Breast-Conserving Therapy Has Better Prognosis for Tumors in the Central and Nipple Portion of Breast Cancer Compared with Mastectomy: A SEER Data-Based Study

Jing Wang1,2, Xiaoyu Wang1,2, Zhenyu Zhong3, Xue Li4, Jiazheng Sun1,2, Jie Li1,2, Jiefeng Huang1,2, Yunhai Li1,2, Guosheng Ren1,2* and Hongzhong Li1,2*

1 Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2 Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 3 Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 4 College of Foreign Languages, Chongqing Medical University, Chongqing, China

Background and Objectives: Currently, the location of primary tumor was an independent prognostic factor of breast cancer. Tumors in the central and nipple portion (TCNP) had poor prognosis compared to other peripheral quadrants. The breast-conserving therapy (BCT) is becoming increasingly common worldwide in breast cancer operations. However, whether the availability of BCT was performed for TCNP remained a matter of debate. We sought to investigate whether BCT was suitable for TCNP with respect to survival outcomes, compared with mastectomy therapy.

Methods: Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we obtained TCNP breast cancer patients diagnosed during the period of 2010–2015. One-to-one (1:1) propensity score matching (PSM) was applied to construct a matched sample consisting of pairs of BCT and mastectomy groups. Univariate and multivariate Cox proportional hazard models were applied to estimate the factors associated with breast cancer-specific survival (BCSS) and overall survival (OS). Survival analysis was performed with the Kaplan–Meier method.

Results: In the overall cohort, a total of 9,900 patients were enrolled. We found that patients with BCT showed significantly better BCSS (log-rank, \(p < 0.001 \)) and OS (log-rank, \(p < 0.001 \)) than the mastectomy group before PSM. The same finding was also shown in 5,820 patients after PSM. Additionally, none of the subgroups, including age, sex, race, histological grade, AJCC stage, and molecular subtype undergoing mastectomy therapy, had better BCSS than BCT.

Conclusions: Our study was the first research to show that BCT exhibited superior prognosis in the cohort of TCNP from SEER databases than mastectomy therapy. This finding could provide a cue for treatment strategies for suitable TCNP patients, especially those with a strong willingness to conserve their breasts.

Keywords: tumors in the central and nipple portion, breast-conserving therapy, mastectomy, prognosis, SEER
INTRODUCTION

As the most common cancer in American women, breast cancer remains second to lung cancer in mortality rate, accounting for about 15% of all cancers this year (1). Although the death rate of female breast cancer has dropped from its peak by 40% since 1989, the decline rate slowed down in recent years (1). Additionally, some early-stage patients still have worse survival in clinical studies (2, 3). A series of studies revealed that age, primary tumor size, tumor location, positive axillary lymph nodes, histological grade, molecular subtype, and BRCA mutation were closely correlated with the prognosis of breast cancer (4–10).

Of note, the location of primary tumor, which has been reported by a wide variety of investigations, is an independent prognostic factor (9, 11–13). A similar finding was demonstrated in subsets of patients with colon, gastric, and lung cancer (14–16). Importantly, tumors in the central and nipple portion (TCNP) had poorer prognosis and more aggressive clinicopathological characteristics than peripheral quadrants (9). With consideration of recurrence rate and survival time, previous surgeons mostly made non-conservative operations for tumor in the central location (17, 18). Recently, with widespread popularization of oncologic concepts and increasingly mature plastic technology, the breast-conserving therapy (BCT), breast-conserving surgery with adjuvant whole breast radiotherapy (RT), is becoming gradually common worldwide (19, 20). Indeed, BCT showed more benefits for patients relative to mastectomy therapy, including advantages such as reducing operative time, diminishing psychological burden, improving cosmetic outcomes, and limiting side effects (21). However, the availability and safety of BCT for TCNP remained a matter of debate (22). Additionally, large-sample studies concerning the comparison of prognosis between BCT and mastectomy therapy for TCNP of breast cancer are scarce.

Therefore, based on the Surveillance, Epidemiology, and End Results (SEER) database, we aimed to explore whether BCT is more suitable for TCNP of breast cancer compared with mastectomy therapy.

MATERIALS AND METHODS

Study Design and Data Sources

Using SEER 18 Regs Custom Data (with additional treatment fields), we abstracted Breast Cancer cases from the SEER data released in November 2018. A total of 11,872 patients were originally identified according to the following criteria: tumor in the nipple (C50.0) and central portion (C50.1), the first and only malignant primary tumor, age at diagnosis 20 years, year of diagnosis (2010–2015), race (white, black, Asian/Pacific Islander, and American Indian/Alaska Native), site recode (breast), histological grade (I to IV), AJCC stages (I–IV), breast molecular subtype (Luminal A, Luminal B, HER2 enriched, and Triple Negative), and record of radiation therapy. Criteria for exclusion of the patients were as follows: unknown unilateral tumor \((n = 2)\), unknown primary surgery type \((n = 860)\), unknown T stage \((n = 49)\), unknown N stage \((n = 50)\), and treatment of breast-conserving surgery without radiation therapy \((n = 1,011)\). A total of 9,900 breast cancer patients were included in this retrospective cohort study.

The primary end points of our study were breast cancer-specific survival (BCSS) and overall survival (OS). BCSS was calculated from the date of diagnosis to the date of death from breast cancer or the last follow-up, and OS was calculated from the date of diagnosis to the date of death for any cause or the last follow-up.

Statistical Analysis

Statistical analysis was performed by virtue of the SPSS version 21.0 software package (IBM SPSS Statistics, Chicago, IL, USA). The following variables were analyzed: age, sex, race, laterality, histological grade, AJCC stage, tumor size, LN status, distant metastasis, breast molecular subtype, chemotherapy, radiotherapy, and treatment (BCT vs. mastectomy). The differences in clinicopathological characteristics between the two groups (BCT and mastectomy therapy) were examined using the Chi-square test. To reduce the obvious differences in baseline covariates and inherent selection bias, we conducted a one-to-one propensity score matching (PSM) analysis (23) between the two treatment groups, including these following variables: age, sex, race, laterality, histological grade, AJCC stage, breast molecular subtype, and chemotherapy. In this PSM, we set the match tolerance as 0.02. The BCSS and OS survival curves were estimated with the Kaplan–Meier method, and survival differences were assessed by the log-rank test. The Cox proportional hazards regression model was conducted on univariate and multivariate analyses of BCSS and OS. Univariate Cox regression analysis was performed for each prognostic variable, and those variables with \(p < 0.05\) were included in the multivariate Cox model analysis. All reported \(p\) values are two-sided, and differences at \(p < 0.05\) were considered statistically significant.

RESULTS

Demographics and Clinicopathological Findings

This retrospective cohort study included 9,900 patients with breast cancer (9,237 women and 663 men). According to the type of surgery and receipt of RT, all of these patients were divided into two groups: the BCT group \((n = 3,536, 35.7\%)\) and the mastectomy therapy group \((n = 6,364, 64.3\%)\). The demographic and clinicopathological characteristics of patients before or after PSM are listed in Table 1. Except for laterality, notable differences were detected in relevant variables between the two groups before PSM. The majority of patients in both the BCT group and the mastectomy group were aged older than 50 years (86.6% and 78.2%). We observed that the BCT group, compared with the mastectomy group, exhibited higher rates of female patients (99.3% vs. 90.0%, \(p < 0.001\)), white race (82.4% vs.
78.1%, \(p < 0.001 \), histological grade I and II (27.4% vs. 15.7% and 49.5% vs. 48.7%, respectively, \(p < 0.001 \)), AJCC stage I (58.7% vs. 26.3%), and Luminal A (81.8% vs. 73.1%, \(p < 0.001 \)). Besides, the proportion of patients with tumors smaller than 2 cm and negative lymph node (LN) metastasis was also higher in the BCT group than in the mastectomy group (73.1% vs. 38.4% and 73.4% vs. 48.0%, respectively, \(p < 0.001 \)). Moreover, the BCT group presented a lower percentage of chemotherapy than the mastectomy group (32.9% vs. 50.5%, \(p < 0.001 \)). Last but not least, a total of 1,578 breast reconstruction cases of 9,900 patients were in the mastectomy group (Table 1).

After 1:1 matching, 2,910 patients in the BCT group were matched as compared with 2,910 patients in the mastectomy group. Except for age and molecular subtype, there were no notable differences between the two treatment groups after PSM.

Survival Analysis for OS and BCSS

Subsequently, we investigated the outcome of BCSS and OS in patients with TCNP between the BCT group and the mastectomy group, in the use of the Kaplan–Meier method. Before PSM, patients who received BCT showed significantly better BCSS and OS (\(p < 0.001 \)) than those undergoing mastectomy therapy (Figures 2A, B). Similarly, we still found the notable difference between the two groups after PSM (\(p < 0.001 \); Figures 2C, D). We next assessed the prognostic values of the BCT group compared with the mastectomy group in various subgroups, including age, sex, race, histological grade, AJCC stage, and molecular subtype (Figures 3–8, Supplementary Figures 1–6). Interestingly, these results showed that the BCT had poorer survival in none of all these clinicopathological parameters subgroups. Compared with the patients who are undergoing mastectomy therapy, BCT was a better prognostic factor for BCSS in patients aged between 50 and 59 or those aged 70 and above (\(p = 0.016 \) and \(p < 0.001 \), respectively; Figures 3C, E), female patients (\(p < 0.001 \); Figure 4A), those of white race (\(p < 0.001 \); Figure 5A), and those with histological grade II (moderate differentiation) and III (poor differentiation) (\(p = 0.001 \) and \(p < 0.001 \), respectively; Figures 6B, C). Except for Stage IV, patients with Stage I–III showed better survival with BCT (\(p = 0.011 \), \(p = 0.001 \), and \(p < 0.001 \), respectively; Figures 7A–C). Similar outcomes were present in the molecular subtype of patients including Luminal A, Luminal B, and Triple Negative (\(p < 0.001 \), \(p = 0.002 \), and \(p = 0.018 \), respectively; Figures 8A, B, D). Besides, as for OS, BCT group still had better prognosis than the mastectomy group in most of the above subgroups (Supplementary Figures 1–6).
TABLE 1 | Clinicopathological features of the central and nipple breast cancer patients.

Variables	Data before PSM N (%)	p†	Data after PSM N (%)	p†
	BCT 3536 (35.7)		Mastectomy 6364 (64.3)	
	N (%)			
	p†			
	Data after PSM N (%)			
	N (%)			
	p†			
Age		<0.001		<0.001
<40	68 (1.9)		67 (2.3)	
40–49	408 (11.5)		396 (13.3)	
50–59	931 (26.3)		813 (27.9)	
60–69	1151 (32.6)		885 (30.4)	
≥70	978 (27.7)		759 (26.1)	
Sex		<0.001		0.231
Female	3512 (99.3)		2886 (99.2)	
Male	24 (0.7)		24 (0.8)	
Race		<0.001		0.916
White	2912 (82.4)		2333 (80.2)	
Black	298 (8.4)		286 (9.1)	
A/PIa	305 (8.6)		300 (10.0)	
AI/ANb	21 (0.6)		21 (0.7)	
Laterality		0.132		0.079
Left	1776 (50.2)		1469 (50.5)	
Right	1760 (49.8)		1441 (49.5)	
Grade		<0.001		0.301
I	969 (27.4)		690 (23.7)	
II	1750 (49.5)		1437 (49.4)	
III	811 (22.9)		777 (26.7)	
IV	6 (0.2)		6 (0.2)	
AJCC Stage		<0.001		0.767
I	2075 (58.7)		1449 (49.8)	
II	1271 (35.9)		1271 (43.7)	
III	173 (4.9)		173 (5.9)	
Tumor Size (cm)		<0.001		
T1 (<2)	2585 (73.1)		NA	NA
T2 (2–5)	833 (23.6)		NA	NA
T3 (>5)	66 (1.9)		NA	NA
T4a	52 (1.5)		557 (8.8)	
LN status		<0.001		
N0 (negative)	2596 (73.4)		NA	NA
N1 (<3)	829 (23.4)		NA	NA
N2 (4–9)	86 (2.4)		NA	NA
N3 (>9)	25 (0.7)		461 (7.2)	
Subtype		<0.001		<0.001
Luminal A	2891 (81.8)		2291 (78.7)	
Luminal B	308 (8.7)		286 (9.8)	
HER2 enriched	113 (3.2)		112 (3.8)	
Triple-negative	224 (6.3)		221 (7.6)	
Chemotherapy		<0.001		1.000
YES	1163 (32.9)		1103 (37.9)	
NO	2373 (67.1)		1103 (37.9)	
Radiotherapy		<0.001		NA
YES	3536 (100)		NA	NA
NO	0 (0)		4461 (70.1)	NA
Reconstruction		<0.001		NA
Tissue	0 (0)		412 (6.5)	NA
Implant	0 (0)		588 (9.2)	NA
Combined	0 (0)		211 (3.3)	NA
Unknown	0 (0)		387 (5.8)	NA
NO	3536 (100)		4786 (75.2)	NA

BCT, breast-conserving treatment; NA, not applicable.

*AP/A includes Asian/Paciﬁc Islander;

*AI/AN includes American Indian/Alaskan native;

*AJCC, American Joint Committee on Cancer;

*TNM, Tumor of any size with direct extension to the chest wall and/or to the skin (ulceration or skin nodules);

*Tissue, this breast reconstruction is deﬁned as human tissue such as muscle or skin;

*Implant, this breast reconstruction is deﬁned as artiﬁcial prostheses;

*Combines, this breast reconstruction is deﬁned as combined tissue and implant;

*Unknown, patients with breast reconstruction but the ﬁlling material is unknown;

*p < 0.05 was considered statistically signiﬁcant.
Prognostic Factors for TCNP Patients

Furthermore, we next explored the prognostic factors associated with BCSS and OS in the cohort of patients. Univariable Cox regression analysis revealed that age, race, histological grade, AJCC stage, molecular subtype, receipt of chemotherapy, and treatment type were important factors associated with BCSS, while age, sex, race, histological grade, AJCC stage, molecular subtype, and treatment type were visibly associated with OS (Table 2). After we included the covariates that were clinically worth exploring or had p < 0.05 in the univariate analysis into the multivariate analysis, the parameters age, sex, race, histological grade, AJCC stage, molecular subtype, and treatment type were independent prognostic factors of BCSS in TCNP patients. While the factors age, race, histological grade, AJCC stage, molecular subtype, receipt of chemotherapy, and treatment type were significantly associated with OS (Table 3).

DISCUSSION

To our knowledge, this is the first research to explore the role of different treatments on survival of TCNP breast cancer patients. In the retrospective analysis of 9,900 cases, we uncovered that the BCT group exhibited better BCSS and OS than mastectomy group. Furthermore, we also conducted a subgroup analysis of all the independent influencing parameters for BCSS, including age, sex, race, histological grade, AJCC stage, and molecular subtype. We observed that none of subgroups undergoing the mastectomy therapy had better BCSS than BCT.

National Comprehensive Cancer Network (NCCN) guidelines and relevant studies demonstrated that the long-term survival rate of the BCT is similar to that of the mastectomy therapy. Therefore, BCT should be recommended for patients with early breast cancer (24–27). A Dutch study showed that BCT, compared with mastectomy therapy, was...
FIGURE 3 | Kaplan–Meier curves for BCSS by treatment type for all patients, stratified by age at diagnosis: (A) Age < 40 years. (B) Age of 40–49 years. (C) Age of 50–59 years. (D) Age of 60–69 years. (E) Age ≥ 70 years. BCSS, breast cancer specific survival; BCT, breast-conserving therapy.
FIGURE 4 | Kaplan–Meier Curves for BCSS by treatment type for all patients, stratified by sex: (A) Female. (B) Male. BCSS, breast cancer specific survival; BCT, breast-conserving therapy.

FIGURE 5 | Kaplan–Meier curves for BCSS by treatment type for all patients, stratified by race: (A) White. (B) Black. (C) A/PI. (D) AI/AN. BCSS, breast cancer specific survival; BCT, breast-conserving therapy; A/PI, Asian/Pacific Islander; AI/AN, American Indian/Alaskan native.
significantly correlated with improved 10-year overall survival in the whole cohort of 37,207 T₁₋₂N₀₋₁M₀ stage patients (28). Additionally, another population-based study on 10-year follow-up for 3,071 T₁₋₂N₂ stage breast cancer showed that patients who underwent BCT had superior survival time and lower rate of distant metastasis and regional recurrence (29). Our same findings further confirmed the availability and security of BCT and the range of application, such as AJCC stage I–III. These findings also agreed with the NCCN guidelines and Chinese breast cancer guidelines that patients in stage III (except for inflammatory breast cancer) who have been downgraded by neoadjuvant chemotherapy to meet the criteria for breast preservation can also be carefully considered (22, 24). Therefore, BCT has been gradually accepted by more surgeons and popularized by more patients worldwide in recent years. However, which type of patients undergoing BCT would have longer survival time and better quality of life is still an important unsolved issue.

Indeed, tumor location has been proven to be a strong predictive factor for survival (9). However, the opinion of whether BCT is suitable for TCNP breast cancer patients remains controversial (30–32). A study of 105,037 patients showed that TCNP was significantly correlated with older years, larger tumor sizes, higher AJCC stage, and worse survival time relative to other peripheral quadrants (9). Additionally, Chinese breast cancer guidelines indicated that tumor in the nipple was one of the relative contraindications for BCT (22). Intriguingly, our research of 9,900 AJCC stage I–IV TCNP patients showed that BCT exhibited better prognosis in most clinicopathological subgroups, supporting another recent investigation on early-stage T₁ or T₂ centrally located breast

FIGURE 6 | Kaplan–Meier curves for BCSS by treatment type for all patients, stratified by histological grade: (A) Grade I. (B) Grade II. (C) Grade III. (D) Grade IV. BCSS, breast cancer specific survival; BCT, breast-conserving therapy.
cancer (32). Our results constituting a wide range and a variety of influential factors from the SEER database provided more convincing evidence that BCT may not be a relative contraindication in clinical decision-making. Additionally, we consider that the superior BCSS outcome of BCT, to some extent, may due to the role of RT. Previous studies had demonstrated that timely adjuvant RT after BCT could decrease locoregional recurrence and distant metastasis (33–35). Another pre-clinical study also demonstrated that RT could potentially induce an anti-tumoral immune response in breast cancer (36).

Currently, breast cancers are classified into four distinct subtypes: Luminal A, Luminal B, HER2-enriched, and TNBC, according to the presence or absence of molecular markers for estrogen or progesterone receptors and HER2 (8). These subtypes have distinct risk profiles and treatment strategies (37). In particular, TNBC tends to exhibit a more aggressive clinical biological characteristics and worse prognosis than other subtypes (8, 38, 39). However, several professionals indicated that BCT might not be considered a contraindication for TNBC (40, 41). From our analysis of the TNBC subgroup, although the BCT group had a higher proportion of TNBC, it showed a superior BCSS survival than mastectomy therapy. Of note, the application of BCT for TCNP patients should allow for an adequate safety tumor-free margin of at least 2 mm (22). This undoubtedly increases technical difficulties in operations and makes surgeons hesitate to conduct BCT in consideration of locoregional recurrence (42). However, oncoplastic breast surgery (OBS) could broaden the general indication of BCT by achieving wider excision margins, which could ensure better local control of the disease (43). Eggemann, Holm et al. had provided excellent applicability of the B technique for breast cancer localized in the central portion of

![Kaplan–Meier Curves for BCSS by treatment type for all patients, stratified by AJCC stage: (A) AJCC stage I, (B) AJCC stage II, (C) AJCC stage III, (D) AJCC stage IV. BCSS, breast cancer specific survival; BCT, breast-conserving therapy.](image-url)
the breast (20). An inverted T method invented by McCulley et al. also made a similar satisfactory outcome for TCNP (44). Additionally, when BCT was implemented with the OBS technique, the rate of cosmetic failure could drop to <7% within 2 years and <10% within 5 years (45). Kijima et al. produced good cosmetic results for TCNP by multifarious flaps, including Latissimus dorsi mini flap, Grisotti flap, hole-shaped skin glandular flap, and Free dermal fat graft (19). Therefore, surgeons could consider BCT for more TCNP patients, with the help of the OBS technique.

This present study has several potential limitations. Firstly, we could not obtain information about disease recurrence from the SEER database. Therefore, we could not compare the different rates of locoregional recurrence between BCT and mastectomy therapy. Secondly, SEER could not provide information about neoadjuvant therapy. Some patients in the BCT group should undergo neoadjuvant chemotherapy before operation to meet the indication of breast conserving. Therefore, we could not assess the potential role of neoadjuvant therapy on our clinical outcomes. Thirdly, the SEER database collected large numbers of patients’ information from 18 population-based cancer registries. Some clinicopathologic information may be miscoded or missed during the registration process. For instance, patients’ BRCA gene mutations, Ki-67 in immunohistochemical analysis, were not provided in the current dataset.

Collectively, our study was the first investigation to show that BCT exhibited better prognosis than mastectomy therapy in the cohort of TCNP from SEER databases. This finding could provide a cue for treatment strategies for suitable TCNP patients, especially those with a strong willingness to conserve their breasts. However, some other factors, such as the potential locoregional recurrence rate, and whether physical condition could withstand the adverse

![FIGURE 8](image_url)

Kaplan–Meier curves for BCSS by treatment type for all patients, stratified by molecular subtype: (A) Luminal A. (B) Luminal B. (C) HER2 enriched. (D) Triple-negative. BCSS, breast cancer specific survival; BCT, breast-conserving therapy.
TABLE 2 | Univariable Cox proportional hazard regression model of breast cancer-specific survival (BCSS) and overall survival (OS).

Variable	BCSS		OS	
	HR (95% CI)	p†	HR (95% CI)	p†
Age				
<40	Reference		Reference	
40–49	0.375 (0.188–0.749)	0.005	0.462 (0.237–0.899)	0.023
50–59	0.405 (0.216–0.760)	0.005	0.518 (0.281–0.954)	0.035
60–69	0.376 (0.200–0.708)	0.002	0.797 (0.444–1.431)	0.447
≥70	0.732 (0.405–1.322)	0.001	2.733 (1.566–4.788)	<0.001
Sex			Reference	
Female	Reference		Reference	
Male	2.254 (0.837–6.073)	0.108	2.096 (1.083–4.056)	0.028
Race				
White	Reference		Reference	
Black	2.152 (1.496–3.160)	<0.001	1.463 (1.014–1.939)	0.008
A/PIa	0.546 (0.278–1.072)	0.079	0.377 (0.229–0.622)	<0.001
AI/ANb	0.983 (0.436–2.192)	0.987	1.894 (0.784–4.579)	0.156
Laterality			Reference	
Left	Reference		Reference	
Right	0.854 (0.638–1.145)	0.292	0.943 (0.781–1.138)	0.540
Grade			Reference	
I	Reference		Reference	
II	2.907 (1.579–5.349)	0.001	1.223 (0.935–1.599)	0.142
III	7.192 (3.945–13.111)	<0.001	2.083 (1.586–2.737)	<0.001
IV	7.113 (0.925–54.718)	0.059	1.131 (0.157–8.137)	0.903
AJCCc Stage				
I	Reference		Reference	
II	3.378 (2.271–6.025)	<0.001	1.769 (1.431–2.187)	<0.001
III	12.304 (7.816–19.371)	<0.001	4.389 (3.283–5.867)	<0.001
IV	45.713 (24.019–87.001)	<0.001	12.373 (7.265–21.075)	<0.001
Breast Subtype			Reference	
Luminal A	Reference		Reference	
Luminal B	1.575 (0.996–2.492)	0.052	1.040 (0.754–1.436)	0.809
HER2 (enriched)	2.355 (1.350–4.110)	0.003	1.686 (1.152–2.466)	0.007
Triple-negative	4.336 (2.996–6.276)	<0.001	2.187 (1.642–2.914)	<0.001
Chemotherapy			Reference	
YES	Reference		Reference	
NO	0.509 (0.380–0.681)	<0.001	1.317 (1.077–1.610)	0.007
Treatment Type			Reference	
BCT	Reference		Reference	
Mastectomy	2.319 (1.687–3.188)	<0.001	2.366 (1.926–2.907)	<0.001

aA/PI includes Asian/Pacific Islander;bAI/AN includes American Indian/Alaskan native;cAJCC, American Joint Committee on Cancer;†p < 0.05 was considered statistically significant.
effects of radiotherapy, should also be taken into account. Therefore, whole-process therapeutic strategies for TCNP patients still warrant further in-depth research.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

Conception and design: JW, HL, and GR. Data acquisition, analysis, and interpretation: JW, ZZ, and XL. Material support: XL, XW, YL, and HL. Study supervision: GR. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China (#31420103915 and #81472475).

ACKNOWLEDGMENTS

The authors thank all medical personnel of the Department of Endocrine and Breast Surgery and Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, for their technical assistance.

TABLE 3 | Multivariable Cox proportional hazard regression model of breast cancer-specific survival (BCSS) and overall survival (OS).

Variable	BCSS	OS		
	HR (95% CI)	p	HR (95% CI)	p
Age				
<40 Reference	NA		Reference NA	
40–49 0.451 (0.225–0.905)	0.025		0.534 (0.274–1.041)	0.066
50–59 0.617 (0.328–1.164)	0.136		0.669 (0.362–1.236)	0.199
60–69 0.621 (0.326–1.182)	0.147		1.034 (0.572–1.869)	0.912
≥70 1.048 (0.556–1.976)	0.884		3.029 (1.705–5.380)	<0.001
Sex				
Female Reference NA			Reference NA	
Male 2.888 (1.062–7.854)	0.038		2.429 (1.249–4.724)	0.009
Race				
White Reference NA				
Black 1.831 (1.237–2.708)	0.002			
A/PI 0.648 (0.328–1.277)	0.210		0.458 (0.277–0.757)	0.002
AI/AN 1.460 (0.203–10.524)	0.707		3.038 (1.248–7.392)	0.014
Grade				
I Reference NA			Reference NA	
II 1.984 (1.069–3.882)	0.030		1.009 (0.768–1.327)	0.947
III 3.474 (1.834–6.581)	<0.001		1.553 (1.148–2.101)	0.004
IV 3.813 (0.488–29.816)	0.022		0.573 (0.079–4.165)	0.582
AJCC Stage				
I Reference NA			Reference NA	
II 3.167 (2.097–4.785)	<0.001		1.845 (1.479–2.301)	<0.001
III 10.434 (6.435–16.916)	<0.001		4.577 (3.359–6.235)	<0.001
IV 43.105 (21.902–84.834)	<0.001		11.997 (6.934–20.756)	<0.001
Breast Subtype				
Luminal A Reference NA			Reference NA	
Luminal B 1.050 (0.648–1.700)	0.844		1.082 (0.772–1.515)	0.649
HER2 (enriched) 1.531 (0.849–2.762)	0.157		1.558 (1.038–2.338)	0.032
Triple-negative 3.325 (2.190–5.049)	<0.001		2.176 (1.594–2.971)	<0.001
Chemotherapy				
YES Reference NA			Reference NA	
NO 1.084 (0.749–1.570)	0.668		1.374 (1.072–1.762)	0.012
Treatment Type				
BCT Reference NA			Reference NA	
Mastectomy 2.359 (1.709–3.258)	<0.001		2.197 (1.785–2.705)	<0.001

BCT, breast-conserving treatment; **NA**, not applicable.

*a*A/PI includes Asian/Pacific Islander;

*b*AI/AN includes American Indian/Alaskan native;

*c*AJCC, American Joint Committee on Cancer;

† *p* < 0.05 was considered statistically significant.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.642571/full

REFERENCES

1. Siegel R, Miller K, Jemal A. Cancer Statistics, 2020. CA: Cancer J Clin (2020) 70(1):7–30. doi: 10.3322/caac.21590
2. Prat A, Guarnieri V, Paré L, Griguolo G, Pascual T, Dieci M, et al. A Multivariable Prognostic Score to Guide Systemic Therapy in Early-Stage HER2-Positive Breast Cancer: A Retrospective Study With an External Evaluation. Lancet Oncol (2020) 21(11):1455–64. doi: 10.1016/S1470-2045(20)30450-2
3. Li H, Chen Y, Wang X, Tang L, Guan X. T1-2n0m0 Triple-Negative Breast Cancer Treated With Breast-Conserving Therapy Has Better Survival Compared to Mastectomy: A SEER Population-Based Retrospective Analysis. Clin Breast Cancer (2019) 19(6):e669–82. doi: 10.1016/j.clbc.2019.05.011
4. Cai S, Zuo W, Lu X, Gou Z, Zhou Y, Liu P, et al. The Prognostic Impact of Age at Diagnosis Upon Breast Cancer of Different Immunohistochemical Subtypes: A Surveillance, Epidemiology, and End Results (SEER) Population-Based Analysis. Front Oncol (2020) 10:1729. doi: 10.3389/fonc.2020.01729
5. Cianfrocca M, Goldstein LJ. Prognostic and Predictive Factors in Early-Stage Breast Cancer. Oncologist (2004) 9(6):606–16. doi: 10.1634/theoncologist.9-6-606
6. Andersson Y, Bergkvist L, Friesel J, de Boniface J. Long-Term Breast Cancer Survival in Relation to the Metastatic Tumor Burden in Axillary Lymph Nodes. Breast Cancer Res Treat (2018) 171(2):359–69. doi: 10.1007/s10549-018-4820-0
7. Ehinger A, Malmöström P, Bendahl P, Elston C, Falck A, Forsare C, et al. Histological Grade Provides Significant Prognostic Information in Addition to Breast Cancer Subtypes Defined According to St Gallen 2013. Acta Oncol (Stockholm Sweden) (2017) 56(1):68–74. doi: 10.1080/0284186X.2016.1237778
8. Boyle P. Triple-Negative Breast Cancer: Epidemiological Considerations and Recommendations. Ann Oncol (2012) 23(Suppl 6):v7–12. doi: 10.1093/annonc/mds187
9. Ji F, Xiao W, Yang C, Yang M, Zeng L, Gao H, et al. Tumor Location of the Central and Nipple Portion Is Associated With Impaired Survival for Women With Breast Cancer. Cancer Manage Res (2019) 11:2915–25. doi: 10.2147/CMAR.S186205
10. Wunderle M, Gapp P, Haberle L, Flesch V, Rauh C, Bani M, et al. RBCA Mutations and Their Influence on Pathological Complete Response and Prognosis in a Clinical Cohort of Neoadjuvantly Treated Breast Cancer Patients. Breast Cancer Res Treat (2018) 171(1):85–94. doi: 10.1007/s10549-018-4977-8
11. Wu S, Zhou J, Ren Y, Sun J, Li F, Lin Q, et al. Tumor Location Is A Prognostic Factor for Survival of Chinese Women With T1-2N0M0 Breast Cancer. Int J Sterg (2014) 12(5):394–8. doi: 10.1616/j.jsiu.2014.03.011
12. Hwang KT, Kim J, Kim EK, Jung H, Sohn G, Kim SI, et al. Poor Prognosis of Lower Inner Quadrant in Lymph Node–negative Breast Cancer Patients Who Received No Chemotherapy: A Study Based on Nationwide Korean Breast Cancer Registry Database. Clin Breast Cancer (2017) 17(4):e169–84. doi: 10.1016/j.clbc.2016.12.011
13. Farag SS, Archer JK, Mrózek K, Ruppert AS, Carroll AJ, Vardiman JW, et al. Pretreatment Cytogenetics Add to Other Prognostic Factors Predicting Complete Remission and Long-Term Outcome in Patients 60 Years of Age or Older With Acute Myeloid Leukemia: Results From Cancer and Leukemia Group B 8461. Blood (2006) 108(1):63–73. doi: 10.1182/blood-2005-11-4354
14. Ishizuaka M, Shimizu T, Shibuya N, Takagi K, Hachiya H, Nishi Y, et al. Impact of Primary Tumor Location on Survival After Curative Resection in Patients With Colon Cancer: A Meta-Analysis of Propensity Score-Matching Studies. Oncologist (2021) 26(3):196–207. doi: 10.1002/onco.13555
15. Talamonti M, Kim S, Yao K, Wayne J, Feinglass J, Bennett C, et al. Surgical Outcomes of Patients With Gastric Carcinoma: The Importance of Primary Tumor Location and MicrovesSEL Invasion. Surgery (2003) 134(4):728–74; discussion 727–729. doi: 10.1016/S0033-6606(03)00337-4
16. Wang Z, Li M, Teng F, Kong L, Yu J. Primary Tumor Location Is an Important Predictor of Survival in Pulmonary Adenocarcinoma. Cancer Manage Res (2019) 11:2269–80. doi: 10.2147/CMAJ.S192828
17. Hill D, White V, Giles G, Collins J, Kitchen P. Changes in the Investigation and Management of Primary Operable Breast Cancer in Victoria. Med J Aust (1994) 161(2):110–11, 118 passim. doi: 10.5694/j.1326-5377.1994.tb127341.x
18. Deermarski L, Selenzev I. Extended Radical Operations on Breast Cancer of Medial or Central Location. Surgery (1984) 96(1):73–7. doi: 10.3109/02217577.1984.109969
19. Kijima Y, Yoshinaka H, Shinden Y, Hirata M, Nakajo A, Arima H, et al. Oncoplastic Breast Surgery for Centrally Located Breast Cancer: A Case Series. Gland Surg (2014) 3(1):62–73. doi: 10.3978/j.issn.2227-684X.2013.11.01
20. Eggemman H, Ignatov A, Elling D, Lampe D, Lantitzsch T, Weise M, et al. Efficacy and Patient Satisfaction of Breast Conservation Therapy for Central Breast Cancer by the B Technique. Ann Surg Oncol (2013) 20(11):3438–45. doi: 10.1245/s10434-013-3030-6
21. Nijenhuis MV, Rutgers EJ. Who Should Not Undergo Breast Conservation? Breast (2013) 22(Suppl 2):S10–4. doi: 10.1016/j.breast.2013.07.021
22. Zhongwei C, Depci C, Kao C, Qiang Z, Yuhua L, Erwei S, et al. [A Consensus Statement on the Breast-Conserving Surgery of Early-Stage Breast Cancer (2019)]. Zhonghua Wai Ke Za Zhi (2019) 57(2):81–4. doi: 10.3760/cma.j.issn.0529-5815.2019.02.001
23. McCaffery DF, Ridgeway G, Morral AR. Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies. Psychol Methods (2005) 10(4):403–25. doi: 10.1037/1082-989X.9.4.403
24. Gradishar WJ, Anderson BO, Abraham J, Aft R, Kumar R. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw (2020) 18(4):452–78. doi: 10.6004/jnccn.2020.02.001
25. Littner S, Werutsky G, Fentiman IS, Rutgers E, Christiaens MR, Van Limbergen E, et al. Breast Conserving Therapy Versus Mastectomy for Stage I-II Breast Cancer: 20 Year Follow-Up of the EORTC 10801 Phase 3

Breast-Conserving Has Better Prognosis
37. Waks A, Winer E. Breast Cancer Treatment: A Review. JAMA (2019) 321(3):288–300. doi: 10.1001/jama.2018.19323

38. Seong M, Kim K, Chung I, Kang E, Lee J, Park S, et al. A Multi-Institutional Study on the Association Between BRCA1/BRCA2 Mutational Status and Triple-Negative Breast Cancer in Familial Breast Cancer Patients. Breast Cancer Res Treat (2014) 146(1):63–9. doi: 10.1007/s10549-014-3006-7

39. Chen Q, Wang X, Lin P, Zhang J, Li J, Song C, et al. The Different Outcomes Between Breast-Conserving Surgery and Mastectomy in Triple-Negative Breast Cancer: A Population-Based Study From the SEER 18 Database. Oncotarget (2017) 8(3):4773–80. doi: 10.18632/oncotarget.13976

40. Abdulkariim B, Cuartero J, Hansen J, Deschênes J, Lesniak D, Sabri S. Increased Risk of Locoregional Recurrence for Women With T1-2N0 Triple-Negative Breast Cancer Treated With Modified Radical Mastectomy Without Adjuvant Radiation Therapy Compared With Breast-Conserving Therapy. J Clin Oncol: Off J Am Soc Clin Oncol (2011) 29(21):2852–8. doi: 10.1200/JCO.2010.33.4714

41. Adilks F, Gonzalez-Angulo A, Lei X, Hernandez-Aya L, Mittendorf E, Litton J, et al. Triple-Negative Breast Cancer Is Not a Contraindication for Breast Conservation. Ann Surg Oncol (2011) 18(11):3164–74. doi: 10.1245/s10434-011-1920-z

42. Multon O, Bourgeois D, Valdired P, Vilcoq J, Durand J, Clough K. [Breasts Cancers With Central Localization: Conservative Treatment by Tumorectomy With Ablation of the Areal Plaque]. Presse Med (Paris France: 1983) (1997) 26(21):988–94.

43. Bertozzi N, Pesce M, Santi P, Raposio E. Oncoplastic Breast Surgery: Comprehensive Review. Eur Rev Med Pharmacol Sci (2017) 21(11):2572–85. doi: 10.1016/j.ejmp.2017.07.048

44. McCulley S, Durani P, Macmillan R. Therapeutic Mammoplasty for Centrally Located Breast Tumors. Plast Reconstr Surg (2006) 117(2):366–73. doi: 10.1097/01.prs.0000200874.31320.e2

45. Fitoussi A, Berry M, Fâma F, Falcou M, Curnier A, Couturaud B, et al. Oncoplastic Breast Surgery for Cancer: Analysis of 540 Consecutive Cases [Outcomes Article]. Plast Reconstr Surg (2010) 125(2):454–62. doi: 10.1097/PRS.0b013e3181c82d3e

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.