Polybrominated Diphenyl Ethers (PBDEs) in a Large, Highly Polluted Freshwater Lake, China: Occurrence, Fate, and Risk Assessment

Jianchao Liu 1, Guanghua Lu 1,2,*, Fuhai Zhang 3,#, Matthew Nkoom 1, Zhenhua Yan 1 and Donghai Wu 1

1 Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China; jianchao-liu@hhu.edu.cn
2 College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, China
3 Anhui Environmental Monitoring Center, Hefei 230061, China
* Correspondence: ghlu@hhu.edu.cn (G.L.); zfh168@163.com (F.Z.)

Supplementary Information

Table S1. Optimized MS/MS parameters of the eight PBDEs.
Table S2. Recovery rates of the eight PBDEs in water samples.
Table S3. Recovery rates of the eight PBDEs in sediment/biota samples.
Table S4. Method detection limits (MDLs) for the eight PBDEs.
Table S5. Regression equations, correlation coefficients and retention time of the eight PBDEs.
Table S6. Contents of PBDEs in main rivers connected to Chaohu Lake (ng/L).
Table S7. Contents of PBDEs in the effluents of main sewage treatment plants surrounding Chaohu Lake (ng/L).
Table S8. Contents of PBDEs in water from Chaohu Lake (ng/L).
Table S9. Contents of PBDEs in sediments of rivers flowing into Chaohu Lake and the sludge of sewage treatment plants (ng/g).
Table S10. Contents of PBDEs in sediments from Chaohu Lake (ng/g).
Table S11. Concentrations of PBDEs in aquatic species from Chaohu Lake (ng/g).
Table S12. Estimated daily intake (EDI) and Hazard quotient (HQ) for BDE-47, BDE-99 and BDE-153.
Table S13. The values of PNEC for fish, daphnia and green algae.
Table S14. The base set of acute toxicity for the calculation of MRQ_{MEC/PNEC} and MRQ_{STU}.

Materials and Methods

Sample Extraction and Analyses

Water samples were filtered through 0.45 µm glass fiber filters (GF/F, Whatman, Clifton, NJ, USA) to remove particles. The water samples filtrate mixed with 0.1 volumes of methanol and sonicated for 5 min. Then the filtrate was extracted by solid phase extraction (SPE) on HLB cartridges (200 mg, Waters, Massachusetts, USA). The cartridges were preconditioned with 5 mL dichloromethane, 5 mL ethyl acetate, 5 mL methanol and 5 mL water. The samples were eluted from the cartridges using 3 mL dichloromethane and 3 mL ethyl acetate. The extracts were evaporated to dryness under a stream of nitrogen, reconstituted with 2 mL n-hexane.

Fish tissue (brain, liver, gills and muscle) samples were homogenized and weighed prior to extracting with an accelerated solvent extractor followed by an ASE 300 (Dionex Ltd., Sunnyvale, CA, USA). Weighed samples were mixed with 5 g of anhydrous sodium sulfate and
were loaded into 33 mL ASE cells on top of 10 g of activated Florisil, which was used as a clean-up. Cells were spiked with 10 µL of 1 ng/µL 13C12-labelled 2,2',4,4',5,5'-hexa-BDE (BDE-153) as a recovery internal standard (RIS) solution. The fish sample was then extracted at 100°C with a mixture of n-hexane/dichloromethane (DCM) (4:1, v/v) working at a constant pressure of 1500 psi, a flush volume of 60% and a purge time of 90 s. Two static extraction cycles of 5 min each were applied to achieve the maximum recovery of the analytes. After extraction, the solvents were evaporated down to 1.0 mL and analyzed by GC/MS/MS.

PBDEs and bromophenols were analyzed on a Bruker 450 GC-320 triple quadrupole mass spectrometer (Fremont, CA, USA) fitted with a DB-5HT capillary column (15 cm × 250 µm × 0.1 µm), combined with the multiple-reaction monitor (MRM) mode of tandem mass spectrometry. The mass spectrometer was operated in negative electrospray ionization mode (ESI-) using MRM. The quantification of PBDEs was conducted using 13C12-labelled BDE-153 as an internal standard.

A total of 39 PBDEs were analyzed by GC-MS/MS (EI, 70 eV). The GC-MS/MS was operated in pulsed splitless injection mode with an injector temperature of 340°C. The helium carrier gas flow rate was 1.3 mL/min, and the oven temperature program was as follows: 40°C, 230°C (20°C/min), 285°C (6°C/min), 340°C (25°C/min), held for 7 min. The interface, source and quadrupole temperature were set at 300, 300 and 40°C, respectively, and the MRM parameters are listed in Table S1.

Parameter Measurement and Statistical Analysis

Health Risk Assessment

The estimated daily intake (EDI, ng/kg-bw/day) of PBDEs by adult was calculated as follows:

\[
\text{EDI}_{\text{water}} = C \times V / BW \tag{1}
\]

where \(C\) is the concentration of a PBDE congener in water (ng/L); \(V\) (mL/day) is the consumption rate of water (L); and \(BW\) (kg) is the adult body weight.

\[
\text{EDI}_{\text{fish}} = C \times R / BW \tag{2}
\]

\[
\text{EDI}_{\text{fish}} = C \times R / BW \tag{3}
\]

where \(C\) is the concentration of a PBDE congener in fish (ng/g); \(R\) is the consumption rate of fish (g/day); and \(BW\) (kg) is the adult body weight.

To assess health risks associated with exposure to PBDEs concerning non-carcinogenic endpoints, hazard quotient (HQ) values were estimated and used. It can be calculated simply by dividing the estimated daily intake by the reference dose (RfD) of PBDEs reported by the Integrated Risk Information System (IRIS) of the USEPA as follows:

\[
HQ = f \times \text{EDI} / RfD \tag{4}
\]

where \(f\) is the transfer factor of unit (which is 0.001 in this case)

According to the risk addition method, the total HQs of all PBDE congeners can be treated as the mathematical sum of the HQ values of single PBDE congener:

\[
\text{THQ} = \Sigma HQ \tag{5}
\]

Eco-toxicity assessment
Eco-toxicity of target compounds in water was assessed using the risk quotient (RQ) on nontarget organisms. At three trophic levels, LC50 or EC50 for fish, daphnia and green algae associated with PBDEs were used for RQ calculation as Eq (6).

\[
RQ = \frac{\text{MEC}}{\text{PNEC}} = \frac{\text{MEC}}{\text{EC50 or LC50}/f}
\]

where PNEC is the predicted no effect concentration (mg/L), estimated as a quotient of toxicological relevant concentration (EC50 or LC50) with a security factor (\(f = 1000 \)). The values of EC50 or LC50 for fish, daphnia and green algae for PNEC calculation were provided in the Table S13.

Two approaches for calculating the mixture risk quotient (MRQ) are outlined by Eq. (7): the calculation of MRQ, based on the sum of MEC/PNEC values (MRQ_{MEC/PNEC}); and Eq. (8): the calculation of MRQ, based on the sum of toxic units (STUs) for the most sensitive trophic level (MRQ_{STU}). The acute toxicity data EC50 and LC50 are represented by EC50 in Eqs. (7) and (8).

\[
\text{MRQ}_{\text{MEC/PNEC}} = \sum_{i=1}^{n} \frac{\text{MEC}_{ij}}{\text{PNEC}_{ij}} = \sum_{i=1}^{n} \frac{\text{MEC}_{ij}}{\text{min}(\text{EC50}_{\text{aglue}}, \text{EC50}_{\text{daphnids}}, \text{EC50}_{\text{fish}})} \times (1/\text{AF}_i)
\]

\[
\text{MRQ}_{\text{STU}} = \max (\text{STU}_{\text{aglue}}, \text{STU}_{\text{daphnids}}, \text{STU}_{\text{fish}}) \times \text{AF} = \max \left(\sum_{i=1}^{n} \frac{\text{MEC}_{ij}}{\text{EC50}_{\text{aglue}}} \right) \times \sum_{i=1}^{n} \frac{\text{MEC}_{ij}}{\text{EC50}_{\text{daphnids}}} \times \sum_{i=1}^{n} \frac{\text{MEC}_{ij}}{\text{EC50}_{\text{fish}}} \times (1/\text{AF}_i)
\]

where TU and STU are the “toxic unit (MEC/EC50)” and the “sum of toxic unit”, respectively.

Table S1. Optimized MS/MS parameters of the eight PBDEs.

Compounds	Retention time (min)	Precursor ion (m/z)	Product ion (m/z)	Collision energy (eV)
BDE-28	7.5-9.0	407.8(M+2)	247.9	25
BDE-47	9.0-10.0	485.7(M)	325.9	25
BDE-99	10.0-11.1	565.7(M+2)	405.9	25
BDE-100				
BDE-153	11.1-12.3	483.9(M-Br)	376.9	25
BDE-154	11.1-12.3	643.6(M)	483.9	30
13C12-BDE-153	11.1-12.3	495.6	388.9	25
BDE-183	12.3-14.2	721.6(M-Br)	561.6	35
BDE-209	14.2-20	800(M-Br)	642	40

Table S2. Recovery rates of the eight PBDEs in water samples.

Compounds	Low concentration (ng/L)	Recovery rates (%)	Median concentration (ng/L)	Recovery rates (%)	High concentration (ng/L)	Recovery rates (%)
BDE-28	5.0	90–110	90–110	90–110	90–110	90–110
BDE-47	5.0	90–110	90–110	90–110	90–110	90–110
BDE-99	5.0	90–110	90–110	90–110	90–110	90–110
BDE-100	1.0	75–95	75–95	75–95	75–95	75–95
BDE-153	1.0	75–95	75–95	75–95	75–95	75–95
BDE-154	1.0	75–95	75–95	75–95	75–95	75–95
BDE-183	4.0	75–95	75–95	75–95	75–95	75–95
BDE-209	4.0	65–70	65–70	65–70	65–70	65–70

Table S3. Recovery rates of the eight PBDEs in sediment/biota samples.
Table S4. Method detection limits (MDLs) for the eight PBDEs.

Compounds	Instrument Detection Limit (IDL, pg)	Water samples (ng/L)	Sediment/biota (pg/g)	
	Low concentration (ng/g) Recovery rates (%)	Median concentration (ng/g) Recovery rates (%)	High concentration (ng/g) Recovery rates (%)	
BDE-28	0.03	0.014	0.009	5
BDE-47	0.02	0.025	0.048	4
BDE-99	0.015	0.024	0.033	4
BDE-100	0.03	0.018	0.007	4
BDE-153	0.03	0.027	0.011	5
BDE-154	0.04	0.036	0.005	6
BDE-183	0.02	0.02	0.018	4
BDE-209	0.15	0.06	1.5	20

Table S5. Regression equations, correlation coefficients and retention time of the eight PBDEs.

Compounds	Regression equation	Correlation coefficient	Retention time (min)
BDE-28	y = 0.611x - 0.921	0.997	8.100
BDE-47	y = 0.626x - 0.648	0.997	9.426
BDE-99	y = 0.597x - 0.033	0.997	10.392
BDE-153	y = 0.346x - 0.501	0.998	10.676
	y = 0.185x + 0.081	0.9991	11.424
BDE-154	y = 0.105x - 0.057	0.9994	11.767
BDE-183	y = 0.232x - 0.143	0.998	12.674
BDE-209	y = 0.010x - 0.343	0.9996	17.030

Table S6. Contents of PBDEs in main rivers connected to Chaohu Lake (ng/L).

Compounds	Time	P1	P2	P3	P4	P5	P6	P7	P8	P9
BDE-28	June	0.16	0.23	ND	ND	ND	0.34	ND	0.15	ND
	October	0.20	0.24	ND	ND	ND	1.36	ND	0.26	0.09
BDE-47	June	0.38	0.13	0.16	0.25	0.19	0.34	ND	0.05	ND
	October	0.45	0.21	0.17	0.25	0.27	1.31	0.05	0.22	0.12
BDE-99	June	0.15	0.24	0.16	0.20	0.21	1.03	ND	0.05	ND
	October	0.30	0.14	0.13	0.06	1.05	0.06	ND	0.05	0.11
BDE-100	June	0.17	0.11	0.06	0.34	ND	ND	ND	ND	ND
	October	0.12	0.17	0.09	0.17	1.06	ND	0.22	ND	ND
BDE-153	June	0.06	0.21	0.05	0.16	ND	ND	ND	ND	ND
	October	0.16	0.07	0.06	1.01	0.12	ND	0.11	ND	ND
BDE-154	June	ND								
	October	ND								
BDE-183	June	ND								
	October	ND								
ΣPBDEs	June	0.75	0.98	0.43	0.45	0.65	1.70	0.15	0.64	0.40
Compounds	W1	W2	W3	W4	W5					
-----------	----	----	----	----	----					
BDE-28	ND	ND	ND	ND	ND					
BDE-47	0.31	0.26	0.21	0.38	ND					
BDE-99	0.22	0.32	0.23	0.26	0.20					
BDE-100	0.16	ND	ND	ND	ND					
BDE-153	ND	0.23	ND	ND	ND					
BDE-154	ND	ND	ND	ND	ND					
BDE-183	ND	ND	ND	ND	ND					
BDE-209	ND	ND	ND	ND	ND					
ΣPBDEs	0.69	0.71	0.44	0.64	0.20					

ND: below the Method detection limit.

Table S7. Contents of PBDEs in the effluents of main sewage treatment plants surrounding Chaohu Lake (ng/L).

Compounds	Time	H1	H2	H3	H4	H5	H6	H7	H8	H9
BDE-28	June	0.10	ND							
	October	0.16	ND							
BDE-47	June	0.35	0.30	0.12	0.10	ND	0.24	ND	ND	0.19
	October	0.54	0.36	0.20	0.28	ND	0.44	ND	ND	0.46
BDE-99	June	0.43	0.24	0.21	0.17	0.16	0.23	0.20	0.23	0.40
	October	0.48	0.32	0.43	0.36	0.28	0.39	0.27	0.28	0.45
BDE-100	June	ND								
	October	0.15	ND							
BDE-153	June	0.14	0.10	0.12	ND	ND	0.11	ND	ND	ND
	October	0.23	ND	0.31	ND	ND	0.26	ND	ND	ND
BDE-183	June	ND								
	October	ND								
BDE-209	June	ND								
	October	ND								
ΣPBDEs	June	1.02	0.64	0.45	0.27	0.16	0.58	0.20	0.23	0.59
	October	1.56	0.68	0.94	0.64	0.28	1.09	0.27	0.28	0.91

ND: below the Method detection limit.

Table S8. Contents of PBDEs in water from Chaohu Lake (ng/L).

Compounds	P1	P2	P3	P3-1	P4	P5	W1	
BDE-28	ND	ND	ND	ND	ND	ND	ND	
BDE-47	0.017	0.022	0.023	0.025	0.023	0.022	0.324	
BDE-99	0.023	ND	ND	ND	ND	ND	0.251	
BDE-100	ND	ND	ND	ND	ND	ND	0.014	
BDE-153	0.012	ND	ND	0.014	0.013	0.013	0.014	0.294
BDE-154	ND	ND	ND	0.021	0.025	ND	0.021	0.047
BDE-183	0.056	0.020	0.024	0.022	0.020	0.021	0.081	
BDE-209	1.27	0.27	1.45	3.96	0.20	1.34	10.5	
ΣPBDEs	1.38	0.312	1.53	4.05	0.256	1.42	11.5	

ND: below the Method detection limit.

Table S9. Contents of PBDEs in sediments of rivers flowing into Chaohu Lake and the sludge of sewage treatment plants (ng/g).

Table S10. Contents of PBDEs in sediments from Chaohu Lake (ng/g).
Compounds	BDE-28	BDE-47	BDE-99	BDE-100	BDE-153	BDE-154	BDE-183	BDE-209	ΣPBDEs
H1	0.032	0.043	0.036	0.16	0.033	0.071	0.086	4.95	5.41
H2	ND	0.032	ND	ND	0.023	0.039	ND	2.48	2.57
H3	ND	0.021	0.026	ND	0.014	ND	ND	1.21	1.27
H4	ND	ND	0.01	0.06	ND	ND	0.04	1.80	1.91
H5	ND	0.025	0.030	ND	0.013	0.019	0.019	0.54	0.605
H6	ND	0.025	ND	ND	0.023	0.039	ND	2.48	2.57
H7	ND	0.021	0.030	ND	0.013	0.019	ND	0.45	0.533
H8	ND	0.026	0.032	ND	ND	ND	ND	ND	ND
H9	ND	0.027	0.035	ND	0.013	ND	ND	0.075	
H10	ND	0.042	ND	ND	0.018	0.022	0.022	4.56	4.66
H11	ND	0.015	0.014	0.051	0.024	0.030	0.047	2.71	2.89
H12	ND	0.026	0.015	0.067	0.017	0.019	0.033	1.54	1.72
H13	ND	0.021	0.013	ND	0.012	0.019	ND	ND	0.065
H14	ND	0.022	0.024	ND	0.012	ND	ND	ND	0.058

ND: below the Method detection limit.

Table S11. Concentrations of PBDEs in aquatic species from Chaohu Lake (ng/g).

Species	BDE-28	BDE-47	BDE-99	BDE-100	BDE-153	BDE-154	BDE-183	BDE-209	ΣPBDEs	
River shrimpa	ND	ND	0.05	ND	ND	ND	ND	ND	0.05	
Chinese hooksnout carp	ND	0.115	0.079	0.056	0.113	0.126	0.035	ND	0.524	
Crucian carp	ND	0.021	ND	ND	ND	ND	ND	ND	0.021	
Topmouth culter	0.008	0.013	ND	ND	ND	ND	ND	ND	0.021	
Silver fish	ND	0.026	0.012	ND	ND	ND	0.012	ND	0.05	
Chinese hooksnout carp b	ND	ND	0.014	ND	ND	ND	ND	ND	0.043	
Silver fish b	ND	ND	0.0009	ND	ND	ND	ND	ND	0.049	
Topmouth culter b	ND	0.018	ND	ND	ND	0.026	0.011	0.009	ND	0.064
Common carp b	ND	0.024	ND	ND	ND	0.013	0.018	ND	0.275	
Crucian carp (Brain) b	ND	0.549	ND	ND	1.25	0.028	ND	ND	1.876	
Crucian carp (Gill) b	ND	0.066	ND	ND	ND	0.047	ND	ND	0.205	
Crucian carp (Liver) b	ND	0.025	0.034	ND	ND	0.032	ND	ND	0.091	
Crucian carp (Intestines) b	ND	0.018	0.022	ND	ND	ND	ND	ND	0.04	

a: Biota samples were collected from S1 site; b: Biota samples were collected from S2 site; ND: below the Method detection limit.

Table S12. Estimated daily intake (EDI) and Hazard quotient (HQ) for BDE-47, BDE-99 and BDE-153.

Sites/Biology	EDI(ng/kg/day)	Sum of EDI	HQ	Sum of HQ					
	BDE-47	BDE-99	BDE-153	BDE-47	BDE-99	BDE-153	BDE-47	BDE-99	BDE-153
P1	1.6E-02	1.0E-02	5.6E-03	3.2E-02	1.6E-06	1.0E-06	2.8E-07	2.9E-06	
P2	7.3E-03	4.9E-03	2.4E-03	1.5E-02	7.3E-07	4.9E-07	1.2E-07	1.3E-06	
P3	8.7E-03	4.5E-03	4.5E-04	1.4E-02	8.7E-07	4.5E-07	2.3E-08	1.3E-06	
P4	5.9E-03	2.1E-03	2.8E-03	1.1E-02	5.9E-07	2.1E-07	1.4E-07	9.4E-07	
P5	9.4E-03	5.2E-03	3.5E-03	1.8E-02	9.4E-07	5.2E-07	1.7E-07	1.6E-06	
P6	4.6E-02	2.3E-02	7.3E-03	7.6E-02	4.6E-06	2.3E-06	3.7E-07	7.2E-06	
P7	2.1E-03	1.7E-03	4.5E-04	4.3E-03	2.1E-07	1.7E-07	2.3E-08	4.1E-07	
P8	1.1E-02	7.3E-03	3.8E-03	2.2E-02	1.1E-06	7.3E-07	1.9E-07	2.0E-06	
P9	6.3E-03	2.8E-03	4.5E-04	9.5E-03	6.3E-07	2.8E-07	2.3E-08	9.3E-07	
H1	1.9E-02	1.7E-02	8.0E-03	4.4E-02	1.9E-06	1.7E-06	4.0E-07	4.0E-06	
H2	1.3E-02	1.1E-02	4.5E-04	2.4E-02	1.3E-06	1.1E-06	2.3E-08	2.4E-06	
H3	7.0E-03	1.5E-02	1.1E-02	3.3E-02	7.0E-07	1.5E-06	5.4E-07	2.7E-06	
H4	9.8E-03	1.3E-02	4.5E-04	2.3E-02	9.8E-07	1.3E-06	2.3E-08	2.3E-06	
H5	4.2E-04	9.8E-03	4.5E-04	1.1E-02	4.2E-08	9.8E-07	2.3E-08	1.0E-06	
H6	1.5E-02	1.4E-02	9.1E-03	3.8E-02	1.5E-06	1.4E-06	4.5E-07	3.8E-06	
Sites	Toxic Units	BDE-28 (ng/L)	BDE-47 (ng/L)	BDE-99 (ng/L)	BDE-100 (ng/L)	BDE-153 (ng/L)	BDE-154 (ng/L)	BDE-183 (ng/L)	
---------------	-------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	
P1	Tijalg × 10^{-5}	0.68	5.36	12.50	5.00	22.86	2.57	5.62	0.05
	Tijaphy × 10^{-3}	2.25	25.00	75.00	30.00	221.91	24.97	71.94	0.45
	Tijlas × 10^{-3}	1.82	21.43	75.00	30.00	230.88	25.97	80.65	0.47
	MEC/min(EC50) × 10^{-3}	2.25	25.00	75.00	30.00	230.88	25.97	80.65	0.47
P2	Tijalg × 10^{-5}	0.02	2.50	5.83	0.38	10.00	2.57	5.62	0.03
	Tijaphy × 10^{-3}	0.08	11.67	35.00	2.25	97.09	24.97	71.94	0.24
	Tijlas × 10^{-3}	0.06	10.00	35.00	2.25	101.01	25.97	80.65	0.25
	MEC/min(EC50) × 10^{-3}	0.08	11.67	35.00	2.25	101.01	25.97	80.65	0.26
P3	Tijalg × 10^{-5}	0.82	2.98	5.42	5.00	1.86	2.57	5.62	0.02
	Tijaphy × 10^{-3}	2.70	13.89	32.50	30.00	18.03	24.97	71.94	0.19
	Tijlas × 10^{-3}	2.18	11.90	32.50	30.00	18.76	25.97	80.65	0.20
	MEC/min(EC50) × 10^{-3}	2.70	13.89	32.50	30.00	18.76	25.97	80.65	0.20
P4	Tijalg × 10^{-5}	0.02	2.02	2.50	3.75	11.43	2.57	5.62	0.03
	Tijaphy × 10^{-3}	0.08	9.44	15.00	22.50	110.96	24.97	71.94	0.24
	Tijlas × 10^{-3}	0.06	8.10	15.00	22.50	115.44	25.97	80.65	0.27
	MEC/min(EC50) × 10^{-3}	0.08	9.44	15.00	22.50	115.44	25.97	80.65	0.27
P5	Tijalg × 10^{-5}	0.79	3.21	6.25	7.08	14.29	14.29	56.18	0.10
	Tijaphy × 10^{-3}	2.58	15.00	37.50	42.50	138.70	138.70	719.42	1.09
	Tijlas × 10^{-3}	2.09	12.86	37.50	42.50	144.30	144.30	806.45	1.19
	MEC/min(EC50) × 10^{-3}	2.58	15.00	37.50	42.50	144.30	144.30	806.45	1.19
P6	Tijalg × 10^{-5}	4.66	15.60	27.08	27.50	30.00	25.71	61.80	0.19
	Tijaphy × 10^{-3}	15.28	72.78	162.50	165.00	291.26	249.65	791.37	1.75
	Tijlas × 10^{-3}	12.36	62.38	162.50	165.00	303.03	259.74	887.10	1.85
	MEC/min(EC50) × 10^{-3}	15.28	72.78	162.50	165.00	303.03	259.74	887.10	1.87
P7	Tijalg × 10^{-5}	0.02	0.71	2.08	0.38	1.86	2.57	5.62	0.01
	Tijaphy × 10^{-3}	0.08	3.33	12.50	2.25	18.03	24.97	71.94	0.13
	Tijlas × 10^{-3}	0.06	2.86	12.50	2.25	18.76	25.97	80.65	0.14
	MEC/min(EC50) × 10^{-3}	0.08	3.33	12.50	2.25	18.76	25.97	80.65	0.14
P8	Tijalg × 10^{-5}	0.89	3.81	8.75	9.17	15.71	15.71	50.56	0.10
	Tijaphy × 10^{-3}	2.92	17.78	52.50	55.00	152.57	152.57	647.48	1.08
	Tijlas × 10^{-3}	2.36	15.24	52.50	55.00	158.73	158.73	725.81	1.17
	MEC/min(EC50) × 10^{-3}	2.92	17.78	52.50	55.00	158.73	158.73	725.81	1.17
P9	Tijalg × 10^{-5}	0.48	2.14	3.33	5.00	1.86	2.57	5.62	0.02
	Tijaphy × 10^{-3}	1.57	10.00	20.00	30.00	18.03	24.97	71.94	0.18
	Tijlas × 10^{-3}	1.27	8.57	20.00	30.00	18.76	25.97	80.65	0.19
	MEC/min(EC50) × 10^{-3}	1.57	10.00	20.00	30.00	18.76	25.97	80.65	0.19

Table S13. The values of PNEC for fish, daphnia and green algae.

PNEC fish (ng/L)	daphnia (ng/L)	green algae (ng/L)
BDE-28	110	89
BDE-47	21	18
BDE-100	4	4
BDE-99	4	4
BDE-154	0.693	0.721
BDE-153	0.693	0.721
BDE-183	0.124	0.139
BDE-209	0.000656	0.000947

Table S14. The base set of acute toxicity for the calculation of MRQ_{MEC/PNEC} and MRQ_{STU}.
	TU algae × 10^{-3}	TU daphnids × 10^{-3}	TU fish × 10^{-3}	MEC/min(EC50) × 10^{-3}
H1	0.55 6.43 20.00 6.25 32.86 2.57 5.62 0.07	1.80 30.00 120.00 37.50 319.00 24.97 71.94 0.61	1.45 25.71 120.00 37.50 331.89 25.97 80.65 0.62	1.80 30.00 120.00 37.50 331.89 25.97 80.65 0.63
H2	0.02 4.29 13.33 0.38 1.86 2.57 5.62 0.03	0.08 20.00 80.00 2.25 18.03 24.97 71.94 0.22	0.06 17.14 80.00 2.25 18.76 25.97 80.65 0.22	0.08 20.00 80.00 2.25 18.76 25.97 80.65 0.23
H3	0.02 2.38 17.92 0.38 44.29 2.57 5.62 0.07	0.08 11.11 107.50 2.25 429.96 24.97 71.94 0.65	0.06 9.52 107.50 2.25 447.33 25.97 80.65 0.67	0.08 11.11 107.50 2.25 447.33 25.97 80.65 0.67
H4	0.02 5.24 16.25 0.38 13.33 2.57 5.62 0.07	0.08 24.44 97.50 2.25 360.61 24.97 71.94 0.58	0.06 13.33 90.00 2.25 18.76 25.97 80.65 0.60	0.08 24.44 97.50 2.25 360.61 24.97 71.94 0.58
H5	0.02 0.14 11.25 0.38 1.86 2.57 5.62 0.02	0.08 0.67 70.00 2.25 18.03 24.97 71.94 0.19	0.06 0.57 70.00 2.25 18.76 25.97 80.65 0.20	0.08 0.67 70.00 2.25 18.76 25.97 80.65 0.20
H6	0.02 3.33 15.00 0.38 1.86 2.57 5.62 0.07	0.08 15.56 90.00 2.25 18.03 24.97 71.94 0.22	0.06 13.33 90.00 2.25 18.76 25.97 80.65 0.22	0.08 15.56 90.00 2.25 18.76 25.97 80.65 0.23
H7	0.02 0.14 11.25 0.38 1.86 2.57 5.62 0.07	0.08 0.67 67.50 2.25 18.03 24.97 71.94 0.19	0.06 0.57 67.50 2.25 18.76 25.97 80.65 0.20	0.08 0.67 67.50 2.25 18.76 25.97 80.65 0.20
H8	0.02 0.14 11.25 0.38 1.86 2.57 5.62 0.02	0.08 0.67 70.00 2.25 18.03 24.97 71.94 0.19	0.06 0.57 70.00 2.25 18.76 25.97 80.65 0.20	0.08 0.67 70.00 2.25 18.76 25.97 80.65 0.20
H9	0.02 5.48 18.75 0.38 1.86 2.57 5.62 0.07	0.08 25.56 112.50 2.25 18.03 24.97 71.94 0.26	0.06 21.90 112.50 2.25 18.76 25.97 80.65 0.26	0.08 25.56 112.50 2.25 18.76 25.97 80.65 0.27
W1	0.02 3.69 9.17 6.67 1.86 2.57 5.62 0.03	0.08 17.22 55.00 40.00 18.03 24.97 71.94 0.23	0.06 14.76 55.00 40.00 18.76 25.97 80.65 0.24	0.08 17.22 55.00 40.00 18.76 25.97 80.65 0.24
W2	0.02 3.10 13.33 0.38 32.86 2.57 5.62 0.06	0.08 14.44 80.00 2.25 319.00 24.97 71.94 0.51	0.06 12.38 80.00 2.25 331.89 25.97 80.65 0.53	0.08 14.44 80.00 2.25 331.89 25.97 80.65 0.54
W3	0.02 2.50 9.58 0.38 1.86 2.57 5.62 0.02	0.08 11.67 57.50 2.25 18.03 24.97 71.94 0.19	0.06 10.00 57.50 2.25 18.76 25.97 80.65 0.20	0.08 11.67 57.50 2.25 18.76 25.97 80.65 0.20
W4	0.02 4.52 10.83 0.38 1.86 2.57 5.62 0.03	0.08 21.11 65.00 2.25 18.03 24.97 71.94 0.20	0.06 18.10 65.00 2.25 18.76 25.97 80.65 0.21	0.08 21.11 65.00 2.25 18.76 25.97 80.65 0.21
W5	0.02 0.14 8.33 0.38 1.86 2.57 5.62 0.02	0.08 0.67 50.00 2.25 18.03 24.97 71.94 0.17	0.06 0.57 50.00 2.25 18.76 25.97 80.65 0.18	0.08 0.67 50.00 2.25 18.76 25.97 80.65 0.18