Determining the interaction surface parameters of the geokhod knife operating body with the face rock

V V Aksenov¹,⁴,⁵, A B Efremenkov²,⁶, V Yu Sadovets³,⁷, D A Pashkov⁴,⁸ and V A Efremenkov⁵

¹ Research Center “Siberian NPO” Ltd, Sovetsky pr, 56 650002, Kemerovo, Russia
² Yaroslav-the-Wise Novgorod State University, ul St. Petersburgskaya, 41 173003, Veliky Novgorod, Russia
³ T.F. Gorbachev Kuzbass State Technical University, ul. Vesennaya, 28 650000, Kemerovo, Russia
⁴ Institute of Coal of FRC for Coal and Coal Chemistry, Siberian Branch of the RAS, Leningradsky pr., 10 650610, Kemerovo, Russia
⁵ Peter the Great St.Petersburg Polytechnic University, Polytechnicheskaya ul., 29 195251, St.Petersburg, Russia

E-mail: ¹ E-mail: 55vva42@mail.ru
E-mail: ² E-mail: abe@novsu.ru
E-mail: ³ E-mail: vsadovec@yandex.ru
E-mail: ⁴ E-mail: pashkov.d.a@inbox.ru

Abstract. One of the main devices of the geokhod having a direct impact on the force characteristics of the underground apparatus is the operating body. During the work of the operating body, the interaction surface of the geokhod operating body with the face rock is formed. The purpose of the research is to determine the parameters of the surface of interaction of the geokhod knife operating body with the face rock. As a result, it was revealed that the interaction surface parameters of the geokhod knife operating body with the face rock can be divided into two groups: general, which are characteristic for each variant of operating body, and variable, which are characteristic for each variant.

1. Introduction
Throughout the world, the construction of underground facilities for various purposes has become one of the priority areas. Their number in developed countries doubles every 10 years, and in the future we should expect a further increase in the rate of development of the underground space [1–6].

One of the directions for the formation of a cavity in the underground space is geokhod technology, where the basic element is a geokhod [7–11].

When developing technical and constructive solutions for devices and elements of geokhods, it is necessary to take into account the complex, helical movement of the machine to the bottom of the mine. In addition, the developed methods for determining the force parameters of devices and elements of the geokhod, which interact with the environment and among themselves, must take into account the complex nature of the movement of the geokhod [12–16].
One of the main devices of the geokhod that has a direct impact on the force characteristics of the underground apparatus is the operating body [17–21]. During the work of the operating body, the interaction surface of geokhod operating body (hereinafter – OB) with the face rock is formed. The interaction surface of the operating body with the face rock is a secondary factor and is not taken into account when designing the operating body.

Therefore, the research work aimed at substantiating the parameters of the interaction surface of geokhod operating body with the face rock is relevant.

2. Research methods

When cutting with one straight knife of the geokhod OB, all the power of blocked cutting can be represented as the sum of the three constituent forces (figure 1).

1. Forces to overcome the frontal resistance of the soil by the front edge of the knife P_{cv}, proportional to the cross-sectional area of the slot in front of the front edge of the knife and depending on the cutting angle and soil strength;

2. Forces to overcome the resistance of the soil to fracture in the lateral extensions of the slot P_{side}, proportional to the area of these parts of the slot, which depends on the strength of the soil and does not depend on the cutting angle and cut width;

3. Forces to overcome the resistance of the soil to the cut with side edges of the knife at the bottom of the slot $P_{side.mid}$, proportional to the thickness of the cut, depending on the strength of the soil and not depending on the width of the cut and the angle of cutting.

Figure 1. The area of action of the cutting force constituents with a straight sharp knife.

The interaction surfaces (hereinafter – IS) of the knife OB of the geokhod were constructed taking into account the three constituent forces shown in figure 1.

Figure 2 shows the helicoid conical surface of the interaction between the OB of the geokhod and the face rock.

From figure 2 it follows that the parameters of the helicoid conical IS of the geokhod knife OB are the radius of the geokhod r_g, which consists of the cutting width b and the generatrix radius r_0, the cutting depth h, as well as the angle of inclination of the radial knife to a plane perpendicular to the axis of geokhod rotation γ_{OB}.

The parameters of the helicoid convex IS of the geokhod knife OB with the face rock (figure 3) include the geokhod radius r_g, which consists of the cutting width b and the generatrix radius r_0, the cutting depth h, as well as the radius of curvature of the cutting edge of the knife $r_{ep.0}$, which center is located on the axis of mine. Another parameter will be the segment angle Ω.
Figure 2. The parameters of the helicoid conical IS of the geokhod knife OB with the face rock.

Figure 3. The parameters of the helicoid convex IS of the geokhod knife OB with the face rock.

If the curvature center of the knife cutting edge does not coincide with the axis of mine, the shape of IS of the geokhod knife OB with the face rock will have a convex torus shape (figure 4).

Figure 4. Parameters of helicoid IS with a convex torus shape.
From figure 4 it follows that the parameters of a helicoid IS with a convex torus shape are the geokhod radius r_g, which consists of the cutting width b and the generatrix radius r_0, the cutting depth h, as well as the radius of curvature of the knife edge r_{cp} with a center located at a distance $b/2$ from the mine contour. Another parameter will be the segment angle Ω.

Another chosen variant of the IS of the geokhod knife OB is helicoid with the shape of a concave torus (figure 5). The difference from the helicoid IS with the shape of a convex torus will be the direction of concavity from the face rock.

Consequently, the parameters of a helicoid IS with a concave torus shape will be similar to the parameters of a helicoid IS with a convex torus shape; the only difference will be the location of the curvature center of the knife cutting edge. For a helicoid IS with a convex torus shape, the curvature center is located on the worked out space, and for a helicoid IS with a concave torus shape it is located on the side of the rock mass.

3. Conclusion
It should be noted that the parameters of IS of the geokhod knife OB with the face rock can be divided into two groups: general, which are characteristic for each variant of IS, and variable, which are characteristic of each variant.

The general parameters of IS include the geokhod radius r_g, cutting width b, generatrix radius r_0, and cutting depth h. The remaining parameters are variable and characterize each variant of IS separately.

References
[1] Aksenov V, Sadovets V, Pashkov D and Rezanova E V 2018 Granichnyye usloviya opredeleniya kharakternykh tochek nozhevogo ispolnitel'nogo organa geokhoda [Boundary conditions for determining the characteristic points of a knife operating body of a geokhod] Bulletin of the Kuzbass State Technical University 2(126) 166–173 [In Russ.]
[2] Aksenov V, Sadovets V and Pashkov D 2018 Reasoning of the model sizes in modeling the interaction between tool and rock E3S Web of Conferences 41 03002

[3] Aksenov V V, Efremenkov A B, Sadovets V Yu and Rezanova E V 2010 Formirovaniye strukturnogo portretu geokhodov [Formation of the structural portrait of geokhods] Bulletin of the Kuzbass State Technical University 1(77) 35–41 [In Russ.]

[4] Aksenov V V, Horeshok A A and Beglyakov V Yu 2018 Kontsepsiya sozdaniya perspektivnogo tekhnologicheskogo ukлада formirovaniya (osvoyeniya) podzemnogo prostranstva na baze opererezhayushchego razvitiya novykh podkhodov v stroitel'noy geotekhnologii i geotekhnike [The concept of creating a promising technological structure for the formation (development) of underground space on the basis of the advanced development of new approaches in construction geotechnology and geotechnics] Bulletin of the Kuzbass State Technical University Part 1 4 105–113 [In Russ.]

[5] Aksenov V V, Horeshok A A and Beglyakov V Yu 2018 Kontsepsiya sozdaniya perspektivnogo tekhnologicheskogo ukлада formirovaniya (osvoyeniya) podzemnogo prostranstva na baze opererezhayushchego razvitiya novykh podkhodov v stroitel'noy geotekhnologii i geotekhnike [The concept of creating a promising technological structure for the formation (development) of underground space on the basis of the advanced development of new approaches in construction geotechnology and geotechnics] Bulletin of the Kuzbass State Technical University Part 2 5 43–51 [In Russ.]

[6] Golik V I, Razorenov Yu I and Karginov K G 2017 Mining industry – the basis of the sustainable development of North Ossetia-Alania Sustainable development of mountain territories vol 9 2(32) 163–171

[7] Aksenov V, Sadovets V and Pashkov D 2017 The influence of parameters on the generatrix of the helicoid form guide of geokhod bar working body E3S Web of Conferences: The Second International Innovative Mining Symposium 21 03008

[8] Aksenov V V, Sadovets V Yu, Preis Ye V and Pashkov D A 2018 Sovershenstvovaniye matematicheskoy modeli opredeleniya silovykh parametrov nozhevogo ispolnitel'nogo organa geokhoda [Improving the mathematical model for determining the force parameters of a geokhod knife operating body] Mining Equipment and Electromechanics 5(139) 16–22 [In Russ.]

[9] Aksenov V, Sadovets V and Pashkov D 2017 Opredeleniye silovykh parametrov nozhevogo ispolnitel'nogo organa geokhoda dlya razrusheniya porod maloy kreposti [Determination of force parameters of the geokhod knife operating body for destruction of low hardness rock] Bulletin of the Kuzbass State Technical University 3(121) 116–126 [In Russ.]

[10] Aksenov V V, Horeshok A A, Ananjev K A and Ermakov A N 2014 Razrabotka skhemnykh resheniy ispolnitel'nykh organov geokhodov [Development of schematic solutions of geokhod operating bodies] Izvestiya vysshikh uchebnikh zavedeni. Gornyy zhurnal 3 73–76 [In Russ.]

[11] Aksenov V V, Efremenkov A B, Sadovets V Yu, Pashkov D A and Efremenkov V A 2019 IOP Conf. Ser.: Mater. Sci. Eng. 656 012002

[12] Aksenov V V, Efremenkov A B, Sadovets V Yu, Pashkov D A and Efremenkov V A 2019 IOP Conf. Ser.: Mater. Sci. Eng. 656 012003

[13] Pashkov D A 2019 Obzor metodik opredeleniya energoyemkosti razrusheniya porody [Review of methods for determining the energy capacity of rock destruction] Rossiya molodaya. Sbornik materialov XI Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem 10310 [In Russ.]

[14] Aksenov V V, Efremenkov A B, Sadovets V Yu and Pashkov D A 2018 IOP Conf. Ser.: Mater. Sci. Eng. 441 012005

[15] Aksenov V, Sadovets V and Pashkov D 2019 Razrabotka metodiki opredeleniya energoyemkosti razrusheniya gornoy porody nozhevym ispolnitel'ynym organom geokhoda [Development of a method for determining the energy intensity of rock destruction by a...
geokhod knife operating body] Mining Equipment and Electromechanics 2(142) 30–38 [In Russ.]
[16] Aksenov V V, Khoreshok A A, Beglyakov V Yu and Efremenkov A B 2019 IOP Conf. Ser.: Mater. Sci. Eng. 656 012004
[17] Aksenov V V, Khoreshok A A, Beglyakov V U and Efremenkov A B 2019 IOP Conf. Ser.: Mater. Sci. Eng. 656 012005
[18] Sadovets V Yu 2007 Obosnovaniye konstruktivnykh i silovykh parametrov nozhevykh ispolnitel'nykh organov geokhodov [Substantiation of the design and power parameters of geokhod knife operating bodies] Candidate of Technical Science Dissertation. (Kemerovo: Kuzbass State Technical University named after T.F. Gorbachev) [In Russ.]
[19] Nesterov V, Aksenov V, Sadovets V, Pashkov D and Beysebayeva Zh 2019 Determination of the energy capacity of face rock breaking by the geokhod’s knife operating element and its dependence on the external propeller’s pitch E3S Web of Conferences IVth International Innovative Mining Symposium 105 03024
[20] Nesterov V, Aksenov V, Sadovets V and Pashkov D 2019 Solution for the location of rock cutting elements relative to the rotation center of geokhod E3S Web of Conferences IVth International Innovative Mining Symposium 105 03001
[21] Aksenov V V, Sadovets V Yu and Pashkov D A 2016 Obosnovaniye neobkhodimosti sozdaniya ispolnitel'nogo organa geokhoda dlya razrusheniya porod maloy kreposti [Justification of the need to create an operating body of the geokhod for the destruction of soft rocks] Bulletin of the Kuzbass State Technical University 6(118) 8–15 [In Russ.]