Structural basis for the binding of the cancer targeting scorpion toxin, ClTx, to the vascular endothelia growth factor receptor neuropilin-1

Gagan Sharma a,1, Carolyne B. Braga a,b,1, Kai-En Chen c, Xinying Jia a, Venkatraman Ramanujam d, Brett M. Collins c, Roberto Rittner b, Mehdi Mobli a,*

a Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
b Chemistry Institute, University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
c Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia

ARTICLE INFO
Handling editor. Natalie Strynadka
Keywords:
Chlorotoxin
NRP1
Disulphide-rich peptide
Heteronuclear NMR
ITC

ABSTRACT

Chlorotoxin (ClTx) is a 36-residue disulphide-rich peptide isolated from the venom of the scorpion Leiurus quinquestriatus. This peptide has been shown to selectively bind to brain tumours (gliomas), however, with conflicting reports regarding its direct cellular target. Recently, the vascular endothelial growth factor receptor, neuropilin-1 (NRP1) has emerged as a potential target of the peptide. Here, we sought to characterize the details of the binding of ClTx to the b1-domain of NRP1 (NRP1-b1) using solution state nuclear magnetic resonance (NMR) spectroscopy. The 3D structure of the isotope labelled peptide was solved using multidimensional heteronuclear NMR spectroscopy to produce a well-resolved structural ensemble. The structure points to three putative protein-protein interaction interfaces, two basic patches (R14/K15/K23 and R25/K27/R36) and a hydrophobic patch (F6/T7/T8/H10). The NRP1-b1 binding interface of ClTx was elucidated using 15N chemical shift mapping and included the R25/K27/R36 region of the peptide. The thermodynamics of binding was determined using isothermal titration calorimetry (ITC). In both NMR and ITC measurements, the binding was shown to be competitive with a known NRP1-b1 inhibitor. Finally, combining all of this data we generate a model of the ClTx:NRP1-b1 complex. The data shows that the peptide binds to the same region of NRP1 that is used by the SARS-CoV-2 virus for cell entry, however, via a non-canonical binding mode. Our results provide evidence for a non-standard NRP1 binding motif, while also providing a basis for further engineering of ClTx to generate peptides with improved NRP1 binding for future biomedical applications.

1. Introduction

Disulphide-rich peptides found in the venom of animals including snakes, spiders, scorpions and cone snails have been increasingly considered as promising templates for novel therapeutic drug development (Harvey, 2014). This is due to the fact that, in addition to their potent and specific interactions with a wide variety of physiological targets, they have enhanced stability and structural complexity compared to linear peptides (Gongora-Benitez et al., 2014). These venom peptides have also been extensively used to characterize receptor function and pharmacology, shaping our view of many physiological processes (Vetter et al., 2016).

Scorpion venoms are a well-known source of disulphide-rich toxins and have been extensively explored for discovery of drug candidates for the treatment of cancers, mainly after the discovery of chlorotoxin (CTx) in the early 1990s. CTx is a bioactive 36-amino acid residue peptide stabilized by four disulphide bonds, isolated from the venom of a scorpion, Leiurus quinquestriatus (DeBin and Strichartz, 1991; DeBin et al., 1993), which has been demonstrated to preferentially target cancerous tissues, including malignant brain tumours – gliomas (Lyons et al., 2002).

The extraordinary selectivity shown by this peptide towards cancer cells, and in particular to common brain tumours (glioblastoma - GBM), has attracted extensive interest for its use in cancer diagnosis and therapy. A synthetic CTx labelled with 125I (commercial name 125I-TM-601) has already undergone early phase clinical trials and has received FDA approval for a phase III trial in patients with newly diagnosed gliomas (Jacoby et al., 2010; Mamalak and Jacoby, 2007; Mamalak et al., 2006). In addition, other CTx-based conjugates and nanoparticles have been
developed for tumour imaging and targeting (Fu et al., 2012; Stroud et al., 2011; Veishe et al., 2005, 2007; Zhao et al., 2015). Most recently a chimeric antigen receptor (CAR) T cell therapy was devised using CITx for cancer targeting, showing excellent selectivity and regression in tumour xenograft models of GBM (Wang et al., 2020).

The mechanism by which CITx targets gliomas remains under some debate. Several candidates have been identified and claimed to be the primary cell surface target. Pharmacological characterisation of CITx initially revealed it to be a potent blocker of small conductance epithelial chloride channels, from which its name was derived (DeBin et al., 1993). Still, in this initial report, the authors observed an inhibition only when the molecule was applied to the intracellular surface of these ion channels. They, thus, concluded that it would appear unlikely that chloride channels under normal conditions would be the molecular target of the toxin. Subsequently additional cell surface proteins were suggested to be target of CITx including a glioma-specific chloride channel (GCC) (Ullrich et al., 1996, 1998; Ullrich and Sontheimer, 1996), matrix metalloprotease-2 receptor (MMP-2) (Cox and O’Byrne, 2001; Deshane et al., 2003; Sternlicht and Werb, 2001) and annexin A2 (Kesavan et al., 2010).

Most recently, the vascular endothelial growth factor (VEGF) receptor, Neuropilin-1 (NRP1) was identified as the likely receptor, responsible for tumour uptake (McGonigle et al., 2019). The extracellular b1 domain of NRP1 (NRP1-b1) is known to bind to VEGF via a C-terminal basic region including a terminal arginine residue. Detailed analysis of the binding of peptides to NRP1 revealed a consensus sequence, leading to the definition of the C-end rule, which states that a C-terminal sequence [R or K]XX[R or K], where X is any amino acid, is recognised by NRP1 for internalisation (Teesalu et al., 2009). NRP1 is overexpressed in many cancers but naturally upregulated in lung and heart tissue (Rossignol et al., 2000). Indeed, many pathogens are known to use this consensus sequence to hijack this natural internalisation process to enter into mammalian cells. Notably, it has been shown that cleavage of the spike protein of SARS-CoV-2 by furin exposes a peptide that binds directly to the NRP1-b1 domain and that blocking this interaction results in reduced infection of cell cultures (Cantutti-Castelvetri et al., 2020; Daly et al., 2020).

Although CITx does not contain the [R/K]XX[R/K] motif it was shown to bind the NRP1-b1 domain, but only when the peptide was deamidated to expose the carboxy group of its C-terminal arginine residue (McGonigle et al., 2019). This raises the question of how CITx can bind to NRP1, despite not adhering to the C-end rule. To address this question, we have used a combination of multidimensional, heteronuclear NMR spectroscopy and isothermal titration calorimetry (ITC) to investigate the structural and thermodynamic details of the binding of CITx to NRP1. Combining this data with competition data using a known inhibitor of NRP1, we define the binding interface of both molecules and use this information to generate a docking model of the complex. Our data indicates an unusual binding mode, which suggests that while the [R/K]XX[R/K] motif is not satisfied in the primary sequence of CITx, the 3D arrangement of basic residues in the peptide indirectly fulfils this requirement, indicating a new cryptic NRP1-binding mode in highly constrained globular peptides such as CITx.

2. Results

2.1. Chlorotoxin production

Disulfide-rich peptides pose a particular problem in recombinant expression. The highly reducing environment of the cytoplasm prevents formation of disulfide bonds resulting in either poor yields or misfolded peptides. An approach that has proved successful for bacterial expression of disulfide-rich spider toxins is to incorporate a signal sequence that sends the nascent peptide to the periplasm, where the enzymes involved in disulfide-bond formation and shuffling are located (Klint et al., 2013). Thus, to produce CITx, we employed an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible construct (Fig. 1A) that allowed export of a His6-MBP-toxin fusion protein to the E. coli periplasm. Using this expression system, a significant amount of His6-MBP-toxin fusion protein was recovered in the soluble cell fraction following IPTG induction.

The His6-MBP-CITx fusion protein was purified using nickel affinity chromatography and shown to bind to recombinant NRP1-b1, confirming its identity as CITx (Fig. 1B). The purified recombinant CITx was used for further characterisation. The purified CITx protein was further purified using reversed phase HPLC to give a single peak eluting at 4048 Da (Fig. 1C). The mass of the purified CITx was confirmed to be consistent with the predicted mass of CITx, with a mass of 4048 Da. The purified CITx was then used for further characterisation.

Fig. 1. Recombinant production of CITx. A Schematic representation of the pLIC-MBP vector used for periplasmic expression of CITx. The coding region includes a MalE signal sequence (MalEisk) for periplasmic export, a His6 affinity tag, a maltose binding protein (MBP) fusion tag and a codon-optimized gene encoding CITx, with a TEV protease recognition site inserted between the MBP and toxin-coding regions. The locations of key elements of the vector are shown, including the ribosome-binding site (RBS), T7 promoter and lac operator. B) Primary structure of CITx. Disulfide bridge connectivities are shown above the sequence. C) Coomassie stained SDS-PAGE gels analysis illustrating different steps in the expression and purification of CITx. Lanes contain: M, molecular weight markers (the masses of the selected standards in kDa is shown on the left); lane 1, E. coli cell extract prior IPTG induction; lane 2, E. coli cell extract after IPTG induction; lane 3, soluble cell extract after sonication; lane 4, insoluble fraction after sonication; lane 5, flow through after loading the cell lysate into Ni-NTA column; lane 6, eluate from washing Ni-NTA column with TN buffer; lane 7, 1st eluate from washing Ni-NTA column with 250 mM imidazole buffer; lane 8, 2nd eluate from washing Ni-NTA column with 250 mM imidazole buffer; lane 9, 3rd eluate from washing Ni-NTA column with 250 mM imidazole buffer; lane 10, eluate from washing Ni-NTA column with 1 M imidazole; lane 11, concentrated and desalted fusion protein sample before TEV protease cleavage; lane 12, sample after TEV protease cleavage showing almost complete cleavage of the His6-MBP-CITx fusion protein. D) RP-HPLC chromatogram showing the final step in the purification of correctly folded recombinant CITx. The dotted line (---) indicates the gradient of the solvent B, Elution of protein was monitored at 214 nm. Inset is a MALDI-TOF MS spectrum showing the [M+H]⁺ ion for the purified 15N-labelled recombinant toxin (monoisotopic mass measured 4045.3 agrees well with the calculated value of 4045.75).
NMR data were collected at 25 °C using 13C,15N-labelled ClTx dissolved in 20 mM phosphate buffer, pH 5.8. 1H, 15N, 13Cα, 13Cβ, and 13Cγ resonance assignments were obtained from analysis of amide-proton strips in 3D HNCACB, CBCA(CO)NH, and HNCO spectra. Sidechain 1H and 13C chemical shifts were obtained using a 4D HCC(CO)NH-TOCSY experiment, simultaneously providing sidechain 1H-13C connectivities (Mobli et al., 2010). A fully assigned 1H-15N-HSQC spectrum of ClTx is shown in Fig. 2. Complete chemical shift assignments have been deposited in BioMagResBank (Accession Number 30149).

CYANA was used for automated NOESY assignment and structure calculation (Güntert, 2004). Disulfide-bond connectivities were determined from 15N- and 13C-NOESY spectra and confirmed by performing structure calculations without inclusion of disulfide-bond restraints (Mobli and King, 2010). The following connectivities were unambiguously established following this procedure: Cys2-Cys19, Cys5-Cys28, Cys16-Cys33, and Cys20-Cys35, which corresponds to a 1–4, 2–6, 3–7, 5–8 framework, as previously described (Lippens et al., 1995). For structure calculations, interproton distance restraints were supplemented with 57 dihedral-angle restraints (28 ψ, 29 ψ) derived from TALOS + chemical shift analysis (Shen et al., 2009). 200 structures were calculated from random starting conformations and then the 20 structures with the lowest target function values were selected to represent the solution structure of ClTX. Coordinates for the final ensemble of structures have been deposited in the Protein Data Bank (Accession Number 5L1C). The 20 structures overlay very well, with backbone and heavy-atom RMSDs of 0.12 Å and 0.70 Å, respectively. Based on precision and Ramachandran plot quality (see Table 1), the structure ranks as high resolution (Kwan et al., 2011). The structure has high stereochemical quality with a mean MolProbity (Chen et al., 2010) score of 1.89 ± 0.19, placing it in the 80th percentile relative to other protein structures with the lowest target function values were selected to represent the solution structure of ClTX. Coordinates for the final ensemble of structures have been deposited in the Protein Data Bank (Accession Number 5L1C). The 20 structures overlay very well, with backbone and heavy-atom RMSDs of 0.12 Å and 0.70 Å, respectively. Based on precision and Ramachandran plot quality (see Table 1), the structure ranks as high resolution (Kwan et al., 2011). The structure has high stereochemical quality with a mean MolProbity (Chen et al., 2010) score of 1.89 ± 0.19, placing it in the 80th percentile relative to other protein structures.
2.3. NMR chemical shift mapping of CITx – Neuropilin interactions and competition with EG00229

Chemical shift perturbation experiments were performed by increasing additions of NRP1-b1 to a fixed concentration of 15N-labelled CITx. During these titrations, changes in peak intensity or chemical shifts were observed when compared to the 15N spectrum of CITx in absence of NRP1-b1. The [15N-CITx]-[NRP1-b1] titrations led to changes in chemical shifts of amino acids: 2C, 20C, 21G, 23K, 25R, 26G, 28C, 29Y and 34L (Fig. 3). Similarly, changes in peak intensity were observed for the amino acids – 2C, 25R, 26G, 27K, 28C, 35C, and 36R (Fig. 3). Upon addition of 413 μM of a small molecule inhibitor of NRP1-b1 (EG00229) (Jarvis et al., 2010), backbone signal of 15N CITx were completely recovered, indicating overlapping NRP1-b1 binding interfaces shared between CITx and EG00229 (Fig. 3).

2.4. ITC measurements of CITx – Neuropilin-1 interactions and competition with EG00229

ITC revealed that small molecule inhibitor EG00229 binds to NRP1-b1 with a Kd of 7.9 μM (Fig. 4A and Table 2), which is in agreement with a previous study (Jarvis et al., 2010). Under the same experimental conditions, we found that CITx binds to NRP1-b1 more weakly, with an affinity of 143 μM, and that the interaction is fully inhibited by addition of EG00229, suggesting that CITx is binding to the same site as canonical C-end rule peptides (Fig. 4B and Table 2).

2.5. Modelling of the CITx – Neuropilin-1 b1 domain complex

The chemical shift mapping experiments reveal that residues R36 and K27 were most perturbed by addition of NRP1-b1 (excluding G/C residues). The perturbation of the G and C residues (G24, G26, C28, C35) further indicated that sections 24-28 and 35-36 may be affected by conformational exchange. These residues were, therefore, included as flexible segments in the docking. The competition data shows that the binding of CITx and EG00229 on NRP1-b1 are overlapping. From this we assumed that the C-terminal arginine of CITx would occupy the highly conserved NRP1-b1 arginine binding site. Initial docking using only ambiguous restraints between the two proteins (based on chemical shifts and known NRP1 complexes 5IJR/4DEC) yielded no clusters (of complexes) where CITx occupied the highly conserved binding interface of NRP1-b1. In a subsequent round of docking, we introduced unambiguous...
We took advantage of the natural folding machinery of *E. coli* to produce natively folded, isotope labelled ClTx to study its solution structure with VEGF (4DEQ) (Parker et al., 2012). Finally, a constraint was between the terminal carbon of the R36 sidechain (CZ) of ClTx and the sidechain carbonyl carbon (CG) of E319 in NRP1-b1, which is found in another structure of the peptide using multidimensional NMR methods (Lippens et al., 1995). In particular, we note that K23 in our structure is consistently proximal to R14, whereas in 1CHL this residue is split between this orientation and in proximity to R25. Similarly, K27 is positioned differently when comparing the two structures, further affecting the surface charge distribution of the peptide (Fig. 2C). The different orientations cause a substantial change in the electrostatic surface of the peptide, where the new structure (5L1C) reveals that residues R14, K15 and K23 form one distinct basic cluster whilst R25, K27 and R36 form a second. In addition to these two patches on the protein surface we note a third, weakly hydrophobic patch, which may be involved in protein-protein interactions spanning residues F6, T7, T8, H10.

The NMR chemical shift mapping experiments reveal a distinct binding interface which includes the basic patch spanning R25, K27 and R36. These results are in qualitative agreement with the report by McGonigle et al., where the binding of CITx to NRPI-b1 was first reported (McGonigle et al., 2019). However, we find that the ITC binding data using our label free NRPI-b1 to deamidated CITx shows a notably weaker K_{d} (143 μM) than measured by biolayer-interferometry of a biotinylated NRPI to CITx (Klint et al., 2013). Using this system, we were able to recover ~2 mg of pure, natively folded peptide, which is similar to the final yield (after refolding) of the previously reported method, which required processing and refolding of inclusion bodies (Wang et al., 2013). Thus, our method presents a more efficient alternative to existing approaches.

To map the NRPI-b1 binding interface of CITx we solved the high-resolution structure of the peptide using multidimensional NMR methods. The NMR structure overlies well with the recent crystal structure of CITx (Correnti et al., 2018), while neither compare favourably with the original CITx structure (1CHL) solved by homonuclear NMR methods (Lippens et al., 1995). In particular, we note that K23 in our structure is consistently proximal to R14, whereas in 1CHL this residue is split between this orientation and in proximity to R25. Similarly, K27 is positioned differently when comparing the two structures, further affecting the surface charge distribution of the peptide (Fig. 2C). The different orientations cause a substantial change in the electrostatic surface of the peptide, where the new structure (5L1C) reveals that residues R14, K15 and K23 form one distinct basic cluster whilst R25, K27 and R36 form a second. In addition to these two patches on the protein surface we note a third, weakly hydrophobic patch, which may be involved in protein-protein interactions spanning residues F6, T7, T8, H10.

The NMR chemical shift mapping experiments reveal a distinct binding interface which includes the basic patch spanning R25, K27 and R36. These results are in qualitative agreement with the report by McGonigle et al., where the binding of CITx to NRPI-b1 was first reported (McGonigle et al., 2019). However, we find that the ITC binding data using our label free NRPI-b1 to deamidated CITx shows a notably weaker K_{d} (143 μM) than measured by biolayer-interferometry of a biotinylated CITx to NRPI (1–644) (using an Octet system – K_{d} 240 nM). This is more likely to reflect inherent differences in the methods used rather than the difference in the materials used.

Modelling of the binding of CITx to NRPI-b1 suggests that the peptide can spatially satisfy the C-end R rule, via its basic patch. It is, therefore, curious that the binding is relatively weak compared to other substrates (e.g. EG00229, S1 of SARS-CoV-2 and VEGF) (Daly et al., 2020). We note that Y29 and L34 of CITx are near the interface with NRPI-b1 (in the model and supported by the chemical shift mapping data) without making any favourable interactions. Indeed, it may be that there is some steric hindrance caused by proximity of Y29 to D320 on the receptor. Thus, while the peptide in principle can fulfill the C-end rule, the compact structure of the peptide may introduce a source of unfavorable steric interactions that reduce its binding to NRPI. It, therefore, appears that there may be a possibility to improve the NRPI binding of CITx by mutation of residues that are at the binding interface (as revealed by the NMR data).
Further, we note that a number of studies introduce labels on CTXs via conjugation of a reporter to the peptide non-specifically via reaction with free amines on the peptide, which may proceed via reaction with K15, K23, K27 sidechains or the peptide N-terminus (Kievit et al., 2010). While binding to the peptide N-terminus or K15 and K23 are, based on our data, predicted not to affect NRP1 binding, we expect that the modification of K27 may adversely affect this binding. In the study by McGonigle et al., for example, they used a mixture of N-terminal and K27 biotinylated CTXs for NRP1 binding studies (McGonigle et al., 2019). Our model would predict that the two species would show different binding constants. It would appear judicious to either generate a K27R mutant for such studies or generate a more site-specific label that does not interfere with the NRP1 binding interface.

Finally, it is worth considering that NRP1 has been shown to facilitate internalisation of C-end rule cargo (Pang et al., 2014), such as SARS-CoV-2 and VEGF, via microinopcytosis-like pathways, while also leading to transfer of the cargo between cells (Pang et al., 2014). The latter is likely of particular importance for the cancer targeting properties of CTXs. However, considering the known cardiac phenotype of scorpion envenomation (Guerron et al., 1992), we speculate that if CTX is desulfurated in the blood stream it may also be internalised by cardiac myocytes, where NRP1 is known to be present (Wang et al., 2015). Within the cardiac cells, CTXs may ultimately be exposed to the intracellular surface of CLC-3, which is a channel known to be important for cardiac function (Duan, 2011), thus providing a pathway for the peptide to access the receptor that named it, but was dismissed as its natural target (DeBin et al., 1993).

4. Materials and methods

4.1. Recombinant production of 13C/15N-labelled CTXs

A synthetic gene encoding CTXs, with codons optimized for expression in E. coli, was produced and cloned into the pLIC-MBP expression vector by GeneArt (Regensburg, Germany), resulting in the vector pLIC-CTX. In this vector, an IPTG-inducible T7 promoter controls expression. The vector further encodes, a maltose-binding protein signal sequence (MalEg3) for periplasmic export, a His6 tag for nickel affinity purification, a maltose-binding protein (MBP) fusion tag to enhance solubility, and a tobacco etch virus (TEV) protease cleavage site between the MBP and the codon-optimized CTX gene. Recombinant CTXs was expressed by transforming E. coli strain BL21 (DE3) with the pLIC-CTX plasmid. Cultures were grown in minimal media (MM) containing 47.74 mM Na2HPO4, 22.0 mM KH2PO4, 8.86 mM NaCl, 1.6 mM MgSO4, 80.0 mM CaCl2, 1.0 mg/ml thiamine, 0.2% (v/v) vitamin solution, 50 μM FeCl2, 2 μM H2BO3, 10 μM MnCl2, 2 μM CoCl2, 2 μM CuCl2, 10 μM ZnSO4, 2 μM Na2MoO4, 18.7 mM 13C6-D-glucose and 100 μg/ml ampicillin at 37 °C with shaking at 250 rpm. When the OD600 reached ~0.6 the cultures were cooled to 16 °C. Protein expression was induced with 100 μM isopropyl-β-D-thiogalactopyranoside (IPTG). Cells were harvested 15 h later by centrifugation for 20 min at 9110 × g at 4 °C.

For extraction of the His6-MBP-CTX fusion protein from the bacterial periplasm, cells were suspended in TN buffer (40 mM Tris, 400 mM NaCl, pH 8.0) with a wet cell weight to buffer volume ratio of 1:10, homogenised and sonicated in an ice bath for 15 min (counting pulse time only), with 5 s pulses intercalated with 8 s intervals for cooling. The soluble lysate fraction was isolated by centrifugation at 41,399 × g for 30 min and the fusion protein was captured by passing the soluble lysate over a 5 ml prepacked nickel-nitriolactric acid (Ni-NTA) Superflow column (GE healthcare), followed by a wash step with TN buffer containing 30 mM imidazole to remove non-specifically bound proteins. The fusion protein was then eluted from the column with 250 mM imidazole in TN buffer. The eluate was concentrated by centrifugal filtration in an Amicon Ultra 10 K centrifugal filter (Millipore) and pre-equilibrated with TN buffer to remove imidazole. 0.6 mM reduced glutathione and 0.4 mM oxidized glutathione were added to maintain TEV protease activity while retaining the fold of the peptide (Klint et al., 2013). Approximately 40 μg of recombinant His6-tagged TEV protease was added per mg of fusion protein, and the cleavage reaction was shaken at room temperature for 18 h. The cleaved His6-MBP and TEV protease from the cleavage mixture was removed by binding to a prepacked Ni-NTA Superflow resin column (GE healthcare). The initial flow through from the column containing the recombinant 13C/15N-CTXs was collected, filtered and further purified on a Zorbax 300SB-C3 semi-preparative reversed-phase high performance liquid chromatography (RP-HPLC) column (250 × 9.4 mm, particle size 5 μm) using a flow rate of 3 ml min⁻¹ and a gradient of 5–80% Solvent B (90% acetonitrile containing 0.043% trifluoroacetic acid (TFA)) in solvent A (0.05% TFA in water) over 60 min. Fractions were collected by monitoring eluent absorption at 214 and 280 nm, and lyophilized to obtain pure CTXs (confirmed by MALDI-TOF).

4.2. Expression and purification of NRP1-b1 domain

The His6-tag construct of human NRP1-b1 domain composed of residues 273 to 586 was expressed and purified using methods described previously (Daly et al., 2020). In brief, the His6-tagged NRP1-b1 domain was expressed in Rosetta-gami™2 (DE3) cells (Novagen) using Terrific Broth at 37 °C followed by ∼16 h expression at 16 °C after IPTG induction. Cell pellets were lysed in lysis buffer containing 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 50 μg/ml benzamidine and DNase I. The purification was carried out using Talon® resin affinity chromatography followed by thrombin cleavage. The His-tag free flow-through fractions were collected and further purified using size-exclusion chromatography (SEC) using a Superdex™ 75 16/60 column (Amersham Biosciences).

4.3. MALDI-TOF mass spectrometry

Peptide masses were determined by MALDI-TOF mass spectrometry on a Bruker Autoflex. Fractions obtained from RP-HPLC were mixed (1:1 v/v) with a-cyano-4-hydroxycinnamic acid matrix (5 mg/ml in 50% acetonitrile and 1% formic acid) and MALDI-TOF spectra were acquired in positive reflector mode. Masses were reported for monoisotopic [M+H]+ ions.

4.4. NMR structure determination of CTXs

13C/15N-labelled recombinant CTXs was dissolved in 20 mM phosphate buffer (pH 5.8), 10 μM EDTA to a final concentration of 370 μM, followed by addition of 5% D2O. 10 μM DSS was also added to calibrate the chemical shifts. The sample was filtered using a low-protein-binding Ultrafree-MC centrifugal filter (0.22 μm pore size; Millipore, MA, USA), and then 300 μl was added to a susceptibility-matched 5 mm outer diameter microtube (Shigemi Inc., Japan). NMR spectra were acquired at 298 K on an NMR spectrometer operating at a nominal 1H frequency of 900 MHz (Bruker BioSpin, Germany) equipped with a cryogenically cooled triple resonance probe.

Sequence specific backbone and sidechain resonance assignments were obtained using 3D CBCA(CO)NH, 3D HNCA, 3D HNCO, 4D H(CCCO)NH-TOCSY and 2D 1H-13C HNCA experiments. The 3D and 4D spectra were acquired using non-uniform sampling (NUS) (Mobil and Hoch, 2014). Sampling schedules that approximated the signal decay in each indirect dimension were generated using SCHED3D (Mobil et al., 2010; Mobil, 2015). NUS data were processed using the Rowland NMR Toolkit (www.rowland.org/nmr/kit/toolkit.html) and maximum entropy parameters were automatically selected as previously described (Mobil et al., 2007). 13C- and 15N-edited NOESY-HSQC spectra were acquired using uniform sampling using a mixing time of 200 ms. Separate 13C- and 15N-edited NOESY-HSQC spectra were acquired for the aliphatic and aromatic regions of carbon spectrum.

Backbone dihedral angles (φ and ψ) were derived from the chemical shifts of the backbone atoms using the TALOS-N program (Shen et al., 2009) and the dihedral angle restraint range for the structure calculations...
was set twice the estimated standard deviation. The disulfide bond connectivities were unambiguously determined based on preliminary structure calculations and included in subsequent structure calculations using distance restraints. NOE/SY spectra were manually peak picked and integrated, the peak lists were then automatically assigned, distance restraints extracted, and an ensemble of structures calculated using the torsion angle dynamics package CYANA (Güntert, 2004).

4.5. CIr – NRPI-b1 domain interactions and competition with EG00229

4.5.1. NMR chemical shift mapping

15N-labelled CIr was dissolved in 50 mM sodium citrate (pH 5.5), 150 mM NaCl and 5% D2O, to a final concentration of 55 μM. The 1H–15N HSQC spectrum of CIr was acquired at 298 K using Bruker Neo spectrometer (900 MHz instrument as above). Titration experiments were performed by gradual addition of stock solution (396 μM) of NRPI-b1 into 15N-labelled CIr solution, to final NRPI-b1 concentrations of 21 μM, 34 μM, 45 μM, 57 μM, 95 μM and 125 μM.

To map the interaction interface of CIr and NRPI-b1, competition titrations were performed using a previously characterised NRPI-b1 antagonist – EG00229. To the final titration point of 15N-labelled CIr (55 μM) and NRPI-b1 (125 μM), concentrated solution (50 mM) of EG00229 (dissolved in dimethyl sulfoxide) was added to the final concentration of 83 μM. In the subsequent titration, concentration of EG00229 was increased to 413 μM.

At each titration point, a 1H–15N HSQC spectrum was acquired at 298 K under identical experimental conditions (using 32 scans). All spectra were processed using TopSpin 4.0 (Bruker, Massachusetts, USA) and Rowland NMR toolkit (University of Connecticut, USA). Peak assignments of 15N-labelled CIr were performed using CCPNMR version 3.0.

4.5.2. ITC measurements

The interactions of the NRPI-b1 domain with CIr and EG00229 were performed using a Microcal ITC200 (Malvern) in buffer containing 50 mM sodium citrate pH 5.5, 150 mM NaCl at 32 °C. To test the binding, 800 μM of CIr or EG00229 were titrated into a sample cell containing 40 μM of NRPI-b1 domain. Competition assays were carried out by injecting 800 μM of CIr into 40 μM of NRPI-b1 domain + 200 μM of EG00229. Each experiment involved an initial 0.4 μL (excluded from data processing) followed by series of 12 injections of 3.22 μL each with a stirring speed of 750 rpm and a spacing period of 180 s between injections. In all binding experiments the equilibrium dissociation constant (Kd), change in binding enthalpy (ΔHf), change in Gibbs free energy (ΔG) and entropy change (ΔSf) were analysed after fitting data to a single-site binding model with stoichiometry (N) set to 1.0 for calculation.

4.6. Modelling of the CIr – NRPI-b1 domain complex

HADDOCK was used to generate a model of the CIr-NRPI-b1 complex (Domínguez et al., 2003). The NMR structure ensemble of CIr (5L1C) was used together with the NRPI-b1 domain from the crystal structure of this protein in complex with VEGF (5LJR). The NRPI-b1 domain was extracted from K115 to T427 of NRPI. The standard HADDOCK parameters were edited to increase the number of structures generated in the rigid body docking from 1000 to 6000 structures, of these 400 were kept (instead of the default 200). The MD simulations steps were increased from 500 to 2000 in the initial high temperature and the first cooling stage of the rigid body docking, and the number of MD steps in the second and third cooling stages were increased from 1000 to 4000. The output was organized in clusters using the HADDOCK analysis scripts based on the RMSD of the docked structures.

Accession numbers

The structure of CIr has been deposited to the PDB, accession number 5L1C and the chemical shifts deposited to the BMRB with accession number 30149.
