Many have argued that statistics students need additional facility to express statistical computations. By introducing students to commonplace tools for data management, visualization, and reproducible analysis in data science, and applying these to real-world scenarios, we prepare them to think statistically. In an era of increasingly big data, it is imperative that students develop data-related capacities, beginning with the introductory course. We believe that the integration of these precursors to data science into our curricula—early and often—will help statisticians be part of the dialogue regarding Big Data and Big Questions.

Specifically, through our shared experience working in industry, government, private consulting, and academia, we have identified five key elements that deserve greater emphasis in the undergraduate curriculum (in no particular order):

1. Thinking creatively, but constructively, about data. This “data tidying” includes the ability to move data not only between different file formats, but also into different shapes. There are elements of data-storage design (e.g. normal forms) that students need to learn, along with an understanding about how data should be arranged based on how it will likely be used.

2. Facility with data sets of varying sizes, and some understanding of scalability issues when working with data. This includes an elementary understanding of basic computer architecture (e.g. memory vs. hard disk space), and the ability to query a relational database management system (RDBMS).

3. Statistical computing skills in a command-driven environment (e.g. R, Python, or Julia). Coding skills (in any language) are highly valued and increasingly necessary. They provide freedom from the un-reproducible point-and-click application paradigm.

4. Experience wrestling with large, messy, complex, challenging data sets, for which there is no obvious goal or specially curated statistical method (see sidebar: What’s in a Word). While perhaps sub-optimal for teaching specific statistical methods, these data are more similar to what analysts actually see in the wild.

5. An ethos of reproducibility. This is a major challenge for science in general, and we have the comparatively easy task of simply reproducing computations and analysis.
We illustrate below how these five elements can be addressed in the undergraduate curriculum. To this end, we'll be exploring questions related to airline travel using a large data set (point 4 above) that is by necessity housed in a relational database (2, see sidebar: Databases). We present R code (3) using the dplyr framework (1)—and moreover, this paper itself—in the reproducible R Markdown format (5). Statistical educators play a key role in helping to prepare the next generation of statisticians and data scientists. We hope that this exercise will assist them in narrowing the aforementioned skills gap.
Nolan and Temple Lang (2010) stress the importance of knowledge of information technologies, along with the ability to work with large datasets. Relational databases, first popularized in the 1970s, provide fast and efficient access to terabyte-sized files. These systems use a structured query language (SQL) to specify data operations. Surveys of graduates from statistics programs have noted that familiarity with databases and SQL would have been helpful as they moved to the workforce.

Database systems have been highly optimized and tuned since they were first invented. Connections between general purpose statistics packages such as R and database systems can be facilitated through use of SQL. Table 1 describes key operators for data manipulation in SQL.

Table 1: Key operators to support data management and manipulation in SQL (structured query language)

verb	meaning
SELECT	create a new result set from a table
FROM	specify table
WHERE	subset observations
GROUP BY	aggregate
ORDER	re-order the observations
DISTINCT	remove duplicate values
JOIN	merge two data objects

Use of an SQL interface to large datasets is attractive as it allows the exploration of datasets that would be impractical to analyze using general purpose statistical packages. In this application, much of the heavy lifting and data manipulation is done within the database system, with the results made available within the general purpose statistics package.

The ASA Data Expo 2009 website (http://stat-computing.org/dataexpo/2009) provides full details regarding how to download the Expo data (1.6 gigabytes compressed, 12 gigabytes uncompressed through 2008), set up a database using SQLite (www.sqlite.org), add indexing, and then access it from within R or RStudio. This is very straightforward to undertake (it took the first author less than two hours to set up using several years of data), though there are some limitations to the capabilities of SQLite.

MySQL (www.mysql.com, described as the world’s most popular open-source database) and PostgreSQL are more fully featured systems (albeit with somewhat more complex installation and configuration).

The use of SQL within R (or other systems) is straightforward once the database has been created (either locally or remotely). An add-on package (such as RMySQL or RSQLite) must be installed and loaded, then a connection made to a local or remote database. In combination with tools such as R Markdown (which make it easy to provide a template and support code, described in detail in “Five Concrete Reasons Your Students Should Be Learning to Analyze Data in the Reproducible Paradigm,” http://chance.amstat.org/2014/09/reproducible-paradigm) students can start to tackle more interesting and meatier questions using larger databases set up by their instructors. Instructors wanting to integrate databases into their repertoire may prefer to start with SQLite, then graduate to more sophisticated systems (which can be accessed remotely) using MySQL.

The dplyr package encapsulates and replaces the SQL interface for either system. It also features lazy evaluation, where operations are not undertaken until absolutely necessary.
A Framework for Data-Related Skills

The statistical data analysis cycle involves the formulation of questions, collection of data, analysis, and interpretation of results (see Figure 1). Data preparation and manipulation are not just first steps, but key components of this cycle (which will often be nonlinear; see also www.jstatsoft.org/v59/i10/paper). When working with data, analysts must first determine what is needed, describe this solution in terms that a computer can understand, and execute the code.

Here we illustrate how the **dplyr** package in R (http://cran.r-project.org/web/packages/dplyr) can be used to build a powerful and broadly accessible foundation for data manipulation. This approach is attractive because it provides simple functions that correspond to the most common data-manipulation operations (or verbs) and uses efficient storage approaches so that the analyst can focus on the analysis. (Other systems could certainly be used in this manner, see for example http://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_CI34_CARVER.pdf.)

Airline Delays

To illustrate these data-manipulation verbs in action, we consider analysis of airline delays in the United States. This dataset, constructed from information made available by the Bureau of Transportation Statistics, was utilized in the ASA Data Expo 2009 (see Wickham’s paper in *Journal of Computational and Graphical Statistics*). This rich data repository contains more than 150 million observations corresponding to each commercial airline flight in the United States between 1987 and 2012. (The magnitude of this dataset precludes loading it directly in R, or most other general purpose statistical packages.)

We demonstrate how to undertake analysis using the tools in the **dplyr** package. (A smaller dataset is available for New York City flights in 2013 within the **nycflights13** package on CRAN, which includes five dataframes that can be accessed within R (see the previous link for example files).)

MAKING BIGGER DATASETS ACCESSIBLE THROUGH DATABASES (CONT.)

Another option in **dplyr** is for the user to directly specify SQL SELECT commands (this is an important topic for statistics majors to see at some point in their programs). For example, the following code would replicate the creation of the dataset of counts for the three airports used to create Figure 2 using SQL (as opposed to using the interface within **dplyr**).

```r
flights <-
    dbGetQuery(con, "SELECT Dest, Year, Month, DayOfMonth, DayOfWeek, sum(1) as numFlights
        FROM ontime WHERE (Dest = 'ALB' OR Dest = 'BDL' OR Dest = 'BTV')
        GROUP BY Year, Month, DayOfMonth, Dest")
```

In this example, a set of variables is selected (along with a derived variable which sums the number of flights) from the three airports of interest. The results are aggregated by day and destination (at which point they are more manageable). The `dbGetQuery()` function in the **RMySQL** package returns a dataframe containing the results from the SQL SELECT call. The SQL syntax is similar, but not identical, to the **dplyr** syntax.

Is setting up a database too much effort? We think not (and provide further guidance at the aforementioned website). As another option, those willing to explore can undertake similar analyses using the **nycflights13** package on CRAN, which includes five dataframes that can be accessed within R (see the previous link for example files).
Students can use this dataset to address questions that they find real and relevant. (It is not hard to find motivation for investigating patterns of flight delays. Ask students: Have you ever been stuck in an airport because your flight was delayed or canceled, and wondered if you could have predicted the delay if you’d had more data?)

We begin by loading needed packages and connecting to a database containing the flight, airline, airport, and airplane data (see sidebar: Databases).

```r
require(dplyr); require(mosaic);
require(lubridate)
# login credentials in ~/.my.cnf
my_db <- src_mysql(host="DBname.com", user=NULL, password=NULL, dbname="airlines")
```

This example uses data from a database with multiple tables (collection of related data).

```r
ontime <- tbl(my_db, "ontime")
airports <- tbl(my_db, "airports")
carriers <- tbl(my_db, "carriers")
planes <- tbl(my_db, "planes")
```

Filtering Observations

We start with an analysis focused on three smaller airports in the Northeast. This illustrates the use of `filter()`, which allows the specification of a subset of rows of interest in the `airports` table (or dataset). We first start by exploring the `airports` table. Suppose we wanted to find out which airports certain codes belong to?

```r
filter(airports, code %in% c("ALB", "BDL", "BTV"))
## From: airports [3 x 7]
## Filter: code %in% c("ALB", "BDL", "BTV")
##
## | code | name     | city     | state | country |
## |------|----------|----------|-------|---------|
## | ALB  | Albany Cty | Albany | NY    | USA     |
## | BDL  | Bradley Intl. | Windsor Locks | CT | USA     |
## | BTV  | Burlington Intl. | Burlington | VT | USA     |
##
## Variables not shown: latitude longitude
```

Aggregating Observations

Next we aggregate the counts of flights at all three of these airports at the monthly level (in the `ontime` flight-level table), using the `group_by()` and `summarise()` functions. The `collect()` function forces the evaluation. These functions are connected using the `%>%` operator. This pipes the results from one object or function as input to the next in an efficient manner.

```r
airportcounts <- ontime %>%
  filter(Dest %in% c("ALB", "BDL", "BTV")) %>%
  group_by(Year, Month, Dest) %>%
  summarise(count = n()) %>%
  collect()
```

Creating New Derived Variables

Next we add a new column by constructing a date variable (using `mutate()` and helper functions from the `lubridate` package), then generate a time-series plot.

```r
airportcounts <- airportcounts %>%
  mutate(Date = ymd(paste(Year, "-", Month, "-01", sep="")))
head(airportcounts) # list only the first six observations
## Source: local data frame [6 x 5]
## Groups: Year, Month
##
## | Year | Month | Dest | count | Date       |
## |------|-------|------|-------|------------|
## | 1987 | 1     | ALB  | 957   | 1987-10-01 |
## | 1987 | 2     | BDL  | 2580  | 1987-10-01 |
## | 1987 | 3     | BTV  | 549   | 1987-10-01 |
## | 1987 | 4     | ALB  | 950   | 1987-11-01 |
## | 1987 | 5     | BDL  | 2442  | 1987-11-01 |
## | 1987 | 6     | BTV  | 496   | 1987-11-01 |
```

Table 2—Key Verbs in `dplyr` and `tidyr` to Support Data Management and Manipulation

verb	meaning
`select()`	select variables (or columns)
`filter()`	subset observations (or rows)
`mutate()`	add new variables (or columns)
`arrange()`	re-order the observations
`summarise()`	reduce to a single row
`group_by()`	aggregate
`left_join()`	merge two data objects
`distinct()`	remove duplicate entries
`collect()`	force computation and bring data back into R

Identical in terms of the `dplyr` functionality, with the same functions being used.)
We observe in Figure 2 that there are some interesting patterns over time for these airports. Bradley (serving Hartford, CT and Springfield, MA) has the largest monthly volumes, with Burlington the fewest flights. At all three airports, there has been a decline in the number of flights from 2005 to 2012.

Sorting and selecting

Another important verb is arrange(), which in conjunction with head() lets us display the months with the largest number of flights. Here we need to use ungroup(), since otherwise the data would remain aggregated by year, month, and destination.

```r
airportcounts %>%
  ungroup() %>%
  arrange(desc(count)) %>%
  select(count, Year, Month, Dest) %>%
  head()
```

We can compare flight delays between two airlines serving a city pair. For example, which airline was most reliable flying from Chicago O'Hare (ORD) to Minneapolis/St. Paul (MSP) in January 2012? Here we demonstrate how to calculate an average delay for each day for United, Delta, and American (operated by Envoy/American Eagle). We create the analytic dataset through use of select() (to pick the variables to be included), filter() (to select a tiny subset of the observations), and then repeat the previous aggregation. (Note that we do not address flight cancellations: this exercise is left to the reader, or see the Online Examples.)
delays <- ontime %>%
 select(Origin, Dest, Year, Month, DayofMonth, UniqueCarrier, ArrDelay) %>%
 filter(Origin == 'ORD' & Dest == 'MSP' & Year == 2012 & Month == 1 &
 UniqueCarrier %in% c("UA", "MQ", "DL")) %>%
 group_by(Year, Month, DayofMonth, UniqueCarrier) %>%
 summarise(count = n(), meandelay = mean(ArrDelay)) %>%
 collect()

Merging

Merging is another key capacity for students to master. Here, the full carrier names are merged (or joined, in database parlance) to facilitate the comparison, using the `left_join()` function to provide a less terse full name for the airlines in the legend of the figure.

carriernames <- carriers %>%
 filter(code %in% c("UA", "MQ", "DL")) %>%
 collect()

merged <- left_join(delays, carriernames, by=c("UniqueCarrier" = "code"))

We see in Figure 3 that the airlines are fairly reliable, though there were some days with average delays of 50 minutes or more (three of which were accounted for by Envoy/American Eagle).

densityplot(~ meandelay, group=name, auto.key=TRUE, data=merged)

Figure 3. Comparison of mean flight delays from O'Hare to Minneapolis/St. Paul in January 2012 for three airlines
Finally, we can drill down to explore all flights on Mondays in the year 2001.

```r
flights <- ontime %>%
  filter(DayofWeek==1 & Year==2001) %>%
  group_by(Year, Month, DayOfMonth) %>%
  summarise(count = n()) %>%
  collect()
```

```r
flights <- mutate(flights,
  Date=ymd(paste(Years, "-", Month, "-", DayOfMonth, sep="")))
```

```r
xyplot(count ~ Date, type="l",
  ylab="Count of flights on Mondays",
  data=flights)
```

```r
ladd(panel.abline(v=ymd("2001-09-11"), lty=2))
```

Integrating Bigger Questions and Datasets into the Curriculum

This opportunity to make a complex and interesting dataset accessible to students in introductory statistics is quite compelling. In the introductory (or first) statistics course, we explored airline delays without any technology through use of the "Judging Airlines" model eliciting activity (MEA) developed by the CATALST Group (http://serc.carleton.edu/sp/library/mea/examples/example5.html). This MEA guides students to develop ideas regarding center and variability and the basics of informal inferences using small samples of data for pairs of airlines flying out of Chicago.

Figure 5 displays sample airline delays for ten flights each for American Eagle Airlines and Mesa Airlines flying from Chicago to Green Bay, WI. As part of this activity, students need to describe five possible sample statistics which could be used to compare the flight delays by airline. These might include the average, the maximum, the median, the 90th percentile, or the fraction that are late. Finally, they need to create a rule that incorporates at least two of those summary statistics that can be used to make a decision about whether one airline is more reliable. A possible rule might be to declare an airline is better than another if that airline has half an hour less average delay, and that same airline has 10% fewer delayed flights than the other. (If the two measures of reliability differ in direction for the two airlines, no call is made.)

To finish the assignment, students are provided with data for another four city pairs, asked to carry out their rule on these new "test" datasets, and then told to summarize their results in a letter to the editor of Chicago Magazine.

Later in the course, the larger dataset can be reintroduced in several ways. It can be brought into class
to illustrate univariate summaries or bivariate relationships (including more sophisticated visualization and graphical displays). Students can pose questions through projects or other extended assignments. A lab activity could have students explore their favorite airport or city pair (when comparing two airlines they will often find that only one airline services that connection, particularly for smaller airports). Students could be asked to return to the informal “rule” they developed in an extension to assess its performance. Their rule can be programmed in R, and then carried out on a series of random samples from the flights from that city on that airline within that year. This allows them to see how often their rule picked an airline as being more reliable (using various subsets of the observed data as the “truth”). Finally, students can summarize the population of all flights as a way to better understand sampling variability. This process reflects the process followed by analysts working with big data: Sampling is used to generate hypotheses that are then tested against the complete dataset.

In a second course, more time is available to develop diverse statistical and computational skills. This includes more sophisticated data management and manipulation, with explicit learning outcomes that are a central part of the course syllabus.

Other data wrangling and manipulation capacities can be introduced and developed using this example, including more elaborate data joins/merges (since there are tables providing additional (meta)data about planes). As an example, consider the many flights of plane N355NB, which flew out of Bradley airport in January 2008.

\[
\text{filter(planes, tailnum=="N355NB")}
\]
\[
\text{## From: planes [1 x 10]}
\]
\[
\text{## Filter: tailnum == "N355NB"}
\]
\[
\text{## tailnum type manufacturer}
\]
\[
\text{issue_date model status}
\]
\[
\text{## 1 N355NB Corporation AIRBUS}
\]
\[
\text{11/14/2002 A319-114 Valid}
\]
\[
\text{## Variables not shown: aircraft_type (chr), engine_type (chr), year (int),}
\]
\[
\text{issueDate (chr)}
\]

We see that this is an Airbus 319.

\[
\text{singleplane <- filter(ontime,}
\]
\[
\text{tailnum=="N355NB") %>%}
\]
\[
\text{select(Year, Month, DayofMonth, Dest,}
\]
\[
\text{Origin, Distance) %>%}
\]
\[
\text{collect()}
\]
\[
\text{singleplane %>%}
\]
\[
\text{group_by(Year) %>%}
\]
\[
\text{summarise(count = n(),}
\]
\[
\text{totaldist = sum(Distance))}
\]
Source: local data frame [13 x 3]
##
| Year | count | totaldist |
|------|-------|-----------|
| 2002 | 152 | 136506 |
| 2003 | 1367 | 1224746 |
| 2004 | 1299 | 1144288 |
| 2005 | 1366 | 1149142 |
| 2006 | 1484 | 1149036 |
| 2007 | 1282 | 1010146 |
| 2008 | 1318 | 1095109 |
| 2009 | 1235 | 1094532 |
| 2010 | 1368 | 1143189 |
| 2011 | 1406 | 919893 |
| 2012 | 1213 | 807246 |
| 2013 | 1339 | 921673 |
| 2014 | 169 | 97257 |

```
sum(~ Distance, data=singleplane)
```

```r
## [1] 11892763
```

This Airbus A319 has been very active, with around 1,300 flights per year since it came online in late 2002, and it has amassed more than 11 million miles in the air.

```
singleplane %>%
  group_by(Dest) %>%
  summarise(count = n()) %>%
  arrange(desc(count)) %>%
  filter(count > 500)
```

```
## Source: local data frame [5 x 2]
##
## | Dest | count |
## |------|-------|
## | MSP  | 2861  |
## | DTW  | 2271  |
## | MEM  | 847   |
## | LGA  | 812   |
## | ATL  | 716   |
```

Finally, we see that it tends to spend much of its time flying to Minneapolis/St. Paul (MSP) and Detroit (DTW).

Mapping

Mapping is also possible, since the latitude and longitude of the airports are provided. Figure 6 displays a map of flights from Bradley airport in 2013 (the code to create the display can be found with the online examples).

Linkage to other data scraped from the Internet (e.g. detailed weather information for a particular airport or details about individual planes) may allow other questions to be answered (this has already been included in the nycflights13 package; see sidebar: Databases).

Use of this rich dataset helps to excite students about the power of statistics, introduce tools that can help energize the next generation of data scientists, and build useful data-related skills.

Conclusion and next steps

Statistics students need to develop the capacity to make sense of the staggering amount of information collected in our increasingly data-centered world. In the 2013 book *Doing Data Science*, co-written by Rachel Schutt and Cathy O’Neil, Schutt succinctly summarized the challenges she faced as she moved into the workforce: “It was clear to me pretty quickly that the stuff I was working on at Google was different than anything I had learned at school.” This anecdotal evidence is corroborated by the widely cited McKinsey Global Institute report that called for the training of hundreds of thousands of workers with the skills to make sense of the rich and sophisticated data now available to make decisions (along with millions of new managers with the ability to comprehend these results). The disconnect between the complex analyses now demanded in industry and the instruction available in academia is a major challenge for the profession.
We agree that there are barriers and time costs to the introduction of reproducible analysis tools and more sophisticated data-management and -manipulation skills to our courses. Further guidance and research results are needed to guide our work in this area, along with illustrated examples, case studies, and faculty development. But these impediments must not slow down our adoption. As Schutt cautions in her book, statistics could be viewed as obsolete if this challenge is not embraced. We believe that the time to move forward in this manner is now, and believe that these basic data-related skills provide a foundation for such efforts.

Copies of the R Markdown and formatted files for these analyses (to allow replication of the analyses) along with further background on databases and the Airline Delays dataset are available at www.amherst.edu/~nhorton/precursors. A previous version of this paper was presented in July, 2014 at the International Conference on Teaching Statistics (ICOTS9) in Flagstaff, AZ.

Further reading

American Statistical Association Undergraduate Guidelines Workgroup. 2014. 2014 Curriculum guidelines for undergraduate programs in statistical science. American Statistical Association. www.amstat.org/education/curriculumguidelines.cfm.

Baumer, B. S., M. Cetinkaya-Rundel, A. Bray, L. Loi, and N.J. Horton. 2014. R Markdown: Integrating a reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education. http://escholarship.org/uc/item/90k2f5xh.

Finzer, W. 2013. The data science education dilemma. Technology Innovations in Statistics Education. http://escholarship.org/uc/item/7gv0q9dc.

Horton, N.J., B. S. Baumer, and H. Wickham. 2014. Teaching precursors to data science in introductory and second courses in statistics. http://arxiv.org/abs/1401.3269.

Nolan, D., and D. Temple Lang. 2010. Computing in the statistics curricula, The American Statistician 64: 97–107.

O’Neil, C., and R. Schutt. 2013. Doing Data Science: Straight Talk from the Frontline. O’Reilly and Associates.

Wickham, H. 2011. ASA 2009 Data Expo. Journal of Computational and Graphical Statistics 20(2): 281-283.

About the Authors

Nicholas J. Horton is a professor of statistics at Amherst College, with interests in longitudinal regression, missing data methods, statistical computing, and statistical education. He received his doctorate in biostatistics from the Harvard School of Public Health in 1999, and has co-authored a series of books on statistical computing in R and SAS. He is an accredited statistician, a fellow of the American Statistical Association, former member of the ASA board of directors, and chair-elect of the ASA’s section on statistical education.

Ben S. Baumer is an assistant professor in the program in statistical and data sciences at Smith College, and currently serves as the program’s director. He spent nine seasons as the New York Mets’ statistical analyst for baseball operations, where he developed the front office’s statistical infrastructure. He received his PhD in mathematics from the City University of New York, and is an accredited statistician (PStat). He is a co-author, with Andrew Zimbalist, of The Sabermetric Revolution: Assessing the Growth of Analytics in Baseball.

Hadley Wickham is chief scientist at RStudio and adjunct professor of statistics at Rice University. He is interested in building better tools for data science. His work includes R packages for data analysis (ggvis, dplyr, tidyr); packages that make R less frustrating (lubridate for dates, stringr for strings, httr for accessing web APIs, rvest for webscraping); and that make it easier to do good software development in R (roxygen2, testthat, devtools). He is also a writer, educator, and frequent speaker promoting more accessible, more effective, and more fun data analysis.