The Structural Basis of Gas-Responsive Transcription by the Human Nuclear Hormone Receptor REV-ERBβ

Keith I. Pardee1,2, Xiaohui Xu1,2,3, Jeff Reinking1,2,7na, Anja Schuetz4nb, Aiping Dong4, Suya Liu5, Rongguang Zhang6, Jens Tiefenbach1,2, Gilles Lajoie5, Alexander N. Plotnikov4nb, Alexey Botchkarev6, Henry M. Krause1,2*, Aled Edwards1,2,3,4*

1 Banting and Best Department of Medical Research, The Department of Molecular Genetics, University of Toronto, Toronto, Canada, 2 Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada, 3 Midwest Center for Structural Genomics, University of Toronto, Toronto, Canada, 4 Structural Genomics Consortium, University of Toronto, Toronto, Canada, 5 Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, 6 Midwest Center for Structural Genomics, Argonne National Lab, Argonne, Illinois, United States of America, 7 Department of Biology, State University of New York at New Paltz, New Paltz, New York, United States of America

Heme is a ligand for the human nuclear receptors (NR) REV-ERBα and REV-ERBβ, which are transcriptional repressors that play important roles in circadian rhythm, lipid and glucose metabolism, and diseases such as diabetes, atherosclerosis, inflammation, and cancer. Here we show that transcription repression mediated by heme-bound REV-ERBs is reversed by the addition of nitric oxide (NO), and that the heme and NO effects are mediated by the C-terminal ligand-binding domain (LBD). A 1.9 Å crystal structure of the REV-ERBβ LBD, in complex with the oxidized Fe(III) form of heme, shows that heme binds in a prototypical NR ligand-binding pocket, where the heme iron is coordinately bound by histidine 568 and cysteine 384. Under reducing conditions, spectroscopic studies of the heme-REV-ERBβ complex reveal that the Fe(II) form of the LBD transitions between penta-coordinated and hexa-coordinated structural states, neither of which possess the Cys384 bond observed in the oxidized state. In addition, the Fe(II) LBD is also able to bind either NO or CO, revealing a total of at least six structural states of the protein. The binding of known co-repressors is shown to be highly dependent upon these various liganded states. REV-ERBs are thus highly dynamic receptors that are responsive not only to heme, but also to redox and gas. Taken together, these findings suggest new mechanisms for the systemic coordination of molecular clocks and metabolism. They also raise the possibility for gas-based therapies for the many disorders associated with REV-ERB biological functions.

Citation: Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, et al. (2009) The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBβ. PLoS Biol 7(2): e1000043. doi:10.1371/journal.pbio.1000043

Introduction

The closely related REV-ERBα and REV-ERBβ proteins generally act as transcriptional repressors, either on their own, by recruiting co-repressor proteins [1–3], or by competing with the Retinoid-related Orphan Receptors (RORs) α, β, or γ for the same DNA binding sites [4–6]. Physiologically, the REV-ERB proteins play a number of diverse and important roles ranging from the control of circadian biology to the homeostasis of lipids. REV-ERBα and β directly regulate circadian rhythm, both in the brain, and in peripheral tissues, by targeting the circadian clock genes Bmal1 and clock [6–11]. Regulation of lipid metabolism and stimulation of adipogenesis by the REV-ERBs is mediated in part through repression of the apolipoprotein A1 (ApoA1) and apolipoprotein C3 (ApoCIII) gene promoters, which play major roles in cholesterol metabolism [12–14]. REV-ERBs also control inflammatory responses by inducing nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), interleukin-6 (IL6), and cyclooxygenase2 (COX2) expression, and by repressing IkBα expression [15,16]. In the liver, REV-ERBs also help regulate gluconeogenesis, consistent with an overall role in energy storage and conservation [17].

In Drosophila, the REV-ERB homologue, Ecdysone-induced protein 75 (E75) is best known for its role in developmental timing, acting together with the ROR orthologue Drosophila Hormone Receptor 3 (DHR3) to control ecdysone-induced molting, pupariation, and eclosion [18]. To perform these...
functions, E75 appears to require heme as a requisite ligand, bound presumably within its ligand-binding domain (LBD) ligand pocket. E75 is not stable in the absence of heme, nor does the bound heme dissociate readily, suggesting that heme is an obligate component of E75. Interestingly, the presence of heme allows E75 to also bind the diatomic gases nitric oxide (NO) and carbon monoxide (CO), which function to reverse E75-mediated transcription repression [19]. The REV-ERBs also bind heme but, unlike E75, the heme can readily dissociate from the REV-ERBs, and this reversible binding regulates REV-ERB transcription activity [17,20]. The REV-ERB LBDs do not appear to share the ability to bind gases or to respond to redox [20], raising the possibility that E75 and REV-ERBs have evolved different ways to exploit heme-binding.

The structural basis for heme binding in REV-ERB proteins, and heme and gas binding in E75, is unknown, although mutagenesis and transcription studies have implicated conserved histidine and cysteine residues in heme binding. A crystal structure of the REV-ERB b LBD in the absence of heme has revealed a classic nuclear receptor (NR) fold, but the mechanisms of heme binding could not be deduced from the structure, because the conserved histidine residue points away from the putative ligand-binding pocket and the conserved cysteine residue was not present in the construct that generated the structure. Moreover, the putative pocket is fully occupied by hydrophobic side chains [21]. The extensive structural similarities between the REV-ERB and E75 LBDs coupled with the apparent mechanistic differences prompted us to explore more deeply the basis for both heme binding and the potential for gas regulation.

The potential involvement of gases in circadian rhythm has been noted in physiological studies for some time, but the molecular mechanisms only began to emerge with the finding that Neuronal PAS domain protein (NPAS2), a CLOCK protein analog, is a hemoprotein [22–24]. NPAS2 and CLOCK regulate REV-ERB transcription activity [17,20]. The REV-ERBs also bind heme but, unlike E75, the heme can readily dissociate from the REV-ERBs, and this reversible binding regulates REV-ERB transcription activity [17,20]. The REV-ERB LBDs do not appear to share the ability to bind gases or to respond to redox [20], raising the possibility that E75 and REV-ERBs have evolved different ways to exploit heme-binding.

The structural basis for heme binding in REV-ERB proteins, and heme and gas binding in E75, is unknown, although mutagenesis and transcription studies have implicated conserved histidine and cysteine residues in heme binding. A crystal structure of the REV-ERB b LBD in the absence of heme has revealed a classic nuclear receptor (NR) fold, but the mechanisms of heme binding could not be deduced from the structure, because the conserved histidine residue points away from the putative ligand-binding pocket and the conserved cysteine residue was not present in the construct that generated the structure. Moreover, the putative pocket is fully occupied by hydrophobic side chains [21]. The extensive structural similarities between the REV-ERB and E75 LBDs coupled with the apparent mechanistic differences prompted us to explore more deeply the basis for both heme binding and the potential for gas regulation.

The potential involvement of gases in circadian rhythm has been noted in physiological studies for some time, but the molecular mechanisms only began to emerge with the finding that Neuronal PAS domain protein (NPAS2), a CLOCK protein analog, is a hemoprotein [22–24]. NPAS2 and CLOCK heterodimerize with Brain and Muscle Arnt-like protein-1 (BMAL1) to activate transcription of various genes, including the molecular clock components Period, Cryptochrome, and Rev-erb [25–29]. The binding of CO to the NPAS2-heme complex, in vitro, inhibits its binding to BMAL1 and DNA binding [23]. Using transcription assays from native and model promoters in cells, we report that the REV-ERBs are also gas-binding components of the molecular clock and that gas and redox state modulate the structure and function of the REV-ERB LBDs. Using crystallography and spectroscopy, we determined the structure of the heme-bound REV-ERB b LBD from which we are able to propose a model for heme and gas binding.

Results

Heme Binding to REV-ERB LBD Is Reversible

Overexpression of either of the REV-ERB LBDs in *Escherichia coli* produces apo forms of the repressors. The heme-bound form is produced only if the culture medium is supplemented with hemin (Figure S1). While REV-ERBs expressed with and without hemin supplementation appear to be equally abundant and soluble (Figure S1), they differ strikingly in color, with the heme-bound form intensely red, and the apo form colorless. Incubation of either purified REV-ERB b or bapo LBD with hemin in solution, results in full heme occupancy within seconds or less (unpublished data), while washing the heme-bound LBDs with buffer lacking heme leads to a much slower release of the bound heme (T_{1/2} ~13–16 h; Figure S2). Overall a K_d of approximately 6 μM was observed (unpublished data). Thus, unlike E75, where heme appears to act as a requisite structural component, in the REV-ERBs it can function potentially as a reversible ligand.

Heme Is Cooperatively Bound to Alternative His and Cys Residues

Spectroscopic evidence has suggested that the coordination of heme in E75 involves a cysteine residue, and mutagenesis has further suggested that this thiolate bond is contributed by Cys396 (JR, unpublished data) [30], which corresponds to Cys418 in REV-ERB b and Cys384 in REV-ERB b. Mutagenesis of E75 has also suggested that the second protein-heme coordinate bond is provided by the side chain of His374 (His602 in REV-ERB b; His568 in REV-ERB b) [19,30]. Consistent with this finding, the mutation of His602 of REV-ERB b (His568 in REV-ERB b) to phenylalanine essentially eliminates heme binding [17,20]. Our mutagenesis of REV-ERB b confirms that Cys384 and His568 are both key mediators of heme binding (Figure 1), although the His568 mutant of REV-ERB b did maintain some heme-binding.
activity compared with the His602 mutant of REV-ERBb [17,20]. In our REV-ERBb analysis, the levels of bound heme decrease in each of the purified Cys384 and His568 mutant proteins, but neither of the single mutations to alanine, nor the Cys384A/His568A double mutation, completely eliminate heme binding (Figure 1). These differences may be attributable to the different choices for amino acid substitution (Ala versus Phe), or other differences between the two proteins. Thus, residues in addition to these particular Cys and His residues must also contribute to heme binding.

Coordinate Bonds Change as a Function of Redox State

The structures of other heme-containing transcription factors are modulated by redox state [23,31–33]. To investigate the effects of redox state on the interaction of REV-ERBs with heme, we subjected the heme-bound proteins to electronic absorption spectral analysis. The heme in coordinate-bound proteins absorbs at characteristic wavelengths, producing what are referred to as α, β, and γ (or Soret) heme absorption peaks. The existence, positions, and sizes of these peaks provide insight into the oxidation and spin states of the iron center and the number and types of coordinate bonds formed.

The oxidized Fe(III) REV-ERBβ LBD yielded an absorption spectrum (Figure 2A) that was almost identical to those produced by aerobically purified Drosophila E75 [19] and the bacterial thiolate-heme Fe(III)-containing transcription factor CooA [31]. All three proteins exhibit characteristic α (~575 nm, shoulder), β (542 nm), and γ (419 nm) absorption peaks as well as a prominent δ-band (359 nm); altogether, these are indicative of a hexa-coordinated heme bound to at least one thiolate (e.g., Cys) group [30]. Upon subjecting the REV-ERBβ LBD to the reducing agent sodium hydrosulphite (dithionite), the resultant shifts in absorption peaks (Figure 2B) indicate reduction of the iron center from Fe(III) to Fe(II), and loss of the thiolate coordinate bond (diagrammed in Figure 3); this reduction is seen most readily by the loss of the δ-band (359 nm). We have also reported elsewhere [34], using magnetic circular dichroism and resonance Raman spectroscopy, that reduction of the REV-ERBβ iron center appears to yield both a 5-coordinated system, with a single neutral residue coordinate bond (e.g., His or Pro), as well as a 6-coordinated system with two neutral residue bonds (Figure 3). Thus, the reduced REV-ERB-heme complex comprises at least two structural states in which the heme-coordinating amino acid side chains change. This form of redox-regulated coordinate bond switching is not unique to REV-ERBs. For example, similar side chain-switching states have been observed in CooA (Cys75 to His77), a bacterial CO-responsive heme thiolate protein transcription factor [35–37], and in

Figure 2. REV-ERBβ Contains Heme and Can Be Reduced and Binds Diatomic Gases In Vitro

(A) Electronic absorption spectrum of 0.5 mg/ml recombinant REV-ERBβ aerobically purified from bacteria (supplemented with 50 mg/l hemin during growth).
(B) REV-ERBβ plus 2 mM sodium hydrosulphite.
(C) Reduced REV-ERBβ plus 100 μM CO.
(D) Reduced REV-ERBβ plus 100 μM NO. The region from 500 nm to 620 nm is inset and magnified for presentation of the α and β peaks. The analogous spectra for REV-ERBα were similar.

doi:10.1371/journal.pbio.1000043.g002
NPAS2 (Cys 170 to His 171), whose axial coordinate bonds are also different in the Fe(III) and Fe(II) states [23,33,38]. In these transcription factors, these redox-dependent structural changes also result in functional changes for their host proteins. Redox was also shown to modulate E75 coordinate bonding and function [19], but it remains to be seen if the redox-dependent structural changes in the REV-ERBs also have analogous functional consequences.

REV-ERB-Heme Proteins Can Bind NO and CO Gases

As pointed out earlier, many coordinately bound heme proteins, including proteins such as hemoglobin, cytochromes, and the transcription factors CooA and NPAS2, have the added ability to bind gases [23,31,37]. This ability is also the case for the REV-ERB insect orthologue E75 [19], but it remains to be seen if the redox-dependent structural changes in the REV-ERBs also have analogous functional consequences.

NO Reverses REV-ERB Mediated Repression In Vivo

Among the many genes targeted for repression by the REV-ERB proteins are their own genes and the clock gene Bmal1. To test the effects of NO or CO on the activities of REV-ERB \textalpha{} and \beta{} in vivo we monitored transcription levels of the endogenous Bmal1 and Rev-erb genes in human embryonic kidney (HEK) 293T and hepatocellular carcinoma (HepG2) cells in response to gas. We first confirmed that transcription from these genes is regulated by the REV-ERBs by measuring...
their transcription in the presence and absence of Rev-erb small interfering RNA (siRNA). Figure 4A shows that each of the Rev-erb siRNAs specifically targets its corresponding Rev-erb gene. As expected, the knock-down of either Rev-erb gene results in an increase in Bmal1 expression (1.5–2-fold; Figure 4A), due presumably to derepression of ROR-mediated transcriptional activation. Effects were readily observed within 12 h of siRNA treatment, and peaked at 72 h post-treatment.

We then asked whether NO, supplied by the chemical donor diethylenetriamine/NO (Deta/NO), relieves REV-ERB-mediated repression of the endogenous Bmal1, Rev-erbα, and Rev-erbβ genes. Addition of Deta/NO increased levels of Bmal1, Rev-erbα, and Rev-erbβ mRNAs by 2–3-fold (Figure 4B). The addition of Li²⁺, which has been shown to cause REV-ERB degradation via inhibition of Glycogen Synthase Kinase-3 β (GSK3β) kinase-mediated phosphorylation [41], led to a similar derepression of the endogenous Rev-erb and Bmal1 target genes. Importantly, combining NO and siRNA treatments did not have additive effects, suggesting that NO acts via derepression of the REV-ERBs and not via a parallel pathway (Fig 4C). NO-dependent transcription was also observed in HepG2 cells, with the exception that NO-mediated upregulation of ROR/Rev-erb target gene expression was only ~2-fold (Figure S3). This may reflect lower levels of available heme in this cell type, as heme levels vary significantly in different cell types and in other cell states [42,43]. Analogous studies conducted in the presence of 500 ppm CO, yielded only modest changes in REV-ERB target gene expression (unpublished data). This minimal response may be due to differences in affinity or effectiveness between NO and CO in cells, or to differences in the effectiveness of the different gas delivery protocols used (see Methods).

To provide evidence that NO acts as a direct regulator of heme-bound REV-ERB proteins, the LBDs of either REV-ERBα or β were fused to the DNA-binding domain of yeast GAL4, and their activities tested using a luciferase reporter regulated by a thymidine kinase promoter containing upstream activating sequences (UAS)GAL4 binding sites. As expected, co-transfection of the GAL4-REV-ERBα or GAL4-REV-ERBβ fusion proteins repressed transcription driven by the UAS-containing thymidine kinase promoter (Figure 4D). This repression was reversed by greater than 3.5-fold by the addition of either of two NO donors, Deta/NO (Figure 4D) or...
S-nitroso-N-acetyl-L-penicillamine (SNAP) (unpublished data), suggesting that the REV-ERBs are direct targets of NO. As earlier, similar studies with 750–2,000 ppm CO had a more modest effect (~15% of NO effect; unpublished data). In summary, both REV-ERB proteins are transcriptional repressors whose activities can be reversed by NO binding.

Effects of Gases on REV-ERB Co-Repressor Binding

To determine if the heme and gas effects on REV-ERB activity might be attributable to the recruitment of co-repressor proteins, GAL4-REV-ERBα and GAL4-REV-ERBβ fusion proteins were co-transfected with full-length co-repressor expression constructs into 293T cells. As expected, addition of the known REV-ERB co-repressor Nuclear Receptor Co-repressor (NCOR) to GAL4-REV-ERB transfection assays increases repression by 2–3-fold. Similar results were obtained by coexpression with another co-repressor, Receptor Interaction Protein 140 (RIP140), which has not been previously tested for REV-ERB binding (Figure 5A, 5B). This augmented NCOR or RIP140-mediated repression is reversed by the addition of Deta/NO (Figure 5A, 5B). Similar reductions in Gal4-REV-ERBα/co-repressor mediated repression were obtained by treating the transfected cells with valproic acid, which is an inhibitor of the histone deacetylases that are recruited by NCOR and RIP140 [44–46]. We conclude that NO signaling reduces REV-ERB repression activity, at least in part, by overcoming the recruitment or activities of these co-repressors.

The effects of heme-binding on REV-ERB function are unclear. Previous studies have shown that the availability of heme negatively affects the ability of REV-ERB proteins to bind co-repressor peptides in vitro but is required for the REV-ERB proteins to interact functionally with co-repressors in vivo [17,20]. To explain this finding, it has been suggested that co-repressor interactions in vivo must be modulated by interactions or conditions that are not reflected in experiments with purified components. To test if the in vitro interactions could be influenced by gas, we used fluorescence polarization to follow the recruitment of peptides corresponding to the LXXI/HIXXXXII interaction domain I (IDI) of NCOR (Figure 6) and Silencing Mediator for Retinoid and Thyroid hormone receptor (SMRT) (unpublished data) in the absence and presence of heme and gas. As expected, based on the previous study, both peptides interact specifically with the REV-ERBα and β LBDs (Figure 6), and the addition of heme acts negatively on co-repressor peptide binding. As might also be expected, only the heme-bound form of the REV-ERB LBDs are responsive to the addition of NO gas (Figure 6A–6C and unpublished data). As with heme binding though, this effect is the opposite of that which occurs in vivo, with NO acting to increase co-repressor peptide recruitment, rather than blocking it. We can only conclude, as did Yin et al. [17], that interactions or conditions that exist in the cell, are not reflected in the in vitro system.

Structural Analysis of REV-ERBβ Bound with Heme

To shed light on the structural basis of heme, gas, and redox regulation, we crystallized the REV-ERBβ LBD in the heme-bound state. The formation of well-ordered crystals required the addition of trypsin to the crystallization solution [47]. Two identical structures were obtained using constructs comprising either the complete LBD (residues 212–579) or the LBD with an internal deletion (residues 241–579 Δ 275–357). Both 1.9 Å resolution structures include α-helices 3–11, (residues 381–576; REV-ERBβ381–576), which is slightly larger than the fragment used to derive the unliganded LBD structure [21]. Both of the crystals were obtained under nonreducing conditions.

The two REV-ERBβ381–576 Fe(III) heme structures verify that the heme-binding pocket is in fact present at the same position as ligand-binding pockets observed in other NR family members (Figure 7B). As predicted by the mutagenesis and spectroscopic analyses for the oxidized state of REV-ERB, a single heme molecule is hexa-coordinated within the pocket by Cys384 and His568 side chains. As mentioned above, Cys384 was not included in the previously published unliganded receptor structure constructs [21].

The structural changes that facilitate heme binding are confined primarily to helices 3, 7, and 11. In the absence of heme, helix 3 breaks at Pro411 allowing its N-terminal portion to move into the unliganded pocket (Figure 7A) [21]. A number of aromatic residues from this helix face into the pocket, contributing substantially to the hydrophobic core that stabilizes the unliganded structure. In the presence of
The unprecedented formation of LBD-ligand coordinate bonds involves some equally novel and elegant structural changes. First, the imidazole side chain of His568 makes a 120° rotation around the axis of the helix to allow bonding with the Fe(III) heme center (Figure 7D, 7E). Cys384, the other coordinate bond-forming residue in this Fe(III) structure, derives from a flexible loop N-terminal to helix 3, which does not appear in the apo structure (Figure 7D, 7E). In addition to opening the pocket and correctly positioning the two heme-coordinating residues, the newly positioned helices and loop also help to shield the hydrophobic heme moiety from the solvent, with only 8% (66 Å²) of the ligand exposed. This value falls well within the expected normal range of 1%–28% for hemoproteins [48].

Figure 6. REV-ERB Binding of NCOR Peptide Is Dependent on Heme and NO Ligands
Fluorescence polarization titration curves for the binding of 110 nM NCOR peptide to apo (dashed line) or heme-bound (solid line) REV-ERBα (A) and β (B) LBDs. Greater mP values indicate increased binding of the peptide to REV-ERBs. As expected, the nature of REV-ERB LBD binding of NCOR peptide is dependent on heme and in the heme-bound state are responsive to NO gas.

Table: Calculated K_d values

	Control no heme	SNAP no heme	Control heme	SNAP heme
REV-ERBα	4.1	3.7	51.1	2.9
REV-ERBβ	16.8	20.4	192.8	99.7

heme, helix 3 straightens, swinging the end of its N-terminal half (Cα atom Gly398) 16.4 Å away from its position in the unliganded structure (Figure 7B). Although helix 7 shifts in a less dramatic manner, the 3.0-Å movement (Cα atom Leu482) further increases the pocket volume. The movement of residues 480–483, in particular, allows heme and its propio-

The majority of residues surrounding heme in the pocket stabilize heme binding via van der Waal interactions. Within 4 Å of the heme moiety are 25 residues (Table S1) derived from five different regions of the REV-ERBβ secondary structure (H3, H5, H7, and H11, and loop N-terminal to H3). The majority of these residues form the core of the apo-structure [21], and must swing out and away to facilitate heme binding (Figure 8A). In other hemoproteins the residues forming hydrophobic heme contacts include Ile, Leu, Val, Phe, Trp, and Tyr [48]. The REV-ERBβ pocket is also enriched with these residues, along with six phenylalanines (Table S1). With two exceptions, all of these residues are conserved in REV-ERBα and among all the vertebrate REV-ERBβ orthologues. Although these contacts occur all around the heme ligand, Trp402, Phe405, and Phe454 are striking examples of how van der Waal radii of the protein side chains and heme can interlock (Figure 8A). Taken together, these precisely fitted hydrophobic contacts must contribute significantly to the strength and specificity of heme binding.

Aside from Cys384 and His568, the only other polar residues within 4 Å of heme are His381 and Glu571, and while at this point their role is undetermined, their presence in an otherwise nonpolar environment, and their conservation in other REV-ERBβ homologues, suggests a functional role (Figure 8A, Table S1). Ligand -binding specificity in many NR ligand-binding pockets often involves hydrogen bonding between polar group(s) on the ligand and charged residue(s) of the LBD. The most common polar interaction in the NR pocket is with an arginine side chain that precisely orients ligands to ensure specificity [49]. While this Arg is conserved in the REV-ERB LBDs, neither it nor any other Arg residue faces the ligand-binding pocket in the apo or liganded forms [21]. Glu571, however, is positioned 3.8 Å from the negatively charged propionate groups of heme (Figure 8A). This is unusual because the carboxy termini of heme propionate groups usually interact with positively charged residues such as Arg or Lys [48]. It may be possible that the negatively charged propionate side chains are repelled by the acid group of Glu571 in a way that helps to properly center the heme group, or perhaps helps to facilitate exchange. Interestingly, in REV-ERBα and E75 the analogous residue is lysine, which would be predicted to attract the carboxy termini of the heme molecule, as observed in other heme-binding proteins.

The other polar residue within close proximity to the heme group is His381, which is close to the heme coordinating Cys384 residue, and is highly conserved throughout vertebrate REV-ERBβ homologues (Figure 8A). Given the spectroscopic data, which suggest switching of coordinate bonds from a Cys to a neutral residue such as histidine upon heme reduction, His381 is a good candidate for this substituting residue. Indeed coordinate bond switching in other heme proteins tends to involve nearby residues [33,35]. Interestingly, within this loop there are three other His residues that
Figure 8. Effects of Heme Binding on the REV-ERBβ Ligand-Binding Pocket and Co-Repressor Binding Groove

(A) A detailed view of the heme-bound REV-ERBβ ligand-binding pocket. Electron density of the porphyrin ring and iron is closely bounded by hydrophobic sidechains of the ligand-binding pocket. The hydrophilic propionate groups of heme interact with water molecules (red spheres) near the surface of the protein. Model of Apo-(B) [21] and heme-bound (C) REV-ERBβ LBD structures in complex with a SMRT ID-1 co-repressor peptide [101]. Peptide residues (N682–D698) are in dark blue,
may also be capable of coordinate bond formation. All three are also within HXXC motifs (Figure S4), which serve as metal binding sites in the unstructured loops of olfactory receptors [50] and other hemoproteins. Alternative switching between these Cys/His residues has the potential to ratchet the loop peptide along the plane of the heme molecule, and to reshape the external LBD surface into novel protein interaction sites.

Also worth noting is that the residue next to the coordinately bound Cys384 is a proline (Pro385). This highly conserved Cys-Pro duo fits a consensus for “heme regulatory motifs,” which also include flanking residues such as His, Leu, Val, Met, Lys, Arg, and Asp [51–53]. This heme regulatory motif in REV-ERBβ includes six of those seven residues (Figure S4). Such motifs have been shown to be capable of binding heme reversibly with low micromolar affinity. Mutational analyses of the corresponding prolines in other heme thiolate proteins suggest that these residues help to direct the Cys residue toward the heme moiety, as well as to contribute to the reversibility of Cys-heme binding [54–56]. The *Drosophila* E75 LBD is a notable exception to this reversibility, although this may be explained by the presence of a second heme binding cysteine (Cys468) that is not flanked by a proline and has no counterpart in the REV-ERBs [19,30].

A final consideration based on this structure is how the NCoR and SMRT co-repressor peptide-binding site on the LBD surface changes upon the addition of heme. Heme binding appears to affect the previously characterized co-repressor binding site in two ways. First, the hydrophobic groove becomes broader. Second, helix 11, at the base of the groove, swings away from the binding site. This ligand-dependent movement of H11 from the co-repressor binding site supports the notion that H11 serves as a proxy for the missing H12, which in other NRs would serve as a platform for co-repressor binding. It is interesting to note that the helices that show the greatest movement upon heme binding are those that border the co-repressor binding groove H3–5, H10, and H11 (Figures 7 and 8) [57–60].

A number of specific REV-ERBβ residues are critical for co-repressor binding, and have been identified previously [60]. Examples include residues from H11, which are in position to form a number of critical co-repressor contacts in the apo form (L572, F575, K576) but that are shifted dramatically in position by movement of the helix, making them unlikely to maintain these interactions (Figure 8B, 8C). Likewise in H3, F409, which has also been identified as essential [60], shifts from presumably holding H11 in position for co-repressor interaction to becoming a hydrophobic contact for heme. K414 of H3 also appears to make a critical shift that leads to widening of the hydrophobic peptide-binding groove. At either end of the hydrophobic groove, there are also charged residues (K421, R427, and E570) that have been predicted by modeling to play important roles in anchoring the NCoR peptide [21]. Two of these three residues, R427 and E570, shift dramatically away from the co-repressor binding groove in the heme-bound form (Figure 8B, 8C) [21]. Notably, hydrophobic vinyl and methyl groups from the heme moiety also extend to the surface of the groove close to the region where H11 was positioned. While this does not appear to provide interference, it does indicate the possibility for heme to either interact or interfere with co-repressor binding under different conditions.

These alterations in the co-repressor binding site are consistent with the effects of heme on peptide binding in vitro. Presumably, disruption of one of the coordinating heme ligands by NO would restore peptide binding by relieving the strain imposed on the LBD by the hexacoordination of heme. Changes to the structure of the binding site cannot, however, explain why heme and the presence of NO have the opposite effects in vivo. The answer to this apparent paradox will most likely require structural analyses under different conditions, in the presence of other REV-ERB or co-repressor protein domains, or with other known or unknown cofactors.

Discussion

A New Heme Binding Fold

Over 20 different protein folds can specifically bind b-type heme, which is the most abundant of the hemes and serves as the functional group for essential proteins such as hemoglobin, myoglobin, and cytochrome b5. Under different evolutionary constraints and pressures, these various heme-binding folds have adopted additional functional properties, which include electron transfer, redox sensing, and the sensing or transport of various gases [48]. The REV-ERBβ581–576/heme structure adds a new and highly dynamic representative to the heme binding-fold family.

The molecular volume of heme (~520 Å³) is relatively large in comparison to most other NR ligands. Hence, the conformational changes that allow entry and occupancy of the apo LBD pocket are considerable. Such structural plasticity has been observed for an increasing number of NRs (e.g., Ecdysone Receptor [ECR] [61], Liver X Receptor [LXR] [62], and Estrogen Receptor [ER] [63]). This plasticity is an important point, as it indicates the potential for other “orphan” receptors, with seemingly inadequate ligand-binding pockets, and “constitutive” activities, to also be regulated by novel small molecule ligands within their various natural in vivo environments.

A Multifunction, Multipurpose Ligand System

As with many other heme-containing proteins, which include E75 [19], both REV-ERB proteins are also able to monitor redox state and to bind gases. E75 and the REV-ERBs are unusual however, in that while discriminating against O₂, they are able to bind both NO and CO gases in vitro. Although the CO gas responses observed in vivo were much weaker than those observed for NO, this may be a consequence of the different methods of gas delivery used, or differences in the cellular functions and biochemistry of the two gases.

The different kinetics of gas and heme binding to the REV-ERB LBDs, and the different rates at which these molecules

doi:10.1371/journal.pbio.1000043.g008
are produced and metabolized within the body, suggest that these ligands may have different physiological roles in different tissues. Gas and redox exchange observed in vitro occurs within seconds, whereas heme exchange requires many hours. In the body, changes in redox and gas levels can be rapid [32,64], whereas heme levels oscillate over hours or days [42,43]. It may also be of relevance that heme exchange does not appear to be possible for the fly orthologue E75, such that the levels of E75 accumulation in the cell are dependent on the abundance of available heme [19]. Thus, while both E75 and REV-ERB proteins may function as heme sensors, REV-ERBs appear to have the added ability to function in the absence of heme.

Although we also attempted to capture the structure of REV-ERBB in reduced Fe(II) and gas-bound states, and were able to derive crystals, the latter diffracted poorly due possibly to the predicted multiplicity of Fe(II) coordinate bond isoforms (Figure 3). This heterogeneity would be consistent with our spectroscopic analyses, and those of Marvin et al. [34], which suggest that the Cys384-heme coordinate bond is replaced in the Fe(II) population by one of several alternative neutral donors. It is tempting to speculate that His381, which is conveniently positioned just N-terminal to Cys384, may serve as one of these residues. In fact, the ~133 residue loop between helices 1 and 3 (Figure S4) contains at least 23 residues that could coordinate heme (nine His residues, seven Met residues, and seven Cys residues). This abundance of His, Met, and Cys residues is around three times their general frequency in the human proteome. There are also three more histidine residues (His395, His399, and His475) surrounding the ligand-binding pocket that could serve as alternate binding partners. If any of these residues do in fact form alternative coordinate bonds, this would lead to an additional and unprecedented number of LBD conformational and functional variants.

Effects of Heme and Gases on Co-Repressor Binding

In terms of how heme and gases affect REV-ERB LBD functions, our results suggest a major role for both ligands in co-repressor recruitment. The presence of heme leads to significant broadening of the co-repressor-binding groove and a highly unfavorable redistribution of interacting residues, consistent with the dramatic drop in co-repressor peptide binding observed in vitro. Addition of NO to the heme-bound LBD reverses the negative effect of heme on peptide binding, suggesting that NO acts by increasing the affinity for co-repressor binding. As with heme though, the effect of NO gas on REV-ERB activity in cultured cells appears opposite, with, the addition of gas leading to a drop in the ability of REV-ERB proteins to repress transcription. This apparent dichotomy in the effects of heme and gas on co-repressor function in vitro and in vivo can not yet be explained by current structural findings. Structures for reduced and gas-bound forms of the LBD may help solve this apparent paradox. On the other hand, the answer may involve structures of additional parts of the REV-ERBs, and as such provides feedback through the REV-ERBs, and other clock proteins, to entrain the molecular clock.

Further support for this central role of heme is the reciprocal nature of heme and CO production. Expression of Alas1 (Aminolevulinate synthase 1), the rate-limiting enzyme in heme synthesis, is positively regulated by the clock complex mPER2/NPAS2/BMAL1, making this expression circadian in nature. As heme abundance increases, so does the expression of the heme-regulated enzyme Heme Oxygenase and its product CO. In turn, the presence of CO leads to dissociation of the mPER2/NPAS2/BMAL1 complex and down-regulation of Alas1 transcription. Consequently, heme concentrations fall, and the cycle is reset [8,23,42,79]. As REV-ERBs also bind heme, their expression is heme dependent and they repress Bmal1 [6,11,17,20,76], thereby forming a second reciprocal feed-back loop between heme synthesis and circadian rhythm.

Heme is also an essential component of the NO and CO producing enzymes Nitric Oxide Synthetase and Heme Oxygenase. Not surprisingly, both NO and CO production have also been shown to oscillate diurnally. In the supra-chiasmatic nucleus of the hypothalamus, where the central molecular clock is located, the activity and products of these enzymes peak during the night [77,80,81]. Given that the transcriptional activities of NPAS2 [23], REV-ERBα and β...
have all now been shown to be gas responsive, these diatomic gases may provide a secondary layer of regulation to the heme-mediated molecular clock. The membrane permeability and short half lives of these gases make them ideal neurotransmitters [82,83] for communication between the different nuclear regions of the hypothalamus, where circadian and metabolic homeostasis are regulated.

The cycling of redox state offers a third potential mechanism for entrainment of the molecular clock. Redox homeostasis can be affected by the generation of reactive oxidant species (ROS), a large proportion of which arise not surprisingly from mitochondrial respiration. The redox state of a cell, or organelles, is dependent on the ratio of ROS generated by metabolic activity and the abundance of antioxidants, both of which cycle diurnally (reviewed in [84–86]). Aside from the damage that ROS can cause, these molecules have become recognized as important signaling molecules. Interestingly, ROS signaling is commonly associated with stress response [87], and the hypothalamus controls the body’s response to stress [88,89]. Considering the redox-sensing abilities of mPER2 [76], NPAS2 [90], and the REV-ERBb, it seems likely that both central and peripheral molecular clocks are also entrained by redox signaling. As means of entraining circadian rhythm, redox cycling is not without precedent. It can be traced back to the primordial biological clock of cyanobacteria, where light and the redox state, as a measure of metabolism, synchronize the global transcriptional rhythm of the organism [91]. In summary, our findings indicate a complex reciprocal relationship between metabolism and the molecular clock in which the molecular clock serves to synchronize circadian metabolic activity [14,17,20,23,33,42,57,73,76,79], and in turn heme, diatomic gases, and redox serve as local and systemic indicators of this activity, thereby helping to entrain clocks within different tissues. Thus, the circadian cycle is not only a means of metabolic regulation, but is in fact a metabolic cycle [85].

REV-ERBs in Disease and Treatment

As a whole, the combined ligand set of heme, gases, and redox state, combined with the even greater number of induced structural changes in REV-ERB LBDs, provide the potential for many different protein interactions and functional properties that are in line with the central role that the REV-ERB and E75 proteins serve in coordinating metabolic processes with circadian and developmentally timed events. Taken further, the rapid responses of REV-ERB proteins to gas signaling, and the importance of these gas- and REV-ERB-regulated physiological processes, illustrate the potential for novel, gas-based therapies for the treatment of related diseases such as mood and sleep-related disorders, depression, obesity, diabetes, atherosclerosis, and osteoarthritis.

Methods

Expression constructs. For bacterial expression of the LBD of REV-ERBβx (GenBank [http://www.ncbi.nlm.nih.gov/Genbank] accession: CAB35340), the construct comprised residues 274–614 with an internal deletion of residues 324–422. The first REV-ERBβ (GenBank accession: CAG33715) construct for bacterial expression comprised residues 212–579, and the second included residues 241–579, with an internal deletion of residues 275–357. All constructs were subcloned into a modified pET28a vector (Novagen) (GenBank accession EF442785 and EF456755). GAL4 fusion constructs for REV-ERBβx and REV-ERBβ were generated by first cloning the GAL4 DNA-binding domain (DBD) (amino acids 1–132) into pBlueScript II (Stratagene), containing an SV40 3'UTR. Pmel and Nhel restriction sites were introduced as cloning sites for NR LBD introduction. The following primers were used to amplify the LBD and clone the REV-ERBβx DBD: 5’-ATTAGCTAGTATGGCTGGACTGAGAATTCGACC and 3’-ATTAGTTTTACGCTGTCACCAAGCCAGCCACACCCAGACC and 3’-ATTAGTTTTACGCTGTCACCAAGCCAGCCACACCCAGACC. The LBD was then cloned into pGAL-NH2-Pmel. The GAL4-NR cDNA was then subcloned into pcDNA 3.1 V5His using HindIII-Pmel restriction sites.

Protein purification and crystallization. Hexahistidine-tagged proteins were expressed in E. coli (BL21-Gold[DHS] pLYsS; Stratagene) grown in 1 l of either Terrih Broclass or selenomethione minimal [92] in the presence of 50 μg/ml kanamycin, 25 μg/ml chloramphenicol, and in the absence or presence of hemin (12.5 μM; Sigma). Cells were grown at 37°C to an OD600 of 1.2, and, following the addition of isopropyl-thio-D-galactopyranoside (final concentration 1 mM) to induce expression, the cells were incubated overnight with shaking at 25°C. Following centrifugation, the cell paste was resuspended in 30 ml binding buffer (5 mM imidazole, 500 mM NaCl, 0.5 mM TCEP, 5% glycerol, 50 mM Hepes [pH 7.5]) and sonicated on ice (5-s intervals) for 5 min. Protein was purified from the supernatant using NiNTA affinity chromatography (column volume 4 ml). The column was washed with 300 ml of buffer containing 30 mM imidazole, 500 mM NaCl, 5% glycerol, 0.5 mM TCEP (tris(2-carboxyethyl)phosphine), and 50 mM Hepes (pH 7.5). Protein was eluted from the column using an equivalent buffer containing 250 mM imidazole, and dialysed overnight into a buffer containing 150 mM NaCl, 0.5 mM TCEP, and 0.5% Brij-35 (pH 7.5). Using hemin supplemented protein, in situ proteolysis of REV-ERBβ (241–579 A 275–357, 17 mg/ml or 212–579, 13.8 mg/ml) was crystallized using the hanging drop vapor diffusion method at 22°C by mixing 2 μl of protein solution with 2 μl of the reservoir solution containing 1.6 M ammonium fluoride, 0.1 M Na Hepes (pH 7.6), 4% leffamine M-600, and was performed in the crystallization drop by adding a 1:2,000 ratio (w/w) of trypsin (1.5 mg/ml; Sigma) to the protein [47].

Spectroscopic analysis. Heme-bound REV-ERBβ (17 μM) was reduced to the Fe(II) state using 2 mM dithionite. A CO stock solution was prepared by saturating degassed storage buffer (10 mM Tris [pH 8.0] at 4°C, 500 mM NaCl) with CO (Praxair). Similarly, NO stock solution was prepared using degassed storage buffer supplemented with 200 mM Tris-HCl saturated with NO gas (Aldrich), then adjusted to (pH 8.0). The estimated concentration of CO and NO in the stock solutions was 1 mM and 1.9 mM, respectively, based on the mole fraction solubility of the gases in water [93]. The gases were then added to the protein samples at a final concentration of 100 μM, providing an approximate 5-fold molar excess of gas in solution.

Removal of heme from receptors. To test heme, heme-bound forms of both REV-ERB LBDs (4 mg) were bound to NiNTA agarose beads (Qiagen) through hexahistidine tags. Proteins were washed for 12 h at a rate of 1 ml/min using a buffer containing 150 mM NaCl, 10 mM Tris (pH 8.5), 5% glycerol, and 0.1% Triton X-100. Proteins were eluted from Ni beads using the same buffer supplemented with 500 mM imidazole. Electronic absorption spectra were taken of washed and unmasked reference samples at equivalent protein concentration to compare heme content.

X-ray crystallographic analysis. Data from flash-cooled crystals of the X-ray crystallographic analysis. Data from flash-cooled crystals of the X-ray REV-ERBβx crystallographic structure were collected at 0.97 Å at 100 K at the APS at Argonne National Laboratory (SER CAT, beamline 19ID), and the data integrated and scaled to 1.9 Å resolution by using DENZO SCALEPACK [94]. The structure was solved by molecular replacement using the apo REV-ERBβ structure (PDB IDs: 2VC7, 2V0W) [21] as a search model using Phaser [95]. Strucfit was initially traced by ARP/WARP [96] and then manually rebuilt in COOT [97]. Final refinement was performed by using REFMAC [98]. Additional crystallographic statistics are given in Table S2. The drawings were generated with PYMOL [99]. Solvent exposure of heme in the REV-ERBβx structure was calculated using Swiss PDB Viewer [100]. Heme volume calculations were made using the Java molecular editor (Peter Ertl, Novartis) using the smiles descriptors: Heme, CC1 = C=C=C=C(CCC=C(N3)=CC(C=CC(C=C(N4)=C=C)=C=C)=C(C=C(N5)=CC(C=N2)=C(C=C)=C=C)=CC(C(=O)OC)C(=O)=O)CC=C(=O)=O)CC(=O)Fe[3+] (NCBI). Models of the SMRT co-repressor motif with both REV-ERB structures was done using PYMOL. REV-ERBS/MRT models were generated by structural alignment of the REV-ERB structures (PDB IDs: 2VC0, 21; 3CVQ) with the structure of
antagonist-bound PPARz in complex with SMRT peptide (PDB: 1KKQ, [101]). The structure of the PPARz LBD and antagonist were then removed, leaving the structure of each REV-ERB structure with the SMRT co-repressor motif.

Cell culture and treatments. HEK 293T and HepG2 cells were grown in Dulbecco’s modified Eagle’s medium (Wisent) supplemented with 2% non-essential amino acids, 100 U/ml penicillin, 0.1 mg/ml streptomycin, and nonessential amino acids (Invitrogen). Cells were incubated at 37 °C in 5% CO2 and, upon harvest, washed with PBS (Wisent). Gas treatment of cells was performed by culturing cells in sealed chambers with 5% CO2 and 0.05% NaOH, or two doses of SNAP (200 μM) and pS, separated by 5 h. CO treatment of cells was done by culturing cells in sealed chambers with 5% CO2 and 0.05% NaOH, or two doses of SNAP (200 μM). Cells were incubated at 37 °C for 24 h to 96 h of siRNA treatment were completed between 24 h and 96 h of siRNA.

 Luciferase-LBD reporter assays. Using antibiotic free medium, 293T cells were seeded at a density of 2 × 104 cells per well in 24-well plates 1 d prior to transfection. Transfection was carried out using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. For each targeted gene, a pool of four siRNAs (Dharmacon) with the following sequences were used. Rev-erbz: GACUGGAGCCAGGGCCGAUU, GGCGAUCUGCA-GACGCCUUU, GGGCAGGCAUCACAAAGAUU, GGGCAAGC- GUCAGGAGAUU; Rev-erbβ: GAAGAAUGAUC GAAUAGAUUU, CGCUUUUAAU, and UAAAC AACAGCAGCAGUAU. Experimental treatments were completed between 24 h and 96 h of siRNA transfection.

Quantitative Real Time-PCR. Total RNA was isolated from 1 to 2.5 × 106 cells using the RNeasy mini kit (Qiagen) according to the manufacturer’s instructions with DNase I (Fermentas) and then reverse-transcribed to synthesize cDNA using pd(Ni)-random hexamer primers (Promega) and Revert Aid H Minus M-MuLV Reverse Transcriptase (Fermentas). Quantitative PCR was performed in triplicate for each sample with SYBR Green (Sigma) using the ABI Prism 7500 sequence detection system (Applied Biosystems). Transcript levels were determined using the comparative C, method with β-actin as reference. Primer sequences used were as follows: Rev-erbz, forward, ACTTCCACCATCCCCCACT, reverse, GGAGAAGGGGCGGCCTCAT [15]; Rev-erbβ, forward, TCTTGTCACTAGTGGGTCTT, reverse, GGCGAT-CACATTCCGTGGA; Bmal1, forward, GAAAGCGGCGGTCCGA-TAA, reverse, GGACATTGCCTGTCATGG [104]; and β-actin, forward, TGGACTTGCAGAAGGATG, reverse, GGGAAG-GACGTGGAGAGATG [105].

Fluorescence polarization. Using the purified REV-ERB LBD constructs, peptide interaction was monitored using fluorescence polarization. N-terminally fluorescence-labeled peptides, corresponding to interaction domain 1 for NCOR (110 nM; DPA8NLGDHIIR-KALMGSF) and SMRT (110 nM; ASTNMOEIHRKLMKGYD), were combined with a dilution series of either LBD in a buffer of 100 mM Tris (pH 8.2) and 150 mM NaCl. Bacterial expression of the LBDs was performed in the presence of 25 μM Hemin (Sigma) and used the NO donors Deta/NO (300 μM, Sigma) freshly dissolved in 10 mM NaOH, or two doses of SNAP (200 μM, Sigma), dissolved in 5 mM EDTA and 10 mM PBS, separated by 5 h. CO treatment of cells was done by culturing cells in sealed chambers with 5% CO2 and 0.05% NaOH, or two doses of SNAP (200 μM) and pS, separated by 5 h. CO treatment of cells was done by culturing cells in sealed chambers with 5% CO2 and 0.05% NaOH, or two doses of SNAP (200 μM). Cells were incubated at 37 °C for 24 h to 96 h of siRNA treatment were completed between 24 h and 96 h of siRNA transfection.

Figure S1. Bacterial Expresed and Purified REV-ERBz and β LBDs Increased supplementation of bacterial cultures with hemin leads to greater heme occupancy with no effect on stability. (A) REV-ERBz and (B) REV-ERBβ LBDs after recombinant expression and purification of cells. The culture medium contained 0.1% v/v of CO-saturated buffer equivalent to their respective treatment concentration. All experiments were conducted a minimum of three times in triplicate, and the mean ± standard deviation of a representative experiment is shown.

Figure S2. Washing of Heme-Bound REV-ERBz (A) and β (B) LBDs Leads to Depletion of Heme Occupancy At equal protein concentration (280 nm), electronic absorption spectra for washed REV-ERB LBDs show a reduction in the characteristic hemoprotein peak (413 nm). Figure S3. Quantitative Real-Time PCR Analysis of Bmal1 and Rev-erbz and β Transcript Levels in HepG2 Cells Endogenous mRNA levels of Bmal1 and Rev-erbz and β under control and 300 μM Deta/NO treatments. Table S1. Residues within 4 Å of Heme in REV-ERBb and REV-ERBlb Homologues in Other Metazoans Sequences were aligned using Clustal W [106] and then adjusted manually. Determined secondary structure of heme-bound REV-ERBlb is labeled above and residues involved in heme coordination are marked (*). All residues that could coordinate heme in the loop and His, Cys through the proteins are in bold type. Dashed line, Cys/Pro motifs of putative heme responsive motifs; solid line, HXCC motifs.

Figure S4. Sequence Alignment of Human REV-ERBz, Human REV-ERBlb, and REV-ERBβ Homologues in Other Metazoans Residues have been categorized based on whether they interact with the heme face or heme edge. The table lists position, distance from heme, chemical property, and hydropathy index for each residue [107]. Table S2. Data Collection and Solution Structure Parameters Data Collection and Solution Structure Parameters

Acknowledgments We would like to thank Xiaoxia Liu for help with quantitative PCR; Luisa Izzii and the members of the Attisano lab for advice on quantitative PCR analysis; Abdellah Allali-Hassani and Patrick J. Finnerty, Jr., for assistance with fluorescence polarization measurements; Peter Loppin for cloning of expression constructs; Hong Cui for help in protein purification; Alexei Savchenko for directing the crystallization efforts; Cheryl Arrowsmith for critical reading of the manuscript; and Judith Burstin for insightful conversations on hemoproteins.

Author contributions. KIP, JR, AS, JT, ANP, HMK, and AE conceived and designed the experiments. KIP, XX, JR, AS, AD, SL, and RZ performed the experiments. KIP, JR, AS, AD, SL, JT, ANP, AB, HMK, and AE analyzed the data. GL contributed reagents/materials/ analysis tools. KIP, HMK and AE wrote the paper.

Funding. We acknowledge funding from the National Cancer Institute of Canada and the Canadian Institutes of Health Research (CIHR), National Institutes of Health Grant GM02414, the U.S. Department of Energy, Office of Biological and Environmental Research, under contract W-31-109-Eng-38, and the Structural Genomics Consortium, which is a registered charity (number ...
References

1. Harding HP, Lazar MA (1995) The monom-binding orphan receptor REV-erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol 15: 4791–4840.

2. Giguere V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 20: 689–725.

3. Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, et al. (2006) Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan nuclear hormone receptors. Genes Dev 8: 338–553.

4. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, et al. (2001) Identification of Rev-erbalpha as a physiological repressor of apoC-III expression by fibrates. J Biol Chem 276: 22358–22365.

5. Giguere V, Tini M, Flock G, Ong E, Evans RM, et al. (1994) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20: 391–403.

6. Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59: 1–6.

7. Uchida T, Sato E, Sato A, Sagami I, Shimizu T, et al. (2003) Identification of two important heme site residues (cysteine 75 and histidine 77) in CoaA, the CO-sensing transcription factor that regulates the transcription of carboxydothermus hydrogenoformans. J Biol Chem 280: 3269–3274.

8. Marvin KA, Kaerby RL, Youn H, Roberts GP, Burstin JN (2008) The orphan receptor Rev-erbalpha is a critical limbo-sensitive component of the circadian clock. Science 311: 1002–1005.

9. Kaasik K, Lee CC (2004) Circadian clock in mammals. Nature 430: 467–471.

10. Reynolds MF, Parks RB, Burstyn JN, Shelver D, Thorsteinsson MV, et al. (2001) Identification of CoaA, a CO-sensing transcription factor from R. rubrum, as a CO-binding heme protein. Proc Natl Acad Sci U S A 98: 11216–11220.

11. Marvin K, Reinking JL, Lee AJ, Pardee K, Krause HM, et al. (2008) Nuclear receptors hetero sapiens Rev-erb and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry. In press.

12. Roberts GP, Kaerby RL, Youn H, Conrad M (2005) CoaA, a paradigm for gas sensing regulatory proteins. J Inorg Biochem 99: 280–292.

13. de Rosny E, de Groot A, Jullian-Binard C, Gaillard J, Borel F, et al. (2006) Identification of Rev-erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol 26: 1713–1717.

14. Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, et al. (2002) Npas2a: a gas-responsive transcription factor. Science 298: 2385–2387.

15. Delireney JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10: 543–545.

16. Giguere V (1999) Orphan nuclear receptors: from gene to function. Endocr Rev 20: 689–725.

17. Reinking J, Lam MM, Pardee K, Sampson HM, Liu S, et al. (2005) The orphan nuclear receptor Rev-erbbeta. J Mol Biol 373: 735–744.

18. White KP, Hurban P, Watanabe T, Hogness DS (1997) Coordination of Drosophila metamorphosis by two ecdysone-induced nuclear receptors. Cell 87: 471–482.

19. Reinking J, Lam MM, Pardee K, Sampson HM, Liu S, et al. (2005) The orphan nuclear receptor Rev-erbbeta. J Mol Biol 373: 735–744.

20. Plouin F, Dubois G, Trottein F, Fruchart-Najib J, et al. (2001) Identification of Rev-erbalpha as a physiological repressor of apoC-III expression by fibrates. J Biol Chem 276: 22358–22365.

21. Reynolds MF, Parks RB, Burstyn JN, Shelver D, Thorsteinsson MV, et al. (2000) Electronic absorption, EPR, and resonance raman spectroscopy of CoaA, a CO-sensing transcription activator from R. rubrum, reveals a five-coordinate NO-heme. Biochemistry 39: 5885–5890.

22. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical limbo-sensitive component of the circadian clock. Science 311: 1002–1005.

23. Kaasik K, Lee CC (2004) Reciprocal regulation of hem biosynthesis and the circadian clock in mammals. Nature 430: 467–471.

24. Rodgers PM, Ying L, Burris TP (2008) Relationship between circadian oscillations of Rev-erbalpha transcription and intracellular levels of its ligand, heme. Biochem Biophys Res Commun 368: 955–958.

25. Ishiizuka T, Lazar MA (2005) The N-CoR histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol 25: 5122–5131.

26. Marvin KA, Kaerby RL, Youn H, Roberts GP, Burstin JN (2008) The orphan receptor Rev-erbalpha is a critical limbo-sensitive component of the circadian clock. Science 311: 1002–1005.

27. Ishizuka T, Lazar MA (2005) The N-CoR histone deacetylase 3 complex is specifically required for liver development in zebrafish. Dev Biol 317: 336–355.

28. Wei LN, Xu H, Chandra D, Seto E, Farooqui M (2000) Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 275: 40782–40787.

29. Dong A, Xu X, Edwards AM, Chang C, Chruszcz M, et al. (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4: 1015–1021.

30. Schneider S, Marles-Wright J, Sharp KH, Paoli M (2007) Diversity and insight into the constitutive repression function of the nuclear receptor REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14: 1207–1213.

31. Shelver D, Thorsteinsson MV, Perrett RJ, Scanlan TS (1999) Nuclear-receptor biosensor Neobacillus subtilis. Proc Natl Acad Sci U S A 95: 5474–5479.

32. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, et al. (2002) Identification of two important heme site residues (cysteine 75 and histidine 77) in CoaA, the CO-sensing transcription factor from Rhodospirillum rubrum. Biochemistry 38: 2669–2678.

33. Inagaki S, Masuda C, Aikaishi T, Nakajima H, Yoshiba S, et al. (2005) Spectroscopic and redox properties of a CoA homolog from Carboxydothermus hydrogenoformans. J Biol Chem 280: 3269–3274.

34. Wei LN, Xu H, Chandra D, Seto E, Farooqui M (2000) Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 275: 40782–40787.

35. Dong A, Xu X, Edwards AM, Chang C, Chruszcz M, et al. (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4: 1015–1021.

36. Schneider S, Marles-Wright J, Sharp KH, Paoli M (2007) Diversity and insight into the constitutive repression function of the nuclear receptor REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14: 1207–1213.

37. Shelver D, Thorsteinsson MV, Perrett RJ, Scanlan TS (1999) Nuclear-receptor biosensor Neobacillus subtilis. Proc Natl Acad Sci U S A 95: 5474–5479.
