Planet-Disk Interaction revisited

Manuel Jung1,a, T. F. Illenseer1, and W. J. Duschl1,2

1Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-Universität Kiel, Germany
2Steward Observatory, The University of Arizona, Tucson, AZ, USA

Abstract. We present results on our investigations of planet–disk interaction in protoplanetary disks. For the hydrodynamic simulations we use a second order semi–discrete total variation diminishing (TVD) scheme for systems of hyperbolic conservation laws on curvilinear grids. Our previously used method conserves the momentum in two dimensional systems with rotational symmetry. Additionally, we modified our simulation techniques for inertial angular momentum conservation even in two dimensional rotating polar coordinate systems. The basic numerical practices are outlined briefly. In addition we present the results of a common planet–disk interaction setup.

1 2D advection solver FOSITE

FOSITE ([1], fosite.sf.net) implements second order semi-discrete central schemes for systems of hyperbolic conservation laws on curvilinear grids. Let \((\xi, \eta, \varphi)\) be the coordinates of such a grid with the geometrical scaling factors \(h_{\xi}, h_{\eta}, h_{\varphi}\). It is convenient to define new spatial differential operators

\[
\mathcal{D}_\xi = \frac{1}{\sqrt{g}} \frac{\partial}{\partial \xi} h_{\eta} h_{\varphi}, \quad \mathcal{D}_\eta = \frac{1}{\sqrt{g}} \frac{\partial}{\partial \eta} h_{\xi} h_{\varphi},
\]

using the \(\sqrt{g} = h_{\xi} h_{\eta} h_{\varphi}\). Systems of hyperbolic conservation laws on curvilinear grids can than be described by

\[
\partial_t u + \mathcal{D}_\xi F(u) + \mathcal{D}_\eta G(u) = S(u).
\]

The numerical scheme used by FOSITE generalizes the two-dimensional central-upwind schemes developed by [2]. Geometrical source terms of vectorial conservation laws are formulated in a general prescription for various orthogonal curvilinear coordinates.

In contrast to many other astrophysical softwares used for planet-disk interaction simulations (e.g. FARGO by [3], RODEO by [4] and others in [5], as well as RAPID by [6]), FOSITE solves the Euler equations in one step without depending on techniques such as operator splitting.

In conclusion we abstract the most import features of FOSITE:

\begin{itemize}
 \item finite volume scheme for hyperbolic conservation laws
\end{itemize}

ae-mail: mjung@astrophysik.uni-kiel.de

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2 Inertial angular momentum transport

If exact conservation of angular momentum in the inertial frame is of great interest, it is possible to reformulate the Euler equations for transport of inertial angular momentum l. This includes the Coriolis and centrifugal forces in the rotating frame of reference with angular velocity Ω:

$$
l = h_\eta \left(v_\eta + h_\eta \Omega \right)$$

Here h_η is the geometrical scaling factor along the second coordinate, e.g. for polar coordinates $h_\eta = r$. This leads to a new system of hyperbolic conservation laws, which imply exact conservation of mass and inertial angular momentum. Using the local isothermal speed of sound approximation yields $p = \rho c_s^2$ for the pressure, we derive:

$$
u = \begin{bmatrix}
\rho \\
\rho v_\xi \\
\rho v_\eta \\
\rho l
\end{bmatrix}, \quad F = \begin{bmatrix}
\rho v_\xi \\
\rho v_\xi^2 + p \\
\rho v_\xi v_\eta \\
\rho v_\xi l + h_\eta p
\end{bmatrix}, \quad G = \begin{bmatrix}
\rho v_\eta \\
\rho v_\eta v_\xi \\
\rho v_\eta l \\
\rho v_\eta + h_\eta p
\end{bmatrix},$$

$$
S = \begin{bmatrix}
0 \\
\rho h_\eta \left(\frac{v_\eta}{h_\eta} + \Omega \right)^2 + p \frac{1}{h_\eta} \frac{\partial h_\eta}{\partial \xi} \\
0
\end{bmatrix}.$$
Figure 1. Comparison of planet-disk interaction simulations with and without inertial angular momentum transport (iamt) after 30 and 100 planetary orbits.

4 Conclusions

We could show, that exact inertial angular momentum conservation can be achieved without relying on techniques like operator splitting. FOSITEs results agree well with standard simulations. In the high resolution runs we observe a big vortex at the outer gap edge.
Figure 2. Comparison of planet-disk interaction simulations with standard and high resolution after 30 and 100 planetary orbits.

References

[1] T.F. Illenseer, W.J. Duschl, CPC 180, 2283 (2009), 0804.2979
[2] A. Kurganov, E. Tadmor, JCP 160, 241 (2000)
[3] F. Masset, AAPS 141, 165 (2000), arXiv:astro-ph/9910390
[4] S.J. Paardekooper, G. Mellema, A&A 450, 1203 (2006), arXiv:astro-ph/0511538
[5] M. de Val-Borro et al., MNRAS 370, 529 (2006), arXiv:astro-ph/0605237
[6] L.R. Mudryk, N.W. Murray, NA 14, 71 (2009), 0812.2938