Title
Complete genome sequence of Isosphaera pallida type strain (IS1BT)

Permalink
https://escholarship.org/uc/item/8v86c49q

Journal
Environmental Microbiome, 4(1)

ISSN
2524-6372

Authors
Göker, Markus
Cleland, David
Saunders, Elizabeth
et al.

Publication Date
2011

DOI
10.4056/sigs.1533840

Peer reviewed
Complete genome sequence of *Isosphaera pallida* type strain (IS1B)

Markus Göker¹, David Cleland², Elizabeth Saunders³, Alla Lapidus³, Matt Nolan³, Susan Lucas³, Nancy Hammon³, Shweta Deshpande¹, Jan-Fang Cheng², Roxane Tapia³,⁴, Cliff Han³,⁴, Lynne Goodwin³,⁴, Sam Pitluck³, Konstantinos Liolios³, Ioanna Pagani³, Natalia Ivanova³, Konstantinos Mavromatis³, Amirita Patti³, Amy Chen³, Krishna Palaniappan³, Miriam Land³,⁵, Loren Hauser³,⁶, Yun-Juan Chang³,⁶, Cynthia D. Jeffries³,⁶, John C. Detter³,⁴, Brian Beck³, Tanja Woyke³, James Bristow³, Jonathan A. Eisen³,⁷, Victor Markowitz⁵, Philip Hugenholtz³,⁸, Nikos C. Kyrpides³, and Hans-Peter Klenk¹*

¹ DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
² ATCC - American Type Culture Collection, Manassas, Virginia, USA
³ DOE Joint Genome Institute, Walnut Creek, California, USA
⁴ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁵ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁷ University of California Davis Genome Center, Davis, California USA
⁸ Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia

*Corresponding author: Hans-Peter Klenk

Keywords: thermophilic, aerobic, filamentous, budding, gliding motility, Gram-negative, phototactic comets, gas vesicles, chemoheterotrophic, hot spring, Planctomycetaceae, GEBa

Isosphaera pallida (ex Worochin 1927) Giovannoni et al. 1995 is the type species of the genus *Isosphaera*. The species is of interest because it was the first heterotrophic bacterium known to be phototactic, and it occupies an isolated phylogenetic position within the Planctomycetaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus *Isosphaera* and the third of a member of the family Planctomycetaceae. The 5,472,964 bp long chromosome and the 56,340 bp long plasmid with a total of 3,763 protein-coding and 60 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain IS1B⁷ (= ATCC 43644) is the type strain of *Isosphaera pallida* which in turn is the type and sole species of the genus *Isosphaera* [1,2]. The genus *Isosphaera* is one out of nine genera in the family Planctomycetaceae [3]. The genus name is derived from the Greek adjective *isos*, equal and *sphaera*, a ball, globe, yielding *Isosphaera*, sphere of equal size [4]. The species epithet *pallida* is derived from the Latin adjective *pallida*, pale [1]. Strain IS1B⁷ was isolated from a hot spring in Kahneetah, Oregon, USA [1]. Other closely related strains belonging to the species were isolated from several warm springs in North America [1]. The cells resemble *Isocystis pallida* Worochin 1927 [5] which was previously described as a cyanobacterium and later as a yeast. Here we present a summary classification and a set of features for *I. pallida* strain IS1B⁷, together with the description of the complete genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of strain IS1B⁷ was compared using NCBI BLAST under default values (e.g., considering only the best 250 hits) with the most recent release of the Greengenes database [6] and the relative frequen-
cies, weighted by BLAST scores, of taxa and keywords (reduced to their stem [7]) were determined. The five most frequent genera were *Isosphaera* (35.4%), *Nostocoida* (26.4%; a genus with *Candidatus* status [8]), *Singulisphaera* (20.4%), 'Isosphaera' (15.9%; a misspelling of *Isosphaera*) and *Planctomyces* (1.9%). The species yielding the highest score was *Candidatus Nostocoida limicola* [8]. The five most frequent keywords within the labels of environmental samples which yielded hits were 'skin' (3.9%), 'soil' (3.0%), 'fossa' (2.2%), 'adult, zebrafish' (2.2%) and 'microbi' (1.9%). The two most frequent keywords within the labels of environmental samples which yielded hits of a higher score than the highest scoring species were 'adult, zebrafish' (10.0%) and 'conventionally-rais, digest, gender, germ-fre, gut, habitat, host, mice, micro-biota, mix, pool, recip, reciproc, select, tract, transplant' (5.0%), i.e. many ties occurred, rendering it difficult to ecologically interpret this outcome.

Figure 1 shows the phylogenetic neighborhood of *I. pallida* IS1BT in a 16S rRNA based tree. The sequences of the three copies in the genome do not differ from each other, and differ by two nucleotides from the previously published 16S rRNA sequence (AJ231195).

Cells of strain IS1BT are spherical with 2.5 to 3 µm in diameter (Figure 2 and Table 1), with cell growth and division occurring by intercalary budding, resulting in filaments [1]. The cells are salmon-colored (caused by carotenoids), contain gas vesicles and resemble *Isocystis pallida* Worochin 1927 [5]. Ultra-thin sections observed by TEM revealed pit-like ultrastructural features in the cell wall [1,24]. The cells contain numerous pili (not visible in Figure 2) but no flagella, and form motile phototactic "comets" in liquid cultures or on media containing Gelrite® as the solidifying agent [1].

Figure 1. Phylogenetic tree highlighting the position of *I. pallida* relative to the other type strains within the class family *Planctomycetacia*. The tree was inferred from 1,362 aligned characters [9,10] of the 16S rRNA gene sequence under the maximum likelihood criterion [11] and rooted in with members of the class *Physicisphaerae*. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 450 bootstrap replicates [12] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [13] are shown in blue, published genomes in bold [14,15].

Figure 2. Photomicrograph (1000 x) of *I. pallida* IS1BT (provided by ATCC)
Table 1. Classification and general features of *I. pallida* IS1B according to the MIGS recommendations [16]

MIGS ID	Property	Term	Evidence code
	Domain	*Bacteria*	TAS [17]
	Phylum	*Planctomycetes*	TAS [18]
	Class	*Planctomycetacia*	TAS [19]
	Order	*Planctomycetales*	TAS [3,20-22]
	Family	*Planctomycetaceae*	TAS [3,20]
	Genus	*Isosphaera*	TAS [1,2]
	Species	*Isosphaera pallida*	TAS [1,2]
	Type strain	IS1B	TAS [1]
	Gram stain	variable to negative	TAS [1]
	Cell shape	coccoid, chain-forming	TAS [1]
	Motility	motile by gliding	TAS [1]
	Sporulation	not reported	
	Temperature range	40–55°C, thermophile	TAS [1]
	Optimum temperature	41°C	TAS [1]
	Salinity	about 0.1% NaCl	TAS [1]
MIGS-22	Oxygen requirement	obligately aerobic	TAS [1]
MIGS-6	Carbon source	glucose, lactate	TAS [1]
MIGS-15	Energy source	chemoheterotrophic	TAS [1]
	Habitat	algal mat, fresh water	TAS [1]
	Biotic relationship	not reported	
MIGS-14	Pathogenicity	none	NAS
	Biosafety level	1	NAS
	Isolation	hot spring	TAS [1]
MIGS-4	Geographic location	Kah-nee-tah Hot Spring, Oregon,USA	TAS [1]
MIGS-5	Sample collection time	1987 or before	TAS [1]
MIGS-4.1	Latitude	44.86	
MIGS-4.2	Longitude	-121.20	
MIGS-4.3	Depth	0 m, probably surface waters	NAS
MIGS-4.4	Altitude	not reported	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [23]. If the evidence code is IDA, the property was observed by one of the authors or an expert mentioned in the acknowledgements.

Chemotaxonomy

Muramic acid and diaminopimelic acid are absent from the cell wall [1,24], like in other members of the *Planctomycetes*. Cells stain Gram-negative but lack an outer membrane [1]. Cells possess a proteinaceous cell wall structure without cysteine, methionine, proline and tryptophan [24]. Ester-linked lipids with predominantly unbranched C$_{14}$ and C$_{18}$ fatty acids, traces of C$_{18:1}$ acids, no hydroxyl-fatty acids [24].

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [25], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [26]. The genome project is deposited in the Genomes OnLine Database [13] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute ([JGI]). A summary of the project information is shown in Table 2.

http://standardsingenomics.org
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library, one 454 PE library (11 kb insert size), one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	109.5 × Illumina; 31.2 × pyrosequence
MIGS-30	Assemblers	Newbler version 2.0.00.20-PostRelease-11-05-2008-gcc-3.4.6, Velvet, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
INSDB ID		CP002353 (chromosome) CP002354 (plasmid)
Genbank Date of Release	January 26, 2011	
GOLD ID		Gc01591
NCBI project ID		32825
Database: IMG-GEBA	2503538023	
Source material identifier	ATCC 43644	
Project relevance		Tree of Life, GEBA

Growth conditions and DNA isolation

I. pallida IS1BT, ATCC 43644, has been in the American Type Culture Collection since July 1987. The culture used at ATCC to prepare genomic DNA (gDNA) for sequencing was only two transfers away from the original deposit. The purity of the culture was determined by growth in ATCC medium 1962 Broth [27] at 45°C under aerobic conditions. Cells were harvested by centrifugation after 72 hours of incubation. The cell pellet exhibited a salmon color. Genomic DNA was extracted from lysozyme-treated cells using a standard CTAB and phenol-chloroform protocol. The purity, quality and size of the bulk gDNA preparation were assessed according to DOE-JGI guidelines. Amplification and partial sequencing of the 16S rRNA gene confirmed the isolate as *I. pallida*. The quantity of the DNA was determined on a 1% agarose using gel mass markers of known concentration supplied by JGI. The average fragment size of the purified gDNA determined to be ~43 kb by pulsed-field gel electrophoresis.

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [28]. Pyrosequencing reads were assembled using the Newbler assembler version 2.0.00.20-PostRelease-11-05-2008-gcc-3.4.6 (Roche). The initial Newbler assembly, consisting of 36 contigs in 1 scaffold, was converted into a phrap assembly by making fake reads from the consensus [29], to collect the read pairs in the 454 paired end library. Illumina GAii sequencing data (461 Mb) was assembled with Velvet [30] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The 454 draft assembly was based on 172.7 Mb of 454 draft data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed software package [29] was used for sequence assembly and quality assessment in the subsequent finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution [28], Dupfinisher, or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epigenome Technologies, Madison, WI) [31]. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F.Chang, unpublished). A total of 411 additional reactions and 14 shatter libraries were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to correct potential base errors and increase consensus quality using a software Polisher developed at JGI [32]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 140.7 × coverage of the genome. The final assembly contained 764,175 pyrosequence and 16,816,247 Illumina reads.
Genome annotation
Genes were identified using Prodigal [33] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [34]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [35].

Genome properties
The genome consists of a 5,472,964 bp long chromosome with a 62% GC content and a 56,340 bp plasmid with 67% GC content (Figures 3a and 3b and Table 3). Of the 3,823 genes predicted, 3,763 were protein-coding genes, and 60 RNAs; 41 pseudogenes were identified. The majority of the protein-coding genes (59.7%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Figure 3a. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Isosphaera pallida type strain (IS1BT)

Figure 3b. Graphical circular map of the plasmid (not drawn to scale with chromosome). From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Attribute	Value	% of Total
Genome size (bp)	5,529,304	100.00%
DNA coding region (bp)	4,671,376	84.48%
DNA G+C content (bp)	3,455,288	62.49%
Number of replicons	2	
Extrachromosomal elements	1	
Total genes	3,823	100.00%
RNA genes	60	1.57%
rRNA operons	3	
Protein-coding genes	3,763	98.43%
Pseudo genes	41	1.07%
Genes with function prediction	2,284	59.74%
Genes in paralog clusters	227	5.94%
Genes assigned to COGs	2,408	62.99%
Genes assigned Pfam domains	2,563	67.04%
Genes with signal peptides	792	20.72%
Genes with transmembrane helices	967	25.29%
CRISPR repeats	3	
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	138	4.7	Translation, ribosomal structure and biogenesis
A	1	0.0	RNA processing and modification
K	166	5.7	Transcription
L	165	5.7	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	24	0.8	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	54	1.9	Defense mechanisms
T	187	6.5	Signal transduction mechanisms
M	196	6.8	Cell wall/membrane/envelope biogenesis
N	77	2.7	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	128	4.4	Intracellular trafficking and secretion, and vesicular transport
O	132	4.5	Posttranslational modification, protein turnover, chaperones
C	157	5.4	Energy production and conversion
G	176	6.1	Carbohydrate transport and metabolism
E	197	6.8	Amino acid transport and metabolism
F	57	2.0	Nucleotide transport and metabolism
H	152	5.3	Coenzyme transport and metabolism
I	83	2.9	Lipid transport and metabolism
P	110	3.8	Inorganic ion transport and metabolism
Q	70	2.4	Secondary metabolites biosynthesis, transport and catabolism
R	435	15.0	General function prediction only
S	190	6.6	Function unknown
-	1,415	37.0	Not in COGs

Acknowledgements
This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle, and Oak Ridge National Laboratory under contract DE-AC05-00OR22725.

References
1. Giovannoni SJ, Schabtach E, Castenholtz RW. *Isosphaera pallida*, gen. and comb. nov., a gliding, budding eubacterium from hot springs. *Arch Microbiol* 1987; 147:276-284. doi:10.1007/BF00463488
2. Validation List No. 54. *Int J Syst Bacteriol* 1995; 45:619-620. doi:10.1099/00207713-45-3-619
3. Schlesner H, Stackebrandt E. Assignment of the genera Planctomycyes and Pirella to a new family Planctomycetaceae fam. nov. and description of the order Planctomycetales ord. nov. *Syst Appl Microbiol* 1986; 8:174-176.
4. Euzéby JP. List of Bacterial Names with Standing in Nomenclature: a folder available on the internet. *Int J Syst Bacteriol* 1997; 47:590-592. PubMed doi:10.1099/00207713-47-2-590
5. Woronichin NN. Materiali kagologitscheskoj flore i rastitelnosti mineralnych istotschnikov gruppi Kaukaskich mineralnych wod. *Trav Inst Balneol aux Eaux Miner du Caucase* 1927; 5:90-121.
6. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K, Huber T, Dalevi D, Hu P, Andersen G. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible

http://standardsingenomics.org
Isosphaera pallida type strain (IS1BT)

with ARB. Appl Environ Microbiol 2006; 72:5069-5072. PubMed doi:10.1128/AEM.03006-05

7. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14:130-137.

8. Backall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V, Sviour RJ. ‘Candidatus Nostocoida limicola’, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 2000; 50:703-709. PubMed

9. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

10. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

11. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

12. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

13. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009; status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346-D354; doi:10.1093/nar/gkp848. PubMed

14. Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavromatis K, Lucas S, Glavina Del Rio T, Nolan M, Chen F, Tice H, et al. Complete genome sequence of Pirellula staleyi type strain (ATCC 27377T). Stand Genomic Sci 2009; 1:308-316. PubMed doi:10.4056/sigs.1052813

15. LaButti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, et al. Complete genome sequence of Planctomyces limnophilus type strain (290T). Stand Genomic Sci 2010; 3:47-56. PubMed doi:10.4056/sigs.1052813

16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angioli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

17. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

18. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Springer, New York, 2001, p. 119-169.

19. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 155-166.

20. List Editor. Validation List no. 23. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1987; 37:179. doi:10.1099/00207713-37-2-179

21. Euzéby JP, Tindall BJ. Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. Int J Syst Evol Microbiol 2001; 51:725-727. PubMed

22. Judicial Commission of the International Committee on Systematics of Prokaryotes. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Achleplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobiun, respectively. Opinion 79. Int J Syst Evol Microbiol 2005; 55:517-518. PubMed doi:10.1099/ijs.0.63548-0

23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

24. Giovannoni SJ, Godchaux W, III, Schabtach E, Castenholz RW. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium.

70 Standards in Genomic Sciences
from hot springs. *J Bacteriol* 1987; **169**:2702-2707. PubMed

25. Klenk HP, Göker M. En route to a genome-based classification of *Archaea* and *Bacteria?* *Syst Appl Microbiol* 2010; **33**:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

26. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, *et al.* A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea.* *Nature* 2009; **462**:1056-1060. PubMed doi:10.1038/nature08656

27. http://www.atcc.org/Attachments/3128.pdf

28. The DOE Joint Genome Institute. http://www.jgi.doe.gov

29. Phrap and Phred for Windows. MacOS, Linux, and Unix. http://www.phrap.com

30. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; **18**:821-829. PubMed doi:10.1101/gr.074492.107

31. Han C, Chain P. 2006. Finishing repeat regions automatically with Dupfinisher. in Proceeding of the 2006 international conference on bioinformatics & computational biology. Edited by Hamid R. Arabnia & Homayoun Valafar, CSREA Press. June 26-29, 2006: 141-146.

32. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008

33. Hyatt D, Chen GL, LoCascio PF, Land ML, Larkin FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; **11**:119. PubMed doi:10.1186/1471-2105-11-119

34. Pati A, Ivanova N, Mikhailova N, Ovchinkova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. *Nat Methods* 2010; **7**:455-457. PubMed doi:10.1038/nmeth.1457

35. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; **25**:2271-2278. PubMed doi:10.1093/bioinformatics/btp393