Personal Augmented Reality for Information Visualization on Large Interactive Displays

Patrick Reipschläger¹*, Tamara Flemisch¹*, Raimund Dachselt¹,²,³

¹ Interactive Media Lab Dresden, Technische Universität Dresden, Germany
² Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Germany
³ Cluster of Excellence Physics of Life, Technische Universität Dresden, Germany

* Authors contributed equally
Large Interactive Displays + Personal Augmented Reality → Information Visualization
Large Interactive Displays

- Supports touch and digital pen input
- Can be used by multiple analysts
- Shows big amount of data in high resolution

Issues with perception of data
- Disturbances by other analysts
Spatial immersion and embodied interaction

Personal views for each analyst

Provides additional space to display data

No native support for co-located data analysis

Lacks tactile and precise input modalities
Augmented Displays
[Reipschläger & Dachselt 2019]

- Supports touch and digital pen input
- Can be used by multiple analysts
- Shows big amount of data in high resolution
- Spatial immersion and embodied interaction
- Personal views for each analyst
- Provides additional space to display data

- Issues with perception of data
- Disturbances by other analysts
- No native support for co-located data analysis
- Lacks tactile and precise input modalities

Reipschläger & Dachselt 2019
Augmented Displays

Large Interactive Displays

Mixed and Augmented Reality

Visualization on Large Displays

PARVIS

Information Visualization

Immersive Analytics
Hybrid User Interfaces
[Feiner & Shamash 1991]

DesignAR
[Reipschläger & Dachselt 2019]

DualCAD
[Millette & McGuffin 2016]

SymbiosisSketch
[Arora et al. 2018]
Augmented Displays

Hybrid User Interfaces [Feiner & Shamash 1991]

DesignAR [Reipschläger & Dachselt 2019]

DualCAD [Millette & McGuffin 2016]

SymbiosisSketch [Arora et al. 2018]

[Jakobsen & Hornbæk 2014]

[Langner et al. 2019]

[Prouzeau et al. 2017]

[Isenberg et al. 2012]
Augmented Displays

- Hybrid User Interfaces [Feiner & Shamash 1991]
- DesignAR [Reipschläger & Dachselt 2019]
- DualCAD [Millette & McGuffin 2016]
- SymbiosisSketch [Arora et al. 2018]
- ImAxes [Cordeil et al. 2017]
- AR Graphs [Büschel et al. 2019]
- Hybrid User Interfaces [Jakobsen & Hornbæk 2014]
- DesignAR [Langner et al. 2019]
- DualCAD [Prouzeau et al. 2019]
- SymbiosisSketch [Prouzeau et al. 2019]
- AR Graphs [Feiner & Shamash 1991]
- Hybrid User Interfaces [Jakobsen & Hornbæk 2014]
- DesignAR [Langner et al. 2019]
- DualCAD [Prouzeau et al. 2019]
- SymbiosisSketch [Arora et al. 2018]
- AR Graphs [Büschel et al. 2019]
- Hybrid User Interfaces [Jakobsen & Hornbæk 2014]
- DesignAR [Langner et al. 2019]
- DualCAD [Prouzeau et al. 2019]
- SymbiosisSketch [Arora et al. 2018]
- AR Graphs [Büschel et al. 2019]
Augmented Displays

Hybrid User Interfaces
[Feiner & Shamash 1991]

DesignAR
[Reipschläger & Dachselt 2019]

DualCAD
[Millette & McGuffin 2016]

SymbiosisSketch
[Arora et al. 2018]

AR Graphs
[Büsche1 et al. 2019]

ImAxes
[Cordei et al. 2017]

Hybrid User Interfaces
[Jakobsen & Hornbæk 2014]

DesignAR
[Langner et al. 2019]

DualCAD
[Langner et al. 2019]

SymbiosisSketch
[Prouzeau et al. 2019]

AR Graphs
[Prouzeau et al. 2019]

ImAxes
[Prouzeau et al. 2019]

Hybrid User Interfaces
[Prouzeau et al. 2017]

DesignAR
[Isenberg et al. 2012]

DualCAD
[Prouzeau et al. 2019]

SymbiosisSketch
[Isenberg et al. 2012]

AR Graphs
[Isenberg et al. 2012]

ImAxes
[Isenberg et al. 2012]
Design Space for Combining Large Displays and Personal AR

Visualization Techniques

u2vis – Universal Unity Visualization Framework

Prototype Implementation and Use Case
Design Space
Spatial Alignment

Visualization Parts

Personal Views
Spatial Alignment

- top
- right
- in front
- central
- bottom
- left
- behind
Visualization Parts

- View
- Tools
- Selections
- Axes
- Data Marks
- Links
- Annotations
- Legend
- UI Elements
- Grid

Spatial Alignment

Personal Views
Personal Views
Spatial Alignment

Visualization Parts

Personal Views
Visualization Techniques
Perceptual Issues on Large Displays

Managing Density and Complexity
Embedded AR Visualizations
Hinged Visualizations
Curved AR Screen
AR Brushing and Linking
Extended Axis Views
AR Visualization Layers
Personal AR Annotations
Perceptual Issues on Large Displays
Managing Density and Complexity
Validation: Use Case

Cognitive Walkthrough

Exploration of a IMDB movie data set in multiple coordinated views

Various Tasks

- Identify clusters using *Extended Axis Views*
- Individual annotations in AR
- Comparison of movies using *Embedded Visualizations*
- Guide awareness to connected views using *AR Brushing and Linking* as well as *Hinged Visualizations*
u2vis
u2vis

Universal Unity Visualization Framework
Large Display
independent

Microsoft HoloLens
independent

Dedicated Server
OSC and TCP

synchronizing state and interaction
Discussion
Perception of AR Content and Display

Combining Environments for Data Analysis

Alignment of AR Content in Relation to the Display

Collaboration Between Multiple Analysts

Connecting Multiple Visualizations with AR

Further Potential Utilization of AR
Design Space for Combining Large Displays and Personal AR

Visualization Techniques

u2vis - Universal Unity Visualization Framework
Personal Augmented Reality for Information Visualization on Large Interactive Displays

Patrick Reipschläger* - Interactive Media Lab, Technische Universität Dresden – patrick.reipschlaeger@tu-dresden.de
Tamara Flemisch* - Interactive Media Lab, Technische Universität Dresden – tamara.flemisch@tu-dresden.de
Raimund Dachselt – Interactive Media Lab, Technische Universität Dresden – dachselt@acm.org

* Authors contributed equally
Patrick Reipschläger and Raimund Dachselt.
DesignAR: Immersive 3D-Modeling Combining Augmented Reality with Interactive Displays.
In Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces (ISS ’19).
ACM, New York, NY, USA, 29–41. DOI: https://doi.org/10.1145/3343055.3359718

Steven Feiner and Ari Shamash.
Hybrid user interfaces: Breeding virtually bigger interfaces for physically smaller computers.
In Proceedings of the 4th annual ACM symposium on User interface software and technology (UIST ’91).
ACM, New York, NY, USA, 9–17. DOI: https://doi.org/10.1145/120782.120783

Alexandre Millette and Michael J. McGuffin.
DualCAD: Integrating Augmented Reality with a Desktop GUI and Smartphone Interaction.
In 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct).
IEEE, 21–26. DOI: https://doi.org/10.1109/ISMAR-Adjunct.2016.0030

Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan Singh.
SymbiosisSketch: Combining 2D & 3D Sketching for Designing Detailed 3D Objects in Situ.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, 1–15. DOI: https://doi.org/10.1145/3173574.3173759
Mikkel R. Jakobsen and Kasper Hornbæk.
Up Close and Personal: Collaborative Work on a High-Resolution Multitouch Wall Display.
ACM Transactions on Computer-Human Interaction. 2014.
ACM, New York, NY, USA. DOI: https://doi.org/10.1145/2576099

Ricardo Langner, Ulrike Kister, and Raimund Dachselt.
Multiple Coordinated Views at Large Displays for Multiple Users: Empirical Findings on User Behavior, Movements, and Distances.
IEEE Transactions on Visualization and Computer Graphics. 2019.
25, 608-618. DOI: https://doi.org/10.1109/TVCG.2018.2865235

Arnaud Prouzeau, Anastasia Bezerianos, and Olivier Chapuis.
Evaluating Multi-User Selection for Exploring Graph Topology on Wall-Displays.
IEEE Transactions on Visualization and Computer Graphics. 2017.
23, 1936-1951. DOI: https://doi.org/10.1109/TVCG.2016.2592906

Petra Isenberg, Danyel Fisher, Sharoda A. Paul, Meredith Ringel Morris, Kori Inkpen, and Mary Czerwinski.
Co-Located Collaborative Visual Analytics around a Tabletop Display.
IEEE Transactions on Visualization and Computer Graphics. 2012.
18, 689-702. DOI: https://doi.org/10.1109/TVCG.2011.287
Zhutian Chen, Wai Tong, Qianwen Wang, Benjamin Bach, and Huamin Qu.
Augmenting Static Visualizations with PapARVis Designer.
In Proceedings of the 2020 SIGCHI Conference on Human Factors in Computing Systems (CHI ‘20).
ACM, New York, NY, USA, 1–12. DOI: https://doi.org/10.1145/3313831.3376436

Wolfgang Büschel, Stefan Vogt, and Raimund Dachselt.
Augmented Reality Graph Visualizations: Investigation of Visual Styles in 3D Node-Link Diagrams.
In IEEE Computer Graphics and Applications. 2019.
39, 29–40. DOI: https://doi.org/10.1109/MCG.2019.2897927

Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H. Thomas, and Kim Marriott.
ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST ‘17).
ACM, New York, NY, USA, 71–83. DOI: https://doi.org/10.1145/3126594.3126613

Simon Butscher, Sebastian Hubenschmid, Jens Müller, Johannes Fuchs, and Harald Reiterer.
Clusters, Trends, and Outliers: How Immersive Technologies Can Facilitate the Collaborative Analysis of Multidimensional Data.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, 1–12. DOI: https://doi.org/10.1145/3173574.3173664
Marco Cavallo, Mishal Dholakia, Matous Havlena, Kenneth Ocheltree, and Mark Podlaseck.
Dataspace: A Reconfigurable Hybrid Reality Environment for Collaborative Information Analysis.
In Proceeding of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR ‘19).
IEEE, 145–153. DOI: https://doi.org/10.1109/VR.2019.8797733

Taeheon Kim, Bahador Saket, Alex Endert, and Blair MacIntyre.
VisAR: Bringing Interactivity to Static Data Visualizations through Augmented Reality
arXiv.org. 2017. https://arxiv.org/abs/1708.01377

Tianchen Sun, Yucong Ye, Issei Fujishiro, Kwan-Liu Ma.
Collaborative Visual Analysis with Multi-level Information Sharing Using a Wall-Size Display and See-Through HMDs.
In 2019 IEEE Pacific Visualization Symposium (PacificVis ‘17).
IEEE, 11–20. DOI: https://doi.org/10.1109/PacificVis.2019.00010

Xiyao Wang, Lonni Besançon, David Rousseau, Mickael Sereno, Mehdi Ammi, and Tobias Isenberg.
Towards an Understanding of Augmented Reality Extensions for Existing 3D Data Analysis Tools.
In Proceedings of the 2020 SIGCHI Conference on Human Factors in Computing Systems (CHI ’20).
ACM, New York, NY, USA, 1–13. DOI: https://doi.org/10.1145/3313831.3376657
Image Sources

Icon
Information Visualization
https://fontawesome.com/