Highly Compressed Two-Dimensional Form of Water at Ambient Conditions

Sarp Kaya1, Daniel Schlesinger2, Susumu Yamamoto1,5, John T. Newberg3,6, Hendrik Bluhm3, Hirohito Ogasawara1, Tom Kendelewicz4, Gordon E. Brown Jr.1,4, Lars G. M. Petterson2 & Anders Nilsson1,2

1SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA, 2Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden, 3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, 4Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA, 5Synchrotron Radiation Laboratory, The Institute for Solid State Physics, The University of Tokyo, S-1-5 Kashiwanoha, Kashiwa 277-8581, Japan, 6Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716.

The structure of thin-film water on a BaF₂(111) surface under ambient conditions was studied using x-ray absorption spectroscopy from ambient to supercooled temperatures at relative humidity up to 95%. No hexagonal ice-like structure was observed in spite of the expected templating effect of the lattice-matched (111) surface. The oxygen K-edge x-ray absorption spectrum of liquid thin-film water on BaF₂ exhibits, at all temperatures, a strong resemblance to that of high-density phases for which the observed spectroscopic features correlate linearly with the density. Surprisingly, the highly compressed, high-density thin-film liquid water is found to be stable from ambient (300 K) to supercooled (259 K) temperatures, although a lower-density liquid would be expected at supercooled conditions. Molecular dynamics simulations indicate that the first layer water on BaF₂(111) is indeed in a unique local structure that resembles high-density water, with a strongly collapsed second coordination shell.

Water is unique in that it exists in several different identifiable amorphous forms, low-density amorphous (LDA), high-density amorphous (HDA), and very-high-density amorphous (VHDA), with a density difference of 33% between LDA and VHDA1–4. Several metastable amorphous forms have also been observed at various pressures and temperatures5–6. It has been proposed that LDA and HDA are glassy forms of low-density liquid (LDL) and high-density liquid (HDL), respectively, in a liquid-liquid transition scenario7–10, if these liquids would exist as distinct phases. There are many crystalline phases that resemble some of the amorphous forms, but much higher density ices can also be formed under pressure; e.g., ice VII has a density 74% higher than hexagonal ice Iₗ11. All of these forms of crystalline ice phases formed at modestly high pressures, as well as amorphous or glassy water, typically have structures in which there is an inward collapse of the 2nd coordination shell. Similarly, water under pressure at room temperature responds through a continuous collapse of the 2nd shell with increasing pressure where the extrapolated pair-correlation function (PCF) of HDL water has a broad 2nd-shell distribution in between those of HDA and VHDA; a similar structural rearrangement has been observed in simulations of water in silica nano-confinement12. Water thus seems to have the ability to exhibit rather dramatic structural differences with a large range of densities and only minor differences in enthalpy1. Here we demonstrate that it is possible to generate an extremely compressed HDL-like form of water at ambient conditions at the BaF₂(111)/water interface, which acts as the pressurizing medium.

The influence of the substrate on interfacial water has often been discussed in terms of ice-like and liquid-like structural signatures14–17. In this respect, BaF₂(111) terminated by F⁻·Ba²⁺·F⁻ trilayers, with a surface lattice parameter of 4.39±0.1 Å, is very close to that of the basal plane of ice Iₗ (4.52 Å). Thus, an epitaxial layer of ice growth is expected to form on BaF₂(111) at ambient conditions. Although earlier optical absorption experiments suggested the formation of ice-like overlayers under low temperature18 and ambient conditions19, theoretical estimates of the stability of the epitaxial ice layers are not consistent with these experimental observations20. Also in nano-confinement Raman scattering experiments on water have found a non-freezing water layer at the water/solid interface down to extremely low temperatures21. Arguments about the stability of epitaxial wetting layers based on molecular dynamics simulations22 have not been corroborated because of the effects of surface defects23–25. Theoretical calculations20 using the ASP-W2K potential find an adsorption energy of −39.78 kJ/mol for an isolated water molecule on BaF₂. Higher coverages resulted in a bilayer hexagonal ice film with an
increase of the adsorption energy to \(-51.4\ \text{kJ/mol}\), which, albeit higher than the enthalpy of condensation of bulk water \((-44\ \text{kJ/mol})\), demonstrates only a weak trend towards wetting.

In the present study, the molecular structure of thin-film water under ambient conditions (up to 2.4 monolayers (ML)) as well as ice under low-temperature conditions in ultra-high vacuum (UHV) were elucidated on BaF2(111) using x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS). O K-edge XAS is a powerful local probe for identifying the structures of water in solid and liquid phases; the spectral features are directly related to the hydrogen-bonding environments\(^2\). The experimental data are complemented with molecular dynamics (MD) simulations, where the first interfacial layer indicates a very high local density \((1.23\ \text{g/cm}^3)\) and the O-O pair-correlation function shows a near-complete collapse of the 2nd shell, well beyond what is seen in HDL and close to merging with the first shell to form a two-dimensional hexagonal structure.

Results

In order to characterize the structure of the thin water films we used O K-edge XAS to obtain spectral signatures indicative of specific hydrogen-bonding configurations. The obtained spectra of thin layers of liquid water, however, do not exhibit the expected templating effect resulting in hexagonal ice, but instead show strong similarity to high-pressure ices, such as ice VII with a density of 1.6 g/cm\(^3\). XAS spectra measured at 1.5 Torr water at 30% (288 K), 60% (270 K), and 90% (259 K) relative humidity (RH), with the polarization vector (a) perpendicular and (b) parallel to the surface plane.

Figure 1 | XAS spectra of water on BaF\(_2\)(111) at 1.5 Torr water pressure with the polarization vector (a) perpendicular and (b) parallel to the surface plane. RH was varied from 30% to 90%. The incident angle (\(\alpha\)) of in-plane polarized light and the take-off angle (\(\theta\)) are \(-10^\circ\) and \(35^\circ\), respectively.

In Fig. 2a, we compare the XAS spectrum of thin-film water on BaF\(_2\)(111) at 90% RH with the spectrum of crystalline ice formed at low pressures (I\(_h\) or I\(_c\)) on BaF\(_2\)(111) and with the relative change between ice I\(_h\) and I\(_{VII}\)\(^3\). The latter corresponds to a high-pressure crystalline ice phase with a density of 1.60 g/cm\(^3\). First, we note that the thin water film XAS spectrum lacks the post-edge feature which is seen in crystalline ice. Furthermore no low pressure ice-like spectral features were observed at any coverage as RH was increased from 30% to 90%, even at temperatures as low as 259 K. Considering the arguments of surface-templated ice formation, the templating effect of BaF\(_2\)(111) on the structure of the water film is expected to be strongest under this condition. Secondly, we instead note that the water thin-film spectrum has a close resemblance with the high-pressure spectrum of ice I\(_{VII}\).

In Fig. 2b, we note that the XAS spectrum of thin-film water on BaF\(_2\)(111) at ambient conditions more closely resembles the spectrum of liquid water than that of low-density crystalline ice on BaF\(_2\), as seen from the weak post-edge and strong main-edge and pre-edge features. Because the post-edge is enhanced for tetrahedral H-bonding configurations, we infer that low-density crystalline ice-like local arrangements are very sparse in the water layer on BaF\(_2\)(111). This inference is quite surprising because the substrate temperature of 259 K is deep in the supercooled state of water, and the driving force

![Figure 1](https://www.nature.com/scientificreports/)

![Figure 2](https://www.nature.com/scientificreports/)

Figure 1 | XAS spectra of water on BaF\(_2\)(111) at 1.5 Torr water pressure with the polarization vector (a) perpendicular and (b) parallel to the surface plane. RH was varied from 30% to 90%. The incident angle (\(\alpha\)) of in-plane polarized light and the take-off angle (\(\theta\)) are \(-10^\circ\) and \(35^\circ\), respectively.

Figure 2 | (a) Comparison of XAS spectra of (i) bulk ice I\(_h\) (dashed), ice VII (I\(_{VII}\)) (solid)\(^3\) with the spectra of (ii) 2 ML crystalline ice and (iii) supercooled water on BaF\(_2\)(111) at 1.5 Torr at 259 K (90% RH). Crystalline ice on BaF\(_2\)(111) was prepared by annealing 10 ML LDA to 175 K. XAS spectra of crystalline ice on BaF\(_2\)(111) were recorded via exciting with in-plane polarized light. (b) Comparison of XAS spectra of (i) supercooled water on BaF\(_2\)(111) at 1.5 Torr at 259 K (90% RH) with (ii, solid) liquid water, and (ii, dashed) 6 M NaCl solution measured at room temperature\(^4\). The supercooled water spectrum is an average of two spectra obtained using in-plane and out-of-plane polarizations, shown in Fig. 1. The shaded area represents the difference between bulk ambient liquid and thin-film water. XAS spectra of liquid water and the 6 M NaCl solution were recorded in transmission mode\(^5\). The sample was embedded between two Si\(_3\)N\(_4\) windows separated by a 300 nm thick spacer. All spectra are normalized by area.
for tetrahedral structuring should be rather strong according to expectations from thermodynamics arguments that enthalpy and entropy of water films converge to values typical of ice19. Contrary to these enthalpy and entropy estimates from quantification of IR spectral features, the tetrahedral structure of ice for water films on BaF\textsubscript{2}(111) has not been found to be the most favorable based on theoretical calculations20 and polarizability measurements25.

Even more surprising is the observation that, due to the loss of intensity in the post-edge region, the spectral width spanned by the main-edge and post-edge peaks of supercooled water on BaF\textsubscript{2}(111) is somewhat smaller than that for liquid water. In Fig. 2b we also compare the thin-film water spectrum with the spectrum of 6 M NaCl solution at room temperature21 and note in the small post-edge a stronger similarity for thin-film liquid on BaF\textsubscript{2}(111) with the NaCl solution than with bulk water. In alkaline aqueous solutions the interaction of water with the alkali cations is weak20,31, while neutron diffraction measurements27 indicate that the resulting structure is still similar to that of water under pressure, which is also supported by MD simulations28. The close spectral similarity of the thin-film water spectrum and the spectra of the NaCl solution and I\textsubscript{III} indicates that the water structure should resemble more a HDL-related structure as typically seen upon applying pressure on water with an inward collapse of the 2nd shell.

From the MD simulations, we find a strong layering of water molecules parallel to the surface. The inset of Fig. 3 shows a dramatic localization of the first water layer; the distribution of the molecules within subsequent layers is broader, but the influence of the 1st layer on the 2nd and 3rd layers is evident. To further determine the structure within these layers, we calculated oxygen-oxygen PCFs within layers of defined thickness perpendicular to the surface and compared the calculated PCFs with the experimental PCFs of HDL water34, NaCl solution31 and the PCF of a slab of bulk TIP4P/2005 water of the same thickness as for water on BaF\textsubscript{2} (Fig. 3). The first three peaks in the TIP4P/2005 bulk water PCF represent the 1st, 2nd, and 3rd coordination shells located at 2.75, 4.4, and 6.7 Å, respectively, in this model. The 1st layer of 1 Å thickness of thin-film TIP4P/2005 water on BaF\textsubscript{2}(111), on the other hand, shows a significantly altered structure compared to the 2nd and 3rd layers of the same thickness. The 2nd coordination shell of the 1st layer is collapsed as in the case of HDL34, and the 3rd peak shifted inwards to 6 Å, indicating that the 3rd coordination shell adapts to the high-density profile. The 2nd and 3rd layers of the thin film, on the other hand, show a structure similar to that of the bulk. For T=260 K, the structure is slightly more pronounced than for T=290 K, but does not change qualitatively. These findings are universal and do not change with the different

Figure 3 | Oxygen-oxygen pair-correlation functions (a) calculated within the first 1 Å layer of H\textsubscript{2}O on the BaF\textsubscript{2}(111) surface from MD simulations, full line T=260 K, dotted line T=290 K; (b) of HDL34; (c) of a NaCl solution of concentration 1:10 salt to water mole ratio31; (d) calculated within a 1 Å layer of bulk H\textsubscript{2}O from MD simulation at T=260 K; (e) calculated within the second 1 Å layer of H\textsubscript{2}O on the BaF\textsubscript{2}(111) surface from MD simulations, full line T=260 K, dotted line T=290 K. Note that the pair-correlation functions calculated within a 1 Å layer of water (a, d, e) are normalized differently than in (b, c), cf. Supplementary Information. Inset: Histogram of distances between the oxygen atoms of H\textsubscript{2}O and the surface atoms.

Figure 4 | A snapshot of the first water layer on BaF\textsubscript{2}(111). F- and Ba2+ ions are color-coded by purple and green, respectively. Red and white sticks represent oxygen and hydrogen atoms of water molecules. Intermolecular hydrogen bonding and water-BaF\textsubscript{2}(111) bonding are indicated by dashed lines. H-bond definition: O-O distance < 3 Å, O-O-H angle < 30 deg.
force fields commonly utilized to simulate the properties of water (see Supplementary Information for details).

In Fig. 4 we show a snapshot from the simulation with a strong predominance of chain-like conformations in the layer in contact with the substrate. In comparison to low density crystalline ice, the structure of the 1st layer is more similar to close packing at the expense of breaking H-bonds. The density in the 1st layer is estimated to be 1.23 g/cm³ (see Supplementary Information for details), which is similar to the density of VHDA; this similarity also fits well with the 2nd-shell distance of 3.3 Å. However, there are more severe distortions from tetrahedral coordination in the 1st shell in comparison to VHDA which we attribute to the thermal fluctuations prominent near room temperature.

Discussion

Previous surface x-ray scattering and diffraction studies of the water-silica and water–Cu(111) interfaces have shown that the first water layer has a structure with higher density than that of either ice or liquid water. A high-density form of interfacial water has also been identified for water on NaCl(001) in MD simulations as well as for water in nano-confined 1,2,3. In a recent study of the role of lattice mismatch in ice nucleation Cox et al. found that the angular flexibility in the second shell allowed closer packing at their model interface. These findings can now be interpreted in the context of the present results with the formation of a highly compressed, HDL-like phase at the interface. In fact, the HDL-like phase persists well below freezing without any signatures of ice formation in a way similar to the freezing point lowering seen in NaCl solutions 1,2.

We have shown that the BaF₂(111) surface does not act as an ice formation template for ambient and supercooled water films, notwithstanding the close lattice match. The XAS spectrum of water on BaF₂(111), on the contrary, indicates limited tetrahedral H-bonding at 300–259 K, where the similarity to spectra of high density ices suggests a highly compressed HDL-like water structure even in the supercooled regime. The O-O pair-correlation function of the first water layer from MD simulations fully supports this high-density form of water at the interface.

Methods

Measurement techniques. Relative humidity-dependent water uptake curves were obtained using XPS to monitor the water coverage (see Supplementary Information for details). The BaF₂(111) surface was exposed to 1.5 Torr water vapor and the uptake was carefully evaluated by reducing the sample temperature in an incremental fashion. 2.4 mL of water was the maximum coverage at 90% RH and uptake curves are in good agreement with the ones measured using IR spectroscopy 1,2.

The low temperature, UHV experiments on ice on BaF₂(111) were performed at the soft x-ray Spectroscopy Beamline (BL 13.2) at the Stanford Synchrotron Radiation Lightsource (SSRL). X-ray absorption spectra were acquired by the total electron yield (TEY) method. Ambient pressure XPS and XAS experiments were performed at the Molecular Environmental Science Beamline (BL 11.0.2) at the Advanced Light Source (ALS). The differentially pumped electron energy spectrometer (Spectro Phonios 130) enables measurements at pressures up to 5 Torr. XAS data at 1.5 Torr H₂O were acquired by the Auger electron yield (AEY) method using a kinetic energy detection edge spectrum of ice.

The role of atomic steps on the nucleation of thin water films on BaF₂(111) at ambient temperatures. J. Chem. Phys. 132, 234708–7 (2010).

Verdaguer, A., Cardellach, M. & Fraxedas, J. Thin water films grown at ambient conditions on BaF₂(111) studied by scanning polarization force microscopy. J. Chem. Phys. 129, 174705–7 (2008).

Nilsson, A. et al. X-ray absorption spectroscopy and X-ray Raman scattering of water at an ice; an experimental view. J. Electron. Spectrosc. Relat. Phenom. 177, 99–126 (2010).

Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

Nilsson, A. & Pettersson, L. G. M. Perspective on the structure of liquid water. Phys. Chem. Phys. 13, 389–39 (2011).

Tse, J. et al. X-ray Raman spectroscopic study of water in the condensed phases. Phys. Rev. Lett. 100, 095302–4 (2008).

Pylkkänen, T. et al. Role of non-hydrogen-bonded molecules in the oxygen K-edge spectrum of ice. J. Phys. Chem. B 114, 3804–3808 (2010).

Watanabe, I. et al. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 134, 064513–10 (2011).

Leberman, R. & Soper, A. Effect of high-salt concentrations on water structure. Nature 378, 364–366 (1995).

Holzmann, J., Ludwig, R., Geiger, A. & Paschek, D. Pressure and salt effects in simulated water: two sides of the same coin? Angew. Chem. Int. Ed. 46, 8907–8911 (2007).

Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000).

Schöder, S. et al. Radiation-induced premelting of ice at silica interfaces. Phys. Rev. Lett. 103, 095502–4 (2009).

Ito, M. Structures of water at electrified interfaces: Microscopic understanding of electrode potential in electric double layers on electrode surfaces. Surf. Sci. Rep. 63, 329–389 (2008).

Liu, L., Krack, M. & Michaelides, A. Density oscillations in a nanoscale water film on salt: insight from ab initio molecular dynamics. J. Am. Chem. Soc. 130, 8572–8573 (2008).

Cox, S. J., Kathmann, S. M., Purton, J. A., Gillan, M. J. & Michaelides, A. Non-hexagonal ice at hexagonal surfaces: the role of lattice mismatch. Phys. Chem. Chem. Phys. 14, 7944–7949 (2012).
Acknowledgements

This work was supported by the U.S. National Science Foundation, through grants CHE-043142 and CHE-0809324, by the Department of Energy, Office of Basic Energy Sciences, DE-AC02-76SF00515, and the Swedish Research Council. The measurements were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL) and the Advanced Light Source (ALS), both national user facilities operated by Stanford University and U.C. Berkeley, respectively, on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The ALS and the MES beamline 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. The MD simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the NSC center. J.T.N. acknowledges the National Science Foundation for Postdoctoral fellowship support under ANT-1019347.

Author contributions

S.K. S.Y. and A.N planned, S.K., S.Y., J.T.N., H.B. and T.K. performed ambient pressure experiments, S.K. and H.O. performed vacuum based measurements. D.S. did the numerical simulations. The experimental data was analyzed by S.K. S.K., D.S., L.G.M.P and A.N. wrote the paper. All authors participated in the discussions during data analysis and writing processes and reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Kaya, S. et al. Highly Compressed Two-Dimensional Form of Water at Ambient Conditions. Sci. Rep. 3, 1074; DOI:10.1038/srep01074 (2013).