Abstract

Clostridium niameyense sp. nov. strain MT5 is the type strain of *C. niameyense* sp. nov., a new species within the genus *Clostridia*. *C. niameyense* is a Gram-positive, anaerobic bacillus. The strain MT5 (= CSUR P1468 = DSMZ 100441), whose genome is described here, was isolated from a faecal sample collected from a patient with anorexia and marasmus living in Nigeria. The genome is 2 542 841 bp long with 27.44% G + C content and consists of six scaffolds.

© 2018 The Authors. Published by Elsevier Ltd.

Keywords: *Clostridium niameyense*, culturomics, genome, marasmus and anorexia, taxonogenomics

Original Submission: 27 December 2017; **Revised Submission:** 22 February 2018; **Accepted:** 1 March 2018

Article published online: 14 March 2018

Introduction

Clostridium niameyense strain MT5 (= CSUR P1468 = DSMZ 100441) is the type strain of *C. niameyense* sp. nov. This bacterium is a Gram-positive, anaerobic, motile bacterium that was isolated from the stool of an anorexic patient with marasmus living in Nigeria as part of a culturomics study aiming at culti-vating all species individually within human faeces [1,2].

The usual parameters used to delineate a bacterial species include 16S rDNA sequence identity and phylogeny [3], genomic G + C content diversity and DNA-DNA hybridization [3]. Recently a new approach has been proposed, taxonogenomics, which includes genomic data in a polyphasic taxonomy to describe new bacterial species [4]. This strategy is based on a combination of genomic and phenotypic characteristics, including matrix-assisted desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as well as spectrum and genomic analyses [5].

Clostridium is a genus of Gram-positive bacteria which includes several significant human pathogens and consists of obligate anaerobic bacteria [6]. These bacteria are the cause of some human diseases such as botulism (*C. botulinum*), tetanus (*C. tetani*), pseudomembranous colitis (*C. difficile*) and food poisoning–gas gangrene (*C. perfringens*) [7]. The pathogenic clostridial species have evolved several mechanisms to survive inside and outside a number of hosts, as evidenced by various diseases often linked to their protein toxins and spores [8].

Here we present a summary classification and set of features for *C. niameyense* sp. nov. strain MT5 together with the description of the complete genome sequence and annotation. These characteristics support the circumscription of the species *C. niameyense*.

Phenotypic and biochemical characterization

Clostridium niameyense sp. nov. strain MT5 was isolated from a faecal sample collected from an anorexic patient with marasmus living in Nigeria. The faecal specimen was preserved at −80 °C after collection and sent to Marseille. The MT5 strain was cultivated on 5% sheep’s blood–enriched Columbia agar (bio-Mérieux, Marcy l’Etoile, France) after 5 days’ preincubation in a blood culture bottle with rumen fluid.
For the growth of *C. niameyense*, we tested different temperatures (25, 30, 37 °C). However, optimal growth occurred at 37 °C, 24 hours after inoculation. Colonies were opaque with a smooth aspect, irregular and 1 mm in diameter on blood-enriched Columbia agar. Growth was observed only under anaerobic conditions, and no growth occurred under aerobic or microaerophilic conditions. Gram staining revealed a Gram-positive nonsporulating bacillus; the motility test was positive (Fig. 1).

The obtained colonies were identified using a Microflex spectrometer (Bruker Daltonics, Bremen, Germany). MALDI-TOF MS identification, measurement and analysis were performed as previously described [1]. No significant MALDI-TOF MS score was obtained for strain MT5 against the Bruker database, suggesting that our isolate was not a member of a known species. We added the spectrum from strain MT5 to our database (Fig. 2).

Biochemical features of the strains were determined using API50-CHL and the API ZYM (bioMérieux). Oxydase (Becton Dickinson, Pont-de-Claix, France) and catalase assays (bioMérieux) were performed separately. API ZYM presented positive reactions for α-glucosidase (maltase) and β-glucosidase (cellulase). The differential phenotypic characteristics with other *Clostridium* species are summarized in Table 1.

Antibiotic susceptibility of our isolate was assessed using the disc diffusion method on Muller-Hinton agar plates supplemented with 5% blood (bioMérieux) using the standard disc diffusion procedure as recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST; http://www.eucast.org/). *C. niameyense* was likely resistant to penicillin (14 mm), amoxicillin (13 mm), trimethoprim/sulfamethoxazole (6 mm), colistin (6 mm) and metronidazole (6 mm) but susceptible to vancomycin (22 mm), ertapenem (20 mm), fosfomycin (27 mm), teicoplanin (19 mm), oxacillin (22 mm), cefotaxime (20 mm), rifampicin (25 mm), gentamycin (27 mm), doxycycline (25 mm), pristinamycin (22 mm), erythromycin (26 mm), lincomycin (27 mm), imipenem (22 mm), tazocillin (24 mm), ofloxacin (25 mm), meropenem (20 mm) and ciprofloxacin (19 mm).

16S rRNA gene sequencing and phylogenetic analyses

The organism was selected for sequencing on the basis of its phylogenetic position and 16S rRNA similarity to members of the genus *Clostridium* [9] and is part of a study of the human digestive flora aiming to isolate all bacterial species in human faeces [1]. A phylogenetic tree was constructed using the maximum-likelihood method in the MEGA6 software package (https://www.megasoftware.net/). Phylogenetic analysis of the complete sequence of the 16S rRNA gene of *C. niameyense* strain MT5 (= CSUR P1468 = DSMZ 100441) exhibited a 98.3% nucleotide sequence similarity with *Clostridium botulinum* A (L37585). This value was lower than the 98.7% 16S rRNA gene sequence threshold recommended by Stackebrandt and Ebers [10] to delineate a new species without carrying out DNA-DNA hybridization (Fig. 3).

Genome properties

The genome is 2 542 841 bp long with 27.44% G+C content (Table 2). It is composed of six scaffolds (composed of seven contigs). Of the 2489 predicted genes, 2410 were protein-coding genes and 79 were RNAs (five genes are 5S rRNA, one gene is 16S rRNA, two genes are 23S rRNA and 71 genes are tRNA genes). A total of 1790 genes (74.27%) were assigned...
a putative function by Clusters of Orthologous Groups database (COGs) or by NR BLAST. Fifty-nine genes were identified as ORFans (2.45%). The remaining genes were annotated as hypothetical proteins (401 genes, >16.64%). The properties of the genome are summarized in Table 2. A genomic comparison of C. niameyense with seven other Clostridium species is provided in Table 3. The distribution of genes into COGs functional categories is presented in Table 4 (Fig. 4). The genome was assembled and annotated by Xegen (http://www.xegen.fr/).

Table 1. Differential characteristics of Clostridium niameyense, C. beijerinckii strain NCIMB 8052, C. disporicum NCIB12424, C. carboxidivorans strain P7, C. dakarense strain FFI, C. difficile strain B1 and C. saudii JCCT

Property	C. niameyense	C. beijerinckii	C. disporicum	C. carboxidivorans	C. dakarense	C. difficile	C. saudii
Cell diameter (μm)	1	1.7	1.5	1.5	1.2	3.0	1.0
Oxygen requirement	Strictly anaerobic						
Gram stain	Positive	Variable	Positive	Positive	Positive	Positive	Positive
Motility	Motile	Motile	NA	NA	Motile	Motile	Motile
Endospore training	NA	NA	NA	NA	NA	NA	NA
Indole	+	+	−	−	+	−	+
Production of:							
Alkaline phosphatase	−	NA	NA	NA	+	NA	−
Catalase	−	−	−	−	−	−	−
Oxidase	−	NA	NA	−	−	−	−
Nitrate reduction	−	−	−	−	−	−	−
Urease	−	−	NA	−	NA	−	−
β-Galactosidase	+	NA	NA	NA	−	−	−
N-Acetyl-glucosamine	−	NA	NA	NA	−	−	−
Acid from:							
L-Arabinose	−	+	NA	+	−	−	−
Ribose	−	+	+	−	−	−	−
Mannose	+	+	+	+	+	+	+
Mannitol	+	+	+	+	+	+	+
Sucrose	+	+	+	+	−	+	+
Glucose	+	+	+	+	+	+	+
Fructose	+	+	+	+	−	+	+
Maltose	+	+	+	+	−	+	+
Lactose	+	+	+	+	−	+	+
G+C satisfied (%)	27.44	28	29	29	27.98	28	28
Habitat	Human gut	Human gut	Rat gut	Environment	Human gut	Human gut	Human gut

| *, positive result; −, negative result; NA, data not available. |
These sequences were submitted to Rapid Annotation Using Subsystem Technology (RAST) [12]. An exhaustive search of the bacteriocin database available in our laboratories (Bacteriocins of the URMITE, BUR; http://drissifatima.wix.com/bacteriocins) was performed by collecting all currently available sequences from the databases and from the National Center for Biotechnology Information. Protein sequences from this database allowed putative bacteriocins from human gut microbiota to be identified using BLASTp methodology [13].

The analysis of the resistome did not identify antibiotic resistance genes, and the absence of bacteriocin was confirmed.

Analysis of the presence of polyketide synthases and nonribosomal peptide synthetases was performed by discriminating the genes with large sizes using a database realized in our laboratory; predicted proteins were compared against the nonredundant GenBank database using BLASTp and finally examined using antiSMASH [14].

Analysis revealed five clusters of clusters of differentiation (CDs) (11 642 bp) predicted to code for enzymes involved in the nonribosomal synthesis of peptides (Fig. 5), which in turn

![Reference mass spectrum from *C. Clostridium niameyense* sp. nov. strain MT5.](FIG. 3).

TABLE 2. Nucleotide content and gene count levels of genome

Attribute	Value	% of total
Genome size (bp)	2 542 841	100
No. of G+C (bp)	697 772	27.44
Genes	2489	100
Protein genes	2410	96.82
tRNA genes	71	2.85
RNA genes	79	3.17
DNA genes	71	2.85
RNA (SS, 16S, 23S) genes	8	0.32
Coding sequence	2 232 886	87.81
Coding sequence protein size	2 219 514	87.28
Coding sequence RNA gene size	5538	0.21
Coding sequence (SS, 16S, 23S) genes size	7814	0.307
Protein-coding gene	2410	100

TABLE 3. Genomic comparison of *C. niameyense* with seven other *Clostridium* species

Species	Strain	Genome accession number	Genomic size (Mb)	G+C content
C. niameyense	MT5	CVPI00000000	2.54	27.4
C. perfringens	ATCC 13124	ATCC 13124	3.26	28.4
C. difficile	B1	NC_017179	4.46	28.4
C. diakonense	FFI	CBT201000000	3.73	27.9
C. leptum	DSM753	ABCB0000000	3.27	50.2
C. butyricum	ATCC 3502	NC_009495	3.90	28.2
C. beijerinckii	NCMB8002	NC_099617	6.0	29.0
C. senegalense	DSM 25507	CAEV01000001	3.89	26.8

TABLE 4. Number of genes associated with 25 general COGs functional categories

Code	Value	% of total
J	152	6.3070545
A	0	0
K	138	5.726141
L	99	4.107864
B	1	0.04149377
D	27	1.120332
T	97	4.024896
M	81	3.360996
N	60	2.489626
Z	0	0
W	0	0
U	37	1.535269
O	56	2.323631
C	95	3.9419088
G	83	3.4439836
E	138	5.728414
F	60	2.489626
H	75	3.1120331
I	44	1.8257363
P	87	3.6099586
Q	24	0.9958507
R	208	8.630706
S	160	6.6390047
—	812	33.692947

COGs, Clusters of Orthologous Groups database.
FIG. 4. Graphical circular map of chromosome. From outside to centre: genes on forward strand coloured by COGs categories (only genes assigned to COGs), genes on reverse strand coloured by COGs categories (only gene assigned to COGs), RNA genes (tRNAs green, rRNAs red), G+C content and G+C skew. COGs, Clusters of Orthologous Groups database.

FIG. 5. CDS clusters predicted to encode siderophore biosynthesis nonribosomal peptide synthetase. A, C, ACPS and TE are domains of nonribosomal peptide synthetases. A, AMP binding, adenylation domain; C, heterocyclization; TE, thioesterase domain.

© 2018 The Authors. Published by Elsevier Ltd, NMNI, 24, 26–31
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
were predicted to catalyze the synthesis of a siderophore (Fig. 5), which could be used under iron-deficient growth conditions. This mechanism is already known in Clostridium spp., particularly in C. kluyveri DSM555. The alignment of non-ribosomal synthesis in C. kluyveri DSM555 (WP_012101903.1) and C. niameyense MT5 (WP_050607297.1) showed a 31% similarity with 99% coverage.

Description of Clostridium niameyense sp. nov. strain MT5

Clostridium niameyense sp. nov. strain MT5 is the type strain of C. niameyense sp. nov., a new species within the genus Clostridia. The strain MT5 (= CSUR P1468 = DSMZ 100441), whose genome is described here, was isolated from a faecal sample collected from an anorexic patient with marasmus living in Nigeria. Optimal growth occurred at 37 °C, 24 hours after inoculation. The colonies were 0.1 to 0.3 mm in diameter on blood-enriched agar. C. niameyense is a Gram-positive, obligate anaerobic bacterium with a mean diameter of 1.3 μm.

C. niameyense has positive reactions for glycerol, erythritol, D-glucose, D-fructose, D-mannitol, D-saccharose, D-trehalose D-maltose, D-melezitose, amidone D-turanose and potassium 5-cétogluconate. Also, API ZYM presented positive reactions for α-glucosidase (maltase) and 17-β-glucosidase (cellulase).

C. niameyense is resistant to penicillin (14 mm), amoxicillin (13 mm), trimethoprim/sulfamethoxazole (6 mm), colistin (6 mm) and metronidazole (6 mm) but susceptible for another antibiotic.

The G+C content of the genome is 27.44%. The 16S rDNA and genome sequences are deposited in GenBank under accession numbers LN827532 and CVPI00000000, respectively. The type strain is MT5 (= CSUR P1468 = DSMZ 100441).

Acknowledgements

We thank L. Hadjadj (Aix-Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France, IHU Méditerranée Infection, Marseille, France.) for technical assistance. This project was funded by the French Centre National de la Recherche Scientifique (CNRS): UM63, Infectiopole Sud Fundation and IHU Méditerranée Infection.

Conflict of interest

None declared.

References

[1] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.
[2] Pfleiderer A, Lagier JC, Armougom F, Robert C, Vialautes B, Raoult D. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis 2013;32:1471–81.
[3] Tindal BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämper P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–66.
[4] Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi M, Sentaux E, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64:384–91.
[5] Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Clostridium sensu-loco sp. nov. Stand Genomic Sci 2012;6:401–10.
[6] Angelakis E, Bibi F, Ramasamy D, Azhar EI, Jiman-Fatou AA, Abouhousham SM, et al. Non-contiguous finished genome sequence and description of Clostridium saudi sp. nov. Stand Genomic Sci 2014;9:8.
[7] Wells CL, Wilkins TD. Clostridia: sporeforming anaerobic bacilli. In: Baron S. editor. Medical microbiology. 4th ed. Galveston, TX: University of Texas Medical Branch at Galveston; 1996.
[8] Krautz-Peterson G, Zhang Y, Chen K, Oyler GA, Feng H, Shoemaker CB. Retargeting Clostridium difficile toxin B to neuronal cells as a potential vehicle for cytosolic delivery of therapeutic biomolecules to treat botulism. J Toxicol 2012;2012:760142.
[9] Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N. Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genomics 2011;2011;12:18.
[10] Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.
[11] Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58:212–20.
[12] Aziz RK, Bartels D, Best AA, Dejongh M, Ditt T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.
[13] Drissi F, Buffet S, Raoult D, Merhej V. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol 2015;6:441.
[14] Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccelleri R, et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015;43:W237–43.