Potential of Mycovirus in the Biological Control of Fungal Plant Pathogens: A Review

I. Yimjenjang Longkumer, Md. Abbas Ahmad

ABSTRACT

Fungal pathogenic populations such as Sclerotinia, Rhizoctonia and Fusarium are ubiquitous and have broad range of host enabling them to cause a severe infection resulting in huge yield losses. Albeit the various tactics such as cultural, mechanical implemented to counteract the havoc, it still creates a formidable challenge to the researchers to keep the pathogenic population below threshold. From Eco-friendly sustenance perspective, Biological control can play a vital role in combination along with the other efficient tactics. In field condition various strains are available having two characters namely virulent and hypovirulent, the latter may exhibit hypovirulent nature genetically or due to the invasion of mycoviruses becomes hypovirulent. In both the cases are of interest to the researchers in studying the biological control exhibited by the mycoviruses. The biocontrol agents include Mycoviruses, which plays a significant role in infecting the virulent fungal pathogen by reducing their virulence giving to a phenomenon known as Hypovirulence. Their genome consist of mostly dsRNA and others include +ssRNA, -ssRNA and dsDNA. These studies in fungal and viral interaction can lead to the development of novel biological control strategies and help us to explore unto the molecular level.

Key words: Biological control, Hypovirulence, Mycoviruses, Virulent.

The first report of mycovirus was identified in that of dieback disease of Agaricus bisporus, a basidiomycete in 1948 in a mushroom house owned by the La France brothers of Pennsylvania (Sinden and Hauser, 1950). Mycoviruses are those viruses that infect fungi and multiply within it. They are also commonly known by the name fungal virus, mycophage and virus like particles (VLPs). Most mycoviruses have double-stranded RNA (dsRNA) as their genomes (Ghabrial, 1994) with exception in Sclerotinia sclerotiorum where a DNA virus was identified that may host both RNA viruses and DNA viruses (Liu et al., 2010; Liu et al., 2009; Yu et al., 2011). According to “ancient coevolution hypothesis” of mycovirus origin, mycovirus and fungi shares an ancient relationship reflecting a long-term coevolution (Botella et al., 2012; Roossinck, 2015a, 2015b). On contrary, the “plant virus hypothesis” suggests that these mycoviruses were assumed plant viruses that invaded from the host to the fungal pathogens indicating the phenomenon of viral transmission on the co-existence of fungus and the plants (Nibert et al., 2014). A peculiar difference occurring between the mycoviruses to other viruses is the absence of movement proteins genes for cell to cell in the mycoviruses (Sinha and Tarafdar, 2007; Kotakadi et al., 2012). Recent studies have uncovered the mechanism driving within its surrounding behind their significant suppression of the fungal pathogens. This became a limelight against the researcher’s objectives to emphasize their potential that can aid in reducing the devastating fungal diseases. Due to their potential as a biocontrol component against the ubiquitous fungal pathogens, many researchers were attracted towards their interaction and the hypovirulence associated phenomenon caused by the mycoviruses. Moreover, by this phenomenon our understanding towards diversity of mycoviruses, evolution and establishment of host-mycovirus system (i.e., Cryphonectria parasitica, hypovirus, Helminthosporium victoriae, Sclerotinia sclerotiorum-mycovirus, Rosellinia necatrix-mycovirus and Fusarium graminearum-mycovirus) will be enhanced and beneficial for studying virus-host interactions at the molecular level (Xie and Jiang, 2014; Wang et al., 2015). Here in this review we highlight the various mycovirus identified in different fungal pathogens and their potential to reduce the virulent population.

Taxonomy

Mycoviruses are recorded in almost all the groups of filamentous fungi including yeasts and oomycetes (Pearson et al., 2009). The mycoviruses with RNA genomes are classified into 15 families, 22 Genera (ICTV, 2014) (Fig 1), 7 families (Chrysoviridae, Endornaviridae, Partitiviridae, Reoviridae, Totiviridae, Quadriviridae and Megabirnaviridae) containing double-stranded RNA (dsRNA) genomes encapsulated within capsid proteins and form rigid virus particles, 2 families (Metaviridae and Pseudoviridae) belonging to ss(+) RNA-RT, 1 family (Mycomononegaviridae) containing ss(-)RNA and 5 families (Alphaflexiviridae, Barnaviridae, Gammaflexiviridae, Hypoviridae and...
Narnaviridae) contain single-stranded RNA (ss(+))RNA as their genomes, of which Alphaflexiviridae and Gamma flexiviridae form filamentous particles and the rest four families do not form typical virus particles (Lin et al., 2012). The base sequence of ss(+)-RNA are similar with that of mRNA and the RNA functions as a template for synthesis of protein (RNA-dependent RNA polymerase) while genome of ss(-)RNA mycoviruses are transcribed to positive sense by RNA replicase. The size of mycovirus varies species to species, the virus Chalara elegans RNA virus 1 (CeRV1) which infect Thielaviopsis basicola causal organism of black root rot carrot, gerbera etc can vary upto 5.31 kbp in length and has three ORFs (Park et al., 2005) whereas Cryphonectria hypovirus 1 (CHV1) measures upto 12.70 kbp in length having two ORFs (Allemann et al., 1999; Shapira et al., 1991).

Crossing the cellular membrane is the key step for the virus to infect the host. However, Mycoviruses are known to lack extracellular transmission, due to their larger size than the pores and the rigid cell wall of fungi hinders the entry of virus inside the host cell. Thereby, initiation of fungal infections by extracellular transmission makes it impossible to the mycovirus. Thus, extracellular transmission can be by far only be achieved in advanced protocols using protoplasts (Yphantis et al., 1967). Transmission of mycoviruses occurs by intracellular movement via protoplasmic fusion (anastomosis) and sporulation (vertically). Horizontal transmission (anastomosis) is accomplished through hyphal fusion and cell division. Mycoviruses are mainly spread by vertical intracellular transmission through asexual or sexual spore formation, with asexual sporulation being the most efficient means of transmission (Coen et al., 1997; Diepeningen et al., 2006 and Liu et al., 2003). The interaction of the virus with fungus can be categorized as latent infection, Cryptic infection and beneficial interaction: Increased thermal tolerance and increased competitive ability by producing a killer protein (Ustilago maydis) and Hypovirulence and different effect can be initiated by the same mycovirus to the host which varies with ecological condition (Hyder et al., 2013). Reproducible transfection protocols with purified rigid virus particles have been reported for some mycoviruses in the families’ Reoviridae (Hillman et al., 2004), Megabirnaviridae (Chiba et al., 2009), Totiviridae (Chiba et al., 2013) and Partitiviridae (Sasaki et al., 2007). The advanced technique has helped to clarify the relationship of virus–host interactions and virocontrol (Ghabrial and Suzuki, 2009). In biological control perspective, hypovirulence initiates the conversion of the virulent pathogen population to hypovirulent population through anastomosis. The process of anastomosis is controlled genetically in the presence of vegetative incompatibility genes. These vic genes restricts causes a hindrance for the transmission of hypovirulent associated dsRNA which eventually limits their effectiveness in biological control of fungal diseases. The presence of different Mating Types (MAT) in the population of fungus also complicates the process of transmission (Coppin et al., 1997; Milgroom and Hillman, 2011). When two incompatible strains come in contact, death of the cells follows, this phenomenon is referred to as vegetative incompatibility. It is controlled by several genes which limits the process of hyphal anastomosis. Vegetative compatibility is controlled by one to several nuclear genes that limit completion of hyphal anastomosis. The cells involved in anastomosis results to death when the colonies are not compatible and thus prevent the transfer of nuclei and organelles between incompatible strains. However, the virus may be transferred to the adjacent undamaged cells if the incompatibility reaction is slow. Vertical transmission enables spread of the virus within its host across longer distances and occurs through spores (conidia) produced by infected strains. The lower rate of spore production by the hypovirus-infected strains causes a negative impact. Transmission rate through conidal spores differs between the hypovirus subtype. Such as CHV1-721, CHV-1 Euro7 (CHV1-I) and CHV1-EP713 (CHV1-F1), the CHV1 hypovirus found in Europe is divided into five subtypes: CHV1-D, CHV1-E, CHV1-F1, CHV1-F2 and CHV1-I (Allemann et al. 1999). The percentage of the infection rate of mycovirus also varies host to host. Ihrmark et al., 2002 reported only 3% of conidia infected in Heterobasidion annosum on contrary to 100% infection by Cryphonectria parasitica (Ding et al., 2007).

Recent reports have revealed another means of transmission i.e. extracellular transmission Yua et al. (2013) in an experiment reported a DNA mycovirus, Sclerotinia sclerotiorum hypovirecence-associated DNA virus 1 (SsHADV-1), which was found to be infectious to its host Sclerotinia sclerotiorum when applied extracellularly. The hyphae of virus free S. sclerotiorum are reported to be infected when infected host harbouring virus are isolated and grown on PDA (Potato Dextrose Agar) or sprayed on leaves of Arabidopsis thaliana and Brassica napus. It was also concluded that SsHADV-1 can colonize and infect Sclerotinia minor and Sclerotinia nivalis but was ineffective for other colonies, such as Botrytis cinerea, belonging to the same family with S. sclerotiorum. The role of mycovirus in the host are well established by some key determinants and to identify these determinants, researchers employed wide genome approaches in certain fungal pathogen and reported that the expression of fungal genes differs with virus free and virus infected isolates and also among different viral groups.

Biological significance of mycovirus

Cryphonectria parasitica

The first report of chestnut blight disease in North America appeared in 1905 and located within the New York Zoological Gardens (Merkel, 1905). The disease is characterized by the damage of the tissues responsible for the growth of stem and roots and appearance of cankers eventually accompanied by girdling of the stem (Milgroom and Cortesi, 2004). In the early 1950s, it was found that chestnut trees...
Table 1: General taxonomy of mycoviruses according to ICTV classification criteria, Virus Taxonomy 2014 Release.

Family	Genus	Genome
Alphaflexiviridae	Botrexvirus, Sclerodarnavirus	ss(+)-RNA
Gammaflexiviridae	Mycoflexivirus	
Barnaviridae	Barnavirus	
Hypoviridae	Hypovirus	
Narnaviridae	Mitovirus, Narnavirus	
Chrysovirdae	Chrysovirus	dsRNA
Endornaviridae	Endornavirus	
Megabinaviridae	Megabirnavirus	
Partitiviridae	Alpha; Beta; Gammapartitivirus; (unassigned)	
Quadriviridae	Quadrivirus	
Reoviridae	Mycoreovirus	
Totiviridae	Totivirus; Victorivirus	ss(+)-RNA-RT*
Metaviridae	Metavirus	
Pseudoviridae	Hemivirus; Pseudovirus	
Unassigned	Rhizidiovirus	ssDNA
Mycomononegavirida**	Unassigned	ss(-)-RNA

Transmission and interaction of mycovirus with their host.

*Classification under consideration; **Family proposed by Ghabrial et al., (2015).

Fig 1: SsMYRV4-mediated enhancement of horizontal transmission between different VCGs. Effectively prevents and controls Sclerotinia diseases (Wu et al., 2017).

Infected by *C. parasitica* were not killed and the lesions on the stems healed with no outside influence. This report eventually led to the discovery and development of biological control of chestnut blight through hypovirulent strains of mycoviruses. The successful biological control of chestnut blight through hypovirulence has led to explore other mycoviruses to manage other severe fungal diseases and for successful management depends on the natural spread of viruses and the triple interaction (hypovirus, fungal pathogen and host) and environmental factors determined the success or failure. The phenomenon of hypovirulence was first observed in Italy in the 1950s in heavily infected chestnut stands that showed signs of recovery from the disease (Heiniger and Rigling, 1994). The biocontrol potential of hypovirulence was subsequently discovered by Grente (1965). Hypovirulent strains of phytopathogenic fungi and their associated mycoviruses are model systems to examine the mechanisms of fungal pathogenesis and might serve as or lead to biocontrol. The chemical management for this pathogen was not achievable by any molecules.
combining with the cultural techniques. The most effective and promising way to counteract their presence is employing biological control namely hypovirulence in which virulent population of the pathogen are colonized by hypovirulent colonies. Henceforth, many researchers studied in vitro (Celiker and Onçoglu, 1998, 2009; Coşkun et al., 1999; Açıkllı et al., 2009; Akilli et al., 2009; Doğan et al., 2009; Gürer et al., 2001) and in vivo (Celiker and Onçoglu, 2011; Aksoy et al., 2005; Akilli et al., 2011) on the biological control of chestnut blight were conducted by different researchers. The host of C. parasitica includes Castanea crenata, C. sativa, C. mollissima etc and the mycovirus associated with the fungus has been reported to be from family Hypovirus viz Cryphonectria hypovirus 1-4 (CHV 1, CHV 2, CHV 3 and CHV 4) which have ss(+) RNA as their genome (Turina and Rostagno, 2007). The best known example of mycovirus exhibiting hypovirulence is CHV-1. The infected fungus are able to form only superficial cankers which the damage cause by its invasion is negligible and the colony of the isolates changes along with the morphology in the presence of the mycovirus. Other hypovirus have also been reported from different family such as Mycoceorivus 1 (MyRV-1) of family Reoviridae and Cryphonectria mitovirus 1 (CpMV1) (Suzuki et al., 2004; Hillman and Suzuki, 2004). The infected conidia are disseminated mostly by the same vector as normal conidia but some studies have also reported mites also play an important role in initiating hypovirulence (Bonneb et al., 2016; Nannelli and Turchetti, 1999; Simoni et al., 2014). In recent studies two Croatian CHV1 strains (CR23 and M56/1) were selected as potential biocontrol agents. In vitro transfection of selected virus strains from hypovirulent to virus-free fungal isolates and subsequent inoculation of all virus/fungus combinations on stems of chestnut trees revealed that Croatian virus strain CR23 had an equally hypovirulent effect on the host as the strong French strain CHV1-EP71 (Kristin et al., 2016). The intensive study of the interaction between C. parasitica and CHV-1 have led to the exploration of its ability to affect its host aside from reduced hypovirulence which includes phenotypic symptoms such as reduced pigmentation and reduced sporulation which occurs due to interference in fungal signal transduction pathways (Choi et al., 1995; Larson et al., 1992; Park et al., 2004).

Rhizoctonia solani

The fungus Rhizoctonia solani pathogen belonging to Basidiomycetes a cosmopolitan pathogen and infects many cultivated crops. It is a heterogeneous assemblage of filamentous fungal taxa belonging to a group of fungi called the Mycelia Sterilia (Kumar et al., 2018). It is the causal organism of sheath blight of rice and has wide host range, it causes banded leaf in maize, rice and sorghum, damping-off in cotton, stem rot in green gram and soybean, sheath rot in sugarcane, heart rot in cabbage, black scurf in potato and leaf blights of fruits and plantation crops. The pathogen is also capable of causing root rot, collar rot, stem canker, crown rot, bud and fruit rots on a variety of susceptible agriculturally important causing considerable economic loss worldwide (Nagaraj et al., 2017). Rhizoctonia solani is a complex species comprising of least 13 related but distinct genetically anastomosis groups (AGs) (Carling et al., 2002a). Rhizoctonia solani (AG-1 IA) is considered to cause rice sheath blight disease throughout tropical and subtropical rice growing areas and Binucleate Rhizoctonia isolates were associated with diseased potato plants (Tsistri, 2010). Thirteen AGs of R. solani are currently known to exist and each AG can vary in host range and often geographic locations (Carling et al., 2002b). The hypovirulence associated mycovirus in Rhizoctonia solani isolates have been studied intensively resulting in high degree of debilitating the virulent strains. The mycovirus associated with Rhizoctonia solani contains dsRNA as their genome ranging from 1.7 to 90 kb and belongs to family Endornaviridae, partiviridae and Narnaviridae can be commonly identified in the natural population of their fungal host (Bharathan et al., 2005; Bartholomau et al., 2016; Das et al., 2016). Castanho and Butler (1978) first characterized dsRNA in Rhizoctonia solani. Three viruses have been reported in Rhizoctonia solani (AG-11A) isolates causing sheath blight of rice viz, RsRV1 (R. solani dsRNA virus 1, RsPV2 (R. solani partivirus 2) and RsRV- HN008 (R. solani RNA virus HN0008) (Zheng et al., 2013; Zheng et al., 2014; Zhong et al., 2015). Another peculiar feature by the mycovirus associated with R. solani is the mixed infection by different types of virus on the same isolates (Li et al., 2018). Some other mycovirus were also reported from the fungal pathogen and were well characterized which included Rhizoctonia solani virus 717 belonging to genus Partitivirus (Supyani and Gutomo, 2014), Rhizoctonia solani endornavirus - RS002 (RsEV-RS002) associated with black scurf of potato (Das et al., 2014). Some experiments also convey the interaction of virulent strain with other beneficial microorganisms which have proved a positive response and an efficient method in controlling the fungal pathogens. As we know the cosmopolitan nature of the soil borne pathogen Rhizoctonia solani which constitutes different pathogenicity from the genus ranging from high virulence to avirulence, strainof Pseudomonas fluorescens and fungus Glomus mosseae which are arbuscular mycorrhizal (AM) were inoculated in tomato plants infested by the virulent pathogen of Rhizoctonia solani. Plant growth and topological parameters were quantified and concluded that these combination of the microorganism had significantly reduced the fungal pathogen, the infected roots weakly developed and displayed dichotomous pattern (Gamalero et al., 2010). In crops like potato Soilborne pathogens are persistent and evoke a huge resistance for the proper development of the crop and initiation of the cultural and chemical practices have proven efficient yet not enough to combat the damages caused by the pathogen. Hence, some researchers conducted some combination methods of organic tactics to reduce the population to the threshold level or below. The amendment of Bacillus subtilis GB03 strain, hypovirulents
train of *Rhizoctonia solani* Rhs1A1 and compost recorded a positive impact on the virulent population of the pathogenic population. The biocontrol strains reduced the disease of stem and stolon canker, black scurf and common scab by 20-38%, 30-58% and 10-34% respectively, whereas the better performance was recorded in the combination treatment of both the biocontrol organism. Tuber yield of 11-37% was higher as compared to the rest of the treatments (Bandy and Tavantzis 1990; Brewer and Larkin 2005; Larkin and Tavantzis, 2013).

Sclerotinia sclerotiorum

Sclerotinia sclerotiorum (Lib.) de Bary is a cosmopolitan soil borne fungal pathogen having world-wide distribution. The pathogen has been known to infect more than 500 plant species and the disease caused by the fungal pathogen consists of different names such as white rot, white blight, *Sclerotinia* rot etc. and cause an annual loses of 60% (Dixit et al., 2015; Mondal et al., 2015). The characteristic feature of this pathogen is its ability to produce black resting structures known as sclerotia and white fuzzy growths of mycelium on the surface of the plant it infects. The pathogen is known to secrete oxalic acid which is considered as is the pathogenicity factor and cell wall degrading enzymes which kills their host and uptake the nutrients from the dead tissues (Hegedus and Rimmer, 2005; Kim et al., 2008; Williams et al., 2011). In management perspective, advance cultural and several other techniques have been developed yet it does not show satisfactory performance, the pathogen still outruns the tactics. Recently, the genes for oxalic acid degrading enzymes were allowed to transform into the plants to enhance the resistance against the pathogen but the process is still a long way before the transgenics can be field evaluated (Dong et al., 2008). To reduce the usage of chemical pesticides, alternative approaches need to be developed. Hypovirulence-associated mycoviruses have highly attracted much interest because of their potential for exploitation as biocontrol agents. Hypovirulence-associated mycoviruses that infect *S. sclerotiorum* have been reported from several mycoviruses family with either RNA genome or DNA genome. The first characterized DNA virus that infect a fungus is *Sclerotinia sclerotiorum* hypovirulence-associated DNA virus 1 (SsHADV-1). SsHADV-1 was isolated from a hypovirulent strain, DT-8; of *S. sclerotiorum* from a diseased rapeseed plant (Yu et al., 2010).

Xie et al., (2011) reported that a mycovirus after extracting from a hypovirulent strain SZ-150 of *Sclerotinia sclerotiorum* infecting rapeseed was closely related to CHV 3 in the family Hypoviridae and designated as *Sclerotinia sclerotiorum* hypovirus 1 (SsHV1). Mycoviruses were also reported from the members of the family *Partitiviridae* which have segmented double-stranded RNA (dsRNA) genomes. *Sclerotinia sclerotiorum* partitiviruses (SsPV1) belonging to genus partitivirus exhibited hypovirulence against its pathogenic host, *Sclerotinia sclerotiorum* strain WF-1 leading to damage of Cellular organelles like mitochondria and also Hypovirulence and strains of WF-1 and SsPV1 cotransmitted horizontally to different vegetative compatibility groups of *S. sclerotiorum* and interspecifically to *Sclerotinia nivalis* and *Sclerotinia minor* (Xiao et al., 2014). *Sclerotinia sclerotiorum* botybirnavirus 2 (SsBRV2) with bipartite dsRNA genome and *Sclerotinia sclerotiorum* mitovirus 4 (SsMV4) with (+) ssRNA as their genome which are unrelated to each other were detected in a single hypovirulent strain of *S. sclerotiorum* AH16. When the virus free isolates were inoculated with the virions of the mycoviruses, hypovirulence against the pathogenic isolates was observed providing a concrete evidence of hypovirulence shown by SsBRV2 and SsMV4 against the isolates. The findings also revealed the first evidence whereby co-infection by two mycovirus infects a single strain (Ran et al., 2016). Recently, a novel virus *Sclerotinia sclerotiorum* deltaflexiviruses 2 (SsDFV2) was recorded in the hypovirulent strain of *Sclerotiniascletoirtorum* 228 in an infected rapeseed plant which was observed that this mycovirus can overcome the vegetative incompatibility transmission system. This provides us the first (+) ssRNA mycovirus to exhibit such kind of phenomenon where it can facilitate and enhance the biological of fungal pathogens by mycovirus (Hamid et al., 2018). So far up to date, 24 *S. sclerotiorum* strains harboring mycoviruses have been isolated, sequenced and intensively studied of which 19 mycoviruses were reported to contain (+) ssRNA as their genome namely Hypoviridae (Khalifa and Pearson, 2014a; Marzano et al., 2015), Alphaflexiviridae (Xie et al., 2006), Endornaviridae (Khalifa and Pearson, 2014b), Narnaviridae (Xie and Ghabrial, 2012; Khalifa and Pearson, 2014c; Xu et al., 2015) and Deltaflexiviridae (Li et al., 2016).

Fusarium sp

Fusarium is a filamentous fungal pathogen belonging to division Ascomycota, class Sordariomycetes, order hypocreales and family Nectriaceae. They are known to have a broad range of host causing many diseases including vascular wilt, damping off, corm rot etc. their host may include rice, wheat, horticultural crops, ornamental crops etc (Jadhav et al., 2019; Jain et al., 2014; Lin et al., 2014; Riad and Zeidan, 2015; Rusli et al., 2015; Zhang et al., 2013). Despite of the innovative approaches to combat their infection below threshold till date there is lack of eco-friendly approaches for managing this fungal pathogenic population. However, a tactful emerging trend that has performed some satisfactory level is the introduction of hypovirulent strain against the virulent population. Mycovirus associated hypovirulence against *Fusarium* sp has been studied extensively at molecular level and have produced efficient result. Phylogenetic analysis provides that the mycoviruses associated with *Fusarium* sp recorded so far falls under the family of Chrysoviridae, Hypoviridae, Partitiviridae and Totiviridae (Cho et al., 2013). In Indonesia hundred isolates of *Fusarium* from chili were collected in Boyolali, Central Java. Assay for virulence were conducted against hypovirulent isolates in apple, four isolates were found to be hypovirulent and based on the presence of viral RNA in one isolate mycovirus caused hypovirulence and the other
three hypovirulent traits were due to genetic factors (Sypayan and Wdadi, 2015). Another analysis from Iran reported that out of 33 isolates of Fusarium graminearum 12 isolates had three viral fragments measuring 0.9, 1.2, 3, 3.2 and 5 kb and the severity of the disease of the isolates containing dsRNA was significantly less than that of dsRNA free isolates on wheat (Aminian et al., 2011). Mycovirus associated hypovirulence in Fusarium sp has also been reported from different strains recently which had showed its interaction with the hypovirulent strains reducing the population deliberately. These includes Fusarium graminearum virus 2 (FgV1) isolated from Fusarium graminearum strain 98-8-60 (Yu et al., 2011), Fusarium graminearum virus 3 (FgV3) and Fusarium graminearum virus 4 (FgV4) from F. graminearum strain DK3 (Yu et al., 2009). Fusarium graminearum virus china 9(FgV-ch9) from F. graminearum isolate China-9 (Darissa et al., 2012), Fusarium graminearum hypovirus 1 (FgHV1) from F. graminearum strain HN10 (Wang et al., 2012), Fusarium graminearum Hypovirus 2 (FgHV2) isolated from F. graminearum strain JS16 (Li et al., 2015), Fusarium graminearum mycotoxicovirus 1 (FgMTV1) of family Tymoviridae isolated from F. graminearum strain SX64 (Li et al., 2016), Fusarium poae dsRNA virus 2 (FpV2) and F.poa dsRNA virus 3 (FpV3), isolated from the plant pathogenic fungus, F.poa strain SX63 (Wang et al., 2016), Fusarium graminearum alternavirus 1 (FgAV1), from the isolate AH11 of the phytopathogenic fungus F. graminearum. FgAV1 are placed in the family Alternaviridae, a newly proposed family and is the first report of mycovirus from Alternaviridae to infect F. graminearum (He et al., 2018).

CONCLUSION
The residues after pesticidal application have deliberately damaged the pristine nature of the environment harming the biology of the natural enemies, pollution at its highest peak, socio economic welfare of consumers and producers. Some pesticides can even reside in the soil for more than 10 years posing an insidious impact to the environment. Many tactics have been merged together to combat the situation and to minimize the usage of synthetic chemicals to maintain the pest population below threshold. Still, there need a lot of attention for improvement and efficacy of these various tactics. Fungal pathogens having broad range of host are present in almost all the habitats due to which creates a hindrance to employ suitable management practices efficiently. On the other hand, high usages of chemicals are encouraged out of compulsion. This cycle of initiation to counteract the population creates a hazard to the environment eventually. Therefore, for sustainable agriculture implementing biological control can change the scenario to the desired level. Mycovirus have been intensively studied at molecular level despite the vegetative incompatibility groups present in the population which cause a barrier to employ them as a biocontrol tool. Their ability to destroy the virulent strains has highly attracted the researchers and with the advanced sophisticated protocols the drawbacks can be subdued.

REFERENCES
Acykőz, S., Döken, T., Erincik, Ö., Deürmenc, F. (2009). Determination of hypovirulent isolates of Cryphonectria parasitica by dsRNA analysis in Aydın Province, Turkey. Acta Horticulture. 866: 379-385.
Allemann, C., Hoegger, P., Heiniger, U., Riling, D. (1999). Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe assessed using restriction fragment length polymorphism (RFLP) markers. Molecular Ecology. 8: 843-854.
Akyil, S., Katrycboylu, Y.Z., Maden, S. (2009). Vegetative compatibility types of Cryphonectria parasitica, causal agent of Chestnut Blight, in the Black Sea Region, Turkey. Forest Pathol.39: 390-396.
Akyil, S., Katrycboyluy, Y.Z., Maden, S. (2011). Biological control of chestnut canker, caused by Cryphonectria parasitica, by antagonistic organisms and hypovirulent isolates. Turk J Agric For. 35: 515-523.
Aksoy, M., Serdar, Ü., Soylu, A. (2005). Kestane fidanlarýnda kestane [Cryphonectria parasitica (Murrill) Barr.] karpý yaplýan uygulamalar. OMÜ Ziraat Fakültesi Dergisi. 20: 24– 9 (in Turkish).
Aminian, P., Azizollah, A., Abbas, S., Naser, S. (2011). Effect of double-stranded RNAs on virulence and deoxynivalenol production of Fusarium graminearum isolates. Journal of Plant Protection Research. 51(1): 29-37.
Bandy, B.P., Tavantzis, S.M. (1990). Effect of hypovirulent Rhizoctonia solani on Rhizoctonia disease, growth and development of potato plants. American Potato Journal. 67: 189-199.
Bartholomäus, A., Wibberg, D., Winkler, A., Pühler, A., Schlüter, A., Varrellmann, M. (2016). Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG-2-2 IV. PLoS One. 11: e0165965.
Bharathani, N., Saslo, H., Gudipati, L., Bharathan, S., Whited, K., Anthony, K. (2005). Double-stranded RNA distribution and analysis among isolates of Rhizoctonia solani AG-2 to - 13. Plant Pathol. 54: 196-203.
Botella, L., Tuominen, T.T., Hantula, J., Diez, J.J. (2012). Presence of viral dsRNA molecules in the Spanish population of Gremmeniella abietina. Journal of Agricultural Extension and Rural Development. 4: 211-213.
Bournb, M., Turchetti, T., Nannelli, R., Roversi, P.F., Paoli, F., Danti, R., Simon, S. (2016). Occurrence and transmission of mycovirus Cryphonectria hypovirus 1 from dejecta of Threaphagus corticalis (Acari, Acradidae). Fungal Biol. 120: 351-357.
Brewer, M.T., Larkin, R.P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection. 24: 939-950.
Carling, D.E., Baird, R.E., Gitaitis, R.D., Brainard, K.A., Kuninaga, P.F., Danti, M.T., Larkin, R.P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani AG-2 to - 13. Plant Pathol. 54: 196-203.
Boatel, L., Tuominen, T.T., Hantula, J., Diez, J.J. (2012). Presence of viral dsRNA molecules in the Spanish population of Gremmeniella abietina. Journal of Agricultural Extension and Rural Development. 4: 211-213.
Bournb, M., Turchetti, T., Nannelli, R., Roversi, P.F., Paoli, F., Danti, R., Simoni, S. (2016). Occurrence and transmission of mycovirus Cryphonectria hypovirus 1 from dejecta of Threaphagus corticalis (Acari, Acradidae). Fungal Biol. 120: 351-357.
Brewer, M.T., Larkin, R.P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection. 24: 939-950.
Carling, D.E., Baird, R.E., Gitaitis, R.D., Brainard, K.A., Kuninaga, S. (2002a). Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology. 92: 893-899.
Carling, D.E., Kuninga, S., Brainard, K.A. (2002b). Hyphal anastomosis reactions, rDNA-ITS sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology. 92: 43-50.
Castanho, B., Butler, E.E. (1978). Rhizoctonia decline: A degenerative disease of Rhizoctonia solani. Phytopathology, 68: 1505-1510.
Çeliker, N.M., Onoður, E. (1998). Determining the hypovirulence in the isolates of chestnut blight (Cryphonectria parasitica (Murr.) Barr.) in Turkey. ‘First record’. J. Turk. Phytopathol. 27: 145-146.

Çeliker, N.M., Onoður, E. (2009). Actual status of biological control studies on chestnut blight in Turkey. Acta Hortic. 866: 369-372.

Çeliker, N.M., Onoður E. (2011). Promising results on biological control of chestnut blight in Turkey. Tariým Bilimleri Dergisi. 17: 122-130 (in Turkish with an abstract in English).

Chiba, S., Lin, Y.H., Kondo, H., Kanematsu, S., Suzuki, N. (2013). A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. J. Virol. 87: 6727-6738.

Chiba, S., Salapetih, L., Lin, Y.H. (2009). A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations and potential for biological control. J. Virol. 83: 12801-12812.

Cho, W.K., Lee, K.M., Yu, J., Son, M., Kim, K.H. (2013). Insight into Mycoviruses Infecting Fusarium Species. Advances in Virus Research. 86: 273-288.

Choi, G.H., Chen, B., Nuss, D.L. (1995) Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc. Natl. Acad. Sci. USA. 92: 305-309.

Coenen, A., Kevei, F., Hoekstra, R.F. (1997). Factors affecting the spread of double-stranded RNA viruses in Aspergillus nidulans. Genet. Res. 69: 1-10.

Coppin, E., Debuchy, R., Arnaise, S., Picard, M. (1997). Mating types and sexual development in filamentous ascomycetes. Microbiology and Molecular Biology Reviews. 61: 411-428.

Cojkun, H., Turchetti, T., Maresi, G., Santagana, A. (1999). Preliminary investigations into [Cryphonectria parasitica (Murr.) Barr.] isolates from Turkey. Phytopathol Mediterr. 38: 101-110.

Darissa, O., Adam, G., Schäfer, W. (2012). A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. European Journal of Plant Pathology. 134: 181-189.

Das, S., Falloon, R.E., Stewart, A., Pitman, A.R. (2014). Molecular characterisation of an endornavirus from Rhizoctonia solani AG-3PT infecting potato. Fungal Biology. 120(3): 338-350.

Das, S., Falloon, R.E., Stewart, A., Pitman, A.R. (2016). Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Genet. Biol. 104: 446-452.

Ding, P., Liu, F., Xu, C., Wang, K. (2007). Transmission of Cryphonectria hypovirus to protect chestnut trees from chestnut blight disease. Biological Control. 40: 9-14.

Dixit, R., Singh, R.B., Singh, H.B. (2015). Screening of antagonistic potential and plant growth promotion activities of Trichoderma spp. and fluorescent Pseudomonas spp. isolates against Sclerotinia sclerotiorum causing stem rot of French bean. Legume Research. 38: 375-381.

Döken, M. T., Açıkgylzı, S., Erincik, Ö. (2009). Chestnut blight and evaluation of the feasibility of its biological control in the Aydın Province, Turkey by using hypovirulence. Acta Hortic. 866: 373-378.

Dong, X., Ji, R., Guo, X., Foster, S.J., Chen, H., Dong, C. (2008). Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta. 228: 331-340.

Gamalero, E., Pivato, B., Bona, E., Copetta, A., Avidano, L., Lingua, G., Berta, G. (2010). Interactions between a fluorescent pseudomonad, an arbuscular mycorrhizal fungus and a hypovirulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants. Plant Biosystems. 144: 582-591.

Ghabrial, S.A. (1994). New developments in fungal virology. Adv. Virus Res. 43: 303-308.

Ghabrial, S.A., Castón, J.R., Jiang, D., Nibert, M.L., Suzuki, N. (2015). 50-plus years of fungal viruses. Virology. 479-480: 356-368.

Ghabrial, S.A., Suzuki, N. (2009). Viruses of plant pathogenic fungi. Ann. Rev. Phytopathol. 47: 353-384.

Grente, M.J. (1965). Les formes hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. Acad. Agric. Fr. 51: 1033-1036.

Gürer, M., Ottaviani, M.P., Cortesi, P. (2001). Genetic diversity of subpopulations of Cryphonectria parasitica in Turkey. Forest Snow and Landscape Research. 76: 383-386.

Hamid, M.R., Xie, J., Wu, S., Maria, S.K., Zheng, D., Hamidou, A.A., Wang, Q., Cheng, J., Fu, Y., Jiang, D. (2018). A Novel Deltavirus infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Viruses. 10: 295. doi: 10.3390/v10060295

He, H., Chen, X., Li, P., Qiu, D., GuoA, L. (2018). Complete genome sequence of a Fusarium graminearum double-stranded RNA virus in a newly proposed family, Alternariaviridae. Genome Announc. 6:e00064-18. https://doi.org/10.1128/genomeA.00064-18.

Hegedus, D.D., Rimmer, S.R. (2005). Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiology Letters. 251: 177-184.

Heiniger, U., Rigling, D. (1994). Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32: 581-599.

Hillman, B.I., Supyrani, S., Kondo, H., Suzuki, N. (2004). A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Colovirus genus of animal pathogens. J. Virol. 78: 892-898.

Hillman, B.I., Suzuki, N. (2004). Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63: 423-472.

Hyder, R., Pennananen, T., Hamberg, L., Vainio, E.J., Piri, T., Hantula, J. (2013). Two viruses of Heterobasidion conifer beneficia, cryptic or detrimental effects to their hosts in different situations. Fungal Ecology. 6: 387-396.

ICTV. (2014). International committee on taxonomy of viruses. Retrieved March 10, 2015, from http://ictvonline.org/index.asp.

Ihrmark, K., Johannesson, H., Stenström, E., Stenlid, J. (2002). Transmission of double-stranded RNA in Heterobasidion
annosum. Fungal Genetics and Biology. 36: 147-154.

JadHAV, B., SARKAR, R.B., GEORGE, P. (2019). Molecular characteri-
zation of Fusarium oxysporum causing chickpea wilt by internal transcribed spacer (ITS) Marker. Legume Research. DOI:10.18805/LR-4151.

JAIN, S.K., KHALILI, K., ALI, M., SINGH, R. (2014). Response of Fusarium monoliforme- the causative organism of Bakanae Disease of Rice against different fungicides. Biosc. 9: 413-6.

KHALILAF, M.E., PEARSON, M.N. (2014a). Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology. 464-465: 441-449.

KHALILAF, M.E., PEARSON, M.N. (2014b). Molecular characterisation of an endornavirus infecting the phytopathogenic Sclerotinia sclerotiorum. Virus Res. 189: 303-309.

KHALILAF, M.E., PEARSON, M.N. (2014c). Molecular characterisation of novel mito viruses associated with Sclerotinia sclerotiorum. Arch. Virol. 159: 3157-3160.

Kim, K.S., Min, J.Y., Dickman, M.B. (2008). Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions. 21: 605-612.

KOTAKADI, V.S., GADDAM, S., GOPAL, S.D.V.R. (2012). Serological tests for detection of sunflower necrosis Toxo virus causing necrosis disease of sunflower (Helianthus annuus). Bioscan. 7: 543-545.

KRSTIN, L., KATANI, Z., JEŽI, M., POLJAK, I., NUSKERN, L., MATKOVI, I., IDŽOJI, M., PERICAB, M.C. (2016). Biological control of chestnut blight in Croatia: an interaction between host sweet chestnut, its pathogen Cryphonectria parasitica and the biocontrol agent Cryphonectria hypovirus 1. Pest Manag Sci. 73: 582-589.

Larkin, R.P., Tanavantzis, S. (2013). Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am. J. Potato Res. 90: 261-270.

Larson, T.G., Choi, G.H., Nuss, D.L. (1992). Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J. 11: 4539-4548.

Li, K., Zheng, D., Cheng, C., Chen, T., Fu, Y., Jiang, D., Xie, J. (2016). Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Research. 219: 79-99.

Li, P., Zhang, H., Chen, X., Qiu, D., Guo, L. (2015). Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology. 481: 151-160.

Li, P., Lin, Y., Zhang, H., Wang, S., Qiu, D., Guo, L. (2016). Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology. 489: 86-94.

Li, Z., Chen, L., MEILING, Z., MEI, Z., ERUNX, Z. (2018). Diversity of dsRNA viruses infecting rice sheath blight fungus Rhizoctonia solani AG-1 IA. Rice Science. 25: 57-60.

Lin, Y. H., Chiba, S., Tani, A., Kondo, H., Sasaki, A., Kanematsu, S., Suzuki, N. (2012). A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology. 426: 42-50.

Lin, Z., Xu, S., Que, Y., Wang, J., Comstock, J.C. (2014). Species-specific detection and identification of Fusarium species complex, the causal agent of Sugarcane Pohkka Boeng in China. PLoS ONE. 9: e104195.

Liu, A.R., Chen, S.C., Lin, X.M., Wu, S.Y., Xu, T., Cai, F.M., Raesh, J. (2010). Endophytic Pestalotiopsis species spp. associated with plants of Palmae, Rhizophoraceae, Planchonellaceae and Podocarpaceae in Hainan, China. Afr. J. Microbiol. Res. 4: 2661-2669.

Liu, H., Fu, Y., Jiang, D., Li, G., Xie, J., Peng, Y., Yi, X., Ghabrial, S.A. (2009). A novel mycovirus that is related to the human pathogen Hepatitis E virus and rubilike viruses. J. Virol. 83: 1981-1991.

Liu, Y.C., Linder-Basso, D., Hillman, B.I., Kaneko, S., Milgroom, M.G. (2003). Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryptococcus. Mol. Ecol. 12: 1619-1628.

Marzano, S.Y., Hobbs, H.A., Nelson, B.D., Hartman, G.L., Eastburn, D.M., McCoppin, N.K., Domier, L.L. (2015). Transfection of Sclerotinia sclerotiorum with in vitrotranscripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J. Virol. 89: 5060-5071.

Merkel, H. W. (1905). A Deadly Fungus on The American chestnut, In: New York Zoological Society 10th Annual VOL. 56. 1992 Report. New York Zoological Society, Bronx, N.Y. p. 97-103.

Milgroom, M.G. and Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology. 42: 311-338.

Milgroom, M.G., Hillman, B. I. (2011). The ecology and evolution of fungal viruses. In: Studies in viral ecology [C. J. Hurst (Ed.)], Hoboken, NJ: Wiley-Blackwell. (Vol. 1, pp. 217-253).

Mondal, B., Khatua, D.C., Hansda, S., Sharma, R. (2015). Addition to the host range of Sclerotinia sclerotiorum in West Bengal. Sch. Acad. J. Biosci. 3: 361-364.

Nagaraj, B.T., Sunkad, G., Pramesh, D., Naik, M.K., M.B. Patil. (2017). Host Range Studies of Rice Sheath Blight Fungus Rhizoctonia solani (Kuhn). Int. J. Curr. Microbiol. App. Sci. 6: 3856-3864.

Nannelli, R., Turchetti, T. (1999). Mitoses as carriers of hypovirulent strains of the chestnut blight fungus (Cryphonectria parasitica). Redia. 82: 89-98.

Nibert, M.L., Ghabrial, S.A., Maiss, E., Lesker, T., Vainio, E.J. (2014). Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 188: 128-141.

Park, S.M., CHOI, E.S., KIM, M.J., cha, B.J., Yang, M.S., kim, D.H. (2004). Characterization of HG01 homologue, CpmK1, from Cryphonectria parasitica an evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51: 1267-1277.

Park, Y., James, D., Punja, Z.K. (2005). Co-infection by two distinct tolovirus-like doublestranded RNA elements in Chalara elegans (Thielaviopsis basicola). Virus Research. 109: 71-85.

Pearson, M.N., Beever, R.E., Boine, B., Arthur, K. (2009). Mycoviruses of filamentous fungi and their relevance to plant pathology. Volume 41 Issue 3 (September 2020)
Potential of Mycovirus in the Biological Control of Fungal Plant Pathogens: A Review

Ran, H., Liu, L., Li, B., Cheng, J., Fu, Y., Jiang, D., Xie, J. (2016). Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botyribinavirus and a strain of a mitovirus. Virology Journal. 13: 92.

Roossinck, M.J. (2015a). Move over, bacterial Viruses make their mark as mutualistic microbial symbionts. Journal of Virology. 89: 6532-6535.

Rusli, M.H., Idris, A.S., Cooper, R.M. (2015). Evaluation of Malaysian oil palm progenies for susceptibility, resistance or tolerance of Fusarium oxysporum f. sp. elaeidis and defense-related gene expression in roots. Plant Pathol. 64: 638-47.

Sasaki, A., Kanematsu, S., Onoue, M., Oikawa, Y., Nakamura, H., Yoshida, K. (2007). Artificial infection of Rosellinia necatrix with purified virus particles of a member of the genus Mycovirus reveals its uneven distribution in single colonies. Phytopathology. 97: 278-286.

Shapira, R., Choi, G.H., Nuss, D.L. (1991). Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. The EMBO Journal. 10: 731-739.

Simoni, S., Nannelli, R., Roversi, P.F., Turchetti, T., Bouneb, M. (2014). Thyreophagus corticis as a vector of hypovirulence in Cryphonectria parasitica in chestnut stands. Exp. Appl. Acarol. 62: 363-375.

Sinden, J.W., Hauser, E. (1950). Report of two new mushroom diseases. Mushroom Sci. 1: 96-100.

Sinha, B., Tarafdar, J. (2007). A study on the cause of sweet potato virus disease in West Bengal. Bioscan. 2: 163-167.

Supyani, Gutomo, H.S. (2014). Hypovirulent isolates of Rhizoctonia solani collected from rice in Karanganyar regency, Central Java, Indonesia. Journal of Agricultural and Biological Science. 9: 19-23.

Supyani, S., Widadi, S. (2015). Hypovirulent isolates of Fusarium solani collected from chili crops in Boyolali Regency, Central Java, Indonesia. Agrivita. 37: 67-74.

Suzuki, N., Supyani, S., Maruyama, K., Hillman, B. I. (2004). Complete genome sequence of Mycovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. Journal of General Virology. 85: 3437-3448.

Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology. 158: 649-658.

Turina, M., Rostagno, L. (2007) Virus-induced hypovirulence in Cryphonectria parasitica: still an unresolved conundrum. J. Plant Pathol. 89: 165-178.

Gayathri, U., Ramasamy, V. (2019). Utilization of liquid fertilizers for Agro-industrial waste management and reducing challenges through Nano-encapsulation-A review. Indian J. Agric. Res. 53: 641-645.

Wang, L., Zhang, J., Zhang, H., Qiu, D., Guo, L. (2016). Two novel relative double-stranded RNA mycoviruses infecting Fusariumum poae strain SX63. Int. J. Mol. Sci. 17: 641.

Wang, S., Kondo, H., Liu, L., Guo, L., Qiu, D. (2012). A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Virus Res. 174: 69-77.

Wang, M., Wang, Y., Sun, X., Cheng, J., Fu, Y., Liu, H. (2015). Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from ssRNA virus to dsRNA virus. J. Virol. 89: 8567-8579.

Williams, B., Kabbage, M., Kim, H.J., Britt, R., Dickman, M.B. (2011). Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathogens. 7: e1002107. https://doi.org/10.1371/journal.ppat.1002107.

Wu, S., Cheng, J., Fu, Y., Chen, T., Jiang, D., Ghabrial, S.A. (2017). Virus-mediated suppression of host non-self-recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathogens. 13: e1006234. DOI: 10.1371/journal.ppat.1006234.

Xiao, X., Cheng, J., Tang, J., Fu, Y., Jiang, D., Baker, T.S., Ghabrial, S.A., Xieb, J. (2014). A Novel Partitivirus That Confers Hypovirulence on Plant Pathogenic Fungi. Journal of Virology. 88: 10120-10133.

Xie, J., Ghabrial, S.A. (2012). Molecular characterizations of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology. 428: 77-85.

Xie, J.T., Jiang, D.H. (2014). New Insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 52: 45-68.

Xie, J., Wei, D., Jiang, D., Fu, Y., Li, G., Ghabrial, S.A., Peng, Y. (2006). Characterization of debilitation associated mycovirus infecting the plant pathogenic fungus Sclerotinia sclerotiorum. J. General Virol. 87: 241-249.

Xie, J., Xiao, X., Fu, Y., Liu, H., Cheng, J., Ghabrial, S.A., Li, G., Jiang, D. (2011). A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology. 418: 49-56.

Xu, Z., Wu, S., Liu, L., Cheng, J., Fu, Y., Jiang, D., Xie, J. (2015). A mitovirus related toplant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Res. 197: 127-136.

Yphantis, D.A., Dainko, J.L., Schlenk, F. (1967). Effect of some proteins on the yeast cell membrane. J. Bacteriol. 94: 1509-1515.

Yu, J., Kwon, S.J., Lee, K.M., Son, M., Kim, K.H. (2009). Complete nucleotide sequence of double-stranded RNA viruses from Fusarium graminearum strain DK3. Arch Virol. 154: 1855.

Yu, J. S., Lee, K.M., Son, M.I., Kim, K.H. (2011). Molecular characterization of Fusarium graminearum virus 2 isolated from Fusarium graminearum strain 98-8-60. The Plant Pathology Journal. 27: 285-290.

Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S.A., Li, G., Peng, Y., Xie, J., Cheng, J., Huang, J., Yi, X. (2010). A geminivirus related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. National Acad. Sci. USA. 107: 8387-8392.

Yua, X., Li, B., Fu, Y., Xie, J., Cheng, J., Ghabrialc, S. A., Li, L., Yi, X., Jianga, D. (2013). Extracellular transmission of a DNA
mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences, 2013. Pp: 1-6.

Zhang, H., Mallik, A., Zeng, R.S. (2013). Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum) role of plant volatiles. J. Chem. Ecol. 39: 243-52.

Zheng, L., Liu, H. Q., Zhang, M.L., Cao, X., Zhou, E.X. (2013). The complete genomic sequence of a novel mycovirus from Rhizoctonia solani AG-1 IA strain B275. Arch Virol. 158: 1609-1612.

Zheng, L., Zhang, M.L., Chen, Q. G., Zhu, M.H., Zhou, E.X. (2014). A novel mycovirus closely related to viruses in the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus Rhizoctonia solani. Virology. 456/457: 220-226.

Zhong, J., Chen, C.Y., Gao, B.D. (2015). Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes. 51: 167-170.