Microwave characterisation of CaF$_2$ at cryogenic temperatures using a dielectric resonator technique

Mohan V. Jacoba,*, Janina E. Mazierskaa, Dimitri O. Ledenyova, Jerzy Krupkab

aElectrical and Computer Engineering, School of Engineering, James Cook University, Townsville, QLD 4811, Australia
bInstytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warszawa, Poland

Abstract

Properties of calcium fluoride (CaF$_2$) have been well researched at UV, visible and IR range of frequencies but not at microwave frequencies. In this work we report the loss tangent and the real part of relative permittivity ε_r of CaF$_2$ measured in the temperature range 15–81 K and at frequency 29.25 GHz. The tanδ and ε_r were determined by measurements of the resonant frequency and the Q_0-factor of a TE$_{011}$ mode cylindrical copper cavity with superconducting plates containing the sample under test. The measured ε_r of CaF$_2$ was found to change from 6.484 to 6.505, and the tanδ from 3.1×10^{-6} to 22.7×10^{-6} when temperature was varied from 15 to 81 K. Due to the low losses CaF$_2$ can be useful in construction of high Q-factor microwave circuits and devices operating at cryogenic temperatures.

Keywords: CaF$_2$; Microwave ceramics; Resonators; Dielectric properties

1. Introduction

Calcium fluoride crystals are used in many optical applications, including mirror substrates for UV laser systems, windows, lenses and prisms for ultraviolet, visible and infrared frequencies. CaF$_2$ is grown by the Stockbarger technique or the Bridgman method in diameter up to about 200 mm. Calcium Fluoride (VUV grade) crystals have the transmission range from 0.19 to 7.2 μm and low refractive index from about 1.35 to 1.51 through this range.1 IR grade Calcium Fluoride is transparent up to 12 μm. Degradation due to moisture in the atmosphere is minimal, and polished surfaces may be expected to withstand several years exposure to normal atmospheric conditions. Due to its low refractive index, Calcium Fluoride can be used without an anti-reflective coating. The maximum temperature CaF$_2$ can tolerate is 800 °C in dry atmosphere. Low solubility and wide transmission makes this material useful for many applications, including mirror substrates for UV laser systems, windows, lenses and prisms for UV and IR applications.1

Due to the low relative permittivity and low losses, calcium fluoride can find applications in microwave planar circuits as a substrate material. Another possibility could be a hybrid high temperature superconductor (HTS)—silicon technology for microwave circuits as investigated in Refs. 2 and 3. As silicon atoms diffuse into HTS films during annealing at elevated temperatures resulting in deteriorating superconducting properties, CaF$_2$ was investigated for its usefulness to overcome this difficulty due to its chemical stability and structural and thermal compatibility with Si and GaAs.

Contrary to extensive data available for CaF$_2$ at optical frequencies, there is little data on microwave properties of this material, especially at cryogenic temperatures. In this paper we present results of precise measurements of the permittivity and loss tangent of CaF$_2$ at cryogenic temperatures from 15 to 81 K using the dielectric resonator technique. We have used the multifrequency Transmission Mode Q-Factor (TMQF) technique4 for data processing to ensure high accuracy of calculated values of ε_r and tanδ. Also the thermal expansion phenomenon of the material was taken into account in the calculations.

2. Dielectric resonator measurement method

The superconducting dielectric resonator technique is a modification of the metallic dielectric resonator6 and has recently been used to characterise various low loss single crystal and polycrystalline dielectric materials at microwave frequencies.8–10 The Hakki-Coleman version of the dielectric resonator we used for the measurements

doi:10.1016/S0955-2219(03)00183-3
of CaF$_2$ is shown in Fig. 1. The resonator consisted of the copper cavity of diameter of 9.5 and 3 mm height with superconducting endplates. The CaF$_2$ sample was machined into a cylinder with the aspect ratio (diameter to height) equal to 1.67, with 3.1 mm height and 5.0 mm diameter.

The real part of relative permittivity ε_r were determined from measurements of the resonant frequency of the resonator with the CaF$_2$ sample as the first root of the following transcendental equation11 using software SUP12:12

$$k_{\rho_1} J_0(k_{\rho_1}b) F_1(b) + k_{\rho_2} J_1(k_{\rho_2}b) F_0(b) = 0$$

(1)

where:

$$F_0(\rho) = I_0(k_{\rho_2}\rho) + K_0(k_{\rho_2}\rho) \frac{I_1(k_{\rho_2}\rho)}{K_1(k_{\rho_2}\rho)}$$

$$F_1(\rho) = -I_1(k_{\rho_2}\rho) + K_1(k_{\rho_2}\rho) \frac{I_1(k_{\rho_2}\rho)}{K_1(k_{\rho_2}\rho)}$$

$$k_{\rho_1}^2 = \frac{\omega^2 \varepsilon_r}{c^2} - k_z^2, \quad k_{\rho_2}^2 = k_z^2 - \frac{\omega^2 \varepsilon_r}{c^2}, \quad k_z = \pi / L$$

and ω is the angular frequency ($2\pi f$), c is velocity of light, ε_r is free space permeability, ε_r is real relative permittivity of the sample and J_0, J_1, I_0, I_1, K_0, K_1, denote corresponding Bessel and Hankel functions.

The loss tangent $\tan \delta$ of CaF$_2$ was computed from the measured Q_0-factor of the resonator on the basis of the well known loss equation,11 namely:

$$\tan \delta = \frac{1}{\rho_e} \left[\frac{1}{Q_0} - \frac{R_{SS}}{A_S} - \frac{R_{SM}}{A_M} \right]$$

(2)

where Q_0 is the unloaded Q-factor of the entire resonant structure, R_{SS} and R_{SM} are the surface resistance of the superconducting and the metallic parts of the cavity respectively, A_S and A_M are the geometric factors of the superconducting part and metallic parts of the cavity and ρ_e is the electric energy filling factor.

Geometric factors A_S, A_M, and ρ_e to be used in (2) were computed using incremental frequency rules as follows:11

$$A_S = \frac{\omega^2 \mu_0}{4} \frac{\partial \omega}{\partial L}$$

(3)

$$A_M = \frac{\omega^2 \mu_0}{2} \frac{\partial \omega}{\partial a}$$

(4)

$$\rho_e = \frac{1}{2} \frac{\partial \omega}{\partial \varepsilon_r} \frac{\varepsilon_r}{\omega}$$

(5)

Computed values of the geometrical factors and the energy filling factors are given in Table 1.

Values of the surface resistance HTS endplates (R_{SS}) and copper walls (R_{SM}), necessary for Eq. (2) were measured in the same copper cavity but with the sapphire rod and results are given in Section 3.

3. Measurements of microwave properties of CaF$_2$

The measurement system we used for microwave characterisation of the calcium fluoride sample is shown in Ref. 10. The system consisted of Network Analyser (HP 8722C), closed cycle refrigerator (APD DE-204), temperature controller (LTC-10), vacuum Dewar, a PC and the Hakki-Coleman dielectric resonator in transmission mode. The CaF$_2$ sample was grown with the Bridgman method by Ref. 13.

3.1. Measurements of R_{SS} and R_{SM} of the Hakki-Coleman cavity

As mentioned in Section 2 the surface resistances R_{SM} and R_{SS} of the cavity needed to be measured first. To obtain precise values of R_{SM} we have measured S-parameters (S_{21}, S_{11}, and S_{22}) around the resonance of the Hakki-Coleman resonator with the sapphire rod and copper cavity. The measured data sets were processed

Dielectric rod	CaF$_2$	Sapphire
Frequency	29.3 GHz	24.65 GHz
A_{SM}	22,029	22,319
A_S	329.8	280.6
ρ_e	0.96	0.97
with the Transmission Mode Q-Factor Technique3,4 to obtain the loaded Q_L-factor and coupling coefficients as mentioned in Section 1. The TMQF method accounts for noise, delay due to uncalibrated transmission lines and its frequency dependence, and crosstalk in measurement data and hence provides accurate values of Q_L and the coupling coefficients β_1 and β_2. The unloaded Q_0-factor was subsequently calculated using the exact equation,14

$$Q_0 = Q_L(1 + \beta_1 + \beta_2)$$ (6)

Assuming loss tangent of the sapphire rod as 10^{-7}, the surface resistance of copper R_{SM} was calculated with Ref. 11 based on:

$$R_{SM} = A_M \left[\frac{1}{Q_0} - \rho_c \tan \delta \right]$$ (7)

where A_M is the metallic geometric factor for the copper cavity.

The surface resistance R_{SS} was measured with the sapphire rod in the copper cavity with end walls comprising of a pair of high quality YBa$_2$Cu$_3$O$_7$ thin films and calculated with Ref. 12 based on:

$$R_{SS} = A_S \left[\frac{1}{Q_0} - \frac{R_{SM}}{A_M} - \rho_c \tan \delta \right]$$ (8)

Measured dependence of surface resistances, R_{SS} and R_{SM}, with temperature at frequency of 24.6 GHz are presented in Fig. 2.

As measurements of calcium fluoride were performed at a frequency of approximately 29.25 GHz, not at 24.6 GHz, the measured values of R_{SM} and R_{SS} were scaled assuming the square root frequency dependence for R_{SM} of copper and the frequency square law for R_{SS} of superconducting endplates.

3.2. Measurements of microwave properties of calcium fluoride

The Hakki-Coleman resonator with HTS endplates containing the CaF$_2$ sample was cooled from room temperature to approximately 12 K, and the resonant frequency of 29.25 GHz was obtained. The S_{21}, S_{11} and S_{22} parameters data sets around the resonance were measured as a function of increasing temperature from 13 to 81 K, and the Q_0-factor and f_{res} were calculated using the TMQF technique and Eq. (6) as before. The real relative permittivity ε_r of the calcium fluoride sample was calculated from the measured resonant frequency using Eq. (1). Variation of dimensions of the CaF$_2$ sample with temperature as shown in Fig. 3 were taken into consideration in the computations of ε_r using the temperature dependence of the linear thermal expansion coefficient after Ref. 15 as given in Fig. 4.
The real part of relative permittivity \(\varepsilon_r \) of the CaF\(_2\) sample measured at temperatures from 15 to 81 K is shown in Fig. 5. The \(\varepsilon_r \) exhibited the magnitude of approximately 6.5 and increased with the temperature by approximately 0.33%; from 6.483 to 6.505.

The loss tangent of the CaF\(_2\) sample was calculated using (2) from the measured unloaded \(Q_0 \)-factor. The measured temperature dependence of \(\tan\delta \) is shown in Fig. 6. The loss tangent showed an increase of 86% in the temperature range from 15 to 81 K; at temperatures of 15 and 81 K, the measured \(\tan\delta \) of CaF\(_2\) was 3.1 \times 10^{-6} \text{ and } 2.27 \times 10^{-5}, \text{ respectively. Using a linear scaling, the calculated loss tangent of CaF}_2 \text{ at temperature of 15 K and frequency of 10 GHz is only 1.05 \times 10^{-6}. Our results show that CaF}_2 \text{ exhibits very low losses at microwave frequencies and cryogenic temperatures, comparable to losses in Teflon.}^9

4. Error analysis of measured parameters \(\varepsilon_r \) and \(\tan\delta \) of CaF\(_2\)

The accuracy of the measurement of the real part of permittivity using the dielectric resonator depends on the precision of the measurements of the resonant frequency and uncertainty in dimensions of the dielectric sample. We measured \(f_{\text{res}} \) with a resolution of 1 Hz using the Network Analyser HP 8722C. Hence to assess uncertainty in \(\varepsilon_r \) measurements the error analysis was performed assuming the uncertainty in the dimensions of the sample of 0.2 and 0.5% using the software SUP12.11 Results of the error analysis are presented in Fig. 7 and show that the relative error \(\Delta \varepsilon_r \) is approximately twice the uncertainty in dimensions.

The uncertainty in the loss tangent measurements is caused by the uncertainty in the measured unloaded \(Q_0 \)-factor values, \(R_{\text{SS}}, R_{\text{SM}} \) and geometrical factors. The Most Probable Error (MPE) in \(\tan\delta \) of CaF\(_2\) can be expressed after Ref. 10 as:

\[
\nabla_r \tan\delta = \left[\frac{\Delta \rho}{\rho_r} \right]^2 + \left(-\frac{1}{Q_0 \rho_r \tan\delta} \frac{\Delta Q_0}{Q_0} \right)^2
\]

\[
\quad + \left(\frac{R_{\text{SS}}}{A_S \rho_r \tan\delta} \left(\frac{\Delta R_{\text{SS}}}{R_{\text{SS}}} + \frac{\Delta A_S}{A_S} \right) \right)^2
\]

\[
\quad + \left(\frac{R_{\text{SM}}}{A_M \rho_r \tan\delta} \left(\frac{\Delta R_{\text{SM}}}{R_{\text{SM}}} + \frac{\Delta A_M}{A_M} \right) \right)^2 \left[1 + \left(\frac{\Delta A_r}{A_r} \right) \right]^{1/2}
\]

Fig. 5. Measured real part of permittivity of CaF\(_2\) as a function of temperature at 29.25 GHz.

Fig. 6. Measured loss tangents of CaF\(_2\) as a function of temperature at 29.25 GHz.

Fig. 7. Most probable error in \(\varepsilon_r \) versus temperature for 0.2 and 0.5% uncertainty in samples’ dimensions.
To assess errors in our measurements of tanδ we assumed uncertainties in R_{SS} and R_{SM} of 2%, and 0.5% for uncertainties in A_S, A_M and ρ_e. Calculated errors in measured loss tangent values of CeF$_2$ for assumed uncertainties in the Q_0-factor measurements of 0, 0.5, 1 and 2% are presented in Fig. 8. The calculated MPE in tanδ for perfect Q_0-factor measurements is approximately 1%. We assess the uncertainty in the Q_0-factor of our measurement system as 1%. Hence the most probable error in tanδ of CaF$_2$ (which varied from 3.1×10^{-6} to 22.7×10^{-6}) is between 1.7 and 3%.

5. Conclusions

The real relative permittivity and loss tangent of CaF$_2$ have been measured at frequency of 29.25 GHz at cryogenic temperatures using the Hakki-Coleman dielectric resonator with superconducting endplates. The recently developed Transmission Mode Q-Factor technique was used for data processing to remove noise, crosstalk and delay due to un-calibrated cable and connectors and to ensure high precision of measurements. Calcium fluoride was found to exhibit ε_r varying from 6.483 to 6.505, and tanδ from 3.1×10^{-6} to 22.7×10^{-6} in the temperature range from 15 to 81 K as given in Table 2. On the basis of performed error analysis we assessed the uncertainty in the measurements of ε_r and tanδ to be below 0.4 and 3%, respectively in the temperature range from 13 to 81 K. Our measurements have shown that CaF$_2$ is a very low loss material at cryogenic temperatures at frequency of 29 GHz. Hence, apart from optical applications, calcium fluoride can be useful in cryogenic microwave circuits where very low tanδ and resistance to atmospheric conditions are needed and the real relative permittivity of approximately 6.5 is adequate.

Acknowledgements

This work is done under the financial support of ARC-Large grant (A00105170) James Cook University. The first author acknowledges the James Cook University Post Doctoral Fellowship and the MRG.

References

1. Del Mar Ventures. Available: www.sciner.com/OpticsLand/ CaF2.htm.
2. Kwon, O. W., Langley, B. W., Pease, R. F. W. and Beasley, M. R., IEEE Electron Devices Lett., 1987, EDL 8, 582.
3. Bhagwai, S. S., Bhangale, A. R., Patil, J. M., Shirodkar, V. S., Pinto, R., Apte, P. R. and Pai, S. P., Growth of CaF$_2$ buffer on Si using low energy cluster beam deposition technique and study of its properties. Brazilian J. Physics, 1999, 29, 2.
4. Leong, K. and Mazierska, J., Accurate measurements of surface resistance of HTS films using a novel transmission mode Q-factor technique. J. Superconductivity, 2001, 14, 93–103.
5. Leong, K. and Mazierska, J., Precise measurements of the Q-factor of transmission mode dielectric resonators: accounting for noise, crosstalk, coupling loss and reactance, and uncalibrated transmission lines. IEEE Trans. MTT, 2002, 50, 2115–2127.
6. Kobayashi, Y. and Katoh, M., Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. MTT, 1985, 33, 586–592.
7. Chen, L., Ong, C. K. and Tan, B. T. G., Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics. IEEE Trans. Instrumentation and Measurement, 1999, 48, 1031–1036.
8. Krupka, J., Geyer, R. G., Kuhn, M. and Hinken, J., Dielectric properties of single crystal Al$_2$O$_3$, LaAlO$_3$, NdGaO$_3$, SrTiO$_3$, and MgO at cryogenic temperatures and Microwave frequencies. IEEE Trans. MTT, 1994, 42, 1886–1890.
9. Krupka, J., Derzakowski, K., Tobar, M. E., Hartnett, J. and Geyer, R. G., Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Measurement Sci. Tech., 1999, 10, 387–392.
10. Jacob, M. V., Mazierska, J., Leong, K. and Krupka, J., Microwave properties of low loss polymers at cryogenic temperatures. IEEE Trans. MTT, 2002, 50, 474–480.
11. Krupka, J., Klinger, M., Kuhn, M., Baranyak, A., Stiller, M., Hinken, J. and Modelski, J., Surface resistance measurements of HTS films by means of sapphire dielectric resonators. *IEEE Trans. Appl. Superconductivity*, 1993, 3, 3043–3048.

12. Krupka, J. Software in Fortran to calculate surface resistance of superconductors or copper, permittivity and loss tangent of dielectric materials, resonant frequency of differing TE and TM modes, 2000.

13. The Institute of Materials Research and Technology, Warsaw, Poland.

14. Ginzton, E. L. *Microwave measurements*. McGraw Hill Book Co., New York, p. 195.

15. Touloikian Y. S., Kirby R. K., Taylor R. E. and Lee T. Y. R. Thermal expansion—nonmetallic solids. *Thermophysical Properties of Matter Data Series*, vol. 13, IFI/Plenum, New York, 1977.