Variants Within over a Hundred Complete COVID-19 Genomes and the Impact on Health Security

Sayed A.M. Amer

Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Saudi Arabia

Abstract: 102 complete COVID-19 genomes have been collected from the viral genomes database to track and characterize novel variants. The data were treated bioinformatically so that 172 variants, with 127 unique and 45 polymorphic variants were found. The 127 unique variants consist of 76 missense, 39 synonymous, 6 non-coding, 5 deletions and 1 insertion. The 45 polymorphic variants consist of 25 missense, 15 synonymous, 4 non-coding and 1 in-frame-deletion. Most common variants are 28144T>C (33 missense), 8782C>T (31 synonymous), followed by missense 11083G>T (11 samples), 18060C>T (9 samples) and 26144G>T (7 samples). L3606F, S5932F and L84S are the amino acid changes in the last three common variants. Most variants were found in ORF1ab gene within the region encoded for domains (nsp4 and nsp6) and in the coding ORF8 gene. The variant 28144T>C could be among the main enhancers of viral transmission. There is a tendency for a national specificity of the most recorded variants. The virus outbreak could be between countries or dependent on the place of origin. Reasonable evidence of Chinese origin of the virus could be possible and thus more genomes should be collected and analyzed to understand the origin and the reason for its outbreak. This could support human health security by either finding out suitable vaccines or managing health precautionary measures.

Keywords: Coronavirus, Genome, Variants, Mutation, Health Security

Introduction

Since the virus is like SARS-CoVs, the International Committee on Taxonomy of Viruses (ICTV) termed the newly discovered Coronavirus (2019-nCoV) SARS-CoV-2 (Cascella et al., 2020). It was first reported in Wuhan, the largest metropolitan area in China on December 31st, 2019. Therefore, the (WHO, 2020) acronymized this 2019 disease as “COVID-19”. CoVs can infect different species including birds, mice, bats, livestock and humans (Wang et al., 2006; Ge et al., 2013; Chen and Guo, 2016), with a serious infection in humans, causing pneumonia.

Systematically, CoVs belong to the subfamily Orthocoronavirinae of the family Coronaviridae and the order Nidovirales. Coronavirinae contains four genera: Alphacoronavirus, Betacoronavirus (4 subgenera) (Chan et al., 2013), Gammacoronavirus and Deltacoronavirus (Chen et al., 2020). Bats and rodents are the probable source of alpha and Betacoronaviruses, whereas birds could be the source of Gamma and delta viruses (Cascella et al., 2020). Over 210,000 COVID-19 complete genomes have so far been sequenced with an approximate genome length of 30000 bases. As fast as the virus spreads, more variants accumulate with the possibility of further emerging virulent strains. The virus genome is found in a single-stranded positive-sense RNA (+ssRNA) (Perlman and Netland, 2009) acquiring 5′-cap structure and 3′-poly-A tail (Chen et al., 2020). As a severe global health threat, CoVs outbreaks are, most probably, unavoidable in the future. There is an urgent need, thus, to identify the possible variants in the 102 sequenced genomes that might support in understanding the reasons for the virus outbreak and in producing an effective therapy and vaccine against the virus.

Materials and Methods

The COVID-19 page (https://bigd.big.ac.cn/ncov) available in China’s National Genomics Data Center (NGDC) was accessed on the 27th of September 2020.
From 2019-nCoV genomes available on this page and in three Genbank databases, 102 publicly complete genomes have been collected and are listed in Table 1. As has been previously used (Koyama et al., 2020; Matsuda et al., 2020), the two longest and identical NC_045512 and MN908947 sequences (29903 bp) were used as reference genomes to coordinate the differences in the ribosomal slippage of the 102 used genomes. The genome data were checked for the accuracy of the alignments and the aligned data could be obtained from the author upon request. Since genomes acquire differences in their start and end points, their lengths have been adjusted to the lengths of NC_045512 and MN908947 and their variants were numbered according to the positions of these two genomes. All genomes were first aligned to each other using BioEdit Sequence Alignment Editor (Hall et al., 2011) and the FASTA file of the aligned data was executed to MacClade v.4.10 program (Maddison and Maddison, 2002) and manually aligned to the reference genomes. Using MacClade v.4.10, mutations were recorded and data were transferred to the Paup v. 4.0b10 (Swofford, 2002) program for phylogenetic analysis.

After deleting ambiguous, gap-containing sites and N or mixed bases sites, the remaining 29532 sites were analyzed by Maximum-Parsimony (MP), Neighbor-Joining (NJ) and Maximum-Likelihood (ML) methods in Paup v. 4.0b10. For MP, heuristic searches of 10 random stepwise additions were conducted by Tree Bisection Reconnection (TBR) branch swapping and 1000 bootstrap replications. For NJ analysis (Saitou and Nei, 1987; Tamura and Nei, 1993) distance option and 1000 bootstrap replications were used. As the MT226610 sequence was rapidly evolved, it was used as an outgroup. For ML, heuristic searches by axis additions and Nearest-Neighbor Interchange (NNI) branch-swapping were adjusted. Other conditions for the ML analysis like gamma shape parameter of 1.5214 and 4 rate categories were also adjusted. The substitution rate matrix of the data was as follow: R(a) = 0.1571, R(b) = 0.7500, R(c) = 0.2121, R(d) = 0.6049, R(e) = 2.6308 and R(f) = 1.00. Likelihood settings from best-fit model (GTR+I+G) were selected by AIC in Modeltest Version 3.06.

Table 1: Organization of the reference + ssRNA genome used in this study. Nsp = non structural protein; ORF = Open Reading Frame

Gene	Position	Product	Notes
5'UTR	1-265	5'UTR	cap
Orf1ab	266-805	nsp1	Leader protein
	806-2719	nsp2	Transmembrane domain 2
	2720-8554	nsp3	3C-like protease
	8555-10054	nsp4	Putative transmembrane domain
	10055-10972	nsp5	ssRNA-binding protein
	10973-11842	nsp6	Growth-factor-like protein
	11843-12901	nsp7	
	12092-12685	nsp8	
	12686-13042	nsp9	
	13025-13441	nsp10	
	13442-13480	nsp11	
	13476-13503	Stem_loop	Frameshifting stimulation element
	13488-13542	Stem_loop	Frameshifting stimulation element
	13442-13468, 13468-16235	nsp12	RNA-dependent RNA polymerase
	16237-18093	nsp13	Helicase
	18040-19620	nsp14	3'-to-5' exonuclease
	19621-20658	nsp15	endoRNAse
	20659-21552	nsp16	O-ribose methyltransferase
S	21563-25384	spike glycoprotein	Surface glycoprotein
ORF3a	25393-26220	ORF3a protein	
E	26245-26472	envelope protein	
M	26523-27191	membrane glycoprotein	
ORF6	27202-27387	ORF6 protein	
ORF7a	27394-27759	ORF7a protein	
ORF7b	27756-27887	ORF7b	
ORF8	27894-28259	ORF8 protein	
N	28274-29533	nucleocapsid phosphoprotein	ORF9 protein
ORF10	29558-29674	ORF10 protein	
ORF10	29609-29644	--	3'UTR pseudoknot stem-loop 1
ORF10	29629-29657	--	3' UT pseudoknot stem-loop 2
3'UTR	29675-29903	3'UTR	
Results and Discussion

The COVID-19 genome is approximately 30,000 bp. It contains within its 5′-proximal two-thirds, nonstructural protein coding regions (nsp1-nsp16; replicase genes) encoded on orf1ab gene. Within the 3′-proximal one-third of the genome, structural proteins and nonessential accessory protein coding regions are encoded (ORF3-ORF10, S, E, M, N) (Paul, 2006). The 5′ UTR (265 b) comprises the genome cap and the 3′ UTR (~300 b) forms the tail (Table 1). The recorded variants were counted between positions 33 and 29830 to avoid base bias. The mixed bases were not considered in the analysis. 172 total variants are found, 127 unique and 45 polymorphic (Table 2). The unique variants (Table 3) are 121 substitutions (76 missense, 39 synonymous and 6 non-coding), 5 deletions (2 in-frame-deletions, 2 out-of-frame-deletions and 1 non-coding) and 1 insertion. The polymorphic variants (Table 4) are 45 substitutions (25 missense, 15 synonymous, 4 non-coding and 1 in-frame-deletion) (Fig. 1).

In agreement with previous studies (Koyama et al., 2020; Matsuda et al., 2020), most common variants were 8782C>T (ORF1ab) and 28144T>C (ORF8) in 31 samples followed by 11083G>T (nsp6) in 11 samples and 18060C>T (nsp14) in 9 samples. The occurrences of 8782C>T and 28144T>C concur and most of the other common variants are subsets of these most common ones. 8782C>T is synonymous; however, 11083G>T (L3606F) and 18060C>T (S5932F) and 28144T>C (L84S) are missense causing amino acid changes in nsp6, nsp14 and ORF8, respectively. The variant 28144 T>C which exhibited an amino acid change in ORF8 protein from Leucine to Serine, was indicated in the polypeptide involved in enhancing virus transition from bat to human (Chen et al., 2020; Nguyen et al., 2020). As this variant was recorded in thirteen North Americans, ten central Asians (Chinese including Wuhan residents), three Japanese, one Taiwanese, one Indian and one Spanish, it could be among the main enhancers of viral transmission.

Table 2: Statistics of the 172 recorded mutations in the 102 COVID-19 genomes

Variants	Substitution	Deletion					
	Missense	Synonymous	Non-coding	In-frame-deletion	Out-of-frame deletion	Non-coding	Insertion
Unique	76	39	6	2	2	1	1
Polymorphic	25	15	4	1	-	-	-

Table 3: Unique monomorphic variants (substitution, deletion and insertion), their positions, number of cases and country distribution found in the 102 CoVs genomes

#	Variant	Type	Amino acid change	Accession number, country
1	35A>T	Non-coding		MT163716, USA
2	36C>T	Non-coding		MT163716, USA
3	75C>A	Non-coding		MT049951, CHN
4	186C>T	Non-coding		MT093631, CHN
5	382A>T	Synonymous		LC521925, JP
6	359-382	In-frame-deletion	G32_V39	LC521925, JP
7	490T>A	Synonymous		MT044257, USA
8	514T>C	Synonymous		MT188340, USA
9	654G>A	Synonymous		MT123293, CHN
10	686-694	In-frame-deletion	K141_F143	MT044258, USA
11	1102C>T	Synonymous		MT188339, CHN
12	1348C>T	Synonymous		GWHACDD01000001, PAK
13	1385C>T	Missense	H374Y	MT159720, USA
14	1397G>A	Synonymous		GWHACDD01000001, PAK
15	1548G>A	Missense	S428N	MN994467, USA
16	1912C>T	Synonymous		LC521925, JP
17	2091C>T	Missense	T609I	MT027064, USA
18	2269A>T	Synonymous		MT066156, ITA
19	2277T>C	Missense	I671T	MT012098, IND
20	2446T>C	Synonymous		MT163716, USA
21	2717G>A	Missense	G818S	MT093571, SWE
22	2971G>T	Missense	M902I	MT049951, CHN
23	3037C>T	Synonymous		MT192765, USA
24	3177C>T	Missense	P971L	MT044257, USA
25	3259G>T	Missense	T998G	MT159707, USA
26	3411C>T	Missense	E1049V	MT163716, USA
27	3738C>T	Missense	P1158L	MT159705, USA
28	3792C>T	Missense	E1176V	LC522973, JP
No.	Mutation	Type	Reference ID	Location
-----	------------	------------	--------------	----------
29	4288G>T	Synonymous	MT226610, CHN	
30	4307A>C	Missense	MT226610, CHN	
31	5572G>T	Synonymous	MT163716, USA	
32	5784C>T	Missense	MT152824, USA	
33	5845A>T	Missense	MT159715, USA	
34	6031C>T	Synonymous	MT039890, SKorea	
35	6035A>G	Missense	MT188341, USA	
36	6363C>T	Missense	MT159712, USA	
37	6636C>T	Missense	MT184910, USA	
38	6968C>A	Missense	MT123293, CHN	
39	6996T>C	Missense	MT123293, CHN	
40	7479A>G	Missense	MT118835, USA	
41	9034A>G	Synonymous	MT066176, TWN	
42	9157T>C	Missense	MT184910, USA	
43	9274A>G	Synonymous	MT093571, SWE	
44	9474C>T	Missense	MT159706, USA	
45	9491C>T	Missense	MT066176, TWN	
46	9561C>T	Missense	MT012098, IND	
47	9924C>T	Missense	MT012098, IND	
48	10036C>T	Synonymous	MT184911, USA	
49	10507C>T	Synonymous	MT159708, USA	
50	11207G>C	Missense	MT184911, USA	
51	11237T>G	Synonymous	MT226610, CHN	
52	11557G>T	Missense	MT159712, USA	
53	11750C>T	Missense	MT184910, USA	
54	11956C>T	Synonymous	MT159712, USA	
55	12041G>C	Missense	MT123293, CHN	
56	12115C>T	Synonymous	MT159708, USA	
57	12160G>C	Synonymous	MT159708, USA	
58	12202G>C	Synonymous	MT159708, USA	
59	12208G>T	Synonymous	MT159708, USA	
60	12355G>C	Missense	MT159708, USA	
61	12378G>A	Missense	MT184911, USA	
62	12464G>T	Missense	MT159712, USA	
63	12467G>T	Missense	MT159712, USA	
64	12491C>T	Synonymous	MT159712, USA	
65	12514G>C	Synonymous	MT159712, USA	
66	12534C>T	Missense	MT159712, USA	
67	12572G>T	Missense	MT159712, USA	
68	12578G>T	Missense	MT159712, USA	
69	12582G>T	Missense	MT159712, USA	
70	12608G>T	Missense	MT159712, USA	
71	12660G>C	Missense	MT159712, USA	
72	12685G>C	Missense	MT159712, USA	
73	12773G>T	Missense	MT159712, USA	
74	12793G>T	Missense	MT159712, USA	
75	13072C>T	Synonymous	MT159712, USA	
76	13225C>G	Synonymous	MT159712, USA	
77	13226T>C	Missense	MT093571, SWE	
78	14657C>T	Missense	MT012098, IND	
79	15597T>C	Missense	MT039890, SKorea	
80	15607T>C	Synonymous	MT093571, SWE	
81	16467A>G	Missense	MT188341, USA	
82	17000C>T	Missense	MT159715, USA	
83	17247T>C	Missense	MT126808, BRA	
84	17376A>G	Missense	MT093571, SWE	
85	18512C>T	Missense	LC521925, JP	
86	18603T>C	Missense	MT106054, USA	
87	18814C>T	Synonymous	MT192765, USA	
Table 3: Continue

#	variant	Type	aa change	gene	Accession number (country)
89	18975T>A	Missense	F6237Y	MT106054, USA	
90	19065T>C	Missense	L6267P	MT007544, AUSTR	
91	19175A>C	Missense	M6304L	MT106054, USA	
92	19610C>T	Missense	T6449R	MT123291, CHN	
93	20281T>C	Synonymous		MT163719, USA	
94	20299-30301	Out-of-frame deletion	N6678N (nsp15)	MT039887, USA	
95	20670G>A	Missense	R6802H	NMDC60013002-10, Wuhan	
96	20679G>A	Missense	R6805Q	NMDC60013002-10, Wuhan	
97	20936C>T	Missense	R6891C	MT039890, SKorea	
98	20980G>C	Missense	Q6905M	MT226610, CHN	
99	21147T>C	Missense	L6961S	MT188339, CHN	
100	21647T>A	Missense	Y23N	MT049951, CHN	
101	21707C>T	Missense	H44Y	MT027064, USA	
102	21784T>A	Missense	F152L	MT226610, CHN	
103	21386-21388	Insertion	S7041	MT188341, USA	
104	21997-21999	Out-of-frame deletion	Y144Y (S gene)	MT012098, IND	
105	22033C>A	Missense	G176V	MT159716, USA	
106	22104G>T	Synonymous		MT184910, USA	
107	22224C>G	Missense	S216F	MT039890, SKorea	
108	22303T>G	Missense	S242R	MT007544, AUSTRIA	
109	22432C>T	Synonymous		MT049951, CHN	
110	22785G>T	Missense	R403M	MT012098, IND	
111	23185C>T	Synonymous		MT188341, USA	
112	23403A>G	Synonymous		MT192765, USA	
113	23955T>G	Missense	F792Y	MT093571, SWE	
114	25775G>T	Missense	C120L	MT039890, SKorea	
115	26354T>A	Missense	L22G	MT039890, SKorea	
116	27493C>T	Missense	P61S	NMDC60013002-09, Wuhan	
117	27925C>T	Missense	T18M	MT106054, USA	
118	28253C>T	Synonymous		NMDC60013002-09, Wuhan	
119	28409C>T	Missense	P47S	MT159718, USA	
120	28792A>T	Synonymous		MN994467, USA	
121	28878G>A	Missense	S203N	MT106052, USA	
122	28916G>A	Missense	G216S	MT188339, USA	
123	29230C>T	Synonymous		MT159720, USA	
124	29301A>T	Missense	D344V	MT135043, CHN	
125	29705G>T	Non-coding		LC522973, JP	
126	29742G>A	Non-coding		MT106052, USA	
127	29750-29759	Non-coding del		MT007544 (AUSTRIA)	

Table 4: Polymorphic variants (substitutions), their positions, number of cases and country distribution found in the 102 CoV's genomes

#	variant	Type	aa change	gene	Accession number (country)
1	241C>T	Non-coding	5' UTR	GWHACDD010000001(PAK), MT192765(USA)	
2	254C>T	Non-coding	5' UTR	MT184910, MT184908 (USA)	
3	508-522	In-frame-deletion G82_V86 orf1ab	MT044258, MT159716 (USA)		
4	614G>A	Missense	A117T	MT027062, MT027063 (USA)	
5	1691A>G	Missense	I476V	MT027063 (USA), MT050493 (IND)	
6	2662C>T	Synonymous		LC522973-LC522975 (JP)	
7	3099C>T	Missense	D954I	MT159717, MT184912 (USA)	
8	4402T>C	Synonymous		MT135041-MT135044 (CHN)	
9	5062G>T	Missense	L1599A	MT135041-MT135044 (CHN)	
10	5084A>G	Missense	I1607V	MT027062, MT027063 (USA)	
11	6501C>T	Missense	P2079L	MT027063 (USA), MT050493 (IND)	
12	6819G>T	Missense	S2185I	MT123293, MT123291(China)	
13	8782C>T	Synonymous		MN938384, MN975262, MT049951, MT123292, MT226610, MT135041-4, GWHACDD0100000014(CHN), MN985325, MN997409, MT020880, MT020881, MT044257, MT106052, MT106054, MT152824, MT163717-19, MT188339, MT188341 (USA), MT066175 (TAW), LC522973-LC522975 (JP), MT050493, MT050493 (IND), MT198651, MT198652 (ESP)	
14	9477T>A	Missense	F3071Y	MT198651, MT198652 (ESP)	
15	10232C>T	Missense	R3323C	MT192772, MT192773 (Vietnam)	
16	11083G>T	Missense	L3606F	LC528252-33 (JP), MT126808 (BRA), MT163716, MN997409, MT184910-13 (USA), MT226610 (CHN), GWHACDD010000001 (PAK)	
Table 5: Length, country and accession number of COVID-19 genome sequences used in this study

#	Country	Length	Database	Accession number
1	Wuhan	29903	Genbank	MN908947
2	China	29838	Genbank	MN938384
3	China	29891	Genbank	MN975262
4	USA	29882	Genbank	MN985325
5	USA	29882	Genbank	MN988713
6	USA	29882	Genbank	MN994467
7	USA	29882	Genbank	MN994468
8	USA	29882	Genbank	MN997409
9	Finland	29806	Genbank	MT020781
10	USA	29882	Genbank	MT020880
11	USA	29882	Genbank	MT020881
12	Japan	29848	Genbank	LCS21925
13	USA	29882	Genbank	MT020706
14	USA	29882	Genbank	MT020703
15	USA	29882	Genbank	MT020704
16	Taiwan	29870	Genbank	MT066175
17	Japan	29878	Genbank	LCS22973
18	Japan	29878	Genbank	LCS22974
19	Japan	29878	Genbank	LCS22975
20	Japan	29878	Genbank	LCS22972
21	USA	29879	Genbank	MT039887
22	USA	29858	Genbank	MT044258
23	USA	29882	Genbank	MT044257
24	South Korea	29903	Genbank	MT039890
25	China	29903	Genbank	MT049951
26	Taiwan	29870	Genbank	MT066176
27	Nepal	29811	Genbank	MT072688
28	China	29860	Genbank	MT093631
29	Sweden	29886	Genbank	MT093571
30	USA	29882	Genbank	MT106052
31	USA	29882	Genbank	MT106053
32	USA	29882	Genbank	MT106054
33	USA	29882	Genbank	MT118835
34	China	29882	Genbank	MT123291
35	China	29891	Genbank	MT123290
36	Japan	29902	Genbank	MT126808
37	Japan	29902	Genbank	MT126823
38	USA	29878	Genbank	MT152824
39	Brazil	29876	Genbank	MT126808
40	USA	29903	Genbank	MT163716
41	China	29903	Genbank	MT135041
42	China	29903	Genbank	MT135042
43	China	29903	Genbank	MT135043
44	China	29903	Genbank	MT135044
45	USA	29897	Genbank	MT163717
46	USA	29903	Genbank	MT163718
47	USA	29903	Genbank	MT163719
48	India	29851	Genbank	MT050493
49	India	29854	Genbank	MT012098
50	USA	29882	Genbank	MT159717
51	USA	29882	Genbank	MT159718
52	USA	29882	Genbank	MT159719
53	USA	29882	Genbank	MT159720
54	USA	29882	Genbank	MT159721
55	USA	29882	Genbank	MT159722
56	USA	29882	Genbank	MT159705
57	USA	29882	Genbank	MT159706
58	USA	29882	Genbank	MT159710
59	USA	29882	Genbank	MT159707
60	USA	29882	Genbank	MT159708
61	USA	29882	Genbank	MT159709
62	USA	29882	Genbank	MT159711
63	USA	29882	Genbank	MT159712
64	USA	29882	Genbank	MT159713
65	USA	29882	Genbank	MT159714
66	USA	29882	Genbank	MT159715
67	USA	29882	Genbank	MT159716
68	China	29923	Genbank	MT123292
69	China	29871	Genbank	MT123293
70	Italy	29867	Genbank	MT066156
71	Japan	29903	Genbank	MT159705
72	USA	29882	Genbank	MT184907
73	USA	29880	Genbank	MT184908
74	USA	29882	Genbank	MT184909
75	USA	29882	Genbank	MT184910
76	USA	29882	Genbank	MT184911
77	USA	29882	Genbank	MT184912
78	USA	29882	Genbank	MT184913
79	USA	29783	Genbank	MT188339
80	USA	29845	Genbank	MT188340
81	USA	29835	Genbank	MT188341
82	USA	29829	Genbank	MT192765
83	Taiwan	29862	Genbank	MT192759
84	Vietnam	29891	Genbank	MT192772
85	Vietnam	29891	Genbank	MT192773
86	Spain	29611	Genbank	MT198651
87	Spain	29782	Genbank	MT198652
88	China	29899	Genbank	MT226610
89	Pakistan	29836	Genome Warehouse	GWHACDD01000001
90	Wuhan	29899	Genome Warehouse	GWHABKF0000000001
Table 5: Continue

91	Wuhan	29889	Genome Warehouse	MT044258-USA CGTGCTTTTG GAGACTCCGT GGAGGAGGTC TTCATCAGAGG CACGTCACA
92	Wuhan	29890	Genome Warehouse	MT188341-USA CGTGCTTTTG GAGACTCCGT GGAGGAGGTC TTCATCAGAGG CACGTCACA
93	Wuhan	29891	NMDC	MT159716-USA CGTGCTTTTG GAGACTCCGT GGAGGAGGTC TTCATCAGAGG CACGTCACA
94	Wuhan	29890	NMDC	LC521925-JP CGTGCTTTTG GAGACTCCGT GGAGGAGGTC TTCATCAGAGG CACGTCACA
95	Wuhan	29891	NMDC	
96	Wuhan	29896	NMDC	
97	Wuhan	29891	NMDC	
98	Australia	29893	Genbank	MT007544
99	Wuhan	29903	Genbank	NC_045512
100	China	29871	Genbank	MN996530
101	China	29894	Genbank	MN996528
102	India	29874	Genbank	MT050943

354 403
MT044258-USA CGACCTCA--------------------------TGAGCTG GTACGCAAGAC TCGAGGCCAT
MT188341-USA GCACCTCATG GTCACTTTA ATGCATTGCAG TCGAGGCCAT
MT159716-USA GCACCTCA--------------------------TGAGCTG GTACGCAAGAC TCGAGGCCAT
LC521925-JP GCACCTCATG GTCACTTTA ATGCATTGCAG TCGAGGCCAT

500 549
MT044258-USA GCACCTCA--------------------------TGAGCTG GTACGCAAGAC TCGAGGCCAT
MT188341-USA GCACCTCATG GTCACTTTA ATGCATTGCAG TCGAGGCCAT
MT159716-USA GCACCTCA--------------------------TGAGCTG GTACGCAAGAC TCGAGGCCAT
LC521925-JP GCACCTCATG GTCACTTTA ATGCATTGCAG TCGAGGCCAT

600 699
MT044258-USA AAAAGAGGCTG TTGCCTTAGT TTACGGCGCC GATCTA--------------------------GACTT
MT188341-USA AAAAGAGGCTG TTGCCTTAGT TTACGGCGCC GATCTAAAGT CATTGACTT
MT159716-USA AAAAGAGGCTG TTGCCTTAGT TTACGGCGCC GATCTAAAGT CATTGACTT
LC521925-JP AAAAGAGGCTG TTGCCTTAGT TTACGGCGCC GATCTAAAGT CATTGACTT

(A) 3 In-frame deletions at positions: C359 - T382, T508 - T532 & A686 - T694

2061 20310
MT050943-IND TAGAATTAGC TATGGATGAA TTCACTTGAAG GTATAAACAT AGAAGGCTAT
MT012098-IND TAGAATTAGC TATGGATGAA TTCACTTGAAG GTATAAACAT AGAAGGCTAT
MT044258-USA TAGAATTAGC TATGGATGAA TTCACTTGAAG GTATAAACAT AGAAGGCTAT
MT039887-USA TAGAATTAGC TATGGATGAA TTCACTTGAAG GTATAAACAT AGAAGGCTAT

19251 22000
MT050943-IND AAGTCTGTGA ATTTCAATTT TGAATATGGCG CATTGGGGG TGGTTATTAC
MT012098-IND AAGTCTGTGA ATTTCAATTT TGAATATGGCG CATTGGGGG TGGTTATTAC
MT044258-USA AAGTCTGTGA ATTTCAATTT TGAATATGGCG CATTGGGGG TGGTTATTAC
MT039887-USA AAGTCTGTGA ATTTCAATTT TGAATATGGCG CATTGGGGG TGGTTATTAC

(B) 2 Out-of-frame deletions in MT039887-USA & MT012098-IND

21350 21399
MT044258-USA GAGGGAATAC AATCCCAATT CAGTTGCTTCT CATTT---C TTTTTATGAC
MT188341-USA GAGGGAATAC AATCCCAATT CAGTTGCTTCT CATTT---C TTTTTATGAC
MT159716-USA GAGGGAATAC AATCCCAATT CAGTTGCTTCT CATTT---C TTTTTATGAC
LC521925-JP GAGGGAATAC AATCCCAATT CAGTTGCTTCT CATTT---C TTTTTATGAC

(C) 1 Insertion in MT188341-USA

Fig. 1: In-frame, out-of-frame deletions and an insertion in USA, Japanese and Indian variants
Fig. 2: NJ tree constructed by using 29532 sites of the collected genomes. Bootstrap values are shown at nodes whenever they are above 50%
Fig. 3: ML phylogenetic tree constructed by the dataset using the modeltest GTR + I + G
For the 101 missense variants, 80 variants are found in the longest ORF1ab gene distributed in the cleaved nonstructural proteins (NSP1-NSP16). However, more variants are found in the structural protein genes (S, ORF3a and N). MT226610-CHN was the fastest evolving strain as it exhibited 29 substitutions. One of the out-of-frame-deletions is found close to 3’end of nsp15 protein of an Indian strain and the other one is found close to 5’end of S protein of the USA strain (Fig. 1). The first mutation probably did not alter the O-ribose methyltransferase (nsp16) since it is located at the end of the gene, while the second could alter the post-translational spike, glycoprotein. This mutation may increase disease susceptibility (Zimmerman et al., 1997) or stop protein function indicating that it is not necessary for efficient viral transmission. It is not known that S deletion enhances virulence or transmission rates of the virus and it is not known whether the strain acquiring this deletion could successfully transmit to a new host (Assiri et al., 2016).

Fortunately, this study collected various COVID-19 genomes from the same place of origin as shown in Table 5 (51 genomes from USA, 25 from China (including 10 from Wuhan) and 8 from Japan). This supports that the novel mutations found herein could reflect the diversity of the place of origin rather being acquired during spreading of the infection (Matsuda et al., 2020). It is therefore an indication that stopping virus outbreak is possible in the short-term future. However, the constructed tree (Fig. 2) indicated that viruses from the same country did not form a single group, which suggests that CoVs-19 were introduced to each country several times (Koyama et al., 2020; Matsuda et al., 2020) and it, thus, may be difficult to follow the virus origin. The phylogeny of the maximum-likelihood analysis (Fig. 3) indicated a possible transmission scenario of the virus. The tree referred to Chinese origin of COVID-19 and showed its transmissions to USA, Spain, Japan and India.

Researchers sequenced a lot of SARS-CoV-2 genomes and shared results during the pandemic. The sequenced data allowed public health officials to evaluate the relevant epidemiological parameters such as the reproductive number and virus introduction into new regions. Knowing the possibilities for the outbreak is still managing health precautionary measures which could be conducted in daily life (Hopkins, 2020). Understanding genetic framework of COVID-19 genome enhances WHO’s ability to analyze the risk of the virus introduction into countries and define the response actions and prioritization of resources, as well as the possible capacity to manage the virus outbreak. The implementation of action plans for health security is occurring globally with varied progress rates (Samhouri et al., 2018) and is actively supported by WHO to enhance operational readiness for the virus in countries (Al-Mandhari et al., 2020).

Conclusion

In conclusion, the virus is still considered a threat to human health security as there is lack of knowledge about the origin and the reasons for its outbreak. Chinese origin could be possible. Two debates about the virus outbreak are either the diversity of the place of origin or spreading the infection through individuals’ movements between countries. Emergence of new variants by releasing more genomes could help in clarifying the virus origin, the reasons of its outbreak and the development of vaccines or effective precautions.

Acknowledgment

The author would like to express his deep thanks to the Vice Presidency for Scientific Research at Naif Arab University for Security Sciences for their kind encouragement of this work.

Funding Information

This work was supported by Security Research Center at Naif Arab University for Security Sciences.

Ethics

This article is original and contains unpublished material.

Conflict of Interest

The author declares that he has no conflict of interest. No ethical approval for this study is needed since it depended on the data deposited in the Genbank database.

References

Al-Mandhari, A., Samhouri, D., Abubakar, A., & Brennan, R. (2020). Coronavirus Disease 2019 outbreak: preparedness and readiness of countries in the Eastern Mediterranean Region. https://coronavirus.1science.com/item/6166e6044a2114454e136505bc74865c1e52e8da.

Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Mohammed, M., Al-Abdely, H.M., Algarni, H.S., Alhakeem, R.F., & Almasri, M.M. (2016), May. Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015. In Open forum Infect Diseases (Vol. 3, No. 3), Oxford University Press.

Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation and treatment coronavirus (COVID-19). In StatPearls [internet], StatPearls Publishing.
Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb & Infect, 9(1), 221-236.

Chan, J. F. W., To, K. K. W., Tse, H., Jin, D. Y., & Yuen, K. Y. (2013). Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends In Microbiol, 21(10), 544-555.

Chen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin, 31(1), 3-11.

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication and pathogenesis. J Med Virol, 92(4), 418-423.

Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., Peng, C., & Zhang, Y.J. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477), 535-538.

Hall, T., Biosciences, I., & Carlsbad, C. (2011). BioEdit: an important software for molecular biology. GERF Bull Biosci, 2(1), 60-61.

Hopkins, J. (2020). SARS-CoV-2 Genetics. Center for Health Security. https://www.centerforhealthsecurity.org/resources/COVID-19/COVID-19-fact-sheets/200128-nCoV-whitepaper.pdf

Koyama, T., Platt, D., & Parida, L. (2020). Variant analysis of SARS-CoV-2 genomes. Bull World Health Organization, 98(7), 495.

Maddison, W. P., & Maddison, W. P. (2002). Macclade. Sunderland, MA: Sinauer Associates.

Matsuda, T., Suzuki, H., & Ogata, N. (2020). Phylogenetic analyses of the severe acute respiratory syndrome coronavirus 2 reflected the several routes of invasion in Taiwan, the United States and Japan. arXiv preprint arXiv:2002.08802.

Nguyen, T. M., Zhang, Y., & Pandolfi, P. P. (2020). Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses.

Paul, S. M. (2006). The molecular biology of coronavirus. Adv Virus Res, 66(48), 193-292.

Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nature Rev Microbiol, 7(6), 439-450.

Saitou, N., & Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406-425.

Samhouri, D., Ijaz, K., Rashidian, A., Chungong, S., Flahault, A., Babich, S. M., & Mahjour, J. (2018). Analysis of Joint External Evaluations in the WHO Eastern Mediterranean Region. East Mediterr Health J, 24(5), 477–87.

Swofford, D. L. (2002). PAUP: phylogenetic analysis using parsimony, version 4.0 b10.

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 10(3), 512-526.

Wang, L. F., Shi, Z., Zhang, S., Field, H., Daszak, P., & Eaton, B. T. (2006). Review of bats and SARS. Emerg Infect Diseases, 12(12), 1834.

WHO. (2020). Coronavirus disease 2019 (COVID-19): situation report, 82.

Zimmerman, P.A., Buckler-White, A., Alkhahit, G., Spalding, T., Kubofcik, J., Combsiere, C., Weissman, D., Cohen, O., Rubbert, A., Lam, G., & Vaccarezza, M. (1997). Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background and quantified risk. Mol Med, 3(1), 23-36.