Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties

Downloaded from: https://research.chalmers.se, 2021-07-15 15:38 UTC

Citation for the original published paper (version of record):
Ibragimova, R., Erhart, P., Rinke, P. et al (2021)
Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties
Journal of Physical Chemistry Letters, 12(9): 2377-2384
http://dx.doi.org/10.1021/acs.jpcl.0c03710

N.B. When citing this work, cite the original published paper.
Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties

Rina Ibragimova, Paul Erhart, Patrick Rinke, and Hannu-Pekka Komsa

ABSTRACT: Using a multiscale computational scheme, we study the trends in distribution and composition of the surface functional groups −O, −OH, and −F on two-dimensional (2D) transition metal carbides and nitrides (MXenes). We consider Ti$_n$N$_m$, Ti$_n$N$_m$$_{p}$, Nb$_pC_q$, Nb$_pC_q$, Ti$_nC_x$, and Ti$_nC_x$ to explore MXenes with different chemistry and different numbers of atomic layers. Using a combination of cluster expansion, Monte Carlo, and density functional theory methods, we study the distribution and composition of functional groups at experimentally relevant conditions. We show that mixtures of functional groups are favorable on all studied MXene surfaces. The distribution of functional groups appears to be largely independent of the type of metal, carbon, or nitrogen species and/or number of atomic layers in the MXene. We further show that some properties (e.g., the electric conductivity) strongly depend on the surface composition, while others, for example, the elastic modulus, exhibit only a weak dependence.

MXenes are 2D materials with the general composition M$_n$X$_m$, where M is a transition metal and X is carbon or nitrogen. MXenes include materials with different M and X combinations, ordered materials with different metal combinations in outer and inner layer M$'$.M$''$.X$_m$, and phases with ordered divacancies in the structure M$_{1.33}$.X called i-MXenes. Herein, we focus on MXenes with one M element in the structure, the combination of element M and X and different numbers of atomic layers: M$_n$.X$_m$, M$_n$.X$_m$.X$'_m$, and M$_n$.X$_m$.X$'_m$.X$''_m$. They possess extraordinary electronic, mechanical, optical, thermal, and catalytic properties. During wet-etching synthesis of MXenes, their surfaces adsorb functional groups such as −O, −OH, and −F. Even though a variety of MXene properties such as work function, hydrophilic behavior, and catalytic activity are ascribed to the surface functionalization, the structure and composition of the functionalized surfaces remain unknown for most MXenes.

To date, several experimental studies have reported significant variations in the surface composition of freshly prepared MXenes. However, the experimental characterization of MXene surfaces is challenging because (i) the surface contains light elements such as H, O, and F; (ii) the surface is often contaminated with water and precursors remaining after etching, and (iii) variations in the experimental conditions aggravate systematic studies. For example, the XPS analysis of Halim et al. reveals that Ti$_n$C$_x$, Ti$_n$C$_x$, Ti$_n$CN, Nb$_p$C$_q$, and Nb$_p$C$_q$, all exhibit a mixture of O/ OH/F when etched with HF, although with slightly different compositions. Conversely, Ti$_n$N$_m$ and Ti$_n$N$_m$ obtained from molten-salt etching accommodate only a mixture of O and OH, and no F. It is not known whether the absence of F is triggered by the material itself or is a result of the synthesis method. To date, no clear picture has emerged on what factors determine the composition and distribution of surface functional groups.

First-principles calculations complement experimental studies and provide atomistic insight into the surface functionalization. However, to date the majority of theoretical studies considered only pure terminations of O, F, or OH, and there are only a few studies involving mixtures of functional groups. To address mixed functionalization, we recently developed a multiscale computational scheme to find the equilibrium composition of statistically averaged distributions of −O, −OH, and −F functional groups on MXene surfaces, also taking into account the interactions with a solvent. The scheme was employed to study Ti-based carbides for certain experimental conditions characterized by the pH value, the open-circuit potential (OCP), and the growth temperature. However, a systematic study of surface functionalization of MXenes is still missing.

In this Letter, we remedy this situation and provide a systematic, atomic-scale analysis of surface functionalization for titanium (Ti) and niobium (Nb) carbides and nitrides of varying thickness. The diversity of MXenes provides a large design space, which we narrow down here by exploring three
of its dimensions: the type of metal (M), the type of X element, and the number of atomic layers \(n \). Moreover, we select materials that have already been synthesized to be able to compare to experimental data. Furthermore, we exclude elements that give rise to magnetic properties and/or where strong correlations may be expected. On the basis of these criteria, we have selected the following MXenes: Ti\(_2\)N, \(\text{Ti}_3\text{N}_3 \), \(\text{Nb}_2\text{C} \), \(\text{Nb}_3\text{C}_2 \), \(\text{Ti}_2\text{C} \), and \(\text{Ti}_3\text{C}_2 \) for our study (Figure 1a).

Our multiscale approach is schematically depicted in Figure 1b. First, we generate a set of three-component (F, O, and OH) reference structures for each considered MXene. For these structures, we perform density functional theory (DFT) calculations using the VASP code.\(^{60}\) Next, we construct a cluster expansion (CE) Hamiltonian for each MXene using the icet code.\(^{61}\) The CE is fitted to the DFT energies for the reference structures using Bayesian linear regression via the automatic relevance detection (ARD) scheme\(^{62}\) (see fit quality in Figure S1b). We include pair clusters up to the fourth-nearest neighbors and triplet clusters up to first-nearest neighbors in the CE (Figures S1a and S2). We then use Monte Carlo (MC) simulations to sample the configurational space and to compute the configurational free energies for different surface terminations (see the Supporting Information for simulation details).\(^{63}\) In this way, we obtain the equilibrium distribution of functional groups on different MXenes. To further analyze the properties of thermodynamically averaged structures, we use the special-quasiordered-structures method (SQoS)\(^{64,65}\) and generate representative \(4 \times 4 \times 1 \) supercells for 12 fixed concentrations of functional groups. The generated structures exhibit a distribution of functional groups that closely mimic those observed in the larger supercells sampled during the MC simulations. Finally, we calculate the Gibbs free energy of formation for the generated structures in solution over the whole range of composition of the functional groups, carefully accounting for the role of experimental factors, such as temperature, pH, and open-circuit potential.

Distribution of Functional Groups

The surface distribution for excess F (\(\text{Ti}_2\text{N}-(\text{F}_{0.5}\text{O}_{0.25}\text{OH}_{0.25})_2 \) in Figure 2b,c) shows that fluorine atoms are arranged in strips with a thickness of one or two atomic rows. The spaces between F-strips are mainly filled with an ordered distribution of alternating O and OH groups. Likewise, excess O \((\text{F}_{0.25}\text{O}_{0.5}\text{OH}_{0.25})_2 \) in Figure 2d) leads to the formation of oxygen-containing strips. F and OH alternate in the remaining space, although with more F–F and OH–OH pairs than for excess F. The binary structure with 50% of O and OH is depicted in Figure 2e and exhibits alternating O and OH strips. In the case of \((\text{O}_{0.75}\text{OH}_{0.25})_2 \) in Figure 2f, the OH groups are evenly distributed within the O groups.
The strip patterns were observed for all studied systems independent of the composition in terms of metal species (M) and carbon or nitrogen (X) as well as the number of atomic layers (n). Overall, the functional groups clearly mix and do not exhibit phase separation or agglomeration. The mixing happens on the atomic scale; that is, the connected features are atomically thin. We attribute the emergence of strip patterns to the triangular lattice of MXenes. In O\textendash OH binaries, maximizing the number of O\textendash OH bonds leads to a strong geometrical frustration in all MXene systems that usually manifests itself in the formation of strip patterns as observed here. The geometrical frustration usually gives rise to a
manifold of ground states rather than a single stable ground state. As a result, the system will be sensitive to slight perturbations, meaning that slight variations of the external conditions can easily lead to changes in the surface group distribution.

The ternary diagrams of the mixing energy are depicted in Figure 3, which shows the mixing energy as a function of the concentrations of $-\text{F}$, $-\text{O}$, and $-\text{OH}$ functional groups for the considered MXenes. We observe a pronounced minimum for binary compositions with 50% O and 50% OH ($\text{O}_{0.5}\text{OH}_{0.5}$) for all systems. The absolute mixing energies, however, vary with no clearly discernible trend. Nb_4C_3 has the smallest mixing energy of -0.13 eV and Ti_3C_2 the largest (-0.2 eV). With an increasing number of atomic layers, the absolute values of the mixing energy decrease for Ti_4N_3 and Nb_4C_3 but not for Ti_3C_2.

The strong preference toward mixing in our CE indicates that the surface functionalization is primarily determined by interactions between functional groups. While changes in the Fermi-level position could change the bond strength between functional groups and the substrate, this would lead to similar mixing energies for all structural configurations with the same composition, clearly contradicting our CE results. While changes in the Fermi-level position could change the bond strength between functional groups and the substrate, this would lead to similar mixing energies for all structural configurations with the same composition, clearly contradicting our CE results. Moreover, if the bonding energy depended on the Fermi-level position, the mixing energy curves would be unlikely to look so similar because in different MXenes the Fermi level falls into different regions of the metal d-band.

Equilibrium Composition. Next we evaluate the thermodynamic equilibrium composition of surface terminations in HF solution after the etching by means of Gibbs free energy of formation calculations. We assume that all species are in equilibrium in order to set the chemical potentials for F, O, and H and link them to the pH of the solution as well as to the open-circuit potential and the temperature. Full details of our approach can be found in ref 59.

Figure 4 shows the ternary diagrams of the Gibbs free energy of formation for mixed surface terminations. The chemical potentials are determined at standard hydrogen electrode (SHE) conditions, where the pH is equal to 0, and the electron chemical potential is fixed to the calculated $U_{\text{SHE}} = 4.7$ eV (see the Supporting Information for calculation details). SHE conditions correspond to H_2 molecules splitting into two H^+ ions, and we anticipate that the functionalization happens near those conditions because of the high H^+ content in the solution. For Ti-based nitrides (Figure 4a,d), we find a minimum in the Gibbs free energy at $\text{O}_{0.5}\text{OH}_{0.25}$ composition. The same composition of $\text{O}_{0.75}\text{OH}_{0.25}$ was found for Nb-based carbides (Figure 4b,e). However, for the Ti-based carbides (Figure 4c,f), the minimum occurs at $\text{O}_{0.95}\text{OH}_{0.05}\text{F}_{0.05}$. In all systems, the number of atomic layers does not affect the
equilibrium composition. The difference in energy between fully O-terminated and \(\text{O}_{0.75}\text{OH}_{0.25} \) configurations (Ti nitrides and Nb carbides) is rather small (0.02–0.05 eV), indicating that both phases, O and \(\text{O}_{0.75}\text{OH}_{0.25} \), might be accessible during synthesis. We note that the minima of mixing energies were always found at the same composition (Figure 3) for all systems; however, the Gibbs free energy minima are located at different compositions. This difference is caused by the different values of the formation energies of the pure functionalized surfaces. For example, for Nb-based MXenes, a strong preference for the O-terminated surfaces seems to overcome the mixing energy gain.

Figure 5a depicts the surface composition of Nb\(_2\)C as a function of OCP and pH. We also show full composition diagrams for all systems with different M and X in Figure 5b, where we fixed the pH value to 0 for the variation of the potential and the value of the potential to 0 eV for the pH variation. Surfaces of Ti-based nitrides have a high O content (75%) with 25% OH in the whole pH range. Increasing the potential to 0.2 eV removes the OH groups and leads to a fully O-terminated surface. For Nb-based carbides, the situation is similar, only that the transition to a fully O-covered surface also happens for pH variations. Ti-based carbides exhibit the most complex behavior. Upon increasing the potential, the OH content can be reduced from 50% to 0%. At slightly positive potentials also F can be stabilized in the mix. A similar switch from an O–OH mixture to a F-containing one is observed for pH variations around a pH value of 2.0. While an increase in pH can be problematic for etching systems with strong bonds, the applied electrode potential can be tuned and thus offers a potentially easy way to affect the surface composition.

Comparing our surface phase diagrams depicted in Figure 5 to experiment, we first note that experimental observations on the surface composition show significant scatter.\(^7\)\(^8\)\(^37\) Ti-based carbides are the most studied systems thus far, and experimental findings could be cherry-picked to support almost any computational result.\(^20\)\(^27\)\(^36\)\(^69\)\(^70\) Focusing only on the high accuracy measurement techniques such as neutron scattering and nuclear magnetic resonance spectroscopy, it emerges that Ti-based carbides have the most mixed compositions out of all considered structures.\(^36\)\(^70\) In ref. 71, the pH of the solution was varied from –0.9 to 1.4 by keeping the concentration of HF fixed while changing the other components in the solution. However, the resulting O, OH, and F compositions were similar in all cases. Both findings are in general agreement with our calculated results.

Etched Ti\(_2\)N surfaces (in a mixture of potassium fluoride and hydrochloric acid) accommodate all three functional groups albeit with a predominance for O.\(^85\) Conversely, molten-salt synthesis functionalizes the surfaces of Ti\(_3\)N and Ti\(_2\)N\(_3\) mostly with O and OH\(^89\)\(^30\) despite the presence of F during etching. While neither of these experiments directly corresponds to the conditions in our simulations, they tend to agree with our results so far that smaller F concentrations are observed. Contradicting experimental observations are reported for HF-etched Nb-based carbides. Mixtures of –OH and –F functional groups were detected in Nb-based MXenes in nuclear magnetic resonance (NMR) spectroscopy,\(^72\) while another study reported high O concentrations for HF-etched Nb\(_2\)C and nonstoichiometric mixtures of functional groups for Nb\(_3\)C\(_3\). In all of these materials, OH appears to be the minority species, which is in agreement with our results. The presence of F in the case of Ti nitrides and Nb carbides (and lack thereof in our calculations) can arise from kinetic aspects or too low F chemical potentials in our calculations, whereas in experiments the F concentration may be higher because the concentration of available species between the sheets may differ from that of the solution.

Composition-Dependent Properties. Next we analyze how the properties of MXenes change with surface functionalization and its composition. For example, previous computational and experimental studies found that the work function of MXenes strongly depends on the composition of the functional groups.\(^26\)\(^27\)\(^36\)\(^58\)\(^59\) This dependence was utilized to engineer the work function and band alignment in solar cells by adding MXene layers to perovskites.\(^73\)

We have calculated the work functions over the whole range of –O, –OH, and –F concentrations for all the considered systems (Figure 5S). The work function depends linearly on the concentration of O, F, and OH. Fully O- and F-terminated structures have the highest work functions above 5 eV, and the values decrease with an increase of OH content to about 2 eV. The results for pure terminations agree with earlier computational results,\(^38\) while the values for the whole range of O, OH, and F concentrations are reported here for the first time. Previous calculations found that the work functions are governed by the dipoles formed in the functionalization layer.\(^38\) Consistent with that notion, we observe only a small variation of the work function values for different MXenes. The work function of MXenes therefore depends primarily on the functional group composition and little on the M or X species.

MXenes are attractive materials because of their high electrical conductivity. For a first assessment of the conductivity, we here inspect the electronic density of states (DOS). We showed previously that the DOS at the Fermi level of Ti-based carbides only weakly depends on the accessible functional group composition.\(^59\) In Figure 6 we show the total and atom-projected DOSs for Ti\(_3\)N and Nb\(_2\)C for different O and OH concentrations. The DOSs for other calculated systems are shown in Figure S6. F groups are expected to behave similarly to OH groups, because they both accept one electron. Similar to Ti-based carbides, the Fermi level falls inside the metal d-band of Nb\(_2\)C, which becomes semiconducting. Assuming the average carrier relaxation time is insensitive to surface composition, this suggests that the electrical conductivity is only weakly affected by functionalization.

Conversely, the DOS at the Fermi level increases concomitantly with the number of layers (Figure S6). Furthermore, for Nb-based systems the Fermi level is located at a higher DOS region than for any of the other calculated MXenes as a result of a higher number of valence electrons. Because the metallic conductivity of these MXenes is carried via the transition metal d-band states at Fermi level and the Fermi level remains within the d-band for most accessible surface compositions, the conductivity is weakly affected by the composition of the adsorbate layer.

In conclusion, we have systematically studied surface functionalization of six 2D MXenes \(\text{M}_{\text{N}}\text{X}_n \) by –O, –F, and –OH. We explored the chemical space of MXenes considering different metallic species (\(\text{M} = \text{Ti}, \text{Nb} \)), a variation of X species (\(\text{X} = \text{C}, \text{N} \)), and variation in the number of atomic layers (\(n = 2, 3, 4 \)). Using a multiscale computational scheme, we calculated the distribution of functional groups and their
mixing energies. The surface functionalization of different MXenes exhibits similar distributions and mixing energies, which we propose are governed by interactions between $-\text{O}$, $-\text{F}$, and $-\text{OH}$ and the geometry of the triangular lattice rather than the chemical nature of the M and X species or the number of atomic layers (n). To simulate realistic synthesis conditions, Gibbs free energy of formation diagrams for different compositions of functional groups depending on pH and the potential were constructed. The Gibbs free energy of formation indicates a prevalence of O functionalization, regardless of M, n variation, and suggests that functionalization of the surface is driven by external conditions and not the type or thickness of the MXene. Finally, the work function of the surface varies dramatically, and linearly, with functional group composition, whereas the DOS at the Fermi level is only weakly affected by the surface groups.

MXenes are a wide class of materials with various properties and structures, but for most MXenes the functional group distribution has not been studied experimentally. While we focused on only a few of the most common MXenes, the surface functionalization behavior can be different for MXenes with different structures and properties than those of the systems studied in this work. Nevertheless, we hope that our findings will also be helpful in understanding the structure and properties of other MXenes.

REFERENCES

(1) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098.

(2) Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494.

(3) Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.

(4) Verger, L.; Xu, C.; Natu, V.; Cheng, H.-M.; Ren, W.; Barsoum, M. W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 2019, 23, 149–163.

(5) Kim, H.; Anasori, B.; Gogotsi, Y.; Alshareef, H. N. Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes. Chem. Mater. 2017, 29, 6472–6479.

(6) Tao, Q.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å.; et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949.
(7) Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). *Appl. Surf. Sci.* 2016, 362, 406–417.

(8) Xin, Y.; Yu, Y.-X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field effect transistors. *Mater. Des.* 2017, 130, 512–520.

(9) Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B.; et al. Synthesis of Mo4V4Al4CM4X MXene Phase and Two-Dimensional Mo4VC4MXene with Five Atomic Layers of Transition Metals. *ACS Nano* 2020, 14, 204–217.

(10) Ghidu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive Two-Dimensional Titanium Carbidic ‘Clay’ with High Volumetric Capacitance. *Nature 2014*, *516*, 78–81.

(11) Zhang, C. J.; Anasori, B.; Seral-Asscaso, A.; Park, S.-H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. *Adv. Mater.* 2017, 29, 1702678.

(12) Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Jiang, Y.-Y.; Ma, M.-G. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. *ACS Nano* 2018, 12, 4583–4593.

(13) Hantanasirisakul, K.; Zhao, M.-Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. *Adv. Electron. Mater.* 2016, 2, 1600050.

(14) Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitski, A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. *Science Advances* 2018, 4, eaat0491.

(15) Khalidaldusti, R.; Anasori, B.; Barnoush, A. Temperature-dependent mechanical properties of Tin+1CnO2 (n = 1, 2) MXene monolayers: a first-principles study. *Phys. Chem. Chem. Phys.* 2020, 22, 3414–3424.

(16) Handoko, A. D.; Chen, H.; Lum, Y.; Zhang, Q.; Anasori, B.; Seh, Z. W. Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatatysts for CO2 Reduction. *iScience* 2020, 23, 101181.

(17) Khalidaldusti, R.; Mishra, A. K.; Barnoush, A. Atomic defects in monolayer ordered double transition metal carbide (Mo2Ti2CTx) MXene and CO2 adsorption. *J. Mater. Chem. C* 2020, 8, 4771–4779.

(18) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Titanium Nitride Ti4N3 MXene. *Adv. Mater. Interfaces* 2019, 11, 181128–18123.

(19) Naguib, M.; Halim, J.; Lu; J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. *J. Am. Chem. Soc.* 2013, 135, 15966–15969.

(20) Palisaitis, J.; Persson, I.; Halim, J.; Rosen, J.; Persson, P. O. A. On the Structural Stability of MXene and the Role of Transition Metal Adatoms. *Nanoscale* 2018, 10, 10850–10855.

(21) Halim, J.; Persson, I.; Moon, E. J.; Kühne, P.; Farahkhai, V.; Persson, P. O. A.; Eklund, P.; Rosen, J.; Barsoum, M. W. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. *J. Phys.: Condens. Matter* 2019, 31, 165301.

(22) Ghidu, M.; Naguib, M.; Shi, C.; Mahtalir, O.; Pan, L. M.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J. L.; Barsoum, M. W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). *Chem. Commun.* 2014, 50, 9517–9520.

(23) Soundiraraju, B.; George, B. K. Two-Dimensional Titanium Nitride (Ti 2 N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate. *ACS Nano* 2017, 11, 8892–8900.

(24) Hope, M. A.; Forse, A. C.; Griffith, K. J.; Lukatskaya, M. R.; Ghidu, M.; Gogotsi, Y.; Green, C. P. NMR Reveals the Surface Functionalisation of TiC2, MXene. *Phys. Chem. Chem. Phys.* 2016, 18, 5099–5102.

(25) Sang, X.; Xie, Y.; Lin, M.-W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Uncic, R. R. Atomic Defects in Monolayer Titanium Carbide (Ti2C2Tx) MXene. *ACS Nano* 2016, 10, 9193–9200.

(26) Khazaei, M.; Arai, M.; Sasaki, T.; Ranjarbar, A.; Liang, Y.; Yunoki, S. OH-Terminated Two-Dimensional Transition Metal Carbides and Nitrides as Ultralow Work Function Materials. *Phys. Rev. B: Condens. Matter Phys.* 2015, 92, 075411.

(27) Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. *J. Phys.: Condens. Matter* 2014, 26, 505503.

(28) Wang, D.; Gao, Y.; Liu, Y.; Jin, D.; Gogotsi, Y.; Meng, X.; Du, F.; Chen, C.; Wei, Y. First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. *J. Phys. Chem. C* 2017, 121, 13025–13034.

(29) Xie, Y.; Kent, P. R. C. Hybrid Density Functional Study of Structural and Electronic Properties of Functionalized TinxCnx (X = C, N) Monolayers. *Phys. Rev. B: Condens. Matter Phys.* 2013, 87, 235441.
