Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

Qianlai Zhuang 1, Xudong Zhu 1, Yujie He 1, Catherine Prigent 2, Jerry M Melillo 1, A David McGuire 3, Ronald G Prinn 5 and David W Kicklighter 3

1 Purdue Climate Change Research Center and Departments of Earth, Atmospheric and Planetary Sciences and Agronomy, Purdue University, West Lafayette, IN 47907, USA
2 Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France
3 Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
4 US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
5 Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

E-mail: qzhuang@purdue.edu

Keywords: methane emissions, northern high latitudes, wetland inundation extent, carbon dynamics

Supplementary material for this article is available online

Abstract

Estimates of the seasonal and interannual exchanges of carbon dioxide (CO₂) and methane (CH₄) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH₄ yr⁻¹, which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH₄ yr⁻¹). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO₂ sink of −1.28 ± 0.03 Pg C yr⁻¹ with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr⁻¹ and an upland sink from −0.82 to −0.98 Pg C yr⁻¹. Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO₂ sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH₄ emissions, but lower summer CO₂ sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further indicates that wetlands play a disproportionally important role in affecting regional greenhouse gas budgets given that they only occupy approximately 10% of the total land area in the region.

1. Introduction

Northern high latitudes (north of 45°N) account for about half of the world’s wetlands although their distribution and total area are uncertain (e.g., Bridgham et al 2000, Lehner and Döll 2004). These wetlands contain a large amount of soil carbon (Gorham 1991, Vitt et al 2000, Turunen et al 2002, Warner and Asada, 2006, Tarnocai et al 2009) due to low rates of decomposition under anoxic conditions.
(Moore et al 1998). Traditionally, northern wetlands have been recognized as persistent long-term sinks of carbon (e.g., Smith et al 2004). However, they may switch from current sinks to future sources due to changes in soil temperature, moisture, and disturbance regimes (McGuire et al 2009, 2012).

To date, the uncertainty of contemporary carbon budgets of northern wetlands is still one of the largest remaining gaps in assessing boreal carbon budgets (e.g., Apps et al 1993, Bond-Lamberty et al 2006, McGuire et al 2009, Fisher et al 2014). One of the challenges is to quantify the responses of CO$_2$ and CH$_4$ dynamics in highly heterogeneous landscapes to changes in soil thermal and hydrologic regimes caused by changes of climate and land cover in the region. Simultaneous quantification of fluxes of these gases in wetland ecosystems generally has been slow to be incorporated into biogeochemical modeling efforts (Yu 2006). Studies of regional carbon dynamics have primarily focused on quantifying either CO$_2$ exchanges in uplands (e.g., Clein et al 2000, 2002, Lafleur et al 2001, Zhuang et al 2003, Carrasco et al 2006, Balshi et al 2007) or CH$_4$ emissions from wetlands (e.g., Segers and Laffelaar 2001, Walter et al 2001, Grant et al 2002, Zhuang et al 2004, Petrescu et al 2010, Mleton et al 2012). Only a few process-based models have been developed to simulate both CO$_2$ and CH$_4$ exchanges, but most of those models have only been applied to a limited number of peatland sites (e.g., Potter et al 2001, Zhang et al 2002, Fan et al 2012). Although a few studies have focused on quantifying the radiative forcing of both CO$_2$ and CH$_4$ exchanges in northern ecosystems (e.g., Frolking et al 2006, Zhuang et al 2006, 2007, Frolking and Roulet 2007), they have not considered how changes in wetland inundation extent affect the simultaneous exchange of CO$_2$ and CH$_4$ between land and the atmosphere. With the emerging data on seasonal and inter-annual variation in wetland inundation extent (Prigent et al 2001, 2007, Papa et al 2010), it is now feasible to evaluate how this variation influences greenhouse gas exchanges in the region.

Here, we conduct such a study with a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM, Zhuang et al 2004, 2006). Our study focuses on analyzing how inter-annual variations in wetland inundation extent from 1993 to 2004 influence net land fluxes of CO$_2$ and CH$_4$ to the atmosphere. Specifically, we compare model simulations driven with three wetland distribution datasets including two synthetic, static wetland distribution products that were developed using various approaches including ground survey and satellite information (Matthews and Fung 1987, Lehner and Doll 2004) and a satellite-based dynamic inundation product with a monthly time step (Prigent et al 2007). The comparisons evaluate the impacts of wetland and upland area changes on the net ecosystem carbon exchange, net methane emissions, and their global warming potentials (GWPs) in northern high latitudes.

2. Method

2.1. Overview

Below we briefly describe our methods consisting of: (1) a description of TEM and its modifications to better represent carbon dynamics in wetland ecosystems; (2) our representation of the variations in wetland extent in this study and how it differs from earlier efforts; (3) our representation of the spatial and temporal variation of other environmental factors that influence carbon dynamics in the northern high latitudes; (4) our calculations of regional CO$_2$ and CH$_4$ fluxes from the region; and (5) our evaluation of the importance of considering changes in wetland extent on these fluxes. More detailed descriptions of the methods can be found in the supplementary material.

2.2. Model description

The TEM uses spatially-referenced information on climate, elevation, soils, and vegetation to make monthly estimates of vegetation and soil C and nitrogen (N) fluxes and pool sizes. The model is well documented and has been used to examine high latitude terrestrial CO$_2$ and CH$_4$ dynamics (e.g., Zhuang et al 2003, 2004, 2006, 2007, Euskirchen et al 2006, Balshi et al 2007, Sitch et al 2007, McGuire et al 2010). The model explicitly couples biogeochemical processes with soil thermal dynamics of permafrost and non-permafrost soils (figure S1(a)), and is able to simulate the soil temperature profile and the seasonal freeze-thaw depth to define the active layer (Zhuang et al 2001, 2002, 2003). The freeze-thaw depth determines the lower boundary of microbial activity in the soil. The density of soil carbon decays exponentially through the soil profile. The biogeochemistry has also been coupled with a sophisticated Hydrological Module (HM, figure S1(a)), which is able to simulate the soil moisture profile and water table depth for both upland and wetland ecosystems. TEM also couples carbon/nitrogen dynamics to the production of methane (figure S1(a)). The Methane Dynamics Module explicitly simulates the processes of CH$_4$ production (methanogenesis) and CH$_4$ oxidation (methanotrophy), as well as the transport of the gas between the soil and the atmosphere (figure S1(b), Zhuang et al 2004). Various versions of TEM have been applied for quantifying carbon dynamics in boreal regions (e.g., He et al 2014, Zhu et al 2014). However, these previous model simulations have not explicitly treated the carbon stoichiometry associated with both aerobic and anaerobic decomposition occurring in dynamically changing extent of upland and wetland areas of boreal ecosystems.

In this study, we define net ecosystem exchange (NEE) as the net exchange of CO$_2$ with the
atmosphere, which is consistent with the definition of NEE by Chapin et al (2006). For upland ecosystems, NEE is calculated as the difference between heterotrophic respiration (R_H) and net primary production (NPP). For wetland ecosystems, we extend this definition of NEE to also consider CO$_2$ emissions due to wetland methane oxidation (R_{WCM}) and CO$_2$ release accompanied with the production of CH$_4$ under anaerobic condition (R_{CM}):

$$\text{NEE} = R_H + R_{\text{WCM}} + R_{\text{CM}} - \text{NPP.} \quad (1)$$

A negative NEE represents a land sink of atmospheric CO$_2$ whereas a positive value represents a land source.

2.3. Representation of Wetland inundation extent
To make spatially and temporally explicit estimates of net CO$_2$ and CH$_4$ exchanges between the land surface and the atmosphere due to changes in wetland inundation extent in northern high latitudes (north of 45°N), we apply TEM to two datasets of static wetland inundation extent and one time-series dataset where the maximum wetland inundation extent changes annually from 1993 to 2004. The first static wetland inundation extent dataset is extracted from the NASA/GISS global natural wetland dataset at a spatial resolution of 1° × 1° (Matthews and Fung 1987). This dataset is resampled to a spatial resolution of 0.5° × 0.5° (referred to as Wet1). The second static wetland inundation extent dataset is from the Global Lakes and Wetlands Database (GLWD, Lehner and Döll 2004) where we resample a 30 s raster wetland distribution map to a spatial resolution of 0.5° × 0.5° (referred to as Wet2). The time-series dataset of dynamic inundation extent (Papa et al 2010) contains the monthly distribution of surface water extent at a ~25 km sampling resolution and we resampled to 0.5° × 0.5° raster maps, which are geographically consistent with Wet1 and Wet2. To associate the inundation data with our model parameterizations for wetland ecosystems, we overlay the monthly changes of inundation extent from 1993 to 2004 to the Wet1 dataset to create 144 monthly maps. The new wetland inundation extent data set (hereafter referred to as Wet3) contains the wetland types defined in Matthews and Fung (1987), but with annual maximum inundation extents (figure S2). Permanent inland water bodies are excluded in the original satellite data (Prigent et al 2007). Specifically, for any particular year within the period 1993–2004, an annual map of maximum inundation extent is developed. The annual map consists of the maximum inundation extent for every pixel, which is determined based on its monthly inundation data. These annual maximum inundation extent maps with a mean annual inundation area of 3.15 Mkm2 are used in Wet3 simulations (figure 1(b)). Note that inundation area for some months could be larger than the static wetland area in Wet1 for some pixels. The extra inundated-area for a particular pixel in the Wet3 data is assumed to be covered with the same wetland types as in the Wet1 data for that pixel.

2.4. Other input datasets
To drive TEM, we also use spatially-explicit data of monthly climate, land cover, soil texture, soil-water pH, elevation, and leaf area index (LAI). The static data sets include potential natural vegetation (Melillo et al 1993), soil texture (Zhuang et al 2003), and soil-water pH (Carter and Scholes 2000). The historical monthly air temperature, precipitation, vapor pressure, and cloudiness data sets are from the National Centers for Environmental Prediction (http://www.ncep.noaa.gov/). LAI is internally estimated as a function of vegetation carbon within TEM for each 0.5° latitude × 0.5° longitude grid cell. More details about the input data can be found in supplementary material.

2.5. Model parameterization and regional simulations
To conduct the study for the region, which is spatially heterogeneous with respect to land ecosystem types, soils, and climate, we apply the parameterizations for both tundra and boreal forest ecosystems described in previous studies (Zhuang et al 2003, 2004) to simulate CH$_4$ consumption as well as net CO$_2$ exchanges in upland ecosystems for the corresponding classes in each wetland map. To simulate methane emissions from wetland ecosystems, we use the parameterization of methane dynamics from Zhuang et al (2004), in which the simulation of CH$_4$ emissions was optimized to field measurements at several sites (table S1). To simulate net CO$_2$ exchanges in wetland ecosystems, we calibrated the revised TEM for three wetland ecosystem types (table S1) including wet tundra wetlands, alpine tundra wetlands, and forested wetlands using a Bayesian inference technique (Tang and Zhuang 2009). Field-based estimates of NEE (table S1) are used to compare with model simulations to optimize TEM parameters.

To examine the effect of inter-annual changes in wetland inundation extent on carbon fluxes, we conduct a ‘core’ regional simulation with the organized wetland (Wet3) and upland data for the period of 1993–2004. In this simulation, the annual maximum inundation area detected with satellite is treated as wetlands, i.e., the wetland distribution and area change from year to year. To illustrate the effect of the interannual changes of wetland inundation extent, we conduct two other simulations with the ‘static’ inundation extent datasets Wet1 and Wet2. Each simulation was spun-up for 100 years. For each simulation, the model is run twice for each pixel, once for the upland parameterization and once for the wetland parameterization. In the cases where a grid cell goes
from wetland to upland or from upland to wetland, we multiply the fluxes for each land cover type by the new fraction of wetland and upland.

With the ‘core’ simulation, we first examine the carbon balance in the region with an explicit consideration of both wetland and upland ecosystems. We then analyze how CO$_2$ and CH$_4$ fluxes are related to changes of climate and wetland area extent at an annual time step. In addition, we examine the effects of soil moisture, soil temperature, water table depth, and active layer depth on CO$_2$ and CH$_4$ dynamics in the region.

To quantify the sensitivity of both CO$_2$ and CH$_4$ fluxes to the uncertain wetland inundation extent in the region, we conduct two additional simulations with slight modifications of the Wet3 dataset. One simulation assumes a 10% increase of the wetland inundation extent for those pixels having wetland distribution in Wet3 whereas the other assumes a 10% decrease in wetland inundation extent. We chose 10% because this value was the approximate percentage change of inundation area between 1993 and 2004.

3. Results

3.1. Inter-annual variation of regional CO$_2$ and CH$_4$ dynamics

Driven with the dynamic wetland inundation data, our simulation indicates that inter-annual variations of CH$_4$ emissions from the land ecosystems in the region range from 56.9 Tg CH$_4$ yr$^{-1}$ in 2004 to 81.3 Tg CH$_4$ yr$^{-1}$ in 1994 (table 1). The region acts as a sink of -1.28 ± 0.03 Pg C yr$^{-1}$ for the period of 1993–2004. Wetland ecosystems are persistently a net sink for CO$_2$ that ranges from -0.38 to -0.41 Pg C yr$^{-1}$ during the period of 1993–2004 for the total area ranging from 2.93 to 3.46 million km2. The upland ecosystems are also a sink from -0.6 to -1.1 Pg C yr$^{-1}$ for the total area ranging from 37.18 to 37.71 million km2 over the region (figure 2).
Table 1. Comparisons of net methane emissions (NME, Tg CH$_4$ year$^{-1}$) and NEE (Pg C year$^{-1}$) simulated with different wetland scenarios during the period of 1993–2004 in the Pan-Arctic region.

Year	Static inundation (wet1)	Static inundation (wet2)	Dynamic inundation (wet3)	10% increase of inundation	10% decrease of inundation										
	NME	NEE	GWP												
1993	47.4	−1.24	−3.36	72.5	−1.34	−3.10	70.0	−1.27	−2.91	78.8	−1.38	−3.07	61.3	−1.18	−2.80
1994	51.7	−1.23	−3.22	74.7	−1.34	−3.05	81.3	−1.26	−2.59	91.5	−1.36	−2.72	71.2	−1.17	−2.51
1995	52.0	−1.31	−3.50	73.0	−1.43	−3.42	69.9	−1.31	−3.06	78.7	−1.42	−3.23	61.2	−1.22	−2.93
1996	46.8	−1.23	−3.34	66.0	−1.34	−3.26	67.3	−1.23	−2.83	75.8	−1.33	−2.99	58.9	−1.14	−2.72
1997	49.7	−1.26	−3.38	70.8	−1.38	−3.29	65.6	−1.24	−2.91	73.8	−1.34	−3.08	57.4	−1.15	−2.79
1998	53.5	−1.31	−3.47	80.1	−1.42	−3.20	74.5	−1.30	−2.90	83.9	−1.41	−3.07	65.2	−1.21	−2.80
1999	50.6	−1.30	−3.50	72.2	−1.42	−3.40	63.7	−1.29	−3.14	71.7	−1.40	−3.33	55.8	−1.20	−3.00
2000	49.5	−1.28	−3.46	70.0	−1.40	−3.38	61.2	−1.24	−3.02	68.9	−1.34	−3.20	53.6	−1.15	−2.89
2001	53.2	−1.28	−3.36	74.6	−1.40	−3.27	64.4	−1.27	−3.05	72.5	−1.38	−3.23	56.4	−1.18	−2.92
2002	53.7	−1.27	−3.31	69.7	−1.39	−3.35	73.0	−1.28	−2.87	82.2	−1.39	−3.03	63.9	−1.19	−2.76
2003	56.5	−1.39	−3.68	78.0	−1.50	−3.35	65.8	−1.36	−3.34	74.1	−1.47	−3.35	57.6	−1.26	−3.19
2004	50.7	−1.32	−3.57	74.4	−1.44	−3.42	56.9	−1.29	−3.31	64.1	−1.40	−3.32	49.8	−1.20	−3.15
Mean	51.3	−1.29	−3.43	73.0	−1.40	−3.31	67.8	−1.28	−2.99	76.3	−1.39	−3.17	59.4	−1.19	−2.87
Std	2.60	0.04	0.12	3.60	0.05	0.14	6.20	0.03	0.20	7.00	0.04	0.22	5.40	0.03	0.18

Note: Global warming potential (GWP, Pg CO$_2$ equivalents year$^{-1}$) is calculated on a 100-year time horizon, i.e., 1 g of CH$_4$ is equivalent to 25 g of CO$_2$ (IPCC 2007). Negative NEE/GWP indicates a sink of greenhouse gases from the atmosphere and positive NEE/GWP indicates a source of greenhouse gases to the atmosphere.
inter-annual variation in net CH$_4$ emissions of the entire region is significantly correlated with annual maximum wetland inundation extent and inversely correlated with annual precipitation, but there is no significant correlation with the annual air temperature (table 2). It is not clear why annual precipitation and annual inundation extent are not correlated. It is possible that the variability in annual inundation extent is determined by seasonal patterns in precipitation (e.g., rain in late summer or high snow pack in winter), which may not necessarily correlate with annual precipitation. There are also no significant correlations of annual CH$_4$ emissions with the mean annual soil temperature at depth 20 cm, active layer depth, and water table depth. Inter-annual variation in NEE is not significantly correlated with these environmental variables except wetlands area at the annual temporal resolution.

The spatial patterns of exchanges of CO$_2$ and CH$_4$ (figure S3) vary depending on the wetland inundation extent, which fluctuates in the region (figure S2). Both CO$_2$ and net CH$_4$ emissions exhibit a significant spatial variability as demonstrated with two inundation extent extreme years 1994 (the highest) and 2004 (the lowest). During 1994, a larger wetland inundation area estimates a higher methane production and emissions (81.3 Tg CH$_4$ yr$^{-1}$). For CO$_2$ dynamics, the region acts as a carbon sink of -1.26 Tg C yr$^{-1}$ as a balance of a wetland sink of -0.41 Pg C yr$^{-1}$ and an upland sink of -0.85 Pg C yr$^{-1}$ (figure 2). In contrast, the smallest wetland inundation extent in 2004 estimates the regional net methane emissions as small as 56.9 Tg CH$_4$ yr$^{-1}$ (figure 1, table 1). The NEE is a sink of -1.29 Pg C yr$^{-1}$ as a result of both uplands and wetlands sinks (figure 2).

There are large differences in net methane emissions and net carbon exchanges under static and dynamical wetland inundation conditions (table 1). Under the ‘static’ wetland inundation extent conditions Wet1 and Wet2, the regional methane emissions range from 51.3 ± 2.6 to 73.0 ± 3.6 Tg CH$_4$ yr$^{-1}$ during the period of 1993–2004 (figure S4(a)). For NEE, the region acts as a persistent sink ranging from -1.29 ± 0.04 to -1.40 ± 0.05 Pg C yr$^{-1}$ under static wetland inundation conditions (table 1).

3.2. Seasonal dynamics of CO$_2$ and CH$_4$ in the region
All three ‘core’ simulations show a similar seasonal CH$_4$ emission pattern, peaking in July (figure S4(b)). In wetland areas, the carbon sink corresponds to the size of wetlands in three simulations in summer months (figure S5(a)). The sink estimates range from
Table 2. Pearson correlations (R) of simulated annual ($n = 12$) net methane emissions, NEE, and GWP with environmental variables based on satellite-detected annual maximum inundation extent data for the study region from 1993 to 2004.

Wetland areas	Precipitation	Air temperature	Soil temperature at depth 20 cm	Soil moisture at depth 20 cm	Active layer depth	Water table depth	
Net CH$_4$ emissions	0.81b	-0.68^a	-0.34	-0.31	-0.45	0.01	-0.10
NEE	0.13a	-0.07	-0.57	-0.56	0.12	-0.35	-0.21
GWP	0.78a	-0.62^a	-0.65	-0.62^a	-0.31	-0.22	-0.22

a P-value less than 0.05.

b P-value less than 0.01.
Nine inversion studies estimated that net CH$_4$ emissions of CH$_4$ are 34 ± 13 Tg CH$_4$ yr$^{-1}$ in June and July. Wetland NEE is similar between the three simulations from January through May, and September through December (figure S5(a)). In contrast, changes in the extent of uplands do not result in substantial differences in NEE between the three simulations (figure S5(b)). As a result, changes of annual inundation extent result in seasonal NEE differences up to 0.04 Pg C month$^{-1}$ in the region (figure S5(c)). Overall, the inundated area changes result in higher summer CH$_4$ emissions, but lower summer NEE sinks (figures S4 and S5).

3.3. Sensitivity of net exchanges of CO$_2$ and CH$_4$

For a 10% change in annual maximum wetland inundation extent, our simulations indicate that the regional net exchanges of CO$_2$ and CH$_4$ are affected by subsequent changes of wetland and upland areas (table 1). Net exchanges of CH$_4$ are more sensitive to wetland inundation extent changes than NEE. Specifically, if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional NEE responds with only 7–9% changes to the changes in wetland inundation extent (table 1). The response of net CH$_4$ emissions is mainly due to the stronger effect of the changes in inundated areas on methane production than on methane consumption as methane consumption in uplands is an order of magnitude less than wetland methane production (see figure 3). The response of regional NEE to changes in wetland inundation area is dominated by the response of aerobic decomposition to changing wetland area. Upland area changes due to changing inundation area are relatively small given that the upland area is much larger than wetland area, the upland NEE thus does not change significantly.

4. Discussion and summary

4.1. Regional wetland emissions and atmospheric concentrations of CH$_4$

Nine inversion studies estimated that net CH$_4$ emissions of boreal region wetlands are 34 ± 13 Tg CH$_4$ yr$^{-1}$ (Chen and Prinn 2006). Another inversion constrained by atmospheric observations of methane and its 13C/12C isotopic ratio data indicates that the boreal region releases 30–64 Tg CH$_4$ yr$^{-1}$, presumably mainly from wetlands (Mikaloff Fletcher et al 2004, McGuire et al 2012). A more recent study using satellite data estimated that mean summer emissions are 53 Tg CH$_4$ yr$^{-1}$ from boreal-Arctic wetlands (Watts et al 2014). The ‘static’ wetland inundation dataset Wet1 estimates CH$_4$ emissions that are comparable with the various inversions, while both Wet2 and dynamic wetland inundation extent dataset Wet3 estimates much higher emissions due to the larger wetland or inundated area in the latter two datasets (table 1). Annual emissions correlate well with annual wetland inundation area. In particular, the highest emissions occur in 1994, which is primarily explained by the largest inundation area in the period. Both static and dynamic wetland simulations estimate higher emissions in 1998 than in 1999, which is consistent with the inversion results (e.g., Mikaloff Fletcher et al 2004, Chen and Prinn 2006). While annual maximum wetland inundation area is larger in 1998 than in 1999, so are the annual precipitation and air temperature (figures 1(c) and (d)), suggesting that climatic conditions in 1998 also favor the methane emissions. A number of studies have suggested that the differences in CH$_4$ emissions between 1998 and 1999 is the response to temperature changes associated with the warm conditions in 1998 due to the strong El Niño phenomena (e.g., Dlugokencky et al 2001, Cunnold et al 2002). Indeed, 1998 was marked with elevated temperatures in the region from June to August (Bell et al 1999), and its annual temperature was higher than the 12-year average annual temperature over the region and the annual temperature of 1999. In addition, some high northern latitudes regions experienced elevated precipitation from April to September, which might have also led to the elevated wetland emissions for the year 1998 (Curtis et al 2001, Dlugokencky et al 2001). Our analysis indicates that precipitation in 1998 is indeed higher than in year 1999 while air temperature and inundated land area is also above the average of the study period (figure 1(d)). The temperature and wetland inundation responses together dominate the positive anomaly of net methane emissions for the year 1998 in the region.

Our simulations further indicate that the three wetland datasets estimate similar seasonal dynamics of methane emissions with different magnitudes over the region (figure S4(b)). The peak emissions occur in July. These seasonal dynamics are dominated by climatic factors, rather than wetland inundation extent. To consider the seasonal rather than annual wetland inundation extent in a future analysis will improve the estimates of seasonal dynamics. To date, most atmospheric transport chemistry and inversion models have primarily based their analyses on methane fluxes estimated without considering changes of wetland inundation extent (e.g., Houweling et al 1999, Cunnold et al 2002, Dentener et al 2003, Wang et al 2004, Chen and Prinn 2005, 2006). Coupling estimates of methane emissions considering both seasonal and interannual wetland inundation extent dynamics with these atmospheric models should improve modeling atmospheric methane concentrations.

4.2. Regional NEE

Our estimates of NEE account for the CO$_2$ emissions from both aerobic decomposition and anaerobic
decomposition of the soils (see equation (1)). Based on the static wetland inundation extent of the Wet1 and Wet2 datasets, the region is estimated to be a consistent sink (table 1). The annual NEE ranges from -1.23 to -1.50 Pg C yr$^{-1}$ for the period 1993–2004. The dynamic wetland inundation extent estimates the region to be a similar sink at -1.28 ± 0.03 Pg C yr$^{-1}$. The larger regional sink under static wetland inundation conditions is due to the larger wetland area prescribed by the Wet2 dataset that enhances the carbon sink. The smaller regional sink is mainly due to the decrease of the regional wetland carbon sink as wetlands area decreases under the dynamic wetland inundation condition. Although the wetland area is much smaller than the upland area in this region and both NPP and R_H of upland are much higher than that of wetlands, the strength of the carbon sink of the wetlands account for about one-third of the total regional sink. For instance, the sink of wetlands (-0.42 Pg C yr$^{-1}$ or 126.4 g C m$^{-2}$ yr$^{-1}$) of 2002 is about half of the upland sink (figure 2(c)). This suggests that the wetland ecosystems play a disproportional role in affecting regional NEEs. Breakdown of the wetland emissions of CO$_2$ shows that the majority of emissions are from the unsaturated zone of the wetland soils, which is created with the fluctuation of water table depth (figure 3). This aerobic decomposition accounts for 80% of the total wetland CO$_2$ emissions while the release of carbon associated with the methane oxidation and production varies between 40 and 60 Tg C yr$^{-1}$ with wetland inundation extents.

In comparison with an earlier estimate of a sink of 51.1 Tg C yr$^{-1}$ over the 1997–2006 time period (McGuire et al 2010), our estimated regional NEE magnitudes based on the satellite-detected dynamic wetland extent dataset are much larger. If we account for fire emissions (246.5 Tg C yr$^{-1}$) and the decomposition of agricultural and forestry products (13.5 Tg C yr$^{-1}$) estimated by McGuire et al (2010) for the same region in our analysis, our estimates of NEE will be a large sink of -1.0 Pg C yr$^{-1}$ under the dynamic wetland conditions. A recent inter-model comparison shows that the multi-model mean annual NEE for Alaska is largely carbon neutral (Fisher et al 2014) while some observations suggest that portions of the region have been a source of CO$_2$ to the atmosphere (Oechel et al 2000, 2014). The differences of carbon budget estimates between various models and our estimates are at least due to: (1) different processes being considered by the models; (2) different models parameterizations; (3) different sensitivity of the models to the same forcing data; and (4) different
treatment of land ecosystems (e.g., the inundated area changing) among the models (Melton et al 2012, Bohn et al 2015). The TransCom model means for the period of 1995–2006 for the region range from a source of 0.03 Pg C yr$^{-1}$ to a sink of -0.89 Pg C yr$^{-1}$ with a large uncertainty (Gurney et al 2004, 2008). Using the estimates of NEE that consider the effects of wetland inundation extent changes and both aerobic and anaerobic decomposition as priors for atmospheric inversion modeling may reduce the current discrepancy between process-based biogeochemical modeling and inversion estimates.

4.3. Regional GWPs of CO$_2$ and CH$_4$

Previous evaluation of regional radiative forcing estimated as GWPs was based on regional methane emissions and NEEs that have not considered changes in wetland inundation extent (e.g., Zhuang et al 2007). Consideration of wetland inundation dynamics reduced the estimated regional negative climate forcing (figure 4, table 1). Overall, the estimated regional GWP sink using either static or dynamic inundated area data increases during the study period (figure 4). The increase estimated using dynamic inundation data is mainly due to the decrease of CH$_4$ emissions resulting from the declining inundated area (figure 1). The slight increase estimated using two static wetland datasets is due to the slight increase of the carbon sink (table 1). Our sensitivity analysis indicates that the regional GWP under the conditions of either a 10% increase or a 10% decrease in inundation area of the Wet3 dataset differs little (less than 6%) from the estimates with Wet3 (table 1). Thus, changes in CH$_4$ fluxes associated with a 10% change in wetland inundation extent appear to compensate for changes in CO$_2$ fluxes. This suggests that rather large changes in wetland inundation extent would be required to significantly alter the balance of NEE and methane emissions and to influence the GWP in the region. The heterogeneity of NEE and methane emissions as wetland and upland fractions change inter-annually across the landscape as well as climatic changes results in a large spatial variability in GWP across the pan-Arctic (figure S3).

The regional annual GWP is significantly correlated with interannual wetland inundation extent (table 2). Net methane emissions correlate with wetland inundation extent more significantly than NEE, which suggests that future changes of wetland inundation extent will greatly affect regional net ecosystem carbon and CH$_4$ exchanges at annual scales. If wetland inundation extent increases, there will be more regional CH$_4$ emissions, but less regional CO$_2$ emissions from a relatively smaller upland area and a stronger carbon sink in a relatively larger wetland area. As a result, the regional GWP source will be weaker (figure 4). Future climate predictions with general circulation models therefore should consider the feedback that is induced by these CO$_2$ and CH$_4$ dynamics under changing wetland areas in addition to the physical feedbacks of wetland distribution (e.g., Gutowski et al 2007, Prigent et al 2011).

It is important to note that the greatest limitation of this analysis is the use of relatively coarse resolution (i.e., 0.5° × 0.5°) wetland inundation datasets, which do not capture small features within wetlands that create CH$_4$ hotspots. An average wetness across these large pixels is also likely to underestimate actual CH$_4$ fluxes (e.g. Becker et al 2008, Baird et al 2009).
Additional studies are needed to analyze how these small-scale features of wetlands affect our analysis.

This study considers the influence of water table depth and the stoichiometry of CO₂ and CH₄ during soil anaerobic and aerobic decomposition processes in developing regional estimates of CO₂ and CH₄ fluxes. The study shows that the use of satellite-detected wetland inundation extent essentially reduces the regional GWP sink estimated using static wetland inundation extent data sets and the regional dynamics of CO₂ and CH₄ respond differently to changes of wetland inundation extent with CH₄ fluxes being more sensitive than CO₂ fluxes. Future studies should thus consider the dynamics of wetland inundation extent in quantifying both net CO₂ and CH₄ fluxes and their feedbacks to the atmospheric climate and chemistry at regional and global scales. Inundation area data developed from satellite sensors such as NASA Soil Moisture Active Passive will be valuable for making additional progress on understanding how inundation area influences greenhouse gas exchange in the study region.

Acknowledgments

This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G), Department of Energy (DE-FG02-08ER64599), National Science Foundation (NSF-1028291 and NSF-0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), and the NSF Division of Information & Intelligent Systems (IIS-1028291). The computing is supported by Rosen Center of high performance computing at Purdue. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

References

Apps M J, Kurz W A, Luxmoore R J, Nilsson L O, Sedjo R A, Schmidt B, Simpson L G and Vinson T S 1993 Boreal forests and tundra Water Air Soil Pollut. 70 39–53.

Baird A J, Belyea L R and Morris P J 2009 Upscaling of peatland-atmosphere fluxes of methane Small-Scale Heterogeneity in Process Rates and the Pitfalls of ‘Bucket-and-Slab’ Models, Carbon Cycling in Northern Peatlands (Geophysical Monograph Series) vol 184 ed A J Baird et al (Washington, DC: AGU) pp 37–53.

Balshi M S et al 2007 The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis J. Geophys. Res. 112 G02029.

Becker T, Kutzbach L, Forbrich I, Schneider J, Jager D, Thees B and Wilmking M 2008 Do we miss the hot spots?—the use of very high resolution aerial photographs to quantify carbon fluxes in peatlands Biogeosciences 5 1387–93.

Bell G D, Halpert M S, Ropelowski C F, Kousky V E, Douglas A V, Schnell R C and Gelman M 1999 Climate assessment for 1998 Bull. Am. Meteorol. Soc. 80 51–48.

Bohn T J et al 2015 WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia Biogeosciences 12 3321–49.

Bond-Lamberty B, Gower S T, Goulden M K and McMillan A 2006 Simulation of boreal black spruce chronosequences: comparison to field measurements and model evaluation J. Geophys. Res. 111 G2014.

Bridgham S D, Ping C-L, Richardson J L and Updegraff K 2000 Soils of northern peatlands: Histosols and Gelisols Wetland Soils: Genesis, Hydrology, Landscapes, and Classification ed J L Richardson and M J Ypervaskas (Boca Raton, FL: CRC Press) pp 343–70.

Carasco J J, Neff C and Harden J W 2006 Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil J. Geophys. Res. 111 G2004.

Carter A J and Scholes R J 2000 SoilData V2.0: Generating a Global Database of Soil Properties (South Africa: CSIR Environmentet).

Chapin F S III et al 2006 Reconciling carbon–cycle concepts, terminology, and methods Ecosystems 9 1041–50.

Chen Y–H and Prinn R G 2005 Atmospheric modeling of high- and low-frequency methane observations: importance of interannually varying transport J. Geophys. Res. 110 D10303.

Chen Y–H and Prinn R G 2006 Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model J. Geophys. Res. 111 D10307.

Clein J S, McGuire A D, Zhang X, Kicklighter D W, Melillo J M, Wofsy S C, Jarvis P G and Massheder J M 2002 Historic and projected carbon balance of mature black spruce ecosystems across North America: the role of carbon–nitrogen interactions Plant Soil 242 15–32.

Clein J S, Kwatokiowski B L, McGuire A D, Hobbie J E, Rastetter E B, Melillo J M and Kicklighter D W 2000 Modeling carbon responses of moist tundra ecosystems to historical and projected climate: a comparison of fine- and coarse-scale ecosystem models for identification of process-based uncertainties Glob. Change Biol. 6 127–40.

Cunnold D M et al 2002 In situ measurements of atmospheric methane method at GAGE/AGAGE sites during 1985–2000 and resulting source inferences J. Geophys. Res. 107 4225.

Curtis S, Adler R, Huffman G, Nelkin E and Bolvin D 2001 Evolution of tropical and extratropical precipitation anomalies during the 1997–1999 ENSO cycle Int. J. Climatol. 21 961–7.

Dentener F, van Weele M, Krol M, Houweling S and van Velthoven P 2005 Trends and inter-annual variability of methane emissions derived from 1979–1993 global CTM simulations Atmos. Chem. Phys. 3 733–88.

Dlugokencky E J, Tans P, Marooney J, Pataki D and Masarie K 2004 Global methane source and sink estimated using static wetland inundation data sets and the regional dynamics of CO₂ and CH₄ Glob. Biogeochem. Cycles 18 GB1010.

Fan Z, McGuire A D, Turetsky M R, Harden J W, Waddington J M and Kane E S 2012 The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change Glob. Change Biol. 18 604–20.

Fisher J B et al 2014 Carbon cycle uncertainty in the Alaskan Arctic Biogeosciences 11 4271–88.

Frolking S, Routet N and Fuglestvedt J 2006 How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration J. Geophys. Res. 111 G01008.

Frolking S and Routet N T 2007 Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions Glob. Change Biol. 13 1079–88.

Gorham E 1991 Northern peatlands: Role in the carbon cycle and evaluating the ecosystem model ecosys Glob. Change Biol. 1 19–35.

Grant R, Routet N T and Crill P 2002 Methane efflux from boreal wetlands: theory and evaluating the ecosystem model ecosys with chamber and tower flux measurements Glob. Biogeochem. Cycles 16 2001GB001702.

Gurney K R et al 2004 Transcom 3 inversion intercomparison: modelmean results for the estimation of seasonal carbon sources and sinks Glob. Biogeochem. Cycles 18 GB1010.
Gurney K R, Baker D, Rayner P and Denning S 2008 Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO₂ inversions for the period 1980–2005 Glob. Biogeochim. Cycles 22 GB3025

Gutowski W I, Wei H, Vörösmarty C J and Fekete B M 2007 Influence of Arctic Wetlands on Arctic atmospheric circulation. J. Clim. 20 4243–54

He Y, Jones M, Zhuang Q, Bochicchio C, Felzer B S, Mason E and Yu Z 2014 Evaluating CO₂ and CH₄ dynamics of Alaskan ecosystems during the Holocene thermal maximum Quat. Sci. Rev. 86 63–77

Houweling S, Kaminski T, Dentener F, Lelieveld J and Heimann M 1999 Inverse modeling of methane sources and sinks using the adjoint of a global transport model J. Geophys. Res. 104 26137–60

Houweling S, Kaminski T, Dentener F, Lelieveld J and Heimann M 2004 CH4 sources estimated from atmospheric observations of CH4 and its 13C characteristics of sources Glob. Biogeochim. Cycles 16 1361–86

McGuire A D et al 2010 An analysis of the carbon balance of the Arctic Basin from 1997–2006 Tellus B 62 455–74

McGuire A D et al 2012 An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions Biogeosciences 9 3185–204

McGuire A D, Anderson I G, Christensen T R, Dallimore S, Guo L, Hayes D J, Heimann M, Lorenson T D, Macdonald R W and Roulet N 2009 Sensitivity of the carbon cycle in the Arctic to climate change Ecol. Monogr. 79 523–55

Melillo J M, McGuire A D, Kicklighter D W, Moore B III, Vörösmarty C J and Schloss A L 1995 Global climate change and terrestrial net primary production Nature 373 234–40

Melton J R et al 2012 Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP) Biogeoosci. Discuss. 9 11577–654

Mikaloff Fletcher S E, Tans P, Bruhwiler L M, Miller J B and Heimann M 2004 CH₄ sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH₄ fluxes from geographic regions Glob. Biogeochim. Cycles 18 GB4005

Moore T R, Roulet N T and Waddington M J 1998 Uncertainties in predicting the effect of climatic change on the carbon cycling of Canadian peatlands Clim. Change 40 229–45

Oechel W C, Laskowski C A, Burba G, Gioli B and Kahlhor A A 2014 Annual patterns and budget of CO₂ flux in an Arctic tusssock tundra ecosystem J. Geophys. Res. 119 323–39

Prigent C, Papa F, Aires F, Rossw W B and Matthews E 2007 Global inundation dynamics inferred from multiple satellite observations, 1993–2000 J. Geophys. Res. 112 D12107

Prigent C, Rochetin N, Aires F, Defer E, Grandpeix J-Y, Jimenez C and Papa F 2011 Impact of the inundation occurrence on the deep convection at continental scale from satellite observations and modeling experiments J. Geophys. Res. 116 D324118

Segers E and Lefelard P A 2001 Modeling methane fluxes in wetlands with gas-transporting plants 3. Plot scale J. Geophys. Res. 106 3541–58

Stitch S, McGuire A D, Kimball J, Gedney N, Gannon J, Engstrom R, Wolf A, Zhuang Q, Klein J and McDonald K C 2007 Assessing the carbon balance of circumpolar arctic tundra using remote sensing and process modeling Ecol. Appl. 17 213–34

Smith L C, MacDonald G M, Velichko A A, Beilman D W, Borisova O K, Frey K E, Kremenetski K V and Sheng Y 2004 Siberian peatlands a net carbon sink and global methane source since the early Holocene Science 303 353–6

Tang J and Zhuang Q 2009 A global sensitivity analysis and Bayesian inference framework for improving the parameter estimation and a process-based Terrestrial ecosystem model J. Geophys. Res. 114 D15S03

Tarnoczi T, Canadell J G, Schuur E A G, Kuhry P, Mazzitova G and Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region Glob. Biogeochim. Cycles 23 GB2023

Turunen J, Tomppo E, Toluene K and Reinikainen A 2002 Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions Holocene 12 69–80

Vitt D H, Halsey L A and Zoltai S C 2000 ‘The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost Can. J. For. Res./Riv. Can. For. 30 283–7

Walter B P, Heimann M and Matthews E 2001 Modeling modern methane emissions from natural wetlands: 2. Interannual variations 1982–1993 J. Geophys. Res. 106 34207–19

Wang J S, Logan A J, McElroy M B, Duncan B N, Megretskaia I A and Yantosca R M 2004 A 3D model analysis of the slowdown and interannual variability in the methane growth rate from 1988–1997 Glob. Biogeochim. Cycles 18 GB3011

Warner B G and Asada T 2006 Biological diversity of peatlands in Canada Aquatic Sci.—Res. Across Bound. 68 240–53

Watts J D, Kimball J S, Bartsch A and McDonald K C 2014 Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions Environ. Res. Lett. 9 075001

Yu Z 2006 Modeling ecosystems processes and pet accumulation in boreal peatlands Boreal Peatland Ecosystems, Ecological Studies Analysis and Synthesis vol 188 ed R K Wieder and H D Vitt (Berlin: Springer)

Zhang Y, Li C, Trettin C C, Li H and Sun G 2002 An integrated model of soil hydrology, and vegetation for carbon dynamics in wetland ecosystems Glob. Biogeochim. Cycles 16 1061

Zhu X, Zhuang Q, Lu X and Song L 2014 Spatial scale-dependent fluxes from geographic regions Glob. Biogeochim. Cycles 20 D12107

Zhuang Q, Melillo J M, Kicklighter D W, Prinn R G, McGuire D A, Tarnoczi T, Canadell J G, Schuur E A G, Kuhry P, Mazzitova G and Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region Glob. Biogeochim. Cycles 23 GB2023

Zhuang Q et al 2003 Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: a modeling analysis of the influences of soil thermal dynamics Tellus 55B 751–76

Zhuang Q, McGuire A D, O’Neill P K, Harden J W, Romanovsky V E and Yarie J 2002 Modeling the soil thermal and carbon dynamics of a fire chronosequence in Interior Alaska J. Geophys. Res. 107 B14

Zhuang Q, Melillo J M, McGuire A D, Kicklighter D W, Prinn R G, Steudler P A, Felzer B S and Hu S 2007 Net emissions of CH₄ and CO₂ in Alaska: implications for the region’s greenhouse gas budget Ecol. Appl. 17 203–12

Zhuang Q, Melillo J M, Kicklighter D W, Prinn R G, McGuire D A, Steudler P A, Felzer B S and Hu S 2004 Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century—a
retrospective analysis with a process-based biogeochemistry model *Glob. Biogeochem. Cycles* 18 GB3010 Zhuang Q, Melillo J M, Sarofim M C, Kicklighter D W, McGuire A D, Felzer B S, Sokolov A, Prinn R G, Steudler P A and Hu S 2006 CO₂ and CH₄ exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century *Geophys. Res. Lett.* 33 L17403 Zhuang Q, Romanovsky V E and McGuire A D 2001 Incorporation of a permafrost model into a large-scale ecosystem model: evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics *J. Geophys. Res.* 106 33649–70