ARTICLE

Clustering and Differentiation of glr-3 Gene Function and Its Homologous Proteins

Yue Ma Tiantian Guo Yihe Wang Xinna Li Jingyu Zhang*

College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China

ARTICLE INFO

Article history
Received: 7 June 2021
Accepted: 25 June 2021
Published Online: 16 July 2021

Keywords:
glr-3 gene
Homology
Low temperature
Maximum likelihood

ABSTRACT

In order to adapt to the low temperature environment, organisms transmit excitement to the central system through the thermal sensing system, which is a classic reflex reaction. The cold receptor GLR-3 perceives cold and produces cold avoidance behavior through peripheral sensory neurons ASER. In order to further understand the gene encoding of the cold sensing glr-3 gene and the evolution of its homologous gene group function and protein function, the nucleotide sequence and amino acid sequence of the glr-3 gene and its homologous gene in 24 species were obtained and compared. By clustering with the GRIK2 gene sequence of Rana chensinensis, the bioinformatics method was used to predict and sequence analyze the change of gene, evolution rate, physical and chemical properties of protein, glycosylation sites, phosphorylation sites, secondary structure and tertiary structure of protein. The analysis results show that the glr-3 gene and its homologous gene have obvious positive selection effect. The protein prediction analysis showed that the glr-3 gene and its homologous genes encoded proteins in these 25 species were hydrophilic proteins, and the proportion of side chains of aliphatic amino acids was high. The transmembrane helix was widespread and there were more N-glycosylation sites and O-glycosylation sites. The protein phosphorylation sites encoded were serine, threonine and tyrosine phosphorylation sites. Secondary structure prediction showed that the secondary structure units of the encoded protein were α-helix, β-turn, random coil and extended chain, and the proportion of α-helix was the largest. This study provides useful information on the evolution and function of the cold sensing gene glr-3 and its homologous genes.

1. Introduction

As a kind of stressor, the low temperature environment can easily induce the body to produce cold stress, which directly or indirectly affects the physiological state and behavior of the animal, and even causes the death of the animal [1-3]. During the stress response, the changes of the animal body are very complicated [2,4]. Therefore, to maintain optimal function in a cold environment, animals must detect the temperature of their body and the environment, and make appropriate responses [5]. The information of environmental cold is expressed and transmitted by cold-sensitive ion channels in the peripheral sensory nerve endings of the skin. Neurons respond to cold stimuli, and the animal body will produce the corresponding cold escape mechanism [5,6]. When an animal stays in a cold stress

*Corresponding Author:
Jingyu Zhang,
College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China;
Email: Zhangjingyu@foxmail.com
environment for a long time, the neuroendocrine system will respond to the cold stimulus. When the physiological and hormone levels are balanced, the animal can adapt to this low temperature environment, and the animal body will overcome the stressor. Obtained cold adaptation \cite{2,5,7,8}.

In order to survive, organisms have evolved sophisticated heat-sensing systems to detect low temperatures and respond accordingly \cite{9}, but as of August 2019, only one cold receptor TRPM8 (transient receptor potential cation channel subfamily M) has been discovered. Member 8, TRPM8 plays a central role in detecting somatosensory environmental low temperature \cite{10}, can be activated by low temperature and coolant menthol \cite{11-13}, its ability to sense cold can be fine-tuned in various species. In order to adapt well to the environmental temperature and better participate in energy metabolism \cite{14}. The kainic acid glutamate receptor homolog GLR-3 was only identified as a cold receptor on August 29, 2019. GLR-3 senses cold in peripheral sensory neurons ASER to trigger the cold escape mechanism \cite{15,16}, its homolog GluK2 (glutamate ionotropic receptor kainate type subunit 2) can functionally replace GLR-3 in the body for cold sensation \cite{17}. By selecting glr-3 genes and their homologs from 25 species, Gene, and the protein sequence that the gene encodes. Use bioinformatics methods to conduct comparative analysis to explore whether the gene has undergone adaptive evolution among different species, and provide useful information for the glr-3 gene and its homologous genes, as well as their evolution and function.

2. Materials and Methods

2.1 Acquisition and Evolution Rate Calculation of glr-3 Gene and Its Homologous Gene Sequences in 25 Species

The gene sequences and protein sequences of 24 different species were obtained from the GenBank database of NCBI (Table 1) on the official website. In addition, the GRIK2 gene sequence of Rana dybowskii was obtained by polymerase chain reaction (PCR), and its protein sequence was obtained on emboss _transeq. The ratio of dN / dS was calculated by pamlX-CodeML, namely, ω value, to detect the evolution rate of glr-3 gene and its homologous genes.

2.2 Construction of Phylogenetic Tree of glr-3 Gene and Its Homologous Genes

The ML tree was constructed by evolutionary analysis software MEGAX. ModelFinder and MrBayes in PhyloSuite-Pylogeny were used for model selection and Bayesian inference tree construction.

Table 1. GeneID and GenBank accession numbers of species

Species	GenBank accession numbers	GeneID	homologous gene
Homo sapiens	NM_001166247	2898	GRIK2
Pan troglodytes	XM_001142208	462899	GRIK2
Macaca mulatta	XM_015136995	695660	GRIK2
Canis lupus familiaris	XM_036684247	481938	GRIK2
Bos taurus	NM_001193063	615226	GRIK2
Mus musculus	NM_001111268	14806	Grik2
Rattus norvegicus	NM_0193090	54257	Grik2
Gallus gallus	XM_015284534	428628	Grik2
Xenopus tropicalis	XM_031902289	100495093	grik2
Danio rerio	XM_021466798	556013	Grik2
Drosophila melanogaster	NM_142668	42473	KaiR1D
Anopheles gambiae str. PEST	XM_002347056	4576020	
Caenorhabditis elegans	NM_059616	172449	glr-3
Sus scrofa	XM_02107336	10051626	Grik2
Equus caballus	XM_001503914	100066235	Grik2
Felis catus	XM_019831025	101089440	Grik2
Allorhopoda melanoleuca	XM_034670902	100466021	Grik2
Ictalurus punctatus	XM_017479112	108271497	grik2
Dermochelys coriacea	XM_038395673	119853121	Grik2
Balanenoptera musculus	XM_036871504	118905139	Grik2
Cygnus atratus	XM_035561788	118255532	Grik2
Zootoca vivipara	XM_035109324	118082226	Grik2
Artibeus jamai-censis	XM_037135552	119042005	Grik2
Manis pentadactyla	XM_036890423	118915022	Grik2

2.3 Prediction of glr-3 Gene, glr-3 Homologous Gene Encoding Protein Properties

ProtParam was used to predict the physicochemical properties of glr-3 gene and its homologous gene encoded protein. ProtScale was used to analyze the hydrophilicity and hydrophobicity of the encoded protein. TMHMMServerv2.0 was used to analyze the transmembrane topological structure of the encoded protein. Prediction-Servers was used to analyze the glycosylation sites of the encoded protein.

Use SOPMA to predict and analyze the secondary structure of the protein; use Swiss-Model. Predict the tertiary structure of proteins.

3. Results and Analysis

3.1 Phylogenetic Analysis and Evolution Rate of glr-3 Gene and Its Homologous Genes

In order to compare the phylogenetic relationships of
glr-3 gene and its homologous genes in different species. In order to compare the phylogenetic relationship of glr-3 genes and their homologous genes in different species, phylogenetic trees were constructed for 25 species obtained. The construction methods were Maximum Likelihood (ML) method (Figure 1) and Bayesian inference method. The results show that the two phylogenetic trees are divided into two branches, the ML tree diagram shows that mammals are on the same branch, and the Bayesian inference tree diagram shows that Mus musculus and Rattus norvegicus are separated on the branch where the mammal is. The evolution rate analysis of the glr-3 genes of 25 species showed that the \(\omega \) value of Mus musculus and Rattus norvegicus was 2.40, and the \(\omega \) value of the remaining 12 mammals was 1.37, which is obviously compared to the other 12 mammals, Grik2 Genes make more favorable selection in Mus musculus and Rattus norvegicus; the \(\omega \) value of 25 species is 1.28, which has obvious positive selection effect.

3.2 Functional Protein Analysis of glr-3 Gene and Its Homologous Genes

The protein sequences encoded by glr-3 gene and its homologous genes in 25 species were obtained and analyzed. The physical and chemical properties of the encoded protein were predicted by online analysis software. The results showed that the protein sequence length was 432-915 AA, and the average protein length was 860 AA. The isoelectric point is between 6.22 and 9.75, and the average isoelectric point is 7.80. The instability index was between 36.73 and 47.75, and the instability index of coded proteins in 11 species was lower than the threshold, which was predicted to be stable proteins. The instability index of coded proteins in 14 species was higher than the threshold, which was predicted to be unstable proteins. The total average hydrophobicity was between -0.283 and -0.062, which were hydrophilic proteins. The predicted values of fat coefficient ranged from 80.53 to 97.48, and the proportion of side chains composed of aliphatic amino acids in proteins was higher, which reflected the strong thermal stability of proteins controlling these genes [18].

![Figure 1. The evolutionary tree](https://doi.org/10.30564/jzr.v3i3.3337)

![Figure 2. The evolutionary tree](https://doi.org/10.30564/jzr.v3i3.3337)

Table 2. 25 Species glr-3 gene and its homologous gene expression protein physical and chemical properties analysis

Species	AAs	PI	Instability index	GRAVY	Aliphatic index
Homo sapiens	892	6.91	39.36	-0.077	90.72
Pan troglodytes	908	8.05	39.99	-0.120	89.23
Macaca mulatta	908	8.05	39.99	-0.120	89.23
Canis lupus familiaris	908	8.06	40.10	-0.125	89.23
Mus musculus	908	7.83	40.29	-0.113	89.65
Bos taurus	908	8.05	40.10	-0.126	89.12
Rattus norvegicus	908	8.04	40.56	-0.108	89.65
Gallus gallus	908	7.8	40.47	-0.112	89.12
Xenopus tropicalis	913	8.02	39.28	-0.118	87.57
Danio rerio	908	7.29	40.62	-0.138	88.9
Drosophila melanogaster	853	7.59	37.81	-0.085	94.20
Anopheles gambiae str. PEST	888	6.22	40.8	-0.193	85.56
Rana dybowskii	432	9.75	47.75	-0.482	80.53
Caenorhabditis elegans	836	6.83	37.54	-0.062	97.48
Sus scrofa	908	8.05	39.66	-0.125	89.23
Equus caballus	908	8.05	40.10	-0.126	89.23
Felis catus	583	8.00	36.73	-0.091	93.48
Ailuropoda melanoleuca	908	8.05	40.10	-0.126	89.23
Ictalurus puntatus	915	7.86	42.98	-0.125	89.60
Dermochelys coriacea	908	7.80	40.06	-0.111	89.02
Balaenoptera musculus	895	8.35	41.80	-0.185	86.72
Cygnus atratus	859	7.20	39.82	-0.160	87.29
Zootoca vivipara	733	8.13	39.27	-0.283	84.58
Arthius jamaiensis	908	8.05	40.10	-0.126	89.23
Manis pentadactyla	887	6.94	39.83	-0.162	87.40

*AAs: number of amino acids; PI: isoelectric point; GRAVY: Grand average of hydropathicity
Membrane proteins play an important role in biological activity, including cell communication, ion transport, transport, signal transduction, and functions as a "sensory organ" of cells. Transmembrane proteins are usually divided into three regions, which are distributed on both sides of the membrane. The hydrophilic part and the hydrophobic part that cross the membrane and form a stable helical structure exist[19,20]. Prediction and analysis of transmembrane regions of encoded proteins (Table 3), except for Rana dybowskii, there are transmembrane spirals in 24 species. Homo sapiens, Pan troglodytes, Macaca mulatta and other 14 species have 3 transmembrane spirals and their positions are the same.

Table 3. glr-3 gene and its homologous gene expression protein in 25 species

Species	Number of transmembrane spirals	Position		
	transmembrane region	extra membrane	intramembrane	
Homo sapiens	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Pan troglodytes	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Macaca mulatta	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Canis lupus familiaris	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Mus musculus	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Bos taurus	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Rattus norvegicus	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Gallus gallus	3	563–582	1–562	583–638
	639–661	622–844	662–821	645–915
Xenopus tropicalis	3	568–587	1–567	588–643
	644–666	667–826	850–913	
Danio rerio	4	13–32	1–12	583–638
	639–661	622–844	662–821	845–908
Drosophila melanogaster	3	546–567	1–547	568–621
	622–644	645–813	837–853	
Anopheles gambiae str. PEST	3	516–535	1–515	536–591
	592–614	615–783	807–888	
Equus caballus	3	563–582	1–562	583–638
	639–661	622–844	662–821	845–908

Glycosylation is one of the methods of protein post-translational modification. It plays an important role in changing the conformation and stability of proteins. It participates in many processes of protein transcription and translation, immune response and transportation. Mutations in glycosylation sites may change gene function and play a key role[21]. Analysis of glycosylation sites of the encoded proteins of glr-3 gene and its homologous genes (Table 4) shows that there are more glycosylation sites in 25 species, and N-glycosylation sites are more than O-Glycosylation site[22]. Rana dybowskii has the most O-glycosylation sites at 19, Rana dybowskii and Caenorhabditis elegans have 0 and 2 N-glycosylation sites, and the remaining 23 Species N-glycosylation sites are between 4-7.

Table 4. Analysis of glycosylation sites of glr-3 genes and their homologous genes in 25 species

Species	Number of O-glycosylation	Number of N-glycosylation	Position of N-glycosylation
Homo sapiens	4	6	67, 73, 275, 378, 423, 546
Pan troglodytes	3	6	67, 73, 275, 378, 423, 546
Macaca mulatta	3	6	67, 73, 275, 378, 423, 546
Protein phosphorylation is one of the common post-translational modifications of proteins in biology. It is an important mechanism in the regulation of signal transduction in cells and participates in cell transduction and maintenance of protein spatial stability. Protein phosphorylation mainly includes serine, threonine and tyrosine phosphorylation.[18,23] As shown in Figure 3, 25 species glr-3 gene and its homologous gene coding proteins contain 3 phosphorylation sites, serine, threonine and tyrosine phosphorylation sites, serine phosphorylation sites are the most, tyrosine phosphorylation sites are the least. It is predicted that the recognition and binding of these encoded proteins with receptor signals are related.

Polypeptide chains form irregular folding along one-dimensional direction by hydrogen bonds. These fragments form the secondary structural units of proteins. The common three secondary structural units are α-helix, β-folding, irregular curl and β-rotation.[24,25] SOPMA was used to predict the secondary structure of proteins. The secondary structure units of the encoded proteins were α-helix, random coil, extended chain and β-turn, and the proportion showed a decreasing trend.

![Figure 3. Predictive analysis of phosphorylation modification sites of glr-3 genes and their homologous genes in 25 species](image)

Species	Number of O-glycosylation	Number of N-glycosylation	Position of N-glycosylation
Canis lupus familiaris	3	6	67, 73, 275, 378, 423, 546
Mus musculus	4	6	67, 73, 275, 378, 423, 546
Bos taurus	3	6	67, 73, 275, 378, 423, 546
Rattus norvegicus	4	6	67, 73, 275, 378, 423, 546
Gallus gallus	2	6	67, 73, 275, 412, 423, 546
Xenopus tropicalis	5	7	72, 78, 280, 383, 417, 428, 551
Danio rerio	7	7	67, 73, 275, 378, 412, 423, 546
Drosophila melanogaster	8	4	262, 293, 389, 397
Anopheles gambiae str. PEST	12	4	229, 359, 365, 383
Rana dybowskii	19	0	/
Sus scrofa	3	6	67, 73, 275, 378, 423, 546
Equus caballus	3	6	67, 73, 275, 378, 423, 546
Felis catus	2	4	67, 73, 275, 423
Alliropodida melanoleuca	3	6	67, 73, 275, 378, 423, 546
Ictalurus punctatus	6	6	74, 80, 385, 430, 437, 553
Dermochelys coriacea	2	6	67, 73, 275, 378, 423, 546
Balanoperta musculus	7	5	67, 73, 275, 378, 423
Cygnus atratus	2	7	18, 24, 226, 363, 374, 381, 497
Zootoca vivipara	3	6	70, 76, 278, 381, 426, 714
Arthibeus jamaicensis	3	6	67, 73, 275, 378, 423, 546
Manis pentadactyla	4	7	46, 52, 254, 357, 391, 402, 525
Caenorhabditis elegans	5	2	257, 356

Species	Alpha helix (%)	Beta turn (%)	Random coil (%)	Extended strand (%)
Homo sapiens	41.37	5.27	35.87	17.49
Pan troglodytes	41.08	5.62	37	16.3
Macaca mulatta	41.08	5.62	37	16.3
Canis lupus familiaris	42.62	5.51	35.9	15.97
Mus musculus	42.29	5.62	36.01	16.8
Bos taurus	41.3	5.95	37	15.75
Rattus norvegicus	41.74	5.51	36.67	16.08
Gallus gallus	42.84	5.18	35.79	16.19
Xenopus tropicalis	40.64	5.7	36.69	16.98
Danio rerio	43.39	5.4	35.57	15.64
Drosophila melanogaster	42.02	5.48	35.48	17.02
Anopheles gambiae str. PEST	40.99	5.41	37.95	15.65
Rana dybowskii	34.49	11.81	33.1	20.6
Sus scrofa	40.75	5.73	37.11	16.41
Equus caballus	42.29	5.51	35.9	16.3
Felis catus	37.39	4.80	38.25	19.55
Alliropodida melanoleuca	42.29	5.51	35.9	16.3
Ictalurus punctatus	43.17	5.46	35.74	15.63
Dermochelys coriacea	40.97	5.62	37.11	16.3
Balanoperta musculus	41.01	5.25	37.21	16.54
Cygnus atratus	42.14	6.29	35.86	15.72
Zootoca vivipara	36.43	5.46	39.15	18.96
Arthibeus jamaicensis	42.90	5.51	35.9	16.3
Manis pentadactyla	40.81	5.75	36.64	16.80
Caenorhabditis elegans	42.11	4.9	34.33	18.66
Using Swiss-Model to predict the tertiary structure of proteins (Figure 4), the prediction results show that the tertiary structure of 8 mammals, including gorillas (Pan troglodytes), macaques (Macaca mulatta), and dogs (Canis lupus familiaris) are similar. The tertiary structure of human (Homo sapiens), zebrafish (Danio rerio) and Chinese pangolin (Manis pentadactyla) are similar.

The analysis results show that the glr-3 gene and its homologous gene encoding protein of the research species are all hydrophilic proteins, and the side chain composed of aliphatic amino acids accounts for a higher proportion, indicating that the protein controlling this type of gene has strong thermal stability \[18\]; The encoded protein has obvious glycosylation sites, which is predicted to enhance the stability of the protein by changing the spatial structure of the protein \[27,28\], and the encoded proteins all contain 3 phosphorylation sites, serine, threonine and tyrosine. The phosphorylation sites of amino acids, the most serine phosphorylation sites in the sequence, the least tyrosine phosphorylation sites, it is speculated that this type of protein is widely involved in cell transcription and regulation, signal recognition \[29\], secondary structural unit of the encoded protein There are α-helices, random coils, extended strands and β-turns. α-helices account for the largest proportion, maintaining the stability of the protein spatial structure. The secondary structure of the protein is also related to the coding region of the mRNA sequence, and the coding protein tends to be encoded by the stem region of mRNA \[30\]. The purpose of this study is to explore the variation of glr-3 genes and their homologous genes in different species. The evolutionary rate and functional analysis of the encoded protein have certain research significance.

5. Conclusions

Through this study, we have reached the following conclusions: glr-3 gene and its homologous genes have obvious positive selection effects; through protein prediction analysis, it is shown that the glr-3 genes and their homologous genes of these 25 species all encode proteins. It is a hydrophilic protein with a high proportion of side chains composed of aliphatic amino acids, transmembrane helices are common, and there are more N-glycosylation sites and O-glycosylation sites, and the encoded protein phosphorylation sites there are phosphorylation sites for serine, threonine and tyrosine; the secondary structure prediction shows that the secondary structure unit of the encoded protein has α-helix, β-turn, random coil and extended chain, of which α-helix accounts for the proportion Both are the largest. This study provides useful information on the evolution and function of the glr-3 gene and its homologous genes.

Acknowledgements

This study was funded by Heilongjiang Province College Students' Innovation Training Program of Northeast Forestry University (S202010225095).

References

[1] Wang Dong-feng. The effect of temperature on animals[J]. Technical Advisor for Animal Husband-
Brockie P J, Madsen D M, Zheng Y, et al. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42 [J]. J Neuroscience, 2001, 21(5): 1510-22.

Hiroshi Suzuki, Tod R. Thiele, Serge Faumont, et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis [J]. Nature, 2008, 454(7200): 114-117.

Jianke Gong, Jinzhi Liu, Elizabeth A. Ronan, et al. A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene [J]. Cell, 2019, 178(6): 1375-1386.

He Jin-jiao, Liu Yang-yang, Mao Xue-fei, et al. Bioinformatics analysis of the structure and function of SARS-CoV-2 S protein [J/OL]. Genomics and Applied Biology, 2020.

Li Ji. Study on the prediction of membrane protein transmembrane helix [D]. Shanghai Jiaotong University, 2012.

Guo Ling-hui, Wang Yi, Jiang Lu, et al. Research progress on the function of exosomal membrane proteins [J]. World Science and Technology—Modernization of Traditional Chinese Medicine, 2021.

Yang Zhi-syuan, Huang Suwei, Wang Wen-hung, et al. Identification of important N-Linked Glycosylation Sites in the Hemagglutinin Protein and Their Functional Impact on DC-SIGN Mediated Avian Influenza H5N1 Infection [J]. Int J Mol Sci, 2021, 22(2): 743-743.

Li Xiao-ying. Preliminary Study on Ginseng Proteomics, Peptidomics and Glycosylation Modification [D]. Jilin University, 2020.

Zang Xiao-ying, Fu Qiao-juan, Zhao Fu-kang, et al. Bioinformatics analysis of transcription factors related to hybrid orchid leaf color [J/OL]. Molecular Plant Breeding, 2021.

Liu Gang, Li Qing-yue, Wang Chong, et al. Molecular evolution analysis of avian SLC2A4 gene and its encoded protein GLUT4 [J]. The Journal of Biology, 2020, 37(2): 29-32.

Chen Sha-sha. Topological modeling of protein structure and its application research [D]. Suzhou University, 2012.

Mendes Fábio K, Vanderpool Dan, Fulton Ben, et al. CAFE 5 models variation in evolutionary rates among gene families [J]. Bioinformatics, 2020.

Wang Xue-feng, Wang Wang-jian. GLUT4 Research Progress [J]. Foreign Medicine·Physiology, Pathology and Clinical Medicine, 2003, 23(6): 602 -604.

Zhang Nan, Zhao Ying. Regulatory mechanism of glucose transporter GLUT4 expression [J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(3): 237-244.

Chen Chiwei, Huang Lanying, Liao Chiafeng, et al. Glycosylation Modification Using a New Feature Selection Approach with a GA-Aided Ant Colony System. Int J Mol Sci, 2020, 21(21): 7891.

Jia Meng-wen. The correlation between mRNA sequence, structure, energy and protein secondary structure [D]. Inner Mongolia University, 2004.