Pseudoscalar mesons and their radial excitations from the Effective Chiral Lagrangian

S. M. Fedorov¹, Yu. A. Simonov²
Institute of Theoretical and Experimental Physics, 117218, Moscow, B.Cheremushkinskaya 25, Russia
Submitted June 23, 2003

Effective Chiral Lagrangian is derived from QCD in the framework of Field Correlator Method. It contains the effects of both confinement and chiral symmetry breaking due to a special structure of the resulting quark mass operator. It is shown that this Lagrangian describes light pseudoscalar mesons, and Gell-Mann-Oakes-Renner relations for pions, eta and K mesons are reproduced. Spectrum of radial excitations of pions and K mesons is found and compared to experimentally known masses.

1. QCD is known to possess two highly nontrivial features at low temperatures, namely confinement and chiral symmetry breaking (CSB). At some critical temperature phase transitions of deconfinement and chiral symmetry restoration occur. From lattice calculations it is known that these two phase transitions take place at the same temperature [1,2]. The fact that two critical temperatures coincide was not fully understood so far. This work is a continuation of a series of papers [3,4,5], where it is argued that CSB occurs due to confinement in a very nontrivial way.

2. We consider Euclidean partition function for quarks and gluons in the presence of external classical currents \(\psi_\mu, a_\mu, s \) and \(p \)

\[
Z = \int DAD\hat{\psi}D\psi \exp \left[-(S_0 + S_1 + S_{\text{int}} + S_{\text{g.f.}} + S_{\text{gh}}) \right],
\]

\[
S_0 = \frac{1}{4} \int d^4x \left(F_{\mu\nu}^a \right)^2,
\]

\[
S_1 = -i \int d^4x \hat{\psi}^f \left(\partial + \bar{\psi} \gamma_\mu a^\mu + s + i\gamma_5 p \right) F_g^g \psi^g,
\]

\[
S_{\text{int}} = - \int d^4x \hat{\psi}^f g_A \hat{A}^a t^a \psi^f.
\]

Here \(f, g = 1, 2, 3 \) are flavor indices, \(t^a \) are generators of color SU(3) group, \(\text{tr} t^a t^b = \delta^{ab}/2, a = 1, \ldots, 8 \). \(S_{\text{g.f.}} \) and \(S_{\text{gh}} \) are gauge fixing and ghost terms.

Next, we use the generalized contour gauge [8,9]

\[
A_\mu(x) = \int_0^1 ds \frac{\partial z_{\nu}(s,x)}{\partial s} \frac{\partial z_{\rho}(s,x)}{\partial x_\mu} F_{\nu\rho}(z(s)).
\]
$F_{\mu\nu}$. Now we are in position to integrate out gluon field A_μ, expressing the result in terms of field correlators:

$$Z = \int \int D\bar{\psi}D\psi \exp \left[-(S_1 + S_{\text{eff}}) \right],$$

$$\exp \left[-S_{\text{eff}} \right] = \langle \exp \left[-S_{\text{int}} \right] \rangle_A$$

We use cluster expansion to evaluate this average over gluon fields

$$\langle \exp \left[-S_{\text{int}} \right] \rangle_A = \exp \left(\sum_n \frac{(-1)^n \langle S^n_{\text{int}} \rangle}{n!} \right),$$

$$\langle S^1_{\text{int}} \rangle = \langle S_{\text{int}} \rangle_A \equiv 0,$$

$$\langle S^2_{\text{int}} \rangle = \langle S^2_{\text{int}} \rangle_A - \langle S^2_{\text{int}} \rangle^2_A = \langle S^2_{\text{int}} \rangle_A,$$

$$\ldots$$

It is clear that gauge invariant quantities like spectrum and Green’s functions computed with the help of S_{eff} do not depend on the chosen contours, if all terms of cluster expansion are retained in S. In what follows we will use the Gaussian approximation, and consider only first two terms in cluster expansion, $n = 1, 2$. As was shown in [10, 11] the Gaussian approximation on minimal surfaces is accurate within few percent. Thus, we have

$$S_{\text{eff}} = -\frac{1}{2} \int d^4x d^4y \bar{\psi}^{\dagger}_{\alpha\beta}(x)\hat{\psi}^\dagger_{\alpha\beta}(x)\hat{\psi}^\gamma_{\beta\gamma}(y)\psi^\gamma_{\alpha\beta}(y) \times$$

$$\times \int_0^1 ds dt \frac{\partial z_{\rho}(s,x)}{\partial s} \frac{\partial z_{\mu}(t,y)}{\partial t} \frac{\partial z_{\nu}(t,y)}{\partial y} \times$$

$$\times \left\{ [F_{\rho\lambda}(z(s,x))]_{ij} [F_{\mu\nu}^{\prime}(z(t,y))]_{kl} \right\}_A \left(\gamma^\mu \gamma^\nu \right) \Rightarrow \gamma^\rho \gamma^\sigma,$$

(5)

Here i,j,k,l are color indices, $\alpha, \beta, \gamma, \delta$ are spinor indices. Inserting parallel transporters $\Phi(x, x_0)$ and $\Phi(y, y_0)$, which are identically equal to unity in contour gauge, one finally gets expression for effective action

$$S_{\text{eff}} = -\frac{1}{2} \int d^4x d^4y \bar{\psi}^{\dagger}_{\alpha\beta}(x)\hat{\psi}^\dagger_{\alpha\beta}(x)\hat{\psi}^\gamma_{\beta\gamma}(y)\psi^\gamma_{\alpha\beta}(y) \times$$

$$\times \left[\delta_{jk} \delta_{t\mu} - \frac{1}{N_c} \delta_{ij} \delta_{kl} \right] J_{\alpha\beta\gamma\delta}(x,y),$$

$$J_{\alpha\beta\gamma\delta}(x,y) = \gamma_{\mu} J_{\alpha\beta\gamma\delta}(x,y),$$

$$J_{\alpha\beta\gamma\delta}(x,y) = \left(\gamma^\mu \right)_{\alpha\beta} \left(\gamma^\nu \right)_{\gamma\delta} J_{\mu\nu}(x,y),$$

(6)

Performing bosonization, and keeping only scalar-isoscalar and pseudoscalar-isovector (corresponding to pions, K and η mesons) terms, one arrives at the quarkmeson Lagrangian (see [4] for details):

$$Z = \int \bar{D} \phi \bar{D} \phi_{\alpha} \exp \left[-S_{\text{QM}} \right],$$

$$S_{\text{QM}} = -\int d^4x d^4y \left[\frac{f^2}{\rho_{\alpha\beta}} (x) \times \right.$$}

$$\times \left(i(\partial + \gamma^a \gamma^a + s + i\gamma^5 p) f^2 S(t,y) + iM_s(x,y) \bar{\psi}^\gamma_{\alpha\beta}(y) \psi^\gamma_{\alpha\beta}(y) -

$$- 2N_f (J(x,y))^{-1} M_s^2(x,y) \right],$$

$$J(x,y) = J_{\mu\nu}(x,y),$$

$$\bar{\psi}^\gamma_{\alpha\beta}(x,y) = \exp (i\gamma^a t_s a(x,y)) f^a \psi^\gamma_{\alpha\beta}(x,y).$$

(7)

It is now straightforward to integrate out quark fields to obtain the Effective Chiral Lagrangian:

$$Z = \int D\phi \bar{D} \phi_{\alpha} \exp \left[-S_{\text{ECL}} \right],$$

$$S_{\text{ECL}} = 2N_f \int d^4x d^4y (J(x,y))^{-1} M_s^2(x,y) + W(\phi),$$

$$W(\phi) = N_c \text{Tr} \left[i(\partial + \gamma^a \gamma^a + s + i\gamma^5 p) \times

$$+ iM_s(x,y) e^{i\gamma^5 t_s a(x,y)} \right].$$

(8)

Here Tr refers to flavor and spinor indices and to space coordinates. M_s is the effective quark mass operator, and ϕ_{α} are fields of pseudoscalar mesons (up to the dimensional factor $2/f$, f is the decay constant, $\phi_{\alpha} = 2\pi a/\lambda$).

Classical equations of motion are given by

$$N_c \text{Tr} \left(-S_{\phi}(x,y) M_s(x,y) e^{i\gamma^5 t_s a(x,y)} \right) = 0,$$

$$N_c \text{Tr} \left(iS_{\phi}(x,y) e^{i\gamma^5 t_s a(x,y)} \right) -

$$- 4N_f (J(x,y))^{-1} M_s(x,y) = 0,$$

$$S_{\phi}(x,y) \equiv \langle \phi_{\alpha}(x,y) \rangle_{\phi = 0}. $$

(9)

This leads to solutions

$$\phi^{(0)}_{\alpha}(x,y) = 0,$$

$$M_0 \equiv N_c 4N_f J(x,y) \text{Tr} (S(x,y)), $$

(10)

$$S(x,y) \equiv S_{\phi}(x,y) \big|_{\phi = 0}. $$

Second equation in (11) is a nonlinear equation for M_0, and the existence of a nontrivial solution is a manifestation of the chiral symmetry breaking, since M_0 is scalar. The system of equations (11) for M_0 and $S(x,y)$ was considered in [12] for the special case of
heavy-light mesons, and it was shown that it has a confining scalar solution for \(M_s (x, y) \) for large distance \(|\vec{x} - \vec{y}| \) for \(\rho \) quark to (heavy) antiquark at the point \(\vec{x} \). It is clear that the same type of solution occurs at large interquark distances for light-light mesons, which means that confinement and CSB occur spontaneously and simultaneously from the non-trivial solution of the system [11].

3. We consider ECL [8], expanding it in powers of the field \(\phi_a \) up to the second order, and we introduce current quark masses \(M_f \equiv \text{diag}(m_u, m_d, m_s) \). Neglecting external currents, one obtains

\[
W(\phi) = N_c \text{tr} \ln \left[i(\hat{\partial} + M_f + M_s e^{i\gamma_5 t_a \phi_a}) \right] = N_c \text{tr} \ln \left[i(\hat{\partial} + M_f + M_s) + \right.
\]
\[
\left. + \left(-M_s \gamma_5 t_a \phi_a - \frac{i}{2} M_s t_\alpha t_\beta \phi_a \phi_\beta \right) \right],
\]

(11)

\[
W^{(2)}(\phi) = -\frac{N_c}{2} \text{tr} \left[iS \cdot (M_s t_\alpha t_\beta \phi_a \phi_\beta) + \right.
\]
\[
\left. + S \cdot (M_s t_a \phi_a) \cdot \gamma_5 S \gamma_5 \cdot (M_s t_b \phi_b) \right].
\]

Taking trace in flavor indices, (see [4] for details), one arrives at the following expression for the term quadratic in meson fields:

\[
W^{(2)}(\phi) = -\int d^4x \left[W_{\pi \pi}(x, y) \phi_{\pi}^*(x) \phi_{\pi}(y) + \right.
\]
\[
\left. + W_{K K}(x, y) \phi_K^*(x) \phi_K(y) + \right.
\]
\[
\left. + W_{K \bar{K}}(x, y) \phi_{\bar{K}}^*(x) \phi_{\bar{K}}(y) + \right.
\]
\[
\left. + \frac{1}{2} \sum_{i,j=3,8} W_{ij}(x, y) \phi_i(x) \phi_j(y) \right],
\]

(12)

where, for example,

\[
W_{\pi \pi}(x, y) = \frac{N_c}{4} \text{Tr} \left[S_u(x, y) M_s(x) \gamma_5 S_d(y, x) \gamma_5 M_s(x) + \right.
\]
\[
\left. + i S_u(x, x) M_s(x) \delta^4(x - y) + (u \leftrightarrow d) \right].
\]

(13)

\(S_u, S_d \) and \(S_s \) are quark propagators [11] with current mass of corresponding quark in the denominator. Here we have taken the local limit of nonlocal operators \(M_s(x, y) \to M_s(x) \delta^4(x - y) \), \(\phi(x, y) \to \phi(x) \), which is obtained when gluonic correlation length \(T_g \) in the correlator \(FF \) tends to zero.

Two terms in (13) correspond to connected and disconnected diagrams, which cancel each other in the zero momentum limit. This cancellation is exact in the chiral limit. To be more precise, quadratic term for zero momentum (i.e. when \(\phi(x) = \text{const} \)) takes the form:

\[
W^{(2)}(\phi) \left|_{\text{zero momentum}} \right. = \frac{N_c}{4} \int d^4x \left[\frac{m_u + m_d}{2} \text{Tr} \left(-i S_u(x, x) - i S_d(x, x) \right) \right]
\]
\[
\left. \phi^*_c \phi_c + \right. \left. + \ldots \right] + O(m^2).
\]

(14)

Taking into account that

\[
\langle \bar{\psi} \psi \rangle_M = -i \langle \bar{\psi} \psi \rangle_E = -\frac{1}{Z} \frac{\delta Z[v, a, s, p]}{\delta s(x)} = N_c \text{Tr} \left(i S(x, x) \right),
\]

(15)

where \(\langle \bar{\psi} \psi \rangle_M \) and \(\langle \bar{\psi} \psi \rangle_E \) denote quark condensate in Minkovski and Euclidean space respectively, and that \(\phi_a = 2\pi_a/f \), \(f \) is the decay constant, \(\pi_a \) are physical meson fields, one finds

\[
f^2 M^2_{\pi^\pm} = 2\tilde{m} |\langle \bar{q} q \rangle| + O(m^2)
\]
\[
f^2 M^2_{\eta^\pm} = 2\tilde{m} |\langle \bar{q} q \rangle| - \varepsilon + O(\varepsilon^2) + O(m^2)
\]
\[
f^2 M^2_{K^0} = (m_u + m_s) |\langle \bar{q} q \rangle| + O(m^2)
\]
\[
f^2 M^2_{K^*} = (m_d + m_s) |\langle \bar{q} q \rangle| + O(m^2)
\]
\[
f^2 M^2_{\phi^0} = \frac{2}{3} (\tilde{m} + 2m_s) |\langle \bar{q} q \rangle| + \varepsilon + O(\varepsilon^2) + O(m^2).
\]

(16)

Here \(\tilde{m} = (m_u + m_d)/2 \). We have neglected differences between quark condensates for different flavors, corrections are of order of \(m_s^2 \). Small mixing of \(\phi_3 \) and \(\phi_8 \) states due to isospin symmetry breaking (proportional to \(m_u - m_d \)) yields a correction \(\varepsilon \) to pion and \(\eta \) meson masses:

\[
\pi^0 \sim \cos(\delta) \phi_3 + \sin(\delta) \phi_8,
\]
\[
\eta_8 \sim -\sin(\delta) \phi_3 + \cos(\delta) \phi_8,
\]
\[
\tan(2\delta) = \sqrt{\frac{2m_s - (m_u + m_d)}{m_u - m_d}},
\]
\[
\varepsilon = \frac{|\langle \bar{q} q \rangle|}{4m_s - 2(m_u + m_d)},
\]
\[
\delta \approx 0.6^\circ.
\]

Thus, ECL [8] leads to correct Gell-Mann-Oakes-Renner relations for all light pseudoscalar mesons.

4. Let us now consider Green’s functions of mesons, generated by the pseudoscalar currents:

\[
\mathbf{G}_{ab}(x, y) = \langle J_{5a}(x) J_{5b}^\dagger(y) \rangle = \frac{1}{Z} \frac{\delta^2 Z}{\delta p_a(x) \delta p_b(y)},
\]
\[
J_{5a}^\dagger(x) = \bar{\psi}(x) \gamma_5 t_a \psi(x),
\]
\[
p^f_a(x) = p_a(x) t^f_a.
\]

(18)
From the ECL one obtains
\[\mathcal{G}_{ab}(x, y) = \frac{1}{Z} \int DM_2D\phi_2 \exp \left[-S_{ECL} \right] \times \]
\[\times \left[N_c \text{Tr} \left(S_\phi(x, y) \gamma_5 t_a S_\phi(y, x) \gamma_5 t_b \right) - N^2 \text{Tr} \left(S_\phi(x, x) \gamma_5 t_a \right) \text{Tr} \left(S_\phi(y, y) \gamma_5 t_b \right) \right] \] (19)

Taking \(M_s \) at the stationary point \(\mathbf{10} \) and expanding \(S_\phi \) in terms of \(\phi \) around \(\phi^{(0)}_n = 0 \), one finds:
\[S_\phi(x, y) = S(x, y) + \int d^4z S(x, z) \cdot M_s(z) \gamma_5 \phi_2(z) t_a \cdot S(z, y) \] (20)

As argued in \(\mathbf{4} \), the coupling constant \(g_{\pi\bar{q}q} \) is of the order of \(N_c^{-1/2} \), and thus in large \(N_c \) limit pion exchanges are suppressed. This allows to neglect pion fields in connected terms (first term in equation \(\mathbf{19} \)), and consider only one pion exchange in the disconnected term. Resulting expression will contain two terms, both of order of \(N_c \).

Taking into account, that \(S(x, y) = \text{diag}(S_u(x, y), S_d(x, y), S_s(x, y)) \) is diagonal in flavor, one finds:
\[\mathcal{G}_{\pi^+\pi^+}(x, y) = \frac{N_c}{2} \text{Tr} \left(S_d(x, y) \gamma_5 S_u(y, x) \right) - \]
\[- \frac{N^2}{4} \int d^4z_1 d^4z_2 \text{Tr} \left(S_u(x, z_1) M_s(z_1) \gamma_5 S_d(z_1, x) \right) \times \]
\[\times \text{Tr} \left(S_d(y, z_2) M_s(z_2) \gamma_5 S_u(z_2, y) \right) G_{\pi^+\pi^+}^\phi(z_1, z_2). \] (21)

Other Green functions differ only in flavor indices. Here \(G_{\pi^+\pi^+}^\phi(z_1, z_2) \) is the propagator of pion field. This formula can be illustrated with the Feynman diagram:
\[\mathcal{G}_{\pi^+\pi^+}(x, y) = \frac{N_c}{2} \begin{array}{c}
\text{d} \\
\text{u}
\end{array} \quad - \]
\[- \frac{N^2}{4} \begin{array}{c}
\text{d} \\
\pi^+
\text{u}
\end{array} \begin{array}{c}
\text{d} \\
\pi^+
\text{u}
\end{array} \] (22)

To find the pion propagator one should consider equations \(\mathbf{12}, \mathbf{13} \):
\[\left(G_{\pi^+\pi^+}^\phi(x, y) \right)^{-1} = W_{\pi^+\pi^+}(x, y) = \]
\[= \frac{N_c}{4} \text{Tr} \left[2 S_d(x, y) M_s(y) \gamma_5 S_u(y, x) M_s(x) \gamma_5 + i S_d(x, x) M_s(x) + S_u(y, y) M_s(y) \right] \delta^4(x - y) \] (23)

Going over to the momentum space \(\mathcal{G}(x, y) = \int d^4k/(2\pi)^4 \exp(ik(x - y)) \Theta(k) \), where we have also taken into account that Green function is translationally invariant, i.e. depends only on \((x - y) \), one has:
\[\mathcal{G}_{\pi^+\pi^+}(k) = \frac{N_c}{2} G_{\pi^+\pi^+}^{(0)}(k) - \]
\[- \frac{N^2}{4} G_{\pi^+\pi^+}^{(0),(M)}(k) G_{\pi^+\pi^+}^{\phi}(k). \] (24)

Due to Eqs. \(\mathbf{14}, \mathbf{16} \) the pion propagator \(\mathbf{23} \) has pole at \(k^2 = -M_{\pi^\pm}^2 \) and can be rewritten as
\[G_{\pi^+\pi^+}^{(0)}(k) = \frac{2}{N_c} \frac{1}{G_{\pi^+\pi^+}^{(0),(M)}(k) - G_{\pi^+\pi^+}^{(0)}(k^2 = -M_{\pi^\pm}^2)}, \]
\[G_{\pi^+\pi^+}^{(0),(M)}(k) = \text{Tr} \left(S_d(x, y) M_s(y) \gamma_5 S_d(x, y) M_s(x) \gamma_5 \right). \] (25)

As argued in \(\mathbf{4} \), all three Green functions \(G_{\pi^+\pi^+}^{(0)}, G_{\pi^+\pi^+}^{(0),(M)} \) and \(G_{\pi^+\pi^+}^{(0),(M)} \) have the same set of poles, which are poles of the quark model (i.e. confined \(\bar{q}q \) system without chiral symmetry breaking) in pseudo-scalar channel, and can be represented as
\[G_{\pi^+\pi^+}^{(0)}(k) = -\sum_{n=0}^{\infty} \frac{c_n^2}{k^2 + m_n^2}, \]
\[G_{\pi^+\pi^+}^{(0),(M)}(k) = -\sum_{n=0}^{\infty} \frac{c_n^{(M)}(M_n^2)}{k^2 + m_n^2}, \] (26)

where
\[c_n = \frac{\sqrt{m_n}}{2} \varphi_n(0), \]
\[c_n^{(M)} = \frac{\sqrt{m_n}}{2} M(0) \varphi_n(0), \] (27)

\(\varphi_n(r) \) is the 3D spin-singlet wave function of \(\bar{q}q \) system, and \(M(0) \) is a constant related to mass operator \(M_s \), evaluated in \(\mathbf{5} \) through \(\sigma = 0.18 \text{ GeV}^2 \) and \(T_g = 1 \text{ GeV}^{-1} \) to be \(M(0) = 148 \text{ MeV} \). Thus one has for the pion Green function:
\[\mathcal{G}_{\pi^+\pi^+}(k) = -\frac{N_c}{2} \frac{\Psi(k)}{(k^2 + M_{\pi^\pm}^2)^2}, \]
\[\Psi(k) = \sum_{n,m=0}^{\infty} \frac{c_n^2}{(k^2 + m_n^2)(m_n^2 - M_{\pi}^2)}, \] (28)
\[\Phi(k) = \sum_{n=0}^{\infty} \frac{c_n^{(M)}(M_n^2)}{(k^2 + m_n^2)(m_n^2 - M_{\pi}^2)}. \]
Clearly, the Green function (28) has pole at \(k^2 = -M_{\pi^\pm}^2 \), and all poles of quark model are cancelled, since the same set of poles appears in functions \(\Psi(k) \) and \(\Phi(k) \). The radial excitations of \(\pi^\pm \) meson are given by zeros of the function \(\Phi(k) \). In the first approximation it reads:

\[
k^2 = -m_1^2(1 + \delta_1),
\]

\[
\delta_1 = -\frac{c_1^2(m_1^2 - m_2^2)(m_3^2 - M_{\pi^\pm}^2)}{m_1^2c_1^2(m_2^2 - M_{\pi^\pm}^2) + c_3^2(m_1^2 - M_{\pi^\pm}^2)} \tag{29}
\]

Masses of \(K^0, \bar{K}^0 \) radial excitations can be found from (28) with the exchange of \(\pi \) meson mass and reference spectrum with those for \(K \) mesons. Numerical results for masses of radial excited states are presented in the next section.

It should be mentioned, that \(\eta \) meson requires separate consideration, because of its mixing with isoscalar state \(\eta' \), which is different for mesons and their radial excitations. Study of \(\eta \) meson spectrum and mixings is planned for the future work.

5. Masses and wave functions of reference spectrum can be obtained from the QCD string Hamiltonian (first derived in \([13, 14, 15]\), and improved to take into account quark self-energy in \([16]\)), where we have put \(L = 0 \):

\[
H = \frac{m_1^2}{2\mu_1} + \frac{m_2^2}{2\mu_2} + \mu_1 + \mu_2 + \frac{p_r^2}{2\mu} + \sigma r - \frac{4\alpha_s}{3} \tag{30}
\]

Here \(m_1 \) and \(m_2 \) are current masses of quarks, \(\mu_1 \) and \(\mu_2 \) are einbein parameters, to be found from the eigenvalues of Hamiltonian \([8]\) via \(\partial \tilde{M}_n(\mu_1, \mu_2)/\partial \mu_1 = 0, \partial \tilde{M}_n(\mu_1, \mu_2)/\partial \mu_2 = 0; \mu = \mu_1\mu_2/(\mu_1 + \mu_2) \), and \(p_r \) is the radial component of momentum. This Hamiltonian allows to find spin averaged masses and wave functions. Spin-spin interaction can than be taken into account as a perturbation:

\[
M_n = \tilde{M}_n(\mu_1, \mu_2) + \frac{32\pi\alpha_s\bar{s}_1\bar{s}_2}{9\mu_1\mu_2}|\varphi_n(0)|^2 + \frac{4\alpha_s}{3} \left(3\bar{s}_1\bar{u}_1(\bar{s}_2\bar{n}_2) - \bar{s}_1\bar{u}_2(\bar{s}_2\bar{n}_1)\right)_{\mu_1\mu_2} + \Delta_{SE}, \tag{31}
\]

\[
\Delta_{SE} = -\frac{2\sigma}{\pi} \left(1 + \frac{1}{\mu_1} + \frac{1}{\mu_2}\right)\eta; \quad \eta \sim 0.9 \div 1.
\]

\(\Delta_{SE} \) is the quark self-energy term due to field correlators. Factor \(\eta \) is a calculable function of current quark masses, but is close to 1 when quark masses are small.

Next, we plug in numbers:

\[
m_u = 0.005 \text{ GeV}, \quad m_d = 0.009 \text{ GeV}, \quad m_s = 0.17 \text{ GeV},
\]

\[
\sigma = 0.18 \text{ GeV}^2,
\]

\[
\alpha_s = 0.3, \tag{32}
\]

and taking into account that lowest state is shifted exactly to physical value of meson mass (due to Gell-Mann-Oakes-Renner relations), we finally get the following chiral shift of reference (quark model) spectra:

\[
\pi(1S) 0.51 \text{ GeV} \rightarrow 0.14 \text{ GeV} \text{ (exact)}
\]

\[
\pi(2S) 1.51 \text{ GeV} \rightarrow 1.25 \text{ GeV} \text{ (exp : 1.3 GeV)}
\]

\[
\pi(3S) 2.18 \text{ GeV} \rightarrow 1.98 \text{ GeV} \text{ (exp : 1.8 GeV)}
\]

K mesons:

\[
K(1S) 0.63 \text{ GeV} \rightarrow 0.49 \text{ GeV} \text{ (exact)}
\]

\[
K(2S) 1.57 \text{ GeV} \rightarrow 1.43 \text{ GeV} \text{ (exp : 1.46 GeV)}
\]

\[
K(3S) 2.21 \text{ GeV} \rightarrow 2.1 \text{ GeV} \text{ (exp : 1.83 GeV)}
\]

It can be seen, that masses of radial excitations are shifted by less than 15%, and the shifts are small for high excitations. Moreover, one can estimate that \(\delta M/M(4S) \approx 0.05 \) for pions and \(\delta M/M(4S) \approx 0.04 \) for K mesons. Also, one can see that masses of higher excitations and the slope of radial Regge trajectory differ from the experimental. The reason is that Hamiltonian \([8]\) does not take into account effects of string breaking, which are important for highly excited states, since they have large spatial extent. As was shown in \([17]\) the inclusion of string breaking effects does not violate the linearity of radial trajectories, which is in agreement with experimental data. 3)

6. Effective Chiral Lagrangian \([8]\) is derived directly from QCD Lagrangian in the framework of Vacuum Correlators Method. This Lagrangian correctly describes light pseudoscalar mesons, which are massless in the chiral limit and satisfy Gell-Mann-Oakes-Renner relations when quark masses are nonzero.

Poles of quark model Green’s function are shifted by less than 15%, and the shift is small for highly excited states.

The authors are grateful to A.M. Badalian for valuable comments and discussions.

\(^{3}\)The notion of linear radial Regge trajectories is connected to the Veneziano-type “linear dual models” \([18]\).
This work is supported by NSh-1774.2003.2 grant and INTAS-00110 and INTAS-00366 grants.

1. F. Karsch, arXiv:hep-lat/9903031.
2. J. M. Carmona, M. D’Elia, L. Del Debbio, A. Di Giacomo, B. Lucini and G. Paffuti, Nucl. Phys. Proc. Suppl. 106, 607 (2002) arXiv:hep-lat/0110058.
3. Yu. A. Simonov, Phys. Rev. D 65, 094018 (2002) arXiv:hep-ph/0201170.
4. Yu. A. Simonov, arXiv:hep-ph/0302090.
5. Yu. A. Simonov, arXiv:hep-ph/0305281.
6. J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984);
 J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985);
 for a review see H. Leutwyler, arXiv:hep-ph/9406283.
7. Yu. A. Simonov, arXiv:hep-ph/9911237.
8. S. V. Ivanov and G. P. Korchemsky, Phys. Lett. B 154, 197 (1985);
 S. V. Ivanov, G. P. Korchemsky and A. V. Radyushkin, Yad. Fiz. 44, 230 (1986).
9. V. I. Shevchenko and Yu. A. Simonov, Phys. Lett. B 437, 146 (1998) arXiv:hep-th/9807157.
10. V. I. Shevchenko and Yu. A. Simonov, Phys. Rev. Lett. 85, 1811 (2000) arXiv:hep-ph/0001290.
11. A. Di Giacomo, H. G. Dosch, V. I. Shevchenko and Yu. A. Simonov, Phys. Rept. 372, 319 (2002) arXiv:hep-ph/0007223.
12. Yu. A. Simonov, Few Body Syst. 25, 45 (1998) arXiv:hep-ph/9712248.
13. Yu. A. Simonov, Phys. Lett. B 226, 151 (1989).
14. A. Yu. Dubin, A. B. Kaidalov and Yu. A. Simonov, Phys. Lett. B 323, 41 (1994).
15. A. Yu. Dubin, A. B. Kaidalov and Yu. A. Simonov, Phys. Atom. Nucl. 56, 1745 (1993) [Yad. Fiz. 56, 213 (1993)] arXiv:hep-ph/9311344.
16. Yu. A. Simonov, Phys. Lett. B 515, 137 (2001) arXiv:hep-ph/0105141.
17. A. M. Badalian, B. L. Bakker and Yu. A. Simonov, Phys. Rev. D 66, 034026 (2002) arXiv:hep-ph/0204088.
18. A. L. Kataev, N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. B 123, 93 (1983);
 S. G. Gorishnii, A. L. Kataev and S. A. Larin, Phys. Lett. B 135, 457 (1984).