ON ADDITIVE REPRESENTATION FUNCTIONS

R. BALASUBRAMANIAN AND SUMIT GIRI

ABSTRACT. Let $\mathcal{A} = \{a_1 < a_2 < a_3 \ldots < a_n < \ldots\}$ be an infinite sequence of integers and let $R_2(n) = |\{(i,j) : a_i + a_j = n, a_i, a_j \in \mathcal{A} \mid i \leq j\}|$. We define $S_k = \sum_{i=1}^{k} (R_2(2i) - R_2(2i - 1))$. We prove that, if L^1 norm of S_k is small then L^1 norm of $\frac{S_k}{n}$ is large.

1. INTRODUCTION

Let $\mathcal{A} = \{a_1, a_2, \ldots\}$ be an infinite sequence of non-negative integers. Let $n \in \mathbb{N}_0$, denote the number of solutions of $a_i + a_j = n$, and $a_i + a_j = n \ (i \leq j)$ by $R_1(n)$ and $R_2(n)$, respectively. More precisely:

$$R_1(n) = \sum_{a_i + a_j = n} 1;$$
$$R_2(n) = \sum_{a_i + a_j = n \ i \leq j} 1;$$

Also define, $R_3(n) = \sum_{a_i + a_j = n \ i < j} 1$.

It is easy to check that if \mathcal{A} is a full set or a complement of a finite set inside the set of natural numbers then all R_1, R_2, R_3 are monotonically increasing. Here we are interested in inverse problems. In other words how the monotonicity of one of the representation function affects the cardinality of the set \mathcal{A}. Erdős, Sárközy and Sós [8, 9] and the first author [2] studied the monotonicity properties of the functions R_1, R_2, R_3. It turns out that monotonicity of these three functions differs significantly.

Erdős, Sárközy and Sós [8] proved that $R_1(n)$ can be monotonically increasing from a certain point only in a trivial way:

Theorem A. If $R_1(n + 1) \geq R_1(n)$ for all large n, then $\mathbb{N} \setminus \mathcal{A}$ is a finite set.

The analogous conclusion is not true in case of R_2. If we define $\mathcal{A}(N) = |\mathcal{A} \cap [1, N]|$, then first author [2] proved that,

Theorem B. If $R_2(n + 1) \geq R_2(n)$ for all large n, then $\mathcal{A}(N) = N + O(\log N)$

That is to say, the complement set of \mathcal{A} is of order $O(\log N)$ at most. The following result was also proved in [2]:

Theorem C. If $\mathcal{A}(N) = o\left(\frac{N}{\log N}\right)$, then the function $R_3(n)$ can not be eventually increasing.

Again Erdos, Sarkozy and Sos [8] proved another result related to R_2:

Theorem D. If $\lim_{n \to \infty} \frac{n - \mathcal{A}(n)}{n} = +\infty$, then we have,

$$\limsup_{n \to \infty} \left(\sum_{k=1}^{n} (R_2(2k) - R_2(2k + 1))\right) = \infty$$

The result is tight, in fact they gave an example of a sequence \mathcal{A} where $n - \mathcal{A}(n) > c \log n$ (for large n and fixed constant c) and $\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} (R_2(2k) - R_2(2k + 1))}{N} = +\infty$.

In [2], Tang and Chen gave a quantative version of Theorem D. To state the theorem, let us define a few notations:

$$S(n) = \sum_{k \leq n} (R_2(2k) - R_2(2k + 1))$$
$$m(N) = N(\log N + \log \log N).$$

1
Then L^∞ norm of $S(n)$ is defined by

$$T(N) = \max_{n \leq N} S(n) = \max_{n \leq N} \sum_{k \leq n} (R_2(2k) - R_2(2k + 1)).$$

They proved that, when the ratio $\frac{T(N)}{\sigma(N)}$ is bounded above by a small enough fixed constant, then $T(N)$ and $\frac{N - A(N)}{\log N}$ satisfies a simple inequality. More precisely:

Theorem E. If

1. $T(N) < \frac{1}{36} \sigma(N)$, then,

2. $T(N) > \frac{1}{80e} \frac{N - \sigma(N)}{\log N} - \frac{11}{4} - \frac{N_1}{8}$

Where N_1 is a fixed positive integer, depending only on \mathcal{A}

It is easy to see that under the condition (1), Theorem E implies Theorem D

Now Set

$$S^+(n) = \max \{S(n), 0\}$$

and

$$T^+(N) = \max_{n \leq N} \{S^+(n)\}$$

Note: $T(N)$ and $T^+(N)$ are same unless all $\{S(n)\}_{n \leq N}$ are negative.

In this paper we again assume that $\frac{T(N)}{\sigma(N)}$ is bounded above and prove an improved inequality where we replace L^∞ norm of $S(n)$ by L^1 norm of $\sum_{n \leq N} \frac{S(n)}{n}$. More precisely:

Theorem 1. Let \mathcal{A} be an infinite sequence of positive integers and there exists N_0 such that $T(N) < \frac{1}{36} \sigma(N)$ for all $N \geq N_0$. Then there exists a constant $N_1 > 0$ such that

3. $\sum_{n=1}^{m(N)} \frac{S^+(n)}{n} > \frac{1}{10e} (N - \sigma(N)) - \frac{1}{7} \log N - c_1.$

for some constant c_1 depending on the first few elements of \mathcal{A}.

Corollary 1. If (3) holds then $T^+(N) > \frac{1}{11e} \frac{N - \sigma(N)}{\log N} - \frac{1}{7}$

So if at least one of $S(n)$ is non-negative, then $T^+(N)$ indeed equals to $T(N)$. In that case Corollary 1 gives Theorem E with a better constant. Corollary 1 also implies the following corollaries:

Corollary 2. If $\limsup_{N \to \infty} \frac{N - \sigma(N)}{\log N} = +\infty$, then

$$T(N) \geq \min \{\frac{1}{36} \sigma(N), \frac{1}{11e} \frac{N - \sigma(N)}{\log N}\}$$

for all large N.

Corollary 3. If $\limsup_{N \to \infty} \frac{N - \sigma(N)}{\log N} = +\infty$, then $\limsup_{n \to \infty} S_n = +\infty$.

Remark 1. In the proof, we assume that N_1, mentioned in Theorem 1 is sufficiently large. But as the reader can notice, one can take any N_1, which satisfies the following:

Define N by: $\sigma(N) > 40$,
then N_1 can be the smallest integer N satisfying

$$(0.98)^N < \left(\frac{40}{eN}\right)^N.$$
2. Notations and preliminary lemmas:

Set
\[f(z) = \sum_{a \in \mathcal{A}} z^a, \text{ for } |z| < 1 \]

Then
\[f(z)^2 = \sum_{n=1}^{\infty} R(n)z^n. \]

Let \(\chi_\mathcal{A} \) be the characteristic function of \(\mathcal{A} \), i.e.
\[\chi(n) = \begin{cases} 1, & \text{if } n \in \mathcal{A} \\ 0, & \text{else} \end{cases} \]

For a positive real number \(Y \), define
\[\psi(Y) = f(e^{-Y}) = \sum_{a \in \mathcal{A}} e^{-aY} \]
and
\[g(N) = 1 + 4(1 - e^{-2Y}) \sum_{k=1}^{\infty} S_k e^{-2kY}. \]

Before proving the theorem we shall prove a few lemmas which we shall be using later.

Lemma 1. Let \(0 < x \leq 1 \) be a real number. Then
\[\sum_{n=0}^{\infty} 2^n x^{2^n} \leq \frac{x(1+x)}{1-x} \]

Proof. Note that
\[2^n x^{2^n} \leq 2 \sum_{n=1}^{\infty} \sum_{j=2^n}^{2^{n+1}-1} x^j. \]
Summing over \(n = 1 \) to \(\infty \),
\[\sum_{n=1}^{\infty} 2^n x^{2^n} \leq 2 \sum_{j=2}^{\infty} x^j = \frac{2x^2}{1-x} \]
Adding \(x \) (corresponding to \(n = 0 \)) on both sides, we get the result. \(\square \)

Note that \(\psi : (0, \infty) \to \mathbb{R} \) be a continuous function, which is positive and increasing. It can be shown that if the complement of \(\mathcal{A} \) is finite then
\[\psi(Y)^2 = (2Y + O(\frac{1}{Y})) \psi(Y) \]
and conversely.

We aim to prove that, even if \(\Psi(Y) \) satisfies a hypothesis, slightly weaker than (4), then some conclusion can be arrived about \(\Psi(Y) \).

Let \(f : \mathbb{R} \to [0, \infty) \) be an function. For any real number \(y \), and integer \(\alpha \geq 0 \), define \(F(y, \alpha) \) by recurrence, as follows:
\[F(y; 0) = 0; \]
and
\[F(y, \alpha + 1) = \frac{f(y 2^{\alpha+1}) + F(y, \alpha)}{2}. \]

In other words,
\[F(y; \alpha) = \frac{f(2^\alpha y)}{2} + \frac{f(2^{\alpha-1} y)}{4} + \frac{f(2^{\alpha-2} y)}{8} + \ldots + \frac{f(2 y)}{2^\alpha}. \]

Lemma 2. If \((\psi(Y))^2 \geq 2Y \exp(-f(Y)) \psi(Y^2) \) for all \(Y \geq N_0 \), then
\[\psi(y 2^\alpha) \geq y 2^\alpha \exp(-F(y; \alpha))(\frac{\psi(y)}{y})^{\frac{1}{2^\alpha}} \]
for all integers \(\alpha \geq 0 \), and a fixed real number \(y \geq N_0 \)
Proof. For $\alpha = 0$, both sides are equal; For the general case by induction,

\[
(\psi(y^{2^{\alpha+1}}))^2 \geq 2y^{2^{\alpha+1}} \exp(-f(y^{2^{\alpha+1}}))\psi(y^{2^\alpha})
\]

\[
= y^{2^{\alpha+2}} \exp(-f(y^{2^{\alpha+1}}) - F(y; \alpha))(\psi(y))^{\frac{1}{y^{2^{\alpha+1}}}}
\]

\[
= (r^{2^\alpha+1} \exp(-F(y, \alpha + 1))(\psi(y))^{\frac{1}{y^{2^{\alpha+1}}}})^2
\]

and hence the result. \hfill \Box

We will see the implication of Lemma 1 and Lemma 2 in the proof of Theorem 1. Before doing so we need one more fact.

Intuitively it makes sense that if $T(Y)(= T([Y]))$ is 'small' then $g(Y)$ should also be 'small'. We will show that is the case in the next lemma:

Lemma 3. Let $g(Y)$ and $T(Y)$ are defined as above. Then

\[
g(Y) < T(Y) + 10
\]

for all $Y \geq 40$. Further if $T(N) \leq \frac{1}{36}\phi(N)$ for all integers $N \geq N_0$ then there exists $N_2 \geq N_0$ such that

\[
g(Y) \leq \psi\left(\frac{Y}{2}\right)
\]

for all $Y \geq N_2$.

Proof. First take $N = [Y]$. Then we have:

\[
(1 - e^{-\frac{\alpha}{Y}}) \sum_{k=1}^{\infty} S_k e^{-\frac{2k}{Y}} = \sum_{k=1}^{m(N)} (R_2(2k) - R_2(2k + 1))e^{-\frac{2k}{Y}}
\]

\[
= \sum_{k=1}^{m(N)} (R_2(2k) - R_2(2k + 1))e^{-\frac{2k}{Y}}
\]

\[
+ \sum_{k=m(N)}^{\infty} (R_2(2k) - R_2(2k + 1))e^{-\frac{2k}{Y}};
\]

\[
= \Sigma_1 + \Sigma_2; \text{ Say;}
\]

Now

\[
\Sigma_1 = \sum_{k=1}^{m(N)} (R_2(2k) - R_2(2k + 1))e^{-\frac{2k}{Y}}
\]

\[
= (1 - e^{-\frac{\alpha}{Y}}) \sum_{k=1}^{m(N)-1} S_k e^{-\frac{2k}{Y}} + S_{m(N)}e^{-\frac{m(N)}{Y}};
\]

\[
\leq \max_{k \leq m(N)} S_k + 2;
\]

\[
= T(N) + 2.
\]

Also

\[
\Sigma_2 = \sum_{k=m(N)+1}^{\infty} (R_2(2k) - R_2(2k + 1)) e^{-\frac{2k}{Y}}
\]

Using $|R_2(2k) - R_2(2k + 1)| < k$ and $m(N) = N(\log N + \log \log N)$, and also considering the fact that $h_1(x) = xe^{-\frac{2x}{Y}}$ is a decreasing function of $x \geq N$ we get,

\[
\Sigma_2 \leq \int_{m(N)}^{\infty} xe^{-\frac{2x}{Y}} dx;
\]

\[
< \frac{3}{4 \log N} \quad \text{if } N > 80.
\]
So
\[g(N) = 1 + 4(\Sigma_1 + \Sigma_2); \]
\[< 1 + 4(T(N) + \frac{3}{4\log N} + 2) \quad \text{for } N \geq N_0; \]
\[= 4T(N) + 9 + \frac{3}{\log N}. \]
Which proves the first part of the lemma since \(g \) is an increasing function.
To prove the second part note that
\[g(Y) \leq \frac{1}{9} \mathcal{A}(Y) + 10 \]
for \(N \geq 100. \) Then the fact that
\[\Psi(Y) > \sum_{a \in \mathcal{A}} e^{-\frac{a}{Y}} > e^{-2} \sum_{a \in \mathcal{A}} 1 = \frac{1}{e^2} \mathcal{A}(Y), \]
proves the result. \(\square \)

3. **Proof of Theorem**

We observe, by comparing the coefficients of \(\alpha^n \) from both sides, that
\[f(\alpha^2) = \frac{1 - \alpha}{2\alpha} (f(\alpha))^2 + 2 \sum_{k=1}^{\infty} (R_2(2k) - R_2(2k + 1)) \alpha^{2k} - \frac{1 + \alpha}{2\alpha} f(-\alpha)^2. \]
Since \(\alpha > 0 \) this gives,
\[f(\alpha^2) \leq \frac{1 - \alpha}{2\alpha} f(\alpha)^2 + 2 \sum_{k=1}^{\infty} (R_2(2k) - R_2(2k + 1)) \alpha^{2k} \quad (5) \]
Now considering the right hand side of the summation, we get:
\[\sum_{k=1}^{\infty} (R_2(2k) - R_2(2k + 1)) \alpha^{2k} = \sum_{k=1}^{\infty} (S_k - S_{k-1}) \alpha^{2k} \]
\[= \sum_{k=1}^{\infty} S_k (\alpha^{2k} - \alpha^{2k+1}) \]
\[= (1 - \alpha^2) \sum_{k=1}^{\infty} S_k \alpha^{2k}. \]
Thus we get, from (5),
\[f(\alpha^2) \leq \frac{1 - \alpha}{2\alpha} f(\alpha)^2 + 2(1 - \alpha^2) \sum_{k=1}^{\infty} S_k \alpha^{2k} \quad (6) \]
Now putting \(\alpha = e^{\frac{-1}{Y}} \), we get
\[\psi(Y) \leq \frac{1}{2} (\psi(\frac{Y}{2}) + \frac{1}{Y}) (\psi(Y))^2 + 2(1 - e^{-2}) \sum_{k=1}^{\infty} S_k e^{-\frac{k}{Y}}. \]
Since \(\psi(Y) \leq Y \), this gives
\[2Y \psi(Y) \leq (\psi(Y))^2 + Y g(Y) \quad (7) \]
Thus
\[(\psi(Y))^2 \geq 2Y \psi(Y) - Y g(Y). \quad (8) \]
Now using the second part of lemma 3, we get
\[\psi(Y)^2 \geq Y \psi(Y) \quad \forall Y \geq N_0 \]
Thus, \(\psi \) satisfies lemma 2, with \(f(Y) = \log 2. \) Thus
\[F(y; \alpha) = (\log 2)(1 - \frac{1}{2\alpha + 1}) \]
Thus,
\[\psi(y_0 2^\alpha) \geq \frac{y_0}{2} \frac{1}{2^{\frac{1}{2^\alpha}}} \left(\frac{\psi(y_0)}{y_0} \right)^{\frac{1}{2^\alpha}} \]
for \(N_0 \leq y_0 < 2N_0 \)

This gives, since \(\psi(N_0) \geq 1 \), and if \(\alpha \) is sufficiently large, say \(\alpha \geq \alpha_0 \),

\[\psi(y_0 2^\alpha) \geq (0.49) y_0 2^\alpha \]

for \(y_0 \geq N_0 \). Thus choosing \(\alpha \) suitably and defining \(y_0 = \frac{y}{N_0} \) so that \(N_0 \leq y_0 < 2N_0 \), we get

\[\psi(Y) \geq (0.49) Y \]
for all \(Y \geq N_1 (= N_0 2^\alpha) \).

Thus, from (8)

\[\psi(Y)^2 \geq 2Y \psi(Y) \left(1 - \frac{g(Y)}{0.49Y} \right). \]

for all \(Y \geq N_1 \). Since \(\frac{g(Y)}{Y} < \frac{1}{\alpha} \), lemma[2] is satisfied with \(f(Y) = 2.3 \frac{g(Y)}{Y} \)

Then

\[F(y; \alpha) = \frac{2.3}{2^{\alpha+1}Y} (g(2^\alpha y) + g(2^{\alpha-1} y) + \ldots + g(2y)) \]

This gives

\[\psi(y_1 2^\alpha) \geq y_1 2^\alpha \exp(-F(y_1; \alpha)) \left(\frac{\psi(y_1)}{y_1} \right)^{\frac{1}{2^\alpha}}; \]

for \(N_1 \leq y_1 < 2N_1 \).

Note that in this case

\[
g(2^\alpha y_1) + g(2^{\alpha-1} y_1) + \ldots + g(2y) = \alpha + \frac{8}{2^\alpha y_1} \sum_{k=1}^{\infty} S^+_k \sum_{n=0}^{\alpha} \frac{1}{\alpha} \frac{2^n e^{-\frac{n+1}{n+2}}}{1 - e^{-\frac{2}{2^\alpha y_1}}} \]

\[
\leq \alpha + \frac{8}{2^\alpha y_1} \sum_{k=1}^{\infty} S^+_k \frac{2^\alpha y_1}{k}; \quad \text{by Lemma[1]}
\]

That implies for large enough \(\alpha \) and fixed \(y_1 \) with \(N_1 \leq y_1 < 2N_1 \),

\[
\frac{\psi(y_1 2^\alpha)}{y_1 2^\alpha} \geq \exp(-F(y_1; \alpha) + \frac{c}{y_1 2^\alpha})
\]

for some constant \(c \) depending on \(\mathcal{A} \). For example, you can choose \(c = \inf_{N_1 \leq y < 2N_1} y \log \left(\frac{\psi(y)}{y} \right) \).

Taking logarithm on both sides

\[
F(y_1; \alpha) = \frac{c}{y_1 2^\alpha} > (1 - \frac{\psi(y_1 2^\alpha)}{y_1 2^\alpha}),
\]

Or,

\[
\frac{2.3}{2^{\alpha+1}y_1} (\alpha + \frac{8}{2^\alpha y_1} \sum_{k=1}^{\infty} S^+_k) - \frac{c}{y_1 2^\alpha} \geq \frac{1}{\alpha} \left(y_1 2^\alpha - \mathcal{A}(y_1 2^\alpha) \right).
\]

As before choosing \(\alpha \) suitably, so that \(N_1 \leq y_1 (= \frac{N}{2^\alpha}) < 2N_1 \), it implies that

\[
\sum_{k=1}^{\infty} \frac{S^+_k}{k} > \frac{1}{10e} (N - \mathcal{A}(N)) - \frac{1}{7} \log N - c_1
\]

for large enough \(N \) and fixed constant \(c_1 \) depending on \(\mathcal{A} \). Which proves Theorem[1]
Remark 2. Also we solved a question raised by Sárközy (see [10], Problem 5, Page 337): Does there exist a set \(\mathcal{A} \subseteq \mathbb{N} \) such that \(\mathcal{A} \) is an infinite set and \(R_1(n + 1) \geq R_1(n) \) holds on a sequence of integers \(n \) whose density is 1? Here we show that the answer to this question is positive by giving a simple example.

Let \(\mathbb{B} \) be an infinite Sidon set of even integers and \(\mathcal{A} = \mathbb{N} \setminus \mathbb{B} \);

Put

\[
Y = (\mathbb{B} + \mathbb{B}) \cup \mathbb{B} \quad \text{and} \quad X = \mathbb{N} \setminus Y;
\]

Then,

\[
R_1(n + 1) \geq R_1(n) \quad \text{for all} \ n \in X.
\]

To see this, let

\[
f(z) = \sum_{a \in \mathcal{A}} z^a \quad \text{and} \quad g(z) = \sum_{b \in \mathbb{B}} z^b,
\]

Then

\[
\sum_{n=1}^{\infty} (R_1(n) - R_1(n-1)) z^n = (1 - z) f(z)^2 = (1 - z) (z - g(z))^2
\]

\[
= \frac{z^2}{(1 - z)} + (1 - z) (g(z))^2 - 2zg(z)
\]

let

\[
r_1(n) = \sum_{\substack{b_1 = b_2 = \ldots = 1, \ \ b_i \in \mathbb{A}, b_j \in \mathbb{B}}} 1
\]

So \(R_1(n + 1) \geq R_1(n) \) iff coefficient of \(z^{n+1} \) in \((1 - z) (f(z))^2 \) is non negative.

Now coefficient of \(z^{2k} \) is

\[
1 + r_1(2k) - r_1(2k - 1) - 2X_{\mathbb{B}}(2k - 1)
\]

and coefficient of \(z^{2k+1} \) is

\[
1 + r_1(2k + 1) - r_1(2k) - 2X_{\mathbb{B}}(2k)
\]

Then it is clear from the above choice of \(X \) and \(\mathcal{A} \) that, \(R_1(n + 1) \geq R_1(n) \) for all \(n \) in \(X \).

For example we can take \(\mathbb{B} = \{2, 4, 8, 16, 32, \ldots, 2^m, \ldots\} \). Then \(\mathbb{B} \) is infinite and \(X \) is of density 1.

REFERENCES

[1] M. Ajtai, J. Komlós and E. Szemerédi, ‘A dense infinite Sidon sequence’, European J. Combin. 2 (1981), 1–11.
[2] R. Balasubramanian, ‘A note on a result of Erdős, Sárközy and Sós’, Acta Arith. 49 (1987), 45–53.
[3] Yong-Gao Chen, András Sárközy, Vera T. Sós and Min Tang, ‘On The Monotonicity Properties of Additive Representations Functions’, Bull. Austral. Math. Soc., 72 (2005), 129–138.
[4] Min Tang and Yong-Gao Chen, ‘On Additive Properties of General Sequences,’ Bull. Austral. Math. Soc., 71, (2005) 479-485
[5] P. Erdős and A. Sárközy, ‘Problems and results on additive properties of general sequences,’ P. Pacific J. Math. 118 (1985), 347-357.
[6] P. Erdős and A. Sárközy, ‘Problems and results on additive properties of general sequences, II,’ Acta Math. Hungar. 12 (1986), 201-211.
[7] P. Erdős, A. Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences, III’, Studia Sci. Math. Hungar. 22 (1987), 53-63.
[8] P. Erdős, A. Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences, IV’, in Number Theory, Proceedings, Ootacamund, India, 1984, Lecture Notes in Mathematics 1122 (Springer-Verlag, Berlin, 1985), pp. 85–104.
[9] P. Erdős, A. Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences, V’, Monatsh. Math. 102 (1986), 183-197.
[10] A. Sárközy, ‘On the Number of Additive Representations of Integers.’ Bolyai Society Mathematical Studies, 15, (2006) 329-339.
ON ADDITIVE REPRESENTATION FUNCTIONS

R. BALASUBRAMANIAN AND SUMIT GIRI

ABSTRACT. Let \(\mathcal{A} = \{a_1 < a_2 < a_3 \ldots < a_r < \cdots \} \) be an infinite sequence of non-negative integers and let \(R_2(n) = |\{(i,j): a_i + a_j = n, a_i, a_j \in \mathcal{A}\}| \). We define \(S_k = \sum_{i=1}^{k} (R_2(2i) - R_2(2i+1)) \). We prove that if \(L^\infty \) norm of \(S_k' (= \max\{S_k,0\}) \) is small, then \(L^1 \) norm of \(S_k' \) is large.

1. INTRODUCTION

Let \(\mathcal{A} = \{a_1, a_2, \cdots \} (0 \leq a_1 < a_2 < \cdots) \) be an infinite sequence of non-negative integers. For \(n \in \mathbb{N}_0 \), Define

\[
R_1(n) = R_1(\mathcal{A}, n) = \sum_{a_i + a_j = n} 1
\]

\[
R_2(n) = R_2(\mathcal{A}, n) = \sum_{a_i + a_j = n} 1.
\]

Now, it is easy to check that if \(\mathcal{A} \) is a full set or a complement of a finite set inside the set of natural numbers, then \(R_1 \) and \(R_2 \) are monotonically increasing. Here we are interested in inverse problems, i.e., how the monotonicity of the representation functions affects the cardinality of the set \(\mathcal{A} \).

The question of characterisation of the set \(\mathcal{A} \), under the condition that either \(R_1(n) \) or \(R_2(n) \) is monotonic, was raised by Erdős, Sárközy and Sós [8]. Also see [9] and [2].

In [3], Erdős, Sárközy and Sós proved that \(R_1(n) \) can be monotonically increasing from a certain point, only in a trivial way. See [8] and [2] for the following theorem.

Theorem A. If \(R_1(n+1) \geq R_1(n) \) for all large \(n \), then \(\mathbb{N} \setminus \mathcal{A} \) is a finite set.

While analogous conclusion is not true in case of \(R_2 \), if, we define

\[
\mathcal{A}(N) = |\mathcal{A} \cap [1,N]|,
\]

then the first author [2] proved the following theorem:

Theorem B. If \(R_2(n+1) \geq R_2(n) \) for all large \(n \), then \(\mathcal{A}(N) = N + O(\log N) \).

In other words, If \(R_2(n) \) is monotonic, then the complement set of \(\mathcal{A} \) is almost of order \(O(\log N) \).

In the first part of this paper we shall focus on the function \(R_2 \) and quantities related to monotonicity of it. Also in Section 6, we shall make a remark concerning a question raised by Sárközy [10], related to monotonicity of \(R_1 \).

In [9] Erdős, Sárközy and Sós proved

Theorem C. If

\[
\lim_{n \to +\infty} \frac{n - \mathcal{A}(n)}{\log n} = +\infty,
\]

then we have,

\[
\limsup_{N \to +\infty} \sum_{k=1}^{N} (R_2(2k) - R_2(2k+1)) = +\infty.
\]

The assumption \(4 \) in the above theorem can not be relaxed. In fact Erdős, Sárközy and Sós [9] constructed a sequence \(\mathcal{A} \) where \((n - \mathcal{A}(n)) > c \log n \) (for large \(n \) and fixed constant \(c \)) and

\[
\limsup_{N \to +\infty} \sum_{k=1}^{N} (R_2(2k) - R_2(2k+1)) < +\infty.
\]
In [4], Tang and Chen gave a quantitative version of Theorem C. Before we state their theorem, let us define a few notations.

\[S_n = \sum_{k \leq n} (R_2(2k) - R_2(2k + 1)), \]
\[m(N) = N(\log N + \log \log N). \]

Also \(L^\infty \) norm of \(S_n \), denoted by \(T(N) \), is defined as follows:

\[T(N) = \max_{n \leq m(N)} S_n = \max_{n \leq m(N)} \sum_{k \leq n} (R_2(2k) - R_2(2k + 1)). \]

In [4] the authors proved that, when the ratio \(\frac{T(N)}{A(N)} \) is bounded above by a small enough fixed constant, then \(T(N) \) and \(\frac{N - A(N)}{\log N} \) satisfies a simple inequality. More precisely,

Theorem D. If \(T(N) \) be defined as in (6) and \(\frac{T(N)}{A(N)} < \frac{1}{36} \) for all large enough \(N \), then there exists a constant \(c > 0 \), depending only on \(A \), such that

\[T(N) > \frac{1}{80e} \frac{N - A(N)}{\log N} - \frac{11}{4} - \frac{C}{8}. \]

It is easy to see that, under the condition (7), Theorem D implies Theorem C.

Now, set

\[S_+^n = \max \{ S_n, 0 \}, \]
and

\[T^+(N) = \max_{n \leq m(N)} \{ S_+^n \}. \]

Note: \(T(N) \) and \(T^+(N) \) are same unless all the elements of the set \(\{ S_n : n \leq m(N) \} \) are negative.

In this paper, we again assume that \(\frac{T(N)}{A(N)} \) is bounded above and prove an improved version of (8) where we replace \(L^\infty \) norm of \(S(n) \) by \(L^1 \) norm of \(S_+^n \). More precisely, we prove the following theorem:

Theorem 1. Let \(\mathcal{A} \) be an infinite sequence of positive integers and there exists \(N_0 \) such that \(T(N) < \frac{1}{36} \mathcal{A}(N) \) for all \(N \geq N_0 \). Then there exists a constant \(c_1 > 0 \), depending on \(\mathcal{A} \), such that

\[\sum_{n=1}^{m(N)} \frac{S_+^n}{n} > \frac{1}{10e} (N - \mathcal{A}(N)) - \frac{1}{4} \log N - c_1. \]

for all large enough \(N \).

Corollary 1. If (7) in Theorem D holds, then for any \(\varepsilon > 0 \),

\[T^+(N) > \frac{1}{10e + \varepsilon} \frac{N - \mathcal{A}(N)}{\log N} - \frac{1}{4}, \]

for any large enough \(N \).

So, if at least one of \(S(n) \) is non-negative, then \(T^+(N) \) indeed equals \(T(N) \). In that case, Corollary 1 gives Theorem D with a better constant. Corollary 1 also implies the following:

Corollary 2. If \(\limsup_{N \to +\infty} \frac{N - \mathcal{A}(N)}{\log N} = +\infty \), then

\[\limsup_{n \to +\infty} \{ S_n \} = +\infty. \]
2. Generating Functions:

It is more natural to consider the problem in terms of generating function. Set
\[f(z) = \sum_{a \in A} a z^a, \quad |z| < 1. \]

Then,
\[f(z)^2 = \sum_{n=1}^{+\infty} R(n) z^n. \]

For any positive real number \(Y \), define
\[\psi(Y) = f(e^{-\frac{Y}{2}}) = \sum_{a \in A} e^{-\frac{aY}{2}}, \tag{12} \]
and
\[g(Y) = 1 + 4(1 - e^{-\frac{Y}{2}}) \sum_{k=1}^{+\infty} S_k e^{-\frac{2kY}{2}}. \tag{13} \]

Theorem 2. Let \(g(Y) \) and \(\psi(Y) \) be defined as above. Also assume
\[g(Y) \leq \min\{\psi(Y), 1 - e^{-\frac{Y}{2}}\} \tag{14} \]
for all sufficiently large positive real number \(Y \). Then
\[\psi(Y) \geq Y \exp \left(-\frac{3}{2Y} \left(\log_2 Y + \frac{16}{Y} \sum_{k=1}^{+\infty} S_k e^{-\frac{2kY}{2}} \right) - \frac{c}{Y} \right) \tag{15} \]
for some positive constant \(c \) depending only on first few elements of \(A \).

In Section 3, we will give a proof of Theorem 2. In Section 4, we will show how Theorem 2 follows from Theorem 2.

3. Notations and preliminary lemmas:

Consider a function \(h : \mathbb{R} \mapsto [0, +\infty) \). For any real number \(Y \) and integer \(\alpha \geq 0 \) define \(H(Y; \alpha) \) by recurrence, as follows:
\[H(Y; 0) = 0 \]
\[H(Y; \alpha) = \frac{h(Y)}{2} + \frac{h(Y/2)}{4} + \frac{h(Y/4)}{8} + \cdots + \frac{h(Y/2^{\alpha-1})}{2^\alpha} \]
\[= \sum_{j=0}^{\alpha-1} \frac{1}{2^{j+1}} h\left(\frac{Y}{2^j} \right) \quad \text{for integer } \alpha \geq 1. \tag{15} \]

Also
\[H(Y) = \sum_{j=0}^{+\infty} \frac{1}{2^{j+1}} h\left(\frac{Y}{2^j} \right). \tag{16} \]

Lemma 1. If \(h(Y) \) and \(H(Y; \alpha) \) is defined as above and
\[(\psi(Y))^2 \geq 2Y \exp(-h(Y)) \psi(Y) \tag{17} \]
for all real number \(Y \geq \tilde{N}_0 \), then for every integer \(\alpha \geq 0 \),
\[\psi(Y) \geq Y \exp(-H(Y; \alpha)) \left(\psi\left(\frac{Y}{2} \right) \right)^{2^\alpha} \tag{18} \]
for any real number \(Y \geq 2^\alpha \tilde{N}_0 \).
Proof. For \(\alpha = 0 \), both sides are equal.
For the general case, suppose it is true for \(\alpha = \alpha_0 \). Then
\[
(\psi(Y))^2 \geq 2Y \exp(-h(Y))\psi\left(\frac{Y}{2}\right)
\]
\[
= Y^2 \exp\left(-h(Y) - H\left(\frac{Y}{2}, \alpha_0\right)\right) \left(\frac{\psi\left(\frac{Y}{2^{\alpha_0+1}}\right)}{Y}\right)^{\frac{1}{\alpha_0}}
\]
for \(Y \geq 2N_1 \)
\[
= \left(Y \exp(-H(Y, \alpha + 1)) \left(\frac{\psi\left(\frac{Y}{2^{\alpha_0+1}}\right)}{Y}\right)^{\frac{1}{\alpha_0}}\right)^2
\]
and hence the result. \(\square \)

Lemma 2. There exist a \(c > 0 \) such that, if \(Y \) is large enough, then we have
\[
\left(\frac{\psi\left(\frac{Y}{2^\alpha}\right)^{2\alpha}}{Y}\right)^{\frac{1}{2\alpha}} \geq \exp\left(-\frac{c}{Y}\right)
\]
for some \(\alpha \leq \log_2 Y \).

Proof. Now fix an interval \([a, 2a]\) so that \(\psi(a) \geq 1 \).
Then choose \(\alpha \) suitably so that \(\frac{Y}{2^\alpha} \in [a, 2a] \). In that case, we have
\[
\left(\frac{\psi\left(\frac{Y}{2^\alpha}\right)^{2\alpha}}{Y}\right)^{\frac{1}{2\alpha}} \geq \left(\frac{1}{2a}\right)^{2a}.
\]
This proves the lemma. \(\square \)

Lemma 3. Let \(0 < x < 1 \) be a real number. Then
\[
\sum_{n=0}^{+\infty} 2^n x^{2^n} \leq \frac{2x}{1-x}.
\]

Proof. Note that
\[
2^n x^{2^n} \leq 2 \sum_{2^n-1 < j \leq 2^n} x^j.
\]
Summing over \(n = 1 \) to \(+\infty \),
\[
\sum_{n=1}^{+\infty} 2^n x^{2^n} \leq 2 \sum_{j=2}^{+\infty} x^j = \frac{2x^2}{1-x}
\]
Adding \(x \) (corresponding to \(n = 0 \)) on both sides, we get the result. \(\square \)

Lemma 4. In the notation of Lemma 1, let \(h(Y) = d\left(\frac{\psi(Y)}{Y}\right) \) for some fixed positive constant \(d \), to be chosen later. Then
\[
H(Y, \alpha) \leq \frac{d}{2Y} \left(\alpha + \frac{8}{Y} \sum_{k=1}^{+\infty} \frac{S_k^+ e^{-Y^{2k+1}}}{1 - e^{-Y^{2k+1}}}\right)
\]

Proof. set \(x = e^{-Y^{2k+1}} \).
\[
g(Y) = 1 + 4(1 - e^{-Y^{2k+1}}) \sum_{k=1}^{+\infty} S_k^+ x^k.
\]
\[
\leq 1 + \frac{8}{Y} \sum_{k=1}^{+\infty} S_k^+ x^k.
\]
Then
\[H(Y; \alpha) = \sum_{j=0}^{\alpha-1} \frac{1}{2j+1} h \left(\frac{Y}{2j} \right) \]
\[\leq \sum_{j=0}^{\alpha-1} \frac{d}{2Y} \left(1 + \frac{8}{Y} \sum_{k=1}^{\infty} S_k^+ 2^j x^{2j} \right) \]
\[\leq \frac{d}{2Y} \left(\alpha + \frac{8}{Y} \sum_{k=1}^{\infty} S_k^+ \sum_{j=0}^{\infty} 2^j x^{2j} \right) \]
\[= \frac{d}{2Y} \left(\alpha + \frac{8}{Y} \sum_{k=1}^{\infty} S_k^+ \frac{2^k}{1-x^2} \right). \]

\[\square \]

4. PROOF OF THEOREM 2:

It is easy to verify the following inequality by comparing the coefficients of \(z^n \) from both sides.

\[f(z^2) = \frac{1-z}{2z}(f(z))^2 + 2 \sum_{k=1}^{\infty} (R_2(2k) - R_2(2k+1))z^{2k} - \frac{(1+z)}{2z} f(-z)^2. \]

If \(z > 0 \), this gives,

\[f(z^2) \leq \frac{1-z}{2z} f(z)^2 + 2 \sum_{k=1}^{\infty} (R_2(2k) - R_2(2k+1))z^{2k}. \]

Now, considering the right hand side of the summation, we get

\[\sum_{k=1}^{\infty} (R_2(2k) - R_2(2k+1))z^{2k} = \sum_{k=1}^{\infty} (S_k - S_{k-1})z^{2k} \]
\[= \sum_{k=1}^{\infty} S_k (z^{2k} - z^{2k+2}) - S_0 z^2 \]
\[\leq (1-z^2) \sum_{k=1}^{\infty} S_k z^{2k}. \]

Thus, from (20) we get

\[f(z^2) \leq \frac{1-z}{2z} f(z)^2 + 2(1-z^2) \sum_{k=1}^{\infty} S_k z^{2k}. \]

Now putting \(z = e^{-1} \), we get

\[\psi \left(\frac{Y}{2} \right) \leq \frac{1}{2} \left(\frac{1}{Y} + \frac{1}{Y^2} \right) (\psi(Y))^2 + 2(1-e^{-2}) \sum_{k=1}^{\infty} S_k e^{-2k}. \]

Since \(\psi(Y) \leq Y \), this gives

\[2Y \psi \left(\frac{Y}{2} \right) \leq (\psi(Y))^2 + Yg(Y). \]

Thus,

\[(\psi(Y))^2 \geq 2Y \psi \left(\frac{Y}{2} \right) - Yg(Y). \]

Lemma 5. If \(g(Y) \leq \psi \left(\frac{Y}{2} \right) \), then for all large enough real number \(Y \)
\[\psi(Y) \geq 0.49Y. \]

Proof. Since \(g(Y) \leq \psi \left(\frac{Y}{2} \right) \), using (21) we get

\[(\psi(Y))^2 \geq Y \psi \left(\frac{Y}{2} \right). \]
Then (17) in Lemma 7 holds with \(h(Y) = \log 2 \).
In that case
\[
H(Y) = \sum_{0 \leq j \leq \infty} \frac{1}{2^j} h\left(\frac{Y}{2^j} \right) = \log 2.
\]

This gives, by Lemma 1 and Lemma 2
\[
\psi(Y) \geq (0.49)Y
\]
if \(Y \) is large enough.

Thus, combining (21) and Lemma 5 we get
\[
\psi(Y) \geq Y \left(\frac{Y}{2} \right) \left(1 - \frac{g(Y)}{0.49Y} \right)
\]
for sufficiently large \(Y \).
Since \(\frac{g(Y)}{Y} < \frac{1}{16} \), equation (17) in Lemma 7 is satisfied with \(h(Y) = 2.3 \frac{g(Y)}{Y} \).
Hence Lemma 7 and Lemma 7 together give the following:
\[
\psi(Y) \geq Y \exp \left(-\frac{2.3}{2Y} \left(\alpha + \frac{16}{Y} \sum_{k=1}^{\infty} S_k \left(\frac{e^{-2kN}}{1 - e^{-2N}} \right) \right) \right) \left(\frac{\psi \left(\frac{Y}{2} \right) 2^{\alpha}}{Y} \right)^{\frac{1}{2}}.
\]
Hence Theorem 2 follows from (23) and Lemma 2.

5. PROOF OF THEOREM 1

Lemma 6. Let \(g(N) \) and \(T(N) \) are defined as in (13) and (6). Then
(a) \(g(N) < 4T(N) + 40 \)
for all real number \(N \geq 40 \).
(b) Further, if \(T(N) \leq \frac{1}{16} \varphi(N) \) for all integers \(N \geq N_0 \), then there exists \(N_2 \geq N_0 \) such that
\[
g(N) \leq \psi \left(\frac{N}{2} \right)
\]
for all real number \(N \geq N_2 \).

Proof. We know \(S_k \leq T(N) \) for \(k \leq m(N) \) and \(S_k \leq \frac{k^2}{2} \) for \(k \geq m(N) \).
Now
\[
g(N) = 1 + 4(1 - e^{-2N}) \left\{ \sum_{k \leq m(N)} S_k e^{-\frac{2k}{N}} + \sum_{k > m(N)} S_k e^{-\frac{2k}{N}} \right\}
= 1 + 4(1 - e^{-2N}) \left\{ \Sigma_3 + \Sigma_4 \right\}, \quad \text{say.}
\]
\[
\Sigma_3 \leq \sum_{k=0}^{\infty} T(N) e^{-\frac{2k}{N}} = T(N) \frac{1}{1 - e^{-2N}}.
\]
\[
\Sigma_4 \leq \sum_{k>m(N)} \frac{k^2}{2} e^{-\frac{2k}{N}} \leq \int_{m(N)}^{+\infty} \frac{x^2}{2} e^{-\frac{2x}{N}} dx \leq 10
\]
and hence (a). To prove (b) note that
\[
g(N) \leq \frac{1}{9} \varphi(N) + 10
\]
for \(N \geq 100 \). Then, the fact that
\[
\Psi \left(\frac{N}{2} \right) > \sum_{a \in \varphi} e^{-\frac{a}{N}} > e^{-2} \sum_{a \in \varphi} 1 = \frac{1}{e^2} \varphi(N)
\]
proves the result.
Lemma 4 shows condition (14) of Theorem 2 are satisfied. Hence

\[\frac{\psi(N)}{N} \geq \exp \left(\frac{2.3}{2N} \left(\log_2 N + \frac{16}{N} \sum_{k=1}^{\infty} S_k^+ \frac{e^{-2k}}{1 - e^{-2k}} \right) - \frac{c}{N} \right) \]

for some constant \(c \) depending on \(\mathcal{A} \).

Taking logarithm on both sides,

\[\frac{2.3}{2N} \left(\log_2 N + \frac{16}{N} \sum_{k=1}^{\infty} S_k^+ \frac{e^{-2k}}{1 - e^{-2k}} \right) + \frac{c}{N} > \log \left(1 - \frac{\psi(N)}{N} \right) > \left(1 - \frac{\psi(N)}{N} \right)^{\frac{1}{N}}. \]

Or,

\[\frac{2.3}{2N} \left(\log_2 N + \frac{16}{N} \sum_{k=1}^{m(N)} S_k^+ \frac{e^{-2k}}{1 - e^{-2k}} \right) + 10 + \frac{c}{N} \geq \frac{1}{e} \left(\frac{N - \mathcal{A}(N)}{N} \right). \]

Now, \(\frac{e^{-t}}{1 - e^{-t}} \leq \frac{1}{t} \) and hence we can replace \(\frac{e^{-2k}}{1 - e^{-2k}} \) by \(\frac{2k}{N} \).

\[\frac{2.3}{2N} \left(\log_2 N + \frac{16}{N} \sum_{k=1}^{\infty} S_k^+ \frac{2k}{k} + 10 \right) + \frac{c}{N} \geq \frac{1}{e} \left(\frac{N - \mathcal{A}(N)}{N} \right). \]

It implies that

\[\frac{1}{10e} (N - \mathcal{A}(N)) > \frac{1}{8} \log_2 N - e. \]

for large enough \(N \) and fixed constant \(e \) depending on \(\mathcal{A} \). This proves Theorem 7.

6. Monotonicity of \(R_1(n) \) on dense set of integers

Remark 1. Also, we solved a question raised by Sárközy (see [10]). [Problem 5, Page 337]. His question was the following:

Does there exist an infinite set \(\mathcal{A} \subset \mathbb{N} \) such that \(\mathbb{N} \setminus \mathcal{A} \) is also an infinite and \(R_1(n + 1) \geq R_1(n) \) holds on a sequence of integers \(n \) whose density is 1?

Here we show that the answer to this question is positive by giving a simple example.

A Sidon set is a set of positive integers such that the sums of any two terms are all different, i.e., \(R_2(n) \leq 1 \) for the corresponding \(R_2 \) function. By [11], it is possible to construct sidon sequence of order \((n \log n)^{\frac{1}{2}} \).

Now, let \(\mathcal{B} \) be an infinite Sidon set of even integers and \(\mathcal{A} = \mathbb{N} \setminus \mathcal{B} \);

Put \(Y = (\mathcal{B} \cup \mathcal{B}) \cup \mathcal{B} \) and \(X = \mathbb{N} \setminus Y \);

Then,

\[R_1(n + 1) \geq R_1(n) \quad \text{for all } n \in X. \]

To see this, let

\[f(z) = \sum_{a \in \mathcal{A}} z^a \quad \text{and } g(z) = \sum_{b \in \mathcal{B}} z^b. \]

Then,

\[\sum_{n=1}^{\infty} (R_1(n) - R_1(n-1)) z^n = (1 - z)f(z)^2 \]

\[= (1 - z) \left(\frac{z}{1 - z} - g(z) \right)^2 \]

\[= \frac{z^2}{(1 - z)} + (1 - z)(g(z))^2 - 2zg(z). \]

Again, let

\[r_1(n) = \sum_{b_i = b_j = n} 1, \quad b_i \in \mathcal{B}, b_j \in \mathcal{B}. \]
So, $R_1(n + 1) \geq R_1(n)$ iff coefficient of z^{n+1} in $(1 - z)(f(z))^2$ is non negative.

Now coefficient of z^{2k} is $1 + r_1(2k) - r_1(2k - 1) - 2\chi_{A}(2k - 1)$

and coefficient of z^{2k+1} is $1 + r_1(2k + 1) - r_1(2k) - 2\chi_{A}(2k)$

Then, it is clear from the above choice of X and A that $R_1(n + 1) \geq R_1(n)$ for all n in X.

For example, we can take $\mathcal B = \{2, 4, 8, 16, 32, \ldots, 2^m, \ldots\}$. Then $\mathcal B$ is infinite and X is of density 1.

REFERENCES

[1] M. Ajtai, J. Komlós and E. Szemerédi, ‘A dense infinite Sidon sequence’. European J. Combin. 2 (1981), 1–11.
[2] R. Balasubramanian, ‘A note on a result of Erdős, Sárközy and Sós’. Acta Arith. 49 (1987), 45–53.
[3] Yong-Gao Chen, András Sárközy, Vera T. Sós and Min Tang, ‘On The Monotonicity Properties of Additive Representations Functions’. Bull. Austral. Math. Soc., 72 (2005), 129–138.
[4] Min Tang and Yong-Gao Chen, ‘On Additive Properties of General Sequences’. Bull. Austral. Math. Soc., 71, (2005) 479–485
[5] P. Erdős and A. Sárközy, ‘Problems and results on additive properties of general sequences. I’. Pacific J. Math. 118 (1985), 347-357.
[6] P. Erdős and A. Sárközy, ‘Problems and results on additive properties of general sequences. II’. Acta Math. Hungar. 48 (1986), 201-211.
[7] P. Erdős, A. Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences. III’. Studia Sci. Math. Hungar. 22 (1987), 53-63.
[8] P. Erdős, A. Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences. IV’. Number Theory (Ootacamund, 1984), Lecture Notes in Mathematics 1122. (Springer-Verlag, Berlin, 1985), 85–104.
[9] P. Erdős, Sárközy and V.T. Sós, ‘Problems and results on additive properties of general sequences. V’. Monatsh. Math. 102 (1986), 183-197.
[10] A. Sárközy, ‘On the Number of Additive Representations of Integers’. Bolyai Society Mathematical Studies, 15, (2006) 329-339.