Ground state phase diagram and magnetoconductance of a one dimensional Hubbard superlattice at half-filling

Jayeeta Chowdhury1, S. N. Karmakar2, and Bibhas Bhattacharyya3

1Department of Physics, East Calcutta Girls’ College, Lake Town, Lake Town Link Road, Kolkata 700 089, India
2TCMP Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
3Department of Physics, Scottish Church College, 1 & 3 Urquhart Square, Kolkata 700 006, India

We have studied a one dimensional Hubbard superlattice with different Coulomb correlations at alternating sites for a half-filled band. Mean field calculations based on the Hartree-Fock approximation together with a real space renormalization group technique were used to study the ground state of the system. The phase diagrams obtained in these approaches agree with each other from the weak to the intermediate coupling regime. The mean field results show very quick convergence with system size. The renormalization group results indicate a spatial modulation of local moments that was identified in some previous work. Also we have studied the magnetoconductance of such superlattices which reveals several interesting points.

PACS numbers: 73.21.Cd, 71.30.+h, 71.45.Lr, 75.30.Fv

I. INTRODUCTION

The study of electronic correlation remains at the focus of recent theoretical interest due to the development of different novel materials of which the metallic multilayers form a very important component. The oscillation of exchange coupling between magnetic layers and the appearance of giant magnetoresistance are among the exciting features of the magnetic multilayers, e.g. the layered Fe/Cr structures. An intense theoretical attempt has been made to understand the magnetic behavior of such systems. In these pioneering works in this field a simple generalization of the one dimensional Hubbard model was proposed to investigate the role of electronic correlation in one dimensional superlattices. This model consists of a periodic arrangement of N_U sites in which the on-site Coulomb correlation (U) is repulsive followed by N_0 sites with no on-site interaction ($U = 0$). It was found that such a model gives rise to some interesting features, in sharp contrast with the magnetic behavior observed in an otherwise homogeneous system (conventional one band Hubbard model).

However, most of the previous works in this model employed exact diagonalization of finite systems typically having 8–24 sites. Some of these works reveal preferential distribution of local moments on sublattices and observe the suppression of spin density wave (SDW) order. Some others deal with problems like metal-insulator transition (MIT) or formation of charge density wave in such systems. Density matrix renormalization group (DMRG) calculations are also performed to overcome limitations on system size imposed by the technique of exact diagonalization; and, these consider system sizes $\sim 48–150$. Very recently a generalization of the said model has been considered where, instead of two types of sites with on-site correlation parameters $U > 0$ and $U = 0$ respectively, one takes into account two different values of $U (> 0)$ at adjacent sites; however, a detailed study of this generalized model is yet to be worked out. In view of the wider applicability of this model to diverse experimental systems, we consider here a preliminary study of this alternating Hubbard model (AHM) in one dimension. Also we aim at observing the behavior of the same when the system size is reasonably large.

In the present study, we investigate the ground state properties of the AHM in one dimension and for a half-filled band by using a Hartree-Fock approximation (HFA) together with a real space renormalization group (RG) calculation. These two techniques, complemented by one another, was found to be very successful in studying similar cases in recent past. Apart from constructing the ground state phase diagram we also investigate the magnetoconductance of a finite chain within the HFA scenario. In sec.II we introduce the model and give the HFA calculations. Sec.III describes the results obtained in HFA. Sec.IV contains some details of the RG scheme while sec.V shows the RG results together with a comparison between the same and that obtained in the HFA. In sec.VI we present the results on magnetoconductance of the model and sec.VII summarizes the present work.

II. THE MODEL AND THE HARTREE-FOCK CALCULATIONS

Our model is defined on a one dimensional Hubbard chain of N (even integer) sites consisting of two sublattices. The model Hamiltonian is:

\begin{equation}
H = t \sum_{i, \sigma} (c^\dagger_{i, \sigma} c_{i+1, \sigma} + h.c.) + U_A \sum_{i \in A} n_{i, \uparrow} n_{i, \downarrow} + U_B \sum_{i \in B} n_{i, \uparrow} n_{i, \downarrow}
\end{equation}
The two sublattices constructed out of odd and even numbered sites are labeled by A and B respectively. $c^\dagger_i,\sigma(c_{i,\sigma})$ is the creation (annihilation) operator for an electron with spin σ at the i-th site. $n_{i,\sigma} = c^\dagger_i,\sigma c_{i,\sigma}$, and $n_i = \sum_{\sigma} n_{i,\sigma}$ is the number operator at the i-th site. t is the hopping integral between nearest neighbor sites. U_A, U_B are the on-site Coulomb repulsion energies on the sites corresponding to two sublattices A and B respectively.

We decouple the Hamiltonian within the HFA, which is expected to work at least in the weak coupling regime. We define two parameters, number of electron N_i and the magnetization M_i at the i-th site, where,

$$N_i = \langle n_{i,\uparrow} \rangle + \langle n_{i,\downarrow} \rangle$$
$$M_i = \langle n_{i,\uparrow} \rangle - \langle n_{i,\downarrow} \rangle$$

These lead to a decoupled Hamiltonian:

$$H = t \sum_{i,\sigma} (c^\dagger_{i,\sigma} c_{i+1,\sigma} + h.c.)$$
$$+ \frac{U_A}{2} \sum_{i \in A} [(N_i + M_i)n_{i,\downarrow} + (N_i - M_i)n_{i,\uparrow}]$$
$$+ \frac{U_B}{2} \sum_{i \in B} [(N_i + M_i)n_{i,\downarrow} + (N_i - M_i)n_{i,\uparrow}]$$
$$- \frac{1}{4}(U_A + U_B)(N_i^2 - M_i^2)$$

Now the Hamiltonian can be divided into two parts for two types of spins, i.e. $H = H_{\uparrow} + H_{\downarrow}$. In an unrestricted HFA one diagonalizes H_{\uparrow} and H_{\downarrow} in a self-consistent manner to obtain the single particle energy levels. The ground state can be constructed by filling up the energy levels from both the up and the down bands upto the Fermi level.

One can define the spin and the charge density order parameters, c and s respectively, by

$$c = \frac{1}{N} \sum_i (-1)^i(n_{i,\uparrow} + n_{i,\downarrow}), \quad s = \frac{1}{N} \sum_i (-1)^i(n_{i,\uparrow} - n_{i,\downarrow}).$$

We consider a half-filled chain with periodic boundary condition. One can easily check by using an unrestricted HFA calculation that all sites corresponding to a given sublattice become equivalent under a periodic boundary condition. This leads to a simplification of the formulas for c and s given above. We, therefore, use these simplified forms of the charge density order parameter c and the spin density order parameter or antiferromagnetic order parameter s as given by,

$$c = \frac{1}{2}(n_{B,\uparrow} + n_{B,\downarrow} - n_{A,\uparrow} - n_{A,\downarrow})$$
$$s = \frac{1}{2}(n_{B,\uparrow} - n_{B,\downarrow} - n_{A,\uparrow} + n_{A,\downarrow})$$

It is to be noted here that $|c| = 1$ for a perfect “chessboard”-type CDW and $|s| = 1$ for a perfect Néel-type antiferromagnetic SDW state. We now investigate the dependence of these order parameters on the values of U_A and U_B.

III. THE RESULTS OF HARTREE-FOCK CALCULATIONS

In fig.1 we plot the order parameters c and s as functions of U_B/t for (a) $U_A = 0.4$, (b) $U_A = 1.2$, and (c) $U_A = 2.5$ (scale of energy is chosen by setting $t = 1.0$) for $N = 100$. The dotted line corresponds to the charge order parameter c while the solid line shows the spin order parameter s as calculated from HFA.

![FIG. 1: Plot of the order parameters c and s as functions of U_B/t for (a) U_A = 0.4, (b) U_A = 1.2, and (c) U_A = 2.5 (scale of energy is chosen by setting t = 1.0) for N = 100. The dotted line corresponds to the charge order parameter c while the solid line shows the spin order parameter s as calculated from HFA.](image-url)
spin order again, and the CDW sets in. Therefore, the SDW is found to form only at a singular point $U_A = U_B$ which is in agreement with the known result for the “homogeneous” limit $[11]$. The situation becomes different for larger values of U_A/t. For an intermediate value of $U_A/t(\sim 1)$, we find two transitions: one from a CDW to an SDW and then from the SDW to a CDW again; this can be identified by two successive cross-overs in the c- and the s-curves (fig.1b). It is interesting to note that the change order vanishes only at the point of homogeneity. For large $U_A/t(>> 1)$ there appears only one transition from a CDW state to an SDW state at a specific value of $U_B/t(< U_A/t)$. Here also, the charge order parameter vanishes at $U_A = U_B$, and then rises slowly with $U_B/t(> U_A/t)$. However, in this region, the spin order parameter always dominates over the charge order parameter (fig.1c). The phase transitions occurring at points of cross-overs of c and s can further be explored by studying the gap in the spectrum at the Fermi level. The energy gap Δ_{HFA} at the Fermi level of a system containing n electrons can be estimated from

$$\Delta_{HFA} = E_{n+1} - E_n$$

where, E_n is the ground state energy of (3) for a system of n particles. In fig.2 we plot the energy gap Δ_{HFA} as a function of U_B/t for different fixed values of U_A/t at half-filling. Dips in the curves of Δ_{HFA} match with the corresponding values of U_B/t that were identified as points of phase transitions in fig.1. It is to be noted here that for large values of U_A/t the energy gap sharply increases after the CDW/SDW transition has occurred (fig.2). In this regime the slow increase of the charge order parameter does not modify this behavior.

Identification of the points of phase transitions by the methods mentioned above enables us to draw the phase diagram of the model (1) on the $U_A/t - U_B/t$ plane within the HFA.

In fig.3 we plot the phase diagrams for different N values to note the quick convergence of the present mean field results with system size. For small values of U_A and U_B the antiferromagnetic phase actually occurs along the line of “homogeneity” ($U_A = U_B$). For higher values of U_A and U_B we obtain a centrally located broad SDW region together with two charge ordered phases located near the axes. The phase diagram turns out to be perfectly symmetric about the line of homogeneity along which the system is already known to be antiferromagnetic from exact calculations $[11]$. In the limit $U_B >> U_A (U_A >> U_B)$ the CDW/SDW transition line above (below) the line of homogeneity bends towards the $U_B/t (U_A/t)$ axis.

IV. THE RENORMALIZATION GROUP CALCULATIONS

Next we apply a real space Renormalization Group (RG) technique $[12]$ to the same model keeping in view the success of this technique to similar 1-d systems of
correlated electrons \([10, 13, 14]\) in recent past. It is to be noted here that in order to achieve a closed parameter space under the present scheme of RG iteration, we must generalize the model (1) as follows:

\[
H = \epsilon_A \sum_{i \in A} n_i + \epsilon_B \sum_{i \in B} n_i + t \sum_{i, \sigma} (c_{i, \sigma}^\dagger c_{i+1, \sigma} + h.c.) + U_A \sum_{i \in A} n_i n_i + U_B \sum_{i \in B} n_i n_i ,
\]

(5)

where, \(\epsilon_A (\epsilon_B)\) refers to the site energy of a site belonging to the \(A (B)\) sublattice. We start with \(\epsilon_A = \epsilon_B = 0\) which makes (5) equivalent to (1). However, in course of the RG iteration non-zero values of \(\epsilon_A\) and \(\epsilon_B\) may appear.

For implementing the RG transformation the whole chain is now divided into cells containing three sites each. Since our system is a bipartite lattice with two types of sites \(A\) and \(B\), there will appear two types of cells \(ABA\) and \(BAB\). At the renormalized length scale, we identify the \(ABA\) cells as the new (renormalized) \(A\)-type sites and the \(BAB\) cells as the new \(B\)-type sites. There are four different ‘on-site’ states for each site \(|0\rangle, |+\rangle, |-\rangle, |+−\rangle\).

We diagonalize the cell-Hamiltonian (for both types of cells), and among the eigenstates of the cell-Hamiltonian we retain only four low-lying states at each iteration, for construction of the RG recursion relations. We are interested in the half-filled ground state; so we retain the lowest energy states in the subspaces \(n = 2, S = S_z = 0\), \(n = 3, S = \frac{1}{2}, S_z = \pm \frac{1}{2}\) and \(n = 4, S = S_z = 0\) of each type of cells. Here \(n, S, \) and \(S_z\) denote the total number of electrons, the total spin, and the \(z\)-component of the total spin respectively. These four states in a cell can now be identified as the ‘renormalized’ on-site states \(|0\rangle, |+\rangle, |-\rangle\) and \(|+−\rangle\) respectively.

To find the renormalized hopping matrix element, the matrix elements of \(c_{\alpha}^\dagger (A)\) and \(c_{\alpha}^\dagger (B)\) between ‘renormalized on-site states’ are calculated, where \(c_{\alpha}^\dagger\) is the annihilation operator of the electron with spin \(\sigma\) at the boundary site of the cell and \(A\) or \(B\) in the parenthesis denotes the type of the cell. Let for an \(ABA\) type cell

\[
\langle 0'| c_{\alpha}^\dagger (A)| +\rangle = \lambda_1 (A) , \quad \langle -'| c_{\alpha}^\dagger (A)| +\rangle = \lambda_2 (A) ,
\]

(6)

and for a \(BAB\) type cell

\[
\langle 0'| c_{\alpha}^\dagger (B)| +\rangle = \lambda_1 (B) , \quad \langle -'| c_{\alpha}^\dagger (B)| +\rangle = \lambda_2 (B) .
\]

(7)

Our system possesses spin reversal symmetry, so the matrix elements for \(c_{\alpha}^\dagger\)’s will be as same as that of \(c_{\alpha}^\dagger\)’s (except for a fermionic sign change in the value of \(\lambda_2\)). But due to the lack of particle-hole symmetry, \(\lambda_1 (A) \neq \lambda_2 (A)\), and \(\lambda_1 (B) \neq \lambda_2 (B)\). At this stage we introduce an approximation \([10, 13, 14]\) by defining

\[
\lambda (A) = \sqrt{\lambda_1 (A) \lambda_2 (A)}
\]

which leads to

\[
c_\sigma (\Gamma) = \lambda (\Gamma)c_\sigma (\Gamma)
\]

(9)

where \(\Gamma = A, B\) and \(\sigma = ↑, ↓\). So the effective renormalized hopping becomes

\[
t' = \lambda (A) \lambda (B) t
\]

(10)

The intra-cell Hamiltonian, restricted to the subspace of the four states \(|0\rangle, |+\rangle, |-\rangle\) and \(|+−\rangle\), can now be written in terms of the new cell-fermion operators \([12]\) as

\[
H' = E_{0'} + (E_{+'} - E_{0'}) (n_1' + n_1') + (E_{−'} + E_{0'} - 2E_{+'}) n_1' n_1'
\]

(11)

where \(E_{+'}, E_{−'}\) and \(E_{0'}\) are the lowest energies of the subspaces corresponding to 4, 3 and 2 particles respectively. From this we can easily identify the renormalized on-site quantities

\[
U_\Gamma' = E_{+'} (\Gamma) + E_{0'} (\Gamma) - 2E_{+'} (\Gamma)
\]

(12)

and

\[
\epsilon_\Gamma' = E_{+'} (\Gamma) - E_{0'} (\Gamma)
\]

(13)

where \(\Gamma = A, B\).

The ground state energy per site is computed from the sum

\[
E_0 = \frac{1}{2} \sum_{n=1}^{\infty} \frac{[E_0^{(n)} (A) + E_0^{(n)} (B)]}{3^n}
\]

(14)

where \(n\) denotes \(n\) th stage of iteration. We also calculate the local moment \(L_0\) defined by

\[
L_0 = \frac{3}{4} (n_1 - n_1) ^2 .
\]

In absence of particle-hole symmetry this leads to a recursion relation of the form \([10]\)

\[
L_0 = a + b L_0' + c P',
\]

(15)

where, \(P = (n_1 + n_1) (n_1 + n_1 - 1)\) obeys a similar recursion relation given by

\[
P = d + e L_0' + f P',
\]

(16)

with \(a, b, c, d, e,\) and \(f\) are obtained from the matrix elements of \(L_0\) and \(P\) between the truncated basis of the cell Hamiltonian. The operators \(L_0\) and \(P\) are considered for the central site of the cell to minimize the boundary effects \([10, 12]\). However, in implementing the recursion relation it is to be noted that a recursion for \(L_0\) at a \(B\) type site (being at the middle of an \(ABA\) cell) will involve \(L_0'\) and \(P'\) pertaining to a renormalized \(A\) type site, because under the RG transformation the \(ABA\) cell \(→\) a ‘renormalized’ \(A\) site. Similar consideration arises for \(P\)
as well. L_0 found for two different types of sites need not be equal to each other, in general.

To see the nature of the short range spin correlation we further compute the nearest neighbor (nn) spin correlation function $\langle S_1 S_2 \rangle$, and the next nearest neighbor (nnn) spin correlation function $\langle S_1 S_3 \rangle$ in each type of cells, where $S_{iz} = n_{iz} - n_{iz}$. Recursion relations are very much similar to that for L_0.

V. RESULTS OF RENORMALIZATION GROUP CALCULATIONS

We construct the phase diagram primarily by studying the RG flow pattern. We always start our iteration with $\epsilon_A = \epsilon_B = 0$ and $U_A/t, U_B/t \geq 0$. A transition point can be easily identified by looking into the RG flow diagram in the effective parameter space $\{U_B/t, \langle |\epsilon_A - \epsilon_B|/t \rangle \}$ at a given value of U_A/t. For each value of U_A/t, there exists a point on the U_B/t axis (with $0 \leq U_B/t \leq U_A/t$) which behaves like a “point of repulsion” between the flow lines (fig. 4).

Starting from any point on its left the RG flow tends to go to the fixed point $\{0, \infty \}$, indicating a charge ordered phase, while any point on its right flows to $\{\infty, 0 \}$, indicating a spin density wave. A plot of these transition points on the $U_A/t - U_B/t$ plane shows the phase boundaries, which can also be viewed as “lines of repulsion” of the flow diagram projected on the $U_A/t - U_B/t$ plane (fig. 5).

At this point it is interesting to find out the energy gap in the spectrum, Δ_{RG}, from the present RG calculation. For the present case we find that the Hamiltonian always flows under the RG iterations to fixed points corresponding to the “atomic limit” ($t \to 0$) of (5) with parameters $\epsilon_A^{(\infty)}, \epsilon_B^{(\infty)}$, and $U_A^{(\infty)} = U_B^{(\infty)} = U^{(\infty)}$, where the superscript (∞) refers to the converged values of the corresponding parameters in (5). Therefore, the gap can be calculated from $\Delta_{RG} = |(\epsilon_A^{(\infty)} - \epsilon_B^{(\infty)}) - U^{(\infty)}|$. We find that at the transition points the energy gap in the spectrum vanishes.

In fig. 6 we plot the energy gap Δ_{RG} as a function of U_B/t for different values of U_A/t. It is interesting to note that the zeroes of Δ_{RG} occur at values of U_A and U_B which are very close to the corresponding values obtained at zeroes of Δ_{HFA}.

Therefore, the phase diagram obtained in the RG calculation agrees fairly well with that obtained in the HFA calculation (fig. 7). Departures are appreciable only at the strong coupling limit; it can be easily understood because in this limit the error due to the truncation of basis becomes most serious in the present RG scheme for
a model having two types of cells \[^{10}\]. The energy scales used for truncation of basis in the two types of cells now become appreciably different; the RG result, therefore, may not be highly reliable in this sector. However, the agreement of the RG and the HFA results from the weak- to the intermediate coupling regime really indicates that these results are very much reliable.

In fig. 8 we plot the local moments at two types of sites as functions of U_B/t for different values of U_A/t. It turns out that L_0 is always higher at sites with larger values of Coulomb correlation. This is in agreement with a previous observation in \[^{3}\]. L_0 at A type site equals that at B type site only at the point of homogeneity i.e. at $U_A = U_B$. It is rather interesting to note that the values of L_0 is slightly larger than $\frac{4}{5}$ even in the parameter space where, according to the RG flow pattern (and also from the HFA), the system develops a CDW instability. This shows that this correlation-driven CDW phase is dominated by short length-scale fluctuations that are suppressed in a CDW phase generated by a periodic modulation in the site potentials alone \[^{10}\].

We also calculate the nn and nnn spin-spin correlation functions with reference to ABA and BAB type cells. Plotted as functions of U_B/t these (fig. 9) reveal some interesting points. The negative value of $\langle S_{1z}S_{2z} \rangle$ indicates a nearest neighbor antiferromagnetic alignment, which is increasing from the CDW to the SDW regime, as one should expect on physical grounds. That this correlation is not zero even within the SDW phase as it is evident from the widely different values of the nnn correlation in ABA and BAB type cells. Such an effect has already been anticipated in a previous work \[^{4}\]. It is to be noted here that this effect gradually reduces as $U_B \rightarrow U_A$. In this respect the “SDW phase” of the half-filled AHM is behaving in a different way than the SDW instability found in a half-filled Hubbard model (the “homogeneous limit” of the present model (1)).

VI. STUDY OF MAGNETOCONDUCTANCE

Now we study the nature of the ground state of the superlattice structure in presence of a magnetic field. The magnetic field penetrating the ring will interact with the moments of the electrons. There will be an additive Zeeman term of the form $\mu_\sigma H'$ in the Hamiltonian (1), where μ_σ is the moment of the spin σ and H' is the penetrating
FIG. 8: Plot of the local moments L_0 as functions of U_B/t for (a) $U_A = 0.4$, (b) $U_A = 1.2$, and (c) $U_A = 2.5$ (scale of energy is chosen by setting $t = 1.0$). The solid line shows the data for the ABA block, and the dashed line shows the data for the BAB block. The curves cross over each other at the "point of homogeneity".

FIG. 9: Plot of the spin-spin correlation functions as functions of U_B/t ($U_A/t = 2.5$) for (a) nn correlation, and (b) nnn correlation. The solid line shows the data for the ABA block, and the dashed line shows the data for the BAB block.

magnetic field. The Hamiltonian now becomes

$$H = H' \sum_{i,\sigma} \mu_{\sigma} n_{i,\sigma} + t \sum_{i,\sigma} (c_{i,\sigma}^\dagger c_{i+1,\sigma} + h.c.) + U_A \sum_{i \in A} n_{i,\uparrow} n_{i,\downarrow} + U_B \sum_{i \in B} n_{i,\downarrow} n_{i+1,\downarrow}.$$ \hspace{0.5cm} (17)

We follow the same HFA to decouple the Hamiltonian. Since we have found regions of the parameter space where the HFA results and the RG results match very well, we can rely on the HFA results in these regions. The Hamiltonian corresponding to the up (down) spin electrons will generate the up (down) spin band. These two bands are not degenerate because the spin reversal symmetry is now broken. Therefore, at half-filling, the number of up and down spin electrons will be different and a net moment will be generated.

For non-zero values of $U_A (> 0)$ and $U_B = 0$, the system is charge ordered at half filling in absence of a magnetic field. This is an insulating phase with a gap between the upper and lower bands; at half filling the lower bands for both spin species are totally filled. When a small magnetic field is turned on, the up and the down spin bands shift in the opposite directions in energy scale. At a sufficiently large value of the magnetic field the up-band of the up spin electrons tend to get occupied at the cost of depopulating the lower band of the down spin electrons. Thus the ground state contains unequal number of up and down spins and the system, now having two partially filled bands, becomes conducting. If we go on increasing the magnetic field beyond a certain value, the said up spin band will be completely filled while the down spin band will be completely empty. The system is now spin polarized, leading again to an insulating phase. This can be easily checked by calculating the Drude weight \[10\] which measures the dc conductivity of the chain. Similar analysis can be made for $U_B \neq 0$ as well. Of course, in this case there arises a possibility of transition to a conducting phase from an SDW under the application of the field H'. We have calculated the Drude weight both for $U_B = 0$ and $U_B = 2$. To calculate the Drude weight, a vanishingly small magnetic flux Φ (in units of flux quantum $\Phi_0 = hc/e$) is introduced. The ring encloses this flux, but the flux does not penetrate the ring. Now the hopping term is modified by a phase factor. The Hamiltonian becomes

$$H = H' \sum_{i,\sigma} \mu_{\sigma} n_{i,\sigma} + t \sum_{i,\sigma} (c_{i,\sigma}^\dagger c_{i+1,\sigma} e^{2\pi i \Phi} + h.c.)$$

FIG. 8: Plot of the local moments L_0 as functions of U_B/t for (a) $U_A = 0.4$, (b) $U_A = 1.2$, and (c) $U_A = 2.5$ (scale of energy is chosen by setting $t = 1.0$). The solid line shows the data for the ABA block, and the dashed line shows the data for the BAB block. The curves cross over each other at the "point of homogeneity".
where \(\phi = \Phi/N \), \(N \) being the number of sites in the ring. The Drude weight is calculated from the formula \[D = \frac{N}{4\pi^2} \left[\frac{\partial^2 E(\phi)}{\partial \phi^2} \right]_{\phi=0} \] where \(E(\phi) \) is the ground state energy of (18) calculated within the HFA.

We have plotted the Drude weight \(D \) against the penetrating magnetic field \(H' \) (fig. 10) with \(N = 300 \) for fixed set of values of \(U_A \) and \(U_B \). The curves clearly show the transition between conducting and insulating phases. For lower and higher values of \(H' \) the Drude weight is zero i.e. the system is insulating. But for moderate values of \(H' \), (depending on the value of on-site Coulomb repulsion energy) the Drude weight is quite large, implying a conducting phase. For higher values of \(U_A \) the conducting region becomes narrower. For different combinations of \(U_A \) and \(U_B \) values, we have plotted (fig. 11) the Drude weight \(D \) against system size \(N \). For the values of the penetrating magnetic field \(H' \), for which the upper band of the up-spins starts to depopulate and the lower down-spin band gets partially populated, the system goes to a conducting phase. In fact, the Drude weight remains unaltered as we increase the system size.

For \(H' = 0 \), the present system is found to be either in a CDW or in a SDW phase (fig. 1) which is insulating. Therefore, the conductivity of such a system of macroscopic size must be vanishing. Thus in this region, the Drude weight falls sharply with increasing system size. Similar things happen for small values of \(H' \) for which the system is yet to pass on to the conducting phase. To identify the nature of the insulating phases directly, we study the spin and charge density parameters, \(s \) and \(c \) respectively, together with the magnetization

\[m = \frac{1}{2}(n_{B,\downarrow} - n_{B,\uparrow} + n_{A,\uparrow} - n_{A,\downarrow}) \]

Fig. 12 shows the plots of \(c, s \), and \(m \) as functions of \(H' \) for different values of \(U_A \) and \(U_B \). For \(U_A >> U_B \) we find that the increase in \(H' \) drives the system from a charge ordered phase (large \(c \)) to a phase where \(c, s, \) and \(m \) are nearly comparable; this indicates the existence of a conducting state due to the absence of any kind of long range ordering. We have already noted in fig. 10 that in this region \(D \) is non-zero which is consistent with the above observation. Further increase in \(H' \) would completely depopulate the down-spin bands and
FIG. 12: Plot of the order parameters $c, s,$ and m against the field H'. The solid line shows magnetization, the dotted line shows spin order parameter, and the dashed line shows charge order parameter for (a) $U_B = 0.6$ and (b) $U_B = 1.5$ while $U_A = 2.5$ (scale of energy is chosen by setting $t = 1.0$) and $N = 100$.

VII. CONCLUSION

Summarizing, we have investigated the one dimensional half-filled alternating Hubbard super lattice structure at zero temperature using the Hartree-Fock approximation and a real space renormalization group technique. Although both the methods are approximate ones, they are complementary to one other. The agreement between the phase diagrams obtained from these two different methods shows that the results are rather reliable. We obtained two types of phases, dominated by charge and spin density wave instabilities respectively, depending on the U_A and U_B values. The $U_A - U_B$ phase diagram shows two transition lines, indicating a centrally located antiferromagnetic region and two charge density wave regions near the axes.

The system is insulating. It may be noted at this point that the possibility of such transitions was not explored in the previous works on this model; most of these works concentrated only on a limited region of the parameter space, e.g. $U_A > 0$ and $U_B = 0$, and also there were some severe restrictions on the system size. Apart from the phase transitions, it is interesting to note that there appears a spatial modulation of the local moments dictated by the inhomogeneity of the correlation parameters. The RG results also indicate that the ordering is not full grown as compared to the homogeneous limit because of underlying frustration of spin-spin correlation. These results are in agreement with a previous finding [4]. Also we have studied the ground state properties, including the Drude weight, of the superlattice in presence of a magnetic field (H'). The $U_A - H'$ (for fixed U_B) phase diagram shows that the system becomes conducting for an intermediate range of values of H'. In the phase diagram, we obtained insulating phases for lower and higher values of H'. The width of the conducting region depends on the values of on-site Coulomb repulsion.
energies of the super lattice structure. It seems interesting to explore this model further, especially at finite temperatures and for cases away from half-filling. Also the effect of varying “spacer thickness” \cite{4, 5, 6} for this regime of correlation parameters may yield some interesting observations.

Acknowledgments

Two of the authors (JC and BB) sincerely acknowledge a fruitful discussion with Dr. Shreekantha Sil.

\begin{thebibliography}{99}
\bibitem{1} B. Heinrich and J. F. Cochran, Adv. Phys. \textbf{42}, 523 (1993)
\bibitem{2} S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. \textbf{64}, 2304 (1990); S. S. P. Parkin, Phys. Rev. Lett. \textbf{67}, 3598 (1991); P. Grünberg et. al., J. Appl. Phys. \textbf{69}, 4789 (1991)
\bibitem{3} M. N. Baibich et. al., Phys. Rev. Lett. \textbf{61}, 2472 (1988)
\bibitem{4} T. Paiva and R. R. dos Santos, Phys. Rev. Lett. \textbf{76}, 1126 (1996); T. Paiva and R. R. dos Santos, Phys. Rev. B \textbf{62}, 7007 (2000)
\bibitem{5} T. Paiva and R. R. dos Santos, Phys. Rev. B \textbf{58}, 9607 (1998)
\bibitem{6} T. Paiva and R. R. dos Santos, Phys. Rev. B \textbf{65}, 153101 (2002)
\bibitem{7} A. L. Malvezzi, T. Paiva, and R. R. dos Santos, Phys. Rev. B \textbf{66}, 064430 (2002); A. L. Malvezzi, T. Paiva, and R. R. dos Santos, \textit{cond-mat/0604523}
\bibitem{8} J. Silva-Valencia, E. Miranda, and R. R. dos Santos, J. Phys.: Condens. Matter \textbf{13}, L619 (2001); J. Silva-Valencia, E. Miranda, and R. R. dos Santos, Phys. Rev. B \textbf{65}, 115115 (2002)
\bibitem{9} P. Kakashvili and G. I. Japaridze, J. Phys.: Condens. Matter \textbf{16}, 5815 (2004)
\bibitem{10} S. Gupta, S. Sil, and B. Bhattacharyya, Phys. Rev. B \textbf{63}, 125113 (2001); \textit{ibid.} \textbf{64}, 169903 (2001)
\bibitem{11} H. Shiba, Phys. Rev. B \textbf{6}, 930 (1972)
\bibitem{12} J. E. Hirsch, Phys. Rev. B \textbf{22}, 5259 (1980)
\bibitem{13} B. Bhattacharyya and S. Sil, Phys. Lett. A \textbf{180}, 299 (1993)
\bibitem{14} B. Bhattacharyya and G. K. Roy, J. Phys.: Condens. Matter \textbf{7}, 5537 (1995); B. Bhattacharyya and S. Sil, J. Phys.: Condens. Matter \textbf{11}, 3513 (1999)
\bibitem{15} M. Ma, Phys. Rev. B \textbf{26}, 5097 (1982)
\bibitem{16} W. Kohn, Phys. Rev. \textbf{133}, A171 (1964)
\bibitem{17} S. Gupta, S. Sil, and B. Bhattacharyya, Physica B \textbf{355}, 299 (2005)
\end{thebibliography}