Model-free learning enables an agent to make better decisions based on prior experience while representing only minimal knowledge about an environment’s structure. It is generally assumed that model-free state representations are based on outcome-relevant features of the environment. Here, we challenge this assumption by providing evidence that a putative model-free system assigns credit to task representations that are irrelevant to an outcome. We examined data from 769 individuals performing a well-described 2-step reward decision task where stimulus identity but not spatial-motor aspects of the task predicted reward. We show that participants assigned value to spatial-motor representations despite it being outcome irrelevant. Strikingly, spatial-motor value associations affected behavior across all outcome-relevant features and stages of the task, consistent with credit assignment to low-level state-independent task representations. Individual difference analyses suggested that the impact of spatial-motor value formation was attenuated for individuals who showed greater deployment of goal-directed motor learning. Our findings highlight a need for reconsideration of how model-free representations are formed and regulated according to the structure of the environment.

Significance

It is widely accepted that agents learn action values based on experience in a “model-free” manner (i.e., without holding a model of the environment). Environments usually embody many features, where a subset is considered relevant for model-free outcome learning. In this study, we show that a putative model-free system assigns credit to outcome-irrelevant task representations, regardless of stimulus features. The degree of impact of these associations is strongly linked to deployment of model-based strategies. Our findings motivate a reconsideration of how model-free representations are formed and regulated according to the structure of the environment.

Author contributions: M.M., N.C., and R.J.D. designed research; M.M., N.C., and R.J.D. performed research; N.S., R.M., T.U.H., R.A.K., and D.M. analyzed data; N.C. performed participant recruitment and research; N.S., R.M., T.U.H., R.A.K., and D.M. contributed new reagents/analytic tools; N.S., R.M., R.A.K., and D.M. analyzed data; N.C. performed participant recruitment; and N.S., R.M., T.U.H., and R.J.D. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

Data deposition: Trial-by-trial data, R code for model-agnostic score, and MatLab code for Models 1 to 5 have been deposited in Open Science Framework, https://doi.org/10.17605/5Y63759389ea.

To whom correspondence may be addressed. Email: shahar.nitzan@gmail.com.

A complete list of the NSPN Consortium can be found in SI Appendix.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821647116/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1821647116
differences analysis suggested that a greater deployment of model-based strategies at the first stage was related to a lesser influence of spatial-motor model-free associations on decision making. These findings suggest a need for revision in our understanding of model-free representations and how these are regulated according to the structure of the task.

Results

We studied a large sample of healthy volunteers (ages 14 to 24 y) who had completed a 2-step decision task (2) at 3 distinct time points repeated after ~6 and 18 mo after the first measurement ($n = 769, 63, and 568 for the 3 time measurements) (13). In the task, participants were asked to navigate between 2 stages to gain rewards (Fig. 1). The second stage included 2 pairs of stimuli (i.e., fractal images). To reach these, participants made first-stage choices that probabilistically determine the fractals presented at the second stage. Fractals were randomly allocated at each stage and each trial to the right/left side of the screen.

Participants were instructed to use a corresponding right/left key press to indicate their fractal selection. Therefore, the location of the fractal on the screen and the response used to indicate the selection were ostensibly task relevant. However, at each stage and each trial, fractal identity alone, but not spatial-motor aspects, predicted expected reward (Fig. 1). This allowed us to disentangle credit assignment to fractal as opposed to spatial-motor representations.

Consecutive Trial Analysis. We start by evaluating the impact of spatial-motor model-free (i.e., MFspatial-motor) associations on participants’ behavior using model-agnostic measures. Across analyses, we examined whether reward history affected the probability of response key selection on the next trial ($n + 1$). Note that, in this task, response key and fractal location are perfectly confounded. For simplicity, we address value associations only for the right/left response key (rather than fractal location).

Within-state analysis. We examined participants’ choices when making second-stage decisions as a function of outcome (unrewarded vs. rewarded) and response mapping (repeated or flipped fractal-to-key mapping) exclusively for trials where the same second-stage state repeated itself (Fig. 2A). We assumed that, for a chooser with no influence of MFspatial-motor associations on behavior, the effect of reward will be exactly the same regardless of mapping. However, if there is some involvement of MFspatial-motor associations, we would expect an outcome \times mapping interaction such that a greater effect of reward on fractal selection would be evident when a response mapping is repeated vs. flipped. As an example, consider a participant who selected Fractal A with a “right” response key and obtained a reward (Fig. 2A). Since the predicted value of Fractal A increased, on the next trial the participant should be more likely to pick Fractal A again. However, if reinforcement value was also assigned to the right response key, then there should be an enhanced tendency to press that same key after a reward (compared with no reward). Consequently, the latter influence will act to increase or decrease the relative tendency to choose a specific fractal conditional on mapping repetition (i.e., reward \times mapping interaction).

To examine this hypothesis, we calculated a mixed effect logistic regression (14) where outcome (unrewarded vs. rewarded), mapping (flipped vs. same), and their paired interaction were entered as fixed and random effects predicting the probability that the participant will repeat the same fractal selection (i.e., fractal stay probability). We found a statistically significant outcome \times mapping interaction effect [$\chi^2(1) = 392.09, P < 0.001$], showing a larger effect of reward on fractal stay probability when the chosen fractal was associated with the same key on both the n and $n + 1$ trials. Specifically, when mapping was flipped, reward increased fractal stay probability by 21.39% on average compared with 37.26% when fractal response mapping was repeated (Fig. 2B).

This result demonstrates that an effect of reward was dependent on the fractal effector response mapping, despite the fact that fractal alone predicted reward in this task. One possibility is that value was assigned to a combination of fractal and response key (for example, a different value was assigned for Fractal A with right response key and Fractal A with left response key). However, a second possibility is that credit was assigned to some extent to the response key independent of the state and outcome-relevant features of the stimuli. To arbitrate between these possibilities, we now examine trials where a different pair of fractals was offered at trial n compared with $n + 1$.
Between-states analysis. To explore whether MFspatial-motor associations affected performance across state and stimulus features, we examined participants’ choices at the second stage in trials where the pair of fractal was presented at the trial n differed from the one presented in the following n + 1 trial (Fig. 3A). We calculated a mixed effect logistic regression with outcome (unrewarded vs. rewarded) predicting the probability that participants will repeat their right/left response key selection (i.e., response key stay probability). We found a statistically significant outcome effect \(\chi^2 = 101.1, P < 0.001 \), showing that participants were 4.07% more likely to repeat the response key selection at trial n + 1 when it was rewarded vs. unrewarded at trial n (Fig. 3B).

The between-state sequential effect accords with within-state effects reported above, suggesting that participants assigned value to spatial-motor information. While the within-state analysis could reflect a value assignment to the response key dependent on the state and/or related fractal, this explanation is inadequate for the between-state effect. The between-state analysis suggests that, even when a different pair of fractals was offered, reward had an effect on the next trial response key selection. We believe that this can only be explained under an assumption that value was assigned to the response key also, independent of the outcome-relevant fractals. Still, value assignment might be stage dependent so that individuals assigned value to response keys for the specific task stage, thus reflecting some dependency on outcome-relevant features of the task. To examine whether value assignment to response keys is independent of all outcome-relevant features (stages, states, and fractal identity), we examined next behavior at the first stage as a function of choice and reward at the previous second stage.

Between-stages effects. We examined whether MFspatial-motor representations affected performance across task stages. Specifically, we calculated a mixed effect logistic regression with outcome (unrewarded vs. rewarded) predicting the probability that participants will repeat their response key selection at the second stage of trial n when performing a first-stage response key selection at trial n + 1 (Fig. 4/A). We found a statistically significant outcome effect \(\chi^2 = 147.01, P = 0.001 \), showing that reward increased by 4.13% the probability that participants will select at the first stage of trial n + 1 the same response key selected at the second stage of trial n (Fig. 4B). This finding suggests that value was assigned to response keys and affected behavior independent of fractals, task states, and stages.

All 3 consecutive trial analyses (within stage, between states and stages) did not correlate with age and were not reduced with practice (SI Appendix). Additional analysis demonstrated similar (but smaller) effects for the n + 2 trial (SI Appendix).

Fig. 4. Between-stage effect of reward on response key selection. (A) Example for a sequence of trials included in the analysis where we examine response key selection at the first stage of trial n + 1 as a function of response key selection at the second stage and reward at trial n. (B) Effect of reward (rewarded vs. unrewarded) on the chance that the participant will select in the first stage of trial n + 1 the same response key selected at the second stage of trial n. Results suggest that value was assigned to the outcome-irrelevant response key (or fractal location) independent of task stage, state, or fractal identity. Error bars represents 95% confidence intervals. (C) Raincloud plot (34) showing individual scores for the outcome effect (as calculated in the mixed effect regression). Positive values indicate greater involvement of spatial-motor value associations on choice behavior.

Computational Modeling. We next used computational modeling to examine and disentangle the relations between spatial-motor value associations and state representations for fractal learning (model-based and model-free). We fitted 5 computational reinforcement learning models accounting for participants’ choices. 1) Model 1 (“null model”) did not include spatial-motor learning and accounts for participants choices by integrating fractal value assignment for both model-based and model-free systems. 2) Model 2 included the same fractal model-free and model-based learning as Model 1, with an additional separate learning system for MFspatial-motor. 3) Model 3 had the same fractal model-based learning as Model 1 but assumed that spatial-motor aspects affected model-free state representations and were weighted along with the fractal according to a linear function approximation to form state action values. 4) Model 4 had the same fractal model-based learning as Model 1 but also assumed that the model-free system held separate state action values for each pairing of fractal and response key. Finally, 5) Model 5 assumed that spatial-motor aspects affected both model-free and model-based state and transition matrix representations (model-agnostic analysis examining the influence of mapping on model-based decision making in the first stage can be found in SI Appendix). Therefore, in Model 5, both model-based and model-free systems held values for fractal response key pairing.

We used hierarchical fitting using expectation maximization with Laplace approximation method (15) and compared models by calculating Bayesian inference criteria (BIC), which penalizes the number of parameters (difference of 10 points or more is considered strong evidence, with lower scores indicating better fit) (16). We found a better fit for Model 2 vs. Model 1 (\(\Delta \text{BIC}_{\text{null}} = 850.52 \)), suggesting that the addition of an MFspatial-motor influence improved the model’s ability to predict participants’ choices. For Model 3, 4, and 5, we found a worse fit compared with the null model (\(\Delta \text{BIC}_{\text{null}} > 27,214.47 \)).

To examine how well the best-fitting model (Model 2) predicted the observed behavior, we took the individual parameters from each participant and simulated data for 20 experiments with 1,000 trials each. We then estimated the 3 model-agnostic sequential scores from simulated data. Across individuals, we found estimates similar to those found with the empirical data, including the within-effect (for mapping switches, reward increased fractal stay probability by 20.96% on average compared with 25.98% for mapping repetitions), between-states effect (reward increased response key stay probability by 2.55%), and between-stages effect (reward increased response key stay probability by 1.44%). At the individual level, we found good correspondence between model and observed data reflected in a
statistically significant correlation between the 3 simulated and empirical effects \(r = 0.41, CI_{95\%} = 0.25 \text{ to } 0.52, P < 0.001 \) (for within-state effects; \(r = 0.41, CI_{95\%} = 0.25 \text{ to } 0.52 \) for between-state effects). Notably, latent factors are considered less

The computational modeling results are, therefore, in line with the model-agnostic sequential analysis, suggesting that individual

Relationship Between Spatial-Motor Model-Free Associations and Deployment of Model-Based Strategies. The 2-step task makes it possible to estimate the extent to which participants act in accord with the transition structure of the task (i.e., reflecting model-based behavior). Specifically, by examining decisions at the first stage, one can estimate the extent to which individuals calculate a probability that their actions will lead to a second-stage state \((2) \). Having a decision policy that exploits the probability that a certain first-stage action will lead to a desired second-stage state is considered a hallmark of model-based behavior (since the individual is deciding according to a model of the task transition structure). We conjectured that an individual’s task representation might include not only information regarding the transition structure but also, features of a current state that are relevant to an outcome. This builds on an assumption that MFspatial-motor associations (assigning values to the motor response/spatial location) should be regulated according to a task-mental representation. Consequently, we hypothesized that individuals with greater deployment of model-based strategies would also show less of an influence from MFspatial-motor associations.

We specified 2 a priori latent factors capturing involvement of MFspatial-motor associations and model-based processing on participants’ choices using structural equation modeling. Structural equation modeling is a multivariate method that combines factor analysis and multiple regression, allowing the estimation of structural relationships between latent constructs and their measured variables. Notably, latent factors are considered less noisy than their counterparts \((17, 18) \), with structural equation modeling shown previously to improve reliability for between-state estimates \((12) \). Here, we estimated the relationship between 2 a priori latent variables. 1) Model-free spatial-motor (MFspatial-motor) reflects a cognitive process of associating spatial-motor aspects of the task with reward outcomes. This we measured from 4 scores: a model parameter (Model 2) weighting the contribution of spatial-motor model-free associations to choice behavior \((w_2) \) (Materials and Methods) and the 3 sequential effects described above (within-state, between-state, and between-stage sequential effects) \((\text{Figs. } 2–4) \). 2) Model-based reflects an ability to incorporate knowledge about task transition structure when making a choice. This we measured from 3 scores: a model parameter (Model 2) weighting the contribution of model-based over model-free to choice behavior \((w_1) \) (Materials and Methods) and 2 model-agnostic measures that were previously found to be tightly associated with model-based/model-free tradeoff, including the outcome (unrewarded vs. rewarded) \(\times \) transition (uncommon vs. common) interaction effect on choice at \(n + 1 \) (first stage) \((2, 12) \) and the transition effect on reaction time at the second stage \((7, 8, 12) \) (SI Appendix).

We fitted a confirmatory factor model, and found an acceptable model fit \(\chi^2(45) = 69.16, P < 0.001 \); root mean square error of approximation = 0.074 (0.057 to 0.092); comparative fit index = 0.913; standardized root mean square residual = 0.041. Inspection of the covariance among the 2 latent factors showed a negative correlation between MFspatial-motor and model-based learning (standardized covariance \(= -0.32, P < 0.001 \)), suggesting that high–model-based participants also exhibited lower influence of MFspatial-motor associations on decision making (SI Appendix, Fig. S5).

Discussion. Natural environments are feature rich, and only a subset of these features is considered to predict action-outcome associations. An agent’s ability to exploit relevant information to predict accurately an outcome is vital for adaptive, goal-directed behavior \((19, 20) \). While previous studies considered model-free credit assignment to outcome-relevant features of a task \((2, 6–9) \), here we asked how, and to what extent, a model-free system avoids credit assignment to outcome-irrelevant task representations. Notably, both model-agnostic and computational analyses suggest participants assigned value to outcome-irrelevant spatial-motor aspects of the task. We highlight here what seems to be an obligatory model-free system credit assignment to outcome-irrelevant task representations.

Our finding raises a question as to the nature of the observed spatial-motor model-free associations with respect to the stimulus. For example, after having reached for a grape placed on the left side of the table with a right hand gesture, could value be assigned to the hand gesture and/or location of the grape regardless of its visual features? We found evidence that credit is assigned to spatial-motor representations across task states and stages in a stimulus-independent manner. This suggests that a model-free system assigns credit to low-level task representations, regardless of an assignment to outcome-relevant features of the task. This conclusion is in line with diverse findings from animal studies \((21–23) \), focal brain damage \((24, 25) \), and human learning studies \((26, 27) \), which seem to show that stimulus and action-related value encoding are realized within distinct neural networks.

How can a model-free system that bears only minimal knowledge of environment structure know what representations should be susceptible or immune to credit assignment \((28, 29) \)? Insights arise from the observed negative relationship that we found between the deployment of model-based strategies and the impact of spatial-motor model-free representations. This association suggests that those who decide according to knowledge of a state transition structure (including future states in their decisions) are also those who display a lesser influence from low-level spatial-motor value associations. Thus, we speculate that participants’ mental map of the environment might be more elaborated then previously described \((2, 6–9) \) and include information about which features of the environment best predict a reward outcome. This information might then guide top-down regulatory processes that dampen the influence of outcome-irrelevant model-free associations.

Stimulus-independent motor learning might have particular relevance for interpretation of studies in patient populations. For example, compulsive behavior \((10, 30) \), substance use \((31) \), and obesity \((32) \) are linked to less goal-directed model-based influences. It is nevertheless the case that these conditions are also strongly associated with specific motor actions (e.g., eating, checking, etc.). Therefore, a tendency to form motor–outcome associations might be a form of learning manifest in the context of a relevant specific outcome (e.g., movements related to food or safety). We suggest that future studies might ask whether putative value-related impairments are in fact more domain specific than previously thought.

Finally, our findings also correspond with current assumptions regarding how human cognition assembles and regulates states \((1, 29) \). The reinforcement learning literature defines a “state” as a collection of information that is relevant to a given decision \((20) \). Our findings might entail a tendency for certain representations to be considered part of a state, thus affecting decisions in a state-intrinsic manner. We speculate that the learning system has a requirement to segregate task representations (assumed to be actively held in working memory) into state-extrinsic/intrinsic information according to outcome relevance. When working
memory resources are low (or more demanding), an individual's ability to keep an accurate intrinsic- vs. extrinsic-state differentiation between task representation might be attenuated, leading to higher involvement of outcome-irrelevant task representations on value-based choices.

There are limitations to our study as well as additional questions arising from our findings. First, our design could not determine whether the effect of spatial-motor reward associations is due to unregulated learning (i.e., regulating the formation of irrelevant associations), unregulated decision (i.e., regulating the influence of these associations on behavior), or both. Second, our manipulation of spatial location and motor response is perfectly confounded, with additional studies needed to disentangle the contribution of those domains. Finally, above the stimulus-independent spatial-motor associations, participants might also assign credit for a combination of stimulus and motor response/object location.

In summary, we uncover a substantial effect of model-free spatial-motor outcome-irrelevant learning on behavior. Our computational modeling suggests that cached value for the spatial-motor aspects is generalized across distinct state features. This highlights the need to address how states are structured and represented within the model-free system.

Materials and Methods

Participants. Written informed consent was given for all participants. The Cambridge Central Research Ethics Committee approved the study (12/EE/0250). Data were obtained from a community-based longitudinal sample of young volunteers (ages 14 to 24 y) living in the United Kingdom (Neuroscience in Psychiatry Network’s study (13, 33)). Our final dataset after exclusions (SI Appendix) included 769 individuals at Time I (371 males, 398 females, mean age = 19.06, range = 14.10 to 24.99), 63 at Time II (34 males, 29 females, mean age = 19.41, range = 14.93 to 24.90), and 568 at Time III (284 males, 284 females, mean age = 20.30, range = 15.11 to 26.48). Additional information can be found in SI Appendix.

Procedure. At all 3 time measurements, participants were invited to a laboratory session in one of the United Kingdom’s collaborating institutions (13). The mean time gap between Times I and II was 6.48 mo (range = 5.04 to 8.04 mo), and between Times I and III, it was 17.78 mo (range = 11.76 to 31.44 mo). At each measurement session, participants completed computer-based cognitive evaluations and clinical assessments. At the end of the assessment day, participants were paid a fixed amount plus a bonus based on performance.

Reinforcement Learning Models. We fit a reinforcement learning model to participants’ behavior, where we estimated the predicted value of each choice at each trial based on reward history. We used a temporal difference learning algorithm, wherein predicted values for each choice (i.e., Q value) are updated according to a prediction error teaching signal. We tested 5 models, each differing with respect to how spatial-motor elements are integrated to affect decision making. Model 1 (null model). Here, we integrated 2 value components following Daw et al. (2): 1) model-free fractal value—reflecting the amount of previous reward that followed this fractal selection—and 2) model-based fractal value—reflecting the highest value of the 2 fractals reached by a common/rare transition after a first-stage action. Let s_1 be the fractals selected at the first stage of the task, and let reward at trial n be $r_{n,1}$. Fractal model-free Q values were initialized to 0 at the beginning of the experiment and updated at the end of each trial according to a state-action-reward-state-action action reward prediction error algorithm (20) for first-stage choices,

$$Q_{\text{Fractal}}^{\text{F,1}}(s_1,n+1) = Q_{\text{Fractal}}^{\text{F,1}}(s_1,n) + \alpha_1 (r_{n,1} - Q_{\text{Fractal}}^{\text{F,1}}(s_1,n)),$$

and second-stage choices,

$$Q_{\text{Fractal}}^{\text{F,2}}(s_2,n+1) = Q_{\text{Fractal}}^{\text{F,2}}(s_2,n) + \alpha_2 (r_{n,2} - Q_{\text{Fractal}}^{\text{F,2}}(s_2,n)),$$

where $r_{1,2}$ was a fractal learning rate (free parameter) and λ_1 was an eligibility trace (free parameter) capturing the effect of the second-stage prediction error on first-stage fractal value. Next, the model-based (MB) learning strategy incorporated the empirical transition probabilities and second-stage $Q_{\text{Fractal}}^{\text{F,2}}$ values to estimate the value of first-stage actions for each Fractal F according to

$$Q_{\text{MB}}^{\text{F,1}}(s_1,n) = P(s_2|F) \times \max \left[Q_{\text{Fractal}}^{\text{F,2}}(s_2,n) + P(s_3|F) \times \max \left[Q_{\text{Fractal}}^{\text{F,2}}(s_3,n)\right], \right],$$

where s_2 and s_3 represented the 2 states in the second stage (Fig. 1) and $P(s_2|F)$ and $P(s_3|F)$ represented the transition probability. We then calculated an integrated Q value for each fractal F, with a w parameter-quantified model-based vs. model-free tradeoff in first-stage actions:

$$Q^{\text{MB}}(s_1,n) = w_1 Q_{\text{MB}}^{\text{F,1}}(s_1,n) + (1 - w_1) Q_{\text{Fractal}}^{\text{F,1}}(s_1,n).$$

Model 2 assumed that fractal learning (model-based and model free) was the same as Model 1. However, here we integrated a separate system that assigned model-free values to response key (separate learning rate and prediction error). Thus, for Model 2, we also updated response key model-free values at the end of each trial. Let k_1 and k_2 be the response keys for stages 1 and 2, respectively. Response key model-free values were updated for the first stage according to

$$Q^{\text{MB}}(k_1,n+1) = Q^{\text{MB}}(k_1,n) + \alpha_2 (r_{n,1} - Q^{\text{MB}}(k_1,n)),$$

and for the second stage according to

$$Q^{\text{MB}}(k_2,n+1) = Q^{\text{MB}}(k_2,n) + \alpha_2 (r_{n,2} - Q^{\text{MB}}(k_2,n)),$$

where α_2 was a response key learning rate (free parameter) and λ_2 was a free parameter allowing differentiation between credit assignment to the first and second actions when they differ. We then calculated Q^{MB} for the first stage according to

$$Q^{\text{MB}}(s_2,n) = w_1 Q^{\text{MB}}(s_2,n) + w_2 Q^{\text{MB}}(k_2,n),$$

where K is the response key for selecting fractal F, and for the second stage according to

$$Q^{\text{MB}}(s_2,n) = w_1 Q^{\text{MB}}(s_2,n) + w_2 Q^{\text{MB}}(k_2,n).$$

We further examined an extension of Model 2 where we included 2 different learning rates (α_2) for mapping repetitions vs. switches. However, this did not improve the fit of this model (SI Appendix).

Model 3. The model included the same model-based fractal learning as Model 1 (Eqs. 2 and 3) and was used to estimate second- and first-stage model-based values, respectively. However, model-free state action values (i.e., Q^{MB}) were estimated using a linear approximation function, where fractals and response keys served as weighted features. Specifically, Q values for the model-free system were calculated according to

$$Q^{\text{MB}}(s_1,n) = w_1 f_{1}(s_1,n) + \ldots + w_s f_{s}(s_1,n),$$

where s and a denote specific state and action, respectively. $f_{i}(s_1,n)$ represents whether a feature was available (1) or not (0) for a certain state and action. f_1 to f_s represented the 6 fractals in the task, and f_1 and f_2 represented the 2 response keys. w_1 to w_s were the respective weights, which were updated at the end of each trial. First-stage weights were updated according to

$$w_{i,n+1} = w_{i,n} + \alpha_2 \left[Q^{\text{MB}}(s_1,n) - Q^{\text{MB}}(s_1,n-1)\right] f_{1}(s_1,n),$$

and second-stage weights were updated according to

$$w_{i,n+1} = w_{i,n} + \alpha_2 \left[Q^{\text{MB}}(s_2,n) - Q^{\text{MB}}(s_2,n-1)\right] f_{i}(s_2,n).$$

Shahar et al.
Finally, \(Q^{\text{MF}}\) for first stage was calculated according to

\[
W_{(n+1)} = W_{(n)} + \alpha \left(r_{(n)} - Q^{\text{MF}}(s_{(n+1)}, a_{(n)}) \right).
\]

[12]

Finally, \(Q^{\text{MF}}\) for first stage was calculated according to

\[
Q^{\text{MF}}(r_{(n)}) = W_{\text{MB}} \cdot Q^{\text{MB}}(r_{(n)}) + (1 - W_{\text{MB}}) \cdot Q^{\text{MF}}(r_{(n)}).
\]

[13]

Since in this model, \(Q^{\text{MB}}\) and \(Q^{\text{MF}}\) were no longer identical for the second stage (model-free values here are also driven by the response key mapping, which is ignored by the model-based system), we also weighted the second-stage \(Q^{\text{MF}}\) according to Eq. 13. We further examined an extension of Model 3, where we included 4 response key features (right/left for first/second action). For first stage, \(Q^{\text{MF}}\) values were updated separately for each fractal response key combination. Therefore, in this model, we update 12 \(Q^{\text{MF}}\) values for each combination of fractal and response keys. For first stage, \(Q^{\text{MF}}\) values were updated according to

\[
Q^{\text{MF}}(r_{(n+1)}) = Q^{\text{MF}}(r_{(n)} + \alpha r_{(n)} - Q^{\text{MF}}(s_{(n+1)}, a_{(n)}) + \tau_{(n)}(r_{(n)} - Q^{\text{MF}}(s_{(n+1)}, a_{(n)})).
\]

[14]

and for second stage, \(Q^{\text{MF}}\) were updated according to

\[
Q^{\text{MF}}(s_{(n+1)}, a_{(n)}) = Q^{\text{MF}}(s_{(n)}, a_{(n)}) + \alpha r_{(n)} - Q^{\text{MF}}(s_{(n)}, a_{(n)}).
\]

[15]

Finally, \(Q^{\text{MF}}\) for first and second stage was calculated according to

\[
Q^{\text{MF}}(r_{(n)}) = w_{1} \cdot Q^{\text{MF}}(r_{(n)}) + (1 - w_{1}) \cdot Q^{\text{MF}}(r_{(n)}).
\]

[16]

Therefore, in this model, the pairing of fractal F and response key K is conjunctively defined with the stimulus. Note that, in this model, \(Q^{\text{MF}}\) and \(Q^{\text{MF}}\) were no longer identical for the second stage, and therefore, we also weighted the second-stage \(Q^{\text{MF}}\) according to Eq. 16.

Model 5. We assumed that both the model-based and model-free systems held different state representations for each pair of fractals with each available mapping. We, therefore, updated \(Q^{\text{MF}}\) similar to Model 4 (Eqs. 14 and 15). However, here the model-based system also calculated the probability of reaching each pair of fractals in the second stage with each available mapping. We define 4 second-stage states for each pair of fractals and response mapping \(\{s_{(2a), s_{(2b)}, s_{(2c)}, s_{(2d)}\}\). \(Q\) values for the model-based system in the first stage were calculated as follows:

\[
Q^{\text{MB}}(r_{(n)}) = P(s_{(2a)} | F) \cdot \max \left(Q^{\text{fractal}}(s_{(3a)}, a_{(n)}) + P(s_{(2b)} | F) \cdot \max \left(Q^{\text{fractal}}(s_{(3b)}, a_{(n)}) + P(s_{(2c)} | F) \cdot \max \left(Q^{\text{fractal}}(s_{(3c)}, a_{(n)}) + P(s_{(2d)} | F) \cdot \max \left(Q^{\text{fractal}}(s_{(3d)}, a_{(n)}), \right), \right), \right). \]

[17]

where probabilities for common transition were considered to be 35% and probabilities for uncommon transition were considered to be 15% following the current task design. Since model-based and model-free values are again identical in this model in the second stage, we used Eq. 16 to integrate model-free and model-based \(Q\) values only for the first stage.

Equally for all of the models, we added a choice bias value accounting for 1) fractal perseveration (tendency to repeat fractal selection regardless of reward for first stage only following previous studies [2]), 2) response key perseveration (tendency to repeat response key selection regardless of reward), and 3) response key bias (reflecting a tendency to use one response key more than the other due, for example, to hand dominance effects). \(\text{SI Appendix}\) has additional information and models.