Combinatorial invariants for graph isomorphism problem.

Jarek Duda

Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland,
email: dudaj@interia.pl

Abstract

Presented approach in polynomial time calculates large number of invariants for each vertex, which won’t change with graph isomorphism and should fully determine the graph. For example numbers of closed paths of length k for given starting vertex, what can be though as the diagonal terms of k-th power of the adjacency matrix. For $k = 2$ we would get degree of verities invariant, higher describes local topology deeper. Now if two graphs are isomorphic, they have the same set of such vectors of invariants - we can sort theses vectors lexicographically and compare them. If they agree, permutations from sorting allow to reconstruct the isomorphism. I’m presenting arguments that these invariants should fully determine the graph, but unfortunately I can’t prove it in this moment. This approach can give hope, that maybe P=NP - instead of checking all instances, we should make arithmetics on these large numbers.

1 Introduction

We have some undirected graphs, given by the adjacency matrix

$$G_1, G_2 \in \{0, 1\}^{n \times n}$$

We would like to check if there is a permutation matrix:

$$P \in \{0, 1\}^{n \times n} : P^T P = 1_n, \ G_1 = PG_2P^T$$

So we have to check if $G_1, \ G_2$ are similar and if the similarity matrix is permutation. The similarity matrix could be found using numerical methods, which are asymptotic - the problem is to estimate when to be sure if we won’t get permutation.
To check if the matrixes are similar, we can compare their characteristic polynomials, what can be done in polynomial time. If not - the graphs are not isomorphic, but if yes - we still don't know if the similarity matrix is permutation, but it seems unlikely that similarity matrix between two \{0, 1\} matrixes isn’t permutation.

\section{Algorithm}

To get safer algorithm we will focus on, we can compare diagonals of powers of the adjacency matrixes.

There is known and easy to check combinatorial property, that:

\[(G^k)_{ij} = \text{number of paths from } i \text{ to } j \text{ of length } k\]

where in path edges and vertices can be repeated.

Without loss of generalities, we can assume that graph is connected, so from Frobenius-Perron theorem it has unique dominant eigenvalue (≤ n) and corresponding eigenvector is nonnegative - the diagonal terms of powers of the adjacency matrixes will increase exponentially (length of numbers grows linearly) and in the limit has distribution as the eigenvector.

If the graphs are isomorphic, diagonals of above powers has to be the same up to permutation. This time the isomorphism is suggested by large numbers on the diagonal - we can just sort them. Sometimes different vertices can give the same invariants - it suggests some symmetry in the graph. In this case we have to be careful if we would like to reconstruct the isomorphism - we should build it neighbor by neighbor.

For second power the invariants ensure that degrees of vertices agrees. Higher powers checks local topology of vertex deeper and deeper. The length of numbers in powers of matrixes grows linearly with the power, so calculating powers can be done in polynomial time.

The algorithm:

\textbf{For graph G:}

\textbf{For } i, k = 1, \ldots, n \textbf{ calculate } d_{ki} = (G^k)_{ii}

\textbf{sort vectors } \{(d_{ki})_k\}_i \textbf{ lexicographically}

gives us \(n^2\) invariants in polynomial time.
If graphs are isomorphic, above invariants has to agree. But if they agree, are graphs isomorphic? Do they determine graph uniquely?
I’ll show that in 'generic' case it’s true - we can even reconstruct the matrix. Unfortunately I cannot prove in this moment that there are no graphs that starting from above invariants, then eventually using some standard techniques, we couldn’t determine in polynomial time if they are isomorphic, but it looks highly unprovable.

In practice we can make arithmetics modulo some large number and just check a few steps $G \rightarrow G^2$ and try to reconstruct isomorphism power by power. If something’s wrong, we should see it early, if not we should quickly get isomorphism to check.

3 Reconstruction

We would like to have some nice combinatorial procedure to uniquely reconstruct the graph. Unfortunately I couldn’t find it.
I will show algebraic construction, which is rather unpractical, but should give unique graph in practically all - 'generic' cases.

Generally - there is some symmetric matrix $A \in \mathbb{R}^{n \times n}$, but we only know
\[
d_{ki} := (A^k)_{ii} \quad \text{for} \quad i, k = 1, \ldots, n.
\]
The matrix is real, symmetric so we can diagonalize it - there exists V, D:
\[
A = VDV^T \quad \text{where} \quad V^TV = VV^T = 1_n, \quad D_{ij} = \lambda_i \delta_{ij}
\]
where matrix V is made of eigenvectors: $Av_i = \lambda_i v_i$.

Observe that
\[
\sum_i d_{ki} = TrA^k = \sum_i \lambda_i^k
\]
so we can reconstruct the characteristic polynomials determining the spectrum.

We can present canonical base in the base of eigenvectors: $e_i = \sum_j W_{ij}v_j$.
Writing this relation in columns we get: $1_n = WV$, so $W = V^T$,
\[
e_i = \sum_j V_{ji}v_j
\]
Finally we have (for $k = 0$ we have $A^0 = 1_n$):
\[
d_{ki} = e_i^T A^k e_i = \left(\sum_j V_{ji}v_j^T \right) \left(\sum_l \lambda_l^k V_{li}v_l \right) = \sum_j \lambda_j^k (V_{ji})^2
\]
We already know the eigenvalues - for each i we get interpolation problem. Assume that there are no two equal eigenvalues - it’s one of generic property we would need.

In this case, because the Vandermonde matrix is reversible, we can find all $(V_{ij})^2$. We also see that checking more than n powers doesn’t bring any new information. If some eigenvalues repeats, we would find smaller number of coefficient and have freedom to distribute our squares of terms between them, what would complicate the next step.

We see that we have another problem - determine signs for nonzero terms. Remember that V is orthogonal:

$$\forall_{ij} \sum_k V_{ik} V_{jk} = \delta_{ij}$$

and that in fact we are interested only in A:

$$\sum_k V_{ik} V_{jk} \lambda_k = A_{ij}$$

We see that multiplying whole column by -1 doesn’t change A - we can fix signs in the first row of V as we want.

Now using above two equations, and assuming that $A_{ij} \in \{0, 1\}$ and there are no zero rows/columns in A (graph is connected), we have to determine the rest of signs. It can be thought as choosing signs for 2-dimensional vectors, so that they sum up to one of two points in \mathbb{R}^2. We know that there is one such assignment. Coordinates of these vectors are some real numbers - in generic case there shouldn’t be second one.

So in 'generic' case - that there are no two the same eigenvalues and that the signs can be assigned in unique way, the invariants determine the graph up to isomorphism.

I’ve also found some relations between d_{ki} and characteristic polynomials of the matrix with removed column and row of the same number - some kind of generalized Newton’s identities. They could be helpful for reconstructing the matrix. The derivation is practically exactly Dan Kalman’s derivation of Newton’s identities [3], so I’m presenting it shortly and referring to the paper for details.

Denote $X := x1_n$, $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 = \det(X - A)$ - the characteristic polynomial of A, $p_i(x)$ - characteristic polynomials of A with removed i-th row and column. From Ceyley-Hamiltonian theorem, we know that $p(A) = 0$. Dividing it by $X - A$, we will get:

$$(X - A)^{-1} p(X) = X^{n-1} + (A + a_{n-1}1_n)X^{n-2} + \ldots + (A^{n-1} + a_{n-1}A^{n-2} + \ldots + a_11_n)1_n$$
In this moment in \([\mathbb{3}]\) is taken trace of both side, the left occurs to be \(p'(x)\) - we get Newton’s identities. We can also be more subtle - take for example diagonal elements \((i\text{-th})\) - using formula for inverse matrix, we get \(p_i\) on the left side, so:

\[
\sum_i p_i(x) = p'(x)
\]

Using the right side, we get:

\[
p_i(x) = x^{n-1} + (A_{ii} + a_{n-1})x^{n-2} + ((A^2)_{ii} + a_{n-1}A_{ii})x^{n-3} + \\
... + ((A^{n-1})_{ii} + a_{n-1}(A^{n-2})_{ii} + ... + a_1)
\]

Finally having \((d_{ki})_{k,i=1..n}\), summing over \(i\) and using Newton’s identities we can find the characteristic polynomial and using above relations find \((p_i)_{i=1..n}\) and spectrum of \(A\) with removed \(i\)-th row and column. On the other hand having \((p_i)_{i=1..n}\) we can sum them to get \(a_1, ..., a_{n-1}\) and finally \(d_{ki}\) using above identities. We don’t get the determinant \((a_0)\) this way.

4 More invariants

In this moment we have \(n\) independent invariants for each vertex, which usually should determine the graph and needed \(n - 1\) multiplications of large matrixes with large numbers. We see that if we would need less powers, the algorithm would be much faster. We should achieve it using more invariants. Unfortunately I still didn’t prove fully determining of graph, but using more invariants makes it even more probable.

In previous sections, for vertex \(i\) from \(N_{ki} = ((A^k)_{ij})_j\) we took only the diagonal term, because the rest permute in not known way. We see that we could take the rest terms of \(N_{ki}\), but we should forget about their order, but we should remember that for different \(k, j\) denotes the same vertex. For example for each vertex \(i\) we should sort lexicographically:

\[
p_i := \{(A_{ij}, (A^2)_{ij}, ..., (A^n)_{ij}) : j = 1, ..., n, j \neq i\}
\]

For every power of \(A\) we get this way \(n(n-1)\) invariants. Using the method from the end of previous section, we see that these invariants are equivalent knowing for each \(i\) list of characteristic polynomials of \(A\) with removed \(i\)-th row and one column. It suggest that again there is no point in using more than \(n\) powers.
The other way of constructing invariants is using not only number of pathes from
given vertex, but also invariants of it’s neighbors. There is huge number of possi-
bilities now - for example take sum of some invariants of every neighbor of the vertex.

There have to be plenty of relations between these invariants.
We should now choose some invariants which fully determine the graph and uses as
small powers as possible.

To summarize - I didn’t excluded cases that two graphs has the same invariants
and they are not isomorphic, but it looks extremely improbable and probably it
should be corrected in polynomial time by trying to reconstruct the isomorphism
using orders from sorting.

References

[1] M.R. Garey, D.S. Johnson *Computers and Intractability: A Guide to the Theory
of NP-Completeness*, W. H. Freeman, 1979.

[2] J. Kabler, U. Schaning and J. Toran, *The Graph Isomorphism Problem: Its
Structural Complexity*, Birkhauser, 1993.

[3] D. Kalman , *A matrix proof of Newton’s Identities*, Mathematics Magazine vol.
73/4, 2000