Supporting Information

Sequential Allylic Alcohol Formation by a Multifunctional Cytochrome P450 Monooxygenase with Rare Redox Partners

H. J. Kim, K. Ishida, M. Ishida-Ito, C. Hertweck*
Table of Contents

Supplementary General Materials and Procedure
1.1. Materials
1.2. General and analytic procedure

Supplementary Experimental Section
2.1. Bacterial strains, cultivation and genomic DNA purification
2.2. Knockout plasmid preparation and insertional knockout of cayG, cayK, cayL, and cayKL
2.3. Heterologous expression of cayG, cayK and cayL in P. protegens Pf-5
2.4. Production of N-His6 CayL, N-His6 CayG, and MalE-CayK proteins
2.5. Production of N-His6 flavodoxin reductase protein in E. coli
2.6. In Vitro Assay of CayG, CayL, and CayK
2.7. Isolation and modification of polyyne compounds
2.8. Determination of the absolute configuration of compound 6
2.9. Synthesis of S-acetylcystamine (SNAC) thioester of compound 2
2.10. Phylogenetic analysis of CayG and other P450 proteins in bacteria
2.11. Sequence similarity network and Genome Neighborhood analysis for CayG

Supplementary Tables and Figures
Table S1. Primers for insertional knockout of cayG, cayK, and cayL
Table S2. Primers for heterologous expression of cayG, cayK, and cayL in P. protegens Pf-5
Table S3. Primers for productions of N-His6 CayL, N-His6 CayG, and MalE-CayK proteins
Table S4. Plasmids used in this study
Table S5. Bacterial strains used in this study
Figure S1. PCR confirmation of insertional gene knockout for cayKL, cayK, cayL, and cayG in T. caryophylli Pf-5
Figure S2. Amino acid sequence alignment of CayG, ferritin, and other ferritin-like proteins
Figure S3. Amino acid sequence alignment of CayL and other rubredoxins
Figure S4. Selected polyyne biosynthetic gene clusters
Table S6. CayG-neighbour CayK and CayL proteins obtained through EFI-EST (Enzyme similarity tool) followed by GNT (Genome neighbourhood tool)
Figure S5. SDS-PAGE analysis of purified proteins
Table S7. Reducing conditions for in vitro CayG-CayK system.
Figure S6. Structure elucidation of compound 5 E/Z isomers.
Table S8. 1H NMR assignments of H7–H10 of 5.
Figure S7. 1H NMR spectrum of compound 18
Figure S8. 13C NMR spectrum of compound 18
Figure S9. 1H-1H COSY NMR spectrum of compound 18
Figure S10. HSQC NMR spectrum of compound 18
Figure S11. HMBC NMR spectrum of compound 18
Figure S12. 1H NMR spectrum of compound 6
Figure S13. 1H NMR spectrum of compound 19a
Figure S14. 1H-1H COSY NMR spectrum of compound 19a
Figure S15. 1H NMR spectrum of compound 19b
Figure S16. 1H-1H COSY NMR spectrum of compound 19b
Figure S17. UV spectra of compounds 7–11
Figure S18. HPLC-DAD profiles of polyyne compounds
Figure S19. 1H NMR spectrum of compound 14
Figure S20. 13C NMR spectrum of compound 14
Figure S21. 1H-1H COSY NMR spectrum of compound 14
Figure S22. HSQC NMR spectrum of compound 14
Figure S23. HMBC NMR spectrum of compound 14
Figure S24. 1H NMR spectrum of compound 15
Figure S25. 13C NMR spectrum of compound 15
Figure S26. 1H-1H COSY NMR spectrum of compound 15
Figure S27. HSQC NMR spectrum of compound 15
Figure S28. HMBC NMR spectrum of compound 15
Figure S29. 1H NMR spectrum of compound 16
Figure S30. 13C NMR spectrum of compound 16
Figure S31. 1H-1H COSY NMR spectrum of compound 16
Figure S32. HSQC NMR spectrum of compound 16
Figure S33. HMBC NMR spectrum of compound 16
Figure S34. 1H NMR spectrum of compound 17
Figure S35. 13C NMR spectrum of compound 17
Figure S36. 1H-1H COSY NMR spectrum of compound 17
Figure S37. HSQC NMR spectrum of compound 17
Figure S38. HMBC NMR spectrum of compound 17
Figure S39. 1H NMR spectrum of compound 20
Figure S40. 13C NMR spectrum of compound 20
Figure S41. 1H-1H COSY NMR spectrum of compound 20
Figure S42. HSQC NMR spectrum of compound 20
Figure S43. HMBC NMR spectrum of compound 20
Figure S44. UV spectra and HRMS from the in vitro assay of CayG with compound 8
Figure S45. UV spectra and HRMS from the in vitro assay of CayG with compound 9
Figure S46. UV spectra and HRMS from the in vitro assay of CayG with compound 10
Figure S47. Maximum likelihood phylogenetic tree of CayG and other P450 proteins
Table S9. P450 proteins used in phylogenetic analysis

Supplementary References
Supplementary General Material and Procedure

1.1. Materials
All organic reaction related chemicals and solvents were purchased from Sigma-Aldrich (Darmstadt), Carl Roth (Karlsruhe), Tokyo Chemical Industry (TCI Deutschland GmbH, Frankfurt am Main), VWR international GmbH (Dresden), and Alfa Aesar (Karlsruhe), and used without further purification unless otherwise specified. Taq and Phusion DNA polymerase and DNA modifying enzymes (restriction digestion and ligation) were purchased from New England Biolabs (NEB, Frankfurt am Main). DNA sequencing was performed at Eurofins Genomics (Ebersberg). Primers were purchased from Eurofins Genomics. Pre-stained protein markers were purchased from NEB. DNA markers were obtained from ThermoFisher Scientific (Dreieich).

1.2. General and analytic procedure
Analytic HPLC was performed on a Shimadzu Prominence HPLC system; controller CBM-20A, pumps LC 20AT, auto sampler SIL-20AC HT, column oven CTO-20A, and PDA detector SPD M20A using a reverse phase column (Nucleodur C18 gravity 100 Å, 5 µm, 250 × 4 mm, Macherey-Nagel) at a flow rate 1 mL·min⁻¹. HPLC grade acetonitrile and deionized water with 0.1% (v/v) trifluoroacetic acid (TFA) were used as mobile phase for HPLC. The gradient elution was acetonitrile/water with 0.1% TFA, 0.5/99.5 to 100/0 for 30 min, acetonitrile 100% for 10 min. Preparative HPLC was performed on Shimadzu Prominence HPLC system; controller CBM-20A, pumps LC-8A, and PDA detector SPD-M20A. LC-HRMS measurements were performed using an QExactive Orbitrap High Performance Benchtop LC-MS with an electrospray ion source and an Accela HPLC system (ThermoFisher Scientific, Bremen). NMR spectra were recorded on Bruker AVANCE III 500 and 600 MHz equipped with a Bruker Cryo platform.

Supplementary Experimental Section

2.1. Bacterial strains, cultivation and genomic DNA purification
Trinickia caryophylli DSM50341, which was obtained from DSMZ (Braunschweig), was cultivated on potato dextrose agar (PDA, Carl Roth) at 30 °C for 1 day. The overnight pre-cultured cells were inoculated in potato dextrose broth (PDB, Carl Roth) and then cultured at 30 °C with orbital shaking (110 rpm) for 3 days. Genomic DNA from pure culture of T. caryophylli was obtained using MasterPure™ DNA purification kit (Epicentre Biotechnologies, Madison). Pseudomonas protegens Pf-5, which was obtained from DSMZ, was cultivated on a LB agar plate at 30 °C for 2 days. The overnight pre-cultured cells were inoculated in a LB broth and then cultured at 30 °C with orbital shaking (150 rpm) until an OD₆₀₀ of 4–5. The bacterial culture was centrifuged (2,800 × g, 5 min) and then the precipitated cells were washed with tris-acetate-phosphate (TAP) medium two times. P. protegens Pf-5 cells were incubated in TAP media at 30 °C with orbital shaking (120 rpm) for 3 days. Genomic DNA from pure culture of P. protegens Pf-5 was acquired using the same purification kit as T. caryophylli.
2.2. Knockout plasmid preparation and insertional knockout of cayG, cayK, cayL, and cayKL

The primers used in this study are listed in Table S1. For inactivation of the cayG, cayK, cayL, and cayKL genes, these genes were partially replaced with the apramycin cassette. Two gene fragments containing the targeting genes were amplified by Phusion DNA polymerase using a corresponding primer pair with the genomic DNA from T. caryophylli. The apramycin resistance cassette (AprR) gene was amplified by Phusion DNA polymerase using Apr$_f$ and Apr$_rv$ primers with pIJ773 as a template and resulting amplicon was restricted with NheI and PacI. This restricted AprR gene was ligated with NheI-restricted gene fragment followed by with PacI-restricted gene fragment. Three gene fused fragment was ligated into pJET1.2 blunt vector to yield knockout plasmids for cayG, cayK, cayL, and cayKL genes.

E. coli TOP 10 competent cells were transformed using electroporator (Eporator®, Eppendorf) at 2,200 V with vectors and the combined gene fragments and grown at 37 °C in LB agar containing apramycin (50 µg·mL$^{-1}$) and ampicillin (100 µg·mL$^{-1}$). After selecting the colony containing the corresponding mutated genes (Figure S1), they were inoculated into LB medium with apramycin and ampicillin and incubated at 37 °C overnight. The resulting plasmids were purified by NEB Monarch® Plasmid Miniprep Kit, and transformed into T. caryophylli using electroporator at 2,200 V. These transformants were incubated on PDA plates at 30 °C. The colonies containing the corresponding mutation (Figure S1) were inoculated into PDB medium with apramycin and ampicillin and incubated for 12 h. They were transferred into PDA plates at 30 °C, and further incubated for 3 days. The PDA containing the bacterial cells were collected and soaked in ethyl acetate for 1 h. The ethyl acetate extract was filtered. This process was repeated two times. The combined ethyl acetate extracts were dried over sodium sulfate and concentrated under reduced pressure to a final volume of 5 mL. After addition of dimethylsulfoxide (DMSO, 5 mL), the solution was concentrated to a final volume of 4 mL.

2.3. Heterologous expression of cayG, cayK and cayL in P. protegens Pf-5

The primers used in this study are listed in Table S2. The corresponding genes in the caryoynencin BGC were PCR amplified from the genomic DNA of T. caryophylli. After the amplicon was restricted, the DNA fragment was ligated into the pJB861 vector, which was restricted with corresponding sites, by T4 DNA ligase. E. coli TOP 10 cells were transformed using electroporator at 2,500 V with the resulting plasmid and grown at 37 °C in LB medium containing kanamycin (50 µg·mL$^{-1}$). The resulting plasmid was purified by NEB Monarch® Plasmid Miniprep Kit and then introduced into P. protegens Pf-5 using electroporator at 2,500 V. Antibiotic resistance colonies were inoculated into LB medium with kanamycin. The overnight culture was used to incubate the same medium at 30 °C until the OD$_{600}$ reached 0.4–0.6. The cells were collected with centrifugation at 2,800 × g for 10 min. The collected cells were washed with TAP medium two times and diluted until OD$_{600}$ reached 0.4–0.6. After m-toluic acid was added (the final concentration was reached to 1 mM), the strain was incubated at 30 °C for 1 day. The solution was extracted with ethyl acetate three times. The combined ethyl acetate solutions were dried over sodium sulfate. After 5 mL of DMSO was added, the solution was concentrated using rotary evaporator to a final volume of 4 mL.

2.4. Production of N-His$_6$ CayL, N-His$_6$ CayG, and MalE-CayK proteins in E. coli.

The primers used in this study are listed in Table S3. The cayL, cayG, and cayK in the caryoynencin BGC were amplified as a template of the genomic DNA of T. caryophylli, and ligated into pET28b (+) with corresponding restriction enzyme sites. The cayK gene fragment
was ligated into pMAL-c2x. Expression of recombinant proteins were performed as described below. The resulting plasmids were transformed onto *E. coli* BL21 (DE3) cells. Transformants were grown at 37 °C in LB medium containing kanamycin (50 µg·mL⁻¹) for pET28b-cayG and -cayL, and ampicillin (50 µg·mL⁻¹) for pMAL-c2x-cayK. The overnight cultures were inoculated into 1 L of LB medium (1 mM of 5-aminolevulinic acid was supplemented for pET28b-cayG) in a 100-fold dilution. These cultures were incubated at 37 °C until OD₆₀₀ reached 0.4–0.6. Protein expression were induced by the addition of isopropyl-β-thiogalactoside (IPTG) to a final concentration of 0.5 mM for CayL and CayK, 0.02 mM for CayG. After overnight incubation at 16 °C, the cells were harvested by centrifugation at 4,500 × g for 8 min at 4 °C, resuspended in 20 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl, and disrupted the cells by sonication. Cell debris were removed by centrifugation at 20,000 × g for 30 min, and the supernatants (CayL, CayG) were mixed by slow agitation with 2 mL of nickel-nitrilotriacetic acid (Ni-NTA) resin for 30 min at 4 °C. The slurries were transferred to columns and washed with 50 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl and 20 mM imidazole. The proteins were eluted with 10 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl and 250 mM imidazole. The collected proteins were analyzed with SDS-PAGE and were dialyzed three times against 1 L of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl. Amicon Ultra-15 (Merck KGaA, Darmstadt) were used for protein concentration. Glycerol (10–20%) was added prior to storage at –80 °C.

For purification of MalE fused CayK, cells were resuspended with 20 mL of 100 mM Tris buffer (pH 8.0) containing 200 mM NaCl, 1 mM EDTA, and disrupted the cells by sonication. Cell debris were removed by centrifugation at 9,300 × g for 40 min at 4 °C. The supernatant was mixed by slow agitation with 2 mL of nickel-nitrilotriacetic acid (Ni-NTA) resin for 30 min at 4 °C. The slurries were transferred to columns and washed with 50 mL of 50 mM Tris buffer (pH 8.0) containing 200 mM NaCl and 20 mM imidazole. The proteins were eluted with 10 mL of 100 mM Tris buffer (pH 8.0), 200 mM NaCl, 1 mM EDTA, and 10 mM (D)-(+) maltose. The collected proteins were analyzed with SDS-PAGE and were dialyzed three times against 1 L of 50 mM potassium phosphate (pH 7.0) at 4 °C. The dialyzed protein was applied to a Hitrap Q HP (GE Healthcare Life Science) anion exchange chromatography column (5 mL) equilibrated with the 50 mM potassium phosphate (pH 7.0). Column was washed with the same buffer. MalE-CayK was eluted with a linear gradient of 0–1 M NaCl in 15 CV. The collected proteins were analyzed with SDS-PAGE. Amicon Ultra-15 (NMWL: 50 KDa) was used for protein concentration. 10% glycerol was added to storage at –80 °C.

Protein concentrations were determined by NanoDrop One Microvolume Spectrophotometer (ThermoFisher Scientific).

2.5. Production of N-His₆ flavodoxin reductase protein in *E. coli*.

E. coli flavodoxin reductase (FDR) was amplified using primers (Ecoli_FDR_f / Ecoli_FDR_r) in the colony PCR with *E. coli* BL21(DE3) cells. Obtained amplicon was ligated into pET28b (+) with restriction enzyme sites. The resulting plasmids were transformed into *E. coli* BL21 (DE3). Transformants were grown at 37 °C in LB medium containing kanamycin (50 µg·mL⁻¹) for pET28b-FDR. The overnight precultures were inoculated in to 1 L of LB medium in a 100-fold dilution and incubated at 37 °C until OD₆₀₀ reached 0.4–0.6. The FDR gene expression was induced by the addition of IPTG to a final concentration of 0.5 mM. After overnight cultivation at 16 °C, the cells were harvested by centrifugation at 4,500 × g for 8 min at 4 °C, resuspended in 20 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl, and disrupted the cells by sonication. Cell debris were removed by centrifugation at 20,000 × g for 30 min, and the supernatant was mixed by slow agitation with 2 mL of Ni-NTA resin for 30 min at 4 °C.
The slurries were transferred to columns and washed with 50 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl and 20 mM imidazole. The proteins were eluted with 10 mL of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl and 250 mM imidazole. The collected proteins were analyzed with SDS-PAGE and were dialyzed three times against 1 L of 100 mM Tris buffer (pH 8.0) containing 300 mM NaCl. Amicon Ultra-15 were used for protein concentration. 10–20% glycerol prior to storage at –80 °C.

2.6. In Vitro Assay of CayG, CayL, and CayK

In vitro assays for CayG were performed in 100 µL reaction containing of 4 mM NADPH, 0.1 mM E. coli flavodoxin reductase, 10 mM glucose-6-phosphate, and 1 unit mL⁻¹ baker’s yeast glucose-6-phosphate dehydrogenase, 10 µL of the substrate (in DMSO) in addition to 50 µM N-His₆-CayG, 100 µM N-His₆-CayL, and 20 µM N-MalE-CayK proteins. The reaction mixture was incubated at 30 °C and shaken at 180 rpm for 2 h and stopped by extracted with ethyl acetate (2 × 120 µL). The combined organic layers were concentrated and redissolved in 100 µL methanol.

2.7. Isolation and modification of polyyne compounds

P. protegens Pf-5 culture broth (1 L) was extracted with ethyl acetate (1 L) three times and the extracts were dried over Na₂SO₄. After 2 mL of DMSO were added to the extracts, the solvent was concentrated under the reduced pressure. The remining DMSO solution was subjected to preparative HPLC using reverse phase column (Luna 100Å C18(2) AXIA, 10 µm, 250 × 21.2 mm, Phenomenex) at a flow rate 18 mL·min⁻¹ with a gradient system, solvent A (water with 0.1% TFA), solvent B (acetonitrile), 0.5% B for 1 min, to 80% B for 4 min, to 92% B for 20 min, to 100% B for 0.5 min and kept for 2.5 min.

The structures of unstable polyyne compounds were determined by the synthetic derivatization using click reaction with benzyl azide, copper sulfate, and ascorbic acid or further derivatization using trimethylsilyldiazomethane. A 1 L culture of P. protegens Pf-5 was extracted with 1 L of ethyl acetate three times. The combined organic layers were concentrated to 20 mL under reduced pressure and 20 mL of DMF was added. The solution was concentrated to final volume of 18 mL. Aqueous solution of copper (II) sulfate (1 mL, 0.8 M), ascorbic acid (1 mL, 1.1 M) and benzyl azide (0.2 mL) were added to the polyyne solution in DMF. The mixture was stirred at room temperature until the starting material disappeared. The solution was diluted with ethyl acetate (50 mL), washed with water (3 × 50 mL) and saturated sodium chloride solution, dried with sodium sulfate, and concentrated under reduced pressure. The pure triazole compound was obtained after the purification using preparative HPLC described in section S1.2. The further methylation was performed by addition of methanol (100 µL) and trimethylsilyldiazomethane (2.0 M in diethyl ether, portionwise (5 × 1 µL)). The solvent was removed by reduced pressure, and the residue was purified by flash column chromatography on silica gel (Hex:EtOAc = 4:1 ~ 1:1).

![Chemical structure of Compound 14](image)

Compound 14. (Original compound 7)
\(^1\)H NMR (600 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 1.57–1.63 (m, 2H, H2), 2.16 –2.22 (m, 4H, H2 and H4), 5.64 (s, 2H, benzyl), 5.81 (d, \(J = 16.1\) Hz, 1H, H6), 6.57 (dt, \(J = 15.9, 7.1\) Hz, 1H, H5), 7.30–7.38 (m, 5H, phenyl), 8.76 (s, 1H, H14), 11.98 (br, 1H, H1). \(^{13}\)C NMR (125 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 29.0 (1C, C3), 32.2 (1C, C4), 32.9 (1C, C2), 53.2 (1C, benzyl), 64.4, 67.4, 68.6, 72.0, 76.6, 79.8 (6C, C7–C12), 107.7 (1C, C6), 127.5 (1C, C13), 128.0 (2C, phenyl), 128.4 (1C, phenyl), 128.9 (2C, phenyl), 131.0 (1C, C14), 135.2 (1C, phenyl), 152.6 (1C, C5), 174.8 (1C, C1). HRMS (ESI): \(\text{C}_{21}\text{H}_{18}\text{N}_3\text{O}_2\) [M–H]\(^-\) calc. 342.1248, obs. 342.1248.

Compound 15. (Original compound 8)

\(^1\)H NMR (600 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 1.24–1.30 (m, 2H, H4), 1.37–1.40 (m, 2H, H5), 1.48–1.51 (m, 2H, H3), 2.17–2.21 (m, 4H, H2 and H6), 5.65 (s, 2H, benzyl), 5.82 (s, 1H, H8), 7.31–7.41 (m, 5H, phenyl), 8.78 (s, 1H, H16), 11.85 (br, 1H, H1). \(^{13}\)C NMR (125 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 24.7 (1C, C4), 27.9 (1C, C5), 28.5 (1C, C6), 33.2 (1C, C2), 53.8 (1C, benzyl), 64.8, 68.0, 69.1, 72.4, 77.1, 80.4 (6C, C7–C12), 108.1 (1C, C8), 128.0 (1C, C15), 128.5 (2C, phenyl), 128.8 (1C, phenyl), 129.3 (2C, phenyl), 131.5 (1C, C16), 135.8 (1C, phenyl), 154.2 (1C, C7), 174.8 (1C, C1). HRMS (ESI): \(\text{C}_{23}\text{H}_{22}\text{N}_3\text{O}_2\) [M–H]\(^-\) calc. 370.1561, obs. 370.1555.

Compound 16. (Original compound 9)

\(^1\)H NMR (600 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 1.24–1.30 (m, 2H, H4), 1.38–1.42 (m, 4H, H5 and H7), 2.15–2.20 (m, 4H, H4 and H8), 5.65 (s, 2H, benzyl), 5.76 (d, \(J = 15.6, 1\)H, H2), 5.82 (d, \(J = 16.0\) Hz, 1H, H10), 6.60 (dt, \(J = 15.9, 7.1\) Hz, 1H, H9), 6.80 (dt, \(J = 15.6, 7.1\) Hz, 1H, H3), 7.31–7.40 (m, 5H, phenyl), 8.78 (s, 1H, H18). \(^{13}\)C NMR (125 MHz; DMSO-\(d_6\)): \(\delta\) (ppm) = 27.7 (1C, C7), 27.9 (1C, C5), 28.5 (1C, C6), 31.7 (1C, C8), 33.2 (1C, C4), 53.8 (1C, benzyl), 64.9, 68.1, 69.2, 72.5, 77.2, 80.5 (6C, C7–C12), 107.8 (1C, C10), 122.6 (1C, C2), 128.1 (1C, C17), 128.6 (2C, phenyl), 128.9 (1C, phenyl), 129.4 (2C, phenyl), 131.6 (1C, C18), 135.9 (1C, phenyl), 149.1 (1C, C3), 154.0 (1C, C9), 167.9 (1C, C1). HRMS (ESI): \(\text{C}_{25}\text{H}_{24}\text{N}_3\text{O}_2\) [M–H]\(^-\) calc. 396.1711, obs. 396.1718.
Compound 17. (Original compound 10)

\[\text{H NMR (600 MHz; acetone-}\text{d}_6): \delta (ppm) = 1.21–1.33 (m, 4H, H6, H7), 1.34–1.48 (m, 2H, H5), 1.56–1.59 (m, 2H, H4), 2.20–2.28 (m, 2H, H8), 2.36–2.46 (m, 2H, H2), 3.62 (s, 3H methyl), 3.95–3.98 (m, 2H, H3), 5.70 (s, 2H, benzyl), 5.90 (dt, J = 15.9, 1.6 Hz, 1H, H10), 6.56 (dt, J = 15.9, 7.2 Hz, 1H, H9), 7.35–7.41 (m, 5H, phenyl), 8.45 (s, 1H, H18). \]

\[\text{C NMR (125 MHz; acetone-}\text{d}_6): \delta (ppm) = 25.7 (1C, C5), 26.1 (1C, C7), 29.1 (1C, C6), 34.0 (1C, C8), 37.9 (1C, C4), 43.1 (1C, C2), 51.6 (1C, methyl), 54.7 (1C, benzyl), 65.2 (1C, C11–C16), 68.2 (1C, C11–C16), 68.6 (1C, C3), 68.6 (1C, C11–C16), 73.0 (1C, C11–C16), 77.4 (1C, C11–C16), 80.1 (1C, C11–C16), 108.4 (1C, C10), 129.1 (2C, phenyl), 129.5 (1C, C17), 129.9 (2C, phenyl), 130.9 (1C, C18), 153.6 (1C, C9), 174.9 (1C, C1). \]

HRMS (ESI): C_{26}H_{27}N_{3}O_{3} \[[M+H]^+ \text{calc.} 430.2125, \text{obs.} 430.2118. \]

\[\text{Compound 18. (Original compound 4)} \]

\[\text{H NMR (600 MHz; DMSO-}\text{d}_6): \delta (ppm) = 1.24–1.30 (m, 6H, H4–H6), 1.31–1.35 (m, 2H, H7), 1.47–1.49 (m, 2H, H3), 2.18–2.20 (m, 2H, H2), 5.08–5.10 (m, 2H, H8), 5.65 (s, 2H, benzyl), 5.90 (dd, J = 15.9, 1.8 Hz, 1H, H10), 6.64 (dd, J = 15.9, 4.7 Hz, 1H, H9), 7.31–7.40 (m, 5H, phenyl), 8.78 (s, 1H, H18). \]

\[\text{C NMR (125 MHz; DMSO-}\text{d}_6): \delta (ppm) = 24.7 (1C, C3), 28.5, 28.6, 29.0 (3C, C4–C6), 33.6 (1C, C2), 36.4 (1C, C7), 53.3 (1C, benzyl), 64.6, 67.5, 68.7 (3C, C7–C12), 70.0 (1C, C8), 73.0, 77.3, 79.7 (3C, C7–C12), 105.0 (1C, C10), 127.5 (1C, C17), 128.0 (2C, phenyl), 128.4 (1C, phenyl), 128.9 (2C, phenyl), 131.0 (1C, C18), 135.3 (1C, phenyl), 156.2 (1C, C9), 174.5 (1C, C1). \]

HRMS (ESI): C_{25}H_{24}N_{3}O_{3} [M-H]^- \text{calc.} 414.1823, \text{obs.} 414.1821.

Compound 6. (Original compound 18)

\[\text{H NMR (600 MHz; acetone-}\text{d}_6): \delta (ppm) = 1.32–1.38 (m, 6H, H3–H5), 1.35–1.51 (m, 2H, H6), 1.56–1.61 (m, 2H, H7), 2.31 (m, 2H, H2), 3.62 (s, 3H Methyl), 4.18–4.26 (m, 1H, H8), 5.72 (s, 2H, benzyl), 5.94 (dd, J = 15.9, 1.8 Hz, 1H, H10), 6.63 (dd, J = 15.9, 4.8 Hz, 1H, H9), 7.37–7.43 (m, 5H, phenyl), 8.47 (s, 1H, H18). \]

HRMS (ESI): C_{26}H_{27}N_{3}O_{3} [M+H]^+ \text{calc.} 430.2125, \text{obs.} 430.2119.

2.8. Determination of the absolute configuration of compound 6
The stereochemical assignment of the C-8 hydroxyl group was determined by the Mosher method.\cite{3} 4-Dimethylaminopyridine in dichloromethane (2.3 M, 10 μL) was added to the solution of compound 6 in dry dichloromethane (100 μL). Portions of (R)- and (S)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) (n × 1 μL) were added at room temperature until the reaction became complete. The mixture was purified by flash column chromatography on silica gel (Hex:EtOAc = 4:1) to give the desired compounds 19a and 19b, respectively.

Compound 19a.

1H NMR (600 MHz; acetone-d_6): δ (ppm) = 1.19–1.43 (m, 6H, H4–H6), 1.54–1.61 (m, 2H, H3), 1.62 (m, 1H, H7), 1.74 (m, 1H, H7), 2.26–2.30 (m, 2H, H2), 3.63 (2, 3H, methyl), 5.68 (m, 1H, H8), 5.72 (s, 2H, benzyl), 6.06 (dd, $J = 16.0, 1.2$ Hz, 1H, H10), 6.60 (dd, $J = 16.0, 6.9$ Hz, 1H, H9), 7.38–7.55 (m, 10H, phenyl), 8.49 (s, 1H, H18). HRMS (ESI): $C_{36}H_{34}F_3N_3O_5$ [M+H]$^+$ calc. 646.2523, obs. 646.2513.

Compound 19b.

1H NMR (600 MHz; acetone-d_6): δ (ppm) = 1.19–1.38 (m, 6H, H4–H6), 1.58–1.68 (m, 2H, H3), 1.66 (m, 1H, H7), 1.81 (m, 1H, H7), 2.28–2.32 (m, 2H, H2), 3.62 (2, 3H, methyl), 5.63 (m, 1H, H8), 5.72 (s, 2H, benzyl), 5.82 (dd, $J = 16.0, 1.2$ Hz, 1H, H10), 6.49 (dd, $J = 16.0, 6.5$ Hz, 1H, H9), 7.38–7.77 (m, 10H, phenyl), 8.49 (s, 1H, H18). HRMS (ESI): $C_{36}H_{34}F_3N_3O_5$ [M+H]$^+$ calc. 646.2523, obs. 646.2515.

2.9. Synthesis of S-acetylcytamine (SNAC) thioester of compound 2

To a solution of compound 2 (1 mg, 2.5 μmol) in dichloromethane (1 mL), N-acetyl cysteamine (399 μL, 3.75 μmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (959 μg, 5.01 μmol), and 4-dimethylaminopyridine (30 μg, 0.25 μmol) at 0 °C. The reaction mixture was warmed to room temperature and stirred for additional 12 h. The solution was concentrated and purified by flash column chromatography on silica gel (Hex:EtOAc = 1:1) to provide the compound 13. The structure of 13 was confirmed with NMR spectral data of compound 20 obtained by above-mentioned (2.7) click reaction.
Compound 13. (Original compound 2)

\[
\text{Compound 20. (Original compound 13)}
\]

\(^1\text{H NMR (600 MHz; DMSO-}d_6\text{): } \delta (ppm) = 1.21-1.29 (m, 6H, H4–H6), 1.32-1.40 (m, 2H, H7), 1.52-1.55 (m, 2H, H3), 2.13 (s, 3H, methyl), 2.15–2.20 (m, 2H, H8), 2.54–2.57 (m, 2H, H2), 2.86–2.89 (m, 2H, SCH_2CH_2) 3.13–3.16 (m, 2H, SCH_2C_2), 5.65 (s, 2H, benzyl), 5.80 (d, J =15.9 Hz, 1H, H10), 6.58 (dt, J =15.9, 7.2 Hz, 1H, H9), 7.31–7.40 (m, 5H, phenyl), 8.78 (s, 1H, H18).

\(^1\text{3C NMR (125 MHz; DMSO-}d_6\text{): } \delta (ppm) = 21.0 (1C, methyl), 25.0 (1C, C3), 28.1 (1C, C7), 28.1, 28.2, 29.3 (3C, C4–C6), 28.1 (1C, SCH_2CH_2), 32.8 (1C, C8), 38.2 (1C, SCH_2CH_2), 43.4 (1C, C2), 53.2 (1C, benzyl), 64.3, 67.6, 68.6, 71.9, 76.9, 79.9 (6C, C11–C16), 107.2 (1C, C10), 127.5 (1C, C17), 128.0 (2C, phenyl), 128.4 (1C, phenyl), 128.8 (2C, phenyl), 131.0 (1C, C18), 135.3 (1C, phenyl), 153.5 (1C, C9), 172.0 (1C, C(=O)CH_3), 198.5 (1C, C1). HRMS (ESI): C_{29}H_{32}N_4O_2S [M+H]^+ calc. 501.2319, obs. 501.2312.

2.10. Phylogenetic analysis of CayG and other P450 proteins in bacteria.

To select Actinomycetes cytochrome P450 proteins, reviews by Liu,\(^4\) Shen and coworkers\(^5\) were referred. Other proteins were collected by BlastP (https://blast.ncbi.nlm.nih.gov/) using database protein data bank (PDB), UniProtKB/Swiss-Prot, and Non-redundant protein sequences. CYP numbers were determined by using BLAST tool in Biocatnet CYP v6.0 server (https://cyped.biocatnet.de/).\(^6\) Alignment of 87 amino acid sequences was performed by MAFFT ver. 7 (https://mafft.cbrc.jp/alignment/software/)\(^7\) using the default setting. Obtained data were analyzed by IQ tree (http://www.iqtree.org/)\(^8\) with automatic model selection mode (ModelFinder),\(^9\) where the LG+F+R5 was selected, generating the unrooted fast maximum-likelihood-based tree. Phylogenetic bootstrap analysis was performed by ultrafast approximate bootstrap with 1,000 bootstrap replicates. The obtained tree was displayed using MEGA7.\(^10\)

2.11. Sequence similarity network and Genome Neighborhood analysis for CayG.

A sequence similarity network was produced by using the sequence similarity tool through EFI-EST\(^11\) and visualized by Cytoscape.\(^12\) The network was produced by using the UniProt 2021-02 and the InterPro86 databases, and consisted of 1,000 sequences with CayG. Final network shown is alignment score of 100 and E-value cutoff of 10\(^{-5}\), with each node representing sequences with 100% sequence identity. To search neighbor genes of cayG in genomes, the datum obtained by EFI-EST was subjected to EFI-GNT and generating Genomic Neighborhood Diagrams including CayG homologues and orthologues were analyzed.
Supplementary Tables and Figures

Table S1. Primers used for insertional knockout of cayG, cayK, cayL, and cayKL in T. caryophylli DSM50341

Primers	sequence (Underline; restriction enzyme sites)
KOcayG_f1	5’-AGCGATCTTTTCGACACCCGAG-3’
KOcayG_r1	5’-GCTACTTTAATGCTAGCTAGCTAGCTAGATCGCAAGGAATGCAAAGGCC-3’ (Nhel)
KOcayG_f2	5’-GCTACGCTAGCTTTAATGACATAGTTCCGGTGCTGATCG-3’ (Pci)
KOcayG_r2	5’-GTATCGACGTTGCTAG-3’
KOcayK_f1	5’-ATCCCCAATGCTCGAGTC-3’
KOcayK_r1	5’-GCTACTTTAATGCTAGCTAGCTAGCTAGATCGCAAGGAATGCAAAGGCC-3’ (Nhel)
KOcayK_f2	5’-GCTACGCTAGCTTTAATGACATAGTTCCGGTGCTGATCG-3’ (Pci)
KOcayK_r2	5’-GTCCGCATCGACGGGGCTTTG-3’
KOcayL_f1	5’-ACCCGACGAACCTGCATGTCAAC-3’
KOcayL_r1	5’-GCTACTTAATTAAAGCTAGCTAGCTAGCTAGATCGCAAGGAATGCAAAGGCC-3’ (Nhel)
KOcayL_f2	5’-GCTACGCTAGCTTTAATGACATAGTTCCGGTGCTGATCG-3’ (Pci)
KOcayL_r2	5’-GATCGACGTTGCTAG-3’
KOcayKL_f1	same sequence as KOcayK_f1
KOcayKL_r1	same sequence as KOcayK_r1 (Nhel)
KOcayKL_f2	same sequence as KOcayL_f2 (Pci)
KOcayKL_r2	same sequence as KOcayL_r2
Apra_f	5’-GCTCGCTAGCTAGCTCGAGTCGACATCGGACACATCTACG-3’ (Nhel)
Apra_r	5’-GCTACCTTTAATGATCGGAGTCGTCGATTCCCGGACC-3’ (Pci)

Table S2. Primers used for heterologous expression plasmid preparation using cayG, cayK, and cayL in P. protegens Pf-5

Primers	sequence (Undertline; restriction enzyme sites)
cayG_Pf5_f	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayG_Pf5_r	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_f	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_r	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_f	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_r	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_f	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_r	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_f	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
cayK_Pf5_r	5’-AAAAAAGCCGCAATCCACCAGTCCCGAGC-3’ (BamHl)
Table S3. Primers used for productions of N-His\textsubscript{6} CayL, N-His\textsubscript{6} CayG, and MalE-CayK protein in \textit{E. coli}

Primers	sequence (Underline; restriction enzyme sites)
cayL\textsubscript{f}	5'-AAAAAAA CATATG TCCGACATCGCAGATCGAATAC-3' (Ndel)
cayL\textsubscript{r}	5'-AAAAAAA AGCTTT CAAGATCGAACACCATTACCGAG-3' (HindIII)
cayG\textsubscript{f}	5'-ACAGCACATG CATGACAGCCTTTC-3' (Ndel)
cayG\textsubscript{r}	5'-AAAAAAA AGCTTT CAAGATCGAACACCATTACCGAG-3' (HindIII)
cayK\textsubscript{f}	5'-GGTTGGA TTCCAGTCTATCAGCTTACAG-3' (BamHI)
cayK\textsubscript{r}	5'-GGTAA AGCTTT CAAGATCGAACCCCGG-3' (HindIII)
Ecoli_FDR\textsubscript{f}	5'-AAAAAGACTAGCATGCGATGGGAAGACAGGC-3' (Nhel)
Ecoli_FDR\textsubscript{r}	5'-AAAAAGATCCCTTACCAGTACTGCGCTCG-3' (BamHI)

Table S4. Plasmids used in this study.

Plasmids	Function	Source or reference
pJET1.2 blunt	Blunt end cloning vector for knockout	Thermo Fisher Scientific
pET28b (+)	N-His\textsubscript{6}-tagged protein expression vector	Novagen (Merck KGaA)
pMal c2x	N-MalE-tagged protein expression vector	New England Biolabs
pJ773	Source of apramycin resistance gene (AprR)	Gust et al.[13]
pJB861	Broad-host range expression vector	Blatny et al.[14]

Table S5. Bacterial strains used in this study.

Strains	Function	Source or reference
\textit{Escherichia coli}		
XL1 Blue	Strain for general cloning	Invitrogen
TOP10	Strain for general cloning	Invitrogen
BL21 (DE3)	Strain for heterologous expression	NEB
pET28b-cayG	N-His\textsubscript{6}-CayG protein production	This study
pET28b-cayL	N-His\textsubscript{6}-CayL protein production	This study
pET28b-FDR	N-His-fravodoxin reductase production	This study
pMal c2x-cayK	MalE-CayK protein production	This study
\textit{Trinckia caryophylli}		
DSM50341	Wild-type for mutagenesis	DSMZ
\Delta cayG	AprR cassette is partially inserted in cayG gene	This study
\Delta cayK	AprR cassette is partially inserted in cayK gene	This study
\Delta cayL	AprR cassette is partially inserted in cayL gene	This study
\Delta cayKL	AprR cassette is partially inserted in cayKL gene	This study
\textit{Psuedomonas protegens}		
Pf-5 (ATCC BAA-477)	Wild-type for mutagenesis	Howell et al.[15]
pJB861	Empty plasmid as negative control	This study
pJB861-cayG	\textit{cayG} heterologous expression	This study
pJB861-cayKG	\textit{cayK} and G heterologous expression	This study
pJB861-cayLG	\textit{cayL} and G heterologous expression	This study
pJB861-cayKLG	\textit{cayK}, L, and G heterologous expression	This study
pJB861-cayK	\textit{cayK} heterologous expression	This study
pJB861-cayKL	\textit{cayK} and L heterologous expression	This study
Figure S1. PCR confirmation of insertional gene knockout for cayKL, cayK, cayL, and cayG in *T. caryophylli* Pf-5. **A)** Knockout strategy using double-crossover event of target genes with an apramycin resistance cassette (*Apr^R*) insertion. **B)** Agarose gel analysis of PCR products as a template of (a) *T. caryophylli* cayKL (wild type), ΔcayKL (mutant), using a primer pair KOcayKL_f1 and KOcayKL_r2, (b) *T. caryophylli* cayK (wild-type), ΔcayK (mutant), using a primer pair KOcayK_f1 and KOcayK_r2, (c) *T. caryophylli* cayL (wild type), ΔcayL (mutant), using a primer pair KOcayL_f1 and KOcayL_r2, (d) *T. caryophylli* cayG (wild type), ΔcayG (mutant), using a primer pair KOcayG_f1 and KOcayG_r2. **M** (Molecular Marker), 1; 1000 bp, 2; 2000 bp, 3; 3000 bp.
Figure S2. Amino acid sequence alignment of CayK, ferritin, and other ferritin-like proteins. Red and magenta shaded amino acids indicate the conserved defined/potential metal ligands and potentially conserved amino acids, respectively. FtnA; ferritin, BrfB; bacterioferritin, Ruer; ruberythrin, Eryt; erythrin, Rrsc; ribonucleotide reductase small chain. BrfB_Caje; 1KRQ, *Campylobacter jejuni* subsp. *jejuni* NCTC 11168, BrfB_Esco; 1EUM, *Escherichia coli*, BrfB_Hepy; Q9ZL11.1, *Helicobacter pylori* J99, BrfB_Mytu; 3QD8, *Mycobacterium tuberculosis*, CayK_Bugl; KAF1061804.1, *Burkholderia gladioli* LvStA, CayK_Bupl; WP_042627244.1, *Burkholderia plantarii*, CayK_Trca; WP_085229150.1, *Trinickia caryophylli*, Eryt_Pyab; Q9V026, *Pyrococcus abyssi*, Eryt_Pyfu; Q8U1L6, *Pyrococcus furiosus*, Eryt_Thma; Q9WXM4, *Thermotoga maritima*, FtnA_Esco; 1EUM, *Escherichia coli*, FtnA_Psae; 3R2L, *Pseudomonas aeruginosa*, FtnA_Pyfu; 2JD7, *Pyrococcus furiosus*, Rrsc_Mytu; 3OMJ, *Geobacillus kaustophilus* HTA426, Rrsc_Mytu; 3EE4, *Mycobacterium tuberculosis*, Rrsc_Suca; 6QRZ, *Sulfolobus acidocaldarius*, Ruer_Bups; 4D10, *Burkholderia pseudomallei* 1710b, Ruer_Devu; 1S30, *Desulfovibrio vulgaris*, Ruer_Pyfu; 1NNQ, *Pyrococcus furiosus*.
Figure S2 continued. Amino acid sequence alignment of CayK, ferritin, and other ferritin-like proteins.
Figure S2 continued. Amino acid sequence alignment of CayK, ferritin, and other ferritin-like proteins.
Figure S3. Amino acid sequence alignment of CayL and other rubredoxins. Conserved motifs are shown over the sequences. Iron binding cysteines are highlighted as red. CayL; TRX17445.1, *Trinickia caryophylli*, Rub_Clpa; 2PVE, *Clostridium pasteurianum*, Rub_Devu1; 1RDV, *Desulfovibrio vulgaris* str. 'Miyazaki F', Rub_Devu2; 1RB9, *Desulfovibrio vulgaris* str. Hildenborough, Rub_Mytu1; 2KN9, *Mycobacterium tuberculosis*, Rub_Mytu2; 7A9A, *Mycobacterium tuberculosis* H37Rv, Rub_Psae; 2V3B, *Pseudomonas aeruginosa* PAO1, Rub_Pyab; 1YK5, *Pyrococcus abyssi*, Rub_Pyfu; 1BRF, *Pyrococcus furiosus*, Rub_Trca1; TRX20258.1, *Trinickia caryophylli*, Rub_Trca2; TRX19883.1, *Trinickia caryophylli*.
Figure S4. Selected polyyne biosynthetic gene clusters. Color codes indicate homologous enzyme genes.
Table S6. CayG-neighbour CayK and CayL proteins obtained through EFI-EST (Enzyme similarity tool) followed by GNT (Genome neighbourhood tool).

Polyenyne	Strain	CayK	CayL	CayG
Caryoynencin	Trinickia caryophylli DSM50341	TRX17444.1^a	TRX17445.1^a	TRX17446.1^a
Caryoynencin	Burkholderia gladioli Lv-SIA	KAF1061804.1^c	KAF1061803.1^c	KAF1061802.1^c
Caryoynencin^b	Burkholderia gladioli BSR3	AEA60657.1^d	AEA60656.1^c	AEA60655.1^d
Caryoynencin^b	Burkholderia gladioli Co14	AYQ88359.1^e	AYQ88358.1^c	AYQ88357.1
Caryoynencin^b	Burkholderia gladioli A1	WP_025100203.1^c	WP_013697988.1^c	WP_025100202.1^c
Caryoynencin^b	Burkholderia plantarii ATCC 43733	ALK32875.1^f	ALK32874.1^f	ALK32873.1^f
Caryoynencin^b	Burkholderia plantarii FDAARGOS_922	MBI0330365.1	MBI0330366.1	MBI0330367.1
Caryoynencin^b	Burkholderia sp. SJZ089	TWC73896.1^g	TWC73895.1^c	TWC73894.1^c

^aIdentical proteins with those of T. caryophylli Ballard 720, HAMBI_2159, LMG2155.
^bNo experimental evidence.
^cIdentical proteins with those of B. gladioli AU0368, C101, BCC1668, BCC1669, BCC1700, BCC1714, BCC1754, BCC1755, BCC1775, BCC1800, BCC1806, BCC1836, BCC1842, BCC1851, BCC1866, BCC1872.
^dIdentical proteins with those of B. gladioli 3834s-5, BCC1675, BCC1735, BCC1780, BCC1821, GSRB05.
^eIdentical proteins with those of B. gladioli 3723STDY6437373, Ap-962, Ax-1720, BCC1650, BCC1661, BCC1665, BCC1686, BCC1689, BCC1692, BCC1697, BCC1710, BCC1733, BCC1812, BCC1819, BCC1829, BCC1880, Cy637, Cy647, ISTR5, Tr860.
^fIdentical proteins with those of B. plantarii LMG9035, PG1, ZJ171.
^gIdentical proteins with those of Burkholderia sp. SJZ091, SJZ115, UCD-UG_CHAPALOTE.
^hIdentical proteins with those of Xylella fastidiosa Salento-1, Salento-2, CoDiRO, OLS0478, CoF0407, OLS0479, Xylella fastidiosa subsp. pauca De Donno, PD7202.
Figure S5. SDS-PAGE analysis of purified proteins. A) N-His$_6$-tagged CayG, B) N-His$_6$-tagged CayL, C) MalE-CayK, D) N-His$_6$-tagged flavodoxin reductase (FDR). M; Molecular marker.
Table S7. Reducing conditions for *in vitro* CayG-CayK system.

Assay No.	Components (final concentration)
1	1 mM Ascorbic acid
2	1 mM L-Cysteine
3	1 mM Dithiothreitol (DTT)
4	0.1 mM Flavodoxin reductase, 10 mM glucose-6-phosphate (G6P), 1 U mL⁻¹ baker’s yeast G6P dehydrogenase, 4 mM NADPH
5	20 mM L-Glutathion
6	0.294 – 294 mM Hydrogen peroxide
7	1 mM α-Ketoglutaric acid (KG)
8	50 μM phenazine methosulfate (PMS), 500 μM NADH
9	50 μM phenazine methosulfate (PMS), 500 μM NADPH
10	20 mM Sodium dithionite
11	0.1 U Spinach ferredoxin reductase, 10 mM glucose-6-phosphate (G6P), 1 U mL⁻¹ baker’s yeast G6P dehydrogenase, 4 mM NADPH
12	1 mM Tris(2-carboxyethyl)phosphine (TCEP)

with 50 μM CayG, and 20 μM CayK in 50 mM Tris HCl, pH 8.0, at 30 °C for 2 h.
Figure S6. Structure elucidation of compound 5 E/Z isomers. A) Structure of 5, B) 1H and C) 1H-1H COSY NMR spectrum (5.4–7.4 ppm range) after CuAAC and methylation reactions with compound 3 obtained from the in vitro assay of CayG with protegencin (2).

Table S8. 1H NMR assignments of H7–H10 of 5.

C7-C8/C9-C10	E/E	E/Z	Z/E
H7	6.09 (d, $J = 15.1$, 7.1 Hz)	6.18 (d, $J = 15.1$, 7.1 Hz)	5.78 (m)
H8	6.30 (dd, $J = 15.0$, 10.8 Hz)	6.64 (dd, $J = 15.1$, 11.2 Hz)	6.21 (t, $J = 11.3$ Hz)
H9	6.95 (dd, $J = 15.6$, 10.8 Hz)	6.80 (t, $J = 11.0$ Hz)	7.32 (dd, $J = 15.5$, 11.6 Hz)
H10	5.76 (d, $J = 15.6$ Hz)	5.54 (d, $J = 10.7$ Hz)	5.85 (d, $J = 15.4$ Hz)
Figure S7. 1H NMR spectrum of compound 18.

Figure S8. 13C NMR spectrum of compound 18.
Figure S9. 1H-1H COSY NMR spectrum of compound 18.

Figure S10. HSQC NMR spectrum of compound 18.
Figure S11. HMBC NMR spectrum of compound 18.
Figure S12. 1H NMR spectrum of compound 6.
Figure S13. 1H NMR spectrum of compound 19a.

Figure S14. 1H-1H COSY NMR spectrum of compound 19a.
Figure S15. 1H NMR spectrum of compound 19b.

Figure S16. 1H-1H COSY NMR spectrum of compound 19b.
Figure S17. UV-Vis spectral data of compounds 7–11 (a–e).
Figure S18. HPLC-DAD profiles of polyyne compounds. a), c), e), g) and i) polyyne compounds 7, 8, 9, 10 and 11 obtained from *P. protegens* Pf-5, respectively, and b), e), f), h) and j) their modified compounds 14, 15, 16, 17 and 11 after CuAAC reactions, respectively.
Figure S19. 1H NMR spectrum of compound 14.

Figure S20. 13C NMR spectrum of compound 14.
Figure S21. 1H-1H COSY NMR spectrum of compound 14.

Figure S22. HSQC NMR spectrum of compound 14.
Figure S23. HMBC NMR spectrum of compound 14.
Figure S24. 1H NMR spectrum of compound 15.

Figure S25. 13C NMR spectrum of compound 15.
Figure S26. 1H-1H COSY NMR spectrum of compound 15.

Figure S27. HSQC NMR spectrum of compound 15.
Figure S28. HMBC NMR spectrum of compound 15.
Figure S29. 1H NMR spectrum of compound 16.

Figure S30. 13C NMR spectrum of compound 16.
Figure S31. 1H-1H COSY NMR spectrum of compound 16.

Figure S32. HSQC NMR spectrum of compound 16.
Figure S33. HMBC NMR spectrum of compound 16.
Figure S34. 1H NMR spectrum of compound 17.

Figure S35. 13C NMR spectrum of compound 17.
Figure S36. 1H-1H COSY NMR spectrum of compound 17.

Figure S37. HSQC NMR spectrum of compound 17.
Figure S38. HMBC NMR spectrum of compound 17.
Figure S39. 1H NMR spectrum of compound 20.

Figure S40. 13C NMR spectrum of compound 20.
Figure S41. 1H-1H COSY NMR spectrum of compound 20.

Figure S42. HSQC NMR spectrum of compound 20.
Figure S43. HMBC spectrum of compound 20.
Figure S44. UV-Vis and HRMS spectral data from the *in vitro* assay of CayG with compound 8.
Figure S45. UV-Vis and HRMS spectral data from the in vitro assay of CayG with compound 9.
Figure S46. UV-Vis and HRMS spectral data from the *in vitro* assay of CayG with compound 10.
Figure S47. Maximum likelihood phylogenetic tree of CayG and other bacterial P450 proteins. The CYPxxx indicates CYP clans. CayG homologous proteins are highlighted as yellow. Gray colors are used for separation of clans. Colored marks revealed functions. The numbers at the nodes indicate the ultrafast bootstrap score (1,000 replicates, shown value: %) for reliability of the different groups.
Table S9. P450 proteins used in phylogenetic analysis. CYP No. was obtained by BLAST tool in Biocatnet CYP v6.0 server (https://cyped.biocatnet.de/).

Protein	Compound	Function	Source	CYP No.	Accession No.
AmphL	Amphotericin	Hydroxylation	Streptomyces nodosus	107E	AAK73504.1
AmphN	Amphotericin	Hydroxylation/oxidation	Streptomyces nodosus	105H	AAK73509.1
AurH	Aureothin	Hydroxylation/ether formation	Streptomyces thioluteus HKI-227	151A	3P3L
AveE	Avemectin	Hydroxylation	Streptomyces avermitilis NBRC 14893	117A	BAC68651.1
AziB1	Azinomycin	Hydroxylation	Streptomyces sahachiroi	107-likelike	B4XY99.1
BonL	Bongkrekic acid	Hydroxylation/oxidation	Burkholderia gladioli DMSZ11318	107H	AFN27475.1
C158A1	Biflaviolin	Biaryl ring coupling	Streptomyces coelicolor A3(2)	158A	2DKK
C158A2	Biflaviolin	Biaryl ring coupling	Streptomyces coelicolor A3(2)	158A	1SE6
CayG_Bugl1	Caryoynencin	Desaturation/hydroxylation	Burkholderia gladioli Lv-stA	113-likelike	KAF1061802.1
CayG_Bugl2	Caryoynencin	Desaturation/hydroxylation	Burkholderia gladioli BCC1694	113-likelike	WP_186166357.1
CayG_Bupl	Caryoynencin	Desaturation/hydroxylation	Burkholderia plantarii LMG 9035	113-likelike	WP_042627242.1
CayG_Trca	Caryoynencin	Desaturation/hydroxylation	Trinickia caryophylli DSM50341	113-likelike	AIG53832.1
ChmP1	Chalcomycin	Hydroxylation	Streptomyces bikinensis	107B	AAS79447.1
ChmPll	Chalcomycin	Hydroxylation	Streptomyces bikinensis	107B	AAS79446.1
CloG_Cofu	Collimonin	Hydroxylation/oxidation	Collimonas fungivorans Ter331	107H	AEK64077.1
CYP51_MeBF	unknown	unknown	Methylcoccus spp. BF19-07	51-likelike	WP_198324057.1
CYP51_Meca	unknown	unknown	Methylcoccus capsulatus str. Bath	51-likelike	WP_010961920.1
CYP105P1	Filipin	Hydroxylation	Streptomyces avermitilis	105P	3ABA
CYP105P2	Flavone	Hydroxylation	Streptomyces peucetius	105P	5IT1
CYP137_Myau	unknown	unknown	Mycolicibacterium austroafricanum	137A	WP_109489531.1
CYP137_Myva	unknown	unknown	Mycolicibacterium vanbaalenii	137A	WP_049778016.1
CYP199A4	Methoxybenzoate	Demethylation	Rhodopseudomonas palustris HaA2	208A	4DNZ
CYP-sb21	Cyclosporin	Hydroxylation	Nonomuraea dietziae	107Z	4M4S
EpnI	Eponemycin	Epoxidation	Streptomyces hygroscopicus ATT53709	107B-likelike	AHB38510.1
EpxC	Epoxomicin	Epoxidation	Goodfellowiella coeruleoviolacea ATT53904	107B-likelike	AHB38496.1
EryK	Erythromycin	Hydroxylation	Saccharopolyspora erythraea NRRL 2338	113A-likelike	2JJN
Table S9. Continued. P450 proteins used in phylogenetic analysis.

Protein	P450 Name	Microcompound	Strain/Species	Accession
FkbD_Sthy	FK506/FK520	Hydroxylation/oxidation	Streptomyces hygroscopicus subsp. ascymyceticus	122A AAF86397.1
FkbD_Stts	FK506/FK520	Hydroxylation/oxidation	Streptomyces tsukubensis	122A TAJ41673.1
FR9R	Splicostatin	Hydroxylation/epoxidation	Burkholderia spp., FERM BP-3421	136-1 AIC32704.1
FscP	Candidin	Hydroxylation/oxidation	Streptomyces spp., FR-008	105H AAA82557.1
GdmP	Geldanamycin	Desaturation	Streptomyces hygroscopicus 17997	105U ABI93790.1
GilOIII	Gilvocarcin	Desaturation	Streptomyces griseoflavus Goe 3592	217A AAP69584.1
GrhO3	Griseorrhodin	Epoxidation	Streptomyces graminofaciens	105G AAM33670.1
GsfF	Antibiotic FD-891	Hydroxylation	Streptomyces graminofaciens	105A BAJ16472.1
HerG	Herboxidiene	Hydroxylation	Streptomyces chromofuscus	107B AEZ54507.1
HedR	Hedermycin	Epoxidation	Streptomyces griseoruber	105-1 AAP85338.1
HmtN	Himastatin	Hydroxylation	Streptomyces himastatinicus ATCC 53653	113A 4E2P
HmtS	Himastatin	Hydroxylation	Streptomyces himastatinicus ATCC 53653	113A CBZ42153.1
HmtT	Himastatin	Decarboxylation	Streptomyces himastatinicus ATCC 53653	113A 4GGV
JulI	Julichrome	Bially ring coupling	Streptomyces sampsonii	105A QNL10608.1
LnmA	Leinamycin	Hydroxylation	Streptomyces atroolivaceus S-140	107B 4Z5P
LnmZ	Leinamycin	Hydroxylation	Streptomyces atroolivaceus S-140	107B 4Z5Q
MeiE	Meilingmycin	Hydroxylation	Streptomyces nanchangensis	117A AAM97314.1
MycCI	Mycincinim VIII	Hydroxylation	Micromonospora griseorubida	105U Q83WF5.3
MycG	Mycinicin IV	Hydroxylation/epoxidation	Micromonospora griseorubida A11725	107B Q59523.1
NikQ	Nikkomycin	Hydroxylation on PCP	Streptomyces tendae	163B CAC11139.1
NorH	Neoaureothin	Hydroxylation/ether formation	Streptomyces orinoci	151A CAO85895.1
NorH-Stsc	Neoaureothin	Hydroxylation/ether formation	Streptomyces scabrisporus DSM 41855	151A WP_063744948.1
NovI	Novobiocin	Hydroxylation on PCP	Streptomyces niveus	163B Q9L9F9.1
NysL	Nystatin	Hydroxylation	Streptomyces noursei ATCC 11455	107E AAF71768.1
NysN	Nystatin	Hydroxylation/oxidation	Streptomyces albulus	105H AVX51103.1
Table S9. Continued. P450 proteins used in phylogenetic analysis.

Protein	Substrate	Reaction	Source	Accession
OleP	Oleandomycin	Hydroxylation/epoxidation	*Streptomyces antibioticus*	107B 4XE3
OxyA	Vancomycin	Biaryl ring coupling	*Amycolatopsis orientalis*	165B Q8RN05.1
OxyB	Vancomycin	Biaryl ring coupling	*Amycolatopsis orientalis*	165B Q8RN04.1
OxyC	Vancomycin	Biaryl ring coupling	*Amycolatopsis orientalis*	165B Q8RN03.1
OxyD	Vancomycin	Hydroxylation	*Amycolatopsis orientalis*	146A CCD33151.1
P450terf	Terfenadine	Hydroxylation	*Streptomyces platensis*	107L CBX53644.1
PikC	Narbomycin	Hydroxylation/oxidation	*Streptomyces venezuelae*	107L 2BVJ
PimD	Pimaricin	Epoxidation	*Streptomyces natalensis*	107E 2XBJ
PimG	Pimaricin	Hydroxylation/oxidation	*Streptomyces natalensis*	105H CAC20928.1
PldB	Pladienolide	Hydroxylaiton	*Streptomyces platensis*	107B-like BAH02272.1
PteC	Filipin	Hydroxylation	*Streptomyces avermitilis*	183-like Q821Y3.1
PtlI	Pentalenene	Hydroxylation/oxidation	*Streptomyces avermitilis*	107B 3WVS
RapJ	Rapamycin	Hydroxylation	*Streptomyces rapamycinicus*	183-like Q821Y3.1
RapN	Papamycin	Hydroxylation	*Streptomyces rapamycinicus*	105H AAR16519.1
RavOIII	Ravidomycin	Desaturation	*Streptomyces ravus*	107H CAC68123.1
RevI	Reveromycin	Hydroxylation	*Streptomyces avendii*	107H 3WVS
RhiH	Rhizoxin	Epoxidation	*Mycetohabitans rhizoxinica*	117B CBW75250.1
RhiH_Myen	Rhizoxin	Epoxidation	*Mycetohabitans endofungorum*	117B WP_104077490.1
RhiH_Raso	Rhizoxin	Epoxidation	*Ralstonia solanacearum*	117B CBJ53768.1
RimG	Rimocidin	Hydroxylation/oxidation	*Streptomyces diastaticus*	105H AAR16519.1
saAcmM	Oxo-Pro	Oxidation	*Streptomyces antibioticus*	107Z 5NWS
ScnD	Pimaricin	Epoxidation	*Streptomyces chattanoogensis*	107E ADX66473.1
SoyC	Xenobiotics	Hydroxylation/epoxidation/Dealkylation/desaturation	*Streptomyces griseus*	105A P26911.1
SpcP	Indolocarbazole	Biaryl ring coupling/ decarboxylation	*Streptomyces sanyensis*	105A P26911.1
SpcH_Stsp	Spectinabilin	Hydroxylation/ether formation	*Streptomyces spectabilis*	151A WP_144322036.1
SpcH_Stfl	Spectinabilin	Hydroxylation/ether formation	*Streptomyces flavufunginii*	151A WP_190118357.1
Table S9. Continued. P450 proteins used in phylogenetic analysis.

Protein	Accession	Activity/Modification	Organism	Accession
StaF	A47934	Biaryl ring coupling on PCP	*Streptomyces toyocaensis*	165B 5EX8
StaH	A47934	Biaryl ring coupling on PCP	*Streptomyces toyocaensis*	165B 5EX6
StaP		Biaryl ring coupling/ decarboxylation	*Streptomyces spp. TP-A0274*	245A 2Z3T
Taml		Hydroxylation/oxidation/ epoxidation	*Streptomyces spp. 307-9*	107B 6XA2
ThII	Tylosin	Hydroxylation	*Streptomyces fradiae* 107B-like	AAA21341.1
TrdI	Triadamycin	Hydroxylation/oxidation/ epoxidation	*Streptomyces spp. 17944* 107B-like	AGN29328.1
TstR	Thailanstatin	Hydroxylation/epoxidation	*Burkholderia thailandensis MSMB43* 136-like	AGN11891.1
TxtC	Thaxtomin	Hydroxylation	*Streptomyces acidiscabies* 105A	AAL36838.1
TylHI	Tylosin	Hydroxylation	*Streptomyces fradiae* 105U 6B11	
ZbmVIIc	Zorbamycin	Hydroxylation on PCP	*Streptomyces flavoviridis* 185-like	ACG60779.1
Supplementary References

[1] G. C. Ferreira, J. Gong, *J. Bioenerg. Biomembr.* **1995**, *27*, 151–159.
[2] C. Ross, K. Scherlach, F. Kloss, C. Hertweck, *Angew. Chem. Int. Ed.* **2014**, *53*, 7794–7798.
[3] T. R. Hoye, C. S. Jeffrey, F. Shao, *Nat. Protoc.* **2007**, *2*, 2451–2458.
[4] X. Liu, *Synth. Syst. Biotechnol.* **2016**, *1*, 95–108.
[5] J. D. Rudolf, C.-Y. Chang, M. Ma, B. Shen, *Nat. Prod. Rep.* **2017**, *34*, 1141–1172.
[6] M. Fischer, M. Knoll, D. Sirim, F. Wagner, S. Funke, J. Pleiss, *Bioinformatics* **2007**, *23*, 2015–2017.
[7] K. Katoh, J. Rozewicki, K. D. Yamada, *Brief. Bioinformatics* **2019**, *20*, 1160–1166.
[8] L.-T. Nguyen, H. A. Schmidt, A. vonHaeseler, B. Q. Minh, *Mol. Biol. Evol.* **2015**, *32*, 268–274.
[9] S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, *Nat. Methods.* **2017**, *14*, 587–589.
[10] S. Kumar, G. Stecher, K. Tamura, *Mol. Biol. Evol.* **2016**, *33*, 1870–1874.
[11] R. Zallot, N. Oberg, J. A. Gerlt, *Biochemistry* **2019**, *58*, 4169–4182.
[12] G. Su, J. H. Morris, B. Demchak, B. G. D., *Curr. Protoc. Bioinformatics* **2014**, *47*, 8.1.13–18.11.24.
[13] B. Gust, G. L. Challis, K. Fowler, T. Kieser, K. F. Chater, *Proc. Natl. Acad. Sci. U S A* **2003**, *100*, 1541–1546.
[14] J. M. Blatny, T. Brautaset, H. C. Winther-Larsen, P. Karunakaran, S. Valla, *Plasmid* **1997**, *38*, 35–51.
[15] C. R. Howell, R. D. Stipanovic, *Phytopathology* **1979**, *69*, 480–482.