CI-GROUPS WITH RESPECT TO TERNARY RELATIONAL STRUCTURES:
NEW EXAMPLES

EDWARD DOBSON
Department of Mathematics and Statistics
Mississippi State University
PO Drawer MA
Mississipi State, MS 39762 USA
dobson@math.msstate.edu

PABLO SPIGA
Dipartimento di Matematica Pura e Applicata
Universit` a degli Studi di Milano-Bicocca
Via Cozzi 53
20126 Milano, Italy
pablo.spiga@unimib.it

Abstract. We find a sufficient condition to establish that certain abelian groups are not CI-groups with respect to ternary relational structures, and then show that the groups $\mathbb{Z}_3 \times \mathbb{Z}_2^2$, $\mathbb{Z}_7 \times \mathbb{Z}_2^3$, and $\mathbb{Z}_5 \times \mathbb{Z}_2^4$ satisfy this condition. Then we completely determine which groups $\mathbb{Z}_2^k \times \mathbb{Z}_p$, p a prime, are CI-groups with respect to binary and ternary relational structures. Finally, we show that \mathbb{Z}_2^5 is not a CI-group with respect to ternary relational structures.

1. Introduction

In recent years, there has been considerable interest in which groups G have the property that any two Cayley graphs of G are isomorphic if and only if they are isomorphic by a group automorphism of G. Such a group is called a CI-group with respect to graphs, and this problem is often referred to as the Cayley isomorphism problem. The interested reader is referred to [10] for a survey on CI-groups with respect to graphs. Of course, the Cayley isomorphism problem can and has been considered for other types of combinatorial objects. Perhaps the most significant such result is a well-known theorem of Pálfy [12] which states that a group G of order n is a CI-group with respect to every class of combinatorial objects if and only if $n = 4$ or gcd$(n, \phi(n)) = 1$, where ϕ is the Euler phi function. In fact, in proving this result, Pálfy showed that if a group G is not a CI-group with respect to some class of combinatorial objects, then G is not a CI-group with respect to quaternary relational structures. As much work has been done on the case of binary relational structures (i.e., digraphs), until recently there was a “gap” in our knowledge of the Cayley isomorphism problem for k-ary relational structures with $k = 3$. As additional motivation to study this problem, we remark that a group G that is a CI-group with respect to ternary relational structures is necessarily a CI-group with respect to binary relational structures.

Although Babai [1] showed in 1977 that the dihedral group of order $2p$ is a CI-group with respect to ternary relational structures, no additional work was done on this problem until the first author considered the problem in 2003 [5]. Indeed, in [5] a relatively short list of groups is given and it is proved that every CI-group with respect to ternary relational structures lies in this list (although not every group in this list is necessarily a CI-group with respect to ternary relational structures). Additionally, several groups in the list were shown to be CI-groups with respect to ternary relational structures. Recently, the second author [13] has shown that two groups given in [5] are not CI-groups with respect to ternary relational structures, namely $\mathbb{Z}_3 \times Q_8$ and $\mathbb{Z}_3 \times Q_8$. In this paper, we give a sufficient condition to ensure that certain abelian groups are not CI-groups with respect to ternary relational structures (Theorem 5), and then show that $\mathbb{Z}_3 \times \mathbb{Z}_2^2$, $\mathbb{Z}_7 \times \mathbb{Z}_2^3$, and $\mathbb{Z}_5 \times \mathbb{Z}_2^4$ satisfy this condition in Corollary 8 (and so are not CI-groups with respect to ternary relational structures). We then show that $\mathbb{Z}_5 \times \mathbb{Z}_2^3$ is a CI-group with respect to ternary relational structures. As the first author has shown [6] that $\mathbb{Z}_2^5 \times \mathbb{Z}_p$ is a CI-group with respect to ternary relational structures.
ternary relational structures. Theorem 5. The group $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ is a CI-group with respect to color ternary relational structures if and only if $p \neq 3$ and 7.

We will show that both $\mathbb{Z}_2^3 \times \mathbb{Z}_3$ and $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ are CI-groups with respect to binary relational structures. As it is already known that \mathbb{Z}_2^4 is a CI-group with respect to binary relational structures [10], we have the following result.

Corollary A. The group $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ is a CI-group with respect to color binary relational structures for all primes p.

We are then left in the situation of knowing whether or not any subgroup of $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ is a CI-group with respect to binary or ternary relational structures, with the exception of $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ with respect to ternary relational structures (as $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ is a CI-group with respect to binary relational structures [9]). We show that $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ is a CI-group with respect to ternary relational structures (which generalizes a special case of the main result of [9]) and we prove the following.

Corollary B. The group $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ is a CI-group with respect to color ternary relational structures if and only if $p \neq 3$.

Finally, using Magma [2] and GAP [3], we show that \mathbb{Z}_2^5 is not a CI-group with respect to ternary relational structures.

We conclude this introductory section with the formal definition of the objects we are interested in.

Definition 1. A k-ary relational structure is an ordered pair $X = (V, E)$, with V a set and E a subset of V^k. Furthermore, a color k-ary relational structure is an ordered pair $X = (V, (E_1, \ldots, E_c))$, with V a set and E_1, \ldots, E_c pairwise disjoint subsets of V^k. If $k = 2, 3, or 4$, we simply say that X is a (color) binary, ternary, or quaternary relational structure.

The following two definitions are due to Babai [1].

Definition 2. For a group G, define $g_L : G \to G$ by $g_L(h) = gh$, and let $G_L = \{g_L : g \in G\}$. Then G_L is a permutation group on G, called the left regular representation of G. We will say that a (color) k-ary relational structure X is a Cayley (color) k-ary relational structure of G if $G_L \leq \text{Aut}(X)$ (note that this implies $V = G$). In general, a combinatorial object X will be called a Cayley object of G if $G_L \leq \text{Aut}(X)$.

Definition 3. For a class \mathcal{C} of Cayley objects of G, we say that G is a CI-group with respect to \mathcal{C} if whenever $X, Y \in \mathcal{C}$, then X and Y are isomorphic if and only if they are isomorphic by a group automorphism of G.

It is clear that if G is a CI-group with respect to color k-ary relational structures, then G is a CI-group with respect to k-ary relational structures.

Definition 4. For g, h in G, we denote the commutator $g^{-1}h^{-1}gh$ of g and h by $[g, h]$.

2. The main ingredient and Theorem A

We start by proving the main ingredient for our proof of Theorem A.

Theorem 5. Let G be an abelian group and p an odd prime. Assume that there exists an automorphism α of G of order p fixing only the zero element of G. Then $\mathbb{Z}_p \times G$ is not a CI-group with respect to color ternary relational structures. Moreover, if there exists a ternary relational structure on G with automorphism group (G_L, α), then $\mathbb{Z}_p \times G$ is not a CI-group with respect to ternary relational structures.
Proof. Since α fixes only the zero element of G, we have $|G| \equiv 1 \pmod{p}$ and so $\gcd(p, |G|) = 1$.

For each $g \in G$, define $\hat{g} : \mathbb{Z}_p \times G \to \mathbb{Z}_p \times G$ by $\hat{g}(i,j) = (i, j + g)$. Additionally, define $\tau, \gamma, \overline{\alpha}, \alpha : \mathbb{Z}_p \times G \to \mathbb{Z}_p \times G$ by $\tau(i, j) = (i + 1, j)$, $\gamma(i, j) = (i, \alpha(j))$, and $\overline{\alpha}(i, j) = (i, \alpha(j))$. Then $(\mathbb{Z}_p \times G)_L = \langle \tau, \gamma \rangle$.

Clearly, $(G_L, \alpha) = G_L \times \langle \alpha \rangle$ is a subgroup of $\text{Sym}(G)$ (where G_L acts on G by left multiplication and α acts as an automorphism). Note that the stabilizer of 0 in (G_L, α) is $\langle \alpha \rangle$. As α fixes only 0, we conclude that for every $g \in G$ with $g \neq 0$, the point-wise stabilizer of 0 and g in (G_L, α) is 1. Therefore, by [14] Theorem 5.12, there exists a color Cayley ternary relational structure Z of G such that $\text{Aut}(Z) = \langle G_L, \alpha \rangle$. If there exists also a ternary relational structure with automorphism group (G_L, α), then we let Z be one such ternary relational structure.

Let

$$U = \{((0_{\mathbb{Z}_p}, g), (0_{\mathbb{Z}_p}, h)) : (0, g, h) \in E(Z)\} \quad \text{and} \quad S = \{([\hat{g}, \gamma](1, 0), [\hat{g}, \gamma](2, 0)) : g \in G\} \cup U$$

and define a (color) ternary relational structure X by

$$V(X) = \mathbb{Z}_p \times G \quad \text{and} \quad E(X) = \{k(0_{\mathbb{Z}_p} \times G, s_1, s_2) : (s_1, s_2) \in S, k \in (\mathbb{Z}_p \times G)_L\}.$$

If Z is a color ternary relational structure, then we assign to the edge $k(0_{\mathbb{Z}_p} \times G, s_1, s_2)$ the color of the edge $(0, g, h)$ in Z if $(s_1, s_2) \in U$ and $(s_1, s_2) = ((0_{\mathbb{Z}_p}, g), (0_{\mathbb{Z}_p}, h))$, and otherwise we assign a fixed color distinct from those used in Z. By definition of X we have $(\mathbb{Z}_p \times G)_L \leq \text{Aut}(X)$ and so X is a (color) Cayley ternary relational structure of $\mathbb{Z}_p \times G$.

We claim that $\overline{\alpha} \in \text{Aut}(X)$. As $\overline{\alpha}$ is an automorphism of $\mathbb{Z}_p \times G$, we have that $\overline{\alpha} \in \text{Aut}(X)$ if and only if $\overline{\alpha}(S) = S$ and $\overline{\alpha}$ preserves colors (if X is a color ternary relational structure). By definition of Z and U, we have $\overline{\alpha}(U) = U$ and $\overline{\alpha}$ preserves colors (if X is a color ternary relational structure). So, it suffices to consider the case $s \in S - U$, i.e., $s = ([\hat{g}, \gamma](1, 0), [\hat{g}, \gamma](2, 0))$ for some $g \in G$. Note that now we need not consider colors as all the edges in $S - U$ are of the same color. Then $\overline{\alpha}g(i, j) = (i, \alpha(j) + \alpha(g)) = [\alpha(g)](i, j)$. Thus $\overline{\alpha}g = [\alpha(g)]\overline{\alpha}$. Similarly, $\overline{\alpha}^{-1}g = [\alpha(g)]^{-1}\overline{\alpha}$.

Clearly $\overline{\alpha}$ commutes with γ, and so $[\alpha(g)] = [\alpha(g)]\overline{\alpha}$. As $\overline{\alpha}$ fixes $(1, 0)$ and $(2, 0)$, we see that

$$\overline{\alpha}(s) = \overline{\alpha}([\hat{g}, \gamma](1, 0), [\hat{g}, \gamma](2, 0)) = ([\overline{\alpha}(g)], \gamma)(1, 0), [\overline{\alpha}(g)], \gamma)(2, 0)) = ([\alpha(g)](1, 0), [\alpha(g)], \gamma)(2, 0)) \in (S - U).$$

Thus $\overline{\alpha}(S) = S$, $\overline{\alpha}$ preserves colors (if X is a color ternary relational structure) and $\overline{\alpha} \in \text{Aut}(X)$.

We claim that $\gamma^{-1}(\mathbb{Z}_p \times G)_L \gamma$ is a subgroup of $\text{Aut}(X)$. We set $\tau' = \gamma^{-1}\tau \gamma$ and $g' = \gamma^{-1}\gamma g$, for $g \in G$. Note that $\tau' = \gamma^{-1}\overline{\tau}^{-1}$. As $\overline{\alpha} \in \text{Aut}(X)$, we have that $\tau' \in \text{Aut}(X)$. Therefore it remains to prove that $\langle g' : g \in G \rangle$ is a subgroup of $\text{Aut}(X)$. Let $e \in E(X)$ and $g \in G$. Then $e = k((0, 0), s)$, where $s \in S$ and $k = \tau ax$, for some $a \in \mathbb{Z}_p$, $l \in G$. We have to prove that $g'(e) \in E(X)$ and has the same color of e (if X is a color ternary relational structure).

Assume that $s \in U$. As $g'(i, j) = (i, j + ax^{-1}(g))$, by definition of U, we have $g'[k((0, 0), s)] \in E(X)$ and has the same color of e (if X is a color ternary relational structure). So, it remains to consider the case $s \in S - U$, i.e., $s = ([\hat{x}, \gamma](1, 0), [\hat{x}, \gamma](2, 0))$ for some $x \in G$. As before, we need not concern ourselves with colors because all the edges in $S - U$ are of the same color.

Set $m = ka^{-x}(g)$. Since $\overline{\alpha}g = [\alpha(g)]\overline{\alpha}$ and α, γ commute, we get $\overline{\alpha}g' = ([\alpha(g)]' \overline{\alpha}$. Also observe that as G is abelian, g' commutes with \hat{h} for every $g, h \in G$. Hence
\[g'k = \gamma^{-1}g\gamma^a\gamma = \gamma^{-1}g\gamma^a\gamma = \gamma^{-1}g\gamma^a \gamma \]
\[= \gamma^a\gamma\gamma^{-a}g^a\gamma = \gamma^a(\gamma^{-a}(g))' = \gamma^a(\gamma^{-a}(g))' = k\gamma^a(\gamma^{-a}(g))' \]
\[= m(\gamma^{-a}(g)\gamma^{-a}(g))^{-1} \gamma^{-a}(g)\gamma = m(\gamma^{-a}(g), \gamma) \]

and
\[g'[k((0,0), s)] = g'[k((0,0), [\tilde{x}, \gamma](1,0), [\tilde{x}, \gamma](2,0)) = m(\gamma^{-a}(g), \gamma)[((0,0), [\tilde{x}, \gamma](1,0), [\tilde{x}, \gamma](2,0)) = m(\gamma^{-a}(g), \gamma)[((0,0), [\gamma^{-a}(g), \gamma][\tilde{x}, \gamma](1,0), [\gamma^{-a}(g), \gamma][\tilde{x}, \gamma](2,0)) = m(\gamma^{-a}(g), \gamma)[((0,0), [\gamma^{-a}(g)\gamma x, \gamma](1,0), [\gamma^{-a}(g)\gamma x, \gamma](2,0)) \in E(X). \]

This proves that \(g' \in \text{Aut}(X) \). Since \(g \) is an arbitrary element of \(G \), we have \(\gamma^{-1}G_L\gamma \subseteq \text{Aut}(X) \).

As claimed, \(\gamma^{-1}(\mathbb{Z}_p \times G)_L\gamma \) is a regular subgroup of \(\text{Aut}(X) \) conjugate to \((\mathbb{Z}_p \times G)_L \).

We now have that \(Y = \gamma(X) \) is a Cayley (color) ternary relational structure of \(\mathbb{Z}_p \times G \) as \(\text{Aut}(Y) = \gamma \text{Aut}(X) \gamma^{-1} \). We will next show that \(Y \neq X \). Assume by way of contradiction that \(Y = X \). As \(\gamma(0, g) = (0, g) \) for every \(g \in G \), the permutation \(\gamma \) must map edges of \(U \) to themselves, so that \(\gamma(S - U) = S - U \). We will show that \(\gamma(S - U) \neq S - U \). Note that we need not concern ourselves with colors because as all the edges derived from \(S - U \) via translations of \((\mathbb{Z}_p \times G)_L \) have the same color. Observing that
\[
([\hat{g}, \gamma](1,0), [\hat{g}, \gamma](2,0)) = ([\hat{g}^{-1}g\gamma(1,0), \hat{g}^{-1}g\gamma(2,0)) = ([\hat{g}^{-1}g\gamma(1,0), \hat{g}^{-1}g\gamma(2,0)) = ([\hat{g}^{-1}g\gamma(1,0), \hat{g}^{-1}g\gamma(2,0))
\]
\[
= \((\alpha^{-1} - \alpha)(g) = (\alpha^{-1} - \alpha)(h_g) = (\alpha^{-1} - \alpha)(h_g) \]
\[
\text{and} \quad (\alpha^{-2} - \alpha)(g) = (\alpha^{-2} - \alpha)(h_g) = (\alpha^{-2} - \alpha)(h_g) \]
\[
\text{Setting} \quad \iota : G \to G \text{ to be the identity permutation, we may rewrite the above equations as}
\]
\[
(\iota - \alpha)(g) = (\alpha^{-1} - \alpha)(h_g) \quad \text{and} \quad (\iota - \alpha^2)(g) = (\alpha^{-2} - \alpha)(h_g).
\]

Computing in the endomorphism ring of the abelian group \(G \), we see that \((\alpha^{-2} - \alpha) = (\alpha^{-1} + \iota)(\alpha^{-1} - \iota) \). Applying the endomorphism \(\alpha^{-1} + \iota \) to the first equation above, we then have that
\[
(\alpha^{-1} + \iota)(\alpha^{-1} - \alpha)(g) = (\alpha^{-1} + \iota)(\alpha^{-1} - \alpha)(h_g) = (\alpha^{-2} - \alpha)(h_g) = (\iota - \alpha^2)(g).
\]

Hence \((\alpha^{-1} + \iota)(\alpha^{-1} - \alpha) = \iota - \alpha^2 \), and so
\[
0 = (\alpha^{-1} + \iota)(\alpha^{-1} - \alpha) - (\iota - \alpha^2) = ((\alpha^{-1} + \iota) - (\iota + \alpha))(\alpha^{-1} - \alpha) = (\alpha^{-1} - \alpha)(\alpha^{-1} - \alpha),
\]
(here 0 is the endomorphism of \(G \) that maps each element of \(G \) to 0). As \(\alpha \) fixes only 0, the endomorphism \(\iota - \alpha \) is invertible, and so we see that \(\alpha^{-1} - \alpha = 0 \), and \(\alpha = \alpha^{-1} \). However, this implies that \(p = |\alpha| = 2 \), a contradiction. Thus \(\gamma(S - U) \neq S - U \) and so \(Y \neq X \).

We set \(T = \gamma(S) \), so that \(((0,0), t) \in E(Y) \) for every \(t \in T \), where if \(X \) is a color ternary relational structure we assume that \(\gamma \) preserves colors. Now suppose that there exists \(\beta \in \text{Aut}(\mathbb{Z}_p \times G) \) such that \(\beta(X) = Y \). Since \(\gcd(p, |G|) = 1 \), we obtain that \(\mathbb{Z}_p \times 1_G \) and \(1_{\mathbb{Z}_p} \times G \) are characteristic subgroups of \(\mathbb{Z}_p \times G \). Therefore \(\beta(i,j) = (\beta_1(i), \beta_2(j)) \), where \(\beta_1 \in \text{Aut}(\mathbb{Z}_p) \) and \(\beta_2 \in \text{Aut}(G) \). As \(\beta \) fixes \((0,0) \), we must have that \(\beta(S) = T \). As there is no element of \(T \) of the form \((2, x_1, (1, y_1)), \)
we conclude that $\beta_1 = 1$ as $\beta_1(i) = i$ or $2i$. As $\alpha \in \text{Aut}(X)$ and $X \neq Y$, we have that $\beta_2 \not\in \langle \alpha \rangle$. Now observe that $\beta(U) = U$. Thus $\beta_2 \in \text{Aut}(Z) = \langle G_U, \alpha \rangle$. We conclude that $\beta_2 \in \langle \alpha \rangle$, a contradiction. Thus X, Y are not isomorphic by a group automorphism of $\mathbb{Z}_p \times G$, and the result follows. \qed

The following two lemmas, which in our opinion are of independent interest, will be used (together with Theorem \ref{thm:transitive}) in the proof of Corollary \ref{cor:transitive}

Lemma 6. Let G be a transitive permutation group on Ω. If $x \in \Omega$ and $\text{Stab}_G(x)$ in its action on $\Omega - \{x\}$ is the automorphism group of a k-ary relational structure with vertex set $\Omega - \{x\}$, then G is the automorphism group of a $(k+1)$-ary relational structure.

Proof. Let Y be a k-ary relational structure with vertex set $\Omega - \{x\}$ and automorphism group $\text{Stab}_G(x)$ in its action on $\Omega - \{x\}$. Let $W = \{(x, v_1, \ldots, v_k) : (v_1, \ldots, v_k) \in E(Y)\}$, and define a $(k+1)$-ary relational structure X by $V(X) = \Omega$ and $E(X) = \{g(w) : w \in W \text{ and } g \in G\}$. We claim that $\text{Aut}(X) = G$. First, observe that $\text{Stab}_G(x)$ maps W to W. Also, if $e \in E(X)$ and $e = (x, v_1, \ldots, v_k)$ for some $v_1, \ldots, v_k \in \Omega$, then there exists $(x, u_1, \ldots, u_k) \in W$ and $g \in G$ with $g(x, u_1, \ldots, u_k) = (x, v_1, \ldots, v_k)$. We conclude that $g(x) = x$ and $g(u_1, \ldots, u_k) = (v_1, \ldots, v_k)$. Hence $g \in \text{Stab}_G(x)$ and $(v_1, \ldots, v_k) \in E(Y)$. Then W is the set of all edges of X with first coordinate x.

By construction, $G \leq \text{Aut}(X)$. For the reverse inclusion, let $h \in \text{Aut}(X)$. As G is transitive, there exists $g \in G$ such that $g^{-1}h \in \text{Stab}_{\text{Aut}(X)}(x)$. Note that as $g \in G$, the element $g^{-1}h \in G$ if and only if $h \in G$. We may thus assume without loss of generality that $h(x) = x$. Then h stabilizes set-wise the set of all edges of X with first coordinate x, and so $h(W) = W$ and h induces an automorphism of Y. As $\text{Aut}(Y) = \text{Stab}_G(x) \leq G$, the result follows. \qed

Lemma 7. Let $m \geq 2$ be an integer and $\rho \in \text{Sym}(\mathbb{Z}_{ms})$ be a semiregular element of order m with s orbits. Then there exists a digraph with vertex set \mathbb{Z}_{ms} and with automorphism group (ρ).

Proof. For each $i \in \mathbb{Z}_s$, set

$$\rho_i = (0, 1, \ldots, m - 1) \cdots (im, im + 1, \ldots, im + m - 1) \quad \text{and} \quad V_i = \{im + j : j \in \mathbb{Z}_m\}.$$

We inductively define a sequence of graphs $\Gamma_0, \ldots, \Gamma_{s-1} = \Gamma$ such that the subgraph of Γ induced by $\mathbb{Z}_{(i+1)m}$ is Γ_i, the indegree of Γ at each vertex in V_i is $i+1$, and $\text{Aut}(\Gamma_i) = \langle \rho_i \rangle$, for each $i \in \mathbb{Z}_s$.

We set Γ_0 to be the directed cycle of length m with edges $\{(j, j+1) : j \in \mathbb{Z}_m\}$ and with automorphism group $\langle \rho_0 \rangle$. Inductively assume that Γ_{s-2}, with the above properties, has been constructed. We construct Γ_{s-1} as follows. First, the subgraph of Γ_{s-1} induced by $\mathbb{Z}_{(s-1)m}$ is Γ_{s-2}. Then we place the directed m cycle $\{(s-1)m + j, (s-1)m + j + 1 : j \in \mathbb{Z}_m\}$ whose automorphism group is $\langle ((s-1)m, (s-1)m + 1, \ldots, (s-1)m + m - 1) \rangle$ on the vertices in V_{s-1}. Additionally, we declare the vertex $(s-1)m$ to be outadjacent to $(s-2)m$ and to every vertex that $(s-2)m$ is outadjacent to that is not contained in V_{s-2}. Finally, we add to Γ_{s-1} every image of one of these edges under an element of $\langle \rho_{s-1} \rangle$.

By construction, ρ_{s-1} is an automorphism of Γ_{s-1} and the subgraph of Γ_{s-1} induced by $\mathbb{Z}_{(s-1)m}$ is Γ_{s-2}. Then each vertex in $\Gamma_{s-1} \cap V_i$ has indegree $i + 1$ for $0 \leq i \leq s - 2$, while it is easy to see that each vertex of V_{s-1} has indegree s. Finally, if $\delta \in \text{Aut}(\Gamma_{s-1})$, then δ maps vertices of indegree $i + 1$ to vertices of indegree $i + 1$, and so δ fixes set-wise V_i, for every $i \in \mathbb{Z}_s$. Additionally, the action induced by δ on V_{s-1} is necessarily $\langle ((s-1)m, (s-1)m + 1, \ldots, (s-1)m + m - 1) \rangle$ as this is the automorphism group of the subgraph of Γ_{s-1} induced by V_{s-1}. Moreover, arguing by induction, we may assume that the action induced by δ on $V(\Gamma_{s-1}) - V_{s-1}$ is given by an element of $\langle \rho_{s-2} \rangle$. If $\delta \notin \langle \rho_{s-1} \rangle$, then $\text{Aut}(\Gamma_{s-1})$ has order at least m^2, and there is some element of $\text{Aut}(\Gamma_{s-1})$ that is the identity on $V(\Gamma_{s-2})$ but not on V_{s-1} and vice versa. This however is not possible as each vertex of V_{s-2} is outadjacent to exactly one vertex of V_{s-1}. Then $\text{Aut}(\Gamma_{s-1}) = \langle \rho_{s-1} \rangle$ and the result follows. \qed
and we say that g block for every block for subsets are always blocks for. Observe that a complete block system is a partition of \mathbb{Z}_15 points. Then $\langle \mathbb{Z}_1 \times \mathbb{Z}_2 \rangle$, settles the question of which groups G are CI-groups with respect to color ternary relational structures. From a computational point of view, the number of points is too large to enable a computer to determine the answer without some additional information. Lemma 6.1 in [6] is the only result that uses the hypothesis $p \geq 11$. For convenience, we report [6, Lemma 6.1].

Lemma 9. Let $p \geq 11$ be a prime and write $H = \mathbb{Z}_2^3 \times \mathbb{Z}_p$. For every $\phi \in \text{Sym}(H)$, there exists $\delta \in \langle H_L, \phi^{-1}H_L\phi \rangle$ such that $\langle H_L, \delta^{-1} \phi^{-1}H_L\phi \delta \rangle$ admits a complete block system consisting of 8 blocks of size p.

In particular, to prove that $\mathbb{Z}_2^3 \times \mathbb{Z}_5$ is a CI-group with respect to color ternary relational structures, it suffices to prove that Lemma 9 holds true also for the prime $p = 5$. We begin with some intermediate results which accidentally will also help us to prove that $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ is a CI-group with respect to color binary relational structures. (Here we denote by $\text{Alt}(X)$ the alternating group on the set X and by $\text{Alt}(n)$ the alternating group on $\{1, \ldots, n\}$.)

Lemma 10. Let P_1 and P_2 be partitions of \mathbb{Z}_n where each block in P_1 and P_2 has order $p \geq 2$. Then there exists $\phi \in \text{Alt}(\mathbb{Z}_n)$ such that $\phi(P_1) = P_2$.

Proof. Let $P_1 = \{\Delta_1, \ldots, \Delta_{n/p}\}$ and $P_2 = \{\Omega_1, \ldots, \Omega_{n/p}\}$. As $\text{Alt}(n)$ is $(n-2)$-transitive, there exists $\phi \in \text{Alt}(n)$ such that $\phi(\Delta_i) = \Omega_i$, for $i \in \{1, \ldots, n/p-1\}$. As both P_1 and P_2 are partitions, we see that $\phi(\Delta_{n/p}) = \Omega_{n/p}$ as well. \hfill \Box

Lemma 11. Let $n = 8p$, $G = (\mathbb{Z}_2^3 \times \mathbb{Z}_p)_L$ and $\delta \in \text{Sym}(n)$. Suppose that $\langle G, \delta^{-1}G\delta \rangle$ admits a complete block system \mathcal{C} with p blocks of size 8 such that $\text{Alt}(C) \leq \text{Stab}_{(G, \delta^{-1}G\delta)}(C)_{|C}$, where $C \in \mathcal{C}$.
Then there exists $\gamma \in \langle G, \delta^{-1}G\delta \rangle$ such that $\langle G, \gamma^{-1}\delta^{-1}G\delta\gamma \rangle$ admits a complete block system \mathcal{B} with $4p$ blocks of size 2.

Proof. Clearly both G and $\delta^{-1}G\delta$ are regular, and so both $\text{fix}_G(\mathcal{C})$ and $\text{fix}_{\delta^{-1}G\delta}(\mathcal{C})$ are semiregular of order 8. As $\text{Alt} (8)$ is simple and as $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C}) \triangleleft \text{Stab}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})|_{\mathcal{C}}$, we have that $\text{Alt}(\mathcal{C}) \leq \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})|_{\mathcal{C}}$, for every $\mathcal{C} \in \mathcal{C}$. Let $J \leq \text{fix}_G(\mathcal{C})$ and $K \leq \text{fix}_{\delta^{-1}G\delta}(\mathcal{C})$ be both of order 2. Fix $C_0 \in \mathcal{C}$, and let O_1, \ldots, O_4 be the orbits of $J|_{C_0}$, and O'_1, \ldots, O'_4 be the orbits of $K|_{C_0}$. By Lemma [10] there exists $\gamma_0 \in \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ such that $\gamma_0^{-1}(O'_i) = O_i$, for each $i \in \{1, \ldots, 4\}$. Hence the orbits of $J|_{C_0}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_0}$ are identical.

Recall that two transitive actions are equivalent if and only if the stabilizer of a point in one action is the same as the stabilizer of a point in the other [3, Lemma 1.6B]. Suppose now that the action of $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ on C_0 is equivalent to the action of $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ on C. Let ω_J generate J and let ω_K generate K. As the orbits of $J|_{C_0}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_0}$ are identical and $|\omega_J| = |\omega_K| = 2$, we see that $\omega_J|_{C_0} = \omega_K|_{C_0}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_0}$. Hence $(\omega_J\gamma_0^{-1}\omega_K\gamma_0)|_{C_0} = 1$, and so $(\omega_J\gamma_0^{-1}\omega_K\gamma_0)|_{C} = 1$. Therefore the orbits of $J|_{C}$ and $(\gamma_0^{-1}K\gamma_0)|_{C}$ are identical.

Define an equivalence relation \equiv on \mathcal{C} by $C \equiv C'$ if and only if the action of $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ on C is equivalent to the action of $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ on C'. Since $\text{Alt}(8)$ has only one permutation representation of degree 8 [3, Theorem 5.3], we obtain that $C \not\equiv C'$ if and only if the action of $\text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})|_{C, \mathcal{C}'}$ on C' is not faithful. Thus $C \not\equiv C'$ if and only if there exists $\alpha \in \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ such that $\alpha|_{C} = 1$ but $\alpha|_{C'} \neq 1$.

Let E_0 be the \equiv-equivalence class containing C_0 and set $L_1 = \{ \alpha \in \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C}) : \alpha|_{C} = 1 \text{ for every } C \in E_0 \}$. Let C_1 be in \mathcal{C} with $C_1 \neq C_0$ and let E_1 be the \equiv-equivalence class containing C_1. Then there exists $\omega \in \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ with $\omega|_{C_0} = 1$ and $\omega|_{C_1} \neq 1$. From the definition of \equiv, we see that $\omega|_{C} = 1$, for every $C \in E_0$, that is, $\omega \in L_1$ and $L_1 \neq 1$. As $L_1 \triangleleft \text{fix}_{\langle G, \delta^{-1}G\delta \rangle}(\mathcal{C})$ and $\text{Alt}(8)$ is simple, we conclude that $\text{Alt}(C_1) \leq L_1|_{C_1}$.

As both J and K are semiregular of order 2, the groups $J|_{C_1}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_1}$ are generated by even permutations. So $J|_{C_1} \leq L_1|_{C_1}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_1} \leq L_1|_{C_1}$. By Lemma [10] there exists $\gamma_1 \in L_1$ such that the orbits of $J|_{C_1}$ and $(\gamma_0^{-1}K\gamma_0)|_{C_1}$ are identical. In particular, the orbits of $J|_{C}$ and $(\gamma_0^{-1}K\gamma_0)|_{C}$ are identical, for every $C \in E_1$. Furthermore, as $L_1|_{C} = 1$ for every $C \in E_0$, we have that the orbits $J|_{C}$ and $(\gamma_0^{-1}K\gamma_0)|_{C}$ are identical for every $C \in E_0 \cup E_1$.

Applying inductively the previous two paragraphs to the various \equiv-equivalence classes, we find $\gamma \in \langle G, \delta^{-1}G\delta \rangle$ such that the orbits of J and $(\gamma^{-1}\delta^{-1}K\delta\gamma)$ are identical. Since $|J| = 2$, we get $J = \gamma^{-1}\delta^{-1}K\delta\gamma$. As $J \triangleleft G$ and $\gamma^{-1}\delta^{-1}K\delta\gamma \triangleleft \gamma^{-1}\delta^{-1}G\delta\gamma$, we obtain $J \triangleleft \langle G, \gamma^{-1}\delta^{-1}G\delta\gamma \rangle$ and the orbits of J form a complete block system for $\langle G, \gamma^{-1}\delta^{-1}G\delta\gamma \rangle$ of $4p$ blocks of size 2.

The proof of the following result is analogous to the proof of [3, Lemma 6.1].

Lemma 12. Let H be an abelian group of order ℓp, where $\ell < p$ and p is prime. Let $\phi \in \text{Sym}(H)$. Then there exists $\delta \in \langle H_L, \phi^{-1}H_L\phi \rangle$ such that $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi \delta \rangle$ admits a complete block system with blocks of size p.

Lemma 13. Let $p \geq 5$, $H = \mathbb{Z}_p^3 \times \mathbb{Z}_p$, and $\phi \in \text{Sym}(H)$. Then either there exists $\delta \in \langle H_L, \phi^{-1}H_L\phi \rangle$ such that $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi \delta \rangle$ admits a complete block system with blocks of size p or $\langle H_L, \phi^{-1}H_L\phi \rangle$ admits a complete block system \mathcal{B} with blocks of size 8 and $\text{fix}_K(\mathcal{B})|_{\mathcal{B}}$ is isomorphic to a primitive subgroup of $\text{AGL}(3,2)$, for $B \in B$.

Proof. Set $K = \langle H_L, \phi^{-1}H_L\phi \rangle$. As H has a cyclic Sylow p-subgroup, we have by [3, Theorem 3.5A] that K is doubly-transitive or imprimitive. If K is doubly-transitive, then by [11] Theorem 1.1 we
have that Alt$(H) \leq K$. Now Lemma 10 reduces this case to the imprimitive case. Thus we may assume that K is isomorphic with a complete block system C.

Suppose that the blocks of C have size ℓp, where $\ell = 2$ or 4. Notice that $p > \ell$. As H is abelian, fix$_{H_L}(C)$ is a semiregular group of order ℓp and fix$_{\phi^{-1}H_L}(C)$ is also a semiregular group of order ℓp. Then, for $C \in C$, both fix$_{H_L}(C)|_C$ and fix$_{\phi^{-1}H_L}(C)|_C$ are regular groups of order ℓp. Let $C \in C$. By Lemma 12 there exists $\delta \in \langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle$ such that $\langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle|_C$ admits a complete block system \mathcal{B}_C consisting of blocks of size p. Let $C' \in C$ with $C' \neq C$. Arguing as above, there exists $\delta' \in \langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle$ such that $\langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle|_{C'}$ admits a complete block system $\mathcal{B}_{C'}$ consisting of blocks of size p. Note that $\delta'H_L, \delta' \in \langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle|_C$ and so $\langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle|_C$ admits \mathcal{B}_C as a complete block system. Repeating this argument for every block in C, we find $\delta \in \langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle$ such that $\langle\text{fix}_{H_L}(C), \text{fix}_{\phi^{-1}H_L}(C)\rangle|_C$ admits a complete block system \mathcal{B}_C consisting of blocks of size p. Let $\mathcal{B} = \cup_C \mathcal{B}_C$. We claim that \mathcal{B} is a complete block system for $\langle H_L, \phi^{-1}H_L \phi \rangle$, which will complete the argument in this case.

Let $\rho \in H_L$ be of order p. By construction, $\rho \in \text{fix}_{H_L}(\mathcal{B})$. As H is abelian, $\text{fix}_{H_L}(\mathcal{B})|_C$ is abelian, for every $C \in C$. Then $\mathcal{B}C$ is formed by the orbits of some subgroup of $\text{fix}_{H_L}(\mathcal{B})|_C$ of order p, and as $(\rho)|_C$ is the unique subgroup of $\text{fix}_{H_L}(\mathcal{B})|_C$ of order p, we obtain that $\mathcal{B}C$ is formed by the orbits of $\langle\rho\rangle$. Then \mathcal{B} is formed by the orbits of $\langle\rho\rangle \triangleleft H_L$ and \mathcal{B} is a complete block system for H_L. An analogous argument for $\phi^{-1}(\rho)\phi\phi^{-1}$ gives that \mathcal{B} is a complete block system for $\phi^{-1}H_L\phi\phi^{-1}$. Then \mathcal{B} is a complete block system for $\langle H_L, \phi^{-1}H_L\phi\phi^{-1} \rangle$ with blocks of size p, as required.

Suppose that the blocks of C have size 8. Now H_L / \mathcal{C} and $\phi^{-1}H_L\phi / \mathcal{C}$ are cyclic of order p, and as Z_p is a CI-group [1 Theorem 2.3], replacing $\phi^{-1}H_L\phi$ by a suitable conjugate, we may assume that $\langle H_L, \phi^{-1}H_L\phi / \mathcal{C} = H_L / \mathcal{C}$. Then K / \mathcal{C} is regular and $\text{Stab}_K(C) = \text{fix}_K(C)$, for every $C \in C$.

Suppose that $\text{Stab}_K(C)|_C$ is isomorphic, for $C \in C$. By [4 Exercise 1.5.10], the group K admits a complete block system \mathcal{D} with blocks of size 2 or 4. Then K / \mathcal{D} has degree $2p$ or $4p$ and, by Lemma 13 there exists $\delta \in K$ such that $\langle H_L, \phi^{-1}H_L\phi / \mathcal{D} \rangle$ admits a complete block system \mathcal{B}' with blocks of size p. In particular, \mathcal{B}' induces a complete block system \mathcal{B}' for $\langle H_L, \phi^{-1}H_L\phi \rangle$ with blocks of size $2p$ or $4p$, and we conclude by the case previously considered applied with $\mathcal{C} = \mathcal{B}'$. Suppose that $\text{Stab}_K(C)|_C$ is primitive, for $C \in C$. If $\text{Stab}_K(C)|_C \geq \text{Alt}(C)$, then the result follows by Lemma 11 and so we may assume that this is not the case. By [4 Theorem 1.1], we see that $\text{Stab}_K(C)|_C \leq \text{AGL}(3,2)$. The result now follows with $\mathcal{B} = C$.

Corollary 14. Let $H = Z_2^3 \times Z_5$ and $\phi \in \text{Sym}(H)$. Then there exists $\delta \in \langle H_L, \phi^{-1}H_L\phi \rangle$ such that $\langle H_L, \phi^{-1}H_L\phi \rangle$ admits a complete block system with blocks of size 5.

Proof. Set $K = \langle H_L, \phi^{-1}H_L\phi \rangle$. By Lemma 13 we may assume that K admits a complete block system \mathcal{B} with blocks of size 8 and with $\text{Stab}_K(\mathcal{B})|_B \leq \text{AGL}(3,2)$, for $B \in \mathcal{B}$. As $|\text{AGL}(3,2)| = 8 \cdot 7 \cdot 6 \cdot 4$, we see that a Sylow 5-subgroup of K has order 5. Let $\langle\rho\rangle$ be the subgroup of H_L of order 5. So $\langle\rho\rangle$ is a Sylow 5-subgroup of K. Then $\phi^{-1}(\rho)\phi$ is also a Sylow 5-subgroup of K, and by a Sylow theorem there exists $\delta \in K$ such that $\phi^{-1}(\rho)\phi\phi^{-1} = \langle\rho\rangle$. We then have that $\langle H_L, \phi^{-1}H_L\phi \rangle$ has a unique Sylow 5-subgroup, whose orbits form the required complete block system \mathcal{B}.

We are finally ready to prove Theorem A.

Proof of Theorem A. If p is odd, then the paragraph following the proof of Corollary 8 shows that it suffices to prove that Lemma 9 holds for the prime $p = 5$. This is done in Corollary 14. If $p = 2$, then the result can be verified using GAP or Magma.

3. Proof of Corollaries A and B

Before proceeding to our next result we will need the following definitions.
Definition 15. Let G be a permutation group on Ω and $k \geq 1$. A permutation $\sigma \in \text{Sym}(\Omega)$ lies in the k-closure $G^{(k)}$ of G if for every k-tuple $t \in \Omega^k$ there exists $g_t \in G$ (depending on t) such that $\sigma(t) = g_t(t)$. We say that G is k-closed if the permutations lying in the k-closure of G are the elements of G, that is, $G^{(k)} = G$. The group G is k-closed if and only if there exists a color k-ary relational structure X on Ω with $G = \text{Aut}(X)$, see [14].

Definition 16. For color digraphs Γ_1 and Γ_2, we define the \textit{wreath product} of Γ_1 and Γ_2, denoted $\Gamma_1 \wr \Gamma_2$, to be the color digraph with vertex set $V(\Gamma_1) \times V(\Gamma_2)$ and edge set $E_1 \cup E_2$, where $E_1 = \{(x_1, y_1), (x_1, y_2) : x_1 \in V(\Gamma_1), (y_1, y_2) \in E(\Gamma_2)\}$ and the edge $((x_1, y_1), (x_2, y_2)) \in E_1$ is colored with the same color as (y_1, y_2) in Γ_2, and $E_2 = \{((x_1, y_1), (x_2, y_2)) : (x_1, x_2) \in E(\Gamma_1), y_1, y_2 \in V(\Gamma_2)\}$ and the edge $((x_1, y_1), (x_2, y_2)) \in E_2$ is colored with the same color as (x_1, x_2) in Γ_1.

Definition 17. For permutation groups $G \leq \text{Sym}(X)$ and $H \leq \text{Sym}(Y)$, we define the \textit{wreath product} of G and H, denoted $G \wr H$, to be the permutation group $G \wr H \leq \text{Sym}(X \times Y)$ consisting of all permutations of the form $(x, y) \mapsto (g(x), h_x(y))$, $g \in G$, $h_x \in H$.

The following very useful result (see [1, Lemma 3.1]) characterizes CI-groups with respect to a class of combinatorial objects.

Lemma 18. Let H be a group and let \mathcal{K} be a class of combinatorial objects. The following are equivalent.

1. H is a CI-group with respect to \mathcal{K},
2. whenever X is a Cayley object of H in \mathcal{K} and $\phi \in \text{Sym}(H)$ such that $\phi^{-1}H_L\phi \leq \text{Aut}(X)$, then H_L and $\phi^{-1}H_L\phi$ are conjugate in $\text{Aut}(X)$.

Proof of Corollary A. From Theorem A, it suffices to show that $\mathbb{Z}_2^3 \times \mathbb{Z}_3$ and $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ are CI-groups with respect to color binary relational structures. As the transitive permutation groups of degree 24 are readily available in GAP or Magma, it can be shown using a computer that $\mathbb{Z}_2^3 \times \mathbb{Z}_3$ is a CI-group with respect to color binary relational structures. It remains to consider $H = \mathbb{Z}_2^3 \times \mathbb{Z}_7$.

Fix $\phi \in \text{Sym}(H)$ and set $K = \langle H_L, \phi^{-1}H_L\phi \rangle$. Assume that there exists $\delta \in K$ such that $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle$ admits a complete block system with blocks of size 7. Now, it follows by [9] (see the two paragraphs following the proof of Corollary [S]) that H_L and $\delta^{-1}\phi^{-1}H_L\phi\delta$ are conjugate in $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle^3$. Since $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle^3 \leq \langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle^2$, the corollary follows from Lemma [13] (and from Definition [15]).

Assume that there exists no $\delta \in K$ such that $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle$ admits a complete block system with blocks of size 7. By Lemma [13], the group \mathcal{K} admits a complete block system \mathcal{C} with blocks of size 8 and $\text{fix}_\mathcal{K}(\mathcal{C})$ is isomorphic to a primitive subgroup of $\text{AGL}(3, 2)$, for $C \in \mathcal{C}$. Suppose that 7 and $\text{fix}_\mathcal{K}(\mathcal{C})$ are relatively prime. So, a Sylow 7-subgroup of \mathcal{K} has order 7. We are now in the position to apply the argument in the proof of Corollary [14] Let $\langle \rho \rangle$ be the subgroup of H_L of order 7. Then $\phi^{-1}(\rho)$ is a Sylow 7-subgroup of \mathcal{K}, and by a Sylow theorem there exists $\delta \in K$ such that $\delta^{-1}\phi^{-1}(\rho)\phi\delta = \langle \rho \rangle$. We then have that $\langle H_L, \delta^{-1}\phi^{-1}H_L\phi\delta \rangle$ has a unique Sylow 7-subgroup, whose orbits form a complete block system with blocks of size 7, contradicting our hypothesis on \mathcal{K}. We thus assume that 7 divides $\text{fix}_\mathcal{K}(\mathcal{C})$ and so $\text{fix}_\mathcal{K}(\mathcal{C})$ acts doubly-transitively on C, for $C \in \mathcal{C}$.

Fix $C \in \mathcal{C}$ and let L be the point-wise stabilizer of C in $\text{fix}_\mathcal{K}(\mathcal{C})$. Assume that $L \neq 1$. Now, we compute $K^{(2)}$ and we deduce that H_L and $\phi^{-1}H_L\phi$ are conjugate in $K^{(2)}$, from which the corollary will follow from Lemma [13]. As $L \lhd \text{fix}_\mathcal{K}(\mathcal{C})$, we have $L|C \lhd \text{fix}_\mathcal{K}(\mathcal{C})|C|$, for every $C \in \mathcal{C}$. As a nontrivial normal subgroup of a primitive group is transitive [15, Theorem 8.8], either $L|C$ is transitive or $L|C = 1$. Let Γ be a Cayley color digraph on H with $K^{(2)} = \text{Aut}(\Gamma)$. Let $C = \{C_i : i \in \mathbb{Z}_7\}$ where $C_i = \{(x_1, x_2, x_3, i) : x_1, x_2, x_3 \in \mathbb{Z}_2\}$, and assume without loss of generality that $C = C_0$. Suppose that there is an edge of color κ from some vertex of C_i to some vertex of C_j, where $i \neq j$. Then there is an edge of color κ from some vertex of C_0 to some vertex of
C_{j-i}. Additionally, \(j - i \) generates \(\mathbb{Z}_7 \), so there is a smallest integer \(s \) such that \(L|_{C_{s(j-i)}} = 1 \) while \(L|_{C_{(s+1)(j-i)}} \) is transitive. As there is an edge of color \(\kappa \) from some vertex of \(C_{s(j-i)} \) to some vertex of \(C_{(s+1)(j-i)} \), we conclude that there is an edge of color \(\kappa \) from every vertex of \(C_{s(j-i)} \) to every vertex of \(C_{(s+1)(j-i)} \). This implies that there is an edge of color \(\kappa \) from every vertex of \(C_i \) to every vertex of \(C_j \), and then \(\Gamma \) is the wreath product of a Cayley color digraph \(\Gamma_1 \) on \(\mathbb{Z}_7 \) and a Cayley color digraph \(\Gamma_2 \) on \(\mathbb{Z}_2^2 \). Since \(\text{fix}_K(C) \) is doubly-transitive on \(C \), we have \(\text{Aut}(\Gamma_2) \cong \text{Sym}(8) \). Therefore \(K^{(2)} = \text{Aut}(\Gamma_1) \cap \text{Aut}(\Gamma_2) \cong \text{Aut}(\Gamma_1) \cap \text{Sym}(8) \). By [7, Corollary 6.8] and Lemma [18], \(H_L \) and \(\phi^{-1}H_L\phi \) are conjugate in \(K^{(2)} \). We henceforth assume that \(L = 1 \), that is, \(\text{fix}_K(C) \) acts faithfully on \(C \), for each \(C \in \mathcal{C} \).

Define an equivalence relation on \(H \) by \(h \equiv k \) if and only if \(\text{Stab}_{\text{fix}_K(C)}(h) = \text{Stab}_{\text{fix}_K(C)}(k) \). The equivalence classes of \(\equiv \) form a complete block system \(\mathcal{D} \) for \(K \). As \(\text{fix}_K(C) \) is primitive and not regular, each equivalence class of \(\equiv \) contains at most one element from each block of \(\mathcal{C} \). We conclude that \(\mathcal{D} \) either consists of 8 blocks of size 7 or each block is a singleton. Since we are assuming that \(K \) has no block system with blocks of size 7, we have that each block of \(\mathcal{D} \) is a singleton.

Fix \(C \) and \(D \) in \(\mathcal{C} \) with \(C \neq D \) and \(h \in C \). Now, \(\text{Stab}_{\text{fix}_K(C)}(h) \) is isomorphic to a subgroup of \(\text{GL}(3,2) \) and acts with no fixed points on \(D \). From [4, Appendix B], we see that \(\text{AGL}(3,2) \) is the only doubly-transitive permutation group of degree 8 whose point stabilizer admits a fixed-point-free action of degree 8. Therefore \(\text{fix}_K(C) \cong \text{AGL}(3,2) \). Additionally, \(\text{Stab}_{\text{fix}_K(C)}(h)|D \) is transitive on \(D \).

Suppose that \(\Gamma \) is a color digraph with \(K^{(2)} = \text{Aut}(\Gamma) \) and suppose that there is an edge of color \(\kappa \) from \(\ell \in E \), with \(E \in \mathcal{C} \) and \(E \neq D \). Then \(\text{Stab}_{\text{fix}_K(C)}(h)|E \) is transitive, and so there is an edge of color \(\kappa \) from \(h \) to every vertex of \(E \). As \(\text{fix}_K(C) \) is transitive on both \(C \) and \(E \), we see that there is an edge of color \(\kappa \) from every vertex of \(C \) to every vertex of \(D \). We conclude that \(\Gamma \) is a wreath product of two color digraphs \(\Gamma_1 \) and \(\Gamma_2 \), where \(\Gamma_1 \) is a Cayley color digraph on \(\mathbb{Z}_7 \) and \(\Gamma_2 \) is either complete or the complement of a complete graph, and \(K^{(2)} = \text{Aut}(\Gamma_1) \cap \text{Sym}(8) \). The result then follows by the same arguments as above.

\textbf{Proof of Corollary B.} From Corollary [3] and Theorem A, it suffices to show that \(\mathbb{Z}_2^2 \times \mathbb{Z}_7 \) is a CI-group with respect to color ternary relational structures. As the transitive permutation groups of degree 28 are readily available in GAP or Magma, it can be shown using a computer that \(\mathbb{Z}_2^2 \times \mathbb{Z}_7 \) is a CI-group with respect to color ternary relational structures. (We note that a detailed analysis similar to the proof of Corollary A for the group \(\mathbb{Z}_2^2 \times \mathbb{Z}_7 \) also gives a proof of this theorem.)

\textbf{4. Concluding remarks}

In the rest of this paper, we discuss the relevance of Theorem A to the study of CI-groups with respect to ternary relational structures. Using the software packages [2] and [8], we have determined that \(\mathbb{Z}_2^5 \) is not a CI-group with respect to ternary relational structures. Here we report an example witnessing this fact: the group \(G \) has order 2048, \(V \) and \(W \) are two nonconjugate elementary abelian regular subgroups of \(G \), and \(X = (\{1,\ldots,32\},E) \) is a ternary relational structure with
$G = \text{Aut}(X)$.

\[
V = \langle (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), \\
(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), \\
(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), \\
(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), \\
(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32) \rangle,
\]

\[
W = \langle (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), \\
(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,24)(22,23)(25,27)(26,29)(27,30)(31,32), \\
(1,5)(2,6)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15)(17,22)(18,21)(19,24)(20,23)(25,29)(26,30)(27,31)(28,32), \\
(1,9)(2,10)(3,11)(4,12)(5,14)(6,13)(7,16)(8,15)(17,27)(18,26)(19,25)(20,26)(21,23)(22,31)(23,30)(24,29), \\
(1,17)(2,18)(3,20)(4,19)(5,22)(6,21)(7,23)(8,24)(9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,29)(16,30) \rangle,
\]

\[
G = \langle V, W \rangle, \quad (25,26)(27,28)(29,30)(31,32), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16)(17,19)(18,20)(25,27)(26,28) \rangle,
\]

\[
E = \{ g((1,3,9)), g((1,5,25)) : g \in G \}.
\]

Definition 19. For a cyclic group $M = \langle g \rangle$ of order m and a cyclic group $\langle z \rangle$ of order 2^d, $d \geq 1$, we denote by $D(m, 2^d)$ the group $\langle z \rangle \rtimes M$ with $g^z = g^{-1}$.

Combining Theorem A with [5, Theorem 9], [5, Lemma 6], the construction given in [13] and the previous paragraph, we have the following result which lists every group that can be a CI-group with respect to ternary relational structures (although not every group on the list needs to be a CI-group with respect to ternary relational structures).

Theorem 20. If G is a CI-group with respect to ternary relational structures, then all Sylow subgroups of G are of prime order or isomorphic to \mathbb{Z}_4, \mathbb{Z}_2^d, $1 \leq d \leq 4$, or Q_8. Moreover, $G = U \times V$, where $\gcd(|U|, |V|) = 1$, U is cyclic of order n, with $\gcd(n, \varphi(n)) = 1$, and V is one of the following:

1. \mathbb{Z}_4^d, $1 \leq d \leq 4$, $D(m, 2)$, or $D(m, 4)$, where m is odd and $\gcd(mn, \varphi(mn)) = 1$,
2. \mathbb{Z}_4, Q_8.

Furthermore,

(a) if $V = \mathbb{Z}_4$, Q_8, or $D(m, 4)$ and $p \mid n$ is prime, then $4 \nmid (p - 1)$,
(b) if $V = \mathbb{Z}_2^d$, $d \geq 2$, or Q_8, then $3 \nmid n$,
(c) if $V = \mathbb{Z}_2^d$, $d \geq 3$, then $7 \nmid n$,
(d) if $V = \mathbb{Z}_2^2$, then $5 \nmid n$.

References

[1] L. Babai, Isomorphism problem for a class of point-symmetric structures, *Acta Math. Acad. Sci. Hungar.* **29** (1977), no. 3-4, 329–336.

[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, *J. Symbolic Comput.* **24** (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993).

[3] P. J. Cameron, Finite permutation groups and finite simple groups, *Bull. London Math. Soc.* **13** (1981), no. 1, 1–22.

[4] J. D. Dixon and B. Mortimer, *Permutation groups*, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996.

[5] E. Dobson, On the Cayley isomorphism problem for ternary relational structures, *J. Combin. Theory Ser. A* **101** (2003), no. 2, 225–248.

[6] E. Dobson, The isomorphism problem for Cayley ternary relational structures for some abelian groups of order $8p$, *Discrete Math.* **310** (2010), 2895–2909.

[7] E. Dobson and J. Morris, Automorphism groups of wreath product digraphs, *Electron. J. Combin.* **16** (2009), no. 1, Research Paper 17, 30 pgs.
[8] The GAP Group, *Gap – groups, algorithms, and programming, version 4.4*, (2005), http://www.gap-system.org.

[9] I. Kovács and M. Muzychuk, The group \(\mathbb{Z}_p^2 \times \mathbb{Z}_q \) is a CI-group, *Comm. Algebra* 37 (2009), no. 10, 3500–3515.

[10] C.H. Li, On isomorphisms of finite Cayley graphs—a survey, *Discrete Math.* 256 (2002), no. 1-2, 301–334.

[11] C.H. Li, The finite primitive permutation groups containing an abelian regular subgroup, *Proc. London Math. Soc.* (3) 87 (2003), no. 3, 725–747.

[12] P. P. Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, *European J. Combin.* 8 (1987), no. 1, 35–43.

[13] Pablo Spiga, On the Cayley isomorphism problem for a digraph with 24 vertices, *Ars Math. Contemp.* 1 (2008), no. 1, 38–43.

[14] H. Wielandt, *Permutation groups through invariant relations and invariant functions*, lectures given at The Ohio State University, Columbus, Ohio, 1969.

[15] H. Wielandt, *Finite permutation groups*, Translated from the German by R. Bercov, Academic Press, New York, 1964.