Clinical value and molecular mechanism of AQGPs in different tumors

Rui Wang · Xuejian Wang · Jun Zhao · Jiacheng Jin · Weiwei Fan · Xinqing Zhu · Qiwei Chen · Baochang Zhang · Lan Lan · Kexin Qu · Liang Zhu · Jianbo Wang

Received: 7 May 2022 / Accepted: 9 June 2022 / Published online: 16 August 2022
© The Author(s) 2022

Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial–mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.

Keywords Aquaglyceroporin · Cancer · Expression pattern · Regulator · Signaling pathway

Introduction

Water is the source of life. Water entering and leaving cells are a basic process of metabolism. In the very beginning, simple diffusion was considered to be the major route of water, but membrane water permeability shown by some epithelia was too high to just be explained by simple diffusion, which inspired explorations on the existence of water-specific channels [1]. Until the historic discovery of a novel 28 kDa integral membrane protein (CHIP28) in human erythrocytes [2, 3], people gradually uncovered the veils of water channel proteins. Then, CHIP28 was named aquaporin 1(AQP-1) after its water transport functions were proven by Peter Agre et al. in Xenopus oocytes [4–7]. Aquaporins exert a profound influence on the regulation of water homeostasis by providing selective pores for the rapid movement of water across diverse cell membranes and regulating cell volume [8]. To date, 13 aquaporins have been found in mammals. Among them, orthodox aquaporins are permeable to water. However, aquaglyceroporins (AQGPs), another subclass of aquaporins, including AQP3, AQP7, AQP9, and AQP10, are capable of facilitating the transport of some small molecules across the membrane, especially glycerin and urea, in addition to water. They were noted to be genetically close to the known E.coli glycerol transport protein GlpF [9], and thus, they were also classified as “the GlpF group.”

Cancer is a threat to human health. Lipid metabolism is receiving much attention in cancer research today. Cancer cells rely on abnormal lipid metabolism to proliferate, metastasize, and adapt to the tumor microenvironment (TME) [10]. Moreover, aberrant uptake, storage, synthesis, and utilization of lipids have been detected in many cancers, and directly exacerbated tumorigenicity and malignancy [11]. Emerging evidence also shows that the functions of immune cells in the TME are closely related to abnormal lipid metabolism [12]. Aquaglyceroporins, as channels for glycerol, determine glycerol
trafficking in and out of cells and subsequent lipid metabolism. Research has demonstrated that silencing AQP3 contributes to proliferation impairment and apoptosis via decreased glycerol uptake and lipid synthesis in gastric cancer cells [13, 14]. Hara-Chikuma and Verkman found that glycerol permeability via AQP3 is required for epidermal cell proliferation and tumorigenesis, as cellular glycerol is a key determinant of cellular ATP energy [15]; also, AQP3/PLD2 signaling module may be involved in the process of converting glycerol to phosphatidylglycerol in squamous cell carcinoma and basal cell carcinoma [16]. In mouse breast cancer models, lipid accumulation in Aqp7 KD tumors was detectable by Oil Red O staining [17]. Moreover, AQP9 participates in hepatic glycerol metabolism reprogramming in early rat liver cancer [18]. Therefore, in this review, we focus on aquaglyceroporins, which are not only channels for glycerin and water transportation, but also important biomarkers for predicting tumor prognosis and affecting malignant behaviors.

To date, no systematic review has further explored the relationship between aquaglyceroporins and cancer. In this review, we analyze how AQGPs affect the malignant behaviors of cancer by investigating the expression patterns of AQGPs and their relationship with cancer prognosis in hope of some new ideas beneficial to cancer treatment.

Structure

Members of the AQGPs show similar topology, including six nonpolar membrane-spanning domains of sufficient length, five connected loops consisting of three extracellular loops (A, C, E), and two intracellular loops (B, D), cytoplasmic-facing NH2 and COOH termini, and highly conserved motifs covering two tandem repeat Asp-Pro-Ala sequences (NPA box) located in loops B and E, respectively, one “AEFL” and one “HW[V/I][F/Y]WXGP” sequence [19–21]. The three-dimensional “hourglass model” is composed of homotetramers, and each monomer of the homotetramers has a functional water channel [22].

Surprisingly, the presence of two additional peptide spans, one in loop C and the other in loop E after the second NPA motif, was observed in all aquaglyceroporins but not in orthodox aquaporins [9, 19, 23]. Although the structural explanation for the functional difference between aquaporins and aquaglyceroporins has not reached a consensus today, these distinctive domains may be the key [9, 19] (See Fig. 1)

Expression patterns and relationship with cancer prognosis

AQP3

AQP3 was the first aquaglyceroporin known and studied in humans and is expressed in a variety of tissues, including the renal collecting duct [24], respiratory epithelium [25], breast [26], stomach [27], and prostate [28]. Recently, an increasing number of researchers have pointed out that AQP3 is inclined to be of considerable importance in cancer development, which indicates that it may serve as a biomarker of cancer prognosis.

A recent study provided insight into the possible etiological theory that positive AQP3 expression was related to lymph node metastasis, invasion, and high TNM stage in patients with pancreatic ductal adenocarcinoma (PDAC) [29]. In addition, AQP3 expression was reinforced in later and more aggressive stages of PDAC [30]. Another study suggested that AQP3, regulated by estrogen, might be adopted as a diagnostic biomarker for the early detection of ovarian cancer [31]. Furthermore, enhanced expression of AQP3 was also correlated with lymph node metastasis in patients with colon and gastric cancer [32, 33]. In addition, a Chinese research team highlighted that preoperative serum AQP3 levels were significantly elevated in patients diagnosed with colon cancer, demonstrating its clinical value for the early screening of colon cancer [34]. Protein or mRNA expression levels of AQP3 are related to the TNM stage, lymph node status, relapse, metastasis, and some other clinical indicators, which ultimately contribute to cancer outcomes. See Table 1 for the relationship between AQP3 expression levels and cancer prognosis in detail.

As shown in Table 1, AQP3 is also expressed in many cancer tissues and cells, but its expression patterns differ from those of cancers. Given its relationship with cancer prognosis, we delve into its expression patterns in different cancers hoping for some new discoveries. Table 2 shows the expression levels of AQP3 in cancer tissues or cells and corresponding normal tissues or cells.

From Table 2, the expression level of AQP3 in most cancers is higher than that in the corresponding normal tissues or cells, particularly at the protein level, except for nonmelanoma skin cancer. From Table 1, at the protein level, overexpression of AQP3 or AQP3-positive often contributes to a worse prognosis except for endometrioid carcinoma and MIBC, indicating that AQP3 frequently acts as a villain in cancer.

The expression patterns of AQP3 in thyroid cancer, breast cancer, and prostate cancer are exceptional. In the thyroid, AQP3 expression was positive only in
Table 1 Relationship between AQP3 expression levels and cancer prognosis

Cancer types	Expression types	Expression and prognosis
Gastric carcinoma [35, 36]	mRNA	Higher expression is correlated with better OS
Pancreatic ductal adenocarcinoma [29]	protein	Higher expression is correlated with worse OS
Esophageal squamous cell carcinoma [37]	protein	Co-expression of AQP3 and AQP5 shows worse OS + DFS
Triple-negative breast cancer [38]	protein	Higher AQP3 and AQP5 expression shows worse OS + DFS
Breast cancer [39]	mRNA	Higher expression is correlated with worse RFS
HER2-positive early breast cancer [40]	protein	40.3% positive expression shows worse DFS
HER2-positive early breast cancer [41]	mRNA	Positive expression shows worse RFS
Hepatocellular carcinoma [42]	protein	Higher expression is correlated with worse OS + DFS
Endometrioid carcinoma [43]	protein	Positive expression shows better OS + PFS
Urothelial carcinoma [44–47]	protein	High expression in CIS: usually poor prognosis MIBC: higher expression means better PFS
Ovarian cancer[48]	mRNA	Higher expression is correlated with better OS

OS overall survival, DFS disease-free survival, RFS relapse-free survival, PFS progression-free survival, HER2 human epidermal growth factor receptor 2, CIS carcinoma in situ, MIBC muscle-invasive bladder cancer

Table 2 Expression levels of AQP3 in cancer tissues or cells and corresponding normal tissues or cells

Cancer types	Tissues/cell lines	Methods	Expression of tumors (T) and normal tissues or cells (N)
GC [33]	tissues	RT-PCR, IF, WB	T > N
GC [49]	tissues	WB	T > N
GC [50, 51]	tissues	IHC	T > N
GC [14]	tissues	RT-PCR	T > N
GC [36]	tissues	TCGA database	T < N
HCC [42]	tissues	IHC	T > N
HCC [52]	tissues	qRT-PCR, WB, IHC	T > N
HCC [53]	tissues	qRT-PCR, WB	T > N
HCC [54]	tissues	qRT-PCR, IHC	T > N
Breast cancer [38]	tissues	IHC	T > N
Breast cancer [39]	tissues	Oncomine database	T < N
Breast cancer [55]	tissues	qRT-PCR	T > N
PDAC [29]	tissues	WB, IHC	T > N
PDAC [30]	tissues	IHC	T > N
SCC [16]	tissues (skin)	IHC	T > N
SCC [56]	tissues (esophagus, oral)	IHC	T > N
SCC [57]	tissues (oral)	IHC	T > N
SCC [37]	tissues (esophagus)	IHC	T > N
NSCLC [58]	tissues, cell lines	qRT-PCR, WB	T > N
Colorectal carcinoma [59]	tissues	IHC	T > N
Prostate cancer [60]	cell lines	qRT-PCR, WB	T > N
Osteosarcoma [61]	tissues, cell lines	qRT-PCR	T > N
Ovarian carcinoma[hen] [31]	tissues	qRT-PCR, IHC	T > N
Nonmelanoma skin cancer [62]	tissues (skin)	IHC	BCC < SCC < N

GC gastric carcinoma, HCC hepatocellular carcinoma, PDAC pancreatic ductal adenocarcinoma, SCC squamous cell carcinoma, NSCLC non-small cell lung carcinoma, BCC basal cell carcinoma

RT-PCR reverse transcription PCR, IF immunofluorescence, WB western blot, IHC immunohistochemistry, qRT-PCR quantitative real-time PCR
parafollicular cells (C cells). Nevertheless, in thyroid
cancer, AQP3 mRNA and protein were only identified in
medullary thyroid cancer derived from C cells [63], which
might be interpreted as stimulation by hormones secreted
by C cells such as calcitonin. In breast cancer, the highest
level of expression of AQP3 was observed in endocrine-
sensitive (YS1.2) breast cancer cells, followed by endo-
crine -resistant (pII) breast cancer cells, and the weak-
est expression was found in normal breast epithelial cells
(MCF10A) [64], implicating that estrogen might act as an
upstream regulator of AQP3. For prostate cancer (PC), our
team demonstrated that AQP3 was primarily expressed
in the membranes in the normal prostate epithelia, but
in prostate cancer epithelia, AQP3 was often located in
the cytoplasm [28]. Insang Hwang et al. achieved similar
results [65]. It is worth noting that another study showed
that AQP3 was expressed in the membrane and cytoplasm
of LNCaP cells, an androgen-dependent cell line, and
mainly in the cytoplasm of PC3 and Du145 cells, which
are androgen-independent [66]. In summary, we observed
an interesting phenomenon. In normal prostate epithelia,
AQP3 is mainly found in the membrane. However, as the
disease progresses to androgen-dependent PC, AQP3 often
lies in the membrane and cytoplasm. When the disease
progresses to the castration resistance stage, it mainly
appears in the cytoplasm. Since the key to the pathological
progression of prostate cancer is androgen, we hypothesize
that androgen may also be responsible for the tendency
of AQP3 to translocate from the cell membrane to the
cytoplasm as prostate cancer progresses. Unfortunately,
little work has been performed on our conjecture thus
distant. It seems reasonable that AQP3 can be regulated by
hormones, including androgen, estrogen, and calcitonin.
However, whether other hormones in the body have an
influence and how they work is an issue that urgently
needs to be verified. All of the above results show that
AQP3, as a functional protein, is important for forecasting
the prognosis of some cancers and indirectly indicates its
feasibility as a therapeutic target.

AQP7 and AQP10

Studies have shown that in addition to its rich expression
in fatty cells, AQP7 is also expressed in other tissues, such
as kidney, testis, heart, muscle, pancreas, and small intestines,
to varying degrees [27, 67–70], and its main function
is transporting water and glycerol.

AQP7 has different expression levels between tumors and
corresponding normal tissues, implying that it may affect
the prognosis of cancer. As shown in Table 3, we determined
that the expression level of AQP7 mRNA in cancer tissues
was often lower than that in the corresponding normal tissues,
but protein-level evidence still needs to be discovered.
Research suggests that the protein expression level of AQP7
in HCC and ovarian carcinoma tissues is significantly different
from that in normal tissues, but its clinical significance
remains to be explored.

AQP10, permeable to water, glycerol, and urea, is
expressed in the digestive tract [75–77]. However, present
studies have not been particularly informative about its role
in cancer. Despite being a part of the AQGP family, its func-
tion remains unknown. Until now, AQP10 mRNA has been
found in several cancers, such as breast cancer and ovarian
cancer [78, 79]. A study of ovarian cancer demonstrated that
higher AQP10 mRNA expression meant a better OS [79],
and Lizhe Zhu et al. found that increased AQP10 mRNA
expression in breast cancer was associated with better RFS
[39]. In contrast, another study obtained the opposite result
that AQP10 mRNA expression was relevant to poor OS [35].

The relationship between the expression levels of AQP7
and AQP10 and the prognosis of cancer remains ambigu-
ous because there have been only a few attempts to exam-
ine AQP7 and AQP10 in cancer, and existing research was
limited to the mRNA level. The identification and location

Table 3 AQP7 expression levels in cancer tissues or cells and corresponding normal tissues or cells and relationship between AQP7 expression
levels and cancer prognosis

Cancer types	Tissues/cell lines	Expression types	Expression of tumors (T) and normal tissues or cells (N)	Expression and prognosis
Low-grade glioma [48]	TCGA database	mRNA	T < N	Lower expression means better OS
ccRCC [71]	TCGA database	mRNA	T < N	Lower expression means worse OS
Breast cancer[39]	Oncomine database	mRNA	T < N	Lower expression means worse OS (in Grade 1)
Breast cancer [17]	TCGA database	mRNA	——	Lower expression means better OS
Breast cancer [17] (mouse)	qRT-PCR IHC	mRNA, protein	T < N	——
PDAC [72]	GEO database	mRNA	T < N	Lower expression means worse OS
HCC [73]	qRT-PCR WB IHC	mRNA, protein	T < N	——
Ovarian carcinoma [74]	WB	protein	T > N	——

ccRCC clear cell renal cell carcinoma

© Springer
of AQP7 and AQP10 at the protein level may be of considerable significance.

AQP9

AQP9 is widely distributed in the body, including the nerve, digestive, and reproductive systems [80–84]. Although its molecular structure and water permeability are closely analogous to those of other aquaglyceroporins, relatively little is known about its specific physiological functions. AQP7 of adipocytes transports the glycerol produced by fat mobilization to the blood. After the blood enters the liver through the portal vein, AQP9 expressed in the liver facilitates the uptake of glycerol, and then, glucose is produced by gluconeogenesis [85]. In addition, it also plays a role in tumorigenesis, progression, and even metastasis. Similarly, we explored its expression levels in different cancer tissues or cells and corresponding normal tissues or cells. According to Table 4, the expression levels of AQP9 in hepatocellular carcinoma, lung cancer, and laryngeal cancer are lower than those in corresponding normal tissues, but the opposite result is observed in other cancers. Then, we compared the expression levels of AQP9 with cancer prognosis (Table 5). It is reasonable that AQP9 promotes cancer except for hepatocellular carcinoma.

Cancer types	Tissues/cell lines	Methods	Expression of tumors (T) and normal tissues or cells (N)
HCC [86, 87]	tissues, cell lines	qRT-PCR, WB, IHC	T < N
HCC [88]	tissues, cell lines	qRT-PCR, WB, IHC	T < N
HCC [54]	tissues	qRT-PCR, IHC	T < N
HCC [89]	cell lines	qRT-PCR, WB, IHC	T < N
HCC [90]	tissues	qRT-PCR, WB, IHC	T < N
ccRCC [91–93]	tissues	ICGC database, qRT-PCR, IHC	T > N
Breast cancer [39, 94]	tissues	Oncomine database	T > N
NSCLC [95]	tissues	qRT-PCR, IHC	T > N
Lung cancer [94]	tissues	Oncomine database	T < N
Prostate cancer [96]	tissues	GEO database	T > N
Glioma [97]	tissues (human, mouse)	IHC	T > N
Ovarian cancer [74]	tissues	WB	T > N
Colorectal cancer [94]	tissues	Oncomine database	T > N
Colon cancer [94]	tissues	Oncomine database	T > N
Gastric cancer [94]	tissues	Oncomine database	T > N
Astrocytic tumor [98]	tissues	RT-PCR, WB	T > N
Laryngeal cancer [99]	tissues, cell lines	qRT-PCR, IHC	T < N

Cancer types	Expression types	Expression and prognosis
HCC [54, 87]	mRNA, protein	Higher expression shows better OS
Breast cancer [94]	mRNA	Higher expression shows worse OS, RFS
Breast cancer [39]	mRNA	Higher expression shows worse RFS
ccRCC [91, 93]	mRNA, protein	Higher expression shows worse OS
ccRCC [92]	mRNA, protein	Higher expression shows worse OS, PFS
Colorectal cancer [94]	mRNA	Higher expression shows worse OS, DFS
NSCLC [95]	mRNA, protein	Higher expression shows worse OS, DFS
Colon cancer [94]	mRNA	Higher expression shows worse DFS
Gastric cancer [94]	mRNA	Higher expression shows worse OS, PFS
Lung cancer [94]	mRNA	Higher expression shows worse OS, DFS
Laryngeal cancer [99]	mRNA	Higher expression shows worse OS
AQP3 is multifaceted in cancer. As a member of the AQGP family, it is universally acknowledged that AQP3 works as a channel for water and glycerol. Impaired glycerol transport and lipid synthesis due to AQP3 knockdown promoted apoptosis and inhibited the proliferation of gastric cancer cells [13, 14], AQP3-facilitated glycerol, a major source of ATP, participates in epidermal proliferation and tumor formation [15].

In addition to transporting water and glycerol, it can also transport H₂O₂, an important second messenger in cellular activities [100], which makes the role of AQP3 in cancer more significant. Extracellular H₂O₂, synthesized by NADPH oxidase 2 (Nox2), which responds to various stimuli, including TNF-α, EGF, and CXCL12, is delivered intracellularly through AQP3, and then, H₂O₂ inactivates protein phosphatase 2A (PP2A) followed by the regulation of IKKβ and NF-κB/p65 [101]. AQP3-mediated H₂O₂ oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) and activated the Akt pathway in breast cancer cells and lung adenocarcinoma cells [102, 103]. Moreover, AQP3-facilitated H₂O₂ engaged in Cdc42 activation, a GTPase of the Rho family and subsequent actin dynamics [104]. In addition, AQP3 was involved in the EGF-induced ERK pathway in cancer, in which AQP3-mediated H₂O₂ modulated SHP2, an indispensable part of the downstream MAPK signaling cascade [105, 106]. Moreover, HIF-1α could be upregulated by ROS transported by AQP3, which made a difference in reprogramming cancer metabolism.

Fig. 1 a Locations of NPA boxes, membrane-spanning domains, cytoplasmic-facing terminus are shown, and two additional peptide spans are denoted by asterisks; b Hourglass model for aquaglyceroporin membrane topology
[107, 108]. Figure 2 shows AQP3-mediated H₂O₂ in cancer.

AQP3 functions as a functional protein molecule, and knockdown of AQP3 inhibits cancer cell proliferation, invasion, and migration as well as promotes apoptosis [16, 55, 64, 109].

There are many transcription factors, cytokines, microRNAs, and other regulators that affect AQP3 in cancer. Likewise, AQP3 can regulate the malignant behaviors of cancer cells through several signaling pathways. Here, we summarize the upstream regulators and the downstream activated tumor-related signaling pathways of AQP3 in different cancers, hoping to provide some basis for AQP3 as a target for cancer treatment (see Fig. 3, for more details).

Growing evidence shows that some metal compounds modulating the expression of AQP3 exhibit different anticancer properties, such as antiproliferative and proapoptotic properties. In vivo, Auphen could regulate the expression of AQP3 to inhibit tumor growth and promote apoptosis [54]. P2W18, a polyoxotungstate, showed the ability to suppress cancer cell migration mainly by affecting AQP3, implying the potential of AQP3 as an anticancer agent in tumors with high AQP3 expression [125]. Some natural compounds also show anticancer ability to some degree. Curcumin, which regulates AQP3 gating [126], exerted an inhibitory effect on EGF-induced AQP3 upregulation and ovarian cancer cell migration through the PI3K/Akt and MEK/ERK pathways [127]. Similarly, Manuka honey accelerated epithelial cancer cell apoptosis by maintaining the high permeability of AQP3-mediated H₂O₂ [128].

AQP3 can interact with certain chemotherapy drugs or participate in certain cancer treatments. AQP3 gave rise to chemoresistance to cisplatin in gastric cancer and facilitated chemoresistance to arsenite in melanoma [129, 130]. Meanwhile, AQP3 also participates in the cytotoxic effect exerted by nucleoside-derived drugs, including 5-fluorouracil and gemcitabine, in breast cancer and colon cancer [131]. Cryotherapy is gradually becoming an alternative treatment for the early stage of the neoplastic process, in which AQP3 plays a role in gilding. Breast cancer cells and prostate cancer cells treated with AQP3-siRNA were more sensitive to cryoinjury than control-siRNA [132, 133]. Thus, inhibition of AQP3 may be a potential adjunct to cryotherapy for breast and prostate cancer patients.
AQP7 and AQP10

AQP7 is regarded as a gateway for water and glycerol transportation, but little work has been performed on its involvement in tumor cell lipid metabolism. Nevertheless, AQP7, which serves as an important target for arsenite uptake in mammals [134], may provide us with novel perceptions of its chemotherapeutic efficacy in acute promyelocytic leukocytes. AQP7 regulated multiple metabolic pathways, including lipid metabolism, urea metabolism, and carbohydrate metabolism and activated p38, EGFR, and mTOR signaling cascades. In addition, AQP7 made cells more sensitive to the oxidative environment [17]. In other words, AQP7, as a critical regulator, might eventually lead to the development of more effective therapeutics in breast cancer.

Studies have shown that silencing AQP7 in adipose cells could increase the glycerol content, strengthen the activity of the Gyk enzyme, and promote the accumulation of triglycerides [135]. When the body needs energy, triglycerides are hydrolyzed into free fatty acids (FFAs) and glycerol, glycerol is delivered to the liver to participate in gluconeogenesis, FFAs are transported to mitochondria where energy is produced, and AQP7 functions as the glycerol gateway during the process [136]. Another study demonstrated low glycerol and ATP contents in the hearts of KO-AQP7 mice [137]. Therefore, we infer that low expression of AQP7, which leads to an increased content of triglycerides, impaired glycerol and FFA transport, and reduced energy, inhibits the malignant behaviors of tumor cells. Moreover, the role of AQP10 in cancer has never been satisfactorily elucidated, which means that more research regarding AQP7 and AQP10 in cancer is needed.
AQP9

The involvement of AQP9 in glycerol transportation continues to draw attention from researchers, and now it has been extended to cancer research. In several cancer cell lines, the expression of AQP9 was related to the uptake of [14C]-labeled glycerol [138]. Another experiment in a rat hepatocellular carcinoma model found that the expression of AQP9 was present at a low level before tumorigenesis, while it was significantly increased in the early stage of hepatocellular carcinoma. This indicates a transition of glycerol metabolism during the stage [18].

Our team found that AQP9 plays an extraordinary role in the prostate. First, we proved the positive regulatory effect of androgen on AQP9 in the prostate in vitro and in vivo [139]. In addition, knockdown of AQP9 inhibited proliferation, migration, and invasion as well as promoted apoptosis in androgen-independent prostate cancer, which is involved in the ERK pathway [96]. We can conclude that AQP9 accelerates prostate cancer progression in combination with the relatively high expression level of AQP9 in prostate cancer tissues compared with normal prostate tissues. Specific targeted therapy with AQP9 might exert far-reaching significance in prostate cancer treatment.

In renal cell carcinoma, Yasutaka Yamada et al. found that AQP9 was regulated by miR-532, silencing AQP9 could affect the oncological behaviors of renal cancer cells [91], and a cancer-promoting effect via the Akt pathway was also found in astrocytoma [140].

For hepatocellular carcinoma, AQP9 suppresses hepatocellular carcinoma cell growth and metastasis via distinct pathways, including HIF-1α, PI3k/Akt, Wnt/β-catenin, and FOXO1 [86–88, 90, 141]. Further findings from another study announced the role of AQP9 in H₂O₂ transport, as Sachiko Watanabe et al. reported [142]. In this study, the author proved that AQP9 mediated by insulin-like growth factor 2 (IGF2), inhibited liver cancer stem cell stemness through ROS/β-catenin/FOXO3a [143]. Figure 4 shows the upstream regulators of AQP9 and the downstream activated tumor-related signaling pathways.
upstream regulators of AQP9 and the downstream activated tumor-related signaling pathways.

With respect to additional functions of AQP9, it regulated arsenic transportation and affected As2O3 sensitivity [134, 144, 145]. The expression level of AQP9 was related to sensitivity to As2O3 in acute promyelocytic leukemia [146], and azacytidine upregulated AQP9 to make acute myeloid leukemia cells more sensitive to As2O3 [147].

AQP9 is also involved in the chemotherapy effects of a variety of solid tumors. AQP9 enhanced the chemotherapy response and alleviated the chemotherapy resistance of arsenic during the treatment of lung cancer [148, 149]. In contrast, AQP9 fostered the chemotherapy resistance of melanoma to arsenite [129]. 5-FU chemotherapy possesses a better curative effect in mice with colorectal cancer because of cell cycle arrest caused by AQP9 [150]. The expression of AQP9 at a low level in patients with stage III colorectal cancer who do not respond to chemotherapy, makes AQP9 a potential prognostic indicator [151]. Moreover, the functions of AQP9 in glycerol transportation and differential expression between tumors and normal tissues make AQP9 a promising scientific hot button for the treatment of various tumors.

Conclusions and perspectives

During the past decade, great achievements have been witnessed in the research of aquaporins, from the location of genetic information, distribution and function to the transport mechanism, drug mechanism, etc. Aquaglyceroporins, as a special group from the aquaporin family, have been rooted in researchers’ minds.

AQP3 and AQP9, which are permeable to glycerol and H2O2, often contribute to the malignant behaviors of cancer. However, AQP3 plays an opposite role in endometrioid carcinoma and MIBC, as well as AQP9 in hepatocellular carcinoma. AQP7 is involved in multiple metabolic pathways in breast cancer while its functions in other cancers remain to be explored. In addition, they all facilitate arsenic transportation or affect its chemotherapy effect, making them hopeful therapeutic targets in cancer treatments. However, further analysis at the protein level is needed, especially for AQP7 and AQP10.

This review shows that AQGPs behave as double-edged swords in different tumors. They have different distributions and expression patterns from each other in cancers, and they are linked to different oncological behaviors of tumor cells, including proliferation, migration, invasion, apoptosis, epithelial–mesenchymal transition, metastasis, etc.

To the best of our knowledge, this is the first review on aquaglyceroporins that combines clinical and basic research. We calculated the relationship between the expression levels of AQGPs and prognostic indicators in different tumors in the published literature. We also summarized the upstream and downstream regulators and signaling pathways involved, which may provide some references for subsequent further research on AQGPs and drug treatments specifically targeting AQGPs. Despite these findings, we still cannot provide a systematic and complete explanation of the mechanism of AQGPs in cancer; further basic researches about what role AQPs may play and how they regulate the reprogramming of lipid metabolism in tumor cells are needed.

Acknowledgements RW and XW wrote the first draft of the manuscript; JZ and JJ edited the English language; WF, XZ, and QC designed the figures; BZ, LL, and KQ generated the tables; LZ and JW reviewed and edited the manuscript. All authors read and approved the manuscript.

Funding This work was funded by the grant from a National Natural Science Foundation of China (No.81372761).

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.
2. Agre P, Saboori AM, Asimos A, et al. Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem. 1987;262(36):17497–503.
3. Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988;263(30):15634–42.
4. Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA. 1991;88(24):11110–4.
5. Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in xenopus oocytes expressing red cell CHIP28 protein. Science (New York, NY). 1992;256(5055):385–7.
6. Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am J Physiol. 1993;265(3 Pt 2):F461.
16. Wang X, Tao C, Yuan C, et al. AQP3 small interfering RNA

15. Hara-Chikuma M, Verkman AS. Prevention of skin tumorigen-

17. Dai C, Charlestin V, Wang M, et al. Aquaporin-7 regulates

19. Sasaki S, Ishibashi K, Marumo F. Aquaporin-2 and -3: represent-

20. Nielsen S, Frøkiaer J, Marples D, et al. Aquaporins in the kidney:

21. Echevarría M, Ilundáin AA. Aquaporins. J Physiol Biochem.

22. Jung JS, Preston GM, Smith BL, et al. Emerging roles of lipid metabolism in cancer progression. Curr Opin Clin Nutr Metab Care. 2017;20(4):254–60.

23. Verkman AS, Mitra AK. Structure and function of aqua-

24. Ishibashi K, Sasaki S, Fushimi K, et al. Molecular cloning and

25. Thapa S, Chetry M, Huang K, et al. Significance of aquaporins’ expression in the prognosis of gastric cancer. 2018. Biosci rep. https://doi.org/10.1042/BSR20171687.

26. Zhang X, Zheng P, Li Z, et al. The somatic mutation landscape and RNA prognostic markers in stomach adenocarcinoma. Onco Targets Ther. 2020;13:7735–46.

27. Zhu C, Chen Z, Jiang Z. Expression, distribution and role of aquaporin water channels in human and animal stomach and intestines. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17091399.

28. Wang J, Tanji N, Kikugawa T, et al. Expression of aquaporin 3 in the human prostate. In J Urol. 2007. https://doi.org/10.1111/j.1442-2042.2007.01901.x.

29. Zou W, Yang Z, Li D, et al. AQP1 and AQP3 Expression are associated with severe symptoms and poor-prognosis of the pancreatic ductal adenocarcinoma. Appl immunohistochemistry mol morphol. 2019;27(1):40–7.

30.Direito I, Paulino J, Vigia E, et al. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J Surg Oncol. 2017;115(8):980–96.

31. Yang C, Lim W, Bae H, et al. Aquaporin 3 is regulated by estrogen in the chicken oviduct and is involved in progression of epithelial cell-derived ovarian carcinomas. Domest Anim Endocrinol. 2016. https://doi.org/10.1016/j.domaniend.2015.12.003.

32. Kang BW, Kim JG, Lee SJ, et al. Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer. Oncology. 2015;88(6):369–76.

33. Shen L, Zhu Z, Huang Y, et al. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed pharmacother. 2010;64(5):313–8.

34. Hong Y, Chen Z, Li N, et al. Prognostic value of serum aquaporin-1, aquaporin-3 and galectin-3 for young patients with colon cancer. Ann Clin Biochem. 2020;57(6):404–11.

35. Thapa S, Chetry M, Huang K, et al. The somatic mutation landscape and RNA prognostic markers in stomach adenocarcinoma. Oncology. 2015;88(6):369–76.

36. Thapa S, Chetry M, Huang K, et al. Expression of a member of the aquaporin family with perme-

37. Liu S, Zhang S, Jiang H, et al. Co-expression of AQP3 and AQP5 in esophageal squamous cell carcinoma correlates with aggressive tumor progression and poor prognosis. Med Oncol (Northwood, London, England). 2013;30(3):636.

38. Zhu Z, Jiao L, Li T, et al. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol Lett. 2018;16(2):2661–7.

39. Zhu L, Ma N, Wang B, et al. Significant prognostic values of aquaporin mRNA expression in breast cancer. Cancer Manag Res. 2019;11:1503–15.

40. Kang S, Chae YS, Lee SJ, et al. Aquaporin 3 expression predicts survival in patients with HER2-positive early breast cancer. Anti-cancer Res. 2015;35(5):2775–82.

41. Jia L, Ling Y, Li K, et al. A 10-gene signature for predicting the response to neoadjuvant trastuzumab therapy in HER2-positive breast cancer. Clin breast cancer. 2021. https://doi.org/10.1016/j.clbc.2021.04.010.

42. Guo X, Sun T, Yang M, et al. Prognostic value of combined aquaporin 3 and aquaporin 5 overexpression in hepatocellular carcinoma. BioMed Res Int. 2013. https://doi.org/10.1155/2013/206525.

43. Watanabe T, Sato K, Kono T, et al. Aquaporin 3 expression in endometrioid carcinoma of the uterine body correlated with early stage and lower grade. Pathol Oncol Res. 2020;26(4):2247–53.

44. Breyer J, Otto W, Burger M, et al. Aquaporin 3 expression loss in urothelial carcinoma: association with tumor invasion depth, but not with grading? Bladder cancer (Amsterdam, Netherlands). 2017;3(1):31–4.

45. Rubenwolf P, Thomas C, Denzinger S, et al. Loss of AQP3 protein expression is associated with worse progression-free and cancer-specific survival in patients with muscle-invasive bladder cancer. World J Urol. 2015;33(12):1959–64.
46. Rubenwolf PC, Otto W, Denzinger S, et al. Expression of aquaporin water channels in human urothelial carcinoma: correlation of AQP3 expression with tumour grade and stage. World J Urol. 2014;32(4):991–7.

47. Otto W, Rubenwolf PC, Burger M, et al. Loss of aquaporin 3 protein expression constitutes an independent prognostic factor for progression-free survival: an immunohistochemical study on stage pT1 urothelial bladder cancer. BMC Cancer. 2012;12:459.

48. Chetry M, Li S, Liu H, et al. Prognostic values of mRNA expression in human ovarian cancer. 2018. Biosci rep. https://doi.org/10.1042/BSR20181018.

49. Jiang B, Li Z, Zhang W, et al. miR-874 Inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol. 2014;49(6):1011–25.

50. Chen J, Wang T, Zhou Y-C, et al. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp clin cancer res. 2014;33:38.

51. Zhou Y, Wang Y, Wen J, et al. Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β-catenin pathway. Oncotarget. 2016;7(13):16529–41.

52. Chen G, Shi Y, Liu M, et al. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018;9(2):175.

53. Wang Y, Wu G, Fu X, et al. Aquaporin 3 maintains the stemness of CD133+ hepatocellular carcinoma cells by activating STAT3. Cell Death Dis. 2019;10(6):465.

54. Peng R, Zhao G-X, Li J, et al. Aquephine and dibutyryl cAMP suppress growth of hepatocellular carcinoma by regulating expression of aquaporins 3 and 9 in vivo. World J Gastroenterol. 2016;22(12):3341–54.

55. Arif M, Kitchen P, Conner MT, et al. Downregulation of aquaporin 3 inhibits cellular proliferation, migration and invasion in the MDA-MB-231 breast cancer cell line. Oncol Lett. 2018;16(1):713–20.

56. Kusayama M, Wada K, Nagata M, et al. Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma. Cancer Sci. 2011;102(6):1128–36.

57. Lekshmy MS, Sivakumar TT, Joseph AP, et al. Expression of transmembrane protein aquaporin-3 in oral epithelial dysplasia and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;131(2):202–8.

58. Wang S, Wu Y, Yang S, et al. miR-874 directly targets AQP3 to inhibit cell proliferation, mobility and EMT in non-small cell lung cancer. Thoracic cancer. 2020;11(6):1550–8.

59. Li A, Lu D, Zhang Y, et al. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol Rep. 2013;29(2):535–40.

60. Chen J, Wang Z, Xu D, et al. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11(4):2882–8.

61. Qiu J, Zhang Y, Chen H, et al. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int J Oncol. 2018;53(4):493–504.

62. Seleit I, Bakry OA, Al Sharaky D, et al. Evaluation of aquaporin-3 Role in nonmelanoma skin cancer: an immunohistochemical study. Ultrastruct Pathol. 2015;39(5):306–17.

63. Niu D, Kondo T, Nakazawa T, et al. Differential expression of aquaporins and its diagnostic utility in thyroid cancer. PLoS ONE. 2012;7(2):e40770.

64. Ahmad AE, Khajah MA, Khushaiash S, et al. Aquaporin expression in breast cancer and their involvement in bleb formation, cell motility and invasion in endocrine resistant variant cells. Int J Oncol. 2020;56(4):1014–24.

65. Hwang I, Jung S-I, Hwang E-C, et al. Expression and localization of aquaporins in benign prostate hyperplasia and prostate cancer. Chonnam Med J. 2012;48(3):174–8.

66. de Almeida A, Parthimos D, Dew H, et al. Aquaglyceroporin-3’s expression and cellular localization is differentially modulated by hypoxia in prostate cancer Cell lines. Cells. 2021. https://doi.org/10.3390/cells10040838.

67. Skowronski MT, Lebeck J, Rojek A, et al. AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol. 2007;292(3:F956–65.

68. Saito K, Kageyama Y, Okada Y, et al. Localization of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J Urol. 2004;172(5 Pt 1):2073–6.

69. Lebeck J, Sendergaard E, Nielsen S. Increased AQPB abundance in skeletal muscle from obese men with type 2 diabetes American journal of physiology. Endocrinol metab. 2018;315(3):E367–73.

70. da Silva IV, Cardoso C, Méndez-Giménez L, et al. Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch Biochem Biophys. 2020;691:108481.

71. Xu W-H, Xu Y, Wang J, et al. Prognostic value and immune infiltration of novel signatures in signature cell renal cell carcinoma microenvironment. Aging. 2019;11(17):6999–7020.

72. Magoulitis DE, Tasopoulos YS, Dimas K, et al. Transcriptomic analysis of the aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2019;19(3):436–42.

73. Chen X-F, Li C-F, Lü L, et al. Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma. Mol Med Rep. 2016;13(6):5283–9.

74. Yang JH, Yan CX, Chen XJ, et al. Expression of aquaglyceroporins in epithelial ovarian tumours and their clinical significance. J Int Med Res. 2011;39(3):702–11.

75. Li H, Kamiie J, Morishita Y, et al. Expression and localization of two isoforms of AQP10 in human small intestine. Biol Cell. 2005;97(11):823–9.

76. Hatakeyama S, Yoshida Y, Tani T, et al. Cloning of a new aquaporin (AQP9) expression in glaucoma. 2013. Biosci rep. https://doi.org/10.1042/BSR20130005.

77. Mobasheri A, Shakibaei M, Marples D. Immunohistochemical localization of aquaporin 10 in the apical membranes of the human ileum: a potential pathway for luminal water and small solute absorption. Histochem Cell Biol. 2004;121(6):463–71.

78. Shi Z, Zhang T, Luo L, et al. Aquaporins in human breast cancer: identification and involvement in carcinogenesis of breast cancer. J Surg Oncol. 2012;106(3):267–72.

79. Xuejun C, Weinim C, Xiaoyan D, et al. Effects of aquaporins on chemosensitivity to cisplatin in ovarian cancer cells. Arch Gynecol Obstet. 2014;290(3):525–32.

80. Yang M-H, Dibas A, Tyan Y-C. Changes in retinal aquaporin-9 (AQP9) expression in glaucoma. 2013. Biosci rep. https://doi.org/10.1042/BSR20130005.

81. Carbery JM, Gorelick-Feldman DA, Kozono D, et al. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci USA. 2003;100(5):2945–50.

82. Castro-Parodi M, Szpilburg N, Dietrich V, et al. Oxygen tension modulates AQP9 expression in human placenta. Placenta. 2013;34(8):690–8.

83. Pastor-Soler N, Bagui N, Sabolic I, et al. Aquaporin 9 expression along the male reproductive tract. Biol Reprod. 2001;65(2):384–93.

84. Morschett U, Berthelot G, Kostka A, et al. Detection of water channels AQP1 and AQP3 in the human brain: a new method for the identification of water channels using laser desorption ionization mass spectrometry. J Mol Med. 2006;84(10):1067–74.

85. Morschett U, Berthelot G, Kostka A, et al. Detection of water channels AQP1 and AQP3 in the human brain: a new method for the identification of water channels using laser desorption ionization mass spectrometry. J Mol Med. 2006;84(10):1067–74.
84. Xiang T, Ge S, Wen J, et al. The possible association between AQP9 in the intestinal epithelium and acute liver injury-induced intestinal epithelium damage. Mol Med Rep. 2018;18(6):4987–93.

85. Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014;52(2):R165–78.

86. Zhang W-G, Li C-F, Liu M, et al. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett. 2016;378(2):111–9.

87. Liao S, Chen H, Liu M, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging. 2020;12(2):1527–44.

88. Jablonski EM, Mattocks MA, Sokolov E, et al. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett. 2007;250(1):36–46.

89. Peng R, Zhang Y, Zhao GX, et al. Differential regulation of the expression of aquaporins 3 and 9 by arfiphen and dbcAMP in the SMMC-7721 hepatocellular carcinoma cell line. Biotechnic histochemistry. 2016;91(5):333–41.

90. Li C-F, Zhang W-G, Liu M, et al. Aquaporin 9 inhibits hepatocellular carcinoma through up-regulating FOXO1 expression. Oncotarget. 2016;7(28):44161–70.

91. Yamada Y, Arari T, Kato M, et al. Role of pre- and post-laminin in regulation of gene expression and molecular pathogenesis in renal cell carcinoma. Am J Clin Exp Urol. 2019;7(1):11–30.

92. Xu W-H, Shi S-N, Xu Y, et al. Prognostic implications of aquaporin 9 expression in clear cell renal cell carcinoma. J Transl Med. 2019;17(1):363.

93. Jing J, Sun J, Wu Y, et al. AQP9 Is a prognostic factor for kidney cancer and a promising indicator for M2 TAM polarization and CD8+ T-cell recruitment. Front Oncol. 2021;11:770565.

94. Liu X, Xu Q, Li Z, et al. Integrated analysis identifies AQP9 as a candidate predictor of survival for patients with gastric cancer. Sci Rep. 2020;10(1):20795.

95. Chen P, Li Q, Zhou Y, et al. Clinical implication of aquaporin 9 in non-small cell lung cancer patients: its expression and relationship with clinical features and prognosis. Irish J Med Sci. 2021. https://doi.org/10.1007/s11845-021-02523-4.

96. Chen Q, Zhu L, Zheng B, et al. Effect of AQP9 expression in androgen-Independent prostate cancer cell PC3. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17050738.

97. Warth A, Mittelbronn M, Hülper P, et al. Expression of the water channel protein aquaporin-9 in malignant brain tumours. Appl immunohistochemistry mol morphol. 2007;15(2):193–8.

98. Tan G, Sun SQ, Yuan DL. Expression of the water channel protein aquaporin-9 in human astrocytic tumours: correlation with pathological grade. J Int Med Res. 2008;36(4):777–82.

99. Ren L, Li P, Li Z, et al. AQP9 and ZAP70 as immune-related prognostic biomarkers suppress proliferation, migration and invasion of laryngeal cancer cells. BMC Cancer. 2022;22(1):465.

100. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 2002;3(12):1129–34.

101. Hara-Chikuma M, Satooka H, Watanabe S, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:7454.

102. Satooka H, Hara-Chikuma M. Aquaporin-3 controls breast cancer Cell Migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol. 2016;36(7):1206–18.

103. Wang Y, Chen D, Liu Y, et al. AQP3-mediated H(2)O(2) uptake inhibits LUAD autophagy by inactivating PTEN. Cancer Sci. 2021;112(8):3278–92.

104. Hara-Chikuma M, Chikuma S, Sugiyama Y, et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med. 2012;209(10):1743–52.

105. Hara-Chikuma M, Watanabe S, Satooka H. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun. 2016;471(4):603–9.

106. Mainardi S, Mulero-Sánchez A, Prabhallad A, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med. 2018;24(7):961–7.

107. Wen J, Wang Y, Gao C, et al. Helicobacter pylori infection promotes aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene. 2018;37(26):3549–61.

108. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51–6.

109. Xiong G, Chen X, Zhang Q, et al. RNA interference influenced the proliferation and invasion of XWLC-05 lung cancer cells through inhibiting aquaporin 3. Biochem Biophys Res Commun. 2017;485(3):627–34.

110. Malale K, Fu J, Qiu L, et al. Hypoxia-Induced aquaporin-3 changes hepatocellular carcinoma cell sensitivity to sorafenib by activating the PI3K/Akt signaling pathway. Cancer Manag Res. 2020;12:4321–33.

111. Wang G, Gao F, Zhang W, et al. Involvement of aquaporin 3 in helicobacter pylori-related gastric diseases. PLoS ONE. 2012;7(11):e94910.

112. Gu X, Coates PJ, Boldrup L, et al. p63 contributes to cell invasion and migration in squamous cell carcinoma of the head and neck. Cancer Lett. 2008;263(1):26–34.

113. Wang J, Gui Z, Deng L, et al. e-Met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signaling pathway. Cancer Lett. 2012;319(1):109–17.

114. Huang Y, Zhu Z, Sun M, et al. Critical role of aquaporin-3 in the human epithelial growth factor-induced migration and proliferation in the human gastric adenocarcinoma cells. Cancer Biol Ther. 2010;9(12):1000–7.

115. Liu W, Wang K, Gong K, et al. Epidermal growth factor enhances MIPC-83 pancreatic cancer cell migration through the upregulation of aquaporin 3. Mol Med Rep. 2012;6(3):607–10.

116. Cao X-C, Zhang W-R, Cao W-F, et al. Aquaporin3 is required for FGF-2-induced migration of human breast cancer cells. PLoS ONE. 2011;6(12):e26573.

117. Huang X, Huang L, Shao M. Aquaporin 3 facilitates tumor growth in pancreatic cancer by modulating mTOR signaling. Biochem Biophys Res Commun. 2017;486(4):1097–102.

118. Zhu H, Wu Y, Kang M, et al. MiR-877 suppresses gastric cancer progression by downregulating AQP3. J Int Med Res. 2020;48(6):30006520903661.

119. Zhuo S, Sun M, Bai R, et al. Long intergenic non-coding RNA correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci Rep. 2020;10(1):20795.

120. Huang Y-T, Zhou J, Shi S, et al. Identification of estrogen response element in aquaporin-3 gene that mediates estrogen-induced cell migration and invasion in estrogen receptor-positive breast cancer. Sci Rep. 2015;5:12484.

121. Chen Q, Zhu L, Zong H, et al. Subcellular localization of aquaporin 3 in prostate cancer is regulated by RaIA. Oncol Rep. 2019;39(5):2171–7.

122. Hou S-Y, Li Y-P, Wang J-H, et al. Aquaporin-3 inhibition reduces induced cell migration and invasion in estrogen receptor-positive breast cancer. Biochem Biophys Res Commun. 2018;485(3):627–34.

123. Xia H, Ma Y-F, Yu C-H, et al. Aquaporin 3 knockdown suppresses tumour growth and angiogenesis in experimental non-small cell lung cancer. Exp Physiol. 2014;99(7):974–84.
124. Xu H, Xu Y, Zhang W, et al. Aquaporin-3 positively regulates matrix metalloproteinases via PI3K/PI3K signal pathway in human gastric carcinoma SGC7901 cells. J Exp clin cancer res. 2011;30:86.

125. Pimpão C, da Silva IV, Móscia AF, et al. The aquaporin-3-inhibiting potential of polyoxometalates. Int J mol sci. 2020. https://doi.org/10.3390/ijms21072467.

126. Pellavio G, Rui M, Caliogna L, et al. Regulation of aquaporin functional properties mediated by the antioxidant effects of natural compounds. Int J mol sci. 2017. https://doi.org/10.3390/ijms18122665.

127. Ji C, Cao C, Lu S, et al. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol. 2008;62(5):857–65.

128. Martinotti S, Pellavio G, Patrone M, et al. Manuka honey induces apoptosis of epithelial cancer cells through aquaporin-3 and calcium signaling. Life (Basel, Switzerland). 2020. https://doi.org/10.3390/life10110256.

129. Gao L, Gao Y, Li X, et al. Aquaporins mediate the chemoresistance of human melanoma cells to arsenic. Mol Oncol. 2012;6(1):81–7.

130. Dong X, Wang Y, Zhou Y, et al. Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin autophagy. Cell death discovery. 2016;2:16087.

131. Trigueros-Motos L, Pérez-Torras S, Casado FJ, et al. Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs. BMC Cancer. 2012;12:434.

132. Israel M, Bokaee S, Morgan R, et al. Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy. Br J Cancer. 2009;100(12):1889–95.

133. Alkalifía H, Mohammed F, Taurin S, et al. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett. 2021;21(6):458.

134. Liu Z, Shen J, Carbrey JM, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA. 2002;99(9):6053–8.

135. Hibuse T, Maeda N, Funahashi T, et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA. 2005;102(31):10993–8.

136. Funahashi T, Nagasawa A, Hibuse T, et al. Impact of glycerol gateway molecule in adipocytes. Cell mol biol. 2006;52(7):40–5.

137. Hibuse T, Maeda N, Nakatsuji H, et al. The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc Res. 2009;83(1):34–41.

138. Saito Y, Furukawa T, Obata T, et al. Molecular imaging of aquaglyceror-aquaporins: its potential for cancer characterization. Biol Pharm Bull. 2013;36(8):1292–8.

139. Wang J, Tanji N, Sasaki T, et al. Androgens upregulate aquaporin 9 expression in the prostate. Int J urol. 2008;15(10):936–41.

140. Lv Y, Huang Q, Dai W, et al. AQP9 promotes astrocytoma cell invasion and motility via the AKT pathway. Oncol Lett. 2018;16(5):6059–64.

141. Qian Y, Liu F, Zhang W, et al. AQP9 suppresses hepatocellular carcinoma cell invasion through inhibition of hypoxia-inducible factor 1α expression under hypoxia. J Gastroenterol Hepatol. 2020;35(11):1990–7.

142. Watanabe S, Moniaga CS, Nielsen S, et al. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun. 2016;471(1):191–7.

143. Zheng X, Li C, Yu K, et al. Aquaporin-9, mediated by IFG2, suppresses liver cancer stem cell properties via augmenting ROS/J-catenin/FOXO3a signaling. Molcancer res. 2020. https://doi.org/10.1158/1541-7786.MCR-19-1180.

144. Bhattacharjee H, Carbrey J, Rosen BP, et al. Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun. 2004;322(3):836–41.

145. Leung J, Pang A, Yuen W-H, et al. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 2007;109(2):740–6.

146. Iriyama N, Yuan B, Yoshino Y, et al. Aquaporin 9, a promising predictor for the cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cell lines and primary blasts. Oncol Rep. 2013;29(6):2362–8.

147. Chau D, Ng K, Chan TS-Y, et al. Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol. 2015;8:46.

148. Wang Y, Yin J-Y, Li X-P, et al. The association of transporter genes polymorphisms and lung cancer chemotherapy response. PLoS ONE. 2014;9(3):e91967.

149. Miao Z-F, Chang EE, Tsai F-Y, et al. Increased aquaglyceroporin 9 expression disrupts arsenic resistance in human lung cancer cells. Toxicol in vitro. 2009;23(2):209–16.

150. Huang D, Feng X, Liu Y, et al. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapeutic treatment efficacy in colorectal cancer. Cell Death Dis. 2017;8(6):e2894.

151. Leung J, Pang A, Yuen W-H, et al. Regulation of aquaglyceroporin 9 expression and cell migration in human ovarian cancer cells. Toxicol in vitro. 2009;23(2):209–16.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.