Global climate change: wild fires and permafrost degradation in the Republic of Buryatia (Eastern Siberia, Russia)

Nimazhap Badmaev¹, Aleksandr Bazarov², Anatoly Kulikov¹, Ayur Gyninova¹, Darima Sympilova¹, Ekaterina Shakhmatova¹, Natalya Badmaeva¹, Bato-Munko Gonchikov¹ and Aleksandr Mangataev¹

¹ Institute of General and Experimental Biology SB RAS, Ulan-Ude, 670047, Russia
² Institute of Physical Material Science SB RAS, Ulan-Ude, 670047, Russia

E-mail: nima_b@mail.ru

Abstract. On the territory of the Republic of Buryatia due to global climate change, significant transformations of the natural environment have been observed. Statistically significant trends of increase in temperature and decrease in precipitation with identification of wet and dry periods have been established. In the last 20 years due to the abnormally high air temperatures and the increasing aridity of the territory, the frequency and area of fires have increased, the rate of permafrost degradation on the southern boundary of the permafrost zone in the soils of meadow-steppe landscapes has increased twice.

1. Introduction
For the last half a XX century, global air temperatures have risen at a rate of ~ 0.2 °C per decade [1]. Climate changes affect global fire fluctuations [2] and may increase the number and size of fires in the coming decades [3]. Three intervals are distinguished: the warming in 1910–1945, a weak cooling in 1946–1975 and the most intense warming since the 1970s. In this regard, the purpose and objectives of these studies are to estimate the impact of global climate change on the transformation of the ecosystems of the Baikal region, in particular on vegetation and soil cover.

2. Models and Methods
The environmental conditions of the Republic of Buryatia (Eastern Siberia, Russia) are characterized by mountainous relief, a sharply continental climate, widespread seasonal freezing and permafrost, heterogeneity of parent material rocks and vegetation, a wide variety of soil cover [4]. The southern boundary of the cryolithozone stretches over the entire territory of the Republic (Figure 1) and modern global changes can cause the degradation of permafrost [5-7]. Permafrost, lithological and phytocenotic conditions are complicated when the relief is dissected. That is why different soils with sharply contrasting weathering and soil formation regimes are formed on the studied territory [8, 9].

Thus, Buryatia is characterized by an extremely unique combination of soil formation factors and is located on the southern boundary of permafrost distribution. Therefore, it is a convenient model for studying the atmospheric and soil climate and a quantitative estimation of processes of soil freezing and thawing due to global climate change.

Climate change monitoring of the southern boundary of the permafrost zone is carried out using the atmosphere and soil measurement complex (ASMC). ASMC is a development of the Siberian Branch
of the Russian Academy of Sciences [10]. ASMC conducts autonomous long-term interfaced measurements of atmosphere and soil meteorological parameters. To compare the soil climate, ASMC was established on different types of permafrost distribution (Figure 1): a) continuous — the central part of the Vitim Plateau (Turbic Cryosol Mollic, Bagdarin polygon, N 54°37'326", E 113°48'108", 947 m a.s.l.); b) discontinuous – the south of the Vitim Plateau (Haplic Chernozem Tonguic, Eravna test site, N 52°30'530", E 111°32'443", 933 m a.s.l.); c) sporadic – the north of the Selenginsk Middle Mountains (Natric Chernozem, Kizhinga test site, N 51°82'384", E 109°82'018", 726 m a.s.l.), the Eastern Baikal region (Entic Podzols, Goryachinsk test site, N 52°98'5606", E 108°28'4349", 502 m a.s.l.).

![Figure 1. The map of the distribution of the permafrost types [11] and the scheme of the atmosphere and soil measurement complex (ASMC) locations [12].](image)

A detailed soil characteristic was given earlier [12]. Turbic Cryosol Mollic is formed on the floodplain terrace under meadow grasses in the central part of the Vitim Plateau. These soils are characterized by a gray humus horizon, a light granular structure, a slightly acidic reaction, low humus, and moisture content. Permafrost is recorded at a depth of 1.90-1.95 m. Haplic Chernozem Tonguic can be found on the lakeside plain of the Eravinskaya hollow under meadow steppes. These soils are characterized by a loamy dark humus horizon with a high content of humus and a neutral reaction of the environment. Soil moisture content increases with depth. Permafrost is found at a depth of 2.75-2.80 cm. Natric Chernozem is formed on the gentle slope of the Kizhinginskaya hollow under cereal forb vegetation. These soils are characterized by a loamy granular structure and a high content of humus in the upper horizons, the middle horizon contains ions of Na⁺ as well as Ca²⁺ and Mg²⁺ in the composition of the soil-absorbing complex. The soils freeze seasonally at 2.40-2.45 m, remaining constantly thawed in the subsoil. Entic Podzols are found under pine-larch forests on the eastern coast of Lake Baikal. These soils are characterized by the coarse-humus horizon and a layer of up to 0.02 m of light gray bleached sand. Middle horizons B are represented by moist fine-grained sand, separated in color from brown to ocher-brown and density. Horizon C is at 0.41 (0.44) m and is characterized by moist, grayish-brown sand with fine gravel and small stones. The soils seasonally freeze at 1.60-1.65 m, remaining constantly thawed in the subsoil.
Thus, Turbic Cryosol Mollic and Haplic Chernozem Tonguic are formed in harsh climatic conditions (cold and long winter, short summer), Natric Chernozem — in a sharply continental climate with a cold winter and a dry short summer, and Entic Podzols — in a humid climate with relatively “warm” winter and “cool” summer with an abundance of precipitation in winter.

3. Results and Discussion

The collection and analysis of the parameters of the atmospheric climate show that changes in air temperature in Russia are more expressed than on the planet as a whole, and even more by 2.5 °C in Buryatia [13]. Quick warming in the Baikal and Transbaikalia is also emphasized by other researchers [14–16]. It should be mentioned that in the last decade the average annual temperature in Transbaikalia crosses the zero boundary, becoming positive which was previously noted occasionally.

Fluctuations in the amount of precipitation over the years are very significant, the difference reaches about 100-150 mm. In the city of Ulan-Ude with extremes of 413.3 mm (1959) and 109.6 mm (1989), the extreme amplitude is 303.7 mm. The variability of precipitation increases with time, i.e. the extreme conditions for this indicator increase. So, in the segment 1935-1942 the standard deviation of the annual precipitation amount was ± 32.2 mm, now the deviations from the climatic norm have become more extreme and the standard deviation is ± 65-83 mm, i.e. the deviations from the average long-term amount (256 mm) increased from 13 to 25-32 % (Figure 2).

Thus, on the territory of the Republic of Buryatia statistically significant trends of increase in temperature and decrease in precipitation with identification of wet and dry periods are established.

Due to global changes in the territory of the Republic of Buryatia significant transformations of the environment are observed. Over the last 20 years, the frequency and area of fires have increased due to the abnormally high air temperatures, the increasing aridity of the territories and the extremely high flammability of the prevailing light conifer tree species [17–21].

The analysis of the chronology of wildfires in the Republic of Buryatia from the 1960s shows a significant increase in their number and area from 1999 to the present (Figure 3). The increase in the number of wildfires from 1966 to 1996 occurred with a certain cyclical nature every 6-8 years old. In addition, there is an increase in the frequency of fires and their area over the last 20 years. In the period from 1966 to 1995, the fires covered about 360 thousand hectares of forests of Buryatia, which on average is almost 12 thousand hectares per one year. The increase in the area of fires in the period
from 1996 to 2016 compared to the previous period occurred almost 6 times. A maximum number of fires occurred in 2003 and of the area of forests in the fire occurred in 2015.

![Figure 3. Number (N) and area, ha, (S) forest fires in Buryatia from 1966 to 2016 [20].](image)

In spatial terms, the largest number and area of fires are recorded in the valleys of major rivers: the Selenga, the Uda, the Chikoi, the Irkut, and the Barguzin. It is here, along the river valleys and the slopes of the foothills, Arenosols are formed under pine forests on sandy and sandy-loam deposits. These landscapes have low water capacity and extremely high burning of forests, especially in the spring and summer period (April, May), when the moisture coefficient is 0.1–0.2 and corresponds to the values of semi-desert. The smallest numbers and areas of fires are observed on the ridges of the Eastern Sayans, the Khamar-Daban, and the Stanovoye Highlands. In these mountainous landscapes under dark-coniferous (cedar, spruce, fir) taiga and larch forests on Cambisols and Cryosols the maximum amount of precipitation falls.

At the suggestion of A P Chevychelov [22], fires can be attributed to the sub factor of soil formation which takes part in the formation of the soil profile of the taiga soils of Yakutia and Buryatia and changes their properties in landscapes at the taiga and steppe contact [23-27].

The analysis of post-fire soil successions of Arenosols, which are formed in pine forests on sandy deposits and peat lowland soils of the tectonic trough in the Selenga delta region of Buryatia, shows the following [27]. Under the influence of fires in Arenosols, charring, and ashing of organic matter occurs, the destruction of signs of podzolization. In the soil after the bottom fire, carbonaceous horizons of forest litter and humus are formed on the surface. Soil formation occurs under the canopy of a sparse adult stand without signs of renewal. After a top fire, the soil degrades completely, soil formation begins with a “0” moment, the natural restoration of forest vegetation is difficult. After fires on drained peat deposits, Sapric Histosols is transformed into pyrogenic formations - Gleysols Pyrogenic with a layer of loose ash. Peat horizons are burned completely with complete loss of carbon. Ash substances are actively carried away by water currents or wind; the stocks of ash elements are reduced by 10–15 times. The peat formation process is not resumed.

We noticed that climate change affects the depth of seasonal thawing in 1987 [28]. Subsequent studies confirmed this completely.

Climate warming and aridization affect the depth of thawing as an integral indicator of the thermal state of permafrost soils. In the landscapes of the south of the Vitim Plateau, over three-time cuts (1909, 1981 and 2008), the ambiguous reaction of the thickness of the seasonal soil thawing layer to global warming was established [28-29]. The maximum change in the soil thawing depth (by 1.4-1.7 m) over the 20th century was revealed for open steppe spaces. In landscapes of sedge-wilder swampy meadows, the changes in permafrost-thermal conditions are not recorded. In permafrost larch forests, the positive trend is poorly expressed (by 0.25–0.3 m).
Our instrumental data on the atmospheric climate and temperature regime of Haplic Chernozem Tonguic show that in the south of the Vitim Plateau (in the transition zone from continuous permafrost to the patchy one) there is a tendency to increase in average annual air temperature and decrease in precipitation. With such a tendency of the atmospheric climate in the studied soils, the long-term permafrost degradation by 50-70 cm is observed, the process rate of which from 1965 to 1975 was 1 cm/year. In the period from 1975 to 2015, the rate of degradation increased by almost 2 times 1.5-1.8 cm/year. The analysis of the soil temperature data currently indicates that the biologically active temperature (> 10 °C) began to penetrate down to 80-90 cm, which is 20-30 cm lower in depth than it was 50 years ago (Table 1).

T, °C	The end of the 60s	The beginning of the 80s	Present days			
	days	cm	days	cm	days	cm
15	79	15	60	22	56	40
10	96	45	90	90	88	65
5	126	70	140	130	127	130
0	210	220	185	240	180	280
-2	205	300	205	290	212	300
-5	138	200	158	200	176	180
-10	112	150	108	130	140	99
-15	80	65	69	95	89	71

4. Conclusion
On the territory of the Republic of Buryatia, the significant transformations of the natural environment caused by global changes are observed: statistically significant trends of increase in temperature and decrease in precipitation with identification of wet and dry periods have been established. In the last 20 years, the frequency and area of fires have increased due to the abnormally high air temperatures, the increasing aridity of the territory and the high burning capacity of pine forests.

In spatial terms, the largest number and area of fires are recorded in the valleys of large rivers, where Arenosols are formed under pine forests on sandy and sandy-loam deposits. These landscapes have low water capacity and extremely high flammability. The smallest numbers and areas of fires are observed on the ridges of the Eastern Sayans, the Khamar-Daban and the Stanovoye Highlands, where the maximum amount of precipitation falls in the mountain landscapes under dark coniferous taiga and larch forests on Cambisols and Cryosols.

Under the influence of fires on Arenosols in the Selenga delta area, charring and ashing of organic matter, the destruction of signs of podzolization occur. After a bottom fire soil formation occurs under the canopy of a sparse adult stand with no signs of renewal; after a top fire - soil formation begins with a “0” moment, the natural restoration of forest vegetation is difficult; after the fires on drained peat deposits Sapric Histosols peat formation process does not resume.

In the landscapes of the south of the Vitim Plateau, the maximum change in the thawing depth of frozen soils over the twentieth century was revealed for open steppe spaces; in landscapes of wetland meadows, changes in permafrost-thermal conditions are not recorded; in larch forests - a positive trend is weak. Over the last thirty years, the rate of degradation of permafrost in the soils of meadow-steppe landscapes has increased 2 times.

Acknowledgments
The work was carried out within the framework of the state assignment theme:AAAA-A17-117011810038-7 “Evolution, functioning and ecological-biogeochemical role of the soils of the Baikal region in conditions of aridization and desertification, development of methods for managing their production processes”;AAAA-A17-117011810036-3 “Structure of plant cover diversity and resource potential of model plant species in the Baikal region”;0336-2019-0006 “Propagation of radio waves in inhomogeneous impedance channels”. This work was also supported by the grant RFBR no. 19-29-05250.

Table 1. Duration (days) and depth of penetration (cm) of temperatures into the soil.

Acknowledgments
The work was carried out within the framework of the state assignment theme:AAAA-A17-117011810038-7 “Evolution, functioning and ecological-biogeochemical role of the soils of the Baikal region in conditions of aridization and desertification, development of methods for managing their production processes”;AAAA-A17-117011810036-3 “Structure of plant cover diversity and resource potential of model plant species in the Baikal region”;0336-2019-0006 “Propagation of radio waves in inhomogeneous impedance channels”. This work was also supported by the grant RFBR no. 19-29-05250.
References

[1] Hansen J, Ruedy R, Sato M and Lo K 2010 Global surface temperature change *Reviews of Geophysics* **48** RG4004 DOI: 10.1029/2010RG000345

[2] Flannigan M D, Krawchuk M A, de Groot W J, Wotton B M and Gowman L M 2009 Implications of changing climate for global wildland fire *Int. J. of Wildland Fire* **18** (5) 483-507 DOI: 10.1071/WF08187

[3] Flannigan M, Cantin A S, de Groot W J, Wotton M, Newbery A and Gowman L M 2013 Global wildland fire season severity in the 21st century *Forest Ecology and Management* **294** 54-61 DOI: 10.1016/j.foreco.2012.10.022

[4] The Ecological Atlas of the Baikal Basin 2015 (Irkutsk: V B Sochava Institute of Geography SB RAS) 145 p

[5] Williams P J and Michael W S 1989 *The Frozen Earth: Fundamentals of Geocryology* (Cambridge: Cambridge University Press) 306 p

[6] McGuire A D, Chapin F S, Walsh J E and Wirth C 2006 Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. *Annual Review of Environment and Resources* **31** 61-91 DOI: 10.1146/annurev.energy.31.020105.100253

[7] Hansen J, Sato M, Ruedy R, Lo K, Lea D W and Medina-Elizade M 2006 Global temperature change *Proc. of the National Academy of Sciences* (USA: PNAS) **103** pp 14288-93 DOI: 10.1073/pnas.0606291103

[8] S V Goryachkin, D E Konyushkov, N S and Mergelov (Eds.), 2009. *Guidebook for Field Excursions of the V International Conference on Cryopedology. Ulan-Ude–Komsomolsk–Goryachinsk* (Moscow: Institute of Geography RAS) 55 p

[9] A I Kulikov, N B Badmaev, A B Gyninova (Eds.), 2015. Devoted to 100-anniversary of prof. O V Makeev *Guidebook for Field Excursions of the All-Russian Conference (Ulan-Ude – Sosnovo-Ozersk – Goryachinsk – Arshan)* (Ulan-Ude: Institute of General and Experimental Biology SB RAS) 177 p

[10] Bazarov A V, Badmaev N B, Kurakov S A and Gonchikov B-M N 2018 A mobile measurement system for the coupled monitoring of atmospheric and soil parameters *Russian Meteorology and Hydrology* **43** (4) 271-5 DOI:10.3103/S106837391804009X

[11] Badmaev N B, Kulikov A I and Mironov I A 2011 Permafrost *Buryatia. Encyclopedic Reference Book in 2 Volumes* (Ulan-Ude: Ecos) **1** pp 54–5

[12] Badmaev N and Bazarov A 2019 Monitoring network for atmospheric and soil parameters measurements in permafrost area of Buryatia, Russian Federation *Geosciences* **9** (1) 6 DOI: 10.3390/geosciences9010006

[13] Kulikov A I, Kulikov M A and Smirnova I I 2008 Thermal state of the active layer in the permafrost zone of the Baikal region in the context of global warming *Proc. of the Int. Symp. “Climate Change in Central Asia: Socio-Economic and Environmental Impacts”* (Chita: Institute of Natural Resources, Ecology and Cryology SB RAS)

[14] Federal hydrometeorology and environmental monitoring service 2008 *Assessment Report on Climate Change and its Effects on the Territory of the Russian Federation (Climate change vol i)* (Moscow: Roshydromet)

[15] Federal hydrometeorology and environmental monitoring service 2008 *Assessment Report on Climate Change and its Effects on the Territory of the Russian Federation (Implications of climate change vol ii.)* (Moscow: Roshydromet)

[16] Gruza G V and Rankova E Y 2004 Detection of changes in climate state, climate variability, and climate extremity *Russian Meteorology and Hydrology* **4** 31-43

[17] Antropov V F, Seredkin A D and Schepin A A 2013 *Forestry of Buryatia* (Ulan-Ude: Ecos)

[18] Sidorov A A and Khankhunov Yu M 2015 On the problems with forest fires in the Republic of Buryatia *Proc. of the Scientific-Practical Conf.* (Ulan-Ude: East Siberia State University of Technology and Management)
[19] Sidorov A A and Khankhunov Yu M 2016 Forest fires in the Republic of Buryatia: liquidation, prevention and consequences *Proc. of the Scientific-Practical Conf.* (Ulan-Ude: East Siberia State University of Technology and Management)

[20] Sidorov A A and Sanzhieva S E 2018 Chronology of forest fires in the Republic of Buryatia *Bulletin of the Krasnoyarsk State Agrarian University* 4 204-8

[21] 2008-2018 State report "On the state and environmental protection of the Republic of Buryatia" vol 2007-2017 (Ulan-Ude: Ministry of Natural Resources of the Republic of Buryatia)

[22] Chevychelov A P 2002 Pyrogenesis and postpyrogenic changes of peculiarities and composition of cryomorphic soils *Contemporary Problems of Ecology* 3 273-8

[23] Sympilova D P and Gyninova A B 2012 Soils of the sub taiga landscapes on the northern spurs of the Tsagan-Daban ridge in the Selenga mountains *Eurasian Soil Science* 45 (3) 231–6 DOI: 101134/S1064229312030118

[24] Shakhmatova E Yu, Chevychelov A P, Sympilova D P and Gonchikov B-M N 2017 Buried humus horizons of pyrogenically transformed soils of pine forests *Geography and NaturalResources* 2 81-7 DOI: 1021782/GIPR0206-1619-2017-2

[25] Chevychelov A P and Shakhmatova E Yu 2018 Postpyrogenic polycyclic soils in the forests of Yakutia and Transbaikal region *Eurasian Soil Science* 51 (2) 241-50 DOI: 101134/S1064229318020023

[26] Sympilova D P and Badmaev N B 2019 Soil Formation in the taiga–steppe ecotone of Selenga mountains, Western Transbaikalia *Eurasian Soil Science* 52 (2) 122-32 DOI: 101134/S1064229319020145

[27] Gyninova A B, Dyrzhinov Zh D, Kulikov A I, Gyninova B D and Gonchikov B N 2019 Postpyrogenic Evolution of Sandy Soils under Pine Forests in the Baikal Region *Eurasian Soil Science* 52 (4) 414-25 DOI: 101134/S1064229319040082

[28] Badmaev N, Kulikov A and Tsydypov B 2013 Seasonal, interannual and centennial variability of thawing depth of permafrost-affected soils in Transbaikalia *Proc. of the 6th Int. Conf. on Cryopedology Frost-affected Soils – Dynamic Soils in the Dynamic World* (Krakow: Institute of Geography and Spatial Management, Jagiellonian University) p 5

[29] Badmaev N, Kulikov A, Tsydypov B and Garmaev E 2015 Spatio-temporal variability of thawing depth of permafrost landscapes in the southern part of the Vitim Plateau *Proc. of the Joint Science and Education Conf. “Arctic Dialogue in the Global World”* (Ulan-Ude: Buryat State University) pp 352–6