Preclinical Evaluation of Fatty Acid Synthase and EGFR Inhibition in
Triple Negative Breast Cancer

Ariadna Giró-Perafita¹, Sònia Palomeras¹, David H. Lum², Adriana Blancafort¹, Gemma
Viñas¹,³, Glòria Oliveras¹,³, Ferran Pérez-Bueno¹,⁴, Ariadna Sarrats¹, Alana L. Welm⁵ and Teresa
Puig¹,*

¹ New Terapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-
17071 Girona, Spain; ² Oklahoma Medical Research Foundation, Program in Immunobiology and Cancer,
Oklahoma City, Oklahoma; ³ Medical Oncology Department, Catalan Institute of Oncology (ICO) and
Girona Biomedical Research Institute, E-17071 Girona, Spain; ⁴ Pathology Department, Dr. Josep Trueta
Hospital and Catalan Institute of Health (ICS), E-17071 Girona, Spain; ⁵ Department of Oncological
Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA;

Running Title: Dual FASN and EGFR blockade in TNBC.

KeyWords: Triple Negative Breast Cancer (TNBC), FASN, Chemoresistance, TNBC Primary Tumor
Samples, Orthoxenograft.

Financial Support: This work was supported in part by the Spanish Instituto de Salud Carlos III (ISCIII)
(FIS PI11/00692; TP and PI14/00329; TP), Fundación Ramón Areces (TP), the support of Catalonian
Government (2014SGR00868), U.S. Department of Defense Breast Cancer Research Program Award
(#W81XWH1210077, ALW) and Metavivor Research and Support Inc (#50502690, DHL). The University
of Girona awarded AG-P, SP and AB with a predoctoral grant.

*Corresponding Author: Teresa Puig, TargetsLab, Department of Medical Sciences, Emili Grahit 77,
University of Girona, 17071 Girona. Phone: +34-972-419628; Fax: +34-972-419617. E-mail:
teresa.puig@udg.edu

Competing Interests: None of the authors have any conflict of interest that can affect the impartiality of
the research reported.

Manuscript Information: This manuscript contains 27 pages, 4944 words, 4 figures and 2 tables. The
abstract contains 240 words.
Statement of Translational Relevance

Triple Negative Breast Cancer (TNBC) is the molecular subtype associated with the highest relapse rates and worse outcome. Patients lack targeted therapy and are generally treated with cytotoxic chemotherapy. There is a need to develop novel therapeutic strategies based on TNBC biology. Although EGFR overexpression is observed in 50-70% of TNBC, its inhibition alone or in combination with chemotherapy has resulted in minimal clinical benefit. The enzyme fatty acid synthase (FASN) has been shown to be a key therapeutic target in several human carcinomas. We found FASN is expressed in all TNBC primary tumor samples tested. We then showed therapeutic benefit of FASN inhibition in sensitive and chemoresistant TNBC preclinical models, as well as strong synergistic anti-tumor effect of FASN inhibitors in combination with cetuximab (an EGFR inhibitor). Our findings provide a rationale for further investigation of FASN inhibitors in combination with anti-EGFR signaling agents in TNBC.

Abstract

Purpose: Triple Negative Breast Cancer (TNBC) lacks an approved targeted therapy. Despite initial good response to chemotherapy, 30% of the patients relapse within 5 years after treatment. EGFR overexpression is a common marker in TNBC, and its expression has been correlated with poor outcome. Inhibition of Fatty Acid Synthase (FASN) activity leads to apoptosis of human carcinoma cells overexpressing FASN. We tested the hypothesis that blocking FASN in combination with anti-EGFR signaling agents would be an effective antitumor strategy in sensitive and chemoresistant TNBC.

Experimental Design: Several TNBC cell lines and 29 primary tumors were included to determine whether FASN is a potential target in TNBC. Doxorubicin-
resistant TNBC cell lines (231DXR and HCCDXR) have been developed and characterized in our laboratory. Cellular and molecular interactions of anti-FASN compounds (EGCG and C75) with cetuximab were analyzed. In vivo tumor growth inhibition was evaluated after cetuximab, EGCG or the combination in TNBC orthoxenograft models.

Results: TNBC cell lines showed overexpression of FASN enzyme and its inhibition correlated to FASN levels. FASN staining was observed in all of the 29 TNBC tumor samples. *In vitro*, EGCG and C75 plus cetuximab showed strong synergism in sensitive and chemoresistant cells. *In vivo*, the combination of EGCG with cetuximab displayed strong antitumor activity against the sensitive and chemoresistant TNBC orthoxenografs, without signs of toxicity.

Conclusions: Our results show that the simultaneous blockade of FASN and EGFR is effective in preclinical models of sensitive and chemoresistant TNBC.

Introduction

Breast cancer is the most prevalent and deadly cancer type in western women (1). Triple Negative Breast Cancer (TNBC) represents 15%-20% of the patients diagnosed with breast carcinomas and is characterized by the lack of expression of estrogen and progesterone receptors (ER/PR) and no amplification of the HER2 oncogene (2). TNBC runs an aggressive course and has a poor prognosis. As TNBC lacks a validated targeted therapy, patients are treated mainly with cytotoxic chemotherapy (anthracyclines and taxanes). Even though TNBC patients show a good initial response to chemotherapy, the recurrence rate within 5 years following diagnosis is about 30% (3,4).

Perou *et al.* defined five major molecular subtypes within breast cancer: luminal A, luminal B, HER2-enriched, basal-like and claudin-low or mesenchymal-like (5–7). The two major subtypes comprised in the TNBC are basal-like (BL) (~50%) followed by the
mesenchymal like (ML) (~20%) (8). Other molecular subtypes are also represented within TNBC subtype, because TNBC is such a heterogeneous disease. However, between 50-70% of TNBC have been shown to express the epidermal growth factor receptor (EGFR) (7,9), and its expression has been associated with poor prognosis (10). While EGFR inhibition has been considered a promising approach for TNBC, minimum benefit has been observed in the clinical settings alone or in combination with chemotherapy (11,12).

Alteration of metabolism is one of the hallmarks of cancer, providing advantages to cancer cells in the tumor environment (13,14). Fatty acid synthase (FASN), the major enzyme capable of de novo synthesis of fatty acids, has been described to be overexpressed in several carcinomas, such as breast, prostate and colon among others (15). This enzyme is not expressed in normal tissue, except in lipogenic tissues where its expression is tightly regulated by diet. In cancer, however, cells overexpress FASN enzyme to synthesize almost all their fatty-acids de novo (14,16). We and others have shown that blocking FASN activity has anticancer activity via the apoptotic pathway in vitro and in vivo (17–19), by disrupting lipid membrane synthesis, modification of protein palmitoylation and deregulating oncogenic signaling pathways (20,21).

The purpose of this study was to evaluate FASN as a target or co-target in sensitive- and chemoresistant-TNBC. First, we evaluated FASN expression in a panel of TNBC cell lines and in TNBC primary tumor samples. In vitro, C75 and EGCG (FASN inhibitors) were tested for anti-tumor efficacy in combination with chemotherapy and with cetuximab (an EGFR inhibitor). In vivo orthoxenografts of two different sensitive and resistant TNBC models were performed to test the anti-tumor effect of EGCG in combination with cetuximab. FASN, EGFR and downstream protein expression were
studied to determine cellular signaling pathways changes resulting from the different mono and dual treatments.

Material & Methods

Cell culture and development of doxorubicin-resistant triple negative breast cancer cells

All triple negative breast cancer cells were obtained from ATCC (Manassas, VA, USA). MDA-MB-231, MDA-MB-468 and MDA-MB-157 were routinely grown in DMEM (Gibco). HCC1806, DU4475 and BT549 were maintained with RPMI. Cell culture media were supplemented with 10% FBS (HyClone Laboratories) 1% L-glutamine (Gibco), 1% Sodium pyruvate (Gibco), 50 U/ml Pen/Strep (Linus). RPMI was additionally supplemented with 0.023 IU/ml insulin for BT549 culture. Cell lines were kept at 37°C and 5%CO₂ atmosphere. Doxorubicin-resistant cells MDA-MB-231 (231DXR) and HCC1806 (HCCDXR) were developed using a stepwise selection method. Increasing doses of doxorubicin (TEDEC-Meiji Farma) were performed until their corresponding IC₅₀ was reached. Briefly, initially cells were treated with a concentration of doxorubicin of 0.1xIC₅₀. After 48h, the treatment medium was replaced for fresh medium. When the cells were capable of growing and reached appropriate confluence, they were treated with double the previous doxorubicin concentration for 48h. The stepwise selection method was subsequently performed until the final concentration of doxorubicin achieved the parental IC₅₀. It took around 6 month for each cell line. Resistance was confirmed by cell viability assay.
Western blot analysis of cell and tumor lysates

Parental and resistant TNBC cells were synchronized by starvation in serum-deprived medium (0.5% FBS) for 24 hours. Cells were lysed in ice-cold lysis buffer (Cell Signaling Technology, Inc.) with 100 μg/mL PMSF by vortexing every 5min for 30 min. Frozen tumors were first ground (Dounce) in ice-cold lysis buffer and then vortexed as described above. Equal amounts of protein were heated in LDS Sample Buffer with Sample Reducing Agent (Invitrogen) for 10 min at 70°C, electrophoresed on SDS-polyacrylamide gel (SDS-PAGE), and transferred onto nitrocellulose membranes. Blots were incubated for 1h in blocking buffer (5% powdered-skim milk in Phosphate-buffered saline 0.05% Tween (PBS-T)) and incubated overnight at 4°C with the appropriate primary antibodies diluted in blocking buffer. Specific horseradish peroxidase (HRP)-conjugated secondary antibodies were incubated for 1h at room temperature. The immune complexes were detected using a chemiluminescent HPR substrate [Super Signal West Femto (Thermo Scientific Inc.) or Immobilon Western (Millipore)]. β-actin (Santa Cruz Biotechnology Inc.) was used as a control of protein loading. Western blot analyses were repeated at least three times and representative results are shown.

Cell viability assays

Parental and resistant cells were plated in 96-well plates at a cell density of 4 x 10³ cells per well in their corresponding growth medium. After 24 hours, growth medium was removed and 100 μL of fresh medium containing the corresponding concentration of doxorubicin (TEDEC-Meiji Farma), EGFR inhibitor [cetuximab (erbitux®, Merck)], or FASN inhibitors [EGCG (Sigma) or C75 (Sigma)] were added to each well. For drug-combination experiments cells were treated with a fixed FASN inhibitor concentration
in combination with a serial of concentrations of (i) doxorubicin for 48 h or (ii) cetuximab for 4 days. Same treatments were assessed in monotherapy. Following treatment, cell viability was measured using the standard colorimetric MTT assay as previously described (19). Combinatorial effects were evaluated using the Interaction index ($I_x = \sum(\%\ CPI\ drug\ alone) / \%\ CPI\ combination$. $I_x < 1$, synergism; $I_x =1$, additivism and $I_x >1$, antagonism.

Quantitative real-time PCR analysis

Cells were PBS washed, and then 1mL of Qiazol (Qiagen) was added. Total-RNA was isolated using RNeasy mini kit (Qiagen) following the instructions provided by the manufacturer. RNA was reverse-transcribed into complementary DNA (cDNA) using High Capacity cDNA Archive Kit (Applied Biosystems). Gene expression levels of EGFR and FASN were assessed using LightCycler® 480 Real-time PCR System (Roche) with LightCycler® 480 SYBR Green I Master (Roche). Primers were designed as follows: FASN (Fw 5’-CAGGCACACACGATGGAC-3’ and Rv 5’- CGGAGTGAATCTGGGTTGAT-3’), EGFR (Fw 5’- CATGTCGATGGACTTCCAGA -3’ and Rv 5’- GGGACAGCTTGGATCACACT -3’) and β-actin (Fw 5’- ATTGGCAATGAGCGGTTC -3’ and Rv 5’- CGTGGATGCCACAGGACT -3’). RT-PCR analyses were performed at least three times and each gene was run in triplicate. β-actin was used for normalization of EGFR and FASN expression levels.

Patients and tissue samples

FASN and EGFR tumor expression levels were retrospectively evaluated in paraffin-embedded core-biopsies of 29 patients with TNBC diagnosed in the Hospital Josep Trueta of Girona between 2007 and 2012. Tissue slides were previously treated with the
PT link (DAKO) solution at high pH as a deparaffination and antigen retrieval steps. Immunohistochemical staining was performed using an anti-Fatty Acid Synthase polyclonal antibody (dilution 1:100, Enzo Life Sciences) and an anti-EGFR monoclonal antibody (dilution 1:100, CellSignaling) with the detection kit EnVision™ (DAKO) in the AutostainerPlus Link (DAKO). FASN expression was graded from 0 to 2+: 0, no staining; 1+, moderate staining; 2+ high staining. EGFR expression was classified as positive when >5% of the cells showed specific membrane staining. Analysis was carried out by a board-certified pathologist. Written informed consent was obtained from all patients before the study was started. This study was approved by the ethical board of the Dr. Josep Trueta University Hospital.

In vivo studies: orthoxenografts experiments

TNBC cell lines HCC1806 (HCC) and MDA-MB-231 (231) and their doxorubicin-resistant derivatives 231DXR and HCCDXR were orthotopically implanted (2x10⁶ cells in 25μl matrigel) into both inguinal cleared mammary fat pads of NRG (NOD-Rag1<null> IL2rg<null>) mice (The Jackson Laboratory). When tumors reached 50 mm³, animals were randomized into four different treatment groups. Each group received intraperitoneal (i.p.) injection of control (vehicle alone, 3d/wk), 30 mg/kg EGCG 3d/wk, 0.5mg/mice cetuximab 1d/w, or combination of EGCG + cetuximab. Tumor xenografts were measured with calipers and tumor volumes were determined using the formula: \(\frac{\pi}{6} \times (v1 \times v2 \times v2) \), where \(v1 \) represents the largest tumor diameter, and \(v2 \) the smallest one. Body weight was registered every two days. At the end of the experiment or when tumors reached 1 cm in diameter, animals were weighed and then euthanized using CO₂ inhalation. Tumors were stored at -80°C. Apoptosis in control and treated tumors was analyzed by Western-blot (PARP). In vivo mouse experiments were performed in Dr. A. Welm’s laboratory at the Huntsman Cancer
Institute (University of Utah, Salt Lake City, Utah, USA) and at the Oklahoma Medical Research Foundation (ORMF, Oklahoma, USA). All protocols and experiments involving animals, including care and handling, were conducted in accordance with guidelines on animal care and use established by institutional guidelines. All mice were maintained in a specific pathogen-free facility with controlled light/dark cycle, temperature, and humidity. All surgery was performed under inhaled isoflurane anesthesia; buprenorphine was administered as analgesic to mice after surgery. All efforts were made to minimize pain and distress.

Statistical analysis

Data were analyzed by Student’s t-test when comparing two groups or ANOVA using a Bonferroni post-hoc test when comparing more than 2 groups. Non-Parametric analysis by Kruskal Wallis was used when data did not follow normal distribution. Statistical significant levels were p < 0.05 (denoted as *), p < 0.01 (denoted as **) and p < 0.001 (denoted as ***)). P-value is shown in results when significance is reached (p < 0.05). All data are means ± standard error of the mean (SEM). All observations were confirmed by at least three independent experiments.

Results

Triple negative breast cancer cell lines express fatty acid synthase (FASN) enzyme and are sensitive to FASN inhibitors

We screened several TNBC cell lines for FASN, EGFR and downstream protein expression and activation status (Fig. 1A). Molecular classification of TNBC cells was assessed based on Lehman *et al.* (7). Interestingly, FASN was detected in all TNBC cells examined, and showed higher protein expression levels in the basal-like than in the mesenchymal-like molecular subtype. Basal-like cell lines Du4475 and MDA-MB-468
showed the higher mRNA levels, while the other cell lines showed lower and similar FASN mRNA levels (Supplementary Fig. S1A). Activation of the EGFR (as assessed by phosphorylation) was also observed in almost all cell lines. The EGFR mRNA and protein expression showed that MDA-MB-468 had the highest levels and Du4475 the lowest (Supplementary Fig. S1B).

To further investigate the role of FASN as a target in TNBC, a cell proliferation inhibition (CPI) assay was performed using C75 and EGCG as FASN inhibitors (Fig. 1b). The most sensitive cell lines to C75 were the BL HCC1806 (IC$_{50}$: 29.4 ± 1.4µM) and MDA-MB-468 (IC$_{50}$: 31.38 ± 2.5 µM). Higher values of IC$_{50}$ were obtained in the ML subgroup for the lines MDA-MB-231 (IC$_{50}$: 46.6 ± 2.2 µM) and MDA-MB-157 (IC$_{50}$: 58.3 ± 2.75µM). EGCG showed IC$_{50}$ values ranging from 149 ± 6.7 in MDA-MB-231 to 222 ± 6.7 in BT549.

Doxorubicin-resistant TNBC cellular models are sensitive to FASN inhibitors

As preclinical models of acquired resistance to chemotherapy, we developed two TNBC cell lines resistant to doxorubicin. MDA-MB-231 (231) from the ML subgroup and the BL cell line HCC1806 (HCC) were chosen as two different models for FASN expression levels. 231 doxorubicin-resistant (231DXR) and HCC doxorubicin-resistant (HCCDXR) cells were developed in our laboratory by dose-increasing treatments of doxorubicin as described in ‘Material and Methods’ section. 231 and HCC were significantly more sensitive to doxorubicin for doses ranging from 10nM to 350nM compared to the resistant models 231DXR and HCCDXR respectively (Supplementary Fig. S2). As shown in Fig. 1C, 231DXR cells showed no apparent changes in either total protein or activation level in any of the proteins we examined related to the EGFR pathway. HCCDXR, however, showed increased expression levels of total EGFR, and
the downstream proteins p-AKT and p-ERK1/2. On the other hand, p-EGFR levels decreased compared to the parental, consistent with previous findings showing doxorubicin directly decreases EGF expression (22). FASN showed similar levels between the parental and resistant cells. Gene expression for FASN and EGFR proteins did not show any significant differences in 231 or HCC versus 231DXR and HCCDXR, respectively (Supplementary Fig. S3). Interestingly, no changes in sensitivity to FASN inhibitors alone (C75 or EGCG) were observed between parental and doxorubicin resistant cell lines (Supplementary Fig. S4).

FASN inhibition resensitizes doxorubicin resistant models to chemotherapy

Resistant cell lines 231DXR and HCCDXR showed similar FASN expression levels and FASN inhibitor sensitivity when compared to parental cells (Fig. 1C and Supplementary Figure S4). Therefore, we tested the effects of EGCG and C75 in combination with doxorubicin in parental and doxorubicin-resistant models. The results of CPI ratios induced by the mono treatments versus the dual treatments are shown in Table 1 (for MTT results see Supplementary Fig. S5). Doxorubicin (50-100-150nM) combined with C75 (40µM) exhibited synergic interaction index (Ix) in 231 and 231DXR. Furthermore, resistant cells 231DXR showed increased synergic interaction compared to 231. Similar results were observed in HCCDXR, because the addition of C75 (20µM) to the doxorubicin (50-100-150nM) treatment improved the effect of the combination compared to the parental cell line. The combination of doxorubicin (50-100-150nM) and EGCG (100µM) in 231 and 231DXR showed an additive effect in both cell lines. Interestingly, EGCG (120µM) combined with doxorubicin (50-100-150nM) also showed a major benefit in HCCDXR when compared to the parental.
FASN inhibitors show strong synergism with cetuximab in sensitive and resistant cell lines

Several studies reported that EGFR is a common receptor expressed in TNBC (23–24). In vitro, EGFR activation is observed in almost all TNBC cell lines (Fig 1A), and 70% of the TNBC tumors evaluated in this study were positively stained for EGFR protein (Fig 1B). Furthermore, we have shown that the expression of EGFR is either maintained or increased in our doxorubicin-resistant models (Fig 1C). Therefore, the effect of combining cetuximab and the FASN inhibitors C75 and EGCG was studied.

The combination of cetuximab (0.5-1-2 µM) with EGCG or C75 showed a strong synergistic effect in all sensitive and resistant cells (Table 2). 231DXR showed lower Ix with both C75 (30 µM) and EGCG (50 µM) compared to parental 231 cells. However, HCC and HCCDXR showed similar ratio values for both C75 (20 µM) or EGCG (25 µM) when combined with cetuximab.

Interestingly, parental and resistant cells showed no differences in cell proliferation inhibition when treated with anti-FASN compounds alone. Cetuximab otherwise significantly increased CPI in vitro in the HCCDXR cell line (Supplementary Fig. S6 S5).

Synergistic antitumor activity of EGCG in combination with cetuximab in sensitive and doxorubicin resistant TNBC xenografts

To validate our in vitro findings, we then tested the antitumor activity of EGCG, cetuximab and the combination treatment in vivo. We developed orthotopic xenograft models for 231, its chemoresistant derivative 231DXR, HCC and its resistant derivative
HCCDXR. EGCG (30mg/Kg for 3d/w) and cetuximab (0.5mg/mice 1d/w) as single agents reduced tumor growth in 231 xenografts over 12 days of treatment (Fig. 2A). Control animals achieved a relative volume growth of 3.3±0.33, whereas EGCG reduced it to 3.0±0.27 and cetuximab to 2.5±0.29. Interestingly, dual FASN and EGFR blockade showed significantly higher tumor growth inhibition (2.0±0.07) compared to the control (p <0.01) or EGCG alone (p<0.05, Fig. 2A). Under the same schedule, 231DXR xenograft showed a similar relative volume growth as the sensitive model (3.41±0.4, Fig. 2B). EGCG showed tumor growth inhibition by day 12 with a relative volume growth of 2.66±0.33, but cetuximab treatment did not inhibit growth. By 12 days of treatment, the relative volume growth for cetuximab was 3.52±0.48, similar to the control group. Again, the combination of EGCG and cetuximab induced significant tumor growth inhibition (1.98±0.17) compared to control (p<0.01) and to cetuximab alone (p<0.05). Despite the absence of tumor shrinkage, the combination treatment (EGCG plus cetuximab) significantly reduced tumor growth in both 231 and 231DXR orthotopic xenografts.

In the basal-like HCC xenograft model, EGCG (30mg/Kg for 3d/w) and cetuximab (0.5mg/mice 1d/w) as single agents reduced tumor growth after 10 days of treatment (Fig. 2C). Compared to the tumor volume increase observed in the control group (17.79±2.76), EGCG treatment achieved a relative volume growth of 13.03±2.58, while cetuximab significantly reduced the ratio to 6.33±1.25 (p<0.05). The combination treatment significantly reduced the tumor growth compared to the control (p=0.001) and to EGCG alone (p<0.01), with a relative volume growth of 4.87±1.06. In the HCCDXR xenograft model, control animals reached a relative volume growth of 5.02±1.38 over the same period of time, significantly lower compared to the parental model (p<0.05, Fig. 2D). EGCG and cetuximab as single agents had higher activity in the HCCDXR
model compared to HCC, with a relative volume growth of 3.04±0.76 and 0.14±0.04, respectively (cetuximab vs control p<0.01; cetuximab vs EGCG p<0.01). The relative volume growth in the combination setting decreased up to 0.19 ± 0.1 compared to control (p<0.05) and EGCG alone (p<0.05). In the HCCDXR model, cetuximab used as a single agent quickly (day 4) displayed strong antitumor activity, leading to effective tumor regression (0.76±0.12). Thus, the combination of EGCG plus cetuximab was not synergic at these treatment doses in the HCCDXR xenograft. For total volume results refer to Supplementary Fig. 7.

Tumor samples from the in vivo TNBC models were collected to evaluate drug response signaling mechanisms. 231 and 231DXR tumor samples were collected after 12 days of treatment. For HCC and HCCDXR, samples were collected after 1 cycle (4 days) because in cetuximab and EGCG plus cetuximab groups total tumor shrinkage was observed after 10 days of treatment. 231, HCC and HCCDXR tumor samples showed increased apoptosis (assessed by cleavage of PARP) in the combination treatment settings compared to single treatments and control groups (Fig. 2E). 231DXR however showed increased apoptosis in both single and combination treatments compared to control. Total EGFR and p-EGFR levels decreased in 231, 231DXR and HCCDXR after cetuximab and EGCG plus cetuximab co-treatment. HCC, however, showed a decrease in p-EGFR after cetuximab and combination treatment, but total EGFR levels decreased only after cetuximab treatment. No changes in FASN protein levels were observed among mono- and co-treatments in 231, 231DXR, HCC and HCCDXR tumors.

NRG mice treated with EGCG (30mg/Kg for 3d/w) plus cetuximab (0.5mg/mice 1d/w) were weighed daily to evaluate in vivo body weight effect. With respect to initial
weight, no significant changes on food and fluid intake or body weight after treatment were identified (Fig. 2F).

Dual blockade of FASN and EGFR changes EGFR downstream activated proteins

We have shown that EGCG combined with cetuximab was synergic in several cellular and animal models of TNBC. Therefore, we planned to study the effect of the EGCG plus cetuximab on FASN, EGFR, and downstream protein expression and activation, alone or in combination, in sensitive (231 and HCC) and resistant (231DXR and HCCDXR) cells (Fig. 3).

Cetuximab as a single agent induced a decrease in total EGFR in 231, 231DXR and HCCDXR cellular models. On the other hand, the same treatment increased total EGFR in HCC. While cetuximab treatment decreased p-EGFR levels in HCC and HCCDXR, 231 and 231DXR showed overactivation of p-EGFR after 72h of treatment. Previously described studies suggest that this activation may be likely to receptor homodimerization and autophosphorylation, and does not activate downstream proteins (22). Protein levels of AKT, ERK1/2 were maintained after cetuximab treatment in all cellular models. Regarding p-AKT activation levels, lower levels were observed compared to control in 231DXR and HCCDXR after 72h of treatment. 231 and HCC, however, showed similar or increased p-AKT levels compared to control after 72h of treatment respectively. Cetuximab treatment induced apoptosis in 231 and 231DXR after 72h, while cleaved PARP is observed already after 48h in HCCDXR. Total PARP increases after cetuximab treatment in HCC, but cleaved PARP was not observed.

EGCG reduced the expression and activation of EGFR and slightly decreased FASN levels after 24h of treatment in all cellular models studied. Downstream proteins AKT
and ERK1/2 showed similar levels at 24h of treatment respect to the control. While p-AKT decreased after 24h of treatment, p-ERK1/2 increased considerably after both 12h and 24h in all cellular models. PARP cleavage is observed in all cell lines after EGCG treatment.

The combination of both drugs led to the down regulation after 24h of total EGFR and p-EGFR in 231, 231DXR and HCCDXR. Otherwise, p-EGFR levels decreased in HCC while total EGFR did not change during the treatment. Regarding to FASN levels, a slight decrease is observed in HCCDXR, while the expression level is maintained in the other cell lines. Total ERK1/2 and AKT levels were maintained during the treatment in all cell lines, except for HCCDXR, which showed decreased levels of total AKT after 48h of treatment. p-ERK1/2 activation status increased in 231 and 231DXR after 48h, while decreased in HCC and HCCDXR. Truncated PARP was observed in all cell lines at 24h and 48h for the combination treatment.

In summary, the combination of cetuximab and EGCG enhances the inhibitory effect observed in the EGFR pathway by single treatments, with a general decreasing of EGFR, p-EGFR and p-AKT levels in all cellular models. The activation of ERK1/2 observed after EGCG treatment was decreased or inhibited after combination treatment.

FASN and EGFR are expressed in TNBC primary tumor samples

To further validate FASN as a potential target in TNBC, FASN expression was evaluated by Immunohistochemistry (IHC) in paraffin-embedded core-biopsies from 29 TNBC tumor samples. The clinicopathological characteristics of the patients included in the study are shown in Supplementary Table S1. FASN staining was positive in all 29 TNBC samples with tumor specific staining (Fig. 4). FASN expression positivity was graded from 0-2+ and scored into three categories, as described in ‘Material and
Methods’ section. Staining was observed in all 29 tumor samples and 31% of them with high positivity (2+). Cellular positivity within the tumor was between 66-100% in 26 (89.7%) of the samples, and between 33-66% in 3 of them (10.3%). The EGFR receptor was also evaluated in the same 29 TNBC core-biopsies with a positivity of 75.9%.

Discussion

Triple Negative Breast Cancer (TNBC) lacks an approved targeted therapy, and it is mainly treated with a combination of anthracyclines and taxanes (25). The high rate of relapse after treatment urges for the development of new targeted therapies for these patients. TNBC breast cancer is well known for its heterogeneity (8). Here we show that FASN, the key enzyme for novo lipogenesis, is not only expressed in all TNBC cell lines included in the study, but also in TNBC patient samples. In vitro, basal-like cell lines express more FASN than mesenchymal-like cell lines (both at gene and protein level) and are more sensitive to the FASN inhibitor C75. Immunostaining of FASN in 29 core-biopsies from TNBC patients shows that FASN is overexpressed in all tumor samples included in the study compared to their non-tumoral, surrounding breast tissues. Recent studies performed in breast and ovarian cancers have demonstrated the overexpression and specificity for FASN staining in neoplastic tissues, and also its relationship with cancer aggressiveness (26,27).

After four decades, doxorubicin is still the most used and effective chemotherapy agent in the clinic for the treatment of breast cancer (28). For this reason, two doxorubicin-resistant models representative of the two major molecular subtypes in TNBC, 231DXR (ML) and HCCDXR (BL) were developed in our laboratory. Both models showed significant resistance when exposed to high doses of doxorubicin compared to the
parental cell lines. Several mechanisms have been described for doxorubicin resistance in the last few years (28,29), some of them regarding changes in the EGFR pathway. HCC\textsubscript{DXR} showed overexpression of EGFR and overactivation of AKT and ERK1/2 when compared to its parental cell line. Overexpression of EGFR in breast cancer patients after chemotherapy has been already described to be related with higher local recurrence, metastasis and so poor outcome (30,31). On the other hand, AKT and ERK1/2 have been shown to be overactivated and also linked to chemoresistance in several cancers (32,33). Interestingly, similar levels of FASN were observed in parental cell lines compared to their resistant derivate (\textit{DXR}). Recent studies pointed out that FASN activity plays an important role in drug resistance because it allows fast synthesis of new phospholipids for membrane remodeling and plasticity (34,35). Here, we performed combinatorial experiments with doxorubicin and the FASN inhibitors C75 or EGCG in our sensitive and resistant cell lines to determine whether FASN inhibition may be useful to overcome doxorubicin resistance in TNBC. Although the EGCG antitumor effects may be due to binding probably with other cellular targets than FASN (36), we and others have previously identified EGCG as an inhibitor of FASN activity, able to induce apoptosis in several tumor cell lines and also to reduce the size of mammary tumors in animal models (17-19,37,38). Our results showed that the Interaction index for both combinations was improved in both resistant models (\textbf{231DXR} and HCC\textsubscript{DXR}) compared to the parental lines. Interestingly, C75 and EGCG showed same CPI between parental or \textit{DXR} derivate when treated alone, suggesting FASN activity could play an important role in doxorubicin resistance in TNBC. In addition, FASN inhibition has been described to reverse chemoresistance in ovarian and hepatocellular cancer cells (39,40).
Several studies have shown that EGFR is overexpressed in TNBC (22,23). Our results showed a high percentage of immunostaining positivity for EGFR in the core biopsies from TNBC patients, in concordance with previous findings. The anti-EGFR compound cetuximab showed low levels of CPI \textit{in vitro} in all cell lines except for HCC\textit{DXR}, which showed significantly increased CPI and apoptosis compared to the parental cell line. \textit{In vivo}, while none, low or moderate antitumor effect was observed in 231\textit{DXR}, 231 and HCC xenografts, respectively, cetuximab treatment obtained almost complete tumor shrinkage after two cycles of treatment in HCC\textit{DXR}. These results are consistent with the EGFR overexpression in HCC\textit{DXR} cell line, probably as an adaptation to overcome doxorubicin-induced apoptosis. Paradoxically, this mechanism of chemoresistance could sensitize the cell line to anti-EGFR treatments. This is in agreement with the results of a phase II study combining cetuximab with cisplatin in metastatic TNBC, where the overall response rate was doubled and the progression free survival increased from 1.5 to 3.7 months when compared to cisplatin monotherapy (41).

The common overexpression of EGFR in TNBC and its relationship with cancer progression after therapy, together with FASN expression in all TNBC and in \textit{DXR} models, provided the rationale to test combined FASN inhibitors and EGFR blockade in this these settings. We found that simultaneous treatment of cetuximab and EGCG or C75 resulted in strong synergism in both parental and resistant models. Strong cooperative growth inhibition between FASN and EGFR have been also observed \textit{in vitro} for ovarian cancer cell lines (42). The synergism between FASN and EGFR may be due to the mechanisms involving FASN blockade that results in blockage of lipid synthesis, lipid raft destabilization, and further EGFR degradation (42). Furthermore, EGCG has been described to be closely associated with destabilization and inhibition of
EGFR receptor and downstream signaling pathways (43,44). In addition, Bollu et al. recently found that FASN-dependent palmitoylation of EGFR is required for EGFR dimerization and kinase activation (45). The same authors, in a previous study, described that FASN-dependent palmitoylation also activates mitochondrial EGFR and promotes cell survival, while its inhibition leads to apoptosis (46). Furthermore, phosphorylation and activation of FASN by direct interaction with members of the EGFR family have already been described (46).

These *in vitro* results together with TNBC patient sample study, supported the evaluation of the antitumor efficacy of cetuximab in combination with the FASN inhibitor EGCG in doxo-sensitive and -resistant TNBC orthoxenografts *in vivo*. We and others have demonstrated that EGCG displays anti-tumor activity without affecting food intake or weight loss, which are common side effects of other FASN inhibitors (37,38). We have previously shown that EGCG produces apoptosis *in vitro* and *in vivo* in breast cancer (19,37,38). Here, EGCG showed strong CPI and high apoptosis *in vitro*, and moderate anti-tumour activity *in vivo*. EGFR inactivation and downregulation is observed in all cell lines after EGCG treatment *in vitro*, consistent with previous studies (43,44,48). At the same time, slightly decreases in FASN levels were observed in all cell lines, suggesting that the EGFR pathway could be implicated in FASN expression regulation in TNBC (38,49). Furthermore, p-AKT decreased its activation levels, while p-MAPK increased considerably after EGCG treatment, maybe due to a negative crosstalk between these two proteins (33,42,38).

Here, we clearly validate our *in vitro* results by showing that the combination of EGCG with the EGFR inhibitor cetuximab results in synergistic tumor growth reduction in both doxorubicin-sensitive and resistant xenograft models. Tumor analysis showed decreased EGFR and p-EGFR in the cetuximab and combination settings in all models.
However, this event was not observed in the EGCG treatment in vivo possibly due to the unstable nature of EGCG in serum (50). Nevertheless, increased apoptosis was observed in the combination settings in all models compared to the single treatments, even after only one cycle in the HCC and HCC\textsubscript{DXR} xenograft. In vitro study interactions also reveal that p-ERK1/2 levels decreased in the combination settings in the HCC and HCC\textsubscript{DXR} cell lines, and reduced the loop effect in p-ERK1/2 in the combination treatment in 231 and 231\textsubscript{DXR}.

In summary, we found FASN is expressed in all TNBC primary tumor samples tested. We then showed therapeutic benefit of FASN inhibition in sensitive and chemoresistant TNBC preclinical models, as well as strong synergistic anti-tumor effect of FASN inhibitors in combination with cetuximab. Our findings provide a rationale for further investigation of FASN inhibitors in combination with anti-EGFR signaling agents in TNBC and TNBC who progressed after chemotherapy.

Acknowledgments

We would like to thank Dr. F. Soler, Division of Pharmacy of Catalan Institute of Oncology (Girona, Spain), for kindly supplying doxorubicin. We are grateful to Oklahoma Medical Research Foundation (OMRF) PDX-PCT Core (Oklahoma, USA) for their support in the animal experiments. We also would like to thank Dr. E. López (Pathology Department Director, Hospital Josep Trueta, Girona, Spain) and Dr. J. Brunet (Medical Oncology Director, Catalan Institute of Oncology, Girona, Spain) for their support in the patient studies. Work supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya (XBTC).

References

1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014;64:252–71.
2. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 2007;109:1721–8.

3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007;13:4429–34.

4. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007;13:2329–34.

5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees C, et al. Molecular portraits of human breast tumors. Nature 2000;406:747–52.

6. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010;12:R68.

7. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750-67.

8. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011;5:5–23.

9. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma. Clin Cancer Res 2004;10:5367–74.

10. Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol 2014;27:1–11.

11. Masuda H, Zhang D. Role of epidermal growth factor receptor in breast cancer. Breast cancer Res 2012;136:1–21.

12. Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S. Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 2012;23:2223–34.

13. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144:646–74.

14. Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 2006;66:5977–80.

15. Menendez J, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007;7:763–77.

16. Puig T, Aguilar H, Cufí S, Oliveras G, Turrado C, Ortega-Gutiérrez S, Benhamú B, López-Rodríguez ML, Urruticoechea A, Colomer R. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res 2011;13:R131.

17. Puig T, Vázquez-Martín A, Relat J, Pétriz J, Menéndez J, Porta R, et al. Fatty acid metabolism in breast cancer cells: differential inhibitory effects of epigallocatechin gallate (EGCG) and C75. Breast Cancer Res Treat 2008;109:471–9.

18. Puig T, Turrado C, Benhamú B, Aguilar H, Relat J, Ortega-Gutiérrez S, et al. Novel Inhibitors of Fatty Acid Synthase with Anticancer Activity. Clin Cancer Res 2009;15:7608–15.

19. Blancafort A, Giró-Perafita A, Oliveras G, Palomer S, Turrado C, Campuzano Ó, et al. Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs. PLoS One 2015;10:e0131241.

20. Jones SF, Infante JR. Molecular Pathways: Fatty Acid Synthase. Clin Cancer Res 2015;1–16.
21. Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, et al. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression. EBioMedicine 2015;2:806–22.

22. Yao CX, Shi JC, Ma CX, Xiong CJ, Song YL, Zhang SF, et al. EGF Protects Cells Against Dox-Induced Growth Arrest Through Activating Cyclin D1 Expression. J Cell Biochem. 2015;116:1755-65.

23. Corkery B, Crown J, Clynes M, O’Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 2009;20:862–7.

24. Martin V, Botta F, Zanelato E, Molinari F, Crippa S, Mazzucchelli L, et al. Molecular characterization of EGFR and EGFR-downstream pathways in triple negative breast carcinomas with basal like features. Histol Histopathol 2012;27:785–92.

25. Griffiths CL, Olin JL. Triple Negative Breast Cancer: A Brief Review of its Characteristics and Treatment Options. J Pharm Pract 2012;25:319–23.

26. Veigel D, Wagner R, Stübigger G, Waczkowski M, Filipits M, Horvat R, et al. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int J Cancer 2015;136:2078–90.

27. Kim S, Lee Y, Koo JS. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS One 2015;10:e0119473.

28. Broxterman HJ, Gotink KJ, Verheul HMW. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 2009;12:114–26.

29. Nielsen D, Maare C, Skovsgaard T. Cellular resistance to anthracyclines. Gen Pharmacol 1996;27:251–5.

30. Buchholz TA, Tu X, Ang KK, Esteva FJ, Kuerer HM, Pusztai L, et al. Epidermal growth factor receptor expression correlates with poor survival in patients who have breast carcinoma treated with doxorubicin-based neoadjuvant chemotherapy. Cancer 2005;104:676–81.

31. Tzaida O, Gogas H, Dafni U, Kyroudi A, Papaspyrou I, Kyriakou V, et al. Evaluation of the prognostic and predictive value of HER-1/EGFR in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Oncology 2008;72:388–96.

32. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 2006;46:249–79.

33. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005;4:988–1004.

34. Wu X, Qin L, Fako V, Zhang J-T. Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments. Adv Biol Regul 2014;54:214–21.

35. Liu H, Wu X, Dong Z, Luo Z, Zhao Z, Xu Y, et al. Fatty acid synthase causes drug resistance by inhibiting TNF-α and ceramide production. J Lipid Res 2013;54:776–85.

36. Colomer R, Sarrats A, Lupon R, Puig T. Natural Polyphenols and their Synthetic Analogs as Emerging Anticancer Agents. Curr Drug Targets. 2016;1:1-1

37. Puig Miquel T, Relat J, Marrero PF, Haro D, Brunet J, Colomer R. Green tea catechin inhibits fatty acid synthase without stimulating carnitine palmitoyltransferase-1 or inducing weight loss in experimental animals. Anticancer Res 2008;28:3671–6.

38. Relat J, Blanchafort A, Oliveras G, Cufí S, Haro D, Marrero PF, et al. Different fatty acid metabolism effects of (+)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer 2012;12:280.

39. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation.
40. Bauerschlag DO, Maass N, Leonhardt P, Verburg F a, Pecks U, Zeppernick F, et al. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med. 2015;13:1–12.

41. Baselga JM, Gómez P, Greil R, Braga S, Climent M a, Wardley AM, et al. Randomized Phase II Study of the Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Cetuximab With Cisplatin Versus Cisplatin Alone in Patients With Metastatic Triple-Negative Breast Cancer. J Clin Oncol. 2013;31:1–8.

42. Grunt TW, Wagner R, Grusch M, Berger W, Singer CF, Marian B, et al. Interaction between fatty acid synthase- and ErbB-systems in ovarian cancer cells. Biochem Biophys Res Commun. 2009;385:454–9.

43. Adachi S, Nagao T, To S, Joe AK, Shimizu M, Matsushima-Nishiwaki R, et al. (−)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 2008;29:1986–93.

44. Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, et al. The inhibitory effect of (−)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 2007;67:6493–901.

45. Bollu LR, Katreddy RR, Blessing AM. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget 2015;33:34992-5003.

46. Bollu LR, Ren J, Blessing AM, Katreddy RR, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle 2014;13:2415–30.

47. Loftus TM. Reduced Food Intake and Body Weight in Mice Treated with Fatty Acid Synthase Inhibitors. Science 2000;288:2379–81.

48. Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 2004;11:380–1.

49. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 2000;19:5173–81.

50. Van Amelsvoort JM, van het hof KH, Mathot JNJJ, Mulder TPJ, Wiersma A, Tijburg LBM. Plasma concentrations of individual tea catechins after a single oral dose in humans. Xenobiotica 2001;31:891–901.

Authors’ Contributions

Conception and design: T.Puig

Development of methodology: A.Giró-Perafita, S.Palomeras, A.Blancafort, G.Oliveras, F. Pérez-Bueno

Acquisition of data (provided animals, provided facilities, etc.): A.Giró-Perafita, D.Lum, AL. Welm and G.Viñas.

Analysis and interpretation of data: A.Giró-Perafita, F. Pérez-Bueno, A.Sarrats, G.Viñas, AL. Welm and T. Puig.
Writing, review and/or revision of the manuscript: A.Giró-Perafita, A.Sarrats and T.Puig

Study supervision: T.Puig

Tables

Table 1. Interaction index between doxorubicin and C75 and EGCG in TNBC cells sensitive or doxo-resistant.

	doxorubicin			
	231	231DXR	HCC	HCCDXR
C75	0,84 ± 0,07	0,67 ± 0,04	1,23 ± 0,12	0,77 ± 0,05
	synergism*	synergism***	antagonism*	synergism*
EGCG	1,03±0,05	0,99±0,09	1,36 ±0,16	0,93 ±0,08
	additivism	additivism	antagonism**	additivism

Cells were treated with doxorubicin (50-100-150nM) and C75 (20µM for HCC, HCCDXR; 40µM for 231, 231DXR) or EGCG (100µM for 231, 231DXR; 120µM for HCC, HCCDXR) for 48h. Results were determined using an MTT assay and are expressed as the Ix obtained from the inhibition of cell proliferation induced for both treatments separately versus inhibition for the co-treatment. Experiments were performed at least three times in triplicate. *(p < 0.05), **(p < 0.01) and ***(p < 0.001) indicate levels of statistically significance.

Table 2. Interaction index between C75 and EGCG and cetuximab in TNBC cells sensitive or doxo-resistant.
Cells were treated with cetuximab (0.5-1-2 µM) and C75 (20µM for HCC, HCCDXR; 30µM for 231, 231DXR) or EGCG (50µM for 231, 231DXR; 25µM for HCC, HCCDXR) for 4 days. Results were determined using an MTT assay and are expressed as the Ix obtained as the ratio from the inhibition of cell proliferation induced for both treatments separately versus inhibition for the co-treatment. Experiments were performed at least three times in triplicate. *(p < 0.05), **(p < 0.01) and ****(p < 0.001) indicate levels of statistical significance.

Legends for Figures

Figure 1. Characterization of different TNBC subtypes and doxorubicin-resistant TNBC cell models. (A) FASN, EGFR and downstream proteins expression and its activation status where analyzed by western-blot. Results shown are representative of those obtained from 3 independent experiments. (B) IC₅₀ values for the FASN inhibitors C75 and EGCG. Results shown are mean ± SEM from 3 independent experiments. (C) Characterization of MDA-MB-231 and HCC1806 doxoresistant models (231DXR, HCCDXR) and their corresponding parental cells (231, HCC) for FASN, EGFR and downstream proteins expression and its activation status by western-blot. Results shown are representative of those obtained from 3 independent experiments.
Figure 2. EGCG plus cetuximab in sensitive and resistant TNBC ortoxenograft.

(A) Mice bearing 231 and (B) 231DXR xenografts were treated with saline (Control), EGCG (30mg/Kg, 3 days a week), cetuximab (0.5mg/mice 1 day a week) or the combination (EGCG plus cetuximab) for 12 days. (C) Mice bearing HCC and (D) HCCDXR xenografts were treated with saline (Control), EGCG (30mg/Kg, 3 days a week), cetuximab (100uL/mice 1 day a week) or the combination (EGCG plus cetuximab) for 10 days. (E) Western-blot analysis for FASN, EGFR, p-EGFR and PARP in 231, 231DXR after 12 days of treatment. HCC and HCCDXR tumor samples were collected after one cycle of treatment (4 days). (F) Body weight from NGR mice treated with the combination of EGCG (30mg/Kg, 3 days a week) and cetuximab (100uL/mice 1 day a week) for 10 days. Relative volume growth is expressed as (Final Volume / Initial Volume). Dots are mean of each experimental group and bars, SEM. *(p < 0.05), **(p < 0.01) and ****(p < 0.001) indicate levels of statistically significance.

Figure 3. In vitro interactions between EGCG and cetuximab in 231, 231DXR, HCC and HCCDXR. FASN, EGFR, p-EGFR, AKT, p-AKT, ERK1/2, p-ERK1/2 and PARP expression where analyzed by western-blot at different times after treatments of EGCG (200µM for 12h and 24h), cetuximab (1µM at 48h and 72h), and the combination of both (for 24h and 48h) in (A) 231 and 231DXR and (B) HCC and HCCDXR.

Figure 4. Immunohistochemistry (IHC) staining of FASN and EGFR in paraffin-embedded core-biopsies from TNBC patients. (A) Adipocytes. (B) Renal tissue. (C) Ductal carcinoma. (D) Ductal carcinoma. (E) Skin. (F) Muscular tissue (G) Ductal carcinoma. (H) Ductal carcinoma.
Figure 1

A

	BL	MDA-MB-468	HCC1806	MDA-MB-231	BT549	MDA-MB-157
FASN						
mTOR						
p-mTOR						
EGFR						
p-EGFR						
AKT						
p-AKT						
PTEN						
PI3K						
p-PI3K(85KD)						
ERK1/2						
p-ERK1/2						
p-S6						
α-actin						

B

C

EGCG
Figure 4

	Positive control	Negative control	FASN 1+	FASN 2+
A	![Image A]	![Image B]	![Image C]	![Image D]
B	![Image E]	![Image F]	![Image G]	![Image H]
Positive control				
Negative control				
EGFR -				
EGFR +				

	Total (n=29)(%)	Total (n=29)(%)	Cellular rank (n=29) (%)				
	Positive	Negative	1+	2+	0-33%	33-66%	66-100%
FASN	29(100)	0 (0)	20(68,9)	9(30,1)	0(0)	3(10,3)	26(89,7)
EGFR	22 (75,9)	7 (24,1)	-	-	-	-	-

Downloaded from clincancerres.aacrjournals.org on March 18, 2020. © 2016 American Association for Cancer Research.
Preclinical Evaluation of Fatty Acid Synthase and EGFR Inhibition in Triple Negative Breast Cancer

Ariadna Giró-Perafita, Sonia Palomeras, David Lum, et al.

Clin Cancer Res Published OnlineFirst April 22, 2016.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-15-3133

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2016/04/22/1078-0432.CCR-15-3133.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/early/2016/04/22/1078-0432.CCR-15-3133. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.