PREDICTION OF ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION ACTIVITY OF THE COMPONENTS OF MADHUCA LONGIFOLIA AND ITS INHIBITING TARGET MOLECULE

JERINE PETER S, NAGESH KISHAN PANCHAL, ANKITHA V, SAI LAKSHMI, POOJITA KARCHALKAR, EVAN PRINCE SABINA*

Departmental of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India. Email: eps674@gmail.com

ABSTRACT

Objectives: Madhuca longifolia is a versatile tropical tree mostly cultivated or harvested in the wild in South Asia for its edible flowers and oil seeds. Mahua trees are vegetatively propagated; they act as soil improvers, and also help in soil reclamation and erosion control. M. longifolia is a plant of great importance due to its scientifically proven uses such as antioxidant activity, immune suppression, and neuroprotective activity, which is because of the various chemical constituents present in different parts of the plant. The aim of our study is to analyze the absorption, distribution, metabolism, and excretion (ADME) properties and pathways analysis of active components of M. longifolia.

Methods: The detailed study of these chemical constituents is done using PubChem and software’s such as Rasmol and Pymol. Swiss ADME was used to find out the ADME properties of the chemical constituents present in the plant. The pathway analysis was done using a literature survey and Swiss Target Prediction.

Results: The research has identify the potentially active compound from the plant with its inhibitory target protein.

Conclusion: The ADME result demonstrates the potential pharmacological activity of the plant compound, which can be studied through in vivo model against its potential inhibitory target molecules.

Keywords: Madhuca longifolia, Rasmol, Pymol, PubChem, Absorption; distribution; metabolism; and excretion properties.

INTRODUCTION

Madhuca longifolia belongs to the Sapotaceae family commonly known as butternut tree, which is a fast-growing tree found widely in Nepal, India, and Sri Lanka. The common Indian name for M. longifolia is Mahua, Mahwa, or Iluppi. It is cultivated in warm and humid regions. It is a deciduous tree that can grow up to 20 m of height. The ethnomedicinal uses of M. longifolia contain various phytochemical compounds such as flavonoids, Vitamins A and C, histidine, glutamic acid, tannins, volatile oil, beta-carotene, and xanthophylls. The aqueous and alcoholic extract of M. longifolia has been reported to show analgesic activity [1].

M. longifolia is a multipurpose tree. Large numbers of Mahua trees are found in India and the estimated production of its flowers is more than 1 million tonne in the country. Tribes of West Bengal, such as Lodhat, Santals, and Mundas, have been using different parts of Mahua as medicine [2]. The presence of some bioactive substances in leaves supports the traditional medicinal uses of M. longifolia. The presence of quercetin was reported in M. longifolia leaf through high-performance thin-layer chromatography technique. Madhucic acid, Madhusazone, and Madhusalmonone were isolated from M. longifolia fruits. A flavone (3,4-dihydroxy-5.2-dimethoxy-6,7-methylenedioxy) was isolated from the fruits of M. longifolia [3].

Recent researches on M. longifolia were against diolofenac-induced toxicity in female Wistar albino rabbits, bio fabrication, and characterization of flavonoid loaded Ag, Au, pyrolysis characteristics, fuel properties, and compositional study of M. longifolia butter [4,5]. Absorption, distribution, metabolism, and excretion (ADME) and toxicological profiling are critical parts of any drug development program, and essential for compliance with regulatory guidelines [6-9]. In this experiment, the ADME properties of each compound were analyzed using SWISS ADME, and the inhibiting target molecule of each compound was found using Swiss Target Prediction. This work would help in analyzing the pharmacological activities of the active compounds of M. longifolia against its inhibitory target molecules.

METHODS

Active compounds of M. longifolia

M. longifolia has various active compounds present in different parts of the plant. Few important ones are Vitamins A and C present in flower, alpha-spinasterol, alpha-terpinene (bark), and important amino acids such as alanine, glycine, cysteine (seeds), alpha- and beta-amyrin acetates (fruit) and xanthophylls, and erthrythrodil (leaves). The active compound of the flower of M. longifolia is Vitamin A (C_{13}H_{18}O) and Vitamin C (C_{6}H_{8}O). The active compound of M. longifolia bark is alpha-amyrin acetate (C_{30}H_{44}O), alpha-terpinene (C_{10}H_{16}), and oleic acid (C_{18}H_{34}O). The active compound of M. longifolia fruits is alpha-amyrin acetate (C_{30}H_{44}O), beta-amyrin acetate (C_{30}H_{44}O), beta-sitosteryl (C_{39}H_{58}O), dihydroquercetin (C_{30}H_{30}O), and quercetin (C_{30}H_{16}O). The active compound of M. longifolia seeds is alamine (C_{13}H_{18}N), arachidic acid (C_{26}H_{52}), cysteine (C_{6}H_{11}NO_{2}), glycine (C_{2}H_{11}NO), leucine (C_{6}H_{13}NO_{2}), linoleic acid (C_{18}H_{34}O), myristic acid (C_{14}H_{28}O), oleic acid (C_{18}H_{34}O), palmitic acid (C_{16}H_{32}O), quercetin (C_{30}H_{16}O), and stearic acid (C_{18}H_{36}O). The active compound of M. longifolia leaves is beta-sitosterol (C_{29}H_{50}), carotene (C_{40}H_{56}), erthrythodil (C_{29}H_{50}), myricitin (C_{30}H_{34}O), n-octacosanol (C_{38}H_{78}O), quercetin (C_{30}H_{16}O), stigmasterol (C_{29}H_{50}), and xanthophyll (C_{30}H_{16}O).

Analysis of ADME property

The ADME properties of each compound were analyzed using SWISS ADME (http://www.swissadme.ch/). The canonical smiles of each compound were taken from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and pasted into SWISS ADME to predict ADME parameters,
pharmacokinetic properties, drug-like nature, and medicinal chemistry of each compound.

Analysis of inhibitory target molecule

Analysis of the inhibitory target molecule was done using Swiss TargetPrediction (http://www.swisstargetprediction.ch/) a part of Expasy (https://www.expasy.org/medicinal_chemistry). This website is used to estimate the most probable macromolecular targets of a small molecule.

RESULTS

ADME properties of M. longifolia

Table 1 represents the ADME analysis of the active compounds of M. longifolia. Many compounds have obeyed the Lipinski rule and few compounds were observed to show high gastrointestinal (GI) absorption. Fig. 1 represents the ADME chart of the compounds. GI absorption in the following compounds was high – Vitamin A, Vitamin C, alpha-terpineol, dihydroquercetin, quercetin, glycol, isoleucine, leucine, linoleic acid, myristic acid, oleic acid, and stearic acid. GI absorption in the following compounds was low – alpha-amyrin acetate, alpha-spinasterol, oleic acid, beta-amyrin acetate, beta-spinasterol, arachidic acid, cysteine, carotene, erythrodiol, myricitin, n-Hexacosanol, n-Octacosanol, Stigmasterol, and xanthophylls.

Inhibitory analysis of M. longifolia

Table 2 represents the inhibitory target molecule of the active compound of M. longifolia with its probability and known actives.

Role of inhibitory target molecules

The role of inhibitory target molecules was analyzed which is discussed here. Gamma-amino-N-butyrate transaminase is responsible for the catabolism of gamma-aminobutyric acid and inhibition of neurotransmitters in the central nervous system (CNS) [10]. Peroxisome proliferator-activated receptor (PPAR) alpha binds to peroxisome proliferator response elements which initiate the transcriptional regulation of target genes. It may inhibit the ligand-induced transcriptional activity of PPARs alpha and gamma [11]. Fatty acid-binding protein intestinal actively accelerates the transport of lipids to specific parts in the cell. Metabotropic glutamate receptor 2 is the major excitatory neurotransmitter in the CNS and activates both ionotropic and metabotropic glutamate receptors [12]. The active compound Metabotropic glutamate receptor 6 is reported to cause neuronal excitability and synaptic transmission. This is by modulation of a variety of ion channels and other regulatory and signalling proteins. Tyrosine-protein kinase FYN encodes a membrane-associated tyrosine kinase that is involved in controlling cell growth. Tyrosine-protein kinase LCK controls a wide variety of cellular processes. High-affinity choline transporter is involved in pain regulation and pain inhibition [13].

Voltage-gated calcium channel alpha-2/delta subunit 1 plays roles in the trafficking of these channels, both to the plasma membrane and to specific subcellular domains. PPAR-gamma is a key regulator of metabolism, proliferation, inflammation and differentiation, and upregulates tumor suppressor genes. PPAR-alpha is involved in cell proliferation, cell differentiation and in immune and inflammation responses PPAR-alpha, which is a nuclear transcription factor. Free fatty acid receptor 1 is involved in the metabolic regulation of insulin secretion. Fatty acid-binding protein adipocyte is an important mediator of inflammation [14]. Vasopressin V2 receptor has the primary property to respond to the pituitary hormone arginine vasopressin. Aldose reductase is implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. PPAR-alpha is involved in cell proliferation, cell differentiation and immune, and inflammation responses. Carboxylesterase 2 is responsible for the hydrolysis of various xenobiotics [15]. 11-beta-hydroxysteroid dehydrogenase 1 catalyzes the conversion of the stress hormone cortisol to the inactive metabolite cortisone. Protein-tyrosine phosphatase 1B is essential for catalytic activity. It acts as a negative regulator of insulin signaling by dephosphorylating the phosphotyrosine residues of insulin receptor kinase. Cytochrome P450 51 is involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids. Adenosine A2a receptor plays an important role in cardiac rhythm and circulation, cerebral and renal blood flow, immune function, pain regulation, and sleep. Adenosine A3 receptor is involved in the inhibition of neutrophil degranulation in neutrophil-mediated tissue injury. Butyrylcholinesterase is involved in the detoxification of poisons including organophosphate nerve agents and pesticides, and the metabolism of drugs, including cocaine, heroin, and aspirin [16].

Microtubule-associated protein is associated with several neurodegenerative disorders such as Alzheimer’s disease, pick’s...
Asian J Pharm Clin Res, Vol 13, Issue 3, 2020, 148-154

Peter et al.

Disease, frontotemporal dementia, corticobasal degeneration, and progressive supranuclear palsy. Carbonic anhydrase II is associated with osteopetrosis and renal tubular acidosis. Carbonic anhydrase I encodes a cytosolic protein that is found at the highest level in erythrocytes. Transient receptor potential cation channel subfamily M member eight plays a role in prostate cancer cell migration. Niemann-Pick C1-like protein 1 plays a critical role in regulating lipid metabolism. Vitamin D receptor is involved in immune response and cancer. Muscarinic acetylcholine receptor M2 triggers calcium ion release into the cytosol.

DNA polymerase beta translocates to the nucleus on DNA damage.

Plasma retinol-binding protein results in defective delivery and supply to the epidermal cells [17].

DISCUSSION

The ethanolic extract of *M. longifolia* has a significant role in nephroprotective and hepatoprotective activity against acetaminophen-induced necrotic damage of hepatic and renal tissue. Ether benzene-95% crude ethanolic extract of leaves and bark of *M. longifolia* shows a remarkable reduction in the time taken to heal a wound [18]. The methanolic extraction proved to have potential benefits of anti-

Plant parts	Compound	TPSA (Å)	GIA	NRB	NHBD	NHBA	LIPINSKI	BA	LOG KP (cm/s)
Flower	Vitamin A	20.23	High	5	1	1	YES,1 V	0.55	−4.01
	Vitamin C	10.22	High	2	4	6	YES,0 V	0.56	−8.54
	Alpha-amyrin acetate	26.30	Low	2	0	2	YES,1 V	0.55	−2.36
	Alpha-spinasterol	20.23	Low	5	1	1	YES,1 V	0.55	−2.92
	Alpha-terpineol	20.23	Low	1	1	1	YES,0 V	0.55	−4.83
	Oleic acid	57.53	Low	1	2	3	YES,1 V	0.56	−3.77
Fruit	Alpha-amyrin acetate	26.30	Low	2	0	2	YES,1 V	0.55	−2.36
	Beta-amyrin acetate	26.30	Low	2	0	2	YES,1 V	0.55	−2.25
	Beta-sitosterol	20.23	Low	6	1	1	YES,1 V	0.55	−2.20
	Dihydroquercetin	127.45	High	1	5	7	YES,0 V	0.55	−7.8
Seeds	Alamine	63.32	High	1	2	3	YES,0 V	0.55	−8.95
	Arachidic acid	37.30	Low	18	1	2	YES,1 V	0.56	−1.61
	Cysteine	177.24	Low	7	4	6	YES,0 V	0.55	−11.37
	Glycine	63.32	High	1	2	3	YES,0 V	0.55	−9.04
	Isoleucine	63.32	High	3	2	3	YES,0 V	0.55	−8.32
	Leucine	63.32	High	3	2	3	YES,0 V	0.55	−8.18
	Linoleic acid	37.30	High	14	1	2	YES,1 V	0.56	−3.05
	Myristic acid	37.30	High	12	1	2	YES,0 V	0.56	−3.35
	Oleic acid	37.30	High	15	1	2	YES,1 V	0.56	−2.60
	Palmitic acid	37.30	High	14	1	2	YES,1 V	0.56	−2.77
	Quercetin	131.36	High	1	5	7	YES,0 V	0.55	−7.05
	Steric acid	37.30	High	16	1	2	YES,1 V	0.56	−2.19
Leaves	Beta-sitosterol	20.23	Low	6	1	1	YES,1 V	0.55	−2.20
	Carotene	0.00	Low	10	0	0	NO,2 V	0.17	0.12
	Erythroidiol	40.46	Low	1	2	2	YES,1 V	0.55	−3.63
	Myricitin	151.59	Low	1	6	8	YES,1 V NH or OH=5	0.55	−7.40
	n-Hexacosanol	20.23	Low	24	1	1	YES,1 V	0.55	0.26
	n-Octacosanol	20.23	Low	26	1	1	YES,1 V	0.55	0.86
	Quercetin	131.36	High	1	5	7	YES,0 V	0.55	−7.05
	Stigmasterol	20.23	Low	5	1	1	YES,1 V	0.55	−2.74
	Xanthophylls	40.46	Low	10	2	2	YES,1 V	0.55	−1.95

GIA: Gastrointestinal absorption, NRB: Number of rotatable bond, NHBD: Number of hydrogen bond donor, NHBA: Number of hydrogen bond acceptor, BA: Bioavailability, V: Violation
Table 2: Analysis of inhibitory target molecule

Plants parts	Compound	Target	Target class	Probability	Known active (3d/2d)
Flower	Vitamin A	Plasma binding retinol	Secreted protein	0.418947321	3/2
	Retinoid X receptor alpha	Nuclear receptor	0.418947321	2/3	
	Retinoid X receptor beta	Nuclear receptor	0.106099949	0/2	
	Vitamin C	Glyoxyn synthase kinase-3 beta	Kinase	0.141787381	0/2
	Protein kinase C alpha	Kinase	0	0/168	
	Protein-tyrosine phosphatase 1B	Phosphatase	0	0/9	
Bark	Alpha-amyрин	Carboxylesterase 2	Enzyme	0.128531578	0/12
	Acetate	11-beta-hydroxysteroid dehydrogenase 1	Enzyme	0.128531578	153/29
		Protein-tyrosine phosphatase	Phosphatase	0.120225751	7/70
	Alpha-spinasterol	Androgen receptor	Nuclear receptor	0.705989664	23/106
		Muscarinic acetylcholine receptor M2	Family A G protein-coupled receptor	0.306043655	0/2
		11-beta-hydroxysteroid dehydrogenase 1	Enzyme	0.128531578	153/29
		Protein-tyrosine phosphatase	Phosphatase	0.120225751	7/70
		Androgen receptor	Nuclear receptor	0.705989664	23/106
		Muscarinic acetylcholine receptor M2	Family A G protein-coupled receptor	0.306043655	0/2
Fruit	Alpha-amyрин	Carboxylesterase 2	Enzyme	0.128531578	0/12
	Acetate	11-beta-hydroxysteroid dehydrogenase 1	Enzyme	0.128531578	153/29
		Protein-tyrosine phosphatase	Phosphatase	0.120225751	7/70
	Beta-amyрин	Prostaglandin E synthase	Enzyme	0.128531578	6/13
	acetate	Androgen receptor	Nuclear receptor	0.120225751	12/106
		11-beta-hydroxysteroid dehydrogenase 2	Enzyme	0.120225751	6/11
	Beta-sitosterol	Androgen receptor	Nuclear receptor	0.120225751	12/106
		HMG-CoA reductase	Oxidoreductase	0.614311102	36/7
		Cytochrome P450 51	Cytochrome P450	0.614311102	2/2
	Dihydroquercetin and quercetin	NADPH oxidase 4	Enzyme	1	7/8
Seeds	Alanine	Vasopressin V2 receptor	Family A G protein-coupled receptor	1	1/1
		Aldose reductase	Enzyme	1	17/72
		Gamma-amino-N-butyrate transaminase	Transferase	0.03397069	2/0
		Histone deacyetylase 3 transporter	ERASER	0	0/1
		Betaine transporter	Electrochemical transporter	0	2/0
	Arachidonic acid	Peroxisome proliferator-activated receptor alpha	Nuclear receptor	0.364127943	77/9
		Peroxisome proliferator-activated receptor delta	Nuclear receptor	0.364127943	30/7
	Cysteine	Fatty acid-binding protein intestinal	Fatty acid-binding protein family	0.34502608	0/1
	Metabotropic glutamate receptor 2	Family C G protein-coupled receptor	0	3/0	
		Metabotropic glutamate receptor 3	Family C G protein-coupled receptor	0	2/0
	Metabotropic glutamate receptor 6	Family C G protein-coupled receptor	0	1/0	
	Glycine	Tyrosine-protein kinase FYN	Kinase	0	0/1
		Tyrosine-protein kinase LCK	Kinase	0	0/1
	Isoleucine	Voltage-gated calcium channel alpha-2/delta subunit 1	Calcium channel auxiliary subunit alpha2delta family	0.125817531	30/5
		Adenosine A3 receptor	Family A G protein-coupled receptor	0.095255918	3/2
	Leucine	Excitatory amino acid transporter 3	Electrochemical transporter	0.074316474	0/3
		Voltage-gated calcium channel alpha-2/delta subunit 1	Calcium channel auxiliary subunit alpha2delta family	0.13510518	31/5
		Adenosine A3 receptor	Family A G protein-coupled receptor	0.095255918	3/2
	Linoleic acid	Excitatory amino acid transporter 3	Electrochemical transporter	0.074316474	0/3
		Peroxisome proliferator-activated receptor gamma	Nuclear receptor	0.747488284	429/22
		Peroxisome proliferator-activated receptor alpha	Nuclear receptor	0.747488284	270/18
	Myristic acid	Peroxisome proliferator-activated receptor delta	Nuclear receptor	0.747488284	192/10

(Contd...)
inflammatory, anti-pyretic, and analgesic properties because of the presence of flavonoids in the plants. The methanolic extract of the bark is known to have antidiabetic and anti-hyperglycemic activity. The aqueous extract of leaves has been preventive to have an effective antiproliferative property. The bark is used for rheumatism, chronic bronchitis, diabetes mellitus, ulcers, tonsillitis, and bleedings. The flowers have been traditionally used as an analgesic, diuretic, cooling agent, tonic, aphrodisiac, astringent, demulcent and for the treatment of helminths, acute and chronic tonsillitis, pharyngitis, and bronchitis. Leaves are expectorant and also used for chronic bronchitis and Cushing's disease [18].

ADME is an abbreviation used in pharmacokinetics and pharmacology for ADME and describes the disposal of a compound within an organism. The path of any new molecule to reach its target involves the passage through many barriers, as well as the survival of the complicated biological systems. A prerequisite in drug discovery and development in conducting drug metabolism and pharmacokinetics studies, often referred to as ADME toxicity studies [19]. Absorption – how much of the drug and how quickly is it absorbed? (bioavailability). Absorption takes place in the GI tract. The surface area and pH of the organ influence the rate of absorption of the compound. Absorption is the movement of drug from the GI tract. The surface area and pH of the organ influence the rate of absorption of the compound. Absorption is the movement of drug from the GI tract.

Table 2: (Continued)

Plants parts	Compound	Target	Target class	Probability	Known active (3d/2d)
Free fatty acid receptor 1	Oleic acid	Fatty acid-binding protein adipocyte	Family A G protein-coupled receptor	0.580792647	164/3
	Fatty acid-binding protein adipocyte	Fatty acid-binding protein family	1	5/4	
	Anandamide amidohydrolase	Enzyme	1	7/17	
	Peroxisome proliferator-activated receptor gamma	Nuclear receptor	1	223/24	
Palmitic acid	Fatty acid-binding protein adipocyte	Fatty acid-binding protein family	0.935895337	20/3	
	Peroxisome proliferator-activated receptor alpha	Nuclear receptor	0.935895337	152/9	
	Fatty acid-binding protein adipocyte	Fatty acid-binding protein family	0.935895337	10/5	
Quercetin	NADPH oxidase 4	Enzyme	1	7/8	
	Vasopressin V2 receptor	Family A G protein-coupled receptor	1	1/1	
	Aldose reductase	Enzyme	1	17/72	
	Peroxisome proliferator-activated receptor alpha	Nuclear receptor	0.929299884	121/9	
	Peroxisome proliferator-activated receptor delta	Nuclear receptor	0.929299884	135/7	
	Fatty acid-binding protein adipocyte	Fatty acid-binding protein family	0.723067577	13/3	
Leaves Beta-sitosterol	HMG-CoA reductase	Oxidoreductase	0.120225751	12/106	
	Cytochrome P450 51	Cytochrome P450	0.614311102	36/7	
	Carotene	Adenosine A1 receptor	0.086885855	0/1	
		Family A G protein-coupled receptor	0.086885855	0/1	
Erythrodol	Protein-tyrosine phosphatase 1B	Phosphatase	0.120225751	7/70	
	Butyrylcholinesterase	Hydrolase	0.31401521	8/2	
	Cytochrome P450 19A1	Cytochrome P450	0.22719907	12/157	
Myricitin	Microtubule-associated protein tau	Unclassified protein	1	1/1	
	Lysine-specific demethylase 4D-like	Eraser	1	1/2	
	G-protein coupled receptor 35	Family A G protein-coupled receptor	1	2/4	
n-Hexacosanol	Transient receptor potential cation channel subfamily M member 8	Voltage-gated ion channel	0.177292204	0/1	
	Carbonic anhydrase II	Lyase	0.177292204	0/3	
	Carbonic anhydrase I	Lyase	0.177292204	0/3	
n-Octacosanol	Transient receptor potential cation channel subfamily M member 8	Voltage-gated ion channel	0.177292204	0/1	
	Carbonic anhydrase II	Lyase	0.177292204	0/3	
	Carbonic anhydrase I	Lyase	0.177292204	0/3	
Quercetin	NADPH oxidase 4	Enzyme	1	7/8	
	Vasopressin V2 receptor	Family A G protein-coupled receptor	1	1/1	
	Aldose reductase	Enzyme	1	17/72	
Stigmasterol	Androgen Receptor	Nuclear receptor	0.689284537	35/102	
	Niemann-pick C1-like protein 1	Other membrane protein	0.639333184	9/13	
Xanthophylls	Vitamin D receptor	Nuclear receptor	0.082221517	0/52	
	Androgen receptor	Nuclear receptor	0.082221517	0/52	
	Protein-tyrosine phosphatase 1B	Phosphatase	0.082221517	0/16	
is more soluble [20]. Distribution – where is the drug administered and what is the rate and extent of distribution. After absorption, the drugs are distributed in blood. After GI tract absorption, it is taken up by the hepatic portal system. Lipids are absorbed into the lymphatic system and through thoracic duct, it is delivered into the blood. Lipophilicity plays an important role in distribution [21]. The capillaries in CNS are sealed by connective tissue; hence, only small molecules can cross the blood–brain barrier [22]. Metabolism – how fast is the drug metabolized, what is the mechanism of action and what metabolite is formed and is it active or toxic. It depends on race, age, the health of the patient, depends on whether the patient is taking another drug. The liver is the primary site but it can happen anywhere in the bloodstream. Biotransformation is the process of making a compound more hydrophilic so that it can be excreted out from the body. This happens in two phases, i.e., Phase I metabolism – the compound is modified chemically by the process such as oxidation, reduction, and hydrolysis. These changes create sites for Phase II metabolism. In Phase II conjugation of the Phase I, metabolite takes place with polar groups, for example, glucuronic acid and sulfates. This alters the activity and it becomes more hydrophilic and less lipid soluble so it gets excreted easily. Excretion – how is the drug excreted and how quickly? Some drugs are unchanged but some drugs get changed into urine or bile and are excreted out [23].

Scientists are more interested in estimating the drug-likeness properties that are bioavailability, pharmacokinetics (how body responds to the drug), pharmacodynamics (how drug acts on the body), solubility, toxicity, lipophilicity, permeability, logP, logD, kinetic and thermodynamic solubility, the volume of distribution, and biotransformation [24]. The underlying goal and end-game for all ADME studies are to better understand a compound’s metabolite-mediated toxicity and safety profile to make a concrete decision on whether the compound can progress to late-stage preclinical and clinical studies to enable filling for an investigational new drug, new drug agreement, or a biologics licensing agreement. ADME studies can be used in molecular docking, pharmacophore modeling, de novo designing, fragment-based screening, to find structure-activity relationships [25,26]. Transports play an important role in the ADME of drugs. Recently, various in vitro and in vivo methods have been established for studying transporter function and drug transporter function [9,27].

There are some rules or models for classifying a compound, whether it is a good drug or a bad drug. The most widely accepted one is Lipinski’s rule of 5. Lipinski’s rule – devised by Lipinski and coworkers. If two parameters are out of range, “poor absorption or permeability is possible.” The compound may get absorbed in GI tract if any one of the parameter doesn’t work properly. Hence, the rules are: (1) Molecular weight <500, (2) number of H-bond acceptors<10 (Any O and N atoms), (3) number of H-bond donors <5 (N-H or O-H groups), (4) LogP >5 then it is hydrophobic, and (5) LogP of 0–5 then it is very hydrophilic [28,29].

CONCLUSION

The article has elaborated on the ADME and inhibitory potential of M. longifolia. The role of all target molecules is much essential. The active compound of M. longifolia can be further studied through in vitro and in silico methods for its potential pharmaceutical values.

ACKNOWLEDGMENT

We would like to thank VIT for giving us the opportunity to work and giving us all the necessary resources to successfully carry out this work.

AUTHORS’ CONTRIBUTIONS

Paper correction and project design: Jerine Peter S, Nagesh Kishan Panchal, Work analysis: Ankitha V, Sai Lakshmi, Poojita Karchalkar, Correspondence: E P Sabina.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

AUTHORS FUNDING

We did not get any funding to carry out these research findings.

REFERENCES

1. Kumar R, Bora GS, Banerjee S, Mandal A, Naija TK. Application of naturally extracted surfactant from Madhuca longifolia to improve the flow properties of heavy crude oil through horizontal pipeline. J Petrol Sci Eng 2018;168:178-89.
2. Simon JP, Parhasarathry M, Nithyanchandam S, Kattura J, Namachivayam A, Prince SE, et al. Protective effect of the ethanolic and methanolic leaf extracts of Madhuca longifolia against dichallenge-induced toxicity in female wistar albino rats. Pharmacol Rep 2019;71:983-93.
3. Jha D, Mazumder PM. Biological, chemical and pharmacological aspects of Madhuca longifolia. Asian Pac J Trop Med 2018;11:9.
4. Peter SJ, Evan A. Neutrophin-induced renal toxicity in female wistar albino rats is protected by the pre-treatment of aqueous leaves extract of Madhuca longifolia through suppression of inflammation, oxidative stress and cytokine formation. Biomed Pharmacother 2018;98:45-51.
5. Badavath VN, Sinha BN, Jayaprakash V. Design, in-silico docking and predictive ADME properties of novel pyrazoline derivatives with selective human mao inhibitory activity. Int J Pharm Sci Res 2015;7:277-82.
6. Sarkar MK, Vidaliv V, Charan Raja MR, Mahapatra SK. Potential anti-proliferative activity of agPNs synthesized using M. Longifolia in 4T1 cell line through ROS generation and cell membrane damage. J Photochem Photobiol B 2018;186:160-8.
7. Manjunatha KS, Satyanarayana ND, Harishkumar S. Antimicrobial and in silico ADMET screening of novel (e-n-(2-(1h-indol-3-yl-amino) vinyl)-3-(1-methyl-1h-indol-3-yl)-3-phenylpropionic acid derivatives. Int J Pharm Sci 2016;8:251-6.
8. Rajpurohit A, Satyanarayana ND, Patil S, Mahadevan KM, J AH. In vitro antioxidant, antimicrobial and ADMET study of novel furan benzofuran c2-coupled quinoline hybrids. Int J Pharm Sci Res 2017;9:144-53.
9. Yasmin S, Jayaprakash V. Design, in-silico docking and predictive adme properties of some thiazolidine-2, 4-diones derivatives as ppar3 modulators. Int J Pharm Sci Res 2016;8:143-50.
10. Bridges CC, Krasnovik BF, Joshee LB, Pinto JT, Hakala A, Li J, et al. New insights into the metabolism of organomercury compounds: Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine γ-lyase. Arch Biochem Biophys 2012;517:20-9.
11. Pydny N, Kadlucka J, Kus E, Pospiech E, Losko M, Fu M, et al. RNase MCP1 regulates hepatic peroxisome proliferator-activated receptor gamma via TXNIP/GC-1-lalpa pathway. Biochim Biophys Acta Mol Cell Biol Liped 2019;1864:1458-71.
12. McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal 2019;62:19336-9.
13. Yin Y, Yuan X, Gao H, Yang Q. Nanof ormulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. Int J Pharm 2020;573:118785.
14. Badavemane-Ali F, Findeisen F, Rossen ND, Minor DL, Jr. A selectivity filter gates controls voltage-gated calcium channel calcium-dependent inactivation. Neuron 2019:10134-90000.
15. Erfanian S, Yazdanpour L, Javeshgani D, Roustazadeh A. Association of arginine vasopressin (AVP) promoter polymorphisms with preclampsia. Pregnancy Hypertens 2019;18:122-5.
16. Capitanio G, Palese LL, Papa F, Papa S. Allosteric cooperativity in proton energy conversion in A1-type cytochrome C oxidase. J Mol Bio 2019. DOI: 10.1016/j.jmb.2019.09.027.
17. Chen GY, Cleary JM, Aseeoni AB, Chen Y, Mascaro JA, Arginteanu DF, et al. Kinesin-5 promotes microtubule nucleation and assembly by stabilizing a lattice-competent conformation of tubulin. Curr Biol 2019;29:2259-690000.
18. Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, et al. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog 2018;121:184-9.
19. Vrbanan J, Slauder R. In: Faqi AS, editor. A Comprehensive Guide to Toxicology in Preclinical Drug Development. London; Waltham, MA: Academic Press; 2013. p. 3-30.
20. Hui-Yuen JS, Tran T, Taylor J, Truong K, Li X, Bermudez LM, et al. Use
of glucuronidated mycophenolic acid levels for therapeutic monitoring in pediatric lupus nephritis patients. J Clin Rheumatol 2016;22:75-9.

21. Corvaro M, Bartels M. The ADME profile of the fungicide tricyclazole in rodent via the oral route: A critical review for human health safety assessment. Regul Toxicol Pharmacol 2019;108:104438.

22. Deng J, Xu S, Gao X, Xu S, Shuai Z, Pan F. Red cell distribution width and mean platelet volume in patients with ankylosing spondylitis: A systematic review and meta-analysis. J Clin Rheumatol 2020. DOI: 10.1097/RHU.0000000000001174.

23. Abdelwahab NS, Hassan HM, Magd AM. Rapid microwave-assisted hydrolytic degradation of colchicine: In silico ADME/tox profile, molecular docking, and development of innovative RP-chromatographic methods. Microchem J 2019;152:104419.

24. Pogaku V, Gangarapu K, Basavoji S, Tatapudi KK, Katragadda SB. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg Chem 2019;93:103307.

25. Prieto-Martínez FD, López-López E, Euridice Juárez-Mercado K, Medina-Franco JL. In: Roy K, editor. In Silico Drug Design. Cambridge, MA, USA: Academic Press; 2019. p. 19-44.

26. Kothiya OM, Patel BA, Patel KN, Patel MM. Formulation and characterization of sustained release matrix tablets of ivabradine using 32 full factorial design. Int J Appl Pharm 2018;10:59-66.

27. Wang D. Current research method in transporter study. Adv Exp Med Biol 2019;1141:203-40.

28. Duchowicz PR, Talevi A, Bellera C, Bruno-Blanch LE, Castro EA. Application of descriptors based on lipinski’s rules in the QSPR study of aqueous solubilities. Bioorg Med Chem 2007;15:3711-9.

29. Budiman A, Megantara S, Rasawati P, Qoriah T. Solid dosage form development of glibenclamide with increasing the solubility and dissolution rate using cocrystallization. Int J Appl Pharm 2018;10:181-6.