Separability and complete reducibility of subgroups of the Weyl group of a simple algebraic group of type E_7

Tomohiro Uchiyama
Department of Mathematics, University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand
email:tuch540@aucklanduni.ac.nz

Abstract

Let G be a connected reductive algebraic group defined over an algebraically closed field k. Following Serre, a closed subgroup H of G is called G-completely reducible if whenever H is contained in a parabolic subgroup P of G, H is contained in some Levi subgroup L of P. The aim of this paper is to present a method to find triples (G, M, H) with the following three properties. Property 1: G is a simple algebraic group defined over k of characteristic 2. Property 2: H and M are closed reductive subgroups of G such that $H < M < G$, and (G, M) is a reductive pair. Property 3: H is G-completely reducible, but not M-completely reducible. We exhibit our method by presenting a new example of such a triple in $G = E_7$. Then we consider a rationality problem and a problem concerning conjugacy classes as important applications of our construction.

Keywords: algebraic groups, separable subgroups, complete reducibility

1 Introduction

Let G be a connected reductive algebraic group defined over an algebraically closed field k of characteristic p. In [Ser98, Lec. 1], J.P. Serre defined that a closed subgroup H of G is G-completely reducible (G-cr for short) if whenever H is contained in a parabolic subgroup P of G, H is contained in a Levi subgroup L of P. This is a faithful generalization of the notion of semisimplicity in representation theory since if $G = GL_n(k)$, a subgroup H of G is G-cr if and only if H acts completely reducibly on k^n [Ser98, Lec. 1]. It is known that if a closed subgroup H of G is G-cr, then H is reductive [Ser98 Property 4]. Moreover, if $p = 0$, the converse holds [BMR05 Lem. 2.6]. Therefore the notion of G-complete reducibility is not interesting if $p = 0$. In this paper, we assume that $p > 0$.

Completely reducible subgroups of connected reductive algebraic groups have been much studied. See [Ser98, Ser], [LS03, LT04, Ser97, Ser97]. In investigations of the subgroup structure of connected reductive algebraic groups, a study of completely reducible subgroups was the core of research, see [Dyn57] and [Dyn00] for G classical, and see [LS96] and [LT99] for G exceptional. Recently, studies of complete reducibility via Geometric Invariant Theory (GIT for short) have been fruitful. See [BMR10, BMR05, BMRT, BMR10, LMS09, Mar03e, Mar03a]. In this paper, we see another application of GIT to study complete reducibility (Proposition 5.5).

Here is the main problem we consider. Let H and M be closed reductive subgroups of G such that $H \leq M \leq G$. It is natural to ask whether H being M-cr implies that H is G-cr and
vice versa. It is not difficult to find a counterexample for the forward direction. For example, take $H = M = \text{PGL}_2(k)$ and $G = \text{SL}_3(k)$ where $p = 2$ and H sits inside G via the adjoint representation. Another such example is [BMR05, Ex. 3.45]. However, it is hard to get a counterexample for the reverse direction, and it necessarily involves a small p. In [BMRT10, Sec. 7], Bate et al. presented the only known counterexample for the reverse direction where $p = 2$, $H \cong S_3$, $M \cong A_1 \times A_1$, and $G = G_2$, which we call “the G_2 example”. The aim of this paper is to prove the following.

Theorem 1.1. Let G be a simple algebraic group of type E_7 defined over k of characteristic $p = 2$. Then there exists a connected reductive subgroup M of type A_7 of G and a reductive subgroup $H \cong D_{14}$ (the dihedral group of order 14) of M such that (G, M) is a reductive pair and H is G-cr but not M-cr.

We call our example “the E_7 example”. Our E_7 example is different from the G_2 example in the following sense. In the E_7 example, the G-cr and non-M-cr subgroup H sits in a rank 6 Levi subgroup, as opposed to a rank 1 Levi subgroup in the G_2 example. In Section 4, we show that it is natural to look at a subgroup H of G sitting in a Levi subgroup of rank greater than 1 to find a new such triple.

With our method, in this paper we find the E_7 example, and we rediscover the G_2 example. Moreover, with the same method we have found four more new such triples, one in E_7 and three in E_6. Currently, we are trying to find all such triples using the same method as in this paper where H is generated by some reflections corresponding to a subgroup of the Weyl group of G with the assistance of the computer algebra system Magma. The result will appear in the forthcoming paper [Ch].

Our discussion is motivated by [BMRT10]. We recall a few relevant definitions and results here. We denote the Lie algebra of G by $\text{Lie} G = g$. From now on, by a subgroup of G, we always mean a closed subgroup of G.

Definition 1.2. Let H be a subgroup of G acting on G by inner automorphisms. Let H act on g by the corresponding adjoint action. Then H is called separable if $\text{Lie} C_G(H) = c_g(H)$.

Recall that we always have $\text{Lie} C_G(H) \subseteq c_g(H)$. In [BMRT10], Bate et al. investigated the relationship between G-complete reducibility and separability, and showed the following [BMRT10, Thm. 1.2 and Thm. 1.4].

Proposition 1.3. Suppose that p is very good for G. Then any subgroup of G is separable in G.

Proposition 1.4. Suppose that (G, M) is a reductive pair. Let H be a subgroup of M such that H is a separable subgroup of G. If H is G-cr, then it is also M-cr.

Recall that a pair of reductive groups G and M is called a reductive pair if $\text{Lie} M$ is an M-module direct summand of g. This is automatically satisfied if $p = 0$. Propositions [1.3] and [1.4] tell that the subgroup H in Theorem 1.1 must be non-separable, which is possible for small p only.

Now, we explain our method. First, we introduce a notion of separable action, which is a slight generalization of the notion of a separable subgroup. This notion of separable action is essential to our method and it enables us to explain G_2 example more clearly.

Definition 1.5. Let H and N be subgroups of G where H acts on N by group automorphisms. The action of H is called separable in N if $\text{Lie} C_N(H) = c_{\text{Lie} N}(H)$. Note that the condition means that the fixed points of H acting on N, taken with their natural scheme structure, are smooth.
Here is a brief sketch of our method. **Note that we need** \(p \) **to be** 2.

1. Pick a parabolic subgroup \(P \) of \(G \) with a Levi subgroup \(L \) of \(P \). Find a subgroup \(K \) of \(L \) such that \(K \) acts non-separably on the unipotent radical \(R_u(P) \) of \(P \).

2. Conjugate \(K \) by a suitable element \(v \) of \(G \), and set \(H = vKv^{-1} \). Then there is a natural way to choose a subgroup \(M \) of \(G \) (Remark 3.6, Remark 5.4). Show that \(H \) is not \(M \)-cr using a recent result from GIT (Proposition 2.4). Note that \(K \) is \(M \)-cr in our case.

3. Prove that \(H \) is \(G \)-cr.

Remark 1.6. It can be shown using [Spr98 Thm. 13.4.2] that such a \(K \) in Step 1 is a non-separable subgroup of \(G \).

First of all, for Step 1, \(p \) cannot be very good for \(G \) by Proposition 1.3 and 1.4. It is known that 2 and 3 are bad for \(E_7 \) and \(G_2 \). In the following sections, we explain the reason why we choose \(p = 2 \), not \(p = 3 \). In the \(G_2 \) example, Bate et al. [BMRT10 Sec. 7] assumed \(p = 2 \) and followed Step 1, but did not explain the importance of the non-separable action of \(K \) on \(R_u(P) \).

We go through the \(G_2 \) example in Section 3 to explain our method in a simpler example than the \(E_7 \) example, and we explain why it works. In Section 5, we look at the \(E_7 \) example where \(K \) in the \(E_7 \) is generated by elements corresponding to certain reflections in the Weyl group of \(G \). Because of this particular form of \(K \), we are able to turn a problem of non-separability into a purely combinatorial problem involving the root system of \(G \).

As for Step 2, we explain the reason of our choice of \(v \) and \(M \) explicitly, which was not done in [BMRT10 Sec. 7]. Our use of Proposition 2.4, which was not used in [BMRT10 Sec. 7], gives an alternative way to prove that \(H \) is not \(M \)-cr in the \(G_2 \) example, and simplifies the calculation considerably in the \(E_7 \) example. It also gives a conceptual understanding of the relationship between a non-separable action and complete reducibility.

Finally, Step 3 is easy in both the \(G_2 \) and the \(E_7 \) example.

Our \(E_7 \) example is not only interesting in its own right, but also has many important consequences and applications. For example, in Section 6, we consider a rationality problem as an application of the \(E_7 \) example. We need a definition first to explain our result there.

Definition 1.7. Let \(k_0 \) be a subfield of an algebraically closed field \(k \). Let \(H_0 \) be a \(k_0 \)-defined closed subgroup of a \(k_0 \)-defined reductive algebraic group \(G_0 \). Then \(H_0 \) is called \(G_0 \)-cr over \(k_0 \) if whenever \(H_0 \) is contained in a \(k_0 \)-defined parabolic subgroup \(P_0 \) of \(G_0 \), it is contained in some \(k_0 \)-defined Levi subgroup of \(P_0 \).

Note that if \(k \) is algebraically closed then \(G \)-cr over \(k \) means \(G \)-cr in the usual sense. Here is the main result of Section 6.

Theorem 1.8. Let \(k_0 \) be a nonperfect field of characteristic \(p = 2 \), and let \(G_0 \) be a split simple algebraic group defined over \(k_0 \) of type \(E_7 \). Let \(k \) be the algebraic closure of \(k_0 \). Then there exists a \(k_0 \)-defined subgroup \(H_0 \) of \(G_0 \) such that \(H_0 \) is \(G_0 \)-cr over \(k \), but not \(G \)-cr over \(k \).

As another important application of the \(E_7 \) example, we consider a problem concerning conjugacy classes. Given \(n \in \mathbb{N} \), we let \(G \) act on \(G^n \) by simultaneous conjugation:

\[
g \cdot (g_1, g_2, \ldots, g_n) = (gg_1g^{-1}, gg_2g^{-1}, \ldots, gg_ng^{-1}).
\]

In [Slo97], Slodowy proved the following fundamental result applying Richardson’s tangent space argument, [Ric67 Sec. 3], [Ric82 Lem. 3.1].
Proposition 1.9. Let M be a reductive subgroup of a reductive group G. Let $n \in \mathbb{N}$, let $(m_1, \ldots, m_n) \in M^n$ and let H be the subgroup of M generated by m_1, \ldots, m_n. Suppose that (G, M) is a reductive pair and that H is separable in G. Then the intersection $G \cdot (m_1, \ldots, m_n) \cap M^n$ is a finite union of M-conjugacy classes.

Proposition 1.9 has many consequences. See [BMR05], [Slo97], and [Vin96, Sec. 3] for example. In [BMR T10, Ex. 7.15], Bate et al. found a counterexample in $G = G_2$ showing that Proposition 1.9 fails without the separability hypothesis. In Section 7, we present a new counterexample to Proposition 1.9. Here is the main result of Section 7.

Theorem 1.10. Let G be a simple algebraic group of type E_7 defined over k of characteristic $p = 2$. Let M be the connected reductive subsystem subgroup of type A_7. Then there exists $n \in \mathbb{N}$ and a tuple $m \in M^n$ such that $G \cdot m \cap M^n$ is an infinite union of M-conjugacy classes. Note that (G, M) is a reductive pair in this case.

Now, we give the outline of our paper. In Section 2, we fix our notation which basically follows [Bor91], [Hum91], and [Spr98]. Also, we recall some preliminary results, in particular Proposition 2.4 from GIT. After that, we review the G_2 example in Section 3 to illustrate our method. In Section 4, we prove Theorem 4.1 which shows that the G_2 example is the only example where the same form of K in a rank 1 Levi subgroup of G acts non-separably on $R_u(P)$, which is necessary for our Step 1 to go through. Since the choice of K in the G_2 example is “canonical” in the sense which we explain in the first paragraph of Section 4, we are naturally led to look at K sitting in a higher rank Levi subgroup. Then, in Section 5, we prove our main result, Theorem 5.1. Section 5 is the heart of this paper. Then, in Section 6 and Section 7, we consider important applications of our E_7 example. In Section 6, we consider a rationality problem, and prove Theorem 1.8. Finally, in Section 7, we discuss a problem concerning conjugacy classes, and prove Theorem 1.10.

2 Preliminaries

2.1 Notation

Throughout the paper, we denote by k an algebraically closed field of positive characteristic p. We denote the multiplicative group of k by k^*. We use a capital roman letter, G, H, K, etc., to represent an algebraic group, and the corresponding lowercase gothic letter, g, h, k, etc., to represent its Lie algebra. We sometimes use another notation for Lie algebras: $\text{Lie } G$, $\text{Lie } H$, and $\text{Lie } K$ are the Lie algebras of G, H, and K respectively.

We denote the identity component of G by G°. We write $[G, G]$ for the derived group of G. The unipotent radical of G is denoted by $R_u(G)$. An algebraic group G is reductive if $R_u(G) = \{1\}$. In particular, G is simple as an algebraic group if G is connected and all proper normal subgroups of G are finite.

In this paper, when a subgroup H of G acts on G, H always acts on G by inner automorphisms. The adjoint representation of G is denoted by Ad_g or just Ad if no confusion arises. We write $C_G(H)$ and c_H for the global and the infinitesimal centralizers of H in G and g respectively.

We write $X(G)$ and $Y(G)$ for the set of characters and cocharacters of G respectively.
2.2 Complete reducibility and GIT

Let G be a connected reductive algebraic group. We recall Richardson’s formalism [Ric88 Sec. 2.1-2.3] for the characterization of a parabolic subgroup P of G, a Levi subgroup L of P, and the unipotent radical $R_u(P)$ of P in terms of a cocharacter of G and state a result from GIT (Proposition 2.4).

Definition 2.1. Let X be an affine variety. Let $\phi : k^* \to X$ be a morphism of algebraic varieties. We say that $\lim_{a \to 0} \phi(a)$ exists if there exists a morphism $\hat{\phi} : k \to X$ (necessarily unique) whose restriction to k^* is ϕ. If this limit exists, we set $\lim_{a \to 0} \phi(a) = \hat{\phi}(0)$.

Definition 2.2. Let λ be a cocharacter of G. Define

$$P_\lambda := \{ g \in G \mid \lim_{a \to 0} \lambda(a)g\lambda(a)^{-1} \text{ exists} \},$$

$$L_\lambda := \{ g \in G \mid \lim_{a \to 0} \lambda(a)g\lambda(a)^{-1} = g \},$$

$$R_u(P_\lambda) := \{ g \in G \mid \lim_{a \to 0} \lambda(a)g\lambda(a)^{-1} = 1 \}.$$

Then, P_λ is a parabolic subgroup of G, L_λ is a Levi subgroup of P_λ, and $R_u(P_\lambda)$ is a unipotent radical of P_λ [Ric88 Sec. 2.1-2.3]. By [Spr98 Prop. 8.4.5], any parabolic subgroup P of G, any Levi subgroup L of P, and any unipotent radical $R_u(P)$ of P can be expressed in this form. It is well known that $L_\lambda = C_G(\lambda(k^*))$.

Let M be a reductive subgroup of G. Then, there is a natural inclusion $Y(M) \subseteq Y(G)$ of cocharacter groups. Let $\lambda \in Y(M)$. We write $P_\lambda(G)$ or just P_λ for the parabolic subgroup of G corresponding to λ, and $P_\lambda(M)$ for the parabolic subgroup of M corresponding to λ. It is obvious that $P_\lambda(M) = P_\lambda(G) \cap M$ and $R_u(P_\lambda(M)) = R_u(P_\lambda(G)) \cap M$.

Definition 2.3. Let $\lambda \in Y(G)$. Define a map $c_\lambda : P_\lambda \to L_\lambda$ by

$$c_\lambda(g) := \lim_{a \to 0} \lambda(a)g\lambda(a)^{-1}.$$

Note that the map c_λ is the usual canonical projection from P_λ to $L_\lambda \cong P_\lambda/R_u(P_\lambda)$.

We state a result from GIT (see [BMR05 Lem. 2.17 and Thm. 3.1] and [BMRT Thm. 3.3]).

Proposition 2.4. Let H be a subgroup of G. Let λ be a cocharacter of G with $H \subseteq P_\lambda$. If H is G-cr, there exists $v \in R_u(P_\lambda)$ such that $c_\lambda(h) = vhv^{-1}$ for every $h \in H$.

2.3 Root subgroups and root subspaces

Let G be a connected reductive algebraic group. Fix a maximal torus T of G. Let $\Psi(G, T)$ denote the set of roots of G with respect to T. We sometimes write $\Psi(G)$ for $\Psi(G, T)$. Fix a Borel subgroup B containing T. Then $\Psi(B, T) = \Psi^+(G)$ is the set of positive roots of G defined by B. Let $\Sigma(G, B) = \Sigma$ denote the set of simple roots of G defined by B. Let $\zeta \in \Psi(G)$. We write U_ζ for the corresponding root subgroup of G and u_ζ for the Lie algebra of U_ζ. We define $G_\zeta := \langle U_\zeta, U_{-\zeta} \rangle$.

Let H be a subgroup of G normalized by some maximal torus T of G. Consider the adjoint representation of T on \mathfrak{h}. The root spaces of \mathfrak{h} with respect to T are also root spaces of \mathfrak{g} with respect to T, and the set of roots of H relative to T, $\Psi(H, T) = \Psi(H) = \{ \zeta \in \Psi(G) \mid g_\zeta \subseteq \mathfrak{h} \}$, is a subset of $\Psi(G)$.

5
Let $\zeta, \xi \in \Psi(G)$. Let ξ^\vee be the coroot corresponding to ξ. Then $\zeta \circ \xi^\vee : k^* \to k^*$ is a homomorphism such that $(\zeta \circ \xi^\vee)(a) = a^n$ for some $n \in \mathbb{Z}$. We define $\langle \zeta, \xi^\vee \rangle := n$. Let s_ξ denote the reflection corresponding to ξ in the Weyl group of G. Each s_ξ acts on the set of roots $\Psi(G)$ by the following formula [Spr98, Lem. 7.1.8].

$$s_\xi \cdot \zeta = \zeta - \langle \zeta, \xi^\vee \rangle_\xi.$$

By [Car72, Prop. 6.4.2 and Lem. 7.2.1], we can choose homomorphisms $\epsilon_\zeta : k \to U_\zeta$ so that

$$n_\xi \epsilon_\xi(a) n_\xi^{-1} = \epsilon_{s_\xi \cdot \xi}(\pm a),$$

where $n_\xi = \epsilon_\xi(1) \epsilon_{-\xi}(-1) \epsilon_\xi(1)$.

We define $e_\xi := \epsilon_\xi'(0)$. Then we have

$$\text{Ad}(n_\xi)e_\xi = \pm e_{s_\xi \cdot \xi}.$$

Now, we list four lemmas which we need in our calculations in the following sections. The first one is elementary [Spr98, Prop. 8.2.1].

Lemma 2.5. Let P be a parabolic subgroup of G. Any element u in $R_u(P)$ can be expressed uniquely as

$$u = \prod_{i \in \Psi(R_u(P))} \epsilon_i(a_i),$$

for some $a_i \in k$, where the product is taken with respect to a fixed ordering of $\Psi(R_u(P))$.

The next two lemmas [Hum91, Lem. 32.5 and Lem. 33.3] are important in our calculation of $C_{R_u(P)}(K)$.

Lemma 2.6. Let $\xi, \zeta \in \Psi(G)$. If no positive integral linear combination of ξ and ζ is a root of G, then

$$\epsilon_\xi(a) \epsilon_\zeta(b) = \epsilon_\zeta(b) \epsilon_\xi(a).$$

Lemma 2.7. Let Ψ be the root system of type A_2 spanned by roots ξ and ζ. Then

$$\epsilon_\xi(a) \epsilon_\zeta(b) = \epsilon_\zeta(b) \epsilon_\xi(a) \epsilon_{\xi+\zeta}(\pm ab).$$

The last result is useful when we calculate $c_{\text{Lie}(R_u(P))}(K)$.

Lemma 2.8. Suppose that $p = 2$. Let W be a subgroup of G generated by all the n_ξ where $\xi \in \Psi(G)$. Let K be a subgroup of W. Let $\{O_i \mid i = 1 \cdots m\}$ be the set of orbits of the action of K on $\Psi(R_u(P))$. Then,

$$c_{\text{Lie}(R_u(P))}(K) = \left\{ \sum_{i=1}^m a_i \sum_{\zeta \in O_i} e_\zeta \mid a_i \in k \right\}.$$

Proof. When $p = 2$, (2.2) yields

$$\text{Ad}(n_\xi)e_\zeta = \pm e_{s_\xi \cdot \zeta}.$$

Then an easy calculation gives the desired result.

Remark 2.9. $p = 2$ is essential to get Lemma 2.8. In particular, if $p = 3$, Lemma 2.8 fails.
3 The G_2 example

Assumption 3.1. For the rest of the paper, we assume $p = 2$.

We recall the G_2 example [BMRT10 Sec. 7] to exhibit our method to find a triple (G, M, H) with the desired property. Our approach to the G_2 example is different from [BMRT10 Sec. 7] in the following sense.

1. We show the importance of a non-separable action of K on $R_u(P)$.
2. We explain how to choose v to get $H = vKv^{-1}$.
3. We use Proposition 2.4; see Remark 3.8.

3.1 Step 1

Let G be a simple algebraic group of type G_2 defined over k of characteristic 2. Fix a maximal torus T of G and a Borel subgroup B of G containing T. Then we have $\Psi^+(G) = \{\alpha, \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\}$ where α is short and β is long [Hum91 Sec. 33.5]. We call the roots whose coefficient of β is 2 weight-2 roots, and the roots whose coefficient of β is 1 weight-1 roots respectively. Define

$$L_\alpha := \langle T, G_\alpha \rangle, \quad P_\alpha := \langle L_\alpha, U_\beta, U_{\alpha+\beta}, U_{2\alpha+\beta}, U_{3\alpha+\beta}, U_{3\alpha+2\beta} \rangle.$$

Then P_α is a parabolic subgroup of G, and L_α is a Levi subgroup of P_α. We have

$$\Psi(R_u(P_\alpha)) = \{\beta, \alpha + \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\}.$$

Pick $\alpha^\vee(t) \in \alpha^\vee(k^*)$ of order 3, and define

$$K := \langle n_\alpha, \alpha^\vee(t) \rangle.$$

From [BMRT10 Sec. 7], we obtain the orbits of $\langle n_\alpha \rangle$ on $\Psi(R_u(P_\alpha))$.

$$O_1 = \{\beta, 3\alpha + \beta\}, \quad O_2 = \{\alpha + \beta, 2\alpha + \beta\}, \quad O_3 = \{3\alpha + 2\beta\}. \quad (3.1)$$

By [BMRT10 Sec. 7]

$$\alpha^\vee(t) \text{ acts trivially on } U_\beta, U_{3\alpha+\beta}, U_{3\alpha+2\beta}, U_\beta, U_{3\alpha+\beta}, U_{3\alpha+2\beta}.$$

$$\alpha^\vee(t) \text{ acts non-trivially on } U_{\alpha+\beta}, U_{2\alpha+\beta}, U_{\alpha+\beta}, U_{2\alpha+\beta}. \quad (3.2)$$

Since K is generated by n_α and $\alpha^\vee(t)$, a slight variant of Proposition 2.2 with (3.1) and (3.2) yields

Proposition 3.2. $\mathfrak{c}_{\text{Lie}(R_u(P_\alpha))}(K) = \{a(e_\beta + e_{3\alpha+\beta}) + b(e_{3\alpha+2\beta}) \mid a, b \in k\}.$

The next result is crucial for our argument.

Proposition 3.3. $C_{R_u(P_\alpha)}(K) = U_{3\alpha+2\beta}.$
Proof. Let \(u \in C_{R_\alpha(P_\alpha)}(K) \). By Lemma 2.5, \(u \) can be expressed uniquely as

\[
u = \epsilon_\beta(a_\beta) \epsilon_{3\alpha+\beta}(a_{3\alpha+\beta}) \epsilon_{\alpha+\beta}(a_{\alpha+\beta}) \epsilon_{2\alpha+\beta}(a_{2\alpha+\beta}) \epsilon_{3\alpha+2\beta}(a_{3\alpha+2\beta})
\]

for some \(a_\beta, a_{3\alpha+\beta}, a_{\alpha+\beta}, a_{2\alpha+\beta}, a_{3\alpha+2\beta} \in k \).

Since \(\alpha^\vee(t) \) must act trivially on \(U_{\alpha+\beta} \) and \(U_{2\alpha+\beta} \), (3.2) yields

\[a_{\alpha+\beta} = a_{2\alpha+\beta} = 0.\]

From [BMRT10, Sec. 7], we obtain

\[n_\alpha u^{-1}_\alpha = \epsilon_\beta(a_{3\alpha+\beta}) \epsilon_{3\alpha+\beta}(a_\beta) \epsilon_{3\alpha+2\beta}(a_\beta a_{3\alpha+\beta} + a_{3\alpha+2\beta}).\]

Since \(u \) is centralized by \(n_\alpha \), we have

\[a_\beta = a_{3\alpha+\beta}, a_\beta a_{3\alpha+\beta} = 0.\]

Thus we have

\[a_\beta = a_{3\alpha+\beta} = 0.\]

Proposition 3.4. \(K \) acts non-separably on \(R_\alpha(P_\alpha) \).

Proof. This follows from Proposition 3.2 and 3.3. \(\square \)

3.2 Step 2

Let

\[C := \{ \epsilon_\beta(a) \epsilon_{3\alpha+\beta}(a) \mid a \in k \}.\]

Remark 3.5. The 1-dimensional curve \(C \) was chosen so that \(T_1(C) \) is tangent to \(\epsilon_{\text{Lie}(R_\alpha(P_\alpha))}(K) \) but not tangent to \(\text{Lie} C_{R_\alpha(P_\alpha)}(K) \).

Pick any \(a \in k^* \). Let \(v(a) \in C \). We have

\[v(a)n_\alpha v^{-1}_\alpha = n_\alpha \epsilon_{3\alpha+2\beta}(a^2),\]

\[v(a)\alpha^\vee(t)v(a^{-1}) = \alpha^\vee(t).\]

Now set

\[H = v(a)Kv(a^{-1}) = \langle n_\alpha \epsilon_{3\alpha+2\beta}(a^2), \alpha^\vee(t) \rangle,\]

\[M = \langle L_\alpha, G_{3\alpha+2\beta} \rangle.\]

Remark 3.6. \(M \) was chosen so that \(M \) is generated by a Levi subgroup \(L_\alpha \) containing \(H \) and all root subgroups of even \(\beta \)-weight where \(\beta \) is the simple root not contained in \(\Psi(L_\alpha) \). It is easy to see that \((G, M) \) is a reductive pair since \(\Psi(M, T) \) is a closed subsystem of \(\Psi(G, T) \), [BMRT10, Lem. 3.9].

Then we have

\[H \subset M, H \not\subset L_\alpha.\]

Proposition 3.7. \(H \) is not \(M \)-cr.
Proof. First, let
\[\lambda = \alpha^\vee + 2\beta^\vee. \]
Since we have \(\langle \alpha, \lambda \rangle = 0 \) and \(\langle \beta, \lambda \rangle = 1 \), it is easy to see that
\[L_\alpha = L_\lambda, \ P_\alpha = P_\lambda. \]
Let \(c_\lambda : P_\lambda \to L_\lambda \) be the homomorphism from Definition 2.3. Suppose that \(H \) is \(M \)-cr. By Proposition 2.4, it is enough to show that there is an element \(h \in H \) which is not \(R_\alpha(P_\lambda(M)) \)-conjugate to \(c_\lambda(h) \). Set
\[h := v(a)n_\alpha v(a)^{-1} = n_\alpha e^{3\alpha + 2\beta}(a^2). \]
Then we have
\[
c_\lambda(h) = \lim_{x \to 0} \left(\lambda(x)v(a)n_\alpha v(a)^{-1}\lambda(x)^{-1} \right)
= \lim_{x \to 0} \left(\lambda(x)n_\alpha e^{3\alpha + 2\beta}(a^2)\lambda(x)^{-1} \right)
= n_\alpha.
\]
Now suppose that \(h \) is \(R_\alpha(P_\lambda(M)) \)-conjugate to \(c_\lambda(h) = n_\alpha \). Then there exists \(m \in R_\alpha(P_\lambda(M)) \) such that
\[mv(a)n_\alpha v(a)^{-1}m^{-1} = n_\alpha. \]
Since \(m \in U_{3\alpha + 2\beta} \) centralizes \(n_\alpha \) and \(v(a) \), this implies
\[v(a)n_\alpha v(a)^{-1} = n_\alpha. \]
This contradicts \(3.3 \).

Remark 3.8. In [BMRT10, Sec. 7, Prop. 7.17], Bate et al. used [BMR05, Lem. 2.17 and Thm. 3.1] to turn a problem on \(M \)-complete reducibility into a problem involving \(M \)-conjugacy. We have used Proposition 2.4 to turn the same problem into a problem involving \(R_\alpha(P \cap M) \)-conjugacy, which is easier.

3.3 Step 3

Proposition 3.9. \(H \) is \(G \)-cr.

Proof. See [BMRT10, Lem. 7.10(a)].

4 The rank 1 result

First, we point out that the form of \(K = \langle n_\alpha, \alpha^\vee(t) \rangle \) in the \(G_2 \) example is “canonical” in the following sense; in the proof of Proposition 3.3 it was necessary for \(K \) to contain some \(n_i \) for \(i \in \Sigma \) which acts on \(u \in C_{R_u(P)}(K) \) by swapping the order of non-commuting pair of \(\epsilon_j(a_j) \) odd times. But \(n_i \) by itself does not generate a \(G \)-cr subgroup of \(G \), so Bate et al. added some extra element from \(T \) to obtain a \(G \)-cr subgroup \(K \) of \(G \). The next theorem shows that the \(G_2 \) example is the only case where a subgroup \(K \) of this form acts non-separably on \(R_\alpha(P) \) where \(P \) is a rank 1 parabolic subgroup of a simple algebraic group \(G \). Thus, we are naturally led to look at \(K \) sitting in a higher rank Levi subgroup in the following section.
Theorem 4.1. Let G be a simple algebraic group of any type except type G_2 defined over an algebraically closed field k of characteristic 2. Fix a maximal torus T. Pick any root ζ of G, and choose $\zeta'(t)$ of odd order $n \geq 3$ in T. Let $K = \langle n_\zeta, \zeta'(t) \rangle \cong D_{2n}$ (the dihedral group of order $2n$). Then K acts separably on $R_u(P_\zeta)$. Also, the same is true if G is of type G_2 and ζ is a long root of G.

We use the next lemma to prove Theorem 4.1.

Lemma 4.2. Let G be a simple algebraic group of any type except type G_2. Fix a maximal torus T. Pick any root ζ and coroot ξ' of G. Then the absolute value of $\langle \zeta, \xi' \rangle$ is always less than 3. Also, the statement holds if G is of type G_2 and ξ is a long root of G.

Proof. This is a standard result, see [Hum72, Sec. 9.4].

Proof of Theorem 4.1. Let G and K as in the hypothesis. Suppose that K acts non-separably on $R_u(P_\zeta)$. Then there exists $x \in \mathfrak{c}(\text{Lie}(R_u(P_\zeta)))(K) \setminus \text{Lie}(C_{R_u(P_\zeta)})(K)$. We can write $x = \sum_{i \in I} a_i e_i$ for some subset I of $\Psi(P_\zeta)$ and for some $a_i \in k^*$. We have
\[
\text{Ad}(\zeta'(t)) x = \sum_{i \in I} a_i \text{Ad}(\zeta'(t)) (e_i) = \sum_{i \in I} a_i (t^{i, \xi'} e_i).
\]
Since $\zeta'(t)$ centralizes x and the order of t is 3 or greater, $\langle i, \xi' \rangle$ is zero for each $i \in I$ by Lemma 4.2. Hence $\zeta'(t)$ and n_ζ centralize U_i for each $i \in I$. Therefore $U_i \subseteq C_{R_u(P_\zeta)}(K)$, and it follows that $x \in \text{Lie}(C_{R_u(P_\zeta)})(K)$. This is a contradiction.

Remark 4.3. In the G_2 case, we have $\langle 3\alpha + \beta, \alpha' \rangle = 3$, and the assertion of Theorem 4.1 is false.

5 The E_7 example

5.1 Step 1

Let G be a simple algebraic group of type E_7 defined over k of characteristic 2. Fix a maximal torus T of G. Fix a Borel subgroup B of G containing T. Let $\Sigma = \{\alpha, \beta, \gamma, \delta, \epsilon, \eta, \sigma\}$ be the set of simple roots of G. Figure 1 defines how each simple root of G corresponds to each node in the Dynkin diagram of E_7.

![Figure 1: Dynkin diagram of E_7](image)

From [EdV69 Appendix, Table B], we have the coefficients of all positive roots of G. We label all positive roots of G in Table 1 in the Appendix. Our ordering of roots is different from [EdV69 Appendix, Table B], which is convenient later on.
The set of positive roots is
\[\Psi^+(G) = \{1, 2, \cdots, 63\}. \]

Note that \(\{1, \cdots, 35\} \) and \(\{36, \cdots, 42\} \) are precisely the roots of \(G \) such that the coefficient of \(\sigma \) is 1 and 2 respectively. We call the roots of the first type \textit{weight-1 roots}, and the second type \textit{weight-2 roots}. Define
\[L_\alpha \beta \gamma \delta \epsilon \eta := \langle T, G_{43}, \cdots, G_{63} \rangle, \]
\[P_\alpha \beta \gamma \delta \epsilon \eta := \langle L_\alpha \beta \gamma \delta \epsilon \eta, U_1, \cdots, U_{42} \rangle. \]

Then \(P_\alpha \beta \gamma \delta \epsilon \eta \) is a parabolic subgroup of \(G \), and \(L_\alpha \beta \gamma \delta \epsilon \eta \) is a Levi subgroup of \(P_\alpha \beta \gamma \delta \epsilon \eta \). We have
\[\Psi(R_u(P_\alpha \beta \gamma \delta \epsilon \eta)) = \{1, \cdots, 42\}. \]

Define
\[q_1 := n_\epsilon n_\beta n_\gamma n_\alpha n_\beta, \]
\[q_2 := n_\epsilon n_\beta n_\gamma n_\alpha n_\eta n_\delta n_\beta, \]
\[K := \langle q_1, q_2 \rangle. \]

Let \(\zeta_1, \zeta_2 \) be simple roots of \(G \). From the Cartan matrix of \(E_7 \) [Hum72, Sec. 11.4] we have
\[\langle \zeta_1, \zeta_2 \rangle = \begin{cases} 2, & \text{if } \zeta_1 = \zeta_2, \\ -1, & \text{if } \zeta_1 \text{ is adjacent to } \zeta_2 \text{ in the Dynkin diagram}, \\ 0, & \text{otherwise}. \end{cases} \]

From this, it is not difficult to calculate \(\langle \xi, \zeta_\vee \rangle \) for all \(\xi \in \Psi(R_u(P_\alpha \beta \gamma \delta \epsilon \eta)) \) and for all \(\zeta \in \Sigma \). These calculations show how \(n_\alpha, n_\beta, n_\gamma, n_\delta, n_\epsilon, n_\eta \) act on \(\Psi(R_u(P_\alpha \beta \gamma \delta \epsilon \eta)) \). Let \(\pi : \langle n_\alpha, n_\beta, n_\gamma, n_\delta, n_\epsilon, n_\eta \rangle \to \text{Sym}(\Psi(R_u(P_\alpha \beta \gamma \delta \epsilon \eta))) \cong S_{42} \) be the corresponding homomorphism. Then we have
\[\pi(n_\alpha) = (2 17)(3 22)(5 33)(6 35)(10 20)(13 27)(21 32)(24 34)(25 26)(30 31)(36 37), \]
\[\pi(n_\beta) = (1 10)(3 11)(6 5 23)(7 24)(12 26)(13 28)(15 17)(19 30)(21 29)(37 38), \]
\[\pi(n_\gamma) = (1 16)(3 34)(5 31)(6 25)(9 15)(14 28)(18 29)(22 24)(26 35)(30 33)(38 39), \]
\[\pi(n_\delta) = (1 19)(3 21)(8 9)(10 30)(11 29)(12 28)(13 26)(20 31)(22 32)(25 27)(39 40), \]
\[\pi(n_\epsilon) = (1 15)(2 20)(3 6)(4 11)(7 12)(9 16)(10 17)(22 35)(24 36)(34 31)(38 40), \]
\[\pi(n_\eta) = (1 29)(3 30)(5 24)(7 23)(10 21)(11 19)(16 18)(20 32)(22 31)(33 34)(41 42). \]

From this, we obtain
\[\pi(q_1) = (1 2)(3 6)(4 7)(9 10)(11 12)(13 14)(15 20)(16 17)(18 21)(19 23)(22 25)(24 26) \]
\[(27 28)(29 32)(31 33)(34 35)(36 38)(37 39)(40 41), \]
\[\pi(q_2) = (1 6 7 5 4 3 2)(8 10 12 14 13 11 9)(15 16 21 23 26 27 22)(17 20 25 28 24 19 18) \]
\[(29 30 32 33 35 34 31)(36 38 39 41 42 40 37). \]

It is easy to see that \(K \cong D_{14} \). The orbits of \(K \) in \(\Psi(R_u(P_\alpha \beta \gamma \delta \epsilon \eta)) \) are
\[O_1 = \{1, \cdots, 7\}, O_8 = \{8, \cdots, 14\}, O_{15} = \{15, \cdots, 28\}, O_{29} = \{29, \cdots, 35\}, \]
\[O_{36} = \{36, \cdots, 42\}. \]

Thus Lemma 2.8 yields
Proposition 5.1.
\[\xi_{\text{Lie}(R_u(P_{\alpha\beta\gamma\delta\epsilon\theta
}))}(K) = \left\{ a \left(\sum_{\lambda \in O_1} e_\lambda \right) + b \left(\sum_{\lambda \in O_8} e_\lambda \right) + c \left(\sum_{\lambda \in O_{15}} e_\lambda \right) + d \left(\sum_{\lambda \in O_{29}} e_\lambda \right) + m \left(\sum_{\lambda \in O_{36}} e_\lambda \right) \right\} \]
\[a, b, c, d, m \in k. \]

The following is the most important technical result in this paper.

Proposition 5.2. Let \(u \in C_{R_u(P_{\alpha\beta\gamma\delta\epsilon\theta
})}(K) \). Then \(u \) must have the form,
\[u = \prod_{i=1}^{7} \epsilon_i(a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a + b + c) \prod_{i=36}^{42} \epsilon_i(a) \]
for some \(a, b, c, a_i \in k \).

Proof. By Lemma 2.5, \(u \) can be expressed uniquely as
\[u = \prod_{i=1}^{42} \epsilon_i(b_i), \] for some \(b_i \in k \).

By (2.1), we have
\[n_\xi \epsilon_\zeta(a) n_\zeta^{-1} = \epsilon_{\xi^{-1}\zeta}(a) \] for any \(a \in k \) and \(\xi, \zeta \in \Psi(G) \).

Thus we have
\[q_1 u q_1^{-1} = q_1 \left(\prod_{i=1}^{42} \epsilon_i(b_i) \right) q_1^{-1} \]
\[= \left(\prod_{i=1}^{7} \epsilon_{q_1^{-1}i}(b_i) \right) \left(\prod_{i=8}^{14} \epsilon_{q_1^{-1}i}(b_i) \right) \left(\prod_{i=15}^{28} \epsilon_{q_1^{-1}i}(b_i) \right) \left(\prod_{i=29}^{35} \epsilon_{q_1^{-1}i}(b_i) \right) \left(\prod_{i=36}^{42} \epsilon_{q_1^{-1}i}(b_i) \right). \]
(5.1)

We reorder the terms \(\epsilon_{q_1^{-1}i}(b_i) \) in (5.1) into the natural order. Note that given \(i, j \in \{1, \cdots, 42\} \), either \(U_i \) and \(U_j \) commute by Lemma 2.6 or \(\{i, j, i+j\} \) forms an \(A_2 \) subsystem. (We use + for the sum of roots as vectors, not for the sum of labels). In the latter case, if we swap the order of \(\epsilon_i(m) \) and \(\epsilon_j(n) \), then we get a “correction term” \(\epsilon_{i+j}(mn) \) by Lemma 2.7. We list all pairs of weight-1 roots \(\{i, j\} \) corresponding to the weight-1 non-commuting root subgroups \(\{U_i, U_j\} \) of \(R_u(P_{\alpha\beta\gamma\delta\epsilon\theta
}) \) with the value of \(i+j \) in Table 2 in the Appendix. Abusing the language, we say that \(\{i, j\} \) is a non-commuting pair of roots.

We apply the following (⋆) to reorder the terms in the first factor of (5.1), which is \(\prod_{i=1}^{7} \epsilon_{q_1^{-1}i}(b_i) \). The terms in the other factors can be reordered in a similar way.

(⋆) Move the \(\epsilon_1 \) term to the left, and if a weight-2 term occurs, this can be moved to the right since weight-2 terms commute with any other term by Lemma 2.6. Then move the \(\epsilon_2 \) term to the left until it appears immediately after \(\epsilon_1 \) term. Continue with this process until all terms corresponding to weight-1 roots are rearranged into the natural order. Then rearrange weight-2 terms in the natural order.
Thus we have
\[
\prod_{i=1}^{7} \epsilon_{q_i}(b_i) = \epsilon_2(b_1)\epsilon_1(b_2)\epsilon_6(b_3)\epsilon_7(b_4)\epsilon_5(b_5)\epsilon_3(b_6)\epsilon_4(b_7)
\]
\[
= \epsilon_1(b_2)\epsilon_2(b_1)\epsilon_3(b_6)\epsilon_4(b_7)\epsilon_5(b_5)\epsilon_6(b_3)\epsilon_7(b_4) \left(\prod_{i=36}^{41} \epsilon_i(c_i) \right) \epsilon_{42}(b_4b_7)
\]
for some \(c_i \in k\). \hspace{1cm} (5.2)

Note that we can express the \(c_i\) terms in terms of the \(b_j\), but we do not do this because it is not necessary for our purpose. Likewise for the \(d_i, f_i, g_i, h_i\) terms in (5.3), (5.4), (5.5), and (5.6) below. Similarly, we have
\[
\prod_{i=8}^{14} \epsilon_{q_i}(b_i) = \epsilon_8(b_8)\epsilon_{10}(b_9)\epsilon_9(b_{10})\epsilon_{12}(b_{11})\epsilon_{11}(b_{12})\epsilon_{14}(b_{13})\epsilon_{13}(b_{14})
\]
\[
= \epsilon_8(b_8)\epsilon_9(b_{10})\epsilon_{10}(b_9)\epsilon_{11}(b_{12})\epsilon_{12}(b_{11})\epsilon_{13}(b_{14})\epsilon_{14}(b_{13}) \left(\prod_{i=36}^{41} \epsilon_i(d_i) \right) \epsilon_{42}(b_{11}b_{12})
\]
for some \(d_i \in k\). \hspace{1cm} (5.3)

\[
\prod_{i=15}^{28} \epsilon_{q_i}(b_i) = \epsilon_{20}(b_{15})\epsilon_{17}(b_{16})\epsilon_{16}(b_{17})\epsilon_{21}(b_{18})\epsilon_{23}(b_{19})\epsilon_{15}(b_{20})\epsilon_{18}(b_{21})\epsilon_{25}(b_{22})\epsilon_{19}(b_{23})\epsilon_{26}(b_{24})
\]
\[
\quad \epsilon_{22}(b_{25})\epsilon_{24}(b_{26})\epsilon_{28}(b_{27})\epsilon_{27}(b_{28})
\]
\[
= \epsilon_{15}(b_{20})\epsilon_{16}(b_{17})\epsilon_{17}(b_{16})\epsilon_{18}(b_{21})\epsilon_{19}(b_{23})\epsilon_{20}(b_{15})\epsilon_{21}(b_{18})\epsilon_{22}(b_{25})\epsilon_{23}(b_{19})\epsilon_{24}(b_{26})
\]
\[
\quad \epsilon_{25}(b_{22})\epsilon_{26}(b_{24})\epsilon_{27}(b_{28})\epsilon_{28}(b_{27}) \left(\prod_{i=36}^{41} \epsilon_i(f_i) \right) \epsilon_{42}(b_{22}b_{25}) \text{ for some } f_i \in k. \hspace{1cm} (5.4)
\]

\[
\prod_{i=29}^{35} \epsilon_{q_i}(b_i) = \epsilon_{32}(b_{29})\epsilon_{30}(b_{30})\epsilon_{33}(b_{31})\epsilon_{29}(b_{32})\epsilon_{31}(b_{33})\epsilon_{35}(b_{34})\epsilon_{34}(b_{35})
\]
\[
= \epsilon_{29}(b_{32})\epsilon_{30}(b_{30})\epsilon_{31}(b_{33})\epsilon_{32}(b_{29})\epsilon_{33}(b_{31})\epsilon_{34}(b_{35})\epsilon_{35}(b_{34}) \left(\prod_{i=36}^{41} \epsilon_i(g_i) \right) \epsilon_{42}(b_{34}b_{35}) \text{ for some } g_i \in k. \hspace{1cm} (5.5)
\]

We also have
\[
\prod_{i=36}^{42} \epsilon_{q_i}(b_i) = \left(\prod_{i=36}^{41} \epsilon_i(h_i) \right) \epsilon_{42}(b_{42}) \text{ for some } h_i \in k. \hspace{1cm} (5.6)
\]

Combining (5.1), (5.2), (5.3), (5.4), (5.5), and (5.6), we obtain
\[
q_{1uq_1^{-1}} = \epsilon_1(b_2)\epsilon_2(b_1)\epsilon_3(b_6)\epsilon_4(b_7)\epsilon_5(b_5)\epsilon_6(b_3)\epsilon_7(b_4)\epsilon_8(b_8)\epsilon_9(b_{10})\epsilon_{10}(b_9)\epsilon_{11}(b_{12})\epsilon_{12}(b_{11})\epsilon_{13}(b_{14})
\]
\[
\epsilon_{14}(b_{13})\epsilon_{15}(b_{20})\epsilon_{16}(b_{17})\epsilon_{17}(b_{16})\epsilon_{18}(b_{21})\epsilon_{19}(b_{23})\epsilon_{20}(b_{15})\epsilon_{21}(b_{18})\epsilon_{22}(b_{25})\epsilon_{23}(b_{19})\epsilon_{24}(b_{26})
\]
\[
\epsilon_{25}(b_{22})\epsilon_{26}(b_{24})\epsilon_{27}(b_{28})\epsilon_{28}(b_{27})\epsilon_{29}(b_{32})\epsilon_{30}(b_{30})\epsilon_{31}(b_{33})\epsilon_{32}(b_{29})\epsilon_{33}(b_{31})\epsilon_{34}(b_{35})\epsilon_{35}(b_{34})
\]
\[
\left(\prod_{i=36}^{41} \epsilon_i(c_i + d_i + f_i + g_i + h_i) \right) \epsilon_{42}(b_4b_7 + b_{11}b_{12} + b_{22}b_{25} + b_{34}b_{35} + b_{42}). \hspace{1cm} (5.7)
\]
Since q_1 centralizes u, we have
\[b_1 = \cdots = b_7, \quad b_8 = \cdots = b_{14}, \quad b_{15} = \cdots = b_{28}, \quad b_{29} = \cdots = b_{35}. \]
Set
\[b_1 = a, \quad b_8 = b, \quad b_{15} = c, \quad b_{29} = d, \quad c_i + d_i + f_i + g_i + h_i = a_i \text{ for } i \in \{36, \cdots, 41\}. \]
Then (5.7) simplifies to
\[q_1 u q_1^{-1} = \prod_{i=1}^{7} \epsilon_i(a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(d) \left(\prod_{i=36}^{41} \epsilon_i(a_i) \right) \epsilon_{42}(a^2 + b^2 + c^2 + d^2 + b_{42}). \]
Since q_1 centralizes u, comparing the arguments of the ϵ_{42} term on both sides, we must have
\[b_{42} = a^2 + b^2 + c^2 + d^2 + b_{42}, \]
which is equivalent to
\[a + b + c + d = 0. \]
Then we obtain the desired result.

Proposition 5.3. K acts non-separably on $R_u(P_{\alpha\beta\gamma\delta\epsilon\eta})$.

Proof. In view of Proposition 5.1, it suffices to show that $e_1 + e_2 + e_3 + e_4 + e_5 + e_6 + e_7 \not\in \text{Lie } C_{R_u(P_{\lambda})}(K)$. Suppose the contrary. Since by [Spr98, Cor. 14.2.7] $C_{R_u(P_{\lambda})}(K)$ is isomorphic as a variety to k^n for some $n \in \mathbb{N}$, there exists a morphism of varieties $v : k \to C_{R_u(P_{\lambda})}(K)$ such that $v(0) = 1$ and $v'(0) = e_1 + e_2 + e_3 + e_4 + e_5 + e_6 + e_7$. By Lemma 2.5, $v(a)$ can be expressed uniquely as
\[v(a) = \prod_{i=1}^{42} \epsilon_i(f_i(a)), \quad (5.8) \]
where $f_i \in k[X]$.

Differentiating (5.8), and evaluating at $a = 0$, we obtain
\[v'(0) = \sum_{i \in \{1, \cdots, 42\}} (f_i)'(0)e_i. \]
Since $v'(0) = \sum_{i \in O_1} e_i$, we have
\[(f_i)'(0) = \begin{cases} 1 & \text{if } i \in O_1, \\ 0 & \text{otherwise}. \end{cases} \]
Then we have
\[f_i(a) = \begin{cases} a + g_i(a) & \text{if } i \in O_1, \\ g_i(a) & \text{otherwise}, \end{cases} \]
where $g_i \in k[X]$ has no constant or linear term.

Then from Proposition 5.2, we obtain
\[(a + g_1(a)) + g_8(a) + g_{15}(a) = g_{29}(a). \]
This is a contradiction. \qed
5.2 Step 2

Let

\[C_1 := \left\{ \prod_{i=1}^{7} \epsilon_i(a) \mid a \in k \right\}. \]

By Lemma 2.8 and Proposition 5.2, \(T_1(C_1) \) is tangent to \(\epsilon_{\text{Lie}(R_u(P_{\alpha,\beta,\gamma,\eta}))}(K) \) but not tangent to \(\text{Lie} C_{R_u(P_{\alpha,\beta,\gamma,\eta})}(K) \). Pick any \(a \in k^{*} \). Let \(v(a) \in C_1 \). We have

\[
\begin{align*}
v(a)q_1v(a)^{-1} &= q_1\epsilon_40(a^2)\epsilon_41(a^2)\epsilon_42(a^2), \\
v(a)q_2v(a)^{-1} &= q_2\epsilon_{36}(a^2)\epsilon_{39}(a^2).
\end{align*}
\]

Set

\[
H := v(a)Kv(a)^{-1} = \langle q_1\epsilon_40(a^2)\epsilon_41(a^2)\epsilon_42(a^2), q_2\epsilon_{36}(a^2)\epsilon_{39}(a^2) \rangle.
\]

\[
M := \langle L_{\alpha,\beta,\gamma,\delta,\epsilon,\eta}, G_{36}, \ldots, G_{42} \rangle.
\]

Remark 5.4. In this case \(\sigma \) is the unique simple root not contained in \(\Psi(L_{\alpha,\beta,\gamma,\delta,\epsilon,\eta}) \). \(M \) was chosen so that \(M \) is generated by a Levi subgroup \(L_{\alpha,\beta,\gamma,\delta,\epsilon,\eta} \) containing \(K \) and all root subgroups of even \(\sigma \)-weight.

We have

\[H \subset M, H \not\subset L_{\alpha,\beta,\gamma,\delta,\epsilon,\eta}. \]

Note that we have

\[\Psi(M) = \{ \pm36, \ldots, \pm63 \}. \]

Since \(M \) is generated by all root subgroups for roots of even \(\sigma \)-weight, it is easy to see that \(\Psi(M) \) is a closed subsystem of \(\Psi(G) \), thus \(M \) is reductive by [BMRT10 Lem. 3.9]. It is easy to check that \(M \) is of type \(A_7 \).

Proposition 5.5. \(H \) is not \(M \)-cr.

Proof. Let

\[\lambda = 3\alpha^\vee + 6\beta^\vee + 9\gamma^\vee + 12\delta^\vee + 8\epsilon^\vee + 4\eta^\vee + 7\sigma^\vee. \]

We have

\[
\begin{align*}
\langle \alpha, \lambda \rangle &= 0, \langle \beta, \lambda \rangle = 0, \langle \gamma, \lambda \rangle = 0, \langle \delta, \lambda \rangle = 0, \\
\langle \epsilon, \lambda \rangle &= 0, \langle \eta, \lambda \rangle = 0, \langle \sigma, \lambda \rangle = 2.
\end{align*}
\]

So we have

\[L_{\alpha,\beta,\gamma,\delta,\epsilon,\eta} = L_{\lambda}, \quad P_{\alpha,\beta,\gamma,\delta,\epsilon,\eta} = P_{\lambda}. \]

It is easy to see that \(L_{\lambda} \) is of type \(A_7 \), so \([L_{\lambda}, L_{\lambda}]\) is isomorphic to either \(SL_7 \) or \(PGL_7 \). We rule out the latter. Pick \(x \in k^{*} \) such that \(x \neq 1, x^2 = 1 \). Then \(\lambda(x) \neq 1 \) since \(\sigma(\lambda(x)) = x^2 \neq 1 \).

Also, we have \(\lambda(x) \in Z([L_{\lambda}, L_{\lambda}]) \). Therefore \([L_{\lambda}, L_{\lambda}] \cong SL_7 \). It is easy to check that the map \(k^{*} \times [L_{\lambda}, L_{\lambda}] \to L_{\lambda} \) is separable, so we have \(L_{\lambda} \cong GL_7 \).

Let \(c_\lambda : P_{\lambda} \to L_{\lambda} \) be the homomorphism as in Definition 2.3. In order to prove that \(H \) is not \(M \)-cr, by Theorem 2.4 it suffices to find a tuple \((h_1, h_2) \in H^2\) which is not \(R_u(P_{\lambda}(M))\)-conjugate to \(c_\lambda ((h_1, h_2)) \). Set

\[h_1 := v(a)q_1v(a)^{-1}, \quad h_2 := v(a)q_2v(a)^{-1}. \]

15
By (5.9) we have
\[c_\lambda ((h_1, h_2)) = \lim_{x \to \infty} (\lambda(x)q_1\epsilon_40(a^2)\epsilon_41(a^2)\epsilon_42(a^2)\lambda(x)^{-1}) \]
\[= (q_1, q_2). \]

Now suppose that \((h_1, h_2)\) is \(R_u(P_\lambda(M))\)-conjugate to \(c_\lambda ((h_1, h_2))\). Then there exists \(m \in R_u(P_\lambda(M))\) such that
\[mv(a)q_1v(a)^{-1}m^{-1} = q_1. \]
\[mv(a)q_2v(a)^{-1}m^{-1} = q_2. \]

Thus we have
\[mv(a) \in C_{R_u(P_\lambda)}(K). \]

Note that we have
\[\Psi(R_u(P_\lambda(M))) = \{36, \ldots, 42\}. \]

So, by Lemma 2.5, \(m\) can be expressed uniquely as
\[m := \prod_{i=36}^{42} \epsilon_i(a_i), \text{ for some } a_i \in k. \]

Then we have
\[mv(a) = \epsilon_1(a)\epsilon_2(a)\epsilon_3(a)\epsilon_4(a)\epsilon_5(a)\epsilon_6(a)\epsilon_7(a) \left(\prod_{i=36}^{42} \epsilon_i(a_i) \right) \in C_{R_u(P_\lambda)}(K). \]

This contradicts Proposition 5.7.

Remark 5.6. Instead of using \(C_1\) to define \(v(a)\), we can take \(C_8 := \{\prod_{i=8}^{14} \epsilon_i(a) \mid a \in k\}\), \(C_{15} := \{\prod_{i=15}^{28} \epsilon_i(a) \mid a \in k\}\), or \(C_{29} := \{\prod_{i=29}^{35} \epsilon_i(a) \mid a \in k\}\). In each case, a similar argument goes through and gives rise to a different example with the desired property.

5.3 Step 3

Proposition 5.7. \(H\) is \(G\)-cr.

Proof. First note that \(H\) is conjugate to \(K\), so \(H\) is \(G\)-cr if and only if \(K\) is \(G\)-cr. Then, by [BMR05 Lem. 2.12, Cor. 3.22], it suffices to show that \(K\) is \([L_\lambda, L_\lambda]\)-cr. We can identify \(K\) with the image of the corresponding subgroup of \(S_7\) under the permutation representation \(\pi_1 : S_7 \to SL_7(k)\). It is easy to see that \(K \cong D_{14}\). A quick calculation shows that this representation of \(D_{14}\) is a direct sum of a trivial 1-dimensional and 3 irreducible 2-dimensional subrepresentations. Therefore \(K\) is \([L_\lambda, L_\lambda]\)-cr.

6 A rationality problem

We consider a rationality question. In particular, we prove Theorem 1.8. The key here is again the existence of a 1-dimensional curve \(C_1\) which is tangent to \(\epsilon_{1,\text{Lie}(R_u(P_\lambda))}(K)\) but not tangent to \(\text{Lie}C_{R_u(P_\lambda)}(K)\). The same phenomenon was seen in [BMR10 Ex. 7.22] (but the cause of that was not mentioned explicitly) where Bate et al. presented an example with the same property in \(G_0\) of type \(G_2\).
Proof of Theorem 1.8. Let k_0, k, and G_0 be as in the hypothesis. We choose a k_0-defined k_0-split maximal torus T_0 so that for each $\zeta \in \Psi(G_0)$ the corresponding root ζ, coroot ζ', and homomorphism ϵ_ζ are defined over k_0. Since k_0 is not perfect, there exists $\tilde{a} \in k \setminus k_0$ such that $\tilde{a}^2 \in k_0$. Use the notation $q_1, q_2, K, P_\lambda, L_\lambda$ of Section 5. Let

$$H_0 = (v(\tilde{a})q_1v(\tilde{a})^{-1}, v(\tilde{a})q_2v(\tilde{a})^{-1}).$$

$$= (q_1\epsilon_{40}(\tilde{a}^2)\epsilon_{41}(\tilde{a}^2)\epsilon_{42}(\tilde{a}^2), q_2\epsilon_{36}(\tilde{a}^2)\epsilon_{39}(\tilde{a}^2)).$$

Now it is obvious that H_0 is k_0-defined. We already know that H_0 is G_0-cr by Proposition 5.7. Since G_0 and T_0 are k_0-split, P_λ and L_λ are defined over k_0 by [Bor91] V.20.4, V.20.5. Suppose that there exists a Levi subgroup L'_0 of P_λ defined over k_0 such that L'_0 contains H_0. Then there exists $w_0 \in R_u(P_\lambda)(k_0)$ such that $L'_0 = w_0L_\lambda w_0^{-1}$ by [Bor91] V.20.5. Then $w_0^{-1}H_0w_0 \subseteq L_\lambda$ and $v(\tilde{a})^{-1}H_0v(\tilde{a}) \not\subseteq L_\lambda$. So we have $c_\lambda(w_0^{-1}h_0w_0) = w_0^{-1}h_0w_0$ and $c_\lambda(v(\tilde{a})^{-1}h_0v(\tilde{a})) = v(\tilde{a})^{-1}h_0v(\tilde{a})$ for any $h_0 \in H_0$. We also have $c_\lambda(w_0) = c_\lambda(v(\tilde{a})) = 1$ since $w_0, v(\tilde{a}) \in R_u(P_\lambda)(k)$. Therefore we obtain

$$w_0^{-1}h_0w_0 = c_\lambda(w_0^{-1}h_0w_0) = c_\lambda(h_0) = c_\lambda(v(\tilde{a})^{-1}h_0v(\tilde{a})) = v(\tilde{a})^{-1}h_0v(\tilde{a})$$

for any $h_0 \in H_0$. So we have

$$w_0 = v(\tilde{a})z,$$ where $z \in C_{R_u(P_\lambda)}(K)(k)$.

By Proposition 5.2, z must be in the following form:

$$z := \prod_{i=1}^{7} \epsilon_i(a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a+b+c) \prod_{i=36}^{42} \epsilon_i(a_i) \text{ for some } a, b, c, a_i \in k.$$

Then we have

$$w_0 = \left(\prod_{i=1}^{7} \epsilon_i(\tilde{a}) \right) \prod_{i=1}^{7} \epsilon_i(a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a+b+c) \prod_{i=36}^{42} \epsilon_i(a_i)$$

$$= \prod_{i=1}^{7} \epsilon_i(\tilde{a}+a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a+b+c) \prod_{i=36}^{42} \epsilon_i(b_i) \text{ for some } b_i \in k.$$

Since w_0 is a k_0-point, b, c, and $a+b+c$ all belong to k_0, so $a \in k_0$. But $a + \tilde{a}$ belongs to k_0 as well, so $\tilde{a} \in k_0$. This is a contradiction.

Remark 6.1. As in Section 5, we can take $v(a)$ from C_8, C_{15}, or C_{29}. In each case, a similar argument goes through, and gives rise to a different example.

Remark 6.2. [BMR93] Ex. 5.11] shows that there is a k_0-defined subgroup of G_0 of type A_n which is not G_0-cr over k even though it is G_0-cr over k_0. Note that this example works for any $p > 0$.

7 A problem of conjugacy classes

As another important application of the E_7 example, we consider a problem concerning conjugacy classes. We present a new counterexample to Proposition 1.9 with the hypothesis of separability removed. Here, the key is again the existence of a 1-dimensional curve C_1 as in [BMRT10] Ex. 7.15]. Use the notation $G, q_1, q_2, K, \epsilon_\lambda, L_\lambda$ of Section 5.
From Table 2 it is easy to see that
\[Z(R_u(P)) = \langle U_{36}, U_{37}, U_{38}, U_{39}, U_{40}, U_{41}, U_{42} \rangle. \]

Let
\[K_0 := (K, Z(R_u(P))). \]

It is standard that there exists a finite subset \(F = \{ z_1, z_2, \cdots, z_{\tilde{n}} \} \) of \(Z(R_u(P)) \) such that
\[C_{P_\lambda}(K, F) = C_{P_\lambda}(K_0). \]

Let
\[m := (q_1, q_2, z_1, \cdots, z_{\tilde{n}}). \]

Let \(n := \tilde{n} + 2 \). For \(\tilde{a} \in k^* \), define
\[m(\tilde{a}) := v(\tilde{a}) \cdot m \in P_\lambda(M)^n. \]

Lemma 7.1. \(C_{P_\lambda}(K_0) = C_{R_u(P_\lambda)}(K_0) \).

Proof. It is obvious that \(C_{R_u(P_\lambda)}(K_0) \subseteq C_{P_\lambda}(K_0) \). We prove the converse. Let \(lu \in C_{P_\lambda}(K_0) \) where \(l \in L_\lambda \) and \(u \in R_u(P_\lambda) \). Then \(lu \) centralizes \(Z(R_u(P_\lambda)) \), so \(l \) centralizes \(Z(R_u(P_\lambda)) \) since \(u \) does. It suffices to show that \(l = 1 \). Let \(l = t\tilde{l} \) where \(t \in Z(L_\lambda)^* = \lambda(k^*) \) and \(\tilde{l} \in [L_\lambda, L_\lambda] \).

We have \((i, \lambda) = 4 \) for any \(i \in \{36, \cdots, 42\} \).

Now \(Z(R_u(P_\lambda)) \) has the structure of a vector space over \(k \) in the obvious way, and the action of \(\lambda(k^*) \) on \(Z(R_u(P_\lambda)) \) is linear. So, for any \(z \in Z(R_u(P_\lambda)) \) there exists \(\alpha \in k^* \) such that \(t \cdot z = \alpha z \). Then we have \(\tilde{l} \cdot z = \alpha^{-1}z \). Now define
\[A := \{ \tilde{l} \in [L_\lambda, L_\lambda] \mid \tilde{l} \text{ acts on } Z(R_u(P_\lambda)) \text{ by multiplication by a scalar} \} \]

Then it is easy to see that \(A \subseteq [L_\lambda, L_\lambda] \). Since \([L_\lambda, L_\lambda] \cong SL_7 \) and \(L_\lambda \cong GL_7 \), we have \(A = Z([L_\lambda, L_\lambda]) \). Therefore we obtain \(\tilde{l} \in A = Z([L_\lambda, L_\lambda]) \subseteq \lambda(k^*) \). So we have \(l = c\tilde{l} \in \lambda(k^*) \).

Then we obtain \(\tilde{l} \in C_{\lambda(k^*)}([Z(R_u(P_\lambda))]) \). By (7.1) this implies \(l = 1 \).

Lemma 7.2. \(G \cdot m \cap P_\lambda(M)^n \) is an infinite union of \(P_\lambda(M) \)-conjugacy classes.

Proof. By Lemma 7.1 we have
\[C_{P_\lambda}(K_0) = C_{R_u(P_\lambda)}(K_0) \subseteq C_{R_u(P_\lambda)}(K). \]

Then we obtain
\[C_{P_\lambda}(v(b)K_0v(b)^{-1}) = v(b)C_{P_\lambda}(K_0)v(b)^{-1} \subseteq v(b)C_{R_u(P_\lambda)}(K)v(b)^{-1}. \]

Suppose that \(m(\tilde{a}) \) is \(P_\lambda(M) \)-conjugate to \(m(\tilde{b}) \). Then there exists \(m \in P_\lambda(M) \) such that \(m \cdot m(\tilde{a}) = m(\tilde{b}) \).

By (7.2), we have
\[mv(\tilde{a})v(\tilde{b})^{-1} \in C_{P_\lambda}(v(b)K_0v(b)^{-1}) \subseteq v(b)C_{R_u(P_\lambda)}(K)v(b)^{-1}. \]

Then by Proposition 5.2 we have
\[v(b)^{-1}mv(\tilde{a}) = \prod_{i=1}^{7} \epsilon_i(a) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a + b + c) \prod_{i=36}^{42} \epsilon_i(a_i), \text{ for some } a, b, c, a_i \in k. \]
This yields
\[m = \prod_{i=1}^{7} \epsilon_i(a + \tilde{a} + \tilde{b}) \prod_{i=8}^{14} \epsilon_i(b) \prod_{i=15}^{28} \epsilon_i(c) \prod_{i=29}^{35} \epsilon_i(a + b + c) \prod_{i=36}^{42} \epsilon_i(b_i), \]
for some \(a, b, c, b_i \in k \).

But \(m \in P_\lambda(M) \), so we have
\[a + \tilde{a} + \tilde{b} = 0, \quad b = 0, \quad c = 0, \quad a + b + c = 0. \]

Hence we have
\[\tilde{a} = \tilde{b}. \]

Thus we have shown that if \(\tilde{a} \neq \tilde{b} \), then \(m(\tilde{a}) \) is not \(P_\lambda(M) \)-conjugate to \(m(\tilde{b}) \). So, in particular, \(G \cdot m \cap P_\lambda(M)^n \) is an infinite union of \(P_\lambda(M) \)-conjugacy classes. \(\square \)

We need the next result \[Lon13\] Lem. 4.4. We include the proof to make this paper self-contained.

Lemma 7.3. \(G \cdot m \cap P_\lambda(M)^n \) is a finite union of \(M \)-conjugacy classes if and only if it is a finite union of \(P_\lambda(M) \)-conjugacy classes.

Proof. Suppose that \(m_1 \) and \(m_2 \) are in the same \(M \)-conjugacy class of \(G \cdot m \cap P_\lambda(M)^n \). Then there exists \(m \in M \) such that \(m \cdot m_1 = m_2 \). Let \(Q = m^{-1}P_\lambda(M)m \). Then we have \(m_1 \in (P_\lambda(M) \cap Q)^n \). Now let \(S \) be a maximal torus of \(M \) contained in \(P_\lambda(M) \cap Q \). Since \(S \) and \(m^{-1}Sm \) are maximal tori of \(Q \), they must be \(Q \)-conjugate. So there exists \(q \in Q \) such that
\[qSm^{-1} = m^{-1}Sm. \] (7.3)

Since \(Q = m^{-1}P_\lambda(M)m \), there exists \(p \in P_\lambda(M) \) such that \(q = m^{-1}pm \). Then from (7.3), we obtain
\[pmSm^{-1}p^{-1} = S. \]

This implies
\[m^{-1}p^{-1} \in N_M(S). \]

Fix a finite set \(N \subseteq N_M(S) \) of coset representatives for the Weyl group \(W = N_M(S)/S \). Then we have
\[m^{-1}p^{-1} = ns \text{ for some } n \in N, s \in S. \]

Then we obtain
\[m_1 = m^{-1} \cdot m_2 = (nsp) \cdot m_2 \in (nP_\lambda(M)) \cdot m_2. \]

Since \(N \) is a finite set, this shows that a \(M \)-conjugacy class in \(G \cdot m \cap P_\lambda(M)^n \) is a finite union of \(P_\lambda(M) \)-conjugacy classes. The converse is obvious. \(\square \)

Proof of Theorem 1.10. By Lemma 7.2 and Lemma 7.3 we conclude that \(G \cdot m \cap P_\lambda(M)^n \) is an infinite union of \(M \)-conjugacy classes. Now it is evident that \(G \cdot m \cap M^n \) is an infinite union of \(M \)-conjugacy classes. \(\square \)

Acknowledgements

This research was supported by University of Canterbury Master’s Scholarship and Marsden Grant UOC1009/UOA1021. The author would like to thank Benjamin Martin and Günter Steinke for helpful discussions.

Table 1: The set of positive roots of $G = E_7$

#	1	1	1	1	0	2	1	1	1	0	0	3	0	1	1	2	1	1	4	0	0	0	1	2	2	1		
5	1	1	2	2	1	0	6	0	1	1	2	2	1	7	1	2	2	2	1	1	8	0	0	0	0	0	0	0
9	0	0	0	1	0	0	10	0	1	1	1	1	0	11	0	0	0	1	2	1	1	12	1	2	2	2	1	1
13	1	1	2	3	2	1	14	1	2	3	3	2	1	15	0	0	1	1	0	0	16	0	0	0	1	1	0	
17	0	1	1	1	0	0	18	0	0	0	1	1	1	19	0	0	1	2	1	0	20	1	1	1	1	1	0	
21	0	1	1	1	1	1	22	1	1	1	2	1	1	23	1	2	2	2	1	0	24	1	1	1	2	2	1	
25	0	1	2	2	2	1	26	0	1	1	2	2	1	1	27	0	1	2	3	2	1	28	0	1	2	2	3	2
29	0	0	1	1	1	1	30	0	1	1	2	1	0	31	1	1	1	2	1	0	32	1	1	1	1	1	1	
33	0	1	2	2	1	0	34	0	1	2	2	1	1	35	1	1	1	2	2	1	36	0	1	2	3	2	1	
37	1	1	2	3	2	1	38	1	2	2	3	2	1	39	1	2	3	3	2	1	40	1	2	3	4	2	1	
38	2	1	1	2	3	2	1	39	1	2	2	3	2	1	40	1	2	3	3	2	1							
41	1	2	3	4	3	1	42	1	2	3	4	3	2	43	1	0	0	0	0	0	44	0	1	0	0	0	0	
45	0	0	1	0	0	0	46	0	0	0	1	0	0	47	0	0	0	0	1	0	48	0	0	0	0	0	1	
49	0	0	1	1	0	0	50	0	1	1	1	0	0	51	0	0	1	1	0	0	52	0	0	0	1	1	0	
53	0	0	0	0	1	1	0	54	0	1	1	1	0	0	55	0	1	1	1	0	0	56	0	0	1	1	1	0
57	0	0	0	1	1	1	58	0	1	1	1	1	0	59	0	1	1	1	1	0	60	0	0	1	1	1	1	
61	1	1	1	1	1	1	62	0	1	1	1	1	1	63	1	1	1	1	1	1								

The above table represents the set of positive roots of the Lie algebra E_7. Each row corresponds to a root vector, with the entries indicating the coefficients of each basis element. Roots are typically denoted as α_i, where i is the index of the basis element. In the table, for simplicity, we use 1s to indicate a non-zero coefficient, and 0s for zero coefficients. The table includes both simple and non-simple roots, with the latter often represented as linear combinations of simple roots.
Closed orbits and uniform S-

translations

Table 2: The triples of roots where the first two entries in each triple form a non-commuting pair of weight-1 roots, and the last entry in each triple is the weight-2 root for the corresponding correction term.

References

[BMR05] M. Bate, B. Martin, and G. Röhrle, *A geometric approach to complete reducibility*, Inventiones Mathematicae **161** (2005), 177–218.

[BMR08] ______, *Complete reducibility and commuting subgroups*, J. Reine Angew. Math. **621** (2008), 213–235.

[BMRT] M. Bate, B. Martin, G. Röhrle, and R. Tange, *Closed orbits and uniform S-instability in geometric invariant theory*, Trans. Amer. Math. Soc., to appear.

[BMRT10] ______, *Complete reducibility and separability*, Trans. Amer. Math. Soc. **362** (2010), no. 8, 4283–4311.

[Bor91] A. Borel, *Linear Algebraic Groups*, second enlarged ed., Springer, Graduate Texts in Mathematics, 1991.

[Car72] R. Carter, *Simple Groups of Lie Type*, John Wiley & Sons, 1972.

[Dyn57] E. Dynkin, *Semisimple subalgebras of semisimple Lie algebras*, Amer. Math. Soc. Translations **6** (1957), 111–244.

[Dyn00] ______, *Selected papers of E.B. Dynkin with commentary*, AMS, 2000, [Dyn57] is reproduced on pp.175-308 with corrections on pp.309-312.

[FdV69] H. Freudenthal and H. de Vries, *Linear Algebraic Groups*, Academic Press, New York and London, 1969.
[Hum72] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Graduate Texts in Mathematics, 1972.

[Hum91] ______, Linear Algebraic Groups, Springer, Graduate Texts in Mathematics, 1991.

[LMS05] M. Liebeck, B. Martin, and A. Shalev, On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J. 128 (2005), no. 3, 541–557.

[Lon13] D. Lond, On reductive subgroups of algebraic groups and a question of Kulshammer, PhD thesis, University of Canterbury, New Zealand, 2013.

[LS96] M. Liebeck and G. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 580 (1996).

[LS03] ______, Variations on a theme of Steinberg. Special issue celebrating the 80th birthday of Robert Steinberg, J. Algebra 260 (2003), no. 1, 261–297.

[LT99] R. Lawther and D. Testerman, A1 subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 141 (1999).

[LT04] M. Liebeck and D. Testerman, Irreducible subgroups of algebraic groups, Q.J. Math 55 (2004), 47–55.

[Mar03a] B. Martin, A normal subgroup of a strongly reductive subgroup is strongly reductive, J. Algebra 265 (2003), no. 2, 669–674.

[Mar03b] ______, Reductive subgroups of reductive groups in nonzero characteristic, J. Algebra 262 (2003), no. 1, 265–286.

[Ric67] R. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. 86 (1967), 1–15.

[Ric82] ______, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc 25 (1982), no. 1, 1–28.

[Ric88] ______, Conjugacy classes of ntuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), 1–35.

[Sei97] G. Seitz, Abstract homomorphisms of algebraic groups, J. London. Math. Soc. 56 (1997), no. 1, 104–124.

[Ser] J.P. Serre, Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003-2004, no. 932.

[Ser97] ______, Semisimplicity and tensor products of group representations: converse theorems (With an appendix by Walter Feit), J. Algebra 194 (1997), no. 2, 496–520.

[Ser98] ______, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon (1998), arXiv:math/0305257v1.

[Slo97] P. Slodowy, Two notes on a finiteness problem in the representation theory of finite groups, Austral. Math. Soc. Lect. Ser. 9, Algebraic groups and Lie groups, 331-348, Cambridge Univ. Press, Cambridge, 1997.
[Spr98] T. Springer, *Linear Algebraic Groups*, second ed., Birkhäuser, Progress in Mathematics, 1998.

[Uch] T. Uchiyama, *Separability and complete reducibility of subgroups of the Weyl group of a simple algebraic group of type E_6, E_7, and E_8: a classification*, preprint.

[Vin96] E. Vinberg, *On invariants of a set of matrices*, J. Lie Theory 6 (1996), 249–269.