Review article

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions

Ki Hyun Kim 1,*, Dahae Lee 1,*, Hye Lim Lee 2, Chang-Eop Kim 2, Kiwon Jung 3,*, Ki Sung Kang 2,*

1 School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
2 College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
3 Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam, Republic of Korea

ABSTRACT

In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.

© 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Classification, structures, and chemical properties of ginseng components

Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant [1]. The name “ginseng” originates from the Chinese words “Jen Sheng” and means “man herb” because of the human-like shape of the root or rhizome of the plant. The word Panax means “cure all” and describes the traditional belief that ginseng has properties that heal all bodily diseases. To date, 14 plants, including 12 species and two infraspecific taxa, have been classified under the genus Panax [2]. The three major commercial ginseng sorts are the Korean ginseng (Panax ginseng Meyer), the Chinese ginseng (Panax notoginseng (Burk.) F. H. Chen), and the American ginseng (Panax quinquefolius L.), and they have been used worldwide as herbal medicines for thousands of years [3].

Korean ginseng (P. ginseng Meyer) is a well-known medicinal herb cultivated in eastern Asian countries [4]. P. ginseng is native to China and Korea, but is now widely cultivated in other countries such as Japan, Russia, the United States, and Canada. Root of the Korean ginseng has traditionally been used to treat various diseases, particularly as an adaptogen since it is suggested to normalize body functions and increase physical strength [5,6]. As fresh ginseng tends to be easily degraded at room temperature, it has traditionally been processed into white ginseng through air-drying of the root or into red ginseng through root steaming followed by drying [7–9]. In Korea, red ginseng and various processed ginseng products are used popularly as functional foods or...
nutritional supplements. Based on recent studies, red ginseng has been reported to have biological benefits while inducing fewer side effects compared with fresh and white ginseng [7,10–14]. In addition, Korean Red Ginseng is known to possess various biological activities including boosting the immune system, improving the blood circulation, enhancing memory, antifatigue effects, antioxidant effects, and positive effects on menopausal disorder [10–14].

Korean ginseng is known to have various therapeutic benefits mediated by its well-studied active components [15–21]. Indeed, Korean ginseng is reported to contain various functional constituents, including most notably ginseng saponins (also called ginsenosides), polyacetylenes, phenolic compounds, sesquiterpenes, alkaloids, polysaccharides, and oligopeptides [22].

1.2. Ginsenosides

First attempts to isolate ginsenosides happened in the 1960s [23,24] and most were identified from the *Panax* species. Ginsenosides are biosynthesized from 2,3-oxidosqualene, which leads to the formation of cycloartenol, dammarenediol-II, and β-amyrin by the action of three different enzymes. Dammarenediol-II is further hydroxylated into a PPT, 3β,6α,12β,20-trihydroxydammar-24-ene. Consequently, a number of ginsenosides are biosynthesized by the O-glycosylation of PPDs, which involves the attachment of saccharides to carbon (C)-3 and/or C-20. PPT-type ginsenosides include Rb1, Rb2, Rc, Rd, Rg3, Rh2, and Rh3 (Fig. 1). Dammarenediol-II is further hydroxylated into a PPT, 3β,6α,12β,20-tetrahydroxydammar-24-ene. A variety of ginsenosides are biosynthesized by O-glycosylation of PPTs, which involves the linkage of saccharides to C-6 and/or C-20. Typically, the hydroxyl group at C-3 remains free in PPT-type ginsenosides. Typical PPT-type ginsenosides in *P. ginseng* are Re, Rf, Rg1, Rg2, and Rh1 (Fig. 1). While most naturally occurring ginsenosides are of the (S)-configuration at C-20, some artifactual ginsenosides exist in two epimeric forms at the carbon. The pseudoginsenoside F11 belongs to the PPT group although the carbon chain at C-20 is replaced by a tetrahydrofuran ring (Fig. 1). Several new ginsenosides such as 25-OH-PPD and 25-OH-PPT were recently isolated from ginseng berries [25]. Four malonyl derivatives of ginsenosides, Rb1, Rb2, Rc, and Rd, have also been reported to have biological benefits while inducing fewer side effects compared with fresh and white ginseng [7,10–14]. In addition, Korean Red Ginseng is known to possess various biological activities including boosting the immune system, improving the blood circulation, enhancing memory, antifatigue effects, antioxidant effects, and positive effects on menopausal disorder [10–14].

Fig. 1. Structure of selected ginsenosides. (A) PPDs. (B) PPTs. (C) Derivatives of PPDs and PPTs. (D) Other ginsenosides. Ac, acetyl; Ara(f), α-L-arabinofuranose; Ara(p), α-L-arabinopyranose; Glc, β-D-glucose; GlcUA, β-D-glucuronic acid; mal, malonyl; PPD, protopanaxadiol; PPT, protopanaxtriol; Rha, α-L-rhamnose; Xyl, β-D-xylose.
been reported [25]. The malonyl derivatives and ginsenoside Rg are also called “acidic” ginsenosides, while the others are called “neutral” ginsenosides [26].

Heat treatment induces deglycosylation of ginsenosides. As a result, red ginseng has relatively high concentrations of the less polar ginsenosides transformed from fresh ginseng ginsenosides. Red ginseng contains ginsenosides Rg2, Rg6, F4, 20(E)-F4, Rh1, Rh4, Rk3, Rg3, Rg5, Rz1, Rk1, Rg9, and Rg10, which are converted from the major ginsenosides Rb1, Rb2, Rc, Rd, Rg1, and Re [7]. Generally, ginsenoside deglycosylation during the process of red ginseng production results in these conversions: [Rg1 → Rh1 → (Rh4, Rk3), [Re → Rg2 → (F4, Rg6)], [Rf → (Rg9, 20Z-Rg9, Rg10)], and [(Rb1, Rc, Rb2, Rd) → Rg3 → (Rg5, Rk1, Rz1)] [7]. These results are consistent with the experimental evidence that the levels of the less polar ginsenosides such as Rg2, Rh1, and Rg3 progressively increase, whereas the levels of the natural ginsenosides such as Rg1, Re, Rb1, Rc, and Rd progressively decrease during the heat-processed red ginseng production [27].

1.3. Polyacetylenes

Polyacetylenes are representative nonsaponin components of ginseng. The first polyacetylene identified and extracted from P. ginseng was panaxynol [28]. Since then, many polyacetylenic substances, including panaxydol and ginsenoynes A–E, have been identified and extracted from P. ginseng (Fig. 2) [22]. Panaxytriol is a hydrated compound with an epoxy ring derived from panaxydol by heat and acid treatment (Fig. 2). These P. ginseng polyacetylenes are believed to possess anticancer properties. However, their in vivo efficacy has not been determined due to their chemical instability.

1.4. Phenolic compounds

Phenolic compounds generally possess antioxidative and anticancer biological properties. However, phenolic compounds found in ginseng are relatively less investigated. More than 10 phenolic compounds have previously been reported in fresh and/or processed ginseng (Fig. 2). These include salicylic acid, vanillic acid, ascorbic acid, p-coumaric acid, ferulic acid, gentisic acid, p-hydroxybenzoic acid, maltol, cinnamic acid, protocatechuic acid, syringic acid, and quercetin [29]. A recent study revealed that chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin are the major phenolic compounds in 3–6-yr-old ginseng fruits, leaves, and roots [30]. Korean ginseng, which is suggested to provide more health benefits than other ginseng species, usually contains more phenolic compounds than Chinese ginseng [31].

1.5. Sesquiterpenes

A number of sesquiterpene hydrocarbons as well as oxygenated sesquiterpenes have been identified as volatile constituents of P. ginseng. More than 15 sesquiterpenes have been identified as

![Fig. 2. Structure of selected nonsaponin constituents. (A) Polyacetylenes. (B) Phenolic compounds. (C) Sesquiterpenes. (D) Alkaloids.](image)
volatile constituents of P. ginseng. These include sesquiterpene hydrocarbons such as β-panasinsene, african-2-ene, β-elemene, calarene, (E)-β-farnesene, α-humulene, α-neoclovene, 2-epi-(E)-β-caryophyllene, β-neoclovene, β-selinene, and bicyclogermacrene, and oxygenated sesquiterpenes such as spathulenol, humulene epoxide II, ginsenos, hexadecanoic acid, and falcarnol (Fig. 2) [32,33].

1.6. Alkaloids

Alkaloids are another nonsaponin component of Korean ginseng and include 1-carboxomethoxy-β-carboline, N9-formylharman, harman, norharman, perfollylene, 4-methyl-5-thiazoleethanol, and spinacine (Fig. 2) [22]. Recently, a new indole alkaloid, ginsinenine, with a seven-membered lactam unit, was isolated from P. ginseng berries [34]. These alkaloids are minor components of P. ginseng and their biological activities are also limited.

1.7. Polysaccharides

Korean ginseng contains various polysaccharides. The hypoglycemic glycans, panasans A–E, and panaxans I–L, M–P, and Q–U have been isolated from the roots of P. ginseng [3,35–37]. It has been recognized that the composition of the polysaccharides varies depending on strains and/or places of production [35,37]; however, acid hydrolysis, reduction, acetylation followed by gas–liquid chromatography of these glycans showed that they consist of diverse combinations of neutral sugars including rhamnose, mannose, galactose, arabinose, galactose, and glucose. In addition, the immunomodulating glycans ginsenan PA and ginsenan PB were identified in P. ginseng root [38]. These immunomodulating glycans are composed of L-arabinose, D-galactose, L-rhamnose, D-galactose, and D-glucuronic acid, but their exact structure is also unknown. Other immunomodulating glycans, such as acidic polysaccharide ginsenan S-IA and ginsenan S-II A, have also been identified. By contrast, ginseng polysaccharides are mainly composed of neutral polysaccharides (starch-like glucans) and acidic substances (ginseng pectin) [39]. Ginseng pectins have been reported to show a wider range of pharmacological activities compared with neutral polysaccharides [40,41], and they are known to be composed of galacturonic acid, galactose, glucose, arabinose, rhamnose, glucuronic acid, and mannose [41]; however, their exact structure is also unknown.

Table 1

Effects of P. ginseng and its active ingredient on Alzheimer’s disease

Active ingredient	Target molecules	Cell lines or animal strain (toxicants)	Effective doses (treatment time)	References
Rg1	TNF-α, IFN-β, iNOS, TLR3, TLR4, NF-κB, and TRAF-6	NG108-15 cells (amyloid β peptide 25–35)	8 μg/mL, 16 μg/mL, and 32 μg/mL (24 h)	[49]
Rb1	CAP1, CAP2, TOMM40, DSTDN, PARP-1, and Bax	SH-SYS5 cells (amyloid β)	100 μM (24 h)	[50]
P. ginseng extract	RAGE and NF-κB	Male Sprague-Dawley rats (advanced glycation end product)	0.25 g/kg/day, 0.5 g/kg/day, and 1 g/kg/day (30 d)	[51]
Ginseng total saponin	Aβ1-42, tau, Glu, Asp, GABA, Ach, DA, Gly, and 5-HT	Male Wistar rats (d-galactose with AICl3)	2 g/kg/day (30 d)	[52]
Ginseng total saponin	PSD-95, PKCy, and BDNF	Female C57Bl/6j mice (aged mice: 12 mo old)	0.056% and 0.112% (w/v) (8 mo)	[53]
Ginseng total saponin	PSD-95, pNMDAR1, p-CaMKII, p-PAk C3, p-PKC, p-CREB, and BDNF	Male SAMP8 and SAMP8 mice (aged: 4 mo old)	100 mg/kg/day and 200 mg/kg/day (3 mo)	[54]
Rh1	TNF-α, IL-1β, IGF-1, BDNF, COX-2, NOS, and Aβ1-42	Male ICR mice (aged mice: 6 mo old)	10 mg/kg/3 (mo)	[55]
Rh1	BDNF and CREB	Wistar rats (streptozotocin)	10 mg/kg and 20 mg/kg (28 d)	[54]
Rh1	BDNF and CREB	Male ICR mice (scopolamine)	10 mg/kg (1 h)	[57]
Rh1	GSK3β and tau	Male Sprague-Dawley rats (okadaic acid)	20 mg/kg (25 d)	[58]
neurotransmitters including glutamate (Glu), aspartate (Asp), gamma-aminobutyric acid (GABA), acetylcholine (ACh), dopamine (DA), glycine (Gly), and 5-hydroxytryptamine (5-HT) [52]. Ginsenosides are reported to improve memory loss in C57BL/6J mice with severe hippocampal damage and in aged SAMPI8 mice (senescence-accelerated mouse) by upregulating plasticity-related proteins such as postsynaptic density protein-95 (PSD-95), gamma isotype of protein kinase C (PKCγ), and brain-derived neurotrophic factor (BDNF) [54].

Ginsenoside Rb1 protected against amyloid β-induced neurotoxicity in SH-SY5Y cells by regulating the adenylyl cyclase-associated protein 1 (CAP1), capping protein (actin filament) muscle Z-line beta (CAPZB), translocase of outer mitochondrial membrane 40 homolog (TOMM40), and destrin (DSTN) proteins related to actin cytoskeleton organization and by decreasing the levels of apoptotic proteins such as poly (ADP-ribose) polymerase 1 (PARP-1) and Bax [50]. The expression of BDNF, a key modulator of neuronal survival, activity, and synaptic transmission, and a key player in hippocampal-dependent learning and memory, was increased in male ICR mice treated with ginsenoside Rh1, resulting in enhanced survival of dentate gyrus cells. Ginsenoside Rh1 was also reported to protect newborn neurons from death during the neuronal differentiation process [53,55].

Ginsenoside Rg5 improved cognition and amyloid β deposition in a Wistar rat model by increasing insulin-like growth factor 1 (IGF-1) and BDNF levels and decreasing tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels [56]. Ginsenoside Rg5 and Rh3 reversed scopolamine-induced memory deficits in male ICR mice by inhibiting AChE activity and increasing BDNF expression and cAMP response element binding protein (CREB) activation [57]. Ginsenoside Rg1 reduced the mRNA and protein expressions of Toll-like receptor (TLR3), TLR4, nuclear factor kappa B (NF-kB), and TNF receptor associated factor-6 (TRAF-6) and downregulated the levels of TNF-α and interleukin-1β (IFN-β) in an NG108-15 neuronal cell line stimulated by amyloid β peptide 25–35 [49]. Moreover, ginsenoside Rg1 attenuated okadaic acid-induced memory impairment in male Sprague-Dawley rats through the glycogen synthase kinase 3 beta (GSK3β)/tau signaling pathway and the prevention of amyloid β formation [58].

The potential efficacy of a heat-processed form of ginseng on cognitive function and behavioral symptoms has recently been reported in a clinical study in patients with moderately severe Alzheimer’s disease. Indeed, ginseng-treated patients showed a significant improvement on the Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale (ADAS). Moreover, patients treated with higher ginseng doses (4.5 g/d) showed further improvements in their ADAS cognitive, ADAS noncognitive, and MMSE scores as early as 12 wk following treatment. This improvement was sustained over a follow-up period of 24 wk [59]. However, the effects of ginseng on Alzheimer’s disease remain inconclusive as reported in a recent meta-analysis study including seven main databases for randomized clinical trials [60]. The main limitations of the available studies are small sample size, poor methodological qualities, and the absence of placebo controls [60].

2.2. Parkinson’s disease

Parkinson’s disease is a neurodegenerative disorder commonly affecting the elderly. It is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) as well as other regions of the central nervous system [61–65]. Dopaminergic degeneration is typically associated with the presence of protein deposits, called Lewy bodies, in the neuronal cytoplasm and thread-like proteinaceous inclusions, called Lewy neurites, within neuronal neurites [66–68]. The main clinical symptoms include resting tremor, bradykinesia, rigidity, and postural instability, which result in impaired movement and other neurological dysfunctions. The current understanding of the pathophysiology of Parkinson’s disease largely stemmed from elegant neurochemical investigations in the 1950–1960s that demonstrated over 80% reduction in striatal dopamine along with the loss of SNpc dopaminergic neurons in most Parkinson’s disease patients.

While the pathogenic mechanism of human Parkinson’s disease is still not fully understood, oxidative stress and cytotoxicity are thought to play an important role in the degeneration of dopaminergic neurons [63,64,69–74]. Mechanistically, it is known that dopamine neurotransmitter is chemically labile and its oxidation products, such as dopamine quinones and semiquinones, are highly cytotoxic to neurons in general and dopaminergic neurons in particular [63,64,69]. Elevated formation of these neurotoxic intermediates contributes to neuronal damage and degeneration. This mechanistic hypothesis is supported by many in vitro as well as in vivo studies.

Basic and clinical evidence of the beneficial effects of *P. ginseng* on Parkinson’s disease is summarized in Table 2. Extracts of *P. ginseng* had neuroprotective effects on 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis in SH-SY5Y cells through decreasing the levels of apoptotic proteins such as Bax, Bcl-2, cytochrome c, and cleaved caspase-3 [75]. In both in vivo (C57BL/6J mice) and in vitro (PC12 cells) models of Parkinson’s disease, ginsenoside Rg1 exerted neuroprotective effects through the Wnt/β-catenin signaling pathway including Wnt-1, β-catenin, GSK-3β, and p-GSK-3β. Neuroprotective effects of ginsenoside Rg1 on MPP+-induced apoptosis in PC12 cells were also mediated through the decrease in apoptotic proteins levels including Bcl-xL and cleaved caspase-3 [76]. Ginsenoside Rd was also shown to exert neuroprotective effects on MPP+-induced apoptosis in SH-SY5Y cells by decreasing the levels of apoptotic proteins including p-Akt, Bax, and Bcl-2 [77].

2.3. Brain ischemia and stroke

Stroke is the third leading cause of death in the industrialized world and the leading cause of disability [78]. There are two

Active ingredient	Target molecules	Cell lines or animal strain (toxins)	Effective doses (treatment time)	References
P. ginseng extract	Bax, Bcl-2, cytochrome c, and cleaved caspase-3	SH-SY5Y cells (MPP+)	0.2 mg/mL (60 h) [75]	
Rg1	Wnt-1, β-catenin, GSK-3β and p-GSK-3β, cleaved caspase-3, and Bcl-xL	PC12 cells (MPP+)	20 μM (24 h) [76]	
Rd	Bax, Bcl-2, and p-Akt	Male C57BL/6J mice (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)	1 μM and 10 μM (72 h) [77]	
Rg1	Wnt-1, β-catenin, GSK-3β, and p-GSK-3β	Male C57BL/6J mice (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)	5 mg/kg/d, 10 mg/kg/d, and 20 mg/kg/d (15 d) [76]	
mechanistically distinct modes of cerebral ischemia, namely, global and focal ischemia. Global ischemia commonly develops after transient cardiac arrest. The typical histological picture following global ischemic insults is described by delayed neuronal death sparing glial cells. Under normothermic conditions, 10 min of global ischemic insults is described by delayed neuronal death and focal ischemia. Global ischemia commonly develops after transient or permanent flow reduction in the territory of a cerebral artery resulting from embolic or thrombotic vessel occlusion. The typical histological picture following focal ischemia is a pan-necrosis that includes all brain cell types [78].

Basic and clinical evidence of the beneficial effects of *P. ginseng* on stroke is summarized in Table 3. In male Sprague–Dawley rats, ginsenoside Rd has been reported to protect against ischemic cerebral damage by promoting clearance of extracellular glutamate through the upregulation of glutamate transporter 1 (GLT-1) expression via phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal–regulated kinase (ERK)1/2 pathways [80]. Moreover, administration of ginsenoside Rd increased the expression of nonselective cation channels including transient receptor potential cation channel subfamily M member 7 (TRPM7), acid-sensing ion channel (ASIC) 1a, and ASIC2a [81], and decreased the levels of apoptotic proteins such as cytochrome c (CytoC), apoptosis inducing factor (AIF), and caspase-3 [82]. Postischemic synthesis of two damaging enzymes, COX-2 and iNOS, were also significantly decreased by ginsenoside Rd [83]. Ginsenoside Rb1 was also reported to promote extracellular glutamate clearance by upregulating GLT-1 expression via PI3K/Akt and ERK1/2 pathways in male Sprague-Dawley rats [79].

Although no prospective clinical trials are available for *P. ginseng*, a multicenter, double-blinded, and randomized controlled clinical trial of 140 Chinese patients demonstrated that a low dose of aspirin (50 mg/d) combined with notoginseng capsules (200 mg, three times/d) significantly ameliorated neurological deficits and improved daily life activities compared with treatment with aspirin alone [84].

2.4. Huntington’s disease

Huntington’s disease is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in gene encoding for the huntingtin protein [85,86]. Clinical symptoms of Huntington’s disease comprise adult-onset personality changes, generalized motor dysfunctions, and cognitive decline. The peak age of adult-onset Huntington’s disease is between 35 yr and 50 yr [85,87]. Commonly reported symptoms include progressive weight loss, alterations in sexual behavior, and disturbances in the wake–sleep cycle, which occur very early during the course of the disease possibly due to hypothalamic dysfunction [88]. At later disease stages, characteristic symptoms include motor impairments, progressive dementia, and gradual impairment of mental processes involved in comprehension, reasoning, judgment, and memory [89,90]. Most affected patients eventually succumb to the disease due to aspiration pneumonia caused by swallowing difficulties [89].

Basic evidence of the beneficial effects of *P. ginseng* on Parkinson’s disease is summarized in Table 4. In a cellular model of Huntington’s disease with primary medium spiny striatal neuronal cultures, ginsenosides Rb1, Rc, and Rg5 exerted protective effects on glutamate-induced apoptosis and were suggested as a potential treatment choice [92]. In a Sprague-Dawley rat model of Huntington’s disease, PPTs were reported to have neuroprotective effects on 3-nitropropionic acid-induced oxidative stress in males. Oral administration of PPTs resulted in marked improvements in body weight and locomotor activity. Beneficial effects of PPTs were mediated by increasing the nuclear factor erythroid 2-related factor 2 (Nrf2) entry into the nucleus while enhancing the expression of heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate (NAD(P)H) quinone oxidase 1 in the striatum [91].

3. Concluding remarks and future perspectives

Oxidative stress and dysregulation of the inflammatory network are being recognized as important components in the pathogenesis of neurodegenerative diseases [93–95]. Oxidative stress has been linked to neuronal cell death associated with certain neurodegenerative conditions [96,97]. Owing to its high metabolic rate and relatively reduced capacity for cellular regeneration compared with other organs, the brain is believed to be particularly susceptible to the damaging effects of reactive oxygen species (ROS). An acute oxidative insult to brain tissue can amplify ROS generation, increase the accumulation of oxidized biomolecules, and promote oxidative stress [98]. Accumulation of ROS in the brain stimulates the oxidation of lipids [99], protein [100], and DNA [101], which are characteristic changes of many neuronal pathologies.

In the case of Parkinson’s and Alzheimer’s diseases, various indices of ROS damage have been reported within specific brain regions that undergo selective neurodegeneration [102–104]. Many researchers in the neurodegenerative field are seeking ways to modulate or emulate the protective effects of key enzymatic
components that regulate oxidative stress, with the aim of developing rational drugs or genetic therapies [105,106]. A growing number of studies have demonstrated the efficacy of ginseng components extracted from ginseng fruits, roots, and leaves in reducing or blocking neuronal death in various experimental neurodegenerative models [57,60]. Ginseng components, particularly ginsenosides, are capable of protecting neurons both in vitro and in vivo by modulating biological processes including oxidative stress, excitotoxicity, apoptotic neuronal death, and the kinase and ubiquitin–proteasome signaling pathways [20,107]. Indeed, ginsenosides are receiving increasing interest from consumers as well as researchers because of their unique ability to prevent neurodegeneration [108,109]. Extensive research over the last 10 yr has indicated that components derived from Panax ginseng target ROS and, therefore, may prevent neurodegenerative diseases [20,110]. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegenerative diseases is increasing [20,57,111–113]. The current clinical results did not report any serious adverse effects of ginseng [60], but it may alter its components in preventing neurodegenerative diseases is evident by modulating biological processes including oxidative stress, excitotoxicity, apoptotic neuronal death, and the kinase and ubiquitin–proteasome signaling pathways [20,107]. Indeed, ginsenosides are receiving increasing interest from consumers as well as researchers because of their unique ability to prevent neurodegeneration [108,109]. Extensive research over the last 10 yr has indicated that components derived from Panax ginseng target ROS and, therefore, may prevent neurodegenerative diseases [20,110].

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B1012787).

References

[1] Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259–74.
[2] Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287–98.
[3] Kim DH. Chemical diversity of Panax ginseng, Panax quinquefolium, and Panax notoginseng. J Ginseng Res 2012;36:1–15.
[4] Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochem Rev 2005;4:159–75.
[5] Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27–38.
[6] Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. J Ethnopharmacol 2010;130:421–3.
[7] Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng CA Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384–91.
[8] Han MS, Han IH, Lee D, An JM, Kim SN, Shin MS, Yamabe N, Hwang GS, Yoo HJ, Choi SJ. Beneficial effects of fermented black ginseng and its ginsenoside Rb1 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J Ginseng Res 2016;40:135–40.
[9] Park JY, Choi P, Kim HK, Kang KS, Han J. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies. J Ginseng Res 2016;40:62–70.
[10] Babiker LB, Gadkariem EA, Alshaban RM, Aljozhar HL. Investigation of stability of Korean ginseng in herbal drug product. Am J Appl Sci 2014;11:160–70.
[11] Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 1996;20:145–50.
[12] Yun TK, Choi SY, Yun HY. Epidemiological study on cancer prevention by ginseng: all is kinds of cancers preventable by ginseng? J Korean Med Sci 2001;16:S19–27.
[13] Joo SS, Won TJ, Lee DL. Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med 2002;71:476–81.
[14] Jung CH, Seog HM, Choi IW, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng CA Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 2005;98:245–50.
[15] Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Appl 2009;872:180–94.
[16] Sakata T, Etou H, Fujimoto K, Ockuma K, Hayashi T, Arichi S. Central effects of ginsenosides on the feeding behavior and response to stress in rats. In: Korea–Japan Panax ginseng Symposium. 1987. p. 20–8.
[17] Fujimoto K, Sakata T, Ishimaru T, Etou H, Ockuma K, Kurokawa M, Mandohori H. Attenuation of apoptosis in cerebellar neurons induced by heat or surgery during sustained administration of ginsenoside Rg1 in a rat third ventricle. Psychopharmacology 1989;99:257–60.
[18] Xie JT, McDendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005;33:397–404.
[19] Yang G, Park D, Lee J, Song BS, Jeon TH, Kang SJ, Jeon JH, Shin S, Jeong HS, Lee HJ. Suppressive effects of red ginseng preparations on SW480 colon cancer xenografts in mice. Food Sci Biotechnol 2011;20:1649–53.
[20] Choi BH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342.
[21] Kang SW, Min HY, Ginseng, the ‘immunity boost’: the effects of Panax ginseng on immune system. J Ginseng Res 2012;36:354–68.
[22] Park J. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng CA Meyer). Korean J Ginseng Res 1996;20:389–415.
[23] Elyakov G, Strigina L, Uvarova N, Vaskovsky V, Dzielenko A, Kochetkov N. Glycosides from ginseng roots. Tetrahedron 1964;5:3591–7.
[24] Shihata S, Fujita M, Iwakura H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadisol, a sapogenin of ginseng roots. Chem Pharm Bull 1963;11:759–61.
[25] Lu JM, Yoo Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Pharmaceutica 2009;7:293–302.
[26] Fuzzati N. Analysis methods of ginsenosides. J Chromatogr A Anal Technol Biomed Sci 2004;1042:119–33.
[27] Lee SM. Thermal conversion pathways of ginsenoside in red ginseng processing. Nat Prod Sci 2014;20:119–25.
[28] Takahashi M, Yoshikura M. Studies on the components of Panax ginseng CA Meyer. V. On the structure of a new acetylene derivative “panaxyanol” (3). Synthesis of 1,3-(cis)-hexadecadiene-4,6-diyne-3-ol. Yakugaku Zasshi 1985;105:1033–6.
[29] Kong YH, Lee YC, Choi SY. Neuroprotective and anti-inflammatory effects of phenolic compounds in Panax ginseng CA Meyer. J Ginseng Res 2009;33:111–4.
[30] Chung IM, Lim JL, Ahn MS, Jeong NH, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2015;40:68–75.
[31] Lee H, Yoo B, Byun S. Differences in phenolic acids between Korean ginsengs and mountain ginsengs. Korean J Biotechnol Bioeng 2000;15:323–8.
[32] Iwabuchi H, Yoshikura M, Kamisako W. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. IL. Isolation and structure determination of ginsenosol, a novel sesquiterpene alcohol. Chem Pharm Bull (Tokyo) 1988;36:2447–51.
[33] Richter R, Basar S, Koch A, König WA. Three sesquiterpene hydrocarbons from the roots of Panax ginseng CA Meyer (Araliaceae). Phytochemistry 2005;66:2708–13.
[34] Wang JY, Li XC, Yang JW. Ginsine, a new alkaloid from the berry of Panax ginseng CA Meyer. J Asian Nat Prod Res 2008;10:605–8.
[35] Konno Y, Hikino H. Isolation and hypoglycemic activity of panaxanins Q, R, S, T and U, glycosides of Panax ginseng roots. J Ethnopharmacol 1985;14:69–74.
[36] Konno Y, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycemic activity of panaxanins A, B, C, D and E, glycosides of Panax ginseng roots. Planta Med 1984;50:434–46.
[37] Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxanins I, J and K, and glycosides of Panax ginseng roots. J Ethnopharmacol 1985;14:255–9.
Bajda M, Guzior N, Ignasik M, Malawska B. Multi-target-directed ligands in Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 2011;82:1374–7.

Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review: progress. J Neurol Neurosurg Psychiatry 2011;82:1374–7.

Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer disease and related disorders: current status and future perspectives. Exp Mol Med 2015;47:e141.

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.

Musek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 2015;47:e148.

Ichinose A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015;47:e147.

Vonsattel JPG, Heinsen H, Korf HW. The neuropathology of Huntington’s disease: 40 years ago. Wien Klin Wochenschr 2001;113:855.

Rosenblatt A. Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci 2010;12:268.

Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Huntington’s disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.

Parkinson disease: from etiology to treatment. Brain Pathol 2007;17:362–72.
Marchetti B, Abbracchio MP. To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 2005;26:517–25.

Anderson JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:18–25.

Son JH, Shim JH, Kim KH, Ha JY, Han JY. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 2012;44:89–96.

Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997;42:326–34.

Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 2003;5:647–54.

Hall N, Carney J, Cheng M, Butterfield D. Ischemia/reperfusion-induced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience 1995;64:81–9.

Won MH, Kang TC, Jeon GS, Lee JC, Kim DY, Lee KH, Do Choi C, Chung MH, Cho SS. Immunohistochemical detection of oxidative DNA damage induced by ischemia–reperfusion insults in gerbil hippocampus in vivo. Brain Res 1999;836:70–8.

Dexter D, Carter C, Wells F, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989;52:381–9.

Hensley K, Maitd ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 1996;16:8126–32.

Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 2002;23:655–64.

Yang HY, Lee TH. Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 2015;48:200–8.

Ye M, Chung HS, Lee C, Song JH, Shim I, Kim YS, Bae H. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson’s disease alpha-synuclein transgenic mice. Exp Mol Med 2016;48:e244.

Radad K, Moldzio R, Rausch WD. Ginsenosides and their CNS targets. CNS Neurosci Ther 2011;17:761–8.

Nguyen CT, Luong TT, Kim GI, Pyo S, Rhee DK. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2015;39:69–75.

Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah SY, Han JS, Chung C. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 2016;40:55–61.

Kang KS, Han J, Kim YJ, Park JH, Cho HJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage. J Ginseng Res 2013;37:379–88.

González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential neuroprotective activity of ginseng in Parkinson’s disease: a review. J Neuroimmune Pharmacol 2015;10:14–20.

Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.

Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, He P. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer’s disease. J Ginseng Res 2016;40:9–17.