Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Therapeutic capability of five active compounds in typical African medicinal plants against main proteases of SARS-CoV-2 by computational approach

Oluwasayo Peter Abodunrin a,*, Olayinka Fisayo Onifade b, Abayomi Emmanuel Adegboyega c

a Radiation and Health Physics, Physical Sciences Department, Bells University of Technology, Ota, Nigeria
b Phytochemistry, Biochemistry and Bioinformatics, Chemical Sciences Department, Bells University of Technology, Ota, Nigeria
c Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria

A R T I C L E I N F O
Keywords:
COVID-19
Main protease
Active compounds
Molecular docking
Pharmacophore
Binding free energy

A B S T R A C T

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a pandemic cause of Corona Virus Disease (COVID-19), that has claimed numerous human lives across the globe. Main protease being the active protein of SARS-CoV-2 requires urgent mitigating effect against the spread of the virus. The therapeutic roles of the active compounds present in ten typical African medicinal plants were investigated in this study. Five active compounds Curcuma longa (Curcumin and Bisdemethoxy curcumin), Garcinia kola (kolaviron), Zingiber officinale (Gingerol) and Vernonia amygdalina (Artemisinin) were selected and docked against Main protease through receptor grid generation, protein ligand docking, receptor ligand complex pharmacophore and binding free energy. The results obtained revealed Curcumin had the highest binding score of −8.628 kcal/mol while artemisinin presented the least with −4.123 kcal/mol. The outcome of the pharmacokinetic prediction in this study revealed high transport capacity across the gastrointestinal tract and high blood brain barrier permeability for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. The exemption is gingerol with low LD50 value (250 mg/kg), the LD50 of all active compounds ranged from 2000 to 4228 mg/kg. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties exhibited by all compounds portrayed them as non-hepatotoxic, non-cytotoxic, non-mutagenic and non-carcinogenic. The active compounds exhibited drug-likeness features against Main protease of Covid-19.

1. Introduction

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) as well as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) are member of Coronavirus family, which affects species ranging from human beings to animals, causing dreadful respiratory diseases [1]. Coronavirus 2019 (COVID-19) emerged from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a pandemic [2] discovered in Wuhan, Hubei province China, where it was spontaneously transferred from animal source like bats as possible sources to human being [3–5]. The infection leads to severe respiratory disease after an incubation period of 2–14 days [6]. The mode of transmission among human beings has been confirmed to be based on contaminated hands, infected surfaces and salivary or airway droplets [7]. The death rate has risen to 5, 620,865 with infection cases at 360,578,392 as at 4:37 p.m. CET, January 27, 2022 [8]. When infecting human cells, SARS-CoV-2 attaches itself with angiotensin converting enzyme 2, ACE2 [9,10]. ACE2 functions through the decrease blood pressure by lowering the angiotensin 2 [11,12]. The inflammatory around the lung, through animal research, has been shown as been reversible by improving the expression of ACE2 [13]. Viral proteases enzymes are major drug target; they function essentially, in viral protein maturation through proproteins removal after translation processes in the cytosol of the host cell. SARS-CoV-2 has become medically important coronaviruses because of the resulting health challenges [14,15]. The viral particles of coronavirus contain 4 major structural proteins: spike, membrane, envelope and nucleocapsid protein. Spike is a vital target for virus entrance into human cells via interaction with the ACE2. Nonstructural proteins possess enzymatic activities like proteases alongside RNA polymerase that redirected its activities. The blocking of the enzymatic regulations is useful when
developing antiviral drugs against SARS-CoV2. SARS-CoV-2 is a positive-stranded large RNA genome enveloped betacoronavirus consisting approximately 30 kb of encoded proteins [16–18]. One of them, Main protease (3 chymotrypsin-like protease) being a cysteine protease, aids maturation cleavage of repeating amino acid units linked by a peptide bond in the process of virus reproduction [19–21]. Main protease is a homodimer consisting of two promoters: papain-like cysteine protease (PL PRO) and 3 chymotrypsin-like protease (3CL PRO) alongside three domains; domain I (residue 8-101), domain II (residue 102-184), and domain III (residue 201-303). Domains I and II, are made up of six antiparallel β-barrels. An antiparallel globular cluster of five α helices forms domain. Domain III is involved in indirect interaction with substrate crucial for enzymatic activity of proteins through the removal of inactive protease [22]. Main protease is an upstream enzyme that involves in the SARS-CoV-2 replication and transcription [23]. The presence of computational model through in-silico screening of potential inhibitory role against the Main protease becomes possible.

Applications of plant extracts in medicine have being historically common due to their effectiveness against numerous infections majorly in Africa [24]. Approximately 70% of medications are synthesized directly or indirectly from the active ingredient present in plant extracts nevertheless the high rate of consumption for health improvement is observed in rural environment [24,25]. Plant extracts are readily available, safe, natural and affordable with limited side effect as compared to synthesized drugs. Plants generally are composed of phytochemical constituents present in different sections ranging from flower, leaf, stem and roots which serves as bioactive compounds responsible for numerous therapeutic role like anti diabetic, anti-inflammatory, antiviral and anti-microbial effects [26]. There are common plants used in Nigeria due to their bioactive compounds and previous infection treatment history. Bitter kola (Garcinia cola) is found majorly in moist forests of Central and Western African countries belonging to the family Guttiferae [27]. The entire parts of the plant are of importance, it is orally applied to alleviate poor health status ranging from erectile dysfunction, cough, gastric problems and high blood pressure. The major biflavonoids present in Garcinia cola is kolaviron responsible for its anti-inflammatory, anti-microbial and wound healing features [28,29]. Bitter leaf (Vernonia amygdalina) is a small shrub of tropical Africa origin belonging to the daisy family. Vernonia amygdalina is major traditional dish in some region in Nigeria due to its nutritional composition. The presence of artesiminin a bioactive terpenoid present in bitter leaf could be responsible for its usefulness in orthodox medication, being responsible for treating chicken pox, stomach ache, measles, pneumonia and cancer [30]. Ginger (Zingiber officinale) and turmeric (Curcuma longa) are used as cuisines and medicinal spices globally [31,32]. They are perennial plants of tropical and subtropical Asia Origin. Zingiber officinale contains gingerol as the bioactive compound of phenolic compound and terpenoids while Curcuma longa, curcumin being its bioactive ingredient of polyphenol making them responsible for various therapeutic functions in aliments like cough, cold, fever, arthritis and cancer [30,31]. This study was aimed at characterizing the potency of these medicinal plants against SARS-CoV2 protease through molecular docking, pharmacophore modelling and ADMET studies.

2. Methods

2.1. Protein preparation

The crystal structure of Main protease (PDB ID: 6LU7) resolution 2.16 Å was retrieved from Protein Data Bank (PDB) repository. The sample was prepared employing protein preparation wizard panel of Glide [33] to assign bond orders, add hydrogen, create disulfide bonds and, fill missing loops and side chains with prime. Water molecules outside 3.0 Å of the heteroatoms were detached and the structure minimized and optimized employing OPLS3 and PROPKA respectively [33,34]. Afterwards, the receptor grid file was created to define the binding pocket of the ligands.

2.2. Ligand preparation

About sixteen compounds from reviews on phytochemistry and medicinal importance of selected herbs commonly used in treating various infections and ailments in Nigeria [30]. Their structures including that of the standard inhibitor also known as (1s, 2s)-2-([n-Benzoyloxycarbononyl]-L-Leucyl)amino)-1– Hydroxy-3-[(3s)-2-Oxopyrrolidin-3-Yl]propene-1-Sulfonic Acid (K36) were downloaded from the PubChem database were prepared for molecular docking using Ligprep module [35]. Low-energy 3D structures having appropriate chiralities were generated. Possible ionization states for each ligand structure were generated at physiological pH of 7.2 ± 0.2. Also generated were stereoisomers for each ligand by maintaining specified chiralities and varying others.

2.3. Receptor grid generation

Receptor grid generation permits specifying the size and position of the protein’s active site for ligand docking. The scoring grid was specified with respect to the co-crystallized ligand (inhibitors N1) applying the receptor grid generation tool of Schrödinger Maestro 12.5. The van der Waals (vdW) radius scaling factor of nonpolar receptor atoms of 1.0 and partial charge cut-off of 0.25 were applied.

2.4. Protein-ligand docking

Molecular docking studies were undertaken with the generated receptor grid file using Glide tool of Schrödinger Maestro 12.5. The ligands already prepared were docked applying standard precision (SP), setting ligand sampling to flexible, with the ligand sampling set to none (refine only). The vdW radius scaling factor and partial charge cut-off for ligand atoms were 0.80 and 0.15 respectively.

2.5. Receptor-ligand complex pharmacophore modelling

A receptor-ligand complex pharmacophore model was developed with PHASE using the first 3 compounds having the top binding affinity towards the target protein. Auto (E-pharmacophore) method was applied; hypothesis set at 7 as the highest number of features being generated, 2.0 as lowest feature to feature distance, 4.0 as lowest feature to feature distance of feature for the same type and donor as vector.

2.6. Binding free energy calculation

The Prime MM-GBSA panel was used to determine the binding free energy for ligand–protein complexes employing the MM-GBSA technology available with Prime [36]. The binding free energy of the protein-ligand complexes was then used to obtain stability of their complexes via Prime MM-GBSA program (Schrödinger suite version 2020–3). Prior to this, the ligands were prepared by ligprep, while the respective proteins were prepared using the protein preparation wizard methods as discussed earlier. The active sites of the proteins were predicted by sitemap. Hence, the compounds were docked with proteins using glide SP docking. With OPLS3 force field selected and VSGB employed as the continuum solvent model, others were set as default [36].

2.7. Pharmacology parameters

The absorption, distribution, metabolism, excretion and toxicity

1 The authors contributed equally to this work.
(ADMET) features of the test compounds were obtained employing in silico integrative model predictions on the SwissADME and PROTOX-II software respectively.

3. Results

3.1. 2D structures of some active compounds present in the medicinal plants

The 2D structures of the five most bioactive constituents of African medicinal plants, namely, curcumin, kolaviron, bisdemethoxycurcumin, gingerol, and artemisinin were modeled and used as ligands for docking studies against Main protease of SARS-CoV-2 (Fig. 1). In the molecular docking of the plants active compound against SARS-CoV-2 Main protease, several active compounds exhibited numerous level of binding affinity against the protein of interest, as represented in Table 1. The binding affinities ranging from -8.628 to -2.236 kcal/mol of the change in Gibbs free energy (ΔG) against SARS-CoV-2 Main protease. Curcumin has the greatest binding affinity with -8.628 kcal/mol. The binding affinity of kolaviron is -7.027 kcal/mol, Nimbic acid is -3.965 kcal/mol, Paradol is -3.924 kcal/mol, and artemisinin has the least binding affinity of -4.123 kcal/mol among the top five compounds.

![2D Structures of active compound present in medicinal plants.](image)

Table 1

Active compound	Main proteinase of SARS-CoV-2	PubChem ID
Curcumin	-8.628	969516
Kolaviron	-7.027	155169
Bis-demethoxycurcumin	-6.541	118737648
Gingerol	-4.252	442793
Artemisinin	-4.123	68827
Nimbic acid	-3.965	25446
Thymoquinone	-3.931	10281
Paradol	-3.924	94378
Nimbolidide	-3.883	12313376
Ibuprofen	-3.727	3672
Geraniol	-3.42	637566
Beta-Pinene	-3.188	14896
Ciril	-3.061	638011
Limonene	-2.9	22311
Allicin	-2.236	65036
Alpha-Pinene	-1.953	6654

3.2. Molecular modeling of biological interactions

The molecular interaction among the standard inhibitor (K36), *Vernonia amygdalina*, *Garcinia kola*, *Zingiber officinale* and *Curcuma longa*...
with the SARS-CoV-2 Main protease, showing the binding pocket of the enzyme comprising of various amino acid residue as shown in Fig. 2. Artemisinin formed hydrogen bond with GLN 189 and GLU 166; the hydrogen bond was formed in gingerol at THR 190 and GLN 189; bisdemethoxycurcumin formed hydrogen bond with THR 26, THR 190, GLN 189 and GLU 166; moreso, curcumin bonded at the position THR 26, GLY 143, GLN 189 and THR 190 with hydrogen; kolaviron formed hydrogen bond also at GLU 166 and GLY 143 while (1s,2s)-2-[(Benzyloxy)carbonyl]-L-Leucyl}amino)-1-Hydroxy-3-[3s)-2-Oxo-pyrrolidin-3-Yl)propane-1-Sulfonic Acid (standard K36) binds with hydrogen bond at GLN 189 and HIS 41.

3.3. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties

The SwissADMET predictions of lipophilicity, solubility, drug-likeness and oral bioavailability of the selected bio active compounds are presented as Table 2, the pharmacokinetic features as Table 3 while the protox II predicted toxicity profile are as presented in Table 4. The water solubility, Log S, of curcumin, kolaviron, bisdemethoxy curcumin and -Gingerol were predicted to be moderately soluble while artemisinin is soluble. Additionally, the Lipohilicity (Log P) are of the range –0.48 for kolaviron to 2.62 for artemisinin. In terms of drug-likeness, the outcome of this study indicated that kolaviron violated three of the Lipinski rules, while curcumin, bisdemethoxy curcumin, gingerol and artemisinin fully obeyed the rules. Additionally, the bioavailability scores of curcumin, bisdemethoxy curcumin, gingerol and artemisinin is 0.55 while that of artemisinin is 0.17 (see Table 5).

The pharmacokinetic prediction in Table 3 portrayed high transport capacity across the gastrointestinal tract and high blood brain barrier (BBB) for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. However, none of the active compounds is substrate to permeability of the glycoprotein (P-gp). Furthermore, bisdemethoxy curcumin, gingerol and artemisinin are predicted to be able to inhibit CYP1A2; curcumin, kolaviron and bisdemethoxy curcumin are predicted to inhibit CYP2C9 and CYP3A4. Moreover, curcumin, kolaviron, bisdemethoxy curcumin gingerol and artemisinin were predicted not to inhibit CYP2C19 and CYP2D6.

As presented in Table 4, the protoxII-predicted toxicity profile of the compounds showed that curcumin, kolaviron, bisdemethoxy curcumin, gingerol and artemisinin do not tend to be hepatotoxic, carcinogenic, mutagenic and cytotoxic. However, curcumin, kolaviron, gingerol and artemisinin are predicted to have immunotoxic potentials. The exemption of gingerol with low LD\(_{50}\) value (250 mg/kg), the LD\(_{50}\) of the active compound ranged from 2000 to 4228 mg/kg. Moreso, curcumin and kolaviron belong to the acute oral toxicity class 4, bisdemethoxy curcumin and artemisinin to class 5, and gingerol to class 3.

3.4. Receptor-ligand pharmacophore modelling

The active compounds produced pharmacophore models against SARS-CoV-2 Main protease. The model revealed four sorts of characteristics:D: Hydrogen Acceptor, A: Hydrogen Donor, H: hydrophobic, and R: Aromatic ring which are presented in figure below: Kolaviron formed two hydrogen bond donor, two hydrogen bond acceptor and one aromatic ring with the enzyme. Curcumin and bisdemethoxy curcumin uses two hydrogen donor, hydrogen acceptor and aromatic rings; the standard inhibitor requires one hydrogen donor, one hydrogen acceptor and one aromatic ring (see Fig. 3).

3.5. Binding free energy calculation

The binding free energy of the protein-ligand complexes was employed to determine the stability of their complexes via Prime MM-GBSA program (Schrödinger suite version 2020–3) (see Fig. 4).

4. Discussion

The Coronaviruses are the virus with positive-polarity RNA genome, making them to depend less on the host cell during replication. The replication occurs in the cytoplasm of the epithelial cells of the respiratory system and the gastrointestinal system [16,18]. The computational approach of drug design against covid-19 is essential to reduce cost, save time and improve output. NADPH and dTDP-4-dehydro-6-deoxy-\(\alpha\)-mannose show a significant interaction \textit{in silico} with the active site of Mpro, with a binding energy of 8.5 and 8.6 kcal/mol, respectively [37]. This study involved five approaches comprising of protein and ligand preparation, receptor grid generation, protein-ligand docking, receptor ligand pharmacophore, binding free energy and pharmacology parameters. In this study, 5 major bioactive compounds of plant extract in addition with standard ligand were docked against SARS-CoV-2 Main protease, curcumin had the highest docking score of \(-8.62\) kcal/mol, followed by kolaviron with \(-7.027\) kcal/mol as compared with the standard ligand (K36) \(-6.541\) kcal/mol. The presence of flavonoids and curcumin in Curcuma longa has been shown to be responsible for its chemopreventive and physiological effects in many.
tumor bioassays and the decreased tumor cell growth [38]. Curcumin has been reported to possess antioxidant, anti-inflammatory and antibacterial properties [38]. *In-silico* approach recently found curcumin as safe, being able to also interact in molecular mechanisms with proteins [39]. The docking score obtained for curcumin being higher than the standard ligand K36 may inform its level of interaction with the active site of Main protease of Sars-Cov-2 by forming hydrogen bonds [40,41]. The protocol-predicted toxicity profile of curcumin inferred is non-hepatotoxic, non-cytotoxic, non-mutagenic with the LD$_{50}$ prediction at 2000 mg/kg body weight suggesting that curcumin have good therapeutic properties with drug-likeness for oral drug development [41–43]. Kolaviron is the active ingredient of Garcinia kola known to possess biflavonoids responsible for its numerous health benefits; the high docking score may account for its interactions with Main protease of covid-19 making it pharmacologically active with numerous pharmacokinetic properties both in-vivo and in-silico [44,45]. Bisdemethoxy curcumin is a derivative of curcumin, composing of polyphenol and possess anti-cancer and hepatoprotective effect in-vivo [46]. Furthermore, the in-silico ADMET studies have predicted its role as antiviral among many therapeutic functions [47]. Gingerol the active ingredient of Zingiber officinale serves as anti-inflammatory agent; gingerol interacts with main protease of covid-19 on the carboxyl and hydroxyl ends of the chains which can serve as potential drug target [48]. Artemisinin the active component of *Vernonia amygdalin* and an active anti-malaria component [4,49,50], though had the least docking score, interact with SARS-CoV-2 Main protease on Glu 166 and Gln 189 making it a potential drug target [51].

These six compounds interacted with important active site amino acids residues of the enzyme: curcumin, kolaviron, bisdemethoxy curcumin, gingerol, artemisinin and the standard ligand formed one or more hydrogen bonds with Gln 189. Additionally, curcumin, bisdemethoxy curcumin, gingerol, artemisinin, standard K36 formed hydrogen bond with amino acid GLN 189 [52]. There were hydrogen interaction with curcumin and kolavion on amino acid GLY143, bisdemethoxy curcumin and artemisinin on GLU 166 [53,54]. Curcumin and bisdemethoxy curcumin formed hydrogen bonds on THR26, finally bisdemethoxy curcumin and gingerol interacted with hydrogen bonds at the THR 190 amino acid pocket of the 6LU7 protein of the Main protease of covid 19.

The drug-likeness features which include flexibility, lipophilicity, water solubility, molecular size, plasma protein binding, and saturation of the compound polarity, determine the orally bioavailability of a
Curcumin, bisdemethoxy curcumin, gingerol and artemisinin possess high water solubility, vital transport factor within the blood, however kolaviron is poorly soluble. Furthermore, curcumin, bisdemethoxy curcumin, gingerol and artemisinin obeyed both Veber’s and Lipinski rule of five making them orally active. In Veber’s rule, compounds that meet only the two criteria of ≤ 10 rotatable bonds and polar surface area ≤ 140 Å are projected to have good oral bioavailability while the Lipinski rule constitutes octanol/water partition coefficient (C logP) ≤ 5, number of hydrogen bond acceptors (HBA) ≤ 10, the criteria of molecular weight (MW) ≤ 500 with an orally active drug not violating beyond one of these criteria [11]. The toxicity profile of active compounds of curcumin, bisdemethoxy curcumin, gingerol and artemisinin are not likely to produce any toxic effect on the Hepatocyte and cytosol. Moreso, of all the active compounds gingerol is the most toxic compound with the LD$_{50}$ of 250 mg/kg, while other active compounds belonging to oral toxicity class 5 are relatively safe, with LD$_{50}$ ranging from 2000 to 4228 mg/kg. The pharmacokinetic properties of curcumin, bisdemethoxy curcumin, gingerol and artemisinin include the underlying role offered by drug-metabolising enzymes like cytochrome P-450 thereby inhibiting the metabolism of drugs being substrates of one or more of the enzymes, resulting in certain degrees of drug-drug interaction [54,57,58].

Binding free energy determines the stability of the protein-ligand complexes [58]; as the binding free energy increases, the ligand-bound protein becomes more stable and favorable. Curcumin exhibited the highest stability of Main protease, followed by kolaviron, the standard, bisdemethoxy curcumin, gingerol and artemisinin. The visualization in the scatter plot is thus a validation of how reliable the docking procedure is in predicting the active site of the protein. Moreso, the main donors to the free binding energy are covalent energy, Coulomb energy, lipophilic bonding, hydrogen bonding and van der Waals energy.

5. Conclusion

The potency of the active ingredients from ten medicinal plants common in Southwest Nigeria against Covid-19 virus has been determined. Five out of sixteen active compounds from the ten medicinal plants demonstrated positive inhibitory role against Main protease of Covid-19. These include curcumin, kolaviron, bisdemethoxy curcumin, gingerol and artemisinin. These active compounds recorded various docking scores against main protease of Covid-19 with curcumin being
The highest having -8.62 kcal/mol followed by kolaviron with -7.027 kcal/mol, the standard ligand with -6.541 kcal/mol, bisdemethoxy curcumin with -5.641 kcal/mol, gingerol with -4.975 kcal/mol and artemisinin with -4.252 kcal/mol. These five active compounds retain a favorable ADMET profile with none exhibiting any affinity towards cytotoxicity, hepatotoxicity, mutagenicity and carcinogenicity. As a result, these active compounds may be investigated further through experimental studies and possibly developed into novel drugs or supplements for the treatment of Covid-19.

Table 2
SwissADMET prediction outputs of selected active compounds.

AC	Molecular weight	Mean logp (0–3)	Silicos-IT Log SW (−0.7 to +6.0)	Silicos-IT class	Lipinski violations (>500 g/mol)	Veber violations (<140 Å²)	Bioavailability Score (100%)
A	368.38	1.47	−4.45	MS	0	0	0.55
B	588.52	−0.48	−5.76	MS	3	1	0.17
C	308.33	2.13	−4.23	MS	0	0	0.55
D	294.39	2.14	−4.58	MS	0	0	0.55
E	282.33	2.62	−2.03	S	0	0	0.55

A = Curcumin; B = Kolaviron; C = Bisdemethoxy curcumin; D = Gingerol; E = Artemisinin, AC = Active compound; S = Soluble; MS = Moderately Soluble.

Table 3
Pharmacokinetics prediction output of selected active compounds.

AC	GI A	BBBP	Pgp	CYP1A2I	CYP2C19I	CYP2C9I	CYP2D6I	CYP3A4I
A	High	No	No	No	No	Yes	No	Yes
B	Low	No	No	No	No	Yes	No	Yes
C	High	Yes	No	Yes	No	Yes	No	Yes
D	High	Yes	No	Yes	No	No	No	No
E	High	Yes	No	Yes	No	No	No	No

A = Curcumin; B = Kolaviron; C = Bisdemethoxy curcumin; D = Gingerol; E = Artemisinin, AC = Active compound; GIA = GI Absorption; BBB = BBB permeant; Pgp = Pgp substrate; CYP1A2I = CYP1A2 inhibitor; CYP2C19I = CYP2C19 inhibitor; CYP2C9I = CYP2C9 inhibitor; CYP2D6I = CYP2D6 inhibitor; CYP3A4I = CYP3A4 inhibitor.

Table 4
ProtoxII-predicted toxicity profile of selected active compound.

AC	HT	CT	IT	MT	LD₅₀ (mg/kg)	PTC
A	Inactive	Inactive	Inactive	Inactive	2000	4
B	Inactive	Inactive	Inactive	Inactive	2000	4
C	Inactive	Inactive	Active	Inactive	2560	5
D	Inactive	Inactive	Inactive	Inactive	250	3
E	Inactive	Inactive	Inactive	Inactive	4228	5

A = Curcumin; B = Kolaviron; C = Bisdemethoxy curcumin, D = Gingerol, E = Artemisinin; HT = Hepatotoxicity; CT = Carcinogenicity; IT = Immunotoxicity, CT = Cytotoxicity; PTC = Predicted Toxicity Class.

O.P. Abodunrin et al.
Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

Conception and design of the study: OP and OF. Acquisition of data, analysis and interpretation of data: OP, OF and AE. Drafting the article, revising it critically for important intellectual content: OP, OF and AE. Final approval of the version to be submitted: OP, OF and AE.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] Cava C, Bertoli G, Castiglion I. In silico discovery of candidate drugs against Covid-19. Viruses 2020;12(4):404. https://doi.org/10.3390/v12040404.

[2] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10254):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3.

[3] Huang L, Shen SP, Yu P, Wei Y. Dynamic basic reproduction number based evaluation for current prevention and control of COVID-19 outbreak in China. Zhonghua Lixue Bingbing Za Zhi 2020;41(11):1047-52.

[4] Wang Y, Liu M, Gao J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc Natl Acad Sci USA 2020;117:13967-74. https://doi.org/10.1073/pnas.2002911177.

[5] Zhu ZB, Zhong CQ, Zhong XK, Dong C, Peng H, Xu T, Wang AL, Guo ZR, Zhang YH. Epidemic trend of coronavirus disease 2019 (COVID-19) in mainland China. Zhonghua Yufang Yixue Zazhi 2020;54(6):620-4. https://doi.org/10.3760/cma.j.cn121350-20200213-00163.

[6] Aho DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020;30(3):410-7. https://doi.org/10.4076/jmb.2020.3.10.

[7] Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 antimalarial to tackle the COVID-19 pandemic. Trends Parasitol 2021;37(1):8-14. https://doi.org/10.1016/j.pt.2020.10.003.

[8] Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, Kim BT, Kim SJ. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020;30(3):410-7. https://doi.org/10.4076/jmb.2020.3.10.

[9] Omidjoo AO, Opajobi OA, Bethel OUS, et al. Antibacterial evaluation, pharmacological screening and antifungal activity of some medicinal plants from Nigeria against Mycobacterium tuberculosis. Ann Med Health Sci Res 2021;11(4):418-25. https://doi.org/10.18203/2250-6593.amhsr.2021.4.418-25.

[10] Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, et al. The SARS coronavirus genome: complete sequence (22 kilobases) of murine coronavirus gene1 encoding the nonstructural protein 3a. J Virol 1991;65(12):7594-602.

[11] Shi J, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-CoV-2. Science 2020;368:10224-75. https://doi.org/10.1126/science.1244815.

[12] Wang X, Zhao C, Yu B, Chen Y, Wang W, Hu Y. Complete genome characterization of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv 2020. https://doi.org/10.1101/2020.01.24.919183.

[13] Patel VB, Zhong JC, Grant MB, Oudit GT. Role of the ACE2/angiotensin–1-7 Axis of the renin-angiotensin system in heart failure. Circ Res 2016;118(6):1313-26.

[14] Santos RS, Sampaio WO, Alzamora AC, Motta-Santos D, Almeida N, Bader M, et al. The ACE2/angiotensin–1(1-7)/MAS system of the renin-angiotensin system: focus on angiotensin–1(1-7). Physiol Rev 2018;88(1):501-66.

[15] Zambelli V, Bellani G, Borsa R, Ponzi F, Grassani M, Carugno M, et al. Angiotensin–1(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp 2015;3:1-14. https://doi.org/10.1186/2197-4192-3-14.

[16] Cai J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181-92. https://doi.org/10.1038/s41579-019-0183-3.

[17] Gates B. Responding to covid-19—a once-in-a-century pandemic? N Engl J Med 2020;382(12):1107-14. https://doi.org/10.1056/NEJMp2005762.

[18] Fehr A, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1-23.

[19] Domling A, Gao L. Chemistry and biology of SARS-CoV-2. Inside Chem 2020;6:1-6.

[20] Luo R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395(10244):565-74. https://doi.org/10.1016/S0140-6736(20)30020-1.

[21] Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Coronavirus genome: prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 1989;17(12):4847-61. https://doi.org/10.1093/nar/17.12.4847.

[22] Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, et al. The complete sequence (22 kilobases) of murine coronavirus gene1 encoding the putative proteases and RNA polymerise. Virology 1991;180(2):267-82. https://doi.org/10.1016/0042-6822(91)90071-I.

[23] Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic cleavage of the SARS coronavirus polyprotein. J Virol 2001;75(21):10715-21. https://doi.org/10.1128/JVI.75.21.10715-10721.2001.

[24] Nwaehujor CO, Udegbunam RI, Ode JO, Udegbunam SO. Analgesic, anti-inflamatory and anti-pyretic activities of Garcinia hydroxybiflavanonol (GB1) from Garcinia kola. J. Korean Soc. Appl. Biol. Chem. 2015;58:91-9. https://doi.org/10.4137/jasb.2015.90.

[25] Azeez AA, Akeredolu OA, Igata DF, Akomolede LA, Ogundoyin AA. A review on the phytochemistry and medicinal values of ten common herbs used in Nigeria. Journal of Research in Forestry, Wildlife & Environment 2020;12(3) [September].

[26] Gang DR, Ma X, Ginger and turmeric ancient spices and modern medicines in Plant genetics and genomics: crops and models. Genomics of Tropical Crop Plants 2008;1:299-311.

[27] Ernst M, Durbin K, Ginger and turmeric. CCD-CP-138, College of Agriculture, Food and Environment. Lexington, KY: Center for Crop Diversification, University of Kentucky; 2019. Available: https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/ginger_tumeric.pdf.

[28] Omidjoo AO, Opajobi OA, Bethel OUS, et al. Antibacterial evaluation, pharmacological screening and antifungal activity of some medicinal plants from Nigeria against Mycobacterium tuberculosis. Ann Med Health Sci Res 2021;11(4):418-25. https://doi.org/10.18203/2250-6593.amhsr.2021.4.418-25.

[29] Tshibangu PT, Kapepula PM, Kapinga MJK, Lupona HK, Ngombe NK, Kalenda DT, Jwom, O. Wauters JN, Trierabo GE, Angand P, et al. Finger printing and validation of a LC-ADAD method for the analysis of biflavonoids in Garcinia kola-based antimalarial improved traditional medicines. J Pharmaceut Biomed Anal 2016;128: 26-34. https://doi.org/10.1016/j.jpba.2016.06.044.

[30] Azeem AA, Akedorle OA, Igata DF, Ajobumele LA, Ogudoyin AA. A review on the phytochemistry and medicinal values of ten common herbs used in Nigeria. Journal of Research in Forestry, Wildlife & Environment 2020;12(3) [September].

[31] Gang DR, Ma X, Ginger and turmeric ancient spices and modern medicines in Plant genetics and genomics: crops and models. Genomics of Tropical Crop Plants 2008;1:299-311.

[32] Omidjoo AO, Opajobi OA, Bethel OUS, et al. Antibacterial evaluation, pharmacological screening and antifungal activity of some medicinal plants from Nigeria against Mycobacterium tuberculosis. Ann Med Health Sci Res 2021;11(4):418-25. https://doi.org/10.18203/2250-6593.amhsr.2021.4.418-25.
Coelho C, Gallo G, Campos CB, Hardy L, Würtele M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One 2020;15(10):e0240079. https://doi.org/10.1371/journal.pone.0240079. 2020.

Cheng SC, Chang GG, Chou CY. Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys J 2010;98:1327–36.

Johnson TO, Abolaji AO, Omale S, Longdet IY, Kutshik RJ, et al. Benzo[a]pyrene and Benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide induced locomotor and reproductive senescence and altered biochemical parameters of oxidative damage in Canton-S Drosophila melanogaster. Toxicol Rep 2021;8:571–80.

Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 2015;58:4066–72.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.

Shweta M, Rashmi D. In-vitro ADME studies of TUG-891, a GPR-120 inhibitor using Swiss ADME. J Drug Deliv Therapeut 2019;9:266–369.

Iwaloye O, Elekofehinti O, Kikiowo B, Fadipe T, Orimoloye A, Ariyo E. Discovery of traditional Chinese medicine derived compounds as wild type and mutant Plasmodium falciparum dihydrofolate reductase inhibitors: induced fit docking and ADME studies. Curr Drug Discov Technol 2021;18(4):554-69. https://doi.org/10.2174/1570163817999200729122753.