Antioxidant analysis of instant herbal beverages ingredients

P Deoranto, I A Dewi, A D P Citraresmi, I P Sari, and C Dewi

Dept. Agroindustrial Technology, Faculty Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
E-mail: ikaatsaridewi@ub.ac.id

Abstract. The development of herbal beverages as Indonesian heritage from traditional forms to become instant herbal beverages that are processed into the form of powder or drink is estimated to be able to improve the quality of the herbal beverages. These herbal beverages have several health benefits such as the presence of antioxidant compounds that can capture free radicals to keep up immunity. This herbal powder drink is made to make it easier to consume, more efficient in time and maintain the health benefits of these herbs. The objectives of this research are to produce herbs-based herbal beverages from the commodities of sambiloto, meniran, ginger, curcuma, lemongrass and palm sugar to find out the physical and chemical contents and antioxidant value of ingredients for instant herbal beverages. The research method is conducted by making two kinds of drink formulations consisting of 1) sambiloto, curcuma, lemongrass, ginger, palm sugar, 2) meniran, curcuma, lemongrass, ginger, palm sugar. This research tested with several observational parameters: organoleptic analysis physical test with pH measurement, chemical analysis to see water and ash content, antioxidant and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) antioxidant activity analysis. The expected results are instant herbal beverages in the form of powder put into tea bags or instant herbal beverages ready for consumption with the observed parameter values expected to be able to adjust to the Indonesian National Standards (SNI) on the quality of traditional beverage powder and ready to drink consumption.

1. Introduction

The traditional herbal drink is one of the well-known herbal medicines for Indonesian people. Some of the basic ingredients that are often used to make this herbal drink include ginger, curcuma, ginger and several other herbal plants. Apart from being used as a medicine for several diseases, this herbal drink can also be used to boost immunity. The antioxidants found in the ingredients for making herbal drinks have the function of capturing free radicals. The mechanism carried out by this antioxidant substance is by giving one or more electrons to free radicals. Giving these electrons to protect the body from damage to body functions by these free radicals. Electron compounds given to free radicals are used as scavengers and prevention of chain reactions to free radicals [1].

Ginger (Zingiber officinale) is one of the superior ingredients for making herbal drinks. This ginger has two active ingredients, namely essential oils and phenolic compounds. The phenolic compounds in ginger are the cause of ginger with a spicy sensation. Phenolic is a very important part of secondary
metabolites. Phenolic compounds are known to have antioxidant activity that can protect the body from diseases caused by free radicals [2].

Curcuma (*Curcuma xanthorrhiza*) is part of the Zingiberaceae family which is known to contain active compounds such as anti-tumor, hypertriglyceridemic, anti-inflammatory, antibacterial, etc.[3]. Curcuma contains several ingredients such as xanthorrhizol, curcumene and several volatile substances. Xanthorrhizol is a content of ginger that can distinguish curcuma from other Zingiberaceae families. Xanthorrhizol is known to have biological activity such as antibiotics, antibacterial and antiseptic [4].

Lemongrass (*Cymbopogon citratus*) is a plant commonly used as a spice which has many benefits. The chemical content of lemongrass includes citronellal, geraniol, citronellol, and geraniol acetate. This content has a function as an antioxidant [5].

Meniran (*Phyllanthus urinaria*) contains chemical compounds, namely saponins, flavonoids, polyphenols, filatin, hypofilantin, and potassium salts. The content of compounds in meniran is a class of compounds that have antioxidants. Meniran also has many benefits, namely to increase endurance, as a diuretic, expectorant, menstrual laxative, appetite enhancer, fever medicine, diarrhea and jaundice medicine. The results of meniran extract have been shown to be immunomodulatory or able to stimulate a person's immune system so that it is immune to disease attacks [6].

Sambiloto (*Andrographis paniculata*) is a type of medicinal plant that contains the chemical compound andrographolide (along with several analogues), paniculide, farnesol, arabinogalactan protein, flavonoids, saponins, alkaloids, phenols, and tannins. Sambiloto has properties in diseases such as fever, gastric infection, respiratory infection, malaria fever, diabetes complications, protects against liver diseases, antiviral, immunostimulator and suppresses retenosis in angiosplastic patients [7].

Nowadays, instant and practical things were also popular. It is hoped that the production of herbal drinks make it easier for consumers or someone to consume healthy drinks with an efficient aspect. Therefore this paper is made to see the potential of instant herbal beverages to see antioxidant activity.

2. Materials and Methods

2.1. Preparation of ingredients for instant herbal beverages
The ingredients used for the making of instant herbal beverages *sambiloto*, *meniran*, ginger, curcuma, lemongrass and palm sugar. These materials are purchased at the Malang traditional market, East Java, Indonesia. The material was cleaned, peeled and cut.

The research design was carried out by comparing the ingredients of the two formulas made to see the best results through the parameters used. The first formula is the formula of *sambiloto*, ginger, lemongrass, curcuma and palm sugar. The second formula is *meniran*, ginger, lemongrass, curcuma and palm sugar. Making instant herbal beverages using [8] method, each ingredient in each formula has a ratio of 1: 1, as well as the addition of distilled water at the time of blending, which is 1: 1 with the total ingredients.

2.2. Analysis of instant herbal beverages
The analysis is conducted to determine the components of the ingredients for instant herbal beverages using physical and chemical analysis and analysis of antioxidant activity. Physicochemical analysis to obtain instant herbal beverages which is safe for consumption and the ability to dissolve when stirred. Physicochemical analysis using pH measurement test, calculation of ash content and moisture content. The water content is used by the drying method to determine the water content of the material produced. Analysis of antioxidant activity to determine antioxidant activity in instant herbal beverages which have the potential to increase body immunity using the DPPH test. The antioxidant analysis is seen from the IC50 value, if the resulting value is smaller, the value of the antioxidant activity is higher and it is calculated using the% antioxidant formula [9].
The ash content presented by a percent value calculated using the following formula:

\[
\% \text{ Ash} = \frac{\text{Difference in Wt. of Ash} \times 100}{\text{Wt. of sample}} \tag{1}
\]

The difference in wt. of Ash = \(W_3 - W_1 \) [10].

The water content calculated by the following formula [11]:

\[
\% \text{ Water} = \frac{\text{initial sample weight} - \text{final sample weight}}{\text{initial sample weight}} \times 100\% \tag{2}
\]

Analysis of the results used aims to determine the best formula for making powder for traditional herbal drinks. Each formula is compared from the analysis performed. Then, the analysis results adjusted to the existing standards in Indonesia. The best formula was selected with good analysis results according to the standards.

3. Results and Discussion

3.1 Physical test

3.1.1 pH measurement

The results of pH measurements from the ingredients of instant herbal beverages can be seen in Table 1. The highest pH value was found in Curcuma (Curcuma xanthorrhiza) of 7.1, while the lowest pH value was found in Red Ginger (Zingiber officinale var.) of 2.3.2. The pH value recommended for herbal instant beverages is at an optimum value of 5-7. This pH value is adjusted to the SNI 01-3553-1996 standard for drinking water having a value between 6.5 to 8.5. The results obtained indicate that the pH value of the instant herbal beverages ingredients is still within the range of the optimum pH standard for instant herbal beverages.

Ingredient	pH Value
Sambiloto (Andrographis paniculata)	6
Meniran (Phyllanthus urinaria)	5.4
Red Ginger (Zingiber officinale var.)	2.3-2
Curcuma (Curcuma xanthorrhiza)	7.1
Lemongrass (Cymbopogon citratus)	4.34

3.2 Chemical test

3.2.1 Ash content

The ash content produced by meniran extract is 2.8186% [6] and sambiloto is 8.4% [7]. Content value in a sample that exceeds the SNI quality limit is due to the addition of compounds containing many minerals such as sugar cane and sap so that when burned it leaves ash marks. Based on the SNI quality standard (01-4320-1996) the value of ash content for powder drinks is allowed to be a maximum of 1.5%. So that the ash content of instant herbal beverages that have been studied depends on the added sweetener, if the added sweetener contains high enough minerals, the ash content in instant herbal beverages be even higher. Table 2 describes the results of the ash content of each potential ingredient for the production of instant herbal beverages. The lowest value of ash content is found in curcuma, namely 3.10%-9.20%. The highest value of ash content is found in sambiloto, which is 8.4%. Analysis of ash content is important because can be regarded as a common indicator of product quality and determine food adulteration. Total ash content may be used to show the nutritional value of food products. Nutritional information is obtained by implementing elemental analysis on the resulting ash content precisely [15].
Table 2. Ash content of ingredients for instant herbal beverages.

Ingredient	Ash content (%)
Sambiloto (Andrographis paniculata)	8.4
Meniran (Phyllanthus urinaria)	2.8186
Ginger (Zingiber officinale var.)	4.79 - 5.67
Curcuma (Curcuma xanthorrhiza)	3.10 - 9.20
Lemongrass (Cymbopogon citratus)	4.11 [12]

3.2.2 Water content

Water content is used to determine the effect on the shelf life of instant herbal beverage products because products that have high water content can reduce shelf life. Table 3 describes the results of the moisture content of each potential ingredient for the production of instant herbal beverages. The water content of meniran extract is 13.51% [6], while sambiloto water content is 8.16 [7]. Water content for red ginger extract is 3.70% the lowest and 4.11% the highest [13], curcuma and lemongrass have water content at 1.19-5.08 [14] and 8.52 [12], respectively. The highest value is owned by meniran at 13.51%. Determining moisture content can generate solid content and conversely. And also, the chemical, physical and microbial stability of the ingredients of food products is affected by the properties of water. The factor that affecting the rate of moisture removal is temperature, air velocity, drying time, humidity, pressure, and vacuum [15].

Table 3. Water content of ingredients for instant herbal beverages.

Ingredient	Water content (%)
Sambiloto (Andrographis paniculata)	8.16
Meniran (Phyllanthus urinaria)	13.51
Red Ginger (Zingiber officinale var.)	3.70-4.11
Curcuma (Curcuma xanthorrhiza)	1.19-5.08
Lemongrass (Cymbopogon citratus)	8.52

3.4 Antioxidant activity test using DPPH

The antioxidant activity of ingredients from instant herbal beverages can be seen in Table 4. From this table, it can be seen that red ginger and curcuma have very strong antioxidant activity, while lemongrass has strong antioxidant activity, but meniran and sambiloto have very weak antioxidant activity. The difference in antioxidant activity in each of these materials can be caused by several factors, including the method of extracting the ingredients and the active compounds present in these ingredients.

The lower the IC50 value, the higher the antioxidant activity of the ingredient. Antioxidants in a material have three ranges, a material is said to have very strong antioxidants when the IC50 value is less than 50 µg / ml, strong when the IC50 is 50-100 µg / ml, moderate when the IC50 value is 100-150 µg / ml and weak when IC50 values 151 -200 µg / ml [16].

Table 4. Antioxidant activity of ingredients for instant herbal beverages.

Ingredient	Antioxidant Activity (µg/mL)
Sambiloto (Andrographis paniculata)	1018.75
Meniran (Phyllanthus urinaria)	246.01
Red Ginger (Zingiber officinale var.)	8.29 ± 1.73
Curcuma (Curcuma xanthorrhiza)	10.5
Lemongrass (Cymbopogon citratus)	72.4 ± 3.4
4. Conclusions
Instant herbal beverages have the potential as antioxidant drinks that can increase the body's immunity for those who consume it. The use of method type in the process of making instant herbal beverages affect the parameters used in this study. The highest pH value was found in Curcuma (Curcuma xanthorrhiza) of 7.1, while the lowest pH value was found in Red Ginger (Zingiber officinale var.) of 2-3.2. Curcuma has the lowest moisture content with a value range of 1.19%-5.08% and the highest value from meniran at 13.51%. The lowest value of ash content is found in ginger, namely 3.10% -9.20% and highest value is found in sambiloto at 8.4%. Red ginger and curcuma have very strong antioxidant activity, while lemongrass has strong antioxidant activity, but meniran and sambiloto have very weak antioxidant activity.

References
[1] Sri W 2011 Uji Aktivitas Antioksidan Ekstrak Etanol Akar, Kulit Batang Dan Daun Tanaman Sambiloto (Andrographis Paniculata Nessel) dengan Metode Linoleat–Tiosianat (Antioxidant Activity Test of Ethanol Extract of Roots, Bark and Leaves of Sambiloto Plant (Andrographis Paniculata Nessel) Using Linoleic – Thiocyanate Method) J. Fitotarmaka. 1 2 9-13 [In Indonesian].
[2] Ganiyu O, Ayodele J A, Adedayo O A 2012 Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro J. Experimental and Toxicologic Pathology. 64 1 31-36.
[3] Jae-Kwan H, Jae-Seok S, Na, In B, Yu-Rang P 2000 Xanthorrhizol: A Potential Antibacterial Agent from Curcuma xanthorrhiza against Streptococcus mutans J. Planta Med. 66 2 196-197.
[4] Salleh, Nurul A M S, Sabariah I, Mohd R A H 2016 Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity J. Pharmacognosy Research. 8 4 309-315.
[5] Dina F, Desy N 2018 Uji Aktivitas Antioksidan Sediaan Sirup Daun Sereh (Cymbopogon citratus) (Antioxidant Activity Test of Lemongrass Leaf Syrup (Cymbopogon citratus)) J. Kesehatan, Kebidanan dan Keperawatan. 2 5 140-144 [In Indonesian].
[6] Tambunan, Risma M, Greesty F S, Sarah Z 2019 Uji Aktivitas Antioksidan dari Ekstrak Etanol 70% Herba Meniran (Phyllanthus niruri L.) Terstandar (Antioxidant Activity Test of 70% Ethanol Extract Herbs Meniran (Phyllanthus niruri L.) Standardized) Sainstech Farma. 12 2 60-64 [In Indonesian].
[7] Patin, Elsa W, Mohammad A Z, Yeni S 2018 Pengaruh Variasi Suhu Pengeringan Terhadap Sifat Fisiko Kimia Teh Daun Sambiloto (Andrographis Paniculata) (Influence Of Dried Temperature Variation to Chemical Physical Properties Tea Leaf (Andrographis paniculata)) Pro Food. 4 1 251-258 [In Indonesian].
[8] Eva M, Jessi M 2019 Karakteristik Sensoris dan Kimia Bumbu Instan dari Formulasi Bumbu Herbal Menggunakan Maltodextrin dan Tween 80 Pada Proses Pengeringan (Sensory and Chemical Characteristics of Instant Seasoning from Herbal Seasoning Formulations Using Maltodextrin and Tween 80 in the Drying Process) J Ilmiah Teknosains. 5 1 35-41 [In Indonesian].
[9] Badarinath A, Rao K, Chetty C S, Ramkanth S, Rajan T, Gnanaprakash K 2010 A Review on In-vitro Antioxidant Methods : Comparisons, Correlations, and Considerations. International Journal of PharmTech Research. 2 2 1276-1285.
[10] Shumaila G, Mahpara S 2009 Provimate Composition and Mineral Analysis of Cinnamon Pakistan Journal of Nutrition. 8 9 1456-1460.
[11] Muhammad S, Nuryati, Rizki A 2016 Pemanfaatan Temulawak, Jahe Merah, Kunyit Putih, Kapulaga, Bunga Lawang, Daun Salam sebagai Bahan Tambahan Pembuatan Jamu (Utilization of Temulawak, Red Ginger, White Turmeric, Cardamom, Lawang Flowers, Salam Leaves as Additional Materials for Making Jamu) J. Teknologi Agro-Industri. 3 2 15-22 [In Indonesian].
[12] Marta O S, Rita C A, Pedro C P, M. Beatriz P P O, Ana F 2013 Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals
content and antioxidant activity of leaf extracts *Food and chemical toxicology*. **60** 2013 413-418.

[13] Rizki F, Tahrir A, dan Ahmad D 2020 Analisis Mutu Simplisia Rimpang Jahe Merah (*Zingiber officinale Var. Rubrum*) dengan Suhu Pengeringan yang Berbeda (Quality Analysis of Red Ginger (*Zingiber officinale Var. Rubrum*) Simplicia with Different Drying Temperature) *J.Pertanian Tropik*. **7** 1 136-143 [In Indonesian].

[14] Herlina, Nita K, Maria B, Adinda T 2020 Characterization of Physical and Chemical Properties of Effervescent Tablets Temulawak (*Curcuma zanthorrhiza*) in the Various Proportion of Sodium Bicarbonate and Tartaric Acid. *In E3S Web of Conferences: EDP Sciences*. **142** 03006 1-7.

[15] Leo M L N 2004 Handbook of Food Analysis: Physical Characterization and Nutrient Analysis Marcel Dekker Inc. New York USA

[16] Sri W, Fahmi A, RTD. Wisnu B, Ariza F, Lola A 2018 Nira Acidity and Antioxidant Activity of Palm sugar in Sumowono Village *J. Physics: Conference Series*. **1025** 2018 1-4.

[16] Lisna M, Sudarminto S Y, Dian W N 2014 Pengaruh Pengecilan Ukuran Jahe dan Rasio Air terhadap Sifat Fisik Kimia dan Organoleptik pada Pembuatan Sari Jahe (*Zingiber officinale*) (The Effect of Size Reduction of Ginger and Water Ratio on Phisical Chemical and Organoleptic of Ginger (*Zingiber officinale*) Extract) *J. Pangan dan Agroindustri*. **2** 4 148-158 [In Indonesian].