Reproductive history and risk of colorectal adenocarcinoma in parous women: a Nordic population-based case–control study

Tone Bjørge*,1,2, Mika Gissler3, Anne Gulbech Ording4, Anders Engeland1,5, Ingrid Glimelius6,7, Maarit Leinonen8, Henrik Toft Sørensen4, Steinar Tretli2, Anders Ekbom6, Rebecca Troisi9,10 and Tom Grotmol2,10

1Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; 2Cancer Registry of Norway, Oslo, Norway; 3National Institute for Health and Welfare (THL), Helsinki, Finland; 4Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 5Department of Pharmacoepidemiology, Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen/Oslo, Norway; 6Department of Medicine, Clinical Epidemiology Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; 7Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 8Cancer Society of Finland, Finnish Cancer Registry, Helsinki, Finland and 9Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA

Background: Data are conflicting regarding the role of endogenous sex hormones in colorectal carcinogenesis. In this large population-based study, we pooled data from birth and cancer registries in four Nordic countries, to evaluate the risk of colorectal adenocarcinoma in relation to women's reproductive history.

Methods: We conducted a population-based case–control study among women registered in Nordic birth registries. The study included colorectal adenocarcinoma cases diagnosed in Denmark, Finland, Norway, and Sweden during 1967–2013 and up to 10 matched controls per case, in total 22,185 cases and 220,246 controls. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were derived from conditional logistic regression models. We had limited information available on possible confounders.

Results: We found no evidence for associations between colorectal adenocarcinoma and parity, age at first and last birth, and time since first and last birth. The risk estimates were also close to unity for specific cancer subsites (proximal and distal colon and rectum). As well, when the analyses were stratified on menopausal status, parity, and mother’s year of birth, no indication of associations was found.

Conclusions: In this large, Nordic population-based study, no evidence for associations was found between women’s reproductive history and colorectal adenocarcinoma in parous women.

Colorectal cancer is the second most common cancer in women worldwide (GLOBOCAN 2012), and ∼55% of the cases occur in more developed regions. In the Nordic countries during 2010–2014, the cumulative risk of disease before age 75 was 4.1% in males and 3.2% in females (NORDCAN) (Engholm et al, 2010). Median age at diagnosis was 69 years in males and 71 years in females. The female incidence rate was highest in Norway (36.2 per 100,000 person-years) and lowest in Finland (20.6 per 100,000 person-years).

Most cases of colorectal cancer are sporadic, and develop over many years through the adenoma–carcinoma sequence (Brenner et al, 2014). A family history of colorectal cancer (Taylor et al, 2010), inflammatory bowel disease (Ullman and Itzkowitz, 2011; Jess et al, 2012), smoking (Liang et al, 2009), high alcohol
consumption (Fedirko et al., 2011), high consumption of red and processed meat (Bouvard et al., 2015), obesity (Ma et al., 2013), and diabetes (Larsson et al., 2005) are established risk factors, while physical activity (Boyle et al., 2012), aspirin/nonsteroidal anti-inflammatory drug (NSAID) use (Friis et al., 2015; Drew et al., 2016), and endoscopic screening, with removal of precancerous lesions (Elmunzer et al., 2012), have a protective effect.

As men have higher lifetime risk of colorectal cancer than women, it has been speculated that oestrogen might have a role in decreasing risk, at least partly mediated by oestrogen receptor (ER)-beta, the predominant ER subtype in the human colon (Campbell-Thompson et al., 2001). As opposed to the subtype ER-alpha’s growth-promoting properties, ER-beta exerts an anti-proliferative effect on non-transformed colonocytes (Zhao et al., 2010). A protective effect of oestrogens may also be mediated through lower serum levels of insulin-like growth factor-I (Campagnoli et al., 2003; Renahan et al., 2004) and decreases in secondary bile acid production (McMichael and Potter, 1980; Bayerdorffer et al., 1995). Colorectal cancer subsites, which have been reported to vary by sex (Iacopetta, 2002; Lee et al., 2015), exhibit differences in pathogenesis, genetic and epigenetic alterations, and molecular pathways (Lee et al., 2015).

Strong evidence that exogenous hormones have a role in colorectal carcinogenesis derives from observational studies and clinical trials, which demonstrate an inverse relation between postmenopausal hormone therapy (HT) use and risk of colorectal cancer (Grotdstein et al., 1999; Chlebowski et al., 2004; Lin et al., 2012). A meta-analysis, summarising results from cohort as well as case–control studies, also reported a 20% reduction in colorectal cancer risk among ever-users of oral contraceptives (OCs) compared with never-users (Bosetti et al., 2009).

At the same time, epidemiologic data have been conflicting regarding the role of endogenous sex hormones in colorectal carcinogenesis. A US study on the role of reproductive history and risk of colorectal cancer found positive associations between age at menopause and age at first childbirth and colorectal cancer risk in postmenopausal women, whereas age at menarche and parity were inversely associated with risk (Zervoudakis et al., 2011). However, a recent Swedish study found that higher parity was associated with increased risk of adenocarcinoma of the proximal colon (Lu et al., 2014). In contrast, a study from the European Prospective Investigation into Cancer and Nutrition found no association between reproductive history and colorectal cancer risk (Tsilidis et al., 2010). A 2013 meta-analysis also found no association between age at menarche and risk of colorectal cancer (Li et al., 2013).

In our large population-based study, pooling data from birth and cancer registries in four Nordic countries, we aimed to evaluate the overall risk of colorectal adenocarcinoma, as well as risk by cancer subsites, in relation to women’s reproductive history (parity, age at first and last birth, and time since first and last birth), being a surrogate measure of her lifetime exposure to endogenous sex steroids or other biomarkers related to reproductive events.

RESULTS

Characteristics of the study population are presented in Table 1. There were only minor differences between cases and controls. Table 2 shows colorectal adenocarcinoma by subsites and country. In total, 65% of cases had colon cancer (32% in the proximal colon and 29% in the distal colon) and 35% had rectal cancer. Mean age at diagnosis was 57 years (57 years for colon cancer and 56 years for rectal cancer).

Table 3 displays ORs with 95% confidence intervals (95% CIs) obtained from conditional logistic regression models. We examined the following reproductive variables: parity – number of births at the time of matching (1, 2, 3, and ≥4); age at first birth (<20, 20–29, 30–39, and ≥40 years); age at last birth (<20, 20–29, 30–39, and ≥40 years); time since first birth (<10, 10–19, 20–29, and ≥30 years); and time since last birth (<10, 10–19, 20–29, and ≥30 years). Stratified analyses were performed for ages <50, 50–59, and ≥60 years, which served as proxies for pre-, peri-, and postmenopausal status, respectively. We had limited information available on potential confounders.

We tested for differences between the countries by fitting logistic regression models with and without interaction terms between country of birth and the reproductive variables. The data were analysed using IBM SPSS Statistics 22 (IBM Corporation, Armonk, NY, USA) and Stata/IC 14.0 (StataCorp LP, College Station, TX, USA).

Ethical and legal considerations. This study was approved by the ethical committees in Norway and Sweden. In Denmark, the study was approved by the Data Protection Agency. In Finland, we obtained permission to use health registry data from the National Institute for Health and Welfare after approval by the data protection authority.

MATERIALS AND METHODS

Data sources. This study was based on data collected from nationwide population-based registries in the four Nordic countries. Nordic birth registries contain information on all births in Denmark, Finland, Norway, and Sweden since 1973, 1987, 1967, and 1973, respectively (Gissler et al., 1997). Reporting of cancer cases is compulsory in the Nordic countries, and the cancer registries of Denmark, Finland, Norway, and Sweden cover the entire national populations since 1943, 1952, 1953, and 1958, respectively (Engholm et al., 2010). All residents of the four Nordic countries are assigned a unique country-specific personal identification number, which is used in all registries and makes accurate record linkage possible.

Study design. The data were analysed within a case–control design, including all colorectal adenocarcinoma cases diagnosed in Denmark (1973–2011; n = 4680), Finland (1987–2012; n = 923), Norway (1967–2013; n = 9797), and Sweden (1974–2013; n = 6785) among women registered with a prior pregnancy (lasting longer than 22 weeks) in the birth registries. The rationale for including only parous women was to create a study group as homogenous as possible with respect to fertility. We included only the first cancer (any cancer) for each case. Up to 10 controls per case were sampled among women in the birth registries with a prior pregnancy lasting longer than 22 weeks, and they had to be alive and free of any cancer at the time of diagnosis of the corresponding case. Controls were matched to cases on country and birth year. In total 22185 cases and 220246 controls were included in the study.

Colorectal adenocarcinoma cases were identified using ICD-O-3 morphologic codes in Denmark, Finland, and Norway, and WHO/HS/CANC/24.1 codes in Sweden. The following cancer subsites were considered: proximal colon (ICD-10/ICD-O-3 (Denmark, Finland, and Norway), C18.0–C18.5; and ICD-7 (Sweden), 153.0–153.1 and 153.4); distal colon (ICD-10/ICD-O-3, C18.6–C18.7; and ICD-7, 153.2–153.3); other colon (ICD-10/ICD-O-3, C18.8–C18.9; and ICD-7, 153.8–153.9); and rectum (ICD-10/ICD-O-3, C19.9 and C20.9; and ICD-7, 154.0).

Statistical analysis. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were derived from conditional logistic regression models. We examined the following reproductive variables: parity – number of births at the time of matching (1, 2, 3, and ≥4); age at first birth (<20, 20–29, 30–39, and ≥40 years); age at last birth (<20, 20–29, 30–39, and ≥40 years); time since first birth (<10, 10–19, 20–29, and ≥30 years); and time since last birth (<10, 10–19, 20–29, and ≥30 years).

RESULTS

Table 3 displays ORs with 95% confidence intervals (95% CIs) obtained from univariate analyses for colorectal adenocarcinoma according to reproductive factors. We found no evidence for associations between colorectal adenocarcinoma and parity, age at first and last birth, and time since first and last birth. For specific subsites (proximal and distal
col and rectum) the risk estimates also were close to unity. When the analyses were stratified on menopausal status (overall and for specific subsites), parity, and mother’s year of birth (<1950 and ≥1950) (data not shown), no evidence for associations was found.

When we tested for potential differences between countries, no significantly improved fit emerged of models including interaction terms (data not shown).

DISCUSSION

In this large population-based Nordic study, no evidence for associations was observed between women’s reproductive history and colorectal adenocarcinoma in parous women.

Studies to date regarding reproductive factors and colorectal cancer have been inconclusive. Our results showing no evidence for associations between reproductive history and colorectal adenocarcinoma, accord with some studies (Troisi et al, 1997; Tsilidis et al, 2010; Li et al, 2013), but not with others (Zervoudakis et al, 2011; Lu et al, 2014). An earlier Swedish study, partly overlapping with the Swedish data in our study, found that higher parity was associated with increased risk of adenocarcinoma of the proximal colon, both when parous women were compared with non-parous women, and when analyses were restricted to parous women (Lu et al, 2014). However, in that study women with two or more children had a lower risk of cancer in the caecum or ascending colon, compared with non-parous women. A US study reported positive associations between age at first birth and colorectal cancer in postmenopausal women, whereas parity was inversely associated with risk in women with no history of HT use (Zervoudakis et al, 2011).

The women included in our study were relatively young as our study population was restricted to those being recorded with a prior birth in the national birth registries; 26% of cases were below age 50, and median age at diagnosis was 57 years. As median age at diagnosis of patients with genetic syndromes is relatively low, that is, in the fifth decade (Stoffel et al, 2009), it is possible that women with hereditary forms of colorectal cancers were overrepresented in our study population, and that these may have a weaker association with reproductive factors than sporadic forms of the disease. However, when we stratified on mother’s year of birth, no difference in the risk estimates was observed.

Among the strengths of our study were its large size, inclusion of all colorectal adenocarcinoma cases (more than 22 000), with information on subsite, among women with at least one registered pregnancy in the four Nordic countries, and linkage of comprehensive databases with valid information and mandatory reporting (Teppo et al, 1994; Gissler et al, 1997; Barlow et al, 2009; Larsen et al, 2009; Gjerstorff, 2011). The study design using standardised data from registries also eliminated bias from participant self-selection and recall bias.

Table 1. Characteristics of the study population, Nordic countries, 1967–2013

Variable	Cases	Controls
Year of birth		
<1940	4292	42 860
1940–1949	9277	92 566
1950–1959	6059	60 243
1960–1969	2097	20 478
≥1970	460	40 999
Age at diagnosis/matching (years)		
<40	1549	14 000
40–49	4250	42 490
50–59	7621	76 125
60–69	6533	65 372
≥70	2232	22 259
Parity		
1	2764	26 121
2	8646	85 954
3	6273	63 259
≥4	4502	44 912
Age at first birth (years)		
<20	870	87 014
20–29	7871	77 992
30–39	2823	26 395
≥40	179	1792
Missing	10 442	105 366
Age at last birth (years)		
<20	129	1332
20–29	7992	78 976
30–39	12 481	124 256
≥40	1583	15 682
Time since first birth (years)		
<10	951	8 071
10–19	2315	22 084
20–29	3789	37 898
≥30	4688	46 827
Missing	10 442	105 366
Time since last birth (years)		
<10	22447	22 158
10–19	4683	47 227
20–29	7275	73 216
≥30	7780	77 150
Total	22 185	220 246

Table 2. Colorectal adenocarcinoma by subsite and country, Nordic countries, 1967–2013

Subsite	Denmark (1973–2011)	Finland (1987–2012)	Norway (1967–2013)	Sweden (1974–2013)	Total (1967–2013)					
Colon										
Proximal*	1260	27	275	30	3492					
Distal*	1458	31	268	29	2648					
Other*	205	4	43	5	457					
Rectum*	1757	38	337	37	3200					
Total	4680	100	923	100	9797	100	6785	100	22 185	100
Table 3. ORs* with 95% CIs of colorectal adenocarcinoma according to reproductive factors and subsites, univariate analyses, Nordic countries, 1967–2013

	Total	Proximal colon	Distal colon	Rectum				
	OR	95% CI	OR	95% CI	OR	95% CI	OR	95% CI
Age at first birth (years)								
<20	0.98	0.91–1.06	1.01	0.88–1.16	0.90	0.78–1.04	1.04	0.92–1.18
20–29	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
30–39	1.08	1.02–1.14	0.99	0.89–1.09	1.15	1.04–1.27	1.07	0.98–1.17
>40	1.03	0.84–1.26	1.12	0.78–1.60	1.03	0.72–1.48	0.82	0.57–1.19
Age at last birth (years)								
<20	0.94	0.78–1.13	0.90	0.64–1.25	0.77	0.53–1.12	1.12	0.84–1.50
20–29	1.00	0.97–1.03	0.99	1.05–1.11	1.00	0.94–1.07	0.97	0.92–1.03
30–39	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
>40	1.01	0.95–1.08	0.97	0.87–1.11	1.13	1.00–1.27	0.98	0.87–1.09
Parity								
1	1.04	1.00–1.09	1.12	1.03–1.21	0.92	0.85–1.01	1.07	0.99–1.15
2	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
3	0.99	0.96–1.02	1.06	1.00–1.13	0.98	0.92–1.04	0.94	0.89–1.00
>4	1.00	0.96–1.04	1.01	0.94–1.09	0.99	0.92–1.07	0.98	0.92–1.05
Time since first birth (years)								
<10	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
10–19	0.94	0.84–1.04	0.84	0.69–1.02	1.00	0.83–1.21	0.94	0.79–1.12
20–29	0.85	0.77–1.07	0.78	0.62–0.98	0.86	0.69–1.06	0.97	0.79–1.18
>30	0.86	0.75–0.98	0.85	0.66–1.09	0.76	0.60–0.96	1.00	0.80–1.24
Time since last birth (years)								
<10	1.00	Reference	1.00	Reference	1.00	Reference	1.00	Reference
10–19	0.90	0.84–0.97	0.89	0.77–1.02	0.88	0.78–1.00	0.92	0.82–1.04
20–29	0.92	0.84–1.00	0.88	0.75–1.04	0.85	0.73–0.98	1.00	0.87–1.15
>30	0.95	0.86–1.04	0.98	0.82–1.17	0.84	0.71–1.00	1.02	0.87–1.19

Abbreviations: CI = confidence interval; OR = odds ratio.

*ORs were estimated from conditional logistic regression models, conditioned on birth year (of the case) and country.

A study weakness was lack of information on possible confounders, such as use of exogenous hormones (OCs and HT), age at menarche and menopause, obesity, smoking, physical activity, and aspirin/NSAID use. It is possible that these factors act in opposite directions, and thus contribute to an overall null effect. However, in the Swedish study on reproductive history and colorectal adenocarcinoma, adjustment for diabetes, obesity, diagnoses associated with tobacco smoking and alcohol over-consumption, as well as bilateral oophorectomy (representing HT) did not change risk estimates materially (Lu et al., 2014).

A case–control design was chosen due to the strict confidentiality and data protection legislation in the Nordic countries covering access to data on the entire population and data exchange between countries. Use of 10 controls per case approximated the efficiency provided by a cohort design.

No data were missing for parity, age at last birth, and time since last birth, whereas about 48% of women lacked data on age at first birth and time since first birth, mostly due to the relatively recent establishment of the birth registries. In Finland, where the birth registry was established in 1987, more than 63% of women had missing data on age at first birth. The relatively young age of the Finnish cohort also strongly limits the number of cancer cases.

In conclusion, we found no evidence for associations between women’s reproductive history (parity, age at first and last birth, and time since first and last birth) and colorectal adenocarcinoma in parous women.

ACKNOWLEDGEMENTS

This study was supported by the Nordic Cancer Union, Program for Clinical Research Infrastructure (PROCRIN) established by the Lundbeck Foundation and the Novo Nordisk Foundation, Danish Cancer Society, Svenska Sällskapet för Medicinsk Forsknings (SSMF), Svenska Läkarsällskapet, and the U.S. National Cancer Institute, National Institutes of Health, Department of Health and Human Services.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Barlow L, Westergren K, Holmberg L, Tallback M (2009) The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol 48(1): 27–33.

Bayerdorffer E, Mannes GA, Ochsenkuhn T, Dirscheld P, Wiebecke B, Paumgartner G (1995) Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 36(2): 268–273.

Bosetti C, Bravi F, Negri E, La Vecchia C (2009) Oral contraceptives and colorectal cancer risk: a systematic review and meta-analysis. Hum Reprod Update 15(5): 489–498.

Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K (2015) Carcinogenicity of consumption of red and processed meat. Lancet 383(9927): 1599–1600.

Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L (2012) Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst 104(20): 1548–1561.

Brenner H, Klooor M, Poix CP (2014) Colorectal cancer. Lancet 383(9927): 1490–1502.

Campagnoli C, Abba C, Ambroggio S, Peris C (2003) Differential effects of progesterins on the circulating IGF-I system. Maturitas 46(Suppl 1): S39–S44.

www.bjcancer.com | DOI:10.1038/bjc.2016.315 | 1419
Campbell-Thompson M, Lynch JJ, Bhardwaj B (2001) Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res 61(2): 632–640.

Chlebowski RT, Wactawski-Watson J, Kuller LH, Anderson GL, Hendrix SL, Prentice RL, Langer RD, Hendrix S, Aragaki AK, Paskett ED, Heald P, Wiens J, Kritz-Silverstein D, Newcomb PA, Gann PH, Ross KN, Beresoft RA, Li H, Cui J, Hsia B, Lawlor DA, Fischmann A, Caan B, Strahler AH, Hendy GN, Anderson IM, Araki E, Rajkumar M, Jerrett M, Nasca P, Brown M, Wu AH, Stefanick ML, Kuller LH, Langer RD (2004) Combination hormone therapy and risk of colorectal cancer. J Natl Cancer Inst 96(14): 1052–1060.

Chlebowski RT, Wactawski-Watson J, Langer RD, Prentice RL, Anderson GL, Hendrix S, Aragaki AK, Heald P, Hendrix SL, Wiens J, Kritz-Silverstein D, Gann PH, Ross KN, Araki E, Rajkumar M, Jerrett M, Nasca P, Brown M, Wu AH, Stefanick ML, Kuller LH, Langer RD (2002) Estrogen plus progestin and colorectal cancer risk in menopausal women. J Natl Cancer Inst 94(24): 2017–2026.

De The H, De Mey H, Hoste E, Lavender P, Van Hemelrijck M, Van Geel L, Buntinx F, De Bacquer D, Pauwels K, Van Oost AE, Van Den Bogaert W, Braekman J, Houvenaghel B, Essink-Bot ML, van den Akker MW, Delijeh A, Vanhaecke J, Veersma MJ, Verwaal VJ, Goedtke T, Hulshof T (2007) Estrogen plus progestin and colorectal cancer risk: a randomized controlled trial. J Natl Cancer Inst 99(15): 1156–1165.

Drew DA, Cao Y, Chan AT (2016) Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat Rev Cancer 16(3): 173–186.

Elmunir BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK (2012) Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 9(12): e1001352.

Engholm G, Ferlay J, Christensen N, Bray F, Gjerstorff ML, Klint A, Kvale G, Tretli S (1993) A sub-site-specific analysis of colorectal cancer: a meta-analysis. Int J Cancer 53(6): 1218–1231.

Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, Negri E, Kravdal O, Glattre E, Kvale G, Tretli S (1993) A sub-site-specific analysis of colorectal cancer: a meta-analysis. Int J Cancer 53(6): 1218–1231.

Gissler M, Louhiala P, Hemminki E (1997) Nordic Medical Birth Registers in epidemiological research. Eur J Epidemiol 13(2): 169–175.

Gjerstorff ML (2011) The Danish Cancer Registry. Scand J Public Health 39(7 Suppl): 42–43.

Grodstein F, Newcomb PA, Stampfer MJ (1999) Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis. Am J Med 106(5): 574–582.

Iacopetta B (2002) Are there two sides to colorectal cancer? Int J Cancer 101(5): 403–408.

Jespersen P, Peterse LM, Goldbohm RA, Sturm AW, van den Brandt PA, van der Schouw YT, Stiggelbout AM, Kestens L, Adams-Campbell LL, White E (2004) Estrogen plus progestin and colorectal cancer: a meta-analysis. Int J Cancer 110(5): 659–665.

Khaw KT, Norat T, Romaguera D, Riboli E (2010) Oral contraceptives, sex hormones, and colon cancer: a review and hypothesis. J Natl Cancer Inst 102(2): 169–175.

Kotlum JE, Olafsdottir E, Pukkala E, Storm HH (2010) NORDCAN – a Nordic tool for cancer information, planning, quality control and research. Acta Oncol 49(5): 725–736.

Lin KJ, Cheung WY, Lai JY, Giovannucci EL (2012) The effect of estrogen vs combined estrogen-progestogen therapy on the risk of colorectal cancer. Int J Cancer 130(2): 419–430.

Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H (2013) Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 8(1): e53916.

McMichael AJ, Potter JD (1980) Reproduction, endogenous and exogenous sex hormones, and colon cancer: a review and hypothesis. J Natl Cancer Inst 65(6): 1201–1207.

Moller B (2009) Data quality at the Cancer Registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer 45(7): 1218–1231.

Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363(9418): 1346–1353.

Reproduced with permission from the American Cancer Society. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/