Heritability of Qualitative Traits in Forage Pea (\textit{Pisum Sativum} L.)

Valentin Kosev and Yordanka Naydenova

Institute of Forage Crops, 5800 Pleven, 89 Gen. Vl. Vazov Str., Bulgaria

Abstract: In breeding process of forage pea (\textit{Pisum sativum} L.) inter variety crosses between two Bulgarian: Pleven 4 (spring form) and Pleven 10 (winter form) and two Russian: Rosacrorno (spring form) and Shtambovyi (winter form) varieties are effectuated in field crop experiment during 2011-2013 on the Second experimental field of the IFC, Pleven, Bulgaria. Populations of \(P_1 \), \(P_2 \), \(F_2 \) and \(F_1 \) of the crosses Shtambovyi x Pleven 10 and Rosacrorno x Pleven 4 are investigated. The aim of this study is to establish the inheritance type of some forage quality parameters as protein, fiber components and digestibility between inter variety hybrids of forage pea. For the hybrids of \(F_1 \) are estimated changes of heterosis effect. The cross: Shtambovyi x Pleven 10 is characterized with the highest positive real heterosis effect for crude protein content and the cross: Rosacrorno x Pleven 4 have the highest rate for crude fiber, Acid-detergent fiber and Acid-detergent lignin. The parameters crude protein and crude fiber for the both crosses are inherited positively over dominantly. Digestibility \textit{in vitro} dry matter is inherited negatively over dominantly as the qualities of varieties Pleven 10 and Rosacrorno are predominated. In the second generation \(F_2 \) for almost all parameters for Shtambovyi x Pleven 10 a negative depression is estimated. According to the estimated values for the parameter crude protein contents the plants of the two hybrids are depressed most strongly. Because of parameters crude fiber, Neutral-detergent fiber, Acid-detergent fiber and \textit{in vitro} digestibility of dry matter for the cross Shtambovyi x Pleven 10 a great her percentage of transgressive plants could be anticipated as it counts for crude protein for the cross Rosacrorno x Pleven 4. As a result of predominating negative epistatic interaction of cross Shtambovyi x Pleven 10 for crude protein, Neutral-detergent fiber and Acid-detergent lignin a regression of the degree phenotype exhibition of these signs in comparison with the full additive inheritance is anticipated. It is established that there is a high inheritance coefficient in both crosses for the parameters crude protein, crude fiber, Neutral-detergent fiber and \textit{in vitro} digestibility of dry matter.

Keywords: \textit{Pisum sativum} L., Inheritance, Transgression, Protein, Cell Walls Fibers, \textit{In vitro} Digestibility

Introduction

Grain legume crops are important source of protein, energy, vitamins and minerals and are a truly significant factor in nutrition of ruminants and monogastric livestock. Worldwide the forage pea (\textit{Pisum sativum} L.) is among the four most important annual legume crops together with soybean, peanut and haricot bean (Hulse, 1994; Bansal et al., 2011). In Bulgaria forage pea is the most exhibited legume crop in animal nutrition compared to other annual legumes. The above ground plant parts could be used as valuable forage or silage, haylage, hay or dehydrate preparation. Its grain contains 24-26% protein with predominating soluble fractions and could be considered as a positive substitute of soybean meal (Cousin et al., 1985; Kirilov, 2005; Gatti et al., 2011). The quantity and the quality of the protein in the seeds are important parameters for evaluation of the feeding value.
of forage pea. Legume crops investigations show that protein content is characterized with high degree of inheritance, which is a good possibility for selection of high protein forms. The biological characteristics of pea make it possible to be grown successfully in Bulgaria, not only as a spring, but also as a winter crop. Winter pea varieties accumulate more biomass than the spring ones. They assure more stable yield by using the autumn moisture and avoid spring drought (Angelova, 1995).

The protein in the seeds represents the hereditary traits of the genotype and is not influenced by the environment in the vegetation. They could be used as markers for solving certain protein problems. Although yield is the most important criteria in the breeding process, the features concerning the forage quality are becoming increasingly significant. Between different forms there are definitive variations in protein content and other chemical components which define the forage feeding value. The forage plant cell walls fiber components, natural polymer lignin and complexes between them are principal parameters of forage quality because in their degradability, they are the nutritive and energy source for ruminants. Fiber components content determination as new parameters of forage quality is standardized in EC and will be more significant (ENISO 13906, 2008).

Plant cell walls fiber components also determine digestibility of forage dry matter (Brink et al., 2007; Fahey and Hussein, 1999). Increased digestibility by 1% may increase animal growth by 10%. The digestibility, determined in vitro by enzymes is rapid and promising method and it application in plant sciences, when small quantity of large number accessions from different species, varieties, genotypes, growths, must be evaluated in early stages in breeding process or technological decisions (Casler et al., 2000). Biochemical characteristics of Bulgarian and introduced forage pea varieties are established (Naydenova et al., 2008; 2012; Najdenova et al., 2010; Naydenova and Todorova, 2009; Kirilov et al., 2010). Systematization and evaluation of information obtained by biochemical analyses of the distinct pea types provide additional opportunities for increasing of breeding process efficiency (Adsule et al., 1989; Buxton, 1996; Humphreys and Theodorou, 2001; Angelova and Stolova, 2009).

The aim of this study is to establish the inheritance type of forage quality parameters as protein, fiber components and in enzyme in vitro digestibility between intervariety hybrids of forage pea.

Materials and Methods

The experimental study is conducted during the 2011-2013 period on the Second experimental field of the Institute of Forage Crops, Pleven, Bulgaria. The parent-form used for crossing are from our collection: Spring forms (Pisum sativum ssp. sativum)-Shtambovyi and Pleven 4, winter types (Pisum sativum ssp. arvense)-Rosacrono and Pleven 10. The characteristics of these varieties were reported in Table 1. These forms are crossed by hand in 2011.

The parental forms (P1 and P2) and first and second generation (F1 and F2) are sown at scheme P1, P2, F1, F2 on a row spacing 70 cm and distance in a row 5 cm. Hand planting is applied with depth of sowing 5 cm. The forage pea is grown by approved technology of the Institute of Forage Crops-Pleven. The plants are harvested at three phenological stages of plant development-budding stage, beginning of flowering stage and full pod formation stage.

Plant sample preparation from the above ground part of the plants is effectuate by air ventilation at 65°C till crumbly at previous fixing for 20 min at 105°C and grinding till particle size 1.0 mm consecutively at laboratory mills QC 136 and QB 114, Labor Mim, Hungary and obligatory screen. A biochemical assessment of the parental forms (P1, and P2) and crosses of first and second hybrid generation (F1 and F2) is

Table 1. Origin and description of pea genotypes

Variety	Pleven 10	Pleven 4	Shtambovyi	Rosacrono
Origin	Bulgaria	Bulgaria	Russia	Russia
Vine type	Long-prostrate	Long semi-erect	Short semi-erect	Long semi-erect
Flower position	Axial	Axial	Terminal	Terminal
Stipule type	Normal	Normal	Double	Double
Leaf type	Normal	Normal	Normal	Normal
Flower color	Purple	White	White	Pink
Crude protein	24.41	23.13	23.02	23.40
Crude fiber	23.63	22.65	24.82	24.31
Neutral-detergent fiber	35.37	33.73	36.03	36.05
Acid-detergent fiber	26.98	28.04	32.48	30.63
Acid-detergent lignin	4.20	4.65	5.71	5.12

In vitro digestibility of dry matter

	Pleven 10	Pleven 4	Shtambovyi	Rosacrono
	72.23	70.87	73.19	69.78
performed by the following characteristics: Crude Protein (CP) by Kjeldhal method; Crude Fiber (CF)-by Heneberg and Stomann method as parameters of Weende systematic analytic procedure (AOAC, 2007) and plant cell walls fiber fractions Neutral-Detergent Fiber (NDF); Acid-Detergent Fiber (ADF), Acid-Detergent Lignin (ADL) as parameters of detergent analysis of Goering and Van Soest (1970; ENISO 13906, 2008). Enzyme in vitro Digestibility of Dry Matter (IVDMD) is determined by two stage pepsin-cellulase enzyme method of Aufrere (Todorov et al., 2010).

For each studied trait were determined: Heterosis effect in F1-hypothetical and true and depression (Omarov, 1975) degree of dominance in F1 (h01) and in F2 (h02) (Romero and Frey, 1973); heritability coefficient in broad sense (H2), in F2; Transgression (T2) Epistasis (E), number of the genes which parental forms are distinguish between for the certain trait (N) (Sobolev, 1976). The statistical processing of the experimental data was performed by the programmes Excel of Microsoft Office 2003 for Windows.

Results

The significance in forage quality evaluation is decreasing of cell walls fiber components content, determined as Neutral-detergent fiber, Acid-detergent fiber, Acid-detergent lignin and increasing in vitro digestibility of dry matter are. The structural polysides in forage plants present from 300 to 800 g kg\(^{-1}\) (30-80%) of forage dry matter and they are the general source of nutritional energy for ruminants, but less than 50% of them are digestible and utilized (Fahey and Hussein, 1999). The Neutral detergent fiber present the total content of plant cell walls fiber components of lignin, cellulose, hemicellulose and are laboratory parameter for prediction of forage intake by ruminants. That’s why they are criteria in breeding process and evaluation of prediction of forage intake by ruminants. That’s why they are criteria in breeding process and evaluation of prediction of forage intake by ruminants. That’s why they are criteria in breeding process and evaluation of prediction of forage intake by ruminants. That’s why they are criteria in breeding process and evaluation of prediction of forage intake by ruminants. That’s why they are criteria in breeding process and evaluation of prediction of forage intake by ruminants.

The basic criteria, effectuated evaluation in forage quality is in vitro digestibility by enzymes, characterized by rapidity, reproducibility and heredity, small sample quantity and direct correlation by in vivo ruminant digestibility (Fahey and Hussein, 1999). The variation range of in vitro digestibility usually is 100 g kg\(^{-1}\) dry matter. The breeding process for high protein content led to increased in vitro digestibility. Long-period breeding programs for increased protein content are combined with decreasing Acid-detergent fiber (lignocellulose) content. The combined genetic changes may increase digestibility by 16 g kg\(^{-1}\) (2.1%). It is proved that the genetic changes in in vitro digestibility were due to genetic changes in plant development.

The variability of parameters with broad genetic basis is a good prediction for increasing of the genetic variability and attaining forms with new, not only quantity but also quality parameters (Burstin et al., 2011). From the biometric data presented in Table 2 it is seen that for all parameters studied hybrids of first generation develop positive hypothetic heterosis.

Positive real heterosis is established by parameters for crude protein and crude fiber, as for the cross Shtamboyi x Pleven 10 it reaches up to 11.27% for crude protein and for the cross Rosacrono x Pleven 4 up to 5.09 for crude fiber. For the crass Shtamboyi x Pleven 10 values for the other biological and biochemical characteristics Neutral-detergent fiber, Acid-detergent fiber, Acid-detergent lignin and in vitro dry matter digestibility are lower compared to the parent with better features. The developed real negative heterosis in this cross is accompanied by lower depression of second generation plants. Crude protein and crude fiber in both crosses are inherited positively dominantly and over dominantly (Fig. 1). For the parameter in vitro dry matter digestibility the inheritance type is negatively overdominant as the qualities of variety Pleven 10 and variety Rosacrono predominate. Differences in inheritance parameters Neutral-detergent fiber, Acid-detergent fiber, Acid-detergent lignin are established. Positive overdomination in hybrid Rosacrono x Pleven 4 is (4.04, 3.54, 3.13% respectively) and negative (171-1.21%) respectively for Neutral-detergent fiber and Acid-detergent fiber and intermediate (- 0.42% for Acid-detergent lignin) in hybrid Shtramboyi x Pleven 10. Higher values in domination rate in first generation to second ones (h02>h01) for the cross Rosacrono x Pleven 4 show that when studied parameters are inherited, dominance has great significance, i.e., the genes determining higher content of parameters dominate. Inheritance of parameters crude protein, Neutral-detergent fiber and Acid-detergent lignin in the cross Shtamboyi x Pleven 10 is determined by epistatic gene effects (h02>h01).

Positive values for transgression parameter in all characteristics in both crosses are established. This suggests that in the distributing hybrid generations the higher percentage of homozygous genotypes will have higher values for the parameters in comparison with the primary varieties. For the cross Shtamboyi x Pleven 10 a greater percentage of transgressive plants could be anticipated relating to crude fiber, Neutral-detergent fiber, Acid-detergent fiber and in vitro dry matter digestibility and for the cross between variety Rosacrono and variety Pleven 4- relating to crude protein (3.78%).
The parental components participating in the crosses differ in the number of genes in most of the studied features which probably is due to heredity abilities of primary varieties that participate in the selection of the parents. Significant variations of this parameter are established between varieties Rosacrono х Pleven 4 as well as by parameters crude protein (5), Neutral-detergent fiber (23), Acid-detergent lignin (9) and in vitro dry matter digestibility (16) and between varieties Shtamboviy х Pleven 10 by crude fiber (16) and Acid-detergent lignin (8). In the analysis of values for parameter of interallelic interactions (E) it could be seen that for greater part of the studied parameters epistasis is positive. It is negative only for the cross Shtamboviy х Pleven 10 for crude protein, Neutral-detergent fiber and Acid-detergent lignin and it could be assumed that this would decrease the rate of phenotype exhibition in comparison with their full additive inheritance.

Coefficients of inheritance for both crosses show that there is greater genetic part in phenotype exhibition of parameters of crude protein, crude fiber, Neutral-detergent fiber and Acid-detergent lignin number for both hybrids and Acid-detergent fiber for hybrid Rosacrono х Pleven 4.
Table 2. Biometrical data of the qualitative traits of the crosses

Hybrids	F1	F2	Heterosis in F1 (%)	Depression in F2 (%)	
			Hypothetical	Real	
Crude protein					
Shtambovyi x Pleven 10	18.30	21.71	21.08	11.27	4.76
Rosacrono x Pleven 4	20.96	21.94	19.73	4.08	3.49
Crude Fiber					
Shtambovyi x Pleven 10	22.71	23.73	21.21	2.17	-0.04
Rosacrono x Pleven 4	22.44	24.26	23.00	5.09	2.23
Neutral Detergent Fiber					
Shtambovyi x Pleven 10	36.83	36.42	37.02	-2.63	-4.11
Rosacrono x Pleven 4	37.18	38.34	36.02	2.49	1.86
Acid Detergent Fiber					
Shtambovyi x Pleven 10	30.29	30.09	28.53	-3.67	-6.49
Rosacrono x Pleven 4	29.26	31.44	30.18	5.72	4.04
Acid Detergent Lignin					
Shtambovyi x Pleven 10	5.15	5.24	5.28	-1.23	-4.03
Rosacrono x Pleven 4	5.09	5.40	5.10	4.55	3.05
In vitro dry matter digestibility					
Shtambovyi x Pleven 10	68.78	67.94	68.58	-3.45	-5.59
Rosacrono x Pleven 4	70.23	68.8	68.21	-2.47	-2.89

F1 and F2 - first and second generation;

Demonstration of heterosis effect is established in the hybrid of first generation. The cross *Shtambovyi x Pleven 10* is characterized with a high positive real heterosis for crude protein content and the cross *Rosacrono x Pleven 4* for traits crude fiber, Acid-detergent fiber and Acid-detergent lignin content. The parameters crude protein and crude fiber for both crosses are inherited positively overdominantly. Digestibility *in vitro* dry matter (IVDMD) is inherited negatively overdominantly as the characteristics of varieties *Pleven 10* and *Rosacrono* predominate.

In the second generation F2 for almost all parameters in hybrid *Shtambovyi x Pleven 10* a negative depression is established (Table 3). The plants of the two hybrids are most strongly depressed by the parameter of crude protein content. For the cross *Shtambovyi x Pleven 10* by the parameters crude protein, crude fiber, Acid-detergent fiber and *in vitro* dry matter digestibility a greater percentage of transgressive plants could be anticipated, while in crude protein content-in cross *Rosacrono x Pleven 4*. As a result of predominating negative epistatic interactions in the cross *Shtambovyi x Pleven 10* for crude protein, Neutral-detergent fiber and Acid-detergent

Table 3. Values of the gene parameters for the quantitative traits of the investigated crosses in F2 generation

Crosses/Indicators	Tn	N	E	H²
Crude protein				
Shtambovyi x Pleven 10	1.59	1.00	-0.46	0.27
Rosacrono x Pleven 4	3.78	5.00	1.94	0.53
Crude fiber				
Shtambovyi x Pleven 10	2.48	16.00	4.35	0.42
Rosacrono x Pleven 4	1.62	3.00	1.18	0.25
Neutral detergent fiber				
Shtambovyi x Pleven 10	4.26	1.00	-0.11	0.58
Rosacrono x Pleven 4	1.02	23.00	5.94	0.43
Acid detergent fiber				
Shtambovyi x Pleven 10	2.39	8.00	2.56	0.24
Rosacrono x Pleven 4	0.90	3.00	1.19	0.09
Acid detergent lignin				
Shtambovyi x Pleven 10	0.14	1.00	-0.06	0.04
Rosacrono x Pleven 4	0.20	9.00	2.61	0.13
In vitro dry matter digestibility				
Shtambovyi x Pleven 10	2.07	1.00	0.63	0.37
Rosacrono x Pleven 4	1.57	16.00	4.62	0.32

H²-heritability coefficient in broad sense; Tn-transgression; E-epistasis; N-number of the genes which parental forms are distinguish between for the certain trait;
lignin content it could be assumed that there might be a decrease of phenotype manifestation rate of these characteristics compare to their full additive inheritance. For both crosses it is established that there is a high coefficient of inheritance for the parameters crude protein, crude fiber, Neutral-detergent fiber and in vitro dry matter digestibility.

Discussion

Inheritance of biochemical parameters is important factor for performing effective selection of genotypes in quality characteristics. According to Saxena et al. (2002; Frimppong et al., 2009) the agroclimatic factors significantly influence the protein content in grains for most legume crops. Other authors (Matthews and Arthur, 1985) report about relatively constant protein content and similar gene actions in forage pea genotypes grown in different environmental conditions. Singh et al. (1986) analyzing the data of diallelic analysis in forage pea varieties report about predominating in additive gene actions in terms of crude protein content. Noubissie et al. (2012) observed the similar trends for crude protein in common bean (Phaseolus vulgaris L.) cultivars. In soybean, Tajuddin (2005) noted that seed protein content was quantitatively inherited and controlled mainly by genes with additive genetic effects. In contrast, the crude protein content appeared to be controlled by overdominance effects and associated with recessive genes in cowpea (Tchiagam et al., 2011). Ceyhan et al., (2012) also reported for the prevalence of nonadditive gene action for crosses protein in pea crosses.

Conclusion

The cross: Shtambovyi x Pleven 10 is characterized with the highest positive real heterosis effect for crude protein content and the cross: Rosacrono x Pleven 4 have the highest rate for crude fiber, Acid-detergent fiber and Acid-detergent lignin. The parameters crude protein and crude fiber for the both crosses are inherited positively over dominantly.

Digestibility in vitro dry matter is inherited negatively over dominantly as the qualities of varieties Pleven 10 and Rosacrono are predominated. In the second generation F2 for almost all parameters for Shtambovyi x Pleven 10 a negative depression is estimated. According to the estimated values for the parameter crude proteins content the plants of the two hybrids are depressed most strongly. Because of parameters crude fiber, Neutral-detergent fiber, Acid-detergent fiber and in vitro digestibility of dry matter for the cross Shtambovyi x Pleven 10 a great her percentage of transgressive plants could be anticipated as it counts for crude protein for the cross Rosacrono x Pleven 4.

As a result of predominating negative epistatic interaction of cross Shtambovyi x Pleven 10 for crude protein, Neutral-detergent fiber and Acid-detergent lignin a regression of the degree phenotype exhibition of these signs in comparison with the full additive inheritance is anticipated.

It is established that there is a high inheritance coefficient in both crosses for the parameters crude protein, crude fiber, Neutral-detergent fiber and in vitro digestibility of dry matter.

Acknowledgment

The authors thank the Agricultural Academy in Bulgaria for funding the study.

Funding Information

Institute of Forage crops, Pleven, Agricultural Academy Bulgaria.

Author’s Contributions

Valentin Kosev: Wrote the manuscript, participated in all field experiments, conceived carried out of the statisticall analysis, read and approved the final manuscript.

Yordanka Naydenova: Wrote the manuscript. Analysis in forage quality traits. The author read and approved the final manuscript.

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

References

Adsule, R.N., K.M. Lawande and S.S. Kadam, 1989. Pea. In: Handbook of World Food Legumes: Nutrition Chemistry, Processing Technology and Utilization, Salunkhe, D.K. and S.S. Kadam (Eds.), CRC Press, Boca Raton, ISBN-10: 0849305551, pp: 215-251.

Angelova, S. and T.Z. Stoilova, 2009. Maintenance, enrichment and utilization of grain legume collections in bulgaria. Proceeding of the 4th Balkan Symposium on Vegetables and Potatoes, (SVP’09), ISHS Acta Horticulturae, pp: 695-701. DOI: 10.17660/ActaHortic.2009.830.100

AOAC, 2007. Official Methods of Analysis of AOAC International. 18th Edn., AOAC Intl, Gaithersburg, MD., ISBN-10: 0935584781.

279
Bansal, R., G.P. Dixit and T. Gopalakrishna, 2011. Screening of pea genotypes for antinutritional factors and protein content. J. Food Legumes, 24: 160-162.

Brink, G.E., M.D. Casler and M.B. Hall, 2007. Canopy structure and neutral detergent fiber differences among temperate perennial grasses. Crop Sci., 47: 2182-2189. DOI: 10.2135/cropsci2007.01.0045

Burstin, J., K. Gallardo, R.R. Mir, R.K. Varshney and G. Duc, 2011. Improving Protein Content and Nutrition Quality. In: Biology and Breeding of Food Legumes, Pratap, A. and J. Kumar (Eds.), CABI, Wallingford, ISBN-10: 1845937813, pp: 314-328.

Buxton, D.R., 1996. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol., 59: 37-49. DOI: 10.1016/0377-8401(95)00885-3

Casler, M.D., S.L. Fales, A.R. McElroy, M.H. Hall and L.D. Hoffman et al., 2000. Genetic progress from 40 years of orchardgrass breeding in North America measured under hay management. Crop Sci., 40: 1019-1025. DOI: 10.2135/cropsci2000.4041019x

Ceyhan, E., M. Harmankaya and A. Kahraman, 2014. Combining ability and heterosis for concentration of mineral elements and protein in common bean (Phaseolus vulgaris L.). Turkish J. Agric. Forestry, 38: 581-590. DOI: 10.3906/tar-1307-56

Cousin, R., A. Messager and A. Vingere, 1985. Breeding for Yield in Combining Peas. In: The Pea Crop: A Basis for Improvement, Hebblethwaite, P.D., M.C. Heath and T.C.K. Dawkins (Eds.), Butterworths, London, pp: 115-129.

ENISO 13906, 2008. Animal feeding stuffs-determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) contents.

Fahey, G.C. and H.S. Hussein, 1999. Forty years of forage quality research: Accomplishments and impact from an animal nutrition perspective. Crop Sci., 39: 4-12. DOI: 10.2135/cropsci1999.0011183X003900010002x

Frimpong, A., A. Sinha, B. Tar’an, T.D. Warkentin and B.D. Gossen et al., 2009. Genotype and growing environment influence chickpea (Cicer arietinum L.) seed composition. J. Sci. Food Agric., 89: 2052-2063. DOI: 10.1002/jsfa.3690

Gatti, I., M.A. Espósito, P. Almirón, V.P. Cravero and E.L. Cointy, 2011. Diversity of pea (Pisum sativum) accessions based on morphological data for sustainable field pea breeding in Argentina. Genet. Mol. Res., 10: 3403-3410. DOI: 10.4238/2011.October.31.8

Goering, H.P. and P.J. Van Soest, 1970. Forage Fiber Analysis: Apparatus, Reagents, Procedures and Some Applications. 1st Edn., Apparatus, Reagents, Procedures and Some Applications Washington, DC, pp: 20.

Hulse, J.H., 1994. Nature, Composition and Utilization of Food Legumes. In: Expanding the Production and Use of Cool Season Food Legumes, Muhlbauger, F.J. and W.J. Kaiser (Eds.), Kluwer Academic, Dordrecht, ISBN-10: 0792325354, pp: 77-97.

Humphreys, M. and M. Theodorou, 2001. Breeding and Utilizing Forages for Sustainable Ruminant Production. In: Progress in grassland Science: Achievements and opportunities, Jarvis, S.C. (Ed.), Hedgerow Print, Crediton, ISBN-10: 0905944267, pp: 31-38.

Kirilov, A., 2005. Possibility for use of grain of legume crops as a source of protein in ration for ruminants. Proceedings of the Breeding and Technological Aspects in Production and Processing of Soybean and other Legume Crops, Sept. 08-08, Pavlikeni, pp: 175-180.

Kirilov, A., K. Ivanov and Y. Naydenova, 2010. Variation in development stage, yield and composition of pea and vetch. II. Variation in developmental stage, morphological and chemical composition. J. Mountain Agric. Balkans, 13:428-437.

Matthews, P. and E. Arthur, 1985. Genetic and Environmental Components of Variation in Protein Content of Peas. In: The Pea Crop: A Basis for Improvement, Hebblethwaite, P.D., M.C. Heath and T.C.K. Dawkins (Eds.), Butterworth, London, pp: 486-486.

Najdenova, Y., N. Georgieva and I. Nikolova, 2010. Influence of preparations with different biological action on plant cell wall fiber components content and enzyme degradability of spring forage pea (Pisum sativum L.). J. Mountain Agric. Balkans, 13: 1519-1538.

Naydenova, Y. and R. Todorova, 2009. Feeding value of forage pea (Pisum sativum L.) spring forms. Field Crop Studies, Dobroudja Agricultural Institute, General Toshevo, Bulgaria

Naydenova, Y., I. Pachev and D. Pavlova, 2008. Protein feeding value estimation of Ukrainian varieties of forage pea (Pisum sativum L.). Plant Genetic Resources Roslin Scientific J., 656: 86-1/35,656:575

Naydenova, Y.A., I.D. Pachev and M.A. Petkova, 2012. Feeding value estimation of new introduced forage pea (Pisum sativum L.) varieties. Proceedings of the 6th Central European Congress on Food, Novi Sad, Serbia, May 23-26, pp: 1654-1659.
Noubissie, J.B.T., J.M. Bell and H.T. Yadji, 2012. Studies on variability and gene effects of seed protein contents in Cameroonian beans (*Phaseolus vulgaris* L.) cultivars. J. Agric. Soc. Sci., 8:17-23.

Omarov, D.S., 1975. Towards the methods of plant heterosis recording and assessment. Agric. Biol., 10: 123-127.

Romero, G.E. and K.J. Frey, 1973. Inheritance of semidwarfness in several wheat crosses. Crop Sci., 3: 334-337. DOI: 10.2135/cropsci1973.0011183X001300030015x

Saxena, K.B., R.V. Kumar and P.V. Rao, 2002. Pigeonpea Nutrition and its Improvement. In: Quality Improvement in Field Crops, I.S. Randhawa (Ed), CRC Press, ISBN-10: 1560221011, pp: 227-260.

Singh, K.N., U.S. Santoshi and H.G. Singh, 1986. Genetics analysis of yield components and protein content in pea. Indian J. Agric. Sci., 56: 757-764.

Sobolev, N.A., 1976. Hybridological analysis for polygenic traits. Cytol. Genet., 10: 424-436.

Tajuddin, T., 2005. Analysis of quantitative trait loci for protein content in soybean seeds using recombinant inbred lines. Bul. Agron., 33: 19-24.

Tchiagam, T.J.B., J.M. Bell, M.A. Nassourou, N.Y. Njintang and E. Youmbi, 2011. Genetic analysis of seed proteins contents in cowpea (*Vigna unguiculata* L. Walp.). Afr. J. Biotechnol., 10: 3077-3086. DOI: 10.5897/AJB10.2469

Todorov, N., A. Atanassov, A. Ilchev, G. Ganchev and G. Mihailova *et al*., 2010. Practice in Animal Nutrition. 1st Edn., Sofia, Bulgaria, pp: 462.

Angelova, S., 1995. Value for cultivation and use of local and introduced pea varieties. Plant Sci., 1-2: 49-151.