Evaluating cis-atracurium: Comparing different doses for tracheal intubation

Dr. Shashi Kant, Dr. Shanti Kumari, Dr. Gunjan Kumar, Dr. Waquas Ahmad and Dr. KH Raghwendra

DOI: https://doi.org/10.33545/26643766.2020.v3.i2b.126

Abstract

Objective: This study was designed to compare different doses of cis-atracurium (2×ED95, 4×ED95, 6×ED95) in regarding onset time, condition of intubation, duration of action, hemodynamic effects, and signs of histamine release.

Methods: Sixty ASA I and II adult patients undergoing abdominal surgery under general anesthesia were included in this prospective, randomised, double blind study. Patients were allocated to one of three groups:

- **Group 1:** Patients in this group received with initial dose of 0.1 mg/kg (2×ED95) of cis- atracurium.
- **Group 2:** Received initial dose of 0.2 mg/kg (4×ED95).
- **Group 3:** Received initial dose of 0.3 mg/kg (6×ED95).

Result: All the demographic parameters were comparable. There was a statistically significant increase in HR, MABP post intubation when compared to baseline and post injection of 2× ED95 dose of cis-atracurium in group 1. Higher doses of cisatracurium (4×ED95 and 6×ED95) showed onset time that was significantly lower than cisatracurium (2×ED95). Regarding the duration of action, higher doses of cisatracurium (4×ED95 and 6×ED95) showed statistically significant longer duration of action than lower doses of cisatracurium. 4×ED95 and 6×ED95 doses of cisatracurium were significantly better than 2×ED95 dose of cisatracurium. Only 6×ED95 dose of cisatracurium was statistically significant with higher percentages of patients with excellent condition of intubation.

Conclusion: We can conclude that the higher doses of cisatracurium provide more effective, more rapid neuromuscular blocking with longer duration of action, stable hemodynamic status, and no associated signs of histamine release clinically.

Keywords: General anaesthesia, tracheal intubation, cis- atracurium, neuromuscular blocking

1. Introduction

Muscle relaxants is a routine drug for general anesthesia [1]. The potency of cis-atracurium besilate is about three times that of atracurium besilate, and the maximum block time is 2-3 min longer for equipotent doses as compared to atracurium besilate. The duration of action and rate of spontaneous recovery from equipotent doses are similar in comparisons clinically [2].

Cis-atracurium is more potent than at parent mixture 95% effective dose (ED95) 0.05 mg/kg v/s 0.2 mg/kg, its pharmacodynamic profile is similar to that of atracurium, except for a reportedly slower onset [3]. Cis-atracurium does not have histamine induced cardiovascular side effects like atracurium. However 2 X ED95(100 μg/kg) doses of cisatracurium does not provide ideal conditions for intubation such as seen in equipotent doses of atracurium. The recommendation for intubating dose of cis-atracurium is 3 X ED95 [4-5].

2. Aim of the Works

This study was done to compare three doses of cis-atracurium (2×ED95, 4×ED95, 6×ED95) in regarding onset time, condition at the time of intubation, duration of action, haemodynamic effects, and any signs of histamine release.

3. Materials and Methods

3.1 Ethics Statement

The study was approved by Institute Ethics Committee and was registered with Clinical Trials Registry-India at www.Ctri.nic.in (CTRI/2019/05/019128). Written consent was obtained after informing the participants about the risks, the nature and scope of study.
3.2 Duration and type of study
This study was conducted in department of Anesthesia in Indira Gandhi Institute of Medical sciences, Patna, Bihar, India between May 2019 and December 2019. Sixty consenting adult patients were included in this double-blind, randomized, comparative study. The sampling type was randomized cluster sampling.

3.3 Inclusion Criteria
Patients with ASA I and II, age: between 20 to 65 years, either sexes scheduled for abdominal surgeries of an anticipated duration of at least more than one hour enrolled in this study.

3.4 Exclusion criteria
Patients who refused to participate; any history of significant co-morbid disorders; anticipated difficult intubation; with known allergy to study drug and patients on medication that interact with neuromuscular blocking agent like antibiotics, antidepressants, anticonvulsants, antiarrhythmics and magnesium sulfate.

3.5 Preanesthesia
Pre-anesthesia evaluation of all patients was done before admission to the ward. All patients were pre-medicated with Tab Rantidine 150 mg & Tab Alprazolam 0.25 mg the night before surgery. All patients were kept fasting for 6 h prior to undergoing surgery.

3.6 Intervention plan
On the arrival in operation theatre, routine monitoring in the form of electrocardiography, capnography, temperature probe, non invasive blood pressure, pulse oximetry, respiration and neuromuscular monitoring was done and baseline values were noted. IV access was secured with an 18 G intravenous catheter on dorsum of non-dominant hand, and infusion plasmalyte was started. All the patients were premedicated with 2 mg midazolam IV 20 min preoperatively. Using computer generated random numbers, patients were allocated to one of three groups:

Group A: 20 patients of this group received initial dose of 0.1 mg/kg (2×ED95) of cis-atracurium.

Group B: 20 patients of this group received initial dose of 0.2 mg/kg (4×ED95) of cis-atracurium

Group 3: 20 patients of this group received initial dose of 0.3 mg/kg (6×ED95) of cis-atracurium

The first response (T1) of the train of four (TOF) stimulation was the parameter, which used for the pharmacodynamic measurements. The hand on which neuromonitoring applied was wrapped to avoid hypothermia. Patient was pre-oxygenated with 100% oxygen. General anesthesia was induced with IV fentanyl(dose:2µg/kg) and IV propofol (dose:2 mg/kg). Anesthesia was maintained with O2 + N2 + isoflurane and assisted ventilation. Neuromuscular monitoring was done after obtaining the control values by supramaximal stimulus (70 mA) from relaxograph (2 Hz/0.5 s; pulse width 0.2 ms) every 20s to stimulate the ulnar nerve via surface electrodes.

Aftet 5 min, the muscle relaxant was given for according to the previously mentioned initial doses for each group and given intravenously within 5-10 s. The detectable difference between the means of the group using the onset of action (time from end of injections to 90% neuromuscular block) and its equals 0.7 minutes [6]. After 3 min, endotracheal intubation was done by using appropriate size of laryngoscope blade and endotracheal tube and the condition of intubation was assessed and recorded according to the following [3].

1) Excellent: Smooth passage of the endotracheal tube without coughing. Vocal cords relaxed and abducted.
2) Good: Passage of the endotracheal tube with slight coughing and/ or bucking. Vocal cords were relaxed and abducted.
3) Poor: Passage of the endotracheal tubes with moderate coughing and/ or bucking vocal cords moderately were adducted.
4) Not possible: Endotracheal tube could not be passed through Vocal cords. Vocal cords were tightly adducted.

The onset time was determined as the interval from the end of muscle relaxant injection until the maximal suppression of T1%.

Anesthesia was maintained with boluses of the muscle relaxant (10% of the initial dose) with 25% recovery of response to T1% and ventilation was controlled by the adjust end tidal CO2 (EtCO2) at 30-35 mmHg. Neuromuscular blockade after induction was monitored and recorded every 5 min by supramaximal train-of-four (TOF) stimuli.

The duration of the muscle relaxant (time from the end of injection of the drug to till 25% recovery of T1%) was recorded. Patients were monitored for any signs of histamine release clinically through skin changes graded as flush (if redness lasted > 120 s), erythema, or wheals [18] and presence of any hemodynamic changes or bronchospasm. Intra-operative hemodynamic changes were continuously displayed on the monitor including: heart rate (HR), arterial blood pressure (BP) every 5 min, oxygen saturation (SO2), and end tidal CO2.

To avoid Hyper / Hypothermia by means of warmed IV fluids and warming blankets through nasopharyngeal probe. At the end of operation with 25% recovery of T1%, reversal agent were given of neostigmine and atropine mixture (2.5 mg neostigmine: 1 mg atropine) through slow IV injection. TOF-ratio>0.9 was sufficient for safe extubation of the trachea.

3.7 Blinding
The study drugs were prepared and administered by the independent anesthesiologist not involved in the study. The anesthesiologist giving general anesthesia and observing the patient was blinded to the treatment group. Neither the patient nor the attending anesthesiologist who collected the data was unaware of group allocation.

3.8 Rescue interventions
Rescue interventions were planned for bradycardia and hypotension:
Bradycardia (<50 beats per minute): atropine
Hypotension (<20% of baseline value): mephentermine
3.9 Statistical methods

Data were processed using SPSS version. Quantitative data were expressed as means±SD while qualitative data were expressed as numbers and percentages (%). Student t test and ANOVA test were used to test significance of differences for quantitative variables (HR, BP) that follow normal distribution and chi square test used to significance of differences for qualitative variables. A probability value (P-value) <0.05 was considered statistically significant.

4. Results

All the demographic parameters were comparable (>0.005) [Table 1]. There was a statistically significant increase in HR, MABP post intubation when compared to baseline and post injection of 2×ED95 dose of cisatracurium in group 1. HR, MABP changes 5-20 minutes later were not statistically significant with administration of 4×ED95 and 6×ED95 doses of cisatracurium in groups 2 and 3, respectively [Tables 2 and 3].

Time of onset was found to be significantly lower with 2×ED95 dose of cisatracurium. At the same time, higher doses of cisatracurium (4×ED95 and 6×ED95) showed lower time than significantly lower then cisatracurium (2×ED95). Regarding the duration of action, higher doses of cisatracurium (4×ED95 and 6×ED95) showed statistically significant longer duration of action than lower doses of cisatracurium [Table 4].

Only 6×ED95 dose of cisatracurium was statistically significant with higher percentages of patients with excellent condition of intubation. 4×ED95 and 6×ED95 doses of cisatracurium were similar, while 6×ED95 dose of cisatracurium was significantly better than 2×ED95 dose of cisatracurium. No one of the studied patients in the three groups been reported as not possible intubation. Assessment of vocal cords, 2×ED95 and 4×ED95 doses of cisatracurium were similar, while 6×ED95 dose of cisatracurium was significantly better than 2×ED95 dose of cisatracurium [Table 5]. No signs of histamine release were noted with any doses of cisatracurium.

Table 1: Demographic characteristics of the studied patients

Age (Years)	Cisatracurium group (n=16) 2×ED95	Cisatracurium group (n=16) 4×ED95	Cisatracurium group (n=16) 6×ED95	P-value
Mean ± SD	42.7 ± 4.1	41.9 ± 6.8	36.9 ± 6.4	0.04 (NS)
Range	33-58	27-50	29-53	
Sex Male N (%)	8(50%)	8(50%)	9(62.5%)	
Female N (%)	8(50%)	6(37.5%)	8(56.25%)	

NS - No statistically significant difference

Table 2: Heart rate changes before and after administration of cisatracurium

Heart rate (beat/min)	Baseline reading	After injection of muscle relaxant	Post intubation	5 min	10 min	15 min	20 min
Cisatracurium group (n=16) 2×ED95	72.4 ± 5.71	75.9 ± 6.3	83.6 ± 547 *	75.3 ± 6.51	76.4 ± 5.87	74.6 ± 5.78	75.1 ± 5.65
Cisatracurium group (n=16) 4×ED95	69.8 ± 4.43	72.2 ± 5.2	74.2 ± 3.45	73.9 ± 6.53	77.7 ± 5.56	74.1 ± 6.75	74.6 ± 5.84
Cisatracurium group (n=16) 6×ED95	71.8 ± 6.60	70.8 ± 7.3	71.9 ± 5.54	74.8 ± 6.65	74.4 ± 6.85	73.4 ± 4.75	75.7 ± 5.38

*Statistically significant difference versus Baseline reading (P-value < 0.05)

Table 3: Mean arterial blood pressure changes before and after administration of cisatracurium

Mean arterial blood pressure (mmHg)	Baseline reading	After injection of muscle relaxant	After attempt of intubation	5 min	10 min	15 min	20 min
Cisatracurium group (n=16) 2×ED95	79.8 ± 10.5	79.8 ± 10.5	92.6 ± 7.59 *	88.4 ± 8.64	84.6 ± 9.65	85.7 ± 7.43	83.5 ± 8.93
Cisatracurium group (n=16) 4×ED95	82.1 ± 8.5	82.1 ± 8.5	84.5 ± 6.73	83.5 ± 7.52	85.6 ± 8.42	84.9 ± 8.64	86.4 ± 9.24
Cisatracurium group (n=16) 6×ED95	81.7 ± 10.1	80.1 ± 9.6	85.3 ± 8.43	86.4 ± 9.34	84.9 ± 6.95	85.9 ± 6.58	82.6 ± 8.68

*Statistically significant difference versus Baseline reading (P-value < 0.05)

Table 4: Neuromuscular blockade after administration of cisatracurium

Onset time (Time to maximum suppression of T1%) (min)	Duration of action (25% recovery T1%) (min)	
Cisatracurium group (n=16) 2×ED95	4.37 ± 0.46 *	43.6 ± 4.15
Cisatracurium group (n=16) 4×ED95	4.37 ± 0.46 *	65.5 ± 10.5 #
Cisatracurium group (n=16) 6×ED95	2 ± 1.2 * #	78.4 ± 8.6 *#

* Statistically significant difference versus 2×ED95 dose of atracurium (P-value < 0.05); # Statistically significant difference versus 2×ED95 dose of cisatracurium (P-value < 0.05)

Table 5: Condition of intubation and vocal cords assessment as recoded after 2 minutes of administration of cisatracurium

Vocal cords	Cisatracurium group (n=16) 2×ED95	Cisatracurium group (n=16) 4×ED95	Cisatracurium group (n=16) 6×ED95	
Open N (%)	6(37.5)	11(68.75)	16*# (100)	
Abducted N (%)	8(50)	5(31.25)	0(0)	
Adducted N (%)	2(12.5)	0(0)	0(0)	
Condition of intubation	Excellent N (%)	2(12.5)	10# (62.5)	13#* (81.25)
Good N (%)	9(56.25)	5(31.25)	3(18.75)	

* Statistically significant difference versus 2×ED95 dose of atracurium (P-value < 0.05); # Statistically significant difference versus 2×ED95 dose of cisatracurium (P-value < 0.05)
were further divided into six subgroups. Subgroup ‘a’ denotes the procedure at 75s and, ‘b’ denotes at 90s. For grading the intubating conditions, the ease of laryngoscopy, the position or movement of the vocal cords and the degree of coughing were evaluated. Excellent to good intubating conditions could be achieved only in group Iib (0.20 mg/kg at 90 s) and both sub-groups (0.25 mg/kg at 7.5 s and 90 s) in group III patients. Hence the minimum dose required to achieve excellent to good intubating conditions with cisatracurium is 0.20 mg/kg at 90 s after its administration. The adequacy of conditions for tracheal intubation is a function of several factors, such as the depth of anesthesia and the level of neuromuscular block at the time of attempt [13].

One of two intubating doses 0.15 mg/kg (3×ED95) and 0.2 mg/kg (4×ED95) of cisatracurium, as components of a propofol/nitrous oxide/oxygen induction intubation technique, may produce generally good or excellent conditions of intubation in 2.0 and 1.5min, respectively [14].

6. Conclusion
We can conclude that the higher doses of cisatracurium provide more effective, more rapid neuromuscular blocking with longer duration of action, stable hemodynamic status, and no associated signs of histamine release clinically.

7. References
1. Kleinman W, Nitti GJ, Nitti JT, Raya J. Neuromuscular blocking agents. In: Morgan GE, Mikhail MS, Murray MJ, editors. Clinical anesthesiology, 4th Ed. New York: Lange Medical Books/McGraw Hill Medical publishing Division, 2006, 205.
2. Kleinman W, Nitti GJ, Nitti JT, Raya J. Neuromuscular blocking agents. In: Morgan GE, Mikhail MS, Murray MJ, editors. Clinical anesthesiology, 4th ed. New York: Lange Medical Books/McGraw Hill Medical publishing Division, 2006, 221.
3. Mellinghoff H, Radbrush L, Diefenbach C, Buzello W. A comparison of cisatracurium and atracurium: onset of neuromuscular block after bolus injection and recovery after subsequent infusion. Anaesth Analg. 1996; 83:1072-5.
4. Kirov K, Motamed C, Decailliot F, Behforouz N, Duvaldestin P. Comparison of the neuromuscular blocking effect of cisatracurium and atracurium on the larynx and the adductor pollicis. Acta Anaesth Scand. 2004; 48:577-81.
5. Nogueira CM, Sudo GZ, Sudo RT. Hemodynamic effects of atracurium and cisatracurium and the use of diphenhydramine and cimetidine. Rev Bras Anestesiol. 2010; 60:1.
6. Hermann M, Lukas R, Christoph D, Walter B. A comparison of cisatracurium and atracurium: onset of neuromuscular block after bolus injection and recovery after subsequent infusion. Anesth Analg. 1996; 83:1072-74.

7. Goldberg M, Larijani G, Azad S. Comparison of tracheal intubation conditions and neuromuscular blocking profiles after intubating dose of mivacurium chloride or succinylcholine in surgical outpatients. Anesth Analg. 1989; 69:93-9.

8. Doenicke A, Moss J, Lorenz W, Gottardis M. Are hypotension and rash after atracurium caused by histamine release? Anaesth Analg. 1994; 78:967-72.

9. Lien CA, Belmont MR, Abalos A. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide / opioid / barbiturate anesthesia. Anesthesiol. 1995; 82:1131-38.

10. Basta SJ, Ali HH, Savarese JJ. Clinical pharmacology of atracurium besylate: a new non depolarizing muscle relaxant. Anaesth Analg. 1992; 61:723-29.

11. Bluestein LS, Stinson LW, Lennon RL, Wilson RM. Evaluation of cisatracurium, an ew neuromuscular blocking agent for tracheal intubation. CAN J ANAESTH. 1996; 43:925-31.

12. Mandal P. Intubating Conditions after Cisatracurium Administration-A Dose Response Study in Adults. J Anaesth Clin Pharmacol. 2002; 18:147-51.

13. Belmont MR, Lien CA, Quessy S. The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/ opioid/barbiturate anesthesia. Anesthesiol. 1995; 82:1139-45.

14. Schmautz E, Deriaz H, Vrillon M. Evaluation of 51W89 for endotracheal intubation in surgical patients during N2O/O2/ propofol anesthesia. Anesthesiol. 1994; 81:1081.

15. Hosking MP, Lennon RL, Gronert GA. Combined H1 and H2 receptor blockade attenuates the cardiovascular effects of high dose atracurium for rapid sequence endotracheal intubation. Anaesth Analg. 1988; 67:1089-92.

16. Hughes R, Chapple DJ. The pharmacology of atracurium a new competitive blocking agent. Br J Anaesth. 1981; 53:131-44.