VERY SMALL INTERVALS CONTAINING AT LEAST THREE PRIMES

VLADIMIR SHEVELEV

ABSTRACT. Let p_n is the n-th prime. With help of the Cramér-like model, we prove that the set of intervals of the form $(2p_n, 2p_{n+1})$ containing at list 3 primes has a positive density with respect to the set of all intervals of such form.

1. Introduction

Everywhere below we understand that p_n is the n-th prime and \mathbb{P} is the class of all increasing infinite sequences of primes. If $A \in \mathbb{P}$ then we denote \mathcal{A} the event that prime p is in A. In particular, an important role in our constructions play the following sequences from \mathbb{P}: A_i is the sequence of those primes p_k, for which the interval $(2p_k, 2p_{k+1})$ contains at least i primes, $i = 1, 2, ...$. By $\mathcal{A}_i(n)$, we denote the event that p_n is in A_i, $i = 1, 2, ...$

In [1] we considered the following problem. Let p be an odd prime. Let, furthermore, $p_n < p/2 < p_{n+1}$. According to the Bertrand’s postulate, between $p/2$ and p there exists a prime. Therefore, $p_{n+1} \leq p$. Again, by the Bertrand’s postulate, between p and $2p$ there exists a prime. More subtle question is the following.

Problem 1. Consider the sequence S of primes p possessing the property: if $p/2$ lies in the interval (p_n, p_{n+1}) then there exists a prime in the interval $(p, 2p_{n+1})$. With what probability a random prime q belongs to S (or the event S does occur)?

In this paper we prove the following theorem.

Theorem 1. The set of intervals of the form $(2p_n, 2p_{n+1})$ containing at list 3 primes has a positive density with respect to the set of all intervals of such form.

2. Criterions for R-primes, L-primes and RL-primes

In [1] we found a sieve for the separating R-primes from all primes and shown how to receive the corresponding sieve for L-primes. Now we give simple criterions for them.

1991 Mathematics Subject Classification. Primary 11A41, secondary 11B05.
Theorem 2. 1) p_n is \mathbf{R}-prime if and only if $\pi(\frac{p_n}{2}) = \pi(\frac{p_n+1}{2})$;
2) p_n is \mathbf{L}-prime if and only if $\pi(\frac{p_n}{2}) = \pi(\frac{p_n-1}{2})$;
3) p_n is \mathbf{RL}-prime if and only if $\pi(\frac{p_n-1}{2}) = \pi(\frac{p_n+1}{2})$.

Proof. 1) Let $\pi(\frac{p_n}{2}) = \pi(\frac{p_n+1}{2})$ is valid. Now if $p_k < p_n/2 < p_{k+1}$, and between $p_n/2$ and $p_{n+1}/2$ do not exist primes. Thus $p_{n+1}/2 < p_{k+1}$ as well. Therefore, we have $2p_k < p_n < p_{n+1} < 2p_{k+1}$, i.e. p_n is \mathbf{R}-prime. Conversely, if p_n is \mathbf{R}-prime, then $2p_k < p_n < p_{n+1} < 2p_{k+1}$, and $\pi(\frac{p_n}{2}) = \pi(\frac{p_n+1}{2})$ is valid. 2) is proved quite analogously and 3) follows from 1) and 2). ■

3. Proof of a "precise symmetry" conjecture

We start with a proof of the following conjecture [1].

Conjecture 1. Let \mathbf{R}_n (\mathbf{L}_n) denote the n-th term of the sequence \mathbf{R} (\mathbf{L}). Then we have

\begin{equation}
\mathbf{R}_1 \leq \mathbf{L}_1 \leq \mathbf{R}_2 \leq \mathbf{L}_2 \leq \ldots \leq \mathbf{R}_n \leq \mathbf{L}_n \leq \ldots
\end{equation}

Proof of Conjecture 1. It is clear that the intervals of considered form, containing not more than one prime, contain neither \mathbf{R}-primes nor \mathbf{L}-primes. Moving such intervals, consider the first from the remaining ones. The first its prime is an \mathbf{R}-prime (\mathbf{R}_1). If it has only two primes, then the second prime is an \mathbf{L}-prime (\mathbf{L}_1), and we see that (\mathbf{R}_1) < (\mathbf{L}_1); on the other hand if it has k primes, then beginning with the second one and up to the $(k-1)$-th we have \mathbf{RL}-primes, i.e. primes which are simultaneously \mathbf{R}-primes and \mathbf{L}-primes. Thus, taking into account that the last prime is only \mathbf{L}-prime, we have

$\mathbf{R}_1 < \mathbf{L}_1 = \mathbf{R}_2 = \mathbf{L}_2 = \mathbf{R}_3 = \ldots = \mathbf{L}_{k-1} = \mathbf{R}_{k-1} < \mathbf{L}_k$.

The second remaining interval begins with an \mathbf{R}-prime and the process repeats. ■

Remark 1. Note that a corollary that "the number of \mathbf{RL}-primes not exceeding x is not less than the number of A_3-primes not exceeding $x"$ is absolutely erroneously. Indeed, we should take into account that every interval of the form $\left(2p_n, 2p_{n+1}\right)$ containing \mathbf{RL}-prime contains at least 3 primes not exceeding x. A right corollary is the following. Since, by the condition of Problem 1, a prime p already lies in an interval $\left(2p_n, 2p_{n+1}\right)$, then we should consider only intervals containing at least prime. Denote \mathcal{A}_k, $k = 1, \ldots$, the event that a random interval $\left(2p_n, 2p_{n+1}\right)$ contains at least k, 1, 2, ... primes. If $P(\mathcal{A}_1) = q$, then we have
(3.2) \[P(A_k) = q^k, \quad k = 1, 2, \ldots \]

Let, furthermore, \(A^{(k)} \), \(k = 1, \ldots \), the event that a random interval \((2p_n, 2p_{n+1})\) contains exact \(k \), \(1, 2, \ldots \) primes. Then, by (3.2),

\[P(A^{(k)}) = P(A_k) - P(A_{k+1}) = (q - 1)q^k, \quad k = 1, 2, \ldots \]

and we have

(3.3) \[P(\text{RL}) = (1 - q) \sum_{k \geq 3} \frac{k - 2}{k} q^{k-1} = 2 - q + 2 \frac{1 - q}{q} \ln(1 - q). \]

4. Proof of Theorem 1

The theorem immediately follows from the positivity of probability \(P(\text{RL}) \). In fact, in [1] we proved that \(q \approx 0.8010 \) and \(P(\text{RL}) \approx 0.3980 \). ■

Note that by the Cramér’s 1937 conjecture \(2p_{n+1} - 2p_n < (2 + \varepsilon) \ln^2 n \). Thus, there exists an infinite sequence of the intervals of such small length, but having at least three primes, and, moreover, this sequence has a positive density with respect to the sequence of all intervals of the form \((2p_n, 2p_{n+1})\). By this way, in view of (3.2), it could be proved a more general result.

Theorem 3. Let \(h \) be arbitrary large but a fixed positive integer. Then the set of intervals of the form \((2p_n, 2p_{n+1})\) containing at least \(h \) primes has a positive density with respect to the set of all intervals of such form.

Quite analogously one can consider an \(m \)-generalization of Theorem 1 for every \(1 < m < 2 \). Here the case of especial interest is the case of the values of \(m \) close to 1.

References

[1] V. Shevelev Three probabilities concerning prime gaps [http://arxiv.org/abs/0909.0715]
[2] V. Shevelev Critical small intervals containing primes [http://arxiv.org/abs/0908.2319]

Departments of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. e-mail:shevelev@bgu.ac.il