Surgical techniques for harvesting of the IMA are well known. But its harvesting and its using may cause other surgical and technical problems and complications such as bleeding after open-heart surgery (1,2,4,5,11,12,17). The effect of cardiopulmonary bypass (CPB) is well-known and discussed in many papers (9,14,18).

Bleeding after open-heart surgery is still one of the major problems. The effect of cardiopulmonary bypass (CPB) is well-known and discussed in many papers (9,14,18).

1. Arend O, Remky A, Evans D, Stuber R, Harris A. Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes. Invest Ophthalmol Vis Sci 1997;38(15):3029-34.

2. Banford D, North RV, Dolben J, Butler G, Owens DR. Longitudinal study of visual function in young insulin dependent diabetics. Optom Physiol Opt 1996;16:366-74.

3. Bangstad H-J, Brinchmann-Hansen O, Hultgren S, Dahl-Jorgensen K, Hanssen KP. Impaired contrast sensitivity in adolescents and young Type 1 (insulin-dependent diabetes) patients with microalbuminuria. Acta Ophthalmol 1997;75:266-70.

4. Brinchmann-Hansen O, Bangstad H-J, Hultgren S et al. Psychophysical visual function, retinopathy, and glycemic control in insulin-dependent diabetics with normal visual acuity. Acta Ophthalmol 1993;72:236-41.

5. Di Leo MA, Cupit S, Palmeiri R et al. Neuroendocrine loss of contrast sensitivity in visual system testing in early type I diabetes. Diabetes Care 1992;May, 15(5):620-5.

6. Ginsberg AF. A new contrast sensitivity test chart. Am J Ophthalmol 1984;4(1):405-7.

7. Mangouritsas G, Katouils E, Kepaptsoglou O, Zoupas C. Effect of hyperglycemia on the contrast sensitivity: Retinal function in insulin-dependent diabetics. Diabetologia 1995;38(2):142-7.

8. Mannys MJ. Making sense of contrast sensitivity. Has its time come? Arch Ophthalmol 1987;105:872-9.

9. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol 1991;109:54-8.

10. Trütt GL, Burde RM, Gordon MO, Santiago JV, Kilo C. The relationship between blue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmologica 1988;191(1):58-65.

Submitted July 1999.
Accepted September 1999.

MUDr. Milanov Dostalek, City Hospital, Department of Ophthalmology, J. E. Purkyně Str. 652, 570 14 Litomyšl, Czech Republic.
e-mail: dostalek@lit.cz

Charles University in Prague, Faculty of Medicine in Hradec Králové: Department of Cardio surgery

Summary: Objective: The internal mammary artery (IMA) ranks among excellent, widely used conduits for surgical coronary revascularization. Its harvesting and its using may cause other surgical and technical problems and complications such as bleeding after open-heart surgery. The aim of this study was to get to know how much it increases postoperative bleeding losses and if the local application of aprotinin to the wound surface after the IMA harvesting and into the pericardial cavity can reduce them and thus decrease the number of blood transfusions. Methods: In this study there are compared groups of patients (n = 275) operated at the University Department of Cardiac Surgery in Hradec Králové on account of ischemic heart disease. In the first part of this study results of operations of 200 patients were comprised retrospectively. Group A comprised 50 patients where for revascularization of the myocardium venous grafts were used. Group B comprised 50 patients where also the internal mammary artery was used. Group C was comprised by 50 patients where after preparation of the IMA aprotinin (100 000 KIU) was administered locally to the wound surface after the IMA harvesting. Group D was comprised by 50 patients where atriparin (500 000 KIU) was administered locally to the wound surface and pored into the pericardial cavity before closure of the median sternotomy. The postoperative blood losses and the number of the administered blood transfusions were compared between these groups. Results: The authors provided evidence that the using of the IMA increases significantly the postoperative blood losses (in group A1 675 ml ± 336.5) and increases the number of required transfusions (in group A1 2.44 ± 1.7, in group B1 3.45 ± 1.0). By local aprotinin application to the wound surface after the IMA harvesting the blood losses and the number of administered transfusions were reduced in group C1 (896 ml (231.9, 2.74 ± 1.3). In the second, prospective randomised part of this study 3 groups of patients were compared. Group A2 comprised 25 patients where venous grafts for revascularization of myocardium were used. Group B2 was comprised by 25 patients where also the IMA was used. Group D2 comprised 25 patients where aprotinin (500 000 u) was administered locally to the wound surface after the IMA harvesting and pored into the pericardial cavity before closure of sternotomy. The postoperative blood losses and the number of administered blood transfusions were again compared between these groups. The total postoperative blood losses were 778 ml ± 304.2 in group A2, 1072 ml ± 391.8 in group B2 and 754 ml ± 197.9 in group D2. There were compared blood losses after 6, 12 and 24 hours, too. There were the statistically significant differences among these groups during the whole postoperative period. The number of blood transfusions were 2.8 ± 2.3 in group A2 and 2.04 ± 1.1 in group B2. The use of aprotinin decreased this number in group D2, 1.44 ± 1.1.

Conclusions: The authors provided evidence that the harvesting and the using of the internal mammary artery for myocardial revascularization increases significantly the postoperative bleeding and increases the number of required transfusions. By local application of aprotinin the author reduced the blood losses and need of transfusions.

Key words: Open-heart surgery, Ischemic heart disease, Internal mammary artery, Aprotinin, Postoperative bleeding, Blood transfusions

Introduction

Use of the internal mammary artery (IMA) as a graft for myocardial revascularization ranks among standard, widely used methods in cardiac surgery. It was based on the excellent long term results of patency when compared with venous conduits (2,12).

Surgical techniques for harvesting of the IMA are well known. But its harvesting and its using may cause other surgical and technical problems and complications such as a prolonged operative time, spasm of the IMA, poor artery blood flow, pneumothorax, chylothorax, brachial plexus lesion, phrenic nerve injury, steal syndrome, sternal fracture, sternal wound infection and increased bleeding from wound surface after the IMA harvesting (1,2,4,5,11,12,17). Bleeding after open-heart surgery is still one of the major problems. The effect of cardiopulmonary bypass (CPB) is wellknown and discussed in many papers (9,14,18).
Blood losses can lead to other complications and require blood transfusion. It carries a risk of infectious disease, adversereactions and increases a total price of the operation and the postoperative care (8.18).

Therefore, many ways have been explored to reduce perioperative bleeding and the need for homologous blood transfusion, such as intraoperative transfusion, hemodilution, postoperative return of mediastinal blood and the use of pharmacological agents (6.17).

Aprotinin, the serum protease inhibitor, has been shown to be effective in reducing postoperative blood loss in patients undergoing CPB. Its effect on coagulation cascade, clotting, fibrinolysis and complement system has been investigated by many researches and its clinical effectiveness has been documented (3.6.15). The haemostatic effect of aprotinin resulting in reduction of homologous blood transfusion is unquestionable, too. Aprotinin is administered before and during CPB intravenously or into the prime of the oxygenator (3.15).

Topical use of aprotinin is neither common nor widespread in cardiac surgery. The application of 500 000 - 1 000 000 KIU into the pericardial cavity before closure of the median sternotomy has been presented in few papers (13.16).

Local application of aprotinin to the wound surface after the IMA harvesting and into the pericardial cavity is presented in this study. Fig. 1.2. The aim of this study was to get to know how much the harvesting and the using of the IMA for revascularization of myocardium increases postoperative blood losses. The second aim was to obtain an answer if the local application of aprotinin can reduce them and thus decrease the number of blood transfusions.

Material and methods

In this study there are compared groups of patients (n = 275) operated at the University Department of Cardiac Surgery in Hradec Králové, Czech Republic, on account of ischemic heart disease.

In the first part of this study results of the operations on 200 patients were comprised retrospectively. Group A1 comprised 50 patients where for revascularization of the myocardium venous grafts were used. Group B1 comprised 50 patients where also internal mammary artery was used. Group C1 was formed by 50 patients where after preparation of the IMA aprotinin (100 000 KIU) was administered locally to the wound surface after the IMA harvesting. Group D1 was formed by 50 patients where aprotinin (500 000 KIU) was administered locally to the wound surface after closure of the median sternotomy. Fig. 1.2. The postoperative blood losses from mediastinal, pericardial and pleural drains and the number of the administered blood transfusions were compared between these groups.

In the second, prospective randomised part of this study 3 groups of patients were compared. Group A2 comprised 25 patients where for revascularization of myocardium only venous grafts were used. Group B2 was formed by 25 patients where also the IMA was used. Group D2 comprised 25 patients where aprotinin (500 000 KIU) was administered locally to the wound surface after the IMA harvesting and poured into the pericardial cavity before closure of sternotomy. The postoperative blood losses and the number of administered blood transfusions were compared in these groups again. It was shown in the first part of this study that local application of aprotinin (500 000 u.) to the wound surface and to the pericardial cavity (D1) can reduce blood losses more than the application (100 000 u.) to the wound surface only (C1). That’s why no Group C2 was compared in the second part of the study.

The anesthesia management, CPB and surgical procedures were standardized. Anesthesia was induced with fentanyl and flunitrazepam, muscle relaxation with pipecuronium bromide. The extracorporeal circuit consisted of membrane oxygenators and roller pumps. Oxygenators and tubing were primed with Hartmann’s solution, low molecular weight dextran, 10% mannitol solution, gelatin solution, 8.4% sodium bicarbonate, magnesium sulphate, methylprednisolone, heparin 2 500 u. and aprotinin 500 000 KIU. Patients were heparinized before CPB with 2.5 mg / kg heparin. Additional doses of heparin were given when APTT was shorter than 400 seconds. After CPB, heparin was neutralized with protamine at a 1:1 ratio. A standard aortic and a two-stage venous cannula were used. Moderate hypothermia (28 - 30°C), cold crystalloid potassium cardioplegia (St. Thomas Hospital Solution) and topical cooling were employed for myocardial protection. Saphenous vein and left internal mammary artery were used for revascularization of myocardium. Pericardial cavity, mediastinal and pleural spaces were drained after operations. The amount of blood losses was measured every hour in postoperative time. The drains were removed after 48 hours. Shred mediastinal blood was not transfused in any patient. Blood transfusions were administered only when the hematocrit value fell to less than 0.25 and hemoglobin less than 95. Autotransfusions were not included. There were 9 reoperations for bleeding in this study. Blood losses of these were included.

Patients in which both mammary arteries were used and patients undergoing REDO surgery were not admitted to the study. Preoperative blood tests were normal in all patients. Student’s t-test was used for statistical analysis. A p value less than 0.05 was considered statistically significant. Aprotinin (Antilysin Spofa, GordoX Gedox Richter) for topical application was used in doses of 100 000 or 500 000 KIU.

All operations were done by the same surgeon.

Results

Perioperative and postoperative data:

Tab. 1: Comparison of Group A1 (venous grafts) and Group B1 (venous grafts + IMA).
Age (yrs)
No. of dist. anastomoses
CPB time (min)
Total blood losses (ml)
Blood transfusions (units)

When comparing the groups A1 and B1 a statistically significant increase of blood losses was found in group B1 where also the mammary artery was used - 1232 ml ± 336.5, when compared with 675 ml ± 352.9 in group A1 where only venous grafts were used. Statistically similarly significant difference was discovered in numbers of blood units administered in group B1 (3.45 ± 1.0), while in the group A1 there were 2.44 ± 1.7.

Comparing groups C1, where aprotinin 100 000 u. was used locally, with the group B1, where no aprotinin was used, we witnessed a marked decrease of blood losses (896 ml (231.9 vs. 1232 ml ± 336.5). Similarly also the statistically significant decrease of blood transfusions was apparent (2.74 ± 0.8 vs. 3.45 ± 1.0 units).

Comparing groups D1, where aprotinin 100 000 u. was used locally, with the group B1, where no aprotinin was used, we witnessed a marked decrease of blood losses (896 ml (231.9 vs. 1232 ml ± 336.5). Similarly also the statistically significant decrease of blood transfusions was apparent (2.74 ± 0.8 vs. 3.45 ± 1.0 units).

Tab. 3: Comparison of Group C1 (venous grafts + IMA + aprotinin 100 000 KIU) and Group D1 (venous grafts + IMA + aprotinin 500 000 KIU).

Tab. 4: Comparison of Group B1 (venous grafts + IMA) and Group C1 (venous grafts + IMA + aprotinin 100 000 KIU).

Though the decrease of blood losses in group D1 could be traced when compared with the group C1, this was not of a statistical significance. The number of transfusions was increasing reduced in group D1 than in group C1.

When paralleling groups B1 and D1 in the third part of our study a statistically significant decrease of blood losses was found in group D1 where 500 000 u. of aprotinin were used. The average volume here was 797 ml ± 280.5 compared with that in the group B1 where it was 1232 ml ± 336.5. Also the statistically significant reduction in units of blood given was found; 3.45 ± 1.0 in group B1 and 1.74 ± 1.3 in group D1.
Blood losses can lead to other complications and require blood transfusion. It carries a risk of infectious disease, adverse reactions and increases a total price of the operation and the postoperative care (8,18).

Therefore, many ways have been explored to reduce per- and postoperative bleeding and the need for homologous blood transfusion, such as intraoperative transfusion, he-modilution, postoperative return of shed mediastinal blood and the use of pharmacological agents (6,18). Aprotinin, the serum protease inhibitor, has been shown to be effective in reducing postoperative blood loss in patients undergoing CPB. Its effect on coagulation cascade, clotting, fibrinolysis and complement system has been investigated by many researches and its clinical e-ficacy has been documented (3.6,15). The haemostatic ef-fect of aprotinin resulting in reduction of homologous blood transfusion is unquestionable, too. Aprotinin is ad-ministered before and during CPB intravenously or into the prime of the oxygenator (3.15).

Topical use of aprotinin is neither common nor wide-spread in cardiac surgery. The application of 500 000 · 1 000 000 KIU into the pericardial cavity before closure of the median sternotomy has been presented in few papers (13.16).

Local application of aprotinin to the wound surface af-ter the IMA harvesting and into the pericardial cavity is pre-sented in this study. Fig. 1,2. The aim of this study was to get to know how much the harvesting and the using of the IMA for revascularization of myocardium increases postoperative blood losses. The second aim was to obtain an answer if the local application of aprotinin can reduce them and thus decrease the number of blood transfusions.

Material and methods

In this study there are compared groups of patients (n = 275) operated at the University Department of Cardiac Surgery in Hradec Králove, Czech Republic, on account of ischemic heart disease. In the first part of this study results of the operations on 200 patients were comprised retrospectively. Group A1 comprised 50 patients where for revascularization of the myocardium venous grafts were used. Group B1 comprised 50 patients where also internal mammary artery was used. Group C1 was formed by 50 patients where after preparation of the IMA aprotinin (100 000 KIU) was administered locally to the wound surface after the IMA harvesting. Fig. 1,2. Group D1 was formed by 50 patients where aprotinin (500 000 KIU) was administrated locally to the wound surface after the IMA harvesting and poured into the pericardial cavity before closure of the median sternotomy. Fig. 1,2. The postoperative blood losses from mediastinal, pericardial and pleural drains and the number of the administered blood transfusions were compared between these groups.

In the second, prospective randomised part of this stu-dy 3 groups of patients were compared. Group A2 compri-sed 25 patients where for revascularization of myocardium only venous grafts were used. Group B2 was formed by 25 patients where also the IMA was used. Group D2 compri-sed 25 patients where aprotinin (500 000 KIU) was admi-nistered locally to the wound surface after the IMA harvesting and poured into the pericardial cavity before clo-sure of sternotomy. The postoperative blood losses and the number of administered blood transfusions were compared in these groups again. It was shown in the first part of this study that local application of aprotinin (500 000 u.) to the wound surface and to the pericardial cavity (D1) can redu-ce blood losses more than the application (100 000 u.) to the wound surface only (C1). That’s why no Group C2 was compared in the second part of the study.

The anesthesia management, CPB and surgical pro-cedures were standardized. Anesthesia was induced with fentanyl and flunitrazepam, muscle relaxation with pipexuron bromide. The extracorporeal circuit consisted of membrane oxygenators and roller pumps. Oxygenators and tubing were primed with Hartmann’s solution, low molecu-lar weight dextran, 10% mannitol solution, gelatin solution, 8.4% sodium bicarbonate, magnesium sulphate, methyl prednisolone, heparin 2 500 u. and aprotinin 500 000 KIU. Patients were heparinized before CPB with 2.5 mg / kg he-parin. Additional doses of heparin were given when ACT was shorter than 400 seconds. After CPB, heparin was ne-utralized with protamin at a 1:1 ratio. A standard aortic and a two-stage venous cannula were used. Moderate hypotermia (36 - 36.5°C) cold crystalloid potassium cardioplegia (St. Thomas Hospital Solution) and topical cooling were emplo-yed for myocardial protection. Saphenous vein and left in-ternal mammary artery were used for revascularization of myoccardium. Pericardial, mediastinal and pleural spa-ces were drained after operations. The amount of blood los-ses was measured every hour in postoperative time. The drains were removed after 48 hours. Shed mediastinal blood was not transfused in any patient. Blood transfusions were administered only when the hematocrit value fell to less than 0.25 and hemoglobin less than 95. Autotransfusions were not included. There were 9 reoperations for bleeding in this study. Blood losses of these were included.

Patients in which both mammary arteries were used and patients undergoing REPO surgery were not admitted to the study. Preoperative blood tests were normal in all patients. Student’s t-test was used for statistical analysis. A p va-lue less than 0.05 was considered statistically significant. Aprotinin (Antilysin Spofa, Gordoex Gedeon Richter) for topical application was used in doses of 100 000 or 500 000 KIU. When paralleling groups B1 and D1 in the third part of our study a statistically significant decrease of blood losses was found in group B1 where also the mammary artery was used - 1232 ml ± 336.5 compared with 675 ml ± 275 ml in group A1 where only venous grafts were used. Statistically similarly sig-nificant difference was discovered in numbers of blood units administered in group B1 (3.45 ± 1.0) when in the group A1 there were 2.44 ± 1.7.

Results

Perioperative and postoperative data: Tab. 1: Comparison of Group A1 (venous grafts) and Group B1 (venous grafts + IMA).

	Group A1 n=50	Group B1 n=50	
age (yrs)	62.3 ± 7.6	64.5 ± 11.5	NS
% of dist. anomalous	2.7 ± 0.7	6.1 ± 0.9	<0.001
cross-clamp time (min)	46.1 ± 13.0	46.5 ± 13.0	NS
CPB time (min)	39.9 ± 21.8	30.5 ± 27.5	<0.001
total blood losses (ml)	675 ± 252.9	1222 ± 336.5	<0.001
blood transfusions (units)	2.44 ± 1.7	3.45 ± 1.0	<0.001

When comparing the groups A1 and B1 a statistically significant increase of blood losses was found in group B1 where also the mammary artery was used - 1232 ml ± 336.5. When compared with 675 ml ± 352.9 in group A1 where only venous grafts were used. Statistically similarly signific-ant difference was discovered in numbers of blood units administered in group B1 (3.45 ± 1.0), while in the group A1 there were 2.44 ± 1.7.

When paralleling groups C1 and D1 in the third part of our study a statistically significant decrease of blood losses was found in group D1 where 500 000 u. of aprotinin was used. The average volume here was 797 ml ± 280.5 compared with that in the group B1 where it was 1232 ml ± 336.5. Also the statistically significant reduction in units of blood given was found; 3.45 ± 1.0 in group B1 and 1.74 ± 3.1 in group D1.
Comparing the groups B2 and D2 we found statistically significant decrease of blood losses within all the investigation time span in group D2, where 500 000 u of aprotinin was given (from 1072 ml ± 391.8 in group B2 to 778 ml ± 304.2 in group D2). Similarly even the number of blood transfusions was lower (1.44 ± 1.1 in group D2 vs. 2.04 ± 1.1 in group B2).

Other investigated parameters in individual groups (age, sex, time of extracorporal circulation, crossclamp time, number of peripheral coronary anastomoses) did not show any significant differences. Tabs. 5 to 6.

The general assessment of the main parameters observed in individual groups is being illustrated in Tab 5.

Discussion

In cardiac surgery and, above all, in operations with cardiopulmonary bypass (CPB), there are always some blood losses. The amount of blood lost depends on the type of operation performed and on the techniques used. The blood loss prevention seems to represent an important element in the operation treatment. A certain part in this prevention is taken by new techniques of operating and new materials used during both the operation and the CPB, as well as some drugs application for the blood elements protection or hemostasis activation (5,6,10).

Another important factor is represented by the drainage of the peroperative and postoperative blood losses, if drained properly of course, is represented by their influence on the postoperative course, and, above all, on the blood count and hematocrit levels (24 m, 1 f) (23 m, 2 f).

The blood volume lost is being influenced not only by the type of operation but also by some drugs administered. Higher losses can then be seen in urgent and emergency operations, where there was not possible to eliminate in advance the effect of antiaggregants or anticoagulants (10).

The general assessment of the main parameters observed in individual groups is being illustrated in Tabs. 7 and 8. During our study we have not noted any negative reaction after the local administration of aprotinin.

Conclusion

Harvesting and using the mammary artery for revascularization is accompanied by the statistically significant increase of peroperative and postoperative blood losses. These are being caused by an enlargement of wound area on the internal surface of the chest wall when harvesting the artery.

Due to the local application of aprotinin on the wound area after mammary artery harvesting, together with the pericardial sac washed out by aprotinin (in the total amount of 100 000 u and 500 000 u, respectively), we succeeded in decreasing the postoperative drain losses and even the number of blood transfusions, as well.

References

1. Auer R, Kettritsch S, Marzluf P. Pleural and pulmonary complications after bilateral internal mammary artery grafting. Scand J Thorac Cardiovasc Surg 1996;30:105-8.
2. Angelini GD, Bryan AJ, Dion R. Arterial conduits in myocardial revascularization. Scand J Thorac Cardiovasc Surg 1991;25:175-8.
3. Bogers J, Pardijs W, Van Herwerden L, Bos E. Chylothorax as a complication of the prevention of postoperative bleeding. Ann Thorac Surg 1994;58:1580-8.
4. Bidstrup BP, Harrison J, Royston D et al. Aprotinin therapy in cardiac operations: a comparison of clinical and economic demands of the whole treatment.
5. Chaturvedi B, Prasad E, Desai D. Reduction of blood losses and their appropriate drainage lowers the risk of other postoperative complications. Decreased rate of transfusion lowers the risk of posttransfusion complications, as well as the economic demands of the whole treatment.
Comparing the groups B2 and D2 we found statistically significant decrease of blood losses within all the investiga-
tion time span in group D2, where 500 000 u of aprotinin was
given (from 1072 ml ± 391.8 in group B2 to 778 ml ± 304.2 in group D2). Similarly even the number of blood trans-
fusion was lower (1.44 ± 1.1 in group D2 vs. 2.96 ±
1.74 in group B2).

Other investigated parameters in individual groups (age, sex, time of extracorporeal circulation, crossclamping
time, number of peripheral coronary anastomoses) did not show any significant differences. Tabs. 5 to 6.

The general assessment of the main parameters obser-
vied in individual groups is being illustrated in Tab. 5.

Tab. 6: Comparison of Group A2 (venous grafts) and Group B2 (venous grafts + IMA).

	Group A2	Group B2	p
age (yr)	64 ± 7.9	64 ± 6.8	< 0.001
No. of dist. anastomoses	3.7 ± 0.5	2.9 ± 0.5	NS
crossclamping (min)	44 ± 20.4	47 ± 12.2	NS
CPB time (min)	92.7 ± 30.2	92.6 ± 34.4	NS
6 hours blood losses (ml)	280 ± 160	416 ± 273.6	NS
12 hours blood losses (ml)	590 ± 237.4	836 ± 334.3	< 0.005
pleural blood losses (ml)	188 ± 183.5	335 ± 213.4	192 ± 107.9
total blood losses (ml)	778 ± 304.2	1072 ± 391.8	754 ± 197.9
blood transfusions (units)	2.3 ± 2.1	2.04 ± 1.1	1.44 ± 1.1

When compared the phenomenon followed in groups A2 and B2 in the second part of this study a statisti-
cally significant increase of blood losses in group B2, where mamo-
ary artery was used for revascularization, was found (1072 ml ± 391.8), when compared with group A2, where this artery was not used (778 ml ± 304.2). Higher losses from drains were present within the whole postoperative period. Decrease of blood transfusions was not significant.

Tab. 7: Comparison of Group B2 (venous grafts + IMA) and Group D2 (venous grafts + IMA + aprotinin 500 000 KIU).

	Group B2	Group D2	p
age (yr)	67 ± 6.8	56 ± 7.26	NS
No. of dist. anastomoses	4.7 ± 12.2	3.36 ± 12.9	NS
crossclamping (min)	92.6 ± 34.4	84.3 ± 26.4	NS
CPB time (min)	472 ± 281.4	270 ± 119	< 0.002
6 hours blood losses (ml)	610 ± 305	358 ± 105	< 0.001
12 hours blood losses (ml)	536 ± 174.0	634 ± 205.4	< 0.001
pleural blood losses (ml)	335 ± 213.4	92.1 ± 107.9	< 0.01
total blood losses (ml)	1072 ± 391.8	754 ± 197.9	< 0.001
blood transfusions (units)	2.84 ± 1.1	1.44 ± 1.1	< 0.005

Discussion

In cardiac surgery and, above all, in operations with car-
diopulmonary bypass (CPB), there are always some blood
losses. The amount of blood lost depends on the type of operation performed and on the techniques used. The
blood loss prevention seems to represent an important ele-
ment in the operation treatment. A certain part in this prevention is taken by new techniques of operating and new
materials used during both the operation and the CPB, as well as some drugs application for the blood elements pro-
tection or hemostasis activation (5,6,10).

Other investigated parameters in individual groups (age,
sex, time of extracorporeal circulation, crossclamping
time, number of peripheral coronary anastomoses) did not show any significant differences. Tabs. 5 to 6.

In our study the losses from the chest drain reached on
the average 188 ml (A2), 335 ml (B2) and 193 ml (D2). At the
first sight such a bleeding does not seem to be too alar-
ing. However the different volumes in different patients
is. In some cases of ours the chest tube losses reached as
much as 700 ml. Moreover, there exists no perceptible
increase in postoperative blood losses.

The blood volume lost is being influenced not only by
the type of operation but also by some drugs administered.
Higher losses can then be seen in urgent and emergency opera-
tions, where there was not possible to eliminate in add-
ance the effect of antaggregants or anticoagulants (10).

Most probably the only objective importance criter-
ion of the peroperative and postoperative blood losses, if drai-
aged properly, is the effect of their influence on the post-
operative course, and, above all, on the blood count
gain and full hypovolemia. Transfusion and infusion ther-
apy in the postoperative period increases both the possibi-
ity of complications and nursing and economical require-
ments of the whole treatment.

By the results of this study we succeeded to confirm
that harvesting and using the mammary artery for myocar-
dial revascularization markedly increases the postopera-
tive blood losses. A proper drainage of the operation field,
and also of the pleural cavity if opened helps, and is thus
being performed in all our patients with open thoracic
surgery. The blood losses from the chest tube were signifi-
cant in our cases, especially in those where mammary arte-
ry was used. We also witnessed the fact how important it
was to leave the drainage for sufficiently a long time. Quite
substantial losses might be observed even after 24 hours po-
stoperatively. That is also why in our study we were remo-
ing the drains and tubes as long as 48 hours after the
operations. A sufficiently long period of draining may pre-
flect other postoperative complications, namely the hemo-
pericardium with tamponade, the hemorhox and pneu1mothorax.

Reduction of blood losses and their appropriate draina-
ge lowers the risk of other postoperative complications.

When compared the phenomenon followed in groups A2 and B2 in the second part of this study a statisti-
cally significant increase of blood losses in group B2, where mamo-
ary artery was used for revascularization, was found (1072 ml ± 391.8), when compared with group A2, where this artery was not used (778 ml ± 304.2). Higher losses from drains were present within the whole postoperative period. Decrease of blood transfusions was not significant.
Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.

Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.

Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.

Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.

Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.

Over nearly the last 30 years the standard investigation method for the identifying of monoclonal immunoglobulins (paraproteins) was based upon electrophoresis of serum proteins. However, in a number of cases monoclonal paraproteins may be identified only by immunofixation (1). The high sensitivity of immunofixation (about 10 times higher than that of immunoelectrophoresis) leads not only to identifying the small paraproteins but also the non-detectable by immunoelectrophoresis. From time to time we are faced with the dilemma of whether the gradient should be evaluated as monoclonal or oligoclonal.

In the series of 2413 paraproteins analyzed by immunoelectrophoresis in the years 1967-1995 doubled paraproteinemia were found 42 times, i.e. a frequency of 1.7%. In last two years we have found 202 paraproteins by means of immunofixation electrophoresis and within this group multiple paraproteinemia was found 21 times, i.e. a frequency of 10.4%.