeric Pex5p is probably the active form of the PTS1 receptor (27, 28). Thus, in principle, the ΔC3Pex5p, which in turn would drive insertion of ΔC1Pex5p and ΔC2Pex5p into the peroxisomal membrane. One easily testable prediction of such a hypothesis is that import of full-length Pex5p is inhibited (e.g. by exploring the properties of GST-TPRs), then import of ΔC1Pex5p and ΔC2Pex5p should also be inhibited.} \]
15. Wiemer, E. A., Nuttley, W. M., Bertolaet, B. L., Li, X., Francke, U., Wheelock, M. J., Anne, U. R., Johnson, K. R., and Subramani, S. (1995) J. Cell Biol. 130, 51–65
16. Elgersma, Y., Kwast, L., Klein, A., Voorn-Brouwer, T., van der Berg, M., Metzig, B., America, T., Tabak, H. F., and Distel, B. (1996) J. Cell Biol. 135, 97–109
17. Dott, G., and Gould, S. J. (1996) J. Cell Biol. 133, 1763–1774
18. Dammai, V., and Subramani, S. (2001) Cell 105, 187–196
19. Gouveia, A. M., Guimarães, C. P., Oliveira, M. E., Reguenga, C., Sá-Miranda, C., and Azevedo, J. E. (2003) J. Biol. Chem. 278, 226–232
20. Gouveia, A. M., Reguenga, C., Oliveira, M. E., Sá-Miranda, C., and Azevedo, J. E. (2000) J. Biol. Chem. 275, 32444–32451
21. Albertini, M., Girzalsky, W., Veenhuis, M., and Kunau, W. H. (2001) Eur. J. Cell Biol. 80, 257–270
22. Reguenga, C., Oliveira, M. E., Gouveia, A. M., Sá-Miranda, C., and Azevedo, J. E. (2001) J. Biol. Chem. 276, 29935–29942
23. Fransen, M., Terlecky, S. R., and Subramani, S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8087–8092
24. Wendland, M., and Subramani, S. (1993) J. Cell Biol. 120, 675–685
25. Volkl, A., and Fahimi, H. D. (1985) Eur. J. Biochem. 149, 257–265
26. Lazarow, P. B., and Fujiki, Y. (1985) Annu. Rev. Cell Biol. 1, 489–530
27. Harano, T., Nose, S., Uezu, R., Shimizu, N., and Fujiki, Y. (2001) Biochem. J. 357, 157–165
28. Gould, S. J., and Collins, C. S. (2002) Nat. Rev. Mol. Cell. Biol. 3, 382–389