Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems

Konstantin I. Galkin 1,*, Irina V. Sandulenko 2 and Alexander V. Polezhaev 1,2

1 Laboratory of Functional Composite Materials, Bauman Moscow State Technical University, 2nd Baumanskaya Street, 5/1, 105005 Moscow, Russia; avp@emtc.ru
2 Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street, 28, 119991 Moscow, Russia; ira17.rock@mail.ru

* Correspondence: kgalkin@emtc.ru

Abstract: This mini-review highlights the recent research trends in designing organic or organic-inorganic hybrid molecular, biomolecular and macromolecular systems employing intermolecular Diels–Alder cycloadditions of biobased, furan-containing substrates and maleimide dienophiles. The furan/maleimide Diels–Alder reaction is a well-known process that may proceed with high efficiency under non-catalytic and solvent-free conditions. Due to the simplicity, 100% atom economy and biobased nature of many furanic substrates, this type of [4+2]-cycloaddition may be recognized as a sustainable “click” approach with high potential for application in many fields, such as fine organic synthesis, bioorganic chemistry, material sciences and smart polymers development.

Keywords: plant biomass; platform chemicals; biobased furans; maleimides; Diels–Alder reaction; dynamic systems; dynamers; covalent adaptable networks

1. Introduction

Chemical modification of biomass-derived furanic platform chemicals furfural (FF) and 5-(hydroxymethyl)furfural (HMF) is a growing area of sustainable chemistry that is considered one of the general approaches for the replacement of traditional oil-based chemical production by biorefining based on renewable resources [1–5]. The major synthetic transformations of renewable furans are focused on the production of biofuels, chemicals and materials, in accordance with the sustainability concept [6–11]. Diels–Alder (DA) cycloaddition represents an important type of dynamic process that has found wide applications as a “click” reaction for the production of monomolecular products as well as for materials development [12–14]. The common mechanism of DA reactions includes the interaction of the highest occupied molecular orbital (HOMO) of the diene with the lowest unoccupied molecular orbital (LUMO) of dienophile, resulting in the formation of a new, six-membered ring. The relation between HOMO and LUMO energies determines the key characteristics of the DA reactions, such as regio- and diastereoselectivity, which strongly depend on the chemical structure of used substrates and reaction conditions [15].

The combination of diene and dienophile with opposite electronic characteristics is most favorable for DA reaction.

Electron-poor dienophiles (particularly maleimides) showed high activity in DA cycloadditions with many biobased furans. Some of these reactions proceed efficiently under solvent-free and non-catalytic conditions [16]. The DA reaction of a furanic diene and maleimide dienophile results in the formation of oxabicyclic core (oxanorbornene) as a single diastereomer or as a mixture of the kinetically favored endo form and the more thermodynamically stable exo product. The DA cycloadditions of donor-substituted furans with maleimides are thermodynamically favorable processes, while electron-poor furanic dienes display lower activity in these reactions [17,18].
The intermolecular furan/maleimide Diels–Alder (fmDA) reaction is an efficient approach for the formation of carbon–carbon bonds that was widely used for the construction of functional cyclic products with aliphatic or aromatic structures. On the other hand, the reversibility of fmDA cycloadditions that can be initiated by various stimuli (such as temperature, light, mechanical or magnetic force) is a prominent advantage when designing dynamic architectures. Due to its high efficiency, excellent selectivity, 100% atom economy and the biobased nature of most of the furanic substrates, the fmDA reaction may be considered as a sustainable «click» approach for the production of functional or dynamic molecular, biomolecular and macromolecular systems (Figure 1).

Several recent reviews covered the scientific literature regarding the development of functional or dynamic macromolecular systems employing the fmDA approach [19–21]; other reviews provided detailed information about the reactivity of biobased furans in DA cycloadditions [16,22,23]; however, in the context of fmDA reactions, these coverages are not comprehensive or need updating. In this review, we briefly survey recent research trends in the application of the furan/maleimide-based «click» methodology for the production of functional or dynamic molecular, biomolecular and macromolecular systems. The information provided in this mini-review will be helpful to the scientists in many fields, including fine organic synthesis, medical and pharmaceutical research, polymers development and material sciences.

2. Application of fmDA “Click” Reaction for Synthesis of Functional Fine Chemicals

DA adducts of biobased monomeric furans and maleimide dienophiles have high synthetic potential as building blocks in fine organic synthesis. The general routes of applications include the synthesis of aliphatic or aromatic cyclic products, biologically active compounds, monomers and polyfunctional scaffolds. Reductions in the double bond in the furan-derived oxanorbornenes is a route to oxanorbornanes, structural analogs of the bioactive small molecules cantharidin (natural terpenoid isolated from Spanish fly blister beetles) and its synthetic analogs norcantharidin and norcantharimides, which also possesses strong biological activity (Figure 2) [24–29]. The introduction of a maleimide group instead of anhydride leads to an increase in the chemical stability of norcatharimides in comparison to cantharidines, but can lead to decreases in biological activity [30].
An important parameter of the fmDA reaction that should be taken into account in the development of bioactive compounds is diastereoselectivity, because endo and exo diastereomers can exhibit different biological activity [31]. The literature data on the diastereoselectivity of the DA reactions between the most common biobased furans and N-alkyl or N-aryl maleimides are summarized in Tables 1 and 2. Based on these data, some typical patterns for the furan/alkene DA reaction [16] were also found for DA reactions with maleimides as dienophiles.

Table 1. Results of the DA reactions of maleimide and N-alkyl maleimides with biobased furans (selected examples).

№	R²	Furan	Conditions	Endo/Exo Ratio	Yield of DA Adducts (%)
1	H	2-MF	Et₂O, RT, 3 days	N.d.	21 (endo), [32]
2	H	2-MF	THF, reflux, 4 h	0:100	94, [33]
3	H	DMF	CH₃CN, 60 °C, overnight	1:4	N.d., [34]
4	H	BHMF	Ethyl acetate, 24 °C, 16 h	>99:1	83, [35]
5²	H	BHMF	H₂O, 24 °C, 16 h	>99:1	75, [35]
6²	H	BHMF diethyl ester	Ethyl acetate, 24 °C, 32 h	>99:1	62, [35]
7	H	BAMF	Ethyl acetate, 24 °C, 24 h	>97:3	42, [35]
8²	H	BAMF	Ethyl acetate, 24 °C, 32 h	>97:3	76, [35]
9²	H	Ethyl acetate, 24 °C, 32 h	Ethyl acetate, 24 °C, 32 h	N.d.	51, [35]
10²	H	Ethyl acetate, 24 °C, 32 h	Ethyl acetate, 24 °C, 32 h	N.d.	42, [35]
11	H	HMF dioxolane acetal	THF, 50 °C, 3 days	4:1	64.1, [36]
12	H	HMF dioxolane acetal	THF, 50 °C, 3 days	4:1	94.7, [36]
13	H	THF, 50 °C, 3 days	THF, 50 °C, 3 days	5:1	95.2, [36]
14	H	FA	Et₂O, 24 °C	N.d.	35 (endo), [30]
15²	H	FA	THF, RT	N.d.	51 (endo), [30]
16	Me	2-MF	Toluene, 90 °C	0:100	92, [37]
17	Me	FA	Et₂O, 90 °C	21:79	43, [38]
18	Me	FA acetate	CH₂Cl₂, 23 °C	77:23	N.d., [39]
19	Me	FA allyl ester	Toluene, 50 °C, 24 h	N.d.	65 (endo), [40]
20	Me	FA tert-butyl ester	CH₂Cl₂, 23 °C	71:29	N.d., [39]
21	Me	Furfural dioxolane acetal	CH₂Cl₂, 23 °C	87:13	N.d., [39]
Table 1. Cont.

No.	R2	Furan	Conditions	Endo/Exo Ratio	Yield of DA Adducts (%)	Citation
22	Me	R1 = Me, R2 = CH3OAc	CH2Cl2, 23 °C	73:27	N.d., [39]	
23	Et	2-MF	H2O, 65 °C	1:4:1	100, [41]	
24	Et	DMF	H2O, RT	3:2	100, [41]	
25	Pr	THF, RT		4:1	66, [30]	
26	Pr	FA iso-propyl ester	CHCl3, 55 °C	60:40	N.d., [42]	
27	Pr	CHCl3, 55 °C		100:0	N.d., [42]	
28	Bu	2-MF	H2O, 65 °C	0:100	100, [41]	
29	Bu	DMF	H2O, RT	1:8	100, [41]	
30	Bu	FA iso-propyl ester	CHCl3, 55 °C	51:49	N.d., [42]	
31	Bn	FA	CH3CN, 35 °C	70:30	75, [43]	
32	Bn	FA iso-propyl ester	CHCl3, 55 °C	44:56	N.d., [42]	
33	Bn	CH3CN, 70 °C		3:1	31 4, [44]	
34	Bn	CH3CN, 70 °C, 16 h		N.d.	69 (endo), 21 (exo), [44]	
35	2-Hydroxyethyl	FA	Benzene, reflux	0:100	86, [45]	
36	2-Hydroxyethyl	DMF	CH3CN, 65 °C	1:4	100, [46]	
37	2-Phenyl	2-MF	CH3Cl2, 38 °C	28:72	100, [46]	
38	2-Phenyl	DMF	CH3CN, 60 °C	78:22	100, [46]	
39	2-Phenyl	DMF	CH3Cl2, RT	22:78	100, [46]	
40	3-Hydroxypropyl	FA	Toluene, 80 °C	30:70 5	77, [47]	
41	Methoxy-2-propyl	FA acetate	CH3Cl2, 23 °C	76:24	N.d., [39]	

1 Yield of crude product. 2 One-pot DA/hydrogenation on Pd/C. 3 Determined by NMR. 4 Was obtained as an inseparable mixture of the endo and exo (2:1) cycloadducts. 5 Slowly transformed to the pure exo isomer over a period of several months. N.d.—not determined.

A high endo-diastereoselectivity may be reached under kinetic control of the reaction, while exo products are more thermodynamically favorable [16,48]. The nature of the substituents at the furan ring and N-atom of maleimide have a significant influence on the efficiency and selectivity of cycloaddition. In some cases, HMF-derived furans showed higher endo-selectivity in DA reactions with maleimides than furfural-derived furans (Table 1, entries 4–8, 11–13). N-Aryl maleimides typically showed lower diastereoselectivity in cycloadditions with furans than N-alkyl maleimides. However, a high exo-diastereoselectivity for N-phenyl maleimide was reached by conduction of the DA reaction with FA under solvent-free conditions at high temperatures (Table 2, entry 5).

A high level of progress was recently achieved for DA reactions with low reactive acceptor-substituted furans by Bruijinx and co-workers. They found a significant increase in the efficiency of the DA reaction of maleimides with furanic aldehydes, furioic acids and derivatives when water was used as a solvent (the results of these reactions are presented in Table 3) [17,18]. The impact of water on the efficiency of the DA reaction was multiple and depended on the nature of the furanic substrates and their physical properties. In the case of water-soluble substrates (such as furioic acids), this role can be attributed to the stabilization of the transition state and DA adduct by H-bonding with water [18]. A hydrophobic effect and hydrogen bonding with water molecules at the interface may play an activating role in DA reaction for water-insoluble furanic substrates [18]. Furanic aldehydes react with maleimides in water due to the possibility of hydration of the aldehyde group that stabilizes the cycloadducts [17]. DFT calculations showed that the formation of furanic aldehyde–maleimide adducts is possible if hydration occurs either prior to (which led to an increase in the rate of the DA reaction) or after the cyclization step (which led to a decrease in the rate of the retro-DA reaction) [17]. It should be noted that furanic derivatives containing electron-withdrawing substituents usually showed a high exo-diastereoselectivity in DA reactions with maleimides (Table 3).
Table 2. Results of the reactions of N-aryl maleimides with biobased furans (selected examples).

№	Ar	Furan	Conditions	Endo/Exo Ratio	Yield of DA Adducts (%)	Citation
1	Ph	2-MF	H₂O, 65 °C	1.6:1	100 [41]	
2	Ph	2-MF	4:1 toluene/benzene, RT, 1.1 GPa	1.66:1	85 [49]	
3	Ph	2-MF	CDCl₃, 60 °C	Exo with traces of endo	90 [50]	
4	Ph	2-MF	Hexane or heptane, TFA, glass beads, 80 °C, 5–8 days¹	(–)-Exo, 86–90 ee	80 [50]	
5	Ph	FA	Neat, 140 °C, 8 min	Exo	82 [51]	
6	Ph	FA	RT, 12 h	71.29	66 [51]	
7	Ph	FA allyl ester	Toluene, 50 °C, 24 h	N.d.	26 (exo) [40]	
8	Ph	FA acetate	CH₂Cl₂, 23 °C	65:35	N.d. [39]	
9	Ph	FA vinyl ester	Et₂O, 22–24 °C	1:2.8	47 [52]	
10	Ph	FA vinyl ester	Toluene, 80 °C	4:1	66 [52]	
11	Ph	DMF	H₂O, RT	1.3:1	100 [41]	
12	p-Tolyl	DMF	Toluene, 60 °C, 3 h	Exo	50 [53]	
13	p-Tolyl	DMF	Neat, 94 °C, 1 h	Exo	60 [54]	
14	m-Tolyl	DMF	CHCl₃, 55 °C	Exo	67:33 [42]	
15	PhF₅	2-MF	Neat, reflux	Exo	50 [55]	
16	4-Hydroxyphenyl	FA	Acetone, 55 °C	Exo	71 [56]	
17	4-Hydroxyphenyl	FA	CH₃CN, 35 °C	80:20	N.d. [56]	
18	p-Methoxyphenyl	FA	CH₃CN, 35 °C, 18 h	>85 (endo) [44]		
19	p-Methoxyphenyl	FA acetate	CH₂Cl₂, 23 °C	67:33	N.d. [39]	
20	p-Methoxyphenyl	DMF	Neat, 94 °C, 1 h	17:83	25 [54]	
21	p-Methoxyphenyl	CHCl₃, 75 °C,	N.d. [39]	61 (endo), <5 (exo) [44]		
22	p-Methoxyphenyl	CHCl₂, 55 °C, 8 h	N.d. [57]	<5 (endo), 63 (exo) [44]		
23	p-Chlorophenyl	DMF	Neat, 94 °C, 1 h	6:94	46 [54]	
24	m-Nitrophenyl	DMF	Neat, 94 °C, 1 h	5:95	14, [54]	
25	p-Nitrophenyl	FA	CH₃CN, 40 °C	70:23	52 [44]	
26	p-Nitrophenyl	FA acetate	CH₂Cl₂, 23 °C	55:45	N.d. [39]	
27	p-Nitrophenyl	CHCl₂, 50 °C, 72 h	N.d. [39]	26 (endo), <5 (exo), [44]		
28	p-Nitrophenyl	CHCl₂, 80 °C,	N.d. [39]	<5 (endo), 31 (exo) [44]		
29	BMI as dienophile	FA	Toluene, 75–80 °C, two days	Mostly exo	92 [57]	
30	BMI as dienophile	FA iso-propyl ester	CHCl₃, 55 °C	19:81	N.d., [42]	

¹ Reaction was conducted under dynamic enantiomeric crystallization conditions. BMI—4,4′-bis(maleimido)diphenylmethane. N.d.—not determined.

Acid- or base-catalyzed dehydration of the furan-derived oxanorbornenes is an important approach to access a renewable aromatics [15,22,23]. In the case of furan–maleimide-derived oxanorbornenes, this reaction led to the formation of renewable phthalimides (Scheme 1). The few examples of this reaction are presented in the scientific literature involving oxanorbornenes obtained from DMF [53] or furoic acid [18]. However, in the case of FF- or HMF-derived dimethyl hydrazones reacting with maleimides, aromatiza-
tion proceed without any catalysts via spontaneous ring-opening/aromatization process (Scheme 1b) [58] and led to adducts in a high yields using green solvents such as water [59] or ionic liquids [60].

Table 3. The results of water-mediated DA cycloadditions of acceptor-substituted furans with maleimides.

№	Furanic Substrate	R²	Conditions	Conversion ¹/ Isolated Yield	Selectivity ¹
1	R = R¹ = H	H	H₂O, 60 °C, 16 h	38 ²	endo/exo 8:30, endo'/exo' 0:0
2	R = R¹ = H	Me	H₂O, 60 °C, 16 h	63 ²	endo/exo 18:40, endo'/exo' 1:3
3	R = R¹ = H	Et	H₂O, 60 °C, 16 h	43 ²	endo/exo 8:28, endo'/exo' 1:6
4	R = R¹ = H	iPr	H₂O, 60 °C, 16 h	20 ²	endo/exo 1:11
5	R = R¹ = H	Ph	H₂O, 60 °C, 16 h	7 ²	endo/exo 0:1, endo'/exo' 1:5
6	R = Me, R¹ = H	Me	H₂O, 60 °C, 16 h	14 ²	endo/exo trace:32
7	R = CH₃OH, R¹ = H	Me	H₂O, 60 °C, 16 h	50 ²	endo/exo 0:0
8	R = CH₂OMe, R¹ = H	Me	H₂O, 60 °C, 16 h	18 ²	endo/exo trace:32
9	R = H, R¹ = CH₃	Me	H₂O, 60 °C, 16 h	32/32	endo/exo trace:32
10	R = H, R¹ = OH	H	NaOH, H₂O, 50 °C, 16 h	95/68	endo/exo trace:95
11	R = H, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	98/92	endo/exo 1:97
12	R = H, R¹ = OH	iPr	NaOH, H₂O, 50 °C, 16 h	96/72	endo/exo trace:59
13	R = H, R¹ = OH	Ph	NaOH, H₂O, 50 °C, 16 h	51/21	endo/exo trace:51
14	R = H, R¹ = OH	Cy	NaOH, H₂O-MeOH, 50 °C, 16 h	56/31	endo/exo trace:53
15	R = H, R¹ = OMe	H	H₂O, 50 °C, 16 h	67/43	endo/exo 2:65
16	R = H, R¹ = OMe	Me	H₂O, 50 °C, 16 h	70/52	endo/exo 5:65
17	R = H, R¹ = OMe	Et	H₂O, 50 °C, 16 h	65/47	endo/exo 4:61
18	R = H, R¹ = OEt	Me	H₂O, 50 °C, 16 h	63/29	endo/exo 4:59
19	R = H, R¹ = OiPr	Me	H₂O, 50 °C, 16 h	54/26	endo/exo 4:50
20	R = H, R¹ = OBu	Me	H₂O, 50 °C, 16 h	54/25	endo/exo 5:51
21	R = H, R¹ = NH₂	Me	H₂O, 50 °C, 16 h	94/77	endo/exo 3:91
22	R = H, R¹ = NMe₂	Me	H₂O, 50 °C, 16 h	81/41	endo/exo 4:77
23	R = H, R¹ = NHOH	Me	H₂O, 50 °C, 16 h	92/69	endo/exo 16:76
24	R = Me, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	93/75	endo/exo 5:88
25	R = CH₃OH, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	91/51 ³	endo/exo 19:72
26	R = CH₂OH, R¹ = OH	Ph	NaOH, H₂O, 50 °C, 16 h	28/11	endo/exo trace:25
27	R = CHO, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	<10/N.d.	endo/exo trace:5
28	R = COOH, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	20/N.d.	endo/exo 0:0
29	R = COOH, R¹ = OH	Me	NaOH, H₂O, 50 °C, 16 h	56/N.d.	endo/exo 0:56

¹ Determined by NMR. ² Products were not isolated. ³ After hydrogenation on Pd/C. ⁴ Extensive hydrolysis of N-substituted maleimide to maleic acid. N.d.—not determined. Data for entries 1–9 were obtained from reference [17]: Data for other entries were obtained from reference [58].
Scheme 1. (a) Synthesis of renewable phthalimides by dehydration of oxanorbornenes. Reaction conditions: N-(p-tolyl)-maleimide, p-TsOH, toluene, 80 °C, 16 h, 100% yield for dehydration of oxanorbornene 1; N-Me-maleimide, HBr in AcOH, RT to 60 °C, 66% yield for dehydration of oxanorbornene 2. (b) General scheme for the synthesis of renewable phthalimides starting from FF- or HMF-derived dimethyl hydrazones by spontaneous DA/dehydration reactions.

3. Application of a fmDA “Click” Approach for the Development of Dynamic Molecular, Biomolecular and Organic-Inorganic Hybrid Systems

The reversibility of the fmDA cycloadditions used to link diverse chemical, biochemical and inorganic scaffolds was widely applied in the design of dynamic molecular, biomolecular and organic–inorganic hybrid architectures. The DA reaction of an FA or FA ester 3 with maleimides containing aromatic amine groups led to cycloadducts 6 or 7, which exhibit fluorescent behavior and decompose back into non-fluorescent furan and maleimide upon heating (Scheme 2a) [61,62]. Thus, DA cyclization promotes fluorescence in these systems, and thermally induced rDA reaction quenches it. Cycloadduct 7 displays amphiphilic properties due to the presence of hydrophobic maleimide moiety and hydrophilic oxanorbornene fragment [62].

Scheme 2. Dynamic molecular (a) and hybrid (b) light-emitting dye systems based on fmDA cycloadDITION. The dye fragment is highlighted by blue color in a molecular structure.

If the fluorescent molecule remains close to the surface of the aurum nanoparticles (Au-NPs), the fluorescence emission from the dye molecule is efficiently quenched by Au-NPs [63]. The photothermal rDA reaction of non-fluorescent conjugate 8 led to the release of dye 9 from the nanoparticle surface, providing fluorescence that was turned “On” (Scheme 2b) [63]. The use of one diastereomer was advantageous for this dynamic
photothermally induced dye-emission system. Isomer 8-endo decomposed in 63% yield after 5 h compared to 45% after 8 h for its exo counterpart. Monomolecular or hybrid dynamic light-emitting systems have high potential in sensor applications or molecular imaging.

An important application of fmDA “click” methodology is designing organic or hybrid conjugate systems for drug-delivery purposes [64]. The targeted delivery of bioactive molecule can be carried out using fmDA conjugation of functionalized drug with biocompatible support such as carbohydrate [65–67] or metal nanoparticles [68,69] (Scheme 3). The controllable release of drugs in vitro can be realized by the introduction of enzymatically active linkers. Some conjugates of Doxorubicin with furan-containing oligosaccharides (glyco-prodrugs) were synthesized by DA conjugation with maleimide-functionalized Doxorubicin containing enzymatically cleavable linkers [67]. In vitro experiments demonstrated an efficient, controllable release of the cytotoxic Doxorubicin-containing molecule from glyco-prodrug upon enzymatic cleavage. An alternative approach to drug release is thermally induced rDA cleavage, which has been efficiently demonstrated for hybrid systems containing drug and magnetically active NPs [68].

![Scheme 3](image-url)

Scheme 3. Design of drug-delivery systems using fmDA “click” conjugation. M-Np—metal nanoparticle.

Thermo-responsive non-wetting surfaces were prepared using the fmDA reaction of hydrophobic maleimides or polyfluorinated furan with DA counterparts attached to a glass slide and capillaries (Scheme 4) [70]. However, attempts to demonstrate a self-purging capillary were unsuccessful due to the incomplete surface functionalization or surface rearrangement. As suggested by the authors, residual functional groups such as amines, amides, esters or ethers were most likely involved in H-bonding, resulting in a residual H$_2$O layer that inhibits the self-purging phenomenon [70].
Han et al. reported that the incorporation of three or more furanic or maleimide functionalities into the structure of monomers leads to the formation of branched, hyperbranched or cross-linked linear pre-polymers provides the formation of linear dynamic polymers and co-polymers, while the fmDA approach depending on the structure and ratio of the initial components. The reversibility of the fmDA reaction allows for dynamic polymers (dynamers) characterized by isomerism is a major concern in the development of dynamers because low diastereoselectivity of fmDA polymerization or cross-linking may influence the physical properties of resulting dynamers [42,79].

The combination of several types of dienic structures with different reactivities in DA reactions with maleimides could provide sequence-controlled polymerization and self-assembly. Sun and co-workers described the topological transformations of a linear amphiphilic fmDA block co-polymer or a segmented hyperbranched polymer into various macromolecular architectures via the diene (furan or anthracene) displacement reaction (Scheme 5) [73]. Han et al. reported a one-shot, sequence-controlled copolymerization of (ROMP) [37,38,71]. It is important to note that endo and exo oxanorbornenes can exhibit different reactivity in ROMP. For example, exo oxanorbornene, formed from 2-alkyl furans and N-methyl maleimide, underwent efficient homo-polymerization in the presence of G3 catalyst, while the endo isomer could not be polymerized [72].

The reversibility of the fmDA reaction allows for dynamic polymers (dynamers) characterized by interesting properties such as self-healing or shape memory effects. The low activity of acceptor-substituted furans in the fmDA reaction explains its low applicability in the development of fmDA-based dynamic materials. Dynamic polymers containing furanic ester [75,76] amide [77] or oxime [78] functionalities showed only moderate self-healing efficiency. Endo/exo isomerism is a major concern in the development of dynamers because of the low diastereoselectivity of fmDA polymerization or cross-linking may influence the physical properties of resulting dynamers [42,79].

The broad investigations describing the synthesis of various dynamic polymeric materials and composites using DA reactions (such as structural materials, supramolecular systems, hydrogels, coatings with tunable adhesion), which have promising potential for biomedical applications or smart materials development, were highlighted in some recent reviews [80–83]. Dynamers with many different structural types can be synthesized using the fmDA approach depending on the structure and ratio of the initial components. The application of furan- and maleimide-functionalized bifunctional monomers or end-capped linear pre-polymers provides the formation of linear dynamic polymers and co-polymers, while the incorporation of three or more furanic or maleimide functionalities into the structure of monomers leads to the formation of branched, hyperbranched or cross-linked architectures [20,81]. Several types of dendritic compound were also prepared using the fmDA approach [20,84].
4.1. Synthesis of Dynamic Linear Polymers Using the fmDA “Click” Reaction

Polycondensation by fmDA reaction using bifunctional linear monomers (bis-furans and bis-maleimides) or polymerization of maleimide-substituted furans was applied in the development of various linear dynamers [85–88], including polymers with switchable optical properties [89,90] or magnetically active conjugates [91]. A significant limitation of this approach is the low degrees of polymerization by fmDA reaction (Table 4). Other approaches that may be used for the synthesis of high-molecular-weight linear polymers include the DA polymerization of linear oligomers or pre-polymers end-capped with the furan- or maleimide functional groups [92–95], or co-polymerization of bifunctional fmDA adducts [96].

4.2. Synthesis of Cross-Linked Dynamers Using the fmDA “Click” Reaction

The synthesis of dynamic cross-linked polymers, the so-called covalent adaptable networks (CANs), has been paid significant attention in recent years due to the relatively low decoupling energy provided through the retro-DA reaction, providing the possibility of the easy thermal reprocessing and chemical recycling of CANs compared to traditional covalently crosslinked thermostets [82]. Several approaches were used for the synthesis of CANs using fmDA reaction. The synthesis of highly reprocessable cross-linked polymers may be carried out using monomolecular substrates containing three or more furanic and/or maleimide functional groups [99–101]. Depending on the structure and ratio of the monomers, polycondensation by fmDA reaction can lead to branched or cross-linked polymers [102]. One of the most studied types of CANs is dynamic thermostet
polymers containing classical non-dynamic covalent polymers cross-linked by dynamic oxanorbornene groups. Two general pathways used for the preparation of such polymers include the cross-linking of functionalized pre-polymers (Scheme 6a,b) or polycondensation of bifunctional fmDA adducts (Scheme 6c).

Table 4. Synthesis of linear polymers using the fmDA polycondensation.

№	Furan	Maleimide	Conditions	Mn (g mol⁻¹)	PDI	rDA (oC)¹	Citation
1	R = CH₂	R¹ = (CH₂)₃	THF, reflux, 24 h	3650	2.45	100–122	[85]
2	R = CH₂-O-CH₂	R¹ = (CH₂)₃	THF, reflux, 24 h	4540	2.31	140–161	[85]
3	R = CH₂-S-CH₂	R¹ = (CH₂)₃	THF, reflux, 24 h	5660	1.72	118–130	[85]
4	R = CH₂-NH-CH₂	R¹ = (CH₂)₃	THF, reflux, 24 h	2920	2.76	123–140	[85]
5	R = CH₂-O-(CH₂)₁₀-O-CH₂	BMI	1,2-dichloroethane, 60 °C	2900–7800	1.66–2.86	110–150	[95]
6	R = CH₂-(O-(CH₂)₃)₃-O-CH₂	BMI	1,2-dichloroethane, 60 °C	18,000–38,000	3.5–5.81	110	[95]
7	-	-	CHCl₃, 60 °C, 48 h	2200	2.45	140–170	[88]
8	-	-	CHCl₃, 55 °C, 48 h	5920	1.5	-124	[42]
9	-	-	CHCl₃, 55 °C, 48 h	3700	1.43	-124	[42]
10	-	-	CHCl₃, 55 °C, 48 h	1900	1.37	-124	[42]
11	-	-	TCE, 110 °C, 5 h, then 60 °C, 72 h	-1800	N.d.	150	[97]
12	-	-	TCE, 110 °C, 24 h, then 65 °C, 72 h	1900	2.2	N.d.	[98]

¹ Was determined by GS, DSC, TGA or NMR. TCE—1,1,2,2-tetrachloroethane. N.d.—not determined.

The preparation of dynamers by cross-linking functionalized pre-polymers using the fmDA “click” reaction usually contains several steps: synthesis of pre-polymer and cross-linker (monomolecular or polymeric), functionalization or the end-capping of pre-polymer by a furanic or maleimide groups and thermally induced cross-linking. Synthesis of the functionalized pre-polymers may be carried out by co-polymerization with a furan- or maleimide containing monomers. These approaches were widely used in recent investigations for the preparation of cross-linked polyurethanes [103], polyacrylates [42,104,105] (including photocative polymers [106,107]), cross-linked polysaccharides [108], and other types of CANs. Linear polymers containing C2,C5-disubstituted furans as repeated units also can undergo cross-linking with bis-maleimides [109–113]. Although disubstituted furans might have a lower reactivity for the fmDA reaction than monosubstituted FF-derived analogs, the presence of additional functionality at the furan ring provides additional opportunities for the synthesis of cross-linked CANs using HMF-derived monomers. Thus, Chang and co-workers reported the preparation of self-remendable polyurethane by cross-linking the linear fmDA bridged pre-polymer (obtained by the reaction of a difuran containing hydroxymethyl groups at the furan rings with BMI) with bis-isocyanate [114].
An alternative strategy for the synthesis of CANs with a high degree of cross-linking is the application of bifunctional fmDA adducts for the synthesis of linear or cross-linked pre-polymers [115–117], or as co-monomers [47,104,118]. Recently reported representative examples of the bifunctional adducts and types of obtained CANs are presented in Table 5. Depending on the nature of functional groups involved in adducts, various common dynamers were obtained, including polyacrylates, polyurethanes, epoxy resins and silicones.

The relatively high temperature of polymerization and cross-linking and the low gap between coupling and decoupling temperatures (typically, coupling begins at 50–60 °C and decoupling at 100–120 °C) are significant limitations in the practical application of dynamic polymers based on fmDA reaction. A possible means of overcoming these limitations is the combination of slowly exchanging covalent dynamic DA bonds with weakly supramolecular cross-links, such as Van-der-Waals interactions or H-bonding. The presence of H-bonding in polymeric molecules reduces the temperature of rDA decoupling, used for the development of room-temperature-remendable materials. In these materials, supramolecular cross-links provided partial healing at room temperature and showed an almost complete recovery at elevated temperatures [104,105,119,120].

Besides thermal initiation, rDA reaction in CANs can be driven by other stimuli, such as light [107], mechanical [138] or magnetic force [139]. Light-responsive CANs based on a photocontrolled DA reaction could be obtained by the introduction of the fluorescent fragment into diene or dienophile [107,140,141]. Mechanochemical activation originating in the overlap of dynamic bonds in furan-derived oxanorbornene fragment with the force vector was used in the development of smart force-responsive materials and devices [142–146]. A comparison of the rate of coupling for some fmDA adducts has shown that the efficiency of thermal and mechanical activation is not equal and depends on the regio- and stereo structure of the adducts: some diastereomers can be mechano-resistant due to misalignment of the dynamic DA bonds with the force vector providing ineffective mechanochemical interactions [147].
Table 5. Examples of the bifunctional fmDA adducts and types of prepared CANs.

№	Type of Bifunctional Adduct	R, R¹	Type of Prepared CAN, Citation
1	![Bifunctional Adduct 1](image1)	BMI as a precursor	Polyacrylates [121]
2	![Bifunctional Adduct 2](image2)	BMI as a precursor, R¹ = OH	Polyurethanes [122,123]
3	![Bifunctional Adduct 3](image3)	BMI as a precursor, R¹ = NH₂	Epoxy resins [124]
4	![Bifunctional Adduct 4](image4)	R = (CH₂)₈, R¹ = NH₂	Epoxy resin [125]
5	![Bifunctional Adduct 5](image5)	R = (CH₂)₆	Epoxy thermosets [126]
6	![Bifunctional Adduct 6](image6)	BMI as a precursor	Polysiloxanes [66]
7	![Bifunctional Adduct 7](image7)	R = OH	Polyurethanes [116,127–130], dendrimers [131]
8	![Bifunctional Adduct 8](image8)	R = NH₂	Epoxy resins [132,133]
9	![Bifunctional Adduct 9](image9)	-	Polyurethanes [24,25]
10	![Bifunctional Adduct 10](image10)	R = H	Polyacrylates [45,134–136]
11	![Bifunctional Adduct 11](image11)	R = Me	Polyacrylates [137]

5. Conclusions

The recent trend towards sustainable development provided an increased number of research articles related to the application of bioderived substrates as sources to practically important products. The fmDA “click” cycloadditions involving biobased substrates is a valuable approach used for the production of various smart systems, with high potential in many fields, including fine organic synthesis, biochemistry, or materials development. The easy functionalization of many different types of substrates by furan and maleimide moieties, and the ability to fine-tune the reaction parameters of furan/maleimide DA and rDA reactions, provides wide opportunities for the creation of monomolecular, polymeric or hybrid architectures combining the properties of both clickable scaffolds. Thus, fmDA conjugation of lipophilic and hydrophilic components could lead to the formation of amphiphilic systems.

The increased number of publications and emergence of the novel fmDA “click” methodologies indicate the rapid progress in these fields. However, many important areas, including the development of room-temperature self-remendable polymers, application of acceptor-substituted furans for the synthesis of fine chemicals and materials, need further study. Moreover, new, industrially relevant technologies towards the production of biobased smart molecular systems, materials and devices based on fmDA “click” approach are required.

Author Contributions: Conceptualization, writing—original draft preparation, K.I.G.; writing—review and editing, I.V.S., A.V.P.; funding acquisition, A.V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 21-73-30013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: Data sharing is not applicable.

Acknowledgments: I.V.S. is grateful for the support of the Ministry of Science and Higher Education of the Russian Federation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

- 2-MF: 2-methylfuran
- BAMF: 2,5-bis(acetoxymethyl)furan
- BHMF: 2,5-bis(hydroxymethyl)furan
- BMI: 4,4′-bis(maleimido)diphenylmethane
- Bn: benzyl
- CAN: covalent adapfigure network
- DA: Diels–Alder
- DFT: density functional theory
- DMF: 2,5-dimethylfuran
- FA: furfuryl alcohol
- FF: furfural
- fmDA: furan/maleimide Diels–Alder
- HMF: 5-(hydroxymethyl)furfural
- HOMO: highest occupied molecular orbital
- LUMO: lowest unoccupied molecular orbital
- N.d.: not determined
- NMR: nuclear magnetic resonance
- NP: nanoparticle
- PDI: polydispersity index
- rDA: retro-Diels–Alder
- ROMP: ring-opening metathesis polymerization
- RT: room temperature
- TFA: trifluoroacetic acid
- THF: tetrahydrofuran
- Ts: tosyl

References

1. Hou, Q.; Qi, X.; Zhen, M.; Qian, H.; Nie, Y.; Bai, C.; Zhang, S.; Bai, X.; Ju, M. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxyethylfurfural. *Green Chem.* 2021, 23, 119–231. [CrossRef]
2. Galkin, K.I.; Ananikov, V.P. The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5-(hydroxymethyl)furfural. *ChemistryOpen* 2020, 9, 1135–1148. [CrossRef] [PubMed]
3. Xu, C.; Paone, E.; Rodriguez-Padron, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxyethylfurfural. *Chem. Soc. Rev.* 2020, 49, 4273–4306. [CrossRef]
4. Galkin, K.I.; Ananikov, V.P. When Will 5-Hydroxyethylfurfural, the “Sleeping Giant” of Sustainable Chemistry, Awaken? *ChemSusChem* 2019, 12, 2976–2982. [CrossRef]
5. Mika, L.T.; Cséfalvay, E.; Nemeth, A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. *Chem. Rev.* 2018, 118, 505–613. [CrossRef]
6. Zhu, J.; Yin, G. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. *ACS Catal.* 2021, 11, 10058–10083. [CrossRef]
7. Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. *ACS Sustain. Chem. Eng.* 2018, 6, 8064–8092. [CrossRef]
8. Mariscal, R.; Maireses-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. *Energy Environ. Sci.* 2016, 9, 1144–1189. [CrossRef]
9. Li, X.; Jia, P.; Wang, T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. *ACS Catal.* 2016, 6, 7621–7640. [CrossRef]
10. Gandini, A.; Lacerda, T.M.; Carvalho, A.J.; Trovatti, E. Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. *Chem. Rev.* 2016, 116, 1637–1669. [CrossRef]
11. Van Putten, R.J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. *Chem. Rev.* 2013, 113, 1499–1597. [CrossRef]
12. Geng, Z.; Shin, J.J.; Xi, Y.; Hawker, C.J. Click chemistry strategies for the accelerated synthesis of functional macromolecules. *J. Polym. Sci.* 2021, 59, 963–1042. [CrossRef]
13. Arslan, M.; Acik, G.; Tasdelen, M.A. The emerging applications of click chemistry reactions in the modification of industrial polymers. *Polym. Chem.* 2019, 10, 3806–3821. [CrossRef]
14. Tasdelen, M.A. Diels–Alder “click” reactions: Recent applications in polymer and material science. *Polym. Chem.* 2011, 2, 2133–2145. [CrossRef]
15. Settle, A.E.; Berstis, L.; Rorrer, N.A.; Román-Leshkov, Y.; Beckham, G.T.; Richards, R.M.; Vardon, D.R. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. *Green Chem.* 2017, 19, 3468–3492. [CrossRef]
16. Galkin, K.I.; Ananikov, V.P. Intermolecular Diels–Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. *Int. J. Mol. Sci.* 2021, 22, 11856. [CrossRef]
17. Cioc, R.C.; Lutz, M.; Pidko, E.A.; Crockett, M.; van der Waal, J.C.; Brujinincx, P.C.A. Direct Diels–Alder reactions of furfural derivatives with maleimides. *Green Chem.* 2021, 23, 367–373. [CrossRef]
18. Cioc, R.C.; Smak, T.J.; Crockett, M.; van der Waal, J.C.; Brujinincx, P.C.A. Furoic acid and derivatives as atypical dienes in Diels–Alder reactions. *Green Chem.* 2021, 23, 5503–5510. [CrossRef] [PubMed]
19. Gandini, A.; Carvalho, A.J.F.; Trovatti, E.; Kramer, R.K.; Lacerda, T.M. Macromolecular materials based on the application of the Diels–Alder reaction to natural polymers and plant oils. *Eur. J. Lipid Sci. Technol.* 2018, 120, 1700091. [CrossRef]
20. Gandini, A. The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis. *Prog. Polym. Sci.* 2013, 38, 1–29. [CrossRef]
21. Gevrek, T.N.; Sanyal, A. Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomolecular applications. *Eur. Polym. J.* 2021, 133, 110514. [CrossRef]
22. Kucherov, F.A.; Romashov, L.V.; Averochkin, G.M.; Ananikov, V.P. Biobased C6-Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks. *ACS Sustain. Chem. Eng.* 2021, 9, 3011–3042. [CrossRef]
23. Ravasco, J.; Gomes, R.F.A. Recent Advances on Diels-Alder-Driven Preparation of Bio-Based Aromatics. *ChemSusChem* 2021, 14, 3047. [CrossRef]
24. Naz, F.; Wu, Y.; Zhang, N.; Yang, Z.; Yu, C. Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways. *Molecules* 2020, 25, 3279. [CrossRef] [PubMed]
25. Puerto Galvis, C.E.; Vargas Mendez, L.Y.; Kouznetsoy, V.V. Cantharidin-based small molecules as potential therapeutic agents. *Chem. Biol. Drug Des.* 2013, 82, 477–499. [CrossRef]
26. Deng, L.P.; Dong, J.; Cai, H.; Wang, W. Cantharidin as an antitumor agent: A retrospective review. *Curr. Med. Chem.* 2013, 20, 159–166. [CrossRef]
27. Hart, M.E.; Chamberlin, A.R.; Walkom, C.; Sakoff, J.A.; McCluskey, A. Modified norcantharidins; synthesis, protein phosphatases 1 and 2A inhibition, and anticancer activity. *Biores. Med. Chem. Lett.* 2004, 14, 1969–1973. [CrossRef]
28. Baba, Y.; Hirukawa, N.; Tanehira, N.; Sodeoka, M. Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (calcineurin). *J. Am. Chem. Soc.* 2003, 125, 9740–9749. [CrossRef]
29. McCluskey, A.; Ackland, S.P.; Bowyer, M.C.; Baldwin, M.L.; Garner, J.; Walkom, C.C.; Sakoff, J.A. Cantharidin analogues: Synthesis and evaluation of growth inhibition in a panel of selected tumour cell lines. *Bioorg. Chem.* 2003, 31, 68–79. [CrossRef]
30. Galkin, K.I.; Kucherov, F.A.; Markov, O.N.; Egrovna, K.S.; Posvyatenko, A.V.; Ananikov, V.P. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass. *Molecules* 2017, 22, 2210. [CrossRef]
31. Salvati, M.E.; Balog, A.; Wei, D.D.; Pickering, D.; Attar, R.M.; Geng, J.; Rizzo, C.A.; Hunt, J.T.; Gotthardis, M.M.; Weinmann, R.; et al. Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isoindole-1,3(2H)-dione nucleus. *Bioorg. Med. Chem. Lett.* 2005, 15, 389–393. [CrossRef] [PubMed]
32. Lu, Z.; Weber, R.; Twieg, R.J. Improved synthesis of DCDHF fluorophores with maleimide functional groups. *Tetrahedron Lett.* 2006, 47, 7213–7217. [CrossRef] [PubMed]
33. Daefller, C.S.; Miyake, G.M.; Li, J.; Grubbs, R.H. Partial Kinetic Resolution of Oxanorbornenes by Ring-Opening Metathesis Polymerization with a Chiral Ruthenium Initiator. *ACS Macro Lett.* 2014, 3, 102–104. [CrossRef]
34. Elduque, X.; Sanchez, A.; Sharma, K.; Pedrosa, E.; Grandas, A. Protected Maleimide Building Blocks for the Decoration of Peptides, Peptoids, and Peptide Nucleic Acids. *Bioconjug. Chem.* 2013, 24, 832–839. [CrossRef] [PubMed]
35. Kucherov, F.A.; Galkin, K.I.; Gordeev, E.G.; Ananikov, V.P. Efficient route for the construction of polycyclic systems from bioderived HMF. *Green Chem.* 2017, 19, 4858–4864. [CrossRef]
36. Chang, H.; Huber, G.W.; Dumesic, J.A. Chemical-Switching Strategy for Synthesis and Controlled Release of Norcantharidines from a Biomass-Derived Chemical. *ChemSusChem* 2020, 13, 5213–5219. [CrossRef]
37. Liu, P.; Yasir, M.; Kilbinger, A.F.M. Catalytic Living Ring Opening Metathesis Polymerisation: The Importance of Ring Strain in Chain Transfer Agents. *Angew. Chem. Int. Ed.* 2019, 58, 15278–15282. [CrossRef]
38. Yasir, M.; Liu, P.; Markwart, J.C.; Suraeva, O.; Wurm, F.R.; Smart, J.; Lattuada, M.; Kilbinger, A.F.M. One-Step Ring Opening Metathesis Block-Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. *Angew. Chem. Int. Ed.* 2020, 59, 13597–13601. [CrossRef]
39. Froidevaux, V.; Borne, M.; Laborbe, E.; Auvergne, R.; Gandini, A.; Boutevin, B. Study of the Diels–Alder and retro-Diels–Alder reaction between furan derivatives and maleimide for the creation of new materials. *RSC Adv.* 2015, 5, 37742–37754. [CrossRef]
40. Clavier, H.; Broggi, J.; Nolan, S.P. Ring-Rearrangement Metathesis (RRM) Mediated by Ruthenium-Indenyldiene Complexes. Eur. J. Org. Chem. 2010, 2010, 937–943. [CrossRef]
41. Roman, E.; Gil, M.; Luque-Aguado, Y.; Serrano, J. Expeditive ‘On-Water’ Cycloaddition between N-Substituted Maleimides and Furans. Synlett 2014, 25, 2179–2183. [CrossRef]
42. Canadell, J.; Fischer, H.; De With, G.; van Benthen, R.A.T.M. Stereosomeric effects in thermo-remendable polymer networks based on Diels-Alder crosslink reactions. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3456–3467. [CrossRef]
43. Fan, B.; Trant, J.F.; Hemery, G.; Sandre, O.; Gillies, E.R. Thermo-responsive self-immolative nanoassemblies: Direct and indirect triggering. Chem. Commun. 2017, 53, 12068–12071. [CrossRef]
44. Taimoori, S.M.; Sadraei, S.I.; Fayoumi, R.A.; Nasri, S.; Revington, M.; Trant, J.F. Preparation and Characterization of a Small Library of Thermally-Labile End-Caps for Variable-Temperature Triggering of Self-Immolative Polymers. J. Org. Chem. 2018, 83, 4427–4440. [CrossRef] [PubMed]
45. Heath, W.H.; Palmieri, F.; Adams, J.R.; Long, B.K.; Chute, J.; Holcombe, T.W.; Zieren, S.; Truitt, M.J.; White, J.L.; Willson, C.G. Degradable Cross-Linkers and Strippable Imaging Materials for Step-and-Flash Imprint Lithography. Macromolecules 2008, 41, 719–726. [CrossRef]
46. Sanchez, A.; Pedroso, E.; Grandas, A. Maleimide-dimethylfuran exo adducts: Effective maleimide protection in the synthesis of oligonucleotide conjugates. Org. Lett. 2011, 13, 4364–4367. [CrossRef] [PubMed]
47. Budd, M.E.; Stephens, R.; Afsar, A.; Salimi, S.; Hayes, W. Exploiting thermally-reversible covalent bonds for the controlled release of microencapsulated isocyanate crosslinkers. React. Funct. Polym. 2019, 135, 23–31. [CrossRef]
48. Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder Reaction in Total Synthesis. Angew. Chem. Int. Ed. 2002, 41, 1668–1698. [CrossRef]
49. Jarosz, S.; Mach, M.; Szewczyk, K.; Skóra, S.; Ciunik, Z. Synthesis of Sugar-Derived 2’- and 3’-Substituted Furans and Their Application in Diels–Alder Reactions. Eur. J. Org. Chem. 2001, 2001, 2955–2964. [CrossRef]
50. Uemura, N.; Toyoda, S.; Ishikawa, H.; Yoshida, Y.; Mino, T.; Kasashima, Y.; Sakamoto, M. Asymmetric Diels-Alder Reaction Involving Dynamic Enantioselective Crystallization. J. Org. Chem. 2018, 83, 9300–9304. [CrossRef]
51. Jegat, C.; Mignard, N. Effect of the polymer matrix on the thermal behaviour of a furan-maleimide type adduct in the molten state. Polym. Bull. 2008, 60, 799–808. [CrossRef]
52. Oparina, L.A.; Vysotskaya, O.V.; Stepanov, A.V.; Ushakov, I.A.; Apartsin, K.A.; Gusarova, N.K.; Trofimov, B.A. Furfuryl vinyl ethers in [4+2]-cycloaddition reactions. Russ. J. Org. Chem. 2017, 53, 203–209. [CrossRef]
53. Ding, X.; Nguyen, S.T.; Williams, J.D.; Peet, N.P. Diels-Alder reactions of five-membered heterocycles containing one heteroatom. Tetrahedron Lett. 2014, 55, 7002–7006. [CrossRef] [PubMed]
54. Bastin, L.D.; Nigam, M.; Martinus, S.; Maloney, J.E.; Benyack, L.L.; Gainer, B. Synthesis of substituted N-phenylmaleimides and use in a Diels-Alder reaction: A green multi-step synthesis for an undergraduate organic chemistry laboratory. Green Chem. Lett. Rev. 2019, 12, 127–135. [CrossRef]
55. Jeong, H.; John, J.M.; Schrock, R.R. Formation of Alternating trans-A-alt-B Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes. Organometallics 2015, 34, 5136–5145. [CrossRef]
56. Park, J.H.; Heo, J.M.; Seong, S.; Noh, J.; Kim, J.M. Self-assembly using a retro Diels-Alder reaction. Nat. Commun. 2021, 12, 4207. [CrossRef]
57. Czifrok, K.; Lakatos, C.; Karger-Kocsis, J.; Daroczi, L.; Zsuga, M.; Keki, S. One-Pot Synthesis and Characterization of Novel Shape-Memory Poly(epsilon-Caprolactone) Based Polyurethane-Epoxy Co-networks with Diels(-)Alder Couplings. Polymers 2018, 10, 504. [CrossRef]
58. Potts, K.T.; Walsh, E.B. Furfural dimethylhydrazine: A versatile diene for arenne cycloaromatization. J. Org. Chem. 2002, 49, 4099–4101. [CrossRef]
59. Higson, S.; Subrizi, F.; Sheppard, T.D.; Hailes, H.C. Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Green Chem. 2016, 18, 1855–1858. [CrossRef]
60. Karaluka, V.; Murata, K.; Masuda, S.; Shiramatsu, Y.; Kawamoto, T.; Hailes, H.C.; Sheppard, T.D.; Kamimura, A. Development of a microwave-assisted sustainable conversion of furfural hydrazones to functionalised phthalimides in ionic liquids. RSC Adv. 2018, 8, 22617–22624. [CrossRef]
61. Zhang, Q.; Wang, Y.; Gong, J.; Zhang, X. Dynamic dye emission ON/OFF systems by a furan moiety exchange protocol. Dyes Pigm. 2021, 184, 108652. [CrossRef]
62. Li, F.; Li, X.; Zhang, X. Dynamic Diels-Alder reactions of maleimide-furan amphiphiles and their fluorescence ON/OFF behaviours. Org. Biomol. Chem. 2018, 16, 7871–7877. [CrossRef] [PubMed]
63. Bakhtiar, A.B.; Hsiao, D.; Jin, G.; Gates, B.D.; Branda, N.R. An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces. Angew. Chem. Int. Ed. 2009, 48, 4166–4169. [CrossRef]
64. Gregoritza, M.; Brandl, F.P. The Diels-Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [CrossRef] [PubMed]
65. Durand, H.; Baussanne, I.; Demeunynck, M.; Viger-Gravel, J.; Emsley, L.; Bardet, M.; Zeno, E.; Belgacem, N.; Bras, J. Two-step immobilization of metronidazole prodrug on TEMPO cellulose nanofibrils through thiol-yne click chemistry for in situ controlled release. Carbohydr. Polym. 2021, 262, 117952. [CrossRef] [PubMed]
66. Kumar, A.; Durand, H.; Zeno, E.; Balasollier, C.; Watbled, B.; Sillard, C.; Fort, S.; Baussanne, I.; Belgacem, N.; Lee, D.; et al. The surface chemistry of a nanocellulose drug carrier un unravelled by MAS-DNP. *Chem. Sci. 2020, 11*, 3868–3877. [CrossRef]
67. Bliman, D.; Demeunynck, M.; Leblond, P.; Meignan, S.; Baussanne, I.; Fort, S. Enzymatically Activated Glyco-Prodrugs of Doxorubicin Synthesized by a Catalysis-Free Diels–Alder Reaction. *Bioconjug. Chem. 2018*, 29, 2370–2381. [CrossRef]
68. Mancuso, L.; Kneblboch, T.; Buchholz, J.; Hartwig, J.; Moller, L.; Seidel, K.; Collisi, W.; Sasse, F.; Kirschning. A Preparation of thermooxidative conjugates based on arsanmitocin and superparamagnetic nanostructured particles by a chemosynthetic carbohydrate approach. *Chem. A Eur. J. 2014*, 20, 17541–17551. [CrossRef]
69. Guldris, N.; Gallo, J.; Garcia-Helia, L.; Rivas, J.; Banobre-Lopez, M.; Salonen, L.M. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release. *Chem. - A Eur. J. 2018*, 24, 8624–8631. [CrossRef]
70. Dirlam, F.T.; Strange, G.A.; Rlichki, J.A.; Wetzel, E.D.; Costanzo, P.J. Controlling surface energy and wettability with Diels-Alder chemistry. *Langmuir 2010*, 26, 3942–3948. [CrossRef]
71. Yasir, M.; Liu, P.; Tennie, I.K.; Kilbinger, A.F.M. Catalytic living ring-opening metathesis polymerization with Grubbs’ second- and third-generation catalysts. *Nat. Chem. 2019*, 11, 488–494. [CrossRef]
72. Pal, S.; Alizadeh, M.; Kong, P.; Kilbinger, A.F.M. Oxanorbornenes: Promising new single addition monomers for the metathesis polymerization. *Chem. Sci. 2021*, 12, 6705–6711. [CrossRef]
73. Sun, H.; Kabb, C.P.; Dai, Y.; Hill, M.R.; Ghiviriga, I.; Bapat, A.P.; Sumerlin, B.S. Macromolecular metamorphism via stimulus-induced transformations of polymer architecture. *Nat. Chem. 2019*, 11, 817–823. [CrossRef] [PubMed]
74. Han, F.; Shi, Q.; Zhang, L.; Liu, B.; Zhang, Y.; Gao, Y.; Jia, R.; Zhang, Z.; Zhu, X. Stereoisomeric furan/maleimide adducts as latent monomers for one-shot sequence-controlled polymerization. *Polym. Chem. 2020*, 11, 1614–1620. [CrossRef]
75. Ax, J.; Wenz, G. Thermoreversible Networks by Diels–Alder Reaction of Cellulose Furoates With Bismaleimides. *Chem. -A Eur. J. 2019*, 1716–1745. [CrossRef] [PubMed]
76. Lorenzini, R.G.; Sotzing, G.A. Furan/imide Diels-Alder polymers as dielectric materials. *ChemPhotoChem* [CrossRef]
77. Gaina, C.; Ursache, O.; Gaina, V. Dynamic Covalent Bonds in Polymeric Materials. *Chem. Soc. Rev. 2019*, 48, 11055–11097. [CrossRef]
78. Briou, B.; Ameduri, B.; Boutevin, B. Trends in the Diels-Alder reaction in polymer chemistry. *Chem. -A Eur. J. 2019*, 3868–3895. [CrossRef]
79. Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. *Chem. Rev. 2021*, 121, 1716–1745. [CrossRef] [PubMed]
80. Navarro, J.R.; Conzatti, G.; Yu, Y.; Fall, A.B.; Mathew, R.; Eden, M.; Bergstrom, L. Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. *Biomacromolecules 2015*, 16, 1293–1300. [CrossRef]
81. Gaina, C.; Ursache, O.; Gaina, V. Chemical Recycling and Self-Healing. *Nat. Chem. 2017*, 9, 1971–1978. [CrossRef]
82. Munkhbat, O.; Gok, O.; Sanyal, R.; Sanyal, A. Multiarm star polymers with a thermally cleavable core: A “grafting-from” approach paves the way. *J. Polym. Sci. Part A Polym. Chem. 2019*, 57, 885–893. [CrossRef]
83. Ahner, J.; Dahlke, J.; Pretzel, D.; Schubert, U.S.; Dietzek, B.; Hager, M.D. Thermally switchable fluorescence resonance energy transfer via reversible Diels–Alder Reaction of pi-Conjugated Oligo-(Phenylene Ethynylene)s. *Macromol. Rapid Commun. 2018*, 39, e1700789. [CrossRef]
84. Briou, B.; Ameduri, B.; Boutevin, B. Trends in the Diels-Alder reaction in polymer chemistry. *Chem. -A Eur. J. 2019*, 3868–3895. [CrossRef]
85. Gutdris, N.; Gallo, J.; Garcia-Helia, L.; Rivas, J.; Banobre-Lopez, M.; Salonen, L.M. Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and On-Demand Release. *Chem. - A Eur. J. 2018*, 24, 8624–8631. [CrossRef]
86. Pal, S.; Alizadeh, M.; Kong, P.; Kilbinger, A.F.M. Oxanorbornenes: Promising new single addition monomers for the metathesis polymerization. *Chem. Sci. 2021*, 12, 6705–6711. [CrossRef]
87. Gaina, C.; Ursache, O.; Gaina, V. Dynamic Covalent Bonds in Polymeric Materials. *Angew. Chem. Int. Ed. 2019*, 58, 9682–9695. [CrossRef] [PubMed]
88. Dirlam, F.T.; Strange, G.A.; Rlichki, J.A.; Wetzel, E.D.; Costanzo, P.J. Controlling surface energy and wettability with Diels-Alder chemistry. *Langmuir 2010*, 26, 3942–3948. [CrossRef]
89. Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. *Chem. Rev. 2021*, 121, 1716–1745. [CrossRef] [PubMed]
90. Gaina, C.; Ursache, O.; Gaina, V. Dynamic Covalent Bonds in Polymeric Materials. *Angew. Chem. Int. Ed. 2019*, 58, 9682–9695. [CrossRef] [PubMed]
91. Munkhbat, O.; Gok, O.; Sanyal, R.; Sanyal, A. Multiarm star polymers with a thermally cleavable core: A “grafting-from” approach paves the way. *J. Polym. Sci. Part A Polym. Chem. 2017*, 55, 885–893. [CrossRef]
92. Gaina, C.; Ursache, O.; Gaina, V. Dynamic Covalent Bonds in Polymeric Materials. *Angew. Chem. Int. Ed. 2019*, 58, 9682–9695. [CrossRef] [PubMed]
93. Hsu, Y.-I.; Masutani, K.; Kimura, Y.; Yamaoka, T. A Novel Bioabsorbable Gel Formed from a Mixed Micelle Solution of Poly(oxyethylene)-block-poly(L-lactide) and Poly(oxyethylene)-block-poly(D-lactide) by Concomitant Stereocomplexation and Chain Extension. Macromol. Chem. Phys. 2013, 214, 1559–1568. [CrossRef]

94. Aizpurua, J.; Martin, L.; Formoso, E.; Gonzalez, A.; Irusta, L. One pot stimuli-responsive linear waterborne polyurethanes via Diels-Alder reaction. Prog. Org. Coat. 2019, 130, 31–43. [CrossRef]

95. Motoki, S.; Nakano, T.; Tokiwa, Y.; Saruwatari, K.; Tomita, I.; Iwamura, T. Synthesis of recyclable molecular LEGO block polymers utilizing the Diels–Alder reaction. Polymer 2016, 101, 98–106. [CrossRef]

96. Dolci, E.; Michaud, G.; Simon, F.; Boutin, B.; Fouquay, S.; Caillol, S. Remendable thermosets adhesives for isocyanate-free adhesives: A preliminary study. Polymer. Chem. 2015, 6, 7851–7861. [CrossRef]

97. Lacerda, T.M.; Carvalho, A.J.F.; Gandini, A. A minimalist furan–maleimide AB-type monomer and its thermally reversible Diels–Alder polymerization. RSC Adv. 2016, 6, 45696–45700. [CrossRef]

98. Platonova, E.; Chechenov, I.; Pavlov, A.; Solodilov, V.; Afanasyev, E.; Shapagin, A.; Polezhaev, A. Thermally Remendable Polyurethane Network Cross-Linked via Reversible Diels–Alder Reaction. Polymers 2021, 13, 1935. [CrossRef] [PubMed]

99. Gandini, A.; Silvestre, A.J.D.; Coelho, D. Reversible click chemistry at the service of macromolecular materials. Polym. Chem. 2011, 2, 1713. [CrossRef]

100. Strachota, B.; Morand, A.; Dybal, J.; Matejka, L. Control of Gelation and Properties of Reversible Diels-Alder Networks: Design of a Self-Healing Network. Polymers 2019, 11, 930. [CrossRef] [PubMed]

101. Aizpurua, J.; Martin, L.; Formoso, E.; González, A.; Irusta, L. One pot stimuli-responsive linear waterborne polyurethanes via Diels-Alder reaction. Prog. Org. Coat. 2019, 130, 31–43. [CrossRef]

102. Mineo, P.; Barbera, V.; Romeo, G.; Ghezzo, F.; Scamporrino, E.; Spitaleri, F.; Chiacchio, U. Thermally reversible highly cross-linked polymeric materials based on furan/maleimide Diels–Alder adducts. J. Appl. Polym. Sci. 2015, 132, 42314. [CrossRef]

103. Varganici, C.-D.; Ursache, O.; Gaina, C.; Gaina, V.; Rosu, D.; Simionescu, B.C. Synthesis and Characterization of a New Thermoreversible Polyurethane Network. Ind. Eng. Chem. Res. 2013, 52, 5287–5295. [CrossRef]

104. Liu, J.; Zhou, Z.; Su, X.; Cao, J.; Chen, M.; Liu, R. Stiff UV-Curable self-healing coating based on double reversible networks involving diels-alder cross-linking and hydrogen bonds. Prog. Org. Coat. 2020, 146, 105699. [CrossRef]

105. Nayab, S.; Trouillet, V.; Gliemann, H.; Weidler, P.G.; Azeem, I.; Tariq, S.R.; Goldmann, A.S.; Barner-Kowollik, C.; Yameen, B. Reversible Diels-Alder and Michael Addition Reactions Enable the Facile Postsynthetic Modification of Metal-Organic Frameworks. Inorg. Chem. 2021, 60, 4397–4409. [CrossRef]

106. Jiang, Y.; Hadjichristidis, N. Diels-Alder Polymer Networks with Temperature-Reversible Cross-Linking-Induced Emission. Angew. Chem. Int. Ed. 2021, 60, 331–337. [CrossRef]

107. Yu, F.; Cao, X.; Du, J.; Wang, G.; Chen, X. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond. ACS Appl. Mater. Interfaces 2015, 7, 24023–24031. [CrossRef]

108. Truong, T.T.; Nguyen, H.T.; Phan, M.N.; Nguyen, L.-T.T. Study of Diels-Alder reactions between furan and maleimide model compounds and the preparation of a healable thermo-reversible polyurethane. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1806–1814. [CrossRef]

109. Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Self-healing bio-based furan polymers cross-linked with various bismaleimides. Polymer 2013, 54, 5351–5357. [CrossRef]

110. Hayashi, S.; Narita, A.; Wasano, T.; Tachibana, Y.; Kasuya, K.-I. Synthesis and cross-linking behavior of biobased polyesters composed of bifurfuryl alcohol. Eur. Polym. J. 2019, 121, 109333. [CrossRef]

111. Tremlay-Parrado, K.-K.; Bordin, C.; Nicholls, S.; Heinrich, B.; Donnio, B.; Averous, L. Renewable and Responsive Cross-Linked Systems Based on Polyurethane Backbones from Clickable Biobased Bismaleimide Architecture. Macromolecules 2020, 53, 5869–5880. [CrossRef]

112. Chang, H.; Kim, M.S.; Huber, G.W.; Dumesic, J.A. Design of closed-loop recycling production of a Diels–Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes. Green Chem. 2021, 23, 9479–9488. [CrossRef]

113. Nguyen, L.T.; Pham, H.Q.; Thi Phung, D.T.; Truong, T.T.; Nguyen, H.T.; Chanh Duc Doan, T.; Dang, C.M.; Le Tran, H.; Mai, P.T.; Tran, D.T.; et al. Macromolecular design of a reversibly crosslinked shape-memory material with thermo-healability. Polymer 2020, 188, 121144. [CrossRef]

114. Heo, Y.; Sodano, H.A. Self-Healing Polyurethanes with Shape Recovery. Adv. Funct. Mater. 2014, 24, 5261–5268. [CrossRef]

115. Ding, S.; Zhang, J.; Zhou, L.; Luo, Y. Promoting healing progress in polymer composites based on Diels-Alder reaction by constructing silver bridges. Polym. Adv. Technol. 2020, 32, 1239–1250. [CrossRef]

116. Feng, L.; He, X.; Zhang, Y.; Qu, D.; Chai, C. Triple Roles of Thermoplastic Polyurethane in Toughening, Accelerating and Enhancing Self-healing Performance of Thermo-reversible Epoxy Resins. J. Polym. Environ. 2020, 29, 829–836. [CrossRef]

117. Li, M.; Zhang, R.; Li, X.; Wu, Q.; Chen, T.; Sun, P. High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: The molecular design, microstructures, and macroscopic properties. Polymer 2018, 148, 127–137. [CrossRef]
