Cognition and addiction
Antonio Verdejo-Garcia, PhD; Gloria Garcia-Fernandez, PhD; Geert Dom, PhD

In this targeted review, we summarize current knowledge on substance-use disorder (SUD)-related cognitive deficits, the link between these deficits and clinical outcomes, and the cognitive training, remediation, and pharmacological approaches that have the potential to rescue cognition. We conclude that: (i) people with SUDs have moderate deficits in memory, attention, executive functions, and decision-making (including reward expectancy, valuation, and learning); (ii) deficits in higher-order executive functions and decision-making are significant predictors of relapse; (iii) cognitive training programs targeting reward-related appetitive biases, cognitive remediation strategies targeting goal-based decision-making, and pharmacotherapies targeting memory, attention, and impulsivity have potential to rescue SUD-related cognitive deficits.

We suggest avenues for future research, including developing brief, clinically oriented harm-optimized cognitive testing suites to improve individualized prediction of treatment outcomes; computational modeling that can achieve deep phenotyping of cognitive subtypes likely to respond to different interventions; and phenotype-targeted cognitive, pharmacological, and combined interventions. We conclude with a tentative model of neuroscience-informed precision medicine.

Keywords: substance-use disorder; cognition; decision-making; treatment outcome; cognitive training; cognitive remediation; cognitive enhancer

Cognitive deficits in substance-use disorders

People with substance-use disorders (SUDs) including those related to alcohol, stimulants, and opioids, have cognitive deficits of moderate magnitude and longevity. Meta-analytic research suggests that several cognitive processes are significantly impaired across users of different drugs, including selective attention and related attentional biases (automatic responses to drug-related stimuli), episodic memory, executive functions (working memory, inhibition, and shifting), and reward-based decision-making.

A systematic review of studies comparing different SUDs suggested that stimulant SUDs are particularly associated with inhibition and shifting deficits, whereas opioid SUDs are associated with reasoning deficits. Alcohol-use disorder is associated with wide-ranging deficits in attention and executive functions. Different SUDs have common deficits in reward-based decision-making. Individual studies have shown that several factors moderate the severity of cognitive deficits, including principal drug of choice (greatest deficits in alcohol and stimulant SUDs), polysubstance use, drug-specific pharmacokinetics and pharmacodynamics, and psychiatric comorbidities. However, there remain many gaps in our knowledge. For instance, although dose and duration of use are important, for none of the substances is there, as yet, evidence of a critical dosage, below which cognitive deficits can be excluded. In addition to these data-driven findings, theoretical models and expert consensus approaches have recently highlighted a limited number of domains that, according to experts, play a pivotal role in addiction. The Addiction Neuroclinical Assessment framework (ANA), leveraging on evidence from preclinical and human neuroaging and neurocognitive studies, has categorized deficits into three key domains: incentive salience, negative emotionality, and executive functions. In addition, a recent international Delphi consensus pinpointed key deficits in reward valua-
Evidence supports the central role of cognition on substance-use disorder symptomology, clinical prognosis, and potential therapeutic targets

Cognitive deficits and treatment outcomes

Cognitive deficits in attention, memory, executive functions, reward/negative emotion valuation, and decision-making reflect performance differences between substance users and drug-naive controls and/or consensus from experts. A pertinent but different question is which of these cognitive deficits are relevant to clinical outcomes in the context of addiction treatment. Key treatment outcomes include drug retention and adherence, reduction of drug use and abstinence, craving, and quality of life. In support of this view, we recently showed that the index of reaction time variability of the continuous performance test was a significant predictor of continuous treatment engagement, over and above a more specific measure of effort-related reward valuation. Another possibility is that these tests are a proxy of IQ-related decline and thus a global measure of the impact of SUDs on fluid intelligence and related outcomes. Decision-making tests predicting drug use and relapse suggest a much more straightforward story. The ability to make advantageous decisions in complex scenarios is essential to achieve long-term goals and life milestones. In the context of SUDs, greater alterations in the ability to make uncertain decisions (Cambridge Gambling Task) can compromise attempts to make uncertain decisions (Iowa Gambling Task) and estimate risk (Cambridge Gambling Task) can compromise attempts to maintain abstinence. At the same time, these tasks (especially the Iowa task) have been criticized for lack of reliability and construct validity. Although our personal experience is that providing appropriate task instructions and performing detailed analyses (eg, block-by-block or trial-by-trial perfor-
Several cognitive domains have clear face validity for predicting addiction treatment outcomes but may be suffering from issues of construct validity. Response inhibition and action selection are integral aspects of decision-making processes, and clinicians consistently report anecdotal evidence of highly impulsive patients dropping out of treatment and restarting drug use. However, available tests such as the Stroop or the Stop Signal task have not shown consistent predictive validity. Therefore, the design of new tests that incorporate indices of IQ, speed/accuracy-based attention and reasoning, decision-making, and novel cognitive parameters including sensitivity to reward and punishment, have not consistently predicted clinical outcomes for addiction. Complementary, the outcomes of the tests should be suitable for computational modeling that can tease apart clinically meaningful outcomes. Early applications of cognitive modeling to decision-making tasks in SUDs showed that the performace of substance users in the Iowa Gambling Task could be decomposed into several different parameters (parameter estimates) and their predicted interactions, and to build m odels to precisely m easure individual variation in each of those parameters. Using this modeling, they could establish that the decision-making deficits of cocaine users were most likely driven by hypersensitivity to reward and lack of choice consistency, whereas the deficits of cannabis users were mostly driven by recency effects. Other sim ple forms of cognitive modeling, such as drift-diffusion modeling and hyperbolic curve m odeling have been successfully applied to examine value-based and perceptual decision-making tasks (reviews in refs 36,37). More recently, model-based vs model-free modeling, which estimates the extent to which decision-making performance is driven by habitual versus rule-based processes, has been applied to understand the neural basis of decision-making in SUDs. These findings suggest that decision-making deficits in addiction are not driven by a single cognitive domain but rather reflect multiple interrelated processes that require further investigation.
goal-oriented responses, is gaining traction in the cognitive neuroscience literature and has been successfully applied to m easure the decision-m aking deficits of m ethamphetamine users. In addition to individual-based decision-making, novel computational models have started to deconstruct and estimate individual variation in complex social decision-making, incorporating complex abstract parameters such as guilt. Altogether, growing evidence suggests that computational modeling could assist the design of novel cognitive tasks and test batteries that achieve more precise and predictive measures of latent cognitive processes.

Cognitive training and rehabilitation

There are two main approaches to restore cognitive deficits: (i) computerized cognitive training; (ii) cognitive rehabilitation. Computerized cognitive training uses software to retrain specific cognitive processes through repeated exercises aimed to build cognitive capacity. Cognitive rehabilitation or remediation focuses on meta-cognitive training and strategy learning, instructing participants to apply cognitive resources in a goal-driven and strategic way. Unlike cognitive training, it is typically guided by therapists and focuses on real-life activities (instead of task-based exercises). A key assumption within addiction neuroscience is the existence of an im balance between the bottom-up cognitive systems that are sensitized to the reward value of drug-related stimuli and the top-down executive and decision-making system that fail to guide response selection according to long-term goals. From a cognitive architectural and functional standpoint, it seems that there are feasible to retrain automatic bottom-up processes through cognitive training and repeated exercise. On the other hand, top-down goal-driven behavior requires greater complexity and entropy to adapt cognitive strategies to the current context and future goals, and thus is more suitable to be trained through cognitive rehabilitation approaches. In support of this notion, there are two most successful cognitive remediation approaches for addiction use these principles. Cognitive bias modification (CBM) uses software-based cognitive exercises to retrain automatic attention/approach biases towards drug stimuli. By training participants to avoid drug-related images and approach alternative reinforcers, CBM decreases the motivational appeal of drug stimuli, incorporating complex abstract parameters such as guilt. This strategy enables participants to withhold impulsive behaviors, use mindfulness practice to align their attentional resources with goals (e.g., abstinence), and select behaviors aligned with those goals. This training has been successfully applied to improve executive functions in alcohol and stimulant polysubstance users and HIV+ participants with SUDs. Strengthening executive functions via working memory (WM) training has also been proposed as a treatment strategy for SUDs. WM training has been investigated in different SUD populations, with preliminary findings suggesting beneficial effects on working memory capacity, impulsivity, and reduction of alcohol/drug use among heavy drinkers. WM training has shown feasibility within SUDs inpatient treatment settings. Nevertheless, there are WM studies that have not reported transfer/generalization effects. For example, in Wannaker et al., WM training led to improved performance on trained tasks but not on nontrained WM tasks or other cognitive measures. In another study with alcohol users, the WM-trained group demonstrated a significantly greater improvement in verbal WM compared with a control group; however, the results did not support an effect of WM training on other cognitive domains or drinking outcomes. Taken together, these studies show promising results though further work is necessary to establish training effects on clinical outcomes.

An interesting emerging approach is to combine different neuroscience-informed interventions that synergistically tap into bottom-up versus top-down cognitive processes. Within this context, there are three potential approaches: (i) combining cognitive training with existing evidence-based interventions; (ii) combining cognitive training and exercise (regulates drug cues related salience and prefrontal neuroplasticity); and (iii) combining two different cognitive trainings.
Initial evidence suggests that combining computerized cognitive training of general cognition and working memory with contingency management (financial incentives associated with completion of cognitive training sessions) improves the beneficial effects of training on top-down cognitive skills. The next step is to explore the potential of this combination to improve clinical outcomes such as the reduction of drug use and abstinence. A promising approach in this context would be combining contingency management (CM) with Goal Management Training (GMT). CM would facilitate the goal of maintaining abstinence in the short-term (i.e., exchanging negative drug test results with financial incentives), while progressive training with GMT would enable participants to apply goal-based decision-making strategies in the long-term. The second approach leverages evidence showing that short- and mid-term regimens of aerobic exercise can significantly reduce drug cue-related salience, and increase the availability of dopamine D2-type receptors in the striatum, linked to reward valuation and impulsivity. Thus, combining aerobic exercise and training of top-down impulsivity control via example inhibition of control training may have synergistic benefits on cognitive control and craving. The third approach, consisting of combining bottom-up and top-down cognitive training sounds immediately intuitive. However, its application is not without challenges. For example, we applied a combination of cognitive bias modifaction and working memory training among people with alcohol-use disorders, and found that the combination training did not improve cognitive or clinical outcomes. We reasoned that one of the factors explaining the lack of success might be the risk of overwhelming cognitive abilities and generating frustration. Therefore, this approach should carefully consider the timing and the intensity of the “combination-training” for exampe, by alternating different trainings on different days and ensuring that difficulty is progressive, or by integrating both trainings in a single package.

In addition to combination therapies, additional efforts have been made to develop modified “traditional” behavioral psychosocial treatment adapted to combine the cognitive deficits of people with SUDs. Aharonovich et al. have integrated compensatory strategies for cognitive deficits used in brain injury patients in a Modified Cognitive Behavioral Therapy (M-CBT). They presented the therapeutic CBT activities in a less cognitively demanding way to improve learning, memory, and executive functions (e.g., reduced session length and increased weekly frequency, short-sim plified com um m unia tion, concrete and visual presentation of content of sessions, workbooks with visual illustrations and to-do lists, use of mnemonic and external memory aids, repetition until mastery occurs). M-CBT was not superior to CBT in terms of treatment retention or drug use reduction, although participants enrolled in M-CBT reported higher treatment satisfaction, and those who completed at least 9 weeks of treatment showed a trend towards a greater reduction of cocaine use.

Finally, an important aspect to address in future studies of cognitive training and rehabilitation is what aspects of these interventions may work better for different patient subtypes. Research on moderators of cognitive training and rehabilitation effects is particularly useful in this context. For example, in the context of problem atic alcohol use, Houben et al. found that participants with strong impulsive tendencies to drink alcohol benefitted from WM training. This finding aligns with the view that WM training can be particularly useful to reduce impulsive behaviors given neurobiological overlap in lateral prefrontal cortex regions. Furthermore, Eberl et al. demonstrated that older alcohol-dependent patients and patients with a strong pre-training approach-bias benefitted from CBM.

Biological approaches

Pharmacotherapy

Cognitive enhancing pharmacotherapies are based on the premise that cognitive processes may be important targets for the treatment of SUD. From this point of view, pharmacotherapies that aim at improving cognition can be considered as potential transdiagnostic intervention, i.e., enhancing cognitive processes underlying different types of addictions and associated psychiatric disorders. Broadly two categories of approaches can be identified: memory-enhancing drugs (acetylcholinesterase inhibitors) and stimulants.

Increasing synaptic concentrations of acetylcholine has shown potential to improve cognitive function in neuropsychiatric disorders, e.g., demetia and schizophrenia. In different, small-scale and short studies, galantamine and rivastigmine showed positive effects both on cognitive function (sustained attention, working memory) and clinical outcomes in patients with stimulant SUDs (such as cocaine). These results provide at least preliminary evidence of the efficacy of future research.
Modafinil is a cognitive enhancer with a complex pharmacological profile, ie, inhibitor of dopamine and norepinephrine transporters, and additional actions on GABA, glutamate, and Orexin. Within cocaine-dependent patients, modafinil has shown improved outcomes of cognitive function (working memory) and clinical (reduction of cocaine use) effects. Of interest, in a recent study baseline cognitive functioning, ie, impulsivity and attentional bias, predicted clinical outcomes in modafinil-treated crack-cocaine dependent patients. In alcohol-dependent patients, modafinil improved impulsive decision-making, response inhibition, and working memory and had a positive effect on clinical outcomes (time to relapse percentage of abstinent days). However, both the positive clinical effect and the effect on working memory were limited to those patients with high impulsivity and low working memory. In reverse, patients with a normal-to-low baseline impulsivity had an adverse effect on their drinking outcome when using modafinil. These findings indicate the importance of baseline cognitive performance in differentiating the effect of modafinil and possibly other cognitive-enhancing medications.

Methylphenidate is another stimulant drug with a pharmacological action similar to amphetamine and cocaine, ie, increasing dopamine, norepinephrine, and serotonin. Different studies show its efficacy in improving decision-making, working memory, and set-shifting in ADHD patients. Recent studies show a positive effect of high dosages of methylphenidate on amphetamine and cocaine use in stimulant-dependent ADHD patients. Interestingly, other associated substance use in these patients, eg, alcohol and cannabis, diminished in these trials. This finding may indicate a substance “transdiagnostic” effect of high-dose methylphenidate. Overall, amphetamine-like drugs have been shown to have a positive effect on different cognitive functions. In healthy participants, D-amphetamine and lisdexamfetamine increase cognitive performance in processing speed, inhibition, and vigilance tasks. However, the cognitive enhancing properties of these substances have been until recently hardly explored as a treatment for SUDs. The potential addictive properties of these substances play an important role here. In a recent study, high-dosed sustained-release dexamphetamine has shown positive clinical effects (fewer days of cocaine use) in cocaine-dependent heroin patients.

Taken together, treatment with cognitive enhancing drugs does seem to carry promise both in enhancing cognitive function and clinical outcomes in SUD patients. However, the interrelation between these two outcome domains remains largely unexplored. Most studies focus on either cognition or SUD outcome and do not explore their intercorrelation or temporal (causal) interaction with cognitive outcomes. The complexity of this interrelation is highlighted in a recent study. In cocaine-dependent ADHD patients, the effect of extended-release methylphenidate (MAS-XR) came first on the ADHD symptoms (indicative of cognitive effect), with an effect on cocaine abstinence, only later on in treatment and limited to those patients who experienced a positive effect on ADHD. Future studies should take into account the relationship between cognitive function and clinical outcome and possibly other cognitive-enhancing medications.

Neuromodulation: transcranial stimulation
Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two types of modulations with potential therapeutic utility in the treatment of a broad variety of psychiatric disorders, including SUDs. Studies have been published showing positive results (active versus sham condition), ie, reduction of craving and substance use, of TMS and tDCS in alcohol, nicotine, cocaine, obesity, and food addiction. Of importance, for both techniques the produced effects are temporary, ie, long-term benefits would likely require chronic (repetitive) administration. The exact underlying working mechanism of these interventions remains to be clarified, eg, whether these effects (craving, substance use) are direct or via the strengthening of cognitive functions. Indeed, studies using neuromodulation techniques such as transcranial direct current stimulation (tDCS) have demonstrated promising effects in modulating cognitive and motor functions. In healthy individuals, TMS and rTMS induce alterations of cognitive functions, eg, reducing impulsivity and risk-taking. Modification of these cognitive deficits that have been suggested to play a role in the pathogenesis of addictive behaviors may, at least from a theoretical stance, reduce these behaviors. In a broad variety of SUD patients, excitatory stimulation over the left DLPFC was associated with, in proved inhibitory control, lower risk-taking, decreased delay-discounting, reduced attention towards alcohol cues, and improved executive functioning. Right DLPFC stimulation was less studied, but also showed a reduction of risk-taking and improved outcomes in m emotion and inhibitory control. However, findings were not consistent with some studies showing no or even negative effect.
interest, studies suggest that SUD severity may differentiate the effects of neuromodulation, ie, a more significant effect on executive functioning in patients with more severe AUD. Also, in different studies, baseline cognitive task performance proved to modulate the effectivity of neuromodulation. Baseline impulsivity is likely to be an essential determinant of neuromodulation effectiveness. Besides, earlier studies in SUDs populations showed rate-dependent effects for manipulations targeting delay discounting, suggesting that for future neuromodulation studies rate-dependent analysis should be considered.

Taken together, transcranial stimulation interventions seem to have both an effect on clinical outcome variables and cognitive functions within SUD patients. However, as yet no information is available on the question of whether these cognitive impairments are the drivers of the clinical effect.

Conclusion

The reviewed evidence supports the central role of cognition in SUD symptomology, clinical prognosis, and potential therapeutic targets. Growing evidence about the relevance of attention, impulsivity, and decision-making for prediction and moderation of the outcomes of different cognitive and pharmacological approaches suggests that cognitive phenotyping and modulation will impregnate future treatment options. Future research is warranted to evaluate if this line of research can pave the way to precision medicine approaches. In the interim, we propose a tentative model (Figure 1) in which deep phenotyping of cognitive processes can lead to phenotype-matched cognitive and pharmacological approaches and putatively better SUD treatment outcomes. Current evidence suggests that cognitive approaches involving CBM, WM training, and Goal Management can be optimally suited for patients with strong automatic biases, high impulsivity levels, and deficient decision-making skills. Biological therapies, ie, pharmacotherapy and neuromodulation aiming at strengthening cognitive functions, are shown to be increasing im portant, specifically for patients with high impulsivity and poor executive functioning. Meaningful combinations of cognitive and biological approaches can be particularly useful for patients with extreme presentations of identified phenotypes (eg, WM training and left dorsolateral prefrontal cortex stimulation for highly impulsive patients).

Disclosure/Acknowledgements: The authors report no conflict of interest. We acknowledge the support of Servier in the preparation of this manuscript.

References

1. Verdejo-Garcia A. The neuropsychologist working in addiction: What to know? Ten questions and answers. *Revista Iberoamericana de Neuropsicologia. 2018;1(2):170-179.*
2. Baldacchino A, Balfour DJ, Passetti F, Humphris G, Matthews K. Neuropsychological consequences of chronic opioid use: a quantitative review and meta-analysis. *Neurosci Biobehav Rev. 2012;36(9):2056-2068.*
3. Biernacki K, McLennan SN, Terrett G, Labuschagne I, Rendell PG. Decision-making ability in current and past users of opiates: A meta-analysis. *Neurosci Biobehav Rev. 2016;71:342-351.*
4. Leung D, Staiger PK, Hayden M, et al. Meta-analysis of the relationship between impulsivity and substance-related cognitive biases. *Drug Alcohol Depend. 2017;172:21-33.*
5. Potvin S, Stavro K, Rizkallah E, Pelletier J.
Cocaine and cognition: a systemic quantitative review. *J Addict Med.* 2014;8(5):368-376.

6. Fernandez-Serrano MJ, Perez-Garcia M, Verdejo-Garcia A. What are the specific vs. general effects of drugs of abuse on neuropsychological performance? *Neurosci Biobehav Rev.* 2011;35(3):377-406.

7. V. Chong TT, Chung A, Chong ST, Stout JC, Yucl M, London ED. Stages of dysfunctional decision-making in addiction. *Pharmacol Biochem Behav.* 2018;164:99-105.

8. Alben-Urios N, Martinez-Gonzalez JM, Lozano No-Rojas OM, Verdejo-Garcia A. Executive functions in cocaine-dependent patients with cluster B and cluster C personality disorders. *Neuropsychology.* 2014;28(1):34-90.

9. Cuyas E, Verdejo-Garcia A, Fagundo AB, et al. The influence of genetic and environmental factors on mg MDMA users in cognitive performance. *Plos One.* 2011;6(11):e27206.

10. Verdejo-Garcia A, Fagundo AB, Cuena C, et al. COMT val158met et and 5-HTTLPR genotype and somatic execution control in cannabis users. *Neuropsychopharmacology.* 2013;38(8):1598-1606.

11. Kwako LE, Schwandt ML, Ramchandani VA, et al. Neurofunctional domains used derived from deep behavioral phenotyping in alcohol use disorder. *Am J Psychiatry.* 2019;176(2):156-164.

12. Kwako LE, Momenan R, Litten RZ, Koob GF, Goldman D. Addictions neurocognitive assessment: a neuroscience-based framework for addictive disorders. *Biol Psychiatry.* 2016;80(3):179-189.

13. Yucl M, Oldenhof E, Ahn ed SH, et al. A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. *Addiction.* 2019;114(6):1095-1109.

14. Dalley JW, Everitt BJ, Robbins TW. Impul sivity, com pulsivity, and top-down cognitive control: a meta-analysis. *Addict Behav.* 2011;36(4):690-694.

15. Everitt BJ, Robbins TW. Drug addition: updating actions to habits to com pulsions ten years on. In: Fiske ST, ed. *Annual Review of Psychology.* Vol 67. 2016:23-50.

16. Verdejo-Garcia A, Alcazar-Corcoles MA, Albein-Urios N. Neuropsychological interventions for decision-m amking in addiction: a systematic review. *Neuropsychol Rev.* 2019;29(1):79-92.

17. Potvin S, Pelletier J, Grot S, Hebert C, Barr A, Lecomte T. Cognitive deficits in individuals with m ethamphetamine use disorder: A meta-analysis. *Addict Behav.* 2018;80:154-160.

18. Stavro K, Pelletier J, Potvin S. Wide-spread and sustained cognitive deficits in alcoholism: a meta-analysis. *Addiction Biology.* 2013;18(2):203-213.

19. Donovan DM, Bigelow GE, Brigham GS, et al. Prim ary outcome e indices in illicit drug de pe nence treatment research: a systemic atic approach to selection and m easurement of drug use end-points in clinical trials. *Addiction.* 2012;107(4):694-708.

20. Tiffany ST, Friedan a L, Greenfield SF, Hasin DS, Jackson R. Beyond drug use: a systemic atic consideration of other outcomes in evaluations of treatments for substance use disorders. *Addiction.* 2012;107(4):709-718.

21. Dom inguez-Salas S, Diaz-Batareno C, Loza no Rojas OM, Verdejo-Garcia A. Impact of genetic and environmental factors on addiction treatment outcomes: Systematic review and discussion of neuropsychological pathways. *Neurosci Biobehav Rev.* 2016;71:772-801.

22. Yip SW, Scheinost D, Potenza MN, Carroll KM, Egan MF. Executive function deficits on addiction treatment outcome: A systematic review and discussion of neurocognitive pathways. *Neuropsychopharmacology.* 2019;114(6):1095-1109.

23. Stuss DT, Alexander MP. Is there a dysexecutive syndrome? *Phil Trans R Soc Lond B Biol Sci.* 2007;362(181):901-915.

24. Rubenstien A, Firentrict LM, Rubenstien AD, Verdejo-Garcia A. Sustained attention but not effort-based decision-m amking predicts treat m ent m otivation change in people with m ethamphetamine dependence. *Subst Abuse Treat.* 2018;95:48-58.

25. Dean AC, Morales AM, Hellemann G, London ED. Cognitive deficit in methamphetamine users relative to childhood academic performance: links to cortical thickness. *Neuropsychopharmacology.* 2018;43(8):1745-1752.

26. Passetti F, Clark L, Davis P, et al. Risky decision-m amking predicts short-term outcome of com m unity but not residential treatment for opiate addiction. Implications for case m anagement. *Drug Alcohol Depend.* 2011;118(1):12-18.

27. Verdejo-Garcia A, Albein-Urios N, Marti nez-Gonzalez JM, Civit E, de la Torre L, Lozano No-O. Decision-m amking impair pm in patients with oradian academic performance: links to cortical thickness. *Neuropsychopharmacology.* 2014;38(8):1745-1752.

28. Buelow MT, Suhr JA. Construct validity of the Iowa Gambling Task. *Psyc hology.* 2014;231(21):4179-4187.

29. Duy JD, Kelt RJ, Upton DJ, Busemeyer JR, Stout JC. An im proved cognitive m odels of the Iowa and Soochow Gambling Tasks with regard to m odel fitting performance and tests of param eter consistency. *Front Psychol.* 2015;6:229.

30. Yechna E, Busemeyer JR, Stout JC, Bechara A. Using cognitive m odels to m ap rela tions between neuropsychological disorders and human decision-making deficits. *Psychol Sci.* 2005;16(12):973-978.

31. Stevens L, Verdejo-Garcia A, Goudriaan AE, Roeyers H, Dom G, Van der Plaschen. W. Impul sivity as a vulnerability factor for poor addiction treatment outcome: A review of neurocognitive findings among individuals with substance use disorders. *J Subst Abuse Treat.* 2014;47(1):58-72.

32. Verdejo-Garcia A. Neurocognitive assessment of addiction need s to incorporate decision-m amking m easures and ecological validity. *Biol Psychiatry.* 2017;81(7):E53-E54.

33. Enkawi AZ, Eisenberg JW, Bissett PG, et al. Large-scale analysis of test-retest reliabilities of self-regulation measures. *Proc Natl Acad Sci U S A.* 2019;116(12):5472-5477.

34. Buset eyer JR, Stout JC. A contribution of cognitive decision m odels to clinical assessment: Decum posing perform an ce on the bechara game bling task. *Psychol Assess.* 2002;14(3):253-262.

35. Stout JC, Busemeyer JR, Lin AL, Grant SJ, Boflo M. On odel analysis of decision-m amking processes in cocaine abusers. *Psychon Bull Rev.* 2004;11(4):742-747.

36. Pedersen ML, Frank MJ, Biele G. The drift diffusion model as the choice rule in reinforcement learning. *Psychon Bull Rev.* 2017;24(4):1234-1251.

37. Verdejo-Garcia A, Chong TTT, Stout JC, Yucl M, London ED. Stages of dysfunctional decision-making in addiction. *Pharmacol Biochem Behav.* 2019;184:1(2).

38. Voon V, Derbyshe K, Ruck C, et al. Disorders of com pulsivity: a com m on bias towards learning habits. *Mol Psychiatry.* 2015;20(3): 345-352.

39. Hu A, Vilares I, Lohrenz T, Dayan P, Montague PR. A model of risk and mental state shifts during social interaction. *Plos Computational Biology.* 2018;14(2).

40. Harvey PD, McGuirk SR, Mahneke H, Wykes T. Controversies in com puterized cognitive training. *Biol Psychiatry Cogn Neurosci Neuroimaging.* 2018;3(11):907-915.

41. Bechara A. Decision m amking, impulse control and com puterized training. *Neur on.* 2002;159(10):1642-1652.

42. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroim aging impaired response inhibition and salience attribution in human drug addiction: a systemic atic review. *Neuron.* 2018;95(5):866-903.

43. Gladwin TE, Wiers CE, Wiers RW. Cognitive neuroscience of cognitive retraining for addiction m edication: From m edication m echanisms to questions of efficacy. *Prog Brain Res.* 2016;224:323-344.

44. Wiers RW, Boffo M, Field M. What’s in a Trial? On the im portance of distinguishing between experim ental lab studies and randomized controlled trials: the case of cognitive bias m odification and addiction use disorders. *J Stud Alcohol Drugs.* 2018;79(3):333-343.

45. Levine B, Schweizer TA, O’Connor C, et al. Rehabilitation of executive functioning in patients with frontal lobe brain dam age with goal management training. *Front Hum Neurosci.* 2011;5:9.

46. Alfonso JP, Caracuel A, Delgado-Pastor LC, Verdejo-Garcia A. Com bined Goal Management and Mindfulness m editation im prov
executive functions and decision-making performance in abstinent polysubstance abusers. *Drug Alcohol Depend.* 2011;117(1):78-81.

48. Valls-Serrano C, Caracuel A, Verdejo-Garcia A. Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance-dependent treatment-seeking patients. *Comprehensive Psychiatry* 2016;65:9-14.

49. Casalotto KB, Moore DJ, Woods SP, Um lauf A, Scott JC, Heaton RK. Abbreviated goal in action ied trial of working memory training as an enhancement therapy for hiv-associated neurocognitive disorders among substance users. *Clin Neuropsychol.* 2016;30(1):107-130.

50. Bickel WK, Moody L, Quisenberry A. Computerized working memory training as a candidate adjunctive treatment for alcohol use disorder: a randomized controlled trial. *Drug Alcohol Depend.* 2019;201:16-21.

51. Khemiri L, Brynte C, Stunkel A, Klingberg T, Bickel WK, Moody L, McPhee MD, Keough MT, Quilty LC. Randomized trial of working memory training as an enhancement for drug addiction: Does it work? *Addiction* 2018;113(5):697-706.

52. Bickel WK, Yi R, Landes RD, Hill PF, Baxter J, McPhee MD, Keough MT, Quilty LC. Working memory training for adolescents with substance use disorder: A randomized, placebo-controlled trial of modafinil for the treatment of substance use disorder. *Addiction* 2018;113(5):697-706.

53. Skoglund C, Brandt L, D’Onofrio B, Larsson M, Konstenius M, Jayaram-Lindstrom N, Gu erstam J, Beck O, Phillips B, Franck J, Myehlen for attention deficit hyperactivity disorder and drug relapse in criminal offenders with substance dependence: A 24-week randomised placebo-controlled trial. *Addiction.* 2014;109(3):440-449.

54. Maguire L, Conklin CA, Soreca I, Kupfer DJ, et al. Exercise Attenuates negative effects of abstinence during 72 hours of smoking deprivation. *Exp Clin Psychopharmacol.* 2017;25(4):265-272.

55. Robertson CL, Ishibashi K, Chadzynski J, et al. Effect of computerized training on striatal dopamine D2/D3 receptors in methamphetamine users during behavioral treatment. *Neuropsychopharmacol.* 2016;41(4):1629-1636.

56. Manning V, More K, Garfield JB, et al. Combining computerized working memory training and counseling improves treatment outcome for substance use disorder. *J Subst Abuse Treat.* 2017;76:17-25.

57. Anderson AL, Reid MS, Li SH, et al. Modafinil for the treatment of cocaine dependence. *Drug Alcohol Depend.* 2009;104(1-2):133-139.

58. Nijsten M, Blanken P, Van den Brink W, Goldriaan AE, Hendriks VM. Imulsivity and attentional bias as predictors of modafinil treatment outcome for retention and drug use in crack substance-dependent patients: Results of a randomised controlled trial. *J Psychopharmacol.* 2016;30(7):616-626.

59. Schm aal L, Goldriaan AE, Joos L, et al. Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients. *Psychol Med.* 2014;44(13):2787-2798.

60. Joos L, Goldriaan AE, Schm aal L, van der Brink W, Sabbe BG, Dom G. Effect of modafinil on cognitive functions in alcohol-dependent patients: a randomised, placebo-controlled trial. *J Psychopharmacol.* 2013;27(11):998-1006.

61. Schm aal L, Goldriaan AE, Joos L, et al. Modafinil modulates resting-state functional network connectivity and cognitive control in alcohol-dependent patients. *Biol Psychiatry.* 2013;73(8):789-795.

62. Joos L, Goldriaan AE, Schm aal L, et al. Effect of modafinil on impulsivity and relapse in alcohol-dependent patients: a randomised, placebo-controlled trial. *Eur Neuropsychopharmacol.* 2013;23(8):948-955.

63. Schm aal L, Joos L, Koekem an M, Veltm an DJ, van der Brink W, Goldriaan AE. Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients. *Biol Psychiatry.* 2013;73(3):211-218.

64. Konstanski M, Jayaram-Lindstrom N, Gu erstam J, Beck O, Phillips B, Franck J, Myehlen for attention deficit hyperactivity disorder and drug relapse in criminal offenders with substance dependence: A 24-week randomised placebo-controlled trial. *Addiction.* 2014;109(3):440-449.
Original article
Cognition and addiction - Verdejo-Garcia et al

H, Franck J. Methylphenidate doses in Attention Deficit/Hyperactivity Disorder and comorbid substance use disorders. *Eur Neuropsychopharmacol.* 2017;27(11):1144-1152.

86. Dolder PC, Strajhar P, Vizeli P, Odermatt A, Liechti ME. Acute effects of lisdexamfetamine and D-amphetamine on social cognition and cognitive performance in a placebo-controlled study in healthy subjects. *Psychopharmacology* 2018;235(5):1389-1402.

87. Nuijten M, Blanken P, van de Wetering B, Nuijen B, van den Brink W, Hendriks VM. Sustained-release dexamfetamine in the treatment of chronic cocaine-dependent patients on heroin-assisted treatment: a randomised, double-blind, placebo-controlled trial. *Lancet* 2016;387(10034):2226-2234.

88. Levin FR, Choi CJ, Pavlicova M, et al. How treatment improvement in ADHD and cocaine dependence are related to one another: A secondary analysis. *Drug Alcohol Depend.* 2018;188:135-140.

89. Bari A, DiCesare J, Babayan D, Runcie M, Sparks H, Wilson B. Neuromodulation for substance addiction in humans: A review. *Neurosci Biobehav Rev.* 2018;95:33-43.

90. Forcano L, Mata F, de la Torre R, Verdejo-Garcia A. Cognitive and neuromodulation strategies for unhealthy eating and obesity: Systematic review and discussion of neurocognitive mechanisms. *Neurosci Biobehav Rev.* 2018;87:161-191.

91. Lapenta OM, Marques LM, Rego GG, Comfort WE, Boggio PS. iDCS in addiction and impulse control disorders. *J ECT.* 2018;34(3):182-192.

92. Naish KR, Vedelago L, MacKillop J, Am lug M. Effects of neuromodulation on cognitive performance in individuals exhibiting addictive behaviors: A systematic review. *Drug Alcohol Depend.* 2018;192:338-351.

93. Nakamura-Palacios EM, de Alm eida Benevides MC, da Penha Zago-Gomes M, et al. Auditory event-related potentials (P3) and cognitive changes induced by frontal direct current stimulation in alcoholics according to Lesch holism typology. *Int J Neuropsychopharmacol.* 2012;15(5):601-616.

94. Cheng GL, Lee TM. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. *Soc Neurosci.* 2016;11(4):353-364.

95. Bickel WK, Quinenberry AJ, Snider SE. Does im pulsivity change rate dependently following stimulant administration? A translational selective review and re-analysis. *Psychopharmacology.* 2016;233(1):1-18.