Enhancing H₂ evolution performance of an immobilised cobalt catalyst by rational ligand design†

Janina Willkomm, Nicoleta M. Muresan and Erwin Reisner*

The catalyst [CoIIIBr((DO)(DOH)(4-BnPO3H2)(2-CH2py)pn)]Br, CoP3, has been synthesised to improve the stability and activity of cobalt catalysts immobilised on metal oxide surfaces. The CoP3 catalyst contains an equatorial diimine–dioxime ligand, (DOH)pn = N2,N2′-propanediyli-bis(2,3-butadienone-2-imine-3-oxime), with a benzylphosphonic acid (4-BnPO3H2) group and a methylpyridine (2-CH2py) ligand covalently linked to the bridgehead of the pseudo-macrocyclic diimine–dioxime ligand. The phosphonic acid functionality provides a robust anchoring group for immobilisation on metal oxides, whereas the pyridine is coordinated to the Co ion to enhance the catalytic activity of the catalyst. Electrochemical investigations in solution confirm that CoP3 shows electrocatalytic activity for the reduction of aqueous protons between pH 3 and 7. The metal oxide anchor provides the catalyst with a high affinity for mesostructured Sn-doped In2O3 electrodes (mesoITO; loading of approximately 22 nmol cm⁻²) and the electrostability of the attached CoP3 was confirmed by cyclic voltammetry. Finally, immobilisation of the catalyst on ruthenium-dye sensitised TiO2 nanoparticles in aqueous solutions in the presence of a hole scavenger establishes the activity of the catalyst in this photocatalytic scheme. The advantages of the elaborate catalyst design in CoP3 in terms of stability and catalytic activity are shown by direct comparison with previously reported phosphonated Co catalysts. We therefore demonstrate that rational ligand design is a viable route for improving the performance of immobilised molecular catalysts.

Introduction

Solar fuels generation through artificial photosynthesis requires a well-balanced combination of light harvesting and charge separation with proton reduction and water oxidation catalysis, preferentially in a photoelectrochemical (PEC) cell.¹ As for H₂ evolution, molecular synthetic catalysts based on 3d transition metals like Fe,² Co³ or Ni⁴ are currently under intensive investigation as an alternative to the current benchmark H₂ evolving catalysts: scarce and expensive Pt⁵ and fragile enzymes known as hydrogenases.⁶ However, the use of catalysts in a PEC cell requires their stable integration into electrodes, which is particularly challenging for molecular catalysts.⁷

An advantage of synthetic molecular catalysts compared to solid-state materials or enzymes is the relative ease to control and characterise their composition and to study their mechanisms and kinetics in great detail. This strength provides a rational route to elaborated and improved catalyst design through mechanistic understanding and often by adopting hydrogenase-related principles.⁸ For example, bio-inspired nickel bis(diphosphine) catalysts were reported to generate H₂ photo-⁹ and electrocatalytically¹⁰ in aqueous solution. These Ni complexes remain electroactive when heterogenised on carbon-based electrodes,¹¹ and immobilisation on metal oxide nanoparticles¹² and on carbon nitride¹³ has allowed for their exploitation for photocatalytic H₂ production in heterogeneous schemes. Synthetic mimics of the [FeFe]-hydrogenase active site evolve H₂ from water when combined with CdTe quantum dots as a photosensitiser¹⁴ and when incorporated into a protective environment, e.g. a metal organic framework¹⁴ or a micellar system.¹⁵

Cobalt catalysts with a bis(dimethylglyoximato) equatorial ligand ([dmgH]²)₂ and an activity enhancing axial pyridine ligand,¹⁶–¹⁸ [CoCl(dmgH)₂[py]] (Fig. 1A), have long been identified as one of the most active molecular catalysts for the reduction of aqueous protons and a wealth of experimental and theoretical information is available.¹⁷ These catalysts belong to the class of cobaloximes and they are also among the very few synthetic catalysts reported as O₂-tolerant during catalysis, which is an important consideration for their use in full water splitting systems.¹⁹–²¹ Cobaloximes have been integrated into photocatalytic systems by wiring the catalyst to a light absorber.
The axial pyridine ligand coordinates to the metal centre and enhances the activity of the cobalt catalyst. Covalent linkage to the equatorial ligand framework ensures that the pyridine does not diffuse away from the catalyst core during turnover. The phosphonic acid group allows for attachment to metal oxide surfaces and is also tightly bound to the ligand framework. The electrochemistry of CoP₃ in solution and when immobilised on mesoporous indium–tin oxide electrodes (ITO|mesoITO), as well as the photocatalytic activity of CoP₃ in Ru-dye sensitised systems is reported and the results are directly compared with previously reported cobalt catalysts CoP₁ and CoP₂ (Fig. 1).

Results and discussion

Synthesis and characterisation of CoP₃

Complex CoP₃ was synthesised in six steps from commercially available starting materials with an overall yield of approximately 10% (Scheme 1 and ESI† for experimental details).

Compound 1 was prepared via condensation of 4-bromo-benzaldehyde with malononitrile and reduction by NaBH₄. The phosphonate ester derivative 2 was synthesised from 1 in a Pd-catalysed cross-coupling reaction with diethyl phosphate. Introduction of the pendant pyridine was achieved by alkylation of 2 with 2-(bromomethyl)pyridine. The resulting malononitrile derivative 3 was reduced to the diamine 4 by treatment with borane. Complex E¹CoP₃ was obtained from a one-pot, three-step condensation–complexation–oxidation reaction:†

Scheme 1

(i) Malononitrile, NaBH₄, ethanol/water (95/5), 3 h, r.t., 80%; (ii) HPO(OEt)₂, Et₂N, Pd[PPh₃]₄, PPh₃, tetrahydrofuran, 48 h, reflux, 73%; (iii) 2-(bromomethyl)pyridine–HBr, K₂CO₃, acetone, 3 d, r.t., 58%; (iv) borane, tetrahydrofuran, 24 h, r.t., 99%; (v) 2,3-butanedione monoxime, CoBr₂·6H₂O, air, methanol, 5 d, r.t., 45%; (vi) bromo-trimethylsilane, dichloromethane, 48 h, r.t., 65% yield. The chemical structure of CoP₃ is shown in Fig. 1C.

For example, supramolecular homogeneous systems with a dye covalently linked to the Co catalyst,²⁷ colloidal systems containing dye-sensitised titania (with CoP₁, R = PO₃H₂; Fig. 1A)²⁸ or carbon nitride and their immobilisation on photocathodes²⁷,²² have been reported. However, these assemblies suffer from the drawback of anchoring the cobaloxime to the light absorber via the monodentate axial pyridine ligand. The Co–pyridine bond becomes labile during catalysis, which may result in the loss of the Co(dmgh)₂ core from the light absorber unit during irradiation.¹⁶,²³ Consequently, the stability and performance of these photocatalytic systems are limited.

More robust class of cobalt catalysts, [CoX₆{(DO)(DOH)pn}](A),₂²⁹ and the stable catalyst core and anchoring functionality of CoP₂ (B).²⁴

A more robust class of cobalt catalysts, [CoX₆{(DO)(DOH)pn}] with X = bromide or chloride and the tetradentate ligand (DOH)₂pn = N₄⁺N₂⁻-propanediyl-bis(2,3-butanedione-2-imine-3-dioxime) (R’ = H; Fig. 1B), was recently integrated into electrodes. This Co catalyst was immobilised on a carbon-based electrode via click chemistry (X = Cl, R’ = H, N₃)²⁶ and on a conducting metal oxide electrode via a phosphonic acid linker (CoP₂, X = Br, R’ = 4-BnPO₃H₂; Fig. 1B).²⁴,²⁷ Anchoring of the Co catalyst through the propanediy1 bridgehead of the pseudomacrocyclic equatorial ligand provides a substantially more stable anchoring to an electrode than immobilisation via the axial pyridine in cobaloximes.

In this work, we present a cobalt catalyst for H₂ evolution, which does not only display good stability when anchored onto metal oxide surfaces, but also enhanced catalytic activity compared to the previously reported immobilised Co catalyst CoP₁. The novel cobalt catalyst, CoP₃, contains a pendant pyridine and a dangling phosphonic acid group linked to the bridgehead of the equatorial diimine–dioxide ligand (Fig. 1C).
The final complex CoP$_3$ was characterised by 1H, 13C, 31P and NOE NMR spectroscopy, UV-vis and ATR-IR spectroscopy, mass spectrometry and elemental analysis. The 31P NMR spectra of the phosphonate ester compounds 2–4 and 31CoP$_3$ feature a signal at approximately 19 ppm, which is shifted to 13 ppm in CoP$_3$ as expected upon hydrolysis of the phosphonate ester. Both cobalt complexes, 31CoP$_3$ and CoP$_3$ display a characteristic 1H NMR signal at approximately 19 ppm, which is assigned to the bridge proton of the equatorial (DO)(DOH)pn ligand.\cite{15,29} 1H NMR signals of the methylene protons on the propanediy1 bridgehead of diamin4 exhibit a downfield shift from 2.5 ppm to 3.7 and 4.1 ppm upon formation of the cobalt diimine–dioxime complex 31CoP$_3$. Moreover, these diastereotopic methylene protons (1/H,H1 = 15 Hz) show a significantly different chemical shift (for CoP$_3$: Δ = 0.6 ppm in DMSO-d_6). This difference is presumably due to two different axial ligands in the octahedral coordination sphere and is an indication of coordination of the pendant pyridine ligand to the metal centre in 31CoP$_3$ and CoP$_3$. Evidence for coordination is also given by a 0.7 ppm upfield shift of the signal of the pyridine proton in 6-position upon formation of the cobalt complexes (H6, Table S17).\cite{29} In addition, a NOE response was observed for this proton after saturation of the oxime proton signal at 19.2 ppm (Fig. S12), revealing that both protons have to be in close proximity to each other.\cite{29} When trifluoroacetic acid (TFA) was added to a solution of CoP$_3$ in DMSO-d_6, no shift of the pyridine proton signals was observed (Fig. S13†). If protonated, new signals would be expected in the range of 8 to 9 ppm.\cite{29} Thus, the pyridine remains ligated to the cobalt centre and is not protonated even in the presence of a strong acid.

The 1H NMR spectrum of CoP$_3$ in D$_2$O shows a similar upfield shift for the pyridine proton in 6-position as in DMSO-d_6 (7.8 ppm in CoP$_3$ vs. 8.5 ppm in diamin4) and the spectrum remained unchanged for at least three weeks (Fig. S14†). Electronic absorption spectra of CoP$_3$ in water show a strong $\pi-\pi^*$ absorption at λ = 259 and 219 nm (ε = 1.864 \times 104 L mol$^{-1}$ cm$^{-1}$ and 2.774 \times 104 L mol$^{-1}$ cm$^{-1}$; Fig. S15†). Similar absorption features are obtained in pH 7 phosphate buffer and pH 4.5 acetate buffer and no changes in the UV-vis spectrum were apparent when the solution was acidified with TFA (Fig. S15†), demonstrating the good stability of the catalyst in aqueous solutions.

Electrochemical studies in solution

The electrochemical response of CoP$_3$ was investigated in organic as well as aqueous electrolyte solutions using a three-electrode set-up with a glassy carbon working electrode (0.07 cm2). A cyclic voltammogram (CV) of CoP$_3$ recorded in DMF/TRABF$_6$ electrolyte solution (TRABF$_6$ = tetrabutylammonium tetrafluoroborate, 0.1 M) exhibits two reversible one-electron reduction waves at $E_{1/2}$ = −0.67 V and −1.07 V vs. Fe$/^+$/Fe, which are assigned to the CoIII/CoII and CoII/CoI redox couples, respectively (Fig. S16A).\cite{15,29} Upon addition of 1 to 10 equivalents of TFA, a catalytic proton reduction wave appeared close to the potential of the initial CoII/CoI redox couple at a half-wave potential, $E_{cat/2}$, of −1.06 V vs. Fe$/^+$/Fe, (Fig. S16B†).

Thus, an overpotential (η) of approximately 110 mV is required to reduce TFA protons ($E^0(H^+/H_2)$ = −0.95 V vs. Fe$/^+$/Fe for 10 mM TFA in DMF) with CoP$_3$, which is comparable to previously reported [Co(DO)(DOH)pn]-type complexes.\cite{15,29} CVs recorded in aqueous Britton–Robinson buffer (pH 3 to 7) feature a reversible CoIII/CoII redox couple and quasi-reversible CoII/CoI reduction (Fig. 2A). When scanning towards more cathodic potential, a third reduction wave is observed which is attributed to catalytic proton reduction by the complex.\cite{15} Comparable electrochemical responses were obtained when a pH 7 triethanolamine (TEOA)/Na$_2$SO$_4$ electrolyte solution and pH 4.5 acetate or ascorbic acid (AA) solution were used (Fig. S17†), except that no CoIII/CoII reduction wave can be observed in cathodic scans in AA solution, presumably due to the chemical reduction of CoIIIP$_3$ to CoIIP$_3$ (Fig. S18†). The onset of a weak wave, tentatively assigned to CoII/CoI oxidation, is observed at approximately 0.05 V vs. NHE before AA oxidation starts at 0.2 V vs. NHE.

The pH-dependent investigation also revealed that the half-wave potential of the catalytic reduction wave of CoP$_3$, $E_{cat/2}$, shifts by approximately −60 mV per pH unit increase (Fig. 2A); in agreement with a one proton–one electron coupled process according to the Nernst equation. This was previously attributed to protonation of the oxime functionality in [Co(DO)(DOH)pn]-type complexes.\cite{15,29}

Comparison of the electrochemical response of CoP$_3$ to the previously reported complex CoP$_2$ allows us to elucidate any beneficial effect of the additional axial pyridine ligand on the...
proton reduction activity. CVs of CoP² recorded in the pH range from 3 to 7 are shown in Fig. 2B. A shift in redox potential is observed for the Co²⁺/Co⁰ redox couple in CoP¹ compared to CoP² (ΔE₁/₂ = −0.24 V at pH 7), which is consistent with a coordinated pyridine in CoP¹. For both cobalt diimine–dioxime catalysts, the catalytic reduction wave decreases with increasing pH indicating a higher proton reduction activity under more acidic conditions, which has been previously observed for (DO)OH-pincer-type cobalt catalysts.²⁶ Peak currents of the catalytic reduction wave, I₉₀ and I₉₀/IP ratios taking into account the non-catalytic Co(III)/Co²⁺ reduction peak currents, I₉₀, are similar for both complexes at pH 3 and 4 (Table S2). But, CoP³ features higher I₉₀ and I₉₀/IP ratios at pH values above 4 revealing a higher activity of CoP³ under more pH neutral conditions (Table S2†). Moreover, the half wave potential E₉₀/₂ of CoP³ is observed at less negative potentials than for CoP² under pH neutral conditions (−0.83 V for CoP² vs. −0.78 V vs. NHE for CoP³).

The half-wave potential, E₁/₂, of the Co²⁺/Co⁰ reduction wave in CoP³ shifts with about −33 mV per pH at pH values below 6 and becomes almost pH independent above pH 6 (Fig. S19A†). Such a change in slope was not observed for E₁/₂(III)/Co⁰) in CoP² (Fig. S19B†), suggesting an alteration in the coordination sphere specific to CoP³, e.g. a ligated and non-ligated, probably protonated pendant pyridine ligand. The pH-dependencies of E₁/₂ of the Co(III)/Co²⁺ reduction wave change in a similar manner for CoP² and CoP³ (Fig. S20†) and are ascribed to protonation/deprotonation occurring at moieties present in both complexes, e.g. at phosphonic acid groups* or aquo ligands. Due to a different number of those functionalities the slopes differ for both complexes.

Based on these findings, we suggest that the enhanced catalytic activity of CoP³ under near neutral conditions is due to coordination of the pyridine to the cobalt centre during the catalytic cycle. The electron donating ability of the pyridine ligand would allow for the formation of a more basic Co-hydride species in the rate limiting step of the catalytic cycle, thereby improving proton reduction catalysis.¹⁶⁻²² A similar increase of catalytic current and decrease in overpotential has previously been observed when an axial pyridine ligand was introduced to the coordination sphere of cobaloxime complexes at neutral pH.¹⁶⁻²² Addition of one and four equivalents of pyridine to a CoP³-containing electrolyte solution at pH 7 did not result in any increase of the catalytic reduction wave, which demonstrates that the covalent integration of the pyridine as achieved in CoP³ is also critical to enhance the activity of the cobalt diimine–dioxime catalyst (Fig. S21†).

The comparable pH-dependent shifts of E₁/₂(III)/Co⁰) for CoP² and CoP³ below pH 6 suggest a temporary non-coordinated pyridine in CoP³ upon reduction. Although the axial pyridine in CoP³ is coordinated to the cobalt centre in the initial Co³⁺ state even in the presence of a strong acid (see above), reduction to Co²⁺ or a formal Co¹ species results in a labile Co–pyridine bond and subsequent release of the pyridine from the Co ion. However, the covalently linked pyridine ligand remains in close proximity to the cobalt centre and could improve catalysis in two distinct ways. It could be partially protonated under acidic conditions (pKₐ of 2-picoline: 5.96)¹¹ and consequently act as a proton relay in the catalytic cycle or it could readily re-coordinate and enhance activity as described above.²² The fully reversible Co²⁺/Co⁰ redox couple indicates that the pyridine re-coordinates to the Co centre upon oxidation of the complex.

Finally, both Co diimine–dioxime catalysts were compared to the phosphonated cobaloxime catalyst CoP¹. Among the series of phosphonated cobalt catalyst, CoP¹ is the most active proton reduction catalyst at neutral pH, featuring a large proton reduction wave at more positive potential than CoP² and CoP³ (Fig. S17A†). Under more acidic conditions, no Co²⁺ to Co³⁺ oxidation wave was observed for CoP¹ in the anodic reverse scans (Fig. S17B and S18A†) indicating catalyst decomposition due to hydrolysis of the equatorial (dmgH)₂ ligand.²⁴

Electrochemical studies with heterogenised catalysts

The phosphonic acid anchoring groups in CoPⁿ (n = 1 to 3) allow for the grafting of the complexes onto metal oxide surfaces.²⁹⁻³⁴ The electrochemical response of the three cobalt catalysts immobilised onto ITO|mesoITO electrodes was compared to determine the loading of the Co catalysts to the metal oxide surface and the stability during voltammetry, specifically when cycling between the Co³⁺, Co²⁺ and Co¹ oxidation states. The electrodes were prepared from ITO nanoparticles as described previously²⁴ and were loaded with catalysts by immersing a cleaned slide into a 6 mM catalyst solution in dry DMF for 15 h. The ITO|mesoITO|CoPⁿ electrodes were gently rinsed with fresh DMF, dried under N₂ and studied in a CoPⁿ-free DMF/TBABF₄ electrolyte solution (0.1 M).

CVs of the ITO|mesoITO|Co³⁺ electrode in DMF/TBABF₄ are shown in Fig. 3. A linear correlation between the peak current density, J₀, of the reversible Co³⁺/Co¹ reduction at E₁/₂ = −1.03 V vs. Fc⁺/Fc and the scan rate, v, confirms that Co³⁺ is immobilised on the ITO|mesoITO surface. The disappearance of the Co³⁺/Co¹ redox couple for the immobilised complex at E₁/₂ = −0.69 V vs. Fc⁺/Fc with the concomitant appearance of a new wave at E₁/₂ = −0.43 V vs. Fc⁺/Fc during consecutive scans is presumably due to a cathodically induced replacement of the axial bromido ligand by DMF.¹⁶⁻¹⁸ CVs of ITO|mesoITO|Co²⁺ show comparable features in DMF/TBABF₄ (Fig. S22 and S23B†) with E₁/₂ = −0.59 V and −1.17 V vs. Fc⁺/Fc for Co³⁺/Co¹ and Co²⁺/Co¹, respectively. The determination of any J₀/v correlation was not possible for ITO|mesoITO|Co¹ due to the poor stability of the immobilised Co¹ on ITO and subsequent rapid decrease of the redox waves within the first few scans (Fig. S23A†; see below).

The amounts of catalyst immobilised onto the mesoporous ITO electrodes were estimated by integration of the redox waves (reduction and oxidation) from the first CV scans in DMF/TBABF₄ (Table 1). Loadings between 22 and 28 nmol cm⁻² (referenced to the geometrical surface area of the electrode) were determined for the three ITO|mesoITO|CoPⁿ electrodes. We only observed small differences in the loadings, which might be due to different spatial demands of the
in a labile CoII and CoI species, which leads to the loss of the Co(dmgH)2 core from the ITO-anchored phosphonated pyridine in CoP3. This instability was not observed for CoP2 and CoP1, demonstrating the much improved robustness when anchoring the cobalt catalysts with one (CoP3) or two (CoP2) phosphonic acid groups on the tetradeinate equatorial (DO)(DOH)pn ligand to the ITO electrode (Fig. 3 and S23B). CoP3 therefore displays much higher stability on an electrode than CoP1 and is significantly more active as a proton reduction catalyst than CoP2 as shown by electrochemical investigations in solution.

Photocatalytic studies

The photocatalytic activity of the CoP3 catalysts was studied in solution and in heterogeneous suspension systems containing either TiO2 or ZrO2 nanoparticles with TEOA (0.1 M, pH 7) or AA (0.1 M, pH 4.5) as buffer and sacrificial electron donor (SED). [Ru(bpy)2(bipyridine)2(2,2'-bipyridine-4,4’-bisphosphonic acid)]Br2 (RuP, Fig. 4A) was used as photosensitiser. Photoexcited RuP (RuP*) can operate through an oxidative (E°(RuP*/RuP) = −0.95 V vs. NHE) or reductive quenching mechanism catalysts. Comparable results and trends were obtained when the integration of the redox waves was performed with CV scans recorded in aqueous electrolyte solution (Table S3, Fig. S24 and S25) and loadings are comparable to a previously reported Ru-based compound on mesostructured ITO. The results show that CoP3 binds well and with a comparable loading to CoP2 to the metal oxide electrode despite only having one anchoring group.

After 10 consecutive scans at v = 100 mV s⁻¹ practically no desorption of CoP3 and CoP2 was observed, whereas approximately 80% of CoP1 was lost from the ITO|mesoITO electrode (Table 1). As discussed above, reduction of low spin CoIII results
(\(E^0(\text{RuP}^*/\text{RuP}^-)\) = 1.07 V vs. NHE),\(^{38}\) which would generate \(\text{RuP}^* \quad \text{(Electronic transfer from \(\text{RuP}\) to the \(\text{CoP}^*\) catalyst can occur either directly (homogeneous system; Fig. 4B) or via the injection of electrons into the conduction band (CB) of the semiconductor \(\text{TiO}_2 (E_{CB} = -0.70 \text{ V at pH 7}; E_{CB} = -0.55 \text{ V vs. NHE at pH 4.5})^{10}\) by a ‘through particle’ mechanism (Fig. 4C). \(\text{RuP}^*\) and \(\text{RuP}\) are unable to transfer electrons into the more negative CB of \(\text{ZrO}_2 (E_{CB} = -1.40 \text{ V vs. NHE at pH 7}; E_{CB} = -1.26 \text{ V vs. NHE at pH 4.5})^{11}\) which only allows for direct electron transfer from photoexcited \(\text{RuP}\) to the catalyst as in the homogeneous system in \(\text{RuP}|\text{ZrO}_2|\text{CoP}^*\) (Fig. 4C). A comparison of the electrocatalytic onset potentials for proton reduction of the \(\text{CoP}^*\) catalysts with the thermodynamic driving force from photogenerated \(\text{RuP}^*\) and \(\text{RuP}^+\), and the semiconductors is summarised in Fig. 4D. It illustrates that photo-H\(_2\) evolution is thermodynamically possible with all three catalysts, but kinetic factors may have a detrimental effect on some of the systems.\(^{42}\)

In a standard experiment, 0.1 \(\mu\text{mol} \text{ CoP}^*\) and 0.1 \(\mu\text{mol} \text{ RuP}\) were used in 2.25 mL of aqueous solution containing the SED (homogeneous \(\text{RuP}|\text{CoP}^*\) system) and 5 mg of metal oxide nanoparticles were added for the particle systems (\(\text{RuP}|\text{TiO}_2|\text{CoP}^*\) or \(\text{RuP}|\text{ZrO}_2|\text{CoP}^*\)). The samples were kept at 25 °C and irradiated with visible light from a solar light simulator equipped with an AM 1.5G, IR and UV filter (\(\lambda > 420 \text{ nm}\)). The activity is expressed as Co-based turnover number, \(\text{TON}_{\text{Co}}\) (mol H\(_2\) per mol \(\text{CoP}^*\)), which was obtained after four hours of visible light irradiation (Table 2). At this point, all systems had lost their photocatalytic activity under these standard conditions.

We first investigated the photocatalytic activity of \(\text{CoP}^*\) in pH 7 TEOA solution. No H\(_2\) was generated in the \(\text{RuP}|\text{CoP}^*\) and

Table 2: Results of visible light driven \(\text{H}_2\) evolution with \(\text{CoP}^*\) and \(\text{RuP}\) in solution or in particle suspensions with \(\text{TiO}_2\) or \(\text{ZrO}_2\).

pH 7 (TEOA)	\(\text{TOF}_{\text{Co}} (1 \text{h})/(\text{h}^{-1})\)	\(\text{TON}_{\text{Co}} (4 \text{h})\)	\(n' (\text{H}_2) \mu\text{mol} (4 \text{h})\)			
\(\text{RuP}	\text{CoP}^*\)	—	—	<0.03	\(^d\)	
\(\text{RuP}	\text{ZrO}_2	\text{CoP}^*\)	—	—	<0.03	\(^d\)
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	10.3 ± 0.4	12.3 ± 0.3	1.23 ± 0.03	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	—	n.d.	0.74 ± 0.27	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	0.6 ± 0.1	2.4 ± 0.1	0.24 ± 0.01	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	44.0 ± 0.9	56.6 ± 2.2	5.66 ± 0.22	
\(\text{RuP}	\text{TiO}_2, \text{no CoP}^*\)	—	n.d.	0.14 ± 0.07		

pH 4.5 (AA)	\(\text{TOF}_{\text{Co}} (1 \text{h})/(\text{h}^{-1})\)	\(\text{TON}_{\text{Co}} (4 \text{h})\)	\(n' (\text{H}_2) \mu\text{mol} (4 \text{h})\)			
\(\text{RuP}	\text{CoP}^*\)	2.1 ± 0.6	3.1 ± 0.4	0.31 ± 0.04		
\(\text{RuP}	\text{ZrO}_2	\text{CoP}^*\)	8.1 ± 2.2	9.9 ± 0.2	0.99 ± 0.02	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	12.8 ± 0.6	18.4 ± 0.5	1.84 ± 0.05	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	1.2 ± 0.2	1.2 ± 0.1	0.12 ± 0.01	
\(\text{RuP}	\text{TiO}_2	\text{CoP}^*\)	—	—	<0.03	\(^d\)
\(\text{RuP}	\text{TiO}_2, \text{no CoP}^*\)	—	n.d.	0.09 ± 0.02		
\(\text{RuP}, \text{no CoP}^*\)	—	n.d.	<0.03	\(^d\)		

\(^{a}\) The following standard conditions were employed unless otherwise noted: AM 1.5G, 100 mW cm\(^{-2}\), \(\lambda > 420 \text{ nm}\) irradiation, 0.1 \(\mu\text{mol}\) of \(\text{CoP}^*\) and 0.1 \(\mu\text{mol}\) of \(\text{RuP}\) in homogeneous solution or in suspensions with \(\text{TiO}_2\) or \(\text{ZrO}_2\) nanoparticles (5 mg) in aqueous TEOA or AA solution (2.25 mL, 0.1 M). Mean values ± standard deviation (\(s\)) given from at least three different reaction vessels. \(^{b}\) \(\text{TOF}\) based on \(\text{CoP}^*\) for the first hour of irradiation. \(^{c}\) \(\text{TON}\) based on \(\text{CoP}^*\) and total of headspace \(\text{H}_2\) accumulated after four hours irradiation. \(^{d}\) Below the limit of detection by gas chromatography. Particles were loaded with the catalyst and the dye, centrifuged and re-suspended in fresh buffer solution prior to use. \(^{e}\) n.d. not defined (no \(\text{CoP}^*\) present or amount of \(\text{CoP}^*\) not precisely known). \(^{f}\) \(\text{TOF}\) is based on the maximum \(\text{H}_2\) evolution rate after the initial lag period.
system or when CoBr₂ was added instead of CoP³ (Table S5†). Increasing the concentration of CoP³ in RuP[TiO₂|CoP³] to 0.2 μmol resulted in a slight enhancement in the overall TON₉₉ (16.5 ± 0.5; Fig. S26A†). The highest TON₉₉ of 22.0 ± 1.5 was observed when the amount of RuP was increased to 0.2 μmol (Table S4 and Fig. S26B†).

The lack of photo-H₂ evolution in the homogeneous and ZrO₂-containing systems suggests that RuP* is not capable of reducing CoP³ directly to initiate proton reduction which is in agreement with the previously reported inactivity of RuP[ZrO₂|CoP³, RuP|CoP³] and a [CoBr₃(DO)(DOH)pn] complex in combination with a Ru-dye and triethylamine as SED in solution.²⁻⁸⁻¹⁹ A possible explanation may be that the photoexcited state lifetime of RuP* is too short-lived and the more reducing RuP* † is not generated in aqueous TEOA solution.³¹ Addition of TiO₂ facilitates oxidative quenching of RuP* and charge separation, which allows for efficient electron transfer from RuP to CoP³ via its CB in a ‘through particle’ mechanism, thereby triggering photocatalysis of this system.²⁻⁸⁻¹⁹ A comparable, surface-linker free cobalt diimine–dioxide catalyst with a pendant pyridine ligand was studied in solution using a Re photosensitiser and TEOA as sacrificial agent. A Co-based TON₉₉ of approximately 15 has been reported for this homogeneous photocatalytic system under near neutral conditions (pH 7).²⁻⁸ The cobalt diimine–dioxide catalyst with a pendant pyridine ligand therefore keeps the full activity when immobilised on a semiconductor as is evident from the maximum TON₉₉ of 22.0 ± 1.5 observed with RuP[TiO₂|CoP³].

Photo-H₂ evolution activity of the deactivated RuP[TiO₂|CoP³] system was fully recovered by addition of fresh CoP³ to the suspension (Fig. 5A), indicating complete degradation of CoP³ within the first few hours of photocatalysis. To date, no detailed studies on possible degradation products of [Co(DO)(DOH)pn] catalysts are available, but partial regeneration of the catalyst by addition of fresh (DOH)pn ligand to a deactivated system was reported, which suggests ligand degradation, most likely through hydrogenation.²⁻⁶⁻⁴⁴ The reduction of CoP³ could also lead to a ligand radical species (CoP³L°, L = ligand) instead of the formal Co³ species.²⁻⁴ Reductive coupling of two Co³L° radical species might result in the formation of catalytically inactive dimer complexes.⁴⁵ The formation of a Co-containing solid-state deposit would be another possible degradation pathway.⁴⁶ The absence of photocatalytic activity after several hours of irradiation, the recovery of activity by addition of fresh CoP³ and the lack of activity when replacing CoP³ with CoBr₂ support that a molecular Co species is the catalyst in the RuP[TiO₂|CoP³] system.

When stirring CoP³ (0.1 μmol) with 5 mg TiO₂ in an aqueous pH 7 TEOA solution, approximately 60% of the catalyst was attached to the particles as determined by spectrophotometry following λ = 259 nm (Fig. S27A†). RuP binds well to TiO₂ and approximately 80% (λmax = 288 and 455 nm) were adsorbed in the presence of 0.1 μmol CoP³ (Fig. S27B†). The overlap of the strong adsorption bands in RuP prevented the accurate determination of the CoP³ loading in the presence of RuP. Approximately 60% of photocatalytic activity remained (0.74 ± 0.27 μmol H₂) when unbound CoP³ and RuP were removed from the pre-loaded particles by centrifugation and RuP[TiO₂|CoP³] was resuspended in a fresh TEOA buffer solution (Table 2). This observation agrees well with the loading of CoP³ and shows that the majority of attached CoP³ remained on the particle surface and was not replaced by the dye (5 mg P₂₅ TiO₂ nanoparticles have a loading capacity of approximately 0.25 μmol RuP).²⁴

Full spectrum irradiation (AM 1.5G, 100 mW cm⁻², no UV filter) of dye-free TiO₂|CoP³ resulted in a TON₉₉ of 17.2 ± 1.3 in pH 7 TEOA solution, demonstrating that conduction band electrons can be transferred to CoP³. The photo-H₂ production activity decreased by 97% when phosphate buffer (50 mM, pH 7) was added to the system (Fig. S28†). The phosphate anions and the phosphonic acid group in CoP³ compete for surface binding sites on TiO₂. This experiment demonstrates that binding of CoP³ to the TiO₂ nanoparticle via the (~PO₃H₂) anchoring group is essential for effective electron transfer from the TiO₂ conduction band to the catalyst⁵⁰ and further supports that a molecular catalyst rather than a solid state deposit is active on TiO₂.

Finally, an unoptimised external quantum efficiency (E QE) of 0.35 ± 0.02% was determined for the RuP[TiO₂|CoP³] system (0.1 μmol RuP, 5 mg TiO₂, 0.2 μmol CoP³) in an aqueous pH 7 TEOA solution (0.1 M) after 1 h irradiation at λ = 465 nm (I = 22 mW cm⁻²), which is close to the absorption maximum of RuP (λmax = 455 nm). This value is comparable to the previously reported QE for RuP[TiO₂|CoP³ (1.0 ± 0.2%)⁵⁹ and colloidal systems containing carbon nitrides and molecular Ni catalysts (0.37 and 1.51%).*²⁻⁰⁷

In pH 4.5 AA solution, a TON₉₉ of 18.4 ± 0.5, 9.9 ± 0.2 and 3.1 ± 0.4 was observed with RuP[TiO₂|CoP³, RuP[ZrO₂|CoP³ and RuP|CoP³, respectively (Table 2 and Fig. 5B). The three systems were completely deactivated after 4 h of visible light irradiation. Control experiments with CoBr₂ instead of CoP³ and in the absence of CoP³, RuP, electron donor or light showed no or only trace amounts of H₂ (Table S8†). The different activity of the three systems can be explained by two different mechanisms occurring under these experimental conditions (pH 4.5, AA). Previous studies have shown that RuP* is readily quenched oxidatively on TiO₂ by electron transfer to the TiO₂ conduction band in the picosecond time-scale,⁶⁻²⁷ whereas RuP* undergoes reductive quenching by AA to generate RuP*⁺ in solution or in the ZrO₂ system.*²⁻⁰⁴ Inefficient photocatalytic H₂ evolution has been previously reported for [CoX₂(DO)(DOH)pn] complexes in combination with a Ru-dye in AA.*²⁻⁰⁴ The oxidative quenching pathway in the TiO₂-containing system provides a possible explanation for the improved photocatalytic activity of RuP[TiO₂|CoP³].

The initial lag period of photo-H₂ evolution in AA was dependent on the ratio of CoP³ to RuP and is presumably due to the slow accumulation of Co³ species, which is required to enter the catalytic cycle. An increased lag phase with enhanced photostability and a higher final TON₉₉ was observed in all three photocatalytic systems when changing the CoP³ : RuP ratio from 1 : 1 to 2 : 1. At a CoP³ : RuP ratio of 1 : 2, a reduced lag phase with a shorter lifetime of photocatalysis and a somewhat lower final TON₉₉ was achieved (Table S7 and Fig. S29†). Recovery of the photocatalytic activity of RuP[TiO₂|CoP³] by
addition of either fresh CoP³ or RuP was not successful suggesting simultaneous degradation of both, dye and catalyst. By providing new CoP³ and RuP, the initial photocatalytic activity of the RuP|TiO₂|CoP³ system was regained (Fig. S30†). Photo-degradation of RuP in AA has been observed previously. Simlar pathways as discussed above might account for degradation of the Co catalyst in an aqueous AA solution.

Finally, the photocatalytic activity of the colloidal RuP|TiO₂|CoP³ system was compared to the activity of CoP³ and CoP² using standard conditions (0.1 μmol CoP³ and 0.1 μmol RuP on 5 mg TiO₂). In TEOA solution (0.1 M, pH 7), a TONCo of 56.6 ± 2.2 was obtained for CoP³, whereas the RuP|TiO₂|CoP² system only produced small amounts of H₂ (TONCo = 2.4 ± 0.1; Table 2 and Fig. S31A†). In AA at pH 4.5, only traces of H₂ were produced with CoP³, which is catalytically unstable under acidic conditions (see above). A TONCo of approximately 1 was achieved for CoP³ during 4 h visible light irradiation in AA (Table 2, Fig. S31B†).

The results from photocatalytic experiments are in agreement with trends observed during electrochemical investigation of the three catalysts: CoP³ shows the fastest turnover rate at neutral pH, whereas CoP³ is the most active catalyst in an aqueous acidic solution. However, CoP³ is the best and most suitable catalyst when activity and stability on the metal oxide surface are taken into account. CoP² displays strong attachment to metal oxides, but it shows overall modest catalytic activity. CoP³ is not stable during turnover in a pH 4.5 AA solution and can therefore not act as a catalyst under acidic conditions. The high photoactivity of CoP³ at pH 7 despite its labile anchoring to RuP|TiO₂ particles in the colloidal suspension can be explained as follows: the Co(dmgH)₂ core of CoP³ is released during catalysis but can re-coordinate to a TiO₂-anchored pyridine ligand by a ‘hop-on, hop-off’ mechanism through a high probability of collision in the bulk of the suspension. When CoP³ is immobilised on an electrode such as ITO|mesoITO, however, the Co(dmgH)₂ core will be released from the surface and will diffuse into the bulk solution, where it will not readily diffuse back to the electrode surface.

Conclusions

In summary, a new cobalt diimine–dioxime H₂ evolution catalyst (CoP³) is described that features a stable binding site for attachment to metal oxide surfaces and a pendant pyridine ligand to enhance the catalytic activity. CoP³ was prepared in six steps and characterised by NMR, UV-vis and ATR-IR spectroscopy, mass spectrometry and elemental analysis. Electrochemical investigation of the new catalyst revealed that it is electrocatalytically active for proton reduction in aqueous solution over a wide pH range. CoP³ attaches with high loading and good stability to a mesostructured Sn-doped In₂O₃ electrode. We demonstrate that CoP³ produces H₂ photocatalytically in dye-sensitised systems under visible light irradiation at neutral and acidic pH with different sacrificial reagents and showed that H₂ evolution is improved in the presence of TiO₂ particles compared to homogeneous systems. CoP³ displays significant advantages over previously reported immobilised Co catalysts as it shows a higher catalytic proton reduction activity and provides a strong and more stable anchoring to metal oxides surfaces on electrodes.

Overall, our work emphasises the necessity for elaborated molecular catalyst design with regard to the assembly of efficient metal oxides–molecular catalyst hybrids and their application in (photo-)electrochemical cells. The availability of thorough experimental and theoretical studies for cobaloxime and cobalt diimine-dioxime catalysts enabled us to rationally design a catalyst with improved activity and stability on electrodes.

Acknowledgements

Support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), the OMV Group and the EPSRC (EP/H00338X/2) is gratefully acknowledged. We also thank Miss Manuela Gross for samples of the Ru dye used in this study.

References

1 (a) C.-Y. Lin, D. Mersch, D. A. Jefferson and E. Reisner, Chem. Sci., 2014, 5, 4906–4913; (b) J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res., 2013, 46, 1900–1909; (c) J. Barber and P. D. Tran, J. R. Soc., Interface, 2013, 10, 20120984; (d) C.-Y. Lin, Y.-H. Lai, D. Mersch and E. Reisner, Chem. Sci., 2012, 3, 3482–3487.
2 (a) G. P. Connor, K. J. Mayer, C. S. Tribble and W. R. McNamara, Inorg. Chem., 2014, 53, 5408–5410; (b) M. J. Rose, H. B. Gray and J. R. Winkler, J. Am. Chem. Soc., 2012, 134, 8310–8313; (c) S. Kaur-Ghumaan, L. Schwartz, R. Lomoth, M. Stein and S. Ott, Angew. Chem., Int. Ed., 2010, 49, 8033–8036; (d) A. M. Kluwer, R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer, P. W. N. M. van Leeuwen and J. N. H. Reek, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 10460–10465; (e) G. A. N. Felton, A. K. Vannucci, J. Chen, L. T. Lockett, N. Okumura, B. J. Petro, U. I. Zakai, D. H. Evans, R. S. Glass and D. L. Lichtenberger, J. Am. Chem. Soc., 2007, 129, 12521–12530; (f) C. Tard, X. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L.-S. Wang, G. Savers and C. J. Pickett, Nature, 2005, 433, 610–613.
3 (a) L. Chen, M. Wang, K. Han, P. Zhang, F. Gloaguenn and L. Sun, Energy Environ. Sci., 2014, 7, 329–334; (b) W. T. Eckenhoff, W. R. McNamara, P. Du and R. Eisenberg, Biochim. Biophys. Acta, 2013, 1827, 958–973; (c) M. Guttentag, A. Rodenberg, C. Bachmann, A. Senn, P. Hamm and R. Alberto, Dalton Trans., 2013, 42, 334–337; (d) C. C. L. McCrorry, C. Uyeda and J. C. Peters, J. Am. Chem. Soc., 2012, 134, 3164–3170; (e) V. Artiero, M. Chavarot-Kerlidou and M. Fontecave, Angew. Chem., Int. Ed., 2011, 50, 7238–7266; (f) Y. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long and C. J. Chang, J. Am. Chem. Soc., 2011, 133, 9212–9215; (g) J. P. Bigi, T. E. Hanna, W. H. Harman, A. Chang and C. J. Chang, Chem. Commun.,
M. Guttentag, A. Rodenberg, P. Hamm and R. Alberto, *Inorg. Chem.*, 2011, **50**, 3404–3412.

26 E. S. Andreiadis, P.-A. Jacques, P. D. Tran, A. Leyris, M. Chavarot-Kerlidou, B. Jousselme, M. Matheron, J. Pécaut, S. Palacin, M. Fontecave and V. Artero, *Nat. Chem.*, 2013, **5**, 48–53.

27 M. R. J. Scherer, N. M. Muresan, U. Steiner and E. Reisner, *Chem. Commun.*, 2013, **49**, 10453–10455.

28 F. Tayyari, D. E. Wood, P. E. Fanwick and R. E. Sammelson, *Synthesis*, 2008, 279–285.

29 L. G. Marzilli, A. Gerli and A. M. Calafat, *Inorg. Chem.*, 1992, **31**, 4617–4627.

30 J. Xie, Q. Zhou, C. Li, W. Wang, Y. Hou, B. Zhang and X. Wang, *Chem. Commun.*, 2014, **50**, 6520–6522.

31 V. Fourmond, S. Canaguier, B. Golly, M. J. Field, M. Fontecave and V. Artero, *Energy Environ. Sci.*, 2011, **4**, 2417–2427.

32 J. L. Dempsey, J. R. Winkler and H. B. Gray, *J. Am. Chem. Soc.*, 2010, **132**, 1060–1065.

33 J. J. Spivey and K. M. Dooley, *Catalysis*, The Royal Society of Chemistry, Cambridge, 2007.

34 A. Adin and J. H. Espenson, *Inorg. Chem.*, 1972, **11**, 686–688.

35 (a) E. Reisner, V. B. Arion, M. F. C. Guedes da Silva, R. Lichtenecker, A. Eichinger, B. K. Keppler, V. Y. Kukushkin and A. J. L. Pombeiro, *Inorg. Chem.*, 2004, **43**, 7083–7093; (b) A. B. P. Lever, *Inorg. Chem.*, 1990, **29**, 1271–1285.

36 P. G. Hoertz, Z. Chen, C. A. Kent and T. J. Meyer, *Inorg. Chem.*, 2010, **49**, 8179–8181.

37 H. Park, E. Bae, J.-J. Lee, J. Park and W. Choi, *J. Phys. Chem. B*, 2006, **110**, 8740–8749.

38 V. Balzani, G. Bergamini, F. Marchioni and P. Ceroni, *Coord. Chem. Rev.*, 2006, **250**, 1254–1266.

39 F. Lakadamyali, A. Reynal, M. Kato, J. R. Durrant and E. Reisner, *Chem.–Eur. J.*, 2012, **18**, 15464–15475.

40 (a) Y. Xu and M. A. A. Schoonen, *Am. Mineral.*, 2000, **85**, 543–556; (b) J. M. Bolts and M. S. Wrighton, *J. Phys. Chem.*, 1976, **80**, 2641–2645.

41 K. Sayama and H. Arakawa, *J. Phys. Chem.*, 1993, **97**, 531–533.

42 A. Reynal, J. Willkomm, N. M. Muresan, F. Lakadamyali, M. Planells, E. Reisner and J. R. Durrant, *Chem. Commun.*, 2014, **50**, 12768–12771.

43 (a) H. Sun and M. Z. Hoffmann, *J. Phys. Chem.*, 1994, **98**, 11719–11726; (b) K. Kalyanasundaram, J. Kiwi and M. Grätzel, *Helv. Chim. Acta*, 1978, **61**, 2720–2730.

44 L. I. Simándi, Z. Szeverényi and É. Budó-Záhonyi, *Inorg. Nucl. Chem. Lett.*, 1975, **11**, 773–777.

45 E. B. Hulley, P. T. Wolszczanski and E. B. Lobkovsky, *J. Am. Chem. Soc.*, 2011, **133**, 18058–18061.

46 S. Cobor, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave and V. Artero, *Nat. Mater.*, 2012, **11**, 802–807.

47 J. Dong, M. Wang, X. Li, L. Chen, Y. He and L. Sun, *ChemSusChem*, 2012, **5**, 2133–2138.

48 A. Reynal, F. Lakadamyali, M. A. Gross, E. Reisner and J. R. Durrant, *Energy Environ. Sci.*, 2013, **6**, 3291–3300.

49 S. Varma, C. E. Castillo, T. Stoll, J. Fortage, A. G. Blackman, F. Molton, A. Deronzier and M.-N. Collomb, *Phys. Chem. Chem. Phys.*, 2013, **15**, 17544–17552.