Regulation of soil organic carbon stock with physical properties in alluvial soils of Bihar

Vandana Kumari
Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India.

Ranjan Laik
Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India.

Shishpal Poonia
CIMMYT-India, Sabajpura, Khagaul, Patna-801105, Bihar, India.

Debabrata Nath
Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India.

ARTICLE INFO
Received : 16 July 2021
Revised : 24 October 2021
Accepted : 27 January 2022
Available online: 17 April 2022

ABSTRACT
Soil temperature and water content govern the breakdown of soil organic matter (SOM), which has a large impact on SOC storage. Apparently soil organic carbon is an excellent indicator of soil health. In this experiment, the association between several soil health indices such as soil organic carbon (SOC), soil texture, and wet aggregate stability was investigated (WAS). It was discovered that there is a substantial positive relationship between wet aggregate stability and soil organic carbon storage. Soil carbon store in East Champaran soils ranged from 5.27 to 19.60 mg/ha, with an average of 12.98 mg/ha. The wet aggregate stability ranged from 3.82 to 36.43 %, with a mean of 16.11 %. Wet aggregate stability was shown to increase as the organic carbon storage in the soil increased. This experiment also indicated that clay (%) and silt (%) had a direct impact on wet aggregate stability and, as a result, soil organic carbon storage. As a result, wet aggregate stability and soil texture have a direct and favourable influence on soil organic carbon storage in East Champaran, Bihar soils.

Introduction
In the worldwide terrestrial carbon cycle, soil organic carbon (SOC) is the single greatest carbon store (Abdalla et al., 2018). It has a carbon content of around 1500 Pg, which is higher than the carbon content of plants and atmospheric reservoirs on average (Zhang et al., 2018). Due to its high percentage, even modest changes in its concentration can result in significant increases in CO2 emissions, resulting in global warming (Zhao et al., 2006, 2018). Mineralization of SOC is a critical phase in the release of fertiliser, soil nutrients, quality improvement, greenhouse gas emissions, and, ultimately, food production (Cai et al., 2016; Mustafa et al., 2020; Wang et al., 2008; Soderstrom et al., 2014). To better soil fertility management, climate change mitigation, and food safety, a complete examination of all the features andvariability of SOC mineralization processes is necessary (Mustafa et al., 2020). Aggregate stability is a soil quality indicator that is linked to the quantity of organic matter in the soil. Soil organic matter makes soil surface aggregates more stable, allowing them to withstand moisture and mechanical forces from tillage equipment and vehicle activity (Hernanz et al., 2002; Tisdall and Oades, 1982; Oades, 1984). A substantial link between SOC and macro and micro aggregate structural stability (250 mm) has been discovered in several research on diverse soils and climatic situations (Hernanz et al., 2002; Cannell and Hawes, 1994). Complete SOC is widely recognised as a dynamic process with several components, and increasing the amount of carbon sequestered in these components is critical for reducing carbon
conversion to greenhouse gases and avoiding climate change. (Mustafa et al., 2020; Mikha & Rice, 2004) The breakdown of organic matter in soil is one of the most significant processes that contribute to the long-term sustainability of SOC and carbon sequestration in soil aggregation (Mustafa et al., 2020, Lal, 2004; Six et al., 2004; Abrar et al., 2020). By physically protecting SOC from mineralization, soil aggregates serve a crucial role in soil fertility maintenance and structure. It is also recognised as a crucial indicator of the formation, deterioration, and stability of soil structures (Mustafa et al., 2020, Six et al., 2004; Abiven et al., 2009). In recent decades, the amount of inorganic and organic fertilisers used in agricultural operations has increased, raising the danger of soil depletion, which is connected to unsustainable resource use practises (Mustafa et al., 2020, Bronick and Lal, 2005; Guo et al., 2019). As a result, it is strongly advised to adopt optimal fertilisation strategies to improve soil quality, soil C sequestration, and agronomic efficiency (Mustafa et al., 2020, Guo et al., 2018; Tanveer et al., 2019).

The primary goal of this study was to determine if aggregate stabilisation, in association with soil texture, plays a major influence in SOC storage management.

Material and Methods
Description of the site, the experimental setup, and soil sampling:
Muzaffarpur is geographically located in Bihar between 26°07′N and 85°24′E with sub-tropical climate. East Champaran is geographically located in Bihar between 26°38′N and 84°54′E at an elevation of 62 m above sea level (a.s.l.). The area is characterized by a Hot Subhumid (moist) climate, with hot, humid summers and mild winters. The yearly average rainfall is 1202 mm. The major soil types are Udifluvents, Haplaquents, Paleustalfs alluvial with silty to sandy loam texture, and calcareous nodules (kankar).

Soil samples were collected at 0-15 cm soil depth, air-dried for 6 days, passed through a 2 mm sieve and kept for analysis of wet aggregate stability (WAS), soil texture, and SOC.

Assessment of soil texture:
14g (+/- 0.1g) of sieved soil was added to a 50 ml centrifuge tube holding 42 ml of a dispersant 3% sodium hexametaphosphate solution. To completely disperse soil into suspension, it was continuously agitated for 2 hours on a shaker. The whole contents were sieved onto a 0.053 mm sieve assembly over a plastic funnel above a 1L beaker. The sand that has accumulated on top of the sieve is collected in a metal container and put aside. Silt and clay particles were collected in a 1L beaker and stirred to re-suspension before being allowed to settle for 2 hours. Before measuring dry weight, both the sand and silt fraction cans were dried at 105°C to a consistent weight. Percent sand, silt, and clay were then calculated as follows:

\[
\text{Sand} \% = \left(\frac{\text{mass of oven dry sand}}{\text{mass of original sample}} \right) \times 100 \\
\text{Silt} \% = \left(\frac{\text{mass of oven dry silt}}{\text{mass of original sample}} \right) \times 100 \\
\text{Clay} \% = 100 - (\text{Sand} \% + \text{Silt} \%)
\]

Assessment of wet stable aggregate:
4g of air-dried, 2-mm aggregate soil sample was included in each 0.25-mm sieve. Initially, the precise weight of each sample was recorded. Each soil sample was reproduced in replication, resulting in a total of four samples per eight-sieve batch. In an Eijkelkamp machine, soil samples were dispersed for 3 minutes with 100mL distilled water and then for 10 minutes with a 2g/L sodium hexametaphosphate solution. Both solutions were filtered using pre-weighed filter sheets. After oven-dried at 105°C, each filter paper was weighed. % stable aggregate was calculated using the following equation:

\[
\% \text{ stable aggregates} = \frac{\text{Weight of soil in dispersing solution}}{\text{Weight of soil in dispersing solution} + \text{weight of soil in water}} \times 100
\]

Assessment of soil organic carbon, soil organic matter, and soil organic carbon stock:
The amount of soil organic carbon (SOC) was calculated using the Walkley and Black technique (1934). The calculated SOC was then multiplied with Von Bemlen factor (1.724) to determine soil organic matter (SOM). SOC stock was calculated by multiplying area (m²), bulk density (Mg m⁻³), soil depth (m), and SOC (percent).

Statistical analysis
Statistical analysis was done using SPSS software version 16.0.
Results and Discussion

Variation of soil organic carbon (SOC) and soil organic matter (SOM) in Alluvial soils of Bihar

The soil system regulates plant growth in the terrestrial ecosystem (Nath et al., 2021). SOM and SOC play a vital role in good plant growth and soil health. SOM is one of the sources and sink of SOC. SOC in these studied soil samples of Muzaffarpur varied between 0.32 – 0.73 % and in case of East Champaran varied between 0.24-0.99 % with a mean of 0.66 %. SOM ranged from 0.46 to 1.71 % with a mean of 1.13 % (Figure 1). The data of SOC and SOM revealed that increase in SOC improves SOM content. Both SOM and SOC were positively correlated. One of the most important elements affecting soil stability is organic matter (Hernanz et al., 2002; Follett and Peterson, 1988; Ekwue, 1990). The surface layer of soil was found to be stable with greater SOC content (Hernanz et al., 2002, Kay et al., 1994).

Wet aggregate stability and soil organic carbon stock

Soil carbon stock in soils of Muzaffarpur varied between 6.43 to 14.63 Mg ha\(^{-1}\) and East Champaran varied between 5.27-19.60 Mg ha\(^{-1}\) with an average of 12.98 Mg ha\(^{-1}\) respectively. Wet aggregate stability of Muzaffarpur varied between 5.17 to 40.17 % and in case of East Champaran varied between 3.82-36.43 % with a mean of 16.11 % (Figure 2). WAS increase with increase in SOC store. Aggregate protects SOM by physical disconnection (Chaplot et al., 2015; Schmidt et al., 2011). This experiment revealed that soils with the highest aggregate stability are characterized by more SOC stock.

Figure 1: Level of soil organic matter (SOM) and soil organic carbon (SOC) in Alluvial soils of Bihar.

Figure 2: Relationship between wet aggregate stability (%) and SOC stock in alluvial soils of Bihar.
A possible explanation of this result could be attributed to soil organic matter content and quality. Binding agents, which are typically polysaccharides derived from exocellular mucilages and root exudates, situated between aggregates may create an active pool (Chaplot et al., 2015; Von Lützow et al., 2008), resulting in significant SOC storage. In high aggregate stability soils, fresh plant residues, as well as various faunal and microbial residues, which constitute alternate pools of easily accessible SOM to decomposers (Chaplot et al., 2015; Von Lützow et al., 2008), are more likely to be found than in low aggregate stability soils. Plant organic residue, as well as microbial and microfaunal waste, including fungal hyphae in various stages of decomposition, make up the light fractions (Chan and Heenan, 1999; Jansen et al., 1992). According to the soil aggregation hierarchical model, there are efficient stabilizing agents for soil macroaggregates (Tisdall and Oades, 1982). The increased microbial activity led these light fraction materials to disintegrate preferentially and they are primarily associated with macro-aggregates which played a major role in aggregate stability (Chan and Heenan, 1999).

Descriptive statistics of sand, silt, and clay content in Alluvial soils of Bihar

The textural class of studied soil samples was silt loam. The sand % varied between 6.16-41.58 % with a mean of 19.60 and while the clay % ranged from 52.46 to 83.11% with a mean of 71.49 (Table 1). The maximum and minimum data of clay were 3.22 and 17.94 respectively with a mean of 8.95. The positive skewness data of sand (0.67) and clay (0.48) revealed that the right side of the distribution has a longer or flatter tail, and also data are fairly symmetrical. The negative skewness data of silt (-0.60) suggests that the left side distribution is longer or flatter than the tail on the right side. Besides the negative skewness (-0.60) revealed that the data are highly skewed (Table 1). The negative kurtosis of sand (-0.82), silt (-0.91), and clay (-0.60) revealed that the distribution curve had flattened top than the normal curve and platykurtic distribution is found.

Table 1: Descriptive statistics of sand, silt and clay content in soil samples of alluvial soils of Bihar.

Descriptive parameters	Sand (%)	Silt (%)	Clay (%)
Mean	19.60 (+2.04)	70.69 (+1.81)	9.71 (+0.91)
Median	16.60	74.59	9.11
Std. Deviation	11.89	10.11	4.28
Variance	141.29	102.13	18.34
Skewness	0.67 (+0.41)	-0.60 (+0.41)	0.48 (+0.41)
Kurtosis	-0.82 (+0.85)	-0.91 (+0.85)	-0.60 (+0.81)
Range	35.46	30.65	14.72
Minimum	6.14	52.46	3.22
Maximum	41.60	83.11	17.94

Correlation among SOC (%), SOM (%), SOC stock, WAS, Sand (%), Silt (%), and Clay (%) in Alluvial soils of Bihar

The correlation coefficient among SOC (%), SOM (%), SOC Stock, WAS, Sand (%), Silt (%), and Clay (%) was highly significant (Table 2). It was also observed that soil organic carbon (SOC) was positively significant correlated (0.696**) with wet aggregate stability (WAS) and negatively significant correlated (-0.682**) with sand percentage at 0.01 level of significance. Similarly, SOC stock was significantly correlated with water aggregate stability (WAS), silt and clay percent. However, negative correlation observed between SOC and sand (%). Sand has a negligible contribution towards the SOC stock build-up in the soil. Table 2 displays that water aggregate stability (WAS) has a negative correlation with sand (%) and a positive correlation with both silt (%) and clay (%). Silt (Thomasson, 1978), sand (Williams, 1970), and clay fractions (Kemper & Koch, 1966) have been identified as having a significant impact on the stability of soil aggregates.
Regulation of soil organic carbon stock with physical properties

Table 2: Correlation between SOM (%), SOC (%), Soil Organic Carbon stock, WAS, Sand (%), Silt (%) and Clay (%) of alluvial soils of Bihar

	SOM (%)	SOC (%)	SOCstock (Mg/ha)	WAS (%)	Sand (%)	Silt (%)	Clay (%)
SOM (%)	1						
SOC (%)	0.806**	1					
SOCstock (Mg/ha)	0.806**	1.000**	1				
WAS (%)	0.397**	0.696**	0.695**	1			
Sand (%)	-0.493**	-0.682**	-0.683**	-0.480**	1		
Silt (%)	0.438**	0.655**	0.658**	0.462**	-0.937**	1	
Clay (%)	0.336**	0.348**	0.343**	0.243**	-0.565**	0.241	1

Correlation is significant at the 0.01 level.

Conclusion

The link between wet aggregate stability, soil texture, and soil organic carbon was studied in this study (SOC). The preceding experiment indicated a considerable positive association between soil aggregate stability (WAS) and SOC stock. Clay (%), silt (%), and soil organic matter (SOCstock) properly proxied wet aggregate stability (WAS) and SOC stock (SOC). SOC stock was much higher in soils with the highest stable aggregate stability than in soils with the lowest stable aggregate stability. The main influential factors on clay (%), silt (%), soil organic matter (SOC), and mineralization of organic carbon (aggregate associated) in the soil studied were SOC stock and aggregate stability, according to correlation analysis. Future study should focus on the primary reasons of SOC sequestration in component C fractions, as well as potential protective factors.

Acknowledgement

The authors are highly thankful to Cornell University, CIMMYT, and EDF collaboration with DRPCAU, Pusa, Samastipur for providing funds for the research. Also, thanks to all the reviewers for their valuable feedbacks. The corresponding author would like to thank all those who directly or indirectly influence to work in the field of soil science.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones, M. B., & Smith, P. (2018). Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. *Agriculture, Ecosystems & Environment*, 253, 62-81.

Abiven, S., Menasseri, S., & Chenu, C. (2009). The effects of organic inputs over time on soil aggregate stability—A literature analysis. *Soil Biology and Biochemistry*, 41(1), 1-12.

Abrar, M. M., Xu, M., Shah, S. A. A., Aslam, M. W., Aziz, T., Mustafa, A., ... & Ma, X. (2020). Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. *Science of the Total Environment*, 723, 138181.

Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. *Geoderma*, 124, 3–22.

Cai, A., Xu, H., Shao, X., Zhu, P., Zhang, W., Xu, M., & Murphy, D. V. (2016). Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system. *PloS one*, 11(3), e0152521.

Cannell, R. Q., & Hawes, J. D. (1994). Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. *Soil and Tillage Research*, 30(2-4), 245-282.

Chan, K. Y., & Heenan, D. P. (1999). Lime-induced loss of soil organic carbon and effect on aggregate stability. *Soil Science Society of America Journal*, 63(6), 1841-1844.

Chaplot, V., & Cooper, M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. *Geoderma*, 243, 205-213.

Ekwue, E. I. (1990). Organic-matter effects on soil strength properties. *Soil and Tillage Research*, 16(3), 289-297.

Follett, R. F., & Peterson, G. A. (1988). Surface soil nutrient distribution as affected by wheat-fallow tillage systems. *Soil Science Society of America Journal*, 52(1), 141-147.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Oades, J. M. (1984). Soil organic matter and structural properties. Nature, 375, 163-165.

Nath, D., Laik, R., Meena, V. S., Pramanick, B., & Singh, S. K. (2021). Can mid-infrared (mid-IR) spectroscopy evaluate soil conditions by predicting soil biological properties?. Soil security, 4, 100008.

Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and soil, 76(1), 319-337.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

Guo, Z., Wang, X., Liu, Y., Zhang, Y., & Li, Y. (2019). Effects of Long-Term Fertilization on Organic Carbon Mineralization of Different Grain Size Components in Paddy Soils from Yellow Earth. International Journal of Agriculture and Biology, 22(3), 537-544.

Guo, Z. C., Zhang, Z. B., Zhou, H., Rahman, M. T., Wang, D. Z., Guo, X. S., ... & Peng, X. H. (2018). Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil and Tillage Research, 180, 232-237.

Hernanz, J. L., López, R., Navarrete, L., & Sanchez-Giron, V. (2002). Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semi-arid central Spain. Soil and Tillage Research, 66(2), 129-141.

Janzen, H. H., Campbell, C. A., Brandt, S. A., Lafond, G. P., & Townley-Smith, L. (1994). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 36(6), 1799-1806.

Kay, B. D., Dexter, A. R., Rasiah, V., & Grant, C. D. (1994). Weather, cropping practices and sampling depth effects on tensile strength and aggregate stability. Soil and Tillage Research, 32(2-3), 135-148.

Kemperw, D. & Koch, E.J. (1966). Aggregate stability of soils from Western United States Canada. U.S.D.A. Technical Bulletin. No. 1355.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627.

Mikha, M.M., & Rice, C.W. (2004). Tillage and manure effects on soil aggregate - associated carbon and nitrogen. Soil Science Society of America Journal. 68, 809–816.

Mustafa, A., Minggang, X., Shah, S. A. A., Abrar, M. M., Nan, S., Baoren, W., & Núñez-Delgado, A. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 270, 110894.

Nath, D., Laik, R., Meena, V. S., Pramanick, B., & Singh, S. K. (2021). Can mid-infrared (mid-IR) spectroscopy evaluate soil conditions by predicting soil biological properties?. Soil security, 4, 100008.

Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and soil, 76(1), 319-337.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.