Black-sun noise immune correlated double sampling scheme for CMOS image sensors

Je-Hoon Lee1 and Hyeon-June Kim1, a)

Abstract This paper presents a black-sun immune correlated double sampling (CDS) scheme for high-quality imaging. Based on an analysis of signal characteristics in strong light conditions, a clamping circuit-based signal difference generator is proposed to accurately present the bright light information. The proposed scheme eliminates the black-sun noise with simple circuitry to improve the A/D conversion efficiency. Moreover, it can be is reversible to the conventional algorithm so that it still preserves the structural advantages of the existing CMOS image sensor (CIS) structure. A prototype CIS with a column-parallel 11-bit single-slope (SS) analog-to-digital converter (ADC) was fabricated in a 0.11-µm 1P4M CIS process with a 2.9-µm pixel pitch.

Keywords: CMOS image sensor, black-sun noise, correlated double sampling, single-slope analog digital converter

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Recently, CISs have received considerable attention for a variety of applications [1, 2, 3, 4, 5, 6]. Owing to the increasing demand for high-quality images, various CIS structures with low-noise performance have been developed [7, 8, 9, 10]. In commercial CISs, a SS ADC structure with a 4-transistor active pixel sensor (4T-APS) is employed for its structural advantages [11, 12, 13] that it can adopt correlated double sampling (CDS) scheme during the pixel readout operation to eliminate fixed pattern noise (FPN) [14, 15, 16]. However, when the initial value is contaminated, it is difficult to obtain an accurate signal value because the voltage difference obtained is considered as the signal value. As reported in previous studies [17, 18, 19, 20], in strong light illumination conditions, the photo-charge overflows from a photodiode (PD) to a floating node (FD). This causes the initial value of the pixel to drop abnormally during the CDS operation resulting in output image errors (i.e., black-sun noise). To solve this problem, in [17] a new readout scheme was proposed to eliminate black-sun noise.

However, due to additional circuitries, the circuit area and design complexity also increased. In this paper, an efficient black-sun immune CDS scheme is proposed with a novel signal difference generator (SDG). The proposed scheme maintains the existing commercial structure and readout operation form, thereby presenting several commercial advantages.

2. Proposed black-sun immune CDS scheme

Fig. 1 shows a simplified schematic of a conventional SS ADC with the proposed SDG. The SDG is connected to the pixel output (Vpx) node. It consists of an analog switch (Mux.), two signal voltages (Vselb and Vref), and current bleeding circuits (Mpc, Msb, and Men). It is based on the Vpx common generator [21], which is used only after completing the pixel readout operation. According to rolling shutter techniques [22], when the Vpx node is changed from Vsig–1 to Vrst (Vsel is off), Msb is switched by Vselb and Vpx remains constant at a certain voltage level, which reduces Vpx fluctuation. Here, Vrst and Vsig represent a pixel reset voltage and pixel signal voltage, respectively.

In this study, the SDG is utilized to achieve an additional performance. When pixel readout operation starts (Vsel is on), Msb is biased to a predetermined voltage (Vref). Subsequently, it observes whether Vpx is lower than Vref – Vth and prevent a drop in Vpx, as a the Vpx-clamping circuit. Here, Vref can be set at the Vpx-clamping level, Vth is the threshold voltage for Msb.

The operational timing diagram and those waveforms are illustrated in Fig. 2 (a) and (b), respectively. For the pixels chosen by Vsel, Vpx becomes Vrst and Vsig for the pixel control signals of Vrx and Vtx, respectively. Vpx and Vamp pass through AC-coupling capacitors (Cen and Csp) and into comparator input nodes (Vin and Vvinp), respectively. To perform a dual CDS [23, 24], the analog CDS [25, 26] is performed when Vaz is on while the digital CDS [27, 28] is performed twice, for both Vrst and Vsig when Vaz is on. Note that the initial value (Vrst) should be maintained until it changes to the signal value (Vsig) to

Fig. 1 Simplified schematic of the proposed column-parallel SS ADC.
obtain an accurate difference (V_{CDS}). However, in strong light illumination conditions (as plotted by the blue dashed line in Fig. 2 (a)), V_{RST} drops to a low voltage level and produces an incorrect CDS result ($V_{\text{CDSB}} < V_{\text{CDSN}}$). Consequently, dark spots are formed within the bright region of the captured image; this is because V_{RST} is not maintained at a constant level just before V_{TX} is switched on. To solve this problem, the SDG is enabled (V_{EN} is on) right before V_{TX} is switched on; furthermore, whether V_{RST} is lower than $V_{\text{REF}} - V_{\text{TH}}$, is observed. As shown in Fig. 2 (b), if $V_{\text{RST}} < V_{\text{REF}} - V_{\text{TH}}$, the SDG clamps V_{RST} at approximately $V_{\text{REF}} - V_{\text{TH}}$. While the SDG is disabled (V_{EN} is off), the maximum signal difference ($V_{\text{CDSB}} \geq V_{\text{CDSN}}$) is generated which represents the bright light information. In this manner, the black-sun noise can be effectively eliminated during the dual CDS operation while maintaining the existing CIS structure and operational timing.

3. Implementation and experimental results

Fig. 3 shows the prototype chip and CIS test board. The prototype chip is fabricated using a 0.11-μm CIS process with a dimension of $4.15 \times 2.55\, \text{mm}^2$. It has a pixel array of 1024×300 with 2.9 μm-pitch 4T-APS. The prototype CIS chip demonstrates 210 frames per second (fps) with a power consumption of 30.5 mW. The test environment for the prototype CIS is comprised a chip and field programmable gate array (FPGA) board. Here, an off-chip FPGA is used to generate multiple control signals for the prototype CIS. The captured image information (the output digital signals) is transferred to the computer using a USB interface and displayed through the Microsoft foundation class library (MFC)-based interface program. To evaluate the prototype chip in various test environments, V_{REF} is provided through an external DAC mounted on the CIS test board.

Fig. 4 shows the captured image while a bright light source [29] over approximately 100,000 lux is focused on the prototype CIS. Note that the measurements were taken at room temperature using an infrared-cut filter. To verify the effects of the proposed black-sun immune CDS scheme while extracting captured images, the proposed scheme was applied to only half of the rows (represented by B-region) and the other half was left unchanged (represented by A-region). In A-region, because dark spots are more visible with the bright surroundings, the image quality seems to be worse. In contrast, the dark spots in B-region are eliminated while maintaining the original image quality.

Table I compares the performance of the current study with recently published works [17, 30, 31, 32]. For a fair performance comparison, the figure of merits (FoMs) are calculated according to [33, 34]. Compared to [17], it requires an additional area of approximately $2.9 \times 110\, \text{μm}^2$, however, the proposed CDS scheme can be applied to the
existing CIS structure and control-timing which results in a better area efficiency. Moreover, the prototype CIS with proposed CDS scheme demonstrated elimination of the black-sun noise while maintaining structural advantages over a commercial CIS.

4. Conclusion

In this study, a black-sun immune CDS readout scheme is proposed for high-quality imaging in strong light conditions. The proposed CDS scheme eliminated the black-sun noise without additional complex circuitry and operational timing modifications which degrades the A/D conversion efficiency. Moreover, the proposed scheme could be easily reversed to use the conventional SS A/D algorithm, thus, it can be effectively utilized in various commercial CIS applications as one of functions to improve image quality.

Acknowledgments

The chip fabrication and EDA tool were supported by the IC Design Education Center (IDEC), Korea. This study has been worked with the support of a research grant of Kangwon IC Design Education Center (IDEC), Korea. This study has been worked with the support of a research grant of Kangwon IC Design Education Center (IDEC), Korea. This study has been worked with the support of a research grant of Kangwon IC Design Education Center (IDEC), Korea. This study has been worked with the support of a research grant of Kangwon IC Design Education Center (IDEC), Korea. This study has been worked with the support of a research grant of Kangwon IC Design Education Center (IDEC), Korea.

References

[1] J. Ohta: Smart CMOS Image Sensors and Applications (CRC Press, Boca Raton, 2010) 2nd ed.
[2] A. Khosla and D.S. Kim: Optics Imaging Devices (CRC Press, Boca Raton, 2015).
[3] M. Amjad, et al.: “Wireless multimedia cognitive radio networks: a comprehensive survey,” IEEE Commun. Surveys Tuts. 20 (2018) 1056 (DOI: 10.1109/COMST.2018.2794358).
[4] D. Bol, et al.: “Green SoCs for a sustainable Internet-of-Things,” IEEE FTTC (2013) 1 (DOI: 10.1109/FTTC.2013.6577767).
[5] K. Kim: “CMOS image sensor for wide dynamic range feature extraction in machine vision,” IET Electron. Lett. (2020) (DOI: 10.1049/ etl.12087).
[6] T. Hsu, et al.: “5.9 A 0.8V multivoltage mode sensor for motion and saliency detection with ping-pong PWM pixel,” IEEE ISSCC Dig. Tech. Papers (2020) 110 (DOI: 10.1109/ISSCC19947.2020.9062926).
[7] J. Cheon and G. Han: “Noise analysis and simulation method for a single-slope ADC with CDS in a CMOS image sensor,” IEEE Trans. Circuits Syst. I, Reg. Papers 55 (2008) 2980 (DOI: 10.1109/ TCSI.2008.923434).
[8] J. Park, et al.: “A high-speed low-noise CMOS image sensor with 13-b column-parallel single-ended cyclic ADCs,” IEEE Trans. Electron Devices 56 (2009) 2414 (DOI: 10.1109/TED.2009.2030635).
[9] M. Kobayashi, et al.: “4.5 A 1.8erm- temporal noise over 110dB dynamic range 3.4µm pixel pitch global shutter CMOS image sensor with dual-gain amplifiers, SS-ADC and multiple-accumulation shutter,” ISSCC Dig. Tech. Papers (2017) 74 (DOI: 10.1109/ISSCC.2017.7870267).
[10] “Samsung to Challenge Sony. CMOS Image Sensor New Technology ‘Competition,’” http://www.epmc.co.kr/news/articleView. html?id=57952.
[11] E.R. Fossum and D.B. Hongdongwa: “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2 (2014) 33 (DOI: 10.1109/JEDS.2014.2306412).
[12] A.J.P. Theuwissen: “Better pictures through physics,” IEEE Solid-State Circuits Mag. 2 (2010) 22 (DOI: 10.1109/MSSC.2010.936662).
[13] I. Inoue, et al.: “Low-leakage-current and low-operating-voltage buried photodiode for a CMOS image sensor,” IEEE Trans. Electron Devices 50 (2003) 43 (DOI: 10.1109/TED.2002.807525).
[14] K. Yonemoto, et al.: “A CMOS image sensor with a simple FPN-reduction technology and a hole accumulated diode,” ISSCC Dig. Tech. Papers (2000) 102 (DOI: 10.1109/ISSCC.2000.839709).
[15] S. Yoshuhara, et al.: “A 1/1.8-inch 6.4-Mpxel 60 frames/s CMOS image sensor with seamless mode change,” IEEE J. Solid-State Circuits 41 (2006) 2998 (DOI: 10.1109/JSSC.2006.884868).
[16] P. Holloway: “A trimless 16b digital potentiometer,” ISSCC Dig. Tech. Papers (1984) 66 (DOI: 10.1109/JSSC.1984.1156642).
[17] H.-J. Kim: “A sun-tracking CMOS image sensor with black-sun readout scheme,” IEEE Trans. Electron Devices 68 (2021) 1115 (DOI: 10.1109/TED.2021.3052450).
[18] R. Saleem, et al.: “A cost-effective micro sun sensor based on black sun effect,” 2017 IEEE SENSORS (2017) 1 (DOI: 10.1109/ICSENS.2017.8723466).
[19] Product datasheet KAC-06040, https://www.onsemi.com/pub/Collateral/KAC-6040-D.PDF.
[20] S. Rashid and L. Sukhan: “Accurate and cost-effective micro sun sensor based on CMOS black sun effect,” Sensors 19 (2019) 739 (DOI: 10.3390/s19030739).
[21] H.-J. Kim: “11-bit column-parallel single-slope ADC with first-step half-reference ramping scheme for high-speed CMOS image sensors,” IEEE J. Solid-State Circuits 55 (2021) 1 (DOI: 10.1109/jssc.2021.3059909).
[22] C. Liang, et al.: “Analysis and compensation of rolling shutter effect,” IEEE Trans. Image Process. 17 (2008) 1233 (DOI: 10.1109/TIP.2008.925384).
[23] Y. Nitta, et al.: “High-speed digital double sampling with analog CDS on column parallel ADC architecture for low-noise active pixel sensor,” ISSCC Dig. Tech. Papers (2006) 2024 (DOI: 10.1109/ ISSCC.2006.1696261).
[24] T. Arai, et al.: “A 1.1 µm 33Mpixel 240fps 3D-stacked CMOS image sensor with 3-stage cyclic-based analog-to-digital converters,” ISSCC Dig. Tech. Papers (2016) 126 (DOI: 10.1109/ISSCC.2016.7417394).
[25] H. Kim, et al.: “A delta-readout scheme for low-power CMOS image sensors with multi-column-parallel SAR ADCs,” IEEE J. Solid-State Circuits 51 (2016) 2262 (DOI: 10.1109/JSSC.2016.2581819).
[26] H. Kim, et al.: “A dual-imaging speed-enhanced CMOS image sensor for real-time edge image extraction,” IEEE J. Solid-State Circuits 52 (2017) 2488 (DOI: 10.1109/JSSC.2017.2718665).
[27] M.F. Snoeij, et al.: “Multiple-ramp column-parallel ADC architectures for CMOS image sensors,” IEEE J. Solid-State Circuits 42 (2007) 2966 (DOI: 10.1109/JSSC.2007.908720).
[28] S. Park, et al.: “Low-power, bio-inspired time-stamp-based 2-D optic flow sensor for artificial compound eyes of micro air vehicles,” IEEE Sensors J. 19 (2019) 12059 (DOI: 10.1109/JSEN.2019.2938559).
[29] Product datasheet XT11X, https://www.klaruslight.com/upfile/PDF/XT11X.pdf.
[30] O. Kumagai, et al.: “A 1/4-inch 3.9Mpixel low-power event-driven back-illuminated stacked CMOS image sensor,” ISSCC Dig. Tech. Papers (2018) 86 (DOI: 10.1109/ISSCC.2018.8310196).
[31] K. Nie, et al.: “A single slope ADC with cow-wise noise reduction technique for CMOS image sensor,” IEEE Trans. Circuits Syst. I, Reg. Papers 67 (2020) 2873 (DOI: 10.1109/TCSI.2020.2979321).
[32] I. Park, et al.: “A 640 × 640 fully dynamic CMOS image sensor for always-on operation,” IEEE J. Solid-State Circuits 55 (2020) 898 (DOI: 10.1109/JSSC.2019.2959486).
[33] S. Kawahito: “Column readout circuit design for high-speed low-noise imaging,” IEEE ISSCC Image Sensor Forum (2010).
[34] M. Kwon and B. Murmann: “A new figure of merit equation for analog-to-digital converters in CMOS image sensors,” 2018 IEEE ISCAS (2018) 1 (DOI: 10.1109/ISCAS.2018.8351578).