RefSponse: A Literature Evaluation System for the Professional Astrophysics Community

Robert E. Rutledge

ABSTRACT

We describe an implementation of a semi-automated review system for the astrophysics literature. Registered users identify names under which they publish, and provide scores for individual papers of their choosing. Scores are held confidentially, and combined in a weighted average grade for each paper. The grade is divided among the co-authors as assigned credit. The credit accumulated by each user (their “mass”) provides the weight by which their score is averaged into papers’ grades. Thus, papers’ grades and users’ masses are mutually dependent and evolve in time as scores are added. Likewise, a user’s influence on the grade of a paper is determined from the perceived original scientific contribution of all the user’s previous papers. The implementation, called RefSponse – currently hosted at http://bororo.physics.mcgill.ca – includes papers in astro-ph, the ApJ, AJ, A&A, MNRAS, PASP, PASJ, New Astronomy, Nature, ARA&A, Phys. Rev. Letters, Phys. Rev. D. and Acta Astronomica from 1965 to the present, making extensive use of the NASA/ADS abstract server. We describe some of the possible utilities of this system in enabling progress in the field.

Subject headings: arXiv, peer review, scholarly publishing, scientific publishing

1. Introduction

Electronic distribution of the academic literature has opened a disjoint between the time when papers are introduced to a public readership, and their appearance in peer-reviewed journals – the specific event which historically has marked the paper as providing a minimal original academic contribution. This disjoint, its implications for progress in the field, and some possible solutions, have been been discussed elsewhere (Ginsparg 2002).

The web’s ability to speed and broaden communications and its application to the scientific literature – most famously via arXiv – has been widely exploited to the benefit

\[1\] Department of Physics, McGill University, 3600 rue University, Montreal, Quebec, H3A 2T8, Canada
of the scientific community. In addition, the web provides means to aggregate quantitative evaluations. However, 10 years after the introduction of the web, the astrophysics community has not exploited evaluation aggregation in application to its literature.

The applications and utilities of aggregating opinions of the distributed astrophysics literature are unexplored. Here, we introduce an implemented method of aggregating opinions of the astrophysics literature. We discuss some of the useful functions it may serve, and draw distinctions between these functions and those of detailed journal peer review. We close by pointing out that an aggregated numerical grade cannot replace specific consideration of the merits and flaws of papers in the literature, which is the only basis for progress; but the existence of an aggregate grade will permit individuals to identify papers about which there exists wide misconception (as evidenced by the grade), and to work to correct this, enabling progress in the field.

2. Operational Principles

The basic operational principles are:

- The primary goal of all operations is to encourage the writing of outstanding papers in astrophysics.

- The primary purpose of usage is to permit individual users to function as a community, scoring individual papers in proportion to their original scientific contribution, and having these scores aggregated into a grade which represents the users’ jointly held opinion.

- The weight of an individual user’s score should be proportional to the sum-total of that user’s original scientific contributions.

- Users are capable of self-identifying papers which they are competent to score within the precision of the 0-20 scoring system. Users are also capable of relying on the sole criterion of original scientific contribution when scoring papers.

- Individual user’s scores are confidential (that is, it is not possible to determine the score given to any individual paper by any individual user).
3. Operational Mechanics

In this section, we describe basic mechanics of how the service operates. The main operations – with the exception of reading and evaluating the papers — have been automated:

1. Identify the journals and collections of papers which contain the articles to be included for evaluation;
2. uniquely identify each article which appears in these journals (in the RefSponse implementation, we use the ADS bibcode);
3. identify all co-authors on all articles;
4. assign the co-author’s identities to system users;
5. permit users to numerically score articles;
6. employ quantitative criteria (“certification”) to determine which users shall have their scores used in calculating papers’ grades;
7. combine scores, weighted by the users’ “mass”, into a grade for each paper;
8. partition the grade of each article to each co-author of the article (and, in turn, the user assigned the co-author’s identity), and sum the partitioned grades for each user into the value known as the user’s “mass”.
9. iteratively solve for the mutually dependent paper grades and users’ “masses.”

This is similar to the group-moderated message boards in widespread use on the Internet for a decade. The main difference here is that RefSponse is designed for specific use with the astrophysics literature.

We rely for our references database on the publicly held information from the NASA/ADS Abstracts database. We ingest information about individual papers (see § 3.4), including titles, author lists and the ADS uniform bibliography code (bibcode). These are databased locally and updated daily.

Users register at the website for a username+password protected account. Registration – subject to review by the operator – is at present open. At some time in the future, the website will require single-use registration certificates. These will be distributed to the user base, for passing along to interested colleagues. This procedure will permit initial
registrations to proceed quickly, while insuring a long-term orderly process for expanding the user base.

On registration, users identify the complete list of names they use to publish papers, which will identify the papers on which they are co-author.

Users may then search for papers in the literature which they self-identify as competent to review to the precision offered by the grading scale. Users may submit a score, value 0-20, in strict proportion to their opinion of the original scientific contribution of the paper.

Once per day, the scores on each paper are aggregated into a weighted average, to produce a single numerical grade for that paper. Simultaneously, the grades on every paper co-authored by each user are aggregated – roughly speaking, added together – to calculate the user’s mass. Thus, the user’s mass is higher when the user has co-authored more, high quality papers.

For purposes of transparency, after there are >100 users registered to the site, registered users will have access to the list of users, including only names, institutions, and the “published under” names. This will permit independent authentication of user identities.

3.1. Scoring

Any registered user may score a paper. Only the scores of users who have been Certified (see §3.2) are included in calculating papers’ grades. The score range of 0-20 was chosen as a compromise between wide dynamic range and reasonable (integral) resolution in scoring.

To address the concern of score inflation (i.e., a user scoring every paper a 20), we assume the following regarding the intrinsic distribution of scores. We assume that two factors are involved of producing a paper of score S: time and skill. The distribution of scores due to time investment, skill being equal, means there should be $20 \times$ as many papers with “1” as there are “20” ($N \propto 1/S$). The distribution of scores for skill, time investment being equal, is a similar factor ($N \propto 1/S$). And, finally, that skill and time are directly proportional – that doubling the amount of applied skill and halving the applied time to a paper results in a work deserving an equal grade. We thus assume that the intrinsic distribution of scores should be $N(S) \propto 1/S^2$.

We enforce this scoring distribution through the minimal requirement that a user’s non-zero scores average remain below 2.25. Doing so also prompts users to re-visit scores on older papers, to determine if the perception of their relative contribution is sustained.
3.2. User Certification

A user’s scores will be folded into the paper grade only if the user meets certain minimum requirements (“certification”):

- scores on \(\geq 3 \) papers on which the user is a co-author, placed by \(\geq 3 \) different users.
- The user must have scored \(>10 \) papers within the previous calendar year.
- Certification is performed during each grading.
- Users are de-certified if they do not meet the above criteria.

Using this quantitative criterion for including a user’s score in a paper grade, as well as using the relative weighting of a user’s mass in determining a paper’s grade, permits automation of determining the paper’s grade.

3.3. Calculation of Paper Grades and User Masses

The calculation of paper grades \((G_i)\) and user masses \((M_j)\) is non-analytic and so solved iteratively, relying on user scores for each paper \((S_{i,j})\).

The paper grade is a weighted average of the users’ scores:

\[
G_i = \frac{\sum_j M_j S_{i,j}}{\sum_j M_j} \tag{1}
\]

The weight for this average is the user’s mass \((M_j)\). The paper grade takes a value between the extremes of assigned scores. Each user’s mass is found:

\[
M_j = \sum_i N_{n_j,i} G_i \tag{2}
\]

where \(N_{n_j,i}\) is the fraction of the grade \(G_i\) attributed to user \(j\) when they are author number \(n_j\) on paper \(i\).\(^2\) Note \(\sum_j N_{n_j} = 1\).

\(^2\)First author is \(n_j = 1\), second author is \(n_j = 2\), and so on.
As a user’s mass increases (as it will, in time, as they co-author more papers), their relative influence on a paper’s grade also increases. Thus, the grades of papers will evolve in response to evolution in users’ masses, even while the scores themselves do not change. The operating assumption is that users who have written many, highly regarded papers should have proportional influence in determining the grade of others’ papers.

3.3.1. The Normalization N_{nj}

The normalization N_{nj} determines how the credit (represented by the grade) of a paper is divided among its co-authors. This is an important function for operations, worthy of some discussion and consideration. The criteria we use to evaluate methods of calculating N_{nj} are: (1) that it reflect reasonable practices of distributing credit for individual papers; and (2) that it need not duplicate existing practices for attributing credit to individuals; (3) automated implementation be practical.

We discuss four different approaches, although there are certainly others:

- **Equal Credit per Author (ECA):** For $n_{authors}$ authors on the author-list, $N_{nj}=1/n_{authors}$, the credit is divided equally among all authors.

- **First author leads, others divide (FAL):** $N_{nj=1} = n_{authors}/(2n_{authors} - 1)$ and $N_{nj>1} = 1/(2n_{authors} - 1)$.

- **Author Determines (AUT):** The first author selects from among these options, or provides an arbitrary distribution of N_{nj}.

- **A deprecated grading per author (DEP).** Setting $\chi = \ln(n_{authors})/\ln(2)$, then:

 \[
 N_{nj} = \begin{cases}
 \frac{1}{2^n} & n_j \leq \chi \\
 \frac{1}{2^{\text{int}(\chi)(n_{authors}-\text{int}(\chi))}} & n_j > \chi
 \end{cases}
 \]

 where $\text{int}(\chi)$ is the truncation of χ to an integer.

While ECA may seem equitable, some authors put more work into papers than others. Most typically, the authors’ names appearing to the front of the graded paper (first author, second author) lead the effort. The ECA method also duplicates the practice of attributing credit by counting the number of papers co-authored.

The FAL method recognizes the first author, and treats all remaining authors equally. In papers with many authors, it fails to offer significant credit to any but the first author.
The AUT method most probably reflects the fairest method, since most likely the first-author will be most able to determine the fair distribution of each paper’s credit. However, it would require the cooperation of all first authors of all published papers, which is not practical.

DEP has the advantage of recognizing the first and early authors of the paper, reflecting a wide practice of ordering authors by their contributions. DEP fails when authors are ordered by other criteria – for example, alphabetization – which would require AUT.

Of the four methods, by the criteria above, we find the most preferable method for determining N_{nj} is DEP, which we adopt for RefSponse. However, the method is not exclusive – it’s possible to introduce >1 method to run in parallel.

3.4. Included Journals

Journals which are included in this service are:

- astro-ph (since 2003).
- ApJ, Letters, Supplements
- A&A, Letters, Supplements
- AJ
- Annual Review of Astronomy and Astrophysics
- MNRAS
- Nature
- New Astronomy
- PASP
- PASJ
- Acta Astronomica
- Physical Review, D
- Physical Review, Letters
We include articles from 1965 to the present, except as noted. Since papers which appear on astro-ph often later appear in other journals, those which are bibliographed as such by the ADS are updated within RefSponse.

3.5. User Experience

A paper’s grade reflects the community aggregate opinion of the paper, and should not be thought of as the “final word” on its original scientific contribution; opinion evolves in response to new information. If the grade of a paper is an “8”, while a user is aware of a fatal flaw meriting a “0”, then the user has identified a paper about which the flaw may not be widely known. But perhaps the paper was scored by users with little mass (the misconception is not so wide). If so, merely adding their own score may drop the grade to the more appropriate level.

On the other hand, the flaw may not be widely known, and the user’s mass may be small compared with the sum of all other scorers, in which case the user’s score will have little effect on the paper’s grade. In that case, the user has identified a subject on which wide misconception exists, which should be addressed by a detailed paper.

4. Discussion

4.1. Comparison Between Peer Review and RefSponse

RefSponse is operationally different from peer review, and should not be expected to perform identical functions. Major differences between RefSponse and peer review include:

1. Peer-review is managed as a qualitative evaluation of the original scientific contribution presented by an article, providing a binary outcome (either the paper is included in the journal or collection. or it is not). In contrast, RefSponse is quantitative, and provides a graded scale of outcomes which permits relative comparisons between articles.

2. Peer-review requires a skilled and trusted editor whose broad knowledge permits identification of individual reviewers with the scientific capability to evaluate paper quality and with an absence of motivation to evaluate the paper on any criterion but its original scientific content. RefSponse uses a minimal qualification for evaluators (the “certification” process), assumes that users will self-identify their capability to evaluate specific
papers, and will absent themselves any judgment criteria other than original scientific contribution.

3. Peer-review often places responsibility of evaluation in an individual, which represents a “single point of failure” for that process. *RefSponse* diffuses responsibility among many individuals, giving greater influence to those who have greater recognition of their original scientific contributions.

4. Peer-review can address issues other than paper quality, such as academic integrity. No similar capability exists for *RefSponse*.

RefSponse can provide the basis for some useful services. For example, if *RefSponse* operates successfully it will be possible to:

1. Determine a rough evaluation of papers which have not entered (or will not enter) the peer-reviewed journals.

2. Obtain a grade-sorted list of all papers of a specific year or a specific journal, and immediately know where the important work took place in a particular year.

3. Search for highly-graded papers by subject area.

4. Produce a list of high-graded papers scored by users who scored the same papers as you – but which you have not scored. This would call your attention to papers which you perhaps under-appreciate, or which colleagues over-appreciate.

5. Determine the perceived aggregate scientific contribution of specific journals, and so determine their individual cost-effectiveness.

6. For novices in the field, provide a first means of filtering papers for quality, to focus their reading toward those with perceived contributions.

7. Provide a simple quantitative measure of the quality of one’s own work, and monitor its progress.

8. Have a scientific “bake off”. In an ongoing public scientific debate, two (or more) papers can be compared, and the community evaluation of each determined.

In closing, it should be pointed out that this method cannot replace reasoned discussion of the merits and flaws of papers in the literature; such discussion is the only basis for progress.
However, aggregating the community’s opinion as a grade can help provide that basis for progress. In the example of the scientific “bake off”, simply comparing the grades of the two papers will not teach one anything about their content. However, if one also studies the two papers and forms an opinion of their relative merit opposite that of the community’s, then a misconception clearly exists – either one’s own, or the community’s. Identifying and eradicating the source of that misconception is exactly what is meant by “progress”.

References
Ginsparg, P., “Can Peer Review Be Better Focussed?”, self-published, http://arxiv.org/blurb/pg02pr.html