4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intra-vital 2-photon microscopy, we found that 4-MUG (a non-fluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.
synthesized by three hyaluronan synthase (HAS) enzymes, HAS1, HAS2, and HAS3 (4). These enzymes lengthen HA by repeatedly adding glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) to the nascent polysaccharide as it is extruded through the cell membrane into the extracellular space (4).

There is substantial experimental and therapeutic interest in inhibiting HA synthesis. HA is known to promote inflammatory responses (2) including the activation and maturation of multiple immune cell types (5), the release of pro-inflammatory chemokines and cytokines (6, 7) and proliferation (8) and migration (9) of leukocytes. HA and its receptor interactions are also known to influence both the number and function of lymphocytes (10-12). HA levels are greatly elevated in chronically inflamed tissues (13-15) including in the tumor microenvironment, in fibrosis, and at sites of autoimmunity (16, 17). Numerous studies by our group and others implicate HA as a driving factor in inflammation (18-20). These signals may be particularly relevant in settings of sterile inflammation such as cancer and autoimmunity (21). At most sites of injury, HA is rapidly cleared. However, at sites of autoimmunity like Type 1 Diabetes (T1D), HA persists (22). This may have important consequences for local immune regulation, as reviewed elsewhere (16, 23-28).

4-methylumbelliferone (4-MU) is a small molecule inhibitor of HA synthesis (29). 4-MU inhibits HA production in multiple cell lines and tissue types both in vitro and in vivo (20, 30, 31). The mechanism of action by which 4-MU inhibits HA synthesis has been described. UDP-GlcUA and UDP-GlcNAc are the substrates of the HA synthesis their availability thereby limit HA synthesis. 4-MU functions mainly by the downregulating of HAS expression by depleting the HA precursor UDP-GlcUA by activation of UDP-glucuronyl transferases (UGTs)(32). In addition, 4-MU reduces expression of HAS mRNA (33), as well as UDP glucose pyrophosphorylase and dehydrogenase (34), though the functional contributions of these are unclear. Furthermore, a microarray study revealed that 4-MU alters the cell cycle and the p53 pathways (35). 4-MU treatment prevents many of the inflammatory phenotypes associated with HA, including tumor metastasis, fibrosis progression and autoimmunity (reviewed in (29)). We and others have previously reported that 4-MU promotes the induction of Foxp3+ regulatory T-cells, an important anti-inflammatory cell type, and that 4-MU prevents fibrosis and autoimmunity in multiple animal models of human autoimmune diseases, including multiple sclerosis, T1D, and rheumatoid arthritis (17, 19, 20, 29, 36).

4-MU is a commercially available drug approved for use in humans. Called “Hymecromone” it is prescribed in European and Asian countries to prevent biliary spasm (34). This suggests that 4-MU could be repurposed to inhibit HA synthesis in humans. Indeed, 4-MU is under investigation in human clinical trials as a treatment for HA-associated fibrotic liver and autoimmune biliary diseases (ClinicalTrials.gov Identifiers: NCT00225537, NCT02780752).

Unfortunately, 4-MU has poor pharmacokinetics that are thought to limit its use outside the biliary tract. The systemic oral bioavailability of 4-MU is reported to be <3%, mostly due to extensive first pass glucuronidation in the liver and small intestine (37, 38). Any 4-MU that does reach the systemic circulation is rapidly metabolized with a half-life of 28 minutes in humans (3 minutes in mice) and <1% of a given dose is excreted unchanged in the urine (37, 38). Consequently, the median plasma concentration of 4-methylumbelliferyl glucuronide (4-MUG) is more than 3,000 fold higher than that of 4-MU in mouse models (29). Analogous findings have been reported in healthy human volunteers (38).

Despite this poor bioavailability and a short half-life, oral administration of 4-MU nonetheless inhibits HA synthesis in vivo, suggesting additional factors may potentiate its activity and sustained effect. Given that most of the drug is present in circulation as 4-MUG, we suspected that this metabolite might undergo hydrolysis and re-conversion into 4-MU in vivo.

Here, we have used mass spectrometry and 2-photon microscopy to interrogate the tissue binding patterns of 4-MU in mice and to address specific pharmacologic questions regarding the
4-MUG contributes to hyaluronan synthesis inhibition

RESULTS

4-MUG inhibits HA synthesis in vitro

As a result of efficient glucuronidation of 4-MU in the liver and intestines by multiple UDP-glucuronosyltransferases (UGTs), the predominant form present systemically in mice on oral 4-MU chow is 4-MUG (Figure 1A-C), as has been reported previously (39). The median serum concentration of 4-MUG was about 150-fold higher than the parent compound 4-MU (Figure 1C).

Because the activity of metabolites is an important variable in pharmacodynamic determinations, we asked whether the main 4-MU metabolite 4-MUG inhibits HA synthesis. To test this, we used murine melanoma cells (B16F10), a cell line known to produce abundant HA. We observed a concentration dependent inhibition of HA synthesis in both 4-MU and 4-MUG treated B16F10 cells after 48 hours of drug exposure (Figure 1D,E). Similar findings were seen as well in primary lymphocytes (data not shown). Fluorescent staining of these cells using HA binding protein (HABP), indicated that treatment with 4-MU and 4-MUG both reduced HA (Figure 1F). Together these results indicate that treatment with either 4-MU or 4-MUG inhibits HA synthesis.

Since there are reports of other glucosaminoglycan (GAG) inhibition by 4-MU at high concentrations, we performed a Dimethylmethylene Blue (DMMB) assay investigating the specificity of 4-MUG to inhibit HA and its influence on other GAGs. We found that 4-MU and 4-MUG at 300 µM and 100 µM did not significantly inhibit overall GAG production (Supplemental Figure 1). 4-MU at 300 µM showed a trend to lower cell associated GAGs compared to untreated control; however this was not significant (Supplemental Figure 1).

Also due to previous investigators work showing that 4-MU can have toxic effects linked to reactive oxygen species (ROS) production, we performed similar studies using 4-MU and 4-MUG (Supplemental Figure 2). As these effects have been most closely researched on leukocytes, similar cells were used here. The human monocyte line U937 cells as well as mouse CD4+ T-cells were treated for 24 hours prior to flow cytometry analysis looking at viability, apoptosis (Annexin V), and ROS levels. While 4-MU shows measurable increases in ROS within the CD4+ T-cells, this is not seen in the U937 cells (Supplemental Figure 2C,F). Furthermore, 4-MUG shows no measurable increases in ROS within either cell population (Supplemental Figure 2C,F). The change of viability measurements under 4-MU and 4-MUG treatment compared to untreated control was less than 1 percent (Supplemental Figure 2A,D). Overall 4-MUG does not induce reasonable ROS changes that induce either apoptosis (Supplemental Figure 2B,E) or general viability changes.

4-MUG is hydrolyzed into 4-MU within cells

Given the established activity of 4-MU leading to inhibition of HA synthesis, it seemed possible that the bioactivity of 4-MUG could be attributed to its hydrolysis into 4-MU. To examine this, we took advantage of the fact that 4-MU is fluorescent while 4-MUG is not (Figure 2A). In particular, 4-MU has an excitation wavelength of 380 nm and an emission wavelength of 454 nm in water. We added 4-MU or 4-MUG to PBS with 10 % FCS and monitored the increase of fluorescence signal using a fluorescence plate reader at intervals up to 72 hours (Figure 2B). As expected 4-MU had a fluorescent signal at baseline (Figure 2B). Fluorescence of 4-MUG on the other hand could only be detected starting around 30 hours (Figure 2B). We then added 4-MU and 4-MUG to B16F10 cells, we found that cells treated with 4-MUG became fluorescent after 48-72 hours (Figure 2C). The fluorescence of these cells was lost upon permeabilization (Figure 2D), suggesting that most of the fluorescent 4-MU is inside the cell. Together, these data suggest that 4-MUG is taken up by cells and converted back into 4-MU resulting in its effects on HA synthesis inhibition. However, because the conversion of 4-MUG to 4-MU also takes place in vitro in media alone, it seems likely that extracellular conversion occurs as well.
To test whether 4-MU binding is non-specific and non-covalent we added 4-MU to B16F10 cells treated with or without hyaluronidase to remove cell surface HA, and we added 4-MU to B16F10 cells washed with a high salt buffer to remove 4-MU bound to the cell surface by ionic interactions (Supplemental Figure 3A-D). These studies were performed for 1 hour and 24 hour 4-MU treatment at either 4°C or 37°C since enzymatic processes responsible for covalent binding could be expected to require room temperature whereas non-specific charge-based interactions would not. We observed that more 4-MU was taken up after 24 hours compared to the 1 hour treatment regardless of temperature (Supplemental Figure 3A-D). Furthermore, we saw no difference in 4-MU signal under the different treatments (Supplemental Figure 3A-D). We conclude that 4-MU does not directly bind to HA and the cell surface.

4-MU is taken up by lymphocytes

We further asked whether 4-MU and 4-MUG are taken up by circulating cells and tissues in vivo. To this end, we again took advantage of the fluorescence of 4-MU to use as a biomarker of 4-MU uptake. We first assessed 4-MU signal on cells isolated from spleen tissue and blood of mice that had been on oral 4-MU treatment for at least 14 days. Using the Pacific Blue channel, we could readily observe 4-MU signal on splenocytes (Supplemental Figure 4A) and circulating leukocytes (Supplemental Figure 4B) from mice that were treated with 4-MU, indicating that 4-MU is taken up by cells within lymphatic tissues in vivo as well as binding to the extracellular matrix.

Next, we examined the uptake of 4-MU by different leukocyte subsets (Figure 3A). To this end, we fed mice 4-MU and examined 4-MU signal on blood leukocytes from representative animals at intervals of 0, 2, 7, and 14 days after the initiation of 4-MU treatment (Figure 3A). We stained for cell surface markers to examine 4-MU uptake by multiple cell types, including CD4+ T-cells (CD3+CD4+), CD8+ T-cells (CD3+CD8+), B-cells (I-A/E+B220+) dendritic cells (DC; I-A/E+CD11c+), macrophages (Mφ; I-A/E+CD11c-), neutrophils (Ly6G/C+CD14+) and monocytes (Ly6G/C-CD14+). A representative FACS gating scheme is displayed in Supplemental Figure 5.

The fluorescent 4-MU signal was not seen in mice treated for 48 hours, but started to be visible after 1 week of treatment (Figure 3A). This is consistent with our previous report that 1-2 weeks of oral 4-MU treatment was necessary for effects on hyaluronan synthesis to become apparent (40). We find that by day 7 after 4-MU treatment 4-MU signal was marginally visible in all of these cell populations and by day 14 all signals were decisively increased to varying extent (Figure 3A). These data point to that multiple leukocyte populations take up 4-MU and that a time period of between 1-2 weeks is required for this to occur. Together, these data indicate that 4-MU is taken up by resident cells.

4-MU is bound to tissue extracellular matrix structures within lymph nodes in vivo

To investigate 4-MU tissue binding in vivo, we examined 4-MU fluorescence in mice using intra-vital 2-photon imaging, a tool that allows to image fluorescent signal deep within tissues. We first examined 4-MU binding within lymph nodes, structures with well-defined architecture, including capsules (C), germinal centers (GC), the sites of B-cell development, and inter-follicular regions (IFR), the sites of T-cell development (Figure 4A). The extracellular matrix polymer HA, in brown, is present at all sites of the lymph node (Figure 4B).

We find that 4-MU is bound to reticular fibers within the lymph node, structures which are known to contain collagen III (Figure 4C,D), but we find that mostly 4-MU did not co-localize with collagen (Figure 4C,D). 4-MU deposition along reticular fibers tended to be most dense within areas rich in CD11c+ Dendritic Cells (DC) and less dense within T-cell zones (Figure 4E). The 4-MU signal was minimal in lymph nodes of control mice not on the drug (Figure 4F), indicating a low level of background noise. Collagenase treatment removed the collagen fluorescent signal but also digested the lymph node tissue (data not shown).

4-MU binds to extracellular matrix within multiple tissue types

Further intra-vital 2-photon imaging experiments in mice revealed that 4-MU signal is
seen in the pancreas, lymph nodes, adipose tissue, and connective tissue from mice treated with 4-MU for 2 weeks (Figure 5A-D, Figure 6A). We also find that mice treated with 4-MUG for 2 weeks likewise showed a 4-MU signal (Figure 6B) while mice treated with 4-MU for three or seven days had no signal (data not shown). The 4-MU signal is visible at an excitation wavelength of 810 nm, which is absent in mice that received control chow (Figure 6C).

4-MU binding is most prominent within structures associated with the extracellular matrix. Within lymph nodes, 4-MU is abundant within the tissue capsules and linear, reticular-fiber like structures (Figure 5B, left image). Many of these sites overlap somewhat with the distribution of collagen (Figure 5B, right image). Within muscle and adipose tissue 4-MU binding likewise overlaps with the distribution of collagen but not with blood vessels (Supplemental Figure 6A,B). Furthermore, hyaluronidase (hyal) treatment of muscle tissue from a 4-MU treated mouse demonstrated a reduction of 4-MU signal (Figure 6D). This could have been caused by tissue degradation due to the hyaluronidase treatment protocol, since the collagen in the hyaluronidase digested tissue looked altered as well (Figure 6D).

In vivo administration of 4-MU or 4-MUG leads to the same serum ratio of 4-MU to 4-MUG

To confirm our 2-photon imaging results, that 4-MU or 4-MUG were present in tissues, and in order to better characterize the inter-conversion between 4-MUG and 4-MU, we performed liquid chromatography mass spectrometry (LC-MS/MS) (Supplemental Figure 7) on serum, muscle, liver, fat and pancreatic tissues from untreated mice or mice treated with either 4-MU or 4-MUG (Figure 7).

We found that, the resulting ratio between 4-MU and 4-MUG present in serum arrived at a molar ratio of 1:72.5 irrespective of which drug was administered (Figure 7B), indicating the two compounds exist in equilibrium together. While the same amount of each drug was bioavailable as indicated by the same ratios, the level of 4-MU and 4-MUG were lower in the 4-MUG treated mice compared to the 4-MU treated mice (Figure 7A) suggesting that 4-MUG may be absorbed with greater efficiency. In 4-MU treated animals, higher levels of 4-MU were seen in serum than in pancreatic tissue (1005 ng/mL versus 64.8 ng/mL) (Figure 7A,C). However, substantially higher levels of 4-MU were seen in pancreatic tissue than in serum for mice fed 4-MUG (10200 ng/mL versus 2.5 ng/mL) (Figure 7A,C). The ratio of 4-MU:4-MUG in serum (1:73 for 4-MU treatment and 1:72 for 4-MUG treatment) (Figure 7B) was far less than the ratio of 4-MU:4-MUG in pancreas (1:0.27 for 4-MU treatment and 1:0.45 for 4-MUG treatment) (Figure 7D), suggesting that 4-MU is more efficiently bound within tissues than 4-MUG. We furthermore investigated the 4-MU and 4-MUG concentrations in fat (Figure 7E,F), liver (Figure 7G,H), and muscle (Figure 7I,J). We observed a similar 4-MU:4-MUG ratio in fat and muscle, here the 4-MU treated animals had a significantly higher amount of 4-MUG compared to the 4-MU treatment (Figure 7F,J). Interestingly the liver similarly to serum showed an equilibrium between 4-MU and 4-MUG not matter what the treatment was (Figure 7G,H). The liver has a high concentration of 4-MU compared to 4-MUG independent of treatment (Figure 7H).

Together, these data indicate that 4-MUG is converted into 4-MU in vivo, that 4-MU is taken up by a range of tissues and cell types in vivo, and that tissue structures serve as a reservoir for 4-MU.

4-MUG treatment slightly reduces HA production, HASI-3 mRNA expression and UDPGA concentration in vivo

Since we have shown that 4-MU and 4-MUG reduced HA content in vitro, we wanted to know if 4-MUG reduces HA in vivo as well. In order to test this, we treated mice with 4-MU and 4-MUG and assessed the HA content of different mouse tissues via HA ELISA. We found that in the pancreas, muscle, fat and liver no significant decrease of HA concentration of either treatment could be detected (Supplemental Figure 8A-D). A slight reduction of HA was seen in the different tissues regardless of treatment compared to untreated control (Supplemental Figure 8A-D). This rather small effect could be explained by the fact that we used non-diseased mice for this study with overall low HA concentrations.

Since, it is known that 4-MU also inhibits HA production by reduction of HAS mRNA
expression, we examined the effect of 4-MU and 4-MUG on HAS1-3 gene expression. We treated B16F10 cells and mice with 4-MU and 4-MUG and performed RTqPCR analysis (Supplemental Figure 9). The B16F10 cells after 4-MU treatment revealed a concentration dependent, slight, non-significant decrease in HAS1-3 expression, whereas 4-MUG treatment showed no difference in HAS1-3 expression (Supplemental Figure 9A,E,I). We further examined muscle, pancreas and liver from 4-MU and 4-MUG treated mice and found that 4-MU significantly reduces the HAS1 expression in muscle and liver (Supplemental Figure 9B-D). A general trend of expression reduction for HAS1-3 could be observed under 4-MU treatment (Supplemental Figure 9). 4-MUG significantly reduced HAS1 expression in the muscle (Supplemental Figure 9B), all other tissues and HAS isoforms didn’t seem to be majorly effected by 4-MUG treatment (Supplemental Figure 9).

We next tested the originally described mechanism of 4-MU’s HA inhibition, the depletion of the HA precursor UDP-glucuronic acid (UDPGA). We measured the UDPGA concentration in different tissues from 4-MU and 4-MUG treated cells and animals (Supplemental Figure 10). We observed that 4-MU at a high concentration significantly reduced the UDPGA concentration in the cell pellet as well as in the mouse pancreas, muscle and spleen (Supplemental Figure 10B,D,E,H). In the cell supernatant and the other tissues 4-MU showed a trend towards UDPGA downregulation but this was not significant (Supplemental Figure 10A,C,F,G). 4-MUG on the other hand had no effect on the UDPGA concentration (Supplemental Figure 10A-H).

Together these results indicate that compared to 4-MU, 4-MUG might have a somewhat different mechanism of action profile regarding HA inhibition.

4-MUG inhibits diabetes progression and induces Foxp3 expression in T1D mice

To assess whether 4-MUG administration inhibited HA synthesis in vivo, as we have previously shown for 4-MU (17), we administered this drug to our animal model of T1D, the DO11.10xRIpmOVA (DORmO) mouse. DORmO mice carry a T-cell receptor transgene specific for OVA (emulating autoreactive CD4+ T-cells), while simultaneously expressing OVA in conjunction with the insulin gene promoter on pancreatic beta cells (emulating the autoantigen). Representative histologic images of DORmO pancreatic islets show that CD3 T-cells, in brown, are surrounding and invading the pancreatic islets of untreated mice, whereas the T-cell staining in the 4-MU treated mice is mainly surrounding the islet, the islet itself is mostly intact (Supplemental Figure 11A). Staining the DORmO islets for HA, in brown, we could demonstrate a decrease of HA accumulation after 4-MU and 4-MUG treatment compared to untreated DORmO mice (Figure 8A). Consistent with this, 4-MUG treatment delayed the onset of T1D as measured by blood glucose over time compared to untreated DORmO mice (Figure 8B). In line with the normo-glycemic blood glucose, insulin positive cells were preserved in the pancreatic islets under 4-MU treatment (Supplemental Figure 11B). Further, we observed an increase of Foxp3 regulatory T-cells (Tregs) in the pancreatic islets of the non-diabetic 4-MU treated DORmO mice (Figure 8C) and we found that both 4-MU and 4-MUG treatment of wild type control mice resulted in an increase of Tregs, as well as an increase in their expression of Foxp3+ (Figure 8F,G), CD4+ and CD3+ T-cell numbers were not affected by either treatment (Figure 8D,E). A representative FACS gating scheme is shown in Supplemental Figure 12. These observations are consistent with recent reports by our group and others that 4-MU induces Foxp3+ Treg in multiple animal models.

DISCUSSION

We report that 4-MUG contributes to the bioactivity of 4-MU both in vitro and in vivo via conversion into 4-MU. Indeed, 4-MU and 4-MUG were almost equally effective over a range of concentrations at inhibiting HA synthesis by cancer cell lines in vitro. Both were likewise equally effective in treating autoimmunity in a mouse model of T1D.

These data suggest that our understanding of the pharmacodynamics of 4-MU needs to be revised to reflect the presence of 4-MUG. In our published animal studies, 4-MUG
4-MUG contributes to hyaluronan synthesis inhibition

was present at concentrations 300-fold higher than those seen for the parent molecule, 4-MU. Consistent with this, in humans 4-MUG accounts for over 90% of 4-MU metabolism (37, 38).

It is possible to administer 4-MUG to achieve the same effects as administering 4-MU both in vitro and in vivo. Our in vivo experiments in the DORmO mouse model of T1D showed that there is no visible difference in HA reduction in the pancreatic islets or reduction of blood glucose between 4-MU and 4-MUG treatment, both are sufficient to stop diabetes progression. This implies that 4-MUG provides an alternative therapeutic option in the treatment of autoimmune diseases. Indeed, 4-MUG has some advantages over 4-MU as a drug as 4-MUG is water-soluble and can be administered in the drinking water.

It remains possible that other metabolites of 4-MU likewise are bioactive. However, these metabolites are present at such low levels (<1% of drug level (40)) that these are unlikely to contribute substantially to overall effects on HA and therefore were not tested.

We also report that tissue binding of 4-MU can be observed in vivo using 2-photon microscopy. In particular, 4-MU binds to collagen-rich structures within the tissue matrix and is also taken up by a variety of cells within the lymph nodes, pancreas, fat, liver, and muscle. We conclude that 2-photon intra-vital microscopy could be used as a novel platform for interrogating tissue binding of fluorescent drugs and that it may be possible to combine this approach with other read-outs of compound activity or tissue localization.

The fluorescent signal we observed via FACS on cells was substantially diminished upon permeabilization, suggesting that at least some of the drug is present intra-cellular. In tissues, the fluorescent signal could be lost by treatment with collagenase or hyaluronidase, indicating that 4-MU may be bound to these molecules. These findings were corroborated by LC-MS/MS indicating that tissues indeed contain 4-MU as well 4-MUG. It is possible that the drug is incorporated into growing HA polymers but this seems unlikely, given the known mechanisms of HA synthesis. Studies revealed that changing the availability of UDP-GlcUA led to a change in HA production but had no effect on other GAGs (35). This is due to the fact that UDP sugar concentrations can be altered in the cytosol where HA is produced, but not inside the Golgi, where the sulfated GAGs are synthesized (41). High affinity transporters for sugar nucleotides are located in the Golgi membranes (42), which maintain high concentrations of UDP-sugars inside the Golgi, even if the cytosolic availability is low. Only HA is affected by UDP sugar availability, as HASes use sugar precursors directly from the cytosolic pool. HA is normally synthesized by three HA synthases which use UDP-sugars of N-acetyl-glucosamine and glucuronic acid as precursors for HA. In the presence of 4-MU, HA synthesis is inhibited by lowering the supply of UDP glucuronic acid. 4-MU is an excellent substrate for UDP-glucuronosyltransferase (UGT), and as a result UGT consumes huge amounts of UDP-glucuronic acid, transferring the glucuronic acid onto 4-MU, thereby depleting the cellular precursor pool which leads to inhibition of HA synthesis. Therefore it is unlikely that 4-MU gets incorporated into HA during its synthesis. Interestingly, 4-MUG neither reduces HAS mRNA expression nor the HA precursor UDPGA, suggesting a different mechanism of action.

Together, these studies indicate that 4-MU is more bioavailable than was previously believed due to the contributions of its metabolite 4-MUG. This insight alters the experimental and therapeutic picture for 4-MU and may facilitate the development of potential therapeutic strategies targeting HA synthesis in cancer, autoimmunity, and other indications (29, 43).

EXPERIMENTAL PROCEDURES

Mice

All animals were bred and maintained under specific pathogen-free conditions, with free access to food and water, in the animal facilities at Stanford University Medical School (Stanford, CA). B6.db/db LeptR

 Downloaded from http://www.jbc.org/ by guest on April 26, 2019
addition C57Bl/6J mice were bred in house at Stanford University School of Medicine.

Mice diabetes monitoring

Beginning at four weeks of age, mice were weighed weekly as well as bled via the tail vein for the determination of their blood glucose level using a Contour blood glucose meter and blood glucose monitoring strips (Bayer Healthcare). When two consecutive blood glucose readings of 250 mg/dL were recorded, animals were considered diabetic. When two consecutive blood glucose readings of 300 mg/dL were recorded, animals were euthanized.

4-MU and 4-MUG treatment

The 4-MU (Alfa Aesar) was pressed into the mouse chow by TestDiet® and irradiated before shipment, as previously described (31). We previously determined that this chow formulation delivers 250 mg/mouse/day, yielding a serum drug concentration of 640.3 ± 17.2 nmol/L in mice, as measured by HPLC-MS. 4-MUG (ChemImpex) was distributed in the drinking water at a concentration of 2 mg/ml, delivering 10 mg/mouse/day, yielding a serum drug concentration of 357.1 ± 72.6 ng/mL in mice, as measured by LC-MS/MS. Mice were initiated on 4-MU and 4-MUG at five, eight or twelve weeks of age, unless otherwise noted, and were maintained on this diet until they were euthanized, unless otherwise noted.

For analysis of Foxp3+ regulatory T-cell numbers in naïve mice, mice were treated daily with 0.5 mg of 4-MU or 1.0 mg 4-MUG in 200 µl 0.08 % carboxymethylcellulose in saline by i.p. injection.

Cell culture

B16F10 cells were cultured in DMEM and were treated with different concentrations of 4-MU and 4-MUG (30, 100, 300 µM) for 1, 24 and 48 hours. For certain experiments cells were treated with hyaluronidase or a 100 mM NaCl salt wash for at 4 degree or 37 degree after 4-MU treatment prior to analyzing the 4-MU signal via flow cytometry. Cultured cells were lysed and analyzed for HA concentration determination using a HA ELISA and mRNA expression of HAS1-3. HA staining in B16F10 cells placed in 96 well plates were imaged (green) using fluorescence microscopy. To measure 4-MU florescence intensity in B16F10 cells treated with 4-MU and 4-MUG, B16F10 cells were trypsinized and 4-MU fluorescence associated with the cells was analyzed by flow cytometry in the pacific blue channel using a BD LSRII flow cytometer. For permeabilization, after trypsinization, cells were incubated in methanol at -20°C for 20 min and washed once before flow cytometric analysis.

Leukocyte 4-MU uptake assessments

C57Bl/6J mice were treated with 4-MU and leukocytes from representative animals were isolated from the blood at baseline (before 4-MU treatment) and at intervals of 2, 7, and 14 days after the initiation of chow. Peripheral venous blood was collected in heparin-coated tubes after cutting the tail veins of mice on 4-MU or control chow. After isolation, blood samples were centrifuged (1000 g, 4°C) for 30 min. The serum supernatant was extracted to detect HA levels using a modified HA ELISA as previously described (17). To detect fluorescence emitted by 4-MU using flow cytometry on specific leukocyte subsets, peripheral blood red blood cells were lysed using Ammonium-Chloride-Potassium (ACK) buffer, and leukocytes were stained with the following fluorochrome-conjugated antibodies: BV650-CD3 (17-A2), BV785-CD4 (RM4-5), APC-CD11c (N418), PE-CD14 (Sa2-8), PE-Cy7-Ly-6G/C (RB6-8C5), PE-Cy5.5-B220 (RA3-6B2) and FITC-I-A/I-E (M5/114.15.2) from BD-Biosciences (San Jose, CA). Cells were stained for 30 minutes at room temperature following blockage of Fc receptors (CD16/32, 2.4G2) for 10 minutes. Samples were washed once with 1 mL FACS buffer (PBS containing 2 % FBS and 1 mM EDTA) and fixed with 1.6 % paraformaldehyde. Samples were run on a LSRII flow cytometer (Beckon Dickinson) at the Stanford Shared FACS Facility and data was analyzed using FlowJo software (TreeStar).

Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) analysis of UDPGA, 4-MU and 4-MUG concentrations in cells and mouse tissues

UDPGA, 4-MU and 4-MUG concentrations were measured via mass
4-MUG contributes to hyaluronan synthesis inhibition

spectrometry. UDP-glucuronic Acid-3C1, 5N2 Tri ammonium salt was used as the internal standard (IS) for UDPGA, 4-methylumbelliferone-13C4 (Toronto Research Chemicals, Ontario, Canada) was used as the IS for 4-MU and 7-hydroxycoumarin β-D-glucuronide (Toronto Research Chemicals, Ontario, Canada) as the IS for 4-MUG. The neat stock solutions of UDPGA, 4-MU and 4-MUG were mixed and diluted in 50 % methanol to prepare the spiking solutions ranging from 1 ng/mL to 5000 ng/mL for each compound.

Tissue samples were weighed and 1 volume of stainless steel bullet blender beads (Next Advance) and 3 volume of Milli Q water were added. Tissues were homogenized by a bullet blender (Next Advance) at 4°C according to manufacturer’s instruction. For calibration standards, 25 µl of blank serum or tissue homogenate was mixed with 25 µl of the spiking solutions. For samples to be tested, 25 µl of serum or tissue homogenate was mixed with 25 µl of 50 % methanol to make up the volume. 25 µl of a mixture of the two IS (1000 ng/ml each in 50 % methanol) was then added. After vortexing all standards and samples, 150 µl of methanol/acetonitrile 20:80 (v/v) was added to the mixture and the sample was further vortexed vigorously for 1 min followed by centrifugation at 3,000 rpm for 10 min. 100 µl of the supernatant was taken and diluted with 200µl of Milli Q water.

The LC-MS/MS system consists of an AB SCIEX QTRAP 4000 mass spectrometer linked to a Shimadzu UFLC system. Mobile phase A is HPLC grade water. Mobile phase B is HPLC grade acetonitrile. LC separation was carried out on a Phenomenex Luna PFP(2) column (3 µm, 150 × 2 mm) with isocratic elution using 45 % mobile phase B and a flow rate of 0.4 ml/min at room temperature. The analysis time was 2.5 min. 10 µl of the extracted sample was injected. The mass spectrometer was operated in the negative mode with the following multiple-reaction monitoring (MRM) transitions: m/z 174.7→132.9 for 4-MU, m/z 178.7→134.9 for 4-MU-13C4 (IS), m/z 350.8→174.9 for 4-MUG and m/z 336.9→160.9 for 7-hydroxy coumarin β-D-glucuronide (IS). Data acquisition and analysis were performed using the Analyst 1.6.1 software (AB SCIEX).

Measurement of HA levels

Cell and tissue samples were thawed and assayed for HA levels using a modified HA ELISA as previously described (17). Each sample was analyzed in triplicate with a mean value obtained per sample. For cell normalization, LI-COR CellTag 700 Stain was used according to the manufactures protocol.

Dimethylmethylen Blue (DMMB) assay

A total of 1x10⁷ B16F10 cells per T75 were treated for 24 hours with 4-MU and 4-MUG at 300 and 100 uM, supernatant was removed, cell layer was scraped and centrifuged. The resulting cell pellet was digested with 20 µg/ml proteinase K in TBS, 0.5 % Triton X100. Samples were digested at 56°C for 8 hours, following a heat inactivation for 20 min at 100°C. Insoluble debris was removed by centrifugation at 17,000 g. The GAG content was precipitated by addition of three volumes of ethanol overnight at 4°C, the pellets were collected by centrifugation, pellets were resuspended in 50 µl of water. 20 µl of the clarified suspension was used for the DMMB assay. The assay was performed as previously described (44).

Tissue processing and imaging

Tissues for histochemistry were extracted from the animals and immediately transferred into 10 % neutral buffered formalin (NBF). The tissue was processed to paraffin on a Leica ASP300 Tissue Processor (Leica Microsystems Inc.). Then 5 µm thick sections were cut on a Leica RM 2255 Microtomes (Leica Microsystems Inc.). All staining steps were performed on a Leica Bond Max™ automated immune histochemistry (IHC) stainer (Leica Microsystems Inc.). For HA affinity histochemistry (AFC) the Bond Intense R Detection kit, a streptavidin-HRP system, (Leica Microsystems, Inc.) was used with 4 µg/mL biotinylated-HABP in 0.1 % BSA-PBS as the primary. The Bond Polymer Detection Kit was used for all other immunohistochemistry. This detection kit contains a goat anti-rabbit conjugated to polymeric HRP and a rabbit anti-mouse post primary reagent for use with mouse primaries.
For Foxp3 and insulin (anti-insulin, ab7842 abcam) sections were incubated 60 min with 8 µg/mL rat anti-Foxp3 clone FJK-16s (eBioscience). Incubation with rabbit anti rat IgG (Vector Labs), post-primary was added in lieu of the post-primary reagent from the kit.

CD3 IHC required pre-treatment using heat-mediated antigen retrieval with EDTA at high pH (Bond epitope retrieval solution 2) for 20 min. Subsequently sections were incubated with 2.5 µg/mL rabbit anti-CD3 (A0452, Dako) and detection was performed using the Bond polymer Refine detection Kit.

All images were visualized using a Leica DMIRB inverted fluorescence microscope equipped with a Pursuit 4-megapixel cooled color/monochrome charge-coupled device camera (Diagnostic Instruments). Images were acquired using the Spot Pursuit camera and Spot Advance Software (SPOT Imaging Solutions; Diagnostic Instruments). Image analysis was performed accordingly using Image J (NIH), as described previously (17).

Mouse splenocyte isolation and regulatory T-cell identification

Collection of murine tissues and isolation of lymphocytes and splenocytes was performed as previously described (45). In brief, Spleens were extracted from mice and cells were harvested by homogenization through a 70 µm cell strainer. Red blood cells were lysed using ACK buffer. Splenocyte suspensions were stained and analyzed via flow cytometry using previously described protocols (46) using the following fluorochrome-conjugated antibodies: V500-CD3 (500A2), BV785-CD4 (RM4-5) and Al488-Foxp3 (FJK-16s). Flow cytometry was performed on an LSRII at the Stanford Shared FACS Facility and data analysis was done using FlowJo (Treestar).

RTqPCR

RT PCR for HAS1,2,3 was performed as previously described (47). In brief, cells and tissues were harvested for total RNA isolation using the High Pure RNA isolation kit (Roche Applied Science) and reverse-transcribed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). For real-time quantitative polymerase chain reaction (RTqPCR), all reagents were supplied by Applied Biosystems, unless otherwise noted. Relative quantification of HAS1, HAS2 and HAS3 gene expression was performed using TaqMan Gene Expression Assays HAS1 - Mm00468496_m1, HAS2 - Mm00515089_m1, HAS3 - Mm00515092_m1 respectively. Briefly, 100 ng cDNA was amplified in 1X TaqMan Gene Expression Master Mix with a 250 nM TaqMan probe in a 20 µL reaction. Melting curve analysis confirmed that only one product was amplified. Expression was normalized to actin. All reactions were run using the standard program for 50 cycles on an ABI7900HT thermocycler. All samples were performed in triplicate, and copy number estimates were generated from a standard curve created by using a selected reference cDNA template and TaqMan probe.

Viability and ROS studies

CD4+ T-cells were isolated via StemCell Technologies EasySep Mouse CD4+ T-cell Isolation Kit (cat. 19852) from DO11.10 mice spleen and pooled lymph nodes. These were activated overnight (20 Hours) with 20ng/ml PMA and 200 ng/ml Ionomycin in a round-bottom 96 well plate in R10 media. Fifty thousand activated CD4+ T-cells or U937 cells were plated for 24 hours with 4MU or 4MUG at 300 uM or 100 uM. Cells were then stained with either Annexin V APC (cat. 640920) for 15 min at room temperature in PBS supplemented with 2 % FBS and 2.5 mM CaCl2. Concurrently, the cells were stained with a Zombie Aqua Fixable Viability Kit (cat. 423102). Cells were washed twice with the calcium supplemented FACS buffer prior to fixation with 4 % PFA for 10 minutes. Cells were washed once and re-suspended in FACS buffer. To study ROS, the same treated cells were stained with CellROX Deep Red (cat. C10422). The cells were stained in 5 µM solution in R10 media for 30 minute at 37°C. Cells were washed once before zombie aqua viability staining prior to PFA fixation in the same manner as the Annexin V stain. After fixation, the cells were washed and resuspended in FACS buffer. Both groups of cells were analyzed on a Beckman Coulter Cytoflex and with FlowJo 10 software. Percent viability was determined as the percent of singlet cells that were negative for Zombie Viability dye. Annexin
V percentage was identified as the percent of live singlet cells with signal above background levels. For the CellROX, geometric MFI of live singlet cells was is given.

2-photon image analysis

2-photon excitation uses 2-photons of longer wavelength to achieve the same energy as one photon, so fluorophore with known excitation peak at 405 nm would be excited at 810 nm by 2-photon. The treated and control animals were euthanized, the different organs were enucleated, immediately secured in a specially designed chamber with PBS without fixation or manipulation, covered with a coverslip, and imaged with 2-photon microscope. Imaging of the tissue of interest was performed using an Ultima IV 2-photon microscope (Prairie Technologies) incorporating a pulsed laser (Deep See Mai Tai, Newport Corp.) with a tuning range of 690 to 1040 nm. The laser was tuned to 810 nm to excite 4-MU and dextran-TRITC within blood vessels. 4-MU signal was detected at the 460/50 nm emission filter and dextran-TRITC at 595/50nm.

At excitation of 920 nm collagen shows a distinct second harmonics signal at the 460/50 nm emission filter, whereas the signal of fluorophores such as 4-MU is undetectable at 920 nm excitation at the 460/50 nm emission filter. A water-immersion 20× (N.A. 0.95) objective (Olympus) was used. To create a typical Z-stack 80-100 μm-thick section, the tissue was scanned at 1 μm Z-steps at resolution of 1024X1024. Image analysis was performed using IMARIS software (Bitplane Inc.). Z stacks from 2 excitation wavelengths were merged into one image extended focus image, where second harmonics and 4-MU signal appear as separate channels.

Statistics

Data are expressed as means ± SEM of n independent measurements. The comparison between 2 groups was performed with unpaired t tests. The comparison between multiple groups was performed via One way ANOVA with Bonferroni post-test versus control. A p value less than <0.05 was considered statistically significant. Data analysis was performed with the use of GraphPad Prism 5.0 software.

Study approval

All animal experiments and use procedures were approved by the Institutional Animal Care & Use Committee at Stanford University School of Medicine.
Acknowledgements: We appreciate the use of the Stanford Neuroscience Microscopy Service Center, and we thank Dr. Andrew Olson for helpful discussions and advice regarding 2-photon measurements.

Conflict of interest: N.N., J.R. and P.L.B. are listed as inventors of the patents-pending (PCT/US2014/050770, S17-131US/BLSU-1-65422) filed by the Board of Trustees of the Leland Stanford Junior University.

Author contributions: N.N. and P.L.B. conceptualization; N.N., J.R., P.L.B. supervision; N.N., and P.L.B. funding acquisition; N.N, I.G., H.F.K., S.M.R., P.L.M, B.J.X., W.S., G.K. and P.L.B investigation; N.N., I.G., H.F.K., A.V.M., A.R.F., G.K. and P.L.B. visualization; N.N., W.S., M.G., J.W.F. and G.K., methodology; N.N. and P.L.B. writing-original draft; N.N., G.K. and P.L.B. project administration; N.N., H.F.K., A.V.M., A.R.F., G.K. and P.L.B. writing-review and editing.
4-MUG contributes to hyaluronan synthesis inhibition

References
1. Fraser JR, Laurent TC, and Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. *J Intern Med.* 1997;242(1):27-33.
2. Jiang D, Liang J, and Noble PW. Hyaluronan as an immune regulator in human diseases. *Physiol Rev.* 2011;91(1):221-64.
3. Termeer C, Sleeman JP, and Simon JC. Hyaluronan--magic glue for the regulation of the immune response? *Trends Immunol.* 2003;24(3):112-4.
4. Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycotransferases. *J Biol Chem.* 2007;282(51):36777-81.
5. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. *J Exp Med.* 2002;195(1):99-111.
6. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, and Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. *J Biol Chem.* 2004;279(17):17079-84.
7. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. *J Clin Invest.* 1996;98(10):2403-13.
8. Mahaffey CL, and Mummert ME. Hyaluronan synthesis is required for IL-2-mediated T cell proliferation. *J Immunol.* 2007;179(12):8191-9.
9. Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. *Proc Natl Acad Sci U S A.* 2002;99(36):3609-14.
10. Bollyky PL, Falk BA, Long SA, Preisinger A, Braun KR, Wu RP, et al. CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-beta. *J Immunol.* 2009;183(4):2232-41.
11. Bollyky PL, Lord JD, Masewicz SA, Evanko SP, Buckner JH, Wight TN, et al. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. *J Immunol.* 2007;179(2):744-7.
12. Bollyky PL, Wu RP, Falk BA, Lord JD, Long SA, Preisinger A, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. *Proc Natl Acad Sci U S A.* 2011;108(19):7938-43.
13. Cheng G, Swaidani S, Sharma M, Lauer ME, Hascall VC, and Aronica MA. Hyaluronan deposition and correlation with inflammation in a murine ovalbumin model of asthma. *Matrix Biol.* 2011;30(2):126-34.
14. Kang L, Lantier L, Kennedy A, Bonner JS, Mayes WH, Bracy DP, et al. Hyaluronan accumulates with high-fat feeding and contributes to insulin resistance. *Diabetes.* 2013;62(6):1888-96.
15. Mine S, Okada Y, Kawahara C, Tabata T, and Tanaka Y. Serum hyaluronan concentration as a marker of angiopathy in patients with diabetes mellitus. *Endocr J.* 2006;53(6):761-6.
16. Bollyky PL, Bogdani M, Bollyky JB, Hull RL, and Wight TN. The role of hyaluronan and the extracellular matrix in islet inflammation and immune regulation. *Curr Diab Rep.* 2012;12(5):471-80.
17. Nagy N, Kaber G, Johnson PY, Gebe JA, Preisinger A, Falk BA, et al. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. *J Clin Invest.* 2015;125(10):3928-40.
18. Hull RL, Johnson PY, Braun KR, Day AJ, and Wight TN. Hyaluronan and hyaluronan binding proteins are normal components of mouse pancreatic islets and are differentially expressed by islet endocrine cell types. *J Histochem Cytochem.* 2012;60(10):749-60.
19. Kuipers HF, Rieck M, Gurevich I, Nagy N, Butte MJ, Negrin RS, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. *Proc Natl Acad Sci U S A.* 2016;113(5):1339-44.
20. Yoshioka Y, Kozawa E, Urakawa H, Arai E, Futamura N, Zhuo L, et al. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. *Arthritis Rheum.* 2013;65(5):1160-70.

21. Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H, Golenbock D, et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. *J Biol Chem.* 2007;282(25):18265-75.

22. Bollyky PL, Falk BA, Wu RP, Buckner JH, Wight TN, and Nepom GT. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. *J Leukoc Biol.* 2009;86(3):567-72.

23. Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, et al. TLR4 is necessary for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. *Am J Respir Crit Care Med.* 2010;181(7):666-75.

24. Hull RL, Bogdani M, Nagy N, Johnson PY, and Wight TN. Hyaluronan: A Mediator of Islet Dysfunction and Destruction in Diabetes? *J Histochem Cytochem.* 2015;63(8):592-603.

25. Yung S, and Chan TM. The Role of Hyaluronan and CD44 in the Pathogenesis of Lupus Nephritis. *Autoimmune Dis.* 2012;2012:207190.

26. Lee-Sayer SS, Dong Y, Arif AA, Olsson M, Brown KL, and Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. *Front Immunol.* 2015;6:150.

27. Jackson DG. Immunological functions of hyaluronan and its receptors in the lymphatics. *ImmunoL Rev.* 2009;230(1):216-31.

28. Petrey AC, and de la Motte CA. Hyaluronan, a crucial regulator of inflammation. *Front Immunol.* 2014;5:101.

29. Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. *Front Immunol.* 2015;6:123.

30. Bollyky PL, Evanko SP, Wu RP, Potter-Perigo S, Long SA, Kinsella B, et al. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. *Cell Mol Immunol.* 2010;7(3):211-20.

31. Nagy N, Freudenberger T, Melchior-Becker A, Rock K, Ter Braak M, Jastrow H, et al. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. *Circulation.* 2010;122(22):2313-22.

32. Kakizaki I, Kojima K, Takagaki K, Endo M, Kannagi R, Ito M, et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. *J Biol Chem.* 2004;279(32):33281-9.

33. Kultti A1, Pasonen-Seppänen S, Jauhiainen M, Rilla KJ, Kärnä R, Pyöriä E, Tammi RH, Tammi MI. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. *Exp Cell Res.* 2009 Jul 1;315(11):1914-23. doi: 10.1016/j.yexcr.2009.03.002. Epub 2009 Mar 13.

34. Vigetti, D., Rizzi, M., Viola, M., Genasetti, A., Clerici, M., Bartolini, B., Hascall, V. C., De Luca, G., and Passi, A. (2009) The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. *Glycobiology.* 19, 537–546

35. Vigetti, D., Ori, M., Viola, M., Genasetti, A., Karousou, E., Rizzi, M., Pallotti, F., Nardi, I., Hascall, V. C., De Luca, G., and Passi, A. (2006) Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. *J. Biol. Chem.* 281, 8254–8263

36. Mueller AM, Yoon BH, and Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmune and increases CXCL12 expression in the inflamed CNS. *J Biol Chem.* 2014;289(33):22888-99.

37. Takeda S, and Aburada M. The choleretic mechanism of coumarin compounds and phenolic compounds. *J Pharmacobiodyn.* 1981;4(9):724-34.
38. Garrett ER, Venitz J, Eberst K, and Cerda JJ. Pharmacokinetics and bioavailabilities of hymecromone in human volunteers. *Biopharm Drug Dispos.* 1993;14(1):13-39.
39. Mulder GJ, Brouwer S, Weitinger JG, Scholtens E, and Pang KS. Glucuronidation and sulfation in the rat in vivo. The role of the liver and the intestine in the in vivo clearance of 4-methylumbelliferone. *Biochem Pharmacol.* 1985;34(8):1325-9.
40. Kuipers HF, Nagy N, Ruppert SM, Sunkari VG, Marshall PL, Gebe JA, Ishak HD, Keswani SG, Bollyky J, Frymoyer AR, Wight TN, Steinman L, Bollyky PL. The pharmacokinetics and dosing of oral 4-methylumbelliferone for inhibition of hyaluronan synthesis in mice. *Clin Exp Immunol.* 2016 Sep;185(3):372-81.
41. Vigetti, D., Viola, M., Karousou, E., De Luca, G., and Passi, A. (2014) Metabolic control of hyaluronan synthases. *Matrix Biol.* 35, 8–13
42. Berninsone, P., Hwang, H. Y., Zemtseva, I., Horvitz, H. R., and Hirschberg, C. B. (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. *Proc. Natl. Acad. Sci. U.S.A.* 98, 3738–3743
43. Medina, C. O., N. Nagy, and P. L. Bollyky. 2018. Extracellular matrix and the maintenance and loss of peripheral immune tolerance in autoimmune insulitis. *Curr. Opin. Immunol.* 55: 22–30.
44. Coulson-Thomas, V., and Gesteira, T. (2014) Dimethylmethylene Blue Assay (DMMB). *BIO-PROTOCOL.* 10.21769/BioProtoc.1236
45. Ruppert, S. M., B. A. Falk, S. A. Long, and P. L. Bollyky. 2015. Regulatory T Cells Resist Cyclosporine-Induced Cell Death via CD44-Mediated Signaling Pathways. *Int J Cell Biol* 2015: 614297–10
46. Bollyky, P. L., J. D. Lord, S. A. Masewicz, S. P. Evanko, J. H. Buckner, T. N. Wight, and G. T. Nepom. 2007. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. *J. Immunol.* 179: 744–747.
47. Bollyky, P. L., S. P. Evanko, R. P. Wu, S. Potter-Perigo, S. A. Long, B. Kinsella, H. Reijonen, K. Guebtner, B. Teng, C. K. Chan, K. R. Braun, J. A. Gebe, G. T. Nepom, and T. N. Wight. 2010. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. *Cell. Mol. Immunol.* 7: 211–220.
FOOTNOTES
This work was supported in part by National Institutes of Health grants R01 DK096087-01 and R01 HL113294-01A1 to P.L.B., U01 AI101984 to P.L.B, and grants from Stanford SPARK and the Stanford Childrens’ Health Research Institute (CHRI) to P.L.B. 2-photon microscopy work was performed at Stanford Neuroscience Microscopy Service, supported by NIH NS069375. This work was also supported by grants from the Juvenile Diabetes Research Foundation (JDRF) 3-PDF-2014-224-A-N to N. This work was supported by the Pilot and Feasibility grant from the Stanford Diabetes Research Center, NIH P30DK116074 to N. Nagy.
4-MUG contributes to hyaluronan synthesis inhibition

Figure 1. 4-MUG, a metabolite of 4-MU, inhibits HA synthesis. A. Molecular structures for 4-MU and its primary metabolites, 4-MUG and 4-MUS. B. Concentrations of 4-MU and its metabolites in plasma of animals fed 4-MU chow for two weeks, measured via HPLC. N = 3 animals per group. C. Different concentrations of 4-MU and 4-MUG in the serum of mice fed 4-MU for two weeks measured via HPLC. N = 3 animals per group. D, E. HA production by B16F10 cells cultured for 48 hours in (D) 4-MU or (E) 4-MUG. F. Representative images of HA staining in B16F10 cells cultured in DMSO as control (left), 4-MU (middle) or 4-MUG (right). Scale bar = 50 µm. Data represent mean ± SEM; *,p < 0.05 by unpaired t test or one way ANOVA with Bonferroni post-test.
Figure 2. **4-MUG is converted into 4-MU in vitro.**

A. Fluorescence visualization in wells of a 96-well plate which was filled with 200 µl PBS and 10 % FCS, in some wells 4-MU (middle) and 4-MUG (right) were added, control wells remained untreated (left). B. 4-MU and 4-MUG were separately added to DMEM and their fluorescent signal over time was measured as mean fluorescent intensity (MFI). Fluorescent values of 4-MUG were normalized to the 4-MU fluorescence. C. Fluorescence of 4-MU and 4-MUG from B16F10 cells incubated for 24, 48 or 72 hours with 4-MU and 4-MUG examined using flow cytometry. D. Fluorescence of 4-MU and 4-MUG signal from 4-MU and 4-MUG treated B16F10 cells pre- and post-permeabilization was examined by flow cytometry.
Figure 3. 4-MU is taken up by leukocytes in vivo. A. Mice were treated with 4-MU and 4-MU signal on different cell subsets in the blood was analyzed by flow cytometry, as measured in the Pacific Blue channel, before and 2, 7 and 14 days after start of treatment. Bold histograms depict signal in 4-MU treated mice, tinted histograms depict background Pacific Blue signal in untreated mice.
Figure 4. 4-MU tissue binding can be visualized using 2-photon microscopy. Representative images of mouse lymph nodes stained for H&E (A) and HA (B), c = capsules, GC = germinal centers, IFR = inter-follicular regions. Scale bar = 150 µm. C,D. Mice were treated with 4-MU and the tissue distribution could be detected and visualized in the lymph node. Representative images showing 4-MU signal in blue/green and collagen signal in purple. Scale bar = 100 µm. E,F. representative images of mouse lymph nodes from 4-MU treated (E) and untreated control (F) mice, showing signal from 4-MU, T-cells and BMDCs. Scale bar = 100 µm.
Figure 5. 4-MU fluorescence can be used to show tissue distribution via 2-photon imaging. Mice were treated with 4-MU and the tissue distribution could be detected and visualized in multiple organs. Representative images showing 4-MU and collagen signals in pancreas (A), lymph node (B), adipose tissue (C) and connective tissue (D). In each of those tissues 4-MU has a specific distribution as shown at 810 nm wavelength (shown in light green). Collagen was visualized at 920 nm (shown in purple), the 4-MU and collagen channel were merged for better structural orientation in the tissue. Scale bar = 100 µm.
Figure 6. 4-MUG fluorescence can be detected in tissues via 2-photon imaging.
A. Representative 2-photon images of muscle tissue from 4-MU treated mice and 4-MUG treated mice (B) show a specific signal in the 4-MU channel at a wavelength of 810 nm. C. Representative 2-photon images of muscle tissue from untreated control mice (upper part) and 4-MU treated mice (lower part). D. Representative 2-photon images of muscle tissue from 4-MU treated mice, where the muscle tissue from one mouse (upper part) was hyaluronidase digested. Untreated muscle tissue from a 4-MU treated mouse (lower part) serves as control. Upper and lower parts are indicated via a dashed line drawn in the picture. In each of those tissues 4-MU has a specific distribution as shown at 810 nm wavelength. Collagen was visualized at 920 nm, the 4-MU and collagen channel were merged for better structural orientation in the tissue. Scale bar = 100 µm.
Figure 7. 4-MU and 4-MUG concentrations in serum and organs from 4-MU and 4-MUG treated mice. 4-MU and 4-MUG concentrations were analyzed in the serum (A), pancreas (C), fat (E), liver (G) and muscle (I) from untreated control mice, 4-MU and 4-MUG treated mice using LC-MS/MS. N = 3-5 mice per group. B,D,F,H,J. Calculated molar ratio of 4-MU and 4-MUG from serum (B), pancreas (D), fat (F), liver (H) and muscle (J) in the different treatment groups.
Figure 8. 4-MU and 4-MUG treatment prevents progression in autoimmune diabetes and increases Treg numbers. A. Representative HA staining of pancreatic tissue from untreated DORmO mice (control), DORmO mice fed 4-MU and DORmO mice fed 4-MUG, at 12 weeks of age. B. Blood glucose of untreated DORmO mice, and DORmO mice fed 4-MU and 4-MUG, beginning at 5 weeks of age, and maintained on 4-MU and 4-MUG for 15 weeks. N = 5-10 mice per group. Data represent mean ± SEM. C. Representative FoxP3 staining (brown) of pancreatic islet tissue from untreated (control) and 4-MU treated DORmO mice. Original magnification, ×40. D-G. Numbers of CD3+ cells, CD4+ amongst CD3+ cells and Foxp3+ amongst CD3+/CD4+ cells, in splenocytes isolated from mice that were treated with 4-MU (0.5 mg i.p.) or 4-MUG (1 mg i.p.) daily for 14 days, as analyzed by flow cytometry. Scale bar = 20 µm. *p < 0.05 by unpaired t test with Welch’s correction.
4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition
Nadine Nagy, Irina Gurevich, Hedwich F. Kuipers, Shannon M. Ruppert, Payton L. Marshall, Bryan J. Xie, Wenchao Sun, Andrey V. Malkovskiy, Jayakumar Rajadas, Maria Grandoch, Jens W. Fischer, Adam R. Frymoyer, Gernot Kaber and Paul L. Bollyky

J. Biol. Chem. published online March 26, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA118.006166

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts