On Generalized Super-Coherent States

M. DAOUD,¹ Y. HASSOUNI,¹ and M. KIBLER²

¹Laboratoire de Physique Théorique, Faculté des Sciences de Rabat Université Mohammed V, avenue Ibn Batouta, B.P. 1014, Rabat, Morocco

²Institut de Physique Nucléaire de Lyon, IN2P3-CNRS et UCBL
43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

A set of operators, the so-called k-fermion operators, that interpolate between boson and fermion operators are introduced through the consideration of an algebra arising from two non-commuting quon algebras. The deformation parameters q and $1/q$ for these quon algebras are roots of unity with $q = \exp(2\pi i/k)$ and $k \in \mathbb{N}\{0, 1\}$. The case $k = 2$ corresponds to fermions and the limiting case $k \to \infty$ to bosons. Generalized coherent states (connected to k-fermionic states) and super-coherent states (involving a k-fermionic sector and a purely bosonic sector) are investigated.

Paper to appear in the Proceedings of the VIII International Conference on Symmetry Methods in Physics (JINR, Dubna, Russia, 28 July – 2 August 1997). The Proceedings of the Conference will be published in the Russian Journal of Nuclear Physics (Yadernaya Fizika).
1 Introduction

The interest of q-deformations for statistical physics is still very high in the community of physicists and mathematicians. In recent years, many works have been devoted to statistics of q-bosons, q-fermions and quons (see, for instance, Ref. [1] and references therein). This paper is devoted to k-fermions which are objects interpolating between fermions (corresponding to $k = 2$) and bosons (corresponding to $k \to \infty$).

The material in the present paper is organized as follows. We first discuss (in Section 2) the k-fermionic algebra Σ_q, where $q := \exp(2\pi i/k)$ with $k \in \mathbb{N} \setminus \{0, 1\}$, in terms of generalized Grassmann variables. Then, we introduce (in Section 3) generalized coherent states. Finally, the notion of fractional super-coherent states is introduced (in Section 4) from a certain limit of the well-known deformed coherent states.

2 The k-fermions

2.1 The k-fermionic algebra Σ_q

We first introduce the k-fermionic algebra Σ_q. The algebra Σ_q is generated by five operators $a_+, a_-, a_+^\dagger, a_-^\dagger$ and N. We assume that N is an Hermitean operator, that a_+^\dagger (respectively, a_-^\dagger) is the adjoint of a_+ (respectively, a_-) and that these operators satisfy

\[
\begin{align*}
 a_-a_+ - qa_+a_- &= 1 \iff a_+^\dagger a_- - \bar{q}a_-^\dagger a_+ = 1 \quad (1a) \\
 Na_+ - a_+N &= +a_+ \iff Na_+^\dagger - a_+^\dagger N = -a_+^\dagger \quad (1b) \\
 Na_- - a_-N &= -a_- \iff Na_-^\dagger - a_-^\dagger N = +a_-^\dagger \quad (1c) \\
 (a_+)^k = (a_-)^k &= 0 \iff (a_+^\dagger)^k = (a_-^\dagger)^k = 0 \quad (1d) \\
 a_-a_+^\dagger = q^\ast a_+^\dagger a_- \iff a_+a_-^\dagger = q^\ast a_-^\dagger a_+ \quad (1e)
\end{align*}
\]

where the complex number

\[q := \exp\left(\frac{2\pi i}{k}\right) \quad \text{with} \quad k \in \mathbb{N} \setminus \{0, 1\} \]

is a root of unity. (In Eq. (1), \bar{q} stands for the complex conjugate of q.) The algebra Σ_q clearly involves two non-commuting quon algebras A_q (spanned by a_+, a_- and N) and $A_{\bar{q}}$ (spanned by a_+^\dagger, a_-^\dagger and N).

In view of the defining relations (1), the operators $a_+, a_-, a_+^\dagger, a_-^\dagger$ and N act on a Fock space $\mathcal{F} := \{|n\rangle : n = 0, 1, \cdots, k-1\}$ with card $\mathcal{F} = k$. Furthermore, we chose a representation of Σ_q in the following way. The action of N is standard in the sense that

\[N|n\rangle = n|n\rangle \]
while the action of the remaining operators is given by
\[a_-|n\rangle = ([n]_q)^{1/2} |n - 1\rangle \quad \text{with} \quad a_-|0\rangle = 0 \]
\[a_+^+|n\rangle = ([n]_q)^{1/2} |n - 1\rangle \quad \text{with} \quad a_+^+|0\rangle = 0 \]
and
\[a_+|n\rangle = ([n+1]_q)^{1/2} |n + 1\rangle \quad \text{with} \quad a_+|k - 1\rangle = 0 \]
\[a_-^+|n\rangle = ([n+1]_q)^{1/2} |n + 1\rangle \quad \text{with} \quad a_-^+|k - 1\rangle = 0 \]
where the symbol \([\]_q\) is defined by
\[[X]_q := \frac{1 - q^X}{1 - q} \]
for any operator or number \(X\). Thus, the operators \(a_-\) and \(a_+^+\) behave like annihila-
tion operators, the operators \(a_+\) and \(a_-^+\) like creation operators and the operator \(N\) like a number oper-
ator.

The state vector \(|n\rangle\) can be written as
\[|n\rangle = \frac{(a_+)^n}{([n]_q!)^{1/2}} |0\rangle \quad \text{or} \quad |n\rangle = \frac{(a_-^+)^n}{([n]_q!)^{1/2}} |0\rangle \quad \text{for} \quad n = 0, 1, \cdots, k - 1 \]
where, as usual, the \(p\)-deformed factorial \([n]_p\) is defined by (with \(p = q\) and \(\bar{q}\))
\[[n]_p! := [1]_p [2]_p \cdots [n]_p \quad \text{for} \quad n \in \mathbb{N} \setminus \{0\} \quad \text{and} \quad [0]_p! := 1 \]

In the specific case \(k = 2\), the algebra \(\Sigma_{-1}\) corresponds to ordinary fermion oper-
ators with \(a_+ = a_-\) and \(a_-^+ = a_+\) for which we have \((a_-)^2 = (a_+)^2 = 0\), a relation that reflects the Pauli exclusion principle. In the limiting case \(k \to \infty\), the algebra \(\Sigma_{+1}\) corresponds to ordinary boson operators with \(a_+^+ = a_-\) and \(a_-^+ = a_+\). For \(k\) arbitrary, the algebra \(\Sigma_q\) corresponds to \(k\)-fermion operators \(a_-\) and \(a_+\) (with their adjoint \(a_-^+\) and \(a_+^+\), respectively) that interpolate between fermion and boson oper-
ators; the space \(\mathcal{F}\) is of dimension \(k\) for the \(k\)-fermionic algebra \(\Sigma_q\) (i.e., two-
dimensional for the fermionic algebra \(\Sigma_{-1}\) and infinite-dimensional for the bosonic algebra \(\Sigma_{+1}\)).

2.2 Grassmannian realization of \(\Sigma_q\)

We give here some preliminaries useful for obtaining a Grassmannian realization of the algebra \(\Sigma_q\). Equation (1d) suggests that we use generalized Grassmann variables (see Refs. [2-5]) \(z\) and \(\bar{z}\) such that
\[z^k = \bar{z}^k = 0 \quad \text{(2)} \]
(The particular case \(k = 2 \) corresponds to ordinary Grassmann variables.) We then introduce the \(\partial_z \)- and \(\partial_{\bar{z}} \)-derivatives via
\[
\partial_z f(z) := \frac{f(qz) - f(z)}{(q - 1)z}, \quad \partial_{\bar{z}} g(\bar{z}) := \frac{g(q\bar{z}) - g(\bar{z})}{(q - 1)\bar{z}}
\]
where \(f : z \mapsto f(z) \) and \(g : \bar{z} \mapsto g(\bar{z}) \) are arbitrary functions. The linear operators \(\partial_z \) and \(\partial_{\bar{z}} \) satisfy
\[
\partial_z z^n = [n]_q z^{n-1}, \quad \partial_{\bar{z}} \bar{z}^n = [n]_{\bar{q}} \bar{z}^{n-1}
\]
for \(n = 0, 1, \ldots, k - 1 \). Therefore, when \(f(z) \) and \(g(\bar{z}) \) can be developed as
\[
f(z) = \sum_{n=0}^{k-1} a_n z^n, \quad g(\bar{z}) = \sum_{n=0}^{k-1} b_n \bar{z}^n
\]
where the coefficients \(a_n \) and \(b_n \) in the expansions are complex numbers, we check that
\[
(\partial_z)^k f(z) = (\partial_{\bar{z}})^k g(\bar{z}) = 0
\]
Consequently, we shall assume that the conditions
\[
(\partial_z)^k = (\partial_{\bar{z}})^k = 0
\]
hold in addition to Eq. (2).

From Eqs. (2) and (4), the correspondences
\[
a_- \rightarrow \partial_z, \quad a_+ \rightarrow z, \quad a_+^+ \rightarrow \partial_{\bar{z}}, \quad a_-^+ \rightarrow \bar{z}
\]
clearly provide us with a realization of Eqs. (1a) and (1d). Note that Eq. (1e) leads to
\[
\partial_z \partial_{\bar{z}} = \frac{q^2}{4} \partial_{\bar{z}} \partial_z, \quad \bar{z}z = q^2 \bar{z}z
\]
in the realization based on Eq. (5).

3 Generalized coherent states

There exists several methods for introducing coherent states. We can use the action of a displacement operator on a reference state [6] or the construction of an eigenstate for an annihilation operator [7,8] or the minimisation of uncertainty relations [9]. In the case of the ordinary harmonic oscillator, the three methods lead to the same result (when the reference state is the vacuum state). Here, the situation is a little bit more intricate (as far as the equivalence of the three methods is concerned) and we chose to define the generalized coherent states or \(k \)-fermionic coherent states \(|z\rangle \) and \(|\bar{z}\rangle \) as follows
\[
|z\rangle := \sum_{n=0}^{k-1} \frac{z^n}{([n]_q!)^{1\over 2}} |n\rangle, \quad |\bar{z}\rangle := \sum_{n=0}^{k-1} \frac{\bar{z}^n}{([n]_{\bar{q}}!)^{1\over 2}} \langle n|
\]
where \(z \) and \(\bar{z} \) are generalized Grassmann variables that satisfy Eq. (2). It can be easily checked that the state vectors \(|z\rangle\) and \(|\bar{z}\rangle\) are eigenvectors of the operators \(a_-\) and \(a_+^\dagger\), respectively. More precisely, we have

\[
a_-|z\rangle = z|z\rangle, \quad a_+^\dagger|\bar{z}\rangle = \bar{z}|\bar{z}\rangle
\]

The case \(k = 2 \) corresponds to fermionic coherent states while the limiting case \(k \to \infty \) to bosonic coherent states.

We define

\[
|z\rangle := \sum_{n=0}^{k-1} \langle n | \bar{z}^n \frac{\bar{z}^n}{([n]_q!)^{\frac{1}{2}}}, \quad |\bar{z}\rangle := \sum_{n=0}^{k-1} \langle n | \bar{z}^n \frac{z^n}{([n]_q!)^{\frac{1}{2}}}
\]

Then, the ‘scalar products’ \((z'|z)\) and \((\bar{z}'|\bar{z})\) follow from the ordinary scalar product \(\langle n'|n \rangle = \delta(n',n)\). For instance, we get

\[
(z'|z) = \sum_{n=0}^{k-1} \bar{z}^n z^n \frac{\bar{z}^n}{([n]_q!)^{\frac{1}{2}}}
\]

In view of the relationship

\[
[n]_q! = q^{-\frac{1}{2}} n^{n-1} [n]_q!
\]

and of the property

\[
\bar{z}^n z^n = q^{-\frac{1}{2}} n^{n-1} (\bar{z} z)^n
\]

we obtain the following result

\[
(z|z) = \sum_{n=0}^{k-1} \frac{(\bar{z} z)^n}{[n]_q!}
\]

Similarly, we have

\[
(\bar{z}|\bar{z}) = \sum_{n=0}^{k-1} \frac{(z \bar{z})^n}{[n]_q!}
\]

By defining the \(q\)-deformed exponential \(e_q\) by

\[
e_q : x \mapsto e_q(x) := \sum_{n=0}^{k-1} \frac{x^n}{[n]_q!}
\]

we can rewrite Eqs. (6) and (7) as

\[
(z|z) = e_q(\bar{z} z), \quad (\bar{z}|\bar{z}) = e_q(z \bar{z})
\]

(Observe that the summation in the exponential \(e_q\) is finite, for \(k \) finite, rather than infinite as is usually the case in \(q\)-deformed exponentials.)

We guess that the \(k\)-fermionic coherent states \(|z\rangle\) and \(|\bar{z}\rangle\) form overcomplete sets with respect to some integration process accompanying the derivation process.
inherent to Eq. (3). Following Majid and Rodríguez-Plaza [5], we consider the integration process defined by

\[\int dz z^p = \int d\bar{z} \bar{z}^p := 0 \quad \text{for} \quad p = 0, 1, \ldots, k - 2 \]

(8a)

and

\[\int dz z^{k-1} = \int d\bar{z} \bar{z}^{k-1} := 1 \]

(8b)

Clearly, the integrals in (8) generalize the Berezin integrals corresponding to \(k = 2 \).

In the case where \(k \) is arbitrary, we can derive the overcompleteness property

\[\int dz |z\rangle \mu(z, \bar{z}) (z) d\bar{z} = \int d\bar{z} |\bar{z}\rangle \mu(\bar{z}, z) (\bar{z}) dz = 1 \]

where the function \(\mu \) defined through

\[\mu(z, \bar{z}) := \sum_{n=0}^{k-1} \left(\frac{[n_q]![n_q]!}{k!} \right)^\frac{1}{2} z^{k-1-n} \bar{z}^{k-1-n} \]

may be regarded as a measure.

4 Fractional super-coherent states

We now switch to \(Q \)-deformed coherent states of the type

\[|Z\rangle := \sum_{n=0}^{\infty} \frac{Z^n}{([n]_Q)!} |n\rangle \]

(9)

associated to a quon algebra \(A_Q \) where \(Q \in \mathbb{C} \setminus S^1 \). The latter states are simple deformations of the bosonic coherent states (cf. Ref. [10]). The coherent state \(|Z\rangle \) may be considered to be an eigenstate, with the eigenvalue \(Z \in \mathbb{C} \), of an annihilation operator \(b_- \) in a representation such that the operator \(b_- \) and the associated creation operator \(b_+ \) satisfy

\[b_- |n\rangle = \left(\frac{[n]_Q}{[n]_Q} \right)^\frac{1}{2} |n - 1\rangle \quad \text{with} \quad b_- |0\rangle = 0 \]

\[b_+ |n\rangle = \left(\frac{[n + 1]_Q}{[n + 1]_Q} \right)^\frac{1}{2} |n + 1\rangle \]

with \(n \in \mathbb{N} \).

For \(Q \rightarrow q \), we have \([k]_Q! \rightarrow 0 \). Therefore, the term \(Z^k/([k]_Q!)^\frac{1}{2} \) in Eq. (9) makes sense for \(Q \rightarrow q \) only if \(Z \rightarrow z \), where \(z \) is a generalized Grassmann variable with \(z^k = 0 \). This type of reasoning has been invoked for the first time in Ref. [11]. (In [11], the authors show that there is an isomorphism between the braided line and the one-dimensional super-space.)
It is the aim of this section to determine the limit

$$|\xi| := \lim_{Q \to q} \lim_{Z \to z} |Z|$$

when Q goes to the root of unity $q = \exp(2\pi i/k)$ and Z to a Grassmann variable z. The starting point is to rewrite Eq. (9) as

$$|Z| = \sum_{r=s=0}^{k-1} \frac{Z^{r+s}}{([r+s]_Q!)^{1/2}} |rk+s\rangle$$

Then, by making use of the formulas

$$\frac{[k]_Q}{[rk]_Q} \to \frac{1}{r} \quad \text{for} \quad Q \to q \quad \text{with} \quad r \neq 0$$

and

$$\frac{[s]_Q}{[rk+s]_Q} \to 1 \quad \text{for} \quad Q \to q \quad \text{with} \quad s = 0, 1, \cdots, k-1$$

do we find that

$$\lim_{Q \to q} \lim_{Z \to z} \frac{Z^{r+s}}{([r+s]_Q!)^{1/2}} \frac{\alpha^r}{([s]_Q!)^{1/2} (r!)^{1/2}}$$

works for $s = 0, 1, \cdots, k-1$ and $r \in \mathbb{N}$. The complex variable α in Eq. (10) is defined by

$$\alpha := \lim_{Q \to q} \lim_{Z \to z} \frac{Z^k}{([k]_Q!)^{1/2}}$$

Therefore, we obtain

$$|\xi| = \sum_{r=0}^{k-1} \sum_{s=0}^{k-1} \frac{z^s}{([s]_Q!)^{1/2} (r!)^{1/2}} \alpha^r |rk+s\rangle$$

Finally, by employing the symbolic notation

$$|rk+s\rangle \equiv |r\rangle \otimes |s\rangle$$

we arrive at the formal expression

$$|\xi| = \sum_{r=0}^{k-1} \alpha^r |r\rangle \otimes \sum_{s=0}^{k-1} \frac{z^s}{([s]_Q!)^{1/2}} |s\rangle$$

We thus end up with the product of a bosonic coherent state by a k-fermionic coherent state. This product shall be called a fractional super-coherent state. In the particular case $k = 2$, it reduces to the product of a bosonic coherent state by a fermionic coherent state, i.e., to the super-coherent state associated to a superoscillator [12]. In the framework of field theory, Eq. (11) means that in the limit $Q \to q$, every field ψ with values $\psi(Z)$ is transformed into a fractional super-field Ψ with value $\Psi(z, \alpha)$, z being a generalized Grassmann variable and α a bosonic variable.
5 Concluding remarks

As a main result, the k-fermions introduced in the present paper can be ranged between fermions (for $k = 2$) and bosons (for $k \to \infty$). This result is further emphasized by calculating the coherence factor $g^{(m)}$ for an assembly of k-fermions: We find that $g^{(m)} = 0$ for $m > k - 1$ so that, in a many-particle scheme, a given state of fractional spin $S = \frac{1}{k}$ cannot be occupied by more than $k - 1$ identical k-fermions. The k-fermions thus satisfy a generalized Pauli exclusion principle.

We close this paper by mentioning two open questions. First, does the W_∞ algebra described by Fairlie, Fletcher and Zachos [13] play an important role in the symmetries inherent to k-fermions (see also Ref. [14])? Second, what is the connection between k-fermions and fractional super-symmetry for anyons [15,16], especially the anyons constructed from unitary representations of the group diffeomorphisms of the plane [16]? These matters should be the object of future works.

Acknowledgments

One of the authors (M.K.) would like to thank W.S. Chung, G.A. Goldin and S. Mashkevich for interesting comments on this work on the occasion of its presentation at the VIII International Conference on Symmetry Methods in Physics in Dubna.

References

[1] M. Kibler and M. Daoud, pre-print [physics/9712034].
[2] V.A. Rubakov and V.P. Spiridonov, *Mod. Phys. Lett.*, Ser. A, 1988, vol. 3, p. 1337.
[3] A.T. Filippov, A.P. Isaev and A.B. Kurdikov, *Mod. Phys. Lett.*, Ser. A, 1992, vol. 7, p. 2129; *Int. J. Mod. Phys.*, Ser. A, 1993, vol. 8, p. 4973.
[4] A. Le Clair and C. Vafa, *Nucl. Phys.*, Ser. B, 1993, vol. 401, p. 413.
[5] S. Majid and M.J. Rodríguez-Plaza, *J. Math. Phys.*, 1994, vol. 35, p. 3753.
[6] A.M. Perelomov, *Generalized Coherent States and Their Applications* (Springer, Berlin, 1986).
[7] R.J. Glauber, *Phys. Rev.*, 1963, vol. 131, p. 2766.
[8] E.C.G. Sudarshan, *Phys. Rev. Lett.*, 1963, vol. 10, p. 84.
[9] M.M. Nieto and L.M. Simmons, Jr., *Phys. Rev. Lett.*, 1978, vol. 41, p. 207.
[10] M. Arik and D.D. Coon, *J. Math. Phys.*, 1976, vol. 17, p. 524.
[11] R.S. Dunne, A.J. Macfarlane, J.A. de Azcárraga and J.C. Pérez Bueno, *Phys. Lett.*, Ser. B, 1996, vol. 387, p. 294; *Int. J. Mod. Phys.*, Ser. A, 1997, vol. 12, p. 3275.
[12] Y. Bérubé-Lauzière and V. Hussin, *J. Phys.*, Ser. A, 1993, vol. 26, p. 6271.

[13] D.B. Fairlie, P. Fletcher and C.K. Zachos, *J. Math. Phys.*, 1990, vol. 31, p. 1088.

[14] M. Daoud, Y. Hassouni and M. Kibler, in Symmetries in Science X, eds. B. Gruber and M. Ramek (Plenum Press, New York, 1998).

[15] J.M. Leinaas and J. Myrheim, *Nuovo Cimento*, Ser. B, 1977, vol. 37, p. 1.

[16] G.A. Goldin, R. Menikoff and D.H. Sharp, *J. Math. Phys.*, 1980, vol. 21, p. 650; 1981, vol. 22, p. 1664; G.A. Goldin and D.H. Sharp, *Phys. Rev. Lett.*, 1996, vol. 76, p. 1183.