Investigating the Electronic Structure of Prospective Water-splitting Oxide
$\text{BaCe}_{0.25}\text{Mn}_{0.75}\text{O}_{3-\delta}$ Before and After Thermal Reduction

Subhayan Roychoudhury§, Sarah Shulda¶, Anuj Goyal¶, Robert Bell¶, Sami Sainio‡, Nicholas Strange‡, James Eujin Park#, Eric N. Coker#, Stephan Lany¶, David Ginley¶, and David Prendergast§

§ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
¶ National Renewable Energy Laboratory, Golden, Colorado 80401, USA
‡ SLAC National Accelerator Laboratory, Menlo Park, CA 94025
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Abstract

$\text{BaCe}_{0.25}\text{Mn}_{0.75}\text{O}_{3-\delta}$ (BCM), a non-stoichiometric oxide closely resembling a perovskite crystal structure, has recently emerged as a prospective contender for application in renewable energy harvesting by solar thermochemical hydrogen generation. Using solar energy, oxygen-vacancies can be created in BCM and the reduced crystal so obtained can, in turn, produce H_2 by stripping oxygen from H_2O. Therefore, a first step toward understanding the working mechanism and optimizing the performance of BCM, is a thorough and comparative analysis of the electronic structure of the pristine and the reduced material. In this paper, we probe the electronic structure of BCM using the combined effort of first-principles calculations and experimental O K-edge x-ray absorption spectroscopy (XAS). The computed projected density-of-states (PDOS) and orbital-plots are used to propose a simplified model for orbital-mixing between the oxygen and the ligand atoms. With the help of state-of-the-art simulations, we are able to find the origins of the XAS peaks and to categorize them on the basis of contribution from Ce and Mn. For
the reduced crystal, the calculations show that, as a consequence of dielectric screening, the change in electron-density resulting from the reduction is strongly localized around the oxygen vacancy. Our experimental studies reveal a marked lowering of the first O K-edge peak in the reduced crystal which is shown to result from a diminished O-$2p$ contribution to the frontier unoccupied orbitals, in accordance with the tight-binding scheme. Our study paves the way for investigation of the working-mechanism of BCM and for computational and experimental efforts aimed at design and discovery of efficient water-splitting oxides.

Introduction:

The quest for developing advanced mechanisms capable of harvesting energy in a renewable, sustainable and environment-friendly manner is one of the grand challenges of modern technological research. One such example is the production of solar fuel by splitting H$_2$O or CO$_2$ through a reversible two-step cycle involving reduction and re-oxidation of metal oxides. In particular, in one of its most promising approaches, the process of Solar Thermochemical Hydrogen generation (STCH)$^{1-3}$ entails, as a first step, the removal of oxygen atoms from a metal oxide at a high temperature generated using solar irradiation under inert atmosphere. This is then followed by a re-oxidation of the oxide by exposing it to H$_2$O, resulting in the production of hydrogen. For efficient water-splitting, the oxide must be structurally stable to withstand a large number of redox cycles. Additionally, it must be reducible at relatively low temperature and undergo re-oxidation in spite of the presence of H$_2$ in the steam feed. The efficacy of an oxide in the STCH operation is governed by its chemical properties, which, in turn are primarily dictated by its electronic structure. Being able to decipher and manipulate the electronic structure of prospective water-splitting oxides with dedicated theoretical and experimental investigation is, therefore, of paramount importance in gaining a deeper understanding of their working-mechanism as well as in the discovery, design and performance-optimization of such materials.

Owing to their stability against decomposition and phase-change under the extreme environment of a thermochemical reactor, non-stoichiometric oxides have recently received substantial attention in this regard4. In particular, non-
stoichiometric ceria (CeO$_2$) is generally recognized as the frontrunner among the prospective candidates5,6 since, besides possessing other beneficial attributes, it is capable of stripping oxygen from H$_2$O even under an extremely unfavorable H$_2$O:H$_2$ ratio4. However, contrary to the ease of the re-oxidation step, the reduction step for ceria poses a major disadvantage since it requires a temperature above 1500°C7,8, which necessitates non-standard materials and becomes prohibitively expensive under standard industrial conditions.

As a consequence, the last few years have witnessed the search for alternative oxides that can undergo reduction at a lower temperature, with significant attention being devoted toward perovskite-based structures$^{9-15}$. Recently, the non-stoichiometric perovskite compound BaCe$_{0.25}$Mn$_{0.75}$O$_{3-\delta}$ (BCM) has been proposed as a contender for the STCH application16. In addition to high chemical stability and tunability of the point-defect thermodynamics, BCM is shown to offer nearly a three-fold improvement over ceria in hydrogen production at a reduction temperature below 1400°C. Additionally, like ceria, BCM is also capable of operating under unfavorable H$_2$O:H$_2$ ratio. Therefore, as a first step toward gaining a detailed understanding of the factors responsible for its performance, a thorough exploration of the electronic structure of BCM is necessary. In particular, it is imperative that such a study addresses the change in the electronic structure induced by the reversible removal of oxygen atom from the compound.

On the experimental front, investigation of the electronic structure of materials is performed most commonly using core-level spectroscopy. For example, x-ray absorption spectroscopy (XAS) produces an element-specific spectrum of the absorption intensity plotted as a function of photon-energy. However, in order to decipher the details of electronic structure from such a plot, the experimental efforts must often be complemented with theoretical studies. The aim of such theoretical calculations is then to be able to gain insight into the origin of the spectral features by assigning electronic processes and orbitals to them. For several decades, ab $initio$ computation of electronic properties has been performed most commonly with the help of density-functional theory (DFT), thanks to its convenient balance between accuracy and expense. However, in addition to such first-principles simulations, simplified quantum-mechanical models can be extremely helpful in elucidating the electronic properties of most materials.
With these considerations, in this paper we present a detailed combined theoretical and experimental investigation of the electronic structure of BCM. The information obtained with first-principles DFT calculations are presented mostly in the form of partial density-of-states (PDOS) and real-space representation of single-electron energy eigenstates, referred to as electronic orbitals hereafter. The computational studies are then complemented with crystal-field theory (CFT)-based models of orbital mixing which corroborate the first-principles results qualitatively. Experimental O K-edge XAS is performed to probe the electronic excitations before and after oxygen-removal from the compound. The absorption spectra so obtained are compared with their simulated counterparts obtained using an accurate many-body method. In particular, prominent changes in the experimental spectrum upon oxygen removal are replicated by the computational results which, in turn, are shown to follow from simplified models.

Computational Formalism:
Experimental and computational details, along with the crystal structure, are included in the Supplementary Materials. However, since a major portion of the paper deals with the analysis of x-ray absorption spectra, in order to facilitate the discussion, here we provide a brief outline of the computational framework employed in the spectroscopic simulations. The O K-edge spectra have been simulated using the Many-Body X-ray Absorption Spectroscopy (MBXAS) formalism which, for an electronic excitation from the initial ground state (GS) $|\Psi_{\text{GS}}\rangle$ to some final core-excited state $|\Psi_f\rangle$, evaluates the transition amplitude $A_{\text{GS} \rightarrow f}$ as

$$A_{\text{GS} \rightarrow f} = \langle \Psi_f | \hat{\mathcal{O}} | \Psi_{\text{GS}} \rangle,$$

where $\hat{\mathcal{O}}$ is the many-body transition operator, which, in these calculations, is approximated by the dipole term. $|\Psi_{\text{GS}}\rangle$ is approximated by a Slater determinant (SD) composed of the occupied Kohn-Sham (KS) orbitals of the DFT GS. The SD for $|\Psi_f\rangle$, on the other hand, is constructed by populating KS orbitals of a different self-consistent field – that of a core-ionized state with an empty core orbital on a specific atom, which we refer to as the full core-hole (FCH) KS system. A specific final state, $|\Psi_f\rangle$, refers to a SD comprising the valence occupied orbitals of the FCH system together with the specific (previously unoccupied) orbital indexed by f (within the so-called $f^{(1)}$ approximation).

1 Lowest energy state of the system corresponding to core-ionization of the relevant atom.
Results and Discussions:

(1) Structure and Configuration

Fig. 1 The structure of a pristine 12R-BCM crystal. The atoms labeled A, B, C (also C'), D and E are representatives of a Mn$^+$, O$, Mn^-$, O$_S$ and Ce atom, respectively. Atoms C', A and C collectively constitute a representative triple of Mn atoms, as mentioned in the text. Each triple of Mn atom contains two Mn$_S$ atoms of identical magnetic moment (C and C', for this particular triple) and an Mn$_M$ atom which has a magnetic moment in the opposite direction (A, for this particular triple).
As shown in Fig. 1, 12R-BCM has a rhombohedral crystal structure\(^2\) (R-3m, #166), with each of Ba, Mn, and O occupying the two unique Wyckoff sites and Ce a single Wyckoff site. Within the standard perovskite notation (not to be confused with the notation used in Fig. 1), the Ba atoms occupy the ‘A’ sites while Mn and Ce share the ‘B’ sites. Both Mn and Ce atoms exhibit six-fold coordination to neighboring O atoms. O atoms are present in two inequivalent coordinations each with two-fold coordination: \(O_M\) refers to a "Middle" O atom, which is coordinated by two Mn atoms while \(O_S\) refers to a "Side" O atom which is coordinated by a single Mn and a single Ce atom. Similarly, the Mn atoms exhibit two inequivalent coordinations in the lattice: those with a Ce atom as a second nearest-neighbor are hereafter labeled \(Mn_S\), while those with two other Mn atoms as second nearest neighbors are labeled \(Mn_M\). The Mn-O coordination environment is not perfectly octahedral because of the unequal Mn-O angles and bond lengths: 1.89 Å for \(Mn_S-O_S\) and 1.99 Å (1.93 Å) for \(Mn_S-O_M\) (\(Mn_M-O_M\)). Ce-O bonds are arranged in a perfect octahedral symmetry with a Ce-O bond length (2.23 Å) larger than the Mn-O bond length. Notably, the difference in the Mn-O\(_S\) and the Ce-O\(_S\) bond lengths (2.23 Å -1.89 Å, i.e., 0.34 Å) is exactly equal to the difference in the ionic radius of Ce\(^{4+}\) (1.01 Å\(^3\)) and Mn\(^{4+}\) (0.67 Å\(^4\)).

The Mn atoms, which are in the Mn\(^{4+}\) oxidation state, have strong net magnetic moments due to the 3\(^d^3\) valence occupancy and are arranged in triples (groups of three neighbors). In our DFT calculations, we simulate the lowest energy antiferromagnetic spin configuration of Mn atoms in the rhombohedral structure such that, in terms of the magnetic moment, the Mn atoms follow an alternating arrangement. Within every triple of Mn atoms, if the \(Mn_M\) site has a net up (down) magnetic moment, then both of the \(Mn_S\) sites will have the opposite down (up) magnetic moment, resulting, for each triple, in a net magnetic moment with the direction dictated by the 2:1 majority of \(Mn_S\) constituents. In the particular antiferromagnetic arrangement in our chosen supercells, all triples within a given layer are spin-polarized along the same direction while triples belonging to neighboring layers have opposite spin-polarizations. The calculated ground-state total energy

\(^2\) The crystal structure is provided in the supplementary materials.
\(^3\) https://www.webelements.com/cerium/atom_sizes.html
\(^4\) https://www.webelements.com/manganese/atom_sizes.html
of such a polarization-arrangement is seen to be lower than that of others: e.g., the ferromagnetic arrangement where all Mn atoms are polarized along the same direction or the anti-ferromagnetic one in which neighboring triples differ in their net spin-polarization but within a given triple, all Mn atoms are polarized along the same direction.

Fig. 2 The total and partial DOS of the pristine BCM crystal. The energy of the VBM is set at zero.

Fig. 2 shows the density of states (DOS) of the pristine BCM crystal, along with the projected DOS (PDOS) contributions from the different species. The small contribution of Ce-4f in the occupied PDOS indicates that these orbitals do not partake significantly in mixing with O-2p orbitals. The Ce-4f states are mostly
unoccupied, with significant peaks appearing above the Fermi level, and highly localized in energy; confined within 1.5 eV on the energy axis with peak value around 0.75 eV above the CBM. In fact, the PDOS at the LUMO energy shows comparable contributions from O-p, Mn-3d and Ce-4f orbitals. The energy of the Ce-4f band is relatively similar across the two spin channels because Ce in the Ce$^{4+}$ charge state has an empty valence 4f orbital.

Fig. 3 PDOS plot of an Mn$_M$ and an Mn$_S$ atom belonging to the same triple. In this representative triple, the Mn$_M$ and Mn$_S$ atoms have a net up and down spin-polarization, respectively [see, for example, the triple consisting of the atoms C', A and C in Fig. 1]. On the energy axis, 0 corresponds to the VBM.

The magnitude of Lowdin polarization is seen to be lower (± 3.13) for Mn$_M$ than it is for Mn$_S$ (± 3.19), as reported in Tab. 1. This can be associated with the exchange interaction of Mn$_M$ with electrons from the second nearest-neighbors, both of which are Mn$_S$ atoms with magnetic moments in the direction opposite to that of the Mn$_M$ atom. Note from Fig. 3, which shows the 3-d PDOS of a Mn$_M$ and a Mn$_S$ atom (which are constituents of the same triple and therefore, are spin-polarized
along opposite directions) that, in their respective majority spin channels, the CBM in the PDOS of Mn$_M$ is at a higher energy compared to that of Mn$_S$. This trend, however, is reversed for the lowest unoccupied peaks of their respective minority channels. Noting that a larger polarization typically corresponds to a larger exchange-splitting, which, in turn, would result, in accordance with the tight-binding formalism, in a larger energy-difference between the unoccupied levels of the two spin-channels, we can attribute the aforementioned property of the PDOS to the relatively higher (lower) local magnetic moment of Mn$_M$ (Mn$_S$).

We can begin to understand the electronic structure by making some initial simplifications. If we assumed a local octahedral coordination, the Mn 3d-orbitals for each spin channel would split into e_g and t_{2g} orbitals. The former would occupy a higher energy subspace as a consequence of increased electronic repulsion resulting from the alignment along the octahedral Mn-O bonding-axes, while the latter would be oriented between the bonding-axes and consequently would have lower energy.

(i) In our attempt at deciphering the electronic structure, as a first approximation, we can neglect all orbital-mixing between the Mn and the O atoms. Since the Mn atoms have a 3d^3 configuration, under such a hypothetical, fully-ionic Mn$^{4+}$ scenario, then, in the majority spin channel, we would expect each t_{2g} orbital to be occupied with parallel spins (according to Hund’s rule) with the e_g orbitals remaining unoccupied. In the minority spin channel, the Mn 3d orbitals would have higher energy due to exchange splitting and therefore all the minority d-orbitals would be completely empty, giving rise to a net absolute atomic magnetic moment of 3 μ_B for each Mn atom.

(ii) Introducing a further layer of complexity, in accordance with the concepts of ligand-field theory within the solid state19, we can take into account the mixing between the Mn-e_g and the O-$2p$ orbitals, while retaining the non-bonding nature of the Mn t_{2g} orbitals since the latter are not oriented along the bonding axes. The mixed (Mn-e_g + O-$2p$) orbitals would then split into occupied bonding and unoccupied anti-bonding orbitals. Thus, in the majority spin-channel, the occupied orbitals would exhibit either a bonding (Mn-e_g + O-$2p$) nature or a non-bonding Mn-t_{2g} nature, with the VBM consisting predominantly of the former. The unoccupied orbitals can
be expected to show (Mn-e_g + O-2p) nature. In the minority spin channel, all occupied orbitals would show exclusively (Mn-e_g + O-2p) bonding character while in the unoccupied subspace, there would be anti-bonding (Mn-e_g + O-2p) and non-bonding Mn-t_2g orbitals.

Fig. 4 The PDOS of an Mn_S and a neighboring O_S atom, showing their 3d and 2p contributions, respectively. As in Fig. 3, the Mn_S atom has a majority of down spin electrons. Certain peaks in the up (U) and down (D) spin channels of the PDOS are labeled for further analysis of the corresponding orbitals, as shown with isovalue plots in Fig. 5 and Fig. 6. In the labels, the superscript t and e, refers to an orbital showing appreciable mixing of O-2p with Mn- t_2g and Mn- e_g, respectively, while the superscript p refers to an orbital having predominantly O-2p character.

In order to test the validity of two orbital mixing approximation, we analyze the 2p orbital PDOS of an O_S atom and the 3d orbital PDOS of the adjacent Mn_S atom in
Fig. 4. Note that, in contrast with O_M, O_S is coordinated with atoms of two separate species: an Mn$_5$ and a Ce, the latter of which shows much weaker mixing with O p-orbitals in comparison with the Mn$_5$ (as evident from the low contribution of Ce 4f in the occupied PDOS shown in Fig. 2), making the PDOS analysis of O$_S$-2p comparatively simpler. A low numerical broadening (2.86 meV) has been used to facilitate the assignment of electronic orbitals to the PDOS features in Fig. 4. Fig. 5 and Fig. 6, present the isovalue plots of the KS orbitals contributing to various salient peaks of the PDOS for the up (U) and the down (D) spin channels, respectively. Notice, for example, that, in contrast with the aforementioned prediction of ligand-field theory, in the majority, i.e., down spin-channel, the PDOS around the VBM is dominated by orbitals exhibiting mixed (Mn$_5$-t_{2g} + O$_S$-2p) character [e.g. 1D_7, 1D_8] while orbitals at much lower energy (-4 eV) show distinct (Mn$_5$-e_g + O$_S$-2p) mixing [e.g. eD_3, eD_4]. Additionally, in the minority, i.e., up spin-channel, the occupied orbitals 4U_1, 4U_2 show noticeable (Mn$_5$-t_{2g} + O$_S$-2p) character. In order to explain such anomalies, (iii) we propose in Fig. 7, an alternative mixing scheme consistent with the orbital-characteristics observed in Fig. 5 and Fig. 6 which accounts for the possibility of mixing between the Mn$_5$-t_{2g} and the O$_S$-2p orbitals, which is possible, especially due to the fact that the Mn-O coordination environment is not perfectly octahedral. This additional mixing leads to splitting of the Mn$_5$-t_{2g} manifold into: a lower energy band of what would be called non-bonding orbitals under the mixing scheme (ii) outlined above, but which here exhibit some mixing with O$_S$-2p; and a higher energy band, the anti-bonding counterpart, which, depending on the spin channel, may be occupied (down spin, majority) or not (up spin, minority).

Fig. 5 also shows significant O$_S$-2p (non-bonding) character near the up-spin VBM [pU_5 and pU_6]. Additionally, from Fig. 6, we can notice substantial presence of Ce-4f in the KS orbitals $^eD_{10}$ and $^eD_{11}$, which is consistent with the PDOS plot shown in Fig. 2. Overall, the schematic picture in Fig. 7 provides a consistent view of the ultimate electronic structure observed in our simulations.

In summary, we have seen that the Ba orbitals have very little presence in the frontier PDOS. The Ce-4f orbitals, which show weak mixing with O-2p, are predominantly localized near the conduction band edge. The Mn-3d orbitals, on
the other hand, mix substantially with O-2p, generating bonding and antibonding levels across a wide energy range, as shown schematically in Fig. 7.

Fig. 5 Isovalue plots of up spin KS orbitals having significant contributions to the peaks labeled in Fig. 4. The relevant O₅ atom is marked with a “+” symbol.
Fig. 6 Isovalue plots of down spin KS orbitals having significant contributions to the peaks labeled in Fig. 4. The relevant O_5 atom is marked with a “+” symbol.
Fig. 7 PDOS of Mn$_5$-3d and O$_5$-2p, along with a schematic detailing the bonding scheme in accordance with the LCAO formalism. Note that the down (up) spin channel corresponds to majority (minority) spins.

(3) O K-edge XAS of the Pristine Crystal
Fig. 8 Top left panel shows the O K-edge XAS of the pristine BCM crystal. Panel (a) shows the experimental spectrum while the panel (b) shows the resultant simulated spectrum, along with the individual contributions from O_S and O_M. In order to facilitate comparison, the spectra have been divided into four regions along the energy axis and the salient crests and troughs have been labeled. Panel (c) shows, for both of the oxygen atoms, the contribution of the up and the down spin channels to the net spectrum. The rest of the panels show isovalue plots of orbitals of the promoted electron in the excited-states resulting from core-excitation of an O_M (panels (d)-(g)) or an O_S atom (panels (h)-(m)). The core-excited atom is marked by a “+” symbol. The XAS peak marked by circle of a given color in panel (c) has
substantial contributions from a final (core-excited) state in which the excited electron resides in the orbital labeled by the same color in the isovalue-plots.

One of the most efficacious avenues for experimental investigation of electronic structure is the element-specific X-ray spectroscopy. In the following, we present a detailed experimental and theoretical account of the O K-edge X-ray absorption spectra (XAS) associated with exciting a 1s core electron of an O atom. Since the BCM unit cell contains an equal number of O\textsubscript{M} and O\textsubscript{S} atoms, the final spectrum will be the resultant of contributions from both of these atoms. Notably, the final state created by the process of X-ray absorption differs from the GS in that it has a missing 1s electron (a hole) localized on a specific oxygen atom. In addition, the core-hole creation results in a significant modification of electron-density in the vicinity of the excited atom O(x), resulting, in accordance with the tight-binding framework, in an enhanced contribution to the occupied PDOS and a downward shift in the energy of those orbitals, due to strong, attractive Coulomb interactions with the core hole. Concomitantly, the contributions of the excited atom to the unoccupied PDOS, due to orbitals of mixed character with neighboring atomic sites may be reduced. A comparison of the PDOS of individual atoms corresponding to the ground and the FCH state is presented in Fig.S1. The FCH state is defined above and is the foundational self-consistent field from which the core-excited Kohn-Sham orbitals are obtained.

The experimental O K-edge spectrum of BCM is presented in Fig. 8(a). As mentioned in the introduction, the goal then, is to extract meaningful electronic-structure information from the spectrum by associating electronic excitations to the salient spectral features. As a first step to this end, in Fig. 8(b) we show the simulated resultant O K-edge spectrum, as well as the individual contributions from O\textsubscript{M} and O\textsubscript{S}. As expected, O\textsubscript{M}, which is coordinated by two Mn atoms with opposite magnetic moments of comparable magnitude, produces relatively symmetric contributions to the absorption spectrum for the two spin channels (Fig. 8(c)). On the other hand, the spectral contributions of O\textsubscript{S}, which is coordinated by a Mn and a Ce atom having significant and negligible magnetic moments respectively, differ considerably between the spin channels. This asymmetry leads to a lower intensity of the first
XAS peak in the resultant spectrum of O₅. From Table 2, O₅ can be seen to have a slightly higher Lowdin magnetic moment, indicating a stronger spin-polarization, than O₅. The exchange interaction arising from this higher spin-polarization lowers the conduction orbitals of the majority spin channel associated with O₅, as evident from the slightly lower energy of the first XAS peak of O₅ (compared to O₅) in the down spin channel. It is important to note that the appearance of the simulated spectrum is heavily dependent on the broadening used for generating it. A spectral peak which is well-separated in energy from the rest of the features will typically experience a substantial lowering of intensity with increment in broadening. In Fig. 8 (b)-(c), a uniform broadening of 0.2 eV is used, while the spectra simulated with higher broadening energies are shown in Fig. S2 in the Supplementary Materials. In particular, Fig. S2 reveals that the relative intensities of the net simulated spectrum depend on the broadening. For higher broadening values, the relative intensity of the intense peak A diminishes in comparison with the others. Additionally, the features at 528.9 eV and 529.7 eV, which are present between A and B in the simulated spectrum (black line in Fig. 8(b)), but not visible in the experimental counterpart (Fig. 8(a)), vanish for higher values of broadening.

Peak	O atom	Ligand atom	Note
A'	O₅	Mn₅	(O₅-2p+Mn₅-3d) orbital in majority spin-channel
A	O₅	Mn	(O₅-2p+Mn₅-3d) orbital in majority spin-channel. Both up and down orbitals contribute, since O₅ has two neighboring Mn atoms with opposite spin-polarization.
B	O	Mn	(O₅-2p+Mn₅-3d) orbital in the minority channel. (O₅-2p+Mn₅-3d) orbital in both spin channels.
D	O₅	Ce, Mn	O₅-2p orbital mixed with Ce-4f and Mn-3d
E	O	Ce	Highly delocalized orbital showing mostly (O-2p+Ce-4f) character.
Table 1 The characteristics of the excited-electron giving rise to the salient peaks in the experimental O K-edge spectrum. Mn/O atom without a subscript indicates substantial contribution from both “middle” (M) and “side” (S) atoms.

The utility of computation in the analysis of x-ray spectroscopy can be appreciated from Table 1 which maps the low-energy spectral peaks to the orbitals of the excited electron. The peaks in region I of the spectrum (see Fig. 8(a)) arise mostly from mixing of O-2p with Mn-3d orbitals while the contribution of Ce-4f is noticed in region II.

A more detailed visual description of the associated orbitals is provided by the relevant isovalue plots of Fig. 8(d)-(m). The orbital plot in panel (d) of Fig. 8 reveals that, in accordance with our theoretical model, the first peak of the Oₘ K-edge (contributing to peak A) in the up spin channel originates from a final state where the excited electron resides in an orbital with substantial contribution from the 3d orbital of Mnₘ, which has a net positive spin-polarization. Panel (e) shows that the down spin counterpart essentially involves the 3d orbital of the neighboring Mnₛ atom, which has a net negative spin-polarization. Similar to the intense first peak, for Oₘ, the feature at ~530.5 eV (contributing to peak B) can be associated with an orbital with mixed O-2p and Mn-3d character (panel (f)) which, for brevity, has been plotted for the up-spin channel only. However, unlike the orbital associated with the first peak (i.e., panel (d)), this orbital corresponds to the minority spin channel of the relevant Mn atom and consequently has a higher energy, more delocalization and lower intensity. Note that, while both panel(d) and (f) correspond to peaks in the up-spin spectrum, the contributing Mn atom for panel (d) is the Mnₘ, which has a positive spin-polarization while that for panel (f) is the Mnₛ, which has a negative spin-polarization. The orbital associated with the higher energy peak at ~532.2 eV (panel (g), peak E), which shows even more delocalization, can be seen to contain appreciable contribution from the Ce-4f orbitals.

Similar to the Oₘ spectrum, the first peak of the Oₛ spectrum (contributing to peak A’) in the down spin channel originates from mixing of O-2p with the 3d orbital of the neighboring Mnₛ atom, which has a negative spin-polarization (panel (h) in Fig. 8). By contrast, for the up spin contributions in the Oₛ spectrum, as already shown in Fig. 3 and Fig. 7, the lack of exchange interaction pushes the minority (up) spin Mnₛ-3d orbitals to higher energy, and the first Oₛ K-edge peak in this spin-channel (at ~529 eV, between A and B), in fact, arises primarily from an unoccupied orbital with heavy contributions from Ce-4f, as evident from panel (i) in Fig. 8. This explains
the relatively higher energy and lower intensity of this peak, in comparison with the down-spin counterpart. The up-spin peak at ~530.4 eV originates from an orbital similar in characteristics to the one responsible for the peak at ~530.5 eV for the O_{M} spectrum, as can be seen by noting the similarity between panels (f) and (j).

The higher-energy resultant peak at ~531.8 eV (peak D) contains appreciable contribution from both spin channels of the O_{S} XAS spectrum. The comparability of the energy and the intensity of these two peaks corresponding to different spin channels can be attributed to the fact that they are associated with unoccupied orbitals containing contributions mostly of 4f orbitals of the neighboring Ce atom, which has negligible magnetic moment (panels (k) and (l)).

Panels (d), (e) and (h) reveal that all of the intense low-energy XAS peaks contain substantial contribution from a 3d orbital of a Mn atom coordinated with the core-excited oxygen O^{(x)} [note that in panels (d) and (e), this is an O_{M} atom while in panel (h), this is an O_{S} atom]. However, the 2p contribution of O^{(x)} is noticeably lower than that of other (i.e., not core-excited) O atoms coordinated with the aforementioned Mn. This result is somewhat counterintuitive, since we might expect the core-hole to attract the promoted electron mostly to the O^{(x)} atom. However, as a purely quantum-mechanical effect, the presence of a core-hole would lower the onsite energy of O^{(x)}, resulting in a reduction of its relative contribution to the anti-bonding orbitals responsible for these spectral peaks. By contrast, we see the largest 2p contribution for the O atom on the opposite side of the Mn atom from the core-excited O^{(x)}, due to its farther distance from the core hole [evident in panels (d), (e) and (h)]. Notably, the MBXAS method captures the contributions of both the excited and occupied valence orbitals to these spectral features and leads to strong XAS intensities which would be underestimated with single-particle core-hole approaches.

In short, the O K-edge spectrum of the pristine BCM crystal is generated from a non-trivial combination of contribution from the two different spin-channels of the two inequivalent O sites: O_{M} and O_{S}. As summarized in Table 1, the low-energy features result mostly from promoting the O 1s electron to orbitals of mixed O-2p and Mn-3d character, while the presence of Ce-4f is noticed at relatively higher energies.
(4) **The Reduced BCM Crystal**

As mentioned in the introduction, for the STCH operation, BCM is exposed to high-temperature in an inert atmosphere, resulting in removal of oxygen atoms and it is this reduced phase that takes part in \(\text{H}_2 \) generation by splitting the \(\text{H}_2\text{O} \) molecule. This prompts us to investigate the electronic structure of the thermally-reduced BCM crystal. In particular, owing to the high electronegativity of the O atom, bonding between O and metallic ligands typically involves concentration of electronic population around the former. It is then instructive to probe how the excess electronic population available in the system as a result of the oxygen-removal, arranges itself. On the experimental front, as shown in Fig. 13, O \(K \)-edge XAS reveals a marked reduction in the first-peak intensity in the reduced crystal in comparison with the pristine counterpart. A detailed theoretical analysis is required to shed light on the origin of such reduction.

For a vacancy at the \(\text{O}_M \) site, the formation energy (2.7 eV) is seen to be lower than that for a vacancy at the \(\text{O}_S \) site (3.3 eV), which indicates a higher probability for oxygen-removal from the \(\text{O}_M \) site. This conclusion is also supported by experimental XAS studies presented in ref.20, which reports substantial change in the Mn \(L \)-near-edge spectrum as a function of temperature, implying a progressive reduction of the Mn atom. On the contrary, no major energy-shift is noted in the Ce \(M \)-edge spectrum. Therefore, in the rest of the paper, the theoretical treatment of electronic structure and XAS will be limited to a reduced structure with a vacancy at the \(\text{O}_M \) site.
Fig. 9 Top left panel shows a diagrammatic representation of the reduced crystal structure with the oxygen-vacancy at an O_M site indicated by a dashed circle. The Mn atoms affected most drastically by the removal of O_M are marked by ‘e’, indicating the presence of excess electronic population (i.e., they are nominally reduced to Mn$^{3+}$). The bottom left panel shows, for clarity, the relative positions of atoms close to the vacancy. Various atoms, which are subjected to further analysis, have been marked by colored arrows with labels in the right-hand-side panel. In the labels, the superscript red., which is short for “reduced” (dist., which is short for “distant”) denotes an atom located near (far from) the O_M vacancy.

The structure of the reduced crystal (provided in the Supplementary Materials) is obtained by relaxing the ionic coordinates in presence of the oxygen vacancy. From Table 2 and Figure 9, it can be seen that the electronic population and the spin-polarization of the atoms nearest the oxygen vacancy (both Mn and O) are noticeably larger than their counterparts in the pristine crystal. We label the
corresponding Mn atoms as $\text{Mn}_S^{\text{red.}}$ and $\text{Mn}_M^{\text{red.}}$. Due to the vacancy, they are coordinated with 5 (as opposed to 6) oxygen atoms. We would expect that the removal of an O atom would leave behind two electrons on Mn sites. In fact, it is these neighboring Mn atoms, as well as the O atoms coordinated with them which gain electron density (Table 2), and so, we label them as reduced (red.). On the other hand, the more distant (dist.) atoms in the supercell show much smaller deviations in their electron populations. Thus, the excess electronic population available in the system as a result of oxygen-removal, remains local to the site of reduction. A combination of localized orbitals and dielectric screening leads to the effect of the oxygen-vacancy diminishing with increasing distance.

Atom	Total Population	Spin Up	Spin Down	Polarization
Mn_S [C]	13.4734	5.1401	8.3330	-3.1929
Mn_M [A]	13.5225	8.3287	5.1938	3.1350
O_S [D]	6.5212	3.2817	3.2394	0.0423
O_M [B]	6.5680	3.2969	3.2711	0.0258
Mn_S^{\text{dist.}}	13.4734	5.1408	8.3325	-3.1917
Mn_M^{\text{dist.}}	13.5217	8.3308	5.1909	3.1398
O_S^{\text{dist.}}	6.5165	3.2822	3.2343	0.0479
O_M^{\text{dist.}}	6.5658	3.2948	3.2710	0.0237
Mn_S^{\text{red.}}	13.5232	4.8637	8.6595	-3.7958
Mn_M^{\text{red.}}	13.5875	8.6647	4.9228	3.7419
O_S^{\text{red.}}	6.5559	3.2970	3.2589	0.0381
O_M^{[1]\text{red.}}	6.6015	3.3209	3.2806	0.0403
O_M^{[2]\text{red.}}	6.6192	3.3203	3.2988	0.0215

Table 2 For various atoms of the pristine and the reduced crystal (column 1), the total electron population (column 2), spin-up population (column 3), spin-down population (column 3) and polarization (column 4) of valence electrons, calculated using Lowdin’s scheme of population analysis. For the pristine crystal, the atoms
are labeled (A-D) in accordance with Fig. 1 while for the reduced structure, the color-convention used in Fig. 11 is maintained.

Fig. 10 Mn-3d PDOS plots contrasting contributions of atoms from the reduced crystal to those of atoms from the pristine one. The top (bottom) panel corresponds to the middle, i.e. M (side, i.e. S) site. The VBM is set to zero.

Fig. 10 showcases a comparison of the 3d PDOS of different Mn atoms: $\text{Mn}_M^{(\text{red.})}$ and $\text{Mn}_S^{(\text{red.})}$ ($\text{Mn}_M^{(\text{dist.})}$ and $\text{Mn}_S^{(\text{dist.})}$) present at the site of reduction (distant from the site of reduction). As expected, the PDOS of the distant atoms, $\text{Mn}_M^{(\text{dist.})}$ and $\text{Mn}_S^{(\text{dist.})}$, bear noticeable resemblance with their counterparts from the pristine structure, while those of the reduced atoms, $\text{Mn}_M^{(\text{red.})}$ and $\text{Mn}_S^{(\text{red.})}$, differ appreciably. From Table 2, it can be noted that, owing to their coordination with
fewer O atoms, the reduced Mn atoms have higher valence electronic population. This enhanced occupation elevates the unoccupied orbitals to higher energy and shifts their weight off the reduced Mn sites, as evident from the higher energy and lower intensity of the relevant Mn PDOS-peaks, respectively. For the pristine crystal, Fig. 3 reveals that for both of the Mn sites (i.e., Mn\textsubscript{M} and Mn\textsubscript{S}), the unoccupied edge of the PDOS corresponds to the respective majority spin channels. Therefore, after the thermal reduction, the excess electron available to Mn\textsubscript{M, (red.)} and Mn\textsubscript{S, (red.)} can be expected to go to the majority spin channel. This is consistent with Table 2, which shows that the absolute values of the polarization of the reduced Mn atoms are higher than those of the pristine counterparts. In Fig. 10, this can be associated with the isolated PDOS contribution in the majority spin channel at the Fermi level (0 eV).

(5) O K-edge XAS of the reduced structure

Fig. 11 O K-edge XAS of different oxygen sites of the reduced crystal. The left (right) panels correspond to O\textsubscript{M} (O\textsubscript{S}) sites. In each panel, the shaded plots show the up and down spin contributions of the relevant O atom, the solid black line shows the spin-summed spectrum, while the broken blue line represents the spectrum of an O\textsubscript{M}/ O\textsubscript{S} atom from the pristine crystal.
O K-edge X-ray absorption spectra corresponding to core-excitation of different inequivalent oxygen sites is displayed in Fig. 11, along with counterparts from the pristine crystal, to facilitate comparison. Once again, the spectra of the distant atoms are very similar to those from the pristine crystal while those of O atoms close to the vacancy-site differ substantially. For \([2]O_M^{\text{red.}}\), the up and down-spin spectra do not display any drastic asymmetry since both of its neighboring Mn atoms are 5-fold coordinated due to the neighboring vacancy (i.e., they are \(\text{Mn}_S^{\text{red.}}\) and \(\text{Mn}_M^{\text{red.}}\)). However, the increased electron population on these reduced Mn atoms raises the energy of their 3d orbitals, leading to a higher energy-difference between the corresponding Mn-3d and the O-2p levels, effectively making the bonding more ionic (due to decreased orbital mixing). In accordance with the tight-binding formalism, this results in a reduced O-2p contribution to the anti-bonding orbitals (see schematic in Fig. 12). Therefore, the intensity of the resultant \([2]O_M^{\text{red.}}\) spectrum is lower than the \(O_M^{\text{red.}}\) counterpart from the pristine crystal. On the other hand, the \([1]O_M^{\text{red.}}\) atom is coordinated with two Mn atoms among which, only \(\text{Mn}_M^{\text{red.}}\), which has a positive spin-polarization, experiences a major enhancement in electron population. Mixing between \([1]O_M^{\text{red.}}\)-2p and \(\text{Mn}_M^{\text{red.}}\)-3d orbitals is primarily responsible for the up-spin spectrum of \([1]O_M^{\text{red.}}\). Therefore, for \([1]O_M^{\text{red.}}\), the first peak of the up-spin spectrum exhibits a noticeably higher energy and lower intensity compared to the down-spin counterpart. The energy-shift between the first peaks corresponding to these two spin-channels leads to a substantial reduction in the intensity of the resultant peak for \([1]O_M^{\text{red.}}\), as can be seen by comparing the panels (a) and (b) of Fig. 11. The peak intensity for \(O_S^{\text{red.}}\) is also lowered in comparison with that of pristine \(O_S\), although this lowering is less pronounced since, in the pristine as well as in the reduced crystal, only the first peak originates from mixing with Mn orbitals. The second peak, which corresponds to a different spin channel and is much lower in intensity, results mostly from mixing with Ce orbitals and therefore, does not experience any major change upon reduction. The up-spin peak of \([1]O_M^{\text{red.}}\), the down-spin peak of \(O_S^{\text{red.}}\), and both peaks of \([2]O_M^{\text{red.}}\) are associated with orbitals resulting from the mixing of O-2p with the 3d orbital of the reduced (i.e., 5 fold coordinated) Mn atom(s). The blueshift of these peaks, with respect to their counterparts in the pristine spectrum is consistent with previous reports\(^{21}\) and expected from the tight-binding consideration.

As discussed above, for all three O atoms near the site of reduction, i.e., for atoms \([1]O_M^{\text{red.}}\), \([2]O_M^{\text{red.}}\) and \(O_S^{\text{red.}}\), the first peak of the spectrum shows a reduction in
intensity. Therefore, the resultant O K-edge spectrum of the reduced crystal should exhibit lowering of the first peak intensity, although the exact ratio can be expected to depend on the percentage of oxygen-vacancies formed in the crystal. However, as shown in Fig. 13, at least in qualitative terms, the experimental O K-edge spectrum of reduced BCM corroborates the aforementioned conclusion of intensity-lowering.

Fig 12 Schematic diagram showing a reduction in the O-p contribution to the antibonding orbital resulting from a higher population of Mn. To facilitate comparison, the O-p level is kept at the same energy. This effect is further exaggerated by the core-excited state, which draws down the O 2p orbital energies and enhances the ionicity, further reducing O character in the antibonding orbital.
As a consequence of the reduction, in general the electronic population increases in the vicinity of the site of reduction. From the consideration of classical Coulombic interaction, this can be expected to result in a diminished contribution from the local DOS of these atoms to the low-energy conduction orbitals of the system. However, as we have seen in the case of the pristine crystal, quantum mechanical effects associated with orbital-mixing (within the tight-binding framework) can play a crucial role in deciding the character of the final orbital. In order to investigate further how the interplay of the O-2p and Mn-3d orbitals results in a reduction in the peak intensities for the O^{red.} atoms, we compare, for the reduced crystal,
A. the PDOS of Mn_{dist.}-3d and O_{dist.}-2p as a consequence of core-exciting the O_{dist.} atom (note that Fig. 11 indicates that this should be relatively similar to the pristine counterpart).

B. the PDOS of Mn_{red.}-3d and O_{red.}-2p as a consequence of core-excitation of the O_{red.} atom, against

For the final core-excited state corresponding to case [A], (case[B]), let us denote the KS orbital responsible for generating the peak at 9.94 eV (10.34 eV) as ϕ^A (ϕ^B). Further, let $[^A]C[Mn]$ and $[^A]C[O]$ ($[^B]C[Mn]$ and $[^B]C[O]$) denote, respectively, the contribution from the Lowdin-orthogonalized Mn_{red.}-3d and O_{red.}-2p (Mn_{dist.}-3d and O_{dist.}-2p) atomic-orbitals to ϕ^A (ϕ^B). Note that the O_{red.}-2p and the O_{dist.}-2p orbitals are responsible for the corresponding first-peaks in the absorption spectra shown in Fig. 11. The computed values of the aforementioned contributions reveal that

$$\frac{[^A]C[Mn]}{[^B]C[Mn]} = 0.86 \text{ while } \frac{[^A]C[O]}{[^B]C[O]} = 2.3.$$

In other words, creation of the oxygen-vacancy results in a lowering of the contribution of the 2p orbital of the core-excited O atom at the conduction band-edge. Conversely, the contribution of the Mn_{3d} orbital is enhanced. We note here that the difference in the Lowdin population of the Mn_{red.} atom in case [B] (i.e., after core-excitation of O_{dist.}) and the Mn_{dist.} atom in case [A] (i.e., after core-excitation of O_{red.}) is 0.06 while that between the corresponding core-excited oxygens is 0.01. The higher contribution of the 2p orbital of the excited oxygen far from the site of oxygen-vacancy essentially points to the fact that, owing to the higher electronic population of Mn_{red.} [see Tab. 2], the difference in the onsite energy between Mn_{3d} and core-excited O_{red.}-2p in case [A] is higher than that between Mn_{dist.}-3d and core-excited O_{dist.}-2p in case [B]. Therefore, in accordance with the tight-binding prescription, in an anti-bonding orbital with mixed Mn_{3d} and O_{2p} character, the O_{2p} contribution would be relatively lower in case [A]. This effect is demonstrated schematically in Fig. 12. The lower O_{2p} contribution in case [A] would, in turn, result in a reduction in the intensity of the corresponding XAS peak.

To summarize, a qualitative theoretical analysis combining first-principles calculations and a tight-binding model reveals that the lowering of the first-peak intensity in the reduced crystal originates from a combination of two effects:
1. Lifting of degeneracy between the up and the down spin peaks for $^{[1]}O_M^{(\text{red})}$, as shown in Fig. 11, and
2. Reduction in the O-2p contribution to the unoccupied orbitals, as illustrated schematically in Fig. 12.

Fig. 14 Top panel shows the experimental O K-edge spectra of the pristine and the reduced crystal (same as Fig. 13). Bottom panel shows the simulated spectrum of the pristine crystal in black solid line (same as that shown in black line in Fig. 8(b). The broken blue line in the bottom panel shows a model spectrum calculated approximately for the reduced triple. Further details are provided in the text.

Fig. 14 shows, along with the experimental counterparts, the simulated O K-edge spectrum for pristine BCM and a model spectrum for the reduced crystal. In the
latter, we have accounted, in an approximate manner, only for the O atoms coordinating the reduced triple (see Fig. 9 in the main manuscript). More specifically, this is calculated as \((1/11) \times \left[3 \times I(O_{\text{dist.}}) + 3 \times I(O_{\text{red.}}) + 3 \times I([1]O_{M_{\text{red.}}}) + 2 \times I([2]O_{M_{\text{red.}}}) \right] \), where \(I(O_m) \) denotes the spectrum of the \(O_m \) atom. Note that the actual spectrum of the reduced crystal will contain contributions from all O atoms present in the crystal, not just the O atoms coordinating the reduced triple. The contributions coming from all O atoms occupying inequivalent sites in the reduced crystal will, in principle, be different. Therefore, the final spectrum will depend, in a complicated manner, not only on the density but also on the distribution of the defects. If the thermal reduction results in removal of two oxygens coordinating the same triple, the spectra would likely be significantly different. Note, for example, that the first-peak of the experimental absorption spectra for the pristine and the reduced crystal are coincident on the energy-axis. On the other hand, in the O K-edge EELS spectra reported in Ref. 20, a noticeable blueshift is reported with increasing thermal reduction, especially at 700° C. As discussed in section (5), such a blueshift is expected in the spectral contribution of the \(O^{(\text{red.})} \) atoms. Similarly, owing to the change in the anti-bonding orbital as well as spin-splitting, the \(O^{(\text{red.})} \) K-edge spectra will experience a reduction in the intensity of the first peak. The degree of prominence of such features in the net experimental spectrum will, however, be dictated by the density and distribution of the oxygen vacancies and by the probe-depth and resolution of the experiment. Notably, the measured overall red-shift in the spectral features at and above 536 eV is reproduced in our simulations.

Conclusion

In conclusion, with a combination of theoretical and experimental studies, in this paper we present a detailed description of the electronic structure of the \(\text{BaCe}_{0.25}\text{Mn}_{0.75}\text{O}_{3-\delta} \) crystal in its pristine and reduced form. The electronic structure is probed experimentally with the help of O K-edge XAS, which shows a substantial reduction in the first-peak intensity as a result of oxygen-removal. On the theory front, DFT based first-principles calculations are performed to obtain the PDOS and to plot, in real-space, the occupied and the unoccupied orbitals. On the basis of these ab initio results, we propose a simple scheme of orbital-mixing between the O and the ligand orbitals consistent with the tight-binding model and the crystal field theory. Furthermore, using state-of-the-art spectroscopic simulations using
the MBXAS method, we provide an in-depth analysis of the O K-edge spectrum by associating the spectral peaks with the relevant unoccupied electronic orbitals. We show that the low-energy peaks can mostly be attributed to O-2p and Mn-3d mixing, while the presence of Ce-4f orbitals are observed only at relatively higher energy. For the reduced crystal, our calculations reveal that, owing to dielectric screening, the change in electron-density is heavily localized around the site of reduction. At atomic sites distant from the oxygen-vacancy, the density is practically identical to that of the pristine counterpart. Finally, the simulated spectra replicate the qualitative lowering of the K-edge intensity for O atoms close to the vacancy-site. Within the tight-binding formalism, this can be explained in terms of the reduction in the relative contribution of these O atoms to the frontier unoccupied orbitals.

(1) Rao, C. N. R.; Dey, S. Solar Thermochemical Splitting of Water to Generate Hydrogen. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114* (51), 13385–13393. https://doi.org/10.1073/pnas.1700104114.

(2) Nakamura, T. Hydrogen Production from Water Utilizing Solar Heat at High Temperatures. *Solar Energy* **1977**, *19* (5), 467–475. https://doi.org/10.1016/0038-092X(77)90102-5.

(3) Steinfeld, A. Solar Thermochemical Production of Hydrogen—a Review. *Solar Energy* **2005**, *78* (5), 603–615. https://doi.org/10.1016/j.solener.2003.12.012.

(4) McDaniel, A. H. Renewable Energy Carriers Derived from Concentrating Solar Power and Nonstoichiometric Oxides. *Current Opinion in Green and Sustainable Chemistry* **2017**, *4*, 37–43. https://doi.org/10.1016/j.cogsc.2017.02.004.

(5) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. High-Flux Solar-Driven Thermochemical Dissociation of CO₂ and H₂O Using Nonstoichiometric Ceria. *Science* **2010**, *330* (6012), 1797–1801. https://doi.org/10.1126/science.1197834.

(6) Chueh, W. C.; Haile, S. M. A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO₂ Mitigation. *Phil. Trans. R. Soc. A.* **2010**, *368* (1923), 3269–3294. https://doi.org/10.1098/rsta.2010.0114.

(7) Siegel, N. P.; Miller, J. E.; Ermanoski, I.; Diver, R. B.; Stechel, E. B. Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles. *Ind. Eng. Chem. Res.* **2013**, *52* (9), 3276–3286. https://doi.org/10.1021/ie400193q.

(8) Cheng, W.-H.; de la Calle, A.; Atwater, H. A.; Stechel, E. B.; Xiang, C. Hydrogen from Sunlight and Water: A Side-by-Side Comparison between Photovoltaic and Solar Thermochemical Water-Splitting. *ACS Energy Lett.* **2021**, *6* (9), 3096–3113. https://doi.org/10.1021/acsenergylett.1c00758.

(9) McDaniel, A. H.; Miller, E. C.; Arifin, D.; Ambrosini, A.; Coker, E. N.; O’Hayre, R.; Chueh, W. C.; Tong, J. Sr- and Mn-Doped LaAlO₃−δ for Solar Thermochemical H₂ and CO Production. *Energy Environ. Sci.* **2013**, *6* (8), 2424. https://doi.org/10.1039/c3ee41372a.

(10) Yang, C.-K.; Yamazaki, Y.; Aydin, A.; Haile, S. M. Thermodynamic and Kinetic Assessments of Strontium-Doped Lanthanum Manganite Perovskites for Two-Step Thermochemical
Water Splitting. *J. Mater. Chem. A* **2014**, *2* (33), 13612–13623. https://doi.org/10.1039/C4TA02694B.

(11) Sai Gautam, G.; Stechel, E. B.; Carter, E. A. Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications. *Chem. Mater.* **2020**, *32* (23), 9964–9982. https://doi.org/10.1021/acs.chemmater.0c02912.

(12) Emery, A. A.; Saal, J. E.; Kirklin, S.; Hegde, V. I.; Wolverton, C. High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications. *Chem. Mater.* **2016**, *28* (16), 5621–5634. https://doi.org/10.1021/acs.chemmater.6b01182.

(13) McDaniel, A. H.; Ambrosini, A.; Coker, E. N.; Miller, J. E.; Chueh, W. C.; O’Hayre, R.; Tong, J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production. *Energy Procedia* **2014**, *49*, 2009–2018. https://doi.org/10.1016/j.egypro.2014.03.213.

(14) Vieten, J.; Bulfin, B.; Huck, P.; Horton, M.; Guban, D.; Zhu, L.; Lu, Y.; Persson, K. A.; Roeb, M.; Sattler, C. Materials Design of Perovskite Solid Solutions for Thermochemical Applications. *Energy Environ. Sci.* **2019**, *12* (4), 1369–1384. https://doi.org/10.1039/C9EE00085B.

(15) Barcellos, D. R.; Coury, F. G.; Emery, A.; Sanders, M.; Tong, J.; McDaniel, A.; Wolverton, C.; Kaufman, M.; O’Hayre, R. Phase Identification of the Layered Perovskite Ce₅Sr₂₋ₓMnO₄ and Application for Solar Thermochemical Water Splitting. *Inorg. Chem.* **2019**, *58* (12), 7705–7714. https://doi.org/10.1021/acs.inorgchem.8b03487.

(16) R. Barcellos, D.; Sanders, M. D.; Tong, J.; McDaniel, A. H.; O’Hayre, R. P. BaCe₀.₂₅Mn₀.₇₅O₃₋δ—a Promising Perovskite-Type Oxide for Solar Thermochemical Hydrogen Production. *Energy Environ. Sci.* **2018**, *11* (11), 3256–3265. https://doi.org/10.1039/C8EE01989D.

(17) Liang, Y.; Prendergast, D. Quantum Many-Body Effects in x-Ray Spectra Efficiently Computed Using a Basic Graph Algorithm. *Phys. Rev. B* **2018**, *97* (20), 205127. https://doi.org/10.1103/PhysRevB.97.205127.

(18) Liang, Y.; Vinson, J.; Pemmaraju, S.; Drisdell, W. S.; Shirley, E. L.; Prendergast, D. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory. *Phys. Rev. Lett.* **2017**, *118* (9), 096402. https://doi.org/10.1103/PhysRevLett.118.096402.

(19) Hoffmann, R. How Chemistry and Physics Meet in the Solid State. *Angew. Chem. Int. Ed. Engl.* **1987**, *26* (9), 846–878. https://doi.org/10.1002/anie.198708461.

(20) Trindell, J. A.; McDaniel, A. H.; Ogitsu, T.; Ambrosini, A.; Sugar, J. D. Probing Electronic and Structural Transformations during Thermal Reduction of the Promising Water Splitting Perovskite BaCe₀.₃₂₅Mn₀.₇₅O₃. *Chem. Mater.* **2022**, acs.chemmater.2c00731. https://doi.org/10.1021/acs.chemmater.2c00731.

(21) Roychoudhury, S.; Qiao, R.; Zhuo, Z.; Li, Q.; Lyu, Y.; Kim, J.-H.; Liu, J.; Lee, E.; Polzin, B. J.; Guo, J.; Yan, S.; Hu, Y.; Li, H.; Prendergast, D.; Yang, W. Deciphering the Oxygen Absorption Pre-Edge: A Caveat on Its Application for Probing Oxygen Redox Reactions in Batteries. *ENERGY & ENVIRONMENTAL MATERIALS* **2021**, *4* (2), 246–254. https://doi.org/10.1002/eem2.12119.
Supplementary Materials for “Investigating the Electronic Structure of Prospective Water-splitting Oxide BaCe$_{0.25}$Mn$_{0.75}$O$_{3-\delta}$ Before and After Thermal Reduction”

Subhayan Roychoudhury§, Sarah Shulda¶, Anuj Goyal¶, Robert Bell¶, Sami Sainio‡, Nicholas Strange‡, James Eujin Park#, Eric N. Coker#, Stephan Lany¶, David Ginley¶, and David Prendergast§

§ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
¶National Renewable Energy Laboratory, Golden, Colorado 80401, USA
‡SLAC National Accelerator Laboratory, Menlo Park, CA 94025
#Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Details of XAS Experiment:
X-Ray absorption spectroscopy data was acquired at the Stanford Synchrotron Radiation Lightsource (SSRL). For analysis of the oxygen K-edge, collected on beam line 10-1, a thin layer of BCM powder was spread on carbon tape. Total fluorescence yield spectra were obtained with a silicon diode AXUV100. An oxygen reference spectrum was collected simultaneously with data collection at the oxygen edge for both (reduced and oxidized) samples. The sample data was put on an absolute energy grid for direct comparison by aligning the reference spectra and shifting the sample data correspondingly. Specific to this beamline, an agglomerate of chemical species resides permanently within the beam path for reference collection. Two spectra at three different spots were collected and averaged for each sample. Alignment and averaging were carried out in Athena¹. Normalization was carried out with Igor Pro (Wavemetrics, Lake Oswego, OR, USA). O1s spectra were base line corrected by subtracting the minimum pre-edge value to bring pre-edge to 0 and then were divided by the average of the region after the main
features (after 547eV). In-situ heating experiments at the Mn K-edge and Ce L-edges were carried out on beamline 4-1 using an in-situ chamber fabricated at Sandia National Laboratory. All data was collected in fluorescence using a Ge array fluorescence detector. Three spectra were collected, normalized, aligned, and then averaged for each sample. For normalization, the pre-edge was fit to a line and the extended region fit to a 3-term quadratic polynomial. Reference foils were collected simultaneously with sample data acquisition to enable accurate alignment of all spectra (to place all spectra on an absolute energy grid). Data normalization, alignment, and averaging was carried out in Athena1.

Computational Details:
DFT based first-principles calculations of electronic structure are performed with the Quantum Espresso software package. Plane-wave energy cutoff of 35 eV and 280 eV are used for wavefunction and energy, respectively. PBE exchange-correlation functional and Ultrasoft pseudopotentials have been used throughout. In calculations of the x-ray excited states, the core-excited oxygen atom is represented by a modified pseudopotential which encodes the effects of the core-hole. Hubbard U values of 3.9 eV and 5.4 eV are used for the Mn-3d orbitals and the Ce-4f orbitals, respectively. In order to mitigate the effects of the interaction between the periodic images of the core-excited atom, we use a large supercell in our XAS calculations (parameters provided below). Therefore, the self-consistent field calculations are performed at the $k=0$ point only. A uniform (i.e., independent of the incident frequency) broadening of 0.2 eV is used to generate the spectra. Results obtained using other energies for broadening are shown in Fig. S2. The relative alignment of the spectra of different O atoms is determined with the help of the total energies of the FCH states and the energies of the lowest unoccupied orbitals. If, for the FCH state corresponding to core-excitation of the i-th (j-th) O atom, E_i (E_j) is the sum of the total energy and the KS energy of the lowest unoccupied orbital, then the onset-energy for the spectrum of the i-th O atom will be higher than that of the j-th O atom by $(E_i - E_j)$.
Fig. S1 Figure showing the PDOS of Mn and O atoms before and after the X-ray absorption process. Panel (a) and panel (b) show, respectively, the GS 2p PDOS of an O\textsubscript{M} and an O\textsubscript{S} atom along with the 3d PDOS of the neighboring atoms. Panel (c) (panel(d)) shows, for the FCH state obtained by core-exciting an O\textsubscript{M} (O\textsubscript{S}) atom, the 2p PDOS of the core-excited atom O\textsubscript{M}(x) (O\textsubscript{S}(x)), along with the 3d PDOS of the neighboring Mn atoms.
Fig. S2 O K-edge spectrum of the pristine BCM crystal using different energies for broadening.
Fig. S3 The green and orange lines show, at the conduction band edge, the PDOS, respectively, of Mn$_{\text{S}}^{\text{(red.)}}$-3d and O$_{\text{S}}^{\text{(red.)}}$-2p corresponding to the SCF resulting from core-excitation of the O$_{\text{S}}^{\text{(red.)}}$ atom. The brown and the red lines show the conduction band-edge PDOS of Mn$_{\text{S}}^{\text{(dist.)}}$-3d and O$_{\text{S}}^{\text{(dist.)}}$-2p for the SCF resulting from core-excitation of the O$_{\text{S}}^{\text{(dist.)}}$ atom. The O$_{\text{S}}^{\text{(red.)}}$-2p orbital generates the first-peak in the O$_{\text{S}}^{\text{(red.)}}$ K-edge spectrum shown in Fig. 11 (bottom right panel) while the O$_{\text{S}}^{\text{(dist.)}}$-2p orbital is responsible for the O$_{\text{S}}^{\text{(dist.)}}$ K-edge first-peak in Fig. 11 (top tight panel).

Structure of the Crystal

Superell Parameters

Lattice Parameter, a_0: 38.5438 a.u.

Crystal axes in units of a_0

$$a(1) = \begin{pmatrix} 0.500000 \\ -0.866025 \\ -0.000065 \end{pmatrix}$$
\[
a(2) = (0.500041 \ 0.288699 \ 0.000000) \\
a(3) = (-0.166698 \ 0.288729 \ 0.953047)
\]

Ionic coordinates of the pristine crystal in Angstrom (Mn1 and Mn2 atoms are spin-polarized along opposite directions):

Ion	Coordinates				
Ba	3.39929828200040 -5.8877571473726 5.9030879974125				
Ba	1.6992753014839 -2.9432361533339 15.6224917664166				
Ba	8.4988409553240 -2.943347977983 5.9030879992436				
Ba	6.7988179768038 0.000917342045 15.6224917682477				
Ba	8.4984193486792 -1.7196939516991 5.9024215079341				
Ba	6.7983963701591 -11.7751674199303 15.621825279381				
Ba	13.5979620239991 -11.7754716023904 5.9024215097652				
Ba	11.8979390454790 -8.8309450733559 15.6218252787692				
Ba	3.3995090833264 -0.0003224297127 5.9030879992436				
Ba	1.6994861048063 -2.9448489617515 5.9030879992436				
Ba	8.4990517586464 -2.9445447792871 5.9030879992436				
Ba	6.7990287801262 -5.8890713115259 15.6218252787692				
Ba	8.4986301520016 -8.8316143748837 5.9027547535889				
Ba	6.7986717348155 -5.8870878428449 15.621825279381				
Ba	13.5981278273215 -15.8873920253093 5.9027547554200				
Ba	11.8981498488014 -2.942654932706 15.621585244240				
Ba	5.0991316821485 -2.9435103526960 3.8153160382894				
Ba	3.3991087036284 -0.0010161793427 3.8153160382894				
Ba	10.1986734574684 -0.0007119968783 3.8153160382894				
Ba	8.4986513789483 -2.9452385289171 3.8153160382894				
Ba	10.198257508237 -11.7754471572924 3.814695488110				
Ba	8.4982297723035 -8.8309206252537 13.5340533178150				
Ba	15.2977954261413 -8.8312240771813 3.814695488110				
Ba	13.5977724476235 -5.8866982756793 13.5340533178150				
Ba	5.0993424854709 -2.9445692243984 3.8156492839442				
Ba	3.3993195069508 -5.8890957564281 13.5350530529482				
Ba	10.198851607908 5.8887915739637 3.8156492857753				
Ba	8.4988621822707 8.8333181060025 3.8156492857753				
Ba	10.1984635541461 -5.8873675802071 3.8149827944658				
Ba	8.4984405755625 -2.9428410481683 3.8153865634968				
Ba	15.298062294660 -2.9431452306327 3.8149827962969				
Ba	13.597932509459 0.0013813014061 13.5348656530009				
Ba	5.0990564182092 -2.9433798354133 3.8206614193270				
Ba	3.3990334396890 0.0011466966254 17.9260179622743				
Ba	10.198599035291 0.008425141610 8.2066141951014				
Ba	8.4985711500990 2.9453690461998 17.9260179641054				
Ba	10.198774868843 -11.7753166400098 8.2059477037918				
Ba	8.4981545083642 -8.8307901079710 17.9253514727959				
Ba	15.2977201622043 -8.8310942904354 8.2059477056229				
Ba	13.597691836848 -5.88656775383966 17.9253514746270				
Ba	5.0992672215316 2.9446997416720 8.2069474389250				
Ba	3.3992442430114 5.8892262737108 17.9263512079291				
Ba	10.198809868515	5.889220912464	8.2069474407561		
-----	-----------------	----------------	----------------		
Ba	8.4987869183314	8.834486232852	17.923512097602		
Ba	10.198382902067	-5.887230629244	8.2068209494466		
Ba	8.4983653116866	-2.9427105308856	17.9256847184506		
Ba	15.2979309655267	-2.9430147133500	8.2062809512777		
Ba	13.9797987900650	0.0015118186888	17.9256847202818		
Ba	3.3995843472658	0.0019191243000	1.5121230880864		
Ba	1.6995613687456	2.9447184446868	11.2315268570905		
Ba	8.4991270225857	2.9441426200444	1.5121230899175		
Ba	6.7991040440656	5.8889407940432	11.2315268589216		
Ba	8.4987054159409	-8.8317448921664	1.5114565986080		
Ba	6.798624374208	2.9444142620044	1.5114565996080		
Ba	13.5982480912609	-5.8872306292444	1.5114566004391		
Ba	11.8982251127407	-2.9429960105533	11.2308603676121		
Ba	3.3993735439434	-5.8878766465533	1.511789424317		
Ba	1.6993505654232	-2.9433611326166	11.2311936114357		
Ce	0.0000000000000	0.0000000000000	0.0000000000000		
Ce	-1.7000229585201	2.9445265320388	9.7194037690040		
Ce	5.0995426753199	2.9442234957434	9.7194037708351		
Ce	3.3991969679998	5.8874888161311	9.7194037708351		
Ce	5.0991210686751	-8.8319368045964	-0.0006664894784		
Ce	3.3990980901550	-5.8874102725576	9.7187372795256		
Ce	10.198637439951	-5.8872183601276	11.2308603676121		
Ce	8.4986407654750	-2.9431879229833	9.7187372813567		
Ce	5.099318719975	-2.9438572275110	-0.0003333333333		
Ce	3.3993088934774	0.0006693045277	9.7194037708351		
Ce	5.0991210686751	-8.8319368045964	-0.0006664894784		
Ce	3.3990980901550	-5.8874102725576	9.7187372795256		
Ce	10.198637439951	-5.8872183601276	11.2308603676121		
Ce	8.4986407654750	-2.9431879229833	9.7187372813567		
Ce	5.099318719975	-2.9438572275110	-0.0003333333333		
Ce	3.3993088934774	0.0006693045277	9.7194037708351		
Ce	5.0991210686751	-8.8319368045964	-0.0006664894784		
Ce	3.3990980901550	-5.8874102725576	9.7187372795256		
Mn1	1.6997598483999	2.9443744408066	4.8597018854176		
Mn1	-0.0002631301202	5.8889009728453	14.5791056544216		
Mn1	6.7993025237198	5.8885967903809	4.8597018872487		
Mn1	5.0992795451999	8.8331233224197	14.5791056562527		
Mn1	6.7988091707511	-5.8875623637899	4.8590359593911		
Mn1	5.0988579358549	-2.9430358317511	14.5784391649432		
Mn1	11.8984235923950	-2.943400142155	4.8590359777072		
Mn1	10.1984066138749	0.0011865178233	14.5784391667743		
Mn1	6.7990941696678	0.0005130610966	7.3894409247747		
Mn1	5.0996711911476	2.9450395931354	17.108846937815		
Mn1	11.8986368448977	2.9447354106709	7.3894409246608		
Mn1	10.1986138664676	5.8892619427097	17.108846956126		
Mn1	11.892152383429	-8.8314237434998	7.3887744352990		
Mn1	10.1981225892288	-5.88689721146111	17.108178204303		
Mn1	16.9977579136629	-5.88689721146111	17.1081782061342		
Mn1	1.6995465958072	-2.9437008407999	2.3292963565793		
Mn1	-0.0047393344262	0.0008213957600	14.5787741597668		
Mn1	6.7986676644823	-11.7756377886763	2.3286298671008		
Mn1	5.0986446859622	-8.831112566375	17.10836361049		
Mn2	1.6995490450775	-2.9437051362788	4.8593686397628		
Mn2	-0.0004739334426	0.0008213957600	14.5787741597668		
Mn2	6.7990892711721	-5.886889070632	17.10836361049		
Mn2	5.0990662926070	-2.9426744818867	17.10836361049		
Mn2	6.7986676644823	-11.7756377886763	2.3286298671008		
Mn2	5.0986446859622	-8.831112566375	17.10836361049		
O	6.0518685395084	-4.5936989226439	6.081042510792		
O	4.3518455609883	-1.6491723906051	15.800446279794		
O	11.151412148284	-1.6494765370695	6.081042510792		
O	9.451382363082	1.2950499589693	15.800446279794		
O	11.150996801836	-13.4256357272403	6.0803760213118		
O	9.4509662926634	-10.4811091952015	15.7977797903158		
O	16.250322385035	-10.481413776659	6.0803760213118		
O	14.550509394834	-7.5368868456272	15.7977797921469		
O	6.0520695928534	-1.2931696830465	6.0816616470464		
O	4.3520466143333	1.6513568489923	15.801065416505		
O	11.1516122681734	1.6510526665279	6.0816616488775		
O	9.4515892896532	4.955791985667	15.8010654178816		
O	11.151196615286	-10.1251064876429	6.0809951575680		
O	9.4511676830084	-7.1805799556041	15.8003989265720		
X1	Y1	Z1	X2	Y2	Z2
-----	-----	-----	-----	-----	-----
0	5.2061729798043	5.8884513157190	8.4109876377499		
0	3.5061500012841	8.8329778477577	18.130950567540		
0	5.2057513731595	-5.8877078384518	8.4102043664404		
0	3.5057283946394	-2.9431813064130	18.130265710992		
0	10.3052940484794	-2.9438548887774	8.410320482715		
0	8.6052710699593	0.0037173683363	8.4106534909259		
0	3.5059391979618	2.9448982706724	18.130105726109		
0	10.3055048518018	-2.9434854888774	8.4106534939263		
0	8.6054818732817	5.8891206202467	18.130057262930		
0	10.3057513731595	-5.8870385339241	8.4109876377499		
0	8.6054818732817	18.130950567540			
0	5.2057513731595	0.0037173683363	8.4106534909259		
0	3.5059391979618	2.9448982706724	18.130105726109		
0	10.3055048518018	-2.9434854888774	8.4106534939263		
0	8.6054818732817	5.8891206202467	18.130057262930		
0	10.3057513731595	-5.8870385339241	8.4109876377499		
0	8.6054818732817	18.130950567540			
Ionic coordinates of the reduced crystal in Angstrom (Mn1 and Mn2 atoms are spin-polarized along opposite directions):

Ba 3.4040895190061 -5.8645513210539 5.9088414399699
Ba 1.7040665404859 -2.9200247890151 15.628452089740
Ba 8.5032105876812 -14.6964881256503 5.9081749504915
Ba 6.8031876091611 -11.7519615936115 15.6275781794956
Ba 3.3178615110375 0.0685691035000 5.8822084861659
Ba 1.6178385325173 3.0130956355388 15.6016122551699
Ba 8.4169825797126 -8.7633677010964 5.881541966875
Ba 6.7169556104729 -5.8188411690576 15.600954756915
Ba 5.078408649930 -2.9663778313400 3.6793491705317
Ba 3.3783858864729 -0.0218512993022 13.3987529395358
Ba 10.1775299336682 -11.793146359374 3.6796826810533
Ba 8.4775069551480 -8.8537881038986 13.3980864500573
Ba 5.1319315780046 2.9256405405172 3.7896500451257
Ba 3.4319085994845 5.8701670725559 13.509938141298
Ba 10.2310526466798 -5.9062962640793 3.788983556473
Symbol	Value	Value	Value		
Ba	8.5310296681596	-2.9617697320405	13.508373246514		
Ba	5.0556400633749	-3.0145956849811	8.3745257196662		
Ba	3.3556170848548	-0.0700130364594	8.226530096144		
Ba	10.1547611320501	-11.8464763730946	8.3738592295878		
Ba	8.4573815352998	-8.901948410558	18.0932629985918		
Ba	5.1206036048368	2.9262833236750	8.226530096144		
Ba	3.4205806263167	5.8708098557138	17.9456332680703		
Ba	10.2197246735120	-5.90565348059214	8.226530096144		
Ba	8.5197016949918	-2.9611269488827	17.9449667786181		
Ba	3.4231482612154	0.0129761209801	1.5226039076873		
Ba	1.7231252826953	5.8708098557138	17.9456332680703		
Ba	8.522693298906	-8.8196068316316	15.6203907667873		
Ba	6.822243513704	-5.8744341515775	11.242076676913		
Ba	13.5928633772564	0.0074030315938	1.5095609797676		
Ba	11.8928403978347	2.9519305636326	11.242076676913		
Ba	18.6919844459300	-8.8245327730026	8.226530096144		
Ba	16.991614674098	-5.8800624096383	11.242076676913		
Ba	8.5950761146875	-2.9919241216079	5.8941707699720		
Ba	6.8950531361674	-0.0473975895691	15.6135475389761		
Ba	13.6941791836627	-11.8238609262043	5.8935042804936		
Ba	11.9941742048426	-8.8793343941655	15.6129080494977		
Ba	8.5183723611846	2.9614089366863	5.894536811389		
Ba	6.8183493826645	5.9059354687250	15.6158574501429		
Ba	13.6174934298598	-5.8705278679710	5.8957871916605		
Ba	11.917405133996	-2.9260013358714	15.6151909606645		
Ba	10.2004668910093	0.0262023754860	3.8158049179340		
Ba	8.5004439124892	2.9707280975248	13.5352086869380		
Ba	15.299879596845	-8.805734291104	3.8151384284556		
Ba	13.599564911643	-5.8612078970716	13.5345421974596		
Ba	-0.0090112759983	0.0161983434607	3.8021901139515		
Ba	-1.790934255185	2.9607248754995	13.5215938829555		
Ba	5.0901097296768	-8.8157384611357	3.8015263244731		
Ba	3.3900868141567	-5.8712119290696	13.520927394771		
Ba	10.1829124240489	0.0443940501012	8.195928934398		
Ba	8.4828894455287	2.9489259370490	17.9153867524439		
Ba	15.282034927240	-8.8275373995862	8.1953164939614		
Ba	13.582015542039	-5.8830108675474	17.914702629654		
Ba	10.1835002637261	5.8806382723380	8.2041582660053		
Ba	8.4834772852059	8.8251648043767	17.9235620350094		
Ba	15.282613234012	-2.9512985322585	8.2034917765269		
Ba	13.5825983538811	-0.067720002197	17.9228955455309		
Ba	8.4991362103609	2.9463798242817	1.5170712772242		
Ba	6.7991132318408	5.8909063563205	11.2364750462483		
Ba	13.5982572790361	-5.8855569803147	1.5164047877658		
Ba	11.898234005159	-2.9410304482759	11.235805567696		
Ba	8.5204778274776	-2.8938461208796	1.562372125110		
Ba	6.820458489575	0.0506804111592	11.2817764815150		
Ba	13.6195988961528	-11.7257829254760	1.5617062230325		
Ba	11.9195759176327	-8.7812563934372	11.281109920366		
Ce	10.1904409535025	5.8675456206648	0.0053540376008		
----	----	----	-----	-----	-----
Ce	8.4904179749824	8.8120721527035	9.7247578066049		
Ce	15.2895620221777	-2.9643911839316	0.0046875481224		
Ce	13.5895390465767	-0.0198646518929	9.7240913171264		
Ce	3.3974960511682	-0.0016035229482	9.6887710684674		
Ce	1.697437026481	2.9429230090906	19.408174374714		
Ce	8.4966171198434	-8.8335403275446	9.6871405789989		
Ce	6.7965941432322	-5.8890137955058	19.4075083479930		
Ce	8.4925329900939	-2.9474050072702	9.6989500904609		
Ce	6.7925100115738	-0.0028784752314	19.4183538594649		
Ce	13.5916540587691	-11.7793418118666	9.6982836009824		
Ce	11.8916310802489	-8.8348152798279	19.4176873699865		
Ce	10.2083396342900	0.0179591231985	0.0241394416810		
Ce	15.3074607029651	-8.8139776813979	0.0234729522026		
Mn1	6.7942213973146	-5.847460341253	4.8549203875392		
Mn1	5.0941984187944	-2.902495020865	14.573421565433		
Mn1	11.8933424659897	-14.6794128387217	4.8542589086088		
Mn1	10.1933194874691	-11.7348863066829	14.5736576670649		
Mn1	6.7912894739824	-0.0172173067702	7.4192110384332		
Mn1	5.0912664954623	-2.9273092252686	17.1386148074737		
Mn1	11.8904105426336	-5.9046275793278	17.137943179589		
Mn1	1.7206859283224	-2.9138795765940	7.435432106850		
Mn1	0.0206629498023	-0.0362895634448	12.0674115651498		
Mn1	6.8198069969975	-11.7458343802904	2.3473413066673		
Mn1	5.1197840184774	-8.8013784825162	12.0667450756714		
Mn1	6.8164613655725	-5.8877280669186	12.0672869252217		
Mn1	5.1143838705245	-8.8322545989574	15.766906942258		
Mn1	11.9155824342477	-2.9442087376778	4.8566204357433		
Mn1	10.2155594557525	0.0033177943610	14.5760242084747		
Mn1	11.885284531816	-2.9332923492647	7.406510986546		
Mn1	10.1885054766144	-5.8778188033035	17.1259147677656		
Mn1	16.9864952185675	-5.896444533317	2.3480077961458		
Mn1	15.287625433366	-2.9541179232929	17.1252481881802		
Mn1	6.8130600740624	0.0292125819041	12.0672869252217		
Mn1	11.9128107680612	-8.8027242262923	7.4363377541072		
Mn1	10.2121580975614	-5.8581976096536	12.0557815231113		
Mn1	1.7287594246200	-2.9173625704377	4.8784321553607		
Mn1	0.0287364640999	0.0272008276613	15.9783592436467		
Mn1	6.8278804932952	-11.7492625089739	4.8777656565822		
Mn1	5.1278575147750	-8.8047359769352	14.5971694348663		
Mn1	1.6912628440275	-5.8854955620623	17.1079141901985		
Mn2	6.7903891270207	-5.8951774757297	7.3878439326161		
Mn2	5.0903609344182	-2.9459912425341	17.1072477016201		
Mn2	6.8070200511077	-5.8658842224715	2.3246855720501		
Mn2	5.1069707258757	-2.9213576904327	12.0440893410542		
Mn2	11.9061411197828	-14.6978210270679	2.3240190825717		
---	---	---	---		
0	0.7608156324819	1.326915636739	13.3854186861283		
0	7.559956796772	-10.4495476998959	3.653484276458		
0	5.8599367011571	-7.5050211678571	13.3847521966499		
0	7.5403325819054	-1.3091258510045	3.653129497328		
0	5.840306933852	1.6354006810343	13.3725367187368		
12.6394536505805	-10.1410626556009	3.6524664602544			
10.9394306720604	-7.1965361235621	13.3718702292584			
2.4978512573595	4.2372562189895	8.4854761415347			
0.7978287883934	7.1817827510283	18.2048799105387			
7.5969723260347	-4.5946805856069	8.4848096520563			
5.8969493475145	-1.6501540535681	18.2042134210603			
7.4883025535042	-1.5915339611152	8.249639139533			
5.7882957498417	1.3529925709236	8.243028244749			
12.5874236221794	-10.4234707657116	8.243028244749			
10.8874006436592	-7.4798442336728	17.9617065934789			
0.0845814150799	2.9190086307584	8.3923959311201			
-1.6154491369492	5.8635351627972	18.1117997001242			
5.1837021102461	-5.9129281738380	8.3917294416417			
3.4386791317259	-2.968416417992	18.111332106458			
5.077075965302	-0.2041833909277	8.23953372218			
3.7704761801000	2.7403431411111	17.958571062258			
10.1761916652053	-9.0361201955241	8.238586477434			
8.4761686866852	-6.091593634853	17.957906167474			
2.4645954271232	1.5099660881686	8.349702770130			
0.7645724486031	4.4544926202074	18.0691065391341			
7.5637164957984	-7.3219707164278	8.3490362806516			
5.8636935172782	-4.3774441843890	18.0684004965656			
2.410055855722	-1.620804829549	8.5239843893594			
0.7099826070520	1.3237260490839	18.243381583634			
7.5091266542473	-10.4527372875513	8.5233178998810			
5.8091046577272	-7.5082107555125	18.2427216688850			
8.397405821384	-5.8626317129236	1.3056747919767			
6.6973825036183	-2.9181051808848	11.0259785609807			
13.4965265508135	-14.6945685175200	1.30590833024983			
11.795035722934	-11.7500419854812	11.0253120715023			
0.9231065064783	-1.5300643833802	1.3377417400967			
-0.7768579220418	1.4144621486586	11.0571455091007			
6.0222861215535	-10.3620011879766	1.3370752506183			
4.3222631466334	-7.4174746559378	11.056790196223			
6.0136079972739	-7.2274847751323	1.2604905723121			
4.3135850187573	-4.2829582430936	10.9798943136161			
11.112790659490	-16.0594215797287	1.2598240823336			
9.4127060874289	-13.1148950476900	10.9792278518377			
6.0201102027811	-4.4749332614079	1.3147290838105			
4.3200872242609	-1.530307693829	11.0341328528145			
11.1192312714562	-13.306870060043	1.3140625943231			
9.4192082929361	-10.3623435339655	11.033463633361			
6.0413900534684	-1.3656509752223	1.2447879350410			
4.3413670749483	1.5788764345165	10.964191704451			
11.1405111221435	-10.197586921187	1.2441214455626			
O	X	Y	Z		
-----------	------------	------------	------------		
0 0.7752474973263	-1.2645497297846	13.3697489449302			
0 7.5743915445215	-13.0410306644978	3.6496786864477			
0 5.8743685660014	-10.0964865343810	13.3690824554518			
0 7.5837947352610	7.2445876717383	8.4288535332319			
0 5.8837717567415	7.5743915445215	8.4281870437535			
0 10.9288928254166	1.3571773991807	18.1475908127576			
0 12.6724353115694	1.5258854197144	8.40208402986			
0 10.9724123330493	4.4704119517532	18.3819785142557			
0 17.715563802446	-7.3060513848820	8.4013619508202			
0 16.071534017244	-4.3615248528432	18.127657198242			
0 5.1927542444039	8.5871950236458	8.3826450037341			
0 3.4927312658838	8.8017215556845	18.102048772382			
0 10.2918753130791	-2.9747417809507	8.3819785142557			
0 8.5918523334558	-0.0302152489119	18.101328235297			
0 10.2737378581223	2.8904264174695	8.3681024554357			
0 8.5737148796022	5.8349294950832	18.087509232084			
0 15.3728589267975	-5.9415103871269	8.3674356647259			
0 13.6728359482773	-2.9969838550581	18.086394337299			
0 7.5873961338659	4.4948959140044	8.391311131904			
0 5.8837717567415	7.4394224660432	18.110534882144			
0 12.665172025411	-4.3370408905920	8.3904646237119			
0 10.9864922402210	-1.3925143585532	18.109683927160			
0 7.5966502825796	1.3753995945015	8.6040212436857			
0 5.8966273040595	4.3199261265403	18.323425012689			
0 12.6957713512548	-7.4565372100949	8.603547542072			
0 10.9957483727346	-4.5120106780561	18.322758232113			
0 13.5073001458697	-2.9198026454300	1.3248938236300			
0 11.8072771673495	0.247238866087	11.0442975926341			
0 18.6064212145448	-11.7517394500264	1.3242273341516			
0 16.9063982360247	-8.8072129179877	11.0436311031556			
0 5.9825289753797	1.3927590028501	1.312355985908			
0 4.2825060010178	4.3372855348888	11.031759729847			
0 11.0816500482130	-7.4391778017463	1.3116894695022			
0 9.3816270696929	-4.496512697076	11.031932835063			
0 11.0951191579772	-4.2649354215963	1.2444216343746			
0 9.3950961794570	-1.3204888995575	10.9638254033787			
0 16.1942402266523	-13.0968722261927	1.2437551448962			
0 14.4942417248132	-10.1523456914540	10.963158913002			
0 11.1386254764681	-1.5066935667847	1.3747381930345			
0 9.4386024979479	1.4378329652540	11.094196208368			
0 16.237746541432	-10.3386303713812	1.3740717033561			
0 14.5377235666231	-7.3941038934244	11.0934754725602			
0 11.1433493404342	1.6118042065468	1.3003128103053			
0 9.4433209619140	4.5563307385856	11.0197165793094			
0 16.2424650091903	-7.2201325980496	1.299643208269			
0 14.5424420305892	-4.2756066060109	11.019050898310			
0 8.4039367961331	0.263615376035	1.3343557480030			
0 6.7039138176129	2.9708880696422	11.053759179070			
0 13.5030578648082	-8.805575269929	1.3336892594246			
Ravel, B.; Newville, M. *ATHENA, ARTEMIS, HEPHAESTUS*: Data Analysis for X-Ray Absorption Spectroscopy Using *IFEFFIT*. *J Synchrotron Rad* **2005**, *12* (4), 537–541. https://doi.org/10.1107/S0909049505012719.