Limiting statistics of the largest and smallest eigenvalues in the correlated Wishart model

Tim Wirtz1, Mario Kieburg2 and Thomas Guhr1

1 Fakultät für Physik, Universität Duisburg-Essen - 47048 Duisburg, Germany
2 Fakultät für Physik, Universität Bielefeld - 33501 Bielefeld, Germany

received 17 October 2014; accepted in final form 16 January 2015
published online 3 February 2015

PACS 05.45.Tp - Time series analysis
PACS 02.50.-r - Probability theory, stochastic processes, and statistics
PACS 02.20.-a - Group theory

Abstract – The correlated Wishart model provides a standard tool for the analysis of correlations in a rich variety of systems. Although much is known for complex correlation matrices, the empirically much more important real case still poses substantial challenges. We put forward a new approach, which maps arbitrary statistical quantities, depending on invariants only, to invariant Hermitian matrix models. For completeness we also include the quaternion case and deal with all three cases in a unified way. As an important application, we study the statistics of the largest eigenvalue and its limiting distributions in the correlated Wishart model, because they help to estimate the behavior of large complex systems. We show that even for fully correlated Wishart ensembles, the Tracy-Widom distribution can be the limiting distribution of the largest as well as the smallest eigenvalue, provided that a certain scaling of the empirical eigenvalues holds.

Copyright © EPLA, 2015

Time series analysis yields rich information about the dynamics but also about the correlations in numerous systems in physics, climate research, biology, medicine, wireless communication, finance and many other fields [1–12]. Suppose we have a set of \(p \) time series \(M_j, j = 1, \ldots, p \) of \(n \) (\(n \geq p \)) time steps each, which are normalized to zero mean and unit variance. The entries are real, complex, quaternion, i.e. \(M_j(t) \in \mathbb{R}, \mathbb{C}, \mathbb{H}, \) for \(\beta = 1, 2, 4 \) and \(t = 1, \ldots, n \). We arrange the time series as rows into a rectangular data matrix \(M \) of size \(p \times n \). The empirical correlation matrix of these data,

\[
C = \frac{1}{n} M M^\dagger,
\]

with \(\dagger \) the Hermitian conjugation, is positive definite and either real symmetric, Hermitian, or Hermitian self-dual for \(\beta = 1, 2, 4 \) and measures the linear correlations between the time series.

The largest and the smallest eigenvalue of a correlation matrix are highly relevant in many fields. In a simple, interacting dynamical system [13,14], occurring in physics [15], biology [16], chemistry [17], ecology [18], etc., the cumulative distribution function of the largest eigenvalue estimates the probability to find the system in a stable regime [15]. In high-dimensional statistical inference, linear principal component analysis is a method to reduce the dimension of the observations to “significant directions” [19]. Especially, the largest eigenvalue corresponds to the most “significant” component [19–22]. Another example is factor analysis, where the largest eigenvalue can be used to study common properties [19]. The ratio of the largest and the smallest eigenvalue is important for the statistics of the condition number [23,24], in numerical analysis including large random matrices. In wireless communication, eigenvalue-based detection [25–27] is a promising technique for spectrum sensing in cognitive radio. It utilizes the statistics of the ratio of the largest and the smallest eigenvalue to estimate certain statistical tests [28–30]. The smallest eigenvalue is important for estimates of the error of a received signal [31–33] in wireless communication, for estimates in linear discriminant [34] as well as in principal component analysis [4], it is most sensitive to noise in the data [4] and crucial for the identification of single statistical outliers [5].

In finance, it is related to the optimal portfolio [35].

These examples show the considerable theoretical and practical relevance to study the distributions \(P_{\text{max}}^{(\beta)}(t) \), \(P_{\text{min}}^{(\beta)}(s) \) of the largest, respectively, smallest eigenvalue.
Both quantities can be traced back to gap probabilities, namely

\[P^{(\beta)}_{\max}(t) = \frac{d}{dt} E^p_p([0, t]; p), \]

\[P^{(\beta)}_{\min}(s) = -\frac{d}{ds} E^p_p([0, s]; 0), \]

where \(E^p_p([a, b]; m) \) is the probability to find \(m \) out of \(p \) eigenvalues in the interval \([a, b]\).

This article has three major goals: First, we provide for the first time a framework to map a large class of invariant observables in correlated Wishart ensembles to invariant matrix models. Second, we explicitly apply this framework to invariant observables in correlated Wishart ensembles to invariant matrix integral. Thereby we completely outmaneuver the Itzykson-Zuber integral (6).

We exploit this general observation to the statistics of the extreme eigenvalues. The gap probabilities in eqs. (2) and (3) can be written as an ensemble averaged observable. We carry it out for eq. (2) only, since for eq. (3) it works analogously. The joint eigenvalue distribution function derived from eq. (4) is

\[P(X|\Lambda) = K_{p \times n} |\Delta_\nu(X)|^\beta \det^\nu X \Phi_\beta(X, \Lambda^{-1}), \]

with normalization constant \(K_{p \times n} \), Vandermonde determinant \(\Delta_\nu(X) = \prod_{i<j} (x_j - x_i) \) and \(\nu = (n-p+1)/2 \), see refs. [41,42]. As \(\Phi_\beta \) is known, in the complex case the joint probability distribution function provides a representation that can be handled analytically [39]. The highly non-trivial part is the group integral equation (6).
then be cast into the form

\[E_p^{(\beta)}([0, t]; p) = K_{p \times n} \int d[X] |\Delta_p(X)|^\beta \det^\nu X \times \prod_{i=1}^p \Theta (iX - x_i) \Phi_{\beta}(X, \Lambda^{-1}), \]

(11)

where \(\Theta(x_i) \) is the Heaviside \(\Theta \)-function of scalar argument. The Heaviside function of matrix argument is known in terms of an Ingham-Siegel integral, see ref. [43] and references therein. It is unity if its argument is positive definite and vanishes otherwise. Positive definiteness is an invariant property implying that the \(\Theta \)-function depends on the eigenvalues \(a_i \) of \(A \) only,

\[\Theta (A) = \Theta (a) = \prod_{i=1}^N \Theta (a_i). \]

(12)

Since the integral (11) is over the whole spectrum of \(WW^\dagger \), we express the gap probability as averaged \(\Theta \)-function,

\[E_p^{(\beta)}([0, t]; p) = K_{p \times n} t^{np/3/2} \int d[W] P(W) |\sqrt{7A}| \times \Theta (1_{\gamma 2p} - WW^\dagger), \]

(13)

with \(W \in \text{Mat}_{p \times n}(\mathbb{K}) \). Analogously, the gap probability (3) is given by

\[E_p^{(\beta)}([0, s]; 0) = K_{p \times n} t^{np/3/2} \int d[\hat{W}] P(\hat{W}) |\sqrt{5A}| \times \Theta (\hat{W}W^\dagger - 1_{\gamma 2p}) \det^{(n-p)/\gamma 1} \hat{W}W^\dagger, \]

(14)

with \(\hat{W} \) is a square \(p \times p \) matrix.

To employ our approach to the gap probability (13), we choose the observable to be \(O(WW^\dagger) = \Theta (1_{\gamma 2p} - WW^\dagger) \). The matrix \(1_{\gamma 2p} - WW^\dagger \) has \(p \) distinct eigenvalues that coincide with those of \(1_{\gamma 2p} - WW^\dagger \) and \(n - p \) distinct eigenvalues that are exactly one. Hence, using eq. (12), it is evident that \(O(WW^\dagger) = O(W^\dagger W) \). To exchange the \(Q \), \(H \) and the \(W \) integral, we shift the contour of \(H \) by \(-i1_{\gamma 2n}\) and find the inverse Fourier-Laplace transform in eq. (8),

\[\mathcal{F}_n [\Theta] (H - i1_{\gamma 2n}) \sim \exp (\tau (iH + 1_{\gamma 2n})) \frac{\det^{\alpha /\gamma 1} (iH + 1_{\gamma 2n})}{\det^{\alpha /\gamma 1} (iH + 1_{\gamma 2n})}, \]

(15)

where \(\alpha = n - 1 + 2/\beta \). If we diagonalize \(H = U (Y \otimes 1_{\gamma 2n}) U^\dagger \), where \(U \) is in one of the three groups and \(Y = \text{diag}(y_1, \ldots, y_n) \) is the matrix of distinct eigenvalues of \(H \), we arrive at a remarkable, new expression for the gap probability (11),

\[E_p^{(\beta)}([0, t]; p) = K_{p \times n} \int d[Y] |\Delta_n(Y)|^\beta \frac{\det^{\alpha /\gamma 1} (iY + 1_n)}{\det^{\alpha /\gamma 1} (iY + 1_n) \times \prod_{k=1}^p \det^{\beta /2} (1_n + (iY + 1_n) 2\Lambda_k /t^\beta), \]

(16)

Likewise, we derive an invariant matrix model for the gap probability (13)

\[E_p^{(\beta)}([0, s]; 0) = K_{p \times n} \int d[Y] |\Delta_p(Y)|^\beta \frac{\Theta (Q - 1_{\gamma 2p}) \det^{(n-p)/\gamma 1} Q} {\prod_{k=1}^p \det^{\beta /2} (1_p + 2\Lambda_k Y/s^\beta). \]

(17)

The Fourier integral can be done using the differential operator constructed in appendix B of ref. [44], but the expression becomes cumbersome and we do not need these details for the following discussion.

Both results (16) and (17) have a \(p \)-fold product of determinants in the denominator in common. Due to the exponent \(\beta/2 \), this eigenvalue integral can be studied, at least for \(\beta = 2, 4 \), using standard techniques of random matrix theory. For \(\beta = 1 \) standard methods do not apply as square roots of characteristic polynomials appear. We further evaluate the exact expression (16) elsewhere [40]. Here we focus on the limiting behavior which is more relevant in applications. To this end, we assume that the empirical eigenvalues are random variables according to the distribution \(\rho_{emp}(\Lambda) \) and \(t = \mu(\Lambda) + \sigma(\Lambda)x \), where the centering and scaling parameters \(\mu(\Lambda) \) and \(\sigma(\Lambda) \) are assumed to be large. We will show that this is a justified assumption.

For the uncorrelated Wishart ensemble, i.e. \(\Lambda = 1_p \), previous works [22,23,45–58] focus on the exact as well as the limiting distribution of the largest eigenvalue \(x_{\text{max}} \) and the smallest eigenvalue \(x_{\text{min}} \) of \(WW^\dagger \). For \(n, p \) tending to infinity, while \(p/n = \gamma^2 \) is fixed, it was proved that the limiting distribution of \(\chi_{\text{max}} = (x_{\text{max}} - \mu_+^+) \sigma^+ \) and \(\chi_{\text{min}} = (x_{\text{min}} - \mu_-^-) \sigma^- \) is the Tracy-Widom law \(f_\beta(x) \) [59–61], where

\[\sigma_{\pm} = (1 + \gamma^2)^{1/3} n^{1/3} \text{ and } \mu_{\pm} = (1 + \gamma^2)^2 n, \]

\[\nu = n - p = (1 - \gamma^2)n \text{ and } \gamma \text{ fixed for } p \to \infty \text{ [22]. Moreover, if } n \text{, } p \text{ tend to infinity, while } n - p \text{ is fixed, it was shown that the limiting largest eigenvalue distribution still follows the Tracy-Widom law [22,47,49].} \]

For the correlated Wishart ensemble, the limiting largest eigenvalue distribution is known for \(\beta = 2 \) in general [62,63] and for \(\beta = 1, 4 \) solely when \(\Lambda \) is a rank-one perturbation of the identity matrix [55,64,65]. The smallest eigenvalue distribution was already studied in great detail in the microscopic limit, i.e. \(n, p \to \infty \) while \(n - p = \nu \) fixed in refs. [41,42], whereas for \(n, p \to \infty \) with \(p/n \) fixed no results are available yet.

Similarly to refs. [41,42], we assume that the empirical eigenvalues \(\Lambda_k \) are of order \(O(1) \) for \(n, p \) tending to infinity. It turns out that only the rescaled trace, \(\langle \gamma \rangle_\nu = p^{-1} \langle \gamma \rangle \), of \(\Lambda^n \), where \(m = 1 \), does not tend to zero. Moreover, another simple estimate shows \(\langle \Lambda^m \rangle_\nu \sim O(1) \) such that we cannot determine the exact leading order of the empirical eigenvalue variance \(\text{Var}_\nu(\Lambda) \). Consequently, we impose
another requirement on the empirical eigenvalue distribution, namely \(\text{Var}_n(\Lambda) \sim O(1/p^\alpha) \), where \(\alpha > 0 \) is a free parameter which we fix later. As a consequence of the Tschebyscheff inequality,

\[
P(|\Lambda - \langle \Lambda \rangle_s| \geq x) \leq \frac{\text{Var}_n(\Lambda)}{x^2} \sim O(1/p^\alpha),
\]

we make the following ansatz for the empirical eigenvalues by

\[
\Lambda_k = \bar{\Lambda} + p^{-\alpha} \Lambda^{(1)}_k,
\]

where \(\Lambda = \langle \Lambda \rangle_s \) and \(\Lambda^{(1)}_k \sim O(1) \). If \(C \) is a properly normalized correlation matrix, then \(\bar{\Lambda} = \langle \Lambda \rangle_s = 1 \).

Substituting eq. (20) into eq. (16), and expanding the \(p \)-fold product to leading order, under the assumption that \(t \) is large, we find for each integration variable \(y_i \)

\[
\prod_{k=1}^p \frac{1}{1 + \left(\frac{p}{p^*} \right)^\beta} \left(\Lambda + p^{-\alpha} \Lambda^{(1)}_k \right) \frac{\Lambda^{(1)}_k}{1 + \left(\frac{p}{p^*} \right)^\beta} \frac{p^* p^* \Lambda}{dt} + \ldots =\]

\[
\frac{1}{1 + \left(\frac{p}{p^*} \right)^\beta} \frac{\Lambda^{(1)}_k}{1 + \left(\frac{p}{p^*} \right)^\beta} \frac{p^* p^* \Lambda}{dt} + \ldots,
\]

where \(i = 1, \ldots, n \). The dots correspond to higher powers of \(p^{-\alpha} \) times the derivative \(dt/d\Lambda \). If we insert this expansion back into the cumulative distribution function (16) and keep only the leading terms in \(n, p \) we find

\[
E_p^{(\beta)}([0, t]; p) = E_p^{(\beta)}([0, t]; p)\big|_{\Lambda=\Lambda_1} + \ldots
\]

\[
= \frac{\text{tr} \Lambda^{(1)}_k}{p^* p^* \Lambda} \frac{d}{dt} E_p^{(\beta)}([0, t]; p)\big|_{\Lambda=\Lambda_1} + \ldots.
\]

The first term on the right-hand side of eq. (22) is eq. (11) for an uncorrelated Wishart ensemble with variance \(\bar{\Lambda} \). From the discussion above eq. (18), we conclude that if we center and rescale appropriately, the first term in eq. (22) converges to the integrated distribution function

\[
F_\beta(\chi) = \int_{-\infty}^\chi f_\beta(\chi) d\chi',
\]

found by Tracy and Widom. Therefore, we focus our discussion on the second term in eq. (22).

For the centered and rescaled threshold parameter \(t = \mu_+ \bar{\Lambda} + \sigma_+ \bar{\Lambda} \chi \), we take \(t \) times the derivative with respect to \(t \) of a function, which in the limit \(n, p \to \infty \) and for either \(n/p \) or \(n - p \) fixed converges to \(F_\beta(\chi) \). Due to \(p^{-1} \text{tr} \Lambda^{(1)}_k \to \text{const} \) for \(p \to \infty \), the prefactor is of order \(O(p^{-\alpha}) \). Solely the rescaling of the derivative \(dt/d\Lambda \) can influence this order. A careful analysis shows that if \(\alpha \) is chosen such that \(n \to \infty \)

\[
\frac{1}{p^*} \frac{\Lambda^{(1)}_k}{\sigma_+} = \gamma \alpha^{-1} (1 + \gamma)^2/3 \lambda^{2/3 - \alpha} \to 0,
\]

the second term in eq. (22) goes to zero as well. Thus, we require that \(\alpha > 2/3 \) so that a macroscopic distance between the largest eigenvalue and the empirical eigenvalues is guaranteed only if the fluctuations of the empirical eigenvalues do not overlap with those of the largest eigenvalue.

Like the cumulative distribution function of the largest eigenvalue (16), the dependence of the smallest eigenvalue gap probability (17) on the empirical eigenvalues \(\Lambda \) solely enters in the determinant in the denominator. Hence, we can apply the analysis done for the gap probability corresponding to the largest eigenvalue to that of the smallest one. Eventually, after centering and rescaling the threshold parameter, \(s = \tilde{\mu}_- \bar{\Lambda} + \tilde{\sigma}_- \bar{\Lambda} \chi \), where \(\tilde{\mu}_- \) and \(\tilde{\sigma}_- \) are as in eq. (18) and assuming the same restrictions on the empirical eigenvalue distribution as above, we obtain that the cumulative distribution function is \(F_\beta(\chi) \).

To illustrate our findings, we compare our analytical results with Monte Carlo simulations for \(\gamma \approx 0.33 \). The empirical eigenvalues are random variables with respect to a uniform distribution such that \(\text{Var}_n(\Lambda) = p^{-7/4} \). For \(\Lambda \), we set \(1 = \bar{\Lambda} \) and \(n^{-2/3} \text{Var}_n(\Lambda) \approx 0.013 \ll 1 \). The comparison for the largest and the smallest eigenvalue distribution is shown in fig. 1 and fig. 2, respectively. To demonstrate
the agreement with the numerical simulations, we properly adjust the centering without changing the limit behavior. For the smallest eigenvalue we even properly adjust the scaling by a constant shift of the order $O(1/n)$. This is because the smallest eigenvalue always “feels” the presence of a hard wall at zero, whereas the largest eigenvalue does not see any barrier such that the $1/n$ correction is stronger for the smallest eigenvalue.

In conclusion, we presented a new approach to map observables depending on the eigenvalues of a Wishart matrix only, to an invariant Hermitian matrix model. We demonstrated the concept by applying it to the gap probabilities corresponding to the largest and smallest eigenvalue distributions. Utilizing these invariant matrix model, we showed that for special empirical eigenvalue spectra, the Tracy-Widom distribution persists for the smallest and the largest eigenvalue if n, p tend to infinity while $p/n = \gamma^2$ is fixed. We confirmed our findings by numerical simulations.

A simultaneous but independent study on related issues has been very recently put forward in ref. [66].

We thank the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich TR12 (TW and TG) and the Alexander von Humboldt-Foundation (MK) for support.

REFERENCES

[1] Chatfield C., The Analysis of Time Series: An Introduction, sixth edition (Chapman and Hall/CRC) 2003, ISBN: 1-58488-317-0.
[2] Kanasewicz E. R., Time Sequence Analysis in Geophysics, 3rd edition (The University of Alberta Press, Edmonton, Alberta, Canada) 1974, ISBN: 0888640749.
[3] Tulino A. M. and Verdu S., Random Matrix Theory and Wireless Communications, Found. Trends Commun. Inf. Theory, Vol. 1 (now Publisher Inc.) 2004, ISBN: 978-1933019000.
[4] Gnanadesikan R., Methods for Statistical Data Analysis of Multivariate Observations, second edition (John Wiley & Sons) 1997.
[5] Barnett V. and Lewis T., Outliers in Statistical Data, first edition (John Wiley & Sons) 1980.
[6] Vinayak and Pandey A., Phys. Rev. E, 81 (2010) 036202.
[7] Abe S. and Suzuki N., Universal and nonuniversal distant regional correlations in seismicity: Random-matrix approach, ePrint arXiv:0909.3830 [physics.geo-ph] (2009).
[8] Müller M., Bajer G., Galka A., Stephani U. and Muhle H., Phys. Rev. E, 71 (2005) 046116.
[9] Šebá P., Phys. Rev. Lett., 91 (2003) 198104.
[10] Santhanam M. S. and Patra P. K., Phys. Rev. E, 64 (2001) 016102.
[11] Laloux L., Cizeau P., Bouchaud J.-P. and Potters M., Phys. Rev. Lett., 83 (1999) 1467.
[12] Plerou V., Gopikrishnan P., Rosenow B., Amaral L. A. N., Guhr T. and Stanley H. E., Phys. Rev. E, 65 (2002) 066126.
[13] Gardner M. R. and Ashby W. R., Nature, 228 (1970) 784.
[14] May R. M., Nature, 238 (1972) 413414.
[15] Majumdar S. N. and Schehr G., J. Stat. Mech.: Theory Exp. (2014) P01012.
[16] Pianka E. R., Evolutionary Ecology, seventh edition (Benjamin Cummings) 2011.
[17] Feinberg M., Lectures on Chemical Reaction Networks, Lecture Notes, 1979, http://www.crnt.osu.edu/LecturesOnReactionNetworks.
[18] Stefano A. and Si T., Nature, 483 (2012) 205.
[19] Anderson T. W., An Introduction to Multivariate Statistical Analysis (Wiley) 2003.
[20] Muirhead R. J., Aspects of Multivariate Statistical Theory (Wiley Interscience) 2005.
[21] Johnstone I. M., ePrint arXiv:math/0611589 [math.ST] (2006).
[22] Johnstone I. M., Ann. Stat., 29 (2001) 295.
[23] Edelman A., Math. Comput., 58 (1992) 185.
[24] Edelman A., SIAM J. Matrix Anal. Appl., 9 (1988) 543.
[25] Zeng Y. and Liang Y.-C., Trans. Commun., 57 (2009) 1784.
[26] Zeng Y. and Liang Y.-C., Maximum-minimum eigenvalue detection for cognitive radio, in Proceedings of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, PIMRC 2007 (IEEE) 2007, pp. 1–5.
[27] Cardoso L., Debbah M., Bianchi P. and Najm J., Cooperative spectrum sensing using random matrix theory, in Proceedings of the 3rd International Symposium on Wireless Pervasive Computing, 2008, ISWPC 2008, 2008, pp. 334–338.
[28] Wei L. and Tirkkonen O., Cooperative spectrum sensing of ofdm signals using largest eigenvalue distributions, in Proceedings of the IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009 (IEEE) 2009, pp. 2205–2209.
[29] Penna F., Garello R., Figlioli D. and Spirito M., Exact non-asymptotic threshold for eigenvalue-based spectrum sensing, in Proceedings of the 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2009, CROWNCOM ’09 (IEEE) 2009, pp. 1–5.
[30] Penna F. and Garello R., arXiv:0907.1523 [cs.IT] (2009).
[31] Burel G., Statistical analysis of the smallest singular value in mimo transmission systems, in Proceedings of the WSEAS International Conference on Signal, Speech and Image Processing (ICOSSIP) 2002 (WSEAS-Press) 2002.
[32] Chuah C.-N., Tse D., Kahn J. and Valenzuela R., IEEE Trans. Inf. Theory, 48 (2002) 637.
[33] Visotsky E. and Madhow U., Space-time precoding with imperfect feedback, in Proceedings of the IEEE International Symposium on Information Theory, 2000, Sorrento, Italy (IEEE xPress Conference Publishing) 2000, pp. 1511–1515.
[34] Wasserman L., All of Statistics: A Concise Course in Statistical Inference (Springer) 2004.
[35] Markowitz H., Portfolio Selection: Efficient Diversification of Investments (J. Wiley and Sons) 1959.
Correlation matrices at the phase transition of the Ising model, arXiv:1403.7218 [math-ph] (March 2014).

Itzykson C. and Zuber J. B., J. Math. Phys., 21 (1980) 411.

Balantekin A., Phys. Rev. D, 62 (2000) 085017.

Simon S., Moustakas A. and Marinelli L., IEEE Trans. Inf. Theory, 52 (2006) 5336.

Wirtz T., Kieburg M. and Guhr T., in preparation.

Wirtz T. and Guhr T., Phys. Rev. Lett., 111 (2013) 094101.

Wirtz T. and Guhr T., J. Phys. A: Math. Theor., 47 (2014) 075004.

Fyodorov Y. V., Nucl. Phys. B, 621 (2002) 643.

Kieburg M., Grönqvist J. and Guhr T., J. Phys. A, 42 (2009) 275205.

Edelman A., Linear Algebra Appl., 159 (1991) 55.

Wilke T., Guhr T. and Wettig T., Phys. Rev. D, 57 (1998) 6486.

Forrester P., Nucl. Phys. B, 402 (1993) 709.

Damgaard P. H. and Nishigaki S. M., Phys. Rev. D, 63 (2001) 045012.

Johansson K., Commun. Math. Phys., 209 (2000) 437.

Soshnikov A., J. Stat. Phys., 108 (2002) 1033.

Karoui N. E., Ann. Probab., 34 (2006) 2077.

Vivo P., Majumdar S. N. and Bohigas O., J. Phys. A: Math. Theor., 40 (2007) 4317.

Deift P., Its A. and Krasovsky I., Commun. Math. Phys., 278 (2008) 643.

Wang D., Ann. Probab., 37 (2009) pp. 1273.

Feldheim O. and Sodin S., Geom. Funct. Anal., 20 (2010) 88.

Katzav E. and Pérez Castillo I., Phys. Rev. E, 82 (2010) 040104.

Akemann G. and Vivo P., J. Stat. Mech.: Theory Exp. (2011) P05020.

Tracy C. A. and Widom H., Commun. Math. Phys., 159 (1994) 151.

Tracy C. A. and Widom H., Phys. Lett. B, 305 (1993) 115.

Tracy C. A. and Widom H., Commun. Math. Phys., 177 (1996) 727.

Baik J., Arous G. B. and Péché S., Ann. Probab., 33 (2005) 1643.

El Karoui N., Ann. Probab., 35 (2007) 663.

Mo M. Y., Commun. Pure Appl. Math., 65 (2012) 1528.

Bloemendal A. and Virág B., Probab. Theory Relat. Fields, 156 (2013) 795.

Knowles A. and Yin J., Anisotropic local laws for random matrices, arXiv:1410.3516 [math.PR] (2014).