I. INTRODUCTION

Supersymmetry (SUSY) [1–7] is a popular extension of the standard model, which offers a solution to the hierarchy problem [8] by introducing a supersymmetric partner for each standard model particle. In models with conserved R-parity [9,10], as are considered here, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable. If the LSP is weakly interacting, it escapes without detection, resulting in events with an imbalance \(\vec{p}_{T}^{\text{miss}} \) in transverse momentum. Models of SUSY with gauge-mediated symmetry breaking [11–17] predict that the gravitino (\(\tilde{G} \)) is the LSP. If the next-to-lightest SUSY particle is a neutralino (\(\tilde{\chi}_1^0 \)) with a bino or wino component, photons with large transverse momenta \((p_T) \) may be produced in \(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G} \) decays. The event contains jets if the \(\tilde{\chi}_1^0 \) originates from the cascade decay of a strongly coupled SUSY particle (a squark or a gluino).

In this paper, we present two searches for gauge-mediated SUSY particles in proton-proton (\(pp \)) collisions: a search for events with at least one isolated high-\(p_T \) photon and at least two jets, and a search for events with at least two isolated high-\(p_T \) photons and at least one jet. The discriminating variables are \(E_T^{\text{miss}} \) for the single-photon analysis, and the razor variables \(M_R \) and \(R^2 \) [18,19] for the double-photon analysis, where \(E_T^{\text{miss}} \) is the magnitude of \(\vec{p}_{T}^{\text{miss}} \). These studies are based on a sample of \(pp \) collision events collected with the CMS experiment at the CERN LHC at a center-of-mass energy of 8 TeV. The integrated luminosity of the data sample is 19.7 fb\(^{-1}\).

Searches for new physics with similar signatures were previously reported by the ATLAS and CMS collaborations at \(\sqrt{s} = 7 \) TeV, using samples of data no larger than around 5 fb\(^{-1}\) [20–23]. No evidence for a signal was found, and models with production cross sections larger than \(\approx 10 \) fb\(^{-1}\) were excluded in the context of general gauge-mediation (GGM) SUSY scenarios [24–29].

This paper is organized as follows. In Sec. II we describe the CMS detector, in Sec. III the benchmark signal models, and in Sec. IV the part of the event reconstruction strategy that is common to the two analyses. The specific aspects of the single- and double-photon searches are discussed in Secs. V and VI, respectively. The results of the analyses are presented in Sec. VIII. A summary is given in Sec. IX.

II. CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end cap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry completes the coverage provided by the barrel and end cap detectors.

Events are recorded using a trigger that requires the presence of at least one high-energy photon. This trigger is utilized both for the selection of signal events, and for the selection of control samples used for the background determination. The specific trigger requirements for the two analyses are described below. Corrections are applied...
to account for trigger inefficiencies, which are evaluated using samples of data collected with orthogonal trigger conditions. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [30].

III. SUSY BENCHMARK MODELS

The two searches are interpreted in the context of GGM SUSY scenarios [24–29], and in terms of simplified model spectra (SMS) scenarios [31–34] inspired by GGM models. In these scenarios, R-parity is conserved and the LSP is a gravitino with negligible mass. Four models are considered:

GGMbino model.—In this model, squarks (\tilde{q}) and gluinos (\tilde{g}) are produced and decay to a final state with jets and a bino-like $\tilde{\chi}^0_1$. This production process dominates over electroweak production in the squark- and gluino-mass region accessible to the analyses. The $\tilde{\chi}^0_1$ mass is set to 375 GeV, leading to a $\tilde{\chi}^0_1 \to \tilde{g}\gamma$ branching fraction of about 80% [26]. The events are examined as a function of the squark and gluino masses. All other SUSY particles have masses set to 5 TeV, which renders them too heavy to participate in the interactions. In most cases, the final state contains two photons, jets, and E_T^{miss}.

GGMwino model.—This model is similar to the GGMbino model, except that it contains mass-degenerate wino-like $\tilde{\chi}^0_1$ and $\tilde{\chi}^+_1$ particles instead of a bino-like $\tilde{\chi}^0_1$. The common mass of the $\tilde{\chi}^0_1$ and $\tilde{\chi}^+_1$ is set to 375 GeV. The final state contains a $\gamma\gamma$, γV, or VV combination in addition to jets and E_T^{miss}. All decays occur with a branching fraction of 100%. The final state contains at least one photon, jets, and E_T^{miss}.

T5gg model.—This SMS model is based on gluino pair production, with the gluinos undergoing a three-body decay to $q\tilde{g}\tilde{g}$, followed by $\tilde{g}\tilde{g} \to Z\gamma$ or $Z\tilde{W}$. All decays occur with a branching fraction of 100%. The final state contains at least two photons, jets, and E_T^{miss}.

T5wg model.—This SMS model is also based on gluino pair production, with one gluino undergoing a three-body decay to $q\tilde{g}\tilde{g}$, followed by $\tilde{g} \tilde{g} \to Z\gamma$, and the other gluino undergoing a three-body decay to $q\tilde{g}\tilde{g}$, followed by $\tilde{g} \tilde{g} \to Z\tilde{W}$. All decays occur with a branching fraction of 100%. The final state contains at least one photon, jets, and E_T^{miss}.

Typical Feynman diagrams corresponding to these processes are shown in Fig. 1. Note that for the two GGM models, the events can proceed through the production of gluino-gluino, gluino-squark, or squark-squark pairs.

Signal events for the GGM models are simulated using the PYTHIA 6 [35] event generator. The squark and gluino masses are varied between 400 and 2000 GeV. Eight mass-degenerate squarks of different flavor (u, d, s, and c) and chirality (left and right) are considered. The production cross sections are normalized to next-to-leading order (NLO) in quantum chromodynamics, determined using the PROSPINO [36] program, and is dominated by gluino-gluino, gluino-squark, and squark-squark production.

The SMS signal events are simulated with the MadGraph 5 [37] Monte Carlo (MC) event generator in association with

![Feynman Diagrams](image_url)

FIG. 1. Typical Feynman diagrams for the general gauge-mediation model with bino- (top left) and wino-like (top right) neutralino mixing scenarios. Here, the $\tilde{\chi}^0_1$ can decay to $G\gamma$ or GZ, with the branching fraction dependent on the $\tilde{\chi}^0_1$ mass. The diagrams for the T5gg (bottom left) and T5wg (bottom right) simplified model spectra are also shown.
up to two additional partons. The decays of SUSY particles, the parton showers, and the hadronization of partons, are described using the PYTHIA6 program. Matching of the parton shower with the MADGRAPH matrix element calculation is performed using the MLM [38] procedure. The gluino pair-production cross section is described to NLO leading-logarithm calculations. All SUSY particles except the gluino, squark, LSP, and \(\tilde{\chi}_1^- \) states are assumed to be too heavy to participate in the interactions. The NLO + NLL cross section and the associated theoretical uncertainty [43] are taken as a reference to derive exclusion limits on SUSY particle masses. Gluino masses of 400 (800) to 1600 GeV, and \(\tilde{\chi}_1^- \) masses up to 1575 GeV, are probed in the T5wg (T5gg) model.

For all the signal models, detector effects are simulated through a fast simulation of the CMS experiment [44].

IV. EVENT RECONSTRUCTION

The events selected in this study are required to have at least one high quality reconstructed interaction vertex. The primary vertex is defined as the one with the highest sum of the \(p_T^2 \) values of the associated tracks. A set of detector- and beam-related noise cleaning algorithms is applied to remove events with spurious signals, which can mimic signal events with high energetic particles or large \(E_T^{\text{miss}} \) [45,46].

Events are reconstructed using the particle-flow algorithm [47,48], which combines information from various detector components to identify all particles in the event. Individual particles are reconstructed and classified in five categories: muons, electrons, photons, charged hadrons, and neutral hadrons. All neutral particles, and charged particles with a track pointing to the primary vertex, are clustered into jets using the anti-\(k_T \) clustering algorithm [49], as implemented in the Fast Jet package [50], with a distance parameter of 0.5. The momenta of the jets are corrected for the response of the detector and for the effects of multiple interactions in the same bunch crossing (pileup) [51]. Jets are required to satisfy loose quality criteria that remove candidates caused by detector noise.

Photons are reconstructed from clusters of energy in the ECAL [52]. The lateral distribution of the cluster energy is required to be consistent with that expected from a photon, and the energy detected in the HCAL behind the photon shower cannot exceed 5% of the ECAL cluster energy. A veto is applied to photon candidates that match hit patterns consistent with a track in the pixel detector (pixel seeds), to reduce spurious photon candidates originating from electrons. Spurious photon candidates originating from quark and gluon jets are suppressed by requiring each photon candidate to be isolated from other reconstructed particles. In a cone of radius \(\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3 \) around the candidate’s direction, the scalar \(p_T \) sums of charged hadrons (\(I_x \)), neutral hadrons (\(I_n \)), and other electromagnetic objects (\(I_y \)) are separately formed, excluding the contribution from the candidate itself. Each momentum sum is corrected for the pileup contribution, computed for each event from the estimated energy density in the (\(\eta, \phi \)) plane. Selected photons are required to be isolated according to criteria imposed on \(I_x \), \(I_n \), and \(I_y \) as defined in Ref. [52].

V. SINGLE-PHOTON SEARCH

The single-photon analysis is based on a trigger requiring the presence of at least one photon candidate with \(p_T \geq 70 \) GeV. The trigger also requires \(H_T \geq 400 \) GeV, where \(H_T \) is the scalar sum of jet \(p_T \) values for jets with \(p_T \geq 40 \) GeV and \(|\eta| \leq 3 \), including photons that are misreconstructed as jets.

In the subsequent analysis, we make use of the variable \(p_T^* \), which is defined by considering the photon candidate and nearby reconstructed particles, clustered as a jet as described in Sec. IV. If a jet (possibly including the photon) is reconstructed within \(\Delta R < 0.2 \) of the photon candidate and the \(p_T \) value of the jet is less than 3 times that of the photon candidate itself, it is referred to as the “photon jet.” If such a jet is found, \(p_T^* \) is defined as the \(p_T \) value of the photon jet. Otherwise, \(p_T^* \) is the \(p_T \) value of the photon candidate. We require photon candidates to satisfy \(p_T^* > 110 \) GeV and \(|\eta| < 1.44 \). Also, in the subsequent analysis, we make use of the variable \(H_T^\gamma \), defined as for \(H_T \) in the previous paragraph but including the \(p_T^* \) values of all selected photon candidates. The variables \(p_T^* \) and \(H_T^\gamma \) reduce differences between photon candidates selected with different isolation requirements compared to the unmodified variables \(p_T \) and \(H_T \). We require events to satisfy \(H_T^\gamma \geq 500 \) GeV. The sample of events with isolated photons so selected is referred to as the \(\gamma_{\text{tight}} \) sample. The trigger efficiency for the selected events to enter the sample is determined to be 97%, independent of \(p_T^* \) and \(H_T^\gamma \).

We require at least two jets with \(p_T \geq 30 \) GeV and \(|\eta| \leq 2.5 \). The jets must be separated by \(\Delta R \geq 0.3 \) from all photon candidates, to prevent double counting. In addition, the requirement \(E_T^{\text{miss}} \geq 100 \) GeV is imposed and events with isolated electrons or isolated muons are vetoed. The selection is summarized in Table I. Note that 0.16% of the selected events contain more than one photon candidate.

The relevant sources of background to the single-photon search are:

(i) multijet events with large \(E_T^{\text{miss}} \), originating from the mismeasured momenta of some of the reconstructed jets. This class of events contains both genuine photons and spurious photon candidates from jets. This class is by far the largest contribution to the background.

(ii) events with genuine \(E_T^{\text{miss}} \) originating from the leptonic decay of W bosons, both directly produced
TABLE I. Summary of the single-photon analysis selection criteria.

Selection criteria	γ tight region	γ loose region	γ pixel control region				
Isolation requirement	Tight	Loose	Tight				
Pixel seed	Vetoed	Vetoed	Required				
Trigger	$p_T^\gamma > 70 \text{ GeV}, H_T > 400 \text{ GeV}$ (using $p_T^{\text{miss}} > 40 \text{ GeV}, \eta \leq 3.0$)	≥ 1, $p_T^\gamma > 110 \text{ GeV},	\eta	\leq 1.44$	≥ 2, $p_T^{\text{miss.1,2}} > 30 \text{ GeV},	\eta	\leq 2.5$
Photon(s)							
Jet(s)	H_T^γ		$p_T^{\text{miss.1,2}} > 500 \text{ GeV}$ (using $p_T^{\text{miss.1,2}} > 40 \text{ GeV},	\eta	\leq 3.0$)		
Isolated e,μ	veto, $p_T > 15 \text{ GeV},	\eta	< 2.5(2.4)$				
E^{miss}_T	$E^{\text{miss}}_T \geq 100 \text{ GeV}$ (six ranges in E^{miss}_T)						

and originating from top quark decays, which we refer to as electroweak (EW) background.

(iii) rare processes with initial- or final-state photon radiation (ISR/FSR), such as γW, γZ (especially $\gamma Z \rightarrow \gamma \mu\mu$), and $\gamma t\bar{t}$ production.

The kinematic properties of the multijet background are estimated from a control sample of photon candidates with isolation-variable values (I_γ, I_μ, I_τ) too large to satisfy the signal photon selection. We refer to these events as the γ loose sample. Photon candidates of this kind typically originate from jets with anomalous fractions of energy deposited in the ECAL. Other than the orthogonal requirement of a γ loose rather than a γ tight candidate, events in this control sample are selected with the same requirements as the γ tight sample, as summarized in Table I. Despite the different isolation requirement, this sample has properties similar to those of the γ tight sample, due to the use of p_T^γ rather than photon p_T in the definition of the event kinematic variables. Moreover, events in the γ loose control sample are corrected for a residual difference with respect to the γ tight sample in the distributions of p_T^γ and hadronic recoil p_T, estimated from events with $E^{\text{miss}}_T < 100 \text{ GeV}$. The corrected distribution of a given kinematic property (e.g., E^{miss}_T) for γ loose events provides an estimate of the corresponding distribution for γ tight events. The uncertainty in the correction factors, propagated to the prediction, is fully correlated among bins in the signal region and is treated as a systematic uncertainty in the background yield. The limited statistical precision of the control sample dominates the total systematic uncertainty. Figure 2 (left) shows the E^{miss}_T distribution from the γ tight sample and the corresponding prediction from the γ loose sample, for simulated multijet and γ + jet events. No discrepancy is observed within the quoted uncertainties.

The EW background is characterized by the presence of an electron misidentified as a photon. The kinematic properties of this background are evaluated from a second control sample, denoted the γ pixel sample, defined by requiring at least one pixel seed matching the photon candidate but otherwise using the γ tight selection criteria, as summarized in Table I. Events in the γ pixel sample are weighted by the probability $f_{e \rightarrow \gamma}$ for an electron to be
misidentified as a photon, which is measured as a function of the γ candidate p_T, the number of tracks associated with the primary vertex, and the number of reconstructed vertices in an event by determining the rate of events with reconstructed $e\gamma_{\text{pixel}}$ and $e\gamma_{\text{tight}}$ combinations in a sample of $Z \rightarrow e^+e^-$ events. The event-by-event misidentification rate is about 1.5%, with a weak dependence on the number of vertices. A systematic uncertainty of 11% is assigned to $f_{\text{e}\gamma}$ to account for the uncertainty in the shape of the function and for differences between the control sample in which the misidentification rate is calculated and the control sample to which it is applied. The predicted E_T^{miss} distribution for the EW background, obtained from a simulated sample of W boson and $t\bar{t}$ events, is shown in Fig. 2 (right) in comparison with the results from the direct simulation of events with γ_{tight} originating from electrons. The distributions agree within the quoted uncertainties.

The contribution of ISR/FSR background events is estimated from simulation using leading-order results from the MadGraph 5 MC event generator with up to two additional partons, scaled by a factor of 1.50 ± 0.75 including NLO corrections determined with the MCFM [53,54] program.

The measured E_T^{miss} spectrum in the γ_{tight} sample is shown in Fig. 3 in comparison with the predicted standard model background. A SUSY signal would appear as an excess at large E_T^{miss} above the standard model expectation. Figure 3 includes, as an example, the simulated distribution for a benchmark GGMwino model with a squark mass of 1700 GeV, a gluino mass of 720 GeV, and a total NLO cross section of 0.32 pb.

For purposes of interpretation, we divide the data into six bins of E_T^{miss}, indicated in Table II. For each bin, Table II lists the number of observed events, the number of predicted standard model events, the acceptance for the benchmark signal model, and the number of background events introduced by the predicted signal contributions to the control regions, where this latter quantity is normalized to the corresponding signal yield.

No significant excess of events is observed. An exclusion limit on the signal yield is derived at 95% confidence level (CL), using the CLs method [55–57]. For a given signal hypothesis, the six E_T^{miss} signal regions are combined in a multichannel counting experiment to derive an upper limit on the production cross section. The results, presented in Sec. VIII, account for the possible contribution of signal events to the two control samples, which lowers the effective acceptance by 10%–20% depending on the assumed SUSY mass values.

![Graph showing E_T^{miss} distribution](image)

FIG. 3 (color online). Distribution of E_T^{miss} from the single-photon search in comparison to the standard model background prediction. The expectation from an example GGMwino signal model point is also shown. In the bottom panels, the ratio of the data to the prediction is shown. The representations of uncertainties are defined as in Fig. 2.

TABLE II. Observed numbers of events and standard model background predictions for the single-photon search. The signal yield and acceptance for the GGMwino model with $m_q = 1700$ GeV and $m_{\tilde{g}} = 720$ GeV, with a total signal cross section of $\sigma_{\text{NLO}} = 0.32$ pb, are also shown. The last line gives the additional number of background events, normalized to the signal yield, which is associated with signal contributions to the two control regions.

E_T^{miss} range (GeV)	[100, 120)	[120, 160)	[160, 200)	[200, 270)	[270, 350)	[350, \infty)
Multijet	991 ± 164	529 ± 114	180 ± 69	96 ± 45	12 ± 12	9 ± 9
ISR/FSR	54 ± 27	73 ± 36	45 ± 23	40 ± 20	20 ± 10	15 ± 7
EW	37 ± 4	43 ± 5	23 ± 3	19 ± 2	8 ± 1	4 ± 1
Background	1082 ± 166	644 ± 119	248 ± 73	155 ± 50	39 ± 16	28 ± 12
Data	1286	774	232	136	46	30
Signal yield	19 ± 3	53 ± 5	51 ± 5	82 ± 7	78 ± 7	67 ± 6
Signal acceptance [%]	0.3	0.9	0.8	1.3	1.2	1.1
Background from signal relative to the signal yield [%]	2.1	5.0	5.6	9.9	26.7	13.5

VI. DOUBLE-PHOTON SEARCH

Events considered for the double-photon search are collected using triggers developed for the discovery of the Higgs boson in diphoton events [58–60]. These triggers use complementary kinematic selections:

(i) two photons with $p_T > 18$ GeV, where the highest p_T photon is required to have $p_T > 26$ GeV, while the diphoton invariant mass is required to be larger than 70 GeV.

(ii) two photons with $p_T > 22$ GeV, where the highest p_T photon is required to have $p_T > 36$ GeV.

In addition, each photon must satisfy at least one of two requirements: a high value of the shower shape variable R_0 [52] or loose calorimetric identification. For the targeted signals, the combination of the two triggers is found to be 99% efficient.

In the subsequent analysis, at least two photon candidates with $p_T > 22$ GeV and $|\eta| < 2.5$ are required. Events are selected if the highest p_T photon has $p_T > 30$ GeV. Jets must have $p_T > 40$ GeV and $|\eta| < 2.5$, with each jet required to lie a distance $\Delta R > 0.5$ from an identified photon. Only events with at least one selected jet are considered.

The background is dominated by multijet events, which mostly consist of events with at least one genuine photon. Due to the requirement of two photons in the event, the EW and ISR/FSR backgrounds are negligible.

The razor variables M_R and R^2 [18,19] are used to distinguish a potential signal from background. To evaluate these variables, the selected jets and photons are grouped into two exclusive groups, referred to as “megajets” [19]. The four-momentum of a megajet is computed as the vector sum of the four-momenta of its constituents. Among all possible megajet pairs in an event, we select the pair with the smallest sum of squared invariant masses of the megajets. Although not explicitly required, the two photons are associated with different megajets in more than 80% of the selected signal events.

The variable M_R is defined as

\begin{equation}
M_R \equiv \sqrt{(|\vec{p}^h| + |\vec{p}^l|)^2 - (p_T^h + p_T^l)^2},
\end{equation}

where \vec{p}^h and \vec{p}^l are, respectively, the momentum of the ith megajet and the magnitude of its component along the beam axis. The p_T imbalance in the event is quantified by the variable M_T^{miss}, defined as

\begin{equation}
M_T^{\text{miss}} \equiv \sqrt{E_T^{\text{miss}}(|\vec{p}_T^h| + |\vec{p}_T^l|) - \vec{p}_T^{\text{miss}} \cdot (\vec{p}_T^h + \vec{p}_T^l)/2},
\end{equation}

where \vec{p}_T^h is the transverse component of \vec{p}^h. The razor ratio R is defined as

\begin{equation}
R \equiv \frac{M_T^{R}}{M_R}.
\end{equation}

For squark pair production in R-parity conserving models in which both squarks decay to a quark and LSP, the M_R distribution peaks at $M_{\Delta} = (m_{\tilde{q}}^2 - m_{\tilde{L}}^2)/m_{\tilde{q}}$, where $m_{\tilde{q}}$ ($m_{\tilde{L}}$) is the squark (LSP) mass. Figure 4

FIG. 4 (color online). Distribution of M_R in the double-photon search for the background model, derived from a fit in the data control region, and for the T5gg (left) and GGMbino (right) signal models. The background model is normalized to the number of events in the signal region. The signal models are normalized to the expected signal yields.
demonstrates that M_R also peaks for gluino pair production (left) and in the GGMbino model (right).

The (M_R, R^2) plane is divided into two regions: (i) a signal region with $M_R > 600$ GeV and $R^2 > 0.02$, and (ii) a control region with $M_R > 600$ GeV and $0.01 < R^2 \leq 0.02$. The control region is defined such that any potential signal contribution to the control region is less than 10% of the expected number of signal events, producing a negligible bias on the background shape determination, corresponding to less than a 2% shift in the predicted number of background events for 20 expected signal events.

The background shape is determined through a maximum likelihood fit of the M_R distribution in the data control region, using the empirical template function

$$P(M_R) \propto e^{-k(M_R-M^0_R)^n},$$

with fitted parameters k, M^0_R, and n. The best-fit shape is used to describe the M_R background distribution in the signal region, fixing the overall normalization to the observed yield in the signal region. This implicitly assumes a negligible contribution of signal events to the overall normalization. We have studied the impact of the resulting bias and found it to be negligible for the expected signal distributions and magnitudes. The covariance matrix derived from the fit in the control region is used to sample an ensemble of alternative M_R background shapes. For each bin of the M_R distribution, a

FIG. 5 (color online). Distribution of M_R in the double-photon search for a control sample of jets misreconstructed as photons (see text) in the control (left) and signal (right) regions. The data are compared to the 68% range obtained from a fit in the control region and extrapolated to the signal region (blue bands). The open dots represent the center of the 68% range. The rightmost bin in each plot contains zero data entries. The bottom panel of each figure gives the z-scores (number of Gaussian standard deviations) comparing the filled dots to the band. The filled band shows the position of the 68% window with respect to the expected value.

FIG. 6 (color online). Distribution of M_R in the double-photon search for a control sample of jets misreconstructed as photons to which a simulated sample of GGMbino events has been added. The squark and gluino masses are respectively set to $m_{\tilde{q}} = 1400$ GeV and $m_{\tilde{g}} = 1820$ GeV, and the production cross section is fixed to $\sigma = 2.7$ fb. The signal contribution is shown by the red histogram. The representations of the uncertainty bands, data points, and the information shown in the bottom panel are the same as in Fig. 5.
probability distribution for the yield is derived using pseudoexperiments. The uncertainty in each bin is defined by requiring 68% of the pseudoexperiments to be contained within the uncertainty band.

This background prediction method is tested by applying it to a control sample of events in which jets are misidentified as photons, obtained by selecting photon candidates that fail the requirement on the cluster shape or the photon isolation. The remainder of the photon-selection criteria are the same as for the signal sample. In Fig. 5 we show the fit result in the control region (left) and the extrapolation to the signal region (right).

The contribution of the EW and ISR/FSR backgrounds, characterized by genuine E_T^{miss}, is evaluated from simulated events and is found to be negligible compared to the systematic uncertainty associated with the multijet background method, and is accordingly ignored.

A signal originating from heavy squarks or gluinos would result in a wide peak in the M_R distribution. This is shown in Fig. 6, where a GGMbino signal sample is added to the control sample of jets misreconstructed as photons, and the background prediction method is applied. The contribution of signal events to the control region is negligible and does not alter the background shape of Fig. 5 (left). The signal is visible as a peak at around 2 TeV.

Figure 7 (left) shows the result of the fit and the associated uncertainty band, compared to the data in the control region. The fit result is then used to derive the background prediction in the signal region. The comparison of the prediction to the observed data distribution is shown in Fig. 7 (right). No evidence for a signal is found. The largest positive and negative deviations from the predictions are observed for $M_R \gtrsim 2.3$ TeV and $1.1 \lesssim M_R \lesssim 1.9$ TeV, respectively, each corresponding to a local significance of ≈ 1.5 standard deviations.

VII. SIGNAL MODEL SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in the description of the signals are listed in Table III. Differences between the simulation and data for the photon reconstruction, identification, and isolation efficiencies are listed as Data/MC photon scale factors. The uncertainty associated with the parton distribution functions (PDF) is estimated using the difference in the acceptance when different sets of PDFs are used [61–65]. Similarly, different sets of PDFs and different choices for the renormalization scales yield different predictions for the expected production cross section.

![Diagram of M_R distribution](image)

TABLE III. The systematic uncertainties associated with signal model yields. For the double-photon razor analysis, the contributions labeled as “shape” have different sizes, depending on M_R.

Systematic uncertainty	Single photon [%]	Double photon [%]
Data/MC photon scale factors	1	1–2
Trigger efficiency	2	1
Integrated luminosity [66]	2.6	2.6
Jet energy scale corrections [67]	2–3	shape
Initial-state radiation	3–5	< 1
Acceptance due to PDF	1–3	1–3
Signal yield due to PDF and scales	5–20	1–50
VIII. INTERPRETATION OF THE RESULTS

The result of the single-photon analysis is used to extract a limit on the production cross sections of the GGM and SMS models. Comparing the excluded cross section to the corresponding predicted value, a mass limit is derived in the squark versus gluino mass plane. This procedure allows comparisons with previous results [23]. In the SMS, the limits are derived in the gluino versus gaugino mass plane. The resulting cross section upper limits and the corresponding exclusion contours are shown in Fig. 8.

Figure 9 shows the excluded mass regions and the cross section upper limits for the GGMbino and T5gg models obtained from the double-photon analysis.

The single- and double-photon analyses are complementary with respect to the event selection and the search strategy. While the former is a multichannel counting experiment based on the absolute prediction of the standard model backgrounds, the latter uses kinematic information about the razor variables to perform a shape analysis. The best individual sensitivity is in the wino- and the bino-like...
neutralino mixing scenario, respectively. The double-photon analysis performs slightly better compared to the single-photon search in the bino scenario, because of the high-H_T trigger requirement in the single-photon selection.

IX. SUMMARY

Two searches for gauge-mediated supersymmetry are presented: a search based on events with at least one photon and at least two jets, and a search based on events with at least two photons and at least one jet. The single-photon search characterizes a potential signal as an excess in the tail of the E_T^{miss} spectrum beyond 100 GeV, while the double-photon search exploits the razor variables M_R and R^2. These searches are based on pp collision data collected with the CMS experiment at a center-of-mass energy of $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.7 fb^{-1}. No evidence for supersymmetry production is found, and 95% CL upper limits are set on the production cross sections, in the context of simplified models of gauge-mediated supersymmetry breaking and general gauge-mediation (GGM) models. Lower limits from the double-photon razor analysis range beyond 1.3 TeV for the gluino mass and beyond 1.5 TeV for the squark mass for bino-like neutralino mixings in the studied GGM phase space, extending previous limits [23] by up to 300 and 500 GeV, respectively. The limits from the single-photon analysis for wino-like neutralino mixings range beyond 0.8 TeV for the gluino mass and 1 TeV for the squark mass in the same GGM phase space, extending previous limits by about 100 and 200 GeV. Within the discussed supersymmetry scenarios, these results represent the current most stringent limits.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); INFN (Italy); MSI and NRF (Republic of Korea); LAS (Lithuania); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the
Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the homing PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR Project No. 20108T4XTM (Italy); the Thalies and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation.

[1] P. Ramond, Dual theory for free fermions, Phys. Rev. D 3, 2415 (1971).
[2] Yu. A. Gol’fand and E. P. Likhtman, Extension of the algebra of Poincare group generators and violation of P invariance, JETP Lett. 13, 323 (1971).
[3] S. Ferrara and B. Zuminio, Supergauge invariant yang-mills theories, Nucl. Phys. B79, 413 (1974).
[4] J. Wess and B. Zuminio, Supergauge transformations in four-dimensions, Nucl. Phys. B70, 39 (1974).
[5] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49, 970 (1982).
[6] R. Barbieri, S. Ferrara, and C. A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119, 343 (1982).
[7] L. J. Hall, J. D. Lykken, and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27, 2359 (1983).
[8] R. Barbieri and G. F. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B306, 63 (1988).
[9] R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, and Y. Sirois, R-parity-violating supersymmetry, Phys. Rep. 420, 1 (2005).
[10] G. R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76, 575 (1978).
[11] P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino, Phys. Lett. B 70, 461 (1977).
[12] H. Baer, M. Brhlik, Chih-hao Chen, and X. Tata, Signals for the minimal gauge-mediated supersymmetry breaking model at the Fermilab Tevatron collider, Phys. Rev. D 55, 4463 (1997).
[13] H. Baer, P. G. Mercadante, X. Tata, and Y. Wang, Reach of Fermilab Tevatron upgrades in gauge-mediated super-symmetry breaking models, Phys. Rev. D 60, 055001 (1999).
[14] S. Dimopoulos, S. Thomas, and J. D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge-mediated supersymmetry breaking, Nucl. Phys. B488, 39 (1997).
[15] J. Ellis, J. L. Lopez, and D. V. Nanopoulos, Analysis of LEP constraints on supersymmetric models with a light gravitino, Phys. Lett. B 394, 354 (1997).
[16] M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman, New tools for low energy dynamical supersymmetry breaking, Phys. Rev. D 53, 2658 (1996).
[17] G. F. Giudice and R. Rattazzi, Gauge-mediated supersymmetry breaking, in Perspectives on Supersymmetry (World Scientific, Singapore, 1998), p. 355.
[18] C. Ragan, Kinematical variables towards new dynamics at the LHC, arXiv:1006.2727.
[19] CMS Collaboration, Inclusive search for squarks and gluinos in pp collisions at √s = 7 TeV, Phys. Rev. D 85, 012004 (2012).
[20] ATLAS Collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718, 411 (2012).
[21] ATLAS Collaboration, Search for supersymmetry in events with photons, bottom quarks, and missing transverse momentum in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector, Phys. Lett. B 719, 261 (2013).
[22] CMS Collaboration, Search for Supersymmetry in pp Collisions at √s = 7 TeV in Events with Two Photons and Missing Transverse Energy, Phys. Rev. Lett. 106, 211802 (2011).
[23] CMS Collaboration, Search for new physics in events with photons, jets, and missing transverse energy in pp collisions at √s = 7 TeV, J. High Energy Phys. 03 (2013) 111.
[24] P. Meade, N. Seiberg, and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177, 143 (2009).
[25] M. Buican, P. Meade, N. Seiberg, and D. Shih, Exploring general gauge mediation, J. High Energy Phys. 03 (2009) 016.
[26] J. T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, J. High Energy Phys. 08 (2012) 159.
[27] Y. Kats, P. Meade, M. Reece, and D. Shih, The status of GMSB after 1/fb at the LHC, J. High Energy Phys. 02 (2012) 115.
[28] Y. Kats and M. J. Strassler, Probing colored particles with photons, leptons, and jets, J. High Energy Phys. 11 (2012) 097.

[29] P. Grajek, A. Mariotti, and D. Redigolo, Phenomenology of general gauge mediation in light of a 125 GeV Higgs, J. High Energy Phys. 07 (2013) 109.

[30] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[31] J. Alwall, P. Schuster, and N. Toro, Simplified models for a CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[32] J. Alwall, My-Phuong Le, M. Lisanti, and J. G. Wacker, J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. W. Beenakker, R. Höpker, M. Spira, and P. M. Zerwas, J. Alwall, P. Schuster, and N. Toro, Simplified models for a CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[33] D. S. M. Alves, E. Izaguirre, and J. G. Wacker, Where the sidewalk ends: Jets and missing energy search strategies for the 7 TeV LHC, J. High Energy Phys. 10 (2011) 012.

[34] CMS Collaboration, The fast simulation of the CMS detector, J. Instrum. 6, P09001 (2011).

[35] CMS Collaboration, Observations of a new boson at a mass near 125 GeV with the CMS experiment at the LHC, Phys. Rev. Lett. 105, 181802 (2010), Taipei, 2011

[36] V. Khachatryan et al., The CMS Collaboration, Search for New Physics in the Multijet and Missing Transverse Momentum Final State in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. Lett. 109, 171803 (2012).

[37] CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and E_T^{miss}, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009.

[38] CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-001, 2010.

[39] M. Cacciari, G. P. Salam, and G. Soyez, The anti-k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[40] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).

[41] M. Cacciari and G. P. Salam, Pileup subtraction using jet strategies for the 7 TeV LHC, J. High Energy Phys. 10 (2011) 012.

[42] ATLAS and CMS Collaborations, Procedure for the LHC first characterization of new physics at the LHC, Phys. Rev. D 79, 063005 (2009).

[43] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.

[44] W. Beenakker, R. Höpker, M. Spira, and P. M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B492, 51 (1997).

[45] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5: Going beyond, J. High Energy Phys. 06 (2011) 128.

[46] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Rev. Lett. B 118, 151803 (2012).

[47] ATLAS and CMS Collaborations, Procedure for the LHC near 125 GeV in pp collisions at $\sqrt{s} = 8$ TeV, J. Instrum. 10, P08010 (2015).

[48] J. M. Campbell, H. B. Hartanto, and C. Williams, Next-to-leading order predictions for $Z\gamma +$ jet and $Z\gamma\gamma$ final states at the LHC, J. High Energy Phys. 11 (2012) 162.

[49] CMS Collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at $\sqrt{s} = 8$ TeV, arXiv:1410.8812.

[50] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[51] A. L. Read, Presentation of search results: The CL_s technique, J. Phys. G 28, 2693 (2002).

[52] CMS Collaboration, Observation of a new boson in pp collisions at $\sqrt{s} = 7$ and 8 TeV, J. High Energy Phys. 06 (2013) 081.

[53] CMS Collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74, 3076 (2014).

[54] S. Alekhin et al., The PDF4LHC Working Group Interim Report, arXiv:1101.0536.

[55] M. Bojte, J. Butterworth, A. Cooper-Sarkar, Albert de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, and R. S. Thorne, The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538.

[56] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. D. Debbio, S. Forte, A. Guffanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration), Parton distributions with LHC data, Nucl. Phys. B867, 244 (2013).

[57] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63, 189 (2009).
SEARCH FOR SUPERSYMMETRY WITH PHOTONS IN $pp \rightarrow \ldots \rightarrow \gamma \gamma \rightarrow \gamma \gamma$... PHYSICAL REVIEW D 92, 072006 (2015)

Y. Eshaq, T. Ferbel, M. Galanti, A. García-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindricks, A. Khukhunaishvili, G. Petrillo, M. Verzetti, L. Demortier, S. Arora, A. Barker, J. P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker, M. Foerster, G. Riley, K. Rose, S. Spanier, A. York, O. Bouhali, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Krutelyov, R. Montalvo, R. Mueller, I. Osipenkov, Y. Pakhotin, A. Patel, A. Perloff, J. Roe, A. Rose, A. Salomon, A. Tatarinov, K. A. Ulmer, N. Akchurin, C. Cowden, J. Damgov, D. Dragoiu, P. R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S. W. Lee, T. Libeiro, S. Undleeb, I. Voloobouev, E. Appelt, A. G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tu, J. Velkovska, Q. Xu, M. W. Arenton, S. Boulte, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood, F. Xia, C. Clarke, R. Harr, P. E. Karchin, C. Kottachchi Kankaname, J. Lamichhane, D. A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis, B. Gomber, M. Grotte, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojval, T. Perry, G. A. Piero, G. Polese, I. Ross, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W. H. Smith, D. Taylor, and N. Woods

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Federal do ABC, São Paulo, Brazil
13Instituto de Pesquisas Físicas, Campinas, Brazil
14Instituto de Física de São Carlos, USP, São Carlos, Brazil
15State University of New York at Stony Brook, Stony Brook, NY, USA
16University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
17Institute of High Energy Physics, Beijing, China
18University of Split, Faculty of Science, Split, Croatia
19Institute Rudjer Boskovic, Zagreb, Croatia
20University of Split, Faculty of Science, Split, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, GIF-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

072006-19
125 University of California, Davis, Davis, California 95616, USA
126 University of California, Los Angeles, Los Angeles, California 90095, USA
127 University of California, Riverside, Riverside, California 92521, USA
128 University of California, San Diego, La Jolla, California 92093, USA
129 University of California, Santa Barbara, Santa Barbara, California 93106, USA
130 California Institute of Technology, Pasadena, California 91125, USA
131 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
132 University of Colorado Boulder, Boulder, Colorado 80309, USA
133 Cornell University, Ithaca, New York 14853, USA
134 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
135 University of Florida, Gainesville, Florida 32611, USA
136 Florida International University, Miami, Florida 33199, USA
137 Florida State University, Tallahassee, Florida 32306, USA
138 Florida Institute of Technology, Melbourne, Florida 32901, USA
139 University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA
140 The University of Iowa, Iowa City, Iowa 52242, USA
141 Johns Hopkins University, Baltimore, Maryland 21218, USA
142 The University of Kansas, Lawrence, Kansas 66045, USA
143 Kansas State University, Manhattan, Kansas 66506, USA
144 Lawrence Livermore National Laboratory, Livermore, California 94551, USA
145 University of Maryland, College Park, Maryland 20742, USA
146 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
147 University of Minnesota, Minneapolis, Minnesota 55455, USA
148 University of Mississippi, Oxford, Mississippi 38677, USA
149 University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
150 State University of New York at Buffalo, Buffalo, New York 14260, USA
151 Northeastern University, Boston, Massachusetts 02115, USA
152 Northwestern University, Evanston, Illinois 60208, USA
153 University of Notre Dame, Notre Dame, Indiana 46556, USA
154 The Ohio State University, Columbus, Ohio 43210, USA
155 Princeton University, Princeton, New Jersey 08542, USA
156 Purdue University, West Lafayette, Indiana 47907, USA
157 Purdue University Calumet, Hammond, Indiana 46323, USA
158 Rice University, Houston, Texas 77251, USA
159 University of Rochester, Rochester, New York 14627, USA
160 The Rockefeller University, New York, New York 10021, USA
161 Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
162 University of Tennessee, Knoxville, Tennessee 37996, USA
163 Texas A&M University, College Station, Texas 77843, USA
164 Texas Tech University, Lubbock, Texas 79409, USA
165 Vanderbilt University, Nashville, Tennessee 37235, USA
166 University of Virginia, Charlottesville, Virginia 22904, USA
167 Wayne State University, Detroit, Michigan 48202, USA
168 University of Wisconsin, Madison, Wisconsin 53706, USA

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
d Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
e Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
f Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
g Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
h Also at Universidade Estadual de Campinas, Campinas, Brazil.
i Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
j Also at Joint Institute for Nuclear Research, Dubna, Russia.
k Also at Helwan University, Cairo, Egypt.
l Also at Ain Shams University, Cairo, Egypt.
m Also at Fayoum University, El-Fayoum, Egypt.
n Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at University of Debrecen, Debrecen, Hungary.
Also at Wigner Research Centre for Physics, Budapest, Hungary.
Also at University of Visva-Bharati, Santiniketan, India.
Also at King Abdulaziz University, Jeddah, Saudi Arabia.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at University of Tehran, Department of Engineering Science, Tehran, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at CONSEJO NACIONAL DE CIENCIA Y TECNOLOGIA, MEXICO, Mexico.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at California Institute of Technology, Pasadena, USA.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
Also at National Technical University of Athens, Athens, Greece.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at University of Athens, Athens, Greece.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Cag University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Yildiz Technical University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
Also at Utah Valley University, Orem, USA.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.