Generic canonical form of pairs of matrices with zeros

Tat’yana N. Gaiduk
Department of Physics and Mathematics
Chernigov Pedagogical University, Chernigov, Ukraine

Vladimir V. Sergeichuk∗
Institute of Mathematics
Tereshchenkivska 3, Kiev, Ukraine

Abstract
We consider a family of pairs of $m \times p$ and $m \times q$ matrices, in which some entries are required to be zero and the others are arbitrary, with respect to transformations $(A, B) \mapsto (SAR_1, SBR_2)$ with nonsingular S, R_1, and R_2. We prove that almost all of these pairs reduce to the same pair (A_0, B_0) from this family, except for pairs whose arbitrary entries are zeros of a certain polynomial. The polynomial and the pair (A_0, B_0) are constructed by a combinatorial method based on properties of a certain graph.

AMS classification: 15A21

Keywords: Structured matrices; Parametric matrices; Canonical forms

1 Introduction and main results
Let $\mathcal{A} : U_1 \to V$ and $\mathcal{B} : U_2 \to V$ be linear mappings of vector spaces over an arbitrary field \mathbb{F}. Changing the bases of the vector spaces, we may reduce

∗Corresponding author. Partially supported by NSF grant DMS-0070503. E-mail address: sergeich@imath.kiev.ua
the matrices A and B of these mappings by transformations

$$(A, B) \mapsto (SAR_1, SBR_2) \quad \text{with nonsingular } S, \ R_1, \ \text{and} \ R_2. \quad (1)$$

A canonical form of (A, B) for these transformations is

$$\begin{pmatrix}
I_r & 0 & 0 \\
0 & I_s & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & I_r & 0 \\
0 & 0 & 0 \\
I_t & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad (2)$$

where I_r denotes the r-by-r identity matrix and r, s, and t are determined by the equalities $r + s = \text{rank } A$, $r + t = \text{rank } B$, and $r + s + t = \text{rank } [A \mid B]$ (see Lemma 3).

We consider a family of pairs (A, B), in which n entries a_1, \ldots, a_n are arbitrary and the others are required to be zero. We prove that there exists a nonzero polynomial $f(x_1, \ldots, x_n)$ such that all pairs (A, B) with $f(a_1, \ldots, a_n) \neq 0$ reduce to the same pair $(A_{\text{gen}}, B_{\text{gen}})$ from this family. The pair $(A_{\text{gen}}, B_{\text{gen}})$ has the form (2) up to permutations of columns and simultaneous permutations of rows in A and B. Following [6], we call $(A_{\text{gen}}, B_{\text{gen}})$ a generic canonical form of the family (this notion has no sense if \mathbb{F} is a finite field). We give a combinatorial method of finding $f(x_1, \ldots, x_n)$ and $(A_{\text{gen}}, B_{\text{gen}})$.

1.1 Generic canonical form of matrices with zeros

Since the rows of A and B in (1) are transformed by the same matrix S, we represent the pair (A, B) by the block matrix $M = [A \mid B]$, which will be called a bipartite matrix. A family of bipartite matrices, in which some entries are zero and the others are arbitrary, may be given by a matrix

$$M(x) = [A(x) \mid B(x)], \quad x = (x_1, \ldots, x_n), \quad (3)$$

whose n entries are unknowns x_1, \ldots, x_n and the others are zero. For instance,

$$M(x) = \begin{bmatrix}
0 & 0 & x_4 & x_7 & 0 \\
x_1 & 0 & x_5 & 0 & 0 \\
0 & x_2 & 0 & 0 & x_9 \\
0 & x_3 & x_6 & x_8 & 0
\end{bmatrix}, \quad (4)$$

2
gives the family \(\{M(a) \mid a \in \mathbb{F}^n\} \).

Considering (3) as a matrix over the field
\[
\mathbb{K} = \left\{ \frac{f(x_1, \ldots, x_n)}{g(x_1, \ldots, x_n)} \mid f, g \in \mathbb{F}[x_1, \ldots, x_n] \text{ and } g \neq 0 \right\}
\]
of rational functions (its elements are quotients of polynomials), we put
\[
r_A = \text{rank}_\mathbb{K} A(x), \quad r_B = \text{rank}_\mathbb{K} B(x), \quad r_M = \text{rank}_\mathbb{K} M(x).
\]

The following theorem is proved in Section 2.

Theorem 1. Let \(M(x) = [A(x) \mid B(x)] \) be a matrix whose \(n \) entries are unknowns \(x_1, \ldots, x_n \) and the others are zero. Then there exists a nonzero polynomial
\[
f(x) = \sum c_i x_1^{m_{i1}} \cdots x_n^{m_{in}}
\]
such that all matrices of the family
\[
\mathcal{M}_f = \{M(a) \mid a \in \mathbb{F}^n \text{ and } f(a) \neq 0\}
\]
reduce by transformations \([A \mid B] \mapsto [SAR_1 \mid SBR_2] \) with nonsingular \(S, R_1, \) and \(R_2 \) to the same matrix
\[
M_{\text{gen}} = [A_{\text{gen}} \mid B_{\text{gen}}] \in \mathcal{M}_f.
\]

Up to a permutation of columns within \(A_{\text{gen}} \) and \(B_{\text{gen}} \) and a permutation of rows, the matrix \(M_{\text{gen}} \) has the form
\[
\begin{bmatrix}
I_r & 0 & 0 & 0 & I_r & 0 \\
0 & I_s & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_t & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]
which is uniquely determined by \(M(x) \) due to the equalities
\[
r + s = r_A, \quad r + t = r_B, \quad r + s + t = r_M \quad \text{(see (6))}.
\]

We call \(M_{\text{gen}} \) a **generic canonical form** of the family \(\{M(a) \mid a \in \mathbb{F}^n\} \) because \(M(a) \) reduces to \(M_{\text{gen}} \) for all \(a \in \mathbb{F}^n \) except for those in the proper algebraic variety \(\{a \in \mathbb{F}^n \mid f(a) = 0\} \).
1.2 A combinatorial method

The polynomial \(f(x) \) and the matrix \(M_{\text{gen}} \) can be constructed by a combinatorial method: we represent the matrix \(M(x) = [A(x) \mid B(x)] \) by a graph and study its subgraphs. Similar methods were applied in [2, 4, 5, 6] to square matrices up to similarity and to pencils of matrices.

The graph is defined as follows. Its vertices are

\[1, \ldots, m, 1^-, \ldots, p^-, 1^+, \ldots, q^+, \]

where \(m \times p \) and \(m \times q \) are the sizes of \(A(x) \) and \(B(x) \). Its edges

\[\alpha_1, \ldots, \alpha_n \]

are determined by the unknowns \(x_1, \ldots, x_n \): if \(x_i \) is the \((i, j)\) entry of \(A(x) \) then \(\alpha_i : i \rightarrow j^- \) (that is, \(\alpha_i \) links the vertices \(i \) and \(j^- \)), and if \(x_i \) is the \((i, j)\) entry of \(B(x) \) then \(\alpha_i : i \rightarrow j^+ \). The edges between \(\{1, \ldots, m\} \) and \(\{1^-, \ldots, p^-\} \) are called left edges, and the edges between \(\{1, \ldots, m\} \) and \(\{1^+, \ldots, q^+\} \) are called right edges.

For example, the matrix (4) is represented by the graph

![Graph representation of matrix](image)

with the left edges \(\alpha_1, \alpha_2, \alpha_3 \) and the right edges \(\alpha_4, \alpha_5, \ldots, \alpha_9 \).

Each subset \(S \) in the set of edges (11) can be given by the characteristic vector

\[\varepsilon_S = (e_1, \ldots, e_n), \quad e_i = \begin{cases} 1 & \text{if } \alpha_i \in S, \\ 0 & \text{otherwise.} \end{cases} \]

By a matchbox we mean a set of edges (matches) that have no common vertices. The size of a matchbox \(S \) is the number of its matches; since each row and each column of \(M(\varepsilon_S) \) have at most one 1 and the other entries are zero,

\[\text{size } S = \text{rank } M(\varepsilon_S). \]
A matchbox is left (right) if all its matches are left (right). Such a matchbox is said to be largest if it has the maximal size among all left (right) matchboxes. For example, the subgraph

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet \\
1^- & 2^- & 1^+ & 2^+ & 3^+ \\
\end{array} \]

of (12) is formed by the largest left and right matchboxes
\[A = \{2\rightarrow 1^-, \ 3\rightarrow 2^-\} \quad \text{and} \quad B = \{1\rightarrow 2^+, \ 2\rightarrow 1^+, \ 3\rightarrow 3^+\}. \quad (14) \]

For a left matchbox \(A \) and a right matchbox \(B \), we denote by \(A \uplus B \) the matchbox obtained from \(A \cup B \) by removing all matches of \(B \) that have common vertices with matches of \(A \). For example,
\[A \uplus B = \{2\rightarrow 1^-, \ 3\rightarrow 2^-, \ 1\rightarrow 2^+\} \quad (15) \]

for the matchboxes (14).

For every matchbox
\[\mathcal{S} = \{i_1\rightarrow j_1^-; \ldots; \ i_{\alpha}\rightarrow j_\alpha^-; \ i_{\alpha+1}\rightarrow k_{1}^+; \ldots; \ i_{\alpha+\beta}\rightarrow k_{\beta}^+\}, \]
we denote by \(\mu_{\mathcal{S}}(x) \) the minor of order \(\alpha + \beta \) in \(M(x) = [A(x) \mid B(x)] \) whose matrix belongs to the rows numbered \(i_1, \ldots, i_{\alpha+\beta} \), to the columns of \(A(x) \) numbered \(j_1, \ldots, j_\alpha \), and to the columns of \(B(x) \) numbered \(k_1, \ldots, k_\beta \). For example, the matchbox (15) determines the minor
\[\mu_{A \uplus B}(x) = \begin{vmatrix} 0 & 0 & x_7 \\ x_1 & 0 & 0 \\ 0 & x_2 & 0 \end{vmatrix} = x_1x_2x_7 \quad \text{in (14)}. \]

The next theorem will be proved in Section 2.

Theorem 2. The generic canonical form \(M_{\text{gen}} \) and the polynomial \(f(x) \) from Theorem 1 may be constructed as follows. We represent \(M(x) \) by the graph.
Among pairs consisting of a largest left matchbox and a largest right matchbox, we choose a pair \((A, B)\) with the minimal number \(v(A, B)\) of common vertices, and take

\[
M_{\text{gen}} = M(\varepsilon_{A \cup B}), \quad f(x) = f_{AB}(x),
\]

where \(f_{AB}(x)\) is the lowest common multiple of \(\mu_A(x)\), \(\mu_B(x)\), and \(\mu_{A \cap B}(x)\):

\[
f_{AB}(x) = \text{LCM}\{\mu_A(x), \mu_B(x), \mu_{A \cap B}(x)\}.
\]

Up to permutations of columns within \(A_{\text{gen}}\) and \(B_{\text{gen}}\) and a permutation of rows, the matrix \(M(\varepsilon_{A \cup B})\) has the form (9) with

\[
r = v(A, B), \quad s = \text{size } A - r, \quad \text{and} \quad t = \text{size } B - r.
\]

1.3 An example

Let us apply Theorems 1 and 2 to the family given by the matrix (4) with the graph (12). The matchboxes (14) do not satisfy the condition \(s\) of Theorem 2 because they have two common vertices ‘2’ and ‘3’. This number is not minimal since the largest matchboxes

\[
A = \{2-1^-, 3-2^-\}, \quad B = \{1-1^+, 3-3^+, 4-2^+\}
\]

forming the graph

have a single common vertex ‘3’. The matchboxes (19) satisfy the conditions of Theorem 2 since there is no pair of largest matchboxes without common vertices.

The conditions of Theorem 2 also hold for the largest matchboxes

\[
A' = \{2-1^-, 4-2^-\}, \quad B' = \{1-2^+, 2-1^+, 3-3^+\}
\]
forming the graph

since they have a single common vertex too.

For these pairs of matchboxes, we have

\[
\mathcal{A} \cup \mathcal{B} = \{2-1^-, 3-2^-, 1-1^+, 4-2^+\},
\]

\[
f_{\mathcal{A}\mathcal{B}}(x) = \text{LCM}\{x_1x_2, x_9(x_6x_7 - x_4x_8), x_1x_2(x_4x_8 - x_6x_7)\}
\]

and

\[
\mathcal{A}' \cup \mathcal{B}' = \{2-1^-, 4-2^-, 1-2^+, 3-3^+\},
\]

\[
f_{\mathcal{A}'\mathcal{B}'}(x) = \text{LCM}\{x_1x_3, -x_5x_7x_9, -x_1x_3x_7x_9\}.
\]

By Theorems 1 and 2,

\[
\begin{bmatrix}
0 & 0 & a_4 & a_7 & 0 \\
a_1 & 0 & a_5 & 0 & 0 \\
0 & a_2 & 0 & 0 & a_9 \\
0 & a_3 & a_6 & a_8 & 0
\end{bmatrix}
\]

with \(a_1, \ldots, a_9 \in \mathbb{F}\)

(see (4)) reduces to the matrix

\[
M(\varepsilon_{A\cup B}) = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

if \(f_{\mathcal{A}\mathcal{B}}(a) = a_1a_2a_9(a_4a_8 - a_6a_7) \neq 0\)

and to the matrix

\[
M(\varepsilon_{A'\cup B'}) = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

if \(f_{\mathcal{A}'\mathcal{B}'}(a) = a_1a_3a_5a_7a_9 \neq 0\).
Up to permutations of columns within vertical strips and permutations of rows, these matrices have the form

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (see (9)).

2 Proof of Theorems 1 and 2

2.1 Bipartite matrices

The canonical form of a pair for transformations (1) is well known, see [1, Sect. 1.2]. We recall it since we will use it in the proof of Theorems 1 and 2.

Clearly, \((A, B)\) reduces to \((A', B')\) by transformations (1) if and only if \([A | B]\) reduces to \([A' | B']\) by a sequence of

(i) elementary row-transformations in \([A | B]\),

(ii) elementary column-transformations in \(A\), and

(iii) elementary column-transformations in \(B\).

Lemma 3. Every bipartite matrix \(M = [A | B]\) over a field \(F\) reduces by transformations (i)–(iii) to the form

\[
\begin{bmatrix}
I_r & 0 & 0 & I_r & 0 \\
0 & I_s & 0 & 0 & 0 \\
0 & 0 & I_t & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\] (20)

determined by the equalities

\[
\begin{align*}
r + s &= \text{rank} A,
\quad r + t &= \text{rank} B,
\quad r + s + t &= \text{rank} M.
\end{align*}
\] (21)

Proof. By transformations (i) and (ii), we reduce \(M\) to the form

\[
\begin{bmatrix}
I_h & 0 & B_1 \\
0 & 0 & B_2
\end{bmatrix},
\]
and then by elementary row-transformations within the second horizontal strip and by transformations (iii) to the form

\[
\begin{bmatrix}
I_h & 0 & B_3 & B_4 \\
0 & 0 & I_t & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

Adding linear combinations of rows of \(I_t\) to rows of \(B_3\) by transformations (i), we “kill” all non-zero entries of \(B_3\):

\[
\begin{bmatrix}
I_h & 0 & 0 & B_4 \\
0 & 0 & I_t & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

At last, we reduce \(B_4\) to \(I_r \oplus 0\) by elementary transformations. The row-transformations with \(B_4\) have “spoiled” the block \(I_h\), but we restore it by the inverse column-transformations (ii) and obtain the matrix (20) with \(r + s = h\).

Since the transformations (i)–(iii) with \(M = [A \mid B]\) preserve the ranks of \(M\), \(A\), and \(B\), we have the equalities (21). This implies the uniqueness of (20) since \(s = \text{rank} M - \text{rank} B\), \(t = \text{rank} M - \text{rank} A\), and \(r = \text{rank} A + \text{rank} B - \text{rank} M\).

\[\square\]

2.2 Reduction of bipartite matrices by permutations of rows and columns

In this section we consider a bipartite matrix \(M = [A \mid B]\) with respect to permutations of rows and columns.

Lemma 4. Every bipartite matrix \([A \mid B]\) with linearly independent columns reduces by a permutation of rows to the form

\[
\begin{bmatrix}
A' & \cdot \\
\cdot & B'
\end{bmatrix},
\]

where \(A'\) and \(B'\) are nonsingular square blocks and the points denote unspecified blocks.

Proof. By permutations of rows we reduce \([A \mid B]\) to the form

\[
\begin{bmatrix}
A_1 & B_1 \\
\cdot & \cdot
\end{bmatrix}
\]

9
with a nonsingular square matrix \([A_1 \mid B_1]\). Laplace’s theorem (see [3, The-orem 2.4.1]) states that the determinant of \([A_1 \mid B_1]\) is equal to the sum of
products of the minors whose matrices belong to the rows of \(A_1\) by their co-
factors (belonging to \(B_1\)). One of these summands is nonzero since \([A_1 \mid B_1]\)
is nonsingular. We collect the rows of the minor from this summand at the
top and obtain the matrix (22).

Lemma 5. Every bipartite matrix \([A \mid B]\) reduces by permutations of rows
and permutations of columns in \(A\) and \(B\) to the form

\[
\begin{bmatrix}
X_r & \cdots & Y_r \\
\cdot & Z_s & \cdots \\
\cdot & \cdot & T_t \\
\cdot & \cdot & \cdot
\end{bmatrix},
\]

where \(X_r, Y_r, Z_s,\) and \(T_t\) are nonsingular \(r \times r, r \times r, s \times s,\) and \(t \times t\) blocks
in which all diagonal entries are nonzero and

\[r + s = \text{rank} A, \quad r + t = \text{rank} B, \quad r + s + t = \text{rank} [A \mid B].\] (24)

Proof. Denote

\[\rho_A = \text{rank} A, \quad \rho_B = \text{rank} B, \quad \rho_M = \text{rank} [A \mid B].\]

We first reduce \([A \mid B]\) by a permutation of columns to the form \([\cdots A_1 \mid B]\),
where \(A_1\) has \(\rho_A\) columns and they are linearly independent. Then we reduce
it to the form \([\cdots A_1 \mid B_1 \cdots]\), where \([A_1 \mid B_1]\) has \(\rho_M\) columns and they are
linearly independent.

Lemma 4 to \([A_1 \mid B_1]\) ensures that the matrix \([\cdots A_1 \mid B_1 \cdots]\) reduces by
a permutation of rows to the form

\[
\begin{bmatrix}
\cdot & A_2 \\
\cdot & \cdots \\
\cdot & B_2 \\
\cdot & \cdots \\
\cdot & \cdots
\end{bmatrix}
\]

with nonsingular square matrices \(A_2\) and \(B_2\).

Rearranging rows of the first strip and breaking it into two substrips, we reduce (25) to the form

\[
\begin{bmatrix}
\cdot & A_3 \\
\cdot & A_4 \\
\cdot & B_3 \\
\cdot & \cdots \\
\cdot & B_2 \\
\cdot & \cdots
\end{bmatrix}
\]

\[
\begin{bmatrix}
\cdot & \cdots \\
\cdot & \cdots \\
\cdot & \cdots
\end{bmatrix}
\]

(26)
where the matrices

$$
\begin{bmatrix}
A_3 \\
A_4
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
B_3 \\
B_2
\end{bmatrix}
$$

have linearly independent rows. Lemma 4 to their transposes insures that (26) reduces by permutations of columns to the form

$$
\rho_A \left\{ \begin{bmatrix}
\cdot & Z & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & X & Y \\
\cdot & \cdot & \cdot & \cdot & T
\end{bmatrix} \right\} \rho_B \left\{ \begin{bmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{bmatrix} \right\} \rho_M
$$

(27)

with nonsingular X, Y, Z, and T. If an n-by-n matrix has a nonzero determinant, then one of its $n!$ summands is nonzero, and we may dispose the entries of this summand along the main diagonal by a permutation of columns. In this manner we make nonzero the diagonal entries of X, Y, Z, and T. At last, we reduce (27) to the form (23) by permutations of rows and columns. \(\square\)

2.3 Proof of Theorems 1 and 2

In this section $M(x) = [A(x) | B(x)]$ is the matrix (3), A and B are the matchboxes from Theorem 2, and r_A, r_B, r_M are the numbers (6).

Lemma 6.

$$
\text{size } A = r_A, \quad \text{size } B = r_B, \quad \text{size } A \cup B = r_M.
$$

(28)

Proof. By Lemma 5, the matrix $M(x)$ over the field \mathbb{K} of rational functions (3) reduces by permutations of rows and by permutations of columns within $A(x)$ and $B(x)$ to a matrix $N(x)$ of the form (23), in which by (24)

$$
r + s = r_A, \quad r + t = r_B, \quad r + s + t = r_M.
$$

(29)

The diagonal entries of X_r, Y_r, Z_s, and T_t are all nonzero, and hence they are independent unknowns; replacing them by 1 and the other unknowns by 0, we obtain the matrix

$$
N(a) = \begin{bmatrix}
I_r & 0 & 0 & 0 & I_r & 0 \\
0 & I_s & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_t & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad a \in \{0, 1\}^n.
$$

(30)
The inverse permutations of rows and columns reduce $N(x)$ to $M(x)$, and hence $N(a)$ to $M(a)$. As follows from (30), $a = \varepsilon_{A'\cup B'}$, where A' is a left matchbox, B' is a right matchbox, and by (29)

$$\text{size } A' = r_A, \quad \text{size } B' = r_B, \quad \text{size } A' \cup B' = r_M.$$

Since the matchboxes A and B are largest, $\text{size } A \geq r_A$ and $\text{size } B \geq r_B$. The minors $\mu_A(x)$ of $A(x)$ and $\mu_B(x)$ of $B(x)$ (defined in Section 1.2) are nonzero and their orders are equal to the sizes of A and B, hence $\text{size } A \leq r_A$ and $\text{size } B \leq r_B$. We have

$$\text{size } A = \text{size } A' = r_A, \quad \text{size } B = \text{size } B' = r_B,$$

and so the matchboxes A' and B' are largest too. Because of the minimality of the number $v(A, B)$ of common vertices and since

$$\text{size } A \cup B = \text{size } A + \text{size } B - v(A, B),$$

we have

$$v(A, B) \leq v(A', B'), \quad \text{size } A \cup B \geq \text{size } A' \cup B' = r_M.$$

In actuality the last inequality is an equality since the minor $\mu_{A\cup B}(x)$ of order r_M is nonzero. \qed

Lemma 7. If $a \in \mathbb{F}^n$ and $f_{AB}(a) \neq 0$, then

$$\text{rank } A(a) = r_A, \quad \text{rank } B(a) = r_B, \quad \text{rank } M(a) = r_M.$$

Proof. The matrix $A(a)$ has a nonzero minor $h(a)$, whose order is equal to the rank of $A(a)$. The corresponding minor $h(x)$ of $A(x)$ (belonging to the same rows and columns) is a nonzero polynomial, and so $\text{rank } A(a) \leq \text{rank } A(x) = r_A$. Analogously $\text{rank } B(a) \leq r_B$ and $\text{rank } M(a) \leq r_M$.

By (17), the minors $\mu_A(a)$ of $A(a)$, $\mu_B(a)$ of $B(a)$, and $\mu_{AB}(a)$ of $M(a)$ are nonzero. Their orders are equal to the sizes of A, B, and $A \cup B$, hence

$$\text{rank } A(a) \geq \text{size } A, \quad \text{rank } B(a) \geq \text{size } B, \quad \text{rank } M(a) \geq \text{size } A \cup B.$$

This proves (32) due to (28). \qed
Let \(a \in \mathbb{F}^n \) and \(f_{AB}(a) \neq 0 \). By Lemma 3, \(M(a) \) reduces to the matrix (9), which is determined by (10) due to (21) and (32). The matrix \(M(\varepsilon_{A\cup B}) \) reduces by permutations of rows and columns to the same matrix (9) because (13) and (28) imply

\[
\begin{align*}
\text{rank} \, A(\varepsilon_{A\cup B}) &= \text{size} \, A = r_A, \\
\text{rank} \, B(\varepsilon_{A\cup B}) &= \text{size} \, B = r_B, \\
\text{rank} \, M(\varepsilon_{A\cup B}) &= \text{rank} \, M(\varepsilon_{A\cap B}) = \text{size} \, A \cup B = r_M.
\end{align*}
\]

Hence \(M(a) \) reduces to \(M(\varepsilon_{A\cup B}) \). This proves Theorem 1; we can take \(M_{\text{gen}} \) and \(f(x) \) as indicated in (16). This also proves Theorem 2; the equalities (18) follow from (33), (34), and (31).

Acknowledgements. Sergey V. Savchenko read the paper and made very important improvements and corrections. In fact, he is a coauthor.

References

[1] P. Gabriel and A.V. Roiter, *Representations of Finite-Dimensional Algebras*, Springer-Verlag, 1997.

[2] D. Hershkowitz, The relation between the Jordan structure of a matrix and its graph, *Linear Algebra Appl.* 184 (1993) 55–69.

[3] V.V. Prasolov, *Problems and Theorems in Linear Algebra*, Translations of mathematical monographs, v. 134, Amer. Math. Soc., 1996.

[4] K. Röbenack and K.J. Reinschke, Graph-theoretically determined Jordan-block structure of regular matrix pencils, *Linear Algebra Appl.* 263 (1997) 333–348.

[5] K. Röbenack and K.J. Reinschke, Digraph-based determination of Jordan block size structure of singular matrix pencils, *Linear Algebra Appl.* 275–276 (1998) 495–507.

[6] J.W. van der Woude, The generic canonical form of a regular structured matrix pencil, *Linear Algebra Appl.* 353 (2002) 267–288.