New coordination compounds of CuII with Schiff base ligands – crystal structure, thermal and spectral investigations.

Dariusz Osypiuk, Beata Cristóvão, Agata Bartyzel*

Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska sq. 2, 20-031 Lublin, Poland

*agata.bartyzel@poczta.umcs.lublin.pl

Table S1. List of chosen mono- and polynuclear Schiff base complexes of CuII found in the CSD search [1]

Complex (CSD refcodes)	Cu–N (Å)	Cu–O\textsubscript{phen} (Å)	Cu–O\textsubscript{hydr} (Å)	Cu–O\textsubscript{methoxy} (Å)	Ref.
[Cu\textsubscript{2}(L)(O\textsubscript{2}CMe)] \cdot (C\textsubscript{4}H\textsubscript{6}NO) (IWIHEB)	1.926(1)	1.913(1)	1.939(1)	–	[2]
	1.933(1)	1.923(2)	1.983(1)		

[Image of chemical structure]
Complex	\(\Delta \)	\(\Delta \mu \)	\(\Delta \)	\(\Delta \mu \)	Ref		
\([\text{Cu}(L)(\text{H}_2\text{O})]_n\) (REFJIX)	2.010	1.951			[3]		
![Cu(L)(H_2O)_n](image)							
\(\text{Cu}(\text{HL})(\text{N}_2)(\text{pTol})_2\) (GEPNEX)	1.946(4)	1.901(3)			[4]		
![Cu(HL)(N_2)(pTol)_2](image)	1.950(4)	1.900(4)					
Complex	Cu-Cu [Å]	Cu—O [Å]	Cu—N [Å]	Ref.			
---------	-----------	-----------	-----------	------			
[Cu₂L(O₂CC₆H₄-o-NH₂)] (ABIWIS)	1.941(4)	1.933(5)	1.844(4)	1.896(3)	1.914(3)	–	[5]
[Cu₂L(O₂CC₆H₄-p-NH₂)] (ABIWOY)	1.943(4)	1.926(4)	1.891(3)	1.913(3)	1.927(3)	–	[6]
Complex	d(Cu–Cu)	d(Cu–N)	d(Cu–O)	Solv.	Ref.		
-----------------------------	----------	---------	---------	-------	------		
[CuII2(L-1F)(μ-prz)] (AWAWAW)	1.942(2)	1.886(2)	1.902(1)	–	[6]		
Complex	Bond Length 1 (Å)	Bond Length 2 (Å)	Bond Length 3 (Å)	Bond Length 4 (Å)	Bond Length 5 (Å)	Ref.	
---	-------------------	-------------------	-------------------	-------------------	-------------------	------	
$[\text{Cu}^{II}_2(\text{L}^1\text{-2OMe})\,(\mu\text{-prz})]\cdot0.5\text{CH}_3\text{CN}$ (AWAWEA)	1.933(8)	1.870(6)	1.917(6)	–	–	[6]	
$[\text{Cu}^{II}_2(\text{L}^\text{F})(\mu\text{-C}_7\text{H}_5\text{N}_2)]$ (AYEYOS)	1.956(6)	1.907(6)	1.959(4)	–	–	[7]	
Structure	Bond Lengths	References					
--	-----------------------	------------					
![CuII_2(L−H)(µ-C_3H_5N_2)_·CH_3OH (AYEYUY)]	1.919(9) 1.907(9) 1.957(7) 1.955(6)	[7]					
![CuII_2C_17H_15N_2O_3(CF_3COO)-CH_3OH (BATVEZ)]	1.929(4) 1.915(4) 1.942(3) 1.902(3)	[8]					
Compound	Bond Lengths						
--------------------------------	-----------------------	---	---	---			
$[\text{Cu}_2(\text{L}^1)\text{(m-C}_6\text{H}_5\text{CO}_2)]$ (DEXNAV01)	1.930(3)	1.890(3)	1.913(3)	–	[9]		
$\text{C}_{20}\text{H}_{18}\text{Cu}_2\text{N}_4\text{O}_3, \text{H}_2\text{O}$ (DICDEY)	1.93(1)	1.92(1)	1.89(1)	–	[10]		
Compound	Bond Length 1 (Å)	Bond Length 2 (Å)	Bond Length 3 (Å)	Bond Length 4 (Å)	Bond Length 5 (Å)	Reference	
---	-------------------	-------------------	-------------------	-------------------	-------------------	-----------	
[{Cu2L(O2CC3H7N)} · C2H5OH]x (DINCUY)	1.956(6)	1.908(6)	1.932(6)	–	–	[11]	
C17H16CuN2O3 (DUNPIL)	1.937(3)	1.899(2)	–	–	–	[12]	
Compound	Bond Length 1	Bond Length 2	Bond Length 3	Bond Length 4	Ref.		
--	---------------	---------------	---------------	---------------	------		
C_{27}H_{36}CuN_{2}O_{3} (FANLUB)	1.974(6)	1.904(5)	–	–	[13]		
[Cu_2(L^2)(O_2CMe)]·MeOH (FAPGOS)	1.93(1)	1.85(1)	1.878(9)	–	[14]		
Structure	Bond Length 1 (Å)	Bond Length 2 (Å)	Bond Length 3 (Å)	Notes			
--	-------------------	-------------------	-------------------	------------			
\([\text{Cu}_2(\text{L}^5)(\text{O}_2\text{CPh})]\cdot\text{H}_2\text{O}\) (FAPGUY)	1.915(7)	1.924(7)	1.883(6)				
	1.925(6)	1.885(6)	1.918(6)				
\(\text{C}_{19}\text{H}_{18}\text{Cu}_2\text{N}_2\text{O}_5\cdot\text{C}_4\text{H}_4\text{O}\) (FAPGOS01)	1.929(3)	1.892(3)	1.913(3)				
	1.922(3)	1.904(3)	1.909(3)				

[14] [15]
Compound	1.943(2)	1.909(1)	–	–	[16]
Cu₂(L)(prz) (FUXVAV)	1.932(4)	1.871(4)	1.918(4)	–	[17]
Chemical Formula	Data 1	Data 2	Data 3	Data 4	Ref.
------------------	---------	---------	---------	---------	------
$\text{C}_{22}\text{H}_{18}\text{Cu}_2\text{N}_4\text{O}_3$ (IYETEL)	1.962(6)	1.922(5)	1.907(6)	–	[18]
$[\text{Cu}_2(\text{L})(\text{OAc})]\cdot3\text{DMF}$ (HOWYEY)	1.984(2)	1.916(2)	1.953(2)	–	[19]
Complex	μ (Å)	μ (Å)	μ (Å)	μ (Å)	Reference
------------------------------	--------	--------	--------	--------	-----------
[Cu₂(L)(OAc)]₂·3DMF (HOWYIC)	1.916(5)	1.920(4)	1.972(4)	–	[19]
[Cu₂(L)(Fa)]·2DMF (HOWYOI)	1.929(2)	1.897(2)	1.941(2)	–	[19]
Compound	Bond Length (Å)	Reference			
----------	----------------	------------			
[Cu₂(L)(Pa)]·DMF (HOWYUO)	1.923(5)	1.900(4)	1.935(4)	–	[19]
[Cu₂(L)(μ-6-meo-pur)(dmf)] (IGEJEK)	1.905(3)	1.895(2)	1.961(2)	–	[20]
	1.923(6)	1.893(4)	1.906(4)		
	1.919(3)	1.906(3)	1.966(3)		
Formula	1.952	1.930			[22]
-------------------------	-------	-------	-------	-------	------
C_{17}H_{14}CuN_{4}O_{7} (LIBNAM01)					

Formula	1.932(8)	1.902(8)	1.926(6)	–	[21]
[Cu\textsubscript{2}L(O_{2}CCHCHC\textsubscript{6}H\textsubscript{4}p-OH)] (IVAXIM)					

Formula	1.936(8)	1.905(7)	1.910(7)	–	–	[21]
[Cu\textsubscript{2}L(O_{2}CCHCHC\textsubscript{6}H\textsubscript{4}p-OH)] (IVAXIM)						

Table: Structure and bond lengths for copper complexes.
Structure	Bond Lengths (Å)	Ref.				
C$_{30}$H$_{34}$Cu$_2$N$_4$O$_5$ (LOGPUU)	1.937(4) 1.903(4) 1.905(4)	[23]				
	1.931(4) 1.900(3) 1.903(9)					
C$_{19}$H$_{16}$Cl$_2$Cu$_2$N$_2$O$_5$ 0.5(H$_2$O) (MIXXIA)	1.916(3) 1.891(8) 1.903(9)	[24]				
	1.91(1) 1.876(5) 1.903(7)					
Chemical Formula	Bond Lengths (Å)	References				
------------------	------------------	------------				
\(\text{C}_{20}\text{H}_{21}\text{ClCu}_{2}\text{N}_{2}\text{O}_{6}, \text{CH}_{3}\text{O} \) (NEFFIO)	1.916(5) 1.938(4) 1.925(4) 1.907(4) –	[25]				
\([\text{Cu}_2(\text{L})(\mu\text{-pz})]\) (NIWNEP)	1.962(9) 1.96(1) 1.894(9) 1.88(1) 1.877(9) 1.89(1) –	[26]				
Chemical Formula	Bond Length 1	Bond Length 2	Bond Length 3	Reference		
---------------------------	--------------	--------------	--------------	-----------		
C_{22}H_{20}Br_2Cu_2N_4O_3 (OCIDOT)	1.94(2) 1.975(2) 1.916(2) 1.884(1)	-	[27]			
C_{24}H_{26}Cu_2N_4O_5 (ODAXUM)	1.946(3) 1.897(3) 1.890	-	[28]			
Structure	Formula	a	b	c	References	
-----------	---------	---	---	---	------------	
![Cu₂L(O₂C-CH₂-C₆H₄-p-OH)]·H₂O (SAQMON)	[Cu₂L(O₂C-CH₂-C₆H₄-p-OH)]·H₂O (SAQMON)	1.914(7)	1.911(6)	1.903(6)	–	[29]
![Cu₂L(O₂C-CH₂-C₆H₄-p-OH)]·H₂O (SAQMON)	[Cu₂L(O₂C-CH₂-C₆H₄-p-OH)]·H₂O (SAQMON)	1.925(3)	1.894(2)	1.894(2)	–	[29]
Cu₂L(OAc)(CH₃OH)₂CH₃OH (TAWMOV)

Distance (Å)	Cu₁-O₁	Cu₂-O₂			
1.902(3)	1.879(2)	1.904(2)			
1.925(3)	1.891(3)	1.898(3)			
1.936(3)	1.892(3)	1.913(3)			
Compound	Bond Lengths (Å)	References			
----------	-----------------	------------			
[Cu$_2$(L1)(μ-HCO$_2$)] (TEFTAA)		[31]			
	1.935(3) 1.925(3)				
	1.886(2) 1.898(2)				
	1.921(2) 1.910(2)				
	–				
[Cu$_2$(L2)(μ-HCO$_2$)] dmf (TEFTII)		[31]			
	1.946(5) 1.957(5)				
	1.906(4) 1.892(5)				
	1.935(3) 1.920(3)				
	–				
Cu$_2$(EGbsdpo)(OAc) (TOMYOK)		[32]			
	1.925(4) 1.921(4)				
	1.893(3) 1.898(3)				
	1.910(3) 1.921(3)				
	–				
Structure	Formulas	Bond Distances (Å)	References		
-----------	----------	-------------------	------------		
![Structure 1](image1.png)	$\text{C}_{31}\text{H}_{26}\text{Cu}_2\text{N}_2\text{O}_5$, CH$_2$O (VIDBAO)	$1.941(2)$, $1.951(2)$, $1.878(2)$, $1.882(2)$, $1.904(2)$, $1.891(2)$	[33]		
![Structure 2](image2.png)	$\text{[Cu}_2\text{(C}_{17}\text{H}_{15}\text{N}_3\text{O}_3)(\text{HCOO})]}$ (WAZPIW)	$1.937(6)$, $1.921(4)$, $1.960(4)$	[34]		
![Structure 3](image3.png)	$(\text{C}_{19}\text{H}_{22}\text{Cu}_2\text{N}_2\text{O}_6)_n$ (WOBNUY)	1.983, 1.938, $-$	[35]		
(C_{19}H_{16}Br_{2}Cu_{2}N_{2}O_{5}), H_{2}O (XAZNOB)	1.940(3)	1.890(3)	1.914(2)	–	[36]
C_{22}H_{36}Cl_{2}Cu_{2}N_{4}O_{3} (XEFSAC)	1.965(4)	1.919(4)	1.900(4)	–	[37]
Chemical Formula	D1	D2	D3	Reference	
------------------	----	----	----	-----------	
C37H34Cu2N2O7CH2Cl2 (XEHFIB)	1.919(2)	1.898(2)	1.916(2)	–	[38]
C29H36Cu2N2O7 0.5(CH3O) (XEPDOO)	1.941(2)	1.895(3)	1.920(3)	–	[39]
	1.928(2)	1.891(3)	1.906(3)		
------------------	----------	----------	----------	---------	
$\text{[Cu}^{II}_6(L_5)(\mu_3\text{-SO}_4)_2(\mu_2$-\text{SO}_4)(\text{MeOH})_2\cdot\text{H}_2\text{O}\cdot15.5(\text{MeOH})\cdot15.5(\text{MeCN})\text{ (BOQMEA)}$	1.929(9)	1.934(7)	1.929(7)	2.286(7)	[40]
	1.907(9)	1.883(7)	1.924(7)		
Structure	Bond Lengths (Å)	Reference			
---------------------------	------------------	-----------			
[Cu₂L₂(3-ppz)₂] (CEPKUE)	1.942 (5)	[41]			
	1.935 (6)				
	1.928 (3)				
	1.890 (4)				
	1.978 (3)				
	2.360 (4)				
\[
[Cu_3L^1L^2(1-MeIm)(H_2O)](ClO_4)\] (AWERID)

\[
\begin{array}{cccc}
1.920(3) & 2.061(2) & 1.974(2) & – \\
1.932(2) & 1.897(2) & 1.961(2) & [42]
\end{array}
\]
\[[\text{Cu}_3(\text{HL})_2\text{L}^+]\text{(ClO}_4^-) \text{(ILAPIU)} \]

- 1.919(7)
- 1.949(7)
- 1.967(7)

- 1.916(5)
- 1.913(6)
- 2.069(5)
- 1.941(5)
- 2.217(5)

- 1.959(5)
- 1.962(4)
- –
- [43]
\[\text{Cu}_3(\text{HL})_2(\text{ClO}_4) \text{ (ILAPEQ)} \]

Bond Length (Å)	[Cu$_3$(HL)$_2$(O$_2$CC$_6$H$_4$-p-OH)$_2$] (IVESAD)
1.958(6)	1.982(4)
1.988(6)	1.902(4)
1.911(4)	1.941(4)
1.906(4)	
1.976(5)	
1.941(4)	
1.896(5)	

\[\text{Cu}_4\text{L}_2(O_2\text{CC}_6\text{H}_4-p\text{-OH})_2 \text{ (IVESAD)} \]

Bond Length (Å)	[Cu$_4$L$_2$(O$_2$CC$_6$H$_4$-p-OH)$_2$] (IVESAD)
1.931(7)	1.932(6)
1.930(6)	1.926(6)
1.917(5)	1.896(5)
2.401(4)	

[44]
$[\text{Cu}_3\text{L}_2(\mu_1,\mu_3\text{N}_3)_2] \cdot 5\text{H}_2\text{O}$ (GAFQAG)

$$
\begin{array}{cccc}
1.922(2) & 1.904(2) & 1.979(2) & - \\
1.947(3) & 1.874(2) & 1.958(2) & - \\
1.885(2) & 1.971(2) & & \\
1.879(2) & 1.977(2) & & \\
\end{array}
$$
Chemical Formula	Bond Length 1	Bond Length 2	Bond Length 3	Bond Length 4	Reference
C₃₄H₃₂Cu₃N₆O₁₂, C₂H₆O H₂O (TETCEB)	1.947(5)	1.940(3)	–	–	[46]
	1.959(4)	1.951(4)	–	–	
[Cu₄(L-Br)₂(μ-C₄H₆O₄)(dmf)₂] (FIYFAV)	1.920(5)	1.886(5)	1.928(4)	–	[47]
	1.931(5)	1.885(5)	1.926(5)	–	
\[
[Cu_4(L-Cl)_2(\mu-\text{C}_6\text{H}_4\text{O}_2)(\text{dmf})_2] \text{ (FIYFEZ)}
\]

	1.942(4)	1.882(3)	1.924(3)	–	48
	1.929(4)	1.883(3)			
Formula	Bond Lengths (Å)	Temperature (°C)	Disorder	Literature	
---------	-----------------	------------------	----------	------------	
\([\text{Cu}_4(L^2)_2(\mu-\text{C}_3\text{H}_6\text{O}_2\cdot 2\text{H}_2\text{O}-2\text{CH}_3\text{CN} \text{ (DOYSOA)})}\)	1.932(3)	1.891(2)	1.904(2)	–	[48]
Chemical Formula	Bond Lengths (Å)	Reference			
------------------	-----------------	-----------			
C76H78Cu6N8O122+ 2(CH2O) 2(ClO4-) · H2O (MAPDEP)	1.949(4), 1.932(3), 1.918(3), 1.929(4), 1.930(3), 1.893(3)	[49]			
C76H78Cu6N8O122+ 2(CH2O) 2(ClO4-) · H2O (MAPDEP)	1.949(3), 1.932(3), 1.918(3), 1.929(4), 1.930(3), 1.893(3)	[49]			
[Cu4L2(μ1,1-N3)2] · CH3CN (KUKTAM)	1.949(3), 1.888(4), 1.938(3), –	[50]			
Figure S1. FTIR spectra of the Schiff base ligand H_3L_1 and complex 1.

Figure S2. FTIR spectra of the Schiff base ligand H_3L_1 and complex 2.
Figure S3. FTIR spectra of the complexes 1 and 2.

Figure S4. FTIR spectra of the Schiff base ligand H_3L_2 and complex 3.
Figure S5. FTIR spectra of the Schiff base ligand H$_3$L$_2$ and complex 4.

Figure S6. FTIR spectra of the complexes 3 and 4.
Table S2. Hydrogen bonding and C-H···π interactions geometry [Å, °] for complexes 1-4.

Hydrogen bonds

D-H···A	d(D-H)	d(H···A)	d(D···A)	θ DHA
O(1W)‒H(1W)···O(4)	0.83	2.28	2.884(4)	130
O(1W)‒H(1W)···O(5)	0.83	2.11	2.897(4)	157
O(1W)‒H(2W)···O(1)	0.83	1.97	2.803(4)	174
O(3)‒H(3B)···O(1W)	0.84	2.02	2.734(4)	142
C(4)‒H(4B)···O(3)	0.98	2.52	3.222(6)	128
C(11)‒H(11D)···O(3)	0.99	2.47	3.444(5)	168

O(1M)‒H(1M)···O(2M)	0.84	1.86	2.700(5)	174
O(1W)‒H(1W)···O(7)	0.87	1.97	2.834(5)	176
O(2M)‒H(2M)···O(1W)	0.84	1.82	2.646(5)	167
O(1W)‒H(2W)···O(5)	0.87	1.99	2.841(3)	166
O(2W)‒H(3W)···O(1)	0.86	2.30	3.095(4)	154
O(2W)‒H(3W)···O(6)	0.86	2.36	3.039(4)	135
O(2W)‒H(4W)···O(2)	0.86	2.41	2.949(5)	121
O(2W)‒H(4W)···O(2W)	0.86	2.30	2.891(6)	126
C(8)‒H(8)···O(2M)	0.95	2.46	3.407(5)	174
C(22)‒H(22A)···Br(2)	0.98	2.85	3.424(5)	118

O(1M)‒H(1M)···O(3)	0.84	2.56	3.092(3)	123
O(1M)‒H(1M)···O(5)	0.84	2.25	3.080(3)	169
O(2M)‒H(2M)···O(1)	0.84	2.04	2.842(3)	159
C(11)‒H(11B)···O(2M)	0.99	2.60	3.535(3)	157
C(13)‒H(13C)···O(2M)	0.98	2.58	3.534(4)	166

O(1W)‒H(1WA)···O(3)	0.85	2.17	2.963(3)	156
O(1W)‒H(1WA)···O(5)	0.85	2.40	3.049(3)	134
O(1M)‒H(1M)···O(2W)	0.82	1.88	2.697(4)	174
O(1W)‒H(1WB)···O(1M)	0.85	1.97	2.820(3)	176
O(2M)‒H(2M)···O(1W)	0.82	1.94	2.728(4)	160
O(2W)‒H(2WA)···O(1)	0.85	2.05	2.858(3)	158

C-H···π interactions

C-H···Cg	d(D-H)	d(H···Cg)	d(C···Cg)	θ CHCg
C(9B)‒H(9C)···Cg(5)	0.99	2.43	3.320(10)	150
C(11)‒H(11C)···Cg(6)	0.99	2.83	3.737(5)	153
C(10A)‒H(10A)···Cg(6)	1.00	2.94	3.761(11)	140
Symmetry codes for complex 1: (1a) x+1,y,z; (1b) x-1,y,z; (1c) -x,-y+2,-z; (1d) -x,y-2,-z; Cg(5) and Cg(6) are centroids of phenyl C(1)→C(7) and C(13)→C(19) rings
Symmetry codes for complex 2: (2a) x,y,-z+1; (2b) x, y, z-1; (2c) x-1, y-1, z-2; (2d) x-1, y-1, z-1; (2e) x, y+1, -z+1; Cg(8) is centroids of phenyl C(1)→C(7) ring
Symmetry codes for complex 3: (3a) -x+1,-y+1,-z+1; (3b)-x+3/2,y-1/2,-z+1/2; (3c)-x+1,-y+2,-z+1; (3d)-x+3/2,y-1/2,-z+3/2; Cg(7) is centroids of phenyl C(1)→C(6) ring
Symmetry codes for complex 4:(4b)-x,y-1/2,-z+1/2; (4c) -x+1, -y+2, -z+1;(4d) -x+1, y-1/2, -z+1/2; Cg(9) is centroids of phenyl C(1)→C(6) ring.

Figure S7. The packing of structure 1 along the a direction
Figure S8. The crystal structure packing of complex 3 showing formed layers via C-H···O interactions.

Figure S9. FTIR spectra of gaseous products of complex 2, decomposition in nitrogen.
Figure S10. FTIR spectra of gaseous products of complex 4 decomposition in nitrogen.

References
1. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179.
2. Elmali, A.; Zeyrek, C.T.; Elerman, Y. J. Crystal structure, magnetic properties and molecular orbital calculations of a binuclear copper(II) complex bridged by an alkoxo-oxygen atom and an acetate ion. J. Mol. Struct. 2004, 693, 225–234, doi.org/10.1016/j.molstruc.2004.02.037.
3. Datta, A.; Clegg, J.K.; Huang, J.-H.; Pevec, A.; Garribba, E.; Fondo, M.; Hydroxo-bridged 1-D coordination polymer of Cu(II) incorporating with salicyladimine precursor: Spectral and temperature dependent magneto structural correlation. Inorg. Chem. Commun. 2012, 24, 216–220, https://doi.org/10.1016/j.inoche.2012.07.017.
4. Banerjee, S.; Ghorai, P.; Brandao, P.; Ghosh, D.; Bhuiya, S.; Chattopadhyay, D.; Das, S.; Saha, A. Syntheses, crystal structures, DNA binding, DNA cleavage, molecular docking and DFT study of Cu(II) complexes involving N₂O₄ donor azo Schiff base ligands. New J. Chem. 2018, 42, 246–259, doi.org/10.1039/C7NJ03293E.
5. Mukherjee, A.; Saha, M.K.; Nethaji, M.; Chakravarty, A.R. Dicopper(II) Schiff base aminobenzoates with discrete molecular and 1D-chain polymeric structures. Polyhedron. 2004, 23, 2177–2182, doi.org/10.1016/j.poly.2004.06.014.
6. Huang, S-F.; Chou, Y-Ch.; Misra, P.; Lee, Ch-J.; Mohanta, S.; Wei, H-H. Syntheses, structures, and magnetic properties of two new μ-alkoxo-μ-pyrazolato bridged dicopper(II) complexes. Inorg. Chim. Acta. 2004, 357, 1627–1631, doi.org/10.1016/j.ica.2003.11.021.
7. Chou, Y-Ch.; Huang, S-F.; Koner, R.; Lee, G-H.; Wang, Y.; Mohanta, S.; Wei, H-H. Ferromagnetic exchange in two dicopper(II) complexes using a μ-alkoxo-μ-7-azaindolate bridge. Inorg. Chem. 2004, 43, 2759–2761, doi.org/10.1021/ic035322t.
8. Negodaev, I.; de Graaf, C.; Caballol, R.; Lukov, V.V. On the magnetic coupling in asymmetric bridged Cu(II) dinuclear complexes: The influence of substitutions on the carboxylato group. Inorg. Chim. Acta. 2011, 375, 166–172, doi.org/10.1016/j.ica.2011.04.047.
9. Chen, Ch-Y.; Lu, J-W.; Wei, H-H. Crystal structures, magnetic properties and catecholase-like activities of μ-alkoxo-μ-carboxylato double bridged dinuclear and tetranuclear copper(II) complexes. J. Chin. Chem. Soc.(Taipei). 2009, 56, 89–97, doi.org/10.1002/jccs.200900013.
10. Mazurek, W.; Kennedy, B. J.; Murray, K. S.; O'Connor, M. J.; Rodgers, J. R.; Snow, M.R.; Wedd, A. G.; Zwick, P. R. Magnetic interactions in metal complexes of binucleating ligands. Synthesis and properties of binuclear copper(II) compounds containing exogenous ligands that bridge through two atoms. Crystal and molecular structure of a binuclear .mu.-pyrazolato-N,N'-bridged dicopper(II) complex of 1,3-bis(salicylideneamino)propan-2-ol. Inorg. Chem. 1985, 24, 3258–3264, doi.org/10.1021/ic00214a033.

11. Geetha, K.; Tiwary, S. K.; Chakravarty, A. R.; Ananthakrishna, G. Synthesis, crystal structure and magnetic properties of a polymeric copper(II) Schiff-base complex having binuclear units covalently linked by isonicotinate ligands. J. Chem. Soc. Dalton Trans. 1999, 4463–4467, doi.org/10.1039/A907668I.

12. Kitajima, N.; Whang, K.; Moro-oka, Y.; Uchida, A.; Sasada, Y. Oxidations of primary alcohols with a copper(II) complex as a possible galactose oxidase model. Chem. Commun. 1986, 1504–1505, doi.org/10.1039/C39860001504.

13. Hilms, E.; Elias, H.; Paulus, H.; Walz, L. Crystal structure and magnetic properties of dimeric [2-hydroxypropane-1,3-diylbis(3'-t-butyl-5'-methylsalicylideneiminato)]copper(II). J. Chem. Soc., Dalton Trans. 1986, 2169–2172, doi.org/10.1039/DT9860002169.

14. Nishida, Y.; Kida, S. Crystal structures and magnetism of binuclear copper(II) complexes with alkoxide bridges. Importance of orbital complementarity in spin coupling through two different bridging groups. J. Chem. Soc., Dalton Trans. 1986, 2633–2640, doi.org/10.1039/DT9860002633.

15. Lukov, V. V.; Kogan, V. A.; Tupolova, Yu. P.; Popov, L. D.; Gevorkyan, I. E.; Tkachev, V. V.; Shilov, G. V.; Makitova, D. D. Crystal structure and magnetic properties of new binuclear copper(II) chelates with an asymmetric exchange fragment. Zh. Neorg. Khim. (Russ.) Russ. J. Inorg. Chem. 2004, 49, 1993.

16. Kaczmarek, M. T.; Skrobanska, M.; Zabiskak, M.; Walesa-Chorab, M.; Kubicki, M.; Jastrzab, R.; Coordination properties of N,N′-bis(5-methylsalicylidene)-2-hydroxy-1,3-propanediamine with d- and f-electron ions: crystal structure, stability in solution, spectroscopic and spectroelectrochemical studies. RSC Advances, 2018, 8, 30994–31007, doi.org/10.1039/C8RA03565B.

17. Nishida, Y.; Kida, S. An important factor determining the significant difference in antiferromagnetic interactions between two homologous (.mu.-alkoxo)(.mu.-pyrazolato-N,N')dicopper(II) complexes. Inorg. Chem. 1988, 27, 447–452, doi.org/10.1021/ic00276a004.

18. Elerman, Y.; Kara, H.; Elmali, A. Relation between magnetic, spectroscopic and structural properties of binuclear copper(II) complexes of pentadentate Schiff-base ligand, semi-empirical and ab-initio calculations. Z. Naturforsch., A: Phys. Sci. 2003, 58, 363–372.

19. Kou, Y.; Tian, J.; Li, D.; Gu, W.; Liu, X.; Yan, S.; Liao, D.; Cheng, P. Synthesis, structure, magnetic properties and DNA cleavage of binuclear Cu(II) Schiff-base complexes. Dalton Trans. 2009, 2374–2382, doi.org/10.1039/B819052F.

20. Lai, T-Ch.; Chen, W-H.; Lee, Ch-J.; Wang, B-Ch.; Wei, H-H. Structure and magnetic property of μ-alkoxo-μ-6-methoxypurinate double bridged dinuclear copper(II) complex. J. Mol. Struct. 2009, 935, 97–101, doi.org/10.1016/j.molstruc.2009.06.041.

21. Mukherjee, A.; Saha, M. K.; Nethaji, M.; Chakravarty, A. R. Helical supramolecular host with aquapores anchoring alternate molecules of helical water chains. Chem. Commun. 2004, 716–717, doi.org/10.1039/B316275C.

22. Chakraborty, J. CSD Communication. 2017.

23. Levchenkov, S. I.; Scherbakov, I. N.; Popov, L. D.; Tupolova, Yu. P.; Suponitsky, K. Yu.; Mazuritsky, M. I.; Kogan, V. A. Binuclear copper(II) and nickel(II) complexes based on N,N′-bis(3-
formyl-5-tert-butyldiphenylacetone-1,3-diaminopropan-2-ol: physicochemical and theoretical study. Izv. Akad. Nauk SSSR, Ser. Khim. (Russ.) Russ. Chem. Bull. 2014, 63, 673–683.

24. Kavlakoglu, E.; Elmali, A.; Elerman, Y. Magnetic super-exchange mechanism and crystal structure of a binuclear μ-acetato-bridged copper(II) complex of pentadentate binucleating ligand. An influence of overlap interactions to magnetic properties. Z. Naturforsch., B: Chem. Sci. 2002, 57, 323, doi.org/10.1515/znb-2002-0301.

25. Kogan, V.A.; Lukov, V. V.; Novotortsev, V. M.; Eremenko, I. L.; Aleksandrov, G. G. Dinuclear copper(II) complexes with an unsymmetrical exchange fragment. Izv. Akad. Nauk SSSR, Ser. Khim. (Russ.) Russ. Chem. Bull. 2005, 54, 592–605.

26. Zarei, L.; Asadi, Z.; Dusek, M.; Eigner, V. Homodinuclear Ni(II) and Cu(II) Schiff base complexes derived from O-vanillin with a pyrazole bridge: Preparation, crystal structures, DNA and protein (BSA) binding, DNA cleavage, molecular docking and cytotoxicity study. J. Photochem. Photobiol. A:Chem. 2019, 374, 145–160, doi:10.1016/j.jpjphotochem.2019.02.001.

27. Elerman, Y.; Elmali, A. Magnetic properties and crystal structure of a 3,5-dimethylpyrazolate-bridged binuclear copper(II) complex. Z. Naturforsch., B: Chem. Sci. 2001, 56, 970–974, doi.org/10.1515/znb-2001-1002.

28. Elerman, Y.; Kara, H.; Elmali, A. Importance of orbital complementarity in spin coupling through two different bridging groups. Synthesis, crystal structure, magnetic properties and magnetostuctural correlations in a dicopper(II) complex of endogenous alkoxo bridging ligand with exogenous pyrazolate. Z. Naturforsch., B: Chem. Sci. 2001, 56, 1129–1137, doi.org/10.1515/znb-2001-1106.

29. Mukherjee, A.; Saha, M. K.; Nethaji, M.; Chakravarty, A. R. Effect of carboxylate spacers on the supramolecular self-assembly of dicopper(II) Schiff base complexes stabilizing water assemblies of different conformations. New J. Chem. 2005, 29, 596–603, doi.org/10.1039/B415945D.

30. Mei, Y.; Zhou, J.; Zhou, H.; Pan, Z-Q. DNA-binding and cleavage activity of a new alkoxo and acetate-bridged dinuclear copper(II) complex. J. Coord. Chem. 2012, 65, 643–654, doi.org/10.1080/00958972.2012.658567.

31. Weng, Ch-H.; Cheng, S-Ch.; Wei, H-M.; Wei, H-H.; Lee, Ch-J. Magnetostuctural correlations and catecholase-like activities of μ-alkoxo-μ-carboxylato double bridged dinuclear and tetranuclear copper(II) complexes. Inorg. Chim. Acta. 2006, 359, 2029–2040, doi.org/10.1016/j.ica.2005.12.047.

32. Striegler, S.; Gichinga, M. G. Disaccharide recognition by binuclear copper(II) complexes Chem. Commun. 2008, 5930–5932, doi.org/10.1039/B813356E.

33. Bartyzel, A. Synthesis, thermal behaviour and some properties of CuII complexes with N,O-donor Schiff bases. J. Thermal Analysis and Calorimetry. 2018, 131, 1221–1236, doi:10.1007/s10973-017-6563-2.

34. Kawata, T.; Ohba, S.; Nishida, Y.; Tokii, T. Structure of a binuclear copper(II) complex with both μ-alkoxo and μ-formato bridges, [Cu2(C17H15N6O5)(HCOO)] Acta Crystallogr., Sect. C:Cryst. Struct. COMMUN. 1993, 49, 2070–2072, doi.org/10.1107/S0108270193004779.

35. Yardan, A.; Yahsi, Y.; Kara, H.; Karahan, A.; Durmus, S.; Kurtaran, R. Synthesis, characterization, crystal structure, magnetic studies of a novel polymeric zigzag chain copper (II) complex. Inorg. Chim. Acta. 2014, 413, 55–59, doi.org/10.1016/j.ica.2014.01.006.

36. Zeyrek, C.T.; Elmali, A.; Elerman, Y.; Svoboda, I.; Fuess, H. Crystal structure and magnetic properties of a binuclear copper(II) complex bridged by an alkoxo-oxygen atom and an acetate ion. Z. Naturforsch., B: Chem. Sci. 2000, 55, 1067–1073, doi.org/10.1515/znb-2000-1112.
37. Kara, H.; Elerman, Y.; Prout, K. Synthesis, crystal structure and magnetic properties of a (μ-hydroxo)(μ-pyrazolato) dicopper(II) complex. *Z. Naturforsch., B:Chem. Sci.* **2000**, *55*, 796–802, doi.org/10.1515/znb-2000-0003.

38. Striegler, S.; Dittel, M.; Kanso, R.; Alonso, N. A.; Duin, E. C. Hydrolysis of glycosides with microgel catalysts. *Inorg. Chem.* **2011**, *50*, 8869–8878, doi.org/10.1021/ic200837z.

39. Levchenkov, S. I.; Popov, L. D.; Tupolova, Yu. P.; Morozov, A. N.; Raspopova, E. A.; Starikova, Z. A.; Shcherbakov, I. N. Structure of the planar acetate-bridged binuclear copper(II) complex based on 1,3-bis(3-formyl-5-tert-butylsalicylideneimino)propanol-2. *Koord. Khim. (Russ.)* *(Coord. Chem.)*. **2017**, *43*, 630–634.

40. Lan, Y.; Novitchi, G.; Clerac, R.; Tang, J-K.; Madhu, N. T.; Hewitt, I. J.; Anson, C. E.; Brooker, S.; Powell, A. K. Di-, tetra- and hexanuclear iron(III), manganese(II/III) and copper(II) complexes of Schiff-base ligands derived from 6-substituted-2-formylphenols. *Dalton Trans.* **2009**, *1721–1727*, doi.org/10.1039/B818113F.

41. Naik, S.G.; Mukherjee, A.; Raghunathan, R.; Nethaji, M.; Ramasesha, S.; Chakravarty, A. R. Magneto-structural study on a tetracopper(II) Schiff base complex stabilizing a decanuclear water aggregate. *Polyhedron*. **2006**, *25*, 2135–2141, doi.org/10.1016/j.poly.2005.12.025.

42. Gupta, S.; Mukherjee, A.; Nethaji, M. Chakravarty, A. R. An angular trinuclear copper(II) complex as a model for the active site of multicopper oxidases. *Polyhedron*. **2004**, *23*, 643–647, doi.org/10.1016/j.poly.2003.11.001.

43. Mukherjee, A.; Rudra, I.; Naik, S.G.; Ramasesha, S.; Nethaji, M.; Chakravarty, A. R. Covalent linkage of the type-2 and type-3 structural mimics to model the active site structure of multicopper oxidases: synthesis and magneto- structural properties of two angular trinuclear copper(II) complexes. *Inorg. Chem.* **2003**, *42*, 5660–5668, doi.org/10.1021/ic034565i.

44. Mukherjee, A.; Saha, M. K.; Rudra, I.; Ramasesha, S.; Nethaji, M.; Chakravarty, A. R. Synthesis, crystal structure and magnetic properties of quasi-linear tetracopper(II) Schiff base complexes formed by covalent linkage of asymmetrically dibridged dicopper(II) units. *Inorg. Chim. Acta*. **2004**, *357*, 1077–1082, doi.org/10.1016/j.ica.2003.10.011.

45. Song, Y.; Massera, C.; Roubeau, O.; Gamez, P.; Lanfredi, A. M. M.; Reedijk, J. An unusual open cubane structure in a μ_1-μ-azido- and alkoxy-bridged tetracopper(II) complex, [Cu$_4$L$_2$(μ$_1$-μ-μ-μ-μ)$_2$]SH$_2$O (H$_3$L = N,N’-(2-hydroxypropane-1,3-diy)bis-salicylideneimine). *Inorg. Chem.* **2004**, *43*, 6842–6847, doi.org/10.1021/ic049317g.

46. Dieng, M.; Thiam, I.; Gaye, M.; Sall, A. S.; Barry, A. H.; Synthesis, crystal structures and spectroscopic properties of a trinuclear [Cu$_3$(HL)$_2$(NO$_3$)$_2$](H$_2$O)(CH$_2$CH$_2$OH) complex and a [Mn(HL)(CH$_3$COO)]$_n$ polymer with H$_3$L=N,N’-(2-hydroxypropane-1,3-diy)-bis-(salicylaldimine). *Acta Chim. Slov.* **2006**, *53*, 417–423.

47. Lee, Ch-J.; Cheng, S-Ch.; Lin, H-H.; Wei, H-H. Ferromagnetic exchange in μ-alkoxo-μ-dicarboxylato double bridged tetracopper(II) complexes: [Cu$_4$(L-X)$_2$(μ-C$_6$H$_5$O$_3$)(dmf)$_2$] (L = 1,3-bis(5-X-salicylideneamino)-2-propanol, X = Br, Cl). *Inorg. Chem. Commun.* **2005**, *8*, 235–238, doi.org/10.1016/j.inoche.2004.11.031.

48. Chen, Ch-Y.; Lu, J-W.; Wei H-H. Crystal structures, magnetic properties and catecholase-like activities of μ-alkoxo-μ-carboxylato double bridged dinuclear and tetracopper(II) complexes. *J. Chin. Chem. Soc.(Taipei)*. **2009**, *56*, 89–97, doi.org/10.1002/jccs.200900013.

49. Yang, F-L.; Shao, F.; Zhu, G-Z.; Shi, Y-H.; Gao, F.; Li, X-L. *Chem. Sel.* **2017**, *2*, 110.

50. Basak, S.; Sen, S.; Rosair, G.; Desplanches, C.; Garrirba, E.; Mitra, S. A novel μ_1-μ-azido- μ_2-alkoxo- and μ_2-phenoxy-bridged tetracopper(II) complex with a quinquedentate Schiff-base ligand: magneto-structural and DFT studies. *Aust. J. Chem.* **2009**, *62*, 366–375, doi.org/10.1071/CH08511.