Supplementary Data For: An umbrella review of systematic reviews of β-hydroxy-β-methyl butyrate (HMB) supplementation in promoting skeletal muscle mass and function in aging and clinical practice

Supplementary table 1 - Standardized Effectiveness Statements, from [1]

Summary statement	Translation
Sufficient evidence	Evidence to make a decision about the effect of the intervention(s) in relation to a specific outcome(s). This includes evidence of an effect in terms of (i) benefit or (ii) harm. Statistically significant results are considered to represent sufficient evidence on which to base decisions, but a judgement of sufficient evidence is also made based on the number of studies/participants included in the analysis for a particular outcome. A rating of sufficient evidence is often based on meta-analysis producing a statistically significant pooled result that is based on numerous included studies/participants. This judgement may also be made based on the number of studies and/or study participants showing a statistically significant result - for example a result where 12 studies of a total of 14 for a specific outcome showed a statistically significant effect of an intervention would be considered to represent sufficient evidence.
Some evidence	Less conclusive evidence to decide about the effects of a particular intervention(s) in relation to a specific outcome(s). In this case, the result is qualified according to the findings of the review - for example, 'some evidence (5 studies of 9) reported a positive effect of' (This would be based on a more equivocal set of results than those obtained for 'sufficient evidence' above. For example, while 12/14 statistically significant studies would be classed as 'sufficient evidence', 5/9 statistically significant studies is more equivocal and would be classed as 'some evidence.') This may also be based on a statistically significant result obtained in a small number of studies; a statistically significant result obtained from studies with a small number of participants; or a statistically significant result obtained from studies of low quality; the result is some evidence.
Insufficient evidence	Not enough evidence to support decisions about the effects of the intervention(s) based on the included studies. This should be interpreted as 'no evidence of effect', rather than 'evidence of no effect'. Statistically non-significant results are considered to represent insufficient evidence. Where the number of studies is small, and/or the number of participants included in the studies is small, insufficient evidence might reflect underpowering of the included studies to be able to detect an effect of the intervention. Where the number of studies is large, and/or the number of participants included in these studies is large, 'insufficient evidence' may reflect underlying ineffectiveness of the intervention to affect the outcomes being examined. In such cases the intervention may additionally be described as 'generally ineffective' in order to separate such results from those cases where insufficient evidence is used to describe results, but this is based on a small number of studies and/or participants (where non-significant results may reflect underpowering of studies rather than ineffectiveness); the result is insufficient evidence.
Insufficient evidence to determine	Not enough evidence to be able to determine whether an intervention is effective or not based on the included studies. This statement is about reporting gaps in the evidence (i.e., where there are too few studies to be able to determine effects), rather than the situation of the summary statement above, which is about ineffectiveness (e.g. several studies reporting a statistically non-significant result). It is likely to arise when the numbers of included studies are very small; the result is insufficient evidence to determine.
Supplementary table 2 - Method to rate the quality of the evidence (QoE) supporting each bottom-line statement. From [1]

Initial Quality of Body of Evidence	AMSTAR
High (4) if systematic review & meta-analysis	-1 if review of moderate quality (AMSTAR: 4–7)
Moderate (3) if systematic review (no meta-analysis)	-2 if review of low quality (AMSTAR: 0–3)

(1 - very low; 2 - low; 3 - moderate; 4 - high)
Search strategies

Web of Science core collection:

(((TS=(HMB)) OR TS=(beta-hydroxy-beta-methylbutyrate)) OR TS=(beta-hydroxy-beta-methylbutyrate)) OR TS=(b-hydroxy-b-methylbutyrate)) OR TS=(3-hydroxy-3-methylbutyrate)) AND (TS=systematic review)

63 results

Pubmed:

Search: (((((HMB) OR (beta-hydroxy-beta-methylbutyrate)) OR ((3-hydroxy-3-methylbutyrate))))) AND (systematic review)

Sort by: Most Recent

"HMB"[All Fields] OR "beta hydroxyisovaleric acid"[Supplementary Concept] OR "beta hydroxyisovaleric acid"[All Fields] OR "beta hydroxy beta methylbutyrate"[All Fields] OR "3-hydroxy-3-methylbutyrate"[All Fields]) AND ("systematic review"[Publication Type] OR "systematic reviews as topic"[MeSH Terms] OR "systematic review"[All Fields])

76 results

Embase:

Database: Embase <1974 to 2021 August 25>

Search Strategy:

1. ((HMB or beta-hydroxy-beta-methylbutyrate or 3-hydroxy-3-methylbutyrate or b-hydroxy-b-methylbutyrate or beta hydroxy beta methylbutyrate or beta-hydroxy beta-methylbutyrate or beta-hydroxy beta methylbutyrate or beta hydroxy beta methylbutyrate) and (systematic review or systematic)).af. (159)

2. Heavy menstrual bleeding.af. (2014)

3. 1 not 2 (90)

90 results
Supplementary Table 3 - Systematic reviews, including details, included in the analysis

Reference	No. of articles (no. of participants)	MA	Results/findingsa	Standardized effectiveness statement	AMSTAR	Bottom-line statement about the main effects of interventions and recommendation within each intervention category	QoE	Declares Conflicts of interest		
Bear 2019 [2]	13 (1635)	Y	Body weight: “No effect on bodyweight” (SMD = 0.16; 95% CI: -0.08, 0.41; z = 1.34; P = 0.18; I² = 67%; P = 0.0003)	Some evidence in favour of no difference	9	“HMB, and supplements containing HMB, increased muscle mass and strength in a variety of clinical conditions, although the effect size was small.”	4	Yes		
		Y	Skeletal muscle mass: “some evidence to support the effect of HMB alone, or supplements containing HMB, on increasing skeletal muscle mass” (SMD = 0.25; 95% CI: -0.00, 0.50; z = 1.93; P = 0.05; I² = 58%; P = 0.01)	Some evidence in favour of no difference						
		Y	Fat mass: “no evidence to support a change in fat mass between patients receiving HMB and controls” (SMD = 0.03; 95% CI: -0.27, 0.34; z = 0.21; P = 0.83; I² = 58%; P = 0.03)	Some evidence in favour of no difference						
		Y	Muscle strength: “Six studies were included in the meta-analysis, revealing strong evidence that HMB or supplements containing HMB improved muscle strength compared with controls, but with	Some evidence in favour of intervention						
Beaudart 2017 [3]	3 (103)	N	Physical function: “0/4 studies reported between-group differences in any outcome of physical function. 2/4 studies reported no significant changes in physical function in the HMB group”. 2/4 studies “reported within-group improvements in physical function over time in the HMB group”	Some evidence in favour of no difference	5	“Physical exercise has a beneficial impact on muscle mass, muscle strength, or physical performance in healthy subjects aged 60 years and older. However, the additional effect of dietary supplementation has only been reported in a limited number of studies.”	2	Yes		
---	---	---	---	---	---	---	---	---	---	
4 (495)	N	Physical function: “Muscle strength increased with exercises in 2/3 RCTs with no additional effect of HMB”								
			Muscle mass: “muscle mass increased with exercise in 3/3 RCTs and an interactive effect of HMB was found in 1/3 RCTs”							
			Fat-free mass: 0/2 studies showed HMB + exercise significantly improving fat-free mass compared to exercising placebo							
			Lean mass: 1/1 study “showed a significantly greater effect of exercise + Ca-HMB in preventing							
Beaudart 2018 [4]	2 (61)	Y	Muscle mass: “results of meta-analyse reported that CaHMB supplementation was only significantly effective on leg lean mass (MD = 0.27; 95% CI: 0.01, 0.54) but not on total lean body mass (MD = 0.95, 95% CI: -0.58; 2.47).”	Insufficient evidence to determine	5	“A limited effect of nutritional supplementation on LSTM, muscle power and physical function. Inconsistent positive effects were observed for some specific supplementations (i.e., creatine, EAA or HMB).”	3	No		
2 (61)	N	Muscle strength — 1/2 only 1 RCT showed improvement in Muscle strength. “In the first study, no effects of HMB on grip strength were found. However, HMB supplementation increased the leg extension peak torque at 60°, significantly different from the placebo group. In the second study, no difference the HMB supplemented group and the placebo group in regards of muscle strength was found.”	Insufficient evidence to determine			2				
Study	Design	N	Physical function: 0/2 – neither of the studies showed improvement in physical function. “One of the two studies showed an improvement in the Get Up and Go test for the HMB group without any significant differences between groups, while the other showed no significant declines in physical performance (Get Up and Go test, SPPB test and 5-item physical performance test) in both groups over the bed-rest period.”	Insufficient evidence to determine	Cost (group)	6* (350)	Insufficient evidence to determine			
----------------------	--------	-----	---	----------------------------------	-------------	---------	----------------------------------			
Costa Riela 2021 [5]	N		Body composition: 5/6 studies showed favorable changes in body composition	Some evidence in favour of intervention	1	No	“Our study shows that HMB supplementation improves strength and muscle function in elderly. However, there are few clinical trials using HMB supplementation; thus, only 6 articles were used for this analysis. In addition, due to different methodologies, the assessment of HMB actual effectiveness in attenuating the aging process is rather limited.”			
Muscle Quality:	1/2 studies showed improvement in muscle quality									
Muscle Catabolism:	1/1 studies showed “acute muscle catabolism reduction during the supplementation phase”									
Physical performance:	0/1 “No significant changes between groups during total physical performance”									
1/1 studies showed improvement in 6MWT (p < 0.04)										
Strength:	2/3 studies showed “improvement of strength parameters in the supplemented group” “Supplementation without resistance exercises improved muscle strength and quality. However, in subjects practicing resistance exercise, supplementation seems to have no additional effect”									
Insufficient evidence to determine										
Insufficient evidence to determine										
Insufficient evidence to determine										
Some evidence in favour of intervention										
Study	Effect	Y/N	Description	Evidence	Notes					
---	---	---	---	---	---	---	---			
Courel-Ibáñez 2019 [6]		Y	**Handgrip strength**: “close to showing statistical significance but with a small effect size” (ES = 0.19; 95% CI: -0.03, 0.40; P = 0.067; I² = 0%)		“HMB supplementation in addition to physical exercise has no or fairly low impact in improving body composition, muscle strength, or physical performance in adults aged 50 to 80 years compared to exercise alone.”					
		Y	**Leg strength**: NS, (ES = -0.78; 95% CI: -3.16, 1.59; P = 0.291; I² = 91.6%)							
		Y	**Muscle mass**: “Almost no effect” (ES = 0.07; 95% CI: -0.69, 0.82; P = 0.833; I² = 90.6%)							
		Y	**Fat mass**: “A positive non-significant effect” (ES = 0.61; 95% CI: -0.73, 1.96; P = 0.293, I² = 84.1%)							
		Y	**Muscle and strength together**: “HMB did not have any effect” (ES = -0.06; 95% CI: -0.82, 0.71; P = 0.853; I² = 85.8%)							
Cruz-Jentoft 2014 [7]		N	**Muscle mass loss prevention**: “prevented muscle mass loss in 1/4 studies”		“Overall, HMB showed some effects on muscle mass and function in these high-quality”					
Study	Sample Size	Y/N	Findings	Weight						
-------------------------------	-------------	-----	--	--------						
Lin 2021 [8]	7* (417)	Y	Muscle strength: “improved muscle strength in 1/4 studies” Physical performance: “improved physical performance in 1/4 studies” Some evidence in favour of no difference 7	3						
8* (448)	Y		Fat mass: “the pooled result of FM derived from 8 of the 9 included studies in meta-analysis suggests that almost no effect was found in fat mass.” (ES = -0.04; 95% CI: -0.26, 0.18; z = 0.36, P = 0.716, Fixed-effect model; I² = 0%; P = 0.50) Some evidence in favour of no difference 7							
Martin-Cantero 2021 [9]	3 (77)	Y	Muscle mass: HMB “showed a significant positive effect on muscle mass measures” (SMD = Some evidence in 7	3						
Study	N	Physical function	Strength	Fat-free mass	Protein synthesis	Evidence	Recommendation			
------------------------------	---	-------------------	----------	---------------	------------------	----------	----------------			
Martinez-Rodriguez 2020 [10]	1 (27)	1/1 study shows “supplementation with HMB, arginine, and lysine can improve functionality”	Insufficient evidence to determine	Insufficient evidence to determine	Insufficient evidence to determine	4	“In older women, supplementation with bicarbonate, HMB, lysine, and arginine also have shown positive effects on exercise performance. Health professionals should be aware of these strategies and consider their use for different interventions or supplementation protocols. No additional or exclusive effects were found in the population of older men.”			

Martinez-Rodriguez 2020 [10]:

0.522; 95%CI: 0.175, 0.868; \(P = 0.003; I^2 = 5.40\%\)

In favour of intervention

supplementation in community-dwelling and institutionalized older adults."

“The HMB supplements used in the studies in the present review mainly consisted of HMB (or calcium HMB) in combination with the essential amino acids arginine and lysine, suggesting that perhaps this combination could be optimal for building and maintaining muscle mass.”

Physical function: 1/1 study shows “supplementation with HMB, arginine, and lysine can improve functionality”

Strength: 1/1 study shows “supplementation with HMB, arginine, and lysine can improve strength”

Fat-free mass: 1/1 study shows “supplementation with HMB, arginine, and lysine can improve fat-free mass”

Protein synthesis: 1/1 study shows “supplementation with HMB, arginine, and lysine can improve protein synthesis”

Insufficient evidence to determine

Insufficient evidence to determine

Insufficient evidence to determine

Insufficient evidence to determine

No additional or exclusive effects were found in the population of older men.”
Study	N	Body Mass	Evidence	Grade	Recommendation		
Mochamat 2017 [11]	2 (504)	Lean body mass: 1/2 studies showed “an increase in lean body mass”	Insufficient evidence to determine	6	“Following the GRADE methodology, no positive recommendation could be expressed for the use of minerals, vitamins, proteins, or other supplements in cancer patients. Further research is needed to identify the efficacy and safety of these supplements to be able to give clear evidence-based recommendations.”	2	No
Molfino 2013 [12]	15 (1176)	Body mass: 2/11 studies found significant improvements in body mass					
Fat-free mass: 4/10 studies found significant improvements in fat-free mass	Some evidence in favour of no difference						
Some evidence in favour of no difference	1	“HMB supplementation contributed to preserve FFM in cancer, AIDS, elderly, and following trauma. It also improved contractile performance as well as endurance aerobic performance and muscle strength. It also reduced”	1	No			
Study	Lean body mass:	Fat mass:	Muscle strength:	Muscle mass:	Muscle strength and function:		
------------------------------	-----------------	-----------	------------------	--------------	-----------------------------		
Oktaviana 2019 [13]	1/1 studies	1/8 studies	2/5 studies	2/2 studies	2/2 studies		

Lean body mass: 1/1 studies showed “a significant increase of lean body mass in the intervention group compared to control group”

Fat mass: 1/8 studies found significant decreases in fat mass

Muscle strength: 2/5 studies found significant improvements in muscle strength

Muscle mass: 2/2 studies found the intervention group experienced a reduced loss of muscle mass during 10 days of bed rest (one study) or in sarcopenic patients with hip fracture (one study).

Muscle strength and function: 2/2 studies showed “reduced loss of strength and function compared to the control group”

Some evidence in favour of no difference

Insufficient evidence to determine

Insufficient evidence to determine

Insufficient evidence to determine

Insufficient evidence to determine

Exercise-induced markers of muscle damage, post-exercise recovery time and improved quality of life and respiratory function in COPD... Further, well designed clinical studies are needed to confirm effectiveness and mode of action of HMB.”

“This systematic review shows that HMB can improve lean body mass and preserve muscle strength and function in older people with sarcopenia and frailty. Further well-designed RCTs in this area of research are necessary to better identify the role of HMB in this population.”
Study	N	Description	
Prado 2022 [14]	15 (943)	N	Insufficient evidence to determine

Muscle mass: 3/4 RCTs found a beneficial effect of HMB supplementation on muscle mass, compared to the control group.

5/8 (4 non-randomized studies of interventions (NRSIs) and 1 RCT) found a beneficial effect of HMB supplementation in the experimental group alone.

Muscle Strength: 1/1 RCT found patients who received the HMB/Arg/Gln supplement had a smaller decrease in handgrip strength when compared with controls.

3/3 NRSIs reported a beneficial effect of HMB supplementation on increasing muscle strength.

Physical Function: 2/2 NRSI found a beneficial effect on 4-mgait speed, however only one was found to be statistically significant.

Body weight: 2/4 RCT found a beneficial effect of HMB supplementation.

1/1 NSRI found a *mixed* effect of HMB supplementation.

Some evidence in favour of intervention

This comprehensive systematic review found some evidence of a beneficial effect of HMB supplementation on muscle mass, function, hospitalization outcomes, and survival but not on quality of life and body weight in patients with cancer. As a limited number of high-quality studies were included, our findings highlight the need for more well-designed RCTs to further explore the benefits of HMB supplementation in patients with cancer.
Studies	N (Sample Size)	Evidence	Summary of Findings
Sanz-Paris 2018 [15]	9 (1333)	N	Community dwelling older adults:
Body composition: 1/3 studies showed improvement in body composition			
Muscle strength:			
Hand grip Strength: 1/3 studies showed improvement			
PT isokinetic flexion and extension: 1/1 studies show improvement			
PT isometric strength: 1/1 studies showed improvement			
Leg strength: 0/1 studies showed improvement			
	Insufficient evidence to determine	Insufficient evidence to determine	Some evidence in favour of no difference
	1	“Data suggest a positive effect of HMB supplementation on muscle mass. No clear effect has been reported on muscle strength and physical performance.”	1
Physical function:	**Insufficient evidence to determine**		
---	---	---	---
6-Minute Walking test: 1/1 studies showed improvement	Insufficient evidence to determine		
no significant difference between groups for total SPPB scores	Insufficient evidence to determine		
Sf 36 QoL: 1/1 studies showed improvement	Insufficient evidence to determine		
no significant difference in any other QoL measure (0/1)	Insufficient evidence to determine		
Patients in peri-hospitalization setting:	Some evidence in favour of no difference		
Body composition: 2/5 studies showed improvement	Some evidence in favour of no difference		
Muscle strength: 2/3 studies showed improvement	Some evidence in favour of intervention		
Physical function: 1/2 studies showed improvement	Insufficient evidence to determine		
Reference	Study ID	Study Design	Study Findings
-------------	----------	--------------	--
Wu 2015 [16]	6* (287)	Y	Muscle mass: “the meta-analysis of muscle mass outcome showed increased muscle gain in the intervention groups than in the control groups” (SMD = 0.352 kg; 95% CI: 0.11, 0.594; z = 2.85; P = 0.004; I² = 0.0%; P = 0.438).
	6* (287)	Y	Fat mass: “no statistically significant changes in fat mass outcomes between intervention and control groups” (SMD = -0.08 kg; 95% CI: -0.32, 0.159; z = 0.66; P = 0.511; I² = 0.0%; P = 0.741).
5* (238)	N		Muscle strength: 3/6 studies showed improved muscle strength. Two of these studies looked HMB supplementation alone and one looked at HMB supplementation in combination with resistance exercise training.
4 (214)	N		Physical function: 2/4 studies showed improved functionality

*Outcomes are underlined.

*Stout et al. 2013 [17] is reported as one article; however, this article contains two phases; each phase is treated as their own study under results/findings, as each phase uses a unique set of participants.

Paper specific conflicts of interest are listed in separate table.

Abbreviations: ?, the number of studies was not mentioned in the systematic review/meta-analysis; body composition; AIDS, acquired immunodeficiency syndrome; CaHMB, calcium beta-hydroxy-beta-methylbutyrate; CI, confidence interval; COPD, chronic obstructive pulmonary
disease; EAA, essential amino acid; ES, effect size; FFM, fat-free mass; HMB, b-hydroxy-b-methylbutyrate; LSTM, lean soft tissue mass; MA, meta-analysis; MD, mean difference; NS, non-significant; PT, peak torque; QoE, quality of evidence; QoL, Quality of Life; Sf 36, Short Form 36 Health Survey Questionnaire; SMD, standardized mean difference; SPPB, short physical performance battery; TUG, Timed Up and Go test.
Supplementary Table 4 - Papers screened, but not included and reason for exclusion

Author and reference	Type of Paper	Conclusion	Reason for exclusion	
Beaudart C, 2018 [18]	Conference abstract	“In conclusion, physical exercise has a beneficial impact on muscle mass, muscle strength or physical performance in healthy subjects aged 60 years and older. However, the additional effect of dietary supplementation has only been reported in a limited number of studies. For the majority of studies included in this systematic review, the population was composed of healthy older subjects. Studies assessing the impact of a combined exercise intervention and dietary intervention are still lacking in frail and sarcopenic populations, populations suffering from nutritional deficiency or populations at risk of malnutrition.”	Conference abstract	
Burgess LC, 2018 [19]	Systematic Review	“There is limited evidence for nutritional supplementation in support of patients undergoing total hip replacement and total knee replacement; however, the low risk profile and potential benefits to adjunctive treatment methods, such as exercise programs, suggest certain supplements could play a role in enhancing recovery. Optimizing nutritional status pre-operatively may help manage the surgical stress response, and accelerate their turn to function for THR and TKR patients, with a particular benefit for undernourished, frail, or elderly individuals.”	Wrong target population (injured/pre-op patients)	
Deutz NE, 2016 [20]	Randomized Control Trial	Although no effects were observed for the primary composite endpoint, compared with placebo HP-HMB decreased mortality and improved indices of nutritional status during the 90-day observation period.	Not a systematic review	
Author(s)	Study Type	Summary	Notes	
-----------	-------------	---------	-------	
Fernández-Landa J, 2019 [21]	Systematic Review	“In summary, the combination of 3–10 g/day of CrM plus 3 g/day of HMB for 1–6 weeks could produce potential positive effects on sport performance (strength and anaerobic performance) and for 4 weeks on body composition (increasing fat free mass and decreasing fat mass). However, this combination seems to not show positive effects relating to markers of exercise-induced muscle damage and anabolic-catabolic hormones.”	Wrong target population (young healthy adults)	
Gielen E, 2021 [1]	Umbrella Review	“Data suggest a positive effect of HMB supplementation on muscle mass. No clear effect has been reported on muscle strength and physical performance”	Not a systematic review	
Goisser S, 2019 [22]	Conference abstract	“An up-to-date high-quality systematic review and meta-analysis may influence evidence-based treatment decisions and will help to identify knowledge gaps.”	Conference abstract	
Hickson M, 2015 [23]	Narrative Review	“Overall, these data are suggestive of a beneficial effect of HMB on older adults, but larger well-controlled studies are required that measure outcomes relevant to sarcopenia, ideally in sarcopenic populations.”	Not a systematic review	
Holland BM, 2019 [24]	Systematic Review and Meta-analysis	“In conclusion, the primary finding of this analysis suggests a small, nonsignificant effect of HMB on FFM in athletic populations. In agreement with previous research, HMB supplementation in athletes fails to alter BM while having a small, nonsignificant effect on FM. The positive effects of HMB on FFM and FM appear to diminish when protein intake is adequate (.1.6 g·kg⁻¹·d⁻¹) based on the limited current evidence.”	Wrong target population (young healthy adults)	
Author(s)	Year	Study Type	Summary	Notes
-----------	------	------------	---------	-------
Jakubowski JS, 2020 [25]	Systematic Review and Meta-analysis	“HMB produces a small effect on TBM gain, but this effect does not translate into significantly greater increases in FFM, strength or decreases in FM during periods of RET. Our findings do not support the use of HMB aiming at improvement of body composition or strength with RET.”	Wrong target population (young healthy adults)	
Kaczka P, 2019 [26]	Systematic Review	“HMB is among the supplements, which can be recommended for all sport disciplines regardless of sex and age. HMB supplementation reduces post exercise muscle damage, and thus accelerates recovery. It also allows for increases in lean body mass, improved strength and aerobic capacity.”	Wrong target population (young healthy adults)	
Nunes EA, 2020 [27]	Conference abstract	“We conclude that HMB produces a small effect on TBM gain, but this effect does not translate into significantly greater increases in FFM, strength or decreases in FM during periods of RET. Our findings do not support the use of HMB aiming at improvement of body composition or strength with RET.”	Conference abstract	
Oktaviana J, 2020 [28]	Systematic Review and Meta-analysis	“Protein supplementation alone does not significantly improve muscle mass, strength or function in pre-frail or frail older people.”	Wrong intervention	
Rahimi MH, 2018 [29]	Systematic Review and Meta-analysis	“The current evidence revealed a time-dependent effect of HMB in reducing LDH and CK serum levels among adults. HMB, therefore, may be seen as a priority muscle damage recovery agent in interventions.”	Wrong outcome measures	
Rocha-Rodriguez LG, 2019 [30]	Narrative Review	NF	Not a systematic review	
Reference	Study Type	Summary	Notes	
--	-----------------------------	--	--	
Sanchez-Martinez J, 2018 [31]	Systematic Review and Meta-analysis	“No effect of HMB supplementation on strength and body composition in trained and competitive athletes”	Wrong target population (young healthy adults)	
Silva VR, 2017 [32]	Systematic Review	“In conjunction with resistance training, HMB-FA supplementation may attenuate markers of muscle damage, augment acute immune and endocrine responses, and cause increases in lean body mass, muscle hypertrophy, strength, and power in resistance trained men. HMB-FA supplementation may also improve markers of aerobic fitness when combined with high-intensity interval training”	Wrong target population (young healthy adults)	
Testa G, 2020 [33]	Systematic Review	“Sarcopenia is a physiological condition and contributes to the increased risk of falls and hip fractures in the older population. However, the diagnosis of sarcopenia is challenging, especially in hip-fractured patients, and there are currently no standardised diagnostic and therapeutic protocols. The development of medical management programs is mandatory for good prevention. To ensure adequate resource provision, care models should be reviewed, and new welfare policies should be adopted in the future.”	Wrong intervention	
Valdés-Badilla P, 2021 [34]	Systematic Review	“Olympic combat sports interventions (i.e., boxing, judo, karate, and taekwondo) improve older adults’ physical-functional, physiological, and psychoemotional health. Our systematic review confirms that OCS training has high adherence (greater than 80%) in older adults.”	Wrong intervention	
van der Aa HPA, 2013 [35]	Randomized Control Trial	“The importance and strengths of this study outweigh the challenges. The development and research of the	Not a systematic review	
Reference	Study Type	Summary	Notes	
--------------------	------------------	---	----------------------------	
Wandrag L, 2015 [36]	Systematic Review	“Overall, the data from ICU studies are very limited but suggest that HMB may improve nitrogen balance, although this improvement was marginal.”	Wrong outcome measures	
Supplementary table 5 - Conflicts of interest and sources of funding reported by the systematic reviews included in the analysis

Reference	Declared Conflicts of Interest	Sources of Funding
Bear et al. [2]	“DEB reports receiving advisory board fees, speaker fees and conference attendance support from Nutricia, Nestle Nutrition, BBraun, Baxter healthcare, Fresenius Kabi, and Abbott Nutrition. LW reports conference attendance support from Fresenius Kabi. AL, ED, SDRH, NH, BC, and KW report no conflicts of interest.”	“DEB is funded by a National Institute of Health Research (NIHR) and Health Education England (HEE) ICA Clinical Doctoral Research Fellowship (ICA-CDRF-2015-01-047). BC is funded by an NIHR Postdoctoral Fellowship (PDF-2015-08-015). This article presents independent research funded by the National Institute for Health Research (NIHR) and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.”
Beaudart et al. [3]	“N Binkley received research support from Amgen, GE Healthcare, and Lilly, Merck and consultant/advisory board fees from Amgen, Astellas, Lilly, Merck, Nestle, and Radius. J-Y Reginster received consulting fees or paid advisory boards from Servier, Novartis, Negma, Lilly, Wyeth, Amgen, GlaxoSmithKline, Roche, Merckle, Nycomed-Takeda, NPS, IBSA-Genevri, Theramex, UCB, Asahi Kasei, Endocyte, and Radius Health; lecture fees from Merck Sharp and Dohme, Lilly, Rottapharm, IBSA, Genevri, Novartis, Servier, Roche, GlaxoSmithKline, Merckle, Teijin, Teva, Analis, Theramex, Nycomed, Novo Nordisk, Ebewe Pharma, Zodiac, Danone, Will Pharma, Amgen, and PharmEvo; and grant support from Bristol Myers Squibb, Merck Sharp & Dohme, Rottapharm, Teva, Roche, Amgen, Lilly, Novartis, GlaxoSmithKline, Servier, Pfizer, Theramex, Danone, Organon, Therabel, Boehringer, Chiltern, and Galapagos. ML Brandi is a consultant and grant recipient from Alexion, Abiogen, Amgen, Bruno Farmaceutici, Eli Lilly, No additional sources of funding declared.”	No additional sources of funding declared.
Authors	Conflicts of Interest	Funding Details
---------	----------------------	-----------------
Beaudart et al. [4]	Authors declare no conflicts of interest.	“This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. C.B. is supported by a Fellowship from the FNRS (Fonds National de la Recherche Scientifique de Belgique—FRS-FNRS—www.frs-fnrs.be).”
Costa Riela et al. [5]	Authors declare no conflicts of interest.	This study declares “no funding source”.
Courel-Ibanez et al. [6]	Authors declare no conflicts of interest.	“This meta-analysis was supported by the research grants of Charles University, Czech Republic (PRIMUS/19/HUM/012 and the project Q41) and by the Autonomous Community of the Region of Murcia, Regional Program for the Promotion of Scientific and Technical Research (Action Plan 2018), Seneca Foundation-Agency of Science and Technology, Region of Murcia (ID: 20872/PI/18)”
Cruz-Jentoft et al. [7]	“Abbott had no role in the choice of members of the group, but had the right to have an observer member at the meetings. Members of the Working Group received no salary or other incomes from the European Union Geriatric medicine Society (EUGMS), Abbott Nutrition (AN) or any other 757 Prevalence of and interventions for sarcopenia in ageing adults organisation for any of the”	“This work was supported by an unrestricted educational grant provided by AN to EUGMS. This grant was used for operational activities including two meetings of the Working Group”
Source	Authors declare no conflicts of interest.	Note
----------------	---	--
Lin et al. [8]		“This work was supported by the National Natural Science Foundation of China [no. 31871182]”.
Martin-Cantero et al. [9]	Authors declare no conflicts of interest.	“This work was supported by European Union’s Horizon 2020 research and innovation program (grants no. 689238 [2015] and 675003 [2015]). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.”
Martinez-Rodriguez et al. [10]	Authors declare no conflicts of interest.	This study declares “No funding”.
Mochamat et al. [11]	Authors declare no conflicts of interest.	“The main sources of funding of the PRC are The Norwegian Cancer Society, The Norwegian University of Science and Technology, and Trondheim University Hospital. Additional Supplementation of vitamins, minerals, proteins in cachexia 37 Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 25–39 DOI: 10.1002/jcsm.12127 support has been awarded by the Open Society Institute (USA), the Floriani Foundation (Italy), and by an unrestricted grant from Nycomed”
Molfino et al. [12]	Authors declare no conflicts of interest.	“This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors”.
Authors	Conflicts of interest	Notes
---------	-----------------------	-------
Oktaviana et al. [13]	Authors declare no conflicts of interest.	ND
Prado et al. [14]	“This is an investigator-initiated work by C.M.P. C.M.P. has previously received honoraria and/or paid consultancy from Abbott Nutrition, Nutricia, Nestlé Health Science, Fresenius Kabi, Pfizer, and Helsinn. C.E.O. has received honoraria from Abbott Nutrition for assisting C.M.P. with writing of the manuscript. S.L.P. is employed by Abbott Nutrition. N.E.D. has previously received grant funding and paid consultancy from Abbott Nutrition. P.J.A. has previously received grant funding and honoraria from Abbott Nutrition and Fresenius Kabi.”	“C.M.P. is supported by a Canadian Institutes of Health Research (CIHR) New Investigator Salary Award and the Campus Alberta Innovation Research Chair Program.”
Sanz-Paris et al. [15]	“M.C.R., J.M.L.P., S.L.P. and R.R. are employed by Abbott Nutrition. A.J.C.J. has received speaker and research funds from Abbott Nutrition.”	No additional sources of funding declared.
Wu et al. [16]	Authors declare no conflicts of interest.	“The study was supported by 2014 Chinese Nutrition Society (CNS) Nutrition Research Foundation—DSM Research Fund (No. 2014-071)”

ND, not declared
References

1. Gielen, E., et al., *Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses*. Nutr Rev, 2021. 79(2): p. 121-147.

2. Bear, D.E., et al., *beta-Hydroxy-beta-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis*. Am J Clin Nutr, 2019. 109(4): p. 1119-1132.

3. Beaudart, C., et al., *Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review*. Osteoporosis International, 2017. 28(6): p. 1817-1833.

4. Beaudart, C., et al., *Effects of Protein, Essential Amino Acids, B-Hydroxy B-Methylbutyrate, Creatine, Dehydroepiandrosterone and Fatty Acid Supplementation on Muscle Mass, Muscle Strength and Physical Performance in Older People Aged 60 Years and Over*. A Systematic Review on the Literature. J Nutr Health Aging, 2018. 22(1): p. 117.

5. Costa Riela, N.A., et al., *Effects of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Elderly Body Composition and Muscle Strength: A Review of Clinical Trials*. Ann Nutr Metab, 2021. 77(1): p. 16-22.

6. Courel-Ibanez, J., et al., *Health Benefits of beta-Hydroxy-beta-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis*. Nutrients, 2019. 11(9).

7. Cruz-Jentoft, A.J., et al., *Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS).* Age Ageing, 2014. 43(6): p. 748-59.

8. Lin, Z., Y. Zhao, and Q. Chen, *Effects of oral administration of beta-hydroxy beta-methylbutyrate on lean body mass in older adults: a systematic review and meta-analysis*. Eur Geriatr Med, 2021. 12(2): p. 239-251.

9. Martin-Cantero, A., et al., *Factors influencing the efficacy of nutritional interventions on muscle mass in older adults: a systematic review and meta-analysis*. Nutr Rev, 2021. 79(3): p. 315-330.

10. Martinez-Rodriguez, A., et al., *Effect of Supplements on Endurance Exercise in the Older Population: Systematic Review*. Int J Environ Res Public Health, 2020. 17(14).

11. Mochamat, et al., *A systematic review on the role of vitamins, minerals, proteins, and other supplements for the treatment of cachexia in cancer: a European Palliative Care Research Centre cachexia project*. J Cachexia Sarcopenia Muscle, 2017. 8(1): p. 25-39.

12. Molino, A., et al., *Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials*. Amino Acids, 2013. 45(6): p. 1273-92.

13. Oktaviana, J., et al., *The Effect of 8-hydroxy-6-methylbutyrate (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review*. J Nutr Health Aging, 2019. 23(2): p. 145-150.

14. Prado, C.M., et al., *Effects of 8-hydroxy 8-methylbutyrate (HMB) supplementation on muscle mass, function, and other outcomes in patients with cancer: a systematic review*. J Cachexia Sarcopenia Muscle, 2022.

15. Sanz-Paris, A., et al., *Role of Oral Nutritional Supplements Enriched with 8-Hydroxy-6-Methylbutyrate in Maintaining Muscle Function and Improving Clinical Outcomes in Various Clinical Settings*. J Nutr Health Aging, 2018. 22(6): p. 664-675.
16. Wu, H., et al., Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr, 2015. 61(2): p. 168-75.
17. Stout, J.R., et al., Effect of calcium 8-hydroxy-8-methylbutyrate (CaHMB) with and without resistance training in men and women 65+yrs: A randomized, double-blind pilot trial. Experimental Gerontology, 2013. 48(11): p. 1303-1310.
18. Beaudart, C., Outcomes of the IOF-ESCEO sarcopenia working groups. WCO-IOF-ESCEO. World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases; 2018 April 19-22, Krakow, Poland. 2018.
19. Burgess, L.C., S.M. Phillips, and T.W. Wainwright, What Is the Role of Nutritional Supplements in Support of Total Hip Replacement and Total Knee Replacement Surgeries? A Systematic Review. Nutrients, 2018. 10(7).
20. Deutz, N.E., et al., Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial. Clinical nutrition, 2016. 35(1): p. 18-26.
21. Fernandez-Landa, J., et al., Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients, 2019. 11(10).
22. Goisser, S.M., Seide S, Jensen K, Bauer Jentoft et al., Nutritional interventions for treating sarcopenia in older persons: A systematic review and meta-analysis project following the standards of the Cochrane Collaboration. European Geriatric Medicine., 2019. 10: p. S260-S1.
23. Hickson, M., Nutritional interventions in sarcopenia: a critical review. Proc Nutr Soc, 2015. 74(4): p. 378-86.
24. Holland, B.M., et al., Does HMB Enhance Body Composition in Athletes? A Systematic Review and Meta-analysis. J Strength Cond Res, 2019.
25. Jakubowski, J.S., et al., Supplementation with the Leucine Metabolite 8-hydroxy-8-methylbutyrate (HMB) does not Improve Resistance Exercise-Induced Changes in Body Composition or Strength in Young Subjects: A Systematic Review and Meta-Analysis. Nutrients, 2020. 12(5): p. 1523.
26. Kaczka, P., et al., Mechanism of Action and the Effect of Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation on Different Types of Physical Performance - A Systematic Review. J Hum Kinet, 2019. 68: p. 211-222.
27. Nunes, E.A., et al., 8-hydroxy-8-methylbutyrate (HMB) Does Not Improve Resistance Exercise-Induced Changes In Body Composition: A Systematic-review And Meta-analysis: 1698 Board# 292 May 28 9: 30 AM-11: 00 AM. Medicine & Science in Sports & Exercise, 2020. 52(7S): p. 456-457.
28. Oktaviana, J., et al., The effect of protein supplements on functional frailty in older persons: A systematic review and meta-analysis. Archives of gerontology and geriatrics, 2020. 86: p. 103938.
29. Rahimi, M.H., et al., The Effects of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Recovery Following Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. J Am Coll Nutr, 2018. 37(7): p. 640-649.
30. Rocha-Rodriguez, L.G., et al., Diagnostic validity of immunohistochemical markers S100, HMB-45, MITF, tyrosinase, Melan-A/MART-1, PNL2, NKI/C3 for the diagnosis of cutaneous melanoma. Dermatología Revista Mexicana, 2019. 63(3): p. 278-292.
31. Sanchez-Martinez, J., et al., Effects of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in trained and competitive athletes: A meta-analysis of randomized controlled trials. J Sci Med Sport, 2018. 21(7): p. 727-735.
32. Silva, V.R., et al., 8-hydroxy-8-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review. Nutr Res, 2017. 45; p. 1-9.
33. Testa, G., et al., Diagnosis, Treatment and Prevention of Sarcopenia in Hip Fractured Patients: Where We Are and Where We Are Going: A Systematic Review. Journal of Clinical Medicine, 2020. 9(9): p. 2997.
34. Valdés-Badilla, P., et al., Effects of Olympic Combat Sports on Older Adults’ Health Status: A Systematic Review. International Journal of Environmental Research and Public Health, 2021. 18(14): p. 7381.
35. van der Aa, H.P., et al., Stepped-care to prevent depression and anxiety in visually impaired older adults–design of a randomised controlled trial. BMC psychiatry, 2013. 13(1): p. 1-10.
36. Wandrag, L., et al., Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review. J Hum Nutr Diet, 2015. 28(4): p. 313-30.