Comparative first-principles study of antiperovskite oxides and nitrdes as thermoelectric material: multiple Dirac cones, low-dimensional band dispersion, and high valley degeneracy

Masayuki Ochi and Kazuhiko Kuroki

Department of Physics, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

(Dated: February 12, 2019)

We perform a comparative study on thermoelectric performance of antiperovskite oxides Ae_3TtO and nitrdes Ae_3PtN ($Ae = Ca, Sr, Ba; Tt = Ge, Sn, Pb; Pt = As, Sb, Bi$) by means of first-principles calculation. As for the oxides with the cubic structure, Ca_3GeO with a sizable band gap exhibits high thermoelectric performance at high temperatures, while Ba_3PbO with Dirac cones without the gap is favorable at low temperatures. The latter high performance owes to high valley degeneracy including the multiple Dirac cones and the valleys near the Γ and R points. For the nitrdes with the cubic structure, insulator with strong quasi-one-dimensionality exhibits high thermoelectric performance. We also find that the orthorhombic structural distortion sometimes sizably enhances thermoelectric performance, especially for Ba_3GeO and Sr_3AsN where the high valley degeneracy is realized in the $Pnma$ phase. Our calculation reveals that antioerpvskites offer a fertile playground of various kinds of characteristic electronic structure, which enhance the thermoelectric performance, and provides promising candidates of high-performance thermoelectric materials.

I. INTRODUCTION

Searching high-performance thermoelectric materials is a central issue in the study of thermoelectrics. There are many promising compounds such as Bi_2Te_3,23,24 lead chalcogenides,25,26 skutterudites,27,28 clathrates,29,30 and Na_xCoO_2. These high-performance materials have some characteristics in their crystal and/or electronic structures. For example, rattling motion of atoms is a key for low thermal conductivity in skutterudites and clathrates.13,15,24 Band convergence studied in lead chalcogenides is one of the most important and general concepts to enhance thermoelectric performance. Low-dimensionality is also an important concept for enhancing thermoelectric performance of many materials including layered materials, nanowires, and nanotubes.31,32 It was pointed out that high thermoelectric performance of Na_xCoO_2 originates from a pudding-mold-shaped band structure33, where a large group velocity and a high density of states (DOS) can coexist. These studies show that investigating characteristic crystal and/or electronic structures often bring ones general and useful concepts for seeking high thermoelectric performance.

Antiperovskites, in which the positions of constituent elements in a famous perovskite structure are interchanged as shown in Fig. I(a), have attracted much attention from several aspects, such as superconductivity,34,35 giant negative thermal expansion,36,37 giant magnetoresistance,38 magnetostriiction,39 and magnetocaloric effects.40 Interestingly also, recent studies pointed out that some antiperovskite oxides and nitrdes are candidates for three-dimensional massless Dirac electron systems41,42 and topological crystalline insulators.43 They also belong to mixed-anion compounds44, which are characterized by multiple anion atoms. For example, Sr_3SnO has two kinds of anion atoms, O^{2-} and Sn^{4-}, the latter of which is an unusual negative oxidation state of group-14 elements. The unique crystal and electronic structures of antiperovskites have been investigated also as possible candidates for thermoelectric materials in experimental45 and theoretical46,47 studies. Experimental realization of the carrier control and a high Seebeck coefficient of around 100 μVK$^{-1}$ together with a metallic resistivity and a relatively low thermal conductivity of around 2 Wm$^{-1}$K$^{-1}$ at room temperature is promising.48 However, it is still unclear whether their characteristic electronic structure including the Dirac dispersion is favorable for thermoelectric performance and how to enhance their performance. Because of their unique characteristics, it is expected that investigation on the thermoelectric properties of antiperovskites will provide novel and important knowledge that will expand the possibility for further findings of high-performance thermoelectric materials.

In this paper, we perform a comparative study on thermoelectric performance of antiperovskite oxides Ae_3TtO and nitrdes Ae_3PtN ($Ae = Ca, Sr, Ba; Tt = Ge, Sn, Pb; Pt = As, Sb, Bi$) by means of first-principles calculation. We find that several kinds of characteristic electronic structure play an important role in enhancing their thermoelectric performance: multiple Dirac cones, quasi-one-dimensional band dispersion, and high valley degeneracy induced by the structural distortion toward the orthorhombic $Pnma$ phase. Here, because the crystal structure of the antiperovskite oxides and nitrdes exhibits some variations as presented in Tables I and II, we investigate the effect of the structural change onto their thermoelectric performance. Our study reveals a unique and fertile electronic structure of the antiperovskite oxides and nitrdes, which is attracting also as thermoelectric materials, and provides possible promising candidates for high-performance thermoelectric materials.

This paper is organized as follows. Section II presents...
FIG. 1: Crystal structures of (a) Sr$_3$SnO ($Pn\bar{3}m$), (b) Ba$_3$PbO (Imma), (c) Ba$_3$GeO ($Pnma$), and (d) Ba$_3$BiO ($P6_3/mmc$). A doubled unit cell is shown in panel (b), while the lattice vectors a, b, and c for the primitive unit cell are also shown with broken lines. Depicted using the VESTA software.

Tt/Ae	Ca	Sr	Ba
Ge	$Pm\bar{3}m$ (ht), Imma (lt)	$Pnma$	$Pnma$
Sn	$Pn\bar{3}m$	$Pn\bar{3}m$	$Pn\bar{3}m$ (ht), Imma (lt)
Pb	$Pn\bar{3}m$	$Pn\bar{3}m$ (lt)	Imma (lt)

TABLE I: Space group of each oxide Ae_3TIO ($Ae =$ Ca, Sr, Ba; $Tt =$ Ge, Sn, Pb) in experiments. (ht) and (lt) denote the high-temperature and low-temperature phases, respectively. Information for Ba$_3$GeO and Sr$_3$GeO were taken from Refs. [62] and [63], respectively, and others were taken from Ref. [61].

$Pn\backslash Ae$	Ca	Sr	Ba
As	$Pm\bar{3}m$ (ht), $Pnma$ (lt)	-	-
Sb	$Pn\bar{3}m$	$Pn\bar{3}m$	$Pn\bar{3}m$ $P6_3/mmc$
Bi	$Pn\bar{3}m$	$Pn\bar{3}m$	$Pn\bar{3}m$ $P6_3/mmc$

TABLE II: Space group of each nitride Ae_3PnN ($Ae =$ Ca, Sr, Ba; $Pn =$ As, Sb, Bi) in experiments. (ht) and (lt) denote the high-temperature and low-temperature phases, respectively. Information for $Pn =$ Sr and Ba was taken from Ref. [62] and that for $Pn =$ Ca was taken from Refs. [63,64].

II. CALCULATION METHODS

First, we performed the structural optimization using the PBEsol exchange-correlation functional66 and the projector augmented wave method68 with the inclusion of the spin-orbit coupling (SOC). For this purpose, we used *Vienna* ab initio Simulation Package (VASP)$^{69–72}$. For the $Pm\bar{3}m$, Imma, $Pnma$, and $P6_3/mmc$ space groups, $12 \times 12 \times 12$, $10 \times 10 \times 10$, $8 \times 8 \times 8$, and $10 \times 10 \times 10$ k-meshes were used, respectively. Crystal structures of antiperovskites with these space groups are shown in Fig. 1. A plane-wave cutoff energy of 550 eV was used for all the cases.

After the structural optimization, we performed first-principles band-structure calculation using WIEN2K code73. We employed the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential74,75 to obtain a reliable size of the band gap. In self-consistent-field (SCF) calculations for the $Pm\bar{3}m$, Imma, $Pnma$, and $P6_3/mmc$ space groups, $12 \times 12 \times 12$, $10 \times 10 \times 10$, $8 \times 8 \times 8$, and $10 \times 10 \times 10$ k-meshes were used, respectively. For calculating DOS, we took $54 \times 54 \times 54$ and $38 \times 27 \times 38$ k-meshes for the $Pm\bar{3}m$ and $Pnma$ space groups, respectively. We used a relatively high value of the RK_{max} parameter, 10, since Wannier functions in a high energy region were extracted as mentioned below. SOC was included unless noted.

From the calculated band structures, we extracted the Wannier functions of the $Ae-d$, $Tt(Pn)-p$, and $O(N)-p$ orbitals using the WIEN2WANNIER and WANNIER90 codes$^{76–79}$. We did not perform the maximal localization procedure for the Wannier functions to prevent orbital mixing among the different spin components. For the $Pm\bar{3}m$, Imma, $Pnma$, and $P6_3/mmc$ space groups, we used $16 \times 16 \times 16$, $12 \times 12 \times 12$, $12 \times 8 \times 12$, and $10 \times 10 \times 10$ k-meshes, respectively, for constructing the Wannier functions. Then, we constructed the tight-binding model with the obtained hopping parameters among the Wannier functions. We analyzed the transport properties using this model with the Boltzmann transport theory. The transport coefficients K_{ν} are represented as follows:

$$K_{\nu} = \frac{\tau}{\sum_{n,k}} \nu_{n,k} \otimes \nu_{n,k} \left[\frac{\partial f_0}{\partial \epsilon_{n,k}} \right] (\epsilon_{n,k} - \mu(T))^\nu, \quad (1)$$

with the Fermi–Dirac distribution function f_0, chemical potential $\mu(T)$, energy $\epsilon_{n,k}$ and group velocity $\nu_{n,k}$ of the one-electron orbital on the n-th band at the k-point k and the relaxation time τ, which was assumed to be constant in this study. By using K_{ν}, the electrical conductivity σ, Seebeck coefficient S, and electrical thermal conductivity κ_{el} are expressed as follows:

$$\sigma = e^2K_0, \quad S = -\frac{1}{eT}K_0^{-1}K_1, \quad (2)$$

$$\kappa_{\text{el}} = \frac{1}{T} [K_2 - K_1 K_0^{-1} K_1], \quad (3)$$

where e (> 0) is the elementary charge. The power factor PF = σS^2 and the dimensionless figure of merit
$ZT = \sigma S^2 T \kappa^{-1}$ were also calculated using these quantities. We assumed that the thermal conductivity κ can be represented as the sum of the electrical thermal conductivity κ_{el} and the lattice electrical thermal conductivity κ_{lat}, namely, $\kappa = \kappa_{el} + \kappa_{lat}$. In our study, τ and κ_{lat} were assumed to be 10^{-14} second and $2 \text{ Wm}^{-1}\text{K}^{-1}$, respectively, which are typical values for thermoelectric materials. In fact, the thermal conductivity of Ca$_3$SnO was reported to be around $2 \text{ Wm}^{-1}\text{K}^{-1}$ at room temperature26. The relaxation time and the lattice thermal conductivity are generally different among materials, and so their theoretical evaluation based on phonon calculation is an important future issue. In this study, we concentrated on how favorable the electronic band structure of candidate materials is.

To simulate the carrier doping, we adopted the rigid band approximation. We only considered the hole carrier doping, which was realized in experiments for some antiperovskite oxides35,46. We employed a fine k-mesh up to $900 \times 900 \times 900$ for calculating the transport properties with sufficient convergence.

III. RESULTS AND DISCUSSIONS

A. Oxides Ae_3TtO with the cubic structure

In this section, we investigated the electronic structure and the transport properties of the antiperovskite oxides Ae_3TtO ($\text{Ae} = \text{Ca, Sr, Ba}; \text{Tt} = \text{Ge, Sn, Pb}$), assuming the cubic structure with a space group $Pm\overline{3}m$ for all the compounds. Because some oxides have a distorted crystal structure as shown in Table I, we shall see the effect of the structural (orthorhombic) distortion on thermoelectric performance in Sec. III.C.

1. **Band structures**

Figure 2 presents a calculated band structure and partial DOS (pDOS) of Ba$_3$PbO with the cubic structure (space group: $Pm\overline{3}m$). Black broken and red solid lines in the band structure represent the band structures obtained with the first-principles calculation and the tight-binding model for the Wannier functions, respectively.

Figure 3 presents the band structures of various antiperovskite oxides, which shows that the existence of the band gap and the Dirac cones depends on the constituent elements. The atomic replacement of $\text{Tt} = \text{Ge}\rightarrow\text{Sn}\rightarrow\text{Pb}$ naturally leads to reduction of the band gap for $\text{Ae} = \text{Ca}$ and Sr, owing to an upward shift of the valence band dispersion mainly consisting of the Tt-atomic orbitals. This atomic replacement also enhances SOC, the effect of which shall be investigated later in this paper. Here, we only point out that the valence band splitting at the Γ point induced by SOC becomes larger by this atomic replacement as shown in Fig. 3.

Quasi-one-dimensionality of the valence-top band structure of some materials is noteworthy. For example, the valence-top band structure of Ca$_3$GeO shown in Fig. 3a) consists of two nearly degenerate band dispersion with a heavy effective mass and the other one with a much lighter mass along the Γ-X line. This feature corresponds with the fact that there are three quasi-one-dimensional band dispersion that are mobile along one of the x, y, and z directions, respectively. Such a quasi-one-dimensionality originates from the anisotropy of the Tt-p orbitals. Because low-dimensionality is desirable for high thermoelectric performance26,28 owing to its large DOS near the band edge together with a sizable group velocity to a specific direction, the quasi-one-dimensionality in antiperovskites can be an advantageous feature for thermoelectric performance. We also note that, in real one-dimensional systems, technological applications are not straightforward because they require high orientation of samples, without which the conductivity is easily lost. Low-dimensionality owing to the anisotropy of the electron wave function realized in rather isotropic crystal structure, like our target materials here, is favorable from
FIG. 3: Band structures of \(\text{Ae}_3\text{Tt} \text{O} \) (\(\text{Ae} = \text{Ca, Sr, Ba} \); \(\text{Tt} = \text{Ge, Sn, Pb} \)) with the cubic structure (space group: \(Pm\bar{3}m \)). Black broken and red solid lines represent the band structures obtained with the first-principles calculation and the tight-binding model for the Wannier functions, respectively.

2. Thermoelectric performance

Figure 4 presents the calculated \(ZT \) values of the antiperovskite oxides with the cubic (\(Pm\bar{3}m \)) structure. Broken lines in the figure correspond to materials that have yet to be synthesized in the structure with the \(Pm\bar{3}m \) space group. The hole carrier concentration was optimized for each point, and so depends on temperature in this plot.

In the high-temperature region, \(\text{Ca}_3\text{GeO} \) yields the highest \(ZT \), where the quasi-one-dimensional band structure together with a finite band gap is realized as shown in Fig. 3(a). This result seems to be natural because of the superiority of the low-dimensional electronic structure for thermoelectric performance as described in the previous section. In addition, the band gap prevents cancellation of the contribution from the electron and hole carriers in the transport coefficient \(K_1 \), Eq. (11), appearing in the Seebeck coefficient, Eq. (2).

On the other hand, in the low-temperature region, it is rather counterintuitive that \(\text{Ba}_3\text{PbO} \) yields the highest \(ZT \). In its band structure shown in Fig. 3(i), there are Dirac cones at the Fermi energy without the gap. As mentioned in the previous paragraph, the band dispersion without the gap is generally not favorable for thermoelectric performance because of the cancellation of the electron- and hole-carrier transport. In the next section, we investigate the way how the Dirac cones in \(\text{Ba}_3\text{PbO} \) result in the high thermoelectric performance.

3. How do the Dirac cones in \(\text{Ba}_3\text{PbO} \) enhance the thermoelectric performance?

To begin with, we investigated the effect of SOC on the thermoelectric performance. Figure 4 presents the calculated band structure of \(\text{Ba}_3\text{PbO} \) without the inclusion of
SOC. Although the Dirac cones are preserved along the Γ-X line, the system becomes metallic (i.e., a finite-size Fermi surface takes place) without SOC as seen in the band dispersion along the Γ-R line. Metallic electronic structure is clearly unfavorable for thermoelectric performance. In fact, the maximum value of ZT with respect to the hole carrier concentration is 0.04 for $T = 300$ K when SOC is switched off, which is only half of $ZT = 0.08$ when SOC is included in calculation. Therefore, SOC is one of the indispensable factors for high thermoelectric performance of Ba$_3$PbO.

To obtain more insight, we compared several transport quantities for three cases: Ba$_3$PbO, Sr$_3$PbO, and Ca$_3$GeO. From here on, we again included SOC in the calculations. Among these three compounds, Ba$_3$PbO and Sr$_3$PbO have Dirac cones while Ca$_3$GeO is an insulator with a gap as shown in Fig. 3(a)(f)(i). The Dirac cones without the gap allows the cancellation of the electron and hole carrier contribution for the Seebeck coefficient S when the carrier concentration is low, which was verified by our calculation results at 300 K as shown in Fig. 6. However, we also notice that the Seebeck coefficient becomes comparable for these three materials when the chemical potential is sufficiently far from $\mu = 0$, and ZT and PF reach their maximum values in such a region. In fact, even for Ba$_3$PbO and Sr$_3$PbO, the Seebeck coefficient can exceed 100 μVK$^{-1}$. This is one of the reasons why the relatively large values of ZT and PF can be achieved for the non-gap band dispersion for these materials. We note that, at high temperatures, the cancellation of the electron and hole carrier contribution occurs for wider carrier concentration, and so ZT of Ba$_3$PbO with the non-gapped Dirac cones is in fact much lower than that of Ca$_3$GeO with the gapped band structure as we have seen in Fig. 3.

By looking into the electrical conductivity σ and the Seebeck coefficient S shown in Fig. 6, a superiority of Ba$_3$PbO among the three materials can be seen for its high electrical conductivity. A key characteristic of its band structure around $\mu = -0.08$ eV, where ZT and PF are maximized, is the high valley degeneracy. First, the Dirac cones have six-fold degeneracy by the crystal symmetry. In addition, the valence-top band structure around the Γ and R points can enhance the thermoelectric performance by temperature broadening (see Fig. 3(i)). On the other hand, the band structure without the Dirac cones as in Ca$_3$GeO has no valley degeneracy since there is no other k-points that are equivalent to the Γ point where the valence-band top resides. We note that, in Sr$_3$PbO, the R valley is too deep to enhance the thermoelectric performance while the Γ point can play a role, which is an important difference between Sr$_3$PbO and Ba$_3$PbO. It has been established that the multi-valley band structure is favorable for high thermoelectric performance. Therefore, the high valley degeneracy is an important advantage of Ba$_3$PbO. It is also interesting that the valence-band top at the Γ point for Ba$_3$PbO has a pudding-mold-shape, which can enhance DOS near the band edge. This is another outcome of the large band deformation near the Fermi energy induced by SOC.

Before proceeding to the next section, we point out two issues regarding thermoelectric performance of the Dirac cone. First, one should pay attention to the applicability of the Boltzmann transport theory with the constant-relaxation-time approximation because it cannot appropriately deal with the inter-band scattering effects, which can affect thermoelectric properties of the systems where the bipolar effects are important such as those possessing the Dirac cone. In our case, the chemical potential becomes sufficiently deep (~ -0.1 eV) from the Dirac points at room temperature. Therefore, we expect that the inter-band scattering is not so dominant for our calculated results compared with the case when the chemical potential lies near the Dirac point, at least if the scattering strength is not so strong that the inter-band scattering becomes very active. Second, we point out that a possible long relaxation time is another advantage of the Dirac cones. This feature is naturally expected because a small DOS such as for the Dirac cone generally reduces the number of possible electron scattering processes and then yields a long relaxation time. However, these points regarding the scattering processes need further investigation and so are important future issues.
FIG. 7: Band structure and pDOS of Sr$_3$SbN with the cubic structure (space group: $Pm\bar{3}m$). Black broken and red solid lines in the band structure represent the band structures obtained with the first-principles calculation and the tight-binding model for the Wannier functions, respectively.

B. Nitrides Ae_3PnN with the cubic structure

Next, we move on to the antiperovskite nitrides with a chemical formula Ae_3PnN ($Ae = Ca, Sr, Ba; Pn = As, Sb, Bi$). In the same manner as the previous section, we assumed the cubic structure with a space group $Pm\bar{3}m$ for all the compounds in this section. We shall see thermoelectric performance of these materials with other crystal symmetries in Sec. III C.

1. Band structures

Figure 7 presents the whole band structure and pDOS of Sr$_3$SbN as a typical member of antiperovskite nitrides Ae_3PnN. The most striking difference from oxides is that the valence-top band structure mainly consists of nitrogens, which holds also for other nitrides investigated in this study. This is because nitrogen atomic orbitals have shallower energy levels than oxygen atomic orbitals. In addition, Pn atomic orbitals have deeper energy levels than Tt atomic orbitals in the same period.

As a result, the band structures of the antiperovskite nitrides shown in Fig. 8 have different features from oxides. First of all, unlike the oxides, all the nitrides have a band gap. Therefore, there is no chance that the Dirac cones appear at the Fermi energy. On the other hand, we can recognize the low dimensionality of the valence-top band structure similar to that seen in Fig. 3(a). This observation corresponds to the fact that the three p orbitals of nitrogens have anisotropy (quasi-one-dimensionality) for its conduction. We shall see this point in more detail in the next section.

FIG. 8: Band structures of Ae_3PnN ($Ae = Ca, Sr, Ba; Pn = As, Sb, Bi$) with the cubic structure (space group: $Pm\bar{3}m$). Black broken and red solid lines represent the band structures obtained with the first-principles calculation and the tight-binding model for the Wannier functions, respectively.

2. Thermoelectric performance

Calculated ZT values of the antiperovskite nitrides are shown in Fig. 9. Because of the low-dimensionality and a sufficiently large band gap, calculated ZT for nitrides are relatively high. However, we note that, materials with high ZT values are not stable as the cubic structure. If one restricts the target materials to those existing as the cubic structure in experiment, which are shown with solid lines in Fig. 9 the maximum ZT value at 300 K is 0.08 for Sr$_3$SbN, which is comparable to that of Ba$_3$PbO, 0.08. Even under this restriction, at high temperatures, the estimated ZT values of some nitrides such as Sr$_3$SbN and Ca$_3$AsN exceed those of all the oxides calculated in this study.

Why do the crystal structures that are unstable as the cubic structure exhibit high ZT values in calculation? A key is the correlation between the strong quasi-one-dimensionality of the band structures of Sr$_3$AsN and Ba$_3$PnN ($Pn = As, Sb, Bi$) and their high ZT values shown in Fig. 9. In other words, as shown in Fig. 5(d)(g)(h)(i), the ratio of the effective masses of the heavy and light band dispersions along the Γ-X line looks large for these compounds with high ZT values.

To see why these materials exhibit the strong quasi-one-dimensionality, we calculated band structures of Ca$_3$AsN and Ba$_3$AsN using our tight-binding model from
FIG. 9: Calculated ZT values of Ae_3PnN ($Ae = Ca$, Sr, Ba; $Pn = As$, Sb, Bi) with the cubic structure (space group: $Pm\bar{3}m$) with respect to temperature. Broken lines correspond to materials that have yet to be synthesized in the structure with the $Pm\bar{3}m$ space group. The hole carrier concentration was optimized for each point.

FIG. 10: Band structures calculated using the tight-binding model for (a) Ca_3AsN and (b) Ba_3AsN. Black dotted and red solid lines represent the original band structure and that calculated without the As orbitals, respectively.

which the As orbitals were excluded. In other words, the tight-binding Hamiltonian consisting only of the Ae and N orbitals was solved here. Obtained band structures are shown with red solid lines in Fig. 10 and compared with the original band structures shown with black dotted lines. While the valence-top band structure of Ba_3AsN shown in Fig. 10(b) is almost unaffected by neglecting the As orbitals, we found that the low-dimensionality of the nitrogen bands in Ca_3AsN is much degraded by hybridization with the As orbitals as shown in Fig. 10(a). This difference can be naturally understood because, in Ba_3AsN, the Ba ionic radius may be too large to keep the As-N distance short enough to hybridize, which preserves the low-dimensionality of the nitrogen orbitals. Therefore, this strong low-dimensionality is in accord with the instability of the crystal structure. In general, the structural instability might enhance the anharmonicity of phonons, which often reduces the lattice thermal conductivity and then enhances ZT. It is interesting that the structural instability and the improvement of the electronic band structure, both of which might be favorable for ZT, can occur simultaneously in the antiperovskite nitrides. We note that this expectation should be checked carefully because there are other factors that involve with ZT such as a change in the electron relaxation time by increasing the structural instability. First-principles evaluation of these quantities is an interesting future issue.

C. Thermoelectric performance with the orthorhombic and hexagonal structures

In this section, we investigated thermoelectric performance of the antiperovskite oxides and nitrides with the orthorhombic and hexagonal structures. For this purpose, we first evaluated which structure among the experimentally observed space groups is the most stable for each nitride because some nitrides have yet to be synthesized in experiment, unlike the oxides. After that, we discussed the effect of the structural change from the cubic structure on thermoelectric performance. Temperature dependence of ZT for the most promising candidates we found are also presented.

1. Stability of the $Pm\bar{3}m$ phase

We investigated the structural stability of the $Pm\bar{3}m$ phase for the nitrides, by comparing its total energy with
that of the $Pnma$ and $P6_3/mmc$ phases. Figure 11 presents the total energies of the $Pnma$ and $P6_3/mmc$ phases, relative to that of the $Pm\bar{3}m$ phase, for the antiperovskite nitrides. Because $Pnma$ is a subgroup of $Pm\bar{3}m$, the zero relative energy of the former to the latter means that the crystal structure becomes $Pm\bar{3}m$ in calculation even when one allows the crystal distortion that can take place for the $Pnma$ space group. To be more precise, when the total energy difference of these two phases is less than 0.1 meV f.u.$^{-1}$, we regarded the crystal structure of the $Pnma$ phase falls into the $Pm\bar{3}m$ phase. Materials with the $Pm\bar{3}m$ phase as the most stable structure are shaded by color in the figure. We note that, because $Pnma$ is a subgroup of $Imma$, we need not to calculate the total energy of the $Imma$ phase for discussing the stability of the cubic structure. In addition, we have verified that the optimized crystal structures for $AcAsN_3$ and $BaSbN_3$ no longer have the full $Imma$ symmetry, i.e., the crystal structure seems to fall into the $Pnma$ phase for these compounds.

Our results presented in Fig. 11 show surprisingly good agreement with the experimental observation listed in Table I with respect to the most stable structure of each compound. In addition, the experimental observation that Ca_3AsN becomes $Pm\bar{3}m$ at high temperature is also consistent with a small energy difference between the $Pnma$ and $Pm\bar{3}m$ phases in our calculation. It is characteristic that the $Pm\bar{3}m$ phase in all the $Ac=Ba$ compounds is much unstable than the $P6_3/mmc$ phase. We found that the unsynthesized Sr_3AsN and Ba_3AsN are likely to be the $Pnma$ and $P6_3/mmc$ phases, respectively. Here, we note that the instability of Sr_3AsN as the $Pm\bar{3}m$ phase seems to be a subtle issue for first-principles calculation since a recent phonon calculation shows that this compound is stable as the $Pm\bar{3}m$ phase by using the GGA-PBE functional without SOC, which is different from ours.

We next investigated thermoelectric performance of materials with the hexagonal and orthorhombic structures. On the basis of the above calculation results shown in Fig. 11 for nitrides and the experimental observation shown in Table I for oxides, we focused on materials that are stable in these structures rather than as the cubic phase.

lattice	cubic	hexagonal	$a = b = c$
Ba_3AsN	0.18	0.11	0.11
Ba_3SbN	0.18	0.06	0.10
Ba_3BiN	0.16	0.07	0.05

Table III: Calculated ZT values of cubic and hexagonal Ba_3PnN at 300 K. Hole carrier concentration was optimized for each condition.

Figure 12 presents the band structure of Ba_3BiN with the hexagonal structure (space group: $P6_3/mmc$). Black broken and red solid lines represent the band structures obtained with the first-principles calculation and the tight-binding model for the Wannier functions, respectively.

lattice	cubic	orthorhombic ($Imma$)	$a = b = c$
Ca_3GeO	0.05	0.07 0.06	0.06
Ba_3SnO	0.06	0.05 0.05	0.05
Ba_3PbO	0.08	0.06 0.06	0.07

Table IV: Calculated ZT values of the cubic ($Pm\bar{3}m$) and orthorhombic ($Imma$) structures at 300 K. Calculation results are only shown for materials for which the $Imma$ structure was experimentally reported. Hole carrier concentration was optimized for each condition.

2. Hexagonal structure

Figure 12 presents the band structure of Ba_3BiN with the hexagonal structure (space group: $P6_3/mmc$). Compared with that for the cubic structure as shown in Fig. 5(i), this band structure does not seem to be favorable for thermoelectric performance because of the weakened anisotropy of the band dispersion near the valence-band top. As a matter of fact, the maximum value of ZT at 300 K is around 0.07 for the a and b directions and 0.05 for the c direction, which are less than a half of the ZT value for the cubic structure, 0.16. As shown in Table I, the situation is similar to Ba_3AsN and Ba_3SbN, for which the hexagonal structure was the most stable in our calculation presented in the previous section.

Whereas the electronic band structure is unfavorable for thermoelectric performance, a possible rattling motion of the Pn atoms, which can reduce the lattice thermal conductivity and thus increase ZT, is intriguing in the hexagonal phase.

3. Orthorhombic structures

Tables V and VI present the calculated ZT values for the orthorhombic ($Imma$ and $Pnma$, respectively) structures at 300 K, compared with those for the cubic
ZT our calculation as presented in Fig. 11. While the hexagonal
rier concentration was optimized for each condition.

	lattice	cubic	orthorhombic (Pnma)
axis			
a	0.05	0.07	0.07
b	0.08	0.07	0.09
c	0.12	0.18	0.20
Ba3GeO	0.06	0.18	0.20
Ca3AsN	0.07	0.07	0.12
Sr3AsN	0.12	0.19	0.20
Ba3AsN	0.18	0.15	0.10

TABLE V: Calculated ZT values of the cubic (Pm3m) and orthorhombic (Pnma) structures at 300 K. Calculation results are only shown for materials for which the Pnma structure was experimentally reported or predicted to be stable by our calculation as presented in Fig. 11. While the hexagonal structure was the most stable in our calculation for Ba3AsN, ZT values in the Pnma phase are also shown for this compound because the total energies of the orthorhombic and hexagonal structures were comparable in Fig. 11. Hole carrier concentration was optimized for each condition.

(\textit{Pm3m}) structure. Overall, the calculated ZT values are similar between the cubic and orthorhombic phases for each compound. However, we can see a notable increase in ZT by introducing the orthorhombic distortion for two materials: ZT increases from 0.18 in Pm\textit{3m} to 0.18 (a axis), 0.20 (b axis), and 0.26 (c axis) in Pn\textit{ma} for Ba3GeO, and from 0.12 in Pm\textit{3m} to 0.18 (a axis), 0.20 (b axis), and 0.16 (c axis) in Pn\textit{ma} for Sr3AsN.

We also calculated the temperature dependence of ZT for Ba3GeO and Sr3AsN in the Pm\textit{3m} and Pn\textit{ma} phases, as shown in Fig. 13. We calculated the temperature dependence of ZT for each compound is comparable to the highest value in the Pm\textit{3m} phase shown in Fig. 9, which was, however, obtained for Ba3PnN where in reality the hexagonal phase is likely realized. In this sense, Ba3GeO and Sr3AsN with the Pn\textit{ma} phase are the most promising candidates investigated in this study. While there is a direction dependence of ZT to some extent for both compounds in the Pn\textit{ma} phase as shown in Fig. 13, the high ZT along all the directions is advantageous for technological applications.

IV. CONCLUSION

We have investigated the thermoelectric performance of the hole-doped antiperovskite oxides and nitrides by...
means of first-principles band structure calculation and the subsequent transport calculation based on the Boltzmann transport theory. For the cubic $P\overline{n}m\bar{a}$ phase, we have found that Ba$_3$PbO at low temperatures (around room temperature), Ca$_3$GeO at high temperatures, and Sr$_3$SbN in the wide temperature region are promising candidates for high thermoelectric performance. In Ba$_3$PbO, multiple Dirac cones with six-fold degeneracy and the existence of the other valleys near the Γ and R points with relatively close energy levels enhance ZT. In Ca$_3$GeO and Sr$_3$SbN, quasi-one-dimensional band dispersion originating from the orbital anisotropy of the p orbitals is a key for their high performance. When considering the other crystal structures, the hexagonal structure is not favorable at least from the perspective of the shape of the band dispersion. However, the orthorhombic distortion toward the $Pnma$ phase sizably enhances the thermoelectric performance of Ba$_3$GeO and Sr$_3$AsN, which are the most promising candidates within the materials investigated in this study. For both compounds, a crucial consequence of the structural distortion is the high valley degeneracy, which is considered to enhance their thermoelectric performance. For Ba$_3$GeO, another important role of the structural distortion is the gap opening. Another promising candidate is Ba$_3$AsN if synthesized as the $Pnma$ phase, which is slightly unstable compared with the hexagonal phase in our calculation. Our study will help and stimulate the experimental exploration of the high thermoelectric performance in antiperovskites oxides and nitrides, which offer a unique and fertile playground where various kinds of characteristic electronic structure take place.

Acknowledgments

Some calculations were performed using large-scale computer systems in the supercomputer center of the Institute for Solid State Physics, the University of Tokyo, and those of the Cybermedia Center, Osaka University. This study was supported by JSPS KAKENHI (Grant No. JP17H05481) and JST CREST (Grant No. JP-MJCR16Q6), Japan.

1. H. J. Goldsmid, *Thermoelectric Refrigeration* (Plenum Press, 1964).
2. D. M. Rowe, *CRC Handbook of Thermoelectrics* (CRC Press, 1995).
3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, *Science* **320**, 634 (2008).
4. Z. H. Dughaiash, Lead telluride as a thermoelectric material for thermoelectric power generation, *Physica B* **322**, 205 (2002).
5. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, *Science* **321**, 554 (2008).
6. J. Androulakis, I. Todorov, D. Y. Chung, S. Ballikaya, G. Wang, C. Uher, and M. Kanatzidis, Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands, *Phys. Rev. B* **82**, 115209 (2010).
7. H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Heavily Doped p- Type PbSe with High Thermoelectric Performance: An Alternative for PbTe, *Adv. Mater.* **23**, 1366 (2011).
8. W. Jeitschko, D. Braun, LaFe$_4$P$_{12}$ with filled CoAs$_3$-type structure and isotypic lanthanoid-transition metal polyphosphides, *Acta Cryst.* **B33**, 3401 (1977).
9. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, Low-temperature transport properties of p-type CoSb, *Phys. Rev. B* **51**, 9622 (1995).
10. G. S. Nolas, G. A. Slack, T. Caillat, G. P. Meisner, Raman scattering study of antimony-based skutterudites, *J. Appl. Phys.* **79**, 2622 (1996).
11. G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, A. C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, *J. Appl. Phys.* **79**, 4002 (1996).
12. B. C. Sales, D. Mandrus, and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, *Science* **272**, 1325 (1996).
13. T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, *Rev. Mod. Phys.* **86**, 669 (2014).
14. I. Terasaki, Y. Sasago, and K. Uchinokura, Large thermoelectric enhancement in PbTe with Na codoping from tuning the interaction of the light- and heavy-hole valence bands, *Phys. Rev. B* **82**, 115209 (2010).
15. H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe, *Adv. Mater.* **23**, 1366 (2011).
16. W. Jeitschko, D. Braun, LaFe$_4$P$_{12}$ with filled CoAs$_3$-type structure and isotypic lanthanoid-transition metal polyphosphides, *Acta Cryst.* **B33**, 3401 (1977).
17. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, Low-temperature transport properties of p-type CoSb, *Phys. Rev. B* **51**, 9622 (1995).
18. G. S. Nolas, G. A. Slack, T. Caillat, G. P. Meisner, Raman scattering study of antimony-based skutterudites, *J. Appl. Phys.* **79**, 2622 (1996).
19. G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, A. C. Ehrlich, The effect of rare-earth filling on the lattice thermal conductivity of skutterudites, *J. Appl. Phys.* **79**, 4002 (1996).
20. B. C. Sales, D. Mandrus, and R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, *Science* **272**, 1325 (1996).
21. T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, *Rev. Mod. Phys.* **86**, 669 (2014).
22. I. Terasaki, Y. Sasago, and K. Uchinokura, Large thermoelectric enhancement in PbTe with Na codoping from tuning the interaction of the light- and heavy-hole valence bands, *Phys. Rev. B* **82**, 115209 (2010).
electric power in NaCo$_2$O$_4$ single crystals, Phys. Rev. B 56, R12685(R) (1997).

15. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, Localized vibrational modes in metallic solids, Nature 395, 876 (1998).

16. G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Semiconductor Ge clathrates: Promising candidates for thermoelectric applications, Appl. Phys. Lett. 73, 178 (1998).

17. B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Structural, magnetic, thermal, and transport properties of $X_3G_a_{16}Ge_{20}$ ($X = Eu$, Sr, Ba) single crystals, Phys. Rev. B 63, 245113 (2001).

18. C. H. Lee, I. Hase, H. Sugawara, H. Yoshizawa, and H. Sat0, Low-Lying Optical Phonon Modes in the Filled Skutterudite CeRu$_4$Sb$_{12}$, J. Phys. Soc. Jpn. 75, 123602 (2006).

19. K. Suenkuni, M. A. Avila, K. Umeo, and T. Takabatake, Cage-size control of guest vibration and thermal conductivity in Sr$_3$Ga$_{16}$Sn$_{20}$Ge$_{20}$, Phys. Rev. B 75, 195210 (2007).

20. M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Leffmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater. 7, 811 (2008).

21. A. Fujitjwara, K. Sugimoto, C.-H. Shih, H. Tanaka, J. Tang, Y. Tanabe, J. Xu, S. Heguri, K. Tanigaki, and M. Takata, Quantitative relation between structure and thermal conductivity in type-I clathrates $X_3Ga_{16}Ge_{20}$ ($X = Sr$, Ba) based on electrostatic-potential analysis, Phys. Rev. B 85, 144305 (2012).

22. M. Beckman, D. T. Morelli, and G. S. Nolas, Better thermoelectrics through glass-like crystals, Nat. Mater. 14, 1182 (2015).

23. T. Nadano, Y. Gohda, and S. Tsumeyuki, Impact of Rattlers on Thermal Conductivity of a Thermoelectric Clathrate: A First-Principles Study, Phys. Rev. Lett. 114, 095501 (2015).

24. T. Nadano and S. Tsumeyuki, Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles, Phys. Rev. Lett. 120, 105901 (2018).

25. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Convergence of electronic bands for high-performance bulk thermoelectrics, Nature (London) 473, 66 (2011).

26. L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727 (1993).

27. L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631(R) (1993).

28. H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to puddling mold type band structures, J. Appl. Phys. 121, 165101 (2017).

29. T. Yamamoto and H. Fukuyama, Possible High Thermoelectric Power in Semiconducting Carbon Nanotubes \sim A Case Study of Doped One-Dimensional Semiconductors \sim, J. Phys. Soc. Jpn. 87, 024707 (2018).

30. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature (London) 451, 163 (2008).

31. R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, and P. Keblinski, Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators, Phys. Rev. Lett. 102, 105901 (2009).

32. Y. Nakai, K. Honda, K. Yanagi, H. Kataura, T. Kato, T. Yamamoto, and Y. Maniwa, Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film, Appl. Phys. Express 7, 025103 (2014).

33. K. Kuroki and R. Arita, “Pudding Mold” Band Drives Large Thermopower in Na$_2$Co$_3$O$_2$, J. Phys. Soc. Jpn. 76, 083707 (2007).

34. T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slsky, K. Inumara, H. W. Zandbergen, N. P. Ong and R. J. Cava, Superconductivity in the non-oxide perovskite MgCN$_3$, Nature 411, 54 (2001).

35. M. Oudah, A. Ikeda, J. N. Hausmann, S. Yonezawa, T. Fukumoto, S. Kobayashi, M. Sato, and Y. Maeno, Superconductivity in the antiperovskite Dirac-metal oxide Sr$_{3-x}$SnO, Nat. Commun. 7, 13617 (2016).

36. K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87, 261902 (2005).

37. S. Ikub0, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn$_2$Cu$_{4-x}$Ge$_{2+x}$, Phys. Rev. Lett. 101, 205901 (2008).

38. K. Kamishima, T. Goto, H. Nakagawa, N. Miura, O. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Giant magneto-resistance in the intermetallic compound Mn$_3$GaC, Phys. Rev. B 63, 024426 (2006).

39. K. Asano, K. Koyama, and K. Takenaka, Magnetostriiction in Mn$_3$CuN, Appl. Phys. Lett. 92, 161909 (2008).

40. T. Tohei, H. Wada, and T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn$_3$GaC, J. Appl. Phys. 94, 1800 (2003).

41. Y. Sun, X.-Qiu Chen, S. Yunoki, D. Li, and Y. Li, New Family of Three-Dimensional Topological Insulators with Antiperovskite Structure, Phys. Rev. Lett. 105, 216406 (2010).

42. T. Kariyado and M. Ogata, Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca$_3$PbO and Its Family, J. Phys. Soc. Jpn. 80, 083704 (2011).

43. T. Kariyado and M. Ogata, Low-Energy Effective Hamiltonian and the Surface States of Ca$_3$PbO, J. Phys. Soc. Jpn. 81, 064701 (2012).

44. T. H. Hsieh, J. Liu, and L. Fu, Topological crystalline insulators and Dirac octets in antiperovskites, Phys. Rev. B 90, 081112(R) (2014).

45. H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, and K. R. Poeppelmeier, Expanding frontiers in materials chemistry and physics with multiple anions, Nature Commun. 9, 772 (2018).

46. Y. Okamoto, A. Sakamaki, and T. Takenaka, Thermoelectric properties of antiperovskite calcium oxides Ca$_3$PbO and Ca$_3$SnO, J. Appl. Phys. 119, 205106 (2016).

47. K. Haddadi, A. Bouhemadou, L. Louail, F. Rahal, and S. Maabed, Prediction study of the structural, elastic and electronic properties of AN$_3$R$_3$ (A = As, Sb and Bi), Comput. Mater. Sci. 46, 881 (2009).

48. K. Haddadi, A. Bouhemadou, L. Louail, S. Maabed, and D. Maouche, Structural and elastic properties under pressure effect of the cubic antiperovskite compounds ANCo$_3$ (A =
K. Haddadi, A. Bouhemadou, and L. Louail, Structural, elastic and electronic properties of the hexagonal anti-perovskites \(\text{SbNBa}_3 \) and \(\text{BiNBa}_3 \), Comput. Mater. Sci. 48, 711 (2010).

M. Bilal, Banaras Khan, H. A. Rahnamaye Aliabad, M. Maqbod, S. Jalai Asadabadi, and I. Ahmad, Thermoelectric properties of \(\text{SbNCa}_3 \) and \(\text{BiNCa}_3 \), for thermoelectric devices and alternative energy applications, Comput. Phys. Commun. 185, 1394 (2014).

M. Bilal, Saifullah, M. Shafiq, B. Khan, H. A. R. Aliabad, S. J. Asadabadi, R. Ahmad, and I. Ahmad, Antiperovskite compounds \(\text{SbNSr}_3 \) and \(\text{BiNSr}_3 \): Potential candidates for thermoelectric renewable energy generators, Phys. Lett. A 379, 206 (2015).

M. Hassan, I. Arshad, and Q. Mahmood, Computational study of electronic, optical and thermoelectric properties of \(\text{X}_3\text{PbO} \) (\(\text{X} = \text{Ca}, \text{Sr}, \text{Ba} \)) anti-perovskites, Semicond. Sci. Technol. 32, 115002 (2017).

M. Hassan, A. Shahid, and Q. Mahmood, Structural, electronic, and thermoelectric investigations of antiperovskites \(\text{A}_2\text{SnO} \) (\(\text{A} = \text{Ca}, \text{Sr}, \text{Ba} \)) using density functional theory, Solid State Commun. 270, 92 (2018).

J. Battool, S. Muhammad Alay-e-Abbas, and N. Amin, Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite \(\text{Ca}_3\text{SnO} \), J. Appl. Phys. 123, 165106 (2018).

E. Haque and M. A. Hossain, Enhanced thermoelectric performance in \(\text{Ca}-\text{substituted} \text{Sr}_3\text{SnO} \), J. Phys. Chem. Solids 123, 318 (2018).

E. Haque and M. A. Hossain, Structural, elastic, optoelectronic and transport calculations of \(\text{Sr}_3\text{SnO}_2 \) under pressure, Mater. Sci. Semicond. Process 83, 192 (2018).

E. Haque and M. A. Hossain, First-principles study of mechanical, thermodynamic, transport and superconducting properties of \(\text{Sr}_3\text{SnO}_2 \), J. Alloys Compd. 730, 279 (2018).

E. Haque, M. T. Rahman, and M. A. Hossain, Optoelectronic and thermoelectric properties of \(\text{Ba}_3\text{DN} \) (\(\text{D} = \text{Sb}, \text{Bi} \)): A DFT investigation, \texttt{arXiv:1810.12526} (2018).

E. Haque and M. A. Hossain, DFT based study on structural stability and transport properties of \(\text{Sr}_3\text{AsN} \): A potential thermoelectric material, \texttt{arXiv:1810.12531} (2018).

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272 (2011).

B. Huang and J. D. Corbett, Orthorhombic Inverse Perovskite \(\text{Ba}_2\text{TtO} \) (\(\text{Tt} = \text{Ge}, \text{Si} \)) as Zintl Phases, Z. Anorg. Allg. Chem. 624, 1877 (1998).

A. Velden and M. Jansen, Zur Kenntnis der inversen Perowskite \(\text{M}_2\text{M} \) (\(\text{M} = \text{Ca}, \text{Sr}, \text{Yb} \); \(\text{T} = \text{Si}, \text{Ge}, \text{Sn}, \text{Pb} \)), Z. Anorg. Allg. Chem. 630, 234 (2004).

J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi and H. Takagi, Tilting structures in inverse perovskites, \(\text{M}_2\text{M} \) \(\text{M} = \text{Ca}, \text{Sr}, \text{Ba} \); \(\text{T} = \text{Si}, \text{Ge}, \text{Sn}, \text{Pb} \), Acta Cryst. B71, 300 (2015).

F. Gäßler, M. Kirchner, W. Schnelle, U. Schwarz, M. Schmitt, H. Rosner, and R. Niewa, \(\text{Sr}_3\text{N}_2\text{E} \) and \(\text{Ba}_3\text{N}_2\text{E} \) (\(\text{E} = \text{Sb, Bi} \)): Synthesis, Crystal Structures, and Physical Properties, Z. Anorg. Allg. Chem. 630, 2292 (2004).

M. Y. Chern, D. A. Vennos, and F. J. Disalvo, Synthesis, structure, and properties of anti-perovskite nitrides \(\text{Ca}_3\text{M}_N \), \(M = \text{P, As, Sb, Bi, Ge, Sn, Pb} \), J. Solid State Chem. 96, 415 (1992).

M. Y. Chern, F. J. Disalvo, J. B. Parise, and J. A. Goldstone, The structural distortion of the anti-perovskite nitride \(\text{Ca}_3\text{AsN} \), J. Solid State Chem. 96, 426 (1992).

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008).

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999).

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558(R) (1993).

G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49, 14251 (1994).

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, \textit{An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties} (Karlsruhe, Techn. Universität Wien, Austria, 2001). ISBN 3-9501031-1-2.

A. D. Becke and E. R. Johnson, A simple effective potential for exchange, J. Chem. Phys. 124, 221101 (2006).

F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102, 226401 (2009).

N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).

I. Souza, N. Marzari, and D. Vanderbilt, Maximally-localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001).

J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held, Wien2wannier: From linearized augmented plane waves to maximally localized Wannier functions, Comp. Phys. Commun. 181, 1888 (2010).

A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions, Comput. Phys. Commun. 178, 685 (2008).

H. Mori, H. Usui, M. Ochi, and K. Kuroki, Temperature- and doping-dependent roles of valleys in the thermoelectric performance of \(\text{SnSe} \): A first-principles study, Phys. Rev. B 96, 085113 (2017).

M. Ochi, H. Usui, and K. Kuroki, Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion, Phys. Rev. Appl. 8, 064020 (2017).

M. Ochi, H. Usui, and K. Kuroki, Theoretical Aspects of the Study on the Thermoelectric Properties of Pnictogen-Dichalcogenide Layered Compounds, J. Phys. Soc. Jpn. 88, 041010 (2019).

M. Ochi, H. Mori, D. Kato, H. Usui, and K. Kuroki, Thermoelectric performance of materials with \(\text{CuCh}_4 \) (\(\text{Ch} = \text{S, Se} \)) tetrahedra: Similarities and differences among their low-dimensional electronic structure from first principles, Phys. Rev. Mater. 2, 085401 (2018).

T. Yamamoto and H. Fukuyama, Bipolar Thermoelectric Effects in Semiconducting Carbon Nanotubes: Description
in Terms of One-Dimensional Dirac Electrons, J. Phys. Soc. Jpn. 87, 114710 (2018).

85 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

86 T. Pandey, L. Lindsay, and D. Parker, Electronic and vibration properties of Ba_{3}XN (X= Bi, and Sb): Atom intercalation influence on transport anisotropy, APS March Meeting 2018.