PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective

Xin Han a,b,*, Wenyi Wei c, Yi Sun a,b,d,∗

© 2022 The Authors. Creative Commons Attribution 4.0 International License

ABSTRACT

Mouse double minute 2 (MDM2) is an oncogenic E3 ligase that effectively degrades the tumor suppressor p53. In the past two decades, many MDM2 inhibitors that disrupt MDM2-p53 binding have been discovered and developed. Given that MDM2 and p53 form an auto-regulatory loop, in which p53 undergoes targeted degradation as a substrate of MDM2, and p53 targets MDM2 for transcriptional upregulation, these MDM2 inhibitors have limited efficacy. After rapid in vivo clearance of the MDM2 inhibitors, p53 is degraded by accumulated MDM2. Fortunately, proteolysis targeting chimeras (PROTACs), a novel therapeutic strategy, overcome the limitations of MDM2 inhibitors. Several MDM2 inhibitors developed in the past two decades have been used in PROTAC technology in two applications: 1) binding and targeting endogenous MDM2 for PROTAC-based degradation and 2) binding endogenous MDM2 as a PROTAC E3 ligand for PROTAC-based degradation of other oncogenic proteins. In this review, we summarize current progress in the discovery and development of MDM2-based PROTAC drugs, and discuss future perspectives and challenges in their application as effective treatments for human cancer.

Keywords: MDM2, E3 ligase ligand, PROTAC, degradation, human cancer, drug discovery

1. INTRODUCTION

The p53 tumor suppressor is a potent transcription factor with key roles in cancer prevention [1, 2]. After activation by a variety of internal or external stresses, p53 induces either growth arrest if the damage is repairable or apoptosis to eliminate cells incapable of repair [3, 4]. The loss of p53 tumor-suppressor activity through point mutations or gene deletions, as frequently seen in many human cancers, prevents p53 from acting as a genome guardian and enables the abnormal proliferation of cells carrying damaged genomes [5]. Such uncontrolled proliferation leads to cancer development. Thus, restoring p53 activity or function in cancer cells has been a longstanding goal in the field of cancer drug discovery [6].

MDM2 has been well characterized as a negative regulator targeting p53 direct binding to promote subsequent p53 ubiquitination [7]. A variety of stress signals disrupt the MDM2-p53 interaction, thus leading to p53 activation, and cellular responses such as growth arrest and apoptosis induction [8, 9]. MDM2 effectively inactivates p53 through three general mechanisms [10-12]: 1) MDM2 directly binds the transcriptional activation domain of p53 and inhibits p53-mediated transcriptional activation; 2) MDM2’s nuclear export signal sequence induces p53 nuclear export after binding, thereby preventing p53 from binding target DNA; and, in the most effective mechanism, 3) MDM2 acts an E3 ubiquitin ligase promoting the ubiquitylation and degradation of p53. Thus, in the past two decades, disruption of the MDM2-p53 interaction has become an effective strategy for the discovery and development of potent MDM2 inhibitors that disrupt MDM2-p53 binding, and stabilize and restore p53 function, for the treatment of human cancers with wild-type p53 [13-16].
Table 1 | Summary of MDM2 inhibitors and degraders

No.	Name	Structure	Category	E3 ligase ligand	Target protein
1	Nutlin-3	![Nutlin-3](image1)	Inhibitor	--	--
2	RG7388	![RG7388](image2)	Inhibitor	--	--
3	RG7112	![RG7112](image3)	Inhibitor	--	--
4	MI-77301/	![MI-77301](image4)	Inhibitor	--	--
	SAR405838				
5	HDM201	![HDM201](image5)	Inhibitor	--	--
6	DS-3032b	![DS-3032b](image6)	Inhibitor	--	--
7	APG-115	![APG-115](image7)	Inhibitor	--	--
8	MK-8242	![MK-8242](image8)	Inhibitor	--	--
No.	Name	Structure	Category	E3 ligase ligand	Target protein
-----	--------	-----------	----------	------------------	----------------
9	NVP-CGM097	![NVP-CGM097](image)	Inhibitor	--	--
10	AMG-232	![AMG-232](image)	Inhibitor	--	--
11	WB214	![WB214](image)	Degrader	CRBN	MDM2
12	TW-32	![TW-32](image)	Degrader	CRBN	MDM2
13	MD-224	![MD-224](image)	Degrader	CRBN	MDM2
14	MG-277	![MG-277](image)	Degrader	CRBN	MDM2
15	–	![–](image)	Degrader	Nutlin-3	AR
16	A1874	![A1874](image)	Degrader	RG-7388	BRD4
In the past two decades, PROTAC strategies have gained momentum and shown promise in the discovery and development of new types of small-molecule therapeutics by inducing targeted protein degradation [17-22]. A PROTAC molecule consists of three components [23-27]: 1) a small molecule that specifically binds targeted proteins; 2) another small molecule or peptide that binds an E3 ligase as an E3 ligand; and 3) a chemical linker that connects the first two components. To date, PROTAC technology has been used to target various proteins, including transcription factors, skeleton proteins, nuclear receptors, enzymes, and regulatory proteins [28-37]. In cancer therapy, many studies have shown that degrading a protein is more effective than inhibiting it [38-41].

In this review, we describe a battery of MDM2 inhibitors, and discuss how some of these inhibitors are used to accumulate several MDM2-recruiting PROTAC degraders (Table 1) that 1) disrupt MDM2-p53 binding and stabilize p53, and 2) act as E3 ligand components of PROTACs for the degradation of other targeted oncogenic proteins (Figure 1).

2. MDM2 INHIBITORS

The MDM2 E3 ubiquitin ligase is overexpressed in several human cancers, particularly soft-tissue sarcomas [42-45]. MDM2’s main function is ubiquitylating the tumor suppressor p53, thus targeting it for proteasomal degradation; therefore, MDM2 acts as an oncogenic protein promoting tumorigenesis [46]. Targeting MDM2 via disrupting MDM2-p53 binding has therefore been found to be an effective approach for p53 activation and targeted anti-cancer therapy [47]. Many small-molecule inhibitors targeting the p53-MDM2 protein-protein interaction have been discovered in past two decades, starting with nutlin-3 [2]. Several inhibitors are currently in clinical development, and may be effective in the treatment of cancer and other related diseases; these include RG7388 (NCT02407080) [48], RG7112 (NCT01605526, NCT01143740, and NCT01677780) [49, 50], SAR405838 (NCT01636479 and NCT01985191) [5, 51, 52], HDM201 (NCT02143635 and NCT02343172) [53-55], DS-3032b (NCT01877382, NCT02579824, NCT02319369, and NCT03634228) [56, 57], APG-115 (NCT03781986 and NCT02935907) [58, 59], MK-8242 (NCT01451437 and NCT01463696) [60-62], NVP-CGM097 (NCT01760525) [63-65], and AMG-232 (NCT03217266, NCT03107780, NCT03041688, and NCT03031730) [66-68] (Figure 2 and Table 1).

Although MDM2 targets p53 as a substrate for targeted degradation, MDM2 itself is a p53 target affected by p53 upregulation [69]. This auto-regulatory feedback loop compromises the therapeutic effects of
MDM2 inhibitors: disruption of MDM2-p53 binding results in the accumulation of free p53, which trans-activates MDM2 and causes MDM2 accumulation; subsequently, p53 is degraded after MDM2 inhibitors are rapidly cleared in vivo. In fact, studies have shown that p53 protein accumulates in xenograft tumor tissue for only several hours after a single dose of MDM2 inhibitor is administered. Furthermore, the accumulation of MDM2 protein in normal tissues may have deleterious effects, because MDM2 is itself oncogenic [5]. To overcome these potential drawbacks of MDM2 inhibitors, new strategies are needed to target MDM2 more effectively.

3. PROTACS AND MDM2-ASSOCIATED DEGRADERS

Targeted protein degradation (TPD) via the ubiquitin-proteasome system has received substantial interest among medicinal chemists and biologists, and is an emerging direction in the field of drug development [70-73]. Bi-functional molecules called proteolysis-targeting chimeras (PROTACs) have been developed, which hijack the cellular ubiquitin-proteasome system and consequently degrade disease-related target proteins [74-77]. Structurally, PROTACs are new chimeric molecules consisting of three components: one end binds the target protein, also known as the protein of interest (POI), and is connected by a linker to the other end, which acts as a ligand for E3 ubiquitin ligase recruitment (Figure 3) [78, 79].

After multiple rounds of recruitment of ubiquitin to a target protein and polyubiquitination of the target, the PROTAC-target molecule is recognized by the 26S proteasome, which catalyzes target degradation [80]. The PROTAC molecule is then recycled for the next round of POI targeting. Thus, PROTACs act as small-molecule drugs that target POIs through an “event-driven” mode rather than an “occupation-driven” mode [81, 82]. The advantages of PROTAC molecules include their...
ability to overcome drug resistance and target undruggable targets with low toxicity, and high efficiency and selectivity [83, 84]. Notably, drug resistance eventually develops to varying degrees after the clinical use of almost all traditional small-molecule drugs. PROTACs effectively overcome this problem via degrading the target proteins. Furthermore, whereas most traditional small-molecule drugs work by binding the active site of an enzyme or receptor, PROTACs work efficiently as long as effective binding to POIs occurs at essentially any site (Figure 3).

The human genome encodes more than 600 E3 ligases, but only a small fraction have been used in designing PROTACs to date, including Cereblon (CRBN), von Hippel-Lindau (VHL), MDM2, and cellular IAP1 (cIAP1) [85-87]. Two types of MDM2-associated PROTAC degraders have been developed. One type recruits an MDM2 inhibitor as an MDM2-binding partner, thus resulting in MDM2 degradation. The second type recruits MDM2 as an E3 ligand to target other POIs for degradation, although these degraders are less effective than those recruiting CRBN and VHL.

4. PROTAC DEGRADERS TARGETING MDM2

The first type of PROTACs, based on nutlin or idasanutlin (RG7388), was developed with the representative CRBN-based MDM2 degraders shown in Figure 4. However, the number of these MDM2 degraders remains limited, owing to their challenging physicochemical profiles and limited degradation activity (e.g., WB214 and TW-32) [88]. Recently, the Wang group has reported a series of potent PROTAC MDM2 degraders, including MD-224 as a lead compound targeting the MDM2 protein to CRBN for degradation (Figure 4) [33]. MD-224 effectively and rapidly degrades MDM2 in leukemia cells. Intravenous
administration of MD-224 has achieved complete and durable tumor regression in an RS4-11 xenograft model. Moreover, MD-224 inhibits the growth of only leukemia cells carrying wild-type p53, not p53 mutants. The Wang group has reported additional analogues based on the previously reported PROTAC MDM2 degrader MD-224. Interestingly, MG-277, an analogue of MD-224, unexpectedly has shown conversion of the PROTAC into a
5. PROTAC DEGRADERS RECRUITING MDM2 TO TARGET OTHER POIs

5.1 MDM2-based PROTAC AR degrader

Nutlin-3 is a potent MDM2 inhibitor that binds the p53-binding pocket of MDM2 [90]. Interestingly, nutlin-3 has also been used for the design of the second type of PROTACs recruiting endogenous MDM2 for targeting androgen receptor (AR), by the Crews group in 2008 [91]. This was the first report of an all-small-molecule PROTAC degrader, consisting of an AR antagonist and the nutlin motif, which disrupts the interaction between MDM2 and p53 without affecting the E3 ligase activity of MDM2. Specifically, this first synthetic all-small-molecule PROTAC AR degrader is a heterobifunctional compound consisting of a bicalutamide analogue (non-steroidal androgen receptor ligand) and MDM2 inhibitor joined by a PEG-based linker (Figure 5, compound 15). This cell-permeable PROTAC successfully recruits AR to MDM2 for ubiquitination and proteasomal degradation, but has relatively weak potency [91].

RG7388, another typical MDM2-p53 inhibitor, has also been found to bind MDM2 and has been used in PROTAC design [92]. However, the poor physiochemical properties of nutlin-3 have been exacerbated after incorporation into PROTACs. Recent efforts have identified that MDM2-p53 PPI inhibitors with better solubility and activity may broaden the applications of MDM2 in PROTACs (Figure 6) [92-94].

5.2 MDM2-based PROTAC BRD4 degrader

Recently, numerous BET PROTAC degraders have been generated and tested in vitro and in vivo [95, 96]. Various E3 ligases, including VHL, CRBN, IAP, MDM2, aryl hydrocarbon receptor (AHR), DDB1-cullin 4 associated factor 16 (DCAF16), RING finger protein 114 (RNF114), and RNF4, have been used as E3 ligands to degrade BET proteins [81, 96-102]. In 2019, the Crews group reported an MDM2/nutlin-based BRD4 PROTAC (compound 15,
A1874 [92], which not only degrades BRD4 protein but also stabilizes the p53 gene, thus eliciting strong anti-proliferative effects in several tumor cell lines, such as myeloid leukemia cells (Figure 7). Moreover, this compound increases p53 levels in HCT116 colon cancer cells with wild-type p53, owing to the activity of RG7338 against MDM2. A1874 potently inhibits the proliferation of p53-wild-type cancer cells, presumably through dual inhibition of BRD4 and MDM2.

5.3 MDM2-based PROTAC PARP1 degrader

PARP1 poly(ADP-ribose) polymerase is a ubiquitously expressed DNA-dependent nuclear poly(ADP-ribosyl) transferase that regulates multiple nuclear events, such as transcription, rRNA biogenesis, and DNA repair [103, 104]. Because of its essential role in the DNA-damage response, PARP1 is considered a potent cancer therapeutic target. Several PARP1 inhibitors, such as niraparib, iniparib, and olaparib, are in various stages of clinical development; however, cytotoxicity and drug resistance are the primary problems restricting their clinical use [105, 106]. Thus, additional therapeutic methods to overcome these obstacles are required.

In 2018, the Rao group reported the first PARP1-targeting PROTAC by linking the PARP1 inhibitor niraparib and the MDM2 inhibitor nutlin-3. Compound
was obtained after detailed degradation screening in several triple-negative breast cancer cell lines (Figure 8) [94]. Impressively, compound 17 selectively induces substantial PARP1 degradation and cell apoptosis in MDA-MB-231 cells and has fivefold more potent anti-proliferative activity than the PARP1 inhibitors niraparib, olaparib, and veliparib, without showing cytotoxicity in normal cells.

5.4 MDM2-based PROTAC homo-MDM2 degrader

Inspired by previous efforts to design small molecules targeting the MDM2-p53 interaction, the first homo-PROTAC, targeting MDM2 by inducing its self-degradation has recently been reported by the Sheng group (Figure 9) [93]. Compound 18 efficiently induces MDM2 dimerization with highly competitive binding activity, and induces proteasome-dependent self-degradation of MDM2 in A549 non-small cell lung cancer cells. Impressively, compound 18 has been found to effectively inhibit tumor growth in a xenograft mouse model derived from A549 cells, thus providing the first demonstration of the in vivo efficacy of homo-PROTAC, which may serve as an alternative therapeutic tool for effective targeting of human cancers with overexpressed MDM2.

5.5 MDM2-based PROTAC EGFR degrader and TrkC degrader

In 2020, the Ding group reported a series of PROTAC EGFR degraders based on different E3 ligase ligands, one of which was the MDM2 inhibitor RG7388 [107]. Compound 19 elicits moderate degradation of an EGFR(L858R/T790M) mutant (Table 1). In 2019, the Burgess group reported a class of TrkC-targeted kinase PROTACs formed through linking the TrkC-targeted kinase inhibitor IY–IY and the MDM2 ligand nutlin-3 [108]. However, compound 20 has very weak potency in degrading TrkC protein (Table 1).

All 20 compounds described herein are summarized in Table 1.

6. SUMMARY AND OUTLOOK

As the third decade of research on TPD strategies begins, following the first report in 2001 [109], PROTACs are expected to remain at the forefront of research on targeted degradation of POIs, and have begun to transition from vertical to horizontal development. A variety of TPD technologies have been discovered and developed, including photo-controlled PROTACs, homo-PROTACs,
Figure 8 | Schematic design of an MDM2 (nutlin-3a)-based PROTAC PARP1 degrader. A) Structure of PARP1 inhibitors and the crystal structure of niraparib bound to the PARP1 catalytic domain (PDB code: 4R6E). A click-chemistry strategy was used to construct the PROTAC candidates targeting PARP1. B) Structure of the MDM2 inhibitor nutlin-3a and its crystal structure with MDM2.

Figure 9 | Homo-PROTAC design strategy. A) Chemical structures of nutlin-3. B) Binding model of nutlin-3 with MDM2 (PDB: 4IPF).
covalent PROTACs, dual-PROTACs, antibody-PROTACs, lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), and peptide-based PROTACs [110–115]. MDM2-based PROTACs selectively bind the p53 site on the surface of MDM2, thereby stabilizing p53 and degrading target proteins with favorable anti-cancer activity. However, the major bottleneck in the development of effective PROTAC drugs lies in achieving good oral bioavailability, given that PROTAC molecules are beyond the “Lipinski’s rule of 5” for small-molecule inhibitors, owing to their relatively high molecular weight, poor solubility (logP), high topological polar surface area and other poor physicochemical properties. Compounds with favorable physicochemical properties, such as lower molecular weight (<800 Da), good water solubility, ideal topological polar surface area, and fewer aromatic groups, must be discovered to increase oral bioavailability. The application of molecular glue may serve as an effective approach [116, 117]. The second challenge is to develop more effective E3 ligases to act as ligands for PROTACs, given that the human genome encodes more than 600 E3 ligases. Currently, several orally administered PROTAC drugs are in clinical trials for cancer treatment [19, 21, 22, 118, 119]. The knowledge gained from basic research and clinical trials in combination with technological development is expected to further advance the field of cancer therapies based on PROTAC strategies.

ACKNOWLEDGEMENTS

This work was supported in part by the National Key R&D Program of China (2021YFA1101000 to YS); Zhejiang Provincial Natural Science Foundation of China (LD22H300003 to YS); and US National Institutes of Health (NIH) grants to WW. (R01CA177910).

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest in this work.

REFERENCES

[1] Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A, Wu S, et al.: An MDM2 Antagonist (MI-319) Restores p53 Functions and Increases the Life Span of Orally Treated Follicular Lymphoma Bearing Animals. Molecular Cancer 2009, 8:115.

[2] Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al.: In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. Science 2004, 303:844-848.

[3] Shangary S, Wang S: Targeting the MDM2-p53 Interaction for Cancer Therapy. Clinical Cancer Research 2008, 14:5318-5324.

[4] Shangary S, Qin DG, McEachern D, Liu ML, Miller RS, Qiu S, et al.: Temporal Activation of p53 by a Specific MDM2 Inhibitor is Selectively Toxic to Tumors and Leads to Complete Tumor Growth Inhibition. Proceedings of the National Academy of Sciences of the United States of America 2008, 105:3933-3938.

[5] Wang S, Sun W, Zhao Y, McEachern D, Meaux I, Barriere C, et al.: SAR405838: An Optimized Inhibitor of MDM2-p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Research 2014, 74:5855-5865.

[6] Chene P: Inhibiting the p53-MDM2 Interaction: An Important Target for Cancer Therapy. Nature Reviews Cancer 2003, 3:102-109.

[7] Fang Y, Liao G, Yu B: Small-Molecule MDM2/X Inhibitors and PROTAC Degraders for Cancer Therapy: Advances and Perspectives. Acta Pharmaceutica Sinica B 2020, 10:1253-1278.

[8] Kumar S, Sharma V, Tiwari R, Maurya JP, Subudhi BB, Senapati D: Therapeutic Potential of p53 Reactivation in Prostate Cancer: Strategies and Opportunities. European Journal of Pharmacology 2022, 919:174807.

[9] Nag S, Zhang X, Srivenugopal KS, Wang MH, Wang W, Zhang R: Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet? Current Medicinal Chemistry 2014, 21:553-574.

[10] Herrero AB, RojasEA, Misiewicz-Krzemsinska I, Krzemsinski P, Gutierrez NC: Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. International Journal of Molecular Science 2016, 17:2003.

[11] Chao CCK: Mechanisms of p53 Degradation. Clinica Chimica Acta 2015, 438:139-147.

[12] Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, et al.: Targeting Mutant p53 for Cancer Therapy: Direct and Indirect Strategies. Journal of Hematology and Oncology 2021, 14:157.

[13] Rusiecki R, Witkowski J, Jaszczewszka-Adamczak J: MDM2-p53 Interaction Inhibitors: The Current State-of-Art and Updated Patent Review (2010–Present). Recent Patents on Anti-Cancer Drug Discovery 2019, 14:324-369.

[14] Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E: Clinical Overview of MDM2/X-Targeted Therapies. Frontiers in Oncology 2016, 6:7.

[15] Zhao Y, Aguilar A, Bernard D, Wang S: Small-Molecule Inhibitors of the MDM2-p53 Protein-Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment. Journal of Medicinal Chemistry 2015, 58:1038-1052.

[16] Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, et al.: Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. Journal of Medicinal Chemistry 2021, 64:10621-10640.

[17] Myung J, Kim KB, Crews CM: The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors. Medicinal Research Reviews 2001, 21:245-273.

[18] Yang Z, Sun Y, Ni Z, Yang C, Tong Y, Liu Y, et al.: Merging PROTAC and Molecular Glue for Degrading BTK and GSPT1 Proteins Concurrently. Cell Research 2021, 31:1315-1318.

[19] Garber K: The PROTAC Gold Rush. Nature Biotechnology 2022, 40:12-16.

[20] He S, Dong G, Cheng J, Wu Y, Sheng C: Strategies for Designing Proteolysis Targeting Chimaeras (PROTACs). Medicinal Research Reviews 2022, 42:1280-1342.

[21] Bekes M, Langley DR, Crews CM: PROTAC Targeted Protein Degraders: The Past is Prologue. Nature Reviews Drug Discovery 2022, 21:181-200.

[22] Nehlesa T, Snyder LB, Willard RR, Vitale N, Pizzano J, Gordon DA, et al.: ARV-110: An Oral Androgen Receptor PROTAC Degrader for Prostate Cancer. Journal of Clinical Oncology 2019, 37:259.
[23] Han X, Zhao L, Xiang W, Qin C, Miao B, McEachern D, et al.: Strategies Toward Discovery of Potent and Orally Bioavailable Potent Proteolysis Targeting Chimeric Degraders of Androgen Receptor for the Treatment of Prostate Cancer. *Journal of Medicinal Chemistry* 2021, 64:12831-12854.

[24] Xiang W, Zhao L, Han X, Qin C, Miao B, McEachern D, et al.: Discovery of ARD-2SBS as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer. *Journal of Medicinal Chemistry* 2021, 64:13487-13509.

[25] Pal P, Thummuri D, Lv D, Liu X, Zhang P, Hu W, et al.: Discovery of a Novel BCL-XL PROTAC Degrader with Enhanced BCL-2 Inhibition. *Journal of Medicinal Chemistry* 2021, 64:14230-14246.

[26] Yu X, Xu J, Xie L, Wang L, Shen Y, Cahuzac KM, et al.: Design, Synthesis, and Evaluation of Potent, Selective, and Bioavailable AKT Kinase Degraders. *Journal of Medicinal Chemistry* 2021, 64:18054-18081.

[27] Hennings NJ, Manford AG, Spradlin JN, Brittain SM, Zhang E, McKenna JM, et al.: Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications. *Journal of the American Chemical Society* 2022, 144:701-708.

[28] Han X, Zhao L, Xiang W, Qin C, Miao B, Xu T, et al.: Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. *Journal of Medicinal Chemistry* 2019, 62:11218-11231.

[29] Zhao LJ, Han X, Lu JF, McEachern D, Wang SM: A Highly Potent PROTAC Androgen Receptor (AR) Degrader ARD-61 Effectively Inhibits AR-Positive Breast Cancer Cell Growth in Vitro Tumor Growth in Vivo. Neoplasia 2020, 22:522-532.

[30] Kregel S, Wang C, Han X, Xiao L, Fernandez-Salas E, Bawa P, et al.: Androgen Receptor Degrader Overcome Common Resistance Mechanisms Developed During Prostate Cancer Treatment. Neoplasia 2020, 22:111-119.

[31] Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, et al.: Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimaera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. *Journal of Medicinal Chemistry* 2019, 62:941-964.

[32] Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al.: Androgen Receptor Degradation by the Proteolysis-targeting Chimaera ARCC-4 Outperforms Enzalutamide in Cellular Models of Prostate Cancer Drug Resistance. *Communications Biology* 2018, 1:100.

[33] Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, Liu L, et al.: Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. *Journal of Medicinal Chemistry* 2019, 62:448-466.

[34] Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, et al.: Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER). *Journal of Medicinal Chemistry* 2019, 62:1420-1442.

[35] Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al.: A Selective BCL-XL PROTAC Degrader Achieves Safe and Potent Antitumor Activity. *Nature Medicine* 2019, 25:1938-1947.

[36] Zhou H, Bai L, Xu R, Zhao Y, Chen J, McEachern D, et al.: Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. *Journal of Medicinal Chemistry* 2019, 62:11280-11300.

[37] Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, et al.: A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. *Cancer Cell* 2019, 36:498-511.

[38] Zou Y, Ma D, Wang Y: The PROTAC Technology in Drug Development. *Cell Biochemistry & Function* 2019, 37:21-30.

[39] Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AMK, et al.: PROTAC-Induced BET Protein Degradation as a Therapy for Castration-Resistant Prostate Cancer. *Proceedings of the National Academy of Sciences of the United States of America* 2016, 113:7124-7129.

[40] Yang CY, Qin C, Bai L, Wang S: Small-Molecule PROTAC Degraders of the Bromodomain and Extra Terminal (BET) Proteins – A Review. *Drug Discovery Today Technologies* 2019, 31:43-51.

[41] Schneekloth Jr JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, et al.: Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation. *Journal of the American Chemical Society* 2004, 126:3748-3754.

[42] Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, et al.: Potent and Orally Active Small-Molecule Inhibitors of the MDM2-p53 Interaction. *Journal of Medicinal Chemistry* 2009, 52:7970-7973.

[43] Bernard D, Zhao Y, Wang S: AM-8553: A Novel MDM2 Inhibitor with a Promising Outlook for Potential Clinical Development. *Journal of Medicinal Chemistry* 2012, 55:4934-4935.

[44] Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, et al.: A Potent Small-Molecule Inhibitor of the MDM2-p53 Interaction (MI-888) Achieved Complete and Durable Tumor Regression in Mice. *Journal of Medicinal Chemistry* 2013, 56:5553-5561.

[45] Zafar A, Wang W, Liu G, Xian W, McKeon F, Zhou J, et al.: Targeting the p53-MDM2 Pathway for Neuroblastoma Therapy: Rays of Hope. *Cancer Letters* 2021, 496:16-29.

[46] Wang W, Hu Y: Small Molecule Agents Targeting the p53-MDM2 Pathway for Cancer Therapy. *Medicinal Research Reviews* 2012, 32:1159-1196.

[47] Popowicz GM, Domling A, Holak TA: The Structure-Based Design of Mdm2/Mdmx-p53 Inhibitors Gets Serious. *Angewandte Chemie International Edition in English* 2011, 50:2680-2688.

[48] Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al.: Discovery of RG7388, A Potent and Selective p53-MDM2 Inhibitor in Clinical Development. *Journal of Medicinal Chemistry* 2013, 56:5979-5983.

[49] Tovar C, Graves B, Packman K, Filipovic Z, Higgins B, Xia M, et al.: MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models. *Cancer Research* 2013, 73:2587-2597.

[50] Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, et al.: Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. *ACS Medicinal Chemistry Letters* 2013, 4:466-469.

[51] de Jonge M, de Weger VA, Dickson MA, Langenberg M, Le Cesne A, Wagner AJ, et al.: A Phase I Study of SAR405838, A Novel Human Double Minute 2 (HDM2) Antagonist, in Patients with Solid Tumours. *European Journal of Cancer* 2017, 76:144-151.

[52] Jung J, Lee JS, Dickson MA, Schwartz GK, Le Cesne A, Varga A, et al.: TP53 Mutations Emerge with HDM2 Inhibitor SAR405838 Treatment in De-Differentiated Liposarcoma. *Nature Communication* 2016, 7:12609.
Review

[53] Konopleva M, Martinelli G, Daver N, Papayannidis C, Wei A, Higgins B, et al.: MDM2 Inhibition: An Important Step Forward in Cancer Therapy. *Leukemia* 2020, 34:2858-2874.

[54] Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L: The Past, Present and Future of Potential Small-Molecule Drugs Targeting p53-MDM2/MDMX for Cancer Therapy. *European Journal of Medicinal Chemistry* 2019, 176:92-104.

[55] Stachyra-Valat T, Baysang F, D’Alessandro AC, Dirk E, Furet P, Guagnano V, et al.: NVP-HDM201: Biochemical and Biophysical Profile of a Novel Highly Potent and Selective PPI Inhibitor of p53-Mdm2. *Cancer Research* 2016, 76, 14 Suppl (abstract 1239):1239.

[56] Gounder MM, Bauer TM, Schwartz GK, Masters T, Carvajal D, et al.: The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. *Molecular Cancer Therapeutics* 2015, 14:649-658.

[57] Zhang L, Luo QY, Yan XL, Wan XP, Yuan LP, Zhang YX, et al.: DiNardo CD, Rosenthal J, Andreeff M, Zernovak O, Gounder MM, Bauer TM, Schwartz GK, Masters T, Carvajal D, et al.: Mechanistic Study of NVP-CGM097: A Potent, Selective and Species Specific Inhibitor of p53-Mdm2. *Cancer Research* 2016, 79, 13, Suppl (abstract 2061):2061.

[58] Yi H, Yan X, Luo Q, Yuan L, Li B, Pan W, et al.: A Novel Small Molecule Inhibitor of MDM2-p53 (APG-115) Enhances Radiosensitivity of Gastric Adenocarcinoma. *Journal of Experimental & Clinical Cancer Research* 2018, 37:97.

[59] Wagner AJ, Banerji U, Mahipal A, Somiaih N, Hirsch H, Fancourt C, et al.: Phase I Trial of the Human Double Minute 2 Inhibitor MK-8242 in Patients With Advanced Solid Tumors and Lymphomas. *Journal of Clinical Oncology* 2016, 34, 15 Suppl (abstract 2581):2581.

[60] DiNardo CD, Rosenthal J, Andreeff M, Zernovak O, Kumar P, Gajee R, et al.: Phase 1 Dose Escalation Study of MDM2 Inhibitor DS-3032b in Patients with Hematological Malignancies – Preliminary Results. *Blood* 2016, 128:593.

[61] Zhang L, Luo QY, Yan XL, Wan XP; Yuan LP, Zhang YX, et al.: A Novel Small Molecule Inhibitor of MDM2-p53 (APG-115) has Antitumor Activity in Gastric Adenocarcinoma. *Cancer Research* 2019, 79, 13, Suppl (abstract 2061):2061.

[62] Yi H, Yan X, Luo Q, Yuan L, Li B, Pan W, et al.: A Novel Small Molecule Inhibitor of MDM2-p53 (APG-115) Enhances Radiosensitivity of Gastric Adenocarcinoma. *Journal of Experimental & Clinical Cancer Research* 2018, 37:97.

[63] Kang MH, Reynolds CP, Kolb EA, Gorlick R, Carol H, Lock R, et al.: Initial Testing (Stage 1) of MK-8242-A Novel MDM2 Inhibitor-by the Pediatric Preclinical Testing Program. *Pediatric Blood & Cancer* 2016, 63:1744-1752.

[64] Wagner AJ, Banerji U, Mahipal A, Somiaih N, Hirsch H, Fancourt C, et al.: Phase I Trial of the Human Double Minute 2 Inhibitor MK-8242 in Patients With Advanced Solid Tumors. *Journal of Clinical Oncology* 2017, 35:1304-1311.

[65] Ravandi F, Gojo L, Patnaik MM, Minden MD, Kantarjian H, Johnson Levonas A, et al.: NVP-HDM201: Biochemical and Biophysical Profile of a Novel Highly Potent and Selective PPI Inhibitor of p53-Mdm2. *Cancer Research* 2016, 76, 14 Suppl (abstract 1239):1239.

[66] Gounder MM, Bauer TM, Schwartz GK, Masters T, Carvajal D, et al.: The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. *Molecular Cancer Therapeutics* 2015, 14:649-658.

[67] Sun D, Li Z, Rew Y, Gribble M, Bartberger MD, Beck HP, et al.: Discovery of AMG 232, a Potent, Selective, and Orally Bioavailable MDM2-p53 Inhibitor in Clinical Development. *Journal of Medicinal Chemistry* 2015, 57:1454-1472.

[68] Wang Y, Zhu J, Liu J, Chen X, Mihalic J, Deignan J, et al.: Optimization Beyond AMG 232: Discovery and SAR of Sulfonamides on a Piperidinone Scaffold as Potent Inhibitors of the MDM2-p53 Protein-Protein Interaction. *Bioorganic and Medicinal Chemistry Letters* 2014, 24:3782-3785.

[69] Pickels SM, Lane DP: The p53-mdm2 Autoregulatory Feedback Loop: A Paradigm for the Regulation of Growth Control by p53? *Bioessays* 1993, 15:689-690.

[70] Burslem GM, Crews CM: Small-Molecule Modulation of Protein Homeostasis. *Chemical Reviews* 2017, 117:11269-11301.

[71] Toure M, Crews CM: Small-Molecule PROTACs: New Approaches to Protein Degradation. *Angewandte Chemie International Edition* 2016, 55:1966-1973.

[72] Lai AC, Toure M, Hellerschied D, Salami J, Jaime-Figueroa S, Ko E, et al.: Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. *Angewandte Chemie International Edition* 2016, 55:807-810.

[73] Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, et al.: Phthalimide Conjugation as a Strategy for in Vivo Target Protein Degradation. *Science* 2015, 348:1376-1381.

[74] Cromm PM, Crews CM: Targeted Protein Degradation: From Chemical Biology to Drug Discovery. *Cell Chemical Biology* 2017, 24:1181-1190.

[75] Lai AC, Crews CM: Induced Protein Degradation: An Emerging Drug Discovery Paradigm. *Nature Reviews Drug Discovery* 2017, 16:101-114.

[76] Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al.: Lenalidomide Induces Ubiquitination and Degradation of CK1alpha in del(Sq) MDS. *Nature* 2015, 523:183-188.

[77] Inuzuka H, Liu J, Wei WY, Rezaeian AH. PROTAC Technology for the Treatment of Alzheimer’s Disease: Advances and Perspectives. *Acta Materia Medica* 2022, 1:24:41.

[78] Liu J, Chen H, Liu Y, Shen Y, Meng F, Kaniskan HU, et al.: Cancer Selective Target Degradation by Folate-Caged PROTACs. *Journal of the American Chemical Society* 2021, 143:7380-7387.

[79] Testa A, Lucas X, Castro GV, Chan KH, Wright JE, Runcie AC, et al.: 3-Fluoro-4-hydroxyprolines: Synthesis, Conformational Analysis, and Stereoselective Recognition by the VHL E3 Ubiquitin Ligase for Targeted Protein Degradation. *Journal of the American Chemical Society* 2018, 140:9299-9313.

[80] Slabicki M, Yoon H, Koeppe1 J, Nitsch L, Roy Burman SS, Di Genua C, et al.: Small-Molecule-Induced Polymerization Triggers Degradation of BCL6. *Nature* 2020, 588:164-168.

[81] Gadd MS, Testa A, Lucas X, Chan KH, Chen WZ, Lamont DJ, et al.: Structural Basis of PROTAC Cooperative Recognition for Selective Protein Degradation. *Nature Chemical Biology* 2017, 13:514-521.

[82] Yu F, Cai M, Shao L, Zhang JH: Targeting Protein Kinases Degradation by PROTACs. *Frontiers in Chemistry* 2021, 9:679120.

[83] Gabizon R, Shraga A, Gehrtz P, Livnah E, Shorer Y, Gurwicz N, et al.: Efficient Targeted Degradation via Reversible and
Irreversible Covalent PROTACs. Journal of the American Chemical Society 2020, 142:11734-11742.

[84] Li H, Wei W, Xu H: Drug Discovery is an Eternal Challenge for the Biomedical Sciences. Acta Materia Medica 2022, 1:1-3.

[85] Bond MJ, Crews CM: Proteolysis Targeting Chimeras (PROTACs) Come of Age: Entering the Third Decade of Targeted Protein Degradation. RSC Chemical Biology 2021, 2:725-742.

[86] Gropp JC: Induced Degradation of Protein Kinases by Bifunctional Small Molecules: a Next-Generation Strategy: Expert Opinion on Drug Discovery 2019, 14:1237-1253.

[87] Sun X, Gao H, Yang Y, He M, Wu Y, Song, Y, et al.: PROTACs: Great Opportunities for Academia and Industry. Signal Transduction and Targeted Therapy 2019, 4:64.

[88] Wang B, Liu J, Tandon I, Wu S, Teng P, Liao J, et al.: Development of MDM2 Degraders Based on Ligands Derived From Ugi Reactions: Lessons and Discoveries. European Journal of Medicinal Chemistry 2021, 219:113425.

[89] Yang J, Li Y, Aguilar A, Liu Z, Yang CY, Wang S: Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry 2019, 62:9471-9487.

[90] Zhang B, Golding BT, Hardcastle IR: Small-Molecule MDM2-p53 Inhibitors: Recent Advances. Future Medicinal Chemistry 2015, 7:631-645.

[91] Schneekloth AR, Pucheault M, Tae HS, Crews CM: Targeted Intracellular Protein Degradation Induced by a Small Molecule: En route to Chemical Proteomics. Bioorganic and Medicinal Chemistry Letters 2008, 18:5904-5908.

[92] Hines J, Lartigue S, Dong H, Qian Y, Crews CM: MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Research 2019, 79:251-262.

[93] He S, Ma J, Fang Y, Liu Y, Wu S, Dong G, et al.: Homo-PROTAC Mediated Suicide of MDM2 to Treat Non-Small Cell Lung Cancer. Acta Pharmaceutica Sinica B 2021, 11:1617-1628.

[94] Zhao Q, Lan T, Su S, Rao Y: Induction of Apoptosis in MDA-MB-231 Breast Cancer Cells by a PARP1-Targeting PROTAC Small Molecule. Chemical Communications (Camb) 2019, 55:369-372.

[95] Qin C, Hu Y, Zhou B, Fernandez-Salas E, Yang CY, Liu L, et al.: Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. Journal of Medicinal Chemistry 2018, 61:6685-6704.

[96] Bai L, Zhou B, Yang CY, Ji J, McEachern D, Przybranowski S, et al.: Targeted Degradation of BET Proteins in Triple-Negative Breast Cancer. Cancer Research 2017, 77:2476-2487.

[97] Ward CC, Kleinman JI, Brittain SM, Lee PS, Chung CYS, Kim K, et al.: Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications. ACS Chemical Biology 2019, 14:2430-2440.

[98] Spradlin JN, Hu XR, Ward CC, Brittain SM, Jones MD, Ou LS, et al.: Harnessing the Anti-Cancer Natural Product Nimboilide for Targeted Protein Degradation. Nature Chemical Biology 2019, 15:747-755.

[99] Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF: Electrophilic PROTACs that Degrade Nuclear Proteins by Engaging DCAF16. Nature Chemical Biology 2019, 15:737-746.

[100] Ohoka N, Tsuji G, Shoda T, Fujisato T, Kurihara M, Demizu Y, et al.: Development of Small Molecule Chimeras that Recruit Arylhydrocarbon Receptor (AhR) E3 Ligase to Induce Degradation of Target Proteins. Molecular Cancer Therapeutics 2019, 18 (12, Supplement):C125.

[101] Zengerle M, Chan KH, Ciulli A: Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. ACS Chemical Biology 2015, 10:1770-1777.

[102] Chan KH, Zengerle M, Testa A, Ciulli A: Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibitor Scaffolds. Journal of Medicinal Chemistry 2018, 61:504-513.

[103] Li F, Wu X, Fu X, Liu J, Song W, Xiao GG, et al.: Poly (ADP-ribose) Polymerase 1 (PARP1) Inhibition Promotes Pulmonary Metastasis of Osteosarcoma by Boosting Ezrin Phosphorylation. International Journal of Biological Sciences 2022, 18:1238-1253.

[104] Challis S, Kraus WL, Two Birds, One Stone: Non-canonical Therapeutic Effects of the PARP Inhibitor Talazoparib. Cell Chemical Biology 2022, 29:171-173.

[105] Mekhaeil M, Dev KK, Conroy MJ: Existing Evidence for the Repurposing of PARP-1 Inhibitors in Rare Demyelinating Diseases. Cancers (Basel) 2022, 14:687.

[106] Jia Y, Wang M, Sang X, Liu P, Gao J, Jiang K, et al.: Phenethyl Isothiocyanate Enhances the Cytotoxic Effects of PARP Inhibitors in High-Grade Serous Ovarian Cancer Cells. Frontiers in Oncology 2021, 11:812264.

[107] Zhang X, Xu F, Tong L, Zhang T, Xie H, Lu X, et al.: Design and Synthesis of Selective Degraders of EGFR(L858R/T790M) Mutant. European Journal of Medicinal Chemistry 2020, 192:112199.

[108] Zhao B, Burgess K: TrkC-Targeted Kinase Inhibitors and PROTACs. Molecular Pharmaceutics 2019, 16:4313-4318.

[109] Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ: PROTacs: Chimeric Molecules that Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proceedings of the National Academy of Sciences of the United States of America 2001, 98:8554-8559.

[110] Zheng M, Huo J, Gu X, Wang Y, Wu C, Zhang Q, et al.: Rational Design and Synthesis of Novel Dual PROTACs for Simultaneous Degradation of EGFR and PARP. Journal of Medicinal Chemistry 2021, 64:7839-7852.

[111] Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, et al.: Enhancing Intracellular Accumulation and Target Engagement of PROTACs with Reversible Covalent Chemistry. Nature Communications 2020, 11:4268.

[112] Maneiro MA, Forte N, Shcepinova MM, Kounde E, Sato A, et al.: AUTACs: Cargo-Specific Degraders Using Conjugates Enable HER2-Dependent Targeted Protein Degradation. Molecular Cell 2019, 76:797-810.

[113] Takahashi D, Moriyama J, Nakamura T, Miki E, Takahashi K, et al.: Covalent Ligand Screening Uncovers a RNF43 E3 Ligase Recruiter for Targeted Protein Degradation. Molecular Cell 2019, 77:1411-1422.

[114] Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley KM, Bertozzi CR: Lysosome-targeting chimaeras for...
degradation of extracellular proteins. *Nature* 2020, 584:291-297.

[115] Ma B, Feng H, Feng C, Liu Y, Zhang H, Wang J, et al.: Kill Two Birds with One Stone: A Multifunctional Dual-Targeting Protein Drug to Overcome Imatinib Resistance in Philadelphia Chromosome-Positive Leukemia. *Advanced Science (Weinh)* 2022, 9:e2104850.

[116] Nishiguchi G, Keramatnia F, Min J, Chang Y, Jonchere B, Das S, et al.: Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders from a Focused Library of Cereblon Modulators. *Journal of Medicinal Chemistry* 2021, 64:7296-7311.

[117] Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, et al.: Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. *Journal of Medicinal Chemistry* 2021, 64:3493-3507.

[118] Halford B: Arvinas Unveils PROTAC Structures. *Chemical and Engineering News* 2021, 99:5-5.

[119] Mullard A: First Targeted Protein Degrader Hits the Clinic. *Nature Reviews Drug Discovery* 2019, 18:237-239.