Supplementary Information

Origin of Low Melting Point of Ionic Liquids: Dominant Role of Entropy

Takatsugu Endo, Kouki Sunada, Hiroki Sumida, and Yoshifumi Kimura

Corresponding Author: Takatsugu Endo
Email: taendo@mail.doshisha.ac.jp

This PDF file includes:

- Supplementary text
- Figures S1 to S15
- Tables S1 to S12
- SI References
Details of IL synthesis.
1,3-dimethylimidazolium iodide ([C$_{1}$mim]I): 1-Methylimidazole (0.268 mol, 22.0 g) and a slight excess amount of iodomethane (0.295 mol, 41.9 g) were dissolved in ethyl acetate. The solution was stirred under an inert atmosphere for 1 hour in an ice bath. The precipitate was washed with ethyl acetate five times, and subsequently recrystallized with acetone. A colorless crystal of [C$_{1}$mim]I was obtained via filtration (yield: 94%).
1H-NMR (DMSO-d$_6$): δ (in ppm) = 9.07 (1H, s, NCH$_2$N), 7.69 (2H, t, NCH$_2$CH), 3.82 (6H, s, (NCH$_3$)$_2$)
13C-NMR (DMSO-d$_6$): δ (in ppm) = 137.5 (s, NCHN), 123.9 (s, NCH$_2$CH), 36.4 (s, NCH$_3$) Water content: 20 ppm

1,3-dimethylimidazolium nitrate ([C$_{1}$mim]NO$_3$): AgNO$_3$ (0.031 mol, 5.27 g) was added into [C$_{1}$mim]I (0.034 mol, 7.62 g) aqueous solution. The solution was stirred for 2 hours with light shielding. After the reaction, the precipitant (AgI) was removed by filtration, and the solvent was removed by evaporation. The obtained solid was dissolved in dichloromethane, which produces white precipitant (residual AgI). The precipitant and dichloromethane were removed by filtration and evaporation, respectively. This residual byproduct-removing process was repeated until no precipitant was observed. After the final evaporation, the obtained solid was recrystallized with acetonitrile. A colorless crystal was then obtained via filtration (yield: 64%).
1H-NMR (DMSO-d$_6$): δ (in ppm) = 9.08 (1H, s, NCH$_2$N), 7.67 (2H, t, NCH$_2$CH), 3.82 (6H, s, (NCH$_3$)$_2$)
13C-NMR (DMSO-d$_6$): δ (in ppm) = 137.7 (s, NCHN), 123.9 (s, NCH$_2$CH), 36.1 (s, NCH$_3$) Water content: 60 ppm I' content: 320 ppm

1,3-dimethylimidazolium acetate ([C$_{1}$mim]CH$_3$CO$_2$): By passing acetic acid (0.235 mol, 14.1 g) aqueous solution through a column filled with the ion exchange resin (Amberlite IRN78, hydroxide form, 55 ml), the ion exchange resin of CH$_3$CO$_2$ form was obtained. Subsequently, [C$_{1}$mim]I (0.031 mol, 6.95 g) dissolved in distilled water was passed through the column to produce [C$_{1}$mim]CH$_3$CO$_2$ aqueous solution. No detectable iodide salt was confirmed in the solution by the AgNO$_3$ test. Water was removed from the solution by evaporation and subsequent vacuuming. After washing with ethyl acetate, the obtained solid was recrystallized with acetonitrile to give a colorless crystal (yield: 90%).
1H-NMR (DMSO-d$_6$): δ (in ppm) = 10.18 (1H, s, NCH$_2$N), 7.83 (2H, t, NCH$_2$CH), 3.84 (6H, s, (NCH$_3$)$_2$), 1.54 (3H, s, CH$_3$COO)
13C-NMR (DMSO-d$_6$): δ (in ppm) = 173.7 (s, CH$_3$COO), 139.1 (s, NCHN), 123.9 (s, NCH$_2$CH), 35.8 (s, NCH$_3$), 26.9 (s, CH$_3$COO) Water content: 530 ppm

1,3-dimethylimidazolium trifluoroacetate ([C$_{1}$mim]CF$_3$CO$_2$): 1-Methylimidazole (0.050 mol, 4.11 g) and a slight excess amount of methyl trifluoroacetate (0.055 mol, 7.04 g) were dissolved in ethyl acetate. The solution was stirred under an inert atmosphere for 1 day at 373 K. The obtained solid was washed with ethyl acetate five times, and subsequently recrystallized with acetonitrile. A colorless crystal of [C$_{1}$mim]CF$_3$CO$_2$ was obtained via filtration (yield: 61%).
1H-NMR (DMSO-d$_6$): δ (in ppm) = 9.16 (1H, s, NCH$_2$N), 7.69 (2H, t, NCH$_2$CH), 3.82 (6H, s, (NCH$_3$)$_2$)
13C-NMR (DMSO-d$_6$): δ (in ppm) = 158.5 (q, CF$_3$COO), 137.7 (s, NCHN), 124.0 (s, NCH$_2$CH), 115.9 (s, CF$_3$COO), 36.1 (s, NCH$_3$)
19F-NMR (DMSO-d$_6$): δ (in ppm) = -73.5 (3F, s, CF$_3$COO) Water content: 40 ppm

1,3-dimethylimidazolium mesylate ([C$_{1}$mim]CH$_3$SO$_3$): 1-Methylimidazole (0.100 mol, 8.21 g) and a slight excess amount of methyl methanesulfonate (0.110 mol, 12.1 g) were dissolved in ethyl acetate. The solution was stirred under an inert atmosphere for 1 day in an ice bath. The obtained
solid was washed with ethyl acetate five times, and subsequently recrystallized with acetonitrile. A colorless crystal of \([\text{C}_{3}\text{mim}]\text{CH}_3\text{SO}_3\) was obtained via filtration (yield: 94%).

\(^1\text{H}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 9.13 (1\text{H, s, NCHN}), 7.69 (2\text{H, t, NCHCH}), 3.82 (6\text{H, s, (NCH}_3)_2\text{)}, 2.32 (3\text{H, s, CH}_3\text{SO}_3)\)

\(^1\text{C}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 137.8 (\text{s, NCHN}), 124.0 (\text{s, NCHCH}), 40.4 (\text{s, CH}_2\text{SO}_3), 36.1 (\text{s, NCH}_3)\)

Water content: 120 ppm.

1,3-dimethylimidazolium trifluoromethanesulfonate ([C\text{\textsubscript{1}}\text{mim}]\text{CF}_3\text{SO}_3\text{}): 1-Methylimidazole (0.050 mol, 4.11 g) and a slight excess amount of methyl trifluoromethanesulfonate (0.055 mol, 9.03 g) were dissolved in ethyl acetate. The solution was stirred under an inert atmosphere for 1 day in an ice bath. The solution was evaporated to remove ethyl acetate. The obtained solid was washed with diethyl ether five times, and subsequently recrystallized with acetonitrile. A colorless crystal was obtained as the final product (yield: 95%).

\(^1\text{H}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 8.97 (1\text{H, s, NCHN}), 7.63 (2\text{H, t, NCHCH}), 3.81 (6\text{H, s, (NCH}_3)_2\text{)}\)

\(^1\text{C}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 137.5 (\text{s, NCHN}), 123.9 (\text{s, NCHCH}), 119.1 (\text{s, CF}_3\text{SO}_3), 36.1 (\text{s, NCH}_3)\)

Water content: 30 ppm.

1,3-dimethylimidazolium tosylate ([C\text{\textsubscript{1}}\text{mim}]\text{OTs}\text{}): 1-Methylimidazole (0.050 mol, 4.11 g) and a slight excess amount of methyl 4-toluene- sulphonate (0.055 mol, 10.2 g) were dissolved in ethyl acetate. The solution was stirred under an inert atmosphere for 1 day at room temperature. The obtained solid was washed with ethyl acetate five times, and subsequently recrystallized with acetonitrile. A colorless crystal of [C\text{\textsubscript{1}}\text{mim}]\text{OTs}\text{} was obtained via filtration (yield: > 99 %).

\(^1\text{H}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 9.04 (1\text{H, s, NCHN}), 7.65 (2\text{H, t, NCHCH}), 7.48 (2\text{H, d, CH}_3\text{CCCH}), 7.09 (2\text{H, d, CHCSO}_3), 3.78 (6\text{H, s, (NCH}_3)_2\text{)}, 2.25 (3\text{H, s, CH}_3\text{)}\)

\(^1\text{C}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 146.1 (\text{s, CH}_3\text{)}, 138.3 (\text{s, CHCH}_3\text{)}, 137.7 (\text{s, NCHN}), 128.7 (\text{d, CH}_2\text{CCCH}), 126.0 (\text{d, CHCSO}_3\text{)}, 123.9 (\text{s, NCHCH}), 36.1 (\text{s, NCH}_3\text{)}, 21.3 (\text{q, CH}_3\text{)}\)

Water content: 160 ppm.

1,3-dimethylimidazolium thiocyanate ([C\text{\textsubscript{1}}\text{mim}]\text{SCN}\text{): Anion exchange from [C\text{\textsubscript{1}}\text{mim}]\text{Cl}\text{ aqueous solution. Water in the solution was removed by evaporation and subsequent vacuuming. After recrystallization with acetonitrile, a colorless crystal of [C\text{\textsubscript{1}}\text{mim}]\text{Cl}\text{ was obtained via filtration (yield: 68%). Then, NaSCN (0.024 mol, 1.95 g) and [C\text{\textsubscript{1}}\text{mim}]\text{Cl}\text{ (0.022 mol, 2.92 g) were dissolved into distilled water, and stirred at room temperature for 1 day. After evaporation of the solution, dichloromethane was added into crude [C\text{\textsubscript{1}}\text{mim}]\text{SCN}\text{ to produce white precipitant (NaCl). The precipitant and dichloromethane were removed by filtration and evaporation, respectively. This process was repeated until no precipitant was obtained. After the final evaporation, [C\text{\textsubscript{1}}\text{mim}]\text{SCN}\text{ was obtained as a pale yellow liquid (yield: 64%).

\(^1\text{H}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 8.96 (1\text{H, s, NCHN}), 7.62 (2\text{H, t, NCHCH}), 3.83 (6\text{H, s, (NCH}_3)_2\text{)}\)

\(^1\text{C}-\text{NMR (DMSO-}d_6\text{)}: \delta (\text{in ppm}) = 137.5 (\text{s, NCHN}), 130.5 (\text{s, SCN}), 123.9 (\text{s, NCHCH}), 36.3 (\text{s, NCH}_3\text{)}\)

Water content: 140 ppm.

Na+ content: 400 ppm.

1,3-dimethylimidazolium dicyanamide ([C\text{\textsubscript{1}}\text{mim}]N(CN\textsubscript{2})\text{): The synthetic procedure was the same as that of [C\text{\textsubscript{1}}\text{mim}]\text{SCN} except that NaN(CN\textsubscript{2})\text{ was used instead of NaSCN. The [C\text{\textsubscript{1}}\text{mim}]N(CN\textsubscript{2})\text{ was recrystallized with acetonitrile. After filtration and subsequent evaporation, [C\text{\textsubscript{1}}\text{mim}]N(CN\textsubscript{2})\text{ was obtained as a pale yellow liquid (supercooled liquid) at room temperature (yield: 73%).}}

Water content: 400 ppm.
\[^1H-NMR \text{ (DMSO-d}_6\text{): } \delta \text{ (in ppm) } = 8.98 \text{ (1H, s, NCHN), 7.61 (2H, t, NCHCH), 3.81 (6H, s, (NCH}_3\text{)}_2\text{)} \]

\[^{13}C\text{-NMR (DMSO-d}_6\text{): } \delta \text{ (in ppm) } = 137.5 \text{ (s, NCHN), 123.9 (s, NCHCH), 119.6 (s, NCN), 36.2 (s, NCH}_3\text{)} \]

Water content: 90 ppm.
Na+ content: 320 ppm.

1,3-dimethylimidazolium tricyanomethanide ([C\textsubscript{1}mim]C(CN))\textsubscript{3}: The synthetic procedure was the same as that of [C\textsubscript{1}mim]SCN except that NaC(CN)\textsubscript{3} was used instead of NaSCN. The final product was a pale yellow liquid (supercooled liquid) at room temperature (yield: 68%).

\[^1H-NMR \text{ (DMSO-d}_6\text{): } \delta \text{ (in ppm) } = 8.97 \text{ (1H, s, NCHN), 7.59 (2H, t, NCHCH), 3.80 (6H, s, (NCH}_3\text{)}_2\text{)} \]

\[^{13}C\text{-NMR (DMSO-d}_6\text{): } \delta \text{ (in ppm) } = 137.5 \text{ (s, NCHN), 123.9 (s, NCHCH), 121.0 (s, C}_C\text{N), 36.2 (s, NCH}_3\text{), 5.3 (s, CCN) \]

Water content: 40 ppm.
Na+ content: 70 ppm.

Brief Theoretical background of two-phase thermodynamic (2PT) approach. The theory of 2PT is briefly described as follows (for details, please see the references1,2). The total kinetic entropy of a molecule in a liquid state can be divided into translational (\(S\text{\textsubscript{tra}} \)), rotational (\(S\text{\textsubscript{rot}} \)), and intramolecular vibrational (\(S\text{\textsubscript{vib}} \)) contributions.

\[S = S\text{\textsubscript{tra}} + S\text{\textsubscript{rot}} + S\text{\textsubscript{vib}} \quad (S1) \]

In 2PT, \(S\text{\textsubscript{tra}} \) and \(S\text{\textsubscript{rot}} \) where diffusive motions are included are considered as a sum of gaseous and solid components.

\[S\text{\textsubscript{tra}} = S\text{\textsubscript{tra}}^g + S\text{\textsubscript{tra}}^s \quad (S2) \]

\[S\text{\textsubscript{rot}} = S\text{\textsubscript{rot}}^g + S\text{\textsubscript{rot}}^s \quad (S3) \]

The estimation of these entropies is based on density of states function \(g(v) \) which is the Fourier transform of the velocity autocorrelation function \(C(t) \) of a molecule,

\[g(v) = \frac{2}{kT} \lim_{r \to +\infty} \int_{-r}^{r} C(t) e^{-r^2\pi r t} dt \quad (S4) \]

where \(k \) is the Boltzmann constant, \(T \) is temperature, and \(v \) is the frequency. \(C(t) \) is the sum of the mass-weighted velocity autocorrelation function of atoms,

\[C(t) = \sum_{j=1}^{N} \sum_{k=1}^{3} m c_j^k (t) \quad (S5) \]

where \(m \) is the mass of an atom \(j \) and \(N \) is the total number of atoms of the systems. Same as the entropy, \(g(v) \) is divided into translational (\(g\text{\textsubscript{tra}}(v) \)), rotational (\(g\text{\textsubscript{rot}}(v) \)), and intramolecular vibrational (\(g\text{\textsubscript{vib}}(v) \)) components.

\[g(v) = g\text{\textsubscript{tra}}(v) + g\text{\textsubscript{rot}}(v) + g\text{\textsubscript{vib}}(v) \quad (S6) \]

The functions \(g\text{\textsubscript{tra}}(v) \) and \(g\text{\textsubscript{rot}}(v) \) are determined from autocorrelation functions of center-of-mass velocity and angular velocity of the molecule of interest, respectively. \(g\text{\textsubscript{vib}}(v) \) is obtained by the deduction of \(g\text{\textsubscript{tra}}(v) \) and \(g\text{\textsubscript{rot}}(v) \) from the total density of states function. \(g\text{\textsubscript{tra}}(v) \) contains gaseous and solid components.

\[g\text{\textsubscript{tra}}(v) = g\text{\textsubscript{tra}}^g(v) + g\text{\textsubscript{tra}}^s(v) \quad (S7) \]

\(g\text{\textsubscript{tra}}(v) \) is expressed by employing a hard-sphere model as,
Entropy is expressed as,

\[S = \frac{g_{\text{tra}}(0)}{1 + \left(\frac{\pi g_{\text{tra}}(0) \nu}{6 f_{\text{tra}} N} \right)^2} \]

(S8)

where \(f_{\text{tra}} \) is the translational “fluidity”. Because “fluidity” expresses the fraction of the hard-sphere (gaseous) component in the overall system, the integral of \(g_{\text{tra}}(\nu) \) corresponds to \(3Nf_{\text{tra}} \).

\(f_{\text{tra}} \) can be numerically derived with the following equations,

\[2\Delta^{9/2} f_{\text{tra}}^{5/2} - 6 \Delta^{-3/2} f_{\text{tra}}^3 - \Delta^{-3/2} f_{\text{tra}}^{7/2} + 6 \Delta^{-3/2} f_{\text{tra}}^{5/2} + 2 \Delta_{\text{tra}} - 2 = 0 \]

(S9)

\[\Delta_{\text{tra}} = \frac{2g_{\text{tra}}(0)}{9N} \left(\frac{\pi kT}{m} \right)^{1/2} \left(\frac{N}{V} \right)^{1/3} \left(\frac{6}{\pi} \right)^{2/3} \]

(S10)

where \(\Delta \) is the dimensionless diffusivity constant and \(V \) is the system volume. The density of states at zero frequency \(g_{\text{tra}}(0) \) can be determined directly from \(g_{\text{tra}}(\nu) \) or via diffusion coefficient \(D \) of molecule.

\[g_{\text{tra}}(0) = \frac{12mND}{kT} \]

(S11)

Based on the Carnahan-Starling equation of state, the analytical form of the gaseous translational entropy is expressed as,

\[S_{\text{tra}}^g = \frac{5}{2k} + k \ln \left[\left(\frac{2\pi mkT}{\hbar^2} \right)^{3/2} \frac{V}{f_{\text{tra}} N} Z \right] + \frac{y(3y-4)}{(1-y)^2} \]

(S12)

\[Z = \frac{1 + y + y^2 - y^3}{(1-y)^3} \]

(S13)

\[y = \frac{f_{\text{tra}}^{5/2}}{\Delta^{3/2}} \]

(S14)

where \(\hbar \) is the Planck constant, \(y \) is the hard-sphere packing fraction, and \(Z \) is the compressibility. The estimation of solid translational entropy is based on the harmonic oscillator model.

\[S_{\text{tra}}^s = k \ln Q_{\text{tra}} + \frac{1}{\beta} \left(\frac{\partial \ln Q_{\text{tra}}}{\partial T} \right)_{N,y} \]

(S15)

\[\beta = \frac{1}{kT} \]

(S16)

In the harmonic oscillator model, the canonical partition function of translation \(Q_{\text{tra}} \) was expressed as,

\[\ln Q_{\text{tra}} = \int_0^\infty g_{\text{tra}}(\nu) \ln q_{\text{HO}}(\nu) d\nu \]

(S17)

\[q_{\text{HO}}(\nu) = \frac{e^{-\beta \hbar \nu/2}}{1 - e^{-\beta \hbar \nu}} \]

(S18)

\(S_{\text{rot}} \) was estimated in a similar manner as \(S_{\text{tra}} \). Since \(S_{\text{vib}} \) contains no diffusive motion, it is determined only in the harmonic oscillator framework.

Melting point \((T_m) \), fusion enthalpy \((\Delta_{\text{fus}} H) \), and fusion entropy \((\Delta_{\text{fus}} S) \) estimations. To estimate \(T_m \), \(\Delta_{\text{fus}} H \), and \(\Delta_{\text{fus}} S \), first, Helmholtz energy difference between liquid and crystal \((\Delta_{\text{vib}} A) \) at a certain reference temperature \(T_{\text{ref}} \) is required. \(T_{\text{ref}} \) of NaCl, \([\text{C}_2\text{mim}]\text{PF}_6\), and \([\text{C}_4\text{mim}]\text{PF}_6\) were
was derived as the sum of four simulations at various temperatures were fitted with a second-degree polynomial function. Then, equation (S27) becomes,

\[
\Delta_r A = \Delta_1 A + \Delta_2 A + \Delta_3 A + \Delta_4 A \tag{S19}
\]

Except for \(\Delta_r A\), the Helmholtz energy difference in the PSCP cycle is expressed as,

\[
\Delta A = \int_0^1 \left\{ \frac{dU}{d\lambda} \right\}_\lambda d\lambda \tag{S20}
\]

where \(\lambda\) is the alchemical variable ranging from 0 to 1 and \(U\) is the potential energy. Starting from the “crystal” state, it is first transformed to the “weak crystal” state. In this step, both \(LJ (U_{LJ})\) and Coulombic \(U_{Coul}\) potentials are weakened, and a tether potential \((U_{tether})\) emerges.

\[
U_1 = (1 - 0.9\lambda)U_{LJ} + (1 - 0.9\lambda)^2 U_{Coul} + \lambda U_{tether} + U_{bonded} \tag{S21}
\]

\[
U_{tether} = \sum_i \sum_j a_{ij} e^{-b_{ij}r_{ij}^2} \tag{S22}
\]

The tether potential that binds atoms to lattice points has the Gaussian function form. It was applied for both Na\(^+\) and Cl\(^-\) of NaCl. For ILs, the C and N atoms of the cation and the P atom of the anion were used for \(U_{tether}\). The constant \(a\) of the cation atoms was 16.0254 kJ mol\(^{-1}\), and that of the anion atom was 14.0789 kJ mol\(^{-1}\). The value of 90 nm\(^{-2}\) was used for the constant \(b\) of every atom. \(U_{bonded}\) is the potential for intramolecular bonds, angles, dihedral angles, and improper angles, which are constant during the PSCP cycle.

In step 2, the “weak crystal” is transformed into “weak dense fluid” by removing the tether potential

\[
U_2 = 0.1U_{LJ} + 0.01U_{Coul} + (1 - \lambda)U_{tether} + U_{bonded} \tag{S23}
\]

The “weak dense fluid” is then transformed into the “weak liquid”. In this step, the cell volume is changed from that of crystal \((V_{cry})\) to liquid \((V_{liq})\) while the potential is not varied. Therefore, the Helmholtz energy difference \(\Delta_3 A\) is,

\[
\Delta_3 A = \int_{V_{cry}}^{V_{liq}} p dV \tag{S24}
\]

In step 4, intermolecular potentials are retrieved to the original one, corresponding to the transformation from the “weak liquid” to the normal “liquid” states, as

\[
U_4 = (0.1 + 0.9\lambda)U_{LJ} + (0.1 + 0.9\lambda)^2 U_{Coul} + U_{bonded} \tag{S25}
\]

The results from the PSCP cycle for NaCl, \([C_2\text{mim}]\text{PF}_6\), and \([C_4\text{mim}]\text{PF}_6\) are displayed in Figures S4–S6 and Table S6. The Gibbs energy difference at the reference temperature in the NPT ensemble was obtained from \(\Delta_{ref} A\),

\[
\Delta_{ref} G = \Delta_{ref} A + p\Delta V \tag{S26}
\]

With the \(\Delta_{ref} G\) value, it is now possible to estimate \(T_m\) where \(\Delta G = 0\) via the Gibbs-Helmholtz equation

\[
\int_{\Delta_{ref} G}^{\Delta G} \frac{dG}{T} = \int_{T_{ref}}^{T} \frac{\Delta H}{T^2} dT \tag{S27}
\]

The enthalpy differences between the crystal and liquid states obtained from the NPT MD simulations at various temperatures were fitted with a second-degree polynomial function. Then, equation (S27) becomes,

\[
\frac{\Delta G}{T} - \frac{\Delta_{ref} G}{T_{ref}} = a \left(\frac{1}{T} - \frac{1}{T_{ref}} \right) - b \ln \frac{T}{T_{ref}} - c \left(T - T_{ref} \right) \tag{S28}
\]

where \(a\), \(b\), and \(c\) are the fitting constant. With \(T_m\) value where \(\Delta G = 0\) (Figure S7) and \(\Delta_{ref} H\) at the same temperature, \(\Delta_{us} S\) is obtained based on equation (1) in the main text. Obtained \(T_m\)
Δ\text{fus}^H, and Δ\text{fus}^S are summarized in Table S7 with reported experimental and MD values. A production run of 2 ns was applied for these simulations with 0.1 ps data accumulations.

Conformational entropy (S_{\text{confor}}) estimation. \([\text{C}_2\text{mim}]^+\) is known to possess non-planar (n) and planar (p) conformations along the C-N-C-C dihedral angle (Figure S8A).\(^8\) By including the mirror-inverted conformation of the non-planar (n'), the cation has three conformers, which were also observed in our simulations (Figure S8B). In addition to the C-N-C-C dihedral angle, the N-C-C-C and C-C-C-C dihedral angles are present in [Cmim]^+, which produce additional three conformers each, i.e., trans (t), gauche (g), and gauche' (g') (Figure S9A).\(^8\) In total, this cation has 3 × 3 × 3 = 27 conformations. Hereafter, for example, the conformation for \([\text{C}_4\text{mim}]^+\) with non-planar (C-N-C-C), gauche (N-C-C-C), and trans (C-C-C-C) is abbreviated as ngt. Conformational analyses were performed on the cations in [C_2mim]PF_6 or [C_4mim]PF_6 via 20 ns simulations with 2 ps data accumulations in the NVT ensemble. Once a population of each conformer is estimated from MD trajectories, conformational entropy (S_{\text{confor}}) was calculated,

\[
S_{\text{confor}} = -R \sum_i p_i \ln p_i
\]

(S29)

where \(R\) is the gas constant and \(p_i\) is the population of the conformer \(i\). The results are summarized in Tables S8 and S9.

Kinetic entropy (S_{\text{kin}}) estimation. The production runs for 2PT were executed with the velocity Verlet algorithm for 1 ns (a simulation time of 250 ps for 1 block) with 2 fs data acquisition in the NVT ensemble. The convergence of the 2PT method is known to fast (typically ca. 20 ps),\(^2\) and we confirmed that 250 ps is long enough for \([\text{C}_4\text{mim}]\text{PF}_6\) (Figure S10). Translational, rotational, and vibrational density of states functions were obtained using the DoSPT program\(^13\). The results are displayed in Figures S11–S14, and the obtained numerical values are in Tables S10 and S11.

Diffusion coefficient (D) estimation. For diffusion coefficient (D) estimations, production runs of 200 ns with 0.1 ps data acquisition were performed in the NVT ensemble. The diffusion coefficients of the ions were calculated from mean square displacement (MSD) with the Einstein’s equation (Figure S15). The D values are listed in Table S12.

\[
D = \left[\frac{1}{6t} \text{MSD} \right]_{t \to \infty}
\]

(S30)
Fig. S1. DSC traces of [C$_1$ mim]X.
Fig. S2. Optimized local minima for ion pairs of $[C_2\text{mim}]PF_6$ (left) and $[C_4\text{mim}]PF_6$ (right) in the gas phase.
Fig. S3. Schematic of the PSCP cycle.
Fig. S4. Derivatives of the potential energy per ion pair of NaCl in (A) step 1, (B) step 2, and (D) step 4 along the PSCP cycle. (C) Pressure as a function of volume for step 3.
Fig. S5. Derivatives of the potential energy per ion pair of [C$_2$ mim]PF$_6$ in (A) step 1, (B) step 2, and (D) step 3 along the PSCP cycle. (C) Pressure as a function of volume for step 3.
Fig. S6. Derivatives of the potential energy per ion pair of [C₄mim]PF₆ in (A) step 1, (B) step 2, and (D) step 3 along the PSCP cycle. (C) Pressure as a function of volume for step 3.
Fig. S7. Calculated ΔG versus temperature. (A) NaCl, (B) [C$_2$mim]PF$_6$, and (C) [C$_4$mim]PF$_6$.
Fig. S8. (A) Structure of three conformers for [C\textsubscript{2}mim]+. (B) Dihedral angle distribution of C-N-C-C of [C\textsubscript{2}mim]+ in [C\textsubscript{2}mim]PF\textsubscript{6} in the liquid state at 338 K.
Fig. S9. (A) Newman projection for the trans, gauche, and gauche’ conformers. Dihedral angle distributions of (B) C-N-C-C, (C) N-C-C-C, and (D) C-C-C-C of [C₄mim]+ in [C₄mim]PF₆ in the liquid state at 275 K.
Fig. S10. Kinetic entropies estimated from the 2PT method for [C₄mim]PF₆ at 275 K as a function of simulation time.
Fig. S11. Density of states functions of NaCl at 1089 K in the (A) crystal and (B) liquid states.
Fig. S12. Density of states functions of \([\text{C}_2\text{mim}]\text{PF}_6\) at 338 K in the (A–C) crystal and (D–F) liquid states.
Fig. S13. Density of states functions of [C_4 mim]PF_6 at 275 K in the (A–C) crystal and (D–F) liquid states.
Fig. S14. Absolute kinetic entropies of NaCl (1089 K), [C_2 mim]PF_6 (338 K), and [C_4 mim]PF_6 (275 K). The results in the (A) crystal and (B) liquid states were obtained from the MD simulations (Tables S10 and S11) while that in the (C) gas state was estimated by the DFT calculations (Table S5) as the sum of the entropies of the isolated ions. The same symbols are used through (A–C).
Fig. S15. Mean square displacements of the ions in (A) NaCl (1089 K), (B) [C$_2$mim]PF$_6$ (338 K), and (C) [C$_4$mim]PF$_6$ (275 K). Black lines are the linear fit from 10 ns to 30 ns.
Table S1. T_m, $\Delta_{fus}H$, and $\Delta_{fus}S$ data for ILs from the ILThermo database.14, 15

IL	T_m / K	$\Delta_{fus}H$ / kJ mol-1	$\Delta_{fus}S$ / J K-1 mol-1	
1-Methylimidazolium nitrate16	343.6	19.24	56.00	
1,3-Dimethylimidazolium methylsulfate17	308.9	16.58	53.67	
1,3-Dimethylimidazolium bis(trifluoromethylsulfonyl)imide18	299	24.5	81.7	
1-Ethyl-3-methylimidazolium chloride19	370.1	15.1	40.8	
1-Ethyl-3-methylimidazolium thiocyanate20	267	27.0	101	
1-Ethyl-3-methylimidazolium acetate21	370.85	30.2	81.4	
1-Ethyl-3-methylimidazolium nitrate22	316.4	17.6	55.6	
1-Ethyl-3-methylimidazolium bromide23	349.91	18.26	52.18	
1-Ethyl-3-methylimidazolium tetrafluoroborate24	287.6	9.5	33.0	
1-Ethyl-3-methylimidazolium tricyanomethanide22	274.9	12.6	45.8	
1-Ethyl-3-methylimidazolium iodide25	351	15.488	44.125	
1-Ethyl-3-methylimidazolium hexafluorophosphate26	334.2	17.7	53.2	
1-Ethyl-3-methylimidazolium tetrachloroaluminate19	279.6	13.8	49.4	
1-Ethyl-3-methylimidazolium 4-methylbenzenesulfonate22	328.2	20.1	61.2	
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide27	271.44	21.89	80.64	
1-Ethyl-3-methylimidazolium dimethylphosphate22	312.9	21.5	68.7	
1-Ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate28	317.6	20.2	63.6	
1-Ethyl-3-methylimidazolium trifluoromethanesulfonate22	262.6	11.7	44.6	
1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide29	260	9.3	35.8	
1-Methyl-3-propylimidazolium bromide30	312.93	19.11	61.75	
1-Methyl-3-propylimidazolium hexafluorophosphate26	311.8	14.1	45.2	
1-Butyl-3-methylimidazolium chloride31	347.1	18	52	
1-Butyl-3-methylimidazolium nitrate32	309.18	17.991	58.19	
1-Butyl-3-methylimidazolium dicyanamide33	270.83	17.8	65.7	
1-Butyl-3-methylimidazolium bromide23	351.35	22.88	65.12	
1-Butyl-3-methylimidazolium trifluoroacetate34	296.41	19.14	64.59	
1-Butyl-3-methylimidazolium iodide30	291.92	18.99	65.05	
1-Butyl-3-methylimidazolium hexafluorophosphate35	283.5	19.601	69.139	
1-Butyl-3-methylimidazolium trifluoromethanesulfonate36	291.46	20.18	69.24	
1-Butyl-3-methylimidazolium tosylate37	343.89	21.573	62.732	
1-Butyl-3-methylimidazolium octylsulfate38	307.6	12.7	41.3	
1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide39	270.35	23.8	88	
1-Butyl-3-methylimidazolium 2-methoxy-2-oxoacetate40	330.2	9	27	
1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide41	272.11	27.825	102.256	
1-Methyl-3-octylimidazolium tetrafluoroborate42	245.81	15.31	62.27	
1-Methyl-3-octylimidazolium hexafluorophosphate43	272.3	12.9	47.4	
1-Methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide27	263.96	25.18	95.39	
1-Methyl-3-octylimidazolium trifluoromethanesulfonate36	285.98	16.54	57.84	
1-Nonyl-3-methylimidazolium hexafluorophosphate26	293	16.5	56.4	
1-Decyl-3-methylimidazolium chloride44	311.2	30.9	99.3	
1-Decyl-3-methylimidazolium bromide45	347.58	20.256	58.277	
1-Decyl-3-methylimidazolium hexafluorophosphate26	307.1	19.4	63.3	
1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide46	277.33	28.67	103.38	
1-Decyl-3-methylimidazolium trifluoromethanesulfate47	296.2	29.82	100.68	
1-Dodecyl-3-methylimidazolium hexafluorophosphate26	326.5	24.5	75.2	
1-Dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide48	292.4	36	123	
1-Tetradecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide46	308.77	45.18	146.32	
1-Hexadecyl-3-methylimidazolium bromide45	337.06	59.1	175.3	
1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide46	319.25	51.28	160.63	
Name	Formula	MW	% 1	% 2
--	--	------	------	-------
1-Methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	328	53	162
1-Methyl-3-octadecylimidazolium tris(pentafluoroethyl)trifluorophosphate	C35H59N3OS4Tr	319	54	169
1-Methyl-3-octadecylimidazolium bis(nonfluorobutanesulfonil)imide	C23H47N2O2S3f	335	33	98
1-Docosyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide	C35H59N3OS4f	341	67	197
1-Isopropyl-3-methylimidazolium bis(trifluorosulfonyl)imide	C23H47N2O2SF	269.2	14.3	53.3
1-Isopropyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	283.5	24.2	85.4
1-tert-Butyl-3-methylimidazolium bis(trifluorosulfonyl)imide	C23H47N2O2S2f	326.6	17.4	53.2
1-tert-Butyl-3-methylimidazolium bis(pentafluoroethylsulfonil)imide	C23H47N2O2S3p	280.4	22.9	81.7
1,3-Diethylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	294.3	16.7	56.6
1,2-Dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	262.6	20.4	77.7
1-Butyl-2,3-dimethylimidazolium trifluoromethanesulfonate		318	15	47
1-Butyl-2,3-dimethylimidazolium chloride		326.57	14.413	44.134
1-Butyl-2,3-dimethylimidazolium bromide		349.66	15.613	46.613
1-Decyl-2,3-dimethylimidazolium bromide		341.35	23.923	70.083
1-Hexadecyl-2,3-dimethylimidazolium bromide		371.7	50.8	136.7
1-Benzyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate		315.4	23.6	74.8
1-Methyl-3-(2-phenylethyl)imidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	310.1	5.4	17.4
1-Methyl-3-(3-phenylpropyl)imidazolium hexafluorophosphate		325.1	9.5	29.2
1-Methyl-3-(3-phenylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	321.1	14	44
1-(2-Naphthylmethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	318.6	34.1	107.0
1,3-Dibenzylimidazolium bis(trifluoromethylsulfonyl)imide		314.9	23.6	74.9
1,3-Bis(butoxymethyl)imidazolium tetrafluoroborate		281.4	8.54	30.35
1,3-Bis((octyloxy)methyl)imidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	287.7	34.2	118.9
1,3-Dihexyloxymethylimidazolium bis(trifluoromethylsulfonyl)imide		256.9	6.8	26.5
1,3-Bis(hexyloxymethyl)imidazolium tetrafluoroborate		273.8	16	58
1,3-Bis(hexyloxymethyl)imidazolium hexafluorophosphate		309.5	12.8	41.4
1,3-Dibenzyloxymethylimidazolium dicyanamide		350.8	60.13	171.41
1-(3-Cyanopropyl)-3-methylimidazolium chloride		363.5	19.1	52.6
1-Butynitrile-3-methylimidazolium hexafluorophosphate		345.2	17.5	50.7
1,3-Bis(decyloxymethyl)imidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	303.1	79.36	261.83
1-(2-Methoxyethyl)-3-ethylimidazolium perthenate		211.82	14.382	67.93
1-(Methoxymethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	273.0	22	81
1-(2-Ethoxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	265.6	14.1	53.1

Pyridinium

Name	Formula	MW	% 1	% 2
1-Ethylpyridinium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	303.6	18.9	62.3
1-Ethylpyridinium trifluoromethanesulfonate		300.4	11.5	38.3
1-Propylpyridinium hexafluorophosphate		370.99	6.83	18.41
1-Propylpyridinium bromide		342.83	10.97	32.00
1-Butylpyridinium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	299.1	27.9	93.3
1-Butylpyridinium trifluoromethanesulfonate		301.4	12	40
1-Butylpyridinium tetrafluoroborate		272.5	10.5	38.5
1-Pentylpyridinium hexafluorophosphate		328.14	5.9	17.98
1-Pentylpyridinium bis(trifluoromethylsulfonyl)imide	C23H47N2O2S2f	272.8	22.8	83.6
1-Methyl-3-propylpyridinium hexafluorophosphate		311.2	15	48
1-Butyl-3-methylpyridinium 4-methylbenzenesulfonate		323.7	11.34	35.03
Compound	MW	LogP	Tg	
---	-----	-------	--------	
1-Butyl-4-methylpyridinium tosylate	324.86	14.33	44.11	
1-Butyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide	291.4	21.94	75.29	
1-Hexyl-3-methylpyridinium chloride	355.1	19.7	55.5	
1-Hexyl-3-methylpyridinium trifluoromethanesulfonate	337.76	41.968	124.254	
1-Hexyl-3-methylpyridinium 4-methylbenzenesulfonate	329.3	10.094	30.653	
1-Octyl-3-methylpyridinium chloride	352.3	14.9	42.3	
1-Decyl-3-methylpyridinium chloride	352.5	14.4	40.9	
1-Dodecyl-3-methylpyridinium chloride	360.8	37.1	102.8	
1-Dodecyl-4-methylpyridinium chloride	323.9	44.4	137.1	
1-Tetradecyl-3-methylpyridinium chloride	366.8	42.7	116.4	
1-Butyl-3,5-dimethylpyridinium thiocyanate	286.1	16.04	56.06	
1-Butyl-3,5-dimethylpyridinium dicyanamide	272.1	3.85	14.15	
1-Butyl-3,5-dimethylpyridinium trifluoromethanesulfonate	364.1	28.5	78.3	
N-Butyronitrile pyridinium chloride	342.4	13.9	40.6	
N-Butyronitrile pyridinium tetrafluoroborate	342.4	12.4	36.2	
3,5-Dimethyl-1-octylpyridinium thiocyanate	235.1	6.39	27.18	
3,5-Dimethyl-1-octylpyridinium tetrafluoroborate	329.1	28.07	85.29	
3,5-Dimethyl-1-octylpyridinium iodide	355.1	25.45	71.67	
3,5-Dimethyl-1-octylpyridinium trifluoromethanesulfonate	349.1	24.81	71.07	
2,3,5-Trimethyl-1-octylpyridinium thiocyanate	293.1	14.66	50.02	
1-Butyl-2,3,5-trimethylpyridinium trifluoromethanesulfonate	290.1	16.88	58.19	
1-Butyl-2,3,5-trimethylpyridinium tricyanomethanide	347.1	20.97	60.41	
5-Ethyl-2-methyl-1-octylpyridinium iodide	360.1	30.87	85.73	
1-Hexyl-4-cyanopyridinium bis(trifluoromethylsulfonyl)imide	280.2	18.83	67.20	
3-Cyano-1-octylpyridinium bis(trifluoromethylsulfonyl)imide	287.9	13.71	47.62	
4-(1-Hexadecylheptadecyl)-1-methyl-pyridinium chloride	337.1	56.9	168.8	
1-Butyl-4-cyanopyridinium tricyanomethanide	361.8	29.7	82.1	
1-Decyloxymethyl-3-amido-pyridinium tetrafluoroborate	361.9	51.26	141.64	
1-(3-Cyanopropyl)pyridinium tricyanomethanide	305.2	21.6	70.8	
1-(Methoxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide	268.8	16.7	62.1	
1-(2-Ethoxyethyl)pyridinium bis(trifluoromethylsulfonyl)imide	259.2	19.5	75.2	
1-(2-Propanoyl)pyridinium bis(trifluoromethylsulfonyl)imide	256.4	3.3	12.9	
Pyrrolidinium				
1,1-Dimethylpyrrolidinium thiocyanate	368	9.97	27.09	
1-Ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide	363.1	9.1	25.1	
1-Methyl-1-propylpyrrolidinium thiocyanate	280	23.3	83.3	
1-Methyl-1-propylpyrrolidinium trifluoromethanesulfonate	350.7	37.2	106.1	
1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide	285.1	12.3	43.1	
1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide	265.73	21.9	82.4	
1-Butyl-1-methylpyrrolidinium tetracyanoborate	295.3	35.6	120.6	
1-Butyl-1-methylpyrrolidinium tricyanomethanide	264.4	9.43	35.67	
1-Butyl-1-methylpyrrolidinium trifluoromethanesulfonate	272.9	12.07	44.23	
1-Butyl-1-methylpyrrolidinium 1,1,2,2-tetrafluoroethanesulfonate	318.5	10.9	34.2	
1-Butyl-1-methylpyrrolidinium perfluorobutanesulfonate	364	8.78	24.12	
1-Pentyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide	281.1	22.5	80.0	
1-Decyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide	283	8	28	
1-Methyl-1-octadecylpyrrolidinium bis(trifluoromethylsulfonyl)imide	345	32.3	94	
1-Isobutyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide	272.9	13.1	48	
1-(2-Methoxyethyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate	273.3	14.3	52.3	
Piperidinium				
1-Ethyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide	358.04	16.61	46.39	
1-Methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imide	285.7	25.6	89.6	
1-Butyl-1-methylpiperidinium trifluoromethanesulfonate	309	23	75	
Ammonium	Mol Wt	Log D	octanol	
---	--------	--------	-------------	
Methanammonium formate⁹³	286.1	6.629	23.170	
Trimethylammonium bis(trifluoromethylsulfonyl)imide⁹⁴	357.4	17.36	48.58	
Ethylammonium formate⁹³	258.1	5.558	21.534	
Ethylammonium acetate⁹³	360.1	21.343	59.270	
Ethylammonium nitrate⁹⁵	285	13.2	46	
Ethylammonium hydrogensulfate⁹³	313.1	12.598	40.236	
N,N-Diethyl-N-methylammonium methanesulfonate⁹²	312	14	47	
N,N-Diethyl-N-methylammonium trifluoromethanesulfonate⁹²	268	17	63	
Triethylammonium hydrogensulfate⁹⁶	355.57	8.22	23.12	
Propylammonium formate⁹³	323.1	17.242	53.364	
N,N-Dimethyl-N-propylammonium trifluoromethanesulfonate⁹⁷	293.1	20	68	
N-Ethyl-N,N-dimethyl-N-propylammonium bis(trifluoromethylsulfonyl)imide⁸⁰	263.1	21.6	82.1	
N,N-Diethyl-N-propylammonium trifluoromethanesulfonate⁹⁷	259	21	81	
N,N-Diethyl-N-methyl-N-propylammonium trifluoro(perfluoroethyl)borate⁹⁸	327	9.58	29.3	
N,N-Diethyl-N-methyl-N-propylammonium trifluoro(perfluoropropyl)borate⁹⁶	330	5.18	15.7	
N,N-Diethyl-N-methyl-N-propylammonium trifluoro(perfluorobutyl)borate⁹⁸	327	5.85	17.9	
N,N-Diethyl-N-methyl-N-propylammonium bis(trifluoromethylsulfonyl)imide⁹⁸	287	4.53	15.8	
N-Methyl-N,N-dipropylammonium trifluoromethanesulfonate⁹⁷	290.1	14	48	
Butylammonium formate⁹³	275.1	7.984	29.022	
N-Butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide³³	290.23	11.4	39.3	
N-Butyl-N-ethyl-N,N-dimethylammonium ethylsulfate⁹⁹	307	11.7	38.1	
N-Butyl-N,N-diethyl-N-methylammonium trifluoro(perfluoroethyl)borate⁹⁸	288	9.42	32.7	
N-Butyl-N,N-diethyl-N-methylammonium trifluoro(perfluoropropyl)borate⁹⁸	323	13.3	41.1	
N-Butyl-N,N-diethyl-N-methylammonium trifluoro(perfluorobutyl)borate⁹⁸	333	9.86	29.6	
N-Butyl-N,N-diethyl-N-methylammonium bis(trifluoromethylsulfonyl)imide⁹⁸	282	24.7	87.6	
N-Butyl-N,N-dimethyl-N-propylammonium bis(trifluoromethylsulfonyl)imide⁹⁰	293	16	53	
Tetrabutylammonium chloride¹⁰⁰	314.1	20.502	65.272	
Pentylammonium formate⁹³	285.1	7.858	27.562	
Tetrapentylammonium thiocyanate¹⁰⁰	322.65	19.665	60.948	
Tetrahexylammonium nitrate¹⁰⁰	345.15	17.573	50.914	
Tetrahexylammonium tetrafluoroborate¹⁰⁰	367	19.246	52.420	
N-Heptyl-N,N-triheptylammonium nitrate¹⁰⁰	345	33.5	97.1	
N-Heptyl-N,N-triheptylammonium iodide¹⁰⁰	371	20.502	55.239	
N,N-Diheptyl-N,N-dihexylammonium iodide¹⁰⁰	373	26.778	71.762	
N,N,N-Triheptyl-N-heptanumammonium bromide¹⁰⁰	369	36	98	
Tricoctylpropylammonium bromide¹⁰⁰	351	44.4	126.4	
Tetraoctylammonium oleate⁴⁰	252.4	19.4	76.9	
N-Decyl-N,N,N-triethylammonium bis(trifluoromethylsulfonyl)imide¹⁰¹	264	19.21	72.76	
N,N-Didecyl-N,N-dimethylammonium nitrate¹⁰²	304.8	9.88	32.41	
N,Dodecyl-N,N,N-triethylammonium bis(trifluoromethylsulfonyl)imide¹⁰¹	279.02	19.82	71.04	
N,N,N-Triethyl-N-tetradecylammonium bis(trifluoromethylsulfonyl)imide¹⁰¹	295.6	33.58	119.29	
Ethanolammonium nitrate⁹³	324.1	12.41	38.29	
Chemical Name	Molecular Weight	% H₂O	% C	% N
--	------------------	-------	----	-----
Ethanolammonium methylsulfate	372.1	26.67	71.67	
Ethanolammonium tetrafluoroborate	306.76	8.61	28.08	
N-(2-Hydroxyethyl)-N,N,N-trimethylammonium butanesulfonate	324	25	77	
Choline tosylate	346	19.1	51	
N-Ethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium dicyanamide	282.7	8.6	30.4	
N-Ethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium methanesulfonate	317	20.06	63.28	
N-Ethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium hexafluorophosphate	272	10.6	39.0	
N-Ethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium butanesulfonate	293	23.8	81.2	
N-Ethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium octanesulfonate	320	29.9	93.4	
N-(2-Hydroxyethyl)-N,N-dimethyl-N-propylammonium bromide	372.6	4.12	11.06	
N-(2-Hydroxyethyl)-N,N-dimethyl-N-undecyloxymethylammonium dicyanamide	283.5	7.15	25.22	
N-Hexyl-N-(2-hydroxyethyl)-N,N-dimethylammonium bromide	355.3	3.78	10.64	
Diethanolammonium tetrafluoroborate	303.84	7.26	23.89	
Tris(2-hydroxyethyl)ammonium tetrafluoroborate	345.26	15.449	44.746	
2-Methylpropylammonium formate	299.1	6.196	20.715	
3-Methylbutylammonium formate	320.1	12.52	39.11	
2-Methylbutylammonium formate	272.1	6.926	25.454	
(2-Decanoyloxyethyl)dimethylpentyloxymethylammonium trifluoroacetate	279.8	7.83	27.98	
Choline bis(trifluoromethylsulfonyl)imid	295.2	4.68	15.85	
2-Methoxyethyl-N,N,N-trimethylammonium tetrafluoroborate	327	15.0	45.8	
2-Methoxyethyl-N,N,N-trimethylammonium trifluoro(trifluoromethyl)borate	350	11.7	33.3	
2-Methoxyethyl-N,N,N-trimethylammonium trifluoro(perfluoroethyl)borate	303	11.6	38.4	
2-Methoxyethyl-N,N,N-trimethylammonium trifluoro(perfluoropropyl)borate	296	13.6	45.9	
2-Methoxyethyl-N,N,N-trimethylammonium trifluoro(perfluorobutyl)borate	323	17.6	54.4	
2-Methoxyethyl-N,N,N-trimethylammonium bis(trifluoromethylsulfonyl)imid	310	26.5	85.6	
N-Ethyl-2-methoxyethyl-N,N-dimethylammonium trifluoro(trifluoromethyl)borate	281	8.1	28.8	
N-Ethyl-2-methoxyethyl-N,N-dimethylammonium trifluoro(perfluoroethyl)borate	277	15.2	55.0	
N-Ethyl-2-methoxyethyl-N,N-dimethylammonium trifluoro(perfluoropropyl)borate	240	13.9	57.9	
N-Ethyl-2-methoxyethyl-N,N-dimethylammonium trifluoro(perfluorobutyl)borate	245	14.7	60.2	
N,N-Diethyl-2-methoxy-N-methylmethan-1-amine trifluoroacetoborate	281	17.1	61.0	
N,N-Diethyl-2-methoxyethyl-N-methylammonium trifluoro(trifluoromethyl)borate	251	7.5	29.9	
N,N,N-Triethyl-2-methoxyethylammonium trifluoro(trifluoromethyl)borate	283	17.2	60.7	
N,N,N-Triethyl-2-methoxyethylammonium trifluoro(perfluoroethyl)borate	276	24.4	88.4	
N,N,N-Triethyl-2-methoxyethylammonium trifluoro(perfluoropropyl)borate	279	8.6	30.7	
N,N,N-Triethyl-2-methoxyethylammonium trifluoro(perfluorobutyl)borate	284	7.4	26.1	
N,N,N-Triethyl-2-methoxyethylammonium tetrafluoroborate	329	18.8	57.0	
N,N,N-Triethyl-2-methoxyethylammonium	293	23.8	81.3	
Compound	Molecular Weight	pKa	log D	
---	------------------	-----	--------	
bis(trifluoromethylsulfonyl)imide	98			
N,N-Diallyl-N-methylammonium trifluoromethanesulfonate	254	11	43	
N-Allyl-N,N-dimethylammonium trifluoromethanesulfonate	289	21	73	
N-Allyl-N,N-diethylammonium trifluoromethanesulfonate	259	21	81	
N-Butyronitrile-N,N,N-trimethylammonium tetafluoroborate	334.1	12.3	36.8	
N-Butyronitrile-N,N,N-trimethylammonium bis(trifluoromethylsulfonyl)imide	331.3	20.2	61.0	
N,N-Dimethyl-N-isopropyl-N-propylammonium bis(trifluoromethylsulfonyl)imide	290	14	48	
N-Butyl-N,N-dimethyl-N-isopropylammonium bis(trifluoromethylsulfonyl)imide	283	10	35	
N-Decyl-N-isopropyl-N,N-dimethylammonium bis(trifluoromethylsulfonyl)imide	270	26	96	
Phosphonium	94			
Tetrabutylphosphonium methanesulfonate	107	335.35	11.105	33.115
Tetrabutylphosphonium tris(pentafluoroethyl)trifluorophosphate	52	347	7.8	22.5
Tetraoctylphosphonium bis(trifluoromethylsulfonyl)imide	108	284.3	45.43	159.80
Other	109	334.22	15	45
N-Octylbenzothiazolium hexafluorophosphate	109	359.3	20.1	55.9
3-Heptylbenzothiazolium hexafluorophosphate	109	358.79	23.5	65.5
N-Hexylbenzothiazolium hexafluorophosphate	110	358	26.1	72.9
1,5-Diamino-4-methyltetrazolium dinitramide	111	329.62	44.4	133.91
1-Butylquinolinium bis(trifluoromethylsulfonyl)imide	112	321	46.13	143.71
2-Butylisoquinolinium bis(trifluoromethylsulfonyl)imide	113	327.2	58.64	179.22
1-Hexylisoquinolinium bis(trifluoromethylsulfonyl)imide	114	317.2	63.54	200.32
1-Octylquinolinium bis(trifluoromethylsulfonyl)imide	115	321.3	62.91	195.80
Trimethylsulfonium bis(trifluoromethylsulfonyl)imide	116	357.4	53	148
Diethylmethysulfonium bis(trifluoromethylsulfonyl)imide	117	256.5	12.5	48.7
Hexyltrimethylferrocenium tetracyanoethylene	118	262.8	6.98	26.56
Butyloctamethylferrocenium bis(trifluoromethylsulfonyl)imide	119	354.1	39	110
Hexyloctamethylferrocenium bis(trifluoromethylsulfonyl)imide	120	307.6	26.54	86.3
1-Hexyl-1,4-diaza[2.2.2]bicyclooctanion bis(trifluoromethylsulfonyl)imide	121	300.9	25.45	84.6
4-(3-Cyanopropyl)-4-methylmorpholinium tricyanomethanide	122	309	5.3	17.0
Tetramethylguanidinium nitrate	123	368.6	19.84	53.83
Pyrimethanil laurate	124	321.52	67.245	209.28
N-Benzyl-N-dimethyl-Ntetradecylammonium vannilliate	125	320.5	35.59	111.05
Lead dibutanoate	126	346.5	14.7	42.4
Table S2. T_m, $\Delta_{\text{fus}}H$, and $\Delta_{\text{fus}}S$ data for alkali halide.123

Alkali halide	T_m / K	$\Delta_{\text{fus}}H$ / kJ mol-1	$\Delta_{\text{fus}}S$ / J K-1 mol-1
LiF	1121	27.1	24.1
LiCl	883	19.9	22.6
LiBr	823	17.7	21.5
LiI	742	14.6	19.7
NaF	1268	33.6	25.9
NaCl	1073	28.0	26.1
NaBr	1020	26.1	25.6
NaI	933	23.6	25.3
KF	1131	28.2	25.0
KCl	1043	26.5	25.4
KBr	1007	25.5	25.4
KI	954	24.0	25.2
RbF	1068	25.7	24.1
RbCl	995	23.7	23.8
RbBr	965	23.3	24.1
RbI	920	22.0	24.0
CsF	986	21.7	22.3
CsCl	918	20.3	22.0
CsBr	909	23.6	25.9
CsI	899	23.6	26.2
Table S3. T_m, $\Delta_{fus}H$, and $\Delta_{fus}S$ data for [C$_1$mim]X.a

IL	T_m / K	$\Delta_{fus}H$ / kJ mol$^{-1}$	$\Delta_{fus}S$ / J K$^{-1}$ mol$^{-1}$
[C$_1$mim]I	361.4	12.3	34.1
[C$_1$mim]NO$_3$	337.2	19.8	58.8
[C$_1$mim]CH$_3$CO$_2$	308.7	14.2	46.0
[C$_1$mim]CF$_3$CO$_2$	326.7	19.0	58.1
[C$_1$mim]CH$_3$SO$_3$	367.4	23.1	62.9
[C$_1$mim]CF$_3$SO$_3$	310.5	18.5	59.7
[C$_1$mim][OTs]	365.2	24.6	67.4
[C$_1$mim]SCN	295.2	15.7	53.2
[C$_1$mim]N(CN)$_2$	306.4	15.4	50.3
[C$_1$mim]C(CN)$_3$	322.6	21.7	67.4
[C$_1$mim]PF$_6$	364.3	17.3	47.6
[C$_1$mim]CH$_3$SO$_4$	308.9	16.58	53.67

aMelting point (T_m) was taken from the onset temperature from the DSC traces. Standard uncertainties are $u(T_m) = 0.8$ K; $u(\Delta_{fus}H) = 0.4$ kJ mol$^{-1}$; $u(\Delta_{fus}S) = 1.2$ J K$^{-1}$ mol$^{-1}$. bThe data is not contained in ILThermo. cThe data is contained in ILThermo as listed in Table S1.
Table S4. Solid-solid phase transition temperature (T_{s-s}), enthalpy change (Δ$_{s-s}$H), and entropy change (Δ$_{s-s}$S) during heating for [C$_{1}$mim]X. A slight exothermic peak in [C$_{1}$mim]SCN (Figure S1H) is omitted because phase transitions do not occur exothermically during heating.

IL	T_{s-s} / K	Δ$_{s-s}$H / kJ mol$^{-1}$	Δ$_{s-s}$S / J K$^{-1}$ mol$^{-1}$
[C$_{1}$mim]NO$_{3}$	274.1	0.5	1.9
[C$_{1}$mim][OTs]	325.3	2.0	6.2
[C$_{1}$mim]N(CN)$_{2}$	252.3	1.0	4.0
[C$_{1}$mim]N(CN)$_{2}$	265.2	2.3	8.7
Table S5. Calculated gas-phase entropies (J K\(^{-1}\) mol\(^{-1}\)) at 1 bar for NaCl and the ILs.

Ion/ion pair	\(S_{\text{tra}}\)	\(S_{\text{rot}}\)	\(S_{\text{vib}}\)	Total
Single ion				
Na\(^+\)	147.8	0.0	0.0	147.8
Cl\(^-\)	153.1	0.0	0.0	153.1
[C\(_2\)mim]\(^+\)	167.5	117.8	93.8	379.1
[C\(_4\)mim]\(^+\)	170.3	126.2	148.0	444.4
PF\(_6\)\(^-\)	170.8	88.6	45.3	304.7
Ion pair				
NaCl	159.4	65.5	4.9	229.7
[C\(_2\)mim]PF\(_6\)	177.9	134.9	234.2	547.0
[C\(_4\)mim]PF\(_6\)	179.2	139.0	286.2	604.4
Melting point\(^a\)				
Single ion				
Na\(^+\)	174.8	0.0	0.0	174.8
Cl\(^-\)	180.0	0.0	0.0	180.0
[C\(_2\)mim]\(^+\)	170.1	119.4	107.1	396.6
PF\(_6\)\(^-\)	173.4	90.1	55.2	318.7
[C\(_4\)mim]\(^+\)	168.6	125.1	135.2	428.9
PF\(_6\)\(^-\)	169.1	87.5	39.5	296.1
Ion pair				
NaCl	186.3	76.3	14.8	277.4
[C\(_2\)mim]PF\(_6\)	180.5	136.5	263.8	580.8
[C\(_4\)mim]PF\(_6\)	177.5	138.0	265.6	581.1

\(^a\)Estimated from the MD simulations in this work (NaCl: 1089K, [C\(_2\)mim]PF\(_6\): 338 K, and [C\(_4\)mim]PF\(_6\): 275 K).
Table S6. Results from the PSCP cycle. All units are in kJ mol\(^{-1}\). Reference temperatures of NaCl, \([\text{C}_2\text{mim}]\text{PF}_6\), and \([\text{C}_4\text{mim}]\text{PF}_6\) were 1100 K, 380 K, and 340 K, respectively.

	\(\Delta_1A\)	\(\Delta_2A\)	\(\Delta_3A\)	\(\Delta_4A\)	\(p\Delta V\)	\(\Delta_{\text{up}}G\)
NaCl	574.75 ± 0.02	109.45 ± 0.01	-13.06 ± 0.00	-671.42 ± 0.01	0.0009	-0.29 ± 0.02
\([\text{C}_2\text{mim}]\text{PF}_6\)	134.55 ± 0.01	85.83 ± 0.02	-5.93 ± 0.00	-216.79 ± 0.02	0.0015	-2.33 ± 0.04
\([\text{C}_4\text{mim}]\text{PF}_6\)	144.61 ± 0.03	117.83 ± 0.02	-7.25 ± 0.00	-259.59 ± 0.02	0.0018	-4.40 ± 0.03
Table S7. Calculated T_m, $\Delta_{fus} H$, and $\Delta_{fus} S$ values of NaCl and the ILs. The reported experimental and MD values are also shown.

Salt	MD (This work)	Exp.	MD (reported)
	T_m / K		
NaCl	1088.8 ± 0.9	1073123	1082125
$[C_2\text{mim}]PF_6$	337.7 ± 0.6	332.8126, 334.1127, 334.2128	3305,6, 3307, 3554
$[C_4\text{mim}]PF_6$	275.4 ± 0.4	283.5135, 280.03129, 281.83130, 282.343	2844,6, 2847
	$\Delta_{fus} H$ / kJ mol$^{-1}$		
NaCl	28.13 ± 0.01	28.0123	28.1125
$[C_2\text{mim}]PF_6$	18.17 ± 0.05	17.86126, 17.99127, 17.7128	17.75,6, 17.327, 19.34
$[C_4\text{mim}]PF_6$	17.95 ± 0.13	19.60135, 19.91129, 20.67130, 20.943	18.835,6, 17.957
	$\Delta_{fus} S$ / J K$^{-1}$ mol$^{-1}$		
NaCl	25.83 ± 0.02	26.1123	25.9125
$[C_2\text{mim}]PF_6$	53.81 ± 0.17	53.67126, 53.85127, 53.2128	53.645,6, 52.517, 51.64
$[C_4\text{mim}]PF_6$	65.16 ± 0.37	69.14135, 71.10129, 73.34130, 73.543	66.325,6, 63.227
Table S8. Populations of conformations and S_{confor} for $[\text{C}_2\text{mim}]\text{PF}_6$ at 338 K.

	Crystal	Liquid
p	0.010 ± 0.000	0.109 ± 0.000
n	0.973 ± 0.001	0.445 ± 0.002
n'	0.017 ± 0.001	0.446 ± 0.002
$S_{\text{confor}} / \text{J K}^{-1} \text{ mol}^{-1}$	1.17 ± 0.02	8.00 ± 0.00
Table S9. Populations of conformations and S_{confor} for [C$_4$ mim]PF$_6$ at 275 K

	Crystal	Liquid
ptt	0	0.022 ± 0.001
ptg	0	0.008 ± 0.000
ptg'	0	0.007 ± 0.000
ptg	0	0.003 ± 0.001
pgg	0	0.001 ± 0.000
pgg'	0	0.000 ± 0.000
pg't	0	0.003 ± 0.000
pg'g	0	0.000 ± 0.000
pg'g'	0	0.001 ± 0.000
ntt	0.015 ± 0.001	0.188 ± 0.006
ntt	0.000 ± 0.000	0.069 ± 0.003
ntt	0.000 ± 0.000	0.056 ± 0.002
ntt	0.094 ± 0.009	0.054 ± 0.004
ntt	0.001 ± 0.001	0.019 ± 0.001
ntt	0.000 ± 0.000	0.002 ± 0.000
ntt	0.888 ± 0.010	0.061 ± 0.004
ntt	0.000 ± 0.000	0.002 ± 0.000
ntt	0.001 ± 0.000	0.026 ± 0.002
ntt	0.000 ± 0.000	0.186 ± 0.005
ntt	0.000 ± 0.000	0.061 ± 0.003
ntt	0.000 ± 0.000	0.072 ± 0.004
ntt	0.000 ± 0.000	0.056 ± 0.001
ntt	0.000 ± 0.000	0.021 ± 0.004
ntt	0.000 ± 0.000	0.002 ± 0.001
ntt	0.000 ± 0.000	0.057 ± 0.004
ntt	0.000 ± 0.000	0.002 ± 0.000
ntt	0.000 ± 0.000	0.021 ± 0.001
S_{confor} / J K$^{-1}$ mol$^{-1}$	3.43 ± 0.19	21.40 ± 0.11
Table S10. Absolute entropies (J K$^{-1}$ mol$^{-1}$) of the salts in the crystal state calculated by the MD simulations (this work) and reported experimentally. Configurational entropies (S_{config}) in the crystal state are assumed to be zero, which would be reasonable because the positional and orientational disorders of the ILs were negligible, judging from the MD trajectories.

	MD (This work)	Exp.					
	S_{tr}	S_{rot}	S_{vib}	S_{confor}	Total		
NaCl at 1089 K	Na$^+$	67.5 ± 0.0	0	0	0	140.3 ± 0.0	145.0
	Cl$^-$	72.8 ± 0.0	0	0	0		
$[\text{C}_2\text{mim}]\text{PF}_6$ at 338 K	$[\text{C}_2\text{mim}]^+$	61.7 ± 0.1	55.8 ± 0.1	111.6 ± 0.3	1.17 ± 0.02	440.9 ± 0.7	n/a
	PF_6^-	69.1 ± 0.1	73.5 ± 0.1	68.0 ± 0.2	0		
$[\text{C}_4\text{mim}]\text{PF}_6$ at 275 K	$[\text{C}_4\text{mim}]^+$	56.3 ± 0.1	46.7 ± 0.2	126.2 ± 0.2	3.43 ± 0.19	411.1 ± 0.8	392.9
	PF_6^-	62.8 ± 0.2	63.7 ± 0.1	51.9 ± 0.1	0		
Table S11. Decompositions of calculated Δ_{fus}S of NaCl, [C$_2$mim]PF$_6$, and [C$_4$mim]PF$_6$. Unit is in J K$^{-1}$ mol$^{-1}$.

	Δ_{kin}S	Δ_{str}S	Δ_{tra}S	Δ_{rot}S	Δ_{vib}S	Δ_{confor}S	Δ_{config}S	Total	Δ_{fus}S
NaCl at 1089 K									
Na$^+$	11.7 ± 0.0	0.0	0.0	0.0	25.2 ± 0.1	0	0.7 ± 0.1	0.7 ± 0.1	25.8 ± 0.0
Cl$^-$	13.4 ± 0.0	0.0	0.0	0.0	0				
[C$_2$mim]PF$_6$ at 338 K									
[C$_2$mim]$^+$	4.1 ± 0.2	7.0 ± 0.1	−0.2 ± 0.3	6.8 ± 0.1	16.9 ± 0.9	6.8 ± 0.0	30.0 ± 0.9	36.9 ± 0.9	53.8 ± 0.2
PF$_6^-$	4.3 ± 0.2	2.1 ± 0.2	−0.4 ± 0.2	0					
[C$_4$mim]PF$_6$ at 275 K									
[C$_4$mim]$^+$	3.8 ± 0.2	9.3 ± 0.2	−1.2 ± 0.2	19.1 ± 1.2	18.0 ± 0.2	28.1 ± 1.3	46.1 ± 1.3	65.2 ± 0.4	
PF$_6^-$	3.4 ± 0.3	5.6 ± 0.4	−1.9 ± 0.1	0					
Table S12. Diffusion coefficients of ions in NaCl (1089 K), [C\textsubscript{2}mim\textsubscript{+}]PF\textsubscript{6} (338 K), and [C\textsubscript{4}mim\textsubscript{+}]PF\textsubscript{6} (275K) in addition to their experimental viscosity data.

Salt	Ion	Simulated D (this work) / m2 s-1	Experimental D / m2 s-1	Experimental viscosity / mPa s
NaCl	Na+	$8.44 \pm 0.24 \times 10^{-9}$	7.75×10^{-9} 132	1133
	Cl-	$7.75 \pm 0.26 \times 10^{-9}$	6.13×10^{-9} 132	132
[C\textsubscript{2}mim\textsubscript{+}]PF\textsubscript{6}	[C\textsubscript{2}mim\textsubscript{+}]	$6.13 \pm 0.27 \times 10^{-11}$	n/a	28134
	PF\textsubscript{6}-	$4.00 \pm 0.17 \times 10^{-11}$	n/a	28134
[C\textsubscript{4}mim\textsubscript{+}]PF\textsubscript{6}	[C\textsubscript{4}mim\textsubscript{+}]	$1.19 \pm 0.16 \times 10^{-12}$	1.18×10^{-12} 135	1459136
	PF\textsubscript{6}-	$0.50 \pm 0.07 \times 10^{-12}$	0.82×10^{-12} 135	1459136
SI References

1. S. T. Lin, M. Blanco and W. A. Goddard Iii, *J. Chem. Phys.*, 2003, **119**, 11792-11805.
2. S. T. Lin, P. K. Maiti and W. A. Goddard Iii, *J. Phys. Chem. B*, 2010, **114**, 8191-8198.
3. D. M. Eike, J. F. Brennecke and E. J. Maginn, *J. Chem. Phys.*, 2005, **122**, 014115.
4. K. Bernardino, Y. Zhang, M. C. C. Ribeiro and E. J. Maginn, *J. Chem. Phys.*, 2020, **153**, 044504.
5. Y. Zhang and E. J. Maginn, *J. Phys. Chem. B*, 2012, **116**, 10036-10048.
6. Y. Zhang and E. J. Maginn, *Phys. Chem. Chem. Phys.*, 2012, **14**, 12157-12164.
7. Y. Zhang and E. J. Maginn, *Phys. Chem. Chem. Phys.*, 2014, **16**, 13489-13499.
8. E. A. Turner, C. C. Pye and R. D. Singer, *J. Phys. Chem. A*, 2003, **107**, 2277-2288.
9. Y. Umebayashi, T. Fujimori, T. Sukizaki, M. Asada, K. Fujii, R. Kanzaki and S.-I. Ishiguro, *J. Phys. Chem. A*, 2005, **109**, 8976-8982.
10. R. Ozawa, S. Hayashi, S. Saha, A. Kobayashi and H.-o. Hamaguchi, *Chem. Lett.*, 2003, **32**, 948-949.
11. S.-T. Lin, M. Blanco and W. A. Goddard, *J. Chem. Phys.*, 2003, **119**, 11792-11805.
12. T. A. Pascal, D. Schärf, Y. Jung and T. D. Kühne, *J. Chem. Phys.*, 2012, **137**, 244507.
13. M. A. Caro, T. Laurila and O. Lopez-Acevedo, *J. Chem. Phys.*, 2016, **145**, 244504.
14. Q. Dong, C. D. Muzny, A. Kazakov, V. Diky, J. W. Magee, J. A. Widegren, R. D. Chirico, K. N. Marsh and M. Frenkel, *J. Chem. Eng. Data*, 2007, **52**, 1151-1159.
15. A. F. Kazakov, J. W. Magee, R. D. Chirico, V. Diky, K. G. Kroenlein, C. D. Muzny and M. D. Frenkel, *Journal*, 2021.
16. V. N. Emel'yanenko, S. P. Verevkin, A. Heintz, K. Voss and A. Schulz, *J. Phys. Chem. B*, 2009, **113**, 9871-9876.
17. U. Domańska, A. Pobudkowska and F. Eckert, *Green Chem.*, 2006, **8**, 268-276.
18. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. H. Susan and M. Watanabe, *J. Phys. Chem. B*, 2005, **109**, 6103-6110.
19. P. Keil and A. König, *Thermochim. Acta*, 2011, **524**, 202-204.
20. J. M. Pringle, J. Golding, C. M. Forsyth, G. B. Deacon, M. Forsyth and D. R. MacFarlane, *J. Mater. Chem.*, 2002, **12**, 3475-3480.
21. S. Zarei, S. Abdolrahimi and G. Pazuki, *Fluid Phase Equilib.*, 2019, **497**, 140-150.
22. V. Štejfa, J. Rohliček and C. Červinka, *J. Chem. Thermodyn.*, 2020, **425**, 106020.
23. Y. U. Paulechka, G. J. Kabo, A. V. Blokhin, A. S. Shaplov, E. I. Lozinskaya and Y. S. Vygodskii, *J. Chem. Thermodyn.*, 2007, **39**, 158-166.
24. M. E. V. Valkenburg, R. L. Vaughn, M. Williams and J. S. Wilkes, *Thermochim. Acta*, 2005, **425**, 181-188.
25. H. a. Every, A. G. Bishop, D. R. MacFarlane, G. Orädd and M. Forsyth, *J. Mater. Chem.*, 2001, **11**, 3031-3036.
26. P. B. P. Serra, F. M. S. Ribeiro, M. A. A. Rocha, M. Fulem, K. Růžička, J. A. P. Coutinho and L. M. Santos, *J. Mol. Liq.*, 2017, **248**, 678-687.
27. Y. U. Paulechka, A. V. Blokhin, G. J. Kabo and A. A. Strechan, *J. Chem. Thermodyn.*, 2007, **39**, 866-877.
28. E. Vataščin and V. Dohnal, *J. Chem. Thermodyn.*, 2018, **119**, 114-126.
29. K. Matsumoto, E. Nishiwaki, T. Hosokawa, S. Tawa, T. Nohira and R. Hagiwara, *J. Phys. Chem. C*, 2017, **121**, 9209-9219.
30. Y. U. Paulechka and A. V. Blokhin, *J. Chem. Thermodyn.*, 2014, **79**, 94-99.
31. A. Efimova, G. Hubrig and P. Schmidt, *Thermochim. Acta*, 2013, **573**, 162-169.
32. A. A. Strechan, A. G. Kabo, Y. U. Paulechka, A. V. Blokhin, G. J. Kabo, A. S. Shaplov and E. I. Lozinskaya, *Thermochim. Acta*, 2008, **474**, 25-31.
33. Y. U. Paulechka, A. G. Kabo, A. V. Blokhin, G. J. Kabo and M. P. Shevel'yo, *J. Chem. Eng. Data*, 2010, **55**, 2719-2724.
34. A. A. Strechan, Y. U. Paulechka, A. V. Blokhin and G. J. Kabo, *J. Chem. Thermodyn.*, 2008, **40**, 632-639.
35. G. J. Kabo, A. V. Blokhin, Y. U. Paulechka, A. G. Kabo, M. P. Shymanovich and J. W. Magee, *J. Chem. Eng. Data*, 2004, **49**, 453-461.
36. R. A. M. Faria, T. F. M. Vieira, C. I. Melo and E. Bogel-Łukasik, *J. Chem. Eng. Data*, 2016, **61**, 3116-3126.
37. A. A. Strechan, Y. U. Paulechka, A. G. Kabo, A. V. Blokhin and G. J. Kabo, *J. Chem. Eng. Data*, 2007, **52**, 1791-1799.
38. P. Wasserscheid, R. van Hal and A. Bösmann, *Green Chem.*, 2002, **4**, 400-404.
39. Y. Shimizu, Y. Ohte, Y. Yamamura and K. Saito, *Chem. Lett.*, 2007, **36**, 1484-1485.
40. B. Monteiro, L. Maria, A. Cruz, J. M. Carretas, J. Marçalo and J. P. Leal, *Thermochim. Acta*, 2020, **684**, 178482.
41. U. Domanska, A. Rekawek and A. Marciniak, *J. Chem. Eng. Data*, 2008, **53**, 1126-1132.
42. J. Salgado, T. Teijeira, J. J. Parajó, J. Fernández and J. Troncoso, *J. Chem. Thermodyn.*, 2018, **123**, 107-116.
43. P. B. P. Serra, F. M. S. Ribeiro, M. A. A. Rocha, M. Fulem, K. Růžička and L. M. Santos, *J. Chem. Thermodyn.*, 2016, **100**, 124-130.
56. U. Domańska, *Thermochim. Acta*, 2006, **448**, 19-30.
57. L. Xue, E. Gurung, G. Tamas, Y. P. Koh, M. Shadeck, S. L. Simon, M. Maroncelli and E. L. Quitevis, *J. Chem. Eng. Data*, 2016, **61**, 1078-1091.
58. U. Domańska and A. Marciniak, *Fluid Phase Equilib.*, 2007, **260**, 9-18.
59. M. Wlazło, M. Zawadzki and U. Domańska, *J. Chem. Thermodyn.*, 2018, **116**, 316-322.
60. Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu, J. Yang, X. Zhang and Y. Deng, *J. Phys. Chem. B*, 2007, **111**, 2864-2872.
61. D.-W. Fang, L. Gong, X.-T. Fan, K.-H. Liang, X.-X. Ma and J. Wei, *J. Therm. Anal. Calorim.*, 2019, **138**, 1437-1442.
62. Z. Chen, Y. Huo, J. Cao, L. Xu and S. Zhang, *Ind. Eng. Chem. Res.*, 2016, **55**, 11589-11596.
63. Q.-S. Liu, M. Yang, P.-F. Yan, X.-M. Liu, Z.-C. Tan and U. Welz-Biermann, *J. Chem. Eng. Data*, 2010, **55**, 4928-4930.
64. M. García-Andreu, M. Castro, I. Gascón and C. Lafuente, *J. Chem. Thermodyn.*, 2016, **103**, 395-402.
65. Q.-S. Liu, Z.-C. Tan, U. Welz-Biermann and X.-X. Liu, *J. Chem. Thermodyn.*, 2014, **68**, 82-89.
66. B. Tong, Q.-S. Liu, Z.-C. Tan and U. Welz-Biermann, *J. Phys. Chem. A*, 2010, **114**, 3782-3787.
67. I. Bandres, F. M. Royo, I. Gascón, M. Castro and C. Lafuente, *J. Phys. Chem. B*, 2010, **114**, 3601-3607.
68. C. M. S. S. Neves, M. L. S. Batista, A. F. M. Cláudio, L. M. N. B. F. Santos, I. M. Marrucho, M. G. Freire and J. A. P. Coutinho, *J. Chem. Eng. Data*, 2010, **55**, 5065-5073.
69. T. M. Letcher, D. Ramjugernath, K. Tumba, M. Królkowski and U. Domańska, *Fluid Phase Equilib.*, 2010, **294**, 89-97.
70. U. Domanska, M. Królkowski, A. Pobudkowska and T. M. Letcher, *J. Chem. Eng. Data*, 2009, **54**, 1435-1441.
71. U. Domańska, M. Królkowski and K. Ślesińska, *J. Chem. Thermodyn.*, 2009, **41**, 1303-1311.
72. A. B. Pereiro, A. Rodriguez, M. Blesic, K. Shimizu, J. N. Canongia Lopes and L. P. N. Rebelo, *J. Chem. Eng. Data*, 2011, **56**, 4356-4363.
73. U. Domańska, M. Królkowski, A. Pobudkowska and P. Bocheńska, *J. Chem. Thermodyn.*, 2012, **55**, 225-233.
74. E. J. R. Sudholter, J. B. F. N. Engberts and W. H. De Jeu, *J. Phys. Chem.*, 1982, **86**, 1908-1913.
75. N. Papaiconomou, J. Estager, Y. Traore, P. Bauduin, C. Bas, S. Legeai, S. Viboud and M. Draye, *J. Chem. Eng. Data*, 2010, **55**, 1971-1979.
76. U. Domańska, K. Skiba, M. Zawadzki, K. Paduszyński and M. Królkowski, *J. Chem. Thermodyn.*, 2013, **56**, 153-161.
77. U. Domańska, M. Roguszewska, M. Królkowski, D. Ramjugernath and P. Naidoo, *J. Chem. Thermodyn.*, 2015, **83**, 90-96.
78. M. Królkowski, M. Więckowski and M. Zawadzki, *J. Chem. Thermodyn.*, 2020, **149**, 106149.
79. A. J. Hill, J. Huang, J. Efthimiadis, P. Meakin, M. Forsyth and D. R. Macfarlane,
80. D. R. Macfarlane, P. Meakin, N. Amini and M. Forsyth, *J. Phys.: Condens. Matter*, 2001, 13, 8257.
81. Y. Shimizu, Y. Ohte, Y. Yamamura, S. Tsuzuki and K. Saito, *J. Phys. Chem. B*, 2012, 116, 5406-5413.
82. U. Domańska, M. Królkowski and W. E. Acree Jr, *J. Chem. Thermodyn.*, 2011, 43, 1810-1817.
83. U. Domańska, P. Okuniewska and A. Markowska, *Fluid Phase Equilib.*, 2016, 424, 68-78.
84. M. Havlová and V. Dohnal, *J. Chem. Thermodyn.*, 2018, 121, 129-144.
85. M. L. Ferreira, M. J. Pastoriza-Gallego, J. M. M. Araujo, J. N. Canongia Lopes, L. P. N. Rebelo, M. M. Piñeiro, K. Shimizu and A. B. Pereiro, *J. Phys. Chem. C*, 2017, 121, 5415-5427.
86. H. Jin, B. O’Hare, J. Dong, S. Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi and M. Maroncelli, *J. Phys. Chem. B*, 2008, 112, 81-92.
87. K. Goossens, K. Lava, P. Nockemann, K. Van Hecke, L. Van Meervelt, K. Driesen, C. Görller-Walrand, K. Binnemans and T. Cardinaels, *Chem. Eur. J.*, 2009, 15, 656-674.
88. A. S. M. C. Rodrigues, H. F. D. Almeida, M. G. Freire, J. A. Lopes-da-Silva, J. A. P. Coutinho and L. M. Santos, *Fluid Phase Equilib.*, 2016, 423, 190-202.
89. A. Marciniak and M. Królkowski, *J. Chem. Thermodyn.*, 2012, 49, 154-158.
90. U. Domańska, M. Krolikowska and K. Paduszyński, *Fluid Phase Equilib.*, 2011, 303, 1-9.
91. K. Paduszyński, J. Chiyen, D. Ramjugernath, T. M. Letcher and U. Domańska, *Fluid Phase Equilib.*, 2011, 305, 43-52.
92. J. J. Parajó, M. Villanueva, P. B. Sánchez and J. Salgado, *J. Chem. Thermodyn.*, 2018, 126, 1-10.
93. T. L. Greaves, A. Weerawardena, C. Fong, I. Krodkiewska and C. J. Drummond, *J. Phys. Chem. B*, 2006, 110, 22479-22487.
94. E. Couadou, J. Jacquemin, H. Galiano, C. Hardacre and M. Anouti, *J. Phys. Chem. B*, 2013, 117, 1389-1402.
95. J. Salgado, J. J. Parajó, M. Villanueva, J. R. Rodríguez, O. Cabeza and L. M. Varela, *J. Chem. Thermodyn.*, 2019, 134, 164-174.
96. L. E. Shmukler, M. S. Gruzdev, N. O. Kudryakova, Y. A. Fadeeva, A. M. Kolker and L. P. Safonova, *J. Mol. Liq.*, 2018, 266, 139-146.
97. T. Yasuda, H. Kinoshita, M. S. Miran, S. Tsuzuki and M. Watanabe, *J. Chem. Eng. Data*, 2013, 58, 2724-2732.
98. Z. B. Zhou, H. Matsumoto and K. Tatsumi, *Chem. Eur. J.*, 2005, 11, 752-766.
99. M. Mahrova, M. Vilas, A. Dominguez, E. Gomez, N. Calvar and E. Tojo, *J. Chem. Eng. Data*, 2012, 57, 241-248.
100. T. G. Coker, J. Ambrose and G. J. Janz, *J. Am. Chem. Soc.*, 1970, 92, 5293-5297.
101. K. Machanová, Z. Wagner, A. Andresová, J. Rotrekl, A. Boisset, J. Jacquemin and M. Bendová, *J. Solution Chem.*, 2015, 44, 790-810.
102. U. Domańska, K. Ługowska and J. Pernak, *J. Chem. Thermodyn.*, 2007, 39, 729-736.
103. J. J. Parajo, M. Villanueva, J. Troncoso and J. Salgado, *J. Chem. Thermodyn.*,
2020, 141, 105947.
104. U. Domańska and R. Bogel-Łukasik, J. Phys. Chem. B, 2005, 109, 12124-12132.
105. U. Domańska, Z. Żolek-Tryznowska and M. Królikowski, J. Chem. Eng. Data, 2007, 52, 1872-1880.
106. U. Domańska, P. Okuniewska and M. Królíkow, Fluid Phase Equilib., 2016, 423, 109-119.
107. U. Domańska and L. M. Casas, J. Phys. Chem. B, 2007, 111, 4109-4115.
108. U. Domańska, M. Wlazło, M. Karpińska and M. Zawadzki, Fluid Phase Equilib., 2017, 449, 1-9.
109. C. Jia, Y. Cao, T. Zuo, R. Hu, T. Yao and H. Song, J. Chem. Eng. Data, 2015, 60, 999-1005.
110. G. Fischer, G. Holl, T. M. Klapötke and J. J. Weigand, Thermochim. Acta, 2005, 437, 168-178.
111. U. Domańska, M. Zawadzki, M. M. Tshibangu, D. Ramjugernath and T. M. Letcher, J. Chem. Thermodyn., 2010, 42, 1180-1186.
112. U. Domańska and M. Zawadzki, J. Chem. Thermodyn., 2011, 43, 989-995.
113. U. Domańska, M. Zawadzki, M. M. Tshibangu, D. Ramjugernath and T. M. Letcher, J. Phys. Chem. B, 2011, 115, 4003-4010.
114. U. Domańska, M. Zawadzki and M. Zwolińska, J. Chem. Thermodyn., 2011, 43, 775-781.
115. U. Domańska, M. Zawadzki, M. M. Tshibangu, D. Ramjugernath and T. M. Letcher, J. Chem. Thermodyn., 2011, 43, 989-995.
116. U. Domańska, M. Zawadzki and M. Zwolińska, J. Chem. Thermodyn., 2011, 43, 775-781.
117. U. Domańska, A. Wiśniewska, Z. Dąbrowski and M. Więckowski, J. Mol. Liq., 2018, 255, 504-512.
118. F. J. M. Casado, A. S. Arenas, M. V. G. Pérez, M. I. R. Yélamos, S. L. de Andrés and J. A. R. Cheda, J. Chem. Thermodyn., 2007, 39, 455-461.
119. G. J. Janz, Molten Salts Handbook, Academic, 1967.
120. T. Endo, T. Morita and K. Nishikawa, Chem. Phys. Lett., 2011, 517, 162-165.
121. J. L. Aragones, E. Sanz, C. Valeriani and C. Vega, J. Chem. Phys., 2012, 137, 104507.
122. U. Domańska and A. Marciniak, J. Chem. Eng. Data, 2003, 48, 451-456.
123. H. Sifaoui, A. Ait-Kaci, A. Modarressi and M. Rogalski, Thermochim. Acta, 2007, 456, 114-119.
124. P. B. P. Serra, F. M. S. Ribeiro, M. A. A. Rocha, M. Fulem, K. Růžička, J. A. P. Coutinho and L. M. N. B. F. Santos, J. Mol. Liq., 2017, 248, 678-687.
125. J. Troncoso, C. A. Cerdeirin, Y. A. Sanmamed, L. Romani and L. P. N. Rebelo, J. Chem. Eng. Data, 2006, 51, 1856-1859.
126. Z. H. Zhang, T. Cui, J. L. Zhang, H. Xiong, G. P. Li, L. X. Sun, F. Xu, Z. Cao, F.
Li and J. J. Zhao, *J. Therm. Anal. Calorim.*, 2010, **101**, 1143-1148.

131. M. W. Chase, *NIST-JANAF Thermochemical Tables, 4th Edition*, American Institute of Physics, 1998.

132. G. J. Janz and N. P. Bansal, *J. Phys. Chem. Ref. Data*, 1982, **11**, 505-693.

133. G. J. Janz, *J. Phys. Chem. Ref. Data*, 1988, **17**.

134. K. R. Seddon, A. Stark and M.-J. Torres, *ACS Symp. Ser.*, 2002, **819**.

135. T. Umecky, M. Kanakubo and Y. Ikushima, *Fluid Phase Equilib.*, 2005, **228-229**, 329-333.

136. K. R. Harris, L. A. Woolf and M. Kanakubo, *J. Chem. Eng. Data*, 2005, **50**, 1777-1782.