Abstract

This paper introduces a manually annotated video dataset of unusual actions, namely RareAct, including actions such as ‘blend phone’, ‘cut keyboard’ and ‘microwave shoes’. RareAct aims at evaluating the zero-shot and few-shot compositionality of action recognition models for unlikely compositions of common action verbs and object nouns. It contains 122 different actions which were obtained by combining verbs and nouns rarely co-occurring together in the large-scale textual corpus from HowTo100M [8], but that frequently appear separately. We provide benchmarks using a state-of-the-art HowTo100M pretrained video and text model and show that zero-shot and few-shot compositionality of actions remains a challenging and unsolved task. The dataset is publicly available for download at https://github.com/antoine77340/RareAct.

1. Introduction

Many human actions involve interacting with objects. These actions can often be decomposed into an action verb followed by an object noun (e.g. cut paper, cut tree, fold paper). Many of the popular action recognition datasets such as Kinetics [6] or AVA [4] concentrate on frequently occurring actions, to obtain a large number of clips for each action class. In contrast, we aim at providing a benchmark for evaluating the compositionality of action recognition models for rare human-object interactions. To this end, we introduce a manually annotated video dataset of rare actions, RareAct, with unlikely compositions of common action verbs and object nouns such as: blend phone, cut keyboard, unplug oven or microwave shoes as illustrated in Figure 1 (the full list is provided in section 2). To correctly assess compositionality, we make sure to collect hard negatives examples that either share the same action verb or object noun for each action class. The taxonomy of RareAct is constructed by collecting rarely co-occurring action verbs and object nouns from the large textual corpus of HowTo100M [8]. We emphasize that this dataset is only an evaluation dataset notably meant to be used to evaluate models trained on the HowTo100M dataset.

Related work. Our work is inspired by UnRel [9], which is an image dataset composed of unusual spatial relations triplets such as (elephant, ride, bike). Each element within the triplets are common noun or verbs, easily recognizable alone but challenging to identify when combined as these triplets are rarely or never seen at training. Our work instead, focuses on the compositionality aspect of human action involving objects rather than spatial relations of objects in images. Our RareAct dataset follows a line of datasets of images and videos of unusual situations such as: out-of-context objects [1]; dangerous, but rare pedestrian scenes in the ‘Precarious Pedestrians’ dataset [5]; and unintentional actions in videos in the ‘OOPS!’ dataset [3]. The EPIC-KITCHENS video dataset [2] is the closest video dataset related to ours, where actions are also annotated as a combination of a verb and a noun. A few combinations of verbs and nouns are also rarely or never seen at training. Their work, however, focuses on ego-centric videos in the cooking domain. In contrast,
Figure 2. Screenshot from the annotation tool used to annotate the video clips. The annotator is asked to select between 7 choices while the 10-seconds video is continuously looping.

RareAct is not constrained to either ego-centric videos or cooking videos and fully focuses on the rare composition of human-object actions.

Paper outline. We explain in section 2 the collection and annotation process and provide some statistics about RareAct. In section 3, we provide useful metrics that are suited to assess the compositionality of action recognition models on RareAct. Next, in section 4, we provide several benchmarks based on a state-of-the-art text and video model [7] trained on HowTo100M.

2. Dataset

Collection and annotation. To assess the compositionality aspect of action recognition models, we consider combinations of verbs and nouns that satisfy the following two criteria: (i) The verbs and nouns never or rarely co-occur together in the HowTo100M [8] textual corpus; and (ii) The verbs and nouns frequently appear separately in the HowTo100M [8] to ensure that there is no challenge in either recognizing the action verb or the object noun.

Given this taxonomy, we search on a popular video-sharing platform, the top-ranked videos (disjoint from HowTo100M) using the verb followed by the noun as a query. We then split each video into 10 seconds contiguous clips for annotation. For each 10-second video clip, we ask annotators to choose between several options as illustrated in Figure 2. We give the meaning of each option next along with a precise example for the (verb, noun) pair (hammer, phone):

1. Verb is applied to Noun (positive example): *e.g.* we see someone hammering a phone.
2. Only the Verb is seen (hard negative example): *e.g.* we see someone hammering a nail but no phone is visible.
3. Only the Noun is seen (hard negative example): *e.g.* we see a phone but the action of hammering is not happening.
4. Verb and Noun are seen but Verb is not applied to the Noun (hard negative example): *e.g.* we see someone hammering a nail and there is also a phone visible in the clip.
5. Neither apply (negative example): *e.g.* no phone nor the hammering action is happening.
6. Too ambiguous / I don’t know (example discarded): *e.g.* unclear case where the action is not clearly performed for example.
7. Discard the full video (every example within the same video are discarded)

Through this process, we categorize each video clip into positive, negative or hard negative examples for a given (verb, noun) action or eventually remove them from the dataset. An important note is that it often happens that we obtain multiple positive clips (or negative) from the same original video.

Statistics. We provide the full taxonomy with the number of positive, negative and hard negative examples collected for each action class split in Table 3, 4 and 5. Note we use the positive examples for a verb-noun pair as hard negatives for other actions sharing the same verb or noun. Similarly, we also obtain negative examples by considering positive examples of other actions that neither share the same Verb nor noun. More statistics about the dataset are provided in Table 1 and the number of annotated examples per noun (resp. verb) is shown in Figure 3 (resp. Figure 4).

3. Evaluation metrics

For each action, we collect positives, negatives and hard negatives examples through the annotation system detailed in Section 2 and illustrated in Figure 2. Given these annotations, we can compute the standard mean average precision (mAP) over the different action classes.

One issue when applying the standard mAP metric on this data is that it does not take into consideration that some
video contain several positive 10-second video clips of a given action while some others only contain a single positive example. This creates a bias as video clips coming from the same video are often visually similar and they would tend to weight more in a standard mAP metric. To address this issue, we instead consider extensions of the mAP that equally weight examples coming from different videos. We consider the mean weighted average precision scikit-learn implementation\(^1\) (mWAP) and weight each video clip with the inverse of the number of annotated video clips coming from the same video. Alternatively, we also consider computing the standard mAP metric but by subsampling only one annotated video clip per unique video and average the mean subsampled average precision over 100 runs (mSAP

\(^1\)https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
4. Benchmarks

We provide several benchmarks on RareAct using the S3D text-video model pretrained on HowTo100M from [7]. Given the pretrained model, a video clip X and a text input Y, we can compute the similarity score $s(Y \mid X)$, which measures the relevance of input text Y to video X. Given this model, a video X and an action (Verb, Noun), we can compute $s(\text{Verb} \mid X)$, $s(\text{Noun} \mid X)$ and $s((\text{Verb}, \text{Noun}) \mid X)$.

Table 2 provides results on the RareAct benchmark using the following baselines: $s(\text{Verb} \mid X) \times s(\text{Noun} \mid X)$ which separately computes the score of the Verb and Noun and combine them in a multiplicative manner (similarly to a logical AND), $s(\text{Verb} \mid X) + s(\text{Noun} \mid X)$ which also separately computes the score of the Verb and Noun and combine them in an additive manner (similarly to a logical OR) and $s((\text{Verb}, \text{Noun}) \mid X)$ which jointly models the pair (Verb, Noun). Surprisingly, $s(\text{Verb} \mid X) + s(\text{Noun} \mid X)$ performs better than $s(\text{Verb} \mid X) \times s(\text{Noun} \mid X)$.

We note that the joint model $s((\text{Verb}, \text{Noun}) \mid X)$ outperforms the other baselines which suggests that separately detecting either the action verb or the object noun on this benchmark is not a sufficient approach and that more advanced compositionality ability is greatly beneficial.

Including hard negatives for evaluation significantly affects performances which suggests that collecting such negatives is important for the evaluation of compositionality.

5. Conclusion

In this paper, we have introduced a novel video dataset, RareAct, annotated with actions involving rare interactions of humans with objects. It aims at evaluating the compositionality abilities of action recognition models by combining unlikely pairs of action verbs and objects nouns. We provided several baselines using a state-of-the-art video and text model and demonstrated that the compositionality ability of the trained model is needed on RareAct to perform well. We hope the dataset will enable advances in the study of compositionality for action recognition in videos. RareAct is publicly available for download at https://github.com/antoine77340/RareAct.

6. Acknowledgements

We are grateful to all our additional annotators: Aditya Zisserman and Pauline Mtivier. The project was partially supported by Antoine Miech Google Ph.D. fellowship.

References

[1] Myung Jin Choi, Antonio Torralba, and Alan S. Willsky. Context models and out-of-context objects. Pattern Recognit. Lett., 33:853–862, 2012.
[2] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In ECCV, 2018.
[3] Dave Epstein, Boyuan Chen, and Carl Vondrick. Oops! predicting unintentional action in video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
[4] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A video dataset of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6047–6056, 2018.
[5] Shiyu Huang and Deva Ramanan. Expecting the unexpected: Training detectors for unusual pedestrians with adversarial imposters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
[6] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.
[7] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman. End-to-end learning of visual representations from uncurated instructional videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9879–9889, 2020.
[8] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef Sivic. Howto100M: Learning a text-video embedding by watching hundred million narrated video clips. In ICCV, 2019.
[9] Julia Peyre, Ivan Laptev, Cordelia Schmid, and Josef Sivic. Weakly-supervised learning of visual relations. In ICCV, 2017.

\[\text{Table 2. Several baselines using a HowTo100M pretrained model from [7] on RareAct. The column HNeg indicates whether or not hard negatives are included at evaluation.}\]
Action	Positive	Hard negative	Negative
blend corn	6	68	1762
blend phone	17	197	1766
blend pumpkin	4	178	1772
blend shoes	2	164	1766
cut book	19	303	1750
cut car	30	260	1736
cut chair	6	396	1763
cut coconut	41	335	1726
cut keyboard	22	286	1745
cut laptop	29	326	1738
cut phone	25	495	1763
cut pumpkin	21	338	1747
cut rock	10	435	1759
cut shoes	22	364	1744
cut towel	7	257	1773
deseed pepper	9	40	1758
drill book	45	208	1720
drill bottle	19	246	1747
drill eggs	14	165	1752
drill laptop	13	242	1752
drill phone	32	361	1733
drill pumpkin	8	254	1757
drill rock	17	200	1752
drill tomato	10	209	1755
drill watermelon	2	275	1763
drink chocolate	2	86	1782
drink egg	7	97	1766
fry phone	15	265	1753
hammer banana	18	248	1749
hammer bottle	20	294	1762
hammer car	29	257	1739
hammer coconut	23	336	1745
hammer egg	12	266	1754
hammer flower	6	263	1760
hammer fridge	2	306	1764
hammer keyboard	14	273	1755
hammer laptop	12	368	1753
hammer microwave	5	400	1773
hammer phone	33	395	1735
hammer pumpkin	2	384	1765
hammer shoes	22	403	1746
hammer tomato	13	280	1753
hammer watermelon	18	369	1749
measure chair	5	273	1773
measure egg	13	163	1752
measure fridge	21	281	1781

Action	Positive	Hard negative	Negative
measure hair	32	178	1739
measure laptop	5	265	1761
measure microwave	1	373	1772
measure oven	12	169	1759
measure phone	3	330	1762
measure pumpkin	34	203	1732
measure shoes	8	275	1758
measure watermelon	15	249	1751
microwave book	12	256	1766
microwave bottle	35	217	1741
microwave laptop	6	302	1760
microwave phone	25	314	1740
microwave shoes	15	300	1763
microwave watermelon	15	275	1751
move towel	1	52	1768
open blender	1	118	1768
open microwave	5	197	1770
peel coconut	72	143	1699
peel corn	6	134	1763
peel pumpkin	6	204	1760
peel watermelon	3	212	1762
roll banana	5	136	1779
roll carrot	4	113	1809
roll potato	3	82	1876
roll shirt	13	99	1752
shake chair	1	136	1767
shake clothe	3	145	1762
shake flower	4	47	1767
shake hair	16	137	1751
shake table	3	145	1763
spray banana	1	259	1764
spray book	4	336	1763
spray chair	6	347	1764
spray cup	9	295	1798
spray door	30	254	1742
spray eggs	4	276	1761
spray fridge	33	240	1735
spray keyboard	12	273	1761
spray laptop	22	308	1746
spray microwave	15	459	1837
spray phone	21	417	1753
spray pumpkin	23	346	1749
spray shoes	38	337	1741
spray table	7	261	1762
throw flower	7	52	1764
throw orange	2	68	1764

Table 3. Action classes with their number of collected positive, negative and hard negative samples. Part 1.

Table 4. Action classes with their number of collected positive, negative and hard negative samples. Part 2.
Action	Positive	Hard negative	Negative
throw shirt	2	71	1766
unplug fridge	1	87	1772
unplug phone	1	278	1769
wash apple	10	360	1778
wash bicycle	11	307	1754
wash blender	10	358	1757
wash chair	55	334	1715
wash cucumber	5	388	1774
wash door	10	385	1791
wash fridge	6	394	1771
wash keyboard	14	365	1755
wash laptop	20	403	1745
wash microwave	22	450	1756
wash oven	11	356	1776
wash pepper	7	363	1789
wash potato	25	328	1754
wash rock	26	462	1739
wash tomato	20	355	1755
wash towel	4	415	1766
wash watermelon	25	353	1741
wash window	26	327	1760
weigh banana	11	179	1769
weigh book	21	206	1747
weigh bottle	10	205	1757
weigh egg	7	168	1761
weigh phone	13	300	1767
weigh pumpkin	6	307	1777
weigh shoes	26	241	1739
weigh tomato	26	175	1781
weigh watermelon	14	229	1752

Table 5. Action classes with their number of collected positive, negative and hard negative samples. Part 3.