Introducing LambdaTensor1.0 – A package for explicit symbolic and numeric Lie algebra and Lie group calculations

T. Fischbacher

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam, Germany

tf@aei-potsdam.mpg.de

Abstract

Due to the occurrence of large exceptional Lie groups in supergravity, calculations involving explicit Lie algebra and Lie group element manipulations easily become very complicated and hence also error-prone if done by hand. Research on the extremal structure of maximal gauged supergravity theories in various dimensions sparked the development of a library for efficient abstract multilinear algebra calculations involving sparse and non-sparse higher-rank tensors, which is presented here.
1 Introduction

Although nowadays, there are many powerful general-purpose symbolic algebra packages available, the most well-known ones probably being Mathematica, Maple, MuPAD, MACSYMA, and Reduce, there still are many open problems which require (sometimes highly specialized) computer algebra that has become feasible on modern machines, but is beyond the scope and limitations of these systems. Hence, in some areas of research, there is notable demand for tailored symbolic algebra.

In this work, a package for group-theoretic calculations is presented which originally was created for the computation of explicit expressions for the potentials of gauged maximal supergravity theories on Euler-angle-like parametrized submanifolds of the manifolds of supergravity scalars. Currently, this seems to be the most effective tool for the determination of these potentials and hence possible vacua of these supergravity theories, but it may be applicable to a wider class of more general group-theoretic problems. Nevertheless, the structure of mentioned supergravity potentials turned out to be so rich that they have not been mined completely up to date, which by itself is a strong incentive to make this package publicly available.

There are two complementary ways how such a package could be implemented: either as a library manipulating tensor expressions on the symbolic level, like MathTensor, or as a library operating on explicit tensor coordinates (which nevertheless may well be symbolic themselves). Here, the latter approach was chosen for two reasons: first, the possibility to always go down to plain numbers on the fly leads to better testability and broader applicability in the field of numerical calculations, and second, since one typical application is to break the exceptional group $E_{8(+8)}$ to subgroups as small as possible, the number of terms generated on the purely symbolic level would explode, nullifying the conceptual advantages of the former approach.

Some of the outstanding features of the symbolic algebra framework presented here are:

- It is Free Software, available under the GNU Lesser General Public License, Version 2.1. (Nevertheless, users are urged to read the accompanying copyright information to see how it is applied in this particular case.)

- It is complementary to the LiE package in that sense that LiE can not perform calculations that deal with explicit Lie algebra or Lie group elements, while such functionality lies at the heart of LambdaTensor1.0.
• It is reasonably efficient, since it employs and is designed for an optimizing machine code compiler.

• It is extensible at the level of the implementation itself, not, like most other symbolic algebra packages, only at the level of a built-in application language. In particular, it does not restrict the user of this package to a simple stripped-down C-like-in-spirit application language. Instead, the user has full access to the feature-rich, extensible, compiler system on which this package was built, CMU Common LISP.

It is perhaps noteworthy that utilizing a functional subsystem (in this case, Common LISP) not only obsoletes the need for the implementation of yet another application-centric programming language, which hardly could and should compete with a system backed by its own user community and team of developers, but also readily makes available a variety of other useful existing libraries and tools written for this system. The rationale behind the design decision to use Common LISP, and in particular to build on the CMU CL implementation, instead of using one of the other viable alternatives suggesting themselves here, namely Haskell (in particular, GHC), Objective Caml, or Scheme (in particular, Gambit), which is of course mainly a question of personal preferences of the author, comes in part from the experienced inflexibility of systems based on typed \(\lambda \)-calculus (ML and Haskell – although the power of Haskell’s typeclass system has to be acknowledged), partly due to general typability problems, partly since these systems do not provide means to modify the very language itself which would be comparable to the macro facilities of LISP (although this is much less a problem in a lazy functional language like Haskell), and in part from the baroque richness in features of the Common LISP standard (especially when compared to Scheme). The main drawback of this decision is that the most advanced freely available Common LISP compiler system, CMU CL, is only well supported for x86-based platforms, and due to technical reasons, comes with a limitation on the size of the data being processed in memory of 800 MB\(^1\).

The central idea behind this package is to utilize the observation that tensors showing up in group theory calculations frequently are very sparsely occupied – for example, using the conventions of [2], structure constants of the largest (248-dimensional) exceptional Lie group \(E_8 \) \(f_{ABC} \) contain only 49,440 out of 248\(^3 \) = 15,252,992 nonzero entries – and hence, we can make good use of efficient implementations of abstract algorithms that can handle sparsely occupied higher-rank tensors. Efficient code working on sparse

\(^1\)Experienced Unix users can raise this to about 1.6 GB, but in many cases this requires in particular manual modification of the kernel source.
matrices is widely used and readily available; the appropriate algorithms for handling higher-rank tensors are also quite well-known, albeit in a very different context: relational databases.

In particular, at the level of explicit tensor entries, forming a quantity like

$$M_{abc} = N_{gha} P^{gh}_{bc}$$

(1.1)

translates as follows into the language of relational databases (SQL syntax used here):

```sql
SELECT t1.index3 as index1,
     t2.index3 as index2,
     t2.index4 as index3,
     SUM(t1.val*t2.val)
FROM tensor1 t1, tensor2 t2
WHERE t1.index1=t2.index1 AND t1.index2=t2.index2
GROUP BY t1.index3, t2.index3, t2.index4;
```

Unfortunately, it is not feasible to just connect to an existing SQL database system (like PostgreSQL), create relations for tensors, and use existing implementations of these algorithms by doing all the calculations in the database, for various reasons. Besides considerations concerning the efficiency of communication, and considerable additional computational overhead due to databases having different aims, one major problem is that extending the database system to abstract from the implementation of sum and product here, as is necessary as soon as we want to work with data types not natively supported by the database (which are frequently limited to integers and floatingpoint numbers) would bring along too many technical problems. Hence, what is required is a re-implementation of the underlying database algorithms with numerical and symbolic tensor computations as applications in mind. Furthermore, this implementation has to be abstract enough to allow all relevant arithmetic operations to be provided as parameters, so that one may switch between approximate numerics, exact (i.e. rational number) numerics, and symbolic calculations. (The ability to implement and use arbitrary arithmetics on tensor entries has proven to be of great value during the debugging phase of the symbolic algebras provided within this package. For example, it is easy to lift an existing implementation of arithmetic operations on symbolic terms to an implementation working on pairs of terms and numerical values of these terms for a given occupation of variables that signals an error whenever a discrepancy between these values shows up.)
The **LambdaTensor1.0** package consists of the following parts:

1. Various general-purpose functions providing important infrastructure. (containing e.g. simple combinatorial functions, basic linear algebra, balanced binary trees, simple optimization functions, priority queues, and a serializer.) For the Debian GNU/Linux system, this part is available as a separate package.

2. Support for sparse higher-rank arrays and tensor operations on them, where implementations of arithmetic operations on tensor entries may be given as parameters.

3. Different implementations of symbolic algebra. (One which is similar in spirit and intention, though not in scope, to conventional general-purpose symbolic algebra packages, one which is aggressively optimized (and hence far from being general-purpose) for calculations involving products of trigonometric functions of the particular form showing up in supergravity calculations as in [1, 2], and a third one utilizing the CMUCL port of the MAXIMA symbolic algebra package.)

4. Applications. In particular, definitions relevant for the exceptional groups $E_{7(+7)}$ and $E_{8(+8)}$ and the potentials of maximal gauged extended supergravity theories in three and four dimensions.

5. Worked out, documented examples that demonstrate how to use the package.

Since this package was created as a byproduct of work targeted at the determination of the extremal structure of supergravity potentials, these tools are in some aspects just as good as they had to be for this task, with lots of opportunities for optimization and improvement still remaining. In a different vein, since those particular calculations are quite demanding, these tools are quite optimized in the most central aspects. Nevertheless, large parts of this codebase are constantly exchanged, improved, re-written, and hence, major changes should be expected between version 1.0 and subsequent versions.

2 An overview over LambdaTensor1.0

Since detailed technical documentation can be found in the **LambdaTensor1.0** manual, we only want to give a brief overview over concepts and algorithms underlying the different pieces of this package.
2.1 General purpose functions

This is a collection of various functions and macros ranging from simple more convenient redefinitions of features already available in COMMON LISP to implementations of ubiquitous algorithms to complex facilities providing vital infrastructure for the other parts of LambdaTensor1.0. Since parts of this highly inhomogeneous conglomerate of functions and definitions are not essential for LambdaTensor1.0, but perhaps useful in a much broader context, the decision was made to split this off into a separate package for the the Debian distribution of LambdaTensor1.0. Current functionality provided here encompasses, but is not limited to, macros providing machine-code optimization information to the compiler, various abbreviations and definitions that were inspired by the Perl language, elementary combinatorial functions, basic polynome factorization, linear algebra, and optimization support, as well as efficient implementations of balanced binary trees and priority queues.

2.2 Sparse array functions

This is the heart of LambdaTensor1.0, implementing sparse arbitrary-rank arrays using database algorithms. In particular, a sparse array is represented internally as a multidimensional hash of its nonzero components. Sparse arrays are transparently re-hashed if their occupation density grows, up to a certain percentage, where the implementation internally switches to storing tensor entries in a nonsparse array. Currently, removing entries from a sparse-array does not induce the underlying hash to shrink once occupation density falls below a certain level.

The most important sparse array function provided is SP-X which implements efficient tensor multiplication, contraction, and index reordering of an arbitrary number of tensors (limited by resources) where multiplications and contractions are heuristically sequenced in such a way to minimize the total number of operations. To give an example of what SP-X can do and how it is used, let’s assume that the variable F-abc contains the structure constants f_{abc} of a Lie algebra. Then, the Cartan-Killing metric $g_{ab} = f_{ap} f_{bq}^p$ can be computed as follows:

```lisp
(defvar metric (sp-x '(a b) '(,F-abc a p q) '(,F-abc b q p)))
```

A second example: assuming so8-sigma is the rank-3 tensor of SO(8) Γ-matrices with index order $(i, \alpha, \dot{\beta})$, the following piece of code checks the Clifford algebra properties under contraction of the cospinor indices:
Besides tensor arithmetics (parametrized by the underlying implementation of arithmetics on tensor entries)\(^2\) and functions computing embedding tensors for index split operations, this piece of code also provides linear algebra functions on sparse tensors (like \texttt{SP-INVERT} and \texttt{SP-MATRIX-EIGENVALUES} for quadratic rank-2 tensors over numbers (not yet symbolic expressions)), conversion functions mapping sparse arrays to and from nonsparse vectors, as well as group theory related functions like \texttt{SP-LIN-INDEP-COMMUTATORS}, giving a linearly independent basis for all the commutators of two sets of quadratic sparse rank-2 tensors, or \texttt{SP-FIND-ROOT-OPERATOR} which, given structure constants, a Cartan subalgebra, and a root vector, determines the adjoint-representation coefficients of the corresponding ladder operator.

2.3 Symbolic Algebra

There are different implementations of symbolic algebra available within this package, each of them having its own raison d’être. The most effective since most highly optimized towards the problem for the original task of computation of supergravity potentials is the \texttt{packof-exp}, or, in brief, \texttt{poexp} algebra. When looking at a typical supergravity potential restricted to a gauge subgroup singlet manifold, like the following one from [2] of \(N = 16, D = 3\) supergravity with gauge group \(SO(8) \times SO(8)\) on the conveniently parametrized

\(^2\)for some kinds of tensor entries, in particular complex double-precision floatingpoint numbers, the implementation uses specially optimized versions of internal functions.
four-dimensional \((SL(2)/U(1))^2 \) manifold of \(G_{2,\text{diag}} \) singlets,

\[
-8g^{-2}V = 243 + \frac{7}{8} \cosh(2s) + \frac{49}{8} \cosh(4s) + \frac{1441}{64} \cosh(s) \cosh(z) \\
+ \frac{427}{384} \cosh(3s) \cosh(z) - \frac{7}{64} \cosh(5s) \cosh(z) \\
- \frac{7}{4} \cos(4v) \cosh(2s) + \frac{7}{16} \cos(4v) \cosh(4s) \\
- \frac{7}{64} \cos(4v) \cosh(s) \cosh(z) \\
+ \frac{31}{128} \cos(4v) \cosh(3s) \cosh(z) \\
+ \frac{31}{128} \cos(4v) \cosh(5s) \cosh(z) \\
- \frac{7}{64} \cos(4v) \cosh(7s) \cosh(z) \\
- \frac{1645}{128} \cos(v - w) \sinh(z) \sinh(s) \\
+ \frac{651}{128} \cos(v - w) \sinh(z) \sinh(3s) \\
+ \frac{127}{128} \cos(v - w) \sinh(z) \sinh(5s) \\
- \frac{127}{128} \cos(v - w) \sinh(z) \sinh(7s) \\
- \frac{31}{128} \cos(3v + w) \sinh(z) \sinh(s) \\
+ \frac{31}{128} \cos(3v + w) \sinh(z) \sinh(3s) \\
- \frac{31}{128} \cos(3v + w) \sinh(z) \sinh(5s) \\
- \frac{31}{128} \cos(3v + w) \sinh(z) \sinh(7s) \\
+ \frac{127}{128} \cos(7v + w) \sinh(z) \sinh(s) \\
- \frac{127}{128} \cos(7v + w) \sinh(z) \sinh(3s) \\
+ \frac{127}{128} \cos(7v + w) \sinh(z) \sinh(5s) \\
- \frac{127}{128} \cos(7v + w) \sinh(z) \sinh(7s),
\]

(2.1)

one notices that the typical summand in such a term (as well as in all intermediate quantities) is of the form \(k \cdot \exp \left(\sum c_j v_j \right) \), where \(v_j \) are variable names, and \(c_j \) as well as \(k \) all are either real or imaginary rational numbers. Furthermore, these terms 'come in packs' and can be grouped together to form summands like \(\frac{7}{128} \cos(7v + w) \sinh(z) \sinh(5s) \). Hence, we can forge an internal representation of such terms which is orders of magnitude more efficient both in terms of memory consumption and possible reductions than the conventional one of a generic term (as used by other computer algebra systems) by using this additional structure. (Details are given in the manual.)

It is the combination of this problem-specific implementation of a symbolic algebra with efficient sparse array database algorithms that made it possible to transcend all previous limitations in complexity in [2].

As is perhaps imaginable, this aggressively optimized symbolic algebra was not the first one to be employed in conjunction with sparse tensor algorithms. The former one, which is available as the function-polycome (funpoly, or often briefly fp) algebra, is much closer in design to conventional symbolic algebra, hence also more flexible and still shows up in some places within LambdaTensor1.0. (Note that the poexp algebra is so specialized that it can not handle anything else but terms of the structure described above. In
particular, it can not represent quasipolynomials, hence one easily runs into
trouble when nilpotence enters the stage.) The funpoly symbolic algebra
also implements some peculiarities going beyond what one may expect from
conventional symbolic algebra packages, in particular some non-local reduc-
tions of precisely that kind which FORM avoids by construction in order to
be able to efficiently handle formulae much bigger than available memory.
Since this piece of code did not undergo as many evolutionary cycles of being
re-written as some of the rest of this package, its design still shows some flaws
and weaknesses3, and so it is scheduled for replacement in later versions.

Since it may nevertheless be important to also have a flexible, general,
tested, and powerful implementation of some symbolic algebra available that
can be used in conjunction with this package, even if one should not try
to use that particular one for the calculation of supergravity potentials,
\texttt{LambdaTensor1.0} also comes with a simple interface to the free MACSYMA-
replacement \textsc{Maxima}, which was originally implemented on top of \textsc{Gcl}, but
then also ported to other \textsc{Lisp}s, including \textsc{Cmucl}.

\subsection*{2.4 Applications and examples}
\texttt{LambdaTensor1.0} comes with optional additional definitions related to the
groups $E_{8(8)}$, $E_{7(7)}$ as well as important subgroups thereof and further func-
tions relevant for the computation and investigation of the structure of the
scalar potentials of three- and four-dimensional maximal gauged supergrav-
ity theories. Finally, detailed worked-out examples are provided within the
package which explain how to apply it to supergravity calculations.

\section*{3 Availability and concluding remarks}
The most recent version of \texttt{LambdaTensor} is available from the webpage
\url{http://www.cip.physik.uni-muenchen.de/~tf/lambdatensor/}

To the author’s best knowledge, the library presented here is the first
abstract implementation of efficient fundamental sparse higher-rank tensor
multilinear algebra, thus possibly closing an important gap. Therefore, the
present author considers a release under a free software license, in particular,
the GNU LGPL 2.1, as adequate. As stated in detail in the accompanying
copyright information, users of this library are asked to quote the present
article, since it is customary to use citations as a rough measure for scientific
relevance, so that further development of this work can be kept up to the
needs of its users.

3in particular, handling of fractional powers of rational numbers is quite clumsy
4 Addendum: New features in version 1.1

Since an update of this software package hardly justifies a new paper, a brief overview over new functionality introduced in version 1.1, released on 25.03.2003, is given in this addendum. First and perhaps most important, the installation process has been considerably simplified, now providing packages for all major Linux distributions. Besides some minor bugfixes to code and documentation, a considerable amount of new functionality has been implemented to extend the group-theoretic capabilities of this library into the direction of the LiE program. Among the major new algorithm implementations are a version of the Fast Freudenthal algorithm to calculate weight multiplicities of representations of simple groups, the Peterson recursion formula to determine root multiplicities of Kac-Moody algebras (this was used in [3] to calculate level decompositions of the infinite-dimensional algebras E_{10} and E_{11}), as well as LISP-oriented versions of the Todd-Coxeter coset enumeration algorithm and the Schreier-Sims algorithm for permutation groups.

References

[1] T. Fischbacher, Nucl. Phys. B 638 (2002) 207 [arXiv:hep-th/0201030].

[2] T. Fischbacher, H. Nicolai and H. Samtleben, Class. Quant. Grav. 19 (2002) 5297 [arXiv:hep-th/0207206].

[3] H. Nicolai and T. Fischbacher, [arXiv:hep-th/0301017]