Coenzyme Q₆ and Iron Reduction Are Responsible for the Extracellular Ascorbate Stabilization at the Plasma Membrane of Saccharomyces cerevisiae

Carlos Santos-Ocaña‡‡*, Francisco Córdoba††, Frederick L. Crane‡, Catherine F. Clarke***, and Plácido Navas‡ ‡‡

From the ‡Departamento de Biología Celular, Facultad de Ciencias, Universidad de Córdoba, Avenida San Alberto Magnó, s/n, 14004 Córdoba, Spain, the †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, and the **Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095

Yeast plasma membrane contains an electron transport system that maintains ascorbate in its reduced form in the apoplast. Reduction of ascorbate free radical by this system is comprised of two activities, one of them dependent on coenzyme Q₆ (CoQ₆). Strains with defects in CoQ₆ synthesis exhibit decreased capacity for ascorbate stabilization compared with wild type or with atp2 or cor1 respiratory-deficient mutant strains. Both CoQ₆ content in plasma membranes and ascorbate stabilization were increased during log phase growth. The addition of exogenous CoQ₆ to whole cells resulted in its incorporation in the plasma membrane, produced levels of CoQ₆ in the corq2 mutant strain that were 2-fold higher than in the wild type, and increased ascorbate stabilization activity in both strains, although it was higher in the corq3 mutant than in wild type. Other antioxidants, such as benzoquinone or α-tocopherol, did not change ascorbate stabilization.

The CoQ₆-independent reduction of ascorbate free radical was not due to copper uptake, pH changes or to the presence of CoQ₆ biosynthetic intermediates, but decreased to undetectable levels when corq3 mutant strains were cultured in media supplemented with ferric iron. Plasma membrane CoQ₆ levels were unchanged by either the presence or absence of iron in wild type, atp2, or cor1 strains. Ascorbate stabilization appears to be a function of the yeast plasma membrane, which is partially based on an electron transfer chain in which CoQ₆ is the central electron carrier, whereas the remainder is independent of CoQ₆ and other antioxidants but is dependent on the iron-regulated ferric reductase complex.

All aerobic organisms are exposed to the toxic effects of reactive oxygen species (ROS). These are produced during normal metabolism and can also be generated by exposure to pro-oxidant compounds, an increase in oxygen pressure, or exposure to ionizing radiation (1). These ROS produce damage to many cellular components, affecting the function of lipids, proteins, and nucleic acids. However, in normal conditions, cells have a number of defense systems to avoid or minimize these problems. A good example is Saccharomyces cerevisiae, which has at least 14 proteins that participate in ROS protection (1, 2). The majority of anti-ROS mechanisms act inside the cell; however, little is known about mechanisms that protect against oxidative reduction. Some metabolic reactions involved in metal uptake produce superoxide at the apoplast (3), such as iron reduction, which is regulated by the presence or absence of iron in the culture medium (4). These ROS at the plasma membrane initiate lipid peroxidation and generate a wide array of oxidation products including shorter fatty-acid chains. Such products impair membrane function and structural integrity and increase the membrane fluidity. The plasma membrane must have a defense system to scavenge free radicals and repair oxidative damage. A good candidate may be the redox couple ascorbate-ubiquinone. Ascorbate is a first order antioxidant and, because it scavenges free radicals in the aqueous phase of cells, is considered to be the terminal small molecule antioxidant in biological systems (5). Although ascorbate is a very efficient inhibitor of the lipid peroxidation process, it cannot inactivate the free radical effects within the plasma membrane (6). Recently, we showed that yeast cells have the ability to reduce ascorbate free radical by an enzymatic mechanism that depends on NADH as the electron donor and is inhibited by ubiquinone antagonists, such as chloroquine (7). Ubiquinone is a hydrophobic redox molecule located in different membranes, including the plasma membrane in animal cells (8). The redox chemistry of CoQ is crucial for its role in the plasma membrane electron transport system, where the ubiquinone acts as a carrier between an internal NADH-dehydrogenase and an external side final acceptor (9). This NADH dehydrogenase activity is attributed to a NADH-ubiquinone reductase in the plasma membrane of pig liver hepatocytes (10, 11). The ubiquinone present in S. cerevisiae is ubiquinone-30 (CoQ₆), and yeast mutants with defects in the COQ genes are being used to characterize the enzymes involved in CoQ₆ synthesis pathway (12–15). Recently, its importance as an antioxidant was illustrated by the hypersensitivity of CoQ₆-deficient yeast mutants to oxidative stress induced by treatment with polyunsaturated fatty acids (16). The present work employs yeast mutants deficient in CoQ₆ synthesis to study the relationship between the extracellular ascorbate stabilization and CoQ₆. The results of this study suggest that part of the ascor-
bate stabilization by whole cells depends on the CoQ₆ content of the plasma membrane and can be increased by the external addition of CoQ₆. Both ascorbate stabilization and CoQ₆ content in plasma membrane can also be restored by transformation with plasmids containing the COQ3 or COQ7 genes. Ascorbate stabilization activity and plasma membrane CoQ₆ content are regulated as a function of the growth phase. The CoQ₆-independent ascorbate stabilization is not due to CoQ₆ biosynthetic intermediates or other antioxidants but is apparently due to electron transport by the plasma membrane ferric reductase complex. The CoQ₆-independent ascorbate stabilization is suppressed when the cog3 mutant strain is cultured in media supplemented with ferric iron. The results indicate that ascorbate stabilization is due to two electron transport systems in the yeast plasma membrane, one dependent on CoQ₆ and the other dependent on the iron-regulated ferric reductase complex.

EXPERIMENTAL PROCEDURES

Yeast Strains and Growth Conditions—The yeast strains used in this study are described in Table I. Plasmids pRS12A2–2.5SB (13) and pNMQ71 (14) restored both CoQ₆ synthesis and growth on nonfermentable carbon sources in strains harboring deletions in the COQ3 and COQ7 genes, respectively. Cells were grown on YPD medium (2% peptone, 1% yeast extract, and 2% glucose) incubated at 30 °C with shaking (17). Yeast harboring the plasmids pRS12A2–2.5SB and pNMQ71 were grown in synthetic complete medium (16). In experiments with iron, 2 mM Fe-EDTA was added to YPD, and the YPD minus iron was made 100% in 5 min, and then the mobile phase was returned to the initial composition. Quantitation of CoQ₆ was made by injection of external standard of known amounts of commercial CoQ₆ (Sigma). The concentration of standard was determined using a extinction coefficient measured under vacuum in a Rotavapor (Büchi, Flawil, Switzerland). The residue was dissolved in 500 µl of ethanol.

TABLE I

Strain	Genotype and sources of S. cerevisiae strains	Ref.
W303.1B	MAT a ade2-1, his3-11, 15, leu2-3, 112, trp1-1, ural3-1	42
CC303.1	W303.1B-coq4A::LEU2	16
W303.1COQ7	W303.1B-coq7A::LEU2	14
W303.1COQ2	W303.1B-coq2A::HIS3	12
CC304.1	W303.1B-ATP2A2::LEU2	16
W303.1COR1	MAT a ino1-13 leu2-3,112 gen4–101 hist3–609 ura3–52	25
CM3262	MAT a ino1-13 leu2-3,112 gen4–101 hist3–609 ura3–52	25

In Vivo Assays—The ascorbate stabilization assay was described previously (7). Growth was monitored by determining the A₆₆₀ nm and the cultures were collected in late log phase (A₆₆₀ nm = 3–5.5). Cells were washed once in 5 mM EDTA, pH 8, and twice in cold water. Ascorbate oxidation was followed by the direct reading at 265 nm, with an extinction coefficient of 14.5 mM⁻¹cm⁻¹ at pH 7.4 (5). Cells were resuspended at 10⁷ cells/ml in 0.1 M Tris-HCl buffer, pH 7.4, with 0.06 mM CuSO₄. The addition of ascorbate (final concentration, 0.15 mM) to YPD containing a deletion of the COQ7 gene (encoding a protein subunit of COQ7) and synthesizing CoQ₆, showed an ascorbate stabilization activity that was about 65% that of wild type. Other dependent on the iron-regulated ferric reductase complex. The CoQ₆-independent ascorbate stabilization is not due to CoQ₆ biosynthetic intermediates or other antioxidants but is apparently due to electron transport by the plasma membrane ferric reductase complex. The CoQ₆-independent ascorbate stabilization is suppressed when the cog3 mutant strain is cultured in media supplemented with ferric iron. The results indicate that ascorbate stabilization is due to two electron transport systems in the yeast plasma membrane, one dependent on CoQ₆ and the other dependent on the iron-regulated ferric reductase complex. The CoQ₆-independent ascorbate stabilization is suppressed when the cog3 mutant strain is cultured in media supplemented with ferric iron. The results indicate that ascorbate stabilization is due to two electron transport systems in the yeast plasma membrane, one dependent on CoQ₆ and the other dependent on the iron-regulated ferric reductase complex.
and COQ7 yeast genes, respectively, restored the ascorbate stabilization activity to that of wild type cells. All strains displayed a CoQ₆-independent ascorbate stabilization activity. Because decreases in either the pH of the buffer or the copper concentration could decrease the rate of ascorbate oxidation, these parameters were investigated. The pH was unchanged throughout the assays when run for 4 h. The property to oxidize ascorbate by buffer was abolished when copper was not added (Fig. 2). The incubation of cells for 4 h in buffer (here named conditioned buffer) did not change its property to oxidize ascorbate. This conditioned buffer still contained copper and did not contain any protein released from the cells during incubation.

When cells were present, ascorbate oxidation rates were decreased (Fig. 2) as a consequence of ascorbate stabilization at the plasma membrane (7). Boiled cells lost the ability to prevent ascorbate oxidation. Because copper is required to oxidize ascorbate and yeast have a high affinity copper transporter, we checked this activity in the FTRUNB1 strain lacking copper transporter at the plasma membrane (25). This strain showed the same ascorbate stabilization as the wild type parental strain (CM3262). These results rule out copper uptake as responsible for the CoQ₆-independent ascorbate stabilization.

Neither superoxide dismutase nor catalase modified the ascorbate oxidation rates observed in the presence of cells, indicating that the ascorbate stabilization by yeast was not due to the production of ROS during the oxidation of ascorbate.

Determination of CoQ₆ Content in Yeast Cells and Plasma Membrane Fractions—The concentration of CoQ₆ was measured in both whole cells and plasma membrane purified fractions of all yeast strains harvested during the final log phase of growth. Yeast lipid extracts were separated by high performance liquid chromatography, and CoQ₆ was identified based on its retention time of about 17 min at 20 °C and by the characteristic spectrum of the quinone. Wild type contained about 18 pmol of CoQ₆/mg of dry weight whole cells (Table II). This level of CoQ₆ was 25% higher than present in the atp2 strain and 33% lower than in the cor1 strain. CoQ₆ was not detected in the coq3, coq7, or coq2 mutant strain, but CoQ₆ synthesis was restored when these strains harbored the respective COQ3 or COQ7 genes on a single copy plasmid.

The CoQ₆ concentration was also determined in yeast plasma membrane fractions. Wild type yeast atp2 and cor1 mutant strains contained about 150, 195, and 236 pmol CoQ₆/mg protein, respectively. Again, CoQ₆ was not detected in the plasma membrane fraction isolated from the coq3, coq7, or coq2 mutant.

Different membrane markers were used to check the purity of plasma membrane fractions (Table III). The plasma membrane marker ATPase was highly enriched in plasma membrane fractions compared with total membranes isolated by the sucrose gradient method. However, endomembrane markers were greatly decreased in these fractions. Thus, CoQ₆ concentrations determined here represent those extracted from the plasma membrane. We did not detect porin (a marker of the mitochondria outer membrane) by Western blotting of plasma membrane fractions with a polyclonal antibody against yeast porin (data not shown).

Measurement of Ascorbate Stabilization and CoQ₆ Content at Different Growth Stages—Ascorbate stabilization by both wild type and coq3 mutant strains was determined during log and stationary phases of growth. Both strains reached stationary phase between 9 and 12 h, although the wild type culture attained a higher density than the coq3 mutant (Fig. 3A).

Ascorbate stabilization in wild type cells was increased during log phase and reached a plateau at the end of log phase (Fig. 3B). Ascorbate stabilization in the coq3 strain showed a slight increase during the first 6 h but then decayed to the initial level (Fig. 3B).

CoQ₆ content in both total and plasma membrane fractions
increased with culture density in wild type yeast (Fig. 4). The increase in plasma membrane content was particularly marked and followed apparently the same pattern as the observed ascorbate stabilization activity (Fig. 3B).

Effect of External CoQ₆ Addition on Ascorbate Stabilization and CoQ₆ Content—Our results suggest that plasma membrane CoQ₆ participates in ascorbate stabilization. To determine the effect of CoQ₆ supplementation on ascorbate stabilization, both wild type and coq3 mutant yeast were incubated with exogenous CoQ₆ (Table IV). Both wild type and coq3 strains were cultured and harvested in mid log phase, resuspended in buffer (10⁶ cells/ml), and incubated 1 h at 30 °C with or without 50 μM CoQ₆. After the incubation, cells were used to determine the ascorbate stabilization and to measure the CoQ₆ content in plasma membrane purified by sucrose step gradient. Exogenous CoQ₆ significantly increased the content of CoQ₆ in the plasma membrane of the wild type strain and also increased the rates of ascorbate stabilization (Table IV). Exogenous CoQ₆ was incorporated in coq3 cells and attained a concentration at the plasma membrane that was almost twice that of wild type (Table IV). Such treatment resulted in a 58% increase in ascorbate stabilization activity in the coq3 strain.

The same incubation experiments were carried out with two well known antioxidants, benzoquinone and α-tocopherol. Neither of the two compounds showed a significant effect on ascorbate stabilization (Table IV).

Ascorbate Stabilization and CoQ₆ Contents in Cells Cultured in the Presence or Absence of Iron—Ascorbate stabilization in several strains cultured in media with or without 2 mM iron was measured (Fig. 5A). Wild type, atp2 and cor1 strains displayed high ascorbate stabilization in iron-deprived media, and this activity was decreased when iron was present. The ascorbate stabilization in the coq3 strain also showed an iron-regulated ascorbate stabilization that was almost abolished in the presence of iron. The ferric iron reductase, measured under the same conditions as the ascorbate stabilization, was similar in all strains (Fig. 5B) and was similarly modulated by the pres-
Table IV

Effects of exogenous CoQ₆ incubation on the ascorbate stabilization activity and CoQ₆ content of plasma membrane

Cells of both strains were cultured and harvested in final log phase, resuspended in buffer (10⁶ cells/ml) and incubated for 1 h at 30 °C with or without 50 μM CoQ₆, 50 μM benzoquinone, and 30 μM α-tocopherol. After the incubation, cells were used to measure the ascorbate stabilization and to determine the CoQ₆ content. The method was described under “Experimental Procedures.” Ascorbate stabilization data (mean ± S.E. from three separate experiments) were expressed in mmol/10⁷ cells/h, and CoQ₆ content data (mean ± S.E. from two separate experiments) were expressed in pmol/mg of protein.

Strain	Additions	Ascorbate stabilization	CoQ₆ content
Wild type	None	24.9 ± 0.2 (100)	339 ± 15 (100)
	CoQ₆	30.8 ± 1.3 (123)	492 ± 18 (145)
	α-Tocopherol	25.1 ± 0.5 (101)	NM
	None	19.5 ± 0.7 (100)	ND
	50 μM CoQ₆	30.90 ± 0.31 (158)	710 ± 45
	Benzoquinone	21.3 ± 0.31 (109)	NM
	α-Tocopherol	21.6 ± 0.63 (110)	NM

* Numbers in parentheses show the percentage versus control (no addition).

Table V

CoQ₆ contents in several strains cultured in the presence or absence of iron

All strains were grown in YPD plus 2 mM FeEDTA or YPD with iron extracted, harvested in final log phase, and processed to extract and determine CoQ₆. Concentration data (mean ± S.E. from two separate experiments) are expressed in pmol/mg of protein of plasma membrane.

Strain	Plasma membrane CoQ₆ concentration	
	YPD + 2 mM Fe-EDTA	YPD without Fe
Wild type	158 ± 5	151 ± 6
coq3	ND*	ND
cor1	209 ± 11	220 ± 9
atp2	200 ± 5	206 ± 7

* ND, not detected.

Discussion

Extracellular ascorbate stabilization is an activity present not only in yeast but in other animal and plant cells (26, 27). In animal cells, the function is clearly directed to the maintenance of an optimal redox state and may be related to effects on cell growth and differentiation (28, 29). In plants, extracellular ascorbate stabilization plays an important role in cell elongation through ascorbate peroxidases (30). In yeast, we recently showed that a plasma membrane electron transport system, which depends on the viability of intact cells or protoplasts, is responsible for ascorbate stabilization, indicating the possible participation of plasma membrane CoQ₆ (7).

To determine the functional requirement of CoQ₆ in ascorbate stabilization, we have studied mutant strains with defects in CoQ₆ synthesis. No CoQ₆ was detected in the plasma membrane of wild type yeast, which also showed a lower activity of ascorbate stabilization. Wild type yeast atp2 and cor1 (respiratory-deficient strains) contained detectable CoQ₆, although its distribution inside the cell was different. Thus, although wild type cells had a higher content of CoQ₆ than did the atp2 mutant, the latter contained more CoQ₆ at the plasma membrane. However, both the plasma membrane and whole cell CoQ₆ content is higher in cor1 mutant strains than in wild type cells. These findings may account for the higher ascorbate stabilization activity in the atp2 and cor1 strains and indicate that ascorbate stabilization is not dependent on mitochondrial respiratory function. An explanation of this behavior derives from the observed increase of trans-plasma membrane electron transport in mitochondrial-deficient animal cells, which probably functions to regulate the ratio of cytosolic NAD+/NADH levels (31, 32). Previous work has shown that the establishment of a mitochondrial-deficient cell line produced increases in both plasma membrane CoQ₆ content and the ascorbate sta-
Coenzyme \(Q_6 \) and Ascorbate Stabilization in Yeast

bilitation activity (33). These results are all consistent with the idea that the higher CoQ\(_6\) content in the \(cor1 \) and \(atp2 \) strains may result from the imposed respiratory deficiency.

In \(S. cerevisiae \), plasma membrane protein represents 1–2% of total cell protein (34). Considering this percentage, plasma membrane CoQ\(_6\) constitutes 8–16% of the total CoQ\(_6\) in the cell. This value was increased in both wild type and respiratory defective yeast strains after the incubation of cells in buffer with exogenous CoQ\(_6\) (Table IV).

Yeast CoQ\(_6\) synthesis and CoQ\(_6\) content is increased during log phase growth and reaches a maximum at stationary phase (15). Similarly, CoQ\(_6\) content in both plasma membrane and whole cells increased during log phase growth, but the accumulation of CoQ\(_6\) in plasma membrane increased dramatically as compared with whole cells. Ascorbate stabilization showed a similar increase but reached a plateau at the stationary phase. CoQ exerts its antioxidant function when it is reduced and requires an appropriate equilibrium with its reductase, such as cytochrome \(b_2 \) reductase, at the plasma membrane (35). This behavior during growth is similar to that observed for other plasma membrane redox activities in yeast (36). The behavior during growth is similar to that observed for other plasma membrane redox activities in yeast (36). The ascorbate stabilization activity (33). These results are all consistent with the idea that the higher CoQ\(_6\) content in the \(cor1 \) and \(atp2 \) strains may result from the imposed respiratory deficiency.

In \(S. cerevisiae \), plasma membrane protein represents 1–2% of total cell protein (34). Considering this percentage, plasma membrane CoQ\(_6\) constitutes 8–16% of the total CoQ\(_6\) in the cell. This value was increased in both wild type and respiratory defective yeast strains after the incubation of cells in buffer with exogenous CoQ\(_6\) (Table IV).

Yeast CoQ\(_6\) synthesis and CoQ\(_6\) content is increased during log phase growth and reaches a maximum at stationary phase (15). Similarly, CoQ\(_6\) content in both plasma membrane and whole cells increased during log phase growth, but the accumulation of CoQ\(_6\) in plasma membrane increased dramatically as compared with whole cells. Ascorbate stabilization showed a similar increase but reached a plateau at the stationary phase. CoQ exerts its antioxidant function when it is reduced and requires an appropriate equilibrium with its reductase, such as cytochrome \(b_2 \) reductase, at the plasma membrane (35). This behavior during growth is similar to that observed for other plasma membrane redox activities in yeast (36). The ascorbate stabilization activity (33). These results are all consistent with the idea that the higher CoQ\(_6\) content in the \(cor1 \) and \(atp2 \) strains may result from the imposed respiratory deficiency.

In \(S. cerevisiae \), plasma membrane protein represents 1–2% of total cell protein (34). Considering this percentage, plasma membrane CoQ\(_6\) constitutes 8–16% of the total CoQ\(_6\) in the cell. This value was increased in both wild type and respiratory defective yeast strains after the incubation of cells in buffer with exogenous CoQ\(_6\) (Table IV).

Yeast CoQ\(_6\) synthesis and CoQ\(_6\) content is increased during log phase growth and reaches a maximum at stationary phase (15). Similarly, CoQ\(_6\) content in both plasma membrane and whole cells increased during log phase growth, but the accumulation of CoQ\(_6\) in plasma membrane increased dramatically as compared with whole cells. Ascorbate stabilization showed a similar increase but reached a plateau at the stationary phase. CoQ exerts its antioxidant function when it is reduced and requires an appropriate equilibrium with its reductase, such as cytochrome \(b_2 \) reductase, at the plasma membrane (35). This behavior during growth is similar to that observed for other plasma membrane redox activities in yeast (36). The ascorbate stabilization activity (33). These results are all consistent with the idea that the higher CoQ\(_6\) content in the \(cor1 \) and \(atp2 \) strains may result from the imposed respiratory deficiency.

In \(S. cerevisiae \), plasma membrane protein represents 1–2% of total cell protein (34). Considering this percentage, plasma membrane CoQ\(_6\) constitutes 8–16% of the total CoQ\(_6\) in the cell. This value was increased in both wild type and respiratory defective yeast strains after the incubation of cells in buffer with exogenous CoQ\(_6\) (Table IV).

Yeast CoQ\(_6\) synthesis and CoQ\(_6\) content is increased during log phase growth and reaches a maximum at stationary phase (15). Similarly, CoQ\(_6\) content in both plasma membrane and whole cells increased during log phase growth, but the accumulation of CoQ\(_6\) in plasma membrane increased dramatically as compared with whole cells. Ascorbate stabilization showed a similar increase but reached a plateau at the stationary phase. CoQ exerts its antioxidant function when it is reduced and requires an appropriate equilibrium with its reductase, such as cytochrome \(b_2 \) reductase, at the plasma membrane (35). This behavior during growth is similar to that observed for other plasma membrane redox activities in yeast (36). The ascorbate stabilization activity (33). These results are all consistent with the idea that the higher CoQ\(_6\) content in the \(cor1 \) and \(atp2 \) strains may result from the imposed respiratory deficiency.
32. Martinus, R. D., Linnane, A. W., and Nagley, P. (1993) *Biochem. Mol. Biol. Int.* 31, 997–1005
33. Gómez-Díaz, C., Villalba, J. M., Pérez-Vicente, R., Crane, F. L., and Navas, P. (1997) *Biochem. Biophys. Res. Commun.* 234, 79–81
34. Zinser, E., and Daum, G. (1995) *Yeast* 11, 493–536
35. Gómez-Díaz, C., Rodríguez-Aguilera, J. C., Barroso, M. P., Villalba, J. M., Navarro, F., Crane, F. L., and Navas, P. (1997) *J. Bioenerg. Biomembr.* 29, 253–259
36. Crane, F. L., Roberts, H., Linnane, A. W., and Low, H. (1982) *J. Bioenerg. Biomembr.* 14, 191–205
37. Kaneko, K., Kaji, K., and Matsuo, M. (1994) *Free Radical Biol. Med.* 16, 405–409
38. Santiago, L. A., and Mori, A. (1993) *Arch. Biochem. Biophys.* 306, 16–21
39. Stahl, J. D., Rasmussen, S. J., and Aust, S. D. (1995) *Arch. Biochem. Biophys.* 322, 221–227
40. Lesuisse, E., and Labbe, P. (1989) *J. Gen. Microbiol.* 135, 257–263
41. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. M., and Kaplan, J. (1992) *J. Biol. Chem.* 267, 20774–20781
42. Tzagoloff, A., Wu, M. A., and Crivellone, M. (1986) *J. Biol. Chem.* 261, 17163–17169
