Synthesis of Bis (n-salicylidene-n-phenyl aminato) Palladium (II) complex to prepare a number of biphenyl compounds

Md. A. Hashem*, S. K. Tuli and T. B. Mahmud

Department of Chemistry, Jahangirnagar University, Savar; Dhaka-1342, Bangladesh

Abstract

The non-toxic, stable, Schiff base complex of Na$_2$PdCl$_4$ and N-salicylidene-N-phenyl amine in methanol catalyze the Suzuki-Miyaura coupling reaction to synthesize coupling products (Scheme-1) in good to excellent yields with high purity under mild conditions.

Scheme-1

Keywords: Catalysis; Non-toxic palladium complex; Coupling reaction; Phenyl boronic acid

Introduction

Organopalladium chemistry is one of the most important areas of organometallic chemistry directed towards organic synthesis. Several features which make reactions involving Pd catalysts and reagents particularly useful and versatile among many transition metals used for organic synthesis (Dupont et al., 1997; Girlingn, 1982). Most importantly, Pd catalysts offer an abundance of possibilities of carbon-carbon, carbon-nitrogen bond formation. Organopalladium compounds are among the most readily available and easily prepared and handled of the plethora of known transition metal complexes.

Recently Schiff base Pd complexes (Singleton, 2003) have found wide applications in the organic synthesis. So, we have synthesized a new palladium (II) Schiff base complex and tested its catalytic activity in Suzuki-Miyaura cross coupling reactions.

Materials and methods

Preparation of the ligand, N-salicylidene-N-phenyl amine

2- Hydroxybenzaldehyde, (10 mmol ≈1.22g) was dissolved in 15 mL ethanol (absolute). Four drops of conc. HCl acid were added to it. Then with stirringethanolic solution of aniline (10.3mmol±0.96g in 10 mL ethanol) was added. The reaction mixture was refluxed for three hours until completion of the reaction (TLC checkup); the reaction mixture was kept for one hour under ice- cooling. It was neutralized with saturated solution of NaHCO$_3$. On adding ice into the flask it was kept in a refrigerator for overnight. A yellow solid was precipitated out and was collected after filtration and kept in a vacumdesicator for drying. After recrystalization from EtOH a shiny yellow needle – shaped crystal, mp.41 ºC, (173mg, 91%) was obtained.

*Corresponding author e-mail: mdabulhashem@yahoo.com
Synthesis of Pd complex catalyst, 1 by complexation of the ligand with Na$_2$PdCl$_4$

At first the ligand (1 mmol ≈ 197 mg) was dissolved in 4 mL of methanol (absolute). Then with stirring sodiumtetrachloropalladate, Na$_2$PdCl$_4$ (442 mg ≈ 1.50 mmol) was added, immediate precipitation with coloration of the mixture was observed. The stirring was continued for another 16 hours (overnight) at room temperature. The reaction mixture was filtered and washed with 5 mL of MeOH and the yellow solid was collected. The material was dried in high vacuum until constant weight. The yield of the solid complex, 1 was 242 mg (97%) and the melting point was 250 °C (decomposition).

General procedure for Suzuki-Miyaura cross coupling reaction utilizing the complex, 1

Phenyl boronic acid (1.5 mmol), aryl halide (1 mmol), catalyst, 1 (1 mmol%), base (K$_2$CO$_3$, 2 mmol) and toluene (3.5 mL) were mixed together. The mixture was refluxed at 105°C for 1-2 hours. The mixture was cooled to room temperature, diluted with H$_2$O (10 mL) and extracted three times with ethyl acetate (10 mL); any residual solids present were filtered. The organic phase was dried over anhydrous sodium sulphate and evaporated in rotary evaporator. The crude product was column chromatographed over a silica gel eluting with PE: DCM = (10:1) solvent mixture to obtain pure products.

Results and discussion

The palladium catalyzed reactions are extremely powerful tools for the formation of C-C, C-N, C-O, C-S, C-P and C-Se bonds. The mild reaction conditions of these reactions offer considerable advantages over classical methods that require either activated molecules or harsh reaction conditions. The mild reaction condition for coupling reactions using the Pd-catalyst, 1 was developed in our laboratory to form C-C bonding in a one step process.

Application of the prepared catalyst, 1

The activity of the Pd-complex, 1 as catalyst was tested in a number of Suzuki-Miyaura Cross Coupling reactions between aryl halides and aryl boronic acids. The reaction of aryl boronic acids with substituted aryl halides using the complex 1 gave different derivatives of substituted biphenyls as coupling products (Table I). From reaction no 1-11 phenyl boronic acid was used & in no-12 para-chlorophenyl boronic acid was used.

Reaction condition: Phenyl boronic acid (1.5 mmol), aryl halide (1 mmol), base (K$_2$CO$_3$, 2 mmol) and the Pd-complex 1 (1 mmol %) in toluene (3.5 mL) refluxed at 105°C for 1-2 hours.

On the basis of the reaction time and yield it was observed that the aryl halides substituted with electron withdrawing groups had higher yield than the aryl halides substituted with electron donating groups. Due to crowding effect aryl halides substituted at ortho-position were less reactive to the coupling reaction than the meta- and para-derivatives.

The reaction of bromo derivatives need more time and the yield of the bromo derivatives were higher than the iodo derivatives. Aryl boronic acids substituted with electron withdrawing group (no. 12) was less reactive than the phenyl boronic acid. Important biological compounds such as 1, 1’-Biphenyl, 4-(Trifluoromethyl)biphenyl, 4-Acetyl biphenyl, 1, 3-Diphenylbenzene, 2-phenylanisol with high purity were synthesized in a one step process.

![image](image-url)
Recently Schiff base Pd complexes (Singleton, 2003) have been available and easily prepared and handled of the plethora of carbon-carbon, carbon-nitrogen bond formation. (Dupont among many transition metals used for organic synthesis).

Introduction

It was neutralized with saturated (TLC checkup); the reaction mixture was kept for one hour under ice-cooling. A yellow solid was collected. The material was dried in high (decomposition). A yellow solid was collected. The material was dried in high.

The palladium catalyzed reactions are extremely powerful in mild reaction condition for coupling reactions using the either activated molecules or harsh reaction conditions. The pure products.

Table I. The SUZUKI-MIYaura cross coupling reaction utilizing the Pd complex 1\&aryl boronic acid

No	Aryl halides	Products	Yield (%)	Reac. time, hrs	Cat (mmol %)
1	i	ii	85	1	1
2	Br i NO₂	iv	94	1.5	1
3	i NO₂	vii	92	1.5	1
4	i CF₃	viii	88	1.5	1
5	Br ix	x	85	1.5	1
6	Br COCH₃ xi	xii	93	1.5	1
7	Br F xiii	xiv	95	1.5	1
8	Br xv	xvi	98	2	1
9	Br Br xvii	xviii	94	2	1
10	OCH₃ i	xx	72	1	1
11	OCH₃ xx	xxii	83	1.5	1
12	Br F xxiii	xxiv	63	1.5	1
Analytical and spectral data of the compounds

N-salicylidene-N-phenyl amine

- 1.73mg (91%), mp. 41°C, FT-IR (ν): 3448 (OH, broad), 3054 (aro. C-H str.), 1616 (C=N, str.), 1589, 1570 (C=C), 1357, 1275 (C-N, str.), 1185 (C-O, str). cm⁻¹. H – NMR (400 MHz, CDCI₃) δ (ppm): 13.26 (1H, s, OH), 8.61 (1H, s, H-7), 7.40 (4H, m, H-2',3',5',6'), 7.28 (3H, m, H-4, 5, 6), 7.04 (1H, d, H-3), 6.95 (1H, t, H-4). ¹³C – NMR δ (ppm): 148.1 (C-1), 142.5 (C-3), 131.1 (C-5), 130.2 (C-6), 139.3 (C-2), 128.8 (C-1'), 129.1 (C-3', 5'), 121 (C-2', 4'). Mass Spectra: 197 [M⁺], 196 [M-1].

Bis (N-salicylidene-N-phenyl aminato) palladium (II) complex, 1

- 242mg (97%), mp. 250°C (decoposition). FT-IR (ν): 3380 (OH), 3286 (alip. =C-H), 3204, 3120 (aro. =C-H, str.), 1606 (C=N), 1573, 1493, 1464 (aro. (C=C), 1319, 1259 (C-N, single str.), 1115 (C-O, str). cm⁻¹. H – NMR (400 MHz, CDCI₃) δ (ppm): 10.01 (H-8, s, 1H), 7.68 (H-6, d, 1H, J=8Hz, 2H), 7.48-7.55 (H-4', m, 1H), 7.32 (H-2',6', d, 2H, J=7.6 Hz, 2.00 Hz), 7.15 (H-3',5'), dt, 2H), 6.81 (H-4, 5, dt, 2H, J=8Hz, 0.08Hz), 6.77 (H-3, d, 1H, J=8Hz, 1H). Mass Spectra: 499 ([M⁺]+,100%), 498 (M⁺, 98%), 497([M-H]⁻, 65%), 500 ([M+2H]⁺, 60%).

1,1'-Biphenyl, ii:131mg (85%), mp. 68-70°C. H – NMR (400 MHz, CDCI₃) δ (ppm): 7.62 (4H, d, J=7.2Hz, J₉=1.6Hz, H-2',6', d, 6'), 7.46 (4H, d, J=7.6Hz, J₂=7.2Hz, H-3',5', 5'). 7.36 (2H, d, J=1.6Hz, J₉=4.4Hz). ¹³C – NMR δ (ppm): 141.20 (C-11), 128.72 (C-2',2',6,6'), 127.22 (C-4',4), 127.14 (C-3',3,5,5'). DEPT 135 128.72 (C-2',2',6,6'), 127.22 (C-4',4), 127.14 (C-3',3,5,5').

2-phenylnapthalene, x:133mg (72%), bp. >250°C. FT-IR (cm⁻¹): 3034 (aro.C-H str.), 2941 (assy.alp.C-H str.), 2838 (sym.alp.C-H str.), 1461, 1485 (aro. C=C str.), 1461, 1485 (aro. C=C str.).

4-Nitrobiphenyl, iv:187mg (94%), mp. 114-116°C. H – NMR (400 MHz, CDCl₃) δ (ppm): 8.29 (2H, d, J=8.8Hz, H-2,6), 7.73 (2H, d, J=8.4Hz, H-3,5), 7.62 (2H, d, J=7.2Hz, J₉=1.6Hz, H-2',6'), 7.49 (2H, d, J=7.2Hz, J₉=1.6Hz, H-3,5'), 7.45 (1H, d, J=7.6Hz, J₉=1.6Hz, H-4'). ¹³C – NMR δ (ppm): 147.59 (C-1), 147.02 (C-4), 134.72 (C-1'), 129.12 (C-2,6), 128.89 (C-3,5), 127.76 (C-2',6'), 127.37 (C-3',5'), 124.07 (C-4'). DEPT 135-128.72 (C-2',2',6,6'), 127.22 (C-4',4), 127.14 (C-3',3,5,5'). Mass Spectra: 222.2 [M+Na]⁺, ESI (+ve): m/z: 222.2 [M+Na]⁺, ESI (+ve): m/z: 258.3 [M+OAc].

3-Nitrobiphenyl, vi:183mg (92%), mp. 59-60°C. H – NMR (400 MHz, CDCl₃) δ (ppm): 8.45 (1H, dd, J₉=1.6Hz, 2H, H-2), 8.19 (1H, dd, J₉=8.0Hz, J₉=1.2Hz, H-6), 7.90 (1H, dd, J₉=7.6Hz, J₉=1.2Hz, H-4), 7.58-7.63 (3H,m,H-5 &H-2',6'), 7.49 (2H, t, J₉=7.2Hz, H-3',5'), 7.43 (1H, dt, J₉=7.2Hz, J₉=1.2Hz, H-4'). ¹³C – NMR δ (ppm): 197.4 (C-7, C-10), 144.74 (C-1), 135.8 (C-1'), 128.93 (C-3,5), 128.66 (C-2,6), 128.20 (C-2',6'), 127.24 (C-4'), 127.19 (C-3',5'), 26.65 (C-8,CH₃). DEPT 135-128.93 (C-3,5), 128.66 (C-2,6), 128.20 (C-2',6'), 127.24 (C-4'), 127.19 (C-3',5'), 26.65 (C-8,CH₃). Mass Spectra: ESI (+ve): m/z: 414 [2M+Na-H⁺], 219.1 [M+Na]⁺, ESI (+ve): m/z: 255.3 [M+OAc].

4-Fluorobiphenyl, xiv:164mg (95%), mp. 74-76°C. H – NMR (300 MHz, CDCl₃) δ (ppm): 7.50-7.62
found wide applications in the organic synthesis. So, we recently Schiff base Pd complexes (Singleton, 2003) have been reported to offer an abundance of possibilities of carbon-carbon, carbon-nitrogen bond formation. Pd catalysts and reagents particularly useful and versatile in synthesis. Several features which make reactions involving Pd complexes 1 (1mmol %) into toluene (3.5 mL) refluxed at 105 °C. The reaction of bromo derivatives need more time and the coupling reaction than the meta- and para-derivatives. Aryl boronic acids substituted with electron withdrawing group (no. 12) was less reactive than the phenyl derivatives. Aril boronic acids substituted with electron groups had higher yield than the aryl halides substituted with electron withdrawing groups.

The reaction of bromo derivatives need more time and the coupling reaction than the meta- and para-derivatives. Aryl boronic acids substituted with electron withdrawing group (no. 12) was less reactive than the phenyl derivatives. Aril boronic acids substituted with electron groups had higher yield than the aryl halides substituted with electron withdrawing groups.

Ar-Pd(II) to Ar-Pd(II) - X and then oxidative addition gives Ar-X. Ar-X to Pd (PPh3)4 and the mechanism of the Suzuki coupling reaction of aryl boronic acids with aryl halides can be represented according to the literature (Casado, 1998) as shown below:

![Fig. 1. Mechanism for the Suzuki coupling reaction using Palladium complex, 1](image)

Reaction mechanism: The mechanism for the Suzuki coupling reaction of aryl boronic acids with aryl halides can be represented according to the literature (Casado, 1998) as shown below:

1. 3-Diphenylbenzene, xvi: 226mg (98%), 86-88°C. H – NMR (400 MHz, CDCl3)δ:7.81(1H, t, J = 1.8Hz, H-2), 7.65(4H, dd, J = 6.9Hz, H-2', 2', 6', 6''), 7.52(1H, dd, J = 6.0Hz, 5.4Hz, H-5), 7.48(4H, m, H-3', 3'', 5', 5'''), 7.37(2H, dt, J = 7.1Hz, J = 2.1Hz, H-4', 4'')

9,10-diphenylantracene, xviii: 317mg (94%), 251-254°C. FT-IR (cm⁻¹): 3065(aromatic C-H str.), 1598 and 1481(aromatic C=C str.)

2-phenylisooles xx: 133mg (72%), bp. > 250°C. FT-IR (cm⁻¹): 3072 (aromatic C-H str.), 2922 (aromatic C-H str.), 2854 (sym. aromatic C-H str.), 1602 and 1485 (aromatic C=C str.), 1461 and 1347 (CH3 ben.), 842 (para sub. bending of aromatic C-H), 765 and 691 (mono sub. bending of aromatic C-H).

3-phenylisooles, xxii: 151.7mg (83%), mp. 250°C. FT-IR (cm⁻¹): 3034 (aromatic C-H str.), 2941 (aromatic C-H str.), 2838 (sym. aromatic C-H str.), 1599 and 1479 (aromatic C=C str.), 1296 (CH3 ben.), 1179 (C-O str.) Mass Spectra: ESI (m/z): 184.5[M]+, 183[M'-H]+, 182[M'-H2]+, 169.5[M'-CH3]+, 153.8[M'-OCH3]+

4-Floro-4-Chloro-biphenyl, xxiv: 132.1mg (63%), mp. 90-93°C. FT-IR (cm⁻¹): 3051 (aromatic C-H str.), 1601 and 1480 (aromatic C=C str.), 1157 (aromatic C-F str.), 1090 (aromatic C-Cl str.). Mass Spectra: ESI (m/z): 208.5, 206.5, 183.5, 189.5 (M+)[M'-F], 171 (M'-Cl), 170 (M'-HCl), 152 (M'-Cl-F).

References:

- Casado AL, Espinet P and Gallego A M (1998), On the basis of the reaction time and yield it was observed...
- J. Org. Chem. 63, 3619–3624.
- Orthometallated primary amines. Part 1. Facile N-methylation of imines in synthesis 2: a new synthesis of 1, 3-Diphenylbenzene, xvi: 226mg (98%), 86-88°C. H – NMR (400 MHz, CDCl3)δ:(ppm): 7.81(1H, t, J = 1.8Hz, H-2), 7.65(4H, dd, J = 6.9Hz, H-2', 2', 6', 6''), 7.52(1H, dd, J = 6.0Hz, 5.4Hz, H-5), 7.48(4H, m, H-3', 3'', 5', 5'''), 7.37(2H, dt, J = 7.1Hz, J = 2.1Hz, H-4', 4'')
Spectra of the ligand & the catalyst

Fig. 2. 1H-NMR of the ligand

Fig. 3. Mass spectra of the ligand
known transition metal complexes. Catalysts offer an abundance of possibilities among many transition metals used for organic synthesis. Several features which make reactions involving areas of organometallic chemistry directed towards organic synthesis.

Introduction

On adding ice into the flask it was refluxed for three hours until completion of the reaction. 2-Hydroxybenzaldehyde, (10 mmol, 1.22g) was in a vaccum desicator for drying. After recrystallization, (173mg, 91%) was obtained.

The palladium catalyzed reactions are extremely powerful. Results and discussion

The palladium catalyzed reactions are extremely powerful. The activity of the Pd-complex, 1 was 242mg (97%) and the melting point was 250℃. The reaction utilizing the complex, 1 was 242mg (97%) and the melting point was 250℃. Phenyl boronic acid (1.5 mmol), aryl halides (1mmol), (1mmol%), base (K 2CO3, 2 mmol) and toluene were heated at 115-120℃ for 1-2 hours.

The trans-Chloropalladation of (2)-allylamine with Pd(OAc)2 catalyzed by 5% of Pd catalyst, was carried out at 204℃ at 2 atmospheres of pressure for 16 hours (overnight) at room temperature. The reaction was monitored by thin layer chromatography (TLC) using silica gel plates with iodine vapor. The crude product was purified by preparative TLC and then crystallized from a suitable solvent to give pure product. The reaction was carried out under a nitrogen atmosphere.

Fig. 4. 1H-NMR of the Pd-catalyst

Fig. 5. Mass spectra of the Pd-catalyst

Acknowledgement

Dupont J and Basso N (1997), The trans-Chloropalladation of (2)-allylamine with Pd(OAc)2 catalyzed by 5% of Pd catalyst, was carried out at 204℃ at 2 atmospheres of pressure for 16 hours (overnight) at room temperature. The reaction was monitored by thin layer chromatography (TLC) using silica gel plates with iodine vapor. The crude product was purified by preparative TLC and then crystallized from a suitable solvent to give pure product. The reaction was carried out under a nitrogen atmosphere.

Fig. 4. 1H-NMR of the Pd-catalyst

Fig. 5. Mass spectra of the Pd-catalyst
Conclusion

In summary, an efficient, environment friendly, inexpensive and new Palladium (II) complex 1 has been successfully used as catalyst in a number of Suzuki-Miyaura cross coupling reactions between aryl halides and aryl boronic acids under mild conditions. From synthetic point of view, a new, effective & single step method has been developed to form C-C bond in good to excellent yields with high purity.

Acknowledgement

The authors express their thanks to Jahangirnagar University &Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany and BCSIR for recording spectra.

References

Casado AL, Espinet P and Gallego A M (1998), On the Configuration Resulting from Oxidative Addition of RX to Pd (PPh3) 4 and the Mechanism of the cis-to-trans Isomerization of [PdRX(PPh3)2] Complexes (R = Aryl, X = Halide), Organometallics 17: 954-959.

Dupont J and Basso N (1997), The trans-Chloropalladation Reaction of Propargyl Amines and Thioethers, Organometallics 16: 2386-2391.

Girlingn I Rand and Widdowson DA (1982), Cyclopalladated imines in synthesis 2 : a new synthesis of isoquinolines, Tetrahedron Lett. 23:1957. DOI: org/10.1021/om970064r

Matos K and Soderquist J A (1998) Alkylboranes in the Suzuki-Miyaura Coupling: Stereochemical and Mechanistic Studies, J. Org. Chem. 63: 461-470. DOI: org/10.1021/jo971681s

Stille JK (1977), Mechanisms of oxidative addition of organic halides to Group 8 transition-metal complexes, Acc. Chem. Res. 10: 434-442.

Singleton, JT (2003), The Uses of Pincer Complexes in Organic Synthesis, Tetrahedron 59: 1837-1857

Vicente J, Saura-Llamas I and Jones PG (1993), Orthometallated primary amines. Part 1. Facile preparation of the first optically active cyclopalladated primary amines, J. Chem. Soc. Dalton Transactions 23: 3619-3624.