Bacterial Vaginosis and Risk Factors in Pregnant Women in Senegal

Marion Bonneton (marionbonneton1@gmail.com)
AP-HP: Assistance Publique - Hopitaux de Paris https://orcid.org/0000-0003-2563-7190

Bich-Tram Huynh
Institut Pasteur

Abdoulaye Seck
Institut Pasteur

Raymond Bercion
Institut Pasteur

Fatoumata Diene Sarr
Institut Pasteur

Elisabeth Delarocque-Astagneau
AP-HP

Muriel Vray
Institut Pasteur

Research article

Keywords: Bacterial vaginosis, Vaginal microbiome, Pregnant women

DOI: https://doi.org/10.21203/rs.3.rs-153819/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Bacterial vaginosis (BV) is associated with a higher risk of preterm delivery and spontaneous abortion. Yet little data on BV prevalence exist for sub-Saharan countries. The aim of this study was to estimate the prevalence of bacterial vaginosis and associated risk factors among pregnant women in Senegal.

Methods

From October 2013 to December 2018, pregnant women in their third trimester were recruited in two primary health centers (one suburban, one rural) in Senegal. Healthcare workers interviewed women and collected a lower vaginal swab and a blood sample. Vaginal flora were classified into four categories using vaginal smear microscopic examination and Gram's coloration. In our study, BV was defined as vaginal flora with no *Lactobacillus spp*. Variables associated with BV were analyzed using STATA® through univariate and multivariate analysis.

Results

A total of 457 women provided a vaginal sample for analysis. Overall, BV prevalence was 18.6% (85/457) [95% CI: 15.4-22.6]) and was similar in suburban and rural areas (18.9 % versus 18.1%, p=0.843). Multivariate analysis showed that primigravidity was the only factor independently associated with a lower risk of BV (aOR=0.35 [95% CI 0.17-0.72]).

Conclusions

Our study showed significant BV prevalence among pregnant women in Senegal. Although the literature has underscored the potential consequences of BV for obstetric outcomes, data are scarce on BV prevalence in sub-Saharan African countries. Before authorities consider systematic BV screening for pregnant women, a larger study would be useful in documenting prevalence, risk factors and the impact of BV on pregnancy outcomes.

Background

Adopted by the United Nations in 2016, the third sustainable development goal (SDG) is to “Ensure healthy lives and promote well-being for all at all ages.” One of this SDG’s targets is to end preventable deaths of newborns and children under 5 years of age and to reduce neonatal mortality to less than 12 per 1,000 live births by 2030. In Senegal, progress has been made since the 1990’s to prevent maternal and childhood deaths, but these accomplishments did not attain the threshold set by the millennium development goals. In 2015, neonatal mortality in Senegal was 47.2 for 1,000 live births. According to the World Health Organization (WHO), 25% of neonatal deaths in Africa are caused by genital tract infections (1).

Bacterial vaginosis (BV) is defined as an imbalance of normal vaginal flora; it is characterized by high species diversity, depleted *Lactobacillus* spp., and increased anaerobes, such as *Gardnerella vaginalis,*
Atopobium vaginae and other fastidious BV-associated bacteria (2). BV symptoms include vaginal discharge and pruritus, although most women are asymptomatic (2). Among pregnant women, however, BV is a risk factor of adverse obstetric outcomes (3, 4). According to a meta-analysis conducted among 20,232 pregnant women (3), women with BV have two times the risk of preterm delivery, and nine times higher risk of spontaneous abortion. BV is also associated with a higher risk of sexually transmitted infections (STI) as Herpes simplex virus type 2 (5), human immunodeficiency virus (HIV) (6–9), *Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoea* (10) and Human papilloma virus (HPV) (11).

BV prevalence among sub-Saharan African countries varies from 25–50% (12) and from 9–23% in pregnant women (4, 13, 14). In Senegal, one prospective study among non-pregnant women with symptoms of genital infections estimated a rate of 39.5% (15).

The aim of this study was to estimate the prevalence of bacterial vaginosis and associated factors among pregnant women in Senegal.

Methods

Data source, inclusion criteria and study setting

BIRDY is a multi-center cohort study launched to address the lack of epidemiological data concerning drug-resistant neonatal and infantile bacterial infections in three low-income countries (Cambodia, Madagascar and Senegal) (16). Nested within the Birdy study, the present study consecutively recruited pregnant women in Guédiawaye (suburban neighborhood in Dakar) and Sokone (rural area near the Gambian border) primary health centers during their third trimester of pregnancy, from October 2013 to September 2018. In the BIRDY study, healthcare workers interviewed women using a standardized questionnaire and collected from them a vaginal swab for streptococcus B (GBS). In addition, in our study, we also screened women for hepatitis B, *Toxoplasma gondii* and Rubella on blood sample and for vaginal candidiasis and BV on vaginal swab. All samples were transported in coolers to Pasteur Institute of Dakar laboratory within 24 hours of collection, then stored in refrigerators until processed. Healthcare workers (nurses and midwives) were trained for this study.

Data collection

Collected variables were as follows: (i) sociodemographic factors: age, marital status, education status (“formal education” was defined as women with at least primary education), sanitation type (indoor latrines and latrines with flushing water were considered to be improved sanitation facilities, whereas outdoor latrines without flushing water were designated unimproved sanitation facilities (17)); (ii) active smoking; (iii) nutritional status (estimated by mid-upper arm circumference (18)); (iv) obstetric history: gravidity, history of stillbirth; (v) pregnancy follow-up: number of prenatal visits (adequate follow-up defined as at least three prenatal visits at recruitment, according to WHO recommendations (19)), and
intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (SP-IPTp) (defined as an intake of at least one dose during pregnancy).

Samples analyses

After microscopic examination and Gram's coloration, isolates were plated onto selective growth medium, Granada Medium (Becton Dickinson) for group B Streptococcus, and CHROMagarTM Candida for yeast isolation and incubated for 24–48 hours at 37 °C in 5% CO2. Vaginal flora were classified into four categories, based on microscopic examination and Gram's coloration of the vaginal smear: “Type I” Döderlein flora, “Type II” majority of *Lactobacillus* spp. associated with few bacteria, “Type III” minority of *Lactobacillus* spp., “Type IV” no *Lactobacillus* spp. With knowledge of the microscopic examination and culture results, the bacteriologist could diagnose BV. In our study we defined BV as a “Type IV” vaginal flora.

Blood samples were screened for HBs antigen, *Toxoplasma gondii* and Rubella antibody immunoglobulin (Ig) G by enzyme immuno assay techniques (chimiluminescence Abbott Architect). All analyses were performed in the Biomedical Laboratory of the Pasteur institute in Dakar.

Statistical methods

Continuous variables were expressed as median with interquartile range (IQR); discrete variables were expressed as percentage with 95% confidence interval (CI). BV-positive and BV-negative groups were compared using χ² test or Fisher’s exact test for dichotomous variables and Student’s t-test or Wilcoxon rank-sum test for continuous variables.

All variables associated with BV in univariate analysis (p < 0.25) were then included in a backward stepwise logistic regression. Because rural/suburban setting was not associated with BV in univariate analysis (p > 0.25), it was not included in the final model. Interactions were assessed between age and gravidity. A p-value ≤ 0.05 was considered statistically significant. For univariate and multivariate analyses, continuous variables were expressed as dichotomous variables using either the median (median age was 28), or a clinically relevant threshold (in the literature, primigravidity and multigravidity are usually used as the threshold for gravidity (20, 21)). Data were analyzed using STATA Software Version 15.1 (Stata Corporation, College Station, Texas, USA).

Ethics, data protection and confidentiality

The BIRDY protocol was approved by the relevant national ethics committees for health research of Senegal and France. Women were included after receiving information about the project, agreeing to providing biological samples, and signing an informed consent form. The BIRDY data collection has been declared to the Commission Nationale de l'Informatique et des Libertés (CNIL – French national data protection authority), in accordance with French law.

Results
A total of 805 pregnant women were included in the Birdy study in Senegal. From October 2013 to September 2018, 477 (62%) women were screened for BV; 457 (96%) had no missing data for variable of interest (center, age, education, gravidity, number of prenatal consultations) and were analyzed, 308 (67.4%) in the suburban area and 149 (32.6%) in the rural area.

Sociodemographic characteristics, pregnancy follow-up, immune status and vaginal smear characteristics are described in Table 1.

Population characteristics

Most women were married (417/457, 91.2%) and 293/457 (64.1%) had a formal education (at least primary education). Median age was 28.1 years (18.4–33.1). A total of 107/457 (23.4%) women were primigravida. Regarding pregnancy follow-up, most women attended at least three prenatal visits at enrollment (317/456, 69.4%); median number of prenatal visits was 2 (1–3), and a majority received at least one dose of SP-IPTp (339/453, 74.8%).
Characteristics	n/N
Center	
Suburban (Guédiawaye)	308/457 (67.4%)
Rural (Sokone)	149/457 (32.6%)
Age (years)	
Median (IQR)	28.1 (18.4–33.1)
< 20	50/457 (10.9%)
20–24	94/457 (20.6%)
25–29	138/457 (30.2%)
30–35	99/457 (21.7%)
> 35	76/457 (16.6%)
Marital status	
Single	40/457 (8.8%)
Married	417/457 (91.2%)
Education	
No formal education	164/457 (35.9%)
Formal education	293/457 (64.1%)
Sanitations	
Improved	229/456 (50.2%)
Unimproved	227/456 (49.8%)
Gravidity	
Median (IQR)	3 (2–4)
1	117/457 (25.6%)
2–4	256/457 (56.0%)
≥ 5	94/457 (20.6%)
History of still birth	
-	23/457 (4.9%)
Number of prenatal consultations	
< 3	140/457 (30.6%)
≥ 3	317/457 (69.4%)
SP-IPTp	
-	339/453 (74.8%)
Undernourished	
-	19/356 (5.3%)
Bacterial vaginosis	
-	85/457 (18.6%)
Vaginal candidiasis	
-	188/457 (41.1%)
Immune status

Among the 424 women tested for HBs antigen, 38 (9.0%) were positive. Whereas most were immunized against Rubella, 400/450 (89.1%), only about a third had IgG against *Toxoplasma gondii*, 159/449 (35.4%).

Vaginal smear

Overall BV prevalence was 18.6% (85/457) [95% CI: 15.4–22.6]) and was similar in suburban and rural areas (18.9% versus 18.1%, p = 0.843). Vaginal flora type on vaginal smear are described in Table 2 according to location (suburban/rural). A total of 102 (22.3%) women had *Gardnerella vaginalis* colonization. *Gardnerella vaginalis* was associated with BV in 73/457 vaginal smears (16.0%). Regarding other types of bacterial colonization, group B *Streptococcus*, and *Candida spp.* were found in 66/457 (14.5%) and 188/457 (41.1%), respectively.

Characteristics	n/N
Group B *Streptococcus* vaginal colonization	66/457 (14.5%)
HBs antigen positive	38/424 (9.0%)
Toxoplasma gondii antibody, IgG	
Positive	159/449 (35.4%)
Negative	277/449 (61.5%)
Gray zone	13/449 (2.9%)
Rubella antibody, IgG	
Positive	401/450 (89.1%)
Negative	26/450 (5.8%)
Gray zone	23/450 (5.1%)

* Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine, △ Brachial perimeter < 24 cm use as a proxy of undernutrition, β defined as at least primary education, µ inside latrines and latrines with water flush were considered as improved sanitation facilities.
Table 2
Vaginal flora type according to location in pregnant women, Senegal, 2013–2018

Vaginal Flora type	Total	Suburban (Guédiawaye)	Rural (Sokone)	p-valueb			
	n = 457	n = 308	n = 149				
I	174	37.9%	117	37.8%	57	38.3%	< 0.001
II	63	13.8%	56	18.2%	7	4.7%	< 0.001
III	135	29.6%	77	25.1%	58	38.9%	< 0.001
IV*	85	18.6%	58	18.9%	27	18.1%	0.843

*Defined as bacterial vaginosis in our study b p-value comparing vaginal flora type between suburban and rural areas

Factors associated with bacterial vaginosis (Table 3)

In univariate analysis, being at least 28 years of age and multigravida was associated with a higher risk of BV, OR = 2.22 [95% CI 1.35–3.66] and OR = 3.02 [95% CI 1.44–6.31], respectively.

In multivariate analysis, multigravidity was the only factor to be found significantly associated with a higher risk of BV (aOR = 2.88 [95% CI 1.39-6.00]).
Table 3
Bacterial vaginosis (BV) risk factors in Senegalese pregnant women, 2013–2018

	BV + (N = 85)	BV – (N = 371)	Univariate analysis	Multivariate analysis				
	n	%	n	%	crude OR	CI 95%	Adjusted OR	CI 95%
Age (years)								
< 28	29	34.1	199	53.5	Ref	-		
≥ 28	56	65.9	173	46.5	2.22	1.35–3.66		
Location								
Suburban (Guédiawaye)	58	68.2	249	67.1	Ref	-		
Rural (Sokone)	27	31.8	122	32.9	0.95	0.57–1.57		
Education								
Formal educationβ	36	42.4	128	34.5	Ref	-		
No formal education	49	57.6	243	65.5	0.71	0.44–1.16		
Gravidity								
Primigravida	9	10.6	98	26.4	Ref	-	Ref	-
Multigravida	76	89.4	273	73.6	3.02	1.44–6.31	2.88	1.39–6.00
History of still birth								
No	78	91.8	355	95.7	Ref	-		
Yes	7	8.2	16	4.3	2.00	0.79–5.03		
Prenatal consultations ≥ 3	19	77.7	121	67.4	Ref	-	Ref	-
< 3	66	22.3	250	32.6	1.67	0.96–2.92	1.55	0.88–2.70
UndernourishedΔ								
No	62	95.4	274	94.5	Ref	-		
Yes	3	4.6	16	5.5	0.83	0.23–2.94		
SP-IPTp α								
Yes	62	73.8	276	75.0	Ref	-		
No	22	26.2	92	25.0	1.06	0.62–1.83		
Vaginal candidiasis								
No	56	65.9	212	57.1	Ref	-		
	BV + N = 85	BV – N = 371	Univariate analysis	Multivariate analysis				
--------------------------	------------	--------------	---------------------	-----------------------				
Group B								
Streptococcus vaginal								
colonization								
No	73 85.9	317 85.4	Ref	-				
Yes	12 14.1	54 14.6	0.96	0.49–1.90				

a Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine, Δ Brachial perimeter < 24 cm use as a proxy of undernutrition, β defined as at least primary education

Discussion

To our knowledge, this is the first study of BV among Senegalese pregnant women. Our study shows that BV prevalence in pregnant women was 18.6%. This estimate is lower than that reported among non-pregnant Senegalese women (39.5%), in which BV detection was performed only in symptomatic women (15). Our result is consistent with other studies carried out among pregnant women, regardless of the presence/absence of symptoms (4, 13, 14, 22).

We identified an association between gravidity and BV: multigravida women were more likely to have BV than nulligravida women. The role of gravidity in BV remains unclear. One Australian case-control study among 1780 women showed a similar association between multigravida women at higher risk for BV (OR = 1.5, p < 0.0006) (20), whereas a Japanese study on 6083 women found no association between BV and gravidity in a multivariate analysis (21). Sexual activity is a known risk factor of BV, as shown in a meta-analysis of 43 studies, which concluded that women with new or multiple male partners were 1.6 times more at risk of BV (23). Primigravidity could reflect a lower level of sexual activity, particularly in Senegal where most women have no sexual partners before marriage and usually become pregnant in the first year after marriage.

A meta-analysis studying the association between vaginal microbiota and various STI found a protective role of high-\textit{Lactobacillus} vaginal microbiota for HPV and \textit{C. trachomatis} (24). Almost half of the women included in our study had low-\textit{Lactobacillus} vaginal microbiota (type III and IV vaginal flora), suggesting that they may be at higher risk of STI, including \textit{C. trachomatis} infection, which is associated with adverse pregnancy outcomes (25).

We found no association between BV and GBS vaginal colonization. This association remains poorly investigated, and study results are inconsistent. In vitro studies showed that GBS adherence and biofilm formation are regulated by pH and thus by the abundance of \textit{Lactobacillus} (26, 27). Culture-based studies reported a positive association between GBS and low level of \textit{Lactobacillus}, whereas a recent 16 s gene amplification study did not, but the latter focused on non-pregnant women (28). As this study’s authors acknowledged, the abundance of \textit{Lactobacillus} and alpha-diversity are modified during pregnancy. In
addition, investigating interactions between GBS colonization and microbiota composition is hampered by the cross-sectional design of the studies.

Another interesting finding of this study is the low immunity rate against *Toxoplasma gondii*, i.e. 36.5%. A prior study conducted in Dakar among women of reproductive age found similar results (40.3% immunity rate) (29). Seroprevalence of *Toxoplasma gondii* IgG varies from 50–80% in Arab and African countries (30, 31) and from 10–30% in European and North American countries (32–35). *Toxoplasma gondii* transmission mainly occurs through the ingestion of bradyzoites in raw or undercooked meat products and through sporozoite ingestion from soil-contaminated fruit and raw vegetables. In Senegal, food preparations usually rely on overcooked meat and cooked vegetables, which may explain lower immunity against *Toxoplasma gondii*.

Limitations

BV diagnosis routinely performed at the Pasteur Institute of Dakar differs slightly from the Amsel criteria, a clinical and microscopic approach, and from the Nugent criteria based on microscopic examination of vaginal swabs. The latter is used for research purposes because its inter-center reproducibility allows for more reliable comparisons. This procedure, however, requires more time, resources and expertise (36). In the Pasteur Institute of Dakar, microbiologists do not routinely perform the Nugent score, so that BV diagnosis is based on a microscopic examination and culture of vaginal swabs. We therefore used the vaginal flora type classification to define BV, a procedure carried out on a daily basis for years at the Pasteur Institute of Dakar, in order to limit inter and intra operator variability. In studies on BV prevalence in pregnant women (4, 13, 14, 22), the BV diagnosis method primarily relied on the Nugent score and Amsel criteria. Nonetheless, we find in our study that BV prevalence is consistent with that among in pregnant women in other studies.

Conclusion

BV has long been well known, but few studies have reported BV prevalence among African pregnant women. No data for BV among pregnant women in Senegal exists, and women do not undergo screening for it as part of their antenatal screening. Although several studies showed that BV is associated with a higher risk of adverse obstetrics outcomes during pregnancy, the impact of BV on obstetrics outcomes and pregnancy in African countries has not been studied. Before authorities consider offering systematic BV screening to pregnant women, a larger study would be useful to document prevalence, risk factors and the impact of BV on adverse pregnancy outcome in sub-Saharan African countries.

Abbreviations
Declarations

Ethics approval and consent to participate

The BIRDY study was approved by the ethics committees of Madagascar (068-MSANP/CE), Senegal (SEN 14-20), Cambodia (108 NEHCR) and was authorized by the Institutional Review Board of Institut Pasteur, Paris, France (IRB/2016/08/3).

Women were included after receiving information about the project, agreeing to biological sampling on themselves, and signing an informed consent form.

Consent for publish

Women included in the BIRDY protocol signed and informed consent form for results publication in medical reviews.

Availability of data and materials

The BIRDY data collection has been declared to the Commission Nationale de l’Informatique et des Libertés (CNIL – French national data protection authority), in accordance with French law. The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.
Funding

This study was financially supported by the Total Foundation, the African Center for Maternal and Child Health (Centre d'Excellence Africain pour la Santé de la Mère et de l'Enfant – CEA-SAMEF) and by the Department of International Cooperation of the Principality of Monaco. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript.

Authors' contributions

MB have made substantial contributions to the conception, the analysis, interpretation of data; and have drafted the work or substantively revised it.

BTH have made substantial contributions to the conception of the work; the acquisition of data; and substantively revised the work.

AS have made substantial contributions to the analysis of biological samples.

RB have made substantial contributions to the analysis of biological samples and interpretation of data.

FDS have made substantial contributions to the acquisition, and interpretation of data.

EDA have made substantial contributions to the conception and design of the work; the interpretation of data; and substantively revised the work.

MV have made substantial contributions to the conception and design of the work; the acquisition of data; and substantively revised the work.

References

1. The Partnership for Maternal, Newborn and Child Health. Opportunities for Africa's newborns, [Internet]. Joy Lawn, Save the Children, and Kate Kerber, Save the Children and BASICS. WHO on behalf of The Partnership for Maternal Newborn and Child Health; 2006. Disponible sur: https://www.who.int/pmnch/media/publications/oanfullreport.pdf?ua=1.

2. Bradshaw CS, Brotman RM. Making inroads into improving treatment of bacterial vaginosis – striving for long-term cure. BMC Infect Dis [Internet]. 29 juill 2015 [cité 31 juill 2020];15. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518586/.

3. Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P. Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am J Obstet Gynecol juill. 2003;189(1):139–47.

4. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, et al. Association between Bacterial Vaginosis and Preterm Delivery of a Low-Birth-Weight Infant. N Engl J Med. 28 déc
5. Esber A, Vicetti Miguel RD, Cherpes TL, Klebanoff MA, Gallo MF, Turner AN. Risk of Bacterial Vaginosis Among Women With Herpes Simplex Virus Type 2 Infection: A Systematic Review and Meta-analysis. J Infect Dis 1 juill. 2015;212(1):8–17.

6. Longo JDD, Simaleko MM, Diemer HS-C, Grésenguet G, Brücker G, Belec L. Risk factors for HIV infection among female sex workers in Bangui, Central African Republic. PLoS ONE [Internet]. 6 nov 2017 [cité 13 sept 2018];12(11). Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673229/.

7. Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, et al. Vaginal Lactobacilli, Microbial Flora, and Risk of Human Immunodeficiency Virus Type 1 and Sexually Transmitted Disease Acquisition. J Infect Dis déc. 1999;180(6):1863–8.

8. Myer L, Denny L, Telerant R, Souza M de, Wright TC Jr, Kuhn L. Bacterial Vaginosis and Susceptibility to HIV Infection in South African Women: A Nested Case-Control Study. J Infect Dis 15 oct. 2005;192(8):1372–80.

9. Cohen CR, Lingappa JR, Baeten JM, Ngayo MO, Spiegel CA, Hong T, et al. Bacterial Vaginosis Associated with Increased Risk of Female-to-Male HIV-1 Transmission: A Prospective Cohort Analysis among African Couples. PLoS Med [Internet]. 26 juin 2012 [cité 17 sept 2018];9(6). Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383741/.

10. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial Vaginosis Is a Strong Predictor of Neisseria gonorrhoeae and Chlamydia trachomatis Infection. Clin Infect Dis mars. 2003;36(5):663–8.

11. Menon S, Broeck DV, Rossi R, Ogbe E, Harmon S, Mabeya H. Associations Between Vaginal Infections and Potential High-risk and High-risk Human Papillomavirus Genotypes in Female Sex Workers in Western Kenya. Clin Ther déc. 2016;38(12):2567–77.

12. Torrone EA, Morrison CS, Chen P-L, Kwok C, Francis SC, Hayes RJ, et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: An individual participant data meta-analysis of 18 HIV prevention studies. PLoS Med [Internet]. 27 févr 2018 [cité 14 sept 2018];15(2). Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828349/.

13. Mengistie Z, Woldeamanuel Y, Asrat D, Adera A. Prevalence of bacterial vaginosis among pregnant women attending antenatal care in Tikur Anbessa University Hospital, Addis Ababa, Ethiopia. BMC Res Notes [Internet]. 20 nov 2014 [cité 17 sept 2018];7. Disponible sur: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247656/.

14. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Screening for Bacterial Vaginosis in Pregnant Persons to Prevent Preterm Delivery: US Preventive Services Task Force Recommendation Statement. JAMA. 7 avr 2020;323(13):1286–92.

15. Diadhiou M, Ba Diallo A, Barry MS, Alavo SC, Mall I, Gassama O, et al. Prevalence and Risk Factors of Lower Reproductive Tract Infections in Symptomatic Women in Dakar, Senegal. Infect Dis. 2019;12:1178633719851825.
16. Huynh B-T, Kermorvant-Duchemin E, Herindrainy P, Padget M, Rakotoarimanana FMJ, Feno H, et al. Bacterial Infections in Neonates, Madagascar, 2012–2014. Emerg Infect Dis avr. 2018;24(4):710–7.

17. WHO | Key terms [Internet]. WHO. World Health Organization; [cité 18 juill 2020]. Disponible sur: http://www.who.int/water_sanitation_health/monitoring/jmp2012/key_terms/en/.

18. Tang AM, Chung M, Dong K, Terrin N, Edmonds A, Assefa N, et al. Determining a Global Mid-Upper Arm Circumference Cutoff to Assess Malnutrition in Pregnant Women. 2016;85.

19. WHO. WHO recommandations on antenatal care for a positive pregnancy experience [Internet]. 2016 [cité 17 mai 2020]. Disponible sur: https://apps.who.int/iris/bitstream/handle/10665/250796/9789241549912-eng.pdf?sequence=1.

20. Smart S, Singal A, Mindel A. Social and sexual risk factors for bacterial vaginosis. Sex Transm Infect févr. 2004;80(1):58–62.

21. Shimano S, Nishikawa A, Sonoda T, Kudo R. Analysis of the prevalence of bacterial vaginosis and Chlamydia trachomatis infection in 6083 pregnant women at a hospital in Otaru, Japan. J Obstet Gynaecol Res juin. 2004;30(3):230–6.

22. Hillier SL, Krohn MA, Nugent RP, Gibbs RS. Characteristics of three vaginal flora patterns assessed by gram stain among pregnant women. Vaginal Infections and Prematurity Study Group. Am J Obstet Gynecol mars. 1992;166(3):938–44.

23. Fethers KA, Fairley CK, Hocking JS, Gurrin LC, Bradshaw CS. Sexual Risk Factors and Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Clin Infect Dis déc. 2008;47(11):1426–35.

24. Tamarelle J, Thiébaut ACM, de Barbeyrac B, Bébéar C, Ravel J, Delarocque-Astagneau E. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis janv. 2019;25(1):35–47.

25. Olson-Chen C, Balaram K, Hackney DN. Chlamydia trachomatis and Adverse Pregnancy Outcomes: Meta-analysis of Patients With and Without Infection. Matern Child Health J. 2018;22(6):812–21.

26. D’Urzo N, Martinelli M, Pezzicoli A, De Cesare V, Pinto V, Margarit I, et al. Acidic pH Strongly Enhances In Vitro Biofilm Formation by a Subset of Hypervirulent ST-17 Streptococcus agalactiae Strains. Appl Environ Microbiol avr. 2014;80(7):2176–85.

27. Park SE, Jiang S, Wessels MR. CsrRS and Environmental pH Regulate Group B Streptococcus Adherence to Human Epithelial Cells and Extracellular Matrix. Infect Immun nov. 2012;80(11):3975–84.

28. Rosen GH, Randis TM, Desai PV, Sapra KJ, Ma B, Gajer P, et al. Group B Streptococcus and the Vaginal Microbiota. J Infect Dis. 2017;15(6):744–51. 216(. 216.

29. Diallo S, Ndir O, Dieng Y, et al. Séroprévalence de la toxoplasmose à Dakar (Sénégal) en 1993: étude chez des femmes en période de procréation [Seroprevalence of toxoplasmosis in Dakar (Senegal) in 1993: study of women in their reproductive years]. Sante. 1996;6(2):102–6.

30. Alsammani MA. Sero-epidemiology and risk factors for Toxoplasma gondii among pregnant women in Arab and African countries. J Parasit Dis. 2016 Sep;40(3):569–79.
31. Fenta DA. Seroprevalence of Toxoplasma gondii among pregnant women attending antenatal clinics at Hawassa University comprehensive specialized and Yirgalem General Hospitals, in Southern Ethiopia. BMC Infect Dis. 16 déc 2019;19(1):1056.

32. Picone O, Fuchs F, Benoist G, Binquet C, Kieffer F, Wallon M, et al. Toxoplasmosis screening during pregnancy in France: Opinion of an expert panel for the CNGOF. J Gynecol Obstet Hum Reprod. 16 mai 2020;101814.

33. Findal G, Barlinn R, Sandven I, Stray-Pedersen B, Nordbø SA, Samdal HH, et al. Toxoplasma prevalence among pregnant women in Norway: a cross-sectional study. APMIS Acta Pathol Microbiol Immunol Scand avr. 2015;123(4):321–5.

34. Ramos JM, Milla A, Rodríguez JC, Padilla S, Masiá M, Gutiérrez F. Seroprevalence of Toxoplasma gondii infection among immigrant and native pregnant women in Eastern Spain. Parasitol Res nov. 2011;109(5):1447–52.

35. Jones JL, Kruszon-Moran D, Rivera HN, Price C, Wilkins PP. Toxoplasma gondii seroprevalence in the United States 2009–2010 and comparison with the past two decades. Am J Trop Med Hyg juin. 2014;90(6):1135–9.

36. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol févr. 1991;29(2):297–301.