Research and application of safety Assurance system for oil and gas construction project based on Internet of Things

Chuanping Wang¹, Xiaoli Yang¹, Hu Li¹, Xiaolei Wang¹, Tao Liu¹, Yao Hu²,*

¹Gas Production Plant of Xinjiang Oilfield Company, Kelamayi Xinjiang 834000, China
²Southwest Petroleum University, Chengdu, Sichuan 610000, China
*Corresponding author e-mail: 419767376@qq.com

Abstract. The purpose of this paper is to establish the security mechanism and system of oil and gas resources through the study of the theory and technology of oil and gas resources security. In order to achieve the storage of oil and gas resources data management, security analysis and the future development trend of oil and gas resources indicators, based on the field of the existing SCADA system for the application object, aiming at the shortcomings of the current system, integration of emerging Internet of things technology, the Internet of things of sense, transmission and application of three layer hierarchical build mechanism, the design has realized the oil and gas production security system based on Internet of things, and apply it to the oil field construction projects. This paper mainly designs and develops the oil and gas resources security guarantee system, realizes the data analysis management, the forecast result visual display and the guarantee operation and so on function, has the important theory and the practical significance to the guarantee oil and gas resources security.

1. Technical introduction

1.1. Overall design of oil and gas production support system based on the Internet of Things

Internet of Things Architecture

The architectural composition of the Internet of Things can be described in Figure 1. Functionally, it is mainly composed of data. The acquisition layer, the data transmission layer and the data processing application layer are composed.

Figure 1 architecture of the Internet of Things
1.2. **Perception layer**
The perception layer is the bottom layer in the three-layer architecture of the Internet of Things, mainly through RFID reading and writing equipment, temperature, degree sensor, humidity sensor and other information sensing devices complete the collection and acquisition of the basic information of the object.

1.3. **The transport layer**
In the Internet of Things system, the transmission layer is in the middle layer, mainly composed of routers, switches, gateways and other network equipment data transmission network, to complete the transmission of the perception layer data to the application layer, through a variety of networking to achieve the sharing of the underlying data of the Internet of Things.

1.4. **The application layer**
The application layer is located at the top level of the Internet of Things system. It mainly completes the storage, computing analysis and processing of all the perceptive layer data. At the same time, it can provide users with different data access control interfaces based on different applications, so as to realize the control and access of the perceptive layer devices.

2. **Safety guarantee system for oil and gas construction projects**
The essence of the oil and gas resource security is the guarantee of dynamic balance between supply and demand of oil and gas resources, the judgment of its security indicators should be selected the related influence factors of oil and gas resource security safeguard combined with historical data analysis, based on oil and gas resource security connotation of universality and complexity, according to the representative, the principle of continuous dynamic, systematic, simplicity, extensive access to oil and gas resources data and all kinds of related information, consult experts summarizes the opinion at the same time, and in many scholars research on the index system of oil and gas resource security for reference, on the base of the analysis results reasonable sort merge, The ultimate goal is to construct the security guarantee index of oil and gas resources with clear hierarchy and logic. This paper selects 12 key indicators that can comprehensively reflect the safety of oil and gas resources. See Table 1.

Early warning index system of oil and gas resource security guarantee	Oil and gas resource safety	Oil and gas storage and production ratio
		Replacement rate of oil and gas reserves
		Oil and gas production growth rate
Safety of oil and gas supply	Oil and gas reserves exploration	
	Oil/gas supply ratio	
	Annual oil and gas production	
	Oil and gas consumption intensity	
	Oil and gas consumption growth rate	
Oil and gas market safety	Oil and gas external dependence	
	Concentration of oil and gas imports	
	International oil and gas market prices	
	Oil price volatility	
2.1. System establishment
For the special environment of oil and gas production, it is a new requirement of oil and gas production informatization to adopt wireless transmission, strengthen production control, deeply dig massive data, and exchange data with other information systems of the group company. Compared with the traditional SCADA, the Internet of Things technology determines the inevitable trend of introducing the Internet of Things technology into the oil and gas production monitoring system. To this end, combining the traditional SCADA system structure with the technical architecture of the Internet of Things and the key technologies of the Internet of Things, this paper constructs the OIL and gas production support SCADA system based on the Internet of Things. The overall architecture of the system is shown in Figure 2.

![Diagram](image)

Figure. 2 Safety assurance system for oil and gas construction projects
The figure above shows the flow and storage of data streams and video streams between units of the Oil and gas production assurance system based on the Internet of Things. The single well data, pipe network data and station database data are collected into the configuration software of the station and operation area, and then stored in the real-time/historical database of the oilfield company through the data verification engine of the operation area for data exchange and synchronous application of other information projects and unified construction projects of the oilfield.

2.2. System Contents
Based information system requirements can be based on all kinds of oil and gas, oil and gas safety indicators, according to the different security level indicator, to provide risk assessment for oil and gas resource security, security in the analysis of the result of the forecast information, and according to the different degree of security, to make the corresponding emergency measures, to improve all kinds of contingency plans. In this way, our country can deal with emergencies calmly and avoid the occurrence of general international market price fluctuation or temporary domestic supply and demand contradiction, which will cause the national economy to suffer great losses. See Table 2, Table 3 and Table 4 for the input and output information of relevant business processes and business data [1-10].

Table 2 Work and business analysis

The business process	Business Activity name	Description of business activities
Oil and gas resource risk warning	Risk assessment	All aspects of risk assessment for the safety of oil and gas resources
	According to risk	The risk evaluation results are visually displayed in the user interface, and the query and analysis are realized
Risk early warning

Risk early warning	On the basis of the early warning to generate warning degrees
Emergency plan for oil and gas resources risk is formulated	Formulate emergency plan of risks
	According to different degrees of early warning, formulate corresponding emergency plans, improve various emergency measures
Oil and gas resource dynamic monitoring	Oil and gas resource data management
	Data acquisition, data format conversion, data import and data update for oil and gas resources
	Oil and gas resource information query
	Display oil and gas information as required
	Statistical analysis of oil and gas resources
	Make special statistical analysis of oil and gas resources
	Data file output
	Export and archive oil and gas data and analysis results

Table 3 Data input table

source	The serial number	User view name	Ready to hang
Oil and gas center	1	Base block empty label information	Security guarantee basic information module
	2	Block pattern	
Oil and gas center	1	Base block database	Security guarantee basic information database
	2	Oil and gas exploration and development database	
	3	Oil and gas trade number database	
	4	Dynamic oil price database	
Oil and gas Resources safety assurance Expert Group	1	Oil and gas resource safety evaluation index library	Safety assurance evaluation information database
	2	Risk warning information database	
	3	Emergency plan database	

Table 4 Data output table

where	The serial number	User view name	note	note
Task data folder	1	The report	Security assurance early warning process and result information	
	2	Statistical charts		
	3	The document		
	4	Thematic maps		
	5	The emergency response plan		

3. System development

This system adopts C/S architecture, and takes ArcGIS Engine as GIS platform, WPF as cartography system and C# as development language to develop the oil and gas resource security guarantee system under the environment of Visual Studio 2010. ArcEngine is used to realize the basic GIS function, and the mathematical calculation formula of the prediction model is transformed into computer language through programming, and the prediction of future indicators is finally realized, so as to realize the guarantee effect. The technical route of system development is shown in Figure 3.
4. Conclusion
The introduction of Internet of Things technology makes the oil and gas production monitoring system function more perfect. Through sensing, radio frequency, communication and other technologies, we can have a comprehensive perception of the production objects, realize automatic collection and control of production data, automatic collection of production data, automatic monitoring of production environment, automatic control of production process, and guarantee of the state of equipment connected with things. Collected data, accurate, stable, complete, controlled equipment, and safe, stable, sensitive.

References
[1] Weiguo Wang. On the Construction of Oil and Gas Strategic Passageway and security Guarantee Technology of Storage and Transportation [J]. Petroleum Planning and Design, 2013(04):1-4.
[2] Zhaorui Kong. Modern concept of security and safety of oil and gas pipeline system [J]. Journal of oil and gas storage and transportation, 2001, 020 (008) : 1-4.
[3] Pui Kanazawa, Ching-kai Lai. System safety Assurance Framework in Hong Kong Subway Network Construction Project [J]. Modern Urban Rail Transit, 2006(05):17-21.
[4] Taiyuan Liu Xia Hu, Gemany, Howell, etc. RAM analysis technology application in offshore oil and gas fields construction project research [J]. Journal of safety science and technology of China, 2013, 9 (001) : 75-78.
[5] Hangdi Zhou. Construction and operation Scheme Design of SL Oil and Gas Joint Construction Station of Hohhot Shijie Gas Company [D].
[6] Jin-chun Zhang, Chao Wu, Jin-xiu Hou. Research on project risk identification Method based on pressure-State-response -- A case study of risk identification of a long distance oil and gas pipeline construction project [J]. Chinese Journal of Safety Science, 2006.
[7] Stankovic J A . Research Directions for the Internet of Things[J]. IEEE Internet of Things Journal, 2014, 1(1):3-9.
[8] Christoph, F, Srnamil. The Internet of Things: a survey[J]. Computing reviews, 2017
[9] Atzori L, Iera A, Morabito G, et al. The Social Internet of Things (SIoT) – When social networks meet the Internet of Things: Concept, architecture and network characterization[J]. Computer Networks, 2012, 56(16):3594-3608.
[10] Riazul Islam S M , Kwak D, Huamaun Kabir M , et al. The Internet of Things for Health Care: A Comprehensive Survey[J]. IEEE Access, 2015, 3:678-708.
[11] Borgia, Eleonora. The Internet of Things vision: Key features, applications and open issues[J]. Computer Communications, 2014, 54:1-31