Privacy Preserving Moving KNN Queries

Tanzima Hashem1 Lars Kulik1 Rui Zhang2

1National ICT Australia
1,2Department of Computer Science and Software Engineering
University of Melbourne, Australia
{thashem,lars,rui}@csse.unimelb.edu.au

Abstract

We present a novel approach that protects trajectory privacy of users who access location-based services through a moving k nearest neighbor (MkNN) query. An MkNN query continuously returns the k nearest data objects for a moving user (query point). Simply updating a user’s imprecise location such as a region instead of the exact position to a location-based service provider (LSP) cannot ensure privacy of the user for an MkNN query: continuous disclosure of regions enables the LSP to follow a user’s trajectory. We identify the problem of trajectory privacy that arises from the overlap of consecutive regions while requesting an MkNN query and provide the first solution to this problem. Our approach allows a user to specify the confidence level that represents a bound of how much more the user may need to travel than the actual k^{th} nearest data object. By hiding a user’s required confidence level and the required number of nearest data objects from an LSP, we develop a technique to prevent the LSP from tracking the user’s trajectory for MkNN queries. We propose an efficient algorithm for the LSP to find k nearest data objects for a region with a user’s specified confidence level, which is an essential component to evaluate an MkNN query in a privacy preserving manner; this algorithm is at least two times faster than the state-of-the-art algorithm. Extensive experimental studies validate the effectiveness of our trajectory privacy protection technique and the efficiency of our algorithm.

1 Introduction

Location-based services (LBSs) are developing at an unprecedented pace: having started as web-based queries that did not take a user’s actual location into account (e.g., Google maps), LBSs can nowadays be accessed anywhere via a mobile device using the device’s location (e.g., displaying nearby restaurants on a cell phone relative to its current location). While LBSs provide many conveniences, they also threaten our privacy. Since a location-based service provider (LSP) knows the locations of its users, a user’s continuous access of LBSs enables the LSP to produce a complete
profile of the user’s trajectory with a high degree of spatial and temporal precision. From this profile, the LSP may infer private information about users. A threat to privacy is becoming more urgent as positioning devices become more precise, and a lack of addressing privacy issues may significantly impair the proliferation of LBSs [1, 32].

An important class of LBSs are moving k nearest neighbor (MkNN) queries. An MkNN query continuously returns the k nearest data objects with regard to a moving query point. For example, a driver may continuously ask for the closest gas station during a trip and select the most preferred one; similarly, a tourist may continuously query the five nearest restaurants while exploring a city. However, accessing an MkNN query requires continuous updates of user locations to the LSP, which puts the user’s privacy at risk. The user’s trajectory (i.e., the sequence of updated locations) is sensitive data and reveals private information. For example if the user’s trajectory intersects the region of a liver clinic, then the LSP might infer that the user is suffering from a liver disease.

A popular approach to hide a user’s location from the LSP is to let the user send an imprecise location (typically a rectangular region containing the user’s location) instead of the exact location [6, 10, 15, 38]. This approach is effective when the user’s location is fixed. However, when the user moves and continuously sends the rectangular regions containing her locations to the LSP, the LSP can still approximate the user’s trajectory if it takes into account the overlap of consecutive rectangles, which poses a threat to the trajectory privacy of the user. This privacy threat on the user’s trajectory privacy is called the overlapping rectangle attack. Our aim is to protect a user’s trajectory privacy while providing MkNN answers. We call the problem of answering MkNN queries with privacy protection, the private moving kNN (PMkNN) query. Although different approaches [6, 7, 15, 17, 35, 36] have been developed for protecting a user’s trajectory privacy in continuous queries, none of them have considered the threat on a user’s trajectory privacy that arises from the overlapping rectangle attack in MkNN queries. This paper is the first work that addresses PMkNN queries.

In our approach, users have an option to specify the level of accuracy for the query answers, which is motivated by the following observation. In many cases, users would accept answers with a slightly lower accuracy if they gain higher privacy protection in return. For example, a driver looking for the closest gas station might not mind driving to a gas station that may be 5% further than the actual closest one, if the slightly longer trip considerably enhances the driver’s privacy. In this context, “lower accuracy” of the answers means that the returned data objects are not necessarily the k nearest data objects: they might be a subset of the $(k + x)$ nearest data objects, where x is a small integer. However, we guarantee that their distances to the query point are within a certain ratio of the actual k^{th} nearest neighbor’s distance. We define a parameter called confidence level to characterize this ratio. In addition to protecting privacy, we will show that a lower confidence level also reduces the query processing overhead.

For every update of a user’s imprecise location (a rectangle) in a PMkNN query, the LSP provides the user with a candidate answer set that includes the specified number of nearest data objects (i.e., k nearest data objects) with the specified confidence level for every possible point in the rectangle. The key idea of our privacy protection strategy is to specify higher values for the confidence level and the number of nearest data objects than required by the user and not to
reveal the required confidence level and the required number of nearest data objects to the LSP. Since the user’s required confidence level and the required number of nearest data objects are lower than the specified ones, the candidate answer set must contain the required query answers for an additional part of the user’s trajectory, which is unknown to the LSP. Based on this idea, we develop an algorithm to compute the user’s consecutive rectangles, that resists the overlapping rectangle attack and prevents the disclosure of the user’s trajectory. Although our approach for privacy works if either the required confidence level or the required number of nearest data objects is hidden, hiding both provides a user with a higher level of privacy.

In summary, we make the following contributions in this paper.

- We identify the problem of trajectory privacy that arises from the overlap of consecutive regions while requesting an \(M_k \)NN query. We propose the first approach to address \(PM_k \)NN queries. Specifically, a user (a client) sends requests for an \(M_k \)NN query based on consecutive rectangles, and the LSP (the server) returns \(k \) nearest neighbors (NNs) for any possible point in the rectangle. We show how to compute the consecutive rectangles and how to find the \(k \) NNs for these rectangles so that the user’s trajectory remains private.

- We propose three ways to combat the privacy threat in \(M_k \)NN queries: by requesting (i) a higher confidence level than required, (ii) a higher number of NNs than required, or (iii) higher values for both the confidence level and the number of NNs than required to the LSP.

- We improve the efficiency of the algorithm for the LSP to find \(k \) NNs for a rectangle with a user-customizable confidence level by exploiting different geometric properties.

- We present an extensive experimental study to demonstrate the efficiency and effectiveness of our approach. Our proposed algorithm for the LSP is at least two times faster than the state-of-the-art.

The remainder of the paper is organized as follows. Section 2 discusses the problem setup and Section 3 reviews existing work. In Section 4, we give an overview of our system and in Section 5, we introduce the concept of confidence level. Sections 6 and 7 present our algorithms to request and evaluate a \(PM_k \)NN query, respectively. Section 8 reports our experimental results and Section 9 concludes the paper with future research directions.

2 Problem Formulation

A moving \(k \)NN (\(M_k \)NN) query is defined as follows.

Definition 2.1 (\(M_k \)NN query) Let \(D \) denote a set of data objects in a two dimensional database, \(q \) the moving query point, and \(k \) a positive integer. An \(M_k \)NN query returns for every position of \(q \), a set \(A \) that consists of \(k \) data objects whose distances from \(q \) are less or equal to those of the data objects in \(D - A \).
A private static kNN query protects a user’s privacy while processing a kNN query. Traditionally for private static kNN queries, the user requests k NNs to the LSP with a rectangle that includes the current position of the user [10, 14, 31, 38]. Since the LSP does not know the actual location of the user in the rectangle, it returns the k nearest data objects with respect to every point of the rectangle.

There is no universally accepted view on what privacy protection implies for a user. On the one hand, it could mean hiding the user’s identity but revealing the user’s precise location while accessing an LBS, which prevents an LSP from knowing what type of services have been accessed by whom. On the other hand, it could mean protecting privacy of the user’s location while disclosing the user’s identity to the LSP.

For the first scenario, a user reveals her location to the LSP and requests an LBS via a third party (e.g., pseudonym service provider) to hide her identity from the LSP. However, accessing an LBS anonymously does not always protect the user’s privacy since the LSP could infer the user’s identity from the revealed location. For example, if a user requests a service from her home, office or any other place that is known to the LSP then the user can be identified. To address this issue, K-anonymity techniques [13, 18] have been developed. In K-anonymity techniques, the user’s rectangle includes $K - 1$ other user locations in addition to the user’s location and thus make the user’s identity indistinguishable from $K - 1$ other users even if the actual user locations are known to the LSP.

In this paper, we consider the second scenario where the user’s location is unknown to the LSP since the user considers her location as private and sensitive information. We address how to protect privacy of the user’s trajectory when the user’s identity is revealed, and do not use K-anonymity for the following reasons:

1. K-anonymity techniques hide the user’s identity from the LSP and assume that the user’s location could be known to the LSP. On the other hand, our focus is to protect the user’s trajectory privacy while disclosing the user’s identity. Revealing the user’s identity enables the LSP to provide personalized query answers [15, 38]; as an example the LSP can return only those gas stations as MkNN answers which provide a higher discount for the user’s credit card.

2. K-anonymity techniques alone cannot protect privacy of the user’s location when the user’s identity is revealed. For example if a user is located at the liver clinic and there are other $K - 1$ users at the same clinic, then the user’s rectangle also resides in the liver clinic. However, the rectangle needs to include other places in addition to the liver clinic for protecting the privacy of the user’s location. The higher the number of different places the rectangle includes in addition to the liver clinic, the lower the probability that the user is located at the liver clinic. Since integrating K-anonymity techniques in our approach do not increase the level of privacy of a user’s location, we do not integrate K-anonymity techniques.

\footnote{In this paper, we use NN and nearest data object interchangeably.}
In our approach, the user sets her rectangle area according to her privacy requirement and the user’s location cannot be refined to a subset of that rectangle at the time of issuing the query. For example, a user can set the size of the rectangle covering a suburb of the California or covering the whole California region if a high level privacy is required.

![Figure 1](image)

Figure 1: (a) Overlapping rectangle attack, (b) maximum movement bound attack, and (c) combined attack

For a private moving kNN (PMkNN) query, a straightforward attempt to address the PMkNN query is to apply the private static kNN query iteratively such that the user has the k nearest data objects for every position of q, where the moving user’s locations are updated in a periodic manner. However, the straightforward application of private static kNN queries for processing an MkNN query cannot protect the user’s trajectory privacy, which is explained in the next section.

2.1 Threat model for MkNN queries

Applying private static kNN queries to a PMkNN query requires that the user (the moving query point) continuously updates her location as a rectangle to an LSP so that the kNN answers are ensured for every point of her trajectory. The LSP simply returns the k NNs for every point of her requested rectangle. Thus, the moving user already has the k NNs for every position in the current rectangle. Since an MkNN query provides answers for every point of the user’s trajectory, the next request for a new rectangle can be issued at any point before the user leaves the current rectangle. We also know that in a private static kNN query, a rectangle includes the user’s current location at the time of requesting the rectangle to the LSP. Therefore, a straightforward application of private static kNN queries for processing an MkNN query requires the overlap of consecutive rectangles as shown in Figure 1(a). These overlaps refine the user’s locations within the disclosed rectangles to the LSP and decrease the privacy of the user’s location. In the worst case, a user can issue the next request for a new rectangle when the user moves to the boundary of the current rectangle to ensure the availability of kNN answers for every point of the user’s trajectory in real time. Even in this worst case scenario, the consecutive rectangles needs to overlap at least at a point, which is the user’s current location. We define the above described privacy threat as the overlapping rectangle attack.
Definition 2.2 (Overlapping rectangle attack) Let \(\{R_1, R_2, \ldots, R_n\} \) be a set of \(n \) consecutive rectangles requested by a user to an LSP in an MkNN query, where \(R_w \) and \(R_{w+1} \) overlap for \(1 \leq w < n \). Since a user’s location lies in the rectangle at the time it is sent to the LSP and the moving user requires the \(k \) NNs for every position, the user’s location has to be in \(R_w \cap R_{w+1} \) at the time of sending \(R_{w+1} \), and the user’s trajectory must intersect \(R_w \cap R_{w+1} \). As \((R_w \cap R_{w+1}) \subset R_w, R_{w+1} \), the overlapping rectangle attack enables an LSP to render more precise locations of a user and gradually reveal the user’s trajectory.

There is another possible attack on a user’s trajectory privacy for MkNN queries when the user’s maximum velocity is known. Existing research \([6, 15, 26, 35]\) has shown that if an LSP has rectangles from the same user at different times and the LSP knows the user’s maximum velocity, then it is possible to refine a user’s approximated location from the overlap of the current rectangle and the maximum movement bound with respect to the previous rectangle, called maximum movement bound attack. Figure 1(b) shows an example of this attack in an MkNN query that determines more precise location of a user in the overlap of \(R_2 \) and the maximum movement bound \(M_1 \) with respect to \(R_1 \) at the time of sending \(R_2 \).

For an MkNN query, the maximum movement bounding attack is weaker than the overlapping rectangle attack as \((R_w \cap R_{w+1}) \subset (M_w \cap R_{w+1}) \). However, we observe that the combination of overlapping rectangle and maximum movement bound attacks can be stronger than each individual attack as shown in Figure 1(c). In this example at the time of issuing \(R_3 \), the LSP derives \(M_2 \) from \(R_1 \cap R_2 \) rather than from \(R_2 \) and identifies the user’s more precise location as \(R_2 \cap R_3 \cap M_2 \), where \((R_2 \cap R_3 \cap M_2) \subset (R_2 \cap R_3) \) and \((R_2 \cap R_3 \cap M_2) \subset (R_3 \cap M_2) \).

With the above described attacks, the LSP can progressively find more precise locations of a user and approximate the user’s trajectory. As a result the LSP could also generate a complete profile of the user’s activities from the identified trajectory. Hence, protecting the trajectory privacy of users as much as possible while processing an MkNN query is essential.

2.2 Trajectory privacy for MkNN queries

Trajectory privacy protection with respect to a rectangle is defined as follows:

Definition 2.3 (Trajectory privacy protection with respect to a rectangle) The user’s trajectory privacy is protected with respect to a rectangle, if the following conditions hold:

1. The user’s location at the time of sending a rectangle cannot be refined to a subset of that rectangle.
2. The user’s trajectory cannot be refined to a subset of that rectangle.

The first condition removes the certainty that the location of a user at the time of issuing a rectangle is within the overlap of rectangles and the maximum movement bound. The second
condition ensures that a user’s trajectory does not have to intersect the overlap of consecutive rectangles.

A privacy protection technique that satisfies Definition 2.3 can overcome the overlapping rectangle attack and the maximum movement bound attack that refine parts of a user’s trajectory within the rectangles. However, the LSP can still refine the user’s trajectory within the data space from the available knowledge of the LSP. Since there is no measure to quantify trajectory privacy, we measure trajectory privacy as the (smallest) area to which an adversary can refine the trajectory location relative to the data space. We call it trajectory area and define it in the Section Experiments, as it requires concepts which are introduced later in the paper. Note that the larger the trajectory area is, the higher is the user’s trajectory privacy and the higher is the probability that the area is associated with different sensitive locations and, as a result, the lower is the probability that the user’s trajectory could be linked to a specific location. We also measure a user’s trajectory privacy by the number of requested rectangles per trajectory for a fixed area, i.e., the frequency, the smaller the number of requested rectangles, the less spatial constraints are available to the LSP for predicting the trajectory.

2.2.1 Overview of our approach for PMkNN queries

A naïve solution to avoid overlapping rectangles is to request next rectangle after the user leaves the current rectangle. However, this solution cannot provide an answer for the part of the trajectory between two rectangles: this violates the definition of MkNN query, which asks for k NNs for every point of the trajectory. Figure 2 shows an example, where a user requests non overlapping rectangles and thus the user does not have kNN answers for parts of the trajectory between points q_1 and q_2, and q_3 and q_4.

![Figure 2: A naïve solution: kNN answers may not be available to the user for parts of the trajectory between q_1 and q_2, and q_3 and $q_4](image)

In this paper, we propose a solution to overcome the overlapping rectangle attack on the user’s trajectory privacy for MkNN queries. We ensure that the proposed solution satisfies the two required conditions for trajectory privacy protection (see Definition 3) for every rectangle requested.
to the LSP and provides the user kNN answers for every point of her trajectory. In our approach, a user does not always need to send non-overlapping rectangles to avoid the overlapping rectangle attack. We show that our approach does not allow the LSP to refine the user’s location or trajectory within the rectangle even if the user sends overlapping rectangles. The underlying idea is to have the required answers for an additional part of the user’s trajectory without the LSP’s knowledge. As the user has the required answers for an additional part of her trajectory, the consecutive rectangles do not have to always overlap. Even if the rectangles overlap, there is no guarantee that the user is located in the overlap at the time of sending the rectangle to the LSP and the user’s trajectory passes through the overlap. To achieve the answers for an additional part of the user’s trajectory without informing the LSP, the user requests a higher confidence level and a higher number of NNs than required and does not reveal the required values to the LSP. Our approach also prevents the maximum movement bound attack based on the existing solutions \cite{6, 15, 26, 35} in the literature if the LSP knows the user’s maximum velocity.

3 Related Work

Section 3.1 surveys existing research on protecting trajectory privacy in continuous LBSs and Section 3.2 highlights the trajectory privacy concern in other applications.

3.1 Privacy protection in continuous LBSs

Most research on user privacy in LBSs has focused on static location-based queries that include nearest neighbor queries \cite{14, 20, 21, 27, 31, 40}, group nearest neighbor queries \cite{22} and proximity services \cite{30}. Different strategies such as K-anonymity, obfuscation, l-diversity, and cryptography have been proposed to protect the privacy of users.

K-anonymity techniques (e.g., \cite{18, 31}) make a user’s identity indistinguishable within a group of K users. Obfuscation techniques (e.g., \cite{11, 40}) degrade the quality of a user’s location by revealing an imprecise or inaccurate location and l-diversity techniques (e.g., \cite{10, 38}) ensure that the user’s location is indistinguishable from other $l − 1$ diverse locations. Both obfuscation, and l-diversity techniques focus on hiding the user’s location from the LSP instead of the identity. Cryptographic techniques (e.g., \cite{16, 28}) allow users to access LBSs without revealing their locations to the LSP, however, these techniques incur cryptographic overhead and require an encrypted database. In this paper, we assume that the LSP evaluates a PMkNN query on a non-encrypted database.

K-anonymity, obfuscation, or l-diversity based approaches for private static queries cannot protect privacy of users for continuous LBSs because they consider each request of a continuous query as an independent event, i.e., the correlation among the subsequent requests is not taken into account. Recently different approaches \cite{5, 7, 36, 17, 6, 15, 35, 37} have been proposed to address this issue.

The authors in K-anonymity based approaches \cite{5, 7, 36, 17} for continuous queries focus on
the privacy threat on a user’s identity that arises from the intersection of different sets of K users involved in the consecutive requests of a continuous query. Since we focus on how to hide a user’s trajectory while disclosing the user’s identity to the LSP, these approaches are not applicable for our purpose. On the other hand, existing obfuscation and l-diversity based approaches \cite{6, 15, 35} for continuous queries have only addressed the threat of the maximum movement bound attack. However, none of these approaches have identified the threat on trajectory privacy that arises from the overlap of consecutive regions (e.g., rectangles). The trajectory anonymization technique proposed in \cite{37} assumes that a user knows her trajectory in advance for which an LBS is required, whereas other approaches including ours consider an unknown future trajectory of the user.

3.1.1 Existing kNN algorithms

To provide the query answers to the user, the LSP needs an algorithm to evaluate a kNN query for the user’s location. \textit{Depth first search} (DFS) \cite{34} and \textit{best first search} (BFS) \cite{23} are two well known algorithms to find the k NNs with respect to a point using an R-tree \cite{19}. If the value of k is unknown, e.g., for an incremental kNN queries, the next set of NNs can be determined with BFS. We use BFS in our proposed algorithm to evaluate a kNN query with respect to a rectangle. The BFS starts the search from the root of the R-tree and stores the child nodes in a priority queue. The priority queue is ordered based on the minimum distance between the query point and the \textit{minimum bounding rectangles} (MBRs) of R-tree nodes or data objects. In the next step, it removes an element from the queue, where the element is the node representing the MBR with the minimum distance from the query point. Then the algorithm again stores the child nodes or data objects of the removed node on the priority queue. The process continues until k data objects are removed from the queue.

Researchers have also focused on developing algorithms \cite{8, 9, 25, 27, 31, 35} for evaluating a kNN query for a user’s imprecise location such as a rectangle or a circle. In \cite{9}, the authors have proposed an approximation algorithm that ensures that the answer set contains one of the k NNs for every point of a rectangle. The limitation of their approximation is that users do not know how much more they need to travel with respect to the actual NN, i.e., the accuracy of answers. Our algorithm allows users to specify the accuracy of answers using a confidence level.

To prevent the overlapping rectangle attack, our proposed approach requires a kNN algorithm that returns a candidate answer set including all data objects of a region in addition to the k NNs with respect to every point of a user’s imprecise location. The availability of all data objects for a \textit{known region} to the user in combination with the concept of hiding the user’s required confidence level and the required number of NNs from the LSP can prevent the overlapping rectangle attack (see Section 6). Among all existing kNN algorithms for a user’s imprecise location \cite{8, 9, 25, 27, 31, 35}, only Casper \cite{31} supports a known region; the algorithm returns all data objects of a \textit{rectangular region} (i.e., the known region) that include the NNs with respect to a rectangle. However, Casper can only work for NN queries and it is not straightforward to extend Casper for $k > 1$. Thus, even if Casper is modified to incorporate the confidence level concept, it can only support PMkNN queries for $k = 1$.

9
Moreover, for a single nearest neighbor query, Casper needs to perform on the database multiple searches, which incur high computational overhead. Casper executes four individual single nearest neighbor queries with respect to four corner points of the rectangle. Then using these neighbors as filters, Casper expands the rectangle in all directions to compute a range that contains the NNs with respect to all points of the rectangle. Finally, Casper has to again execute a range query to retrieve the candidate answer set. We propose an efficient algorithm that finds the \(k \)NNs with a specified confidence level for a rectangle in a single search.

3.2 Trajectory privacy in other applications

Protecting a user’s trajectory privacy has also received much attention in other domains \([2, 4, 24, 33, 39]\). The advancement and widespread use of location aware devices (e.g., GPS equipped mobile phone or vehicle) have enabled users to share their trajectories with others. Such trajectory data allows organizations and researchers to perform useful analyses for many applications such as urban planning, traffic monitoring, and mining human behavior. To protect user trajectories, they are modified before they are released so that both user privacy and data utility are maintained. Recent research has developed a few anonymization approaches \([2, 33, 39]\) for publishing privacy preserving trajectory data, where a trusted server first collects trajectories from users and then publishes them in public after their anonymization. Prior studies \([4, 24]\) also consider scenarios without a trusted server, which means a user’s trajectory is anonymized before it is shared with anyone. The purpose of these approaches is to protect trajectory privacy through anonymization while maintaining the utility of trajectory data for different analyses. On the other hand, our approach protects trajectory privacy while answering \(MkNN \) queries in a personalized manner (i.e., the user’s identity is revealed); therefore our studied problem is orthogonal to the above problem.

4 System Overview

Our approach for \(PMkNN \) queries is based on the client-server model. In our system, a client is a moving user who sends a \(PMkNN \) query request and the server is the LSP that processes the query. The moving user sends her imprecise location as a rectangle to the LSP, which we call obfuscation rectangle in the remainder of this paper.

We introduce the parameter confidence level, which provides a user with an option to trade the accuracy of the query answers for trajectory privacy. Intuitively, the confidence level of the user for a data object guarantees that the distance of the data object to the user’s location is within a bound of the actual nearest data object’s distance. In Section 5 we formally define and show how a user and an LSP can compute the confidence level for a data object.

In our system, a user does not reveal the required confidence level and the required number of NNs to the LSP while requesting a \(PMkNN \) query; instead the user specifies higher values than the required ones. This allows the user to have the required number of NNs with the required confidence level for an additional part of her trajectory, which is unknown to the LSP,
and thus the LSP cannot apply the overlapping rectangle attack by correlating the user’s current obfuscation rectangle with the previous one. In Section 6, we present a technique to compute a user’s consecutive obfuscation rectangles for requesting a PMkNN query. Another important advantage of our technique is that for the computation of the consecutive obfuscation rectangles, the user does not need to trust any other party such as an intermediary trusted server [31].

An essential component of our approach for a PMkNN query is an algorithm for the LSP that finds the specified number of NNs for the obfuscation rectangle with the specified confidence level. In Section 7, we exploit different properties of the confidence level with respect to an obfuscation rectangle to develop an efficient algorithm in a single traversal of the R-tree.

5 Confidence Level

The confidence level represents a measure of the accuracy for a nearest data object with respect to a user’s location. If the confidence level of a user for the k nearest data objects is 1 then they are the actual k NNs. If the confidence level is less than 1 then it provides a worst case bound of how much more a user may need to travel than the actual k^{th} nearest data object. For example, a nearest data object with 0.5 confidence level means that the user has to travel twice the distance to the actual NN in the worst case.

To determine the confidence level of a user for any nearest data object, we need to know the locations of other data objects surrounding the user’s location. The region where the location of all data objects are known is called the known region. We first show how an LSP and a user compute the known region, and then discuss the confidence level.

![Figure 3: Known Region](image)

5.1 Computing a known region

Suppose a user provides an obfuscation rectangle R_w for any positive integer w, to the LSP while requesting a PMkNN query. For the ease of explanation, we assume at the moment that the user specifies confidence level of 1, i.e., the answer set returned by the LSP includes the actual kNN answers for the given obfuscation rectangle. Our proposed algorithm for the LSP to evaluate kNN
answers, starts a best first search (BFS) considering the center o of R_w as the query point and incrementally finds the next NN from o until the actual k NNs are discovered for all points of R_w. The search region covered by BFS at any stage of its execution is a circular region $C(o, r)$, where the center o is the center of R_w and the radius r is the distance between o and the last discovered data object. Since the locations of all data objects in $C(o, r)$ are already discovered, $C(o, r)$ is the known region for the LSP. The LSP returns all data objects located within $C(o, r)$ to the user, although some of them might not be the k NNs with respect to any point of R_w. This enables the user to have $C(o, r)$ as the known region, where the center o is the center of R_w and the radius r is the distance between o and the farthest retrieved data object from o.

5.2 Measuring the confidence level

Since the confidence level can have any value in the range $(0, 1]$, we remove our previous assumption of a fixed confidence level of 1 in Section 5.1. In our approach, the knowledge about the known region $C(o, r)$ is used to measure the confidence level. Let p_h be the nearest data object among all data objects in $C(o, r)$ from a given location q, where h is an index to name the data objects and let $\text{dist}(q, p_h)$ represent the Euclidean distance between q and p_h. There are two possible scenarios based on different positions of p_h and q in $C(o, r)$. Figure 4(a) shows a case where the circular region $C'(q, \text{dist}(q, p_h))$ centered at q with radius $\text{dist}(q, p_h)$ is within $C(o, r)$. Since p_h is the nearest data object from q within $C(o, r)$, no other data object can be located within $C'(q, \text{dist}(q, p_h))$. This case provides the user at q with a confidence level 1 for p_h. However, $C'(q, \text{dist}(q, p_h))$ might not be always completely within the known region. Figure 4(b)(left) shows such a case, where a part of $C'(q, \text{dist}(q, p_h))$ falls outside $C(o, r)$ and as the locations of data objects outside $C(o, r)$ are not known, there might be some data objects located in the part of $C'(q, \text{dist}(q, p_h))$ outside $C(o, r)$ (i.e., $C'' = C'(q, \text{dist}(q, p_h)) \setminus C(o, r)$) that have a smaller distance than p_h from q. Since p_h is the nearest data object from q within $C(o, r)$, there is no data object within distance r' from q (Figure 4(b)(right)), where r' is the radius of the maximum
circular region within \(C(o, r) \) centered at \(q \). But there might be other data objects within a fixed distance \(d_f \) from \(q \), where \(r' < d_f \leq \text{dist}(q, p_h) \). In this case the confidence level of the user at \(q \) regarding \(p_h \) is less than 1. On the other hand, if \(q \) is outside of \(C(o, r) \) then the confidence level of the user at \(q \) for \(p_h \) is 0 because \(r' \) is 0. We formally define the confidence level of a user located at \(q \) for \(p_h \) in the more general case, where \(p_h \) is any of the nearest data object in \(C(o, r) \).

Definition 5.1 (Confidence level) Let \(C(o, r) \) be the known region, \(P \) the set of data objects in \(C(o, r) \), \(q \) the point location of a user, \(p_h \) the \(j \)th nearest data object in \(P \) from \(q \) for \(1 \leq j \leq |P| \). The distance \(r' \) represents the radius of the maximum circular region within \(C(o, r) \) centered at \(q \).

The confidence level of the user located at \(q \) for \(p_h \), \(CL(q, p_h) \), can be expressed as:

\[
CL(q, p_h) := \begin{cases}
0 & \text{if } q \not\in C(o, r) \\
1 & \text{if } q \in C(o, r) \land \text{dist}(q, p_h) \leq r' \\
\frac{r'}{\text{dist}(q, p_h)} & \text{otherwise}.
\end{cases}
\]

Since our focus is on NN queries, we use distance instead of area as the metric for the confidence level. A distance-based metric ensures that there is no other data object within a fixed distance from the position of a user. Thus, the distance-based metric is a measure of accuracy for a data object to be the nearest one. On the other hand, an area-based metric is based on the percentage of the area of \(C'(q, \text{dist}(q, p_h)) \) that intersects with \(C(o, r) \). Thus, an area-based metric only could be used to express the likelihood of an data object to be the nearest one. However, an area-based metric cannot measure the accuracy of the data object to be the nearest one. Furthermore, such a metric would assume a uniform random distribution of data objects. Consider an example where \(q \) is outside \(C(o, r) \) and \(p_h \) is the nearest data object from \(q \) in \(C(o, r) \). According to the area-based metric the confidence level of the user for \(p_h \) would be greater than 0, i.e., \((C'(q, \text{dist}(q, p_h)) \cap C(o, r))/C'(q, \text{dist}(q, p_h)) \), although there is nothing known about the data objects outside the known region. This measure based on the area-based metric does not represent a bound of how much more a user may need to travel for \(p_h \) than the actual nearest data object in the worst case.

6 Client-side Processing

We present a technique for computing consecutive obfuscation rectangles of a user to request a PM\(k \)NN query, where the LSP cannot apply the overlapping rectangle attack to invade the user’s trajectory privacy. Suppose a user requests an obfuscation rectangle \(R_w \) and a confidence level \(cl \) at any stage of accessing the PM\(k \)NN query. The LSP returns \(P \), the set of data objects in the known region \(C(o, r) \), that includes the \(k \) NNs with a confidence level at least \(cl \) for every point of \(R_w \). The availability of \(C(o, r) \) allows a moving user to compute the confidence level for the \(k \) NNs even from outside of \(R_w \).

Although some data objects in \(P \) might not be the \(k \) NNs for any point of \(R_w \), they might be \(k \) NNs for a point outside \(R_w \) with a confidence level at least \(cl \). In addition, some data objects,
which are the k NNs for some portions of R_w, can be also the k NNs from locations outside of R_w with a confidence level at least cl. For example for $cl = 0.5$ and $k = 1$, Figure 5(a) shows that a point q, located outside R_w, has a confidence level greater than 0.5 for its nearest data object p_2. On the other hand, from a data object’s viewpoint, Figure 5(b) shows two regions surrounding a data object p_2, where for any point inside these regions a user has a confidence level at least 0.90, and 0.50, respectively for p_2. We call such a region guaranteed region, denoted as $GR(cl, p_h)$ with respect to a data object p_h for a specific confidence level cl. We define $GR(cl, p_h)$ as follows.

Definition 6.1 (Guaranteed region) Let $C(o, r)$ be the known region, P the set of data objects in $C(o, r)$, p_h a data object in P, and cl the confidence level. The guaranteed region with respect to p_h, $GR(cl, p_h)$, is the set of all points such that \(CL(q, p_h) \geq cl \) for any point $q \in GR(cl, p_h)$.

From the guaranteed region of every data object in P we compute the guaranteed combined region, denoted as $GCR(cl, k)$, where for any point in this region a user has at least k data objects with a confidence level at least cl. Figure 5(c) shows an example, where $P = \{p_1, p_2, p_3\}$ and $cl = 0.5$. Then for $k = 1$, the black bold line shows the boundary of $GCR(0.5, 1)$, which is the union of $GR(0.5, p_1)$, $GR(0.5, p_2)$ and $GR(0.5, p_3)$. For $k = 2$, the ash bold line shows the boundary of $GCR(0.5, 2)$, which is the union of $GR(0.5, p_1) \cap GR(0.5, p_2)$, $GR(0.5, p_2) \cap GR(0.5, p_3)$ and $GR(0.5, p_3) \cap GR(0.5, p_1)$. We define $GCR(cl, k)$ as follows.

Definition 6.2 (Guaranteed combined region) Let $C(o, r)$ be the known region, P the set of data objects in $C(o, r)$, p_h a data object in P, cl the confidence level, k the number of data objects, and $GR(cl, p_h)$ the guaranteed region. The guaranteed combined region, $GCR(cl, k)$, is the union of the regions where at least k $GR(p_h, cl)$ overlap, i.e., \(\cup_{P' \subseteq P \mid |P'| = k} \{ \bigcap_{h \in P'} GR(p_h, cl) \} \).

Since for any point in $GCR(cl, k)$, a user has at least k data objects with a confidence level at least cl, the following lemma shows that for any point in $GCR(cl, k)$ the user also has the k NNs with a confidence level at least cl.

2 The confidence level of any point represents the confidence level of a user located at that point.
3 Note that, whenever we mention the confidence level of a point for a data object then the data object can be any of the j^{th} NN from that point, where $1 \leq j \leq |P|$.
Lemma 6.1 If the confidence level of a user located at q is at least cl for any k data objects, then the confidence level of the user is also at least cl for the k NNs from q.

Proof. (By contradiction) Assume to the contrary that for the user at q has a confidence level less than cl for the i^{th} NN among the data objects, where $1 \leq i \leq k$. We know that the user at q has k data objects with at least confidence level cl. According to the assumption these k data objects must not be the user’s k NNs; at least one of them, say p_1, is at a greater distance than the k^{th} NN from q. But according to Definition 5.1 we know that the confidence level of the user for the j^{th} NN is greater than the $(j+1)^{th}$ NN for $1 \leq j \leq |P| - 1$. This implies that since $CL(q, p_1) \geq cl$ and p_1 is located farther than the k NNs from q, the user has a confidence level at least cl for the k NNs, which contradicts our assumption.

In our technique, the moving user can use the retrieved data objects from the outside of R_w and delay the next request with a new obfuscation rectangle R_{w+1} until the user leaves $GCR(cl, k)$. Although delaying the next request with R_{w+1} in this way may allow a user to avoid an overlap of R_w and R_{w+1}, the threat to trajectory privacy is still in place. Since the LSP can also compute $GCR(cl, k)$, similar to the overlapping rectangle attack, the user’s location can be computed more precisely by the LSP from the overlap of the new obfuscation rectangle R_{w+1} and current $GCR(cl, k)$ (see Figure 6(a) for $GCR(0.5, k) \cap R_{w+1}$).

![Figure 6](image)

Figure 6: (a) An attack from $R_{w+1} \cap GCR(0.5, 1)$, (b)-(d) Removal of attacks with $cl_r = 0.5$ and $cl = 0.9$

To overcome the above mentioned attack and the overlapping rectangle attack, the key idea of our technique is to increase the size of GCR without informing the LSP about this extended region. To achieve the extended region of GCR without informing the LSP, the user has three options while requesting a PMkNN query: the user specifies a higher value than (i) the required confidence level or (ii) the required number of nearest data objects or (iii) both. It is important to note that the user does not reveal the required confidence level and the required number of NNs to the LSP. Let cl_r and k_r represent the required confidence level and the required number of NNs for a user, respectively, and cl and k represent the specified confidence level and the specified number of NNs to the LSP by the user, respectively.
Consider the first option, where a user specifies a higher value than the required confidence level, i.e., \(cl > cl_r \). We know that the GCR is constructed from GRs of data objects in \(P \) and the GR of a data object becomes smaller with the increase of the confidence level for a fixed \(C(o, r) \) as shown in Figure 5(b), which justifies the following lemma.

Lemma 6.2 Let \(cl > cl_r \) and \(k = k_r \). Then \(GCR(cl_r, k_r) \supset GCR(cl, k) \) for a fixed \(C(o, r) \).

Since \(GCR(cl_r, k_r) \supset GCR(cl, k) \), now the user can delay the next request with a new obfuscation rectangle \(R_{w+1} \) until the user leaves \(GCR(cl_r, k_r) \). Since the LSP does not know about \(GCR(cl_r, k_r) \), it is not possible for the LSP to find more precise trajectory path from the overlap of \(GCR(cl_r, k_r) \) and \(R_{w+1} \). Figure 5(b) shows an example for \(k = 1 \), where a user’s required confidence level is \(cl_r = 0.5 \) and the specified confidence level is \(cl = 0.9 \). The LSP does not know about the boundary of \(GCR(0.5, 1) \) and thus cannot find the user’s precise location from the overlap of \(GCR(0.5, 1) \) and \(R_{w+1} \).

However, the next location update \(R_{w+1} \) has to be in \(C(o, r) \) of \(R_w \). Otherwise, the LSP is able to determine more precise location of the user as \(R_{w+1} \cap C(o, r) \) at the time of requesting \(R_{w+1} \). For any location outside \(C(o, r) \), the user has a confidence level 0 which in turn means that \(q \) cannot be within the region of \(R_{w+1} \) that falls outside \(C(o, r) \) at the time of requesting \(R_{w+1} \). As a result whenever \(C(o, r) \) is small, then the restriction might cause a large part of \(R_{w+1} \) to overlap with \(GCR(cl, k) \) and \(R_w \). The advantage of our technique is that this overlap does not cause any privacy threat for the user’s trajectory due to the availability of \(GCR(cl_r, k_r) \) to the user. Since there is no guarantee that the user’s trajectory passes through the overlap or not, the LSP is not able to determine the user’s precise trajectory path from the overlap of \(R_{w+1} \) with \(GCR(cl, k) \) and \(R_w \). Without loss of generality, Figures 6(c) and 6(d) show two examples, where \(R_{w+1} \) overlaps with \(GCR(0.9, 1) \) for \(cl_r = 0.5 \), \(cl = 0.9 \), and \(k = 1 \). In Figure 6(c) we see that the user’s trajectory does not pass through \(GCR(0.9, 1) \cap R_{w+1} \), whereas Figure 6(d) shows a case, where the user’s trajectory passes through the overlap.

Another possible threat on the user’s trajectory privacy could arise if \(R_{w+1} \) overlaps with \(GCR(cl, k) \) and \(R_w \). A user does not need to send the next request with \(R_{w+1} \) as long as the user is in \(GCR(cl_r, k_r) \) which in turn means the user’s location must not be within \(GCR(cl_r, k_r) \cap R_{w+1} \) at the time of sending \(R_{w+1} \) to the LSP. Since the LSP does not know \(GCR(cl_r, k_r) \), the LSP cannot identify the overlap of \(GCR(cl_r, k_r) \) with \(R_{w+1} \) and determine more precise location of the user as \(R_{w+1} \setminus (GCR(cl_r, k_r) \cap R_{w+1}) \). However consider the case when \(R_{w+1} \) overlaps with \(GCR(cl, k) \) and \(R_w \): since \(GCR(cl, k), R_w \subset GCR(cl_r, k_r) \) and the LSP knows \(GCR(cl, k) \) and \(R_w \), the LSP can refine more precise location of the user at the time of sending \(R_{w+1} \) as \(R_{w+1} \setminus (GCR(cl, k) \cap R_{w+1}) \). To overcome the above mentioned privacy threat, we use two variables \(\delta_b \) and \(\delta \):

- **Boundary distance** \(\delta_b \): the minimum distance of user’s current position \(q \) from the boundary of \(C(o, r) \).
- **Safe distance** \(\delta \): the user specified distance, which is used to determine when the next request needs to be sent.
In our technique, the user’s next request is sent to the LSP as soon as δ_b becomes less or equal to δ. Using δ, whose value is unknown to the LSP, there is no possible privacy attack from the overlap of R_{w+1} with $GCR(cl, k)$ and R_w as the user might need to send R_{w+1} in advance due to the constraint of $\delta_b \leq \delta$. Figure 6(d) shows a case where the user’s location at the time of requesting R_{w+1} is within $GCR(0.9, 1) \cap R_{w+1}$ to satisfy $\delta_b \leq \delta$.

In the second option of achieving the extended region of GCR without informing the LSP, a user specifies a higher value than the required number of NNs, i.e., $k > k_r$. From the construction method of a GCR, we know that $GCR(cl, k + 1) \subset GCR(cl, k)$ for a fixed $C(o, r)$, which leads to the following lemma.

Lemma 6.3 Let $cl = cl_r$ and $k > k_r$. Then $GCR(cl_r, k_r) \supset GCR(cl, k)$ for a fixed $C(o, r)$.

Since we also have $GCR(cl_r, k_r) \supset GCR(cl, k)$ for the second option, similar to the case of first option, a user can protect her trajectory privacy using the extended region, which is used when the user cannot sacrifice the accuracy of answers.

In the third option, a user requests higher values for both confidence level and the number of NNs than required and can obtain a larger extension for the $GCR(cl_r, k_r)$ as both cl and k contribute to extend the region. The larger extension ensures a user with a higher level of trajectory privacy because $GCR(cl_r, k_r)$ covers a longer part of the user’s trajectory, which in turn reduces the number of times the user needs to send the obfuscation rectangle. The level of trajectory privacy also increases with the increase of the difference between cl and cl_r or k and k_r because with the decrease of cl_r or k_r, the size of $GCR(cl_r, k_r)$ increases for a fixed $C(o, r)$ and with the increase of cl or k, $C(o, r)$ becomes larger, which results in a larger $GCR(cl, k)$. Thus, the difference between cl and cl_r or k and k_r can be increased by either incurring a higher query processing overhead (i.e., specifying a higher value for cl or k) or sacrificing the required quality of the answers (i.e., specifying a lower value for cl_r or k_r). Note that, a large value for cl or k incurs higher query processing overhead as more data objects need to be retrieved.

The parameters cl, cl_r, k, k_r, δ, and the size of the obfuscation rectangle can be changed according to the user’s privacy profile and quality of service requirements. A user can specify a high level of privacy requirement in her profile for some locations that are more sensitive to her. Different values for cl, cl_r, k, k_r, and δ in consecutive requests prevent an LSP from gradually learning or guessing any bound of cl_r and k_r to apply reverse engineering and predict a more precise user location within the obfuscation rectangle.

Based on the above discussion of our technique, we present the algorithm that protects the user’s trajectory privacy while processing an $MkNN$ query. Before going to the details of the algorithm, we summarize commonly used symbols in Table 1.

6.1 Algorithm

Algorithm REQUEST_PMkNN, shows the steps for requesting a $PMkNN$ query. A user initiates an $MkNN$ query by generating an obfuscation rectangle R_w that includes her current location q.

```text
### Table 1: Symbols

| Symbol | Meaning |
|--------|---------|
| \( R_w \) | Obfuscation Rectangle |
| \( cl_r \) | Required confidence level |
| \( cl \) | Specified confidence level |
| \( k_r \) | Required number of NNs |
| \( k \) | Specified number of NNs |
| \( C(o, r) \) | Known region |
| \( GCR(\cdot, \cdot) \) | Guaranteed combined region |
| \( \delta \) | Safe distance |
| \( \delta_b \) | Boundary distance |

The parameters \( cl, cl_r, k, k_r, \) and \( \delta \) are set according to the user’s requirement. Then a request is sent with \( R_w \) to the LSP for \( k \) NNs with a confidence level \( cl \). The LSP returns the set of data objects \( P \) that includes the \( k \) NNs for every point of \( R_w \) with a confidence level at least \( cl \). Then according to Lemma 6.1, the user continues to have the \( k_r \) NNs with a confidence level at least \( cl_r \) as long as the user resides within \( GCR(cl_r, k_r) \). In this paper, we do not focus on developing algorithms to maintain the rank of \( k_r \) NNs from \( P \) for every position of the user’s trajectory, because this is orthogonal to our problem of protecting privacy of users’ trajectories for an \( MkNN \) query. For this purpose, any of the existing approaches (e.g., [29]) can be used.

For every location update, the algorithm checks two conditions: whether the user’s current position \( q \) is outside her current \( GCR(cl_r, k_r) \) or the minimum boundary distance from \( C(o, r) \), \( \delta_b \), has become less or equal to the user specified distance, \( \delta \). To check whether the user is outside her \( GCR(cl_r, k_r) \), the algorithm checks the constraint \( r \leq cl_r \times dist(p_{hk}, q) + dist(o, q) \), where \( r \) is the radius of current known region and \( cl_r \times dist(p_{hk}, q) + dist(o, q) \) represents the required radius of the known region to have \( k_r \) NNs with confidence level at least \( cl_r \) from the current position \( q \). For the second condition, \( \delta_b \) is computed by subtracting \( dist(o, q) \) from \( r \) (Line 1.13). If any of the two conditions in Line 1.14 becomes true, then the new obfuscation rectangle \( R_{w+1} \) is computed with the restriction that it must be included within the current \( C(o, r) \). After computing \( R_{w+1} \), the next request is sent and \( k \) NNs are retrieved for \( R_{w+1} \) with a confidence level at least \( cl \). The process continues as long as the service is required.

The function \( \text{GenerateRectangle} \) is used to compute an obfuscation rectangle for a user according to her privacy requirement. We assume that a user can compute her rectangle based on any existing obfuscation or \( l \)-diversity techniques [10, 38, 40] and therefore a detailed discussion for the function \( \text{GenerateRectangle} \) goes beyond the scope of this paper.

The following theorem shows the correctness of the algorithm \( \text{REQUEST\_PMkNN} \).

**Theorem 6.4** The algorithm \( \text{REQUEST\_PMkNN} \) protects a user’s trajectory privacy for \( MkNN \) queries.
Algorithm 1: REQUEST\_PM\_kNN

1.1 \(w \leftarrow 1\)
1.2 \(cl, cl_r \leftarrow\) user specified and required confidence level
1.3 \(k, k_r \leftarrow\) user specified and required number of NNs
1.4 \(\delta \leftarrow\) user specified safe distance
1.5 \(R_w \leftarrow\) GenerateRectangle\((q)\)
1.6 \(P \leftarrow\) RequestkNN\((R_w, cl, k)\)
1.7 \textbf{while} service required \textbf{do}
1.8 \(q \leftarrow\) NextLocationUpdate()
1.9 \(p_{hk} \leftarrow k_r^{th}\) NN from \(q\)
1.10 \(cl, cl_r \leftarrow\) user specified and required confidence level
1.11 \(k, k_r \leftarrow\) user specified and required number of NNs
1.12 \(\delta \leftarrow\) user specified safe distance
1.13 \(\delta_b \leftarrow r - dist(o, q)\)
1.14 \textbf{if} \((r \leq cl_r \times dist(p_{hk}, q) + dist(o, q))\) or \((\delta_b \leq \delta)\) \textbf{then}
1.15 \(R_{w+1} \leftarrow\) GenerateRectangle\((q, C(o, r))\)
1.16 \(P \leftarrow\) RequestkNN\((R_{w+1}, cl, k)\)
1.17 \(w \leftarrow w + 1\)

Proof.

The obfuscation rectangles \(R_{w+1}\) for a user requesting a PM\_kNN query always overlaps with \(GCR(cl_r, k_r)\) and sometimes also overlaps with \(GCR(cl, k)\) and \(R_w\). We will show that these overlaps do not reveal a more precise user location to the LSP, i.e., the user’s trajectory privacy is protected.

The LSP does not know about the boundary of \(GCR(cl_r, k_r)\), which means that the LSP cannot compute \(GCR(cl_r, k_r) \cap R_{w+1}\). Thus, the LSP cannot refine a user’s location at the time of requesting \(R_{w+1}\) or the user’s trajectory path from \(GCR(cl_r, k_r) \cap R_{w+1}\).

Since the LSP knows \(GCR(cl, k)\) and \(R_w\), it can compute the overlaps, \(GCR(cl, k) \cap R_{w+1}\) and \(R_w \cap R_{w+1}\), when it receives \(R_{w+1}\). However, the availability of \(GCR(cl_r, k_r)\) to the user and the option of having different values for \(\delta\) prevent the LSP to determine whether the user is located within \(GCR(cl, k) \cap R_{w+1}\) and \(R_w \cap R_{w+1}\) at the time of requesting \(R_{w+1}\) or whether the user’s trajectory passes through these overlaps.

In summary there is no additional information to render a more precise user position or user trajectory within the rectangle. Thus, every obfuscation rectangle computed using the algorithm REQUEST\_PM\_kNN satisfies the two required conditions (see Definition 2.3) for protecting a user’s trajectory privacy.
6.1.1 The maximum movement bound attack

As we have discussed in Section 2, if a user’s maximum velocity is known to the LSP then the maximum movement bounding attack can identify a user’s more precise position. To prevent the maximum movement bound attack, existing solutions \([6, 15, 26, 35]\) have proposed that \(R_{w+1}\) for the next request needs to be computed in a way so that \(R_{w+1}\) is completely included within the maximum movement bound of \(R_w\), denoted as \(M_w\). Our proposed algorithm to generate \(R_{w+1}\) can also consider this constraint of \(M_w\) whenever the LSP knows the user’s maximum velocity. Incorporating the constraint of \(M_w\) in our algorithm does not cause any new privacy violation for users.

Note that, Algorithm 1 to protect a user’s trajectory privacy for an \(M_k\)NN query with obfuscation rectangles can be also generalized for the case where a user uses other geometric shapes (e.g., a circle) to represent the imprecise locations if the known region for other geometric shapes is also a circle. For example, if a user uses obfuscation circles instead of obfuscation rectangles then the overlapping rectangle attack turns into overlapping circle attack. From Algorithm 1, we observe that our technique to protect overlapping rectangle attack is independent of any parameter of obfuscation rectangle; it only depends on the center and radius of the known region. Thus, as long as the representation of the known region is a circle, our technique can be also applied for an overlapping circle attack.

7 Server-side Processing

For a PM\(k\)NN query with a customizable confidence level, an LSP needs to provide the \(k\) NNs with the specified confidence level for all points of every requested obfuscation rectangle. Evaluating the \(k\) NNs with a specified confidence level for every point of an obfuscation rectangle separately is an expensive operation and doing it continuously for a PM\(k\)NN query incurs large overhead. In this section, we develop an efficient algorithm that finds the \(k\) NNs for every point of an obfuscation rectangle with a specified confidence level in a single search using an \(R\)-tree. Our proposed algorithm allows an LSP to provide the user with a known region, which helps protecting the user’s trajectory privacy and further to reduce the overall PM\(k\)NN query processing overhead.

We show different properties of a confidence level for an obfuscation rectangle, which we use to improve the efficiency of our algorithms. Let \(R_w\) be a user’s obfuscation rectangle with center \(o\) and corner points \(\{c_1, c_2, c_3, c_4\}\), and \(m_{ij}\) be the middle point of \(c_i c_j\), where \((i, j) \in \{(1, 2), (2, 3), (3, 4), (4, 1)\}\). To avoid the computation of the confidence level for a data object with respect to every point of \(R_w\), while searching for the query answers, we exploit the following properties of the confidence level. We show that if two endpoints, i.e., a corner point and its adjacent middle point or the center and a point in the border of \(R_w\), of a line have a confidence level at least \(cl\) for a data object then every point of the line has a confidence level at least \(cl\) for that data object. Formally, we have the following theorems.

**Theorem 7.1** Let \(c_i, c_j\) be any two adjacent corner points of an obfuscation rectangle \(R_w\) and \(m_{ij}\)
be the middle point of $c_i c_j$. For $t \in \{i, j\}$, if $c_t$ and $m_{ij}$ have a confidence level at least $cl$ for a data object $p_h$ then all points in $m_{ij}c_t$ have a confidence level at least $cl$ for $p_h$.

**Theorem 7.2** Let $o$ be the center of an obfuscation rectangle $R_w$, $c_i, c_j$ be any two adjacent corner points of $R_w$, and $c$ be a point in $c_i c_j$. If $o$ and $c$ have a confidence level at least $cl$ for a data object $p_h$ then all points in $oc$ have a confidence level at least $cl$ for $p_h$.

Next we discuss the proof of Theorem 7.1. We omit the proof of Theorem 7.2, since a similar proof technique used for Theorem 7.1 can be applied for Theorem 7.2 by considering $o$ as $m_{ij}$ and $c$ as $c_t$.

As mentioned in Section 5, our algorithm to evaluate $k$NN answers expands the known region $C(o, r)$ until the $k$ NNs with the specified confidence level for every point of $R_w$ are found. Since any point outside $C(o, r)$ has a confidence level 0 (see Definition 5.1), $C(o, r)$ needs to be at least expanded until $R$ is within $C(o, r)$ to ensure $k$NN answers with a specified confidence level greater than 0. Hence, we assume that $R \subset C(o, r)$ at the current state of the search. Let the extended lines $\overrightarrow{om_{ij}}$ and $\overrightarrow{oc_t}$ intersect the border of $C(o, r)$ at $m_{ij}'$ and $c_t'$, respectively, where $t \in \{i, j\}$. Figure 7(a) shows an example for $i = 1$, $j = 2$, and $t = j$. For a data object $p_h$ in $C(o, r)$, the confidence levels of $c_t$ and $m_{ij}$, $CL(c_t, p_h)$ and $CL(m_{ij}, p_h)$, can be expressed as $\frac{dist(c_t, c_t')}{dist(m_{ij}, p_h)}$ and $\frac{dist(m_{ij}, m_{ij}')}{dist(m_{ij}, p_h)}$, respectively.

Let $x$ be a point in $m_{ij}c_t$, and $\overrightarrow{ox}$ intersect the border of $C(o, r)$ at $x'$. For a data object $p_h$ in $C(o, r)$, the confidence level of $x$, $CL(x, p_h)$, is measured as $\frac{dist(x, x')}{dist(x, p_h)}$. As $x$ moves from $c_t$ towards $m_{ij}$, although $dist(x, x')$ always increases, $dist(x, p_h)$ can increase or decrease (does not maintain a single trend) since it depends on the position of $p_h$ within $C(o, r)$. Without loss of generality we consider an example in Figure 7 where $p_1$ is a data object within $C(o, r)$. Based on the position of $p_1$ with respect to $m_{12}$ and $c_2$, we have three cases: the perpendicular from $p_1$ intersects the

---

4 We use the symbol $\rightarrow$ for directional line segments.
the rate of decreasing rate remains constant with the increase of distance of decreasing rate of derivative in Figure 8. From the second order derivative, we observe in Figure 8(a) that the rate \( \theta \) in the range of second derivative as they are expressed with different variables and there is no fixed relation between \( l \) and \( u \).

Theorem 7.1, we already have \( CL \) and using Lemma 7.3 we find that \( CL \) for the current scenario we need to have the confidence level at least equal to \( cl \) for \( p_h \) at both end points, i.e., \( m_{ij} \) and \( u_t \). According to the given conditions of Theorem 7.1, we already have \( CL \) for \( m_{ij}, p_h \) and \( CL \) for \( c_t, p_h \) are not straightforward, because in the current scenario both \( dist(x, p_h) \) and \( dist(x, x') \) decrease with the increase of \( dist(m_{ij}, x) \). Thus, we need to compare the rate of decrease for \( dist(x, p_h) \) and \( dist(x, x') \) as \( x \) moves from \( m_{ij} \) to \( u_t \). Assume that \( \angle xm_{ij} = \theta_x \) and \( \angle px, xl_t = \alpha_x \). The range of \( \theta_x \) can vary from 0 to \( \theta \), where \( \theta_{m_{ij}} = 0 \), \( \theta_{u_t} = \theta \), and \( \theta \leq \frac{\pi}{4} \). For a fixed range of \( \theta_x \) the range of \( \alpha_x \), \([\alpha_{m_{ij}}, \alpha_{u_t}]\), can have any range from \([0, \frac{\pi}{2}]\) depending upon the position of \( p_h \). We express \( dist(x, x') \) and \( dist(x, p_h) \) as follows:

\[
dist(x, x') = r - \text{dist}(o, m_{ij}) \times \text{sec} \theta_x
\]

\[
dist(x, p_h) = \begin{cases} 
\text{dist}(p_h, l_t) \times \text{csc} \alpha_x & \text{if } \alpha_x \neq 0 \\
\text{dist}(m_{ij}, p_h) - \text{dist}(m_{ij}, x) & \text{otherwise}.
\end{cases}
\]

The rate of decrease for \( dist(x, x') \) and \( dist(x, p_h) \) are not comparable by computing their first order derivative as they are expressed with different variables and there is no fixed relation between the range of \( \theta_x \) and \( \alpha_x \). Therefore, we perform a curve sketching and consider the second order derivative in Figure 8. From the second order derivative, we observe in Figure 8(a) that the rate of decreasing rate of \( dist(x, x') \) increases with the increase of \( \theta_x \), whereas in Figure 8(b) the rate of decreasing rate of \( dist(x, p_h) \) decreases with the increase of \( \alpha_x \) for \( \alpha_x \neq 0 \) and in Figure 8(c) the rate of decreasing rate remains constant with the increase of \( dist(m_{ij}, x) \) for \( \alpha_x = 0 \). The
different trends of the decreasing rate and the constraint of confidence levels at two end points $m_{ij}$ and $u_i$ allow us to make a qualitative comparison between the rate of decrease for $\text{dist}(x, x')$ and $\text{dist}(x, p_h)$ with respect to the common metric $\text{dist}(m_{ij}, x)$, as $\text{dist}(m_{ij}, x)$ increases with the increase of both $\theta_x$ and $\alpha_x$ for a fixed $p_h$. We have the following lemma.

**Lemma 7.4** Let $\text{dist}(x, p_h)$ decrease as $x$ moves from $m_{ij}$ to $u_t$ for any point $x \in m_{ij}u_t$. If $CL(m_{ij}, p_h) \geq cl$ and $CL(u_t, p_h) \geq cl$, then $CL(x, p_h) \geq cl$.

**Proof.** (By contradiction) Assume to the contrary that there is a point $x \in m_{ij}u_t$ such that $CL(x, p_h) < cl$, i.e., $\frac{\text{dist}(x, x')}{\text{dist}(x, p_h)} < cl$. Then we have the following relations.

\[
\frac{\text{dist}(m_{ij}, m_{ij}') - \text{dist}(x, x')}{{\text{dist}(m_{ij}, x)}} > \frac{\text{dist}(m_{ij}, p_h) - \text{dist}(x, p_h)}{{\text{dist}(m_{ij}, x)}} \tag{1}
\]

\[
\frac{\text{dist}(x, x') - \text{dist}(u_t, u_t')}{{\text{dist}(x, u_t)}} < \frac{\text{dist}(x, p_h) - \text{dist}(u_t, p_h)}{{\text{dist}(x, u_t)}} \tag{2}
\]

Since we know that for $\text{dist}(x, x')$, the rate of decreasing rate increases with the increase of $\text{dist}(m_{ij}, x)$ and for $\text{dist}(x, p_h)$, the rate of decreasing rate decreases or remains constant with the increase of $\text{dist}(m_{ij}, x)$, we have the following relations.

\[
\frac{\text{dist}(m_{ij}, m_{ij}') - \text{dist}(x, x')}{{\text{dist}(m_{ij}, x)}} < \frac{\text{dist}(x, x') - \text{dist}(u_t, u_t')}{{\text{dist}(x, u_t)}} \tag{3}
\]

\[
\frac{\text{dist}(m_{ij}, p_h) - \text{dist}(x, p_h)}{{\text{dist}(m_{ij}, x)}} \geq \frac{\text{dist}(x, p_h) - \text{dist}(u_t, p_h)}{{\text{dist}(x, u_t)}} \tag{4}
\]

From Equations (1), (2), (3) and (4), we have,

\[
\frac{\text{dist}(m_{ij}, p_h) - \text{dist}(x, p_h)}{{\text{dist}(m_{ij}, x)}} < \frac{\text{dist}(x, p_h) - \text{dist}(u_t, p_h)}{{\text{dist}(x, u_t)}}
\]

which contradicts Equation (4), i.e., our assumption.

Finally, from Lemmas 7.3 and 7.4 we can conclude that if $CL(c_t, p_h) \geq cl$ and $CL(m_{ij}, p_h) \geq cl$, then $CL(x, p_h) \geq cl$ for any point $x \in m_{ij}c_t$, which proves Theorem 7.1.
7.1 Algorithms

We develop an efficient algorithm, CLAPPINQ (Confidence Level Aware Privacy Protection In Nearest Neighbor Queries), that finds the $k$ NNs for an obfuscation rectangle with a specified confidence level. Algorithm 2 gives the pseudo code for CLAPPINQ using an $R$-tree. The input to Algorithm 2 are an obfuscation rectangle $R_w$, a confidence level $cl$, and the number of NNs $k$ and the output is the candidate answer set $P$ that includes the $k$ NNs with a confidence level at least $cl$ for every point of $R_w$.

**Algorithm 2: CLAPPINQ($R, cl, k$)**

```plaintext
2.1 $P \leftarrow \emptyset$
2.2 $status \leftarrow 0$
2.3 Enqueue($Q_p, root, 0$)
2.4 while Q_p is not empty and $status \geq 0$
 2.5 $p \leftarrow Dequeue(Q_p)$
 2.6 $r \leftarrow MinDist(o, p)$
 2.7 if $status > 0$ and $status < r$ then
 2.8 $status \leftarrow -1$
 2.9 if p is a data object then
 2.10 $P \leftarrow P \cup p$
 2.11 if $status = 0$ then
 2.12 $status \leftarrow UpdateStatus(R, cl, k, P, r)$
 2.13 else
 2.14 for each child node p_c of p do
 2.15 $d_{min}(p_c) \leftarrow MinDist(o, p_c)$
 2.16 Enqueue($Q_p, p_c, d_{min}(p_c)$)
 2.17 return P;
```

As mentioned in Section 5, the basic idea of our algorithm is to start a best first search (BFS) considering the center $o$ of the given obfuscation rectangle $R_w$ as the query point and continue the search until the $k$ NNs with a confidence level of at least $cl$ are found for all points of $R_w$. The known region $C(o, r)$ is the search region covered by BFS and $P$ is the set of data objects located within $C(o, r)$. $Q_p$ is a priority queue used to maintain the ordered data objects and $R$-tree nodes based on the minimum distance between the query point $o$ and the data objects/MBRs of $R$-tree nodes (by using the function $MinDist$). Since the size of the candidate answer set is unknown, we use $status$ to control the execution of the BFS. Based on the values of $status$, the BFS can have three states: (i) when $status = 0$, each time the BFS discovers the next nearest data object, it checks whether $status$ needs to be updated, (ii) when $status > 0$, the BFS executes until the radius of the known region becomes greater than the value of $status$, and (iii) when $status = -1$, the BFS terminates. Initially, $status$ is set to 0. Each time a data object/$R$-tree node $p$ is dequeued
from $Q_p$ the current radius $r$ is updated. When $p$ represents a data object, then $p$ is added to the current candidate set $P$ and the procedure $Update\_Status$ is called if $status$ equals 0.

The pseudo code for $Update\_Status$ is shown in Algorithm 3. The notations used for this algorithm are summarized below.

1. $count(c_t, cl, P)$: the number of data objects in $P$ for which a corner point $c_t$ of $R_w$ has a confidence level at least $cl$.

2. $d^k_i (d^k_j)$: the $k^{th}$ minimum distance from a middle point $m_{ij}$ of $R_w$ to the data objects in $P_i$ ($P_j$), where $P_i \ (P_j) \subset P$ and $P_i \ (P_j)$ is the set of data objects with respect to $c_i \ (c_j)$ with a confidence level of at least $cl$.

3. $d_{max}$: the maximum of all $d_{max}(m_{ij})$, where each $d_{max}(m_{ij})$ is the maximum of $d^k_i$ and $d^k_j$ (see Figure 9(a)).

4. $d_{safe}$: the minimum distance of all $d_{safe}(m_{ij})$, where $d_{safe}(m_{ij})$ represents the radius of the maximum circular region within $C(o, r)$ centered at $m_{ij}$ (see Figure 9(b)).

![Figure 9: (a) $d_{max} = d_{max}(m_{23})$ and (b) $d_{safe} = d_{safe}(m_{23})$](image)

$Update\_Status$ first updates $count(c_t, cl, P)$ using the function $Update\_Count$. For each $p \in P$, $Update\_Count$ increments $count(c_t, cl, P)$ by one if $CL(c_t, p) \geq cl$. Note that corner points of $R_w$ can have more than $k$ data objects with confidence level at least $cl$ because the increase of $r$ for a corner point of $R_w$ can make other corner points to have more than $k$ data objects with a confidence level at least $cl$. In the next step if $count(c_t, cl, P)$ is less than $k$ for any corner point $c_t$ of $R_w$, $Update\_Status$ returns the control to Algorithm 2 without changing $status$. Otherwise, it computes the radius of the required known region for ensuring the $k$ NNs with respect to $R_w$ and $cl$ (Lines 3.5-3.16). For each $m_{ij}$, $Update\_Status$ first computes $d^k_i$ and $d^k_j$ with the function $K_{min}$ and takes the maximum of $d^k_i$ and $d^k_j$ as $d_{max}(m_{ij})$. Then $Update\_Status$ finds $d_{max}$ (Lines 3.10-3.11) and $d_{safe}$ (Line 3.12). Finally, $Update\_Status$ checks if the size of the current $C(o, r)$ is already equal or greater than the required size. If this is the case then the algorithm returns $status$ as -1, otherwise the value of the radius of the required known region. After the call of $Update\_Status$, CLAPPINQ continues the BFS if $status \geq 0$ and terminates if $status = -1$. For $status$ greater
than 0, each time a next nearest data object/MBR is found, CLAPPINQ updates status to −1 if r becomes greater than status (Lines 2.7-2.8).

Algorithm 3: UpdateStatus(R, cl, k, P, r)

3.1 UpdateCount(R, cl, k, P, r, count)
3.2 if count(c_t, cl, P) ≠ k, for any corner point c_t ∈ R then
3.3 | return 0
3.4 else
3.5 | d_max ← 0
3.6 | for each middle point m_{ij} do
3.7 | d_k^i ← K_{min}(m_{ij}, c_i, cl, k, P)
3.8 | d_k^j ← K_{min}(m_{ij}, c_j, cl, k, P)
3.9 | d_{max}(m_{ij}) ← max\{d_k^i, d_k^j\}
3.10 | if d_{max}(m_{ij}) > d_max then
3.11 | d_max ← d_{max}(m_{ij})
3.12 | d_safe ← r − \frac{1}{2} × max\{|c_1c_2|, |c_2c_3|\}
3.13 | if cl × d_max > d_safe then
3.14 | return (r + cl × d_max − d_safe)
3.15 | else
3.16 | return −1

In summary, CLAPPINQ works in three steps. In step 1, it runs the BFS from o until it finds the k NNs with a confidence level of at least cl for all corner points of R_w. In step 2, from the current set of data objects it computes the radius of the required known region to confirm that the answer set includes the k NNs with a confidence level of at least cl with respect to all points of R_w. Finally, in step 3, it continues to run the BFS until the radius of the current known region is equal to the required size.

Figure 10 shows an example of the execution of CLAPPINQ for k = 1 and cl = 1. Data objects are labeled in order of the increasing distance from o. CLAPPINQ starts its search from o and continues until the NNs with respect to four corner points are found as shown in Figure 10(a). The circles with ash border show the continuous expanding of the known region and the circle with black border represents the current known region. The data objects p_4, p_7, p_5, and p_3 are the NNs with cl = 1 from c_1, c_2, c_3, and c_4, respectively because the four circles with a dashed border are completely within the known region. In the next step, the algorithm finds the maximum of d_k^i and d_k^j for each m_{ij}. The distances d_2^1 (=dist(m_{12}, p_7)), d_2^2 (=dist(m_{12}, p_7)) (or d_3^1 (=dist(m_{23}, p_5))), d_3^1 (=dist(m_{34}, p_3)), d_4^1 (=dist(m_{34}, p_3)) are the maximum with respect to m_{12}, m_{23}, m_{34}, and m_{41}, respectively. Finally, CLAPPINQ expands the search so that the four circles with dashed border centered at m_{12}, m_{23}, m_{34}, and m_{41} and having radius d_2^1, d_2^1 (or d_3^1), d_3^1, and d_4^1, respectively, are included in the known region (see Figure 10(b)). Therefore, the search stops when p_9 is discovered and P includes p_1 to p_9.
The following theorem shows the correctness for CLAPPINQ.

**Theorem 7.5** CLAPPINQ returns $P$, a candidate set of data objects that includes the $k$ NNs with a confidence level at least $cl$ for every point of the obfuscation rectangle $R_w$.

**Proof.** CLAPPINQ expands the known region $C(o, r)$ from the center $o$ of the obfuscation rectangle $R_w$ until it finds the $k$ NNs with a confidence level at least $cl$ for all corner points of $R_w$. Then it extends $C(o, r)$ to ensure that the confidence level of each middle point $m_{ij}$ is at least $cl$ for both sets of $k$ nearest data objects for which $c_i$ and $c_j$ have a confidence level at least $cl$. According to Theorem 7.1 this ensures that any point in $m_{ij}c_i$ or $m_{ij}c_j$ has a confidence level at least $cl$ for $k$ data objects. Again from Lemma 6.1 we know that if a point has $k$ data objects with a confidence level at least $cl$ then it also has a confidence level at least $cl$ for its $k$ NNs. Thus, $P$ contains the $k$ NNs with a confidence level at least $cl$ for all points of the border of $R_w$.

To complete the proof, next we need to show that $P$ also contains the $k$ nearest data objects with a confidence level at least $cl$ for all points inside $R_w$. The confidence level of the center $o$ of $R_w$ for a data object $p_h$ within the known region $C(o, r)$ is always 1 because $C(o, r)$ is expanded from $o$ and we have $dist(o, p_h) \leq r$. Since we have already shown that $P$ includes the $k$ NNs with a confidence level at least $cl$ for all points of the border of $R_w$, according to Theorem 7.1 and Lemma 6.1 $P$ also includes the $k$ NNs with a confidence level at least $cl$ for all points inside $R_w$.

We have proposed the fundamental algorithm and there are many possible optimizations of it. For example, one optimization could merge overlapping obfuscation rectangles requested by different users at the same time, which will also avoid redundant computation. Another optimization could exploit that $R_w$ and $R_{w+1}$ may have many overlapping NNs. However, the focus of this paper is protecting trajectory privacy of users while answering $Mk$NN queries, and exploring all possible optimizations of the algorithm is beyond the scope of this paper.
8 Experiments

In this section, we present an extensive experimental evaluation of our proposed approach. In our experiments, we use both synthetic and real data sets. Our two synthetic data sets are generated from uniform (U) and Zipfian (Z) distribution, respectively. The synthetic data sets contain locations of 20,000 data objects and the real data set contains 62,556 postal addresses from California. These data objects are indexed using an $R^*$-tree [3] on a server (the LSP). We run all of our experiments on a desktop with a Pentium 2.40 GHz CPU and 2 GByte RAM.

In Section 8.1, we evaluate the efficiency of our proposed algorithm, CLAPPINQ, to find $k$ NNs with a specified confidence level for an obfuscation rectangle. We measure the query evaluation time, I/Os, and the candidate answer set size as the performance metric. In Section 8.2, we evaluate the effectiveness of our technique for preserving trajectory privacy for $Mk$NN queries.

Parameter	Range	Default
Obfuscation rectangle area	0.001% to 0.01%	0.005%
Obfuscation rectangle ratio	1, 2, 4, 8	1
Specified confidence level $cl$	0.5 to 1	1
Specified number of NNs $k$	1 to 20	1
Synthetic data set size	5K, 10K, 15K, 20K	20K

Table 2: Experimental Setup

8.1 $k$NN queries with respect to an obfuscation rectangle

There is no existing algorithm to process a PM$k$NN query. An essential component of our approach for a PM$k$NN query is an algorithm to evaluate a $k$NN query with respect to an obfuscation rectangle. In this set of experiments we compare our proposed $k$NN algorithm, CLAPPINQ, with Casper [31], because Casper is the only existing related algorithm that can be adapted to process a PM$k$NN query; further, even if we adapt it can only support $k = 1$. To be more specific, our privacy aware approach for $Mk$NN queries needs an algorithm that returns the known region in addition to the set of $k$ NNs with respect to an obfuscation rectangle. Among all existing $k$NN algorithms [9, 8, 25, 27, 31, 35] only Casper supports the known region and if Casper were as efficient as CLAPPINQ, then we could extend Casper for PM$k$NN queries for the restricted case $k = 1$.

We set the data space as $10,000 \times 10,000$ square units. For each set of experiments in this section, we generate 1000 random obfuscation rectangles of a specified area, which are uniformly distributed in the total data space. We evaluate a $k$NN query with respect to 1000 obfuscation rectangles and measure the average performance with respect to a single obfuscation rectangle for Casper and CLAPPINQ in terms of the query evaluation time, the number of page accesses, i.e., I/Os, and the candidate answer set size. The page size is set to 1 KB which corresponds to a node capacity of 50 entries.
Note that, in our experiments, the communication amount (i.e., the answer set size) represents the communication cost independent of communication link (e.g., wireless LANs, cellular link) used. The communication delay can be approximated from the known latency of the communication link. In our technique, sometimes the answer set size may become large to satisfy the user’s privacy requirement. Though the large answer set size may result in a communication delay, nowadays this should not be a problem. The latency of wireless links has been significantly reduced, for example HSPA+ offers a latency as low as 10ms. Furthermore, our analysis represents the communication delay scenario in the worst case. In practice, the latency of first packet is higher than the subsequent packets and thus, the communication delay does not increase linearly with the increase of the answer set size. In different sets of experiments, we vary the following parameters:

- The area of the obfuscation rectangle
- The ratio of the length and width of the obfuscation rectangle
- The specified confidence level
- The specified number of NNs
- The synthetic data set size

Table 2 shows the range and default value for each of these parameters. We set 0.005% of the total data

Figure 11: The effect of obfuscation rectangle area and ratio

the area of the obfuscation rectangle, the ratio of the length and width of the obfuscation rectangle, the specified confidence level, the specified number of NNs and the synthetic data set size. Table 2 shows the range and default value for each of these parameters. We set 0.005% of the total data
space as the default area for the obfuscation rectangle, since it reflects a small suburb in California (about 20 km² with respect to the total area of California) and is sufficient to protect privacy of a user’s location. The thinner an obfuscation rectangle, the higher the probability to identify a user’s trajectory [12]. Hence, we set 1 as a default value for the ratio of the obfuscation rectangle to ensure the privacy of the user. The original approach of Casper does not have the concept of confidence level and only addresses 1NN queries. To compare our approach with Casper, we set the default value in CLAPPINQ for $k$ and the confidence level as 1.

In Sections 8.1.1 and 8.1.2, we evaluate and compare CLAPPINQ with Casper. In Section 8.1.3, we study the impact of $k$ and the confidence level only for CLAPPINQ as Casper cannot be directly applied for $k > 1$ and has no concept of a confidence level.

### 8.1.1 The effect of obfuscation rectangle area

In this set of experiments, we vary the area of obfuscation rectangle from 0.001% to 0.01% of the total data space. A larger obfuscation rectangle represents a more imprecise location of the user and thus ensures a higher level of privacy. We also vary the obfuscation rectangle ratio as 1, 2, 4, and 8. A smaller ratio of the width and length of the obfuscation rectangle provides the user with a higher level of privacy.

Figures 11(a) and 11(b) show that CLAPPINQ is on an average 3 times faster than Casper for all data sets. The I/Os are also at least 3 times less than Casper (Figures 11(c) and 11(d)). The difference between the answer set size for CLAPPINQ and Casper is not prominent. However, in most of the cases CLAPPINQ results in a smaller answer set compared with that of Casper (Figures 11(e) and 11(f)). We also observe that the performance is better when the obfuscation rectangle is a square and it continues to degrade for a larger ratio in both CLAPPINQ and Casper (Figures 11(b), 11(d), and 11(f)).

![Figure 11: The effect of obfuscation rectangle area](image)

Figure 12: The effect of data set size
8.1.2 The effect of the data set size

We vary the size of the synthetic data set as 5K, 10K, 15K and 20K, and observe that CLAPPINQ is significantly faster than that of Casper for any size of data set. Figure 12 shows the results for the query evaluation time, I/Os and the answer set size. We find that CLAPPINQ is at least 3 times faster and the I/Os of CLAPPINQ is at least 4 times less than that of Casper. The time, the I/Os and the answer set size slowly increases with the increase of data set size.

![Figure 13: The effect of the parameter k and confidence level](image)

8.1.3 The effect of k and the confidence level

In this set of experiments, we observe that the query evaluation time, I/Os, and the answer set size for CLAPPINQ increase with the increase of k for all data sets. However, these increasing rates decrease as k increases (Figure 13 for the California data set). We also vary the confidence level cl and expect that a lower cl incurs less query processing and communication overhead. Figure 13 also shows that the average performance improves as cl decreases and the improvement is more pronounced for higher values of cl. For example, the answer set size reduces by an average factor of 2.35 and 1.37 when cl decreases from 1.00 to 0.75 and from 0.75 to 0.50, respectively.

8.1.4 CLAPPINQ vs. Casper for PMkNN queries

The paper that proposed Casper [31] did not address trajectory privacy for MkNN queries. Even if we extend it for PMkNN queries using our technique, Casper would only work for k = 1. More importantly, since we have found that CLAPPINQ is at least 2 times faster and requires at least 3 times less I/Os than Casper for finding the NNs for an obfuscation rectangle, and an MkNN query requires the evaluation of a large number of consecutive obfuscation rectangles, CLAPPINQ would outperform Casper by a greater margin for PMkNN queries. Therefore, we do not perform such experiments and conclude that CLAPPINQ is efficient than Casper for PMkNN queries.
8.2 Effectiveness of our technique for trajectory privacy protection

We first define a measure for trajectory privacy in Section 8.2.1. Then based on our measure, we evaluate the effectiveness of our technique. In Section 8.2.2, we compare three possible options of our algorithm \texttt{REQUEST\_PMkNN} for different obfuscation rectangle areas: (i) hiding the required confidence level, (ii) hiding the required number of nearest data objects, and (iii) hiding both of them. We report the experimental results for different required and specified confidence levels in Section 8.2.3 and for different required and specified number of nearest data objects in Section 8.2.4. We also present the experimental results by varying the value of $\delta$ in Section 8.2.5.

To simulate moving users, we first randomly generate starting points of 20 trajectories which are uniformly distributed in the data space and then generate the complete trajectory for each of these starting points. Each trajectory has the length of 5000 units and consists of a series of random points, where the consecutive points are connected with a straight line of a random length between 1 to 10 units. Note that the data space is set as $10,000 \times 10,000$ square units. We generate the obfuscation rectangle with a specified area when a moving user needs to send a request. Though it is not always possible to have the ratio of the obfuscation rectangle’s length and width as 1, our algorithm keeps the ratio as close as possible to 1: the obfuscation rectangle needs to be inside the current known region; sometimes the user’s location is close to the boundary of the known region and to include the user’s obfuscation rectangle inside the known region (circle), a ratio of 1 might not be possible. Therefore we adjust the ratio of the length and width of the obfuscation rectangle to accommodate it within the known region.). Since the obfuscation rectangle generation procedure is random, for each trajectory we repeat every experiment 25 times, and present the average performance results. According to Algorithm 1, a user can modify $cl$, $cl_{r}$, $k$, $k_{r}$ and $\delta$ with her requirement in the consecutive request of obfuscation rectangles for an M$k$NN query. However, in our experiments, for the sake of simplicity, we use fixed values for these parameters in the consecutive requests of obfuscation rectangles for an M$k$NN query. The default value for the user’s safe distance $\delta$ is set to 10.

We consider the overlapping rectangle attack and the combined attack (i.e., the overlapping rectangle attack and the maximum movement bound attack) in our experiments. The combined attack arises when the user’s maximum velocity is known to the LSP. To derive the maximum movement bound in case of combined attack, we set the user’s maximum velocity as 60 km/hour. For simplicity, we assume that the user also moves at constant velocity of 60 km/hour.

The query evaluation time, I/Os, and the answer set size for a PM$k$NN query is measured by adding the required query evaluation time, I/Os, and answer set size for every requested obfuscation rectangle per trajectory of length 5000 units in the data space of $10,000 \times 10,000$ square units.

8.2.1 Measuring the level of trajectory privacy

In our experiments, we measure the level of trajectory privacy by two parameters: (i) the trajectory area, i.e., the approximated location of the user’s trajectory by the LSP, and (ii) the frequency, i.e., the number of requested obfuscation rectangles per a user’s trajectory for a fixed obfuscation rectangle area.
The trajectory area is computed from the available knowledge of the LSP. The LSP knows the set of obfuscated rectangles provided by a user and the known region for each obfuscated rectangle. The LSP does not know the user’s required confidence level $cl_r$ and the required number of data objects $k_r$ and thus, cannot compute $GCR(cl_r, k_r)$. Although the LSP can compute $GCR(cl, k)$ from the user’s specified confidence level $cl$ and the specified number of data object $k$, $GCR(cl, k)$ does not guarantee that the user’s location resides in $GCR(cl, k)$ for the current obfuscation rectangle. We know that the user needs to reside within $GCR(cl_r, k_r)$ of the current obfuscation rectangle to ensure the required confidence level for the required number of data objects. However, the LSP knows the known region $C(o, r)$ and that $GCR(cl_r, k_r)$ must be inside the known region of the current obfuscation rectangle because the confidence level of the user for any data object outside the known region is 0. Thus, the trajectory area for a user’s trajectory is defined as the union of the known regions with respect to the set of obfuscation rectangles provided by the user for that trajectory. When the LSP knows the maximum velocity, then the LSP can use the maximum movement bound in addition to the known region to determine the trajectory area. Formally, we define trajectory area as follows:

**Definition 8.1 (Trajectory Area)** Let $\{R_1, R_2, ..., R_n\}$ be a set of $n$ consecutive rectangles requested by a user to an LSP in an MkNN query, $C_i(o, r)$ be the known region corresponding to $R_i$, and $M_i$ be the maximum movement bound corresponding to $R_i$. The trajectory area is computed as $\bigcup_{1 \leq i \leq n-1} (C_i(o, r) \cap M_i) \cup C_n(o, r)$. If the maximum bound is unknown to the LSP then the trajectory area is expressed as $\bigcup_{1 \leq i \leq n} C_i(o, r)$.

Figure 14: The bold line shows the trajectory area if the maximum velocity is (a) unknown to the LSP, (b) known to the LSP

Figure 14(a) and 14(b) show trajectory areas when the user’s maximum velocity is either unknown or known to the LSP, respectively. The larger the trajectory area, the higher the privacy for the user. This is because the probability is high for a large trajectory area to contain different sensitive locations and the probability is low that an LSP can link the user’s trajectory with a specific location. On the other hand, for a fixed obfuscation rectangle area, a lower frequency for a
trajectory represents high level of trajectory privacy since a smaller number of spatial constraints are available for an LSP to predict the user’s trajectory.

In our experiments, we compute the trajectory area through Monte Carlo Simulation. We randomly generate 1 million points in the total space. For the overlapping rectangle attack, we determine the trajectory area as the percentage of points that fall inside $\cup_{1 \leq i \leq n} C_i(o, r)$. On the other hand, for the combined attack (i.e., the maximum velocity is known to the LSP), we determine the trajectory area as the percentage of points that fall inside $\cup_{1 \leq i \leq n} (C_i(o, r) \cap M_i) \cup C_n(o, r)$.

Thus, the trajectory area is measured as percentage of the total data space. On the other hand, the frequency is measured as the number of requested obfuscation rectangles per trajectory of length 5000 units in the data space of $10,000 \times 10,000$ square units.

In our experiments, we compute the trajectory area through Monte Carlo Simulation. We randomly generate 1 million points in the total space. For the overlapping rectangle attack, we determine the trajectory area as the percentage of points that fall inside $\cup_{1 \leq i \leq n} C_i(o, r)$. On the other hand, for the combined attack (i.e., the maximum velocity is known to the LSP), we determine the trajectory area as the percentage of points that fall inside $\cup_{1 \leq i \leq n} (C_i(o, r) \cap M_i) \cup C_n(o, r)$.

In this set of experiments, we evaluate the effect of obfuscation rectangle area on the three privacy protection options for our algorithm REQUEST_PM$k$NN. In the first option, the user sacrifices the accuracy of answers to achieve trajectory privacy. Using this option, the user’s required confidence level is lower than 1 and the user specifies higher confidence level to the LSP than her required one. In the second option, the user hides the required confidence level 0.75 from the LSP, instead specifies 1 for the confidence level. In the second option, the user does not sacrifice the accuracy of the answers for her trajectory privacy; instead the user specifies a higher number of data objects to the LSP than her required one. For the second option, we set the parameters of REQUEST_PM$k$NN($cl, cl_r, k, k_r$) as REQUEST_PM$k$NN(1,0.75,10,10), where the user hides the required confidence level 0.75 from the LSP, instead specifies 1 for the confidence level. In the third option, the user hides both of the required confidence level and the required number of data objects. Thus, the third option is represented as REQUEST_PM$k$NN(1,0.75,20,10).

We vary the obfuscation rectangle area from 0.001% to 0.01% of the total data space. For all the three options, we observe in Figures 15(a) and 15(b) that the frequency decreases with the increase of the obfuscation rectangle area for both overlapping rectangle attack and combined attack.
respectively. On the other hand, Figures 15(c) and 15(d) show that the trajectory area increases with the increase of the obfuscation rectangle area for overlapping rectangle attack and combined attack, respectively. Thus, the larger the obfuscation rectangle area, the higher the trajectory privacy in terms of both frequency and trajectory area. This is because the larger the obfuscation rectangle the higher the probability that the obfuscation rectangle covers a longer part of a user’s trajectory.

Figure 16: The effect of the obfuscation rectangle area on the query processing performance for the California data set

Figures 15(a) and 15(b) also show that the frequency for hiding both confidence level and the number of NNs is smaller than those for hiding them independently for any obfuscation rectangle area, since each of them contributes to extend the $GCR(cl_r, k_r)$. In addition, we observe that the rate of decrease of frequency with the increase of the obfuscation rectangle area is more significant for the option of hiding the confidence level than the option of hiding the number of NNs.

We observe from Figures 15(a) and 15(b) that the frequency in the combined attack is higher than that of the overlapping rectangle attack. The underlying cause is as follows. In our algorithm to protect the overlapping rectangle attack the obfuscation rectangle needs to be generated inside the current known region. On the other hand, in case of the combined attack the obfuscation rectangle
needs to be inside the intersection of maximum movement bound and the known region. Due to the stricter constraints while generating the obfuscation rectangle to overcome the combined attack, the frequency becomes higher for the combined attack than that of the overlapping rectangle attack. For the same reason, the trajectory area is smaller for the combined attack than that of the overlapping rectangle attack as shown in Figures 15(c) and 15(d).

In Figures 16(a)-(d), we observe that both I/Os and time follow the similar trend of frequency, as expected. On the other hand, the answer set size shows an increasing trend with the increase of the obfuscation rectangle area in Figure 16(e)-(f). We also run all of these experiments for other data sets and the results show similar trends to those of California data set except that of the answer set size. The different trends of the answer set size may result from different density and distributions of data objects.

8.2.3 The effect of $cl_r$ and $cl$

In these experiments, we observe the effect of the required and specified confidence level on the level of trajectory privacy. We vary the value of the required confidence level and the specified confidence level from 0.5 to 0.9 and 0.6 to 1, respectively.

Figure 17: The effect of hiding the required confidence level on the level of trajectory privacy

![Graphs showing the effect of hiding the required confidence level on the level of trajectory privacy for overlapping and combined attacks.]

Figure 18: The effect of hiding the specified confidence level on the level of trajectory privacy

![Graphs showing the effect of hiding the specified confidence level on the level of trajectory privacy for overlapping and combined attacks.]

36
Figures 17(a)-(b) show that the frequency increases with the increase of the required confidence level \( cl_r \) for a fixed specified confidence level \( cl = 1 \). We observe that the larger the difference between required and specified confidence level, the higher the level of trajectory privacy in terms of the frequency because the larger difference causes the larger extension of \( GCR(cl_r, k_r) \). On the other hand, Figures 17(c)-(d) show that the trajectory area almost remain constant for different \( cl_r \) as \( cl \) remains fixed.

Figure 18(a)-(b)) shows that the frequency decreases with the increase of the specified confidence level \( cl \) for a fixed required confidence level \( cl_r = 0.5 \). With the increase of \( cl \), for a fixed \( cl_r \), the extension of \( GCR(cl_r, k_r) \) becomes larger and the level of trajectory privacy in terms of frequency increases. On the other hand, Figures 18(c)-(d) show that the trajectory area increases with the increase of \( cl \), as expected.

We observe from Figures 17 and 18 that the frequency is higher and the trajectory area is smaller in case of the combined attack than those for the case of the overlapping rectangle attack, which is expected due to stricter constraints in the generation of obfuscation rectangle in the combined attack than that of the overlapping rectangle attack.

We also see that a user can achieve a high level of trajectory privacy in terms of frequency by reducing the value of \( cl_r \) slightly. For example, in case of the overlapping rectangle attack, the average rate of decrease of frequency are 19% and 10% for reducing the \( cl_r \) from 0.9 to 0.8 and from 0.6 to 0.5, respectively, for a fixed \( cl = 1 \). In case of the combined attack, the average rate of decrease of frequency are 23% and 11% for reducing the \( cl_r \) from 0.9 to 0.8 and from 0.6 to 0.5, respectively, for a fixed \( cl = 1 \). Since the trajectory area almost remains constant for different \( cl_r \), and we can conclude that a user can achieve a high level of trajectory privacy by sacrificing the accuracy of query answers slightly. On the other hand, from Figures 18, we can see that the level of trajectory privacy in terms of both frequency and trajectory area achieves maximum when the specified confidence level is set to 1.

Note that the query processing overhead for a \( PMkNN \) query can be approximated by multiplying the frequency for that query with the query processing overhead of single obfuscation rectangle (Section 8.1).
8.2.4 The effect of \( k_r \) and \( k \)

In these experiments, we observe the effect of the required and the specified number of nearest data objects on the level of trajectory privacy. We vary the value of the required and the specified number of nearest data objects from 1 to 20 and 5 to 25, respectively.

Figures 19(a)-(b) show that the frequency increases with the increase of the required number of nearest data objects \( k_r \) for a fixed specified number of nearest data objects \( k = 25 \). Similar to the case of confidence level, we find that the larger the difference between required and specified number of nearest data objects, the higher the level of trajectory privacy in terms of frequency. On the other hand, Figures 19(c)-(d) show that the trajectory area almost remains constant for different \( k_r \).

Figures 20 show that the frequency decreases and the trajectory area increases with the increase of \( k \) for a fixed \( k_r = 1 \), which is expected as seen in case of confidence level.

Similar to confidence level, we also observe from Figures 19 and 20 that the frequency is higher and the trajectory area is smaller in case of the combined attack than those for the case of the overlapping rectangle attack.

In Figures 20, we also see that the rate of increase of the level of trajectory privacy in terms of both frequency and trajectory area decreases with the increase of \( k \). For example, the highest gain in the level of trajectory privacy for both frequency and trajectory area is achieved when the value of \( k \) is increased from 5 to 10. Thus, we conclude that the value of \( k \) can be set to 10 to achieve a good level of trajectory privacy for a fixed \( k_r = 1 \).

8.2.5 The effect of \( \delta \)

We vary \( \delta \) from 0 to 20 and find the effect of \( \delta \) on the level of trajectory privacy in terms of frequency and trajectory area. Figures 21(a)-(b) show that the frequency increases with the increase of \( \delta \) for both the overlapping rectangle attack and the combined attack. On the other hand, Figures 21(c)-(d) show that the trajectory area almost remains constant for different \( \delta \).
9 Conclusions

We have developed the first approach to protect a user’s trajectory privacy for M\(k\)NN queries. We have identified the overlapping rectangle attack in an M\(k\)NN query and proposed a technique to issue an M\(k\)NN query request (i.e., request \(k\) NNs for consecutive obfuscation rectangles) that overcomes this attack. Our technique provides a user with three options: if a user does not want to sacrifice the accuracy of answers then the user can protect her privacy by specifying (i) a higher number of NNs than required; otherwise, the user can specify (ii) a higher confidence level than required or (iii) higher values for both confidence level and the number of NNs. We have validated our trajectory privacy protection technique with experiments and have found that the larger the difference between the specified confidence level (or the specified number of NNs) and the required confidence level (or the required number of NNs), the higher the level of trajectory privacy for M\(k\)NN queries. An additional advantage of using a lower confidence level is reduced query processing cost. We have also proposed an efficient algorithm, CLAPPINQ, that evaluates the \(k\) NNs for an obfuscation rectangle with a specified confidence level, which is an essential component for processing PM\(k\)NN queries. Experimental results have shown that CLAPPINQ is at least two times faster than Casper and requires at least three times less I/Os.

In the future, we aim to extend our approach for the privacy of data objects. For example, in a friend finder application, where users wish to track their \(k\)-nearest friends continuously, privacy is required for both the user issuing the query and the data objects (i.e., friends). We also plan to integrate the constraints of a road network while protecting trajectory privacy for M\(k\)NN queries.

References

[1] Privacy concerns a major roadblock for location-based services says survey. http://www.govtech.com/gt/articles/104064, February 2007.

[2] Abul, O., Bonchi, F., and Nanni, M. Never walk alone: Uncertainty for anonymity in moving objects databases. In ICDE (2008), pp. 376–385.
[3] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. The R*-tree: an efficient and robust access method for points and rectangles. *SIGMOD Rec.* 19, 2 (1990), 322–331.

[4] Beresford, A., and Stajano, F. Location privacy in pervasive computing. *IEEE Pervasive Computing* 2, 1 (2003), 46–55.

[5] Bettini, C., Wang, X., and Jajodia, S. Protecting privacy against location-based personal identification. In *SDM* (2005), pp. 185–199.

[6] Cheng, R., Zhang, Y., Bertino, E., and Prabhakar, S. Preserving user location privacy in mobile data management infrastructures. In *PET* (2006), pp. 393–412.

[7] Chow, C.-Y., and Mokbel, M. F. Enabling private continuous queries for revealed user locations. In *SSTD* (2007), pp. 258–275.

[8] Chow, C.-Y., Mokbel, M. F., and Aref, W. G. Casper*: Query processing for location services without compromising privacy. *TODS* (2009). to appear.

[9] Chow, C.-Y., Mokbel, M. F., Naps, J., and Nath, S. Approximate evaluation of range nearest neighbor queries with quality guarantee. In *SSTD* (2009), pp. 283–301.

[10] Damiani, M. L., Bertino, E., and Silvestri, C. Protecting location privacy against spatial inferences: the probe approach. In *SPRINGL* (2009).

[11] Duckham, M., and Kulik, L. A formal model of obfuscation and negotiation for location privacy. In *Pervasive* (2005), pp. 152–170.

[12] Duckham, M., and Kulik, L. Simulation of obfuscation and negotiation for location privacy. In *COSIT* (2005), pp. 31–48.

[13] Gediik, B., and Liu, L. Location privacy in mobile systems: A personalized anonymization model. In *ICDCS*. 2005, pp. 620–629.

[14] Gediik, B., and Liu, L. Protecting location privacy with personalized k-anonymity: Architecture and algorithms. *IEEE TMC* 7, 1 (2008), 1–18.

[15] Ghinita, G., Damiani, M. L., Silvestri, C., and Bertino, E. Preventing velocity-based linkage attacks in location-aware applications. In *GIS* (2009), pp. 246–255.

[16] Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., and Tan, K.-L. Private queries in location based services: anonymizers are not necessary. In *SIGMOD* (2008), pp. 121–132.

[17] Gkoulalas-Divanis, A., Verykios, V. S., and Mokbel, M. F. Identifying unsafe routes for network-based trajectory privacy. In *SDM* (2009), pp. 942–953.
[18] GRUTESER, M., AND GRUNWALD, D. Anonymous usage of location-based services through spatial and temporal cloaking. In MobiSys (2003), pp. 31–42.

[19] GUTTMAN, A. R-trees: a dynamic index structure for spatial searching. In SIGMOD (1984), pp. 47–57.

[20] HASHEM, T., AND KULIK, L. Safeguarding location privacy in wireless ad-hoc networks. In Ubicomp (2007), pp. 372–390.

[21] HASHEM, T., AND KULIK, L. "don’t trust anyone": Privacy protection for location-based services. Pervasive Mob. Comput. 7 (2011), 44–59.

[22] HASHEM, T., KULIK, L., AND ZHANG, R. Privacy preserving group nearest neighbor queries. In EDBT (2010), pp. 489–500.

[23] HJALTASON, G. R., AND SAMET, H. Ranking in spatial databases. In SSD (1995), pp. 83–95.

[24] HOH, B., GRUTESER, M., XIONG, H., AND AL-RABADY, A. Preserving privacy in GPS traces via uncertainty-aware path cloaking. In CCS (2007), pp. 161–171.

[25] HU, H., AND LEE, D. L. Range nearest-neighbor query. IEEE TKDE 18, 1 (2006), 78–91.

[26] HU, H., XU, J., AND LEE, D. L. Pam: An efficient and privacy-aware monitoring framework for continuously moving objects. IEEE TKDE 99, 1 (2009).

[27] KALNIS, P., GHIHITA, G., MOURATIDIS, K., AND PAPADIAS, D. Preventing location-based identity inference in anonymous spatial queries. IEEE TKDE 19, 12 (2007), 1719–1733.

[28] KHOSHGOZARAN, A., AND SHAHABI, C. Blind evaluation of nearest neighbor queries using space transformation to preserve location privacy. In SSTD (2007), pp. 239–257.

[29] KULIK, L., AND TANIN, E. Incremental rank updates for moving query points. In GIScience (2006), pp. 251–268.

[30] MASCETTI, S., BETTINI, C., FRENI, D., WANG, X. S., AND JAJODIA, S. Privacy-aware proximity based services. In MDM (2009), pp. 31–40.

[31] MOGBEL, M. F., CHOW, C.-Y., AND AREF, W. G. The new casper: query processing for location services without compromising privacy. In VLDB (2006), pp. 763–774.

[32] MUNTZ, R., BARCLAY, T., DOZIER, J., FALOUTSOS, C., MACEACHREN, A., MARTIN, J., PANCAKE, C., AND SATYANARAYANAN, M. IT Roadmap to a Geospatial Future. The National Academies Press, 2003.
[33] Nergiz, M. E., Atzori, M., Saygin, Y., and Güb, B. Towards trajectory anonymization: a generalization-based approach. Transactions on Data Privacy 2, 1 (2009), 47–75.

[34] Roussopoulos, N., Kelley, S., and Vincent, F. Nearest neighbor queries. In SIGMOD (1995), pp. 71–79.

[35] Xu, J., Tang, X., Hu, H., and Du, J. Privacy-conscious location-based queries in mobile environments. IEEE TPDS 99, 1 (2009).

[36] Xu, T., and Cai, Y. Location anonymity in continuous location-based services. In ACM GIS (2007), pp. 1–8.

[37] Xu, T., and Cai, Y. Exploring historical location data for anonymity preservation in location-based services. In IEEE INFOCOM (2008), pp. 547–555.

[38] Xue, M., Kalnis, P., and Pung, H. K. Location diversity: Enhanced privacy protection in location-based services. In LoCA (2009).

[39] Yarovsky, R., Bonchi, F., Lakshmanan, L. V. S., and Wang, W. H. Anonymizing moving objects: how to hide a mob in a crowd? In EDBT (2009), pp. 72–83.

[40] Yiu, M. L., Jensen, C. S., Huang, X., and Lu, H. Spacetwist: Managing the trade-offs among location privacy, query performance, and query accuracy in mobile services. In ICDE (2008), pp. 366–375.