Examining key factors of beginner’s continuance intention in blended learning in higher education

He Yang¹,² · Jin Cai¹ · Harrison Hao Yang³,⁴ · Xiaochen Wang⁵

Accepted: 20 April 2022 / Published online: 26 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the outbreak of the COVID-19 pandemic, blended learning became exceptionally widespread, especially in higher education. As a result, many college students became beginners in this learning method. To identify key factors that impact beginners’ continuance intention in blended learning, this study surveyed 1845 first-year college students at a university in central China in the falls of 2020 and 2021 who used blended learning for the first time. Structural equation modeling was employed to verify a model that integrates intrinsic motivation and academic self-efficacy in the Expectation-Confirmation Model of Information System Continuance. The results show that performance expectancy, intrinsic motivation, and satisfaction significantly impact beginners’ continuance intention in blended learning. Moreover, performance expectancy, intrinsic motivation, and confirmation significantly impact beginners’ continuance intention through mediating variable satisfaction. Academic self-efficacy does not directly impact college students’ continuance intention but indirectly impacts their continuance intention through intrinsic motivation. Finally, this study provides suggestions for educators to improve beginners’ blended learning experience thus promoting their continuance intention in blended learning.

Keywords Blended learning · Continuance intention · Expectation-confirmation model · Intrinsic motivation · Academic self-efficacy

*Harrison Hao Yang
harrison.yang@oswego.edu

¹ School of Computer, Hubei University of Education, Wuhan 430205, China
² Wuhan Huada National E-Learning Technologies Co., Ltd, Central China Normal University, Wuhan 430079, China
³ School of Education, State University of New York at Oswego, 4060 Route 104, Oswego, NY 13126, USA
⁴ National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079, China
⁵ College of Teacher Education, Capital Normal University, Beijing 100091, China
Introduction

Blended learning refers to face-to-face (F2F) instructions combined with computer-mediated instructions (Bonk & Graham, 2012). It is in line with the values of higher education institutions and has been shown to improve both the efficacy and efficiency of meaningful learning experiences (Garrison & Kanuka, 2004). Numerous studies have shown that this method can improve pedagogy, increase access and flexibility, and improve cost-effectiveness (Baepler & Driessen, 2014; Bonk & Graham, 2012; Wei et al., 2017; Yang, Zhu, & MacLeod, 2016). Therefore, blended learning has attracted much attention from educators and has been predicted to become the mainstream learning method in the future and a short-term key trend for the promotion of the application of higher education technology (Johnson et al., 2015). This is particularly true in light of the current worldwide outbreak of the COVID-19 pandemic, in response to which the promotion of flexible learning methods such as blended learning has reached an unprecedented level. Studies reported that blended learning will become an everyday learning model rather than a crisis-response migration method (Johnson, Veletsianos, & Jeff, 2020; Pelletier et al., 2021). For example, in China, a nationwide survey of over 600 million instructors and students at universities, which was implemented from 7 to 14 April 2020, showed that more than 80% of instructors planned to implement online learning or blended learning after the pandemic (Yang, 2020). This outlook is widely supported not only in China but also in the rest of the world (Pelletier et al., 2021).

In such a large-scale transformation of the prevailing teaching and learning mode, many students with diverse backgrounds in higher education become new practitioners of blended learning. The question remains whether these beginners will continue to use blended learning as their mainstream course model even after the pandemic. Compared with their acceptance level, their continuance intention can reflect their direct attitude, rather than indirect willingness impacted by others. Identifying the key factors that impact beginners’ continuance intention is important for supporting their learning and helping them to succeed in continuing with blended learning courses. It is also important for administrators, course designers, and instructors to understand students’ perspectives and provided feedback on blended learning (Pelletier et al., 2021). Although considerable research has focused on the acceptance of blended learning (Padilla-Meléndez et al., 2013; Tselios et al., 2011), research on the willingness of beginners to continue with such a new learning model after initial attempts is rare. Therefore, this study tracked the continuation intention of new learners following their first blended learning course in college and identified key factors that impact beginners’ continuance intention in blended learning. The authors hope that the results of this study will help instructors, course designers, and administrators to design, refine, and maintain large-scale blended learning in higher education.
Theoretical framework

This study is mainly based on the Expectation-Confirmation Model of Information System Continuance (ECM-ISC). In addition, two key personal factors (i.e., intrinsic motivation and academic self-efficacy) are considered because of the complexity of blended learning.

Expectation-confirmation model of information system continuance

One of the most common models for measuring continuance intention is ECM-ISC (Bhattacherjee, 2001), which is based on Expectation Confirmation Theory (ECT) and Technology Acceptance Model (TAM). ECT is a cognitive theory that was widely used in consumer behavior literature to evaluate consumer satisfaction after purchase and intention of repurchase (Oliver, 1977, 1980). It originally appeared in psychology and marketing literature. TAM is a theory of information systems that describes how consumers accept and use an information system. TAM considers that perceived usefulness and ease of use are linked to information system acceptance behavior (Davis, 1989).

As shown in Fig. 1, the ECM-ISC model includes four core variables: perceived usefulness, confirmation, satisfaction, and information system continuance intention. Previous studies showed that this model could be used for effective measurements of continuance intention in e-learning (Roca & Gagné, 2008; Sørebo et al., 2009), massive open online courses (Daneji, Ayub, & Khambari, 2019; Zhou, 2017), mobile learning (Alshurideh et al., 2019), and blended learning (Cheng, 2014; Sabah, 2020).

Perceived usefulness originated from TAM and was defined as the degree to which a person believes that the use of a particular system would enhance his or her job performance. In blended learning, perceived usefulness refers to learning performance (Davis, 1989). In other related studies, perceived usefulness was sometimes referred to as performance expectancy (Venkatesh, Morris, Davis, & Davis, 2003).

Post-adoption satisfaction refers to the extent to which a person is pleased or content with a product, service, or technology artifact after having gained direct experience with it. ECT posits that satisfaction is directly influenced by disconfirmation of beliefs and perceived performance, and indirectly influenced by both expectations

![Fig. 1 The ECM-ISC Model](image)
and perceived performance via a mediational relationship that passes through the disconfirmation construct.

Confirmation refers to a person’s judgment or evaluation of products, services, or technical artifacts. These assessments or judgments are compared with people’s initial expectations. When a product, service, or technical artifact exceeds these initial expectations, confirmation is positive, which is assumed to increase satisfaction after purchase or adoption. When products, services, or technical artifacts are lower than people’s initial expectations, confirmation is negative, which is considered to reduce post-adoption satisfaction (Bhattacherjee, 2001).

Intrinsic motivation and academic self-efficacy

Intrinsic motivation refers to people’s spontaneous cognition of the activities they are engaged in (Teo et al., 1999). Previous research showed that intrinsic motivation is a direct factor with which e-learning continuance intention can be predicted (Roca & Gagné, 2008). Moreover, intrinsic motivation exerts a positive impact on satisfaction (Sorebø et al., 2009). Intrinsic goal orientation is a component of the Motivation Scales for Learning Questionnaire (MSLQ) questionnaire, and is concerned with the degree to which students perceive themselves to be participating in a task for reasons of intrinsic motivation (e.g., challenge, curiosity, and mastery) (Pintrich et al., 1993). This study employed intrinsic goal orientation to test intrinsic motivation.

Self-efficacy is an individual’s subjective evaluation of his or her ability to complete a certain aspect of work (Bandura, 1986). Academic self-efficacy refers to students’ beliefs and attitudes towards their capacities to attain academic achievements, as well as their belief in their capacity to complete academic activities and study materials successfully (Bandura, 1997; Schunk & Ertmer, 2000). Previous research indicated that self-efficacy could affect motivation both positively and negatively. In general, people with high self-efficacy are more likely to make efforts to complete a task, and persist longer in their efforts, than people with low self-efficacy (Schunk, 1990). In addition, previous research also identified self-efficacy as an effective measurement for continuance intention (Mathieson, 1991). For example, Bhattacherjee et al. (2008) found that continuance intention was significantly affected by information technology self-efficacy.

Research model and hypotheses

Literature review indicated that students’ performance expectancy, confirmation, satisfaction, intrinsic motivation, and academic self-efficacy can influence continuance intention. Therefore, as shown in Fig. 2, these factors are assumed to potentially influence students’ continuance intention on blended learning. The following hypotheses are tested:

Hypothesis 1 (H1) Performance expectancy is positively related to the degree of blended learning continuance intention.
Hypothesis 2 (H2) Students’ satisfaction with blended learning is positively related to the degree of continuance intention.

Hypothesis 3 (H3) Students’ intrinsic motivation is positively related to the degree of blended learning continuance intention.

Hypothesis 4 (H4) Students’ academic self-efficacy is positively related to the degree of blended learning continuance intention.

Hypothesis 5 (H5) Performance expectancy is positively related to the degree of blended learning satisfaction.

Hypothesis 6 (H6) Students’ confirmation of blended learning is positively related to satisfaction.

Hypothesis 7 (H7) Students’ intrinsic motivation is positively related to satisfaction with blended learning.

Hypothesis 8 (H8) Students’ confirmation of blended learning is positively related to performance expectancy.

Hypothesis 9 (H9) Students’ academic self-efficacy is positively related to intrinsic motivation.
Method

Participants and settings

To investigate the key factors impacting college students’ continuance intention in blended learning, a questionnaire was developed based on the proposed research model. This questionnaire was used to conduct two surveys at a university in central China in the fall semesters of 2020 and 2021. In both surveys, participants were first-year students who took a blended learning course named “Fundamentals of the Computer” in their first semester. This course covers computer operating systems, productivity tools (such as word processing, spreadsheet, and presentation software), computer networking, and multimedia applications (among other topics). Through participation in this course, students should be able to master basic computer knowledge and skills. The course lasts for one semester and is required for all first-year college students who are not majoring in computer science. These first-year college students were arguably beginners in blended learning, given that K-12 schools in China are still dominated by traditional F2F classrooms, with little or no implementation of blended learning.

This course employs a flipped classroom-like instruction in blended learning. Because of the nature of the course and the fact that not all students possess their own computers and applications, certain learning activities in this course are conducted and completed within computer labs rather than via typical flipped classroom instruction, which primarily combines class and home learning activities. Overall, one-third of the course time is dedicated to F2F classroom instruction, one-third of the course time is dedicated to lab practice, and one-third of the course time is dedicated to online learning. For each of these learning units, F2F classroom instruction and lab practice are arranged matching the schedule for typical classrooms and computer labs. Students must be physically present for the learning activities. In addition, students are required to read and review two set online learning materials before and after F2F classroom instructions. The first set of online learning materials such as micro-videos, courseware, leading questions, examples, and cases are provided in the learning management system and students are expected to finish learning tasks at their own pace and in their own space before the F2F classroom instruction. In the F2F classroom instruction, instructors deliver key concepts and skills to students, facilitate discussions with students, and answer students’ questions. After F2F classroom instruction, the second set of online learning materials such as assignments, quizzes, notes, and other resources are provided in the learning management system; thus, students can practice and review what they have learned during the F2F classroom instruction and can complete the learning tasks in the labs. All instructors of this course have been working together on the curriculum design and development to ensure consistent content, progress, and similar pedagogy.

Instrument

The questionnaire for both surveys adopted elements from the ECM-ISC scale, Unified Theory of Acceptance and Use of Technology (UTAUT) questionnaire, and MSLQ.
Specifically, satisfaction (four items), confirmation (three items), and IS continuance intention (three items) in the questionnaire were adopted from the ECM-ISC scale. The ECM-ISC scale was developed by Bhattacherjee et al. (2001) and the dimensional reliabilities reported in his paper were as follows: satisfaction (alpha = 0.87), confirmation (alpha = 0.82), and IS continuance intention (alpha = 0.83). Each item was measured on a five-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree). One representative item for satisfaction is: “I am very pleased to participate in the current way of learning.” A representative item for confirmation is: “My experience with the current learning method is better than I expected.” An example item for continuance intention is: “My intentions are to continue using the current learning method rather than any other methods (such as traditional learning methods).”

Performance expectancy (four items) in the questionnaire was adopted from the UTAUT questionnaire. The UTAUT questionnaire was developed by Venkatesh et al. (2003). The original reliability of performance expectancy exceeded 0.90, and a representative item of this scale is: “The current learning method is more useful for my study.” UTAUT also used a five-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree).

Intrinsic motivation and academic self-efficacy items in the questionnaire were adopted from MSLQ. The MSLQ was developed by Pintrich et al. (1993). Intrinsic Goal Orientation (four items, alpha = 0.74) was employed to express intrinsic motivation. Self-efficacy (eight items, alpha = 0.93) of MSLQ was also employed in this study. One representative item of intrinsic motivation is: “In the current study of this course, I prefer course material that arouses my curiosity, even if it is difficult to learn.” An example of academic self-efficacy is: “I’m certain I can understand the most difficult material presented in this course.”

Data collection and analysis

Both surveys were administered at the end of the semester. At the beginning of the survey, all students were informed about the purpose of this study. All responses were both anonymous and voluntary. Participants took the survey in paper format. In the survey of the fall of 2020, a total of 403 (from 471) beginners responded to the survey, with a recovery rate of 85.6%. 342 valid questionnaires were collected, with an applicable rate of 84.9%. In the survey of the fall of 2021, a total of 1078 (from 1374) beginners responded to the survey, with a recovery rate of 78.5%. 987 valid questionnaires were collected, with an applicable rate of 91.6%. SPSS19.0 was employed to process the data in this study. Smart PLS v.3.3.2 was used to build a research model and validate the mutual relationship between key impact factors of students’ continuance intention of blended learning.
Results

Overview of the survey

As shown in Table 1, the results of both surveys were very similar. The response range of the survey in the fall of 2020 ranged between 3.91 and 3.94. Continuance intention (M = 3.91, SD = 0.73) turned out to have the lowest average response value examined, while intrinsic motivation (M = 3.97, SD = 0.64) turned out to have the highest average response values of the survey. The response range of the survey in the fall of 2021 ranged from 3.64 to 3.83. Academic self-efficacy had the lowest means (M = 3.64, SD = 0.67) and continuance intention (M = 3.83, SD = 0.71) had the highest means.

Reliability and validity analysis

Standardized Root Mean Residual (SRMR) is a fitting measure of Partial Least Squares Structural Equation Modeling (PLS-SEM), which is commonly used to avoid model misspecification (Hair, Henseler, et al., 2014; Hair, Sarstedt, et al., 2014). A value less than 0.08 is considered to indicate a good fit (Hu & Bentler, 1998). The values of SRMR of this model calculated from the surveys of both 2020 and 2021 were 0.04 and 0.035, respectively, thus, the proposed model was acceptable.

Cronbach’s Alpha and Composite Reliability (CR) were used to measure the degrees of internal consistency of the results. Average Variance Extracted (AVE) was used to assess validity (Wong, 2013). As shown in Table 2, the parameters of Cronbach’s alpha and CR exceeded 0.7 and all parameters of AVE exceeded 0.5. The correlations among the square root of AVE and the latent variables were compared to gauge discriminant validity (Fornell & Larcker, 1981). The result showed that all latent correlations were below the corresponding AVE square roots. Therefore, the constructs of the survey used in this study had good reliability and validity.

Table 1	Descriptive statistics of the survey results	
Variable	Fall 2020 Survey	Fall 2021 Survey
	Mean SD	Mean SD
AS	3.94 0.60	3.64 0.67
CO	3.93 0.73	3.80 0.70
CI	3.91 0.73	3.83 0.71
IM	3.97 0.64	3.81 0.63
PE	3.94 0.73	3.81 0.71
SA	3.95 0.70	3.82 0.71

AS Academic self-efficacy, CO Confirmation, CI Continuance intention, IM Intrinsic motivation, PE Performance expectancy, SA = satisfaction
Hypotheses testing

The PLS algorithm was used to assess the fitness of the structural model with available data. Within the PLS method, the coefficient of determination (R^2) is a commonly used parameter (Tompson et al., 1995). An R^2 of 0.75 is considered substantial and a value of 0.50 is considered moderate (Hair, Henseler, et al., 2014; Hair, Sarstedt, et al., 2014). In both surveys, R^2 for continuance intention endogenous latent variable and satisfaction endogenous latent variable exceeded 0.75. R^2 for performance expectancy endogenous latent variable and intrinsic motivation exceeded 0.50 in both surveys. Therefore, all endogenous latent variables were well explained.

The bootstrapping method (5000 resamples) was used to calculate path coefficients (β value) for each survey. Table 3 shows T-values, p-values of the path coefficients, and R^2. As shown in Table 3 and Fig. 3, both surveys had similar results. All other path coefficients were statistically significant except for AS \rightarrow CI. This means that only H4 was rejected, while others were supported.

For the fall 2020 survey, PE ($\beta=0.199$, $p<0.01$), SA ($\beta=0.598$, $p<0.001$), and IM ($\beta=0.136$, $p<0.05$) were positively related to CI, accounting for 78.8% of R^2. Similarly, for the fall 2021 survey, PE ($\beta=0.164$, $p<0.001$), SA ($\beta=0.677$, $p<0.001$), and IM ($\beta=0.057$, $p<0.05$) were positively related to CI, accounting for 76.4% of R^2. In addition, for the fall 2020 survey, PE ($\beta=0.233$, $p<0.01$), CO ($\beta=0.485$, $p<0.001$), and IM ($\beta=0.231$, $p<0.001$) positively impacted SA, accounting for 79.0%. Similarly, for the fall 2021 survey, PE ($\beta=0.363$, $p<0.001$), CO ($\beta=0.483$, $p<0.001$), and IM ($\beta=0.119$, $p<0.001$) positively impacted SA, accounting for 80.1% of R^2. CO ($\beta=0.863$, $p<0.001$) of the fall 2020 survey and CO ($\beta=0.826$, $p<0.001$) of the fall 2021 survey both had significant positive
Table 3 Verification of research hypotheses

Hypothesis Path	Fall 2020 Survey	Fall 2021 Survey								
	Path coefficient	T value	p value	Result	R²	Path coefficient	T value	p value	Result	R²
1 PE—> CI	0.199	2.64**	0.008	Supported	0.788	0.164	4.29***	0.000	Supported	0.764
2 SA—> CI	0.598	7.49***	0.000	Supported	0.677	16.34***	0.000	Supported		
3 IM—> CI	0.136	1.98*	0.048	Supported	0.057	2.07*	0.038	Supported		
4 AS—> CI	0.006	0.12	0.902	Rejected	0.022	0.90	0.369	Rejected		
5 PE—> SA	0.233	3.12**	0.002	Supported	0.790	0.363	9.41***	0.000	Supported	0.801
6 CO—> SA	0.485	6.57***	0.000	Supported	0.483	11.49***	0.000	Supported		
7 IM—> SA	0.231	4.48***	0.000	Supported	0.119	4.29***	0.000	Supported		
8 CO—> PE	0.863	43.24***	0.000	Supported	0.826	59.76***	0.000	Supported		
9 AS—> IM	0.771	21.89***	0.000	Supported	0.593	0.727	32.83***	0.000	Supported	0.529

*p < 0.05; **p < 0.01; ***p < 0.001
effects on PE, accounting for 74.3% and 68.4% of R^2, respectively. Furthermore, AS ($\beta = 0.771, p < 0.001$) of the fall 2020 survey and AS ($\beta = 0.727, p < 0.001$) of the fall 2021 survey had significant positive effects on IM, accounting for 59.3% and 52.9 of R^2, respectively.

Analysis of indirect and total effects among key factors

Fig. 3 and Table 4 show the direct and indirect effects of each factor. PE and IM had both direct and indirect impacts on CI, and S acted as the mediating variable. Although the direct path from AS to CI was rejected, two indirect paths were found to lead from AS to CI, where IM and the combination of IM and S acted as partial mediators.

Furthermore, CO had no direct impact on CI but had three indirect paths to CI through PE, SA, and their combination. IM, PE, and CO had a direct impact on SA. The results showed that IM played a mediating role between AS and SA, while PE played a mediating role in the relationship between CO and SA.

Discussion

The effectiveness of blended learning has been demonstrated by numerous studies. In the case of a compulsive course like a course on the fundamentals of the computer, previous studies have shown that the use of a flipped classroom-based blended learning approach can improve students’ higher-order thinking and computational thinking skills (Cai et al., 2018; Gong, Yang, & Cai, 2020). Therefore, it is essential to encourage students to participate in blended learning courses on an ongoing basis. A better understanding of the factors that affect beginners’ continuance intention in blended learning can help instructors to design, develop, implement, and evaluate blended learning courses that improve students’ learning experience and learning.
Table 4 Analysis of indirect and total effects between key factors

Path	Fall 2020 Survey	Path	Account (indirect/total)	Fall 2021 Survey	Path	Account (indirect/total)
	Effect value	coefficient				
PE- > CI	41.3%	0.199	0.164	40.0%	0.164	
Direct effect						
Indirect effect	PE- > SA- > CI	0.233*0.598 = 0.140	0.140	0.363*0.677 = 0.246	0.246	
Total effect		0.339	0.410			
CO- > CI	100%	0.863*0.199 = 0.172	0.172	0.826*0.164 = 0.135	0.135	
Direct effect						
Indirect effect	CO- > SA- > CI	0.485*0.598 = 0.290	0.290	0.483*0.677 = 0.327	0.327	
Total effect		0.582	0.665			
IM- > CI	50.4%	0.136	0.136	0.057	0.138	
Direct effect						
Indirect effect	AS- > IM- > CI	0.771*0.136 = 0.178	0.178	0.727*0.057 = 0.041	0.041	
Total effect		0.285	0.100			
CO- > SA	29.3%	0.105	0.087	0.087	0.087	
Path	Effect value	Path coefficient	Account (indirect/total)	Effect value	Path coefficient	Account (indirect/total)
------------	--------------	------------------	--------------------------	--------------	------------------	--------------------------
Direct effect	0.485			0.483		
Indirect effect	CO- > PE- > SA	0.863*0.233 = 0.201	0.201	0.826*0.363 = 0.300	0.300	
Total effect	0.686			0.783		
outcomes. The findings of this study therefore have strong practical implications for instructors.

To identify the relationship between key impact factors and beginners’ continuance intention in blended learning, two surveys were implemented in the fall semesters of 2020 and 2021 on first-year students who had just taken their first blended course in college. In both surveys, participants completed the same questionnaire and the same blended course, and the only difference was that they had different majors. Smart PLS was used to calculate the results of both surveys separately. Both surveys had a similar result, and the three key factors of performance expectancy, satisfaction, and intrinsic motivation directly impacted continuance intention. In addition, confirmation and academic self-efficacy indirectly impacted continuance intention.

Students’ satisfaction with blended learning had the strongest effect on their continuance intention which was consistent with a previous study (Alshurideh et al., 2019). The subjective, comprehensive feeling of students and the common judgment element of teaching quality received research attention. Learning satisfaction and its impact factors, such as computer self-efficacy, system functionality, content feature, performance expectancy, interaction, and learning climate have been addressed (Wu et al., 2010).

In this paper, performance expectancy, intrinsic motivation, and confirmation were the main factors impacting satisfaction. Performance expectancy and intrinsic motivation in particular impacted continuance intention both indirectly and directly, which agreed with the results of a previous study (Daneji et al., 2019). In this paper, performance expectancy denotes students’ beliefs regarding whether the use of blended learning can enhance their learning performance. Previous research on “online learning” and “mobile learning” both showed that performance expectancy was a significant determinant of users’ intention for using technology-based learning systems (Chen & Hwang, 2019; Joo, Ham, & Jung, 2014; Wang, Wu, & Wang, 2009). Research also indicated that students who assumed blended learning to be useful for their education would be more likely to adopt it (Tselios et al., 2011). Such a result indicates that it is important for instructors to understand students’ attitudes toward technologies in online or blended learning, especially when dealing with different situations, such as under the influence of COVID-19 (Jiang et al., 2021) and help students to build a positive belief in blended learning at the early stage of learning. Effective strategies include the use of lectures or social influences to help students understand the potential advantages of blended learning and the presentation of successful blended learning courses to students. Intrinsic motivation enables students to engage more deeply in learning, gain better conceptual learning, and persist longer (Vansteenkiste et al., 2006). A previous study showed that intrinsic motivation impacted satisfaction (Brown & Huning, 2010). A previous experiment also showed that students in a blended learning environment had significantly higher levels of intrinsic motivation and better satisfaction than students in a F2F learning environment (Sucaromana, 2013). To improve intrinsic motivation and increase both learning satisfaction and continuance intention, instructors are required to design and implement effective strategies to improve students’ intrinsic motivation. Examples are asking students thought-provoking questions to maintain
their attention, showing how to use course information to solve real problems, making classroom expectations clear, and giving students ample time to practice new skills (Carman, 2005).

In the research model tested in the present paper, although confirmation and academic self-efficacy did not directly affect continuance intention, they still exerted indirect effects. Confirmation refers to the benefits of blended learning students experienced personally after a period of blended learning. Confirmation positively impacts continuance intention through performance expectancy, satisfaction, and their combination, which is consistent with other research results (Bhattacherjee, 2001). This indicates that the accomplishment of students’ expectations on the performance of blended learning is positively connected to their satisfaction and indirectly impacts their continuance intention (Alshurideh et al., 2019). Interestingly, academic self-efficacy was shown to not directly impact continuance intention. This finding contradicts the original hypothesis. However, academic self-efficacy has an indirect relationship with continuance intention. Intrinsic motivation as well as the combination of intrinsic motivation and satisfaction are partial mediators between academic self-efficacy and continuance intention. This means that improving students’ academic self-efficacy helps to enhance their intrinsic motivation and improve their intention to adopt blended learning. Research demonstrated that teaching methods and the type of learning environment affected self-efficacy in the classroom. The designing of suitably challenging tasks, use of specific teaching and learning strategies, implementation of peer learning, concentration on student interests and choices, strengthening efforts and using the right strategies, emphasizing recent successes, as well as providing focused, frequent, and task-specific feedback and stress functional attribution statements are proven ways for improving academic self-efficacy (Margolis & McCabe, 2006).

Limitations and future studies

While the findings of this study have certain important implications for the design, development, implementation, and evaluation of blended learning for beginners, two limitations must be noted. First, both instructors and students can be beginners of blended learning but this study only focused on the student’s perspective while ignoring the instructor’s perspective. Existing research has indicated that observing and addressing instructors’ concerns regarding blended learning are important for their continuous intention in blended learning (Jong, 2019). Second, this study only examined the key factors influencing beginners’ continuance intention in blended learning from one course, namely Fundamentals of the Computer. The survey results are likely influenced by the nature of the course and the knowledge required. Further studies should include instructors who are new to blended learning and should include various types of courses to obtain more comprehensive and accurate results.

Acknowledgements This study is supported by the key project Scientific Research Project of the Education Department of Hubei Province (D20193002) and Hubei Province Teaching research project (2020674). It is also supported by China Postdoctoral Science Foundation-funded project (2018M640738).
References

Alshurideh, M., Al Kurdi, B., & Salloum, S. A. (2019) Examining the main mobile learning system drivers’ effects: A mixed empirical examination of both the Expectation-Confirmation Model (ECM) and the Technology Acceptance Model (TAM). In: Paper Presented at the International Conference on Advanced Intelligent Systems and Informatics https://doi.org/10.1007/978-3-030-31129-2_37

Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227–236. https://doi.org/10.1016/j.compedu.2014.06.006

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall Inc.

Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co. https://doi.org/10.1891/0889-8391.13.2.158

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351–370. https://doi.org/10.2307/3250921

Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17–26. https://doi.org/10.1080/08874417.2008.1164530

Bonk, C. J., & Graham, C. R. (2012). The handbook of blended learning: Global perspectives, local designs. Pfeiffer.

Brown, S., & Huning, T. (2010). Intrinsic motivation and job satisfaction: the intervening role of goal orientation. In: Paper presented at the Allied Academies International Conference. Academy of Organizational Culture, Communications and Conflict. Proceedings

Cai, J., Yang, H. H., Gong, D., MacLeod, J., & Jin, Y. (2018). A case study to promote computational thinking: The lab rotation approach. In International Conference on Blended Learning . Springer, Cham. (pp. 393–403) https://doi.org/10.1007/978-3-319-94505-7_32

Carman, J. M. (2005). Blended learning design: Five key ingredients. Agilant Learning, 1–11

Chen, P. Y., & Hwang, G. J. (2019). An empirical examination of the effect of self-regulation and the Unified Theory of Acceptance and Use of Technology (UTAUT) factors on the online learning behavioural intention of college students. Asia Pacific Journal of Education, 39(1), 79–95. https://doi.org/10.1080/02188791.2019.1575184

Cheng, Y. M. (2014). What drives nurses’ blended e-learning continuance intention? Journal of Educational Technology & Society, 17(4), 203–215. https://doi.org/10.1108/ITP-01-2013-0024

Daneji, A. A., Ayub, A. F. M., & Khambari, M. N. M. (2019). The effects of perceived usefulness, confirmation and satisfaction on continuance Intention in using massive open online course (MOOC). Knowledge Management & E-Learning, 11(2), 201–214. https://doi.org/10.34105/j.kmel.2019.11.010

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95–105. https://doi.org/10.1016/j.iheduc.2004.02.001

Gong, D., Yang, H. H., & Cai, J. (2020). Exploring the key influencing factors on college students’ computational thinking skills through flipped-classroom instruction. International Journal of Educational Technology in Higher Education, 17(1), 19. https://doi.org/10.1186/s41239-020-00196-0

Hair, J. F., Henseler, J., Dijkstra, T. K., & Sarstedt, M. (2014a). Common beliefs and reality about partial least squares: Comments on Rönkkö and Evermann. Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928

Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014b). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Hu, L.-T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424
Jiang, M.Y.-C., Jong, M.S.-Y., Lau, W.W.-F., Meng, Y.-L., Chai, C.-S., & Chen, M. (2021). Validating the general extended technology acceptance model for e-learning: Evidence from an online English as a foreign language course amid COVID-19. *Frontiers in Psychology*. https://doi.org/10.3389/fpsyg.2021.671615

Johnson, L., Becker, S. A., Estrada, V., & Freeman, A. (2015). NMC Horizon Report: 2015 Higher Education Edition: The New Media Consortium

Johnson, N., Veletsianos, G., & Seaman, J. (2020). U.S faculty and administrators’ experiences and approaches in the early weeks of the COVID-19 pandemic. *Online Learning, 24*(2), 6–21. https://doi.org/10.24059/olj.v24i2.2285

Jong, M.S.-Y. (2019). To flip or not to flip: Social science faculty members’ concerns about flipping the classroom. *Journal of Computing in Higher Education, 31*(2), 391–407. https://doi.org/10.1007/s12528-019-09217-y

Joo, Y.-J., Ham, Y.-K., & Jung, B.-K. (2014). Analysis of factors influencing continuous usage intention of mobile learning in cyber university. *The Journal of the Korea Contents Association, 14*(6), 477–490.

Margolis, H., & McCabe, P. P. (2006). Improving self-efficacy and motivation: What to do, what to say. *Intervention in School and Clinic, 41*(4), 218–227. https://doi.org/10.1177/1053451206041004040

Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. *Information Systems Research, 2*(3), 173–191. https://doi.org/10.1287/isre.2.3.173

Oliver, R. L. (1977). Effect of expectation and disconfirmation on postexposure product evaluations: An alternative interpretation. *Journal of Applied Psychology, 62*(4), 480–486. https://doi.org/10.1037/0021-9010.62.4.480

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. *Journal of Marketing Research, 17*(4), 460–469.

Padilla-Meléndez, A., del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. *Computers & Education, 63*, 306–317. https://doi.org/10.1016/j.compedu.2012.12.014

Pelletier, K., Brown, M., Brooks, D.C., McCormack, M., Reeves, J., Arbon, N., Bozkurt, A., Crawford, S., Czerneiwicz, L., Gibson, R., Linder, K., Mason, J. & Mondelli, V. (2021). 2021 EDUCAUSE Horizon Report Teaching and Learning Edition. Boulder, CO: EDU. Retrieved April 7, 2022 from https://www.learntechlib.org/p/219489/.

Pintrich, P. R., Smith, D. A., Garcia, T., & McKeachie, W. J. (1993). Reliability and predictive validity of the Motivated Strategies for Learning Questionnaire (MSLQ). *Educational and Psychological Measurement, 53*(3), 801–813. https://doi.org/10.1177/0013164493053003024

Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. *Computers in Human Behavior, 24*(4), 1585–1604. https://doi.org/10.1016/j.chb.2007.06.001

Sabah, N. M. (2020). Motivation factors and barriers to the continuous use of blended learning approach using Moodle: Students’ perceptions and individual differences. *Behaviour & Information Technology, 39*(8), 875–898. https://doi.org/10.1080/0144929X.2019.1623323

Schunk, D. H. (1990). Goal setting and self-efficacy during self-regulated learning. *Educational Psychologist, 25*(1), 71–86. https://doi.org/10.1207/s15326985ep2501_6

Schunk, D. H., & Ertmer, P. A. (2000). *Self-regulation and academic learning: Self-efficacy enhancing interventions*. Academic Press. https://doi.org/10.1016/B978-012109890-2/50048-2

Sørebs, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. *Computers & Education, 53*(4), 1177–1187. https://doi.org/10.1016/j.compedu.2009.06.001

Sucaromana, U. (2013). The effects of blended learning on the intrinsic motivation of Thai EFL students. *English Language Teaching, 6*(5), 141–147. https://doi.org/10.5539/elt.v6n5p141

Teo, T. S., Lim, V. K., & Lai, R. Y. (1999). Intrinsic and extrinsic motivation in Internet usage. *Omega, 27*(1), 25–37. https://doi.org/10.1016/S0305-0483(98)00028-0

Tompson, R., Barclay, D., & Higgins, C. (1995). The partial least squares approach to causal modelling: Personal computer adoption and uses as an illustration. *Technology Studies: Special Issue on Research Methodology, 2*(2), 284–324.

Tseliou, N., Daskalakis, S., & Papadopoulou, M. (2011). Assessing the acceptance of a blended learning university course. *Journal of Educational Technology & Society, 14*(2), 224–235.
Vansteenkiste, M., Lens, W., & Deci, E. L. (2006). Intrinsic versus extrinsic goal contents in self-determination theory: Another look at the quality of academic motivation. *Educational Psychologist, 41*(1), 19–31. https://doi.org/10.1207/s15326985ep4101_4

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly, 27*(3), 425–478. https://doi.org/10.2307/30036540

Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. *British Journal of Educational Technology, 40*(1), 92–118. https://doi.org/10.1111/j.1467-8535.2007.00809.x

Wei, Y., Shi, Y., Yang, H. H., & Liu, J. (2017). Blended learning versus traditional learning: A study on students’ learning achievements and academic press. In *2017 International Symposium on Educational Technology (ISET)*. IEEE, (pp. 219–223) DOI: https://doi.org/10.1109/ISET.2017.57

Wong, K.K.-K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. *Marketing Bulletin, 24*(1), 1–32.

Wu, J.-H., Tennyson, R. D., & Hsia, T.-L. (2010). A study of student satisfaction in a blended e-learning system environment. *Computers & Education, 55*(1), 155–164. https://doi.org/10.1016/j.compedu.2009.12.012

Yang, H. H., Zhu, S., & MacLeod, J. (2016). Collaborative teaching approaches: Extending current blended learning models. In *International Conference on Blended Learning* (pp. 49–59). https://doi.org/10.1007/978-3-319-41165-1_5

Yang, Z. K. (2020). Promote the internationalization of higher education by informatization. *China Education Daily.*

Zhou, J. (2017). Exploring the factors affecting learners’ continuance intention of MOOCs for online collaborative learning: An extended ECM perspective. *Australasian Journal of Educational Technology.* https://doi.org/10.14742/ajet.2914

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

He Yang is an associate professor of Hubei University of Education. She is also a postdoctoral fellow of Wuhan Huada National E-Learning Technologies Co., Ltd and visiting scholar of State University of New York at Oswego, USA. Her main areas of interest are e-learning and Application of artificial intelligence techniques in learning analysis.

Jin Cai is an associate professor at the Hubei University of Education, China. She is also a member of Dr. Yang’s research team, engaged in teaching and research related to educational technology. Her research interests include e-learning and design for technology supported learning.

Harrison Hao Yang is a Professor of School of Education at State University of New York at Oswego, USA. He also holds a Distinguished Professor position in National Engineering Research Centre for E-Learning at Central China Normal University, China. His research specialties include assessment and e-folios, distance/flexible education, information literacy, information technology diffusion/integration, e-learning and learning communities, etc.

Xiaochen Wang is an associate professor at the Capital Normal University. Her research interests include ICT in education and open educational resource.