Dowex 50W: A Green Mild Reusable Catalyst for the Synthesis of 2-Aryl Benzoxazole Derivatives in Aqueous Medium

ARUP DATTA

Department of Chemistry, Shibpur Dinobundhoo Institution (College), 412/1, G. T. Road (South), Howrah-711102, West Bengal, India.
*Corresponding author E-mail: arupdattadb@gmail.com

http://dx.doi.org/10.13005/ojc/370211

(Received: February 15, 2021; Accepted: March 17, 2021)

ABSTRACT

In this work simple efficient, one pot and environmentally friendly method was developed for the synthesis of 2-Aryl-1H-benzoxazole derivatives at 80°C using ortho-aminophenol and various aldehydes. It has been found that Dowex 50W is an effective catalyst to prepare moderate to high yield of a variety of benzoxazole derivatives through a clean and simple process. Aqueous medium, green methodology, rapid reaction, reusability of heterogeneous catalyst are the great advantages of this protocol.

Keywords: Benzoxazole, Aqueous medium, Heterogeneous catalyst, Dowex 50W, Reusable catalyst.

INTRODUCTION

2-Substituted benzoxazole derivatives are the main structural features and have immense interest in biologically active pharmaceutical chemistry such as 5-HT3 receptor agonist1, melatonin2, VLA-4 antagonist3 like imidazole4 and benzimidazole5. Benzoxazole derivatives are used as inhibitors against different enzymes in the pathophysiology of various diseases for example manopeptimycin glycopeptides antibiotics4, antimicrobial5, antymicobacterial6 anticancer7 and antitumor agents8. It is also used as a amyloidogenesis inhibitors9, Rho kinase inhibitors10, HIV-1 reverse transcriptase11, fructose-1,6-bisphosphatase12, cyclooxygenase13, LPAAT-β14, elastase15. Benzoxazole derivatives are used as a scaffold in fluorescent probes16 metal ion sensors and also in photochromatic reagent17 and laser dyes18. In addition benzoxazoles are the main class of heterocycles which are used for the construction of natural products and these are extensively applied in drug discovery and in an agrochemical field. This
moiety is also found in cytotoxic natural products like AJI956119, UK-120 and salvianen21. In recent published papers shown that it is involved in selective peroxisome proliferator-activated receptor γ antagonist JTP-42646722 and the cathepsin S inhibitor22. These make it interesting to synthesize 2-substituted benzoxazole derivatives in a new synthetic way. Usually two processes are applied for the synthesis of benzoxazole derivatives where common substrate was ortho-aminophenol23. (a) The traditional method is the condensation of ortho-aminophenol with acid or its derivative like acyl chlorides in strong acid medium like PPA, boric acid glycrol, silica sulfuric acid24, methanesulfonic acid25, p-TsOH26 BF\textsubscript{3}:OEt\textsubscript{2}27 either at high temperature28 or with microwave-assisted reaction conditions29. There is too much interest in making this compound and that’s why various methodologies and various oxidative catalysts were applied to conduct the synthesis of these derivatives till now30. (b) The second method is the cyclisation through condensation of intermediate imine31 formation then oxidation by use of different solid based catalysts such as PCC-supported silica gel32, silica supported sodium hydrogen sulfate33, (Hbim) BF\textsubscript{4}34, pyridinium-p-toluenesulfonate35 and this methods have many advantages over unsupported catalyst such as environmentally benign easy work up, clean reaction protocol, high yield process. Few toxic transition metal catalysts were used such as NiO\textsubscript{2}36, In(OTf)\textsubscript{3}37, Cu(OTf)\textsubscript{2}38, Mn(OAc)\textsubscript{2}39, Pb(OAc)\textsubscript{2}40, ZrOCl\textsubscript{3}41, CeCl\textsubscript{3}42 for the synthesis of the benzoxazole derivatives with good yield. However, in most case there was some drawback like (a) strong acid used either in solvent free condition or conventional heating or microwave heating28-31; (b) complex workup procedure has been employed32; (c) requirement of toxic, hazardous, expensive reagents and catalysts for excellent conversion33; (d) long reaction time was observed to complete the reaction in few cases44 and (e) in some cases comparatively low yield was observed in rapid reaction44. So an efficient and Eco-friendly process is still required for the synthesis of 2-arylbenzoxazole derivatives.

RESULTS AND DISCUSSIONS

In this work, author reports a very effective and easy method for the preparation of 2-aryl-1H-benzoxazole by condensation reaction of aldehydes with substituted and unsubstituted ortho-aminophenol in presence of heterogeneous catalyst Dowex 50W at 80°C.

![Scheme 1. Synthesis of 2-Aryl substituted benzoxazole in presence of Dowex 50W](image)

Keeping in mind the sustainability of the environment the conversion of organic reaction in water has been given greater importance now a day’s. Water acts as an environmentally benign solvent45. Water shows physiochemical properties, including hydrophobic molecular association activity, large thermal capacity, high polarity, inter molecular hydrogen bonding ability. Because of this distinct advantages of water both the effectiveness of the catalyst and the rate of the reaction increases in organic transformation. This catalyst is environmentally benign and has been getting attractive interest in synthetic research chemistry46. In earlier reported procedure this catalyst (sulphonic acid based cation exchange resin) was successfully applied to synthesis 2-arylsulfonated-1H-benzimidazoles50, 2-substituted benzothiazole derivatives51 and quinoxaline derivatives52 with excellent yield in aqueous medium. So to explore new synthetic green methodology author used Dowex 50W as a source of acid catalyst resin in the formation of benzoxazole derivatives in aqueous medium.

Table 1: Solvent effect and catalyst activity for the synthesis of 2-arylsubstituted benzoxazole

Entry	Dowex 50W (mol%)	Conditions	Solvent (5mL)	Time (mins)	Yield (%)
1	0	Oil bath, 80°C	water	210	0
2	5	Oil bath, 80°C	water	210	65
3	10	Oil bath, 80°C	water	210	90
4	10	Oil bath, 90°C	water	210	90
5	15	Oil bath, 80°C	water	210	90
6	15	Oil bath, 80°C	water	210	89
7	20	Oil bath, 80°C	water	210	90
8	25	Oil bath, 80°C	water	210	90
9	30	Oil bath, 80°C	water	210	90
10	10	Oil bath, 80°C	EtOH	210	50
11	10	Oil bath, 80°C	Aqueous	210	55
12	10	Oil bath, 80°C	MeCN	210	45
13	10	Oil bath, 80°C	DMSO	210	38
14	10	Oil bath, 80°C	THF	210	35
15	10	Oil bath, 80°C	Neat	210	48

*Reaction condition: 2-aminophenol (1.2 mmol), p-chlorobenzaldehyde (1mmol), *Isolated yield.
2-Aminophenol (1.2mmol) and 4-chlorobenzaldehyde (1mmol) were taken as substrates to find out the optimization condition. From Table 1 it was clear that in water alone zero percent yield of the product was noticeable without any catalyst (Entry 1, Table 1). Only 65% yield of the product was obtained in presence of 5 mol% of Dowex 50 W (Entry 2, Table 1) and percentage of the product yield was increased to 90% when 10 mol% catalyst was applied (Entry 3, Table 1). Even in presence of more than 10 mol% of the catalyst no change was found in %yield of the product (Entry 5, Table 1). Moreover at slightly higher temperature at 90°C no improved yield was observed (Entry 6, Table 1). So author came to the conclusion that 10 mol% of the catalyst was sufficient to complete the reaction and it had been proved in earlier published paper also.

It was found that in ethanol and aqueous ethanol the yield were moderate but poor yield was observed in THF, DMSO, MeCN and in solvent free condition. So standard reaction condition was accurately investigated and it was represented in (Entry 3, Table 1). In Fig. 1 author has shown clearly the relevance of catalyst in this methodology.

Entry	Aminophenol (R₁) [1]	Aldehyde(R) [2]	Benzoxazole [3]	Time (mins)	Isolated Yield (%)	MP (°C)	Found	Literature
1	1a	C₆H₅	3a	180	90	102-104	102-104	45a,d
2	1a	2-Me-C₆H₅	3b	240	88	116	114-116	46
3	1a	4-Me-C₆H₅	3c	240	85	113-114	113-114	47
4	1a	2-OMeC₆H₅	3d	270	88	98	53-55	48
5	1a	4-OMeC₆H₅	3e	300	88	98	54	49
6	1a	4-Cl-C₆H₅	3f	210	90	150	148-150	50
7	1a	2-Cl-C₆H₅	3g	180	88	62-64	61-64	51
8	1a	4-F-C₆H₅	3h	240	90	100	9-100	52
9	1a	4-NO₂-C₆H₅	3i	210	88	156	156-157	53
10	1a	3-OMeC₆H₅	3j	240	90	106-109	107-109	54
11	1a	2-Furanyl	3k	240	85	90	90-92	55
12	1a	4-Br-C₆H₅	3l	210	88	157	157-158	56
13	1a	4-CN-C₆H₅	3m	240	90	204	203-206	57
14	1a	3-Cl-C₆H₅	3n	210	88	132	131-133	58
15	1a	2-Thienyl	3o	250	82	104-106	104-106	59
16	1a	2-Cinnamyl	3p	210	86	80	79-80	60
17	1a	2-Br-C₆H₅	3q	180	87	54-55	54-55	61
18	2a	4-Me-C₆H₅	3r	210	88	138	138-139	62
19	2a	4-Cl-C₆H₅	3s	230	85	150	150-151	63
20	2a	C₆H₅	3t	240	86	114	112-115	64

Receiving the actual reaction condition then it was successfully applied to form a range of other benzoxazole derivatives. 2-Aminophenol and variety of aromatic aldehydes and hetero aldehydes were used under the chosen reaction condition and all cases the reactions were clean and highly selective to generate good to excellent yield in a very short reaction time and results were summarized in Table 2. Addition, cyclisation followed by oxidation reaction readily took place between aldehyde and 2-aminophenol at 80°C. Yields of benzoxazole were slightly affected by electronic factor and as well as steric factor. Electron withdrawing groups present in an aromatic ring generates good yield of the benzoxazole derivatives because these groups increase the electrophilicity of the aldehyde moiety (Entries 8, 9, 13, Table 2). Electron releasing o-substituted aldehyde gave slight poor yield than...
meta or para substitution present in aromatic ring (Entries 4 and 7, Table 2). In this methodology Dowex 50W catalyst act as a Brønsted acid which actually increases the electrophilic nature of the carbonyl carbon by coordination and as a result nucleophilic attack by nitrogen centre to the carbonyl carbon took place rapidly. The reaction between an aldehyde and 2-aminophenol proceed through the condensation reaction mechanism, which results in the formation of a Schiff base and then oxidative cyclization reaction took place. Author has also studied one reaction in inert atmosphere like (argon atmosphere) but low yield of the product was observed which indicated that aerial oxygen was essential to complete the last step of oxidation. The plausible reaction mechanism of benzoazole derivative is given in Scheme 2.

Recycling of catalyst is very important in organic transformation and as well as in industrial purpose. So recycle activity of the catalyst studied in this reaction. After the completion of the reaction the product was extracted with warm ethanol and filtered to eliminate the Dowex 50W. Then recovered catalyst was purified with ethanol to remove adhering product and dried in vacuum. The recovered catalyst was reused in the next reaction. Experimental result indicates that no loss of catalytic efficacy in consecutive four time runs of the catalyst and it clearly displayed graphically in Figure 2.

Entry	Catalyst	Time (h)	Isolated Yield(%)	Temperature (°C)	Reference
1	Molecular Sieve	48	85	180-190	58
2	Zn(OTf)$_2$	5	89	Reflux	59
3	MeSO$_3$H	2	70	100	60
4	CeCl$_3$/NaI	36	80	100	61
5	Ni-SiO$_2$	2.5	88	Room temp	62
6	Dowex 50W	3.5	90	80	Present Work

The efficiency of different catalysts in the synthesis of 2-(4′-chlorophenyl)-1H-benzoxazole has been compared with some previously published papers shown in Table 3. Comparison with respect to time and yield the present reaction methodology is excellent in presence of heterogeneous catalyst Dowex 50W. The advantages of the present reaction procedures are as follows: (a) In present methodology no additive expensive toxic oxidizing reagent was required. (b) This catalyst acts as an environmentally benign green catalyst because the reaction was performed in aqueous medium to avoid the use of toxic, hazardous organic solvents. (c) To complete the reaction only 10 mol% of catalyst was sufficient to generate excellent yield of the products. (d) The catalyst was recycled four times without any loss of efficacy. (f) A series of 2-arylbenzoxazole was prepared containing different groups at different positions with different electronic behavior in aromatic aldehyde ring. (g) Workup procedure was so simple no need of hectic column chromatography. (h) The amount of the product can be increased in large scale.
EXPERIMENTAL

All aromatic aldehydes and ortho-aminophenol were purchased from Spectrochem, Pvt. Ltd. Mumbai, India. 1H and 13C NMR spectra and IR spectra were recorded on Bruker 300 MHz spectrometer and Perkin-Elmer spectrometer. CDCl3 and DMSO-d6 are used as solvents. Melting points were measured with electrical apparatus. Reactions were monitored by thin-layer chromatography (TLC) on glass sheets pre-coated with silica gel.

General Procedure

A mixture of Substituted benzaldehyde (1mmol) with ortho-aminophenol (1.2mmol), Dowex 50W (10 mol%) were mixed in a 50 mL round bottom flask and it was heated in an oil bath at 80°C. The reaction was monitored by TLC time to time. Completion of the reaction was indicated by the brown spot which was developed in an iodine chamber. The crude product was cooled and diluted with warm ethanol and filtered. Then it was concentrated and the catalyst was washed again with warm ethanol to eliminate product attached on the surface of the catalyst. The catalyst was reused in the next reaction under the same reaction condition. The product was crystallized directly from hot aqueous ethanol to produce the pure 2-substituted benzoxazoles with 82-90% yield. All the known compounds were characterized by comparing their physical and spectral data with authentic compounds.

Spectroscopic data of synthesized compound

2-Phenyl-1H-benzoxazole (Table 2, 3a)

Colourless solid; FT-IR (KBr, cm⁻¹): 1240, 1285, 1448, 1475, 1551, 1615, 2854, 2925 and 3059, 1H NMR (300 MHz, CDCl3) δ: 7.40-7.33 (m, 2H), 7.55-7.50 (m, 3H), 7.61-7.56 (m, 1H), 7.82-7.75 (m, 1H), 8.31-8.22 (m, 2H), 13C NMR (75 MHz, CDCl3) δ: 110.7, 120., 124.7, 125.3, 127.3, 127.8, 129.0, 131.7, 142.2, 150.9 and 163.2, Analytical Calculation for C13H9NO: C: 79.98; H: 4.65; N: 7.17%; Found: C: 79.81; H: 4.51; N: 7.09%.

CONCLUSION

Author reported highly efficient synthetic protocol for the development of benzoxazole derivatives in presence of Bronsted acid catalyst Dowex 50W. The reaction gets another dimension because of rapid Eco-friendly reaction, simple workup procedure, avoiding toxic, hazardous organic solvents and reusability of the catalyst. It is hope that in near future this reaction will dominate academically and industrially.

ACKNOWLEDGEMENT

I am very much grateful to my Ph.D supervisor Professor Chhanda Mukhopadhyay, Department of Chemistry, University of Calcutta for providing me laboratory facility and financial support.

Conflict of Interest

No conflict of interest regarding this article.

REFERENCES

1. López-Tudanca, P. L.; Labeaga, L.; Inneráryá, A.; Alonso-Cires, L.; Tapia, I.; Mosquera, R.; Orjales, A.; Bioorg. Med. Chem., 2003, 11, 2709-2714.
2. Sun, L. Q.; Chen, J.; Takaki, K.; Johnson, G.; Iben, L.; Mahle, C. D.; Ryan, E.; Xu, C.; Bioorg. Med. Chem. Lett., 2004, 14, 1197-2200.
3. (a) Lin, L. S.; Lanza, T. Z.; Castonguay, L. A.; Kamenecka, J. T.; McCauley, E.; Riper, G. V.; Egger, L. A.; Mumford, R. A.; Tong, X.; MacCoss, M.; Schmidt, J. A.; Hagmann, W. K.; Bioorg. Med. Chem. Lett., 2004, 14(9), 2331-2334. (b) Tayebee, R.; Gohari, A.; Eur. chem. Com., 2020, 2(5), 581-586. (c) Tayebee, R.; Abdizadhe, M. F.; Arfaninia, N.; Amiri, A.; Baghayeri, M.; Kakhi, R. M.; Maleki, B.; Esmaeili, E.; Appl. Organomet. Chem., 2019, 33(8), 1-10. (d) Maleki, B.; Eshghi, H.; Khojastehnehzad, A.; Tayebee, R.; Ashrafi, S. S.; Kahoo, G. E.; Moeinpour, F.; RSC Adv., 2015, 5, 64850-64857. (e) Li, B.; Tayebee, R.; Esmaeili, E.; Namaghi, M. S.; Maleki, B.; RSC Adv., 2020, 10, 40725-40738.
4. Vinsova, J.; Cermakova, K.; Tomeckova, A.; Ceckova, M.; Jampiek, J.; Cermak, P.; Kunes, J.; Dolezal, M.; Staud, F.; Bioorg. Med. Chem., 2006, 14(17), 5850-5865.

5. Yildiz-Oren, L.; Yalcin, I.; Aki-sener, E.; Ugur, R. P.; Petersen, P. J.; Mansour, T. K.; Diabetes Obes. Metab., 2008, 10, 1089.

6. Rodriguez, I. I.; Rodriguez, A. D.; Wang, Y.; Franzblau, S. G.; Tetrahedron Lett., 2006, 47, 3229-3232.

7. Huang, S. T.; Hsei, I. J.; Chen, C.; Abad-Zapatero, C.; Von Geldern, T. W.; Bioorg. Med. Chem., 2006, 14, 6106-6119.

8. (a) Kumar, D.; Jacob, M. R.; Reynolds, M. B.; Kerwin, S. M.; Bioorg. Med. Chem., 2002, 10, 3997-4004. (b) Rida, S. M.; Ashour, F. A.; El-Hawash, S. A. M.; ElSemary, M. M.; Badr, M. H.; Shalaby, M. A. Eur. J. Med. Chem., 2005, 40, 949-959.

9. Johnson, S. M.; Connelly, S.; Wilson, I. A.; Kelly, J. W.; J. Med. Chem., 2008, 51, 260-270.

10. Sessions, E. H.; Yin, Y.; Bannister, T. D.; Weiser, A.; Griffin, E.; Pocas, J.; Cameron, M. D.; Ruiz, C.; Lin, L.; Schuerer, S. C.; Schroeter, T.; LoGrasso, P.; Feng, Y. Bioorg. Med. Chem. Lett., 2008, 18, 6390-6393.

11. Medebielle, M.; Ait-mohand, S.; Burkholder, C.; Dolbier, W. R.; Laumond, G.; Aubertin, A. M.; J. Fluor. Chem., 2005, 126, 533-540.

12. Lai, C.; Gum, R. J.; Daly, M.; Fry, E. H.; Hutchins, C.; Abad-Zapatero, C.; Von Geldern, T. W.; Bioorg. Med. Chem. Lett., 2006, 16, 1807-1810.

13. Paramashivappa, R.; Kumar, P. P.; Subba, R. P. V.; Srinivasa, R. A.; Bioorg. Med. Chem. Lett., 2003, 13, 857-860.

14. Gong, B.; Hong, F.; Kohm, C.; Bonham, L.; Klein, P.; Bioorg. Med. Chem. Lett., 2004, 14, 1455-1459.

15. Edwards, P. D.; Meyer, E. F.; Vijayalakshmi, J. J.; Tuthill, P. A.; Andisik, D. A.; Gomes, B.; Strimpler, A.; J. Am. Chem. Soc., 1992, 114, 1854-1863.

16. Hein, D. W.; Alheim, R. J.; Leavitt, J. J.; J. Am. Chem. Soc., 1957, 79, 427-429.

17. Sum, P. E.; How, D.; Torres, N.; Newman, H.; Petersen, P. J.; Mansour, T. K.; Bioorg. Med. Chem. Lett., 2003, 13, 2607-2625.

18. Heynderickx, A.; Guglielmetti, R.; Dubest, R.; Aubard, J.; Samat, A.; Synt., 2003, 1112-1116.

19. Sato, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T.; J. Antibiot., 2001, 54, 102-104.

20. Ueki, M.; Ueno, K.; Miyadoh, S.; Abe, K.; Shibata, K.; Taniguchi, M.; Oi, S. J. Antibiot., 1993, 46, 1089.

21. Don, M. J.; Shen, C. C.; Lin, Y. L.; Syu, J. R. W.; Ding, Y. H.; Sun, C. M.; J. Nat. Prod., 2005, 68, 1066-1070.

22. Nishiu, J.; Ito, M.; Ishida, Y.; Kakutani, M.; Shibata, T.; Matsushita, M.; Shindo, M. Diabetes Obes. Metab., 2006, 8, 508-516.

23. Tully, D. C.; Liu, H.; Alper, P. B.; Chatterjee, A. K.; Epple, R.; Roberts, M. J.; Williams, J. A.; Nguyen, K. T.; Woodmansee, D. H.; Tumanut, C.; Li, J.; Spraggon, G.; Chang, J.; Tuntland, T.; Harris, J. L.; Karanewsly, D. S.; Bioorg. Med. Chem. Lett., 2006, 16, 1975-1980.

24. Chang, J.; Zhao, K.; Pan, S.; Tetrahedron Lett., 2002, 43, 951-954.

25. Terashima, M.; Ishii, M.; Kanaoka, Y.; Synt., 1982, 484-485.

26. Baltork, I. M.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Zolfigol, M. A.; Hojati, S. F.; J. Iran. Chem. Soc., 2008, 5, 65-70.

27. Kumar, D.; Rudrawar, S.; Chakraborti, A. K. Aust. J. Chem., 2008, 61, 881-887.

28. Okeowo, C.; Kumar, K. H.; Muralidharan, D.; Perumal, P. T. Tetrahedron., 2008, 64, 2369-2374.

29. Praveen, C.; Kumar, K. H.; Murailidharan, D.; Perumal, P. T. Tetrahedron., 2008, 64, 2369-2374.

30. Ravi, K. K.; Srinivasareddy, P. V. V.; Srinivasareddy, B.; Der Pharma. Chemica., 2012, 4, 761-766.

31. Nagawade, R. R.; Shinde, D. B.; Chin. Chem. Lett., 2006, 17, 453-456.

32. Nadaf, R. N.; Siddiqui, S. A.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V.; J. Mol. Catal. A Chem., 2004, 214, 155-159.

33. Deluca, M. R.; Kerwin, S. M.; Tetrahedron., 1997, 53(2), 457-464.
35. Goldstein, S. W.; Dambek, P. J.; J. Heterocyclic Chem., 1990, 27, 335-336.
36. Nakagawa, K.; Onoue, H.; Sugita, J.; Chem. Pharm. Bull., 1964, 12, 1135-1138.
37. Wang, B.; Zhang, Y.; Li, P.; Wang, L.; Chin. J. Chem., 2010, 28, 1697-1703.
38. Guru, M. M.; Ali, M. A.; Punniyamurthy, T.; Org. Lett., 2011, 13, 1194-1197.
39. Varma, R. S.; Kumar, D. J.; Heterocycl. Chem., 1998, 35, 1539-1540.
40. Stephens, F. F.; Bower, J. D.; J. Chem. Soc., 1949, 2971-2972.
41. Baltork, I. M.; Khosropour, A. R.; Hojati, S. F.; Catal. Commun., 2007, 8, 1865-1870.
42. Zhu, X.; Wei, Y.; Heterocycl. Commun., 2012, 18(4), 211-214.
43. (a) Chang, J.; Zhao, K.; Pan, S.; Tetrahedron Lett., 2002, 43, 951-954. (b) Varma, R. S.; Saini, R. K.; Prakash, O.; Tetrahedron Lett., 1997, 38, 2621-2622. (c) Park, K. H.; Jun, K.; Shin, S. R.; Oh, S. W.; Tetrahedron Lett., 1996, 37, 8869-8870. (d) Orjales, A.; Bordell, M.; Rubio, V.; J. Heterocyclic Chem., 1995, 32, 707. (e) Kozlov, N. S.; Kiselev, B. I.; Uch. Zap. Perm. Gas. Pedagog Inst., 1965, 32, 21-26. (f) Braz, G. I.; Myasnikova, G. V.; Yakubovich, A. Y.; Bazov V. P.; Kardash, I. K.; Pravednikov, A. N.; Khimiya Geterotsiklicheskikh Soedinii., 1967, 2, 215-219.
44. (a) Bhawal, B. M.; Mayabhate, S. P.; Likhite, A. P.; Deshmukh, A. S.; Synthetic Chem., 1995, 25(21), 3315-3321. (b) Wang, F.; Hauske, J. R.; Clayton, T.; Chrusciel, A. R.; Solid Phase Organic Synthesis., 2001, 1, 73-84. (c) So, Y. H.; Zaleski, J. M.; Murlick, C.; Ellaboudy, A.; Macromolecules., 1996, 29, 2783-2795.
45. (a) Mukhopadhyay, C.; Datta, A.; Banik, B. K.; Heterocycles., 2007, 71(1), 181. (b) Mukhopadhyay, C.; Tapaswi, P. K.; Tetrahedron Lett., 2008, 49, 6237-6240. (c) Makhopadhyay, C.; Datta, A.; J. Het. Chem., 2009, 46, 91-95. (d) Datta, A., Halder, S.; Orient. J. Chem., 2020, 36(6), 1218-1224. (e) Zhang, M.; Zhang, S.; Liu, M.; Cheng, J.; Chem. Commun., 2011, 47, 11522. (f) Guru, M. M.; Ashif, A.; Punniyamurthy, T.; J. Org. Chem., 2011, 76, 5295-5308.
46. Wang, B.; Zhang, Y.; Li, P.; Wang, L.; Chin. J. Chem., 2010, 28, 1697-1701.
47. Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M.; Org. Lett., 2003, 5, 3713-3715.
48. Wang, B.; Zhang, Y.; Li, P.; Wang, L.; Chin. J. Chem., 2010, 28, 1697-1701.
49. Teo, Y. C.; Riduan, S. N.; Zhang, Y.; Green Chem., 2013, 15, 2365.
50. Kozlov, N. S.; Kiselev, B. I.; Uch. Zap. Perm. Gas. Pedagog Inst., 1965, 32, 21-26.
51. Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R.; J. Org. Chem., 2017, 82, 11669-11681.
52. Chang, W.; Sun, Y.; Huang, Y.; Heteroat. Chem., 2017, 28, 21360.
53. Ramineni, S.; Kannasaanib, R. K.; Satyanarayana, V. V.; Green Chem Lett Rev., 2014, 7(1), 85-89.
54. Kumar, D.; Rudrawar, S.; Chakraborti, A. K.; Aust. J. Chem., 2008, 61, 881-887.
55. Teo, Y. C.; Riduan, S. N.; Zhang, Y.; Green Chem., 2013, 15, 2365.
56. Mayo, M. S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M.; J Org Chem., 2014, 79(13), 6310-6314.
57. Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R.; J. Org. Chem., 2017, 82, 11669-11681.
58. Chang, W.; Sun, Y.; Huang, Y.; Heteroat. Chem., 2017, 28, 21360.