Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021

Mart Krupovic1· Dann Turner2· Vera Morozova3· Mike Dyall-Smith4· Hanna M. Oksanen5·
Rob Edwards6· Bas E. Dutilh7· Susan M. Lehman8· Alejandro Reyes9· Diana P. Baquero1·
Matthew B. Sullivan10,11· Jumpei Uchiyama12· Jesca Nakavuma13· Jakub Barylski14· Mark J. Young15·
Shishen Du16· Poliane Alfenas-Zerbini17· Alla Kushkina18· Andrew M. Kropinski19,20·
Ipek Kurtböke21· J. Rodney Brister22· Cédric Lood23· B. L. Sarkar24· Tong Yigang25· Ying Liu1·
Li Huang26· Johannes Wittmann27· Nina Chanishvili28· Leonardo J. van Zyl29· Janis Rummieks30·
Tomohiro Mochizuki31· Matti Jalasvuori32· Ramy K. Aziz33· Małgorzata Łobocka34·
Kenneth M. Stedman35· Andrey N. Shkoporov36· Annika Gillis37· Xu Peng38· François Enault39·
Petar Knezevic40· Rob Lavigne33· Sung-Keun Rhee41· Virginija Cvirkaite-Krupovic1·
Cristina Moraru42· Andrea I. Moreno Switt43· Minna M. Poranen5· Andrew Millard44· David Prangishvili45·
Evelien M. Adriaenssens46

Published online: 21 August 2021
© The Author(s) 2021

Abstract

In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).

Changes in Subcommittee structure and membership

Bacteriophage and archaeal virus taxonomy has been formally under the auspices of the ICTV Bacterial and Archaeal Viruses Subcommittee, which, at its inception in 1966, was named the Viruses of Prokaryotes Subcommittee, led by David E. Bradley (https://talk.ictvonline.org/information/w/ictv-history). Given the revived interest in bacterial and archaeal viruses and recent enormous increase in the number of characterized isolates and need for creation of numerous taxa to classify them, the Executive Committee (EC) voted on the creation of two separate Subcommittees (EC51, July 2019), formally starting their mandates after EC52 (October 2020). The new Bacterial Viruses Subcommittee is chaired by Evelien Adriaenssens, supported by Dann Turner as the Vice Chair, and the new Archaeal Viruses Subcommittee is chaired by Mart Krupovic. Both Chairs were elected for three-year terms ending in 2023. As a result, this taxonomy update summarises both bacterial and archaeal virus proposals for the last time, reflecting the fact that proposals were submitted prior to the formal reorganisation of the original Subcommittee.

In the new Bacterial Viruses Subcommittee, we continue our structure of Study Groups (SGs), regional representatives and general members. We would like to welcome new members Jesca Nakavuma (Uganda), Alejandro Reyes (Colombia), Cristina Moraru (Germany), Susan Lehman (USA), Cédric Lood (Belgium) and Andrey Shkoporov (Ireland) and would like to thank those who have left the Subcommittee for their service.

In the framework of the Bacterial and Archaeal Viruses Subcommittee, all taxonomic proposals dealing with archaeal viruses were handled by a single SG. The new
Archaeal Viruses Subcommittee currently includes 11 SGs (Table 1), each created for a three-year term. Of note, the *Halopanivirales* SG, chaired by Hanna M. Oksanen (Finland), oversees the taxonomy of evolutionarily related viruses of the order *Halopanivirales*, which includes two families of viruses infecting archaea (*Sphaerolipoviridae* and *Simuloviridae*) and one family of bacteriophages (*Mat- sushitaviridae*). Thus, the latter SG bridges the two Subcommittees. Additional SGs will be created in the near future, in particular, to develop the taxonomy of archaeal members of the class *Caudoviricetes*; only a handful of isolated representatives of this highly diverse and expansive group of archaeal viruses are currently classified.

Taxonomy update

We had a record year of submissions of taxonomy proposals in 2020, with 188 proposals submitted, of which all but one were approved and ratified (Supplementary Table S1). The changes at each of the taxonomic ranks in use for bacterial and archaeal viruses are summarised in Table 2. We

Study Group	Member	Country
Bicaudaviridae SG	Mart Krupovic*	France
	Li Huang	China
	Mark J. Young	USA
	Virginija Cvirkaite-Krupovic	France
Desulfurococcaceae viruses SG	Tomohiro Mochizuki*	Japan
	Mart Krupovic	France
Fuselloviridae SG	Kenneth M. Stedman*	USA
	Mart Krupovic	France
Halopanivirales SG	Hanna M. Oksanen*	Finland
	Mike Dyall-Smith	Australia
	Shishen Du	China
	Matti Jalasvuori	Finland
Halspiridae SG	Mike Dyall-Smith*	Australia
	Hanna M. Oksanen	Finland
Ovaliviridae SG	Li Huang*	China
Pleolipoviridae SG	Hanna M. Oksanen*	Finland
	Mike Dyall-Smith	Australia
	Ying Liu	France
Portogloboviridae SG	Mart Krupovic*	France
	Ying Liu	France
Thaspiridae SG	Sung-Keun Rhee*	Republic of Korea
	Mart Krupovic	France
Tokiviricetes SG	Mart Krupovic*	France
	Tomohiro Mochizuki	Japan
	Xu Peng	Denmark
	Diana P. Baquero	France
Turriviridae SG	Mark J. Young*	USA

*Study Group Chair

Species	Genus	Subfamily	Family	Order	Class	Phylum	Kingdom	Realm
Abolished	20	2	0	0	0	0	0	0
New	1775	700	28	14	2	1	1	1
Moved or promoted (and/or renamed)	70	34	3	1	1	0	0	0
Renamed	33	8	0	1	1	1	0	0

Table 1 Composition of the archaeal viruses subcommittee

Table 2 Summary of taxonomic changes for bacterial and archaeal viruses for Master Species List 36, ratified March 2021
created a record 1775 new species, 700 new genera, 28 new subfamilies, 14 new families and two new orders and also created one new realm containing one new kingdom, one new phylum and one new class. Given the large numbers of proposals and taxa that were created, moved or renamed, it becomes unfeasible to describe all the changes in detail; however, we urge interested readers to consult Supplementary Table S1 and the associated proposals from the ICTV website (https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/prokaryote-official). Instead, below we provide a brief overview of the most notable changes.

The new realm Adnaviria, a new megataxon of archaean filamentous viruses

Recently, the taxonomic framework of the ICTV has been expanded from five to 15 ranks, with the highest-level rank, realm, being equivalent to the domain rank used for cellular organisms [1]. Until recently, four such realms had been established for classification of viruses infecting hosts from different domains of life [2, 3]. This year, a new realm, Adnaviria, was created for classification of archaean filamentous viruses with dsDNA genomes that adopt the A-form conformation within their virions [4, 5]. The realm includes three families, Tristromaviridae, Rudiviridae and Lipothrixviridae, which are evolutionarily related to each other, but not to any other known group of viruses. The families Rudiviridae and Lipothrixviridae were already grouped together in the order Ligamenvirales [6], and a single-family order, Primavirales, has now been created for the family Tristromaviridae. The two orders are unified in the class Primavirales [6], and a single-family order, Tristromaviridae, has now been created for the family Tristromaviridae. The two orders are unified in the class Primavirales [6].

Class Caudoviricetes, order Caudovirales

We delineated three new families of short-tailed phages with small genomes that were formerly assigned to the family Podoviridae. The family Salasmaviridae, named in honour of Margarita Salas Falgueras, comprises the existing subfamily Picovirinae, which includes the classical bacillus phage φ29 and a range of related Bacillus-infecting phages with genomes between 18 and 27 kb in size. The family Rountreeviridae, named in honour of Phyllis Margaret Rountree, groups Enterococcus-infecting phages with genomes between 17 and 19 kb in size, whereas the family Guelinviridae, named after Antonina Guelin, groups Clostridium-infecting phages with genome sizes between 16 and 19 kb.

The new family Schitoviridae, named after Giancarlo Schito, is the formalisation of the group of N4-like phages defined by the presence of a large virion-associated RNA polymerase, described in more detail in reference [7].

The new family Zobellviridae, named after Claude Zobell, groups a set of globally distributed podoviruses associated with marine ecosystems first proposed by Bischoff and colleagues [8].

Class Leviricetes

Based on the investigation by Callanan and colleagues on the expansion of known ssRNA virus genomes [9], the family Leviricetes was elevated to the rank of class, named Leviricetes (replacing the class Allassoviricetes), and expanded to include two orders (Norzivirales and Timlovirales) and six new families: Fiersviridae (renamed from the original family Fiersviridae), Atkinsovirdae, Dainiridae, Solspiriridae, Blumerviridae and Steitzviridae. A detailed description of the new taxa will be published separately.

Class Tectiliviricetes, new family Autolykiviridae

The new family Autolykiviridae formalises the group of non-tailed dsDNA bacteriophages discovered and described by Kauffmann and colleagues [10], combining features of both corticoviruses and tectiviruses. This new family contains two new genera and five new species.

Order Halopanivirales, new families Matsushitaviridae and Simuloviridae

Until recently, the family Sphaerolipoviridae, which includes icosahedral tailless viruses with internal membranes, consisted of three genera, Alphasphaerolipovirus, Betasphaerolipovirus and Gammasphaerolipovirus. The first two of these genera included viruses infecting halophilic archaea, whereas the last one included phages infecting thermophilic bacteria [11]. Although viruses from the three genera are evolutionarily related [12], they display considerable sequence divergence. Thus, the genera Betasphaerolipovirus and Gammasphaerolipovirus have been renamed and moved from the Sphaerolipoviridae into new families, Simuloviridae and Matsushitaviridae (named after Isao Matsushita), respectively. The order Halopanivirales now contains a family of bacterial viruses, Matsushitaviridae, and two families of archaeal viruses, family Sphaerolipoviridae and Simuloviridae. As mentioned above, the order is under purview of a single Study Group, which is part of both the Archaeal Viruses SC and the Bacterial Viruses SC.

Class Caudoviricetes

We delineated three new families of short-tailed phages with small genomes that were formerly assigned to the family Podoviridae. The family Salasmaviridae, named in honour of Margarita Salas Falgueras, comprises the existing subfamily Picovirinae, which includes the classical bacillus phage φ29 and a range of related Bacillus-infecting phages with genomes between 18 and 27 kb in size. The family Rountreeviridae, named in honour of Phyllis Margaret Rountree, groups Enterococcus-infecting phages with genomes between 17 and 19 kb in size, whereas the family Guelinviridae, named after Antonina Guelin, groups Clostridium-infecting phages with genome sizes between 16 and 19 kb.

The new family Schitoviridae, named after Giancarlo Schito, is the formalisation of the group of N4-like phages defined by the presence of a large virion-associated RNA polymerase, described in more detail in reference [7].

The new family Zobellviridae, named after Claude Zobell, groups a set of globally distributed podoviruses associated with marine ecosystems first proposed by Bischoff and colleagues [8].

Class Leviricetes

Based on the investigation by Callanan and colleagues on the expansion of known ssRNA virus genomes [9], the family Leviricetes was elevated to the rank of class, named Leviricetes (replacing the class Allassoviricetes), and expanded to include two orders (Norzivirales and Timlovirales) and six new families: Fiersviridae (renamed from the original family Fiersviridae), Atkinsovirdae, Dainiridae, Solspiriridae, Blumerviridae and Steitzviridae. A detailed description of the new taxa will be published separately.

Class Tectiliviricetes, new family Autolykiviridae

The new family Autolykiviridae formalises the group of non-tailed dsDNA bacteriophages discovered and described by Kauffmann and colleagues [10], combining features of both corticoviruses and tectiviruses. This new family contains two new genera and five new species.

Order Halopanivirales, new families Matsushitaviridae and Simuloviridae

Until recently, the family Sphaerolipoviridae, which includes icosahedral tailless viruses with internal membranes, consisted of three genera, Alphasphaerolipovirus, Betasphaerolipovirus and Gammasphaerolipovirus. The first two of these genera included viruses infecting halophilic archaea, whereas the last one included phages infecting thermophilic bacteria [11]. Although viruses from the three genera are evolutionarily related [12], they display considerable sequence divergence. Thus, the genera Betasphaerolipovirus and Gammasphaerolipovirus have been renamed and moved from the Sphaerolipoviridae into new families, Simuloviridae and Matsushitaviridae (named after Isao Matsushita), respectively. The order Halopanivirales now contains a family of bacterial viruses, Matsushitaviridae, and two families of archaeal viruses, family Sphaerolipoviridae and Simuloviridae. As mentioned above, the order is under purview of a single Study Group, which is part of both the Archaeal Viruses SC and the Bacterial Viruses SC.
Order Tubulavirales, new family Paulinoviridae

The new family *Paulinoviridae* addresses the challenge of defining family demarcation criteria for phages with small genomes, where members of the same family would share at least two orthologous proteins. Informed by prior work on a gene-content network of predicted filamentous prophage sequences [13], we moved the genera *Bifilivirus* and *Thomixivirus* from the family *Inoviridae* to the family *Paulinoviridae*.

Online (10th) Report of the ICTV

Virus Taxonomy: The Classification and Nomenclature of Viruses - The Online (10th) Report of the ICTV is freely accessible at http://ictv.global/report, and summaries of the chapters on each virus family are published in the Journal of General Virology. In 2020, four new chapters on bacterial and archaeal viruses were produced by members of the Archaeal Viruses SC and Bacterial Viruses SC, namely, on the families *Herelleviridae* [14], *Spiraviridae* [15], *Ovaliviridae* [16] and *Finnlakeviridae* [17].

Conclusion

This past year has been extremely productive in terms of new bacterial and archaeal virus taxa described. It would not have been possible without an active pool of scientists, both within and outside the subcommittee and its study groups, who scour databases, perform analyses and submit proposals. We continue to encourage people to contact us to formalise new discoveries into the taxonomic framework and will keep reaching out to interested parties. Finally, we would like to acknowledge one person in particular, Prof Andrew Kropinski, the Subcommittee Chair from 2014–2020, who authored, co-authored and/or assisted with the majority of proposals that have been approved in the last decade.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00705-021-05205-9.

Acknowledgements We would like to acknowledge the invaluable help from colleagues at NCBI, in particular Igor Tolstoy.

Author contributions All authors contributed to the creation or assessment of taxonomy proposals; M.K. and E.M.A wrote the manuscript with input from D.T. and A.M.K; all authors evaluated and approved the final version.

Funding V.M. was supported by Russian Ministry of Education and Science Project No. 0245-2021-0008; H.M.O. was supported by University of Helsinki funding for FINStruct and Instruct-ERIC research infrastructure; R.A.E. was supported by the National Institute Of Diabetes And Digestive And Kidney Diseases of the National Institutes of Health under Award Number RC2DK116713; B.E.D. was supported by the European Research Council (ERC) Consolidator grant 865694: DiversiPHI; M.B.S. was supported by National Science Foundation Advances in Biological Infrastructure award #1758974; M.Y. acknowledges funding by the Gordon and Betty Moore Foundation grant GBMF9195; S.D. was supported by National Natural Science Foundation of China grant 32070032; C.L. is supported by the Fonds Wetenschappelijk Onderzoek (1S64718N); L.H. was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences Award XDB42000000, National Natural Science Foundation of China (NSFC) grant 31970170; T.M. was supported by JSPS KAKENHI Grant Numbers 21H02100, 19H04827, 18K14372, and JST JPMJR2005, and SUMITOMO Fund 200673; MJ is supported by Academy of Finland grants #336518 and #297049 and Jane and Aatos Erkko Foundation; R.K.A. is supported by the Egyptian Academy of Scientific Research and Technology (ASRT) project #3046 (JESOR); M.L. is supported by the statutory funds for the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences; K.M.S. is supported by the US. National Science Foundation (MCB192973 and MCB2025305); A.N.S. is supported by Wellcome Trust Career Development Fellowship (220646/Z/20/Z) and by European Research Council (ERC) grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement 101001684); X.P. is supported by Nordisk Fonden/Hallas-Møller Ascending Investigator Grant (grant number NNFI17OC0031154) and the Danish Council for Independent Research/ FNU (grant number DFF--0135-00402); S.K.R. was supported by Wellcome Trust Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning (2021R1A2C2030415); C.M. acknowledges funding by the Deutsche Forschungsgemeinschaft within the Collaborative Research Center TRR51 Roseobacter (INST 184/170-1); M.M.P. acknowledges funding from the Academy of Finland (grant 331627) and the Sigrid Juselius Foundation; E.M.A. gratefully acknowledges funding by the Biotechnology and Biologi- cal Sciences Research Council (BBSRC); this research was funded by the BBSRC Institute Strategic Programme Gut Microbes and Health BB/R012490/1 and its constituent projects BBS/E/F/000PR10353 and BBS/E/F/000PR10356.

Declarations

Conflict of interest All authors are current or former members of the Bacterial and Archaeal Viruses Subcommittee, Bacterial Viruses Subcommittee and/or Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Gorbalenya AE, Krupovic M, Mushegian A et al (2020) The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol 5:668–674. https://doi.org/10.1038/s41564-020-0709-x
2. Koonin EV, Dolja VV, Krupovic M et al (2020) Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev 84:1–33. https://doi.org/10.1128/MMBR.00061-19
3. Walker PJ, Siddell SG, Lefkowitz EJ et al (2020) Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch Virol 165:2737–2748. https://doi.org/10.1007/s00705-020-04752-x
4. Baquero DP, Liu Y, Wang F et al (2020) Structure and assembly of archaeal viruses. Adv Virus Res 108:127–164
5. Krupovic M, Kuhn JH, Wang F et al (2021) Adnaviria: a new realm for archaeal filamentous viruses with linear A-form double-stranded DNA genomes. J Virol. https://doi.org/10.1128/JVI.00673-21
6. Prangishvili D, Krupovic M (2012) A new proposed taxon for double-stranded DNA viruses, the order “Ligamenvirales.” Arch Virol. https://doi.org/10.1007/s00705-012-1229-7
7. Wittmann J, Turner D, Millard A et al (2020) From orphan phage to a proposed new family—the diversity of N4-like viruses. Antivirals 9:663. https://doi.org/10.3390/antivirals9100663
8. Bischoff V, Bunk B, Meier-Kolthoff JP et al (2019) Cobaviruses—a new globally distributed phage group infecting Rhodobacteraeae in marine ecosystems. ISME J 13:1404–1421. https://doi.org/10.1038/s41396-019-0362-7
9. Callanan J, Stockdale SR, Shkoporov A et al (2020) Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci Adv 6:eaya5981. https://doi.org/10.1126/sciadv.eya5981
10. Kauffman KM, Hussain FA, Yang J et al (2018) A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554:118–122. https://doi.org/10.1038/nature25474
11. Pawlowski A, Rissanen I, Bamford JKH et al (2014) Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159:1541–1554. https://doi.org/10.1007/s00705-013-1970-6
12. Demina T, Pietila M, Svirskaite J et al (2017) HCIIV-1 and other tailless icosahedral internal membrane-containing viruses of the family sphaerolipoviridae. Viruses 9:32. https://doi.org/10.3390/v9020032
13. Roux S, Krupovic M, Daly RA et al (2019) Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biosphere. Nat Microbiol 4:1895–1906. https://doi.org/10.1038/s41564-019-0510-x
14. Barylski J, Kropinski AM, Alikhan N-F, Adriaenssens EM (2020) ICTV virus taxonomy profile: herelleviridae. J Gen Virol 101:3–4. https://doi.org/10.1093/jgv/gov01392
15. Prangshvili D, Mochizuki T, Krupovic M (2020) ICTV virus taxonomy profile: spiraviridae. J Gen Virol 101:240–241. https://doi.org/10.1093/jgv/gov01385
16. Huang L, Wang H (2021) ICTV virus taxonomy profile: ovaliviridae. J Gen Virol. https://doi.org/10.1093/jgv/gov01546
17. Mäntynen S, Laanto E, Sundberg LR et al (2020) ICTV virus taxonomy profile: Finnlakeviridae. J Gen Virol 101:894–895. https://doi.org/10.1093/jgv/gov01488

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Mart Krupovic1 · Dann Turner2 · Vera Morozova3 · Mike Dyall-Smith4 · Hanna M. Oksanen5 · Rob Edwards6 · Bas E. Dutilh7 · Susan M. Lehman8 · Alejandro Reyes9 · Diana P. Baquero10 · Matthew B. Sullivan11,12 · Jumpei Uchiyama12 · Jesca Nakavuma13 · Jakub Barylski14 · Mark J. Young15 · Shishen Du16 · Poliane Alfenas-Zerbini17 · Alla Kushkina18 · Andrew M. Kropinski19,20 · Ipek Kurtbökê21 · J. Rodney Brister22 · Cédric Lood23 · B. L. Sarkar24 · Tong Yigang25 · Ying Liu2 · Li Huang26 · Johannes Wittmann27 · Nina Chanishvili28 · Leonardo J. van Zyl29 · Janis Rummiekis30 · Tomohiro Machizuki31 · Matti Jalasvuori32 · Ramy K. Aziz33 · Małgorzata Lobocka34 · Kenneth M. Stedman35 · Andrey N. Shkoporov36 · Annika Gillis37 · Xu Peng38 · François Enault39 · Petar Knezevic40 · Rob Lavigne41 · Sung-Keun Rhee42 · Virginija Cvirkaite-Krupovic43 · Cristina Moraru44 · Andrea I. Moreno Switt45 · Minna M. Poranen5 · Andrew Millard46 · David Prangishvili47 · Evelien M. Adriaenssens48

1 Archaeal Virology Unit, Institut Pasteur, Paris, France
2 Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
3 Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
4 Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
5 Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
6 Flinders Accelerator for Microbiome Exploration, Adelaide, Australia
7 Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, Netherlands
8 Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20903, USA
9 Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
10 Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
11 Department Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
12 School of Veterinary Medicine, Azabu University, Sagamihara, Japan
13 College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
14 Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Collegium Biologicum-UMultowska 89, 61-614 Poznan, Poland
15 Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
16 Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
17 Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
18 Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine
19 Department of Food Science, University of Guelph, Guelph, Canada
20 Department of Pathobiology, University of Guelph, Guelph, Canada
21 University of the Sunshine Coast, Sippy Downs, Australia
22 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
23 KU Leuven, Leuven, Belgium
24 Emeritus ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
25 Beijing University of Chemical Technology, Beijing, China
26 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
27 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Berlin, Germany
28 The Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
29 University of the Western Cape, Western Cape, South Africa
30 Latvian Biomedical Research and Study Center, Riga, Latvia
31 Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
32 University of Jyvaskyla, Jyvaskyla, Finland
33 Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University and Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt, Cairo 57357, Egypt
34 Laboratory of Bacteriophage Biology, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
35 Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, USA
36 University College Cork, Cork, Ireland
37 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
38 Microbial Immunity Group, Department of Biology, University of Copenhagen, Copenhagen, Denmark
39 Université Clermont Auvergne, CNRS, LMGE, 63000 Clermont-Ferrand, France
40 Faculty of Sciences Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
41 Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, South Korea
42 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
43 Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
44 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
45 Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
46 Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK