Sequencing and analyses on chloroplast genomes of *Tetrataenium candicans* and two allies give new insights on structural variants, DNA barcoding and phylogeny in Apiaceae subfamily Apioideae

Lu Kang, Dengfeng Xie, Qunying Xiao, Chang Peng, Yan Yu, Xingjin He

1 Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, people's republic of China
2 College of Ecological Engineering, Guizhou University of Engineering Science, Bijie, Guizhou, China

Corresponding Author: Xingjin He
Email address: xjhe@scu.edu.cn

Background. *Tetrataenium candicans* is a traditional Chinese folk herbal medicine used in the treatment of asthma and rheumatic arthritis. Alongside several Tordyiinae species with fleshy roots, it is also regarded as a substitute for a Chinese material medicine called ‘Danggui’. However, a lack of sufficient sampling and genomic information has impeded species identification and the protection of wild resources.

Methods. The complete chloroplast genomes of *T. candicans* from two populations, *Tetrataenium yunnanense* and *Semenovia transilliensis*, were assembled from two pipelines using data generated from next generation sequencing (NGS). Pseudogenes, inverted repeats (IRs) and hyper-variable regions were located by Geneious 11.1.5. Repeat motifs were searched using MISA and REPuter. DNA polymorphism and segment screening were processed by DNAsp5, and PCR product was sequenced with Sanger’s sequencing method. Phylogeny was inferred by MEGA 7.0 and PhyML 3.0.

Results. The complete chloroplast genomes of *T. candicans* from two populations, *T. yunnanense* and *S. transilliensis*, were 142,261 bp, 141,985 bp, 142,714 bp and 142,145 bp in length, respectively, indicating conservative genome structures and gene categories. We observed duplications of trnH and *psbA* caused by exceptional contractions and expansions of the IR regions when comparing the four chloroplast genomes with previously published data. Analyses on DNA polymorphism located 29 candidate cp DNA barcodes for the authentication of ‘Danggui’ counterfeits. Meanwhile, 34 hyper-variable markers were also located by the five Tordyiinae chloroplast genomes, and 11 of them were screened for population genetics of *T. candicans* based on plastome information from two individuals. The screening results indicated that populations of *T.candicans* may have expanded. Phylogeny inference on Apiaceae species by CDS sequences showed most lineages were well clustered, but the five Tordyiinae species failed to recover as a monophyletic group, and the phylogenetic relationship between tribe Coriandreae, tribe Selineae, subtribe Tordyiinae and *Sinodielsia* clade remains unclear.

Discussion. The four chloroplast genomes offer valuable information for further research on species identification, cp genome structure, population demography and phylogeny in Apiaceae subfamily Apioideae.
Sequencing and analyses on chloroplast genomes of *Tetrataenium candicans* and two allies give new insights on structural variants, DNA barcoding and phylogeny in Apiaceae subfamily Apioideae

Lu Kang¹, Dengfeng Xie¹, Qunying Xiao², Chang Peng¹, Yan Yu¹, Xinjin He¹
¹ Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan province, People’s Republic of China
² College of Ecological Engineering, Guizhou University of Engineering Science, Bijie, GuiZhou province, People’s Republic of China

Corresponding Author:
Xinjin He¹
Chengdu, Sichuan province, People’s Republic of China
Email address: xjhe@scu.edu.cn
Abstract

Background. *Tetrataenium candicans* is a traditional Chinese folk herbal medicine used in the treatment of asthma and rheumatic arthritis. Alongside several Tordyliinae species with fleshy roots, it is also regarded as a substitute for a Chinese material medicine called ‘Danggui’. However, a lack of sufficient sampling and genomic information has impeded species identification and the protection of wild resources.

Methods. The complete chloroplast genomes of *T. candicans* from two populations, *Tetrataenium yunnanense* and *Semenovia transilliensis*, were assembled from two pipelines using data generated from next generation sequencing (NGS). Pseudogenes, inverted repeats (IRs) and hyper-variable regions were located by Geneious 11.1.5. Repeat motifs were searched using MISA and REPuter. DNA polymorphism and segment screening were processed by DNAsp5, and PCR product was sequenced with Sanger’s sequencing method. Phylogeny was inferred by MEGA 7.0 and PhyML 3.0.

Results. The complete chloroplast genomes of *T. candicans* from two populations, *T. yunnanense* and *S. transilliensis*, were 142,261 bp, 141,985 bp, 142,714 bp and 142,145 bp in length, respectively, indicating conservative genome structures and gene categories. We observed duplications of *trnH* and *psbA* caused by exceptional contractions and expansions of the IR regions when comparing the four chloroplast genomes with previously published data. Analyses on DNA polymorphism located 29 candidate cp DNA barcodes for the authentication of ‘Danggui’ counterfeits. Meanwhile, 34 hyper-variable markers were also located by the five Tordyliinae chloroplast genomes, and 11 of them were screened for population genetics of *T. candicans* based on the plastome information from two individuals. The screening results indicated that populations of *T. candicans* may have expanded. Phylogeny inference on Apiaceae species by CDS sequences showed most lineages were well clustered, but the five Tordyliinae species failed to recover as a monophyletic group, and the phylogenetic relationship between tribe Coriandreae, tribe Selineae, subtribe Tordyliinae and *Sinodielsia* clade remains unclear.

Discussion. The four chloroplast genomes offer valuable information for further research on species identification, cp genome structure, population demography and phylogeny in Apiaceae subfamily Apioideae.

Introduction

Subtribe Tordyliinae is an Apiaceae lineage in tribe Tordylieae whose species are characterized by enlarged radiant outer petals and dorsally compressed fruits, with more than 15 incorporated genera (*Fu, 1981; Xiao, 2017*). *Tetrataenium candicans* var. *candicans* (Wall. ex DC.) Manden. is a perennial Tordyliinae herb endemic to the Qinghai-Tibet Plateau (QTP) and adjacent regions. They typically grow on sunny slopes and forest edges at elevations of about 2000 to 4200 meters, with dense white pubescence on the back side of leaves and prominent fruit
ridges distinguishing them from other allied species (Fu, 1981). Our survey of the Chinese Materia Medica resource inventory in Sichuan, Yunnan, Tibet and Qinghai province showed that *T. candicans* was a common herbal medicine used to treat asthma and rheumatic arthritis. Moreover, alongside some Tordyliinae species with fleshy roots, it has been also widely used as a substitute for ‘Danggui,’ a traditional Chinese medicine that was first recorded in “Shen Nong’s Herbal Classic” in about AD 200 to be used in blood enrichment and the treatment of pulmonary diseases. However, since the misuse of the active ingredients in this species might cause severe side effects (Sondhiaa et al, 2017; Zhang et al 2001), the Chinese Pharmacopoeia Commission (2015) has restricted ‘Danggui’’s origin plant to *Angelica sinensis* (Oliv.) Diels only. Additionally, the long growth cycle and over-exploitation of wild individuals used for medicinal and economic purposes has menaced the existence of *T. candicans* (Joshi and Dhar, 2003). Less attention was given to discriminate among the counterfeit ‘Danggui’ plants (especially from the subtribe Tordyliinae) which also delayed research on the drug’s safety and discovery.

DNA barcoding is a common technique that aims to standardize DNA segments for species-level discrimination, and has been widely used in identification, taxonomy and biodiversity studies (Hodgetts et al ,2016; Chen et al, 2009; Devloo-Delva et al, 2016). The general procedure in developing DNA barcodes involves building public libraries of DNA segments from known species. The target sequences from an unknown species are then matched up with barcode libraries to search for best-matching species or close relatives (Hajibabaei et al, 2007). With the decline of sequencing cost in the past decades, a vast amount of DNA barcodes has been uploaded and retrieved. For instance, the CO1 gene is applied in the species recognition of animals and fungus (Seifert et al, 2007), while ITS, ITS2, psbA-trnH, matK and rbcL are effective in identifying Apiaceae species (Liu et al, 2014). Nevertheless, due to different substitution rates, hybridization, multiple copies and mutations, DNA barcodes are not applicable to all species (Kress and Erickson, 2007). For example, a universal barcode ycf15 (Gao et al, 2017) is absent in *Coriandrum sativum* (Peery, 2015), and species discrimination by ITS sequences are often flanked by hybridization (Liu et al, 2011). For these reasons, it is essential to develop specialized available DNA markers to protect and fully utilize local herbal resources.

The chloroplast (cp) is an important component in the plant cell as it is where optical energy can be restored in the form of carbohydrates through photosynthesis. As a semi-autonomous organelle, the chloroplast possesses uni-parental inherited cricoid DNA with a length ranging from 20.98 kb (*Sciaphila densiflora*) to 1320.6 kb (*Haematococcus lacustris*), presenting conservative gene locations and categories in flowering plants (Molina et al, 2014). Because of these features, chloroplast genomes have expanded our knowledge of genetic engineering (Daniell et al, 2016), phylogeny (Jansen et al, 2006) and population demography. With the development of next generation sequencing (NGS) and assembly technologies, the past two decades have witnessed more than 100 cp genomes reportedly covering over 40 genera in Apiaceae. These cp genomes are all characterized by a quadripartite structure similar to those of most angiosperms, and their discrepancies are mainly reflected in rare changes in gene order and
shifting IR-LSC boundaries (Peery, 2015; Spooner et al, 2017). Although it is a monophyletic group (Logacheva et al, 2010) that is of important economic value, few studies have been devoted to the chloroplast genomes of Tordyliinae species.

In the present study, we reported cp genomes of two T. candicans individuals, Tetrataenium yunnanense (Xiao et al, 2017) and Semenovia transiliensis. By comparing them with published cp genomes, we explored the structural variation among Apiaceae species and located hypervariable cp DNA markers for Tordyliinae species and candidate cpDNA barcodes for the species identification of ‘Danggui’ counterfeits. Additionally, based on two cp genomes of T. candicans, 11 cpDNA markers were screened to survey population diversity. Finally, phylogeny on 37 Apiaceae and Araliaceae species using CDS sequences of cp genomes was also inferred. This research will offer genomic and genetic information for future phylogenetic and phylogeographic studies on Tordyliinae, and will shed light on the protection and utilization of wild herbal medicine resources.

Materials & Methods

Plant materials and DNA sequencing

Mature and healthy T. candicans leaves from two populations, S. transiliensis and T. yunnanense, were collected from Ganzi (Sichuan province, China; coordinates: 31°63′ N, 100°01′ E; approval number: XQY20150814001), Mu li (Sichuan province, China; coordinates: 28°40′ N, 101°01′ E; approval number: KL20180620001), Tekesi (Xinjiang province, China; coordinates: 42°86′ N, 81°84′ E; approval number: XQY20160724008) and Lanping (Yunnan province, China; coordinates: 26°07′ N, 99°85′ E; approval number: KL20180802001), respectively. All voucher specimens were deposited in the Sichuan University Herbarium (SZ).

The total genomic DNA was isolated from dry leaves using an improved CTAB method (Doyle, 1987) and sequenced at Novogene (Novogene BioTech, Inc. Beijing, China) by Illumina Hiseq 2500 platform (Illumina, San Diego, CA). A genome skimming sequencing strategy (Steven et al, 2015) was performed to obtain deep coverage of organelle genomes regardless of the shallow sequencing of total genomic DNA. The coverage map was generated by Geneious 11.1.5.

Quality control, genome assembly and genome annotation

The quality of raw data was assessed by FastQC (v0.11.7 for windows) (Andrew et al, 2014). To accommodate the demands for data preparation of assembly software, we merely removed primers and adapters using Cutadapt v1.1.8 (Martin et al, 2011), and the qualified data was then assembled in different ways. Initially, a pipeline combining bowtie2-build (Langmead et al, 2012), SAMtools (Li et al, 2009), BEDtools (Quinlan et al, 2014) and SOAPdenovo 2 (Luo et al, 2012) was used to pick up reads that mapped to the best reference cp sequence. The consensus sequences were generated by Geneious 11.1.5 (Kearse et al, 2012) and gaps were filled by Sanger sequencing. For comparison, a seed-based assembler named NOVOPlasty 2.7.2 (Dierckxsens et al, 2017) was employed which eventually cyclized cp genomes.

New rules for annotating cp genomes of the four assembled cp genomes were also followed: (1) Geneious 11.1.5 was used for batch annotation of consensus sequences referring to annotations of Daucus carota (NC_008325) and Pastinaca pimplinellifolia (NC_027450); (2)
Sequences were re-annotated on the DOGMA (Wyman et al, 2004) website to check for any omissions and the identity was set above 70% in protein-coding genes, 80% in rRNA genes and 90% in tRNA genes; (3) Pseudogenes were not marked, and incomplete homologous segments of a real gene (such as psbA, ycf1) were also regarded as pseudogenes; (4) tRNAscan-SE v2.0 (Lowe and Chan, 2016) was used for verifying tRNA genes. All annotation errors were manually corrected. Finally, the circular map was generated by OGDRAW (Lohse et al, 2013).

Repeat motifs

MISA (Thiel, 2003) was used for identifying simple sequence repeats (SSRs) of T. candicans, T. yunnanense, Heracleum moellendorffii, S. transiliensis and P. pimpinellifolia. The threshold was set as follows: the minimum repetitions of SSRs for mono-nucleotide, di-nucleotides, tri-nucleotides, tetra-nucleotides, penta-nucleotide and hexa-nucleotides should be 10, 5, 4, 3, 3 and 3, respectively. Simple dispersed repeats (SDRs) were identified by Reputer (Kurtz, 2001). The minimal size of SDRs was 30 bp, and the similarity among SDRs should be no less than 90%. IRA region and double-counting SDRs were removed.

DNA polymorphism and candidate DNA barcodes

To identify candidate DNA barcodes for the discrimination of ‘Danggui’ and local counterfeits, the cp genomes of T. candicans, T. yunnanense and five Selineae species (Angelica acutiloba (NC_029391), Angelica decursiva (KT781591), Angelica gigas (KX118044), Angelica laxifolia (NC_040122) and A. sinensis (MH430891) were employed. DNA polymorphism of hyper-variable regions was calculated by DnaSP5 (Librado and Rozas, 2009). Before that, cpDNA segments were aligned by MAFFT v7.419 (Katoh et al, 2002) and trimmed manually. The genome variation was visualized using mVISTA (Frazer et al, 2004) by the ShuffleLAGAN alignment program (Brudno et al, 2003). The haplotype analysis, Tajima's test, and Fu and Li's test were processed by DNAsp5. Additionally, the DNA polymorphism of cp genomes of five Tordylinae species (T. candicans, T. yunnanense, Heracleum moellendorffii, S. transiliensis and P. pimpinellifolia) was also calculated.

Segment screening for T. candicans

To investigate the population diversity of T. candicans in order to protect wild resources, we screened 11 cpDNA segments from noncoding regions and designed primers using Geneious 11.1.5 based on hyper-variable regions of the two cp genomes of T. candicans. More than 30 populations were sampled covering most distributions on record, and each population sampled one or two individuals. Total genomic DNA was extracted by an improved CTAB method (Doyle, 1987). PCR amplification was carried out in a 30 µL volume, and included 15 µL ddH$_2$O, 9 µL mix (Tiangen, Beijing, China), 3 µL DNA solution, 1.5 µL Forward primer and 1.5 µL reverse primer solution (10 µmol/L$^{-1}$). The PCR procedure was as follows: pre-denaturation for 4 minutes at 94°C, followed by 35 cycles of denaturation for 45 seconds at 94°C, annealing at 50-55°C for 1 min and extension at 72°C for 1 min, and finally, extension at 72°C for 7 minutes. The PCR products were sequenced (BGI, Beijing, China) by ABI 310 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA). The paired-end sequences were assembled by
DnaSP5 was available for nucleotide diversity, haplotype diversity, and mismatching analyses.

Phylogeny reconstruction

Phylogenetic analysis was performed using concatenated alignments of 80 protein coding sequences from 37 plastomes: *A. sinensis* (MH430891), *Anethum graveolens* (KR011055), *Angelica decursiva* (KT781591), *Angelica gigas* (KX118044), *Angelica laxifoliata* (NC_041022), *Angelica polymorpha* (NC_041580), *Anthriscus cerefolium* (GU456628), *Arracacia xanthorrhiza* (KY117235), *Bupleurum latissimum* (KT983258), *Caucalis platycarpos* (KX832334), *Chuanminshen violaceum* (NC_037711), *Cnidium officinale* (MH121055), *Coriandrum sativum* (NC029850), *Crithmum maritimum* (HM596072), *Daucus carota* (NC_008325), *Dendropanax morbifer* (KR136270), *Foeniculum vulgare* (KR011054), *Glehnia littoralis* (KT153022), *H. moellendorffii* (MK210561), *Hansenia forbesii* (KX808492), *Ledebouriella seseloides* (KT153021), *Ligusticum sinense* (KX594382), *Ligusticum tenuissimum* (KT963039), *Ostericum grosseserratum* (KT852844), *P. pimpinellifolia* (NC_027450), *Petroselinum crispum* (HM596073), *Peucedanum japonicum* (KU866530), *P. rhomboidea* var. tenuiloba (MG719855), *Pleurospermum camtschaticum* (KU041142), *Prangos trifida* (MG386251), *Semenovia gyirongensis* (NC_042912), *Seseli montanum* (KM035851), *S. transiliensis* (MN267864), *T. candicans* (MK333395), *Tiedemannia filiformis* subsp. greenmannii (HM596071), *T. yunnanense* (MN365275), *Dendropanax morbifer* (KR136270) and *Bupleurum latissimum* (KT983258) were treated as outgroup. CDS sequences were extracted by Geneious 11.1.5 and aligned using the MAFFT plugin, with a proper manual cutoff by MEGA 7.0 (Kumar et al, 2016). To avoid Long Branch Attraction (LBA) (Huelsenbeck, 1997), Maximum likelihood (ML) estimation was performed for phylogeny inference by online tool phyML 3.0 (Guindon et al, 2010) with 1000 bootstrap replicates, and the best-fit model was GTR+G+I. Non-conserved loci were filtered by Gblocks 0.91b (Talavera and Castresana, 2007) with default parameters.

Results

Genome features of *T. candicans, S. transiliensis* and *T. yunnanense*

The sequences of two *T. candicans, S. transiliensis* and *T. yunnanense*, were 142,261 bp, 141,948 bp, 142,145 bp and 142,714 bp in length, respectively, presenting typical quadripartite structures containing a large single copy region (LSC) and a small single copy region (SSC) jointed by two inverted repeats (IRA and IRB) (Fig. 1, coverage map in Fig. S1). The overall GC content of the four cp genomes was 37.4% with an exception of 37.3% in *T. yunnanense*. The GC content of the IR region was much higher than that of the other components, mainly because tRNA and rRNA genes had aggregated at this region. The SSC region had the lowest GC content in comparison with the remaining two components (Table 1).

The cp genomes of *T. candicans, T. yunnanense* and *S. transiliensis* contain 123 genes (Table 2): 80 protein-coding genes, 35 tRNA genes and eight rRNA genes. There was no protein-coding gene but five tRNA genes (trn-A-UGC, trn-H-GUG, trn-I-GAU, trn-N-GUU, trn-R-ACG) and four rRNA genes (rrn4.5, rrn5, rrn16, rrn23) were doubled in the IR regions. The
SSC region included 11 protein-coding genes (ccsA, ndhA, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, rpl32, rps15, psaC) and one tRNA gene (trnL-UAG), while the remaining 68 protein-coding genes and 24 tRNA genes occurred at the LSC region, with ycf1 significantly straddling the SSC and IRA regions. There were 11 protein-coding genes (atpF, ndhA, ndhB, petB, petD, rpl16, rpl2, rpoC1, rps12, rps16, ycf3) and six tRNA genes (trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC) that had introns, most of which had only one intron except for clpP, rps12 and ycf3. Coding regions of rps12 were located across the LSC and two IR regions.

Gene loss and pseudogenization

Pseudogenes (marked with ‘Ψ’) were DNA segments that were homologous to real genes but had lost functionality to some extent (Vanin et al., 1985). Of the four assembled chloroplast genomes, ψycf15 in T. candicans, T. yunnanense and S. transiliensis was formed through several small InDels (KU951523 was used as a reference sequence), while ψycf1 and ψpsbA were generated through LSC-IR boundary shifting.

LSC-IR / IR-SSC boundaries

Taking the IRA-LSC boundary of tobacco as reference, junction type I’, defined by Downie (Plunkett and Downie, 2000), was found in cp genomes of T. yunnanense, T. candicans and S. transiliensis. Meanwhile, a rare LSC-IR junction named F’ was discovered in chloroplast genomes of P. pimpinellifolia (NC_027450) and H. moellendorffii (MK210561). The two junction types experienced extra expansion to psbA, and the duplicated segment trnH-psbA inserted right behind old contracted LSC-IRB boundaries (Fig. 2).

While boundaries between the IR and LSC region were quite changeable, IRB-SSC and SSC-IRA junctions were highly conserved. All IRB-SSC boundaries of the four chloroplast genomes reported here were placed adjoined to ndhF, and the SSC-IRA boundaries located within the scope of ycf1. The Junction type definitions will contribute to further research on structural variations of cp genomes of Apiaceae species.

SSRs and SDRs

SSRs (Simple sequence repeats) correlated with multiple replications of motifs that contained one to six base pairs. Herein, we reported SSRs in cp genomes of the five Tordyllinae species that were longer than 10bp (Fig. 3, supplemental zip file SSRs.zip). Overall, 58, 64, 54, 52 and 70 SSRs were detected in T. candicans (MK333395), T. yunnanense, H. moellendorffii, P. pimpinellifolia and S. transiliensis, respectively (Fig. 3(A-E)). ‘A/T’-rich mono-nucleotide SSRs were the most abundant microsatellites in all cp genomes, followed by ‘AT/AT’ di-nucleotide SSRs, while ‘G/C’-rich SSRs were scarce. In T. candicans, 79.3% (46) of SSRs were polyA, polyT or poly AT, and the proportions changed into 79.7% (51), 88.7% (47), 78.8% (41) and 81.4% (57) in T. yunnanense, H. moellendorffii, P. pimpinellifolia and S. transiliensis, respectively. Analyses on the distribution of different categories of SSRs in these five species suggested that the LSC region contains more SSRs than the SSC and IR regions. Repetitions of SSRs (Fig. 3E) in each cp genome were substantially in agreement and larger repeat units meant fewer replications. These SSRs can be potential markers for species discrimination, phylogeny and population studies for the five Tordyllinae species.
SDRs (Short Dispersed Repeats) were more complex repeats longer than 30bp. In this study, 24, 42, 27, 25, and 20 pairs of SDRs in cp genomes of *T. candicans* (MK333395), *T. yunnanense*, *H. moellendorffii*, *P. pimpinellifolia* and *S. transiliensis* were surveyed, respectively (Fig. S2, supplement zip file SDRs.zip). Forward (direct) SDRs were the most frequent repeats, followed by palindromic SDRs and reverse SDRs. Most SDRs were located at the intergenic regions; *trnH-rbn16* specifically was a hotspot area for SDRs in *T. yunnanense* with 15 pairs of SDRs dispersed in this region. There was no SDR longer than 60bp in *H. moellendorffii*, nor *P. pimpinellifolia*, while only two, two, and three SDRs longer than 60bp were observed in *T. candicans*, *S. transiliensis* and *T. yunnanense*, respectively. SDRs longer than 100bp only existed in *T. yunnanense*.

Additionally, SDRs accounting for the expansion of cp genomes through multiple replications were found in *S. transiliensis* and *T. yunnanense*. The 39 bp SDRs that began at the 30419th genome in *S. transiliensis* repeated three times in the LSC region. In *T. yunnanense*, SDRs that repeated more than twice occurred in the IR and LSC regions, with lengths of 30 bp (six replications), 32 bp (five replications) and 31 bp (three replications). Particularly, the 125bp SDRs were considered novel insertions as they aligned any species with high similarities. This information on SDRs will be advantageous in exploring the structure evolution of chloroplast genomes.

DNA polymorphism

The visualization of cp genomes of seven species by mVISTA (Fig. 4) indicated that most hyper-variable DNA segments were situated at intergenic regions and introns, while CDS regions were much more conservative. DNA polymorphism of 67 hyper-variable regions were calculated with Pi values ranging from 0.00306 (*psbB*) to 0.03549 (*trnH-psbA*), with 38 sharing nucleotide diversity beyond 0.01, and 29 DNA segments able to discriminate each species (by number of haplotypes, Table S1). Beyond that, we also observed long insertions in three DNA segments (*psbA*, *ndhF-rpl32* and *ndhC-trnV*) exclusively existing in cp genomes of *A. sinense*. The 28 DNA segments (*accD-ycf4*, *atpH-atpI*, *ccsA-ndhD*, *clpP intron2*, *intron*, *matK*, *ndhA ndhC-trnV*, *ndhF-rpl32*, *psbA-matK*, *psbE-petL*, *psbK-psbI*, *psbZ-rps14*, *rpl32-trnL*, *rpoB-trnC*, *rpoC1 intron*, *rpoC2-rpoC1*, *rps16 intron*, *rps16-trnQ*, *trnC-petN*, *trnE-trnT*, *trnG intron*, *trnH-psbA*, *trnK-rps16*, *trnL-ndhJ*, *trnS-trnG*, *trnT-psbD*, *trnT-trnL*, *trnV-ntpE*) and segments with unique insertions could be candidate plastid DNA barcodes used in the authentication of counterfeit ‘Danggui’.

DNA polymorphism of 106 intergenic regions and 19 introns, as well as 77 CDS in cp genomes of five Tordyliinae species, was also calculated. The nucleotide diversity value (pi) in CDS regions (Fig. S3) ranged from 0 to 0.013 with a mean of 0.0048, which was much lower than that of intergenic regions (from 0 to 0.0681, with a mean of 0.014) and introns (from 0 to 0.0142, with a mean of 0.009). *matK* exhibited the highest DNA polymorphism in the CDS region with 42 polymorphic (segregating) loci detected. Of the 106 non-coding regions (Fig. 5), 65 DNA segments had DNA polymorphism values that exceeded 0.01, with 42 segments longer than 200bp. Only seven introns had relatively high DNA polymorphism that exceeded 0.01.
Finally, according to length and number of polymorphism sites, 29 segments of non-coding regions (accD-psaI, atpF intron, atpH-atpI, atpI-rps2, ccsA-ndhD, ndhA intron, ndhC-trnV, ndhF-rpl32, ndhG-ndhI, petA-psbJ, petN-psbM, psbA-matK, psbA-trnH, psbE-petL, psbK-psbl, psbM-trnD, psbZ-trG, rpl16 intron, rpoB-trnC, rps16 intron, rps2-rpoC2, trnD-trnY, trnF-ndhJ, trnK-rps16, trnL-ndhB, trnL-trnF, trnQ-psbK, trnT-trnL) and five CDS (ccsA, matK, ndhI, ndhG and rps14,) regions were selected to be potential DNA markers used for further research.

Segments screening for genetic diversity of *T. candicans*

All target DNA segments were successfully amplified and sequenced, except for sequencing failures in *ndhF-rpl32* and *rpl16* intron caused by repeat sequences. These segments from different populations presented low DNA polymorphism below 0.01 (Table S2), but significantly high haplotype diversity from 0.248 (*trnS-trnG*) to 0.844 (*rpl16* intron). Only four haplotypes were found in *trnS-trnG* and *rpl16* intron alignments, while *trnQ-rps16* had the most haplotypes with 16. More than half of the haplotypes were private, indicating high haplotype diversity. Regarding mismatch analyses, all nine segments presented unimodal or smooth curves, indicating that the sampled populations (Table S3) had probably experienced recent expansion. However, the results were only confirmed by Tajima’s test and Fu and Li’s test against *rps16 intron, trnQ-rps16, trnL-trnT, rps16-trnK* (weak statistical significance), and *trnS-trnG* (weak statistical significance), while test result from *rpl16 intron, psbA-trnH, trnL-F* did not show statistical significance of deviation from zero.

Phylogenetic inference

Maximum Likelihood (ML) trees (Fig. 6) by 80 concatenated CDS sequences of 37 species from Apiaceae subfamily Apioidae were constructed, and most lineages were well supported. Bupleuraceae species experienced the earliest differentiation in the 12 clades, followed by species from tribe Pleurospermeae, *Komarovia* clade, tribe Oenantheae and tribe Scandiaceae. Seven clades or tribes from Apioid superclade clustered together with 100% bootstrap support value, and Pyramidoptereae was sister to the remaining six clades. Within the subtribe Tordyllinae, lineage including *P. pimpinellifolia* and *H. morllendorffii* were closely clustered with 100% bootstrap support value. This lineage, together with species from tribe Selineae and *Sinodielsia* clade, constituted three parallel branches. Lineage composed of *T. candicans, S. transiliensis, T. yunnanense* and *C. sativum* was clustered with species from *Sinodielsia* clade with 100% bootstrap support value. Phylogeny inference failed to recover the five Tordyliinae species as a monophyletic group.

Discussion

Assembly methods and gene content

In this study, four chloroplast genomes were assembled using genome skimming data based on the principle that organelle DNA have more copies than nrDNA in plant cells. The cp genomes of *T. candicans, S. transiliensis* and *T. yunnanense* were quadripartite with conservative gene organization and an almost halved length of IR regions that determined the selection of
assembly methods. From experience, seed-based assemblers (such as NOVOPlasty v 2.7.1) were more competent in assembling chloroplast genomes with contracted IR regions.

The four cp genomes contained 123 genes: 80 protein-coding genes, 35 tRNA genes and eight rRNA genes. Apart from truncated psbA, only one pseudogene, ψ ycf15, was observed, suggesting that gene content was highly conserved. ‘ATG’ was the start codon of most plastid genes, and illegal start codons occurred in ndhD, psbC and rps19 in the four reported cp genomes. The translational initiation sites of ndhD was ‘ACG’, which might be associated with a post-transcriptional ‘C’ to ‘U’ edit to improve the translating efficiency (Hirose et al., 1999). The start codon of psbC was annotated as two distinct codons, namely ‘GTG’ in tobacco and ‘ATG’ in Apiaceae species, resulting from annotation preference as this gene was highly conservative in both tobacco and the four cp genomes, and ‘ATG’ was 33bp upstream of ‘GTG’. ‘ATG’ was reported as a putative start codon of rps19 in algae, while in angiosperms, the start codon turned into ‘GTG’, indicating an ancient mutation that may take place in a common ancestor.

Molecular markers and segment screening for population genetics

Based on the number of haplotypes and insertions, the 29 candidate cpDNA barcodes were able to distinguish ‘Danggui’ from the counterfeits, which gave new insight on discovering new candidate DNA barcodes using cp genomes. The 34 hypervariable DNA segments and SSRs in the five Tordyliinae species were also located. Our findings were consistent with previous conclusions that most SSRs were abundant in ‘A/T’ format, but the number of SSRs in the five cp genomes was much less than what had been reported in other species (Zhao et al., 2018; Liu et al., 2018; Zong et al., 2019).

Additionally, we made attempts on segments screening for the genetic diversity of *T. candicans* through two cp genomes. All nine DNA segments exhibited high haplotype diversity with abundant private haplotypes, which might be explained by habitat fragmentation (Fahrig, 2003) of *T. candicans* in the Qinghai-Tibet plateau and adjacent regions, while low DNA polymorphism might be correlated to low substitution rate of cpDNA segment or rapid adaptive evolution (Zhao et al., 2013; Shi et al., 2015). What’s more, recent expansion shown by mismatch analyses might give insight into why *T. candicans* are more likely to survive and be prosperous in its habitats. Those segments of high haplotype diversity could be genetic resources for population genetics and complement nrDNA barcodes in identifying producing areas of *T. candicans*.

Dynamic IRA-LSC boundaries and repeat sequences

Most angiosperms were highly conserved in the cp genome structure. As described in *Nicotiana tabacum*, a typical LSC–IRB (J_{LB}) boundary occurred near rps19. However, due to contraction or expansion at the IR regions, LSC-IRB or IRA-LSC boundaries could be really dynamic in Apiaceae. So far, 12 kinds of IRA-LSC boundaries were defined in the family Apiaceae (Plankett and Downie, 2000; Peery, 2015), among which type I’ and F’ were two rare junction types among land plants which existed only in cp genomes of tribe Coriandreae and Tordyliinae species in family Apiaceae.

There are several reported explanations for changes in the IR-LSC boundaries, including
homologous recombination (Guo et al, 2014), double-strand break repair and the existence of SDRs (Odom et al, 2008). A previous study on cp genomes of C. sativum supported double-strand break repair (DBSR) by partial duplication of trnV-GAC and SDRs located within IR regions that caused change in the IR boundary (Peery, 2015). However, the duplication of trnV-GAC was not observed in any Tordyliinae species. More interestingly, we observed some direct SDRs located between trnH-GUG and trnL-CAA, and between trnH-GUG and rrn16 in cp genomes of the five Tordyliinae species. These results indicated that changes in the LSC-IR boundary were far more complicated to be explained by a single mechanism. Additionally, some of the aforementioned SDRs (i.e. 125bp SDRs in T. yunnanense) are new insertions that are highly similar to nrDNA, mtDNA or mRNA segments. The novel insertions existed in the form of direct SDRs that might be preliminary evidence for intra-molecular recombination and foreign DNA transformation mediated by short direct-repeat sequences (Ogihara et al, 1988; Cai et al, 2008).

Phylogeny inference

In the past decades, phylogeny on the whole range of Apiaceae or subfamily Apioideae has been widely explored (Downie et al, 2000, 2004, 2010; Zhou et al, 2008, 2009), but few attempts have been made on utilizing plastid genomes for phylogeny inference. In such cases, protein coding sequences from 37 plastomes from 12 tribes in Apiaceae were employed for phylogeny inference as they were maternal inheritance, free of hybridization and had more informative loci (Daniell et al, 2016). Reconstructed ML tree had 12 well stated tribes. The phylogenetic relationship of most tribes was in congruence with previous phylogenetic inferences using nrDNA datasets (Downie et al, 2010; Zhou et al, 2008, 2009). Ostericum koreanicum (KT852844, marked as Ostericum grosseserratum in NCBI database), revised as Angelica reflexa (Lee et al, 2013), was distant from tribe Oenantheae, and the placement of L. tenuissimum and L. sinense in Sinodielsia clade by cp phylogenomics was also proven in Downie’s research (Downie et al, 2010). Within subtribe Tordyliinae, T. candicans, T. yunnanense and S. transiliensis clustered as a lineage, while H. moellendorffii was closely related to P. pimpinellifolia, which supported the conclusion that both Pastinaca L. and Heracleum L. should be accepted into Heracleum sensu stricto clade (Logacheva et al, 2010; Xiao, 2017).

However, the five species from subtribe Tordylinae were not recovered as a monophyletic group on ML tree as studies using ITS and ETS sequences suggested (Downie et al, 2010; Zhou et al, 2008; Xiao, 2017; Logacheva et al, 2010). The possible reasons for phylogenetic incongruency were sampling errors, systematic errors and biological factors (Zou and Ge, 2008). Sampling errors (stochastic errors) and systematic errors were excluded first as causes for topological discords as abundant informative loci existed in chloroplast genomes and no conspicuous long branch attraction (Bergsten, 2005) was observed (Philippe et al, 2005; Zhang et al, 2012). Biological factors referred to many aspects, such as horizontal gene transfer, ancient hybridization, incomplete lineage sorting, homoplasy and concert evolution (Koch et al, 2003). Even though very few intergeneric hybrids had been reported on Apiaceae species (Desjardins et
al., 2015; Yu et al., 2011), we suggested ancient hybridization cannot be excluded as most
tordyliinae and selineae species possessed the same base number of chromosomes (n=11) (He
and Pu, 1994). Moreover, as shown in Fig. 6, short branches suggested that the disputed
phylogenetic relationship may also be explained by incomplete lineage sorting in apiaceae
superclade apioid that may had experienced rapid evolutionary radiation and species formation
(Calviño et al., 2008; Tamura et al., 2012) related to climate fluctuations or reproductive isolation
during miocene (Liao et al., 2012; Wu et al., 2014; Banasiak et al., 2013). Nevertheless, further
analyses with more nuclear markers and samples from tordylieae should be performed in order
to clarify this issue. Our research also indicated that chloroplast genomes were effective in
phylogeny inference, but may not be competent in dealing with conflicting phylogeny among
rapidly radiated species.

Conclusions

In this study, four cp genomes of two T. candicans individuals, T. yunnanense and S.
transiliensis, were first reported. Analyses on genome structure revealed two kinds of rare
simultaneous contractions and expansions of lsc-ir boundaries in assembled tordyliinae cp
genomes. The candidate cpDNA barcodes for the authentication of ‘Danggui’ and 34
hypervariable DNA segments in the five tordyliinae cp genomes were also identified. Segment
screening for population genetics of T. candicans suggested that populations had probably
experienced recent expansion. Phylogeny inferences based on protein coding sequences from 37
plastomes of Apiaceae and Araliaceae species suggested that subtribe Tordyliinae was closely
related with subtribe Selineae, tribe Coriandreae and Sinodielsias clade. However, ML tree failed
to recover the five tordyliinae species as a monophyletic group. On that basis, forthcoming
research might focus on the structure variation of plastomes of Apiaceae species, cpDNA
barcodes for ‘Danggui’ and phylogeny reconstruction at the genomic level by exploring efficient
methods and increasing samples.

Acknowledgments

The authors thank the researchers who made advancements on the phylogeny of Apiaceae,
and the publishers of related cp genome sequences in NCBI.

References

Andrew S. 2014. FastQC: a quality control tool for high throughput sequence data. Available at:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Banasiak Ł, Piwczyński M, Uliński T, Downie, SR, Watson MF, Shakya B, Spalik K. 2013.
Dispersal patterns in space and time: a case study of Apiaceae subfamily Apioideae. Journal
of Biogeography 40(7):1324–1335.
Bergsten J. 2005. A review of long-branch attraction. Cladistics 21(2):163-193.
Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S. 2003. Glocal
Alignment: Finding Rearrangements During Alignment. Bioinformatics 19S1: i54-i62.
Cai Z, Guisinger M, Kim HG, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK
2008. Extensive reorganization of the plastid genome of Trifolium subterraneum
(Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67:696-704.

Calviño CI, Martínez SG, Downie SR. 2008. The evolutionary history of Eryngium (Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations. Molecular Phylogenetics and Evolution 46(3):1129-1150.

Chen SL, Song JY, Hui Y, Shi LC, Luo K, Han JP. 2009. Strategy and key technique of identification of Chinese herbal medicine using DNA barcoding. Chinese Journal of Natural Medicines 7(5):322-327.

Chinese Pharmacopoeia Commission. 2015. The Pharmacopoeia of the People’s Republic of China, 2015 Edition Part I. Beijing: China Medical Science Press.

Daniell H, Lin CS, Ming Y, Chang WJ. 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology 17(1):134.

Desjardins SD, Leslie AC, Stace CA, Schwarzacher T, Bailey JP. 2015. Intergeneric hybridisation between Berula erecta and Helosciadium nodiflorum (Apiaceae). Taxon 64(4):784-794.

Devloo-Delva F, Miralles L, Ardura A, Borrell YJ, Pejovic I, Tsartsianidou V, Garcia-Vazquez E. 2016. Detection and characterization of the bio-pollutant Xenostrobus securis (Lamarck 1819) Austrian population from DNA barcoding and eBarcoding. Marine Pollution Bulletin 105(1):23-29.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: denovo assembly of organelle genomes from whole genome data. Nucleotide Acids Research Vol.45, No.4, e18.

Downie SR, Downie DS, Watson MF. 2000. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. American Journal of Botany 87(2):273-751.

Downie SR, Sun FJ, Katzdownie DS, Colletti GJ. 2004. A phylogenetic study of Periderididia (Apiaceae) based on nuclear ribosomal DNA its sequences. Systematic Botany 29(3):737.

Downie SR., Spalik K, Katzdownie DS, Reduron JP. 2010. Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA its sequences. Plant Diversity and Evolution 128(1):111-136.

Doyle JJ. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.

Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34(2):487-515.

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for comparative genomics. Nucleotide Acids Research W273-9.

Fu KJ. Umbelliferae. Flora Tsinlingenisis. (Spermatophyta). 1981. Science Press 1(3).

Gao NN, Zhao ZL, Ni LH. 2017. Prospect: Identification of medicinal plant based on chloroplast gene ycf15. Chinese Traditional and Herbal Drugs 2017-15.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59(3):307-21.

Guo WH, Grewe F, Cobo-Clark A, Fan WS, Duan ZL, Adams RP, Schwarzbach AE, Mower JP. 2014. Predominant and substoichiometric isomers of the plastid genome coexist within juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biology and Evolution 6(3):580-590.

Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23(4):167-172.

He XJ, Pu FT, Wang LP. 1994. Studies on karyotypes of the genus *Heracleum* from china. Acta Phytotaxonomica Sinica 32(1):32-40. (in Chinese)

Hirose T, Kusumegi T, Tsudzuki T, Sugira M. 1999. RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Molecular and General Genetics 262(3):462-467.

Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H. 2006. Phylogenetic analyses of Vitis (vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. Bmc Evolutionary Biology 6(1):32.

Koch M. A, Dobes C, Thomas M. O. 2003. Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal dna (its) in north american arabis divaricarpa (brassicaceae). Molecular Biology and Evolution, 20(3):338-350.

Kress WJ, Erickson DL. 2007. A two-locus global DNA barcode for land plants: the coding *rbcl* gene complements the non-coding *trnH-psbA* spacer region. PLoS One 2(6):e508.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874.

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29:4633–4642.

Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357-359.

Lee BY, Kwak MH, Han JE, Jung EH, Nam GH. 2013. Ganghwal is a new species, Angelica reflexa. Journal of Species Research 2:245–248.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078-2079.

Liao CY, Downie SR, Yu Y, He XJ. 2012. Historical biogeography of the Angelica group (Apiaceae tribe Selineae) inferred from analyses of nrDNA and cpDNA sequences. Journal of Systematics and Evolution 50:1759-6831.

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.

Liu J, Shi L, Han J, Li G, Lu H, Hou J, Zhou X, Meng F, Downie SR. 2014. Identification of species in the angiosperm family Apiaceae using DNA barcodes. Molecular Ecology Resources 14(6):1231-1238.

Liu L, Wang Y, He P, Li P, Fu CX. 2018. Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics 19(1):235.

Liu YJ, Liu Y, Huang YJ, Long CL. 2011. Progress and application of DNA barcoding technique in plants. Journal of plant resources and environment 20(1):74-82, 93.

Logacheva MD, Valiejo-Roman CM, Degtjareva GV, Stratton JM, Downie SR, Samigullin TH, Pimenov MG. 2010. A comparison of nrDNA ITS and ETS loci for phylogenetic inference in the Umbelliferae: an example from tribe Tordylieae. Molecular Phylogenetics Evolution 57(1):471–476.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. Organellar Genome DRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41:W575-W581.

Lowe TM, Chan PP. 2016. tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucleotide Acids Research 44:W54-57. Available at: http://lowelab.ucsc.edu/tRNAscan-SE/

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. 2012. Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelser P, Barcelona J, Inovejas SA, Uy I, Yuan W, Wilkins O, Michel CI, LockLear S, Concepcion GP, Purugganan MD. 2014. Possible Loss of the Chloroplast Genome in the Parasitic Flowering Plant *Rafflesia lagascae* (Rafflesiaceae). Molecular Biology and Evolution, 31(4):793-803.

Odom OW, Baek KH, Dani RN, Herrin DL. 2008. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome. The Plant Journal 53(5):842-853.

Ogihara Y, Terachi T, Sasakuma T. 1988. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proceedings of the National Academy of Sciences of the United States of America 85(22):8573-8577.

Peery, R. 2015. Understanding angiosperm genome interactions and evolution: insights from sacred lotus (*Nelumbo nucifera*) and the carrot family (*Apiaceae*). Thesis in PhD, 66-82.

Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. 2005. Heterotachy and long-branch attraction in phylogenetics. Bmc Evolutionary Biology 5(1):1-8.

Plunkett GM, Downie SR. 2000. Expansion and contraction of the chloroplast inverted repeat in *Apiaceae* subfamily Apioideae. Systematic Botany 25:648-667.

Quinlan AR. 2014. Bedtools: the swiss-army tool for genome feature analysis. Current Protocols in Bioinformatics 47.11.12.1.

Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo JM. 2007. Prospects for fungus identification using *CO1* DNA barcodes, with *Penicillium* as a test case. Proceedings of the National Academy of Sciences of the United States of America 104(10):3901-3906.

Shi XJ, Zhang ML. 2015. Phylogeographical structure inferred from cpDNA sequence variation of *Zygophyllum Xanthoxylon* across north-west china. Journal of Plant Research 128(2):269-282.

Sondhiaa S, Duke SO, Green S, Gmejiyeva NG, Mamonov LK. Cantrellb CL. 2017. Phytotoxic Furanocoumarins from the Shoots of *Semenovia transiliensis*. Natural Product Communications 7(10):1327-1330.

Spooner DM, Ruess H, Iorizzo M, Senalik D, Simon P. 2017. *Daucus littoralis*: data from entire plastid phylogeny of the carrot genus (*Daucus, Apiaceae*): concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. American Journal of Botany 104(2):296.

Steven D. 2015. Genome skimming for next-generation biodiversity analysis. Trends in Plant Science, 20(9):525-527.

Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56(4):564-577.

Available at: http://www.phylogeny.fr/one_task.cgi?task_type=gblocks/
Tamura K., Battistuzzi FU, Billing RP, Murillo O, Filipski A, Kumar S. 2012. Estimating Divergence Times in Large Molecular Phylogenies. Proceedings of the National Academy of Sciences of the United States of America 109:19333-19338.

Thiel T, Michalek W, Varshney R, Graner A. 2003. Exploiting EST databases for the development and characterization of gene derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied. Genetics 106:411–422.

Vanin EF. 1985. Processed pseudogenes: characteristics and evolution. Annual Review of Genetics 19:253–72.

Wu H, Guo Z, Guiot J, Hatté C, Peng C, Yu YY, Ge JY, Peng CH, Li Q, Sun AZ, Zhao DA. 2014. Elevation-induced climate change as a dominant factor causing the late miocene C-4 plant expansion in the himalayan foreland. Global Change Biology 20(5):1461-1472.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelle genomes with DOGMA. Bioinformatics 20(17):3252-3255.

Xiao QY. Phylogeny of subtribe Tordyliinae (Apiaceae tribe Tordylieae) in China. 2017. D. Phil. Thesis, Sichuan university.

Xiao QY, Yu Y, Xie DF, Guo XL, He XJ. 2017. Taxonomic revision of angelica oncosepala and heracleum yunnanense. Nordic Journal of Botany.

Yu Y, Downie SR, He XJ, Deng X, Yan L. 2011. Phylogeny and biogeography of Chinese Heracleum (Apiaceae tribe Tordylieae) with comments on their fruit morphology. Plant Systematics and Evolution 296(3-4):179-203.

Zhang QZ, Wang KJ, Hu MH. 2001. Pharmacognostic studies on root of Heracleum candicans. Chinese Traditional and Herbal Drugs 32(7):648-649.

Zhang YX, Zeng CX, Li DZ. 2012. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear gbssi gene phylogenies. Molecular Phylogenetics and Evolution 63(3):0-797.

Zhao C, Wang CB, Ma XG, Liang QL, He XJ. 2013. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum turcz.) reveals two refuge areas in china with subsequent refugial isolation promoting speciation. Molecular Phylogenetics and Evolution 68(3):628-643.

Zhao Z, Wang X, Yu Y, Yuan S, Jiang D, Zhang Y, Zhang T, Zhong W, Yuan Q, Huang L. 2018. Complete chloroplast genome sequences of Dioscorea: Characterization, genomic resources, and phylogenetic analyses. PeerJ 6:e6032.

Zhou J, Peng H, Downie SR, Liu ZW, Gong X. 2008. A molecular phylogeny of Chinese Apiaceae subfamily Apiioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon 57:402–416.

Zhou J, Gong X, Downie SR., Peng H. 2009. Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apiioideae: additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Molecular Phylogenetics and Evolution 53:56–58.
Zong D, Zhou A, Zhang Y, Zou X, Li D, Duan A, He C. 2019. Characterization of the complete chloroplast genomes of five *Populus* species from the western Sichuan plateau, southwest China: comparative and phylogenetic analyses. PeerJ, 7:e6386.

Zou XH, Ge S. 2008. Conflicting gene trees and phylogenomics. Journal of Systematics and Evolution 46:795-807. (in Chinese)
Table 1 (on next page)

Sampling and genome information of four assembled cp genomes

The average coverage of each cp genomes was calculated by formula: (mapped reads * 150) / length of cp genome.
	S. transiliensis	T. candicans	T. candicans	T. yunnanense
Genebank No.	MN267864	MK333395	MK522402	MN365275
Length of Genome(bp)	142,143	142,261	141,948	142,714
Mean coverage (X)	1805	3371	187	908
Raw data (GB)	17.6	16.3	5.1	26.6
GC content (%)	37.4	37.4	37.4	37.3
LSC length (bp)	100,072	99,569	99,961	100,000
LSC GC content (%)	36.1	36.1	36.1	36.0
SSC length (bp)	17,513	17,536	17,533	17,514
SSC GC content (%)	31.1	31.1	31.1	30.9
IR length (bp)	12,279	12,578	12,227	12,600
IR GC content (%)	47.1	47.1	47.1	46.8
CDS length(bp)	68,586	68,577	68,561	65,044
CDS GC content (%)	37.8	37.9	37.9	37.9
Protein coding genes	80	80	80	80
tRNAs	35	35	35	35
rRNAs	8	8	8	8
Total genes	123	123	123	123
Table 2 (on next page)

Genes and categories in the four assembled Tordyliinae cp genomes

Doubled genes are marked with asterisks (*).
Groups	Categories	Name of genes
Self-replication	rRNAs	rrr4.5*
		rrr5*
		rrr16*
		rrr23*
tRNAs	trnY-GUA	trnW-CCA
	trnS-UGA	trnS-GGA
	trnP-UUG	trnN-GUU*
	trnK-UUU	trnL-GAU*
	trnE-UUC	trnD-GUC
		Small subunit of ribosome
		rps2
		rps5
		rps4
		rps7
		rps8
		rps11
		rps12
		rps14
		rps15
		rps16
		rps18
		rps19
		Large subunit of ribosome
		rpl36
		rpl33
		rpl32
		rpl23
		rpl22
		rpl20
		RNA polymerase subunits
		rpoA
		rpoB
		rpoC1
		rpoC2
		Photosynthesis
		Subunits of photosystem I
		psaA
		psaB
		psaC
		psaI
		psaJ
		Subunits of photosystem II
		psbZ
		psbT
		psbN
		psbM
		psbL
		psbK
		psbJ
		psbI
		psbH
		psbF
		psbE
		psbD
		psbC
		psbB
		psbA
		Subunits of cytochrome
		petN
		petL
		petG
		petD
		petB
		petA
		Subunits of ATP synthase
		atpI
		atpH
		atpF
		atpE
		atpB
		atpA
		Large subunit of Rubisco
		rbcL
		Subunits of NADH-Dehydrogenase
		ndhK
		ndhJ
		ndhI
		ndhH
		ndhG
		ndhF
		ndhE
		ndhD
		ndhC
		ndhB
		ndhA
		Other genes
	Maturase	matK
	Envelope membrane protein	cemA
	Subunit of acetyl-CoA	accD
	C-type cytochromesynthesis gene	ccsA
	Protease	clpP
	open reading frames	ycf1, ycf2, ycf3, ycf4
	Translational initiation factor	infA
Figure 1

Chloroplast genome map of *T. candicans*, *S. transiliensis* and *T. yunnanense*

Genes outside the circle are transcribed in a counterclockwise direction, while genes inside are transcribed in a clockwise direction. The darker gray belt in the inner circle refers to the GC content, and the lighter gray color refers to the AT content. Genes that have introns are marked with (*). SSC: small single copy; LSC: large single copy; IRA and IRB: Inverted repeats A and B.
Figure 2

Comparison of the borders of the LSC, SSC, and IR regions of the chloroplast genomes of the five Tordyliinae species and *Nicotiana tabacum*

Genes beyond black lines are transcribed from right to left, genes over the black lines - from left to right. Each colored block represents a gene, and same color means same gene. The smaller blocks with the same color are truncated genes caused by shifting of IR boundaries.

JLA: junction of LSC and IRA regions. JLB: junction of LSC and IRB regions; JSA: junction of SSC and IRA regions; JSB: junction of SSC and IRB regions.
Figure 3

Numbers and repeat frequency of SSRs in five Tordyliinae species

(A-E) Number of SSRs in LSC, SSC and IR regions in plastomes of the five Tordyliinae species. (F) Repeat frequency of different kinds of SSRs. Type C SSRs that blended more than one SSR type are calculated separately. Mono: mono-nucleotides; Di: di-nucleotides; Tri: tri-nucleotides; Tetra: tetra-nucleotides; Penta: penta-nucleotides; Hexa: hexa-nucleotides; C: compound SSRs.
Manuscript to be reviewed

A. T. candidans

B. H. moellendorffii

C. P. pimpinellifolia

D. T. yunnanense

E. S. transiliensis

F. Frequency of repeat

- Mono
- Di
- Tri
- Tetra
- Penta
- Hexa
Figure 4

mVISTA visualization of alignment of cp genomes of *Angelica sinensis* and other six species

Blue blocks represent introns, orange blocks represent intergenic regions, and purple blocks represent exons. The locations of genes in cp genomes are shown below blocks, and sequence identity is shown on the right of blocks. Genes are marked with grey arrows, and arrows in forward direction represent genes are transcribed from left to right, otherwise from right to left.
Angelica decursiva
Angelica gigas
Angelica acutiloba
Angelica laxifoliata
T. yunnanense
T. candidans
Figure 5

DNA polymorphism of non-coding regions of chloroplast genomes of the five Tordyliinae species

(A) DNA polymorphism of non-coding segments at LSC (large single copy). (B) DNA polymorphism of non-coding segments at LSC, SSC (small single copy) and IR (inverted repeat) regions. Segments that marked with length and red dots are applicable for DNA markers. Pi value: nucleotide diversity value.
Figure 6

Maximum likelihood (ML) tree inferred from 80 concatenated protein coding sequences of 37 plastomes of Apiaceae and Araliaceae species

Bootstrap support values higher than 50% are indicated. The scale bar corresponds to 0.01 substitutions per site. Different clades or tribes are marked with colored line segments. Blue bar in the right of ML tree and grey block represent species from Apioid superclade. Species from tribe Tordylieae are colored red.
