Transcriptomics Data Integration Reveals Jak-STAT as a Common Pathway Affected by Pathogenic Intracellular Bacteria in Natural Reservoir Hosts

Ruth C. Galindo1 and José de la Fuente1,2*

1Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
2Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

The study of the host-pathogen interface in natural reservoir hosts is essential to identify host-cell mechanisms affected by bacterial infection and persistence. Herein we used the Database for Annotation, Visualization and Integrated Discovery (DAVID) to integrate transcriptomics data and find common host-cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria of the genera Anaplasma, Brucella and Mycobacterium during infection and persistence in two natural reservoir hosts, wild boar and sheep. The results showed that the upregulation of host innate immune pro-inflammatory genes and signaling pathways constitutes a general antibacterial mechanism in response to intracellular bacteria. Pathway focused analysis revealed a role for the Jak-STAT pathway during bacterial intracellular infection, a fact reported before in Mycobacterium infected cells but not during Brucella spp. and A. phagocytophilum infection. A clear activation of the Jak-STAT pathway was observed in A. phagocytophilum infected wild boar and sheep when compared to uninfected controls. Brucella spp. infection resulted in a balanced regulation of the Jak-STAT signaling and M. bovis infection of wild boar clearly produced a downregulation of some of the Jak-STAT effectors such as IL5 and TKY2. These results suggested that mycobacteria and brucellae induce host innate immune responses while manipulating adaptive immunity to circumvent host-cell defenses and establish infection. In contrast, A. phagocytophilum infection induces both innate and adaptive immunity, those suggesting that this pathogen uses other mechanisms to circumvent host-cell defenses by downregulating other adaptive immune genes and delaying the apoptotic death of neutrophils through activation of the Jak-STAT pathway among other mechanisms.

Keywords: Transcriptomics; Anaplasma; Mycobacterium; Brucella; Systems biology

Introduction

Pathogenic bacteria have to interact with host cells and reprogram the complex molecular and cellular networks of these cells to allow bacterial infection, replication and spread, while countering host-defense mechanisms [1,2]. This process is likely to involve genes from both pathogens and hosts, all of which are probably subject to complex regulation [1-3].

Molecular biology and in particular recent advances in genomics, transcriptomics and proteomics have allowed the characterization of host-pathogen interactions [2,3]. However, these studies have focused on the response of particular hosts to one or multiple pathogens, mostly using in vitro systems (see for example, [2]). Moving from in vitro studies in cultured cells to relevant animal disease models and natural reservoir hosts is crucial for understanding host-pathogen interactions, yet such studies are often neglected because cell culture-based systems are easier to manipulate. However, the study of the host-pathogen interface in natural reservoir hosts infected with different pathogens is now possible and essential to identify host-cell mechanisms affected by bacterial infection and persistence, which may be different from those identified in vitro [3,4].

Herein, the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to integrate transcriptomics data and find common host-cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria of the genera Anaplasma, Brucella and Mycobacterium during infection and persistence in two natural reservoir hosts, wild boar (Sus scrofa) and sheep (Ovis aries).

Materials and Methods

Transcriptomics data

Transcriptomics data was obtained from previously published studies on infected and uninfected matching control animals using microarray hybridization and real-time RT-PCR in wild boar infected with Mycobacterium bovis, Anaplasma phagocytophilum and Brucella suis [4-6] (NCBI Gene Expression Omnibus (GEO) platform accession numbers GPL3533, GPL3533, GSE15766, GSE17492) and in sheep infected with A. phagocytophilum and Brucella ovis [7-9] (GPL4456, GPL6954, GSE11928 and GSE10286). In these studies, the infection with M. bovis, A. phagocytophilum, B. ovis or B. suis strains was characterized in experimentally or naturally infected animals during acute or chronic infection (Table 1).

Transcriptomics data integration and analysis

Microarray data from all host-pathogen interactions were filtered to select significant (P < 0.05) differentially expressed genes with an infected/uninfected fold change (FC) ≥ 1.2. These genes were analyzed using DAVID V6.7 (http://david.abcc.ncifcrf.gov/) [10,11] to select

*Corresponding author: José de la Fuente, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain, Tel: 34-926295450; Fax: 34-926295451; E-mail: jose_delafuente@yahoo.com

Received March 07, 2012; Accepted April 17, 2012; Published April 30, 2012

Citation: Galindo RC, de la Fuente J (2012) Transcriptomics Data Integration Reveals Jak-STAT as a Common Pathway Affected by Pathogenic Intracellular Bacteria in Natural Reservoir Hosts. J Proteomics Bioinform 5: 108-115. doi:10.4172/jpb.1000221

Copyright: © 2012 Galindo RC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
the highest enrichment score (ES), which is the geometric mean of all enrichment P values (EASE scores) for each gene ontology (GO) term [11] and clustering for host cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria was analyzed by real-time RT-PCR using primers designed based on sequences available in the GenBank (Table 2). The real-time RT-PCR was performed on pooled RNA samples from infected and uninfected wild boar and sheep (wild boar infected with \textit{A. phagocytophilum}, \textit{N}=2; wild boar infected with \textit{Brucella} spp., \textit{N}=3; wild boar infected with \textit{M. bovis}, \textit{N}=6; sheep infected with \textit{A. phagocytophilum}, \textit{N}=2; sheep infected with \textit{Brucella} spp., \textit{N}=6; wild boar uninfected controls, \textit{N}=12; sheep uninfected controls, \textit{N}=5) with gene specific primers using the iScript One-Step RT-PCR Kit with SYBR Green and the iQ5 thermal cycler (Bio-Rad, Hercules, CA, USA) following manufacturer’s recommendations. The mRNA levels were normalized against cyclophillin and beta-actin using the genNorm method (ddCT method as implemented by Bio-Rad iQ5 Standard Edition, Version 2.0) [12]. In all cases, the mean of triplicate values was used and data from infected and uninfected animals were compared using the Student’s t-test (P < 0.05). Correlation analysis between microarray and RT-PCR results was conducted in Excel by calculating (a) percent of values with similar tendency (i.e. no variation, upregulated or downregulated) and (b) correlation coefficients (R²) between all values independently of the statistical analysis for RT-PCR results which were affected by the low number of samples used in the analysis.

Results and Discussion

The analysis conducted here focused on wild boar infected with \textit{M. bovis}, \textit{A. phagocytophilum} and \textit{B. suis} [4-6] and sheep infected with \textit{A. phagocytophilum} and \textit{B. ovis} [7-9]. These pathogens represent intracellular bacteria that infect and replicate within host immune cells and were selected because of their impact as zoonotic pathogens in many regions of the world.

An analysis pipeline was developed using DAVID to integrate data and find common host-cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria of the genera \textit{Anaplasma}, \textit{Brucella} and \textit{Mycobacterium} during infection and persistence in two natural reservoir hosts, Eurasian wild boar and sheep (Figure 1). Because transcriptomics data were obtained from different experiments with tissue samples collected at different infection times and conditions [4-9] (Table 1), differences between various host-pathogen interactions could be explained by different factors. These factors include differences in the transcriptomics methods employed (microarray and data analysis platforms), experimental conditions (natural or experimental infections), host tissues used for RNA extraction (peripheral blood mononuclear cells (PBMC) or spleen) and individual variability of both pathogens and hosts. However, we hypothesized that statistically significant common factors emerging despite all these differences, have a particular relevance in identifying host-pathogen interactions of different pathogenic intracellular bacteria in different hosts, thus allowing the identification of common mechanisms that may be used for infection characterization, control and prevention. Therefore, the analysis focused on common mechanisms affected by these bacteria in all host-pathogen interactions.

Common host-cell biological processes, molecular functions and pathways affected by \textit{Anaplasma}, \textit{Brucella} and \textit{Mycobacterium} infection in wild boar and sheep

The results showed that it is possible to integrate data from different transcriptomics experiments to find common mechanisms affected by pathogenic intracellular bacteria in natural reservoir hosts. Common

Strain	Origin	Host	Tissue examined	Infection type	Characterization of infection
\textit{A. phagocytophilum}	Isolated from infected sheep in the Basque Country, Spain [30] (Genbank accession number EU436164)	Sheep	PBMC	Experimental acute infection	Infection was confirmed by microscopic examination of stained blood smears and \textit{msp4} PCR [7,30]
	Isolated from infected Eurasian wild boar hunter-killed in Slovenia, genotically identical to strains isolated from humans, dogs and \textit{I. ricinus} ticks [31] (Genbank accession numbers AY055469, AF033101 and EU246961)	Wild boar	PBMC	Natural chronic infection	Infection was confirmed by 16S rDNA and \textit{groESL} PCRs and sequence analysis [31]
\textit{B. ovis}	R virulent PA strain Provided by Dr. J.M. Verger, Unite´ d’Infectiologie Animale et Sante’ Publique, INRA, Nouzilly, France [32,33]	Sheep	PBMC	Experimental acute infection	Infection was confirmed at necropsy by bacterial culture, morphology, Gram staining, oxidase and urease tests, \textit{CO}_2 requirements and phage typing [8,34]
\textit{B. suis}	biovar 2 Isolated from infected Eurasian wild boar in Navarra, Spain [34,35]	Wild boar	Spleen	Natural chronic infection	Infection was confirmed by bacterial culture and seroconversion [5,36]
\textit{M. bovis}	Isolated from infected Eurasian wild boar in Southwestern Spain [3]	Wild boar	Spleen	Natural chronic infection	Infection was confirmed at necropsy by pathology, bacterial culture and spoligotyping [3,4]

Table 1: Bacterial strains and experimental animals.
host-cell biological processes affected by *Anaplasma*, *Brucella* and *Mycobacterium* infection in wild boar and sheep included regulation of immune system and immune system with 33 genes represented (Tables 3 and 4). The common host-cell molecular functions affected included 28 genes with receptor binding, cytokine activity and growth factor activity (Tables 3 and 4). The common host-cell pathways affected by these bacteria were cytokine-receptor interaction, hematopoietic cell lineage and Janus Kinase-Signal Transducer and Activator of Transcription (Jak-STAT) signaling pathway (Table 3). A good correlation was obtained between microarray and RT-PCR results for genes in common host-cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria (Table 4). Correlation between microarray and RT-PCR results was 0.36 ($R^2=0.74$), 0.55 ($R^2=0.78$) and 0.77 ($R^2=0.81$) for wild boar infected with *A. phagocytophilum*; *B. suis*; *M. bovis*, respectively, and 0.64 ($R^2=0.79$) and 0.70 ($R^2=0.80$) for sheep infected with *A. phagocytophilum* and *B. ovis*, respectively.

Effect of *Anaplasma*, *Brucella* and *Mycobacterium* infection on wild boar and sheep innate and adaptive immunity

These results showed that *Anaplasma*, *Brucella* and *Mycobacterium* infection of wild boar and sheep affect the expression of genes involved in host innate and adaptive immunity. However, not surprisingly, the way in which host immune response was affected varied between different host-bacteria interactions. Differences in host immune response between different host-pathogen interactions could be related to host/pathogen-specific factors and/or differences in gene expression between early (acute) and late (chronic) infections. Nevertheless, common to all bacteria-host interactions was the induction of innate immunity through upregulation of pro-inflammatory cytokines such as interleukins IL1B and/or IL6 that are induced in phagocytes after toll-like receptor (TLR) recognition resulting in activation of the complement system and pathogen opsonization for phagocytosis by macrophages and neutrophils [13]. As in previous experiments with cultured human macrophages infected with Gram-positive bacteria, Gram-negative bacteria and *M. tuberculosis* [2], shared responses included genes encoding receptors and signal transduction molecules affecting the cytokine-receptor interaction, hematopoietic cell lineage and Jak-STAT signaling pathways. However, adaptive immunity was induced through upregulation of genes such as cluster differentiation 4 (CD4) and IL21 only in wild boar and sheep infected with *A. phagocytophilum*.

The results obtained herein showed that the upregulation of host innate immune pro-inflammatory genes and signaling pathways constitute a general antibacterial mechanism in response to pathogenic intracellular bacteria of the genera *Anaplasma*, *Brucella* and *Mycobacterium*, a finding previously suggested in other studies with *Brucella* spp. [5,8,14], *Mycobacterium* spp. [2,4,15-20] and *A. phagocytophilum* [7,21].

Role for the Jak-STAT pathway during *Anaplasma*, *Brucella* and *Mycobacterium* infection of wild boar and sheep

Pathway-focused analysis revealed a role for the Jak-STAT pathway during bacterial intracellular infection, a fact reported before in
GenBank accession number1	Gene symbol	Upstream/downstream primer sequences (5´-3´)
NM_213844.2/ NM_001144097.1	CRP	Ss-CRPF: GTTGTGTCACCGGAGAGGATT Ss-CRPR: CCAGAGAACAGGGGAGTGA Oa-CRPF: AGGATCGCGGTACCAAGAGA Oa-CRPR: TTTGCTTGACAGTTGAC
NM_214155.2/ NM_001009417.1	CD247	Ss-CD247F: TGGGGAACAGAAGTGATGA Ss-CD247R: TTGACTGCCTCCAGGACAG Bi-CD247F: TTGAGGTGGAACAGGGAGT Bi-CD247R: AAGCCTGCAACACTGACTG
NM_213775.2/ NM_0010009382.1	CD3D	Ss-CD3DF: TTGGAGGACCAAGAGGAGT Ss-CD3DR: TGGAGGACCAAGAGGAGT Oa-CD3DF: TTGGAGGACCAAGAGGAGT Oa-CD3DR: GCTGACTGCCTCCAGGACAG
NM_0001901908.1/ NM_001129960.1	CD4	Ss-CD4F: GCTTGGGAGGGGAGTAGAT Ss-CD4R: AAATGGCTCACAGTCTGGA Oa-CD4F: AAGCCTGCAACACTGACTG Oa-CD4R: CTTGTTGACAGTTGAC
NM_213774.1/ NM_001034735.1	CD74	Ss-CD74F: CTTGCTGGCTCCAGGAGAG Ss-CD74R: GTAGCTGACCTAGGACACAG Bi-CD74F: TTGAGGTGGAACAGGGAGT Bi-CD74R: GCTGACTGCCTCCAGGACAG
NM_214269.2/ NM_174375.2	KITLG	Ss-KITLGF: AATGCAATCTGAGGAGT Ss-KITLGR: ATGGTTGACAGTTGAC Bi-KITLGF: GTTGGTACAGTTGAC Bi-KITLGR: TGGAGGACCAAGAGGAGT
NM_213434.1/ NM_001076269.1	C4	Ss-C4F: CATGGCTGTTCACAGGAAAA Ss-C4R: TATGTCTGCCCATTCCTTCC Oa-C4F: TATGTCTGCCCATTCCTTCC Oa-C4R: TATGTCTGCCCATTCCTTCC
NM_0001924460.1/ NM_001100293.1	CCR4	Ss-CCR4F: TACCAAGGAGTGCGGCTTTC Ss-CCR4R: GCATGGCTGTTCACAGGAAAA Oa-CCR4F: TACCAAGGAGTGCGGCTTTC Oa-CCR4R: TACCAAGGAGTGCGGCTTTC
NM_0001909580.1/ NM_001113174.1	CXCL12	Ss-CXCL12F: CATGCTGCCCGTGGTTGGAC Ss-CXCL12R: CTGCTAAGCAATCGGAGAG Bt-CXCL12F: GAAGTACAGTCTGCTGGCT Bt-CXCL12R: GAAGTACAGTCTGCTGGCT
U61139.1/ L07939.1	CSF2	Ss-CSF2F: TACAATCCCCTTCTTTGAC Ss-CSF2R: AGTGCTGACCTAGGACACAG Oa-CSF2F: TACAATCCCCTTCTTTGAC Oa-CSF2R: AGTGCTGACCTAGGACACAG
NM_0001003924 / NM_001014945	C1QA	Ss-C1QAF: TTCCTGAGGAGTAGTTGGA Ss-C1QAR: ATGGAATCTGAGGAGT Bi-C1QAF: GTTTGAGGATGCTAGGACAG Bi-C1QAR: ATGGAATCTGAGGAGT
AY394920.1/ NM_001046599	C1qB	Ss-C1QB: GGCAATGCCGAGGACTCAACAG Ss-C1qBR: AGGAATCTGAGGAGT Bi-C1QB: GTTTGAGGATGCTAGGACAG Bi-C1qBR: AGGAATCTGAGGAGT
NM_0001001645.1/ NM_001166616.1	C5	Ss-C5F: GCGAGTGGCAGAGGACTG Ss-C5R: AGGAATCTGAGGAGT Bi-C5F: GTTTGAGGATGCTAGGACAG Bi-C5R: AGGAATCTGAGGAGT
NM_214282.2/ NM_001045966.1	C7	Ss-C7F: TCAATCTGCCCTTCTCTCTCT Ss-C7R: GCTGATGGTGACTGCTTTAC Bi-C7F: GCGAGTGGCAGAGGACTG Bi-C7R: GCTGATGGTGACTGCTTTAC
NM_213975.1/ NM_001009786.1	FTH1	Ss-FTH1F: TGCTTCAAGCAGTCTGCT Ss-FTH1R: TCTCAAGACAGCATCTAGC Oa-FTH1F: TGCTTCAAGCAGTCTGCT Oa-FTH1R: TCTCAAGACAGCATCTAGC
NM_000104027.1/ NM_001014912.1	HMOX1	Ss-HMOX1F: ATGGCTGATCGACACCT Ss-HMOX1R: GGCTGATGGTGACTGCTTTAC Bi-HMOX1F: ACTTACACCCCTTCTCTCCT Bi-HMOX1R: ACTCAGGCTACCAACCT
NM_001123124.1/ NM_174339.3	HIF1A	Ss-HIF1AF: ATGGCATGCATGGACTG Ss-HIF1AR: GCTGATGGTGACTGCTTTAC Bi-HIF1AF: ATGGCATGCATGGACTG Bi-HIF1AR: GCTGATGGTGACTGCTTTAC
NM_214055.1/ NM_001009465.2	IL1B	Ss-IL1BF: CAGCAGATGGCGGAGGAT Ss-IL1BR: CGAGGACTAGATGGACTG Oa-IL1BF: CAGCAGATGGCGGAGGAT Oa-IL1BR: CGAGGACTAGATGGACTG
AY552750.1 / NM_001009734.1	IL15	Ss-IL15F: TTGGTCTGGTGTGTTGCT Ss-IL15R: GCCAAGACTGATGACAG Oa-IL15F: TTGGTCTGGTGTGTTGCT Oa-IL15R: GCCAAGACTGATGACAG
NM_214415.1/ NM_198832.1	IL21	Ss-IL21F: CCGGGGACAGCAGGAGAATT Ss-IL21R: CAAGGCTAGGAGACTGAGAT Bi-IL21F: CCGGGGACAGCAGGAGAATT Bi-IL21R: CAAGGCTAGGAGACTGAGAT
BUS46820.1/ NM_001195219.1	IL25	Ss-IL25F: CTACGACTGGCGGAGGCT Ss-IL25R: TCTCGGAAAGGCGGAGG Oa-IL25F: GCGGGTACAGGCTACGA Oa-IL25R: AAGGACGCTACGACGAGG
NM_214340.1/ NM_001075142.1	IL4R	Ss-IL4RF: CCGGGTACAGGCTACGA Ss-IL4RR: TGACAGGCACTCGCTCAT Bi-IL4RF: CCGGGTACAGGCTACGA Bi-IL4RR: TGACAGGCACTCGCTCAT
NM_214205.1/ NM_001009783.1	IL5	Ss-IL5F: TGGGCAAGACCTGGAGG Ss-IL5R: CCGGGTACAGGCTACGA Oa-IL5F: TGGGCAAGACCTGGAGG Oa-IL5R: CCGGGTACAGGCTACGA
M80258.1/ NM_001009392.1	IL8	Ss-IL8F: CACCGAGAAGCAGGAGG Ss-IL8R: GTGAGGCACTCGCTCAT Oa-IL8F: CACCGAGAAGCAGGAGG Oa-IL8R: CACCGAGAAGCAGGAGG
NM_001166043.1/ E1184569.1	IL9	Ss-IL9F: TATGGTCTGGGACAGTCTTTCC Ss-IL9R: CATGGCTTGGTACAAGAGAA Oa-IL9F: CACCGAGAAGCAGGAGG Oa-IL9R: CACCGAGAAGCAGGAGG
Citation: Galindo RC, de la Fuente J (2012) Transcriptomics Data Integration Reveals Jak-STAT as a Common Pathway Affected by Pathogenic Intracellular Bacteria in Natural Reservoir Hosts. J Proteomics Bioinform 5: 108-115. doi:10.4172/jpb.1000221

Abstract:

Mycobacterium-infected cells [22-24] but not during Brucella spp. and A. phagocytophilum infection. This result highlighted the importance of integrating data from different transcriptomics experiments to discover common host-cell mechanisms affected by pathogenic intracellular bacteria.

In mammals, the Jak-STAT pathway is the principal signaling mechanism for a wide array of cytokines and growth factors such as CSF2, IL15, IL21, IL4R, IL5, IL6, IL9, TK2, EPOR, IL15RA shown here to be differentially expressed in infected animals [25]. Jak activation stimulates cell proliferation, differentiation, cell migration and apoptosis resulting in hematopoiesis and immune development among other processes [25]. Predictably, downregulation of the Jak-STAT pathway activity affects these processes but failure to properly regulate Jak signaling cause inflammation, erythrocytosis and leukemia among other diseases [25]. Herein, a clear activation of the Jak-STAT pathway activity is noted in A. phagocytophilum-infected cells [22-24] but not during Mycobacterium spp. and Brucella spp., infection resulted in the upregulation of some ligands and the corresponding receptors (Table 4). For example, the upregulation of MIF and MIFR was observed in A. phagocytophilum-infected cells [22-24] but not during Mycobacterium spp. and Brucella spp., infection.

Table 2: Primer sets used for analysis of differential gene expression by real-time RT-PCR.

Gene Symbol	Forward Primer	Reverse Primer
SS-MIF	CTTCTCCTCCAGGTCAAGC	AAGCTAGGACTCCCTCTCCAGG
SS-MIFR	TTCTAGATCGTGTGAAGTAGG	TACAGATTACAGACCCCAAG
SS-MSFN	GAGAGAGCAACATG	GAGAGGAGCTGAGGAGT
SS-MSNR	TTCTAGATCGTGTGAAGTAGG	TACAGATTACAGACCCCAAG
SS-PPARG	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-PSME1	GAGAGAGCAACATG	GAGAGGAGCTGAGGAGT
SS-PSME1F	CTTCTCCTCCAGGTCAAGC	AAGCTAGGACTCCCTCTCCAGG
SS-PSME1R	TTCTAGATCGTGTGAAGTAGG	TACAGATTACAGACCCCAAG
SS-RLSR	GAGAGAGCAACATG	GAGAGGAGCTGAGGAGT
SS-RGL1	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-SCG2	CTTCTCCTCCAGGTCAAGC	AAGCTAGGACTCCCTCTCCAGG
SS-SCG2R	TTCTAGATCGTGTGAAGTAGG	TACAGATTACAGACCCCAAG
SS-TK2F	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-TK2R	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-TGFB3F	CTTCTCCTCCAGGTCAAGC	AAGCTAGGACTCCCTCTCCAGG
SS-TGFB3R	TTCTAGATCGTGTGAAGTAGG	TACAGATTACAGACCCCAAG
SS-STC1F	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-STC1R	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-FGFr	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-FGFr2	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-DMPFR	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-DMPFR2	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-EPORF	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-EPORR	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-IL15RF	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-IL15RR	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-IL15RF2	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-IL15RR2	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG
SS-TCGF	GAGAGGAGCTGAGGAGT	TACAGATTACAGACCCCAAG
SS-TCGF2	GAAGGAGCTGAGGAGGAG	TACAGATTACAGACCCCAAG

GenBank accession numbers are shown for wild boar/sheep-cattle sequences.
Table 3: Common host-cell biological processes, molecular functions and pathways affected by pathogenic intracellular bacteria.

Gene symbol	Gene description	WB-A	WB-B	WB-M	S-A	S-B
CRP	C-reactive protein, pentraxin-related	1.6 (ns)	ns (ns)	-2.0 (-3.3 ± 0.01)	ns (ns)	ns (ns)
CD247	CD247 molecule	1.6 (ns)	-2.2 (ns)	ns (ns)	ns (ns)	ns (ns)
CD3D	CD3d molecule, delta (CD3-TCR complex)	ns (ns)	ns (ns)	2.1 (ns)	-2.2 (ns)	ns (ns)
CD4	CD4 molecule	1.4 (ns)	ns (ns)	ns (ns)	1.3 (ns)	ns (ns)
CD74	CD74 molecule, major histocompatibility complex	ns (ns)	-4.1 (ns)	-3.3 (-5.3 ± 0.2)	ns (ns)	ns (ns)
KITLG	KIT ligand	3.2 (ns)	ns (ns)	ns (ns)	-1.2 (ns)	ns (ns)
CALCR	Calcinonin receptor	5.3 (ns)	3.7 (ns)	ns (ns)	ns (ns)	ns (ns)
CCR4	Chemokine (C-C motif) receptor 4	ns (1.9±0.02)	ns (ns)	-2.3 (-8.1±0.05)	-1.4 (ns)	3.0 (ns)
CXCL12	Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	1.4 (ns)	-4.8 (ns)	-9.8 (-2.5±0.02)	-2.7 (-4.5±2E-3)	ns (-11.1±8E-6)
CSF2	Colony stimulating factor 2 (granulocyte-macrophage)	1.4 (ns)	ns (ns)	ns (ns)	1.6 (6.1±4E-4)	ns (-4.2±4.5-6)
C1QA	Complement component 1, q subcomponent, A chain	1.3 (ns)	-2.8 (ns)	ns (-3.7 ± 0.2)	ns (ns)	ns (ns)
C1qB	Complement component 1, q subcomponent, B chain	1.3 (ns)	-3.9 (ns)	-9.0 (ns)	ns (ns)	ns (ns)
C5	Complement component 5	1.5 (ns)	ns (ns)	ns (ns)	1.3 (8.0±4E-4)	ns (-10.0±2E-6)
C7	Complement component 7	2.5 (ns)	ns (ns)	ns (ns)	1.3 (ns)	ns (ns)
FTH1	Ferritin, heavy polypeptide 1	ns (ns)	-3.6 (ns)	-4.1 (-2.5±0.7)	ns (ns)	ns (ns)
HMOX1	Heme oxygenase (decycling) 1	ns (ns)	-2.5 (ns)	-1.7 (-2.5±0.1)	ns (ns)	ns (ns)
HIF1A	Hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	1.3 (ns)	-2.0 (-3.0±0.02)	ns (ns)	ns (ns)	ns (ns)
IL1B	Interleukin 1, Beta	ns (ns)	2.9 (ns)	ns (ns)	1.3 (2.3±3E-4)	2.1 (1.4±5E-5)
IL15	Interleukin 15	ns (ns)	ns (ns)	ns (ns)	1.2 (ns)	2.7 (ns)
IL21	Interleukin 21	1.3 (ns)	ns (ns)	ns (ns)	1.2 (ns)	ns (ns)
IL25	Interleukin 25	ns (ns)	ns (ns)	ns (ns)	1.3 (ns)	1.6 (ns)
IL4R	Interleukin 4 receptor	1.2 (ns)	ns (ns)	ns (ns)	-2.0 (ns)	ns (ns)
IL5	Interleukin 5 (colony-stimulating factor, eosinophil)	1.3 (ns)	10.8 (± 0.5)	ns (-3.1±3E-4)	ns (ns)	2.6 (ns)
IL6	Interleukin 6 (interferon, beta 2)	2.0 (ns)	ns (ns)	ns (ns)	1.2 (ns)	(1.1±4E-6)
IL9	Interleukin 9	ns (ns)	ns (ns)	ns (ns)	1.3 (ns)	1.3 (ns)
MIF	Macrophage migration inhibitory factor (glycosylation-inhibiting factor)	ns (ns)	ns (ns)	ns (ns)	-2.0 (ns)	10.4 (ns)
MSN	Moesin	ns (ns)	-2.6 (ns)	-3.4 (ns)	ns (ns)	ns (ns)
PPARG	Peroxisome proliferator-activated receptor gamma	1.2 (ns)	-3.5 (ns)	ns (ns)	ns (ns)	ns (ns)
downregulation of others that may result in a balanced regulation of the Jak-STAT signaling to prevent negative effects associated with improper regulation of this pathway (Table 4). As previously reported [22-24], *M. bovis* infection of wild boar clearly produced a downregulation of some of the Jak-STAT effectors such as IL5 and TKY2 (Table 4).

Conclusions

These results suggested that mycobacteria and brucellae induce host innate immune responses while manipulating adaptive immunity through Jak-STAT pathway and other mechanisms to circumvent host-cell defenses and establish infection. In contrast, *A. phagocytophilum* infection induces both innate and adaptive immunity, those suggesting that this pathogen uses other mechanisms to circumvent host-cell defenses. These mechanisms may include downregulation of other adaptive immune genes such as IL2 and IL4 [7,26] and delaying the apoptotic death of neutrophils [7,21,27,28] through activation of the Jak-STAT pathway among other mechanisms.

These results improved our understanding of host-pathogen interactions by characterizing common host-cell mechanisms affected by pathogenic intracellular bacteria of the genera *Anaplasma*, *Brucella* and *Mycobacterium* in natural reservoir hosts and provided insights into mechanisms of pathogenesis that could be used as targets for therapeutic intervention and vaccine development. In fact, some of the cytokine-receptor interactions described here such as those involving IL4 and IL6 have already been used to characterize the immune response to parenteral and oral *Bacillus Calmette-Guérin* (BCG) vaccination to prevent *M. bovis* infection in wild boar [6,29] and the protective response to the *B. melitensis* Rev 1 vaccine in sheep for the control of *B. ovis* [9], respectively.

Acknowledgements

We thank members of our laboratories for fruitful discussions and technical assistance. This research was supported by the Grupo Santander and Fundación Marcelino Botín, Spain (project Control of Tuberculosis in Wildlife) and the EU FP7, ANTIGONE project number 278976. R.C. Galindo was funded by Ministerio de Ciencia y Educación (MEC), Spain.

References

1. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449: 827-834.
2. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, et al. (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 5: 1503-1508.
3. Naranjo V, Höfle U, Vicente J, Martín MP, Ruiz-Fons F, et al. (2006) Genes differentially expressed in opharyngeal tonsils and mandibular lymph nodes of tuberculous and non-tuberculous European wild boars naturally exposed to Mycobacterium bovis. FEMS Immunol Med Microbiol 46: 298-312.
4. Galindo RC, Ayoubi P, Naranjo V, Gortazar C, Kocan KM, et al. (2009) Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. Vet Immunol Immunopathol 129: 119-125.
5. Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Labairu J, et al. (2009) Differential expression of inflammatory and immune response genes in rams infected with *Anaplasma* *phagocytophilum*. Vet Immunol Immunopathol 126: 27-34.
6. Lastra JM, Galindo RC, Gortazar C, Ruiz-Fons F, de la Fuente J, et al. (2009) Expression of immunoregulatory genes in peripheral blood mononuclear cells of European wild boar immunized with BCG. Vet Microbiol 134: 334-339.
7. Galindo RC, Ayoubi P, García-Pérez AL, Naranjo V, Kocan KM, et al. (2008) Differential expression of inflammatory and immune response genes in sheep infected with *Anaplasma* phagocytophilum. Vet Immunol Immunopathol 128: 27-34.
8. Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Blasco JM, et al. (2009) Differential expression of inflammatory and immune response genes in rams experimentally infected with a rough virulent strain of *Brucella* ovis. Vet Immunol Immunopathol 127: 295-303.
9. Galindo RC, Muñoz PM, de Miguel MJ, Marin CM, Blasco JM, et al. (2009) Characterization of possible correlates of protective response against *Brucella* ovis infection in rams immunized with the *B. melitensis* Rev 1 vaccine. Vaccine 27: 3039-3044.
10. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:
Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

11. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4: 44-57.

12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method: Methods. Methods 25: 402-408.

13. Medzhitolov R (2007) Recognition of microorganisms and activation of the immune response. Nature 445: 819-826.

14. Esakra L, Mathison A, Splitter G (2003) Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71: 1125-1133.

15. Goto Y, Nakamura RM, Takahashi H, Tokunaga T (1984) Genetic control of resistance to Mycobacterium intracellular infection in mice. Infect Immun 46: 135-140.

16. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, et al. (2001) Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 104: 99-108.

17. Keller C, Lauber J, Blumenthal A, Buer J, Ehlers S (2004) Resistance and susceptibility to tuberculosis analyzed at the transcriptome level: lessons from mouse macrophages. Tuberculosis (Edinb) 84: 144-158.

18. Koul A, Herget T, Klebl B, Ultrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2: 189-202.

19. Naranjo V, Villar M, Martín-Hernando MP, Vidal D, Höfle U, et al. (2007) Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular lymph nodes and oropharyngeal tonsils of European wild boars naturally infected with Mycobacterium bovis. Proteomics 7: 220-231.

20. Fernández de Mera IG, Pérez de la Lastra JM, Ayoubi P, Naranjo V, Kocan KM, et al. (2008) Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer (Cervus elaphus hispanicus) naturally infected with Mycobacterium bovis. Dev Comp Immunol 32: 85-91.

21. Carlyon JA, Fikrig E (2003) Invasion and survival strategies of Anaplasma phagocytophilum. Cell Microbiol 5: 743-754.

22. Jacobsen M, Repsilber D, Kleinsteuber K, Gutschmidt A, Schommer-Leitner S, et al. (2011) Suppressor of cytokine signaling-3 is affected in T-cells from tuberculosis TB patients. Clin Microbiol Infect 17: 1523-1531.

23. Imai K, Kurita-Ochiai T, Ochiai K (2003) Mycobacterium bovis bacillus Calmette-Guerin infection promotes SOCS induction and inhibits IFN-gamma-stimulated JAK/STAT signaling in J774 macrophages. FEMS Immunol Med Microbiol 39: 173-180.

24. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, et al. (2005) Hypervirulent M. tuberculosis WuBeijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25: 694-701.

25. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117: 1281-1289.

26. Kim HY, Mott J, Zhi N, Tajima T, Rikhisa Y (2002) Cytokine gene expression by peripheral blood leukocytes in horses experimentally infected with Anaplasma phagocytophilum. Clin Diagn Lab Immunol 9: 1079-1084.

27. Borjeson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, et al. (2005) Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J Immunol 174: 6364-6372.

28. Woldehiwet Z (2008) Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 175: 37-44.

29. Ballesteros C, Garrido JM, Vicente J, Romero B, Galindo RC, et al. (2009) First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine 27: 6662-6668.