D-Branes and Derived Categories

Yuri Malyuta

Institute for Nuclear Research
National Academy of Sciences of Ukraine
03022 Kiev, Ukraine
e-mail: interdep@kinr.kiev.ua

Abstract

The digest of ideology interpreting D-branes on Calabi-Yau manifolds as objects of the derived category is given.

Keywords: D-branes, Derived category, Triangulated structure,
Monodromy.
1 Introduction

Recently there has been substantial progress \cite{1, 2, 3} in understanding D-branes on Calabi-Yau manifolds in context of derived categories \cite{4}.

The purpose of the present paper is to give the digest of this ideology.

2 Sheaves

In this section we shall introduce the definitions of presheaves and sheaves \cite{5}.

A \textit{presheaf} F over a topological space X is

1) An assignment to each nonempty open set $U \subset X$ of a set $F(U)$ (\textit{sections} of a presheaf F);

2) A collection of mappings (called restriction homomorphisms)

$$r_{UV} : F(U) \rightarrow F(V)$$

for each pair of open sets U and V such that $V \subset U$, satisfying

$$r_{UU} = 1_U , \quad r_{VW} r_{UV} = r_{UW} \quad \text{for} \quad W \subset V \subset U .$$

A presheaf F is called a \textit{sheaf} if for every collection U_i of open subsets of X with $U = \bigcup_{i \in I} U_i$ the following axioms hold:

a) If $s, t \in F(U)$ and $r_{UU_i}(s) = r_{UU_i}(t)$ for all i, then $s = t$;

b) If $s_i \in F(U_i)$ and if for $U_i \cap U_j \neq \emptyset$ we have

$$r_{U_i, U_i \cap U_j}(s_i) = r_{U_j, U_i \cap U_j}(s_j)$$
for all i, then there exists an $s \in F(U)$ such that $r_{U,U_i}(s) = s_i$ for all i.

If F and G are presheaves over X, then a *morphism* of presheaves $f : F \to G$ is a collection of maps $f(U) : F(U) \to G(U)$, satisfying the relation $r_{UV} f(U) = f(V) r_{UV}$.

Morphisms of sheaves are simply morphisms of the underlying presheaves.

Let (X, \mathcal{O}) be a complex manifold. A sheaf B over X is called a *coherent sheaf* of \mathcal{O}-modules if for each $x \in X$ there is a neighborhood U of x such that there is an exact sequence of sheaves over U,

$$0 \to B|_U \to \mathcal{O}^{\oplus p_1}|_U \to \mathcal{O}^{\oplus p_2}|_U \to \ldots \to \mathcal{O}^{\oplus p_k}|_U \to 0.$$

3 Complexes

Let B^\bullet denote a *complex* of coherent sheaves \mathcal{H}

$$B^\bullet : \ldots \xrightarrow{d^{i-2}} B^{i-1} \xrightarrow{d^{i-1}} B^{i} \xrightarrow{d^i} B^{i+1} \xrightarrow{d^{i+1}} \ldots ,$$

where $d^i d^{i-1} = 0$.

Cohomology groups of the complex B^\bullet are defined as

$$H^i(B^\bullet) = \text{Ker } d^i/\text{Im } d^{i-1}.$$

A morphism of complexes $f : B^\bullet \to C^\bullet$ induces a morphism of cohomology groups $H(f) : H^\bullet(B^\bullet) \to H^\bullet(C^\bullet)$.

If $H(f)$ is an isomorphism, the morphism f is said to be a *quasi-isomorphism*.

If morphisms f and g are *homotopy equivalent*, then $H(f) = H(g)$.

2
4 Categories

In this section we shall give some formal definitions [6].

A category C consists of the following data:

1) A class $\text{Ob } C$ of objects A, B, C, \ldots;
2) A family of disjoint sets of morphisms $\text{Hom}(A, B)$, one for each ordered pair A, B of objects;
3) A family of maps

$$\text{Hom}(A, B) \times \text{Hom}(B, C) \rightarrow \text{Hom}(A, C)$$

one for each ordered triplet A, B, C of objects.

These data obey the axioms:

a) If $f : A \rightarrow B$, $g : B \rightarrow C$, $h : C \rightarrow D$, then composition of morphisms is associative, that is, $h(gf) = (hg)f$;

b) To each object B there exists a morphism $1_B : B \rightarrow B$ such that $1_Bf = f$, $g1_B = g$ for $f : A \rightarrow B$ and $g : B \rightarrow C$.

An additive category is a category in which each set of morphisms $\text{Hom}(A, B)$ has the structure of an abelian group, subject to the following axioms:

A1 Composition of morphisms is distributive, that is,

$$(g_1 + g_2)f = g_1f + g_2f, \quad h(g_1 + g_2) = hg_1 + hg_2$$

for any $g_1, g_2 : B \rightarrow C$, $f : A \rightarrow B$, $h : C \rightarrow D$;

A2 There is a null object 0 such that $\text{Hom}(A, 0)$ and $\text{Hom}(0, A)$ consist of one morphism for any A;
To each pair of objects A_1 and A_2 there exists an object B and four morphisms

\[
p_1 \quad p_2
\]
\[
A_1 \iff B \iff A_2
\]
\[
i_1 \quad i_2
\]

which satisfy the identities

\[
p_1 i_1 = 1_{A_1}, \quad p_2 i_2 = 1_{A_2}, \quad i_1 p_1 + i_2 p_2 = 1_B, \quad p_2 i_1 = p_1 i_2 = 0.
\]

An abelian category \mathcal{A} is an additive category which satisfies the additional axiom:

A4 To each morphism $f : A \to B$ there exists the sequence

\[
K \xrightarrow{k} A \xrightarrow{i} I \xrightarrow{j} B \xrightarrow{c} K'
\]

with the properties

a) $ji = f$,

b) K is a kernel of f, K' is a cokernel of f,

c) I is a cokernel of k and a kernel of c.

The category of coherent sheaves is the abelian category \mathcal{A}.

5 The derived category

The derived category $D(\mathcal{A})$ is constructed in three steps \[4\] : 1st step. The category of complexes of coherent sheaves $\text{Kom}(\mathcal{A})$ is determined as follows

- $\text{Ob } \text{Kom}(\mathcal{A}) = \{\text{complexes } B^\bullet \text{ of coherent sheaves}\}$,
- $\text{Hom}(B^\bullet, C^\bullet) = \{\text{morphisms of complexes } B^\bullet \to C^\bullet\}$;
2nd step. The homotopy category $\mathcal{K}(\mathcal{A})$ is determined as follows

\[\text{Ob} \mathcal{K}(\mathcal{A}) = \text{Ob Kom}(\mathcal{A}) , \]
\[\text{Mor} \mathcal{K}(\mathcal{A}) = \text{Mor} \text{Kom}(\mathcal{A}) \text{ modulo homotopy equivalence} ; \]

3rd step. The derived category $\mathcal{D}(\mathcal{A})$ is determined as follows

\[\text{Ob} \mathcal{D}(\mathcal{A}) = \text{Ob} \mathcal{K}(\mathcal{A}) , \]
\[\text{The morphisms of} \mathcal{D}(\mathcal{A}) \text{ are obtained from morphisms in} \]
\[\text{K}(\mathcal{A}) \text{ by inverting all quasi-isomorphisms}. \]

The derived category $\mathcal{D}(\mathcal{A})$ is the additive category.

6 Triangulated structure

The derived category $\mathcal{D}(\mathcal{A})$ admits a triangulated structure \[^4\] with shift functor $[n]$ defined by

\[(B[n])^i = B^{n+i} \]

and with a class of distinguished triangles

\[\begin{array}{ccc}
A & \rightarrow & B \\
\uparrow & & \downarrow \\
C & \rightarrow & C = A[1] \oplus B
\end{array} \]

These data satisfy a number of axioms. The octahedral axiom is an essential ingredient in the study of D-brane stability \[^1\]. The octahedral axiom states that there exists the octahedron consisting of a top cap and a bottom cap:
Interpreting D-branes as vertices of the octahedron, it is possible to describe \textit{D-brane decays}: if \(C \) is stable against decay into \(A \) and \(B \), but that \(B \) itself is unstable with respect to a decay into \(E \) and \(F \), than \(C \) will always be unstable with respect to decay into \(F \) and some bound state \(G \) of \(A \) and \(E \).

7 The quintic

Let \(X \) be the quintic hypersurface in \(CP^4 \). The mirror \(Y \) is defined as the orbifold \(X/Z_5^3 \). In virtue of \textit{mirror symmetry} the \textit{Kähler moduli space} of \(X \) is identified with the \textit{complex structure moduli space} of \(Y \). The complex structure moduli space of \(Y \) is described by the Picard-Fuchs equation

\[
\{ \theta_z^4 + 5z(5\theta_z + 4)(5\theta_z + 3)(5\theta_z + 2)(5\theta_z + 1) \} \omega_k(z) = 0 ,
\]

where \(\theta_z = z \frac{d}{dz} \), the complex variable \(z \) spans the complex structure moduli space of \(Y \).
The Landau-Ginzburg point of the moduli space of X is mirror to $z = \infty$, the large radius limit of X is mirror to $z = 0$, the conifold point of X is mirror to $z = 1$. The periods $\omega_k(z)$ are singular at these three points.

8 Monodromy

Acting on the derived category $D(A)$, the monodromy is induced by a Fourier-Mukai transform associated to some generator $K^\bullet \in D(A)$. The formula for the monodromy action on a complex B^\bullet is

$$B^\bullet \mapsto Rp_{1*}(K^\bullet \overset{L}{\otimes} p_2^*(B^\bullet)) .$$

Geometry associated to this monodromy action is

$$\begin{array}{c}
\bigtriangleup \\
\cap
\end{array}
\begin{array}{c}
X \times X \\
p_1 \\
\leftarrow \downarrow \\
x \\
p_2 \\
\rightarrow X
\end{array}
\begin{array}{c}
\bigtriangleup \subset X \times X
\end{array}$$

where $\bigtriangleup \subset X \times X$ is the diagonal embedding of X.

In the formula for the monodromy action, we

1) Take a complex of sheaves B^\bullet on X, ”pull it back” to the inverse-image complex of sheaves $p_2^*(B^\bullet)$ on $X \times X$;

2) Take the tensor-product with the generator K^\bullet and construct the left-derived complex of sheaves;

3) ”Push-forward” to the direct image complex $p_1(\cdot)$ and construct the right-derived complex of sheaves on X.

7
The most obvious monodromy is that about the Landau-Ginsburg point in the Kähler moduli space of the quintic. This monodromy is generated by \[K_{LG}^* = 0 \rightarrow \mathcal{O} \boxtimes \mathcal{O}(1) \rightarrow \mathcal{O}_\triangle(1) \rightarrow 0. \]

The monodromy calculations for \(\mathcal{O} \in D(A) \) yield the result

\[
M_{LG}(\mathcal{O}) = 0 \rightarrow \mathcal{O}^{\oplus 5} \rightarrow \mathcal{O}(1) \rightarrow 0
\]

\[
(M_{LG})^2(\mathcal{O}) = 0 \rightarrow \mathcal{O}^{\oplus 10} \rightarrow \mathcal{O}(1)^{\oplus 5} \rightarrow \mathcal{O}(2) \rightarrow 0
\]

\[
(M_{LG})^3(\mathcal{O}) = 0 \rightarrow \mathcal{O}^{\oplus 10} \rightarrow \mathcal{O}(1)^{\oplus 10} \rightarrow \mathcal{O}(2)^{\oplus 5} \rightarrow \mathcal{O}(3) \rightarrow 0
\]

\[
(M_{LG})^4(\mathcal{O}) = \mathcal{O}(-1)[4]
\]

\[
(M_{LG})^5(\mathcal{O}) = \mathcal{O}[2]
\]

9 Boundary linear \(\sigma \)-model

Boundary linear \(\sigma \)-model \[2\] is determined by the Lagrangian

\[
L = \sum_n \left(i\beta^{(2n)} \partial_0 \beta^{(2n)} + i\rho^{(2n+1)} \partial_0 \rho^{(2n+1)} + \right.
\]

\[
+ \frac{1}{2} \beta^{(2n)} (|\kappa^{(2n+1)}|^2 c_{2n} c_{2n} + |\kappa^{(2n)}|^2 c_{2n-1} \bar{c}_{2n-1}) \beta^{(2n)} + \right.
\]

\[
+ \frac{1}{2} \rho^{(2n+1)} (|\kappa^{(2n+2)}|^2 c_{2n+1} c_{2n+1} + |\kappa^{(2n+1)}|^2 c_{2n} \bar{c}_{2n}) \rho^{(2n+1)} \right),
\]

which involves superfields \(\beta^{(2n)}, \rho^{(2n+1)}, c_k \).

Consider the complex of direct sums of holomorphic line bundles

\[
\ldots \rightarrow \bigoplus_i \mathcal{O}(m_i^{(2n-1)}) \xrightarrow{c_{2n-1}} \bigoplus_i \mathcal{O}(m_i^{(2n)}) \xrightarrow{c_{2n}} \bigoplus_i \mathcal{O}(m_i^{(2n+1)}) \xrightarrow{c_{2n+1}} \ldots
\]
Sections of holomorphic line bundles describe superfields $\beta^{(2n)}$, $\rho^{(2n+1)}$; differentials describe superfields c_k.

Acknowledgement

This material was presented in the lecture given by the author at the Institute of Mathematics (Kiev, Ukraine). The author thanks audience for questions and comments.
References

[1] P.S. Aspinwall and M.R. Douglas, *D-brane stability and monodromy*, hep-th/0110071.

[2] J. Distler, H. Jockers and H. Park, *D-brane monodromies, derived categories and boundary linear sigma models*, hep-th/0206242.

[3] P.S. Aspinwall, R.L. Karp and R.P. Horja, *Massless D-branes on Calabi-Yau threefolds and monodromy*, hep-th/0209161.

[4] S.I. Gelfand and Yu.I. Manin, *Homological algebra*, Springer-Verlag, Berlin, 1994.

[5] R.O. Wells, *Differential analysis on complex manifolds*, Springer-Verlag, Berlin, 1980.

[6] S. MacLane, *Categorical algebra*, Bull. Amer. Math. Soc. 71 (1965) 40.

[7] P. Candelas, X.C. de la Ossa, P.S. Green and L. Parkes, *A pair on Calabi-Yau manifolds as an exactly soluble superconformal theory*, Nucl. Phys. B359 (1991) 21.

[8] M.R. Douglas, *D-branes, categories and N=1 supersymmetry*, hep-th/0011017.