Singularities of Schubert varieties, tangent cones and Bruhat graphs

James B. Carrell, Jochen Kuttler

American Journal of Mathematics, Volume 128, Number 1, February 2006, pp. 121-138 (Article)

Published by Johns Hopkins University Press

DOI: https://doi.org/10.1353/ajm.2006.0004

For additional information about this article
https://muse.jhu.edu/article/192501/summary

For content related to this article
https://muse.jhu.edu/related_content?type=article&id=192501
SINGULARITIES OF SCHUBERT VARIETIES, TANGENT CONES AND BRUHAT GRAPHS

By JAMES B. CARRELL and JOCHEN KUTTLER

Abstract. Let G be a semi-simple algebraic group without G_2-factors over an algebraically closed field k of characteristic $p \neq 2, 3$, and suppose B is a Borel subgroup, $T \subset B$ is a maximal torus, and P is a parabolic in G containing B. In an earlier paper, the authors classified the singular T-fixed points x of an arbitrary irreducible T-stable subvariety X in G/P in all characteristics, the key to this being the notion of a Peterson translate. In particular, we showed that if X is Cohen-Macaulay, then X is smooth at x if and only if there exists a T-invariant curve in X through x which contains a smooth point of X and dim $\Theta_t(X) = \dim X$, where $\Theta_t(X)$ is the linear span of the reduced tangent cone to X at x. The purpose of this paper is to describe $\Theta_t(X)$ when X is a Schubert variety in G/P and x is a maximal singular T-fixed point of X. In fact, we give two characterizations. We first show that in all characteristics, $\Theta_t(X)$ is the sum of all the Peterson translates at x. The second characterization involves further study of the Peterson translates, along the good T-invariant curves at x, for which the assumption char$(k) \neq 2, 3$ is needed. This leads to the following consequence: if x is a maximal singularity of X which is rationally smooth, then either the span of the tangent lines to the T-stable curves is not a module for the isotropy subgroup of B at x, or there exist a pair of orthogonal T-invariant curves at x which determine what we call a B_2-pair. This characterization gives a nonrecursive algorithm for finding the singular locus of an arbitrary Schubert variety in G/P in terms of its Bruhat graph.

1. Introduction. Let G be a semi-simple algebraic group over an arbitrary algebraically closed field k without G_2-factors, and suppose $T \subset B \subset P$ are respectively a maximal torus, a Borel subgroup and an arbitrary standard parabolic in G. It is well known that the algebraic homogeneous spaces G/P, in particular the flag variety G/B, are projective G-varieties and that each B-orbit is an affine cell containing a unique T-fixed point. If $x \in (G/P)^T$, the set of T-fixed points in G/P, the Zariski closure $X(x)$ of Bx is called the Schubert variety associated to x. The ordering of Schubert varieties in G/P by inclusion thus gives a natural partial ordering on $(G/P)^T$. As is well known, putting $w = n_w B$, where $w = n_w T$, gives an identification between the Weyl group $W = N_G(T)/T$ and $(G/B)^T$ such that the Bruhat-Chevalley order on W coincides with this ordering on $(G/B)^T$ [8].

Most Schubert varieties in a G/P are singular, and describing the structure of their singular loci is an old problem considered by many authors. Since the singular locus of a Schubert variety X is closed and B-stable, its irreducible components are also Schubert varieties. Thus, assuming X isn’t smooth, there
exist unique points \(x_1, \ldots, x_k \in X^T \) such that the singular locus \(\text{Sing}(X) \) of \(X \) is

\[
X(x_1) \cup X(x_2) \cup \cdots \cup X(x_k),
\]

and \(X(x_i) \not\subset X(x_j) \) if \(i \neq j \). The \(x_i \) are called the maximal singular points of \(X \).

Before describing our main results, let us recall some basic terms and facts from [5] and [7]. A \(T \)-variety is an irreducible \(T \)-stable subvariety of some \(G/P \). A \(T \)-curve is the closure of a one-dimensional \(T \)-orbit. Every \(T \)-curve \(C \) in \(G/P \) contains two distinct \(T \)-fixed points, and if \(x \in C^T \), there exists a unique \(\alpha \) in the root system \(\Phi \) of the pair \((G,T) \) such that \(C = U_\alpha x \), where \(U_\alpha \) is the root subgroup of \(G \) associated to \(\alpha \). It follows that every \(T \)-curve \(C \) is smooth, and \(C^T = \{x, y\} \) where either \(y < x \) or \(x < y \). Moreover, \(y = r_\alpha \), where \(r_\alpha \) is the reflection in \(W \) associated to \(\alpha \). Following [7], \(E(X,x) \) will denote the set of \(T \)-curves in \(X \) containing \(x \in X^T \), and \(TE(X,x) \) will be the \(T \)-subspace of \(T_x(X) \) spanned by the tangent lines \(T_x(C) \) as \(C \) varies through \(E(X,x) \). By [5], \(\dim TE(X,x) = \|E(X,x)\| \geq \dim X \).

Let \(X \) be a \(T \)-variety, and assume \(C \in E(X,x) \). The Peterson translate \(\tau_C(X,x) \) is the limit at \(x \) of the Zariski tangent spaces \(T_z(X) \) to \(X \) along the open orbit in \(C \). That is,

\[
\tau_C(X,x) = \lim_{z \to x} T_z(X) \quad (z \in C\setminus C^T).
\]

This limit always exists and is a \(T \)-stable subspace of \(T_x(X) \) [7]. An element \(C \) of \(E(X,x) \) is called good if \(C \) contains a smooth point of \(X \). If \(C \) is good, then \(\dim \tau_C(X,x) = \dim X \), and \(X \) is smooth at \(x \) if and only if \(\tau_C(X,x) = T_x(X) \). Finally, if \(x \in X^T \), let \(\Theta_x(X) \) be the linear span in \(T_x(X) \) of the reduced tangent cone to \(X \). Clearly, \(TE(X,x) \subset \Theta_x(X) \). Moreover, \(\Theta_x(X) = T_x(X) \) if \(X \) is smooth at \(x \). The classification of the smooth \(T \)-fixed points of a \(T \)-variety \(X \) in \(G/P \) is a corollary of the following two results, both proved in [7]. Note that Theorem 1.1 does not require the \(G_2 \)-restriction, but Theorem 1.2 does.

Theorem 1.1. Suppose \(\dim X \geq 2 \), and \(x \in X^T \). Then \(X \) is smooth at \(x \) if and only if \(E(X,x) \) contains at least two good \(T \)-curves \(C \) such that \(\tau_C(X,x) = TE(X,x) \). Moreover, if \(X \) is Cohen-Macaulay at \(x \), then smoothness at \(x \) is equivalent to \(\tau_C(X,x) = TE(X,x) \) for just a single good \(C \).

Theorem 1.2. For every good \(C \in E(X,x) \),

\[
\tau_C(X,x) \subset \Theta_x(X).
\]

Moreover, if \(C = U_\alpha x \), where \(\alpha \) is short, then

\[
\tau_C(X,x) \subset TE(X,x).
\]
Since Schubert varieties are Cohen-Macaulay, Theorem 1.2 says that if the reduced tangent cone to a Schubert variety X at a T-fixed point x is linear and $E(X,x)$ contains a good curve, then X is smooth at x. This will be key to our result on the Bruhat graph stated below.

If G is simply laced, then one already knows ([5, 6]) that $TE(X,x) = \Theta_x(X)$ for all Schubert varieties X in G/B, hence in G/P also. The first result in this paper is that $TE(X,x) = \Theta_x(X)$ indeed holds for all T-varieties (see § 3). We now state our first main result.

Theorem 1.3. Let X be a Schubert variety in G/P, and suppose that $x \in X_T$ is either a smooth point or a maximal singularity of X. Then

$$\Theta_x(X) = \sum \tau_C(X,x),$$

where the sum is over all good $C \in E(X,x)$.

The proof is given in Section 4. Note that the G_2-restriction is necessary here. Indeed, we give an example of a Schubert variety in G_2/B for which (2) fails (Example 4.8). If G is simply laced, then Theorem 1.3 follows immediately from Theorem 1.2 and the fact that $\Theta_x(X) = TE(X,x)$.

Theorem 1.3 gives a general geometric description of $\Theta_x(X)$ provided we know the good T-curves and how to compute Peterson translates. In fact, the good T-curves at a maximal singularity x in X are those $C \in E(X,x)$ such that $C \not\subset X(x)$, or, equivalently, $C^T = \{x,y\}$ where $y > x$. By Deodhar’s Inequality [5], $E(X,x)$ contains at least $\dim X - \dim X(x)$ good T-curves. In particular, every maximal singular point lies on at least one good C. In fact, since Schubert varieties are smooth in codimension one [8], each maximal singular point is on at least two good C.

Our problem is thus to describe $\sum \tau_C(X,x)$ as C varies over the good T-curves. First of all, it suffices to assume X is a Schubert variety in G/B. Indeed, the natural G-equivariant map $\pi : G/B \to G/P$ is a smooth closed morphism, so knowing $\Theta_x(X)$ at a maximal singular point x for $X \subset G/P$ amounts to knowing $\Theta_y(Y)$, where Y is the Schubert variety $\pi^{-1}(X) \subset G/B$, and y is a maximal singularity of Y. Hence, we can focus our attention on characterizing $\Theta_x(X)$ at a maximal singularity x in the G/B setting. To do this, we use the algorithm for computing $\tau_C(X,x)$ stated in [7, §8]. This algorithm actually requires that the characteristic of k be good (that is, $\text{char}(k) \neq 2, 3$), which was overlooked in [7], and, as well, [9]. See Remark 5.3 for further details.

To describe further what is needed, let Φ^+ be the set of positive roots, i.e. those roots α of (G, T) such that $U_\alpha \subset B$. Let $B_x \subset B$ be the isotropy subgroup of x in B: namely the subgroup of B generated by T and all root subgroups $U_\alpha \subset B$ such that $U_\alpha x = x$ (equivalently, $x^{-1}(\alpha) > 0$). Clearly $\Theta_x(X)$ is a B_x-submodule of $T_x(X)$. The isotropy submodule of X at x is defined as the smallest B_x-module
$\mathbb{T}_x(X)$ such that
\[
(3) \quad TE(X, x) \subset \mathbb{T}_x(X) \subset \Theta_x(X).
\]

We will show that if $C \in E(X, x)$ is good, then the roots corresponding to T-lines in the T-module $\tau_C(x, x)/((\mathbb{T}_x(X) \cap \tau_C(x, x))$ arise from an orthogonal B_2-pair, which we define next. For each $\gamma \in \Phi$, let g_γ denote the T-line of weight γ in $g = \text{Lie}(G)$.

Definition 1.4. Let $X = X(w)$ be a Schubert variety in G/B, and assume $x < w$. Suppose μ and ϕ are long, positive orthogonal roots such that the following three conditions hold:

(i) $g_{-\mu} \oplus g_{-\phi} \subset TE(X, x)$ (hence $x < r_{\mu}x, r_{\phi}x \leq w$),

(ii) there exists a subroot system Φ' of Φ of type B_2 containing μ and ϕ, and

(iii) if α and β form the unique basis of Φ' contained in $\Phi^+ \cap \Phi'$ with α short and β long, then

\[
r_\alpha x < x, \quad \text{and} \quad r_\alpha r_\beta x \leq w.
\]

Then we say that $\{\mu, \phi\}$ form an orthogonal B_2-pair for X at x.

The notion of an orthogonal B_2-pair arises from the Schubert variety $X = X(r_\alpha r_\beta r_\alpha)$ in B_2/B, where α and β are respectively short and long simple roots in $\Phi^+(B_2)$. The T-fixed point $x = r_\alpha$ is the unique maximal singularity of X. Now the weights of $TE(X, x)$ are $\alpha, -\beta$ and $-(\beta + 2\alpha)$. Furthermore, B_x is generated by $T, U_{\beta}, U_{\alpha+\beta}$ and $U_{2\alpha+\beta}$, so it is easy to see that $TE(X, x)$ is already a B_x-submodule of $T_x(X)$. The point is that $\{\beta, \beta + 2\alpha\}$ is an orthogonal B_2-pair at x such that $g_\gamma \subset \Theta_x(X)/TE(X, x)$, where $\gamma = -1/2(\mu + \phi) = -(\alpha + \beta)$. (See Example 5.2 and [7] for more details.)

Recall that the Bruhat graph $\Gamma(X)$ of a T-variety X is the graph whose vertex set is X^T such that two vertices x, y are joined by an edge of $\Gamma(X)$ if and only if there exists a T-curve $C \subset X$ such that $C^T = \{x, y\}$. Figure 1 below shows the part of the Bruhat graph of the Schubert variety coming from a B_2-pair at x.

Our second characterization of $\Theta_x(X)$ at a maximal singularity goes as follows.

Theorem 1.5. Suppose the characteristic of k is good and x is a maximal singularity of a Schubert variety X in G/B. Then for each T-weight γ of the quotient $\Theta_x(X)/\mathbb{T}_x(X)$, there exists an orthogonal B_2-pair $\{\mu, \phi\}$ for X at x such that

\[
(4) \quad \gamma = -1/2(\mu + \phi).
\]

In other words, at a maximal singularity of X, every T-weight of $\Theta_x(X)$ not in $\mathbb{T}_x(X)$ arises from a B_2-pair at x as in (4).
This is proved in § 5. In the course of the proof, we also obtain the following necessary and sufficient condition for a T-fixed point x of a Schubert variety to be a smooth point.

Theorem 1.6. Assume the characteristic of k is good, and let X be a Schubert variety in G/B. Suppose $x \in X^T$ lies on a good T-curve. Then X is smooth at x if and only if the following three conditions simultaneously hold.

(i) $|E(X, x)| = \dim X$;
(ii) $T_x(X) = TE(X, x)$; and
(iii) if $\{\mu, \phi\}$ is an orthogonal B_2-pair for X at x and $\gamma = -1/2(\mu + \phi)$, then $\fr g_\gamma \subset TE(X, x)$ (i.e. $r_\gamma x \leq w$).

Corollary 1.7. Let $X \subset G/B$ be a Schubert variety with at most an isolated singularity x. Then X is smooth if and only if $\dim T_x(X) = \dim X$.

Proof. Clearly an isolated singularity x has to be the minimal element of W, i.e. $x = e$. But then there cannot be a B_2-pair at x. Hence conditions (i), (ii) and (iii) of the Theorem are trivially satisfied if and only if $\dim T_x(X) = \dim X$.

Theorem 1.6 can be formulated as an algorithm for locating the maximal singularities.

Corollary 1.8. Let $X \subset G/B$ be a Schubert variety. Then there exists a non-recursive algorithm involving only the Bruhat graph $\Gamma(X)$ and the root system Φ which classifies the smooth T-fixed points of X.

Let us describe the algorithm. Suppose we want to determine whether $X = X(w)$ is smooth at some $x \in X^T$. Consider any descending path

$$w > x_1 > x_2 > \cdots > x_m > x$$
in $\Gamma(X)$. If X is singular at any x_i, then it is singular at x. Thus, we may assume X is smooth at x_i. Then the edge joining x_m and x is a good T-curve C in X, so it suffices to check the conditions of Theorem 1.6. Checking that $|E(X,x)| = \dim X$ is simply counting the edges of $\Gamma(X)$ at x. This is equivalent to showing $|\{\gamma > 0 \mid r_\gamma x \leq w]\} = \ell(w)$, where $\ell(w)$ is the length of w with respect to Φ^+, since $\ell(w) = \dim X(w)$. Verifying the second condition amounts to showing that $TE(X,x)$ is B_x-stable, which requires verifying that if $g_\gamma \subset TE(X,x)$, then $g_{\gamma+\alpha} \subset TE(X,x)$ for all $\alpha > 0$ such that $x^{-1}(\alpha) > 0$, $\gamma+\alpha \in \Phi$ and $x^{-1}(\gamma+\alpha) < 0$. The third condition is also verified by inspecting the Bruhat graph at x, so the algorithm involves only Φ and $\Gamma(X)$. The algorithm is nonrecursive since it only involves a single path from w to x.

The problem of classifying the smooth points of a Schubert variety has consequences for the Schubert calculus. It is also related to the problem of determining the rationally smooth points of a Schubert variety. This has consequences in representation theory. If G is defined over \mathbb{C} and is simply laced, a result of D. Peterson (proved in [7]) tells us that every rationally smooth point of a Schubert variety in G/P is in fact smooth. In general, however, the well-known criterion in terms of the Bruhat graph for locating the rationally smooth points ([5]) gives a recursive algorithm, since it requires that one calculate the number of edges in $\Gamma(X)$ at all vertices $y \geq x$. B. Boe and W. Graham have conjectured that a Schubert variety X in G/B is rationally smooth at $x \in X^T$ if and only if $|E(X,y)| = \dim X$ for all $y \in X^T$ such that either $y = x$ or $y > x$ and is on an edge of $\Gamma(X)$ containing x. Some special cases of the lookup conjecture are verified in [4], but the general conjecture is open. Theorem 1.6 says that as far as smoothness is concerned, one has to examine $\Gamma(X)$ along a single path two steps above and one step below a maximal x. This might be considered somewhat unexpected.

Finally, let us mention that this paper has connections with the work of S. Billey and A. Postnikov [3] and very likely also S. Billey and T. Braden [1]. However, unlike the situation in [3], our results do not say anything in the G_2 case, as noted in Remark 4.8.

2. Preliminaries. The terminology and notation of [7] (and that introduced in Section 1) will be used throughout the paper. The G_2-restriction is always in affect, although many statements we make are true without it.

Let us first mention a few standard facts concerning roots, weights, T-curves and so forth. The projection $\pi: G/B \rightarrow G/P$ is an equivariant, closed morphism, so $(G/P)^T$ may be identified with W/W_P, where W_P is the parabolic subgroup of W associated to P. The elements of W/W_P thus parameterize the Schubert varieties in G/P. Every T-curve in a Schubert variety X in G/P containing an $x \in X^T$ has the form $C = U_\alpha x$ for a unique root $\alpha \in \Phi$, the root system of (G,T). Moreover, $C^T = \{x, r_\alpha x\}$. If X is a Schubert variety in G/B, say $X = X(w)$, then $C = U_\alpha x \subset X$ if and only if both $x, r_\alpha x \leq w$. By [5, LEMMA A], $|E(X,x)| \geq \dim X$ for every T-variety X. (This is one form of Deodhar’s
Inequality.) Furthermore, every T-curve in G/P is the image of a T-curve in G/B under the closed morphism $\pi : G/B \to G/P$. Also, recall that as T-modules,

$$T_x(G/B) = \bigoplus_{x^{-1}(\gamma) < 0} g_\gamma.$$

Two properties of T-varieties in G/P, used freely throughout the paper, are the following: first, each T-fixed point $x \in G/P$ is attractive in the sense that all the weights of the tangent space $T_x(G/P)$ lie on one side of a hyperplane in $X(T)$. Secondly, each fixed point x has a T-stable open affine neighborhood. Since X is irreducible and any $x \in X^T$ is attractive, the affine open T-stable neighborhood of x is unique. It will be denoted by X_x. It is well known, and not hard to see, that there is a closed T-equivariant embedding of X_x into the tangent space $T_x(X)$ of X at x, thanks to the fact that x is attractive.

Hence, we may assume $X_x \subset T_x(X)$. It follows that, for any T-stable line $L \subset T_x(X)$, we may choose a linear equivariant projection $T_x(X) \to L$ and restrict it to X_x. Identifying L with \mathbb{A}^1_k we thus obtain a regular function $f \in k[\tilde{x}_i]$, which is a T-eigenvector of weight $-\alpha$ if L has weight α. We will say f corresponds to L if it is obtained in this way.

3. Some General Results on $\Theta_\alpha(X)$.

The purpose of this section is to establish some general properties of an arbitrary T-variety X in G/P, which are well known for Schubert varieties (see [5, 6]). In particular, we will prove that in the simply laced case, $\Theta_\alpha(X) = TE(X, x)$. Let $\mathfrak{T}_x(X)$ be the reduced tangent cone to X at any $x \in X^T$, so $\Theta_\alpha(X) = \text{span}_k(\mathfrak{T}_x(X))$. As always, G has no G_2-factors. We will assume, as in the previous section, that $X_x \subset T_x(X)$.

Theorem 3.1. Let $L = g_\omega \subset \Theta_\alpha(X)$ be a T-stable line with weight ω. Then the following hold:

(i) If ω is long, then $L \subset TE(X, x)$. Otherwise, there exist roots α, β such that $g_\alpha, g_\beta \subset TE(X, x)$ and

$$\omega = \frac{1}{2}(\alpha + \beta).$$

(ii) In particular, if G is simply laced, then $\Theta_\alpha(X) = TE(X, x)$.

(iii) If X is a Schubert variety and L does not correspond to a T-curve, then α and β are long negative orthogonal roots in a copy of $B_2 \subset \Phi$.

Proof. Let $z \in k[X_x]$ be a T-eigenfunction corresponding to L, and let $x_1, x_2, \ldots, x_n \in k[X_x]$ be T-eigenfunctions which correspond to the T-curves C_1, C_2, \ldots, C_n through x. Notice that since $X_x \subset T_x(X)$, each T-curve $C \in E(X_x, x)$ is in fact a coordinate line in $T_x(X)$. This follows from the fact that all T-curves are smooth and no two T-weights of $T_x(X)$ are proportional. Let \tilde{x}_i, resp. \tilde{z} denote linear projections $T_x(X) \to T_x(C_i)$, resp. $T_x(X) \to L$, which restrict to $x_i, z \in k[X_x]$.

Since the (restriction of the projection $X_x \to \bigoplus C T_x(C) = TE(X,x)$) has a finite fibre over 0, $k[x]_1$ is a finite $k[x_1, x_2, \ldots, x_n]$-module by the graded version of Nakayama’s Lemma. In particular $z \in k[x]_1$ is integral over $k[x_1, \ldots, x_n]$, so we obtain a relation

$$z^N = p_{N-1}z^{N-1} + p_{N-2}z^{N-2} + \cdots + p_1z + p_0,$$

where N is a suitable integer and $p_i \in k[x_1, \ldots, x_n]$. Without loss of generality we may assume that every summand on the right hand side is a T-eigenvector with weight $N \omega$. Let $P_i \in k[\tilde{x}_1, \ldots, \tilde{x}_n]$ be a polynomial restricting to p_i, having the same weight $(N - i) \omega$ as p_i. Then every monomial m of P_i has this weight too. If for all i every such monomial m has degree $m > N - i$, then $p_i \tilde{z}^{N-i}$ is an element of M^{N+1}, where M is the maximal ideal of x in $k[x]_1$. This means that \tilde{z} vanishes on the tangent cone of X_x, so $L \not\subset \Theta_x(X)$, which is a contradiction. Thus, there is an i and a monomial m of P_i, such that $\deg m \leq d = N - i$. Let $m = c\tilde{x}_1^{d_1} \tilde{x}_2^{d_2} \cdots \tilde{x}_n^{d_n}$, with integers d_j and a nonzero $c \in k$. So $\sum_j d_j \leq d$. Let α_j be the weight of \tilde{x}_j. Then we have

$$d\omega = \sum d_j \alpha_j.$$

After choosing a new index, if necessary, we may assume that $d_j \neq 0$ for all j. Let $(\ , \)$ be a Killing form on $X(T) \otimes \mathbb{R}$ which induces the length function on Φ. We have to consider two cases. First suppose that ω is a long root, with length say l. Then $(\alpha_j, \omega) \leq l^2$ with equality if and only if $\alpha_j = \omega$. Thus, $dl^2 = \sum d_j(\alpha_j, \omega) \leq d \max_j (\alpha_j, \omega) \leq dl^2$, and so there is a j with $\alpha_j = \omega$. This implies $\tilde{z} = \tilde{x}_j$. Hence, $L = \mathcal{C}_j$.

Now suppose ω is short, with its length also denoted l. In this case $(\alpha_j, \omega) \leq \hat{l}^2$. Since $dl^2 = d(\omega, \omega) = \sum d_j(\alpha_j, \omega)$ and since $\sum d_j \leq d$, it follows that all α_j satisfy $(\alpha_j, \omega) = \hat{l}^2$. If there is a j such that $\alpha_j = \omega$, then, as above, we are done. Otherwise for each j, α_j is long, and α_j and ω are contained in a copy $B(\hat{j}) \subset \Phi$ of B_2. There is a long root $\beta_j \in B(\hat{j})$ with $\alpha_j + \beta_j = 2\omega$. We have to show that there are j_0 and j_1 so that $\beta_{j_0} = \alpha_{j_0}$. Fix $j_0 = 1$ and let $\alpha = \alpha_1$, $\beta = \beta_1$. Then $(\alpha, \beta) = 0$. This gives us the result $dl^2 = d(\omega, \beta) = 0 + \sum_{j \geq 1} d_j(\alpha_j, \beta)$. Now if all (α_j, β) are less or equal \hat{l}^2, this last equation cannot hold, since $\sum_{j \geq 1} d_j \leq d$. We conclude that there is a j_1 so that $(\alpha_{j_1}, \beta) = 2\hat{l}^2$ (the squared long root length), hence $\alpha_{j_1} = \beta$, and we are through with (i).

The proof of (ii) is obvious. For (iii), let S be the slice (cf. [7]) to $X(w)$ at x. Then, locally, $X = S \times Bx$, where the weights of $TE(S,x)$ consist of the roots $\alpha < 0$ such that $x < r_{s,\alpha} \leq w$. Since $L \not\subset TE(X,x)$, the only possibility is that $L \subset \Theta_x(S)$ because Bx is smooth (and so $TE(Bx,x) = \Theta_x(Bx)$) and $\Theta_x(X) = \Theta_x(S) \oplus \Theta_x(Bx)$.

Now we may apply part (i) to S. \qed
The following generalizes a well-known property of Schubert varieties.

Corollary 3.2. Suppose L is a T-invariant line $\mathcal{T}_r(X)$. Then $L \subset T \mathcal{E}(X, x)$.

Proof. We have already shown that in equation (6), some P_i contains a monomial of degree at most $d = N - i$, and we have seen this is also the minimal degree possible. Taking homogeneous parts of degree N in (6), we therefore get a homogeneous polynomial

$$f = \tilde{z}^N - \sum P_j \tilde{z}^j$$

vanishing on $\mathcal{T}_r(X)$. Hence $f(L) = 0$. But as $\tilde{z}(L) \neq 0$, this implies some $P_j(L) \neq 0$ as well, which means that \tilde{z} occurs in a monomial of P_j, hence $L \subset T \mathcal{E}(X, x)$ by the construction of the P_j. □

Another interesting consequence is that the linear spans of the tangent cones of two T-varieties behave nicely under intersections.

Corollary 3.3. Suppose that G is simply laced and that X and Y are T-varieties in G/P. Suppose also that $x \in (X \cap Y)^T$. Then

$$\Theta_x(X \cap Y) = \Theta_x(X) \cap \Theta_x(Y).$$

Consequently, if both X and Y are nonsingular at x, then $X \cap Y$ is nonsingular at x if and only if $|E(X \cap Y, x)| = \dim (X \cap Y)$.

Proof. The first claim is clear since $E(X, x) \cap E(Y, x) = E(X \cap Y, x)$. For the second, note that if X and Y are nonsingular at x, then

$$T_x(X) \cap T_x(Y) = \Theta_x(X) \cap \Theta_x(Y) = \Theta_x(X \cap Y) \subset T_x(X \cap Y) \subset T_x(X) \cap T_x(Y).$$

Hence $\dim T_x(X \cap Y) = |E(X \cap Y)|$, and the result follows. □

For example, it follows that in the simply laced setting, the intersection of a Schubert variety $X(w)$ and a dual Schubert variety $Y(v) = B^{-y}$ is nonsingular at any $x \in [v, w]$ as long as $X(w)$ and $Y(v)$ are each nonsingular at x.

4. $\Theta_x(X)$ at a Maximal Singularity. The aim of this section is to prove Theorem 1.3. In fact, we will derive it as a consequence of a general result about
the relationship between \(\tau_C(X,x) \) and \(\Theta_s(X) \), when \(X \) is an arbitrary \(T \)-variety in \(G/P \) and \(x \) is at worst an isolated singularity. As usual, \(G \) has no \(G_2 \)-factors.

Theorem 4.1. Suppose \(X \subset G/P \) is a \(T \)-variety. Then for each \(x \in X^T \), we have

\[
\Theta_s(X) \subset \tau(X,x) := \sum_{C \in E(X,x)} \tau_C(X,x).
\]

In particular, if \(x \) is either smooth in \(X \) or an isolated singularity, then

\[
\Theta_s(X) = \sum_{C \in E(X,x)} \tau_C(X,x).
\]

Before proving Theorem 4.1, let us derive Theorem 1.3.

Proof of Theorem 1.3. The result is obvious if \(x \) is smooth, so assume \(x \) is a maximal singularity. Then there exists a slice representation \(X_x = S \times Bx \), where \(S \) has an isolated singularity at \(x \) and \(E(S,x) \) consists of the \(T \)-curves in \(X \) containing a smooth point of \(X_x \). To get the result, we apply Theorem 4.1 to \(S \) and use the fact that \(\Theta_s(X) = \Theta_s(S) \oplus \Theta_s(Bx) \). Indeed,

\[
\Theta_s(S) \oplus \Theta_s(Bx) = \sum_{C \in E(S,x)} \tau_C(S,x) \oplus TE(Bx,x),
\]

so it suffices to show that \(TE(Bx,x) \subset \tau_C(X,x) \) for any \(C \in E(S,x) \) since clearly \(\tau_C(S,x) \subset \tau_C(X,x) \). Let \(g_\gamma \subset TE(Bx,x) \). Then there is a curve \(D \subset Bx \) with \(g_\gamma = T_x(D) \). In fact, \(D = U_\gamma x \). Thus, the smooth \(T \)-stable surface \(\Sigma = C \times D \) is contained in \(X_x = S \times Bx \), and Proposition 3.4 of [7] implies \(g_\gamma \subset \tau_C(\Sigma,x) \subset \tau_C(X,x) \). \(\square \)

The proof of Theorem 4.1 will require several lemmas. To begin with, let \(R \) be a Noetherian graded commutative ring with irrelevant ideal \(I = \bigoplus_{d \geq 0} R_d \). Then \(\bigcap_{d \geq 0} I^d = 0 \). Thus, for each \(r \in R \setminus \{0\} \), there is an \(l > 0 \) such that \(r \in I^l \setminus I^{l+1} \).

We set \(in(r) = r + I^{l+1} \in I^l/I^{l+1} \subset gr R = gr_1 R \). Recall that for \(r, s \in R \), either in \((r) \) in \((s) \) or in \((r) \) in \((s) \) = 0. We say \(r \in R \) vanishes on the tangent cone if in \((r) \) does, i.e. if in \((r) \) is nilpotent. In the case that \(R \) is the coordinate ring of an affine variety \(Z \) with regular \(\mathbb{G}_m \)-action such that \(I \) corresponds to a maximal ideal and hence to an attractive \(\mathbb{G}_m \)-fixed point \(z \), then in \((r) \) induces a function on the reduced tangent cone of \(Z \) at \(z \), and \(r \) vanishes on the tangent cone if and only if this function does. In what follows, we will consider closed and \(T \)-stable subvarieties of \(T_x(X) \). We therefore choose a one parameter subgroup \(\lambda \) of \(T \) such that \(\lim_{t \to 0} \lambda(t)v = 0 \) for all \(v \in T_x(X) \). Then the \(\mathbb{G}_m \)-action \(\lambda^{-1} \) induces a (positive) grading of \(k[T_x(X)] \) which carries over to any \(T \)-stable closed subvariety. (Note that the grading induced by \(\lambda \) is negative.)
For convenience, we allow $\Theta_*(Z)$ to be defined for reducible varieties. Notice that $\Theta_*(Z)$ may be canonically identified with $T_0(\mathfrak{T},(Z)) \subset T_*(Z)$. We wish to set up an induction on the dimension of X, so we need the following:

Lemma 4.2. Let $Z \subset T_*(X)$ be a closed T-stable subvariety with $Z = Z_1 \cup Z_2 \cup \cdots \cup Z_d$ its decomposition into irreducible components. Then

$$\Theta_0(Z) = \Theta_0(Z_1) + \Theta_0(Z_2) + \cdots + \Theta_0(Z_d).$$

Proof. Since every component Z_i of Z is T-stable, it has to contain 0. Therefore the proof is a simple consequence of the following well known fact: if a variety $Y = A \cup B$ is the union of two closed subvarieties, then for every point x in the intersection $A \cap B$ we have $\mathfrak{T}_x(Y) = \mathfrak{T}_x(A) \cup \mathfrak{T}_x(B)$.

Let $Z \subset T_*(X)$ be an irreducible T-stable subvariety, and let $L \subset \Theta_0(Z)$ be a T-stable line with weight ω. Moreover, suppose ω is short with respect to a Killing form $(\ ,\)$ on $X(T)$. Denote by $z \in k[Z]$ the restriction of a linear T-equivariant projection $T_*(X) \to L \cong \mathbb{A}^1_k$.

Lemma 4.3. With the preceding notation, let $f \in k[Z]$ correspond to another T-equivariant linear projection onto some line $L' \subset T_*(X)$. Then z vanishes on the tangent cone of $V(f)$ if and only if in $(z)^l = in(h) in(f)$ for some positive integer l and a suitable T-eigenvector $h \in k[Z]$.

Proof. The sufficiency is clear, so suppose z vanishes on the tangent cone of $V(f)$. By definition this means there is an integer l and elements $g_1, g_2, \ldots, g_r \in I(V(f))$, the ideal of $V(f)$, such that in $(z)^l = a_1 in(g_1) + a_2 in(g_2) + \cdots + a_r in(g_r)$ for suitable $a_i \in grk[Z]$. Since in (z) is homogeneous and since in $(I(V(f)))$ is a homogeneous ideal, we may assume that all of the a_i are homogeneous as well. Moreover the a_i and g_i may be chosen to be T-eigenvectors. Omitting any indices i for which $a_i in(g_i) = 0$, we may lift the a_i equivariantly to $\bar{a}_i \in k[Z]$ such that in $(\bar{a}_i) = a_i$. Then $0 \neq in(\bar{a}_i) in(g_i) = in(a_i g_i)$. Leaving out degrees different from l, we may assume that $\sum in(\bar{a}_i) in(g_i) = in(\sum \bar{a}_i g_i)$. Now $\sum \bar{a}_i g_i$ is a T-eigenvector g contained in the ideal of $V(f)$. A suitable nth power of g is contained in $f k[Z]$. Now in (z) is not nilpotent, and since in $(z)^l = in(g)$, in (g) is also not nilpotent. Therefore in $(g)^n = in(g^n)$. Replacing l by nl we may assume that in $(z)^l = in(g)$ for some $g \in f k[Z]$. In other words in $(z)^l = in(hf)$ for some T-eigenvector $h \in k[Z]$. It remains to show that in $(hf) = in(h) in(f)$, which is equivalent to in $(h) in(f) \neq 0$. So suppose that in $(h) in(f) = 0$. This means that $h \notin M^{l-1}$ where M is the maximal ideal of 0. For otherwise in $(h) in(f)$ would equal in (hf) by definition, as their degrees would agree. We conclude that $h \in M^n$ for some $n < l - 1$. Thus there is a homogeneous polynomial P in certain linear T-homogeneous coordinates x_1, x_2, \ldots, x_m of $T_*(X)$ of the same T-weight as h having degree n such that, restricted to Z, $h = P$ modulo M^{n+1}. By
the definition of f, we may even assume that x_1 restricted to Z is f. Replacing P by any monomial of P and letting d_i be the degree of x_i in P, we see that $l\omega = \alpha_1 + \sum d_i\alpha_i$, where α_i denotes the weight of x_i. Applying $(\ , \omega)$ on both sides gives $l(\omega, \omega) = (\alpha_1, \omega) + \sum d_i(\alpha_i, \omega)$. Since $(\alpha_i, \omega) \leq (\omega, \omega)$ for all i, this is impossible since $n = \sum d_i < l - 1$. This finishes the proof.

As an easy consequence we get:

Lemma 4.4. If Z and z are as above and f corresponds to the projection to any other T-stable line of $T_x(X)$ with a short weight, then z cannot vanish on the tangent cone of $V(f)$.

Proof. By the last lemma, we know that if z vanishes on the tangent cone of $V(f)$, then there is a T-eigenvector $h \in k[Z]$ such that in $(z) = \langle h \rangle$ in (f). Choosing a monomial as in the proof of the previous Lemma, we get a relation of the form $\omega = \alpha_1 + \sum d_i\alpha_i$ with $\sum d_i = l - 1$. But $(\alpha_1, \omega) < (\omega, \omega)$ because α_1 is short and $(\alpha_i, \omega) \leq (\omega, \omega)$ for all i, so no such relation exists.

We now restrict our attention to varieties Z in $T_x(X)$ such that $T_0(Z)$ contains exactly one T-stable line with a short weight. That is, L is a short line.

Lemma 4.5. If $L \subset \Theta_0(Z)$ is the only short line in $T_0(Z)$, and if $C \in \mathcal{E}(Z, 0)$ is any T-curve, then $L \subset T_p(Z)$ for all $p \in C^0 = C \setminus \{0\}$.

Proof. Choose an equivariant embedding $Z \subset T_0(Z)$. If $C = L$ as a subset of $T_0(Z)$, there is nothing to show. Otherwise C is a coordinate line of $T_0(Z)$ having a long T-weight. Call this weight α. If $L \not\subset T_p(Z)$ for a $p \in C^0$, there is a T-eigenfunction f in the ideal of Z in $k[T_0(Z)]$, such that $df_p(L) \neq 0$. We may assume that $k[T_0(Z)] = k[z, x_1, x_2, \ldots, x_n]$ with z as above corresponding to L and the x_i corresponding to the long lines of $T_0(Z)$. Then we write $f = P_0 + P_1z + P_2z^2 + \cdots + P_dz^d$, where the P_i are T-eigenvectors and polynomials in the x_i only. Without loss of generality, we may assume P_1z^l has the same weight as f. It follows that $df_p = dP_0p + P_1(p)dz_p$ because z vanishes on C. By assumption $P_1(p)$ is nonzero, implying that there is a monomial of the form x^l contained in P_1, where x is the coordinate corresponding to C and $l \geq 1$. Thus, the T-weight of f is $l\alpha + \omega$. On the other hand P_0 is nonzero. For if $P_0 = 0$, then f is divisible by z, and therefore $f = hz$ for some h. But Z is irreducible and clearly z does not vanish on Z, so h vanishes on Z. Now z and h vanish at p forcing df_p to be zero as well, which is a contradiction. With P_0 being nonzero, it follows that there is a monomial in the x_i having weight $l\alpha + \omega$. This clearly shows that $\omega = (l\alpha + \omega) - l\alpha$ is contained in the Z-submodule of $X(T)$ generated by all long weights of $T_0(Z)$. The next lemma shows that this is impossible and therefore finishes the proof.
LEMMA 4.6. Let Γ be a \mathbb{Z}-submodule of $X(T)$ generated by long roots. If the Killing form is normalized so that $(\omega, \omega) = 1$ is the short root length, then the function $f \colon \Gamma \to \mathbb{Q}$ given by $f(\gamma) = (\gamma, \gamma)$ takes its values in $2\mathbb{Z}$.

Proof. If α and β are long roots, then $(\alpha, \beta) \in \mathbb{Z}$. Indeed, $(\alpha, \beta) \in \{0, \pm 1, \pm 2\}$ by general properties of root systems. Hence, $(\gamma, \delta) \in \mathbb{Z}$ for all $\gamma, \delta \in \Gamma$ as well. Moreover $f(\alpha) = 2$ for all long roots. Now $f(\alpha + \beta) = f(\alpha) + f(\beta) + 2(\gamma, \delta) \in 2\mathbb{Z}$ provided $f(\gamma), f(\delta) \in 2\mathbb{Z}$. We can now induct on the length of a shortest representation $\gamma = \sum n_i \alpha_i$, where the $n_i \in \mathbb{Z}$ and $\alpha_1, \alpha_2, \ldots$ are the long generators of Γ. By the length of such a representation, we mean $\sum |n_i|$). So, if n_1 is nonzero and positive, then $\gamma = \alpha_1 + (n_1 - 1)\alpha_1 + \sum_{i>2} n_i \alpha_i$. The induction hypothesis for α_1 and $(n_1 - 1)\alpha_1 + \sum_{i>2} n_i \alpha_i$ gives the result for γ by the above arguments. If n_1 is negative we may use $-\gamma$, since $f(\gamma) = f(-\gamma)$. Finally, if n_1 is zero, we may replace α_1 with any other α_i such that $n_i \neq 0$.

We are now in a position to prove the Theorem 4.1.

Proof. We proceed by induction on $\dim Z$ for an irreducible T-stable subvariety $Z \subset T_0(X)$. Of course there is nothing to show when $\dim Z \leq 1$. If $\dim Z > 1$, let $L \subset \Theta_0(Z)$ be any T-stable line that has a short weight ω, say. Let z be a corresponding function of $k[Z]$. Suppose there is another line with short weight in $T_0(Z)$. By the previous lemma, if f is a corresponding function, z does not vanish on the tangent cone of $\mathcal{V}(f)$. Thanks to Lemma 4.2, z does not vanish on the tangent cone of at least one irreducible component Z' of $\mathcal{V}(f)$. In particular this implies that L is contained in $\Theta_0(Z')$. By induction $L \subset \tau(Z', 0) \subset \tau(Z, 0)$. This concludes the case that there is a short root line in $T_0(Z)$ different from L. So suppose L is the only line in $T_0(Z)$ with a short weight. Then $L \subset T_0(Z)$ for all $p \in C'$ and any curve $C \in \mathcal{E}(Z, 0)$. For each such C it then follows that $L \subset \tau(C, 0)$. By Theorem 3.1 all the lines in $\Theta_0(Z)$ with long T-weights are tangent to T-curves, so they are contained in $\tau(Z, 0)$.

We complete this section with an example that shows the G_2-restriction is necessary. We will need the following general fact about $\Theta_0(X)$ proved in [6].

PROPOSITION 4.7. Suppose X is a Schubert variety in G/B and $x \in X^T$. Let \mathcal{H} denote the convex hull in $\Phi \otimes \mathbb{R}$ of the T-weights of $TE(X, x)$. Then every T-weight of $\Theta_0(X)$ lies in \mathcal{H}.

Example 4.8. Now suppose α and β are the short and long simple roots in the root system of G_2, and consider the Schubert variety X in G_2/B corresponding to $w = r_{\beta} r_{\alpha} r_{\beta} r_{\alpha}$. By [2, p. 168], the singular locus of X is the Schubert variety $X(r_{\beta} r_{\alpha})$, so $x = r_{\beta} r_{\alpha}$ is a maximal singularity. By a direct check, the T-weights of $TE(X, x)$ are $-\alpha, \beta, \alpha + \beta$ and $-\lambda$, where $\lambda = 3\alpha + 2\beta$ is the longest root. Thus the weights in \mathcal{H} are $-\alpha, \beta, \alpha + \beta, -(2\alpha + \beta)$, and $-\lambda$. The good T-curves in $E(X, x)$ correspond to $-\alpha$ and $-\lambda$. We claim that $-(3\alpha + \beta)$ is a weight in
\(\tau_C(X, x) \), where \(C \) corresponds to \(-\lambda\). Indeed, put \(y = r_\lambda x \). Then one sees that the weights of \(TE(X, y) \) are \(\beta, \alpha + \beta, -(2\alpha + \beta) \) and \(\lambda \). By inspection, \(TE(X, y) \) is a \(g_{-\lambda} \)-submodule of \(T_\gamma(G_2/B) \), so, by the algorithm in [7, §3] (summarized in Remark 5.3 below), the weights of \(\tau_C(X, x) \) are obtained by reflecting the weights of \(TE(X, y) \) by \(r_\lambda \). Thus \(\tau_C(X, x) \) has weights

\[
\begin{align*}
r_\lambda(\beta) &= -(3\alpha + \beta), \\
r_\lambda(\alpha + \beta) &= -(2\alpha + \beta), \\
r_\lambda(-(2\alpha + \beta)) &= \alpha + \beta, \\
\end{align*}
\]

Since \(-(3\alpha + \beta)\) isn’t in \(\mathcal{H} \), Theorem 1.3 fails without the \(G_2 \)-restriction.

5. The proofs of Theorems 1.5 and 1.6. Let \(X = X(w) \) be a Schubert variety in \(G/B \) where, as usual, \(G \) does not contain any \(G_2 \)-factors. We will assume henceforth that \(\text{char}(k) \neq 2, 3 \) (see Remark 5.3).

The goal of this section is to study the \(T \)-weights in \(\tau_C(X, x) \) when \(C \) is good. Assume \(C^T = \{x, y\} \), where \(y > x \), and note that \(X \) is smooth at \(y \). Thus we can write \(C = U_{-\mu} x \), where \(\mu > 0 \), and \(y = r_\mu x \). By Theorem 1.1, if \(\mu \) is short, then \(\tau_C(X, x) \subset TE(X, x) \). Hence we can ignore this case and suppose \(\mu \) is long. Also, if \(g_\gamma \subset \Theta_\tau(X) \) and \(\gamma \) is long, then \(g_\gamma \subset TE(X, x) \) [6].

To begin, we need a result similar to Theorem 3.1 for \(\tau_C(X, x) \).

Lemma 5.1. Suppose \(\gamma \) is a short root such that \(g_\gamma \subset \tau_C(X, x) \). If \(g_\gamma \nsubseteq TE(X, x) \), then there exists a long root \(\phi \) orthogonal to \(\mu \) such that \(g_\phi \subset TE(X, x) \), and

\[
\gamma = -\frac{1}{2}(\mu + \phi).
\]

In addition, the roots \(\gamma, \mu, \phi \) lie in a copy of \(B_2 \) contained in \(\Phi \).

Proof. This follows from [7, Lemma 5.1 and Proposition 5.2]. \[\square\]

We will see below that if \(g_\gamma \nsubseteq TE(X, x) \), then \(\phi > 0 \). As noted in the Introduction, the notion of an orthogonal \(B_2 \)-pair arises from the following illuminating example worked out in detail in [7, Example 8.4].

Example 5.2. Let \(G \) be of type \(B_2 \), and let \(w = r_\alpha r_\beta r_\alpha \), where \(\alpha \) is the short simple root and \(\beta \) is the long simple root. Put \(X = X(w) \). The singular set of \(X \) is \(X(r_\alpha) \), so \(x = r_\alpha \) is \(X \)'s unique maximal singular point. There are two good \(T \)-curves at \(x \), namely \(C = U_{-\beta} x \) and \(D = U_{-(2\alpha + \beta)} x \). Suppose \(y = r_\beta x \) and \(z = r_{2\alpha + \beta} x \). Then

\[
T_y(X) = g_{-\alpha} \oplus g_{\alpha + \beta} \oplus g_\beta \quad \text{and} \quad T_z(X) = g_\alpha \oplus g_{-(\alpha + \beta)} \oplus g_{2\alpha + \beta}.
\]

Thus (cf. Remark 5.3),

\[
\tau_C(X, x) = g_\alpha \oplus g_{-(\alpha + \beta)} \oplus g_\beta \quad \text{and} \quad \tau_D(X, x) = g_\alpha \oplus g_{-(\alpha + \beta)} \oplus g_{-(2\alpha + \beta)}.
\]
Note that the weight at \(x \) that does not give a \(T \)-curve, namely \(-(\alpha + \beta)\), is in both Peterson translates.

Remark 5.3. We will use the algorithm for Peterson translates in [7, §3] in several places, so let us briefly recall how it works. The reason for assuming \(\text{char}(k) \neq 2, 3 \) is mentioned below. Unfortunately, this assumption was omitted in both references [7] and [9]. Suppose \(C = U_{-\mu}X \), where \(\mu > 0 \) and \(y = r_{\mu}x \). Consider the weights of the form \(\nu + h\mu \) in \(T_y(X) \), and form a (possibly partial) \(\mu \)-string consisting of roots of the form \(\kappa - j\mu \), where \(0 \leq j \leq r \), such that \(y^{-1}(\kappa - j\mu) < 0 \) for each \(j \), but \(y^{-1}(\kappa - (r + 1)\mu) > 0 \), and \(r \) is the number of elements of \(\kappa + \mathbb{Z}\mu \) which are weights in \(T_y(X) \). Then the roots \(r_{\mu}(\kappa - j\mu) \) occur as weights in \(\tau_C(X, x) \), and every weight occurring in \(\tau_C(X, x) \) arises in this way. This follows from the fact that \(\tau_C(X, x) \) is a \(g_\mu \)-module and \(\{g_{\mu}, g_\alpha\} = g_{\mu + \alpha} \), provided \(\text{char}(k) \neq 2, 3 \).

The next result extends the above example to the general case. Let \((,)\) be a \(W \)-invariant inner product on \(X(T) \otimes \mathbb{R} \).

Theorem 5.4. Suppose \(\gamma \) is a short root such that \(g_\gamma \subset \tau_C(X, x) \). If either \((\gamma, \mu) \geq 0\), or in the expression (7) one has \(\phi < 0 \), then \(g_\gamma \subset TE(X, x) \). On the other hand, if \(g_\gamma \nsubseteq TE(X, x) \), then the following statements hold:

(a) \(\gamma < 0 \).

(b) \((\gamma, \mu) < 0\), hence \(\delta := \gamma + \mu \subset \Phi \).

(c) if \(x^{-1}(\delta) < 0 \), then \(g_\delta \subset \tau_C(X, x) \cap TE(X, x) \) (and, of course, conversely), and

(d) \(\phi > 0 \).

Remark 5.5. Example 5.2 shows that one can have \(g_\gamma \subset \tau_C(X, x) \cap TE(X, x) \) yet still have \((\gamma, \mu) < 0\).

Proof. If \((\gamma, \mu) \geq 0\), it follows immediately from Lemma 5.1 that \(g_\gamma \subset TE(X, x) \). Suppose \(\gamma \) has the form (7), where \(\phi < 0 \), and put \(\delta = \gamma + \mu \). Since \((\gamma, \mu) < 0\), \(\delta \subset \Phi \). Moreover, since \(\phi < 0 \), we have \(\delta > 0 \). Now if \(\gamma > 0 \), then \(r_\gamma x < x \), since \(x^{-1}(\gamma) < 0 \). Thus \(g_\gamma \subset TE(X, x) \) if \(\gamma > 0 \).

Next, suppose \(\gamma < 0 \). We will consider the two cases \(x^{-1}(\delta) < 0 \) and \(x^{-1}(\delta) \geq 0 \) separately. Assume first that \(x^{-1}(\delta) < 0 \). Since \(\tau_C(X, x) \) is a \(g_\mu \)-submodule of \(T_x(X) \) (cf. [7, §3]) and \(g_\gamma \subset \tau_C(X, x) \), we therefore know that

\[g_\delta \oplus g_\gamma \subset \tau_C(X, x) \]

Since \(\mu \) is long and there are no \(G_2 \)-factors, Proposition 8.1 [7] implies

\[g_\delta \oplus g_\gamma \subset T_y(X) \]

Since \(\gamma < 0 \), we therefore get the inequality \(y < r_\gamma y \leq w \), and hence \(X \) is also nonsingular at \(r_\gamma y \). Moreover, since \(\phi < 0 \) and \(x^{-1}(\phi) = y^{-1}(\phi) > 0 \), it also
follows that $g_{-\phi} \subset TE(X, y)$, which equals $T_\gamma(X)$ since X is smooth at y. Since there are no G_2-factors, μ, δ, $-\phi$ constitute a complete γ-string occurring as T-weights of $T_\gamma(X)$. Letting E be the good T-curve in X such that $E^T = \{y, r_\gamma y\}$, we have $T_\gamma(X, y) = T_\gamma(X)$, so the string μ, δ, $-\phi$ also has to occur in the T-weights of $T_{r_\gamma y}(X)$. In particular, $g_{-\phi} \subset TE(X, r_\gamma y) = T_{r_\gamma y}(X)$, and hence $r_{\phi} r_\gamma y \leq w$. But this means

$$r_\gamma x = r_\gamma r_\mu y = r_\gamma r_\mu r_\gamma y = r_\phi r_\gamma y \leq w,$$

so $g_\gamma \subset TE(X, x)$.

Next, assume $x^{-1}(\delta) > 0$. Since μ is long, $r_\mu(\delta) = \delta - \mu = \gamma$, hence $y^{-1}(\delta) = x^{-1}(\gamma) < 0$. Thus, since $\delta > 0$, $g_\delta \subset T_\gamma(X)$. Furthermore,

$$y^{-1}(- \gamma) = -x^{-1} r_\mu(\gamma) = -x^{-1}(\delta) < 0,$$

so $g_{-\gamma} \subset T_\gamma(X)$. It follows that $r_\gamma y < y$. As $-\phi > 0$, $U_{-\phi} r_\gamma y \subset X$ as well. We claim $U_{-\phi} r_\gamma y \neq r_\gamma y$, which then proves that $r_{\phi} r_\gamma y \leq w$. But

$$(r_\gamma y)^{-1}(- \phi) = y^{-1}(r_\gamma(- \phi)) = y^{-1}(\mu) < 0,$$

hence we get the claim. Finally, we note that $r_{\phi} r_\gamma r_\mu = r_\gamma$, so it follows that $r_\gamma x \leq w$. Therefore, if $\phi < 0$, we get $g_\gamma \subset TE(X, x)$.

Now suppose $g_\gamma \not\subset TE(X, x)$. Then (a) is immediate and (b) follows from the first statement of the Theorem. Assume that $x^{-1}(\delta) < 0$. Since $T_\gamma(X, x)$ is a g_μ-submodule of $T_\gamma(X)$, we get that $g_\delta \subset T_\gamma(X, x)$. As $\delta = \gamma + \mu$ and μ is long, we also get that $(\delta, \mu) \geq 0$. Applying the first part of the Theorem again, we see that $g_\delta \subset TE(X, x)$. This establishes (c). The assumption that $g_\gamma \not\subset TE(X, x)$ immediately implies that ϕ is positive, giving (d).

\[
\text{Remark 5.6.} \text{ Let } X \text{ be a Schubert variety, and suppose } x \in X^T \text{ is a maximal singularity such that } |E(X, x)| = \dim X. \text{ In this case, the second author has shown that the multiplicity } \tau_\gamma(X) \text{ of } X \text{ at } x \text{ is exactly } 2^d, \text{ where }
\]

$$d = |\{\alpha \in x(\Phi^-) \mid g_\alpha \subset \tau_\gamma(X, x) \text{ and } r_\alpha x \not\leq w\}|,$$

for any good $C \in E(X, x)$ [9].

Theorem 5.7. Suppose $C = U_{-\mu} x$ is a good T-curve, where $\mu > 0$, and let $y = r_{\mu} x$. Assume $g_\gamma \subset \tau_\gamma(X, x)$ but $g_\gamma \not\subset \tau_\gamma(X)$. Then there exists a positive root ϕ such that $\{\mu, \phi\}$ is an orthogonal B_2-pair for X at x such that $\gamma = -1/2(\mu + \phi)$. Conversely, suppose that for some $\phi > 0$, $\{\mu, \phi\}$ is an orthogonal B_2-pair for X at x, and $\gamma = -1/2(\mu + \phi)$. Then $g_\gamma \subset \tau_\gamma(X, x)$.

Proof. Suppose $g_\gamma \subset \tau_\gamma(X, x)$ but $g_\gamma \not\subset \tau_\gamma(X)$. By Theorem 3.1, there exists a long positive root ϕ orthogonal to μ such that $\gamma = -1/2(\mu + \phi)$. Put $y = r_{\mu} x$,
and note X is smooth at y. To show that $\{\mu, \phi\}$ is an orthogonal B_2-pair, we have to consider two cases.

Case 1. μ is simple. Then $\alpha = \gamma + \phi$ is the short simple root. We have to show that if $g_\gamma \not\subset T_x(X)$, then $r_\alpha x < x$ and $r_\alpha r_\mu x \leq w$. But $g_\gamma \not\subset T_x(X)$ implies $x^{-1}(\alpha) < 0$, since if $x^{-1}(\alpha) > 0$, then the fact that $\gamma = -\phi + \alpha$ would say $g_\gamma \subset T_x(X)$. Hence $r_\alpha x < x$.

Since $r_\mu(\alpha) = -\gamma$, it follows that $y^{-1}(\alpha) = x^{-1}(-\gamma) > 0$, so $g_{-\alpha} \subset T_y(G/B)$. But $y^{-1}(\gamma) = x^{-1}(-\alpha) > 0$, hence $g_\gamma \not\subset T_y(G/B)$. Hence, by the algorithm for computing the Peterson translate and the fact that $g_\gamma \subset \tau_C(x, x)$, we infer that $g_{-\alpha} \subset T_y(X)$. Therefore, $r_\alpha y = r_\alpha r_\mu x \leq w$, as was to be shown.

Case 2. ϕ is simple. Here $\alpha = \gamma + \mu$ is the short simple root, and $r_\mu(\gamma) = \alpha$. As in Case 1, $x^{-1}(\alpha) < 0$, so $r_\alpha y < x$. Now $y^{-1}(\alpha) = x^{-1}(\gamma) < 0$, so $r_\alpha y < y$ and hence $g_\alpha \subset T_y(X)$. Also, $y^{-1}(\gamma) = x^{-1}(\alpha) < 0$, so $g_\gamma \subset T_y(G/B)$. Thus the algorithm for $\tau_C(X, x)$ says that $g_\alpha \subset \tau_C(X, x)$. But as $g_\gamma \subset \tau_C(X, x)$ too, we have to conclude that $g_\gamma \subset T_y(X)$, due to the fact that γ and α comprise a μ-string. Hence $r_\gamma y \leq w$. But since we are in a B_2 where α and ϕ are the simple roots, $r_\gamma r_\mu = r_\alpha r_\phi$. Hence $r_\alpha r_\phi x \leq w$, so Case 2 is finished.

To prove the converse, we need to consider Cases 1 and 2 again with the assumption that $x^{-1}(\alpha) < 0$, which follows from the condition that $r_\alpha x < x$. The argument is, in fact, very similar to the above, but we will outline it anyway. Assume first that $\mu = \beta$, i.e. μ is simple. As $r_\alpha r_\beta x \leq w$, we see that $r_\alpha y \leq w$. But $y^{-1}(-\alpha) = x^{-1}(\gamma) < 0$, consequently $g_{-\alpha} \subset T_y(X)$. Also, $y^{-1}(\gamma) = x^{-1}(-\alpha) > 0$, so $g_\gamma \not\subset T_y(G/B)$. Thus, by the algorithm for computing $\tau_C(x, x)$, the weight $r_{\beta}(\gamma)$ occurs in $\tau_C(X, x)$. Hence $g_\gamma \subset \tau_C(X, x)$.

On the other hand, if ϕ is simple, then $\mu = \beta + 2\alpha$. Thus, $y^{-1}(\alpha) = x^{-1}(\gamma) < 0$, so $r_\alpha y < y$, hence $g_\alpha \subset T_y(X)$. But $r_\alpha r_\phi x \leq w$ means $r_\gamma r_\mu x \leq w$, that is, $r_\gamma y \leq w$. As $y^{-1}(\gamma) = x^{-1}(\alpha) < 0$, $g_\alpha \oplus g_\gamma \subset T_y(Y)$. Since α and γ make up a $\beta + 2\alpha$-string in B_2, $g_\alpha \oplus g_\gamma \subset \tau_C(X, x)$ also. This finishes the proof.

We now prove Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Suppose $g_\gamma \subset \Theta_\gamma(X)$. Since x is either smooth or a maximal singularity, Theorem 1.3 implies that $g_\gamma \subset \tau_C(X, x)$ for some good C. If C is short, then $\tau_C(X, x) \subset TE(X, x)$, by Theorem 1.1, hence $\tau_C(X, x) \subset T_x(X)$. Thus we can suppose C is long. But then, by Theorem 5.7, either $g_\gamma \subset T_x(X)$ or there exists a B_2-pair $\{\mu, \phi\}$ for X at x such that $\gamma = -1/2(\mu + \phi)$. Hence Theorem 1.5 is proven.

Proof of Theorem 1.6. Suppose $C \subset E(X, x)$ is good and $\dim TE(X, x) = \dim T_x(X) = \dim X$. If C is short, then X is smooth at x by Theorem 1.1. Hence we may suppose C is long. Suppose there exists a T-line g_γ in $\tau_C(X, x)$ which is not in $T_x(X)$. Then by Theorem 5.7, there is an orthogonal B_2-pair $\{\mu, \phi\}$ for
X at x for which \(\gamma = -1/2(\mu + \phi) \). But then by assumption, \(g_\gamma \subset TE(X,x) \). This contradicts the choice of \(g_\gamma \), so \(\tau_C(X,x) \subset T(x) = TE(X,x) \). Applying Theorem 1.1 again, we see that X is smooth at x.

For the converse, suppose X is smooth at x. Then conditions (1) and (2) of Theorem 1.5 clearly hold. Suppose \(\{\mu, \phi\} \) is a \(B_2 \)-pair for X at x and \(\gamma = -1/2(\mu + \phi) \). By the converse assertion of Theorem 5.7, \(g_\gamma \subset \tau_C(X,x) \), where C \(\in E(X,x) \) is the T-curve of weight \(\mu \) at x. Since x is smooth, \(\tau_C(X,x) = TE(X,x) \), so \(g_\gamma \subset TE(X,x) \). \(\Box \)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCQUER, CANADA V6T 1Z2

E-mail: carrell@math.ubc.ca

INSTITUTE OF MATHEMATICS, UNIVERSITY OF BASEL, BASEL, SWITZERLAND
Current address: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA AND PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES, VANCQUER, CANADA V6T 1Z2

E-mail: kuttler@math.ubc.ca

REFERENCES

[1] S. Billey and T. Braden, Lower Bounds for Kazhdan-Lusztig Polynomials from Patterns, Transform. Groups 8 (2003), 321–332.
[2] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progr. Math., vol. 182, Birkhäuser, Boston, 2000.
[3] S. Billey and A. Postnikov, Smoothness of Schubert Varieties Via Patterns in Root Systems (2003), arXiv:math.CO/0205179 v1, Adv. Appl. Math. (to appear).
[4] B. Boe and W. Graham, A lookup conjecture for rational smoothness, Amer. J. Math. 125 (2003), 317–356.
[5] J. Carrell, The Bruhat Graph of a Coxeter Group, a Conjecture of Deodhar, and Rational Smoothness of Schubert Varieties, Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, Part I, pp. 53–61.
[6] __________, The span of the tangent cone of a Schubert variety, Algebraic Groups and Lie Groups, Australian Math. Soc. Lecture Series, vol. 9, Cambridge Univ. Press, 1997, pp. 51–60.
[7] J. Carrell and J. Kuttler, Singular points of T-varieties in G/P and the Peterson map, Invent. Math. 151 (2003), 353–379; DOI:10.1007/s00222-002-0256-5.
[8] C. Chevalley, Sur les décompositions cellulaires des espaces G/B, Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–25.
[9] J. Kuttler, The Singular Loci of T-Stable Varieties in G/P, thesis, U. of Basel, 2004.