The parabolic Sturmian-function basis representation of the six-dimensional Coulomb Green’s function

S A Zaytsev

Pacific National University, Khabarovsk, 680035, Russia

E-mail: zaytsev@fizika.khstu.ru

Received 5 June 2008, in final form 11 August 2008
Published 19 November 2008
Online at stacks.iop.org/JPhysA/42/015202

Abstract
The square integrable basis set representation of the resolvent of the asymptotic three-body Coulomb wave operator in parabolic coordinates is obtained. The resulting six-dimensional Green’s function matrix is expressed as a convolution integral over separation constants.

PACS number: 03.65.Nk

1. Introduction
The three-body Coulomb continuum problem has represented up till now a very difficult problem which is present in many areas of physics. The best known and widely used approximate solution is expressed in terms of a product of three Coulomb waves, the so-called C3 model [1–4] (also called the 3C or Brauner–Briggs–Klar (BBK) model). The C3 wavefunction satisfies the correct asymptotic conditions, when the three particles are far away from each other (the so-called region \(\Omega_0\)). The C3 wavefunction has been, and is currently, successfully used as the final-state wavefunction for calculating cross sections for electron-impact double ionization of helium (so-called \((e, 3e)\) processes) [5–7], and the calculation results are in good agreement with the experimental [8] both in shape and in absolute value. On the other hand, the C3 wavefunction describes poorly the behavior at intermediate interparticle distances and when one particle is far away from the other two. The investigation of the role of the description of initial and final states in \((\gamma, 2e)\) and \((e, 2e)\) collisions allow the authors of [9] to conclude that collisional processes cannot be easily used as a conclusive test for the quality of approximated wavefunctions and the overall agreement with absolute \((e, 3e)\) experiment data is fortuitous.

The C3 wavefunction is obtained by neglecting all mixed derivatives of the three-body Hamiltonian written in generalized parabolic coordinates [1]. Many improvements to the C3 model have been developed by considering in some approximate way of the neglected terms of the kinetic energy. Most of them use the same form for the wavefunction, i.e. the
product of three two-body Coulomb wavefunctions. These modifications introduce position- or velocity-dependent effective charges (see, e.g., [10, 11]). Besides, modifications in the relative momenta of the particles have been introduced in [12] to describe the three-body Coulomb wavefunction in the regions \(\Omega_\alpha \) where the mutual distance between particles \(\beta \) and \(\gamma \) is much smaller than the distance between their center of mass and the particle \(\alpha \) (see also [13] and references therein).

Some attempts to go beyond the C3 model have also been made. The author of [14] has suggested to express the three-body Coulomb continuum wavefunction in the ‘inner’ zone (where the potential energy dominates the kinetic one) as a linear superposition of C3 wavefunctions with different relative momenta between the particles. In [15–17] the \(\Phi_2 \) model has been proposed and developed. Within this approach an approximate analytical wavefunction is expressed in terms of the hypergeometric function of two variables. Using the representation of the \(\Phi_2 \) model wavefunction as a series expansion in powers of coordinates the authors of [15–17] have shown that the C3 wavefunction is included as a first order in this expansion. The authors of [17] have also pointed out that a Faddeev-type equation can be derived for the three-body Coulomb continuum wavefunction considering the Green’s function of the asymptotic separable Coulomb wave operator and taking an approximation to the non-orthogonal part of the kinetic energy as the components of the perturbed potential.

In the previous paper [18] we have attempted to apply the \(J \)-matrix method [19] (see also [20] and references therein) for solving numerically the three-body Coulomb continuum problem. Within this version of the \(J \)-matrix formalism, the three-body Coulomb continuum wavefunction is expanded in an infinite series of six-dimensional \(L_2 \) basis functions. Then the initial Schrödinger equation is transformed into a discrete analog of the Lippmann–Schwinger equation. However, the corresponding Green’s function was not derived in [18]. The goal of this paper is to obtain the expression for the six-dimensional Coulomb Green’s function matrix elements.

Below, we present some relations needed for understanding the separable approximation to the Schrödinger equation for the three-body Coulomb problem.

Consider the Schrödinger equation for a three-body Coulomb system with masses \(m_1, m_2, m_3 \) and charges \(Z_1, Z_2, Z_3 \), respectively,

\[
\left[-\frac{1}{2\mu_{12}} \Delta_R - \frac{1}{2\mu_3} \Delta_r + \frac{Z_1 Z_2}{r_{12}} + \frac{Z_2 Z_3}{r_{23}} + \frac{Z_1 Z_3}{r_{13}} \right] \Psi = E \Psi. \tag{1}
\]

Here \(R \) and \(r \) are the Jacobi vectors

\[
R = r_1 - r_2, \quad r = r_3 - \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2}, \tag{2}
\]

\(r_{ls} = r_l - r_s \) is the relative position variable, \(r_{ls} = |r_{ls}|. \) The reduced masses are

\[
\mu_{12} = \frac{m_1 m_2}{m_1 + m_2}, \quad \mu_3 = \frac{(m_1 + m_2)m_3}{m_1 + m_2 + m_3}. \tag{3}
\]

The eigenenergy \(E \) is given by \(E = \frac{1}{2\mu_{12}} K^2 + \frac{1}{2\mu_3} k^2. \) The ansatz

\[
\Psi = e^{i(K \cdot R + k \cdot r)/\sqrt{2}} \tag{4}
\]

removes the eigenenergy giving the equation for \(\overline{\Psi} :\)

\[
\left[-\frac{1}{2\mu_{12}} \Delta_R - \frac{1}{2\mu_3} \Delta_r - i \frac{K \cdot \nabla_R}{\mu_{12}} - i \frac{k \cdot \nabla_r}{\mu_3} + \frac{Z_1 Z_2}{r_{12}} + \frac{Z_2 Z_3}{r_{23}} + \frac{Z_1 Z_3}{r_{13}} \right] \overline{\Psi} = 0. \tag{5}
\]
Let \(D \) denote the operator in the square braces in (5). This operator is considered in terms of parabolic coordinates introduced by Klar [1]

\[
\begin{align*}
\xi_1 &= r_{23} + \hat{k}_{23} \cdot r_{23}, \\
\eta_1 &= r_{23} - \hat{k}_{23} \cdot r_{23}, \\
\xi_2 &= r_{13} + \hat{k}_{13} \cdot r_{13}, \\
\eta_2 &= r_{13} - \hat{k}_{13} \cdot r_{13}, \\
\xi_3 &= r_{12} + \hat{k}_{12} \cdot r_{12}, \\
\eta_3 &= r_{12} - \hat{k}_{12} \cdot r_{12},
\end{align*}
\]

where \(\hat{k}_{ls} = \frac{k_{ls} - k_{ms}}{m_r m_s} \) is the relative momentum vector between the particles \(l \) and \(s \), \(\hat{k}_{ls} \) is the unit vector: \(\hat{k}_{ls} = \frac{k_{ls}}{k_{ls}} \), \(k_{ls} = |k_{ls}| \). Then \(D \) is expressed as a sum of two parts

\[
D = D_0 + D_1,
\]

where \(D_0 \) is given by

\[
D_0 = \frac{3}{\mu_{ls}(\xi_j + \eta_j)} \left[\hat{h}_{\xi_j} + \hat{h}_{\eta_j} + 2k_{ls}t_{ls} \right],
\]

for \(j \neq l, s \) and \(l < s \). Here \(t_{ls} = \frac{Z_l Z_s \mu_{ls}}{k_{ls}} \), \(\mu_{ls} = \frac{m_l m_s}{m_r} \); the one-dimensional operators \(\hat{h}_{\xi_j} \) and \(\hat{h}_{\eta_j} \) are defined by

\[
\hat{h}_{\xi_j} = -2 \left(\frac{\partial}{\partial \xi_j} \xi_j \frac{\partial}{\partial \xi_j} + ik_{ls} \xi_j \frac{\partial}{\partial \xi_j} \right), \quad \hat{h}_{\eta_j} = -2 \left(\frac{\partial}{\partial \eta_j} \eta_j \frac{\partial}{\partial \eta_j} - ik_{ls} \eta_j \frac{\partial}{\partial \eta_j} \right).
\]

\(D_0 \) is the leading term which provides a three-body continuum wavefunction that satisfies exact asymptotic boundary conditions for Coulomb systems in the limit of all particles being far from each other [1]. The operator \(D_1 \), which contains all mixed second derivatives \(\frac{\partial^2}{\partial \xi_j \partial \xi_l} \), \(\frac{\partial^2}{\partial \eta_j \partial \eta_l} \), \(j \neq l \) and \(\frac{\partial^2}{\partial \xi_j \partial \eta_l} \) (see, e.g., [21]), is regarded as a small perturbation which does not violate the boundary conditions [1].

Further, if we neglect \(D_1 \) from equation (5) we obtain the approximate equation

\[
D_0 \Psi_1 = 0,
\]

which is separable with an infinite number of solutions [1]

\[
\Psi = \prod_{j=1}^{3} f_j(\xi_j, \eta_j)
\]

and each of the functions \(f_j(\xi_j, \eta_j) \) is a solution of equation [1]:

\[
\frac{1}{\mu_{ls}(\xi_j + \eta_j)} \left[\hat{h}_{\xi_j} + \hat{h}_{\eta_j} + 2k_{ls}t_{ls} \right] f_j(\xi_j, \eta_j) = -C_j f_j(\xi_j, \eta_j).
\]

The separation constant \(C_j \) satisfy the constraints [1]

\[
C_1 + C_2 + C_3 = 0.
\]

The solution \(f_j \) is represented in the form \(f_j(\xi_j, \eta_j) = u_j(\xi_j)v_j(\eta_j) \), and the functions \(u_j(\xi_j) \) and \(v_j(\eta_j) \) satisfy the equations

\[
\begin{align*}
[\hat{h}_{\xi_j} + 2k_{ls}A_j + \mu_{ls}C_j \xi_j]u_j(\xi_j) &= 0, \\
[\hat{h}_{\eta_j} + 2k_{ls}B_j + \mu_{ls}C_j \eta_j]v_j(\eta_j) &= 0,
\end{align*}
\]

with the constraint

\[
A_j + B_j = t_{ls}.
\]

The general solutions of (14) can be obtained by transforming the confluent hypergeometric equation (see, e.g., [21]). Thus, the general solution of (10) is expressed in terms of a product of six Kummer hypergeometric functions (the so-called C6 model wavefunction \(\Psi_{C6} \) [21]). By setting specific values for separation constants \(A_j, B_j, C_j \) solutions with a particular asymptotic behavior can be obtained. For instance, putting \(C_j = B_j = 0 \) and \(A_j = t_{ls} \), the
C3 wavefunction with pure outgoing behavior is obtained [1]:

\[\Psi_{C3} = \prod_{j=1}^{3} F_1(i\ell_j, 1; -i k_j \xi_j). \]
\[\text{(16)} \]

The exact three-body Coulomb continuum wavefunction \(\Psi \) satisfies the six-dimensional differential equation

\[[D_0 + D_1] \Psi = 0. \]
\[\text{(17)} \]

Then, multiplying (17) by \(\prod_{j=1}^{3} \mu_{ls}(\xi_j + \eta_j) \) yields [18]

\[[\hat{h} + \hat{V}] \Psi = 0 \]
\[\text{(18)} \]

where

\[\hat{h} = \prod_{j=1}^{3} \mu_{ls}(\xi_j + \eta_j) D_0 = \mu_{13}(\xi_2 + \eta_2) \mu_{12}(\xi_3 + \eta_3) \hat{h}_1 \]
\[+ \mu_{23}(\xi_1 + \eta_1) \mu_{12}(\xi_3 + \eta_3) \hat{h}_2 + \mu_{23}(\xi_1 + \eta_1) \mu_{13}(\xi_2 + \eta_2) \hat{h}_3, \]
\[\text{(19)} \]

\[\hat{h}_j = \hat{h}_{\xi_j} + \hat{h}_{\eta_j} + 2k_{ls}\ell_j \]
\[\text{(20)} \]

and

\[\hat{V} = \prod_{j=1}^{3} \mu_{ls}(\xi_j + \eta_j) D_1. \]
\[\text{(21)} \]

In turn, equation (18), in view of the boundary condition

\[\Psi \rightarrow \Psi_{C3} \quad \text{or} \quad \Psi \rightarrow \Psi_{C6}, \]
\[\text{(22)} \]

is transformed [18] into the following Lippmann–Schwinger-type equation:

\[\Psi = \Psi_{C3} + \hat{S} \hat{V} \Psi \quad \text{or} \quad \Psi = \Psi_{C6} + \hat{S} \hat{V} \Psi, \]
\[\text{(23)} \]

where \(\hat{S} \) is the resolvent of the operator \(\hat{h} \) (19). It has been suggested in [18] to treat the equation (23) within the context of \(L^2 \) parabolic Sturmian basis set [22]

\[|N\rangle = \prod_{j=1}^{3} \phi_{n_j,m_j}(\xi_j, \eta_j), \]
\[\text{(24)} \]

\[\phi_{n_j,m_j}(\xi_j, \eta_j) = \psi_{n_j}(\xi_j) \psi_{m_j}(\eta_j), \]
\[\text{(25)} \]

\[\psi_{n}(x) = \sqrt{2b} e^{-bx} L_n(2bx), \]
\[\text{(26)} \]

where \(b \) is the scaling parameter. Thus, the wavefunction \(\Psi \) is expanded in basis function series

\[\Psi = \sum_{N} a_N |N\rangle. \]
\[\text{(27)} \]

Then, the projection of (23) onto functions \(|N\rangle \) yields an infinite set of equations in the coefficients \(a_N \)

\[a = a^{(0)} - \hat{S} \hat{V} a. \]
\[\text{(28)} \]

where \(\hat{S} \) and \(\hat{V} \) are the matrices with elements \(\langle N | \hat{S} | N' \rangle \) and \(\langle N | \hat{V} | N' \rangle \), respectively, \(a \) is the vector with components \(a_N, a_N^{(0)} = \langle N | \Psi_{C3} \rangle \) or \(a_N^{(0)} = \langle N | \Psi_{C6} \rangle \).
The problem of calculation of the matrix elements \(\langle N | \hat{V} | N' \rangle \) of the operator \(\hat{V} \) (which contains very involved algebraic functions of the parabolic variables) is beyond the scope of the present paper. At this stage it will suffice to consider that the short-range operator \(\hat{V} \) can be approximated by a finite-order matrix \(\hat{V} \).

In the previous paper [18] the resolvent \(\hat{G}_j \) for the two-dimensional operator

\[
\hat{h}_j + \mu_{1j} C_j (\epsilon_j + \eta_j)
\]

has been treated within the context of the basis set (25). In particular, a matrix representation \(\hat{G}_j \) of the Green’s function \(\hat{G}_j \) has been obtained which is formally the matrix inverse to the infinite matrix \([h_j + \mu_{1j} Q_j] \) of the operator (29):

\[
[h_j + \mu_{1j} Q_j] \hat{G}_j (t_{12}; \mu_{1j} C_j) = \mathbf{I}_j.
\]

Here

\[
h_j = h_{\xi_j} \otimes I_{\eta_j} + I_{\xi_j} \otimes h_{\eta_j} + 2k_3 t_3 I_j
\]

is the matrix of the operator \(h_j \) in the basis (25), \(I_{\xi_j} \) and \(I_{\eta_j} \) are the unit matrices. \(Q_j = Q_{\xi_j} \otimes I_{\eta_j} + I_{\xi_j} \otimes Q_{\eta_j} \), where \(Q_{\xi_j} \) and \(Q_{\eta_j} \) are the matrices of \(\xi_j \) and \(\eta_j \) in basis (26), respectively.

In this paper, we consider a Green’s function \(\hat{\mathbf{G}} \) associated with the six-dimensional operator \(\hat{h} \) (19). Namely, we construct a matrix \(\hat{\mathbf{G}} \) which is formally inverse to the long-range operator (19) infinite matrix

\[
\hat{h} = \mu_{13} \mu_{12} h_1 \otimes Q_2 \otimes Q_3 + \mu_{23} \mu_{12} Q_1 \otimes h_2 \otimes Q_3 + \mu_{23} \mu_{13} Q_1 \otimes Q_2 \otimes \mathbf{h}_3.
\]

As we pointed out in [18], the six-dimensional Green’s function \(\hat{\mathbf{G}} \) is expressed as the convolution integral

\[
\hat{\mathbf{G}} = \mathbb{N} \int \int dC_1 dC_2 G_1 (t_{12}; \mu_{23} C_1) \otimes G_2 (t_{12}; \mu_{13} C_2) \otimes G_3 (t_{12}; -\mu_{12} (C_1 + C_2)).
\]

where \(G_j \) are the two-dimensional Green’s functions \(\hat{G}_j \) matrices, \(\mathbb{N} \) is a normalizing factor. Thus, our problem now is to determine the paths of integration over the separation constants \(C_1 \) and \(C_2 \) in (33) and to find the corresponding normalizing factor \(\mathbb{N} \) such that the condition

\[
\hat{h} \hat{\mathbf{G}} = \mathbf{I}_1 \otimes \mathbf{I}_2 \otimes \mathbf{I}_3
\]

holds. For this purpose consider the product \(\hat{h} \hat{\mathbf{G}} \). From the relation (30) we obtain

\[
\hat{h} \hat{\mathbf{G}} = \mathbb{N} \left\{ \int \int dC_1 dC_2 [I_1 - \mu_{23} C_1 G_1 (t_{12}; \mu_{23} C_1)] \otimes \mu_{13} Q_2 G_2 (t_{12}; \mu_{13} C_2) \right. \\
\otimes \mu_{12} Q_3 G_3 (t_{12}; -\mu_{12} (C_1 + C_2)) + \int \int dC_1 dC_2 \mu_{23} Q_1 G_1 (t_{12}; \mu_{23} C_1) \\
\otimes [I_2 - \mu_{13} C_2 Q_2 G_2 (t_{12}; \mu_{13} C_2)] \\
\otimes \mu_{12} Q_3 G_3 (t_{12}; -\mu_{12} (C_1 + C_2)) + \int \int dC_1 dC_2 \mu_{23} Q_3 G_3 (t_{12}; \mu_{23} C_1) \\
\otimes \mu_{13} Q_2 G_2 (t_{12}; \mu_{13} C_2) \otimes [I_3 + \mu_{12} (C_1 + C_2) Q_3 G_3 (t_{12}; -\mu_{12} (C_1 + C_2))].
\]
and hence
\[\mathbf{hG} = 8 \left\{ \int \int dC_1 dC_2 \left[I_1 \otimes \mu_{13} Q_{22} G_2(t_{13}; \mu_{13} C_2) \otimes \mu_{12} Q_{33} G_3(t_{12}; -\mu_{12} (C_1 + C_2)) + \mu_{23} Q_{11} G_1(t_{23}; \mu_{23} C_1) \otimes \mu_{12} Q_{33} G_3(t_{12}; -\mu_{12} (C_1 + C_2)) \right] \right. \]
\[+ \left[\mu_{23} Q_{11} \int dC_1 G_1(t_{23}; \mu_{23} C_1) \right] \otimes \left[\mu_{13} Q_{22} \int dC_2 G_2(t_{13}; \mu_{13} C_2) \right] \otimes I_1 \right\}. \] (36)

As a first step toward our goal we consider the integrals
\[\int dC_j G_j (t; \mu C_j) \] (37)
inside the figure brackets on the right-hand side of (36).

In section 2 completeness of the eigenfunctions of the two-dimensional operator (29) is considered. In particular, an integral representation of the matrix \(A \) which is inverse to the infinite matrix \(Q \) of the operator \((\xi + \eta) \) in the basis (25) is obtained. In section 3 it is demonstrated that the integral (37) taken along an appropriate contour is proportional to the matrix \(A \) obtained in the previous section. Finally, section 4 presents a convolution integral representation of the six-dimensional Coulomb Green’s function matrix.

2. Completeness relations

2.1. The continuous spectrum

Of particular interest are the regular solutions
\[f(\gamma, \tau, \xi, \eta) = u(\gamma, \tau, \xi)v(\gamma, \tau, \eta) \] (38)
of the system
\[[\hat{h}_\xi + 2k t + \mu C \xi] u(\gamma, \tau, \xi) = 0, \] (39)
\[[\hat{h}_\eta + 2k(t_0 - t) + \mu C \eta] v(\gamma, \tau, \xi) = 0. \] (40)

Obviously, the regular solutions \(u \) and \(v \) are proportional to confluent hypergeometric functions (see, e.g., [21])
\[u(\gamma, \tau, \xi) = e^{i(\gamma - k) \xi} F_1 \left(\frac{1}{2} + i \tau, 1, -i\gamma \xi \right) \] (41)
and
\[v(\gamma, \tau, \eta) = e^{-i(\gamma - k) \eta} F_1 \left(\frac{1}{2} + i(\tau - \tau_0), 1, i\gamma \eta \right) \]
\[= e^{i(\gamma + k) \eta} F_1 \left(\frac{1}{2} + i(\tau_0 - \tau), 1, -i\gamma \eta \right), \] (42)
where
\[\mu C = \frac{k^2}{2} - \frac{\gamma^2}{2}, \quad \tau = \frac{k}{\gamma} \left(t + \frac{i}{2} \right), \quad \tau_0 = \frac{k}{\gamma} t_0. \] (43)

It should be noted that since the representation of the two-dimensional Coulomb Green’s functions matrix elements [18] involves an integration over \(\tau \) from \(-\infty\) to \(\infty \), in the subsequent discussion we assume that \(\tau \) is real. With this assumption it is readily seen that the solutions (41) and (42) coincide, except for normalization and the phase factors \(e^{-i \xi} \) and \(e^{i \eta} \), with parabolic Coulomb Sturmians treated in [24]. In this case \(\gamma \) plays the role of the momentum
and $E = \frac{\gamma^2}{2}$ is the energy. From this we conclude that for $\gamma > 0$ the solutions (41) and (42) correspond to the continuous spectrum of E.

It is readily verified that the solutions $u(\gamma, \tau, \xi)$ and $v(\gamma, \tau, \eta)$ are expressed by basis set (26) expansions

$$u(\gamma, \tau, \xi) = \frac{2\sqrt{2b}}{2b - i(\gamma - k)} \left(\frac{2b - i(\gamma - k)}{2b + i(\gamma + k)} \right)^{i\tau + \frac{1}{2}} \sum_{n=0}^{\infty} \theta^n p_n(\tau; \xi) \psi_n(\xi), \quad (44)$$

$$v(\gamma, \tau, \eta) = \frac{2\sqrt{2b}}{2b - i(\gamma + k)} \left(\frac{2b - i(\gamma + k)}{2b + i(\gamma - k)} \right)^{i(\tau_0 - \tau) + \frac{1}{2}} \sum_{n=0}^{\infty} \lambda^{-n} p_n(\tau_0 - \tau; \xi) \psi_n(\eta), \quad (45)$$

where

$$\theta = \frac{2b + i(\gamma - k)}{2b - i(\gamma - k)}, \quad \lambda = \frac{2b - i(\gamma + k)}{2b + i(\gamma + k)}; \quad \zeta = \frac{\lambda}{\theta}. \quad (46)$$

The expansion (44) and (45) coefficients contain the polynomials [18]

$$p_n(\tau; \xi) = \left(-\frac{1}{n!} \right)^n \frac{\Gamma\left(n + \frac{1}{2} - i\tau\right)}{\Gamma\left(\frac{1}{2} - i\tau\right)} \binom{-n, \frac{1}{2} + i\tau; -n + 1}{\frac{1}{2} + i\tau; \zeta}. \quad (47)$$

The basis set (26) representation of the equation (39) is the three-term recursion relation [18]

$$a_n y_{n-1} + b_n y_n + d_{n+1} y_{n+1} = 0, \quad n \geq 1 \quad (48)$$

where

$$b_n = \left(b + \mu C \frac{\mu C}{2b} + ik \right) + 2 \left(b + \mu C \frac{\mu C}{2b} \right) n + 2kt, \quad (49)$$

$$a_n = \left(b - \mu C \frac{\mu C}{2b} - ik \right) n, \quad d_n = \left(b - \mu C \frac{\mu C}{2b} + ik \right) n. \quad (50)$$

The functions

$$s_n(\tau; \mu C) = \theta^n p_n(\tau; \xi) \quad (50)$$

are the ‘regular’ solutions of (48) with the initial conditions: $s_0 \equiv 1, s_{-1} \equiv 0$. The polynomials p_n (47) of degree n in τ are orthogonal with respect to the weight function [18]

$$\rho(\tau; \xi) = \frac{\Gamma\left(\frac{1}{2} - i\tau\right) \Gamma\left(\frac{1}{2} + i\tau\right)}{2\pi i}, \quad (51)$$

where it is considered that $|\arg(-\zeta)| < \pi$. The corresponding orthogonality relation reads

$$\int_{-\infty}^{\infty} d\tau \rho(\tau; \xi) p_n(\tau; \xi) p_m(\tau; \xi) = \delta_{nm}. \quad (52)$$

2.2. The discrete spectrum

For $t_0 < 0$ the eigenfunctions of (39) corresponding to the discrete spectrum $E^{(\ell)} = \frac{\gamma^2}{2} \ell^2, \gamma \ell = i\kappa, \kappa \ell = -\frac{k_0}{\gamma}, \ell = 1, 2, \ldots, \infty$ are [25]

$$f_{\ell,m}(\xi; \eta) = u_{\ell,m}(\xi) v_{\ell,m-1}(\eta), \quad m = 0, 1, \ldots, \ell - 1, \quad (53)$$

where

$$u_{\ell,m}(\xi) = e^{-\frac{i\ell \xi}{2}} e^{\frac{\gamma \ell^2}{2}} e^{\frac{\kappa^2}{2}} L_m(\kappa \xi). \quad (54)$$
The solutions $f_{\ell,m}$ meet the orthogonality relation
\[
\int_0^\infty \int_0^\infty (\xi + \eta) \, d\xi \, d\eta \, f_{\ell,m}(\xi, \eta) \, [f_{\ell,m}(\xi, \eta)]^* = \delta_{\ell,\ell'} \delta_{m,m'}.
\] (56)

It is readily verified that the expansions of $u_{\ell,m}(\xi)$ and $v_{\ell,m}(\eta)$ in a basis function (26) series are
\[
u_{\ell,m}(\eta) = \sum_{n=0}^{\infty} S_n^{(\ell,m)} \psi_n(\eta),
\] (58)
where the coefficients are given by
\[
S_n^{(\ell,m)} = 2\sqrt{2b(-1)^n} \frac{(m+1)n}{n!} \left(\frac{2b - \kappa_\ell - i km}{2b + \kappa_\ell + ikn+1} \right) \times \frac{\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right),
\] (59)

2.3. One-dimensional completeness relations

The eigensolution $u(\gamma, \tau, \xi)$ of (39) corresponding to the continuous spectrum ($\gamma > 0$) for large ξ behaves as
\[
u(\gamma, \tau, \xi) \sim e^{\frac{i\pi}{4} + \frac{\gamma}{\xi}} \frac{2\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right),
\] (60)
where $\sigma = \arg\Gamma\left(\frac{1}{2} + i \tau\right)$. Therefore (see, e.g., [24, 26]),
\[
\gamma \int_0^\infty d\gamma \left| \frac{\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right) \right|^2 = \pi \delta(\gamma - \gamma'),
\] (61)
and for $\tau > 0$ ($\tau = \frac{Z_0}{\gamma}$ with fixed $Z_0 > 0$)
\[
\xi \int_0^\infty d\xi \left| \frac{\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right) \right|^2 = \delta(\xi - \xi').
\] (62)

On the other hand, if the functions $u(\gamma, \tau, \xi)$ are regarded as charge Sturmians [24], i.e. the parameter τ is considered as the eigenvalue of the problem, whereas the momentum γ remains constant, the corresponding orthogonality and completeness relations are given by [24]
\[
\gamma \left| \frac{\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right) \right|^2 = 2\pi \delta(\tau - \tau'),
\] (63)
and
\[
\gamma \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma\left(\frac{1}{2} + i \tau\right)}{\sqrt{\gamma_\ell}} \sin\left(\frac{\gamma_\ell}{2} - \tau \ln(\gamma_\ell) + \frac{\pi}{4} + \sigma\right) \right|^2 = \delta(\xi - \xi').
\] (64)
Taking matrix elements of the completeness relation (64) we find

\[
\begin{align*}
\mathcal{A}_{nm} &= \frac{8b\gamma\theta_{n-m}}{\sqrt{[4b^2 + (\gamma + k)^2][4b^2 + (\gamma - k)^2]}} \int_{-\infty}^{\infty} d\tau \frac{\Gamma \left(\frac{1}{2} + i\tau \right)^2}{2\pi} (-\xi)^{im} \theta_n(\tau; \xi) \theta_m(\tau; \xi)^* = \delta_{n,m}.
\end{align*}
\]

(65)

It may be noted that (65) is closely related to (52). To see this, let \(\gamma > 0 \). Then, it follows from the definitions (46) that

\[
\frac{(\xi - 1)}{\xi} = \frac{-8b\gamma}{\sqrt{[4b^2 + (\gamma + k)^2][4b^2 + (\gamma - k)^2]}}.
\]

(66)

Further, the regular solution \(\theta_n(\tau; \xi) \) of the three-term recursion relation (48) is an even function of \(\gamma \), since the coefficients \(a_n, b_n \) and \(d_n \) depend on \(\gamma \) only through \(\mu C = \frac{1}{2}(k^2 - \gamma^2) \).

Thus, replacing \(\gamma \) by \(-\gamma\), and hence \(\tau \) by \(-\tau\) \((\theta \rightarrow \lambda \) and \(\lambda \rightarrow \theta)\) and \(\xi \) by \(\xi - 1\) in equation (47) gives

\[
\theta_n(\tau; \xi) = \lambda^n \left(\frac{-1}{n!} \right) \frac{\Gamma \left(n + \frac{1}{2} + i\tau \right)}{\Gamma \left(\frac{1}{2} + i\tau \right)} 2F_1 \left(-n, \frac{1}{2} - i\tau; \frac{1}{2} - i\tau; \xi^{-1} \right).
\]

(67)

Comparing equations (47) and (67) then yields the relation

\[
\theta_n(\tau; \xi)^* = \xi^{-n} \theta_n(\tau; \xi).
\]

(68)

and hence

\[
[p_n(\tau; \xi)]^* = \xi^{-n} p_n(\tau; \xi).
\]

(69)

From the argument above, we conclude that for \(\gamma > 0 \) the orthogonality relation (52) reduces to (65).

2.4. The two-dimensional completeness relation

It follows from the relations (61) and (63) and analogous relations for \(v(\gamma, \tau, \xi) \) that the two-dimensional orthogonality relation for \(\gamma > 0 \) is given by

\[
\begin{align*}
e^{-\pi t_0} \frac{\gamma^2}{4} & \left(\frac{\Gamma \left(\frac{1}{2} + i\tau \right)^2}{2\pi} \right)^2 \int_{-\infty}^{\infty} d\tau \int_{0}^{\infty} d\xi d\eta \left[f(\gamma, \tau, \xi, \eta) \theta_n(\tau; \xi) \right]\left[f(\gamma, \tau, \xi, \eta') \theta_n(\tau; \xi') \right]^* = \delta(\gamma' - \gamma)\delta(\tau' - \tau).
\end{align*}
\]

(70)

In turn, in the case \(t_0 > 0 \) (where there are no bound states) it would appear reasonable that the two-dimensional completeness relation would be given by

\[
\begin{align*}
(\xi + \eta) \left\{ a \int_{0}^{\infty} d\gamma \gamma^2 e^{-\pi t_0} \int_{-\infty}^{\infty} d\tau & \frac{\Gamma \left(\frac{1}{2} + i(\tau_0 - \tau) \right)^2}{2\pi} \frac{\Gamma \left(\frac{1}{2} + i(\tau - \tau) \right)}{2\pi} \\
& \times f(\gamma, \tau, \xi, \eta) \theta_n(\tau; \xi') \theta_n(\tau; \xi')^* \right\} = \delta(\xi - \xi')\delta(\eta - \eta')
\end{align*}
\]

(71)

The integration over \(\tau \) in (71) is performed on the assumption that \(\tau \) is independent of \(\gamma \).

To test this hypothesis and determine the normalizing factor \(a \), we carried out the following numerical experiments. First with some parameters \(t_0 > 0, k > 0 \) and \(b \) we calculate the matrix elements \(A_{n1, n2; m1, m2} \) for the expression in the figure braces on the left-hand side of
(71) in the basis (25):

$$A_{n_1,n_2;m_1,m_2} = \alpha \int_0^\infty d\tau \frac{64b^2 \gamma^2 (-\xi)^{\eta_0}}{[4b^2 + (\gamma + k)^2][4b^2 + (\gamma - k)^2]} \rho_{\Delta n_1-m_1 \Delta m_2-n_2}$$

$$\times \int_{-\infty}^{\infty} dr \frac{\Gamma (\frac{1}{2} + i\tau)}{2\pi} \frac{\Gamma (\frac{1}{2} + i(\tau_0 - \tau))}{2\pi} \times p_{n_1}(\tau; \xi) p_{n_2}(\tau_0 - \tau; \xi) [p_{m_1}(\tau; \xi) p_{m_2}(\tau_0 - \tau; \xi)]^*.$$

(72)

It should be noted that the value of $(-\xi)^{\eta_0}$ in this formula is determined by the condition $|\arg(-\xi)| < \pi$. Then the resulting matrix A is multiplied by the matrix

$$Q = Q_\xi \otimes I_\eta + I_\xi \otimes Q_\eta$$

(73)

of the operator $(\xi + \eta)$. Finally, using the condition

$$QA = I_\xi \otimes I_\eta$$

(74)

we have obtained that $\alpha = \frac{1}{2}$. Note that the infinite symmetric matrices Q_ξ and Q_η are tridiagonal [18]:

$$Q_{n,n'}^{\xi,\eta} = \begin{cases}
-\frac{1}{2b} n, & n' = n - 1, \\
\frac{1}{2b} (2n + 1), & n' = n, \\
-\frac{1}{2b} (n + 1), & n' = n + 1,
\end{cases}$$

(75)

therefore the normalization condition (74) can be rewritten in the form

$$\frac{1}{2b} \delta_{n_2,m_2} \left\{-n_1 A_{n_1-1,n_2;m_1,m_2} + (2n_1 + 1)A_{n_1,n_2;m_1,m_2} - (n_1 + 1)A_{n_1+1,n_2;m_1,m_2} \right\}$$

$$+ \frac{1}{2b} \delta_{n_1,m_1} \left\{-n_2 A_{n_1,n_2-1;m_1,m_2} + (2n_2 + 1)A_{n_1,n_2;m_1,m_2} - (n_2 + 1)A_{n_1,n_2+1;m_1,m_2} \right\} = \delta_{n_1,m_1} \delta_{n_2,m_2}.$$

(76)

For $t_0 < 0$ the completeness relation (71) transforms into

$$\left\{ \frac{1}{2} \int_0^\infty d\gamma \gamma^2 e^{-\gamma t_0} \int_{-\infty}^{\infty} d\tau \frac{\Gamma (\frac{1}{2} + i\tau)}{2\pi} \frac{\Gamma (\frac{1}{2} + i(\tau_0 - \tau))}{2\pi} \times f(\gamma, \tau, \xi, \eta) f(\gamma, \tau, \xi', \eta')^* + \sum_{\ell=1}^{\infty} \sum_{m=0}^{\ell-1} f_{\ell,m,\ell-m-1}(\xi, \eta) [f_{\ell,m,\ell-m-1}(\xi', \eta')]^* \right\} = \delta(\xi - \xi') \delta(\eta - \eta').$$

(77)

In this case the matrix A with elements

$$A_{n_1,n_2;m_1,m_2} = \int_0^\infty d\gamma \gamma^2 (-\xi)^{\eta_0} \rho_{\Delta n_1-m_1 \Delta m_2-n_2}$$

$$\times \int_{-\infty}^{\infty} dr \frac{\Gamma (\frac{1}{2} + i\tau)}{2\pi} \frac{\Gamma (\frac{1}{2} + i(\tau_0 - \tau))}{2\pi} \times p_{n_1}(\tau; \xi) p_{n_2}(\tau_0 - \tau; \xi) [p_{m_1}(\tau; \xi) p_{m_2}(\tau_0 - \tau; \xi)]^* + \sum_{\ell=1}^{\infty} \sum_{m=0}^{\ell-1} \sum_{\ell-m-1}^{\ell} \delta_{\ell,m} \delta_{\ell-m-1} \left\{ f_{\ell,m,\ell-m-1}(\xi', \eta')^* \right\}^*$$

(78)
is also inverse to the matrix Q (73). The expression (78) can be rewritten, in view of (66) and (69), as

$$A_{a_1,a_2;m_1,m_2} = \frac{-1}{2} \int_0^\infty d\gamma \left\{ \left(\zeta - 1 \right)^2 \frac{\theta^{n_1+m_2}}{\lambda^{n_2+m_1}} \int_{-\infty}^\infty dt \, \rho(t;\zeta) \rho(t_0-t;\zeta) \right\} \times p_{m_1}(t;\zeta) p_{m_2}(t_0-t;\zeta) p_{n_1}(t;\zeta) p_{n_2}(t_0-t;\zeta) + \sum_{\ell=1}^{\infty} \sum_{m=0}^{\infty} S_{a_1}^{(\ell,m)} S_{a_2}^{(\ell,m-1)} \left[S_{m_1}^{(\ell,m)} S_{m_2}^{(\ell,m)} \right]^*.$$

(79)

To illustrate the accuracy which can be obtained with the help of a standard FORTRAN numerical integration over an infinite interval code, the matrix elements $A_{a_1,a_2;m_1,m_2}$ (79) and the corresponding left-hand side of (76) in some (diagonal and nondiagonal) cases have been calculated. Here we put $b = 0.3$, $k = 0.15$ and $t_0 = \pm 0.5$. The results are presented in table 1.

3. Contour integrals

Note that expressing the resolvent of the one-dimensional operator $\hat{h}_\zeta + 2kt + \mu C\xi$ requires two linearly independent solutions of (39). Irregular solutions of (39) are expressed in terms of the confluent hypergeometric function [23]

$$w^{(\pm)}(\gamma, \tau, \xi) = e^{i(\pm\kappa - \xi)i} U \left(\frac{1}{2} \pm i \tau, 1; \mp \gamma \xi \right).$$

(80)

The corresponding solutions of the three-term recursion relation (48) are

$$c_n^{(+)}(t; \mu C) = \beta^{n+1} q_n^{(+)}(t; \tau, \zeta), \quad c_n^{(-)}(t; \mu C) = \lambda^{n+1} q_n^{(-)}(t; \tau, \zeta),$$

(81)

where

$$q_n^{(+)}(t; \tau, \zeta) = (-)^n \frac{\alpha^{1+i(1+n)}}{\Gamma(n+1+n)} \frac{\beta^{1+i(\tau+n)}}{\Gamma(n+1+n)} \frac{\gamma^{1+i(\zeta+n)}}{\Gamma(n+1+n)} \frac{\delta^{1+i(\xi+n)}}{\Gamma(n+1+n)} F_1 \left(\frac{1}{2} + i \tau, n + 1; n + 1 + i \tau; \zeta \right),$$

$$q_n^{(-)}(t; \tau, \zeta) = (-)^n \frac{\alpha^{1-i(1+n)}}{\Gamma(n+1+n)} \frac{\beta^{1-i(\tau+n)}}{\Gamma(n+1+n)} \frac{\gamma^{1-i(\zeta+n)}}{\Gamma(n+1+n)} \frac{\delta^{1-i(\xi+n)}}{\Gamma(n+1+n)} F_1 \left(\frac{1}{2} - i \tau, n + 1; n + 1 - i \tau; \zeta \right).$$

(82)

In particular, the functions

$$\tilde{w}^{(\pm)}(\gamma, \tau, \xi) = \frac{2i\sqrt{2b}}{2b - i(\gamma - k)} \left(\begin{array}{c} 2b + i(\gamma - k) \\ 2b - i(\gamma + k) \end{array} \right)^{i(\tau+1)} \frac{e^{-\pi\tau}}{\Gamma \left(\frac{1}{2} \pm i \tau \right)} \sum_{n=0}^{\infty} c_n^{(\pm)}(t; \mu C) \psi_n(\xi)$$

(83)

tend to $w^{(\pm)}(\gamma, \tau, \xi)$ as $\xi \to \infty$.

The matrix elements of the resolvent of $\hat{h}_\zeta + 2kt + \mu C\xi$ can be written in the form [18]

$$g_{n,m}^{(+)}(t; \mu C) = \frac{i}{2\gamma} \left(\frac{\zeta - 1}{\zeta} \right) \frac{\theta^{n-m}}{\zeta^m} p_{n_+}(t; \tau, \zeta) q_{m_+}^{(+)}(t; \tau, \zeta),$$

(84)

and

$$g_{n,m}^{(-)}(t; \mu C) = \frac{i}{2\gamma} \left(\frac{\zeta - 1}{\zeta} \right) \frac{\theta^{n-m}}{\zeta^m} p_{n_+}(t; \tau, \zeta) \xi^{n_+} q_{m_+}^{(-)}(t; \tau, \zeta),$$

(85)

where n_+ and n_- are the greater and lesser of n and m. Note that $c_n^{(+)}$, $c_n^{(-)}$ are defined in the upper (lower) half of the complex γ-plane where $|\gamma| \geq 1$ ($|\gamma| \leq 1$). To analytically continue $c_n^{(+)}$ onto the lower half of the γ-plane the relation [18]

$$c_n^{(+)}(t; \mu C) = c_n^{(-)}(t; \mu C) + 2\pi i \rho(t; \tau) \theta^{n+1} p_{n}(t; \tau, \zeta)$$

(86)

can be used.
Table 1. $A_{n_1', n_2'; m_1, m_2}$ involved into the normalization condition (76) and the left-hand side of (76) values. We put the following values of parameters: $b = 0.3, k = 0.15, t_0 = \pm 0.5$. The matrix elements were evaluated numerically by using (a) equation (79) and (b) the integral representation (92) with the parameters $\varepsilon_0 = 50$ and $\varphi = -\pi/3$. These calculations were performed with FORTRAN standard code.

$$n_1 = m_1 = 3, n_2 = m_2 = 2$$

$t_0 > 0$	$A_{22,32}$	$A_{32,32}$	$A_{42,32}$	$A_{31,32}$	$A_{33,32}$	the lhs of (76)
(a)	0.1228571428	0.1645021645	0.1127056277	0.1180952380	0.1061471861	1.000000000
(b)	0.1228572055	0.1645023080	0.1127055134	0.1180952862	0.1061480934	0.9999986214

$n_1 = m_1 = 3, n_2 = 3, m_2 = 2$

$t_0 < 0$	$A_{23,32}$	$A_{33,32}$	$A_{43,32}$	$A_{32,32}$	$A_{34,32}$	the lhs of (76)
(a)	0.1002597402	0.1061471861	0.0904695304	0.1645021645	0.0824741924	-0.5551115123 \times 10^{-15}
(b)	0.1002597440	0.1061480934	0.0904683789	0.1645023080	0.0824718107	0.4398964458 \times 10^{-4}

$n_1 = 3, m_1 = 2, n_2 = 3, m_2 = 2$

$t_0 > 0$	$A_{23,32}$	$A_{33,32}$	$A_{43,32}$	$A_{32,32}$	$A_{34,32}$	the lhs of (76)
(a)	0.1228571428	0.1002597402	0.0833116883	0.1228571428	0.0833116883	-0.8548717289 \times 10^{-14}
(b)	0.1228575807	0.1002597454	0.0833121690	0.1228575170	0.0833110148	-0.2653674140 \times 10^{-5}

$n_0 < 0$

| (a) | 0.1228571432 | 0.1002597400 | 0.0833116883 | 0.1228571432 | 0.0833116883 | -0.8519795091 \times 10^{-8} |
| (b) | 0.1228573492 | 0.1002596377 | 0.0833119210 | 0.1228572818 | 0.0833118111 | -0.6488930841 \times 10^{-5} |
In [18] we obtained the basis set (25) representation of the resolvent for the two-dimensional operator $\hat{H}_1 + 2kt + \mu C \xi^1 + [\hat{H}_1 + 2k(t_0 - t) + \mu C \eta]$. In particular, the matrix elements of the two-dimensional Green’s function can be expressed as the convolution integral

$$G_{n_1,n_2;m_1,m_2}^{(\pm)}(t_0; \mu C) = i \left(\frac{\xi - 1}{\xi} \right) \frac{\lambda^{m_2-n_2}}{\xi^{m_2}} \int_{-\infty}^{\infty} d\tau \rho(t_0 - \tau; \xi) \times g_{n_1,m_1}(\tau; \mu C) \rho_{n_2}(t_0 - \tau; \xi).$$ \hspace{1cm} (87)

Note that in this case only the regular solutions of (40) discrete analogues $\lambda^{-n} \rho_n(t_0 - \tau; \xi)$ are used.

Let us consider the integral

$$I_1 = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\gamma \gamma G_{n_1,n_2;m_1,m_2}^{(\pm)}(t_0; \mu C).$$ \hspace{1cm} (88)

Note that by replacing $\gamma \rightarrow -\gamma$ (and hence $\theta \rightarrow \lambda$, $\lambda \rightarrow \theta$, $\xi \rightarrow 1/\xi$, $\tau \rightarrow -\tau$ and $t_0 \rightarrow -t_0$) in equation (87) $G_{n_1,n_2;m_1,m_2}^{(\pm)}(t_0; \mu C)$ is transformed to $G_{n_1,n_2;m_1,m_2}^{(-)}(t_0; \mu C)$. Thus, for the integral I_1 we obtain

$$I_1 = \frac{1}{2\pi i} \int_{0}^{\infty} d\gamma \gamma \left[G_{n_1,n_2;m_1,m_2}^{(+)}(t_0; \mu C) - G_{n_1,n_2;m_1,m_2}^{(-)}(t_0; \mu C) \right].$$ \hspace{1cm} (89)

Inserting equations (87), (84) and (85) into equation (89), we find, in view of (86), that I_1 coincides with the integral on the right-hand side of (79).

Now, we consider the integral

$$\frac{1}{2\pi i} \int_{C} d\xi G^{(\pm)}(t_0; \frac{k^2}{2} - \xi),$$ \hspace{1cm} (90)

taken along the contour in the complex ξ-plane shown in figure 1. The contour C passes in a negative direction (clockwise) round all the points $\xi^{(i)} = -\frac{k^2}{2\epsilon}$ (filled circles in figure 1 which accumulate at the origin) and the cut along the right-half of the real axis and is closed at infinity (see, e.g., [27]). The corresponding matrix element of the integral along the two sides of the contour is equal to I_1 (88) (this is circumstantial evidence that the normalizing factor α in the completeness relation (71) is equal to $\frac{1}{\epsilon}$). On the other hand, the integration along a contour enclosing $\xi^{(i)}$ reduces to (-1) times the double sum of the residues of the integrand at the points $\tau^{(m)} = i (m + \frac{1}{2}) \xi$, $m = 0, 1, \ldots$ and $\xi^{(i)} = -\frac{(k\xi)^2}{2\epsilon}$, $\xi = 1, 2, \ldots$, which are the poles of the gamma functions $\Gamma \left(\frac{1}{2} + i \xi \right)$ and $\Gamma \left(\frac{1}{2} + i (\tau_0 - \tau) \right) = \Gamma \left(m + \frac{1}{2} + \frac{k\xi}{2\epsilon} \right)$, respectively. It is readily shown that the matrix element of this part of the integral (90) coincides with the double sum in (79). Thus, the integral (90) is equal to the matrix A. The contour C can be deformed, for instance, into a straight line parallel to the real axis. The resulting path C_1 shown in figure 2 runs above the cut and the bound-state poles of $G^{(\pm)}(t_0; \xi)$. The contour C_1 can be rotated about some point ξ_0 on the right-half of the real axis through an angle φ in the...
range \((0, -\pi)\) \([27]\); see the contour \(C_2\) in figure 2. Note that \(E_0\) should be positive, since only in this case it is possible to bend the contour of integration around all the bound-state poles.

The initial contour \(C_1\) (and \(C\)) lies on the physical energy sheet \((0 < \arg(E) < 2\pi)\). The part of \(C_2\) above \(E_0\) remains on the physical sheet, whereas the part of the contour below \(E_0\) (which is depicted by the dashed line) moves onto the unphysical sheet \((-2\pi < \arg(E) < 0)\).

Further, in view of the restriction \(-\pi < \varphi < 0\) the argument of \(E\) on the contour \(C_2\) obeys the condition \(-\pi < \arg(E) < \pi\), and therefore the momentum \(\gamma = \sqrt{2E}\) here is the standard branch of the square root. It should be marked that for calculations of \(c(\gamma)\) in the lower-half of the \(\gamma\)-plane \((\text{Im}(\gamma) < 0)\) the analytic continuation formula (86) can be used. Note that on \(C_2\) the energy variable is given by

\[
E = E_0 + e^{i\varphi} E,
\]

where \(E_0 > 0\), \(E\) is real and runs from \(-\infty\) to \(\infty\). Thus, we obtain the following representation of the matrix \(A\) (which is inverse to the matrix \(Q\) (73)):

\[
A = \frac{1}{2\pi i} \int_{C_2} dE G^{(+)} \left(t_0; \frac{k^2}{2} - E \right) = e^{i\varphi} \frac{1}{2\pi i} \int_{-\infty}^{\infty} dE G^{(+)} \left(t_0; \frac{k^2}{2} - E_0 - e^{i\varphi} E \right) = Q^{-1}.
\]

The integrals (92) with parameters \(E_0 = 50\) and \(\varphi = -\pi/3\) have been calculated with the help of a standard code. The results listed in table 1 allow us to estimate the accuracy of the calculations. Note that we presented only the real part of the integrals, since their image part is found to be of the order \(10^{-5}\). A comparison of (a) and (b) results shows that a serious effort should be made to provide an adequate approximation to the hypergeometric functions in the integrand on the right-hand side of equation (92).

4. Six-dimensional Green’s function matrix

Using the relation (92) we can rewrite the expression (33) for the six-dimensional Coulomb Green’s function matrix as the contour integral

\[
\mathcal{G} = \frac{\kappa}{\mu_{23}\mu_{13}} \int_{C_2} dE_1 \int_{C_2} dE_2 \left(t_{23}; \frac{k_{23}^2}{2} - E_1 \right) \otimes G^{(+)}_2 \left(t_{13}; \frac{k_{13}^2}{2} - E_2 \right) \otimes G^{(+)}_3 \left(t_{12}; \frac{k_{12}^2}{2} - E_3 \right),
\]

where \(E_j = \frac{k_j^2}{2} - \mu_j C_j\). This also allows us to determine the normalizing factor \(\kappa\). Indeed, it follows from (92) that the third term inside the figure brackets on the right-hand side of (36)
is proportional to the unit matrix:

\[
\left[Q_1 \int_{C_2} d\varepsilon_1 G_1^{(+)} \left(t_{23}; \frac{k_3^2}{2} - \varepsilon_1 \right) \right] \otimes \left[Q_2 \int_{C_2} d\varepsilon_2 G_2^{(+)} \left(t_{13}; \frac{k_3^2}{2} - \varepsilon_2 \right) \right] \otimes I_3
\]

\[
= (2\pi i)^2 I_1 \otimes I_2 \otimes I_3. \tag{94}
\]

Consider the first two terms in the figure braces in (36). For the energy \(\varepsilon_3 = \frac{k_3^2}{2} + \mu_{12}(C_1 + C_2) \) we have

\[
\varepsilon_3 = \frac{k_{12}^2}{2} + \frac{\mu_{12}}{\mu_{23}} \left(\frac{k_{23}^2}{2} - \varepsilon_1 \right) + \frac{\mu_{12}}{\mu_{13}} \left(\frac{k_{13}^2}{2} - \varepsilon_2 \right).
\]

On the other hand, on the contours \(C_j \) the energy variables \(\varepsilon_j, j = 1, 2 \) are given by

\[
\varepsilon_j = \varepsilon_{0j} + E_j e^{i\phi}, \tag{96}
\]

where \(\phi < 0, \varepsilon_0j \) is an arbitrary positive parameter, \(E_j \) is real and runs from \(-\infty \) to \(\infty \).

Hence, for the energy \(\varepsilon_3 \) (95) we obtain

\[
\varepsilon_3 = \left[\frac{k_{12}^2}{2} + \frac{\mu_{12}}{\mu_{23}} \left(\frac{k_{23}^2}{2} - \varepsilon_{01} \right) + \frac{\mu_{12}}{\mu_{13}} \left(\frac{k_{13}^2}{2} - \varepsilon_{02} \right) \right] + \left(-\frac{\mu_{12}}{\mu_{23}} \varepsilon_1 - \frac{\mu_{12}}{\mu_{13}} \varepsilon_2 \right) e^{i\phi}. \tag{97}
\]

Thus, \(\varepsilon_3 \) can be expressed in the form

\[
\varepsilon_3 = \varepsilon_{03} + E_3 e^{i\phi}, \tag{98}
\]

where \(\varepsilon_{03} \) and \(E_3 \) denote the term in the square braces and the real factor in front of the exponent in (97), respectively. Since \(\varepsilon_{03} \) should be positive, therefore the positive parameters \(\varepsilon_{01} \) and \(\varepsilon_{02} \) have to satisfy the constraint

\[
\frac{\mu_{12}}{\mu_{23}} \varepsilon_{01} + \frac{\mu_{12}}{\mu_{13}} \varepsilon_{02} < \frac{k_{12}^2}{2} + \frac{\mu_{12} k_{23}^2}{\mu_{23}} + \frac{\mu_{12} k_{13}^2}{\mu_{13}}. \tag{99}
\]

Now, we consider the integral

\[
I_2 = \int_{C_2} d\varepsilon_1 G_1^{(+)} \left(t_{12}; \frac{k_{12}^2}{2} - \varepsilon_3 \right). \tag{100}
\]

With fixed \(\varepsilon_3 \), in view (97), (98) and (92), we see that

\[
I_2 = e^{i\phi} \int_{-\infty}^{\infty} d\varepsilon_1 G_1^{(+)} \left(t_{12}; \frac{k_{12}^2}{2} - \varepsilon_3 \right) = -\frac{\mu_{23}}{\mu_{12}} e^{i\phi} \int_{-\infty}^{\infty} d\varepsilon_3 G_3^{(+)} \left(t_{12}; \frac{k_{12}^2}{2} - \varepsilon_3 \right)
\]

\[
= -\frac{\mu_{23}}{\mu_{12}} \int_{C_2} d\varepsilon_1 G_1^{(+)} \left(t_{12}; \frac{k_{12}^2}{2} - \varepsilon_3 \right) = -2\pi i \frac{\mu_{23}}{\mu_{12}} Q_3^{-1}. \tag{101}
\]

Similarly, we obtain

\[
\int_{C_2} d\varepsilon_3 G_3^{(+)} \left(t_{12}; \frac{k_{12}^2}{2} - \varepsilon_3 \right) = -2\pi i \frac{\mu_{13}}{\mu_{12}} Q_3^{-1}. \tag{102}
\]

Inserting (101), (102) and (94) into (36) then yields

\[
\hbar \mathfrak{g} = 8\pi^2 I_1 \otimes I_2 \otimes I_3. \tag{103}
\]

Thus, from (103) we conclude that

\[
N = \frac{1}{4\pi^2}. \tag{104}
\]
5. Conclusion

The Sturmian basis set representation of the resolvent for the asymptotic three-body Coulomb wave operator is obtained, which can be used in the discrete analog of the Lippmann–Schwinger equation for the three-body continuum wavefunction. The six-dimensional Green’s function matrix is expressed as a convolution integral over separation constants. The integrand of this contour integral involves Green’s function matrices corresponding to the two-dimensional operators which are constituents of the full six-dimensional wave operator. The completeness relation of the eigenfunctions of these two-dimensional operators is used to define the appropriate paths of integration of the convolution integral.

Acknowledgments

This work is partially supported by the scientific program ‘Far East–2008’ of the Russian Foundation for Basic Research (regional grant 08-02-98501).

References

[1] Klar H 1990 Z. Phys. D 16 231
[2] Belkic Dz 1978 J. Phys. B: At. Mol. Phys. 11 3529
[3] Garibotti C R and Miraglia J E 1980 Phys. Rev. A 21 572
[4] Brauner M, Briggs J S and Klar H 1989 J. Phys. A: Math. Gen. 22 2265
[5] Jones S and Madison D H 2003 Phys. Rev. Lett. 91 073201
[6] Ancarani L U, Montagnese T and Dal Cappello C 2004 Phys. Rev. A 70 012711
[7] Chuluunbaatar O, Puzynin I V, Vinitsky P S, Popov Yu V, Kouzakov K A and Dal Cappello C 2006 Phys. Rev. A 74 014703
[8] Lahmam-Bennani A, Taouil I, Duguet A, Locas M, Avaldi L and Berakdar J 1999 Phys. Rev. A 59 3548
[9] Ancarani L U, Gasaneo G, Colavecchia F D and Dal Cappello C 2008 Phys. Rev. A 77 062712
[10] Berakdar J and Briggs J S 1994 Phys. Rev. Lett. 72 3799
[11] Berakdar J 1996 Phys. Rev. A 53 2314
[12] Alt E O and Mukhamedzhanov A M 1993 Phys. Rev. A 47 2004
[13] Mukhamedzhanov A M, Kadyrov A S and Pirlepesov F 2006 Phys. Rev. A 73 012713
[14] Berakdar J 1997 Phys. Rev. Lett. 78 2712
[15] Gasaneo G, Colavecchia F D, Garibotti C R, Miraglia J E and Macri P 1997 Phys. Rev. A 55 2809
[16] Gasaneo G, Colavecchia F D and Garibotti C R 1997 J. Phys. A: Math. Gen. 30 L265
[17] Macri P A, Miraglia J E, Garibotti C R, Colavecchia F D and Gasaneo G 1997 Phys. Rev. A 55 3518
[18] Zaytsev S A 2008 J. Phys. A: Math. Theor. 41 265204
[19] Heller E J and Yamani H A 1974 Phys. Rev. A 9 1201
Yamani H A and Fishman L 1975 J. Math. Phys. 16 410
[20] Alhaidari A D, Heller E J, Yamani H A and Abdelmonem M S (ed) 2008 The J-Matrix Method. Developments and Applications (Springer: Science+Business Media B.V.)
[21] Colavecchia F D, Gasaneo G and Garibotti C R 1998 Phys. Rev. A 57 1018
[22] Ojha P C 1987 J. Math. Phys. 28 392
[23] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)
[24] Gasaneo G and Colavecchia F D 2003 J. Phys. A: Math. Gen. 36 8443
[25] Landau L D and Lifshitz E M 1965 Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon)
[26] Michel N 2008 J. Math. Phys. 49 022109
[27] Shakeshaft R 2004 Phys. Rev. A 70 042704