PURELY ALGEBRAIC METHOD TO CONSTRUCT TORIC SCHEMES

TING LI

ABSTRACT. In this article, we first give some elementary properties of monoids and fans, then construct a toric scheme over an arbitrary ring, from a given fan. Using Valuative Criterion, we prove that this scheme is separated and give the sufficient and necessary condition when it is proper. We also study the regularity and logarithmic regularity of it. Finally we study the morphisms of toric schemes induced by the homomorphisms of fans.

INTRODUCTION

The study of toric varieties began in the early 1970’s. Till now, people have made great progress in this field. Many applications in algebraic geometry, complex manifolds and number theory etc. have been discovered. Tadao Oda [4] is a comprehensive book on this area. Till now the treatment of toric varieties need more or less the technique of complex analysis. This may hamper its applications in number theory, where we must study algebraic scheme over any base ring, especially over \(\mathbb{Z} \) or finite fields. So I am determined to find a purely algebraic approach once and for all.

The keystone of this kind of construction is the concepts of convex cone and concave cone. In geometry, convex cones are always contained in some affine space, whereas convex cones here are contained in some free abelian group of finite rank, which acts the role of the affine space. For convenience to algebraic treatment, we invent its dual notion concave cone. Having these two concepts as bricks, we can easily define fans and toric schemes (over arbitrary rings); and their properties, for example separatedness and properness, easily follow.

We also construct logarithmical structures on toric schemes and prove that when their base rings are regular, they are logarithmically regular. Hence by [1], their singularities can be solved.

In this article, rings, algebras and monoids are all assumed to be commutative and have identity elements. A homomorphism of rings (resp. monoids) is assumed to preserve the identity element. A subring (resp. monoid) is assumed to contain 1 of the total ring (resp. monoid).

1. MONOIDS AND IDEALS

In this section, we list some elementary results about monoids and ideals, which can also be found in many other references, for example, [1].

Lemma 1.1. A monoid \(M \) is integral if and only if \(M \to M^{\text{gp}} \) is injective, where \(M^{\text{gp}} \) is the Grothendieck group associated with \(M \).

Definition 1.2. Let \(M \) be an integral monoid and \(P \) a submonoid of \(M \). If \(P^{\text{gp}} \cap M = P \), then we say that \(P \) is full in \(M \).

Lemma 1.3. Let \(M \) be an integral monoid and \(S \) a submonoid of \(M \).

1. \(S^{-1}M \) is an integral monoid with Grothendieck group \(M^{\text{gp}} \).

2. If \(M \) is saturated, so is \(S^{-1}M \).

Lemma 1.4. Let \(M \) be an integral monoid and \(N \) a submonoid of \(M \). Then

1. \(M/N \) is also integral.

Key words and phrases. Monoid, Fan, Toric Variety, Toric Scheme.
(2) There is an isomorphism of groups:

\[(M/N)_{\text{gp}} \cong M_{\text{gp}}/N_{\text{gp}}, \quad \overline{x} \mapsto \overline{y}.
\]

(3) If \(M\) is saturated, so is \(M/N\).

Lemma 1.5. Let \(M\) be a finitely generated saturated monoid. Then there is a submonoid \(N\) of \(M\) such that \(M = N \times M^*\). Moreover all such submonoids \(N\) satisfy the following conditions.

1. \(N^* = \{1\}\) and \(M_{\text{gp}} = N_{\text{gp}} \times M^*\).
2. \(N\) is finitely generated and saturated.

Definition 1.6. Let \(M\) be a monoid. A subset \(I\) of \(M\) is called an ideal of \(M\) if \(MI \subseteq I\). An ideal \(I\) of \(M\) is called a prime ideal if its complement \(M - I\) is a submonoid of \(M\). We denote by \(\text{Spec} M\) the set of prime ideals of \(M\).

For example, \(\emptyset\) and \(M - M^*\) are prime ideals of \(M\).

For \(p \in \text{Spec} M\), we define \(M_p := S^{-1}M\), where \(S = M - p\).

For a homomorphism \(h: M \rightarrow N\) of monoids, we have a canonical map \(\text{Spec} N \rightarrow \text{Spec} M, \; p \mapsto h^{-1}(p)\).

Theorem 1.7. Let \(M\) be a monoid and \(p\) a prime ideal of \(M\). Put \(N = M - p\). Then:

1. \(q \mapsto N^{-1}q\) is a bijective from the set \(\{q \in \text{Spec} M \mid q \subseteq p\}\) to \(\text{Spec} M_p\).
2. \(\mathfrak{N} \mapsto \mathfrak{N} \cap N\) is a bijective from the set \(\{\mathfrak{N} \in \text{Spec} M \mid p \subseteq \mathfrak{N}\}\) to \(\text{Spec} N\) with the inverse map \(q \mapsto q \cup p\).

Assume that \(M\) is integral, then:

3. \((M_p)^* = N_{\text{gp}}\).
4. There is a canonical isomorphism of monoids:

\[M/N \cong M_p/(M_p)^*\]

Hence \((M/N)^* = \{1\}\).

5. If \(M\) is finitely generated, so is \(N\).

Assume that \(M\) is saturated, then:

6. \(N\) is a saturated, full submonoid of \(M\).
7. \(M_{\text{gp}}/N_{\text{gp}}\) is torsion free.

Definition 1.8. For a monoid \(M\), we define \(\text{dim}(M)\) to be the maximal length of a sequence of prime ideals \(p_0 \subset p_1 \subset \cdots \subset p_r\) of \(M\). If such a maximum does not exist, we define \(\text{dim}(M) = \infty\).

Lemma 1.9. Let \(M\) be a finitely generated monoid. Then \(\text{Spec} M\) is a finite set.

Lemma 1.10. Let \(k\) be a field and \(M\) a finitely generated integral monoid. Assume that \(M_{\text{gp}}\) is torsion free. Then

\[\text{dim}(k[M]) = \text{rank}(M_{\text{gp}}).
\]

Lemma 1.11. Let \(M\) be a finitely generated integral monoid. Assume that \(M^* = \{1\}\) and \(M_{\text{gp}}\) is torsion free. Then \(\text{dim}(M) = 1\) if and only if \(M \cong \mathbb{N}\).

2. **Algebras Generated by Monoids**

Lemma 2.1. Let \(M\) be a finitely generated saturated monoid with \(M^* = \{0\}\). Then \(M\) is isomorphic to a submonoid of \(\mathbb{N}^n\) for some integer \(n \geq 1\).
Proof. For convenience to iterate, we view M as an additive monoid. We use induction on $r = \text{rank}(M^\text{gp})$. If $r = 0$, then $M = \{0\}$; and if $r = 1$, $M \cong \mathbb{N}$.

Now assume that $r > 1$. By Lemma 1.11, $\dim(M) > 1$. Let p_1 be a maximal element of the set $\{ p \in \text{Spec } M \mid p \neq M - \{0\} \}$. Put $N_1 = M - p_1$. By Theorem 1.7, $\dim N_1 = 1$. Hence by Lemma 1.11, $N_1 \cong \mathbb{N}$. Put $N_1 = \mathbb{N} \cdot x$, where $x \in M$.

Let k be a field. Put $A = k[M]$ and $m = (M - \{0\}) \cdot A$. By Lemma 1.10,

$$\text{ht}(m) = \text{dim } A = r > 1.$$

Let \mathfrak{p} be a minimal prime ideal of A containing x. Then $\text{ht}(\mathfrak{p}) = 1$. We have

$$x \in p_2 := \mathfrak{p} \cap M \neq M - \{0\}.$$

Put $N_2 = M - p_2$. By Theorem 1.7, for each $i = 1, 2$, M_i/N_i is a finitely generated saturated monoid with $(M_i/N_i)^* = \{0\}$. Obviously

$$\text{rank}(M_i/N_i)^{\text{gp}} = \text{rank}(M_i^{\text{gp}}/N_i^{\text{gp}}) < \text{rank}(M^{\text{gp}}) = r.$$

By induction, there is an injective homomorphism $l_i: M_i/N_i \to \mathbb{N}^{p_i}$ of monoids. Let

$$\sigma: M \to M/N_1 \oplus M/N_2, \quad x \mapsto (\pi_1(x), \pi_2(x)).$$

Let $\eta \in N_1^{\text{gp}} \cap N_2^{\text{gp}}$. Note that $N_1^{\text{gp}} = \mathbb{Z} \cdot x$. Hence if $\eta \neq 0$, we may assume that $\eta = ax = y - z$, where $a > 0$ and $y, z \in N_2$. Then

$$y = ax + z \in p_2,$$

a contradiction. So $N_1^{\text{gp}} \cap N_2^{\text{gp}} = \{0\}$, which infers that the homomorphism

$$\sigma^{\text{gp}}: M^{\text{gp}} \to (M_1^{\text{gp}}/N_1^{\text{gp}}) \oplus (M_2^{\text{gp}}/N_2^{\text{gp}}), \quad \xi \mapsto (\pi_1^{\text{gp}}(\xi), \pi_2^{\text{gp}}(\xi))$$

is an injective, thus σ is an injective. Put $n = n_1 + n_2$. Then

$$l := (l_1 \oplus l_2) \circ \sigma: M \to \mathbb{N}$$

is an injective homomorphism of monoids. \square

Applying 2.1 and the results from [2, p.320], we obtain the following theorem.

Theorem 2.2. Let M be a monoid. Then the following conditions are equivalent:

1. M is isomorphic to a submonoid of \mathbb{N}^r for some integer $r > 0$ and the ring $K[M]$ is integrally closed for some field K.
2. M is finitely generated, saturated and $M^* = \{1\}$.
3. M is isomorphic to a full submonoid of \mathbb{N}^r for some integer $r > 0$.
4. M is isomorphic to a finitely generated submonoid of \mathbb{N}^r for some integer $r > 0$ and for every integrally closed domain D, the ring $D[M]$ is integrally closed.

3. Convex Cones and Concave Cones

All abelian groups and monoid appearing in this section are presumed to be additive.

We fix a finitely generated free abelian group G. Put

$$G^* := \text{Hom}(G, \mathbb{Z}).$$

We identify G^{**} with G.

Definition 3.1.

1. A finitely generated saturated submonoid M of G is called a convex cone in G if $M^* = \{0\}$ and G/M^{gp} is torsion free.
2. A finitely generated saturated submonoid N of G is called a concave cone in G if $N^{\text{gp}} = G$ and G/N^* is torsion free.
Let M be a finitely generated saturated monoid, p a prime ideal of M, $N = M - p$, P a monoid and $b \in P$. Then there is a $\sigma \in \text{Hom}(M, P)$ such that $\sigma|_{N} = 0$ and $\sigma(p) \subseteq b + P$.

Proof. Put $M_0 = M/N$. Then M_0 is also a finitely generated saturated monoid such that $M_0^p = \{0\}$ and M_0^{gp} is a free abelian group. By Theorem 2.2, we may regard M_0 as a full submonoid of N^{gp} for some integer $r > 0$. Then there is a homomorphism $\tau: N^{gp} \rightarrow P$ of monoids such that

$$\tau(1,0,\ldots,0) = \tau(0,1,\ldots,0) = \cdots = \tau(0,0,\ldots,1) = b.$$

Put $\sigma = \tau|_{M_0} \circ \pi: M \rightarrow P$, where $\pi: M \rightarrow M_0$ is the canonical homomorphism. Then σ satisfies the required conditions. □

Theorem 3.3.

(1) Let M be a convex cone in G. Then

$$\hat{M} := \{ \sigma \in G^* | \forall x \in M, \sigma(x) \geq 0 \}$$

is a concave cone in G^*.

(2) Let N be a convex cone in G. Then

$$\hat{N} := \{ \sigma \in G^* | \forall x \in N, \sigma(x) \geq 0 \}$$

is a convex cone in G^*.

(3) For any convex cone \tilde{M} in G, $(\tilde{M})^\sim = M$.

(4) For any convex cone N in G, $(N)^\vee = N$.

(5) Let M be a convex cone in G and $p \in \text{Spec} M$. Then $M-p$ is a convex cone in G.

(6) Let N be a convex cone in G and $q \in \text{Spec} N$. Then N_q is a concave cone in G. Moreover

$$(N_q)^* = (N - q)^{gp}.$$

Proof. (1) Obviously $(\hat{M})^{gp} \subseteq G^*$ and \hat{M} is saturated. Assume that M is generated by $x_1, x_2, \ldots, x_r \in M - \{0\}$.

Let $\sigma \in G^*$. Then there is an $s \in \mathbb{N}$ such that $s + \sigma(x_i) \geq 0$ for each i. By Lemma 3.2, there is a $\tau_1 \in \text{Hom}(M, \mathbb{N})$ such that $\tau_1(M - \{0\}) \subseteq s + \mathbb{N}$.

Since G/M^{gp} is torsion free, $\tau_1^{gp}: M^{gp} \rightarrow \mathbb{Z}$ can be extended to be a homomorphism $\tau: G \rightarrow \mathbb{Z}$.

Remark 3. It is easy to show that

$$(\hat{M})^* = \{ \sigma \in G^* | M^{gp} \subseteq \ker(\sigma) \}.$$

Hence we have

$$(\hat{M})^* \cong (G/M^{gp})^* \cong G/M^{gp}$$

is torsion free.

Note that

$$\omega: \tilde{M} \rightarrow \mathbb{N}^r, \quad \sigma \mapsto (\sigma(x_1), \sigma(x_2), \ldots, \sigma(x_r))$$

is a homomorphism of monoids. Put $L = \text{Im}(\omega)$ and let $\xi = (\xi_1, \xi_2, \ldots, \xi_r) \in L^{gp} \cap \mathbb{N}^r$. Write ξ as $\xi = \omega(\sigma) - \omega(\tau)$, where $\sigma, \tau \in \tilde{M}$. Then we have

$$(\sigma - \tau)(x_i) = \sigma(x_i) - \tau(x_i) = \xi_i \in \mathbb{N}.$$

Hence $\sigma, \tau \in \tilde{M}$, and $\xi = \omega(\sigma - \tau) \in L$. Therefore $L^{gp} \cap \mathbb{N}^r = L$, i.e., L is a full submonoid of \mathbb{N}^r. By Theorem 2.2, L is finitely generated. So we may let $\tau_1, \tau_2, \ldots, \tau_m \in \tilde{M}$ such that L is generated by $\omega(\tau_1), \omega(\tau_2), \ldots, \omega(\tau_m)$. $\tau_1, \tau_2, \ldots, \tau_m \in \tilde{M}$ generated a submonoid L' of \tilde{M}. Now for any $\sigma \in \tilde{M}$, there is a $\tau \in L'$ such that $\omega(\sigma) = \omega(\tau)$, i.e., $\sigma - \tau \in (\tilde{M})^*$. Hence $\tilde{M} = L' + (\tilde{M})^*$ is finitely generated. Therefore \tilde{M} is a concave cone in G^*.
(2) Obviously \hat{N} is saturated and $(\hat{N})^\ast = \{0\}$. Put $X = \{\sigma \in G^\ast \mid N^\ast \subseteq \ker \sigma\}$. Then $(\hat{N})^{\text{gp}} \subseteq X$. Assume that N is generated by x_1, x_2, \ldots, x_n, where $x_1, x_2, \ldots, x_r \in N - N^\ast$ and $x_{r+1}, \ldots, x_n \in N^\ast$.

Let $\sigma \in X$. Then there is an $s \in \mathbb{N}$ such that $s + \sigma(x_i) \geq 0$ for each $1 \leq i \leq r$. By Lemma 3.2, there is a $\tau_1 \in \text{Hom}(M, \mathbb{N})$ such that

$$\tau_1(N - N^\ast) \subseteq s + \mathbb{N}, \quad \tau_1|_{N^\ast} = 0.$$

Put $\tau = \tau_1^{\text{gp}}$. Then $\tau, \tau + \sigma \in \hat{N}$, i.e., $\sigma \in \hat{N}^{\text{gp}}$. Therefore $\hat{N}^{\text{gp}} = X$ and $G^\ast / \hat{N}^{\text{gp}}$ is torsion free.

Obviously $\omega: \hat{N} \to \mathbb{N}^r$, $\sigma \mapsto (\sigma(x_1), \sigma(x_2), \ldots, \sigma(x_r))$ is a homomorphism of monoids. Since $\hat{N} \subseteq X$ and $N^{\text{gp}} = G$, ω is an injective. It is easy to show that $\omega(\hat{N})$ is a full submonoid of \mathbb{N}^r.

Hence by Theorem 2.2, \hat{N} is finitely generated.

Therefore \hat{N} is a convex cone in G^\ast.

(3) For any $x \in G$, we have

$$x \in (\hat{M})^\ast \iff \forall \sigma \in \hat{M}, \sigma(x) \geq 0.$$

Hence $M \subseteq (\hat{M})^\ast$. On the other hand let $x \in G - M$. If $x \notin M^{\text{gp}}$, as G/M^{gp} is torsion free, there is an element $\sigma \in G^\ast$ such that $\sigma|_{M^{\text{gp}}} = 0$ and $\sigma(x) < 0$, hence $x \notin (\hat{M})^\ast$. Assume that $x \in M^{\text{gp}}$. By Theorem 2.2, we may regard M as a full submonoid of \mathbb{N}^r for some integer $r > 0$. Let $p_i: \mathbb{Z}^r \to \mathbb{Z}$ be the i-th projection. Since $M^{\text{gp}} \cap \mathbb{N}^r = M$ and $x \notin M$, there is a projection p_i satisfying that $p_i(x) < 0$. $p_i|_{M^{\text{gp}}}: M^{\text{gp}} \to \mathbb{Z}$ can be extended to a homomorphism $\sigma \in G^\ast$. Then $\sigma \in M$ and $\sigma(x) < 0$. Hence $x \notin (\hat{M})^\ast$. Therefore $M = (\hat{M})^\ast$.

(4) For any $x \in G$, we have

$$x \in (\hat{N})^\vee \iff \forall \sigma \in \hat{N}, \sigma(x) > 0.$$

Hence $N \subseteq (\hat{N})^\vee$. Let $x \in G - N$. Let $\pi: G \to G/N^\ast$ be the canonical homomorphism. By Lemma 1.4, we may regard $N/N^\ast \subseteq G/N^\ast$ and $(N/N^\ast)^{\text{gp}} = G/N^\ast$. Obviously $\pi(x) \notin \hat{N}/N^\ast$ and $(N/N^\ast)^\ast = \{0\}$.

By Theorem 2.2, we may regard N/N^\ast as a full submonoid of \mathbb{N}^r for some integer $r > 0$. Let $p_i: \mathbb{Z}^r \to \mathbb{Z}$ be the i-th projection. Then there is a projection p_i satisfying $p_i(\pi(x)) < 0$.

Put $\sigma = p_i|_{G/N^\ast} \circ \pi$. Then $\sigma \in \hat{N}$ and $\sigma(x) < 0$. Hence $N = (\hat{N})^\vee$.

(5) and (6) are obvious.

Theorem 3.4. Let M be a convex cone in G and N be a concave cone in G. Let $p \in \text{Spec} M$ and $q \in \text{Spec} N$.

1. We have

$$\hat{p} := \{\sigma \in \hat{M} \mid \exists x \in M - p, \sigma(x) > 0\} \subseteq \text{Spec} \hat{M}$$

and

$$\hat{M}_p = (M - p)^\vee.$$

2. We have

$$\hat{q} := \{\sigma \in \hat{N} \mid \exists x \in N - q, \sigma(x) > 0\} \subseteq \text{Spec} \hat{N}$$

and

$$\hat{N} - \hat{q} = (N_q)^\ast.$$

3. $(\hat{p})^\ast = p$.

4. $(\hat{q})^\vee = q$.

5. $\dim M = \dim \hat{M}$ and $\dim N = \dim \hat{N}$.

Proof. (1) Obviously $\hat{p} \subseteq \text{Spec} \hat{M}$ and $\hat{M}_p \subseteq (M - p)^\vee$. Assume that M is generated by x_1, x_2, \ldots, x_n, where $x_1, x_2, \ldots, x_r \in p$ and $x_{r+1}, \ldots, x_n \in M - p$. Let $\sigma \in (M - p)^\vee$. Then there is an $s \in \mathbb{N}$ such that $s + \sigma(x_i) \geq 0$ for all $1 \leq i \leq r$. By Lemma 3.2, there is a $\tau' \in \text{Hom}(M, \mathbb{N})$.
such that \(\tau'|_{M-p} = 0 \) and \(\tau'(p) \subseteq s + \mathbb{N} \). \(\tau^\SP: M^\SP \to \mathbb{Z} \) can be extended to a homomorphism \(\tau: G \to \mathbb{Z} \). Then \(\tau \in M - \hat{p} \) and \(\tau + \sigma = M \), i.e., \(\sigma \in \hat{M}p \). Hence \(\hat{M}p = (M - p)^\V \).

(2) Obviously \(\hat{q} \in \text{Spec} N \) and \(\hat{N} - \hat{q} \subseteq (N_q)^\^ \). By Theorem 1.7(3), \((N_q)^* = (N - q)^\SP \). Hence for all \(\sigma \in (N_q)^\^ \), \((N - q)^\SP \subseteq \ker \sigma \), i.e., \(\sigma \in \hat{N} - \hat{q} \). Therefore \(\hat{N} - \hat{q} = (N_q)^\^ \).

(3) For any \(x \in G \),

\[
x \in (\hat{p})^\^ \iff x \in M \text{ and } \exists \sigma \in \hat{M} - \hat{p}, \sigma(x) > 0.
\]

Hence \((\hat{p})^\^ \subseteq p \). By Lemma 3.2, there is a \(\tau' \in \text{Hom}(M, \mathbb{N}) \) such that \(\tau'|_{M-p} = 0 \) and \(\tau'(p) \subseteq 1 + \mathbb{N} \). \(\tau^\SP: M^\SP \to \mathbb{Z} \) can be extended to a homomorphism \(\tau: G \to \mathbb{Z} \). Then \(\tau \in M - \hat{p} \) and \(\tau(x) > 0 \) for any \(x \in p \). Therefore \((\hat{p})^\^ = p \).

(4) For any \(x \in G \),

\[
x \in (\hat{q})^\V \iff x \in N \text{ and } \exists \sigma \in \hat{N} - \hat{q} = (N_q)^\V, \sigma(x) > 0.
\]

Since \((N_q)^* = (N - q)^\SP \), \((\hat{q})^\V \subseteq q \). By Lemma 3.2, there is a \(\tau_1 \in \text{Hom}(M, \mathbb{N}) \) such that \(\tau_1(q) \subseteq 1 + \mathbb{N} \) and \(\tau_1|_{N-q} = 0 \). Put \(\tau = \tau_1^\SP: G \to \mathbb{Z} \). Then \(\tau \in \hat{N} - \hat{q} \) and \(\tau(x) > 0 \) for any \(x \in q \). Therefore \((\hat{q})^\V = q \).

(5) is from (3) and (4).

4. Toric Schemes

In this and following sections, we need some knowledge of log structures. [3] and [1] are good references in this field.

First we give the definition of fan. Let \(G \) be a finitely generated free abelian group.

Definition 4.1. A fan in \(G \) is a nonempty collection \(\vartriangle \) of convex cones in \(G \) satisfying the following condition:

1. For any \(p \in \vartriangle \) and \(p \in \text{Spec} M, P - p \in \vartriangle \).
2. For any \(P, Q \in \vartriangle \), \(P \cap Q = P - p = Q - q \) for some \(p \in \text{Spec} P \) and \(q \in \text{Spec} Q \).

The union \(|\vartriangle| := \bigcup_{P \in \vartriangle} P \) is called the support of \(\vartriangle \). \(\vartriangle \) is said to be finite if \(\vartriangle \) is a finite set, and is said to be complete if \(|\vartriangle| = G \).

Now we begin to construct the toric scheme from a given fan \(\vartriangle \) in \(G \). Let \(R \) be a ring. For each \(P \in \vartriangle \), let

\[
U_P := \text{Spec} R[\hat{P}].
\]

Then \(\hat{P} \to R[\hat{P}] \) generates a log structure on \(U_P \), denoted by \(\mathcal{M}_P \).

Let \(P \in \vartriangle \) and \(p \in \text{Spec} P \). Put \(Q = P - p \) and \(S = \hat{P} - \hat{p} \). Then \(S \) is a finitely generated monoid. Since \(\hat{Q} = \hat{P}_p \) by Theorem 3.4(1), we have

\[
R[\hat{Q}] = R[\hat{P}_p] \cong S^{-1}R[M],
\]

hence \(U_Q \to U_P \) is an open immersion and \(\mathcal{M}_Q = \mathcal{M}_P|_{U_Q} \).

Now let \(P, Q \in \vartriangle \) and let \(p \in \text{Spec} P, q \in \text{Spec} Q \) such that \(P \cap Q = P - p = Q - q \). Then we may regard that

\[
U_P \cap U_Q = U_{P \cap Q}.
\]

In this way we can glue \(\{ U_P \mid P \in \vartriangle \} \) to form a scheme of finite type over \(R \), denoted by \(T(\vartriangle, R) \), which is called a toric scheme over \(R \). Obviously \(\{ \mathcal{M}_P \mid P \in \vartriangle \} \) can be glued to form a log structure on \(T(\vartriangle, R) \), denoted by \(\mathcal{M}(\vartriangle, R) \).

Let \(O := \{ 0 \} \in \vartriangle \). Then for any \(P \in \vartriangle \), \(U_O \subseteq U_P \).

If \(R = k \) is a field, by Lemma 1.10, we have \(\dim(T(\vartriangle, k)) = \text{rank}(G) \).

Lemma 4.2. Let \(P, Q \in \vartriangle \). Then the following conditions are equivalent:

1. \(P \subseteq Q \).
(2) \(U_P \subseteq U_Q \).
(3) There exists a point \(x \in U_P \cap U_Q \) such that \(m_{X,x} \cap \bar{P} = \bar{P} - \bar{P}^* \).

Proof. (1) \(\Rightarrow \) (2) is by the definition of \(T(\Delta, R) \).

(2) \(\Rightarrow \) (3). Put \(A' = R[\bar{P}] \). Let \(m \) be a maximal ideal of \(R \). Set \(\mathfrak{P} = m \cdot A + (\bar{P} - \bar{P}^*) \cdot A \). Since \(A/\mathfrak{P} \cong (R/m)[\bar{P}^*] \) is integral, \(\mathfrak{P} \in \text{Spec} \ A \). \(\mathfrak{P} \) correspond to a point \(x \) in \(U_P \), which satisfies the required conditions.

(3) \(\Rightarrow \) (1). Let \(\mathfrak{p} \in \text{Spec} \ P \) such that \(P \cap Q = P - \mathfrak{p} \). Since \(x \in U_P \cap U_Q = U_{P \cap Q} = U_{P - \mathfrak{p}} \), we have \(\bar{P} - \bar{P}^* = m_{X,x} \cap \bar{P} \subseteq \mathfrak{p} \). Hence \(\bar{p} = P - \bar{P}^* \) and \(\mathfrak{p} = (\mathfrak{p}) \cap Q = \emptyset \). Therefore \(P = P \cap Q \subseteq Q \). \(\square \)

Theorem 4.3. Let \(R \) be a noetherian ring. Then the following conditions are equivalent.

1. \(T(\Delta, R) \) is quasi-compact;
2. \(T(\Delta, R) \) is a noetherian scheme;
3. \(\Delta \) is finite.

Proof. (3) \(\Rightarrow \) (2) \(\Rightarrow \) (1) is obvious.

(1) \(\Rightarrow \) (3). Since \(T(\Delta, R) \) is quasi-compact, there are a finite number of convex cones \(P_1, P_2, \ldots, P_n \) in \(\Delta \) such that
\[
T(\Delta, R) = \bigcup_{i=1}^{n} U_{P_i}.
\]
Put
\[
\Delta' = \{ P \in \Delta \mid P \subseteq P_i \text{ for some } i \}.
\]
By the definition of fan and Lemma 1.2, \(\Delta' \) is a finite set.

Let \(P \in \Delta \). Since \(P \subseteq P_i \), by Lemma 4.2, there is a point \(x \in U_P \) such that \(m_{X,x} \cap \bar{P} = \bar{P} - \bar{P}^* \). Assume that \(x \in U_{P_i} \). Then by Lemma 4.2, \(P \subseteq P_i \), i.e., \(P \in \Delta' \). Hence \(\Delta = \Delta' \) is a finite set. \(\square \)

Theorem 4.4. If \(R \) is integral (resp. integrally closed), then \(T(\Delta, R) \) is integral (resp. normal).

Proof. Let \(P \in \Delta \). By Lemma 4.5, there is a finitely generated saturated submonoid \(N \) of \(P \) such that \(N^* = \{ 1 \} \) and \(\bar{P} = N \times P^* \). We have \(P^* \cong \mathbb{Z}^r \) for some \(r \in \mathbb{N} \). Hence
\[
R[\bar{P}] \cong R[P^*][N] \cong R[\mathbb{Z}^r][N].
\]
By Theorem 2.2 if \(R \) is integral (resp. integrally closed), so are \(R[\mathbb{Z}^r] \) and \(R[\mathbb{Z}^r][N] \). \(\square \)

Theorem 4.5. Let \(A \) be a \(R \)-algebra. Then
\[
T(\Delta, R) \times_R \text{Spec} \ A \cong T(\Delta, A).
\]

In the following, we will use Valuative Criterion (see [EGA] II 7.2.3 and 7.2.8) to discuss the separatedness and properness of toric schemes.

Lemma 4.6. Let \(K \) be a field, \(v \) a valuation of \(K \), \(G \) a finitely generated free abelian additive group, \(f : G \to K^* \) a homomorphism of abelian groups. Put \(N := \{ x \in G \mid v(f(x)) \geq 0 \} \). If \(G \not= N \), then

1. For any \(x \in G \), \(x \in N \) or \(-x \in N \).
2. \(N \) is a concave cone in \(G \).
3. \(\hat{N} \cong N \), i.e., \(\hat{N} = N \cdot x \) for some \(x \in G^* \).

Proof. (1) and (2) are obvious.

(3). Put \(M = \hat{N} \). Then \(M \not= \{ 0 \} \) and \(\hat{M} = N \). By Lemma 1.11, We have only to prove that \(\dim M = 1 \). Assume that \(\dim M \geq 2 \). Then there is a \(\mathfrak{p} \in \text{Spec} \ M \) such that \(\mathfrak{p} \not= \emptyset \), \(M - \{ 0 \} \). Let \(x \in M - (\mathfrak{p} \cup \{ 0 \}) \) and \(y \in \mathfrak{p} \). By Lemma 3.3, there are \(\sigma_1, \sigma_2 \in \hat{M} \) such that \(\sigma_1(x) > 0, \sigma_2|_{M - \mathfrak{p}} = 0 \) and \(\sigma_2(y) > \sigma_1(y) \). Put \(\sigma = \sigma_1 - \sigma_2 \). Then \(\sigma(x) > 0 \) and \(\sigma(y) < 0 \). Hence \(\sigma, -\sigma \not= \hat{M} = N \). This contradicts (1). \(\square \)
Lemma 4.7. Let K be a field. Let $\varphi: \text{Spec } K \to T(\triangle, R)$ be a morphism of schemes. Then $\varphi(\text{Spec } K) \subseteq U_\triangle.$

Lemma 4.8. $T(\triangle, R)$ is quasi-separated over $R.$

Proof. Note that for all $P, Q \in \triangle,$ $U_P \cap U_Q = U_{PQ}$ is affine, a fortiori quasi-compact. □

Theorem 4.9. $T(\triangle, R)$ is separated over $R.$

Proof. Let (A, K, v) be a valuation ring. Let $\varphi: \text{Spec } K \to T(\triangle, R),$ $\psi: \text{Spec } A \to \text{Spec } R$ and $\phi_i: \text{Spec } A \to T(\triangle, R) (i = 1, 2)$ be morphisms of schemes which make a commutative diagram.

\[
\begin{array}{ccc}
\text{Spec } K & \xrightarrow{\varphi} & T(\triangle, R) \\
\downarrow & & \downarrow \\
\text{Spec } A & \xrightarrow{\psi} & \text{Spec } R
\end{array}
\]

(4.1)

Let m_v denote the maximal ideal of $A.$ Let $P_i \in \triangle$ such that $\phi_i(m_v) \in U_{P_i}.$ Then $\phi_i(\text{Spec } A) \subseteq U_{P_i}.$ By Lemma 4.7, $\varphi(\text{Spec } K) \subseteq U_\triangle.$ Hence Diagram (4.1) induces a commutative diagram of rings.

\[
\begin{array}{ccc}
R & \xrightarrow{f_i} & R[\tilde{P_i}] \subseteq R[G^*] \\
\downarrow & & \downarrow \\
A & \xrightarrow{g_i} & K
\end{array}
\]

Put

$N := \{ x \in G^* \mid v(f(x)) \geq 0 \}.$

If $G^* = N,$ then $P := \tilde{N} = \{0\}.$ If $G^* \neq N,$ by the Lemma 4.6, N is a concave in $G^*.$ Then $\tilde{P_i} \subseteq N,$ $\tilde{N} \subseteq (\tilde{P_i})^c = P_i.$ We have

$P := P_1 \cap P_2 \supseteq \tilde{N}.$

In both cases, we have $P \in \triangle$ and $\tilde{P_i} \subseteq \tilde{P} \subseteq \tilde{N}.$ Hence we have $f(R[\tilde{P_i}]) \subseteq f(R[\tilde{P}]) \subseteq A$ and $\phi_i(\text{Spec } A) \subseteq U_{\tilde{P}} \subseteq U_{\tilde{P}}.$ So $\phi_1 = \phi_2.$ As $T(\triangle, R)$ is quasi-separated, by Valuation Criterion, $T(\triangle, R)$ is separated over $R.$ □

Theorem 4.10. $T(\triangle, R)$ is proper over R if and only if \triangle is a finite and complete fan.

Proof. (1) Assume that $T(\triangle, R)$ is proper over $R.$ Let m be a maximal ideal of R and set $k = R/m.$ Then $T(\triangle, k)$ is proper over $k,$ thus is a noetherian scheme. By Theorem 4.3, \triangle is finite.

Let x be any element in $G.$ Then there is an element $y \in G$ such that $x = ry$ and $G/zy \cong \mathbb{Z}^{n-1},$ where $r \in \mathbb{N}$ and $n = \text{rank}(G).$ Put $M := N_k,$ then M is a convex cone in $G.$ Put $N = M,$ $p = N - N^*,$ $A = k[N]$ and $\mathfrak{p}_A = p_A \in \text{Spec } A.$ Let K be the quotient field of $A.$ Then there is a valuation ring (B, v) of K/k such that $A \subseteq B$ and $m_v \cap A = \mathfrak{p}_A.$ By Lemma 4.6, $N' := \{ u \in G^* \mid v(u) \geq 0 \}$ is a concave cone in G and $\tilde{N}' \cong \mathbb{N}.$ Since $N \subseteq N',$ we have $\tilde{N}' \subseteq \tilde{N} = M,$ hence $\tilde{N}' = M.$ Since $T(\triangle, k)$ is proper over $k,$ B has a unique center ξ on $T(\triangle, k).$ Let $P \in \triangle$ such that $\xi \in U_P.$ Then $\tilde{P} \subseteq N',$ and we have $x \in M = \tilde{N}' \subseteq P.$ Hence \triangle is complete.

(2) Assume that \triangle is finite and complete. By Theorem 4.9, $T(\triangle, R)$ is separated over over $R.$ Let (A, K, v) be a valuation ring. Let $\varphi: \text{Spec } K \to T(\triangle, R)$ and $\psi: \text{Spec } A \to \text{Spec } R$ be morphisms of schemes which make a commutative diagram.

\[
\begin{array}{ccc}
\text{Spec } K & \xrightarrow{\varphi} & T(\triangle, R) \\
\downarrow & & \downarrow \\
\text{Spec } A & \xrightarrow{\psi} & \text{Spec } R
\end{array}
\]

(4.2)
By Lemma 4.7, \(\varphi(\text{Spec } K) \subseteq U_O \). Hence (4.2) induces a diagram of rings.

\[
\begin{array}{ccc}
R & \xrightarrow{f} & A \\
\downarrow & & \downarrow \\
R[G^*] & \xrightarrow{f} & K
\end{array}
\]

Put \(N := \{ x \in G^* \mid \nu(f(x)) \geq 0 \} \). If \(N = G^* \), then \(f(R[G^*]) \subseteq A \). Hence \(f: R[G^*] \to A \) induces a morphism \(\phi: \text{Spec } A \to U_O \subseteq T(\triangle, R) \) which make (4.3) commutative.

\[
\begin{array}{ccc}
\text{Spec } K & \xrightarrow{\varphi} & T(\triangle, R) \\
\downarrow & & \downarrow \\
\text{Spec } A & \xrightarrow{\phi} & \text{Spec } R
\end{array}
\]

(4.3)

So we may assume that \(N \neq G^* \). By Lemma 4.6, \(N \) is a concave cone in \(G^* \) and \(\tilde{N} = \mathbb{N} \cdot \varepsilon \) for some \(\varepsilon \in G \). Since \(\triangle \) is complete, there is a \(P \in \triangle \) containing \(\varepsilon \). Then \(\tilde{P} \subseteq N \). We have \(f(R[\tilde{P}]) \subseteq A \). Hence

\[
g := f|_{R[\tilde{P}]}: R[\tilde{P}] \to A
\]

induces a morphism

\[
\phi: \text{Spec } A \to U_P \subseteq T(\triangle, R)
\]

which make (4.3) commutative. By Valuative Criterion, \(T(\triangle, R) \) is proper over \(R \). \(\square \)

5. Regularity and Logarithmical Regularity

Now we study the regularity of Toric Schemes.

Lemma 5.1. Let \(R \) be a noetherian ring, \(M \) a finitely generated saturated monoid such that \(M^{gp} \) is torsion-free. Then \(R[M] \) is regular if and only if \(R \) is regular and \(M \cong \mathbb{Z}^r \times \mathbb{N}^s \) for some \(r, s \in \mathbb{N} \).

Proof. Put \(A = R[M] \). Obviously if \(R \) is regular and \(M \cong \mathbb{Z}^r \times \mathbb{N}^s \), \(A \) is regular.

Now assume that \(A \) is regular. Let \(p \) be any prime ideal of \(R \). Then \(p := p \cdot A \) is a prime ideal of \(A \). Since \(A \) is flat over \(R \), \(A_p \) is flat over \(R_p \). By [6, Theorem 23.7], \(R_p \) is regular. Hence \(R \) is a regular ring.

By Lemma 1.5, \(M \cong \mathbb{Z}^r \times N \), where \(N \) is a finitely generated saturated monoid with \(N^* = \{1\} \). Put \(A' = R[\mathbb{Z}^r] \). Let \(p \) be a minimal prime ideal of \(A' \). Since \(R \) is regular, so is \(A' \) and \(A'_p \). Hence \(K := A'_p \) is a field. As \(A'[N] \cong R[M] \) is regular, so is its localization \(K[N] \cong S^{-1}(A'[N]) \), where \(S = A' - p \). Put \(B = K[N] \) and \(m = (N - \{1\}) \cdot B \). Set

\[
T = N - \{1\} \cup \{ x \cdot y \mid x, y \in N - \{1\} \}.
\]

Then \(N \) can be generated by \(T \). Obviously \(K \cdot T \) is a \(K \)-linear subspace of \(B \) with dimension \(= |T| \). Put \(m' = m B_m \). Then we have

\[
m'/m'^2 \cong m/m^2 \cong K \cdot T.
\]

By Lemma 1.10, \(\dim B_{m'} = \text{rank}(N^{gp}) \). Since \(B_{m'} \) is a regular local ring, we have

\[
|T| = \dim_K (m'/m'^2) = \dim B_{m'} = \text{rank}(N^{gp})
\]

Put \(T = \{ x_1, x_2, \ldots, x_s \} \), then the following homomorphism

\[
\mathbb{Z}^s \to N^{gp}, \quad (a_1, a_2, \ldots, a_s) \mapsto x_1^{a_1}x_2^{a_2} \cdots x_s^{a_s}
\]

is an isomorphism. Hence \(N \cong \mathbb{N}^s \), i.e., \(M \cong \mathbb{Z}^r \times \mathbb{N}^s \). \(\square \)

Theorem 5.2. \(T(\triangle, R) \) is a regular scheme if and only if \(R \) is regular and for each \(P \in \triangle, P \cong \mathbb{N}^r \) for some \(r \in \mathbb{N} \).
Next, we study the logarithmical regularity of Toric Schemes. First, we give the definition of logarithmical regularity introduced in [1, p.1075-1076].

Definition 5.3. Let \((X, \mathcal{M})\) be a log scheme. We say \((X, \mathcal{M})\) is **logarithmically regular** at a point \(x \in X\), if the following two conditions are satisfied. Let \(I(x, \mathcal{M})\) be the ideal of \(\mathcal{O}_{X,x}\) generated by the image \(\mathcal{M}_x - \mathcal{O}_{X,x}^*\).

1. \(\mathcal{O}_{X,x}/I(x, \mathcal{M})\) is a regular local ring.
2. \(\dim(\mathcal{O}_{X,x}) = \dim(\mathcal{O}_{X,x}/I(x, \mathcal{M})) + \text{rank}(\mathcal{M}_x^\text{gp}/\mathcal{O}_{X,x}^*)\).

We say \((X, \mathcal{M})\) is logarithmically regular if \((X, \mathcal{M})\) is logarithmically regular at all \(x \in X\).

Lemma 5.4. Let \(R\) be a noetherian local ring with maximal ideal \(m\), \(M\) a finitely generated saturated monoid with \(M^* = \{1\}\). Put \(A = R[M]\) and \(m' = m \cdot A + (M - \{1\}) \cdot A\). Then \(m'\) is a maximal ideal of \(A\) with \(\text{ht}(m') = \dim(R) + \text{rank}(M^\text{gp})\).

Proof. Obviously \(A\) is flat over \(R\) and \(m' \cap R = m\). We have

\[
\text{ht}(m') = \text{ht}(m) + \text{ht}(m'/mA) \quad \text{(by [5], (13.B), Theorem 19)}
\]

\[
= \dim(R) + \dim(k[M]) \quad \text{(put } k = R/m)
\]

\[
= \dim(R) + \text{rank}(M^\text{gp}) \quad \text{(by Lemma 1.10)}
\]

Theorem 5.5. Let \(R\) be a regular ring. Then \((T(\triangle, R), \mathcal{M}(\triangle, R))\) is logarithmically regular.

Proof. Put \(X = T(\triangle, R)\) and \(\mathcal{M} = \mathcal{M}(\triangle, R)\). We use the notations introduced in Definition 5.3. Let \(x\) be any point of \(X\). Assume that \(x \in U_P\), where \(P \in \triangle\). Put \(M = P\), \(A = \mathcal{O}_{X,x}\) and \(I = I(x, \mathcal{M})\). Then \(U_P = \text{Spec } R[M]\) and \(x\) corresponds to a prime ideal \(\mathfrak{p}\) of \(R[M]\). Thus \(A \cong R[M]_{\mathfrak{p}}\). Put \(\mathfrak{p} = M \cap \mathfrak{p}\). Then \(I\) corresponds to the ideal \(\mathfrak{p} \cdot R[M]_{\mathfrak{p}}\) of \(R[M]_{\mathfrak{p}}\). By Lemma 1.5, there is an integer \(r \geq 0\) and a finitely generated saturated monoid \(N\) such that \(N^* = \{1\}\) and \(M_{\mathfrak{p}} \cong N \times \mathbb{Z}^r\). Then

\[
A \cong (R[M_{\mathfrak{p}}])_{\mathfrak{p}_1}
\]

\[
\cong (R_1[N])_{\mathfrak{p}_2} \quad \text{(put } R_1 = R[\mathbb{Z}^r])
\]

\[
\cong (R_2[N])_{\mathfrak{p}_3} \quad \text{(put } R_2 = (R_1)_{\mathfrak{p}_2 \cap R_1})
\]

Obviously \(R_2\) is a regular local ring with maximal ideal \(m_2 = (\mathfrak{p}_2 \cap R_1) \cdot R_2\). Put \(A' = R_2[N]\), \(m' = m_2 \cdot A' + (N - \{1\}) \cdot A'\) and \(B = A'_{\mathfrak{p}_3}\). Since \(m' \subseteq \mathfrak{p}_3\) and \(m'\) is a maximal ideal of \(A'\), we have \(\mathfrak{p}_3 = m'\). Note that \(I\) corresponds to the ideal \((N - \{1\}) \cdot B\) of \(B\). Hence \(A/I \cong R_2\) is a regular local ring. We have

\[
\dim(A) = \text{ht}(m')
\]

\[
= \dim(R_2) + \text{rank}(N^\text{gp}) \quad \text{(by Lemma 5.4)}
\]

\[
= \dim(A/I) + \text{rank}(\mathcal{M}_x^\text{gp}/\mathcal{O}_{X,x}^*)
\]

By the definition, \((X, \mathcal{M})\) is regular at \(x\).

\[\square\]

6. **Morphisms of Toric Schemes**

Definition 6.1. Let \((G, \triangle)\) and \((G', \triangle')\) be two fans. A homomorphism \(\varphi: (G, \triangle) \rightarrow (G', \triangle')\) of fans is a homomorphism \(\varphi: G \rightarrow G'\) of groups satisfying that: for each \(P \in \triangle\) there exists a \(P' \in \triangle'\) such that \(\varphi(P) \subseteq P'\).

In the following, we let \(R\) be a ring.
Theorem 6.2. Let \(\varphi: (G, \Delta) \to (G', \Delta') \) be a homomorphism of fans. Then \(\varphi \) gives rise to a morphism
\[
\varphi_*: (T(\Delta, R), \mathcal{M}(\Delta, R)) \to (T(\Delta', R), \mathcal{M}(\Delta', R))
\]
of log schemes over \(R \).

Theorem 6.3. Let \(\varphi: (G, \Delta) \to (G', \Delta') \) be a homomorphism of fans. Then for any \(P' \in \Delta' \),
\[
\varphi_*^{-1}(U_{P'}) = \bigcup_{P \in \Delta' \mid \varphi(P) \subseteq P'} U_P.
\]

Proof. Put \(X = T(\Delta, R) \), \(X' = T(\Delta', R) \) and \(f = \varphi_*: X \to X' \). Let \(x \in f^{-1}(U_{P'}) \). We may assume that \(x \in U_{P_1} \), where \(P_1 \in \Delta \). Then there is a \(P'' \in \Delta' \) such that \(\varphi(P_1) \subseteq P'' \). We have \(P'_1 \in \text{Spec} P' \) and \(P'' \in \text{Spec} P'' \) such that
\[
P'_1 \cap P'' = P' - P'_1 = P'' - P'''.
\]

Put \(Q_1 = P_1, \quad Q' = Q'' = P'' , \quad q' = \varphi P_1 \). Then \(q'' = \varphi(P_1) \). \(x \) corresponds to a prime ideal \(\mathfrak{p} \) of \(R[Q_1]\).

Put \(q_1 = \mathfrak{p} \cap Q_1, \quad \psi = \varphi|_{P_1}: P_1 \to P'' \) and \(\phi = \psi \circ \varphi: Q'' \to Q_1 \) Since \(\varphi(x) \in U_{P'} \cap U_{P''} = U_{P' \cap P''} = U_{P'' - P'''} \), we have a natural homomorphism of \(R \)-algebras: \(R[Q''_{q_1}] \to R[Q_1]_{\mathfrak{p}} \). Using the following commutative diagram
\[
\begin{array}{ccc}
Q'' & \xrightarrow{\phi} & R[Q''_{q_1}] \\
\downarrow & & \downarrow \\
Q_1 & \xrightarrow{\psi} & R[Q_1]_{\mathfrak{p}}
\end{array}
\]
we obtains \(\phi^{-1}(q_1) \subseteq q'' \). Hence \(p := \psi^{-1}(q'') \subseteq q_1 \). Put \(P = P_1 - p \). Then \(\varphi(P) \subseteq P'' - p'' \subseteq P' \).

Since \(q_1 \subseteq p, x \in U_P \subseteq f^{-1}(U_{P'}) \). \(\square \)

Theorem 6.4. Let \(\varphi: (G, \Delta) \to (G', \Delta') \) be a homomorphism of fans. Then \(\varphi_*: T(\Delta, R) \to T(\Delta', R) \) is proper if and only if for each \(P' \in \Delta' \), the set
\[
\Delta_{P'} := \{ P \in \Delta \mid \varphi(P) \subseteq P' \}
\]
is finite and
\[
\varphi_*^{-1}(P') = \bigcap_{P \in \Delta_{P'}} P.
\]

Proof. By Theorem 6.3 and Lemma 1.9, we may assume that \(\Delta' \) is finite.

(1) Assume that \(\varphi_* \) is a proper morphism. Let \(m \) be a maximal ideal of \(R \) and set \(k = R/m \). Then
\[
X := T(\Delta, k) \cong T(\Delta, R) \times_R \text{Spec} k,
X' := T(\Delta', k) \cong T(\Delta', R) \times_R \text{Spec} k,
\]
and the morphism
\[
f := \varphi_* \times_R \text{id}: X \to X'
\]
is proper. As \(X' \) is a noetherian scheme by Theorem 4.3, so is \(X \). Hence \(\Delta \) is a finite set.

Let \(P' \in \Delta' \) and \(u \in \varphi_*^{-1}(P') \) be any elements. Then there is an \(e \in G \) such that \(u = ae \) and \(G/Ze \cong \mathbb{Z}^{n-1} \), where \(a \in \mathbb{N} \) and \(n = \text{rank}(G) \). \(M := Ne \) is a convex cone in \(G \). Put \(N = M, \quad p = N - N^* \), \(A = k[N] \) and \(\mathfrak{p}A \in \text{Spec} A \). Let \(K \) be the quotient field of \(A \). Then there is a valuation ring \((B, v)\) of \(K/k \) such that \(A \subseteq B \) and \(m_v \cap A = \mathfrak{p}A \). So \(N = \{ u \in G^* \mid v(u) \geq 0 \} \). As \(P' \) is saturated and \(\varphi(u) = a \cdot \varphi(e) \in P' \), we have \(\varphi(e) \in P' \), hence
\[\varphi(M) \subseteq P'. \] \(\varphi \) induces a homomorphism \(k[\tilde{P}'] \to k[N] \), and the following commutative diagram of rings

\[
\begin{array}{c}
\xrightarrow{k[\tilde{P}']}
\xrightarrow{k[N]}
\xleftarrow{B}
\xrightarrow{k[G^*]}
\xrightarrow{K}
\end{array}
\]

induces a commutative diagram of schemes

\[
\begin{array}{c}
\xrightarrow{\text{Spec } K \to \text{Spec } B}
\xrightarrow{\text{Spec } X' \to \text{Spec } X}
\xleftarrow{\text{Spec } U_{O'} \to \text{Spec } U_{P'}}
\xrightarrow{\text{Spec } A \to \text{Spec } A'}
\end{array}
\]

By Valuative Criterion, there is a morphism \(g: \text{Spec } B \to X \) of schemes which make a diagram

\[
\begin{array}{c}
\xrightarrow{\text{Spec } K \to \text{Spec } B}
\xrightarrow{\text{Spec } X' \to \text{Spec } X'}
\xleftarrow{\text{Spec } U_{O'} \to \text{Spec } U_{P'}}
\xrightarrow{\text{Spec } A \to \text{Spec } A'}
\end{array}
\]

Since \(f(g(m_\nu)) \subseteq U_{P'} \), by Theorem 6.3, there exists a \(P \in \Delta \) such that \(g(m_\nu) \subseteq U_P \) and \(\varphi(P) \subseteq P' \). As \(k[\tilde{P}] \subseteq B \), we have \(\tilde{P} \subseteq N \). Hence \(u \in M = \tilde{N} \subseteq P \).

(2) Assume that for each \(P' \in \Delta', \Delta_{P'} \) is finite and

\[\varphi^{-1}(P') = \bigcap_{P \in \Delta_{P'}} P. \]

Let \(X := T(\Delta, R), X' := T(\Delta', R) \) and \(f = \varphi_*: X \to Y \). By Theorem 4.9, \(f \) is separated. Let \((A, K, \nu) \) be a valuation ring. Let \(\alpha: \text{Spec } K \to X \) and \(\beta: \text{Spec } A \to X' \) be the morphisms of schemes which make a commutative diagram.

\[
\begin{array}{c}
\xrightarrow{\text{Spec } K \to \text{Spec } A}
\xrightarrow{\text{Spec } X \to \text{Spec } X'}
\end{array}
\]

Assume that \(\beta(m_\nu) \subseteq U_{P'} \), where \(P' \in \Delta' \). By Lemma 4.7, \(\varphi(\text{Spec } K) \subseteq U_O \). Obviously \(f(U_O) \subseteq U_{O'} \subseteq U_{P'} \). Then (6.1) induces a commutative diagram of rings

\[
\begin{array}{c}
\xrightarrow{R[\tilde{P}']}
\xrightarrow{A}
\xleftarrow{R[G^*]}
\xrightarrow{K}
\end{array}
\]

Put \(N = \{ x \in G^* \mid \nu(\delta(x)) \geq 0 \} \). If \(N = G^* \), then \(\delta(R[G^*]) \subseteq A \) and \(\delta: R[G^*] \to A \) induces a morphism \(g: \text{Spec } A \to U_O \subseteq X \) which make a commutative diagram.

\[
\begin{array}{c}
\xrightarrow{\text{Spec } K \to \text{Spec } A}
\xrightarrow{\text{Spec } X \to \text{Spec } X'}
\end{array}
\]
So we may assume that \(N \neq G^* \). By Lemma 4.6, \(N \) is a concave cone in \(G^* \) and \(\hat{N} = N \cdot e \) for some \(e \in G \). As \(\varphi^*(\bar{P}') \subseteq N \), we have \(e \in \hat{N} \subseteq \varphi^{-1}(P') \). By the assumption, there is a \(P \in \triangle \) such that \(e \in P \subseteq \varphi^{-1}(P') \). So \(\bar{P} \subseteq N \), and we have \(\delta(R[\bar{P}]) \subseteq A \). Hence

\[
\delta' := \delta|_{R[\bar{P}]} : R[\bar{P}] \rightarrow A
\]
duces a morphism \(g : \text{Spec } A \rightarrow U_P \subseteq X \) which make (6.2) commutative. By Valuative Criterion, \(f \) is a proper morphism. \(\square \)

Theorem 6.5. Let \(k \) be a field. Let \(\varphi : (G, \triangle) \rightarrow (G', \triangle') \) be a homomorphism of fans. Then \(\varphi_* : T(\triangle, k) \rightarrow T(\triangle', k) \) is birational if and only if \(\varphi : G \rightarrow G' \) is an isomorphism of groups.

Proof. Obviously we have only to prove that if \(\varphi_* \) is birational, then \(\varphi \) is an isomorphism. Put \(H = G^* \), \(H' = G'^* \) and \(\psi = \varphi^* : H' \rightarrow H \). Since the homomorphism \(\phi : k[H'] \rightarrow k[H] \) induced by \(\psi \) is an injective, so is \(\psi \). So we may regard \(H' \) as a subgroup of \(H \). As \(\varphi_* \) is birational, \(k[H'] \) and \(k[H] \) have the same quotient field, denoted by \(K \). We have

\[
\text{rank}(H) = \dim T(\triangle, k) = \dim T(\triangle', k) = \text{rank}(H').
\]
Hence \(H/H' \) is a finite group and \(k[H] \) is a finite integral extension of \(k[H'] \). By Theorem 4.4, \(k[H'] \) is an integral closed integral domain. Hence \(k[H'] = k[H] \), i.e., \(H' = H \). Therefore \(\varphi : G \rightarrow G' \) is an isomorphism. \(\square \)

References

[1] K. Kato, Toric Singularities, *Amer. J. Math.* **116** (1994), 1073-1099.
[2] M. Hochster, Rings of invariants of tori, Chen-Macaulay rings generated by monomials, and polytopes, *Ann. of Math.* **96** (1972), 318-337.
[3] F. Kato, Log Smooth Deformation Theory, *Tôhoku Math. J.* **48** (1996), 317-354.
[4] T. Oda, *Convex Bodies and Algebraic Geometry*, Springer-Verlag, New York, 1973.
[5] H. Matsumura, *Commutative Algebra*, The Benjamin/Cummins Publishing Company, Inc., 1980, Second Edition.
[6] H. Matsumura, *Commutative ring theory*, Cambridge University Press, Cambridge, 1986
[7] Grothendieck, A. and Dieudonné, J. *Eléments de Géométrie Algébrique*. [EGA] II. Étude globale élémentaire de quelques classes de morphismes, Ibid. 8 (1961).