The evolutionary history of ACE2 usage within the coronavirus subgenus *Sarbecovirus*

Wells, H.L.1,2,*; Letko, M.1,4; Lasso, G.5; Ssebide, B.6; Nziza, J.6; Byarugaba, D.K.7,8; Navarrete-Macias1, I;
Liang, E1; Cranfield, M.9,10; Han, B.A11; Tingley, M.W.12; Diuk-Wasser, M1; Goldstein, T9; Johnson, C.K9;
Mazet, J9; Chandran, K.5; Munster, V.13; Gilardi, K.6,9; Anthony, S.1,2,13,*

1. Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
2. Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
3. Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
4. Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
5. Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
6. Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
7. Makerere University Walter Reed Project, Kampala, Uganda
8. Makerere University, College of Veterinary Medicine, Kampala, Uganda
9. One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, California, USA
10. Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
11. Cary Institute of Ecosystem Studies, Millbrook, New York, USA
12. Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
13. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA

* Co-corresponding authors. Email: hlw2124@cumc.columbia.edu, sja2127@cumc.columbia.edu
Abstract

SARS-CoV-1 and SARS-CoV-2 are not phylogenetically closely related; however, both use the ACE2 receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three novel sarbecoviruses from Rwanda and Uganda which are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is most likely due to recombination. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the progenitor of SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario; and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2, and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions including Africa, where these viruses have only recently been discovered.
Introduction

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China and its rapid spread around the globe demonstrate that coronaviruses (CoVs) from wildlife remain an urgent threat to global public health and economic stability. In particular, coronaviruses from the subgenus Sarbecovirus (which includes SARS-CoV-2, SARS-CoV-1, numerous bat viruses, and a small number of pangolin viruses) [1] are considered to be a high-risk group for potential emergence. As both sarbecoviruses that have caused human disease (SARS-CoV-1 and -2) use angiotensin-converting enzyme 2 (ACE2) as their cellular receptor [2,3], the evolution of this trait is of particular importance for understanding the emergence pathway for sarbecoviruses. Bat SARS-like coronavirus Rp3 (GenBank accession DQ071615), a phylogenetically close relative of SARS-CoV-1, is unable to bind human ACE2 (hACE2) in vitro [4]. In contrast, another close relative of SARS-CoV-1, bat SARS-like coronavirus WIV1 (GenBank accession KF367457) was shown to have the capacity to bind hACE2 [5]. A number of other SARS-CoV-1-like viruses have also been tested for the ability to utilize hACE2 [6,7], and comparison of their spike gene sequences shows that viruses that are unable to utilize hACE2 unanimously have one or two deletions in their RBDs that make them structurally very different than those that do use hACE2 [7]. As all of these viruses are otherwise closely phylogenetically related, the evolutionary mechanism explaining this variation in ACE2 usage among sarbecoviruses has thus far been unclear.

Because of the diversity of sarbecoviruses that have been sequenced to date from Chinese horseshoe bats (Rhinolophidae), this family of bats is thought to be the primary natural reservoir [5,6,8–10]. Rhinolophilid bats are also considered to be the source of the progenitor virus to SARS-CoV-1, as several viruses with genetic regions with high identity to SARS-CoV-1 have been sequenced from rhinolophilid bat samples, although none of these bat viruses are completely identical to SARS-CoV-1 across the entire genome [6,11]. It is hypothesized that SARS-CoV-1 obtained genomic regions from different strains of bat SARS-1-like CoVs in or near Yunnan Province through recombination before spilling over into humans.
In particular, one region of SARS-CoV-1 that is known to have a recombinant origin is the spike gene, as a breakpoint has been detected at the junction of ORF1b and the spike [11,13]. The SARS-CoV spike is genomically very different from other viruses in the same clade that have large deletions in the receptor binding domain (RBD) and are unable to use hACE2. The exact minor parent that contributed the recombinant region is still unknown, but it was previously hypothesized that the recombination occurred with a yet undiscovered lineage of sarbecoviruses and that this event contributed strongly to its potential for emergence [11,14]. Recombination has also been shown within the spike genes of other CoVs that have spilled over into humans and domestic animals and is potentially an important driver of emergence for all coronaviruses [15–20].

In order for CoVs to recombine, they must first have the opportunity to do so by sharing overlapping geographic ranges, host species tropism, and cell and tissue tropism. Sarbecoviruses in bats tend to phylogenetically cluster according to the geographic region in which they were found [6,21]. Yu et. al showed that there are three lineages of SARS-CoV-1-like viruses: lineage 1 from southwestern China (Yunnan, Guizhou, and Guangxi, and including SARS-CoV-1), lineage 2 from other southern regions (Guangdong, Hubei, Hong Kong, and Zhejiang), and lineage 3 from central and northern regions (Hubei, Henan, Shanxi, Shaanxi, Hebei, and Jilin) [21]. Studies in Europe and Africa have shown that there are distinct sarbecovirus clades in each of these regions as well [22–27]. Sarbecoviruses appear to switch easily among bat hosts of co-occurring *Rhinolophus* species [28,29] but appear to rarely occupy more than one geographic area, despite the fact that some of these bat species have widespread distributions across China.

Shortly after the emergence of SARS-CoV-2, Zhou et al. showed a high degree of homology across the genome between a bat virus (RaTG13) sampled from Yunnan Province in 2013 and SARS-CoV-2 [3]. RaTG13 has also been shown to bind hACE2, although with decreased affinity compared to SARS-CoV-2 [30]. Subsequently, seven full- or near full-length SARS-CoV-2-like viruses were published that had
been sampled from Malayan pangolins (*Manis javanica*) in 2017 and 2019 [31,32]. In addition, the most recently described bat virus (RmYN02) is even more closely related to SARS-CoV-2 than RaTG13 and was also found in Yunnan Province [33]. These viruses together with SARS-CoV-2 form a fourth phylogenetic lineage (“lineage 4”) that is distinct from all other lineages of sarbecoviruses despite having been detected in the same geographic regions as lineage 1. This is inconsistent with the previously observed pattern of geographic concordance with phylogeny. SARS-CoV-2 was isolated first from people in Hubei Province and most of the pangolin viruses were isolated from animals sampled in Guangdong, neither of which are lineage 1 provinces. However, the true geographic origins of these viruses are unknown as it is possible they were anthropogenically transported to the regions in which they were detected. For example, the Malayan pangolin (*Manis javanica*) has a natural range that reaches southwestern China (Yunnan Province) at its northernmost edge and extends further south into Myanmar, Lao PDR, Thailand, and Vietnam [34]. So, if they were naturally infected (as opposed to infection via wildlife trade), the infection was potentially not acquired from Guangdong Province. Similarly, SARS-CoV-2 cannot be guaranteed to have emerged from bats in Hubei Province, as humans are highly mobile and the exact spillover event was not observed. If the clade containing SARS-CoV-2 and its close relatives is indeed endemic in animals in Yunnan and the nearby Southeast Asian regions as suggested by the presence of RaTG13, RmYN02, and the natural range of the Malayan pangolin, whatever mechanism is facilitating the biogeographical concordance of lineages 1, 2 and 3 within China appears to no longer apply for the biogeography of lineage 4, since they all appear to overlap in and around Yunnan Province.

Here, we report a series of observations that together suggest that SARS-CoV-1 and its close relatives gained the ability to utilize ACE2 through a recombination event that happened between the progenitor of SARS-CoV-1 and a lineage 4 virus closely related to SARS-CoV-2, which could only have occurred with the lineages occupying the same geographic and host space. Viruses related to SARS-CoV-1 that cannot use hACE2 appear to have evolutionarily lost this trait after deletions that arose in the RBD. We also report three full-length genomes of sarbecoviruses from Rwanda and Uganda and demonstrate that the
RBDs of these viruses are genetically intermediate between viruses that use hACE2 and those that do not. Accordingly, we also investigate the potential for these viruses to utilize hACE2 in vitro. Together, these findings help illuminate the evolutionary history of ACE2 usage within sarbecoviruses and provide insight into identifying their risk of emergence in the future. We also propose a mechanism that could explain the pattern of phylogeography across lineages 1, 2, and 3, and why lineage 4 viruses (including SARS-CoV-2 and its relatives) do not adhere to this pattern.

Results

Screening of bat samples from Africa as part of the USAID-PREDICT project resulted in the identification of three novel bat sarbecoviruses with RBDs that appear to be intermediate to those of ACE2-using viruses and non-ACE2-using viruses, as they have one of the two major deletions at the ACE2 interface. All three are closely related to each other, as two viruses sequenced from bats in Uganda (PREDICT_PDF-2370 and PREDICT_PDF-2386) are nearly identical to each other and the third from Rwanda (PREDICT_PRD-0038) shares 99% overall nucleotide identity with the viruses from Uganda. Each was most closely related to the previously reported SARS-related coronavirus BtKY72 (GenBank accession KY352407) found in bats in Kenya [27]. Each shared ~76% overall identity with SARS-CoV-1 and ~74% overall identity with SARS-CoV-2. Phylogenetically, they lie within a clade that is between SARS-CoV-1 and SARS-CoV-2 and cluster with BtKY72 and bat coronavirus BM48_21 from Bulgaria (GenBank accession GU190215) [24]. The host species of all three viruses could not be definitively identified in the field or in the lab but are all genetically identical. They may represent a cryptic species, as the mitochondrial sequences are ~94% identical with *Rhinolophus ferrumequinum* in the cytochrome oxidase I gene (COI) and ~96% identical with *Rhinolophus clivosus* in the cytochrome b (cytb) gene. Sequences of COI and and cytb have been deposited in GenBank.

In order to understand the evolutionary history of these viruses within the context of previously sequenced sarbecoviruses from elsewhere in the world, we first constructed a phylogenetic tree of the
RNA-dependent RNA polymerase (RdRp) gene (also known as nsp12). Additionally, we accounted for the geographic origin of each virus as well as the host species in which each was identified by illustrating these traits on the phylogeny (Figure 1). Using this tree, we observe the same geographic pattern of concordance reported by Yu et al [21], where viruses in each lineage show a striking pattern of fidelity with particular geographic regions within China. The viruses from Africa and Europe form a distinct phylogenetic cluster, as would be expected with this pattern of phylogeography. Notably, SARS-CoV-2 does not lie within the clade of bat sarbecoviruses that have been detected in bats in China but rather lies outside an additional clade that contains viruses in bats found in Africa and eastern Europe. The discovery of the “lineage 4” clade containing SARS-CoV-2 and related viruses in pangolins and bats is a deviation from the geographic patterns observed for other sarbecoviruses. RaTG13 and RmYN02 were found in the same geographic region as lineage 1 viruses (including SARS-CoV-1), yet forms a completely distinct phylogenetic branch.

To more specifically investigate the evolutionary history of ACE2 usage, we built a second phylogenetic tree using only the RBD of the spike gene (Figure 2). This region was selected because the spike protein mediates cell entry and because previous reports showed that SARS-CoV-1 and SARS-CoV-2 both use hACE2, despite being distantly related in the RdRp (Figure 1) [2,3]. Within the RBD region of the genome, SARS-CoV-1 and all ACE2-using viruses are much more closely related to SARS-CoV-2 than to other lineage 1 viruses (Figure 2). Interestingly, bat virus RmYN02 is no longer associated with SARS-CoV-2 in the RBD and is instead within the clade of non-ACE2-using viruses. We also found that within the RBD, ACE2-using viruses and non-ACE2-using viruses are perfectly phylogenetically separated. The viruses from Africa sequenced here form a distinct clade that is intermediate between the ACE2-using and non-ACE2-using groups, but appears more closely related to the ACE2-using group.

While these viruses from Africa are slightly more similar to the ACE2-using group, they differ somewhat in amino acid sequence from the ACE2-users at the binding interface, including a small deletion in the 5’
end (Figure 3). In order to assess the ability for these sarbecoviruses to use hACE2, we performed in vitro experiments in which we replaced the RBD of SARS-CoV-1 with the RBD from the Uganda (PDF-2370, PDF-2386) and Rwanda viruses (PRD-0038), as done previously [7]. Single-cycle Vesicular Stomatitis Virus (VSV) reporter particles containing the recombinant SARS-Uganda and SARS-Rwanda spike proteins were then used to infect BHK cells expressing hACE2. While VSV-SARS-CoV-1 showed efficient usage of hACE2, VSV-Uganda and VSV-Rwanda did not (Figure 4), indicating that they are not able to use hACE2 as a cellular receptor.

In order to elucidate the potential amino acid variations that hamper hACE2 binding for the viruses from Africa, we modeled the RBD domain of SARS-CoV found in Uganda (PREDICT_PDF-2370, PREDICT_PDF-2386) and Rwanda (PREDICT_PRD-0038). Unlike other non-hACE2 binders, homology modeling suggests that the RBDs of these viruses from Africa are structurally similar to SARS-CoV-1 and SARS-CoV-2 (Figure 5A). However, modeling the interaction with hACE2 reveals amino acid differences at key interfacial positions that can help explain the lack of interaction observed for rVSV-Uganda and rVSV-Rwanda viruses (Figure 5B-C). There are four regions of the RBD that lie within 10Å of the interface with hACE2, one of which is the receptor binding ridge (SARS-CoV-1 residues 459-477) which is critical for hACE2 binding [30,35]. For the purpose of this study, we have designated the remaining segments as regions 1 (residues 390-408), 2 (residues 426-443), and 3 (residues 478-491) (Figure 4).

Sarbecoviruses from Africa studied here have a 2-3 amino acid deletion (SARS-CoV-1 residues 434-436) in region 2 (Figure 3). As many of the residues in this region make close contact with hACE2 (<5Å), it is possible that this contributes to the disruption of hACE2 binding. One of these residues, Y436, establishes hydrogen bonds with hACE residues D38 and Q42 in both SARS-CoV-1 and SARS-CoV2 (Figure 5C). Notably, all other non-hACE2 binders also have deletions in residues 432-436.
Moreover, ACE2 contains two hotspots (K31 and K353) that are crucial targets for binding by SARS-RBDs and amino acid variations in the RBD sequence enclosing these ACE2 hotspots have been shown to shape viral infectivity, pathogenesis, and determine the host range of SARS-CoV-1 [36–38]. All sarbecoviruses from Africa contain a Lys (K) at SARS-CoV-1 position 479 within region 3 (positions 481 and 482 for Uganda and Rwanda, respectively), which makes contact with these ACE2 hotspots (as compared to N479 or Q493 in SARS-CoV-1 and 2 respectively; Figure 4). K479 decreases binding affinity by more than 20-fold in SARS-CoV-1 [39]. The negative contribution of K479 in region 3 is likely due to unfavorable electrostatic contributions with ACE2 hotspot K31 (Figure 5C) [37,40]. On the other hand, SARS-CoV-1 residue T487 (N501 in SARS-CoV-2) is located near hotspot K353 and has a valine in the viruses from Africa (residues 489 and 490) (Figure 3). As with residue 479, the amino acid identity at position 487 contributes to the enhanced hACE2 binding observed in SARS-CoV-2 [37,38,40]. The presence of a hydrophobic residue at position 487, not previously observed in any ACE2 binding sarbecovirus (Figure 3), might lead to a local rearrangement at the K353 hotspot that hinders hACE2 binding. Indeed, most non-ACE2 binders have a Val (V) in SARS-CoV-1 position 487 (Figure 3).

Finally, the receptor binding ridge, which is conspicuously absent from all non-ACE2 binders, is present in the sarbecoviruses from Africa but has amino acid variations that differ significantly from both SARS-CoV-1 and SARS-CoV-2 (Figure 3). Changes in the structure of this ridge contribute to increased binding affinity of SARS-CoV-2, as a Pro-Pro-Ala (PPA) motif in SARS-CoV-1 (residues 469-471) replaced with Gly-Val-Glu-Gly (GVEG) in SARS-CoV-2 results in a more compact loop and better binding with hACE2 [30]. Changes within this ridge may be negatively contributing to hACE2 binding of viruses from Africa, which have Ser-Thr-Ser-Gln (STSQ) or Ser-Iso-Ser-Gln (SISQ) in this position (Figure 3 and 5C).

Altogether, our results suggest that these viruses from Africa do not utilize hACE2 and provide additional structural evidence that aids in distinguishing viruses which bind hACE2 from those that do not. This also demonstrates that hACE2 usage within sarbecoviruses is restricted to those viruses within the SARS-CoV-1 and SARS-CoV-2 clade in the RBD (Figure 2).
In order to evaluate an alternative scenario where hACE2 usage arose in SARS-CoV-1 and SARS-CoV-2 clades independently via convergent evolution, we compared the topology of the RdRp phylogeny with the amino acid sequences of the interfacial residues within the RBD (Figure 3). In theory, if there was no recombination between these two regions, we would expect both regions to follow the same evolutionary trajectory. From this perspective, the deletions in region 2 and the receptor binding ridge of the RBD appear to have been lost in a stepwise fashion. The small deletion in region 2 arose first, before the diversification of clades in Africa and Europe (Figure 3). The larger deletion in the receptor binding ridge, not present in known sequences from Africa and Europe, likely arose second, but before the diversification of lineages 1, 2, and 3 (Figure 3). If this were the case, since SARS-CoV-1 and all ACE2-using lineage 1 viruses are nested within a clade of non-ACE2-using viruses with deletions in region 2 and the receptor binding ridge, reinsertion of these deleted regions would be required to regain ACE2 usage. Further, RmYN02 is within the lineage 4 clade of ACE2-using viruses in RdRp but its RBD sequence contains both deletions (Figure 3). Without recombination, these deletions would have had to be independently lost from exactly the same regions as in the lineage 1 viruses.

Finally, to look for evidence of selective pressure in the RBD, we also performed selection analysis on the spike protein of ACE2-using and non-ACE2-using sarbecoviruses independently using the codeml package in PAML [41]. We found strong evidence that many residues in S1, specifically those that are interfacial to ACE2 in the RBD, are undergoing positive selection in the ACE2-using group, including a total of 16 residues in the interfacial region (Figure 6, Table 2). Notably, all five residues that were implicated in the increased binding affinity of SARS-CoV-2 to hACE2 over SARS-CoV-1 show evidence of positive selection (Table 2) [42]. In the non-ACE2-using group, however, most of these same residues are not positively selected and appear to be under strong purifying selection instead (Figure 6). Only two sites in this same region appear to be under positive selection for non-ACE2-users, neither of which are in homologous positions with positively selected sites in the ACE2-using group (Figure 3). Almost all
signatures of positive selection are restricted to S1, as the vast majority of sites in the S2 region are not
under positive selection in either group.

Discussion

ACE2 usage in lineage 1 viruses was acquired via recombination

At first glance, hACE2 usage does not appear to be phylogenetically conserved among sarbecoviruses,
especially since many phylogenies are built using RdRp. This naturally leads to the hypothesis that
hACE2 usage arose independently in SARS-CoV-1 and SARS-CoV-2 via convergent evolution. This has
been suggested previously for another ACE2-using human coronavirus, NL63 [43]. However, a
phylogeny constructed using the RBD perfectly separates viruses that have been shown to utilize ACE2
from those that do not (Figure 2). Viruses that cannot utilize ACE2 have significant differences in their
RBDs, including large deletions in critical interfacial residues and low amino acid identity with viruses
that do use ACE2 (Figure 3). Notably, in addition to the large deletions, viruses that cannot use ACE2
deviate considerably at the interacting surface, including positions that play fundamental roles dictating
binding and cross-species transmission (Figure 3) [30,36,39,42]. It is unknown whether viruses that
cannot use hACE2 are utilizing bat ACE2 or an entirely different receptor altogether.

The difference in topology, specifically in the positioning of ACE2-using lineage 1 viruses, between
RdRp and RBD trees is most parsimoniously explained by a recombination event between a recent
ancestor of the ACE2-using lineage 1 viruses (including SARS-CoV-1) and a relative of SARS-CoV-2.
As the rest of the lineages of viruses remain in the same orientation between the two trees and only the
SARS-CoV-1 and ACE2-using relatives change positions, an ancestor of all ACE2-using lineage 1
viruses is most likely the recombinant virus. There are two groups of closely related RBD sequences in
the viruses that change positions (Figure 3), suggesting there may have been at least two separate
recombination events in this clade. Alternatively, it is possible there was a single recombination event that
was long enough ago such that there has been noticeable sequence divergence between the two groups.
The lack of monophyly among these recombinant viruses in RdRp can be explained by incomplete lineage sorting, where the population of the common ancestor of these viruses continued to evolve alongside the recombinant viruses.

This finding is also supported by numerous studies that have provided evidence that SARS-CoV-1 is recombinant and SARS-CoV-2 is not [3,11,13,44]. We also demonstrate that recombination is possible given that viruses related to SARS-CoV-1 and -2 appear to share both geographic and host space in southwestern China and in *R. sinicus* and *R. affinis* bats. Highlighting that this previously known recombination event occurred with a previously unknown group of viruses that are related to SARS-CoV-2 is an important finding of this study and demonstrates that recombination is an important driver of spillover for sarbecoviruses.

A series of deletion events most likely resulted in the loss of ACE2 usage

Assuming the RdRp tree represents the true evolutionary history of these viruses, sequences without the deletions in the RBD most likely represent the ancestral state, as the SARS-CoV-2 lineage 4 viruses at the base of the tree do not show this trait. Alternatively, it is possible that the deletion state is the ancestral state and insertions were acquired during the evolution of the SARS-CoV-2 lineage; however, the only virus in the subgenus *Hibeovirus*, the next closest virus phylogenetically to *Sarbecovirus*, does not show the deletion trait (GenBank accession KF636752, Bat Hp-betacoronavirus/Zhejiang2013, not shown).

Further, the viruses from bats in Africa and Europe have one of the two deletions, which may indicate that these are descendant from an evolutionary intermediate and support a stepwise deletion hypothesis. Since ACE2-using lineage 1 viruses including SARS-CoV-1 are nested within a clade of viruses that all have both deletions, this implies that both deletions arose before the diversification of lineage 1, 2, and 3 viruses (Figure 3). The smaller deletion in the receptor binding ridge was likely acquired earliest, before the diversification of the clades into Africa and Europe, since it is shared by all clades with the exception of SARS-CoV-2 lineage 4 at the base of the tree (Figure 3). These large deletions in the RBD-hACE2
interface also suggest that non-ACE2-using viruses, including lineages 1, 2, 3, and viruses from Africa and Europe, are using at least one receptor other than ACE2 [7].

ACE2 usage is not well explained by convergent evolution

Under a hypothetical convergent evolution scenario, we would expect identical (or similar) residues at key sites with structural or functional roles but not significant overall pairwise identity. We would also expect to see evidence of selective pressure at these key sites that promotes the convergence to a particular phenotype. Our results indicate that there is strong evidence of positive selection within the receptor binding domain of ACE2-using viruses, but that this pressure is much less strong for non-ACE2-using viruses. Although there is evidence of positive selection in this region for non-ACE2-users, many of the residues in between these positively selected sites are strongly negatively selected, including critical residues in the receptor binding ridge. We also highlight that the bat virus RmYN02, which is highly similar to SARS-CoV-2 within the RdRp, actually has a RBD with the deletion trait associated with the inability to use hACE2. If selective pressure was converging toward ACE2 usage, it would not have been advantageous for a lineage 4 virus (and potentially ACE2-using, given its relation to SARS-CoV-2) to lose this trait.

It is also unclear how this pressure for convergence would have arisen without these viruses switching to a novel host [14]. Both the ACE2-using viruses and non-ACE2-using viruses in lineage 1 in the RdRp tree are found within the same hosts, mostly bats belonging to the species R. sinicus and R. affinis, leaving the source of the positive selection pressure driving convergent evolution a mystery. While switching hosts and subsequently evolving via adaptation to the new host would be a potential case for the convergent evolution hypothesis, the fact that these viruses a) do not seem to be specifically adapted to any one particular species of bat given that we see nearly identical viruses in R. affinis and R. sinicus bat hosts, and b) have probably not undergone novel host shifts outside these bat species in recent history, would suggest that this hypothesis is at best unsupported. Host shifts to civets and pangolins have
occurred; however, they are currently not known to be the progenitor of either SARS-CoV-1 or SARS-CoV-2 [12,32]. The most current knowledge suggests that SARS-CoV-1 in particular could have emerged directly from bats, and that civets may not have been a required step in the emergence pathway [5,12].

Not only would this selective pressure on a multitude of negatively selected sites be required in order for ACE2 usage to be regained within lineage 1, but also large insertions would have had to be re-acquired in precisely the same regions from which they were lost within the RBD. The most parsimonious argument is that ACE2-using lineage 1 viruses are descendent from at least one recombinant virus and that this recombination event explains the non-monophyletic pattern of ACE2 usage within the Sarbecovirus subgenus. In contrast, human coronavirus NL63 is an alphacoronavirus that is also an hACE2 user but most likely represents a true case of convergent evolution. The RBD of SARS-CoV-1 and SARS-CoV-2 are structurally identical, while NL63 has a different structural fold, suggesting that they are not evolutionarily homologous [43]. Nonetheless, NL63 also binds to hACE2 in the same region – suggesting all of the ACE2-using viruses have converged towards this interaction mode [43].

Differences in receptor usage within sarbecoviruses would explain observed phylogeographic patterns

Lineage 1 and SARS-CoV-2-like bat viruses appear to occupy the same geographic space but are quite distantly phylogenetically related, which is a notable deviation from previous observations that show sarbecovirus phylogeny mirrors geography. One hypothesis for this geographic specificity is that immune cross-reactivity between closely related viruses within hosts results in indirect competitive exclusion and priority effects. Antibodies against the spike protein are critical components of the immune response against CoVs [45–47]. Hosts that have been infected by one sarbecovirus may be immunologically resistant to infection from a related sarbecovirus, leading to geographic exclusion of closely related strains and a pattern of evolution that is concordant with geography (Figure 1). It is unlikely that this pattern is caused by differing competencies amongst Rhinolophus bats, as host-switching of these viruses appears to be common and many of these bat species are not geographically limited to the areas in which
the different virus lineages are found. The finding of an additional clade of SARS-CoV-2-like viruses circulating in the same species and the same geographic location may suggest a release in the competitive interactions maintaining geographic specificity. This would preclude recognition by cross-reactive antibodies, such as those produced against the spike protein, and may be evolutionarily advantageous for the recombinant virus. Furthermore, if these two groups of viruses utilize different receptors, antibodies against one would be ineffective at excluding the other, potentially allowing both viral groups to infect the same hosts. If competitive release has indeed occurred among these viruses, it is likely that the SARS-CoV-2 clade is potentially much more diverse and geographically widespread than currently understood.

Implications for future research

Here, we highlight the critical need for further surveillance specifically in southernwestern China and surrounding regions in southeast Asia given that all hACE2-using bat viruses discovered to date were isolated from bats in Yunnan Province. Southeast Asia and parts of Europe and Africa have been previously identified as hotspots for sarbecoviruses [48], but increased surveillance will help characterize the true range of ACE2-using sarbecoviruses in particular. The receptors for viruses from northern China and other regions such as Europe and Africa remain unknown, and may not pose a threat to human health if they cannot utilize hACE2. It is unclear whether the lack of hACE2 binding for sarbecoviruses from Uganda and Rwanda is due to the small deletion in region 2 or to the numerous amino acid changes in other interfacial residues. It is possible that sarbecoviruses in Africa with different residues in these interfacial regions could potentially still use hACE2. It is also unknown whether the sarbecoviruses from Africa in particular use a divergent form of bat ACE2 or a different receptor altogether, or whether sarbecoviruses with the potential to utilize hACE2 without the region 2 deletion have also diversified into Africa or Europe. If competitive release between groups of viruses utilizing different receptors has indeed occurred, further surveillance is needed to determine the true extent of lineage 4 viruses. In addition, experimental evidence examining viral competition in vitro to support a competitive release hypothesis should be prioritized.
This study highlights that hACE2 usage is unpredictable using phylogenetic proximity to SARS-CoV-1 or SARS-CoV-2 in the RdRp gene. This is due to vastly different evolutionary histories in different parts of the viral genome due to recombination. Phylogenetic relatedness in the RdRp gene is not an appropriate proxy for pandemic potential among CoVs (the ‘nearest neighbor’ hypothesis). By extension, the consensus PCR assays most commonly used for surveillance and discovery, which mostly generate a small fragment of sequence from within this gene [49–51], are insufficient to predict hACE2 usage. Using phylogenetic distance in RdRp as a quantitative metric to predict the potential for emergence is tempting because of the large amount of data available, but this approach is unlikely to capture the biological underpinnings of emergence potential compared to more robust data sources such as full viral genome sequences. The current collection of full-length sarbecovirus genomes is heavily weighted toward China and Rhinolophus hosts, despite evidence of sarbecoviruses prevalent outside of China (such as in Africa) and in other mammalian hosts (such as pangolins). Further, investigations into determinants of pathogenicity and transmission for CoVs and the genomic signatures of such features will be an important step towards the prediction of viruses with spillover potential, and distinguishing those with pandemic potential.

Finally, these findings reiterate the importance of recombination as a driver of spillover and emergence, particularly in the spike gene. If SARS-CoV-1 gained the ability to use hACE2 through recombination, other non-ACE2-using viruses could become human health threats through recombination as well. We know that recombination occurs much more frequently than just this single event with SARS-CoV-1, as the RdRp phylogeny does not mirror host phylogeny and the RBD tree has significantly different topology across all geographic lineages. In addition, the bat virus RmYN02 appears to be recombinant in the opposite direction (lineage 4 backbone with lineage 1 RBD) [33], again supporting the hypothesis that recombination occurs between these lineages. Our analyses support two hypotheses: first, that sarbecoviruses frequently undergo recombination in this region of the genome, resulting in this pattern,
and second, that sarbecoviruses are commonly shared amongst multiple host species, resulting in a lack of concordance with host species phylogeny and a reasonable opportunity for coinfection and recombination. Bats within the family *Rhinolophidae* have also repeatedly shown evidence of introgression between species, supporting the hypothesis that many species in this family have close contact with one another [52–57]. Given that we have shown that hACE2-using viruses are co-occurring with a large diversity of non-ACE2-using viruses in Yunnan Province and in a similar host landscape, recombination poses a significant threat to the emergence of novel sarbecoviruses [6].

With recombination constituting such an important variable in the emergence of novel CoVs, understanding the genetic and ecological determinants of this process is a critical avenue for future research. Here we have shown not only that recombination was involved in the emergence of SARS-CoV-1, but also demonstrated how knowledge of the evolutionary history of these viruses can be used to infer the potential for other viruses to spillover and emerge. Understanding this evolutionary process is highly dependent on factors influencing viral co-occurrence and recombination, such as the geographic range of these viruses and their bat hosts, competitive interactions with co-circulating viruses within the same hosts, and the range of host species these viruses are able to infect. Our understanding depends on the data we have available - the importance of generating more data for such investigations cannot be understated. Investing effort now into further sequencing these viruses and describing the mechanisms that underpin their circulation and capacity for spillover will have important payoffs for predicting and preventing sarbecovirus pandemics in the future.

Methods

Consensus PCR and sequencing of sarbecoviruses from Africa

Oral swabs, rectal swabs, whole blood, and urine samples collected from bats sampled and released in Uganda and Rwanda were assayed for CoVs using consensus PCR as previously described [20]. All sampling was conducted under UC Davis IACUC Protocol No. 16048. Bands of the expected size were
purified and confirmed positive by Sanger sequencing and the PCR fragments were deposited to GenBank (accessions). Samples were subsequently deep sequenced using the Illumina HiSeq platform and reads were bioinformatically de novo assembled using MEGAHIT v1.2.8 [58] after quality control steps and subtraction of host reads using Bowtie2 v2.3.5. Contigs were aligned to a reference sequence and any overlaps or gaps were confirmed with iterative local alignment using Bowtie2. The full genome sequences are deposited in GenBank. Cytochrome b and cytochrome oxidase I host sequences were also extracted bioinformatically by mapping reads to *Rhinolophus ferrumequinum* reference genes using Bowtie2 and deposited in GenBank.

Phylogenetic reconstruction

All publicly available full genome sarbecovirus sequences were collected from GenBank and SARS-CoV-2, pangolin virus genomes, RaTG13, and RmYN02 were downloaded from GISAID (Table 1). All relevant metadata (geographic origin, host species, date of collection) was retrieved from GenBank or the corresponding publications. The RdRp gene (nucleotides 13,431 to 16,222 based on SARS-CoV-2 sequence EPI_ISL_402125 from GISAID) and RBD region (nucleotides 22,506 to 23,174 based on the same SARS-CoV-2 reference genome) were extracted and aligned using ClustalW. Trees were built and statistically supported using BEAST v2.6.2 with a Yule process prior, relaxed molecular clock and 10 million MCMC samples.

Cell culture and transfection

BHK and 293T cells were obtained from the American Type Culture Collection and maintained in Dulbecco’s modified Eagle’s medium (DMEM; Sigma–Aldrich) supplemented with 10% fetal bovine serum (FBS), penicillin/streptomycin and L-glutamine. BHK cells were seeded and transfected the next day with 100ng of plasmid encoding hACE2 or an empty vector using polyethylenimine (Polysciences). VSV plasmids were generated and transfected onto 293T cells to produce seed particles as previously described [7]. CoV spike pseudotypes were generated as described in [59] and transfected onto 293T
cells. After 24h, cells were infected with VSV particles as described in [60], and after 1h of incubating at 37 °C, cells were washed three times and incubated in 2 ml DMEM supplemented with 2% FBS, penicillin/streptomycin and L-glutamine for 48 h. Supernatants were collected and centrifuged at 500g for 5 min, then aliquoted and stored at −80 °C.

Western blots

293T cells transfected with CoV spike pseudotypes (producer cells) were lysed in 1% sodium dodecyl sulfate, 150mM NaCl, 50 mM Tris-HCl and 5 mM EDTA and centrifuged at 14,000g for 20 minutes. Pseudotyped particles were concentrated from producer cell supernatants that were overlaid on a 10% OptiPrep cushion in PBS (Sigma–Aldrich) and centrifuged at 20,000g for 2 h at 4 °C. Lysates and concentrated particles were analysed for FLAG (Sigma–Aldrich; A8592; 1:10,000), GAPDH (Sigma–Aldrich; G8795; 1:10,000) and/or VSV-M (Kerafast; 23H12; 1:5,000) expression on 10% Bis-Tris PAGE gel (Thermo Fisher Scientific).

Cell entry assays

Luciferase-based cell entry assays were performed as described in [7]. For each experiment, the relative light unit for spike pseudotypes was normalized to the plate relative light unit average for the no-spike control, and relative entry was calculated as the fold-entry over the negative control. Three replicates were performed for each CoV pseudotype.

Structural modeling

RBDs were modeled using Modweb [61]. Modeled RBDs were docked to hACE2 by structural superposition to the experimentally determined interaction complex between SARS-CoV-1 RBD and hACE2 (PDB 2ajf) [36] using Chimera [62].

Positive selection analysis
The spike gene (SARS-CoV-2 nucleotides 21,525 to 25,373) was extracted and aligned from full genome sequences separately for ACE2-using and non-ACE2-using groups of viruses (Table 1). Each alignment was analyzed for positive selection using the codeml package within PAML using the M8 model. The Bayes empirical Bayes posterior estimates of the selection coefficient ω with standard errors generated by the M8 model were extracted from the output and plotted. Each estimate is statistically supported with a posterior probability that the selection coefficient ω for the site is greater than 1. If the posterior probability associated with the site was greater than 0.5, the estimate was considered borderline positively selected; greater than 0.9, positively selected; and greater than 0.99, strongly positively selected (Table 2).
Table 1. Full list of sequences and accession numbers used in this study. All accession numbers are from GenBank with the exception of those beginning with EPI_ISL, which are from GISAID. Metadata includes sequencing year, geographic origin, and host species. Group refers to which group, if either, the sequence was included in for positive selection analysis. Group 1 viruses are those with the structure of ACE2-using viruses and group 2 are those with the interfacial residue deletions which do not have the structure for ACE2 binding.

Accession	Name	Date	Country	Host	Group
AY304486	SARS coronavirus SZ3	2003	Guangdong, China	Paguma larvata (civet)	1
AY304488	SARS coronavirus SZ16	2003	Hong Kong, China	Paguma larvata (civet)	1
AY572034	SARS coronavirus civet007	2004	Guangdong, China	Paguma larvata (civet)	1
DQ022305	Bat SARS coronavirus HKU3 1	2005	Hong Kong, China	Rhinolophus sinicus	2
DQ071615	Bat SARS coronavirus Rp3	2004	Guangxi, China	Rhinolophus pearsonii	2
DQ084199	Bat SARS coronavirus HKU3 2	2005	Hong Kong, China	Rhinolophus sinicus	2
DQ084200	Bat SARS coronavirus HKU3 3	2005	Hong Kong, China	Rhinolophus sinicus	2
DQ412042	Bat SARS coronavirus Rf1	2004	Hubei, China	Rhinolophus ferrumequinum	2
DQ412043	Bat SARS coronavirus Rm1	2004	Hubei, China	Rhinolophus macrotis	2
DQ648856	BatCoV/273/2005	2004	Hubei, China	Rhinolophus ferrumequinum	2
DQ648857	BatCoV/279/2005	2004	Hubei, China	Rhinolophus macrotis	2
EPI_ISL_402_125	BetaCoV/Wuhan Hu 1	2019	Hubei, China	human	1
EPI_ISL_402_131	BetaCoV/RaTG13	2013	Yunnan, China	Rhinolophus affinis	1
EPI_ISL_412_977	BetaCoV/RmYN02	2019	Yunnan, China	Rhinolophus malayanus	NA
EPI_ISL_410_538	BetaCoV/P4L	2017	Guangxi, China	Manis javanica (pangolin)	1
EPI_ISL_410_539	BetaCoV/P1E	2017	Guangxi, China	Manis javanica (pangolin)	1
EPI_ISL_410_540	BetaCoV/P5L	2017	Guangxi, China	Manis javanica (pangolin)	1
Accession	Species	Location	Date	Host	betacoronavirus type
------------	--------------------------	-------------------	---------	---------------------------	------------------------
EPI_ISL_410	Bat SARS coronavirus Rs672/2006	Guangxi, China	2017	Manis javanica (pangolin)	NA (incomplete sequence)
EPI_ISL_410	Bat SARS coronavirus HKU3 4	Hong Kong, China	2005	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 5	Hong Kong, China	2005	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 6	Hong Kong, China	2005	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 7	Guangdong, China	2006	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 8	Guangdong, China	2006	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 9	Hong Kong, China	2006	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 10	Hong Kong, China	2006	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 11	Hong Kong, China	2007	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 12	Hong Kong, China	2007	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus HKU3 13	Hong Kong, China	2007	Rhinolophus sinicus	2
EPI_ISL_410	Bat SARS coronavirus BM48 21/BGR/2008	Bulgaria	2008	Rhinolophus blastii	NA
JX993987	Bat coronavirus Rp/Shaanxi2011	Shaanxi, China	2011	Rhinolophus pusillus	2
JX993988	Bat coronavirus Cp/Yunnan	Yunnan, China	2011	Chaerephon plicatus	2
KC881005	Bat SARS-like coronavirus RsSHC014	Yunnan, China	2012	Rhinolophus sinicus	1
KC881006	Bat SARS-like coronavirus Rs3367	Yunnan, China	2012	Rhinolophus sinicus	1
KF294457	SARS related bat coronavirus Longquan 140	Guizhou, China	2012	Rhinolophus monoceros	2
KF367457	Bat SARS-like coronavirus WIV1	Yunnan, China	2012	Rhinolophus sinicus	1
KF569996	Rhinolophus affinis coronavirus LYRa11	Yunnan, China	2011	Rhinolophus affinis	1
KF636752	Bat Hp betacoronavirus/Zhejiang2013	Zhejiang, China	2013	Hipposideros pratti	NA
KJ473811	Bat coronavirus BtRf	Jilin, China	2012	Rhinolophus ferrumequinum	2
Accession	Virus Type	Species	Region	Country	
-----------	---------------------	---------------	-----------	-----------	
KJ473812	Bat coronavirus BtRf	BetaCoV/HeB2013	Hebei, China	Rhinolophus ferrumequinum	
KJ473813	Bat coronavirus BtRf	BetaCoV/SX2013	Shanxi, China	Rhinolophus ferrumequinum	
KJ473814	Bat coronavirus BtRs	BetaCoV/HuB2013	Hebei, China	Rhinolophus sinicus	
KJ473815	Bat coronavirus BtRs	BetaCoV/GX2013	Guangxi, China	Rhinolophus sinicus	
KJ473816	Bat coronavirus BtRs	BetaCoV/YN2013	Yunnan, China	Rhinolophus sinicus	
KP886808	SARS-like coronavirus	YNLF 31C	Yunnan, China	Rhinolophus sinicus	
KP886809	SARS-like coronavirus	YNLF 34C	Yunnan, China	Rhinolophus sinicus	
KT444582	SARS-like coronavirus	WIV16	Yunnan, China	Rhinolophus sinicus	
KU182964	Bat coronavirus JTMC15	Yunnan, China	Rhinolophus sinicus		
KU182963	Bat coronavirus MLHJC35	Jilin, China	Rhinolophus sinicus		
KU973692	SARS related coronavirus	F46	Yunnan, China	Rhinolophus pusillus	
KY352407	Bat SARS-like coronavirus	BK72	Kenya	Rhinolophus sp.	
KY417142	Bat SARS-like coronavirus	As6526	Yunnan, China	Aselliscus stoliczkanus	
KY417143	Bat SARS-like coronavirus	Rs4081	Yunnan, China	Rhinolophus sinicus	
KY417144	Bat SARS-like coronavirus	Rs4084	Yunnan, China	Rhinolophus sinicus	
KY417145	Bat SARS-like coronavirus	Rf4092	Yunnan, China	Rhinolophus ferrumequinum	
KY417146	Bat SARS-like coronavirus	Rs4231	Yunnan, China	Rhinolophus sinicus	
KY417147	Bat SARS-like coronavirus	Rs4237	Yunnan, China	Rhinolophus sinicus	
KY417148	Bat SARS-like coronavirus	Rs4247	Yunnan, China	Rhinolophus sinicus	
KY417149	Bat SARS-like coronavirus	Rs4255	Yunnan, China	Rhinolophus sinicus	
KY417150	Bat SARS-like coronavirus	Rs4874	Yunnan, China	Rhinolophus sinicus	
KY417151	Bat SARS-like coronavirus	Rs7327	Yunnan, China	Rhinolophus sinicus	
KY417152	Bat SARS-like coronavirus	Rs9401	Yunnan, China	Rhinolophus sinicus	
KY770858	Bat coronavirus Anlong 103	Yunnan, China	Rhinolophus sinicus		
KY770859	Bat coronavirus Anlong 112	Yunnan, China	Rhinolophus sinicus		
Accession	Virus Type	Location	Host	Species	
------------	---------------------------	-----------	----------	-----------	
KY770860	Bat coronavirus Jiyuan 84	Henan, China	Rhinolophus ferrumequinum	2	
KY938558	Bat coronavirus 16BO133	South Korea	Rhinolophus ferrumequinum	2	
MG772933	Bat SARS-like coronavirus SL CoVZC45	Zhejiang, China	Rhinolophus sinicus	2	
MG772934	Bat SARS-like coronavirus SL CoVZXC21	Zhejiang, China	Rhinolophus sinicus	2	
MK211374	Bat coronavirus BtRI BetaCoV/SC2018	Sichuan, China	Rhinolophus	2	
MK211375	Bat coronavirus BtRs BetaCoV/YN2018A	Yunnan, China	Rhinolophus affinis	2	
MK211376	Bat coronavirus BtRs BetaCoV/YN2018B	Yunnan, China	Rhinolophus affinis	1	
MK211377	Bat coronavirus BtRs BetaCoV/YN2018C	Yunnan, China	Rhinolophus affinis	2	
MK211378	Bat coronavirus BtRs BetaCoV/YN2018D	Yunnan, China	Rhinolophus affinis	2	
NC_004718	SARS coronavirus	Canada	human	NA	
TBA	PREDICT PDF-2370	Uganda	Rhinolophus sp.	NA	
TBA	PREDICT PDF-2386	Uganda	Rhinolophus sp.	NA	
TBA	PREDICT PRD-0038	Rwanda	Rhinolophus sp.	NA	
Table 2. Residues identified as being under positive selection in the spike gene. Group 1 viruses are those with the structure of ACE2-using viruses and group 2 are those with the interfacial residue deletions which do not have the structure for ACE2 binding. Group 1 residue numbering is relative to SARS-CoV-2 (GISAID accession EPI_ISL_402125) and group 2 residue numbering is relative to bat coronavirus 16BO133 (GenBank accession KY938558). Residues that were also shown to be responsible for increased binding affinity to hACE2 in SARS-CoV-2 are indicated with asterisks in column 2 [42]. The posterior estimate of $\omega \pm$ the standard error from the M8 model in the codeml analysis from PAML is given in column 3. If the posterior probability in column 4 associated with the estimate at that site was greater than 0.5, the estimate was considered borderline positively selected; greater than 0.9, positively selected (indicated with one asterisk); and greater than 0.99, strongly positively selected (indicated with two asterisks).

Group	Residue	Posterior estimate of $\omega \pm$ s.e.	Posterior probability of ω>1
1	18L	1.371 ± 0.321	0.851
1	19T	1.430 ± 0.242	0.915 (*)
1	27A	1.408 ± 0.272	0.888
1	53T	1.294 ± 0.398	0.776
1	66H	1.058 ± 0.501	0.544
1	152W	1.375 ± 0.319	0.857
1	218Q	1.398 ± 0.289	0.881
1	250T	1.248 ± 0.435	0.735
1	252G	1.267 ± 0.406	0.740
1	255S	1.425 ± 0.249	0.908 (*)
1	256S	1.402 ± 0.282	0.883
1	344E	1.303 ± 0.385	0.780
1	459N	1.480 ± 0.135	0.971 (*)
1	440N	1.360 ± 0.337	0.841
1	441L	1.345 ± 0.352	0.826
1	444K	1.032 ± 0.506	0.520
1	445V	1.499 ± 0.055	0.997 (**)
1	452L	1.361 ± 0.328	0.838
1	455L*	1.387 ± 0.310	0.873
1	458K	1.337 ± 0.349	0.811
1	459S	1.419 ± 0.259	0.902 (*)
1	484E	1.466 ± 0.170	0.955 (*)
1	486F*	1.440 ± 0.223	0.925 (*)
1	490F	1.492 ± 0.094	0.987 (*)
---	-----	------------	-------
1	493Q*	1.495 ± 0.081	0.990 (**)
1	494S*	1.484 ± 0.121	0.978 (*)
1	498Q	1.328 ± 0.362	0.805
1	501N*	1.467 ± 0.169	0.957 (*)
1	554E	1.022 ± 0.500	0.502
1	642V	1.231 ± 0.430	0.705
1	679N	1.353 ± 0.346	0.836
1	688A	1.044 ± 0.513	0.538
2	143G	1.465 ± 0.154	0.950 (*)
2	147T	1.455 ± 0.177	0.938 (*)
2	153I	1.197 ± 0.403	0.624
2	214A	1.444 ± 0.196	0.922 (*)
2	429V	1.500 ± 0.013	1.000 (**)
2	431S	1.463 ± 0.170	0.941 (*)
2	499P	1.494 ± 0.065	0.990 (**)
2	521D	1.168 ± 0.409	0.587
2	594P	1.407 ± 0.249	0.873
2	710L	1.325 ± 0.342	0.783
Figures

Figure 1: Phylogenetic tree of the RNA dependent RNA polymerase (RdRp) gene (nsp12) and associated geographic origin and host species for sarbecoviruses. Colors of clade bars represent the different geographic lineages. Lineage 1 is shown in blue, lineage 2 in green, and lineage 3 in orange. The clade of viruses from Africa and Europe is shown in purple. The putative “lineage 4” containing SARS-CoV-2 is also shown in blue at the bottom of the tree since the sequences are from the same regions as lineage 1 viruses. The geographic origin of each virus is indicated by the lines that terminate in the respective country or province with the same color code. The full province and country names for all two- and three-letter codes can be found in Table 1. As human, civet, and pangolin viruses cannot be certain to have naturally originated in the province in which they were first found, their locations are not illustrated. Hosts are also shown with colored symbols according to the key on the left. The host phylogeny in the key was adapted from [63].
Figure 2: Phylogenetic trees of RdRp (left) and the RBD (right) demonstrating recombination events between ACE2-users and non-ACE2-users. Names of viruses that have been confirmed to use hACE2 are shown in red font, and those that have been shown to not use hACE2 are shown in blue font. Viruses in black font have not yet been tested, and viruses indicated with blue stars are tested in the present study. The red and blue highlighted clade bars separate viruses with the structure associated with ACE2 usage (highly similar to viruses confirmed to use hACE2 specifically) and the structure with deletions that cannot use ACE2, respectively. Geography and host are reiterated here in the same fashion as from Figure 1. Dashed lines indicate recombination events that resulted in a gain of ACE2 usage (red) or a loss of ACE2 usage (blue). The arrows only represent the direction of the recombination event and while they originate at the recombinant sequence, they should not be interpreted as pointing to any putative parental sequences or as pointing to the evolutionary distance of the clade bars.
Figure 3: The phylogenetic backbone of the RdRp gene alongside the amino acid sequences of the RBM.

Amino acid numbering is relative to SARS-CoV-1. Virus names in red font are known hACE2 users, those in blue are known non-users, and those in black have not been tested. Residues that show evidence of positive selection within the ACE2-using group are designated with red arrows at the top, and those that show positive selection within the non-ACE2-using group are designated with blue arrows. Residues within 10Å of the interface with ACE2 are considered interfacial, and exact distances between each interfacial residue and the closest ACE2 residue (based on structural modeling of SARS-CoV-1 bound with hACE2) are shown along the bottom. Residues that are closer to the interface (3Å or less) and thus make strong interactions with ACE2 are shown in red, and as distance increases this color transitions to purple, blue, and finally to white. The receptor binding ridge sequences are highlighted in purple and the remaining interfacial segments have been numbered regions 1, 2, and 3 for clarity within the main text. The colors of these regions correspond with the colors in the structural models of Figure 5. Arrows over...
the clade bars indicate potential points where deletions were acquired in a stepwise fashion in region2 and the receptor binding ridge. True gaps in sequences are represented with hyphens, and residues that are expected to be present but where sequence was not recovered are marked with ‘X’.

Figure 4: hACE2 usage of bat sarbecoviruses investigated using a surrogate VSV-psuedotyping system.

(A) Schematic showing the structure of chimeric spike proteins. The SARS-CoV-1 spike backbone is used in conjunction with the RBD from the Uganda and Rwanda strains. (B) Incorporation of chimeric SARS-CoV-1 spike proteins into VSV. Western blots show successful expression of chimeric spikes (lysates) and their incorporation into VSV (particles). (C) hACE2 entry assay. Wildtype SARS-CoV spike protein is able to mediate entry into BHK cells expressing hACE2. In contrast, recombinant spike proteins containing either the Uganda or Rwanda RBD were unable to mediate entry. Entry is expressed relative to VSV particles with no spike protein. (D) Control experiment for entry assay. BHK cells do not express hACE2 and therefore do not permit entry of hACE2-dependent VSV pseudotypes.
Figure 5. Structural modeling of sarbecovirus RBDs found in Uganda and Rwanda. (A) Structural superposition of the X-ray structures for the RBDs in SARS-CoV-1 (PDB 2ajf, red) [36] and SARS-CoV-2 (PDB 6m0j, cyan) [64] and homology models for SARS-CoV found in Uganda (PREDICT_PDF-2370 and PREDICT_PDF-2386, purple) and Rwanda (PREDICT_PRD-0038, yellow). (B) Overview of the X-ray structure of SAR-CoV-1 RBD (red) bound to hACE2 (blue) (PDB 2ajf, red) [36]. (C) Close-up view of the interface between hACE2 (blue) and RBDs in SARS-CoV-1 (PDB 2ajf, red) [36] and SARS-CoV-2 (PDB 6m0j, cyan) [64] and homology models for viruses found in Uganda (PREDICT_PDF-2370 and PREDICT_PDF-2386, purple) and Rwanda (PREDICT_PRD-0038, yellow). Labeled RBD residues correspond to residues whose identity is not shared by SARS-CoV-1 and/or SARS-CoV-2 (asterisks denote residues whose identity is not shared by any ACE-2 binding SARS-CoV as dictated by Figure 3). Labeled hACE2 residues correspond to residues within 5Å of RBD residues depicted.
Figure 6: Positive selection analysis of the spike protein. Bayes empirical Bayes posterior estimates of the selection coefficient \(\omega \pm \) standard error generated using the M8 model within the codeml package in PAML were extracted and plotted. Viruses with RBD sequences with the structure for ACE2 binding (those without deletions) are shown above, and viruses with RBD sequences that do not have the structure for ACE2 binding (with deletions in interfacial residues) are shown below. Residues with estimates of \(\omega \) greater than 1 were considered positively selected. Uncertainty assessed by the posterior probability that \(\omega > 1 \) for each site is shown by the color of each bar: grey bars are not positively selected (posterior probability less than 0.5), orange bars are borderline positively selected (posterior probability between 0.5 and 0.9), red bars are positively selected (posterior probability between 0.9 and 0.99), and purple bars are strongly positively selected (posterior probability >0.99). The domains of the spike gene are shown in the center: spike subunit 1 (S1), receptor binding domain (RBD), interfacial residues (INT), receptor binding ridge (RBR), the S1/S2 cleavage site unique to SARS-CoV-2 [65], and spike subunit 2 (S2).
Acknowledgements

The research reported in this publication was supported by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R01AI149693 (PI Anthony). ML and VJM are supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). GL and KC are supported by National Institutes of Health (NIH) grant U19AI142777. This study was also made possible by the support of the American people through the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT project, GHN-A-OO-09-00010-00 (PI Mazet) and AID-OAA-A-14-00102 (PI Mazet). The content is solely the responsibility of the authors and does not necessarily represent the official views of the U.S. Government.

Statement of Data Availability

All sequences have been submitted to GenBank and accession numbers will be provided prior to acceptance/publication.
References

1 International Committee on Taxonomy of Viruses (ICTV) Virus Taxonomy: 2019 Release. [Online]. Available: https://talk.ictvonline.org/taxonomy/. [Accessed: 15-May-2020]

2 Li, W. et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454

3 Zhou, P. et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature DOI: 10.1038/s41586-020-2012-7

4 Ren, W. et al. (2008) Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin. J. Virol. 82, 1899–1907

5 Ge, X.Y. et al. (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538

6 Hu, B. et al. (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. DOI: 10.1371/journal.ppat.1006698

7 Letko, M. et al. (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569

8 Lau, S.K.P. et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U. S. A. DOI: 10.1073/pnas.0506735102

9 Li, W. et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science (80-.). DOI: 10.1126/science.1118391

10 He, B. et al. (2014) Identification of Diverse Alphacoronaviruses and Genomic Characterization of a Novel Severe Acute Respiratory Syndrome-Like Coronavirus from Bats in China. J. Virol. DOI: 10.1128/jvi.00631-14

11 Hon, C.-C. et al. (2008) Evidence of the Recombinant Origin of a Bat Severe Acute Respiratory Syndrome (SARS)-Like Coronavirus and Its Implications on the Direct Ancestor of SARS Coronavirus. J. Virol. DOI: 10.1128/jvi.01926-07

12 Luk, H.K.H. et al. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. , Infection, Genetics and Evolution. (2019)

13 Lau, S.K.P. et al. (2010) Ecopidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events. J. Virol. DOI: 10.1128/jvi.02219-09

14 Yuan, J. et al. (2010) Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J. Gen. Virol. 91, 1058–1062

15 Graham, R.L. and Baric, R.S. (2010) Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission. J. Virol. 84, 3134–3146

16 Su, S. et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. , Trends in Microbiology, 24. 01-Jun-(2016) , Elsevier Ltd, 490–502

17 Menachery, V.D. et al. Jumping species—a mechanism for coronavirus persistence and survival. , Current Opinion in Virology. (2017)

18 Woo, P.C.Y. et al. Coronavirus diversity, phylogeny and interspecies jumping. , Experimental Biology and Medicine. (2009)

19 Lu, G. et al. Bat-to-human: Spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. , Trends in Microbiology. (2015)

20 Anthony, S.J. et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. MBio DOI: 10.1128/mBio.00373-17

21 Yu, P. et al. Geographical structure of bat SARS-related coronaviruses. , Infection, Genetics and Evolution, 69. 01-Apr-(2019) , Elsevier B.V., 224–229

22 Lecis, R. et al. (2019) Molecular identification of Betacoronavirus in bats from Sardinia (Italy): first detection and phylogeny. Virus Genes 55, 60–67

23 Ar Gouilh, M. et al. (2018) SARS-CoV related Betacoronavirus and diverse Alphacoronavirus
24 Drexler, J.F. et al. (2010) Genomic Characterization of Severe Acute Respiratory Syndrome-Related Coronavirus in European Bats and Classification of Coronaviruses Based on Partial RNA-Dependent RNA Polymerase Gene Sequences. *J. Virol.* 84, 11336–11349

25 Rhițară, D. et al. (2010) Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. *Arch. Virol.* 155, 507–514

26 Lelli, D. et al. (2013) Detection of Coronaviruses in Bats of Various Species in Italy. *Viruses* 5, 2679–2689

27 Tao, Y. and Tong, S. (2019) Complete Genome Sequence of a Severe Acute Respiratory Syndrome-Related Coronavirus from Kenyan Bats. *Microbiol. Resour. Announc.* 8,

28 Cui, J. et al. (2007) Evolutionary relationships between bat coronaviruses and their hosts. *Emerg. Infect. Dis.* 13, 1526–1532

29 Leopardi, S. et al. (2018) Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. *Infect. Genet. Evol.* DOI: 10.1016/j.meegid.2018.01.012

30 Shang, J. et al. (2020) Structural basis of receptor recognition by SARS-CoV-2. *Nature* 581, 221–224

31 Liu, P. et al. (2019) Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (manis javanica). *Viruses* DOI: 10.3390/v11110197

32 Lam, T.T.Y. et al. (2020) Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. *Nature* DOI: 10.1038/s41586-020-2169-0

33 Zhou, H. et al. (2020) A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. *Curr. Biol.* DOI: 10.1016/j.cub.2020.05.023

34 Challender, D. et al. (2014) Manis javanica. *IUCN Red List Threat. Species 2014* DOI:

http://dx.doi.org/10.2305/IUCN.UK.2014-2.RLTS.T12763A45222303.en.

35 Prabakaran, P. et al. (2004) A model of the ACE2 structure and function as a SARS-CoV receptor. *Biochem. Biophys. Res. Commun.* 314, 235–241

36 Li, F. et al. (2005) Structural biology: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. *Science (80-.).* 309, 1864–1868

37 Li, F. (2008) Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections. *J. Virol.* DOI: 10.1128/jvi.00442-08

38 Wu, K. et al. (2012) Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. *J. Biol. Chem.* DOI: 10.1074/jbc.M111.325803

39 Li, W. et al. (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. *EMBO J.* 24, 1634–1643

40 Wan, Y. et al. (2020) Receptor recognition by novel coronavirus from Wuhan: 2 An analysis based on decade-long structural studies of SARS 3 Downloaded from. DOI: 10.1128/JVI.00127-20

41 Yang, Z. (2007) PAML 4: Phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* DOI: 10.1093/molbev/msm088

42 Wan, Y. et al. (2020) Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. *J. Virol.* DOI: 10.1128/jvi.00127-20

43 Chen, Y. et al. (2020) Structure analysis of the receptor binding of 2019-nCoV. *Biochem. Biophys. Res. Commun.* 525, 135–140

44 Wu, F. et al. (2020) A new coronavirus associated with human respiratory disease in China. *Nature* DOI: 10.1038/s41586-020-2008-3

45 Buchholz, U.J. et al. (2004) Contributions of the structural proteins of severe respiratory syndrome coronavirus to protective immunity. *Proc. Natl. Acad. Sci. U. S. A.* 101, 9804–9809

46 Lu, L. et al. (2004) Immunological Characterization of the Spike Protein of the Severe Acute Respiratory Syndrome Coronavirus. *J. Clin. Microbiol.* 42, 1570–1576

47 Prabakaran, P. et al. (2006) Structure of severe acute respiratory syndrome coronavirus receptor-
binding domain complexed with neutralizing antibody. *J. Biol. Chem.* 281, 15829–15836

Anthony, S.J. *et al.* (2017) Global patterns in coronavirus diversity. *Virus Evol.* DOI: 10.1093/ve/vex012

Quan, P.L. *et al.* (2010) Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. *MBio* DOI: 10.1128/mBio.00208-10

Watanabe, S. *et al.* (2010) Bat coronaviruses and experimental infection of bats, the Philippines. *Emerg. Infect. Dis.* DOI: 10.3201/eid1608.100208

De Souza Luna, L.K. *et al.* (2007) Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray. *J. Clin. Microbiol.* DOI: 10.1128/JCM.02426-06

Mao, X. *et al.* (2016) Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson’s horseshoe bat Rhinolophus pearsoni. *Curr. Zool.* 62, 405

Mao, X. *et al.* (2013) Lineage Divergence and Historical Gene Flow in the Chinese Horseshoe Bat (Rhinolophus sinicus). *PLoS One* 8, 54

Mao, X. *et al.* (2014) Differential introgression among loci across a hybrid zone of the intermediate horseshoe bat (Rhinolophus affinis). *BMC Evol. Biol.* 14, 154

Mao, X. *et al.* (2013) Multiple cases of asymmetric introgression among horseshoe bats detected by phylogenetic conflicts across loci. *Biol. J. Linn. Soc.* 110, 346–361

MAO, X. *et al.* (2010) Historical male-mediated introgression in horseshoe bats revealed by multilocus DNA sequence data. *Mol. Ecol.* 19, 1352–1366

Dool, S.E. *et al.* (2016) Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). *Mol. Phylogenet. Evol.* 97, 196–212

Li, D. *et al.* MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. *Methods*, 102. 01-Jun-(2016), Academic Press Inc., 3–11

Letko, M. *et al.* (2018) Adaptive Evolution of MERS-CoV to Species Variation in DPP4. *Cell Rep.* 24, 1730–1737

Takada, A. *et al.* (1997) A system for functional analysis of Ebola virus glycoprotein. *Proc. Natl. Acad. Sci. U. S. A.* 94, 14764–14769

Pieper, U. *et al.* (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. *Nucleic Acids Res.* DOI: 10.1093/nar/gkq1091

Pettersen, E.F. *et al.* (2004) UCSF Chimera - A visualization system for exploratory research and analysis. *J. Comput. Chem.* DOI: 10.1002/jcc.20084

Agnarsson, I. *et al.* (2011) A time-calibrated species-level phylogeny of bats (chiroptera, mammalia). *PLoS Curr.* DOI: 10.1371/currents.RRN1212

Lan, J. *et al.* (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. *Nature* DOI: 10.1038/s41586-020-2180-5

Hoffmann, M. *et al.* (2020) A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. *Mol. Cell* 78, 779-784.e5