Synthesis, characterization and magnetic evaluation of praseodymium modified cerium oxide

A F Cruz Pacheco¹, J A Gómez Cuaspud¹ and C A Parra Vargas¹
¹ Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia

E-mail: andresfelipe.cruz@uptc.edu.co

Abstract. This paper report the synthesis, characterization and magnetic evaluation of Ce₀.₆Pr₀.₄O₂ system using a chemical route that involves the combustion of citrate species. The precursors were characterized by Fourier transform infrared spectroscopy (FTIR), to identify, the main vibrational bands associated with the organic material after combustion process. The structural analysis by X-ray diffraction (XRD) revealed the obtaining of an Fm-3m (225) cubic phase with a particle size around 10nm. Finally, the measurement of the magnetization as a function of applied magnetic field and of susceptibility showed a perfect paramagnetic behaviour.

1. Introduction
With the progress of technology, there are new challenges for the development of advanced ceramic materials, in which the rare earth elements have shown unusual and interesting properties for a wide application field. In this context, the cerium is particularly one of the most important and abundant elements in nature and just as praseodymium are the only elements of this group that are stable in two oxidation states Ce⁴⁺, Ce³⁺, Pr⁴⁺ and Pr³⁺. The CeO₂ and Pr₂O₃, are the most common oxides of these elements and their importance focuses on the possibility to participate in redox reactions and the storage capacity and controlled release of oxygen through the conversion between the main oxidation states respectively. The oxygen vacancies that arise from this conversion can be chemically manipulated by the combination of the two compounds originating materials with electronic, structural, mechanical, optical, catalytic and magnetic properties for technological applications. Some of the most important properties of these oxides have focused on the field of catalysis and photocatalysis [1,2], in development of oxygen sensors and biomaterials [3,4], and design of components for solid oxide fuel cells SOFC [5,6]. Commonly these materials are prepared by solid state reaction, however the low homogeneity of products and the restricted kinetic associated with the synthesis process and the loss of textural, surface and morphological properties, make the current trend is to use alternative routes leading to a better control of composition, structure and purity of phase at nanometric scale. In this sense, the combustion method is one of the most viable for its simplicity, speed and economy, reason why, present work pretend to show the advantage of combustion process in the obtaining of nanostructured oxides based on Ce₀.₆Pr₀.₄O₂ system [7–9].

2. Experimental
Stoichiometric amounts of Ce(NO₃)₃.6H₂O (99.9%), Pr(NO₃)₃.6H₂O (99.9%) and citric acid monohydrated (99.9%) were used in the preparation of the Ce₀.₆Pr₀.₄O₂ system, by the combustion method. The oxide was synthesized starting from solutions of nitrates of Ce³⁺ and Pr³⁺, (Previously
validated [10]), using a glass reactor equipped with magnetic stirring (150rpm), temperature control and reflux, as described elsewhere [11]. Once adjusted the corresponding dissolutions, the citric acid was added in a molar ratio 1:0.5, with respect to the total concentration of cations. The system was kept under reflux at 140°C for 12 hours until formation of a viscous liquid, which was then heated at 200°C under air flux in an oven until complete solvent evaporation and treated at 310°C to initiate the combustion process. The precursor formed was treated at 500°C to remove the remaining carbon under oxygen flow for 2 hours.

The metal-organic precursor was analysed by infrared spectroscopy FTIR, using a Shimadzu FTIR prestige-21 equipment in ATR configuration (attenuated total reflectance), in order to assess the formation of citrate complexes and allow the verification of the effectiveness of the synthesis process and the chemical composition. The crystalline structure of the solid after calcination of precursor, was evaluated by X-ray diffraction (XRD), on a PANalytical X’Pert PRO MPD diffractometer, equipped with Ultra-Fast X’celerator detector and Bragg-Brentano configuration, using Cu Kα radiation (λ=1.54186Å) between 20º and 90º. The measurements were developed with a voltage of 40kV and a current of 20 mA in all cases. The crystallite size was calculated using the highest diffraction signals by the Debye-Scherrer equation, taking the value of half peak width set by a Lorentzian function and using a constant of 0.89 as reference [12]. The magnetization hysteresis (M-H) loop and zero field cooling (ZFC) studies, of the Ce0.6Pr0.4O2 system, was carried out by using a vibrating sample magnetometer VersaLab (VSM). The magnetization measurements were performed at several magnetic fields (500Oe–5000Oe), and the magnetic hysteresis measurements were done at different temperatures (100 and 300K) [13].

3. Results and discussion

FTIR spectrum of the Ce0.6Pr0.4O2 precursor before and after combustion process is shown in Figure 1.

![Figure 1. Infrared spectrum of the Ce0.6Pr0.4O2 precursor before and after the combustion process.](image)

The spectrum of precursor before combustion process, shown characteristic absorption bands associated with a polymeric citrate complex, which confirms the formation of coordination compounds between metals and citrate species as reported previously by Wahba [14]. The intense absorption band at 3431cm⁻¹ is attributed for (O-H) vibration modes of the water molecules coordinated to the complex. The band stretching at 3241cm⁻¹ is assigned for vibrational mode of (N-H) bond, which is associated with the addition of ammonia to dissolution for pH adjustment. The weak
band observed at 2360 cm\(^{-1}\) is associated with the presence of CO\(_2\), which it is occluded in the materials during the synthesis [15]. The band located at 1653 cm\(^{-1}\) is related with the asymmetric deformation mode of carboxyl group of mono-dentate coordination compounds and the bands attributed the symmetric stretching at 1418 and 1312 cm\(^{-1}\) for the respective (COOH) groups, corresponds to a strong stretch mode associated to bidentate coordination compounds [16,17].

The absorption bands observed at 1041 cm\(^{-1}\) corresponds the stretching modes of the (CO) bonding associated with acetics and primary alcohols, as well as bends out of plane of (C-H) bond [18]. The absorption peaks in the region 900–500 cm\(^{-1}\) are associated with the bond of the metal cations with oxygen atoms. The characteristic band at around 580 cm\(^{-1}\) is assigned for the symmetric stretching vibration of Ce-O-Ce, Ce-O-Pr or Pr-O-Pr [19–21]. While, there is still presence of absorption bands related to symmetrical and asymmetrical deformations of the groups (COOH) and a band to lower frequencies corresponding to the vibrational modes of the links C-O associated acetals and primary aliphatic alcohols. So, the intense band at 580 cm\(^{-1}\), indicate that the cerium and praseodymium cations are tightly bound with oxygen [22], which implies that synthesis process has a significant decrease in terms of time and efficiency.

Structural identification of Ce\(_{0.6}\)Pr\(_{0.4}\)O\(_2\) system was determined using XRD as shown in Figure 2. XRD patterns reveal the formation of a single phase with cubic structure type fluorite and space group Fm-3m (225) with a lattice constant \(a=0.5411\) nm, according with the reference compound of CeO\(_2\), ICDD code 00-034-0394.

![Figure 2. X-ray diffraction pattern of Ce\(_{0.6}\)Pr\(_{0.4}\)O\(_2\) system.](image)

According to XRD data, the crystallite size (D) was to be about 10 nm and was calculated using the Scherrer formula:

\[
D = \frac{0.9\lambda}{\beta \cos \theta}
\]

(1)

Where \(\lambda\) was the X-ray wavelength, \(\beta\) was the width of the peak highest intensity considered in the calculation and \(\theta\) was the Bragg diffraction angle of the main reflection (1 1 1) [23].

The broadening of the peaks is due to the incorporation of Pr to cerium oxide structure, which leads to an increase in the solids density and heterogeneity in the structural composition at nanoscopic level [24]. These phenomena are due to the ionic radius of Pr\(^{3+}\) (1.126 Å), which is much larger than Ce\(^{4+}\) and Ce\(^{3+}\) (1.034 Å) cations. However, the Pr\(^{4+}\) (0.96 Å) radius is slightly smaller that for Ce\(^{4+}\) (0.97 Å).
[25–27], therefore the difference of ionic radius cause a change in the Ce–O bond length and in the crystal size of the sample [28].

Figure 3 shows the experimental data of the magnetization (M), as a function of applied magnetic field (H) for Ce0.6Pr0.4O2 system measured at 100 and 300K. The sample exhibits a perfect paramagnetic behaviour at 100 and 300 K since the magnetization is reversible and has a linear curve.

![Figure 3. Magnetization (M) of Ce0.6Pr0.4O2 system as a function of the applied magnetic field (H) at 100 and 300K.](image)

The temperature dependence of the magnetic susceptibility for Ce0.6Pr0.4O2 was performed at four magnetic fields (100, 500, 1000 and 5000 Oe) as shown in Figure 4. All ZFC curves present a paramagnetic behaviour, with increased susceptibility when a temperature decreases. The behaviour that presents the sample is due to the incorporation of praseodymium in the fluorite structure of cerium oxide. The Pr4+ and Pr3+ ions have net magnetic moments that make them paramagnetic [29]. In the same way, the paramagnetic component also comes from the Ce3+ ions due to the one unpaired electron in a 4f orbital [30]. Furthermore, the diamagnetic behaviour of Ce4+ ions not present in measures magnetization vs applied field and the ZFC curves, so is at low proportion [31].

![Figure 4. Magnetic susceptibility as a function of temperature for Ce0.6Pr0.4O2 in the magnetic fields 100, 500, 1000 and 5000 Oe.](image)

4. Conclusions

The Ce0.6Pr0.4O2 system, was prepared by the combustion method, obtaining material at the nanometric order. The FT-IR analysis of metal-organic precursors, allowed evaluate the main absorption bands related with the formation of polymeric complexes between metal cations and citrate species. The structural characterization evaluated by X-ray diffraction, confirms obtaining an oxide with structure fluorite type according to the reference compound. The crystal size of sample was 10nm, using the Debye–Scherrer equation. The magnetic response produced by Ce0.6Pr0.4O2 system was attributed to paramagnetic behaviour due to Ce3+, Pr3+ y Pr4+ ions have a net magnetic moment.

References

[1] Nakagawa K, Ohshima T, Tezuka Y, Katayama M, Katoh M and Sugiyama S 2015 Catal. Today 246 67
[2] Contreras-García M E, García-Benjume M L, Macías-Andrés V I, Barajas-Ledesma E, Medina-Flores A and Espitia-Cabrera M I 2014 Mater. Sci. Eng. B 183 78
[3] Chen C Y, Chang K H, Chiang H Y and Shih S J 2014 Sensors Actuators B Chem. 204 31
[4] Kolli M B, Manne N D P K, Para R, Nalabotu S K, Nandyala G, Shokuhfar T, He K, Hamlekhah A, Ma J Y, Wehner P S, Dornon L, Arvapalli R, Rice K M and Blough E R 2014 Biomaterials 35 9951
[5] Taguchi H, Chiba R, Komatsu T, Orui H, Watanabe K and Hayashi K 2013 J. Power Sources 241 768
[6] Stojadinović B, Dohčević-Mitrović Z, Paunović N, Ilić N, Tasić N, Petronijević I, Popović D and
Stojanović B 2016 J. Alloys Compd. 657 866
[7] Chen B, Rao G, Wang S, Lan Y, Pan L and Zhang X 2015 Mater. Lett. 154 160
[8] Deganello F, Marci G and Deganello G 2009 J. Eur. Ceram. Soc. 29 439
[9] Rajpure K Y 2015 Superlattices Microstruct. 77 181
[10] Gómez-Cuaspud J A and Valencia-Ríos J S 2009 Rev. Colomb. Química 38 289
[11] Rodrigues C P and Schmal M 2011 Int. J. Hydrogen Energy 36 10709
[12] Mustafa G, Islam M U, Zhang W, Jamil Y, Asif Iqbal M, Hussain M and Ahmad M 2015 J. Magn. Magn. Mater. 378 409
[13] Mejía-Gómez J A, Supelano-García I, Palacio C A and Parra-Vargas C A 2015 J. Phys. Conf. Ser. 614 012003
[14] Wahba A M, Aboulfotoh-Ali N and Eltabey M M 2014 Mater. Chem. Phys. 146 224
[15] Gómez-Cuaspud J A, Valencia-Ríos J S and Carda-Castelló J B 2010 J. Chil. Chem. Soc. 55 445
[16] Chen Y and Xiao J Z 2013 Ceram. Int. 39 9599
[17] Shaikh P A, Kambale R C, Rao A V and Kolekar Y D 2010 J. Alloys Compd. 492 590
[18] da Silva M F P, de Souza-Cardalho F M, da Silva-Martins T, de Abreu-Fantini M C and Isolani P C 2010 J. Therm. Anal. Calorim. 99 385
[19] Vanhoyland G, Pagnaer J, D’Haen J, Mullens S and Mullens J 2005 J. Solid State Chem. 178 166
[20] Yang W D, Chang Y H and Huang S H 2005 J. Eur. Ceram. Soc. 25 3611
[21] Esther Jeyanthi C, Siddheswaran R, Kumar P, Siva Shankar V and Rajarajan K 2014 Ceram. Int. 40 8599
[22] Ho C, Jimmy Y, Kwong T, Mak A C and Sukyn L 2005 Chem. Mater. 17 4514
[23] Li X, Feng Z, Lu J, Wang F, Xue M and Shao G 2012 Ceram. Int. 38 3203
[24] Gerasimov E Y, Isupova L A and Tsymbulya S V 2015 Mater. Res. Bull. 70 291
[25] Matovic B, Boskovic S, Logar M, Radovic M, Dohcevic-Mitrovic Z, Popovic Z V and Aldinger F 2010 J. Alloys Compd. 505 235
[26] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751
[27] Chiba R, Taguchi H, Komatsu T, Orui H, Nozawa K and Arai H 2011 Solid State Ionics 197 42
[28] Phokha S, Prabhakaran D, Boothroyd A, Pinitsoontorn S and Maensiri S 2014 Microelectron. Eng. 126 93
[29] Kern S 1964 J. Chem. Phys. 40 208
[30] Niu G, Hildebrandt E, Schubert M A, Boscherini R, Zollner M H, Alff L, Walczyk D, Zaumseil P, Costina I, Wilkens H and Schroeder T 2014 ACS Appl. Mater. Interfaces 6 17496
[31] Bernardi M I B, Mesquita A, Béron F, Pirot A R, de Zevallas A O, Doriguetto A C and de Carvalho H B 2015 Phys. Chem. Chem. Phys. 17 307