4-Dimensional Power Geometry and its Application to $P_1 - P_5$

Anastasia V. Parusnikova

Abstract

In the first section of this work we introduce 4-dimensional Power Geometry for second-order ODEs of a polynomial form. In the next five sections we apply this construction to the first five Painlevé equations.

Keywords: Painlevé equations, asymptotic expansions.

MSC classes: 34m25, 34m55.

1 4-dimensional Power Geometry

We introduce definitions and notations of 4-dimensional Power Geometry analogous to the way it has been done in two and three-dimensional cases in [1] and [2].

Let us be given a second order differential equation of the form

$$f(z, w, w', w'') = 0,$$ \hspace{1cm} (1)

where $f(z, w, w', w'')$ is a polynomial, z is an independent, w is a dependent variable, $w' = dw/dz$.

To each monomial $a(z, w)$ in polynomial (1) we put in correspondance its four-dimensional exponent $Q(a(z, w)) = (q_1, q_2, q_3, q_4)$ according to the following rule:

$$Q(c z^r w^s) = (r, s, 0, 0); \quad Q\left(\frac{dw}{dz}\right) = (0, 0, 1, 0); \quad Q\left(\frac{d^2w}{dz^2}\right) = (0, 0, 0, 1);$$

$$Q(a(z, w)b(z, w)) = Q(a(z, w)) + Q(b(z, q)).$$

The set of all exponents of the monomials in polynomial $f(z, w)$ is called a support of a differential sum $f(z, w)$ and is denoted as $\tilde{S}(f)$. The convex hull $\Gamma(f)$ of the support $\tilde{S}(f)$ is called polyhedron of a differential sum $f(z, w)$, the boundary $\partial \Gamma(f)$ consists of the vertices $\Gamma_j^{(0)}$, edges $\Gamma_j^{(1)}$, two-dimensional faces $\Gamma_j^{(2)}$ and three-dimensional faces $\Gamma_j^{(3)}$ (hyper faces).
We put in correspondence a truncated equation \(f_j^{(d)}(z, w, w', w'') = 0 \) to every edge \(\Gamma_j^{(d)} \), where

\[
 f_j^{(d)}(z, w, w', w'') = \sum a_s(z, w)
\]

\(a_s(z, w) : Q(a_s(z, w)) \in \Gamma_j^{(d)} \).

Let us compare a four-dimensional construction with three and two-dimensional ones.

In three-dimensional case we put in correspondence to each differential monomial \(a(z, w) \) its three-dimensional exponent \(Q(a(z, w)) = (q_1, q_2, q_3) \) according to the following rule:

\[
 Q(cz^r w^s) = (r, s, 0); \ Q \left(\frac{d^l w}{dz^l} \right) = (0, 1, l);
\]

\[
 Q(a(z, w) b(z, w)) = Q(a(z, w)) + Q(b(z, w)).
\]

In three-dimensional case we put in correspondence to each differential monomial \(a(z, w) \) its three-dimensional exponent \(Q(a(z, w)) = (q_1, q_2, q_3) \) according to the following rule:

\[
 Q(cz^r w^s) = (r, s, 0); \ Q \left(\frac{d^l w}{dz^l} \right) = (-l, 1);
\]

\[
 Q(a(z, w) b(z, w)) = Q(a(z, w)) + Q(b(z, w)).
\]

Let us redefine a notion of order of the function. Let us be given a function \(\psi(z) \), for which infinity is not an accumulation point of poles and zeroes, \(z = re^{i\varphi} \). We call

\[
 p_+(\psi(z), \varphi) = \lim_{r \to \infty} \frac{\ln|\psi(re^{i\varphi})|}{\ln|r|}
\]

an order of a function on a ray with direction \(\varphi \) \((z \to \infty)\) if this limit exists.

Let us be given a function \(\psi(z) \), for which zero is not an accumulation point of poles and zeroes of the function, \(z = re^{i\varphi} \). We call

\[
 p_-(\psi(z), \varphi) = \lim_{r \to 0} \frac{\ln|\psi(re^{i\varphi})|}{\ln|r|}
\]

an order of a function on a ray with direction \(\varphi \) \((z \to 0)\) if this limit exists.

These orders of a function \(f(z) \) are of special interest if they coincide for \(\varphi \in (\varphi_1, \varphi_2) \), i.e. for points in some sector on Riemann surface of the logarithm.

Thus we see that in two-dimensional case construction of the support assumes automatically that formal asymptotics of the solutions to the equation satisfy the following condition: order of the derivative of the function is one less that an order of the function (for example, the function \(z^n \) satisfies this condition).
In the three-dimensional structure is assumed that at each differentiation order of the function is changed by $\gamma_1 \in \mathbb{R}$. Functions with $\gamma_1 \neq 1$ as in 2-D variant also exist: consider $p_-(\sin z, 0)$ and $p_-(\cos z, 0)$.

Introduction of the fourth coordinate differential monomials exponents included in the second order ODEs is due to the following condition on the asymptotic behavior of the possible solutions: the first differentiation changes order of a function by $\gamma_1 \in \mathbb{R}$, the second differentiation changes order of a function by $\gamma_2 \in \mathbb{R}$. In 2-D construction $\gamma_1 = \gamma_2 = 1$, in 3-D construction $\gamma_1 = \gamma_2$. Functions with $\gamma_1 \neq \gamma_2$ exist: consider $p_-(z + z^\alpha, 0)$, $p_-(1 + z^\alpha, 0)$ and $p_-(z^\alpha - 2, 0)$, $\alpha > 1$.

We formulate a necessary condition of the fact that a truncated equation corresponding to hyper-face in four-dimensional case can have a solution which is an asymptotic form of a solution to the initial equation.

Assertion 1. Let us be given a differential equation of the second order. We consider a truncated equation corresponding to a hyper face $\Gamma^{(3)}$ with an external normal $N = (n_1, n_2, n_3, n_4)$. If $n_1 = 0$, then a truncated equation has no solution of finite order which can be an asymptotic form of the solution to the initial equation.

Proof. Negative proof. Let the hyper face have an external normal $N = (0, n_2, n_3, n_4)$, hyperplane containing the face has an equation $n_2 q_2 + n_3 q_3 + n_4 q_4 + e = 0$. (2)

There exist 4 points $Q_i = (q_{1i}, q_{2i}, q_{3i}, q_{4i}), i = 1, \ldots, 4$ in the face, which lie on the hyperplane (2) but do not lie in a plane of smaller dimension. That means that the rank of the matrix $Q = (q_{ij}), i, j = 1, \ldots, 4$ is equal to three.

All the points Q_i satisfy an equation (2). We subtract from each equation the first equation and obtain a system

$$\hat{Q} = (q_{ij} - q_{i1}), i = 1, \ldots, 4, j = 1, 2, 3.$$

As $\hat{Q} N^T = 0$, and $N = (0, n_2, n_3, n_4)$, we obtain that the matrix $\hat{Q} = (q_{ij} - q_{i1}), i = 2, \ldots, 4, j = 1, 2, 3$ has a rank less than three. If we assume that it is less than two we arrive at a contradiction, we obtain that the rank of \hat{Q} is equal to two, i.e. its columns are linearly dependent.

If a truncated equation corresponding to a hyper face has a solution an order of which is equal to γ, an order of the first derivative is equal to γ_1, an order of the second derivative is equal to γ_2, then the points $Q_i, i = 1, \ldots, 4$ satisfy the system

$$q_{1i} + q_{2i} \gamma + q_{3i} \gamma_1 + q_{4i} \gamma_2 + f = 0, i = 1, \ldots, 4.$$

We subtract from the second, third and fourth equation the first one and obtain a system

$$\hat{Q} x = y,$$
where $x = (\gamma, \gamma_1, \gamma_2)^T$, $y = (q_{11} - q_{12}, q_{11} - q_{13}, q_{11} - q_{14})^T$. But the rank of the matrix \hat{Q} is equal to 2, and a column y is a linear combination of the columns of the matrix \hat{Q}. We obtain that rank of the matrix \hat{Q} is equal to 2: this leads us to contradiction.

2 The first Painlevé equation

The first Painlevé equation

$$w'' = 6w^2 + z$$

has one singular point $z = \infty$.

All three points of the support, of course, lie in the plane of dimension 3, so the use of the methods of four-dimensional power geometry does not make sense.

3 The second Painlevé equation

We consider the second Painlevé equation

$$w'' = 2w^3 + zw + \alpha,$$

where α is a complex parameter. The equation has one singular point $z = \infty$.

The support of the equation consists of four points: $(0, 0, 0, 1)$, $(0, 3, 0, 0)$, $(1, 1, 0, 0)$ and $(0, 0, 0, 0)$, all these points lie in a hyperplane $q_3 = 0$, an external normal to it is equal either to $(0, 0, 1, 0)$ or to $(0, 0, -1, 0)$. According to the assertion 1 we obtain that the truncated solution has no solutions the leading term of which with its derivatives have a finite order.

4 The third Painlevé equation $\alpha \beta \gamma \delta \neq 0$

We consider the third Painlevé equation

$$w'' = \frac{(w')^2}{w} - \frac{w'}{z} + \frac{\alpha w^2 + \beta}{z} + \gamma w^3 + \frac{\delta}{w},$$

where $\alpha, \beta, \gamma, \delta$ are complex parameters, the equation (3) has two singular points: $z = 0$ and $z = \infty$.

We rewrite the equation (3) in a form of a differential sum:

$$f_3(z, w) \overset{def}{=} -zw'' + z (w')^2 - w w' + \alpha w^3 + \beta w + \gamma z w^4 + \delta z = 0. \quad (4)$$
The four-dimensional support of the equation (4) consists of the points

\[Q_1 = (1, 0, 0, 0), \ Q_2 = (1, 4, 0, 0), \ Q_3 = (0, 1, 0, 0), \ Q_4 = (0, 3, 0, 0), \]
\[Q_5 = (0, 1, 1, 0), \ Q_6 = (1, 0, 2, 0), \ Q_7 = (1, 1, 0, 1). \]

A convex hull of the equation (4) is a polygon with vertices \(Q_1, \ldots, Q_7 \).

Its hyper faces are \(\Gamma_1^{(3)} = \text{conv}(Q_1, \ldots, Q_6), \Gamma_2^{(3)} = \text{conv}(Q_1, Q_3, Q_5, Q_6, Q_7), \)
\[\Gamma_3^{(3)} = \text{conv}(Q_1, Q_2, Q_6, Q_7), \Gamma_4^{(3)} = \text{conv}(Q_1, Q_2, Q_3, Q_4, Q_7), \]
\[\Gamma_5^{(3)} = \text{conv}(Q_2, Q_3, \ldots, Q_7), \Gamma_6^{(3)} = \text{conv}(Q_3, Q_4, Q_5, Q_7). \]

According to the Assertion 1 we consider only the following 3D faces (i.e. the faces the first coordinate of the external normal to which is not equal to zero):

1. \(\Gamma_2^{(3)} \) lies in the plane \(q_1 + q_2 - q_4 - 1 = 0 \) with an external normal \(N_2 = (-1, -1, 0, 1) \). The truncated equation corresponding to the face

\[-zw'' + z(w')^2 - w w' + \beta w + \delta z = 0 \]

has already been considered as a truncated equation corresponding to a 2D face in 3D case and as a truncated equation corresponding to an edge in 2D case.

2. \(\Gamma_3^{(3)} \) lies in the plane \(q_1 = 1 \) with an external normal \(N_3 = (-1, 0, 0, 0) \). The truncated equation corresponding to the face

\[-zw'' + z(w')^2 + \gamma zw^4 + \delta z = 0 \]

has already been considered as a truncated equation corresponding to a 2D face in 3D case.

3. \(\Gamma_5^{(3)} \) lies in the plane \(q_1 - q_2 - 2q_3 - 3q_4 + 3 = 0 \) with an external normal \(N_5 = (-1, 1, 2, -3) \). The truncated equation corresponding to the face

\[-zw'' + z(w')^2 - w w' + \alpha w^3 + \gamma zw^4 = 0 \]

has already been considered as a truncated equation corresponding to an edge in 2D case.

4. \(\Gamma_6^{(3)} \) lies in the plane \(q_1 - q_4 = 0 \) with an external normal \(N_6 = (-1, 0, 0, 1) \). The truncated equation corresponding to the face

\[-zw'' - w w' + \alpha w^3 + \beta w = 0. \]

This equation has not been considered neither in 2D nor in 3D case.

The external normals to the faces \(\Gamma_1^{(3)} \) (\(q_4 = 0, N_1 = (0, 0, 0, -1) \)) and \(\Gamma_4^{(3)} \) (\(q_3 = 0, N_4 = (0, 0, -1, 0) \)) do not satisfy Assertion 1.
5 The fourth Painlevé equation $\alpha \beta \neq 0$

We consider the fourth Painlevé equation
\[w'' = \frac{(w')^2}{w} - \frac{3}{2} w^3 + 4z w^2 + 2(z^2 - \alpha)w + \frac{\beta}{w}, \tag{5} \]
where α, β, are complex parameters.

We rewrite the equation (5) in a form of a differential sum:
\[f_4(z, w) \triangleq -2ww'' + (w')^2 + 3w^4 + 8zy^4 + 4(z^2 - \alpha)w^2 + 2\beta = 0. \tag{6} \]

The 4D support of the equation (6) consists of the points
\[Q_1 = (0, 0, 0, 0), \ Q_2 = (0, 2, 0, 0), \ Q_3 = (2, 2, 0, 0), \ Q_4 = (1, 3, 0, 0), \ Q_5 = (0, 4, 0, 0), \ Q_6 = (0, 0, 2, 0), \ Q_7 = (0, 1, 0, 1). \tag{7} \]

A convex hull of the equation (4) is a polygon with vertices Q_1, Q_3, Q_5, Q_6, Q_7 with hyper faces $\Gamma_1^{(3)} = \text{conv}(Q_1, \ldots, Q_6), \Gamma_2^{(3)} = \text{conv}(Q_3, \ldots, Q_7), \Gamma_3^{(3)} = \text{conv}(Q_1, Q_3, Q_6, Q_7), \Gamma_4^{(3)} = \text{conv}(Q_1, \ldots, Q_5, Q_7), \Gamma_5^{(3)} = \text{conv}(Q_1, Q_2, Q_5, Q_6, Q_7).

According to the Assertion 1 we consider only the following 3D faces:

1. $\Gamma_2^{(3)}$ lies in the plane $q_1 + q_2 + 2q_3 + 3q_4 = 0$ with an external normal $N_2 = (1, 1, 2, 3)$. The truncated equation corresponding to the face
\[-2ww'' + (w')^2 + 3w^4 + 8zy^4 + 4z^2w^2 = 0\]
has already been considered as a truncated equation corresponding to a 2D face in 3D case.

2. $\Gamma_3^{(3)}$ lies in the plane $q_1 - q_2 + q_4 = 0$ with an external normal $N_3 = (1, -1, 0, 1)$. The truncated equation corresponding to the face
\[-2ww'' + (w')^2 + 4z^2w^2 + 2\beta = 0\]
has already been considered as a truncated equation corresponding to a 2D face in 3D case.

3. $\Gamma_5^{(3)}$ lies in the plane $q_4 = 0$ with an external normal $N_5 = (-1, 0, 0, 0)$. The truncated equation corresponding to the face
\[-2ww'' + (w')^2 + 3w^4 - 4\alpha w^2 + 2\beta = 0\]
has already been considered as a truncated equation corresponding to a 2D face in 3D case.

The external normals to the faces $\Gamma_1^{(3)}$ with equation $q_4 = 0$ and $\Gamma_4^{(3)}$ with equation $q_3 = 0$ ($N_1 = (0, 0, 0, -1)$ and $N_4 = (0, 0, -1, 0)$) do not satisfy the above conditions.
6 The fifth Painlevé equation (the case $\delta \neq 0$)

We consider the fifth Painlevé equation

$$w'' = \left(\frac{1}{2w} + \frac{1}{w-1} \right) (w')^2 - \frac{w'}{z} + \frac{(w-1)^2}{z^2} \left(\alpha w + \frac{\beta}{w} \right) + \gamma w + \frac{\delta w(w+1)}{w-1},$$

where $\alpha, \beta, \gamma, \delta$ are complex parameters. The equation has two singular points $z = 0$ and $z = \infty$.

We represent the fifth Painlevé equation in a form of a differential sum:

$$f(z, w) \overset{def}{=} -z^2w(w-1)w'' + z^2 \left(\frac{3}{2}w - \frac{1}{2} \right) (w')^2 - zw(w-1)w' + (w-1)^3(\alpha w^2 + \beta) + \gamma z w^2(w-1) + \delta z^2 w^2(w+1) = 0. \quad (8)$$

The 4D support of the equation (6) consists of the points

\begin{align*}
Q_1 & = (2,3,0,1), \ Q_2 = (2,2,0,1), \ Q_3 = (2,3,2,0), \ Q_4 = (2,2,2,0), \\
Q_5 & = (1,2,1,0), \ Q_6 = (1,3,1,0), \ Q_7 = (0,0,0,0), \ Q_8 = (0,5,0,0), \\
Q_9 & = (1,2,0,0), \ Q_{10} = (1,3,0,0), \\
Q_{11} & = (2,2,0,0), \ Q_{12} = (2,3,0,0), \\
Q_{13} & = (0,1,0,0), \ Q_{14} = (0,2,0,0), \ Q_{15} = (0,3,0,0), \ Q_{16} = (0,4,0,0).
\end{align*}

A convex hull of the equation (6) is a polygon with vertices Q_1, Q_2, Q_3, Q_4, Q_7, Q_8, Q_{11}, Q_{12} with hyper faces

$$\Gamma_1^{(3)} = \text{conv}(Q_1, Q_2, Q_3, Q_4, Q_{11}, Q_{12}), \quad \Gamma_2^{(3)} = \text{conv}(Q_2, Q_3, Q_7, Q_{11}),$$

$$\Gamma_3^{(3)} = \text{conv}(Q_1, Q_2, Q_7, Q_{12}, Q_{13}, \ldots, Q_{16}), \quad \Gamma_4^{(3)} = \text{conv}(Q_1, Q_3, Q_8, \ldots, Q_{12}),$$

$$\Gamma_5^{(3)} = \text{conv}(Q_3, \ldots, Q_{12}, Q_{13}, \ldots, Q_{16}), \quad \Gamma_6^{(3)} = \text{conv}(Q_1, \ldots, Q_8, Q_{13}, \ldots, Q_{16}).$$

According to the Assertion 1 we consider only the following 3D faces:

1. $\Gamma_1^{(3)}$ lies in the plane $q_1 = 2$ with an external normal $N_1 = (1,0,0,0)$. The truncated equation corresponding to the face

$$-z^2w(w-1)w'' + z^2 \left(\frac{3}{2}w - \frac{1}{2} \right) (w')^2 + \delta z^2 w^2(w+1) = 0$$

has already been considered as a truncated equation corresponding to a 2D face in 3D case.
2. $\Gamma^{(3)}_2$ lies in the plane $q_1 - q_2 - q_3 - q_4 = 0$ with an external normal $N_2 = (1, -1, -1, -1)$. The truncated equation corresponding to the face

$$z^2 w'' - \frac{1}{2} z^2 (w')^2 - \beta + \delta z^2 w = 0$$

has already been considered as a truncated equation corresponding to a 2D face in 3D case.

3. $\Gamma^{(3)}_4$ lies in the plane $q_1 + q_2 + q_3 + q_4 - 5 = 0$ with an external normal $N_4 = (1, 1, 1, 1)$. The truncated equation corresponding to the face

$$-z^2 w^2 w'' + \frac{3}{2} z^2 w (w')^2 + \alpha w^5 + \delta z^2 w^3 = 0$$

has already been considered as a truncated equation corresponding to a 2D face in 3D case.

4. $\Gamma^{(3)}_6$ lies in the plane $q_1 - q_3 - 2q_4 = 0$ with an external normal $N_6 = (1, 0, -1, -2)$. The truncated equation corresponding to the face

$$-z^2 w(w - 1)w'' + z^2 \left(\frac{3}{2} w - \frac{1}{2} \right) (w')^2 - zw(w - 1)w' + (w - 1)^3 (\alpha w^2 + \beta) = 0$$

has already been considered as a truncated equation corresponding to a 2D face in 3D case, this equation can be solved directly.

The external normals to the faces $\Gamma^{(3)}_3$ with equation $q_3 = 0$ and $\Gamma^{(3)}_5$ with equation $q_4 = 0 (N_3 = (0, 0, -1, 0)$ and $N_5 = (0, 0, 0, -1))$ do not satisfy the above conditions.

References

[1] A. D. Bruno. Asymptotic behavior and expansions of solutions to an ordinary differential equation, Uspekhi Mat. Nauk 59 (2004), no. 3, 31-80; English transl.: Russian Math. Surveys 59 (2004), 429–480.

[2] A. D. Bruno. Space Power Geometry for an ODE and Painlevé equations // International Conference "Painlevé Equations and Related Topics". St. Petersburg, June, 2011. P. 36-41.

[3] V. I. Gromak, I. Laine, S. Shimomoura, Painlevé Differential Equations in the Complex Plane // Walter de Gruter. Berlin, New York, 2002. 303 p.

Affiliations.
National Research University Higher School of Economics,
