Clinical utility of FISH analysis in addition to G-banded karyotype in hematologic malignancies and proposal of a practical approach

Won Kyung Kwon¹, Jin Young Lee¹, Yeung Chul Mun², Chu Myong Seong², Wha Soon Chung¹, Jungwon Huh¹
Departments of ¹Laboratory Medicine, ²Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea

INTRODUCTION

Karyotypic investigations, including fluorescence in situ hybridization (FISH), have become increasingly important in the detection of hematologic malignancies [1, 2]. In cases where cytogenetic analysis is hampered by low in vitro mitotic activity of cancer cells, poor chromosome morphology, considerable complexity, or a normal karyotype, FISH analysis has provided a rapid and reliable detection of specific abnormalities in both mitotic and interphase cells [1, 2]. Both conventional G-banded karyotype and FISH analyses are currently integral components in the management of patients with hematologic malignancies.

However, in view of limited laboratory and health care resources, FISH can be a labor-intensive, time-consuming, and expensive procedure, particularly if a specific abnormality has already been detected by G-banded karyotype. Therefore, the FISH approach should be strategically planned in order to contribute information additional to that provided by G-banded karyotype.
by conventional G-banded karyotype.

The aim of this study was to evaluate the clinical utility of FISH in addition to G-banded karyotype and to propose a practical approach for FISH in the detection of hematologic malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM).

MATERIALS AND METHODS

1. Patients

The study group included 135 patients with hematologic malignancies (56 AML, 32 MDS, 20 ALL, and 27 MM) between 2005 and 2010. The characteristics of the patients are shown in Table 1.

2. Conventional cytogenetics

Cytogenetic studies were performed with unstimulated 24- and 48-hour cultures, using fresh bone marrow aspirates obtained from the 135 patients at diagnosis. When possible, at least 20 metaphases per sample were analyzed, and karyotypes were described according to the International System for Human Cytogenetic Nomenclature (ISCN, 2009) [3].

3. FISH

FISH studies of the 135 patients at diagnosis were performed on fresh bone marrow aspirates or fixed cells obtained from bone marrow cultures for conventional cytogenetics. Commercially available probes (Abbott/Vysis, Downers Grove, IL, USA and Kreatech, Amsterdam, Netherlands) were used. The AML panel included BCR/ABL_1 dual color, dual fusion translocation probe; $AML1/ETO$ dual color, dual fusion translocation probe; $PML/RARA$ dual color, dual fusion translocation probe; $CBFB$ dual color, break-apart rearrangement probe; MLL (11q23) dual color, break-apart rearrangement probe; $ETV6$ (12p13) dual color, break-apart rearrangement probe; and $6q21/c-myc$ dual color probe. The MM panel included IgH dual color, break-apart rearrangement probe; $CDKN2A$ (9p21, p16) SpectrumOrange/CEP9 SpectrumGreen probe; $ETV6$ (12p13) dual color, break-apart rearrangement probe; and $6q21/c-myc$ dual color probe. The MDS panel included CEP8 SpectrumGreen probe; $ETV6$ (12p13) dual color, break-apart rearrangement probe; $CDKN2A$ (9p21, p16) SpectrumOrange/CEP9 SpectrumGreen probe; IgH (14q32) dual color, dual fusion translocation probe; $IgH/CCND1$ dual color, dual fusion translocation probe; $IgH/FGFR3$ dual color, dual fusion translocation probe; and $1q21//8p21$ (Kreatech) were provided by Abbott/Vysis. At least 200 interphase cells were scored for each probe by two independent experienced examiners.

RESULTS

1. **AML (Table 2)**

FISH studies confirmed the corresponding abnormalities identified by G-banded karyotype in all of the AML samples. Additional abnormalities were detected by FISH in only two cases (4%). In 1 case with unsuccessful culture, $AML1$ (RUNX1) gain was identified in 66% of interphase cells by FISH. In the other case, characterized by a complex karyotype with marker chromosomes and abnormalities of chromosome 5, 17, 18, and 19, FISH detected MLL gain in 80% of interphase cells.

2. **MDS (Table 2)**

FISH confirmed the results of both normal and abnormal karyotype identified by G-banded karyotype. Abnormalities additional to those identified by G-banded karyotype were identified by FISH in 3 patients with normal karyotype (2 patients, 20q deletion in 5-6% of interphase cells; 1 patient, 7q deletion in 3% of interphase cells).

3. **ALL (Tables 2 and 3)**

Clonal abnormalities were found in 65% and 80% of patients by G-banded karyotype and FISH, respectively. Additional abnormalities were identified by FISH in 50% of patients. Compared with G-banded karyotype, $CDKN2A$ and $ETV6$ FISH revealed additional genetic aberrations in 33% and 28% of cases, respectively. Two patients showed $ETV6$ gain using FISH, corresponding to the hyperdiploidy or hypertriploidy by G-banded karyotype. In 2 patients, $ABLI$ deletions unassociated with t(9;22) were identified by FISH.

Table 1. Patient characteristics.

Diagnosis	AML	MDS	ALL	MM
No. of cases	56	32	20	27
Age (years)				
Median (range)	50 (0-80)	37 (15-87)	64 (3-72)	67 (46-87)
Sex (M : F) (n)	32 : 24	13 : 19	12 : 8	12 : 15
Karyotype (n)				
Normal	23	8	6	18
Abnormal	32	24	13	9
Culture failure	1	0	1	0

a Included 18 AML with recurrent chromosomal abnormalities (t(8;21) (n = 6), t(15;17) (n = 8), inv(16) (n = 3), MLL (n = 1)), 4 AML with myelodysplasia-related changes, and 34 AML, NOS. *b* Included refractory cytopenia with unilineage dysplasia (n = 16), refractory cytopenia with multilineage dysplasia (n = 13), refractory anemia with excess of blasts (n = 2), MDS-unclassifiable (n = 1), *c* Included B-lineage (n = 15), T-lineage (n = 4), mixed phenotype acute leukemia (n = 1). Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; ALL, acute lymphoblastic leukemia; MM, multiple myeloma.
Table 2. Abnormalities detected by FISH in addition to G-banded karyotype.

	N	Additional detection rate (%)	Abnormal rate (%)
AML			
Total	56	4	50
BCR/ABL1	48	0	2
AML1/ETO	48	2	23
PMI/RARA	48	0	19
CBFB	45	2	4
MLL	48	2	4
EGR1	17	0	6
D7S486	22	0	5
CEP8	2	0	50
MDS			
Total	32	9	34
CEP8	32	0	16
D20S108	32	6	13
EGR1	32	0	3
D7S486	32	3	6
ALL			
Total	20	50	80
BCR/ABL1	20	10	35
MLL	19	5	5
CDKN2A	18	33	44
ETV6	18	28	33
6q121/c-myc	11	0	9
MM			
Total	27	67	93
IgH	26	31	50
TP53	25	20	20
D13S25	25	36	52
IgH/CCND1	27	19	37
IgH/FGFR3	19	11	21
IgH/MAF	19	0	11
1q21	20	40	55
8p21	20	15	15

Additional genetic aberrations identified by FISH in ALL.

Case no.	G-banded karyotype	FISH (% of rearranged cells)
1	46,XY[20]	CDKN2A heterozygous deletion (66%)
2	46,XY[20]	ETV6 break-apart (70%)
3	46,X[1]	CDKN2A homozygous (81%), heterozygous (4%) deletion
4	46,X[20]	CDKN2A homozygous (80%), heterozygous (3%) deletion
5	46,XY[20]	CDKN2A homozygous deletion (11%)
6	46,XY[20]	MLL deletion (87%), ETV6 break-apart (83%)
7	46,XY,add(9)(p22),add(16)(p13.3)[cp13]/46,XY[17]	ALL1 deletion (76%), ETV6 break-apart (81%)
8	50,X,-X,+1,del(6)(q22),+7,del(8)(p18.1),+11,del(9)(q13),+12,del(10)(q13),+13,add(11)(t(11;13)(p12;q12)),+14,del(16)(q22),+18,del(19)(p13),+mar[50],+mar[12]	ETV6 gain (54%)
9	79,XY,+4,+6,+8,+10,+10,+11,+21,+21,+21,+mar[12]/46,XY[18]	CDKN2A gain (28%), ETV6 gain (15%)
10	47,XY,+21c[19]	ALL1 deletion (80%), CDKN2A deletion (76%)

Abbreviations: FISH, fluorescence in situ hybridization; ALL, acute lymphoblastic leukemia.
As expected, FISH is of benefit in the detection of genetic abnormalities in MM, whereas compared with G-banded karyotype, could be additionally detected by FISH (28% and 33%, respectively). Consistent with previous studies, our study showed that in ALL, ETV6 and CDKN2A rearrangements in ALL is relatively high (80% and 85%, respectively) [17]. Consistent with previous studies, our study showed that in ALL, ETV6 and CDKN2A genetic abnormalities, which were not identified by G-banded karyotype, could be additionally detected by FISH (28% and 33%, respectively).

As reported previously, FISH is useful for improving the detection rate of genetic abnormalities in MM, whereas conventional cytogenetics detects only 30-50% of abnormalities due to the low in vitro mitotic index of abnormal clones [18-25]. In this study, the detection rate of genomic aberrations in MM increased from 67% to 93% using FISH, compared with G-banded karyotype. FISH has been performed extensively to detect genomic aberrations in hematologic malignancies; however, in view of limited laboratory resources, it may be an expensive procedure. Here, we propose a strategy for cost-effective FISH utilization based on our results (Fig. 1). Importantly, this strategy should be based on the premise of cytogenetic adequacy (analyzing more than 20 consecutive, well-stained, well-spread metaphases). If a sufficient number of metaphases with morphology good enough to detect microscopic abnormalities cannot be analyzed, this strategy should not be applied.

With respect to ALL and MM, routine FISH analysis is needed, irrespective of karyotypic results (normal or abnormal), since, as shown in this study, FISH can provide relevant information additional to that provided by G-banded karyotype (Tables 2-4). In order to detect aneuploidy, it may be necessary to include centromere probes for chromosome 5, 9, and 15 in the MM FISH panel [20, 22]. Here, we propose a FISH panel for adult B-lineage ALL; a FISH panel for children was not considered in this study.

In contrast to ALL and MM, an appropriate strategy should be selected in AML and MDS, depending on the results of G-banded karyotype. We recommend routine FISH analysis in cases with a complex karyotype, because FISH can identify details of aberrations that cannot be resolved by G-banded karyotype alone. In addition, in cases with few or no mitotic cells, routine FISH analysis would be of benefit for obtaining clinically relevant information regarding aberrations. In AML or MDS with a normal karyotype, certain specific probes could be used to detect cryptic aberrations undetectable by G-banded karyotype. Among FISH probes that we did not evaluate in the present study, the TP53 probe may be needed in cases with complex karyotypes or insufficient metaphases; this is because the TP53 deletion is known to be associated with a poor prognosis [26, 27].

Case no.	G-banded karyotype	FISH (% of rearranged cells)
1	46,XX[20]	D13S25 loss (54%)
2	45,X,-Y;add(1)q42;2(del(11)(q23)(1)/46,XY[19]	CEP14 break-apart (17%), TP53 deletion (6%), 1q21 gain (15%)
3	46,XY[20]	CEP14 break-apart (16%), 1q21 gain (9%)
4	46,XX;del(1)(p21)[2]/46,XX[18]	CEP14 break-apart (30%), CCND1 rearrangement (5%)
5	46,XY[20]	CEP14 break-apart (11%), CCND1 (1q13) gain (4%), 1q21 gain (52%)
6	46,XX[20]	CEP14 break-apart (27%), D13S25 deletion (21%), 1q21 gain (20%)
7	46,XY[20]	CEP14 break-apart (15%), TP53 deletion (14%), 1q21 gain (15%)
8	46,XY[20]	CEP14 break-apart (15%), D13S319 deletion (20%), IgH/FGFR3 (16%)
9	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)
10	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)
11	46,XY[20]	D13S319 deletion (21%), 1q21 gain (13%)
12	46,XY[20]	D13S319 deletion (21%), 1q21 gain (13%)
13	46,XY[20]	D13S319 deletion (21%), 1q21 gain (13%)
14	46,XY[20]	D13S319 deletion (21%), 1q21 gain (13%)
15	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)
16	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)
17	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)
18	46,XX[20]	D13S319 deletion (21%), 1q21 gain (13%)

Abbreviations: FISH, fluorescence in situ hybridization; MM, multiple myeloma.
Of particular relevance, FISH analysis may be a superior method for disease monitoring, considering that G-banded karyotype could be hampered by a low in vitro mitotic activity of cancer cells after treatment. Therefore, if specific chromosomal abnormalities are detected by G-banded karyotype at diagnosis, FISH analysis using target probes corresponding to the specific chromosomal abnormalities is needed to investigate specific abnormal FISH signal patterns for use of monitoring markers during follow-up. An advantage of FISH over G-banded karyotype is that it requires considerably less time and effort. Therefore, apart from our proposal, FISH using specific target probes could be utilized in the initial assessment as an adjunct to G-banded karyotype, when critical genetic aberrations (such as PML/RARA rearrangement) should be rapidly identified to determine the best therapeutic approaches.

In addition to G-banded karyotype and FISH, PCR techniques are currently being employed. Of particular interest, multiplex reverse-transcription PCR can be used to simultaneously identify numerous different translocations or chromosomal rearrangements. To detect fusion transcripts or translocations, either PCR or FISH could be used. However, PCR techniques are unable to identify deletions or amplifications that can be readily identified by FISH, and therefore it is unlikely that these techniques will serve as a substitute for FISH. Further study is needed to develop efficient and cost-effective strategies that combine the use of G-banded karyotype, FISH, and PCR techniques.

In conclusion, this study suggests that in the setting of an adequate karyotype of AML and MDS, routine FISH testing contributes little, if any, further genetic information. In contrast, FISH panel testing for ALL and MM appears to be an efficient screening method, and routine FISH analysis should remain the method of choice. Finally, a consensus needs to be reached between laboratories as to the practical strategies for cost-effective utilization of FISH combined with G-banded karyotype.

REFERENCES

1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC press, 2008:87-213.
2. Tibiletti MG. Interphase FISH as a new tool in tumor pathology. Cytogenet Genome Res 2007;118:229-36.

3. Shaffer LG, Slovak ML, Campbell LJ, eds. An international system for human cytogenetic nomenclature (2009): recommendations of the international standing committee on human cytogenetic nomenclature. Basel, Switzerland: S. Karger AG, 2009.

4. Kim SR, Kim HJ, Kim SH. Clinical utility of fluorescence in situ hybridization profile test in detecting genetic aberrations in acute leukemia. Korean J Lab Med 2009;29:371-8.

5. Lee DY, See CJ, Hwang CD, Cho HI, Lee DS. Analysis of discrepancies between G-banding and FISH in hematologic abnormalities. Korean J Clin Pathol 2001;21:445-50.

6. Pitchford CW, Hettinga AC, Reichard KK. Fluorescence in situ hybridization testing for -5/-5q, -7/-7q, +8, and del(20q) in primary myelodysplastic syndrome correlates with conventional cytogenetics in the setting of an adequate study. Am J Clin Pathol 2010;133:260-4.

7. Ketterling RP, Wyatt WA, VanWier SA, et al. Primary myelodysplastic syndrome with normal cytogenetics: utility of 'FISH panel testing' and M-FISH. Leuk Res 2002;26:235-40.

8. Cherry AM, Brockman SR, Paternoster SF, et al. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an Eastern Cooperative Oncology Group (ECOG) study. Leuk Res 2003;27:1085-90.

9. Beyer V, Castagné C, Mühlematter D, et al. Systematic screening at diagnosis of -5/5q, -7/7q, +8, or del(20q) in primary myelodysplastic syndrome correlates with conventional cytogenetics. J Mol Diagn 2005;7:560-5.

10. Panani AD, Pappa V. Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes. In Vivo 2005;19:979-81.

11. Mallo M, Arenillas L, Espinet B, et al. Fluorescence in situ hybridization improves the detection of 5q31 deletion in myelodysplastic syndromes without cytogenetic evidence of 5q-. Haematologica 2008;93:1001-8.

12. Costa D, Valera S, Carrió A, et al. Do we need to do fluorescence in situ hybridization analysis in myelodysplastic syndromes as often as we do? Leuk Res 2010 [Epub ahead of print].

13. Yang W, Stotler B, Sevilla DW, et al. FISH analysis in addition to G-band karyotyping: utility in evaluation of myelodysplastic syndromes? Leuk Res 2010;34:420-5.

14. Rigolin GM, Bigoni R, Milani R, et al. Clinical importance of interphase cytogenetics detecting occult chromosome lesions in myelodysplastic syndromes with normal karyotype. Leukemia 2001;15:1841-7.

15. Romeo M, Chauffaille Mde L, Silva MR, Bahia DM, Kerbey J. Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients. Leuk Res 2002;26:993-6.

16. Bernasconi P, Cavigliano PM, Boni M, et al. Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. Leukemia 2003;17:2107-12.

17. Olde Nordkamp L, Mellink C, van der Schoot E, van den Berg H. Karyotyping, FISH, and PCR in acute lymphoblastic leukemia: competing or complementary diagnostics? J Pediatr Hematol Oncol 2009;31:930-5.

18. Yuregil OO, Sahin FI, Yilmaz Z, Kizilkilic E, Karakus S, Ozdogu H. Fluorescent in situ hybridization studies in multiple myeloma. Hematology 2009;14:90-4.

19. Chen L, Li J, Xu W, et al. Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization. Exp Oncol 2007;29:116-20.

20. Christensen JH, Abildgaard N, Plesner T, et al. Interphase fluorescence in situ hybridization in multiple myeloma and monoclonal gammopathy of undetermined significance without and with positive plasma cell identification: analysis of 192 cases from the Region of Southern Denmark. Cancer Genet Cytogenet 2007;174:89-99.

21. Sáez B, Martín-Sabero JI, Odero MD, et al. Interphase FISH for the detection of breakpoints in IG loci and chromosomal changes with adverse prognostic impact in multiple myeloma with normal karyotypes. Cancer Genet Cytogenet 2006;167:183-5.

22. Schmidt-Wolf IG, Glasmacher A, Hahn-Ast C, et al. Chromosomal aberrations in 130 patients with multiple myeloma studied by interphase FISH: diagnostic and prognostic relevance. Cancer Genet Cytogenet 2006;167:20-5.

23. Chen Z, Isa B, Huang S, et al. A practical approach to the detection of prognostically significant genomic aberrations in multiple myeloma. J Mol Diagn 2005;7:560-5.

24. Huang SY, Yao M, Tang JL, et al. Clinical significance of cytogenetics and interphase fluorescence in situ hybridization analysis in newly diagnosed multiple myeloma in Taiwan. Ann Oncol 2005;16:1530-8.

25. Wiktor A, Van Dyke DL. Combined cytogenetic testing and fluorescence in situ hybridization analysis in the study of chronic lymphocytic leukemia and multiple myeloma. Cancer Genet Cytogenet 2004;152:29-41.