Validation of the Hospital Frailty Risk Score among older adults receiving mechanical ventilation

Eric Sy (✉ ers728@usask.ca)
University of Saskatchewan College of Medicine https://orcid.org/0000-0001-5033-797X

Sandy Kassir
Saskatchewan Health Authority

Jonathan F Mailman
Saskatchewan Health Authority

Sarah Lauren Sy
Vancouver General Hospital

Research Article

Keywords: Aged, Frail Elderly, Frailty, mechanical ventilation, critical care, intensive care unit, intensive care medicine, epidemiology

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1086390/v1

License: ☇️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background:
Older adults are increasingly being admitted to intensive care units, with frailty recognized as a risk factor for worse outcomes. The Hospital Frailty Risk Score (HFRS) was developed for use in administrative databases of older adults, but it has not yet been well-validated for critically ill patients. The objective of this study was to validate the HFRS to predict prolonged hospitalization, in-hospital mortality, and 30-day emergency hospital readmissions in critically ill patients.

Methods:
We selected index hospitalizations of older adults (≥75 years old) receiving mechanical ventilation, using the United States Nationwide Readmissions Database from January 1, 2016 to November 30, 2018. Frailty risk was determined by the HFRS using International Classification of Diseases, Tenth Revision Clinical Modification (ICD-10-CM) codes, and further subcategorized into low (score <5), intermediate (score 5-15), and high (score >15) risk for frailty. We evaluated the HFRS to predict prolonged hospitalization, in-hospital mortality, and 30-day emergency hospital readmissions, using multivariable logistic regression after adjustment for patient and hospital characteristics. Model performance was assessed using the c-statistic, Brier score, and calibration plots.

Results:
Among the 649,330 weighted index hospitalizations in the cohort, 50.0% were female, the median (interquartile range [IQR]) age was 81 (78-86) years old, and the median (IQR) HFRS was 10.8 (7.7-14.5). Among the cohort, 9.5%, 68.3%, and 22.2% were subcategorized as low, intermediate, and high risk for frailty, respectively. After adjustment, patient hospitalizations with high frailty risk were associated with increased risks of prolonged hospitalization (adjusted odds ratio [aOR] 5.59 [95% confidence interval [CI] 5.24-5.97], c-statistic 0.694, Brier score 0.216) and 30-day emergency hospital readmissions (aOR 1.20 [95% CI 1.13-1.27], c-statistic 0.595, Brier score 0.162), compared to low frailty risks. Conversely, high frailty risk using the HFRS was inversely associated with in-hospital mortality (aOR 0.46 [95% CI 0.45-0.48], c-statistic 0.712, Brier score 0.214). Calibration plots demonstrated good calibration for the adjusted analyses.

Conclusions:
The HFRS is associated with prolonged hospitalization and 30-day readmission in older adults receiving mechanical ventilation. Further research is necessary to develop frailty scores that accurately and intuitively predict mortality in critically ill patients.

Introduction
Older adults (≥ 75 years old) are increasingly being admitted to intensive care units (ICUs).1–4 In the United States (US), there were close to 27.8 million hospitalizations of older Medicare beneficiaries admitted to ICUs between 1996-2010.5 Older adults represented close to 30% of all ICU admissions to Veterans Affairs hospitals during March-August 2020 of the coronavirus-2019 (COVID-19) pandemic.6 Despite critical care interventions, these patients are at-risk for death, readmission, and poor functional outcomes.1 In a systematic review of older adult critically ill patients, the 6-month mortality and 1-year mortality of this population ranges from 21–58% and 33–72%, respectively.7 It has been increasingly recognized that frailty is an independent risk factor for mortality, prolonged hospitalization, readmission, and poorer quality of life after discharge.1,8–13 It has been estimated that up to 24% of critically ill patients may be frail at baseline prior to ICU admission.14

Thus, there is a need to better understand and characterize frailty in the critically ill older adult to engage in shared decision-making with patients and their families, inform them on post-ICU outcomes, and conduct research. Several tools have been developed to measure and characterize frailty depending on the conceptual framework of frailty, including phenotypic or cumulative deficit models.15,16 Most studies in critical care have prospectively assessed frailty using the Canadian Study of Health and Aging Clinical Frailty Score (CFS).11,14,17,18 However, established frailty scores, such as the CFS, Fried’s frailty phenotype, Edmonton Frail Scale, or FRAIL scale, have limited use in administrative databases, as most databases do not collect the variables necessary to calculate these scores.15,18–20 Additionally, frailty assessments in the critically ill have been limited by feasibility and reliability due to the inherent nature of the population, often requiring input from family members, caregivers, and/or proxies.17

As a result, there is an interest in the development and validation of frailty scores, using universally collected information in administrative databases. The electronic Frailty Index (eFI) was designed for use in primary care electronic health records; however, many hospital administrative databases do not contain the laboratory information needed to calculate the eFI.21 Other electronic frailty indices, such as the Veterans Affairs Frailty Index (VA-FI), Kim index, and Davidoff index, require additional codes specific to US databases, including Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPCS) coding, limiting their generalizability to non-US databases.22,23 A study of Brazilian ICUs assessed frailty using the modified Frailty Index (mFI); however, the measurement of functional capacity is not commonly captured or coded in most administrative databases.24 Recently, the Hospital Frailty Risk Score (HFRS) was developed using International Classification of Diseases, Tenth Revision Clinical Modification (ICD-10-CM) codes, and it has been validated to predict the risk of mortality, prolonged hospitalization, and 30-day emergency hospital readmissions in older hospitalized patients.25 It has since been externally validated in other hospitalized patient populations,26–29 but its value in critically ill patients has been questioned in a single center study.30

Therefore, there is a need to externally validate the use of the HFRS in large, generalizable administrative databases of critically ill patients. The primary goal of this study was to externally validate the HFRS
among a nationally representative sample of older adults receiving mechanical ventilation.

Methods

This study was reported in accordance with the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement. As the Nationwide Readmissions Database (NRD) contains de-identified information, this study was granted an exemption by the Saskatchewan Health Authority Research Ethics Board (SHA-REB-20-77).

Data source

We obtained hospitalization information from the NRD between January 1, 2016 and November 30, 2018. The NRD is the largest all-payer US readmission database from the Healthcare Cost and Utilization Project (HCUP), including insured and uninsured patients. It is constructed from state databases from 28 different states, and it samples >15,000,000 unique hospitalizations annually, representing >36,000,000 weighted hospitalizations. The NRD accounts for 60% of the total US population and 59% of all hospitalizations, allowing for national estimates of readmissions. Linked visits can be identified through a linking variable in the database.

Study population

We included all hospitalizations of older adults (≥75 years old) receiving mechanical ventilation, as defined by the ICD-10 procedure coding system (ICD-10-PCS) codes 5A1935Z, 5A1945Z, 5A1955Z, and 0BH17EZ. A prior equivalent ICD-9 coding algorithm had an overall 47.0% sensitivity and 99.6% specificity for detecting mechanical ventilation in all patients, but a sensitivity of 94.0% and specificity of 99.3% in medical patients specifically. We excluded hospitalizations of patients <75 years old, as the HFRS was originally derived from a population of adults ≥75 years old. We additionally excluded patients that left against medical advice and hospitalizations with missing information for length of stay, time to next visit, and December admissions, as the NRD would be unable to accurately follow these patients longitudinally beyond the calendar year. We also excluded hospitalizations of non-residents of the state, as the NRD does not have any linking state identifiers.

Measurements

The covariates in the NRD included age, biological sex, hospital characteristics (teaching status, size), income quartile, primary insurance status (Medicare, Medicaid, private insurance, self-pay, or other), Elixhauser-van Walraven comorbidity index score, and comorbidities. The ICD-10-CM and ICD-10-PCS codes used to classify comorbidities are described in the Electronic Supplementary Material (ESM) eTable 1. We determined the primary reason for admission of the index hospitalization and readmission, using aggregate groups of the Clinical Classifications Software Refined (CCSR) developed by HCUP (ESM eTable 2). The CCSR was developed to provide clinically meaningful categories of diagnoses, based on ICD-10-CM codes. Hospital costs were determined using total hospital charges multiplied by the all-payer
cost-to-charge ratio. Hospital costs were inflation-adjusted to 2018 US dollars (USD) using the US Bureau of Labor Consumer Price Index for medical care.

Frailty risk

We assessed the risk of frailty using the HFRS developed by Gilbert et al (ESM eTable 3). The HFRS was derived from a development cohort of over >20,000 older adult patients, using 109 ICD-10 codes and ridge regression. The HFRS has been previously validated for use in hospitalized patients. We classified patients as either low (score <5), intermediate (score 5-15), or high (score >15) risk for frailty, based on the original HFRS study and subsequent validation studies.

Outcome(s)

We evaluated prolonged hospitalization, in-hospital mortality, and 30-day emergency hospital readmissions. We defined prolonged hospitalization as a length of stay >10 days in hospital and only evaluated 30-day emergency hospital readmissions, similar to Gilbert et al. In-hospital mortality included all-cause mortality at any point during patient hospitalization. We chose this outcome instead of 30-day mortality because the NRD only measures in-hospital mortality.

Statistical analysis

All statistical analyses were performed using Stata/MP 15.1 (College Station, Texas, USA). A two-sided p-value <0.05 was considered statistically significant for all analyses. We accounted for the complex sampling design of the NRD using sampling weights provided by HCUP. Descriptive statistics were presented for the index hospitalization by HFRS subcategory. Categorical variables were presented as unweighted numbers and weighted percentages. Continuous variables were presented as either means (standard deviation [SD]), or medians (interquartile range [IQR]), following testing for normality. Survey-specific Rao-Scott tests were used to compare nominal data. Survey-specific linear regression was used to compare continuous data, using the geometric means for data without a normal distribution. Missing data was present in <1.5% of all patient visits.

We assessed the validity of the HFRS for predicting in-hospital mortality, prolonged hospitalization, and 30-day emergency hospital readmission, using unadjusted and adjusted logistic regression. For in-hospital mortality and prolonged hospitalization, we performed adjustment for age, biological sex, income quartile, insurance status, do-not-resuscitate status, admission diagnosis, hospital characteristics, and year. For 30-day emergency hospital readmissions, we performed adjustment for the same variables, also including hospital disposition. Model discrimination was assessed with the c-statistic and calibration with the Brier score. Calibration plots additionally were constructed.

Sensitivity analyses

We performed several sensitivity analyses to assess the robustness of our findings. First, we re-evaluated our findings using the HFRS as a continuous variable and using restricted cubic splines with five knots. Next, we performed survey-specific Cox proportional hazards regression for in-hospital mortality and 30-
day emergency hospital readmissions.41 We then performed multiple imputation with chained equations, using 10 imputations, and repeated the primary analysis with the imputed dataset.42 Subsequently, we derived 30-day in-hospital mortality, using hospitalization data from the NRD, and re-performed our primary analysis. Finally, we evaluated the total population of older adults in the NRD, independent of receipt of mechanical ventilation, to determine whether our findings hold for the whole population.

Results

There were 371,410 hospitalizations of older adults receiving mechanical ventilation, representing 649,330 weighted hospitalizations (Figure 1). A summary of baseline characteristics is found in Table 1 and ESM eTable 4. Missing data are described in the ESM eTable 5. Of all hospitalizations of older adults receiving mechanical ventilation, 50.0\% were female, the median (IQR) age was 81 (78-86) years old, the median (IQR) Elixhauser-van Walraven comorbidity index score was 18 (12-25), and the median (IQR) costs of hospitalization were $28,212 USD ($14,947-$51,521). Infection-related diagnoses (30.5\%) were the most common primary diagnoses for hospitalization. Many patients had primary or secondary diagnoses of severe sepsis (32.8\%), shock (40.2\%), and acute kidney injury (51.5\%). Referral to palliative care occurred in approximately 26.8\% of hospitalizations, with the high risk for frailty group receiving the most referrals to palliative care (p <0.001).
Table 1
Characteristics of the population

Characteristic	Low Frailty Risk (HFRS <5)	Intermediate Frailty Risk (HFRS 5-15)	High Frailty Risk (HFRS >15)	Total population	p-value^b
	n=35,126	n=253,711	n=82,573	n=371,410	
Weighted number of hospitalizations	61,834	443,659	143,837	649,330	-
Age, median years (IQR)	81 (77-85)	81 (77-86)	82 (78-86)	81 (78-86)	<0.001
Female	18,250 (51.8)	125,932 (49.6)	41,809 (50.5)	185,991 (50.0)	<0.001
Insurance					<0.001
Medicare	32,185 (92.0)	232,555 (92.1)	75,020 (91.4)	339,760 (92.0)	
Medicaid	530 (1.3)	4,066 (1.4)	1,713 (1.8)	6,309 (1.5)	
Private	1,679 (4.6)	11,000 (4.2)	3,692 (4.3)	16,371 (4.2)	
Self-pay	153 (0.4)	940 (0.4)	257 (0.3)	1,350 (0.3)	
Other	549 (1.7)	4,883 (2.0)	1,824 (2.2)	7,256 (2.0)	
Household income quartile^c				<0.001	
0-25th	9,915 (29.9)	68,798 (29.0)	22,772 (29.8)	101,485 (29.3)	
26-50th	9,442 (28.0)	66,073 (27.3)	20,702 (26)	96,217 (27.0)	
51-75th	8,393 (23.9)	61,505 (24.0)	20,077 (24.0)	89,975 (24.0)	

Abbreviations: interquartile range (IQR), standard deviation (SD)

^aExpressed as unweighted number and weighted percentage (%) unless otherwise stated. Weighted percentages were calculated using complex survey methods in Stata and used the weighted number of hospitalizations.

^bA p-value <0.05 considered statistically significant.

^cAs determined by the patient’s zip code

^dAmong patient hospitalizations that survived their index admission (Unweighted total n=18,775 for low frailty risk, n=133,597 for intermediate frailty risk, n=50,610 for high frailty risk, n=202,982 total)
Characteristic^a	Low Frailty Risk (HFRS <5)	Intermediate Frailty Risk (HFRS 5-15)	High Frailty Risk (HFRS >15)	Total population	p-value^b
76-100th	6,946 (18.2)	54,416 (19.7)	18,201 (20.2)	79,563 (19.7)	<0.001
Hospital teaching status					
Metropolitan non-teaching hospital	9,240 (24.6)	64,080 (23.5)	19,619 (21.9)	92,939 (23.2)	
Metropolitan teaching hospital	23,695 (67.4)	178,037 (70.6)	60,284 (73.7)	262,016 (71.0)	
Non-metropolitan hospital	2,191 (8.1)	11,594 (5.9)	2,670 (4.4)	16,455 (5.8)	
Hospital size					0.44
Small	4,328 (13.2)	31,850 (13.3)	9,872 (12.8)	46,050 (13.2)	
Medium	10,291 (28.1)	73,729 (28.0)	23,594 (27.6)	107,614 (28.0)	
Large	20,507 (58.8)	148,132 (58.7)	49,107 (59.6)	217,746 (58.9)	
Elixhauser-van Walraven comorbidity index, median (IQR)	10 (5-16)	19 (12-25)	21 (15-27)	18 (12-25)	<0.001
Hospital frailty risk score, median (IQR)	3.6 (2.3-4.3)	10.1 (7.9-12.3)	17.9 (16.3-20.3)	10.8 (7.7-14.5)	<0.001
Elective admission	4,709 (14.0)	15,339 (6.5)	3,045 (4.1)	23,093 (6.7)	<0.001

Abbreviations: interquartile range (IQR), standard deviation (SD)

^aExpressed as unweighted number and weighted percentage (%) unless otherwise stated. Weighted percentages were calculated using complex survey methods in Stata and used the weighted number of hospitalizations.

^bA p-value <0.05 considered statistically significant.

^cAs determined by the patient's zip code

^dAmong patient hospitalizations that survived their index admission (Unweighted total n=18,775 for low frailty risk, n=133,597 for intermediate frailty risk, n=50,610 for high frailty risk, n=202,982 total)
Characteristic\(^a\)	Low Frailty Risk (HFRS <5)	Intermediate Frailty Risk (HFRS 5-15)	High Frailty Risk (HFRS >15)	Total population \(n=371,410\)	p-value\(^b\)
Length of stay, median days (IQR)	\(n=35,126\)	\(n=253,711\)	\(n=82,573\)		<0.001
4 (1-8)	8 (4-15)	12 (7-21)	8 (4-15)		
Long length of stay (>10 days)					<0.001
\(6,086\) (17.1)	\(100,002\) (39.0)	\(47,895\) (57.9)	\(153,983\) (41.1)		
In-hospital mortality	\(n=35,126\)	\(n=253,711\)	\(n=82,573\)		<0.001
\(16,331\) (46.4)	\(119,993\) (47.3)	\(31,906\) (38.6)	\(168,230\) (45.3)		
30-day emergency hospital readmission\(^d\)	\(n=35,126\)	\(n=253,711\)	\(n=82,573\)		<0.001
\(3,127\) (16.4)	\(28,101\) (20.6)	\(10,878\) (20.9)	\(42,106\) (20.3)		

Abbreviations: interquartile range (IQR), standard deviation (SD)

\(^a\)Expressed as unweighted number and weighted percentage (%) unless otherwise stated. Weighted percentages were calculated using complex survey methods in Stata and used the weighted number of hospitalizations.

\(^b\)A p-value <0.05 considered statistically significant.

\(^c\)As determined by the patient’s zip code

\(^d\)Among patient hospitalizations that survived their index admission (Unweighted total \(n=18,775\) for low frailty risk, \(n=133,597\) for intermediate frailty risk, \(n=50,610\) for high frailty risk, \(n=202,982\) total)

Risk for frailty

Among hospitalizations of older adults receiving mechanical ventilation, the median (IQR) HFRS was 10.8 (7.7-14.5) (ESM eFigure 1). Of the weighted cohort, 9.5% were classified as low risk for frailty, 68.3% as intermediate risk for frailty, and 22.2% as high risk for frailty.

Prevalence of mortality, long hospital length of stay and 30-day hospital readmissions

In-hospital mortality occurred in 45.3% of all hospitalizations, and prolonged hospitalization occurred in 41.1% of all hospitalizations (Table 1). Of survivors, 20.3% were readmitted to hospital by 30 days. Infectious-related diagnoses (24.6%) remained the most common primary diagnoses for 30-day hospital readmissions. Among hospitalizations with high risk for frailty, they had a increased incidence of prolonged hospitalization and 30-day emergency hospital readmissions (all p <0.001) compared to the low risk for frailty group. However, they had a reduced incidence of in-hospital mortality compared to other frailty groups (p <0.001).

Assessment of model performance
Model performance was assessed for in-hospital mortality, prolonged hospitalization, and 30-day emergency hospital readmission (Table 2). In the unadjusted analysis, the intermediate and high risk for frailty groups were associated with reduced risk of in-hospital mortality, prolonged hospitalization, and increased risk of 30-day emergency hospital readmission. After adjustment, intermediate and high risk for frailty groups were associated with reduced in-hospital mortality in this patient population (aOR 0.79 [95% CI 0.77-0.82] for intermediate risk and aOR 0.46 [95% CI 0.45-0.48] for high risk, c-statistic 0.712, Brier score 0.214), compared to the low risk for frailty group. Additionally, they were associated with prolonged hospitalization (aOR 2.61 [95% CI 2.46-2.78] for intermediate risk and aOR 5.59 [95% CI 5.24-5.97] for high risk, c-statistic 0.694, Brier score 0.216) and increased risk for 30-day emergency hospital readmission (aOR 1.18 [95% CI 1.12-1.24] for intermediate risk and aOR 1.20 [95% CI 1.13-1.27] for high risk, c-statistic 0.595, Brier score 0.162) after adjustment, compared to the low risk for frailty group. Model calibration assessed using calibration plots (Figure 2) visually demonstrate good calibration of the adjusted models.
Outcome	Unadjusted analysis	Adjusted analysis^a
In-hospital mortality		
No. of unweighted hospitalizations in analysis	371,212	366,684
Low HFRS, OR (95% CI)	1.00 (Reference)	1.00 (Reference)
Intermediate HFRS, OR (95% CI)	1.03 (1.00-1.07)	0.79 (0.77-0.82)
High HFRS, OR (95% CI)	0.73 (0.70-0.75)	0.46 (0.45-0.48)
C-statistic of the model	0.531 (0.529-0.533)	0.712 (0.710-0.714)
Brier score of the model	0.247	0.214
Prolonged hospital length of stay (>10 days)		
No. of unweighted hospitalizations in analysis	371,410	366,881
Low HFRS, OR (95% CI)	1.00 (Reference)	1.00 (Reference)
Intermediate HFRS, OR (95% CI)	3.11 (2.93-3.29)	2.61 (2.46-2.78)
High HFRS, OR (95% CI)	6.67 (6.27-7.10)	5.59 (5.24-5.97)
C-statistic of the model	0.606 (0.605-0.608)	0.694 (0.692-0.696)
Brier score of the model	0.221	0.216
30-day emergency readmission		
No. of unweighted hospitalizations in analysis^b	202,928	200,006
Low HFRS, OR (95% CI)	1.00 (Reference)	1.00 (Reference)
Intermediate HFRS, OR (95% CI)	1.32 (1.26-1.38)	1.18 (1.12-1.24)
High HFRS, OR (95% CI)	1.35 (1.27-1.42)	1.20 (1.13-1.27)
C-statistic of model	0.513 (0.510-0.516)	0.595 (0.592-0.598)
Brier score of model	0.164	0.162

Abbreviations: confidence interval (CI), hospital frailty risk score (HFRS), number (No.), odds ratio (OR)

^aAdjusted for age (continuous variable), Elixhauser-van Walraven comorbidity index score (continuous variable), do-not-resuscitate status, biological sex, insurance status, income quartile, year of study, hospital teaching status, hospital size, and admission diagnosis category. 30-day emergency readmissions include adjustment for all prior variables and additionally for hospital disposition.

^bTotal number of patient hospitalizations in analysis who survived index hospital admission.
Sensitivity analyses

Our sensitivity analyses are detailed in the ESM eTable 6-eTable 11. Re-analyzing our data using the HFRS as a continuous variable (ESM Table 6) or using restricted cubic splines with five knots (ESM Table 7, eFigure 2, eFigure 3, and eFigure 4), yielded similar results for model fit and calibration. We found similar results again when using a Cox proportional hazards multiple variable regression (ESM eTable 8), performing multiple imputation with chained equations (ESM eTable 9), and evaluating 30-day in-hospital mortality (eTable 10). When we evaluated a population of all older hospitalized adults from the NRD independent of receipt of mechanical ventilation (ESM eTable 11), we found that the HFRS predicted in-hospital mortality, prolonged hospitalization, and 30-day hospital readmissions with a higher degree of discrimination and accuracy.

Discussion

We described the use of the HFRS to predict adverse outcomes in a large nationally representative US cohort of older adults receiving mechanical ventilation. Among this cohort, we found that the intermediate and high risk for frailty groups, as categorized by the HFRS, were associated with increased risks of prolonged hospitalization and 30-day emergency hospital readmissions, compared to the low risk for frailty group. However, they were inversely associated with in-hospital mortality when compared to the low risk for frailty group. Overall, the HFRS had moderate discrimination and accuracy in predicting these outcomes. The use of the HFRS either as a continuous variable or with splines did not provide additional value over using the HFRS subcategories of low, intermediate, and high risk.

Comparison with previous studies

Prior studies of the HFRS focused on validating its use in older adults admitted in hospitalized settings, demonstrating good calibration and discrimination.26–28, 43–46 Recently, there has been interest in validating the HFRS in the use of administrative databases of critically ill patients.30,47,48 A prior study of 1,498 patients in a tertiary German ICU evaluated the use of the HFRS for a combined endpoint of mortality and risk of readmission, and they found no association after adjustment for severity of illness scoring.30 In a large population study of patients with pneumonia in Wales, Szakmany et al found that the HFRS had only moderate ability for predicting inpatient, 6-month, and 1-year mortality in hospital and ICU patients.48 Conversely, a study of 12,854 patients from the Medical Information Mart for Intensive Care (MIMIC-III) database found that higher HFRS was associated with an increased risk of 28-day mortality.47,49

In our study, we found that >40% of our cohort died in-hospital. Prior studies of critically ill patients have associated frailty with increased risks of mortality.10,11 While the HFRS performed well on a patient population of all older adults independent of mechanical ventilation status, it did not perform as well in a population of older adults receiving mechanical ventilation. Counterintuitively, we found that the HFRS was inversely associated with mortality in the NRD (i.e., lower HFRS was associated with the highest risks
of in-hospital mortality). There may be some explanations for this phenomenon, including potential selection bias of patients admitted to ICUs (i.e., frail patients with higher severity of illness may choose not to undergo mechanical ventilation) and/or coding biases.

Unlike prior studies, we evaluated the validity of the HFRS to predict prolonged hospitalization and 30-day emergency hospital readmissions. Patient hospitalizations with higher HFRS were associated with prolonged hospitalizations and higher risks of 30-day readmissions; however, the HFRS only had moderate discrimination and accuracy to predict these outcomes. Our findings and other prior studies would suggest that the HFRS should be used with caution in administrative datasets of critically ill patients until better models or prediction scores of frailty can be developed specifically for use in this patient population.

Strengths and Limitations

Our study had several strengths including the use of a large dataset, comprising close to 650,000 weighted hospitalizations of older adult patients receiving mechanical ventilation. To our knowledge, our study represents the first study examining the use of the HFRS in a large representative study, allowing for generalizability to all older critically ill patients receiving mechanical ventilation. Additionally, we assessed both model discrimination and calibration, allowing for confidence in the results presented.

However, our study has some limitations. Coding biases may affect the relative prevalence of admission comorbidities, diagnoses, and treatments. The HFRS itself is derived from a composite of ICD-10-CM codes, which may be prone to coding biases. Patients that had prolonged hospitalization and/or survived their hospitalization may appear to be more “frail,” if they have more ICD-10-CM secondary diagnoses. These coding biases could potentially explain the results seen for in-hospital mortality. Other codes, such as dementia in Alzheimer’s disease (F00) or use of vasopressors, may be undercoded, similar to other US database studies including the Centers for Medicare & Medicaid Services and National Inpatient Sample databases. In addition, the NRD does not collect severity of illness information, such as the sequential organ failure assessment (SOFA) or Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) scores. We may not be able to adequately control for selection bias that may occur if clinicians admit frail patients that have lower severity of illness. Furthermore, the NRD is unable to capture information of patients that may have died outside of hospital (i.e., at home, hospice).

Clinical implications and future directions

Accurate predictions of prognosis and outcomes of frail critically ill patients is important for intensivists to aid in shared decision-making, goals of care discussion, and end-of-life planning, with patients and their families. Our study highlights a need to develop and validate intuitive and easy to use frailty scores that can be applied to critically ill patients both at the bedside and in large clinical administrative databases. The quick identification of frail critically ill patient can assist in identifying patients that would benefit from early geriatric medicine and/or palliative care referral. This may have important implications in preventing unnecessary hospital readmissions and ensuring goal-concordant care.
While the HFRS may have utility in administrative databases, the HFRS is difficult to apply and calculate at the bedside, and it may not intuitively classify the risk of in-hospital mortality in all patient populations. The mFI is a promising alternative; however, the mFI still needs further development and validation for use with ICD-10-CM codes.24,51 Furthermore, it has become increasingly recognized that frailty may exist in younger critically ill patients.8,9 Future research should be directed at developing frailty prediction scores that can be applied to a broad population of critically ill patients.

Conclusion

In this large nationally representative sample of older adults receiving mechanical ventilation, the HFRS may predict prolonged hospitalization and 30-day emergency hospital readmissions. Further research with administrative databases is necessary to develop accurate, intuitive, easy to use frailty scores in critically ill patients that predict their outcomes.

Abbreviations

Abbreviation	Description
aOR	Adjusted odds ratio
CI	Confidence Interval
ESM	Electronic Supplementary Material
HCUP	Healthcare Cost and Utilization Project
HFRS	Hospital Frailty Risk Score
ICD-10	*International Classification of Diseases, Tenth Revision*
ICU	Intensive care unit
NRD	Nationwide Readmissions Database
OR	Odds ratio
SD	Standard deviation
US	United States

Declarations

Ethics Approval and consent to participate:

This study was reviewed by the Saskatchewan Health Authority Research Ethics Board (REB-20-77) and was considered exempt under the TCPS2, with a waiver of consent.
Consent for publication:
Not applicable

Availability of data and materials:
The Nationwide Readmissions Database is available through the Healthcare Cost and Utilization Project (https://www.hcup-us.ahrq.gov/nrdoverview.jsp)

Competing Interests:
The authors declare that we have no conflict of interests.

Funding:
There were no grants/funding from any other public, private, or commercial interests.

Author contributions:

Concept and design: ES, SLS

Acquisition, analysis, or interpretation of the data: All authors

Drafting of the manuscript: ES, SLS

Critical revision of the manuscript for important intellectual content: All authors

Statistical analysis: ES

Administrative, technical, or material support: ES, SK

Supervision: ES

All authors reviewed and approved the final manuscript for publication.

Acknowledgements:
Not applicable

References

1. Heyland D, Cook D, Bagshaw SM, et al. The very elderly admitted to ICU: A quality finish? Crit Care Med. 2015;43(7):1352–1360. doi:10.1097/CCM.0000000000001024

2. Laake JH, Dybwik K, Flaatten HK, Fonneland IL, Kvålø R, Strand K. Impact of the post-World War II generation on intensive care needs in Norway. Acta Anaesthesiol Scand. 2010;54(4):479–484. doi:10.1111/j.1399-6576.2009.02170.x
3. Garland A, Olafson K, Ramsey CD, Yogendran M, Fransoo R. Epidemiology of critically ill patients in intensive care units: a population-based observational study. *Crit Care*. 2013;17(5):R212. doi:10.1186/cc13026

4. Laporte L, Hermetet C, Jouan Y, et al. Ten-year trends in intensive care admissions for respiratory infections in the elderly. *Ann Intensive Care*. 2018;8(1):84. doi:10.1186/s13613-018-0430-6

5. Sjoding MW, Prescott HC, Wunsch H, Iwashyna TJ, Cooke CR. Longitudinal Changes in ICU Admissions Among Elderly Patients in the United States. *Crit Care Med*. 2016;44(7):1353–1360. doi:10.1097/CCM.0000000000001664

6. Bravata DM, Perkins AJ, Myers LJ, et al. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. *JAMA Netw open*. 2021;4(1):e2034266. doi:10.1001/jamanetworkopen.2020.34266

7. Vallet H, Schwarz GL, Flaatten H, De Lange DW, Guidet B, Dechartres A. Mortality of Older Patients Admitted to an ICU: A Systematic Review*. *Crit Care Med*. 2021;49(2):324–334. doi:10.1097/CCM.0000000000004772

8. Brummel NE, Bell SP, Girard TD, et al. Frailty and subsequent disability and mortality among patients with critical illness. *Am J Respir Crit Care Med*. 2017;196(1):64–72. doi:10.1164/rccm.201605-0939OC

9. Bagshaw SM, Muscedere J. Is this intensive care unit patient frail?: Unraveling the complex interplay between frailty and critical illness. *Am J Respir Crit Care Med*. 2017;196(1):4–5. doi:10.1164/rccm.201612-2538ED

10. Muscedere J, Waters B, Varambally A, et al. The impact of frailty on intensive care unit outcomes: a systematic review and meta-analysis. *Intensive Care Med*. 2017;43(8):1105–1122. doi:10.1007/s00134-017-4867-0

11. Bagshaw SM, Stelfox HT, McDermid RC, et al. Association between frailty and short- and long-term outcomes among critically ill patients: A multicentre prospective cohort study. *Cmaj*. 2014;186(2):95–102. doi:10.1503/cmaj.130639

12. Rydingsward JE, Horkan CM, Mogensen KM, Quraishi SA, Amrein K, Christopher KB. Functional Status in ICU Survivors and Out of Hospital Outcomes. *Crit Care Med*. 2016;44(5):869–879. doi:10.1097/CCM.0000000000001627

13. Sanchez D, Brennan K, Al Sayfe M, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. *Crit Care*. 2020;24(1):609. doi:10.1186/s13054-020-03318-2

14. Brummel NE, Girard TD, Pandharipande PP, et al. Prevalence and course of frailty in survivors of critical illness. *Crit Care Med*. Published online 2020:1419–1426. doi:10.1097/CCM.0000000000004444

15. Fried LP, Tangen CM, Walston J, et al. Frailty in Older Adults: Evidence for a Phenotype. *Journals Gerontol Ser A Biol Sci Med Sci*. 2001;56(3):M146-M157. doi:10.1093/gerona/56.3.M146
16. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of Deficits as a Proxy Measure of Aging. *Sci World J.* 2001;1:323–336. doi:10.1100/tsw.2001.58

17. Pugh RJ, Ellison A, Pye K, et al. Feasibility and reliability of frailty assessment in the critically ill: a systematic review. *Crit Care.* 2018;22(1):49. doi:10.1186/s13054-018-1953-9

18. Rockwood K. A global clinical measure of fitness and frailty in elderly people. *Can Med Assoc J.* 2005;173(5):489–495. doi:10.1503/cmaj.050051

19. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. *J Nutr Health Aging.* 2012;16(7):601–608. doi:10.1007/s12603-012-0084-2

20. Rolfsen DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K. Validity and reliability of the Edmonton Frail Scale. *Age Ageing.* 2006;35(5):526–529. doi:10.1093/ageing/afl041

21. Clegg A, Bates C, Young J, et al. Development and validation of an electronic frailty index using routine primary care electronic health record data. *Age Ageing.* 2016;45(3):353–360. doi:10.1093/ageing/afw039

22. Kim DH, Patorno E, Pawar A, Lee H, Schneeweiss S, Glynn RJ. Measuring Frailty in Administrative Claims Data: Comparative Performance of Four Claims-Based Frailty Measures in the U.S. Medicare Data. Magaziner J, ed. *Journals Gerontol Ser A.* 2020;75(6):1120-1125. doi:10.1093/gerona/glz224

23. Cheng D, DuMontier C, Yildirim C, et al. Updating and Validating the U.S. Veterans Affairs Frailty Index: Transitioning From ICD-9 to ICD-10. *Journals Gerontol Ser A.* Published online July 17, 2021. doi:10.1093/gerona/glab159

24. Zampieri FG, Iwashyna TJ, Viglianti EM, et al. Association of frailty with short-term outcomes, organ support and resource use in critically ill patients. *Intensive Care Med.* 2018;44(9):1512–1520. doi:10.1007/s00134-018-5342-2

25. Gilbert T, Neuberger J, Kraidler J, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. *Lancet.* 2018;391(10132):1775–1782. doi:10.1016/S0140-6736(18)30668-8

26. Gilbert T, Cordier Q, Polazzi S, et al. External validation of the Hospital Frailty Risk Score in France. *Age Ageing.* Published online 2021:1–8. doi:10.1093/ageing/afab126

27. Eckart A, Hauser SI, Haubitz S, et al. Validation of the hospital frailty risk score in a tertiary care hospital in Switzerland: Results of a prospective, observational study. *BMJ Open.* 2019;9(1):1–8. doi:10.1136/bmjopen-2018-026923

28. McAlister F, Van Walraven C. External validation of the Hospital Frailty Risk Score and comparison with the Hospital-patient One-year Mortality Risk Score to predict outcomes in elderly hospitalised patients: A retrospective cohort study. *BMJ Qual Saf.* 2019;28(4):284–288. doi:10.1136/bmjqs-2018-008661

29. Street A, Maynou L, Gilbert T, Stone T, Mason S, Conroy S. The use of linked routine data to optimise calculation of the Hospital Frailty Risk Score on the basis of previous hospital admissions: a
30. Bruno RR, Wernly B, Flaatten H, Schölzel F, Kelm M, Jung C. The hospital frailty risk score is of limited value in intensive care unit patients. Crit Care. 2019;23(1):8–9. doi:10.1186/s13054-019-2520-8
31. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol. 2015;68(2):112–121. doi:10.1016/j.jclinepi.2014.11.010
32. NRD Overview. Healthcare Cost and Utilization Project (HCUP). Published 2019. Accessed June 14, 2020. https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp
33. Kerlin MP, Weissman GE, Wonneberger KA, et al. Validation of Administrative Definitions of Invasive Mechanical Ventilation across 30 Intensive Care Units. Am J Respir Crit Care Med. 2016;194(12):1548–1552. doi:10.1164/rcm.201605-0953LE
34. Ladha KS, Zhao K, Quraishi SA, et al. The Deyo-Charlson and Elixhauser-van Walraven Comorbidity Indices as predictors of mortality in critically ill patients. BMJ Open. 2015;5(9):e008990. doi:10.1136/bmjopen-2015-008990
35. Healthcare Cost and Utilization Project (HCUP). Agency for Healthcare Research and Quality (AHRQ). Clinical Classifications Software Refined (CCSR). Published 2020. Accessed December 31, 2020. https://www.hcup-us.ahrq.gov/toolssoftware/ccsr/ccs_refined.jsp
36. HCUP Cost-to-Charge Ratio Files (CCR). Healthcare Cost and Utilization Project (HCUP). 2006-2009. Agency for Healthcare Research and Quality. Rockville, MD. Accessed November 14, 2019. https://www.hcup-us.ahrq.gov/db/state/costtocharge.jsp
37. US Bureau of Labor. Consumer Price Index. Published 2019. Accessed November 14, 2019. https://www.bls.gov/cpi/
38. Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Informatics Assoc. 2021;27(4):621–633. doi:10.1093/JAMIA/OCZ228
39. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology. 2010;21(1):128–138. doi:10.1097/EDE.0b013e3181c30fb2
40. Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer; 2001.
41. Cox DR. Regression Models and Life-Tables. J R Stat Soc Ser B. 1972;34(2):187–202. doi:10.1111/j.2517-6161.1972.tb00899.x
42. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011;30(4):377–399. doi:10.1002/sim.4067
43. Kwok CS, Zieroth S, Van Spall HGC, et al. The Hospital Frailty Risk Score and its association with in-hospital mortality, cost, length of stay and discharge location in patients with heart failure short
running title: Frailty and outcomes in heart failure. *Int J Cardiol.* 2020;300:184–190. doi:10.1016/j.ijcard.2019.09.064

44. Kundi H, Wadhera RK, Strom JB, et al. Association of Frailty with 30-Day Outcomes for Acute Myocardial Infarction, Heart Failure, and Pneumonia among Elderly Adults. *JAMA Cardiol.* 2019;4(11):1084–1091. doi:10.1001/jamacardio.2019.3511

45. Bonjour T, Waeber G, Marques-Vidal P. Trends in prevalence and outcomes of frailty in a Swiss university hospital: A retrospective observational study. *Age Ageing.* 2021;50(4):1306–1313. doi:10.1093/ageing/afaa278

46. Hollinghurst J, Housley G, Watkins A, Clegg A, Gilbert T, Conroy SP. A comparison of two national frailty scoring systems. *Age Ageing.* 2021;50(4):1208–1214. doi:10.1093/ageing/afaa252

47. Marshall D, Salciccioli J, Hatch R, Rowland M. Validation of the Hospital Frailty Risk Score in the ICU. EP. 305. *J Intensive Care Soc.* 2019;20 Supplem:230-231.

48. Szakmany T, Hollinghurst J, Pugh R, et al. Frailty assessed by administrative tools and mortality in patients with pneumonia admitted to the hospital and ICU in Wales. *Sci Rep.* 2021;11(1):1–10. doi:10.1038/s41598-021-92874-w

49. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. *Sci Data.* 2016;3(1):160035. doi:10.1038/sdata.2016.35

50. Fawzy A, Bradford M, Lindenauer PK, Walkey AJ. Identifying vasopressor and inotrope use for health services research. *Ann Am Thorac Soc.* 2016;13(3):414–418. doi:10.1513/AnnalsATS.201508-487BC

51. Subramaniam A, Pilcher D. Defining ICD-10 surrogate variables to estimate the modified frailty index: a Delphi-based approach. *Res Sq.* Published online 2021:1–17.

Figures

Figure 1

Flow chart of hospitalizations of older adults receiving invasive mechanical ventilation.
Figure 2

Calibration plots for logistic regression models. (A) Unadjusted model for in-hospital mortality. (B) Unadjusted model for long hospital length of stay. (C) Unadjusted model for 30-day emergency hospital readmissions. (D) Adjusted model for in-hospital mortality. (E) Adjusted model for long hospital length of stay. (F) Adjusted model for 30-day emergency hospital readmissions. Red line refers to the reference slope or perfect calibration. Blue line refers to calibration slope of the model.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Graphicalabstractv1.pptx
- ESMOct252021.docx
- FilledTripodchecklist.docx