Microstructural development in Al/MgAl$_2$O$_4$ in situ metal matrix composite using value-added silica sources

Vadakke Madathil Sreekumar1, Raman Marimuthu Pillai1, Bellampettu Chandrasekhara Pai1 and Madhusudhan Chakraborty2

1National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram - 695019, India
2Indian Institute of Technology, Kharagpur - 721302, India

E-mail: rmpillai@rediffmail.com

Received 24 September 2007
Accepted for publication 19 December 2007
Published 13 March 2008

Abstract

Al/MgAl$_2$O$_4$ in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing \sim97% SiO$_2$ in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl$_2$O$_4$ formation are discussed in detail. The MgO and MgAl$_2$O$_4$ phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl$_2$O$_4$ was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl$_2$O$_4$ by the reaction $3\text{SiO}_2(s) + 2\text{MgO}(s) + 4\text{Al}(l) \rightarrow 2\text{MgAl}_2\text{O}_4(s) + 3\text{Si}(l)$. The stoichiometry of MgAl$_2$O$_4$, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl$_2$O$_4$ crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h.

Keywords: MgAl$_2$O$_4$, reactive wetting, stoichiometry, configurational entropy

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

MgAl$_2$O$_4$ (spinel) is one of the end members of the spinel group minerals, which have the general chemical composition of AB$_2$O$_4$, where A is a divalent atom such as Mg$^{2+}$, Fe$^{2+}$, Mn$^{2+}$ or Zn$^{2+}$ and B is a trivalent atom such as Fe$^{3+}$ or Al$^{3+}$ [1]. The anion is usually oxygen. The MgAl$_2$O$_4$ phase exhibits a congruent melting point at 2315 °C in the MgO–Al$_2$O$_3$ binary phase diagram [2]. MgAl$_2$O$_4$ exhibits a unique combination of properties such as a low thermal conductivity, a low coefficient of thermal expansion, good thermal shock resistance, a low dielectric constant and high electric resistivity [3]. Apart from being an important refractory material, it is used in advanced areas such as high-temperature arc-enclosing envelopes, humidity and infrared sensors, transparent windows, domes and armor materials [4]. MgAl$_2$O$_4$ can be considered as an important reinforcement in metal matrix composites (MMCs). In addition to its excellent combination of properties, metals (usually Al) adhere strongly without reaction to this oxide. Both MgAl$_2$O$_4$ and Al have a cubic structure, and the lattice parameter of the close-packed fcc oxygen anion sublattice of the MgAl$_2$O$_4$ unit cell

1468-6996/08/015004-09/$30.00
© 2008 National Institute for Materials Science Printed in the UK
is nearly equal to that of the fcc aluminum unit cell, raising the possibility of forming low-energy interfaces between MgAl\(_2\)O\(_4\) and aluminum for any orientation [5].

In practice, MgAl\(_2\)O\(_4\) is produced by a two-stage firing process: calcining the powder mixture at 1600 °C to complete the spinelization reaction followed by ball milling or hot pressing, but usually the product contains a high percentage of nonstoichiometric spinel (MgO\(_n\)Al\(_2\)O\(_3\), where \(n\) is the stoichiometry of the spinel, which is equal to the ratio of Al\(_2\)O\(_3\) to MgO) [6]. A few chemical techniques have been proposed for stoichiometric spinel fabrication [7–9]. However, in situ stoichiometric spinel in Al can be generated at a low temperature using silica sources [10–12]. Silica acts as an oxygen source for the fabrication of stable oxides such as MgAl\(_2\)O\(_4\) or Al\(_2\)O\(_3\) in Al–Mg alloy. The reduction of silica is thermodynamically and kinetically favorable, and the similar densities of amorphous silica and molten Al (2.3 g mL\(^{-1}\)) reduce the difficulties encountered during addition through the vortex method. Silica is also much cheaper than other oxygen sources such as CuO and ZnO. Furthermore, the availability of value added silica sources such as microsilica and rice husk ash from industrial and agricultural waste, respectively, further reduces the cost of the process while reducing its environmental impact. Microsilica is the condensed form of submicron or nanosized silicon dioxide particles (mean particle size ∼150 nm) and is obtained as a by-product from the production of silicon metal and ferrosilicon alloys [13]. Rice husk ash containing a high percentage of amorphous silica (>90%) is produced by burning rice husk under controlled conditions. Rice husk, an agricultural ‘waste’ material that is available in abundance in rice producing countries, is also amenable for value-addition [14]. In this paper, we study the feasibility of forming MgAl\(_2\)O\(_4\) in Al–5 wt.% Mg alloy using microsilica and rice husk ash as silica sources.

2. Experimental

Since characteristics such as the composition, surface area, microstructure and the amorphous nature of silica sources can affect the reaction kinetics, they were assessed by energy-dispersive spectroscopy (EDS), a nitrogen absorption technique (BET), scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis, respectively. 600 g of commercially available pure Al (Al 99.75 wt.%, Si < 0.1 wt.%) and 5 wt.% Mg as the starting materials were placed in a clay graphite crucible and melted in an electric resistance furnace. The addition of a 5 wt.% silica source was performed by the vortex method at a temperature between 730 and 750 °C. The melt was then held at 750 °C for 10 h and samples of 50 g each were taken from the furnace after stirring at 1 h intervals and allowed to solidify in a permanent mold. The microstructural analysis of the composite samples was carried out by both optical metallography and SEM. The chemical composition of the matrix alloy was determined by optical emission spectroscopy (OES) on particle-free areas. Partially reacted silica particles that were extracted from the composite samples using 25% NaOH solution were used for XRD and SEM–EDS identification of the possible phases, such as MgO and MgAl\(_2\)O\(_4\), formed during the reaction between silica particles and the metal. Another set of samples containing only MgAl\(_2\)O\(_4\), prepared using 35% dilute hydrochloric acid as an extraction medium since MgO is highly reactive with the acid, were used for measuring the stoichiometry, \(n\), and the grain growth of the MgAl\(_2\)O\(_4\) after different holding times through XRD analysis.

3. Results and discussion

3.1. Characteristics of silica sources

The compositions of microsilica and rice husk ash particles are given in table 1. The average particle surface areas of microsilica and rice husk ash were 17355 and 13502 m\(^2\) kg\(^{-1}\), respectively. Figure 1 reveals that the micro silica particles are spherical, whereas the rice husk ash particles shown in figure 2 have various shapes (spherical, platelets, etc.) containing a large number of open pores of micron size. Both the particles exhibit moisture-absorbing characteristics due to their porous nature. The amorphous nature of the silica particles was determined by the broadening of the peak observed at \(2\theta = 22.5°\) in the XRD pattern, which is attributed to the disordered cristobalite (figure 3). Figure 4 shows the size distributions of both particles. About 40–45 wt.% of microsilica and rice husk ash particles are in the size range of 180–250 and 250–355 µm, respectively.

Composition	Microsilica (in wt.%)	Rice husk ash (in wt.%)
SiO\(_2\)	97.5	97.2
Fe\(_2\)O\(_3\)	0.3	0.8
Al\(_2\)O\(_3\)	0.7	0.2
Na\(_2\)O	0.3	0.5
CaO	0.3	0.8
K\(_2\)O	0.6	–

Figure 1. Morphology of microsilica particles.
3.2. Identification of phases

The reaction between the silica particles and the Al–Mg alloy was well evidenced by the microstructural studies of Al–5Mg–5microsilica and Al–5Mg–5rice husk ash composites, in which large amounts of Al–Mg–Si and Al–Si–Fe phases were detected (figures 5–7). The reaction products, MgO and MgAl$_2$O$_4$, were detected by XRD at 2θ = 36.85° and 42.7° (figures 8 and 9) and as needles [15] and octahedral crystals, respectively, in SEM micrographs (figures 10(a) and (b)) of the extracted particles. A new phase was identified in the samples extracted using NaOH (figure 10) and its composition was determined by EDS as Al = 14.33, Mg = 27.41, O = 56.37 and Si = 1.9 (at. %). Furthermore, the Al/Mg ratio of the phase is 0.5, which is between those of MgO (Al/Mg = 0) and MgAl$_2$O$_4$ (Al/Mg = 2), and hence can be considered as an intermediate or a transition phase and closely related to MgO in composition. A distinct peak observed at 2θ = 34.69° (figures 8 and 9) is near to that of Al$_2$O$_3$ (2θ = 35.15°). However, this peak is found to disappear along with that of MgO in the XRD patterns of the particles extracted by HCl (figure 9). Moreover, the observed extra peak showed certain features of the intermediate phase in the present study. With this primary evidence, the peak observed at 2θ = 34.69° can be considered as that of a transition phase. The gradual transformation
of MgO to MgAl2O4 with increasing holding time can be understood clearly from XRD and SEM analyses. The XRD patterns of microsilica-added samples exhibited a variation of the peak intensities of MgO, the transition phase and MgAl2O4 with respect to holding time (figure 8). The MgO and transition phase peaks are only present in the XRD pattern of the as-processed (0 h) sample. The MgAl2O4 peaks started to appear after 2 h of holding and the peak intensities increased with holding time. In contrast, the peak intensities of MgO decreased with increasing holding time. However, the peak intensity of the transition phase increased and then decreased with increasing holding time. After 10 h of holding, the major peaks were those of MgAl2O4 with a minor peak of the transitional phase in the XRD pattern of the extracted sample. Figure 11 shows the effect of the transition phase in the MgO–MgAl2O4 phase transformation, where the relative intensities of the latter phases (MgO and MgAl2O4) with respect to that of the former have been plotted. Similar to the earlier findings, the relative intensities of MgO and MgAl2O4 showed decreasing and increasing trends, respectively, with respect to holding time. Moreover, the relative intensity underwent a sudden decrease in the initial
stage of holding (0–4 h) for MgO and a sharp increase in the final stage of holding (7–10 h) for MgAl₂O₄. However, during the intermediate stage of holding (4–7 h), both phases had low relative intensities while the transition phase was dominant. The coexistence of MgO and MgAl₂O₄ with the transitional phase in a single particle during the transformation of MgO to MgAl₂O₄ can be seen in figures 10(a) and (b). On the other hand, in the samples with added rice husk ash held for 0 and 10 h, MgAl₂O₄ was found to be the major phase with minor peaks of both MgO and the transition phase in the XRD patterns (figure 9). However, the relative intensity of the transition phase with respect to that of MgAl₂O₄ did not change appreciably with increasing holding time.

The important thermodynamically feasible displacement reactions possible during the reduction of SiO₂ in Al–Mg alloy are given below [16].

\[
\begin{align*}
\text{SiO}_2(s) + 2\text{Mg}(l) &\rightarrow 2\text{MgO}(s) + \text{Si}(l), \\
\Delta G_{50°C}^o & = -268.22 \text{ kJ mol}^{-1}, \\
2\text{SiO}_2(s) + \text{Mg}(l) + 2\text{Al}(l) &\rightarrow \text{MgAl}_2\text{O}_4(s) + 2\text{Si}(l), \\
\Delta G_{50°C}^o & = -449.632 \text{ kJ mol}^{-1}, \\
3\text{SiO}_2(s) + 4\text{Al}(l) &\rightarrow 2\text{Al}_2\text{O}_3(s) + 3\text{Si}(l), \\
\Delta G_{50°C}^o & = -556.44 \text{ kJ mol}^{-1}, \\
3\text{SiO}_2(s) + 2\text{MgO}(s) + 4\text{Al}(l) &\rightarrow 2\text{MgAl}_2\text{O}_4(s) + 3\text{Si}(l), \\
\Delta G_{50°C}^o & = -631.084 \text{ kJ mol}^{-1}.
\end{align*}
\]

It is well known that all dispersoids in suspension in the melt are surrounded by physically or chemically absorbed gas, as shown in figure 12, where particles are represented as spheres [17]. Ramani et al [18, 19] and Ramamohan et al [20] have explained the effect of the gas layer on the segregation and rejection of particles in Al/graphite composites prepared by the vortex method. To initiate the wetting of the particle surface, the molten metal has to overcome this gas layer. In the dynamic conditions of composite processing through the vortex method, the gas layer is ruptured by either the turbulence created in the melt or the reaction with the melt (the scavenging effect of Mg in Al alloy), causing the wetting of the surface of the particles with the molten metal. The surface inhomogeneities produce several reactive regions on the particle surface, where partially bonded atoms are available. The wetting associated with the reaction, or reactive wetting [21], starts at such regions and propagates by simultaneous reactions on the particle surface. At first, either reaction (1) or (2) takes place forming MgO or MgAl₂O₄, respectively, at the interface between the particle and the molten metal. However, MgO forms more readily at the highly reactive regions due to the higher reactivity of Mg than Al and the preferential segregation of Mg atoms at the interface [22]. With increasing the holding time, the Al atom concentration increases at the interface and the MgO crystals start to react with Al and the unreacted SiO₂ by reaction (4). This process undergoes different stages generating various transition phases and finally forms the stable MgAl₂O₄ phase, as given below.

\[
\text{SiO}_2 + \text{MgO} + \text{A} \rightarrow \text{Transition phases containing Mg, Al, Si and O} \\
\begin{align*}
\text{Mg, Al, Si and O} \left(0 < \frac{\text{Al}}{\text{Mg}} < 2\right) \\
&+ \text{Si} \rightarrow \text{MgAl}_2\text{O}_4 \left(\frac{\text{Al}}{\text{Mg}} = 2\right) + \text{Si}. \\
\end{align*}
\]

The transition phases, which are initially rich in Mg, later become rich in Al. The low Si content (1.94 at.%) in the identified phase gives further evidence for the reaction (5). In addition, the higher concentration of Al atoms at the reaction sites enables the formation of MgAl₂O₄. The coexistence of MgO and MgAl₂O₄ crystals with the transition phase in microsilica and rice husk ash gives clear evidence for MgAl₂O₄ formation by reaction (5). The Si atoms released by all the reactions start to diffuse into the molten metal and forms solid Mg₂Si using the Mg available in the matrix by the reaction

\[
\text{Si} + 2\text{Mg} \rightarrow \text{Mg}_2\text{Si}.
\]

The reaction propagates into the interior of the particles simultaneously with the surface reaction. After the formation of the first layer of MgO or MgAl₂O₄, Mg, Al and the released Si must diffuse through the reaction layer to undergo further...
reactions in the interior of the particles. The formation of MgAl₂O₄ and MgO from SiO₂ is expected to result in 27 and 13.6% decreases in volume, respectively [23]. Owing to this contraction, there are expected to be gaps between the newly formed crystals or between the newly formed crystals and remaining SiO₂. Liquid Al and Mg infiltrate into these gaps and form so-called ‘diffusion channels’, as suggested by Legoux et al [24]. The bulk reaction of the particles was found to cease with increasing holding time as the product crystals accumulated in the diffusion channels. This was studied by OES analysis of the matrix alloy held for different durations. The change in the Si and Mg contents of the alloy for different holding times is plotted in figure 13. The Si contents immediately after the addition of particles or at the beginning of holding (0 h) were 0.65 and 0.85 wt.% for the composites with added microsilica and rice husk ash, which increased steadily and reached 1.2 and 1.28 wt.% after 10 h of holding, respectively. On the other hand, the added silica source (5 wt.%) contributed 2.26 wt.% of Si to the Al–Mg matrix. Similarly, the Mg contents were 2.06 and 2.43 wt.% at the beginning of holding and 1.6 and 2.1 wt.% between 2 and 10 h of holding in the microsilica and rice husk ash composites, respectively. Despite the addition of 5 wt.% Mg at the beginning of composite processing, the loss due to the oxidation and the consumption due to the reactions occurring during particle addition were appreciable. Interestingly, MgO and MgAl₂O₄ dominated the composites containing microsilica and in rice husk ash, respectively, at the beginning of the reaction.

3.3. Stability of MgAl₂O₄

The stability of MgAl₂O₄ at the holding temperature and Mg concentration was verified from various theoretical evidences such as the MgO–Al₂O₃ phase diagram [25], the stability diagram of the MgO/MgAl₂O₄/Al₂O₃ system [26] and the ternary phase diagram of Al–Mg–O [27]. The inversion nature of MgAl₂O₄ increases the configurational entropy of atoms upon their self-rearrangement to form stable crystals. This increases the solubility of Al and Mg atoms along with that of oxygen in MgAl₂O₄. However, the configurational entropy is negligible below 800 °C and rapidly increases above 1000 °C. For this reason, in the MgO–Al₂O₃ phase diagram, the solubility of MgO and Al₂O₃ in MgAl₂O₄ increases above 1000 °C, whereas the ratio of MgO to Al₂O₃ is limited to 1 : 1 below 1000 °C, resulting in the formation of stoichiometric spinel, i.e. MgAl₂O₄. The stability diagram of the MgO/MgAl₂O₄/Al₂O₃ system and the Al–Mg–O ternary phase diagram give a range of Mg concentrations in the matrix that stabilize the MgAl₂O₄ at a given temperature. The Mg range in the Al–Mg–O system required for the thermodynamic stability of MgAl₂O₄ is 0.11–10 wt.% at 1075 °C and 0.7–1.2 wt.% at 723 °C according to the ternary phase diagram and the stability diagram. The stability of MgAl₂O₄ has been studied in different MMCs [28–30]. MgO and MgAl₂O₄ were detected at the interface of 339Al-silica-bound Kaowool (47%Al₂O₃/53%SiO₂) composites in heat treatment studies by Smith et al [28] and the higher activation energy required for reaction (3) compared with the other reactions resulted in the absence of Al₂O₃. Lee et al [29] modeled the stability of MgO–MgAl₂O₄–Al₂O₃ for various Mg concentrations using oxidized SiC-reinforced Al–Mg alloys and found that MgAl₂O₄ is only stable when the alloy has 0.002–6 wt.% Mg content. Zhong et al [30] experimentally detected MgAl₂O₄–MgO crystals on an oxidized SiC surface in Al–Mg/SiC composite, where MgAl₂O₄ crystals were mainly found with 0.3 and 1 wt.% Mg, and a mixture of MgAl₂O₄ and MgO fine crystals with 5 wt.% Mg was formed as the reaction products.

3.4. Analysis of the stoichiometry (n)

Zawrah [31] employed a novel method of calculating the lattice constant, a_n, of nonstoichiometric spinel (MgO.nAl₂O₃). The same method was used with some modifications for the present study to calculate the stoichiometry of the spinel. As mentioned earlier, nonstoichiometric spinel is a solid solution of MgO and Al₂O₃. Furthermore, Al₂O₃ in its γ-Al₂O₃ form in the spinel phase (known as defective spinel, $\text{Al}_8/3\text{V}_{1/3}\text{O}_4$, where V is a vacancy at an octahedral site) with a lattice constant of 0.729 nm can dissolve in MgAl₂O₄ (stoichiometric spinel). In other words, nonstoichiometric spinel can be regarded as a solid solution of stoichiometric spinel and defective spinel. Therefore, one can write

$$\text{MgO}.n\text{Al}_2\text{O}_3 \rightarrow \text{MgAl}_2\text{O}_4 + \frac{3}{4}(n - 1)\text{Al}_{8/3}\text{V}_{1/3}\text{O}_4.$$ (7)

The lattice constant of MgO.nAl₂O₃, a_n, can be written as a weighted average value of those for MgAl₂O₄ and Al₈/₃V₁/₃O₄; hence,

$$a_n = \frac{a_0 + 3/4(n - 1)a_1}{1 + 3/4(n - 1)}.$$ (8)

Rearranging the above equation gives the stoichiometry, n, of the spinel, i.e.

$$n = \frac{4a_0 - 3a_1 - a_n}{3(a_n - a_1)}.$$ (9)
Table 2. Comparison of 2θ, d_n, a_n and n values of MgAl$_2$O$_4$ obtained from samples held for different durations with standard values.

Holding time (h)	2θ (Degree)	d_n (nm)	a_n (nm)	n				
	Ms	RHA	Ms	RHA	Ms	RHA		
0	–	36.87	–	0.24362	–	0.80797	–	0.9802
1	–	36.84	–	0.24379	–	0.80856	–	1.1896
2	36.89	36.95	0.24346	0.24307	0.80750	0.80616	1.0693	1.1896
3	36.92	36.85	0.24330	0.24370	0.80691	0.80826	1.1172	1.0031
4	36.82	36.83	0.24395	0.24384	0.80908	0.80872	0.9422	0.9682
5	36.71	36.77	0.24464	0.24422	0.81138	0.80998	0.7974	0.8116
6	36.88	36.84	0.24351	0.24380	0.80764	0.80858	1.0532	0.9786
7	36.81	36.86	0.24392	0.24364	0.81165	0.80800	0.9385	1.0237
8	36.83	36.84	0.24385	0.24379	0.80877	0.80856	0.9645	0.9802
9	36.80	36.90	0.24402	0.24340	0.80932	0.80727	0.9256	1.0849
10	36.90	36.88	0.24335	0.24351	0.80710	0.80763	1.1000	1.0540

Standard 36.85 0.24370 0.80830 1.0000

Where $a_0 = 0.8083$ nm (JCPDS-PCPDF file No. 21–1152) and $a_1 = 0.7911$ nm [32] are the standard lattice constant values of MgAl$_2$O$_4$ and Al$_{8/3}$V$_{1/3}$O$_4$, respectively, used in the present study and a_n is the lattice constant of MgAl$_2$O$_4$ obtained experimentally using the relation

$$a_n = \left(h^2 + k^2 + l^2 \right)^{1/2} d_n,$$

where h, k and l are the indices of the planes of MgAl$_2$O$_4$ having maximum intensity ($2\theta = 36.85^\circ$) and d_n is the interplanar distance at the (311) plane.

Using equation (9), the stoichiometry, n, of MgAl$_2$O$_4$ obtained from the samples after different holding times of up to 10 h were calculated and are plotted in figure 14. The values of n are between 0.79 and 1.18 for the different samples. Moreover, n is reduced to -0.09 from the present values for the values of a_0 mentioned in the literature (0.8072 nm [31] and 0.8078 nm [33]). In the present study, it has shown that the values of n are scattered above and below the line that represents perfect stoichiometry ($n = 1$). The departure from stoichiometry (either higher than 1 or less than 1) is closely related to the 2θ, d_n, and a_n values of MgAl$_2$O$_4$. Table 2 shows a comparison of these values for MgAl$_2$O$_4$ obtained after different holding times with the standard values for MgAl$_2$O$_4$ for the corresponding (311) plane. The values of 2θ are lower while those of d_n and a_n are higher than the standard values in MgAl$_2$O$_4$ when $n < 1$ and the reverse trend can be observed in MgAl$_2$O$_4$ when $n > 1$. The presence of excess Al$^{3+}$ at the MgAl$_2$O$_4$ crystal lattice leads to the formation of vacant cation sites, i.e. the MgAl$_2$O$_4$ becomes increasingly cation deficient with smaller unit cell volume. In contrast, the excess Mg$^{2+}$ results in anionic deficiency and the enlargement of the MgAl$_2$O$_4$ unit cell [34]. These may be the reasons for the change in the values of d_n and a_n. The reactions between the metal and SiO$_2$ progress with time resulting in the continuous consumption of SiO$_2$ and the interdiffusion of reactive elements such as Si, Al and Mg between the matrix and the reaction sites through the product crystal lattice, grain boundary and the diffusion channels. The diffusion of elements changes with the mobility of ions and the interfacial concentration. Even though the ionic radius of Al$^{3+}$ (0.05 nm) is lower then that of Mg$^{2+}$ (0.085 nm), the mobility of Mg through MgAl$_2$O$_4$ crystals is higher than that of Al. Moreover, Mg exhibits higher reactivity than Al, and elemental atoms of the former may be segregated at the interface. These factors can markedly change the stoichiometry of MgAl$_2$O$_4$.

3.5. Growth of MgAl$_2$O$_4$ crystallites

To study the growth of MgAl$_2$O$_4$ crystallites for different holding times, the mean crystallite size, D, of MgAl$_2$O$_4$ was determined from XRD broadening at $2\theta = 36.85^\circ$ and evaluated using the Scherrer formula,

$$D = \frac{k\lambda}{\beta \cos \theta},$$

where k is the Scherrer constant (0.9 \times 57.3), β is the full width at half maximum (FWHM) intensity, λ is the wavelength of the x-ray radiation and θ is the Bragg angle [35]. Figures 15 and 16 show the existence of a linear relationship between D and the holding time, with the former ranging between 24 and 36 nm. MgAl$_2$O$_4$ crystals initially form on the interface between the silica particles and their growth depends on the diffusion of Al and Mg.
(from the matrix to the interface) and Si (from the SiO\textsubscript{2} lattice to the matrix). The large numbers of grown crystals restrict the interfacial diffusion of elements between the matrix and the silica particles, and hence diffusion through the crystals (lattice and grain boundary diffusion) starts to dominate. Even though the configuration entropy of MgAl\textsubscript{2}O\textsubscript{4} is very low at 750°C, these results show that MgAl\textsubscript{2}O\textsubscript{4} exhibits enhanced diffusion properties under the experimental conditions, resulting in the growth of larger crystallites.

4. Summary

(a) Al/MgAl\textsubscript{2}O\textsubscript{4} \textit{in situ} metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing \(\sim 97\%\) SiO\textsubscript{2} in Al–5Mg alloy.

(b) A new transition phase existing between MgO and MgAl\textsubscript{2}O\textsubscript{4} has been identified and experimentally verified. This confirmed that MgO is gradually transformed to MgAl\textsubscript{2}O\textsubscript{4} by a thermodynamically feasible reaction (equation (5)).

(c) MgO and MgAl\textsubscript{2}O\textsubscript{4} were found to dominate in composites with added microsilica and rice husk ash, respectively, in the initial stage of holding the composites at 750°C.

(d) The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed, and the mean MgAl\textsubscript{2}O\textsubscript{4} crystallite size, \(D\), increased gradually from 24 to 36 nm during holding for up to 10 h.

(e) The stoichiometry, \(n\), of the MgAl\textsubscript{2}O\textsubscript{4} formed ranged between 0.79 and 1.18.

Acknowledgments

We thank the Director of the National Institute for Inter-disciplinary Science and Technology, Thiruvananthapuram, for his interest; all the members of the Light Metals, Alloys and Composite Activity Group of the Materials and Minerals Division for their support during the experiments and CSIR, New Delhi, for the SRF award to the first author.

References

[1] Sickafus K E and Wills J M 1990 \textit{J. Am. Ceram. Soc.} 82 3279
[2] Hallstedt B 1992 \textit{J. Am. Ceram. Soc.} 75 1497
[3] Angappan S, Berchmans L J and Augustin C O 2004 \textit{Mater. Lett.} 58 2283
[4] Behera S K, Barpanda P, Pratihara S K and Bhattacharya S 2004 \textit{Mater. Lett.} 58 1451
[5] Gustafson T W, Panda P C, Song G and Raj R 1997 \textit{Acta. Mater.} 45 1633
[6] Bailey J T and Russell R Jr 1968 \textit{Ceram. Bull.} 47 1025
[7] Bratton R J 1969 \textit{Ceram. Bull.} 48 759
[8] Montouillout V, Massiot D, Dovy A and Coutures J P 1999 \textit{J. Am. Ceram. Soc.} 82 3299
[9] Adak A K, Saha S K and Pramanik P 1997 \textit{J. Mater. Sci. Lett.} 16 234
[10] Tsunekawa Y, Suzuki H and Genma Y 2001 \textit{Mater. Des.} 22 467
[11] Sreekumar V M, Rajan T P D, Pillai R M, Pai B C and Chakraborthy M 2006 \textit{Indian Patent No} 0767DEL2006
[12] Sreekumar V M, Pillai R M, Pai B C and Chakraborthy M 2007 \textit{J. Am. Ceram. Soc.} 90 2905
[13] Bruno M and Holm J L 1998 \textit{Theor. Chim. Acta.} 318 125
[14] Chandrasekhar S, Sathyaranayana K G, Pramada P N, Raghavan P and Gupta T N 2003 \textit{J. Mater. Sci.} 38 3159
[15] Ng D H L, Zhao Q, Qin C, Ho M W and Hong Y 2001 \textit{J. Eur. Ceram. Soc.} 21 1049
[16] Kubaschewski O, Evans E L and Alcock C B 1974 \textit{Metallurgical Thermocheministry} (Oxford: Pergamon)
[17] Ramani G, Pillai R M, Pai B C and Ramamohan T R 1991 \textit{Composites} 22 143
[18] Ramani G, Pillai R M, Pai B C and Ramamohan T R 1990 \textit{Scrip. Metall. Mater.} 24 1419
[19] Processing of metal matrix composites, \textit{Internal Report No} RT 28 MO 49, Regional Research Laboratory (CSIR) Trivandrum, India, 1986
[20] Ramamohan T R, Ramani G, Pillai R M and Pai B C 1991 \textit{Scrip. Metall. Mater.} 24 1425
[21] Zhou X B and De Hosson J Th M 1996 Acta. Mater. 44 421
[22] Asthana R 1998 Solidification Processing of Reinforced Metals (Switzerland: Trans Tech Publications Ltd) p 87
[23] Zhong W M, L’esperance G and Suery M 1995 Metall. Mater. Trans. 26 2625
[24] Legoux J G, L’esperance G, Salvo L and Suery M 1990 Proc. Fabrication of Particulates Reinforced Metal Composites (Montreal: ASM) p 31
[25] Bhatia T, Chattopadhyay K and Jayaram V 2001 J. Am. Ceram. Soc. 84 1873
[26] Mcleod A D and Gabryel C M 1992 Metall. Mater. Trans. 23 1279
[27] Hanabe M and Aswath P B 1997 Acta. Mater. 45 4067
[28] Smith G W, Baxter W J and Sachdev A K 2000 Mater. Sci. Eng. 284 246
[29] Lee J C, Ahn J P, Shi Z, Shim J H and Lee H I 2001 Metall. Mater. Trans. 32 1541
[30] Zhong W M, L’esperance G and Suery M 1995 Metall. Mater. Trans. 26 2637
[31] Zawrah M F 2004 Mater. Sci. Eng. 382 362
[32] Gutiérrez G, Taga A and Johansson B 2001 Phys. Rev. B 65 1
[33] Mitchell T E 1999 J. Am. Ceram. Soc. 82 3305
[34] Serry M A, Hammad S M and Zawrah M F 1998 Br. Ceram. Trans. 97 275
[35] Li J G, Ikegami T, Lee J H, Mori T and Yajima Y 2001 Ceram. Int. 27 481