Constraining the clustering transition for colorings of sparse random graphs

Michael Anastos, Alan Frieze∗ and Wesley Pegden†
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213

March 26, 2018

Abstract

Let \(\Omega_q \) denote the set of proper \(q \)-colorings of the random graph \(G_{n,m} \), \(m = dn/2 \) and let \(H_q \) be the graph with vertex set \(\Omega_q \) and an edge \(\{ \sigma, \tau \} \) where \(\sigma, \tau \) are mappings \([n] \to [q] \) iff \(h(\sigma, \tau) = 1 \). Here \(h(\sigma, \tau) \) is the Hamming distance \(|\{v \in [n] : \sigma(v) \neq \tau(v)\}| \). We show that w.h.p. \(H_q \) contains a single giant component containing almost all colorings in \(\Omega_q \) if \(d \) is sufficiently large and \(q \geq \frac{cd}{\log d} \) for a constant \(c > 3/2 \).

1 Introduction

In this short note, we will discuss a structural property of the set \(\Omega_q \) of proper \(q \)-colorings of the random graph \(G_{n,m} \), where \(m = dn/2 \) for some large constant \(d \). For the sake of precision, let us define \(H_q \) to be the graph with vertex set \(\Omega_q \) and an edge \(\{ \sigma, \tau \} \) iff \(h(\sigma, \tau) = 1 \) where \(h(\sigma, \tau) \) is the Hamming distance \(|\{v \in [n] : \sigma(v) \neq \tau(v)\}| \). In the Statistical Physics literature the definition of \(H_q \) may be that colorings \(\sigma, \tau \) are connected by an edge in \(H_q \) whenever \(h(\sigma, \tau) = o(n) \). Our theorem holds a fortiori if this is the case.

Heuristic evidence in the statistical physics literature (see for example [15]) suggests there is a clustering transition \(c_d \) such that for \(q > c_d \), the graph \(H_q \) is dominated by a single connected component, while for \(q < c_d \), an exponential number of components are required to cover any constant fraction of it; it may be that \(c_d \approx \frac{d}{\log q} \). (Here \(A(d) \approx B(d) \) is taken to mean that \(A(d)/B(d) \to 1 \) as \(d \to \infty \). We do not assume \(d \to \infty \), only that \(d \) is a

∗Research supported in part by NSF grant DMS1362785
†Research supported in part by NSF grant DMS1363136
sufficiently large constant, independent of \(n \).) Recall that \(G_{n,m} \) for \(m = dn/2 \) becomes \(q \)-colorable around \(q \approx \frac{d}{2 \log d} \) or equivalently when \(d \approx 2q \log q \), \([3, 7]\). In this note, we prove the following:

Theorem 1.1. If \(q \geq \frac{cd}{\log d} \) for constant \(c > 3/2 \), and \(d \) is sufficiently large, then w.h.p. \(H_q \) contains a giant component that contains almost all of \(\Omega_q \).

In particular, this implies that the clustering transition \(c_d \), if it exists, must satisfy \(c_d \leq \frac{3}{2} \frac{d}{\log d} \).

Theorem 1.1 falls into the area of “Structural Properties of Solutions to Random Constraint Satisfaction Problems”. This is a growing area with connections to Computer Science and Theoretical Physics. In particular, much of the research on the graph \(H_q \) has been focussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich, Rassman and Vilenchik \([4]\), or the clustering threshold, e.g. Achlioptas, Coja-Oghlan and Ricci-Tersenghi \([2]\), Molloy \([13]\). Other papers heuristically identify a sequence of phase transitions in the structure of \(H_q \), e.g., Krzàkala, Montanari, Ricci-Tersenghi, Semerijan and Zdeborová \([12]\), Zdeborová and Krzàkala \([15]\). The existence of these transitions has been shown rigorously for some other CSPs. One of the most spectacular examples is due to Ding, Sly and Sun \([8]\) who rigorously showed the existence of a sharp satisfiability threshold for random \(k \)-SAT.

An obvious target for future work is improving the constant in Theorem 1.1 to 1. We should note that Molloy \([13]\) has shown that w.h.p. there is no giant component if \(q \leq \frac{(1-\varepsilon_d) d}{\log d} \), for some \(\varepsilon_d > 0 \). Looking in another direction, it is shown in \([9]\) that w.h.p. \(H_q, q \geq d + 2 \) is connected. This implies that Glauber Dynamics on \(\Omega_q \) is ergodic. It would be of interest to know if this is true for some \(q \ll d \).

Before we begin our analysis, we briefly explain the constant 3/2. We start with an arbitrary \(q \)-coloring and then re-color it using only approximately \(\approx \frac{d}{\log d} \) of the given colors. We then use a disjoint set of approximately \(\frac{d}{2 \log d} \) colors to re-color it with a target \(\chi \approx \frac{d}{2 \log d} \) coloring \(\tau \).

2 Greedily Re-coloring

Our main tool is a theorem from Bapst, Coja-Oghlan and Efthymiou \([5]\) on planted colorings. We consider two ways of generating a random coloring of a random graph. We will let \(Z_q = |\Omega_q| \). The first method is to generate a random graph and then a random coloring. In the second method, we generate a random (planted) coloring and then generate a random graph compatible with this coloring.

Random coloring of the random graph \(G_{n,m} \): Here we will assume that \(m \) is such that w.h.p. \(Z_q > 0 \).

(a) Generate \(G_{n,m} \) subject to \(Z_q > 0 \).
(b) Choose a q-coloring σ uniformly at random from Ω_q.

(c) Output $\Pi_1 = (G_{n,m}, \sigma)$.

Planted model:

1. Choose a random partition of $[n]$ into q color classes V_1, V_2, \ldots, V_q subject to
 \[\sum_{i=1}^{q} \binom{|V_i|}{2} \leq \binom{n}{2} - m. \]

2. Let $\Gamma_{\sigma,m}$ be obtained by adding m random edges, each with endpoints in different color classes.

3. Output $\Pi_2 = (\Gamma_{\sigma,m}, \sigma)$.

We will use the following result from \[5\]:

Theorem 2.1. Let $d = 2m/n$ and suppose that $d \leq 2(q - 1) \log(q - 1)$. Then $\Pr(\Pi_2 \in \mathcal{P}) = o(1)$ implies that $\Pr(\Pi_1 \in \mathcal{P}) = o(1)$ for any graph + coloring property \mathcal{P}.

Consequently, we will use the planted model in our subsequent analysis. Let

$$q_0 = \frac{q}{q-1} \cdot \frac{d}{\log d - 7 \log \log d} \approx \frac{d}{\log d}.$$

The property \mathcal{P} in question will be: “the given q-coloring can be reduced via single vertex color changes to a q_0 coloring” where $\alpha > 1$ is constant.

In a random partition of $[n]$ into q parts, the size of each part is distributed as $\text{Bin}(n, q^{-1})$ and so the Chernoff bounds imply that w.h.p. in a random partition each part has size $\frac{n}{q} \left(1 \pm \frac{\log n}{n^{1/2}}\right)$.

We let Γ be obtained by taking a random partition V_1, V_2, \ldots, V_q and then adding $m = \frac{1}{2}dn$ random edges so that each part is an independent set. These edges will be chosen from

$$N_q = \binom{n}{2} - (1 + o(1))q \left(\frac{n/q}{2}\right) = \left(1 - o(1)\right) \frac{n^2}{2} \left(1 - \frac{1}{q}\right)$$

possibilities. So, let $\hat{d} = \frac{mn}{N_q} \approx \frac{dq}{q-1}$ and replace Γ by $\hat{\Gamma}$ where each edge not contained in a V_i is included independently with probability $\hat{\rho} = \frac{\hat{d}}{n}$. V_1, V_2, \ldots, V_q constitutes a coloring which we will denote by σ. Now $\hat{\Gamma}$ has m edges with probability $\Omega(n^{-1/2})$ and one can check that the properties required in Lemmas 2.2 and 2.3 below all occur with probability $1 - o(n^{-1/2})$ and so we can equally well work with $\hat{\Gamma}$.

3
Now consider the following algorithm for going from σ via a path in Ω^q to a coloring with significantly fewer colors. It is basically the standard greedy coloring algorithm, as seen in Bollobás and Erdős [6], Grimmett and McDiarmid [10] and in particular Shamir and Upfal [14] for sparse graphs.

In words, it goes as follows. At each stage of the algorithm, U denotes the set of vertices that have not been re-colored. Having used $r - 1$ colors to color some subset of vertices we start using color r. We let $W_j = V_j \cap U$ denote the uncolored vertices of V_j for $j \geq 1$. We then let k be the smallest index j for which $W_j \neq \emptyset$. This is an independent set and so we can re-color the vertices of W_k, one by one, with the color r. We let $U_r \subseteq U$ denote the set of vertices that may possibly be re-colored r by the algorithm i.e. those vertices with no neighbors in C_r, the current set of vertices colored r. Each time we re-color a vertex with color r, we remove its neighbors from U_r. We continue with color r, until $U_r = \emptyset$. After which, C_r will be the set of vertices that are finally colored with color r.

At any stage of the algorithm, U is the set of vertices whose colors have not been altered. The value of L in line D is $n/\log_2 \hat{d}$.

Algorithm Greedy Re-color

begin
 Initialise: $r = 0, U = [n], C_0 \leftarrow \emptyset$;
 repeat;
 $r \leftarrow r + 1, C_r \leftarrow \emptyset$;
 Let $W_j = V_j \cap U$ for $j \geq 1$ and let $k = \min \{j : W_j \neq \emptyset\}$;
 A: $C_r \leftarrow W_k, U \leftarrow U \setminus C_r, U_r \leftarrow U \setminus \{\text{neighbors of } C_r \text{ in } \hat{\Gamma}\}$;
 If $r < k$, re-color every vertex in C_r with color r;
 B: repeat (Re-color some more vertices with color r);
 C: Arbitrarily choose $v \in U_r$, $C_r \leftarrow C_r + v, U_r \leftarrow U_r - v$;
 $U_r \leftarrow U_r \setminus \{\text{neighbors of } v \text{ in } \hat{\Gamma}\}$;
 until $U_r = \emptyset$;
 D: until $|U| \leq L$;
 Re-color U with $\frac{\hat{d}}{\log^2 \hat{d}} + 2$ unused colors from our initial set of q_0 colors;
end

We first observe that each re-coloring of a single vertex v vertex in line C can be interpreted as moving from a coloring of Ω^q to a neighboring coloring in H^q. This requires us to argue that the re-coloring by GREEDY RE-COLOR is such that the coloring of $\hat{\Gamma}$ is proper at all times. We argue by induction on r that the coloring at line A is proper. When $r = 1$ there have been no re-colorings. Also, during the loop beginning at line B we only re-color vertices with color r if they are not neighbors of the set U_r of vertices colored r. This guarantees that the coloring remains proper until we reach line D. The following lemma shows that we can then reason as in Lemma 2 of Dyer, Flaxman, Frieze and Vigoda [9], as will be explained subsequently.
Lemma 2.2. Let \(p = m/n \leq \Delta/n \) where \(\Delta \) is some sufficiently large constant. With probability \(1 - o(n^{-1/2}) \), every \(S \subseteq [n] \) with \(s = |S| \leq n/\log^2 \Delta \) contains at most \(s\Delta/\log^2 \Delta \) edges.

The above lemma, is Lemma 7.7(i) of Janson, Łuczak and Ruciński [11] and it implies that if \(\Delta = \hat{d} \) then w.h.p. \(\hat{\Gamma}_U \) at line D contains no \(K \)-core, \(K = \frac{2\hat{d}}{\log^2 \hat{d}} + 1 \). Here \(\hat{\Gamma}_U \) denotes the sub-graph of \(\hat{\Gamma} \) induced by the vertices \(U \). For a graph \(G = (V, E) \) and \(K \geq 0 \), the \(K \)-core is the unique maximal set \(S \subseteq V \) such that the induced subgraph on \(S \) has minimum degree at least \(K \). A graph without a \(K \)-core is \(K \)-degenerate i.e. its vertices can be ordered as \(v_1, v_2, \ldots, v_n \) so that \(v_i \) has at most \(K - 1 \) neighbors in \(\{v_1, v_2, \ldots, v_{i-1}\} \). To see this, let \(v_n \) be a vertex of minimum degree and then apply induction.

We argue now that we can re-color the vertices in \(U \) with \(K + 1 \) new colors, all the time following some path in \(H_q \). Let \(v_1, \ldots, v_n \) denote an ordering of \(U \) such that the degree of \(v_i \) is less than \(K \) in the subgraph \(\hat{\Gamma}_i \) of \(\hat{\Gamma} \) induced by \(\{v_1, v_2, \ldots, v_i\} \). We will prove the claim by induction. The claim is trivial for \(i = 1 \). By induction there is a path \(\sigma_0, \sigma_1, \ldots, \sigma_r \) from the coloring \(\sigma_0 \) of \(U \) at line B, restricted to \(\hat{\Gamma}_{i-1} \) using only \(K + 1 \) colors to do the re-coloring.

Let \((w_j, c_j) \) denote the (vertex, color) change defining the edge \(\{\sigma_j - 1, \sigma_j\} \). We construct a path (of length \(\leq 2r \)) that re-colors \(\hat{\Gamma}_i \). For \(j = 1, 2, \ldots, r \), we will re-color \(w_j \) to color \(c_j \), if no neighbor of \(w_j \) has color \(c_j \). Failing this, \(v_i \) must be the only neighbor of \(w_j \) that is colored \(c_j \). This is because \(\sigma_r \) is a proper coloring of \(\hat{\Gamma}_{i-1} \). Since \(v_i \) has degree less than \(K \) in \(\hat{\Gamma}_i \), there exists a new color for \(v_i \) which does not appear in its neighborhood. Thus, we first re-color \(v_i \) to any new (valid) color, and then we re-color \(w_j \) to \(c_j \), completing the inductive step. Note that because the colors used in Step D have not been used in Steps A,B,C, this re-coloring does not conflict with any of the coloring done in Steps A,B,C.

We need to show next that each Loop B re-colors a large number of vertices. Let \(\alpha_1(G) \) denote the minimim size of a maximal independent set of a graph \(G \) i.e. an independent set that is not contained in any larger independent set. The round will re-color at least \(\alpha_1(\Gamma_U) \) vertices, where \(U \) is as at the start of Loop B. The following result is from Lemma 7.8(i) of [11].

Lemma 2.3. Let \(p = m/n = \Delta/n \) where \(\Delta \) is some sufficiently large constant. \(\alpha_1(G_{n,m}) \geq \frac{\log \Delta - 3 \log \log \Delta}{p} \) with probability \(1 - o(n^{-1/2}) \). (see Lemma 7.8(i)).

Suppose now that we take \(u_0 \) to be the size of \(U \) at the beginning of Step A and that \(u_t \) is the size of \(U \) after \(t \) vertices have been finally colored \(r \). Thus we assume that \(u_{|W_k|} \) is the size of \(U \) at the start of Step B. We observe that,

\[
 u_{t+1} \text{ stochastically dominates } u_t - Bin(u_t, \hat{p}) - 1. \tag{1}
\]

This is because the edges inside \(U \) are unconditioned by the algorithm and because \(v \in V_j \) has no neighbors in \(V_j \) for \(j \geq 1 \). On the other hand, if we apply Algorithm GREEDY RE-COLOR...
to $G_{n, \tilde{p}}$ then (1) is replaced by the recurrence

$$\tilde{u}_{t+1} = \tilde{u}_t - Bin(\tilde{u}_t, \tilde{p}) - 1.$$

(2)

(Putting $V_j = \{j\}$ means that GREEDY RE-COLOR is running on $G_{n, \tilde{p}}$.)

Comparing (1) and (2) we see that we can couple the two applications of GREEDY RE-COLOR so that $u_t \geq \tilde{u}_t$ for $t \geq 0$. Now the application of Loop B re-colors a maximal independent set of the graph $\hat{\Gamma}_U$ induced by U as it stands at the beginning of the loop. The size of this set dominates the size of a maximal independent set in the random graph $G_{|U|, p}$. So if we generate $G_{|U|, p}$ and then delete some edges, we see that every independent set of $G_{|U|, p}$ will be contained in an independent set of Γ_U. And so using Lemma 2.3 we see that w.h.p. each execution of Loop B re-colors at least

$$\frac{\log(\hat{d} / \log^2 \hat{d}) - 3 \log \log(\hat{d} / \log^2 \hat{d})}{\hat{d}} n \geq \frac{q - 1}{q} \cdot \frac{\log d - 6 \log \log d}{d} n$$

vertices, for d sufficiently large. We have replaced Δ of Lemma 2.3 by $\hat{d} / \log^2 \hat{d}$ to allow for the fact that we have replaced n by $|U| \geq L$. Consequently, at the end of Algorithm GREEDY RE-COLOR we will have used at most

$$\frac{q}{q - 1} \cdot \frac{d}{\log d - 6 \log \log d} + \frac{\hat{d}}{\log^2 \hat{d}} + 2 \leq \frac{q}{q - 1} \cdot \frac{d}{\log d - 7 \log \log d} = q_0$$

colors. The term $\frac{\hat{d}}{\log^2 \hat{d}} + 2$ arises from the re-coloring of U at line D.

Finishing the proof: Now suppose that $q \geq \frac{cd}{\log d}$ where d is large and $c > 3/2$. Fix a particular χ-coloring τ. We prove that almost every q-coloring σ can be transformed into τ changing one color at a time. It follows that for almost every pair of q-colorings σ, σ' we can transform σ into σ' by first transforming σ to τ and then reversing the path from σ' to τ.

We proceed as follows. The algorithm GREEDY RE-COLOR takes as input: (i) the coloring σ and (ii) a specific subset of q_0 colors from $\{1, ..., q\}$ that are not used in τ. W.h.p. it transforms the input coloring into a coloring using only those q_0 colors. Then we process the color classes of τ, re-coloring vertices to their τ-color. When we process a color class C of τ, we switch the color of vertices in C to their τ-color i_C one vertex at a time. We can do this because when we re-color a vertex v, a neighbor w will currently either have one of the q_0 colors used by GREEDY RE-COLOR and these are distinct from i_C. Or w will have already been been re-colored with its τ-color which will not be color i_C. This proves Theorem 1.1.

\square
References

[1] D. Achlioptas and E. Friedgut, A Sharp Threshold for k-Colorability, *Random Structures and Algorithms*, 14 (1999) 63-70.

[2] D. Achlioptas, A. Coja-Oghlan and F. Ricci-Tersenghi, On the solution-space geometry of random constraint satisfaction problems, *Random Structures and Algorithms* 38 (2010) 251-268.

[3] D. Achlioptas and A. Naor, The Two Possible Values of the Chromatic Number of a Random Graph, *Annals of Mathematics* 162 (2005) 1333-1349.

[4] V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann and D. Vilenchik, The condensation phase transition in random graph coloring, *Communications in Mathematical Physics* 341 (2016) 543-606.

[5] V. Bapst, A. Coja-Oghlan and C. Efthymiou, Planting colourings silently, *Combinatorics, Probability and Computing* 26 (2017) 338-366.

[6] B. Bollobás and P. Erdős, Cliques in random graphs, *Mathematical Proceedings of the Cambridge Philosophical Society* 80 (1976) 419-427.

[7] A. Coja-Oghlan and D. Vilenchik, Chasing the k-colorability threshold, *Proceedings of FOCS 2013*, 380-389.

[8] J. Ding, A. Sly and N. Sun, Proof of the satisfiability conjecture for large k, arxiv.org/pdf/1411.0650.pdf.

[9] M. Dyer, A. Flaxman, A.M. Frieze and E. Vigoda, Randomly coloring sparse random graphs with fewer colors than the maximum degree, *Random Structures and Algorithms* 29 (2006) 450-465.

[10] G. Grimmett and C. McDiarmid, On colouring random graphs, *Mathematical Proceedings of the Cambridge Philosophical Society* 77 (1975) 313-324.

[11] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, Wiley 2000.

[12] F. Krzała, A. Montanari, F. Ricci-Tersenghi, G. Semerijian and L. Zdeborová, Gibbs states and the set of solutions of random constraint satisfaction problems, *Proceedings of the National Academy of Sciences* 104 (2007) 10318-10323.

[13] M. Molloy, The freezing threshold for k-colourings of a random graph, *Proceedings of STOC 2012*.

[14] E. Shamir and E. Upfal, Sequential and Distributed Graph Coloring Algorithms with Performance Analysis in Random Graph Spaces, *Journal of Algorithms* 5 (1984) 488-501.

[15] L. Zdeborová and F. Krzążła, Phase Transitions in the Coloring of Random Graphs, *Physics Review E* 76 (2007).