Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

Changchun Song1,4, Xiaofeng Xu2,3,4, Xiaoxin Sun1, Hanqin Tian3, Li Sun1, Yuqing Miao1, Xianwei Wang1 and Yuedong Guo1

1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, People’s Republic of China
2 Climate Change Science Institute and Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3 International Center for Climate and Global Change Research and School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA
E-mail: songcc@mail.neigae.ac.cn and xux4@ornl.gov

Received 21 May 2012
Accepted for publication 25 June 2012
Published 19 July 2012
Online at stacks.iop.org/ERL/7/034009

Abstract

The permafrost carbon–climate feedback is one of the major mechanisms in controlling the climate–ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze–thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze–thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m⁻² h⁻¹, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed ‘hot spots’, the spring thawing effect contributed to a large CH4 source of 31.3 ± 10.1 g C m⁻², which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5–1.0 Tg C (1 Tg = 10¹² g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003–2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon–climate feedback and needs to be incorporated in Earth system models.

Keywords: carbon-climate feedback, methane, natural wetland, permafrost

Online supplementary data available from stacks.iop.org/ERL/7/034009/mmedia

1. Introduction

As one of the potent greenhouse gases, methane (CH4) plays an important role in terrestrial ecosystem–climate interaction (Bousquet et al 2006, Keppler et al 2006, Mastepanov et al...
2008), especially under the changing global environment (Isaksen et al 2011, Walter et al 2006, Xu and Tian 2012, Xu et al 2010). The recently observed increase in atmospheric CH$_4$ concentration has drawn a large amount of attention to CH$_4$ emission from natural wetlands in northern high latitudes (Dlugokencky et al 2009). The northern permafrost region is essential in global CH$_4$ cycling, especially over the trajectory of global warming (Christensen et al 2004), because the dense carbon storage in permafrost soils is a potential source of atmospheric CH$_4$ (Christensen et al 2004, Koven et al 2011, Schuur et al 2009), and is predicted to release more and more CH$_4$ to the atmosphere by 2100 (Anisimov 2007, Koven et al 2011), even though the winter season had been previously thought to be a period with a weak CH$_4$ emission before a number of field studies confirmed that the biological processes in winter directly make relatively large contributions to the annual CH$_4$ budget (Campbell et al 2005, Hao et al 2006).

Given the isolation of the frozen surface in the permafrost region, a large portion of the produced CH$_4$ cannot be released to the atmosphere immediately (Tokida et al 2007). During the thawing season in the following year, the release of CH$_4$ is expected to occur in a very short period, forming an emission outburst (Christensen et al 2004). This effect is defined as the spring thawing effect, which might partially contribute to the recently observed increase in atmospheric CH$_4$ concentration (Dlugokencky et al 2009, Tokida et al 2007). Although the spring thawing effect on atmospheric CH$_4$ has been recognized for a long time (Friborg et al 1997), the magnitude of the spring thawing effect on CH$_4$ emission remains far from certain (Friborg et al 1997, Tokida et al 2007). This study was conducted to estimate the effects of the spring thaw on CH$_4$ release from natural wetlands in the permafrost region in the Northern Hemisphere by using a combination of field observations, satellite data and flask data.

2. Data and methods

A combination of field observations, NOAA (National Oceanic and Atmospheric Administration) flask data (GLOBALVIEW-CH$_4$), and a satellite-derived CH$_4$ concentration dataset (SCIAMACHY: Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) were used in this study.

2.1. Field observations

We conducted an intensive field campaign in the Sanjiang Plain, Northeast China to monitor seasonal variations in CH$_4$ emission from natural wetlands and estimate the CH$_4$ emission rate caused by spring thaw at site level (figures 1, 2 and S3 available at stacks.iop.org/ERL/7/034009/mmedia). The Sanjiang Plain is in the largest freshwater wetland area
in China; there are approximately 10,400 km2 of natural wetlands in this region (Song et al. 2009). The study sites are located at the Sanjiang Experimental Station of Wetland Ecology, Chinese Academy of Sciences (47°35′N, 133°31′E) at an altitude representative of the natural freshwater wetland in the Sanjiang Plain (56 m a.s.l.). This region is located at the southern boundary of Northern Hemisphere permafrost (Qiu et al. 2002). Since the CH$_4$ emission pulses usually occur in a very short time period (Tokida et al. 2007), our previous observations had not captured this event. In the year 2011, we increased the observational frequency and broadened the monitoring area. Fortunately, the CH$_4$ emission pulses were captured (figures 1 and 2, table 1). The observed CH$_4$ emission pulse can be viewed in our online supporting video clip (video S1 available at stacks.iop.org/ERL/7/034009/mmedia).

Across our sampling area, twenty sites with high CH$_4$ emission pulses were identified (figure 1), of which thirteen were measured at least once by using a static chamber method (Song et al. 2009). We used 5–7 persons walking through the area to identify the potential bubbling spots; after each bubbling spot was identified, we measured the flux rate if labor resources allowed. Measurements for several spots were missed due to shortage of labor; we recorded the locations of these spots. Twenty-three measurements were conducted for CH$_4$ emission pulses (table 1). There are fourteen high emission plots in a 30 m × 30 m study area; the measurements define CH$_4$ emission from a 0.5 m × 0.5 m plot (figure 1 and table 1). So we estimated that approximately 0.39% of the area had high CH$_4$ pulses. This fractional coverage of high CH$_4$ emission was then used to estimate the spring thawing effects on CH$_4$ emission at regional scale.

The gas flux measurements were conducted by using static dark chamber and gas chromatography techniques (Song et al. 2009). The 0.5 m × 0.5 m × 0.5 m chamber was put on the ground which was covered by 5–10 cm surface water as sealer. A fan was installed in the sampling chamber to keep the air mixed during the gas sampling. Since the emission rate was quite large, the gas sampling process was carried out four times with a 5 min interval, rather than with a 10 min interval as in previous studies (Song et al. 2009, Xu et al. 2005). The gas samples were stored in syringes for less than 12 h before being measured. Gas chromatography was used to measure the gas concentrations. The gradient of gas concentration during sampling was used to calculate the gas flux between the ecosystem and the atmosphere. Positive values mean flux from the ecosystem to the atmosphere, and negative values mean flux from the atmosphere to the ecosystem (Song et al. 2009). The mixing ratios of CH$_4$ were analyzed with a modified gas chromatograph (Agilent 4890D) equipped with a flame ionization detector (FID). N$_2$ was used as the carrier gas with a flow rate of 30 ml min$^{-1}$. The CH$_4$ was separated with a 2 m stainless-steel 13 XMS column (60/80 mesh) with an inner diameter of 2 mm. CH$_4$ was directly measured by FID with an operation temperature of 200°C. The temperature for gas separation was 55°C. Fluxes were determined from the slope of the mixing ratio changes in four samples taken at 0, 5, 10 and 15 min after chamber closure. Sample sets were rejected unless they yielded a linear regression value of r^2 greater than 0.9.

The gas flux was calculated according to the following equation from Song et al. (2009):

\[F = \frac{d c}{d t} \frac{M}{V_0} \frac{P_0}{T} \frac{H_c}{T} \]

(1)

Here, F is the CH$_4$ flux (mg C m$^{-2}$ h$^{-1}$). $d c/dt$ is the slope of the linear regression for the gas concentration gradient with time (mol mol$^{-1}$ h$^{-1}$). M is the molecular mass of each gas (mg mol$^{-1}$). P is the atmospheric pressure (Pa). T is the absolute temperature during sampling (K). V_0, T_0, and P_0 are

Date	Site	Observed flux (mg CH$_4$−C m$^{-2}$ h$^{-1}$)	Duration (h)	Observed flux (mg CH$_4$−C m$^{-2}$ h$^{-1}$)	Duration (h)	Observed flux (mg CH$_4$−C m$^{-2}$ h$^{-1}$)	Duration (h)	Observed flux (mg CH$_4$−C m$^{-2}$ h$^{-1}$)	Duration (h)	Observed flux (mg CH$_4$−C m$^{-2}$ h$^{-1}$)	Duration (h)
4/6/2011	H1-1	193.7	2	H1-2	2	H2	2	H3	2	H4	2
4/7/2011	H9	345.0	1.5	H10-1	1.5	H10-2	1.5	H10-3	1.5	H12	1.5
4/8/2011	H9-2	42.2	24	H16-1	24	H16-2	24	H16-3	24	H17	24
4/9/2011	H19-1	96.8	1	H19-2	1						
4/10/2011	H19-3	133.7	1	H19-4	1						
4/11/2011	H19-5	32.2	1								
the gas mole volume (m³ mol⁻¹), absolute air temperature (K), and atmospheric pressure under standard conditions (Pa), respectively. \(H_e \) is the height of the chamber during sampling (m).

2.2. Satellite and flask data

The satellite data (available at http://www.sciamachy.org/) were used to estimate the potential area with high CH₄ emission caused by spring thawing effects. Combining the estimate of high CH₄ emission area with the CH₄ emission rate derived from field observational data, we provided a large-scale estimation of the spring thawing effects on CH₄ emission from natural wetlands in the northern permafrost region. Flask data provided by NOAA were used to verify the increase in atmospheric CH₄ concentration over the study area and to compare with the regional estimate of the CH₄ emission from natural wetlands in the northern permafrost region. The GLOBALVIEW-CH₄ Cooperative Atmospheric Data Integration Project methane, available at ftp://ftp.cmdl.noaa.gov/ccg/ch4/GLOBALVIEW/, was used in this study with the last access on 16 June 2011. GLOBALVIEW-CH₄ is a product of the Cooperative Atmospheric Data Integration Project. While the project is coordinated and maintained by the Carbon Cycle Greenhouse Gases Group of the National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA ESRL), it is a cooperative effort among the many organizations and institutions making high-quality atmospheric CH₄ measurements. In this study, three sites located in the northern permafrost region were selected (table S1 available at stacks.iop.org/ERL/7/034009/mmedia); the annual CH₄ concentrations measured at the three sites are shown in figure S4 (available at stacks.iop.org/ERL/7/034009/mmedia).

2.3. Auxiliary data

The regional permafrost data were from the National Snow and Ice Data Center at http://nsidc.org/data/ggd318.html. The circumpolar permafrost and ground ice data depict the distribution and properties of permafrost and ground ice in the Northern Hemisphere (20°N–90°N). The data set classifies permafrost into four categories: continuous, discontinuous, sporadic, and isolated. The fractions of permafrost in each category are 90–100%, 50–90%, 10–50%, <10%. The relative abundance of ground ice in the upper 20 m is estimated in per cent volume (>20%, 10–20%, <10% and 0%) (Brown et al 1998). The data set also contains the location of subsea and relict permafrost. The fractional distribution of natural wetlands was retrieved from and improved on the basis of the data from Aselmann and Crutzen (1989). Finally, we generated the natural wetlands distribution in the northern permafrost region by overlaying them in the same spatial domain (figures S1 and S2 available at stacks.iop.org/ERL/7/034009/mmedia).

2.4. Spatial extrapolation of spring thaw-induced CH₄ emission

We processed the SCIAMACHY (satellite-derived methane concentration in air volume) data to define the grids which have potential high CH₄ emission (Bergamaschi et al 2009, Frankenberg et al 2011, Schneising et al 2011) (figure S6 available at stacks.iop.org/ERL/7/034009/mmedia). Due to technical problems, there are a lot of spatial gaps in the CH₄ concentration derived from the SCIAMACHY data (figure S6 available at stacks.iop.org/ERL/7/034009/mmedia), especially in the period of 2005–9 (Bergamaschi et al 2007, 2009, Frankenberg et al 2011, Schneising et al 2011). The percentage of the area with high CH₄ emission was calculated (figure S8 available at stacks.iop.org/ERL/7/034009/mmedia). Then we combined the estimated percentage area of the ‘hot spots’ of CH₄ emission with the spatial distribution of the natural wetlands across the northern permafrost region to estimate the spring thawing effect on atmospheric CH₄ concentration. The criteria we used to identify potential high CH₄ pulses based on satellite were: (1) the CH₄ concentration in April is 10 ppb higher than that in May; (2) the estimated CH₄ concentration in April is higher than those in any other months (non-April) at the significance level of \(P = 0.05\). The value of 100 ppb was used because the uncertainties of the CH₄ concentration retrieved from the SCIAMACHY data were approximately 50 ppb (Frankenberg et al 2011, Schneising et al 2011), so the threshold of sufficient difference should be approximately 100 ppb on the basis of normal distribution. Based on the delineation of the spatial coverage of the area with potential high CH₄ emission, we further calculated the contribution of the spring thawing effect to the variations of atmospheric CH₄ concentration (table S2 available at stacks.iop.org/ERL/7/034009/mmedia).

2.5. Satellite data in capturing spring thaw-induced CH₄ emission

To evaluate the satellite data in capturing the spring thaw effects on CH₄ emission, we analyzed the basin-level CH₄ concentration derived from satellite data (figure S5 available at stacks.iop.org/ERL/7/034009/mmedia). The higher April CH₄ concentration was observed for a few years in Ob River basin, Lena River basin, Amur River basin and Mackenzie River basin (figure S7 available at stacks.iop.org/ERL/7/034009/mmedia). We used the \(\Delta \text{CH}_4 \) (CH₄ concentration in April minus that in May) to quantify the magnitude of spring thaw effects on CH₄ emission. After 2006, a strong impact is shown as the \(\Delta \text{CH}_4 \) became larger and larger in Ob River basin, Amur River basin and Mackenzie River basin (figure S7 available at stacks.iop.org/ERL/7/034009/mmedia).

3. Results and discussion

3.1. Observed high CH₄ emission pulses

The field observations showed that the CH₄ emission pulses occurred sporadically in some ‘hot spots’; the hourly emission
the spring thaw along the soil profile. This mechanism for
emission pulses are expected. To estimate the spring thawing effect on
CH4 emission, we used the following calculation to quantify
the spring thawing effect on CH4 emission:

\[F_g = (1 - \text{Oxid}_g)q_0H_gQ_{10}T_g^{10} \]

\[F_w = (1 - \text{Oxid}_w)q_0H_{ow}Q_{10}T_w^{10} \]

\[F_{og} = \frac{F_g}{D_g} \]

\[F_{ow} = \frac{F_w}{D_w} \]

\[F_{STe} = \frac{F_{ow}}{F_{og}} \]

where \(F_g \) is the total CH4 emission in the growing season, and Oxid is the fraction of produced CH4 being oxidized in the growing season, \(q_0 \) is the potential CH4 production rate at 0°C, \(H \) is the depth of the soil profile for CH4 production, \(Q_{10} \) is the temperature sensitivity of CH4 production, \(T_g \) is the average temperature in the soil profile during the growing season, \(F_w \) is the total CH4 emission in the winter season, and Oxid is the fraction of produced CH4 being oxidized in the winter season, \(L_w \) is the duration of CH4 production in the winter season, \(H_{ow} \) is the observed CH4 emission rate and duration of the CH4 release in the growing season, \(F_{ow} \) and \(D_w \) are the observed CH4 emission rate and duration of the CH4 release in the winter season, and \(F_{STe} \), dimensionless, is the magnitude of spring effects on CH4 emission. The values for all parameter are provided in table 2.

3.2. Quantification of the spring thawing effect on CH4 emission

For the reasons mentioned in section 3.1, high CH4 emission pulses are expected. To estimate the spring thawing effect on CH4 emission, we used the following calculation to quantify the spring thawing effect on CH4 emission:

\[F_g = (1 - \text{Oxid}_g)q_0H_gQ_{10}T_g^{10} \]

\[F_w = (1 - \text{Oxid}_w)q_0H_{ow}Q_{10}T_w^{10} \]

\[F_{og} = \frac{F_g}{D_g} \]

\[F_{ow} = \frac{F_w}{D_w} \]

\[F_{STe} = \frac{F_{ow}}{F_{og}} \]

where \(F_g \) is the total CH4 emission in the growing season, and Oxid is the fraction of produced CH4 being oxidized in the growing season, \(q_0 \) is the potential CH4 production rate at 0°C, \(H \) is the depth of the soil profile for CH4 production, \(Q_{10} \) is the temperature sensitivity of CH4 production, \(T_g \) is the average temperature in the soil profile during the growing season, \(F_w \) is the total CH4 emission in the winter season, and Oxid is the fraction of produced CH4 being oxidized in the winter season, \(L_w \) is the duration of CH4 production in the winter season, \(H_{ow} \) is the observed CH4 emission rate and duration of the CH4 release in the growing season, \(F_{ow} \) and \(D_w \) are the observed CH4 emission rate and duration of the CH4 release in the winter season, and \(F_{STe} \), dimensionless, is the magnitude of spring effects on CH4 emission. The values for all parameter are provided in table 2.
It is reported that oxidation could consume up to 90% of produced CH\(_4\) in the soil before releasing it to the atmosphere (Oremland and Culbertson 1992). A field study in a continuously flooded rice paddy system concluded on a 70% oxidation of produced CH\(_4\) (Mer and Roger 2001), and a study on wetland found a 72% oxidation of produced CH\(_4\) (Freeman et al 2002). Thus, we used 70% as the fraction of CH\(_4\) oxidation in soils in the growing season. It is reported that the oxidation of produced CH\(_4\) in soil is highly dependent on oxygen (King 1990). Meanwhile, a field study reported winter oxidation as approximately 5%–15% of that which occurs in summer (Chanton and Liptay 2000), therefore we used 10% as the fraction of CH\(_4\) oxidation in soil/water in the winter season (table 2), and two hours as the normal duration of CH\(_4\) emission during the thawing period (table 1). The temperature sensitivity dependence of CH\(_4\) production was set as \(Q_{10} = 2.5\) as reported in our previous study (Song et al 2009). The growing season at the Sanjiang Plain lasts from 1 May to 30 September, and the winter season, the frozen season referred in this study, lasts from 1 December to 31 March the following year. Thus the length of the winter season is 121 days. \(F_{STE}\) represents the relative magnitude of hourly CH\(_4\) emission rate during the spring thaw compared to that in the growing season. The calculation suggests the spring thawing effect could be as high as 167–1002 times. The CH\(_4\) emission rate during spring thawing could be more than three orders of the growing season CH\(_4\) emission at its peak. This is consistent with our field observations (table 1).

3.3. Spatial extrapolation of spring thaw-induced CH\(_4\) emission

Combining these site observations with other data, we further estimated the spring thawing effects on CH\(_4\) emission from the natural wetlands across the entire northern permafrost region by using two methods (figures S1 and S2 available at stacks.iop.org/ERL/7/034009/mmedia). Firstly, based on the areal representativeness of each observed CH\(_4\) pulse in the field campaign, we estimate that approximately 0.39% of the natural wetland served as outlets for the stored CH\(_4\) in spring across the monitoring area (figure 1, section 2.1). If the measurements and the areal percentages are representative, we estimate that the spring thawing effect was 0.5–97 Tg C of CH\(_4\) from natural wetlands across the northern permafrost region in the year 2011 (table S2 available at stacks.iop.org/ERL/7/034009/mmedia).

Meanwhile, we combined the time-series column CH\(_4\) concentration derived from SCIAMACHY data with field observations to estimate the temporal variation of spring thaw-induced CH\(_4\) emission in the northern permafrost region (figure 4). The SCIAMACHY data were partially verified in capturing CH\(_4\) concentration variations induced by spring thaw (section 2.5). The results showed that spring thaw-induced CH\(_4\) emission increased from 2003 through 2008 and slightly decreased in 2009, which is consistent with temporal changes in CH\(_4\) concentration derived from NOAA flask data except for the year 2003 (figure 4). The increase in CH\(_4\) concentration in the year 2003 could be attributed to biomass burning in boreal regions of Asia and North America (Dlugokencky et al 2009, van der Werf et al 2006). We acknowledge that the spring thaw-induced CH\(_4\) emission has

Table 2. Parameters used in the calculation of the potential CH\(_4\) emission in the spring thaw and their ecological meanings. (All parameters are for the Sanjiang Plain, Northeast China.)

Parameter	Value (unit)	Ecological meaning	Reference
\(T_w\)	0.27 (°C)	Mean temperature of the soil profile (0–50 cm) in the winter season	This study
\(T_g\)	16.16 (°C)	Mean temperature of the soil profile (0–50 cm) in the growing season	This study
\(Q_{10}\)	2.5	Temperature sensitivity of methane production in the study site	Song et al (2009)
Oxid\(_w\)	0.1	Fraction of produced CH\(_4\) in the soil porosity oxidized in the winter season	Mer and Roger (2001), Roslev and King (1996)
Oxid\(_g\)	0.7	Fraction of produced CH\(_4\) in the soil porosity oxidized in the growing season	Conrad (1996), Mer and Roger (2001)
\(D_w\)	2–12 (h)	Duration of the CH\(_4\) outburst during the spring thawing period	This study
\(L_w\)	2904 (h)	Length of the winter season	This study
\(L_g = D_g\)	3672 (h)	Length and duration of CH\(_4\) production and emission over the growing season	This study

![Figure 4. Temporal variation of year-to-year change in observed CH\(_4\) concentration and calculated CH\(_4\) emission from the spring thawing effect (CH\(_4\) change is defined as changes in atmospheric CH\(_4\) concentration at yearly time steps derived from NOAA flask data; STE: spring thawing effect).](image-url)
3.4. Uncertainty and research needs

We acknowledge that there are some uncertainties that need to be addressed in our further research effort. The extrapolation might cause large uncertainties in the regional estimate since we assume constant CH₄ emission over entire north permafrost region. To improve spatial extrapolation of CH₄ emission, it is clearly necessary to develop accurate spatial data on the distribution of the hot spots of CH₄ emission from natural wetlands in the northern permafrost region. Furthermore, all the field observations were conducted during the daytime and nighttime CH₄ emission pulses were not covered. Thus the current estimate might underestimate the CH₄ emission resulting from spring thawing effects. Yet we argue that this study captures the primary CH₄ outburst because nighttime usually has lower temperature and thaw events should not occur as often as in daytime. Meanwhile, high-frequency observations are needed to accurately estimate the CH₄ emission pulses. The comparison between satellite data and flask data shows partial verification of SCIAMACHY’s capacity in capturing variations in atmospheric CH₄ concentration driven by spring thaw effect-induced increase in CH₄ concentration (figure 4). In addition, integration with an atmospheric transport chemistry model would be an improvement for evaluating the spring thawing effect on atmospheric CH₄ concentration.

4. Concluding remarks

This study shows the dramatic contribution of the spring thawing effect to atmospheric CH₄ variations caused by recent Arctic warming. The extremely high CH₄ emission observed in this study confirmed that natural wetland might also emit a large amount of CH₄ via bubbling in the spring season, in addition to the observed CH₄ emission from thaw lakes (Walter et al. 2006). This high CH₄ emission enhances the positive feedback through greenhouse gases in the Arctic region (Chapin et al. 2005). Thus Earth system models should take this spring thawing effect into consideration to make more accurate examinations of permafrost carbon–climate feedback. We anticipate that the estimated contribution of the spring thawing effect to atmospheric CH₄ will stimulate further research into the large-scale feedback from terrestrial ecosystems to the climate system. Given the projected change in the climate system in the 21st century, the spring thawing effect might get stronger and stronger, serving as one of the most important mechanisms for permafrost carbon–climate feedback. To better understand this feedback, therefore, more efforts are needed to investigate the processes or factors responsible for the spring thawing effect on CH₄ emission.

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (41125001, 40930527), National Key Basic Research and Development projects (2009CB421103), NASA IDS program (NN04GM39C), and NASA LCLUC program (NNX08AL73G_S01). This research was sponsored in part by the US Department of Energy, Office of Science, Biological and Environmental Research (BER) program and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. We thank Dr Oliver Schneising at the University of Bremen FB1, Germany for providing the satellite data and some constructive comments. The authors are grateful to Drs Wilfred M Post and Peter E Thornton at Oak Ridge National Laboratory for reviewing this manuscript.

Notice

The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Author contributions

CS, XX and HT initiated the effort; XS, LS, YM, XW and YG conducted the field observations; XX performed the overall analysis of field, flask and satellite data. All authors contributed to interpreting the results and writing the paper.

© US Government

References

Anisimov O A 2007 Potential feedback of thawing permafrost to the global climate system through methane emission Environ. Res. Lett. 2 045016

Aselmann I and Crutzen P J 1989 Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions J. Atmos. Chem. 8 307–58

Bergamaschi P et al 2007 Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations J. Geophys. Res. 112 D02304

Bergamaschi P et al 2009 Inverse modeling of global and regional CH₄ emissions using SCIAMACHY satellite retrievals J. Geophys. Res. 114 D22301
Bousquet P, Ciais P, Miller J, Dlugokencky E, Hauglustaine D, Prigent C, Van der Werf G, Peylin P, Brunek E and Carouge C 2006 Contribution of anthropogenic and natural sources to atmospheric methane variability Nature 439 43–43
Brown J, Ferrans O J, Hegingbottom J A and Melnikov E S 1998 Circum-arctic map of permafrost and ground ice conditions Report (Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology)
Campbell J, Mitchell M, Groffman P, Christenson L and Hardy J 2005 Winter in northeastern North America: a critical period for ecological processes Front. Ecol. Environ. 3 314–22
Chanton J and Liptay K 2000 Seasonal variation in methane Environ. Res. Lett. 7
Chapin F S et al 2005 Role of land-surface changes in Arctic summer warming Science 310 657–760
Christensen T R, Johansson T, Akerman H J and Conrad R 1996 Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) Microbiol. Rev. 60 609–40
Disc N B 1992 Winter fluxes of methane from Minnesota peatlands Biogeochemistry 17 71–83
Dlugokencky E J et al 2009 Observational constraints on recent increases in the atmospheric CH4 burden Geophys. Res. Lett. 36 L04803
Frankenberg C, Aben I, Bergamaschi P, Dlugokencky E J, van Hees R, Houweling S, van der Meer P, Snel R and Tol P 2011 Global column-averaged methane mixing ratio from 2003 to 2009 as derived from SCIAMACHY: trends and variability J. Geophys. Res. 116 D04302
Freeman C, Nevison G B, Kang H, Hughes S, Reynolds B and Hudson J A 2002 Contrast ed effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland Soil Biol. Biochem. 34 61–7
Friborg T, Christensen T R and Segaard H 1997 Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques Geophys. Res. Lett. 24 3061–4
Hao Q J, Wang Y S, Song C C and Huang Y 2006 Contribution of winter fluxes to the annual CH4, CO2, and N2O emissions from freshwater marshes in the Sanjiang Plain J. Environ. Sci.-China 18 270–5
Isaksen I S A, Gauss M, Myhre G, Anthony K M W and Ruppel C 2011 Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions Glob. Biogeochem. Cycles 25 GB2002
Keppler F, Hamilton J T G, Brass M and Rockmann T 2006 Methane emissions from terrestrial plants under aerobic conditions Nature 439 187–91
King G M 1990 Dynamics and controls of methane oxidation in a Danish wetland sediment FEMS Microbiol. Lett. 74 309–23
Koven C D, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krimmer G and Tarnocai C 2011 Permafrost carbon-climate feedbacks accelerate global warming Proc. Natl Acad. Sci. 108 14769–74
Mastepanov M, Sigsgaard C, Dlugokencky E J, Houweling S, Strom L, Tamstorf M P and Christensen T R 2008 Large tundra methane burst during onset of freezing Nature 456 628–30
Melloh R A and Crill P M 1995 Winter methane dynamics beneath ice and in snow in a temperate poor fen Hydrol. Process. 9 947–56
Melloh R A and Crill P M 1996 Winter methane dynamics in a temperate peatland Glob. Biogeochem. Cycles 10 247–54
Mer J L and Roger P 2001 Production, oxidation, emission and consumption of methane by soils: a review Eur. J. Soil Biol. 37 25–50
Oremland R S and Culbertson C W 1992 Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor Nature 356 421–3
Phelps A R, Peterson K M and Jeffries M O 1998 Methane efflux from high-latitude lakes during spring ice melt J. Geophys. Res. 103 29029–36
Qiu G, Zhou Y, Guo D and Wang Y 2002 Maps of Geocryological Regions and Classifications ed T Zhang (Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology)
Roslev P and King G M 1996 Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia FEMS Microbiol. Ecol. 19 105–15
Schneising O, Buchwitz M, Reuter M, Heymann J, Bovensmann H and Burrows J P 2011 Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMANHY Atmos. Chem. Phys. 11 2863–80
Schuur E A, Vogel J G, Crummer K G, Lee H, Sickman J O and Osterkamp T E 2009 The effect of permafrost thaw on old carbon release and net carbon exchange from tundra Nature 459 556–9
Song C, Xu X, Tian H and Wang Y 2009 Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China Glob. Change Biol. 15 692–705
Tokida T, Mizoguchi M, Miyazaki T, Kagemoto A, Nagata O and Hatano R 2007 Episodic release of methane bubbles from peatland during spring thaw Chemosphere 70 165–71
van der Werf G R, Randerson J T, Giglio L, Collatz G J, Kasibhatla P S and Arellano A F 2006 Interannual variability in global biomass burning emissions from 1997 to 2004 Atmos. Chem. Phys. 6 3423–41
Walter K M, Zimov S A, Chanton J P, Verbyla D and Chanton F S 2006 Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming Nature 443 71–5
Xu X and Tian H 2012 Methane exchange between marshland and the atmosphere over China during 1949–2008 Glob. Biogeochem. Cycles 26 GB2006
Xu X, Song C and Song X 2005 Linking of microorganisms to CO2, CH4 and N2O dynamics in Calamagrostis angustifolia rhizosphere soil Acta Botan. Sin. 25 182–7
Xu X, Tian H, Zhang C, Liu M, Ren W, Chen G, Lu C and Bruhwiler L 2010 Attribution of spatial and temporal variations in terrestrial ecosystem methane flux over North America Biogeosciences 7 3637–55
