The association of cognitive performance with vascular risk factors across adult life span
van Eersel, Maria Elisabeth Adriana

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Eersel, M. E. A. (2018). The association of cognitive performance with vascular risk factors across adult life span. [Groningen]: Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Treatable Vascular Risk and Cognitive Performance in Persons Aged 35 Years or Older: Longitudinal study

Marlise E.A. van Eersel
Hanneke Joosten
Ron T. Gansevoort
Joris P.J. Slaets
Gerbrand J. Izaks

Submitted
ABSTRACT

Background: Poor cognitive performance is associated with high vascular risk. However, vascular risk is largely based on age. It is unclear whether cognitive performance is associated with components of vascular risk that are amenable to treatment. Therefore, we investigated the association of cognitive performance with a treatable general vascular risk.

Methods: In this longitudinal community-based study comprising 3,572 participants aged 35 to 82 years (mean age, 54 years; men, 52%), cognitive performance was three times measured during follow-up period of 5.5 years. Cognitive performance was measured with the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT), and calculated as the average of the standardized RFFT and VAT score per participant. Treatable vascular risk score was based on treatable components of Framingham Risk Score for Cardiovascular Disease.

Results: It was found that the mean (SD) cognitive performance changed from 0.00 (0.79) at the first measurement to 0.15 (0.83) at second measurement and to 0.39 (0.82) at the third measurement ($P_{\text{trend}}<0.001$). This change was negatively associated with treatable vascular risk: the mean change in cognitive performance between first and third measurement was 0.46 (95%CI, 0.37 to 0.55; $P<0.001$) in persons with the lowest treatable vascular risk whereas it was 0.28 (95%CI, 0.08 to 0.47; $P=0.006$) in persons with the highest treatable vascular risk. Adjusted for age, educational level and consecutive measurement, the change in cognitive performance between two measurements decreased with 0.004 per one-point increment of treatable vascular risk (95%CI, -0.008 to 0.000; $P=0.05$) and with 0.006 per one-year increment of age (95%CI, -0.008 to -0.004; $P<0.001$). There was no interaction between treatable vascular risk and APOE ε4 carriership.

Conclusion: Change in cognitive performance was associated with treatable vascular risk in persons aged 35 years or older.
INTRODUCTION

Vascular risk factors increase the risk of vascular dementia and Alzheimer’s disease.\(^1,2\) Moreover, they are strongly related to cognitive impairment before the occurrence of dementia.\(^3\) Although the underlying mechanisms have not been fully understood yet, it is likely that vascular risk factors do not only cause vascular changes but also contribute to neurodegeneration and brain atrophy.\(^4\) The relation between vascular risk factors and cognitive impairment is important because adequate treatment of vascular risk factors may prevent cognitive impairment.\(^4\) This is supported by the observation that management of vascular risk factors over the past decades has coincided with a decline in the prevalence of cognitive impairment and dementia.\(^5\) However, not all vascular risk factors are amenable to treatment.

Several studies have shown that poor cognitive performance is associated with high vascular risk.\(^6\) In these studies, vascular risk is usually estimated with multicomponent risk scores that predict an individual’s risk of a vascular event within the next years. These vascular risk scores are largely based on age.\(^7,8\) However, although age is a major vascular risk factor, it is not amenable to treatment. For effective prevention of cognitive impairment it is essential to know whether cognitive performance is associated with treatable vascular risk factors. Up till now, three longitudinal studies have found a negative association of cognitive performance with treatable vascular risk independent of age.\(^9-11\) However, one study included a relatively small sample of 235 men aged 60 years or older,\(^9\) whereas the two other studies mainly included even older persons from the same source population (the Alzheimer’s Disease Centers).\(^10,11\) Furthermore, in these three studies, the treatable vascular risk was based on a stroke-specific risk score and did not include the risk of cardiac or peripheral vascular events.\(^8\) Therefore, it is still unclear whether cognitive performance is associated with general treatable vascular risk, and not only with stroke-specific risk, and whether this association is present in the general population. Finally, the association between cognitive performance and treatable vascular risk is not yet investigated in middle-aged persons since current data are only available for elderly.\(^9-11\) However, as neuropathological changes start several decades prior to dementia onset,\(^12\) treatment of vascular risk factors at late-life may be too late for effective prevention of cognitive impairment and dementia.

The aim of this longitudinal study was to investigate the association of cognitive performance with treatable (general) vascular risk over a follow-up period of six years in a large community-based sample. The measurement of treatable vascular risk was based on the Framingham Risk Score for Cardiovascular Disease (FRS-CD).\(^7\) The total sample included 3,572 persons aged 35 to 82 years old, who completed two to three measurements of cognitive performance and vascular risk.
METHODS

Study design
This study was part of the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort. The PREVEND study is a prospective cohort study investigating the natural course of microalbuminurania and its association with renal and cardiovascular disease. Details of the PREVEND study have been described elsewhere. Briefly, at baseline, 8,592 participants aged 28-75 years were selected from inhabitants of the city of Groningen (Netherlands) based on their urinary albumin excretion. These participants completed the baseline survey in 1997-1998 and were followed over time. Surveys included assessment of demographic and vascular risk factors, and measurements of haematological and biochemical parameters. Cognitive function tests were introduced at the third survey (2003-2006) and repeated at the fourth survey (2006-2008) and fifth survey (2008-2012). A total of 3,601 participants completed two to three measurements of cognitive performance.

The PREVEND study was approved by the medical ethics committee (METc) of University Medical Center Groningen, Groningen, the Netherlands, and conducted in accordance with the guidelines of the Helsinki declaration. All participants gave written informed consent.

Cognitive performance
Cognitive performance was measured as a composite score of two tests: the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT). The RFFT is generally seen as a measure of executive function but provides also information regarding planning, divergent thinking and the ability to shift between different cognitive tasks. The RFFT requires the participants to draw as many designs as possible within a set time limit while avoiding repetitions of designs. The main outcome of the RFFT is the total number of unique designs, which range from 0 points (worst score) to 175 points (best score). The RFFT is sensitive to changes in cognitive performance in both young and old persons. The VAT is a brief learning task that is designed to detect memory impairment including anterograde amnesia. The test consists of six drawings of pairs of interacting objects. The participant is asked to name each object and, later, is presented with one object from the pair and asked to name the other object. The lowest (worst) score is 0 points, the highest (best) score is 12 points.

To create a composite cognitive score, the raw RFFT and VAT scores at each measurement were standardized to z-scores (based on the mean and standard deviation of each test at the first measurement) and subsequently averaged.
Treatable vascular risk

Treatable vascular risk was based on the components of the Framingham Risk Score for Cardiovascular Disease (FRS-CD) that are amenable to treatment: diabetes mellitus (yes/no), current smoker status (yes/no), systolic blood pressure (mmHg), total cholesterol (mmol/l), HDL cholesterol (mmol/l) and use of blood pressure lowering drugs (yes/no). The FRS-CD is designed to predict the risk of a new cardiovascular, cerebrovascular or peripheral vascular event within the next ten years. This model was validated for persons aged 30-74 years without vascular history.\(^7\)

Measurements of treatable vascular risk components

Data on the treatable vascular risk were obtained as follows: total cholesterol, HDL-cholesterol and glucose were measured with fasting blood tests. Diabetes mellitus was defined as a fasting glucose ≥7.0 mmol/L (126 mg/dl) or a non-fasting glucose ≥11.0 mmol/L (200 mg/dl) or the use of glucose-lowering drugs.\(^8\) Smoking was defined as current smoker based on self-report. Systolic blood pressure was automatically measured (Dinamap) in a supine position during ten minutes and reported as the average of the two last measurements. Data on actual drug use were obtained from the InterAction DataBase that comprised pharmacy-dispensing data from regional community pharmacies.\(^9\)

Covariates

Demographic factors were measured at the first measurement. Data on age, gender and educational level were obtained from a questionnaire. Educational level was divided into four groups: primary school (0 to 8 years of education), lower secondary education (9 to 12 years of education), higher secondary education (13 to 15 years of education), and university (≥16 years of education).\(^{10}\) Because the effect of vascular risk on cognitive function is possibly modified by APOE ε4 carriership,\(^{11}\) APOE ε4 genotype was included as a covariate. Participants were categorized as APOE ε4 carriers (allele combinations e2/e4 or e3/e4 or e4/e4) or noncarriers (allele e2/e2 or e2/e3 or e3/e3).\(^{12}\)

Statistical analysis

Parametric data are presented as mean and standard deviation (SD) and nonparametric data as median and interquartile range (IQR). Differences were tested by independent-samples t test or, if appropriate, Mann-Whitney U test. Differences between paired observations were tested by paired-samples t test or, if appropriate, Wilcoxon signed-rank test. Differences in proportion were tested by Chi-Square test. Trends across measurements were analyzed by ANOVA for parametric data and by Kruskal-Wallis H test for nonparametric data.
The longitudinal association of cognitive performance with the treatable vascular risk was investigated by linear multilevel analysis (linear mixed model analysis). Cognitive performance was the dependent variable. Treatable vascular risk at the first measurement was the independent variable. The analysis included the data of all participants who completed the cognitive tests on at least two measurements. Consecutive measurement (1, 2, or 3) was the lowest level and participant the highest level. Interaction between the treatable vascular risk and consecutive measurement was investigated by entering the product term treatable vascular risk x consecutive measurement into the regression model. Interaction between the treatable vascular risk and \textit{APOE} ε4 carriership was tested by entering treatable vascular risk x \textit{APOE} ε4 carriership into the model. Adjustment was made for age, educational level, consecutive measurement and interaction age x consecutive measurement.

To study the effect of the separate components of treatable vascular risk, a similar regression model was built with all separate components. The first step was to analyse the association of cognitive performance with each separate component of treatable vascular risk. Adjustment was made for age, gender, educational level, consecutive measurement number, interaction age x consecutive measurement number and other treatable vascular risk factors. The second step was to analyse the interaction between each separate component of treatable vascular risk and consecutive measurement number by entering the product term of separate component x consecutive measurement number into the regression model. The last step was to analyse the association of cognitive performance with all separate components of treatable vascular risk in a full regression model. Separate components of treatable vascular risk were diabetes mellitus (yes/no), current smoker (yes/no), total cholesterol (mmol/L), HDL-cholesterol (mmol/L), hypertension (yes/no).

In all models, the variables cognitive performance, consecutive measurement, age (years) and treatable vascular risk (points) were entered as continuous variables. Educational level and \textit{APOE} ε4 carriership were entered as categorical variables. The level of statistical significance was set at 0.05. The linear multilevel analyses were performed using MLwiN Version 2.29 (Centre for Multilevel Modelling, University of Bristol, Bristol, UK), the other analyses were performed using IBM SPSS Statistics 22.0 (IBM, Amonk, NY).
Sensitivity analysis
Various a priori-defined analyses were performed. First, the analyses were limited to persons aged 35 to 74 years old without vascular history (n = 3,286), because the FRS-GCD was only validated in this specific group. Second, to investigate the generalizability of our findings, analyses were repeated in the total study population with two other risk scores based on the treatable components of the Framingham Risk Score for Coronary Heart Disease (FRS-CHD) and the SCORE risk system (n = 3,574). However, these risk scores were also validated in specific groups. So, the analyses were repeated again and limited to persons without vascular history aged 35 to 74 years old for FRS-CHD (n = 3,288) and to persons without vascular history aged 40 to 65 years old for SCORE (n = 2,493). Finally, the analyses were repeated after exclusion of all APOE ε2 carriers (allele combinations ε2/ε2, ε2/ε3 and ε2/ε4) because the APOE ε2 allele appears to reduce the risk of Alzheimer’s disease, and the effect of APOE ε2/ε4 genotype on cognitive function is unclear (n = 2,699).

RESULTS
Study population
Overall, 3,601 participants completed the cognitive tests at multiple measurements: 2,431 (68%) participants at three measurements and 1,170 (32%) participants at two measurements. Eighteen (0.5%) participants were excluded because their educational level was not known and three (0.1%) participants because their age was younger than 35 years and their number too small to form a separate age group. Eight (0.2%) persons were excluded because of missing data on treatable vascular risk. Thus, the total study population included 3,572 persons with a mean (SD) age of 54 (11) years, 52% were men and 96% of Western-European descent (Table 1).
Table 1. Characteristics of the study population at the first measurement (baseline).

Performance on the RFFT	All
n (%)	3,572 (100)
Age (years), mean (SD)	54 (11)
Age groups, n (%)	
35 to 44 years	824 (23)
45 to 54 years	1,182 (33)
55 to 64 years	889 (25)
65 to 74 years	534 (15)
≥75 years	143 (4)
Gender, n (%)	
Men	1,867 (52)
Women	1,705 (48)
Educational level, n (%)	
Primary school	396 (11)
Secondary lower education	930 (26)
Secondary higher education	968 (27)
University	1,278 (36)
Cardiovascular history, n (%)	
Cardiac event	133 (3)
Cerebrovascular event	24 (1)
Peripheral vascular event	3 (1)
Cardiovascular risk factors	
Hypertension, n (%)	1,222 (34)
Diabetes mellitus, n (%)	197 (6)
Smoker, n (%)	799 (22)
Systolic blood pressure (mmHg), mean (SD)	125 (17)
Total cholesterol (mmol/L), mean (SD)	5.36 (1.04)
HDL-cholesterol (mmol/L), mean (SD)	1.41 (0.38)
Non-HDL-cholesterol (mmol/L), mean (SD)	3.94 (1.02)
Blood pressure lowering drugs, n (%)	827 (23)
APOE ε4 carriernpa, n (%)	943 (26)

Abbreviations: HDL, high-density lipoprotein; SD, standard deviation.

* APOE ε4 carriernpa included the allele combinations ε2/ε4, ε3/ε4 and ε4/ε4.
Longitudinal course of cognitive performance and treatable vascular risk
The mean (SD) total follow-up time was 5.5 (0.7) years. The mean (SD) cognitive performance of the total study population changed per consecutive measurement from 0.00 (0.79) at the first measurement to 0.15 (0.83) at second measurement and to 0.39 (0.82) at third measurement ($P_{\text{trend}} < 0.001$). The change in cognitive performance per consecutive measurement was most clear in the age groups 35 to 44 years, 45 to 54 years, and 55 to 64 years (Table 2). Treatable vascular risk ranged from -5 to +17 points with a mean (SD) of 2 (4) points at the first measurement. Except for the age group 35 to 44 years, treatable vascular risk did not change statistically significantly per consecutive measurement (Table 2).

Table 2. Change in cognitive performancea and treatable vascular riskb across measurements per age group.

Age (years)	Variable	Measurement	First	Second	Third	P_{trend}
35-44	Cognitive performance, z-score		0.41 (0.71)	0.67 (0.68)	0.90 (0.64)	<0.001
	Treatable vascular risk, points		1 (3)	0 (3)	1 (3)	0.02
45-54	Cognitive performance, z-score		0.16 (0.73)	0.30 (0.71)	0.55 (0.65)	<0.001
	Treatable vascular risk, points		2 (4)	2 (4)	2 (4)	0.09
55-64	Cognitive performance, z-score		-0.17 (0.73)	-0.04 (0.76)	0.15 (0.73)	<0.001
	Treatable vascular risk, points		3 (4)	3 (4)	3 (3)	0.83
65-74	Cognitive performance, z-score		-0.52 (0.68)	-0.46 (0.73)	-0.40 (0.77)	0.07
	Treatable vascular risk, points		4 (3)	4 (3)	4 (3)	0.13
≥75	Cognitive performance, z-score		-0.72 (0.69)	-0.75 (0.78)	-0.62 (0.76)	0.56
	Treatable vascular risk, points		5 (3)	4 (3)	5 (3)	0.42

All values are noted as mean (SD). Abbreviations: SD, standard deviation.

a Cognitive performance was measured as a composite score of two tests (z-score): the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT).17,19

b Treatable vascular risk is based on the components of Framingham Risk Score for Cardiovascular Disease that are amenable to treatment and included diabetes mellitus, current smoker status, total cholesterol, HDL-cholesterol, systolic blood pressure and use of blood pressure lowering drugs.7

Longitudinal change in cognitive performance and treatable vascular risk
Longitudinal change in cognitive performance was dependent on treatable vascular risk: the change in cognitive performance was negatively associated with treatable vascular risk (Figure 1). The mean change in cognitive performance between the first and third measurement was 0.46 (95%CI, 0.37 to 0.55; $P < 0.001$) in persons with the lowest...
treatable vascular risk whereas it was 0.28 (95%CI, 0.08 to 0.47; \(P = 0.006 \)) in persons with the highest treatable vascular risk. The association between cognitive performance and treatable vascular risk was confirmed by multilevel analysis. Adjusted for age, educational level, consecutive measurement and interaction age x consecutive measurement, the multilevel regression model did not only show a statistically significant effect for treatable vascular risk (B-coefficient, -0.011; 95%CI, -0.019 to -0.003; \(P = 0.01 \)) but also for the interaction between treatable vascular risk and consecutive measurement (Table 3). The change in cognitive performance between two measurements decreased with 0.004 per one-point increment of treatable vascular risk (B-coefficient, -0.004; 95%CI, -0.008 to 0.000; \(P = 0.05 \)). This is comparable to the decrease in change in cognitive performance between two measurements per one-year increment of age (B-coefficient, -0.006; 95%CI, -0.008 to -0.004; \(P < 0.001 \)) (Table 3).

Figure 1. Mean cognitive performance per measurement dependent on the treatable vascular risk at first measurement.

Bars represent 95% confidence intervals. Cognitive performance was measured as a composite score of two tests (z-score): the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT).\(^7\)\(^1\)\(^7\)\(^1\)\(^9\) Treatable vascular risk is based on the components of Framingham Risk Score for Cardiovascular Disease that are amenable to treatment and included diabetes mellitus, current smoker status, total cholesterol, HDL-cholesterol, systolic blood pressure and use of blood pressure lowering drugs.\(^7\)

Effect of APOE \(\varepsilon 4 \) carriership

There was no statistically significant interaction between treatable vascular risk and APOE \(\varepsilon 4 \) carriership: B-coefficient for treatable vascular risk, -0.009 (95%CI, -0.019 to 0.008; \(P = 0.07 \)), for APOE \(\varepsilon 4 \) carriership, 0.003 (95%CI, -0.048 to 0.054; \(P = 0.91 \)), and for treatable vascular risk x APOE \(\varepsilon 4 \) carriership, -0.003 (95%CI, -0.015 to 0.009; \(P = 0.62 \)).
Table 3. Longitudinal association of cognitive performance\(^a\) on the treatable vascular risk\(^b\): multilevel linear analysis.

	Model 1\(^d\)		Model 1\(^e\)		Model 1\(^f\)	
	B 95%CI	P	B 95%CI	P	B 95%CI	P
Age (years)	-0.020	-0.022 to -0.018	-0.018	-0.020 to -0.016	-0.018	-0.020 to -0.016
Educational level (vs. primary school)						
Secondary lower education	0.20	0.13 to 0.26	0.19	0.13 to 0.26	0.19	0.13 to 0.26
Secondary higher education	0.40	0.33 to 0.47	0.38	0.32 to 0.45	0.38	0.32 to 0.45
University	0.68	0.61 to 0.75	0.65	0.58 to 0.72	0.65	0.58 to 0.72
Measurement\(^c\)	0.50	0.43 to 0.56	0.50	0.44 to 0.56	0.50	0.44 to 0.56
Age x measurement\(^c\)	-0.006	-0.008 to -0.004	-0.006	-0.008 to -0.004	-0.006	-0.008 to -0.004
Treatable vascular risk\(^b\)	-0.018	-0.024 to -0.012	-0.018	-0.024 to -0.012	-0.018	-0.024 to -0.012
Treatable vascular risk\(^b\) x measurement\(^c\)	-0.004	-0.008 to 0.000	-0.004	-0.008 to 0.000	-0.004	-0.008 to 0.000

Abbreviations: B, unstandardized B-coefficient; CI, confidence interval.

\(^a\) Cognitive performance was measured as a composite score of two tests (z-score): the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT).\(^17,19\)

\(^b\) Treatable vascular risk is based on the components of Framingham Risk Score for Cardiovascular Disease that are amenable to treatment and included diabetes mellitus, current smoker status, total cholesterol, HDL-cholesterol, systolic blood pressure and use of blood pressure lowering drugs.\(^7\)

\(^c\) Consecutive measurement.

\(^d\) For model 1: -2*log likelihood 16864.08.

\(^e\) For model 2: -2*log likelihood 16822.30.

\(^f\) For model 3: -2*log likelihood 16817.67.
Table 4. Composite table of separate longitudinal association of cognitive performance\(^a\) on separate components of treatable vascular risk\(^b\): multilevel linear analyses.

	B	95%CI	P	\(-2\times\text{log likelihood}\)	B	95%CI	P	\(-2\times\text{log likelihood}\)
Diabetes (yes vs. no)	-0.11	-0.19 to -0.02	0.01	16775.09	-0.13	-0.26 to 0.00	0.05	16774.93
Diabetes (yes vs. no) x measurement\(^c\)					0.01	-0.05 to 0.07	0.71	
Current smoker (yes vs. no)	-0.08	-0.13 to -0.04	<0.001	16775.09	-0.02	-0.09 to 0.04	0.49	16770.24
Current smoker (yes vs. no) x measurement\(^c\)					-0.03	-0.06 to 0.00	0.03	
Total cholesterol (mmol/L)	-0.01	-0.03 to 0.01	0.22	16775.09	-0.01	-0.02 to 0.01	0.40	
Total cholesterol (mmol/L) x measurement\(^c\)								
HDL-cholesterol (mmol/L)	0.08	0.02 to 0.13	0.005	16775.09	0.08	0.00 to 0.16	0.05	16775.09
HDL-cholesterol (mmol/L) x measurement\(^c\)					0.00	-0.03 to 0.03	0.95	
Hypertension\(^d\) (yes vs. no)	-0.05	-0.10 to 0.00	0.03	16775.09	-0.02	-0.09 to 0.05	0.63	16773.45
Hypertension\(^d\) x measurement\(^c\)					-0.02	-0.05 to 0.01	0.20	

All models are adjusted for age, gender, educational level, consecutive measurement number, interaction age x consecutive measurement number and other treatable vascular risk factors. Abbreviations: HDL, high-density lipoprotein; B, unstandardized B-coefficient; CI, confidence interval.

\(^a\) Cognitive performance was measured as a composite score of two tests (z-score): the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT).\(^{17,19}\)

\(^b\) Treatable vascular risk is based on the components of Framingham Risk Score for Cardiovascular Disease that are amenable to treatment and included diabetes mellitus, current smoker status, total cholesterol, HDL-cholesterol, systolic blood pressure and use of blood pressure lowering drugs.\(^7\)

\(^c\) Consecutive measurement.

\(^d\) Hypertension is combination of two separate components of the Framingham Risk Score for Cardiovascular Disease and defined as systolic blood pressure above 140mmHg and/or use of blood pressure lowering medication.
Association with separate components of treatable vascular risk

Cognitive performance was not only associated with treatable vascular risk but also with different components of treatable vascular risk. Diabetes mellitus \((P = 0.01)\), current smoker \((P < 0.001)\), HDL-cholesterol \((P = 0.005)\) and hypertension \((P = 0.03)\) were independently associated with cognitive performance, after adjustment for age, gender, educational level, consecutive measurement number, interaction age x consecutive measurement number and other treatable vascular risk factors (Supplemental Table 1). There was no statistically significant interaction between each individual component and consecutive measurement number \((P = 0.20)\) (Table 4). Adjusted for age, gender, educational level, consecutive measurement number and interaction age x consecutive measurement number, the full multilevel regression model showed that cognitive performance was negatively associated with diabetes mellitus \((P = 0.01)\), current smoker \((P < 0.001)\) and hypertension \((P = 0.03)\), and positively associated with HDL-cholesterol \((P = 0.005)\) (Table 5).

Table 5. Longitudinal association of cognitive performance\(^a\) with individual components of treatable vascular risk\(^b\): multilevel linear analysis.

	Model 1\(^e\)		
	B	95%CI	
Age (years)	-0.018	-0.020 to -0.016	<0.001
Gender (women vs. men)	0.11	0.07 to 0.15	<0.001
Educational level (vs. primary school)			
Secondary lower education	0.19	0.13 to 0.26	<0.001
Secondary higher education	0.40	0.33 to 0.47	<0.001
University	0.66	0.59 to 0.72	<0.001
Measurement\(^c\)	0.50	0.44 to 0.55	<0.001
Age x measurement\(^c\)	-0.006	-0.008 to -0.004	<0.001
Diabetes mellitus (yes vs. no)	-0.11	-0.19 to -0.02	0.01
Current smoker (yes vs. no)	-0.08	-0.13 to -0.04	<0.001
Total cholesterol (mmol/L)	-0.01	-0.03 to 0.01	0.22
HDL-cholesterol (mmol/L)	0.08	0.02 to 0.13	0.005
Hypertension (yes vs. no)	-0.05	-0.10 to 0.00	0.03

Abbreviations: HDL, high-density lipoprotein; B, unstandardized B-coefficient; CI, confidence interval.

\(^a\)Cognitive performance was measured as a composite score of two tests (z-score): the Ruff Figural Fluency Test (RFFT) and the Visual Association Test (VAT).\(^17,19\)

\(^b\)Treatable vascular risk is based on the components of Framingham Risk Score for Cardiovascular Disease that are amenable to treatment and included diabetes mellitus, current smoker status, total cholesterol, HDL-cholesterol, systolic blood pressure and use of blood pressure lowering drugs.\(^7\)

\(^c\)Consecutive measurement.

\(^d\)Hypertension is combination of two separate components of the Framingham Risk Score for Cardiovascular Disease and defined as systolic blood pressure above 140mmHg and/or use of blood pressure lowering medication.

\(^e\)For model 1: \(-2\log likelihood 16775.09\).
Sensitivity analyses
Essentially similar results were found if the analyses of the association of cognitive performance with the treatable vascular risk were limited to persons aged 35 to 74 years old without vascular history: B-coefficient for treatable vascular risk, -0.011 (95%CI, -0.019 to -0.003; \(P = 0.006 \)), and for treatable vascular risk x consecutive measurement number, -0.004 (95%CI, -0.008 to 0.000; \(P = 0.05 \)). If the analyses were repeated in total study population with treatable vascular risks based on treatable components of FRS-CHD or SCORE as independent variables, the negatively association between cognitive performance and treatable vascular risk was also found: B-coefficient for FRS-CHD, -0.009 (95%CI, -0.015 to -0.003; \(P = 0.003 \)), and for SCORE, -0.08 (95%CI, -0.15 to 0.00; \(P = 0.04 \)), respectively. The longitudinal change in cognitive performance was also dependent on these treatable vascular risks: B-coefficient for interaction FRS-CHD x consecutive measurement number, -0.002 (95%CI, -0.004 to 0.000; \(P = 0.05 \)), and for interaction SCORE x consecutive measurement number, -0.04 (95%CI, -0.07 to 0.00; \(P = 0.02 \)), respectively. If the analysis with FRS-CHD was limited to persons aged 35 to 74 years old without vascular history, similar results were found. In the full regression model, the B-coefficient for treatable vascular risk based on FRS-CHD was -0.010 (95%CI, -0.018 to -0.002; \(P = 0.01 \)), and for treatable vascular risk x consecutive measurement number, -0.002 (95%CI, -0.004 to 0.000; \(P = 0.05 \)). If the analysis with the SCORE was limited to persons aged 40 to 65 years old without vascular history, similar results were found even though they were borderline statistically significant. The B-coefficient for treatable vascular risk based on SCORE was -0.07 (95%CI, -0.16 to 0.02; \(P = 0.14 \)), and for treatable vascular risk x consecutive measurement number, -0.04 (95%CI, -0.07 to 0.00; \(P = 0.04 \)). Finally, if the analyses were repeated after exclusion of all APOE ε2 carriers, the longitudinal change in cognitive performance remained dependent on treatable vascular risk (\(P = 0.05 \)). Comparable to the analyses in the full study population, there was no interaction between treatable vascular risk and APOE ε4 carriership (\(P = 0.62 \)).
DISCUSSION

In this large community-based study, cognitive performance was negatively associated with treatable vascular risk over a follow-up period of almost six years in persons aged 35 to 82 years old. As reported previously, cognitive performance increased across the measurements probably due to the repeated exposure to the cognitive tests. However, the change in cognitive performance was dependent on treatable vascular risk and was lower if treatable vascular risk was higher. In addition, our data suggested that the effect of treatable vascular risk on cognitive performance was comparable to the effect of age.

Our results were comparable to the findings of the National Aging Study (NAS) and the two studies from the National Alzheimer Coordinating Center (NACC) cohort. In all studies, poor cognitive performance was associated with high treatable vascular risk independent of age. However, our study differs from these studies in study population, duration of follow-up, APOE ε4 carriership and type of treatable vascular risk score. Whereas the other studies included specific populations of elderly people, our study showed this association in a sample from the general population comprising both middle-aged and old persons. Furthermore, in the NAS and NACC studies the negative association of cognitive performance with treatable vascular risk was found over an average follow-up period of three years. Notably, our study adds that this association persisted after a period of almost six years. Comparable to one NACC study, our study also showed that the effect of treatable vascular risk factors on cognitive performance was not changed by APOE ε4 carriership whereas the two other studies did not evaluate the interaction of APOE ε4 carriership with treatable vascular risk. Moreover, in our study the treatable vascular risk was based on a general vascular risk score and not on a stroke-specific risk score which was used in the NAS and NACC studies. Therefore, vascular risk management programmes based on general vascular risk may not only prevent cardiac, cerebrovascular and peripheral vascular events but possibly also cognitive impairment. In addition, our findings from a study population of middle-aged and old persons support the hypothesis that the start of vascular risk management at late-life may be too late for effective prevention of cognitive impairment and dementia.

Interestingly, our data suggested that the effect of treatable vascular risk on cognitive performance was comparable to the effect of age. This is in agreement with the finding of the NAS study that the association between cognitive performance and treatable vascular risk was almost as strong as that between cognitive performance and age. As a result, it may be estimated that one-point decrement of treatable vascular risk per year can probably gain one-year in cognitive age. One-point decrement of treatable vascular risk can be
achieved by 10 mmHg reduction in systolic blood pressure or 1 mmol/L reduction in total cholesterol. These target values are usually achieved in clinical practice and randomized controlled trials (RCTs). Smiling cessation even results in three-points decrement of treatable vascular risk. Several studies did not only show that smoking is a risk factor for cognitive impairment, but also that smoking cessation decreased the risk of cognitive impairment to the risk of persons who have never smoked. So, smoking cessation is a good preventive measure and may compensate cognitive decline that occurs in three-years increment of age. Thus, a relevant decrease in vascular risk is probably feasible and is like to gain several years in cognitive age.

Recently, it was observed that over the past decades management of vascular risk factors has coincided with a decline in the prevalence of dementia. Our findings supported that vascular risk management may not only result in a lower incidence of cardiovascular disease but possibly also in a lower incidence of cognitive impairment and dementia. However, up till now, various RCTs have found inconsistent results about the effect of treatment of vascular risk factors on cognitive performance. Only the Syst-Eur trial suggested a protective effect of antihypertensive treatment on dementia in contrast to other trials. Similarly, intensified treatment of diabetes mellitus or cholesterol lowering treatment had no effect on cognitive performance in other large trials such as the ADVANCE study and the PROSPER trial. It is generally acknowledged that these negative findings may be explained by the use of a relatively insensitive cognitive test or short follow-up period. The FINGER and preDIVA trials did not have these shortcomings. The FINGER trial showed that a multidomain intervention including treatment of vascular risk factors during two years could improve or maintain cognitive performance. However, the effect of treatment of vascular risk factors on cognitive performance per se was unclear as the multidomain intervention also included cognitive training. On the other hand, the preDIVA trial did not show a positive effect of the multidomain vascular intervention on cognitive performance, possibly because there was a similar reduction in cardiovascular risk in the intervention and control group. Moreover, the trials included only old persons who were at risk for cognitive impairment. Considering our findings, starting vascular risk management in old age or risk groups may be too late for effective prevention of cognitive impairment and dementia.

Some limitations of this study have to be noted. First, our study had an observational design whereas it is generally acknowledged that observational studies may give results that differ from subsequent RCTs on the same questions, and may overestimate treatment
effects. However, RCTs with duration of four years or even longer seem hardly feasible due to high costs and the ethics of not treating vascular risk factors for a long time in placebo group. Therefore, observational studies with a long follow-up period are still essential to gain more insight in the consequence of increased vascular risk in middle-age. Second, cognitive performance was measured with two cognitive tests in this study which may not evaluate all cognitive domains. However, the RFFT measures a wide range of different cognitive abilities such as initiation, planning, divergent reasoning, and the ability to switch between different tasks. In addition, because of its wide score range, the RFFT is not limited by a ceiling or floor effect and, thereby, sensitive to subtle changes in cognitive performance in young and old persons. Furthermore, the VAT was added as a measure of memory. Although both tests are dependent on language and relatively specific measures of frontal network functions, semantic and episodic memory, these two tests combined reflect the cognitive domains commonly affected by Alzheimer’s disease and vascular dementia. Finally, in our study the cognitive performance increased across the measurements probably due to repeated exposure to the tests resulting in a practice effect. Practice effects can be ascribed to different factors such as memory of previous responses and learning test strategies, and could explain that people improve or maintain their cognitive performance despite a cognitive decline. However, in our study the association of cognitive performance with treatable vascular risk was adjusted for repeated consecutive measurement.

Despite these limitations, the present study also has several strengths. Our study was based on a large community-based cohort and included a large number of both middle-aged and elderly people whereas other longitudinal studies used selected populations of elderly. In addition, by using a (general) vascular risk score we explored the synergistic effects of vascular risk factors instead of focusing on a single risk factor. Risk scores have the advantage that multiple separate risk factors are weighted to generate optimal overall risk estimation for individual patients. Moreover, vascular risk scores are particularly valuable to identify increased vascular risk in middle-aged people because in this age group vascular risk factors often are only marginally elevated if considered separately but result in a clearly increased vascular risk if considered together.

In conclusion, in this large community-based cohort change in cognitive performance was associated with treatable vascular risk in both middle-aged and old people. Our data support the hypothesis that the start of vascular risk management at late-life may be too late for effective prevention of cognitive impairment and dementia.
References

1. Meng XF, Yu JT, Wang HF, Tan MS, Wang C, Tan CC, et al. Midlife vascular risk factors and the risk of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2014;42(4):1295-1310.

2. Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015 Oct;272:97-108.

3. Grodstein F. Cardiovascular risk factors and cognitive function. Alzheimers Dement 2007 Apr;3(2 Suppl):S16-22.

4. Qiu C, Fratiglioni L. A major role for cardiovascular burden in age-related cognitive decline. Nat Rev Cardiol 2015 May;12(5):267-277.

5. Satizabal CL, Beiser AS, Chouraki V, Chene G, Dufouil C, Seshadri S. Incidence of Dementia over Three Decades in the Framingham Heart Study. N Engl J Med 2016 Feb 11;374(6):523-532.

6. Harrison SL, Ding J, Tang EY, Siervo M, Robinson L, Jagger C, et al. Cardiovascular disease risk models and longitudinal changes in cognition: a systematic review. PLoS One 2014 Dec 5;9(12):e114431.

7. D’Agostino RB S, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008 Feb 12;117(6):743-753.

8. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke 1991 Mar;22(3):312-318.

9. Brady CB, Spiro A,3rd, McGlinchey-Berroth R, Milberg W, Gaziano JM. Stroke risk predicts verbal fluency decline in healthy older men: evidence from the normative aging study. J Gerontol B Psychol Sci Soc Sci 2001 Nov;56(6):P340-6.

10. Jefferson AL, Hohman TJ, Liu D, Haj-Hassan S, Gifford KA, Benson EM, et al. Adverse vascular risk is related to cognitive decline in older adults. J Alzheimers Dis 2015;44(4):1361-1373.

11. Viswanathan A, Macklin EA, Betensky R, Hyman B, Smith EE, Blacker D. The Influence of Vascular Risk Factors and Stroke on Cognition in Late Life: Analysis of the NACC Cohort. Alzheimer Dis Assoc Disord 2015 Oct-Dec;29(4):287-293.

12. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011 May;7(3):280-292.

13. Mahmoodi BK, Gansevoort RT, Veeger NJ, Matthews AG, Navis G, Hillege HL, et al. Microalbuminuria and risk of venous thromboembolism. JAMA 2009 May 6;301(17):1790-1797.

14. Lambers Heerspink HJ, Brantsma AH, de Zeeuw D, Bakker SJ, de Jong PE, Gansevoort RT, et al. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am J Epidemiol 2008 Oct 15;168(8):897-905.

15. van Eersel ME, Joosten H, Koerts J, Garssen RT, Slaets JP, Izaks GJ. Longitudinal study of performance on the Ruff Figural Fluency Test in persons aged 35 years or older. PLoS One 2015 Mar 23;10(3):e0121411.

16. Ruff R, Light R, Evans R. The Ruff Figural Fluency Test: A normative study with adults. Dev Neuropsychol 1987;3:37-51.

17. Ruff R. Ruff Figural Fluency Test: Professional manual. Lutz, FL: Psychological Assessment Resources, Inc 1996.

18. Izaks GJ, Joosten H, Koerts J, Gansevoort RT, Slaets JP. Reference data for the Ruff Figural Fluency Test stratified by age and educational level. PLoS One 2011 Feb 10;6(2):e17045.

19. Lindeboom J, Schmand B. Visual Association Test. Manual. PITS B V Leiden, The Netherlands 2003.

20. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003 Jan;26 Suppl 1:S5-20.
21. Visser ST, Schuiling-Veninga CC, Bos JH, de Jong-van den Berg LT, Postma MJ. The population-based prescription database IADB.nl: its development, usefulness in outcomes research and challenges. Expert Rev Pharmacoecon Outcomes Res 2013 Jun;13(3):285-292.

22. United Nations Educational, Scientific and Cultural Organization. International standard classification of education ISCED 1997. Re-edition 2006. Montreal, Canada: United Nations Educational, Scientific and Cultural Organization 2006: http://www.uis.unesco.org/Library/Documents/isced97-en.pdf. Accessed April 3, 2017.

23. Caselli RJ, Dueck AC, Locke DE, Sabbagh MN, Ahern GL, Rapcsak SZ, et al. Cerebrovascular risk factors and preclinical memory decline in healthy APOE epsilon4 homozygotes. Neurology 2011 Mar 22;76(12):1078-1084.

24. Izaks GJ, Gansevoort RT, van der Knaap AM, Navis G, Dullaart RP, Slaets JP. The association of APOE genotype with cognitive function in persons aged 35 years or older. PLoS One 2011;6(11):e27415.

25. Rasbash J, Charlton C, Browne WJ, Healy M, Cameron B. MLwiN Version 2.1. Centre for multilevel modelling, University of Bristol 2009: http://www.bristol.ac.uk/cmm/software/mlwin/. Accessed April 3, 2017.

26. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998 May 12;97(18):1837-1847

27. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003 Jun;24(11):987-1003.

28. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007 Jan;39(1):17-23.

29. Alzheimer’s Disease International. World Alzheimer report 2014. Dementia and risk reduction: An analysis of protective and modifiable factors. London. 2014:1-104: https://www.alz.co.uk/research/WorldAlzheimerReport2014.pdf. Accessed April 3, 2017.

30. Dorresteijn JA, Kaasenbrood L, Cook NR, van Kuijndijk RC, van der Graaf Y, Visseren FL, et al. How to translate clinical trial results into gain in healthy life expectancy for individual patients. BMJ 2016 Mar 30;352:i1548.

31. SPRINT Research Group, Wright JT,Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015 Nov 26;373(22):2103-2116.

32. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002 Nov 23;360(9346):1623-1630.

33. Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One 2015 Mar 12;10(3):e0118333.

34. Sabia S, Elbaz A, Dugravot A, Head J, Shipley M, Hagger-Johnson G, et al. Impact of smoking on cognitive decline in early old age: the Whitehall II cohort study. Arch Gen Psychiatry 2012 Jun;69(6):627-635.

35. Ligthart SA, Moll van Charante EP, Van Gool WA, Richard E. Treatment of cardiovascular risk factors to prevent cognitive decline and dementia: a systematic review. Vasc Health Risk Manag 2010 Sep 7;6:775-785.

36. Foret F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002 Oct 14;162(18):2046-2052.
37. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008 Jun 12;358(24):2560-2572.

38. Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015 Jun 6;385(9984):2255-2263.

39. Moll van Charante EP, Richard E, Eurelings LS, van Dalen JW, Ligthart SA, van Bussel EF, et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 2016 Aug 20;388(10046):797-805.

40. Hemkens LG, Contopoulos-Ioannidis DG, Ioannidis JP. Agreement of treatment effects for mortality from routinely collected data and subsequent randomized trials: meta-epidemiological survey. BMJ 2016 Feb 8;352:i493.

41. Calamia M, Markon K, Tranel D. Scoring higher the second time around: meta-analyses of practice effects in neuropsychological assessment. Clin Neuropsychol 2012 May;26(4):543-570.

42. Bartels C, Wegrzyn M, Wiedl A, Ackermann V, Ehrenreich H. Practice effects in healthy adults: a longitudinal study on frequent repetitive cognitive testing. BMC Neurosci 2010 Sep 16;11:118-2202-11-118.norms, and commentary. Oxford University Press; 2006.
