DIRECT IMAGE OF LOGARITHMIC COMPLEXES
AND INFINITESIMAL INVARIANTS OF CYCLES

MORIHICO SAITO

ABSTRACT. We show that the direct image of the filtered logarithmic de Rham complex is a direct sum of filtered logarithmic complexes with coefficients in variations of Hodge structures, using a generalization of the decomposition theorem of Beilinson, Bernstein and Deligne to the case of filtered D-modules. The advantage of using the logarithmic complexes is that we have the strictness of the Hodge filtration by Deligne after taking the cohomology group in the projective case. As a corollary, we get the total infinitesimal invariant of a (higher) cycle in a direct sum of the cohomology of filtered logarithmic complexes with coefficients, and this is essentially equivalent to the cohomology class of the cycle.

Introduction

Let X, S be complex manifolds or smooth algebraic varieties over a field of characteristic zero. Let $f : X \to S$ be a projective morphism, and D be a divisor on S such that f is smooth over $S \setminus D$. We have a filtered locally free \mathcal{O}-module (V^i, F) on $S \setminus D$ underlying a variation of Hodge structure whose fiber V^i_s at $s \in S \setminus D$ is the cohomology of the fiber $H^i(X_s, \mathbb{C})$. If D is a divisor with normal crossings on S, let \tilde{V}^i denote the Deligne extension [7] of V^i such that the eigenvalues of the residue of the connection are contained in $[0, 1)$. The Hodge filtration F is naturally extended to \tilde{V}^i by [25]. We have the logarithmic de Rham complex

$$\text{DR}_{\log}(\tilde{V}^i) = \Omega^\bullet_X(\log D) \otimes_{\mathcal{O}} \tilde{V}^i,$$

which has the Hodge filtration F^p defined by $\Omega^p_X(\log D) \otimes_{\mathcal{O}} F^{p-j}\tilde{V}^i$. In general, V^i can be extended to a regular holonomic D_S-module M^i on which a local defining equation of D acts bijectively. By [23], M^i and hence the de Rham complex $\text{DR}(M^i)$ have the Hodge filtration F. If $Y := f^*D$ is a divisor with normal crossings on X, then $\Omega^\bullet_X(\log Y)$ has the Hodge filtration F defined by the truncation σ (see [8]) as usual, i.e. $F^p\Omega^\bullet_X(\log Y) = \Omega^\bullet_X^{\geq p}(\log Y)$.

Theorem 1. Assume $Y = f^*D$ is a divisor with normal crossings. There is an increasing split filtration L on the filtered complex $Rf_*(\Omega^\bullet_X(\log Y), F)$ such that we have noncanonical and canonical isomorphisms in the filtered derived category:

$$Rf_*(\Omega^\bullet_X(\log Y), F) \simeq \bigoplus_{i \in \mathbb{Z}} (\text{DR}(M^i), F)[-i],$$

$$\text{Gr}^L_i Rf_*(\Omega^\bullet_X(\log Y), F) = (\text{DR}(M^i), F)[-i].$$
If D is a divisor with normal crossings, we have also
\[
\mathbf{R}f_*(\Omega^*_X(\log Y), F) \simeq \bigoplus_{i \in \mathbb{Z}} (\text{DR}_{\log}(\tilde{V}^i), F)[-i],
\]
\[
\text{Gr}^i_{\text{h}} \mathbf{R}f_*(\Omega^*_X(\log Y), F) = (\text{DR}_{\log}(\tilde{V}^i), F)[-i].
\]

This follows from the decomposition theorem (see [2]) extended to the case of the direct image of (\mathcal{O}_X, F) as a filtered D-module, see [22]. Note that Hodge modules do not appear in the last statement if D is a divisor with normal crossings. The assertion becomes more complicated in the non logarithmic case, see Remark (i) in (2.5). A splitting of the filtration L is given by choosing the first noncanonical isomorphism in the filtered decomposition theorem, see (1.4.2). A canonical choice of the splitting is given by choosing an relatively ample class, see [9].

Let $\text{CH}^p(X \setminus Y, n)$ be Bloch's higher Chow group, see [3]. In the analytic case, we assume for simplicity that $f : (X, Y) \to (S, D)$ is the base change of a projective morphism of smooth complex algebraic varieties $f' : (X', Y') \to (S', D')$ by an open embedding of complex manifolds $S \to S'_{\text{an}}$, and an element of $\text{CH}^p(X \setminus Y, n)$ is the restriction of an element of $\text{CH}^p(X' \setminus Y', n)$ to $X \setminus Y$. If $n = 0$, we may assume that it is the restriction of an analytic cycle of codimension p on X. From Theorem 1, we can deduce

Corollary 1. With the above notation and assumption, let $\xi \in \text{CH}^p(X \setminus Y, n)$. Then, choosing a splitting of the filtration L in Theorem 1 (or more precisely, choosing the first noncanonical isomorphism in the filtered decomposition theorem (1.4.2)), we have the total infinitesimal invariant
\[
\delta_{S,D}(\xi) = (\delta^i_{S,D}(\xi)) \in \bigoplus_{i \geq 0} H^i(S, F^p \text{DR}(M^{2p-n-i})),
\]
\[
(\text{resp. } \overline{\delta}_{S,D}(\xi) = (\overline{\delta}^i_{S,D}(\xi)) \in \bigoplus_{i \geq 0} H^i(S, \text{Gr}^i_{\text{h}} F^p \text{DR}(M^{2p-n-i})),)
\]

where $\delta^i_{S,D}(\xi)$ (resp. $\overline{\delta}^i_{S,D}(\xi)$) is independent of the choice of a splitting if the $\delta^j_{S,D}(\xi)$ (resp. $\overline{\delta}^j_{S,D}(\xi)$) vanish for $j < i$. In the case D is a divisor with normal crossings, the assertion holds with $\text{DR}(M^{2p-n-i})$ replaced by $\text{DR}_{\log}(\tilde{V}^{2p-n-i})$.

This shows that the infinitesimal invariants in [14], [13], [27], [5], [1], [24] can be defined naturally in the cohomology of filtered logarithmic complexes with coefficients in variations of Hodge structures if D is a divisor with normal crossings, see (2.4) for the compatibility with [1]. Note that if S is Stein or affine, then $H^i(S, F^p \text{DR}_{\log}(\tilde{V}^q))$ is the i-th cohomology group of the complex whose j-th component is $\Gamma(S, \Omega^j_S(\log D) \otimes \mathcal{O} F^{p-j} \tilde{V}^q)$. If D is empty, then an inductive definition of $\delta^i_{S,D}(\xi)$, $\overline{\delta}^i_{S,D}(\xi)$ was given by Shuji Saito [24] using the filtered Leray spectral sequence together with the E_2-degeneration argument in [6]. He also showed that the infinitesimal invariants depend only on the cohomology class of the cycle. If S is projective, then it follows from [8] that the total infinitesimal invariant $(\delta^i_{S,D}(\xi))$ is equivalent to the cycle class of ξ in $H^2_{\text{DR}}(X \setminus Y)$ by the strictness of the Hodge filtration, and the filtration L comes from the Leray filtration on the cohomology of $X \setminus Y$, see Remark (iii) in (2.5).
Corollary 1 is useful to study the behavior of the infinitesimal invariants near the boundary of the variety. If \(D = \emptyset \), let \(\delta_i^S(\xi) \) denote \(\delta_i^{S,D}(\xi) \). We can define \(\delta_i^{DR,S}(\xi) \) as in [19] by omitting \(F^p \) before \(DR \) in Corollary 1 where \(D = \emptyset \).

Corollary 2. Assume \(S \) is projective. Let \(U = S \setminus D \). Then for each \(i \geq 0 \), \(\delta_i^{S,D}(\xi) \), \(\delta_i^U(\xi) \), and \(\delta_i^{DR,U}(\xi) \) are equivalent to each other, i.e. one of them vanishes if and only if the others do.

Indeed, \((\delta_i^{DR,U}(\xi)) \) is determined by \((\delta_i^U(\xi)) \), and \((\delta_i^U(\xi)) \) by \((\delta_i^{S,D}(\xi)) \). Moreover, \((\delta_i^{S,D}(\xi)) \) is equivalent to \((\delta_i^{DR,U}(\xi)) \) by the strictness of the Hodge filtration [8] applied to \((X, Y)\) together with Theorem 1, see (2.3). For the relation with \(\delta_i^{S,D}(\xi) \), see (2.1). Note that the equivalence between \(\delta_i^U(\xi) \) and \(\delta_i^{DR,U}(\xi) \) in the case of algebraic cycles (i.e. \(n = 0 \)) was first found by J.D. Lewis and Shuji Saito in [19] (assuming a conjecture of Brylinski and Zucker and the Hodge conjecture and using an \(L^2 \)-argument). The above arguments seem to be closely related with their question, see also Remark (i) in (2.5) below.

As another corollary of Theorem 1 we have

Corollary 3. Assume \(f \) induces an isomorphism over \(S \setminus D \), and \(Y = f^*D \) is a divisor with normal crossings on \(X \). Then

\[
R^i f_* \Omega^p_X (\log Y) = 0 \quad \text{if } i + p > \dim X.
\]

This follows immediately from Theorem 1 since \(M^i = 0 \) for \(i \neq 0 \). Corollary 3 is an analogue of the vanishing theorem of Kodaira-Nakano. However, this does not hold for a non logarithmic complex (e.g. if \(f \) is a blow-up with a point center). This corollary was inspired by a question of A. Dimca.

I would like to thank Dimca, Lewis and Shuji Saito for good questions and useful suggestions.

In Section 1, we prove Theorem 1 after reviewing some basic facts on filtered differential complexes. In Section 2 we explain the application of Theorem 1 to the infinitesimal invariants of (higher) cycles. In Section 3 we give some examples using Lefschetz pencils.

1. Direct image of logarithmic complexes

1.1. Filtered differential complexes

Let \(X \) be a complex manifold or a smooth algebraic variety over a field of characteristic zero. Let \(D^b F(D_X) \) (resp. \(D^b F(D_X)^r \)) be the bounded derived category of filtered left (resp. right) \(D_X \)-modules. Let \(D^b F(O_X, \text{Diff}) \) be the bounded derived category of filtered differential complexes \((L, F)\) where \(F \) is exhaustive and locally bounded below (i.e. \(F_p = 0 \) for \(p \ll 0 \) locally on \(X \)), see [22], 2.2. We have an equivalence of categories

\[
(1.1.1) \quad \text{DR}^{-1} : D^b F(O_X, \text{Diff}) \to D^b F(D_X)^r,
\]
whose quasi-inverse is given by the de Rham functor DR^r for right \mathcal{D}-modules, see (1.2) below. Recall that, for a filtered \mathcal{O}_X-module (L, F), the associated filtered right \mathcal{D}-module $\text{DR}^{-1}(L, F)$ is defined by

\begin{equation}
\text{DR}^{-1}(L, F) = (L, F) \otimes_{\mathcal{O}} (\mathcal{D}, F),
\end{equation}

and the morphisms $(L, F) \to (L', F)$ in $\mathcal{M}F(\mathcal{O}_X, \text{Diff})$ correspond bijectively to the morphisms of filtered \mathcal{D}-modules $\text{DR}^{-1}(L, F) \to \text{DR}^{-1}(L', F)$. More precisely, the condition on $(L, F) \to (L', F)$ is that the composition

\[F_p L \to L \to L' \to L'/F_q L' \]

is a differential operator of order $\leq p - q - 1$. The proof of (1.1.1) can be reduced to the canonical filtered quasi-isomorphism for a filtered right \mathcal{D}-module (M, F)

\[\text{DR}^{-1} \circ \text{DR}^r(M, F) \to (M, F), \]

which follows from a calculation of a Koszul complex.

Note that the direct image f_* of filtered differential complexes is defined by the sheaf-theoretic direct image Rf_*, and this direct image is compatible with the direct image f_* of filtered \mathcal{D}-modules via (1.1.1), see [22], 2.3. So we get

\begin{equation}
Rf_* = \text{DR}^r \circ f_* \circ \text{DR}^{-1} : D^b F(\mathcal{O}_X, \text{Diff}) \to D^b F(\mathcal{O}_S, \text{Diff}),
\end{equation}

where we use DR^r for right \mathcal{D}-modules (otherwise there is a shift of complex).

1.2. De Rham complex.

The de Rham complex $\text{DR}^r(M, F)$ of a filtered right \mathcal{D}-module (M, F) is defined by

\begin{equation}
\text{DR}^r(M, F)^i = \bigwedge^{-i} \Omega^i_X \otimes_{\mathcal{O}} (M, F[-i]) \quad \text{for } i \leq 0.
\end{equation}

Here $(F[-i])_p = F_{p+i}$ in a compatible way with $(F[-i])^p = F^{p-i}$ and $F_p = F^{-p}$. Recall that the filtered right \mathcal{D}-module associated with a filtered left \mathcal{D}-module (M, F) is defined by

\begin{equation}
(M, F)^r := (\Omega_{\text{lim}}^X, F) \otimes_{\mathcal{O}} (M, F),
\end{equation}

where $\text{Gr}_p F_{\text{lim}}^X = 0$ for $p \neq -\dim X$. This induces an equivalence of categories between the left and right \mathcal{D}-modules. The usual de Rham complex $\text{DR}(M, F)$ for a left \mathcal{D}-module is defined by

\begin{equation}
\text{DR}(M, F)^i = \Omega^i_X \otimes_{\mathcal{O}} (M, F[-i]) \quad \text{for } i \geq 0,
\end{equation}

and this is compatible with (1.2.1) via (1.2.2) up to a shift of complex, i.e.

\begin{equation}
\text{DR}(M, F) = \text{DR}^r(M, F)^r[-\dim X].
\end{equation}

1.3. Logarithmic complex.

Let X be as in (1.1), and Y be a divisor with normal crossings on X. Let (V, F) be a filtered locally free \mathcal{O}-module underlying a polarizable variation of Hodge structure on $X \setminus Y$. Let (\tilde{V}, F) be the Deligne extension of (V, F) to X such that the eigenvalues of the residue of the connection are contained in $[0, 1)$. Then we have the filtered logarithmic de Rham complex $\text{DR}_{\log}(\tilde{V}, F)$ such that F^p of its i-th component is

\[\Omega^i_X(\log Y) \otimes F^{p-i}\tilde{V}. \]
If \((M, F) = (\mathcal{O}_X, F)\) with \(\text{Gr}_p^F \mathcal{O}_X = 0\) for \(p \neq 0\), then
\[
\text{DR}_{\log}^* (\mathcal{O}_X, F) = (\Omega^*_X (\log X), F).
\]

Let \(\tilde{V}(*Y)\) be the localization of \(\tilde{V}\) by a local defining equation of \(Y\). This is a regular holonomic left \(\mathcal{D}_X\)-module underlying a mixed Hodge module, and has the Hodge filtration \(F\) which is generated by the Hodge filtration \(F\) on \(\tilde{V}\), i.e.
\[
F_p \tilde{V}(*Y) = \sum \partial^{\nu} F^{-p+|\nu|} \tilde{V},
\]
where \(F_p = F^{-p}\) and \(\partial^{\nu} = \prod_i \partial_i^{\nu_i}\) with \(\partial_i = \partial / \partial x_i\). Here \(x_1, \ldots, x_n\) is a local coordinate system such that \(Y\) is contained in \(\{x_1 \cdots x_n = 0\}\). By [23], 3.11, we have a filtered quasi-isomorphism
\[
(\Omega^*_X (\log Y), F) \sim \text{DR}(\mathcal{O}_X (*Y), F).
\]

This generalizes the filtered quasi-isomorphism in [7]
\[
(\Omega^*_X (\log Y), F) \sim \text{DR}(\mathcal{O}_X (*Y), F).
\]

Note that the direct image of the filtered \(\mathcal{D}_X\)-module \((\tilde{V}(*Y), F)\) by \(X \to pt\) in the case \(X\) projective (or proper algebraic) is given by the cohomology group of the de Rham complex \(\text{DR}(\tilde{V}(*Y), F)\) (up to a shift of complex) by definition, and the Hodge filtration \(F\) on the direct image is strict by the theory of Hodge modules. So we get
\[
F^p \mathcal{H}^i (X \setminus Y, \text{DR}(V)) := F^p \mathcal{H}^i (X, \text{DR}(\tilde{V}(*Y)))
\]
\[
= \mathcal{H}^i (X, F^p \text{DR}(\tilde{V}(*Y))) = \mathcal{H}^i (X, F^p \text{DR}_{\log}^* (\tilde{V})).
\]

1.4. Decomposition theorem. Let \(f : X \to S\) be a projective morphism of complex manifolds or smooth algebraic varieties over a field of characteristic zero. Then the decomposition theorem of Beilinson, Bernstein and Deligne [2] is extended to the case of Hodge modules ([22], [23]), and we have noncanonical and canonical isomorphisms
\[
f_* (\mathcal{O}_X, F) \simeq \bigoplus_{j \in \mathbb{Z}} \mathcal{H}^j f_* (\mathcal{O}_X, F)[-j] \quad \text{in } \mathcal{D}^b F(\mathcal{D}_S),
\]
\[
\mathcal{H}^j f_* (\mathcal{O}_X, F) \simeq \bigoplus_{Z \subset S} (M^j_Z, F) \quad \text{in } MF(\mathcal{D}_S),
\]
where \(Z\) are irreducible closed analytic or algebraic subsets of \(S\), and \((M^j_Z, F)\) are filtered \(\mathcal{D}_S\)-modules underlying a pure Hodge module of weight \(j + \dim X\) and with strict support \(Z\), i.e. \(M^j_Z\) has no nontrivial sub nor quotient module whose support is strictly smaller than \(Z\). (Here \(MF(\mathcal{D}_S)\) denotes the category of filtered left \(\mathcal{D}_S\)-modules.) Indeed, the second canonical isomorphism follows from the strict support decomposition which is part of the definition of pure Hodge modules, see [22], 5.1.6. The first noncanonical isomorphism follows from the strictness of the Hodge filtration and the relative hard Lefschetz theorem for the direct image (see [22], 5.3.1) using the \(E_2\)-degeneration argument in [6] together with the equivalence of categories \(\mathcal{D}^b F(\mathcal{D}_S) \simeq \mathcal{D}^b G(\mathcal{B}_S)\). Here \(\mathcal{B}_S = \bigoplus_{i \in \mathbb{N}} F_i \mathcal{D}_S\) and \(\mathcal{D}^b G(\mathcal{B}_S)\) is the derived category of bounded complexes of graded left \(\mathcal{B}_S\)-modules \(M^*_i\) such that \(M^*_i = 0\) for \(i \ll 0\) or \(|j| \gg 0\), see [22], 2.1.12. We need a derived category associated
to some abelian category in order to apply the argument in [6] (see also [9]). In
the algebraic case, we can also apply [6] to the derived category of mixed Hodge
modules on S and it is also possible to use [23], 4.5.4 to show the first noncanonical
isomorphism.

If f is smooth over the complement of a divisor $D \subset S$ and $Y := f^*D$ is a divisor
with normal crossings, then the filtered direct image $f_*(\mathcal{O}_X(*Y), F)$ is strict (see
[23], 2.15), and we have noncanonical and canonical isomorphisms

$$
\begin{align*}
& f_*(\mathcal{O}_X(*Y), F) \simeq \bigoplus_{j \in \mathbb{Z}} \bigwedge^j \mathcal{H}^* f_*(\mathcal{O}_X(*Y), F)[-j] \quad \text{in } D^b F(D_S), \\
& \mathcal{H}^j f_*(\mathcal{O}_X(*Y), F) = (M_S^j(*D), F) \quad \text{in } MF(D_S).
\end{align*}
$$

(1.4.2)

Here $(M_S^j(*D), F)$ is the ‘localization’ of (M_S^j, F) along D which is the direct
image of $(M_S^j, F)|_U$ by the open embedding $U := S \setminus D \to S$ in the category of
filtered \mathcal{D}-modules underlying mixed Hodge modules. (By the Riemann-Hilbert
correspondence, this gives the direct image in the category of complexes with con-
structible cohomology because D is a divisor.) The Hodge filtration F on the direct
image is determined by using the V-filtration of Kashiwara and Malgrange, and
$(M_S^j(*D), F)$ is the unique extension of $(M_S^j, F)|_U$ which underlies a mixed Hodge
module on S and whose underlying D_S-module is the direct image in the category of
regular holonomic D_S-modules, see [23], 2.11. So the second canonical isomorphism
follows because the left-hand side satisfies these conditions. (Note that (M_S^j, F)
for $Z \neq S$ vanishes by the localization, because $Z \subset D$ if $(M_S^j, F) \neq 0$.) The first
noncanonical isomorphism follows from the strictness of the Hodge filtration and
the relative hard Lefschetz theorem by the same argument as above.

1.5. Proof of Theorem 1. Let $r = \dim X - \dim S$. By (1.1.3), (1.3.2) and (1.4.2),
we have isomorphisms

$$
\begin{align*}
\mathcal{R}f_*(\Omega_X^\bullet(\text{log } Y), F) &= DR^r f_* DR^{-1}(\Omega_X^\bullet(\text{log } Y), F) \\
&= DR^r f_*(\mathcal{O}_X(*Y), F)[\dim X] \\
&\simeq \bigoplus_{i \in \mathbb{Z}} DR(M_S^i(*D), F)[-r-i],
\end{align*}
$$

(1.5.1)

where the shift of complex by r follows from the difference of the de Rham complex
for left and right \mathcal{D}-modules. Furthermore, letting L be the filtration induced by
τ on the complex of filtered D_S-modules $f_*(\mathcal{O}_X(*Y), F)[-r]$, we have a canonical
isomorphism

$$
\text{Gr}_i^L f_*(\mathcal{O}_X(*Y), F)[-r] = (M_S^{i-r}(*D), F)[-i],
$$

(1.5.2)

and the first assertion follows by setting $M^i = M_S^{i-r}(*D)$. The second assertion
follows from the first by (1.3.1). This competes the proof of Theorem 1.

2. Infinitesimal invariants of cycles

2.1. Cycle classes. Let X be a complex manifold, and $\mathcal{C}^{\bullet, \bullet}$ denote the double
complex of vector spaces of currents on X. The associated single complex is denoted
by \mathcal{C}^\bullet. Let F be the Hodge filtration by the first index of $\mathcal{C}^{\bullet, \bullet}$ (using the truncation
σ in [8]). Let ξ be an analytic cycle of codimension p on X. Then it is well known that ξ defines a closed current in $F^pΩ^{2p}$ by integrating the restrictions of C^∞ forms with compact supports on X to the smooth part of the support of ξ (and using a triangulization or a resolution of singularities of the cycle). So we have a cycle class of ξ in $H^{2p}(X, F^pΩ^X_\bullet)$.

Assume X is a smooth algebraic variety over a field k of characteristic zero. Then the last assertion still holds (where $Ω^\bullet_X$ means $Ω^\bullet_{X/k}$), see [11]. Moreover, for the higher Chow groups, we have the cycle map (see [4], [10], [12], [15], [16])

$$cl : CH^p(X, n) \to F^pH^{2p-n}_{DR}(X),$$

where the Hodge filtration F is defined by using a smooth compactification of X whose complement is a divisor with normal crossings, see [8]. This cycle map is essentially equivalent to the cycle map to $Gr_F^pH^{2p-n}_{DR}(X)$ because we can reduce to the case $k = \mathbb{C}$ where we have the cycle map

$$cl : CH^p(X, n) \to \text{Hom}_{\text{MHS}}(\mathbb{Q}, H^{2p-n}(X, \mathbb{Q})(p)),$$

and morphisms of mixed Hodge structures are strictly compatible with the Hodge filtration F.

2.2. Proof of Corollary 1. By (2.1) ξ has the cycle class in $H^{2p-n}(X, F^pΩ^\bullet_X(\log Y))$.

By theorem 1, this gives the total infinitesimal invariant

$$δ_{S,D}(ξ) = (δ_{S,D}^{2p-n-i}(ξ)) \in \bigoplus_{i \geq 0} H^i(S, F^pDR(M^i)),
$$

and similarly for $δ_{S,D}(ξ)$. So the assertion follows.

2.3. Proof of Corollary 2. Choosing the first noncanonical isomorphism in the filtered decomposition theorem (1.4.2), we get canonical morphisms compatible with the direct sum decompositions

$$\bigoplus_{i \geq 0} H^i(S, F^pDR(M^q-i)) \to \bigoplus_{i \geq 0} H^i(S \setminus D, F^pDR(M^q-i))$$

$$\to \bigoplus_{i \geq 0} H^i(S \setminus D, DR(M^q-i)),$$

and these are identified with the canonical morphisms

$$H^p(X, F^pΩ^\bullet_X(\log Y)) \to H^q(X \setminus Y, F^pΩ^\bullet_{X\setminus Y})$$

$$\to H^q(X \setminus Y, Ω^\bullet_{X\setminus Y}).$$

By Deligne [8], the composition of the last two morphisms is injective because of the strictness of the Hodge filtration, see also (1.3). So we get the equivalence of $δ_{S,D}^i(ξ), δ_U^i(ξ), δ_{DR,U}^i(ξ)$. The equivalence with $δ_{S,D}^i(ξ)$ follows from (2.1).

2.4. Compatibility with the definition in [1]. When D is empty, the infinitesimal invariants are defined in [1] by using the extension groups of filtered D-modules together with the forgetful functor from the category of mixed Hodge modules to that of filtered D-modules. Its compatibility with the definition in this paper follows from the equivalence of categories (1.1.1) and the compatibility of the direct image functors (1.1.3).
Note that for \((L, F) \in D^bF(O_X, \text{Diff})\) in the notation of (1.1), we have a canonical isomorphism
\[
\text{Ext}^i((\Omega^*_X, F), (L, F)) = H^i(X, F_0L),
\]
where the extension group is taken in \(D^bF(O_X, \text{Diff})\). Indeed, the left-hand side is canonically isomorphic to
\[
\begin{align*}
\text{Ext}^i(DR^{-1}(\Omega^*_X, F), DR^{-1}(L, F)) \\
= H^i(X, F_0\mathcal{H}om_D(DR(D_X, F), DR^{-1}(L, F))), \\
= H^i(X, F_0DR'\text{DR}^{-1}(L)),
\end{align*}
\]
and the last group is isomorphic to the right-hand side of (2.4.1) which is independent of a representative of \((L, F)\). If \(X\) is projective, then this assertion follows also from the adjoint relation for filtered \(D\)-modules.

If \(X\) is smooth projective and \(Y\) is a divisor with normal crossings, then the cycle class can be defined in
\[
\text{Ext}^{2p}((\Omega^*_X, F), \Omega^*_X(\log Y), F[p])) = H^{2p}(X, F^p\Omega^*_X(\log Y)) = F^pH^{2p}(X, \Omega^*_X(\log Y)).
\]

2.5. Remarks. (i) If we use (1.4.1) instead of (1.4.2) we get an analogue of Theorem 1 for non logarithmic complexes. However, the assertion becomes more complicated, and we get noncanonical and canonical isomorphisms
\[
\begin{align*}
Rf_*(\Omega^*_X, F) &\simeq \bigoplus_{i \in \mathbb{Z}, Z \subset S}(DR(M^{i-r}_S), F)[-i]. \\
\text{Gr}^H_i Rf_*(\Omega^*_X, F) &\simeq \bigoplus_{Z \subset S}(DR(M^{i-r}_Z), F)[-i].
\end{align*}
\]
This implies an analogue of Corollary 1. If \(D\) is a divisor with normal crossings, we have a filtered quasi-isomorphism for \(Z = S\)
\[
(DR_{\log}(\tilde{M}^{i-r}_S), F) \xrightarrow{\sim} (DR(M^{i-r}_S), F),
\]
where \(DR_{\log}(\tilde{M}^{i-r}_S)\) is the intersection of \(DR(M^{i-r}_S)\) with \(DR_{\log}(\tilde{V}^i_S)\). This seems to be related with a question of Lewis and Shuji Saito, see also [19].

(ii) If \(\dim S = 1\), we can inductively define the infinitesimal invariants in Corollary 1 by an argument similar to [24] using [26].

(iii) Assume \(S\) is projective and \(D\) is a divisor with normal crossings. Then the Leray filtration for \(X \to S \to \text{pt}\) is given by the truncation \(\tau\) on the complex of filtered \(\mathcal{D}_S\)-modules \(f_*(\mathcal{O}_X(*Y), F)\), and gives the Leray filtration on the cohomology of \(X \setminus Y\) (induced by the truncation \(\tau\) as in [8]). Indeed, the graded pieces \(H^i f_*(\mathcal{O}_X(*Y), F)\) of the filtration \(\tau\) on \(S\) coincide with \((\tilde{V}^{j+r}(*D), F)\), and give the open direct images by \(U \to S\) of the graded pieces \((\tilde{V}^{j+r}, F)\) of the filtration \(\tau\) on \(U\) as filtered \(\mathcal{D}\)-modules underlying mixed Hodge modules. Note that the morphism \(U \to S\) is open affine so that the direct image preserves regular holonomic \(\mathcal{D}\)-modules.
3. Examples

3.1. Lefschetz pencils. Let Y be a smooth irreducible projective variety of dimension n embedded in a projective space P over \mathbb{C}. We assume that $Y \neq P$ and Y is not contained in a hyperplane of P so that the hyperplane sections of Y are parametrized by the dual projective spaces P^\vee. Let $D \subset P^\vee$ denote the discriminant. This is the image of a projective bundle over Y (consisting of hyperplanes tangent to Y), and hence D is irreducible. At a smooth point of D, the corresponding hyperplane section of Y has only one ordinary double point. We assume that the associated vanishing cycle is not zero in the cohomology of $H^{n-1}(Y) \to H^{n-1}(X)$.

A Lefschetz pencil of Y is a line \mathbb{P}^1 in P intersecting the discriminant D at smooth points of D (corresponding to hyperplane sections having only one ordinary double point). We have a projective morphism $\pi: \tilde{Y} \to \mathbb{P}^1$ such that $\tilde{Y}_t := \pi^{-1}(t)$ is the hyperplane section corresponding to $t \in \mathbb{P}^1 \subset P$ and \tilde{Y} is the blow-up of Y along a smooth closed subvariety Z of codimension 2 which is the intersection of \tilde{Y}_t for any (or two of) $t \in \mathbb{P}^1$.

A Lefschetz pencil of hypersurface sections of degree d is defined by replacing the embedding of Y using $\mathcal{O}_Y(d)$ so that a hyperplane section corresponds to a hypersurface section of degree d. Here $\mathcal{O}_Y(d)$ for an integer d denote the invertible sheaf induced by that on P as usual.

3.2. Hypersurfaces containing a subvariety. Let Y, P be as in (3.2). Let E be a closed subvariety (which is not necessarily irreducible nor reduced). Let

$$ E_{(i)} = \{ x \in E : \dim T_x E = i \}. $$

Let \mathcal{I}_E be the ideal sheaf of E in Y. Let δ be a positive integer such that $\mathcal{I}_E(\delta)$ is generated by global sections. By [18], [20] (or [21]) we have the following

(3.2.1) If $\dim Y > \max\{\dim E_{(i)} + i\}$ and $d \geq \delta$, then there is a smooth hypersurface section of degree d containing E.

We have furthermore

(3.2.2) If $\dim Y > \max\{\dim E_{(i)} + i\} + 1$ and $d \geq \delta + 1$, then there is a Lefschetz pencil of hypersurface sections of degree d containing E.

Indeed, we have a pencil such that \tilde{Y}_t has at most isolated singularities, because \tilde{Y}_t is smooth near the center Z which is the intersection of generic two hypersurface sections containing E, and hence is smooth, see [18], [20] (or [21]). Note that a local equation of \tilde{Y}_t near Z is given by $f - tg$ if t is identified with an appropriate affine coordinate of \mathbb{P}^1 where f, g are global sections of $\mathcal{I}_E(d)$ corresponding to smooth hypersurface sections.

To get only ordinary double points, note first that the parameter space of the hypersurfaces containing E is a linear subspace of P^\vee. So it is enough to show that this linear subspace contains a point of the discriminant D corresponding to an ordinary double point. Thus we have to show that an isolated singularity
can be deformed to ordinary double points by replacing the corresponding section
$h \in \Gamma(Y, \mathcal{L}_E(d))$ with $h + \sum_i t_i g_i$ where $g_i \in \Gamma(Y, \mathcal{L}_E(d))$ and $t_i \in \mathbb{C}$ are general with sufficiently small absolute values. Since $d \geq \delta + 1$, we see that $\Gamma(Y, \mathcal{L}_E(d))$ generates the 1-jets at each point of the complement of E. So the assertion follows from the fact that for a function with an isolated singularity f, the singularities of \{ $f + \sum_i t_i x_i = 0$ \} are ordinary double points if t_1, \ldots, t_n are general, where x_1, \ldots, x_n are local coordinates. (Note that f has an ordinary double point if and only if the morphism defined by $(\partial f/\partial x_1, \ldots, \partial f/\partial x_n)$ is locally biholomorphic at this point.)

3.3. Construction. For Y, \mathcal{P} be as in (3.1), let $i_{Y, \mathcal{P}} : Y \to \mathcal{P}$ denote the inclusion. Assume

(3.3.1) $i_{Y, \mathcal{P}}^*: H^j(\mathcal{P}) \to H^j(Y)$ is surjective for any $j \neq \dim Y$,

where cohomology has coefficients in any field of characteristic zero. This condition is satisfied if Y is a complete intersection.

Let E_1, E_2 be m-dimensional irreducible closed subvarieties of Y such that

$E_1 \cap E_2 = \emptyset, \quad \deg E_1 = \deg E_2.$

Here $\dim Y = n = 2m + s + 1$ with $m \geq 0, s \geq 1$. Let $E = E_1 \cup E_2$. With the notation of (3.2), assume

(3.3.2) $d > \delta, \quad \dim Y > \max\{ \dim E_{i} + i \} + s,$

(3.3.3) $i_{X(j), Y}^*: H^{n-j}(Y) \to H^{n-j}(X(j))$ is not surjective for $j \leq s$,

where $X(j)$ is a general complete intersection of multi degree (d, \ldots, d) and of codimension j in Y. (This is equivalent to the condition that the vanishing cycles for a hypersurface $X^{(j)}$ of $X^{(j-1)}$ are nonzero.)

Let X be a general hypersurface of degree d in Y containing E, see (3.2.1). Let L denote the intersection of X with a general linear subspace of codimension $m+s$ in the projective space. Then $[E_a]$ $(a = 1, 2)$ and $c[L \cap X]$ have the same cohomology class in $H^{2m+2s}(X)$ for some $c \in \mathbb{Q}$, because $\dim H^{2m+2s}(X) = 1$ by the weak and hard Lefschetz theorems together with (3.3.1). Let

$\xi_a = [E_a] - c[L \cap X] \in \text{CH}^{m+s}(X)_\mathbb{Q} \quad (a = 1, 2).$

These are homologous to zero. It may be expected that one of them is non torsion, generalizing an assertion in [24]. More precisely, let S be a smooth affine rational variety defined over a finitely generated subfield k of \mathbb{C} and parametrizing the smooth hypersurfaces of degree d containing E as above so that there is the universal family $\mathcal{X} \to S$ defined over k (see [2], [28]). Assume X corresponds to a geometric generic point of S with respect to k, i.e. X is the geometric generic fiber for some embedding $k(S) \to \mathbb{C}$. Let

$\xi_{a, X} = [E_a \times_k S] - c[L] \in \text{CH}^{m+s}(\mathcal{X})_\mathbb{Q},$

where $[L] \in \mathcal{X}$ is the pull-back of $[L]$ by $\mathcal{X} \to Y$. Since the local system $\{ H^{2m+2s-j}(X_a) \}$ on S is constant for $j < s$ and S is smooth affine rational, we see that $\delta^j_S(\xi_{a, X}) = 0$ for $j < s$. Then it may be expected that $\delta^j_S(\xi_{a, X}) \neq 0$ for one of a, where S can be
replaced by any non empty open subvariety. We can show this for \(s = 1 \) as follows. (For \(s > 1 \), it may be necessary to assume further conditions on \(d \), etc.)

3.4. Case \(s = 1 \). Consider a Lefschetz pencil \(\pi : \tilde{Y} \to \mathbb{P}^1 \) such that \(\tilde{Y}_t := \pi^{-1}(t) \) for \(t \in \mathbb{P}^1 \) is a hypersurface of degree \(d \) in \(Y \) containing \(E \). Here \(\tilde{Y} \) is the blow-up of \(Y \) along a smooth closed subvariety \(Z \), and \(Z \) is the intersection of \(\tilde{Y}_t \) for any \(t \in \mathbb{P}^1 \). Note that \(\tilde{Y}_t \) has an ordinary double point for \(t \in \Lambda \subset \mathbb{P}^1 \), where \(\Lambda \) denotes the discriminant, see (3.2.2).

Since \(Z \) has codimension 2 in \(Y \), we have the isomorphism

\[
H^n(\tilde{Y}) = H^n(Y) \oplus H^{n-2}(Z),
\]

so that the cycle class of \([E_a \times \mathbb{P}^1] - c[L]_{\tilde{Y}} \in \text{CH}^{m+1}(\tilde{Y})_\mathbb{Q} \) in \(H^n(\tilde{Y}) \) is identified with the difference of the cycle class \(cl_Z(E_a) \in H^{n-2}(Z) \) and the cycle class of \(L \) in \(H^n(Y) \). Indeed, the injection \(H^{n-2}(Z) \to H^n(\tilde{Y}) \) in the above direct sum decomposition is defined by using the projection \(Z \times \mathbb{P}^1 \to Z \) and the closed embedding \(Z \times \mathbb{P}^1 \to \tilde{Y} \), and the injection \(H^n(Y) \to H^n(\tilde{Y}) \) is the pull-back by \(\tilde{Y} \to Y \), see [17].

By assumption, one of the \(cl_Z(E_a) \) is not contained in the non primitive part, i.e. not a multiple of the cohomology class of the intersection of general hyperplane sections. Indeed, if both are contained in the non primitive part, then \(cl_Z(E_1) = cl_Z(E_2) \) and this implies the vanishing of the self intersection number \(E_a \cdot E_a \) in \(Z \).

We will show that the cycle class of \([E_a \times \mathbb{P}^1] - c[L]_{\tilde{Y}} \) does not vanish in the cohomology of \(\pi^{-1}(U) \) for any non empty open subvariety of \(\mathbb{P}^1 \), in other words, it does not belong to the image of \(\bigoplus_{t \in \Lambda'} H^n(\tilde{Y})_\mathbb{Q} \) where \(\Lambda' \) is any finite subset of \(\mathbb{P}^1 \) containing \(\Lambda \). (Note that the condition for the Lefschetz pencil is generic, and for any proper closed subvariety of the parameter space, there is a Lefschetz pencil whose corresponding line is not contained in this subvariety.)

Thus the assertion is reduced to that \(\dim H^n(\tilde{Y}) \) is independent of \(t \in \mathbb{P}^1 \) because this implies that the image of \(H^n(\tilde{Y})_t \to H^n(\tilde{Y}) \) is independent of \(t \). (Note that the Gysin morphism \(H^{n-2}(\tilde{Y}_t) \to H^n(\tilde{Y}) \) for a general \(t \) can be identified with the direct sum of the Gysin morphism \(H^{n-2}(\tilde{Y}_t) \to H^n(Y) \) and the restriction morphism \(H^{n-2}(\tilde{Y}_t) \to H^{n-2}(Z) \) up to a sign, and the image of the last morphism is the non primitive part by the weak Lefschetz theorem.) By duality, this is equivalent to that \(R^m\pi_*\mathbb{Q}_\tilde{Y} \) is a local system on \(\mathbb{P}^1 \). Then it follows from the assumption that the vanishing cycles are nonzero, see (3.3.3).

References

[1] Asakura, M., Motives and algebraic de Rham cohomology, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), CRM Proc. Lecture Notes, 24, Amer. Math. Soc., Providence, RI, 2000, pp. 133–154.
[2] Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque, vol. 100, Soc. Math. France, Paris, 1982.
[3] Bloch, S., Algebraic cycles and higher K-theory, Advances in Math., 61 (1986), 267–304.
[4] Bloch, S., Algebraic cycles and the Beilinson conjectures, Contemporary Math. 58 (1) (1986), 65–79.
[5] Collino, A., Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J. Alg. Geom. 6 (1997), 393–415.
[6] Deligne, P., Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 259–278.
[7] Deligne, P., Equation différentielle à points singuliers réguliers, Lect. Notes in Math. vol. 163, Springer, Berlin, 1970.
[8] Deligne, P., Théorie de Hodge I, Actes Congrès Intern. Math., 1970, vol. 1, 425-430; II, Publ. Math. IHES, 40 (1971), 5–57; III, ibid., 44 (1974), 5–77.
[9] Deligne, P., Décompositions dans la catégorie dérivée, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 115–128.
[10] Deninger, C. and Scholl, A., The Beilinson conjectures, in Proceedings Cambridge Math. Soc. (eds. Coats and Taylor) 153 (1992), 173–209.
[11] El Zein, F., Complexe dualisant et applications à la classe fondamentale d’un cycle, Bull. Soc. Math. France Mém. No. 58 (1978).
[12] Esnault, H. and Viehweg, E., Deligne-Beilinson cohomology, in Beilinson’s conjectures on Special Values of L-functions, Academic Press, Boston, 1988, pp. 43–92.
[13] Green, M.L., Griffiths’ infinitesimal invariant and the Abel-Jacobi map, J. Differential Geom. 29 (1989), 545–555.
[14] Griffiths, P.A., Infinitesimal variations of Hodge structure, III, Determinantal varieties and the infinitesimal invariant of normal functions, Compositio Math. 50 (1983), 267–324.
[15] Jannsen, U., Deligne homology, Hodge-D-conjecture, and motives, in Beilinson’s conjectures on Special Values of L-functions, Academic Press, Boston, 1988, pp. 305–372.
[16] Jannsen, U., Mixed motives and algebraic K-theory, Lect. Notes in Math., vol. 1400, Springer, Berlin, 1990.
[17] Katz, N., Etude cohomologique des pinceaux de Lefschetz, in Lect. Notes in Math., vol. 340, Springer Berlin, 1973, pp. 254–327.
[18] Kleiman, S. and Altman, A., Bertini theorems for hypersurface sections containing a subvariety, Comm. Algebra 7 (1979), 775–790.
[19] Lewis, J.D. and Saito, S., preprint.
[20] Otwinowska, A, Monodromie d’une famille d’hypersurfaces, preprint [math.AG/0403151].
[21] Otwinowska, A. and Saito, M., Monodromy of a family of hypersurfaces containing a given subvariety, preprint [math.AG/0404469].
[22] Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849–995.
[23] Saito, M., Mixed Hodge Modules, Publ. RIMS Kyoto Univ. 26 (1990), 221–333.
[24] Saito, S., Higher normal functions and Griffiths groups, J. Algebraic Geom. 11 (2002), 161–201.
[25] Schmid, W., Variation of Hodge structure: the singularities of the period mapping, Inv. Math. 22 (1973), 211–319.
[26] Steenbrink, J.H.M., Limits of Hodge structures, Inv. Math. 31 (1975/76), no. 3, 229–257.
[27] Voisin, C., Variations de structure de Hodge et zéro-cycles sur les surfaces générales, Math. Ann. 299 (1994), 77–103.
[28] Voisin, C., Transcendental methods in the study of algebraic cycles, in Lect. Notes in Math. vol. 1594, pp. 153–222.

RIMS KYOTO UNIVERSITY, KYOTO 606-8502 JAPAN
E-mail address: msaito@kurims.kyoto-u.ac.jp