Multi-loop integrals made simple: applications to QCD processes

Johannes M. Henn
Institute for Advanced Study

based on [JMH, Phys. Rev. Lett. 110 (2013) 25]

supported in part by the Department of Energy grant DE-SC0009988
Marvin L. Goldberger Member

March 27, 2014 Moriond QCD
Towards automating NNLO calculations

• status scattering amplitudes & cross sections at NLO
 - efficient tools for generating & organizing integrands
 - one-loop integrals known
 - subtraction methods available
 - many automated programs

• at NNLO: bottleneck often missing analytic expressions for loop integrals

• this talk: new method for computing loop integrals
 [JMH, PRL 110 (2013) 25]
 - based on better understanding Feynman integrands and integrals
 - identifies appropriate class of functions (and computes them!)
 - makes analytic properties manifest (e.g. singularities)
 - especially useful for integrals that depend on several scales
 - for massive/massless, planar/non-planar integrals
 - uses differential equations
 [Kotikov, Phys. Lett. B254 (1991) 158
 Remiddi, Nuovo Cimento A110 (1997) 1435
 Gehrmann and Remiddi, NPB 580 (2000) 485]
Sample applications: two-scale problems

- massless 2-2 scattering to 3 loops

 non-planar integrals work in the same way

 physics motivation: scattering amplitudes in Yang-Mills & supergravity

- heavy quark effective theory

 all 3-loop cusp integrals, e.g.

 physics motivation: infrared divergences of massive scattering amplitudes

\[
s = (p_1 + p_2)^2 \quad t = (p_2 + p_3)^2 \quad x = t/s
\]

\[
\cos \phi = \frac{v_1 \cdot v_2}{\sqrt{v_1^2} \sqrt{v_2^2}}, \quad x = e^{i\phi}
\]
Sample applications: multi-scale problems

- integrals for Bhabha scattering

 \[J.M.H., V. Smirnov, JHEP 1311 (2013) 041 \]

- scattering amplitudes & cross sections in massive toy model

- vector boson production \(pp \rightarrow VV \)

\[J.M.H., S. Caron-Huot, to appear \]

similar integrals in QCD for finite top quark mass

- equal mass case: \[Gehrmann, Tancredi, Weihs, JHEP 1308 (2013) 070 \]
Key points of the method

• differential equations for master integrals \vec{f}
• crucial: choose convenient basis (systematic procedure) → makes solution trivial to obtain
• elegant description: Feynman integrals specified by:
 (1) set of ‘letters’ (related to singularities x_k)
 (2) set of constant matrices A_k

Example: one dimensionless variable x; $D = 4 - 2\epsilon$

$$\partial_x \vec{f}(x; \epsilon) = \epsilon \sum_k \frac{A_k}{x - x_k} \vec{f}(x; \epsilon)$$

• expansion to any order in ϵ is linear algebra answer: multiple polylogarithms of uniform weight (‘transcendentality’)
• asymptotic behavior $\vec{f}(x; \epsilon) \sim (x - x_k)^{\epsilon A_k} \vec{f}_0(\epsilon)$
• natural extension to multi-variable case
vector boson production \[pp \to VV \]

- planar integral families

\begin{align*}
\frac{S}{M_3^2} &= (1+x)(1+xy), \quad \frac{T}{M_3^2} = -xz, \quad \frac{M_4^2}{M_3^2} = x^2y \\
\end{align*}

physical region \[0 < x, \quad 0 < y < z < 1 \]

- differential equations

\[
\frac{df(x,y,z;\epsilon)}{d\epsilon} = \epsilon d\tilde{A}(x,y,z) f(x,y,z;\epsilon)
\]

\[
\tilde{A} = \sum_{i=1}^{15} \tilde{A}_{\alpha_i} \log(\alpha_i)
\]

- alphabet \[\alpha = \{x, y, z, 1+x, 1-y, 1-z, 1+xy, z-y, 1+y(1+x)-z, xy+z, \]
 \[1+x(1+y-z), 1+xz, 1+y-z, z+x(z-y)+xyz, z-y+yz+xyz\} \]

- solution in terms of multiple polylogarithms
Conclusions and outlook

• families of Feynman integrals described by iterated integrals

 analytic answer specified by:

 (1) “alphabet” for iterated integrals

 (2) constant matrices provide rules to form words

• many applications for LHC physics, e.g.

 - amplitudes involving top quarks
 - vector boson production
 - ... (insert your wish here)
 - outlook: library for NNLO Feynman integrals

• interesting mathematics

 - Fuchsian differential equations; monodromies, asymptotic limits
 - extension to elliptic functions
Curious?

Lecture notes for this method available in chapter 3.8 of

Scattering Amplitudes in Gauge Theories