Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review

Tomoaki Furuta, Kinji Furuya, Yun-Wen Zheng, Tatsuya Oda

Abstract

BACKGROUND
Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.

AIM
To summarize the current status of alternative transplantation therapies for OLT and to support future research.

METHODS
A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.

RESULTS
A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles,
scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.

CONCLUSION

The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.

Key words: Cell transplantation; Liver transplantation; Organ transplantation; Xenotransplantation; Tissue engineering; Scaffold

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This systematic review analyzes the current status of transplantation treatments in place of liver organ transplantation from multiple viewpoints. We classified reports into three types: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Clinical application occurred for cell transplantation with hepatocytes and mesenchymal stem cells; however, the effect was limited. On the other hand, scaffold-based transplantation is a comprehensive treatment that combines organ transplantation and cell transplantation. Future research for clinical application is expected. The present article provides researchers with a summary and updated information on recent trends in alternatives to liver transplantation and support for future research.

Citation: Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10(3): 64-78

URL: https://www.wjgnet.com/2220-3230/full/v10/i3/64.htm

DOI: https://dx.doi.org/10.5500/wjt.v10.i3.64

INTRODUCTION

Liver diseases lead the causes of mortality worldwide, accounting for approximately 1-2 million deaths per annum according to the World Health Organization[1]. Orthotopic liver transplantation (OLT) remains as the only curative therapy for end-stage liver diseases. However, the shortage of donor organs limits its application.

Alternatives to OLT such as liver support systems, including bioartificial livers, and hepatocyte transplantation have been extensively explored; however, none could be adopted in clinical practice[2]. Thus, to overcome the organ shortage, many researchers attempted to find alternatives to the traditional solid-organ transplantation method[3].

Various alternative treatments are available, including organ transplantations from other human beings, transplanting cells from other species, or transplanting processed cells from humans or transplanting processed cells from other species.

Alternative therapies investigated in the past include xenotransplantation, scaffold-based transplantation, and cell transplantation therapies. In particular, the use of animal livers for human patients, i.e., xenotransplantation, has been deemed as a solution for donor shortage. If the organ of other species could be transplanted, there are many advantages about the supply of organ[4]. Although this approach has still several problems, such as immune rejection and coagulopathy, α-1,3-galactosyltransferase gene-knockout (GT-KO) pigs that do not express the α1,3Gal (Gal) antigens have improved the potential of this therapy[5,6]. In fact, it underwent many advancements through genome editing technologies[7].

Scaffold-based transplantation is a novel method, which aims to generate tissues
and organs ex vivo or in vivo with biological materials that can be used to repair, regenerate, or even replace malfunctioning tissues and organs. Essentially, to create scaffolds, all the cells from animal organs are removed while retaining the structural, mechanical, and chemical attributes of the native tissue. Then, the human-derived cells are embedded in the scaffold that serves as an ideal container to generate humanized organs.

In parallel, cell transplantation research has undergone vast advancements with the establishment of induced pluripotent stem cells (iPSCs). Clinical human-to-human hepatocyte transplantation following host conditioning has been reported. However, hepatocytes have limitations with respect to proliferation, function, and immunity. Recently, pluripotent or somatic stem cells were used as new sources in place of hepatocytes. Further, researchers tried to direct pluripotent or somatic stem cells toward differentiation into hepatocytes in various studies.

Thus, alternative therapies manifest various combinations depending on different resources. Still, no study has comprehensively analyzed these different viewpoints yet, although such studies are instrumental while considering novel alternatives for the future regarding the utility of these kinds of treatments.

Therefore, we aimed to discuss the current status of alternative transplantation therapies to replace liver organ transplantation and to support their research and development.

MATERIALS AND METHODS

The methodological approach included the development of selection criteria, defining the search strategies, assessing the study quality, and abstracting the relevant data. The PRISMA statements checklist for reporting a systematic review was followed.

Identification and selection of the studies

This systematic literature review was performed to select articles discussing alternatives to liver organ transplantation. The PubMed, Cochrane Library, and EMBASE were electronically searched for articles published between January 2010 and December 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation].

Inclusion and exclusion criteria

The study selection criteria were defined before initiating data collection to identify eligible studies for the analysis. Only studies written in English were selected. We retrieved all studies in which the primary objective was to evaluate new transplantation therapies in place of OLT for our analysis.

Exclusion criteria were as follows: (1) Studies not including in vivo transplantation; (2) Studies lacking sufficient details; (3) Review articles; (4) Expert opinions; (5) Letters; and (6) Conference summaries.

Study selection and quality assessment

The titles and abstracts of the retrieved studies were independently and blindly screened for relevance by two reviewers (Furuta T and Furuya K), who assessed the study quality and extracted data. To enhance sensitivity, records were removed only in case both reviewers judged them to be inappropriate. All disagreements were resolved by discussion and consensus. The study design, quality, level of evidence, and the relevance of the studies were analyzed according to the objective of this study.

Analysis

We classified the reports into three types: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Further, we categorized the source of donor or donor species, recipients, and the clinical applications.

RESULTS

Literature search and selection

The combined search identified 2821 articles. Of these, 2630 were removed after evaluating the title and abstract. By checking the full text, 89 articles were considered eligible for the systematic review and were analyzed qualitatively and quantitatively. The entire study selection process is summarized in Figure 1.
Records screened by title and/or abstract (n = 2821)

Exclude by title and/or abstract (n = 2630)

Full text articles assessed for eligibility (n = 191)

Full text article excluded (off topic: n = 102)

Studies included in this review (n = 89)

Figure 1 Flowchart of the study selection.

Treatment modalities and clinical application

From our qualitative analysis on the selected articles, there were 14 xeno-organ transplantation studies, 22 scaffold-based transplantation studies, and 53 cell transplantation studies. The study selection is displayed in Tables 1-3. There were various sources of alternative therapy, including organ liver (25 studies), adult hepatocytes (31 studies), fetal hepatocytes (three studies), mesenchymal stem cells (MSCs; 25 studies), embryonic stem cells (ESCs; one study), and iPSCs (three studies) and others (Table 4). Clinical application was discussed in 12 studies. In particular, hepatocyte transplantation was discussed in four studies, umbilical cord derived MSCs (UC-MSCs) transplantation was described in five studies, bone marrow derived MSCs (BM-MSCs) was described three studies and hematopoietic stem cells was described two studies.

DISCUSSION

Among various alternative OLT therapies, only cell transplantation has been adopted in clinical practice. However, its long-term improvement effects are yet to be proven. In particular, few studies report that it can become a bridge for OLT. Considering the viewpoint of cell transplantation, cell processing strategies such as proliferation or hepatic differentiation might assume paramount significance. On the other hand, although scaffold-based transplantation is far from being applied clinically, it is deemed as attractive and promising. This approach has been devised as a treatment method that combines the efficiency of solid organ transplantation with the control of rejection. It is also a comprehensive treatment incorporating cell processing technologies.

Although many patients die from liver failure, there is no other curative treatment other than OLT. However, organ shortage remains as the major shortcoming for transplantation globally. Because of graft shortages, alternative treatments for OLT have received significant research attention.

The concept of scaffold-based transplantation was developed to substitute for the damaged human liver requiring immediate transplantation. In particular, many studies discussed xeno-organ transplantation using decellularized liver scaffolds from other species embedded with human derived hepatic cells.

Our search revealed articles on xeno-organ transplantation (n = 14), scaffold-based transplantation (n = 22), and cell transplantation (n = 53), with the majority being related to “cell therapy”.

Cell transplantation

Cell transplantation is an attractive alternative to conventional organ transplantation. Hepatocyte transplantation has also been applied clinically, however, with limited effect. To obtain better transplantation efficiency, studies were conducted to evaluate the differentiation quality and administration methods.

In this study, regarding transplantation cell sources, we found that adult hepatocytes, fetal hepatocytes, stem cells such as iPSCs, ESCs, MSCs, and differentiated hepatocytes-like cells (HLCs) have been used and most report used hepatocytes as the cell source. In addition, our article showed that only cell transplantation was clinically applied.

Lee et al. reported the application of neonatal hepatocytes encapsulated in alginate microbeads transplanted in three patients with acute liver failure from error of sulfite metabolism. Hansel et al. reported hepatocyte transplantation applied in 100
Donor	Cells	Species	Treatments [co-culture (Co), organoid generated]	Recipients (disease, strain etc.)	Outcomes	Year
Hepatocytes	Human	-	Hepatic function	Hepatocytes (fetal)	Human (ALF)	2013^[41]
		-	Hepatic function	-	Human (ACLF)	2014^[42]
		-	Engraftment, hepatic function	-	Human (metabolic disease)	2012^[43]
		-	Hepatic function	-	Human (oxalosis)	2012^[44]
		-	Hepatic function, survival extension	-	Rat (SD)	2017^[45]
		-	Alb secretion, engraftment	-	Mouse (NOD/SCID)	2017^[46]
UC-MSC (human)	-	Mouse (FRG)	Engraftment, hepatic function	Mouse (SCID)/Alb-uPA	Analysis of NK cell	2010^[47]
		-	Engraftment, hepatic function	UC-MSC (human)	Mouse (BALB/c)	2018^[48]
	-	-	-	-	-	-
Rat	-	Mouse (C57BL/6 FRG)	Engraftment, survival extension	HSCs (Rat), SECs (Rat)/Co	Mouse (C57BL/6)	2014^[49]
		-	Engraftment	-	Rat (SD)	2013^[50]
		-	Engraftment, hepatic function	-	Rat (Wistar)	2013^[51]
		-	-	-	Rat (SD)	2013^[52]
				-	Rat (DPP4-)	2014^[53]
				-	Rat (An alb)	2014^[54]
		-	-	-	Rat (C57BL/6 /6 FRG)	2013^[55]
Mouse	Organoid	-	Engraftment	Mouse (C57BL/6)	Engraftment	2014^[56]
		-	Repopulation	-	Mouse (emdr2^{−/−})	2015^[57]
		-	Hepatic function	-	Mouse (Fah^{−/−})	2016^[58]
		-	-	-	Mouse (FVB/N)	2010^[59]
		-	Engraftment, analysis of metabolite	-	Mouse (C57BL/6)	2010^[60]
		-	Engraftment	-	Mouse (C57BL/6)	2012^[61]
		-	Engraftment, hepatic function	-	Rat (DPPIV^{−/−})	2014^[62]
		-	Engraftment, repopulation	-	Rat (SD)	2011^[63]
	Liver cells	-	Hepatic function	Rat	Rat (C57BL/6)	2012^[64]
	Hepatic oval cells	-	Hepatic function, survival extension	Rabbit	Rabbit (New Zealand)	2013^[65]
	Hepatoma cell line	-	Hepatic function, survival extension	Rat	Rat (Lewis)	2013^[66]
	UC-MSCs	Human	Human after OLT	Human after OLT	Human after OLT	2017^[67]
	BM-MSCs/BM-MNCs	Human	Human after OLT	Human (LC)	Human (LC)	2017^[68]
		-	Human after OLT	-	Human (Liver failure)	2013^[69]
	BM-MSCs/HSCs	Human	Human after OLT	Rabbit	Rabbit (Wistar)	2014^[70]
	BM-MSC	Human	Human (EPP)	Mouse (SCID)	Engraftment, analysis of glucose	2017^[71]
patients with errors of metabolism and acute-on-chronic liver failure (ACLF). Nevertheless, the use of human hepatocytes has limitations including limited organ availability, limited cell proliferation, loss of function, and risk for immune rejection \[60,62\]. Previous studies have explored the application of not only hepatocytes but other cell sources as well. Xue et al.\[61\] performed a meta-analysis of cell transplantation for ACLF including nine RCTs. In this report, UC-MSCs and bone marrow-derived MSCs (BM-MSCs) were used as the cell source, which improved the survival period and liver function.

MSCs, especially BM-MSCs, have shown immunomodulatory and antifibrotic effects in other organ systems, and MSC transplantation has shown positive results in the treatment of liver fibrosis \[63-65\]. We also found 2 reports of hematopoietic stem cell transplantation, but they were relatively less applied than UC-MSCs and BM-MSCs. Most importantly, MSCs can secure more sources than hepatocytes, but the problem of cell quality still remains. As a stem cell therapy, iPSCs attract considerable attention in the field of transplantation. iPSCs were established from adult fibroblasts by introducing different transcription factors \[66\]. They overcame the ethical aspects of ESCs and have the self-renewal properties and pluripotency, the ability to differentiate into various somatic cells, including hepatocytes \[67\].

HLCs derived from human iPSCs have been researched as a potential alternative to hepatocytes for cell therapy, disease models, and evaluating drugs \[68,69\]. Takebe et al.\[3\] succeeded in creating a liver bud with iPSCs derived HLCs. This study demonstrated a three-dimensional liver bud produced by co-culturing with Human Umbilical Vein Endothelial Cells and MSCs was able to improve the liver function of recipient following transplantation.

A 3 dimensional (3D) culture is effective for hepatocyte functionality, and using 3D cultures and iPSCs have not been clinically applied yet \[61,62\]. In our search, we did not find many studies elucidating the in vivo application of iPSCs.

Cell transplantation also suffers from these above-mentioned challenges. Moreover, in the recent years, in vitro expansion of human hepatocytes has been explored \[63\] to overcome the challenges with iPSCs. The improvements in these approaches may lead to the development of alternative therapies.

Xeno-organ transplantation
Table 2 Xeno-organ transplantation

Donor organ	Recipients	Outcomes	Year
GTKO pig	Tibetan macaques	Cytokine profile	2017
	Baboon	Survival extension	2018;
		Analysis of thrombotic microangiopathy	2017;
		Analysis of platelet	2017
		Analysis of rejection	2015
		Platelet aggregation	2014
		Analysis of coagulopathy	2016
	Baboon	Hepatic function	2014
Pig	Baboon	Analysis of immunoglobulin	2018
Rabbit	Porcine, rabbit	Analysis of IgG	2012

GTKO: Alpha 1-3 galactosyltransferase gene knockout; IgG: Immunoglobulin G.

The first successful animal-to-animal liver xenotransplantation was reported in 1968[114]. Because of the development of immunosuppressive drugs, various studies were conducted that targeted the applicability of harvested organs from other species. Among animals, pigs were proved as useful in terms of size and rejection strength; therefore, genetically modified porcine organs hold enormous potential for this purpose. Although the cornea and skin of pig have been clinically applied, for OLT, the survival period is so short that liver xenotransplantation could not been applied clinically. To solve the problem of severe rejection, GT-KO pig was developed, intending to reduce the risk of GVHD[115]. The recent development of CRISPR/Cas9 has made this animal model more suitable[116].

Regarding xenotransplantation, 12 of 14 articles in our search used GT-KO pigs. Shah et al[14] reported that a human prothrombin-concentrate complex and immunosuppression was used on GT-KO pigs and that the survival was improved. Even then, it is necessary to improve physiological problems such as rejection, coagulation factors, and complementary species specific for application in humans.

Scaffold-based transplantation

Regarding rejection and infection, decellularization of tissue is an attractive method. Decellularization of tissues and even whole organs represents a novel approach for developing perfusable extracellular matrix (ECM)-derived scaffolds with preserved vascular integrity. Decellularized tissue is rarely rejected and is used for tissue reconstruction as scaffold material[117]. This decellularized scaffold is transplanted orthotopically or ectopically. The decellularization of whole organ was first introduced by Ott et al[118] in 2008 with the aim of developing acellular hearts from mice. Bovine heart valves and corneas or those from pigs have already been commercialized and clinically applied[119]. In recent years, research has been conducted on human liver and hepatocytes. Mazza et al[2] reported in 2015 that human liver was decellularized and re-cellularized with a liver cell line to create engineered livers.

KaKabadze et al[10] engrafted sheep liver cells on decellularized human placenta and transplanted them into sheep that underwent partial hepatectomy. Human placenta was considered as an attractive source because it has a well-developed vascular network and ECM for tissue engineering. Moreover, it is usually discarded and widely available.

In addition, many articles exhibited the application of decellularized tissues and biomaterial-based scaffold.

As biomaterials, natural biomaterials are applied such as collagen and hyaluronic acid, and synthetic materials such as polymers based on polylactic acid and polyglycolic acid, among others[120-122]. Previous reports show that after transplanting these scaffolds, the liver function in recipients improved[123].

More recently, bio-printed scaffolds have been developed that mimic the tissue using these biomaterials[124]. However, they have problems of vascularization for tissue engraftment and repopulation, which warrant further research.

Meanwhile, scaffold-based transplantation with an ECM was proven effective, and further research is underway with an aim to select ideal cells for humans[125]. iPSCs and few other cell sources are seeded and cultured in decellularized tissue and other scaffolds such that tissue regeneration in vitro can be performed. Therefore,
Table 3 Scaffold-based transplantation

Scaffold	Donor	Species	Seeding cell	Recipients (strain)	Outcomes	Year
Decellularized organ liver	Human	Mouse (C57BL/6j)	Immunogenicity	2013[2]		
Porcine		Rat (F344)				
Porcine		Porcine	Immunogenicity	2013[2]		
Porcine		Porcine	Engraftment	2012[3]		
Sheep, rat	Human	Mouse (C57BL/6)	Engraftment	2014[4]		
Rat	Porcine	Rat (Lewis)	Engraftment, Hepatic function	2010[5], 2011[6]		
Mouse		Mouse (NOD-SCID)	Survival extension, hepatic function	2014[7]		
Placenta	Human	Liver cells (sheep)	Survival extension, hepatic function	2018[8]		
Amniotic membrane	Human	AD-MSCs (human)	Survival extension, hepatic function	2015[9]		
Polyglycolic acid scaffolds	Human	Liver cells (human, mouse)	Analysis of human metabolite	2017[10]		
3D hydrogel	Human	Hepatocytes (human)	Engraftment, hepatic function	2016[11]		
Hyaluronan tube	Human	Hepatocytes (rat), adipose-MSCs (human)	Engraftment, hepatic function	2016[12]		
Polyethylene glycol hydrogels	Human	Hepatocytes (rat)	Mouse (Nude)	2015[13]		
Microbeads	Human	Hepatocytes (rat)	Rat (SD)	2014[14]		
Poly-L-glycolic acid	Human	Hepatocytes (mouse)	Mouse (NOD/SCID)	2014[15]		
Hyaluronan hydrogels	Human	Hepatic stem cells (human)	Mouse (Athymic nude)	2013[16]		
Apatite-fiber scaffold	Human	Hepatocytes (mouse) + HSC + SECs	Mouse (BALB/CA nu)	2011[17]		
Chitosan-alginate fibrous scaffolds	Human	BM-MSCs (human)	Rat (Wistar)	2010[18]		
Hyaluronic acid sponge	Fetal hepatocyte (rat)	Rat (LEC)	Engraftment, hepatic function	2010[19]		

3D: Three dimensional; SD: Sprague dawley; HSCs: Hematopoietic stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells.

Further research should aim to solve this problem for actualizing its application clinically.

Conclusion and future perspectives

Our study summarized alternative therapies for OLT. Alternative therapies have been deeply researched, particularly xeno-organ, scaffold-based, and cell transplantations. Clinically, only cell transplantation with hepatocytes or MSCs has been applied. Scaffold-based transplantation is a comprehensive treatment that combines xeno-organ and cell transplantations. Future research on the clinical application of scaffold-based transplantation is expected.
Table 4 Sources of alternative therapy

Donors	Species	Numbers
Organ liver	Total	25
	Human	1[2]
	Porcine	1[5,14,26,64,65-88]
	Sheep	1[89]
	Rabbit	1[89]
	Rat	4[89-92]
	Mouse	2[89,90]
Hepatocytes (adult)	Total	31
	Human	1[5,14,25-29]
	Rat	1[17,20,22-25,85-88]
	Mouse	7[1,3,34,41,90]
Hepatocytes (fetal)	Total	3
	Rat	2[5,6]
	Mouse	1[89]
Liver cells	Total	3
	Human	1[94]
	Sheep	1[94]
	Rabbit	1[94]
MSCs (umbilical cord)	Human	3[15,41,44]
MSCs (bone marrow)	Total	15
	Human	9[6,52,54-59,90-92,94]
	Macaques	1[94]
	Rabbit	1[94]
	Rat	3[54,61,90]
	Mouse	1[94]
MSCs (Adipose)	Total	4
	Human	2[17,90]
	Mouse	2[6,6]
MSCs (liver)	Human	1[89]
Hematopoietic stem cells	Human	2[85,90]
ESCs	Mouse	1[89]
iPSCs	Total	3
	Human	2[6,6]
	Mouse	1[89]
GPSCs	Mouse	1[72]
Liver stem cells	Total	2
	Human	1[89]
	Rat	1[72]

MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells; GPSCs: Germ line cell-derived pluripotent stem cells.

ARTICLE HIGHLIGHTS

Research background
Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, the shortage of donor organs limits its application. To overcome this problem, many researchers have attempted to develop alternatives to OLT.

Research motivation
There are several reports of alternative therapies. Nevertheless, no study has comprehensively analyzed these therapies from varying perspectives.

Research objectives
This systematic review aims to summarize the current status of alternative transplantation...
therapies for OLT and to support future research.

Research methods

A systematic review was performed by searching the PubMed, Cochrane Library and EMBASE databases for studies concerning alternative transplantation therapy for OLT. We used the following MeSH terms: "liver transplantation", "cell", "differentiation", "organoid", and "xenotransplantation". Various types of studies were retrieved for full-text evaluation. Of these, we selected articles involving in vivo transplantation.

Research results

A total of 89 studies were selected. There are three principle forms of treatment: Xeno-organ transplantation (14 articles), scaffold-based transplantation (22 articles), and cell transplantation (53 articles). Various types of sources for transplantation were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; mesenchymal stem cells (MSCs), 25 articles; induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed only for cell transplantation (12 studies; four studies using hepatocytes, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells).

Research conclusions

This systematic review summarized alternative therapies for OLT from varying perspectives. Alternative therapies have been deeply researched, particularly xeno-organ, scaffold-based, and cell transplantation. Clinically, only cell transplantation with hepatocytes and MSCs have been applied. Scaffold-based transplantation is a comprehensive treatment that combines xeno-organ and cell transplantations. Future research on the clinical application of scaffold-based transplantation is expected.

Research perspectives

This systematic review describes the current status of alternative therapy for OLT in end-stage liver failure. Further studies are needed for clinical applications in the future.

ACKNOWLEDGEMENTS

We would like to thank Vikas Narang for English language editing.

REFERENCES

1. Brown RS. Live donors in liver transplantation. *Gastroenterology* 2008; 134: 1802-1813 [PMID: 18471556 DOI: 10.1053/j.gastro.2008.02.092]
2. Mazza G, Rombouts K, Remnie Hall A, Urbani L, Vich Luan Th T, Al-Akkad W, Longato L, Brown D, Maghsoudiou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Pinzani M. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. *Sci Rep* 2015; 5: 13079 [PMID: 26248878 DOI: 10.1038/srep13079]
3. Takebe T, Zhang RR, Kiiko H, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H. Generation of a vascularized and functional human liver from an IPS-SC-derived organ bud transplant. *Nat Protoc* 2014; 9: 396-409 [PMID: 24557331 DOI: 10.1038/nprot.2014.020]
4. Ekser B, Gridelli B, Tector AJ, Cooper DK. Pig liver xenotransplantation as a bridge to allotransplantation: which patients might benefit? *Transplantation* 2009; 88: 1041-1049 [PMID: 19898198 DOI: 10.1097/TP.0b013e3181b0555]
5. Navarro-Alvarez N, Machiudez Z, Schuetz C, Bha A, Liu WH, Shah JA, Vagieri PA, Elias N, Buhler L, Sachs DH, Markmann JP, Yeh H. Xenogeneic Heterotopic Auxiliary Liver transplantation (XHIALT) promotes native liver regeneration in a Post-Hepatectomy Liver failure model. *PloS One* 2018; 13: e020772 [PMID: 30462716 DOI: 10.1371/journal.pone.020772]
6. Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuata M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. *Stem Cells* 2017; 35: 42-50 [PMID: 27641427 DOI: 10.1002/stem.2500]
7. Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome editing and creation of genetically modified pigs. *Int J Surg* 2015; 23: 217-222 [PMID: 26231992 DOI: 10.1016/j.ijsu.2015.07.684]
8. Chen Y, Geerta S, Jaramillo M, Uygur BE. Preparation of Decellularized Liver Scaffolds and Recellularized Liver Grafts. *Methods Mol Biol* 2018; 1577: 255-270 [PMID: 28735385 DOI: 10.1007/978-1-4939-8724-6_15]
9. Soltyks KA, Setoyama K, Tafaleng EN, Soto Gutierrez A, Fong J, Fukumitsu K, Nishikawa T, Nagaya M, Sada R, Haberman K, Gramignoli R, Dorko K, Tahan V, Dreyzin A, Baskin K, Crowley JJ, Quader MA, Deutsch M, Ashokkumar C, Shneider BL, Squires RH, Ranganathan S, Reyes-Mugica M, Dobrowolski SF, Mazzei G, Elango R, Stolz DB, Vockley G, Roy-Chowdhury J, Cascalho M, Guha C, Siddhi R, Platt JL, Fox IJ. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. *J Hepatol* 2017; 66: 987-1000 [PMID: 28027971 DOI: 10.1016/j.jhep.2016.12.017]
10. Alwash SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? *Cell Mol Life Sci* 2018; 75: 1307-1324 [PMID: 29181772 DOI: 10.1007/s00018-017-2713-8]
11. Gerbal-Chaloin S, Funakoshi N, Caillaud A, Gondeau C, Champon B, Si-Tayeb K. Human induced pluripotent stem cells in hepatology: beyond the proof of concept. *Am J Pathol* 2014; 184: 332-347 [PMID: 24269594 DOI: 10.1016/j.ajpath.2013.09.026]
12. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic
reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097 [PMID: 19621072 DOI: 10.1371/journal.pmed.1000097]

13. Lee CA, Dhawan A, Iansante V, Lehec S, Khansandgi SE, Filippi C, Walker S, Fernandez-Dacosta R, Heaton N, Bansal S, Minty RR, Fitzpatrick E. Cryopreserved neonatal hepatocytes may be a source for transplantation: Evaluation of functionality toward clinical use. *Liver Transpl* 2018; 24: 394-406 [PMID: 29356341 DOI: 10.1002/hep.25015]

14. Shah JA, Patel MS, Elias N, Navarro-Alvarez N, Rosales I, Wilkinson RA, Louras NJ, Herrl M, Fishman JA, Colvin RB, Cosmi AB, Markmann JF, Sachs DH, Vaguei PA. Prolonged Survival Following Pig-to-Primate Liver Xenotransplantation Utilizing Exogenous Coagulation Factors and Costimulation Blockade. *Am J Transplant* 2017; 17: 2178-2185 [PMID: 28489305 DOI: 10.1111/ajt.14341]

15. Kakabadze Z, Kakabadze A, Chakunashvili D, Karalashvili L, Berishvili E, Sharma Y, Gupta S. Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. *Hepatology* 2018; 67: 1956-1969 [PMID: 29211918 DOI: 10.1002/hep.29711]

16. Zhong C, Xie HY, Zhou L, Xu X, Zheng SS. Human hepatocytes loaded in 3D bioprinting generate mini-liver. *Hepatobiliary Pancreat Dis Int* 2016; 15: 512-518 [PMID: 27733321 DOI: 10.1016/s1499-3872(16)01119-4]

17. Carraro A, Baggio M, Gardin C, Tedeschi U, Ferroni L, Zavan PB. Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment. *Int J Mol Sci* 2016; 17: 374 [PMID: 26985891 DOI: 10.3390/ijms17030374]

18. Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson's disease model rat. *J Biochem* 2010; 148: 281-288 [PMID: 20662412 DOI: 10.1093/jb/mtp063]

19. Masala N, Trecarini A, Spurrer R, Xiao Y, Hou X, James D, Fu X, Truong B, Wang C, Lipshtat GS, Wang KS, Grikseit TC. Functional Human and Murine Tissue-Engineered Liver Is Generated from Adult Stem/Progenitor Cells. *Stem Cells Transl Med* 2017; 6: 238-248 [PMID: 28170813 DOI: 10.5966/scm.2016-0205]

20. Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN. Degradable hydrogels derived from PEG-diacylamide for hepatic tissue engineering. *J Biomed Mater Res A* 2015; 103: 3331-3338 [PMID: 25851120 DOI: 10.1002/jbm.a.35478]

21. Zhang S, Zhang B, Chen X, Chen L, Wang Z, Wang Y. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. *J Mater Sci Mater Med* 2014; 25: 2699-2709 [PMID: 25056119 DOI: 10.1007/s10856-014-9972-9]

22. Wang F, Zhou L, Ma X, Ma W, Wang C, Lu Y, Chen Y, An L, An W, Yang Y. Monitoring of intrasplenic hepatocyte transplantation for acute-on-chronic liver failure: a prospective five-year follow-up study. *Transplant Proc* 2014; 46: 192-198 [PMID: 24507050 DOI: 10.1016/j.transproceed.2013.10.042]

23. Ribes-Koninckx C, Ibars EP, Calzado Agraet MA, Bonora-Centelles A, Miquel BP, Vila Carbó JJ, Aliaga ED, Pallardó JM, Gómez-Lechón MJ, Castell JV. Clinical outcome of hepatocyte transplantation in four pediatric patients with inherited metabolic diseases. *Cell Transplant* 2012; 21: 2267-2282 [PMID: 22321960 DOI: 10.3727/096368912X637505]

24. Beck BB, Habbig S, Dittrich K, Stippel D, Kaul I, Koerber F, Goebel H, Salido EC, Kemper M, Meyburg J, Hoppe B. Liver cell transplantation in severe infantile oxalosis—a potential bridging procedure to orthotopic liver transplantation? *Nephrol Dial Transplant* 2012; 27: 2948-2949 [PMID: 22827658 DOI: 10.1093/ndt/gfs776]

25. Hang HL, Liu XY, Wang HT, Xu N, Bian JM, Zhang JJ, Xia L, Xia Q. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult hepatocytes and improves liver function and survival. *Exp Cell Res* 2017; 360: 81-93 [PMID: 28876599 DOI: 10.1016/j.yexcr.2017.08.020]

26. Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y, Iwagami Y, Yamada D, Noda T, Wada H, Gotok K, Kawamoto K, Doki Y, Mori M, Akashi M. Construction of three-dimensional vascularized functional liver. *J Biochem* 2016; 159: 2178-2185 [PMID: 28488189 DOI: 10.1016/j.jbior.2017.02.034]

27. Gramignoli R, Tahan V, Dorko K, Skvorak JK, Hansel MC, Zhao W, Venkataramanan R, Ellis EC, Jorns C, Ericson BG, Rosenberg S, Kuiper R, Soltyka KA, Mazzaferro GV, Fox II, Wilson EM, Groupe M, Strom SC. New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. *Stem Cell Res* 2013; 11: 563-573 [PMID: 23644508 DOI: 10.1016/j.scr.2013.03.002]

28. Kawahara T, Douglas DN, Lewis J, Lund G, Addison W, Tyrrell DL, Churchill TA, Kneteman NM. Critical role of natural killer cells in the rejection of human hepatocytes after xenotransplantation into immunodeficient mice. *Transpl Int* 2010; 23: 934-943 [PMID: 20180929 DOI: 10.1111/j.1399-3166.2010.01063.x]

29. El Baz H, Demerdash Z, Kamele M, Atta S, Salaf A, Hassan S, Hamman O, Khalil H, Meshal S, Raafat I. Transplant of Hepatocytes, Undifferentiated and/or Differentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study. *Exp Clin Transplant* 2018; 16: 81-89 [PMID: 28585911 DOI: 10.6026/2016.02026]

30. Oldani G, Peloso A, Vigen S, Wilson EM, Slits F, Geel Q, Morel P, Delaune V, Orlic LA, Yamaguchi T, Kobayashi T, Rubbia-Brandt L, Nakauchi H, Lacotte S, Tosco C. Chimeric liver transplantation reveals interspecific graft remodelling. *J Hepatol* 2018; 69: 1025-1036 [PMID: 30031837 DOI: 10.1016/j.jhep.2018.07.008]

31. Ye J, Shirakigawa N, Iijima H. Hybrid organoids consisting of extracellular matrix gel particles and hepatocytes for transplantation. *J Biosci Bioeng* 2015; 120: 231-237 [PMID: 25660569 DOI: 10.1016/j.jbiosc.2015.01.004]

32. Ho CM, Chen YH, Chien CS, Ho YT, Ho SL, Hu RH, Chen HL. Lee PH. Transplantation speed offers early hepatocyte engraftment in acute liver injured rats: A translational study with clinical implications. *Liver Transpl* 2015; 21: 652-661 [PMID: 25821041 DOI: 10.1002/hep.24106]

33. Olszewski WL, Charysz A, Gewartowska M, Nagui ME. Intrasplenic transplanted adult rat isolated hepatocyte fraction but not cholangiocytes forms bile canaliculi. *Transplant Proc* 2014; 46: 2894-2896 [PMID: 25380845 DOI: 10.1016/j.transproceed.2014.09.067]

34. Bahde R, Kapoor S, Viswanathan P, Speigel HU, Gupta S. Endothelin-1 receptor A blocker darusentan decreases hepatic changes and improves liver repopulation after cell transplantation in rats. *Hepatology* 2014; 59: 1107-1117 [PMID: 24417475 DOI: 10.1002/hep.26766]

35. Hayashi C, Ito M, Ito R, Murakumo A, Yamamoto N, Hiramatsu N, Fox J, Horiguchi A. Effects of edaravone, a radical scavenger, on hepatocyte transplantation. *J Hepatobiliary Pancreat Sci* 2014; 21: 919-
Yuan S, Jiang T, Zheng R, Sun L, Cao G, Zhang Y. Effect of bone marrow mesenchymal stem cell ameliorates liver fibrosis induced by carbon tetrachloride in mouse. *PeiJuan* 2018; 6: 1255-1261

Si W. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells, Jiang B, Zheng B, Yan Y, Wang J, Duan Y, Li S, Yan L, Wang H, Chen B, Sang X, Ji W, Xu RH, Fu X, Brückner S, Ebensing S, Hempel M, Dollinger MM, Christ B. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. *J Hepatol* 2014; 61: 517-527

Booth S, Parvizi-Ahadi A, Arabshahi S, Wang S, Li S, Zhang D, Dusek M, Stys PK, Little KD, Mohler A, Wu M, Park CH, Hesami Z, Jamshidzadeh A, Gramizadeh B. Antioxidant Effects of Bone Marrow Stem Cell against Carbon Tetrachloride-Induced Oxidative Damage in Rat Livers. *Cytotherapy* 2017; 19: 542-547

Shevela EY, Starostina NM, Pat'.exev AI, Shipunov MV, Zheltova OL, Meleidina IV, Kliwan LA, Leplina OY, Ostanin AA, Chernykh ER, Kozlov VA. Efficiency of Cell Therapy in Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Li P, Chen J, Li L, Ran JH, Li XH, Liu ZH, Liu GJ, Gao YC, Zhang XL, Sun HD. In vitro and in vivo characteristics of hepatic oval cells modified with human hepatocyte growth factor. *Cell Mol Biol Lett* 2015; 20: 507-521

Shi M, Liu Z, Wang Y, Xu R, Sun Y, Zhang M, Yu X, Wang H, Meng L, Su H, Jin L, Wang FS. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. *Stem Cells Transl Med* 2017; 6: 2053-2061

Kim JK, Kim SJ, Kim Y, Chang YE, Park YN, Kim HO, Kim JS, Park MS, Sakaida I, Kim DY, Lee JI, Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Cell Transplant* 2017; 26: 1099-1106

Shevela EY, Starostina NM, Pat'exev AI, Shipunov MV, Zheltova OL, Meleidina IV, Kliwan LA, Leplina OY, Ostanin AA, Chernykh ER, Kozlov VA. Efficiency of Cell Therapy in Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Park CH, Bae SH, Kim HY, Kim JK, Jung ES, Chun HJ, Song MS, Noh H, Cho SG, Lee GW, Choi JY, Yoon SK, Han NI, Lee YS. A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in five patients with liver failure. *Cytotherapy* 2013; 15: 1571-1579

Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Mosier DJ, Mehl K, Ziegler T, Wang Y, Sun Y, Zhang M, Yu X, Wang H, Meng L, Su H, Jin L, Wang FS. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. *Stem Cells Transl Med* 2017; 6: 2053-2061

Kim JK, Kim SJ, Kim Y, Chang YE, Park YN, Kim HO, Kim JS, Park MS, Sakaida I, Kim DY, Lee JI, Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Cell Transplant* 2017; 26: 1099-1106

Shevela EY, Starostina NM, Pat'exev AI, Shipunov MV, Zheltova OL, Meleidina IV, Kliwan LA, Leplina OY, Ostanin AA, Chernykh ER, Kozlov VA. Efficiency of Cell Therapy in Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Park CH, Bae SH, Kim HY, Kim JK, Jung ES, Chun HJ, Song MS, Noh H, Cho SG, Lee GW, Choi JY, Yoon SK, Han NI, Lee YS. A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in five patients with liver failure. *Cytotherapy* 2013; 15: 1571-1579

Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Mosier DJ, Mehl K, Ziegler T, Wang Y, Sun Y, Zhang M, Yu X, Wang H, Meng L, Su H, Jin L, Wang FS. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. *Stem Cells Transl Med* 2017; 6: 2053-2061

Kim JK, Kim SJ, Kim Y, Chang YE, Park YN, Kim HO, Kim JS, Park MS, Sakaida I, Kim DY, Lee JI, Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Cell Transplant* 2017; 26: 1099-1106

Shevela EY, Starostina NM, Pat'exev AI, Shipunov MV, Zheltova OL, Meleidina IV, Kliwan LA, Leplina OY, Ostanin AA, Chernykh ER, Kozlov VA. Efficiency of Cell Therapy in Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424

Park CH, Bae SH, Kim HY, Kim JK, Jung ES, Chun HJ, Song MS, Noh H, Cho SG, Lee GW, Choi JY, Yoon SK, Han NI, Lee YS. A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in five patients with liver failure. *Cytotherapy* 2013; 15: 1571-1579

Ahn SH, Lee KS, Han KH. Long-Term Follow-Up of Patients After Autologous Bone Marrow Cell Infusion for Decompensated Liver Cirrhosis. *Arch Toxicol* 2012; 86: 1415-1424
transplantation on acute hepatic failure in rats. Exp Ther Med 2014; 8: 1150-1155 [PMID: 25187814 DOI: 10.3892/etm.2014.1845]

61 Nakamura T, Toritaura T, Iwamoto H, Masuda H, Naitou M, Koga H, Abe M, Hashimoto O, Tsutsumi V, Ueno T, Sata M. Prevention of liver fibrosis and liver reconstitution of DMN-treated rat liver by transplanted EPCs. Eur J Clin Invest 2012; 42: 717-728 [PMID: 22242757 DOI: 10.1111/j.1365-2362.2011.02637.x]

62 Pan Q, Fouraschen SM, Kaya FS, Verstegen MM, Pescatori M, Stubs AP, van IJcken W, van der Sloot A, Smits R, van der Laan LJ. Mobilization of hepatic mesenchymal stem cells from human liver grafts. Liver Transpl 2011; 17: 596-609 [PMID: 21056248 DOI: 10.1002/hep.22260]

63 Saito RF, Rajeshkumar B, Sharifibazri B, Bogdanov AA, Zheng S, Dresser K, Walter O. Human adipose-derived mesenchymal stem cells attenuate ischemia-reperfusion injury and promote liver regeneration. Surgery 2014; 156: 1225-1231 [PMID: 25362218 DOI: 10.1016/j.surg.2014.05.008]

64 Di Rocco G, Gentile A, Antonini A, Truffa S, Piaggio G, Caporgrossi MC, Tojeita G. Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stem cells derived from adipose tissue. Cell Transplant 2012; 21: 1997-2008 [PMID: 22469297 DOI: 10.3727/096369911X637452]

65 Winkler S, Hempel M, Brückner S, Mallek F, Weise A, Lietz T, Tautenhahn HM, Bartels M, Christ B. Mouse white adipose tissue-derived mesenchymal stem cells gain pericentral and periportal hepatocyte features after differentiation in vitro, which are preserved in vivo after hepatic transplantation. Acta Physiol (Oxf) 2015; 215: 89-104 [PMID: 26235702 DOI: 10.1111/apha.12560]

66 Sharma M, Rao PN, Saskala M, Kuncharam MR, Reddy C, Gokak V, Raju B, Singh JR, Nag P, Nageshwar Reddy D. Autologous mobilized peripheral blood CD34+ cell infusion in non-viral decompenated liver cirrhosis. World J Gastroenterol 2015; 21: 7264-7271 [PMID: 26109814 DOI: 10.3748/wjg.v21.i23.7264]

67 Deng XG, Qiu RL, Li ZX, Zhang J, Zhou JH, Wu YH, Zeng LX, Tang J. Selection of hepatocyte-like cells from mouse differentiated embryonic stem cells and application in therapeutic liver regeneration. Cell Physiol Biochem 2012; 30: 1271-1286 [PMID: 23075756 DOI: 10.1159/000343137]

68 Takebe T, Sekine K, Kimura M, Yoshizawa E, Aya S, Koido M, Funayaama S, Nakamichi N, Hisai T, Kobayashi T, Kasai T, Kitada R, Mori A, Ayabe H, Eiji Y, Amimoto N, Yamaizaki Y, Ogawa S, Ishikawa M, Kiyo Y, Sato Y, Nozawa K, Okamoto S, Ueno Y, Taniguchi H. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Rep 2017; 21: 2661-2670 [PMID: 29212014 DOI: 10.1016/j.celrep.2017.11.005]

69 Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogai T, Zhang RR, Ueno Y, Zhang YW, Koike N, Aoyama S, Adachi Y, Taniguchi H. Vascularized and functional human liver from an iPS-derived organ bud transplant. Nature 2013; 499: 481-484 [PMID: 23823721 DOI: 10.1038/nature12271]

70 Espejel S, Roll GR, McLaglin KH, Lee AY, Zhang Z, Tao K, Dou K. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation 2012; 19: 256-264 [PMID: 22469297 DOI: 10.3727/096369911X637452]

71 Kim K, Schuetz C, Elias N, Veilllette GR, Wilamna I, Vamma M, Smith RN, Robson SC, Conti EM, Sachs DH, Markmann JF. Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Transplantation 2014; 21: 454-464 [PMID: 25130043 DOI: 10.1097/TP.0b013e3182a9491e]

72 Zhu S, Revzani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, Willenbring H, Ding S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014; 508: 93-97 [PMID: 24572354 DOI: 10.1038/nature13020]

73 Fagonee S, Famulari ES, Silengo L, Tolosano E, Alturda F. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells. PLoS One 2015; 10: e0136762 [PMID: 26329094 DOI: 10.1371/journal.pone.0136762]

74 Kajik EW, Rasmussen S, Blokzijl F, Huch M, Gehart H, Toonen P, Begghe H, Clevers H, Geurts AM, Cuppen E. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure. Sci Rep 2016; 6: 22154 [PMID: 26913950 DOI: 10.1038/srep22154]

75 Zhang Z, Li X, Zhang H, Zhang X, Chen H, Pan D, Ji H, Zhou L, Jing J, Zhou Y, Yue S, Wang D, Yang Z, Tao K, Dou K. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation 2017; 24 [PMID: 28714272 DOI: 10.1111/xen.12323]

76 Yeh H, Machaidze Z, Wamala IF, Fraser JW, Navarro-Alvarez N, Kim K, Schuetz C, Shi S, Zha A, Hertl M, Elias N, Farkash EA, Vageli PA, Varma M, Smith RN, Robson SC, Conti EM, Sachs DH, Markmann JF. Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation 2014; 21: 454-464 [PMID: 25130043 DOI: 10.1097/TP.0b013e3182a9491e]

77 Kim K, Schuetz C, Elias N, Veilllette GR, Wamala I, Vamma M, Smith RN, Robson SC, Cosimi AB, Sachs DH, Hertl M. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyltransferase knockout swine liver xenotransplantation in baboons. Xenotransplantation 2012; 19: 256-264 [PMID: 22909139 DOI: 10.1111/j.1365-2362.2012.01717.x]

78 Ekser B, Long C, Echeverri GJ, Hara H, Ezelarab M, Lin CC, de Vera ME, Wagner R, Klein E, Wolf RF, Ayares D, Cooper DK, Gridelli B. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant 2010; 10: 273-285 [PMID: 20041802 DOI: 10.1111/j.1600-6143.2009.02945.x]

79 Navarro-Alvarez N, Shah JA, Drost A, Ayares D, Deckmyn H, Azimzadeh AM, Pierson RN, Barth RN. Pig-to-baboon liver xenoperfusion utilizing GalTKO.3CD46 pigs and glycoprotein Ib blockade. Xenotransplantation 2014; 21: 274-286 [PMID: 24628649 DOI: 10.1111/xen.12093]

80 Ekser B, Klein E, He J, Stolz DB, Echeverri GJ, Long C, Lin CC, Ezelarab M, Hara H, Veroux M, Ayares D, Cooper DK, Gridelli B. Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs. PLoS One 2012; 7: e32970 [PMID: 22247764 DOI: 10.1371/journal.pone.0029720]

81 Ezelarab M, Ekser B, Gridelli B, Iwase H, Ayares D, Cooper DK. Thrombocytopenia after pig-to-baboon liver xenotransplantation: where do platelets go? Xenotransplantation 2011; 18: 320-327 [PMID: 22168139 DOI: 10.1111/j.1399-3089.2011.00679.x]

82 Ekser B, Lin CC, Long C, Echeverri GJ, Hara H, Ezelarab M, Bogdanov VY, Stolz DB, Enjyoji K, Robson SC, Ayares D, Dorling A, Cooper DK, Gridelli B. Potential factors influencing the development of...
thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. *Transpl Int* 2012; 25: 882-896 [PMID: 22462260 DOI: 10.1111/j.1399-9545.2012.01506.x]

83 Enke B, Echeverri GJ, Hassett AC, Yazer MH, Long C, Meyer M, Ezzeelarab M, Lin CC, Hara H, van der Windt DJ, Dons EM, Phelps C, Ayares D, Cooper DK, Gridelli B. Hepatic function after genetically engineered pig liver transplantation in baboons. *Transplantation* 2010; 90: 483-493 [PMID: 20660665 DOI: 10.1097/TP.0b013e3181e9d519]

84 Ramis G, Martínez-Alarcón L, Medina-Moreno E, Abelláneda JM, Quereda JJ, Febrero B, Sáez-Acosta A, Rios A, Muñoz A, Ramirez P, Majado MJ. Presence of Pig IgG and IgM in Sera Samples From Baboons After an Orthotopic Liver Xenotransplantation. *Plant Transplant Proc* 2010; 58: 2842-2846 [PMID: 20630409 DOI: 10.1016/j.transproceed.2010.04.048]

85 Galvao FH, Soler W, Pompeu E, Waisberg DR, Mello ES, Costa AC, Teodoro W, Velosa AP, Capolezzi VL, Antonangelo L, Catanoso S, Martins A, Malbouisson LM, Cruz RJ, Figueira ER, Filho JA, Chabi E, D’Albuquerque LA. Immunoglobulin G profile in hyperacute rejection after multivisceral xenotransplantation. *Xenotransplantation* 2012; 19: 298-304 [PMID: 22957972 DOI: 10.1111/j.1600-0404.2012.01019.x]

86 Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. *Am J Pathol* 2013; 183: 558-565 [PMID: 23747949 DOI: 10.1016/j.ajpath.2013.05.002]

87 Park KM, Park SM, Yang SR, Hong SH, Woo HM. Preparation of immunogen-reduced and biocompatible extracellular matrices from porcine liver. *J Biosci Bioeng* 2013; 115: 207-215 [PMID: 23086617 DOI: 10.1016/j.jbiobei.2012.08.023]

88 Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. *J Surg Res* 2017; 173: e1-e25 [PMID: 22995959 DOI: 10.1016/j.jss.2017.09.033]

89 Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorrarniaziouz A, Akbarzadeh A, Seyedian SL, Pasalar P, Orangian S, Beigi RS, Aryan Z, Akbari H, Tavangar SM. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. *J Biomol Mater Res A* 2015; 103: 1498-1508 [PMID: 25045836 DOI: 10.1002/jbm.a.35291]

90 Kadowa Y, Yagi H, Inounaga K, Matsuura K, Hibi T, Abe Y, Kitagawa M, Shinoda M, Obara H, Itano O, Kitagawa Y. Mesenchymal stem cells support hepatocyte function in engineered liver grafts. *Organogenesis* 2014; 10: 268-277 [PMID: 24488046 DOI: 10.4161/org.27879]

91 Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzziardi MA, Shulman C, Milwaj K, Kobayashi N, Tilles A, Berthiaume F, Heril M, Nahinas Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. *Nat Med* 2010; 16: 814-820 [PMID: 20543851 DOI: 10.1038/nm.2170]

92 Bao J, Shi Y, Sun H, Yin X, Yang R, Li L, Chen X, Bu H. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. *Cell Transplant* 2011; 20: 753-766 [PMID: 21054928 DOI: 10.3727/096368910X515367]

93 Zhang H, Siegel CT, Li J, Lai J, Shuai L, Lai X, Zhang Y, Jiang Y, Bie P, Bai L. Functional liver tissue engineering by an adult mouse liver-derived neuro-glia antigen 2-expressing stem/progenitor population. *J Tissue Eng Regen Med* 2018; 12: e90-e202 [PMID: 27638002 DOI: 10.1002/jterm.231]

94 Jiang WC, Cheng YH, Yen MH, Chang Y, Lee VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. *Biomaterials* 2014; 35: 3607-3617 [PMID: 24462361 DOI: 10.1016/j.biomaterials.2014.01.024]

95 Yuan J, Li W, Huang J, Guo X, Li X, Lu X, Huang Z, Zhang H. Transplantation of human adipose stem cell-derived hepatocyte-like cells with restricted localization to liver using acellular amniotic membrane. *Stein Cell Res Ther* 2015; 6: 217 [PMID: 26541667 DOI: 10.1186/s13237-015-0208-9]

96 Jitaruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippe C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. *PLoS One* 2014; 9: e113609 [PMID: 25438038 DOI: 10.1371/journal.pone.0113609]

97 Turner RA, Wauthier E, Loizoya O, McClelland R, Bowsher JE, Barbier C, Prestwich G, Hsu E, Gerber MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. *Bioengineered* 2014; 3: 48-57 [PMID: 21798766 DOI: 10.1016/j.biomaterials.2014.09.022]

98 Hansel MC, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Davila J, Strom SC. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. *Curr Protoc Toxicol* 2014; 62: 14.12.1-14.12.23 [PMID: 25378242 DOI: 10.1002/0471140856.ta14226]

99 Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. *Pediatr Res* 2018; 83: 232-240 [PMID: 29149103 DOI: 10.1038/pr.2017.284]

100 Nagamoto Y, Takayama K, Ohashi K, Okamoto R, Sakurai F, Tachibana M, Kavabata K, Mizuguchi H. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. *J Hepatol* 2016; 64: 1068-1075 [PMID: 26778754 DOI: 10.1016/j.jhep.2016.01.004]

101 Xue R, Meng Q, Li J, Wu J, Yao Q, Yu H, Zhu Y. The assessment of multipotent cell transplantation in acute-on-chronic liver failure: a systematic review and meta-analysis. *Translat Res* 2018; 200: 65-80 [PMID: 29966269 DOI: 10.1016/j.trsl.2018.05.006]

102 Hrudka M, Miyazaki M, Sakaguchi M, Masaka T, Ibrahim S, Katoaka K, Hah NH. Suppression of carbon tetrachloride-induced liver fibrosis by transplantation of a clonal mesenchymal stem cell line derived from rat bone marrow. *Cell Transplant* 2009; 18: 89-99 [PMID: 19476212 DOI: 10.1080/09636890978237140]

103 Rabani V, Shalhavani M, Gharavi M, Piraye A, Ashdari Z, Baharvand H. Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. *Cell Biol Int* 2010; 34: 601-605 [PMID: 20184588 DOI: 10.1002/cibi.2009038]

104 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 2006; 126: 663-676 [PMID: 16904174 DOI: 10.1016/j.cell.2006.07.024]

105 Bizzaro D, Russo FP, Ibarra P. New Perspectives in Liver Transplantation: From Regeneration to
Bioengineering. Bioengineering (Basel) 2019; 6 [PMID: 31514475 DOI: 10.3390/bioengineering6030081]

108 Kia R, Sison RL, Kitteringham NR, Hanley N, Mills JS, Park BK, Goldring CE. Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol 2013; 75: 885-896 [PMID: 22703588 DOI: 10.1111/j.1365-2125.2012.04360.x]

109 Gómez-Lechón MJ, Tolosa L. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 2016; 90: 2049-2061 [PMID: 27325232 DOI: 10.1007/s00204-016-1756-1]

110 Rebelo SP, Costa R, Silva MM, Marcelino P, Brito C, Alves PM. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: improved functionality in long-term bioreactor cultures. J Tissue Eng Regen Med 2017; 11: 2034-2045 [PMID: 26511086 DOI: 10.1002 term.2009]

111 Zhao T, Zhang ZN, Rong Z, Xu Y. Immune reactivity of induced pluripotent stem cells. Nature 2011; 474: 212-213 [PMID: 21572395 DOI: 10.1038/nature10135] 112 Tolosa L, Pareja E, Gómez-Lechón MJ. Clinical Application of Pluripotent Stem Cells: An Alternative Cell-Based Therapy for Treating Liver Diseases? Transplantation 2016; 100: 2548-2557 [PMID: 27495745 DOI: 10.1097/TP.0000000000001426]

113 Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Peng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L. In vitro expansion of human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 2018; 23: 806-819 [PMID: 29416071 DOI: 10.1016/J.stem.2018.10.018]

114 Cooper DK. Early clinical xenotransplantation experiences-An interview with Thomas E. Starzl, MD, PhD. Xenotransplantation 2017; 24 [PMID: 28421681 DOI: 10.1111/xen.12306]

115 Ezeelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DK. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379: 672-683 [PMID: 22019026 DOI: 10.1016/S0140-6736(11)61091-X]

116 Black CK, Termanini KM, Aguirre O, Hawkesworth JS, Sosin M. Solid organ transplantation in the 21st century. Ann Transpl Med 2018; 6: 409 [PMID: 30498736 DOI: 10.21037/amm.2018.09.68]

117 Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun 2018; 2: 131-141 [PMID: 29045520 DOI: 10.1002/hepc.1136]

118 Ott HC, Matthiasen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008; 14: 213-221 [PMID: 18193059 DOI: 10.1038/nm1864]

119 Rana D, Zeqiat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 2017; 11: 942-965 [PMID: 26139160 DOI: 10.1002/term.2061]

120 Hospodinski M, Dey M, Sosonski D, Ozbolat JT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35: 217-239 [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006]
