Investigation into operation dynamics of a downhole eccentric-type vibration source

AV Savchenko*, MN Tsupov, and DS Evstigneev
Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
E-mail: sav@eml.ru

Abstract. Wave-type oscillations generated by a downhole unbalanced seismic source are studied on the laboratory test stand. The mode of source operation with an inner chamber filled with a fluid is investigated at shaft rotation frequency ranged from 3 to 8 Hz. The difference of rotation frequencies of vibration source and magnetic field of asynchronous motor stator is determined. The amplitude-frequency characteristic of the vibration source in the low-frequency range is obtained.

1. Introduction
The vibration– and wave-type processes are used to rectify and to enhance oil yield from production active reservoirs [1–9]. Surface-mounted vibration sources with controllable frequency and effect embracing a whole oil reservoir are efficiently applied to generate elastic oscillations [1–5]. Generated seismic oscillations passing through a rock mass thickness are recorded by downhole geophysical devices mounted at the active reservoir level. When processing a seismic signal, the carrying frequency of a vibrosource and a response of a rock mass to its effect are singled out. After tuning in terms of resonance frequency of an active reservoir the vibration source generates a continuous flow of seismic energy for a long term, up to three months in some cases [1–2]. Deviation from the resonance frequency of the active reservoir aggravates the wave effect efficiency with no notable increase in oil production [5, 6]. Tuning of the vibrosource in terms of resonance frequency of the reservoir takes much time and is considered an expensive prior operation, as it implies demounting and pulling out equipment from a number of bore wells.

The downhole immerse vibration sources are used to increase density of the seismic energy flow supplied to the active reservoir. Tuning of carrier frequency of an emitted signal in terms of resonance frequency of the oil bed is not practiced for impulse generators [7–9].

The eccentric-type sources are capable to adjust carrier frequency of an emitted signal and allow its compliance with resonance frequency of the production reservoir by increasing an oil yield flow to the productive well. A The tuning of emitted signal of the source is performed by adjusting frequency of rotation of electrodrive shaft which actuates an accentric mass executes. Downhole vibration sources work in a fluid occurring in a hole; such fluids in different deposits can differ in density and viscosity. In high-viscosity oil deposits the downhole accentric vibrosource is subjected to substantial drag force, acting on rotating eccentric mass. Tuning of a vibrosource relative to resonance frequency of an oil bed is realized by a generator drive being an asynchronous electric drive. Increase in load on drive shaft should result in reduction in rotation frequency. In other words, instead of operation at expectant resonance frequency of oil reservoir the vibration source would operate at lower frequency and this fact can negatively affect the oil production rate per this oil well. The present paper aims at
determination of discrepancy between rotation frequency of eccentric vibrosource operation in a fluid and the prescribed frequency of a magnetic field of the starter of the asynchronous electric drive. To gain these objective requires to study dynamics of low-frequency operation of the vibrosource.

2. Description of the test stand and experimental procedure

The test stand to study dynamics of a downhole vibration source consists of a metallic case with an eccentric mass mounted on it and actuated by asynchronous electric drive, the water supply and drain system, seismic oscillation recorder (Figure 1).

![Figure 1. Scheme of eccentric mass location in the test stand: 1—seismic sensor; 2—external case of the vibration source; 3—asynchronous electric drive; 4—digital temperature gague; 5—bearing units; 6—metallic case of the stand.](image)

The eccentric vibrosource is mounted vertically on the test stand. The rotation moment is transmitted from asynchronous electric drive through shaft and flexible coupling. Seismic sensor GMT-12.5 mounted at the level of bearing units records frequency of magnetic field generated by source under GOST ISO 10816-1-97 [10]. The analogue seismic signal is received by measurement transmitter HANDYSCOPE HS4 DIFF and then its digital form passes to a personal computer. The heating of electric drive and bearing blocks is controlled by the monitoring system consisting of digital temperature sensors, microcontrollers and a computer. Before the test the internal chamber of the vibration source is filled with water. A series of measurements is fulfilled at frequencies of magnetic field of electrodrive starter: 3, 4, 5.1, 6.2, 7.2, 8.2 Hz.

3. Procedure for processing of experimental vibrovelocity signal data

Vibrovelocity signal transmitted from analogue-digital converter to a personal computer was digitally processed to single out main harmonics with respective carrier frequency at which an eccentric device operates. Chebyshev’s narrow-band filter with the final impulse characteristic was used [11–13]. In Figure 2 the amplitude-frequency spectra of the initial and filtered signals for 5 Hz carrier frequency are reported.

Fields of electric-drive starter are preset by frequency converter ABB IP20 / UL Open type.

After preliminary filtration of signals obtained at different frequencies their amplitude-frequency spectra were plotted on cumulative graph in view to determine a frequency difference Δf_i, corresponding to i-th carrier frequency of the vibration source (Figure 3).
The wave shape of a filtered signal was used to evaluate average amplitude of vibrovelocity at the preset frequency. In the tests the frequency range was selected within 3–8 Hz with step of 1Hz. The wave form of the filtered vibrovelocity signal with carrier frequency of 5.1 Hz is shown in Figure 4. The measurement data and follow-on processing of the signals were used to obtain amplitude-frequency characteristics of the eccentric source in the low-frequency range (Figure 5).
Figure 5. Amplitude-frequency characteristic of the eccentric source in the low-frequency range.

Discrete values of amplitudes at preset frequencies are approximated by power dependence of $A = kf^b$, where A is amplitude of vibrovelocity oscillations, cm/s; f is frequency, Hz; k, b are constants, equal to 2.91×10^{-6} and 7.31, respectively.

Sliding of asynchronous electric drive at i-th carrier frequency of the source is determined as a ratio of frequency difference Δf to frequency of rotation of magnetic field starter f_{st} expressed in [14–16]:

$$s_i = \frac{\Delta f}{f_{st}} \times 100\%.$$

The sliding is increasing with growth of eccentric source rotation frequency. The maximum value of sliding amounts to 4.7% and corresponds to frequency of 8.2 Hz. The instrumental determination of sliding could not be made at frequency lower than 3 Hz.

4. Conclusions
With growth of rotation frequency of a downhole vibration source the drag force of the fluid acting on an eccentric source and load on the drive tend to increase and, as a consequence, difference of frequencies of magnetic field of the starter and rotor of the asynchronous electric driver is increasing.

Calibration curve is plotted for frequency difference allowing tuning of vibrosource operation in a well filled with a fluid in terms of the resonance frequency of the oil reservoir; analytical dependence of the amplitude-frequency specification was used to compute amplitude of vibrovelocity, generated by the source.

It is established experimentally that in the frequency range within 3–8 Hz the maximum sliding of the electric drive of the generator equals less than 4.7%, thus providing the reliable operation of the generator drive.

Acknowledgements
This work was carried out in the framework of the Basic Research Program, Project No 0321-2016-0005.

References
[1] Alekseev AS, Geza NI et al 2004 Active Seismology with Powerful Vibrational Sources Novosibirsk: SB RAS (in Russian)
[2] Alekseev AS, Glinsky BM et al 2002 New geotechnologies and complex geophysical methods for studying the internal structure and dynamics of geospheres Vibration Geotechnology Moscow: Regional public organization of scientists for problems of applied (in Russian)
[3] Vasil’ev VI, Evchatov GP et al 1976 Experimental studies of the process of excitation of seismic waves by a vibrational source Questions of Excitation of Seismic Waves by a Vibrational Source Novosibirsk: IGiG SB AS USSR pp 65–86 (in Russian)
[4] Sorokin VN 2004 Distribution of pressures under the radiating plate of a surface seismic source Omsk. Nauch. Vestn. No 1(26) pp 86–88
[5] Sorokin VN 2004 On the possibility of vibroprocessing oil deposits at several dominant frequencies Neft. Prom. No 11 pp 44–47
[6] Chichinin IS and Jushin VI 1977 Frequency method of vibroseismic research Problems of Vibrational Transmission of The Earth AV Nikolaeva and IN Galkina (Eds)Moscow: Nauka pp 14–31 (in Russian)
[7] Dyblenko VP 2008 Wave Methods of Impact on Oil Reservoirs with Hard-to-Recover Reserves: Review and Classification Moscow: VNIIoENG (in Russian)
[8] Kravtsov JaI and Marfin EA 2011 Wave influence on reservoir as a universal way of increasing the efficiency of extraction of heavy oils and natural bitumen Georesursy No 3(39) pp 17–18
[9] Marfin EA, Kravtsov JaI et al 2014 Field testing of the wave impact on the oil production process at Pervomaiskoye oilfield Georesursy No 2(57) pp 14–16
[10] GOST ISO 10816-1-97 2007 Mechanical Vibration. Evaluation of Machine Vibration by Measurements on Non-Rotating Parts. Part 1: General Guidelines Moscow: Standartinform (in Russian)
[11] Costa VL, Schettino HV et al 2017 Digital filters for clustered-OFDM-based PLC systems: Design and implementation Digital Signal Processing Vol 70 pp 166–177 DOI: doi.org/10.1016/j.dsp.2017.08.004
[12] Saramäki T, Mitra SK andf Kaiser JF 1993 Finite impulse response filter design Handbook for Digital Signal Processing Vol 4 pp 155–277
[13] Mitra SK 2011 Digital Signal Processing Computer-Based Approach McGraw-Hill
[14] Boguslawsky, Korovkin N and Hayakawa M Large AC 2016 Machines: Theory and Investigation Methods of Currents and Losses in Stator and Rotor Meshes Including Operation with Nonlinear Loads Springer—Japan KK Tokyo DOI: 10.1007/978-4-311-56475-1
[15] Pollefit J 2018 Power electronics: Drive technology and motion control, Elsevier Academic Press 412 pp DOI: doi.org/10.1016/C2017-0-00733-4
[16] Carravetta A, Houreh ShD, Ramos HM 2018 Pumps as turbines: Fundamentals and applications Springer Int Publ 218 pp DOI: 10.1007/978-3-319-67507-7