Sea Urchin Tube Feet:
Unique Structures That Allow a Cytological and Molecular
Approach to the Study of Actin and Its Gene Expression

JONATHAN KABAT-ZINN and ROBERT H. SINGER
Department of Anatomy, University of Massachusetts Medical School, Worcester, Massachusetts 01605

ABSTRACT Actin is the major extractable protein component from the tube feet of four
different species of sea urchin: Arbacia punctulata, Strongylocentrotus purpuratus, Strongylo-
centrotus droebachiensis, and Diadema setosum. Actin made up as much as 60% of the total
Coomassie Blue-staining material after SDS polyacrylamide gel electrophoresis and densitom-
eter analysis. Two-dimensional gel electrophoresis resolved two, and possibly three, species of
actin for each sea urchin of which the dominant component was analogous to the beta form
in vertebrates. In a cell-free system from rabbit reticulocytes, total RNA from tube feet
stimulated the synthesis of one protein that represented 80% of the total methionine incorpo-
rating, migrated with the properties characteristic of actin in a two-dimensional gel system,
and on proteolysis yielded fragments identical to purified rabbit actin. The mRNAs from the
tube feet of two divergent species of sea urchin, Arbacia punctulata and Strongylocentrotus
purpuratus, synthesized actins differing by <0.02 pH unit for each isospecies. 90% of the DNA
copied from tube foot RNA by reverse transcriptase represented a highly abundant sequence
class judged by copy DNA(cDNA)-RNA excess hybridization. At least two-thirds of this class
represented a low-complexity component, with a $R_0 t_{1/2}$ about three times that expected for
actin messenger RNA. The remarkable degree of conservation of the actin protein is reflected
in concomitant conservation of the protein-coding nucleotide sequences of the messenger
RNA, which has allowed the use of a cDNA probe to isolate actin sequences from a human
phage library.

Sea urchin tube feet are sensory, locomotive, and anchoring
appendages that can extend and contract between 2 and 150
mm in length (1) (Fig. 1). The remarkable contractility of this
appendage suggests the involvement of muscle; morphological
and histochemical investigations presented here have con-
firmed this. Histologically, the tube foot, of which there are
about 2,000 per urchin, is composed of three obvious cylindrical
layers around a central lumen (Fig. 2). The large innermost
layer (excluding a single-celled endothelium) composed at least
50% of the cellular volume of the tube foot and appeared to be
histologically analogous to vertebrate smooth muscle. A large
basement lamina could be seen as well as a richly pigmented
epithelium. This morphology is characteristic of echinoderm
tube feet (2–4). Electron microscopy revealed the muscle cells
to be full of closely packed filaments of the diameter expected
of actin (7 nm), which were confirmed to be actin by immu-
nofluorescence assay (data not shown).

This biochemical investigation of the tube feet from four
different species of sea urchins confirmed them to be unique
structures in that they were mainly composed of actin. Actin is
a ubiquitous, evolutionarily conserved protein making up, in
most cells and particularly vertebrate smooth muscle, the major
abundant protein component (5, 6). In no other tissue source,
however, has the abundance of actin been reported to be as
high as that found in sea urchin tube feet by our observations.
This led us to determine that the tube feet of the sea urchin are
a source of naturally enriched messenger RNA for this protein.
A readily accessible abundant source of actin messenger RNA
facilitates a molecular analysis of the actin gene, because the
actin-coding nucleotide sequences are well conserved through-
out evolution. This allows the abundant actin messenger RNA
from tube feet to be used to search for actin genes from
recombinant DNA libraries containing actin sequences from
other species.
the appropriate buffer for gelelectrophoresis. Typically, tube feet obtained from
SDS, and 1 mM dithiothreitol, and the clarified supernate was then diluted into

110

protein concentrations of ~10 mg/ml by Lowry assay. For quantitation of the

actin content, the total solubilized tube foot protein was subjected to electropho-

resis on an SDS polyacrylamide slab gel, with actin and myosin standards in

adjacent wells, and stained with Coomassie Blue. The gel was sliced into strips

and scanned in a Gilford spectrophotometer at 550 nm (Gilford Instrument

Laboratories, Inc., Oberlin, Ohio). The peaks in the densitometer tracing were

measured by area triangulation, using the Wang "digitizer" program.

Tube Foot RNA Extraction

Removed tube feet were homogenized in 8 M guanidine hydrochloride, 25
mM ethanol precipitation, the RNA was resuspended in 1% SDS, 0.1 M NaCl,
and 10 mM Tris (pH 7.4), phenol-extracted, and then precipitated with 3 M
sodium acetate (pH 6). After centrifugation, the RNA was resuspended in 0.2 M
sodium acetate, pH 5, and then precipitated with 2 vol of ethanol at -20°C.
Before use, the RNA was centrifuged, washed twice with 80% ethanol to remove
residual salt, dried under vacuum, and resuspended in 4°C sterile water at the
desired concentration. 50 sea urchins yielded ~250 µg of tube foot RNA.

Cell-free Protein Synthesis

Rabbit reticulocyte lysate was prepared by the method of Woodward et al. (8)
and treated with micrococcal nuclease according to Pelham and Jackson (9).
Reaction mixtures contained, in a final volume of 25 μl: 140 mM potassium
acetate, 1.5 mM magnesium acetate, 500 μM spermidine (free base), 8 mM
creatine phosphate, creatine kinase (155 U/mg; Sigma Chemical Co., St. Louis,
Mo.) at 8 μg/ml, 20 mM HEPES at pH 7.6, 25 μM amino acids minus methionine,
2 mM dithiothreitol, 10–50 μCi of [35S]methionine (400–600 Ci/mmol; Amer-
sham-Searle, Chicago, Ill.), and 1–5 µg of total tube foot RNA isolated by 8 M
guanidine extraction (7). Reactions were carried out at 37°C for 1 h, and
incorporation was assayed by hot TCA precipitation as described by Roberts and
Patoness (10).

Analysis of Cell-free Products

Samples from cell-free reactions were analyzed by one- and two-dimensional
gel electrophoresis. For one-dimensional analysis, 10 or 12% SDS polyacrylamide
slab gels were used, following the method of Laemmli (11). For two-dimensional
analysis, the method of O'Farrell (12) was used as described. Isoelectric focusing
was done at constant power (ISCO [Instrumentation Specialties Co.], Lincoln,
Nebr.). 3 W overnight. The pH was found to be linear with length of the gel,
using a contact electrode (LKB Instruments, Inc., Rockville, Md.). Purified actin
from rabbit, chick, or sea urchin was mixed with the radioactive samples. For
direct comparison of the first and second dimension of the gel electrophoresis,
26-cm-wide slab gels were used to accommodate the tube gels (18 cm) and to
allow use of adjacent wells.

The SDS polyacrylamide slab gels were fixed and stained for 0.5 h with a 10%
acetic acid, 30% methanol, and 0.2% Coomassie Blue solution and then destained
in a solution containing 10% acetic acid, 50% methanol overnight. The stained
marker actin spots were marked with India ink. The gels were then analyzed by
fluorography after the method of Bonner and Laskey (13) and Laskey and Mills
(14). The fluorograms were then scanned at 550 nm for quantitation by densitom-
etry.

Partial Proteolytic Digestion and Electrophoresis of the Actin Translation Product

The procedure described by Cleveland et al. (15) was followed. Samples from
tube foot RNA-stimulated cell-free reticulocyte lysate reactions were mixed with
unlabeled rabbit marker actin (15–20 μg; Worthington Biochemical Corp., Free-
hold, N. J.) and subjected to electrophoresis on an SDS polyacrylamide slab gels.
The gel was stained with Coomassie Blue for 10–20 min and destained for 30
min. The actin bands were cut out with a razor blade and incubated in 10 ml of
0.125 M Tris (pH 6.8), 0.1% SDS, 1 mM EDTA for 30 min. For analysis by
partial proteolysis, the gel slices were placed in the wells of a stacking gel (1% acryl-
amide, 0.5% agarose) containing 1 mM EDTA. Staphylococcus aureus V8
protease (Miles Laboratories Inc., Elkart, Ind.), trypsin, or papain (Worthington
Biochemical Corp.) was then added to each well, and the mixture was subjected

3

to low current for 30 min. The proteolytic fragments were then subjected to
electrophoresis in a 15% acrylamide (1 mM EDTA) separating gel. Identical
amounts of enzyme without actin samples were introduced into adjacent wells.
The gel was analyzed by Coomassie staining and subsequent fluorography. The
stained marker actin fragments (after subtraction of enzyme-specific bands) and
the [35S]methionine-labeled translation product fragments were then compared.

Synthesis of Copy DNA (cDNA)

cDNA was synthesized using purified avian myeloblastosis virus (AMV)
reverse transcriptase, as described by Friedman and Rothbush (16). The reaction
mixture (25 µl) consisted of: 50 mM Tris (pH 8.3), 20 mM dithiothreitol, 6 mM

110 The Journal of Cell Biology • Volume 89, 1981
MgCl₂, 60 mM NaCl, 1 mM each of dATP, dTTP, dGTP, 200 μM dCTP (220
C/ml), 5 μg/ml oligodeoxynucleotides (Collaborative Research, Walther,
Mass.) 122 μg/ml actinomycin D (Sigma Chemical Co.), 2 μl of AMV reverse
transcriptase (720 U/ml final concentration), and 2 μg of total tube foot RNA.
The reaction mixture was incubated for 45 min at 37°C, and RNA was hydrolyzed
by addition of 150 μl of 0.5 N NaOH and boiling for 3 min at 100°C, and then
neutralized with 150 μl of 1 N NaH₂PO₄. Nucleotides were separated from the
cDNA by an SP-50 (Pharmacia Inc., Piscataway, N. J.) column (0.7 cm × 10 cm)
equilibrated with 300 mM NaCl, 10 mM sodium acetate (pH 5.5). Excluded peak
fractions were pooled and precipitated with 2 vol of ethanol after addition of 20
μg tRNA. The protein was centrifuged, resuspended in water, and stored in
siliconized glass tubes at –20°C. The specific activity of the cDNA was 2 × 10⁷
cpm/μg. The cDNA was found to be 500 nucleotides in length, judged by
hybridization of the tube feet and extraction as described in Ma-
et al. (19).

RESULTS

Actin Is the Major Abundant Protein of Tube Feet

Fig. 3a, slot C shows the pattern of proteins seen on a
Coomassie Blue-stained SDS polyacrylamide gel after homog-
ization of the tube feet and extraction as described in Ma-
terials and Methods. The most prominent band migrates with
a molecular weight of 42,000, as shown by its comigration with
purified rabbit skeletal muscle actin in the gel (slot B). Other
bands are visible at molecular weights of 38,000, 180,000, and
220,000. The first has the molecular weight expected of tropo-
myosin. We have tentatively identified the second as collagen-
chain dimers, because it comigrates with a soluble collagen
preparation (not shown). Electron microscopy analysis suggests
that collagen is the major component of the large basement
membrane of tube feet (Fig. 2). The 220,000-dalton band
comigrates with purified myosin heavy chains (slot A). Fig. 3b
is a densitometer tracing of the extracted tube foot proteins
assayed on an equivalent gel. A conservative measure of the
areas under these three peaks using a Wang triangulation
method (12). Fig. 3c, slot C shows the pattern of proteins seen on a
Coomassie Blue-stained SDS polyacrylamide gel after homog-
ization of the tube feet and extraction as described in Ma-
terials and Methods. The most prominent band migrates with
a molecular weight of 42,000, as shown by its comigration with
purified rabbit skeletal muscle actin in the gel (slot B). Other
bands are visible at molecular weights of 38,000, 180,000, and
220,000. The first has the molecular weight expected of tropo-
myosin. We have tentatively identified the second as collagen-
chain dimers, because it comigrates with a soluble collagen
preparation (not shown). Electron microscopy analysis suggests
that collagen is the major component of the large basement
membrane of tube feet (Fig. 2). The 220,000-dalton band
comigrates with purified myosin heavy chains (slot A). Fig. 3b
is a densitometer tracing of the extracted tube foot proteins
assayed on an equivalent gel. A conservative measure of the
areas under these three peaks using a Wang triangulation
computer program, expressed as percent of the total area of the
tracing, is 60% for actin and 7% each for collagen and myosin.
The gel analysis of the major band was then extended to two
dimensions by use of the method of O'Farrell (12). Fig. 3a
(right) shows the gel pattern of the tube foot proteins after
isoelectric focusing on a pH 5–7 gradient, followed by slab gel
electrophoresis. Through use of this procedure, the 42,000-
dalton band separated into two major components with iso-
electric points between 5.6 and 5.7. A minor component is
usually evident toward the acid side (5.5). This pattern is
almost identical to that shown for alpha-, beta-, and gamma-
actin species by Whalen et al. (20) and Hunter and Garrels
(21) for vertebrate muscle, and to the I, II, and III actin species
from Drosophila of Storti et al. (22). We will identify these
species by their native isoelectric values (5.50, 5.64, and 5.70).
This obviates the necessity of a separate nomenclature of actin
for every animal system. These putative actins are present in the
tube foot in the approximate ratio of 1:90:9. Hence, the
5.50 species is not generally obvious. The actin of all four
species of sea urchin examined are identical in this pattern. A
spot to the right and below actin (more acidic) corresponds to the
position of vertebrate “beta” tropomyosin (23).

Actin Messenger RNA Is the Major Abundant
Species of Message Extracted from Tube Feet

Total RNA was extracted from the tube feet of S. purpuratus
and A. punctulata and purified as described in Materials and
Methods, using 8 M guanidine (17). This RNA was then tested
for its ability to stimulate protein synthesis in both the wheat
germ (10) and the rabbit reticulocyte (9) cell-free systems.
When the products from the reticulocyte cell-free synthesis
were analyzed by single dimension electrophoresis and fluo-
rography (14), the results in Fig. 4a and c (left side) were
obtained. Both S. purpuratus and A. punctulata tube foot RNA
(Fig. 4a and c, respectively) stimulated the uptake of methion-
ine into one major band at 42,000 daltons (at the position of
marker actin) that is absent in controls lacking added message
(Fig. 4c, second lane from left). Other proteins, synthesized in
much lower amounts, were revealed in Fig. 4a (left side) by
increased exposure time (20 h). The radioactivity in the S.
purpuratus putative actin band saturates the x-ray negative well
before this amount of time. A densitometer tracing of the same
reticulocyte fluorogram exposed so that the radioactivity does

KABAT-ZINN AND SINGER  Sea Urchin Tube Feet  111
not saturate the x-ray film (3.5 h) shows the 42,000-dalton protein to be 80% of total synthesis (Fig. 4). Fig. 4a and c (right side) also shows the two-dimensional analysis of the putative actin band on the same gel as the single-dimension analysis of the equivalent samples. The two-dimensional analysis emphasizes that the 42,000-dalton protein has isoelectric points and molecular weight mobility characteristic of actin (20-22). When the actins translated in the cell-free system are analyzed on the same gel with native tube foot protein, the pattern of spots is identical, but the actins synthesized in the cell-free system are shifted +0.06 pH unit. This may be construed as a result of an in vivo modification of each isospecies of actin. The major native sea urchin tube foot protein and the beta isospecies of purified chick actin from 16-d embryonic muscle almost coincide exactly on two-dimensional analysis, to within 0.02 pH units. Both isospecies are in the middle position relative to the other actin species. Furthermore, S. purpuratus and A. punctulata, diverged evolutionarily for 200 million years (24), show all isospecies of actin to migrate coincidentally (to within 0.02 pH unit). Evident in these gels upon two-dimensional analysis is the outstanding abundance of the protein. In contrast to the complex pattern of proteins resolved by these gels after translation of total rat muscle mRNA (23), the translation of total tube foot RNA yields essentially a single protein. The reticulocyte system with no mRNA added showed no radioactive proteins in two-dimensional analysis even after long exposures. On a gel with a broader gradient from pH 3 to pH 10, no additional proteins of significant abundance were seen.

Identification of the Translation Product as Actin by Partial Proteolytic Digestion

Products of the cell-free synthesis in reticulocyte lysate were subjected to electrophoresis and proteolysis with purified marker actin from rabbit in an SDS polyacrylamide slab gel. The rabbit actin fragments resulting from proteolysis were detected by Coomassie stain, and the radioactive reticulocyte-synthesized protein fragments were detected by fluorography. Fig. 5a shows the stained gel and b, the fluorograph. The pattern of the nine proteolytic fragments produced by digestion with two concentrations of S. aureus V8 protease and with papain (slots B, C, and D, respectively) was identical in the gel of stained rabbit actin fragments and in the fluorograph of the fragments of the protein products from sea urchin mRNA. We conclude that the protein translated from tube foot RNA that coincides with actin upon two-dimensional electrophoresis and that has the same proteolytic fragments as purified actin is, therefore, actin. No proteolysis occurred in the presence of trypsin (slot A), underscoring the known relative insensitivity of actin to trypsin digestion under these conditions (25).

RNA Excess Hybridization of Tube Foot cDNA

Using AMV reverse transcriptase, we employed total tube foot RNA to direct the synthesis of a single-stranded cDNA. This cDNA “probe” was then hybridized to total tube foot RNA under conditions of RNA excess and single-stranded molecules digested with S1 nuclease. Fig. 6 is a plot of the percent single-stranded cDNA as a function of the log of RNA concentration times the time (Rat). The Rat analysis clearly shows that 85% of the copied sequences are highly abundant. Least-squares analysis by use of a computer program specifically developed for hybridization reactions (19) gave a fit of root mean square 0.0403 when the hybridization was assumed to reflect the kinetics of one component (85%), and 0.0209 when the hybridization was assumed to describe the kinetics of two components. In the latter case, one component makes up

**FIGURE 4** One- and two-dimensional fluorograms of the reticulocyte translation products stimulated by total tube foot RNA. (a) Synthesis stimulated by RNA from S. purpuratus. The one-dimensional gel is on the left; the two-dimensional gel is on the right, polyacrylamide is at 10%. The pH gradient was measured on an identical parallel focusing gel. Exposure time was 20 h at -80°C, using Kodak XR-5 film. (b) Densitometer scan of the one-dimensional gel fluorogram of a, exposed so that the radioactivity in the actin band did not saturate the film. Exposure time was 3.5 h at -80°C, using Kodak XR-5 film. (c) Synthesis stimulated by RNA from A. punctulata. The one-dimensional gel is on the left; first well on left, tube foot RNA-stimulated translation products; second well on left, no added RNA (endogenous control). The two-dimensional gel is on the right; the pH gradient is the same as above. Note that the polarity of a and c is the reverse of the two-dimensional gel in Fig. 3. Exposure time was 2 d at -80°C, using Kodak XR-5 film.
These results show that the tube feet of sea urchins contain actin in very large quantities (possibly as much as 60% of the total protein). This is more than the richest known source of actin—even when compared with vertebrate smooth muscle, which contains ~30% actin (6). Moreover, the tube foot is an organ, specialized for motility and yet composed of tissues with an unusual simplicity of protein composition. Hence, this organ is an interesting model for the role of actin as a contractile protein. The tube foot actin comigrates in a two-dimensional gel with the purified chicken beta actin isoform from embryonic muscle, indicating the probability of a high degree of evolutionary conservation.

In parallel with the abundance of actin in this organ, the messenger RNA for actin is similarly abundant. Total messenger RNA extracted from _S. purpuratus_ tube feet, when translated in a cell-free system from reticulocytes, directed 80% of the total incorporated methionine into actin. This actin was identified by its coelectrophoresis with purified actin in one- and two-dimensional gel systems. As with the protein extracted from the tube feet, it yielded two major (pI 5.58 and pI 5.64) and one minor (pI 5.50) isospecies of actin with isoelectric points that differed slightly from those of the native actins. 90% of the actin is present as one component, the analogue to chicken beta actin. Additionally, partial proteolytic digests of translated actin by use of three different proteolytic enzymes indicated that all fragments were identical to the fragments obtained from the digestion of purified rabbit skeletal muscle actin. Hybridization of cDNA with total tube foot RNA yields results consistent with the interpretation that probably as much as 60% of the mRNA is composed of one abundant coding sequence. Presumably, the nonconserved diversity of the 3' end of actin message (26) increases the complexity somewhat.

Tube foot messenger RNA contains sufficient complexity to code for 2,000 sequences (27). This was established using RNA excess with single-copy DNA tracer hybridization and did not provide information on the abundance of these species. Our approach, designed to investigate the abundant species of messenger RNA, yielded the information that actin is detectable in high abundance. Species present in less abundance (15-30% of the total mRNA) are found with the expected molecular weights for myosin, collagen, tropomyosin, light chains of myosin, and many other proteins, as detected on the gels (Fig. 3a). The population of tube foot messenger RNA with the highest complexity but lowest abundance most likely makes up the 5-10% of the total message complement that is not detected by cell-free translation or RNA excess hybridization.

Isolated actin messenger RNA from any organism would be useful for examining questions concerning the genetic control of actin synthesis in that organism. Actin, though a contractile protein, is also a common component in all cells (5). Actin is a very highly conserved protein (5), varying <6% in amino acid residues between evolutionarily diverged organisms (28). Because the actin genetic sequences appear to be similarly conserved (26), the actin gene family is a natural candidate for an evolutionary and histotypic study of genes for morphologically ubiquitous and abundant proteins. In an analogous system, the mRNAs for the very well conserved histone H-4 protein of two distantly related sea urchin species have diverged by 11.5% in nucleotide sequence, consistent with expected codon redundancy (29). This still allows for interspecies hybridization of these sequences. We have made use of the availability of this highly enriched messenger RNA to effect the synthesis of cDNA, to probe the genomic human library for actin sequences, and have isolated several of these sequences. This was possible because of the evolutionary well-conserved actin
nucleic-acid sequence confirming the observations of protein conservation and the presumed lack of conservation of any contaminating species. Initial work indicates that there are <10 actin genes in the human genome. This contrasts with Dictyostelium, which has ~17 (30), but is similar to Drosophila, which has ~5 (31).

The actin genes will also serve as a general model to study gene expression. The genetic regulation of families of actin sequences include some that are constitutively synthesized (beta) and some that result from specific gene activation (alpha). The structure of the respective messenger RNA species appears to differ at the 3' end (26). The appropriate investigations into gene structure (such as flanking and intervening sequences) may yield useful insights into the regulation of these two gene classes.

We thank Dr. J. Beard for the gift of AMV reverse transcriptase. Bruce Paterson, Robert Storti, Alan Jacobsen, Bryan Roberts, Michael Rosbash, Jeff Pudney, and Bill Crain generously lent their time, expertise and advice. Scrantz and Linda Golder in the Marine Biological Laboratory photo lab supplied Fig. 1. Lynn Golden, Ken Swartz, Bill Crain, Dave Durika, Jeff Pudney, David Pearl, and Helena Huang risked their lives to pick tube feet in Woods Hole during the great blizzard of February 1978. Barbara Schneider injured her finger while skindiving for the Diadema at St. Thomas, V. I.

This work was supported by the University of Massachusetts Medical School Scientific Affairs Committee for summer research in Woods Hole, Massachusetts, by National Institutes of Health Grant NS 11329 to R. H. Singer, and by a Muscular Dystrophy fellowship to J. Kabat-Zinn.

This work was first presented at a platform session at the American Society for Cell Biology Meetings, November 1979, in Toronto.

Dr. Kabat-Zinn is currently in the Department of Medicine, University of Massachusetts Medical School.

Received for publication 27 August 1980, and in revised form 8 December 1980.

REFERENCES
1. Fretter, V., and A. Graham. 1976. A Functional Anatomy of Invertebrates. Academic Press, Inc., New York. p. 403.
2. Smith, J. E. 1937. The structure and function of the tube feet in certain Echinoderma. J. Mar. Biol. Assoc. U. K. 22:345-357.
3. Smith, J. E. 1947. The activities of the tube feet of Asterias rubens L. Q. J. Microsc. Sci. 88: 1-4.
4. Nichols, D. 1961. A comparative histological study of the tube feet of two regular
Echinoids. Q. J. Microsc. Sci. 102:157-180.
5. Bray, D. 1972. Cytoplasmic actin: a comparative study. In The Mechanism of Muscle Contraction. Cold Spring Harbor Symp. Quant. Biol. 37:567-571.
6. Cohen, D. M., and R. A. Murphy. 1979. Cellular thin filament protein contents and force generation in porcine arteries and veins. Circ. Res. 45:661-665.
7. Streckman, R. C., P. S. Moss, J. Nicolai-Eastwood, D. Specter, A. F. Perryby, and B. Paterson. 1977. Messenger RNA for myosin heavy chain in a homogenate from single myogenic cell cultures. Cell. 10:265-273.
8. Woodward, W. R., J. L. Ivey, and J. Herbert. 1974. Protein synthesis with rabbit reticulocyte preparations. Methods Enzymol. 30:709-724.
9. Pelham, H. B., and R. J. Jackson. 1976. An efficient mRNA dependent translation system from reticulocyte lysates. Eur. J. Biochem. 63:48-53.
10. Roberts, B. E., and B. M. Paterson. 1973. Efficient translation of tobacco mosaic virus RNA and rabbit rRNA in a cell free system from commercial wheat germ. Proc. Natl Acad. Sci. U. S. A. 70:2330-2334.
11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature New Biol. 227:680-683.
12. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
13. Benner, W. M., and R. A. Laskey. 1974. A film detection method for tritium labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46:83-88.
14. Laskey, R. A., and A. D. Mills. 1975. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur. J. Biochem. 63:335-341.
15. Cleveland, D. W., S. G. Fischer, M. W. Kirchhorn, and U. K. Laemmli. 1977. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252:1102-1106.
16. Friedman, E. Y., and M. Rosbash. 1977. The synthesis of high yields of full-length reverse transcripts of globin mRNA. Nucleic Acids Res. 4:345-347.
17. Neidl, H. 1967. Characterization of macromolecules by constant velocity sedimentation. Nature (Lond.) 215:300-303.
18. Hereford, L. M., and M. Rosbash. 1977. Number and distribution of polyadenylated RNA sequences in yeast. Cell. 10:453-462.
19. Pangan, W. R., E. H. Davidson, and R. J. Britten. 1977. A program for least squares analysis of reassociation and hybridization data. Nucleic Acids Res. 4:1727-1737.
20. Whelan, R. G., D. S. Butler-Browne, and F. Giro. 1976. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc. Natl Acad. Sci. U. S. A. 73:2018-2022.
21. Hunter, T., and J. J. Garrels. 1977. Characterization of the mRNAs for alpha, beta and gamma actin. Cell 12:767-781.
22. Storti, R. V., J. J. Herovitch, M. P. Scott, A. Rich, and M. L. Pardue. 1978. Myogenosis in primary cell cultures from Drosophila melanogaster: protein synthesis and actin heterogeneity during development. Cell. 13:599-596.
23. Caron, Y. S., Neuman, and D. Yaffe. 1978. Synthesis of tropomyosin in myogenic cultures and in RNA injected cell-free systems: qualitative changes in the polypeptides. Cell. 14: 693-705.
24. Duxham, J. W. 1966. Treatise on invertebrate paleontology (U). In Echinodermata. Geological Society of America, University of Kansas Press, Kansas City, Kans. 3(1):270-283.
25. Tillyer, L. 1966. Nullifilar muscle aggregate of actin and their association with membranes. Cold Spring Harbor Conf. Cell Proliferation. 3(BooK B):513-528.
26. Cleveland, D. W., M. A. Lopata, R. J. MissDonald, N. K. Cowan, W. J. Rutter, and M. W. Kirchhorn. 1980. Number and evolutionary conservation of alpha and beta tubulin and cytoplasmic beta and alpha actin genes using specific cloned cDNA probes. Cell. 20: 95-105.
27. Grulas, G. A., J. H. Klein, M. M. Davis, Wold, B. J. R. Britten, and E. H. Davidson. 1976. Structural gene sets active in embryo and adult tissues of sea urchin. Cell. 7:487-505.
28. Vandeckerchhowe, J., and K. Weber. 1978. Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least twenty-five identified positions from skeletal muscle actins. Proc. Natl Acad. Sci. U. S. A. 75:1109-1110.
29. Gusmensen, M., P. Schied, and L. Köbes. 1976. Sequence analysis and evolution of sea urchin (Lytechinus pictus and Strongylocentrotus purpuratus) histone H4 messenger RNAs. J. Mol. Biol. 104:351-369.
30. McGowen, M. W. C. Taylor, K. L. Kindle, R. A. Firtel, W. Bender, and N. Davidson. 1978. Multiple, heterogeneous actin genes in Dictyostelium. Cell. 15:789-800.
31. Fyberg, E. A., K. L. Kindle, N. Davidson, and A. Soddy. 1983. The actin genes of Drosophila: a dispersed multigene family. Cell. 39:365-378.