Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

Fangfang Wang1,2, Xiaoliang Zeng1,3, Yimin Yao1,3, Rong Sun1, Jianbin Xu4 & Ching-Ping Wong4,5

Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

In recent years, heat removal has become a crucial issue for electronic packaging devices, along with their development toward high speed and performance1. The need for polymer materials with high thermal conductivity (K) has become essential for the design of the next generation of electronic packaging devices2,3. However, most of the polymers often have a relatively low K, ranging from 0.1 to 0.5 W/m-K at room temperature3–6. Various thermally conductive fillers have been embedded into the polymers to improve their thermal conductivities. By averting the high electrical conductivity of the metallic particles, several ceramic materials such as aluminum nitride (AlN)7, boron nitride (BN)8, silicon carbide (SiC)9 and beryllium oxide (BeO) have received significant attention as fillers due to their high K values and electrical volume resistivities (Φ). Among them, hexagonal boron nitride (h-BN), an analog of graphite with layered structures, has demonstrated to be one of the most promising fillers to enhance K of polymer, due to its superior thermal and chemical stability, high mechanical strength, and high K10–12. A two-dimensional (2D) boron nitride nanosheet (BNNS) with an exposed (002) crystal surface would be valuable due to its many unusual properties associated with the ultrathin nature13,14. Some theoretical studies demonstrated that a K value of 1,700–3,000 W/m-K for BNNSs could be obtained15,16. Many efforts have been made to fabricate polymer composites using BNNSs as nanoscale fillers in polymeric matrices17,18. A recent study showed that epoxy nanocomposite filled with BNNSs had a K value of 0.83 W/m-K with 30 wt % of BNNS1. However, K enhancement was still limited, mainly due to the thermal contact resistance and gaps among fillers. In order to...
minimize the thermal contact resistance and gaps, Jiang et al. used BNNSs and α-alumina (α-Al2O3) as the fillers to increase K of the composites. They claimed that the α-Al2O3 played a bridge role to link the BNNSs together, thus leading to the formation of the effective thermally conductive networks. Nevertheless, the composite only showed the highest K of 0.81 W/m-K at 26.5 vol % loading, which is due to the absence of the contacts between α-Al2O3 and BNNSs. Therefore, it is still technically challenging to fabricate high-K polymer composites filled with BNNSs.

In this work, we design a new type of nanohybrids composed of silver nanoparticles-deposited boron nitride nanosheets (BNNSs/AgNPs) as fillers for the epoxy matrix to achieve a high thermal conductivity (Fig. 1(a)). We have demonstrated that BNNSs/AgNPs can dramatically increase the K of an epoxy resin compared with those just containing BNNSs, as shown in Fig. 1(b). We believe that AgNPs with uniform small sizes distributed on the surface of BNNSs could be sintered together in the process of epoxy curing and serve as "solders" to link the individual BNNSs. Therefore the thermal conducting paths are effectively constructed, leading to the decreased thermal contact resistance among BNNSs. The thermal conductivity by 1123% against the pristine epoxy's one with 25.1 vol % BNNSs content (V_f) is obtained, which is useful for the future application as electronic packaging material. In addition, the electrically insulating property of the composite is not compromised.

Materials and Methods

Preparation of BNNSs and BNNSs/AgNPs. The BNNSs were prepared using a liquid-phase exfoliation method reported previously. In brief, commercial h-BN micropowder (2g, 2μm in size, Denka, Japan) was dispersed in N,N-dimethylformamide DMF (300 ml, purity ≥ 99.5%). The dispersion was sonicated for 48 h in a sonic bath and then centrifuged at 1000 rpm for 20 min. After centrifugation of the dispersions, the supernatant was decanted. Then silver nitrate (AgNO3, 0.80 g, 99.8%) aqueous solution (15 mL) was dropped into the exfoliated BNNSs/DMF (2.85 mg/ml, 280 ml) mixture for one hour, at 60 °C with gentle agitation simultaneously. The mixture was then kept without stirring at room temperature for 24 h to allow the AgNPs distribution on the surfaces of BNNSs. DMF acted as both the chemical liquid for exfoliation of h-BN and the reductant of Ag$^{+}$.

The BNNSs/AgNPs/DMF solution was filtered using a polytetrafluoroethylene membrane (0.22 μm) and washed with ethanol and acetone, respectively. The preparation process of BNNSs/AgNPs is shown in Fig. 2.

Fabrication of epoxy-based composites. Before the addition of BNNSs/AgNPs hybrid, the mixture of liquid crystalline epoxy resin (LCER) 4,4′-Bis(4-hydroxybenzoyloxy)-3,3′,5,5′-tetramethyl(1,1′-bipheyl) (DGE-BHBTMBP, 100%) and the curing agent, 4,4′-diaminodiphenylsulphone (DDS) with a LCER-to-DDS weight ratio of 13:7 was firstly subjected to pre-curing process at 180 °C for 30 min. Then the BNNSs/AgNPs hybrids and the pre-cured epoxy were dispersed in butanone under continuous stirring for 24 hours. The epoxy composite with the homogeneously dispersed BNNSs/AgNPs was bar coated on copper film and cured at the temperature from 150 °C–180 °C, and 220 °C for 2 h, respectively. By controlling the content of BNNSs, we prepared a series of composites. For comparison, the composites solely containing BNNSs were prepared in the same way as described above.

Morphology and structure characterization. Transmission electron microscopy (TEM) micrographs were obtained using JEOL JEM-2100 transmission electron microscope, operating at 200 keV. X-Ray diffraction
(XRD) analyses of the BNNS/AgNP hybrids were recorded at a scan rate of 0.02°/s in the 2θ range of 5–90° using X-ray powder diffractometer with Cu-K radiation. Raman spectra of the BNNS/AgNP hybrids and BNNSs were obtained by utilizing a LabRAM ARAMIS Raman confocal microscope (HORIBA Jobin Y von) with a 514.5 nm laser irradiation. Dispersion process of BNNSs in the epoxy matrix was investigated by examining the fracture morphologies of the composites in scanning electron microscope (SEM, FEI NOVA 4500, FEI). The thermal diffusivities (α) of the composites were measured by the laser flash method using LFA 467 (Nano-flash, Netzsch). The thermal conductivity was calculated by

\[K = \alpha \times CP \times \rho \]

in which \(CP \) and \(\rho \) are the heat capacity and density of the composites, respectively. The \(CP \) was measured using differential scanning calorimetry (DSC, Q-20 TA Instruments). The electric resistance was measured by Model 6517B electrometer. All the measurements were carried out at room temperature.

Results and Discussion

Characterization of BNNS/AgNP by transmission electron microscopy and x-ray diffraction.

Figure 3(a) presents an optical image of BNNS before and after the decoration of AgNPs. Obviously, the color of BNNS solution turns from “milky” white to yellow. The morphology of BNNSs with the typical lateral size ranging from 100–500 nm and a thickness of 5 nm (less than 15 layers) was determined by TEM (Supplementary Information, Figure S2). Furthermore, the TEM micrograph of the BNNS/AgNP hybrids (Fig. 3(b)) demonstrates that AgNPs with the size of 5 to 20 nm were deposited on BNNSs after the reaction. There do not exist any individual AgNPs in the area beside the BNNS/AgNP hybrids, which indicates that all the formed AgNPs were anchored on the BNNSs. A high resolution TEM micrograph (Fig. 3(c)) shows that the interplanar spacing of the AgNPs lattice is approximately 0.23 nm, which agrees well with the (111) lattice spacing of Ag. The successful decoration of AgNP on BNNS was further confirmed by SEM (Supplementary Information, Figure S3), which agrees well with the TEM results. Figure 3(d) shows the XRD patterns of the BNNSs and the BNNSs/AgNPs. The peaks of BNNSs/AgNPs hybrids at 2θ ≈ 27°, 42°, 55°, 76° result from the diffraction of (002), (100), (004) and (110) planes of h-BN, which are in good agreement with those described in the literature. The new characteristic peaks at 2θ ≈ 38°, 64°, 77°, corresponding to the plane (111), (220), (311) of AgNPs can be observed, which further corroborates the decoration of AgNPs on the BNNSs.

Thermal conductivity of epoxy composites filled with BNNSs/AgNPs and BNNSs.

Figure 4(a) shows \(K \) as a function of BNNSs content (\(V_f \), vol%) for the epoxy composites with or without AgNPs. The pure epoxy has a poor \(K \) of 0.25 W/m-K, which is in agreement with the previously reported value. After the addition of BNNSs/AgNPs fillers, \(K \) increases with the increase of \(V_f \). It should be noted that there appears no difference in thermal conductivity between the one of epoxy/BNNSs and that of epoxy/BNNSs/AgNPs composites for the BNNSs loading below 11.7 vol%. This is attributed to the fact that the AgNPs cannot function at low filler loading (<11.7 vol%), because the BNNSs/AgNPs hybrids are completely surrounded by the epoxy and no contact exists among fillers. However, the pronounced difference in \(K \) is observed when the filler loading exceeds 17.7 vol%. However, when the \(V_f \) reaches up to 25.1 vol%, it is seen that the \(K \) of the composite filled with BNNSs/AgNPs hybrids reaches 3.06 W/m-K, while the corresponding \(K \) for the composite filled only with BNNSs is only 1.66 W/m-K. This suggests that the BNNSs/AgNPs nanohybrids are more efficient to increase \(K \) than BNNSs alone. The efficiency of the fillers in epoxy matrix can be quantitatively characterized by the thermal conductivity enhancement (TCE) defined as \(\xi = (K - K_p)/K_p \), where \(K \) and \(K_p \) are the thermal conductivities of the composite and the pristine epoxy, respectively. Figure 4(b) shows TCE factor as a function of \(V_f \) for the epoxy composites with the two different thermal conductive fillers at RT. One can see that the TCE factors increase with filler loadings, and...
The difference between BNNSs and BNNSs/AgNPs is more obvious when the filler loading exceeds 17.7 vol%. For example, the TCE of BNNSs/AgNPs/epoxy composite with 2.58 vol% fillers is 60%, while the corresponding value is 68% for BNNSs/epoxy composite. When V_f reaches to 25.1%, the ξ value of 1123% can be achieved for BNNSs/AgNPs nanohybrid fillers, a remarkable improvement of K compared with BNNSs fillers ($\xi = 550\%$). The measured TCE per 1 vol% for the composite with BNNSs is about 25% (Fig. 4(c)), slightly higher than that with traditional fillers (~20%)29. After the decoration of AgNPs, the TCE per 1 vol% of BNNSs/AgNPs/epoxy composite is increased to 45%, which is twice that of BNNSs ($V_f = 25.1$ vol %). The control experiments with BNNSs show the advantage of BNNSs/AgNPs as an effective thermal conducting fillers to improve the K of the composite. This is ascribed to the “bridging” function of AgNPs between two adjacent BNNS species. The AgNPs could be sintered together during the curing process of epoxy, leading to the formation of the thermally conductive networks. Figure 4(d) shows K as a function of temperature for $V_f = 17.7\%$. The K increases with temperature below 85 °C, and it follows approximately a linear dependence on V_f. As the temperature increases successively, K does not appear to increase, but there exists a significant plateau in the range of 85 °C. For BNNSs, K decreases with increasing temperature, due to stronger phonon Umklapp scatterings30. In the presence the pristine epoxy resins, K increase with temperature as a result of better phonon transmission through the interfaces and decreased Kapitza resistance31. The dual effects result in the observed K in the relevant temperature range, which is consisted with the previous report32.

SEM cross section micrographs of the composites with 25.1 vol% BNNSs loading. To understand the high K enhancement of the composites filled with BNNSs/AgNPs nanohybrids, the representative cross-sectional SEM micrographs of the composites are shown in Fig. 5. The fracture morphology of 25.1 vol% BNNSs/epoxy composite (Fig. 5(a)) shows that there exist much obvious hollow gaps among BNNSs and partial layered structures, which is not tightly stacked in the epoxy matrix. For the fracture morphology of BNNSs/AgNPs/epoxy composite (Fig. 5(b)), several silver nanoparticles are distributed on the surface of BNNSs, whose sizes are larger than that of AgNPs observed by TEM. The result suggests that during the curing process, small AgNPs merged to form larger AgNPs to decrease surface energy. The curing time and temperature allow the sintering of AgNPs and the epoxy curing to occur simultaneously. The networks are formed through sintering of the particle-particle contacts, as the red circles indicate in the characteristic regions (Fig. 5(c)). As illustrated in Fig. 5(d), the AgNPs attached on the surfaces of BNNSs play a role of bridging the nanosheets together. Due to the large contact areas between BNNSs, the thermally conductive networks are easily formed with the extended heat transfer pathways through BNNSs/AgNPs/epoxy composites.

Measured and simulated thermal conductivities of epoxy composites with a physical model. Many research groups have computationally simulated the thermal boundaries within nanofillers in order to decrease the thermal contact resistance and Umklapp phonon scatterings33–36. Though numerous
research activities have been conducted on thermally conductive fillers to date, heat flow at fillers’ interfaces still remains a subject of fundamental challenges. Here, a physical model proposed by Foygel et al. is applied to our experimental values of \(K \) for BNNS/epoxy and BNNSs/AgNPs/epoxy composites. This model is based on fillers’ random distribution and percolating networks in matrix. The geometry of the junction formed among BNNSs is emphasized to analyze the nanoscale interfacial thermal physics across two BNNS species bridged by AgNPs. The thermal conductivity of epoxy composites can be described as the following function of \(V_f \), which is represented by Equation (1).

\[
K(V_f, \alpha) = K_0(V_f - V_c)^{t(\alpha)}
\]

where \(K_0 \) is a pre-exponential factor depending on the thermal conductivity of the contacting fillers or the effective thermal conductivity of the filler networks. \(V_c \) is the critical volume fraction at the thermal percolation threshold, and \(t(\alpha) \) is a conductivity exponent dependent on the aspect ratio (\(\alpha \)) of BNNSs. According to Equation (S1) (Supplementary Information), the value of \(V_c \) (0.01) was obtained. Then we use Equation (1) to fit the experimental data with fitting parameters \(K_0 \) and \(t(\alpha) \), as shown in Fig. 6(a). For BNNSs/AgNPs/epoxy composites, the pre-exponential factor \(K_0 \) in Equation (1) can be estimated as \(32.5–43.0 \) W/m-K. The fit follows most of the experimental points, especially in high filler loadings. The thermal contact resistance, \(R_c \), between fillers is defined as

\[
R_c = (K_0 V_c)^{(t(\alpha))}^{-1}
\]

The value for \(R_c \) obtained from Equation (2) is \((3–5) \times 10^8 \) K/W. As a control, for BNNSs/epoxy, the effective thermal conductivity \(K_0 \) of the BNNSs networks is 14–16.3 W/m-K, as shown in Fig. 6(b). Then Equation (2) yields a \(R_c = (7–9) \times 10^9 \) K/W for BNNSs/epoxy composites, greater than BNNSs/AgNPs. Therefore, the results suggest that the thermal transport between BNNSs has been significantly altered, after the decoration of AgNPs on the surfaces of BNNSs. The thermal contact resistance between BNNSs is shown to decrease with the

Figure 4. Thermal conductivity of BNNSs/AgNPs/epoxy composite. (a) Thermal conductivity of the epoxy composite as a function of BNNSs loading. (b) Thermal conductivity enhancement of the composite as a function of BNNSs loading in relation to pristine epoxy. (c) Calculated thermal conductivity enhancement of the composite per 1 vol% filler loading. (d) Experimentally determined dependence of thermal conductivity of composites on temperature with the BNNSs 17.7 vol% loading.
connections by AgNPs, resulting in the highly effective thermal networks. The interfacial thermal contact resistance is substantially minimized, and therefore a larger K can be obtained in BNNSs/AgNPs/epoxy composite.

Figure 5. SEM cross section micrographs of the composites with 25.1 vol% BNNSs loading. (a) for BNNSs; (b,c) for BNNSs/AgNPs. The red arrows in (b) show the AgNPs, and the red cycles in (c) show the AgNPs bridges among BNNSs. (d) a schematic to show how heat to be dissipated between BN layers and AgNPs.

Figure 6. Fitting of the theoretical curves to the experimental data is conducted for extraction of the effective thermal conductivity of filler networks and thermal contact resistance among fillers. Measured and simulated thermal conductivities of (a) BNNSs/AgNPs/epoxy composite, and (b) BNNSs/epoxy composite as a function of filler content.
Thermal conductivity values for composites with various fillers. Table 1 show that the measured K of BNNSs/AgNPs/epoxy composites is indeed high compared with others. We attribute it to the fact that the BNNSs form the major thermally conductive pathways in the composites and the AgNPs bridge the connections among BNNSs.

Electrical conductivity at different BNNSs contents in epoxy composites. As we all known, BNNSs is an electrical insulator and considered as the promising dielectric material in the most applications of graphene based electronic devices. Therefore, we anticipate that the high K of the composites after the decoration of AgNPs will not be compromised by decreased volume resistivity. Figure 7 shows the volume resistivity (Φ) of the composites as a function of V_f. All the composites containing the two kinds of thermally conductive fillers present a characteristic of the insulator $(\Phi > 10^9 \Omega \cdot cm)$, indicating the increase in K without substantial change in Φ.

Conclusions

In summary, benefiting from the bridging connections of AgNPs among BNNSs formed during the curing process of the epoxy, a new kind of thermally conductive and electrically insulating epoxy composites are produced. The thermal conductivity of the BNNSs/AgNPs/epoxy composite increases with the filler content, and reaches its highest value of 3.06 W/m-K, approximately twice as high as the counterpart of BNNSs/epoxy composite. The simulated results demonstrate that the remarkable improvement is due to the decreased thermal resistance between BNNSs with the bridging connections by AgNPs, rendering the highly effective thermal networks. Our findings contribute to the mechanistic understanding of the bridging connections among the fillers for the thermal properties of epoxy composites. The BNNSs/AgNPs/epoxy composites pave the way for their applications in advanced electronic packaging technology, namely thermal interface materials, underfill materials, molding compounds, and flexible substrates.
References

1. Lin, Z., McNamara, A., Liu, Y.,Moon, K.-S. & Wong, C.-P. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. *Composites Science and Technology* **90**, 123–128 (2014).

2. Wei, J. Challenges in Cooling Design of CPU Packages for High-Performance Servers. *Heat Transfer Engineering* **29**, 178–187 (2008).

3. Gwinn, J. P. & Webb, R. L. Performance and testing of thermal interface materials. *Microelectronics Journal* **34**, 215–222 (2003).

4. Kim, K., Kim, M., Hwang, Y. & Kim, J. Chemically modified boron nitride with fundamental insight into the thermal conductivity. *Ceramics International* **40**, 2047–2056 (2014).

5. Cho, H.-B. et al. Self-assembled nanotube/platelet composites for thermal conductivity enhancement. *Composites Science and Technology* **74**, 113–118 (2011).

6. Weißenfeller, B., Höfer, M. & Schilling, F. R. Thermal conductivity of boron nitride nanofilms. *Composites Part A: Applied Science and Manufacturing* **35**, 423–429 (2004).

7. Huang, X., Iizuka, T., Jiang, P., Ohki, Y. & Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AiN Composites. *The Journal of Physical Chemistry C* **116**, 13629–13639 (2012).

8. Xie, B.-H., Huang, X. & Zhang, G.-J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. *Composites Science and Technology* **85**, 98–103 (2015).

9. Hwang, Y., Kim, M. & Kim, J. Fabrication of surface-treated SiC/epoxy nanocomposites through a wetting method for enhanced thermal and mechanical properties. *Chemical Engineering Journal* **246**, 229–237 (2014).

10. Meng, W., Huang, Y., Fu, Y., Wang, Z. & Zhi, C. Polymer composites of boron nitride nanotubes and nanosheets. *J. Mater. Chem. C* **2**, 10049–10061 (2014).

11. Ahmad, P., Khandaker, M. U., Amin, Y. M. & Khan, Z. R. Synthesis of Boron Nitride Microtubes and Formation of Boron Nitride Nanosheets. *Materials and Manufacturing Processes* **30**, 184–188 (2014).

12. Ahmad, P., Khandaker, M. U. & Amin, Y. M. A simple technique to synthesise vertically aligned boron nitride nanosheets at 1200°C. *Advances in Applied Ceramics* **114**, 267–272 (2015).

13. Ahmad, P., Khandaker, M. U. & Amin, Y. M. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition. *Physica E: Low-dimensional Systems and Nanostructures* **67**, 33–37 (2015).

14. Ahmad, P., Khandaker, M. U. & Amin, Y. M. A comprehensive study of boron nitride nanotubes synthesis from a single precursor. *Indian Journal of Physics* **89**, 209–216 (2014).

15. Yang, K. et al. Effect of triangle vacancy on thermal transport in boron nitride nanoribbons. *Solid State Communications* **151**, 460–464 (2011).

16. Tao, L., Zhao, X. M., Gao, J. M. & Hu, W. Lithographically defined uniform worm-shaped polymeric nanoparticles. *Nanotechnology* **21**, 095301 (2010).

17. Zeng, X. et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. *Nanoscale* **7**, 6774–6781 (2015).

18. Fang, L. et al. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. *RSC Advances* **4**, 21010 (2014).

19. Cui, Z., Oyer, A. J., Glover, A. J., Schmied, H. C. & Adamson, D. H. Large scale thermal exfoliation and functionalization of boron nitride. *Small* **10**, 2353–2355 (2014).

20. Yao, Y. et al. Large-scale production of two-dimensional nanosheets. *Journal of Materials Chemistry* **22**, 13494 (2012).

21. Zhi, C., Bando, Y., Tang, C., Kuwahara, H. & Golberg, D. Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. *Advanced Materials* **21**, 2889–2893 (2009).

22. Ma, P. C., Tang, B. Z. & Kim, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. *Carbon* **46**, 1487–1505 (2008).

23. Liu, K. et al. Noncovalently functionalized pristine graphene/metal nanoparticle hybrid for conductive composites. *Composites Science and Technology* **94**, 1–7 (2014).

24. Kauas, A. & Siddiq, M. Carbon nanotubes/silver nanoparticles/poly(azo-thiourea) hybrids: Morphological, tensile and conductivity profile. *Journal of Composite Materials* **46**, 3271–3280 (2013).

25. Zhi, C., Bando, Y., Tan, C. & Golberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. *Solid State Communications* **135**, 67–70 (2005).

26. Bernard, S., Chassagneux, F., Berthet, M. P., Vincent, H. & Bouix, J. Structural and mechanical properties of a high-performance BN fibre. *Journal of the European Ceramic Society* **22**, 2047–2059 (2002).

27. Shen, J. et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. *Nano Research* **3**, 339–349 (2010).

28. Liu, K., Liu, L., Luo, Y. & Jia, D. One-step synthesis of metal nanoparticle decorated graphene by liquid phase exfoliation. *Journal of Materials Chemistry* **20**, 22324 (2012).

29. Shahid, K. M. & Balandin, A. A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. *Nano Lett* **12**, 861–867 (2012).

30. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. *Nat Mater* **10**, 569–581 (2011).

31. Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. *Review of Scientific Instruments* **61**, 802 (1990).

32. Han, Z. & Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. *Progress in Polymer Science* **36**, 914–944 (2011).

33. Warzocha, R. J. & Fleischer, A. S. Heat flow at nanoparticle interfaces. *Nano Energy* **6**, 137–158 (2014).

34. Bonnet, P., Sireude, D., Garnier, B. & Chauvet, O. Thermal properties and percolation in carbon nanotube–polymer composites. *Applied Physics Letters* **91**, 20910 (2007).

35. Foygel, M., Morris, R. D., Anez, D., French, S. & Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. *Physical Review B* **71** (2005).

36. Nan, C.-W., Birringer, R., Clarke, D. R. & Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. *Journal of Applied Physics* **81**, 6692 (1997).

37. Cho, H.-B. et al. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. *Composites Science and Technology* **71**, 1046–1052 (2011).

38. Su, J., Xiao, Y. & Ren, M. Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets. *Physica status solidi (a)* **210**, 2699–2705 (2013).

39. Zhi, C. Y. et al. Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites. *Journal of Nanomaterials* **2008**, 1–5 (2008).

40. Li, T. L. & Hsu, S. L. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. *J Phys Chem B* **114**, 6825–6829 (2010).

41. Donnay, M., Tzavalas, S. & Logakis, E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. *Composites Science and Technology* **110**, 152–158 (2015).

42. Huang, X. et al. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. *Nanotechnology* **26**, 015705 (2015).

43. Meziani, M. J. et al. Boron nitride nanomaterials for thermal management applications. *Chemphyschem* **16**, 1339–1346 (2015).
44. Sato, K. et al. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. *Journal of Materials Chemistry* **20**, 2749 (2010).
45. Zhu, H. et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. *ACS Nano* **8**, 3606–3613 (2014).

Acknowledgements
The authors acknowledge the financial support from Guangdong and Shenzhen Innovative Research Team Program (No. 2011D052 and KYPT20121228160843692) and Shenzhen Electronic Packaging Materials Engineering Laboratory (No. 2012-372).

Author Contributions
J.B.X. and R.S. conceived and supervised the project. F.F.W. performed the experiments and prepared the main manuscript. X.L.Z. and Y.M.Y. contributed to data analysis. Y.M.Y involved in the electric resistance measurement of the composites. J.B.X and C.P.W. gave the technical discussion and revised the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, F. et al. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity. *Sci. Rep.* **6**, 19394; doi: 10.1038/srep19394 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/