Antiepileptic Drug Selection According to Seizure Type in Adult Patients with Epilepsy

Hyeun Kim*, Dong Wook Kim*, Soon-Tae Lee*, Jung-Ick Byun†
Jong-Geun Seo*, Young Joo No‡
Kyung Wook Kang‡
Daeyoung Kim†, Keun Tae Kim†
Yong Won Cho§, Kwang Ik Yang†
on behalf of the Drug Committee of Korean Epilepsy Society

†Department of Neurology, Catholic Kwandong University College of Medicine, International
St. Mary’s Hospital, Incheon, Korea
‡Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
§Department of Neurology, Seoul National University Hospital, Seoul, Korea
†Department of Neurology, Kyunghee University Hospital at Gangdong, Seoul, Korea
Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Korea
Department of Neurology, Soochunhyang University College of Medicine, Cheonan Hospital, Cheonan, Korea

INTRODUCTION

Epilepsy is a common neurological disorder for which antiepileptic drugs are the main treatment. Several antiepileptic drugs such as phenobarbital, phenytoin, primidone, and ethosuximide were developed in the early 20th century. More than 10 types of antiepileptic drugs have been developed since the 1990s, and there are now more than 20 antiepileptic drugs in active clinical use. The choice of antiepileptic drugs is based on the clinical features of the seizure types, electroencephalogram findings, epileptic syndrome, and drug stability. Currently there are 19 antiepileptic drugs approved by the Korean Food and Drug Administration, 18 of which (with the exclusion of brivaracetam) are covered by the National Health Insurance Service in Korea. We reviewed the selection of antiepileptic drugs according to the classification of epileptic seizures.

Key Words: antiepileptics, seizure, epilepsy, adults.
few RCTs directly compare multiple active treatments in a single trial. Instead, most studies have compared treatments with placebos when assessing the effectiveness and safety of antiepileptic drugs.\(^2,3\) Moreover, most RCTs have investigated patients with drug-resistant seizure.\(^4\) Under these circumstances, appropriate treatment guidelines can help both clinicians as well as nonspecialists in epilepsy to choose antiepileptic drugs. Treatment guidelines have been suggested by some epilepsy societies: the American Academy of Neurology,\(^5\) National Institute for Health and Care Excellence,\(^6\) the Scottish Intercollegiate Guidelines Network,\(^7\) and the International League Against Epilepsy (ILAE).\(^8\) The Korean Epilepsy Society provided the “clinical guideline for antiepileptic drug treatment in patients with epilepsy” in 2015 (Table 1).\(^9\) The experts leading the medical care for and research into epilepsy in the Republic of Korea contributed to the guidelines. However, the guidelines are quite limited (as also stated by their authors), in terms of them essentially representing proposals rather than guidelines, not being exhaustive, and needing to be updated.

Currently there are 18 antiepileptic drugs approved by the Korean FDA and covered by the National Health Insurance Service in Korea (Table 2). Here we focus on the selection of antiepileptic drugs according to the type of seizure as part of a series of articles on antiepileptic drug treatment for epilepsy.

Table 1. Clinical guideline for selecting AEDs according to seizure type in patients with epilepsy in the guideline of the Korean Epilepsy Society published in 2015

Seizure type	First-line AEDs	Second-line AEDs	Adjunctive AEDs	Considered additional AEDs	Not recommended
Focal	CBZ, OXC, LTG	LVT, VPA	CBZ, GBP, LTG, LVT, OXC, VPA, TPM	LCM, PB, PHT, PGB, VGB, ZNS	
GTCS	VPA, LGT	LVT, LGT, VPA			
Absence	ESM, VPA	LGT		CBZ, OXC, GBP, PHT, PGB, VGB	
Myoclonic	VPA	LVT, TPM	CBZ, OXC, ZNS	CBZ, OXC, GBP, PHT, PGB, VGB	
Atonic or tonic	VPA	LGT	CBZ, OXC, GBP, PHT, PGB, VGB		

Table 2. Available antiepileptic drugs in Korea and their effects on seizure types

Focal	GTCS	Absence	Myoclonic	Atonic or tonic
PB	1st	1st	X	1st
PHT	1st	1st	W	1st
PRM	1st	1st	X	
ESM	X	X	1st	X
CBZ	1st	1st	W	X
CLB	2nd	2nd	W	W
VPA	1st	2nd	1st	1st
VGB	2nd	2nd	W	W
ZNS	1st	1st	U	1st
LGT	1st	1st	2nd	2nd
GBP	1st	X	W	W
TPM	1st	2nd	U	2nd
OXC	1st	1st	X	X
LEV	1st	2nd	U	2nd
PGB	2nd	X	X	X
LCM	2nd	U	U	U
RFN	2nd			
PRP	2nd		U	
BVC	2nd			

Table 1. Clinical guideline for selecting AEDs according to seizure type in patients with epilepsy in the guideline of the Korean Epilepsy Society published in 2015

Fig. 1. Timeline of antiepileptic drugs, showing the dates on which their use by patients was approved by the Korean Food and Drug Administration.
GENERAL CONCEPTIONS OF ANTI-EPILEPTIC DRUGS

The mechanisms of antiepileptic drugs were previously divided into four categories: 1) modulation of voltage-dependent ion channels, including Na⁺, Ca²⁺, and K⁺ (phenytoin, carbamazepine, lamotrigine, oxcarbazepine, ethosuximide, and zonisamide), 2) potentiation of γ-amino butyric acid (GABA) (phenobarbital, benzodiazepines, vigabatrin, and tiagabine), 3) multiple mechanisms of action (sodium valproate, gabapentin, felbamate, and topiramate), and 4) another mechanism of action (levetiracetam). For example, valproate works via multiple mechanisms that are similar to those of phenytoin, such as the frequency-dependent prolongation of Na⁺-channel inactivation, weak attenuation of T-type Ca²⁺ channels, and augmentation of release of GABA by increasing its synthesis from the excitatory neurotransmitter glutamic acid. Levetiracetam and lacosamide may act as antiepileptic drugs with a modulating mechanism—the exocytotic function of synaptic vesicle protein SV2A—that could enhance the release of inhibitory neurotransmitters such as GABA. Lacosamide has another additional mechanism, which is enhancing the modulation of the slow inactivation of Na⁺ channels without affecting the fast inactivation of voltage-gated Na⁺ channels. Perampanel has a novel mechanism of action as a noncompetitive agonist of the alpha-aminooxy-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor.

Pharmacokinetics is the study of drug absorption, distribution, metabolism, and excretion. The concentrations of anti-

F (%)	T_{max} (h)	V₄ (L/kg)	Protein binding (%)	Renal excretion* (%)	Metabolic organ (%)	T_{half-life} (h)	TSS (d)	Therapeutic range (mg/L)
PB	70–90	0.5–8.6	0.6–0.9	55	20–25	Hepatic (50–80)	Renal (20–50)	53–118 10–15 15–40
PHT	90–100	8–12	0.7–0.8	87–93	-	Hepatic (95)	Renal (5)	6–60 15–20 10–20
PRM	60–80	4–6	N/A	20–45	-65	Hepatic (60–70)	Renal (30–40)	7–22 2–3 -
ESM	>90	1.5–7.0	0.6–0.7	0	-20	Hepatic		25–60 5–15 50–100
CBZ	85	3–8	0.8–2.0	76	<2	Hepatic		12–17 2–6 4–12
CLB	>95	0.9–1.4	85	-		Hepatic		18 100–400
VPA	>95	4–17	0.1–0.2	90	1–3	Hepatic (95)	Renal (5)	6–17 2 50–100
VGB	60–80	1	0.8	0	100	Hepatic (95)	Renal (5)	5–8 2 -
ZNS	90	2–6	1.0–1.9	40	-35	Hepatic (70)	Renal (30)	27–70 10–40 10–40
LTG	>95	1–4	0.9–1.3	55	10	Hepatic		15–35 5–6 -
GBP	35–60	2–4	0.85	0	100	Hepatic	Renal	5–7 2 -
TPM	80	1.4–4.3	0.6–0.8	15	20–60	Hepatic (30)	Renal (70)	20–30 4–6 2–13
OXC	90	4.5–6.0	0.75	60	<1	Hepatic (80)	Renal (20)	8–15 1 -
LEV	95	0.3–2.0	0.5–0.7	<10	-66	Renal		6–8 5 6–21
PGB	90	1.3	0.57	0	-98	Renal		5–7 2 3–9.5
LCM	100	1–4	0.5–0.8	<30	40	Hepatic (60)	Renal (40)	13 2–3 -
RFN	85	4–6	0.71–1.14	35	-4	Hepatic		6–10 1–3 5–30
PRP	100	0.5–2.5	≤95	2		Hepatic		70 -
BVC	100	1	0.5	≤20	9	Hepatic (20)		9 2 0.2–2.0

*Unchanged excretion.

BVC: brivaracetam; CBZ: carbamazepine; CLB: clobazam; ESM: ethosuximide; F: drug fraction; GBP: gabapentin; LCM: lacosamide; LEV: levetiracetam; LTG: lamotrigine; OXC: oxcarbazepine; PB: phenobarbital; PGB: pregabalin; PHT: phenytoin; PRM: primidone; PRP: perampanel; RFN: rufinamide; T_{max}: time to reach maximum plasma concentration; TPM: topiramate; TSS: time to reach steady-state plasma concentration; V₄: volume of distribution; VGB: vigabatrin; VPA: valproate; ZNS: zonisamide.
Table 4. Recommended titration rate and maintenance dose for AEDs in adult patients with epilepsy

AED	Titration rate	Initial target maintenance dose (mg/day)	Usual maintenance dose (mg/day)	Frequency of administration
PB	Start at 30–50 mg at bedtime and increase if indicated after 10–15 days	50–100	50–200	1 time/day
PHT	Start at 100–300 mg/day and increase to target dosage over 3–7 days at up to 50 mg/day	200–300	200–400	1–2 times/day
PRM	Start at 62.5 or 125 mg/day and increase to target dosage over about 3 weeks A faster titration may be used in patients on enzyme-inducing comedication	500–750	500–1500	2–3 times/day
ESM	Start at 500 mg/day and increase at 5- to 7-day intervals in increments of 250 mg/day	500–750	500–1500	2–3 times/day
CBZ	Start at 200 or 400 mg/day and increase to target dosage over 1–4 weeks at up to 200 mg/day	400–600	400–1600	2–3 times/day
CLB	Start at 5–10 mg/day and increase to 20 mg/day after 1–2 weeks	10–40	1–2 times/day	
VPA	Start at 500 mg/day and increase at 5- to 7-day intervals in increments of 500 mg/day	1000–1500	1000–3000	1–2 times/day
VGB	Start at 250 or 500 mg/day and increase by 500 mg/day over 1–2 weeks	1000	1000–3000	1–2 times/day
ZNS	Start at 50–100 mg/day, increase to 100 mg/day at interval of 1–2 weeks	200–500	2 times/day	
LTG	Monotherapy: start at 25 mg/day for 2 weeks, then increase to 50 mg/day for 2 weeks. Further increases of 50 mg/day every 2 weeks. Valproate comedication: start at 25 mg on alternate days for 2 weeks, then 25 mg/day for 2 weeks. Further increases of 25–50 mg/day every 2 weeks. Enzyme-inducing comedication: start at 25 or 50 mg/day for 2 weeks. Further increases of 50–100 mg/day every 2 weeks	50–150 (monotherapy)	50–150 (monotherapy or add-on valproate)	2 times/day (once daily possible with monotherapy and valproate comedication)
GBP	Start at 300–900 mg/day and increase to target dosage over 5–10 days	900–1800	900–3600	2–3 times/day
TPM	Start at 25–50 mg/day and increase in 25- or 50-mg/day increments every 2 weeks	100	100–400	2 times/day
OXC	Start at 300 mg/day and increase at 2-day intervals by 150 mg/day to target dosage over 1–3 weeks	600–900	600–3000	2–3 times/day
LEV	Start at 500 or 1000 mg/day and increase at 1- to 2-week intervals at up to 500 mg/day after 2 weeks	1000–2000	1000–3000	2 times/day
PGB	Start at 50 or 75 mg/day and increase at 3- to 7-day intervals at up to 50–300 mg/day	150–300	150–600	2–3 times/day
LCM	Start at 100 mg/day and increase to target dosage in increments of 100 mg/day every week	200–300	200–400	2 times/day
RFI	Start at 400 mg/day and increase every 2–4 days by 400 mg/day	1200	1200–3200	2 times/day
PRP	Start at 2 mg and increase by 2 mg/day to target dosage at 2-week intervals	4–8	4–12	1 time/day
BVC	Start at either 50 or 100 mg/day and increase to target dose at intervals of 1–2 weeks	50–200	50–200	2 times/day

AED: antiepileptic drug, BVC: brivaracetam, CBZ: carbamazepine, CLB: clobazam, ESM: ethosuximide, GBP: gabapentin, LCM: lacosamide, LEV: levetiracetam, LTG: lamotrigine, OXC: oxcarbazepine, PB: phenobarbital, PGB: pregabalin, PHT: phenytoin, PRM: primidone, PRP: perampanel, RFN: rufinamide, TPM: topiramate, VGB: vigabatrin, VPA: valproate, ZNS: zonisamide.
epileptic drugs in vivo are determined by complex interactions of the basic processes of the absorption, distribution, metabolism, and elimination of drugs. Drug concentrations are the primary determinants of therapeutic and toxic effects, and the rational use of antiepileptic drugs therefore requires an understanding of their pharmacokinetics (Table 3), the dosage and medication intervals (Table 4), drug interactions, and monitoring the level of the drug in the plasma.

After an antiepileptic drug is administered via a specific route, its serum concentration is determined by various pharmacokinetic parameters. The serum concentration of the drug, which influences its therapeutic effects, is determined by absorption, distribution, and conversion processes in the human body, and the rate of excretion, bioavailability, and protein binding. The main pharmacokinetic parameters are summarized in Table 3. Older antiepileptic drugs generally show strong protein binding and clinically significant changes in drug effects resulting from changes in the drug-free fractions. As one example of a clinical application, the effect of drugs exhibiting strong protein binding (e.g., phenytoin and valproate) could be reduced when the serum level of albumin is low, such as in renal or hepatic disease, pregnancy, and malnutrition with various medical conditions. On the other hand, newer antiepileptic drugs exhibit fewer drug interactions and more-predictable pharmacokinetics. Antiepileptic drugs have different half-lives, which in general are related to the time taken to reach the steady-state plasma concentration. This is a useful indicator to consider when determining the maintenance dosage of a specific antiepileptic drug. The titration rates and maintenance doses for the various antiepileptic drugs are listed in Table 4.

The pharmacokinetic properties of an antiepileptic drug determine the time course of its serum concentration after its administration, while pharmacodynamics describes the relationship between the drug concentration and its therapeutic effect. When applying combination therapy of antiepileptic drugs, pharmacokinetic and/or pharmacodynamic interactions can occur between multiple drugs, which could be either beneficial or harmful. Adding an antiepileptic drug with different pharmacodynamic properties is recommended in combination therapy because antiepileptic drugs such as carbamazepine, phenytoin, oxcarbazepine, lamotrigine, and lacosamide that act on Na+ channels have more adverse effects. On the other hand, the synergistic combination of valproate and lamotrigine elicits beneficial drug interactions and is often recommended when monotherapy fails. Combination therapy should be considered when there are few side effects, since seizure control using this method is superior to that in monotherapy.

SEIZURE TYPE AND EPILEPSY CLASSIFICATION

The ILAE guidelines revised in 2017 classify seizure into focal, generalized, unknown, or unclassifiable based on its onset (Fig. 2). The old term “partial” was changed to “focal” seizure, while the term “generalized seizure,” in which seizure begins in both hemispheres, was retained. If the onset of seizure is unknown, but subsequent seizure types are known, the seizure is classified as “unknown.” A seizure event that does not belong to any of the above categories is designated as “unclassified.” Depending on whether consciousness is lost during a seizure event, the old terms “simple” and “complex” were changed to the new terms of “aware” and “impaired awareness.” After classifying the loss of consciousness, the next step is to assess the “motor” or “nonmotor” category at the onset of seizure. A secondary generalized seizure was newly named “focal to bilateral tonic-clonic seizure.”

Epilepsy is classified into the following four types: “focal,” “generalized,” “combined generalized and focal,” and “unknown.” A few epileptic syndromes that involve both focal and generalized seizure types (e.g., Dravet syndrome and Lennox-Gastaut syndrome) were included in “combined generalized and focal epilepsy.” Epilepsy events in which information about the type of seizure and patient is insufficient are categorized as “unknown.”

In order to select appropriate drugs, the diagnosis of the patient must first be accurate, in terms of the cause, seizure type, and epilepsy syndrome. The most useful diagnostic classification for antiepileptic drug selection is based on the seizure type (Fig. 2 and Table 2). Most antiepileptic drugs are effective against focal seizures and generalized tonic-clonic seizures, but special medications are needed for absence and myoclonic seizures, for which broad-spectrum antiepileptic drugs such as valproate are effective. In contrast, ethosuximide has a small indication range and can only be used in absence...
Antiepileptic Drug Selection in Adult Epilepsy

seizures. Therefore, diagnosing the seizure type is most important when initiating treatment for patients with epilepsy.

ANTIEPILEPTIC DRUG SELECTION ACCORDING TO SEIZURE TYPES

Focal onset seizure with awareness or impaired awareness

First single drug
Carbamazepine,15 oxcarbazepine,15 and lamotrigine16 are recommended for patients with their first diagnosed focal seizures. In the 2019 Expert Opinion Survey in Korea, the first choices for focal seizure were levetiracetam, oxcarbazepine, and lamotrigine.17 Carbamazepine is the most-frequent antiepileptic drug used in RCTs for patients with focal seizures. A 2007 large-scale, open-label RCT with carbamazepine, gabapentin, lamotrigine, oxcarbazepine, and topiramate involving 1,721 patients with partial-onset seizures found that lamotrigine exhibited noninferiority compared with carbamazepine.18

If carbamazepine, oxcarbazepine, and lamotrigine are not suitable or the patient does not tolerate them, levetiracetam19 or valproate20 can be used. A meta-analysis of 17 trials involving 3,205 patients found levetiracetam to be an effective antiepileptic drug for partial-onset refractory seizures.21

Additional drug
If the primary treatment is ineffective or the patient does not tolerate it, the frequently chosen options for additional treatment are carbamazepine, clobazam,22 gabapentin,23 lamotrigine,24 levetiracetam,25 oxcarbazepine,26 valproate,27 tiagabine,28 and topiramate.29 If the additional treatment is ineffective or the patient cannot tolerate it, the patient can be transferred to a tertiary institution. Lacosamide, phenobarbital, phenytoin, pregabalin, and vigabatrin can be considered as the next step in the process. Lacosamide30 has been used as a single drug for controlling the first focal seizure in Europe and the United States, but has only been approved as an additional antiepileptic drug for focal seizure in Korea.31 In a 2-year follow-up of 322 patients with partial-onset seizure, lacosamide monotherapy produced a favorable outcome and safety profiles.30

Brivaracetam increases the binding affinity of the synaptic vesicle protein SV2A by 10-fold more than levetiracetam. It was approved by the Korean FDA in 2019, and has been available for prescribing as an additional treatment in patients with focal seizure since 2020.32 The voltage-gated Na⁺-channel antagonist eslicarbazepine acetate is a novel antiepileptic drug that is used as an additional therapy for patients with focal seizure in the United States and Europe, but it has not yet been released in Korea.33 Retigabine is another novel antiepileptic drug approved for use in patients with refractory focal seizure in the United States and Europe that has not been introduced into Korea.34

GENERALIZED ONSET SEIZURE

Generalized tonic-clonic seizure

First single drug
Valproate35 is recommended for patients who are first diagnosed with generalized tonic-clonic seizure. When valproate is administered to females of childbearing age, there is a risk of the development of fetal deformities and neurodevelopmental disorders. The use of valproate should therefore be minimized as much as possible. If valproate is not suitable, lamotrigine, levetiracetam, zonisamide, and topiramate are considered as a first-line treatment.31 In the 2019 Expert Opinion Survey in Korea, valproate and lamotrigine were frequently selected for generalized tonic-clonic seizure.17 However, care is needed with lamotrigine since this can aggravate myoclonus.35

There is double-blind and open-label RCT evidence for the effectiveness of carbamazepine, levetiracetam, lamotrigine, phenytoin, and valproate as first-line antiepileptic drugs in patients with generalized tonic-clonic seizures. A large-scale RCT compared lamotrigine, valproate, and topiramate in 716 patients with generalized-onset and unclassifiable seizures.36 The subgroup analysis of idiopathic generalized epilepsy showed that valproate was more effective and had a lower failure rate than lamotrigine and topiramate.

Additional drug
If the primary treatment is not effective or tolerated, clobazam,37 lamotrigine, levetiracetam,38 valproate, topiramate,35 and perampanel39 can be considered as additional drugs. Carbamazepine, gabapentin, oxcarbazepine, phenytoin, pregabalin, and vigabatrin are not used in cases of absence or myoclonic seizure. A randomized trial showed that adjunctive therapy with perampanel was well tolerated and improved the control of drug-resistant generalized tonic-clonic seizure in patients with idiopathic generalized epilepsy.39

Nonmotor (absence) seizure

First single drug
Ethosuximide or valproate40 is recommended for absence seizures. Lamotrigine31 can be considered if ethosuximide or valproate is inappropriate, ineffective, or not tolerated by the patient. A large study of ethosuximide, valproate, and la-
motrigine demonstrated the superior effectiveness of ethosuximide and valproate compared with lamotrigine as a first-line treatment for patients with absence seizure. A 2010 double-blind trial of 446 patients with absence seizure found that the rate of seizure-free outcomes was 58% for valproate, 53% for ethosuximide, and 29% for lamotrigine. If the patient has coexisting generalized tonic-clonic seizures, valproate should be considered in preference to ethosuximde.

Additional drug
If the primary treatment is not effective or is not tolerated by the patient, two of the following drugs can be considered: ethosuximide, lamotrigine, and valproate. If the additional treatment is ineffective or the patient cannot tolerate it, the patient can be transferred to a tertiary institution. Clobazam, clonazepam, levetiracetam, topiramate, and zonisamide can be considered as a next step.

Myoclonic seizure
First single drug
Valproate is recommended as the primary treatment for myoclonic seizures. Levetiracetam and zonisamide, and topiramate can be considered as first-line antiepileptic drugs if valproate is inappropriate. An unblinded RCT performed in the United Kingdom over 5 years found that valproate was better tolerated than topiramate and more effective than lamotrigine.

Additional drug
If the first single antiepileptic drug fails to control myoclonic seizures, lamotrigine or zonisamide can be considered as an additional drug. A prospective RCT involving patients with juvenile myoclonic epilepsy found that lamotrigine was effective and better tolerated than valproate, even though lamotrigine often elicited idiosyncratic reactions such as skin eruption. Carbamazepine, oxcarbazepine, phenytoin, gabapentin, vigabatrin, and tiagabine worsen myoclonic seizure.

Tonic or atonic seizure
Phenytoin and lamotrigine are effective at treating tonic seizures. Valproate is the drug of choice for tonic seizure, especially in Lennox-Gastaut syndrome, but it is less effective in controlling tonic seizure. Antiepileptic drugs with broad-spectrum effects such as lamotrigine, topiramate, zonisamide, and levetiracetam are used for mixed seizures that include tonic seizure.

CONCLUSION
Recently developed antiepileptic drugs act via various novel mechanisms that increase their effectiveness while minimizing side effects. Since there is a wide range of antiepileptic drug available, selecting appropriate treatments requires broadening our understanding of the use of antiepileptic drugs based on seizure types in order to provide customized treatments for patients with epilepsy. This review has summarized the antiepileptic drugs that are available in Korea for different seizure types based on medical evidence and Korean expert opinions (Table 5). The most-important reference information when treating with antiepileptics is medical evidence. Expert opinion cannot be a substitute for the medical literature, and should only be consulted in specific clinical situations.

Table 5. Recommendations of antiepileptic drugs from Korean Expert-Opinion Surveys

Monotherapy	Adjunctive therapy			
Treatment of choice	Treatment of choice	First-line treatment	First-line treatment	Not recommended
Focal seizure	LEV, LGT, LCM	OXC, TPM, ZNS, CBZ, VPA		
Without dyscognitive seizure	LEV, OXC, LGT	CBZ		
With dyscognitive seizure	LGT, OXC, LEV	CBZ		
With bilateral convulsion	LEV, OXC, LGT	CBZ, LCM, VPA		
Generalized seizure	VPA, LEV	LGT, TPM, ZNS		
GTCS	VPA, LEV	LGT, TPM, ZNS		
Absence	OXC, VPA	LEV	CBZ, OX, GBP, PHT, PGB, VGB	
Myoclonic	VPA, LEV	ZNS, TPM	CBZ, OX, GBP, PHT, PGB, VGB	

CBZ: carbamazepine, ESM: ethosuximide, GBP: gabapentin, GTCS: generalized tonic-clonic seizure, LCM: lacosamide, LEV: lamotrigine, OXC: oxcarbazepine, PGB: pregabalin, PHT: phenytoin, TPM: topiramate, VGB: vigabatrin, VPA: valproate, ZNS: zonisamide.
Author Contributions

Conceptualization: all authors. Data curation: all authors. Formal analysis: Hyeyun Kim, Yong Won Cho, Kwang Ik Yang. Investigation: all authors. Methodology: Hyeyun Kim, Yong Won Cho, Kwang Ik Yang. Supervision: Yong Won Cho, Kwang Ik Yang. Validation: all authors. Visualization: Hyeyun Kim, Yong Won Cho, Kwang Ik Yang. Writing—original draft: Hyeyun Kim. Writing—review & editing: Hyeyun Kim, Yong Won Cho, Kwang Ik Yang.

ORCID IDs

Hyeyun Kim https://orcid.org/0000-0002-8008-5539
Dong Wook Kim https://orcid.org/0000-0003-4484-0602
Soon-Tae Lee https://orcid.org/0000-0003-4767-7564
Jung-Ick Byun https://orcid.org/0000-0002-6224-4575
Jong-Geun Seo https://orcid.org/0000-0001-6343-6520
Kyung Wook Kang https://orcid.org/0000-0001-9362-8670
Daeyeong Kim https://orcid.org/0000-0001-9056-0017
Keun Tae Kim https://orcid.org/0000-0002-7124-0736
Yong Won Cho https://orcid.org/0000-0002-6127-1045
Kwang Ik Yang https://orcid.org/0000-0001-6343-6520

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

Acknowledgements

None.

REFERENCES

1. Brodie MJ. Antiepileptic drug therapy the story so far. Seizure 2010;19:650-655.
2. Scott LJ. Lacosamide: a review in focal seizures in patients with epilepsy. Drugs 2015;75:2143-2154.
3. Hoy SM. Topiramate extended release: a review in epilepsy. CNS Drugs 2016;30:559-566.
4. Fabris RR, Cascino TG, Mandrekar J, Marsh WR, Meyer FB, Cascino GD. Drug-resistant focal epilepsy in women of childbearing age: reproduction and the effect of epilepsy surgery. Epilepsy Behav 2016;60:17-20.
5. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, et al. Efficacy and tolerability of the new antiepileptic drugs, I: treatment of new-onset epilepsy: report of the TTA and QS Subcommittees of the American Academy of Neurology and the American Epilepsy Society. Epilepsia 2004;45:401-409.
6. Appleton RE, Freeman A, Cross JH. Diagnosis and management of the epilepsies in children: a summary of the partial update of the 2012 NICE epilepsy guideline. Arch Dis Child 2012;97:1073-1076.
7. Scottish Intercollegiate Guidelines Network. SIGN 50: a guideline developer’s handbook. Revised ed. Edinburgh: Scottish Intercollegiate Guidelines Network (SIGN), 2011.
8. Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Chadwick D, Guerreiro C, et al. ILAE treatment guidelines: evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epilepsy seizures and syndromes. Epilepsia 2006;47:1094-1120.
9. Korean Epilepsy Society. Clinical guideline for antiepileptic drug treatment in patient with epilepsy. Seoul: Korean Epilepsy Society;2015.
10. Davies JA. Mechanisms of action of antiepileptic drugs. Seizure 1995;4:267-271.
11. Zhu MM, Li HL, Shi LH, Chen XP, Luo J, Zhang ZL. The pharmacogenomics of valproic acid. J Hum Genet 2017;62:1009-1014.
12. Howard P, Remi J, Remi C, Charlesworth S, Whalley H, Bhatia R, et al. Levetiracetam. J Pain Symptom Manage 2018;56:645-649.
13. Johannessen SI, Tomson T. Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet 2006;45:1061-1075.
14. Fisher RS, Cross JH, D’Souza C, French JA, Haut SR, Higurashi N, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017;58:531-542.
15. Maiti R, Mishra BR, Sanyal S, Mohapatra D, Parida S, Mishra A. Effect of carbamazepine and oxcarbazepine on serum neuron-specific enolase in focal seizures: a randomized controlled trial. Epilepsy Res 2017;138:5-10.
16. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 2007;369:1000-1015.
17. Byun JI, Kim DW, Kim KT, Yang KJ, Lee ST, Seo JG, et al. Treatment of epilepsy in adults: expert opinion in South Korea. Epilepsy Behav 2020;105:106942.
18. Marson AG, Appleton R, Baker GA, Chadwick DW, Doughty J, Eaton B, et al. A randomised controlled trial examining the longer-term outcomes of standard versus new antiepileptic drugs. The SANAD trial. Health Technol Assess 2007;11(37).
19. Cereghino JJ, Biton V, Abou-Khalil B, Dreuffus F, Gauter IJ, Leppik I. Levetiracetam for partial seizures: results of a double-blind, randomized controlled clinical trial. Neurology 2000;55:236-242.
20. Chadwick DW. Valproate monotherapy in the management of generalized and partial seizures. Epilepsia 1987;28 Suppl 2:S12-S17.
21. Chen D, Bian H, Zhang L. A meta-analysis of levetiracetam for randomised placebo-controlled trials in patients with refractory epilepsy. Neuropsychiatr Dis Treat 2019;15:905-917.
22. Montenegro MA, Cendes F, Noronha AL, Mory SB, Carvalho MI, Marques LH, et al. Efficacy of clonazepam as add-on therapy in patients with refractory partial epilepsy. Epilepsia 2001;42:539-542.
23. Gabapentin as add-on therapy in refractory partial epilepsy: a double-blind, placebo-controlled, parallel-group study. The US Gabapentin Study Group No. 5. Neurology 1993;43:2292-2298.
24. Joziwiak S, Terczyński A. Open study evaluating lamotrigine efficacy and safety in add-on treatment and consecutive monotherapy in patients with carbamazepine- or valproate-resistant epilepsy. Seizure 2009;18:486-492.
25. Steinhoff BJ, Somerville ER, Van Paaschen W, Rylin P, Schelsstraete I. The SKATE study: an open-label community-based study of levetiracetam as add-on therapy for adults with uncontrolled partial epilepsy. Epilepsy Res 2007;76:6-14.
26. Barcs G, Walker EB, Elger CE, Scaramelli A, Stefan H, Sturm Y, et al. Oxcarbazepine placebo-controlled, dose-ranging trial in refractory partial epilepsy. Epilepsia 2000;41:1597-1607.
27. Sun MZ, Deckers CL, Liu YX, Wang W. Comparison of add-on valproate and primidone in carbamazepine-unresponsive patients with partial epilepsy. Seizure 2009;18:90-93.
28. Jedrzejczak I. Tiagabine as add-on therapy may be more effective with valproic acid—open label, multicentre study of patients with focal epilepsy. Eur J Neurol 2005;12:176-180.
29. Krakow K, Lengler U, Rettig K, Schreiner A, Schaulle B; TOP-GER-3 investigators. Topiramate in add-on therapy: results from an open-label, observational study. Seizure 2007;16:593-600.
30. Vossler DG, Wechsler RT, Williams P, Byrnes W, Therriault S; ALEX-1 investigators. Topiramate in add-on therapy for adults with uncontrolled partial epilepsy: a randomized clinical trial. Epilepsia 2007;48:1597-1607.
31. Shih JJ, Whitlock JB, Chimato N, Vargas E, Karceski SC, Frank RD. Epilepsy treatment in adults and adolescents: expert opinion, 2016. Epilepsy Behav 2017;69:186-222.
32. von Rosenthal P. Brivaracetam (UCB 34714). Neurotherapeutics 2007;4:84-87.
33. Almeida L, Soares-da-Silva P. Eslicarbazepine acetate (BIA 2-093).
34. French JA, Abou-Khalil BW, Leroy RF, Yacubian EM, Shin P, Hall S, et al. Randomized, double-blind, placebo-controlled trial of ezogabine (retigabine) in partial epilepsy. *Neurology* 2011;76:1555-1563.

35. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. *Lancet* 2007;369:1016-1026.

36. National Clinical Guideline Centre. The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. London: Royal College of Physicians, 2012.

37. Allen JW, Oxley J, Robertson MM, Trimble MR, Richens A, Jawad SS. Clobazam as adjunctive treatment in refractory epilepsy. *Br Med J (Clin Res Ed)* 1983;286:1246-1247.

38. Kumar SP, Smith PE. Levetiracetam as add-on therapy in generalised epilepsies. *Seizure* 2004;13:475-477.

39. French JA, Krauss GL, Wechsler RT, Wang XF, DiVentura B, Brandt C, et al. Perampanel for tonic-clonic seizures in idiopathic generalised epilepsy: a randomized trial. *Neurology* 2015;85:950-957.

40. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. *N Engl J Med* 2010;362:790-799.

41. Brigo F, Igwe SC. Ethosuximide, sodium valproate or lamotrigine for absence seizures in children and adolescents. *Cochrane Database Syst Rev* 2017;2:CD003032.

42. Nevitt SJ, Marson AG, Weston J, Tudur Smith C. Sodium valproate versus phenytoin monotherapy for epilepsy: an individual participant data review. *Cochrane Database Syst Rev* 2018;8:CD001769.

43. Dahlin MG, Amark PE, Nergårdh AR. Reduction of seizures with low-dose clonazepam in children with epilepsy. *Pediatr Neurol* 2003;28:48-52.

44. Verrotti A, Cerminara C, Domizio S, Mohn A, Franzoni E, Coppola G, et al. Levetiracetam in absence epilepsy. *Dev Med Child Neurol* 2008;50:850-853.

45. Kessler SK, McGinnis E. A practical guide to treatment of childhood absence epilepsy. *Paediatr Drugs* 2019;21:15-24.

46. Nosachtar S, Andermann E, Meyvisch P, Andermann F, Gough WB, Schieman-Delgado I, et al. Levetiracetam for the treatment of idiopathic generalized epilepsy with myoclonic seizures. *Neurology* 2008;70:607-616.

47. Machado RA, García VF, Astencio AG, Cuartas VB. Efficacy and tolerability of lamotrigine in juvenile myoclonic epilepsy in adults: a prospective, unblinded randomized controlled trial. *Seizure* 2013;22:846-855.

48. Vossler DG, Conry JA, Murphy JV; ZNS-302/505 PME Study Group. Zonisamide for the treatment of myoclonic seizures in progressive myoclonic epilepsy: an open-label study. *Epileptic Disord* 2008;10:31-34.

49. Motte J, Trevathan E, Arvidsson JE, Barrera MN, Mullens EL, Manasco P. Lamotrigine for generalized seizures associated with the Lennox-Gastaut syndrome. Lamictal Lennox-Gastaut Study Group. *N Engl J Med* 1997;337:1807-1812.

50. Verrotti A, Striano P, Iapadre G, Zagaroli L, Bonanni P, Coppola G, et al. The pharmacological management of Lennox-Gastaut syndrome and critical literature review. *Seizure* 2018;63:17-25.

51. Balagura G, Riva A, Marchese F, Verrotti A, Striano P. Adjunctive rufinamide in children with Lennox-Gastaut syndrome: a literature review. *Neuropsychiatr Dis Treat* 2020;16:369-379.

52. Bektaş G, Çalışkan M, Aydın A, Pembeğil Yıldız E, Tatlı B, Aydınıl N, et al. Aggravation of atonic seizures by rufinamide: a case report. *Brain Dev* 2016;38:654-657.