Construction of Error-Correcting Codes for Random Network Coding

Tuvi Etzion
Department of Computer Science
Technion, Haifa 32000, Israel
e-mail: etzion@cs.technion.ac.il
phone: 04-8294311, fax: 04-8293900

Natalia Silberstein
Department of Computer Science
Technion, Haifa 32000, Israel
e-mail: natalys@cs.technion.ac.il
phone: 04-8294952, fax: 04-8293900

Abstract — In this work we present error-correcting codes for random network coding based on rank-metric codes, Ferrers diagrams, and puncturing. For most parameters, the constructed codes are larger than all previously known codes.

I. INTRODUCTION

The projective space of order \(n \) over finite field \(\mathbb{F}_q = GF(q) \), denoted by \(\mathcal{P}_q(n) \), is the set of all subspaces of the vector space \(\mathbb{F}_q^n \). A code in the projective space is a subset of \(\mathcal{P}_q(n) \). Koetter and Kschischang [4] showed that codes in \(\mathcal{P}_q(n) \) are useful for correcting errors and erasures in random network coding. If the dimension of each codeword is a given integer \(k \leq n \) then the code forms a subset of a Grassmannian \(\mathcal{G}_q(n, k) \) and called a constant-dimension code.

The rank distance between \(XY \in \mathbb{F}_q^{n \times n} \) is defined by
\[
\text{rank}(X,Y) = \text{rank}(X) + \text{rank}(Y) - \text{rank}(X+Y).
\]
It is well known [2] that the rank distance between \(\mathbb{F}_q^n \) and \(\mathbb{F}_q^n \) is a metric space with the distance function \(c \mathbb{F}_q^n \mathbb{F}_q^n \). Let \(\mathbb{F}_q^n \) be a rank-metric code with \(\text{rank}(c) = \delta \). If \(\delta \mathbb{F}_q^n \) is the sub-matrix of \(\mathbb{F}_q^n \) indexed by the nonzero entries of \(v \), the code forms a subset of \(\mathcal{G}_q(n, k) \).

II. CONSTRUCTION OF CONSTANT DIMENSION CODES

Let \(C \) be a constant-weight code of length \(n \), constant weight \(k \), and minimum Hamming distance \(d_H = 2\delta \). Let \(\mathcal{C}_\delta \), be the largest rank-metric code with the minimum distance \(d_R = \delta \), such that all its codewords are in \(EF(v) \). Now define code \(C = \bigcup_{v \in \mathcal{C}} EF(v) : c \in \mathbb{C}_c \).

Lemma 1. For all \(v_1, v_2 \in C \) and \(c_i \in EF(v_i), i = 1, 2 \),
\[
d_s(EF(v_1[c_1]), EF(v_2[c_2])) \geq d_H(v_1, v_2).
\]
If \(d_H(v_1, v_2) = 0 \), then \(d_s(EF(v_1[c_1]), EF(v_2[c_2])) = 2d_R(c_1, c_2) \).

Corollary 1. \(C \in \mathcal{G}_q(n, k) \) and \(d_s(C) = 2\delta \).

Theorem 1. Let \(C_v \subseteq \mathbb{F}_q^n \) be a rank-metric code with \(d_R(C_v) = \delta \), such that all its codewords are in \(EF(v) \) for some binary vector \(v \). Let \(S \) be the sub-matrix of \(EF(v) \) which corresponds to the dots part of \(EF(v) \). Then the dimension of \(C_v \) is upper bounded by the minimum between the number of dots in the first \(m - \delta + 1 \) rows of \(S \) and the number of dots in the first \(t - \delta + 1 \) columns of \(S \).

Constructions for codes which attain the bound of Theorem 1 for most important cases are given in [4]. Examples are given in the following table (see [4] for details):

\(q \)	\(n \)	\(k \)	\(d_s \)	\(C \)
2	6	3	4	71
2	7	3	4	289
2	8	4	4	4573

III. ERROR-CORRECTING PROJECTIVE SPACE CODES

Let \(C \subseteq \mathcal{G}_q(n, k) \) with \(d_s(C) = 2\delta \). Let \(Q \) be an \((n-1) \)-dimensional subspace of \(\mathbb{F}_q^n \) and \(v \in \mathbb{F}_q^n \) such that \(v \not\in Q \). Let \(C' = C_1 \cup C_v \), where \(C_1 = \{c \subseteq C : c \subseteq Q\} \) and \(C_v = \{c \cap Q : c \subseteq \mathcal{C}, v \subseteq c\} \).

Lemma 2. \(C' \subseteq \mathcal{P}_q(n-1) \) and \(d_s(C') = 2\delta - 1 \).

By applying this puncturing method with the 7-dimensional subspace \(Q \) whose generator matrix is
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}
\]
and the vector \(v = 10000001 \), on the code with size 4573, and minimum distance 4, in \(\mathcal{G}_8(8, 4) \), we were able to obtain a code with minimum distance 3 and size 573 in \(\mathcal{P}_2(7) \).

References

[1] T. Etzion and N. Silberstein, Error-correcting codes in projective space via rank-metric codes and Ferrers diagrams, in preparation.

[2] E. M. Gabidulin, Theory of codes with maximum rank distance, Problems on Inform. Trans., 21(1):1-12, Jan.1985.

[3] M. Gadouleau and Z. Yan, On the connection between optimal constant-rate codes and optimal constant-dimension codes, 2008, available at http://arxiv.org/abs/0803.2262

[4] R.Koetter and F.R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, to appear.

[5] N. Silberstein, Coding theory in projective space, proposal, 2008, available at http://arxiv.org/abs/0805.3528

[6] D. Silva, F. R. Kschischang, and R. Koetter, A rank-metric approach to error control in random network coding, ITW, Bergen, Norway, pages 73-79, July 1-6, 2007.