1 Notations and definitions

Given a positive integer n and an r-uniform hypergraph (or r-graph for short) F, the Turán number $\text{ex}(n, F)$ of F is the maximum number of edges in an r-graph on n vertices that does not contain F as a subgraph. The extension H^e of F is obtained as follows: For each pair of vertices v_i, v_j in F not contained in an edge of F, we add a set B_{ij} of $r-2$ new vertices and the edge $\{v_i, v_j\} \cup B_{ij}$, where the B_{ij}'s are pairwise disjoint over all such pairs $\{i, j\}$. Let K_r^e denote the complete r-graph on p vertices. For all sufficiently large n, we determine the Turán numbers of the extensions of a 3-uniform t-matching, a 3-uniform linear star of size t, and a 4-uniform linear star of size t, respectively. We also show that the unique extremal hypergraphs are balanced blowups of K_{3t-1}^3, K_{2t}^3, and K_{3t}^4, respectively. Our results generalize the recent result of Hefetz and Keevash [7].

Key Words: Turán number, Hypergraph Lagrangian

Abstract

Given a positive integer n and an r-uniform hypergraph (or r-graph for short) F, the Turán number $\text{ex}(n, F)$ of F is the maximum number of edges in an r-graph on n vertices that does not contain F as a subgraph. The extension H^e of F is obtained as follows: For each pair of vertices v_i, v_j in F not contained in an edge of F, we add a set B_{ij} of $r-2$ new vertices and the edge $\{v_i, v_j\} \cup B_{ij}$, where the B_{ij}'s are pairwise disjoint over all such pairs $\{i, j\}$. Let K_r^e denote the complete r-graph on p vertices. For all sufficiently large n, we determine the Turán numbers of the extensions of a 3-uniform t-matching, a 3-uniform linear star of size t, and a 4-uniform linear star of size t, respectively. We also show that the unique extremal hypergraphs are balanced blowups of K_{3t-1}^3, K_{2t}^3, and K_{3t}^4, respectively. Our results generalize the recent result of Hefetz and Keevash [7].

Key Words: Turán number, Hypergraph Lagrangian

department of Mathematics, Miami University, Oxford, OH, USA. Email: jiangt@miamioh.edu. Research supported in part by National Science Foundation grant DMS-1400249. The research was done during the author’s visit of Hunan University, whose hospitality is gratefully acknowledged.

Institute of Mathematics, Hunan University, Changsha, 410082, P.R. China. Email: ypeng1@hnu.edu.cn. Supported in part by National Natural Science Foundation of China (No. 11271116).

College of Mathematics and Econometrics, Hunan University, Changsha 410082, P.R. China. Email: wubiao@hnu.edu.cn.
partite Turán graph on \(n \) vertices. Let \(t_r^m(n) = |T_r^m(n)| \). For a positive integer \(n \), we let \([n]\) denote \(\{1, 2, 3, \ldots, n\} \). Given positive integers \(m \) and \(r \), let \([m]_r = m(m-1) \ldots (m-r+1)\).

Given an \(r \)-graph \(F \), an \(r \)-graph \(G \) is called \(F \)-free if it does not contain \(F \) as a subgraph. For a fixed positive integer \(n \) and an \(r \)-graph \(F \), the Turán number of \(F \), denoted by \(\text{ex}(n, F) \), is the maximum number of edges in an \(r \)-graph on \(n \) vertices that does not contain \(F \) as a subgraph. An averaging argument of Katona, Nemetz and Simonovits [10] shows that the sequence \(\text{ex}(n, F) \) is a non-increasing sequence of real numbers in \([0, 1]\). Hence, \(\lim_{n \to \infty} \frac{\text{ex}(n, F)}{\binom{n}{r}} \) exists. The Turán density of \(F \) is defined as

\[
\pi(F) = \lim_{n \to \infty} \frac{\text{ex}(n, F)}{\binom{n}{r}}.
\]

In this paper, we extend the work of Hefetz and Keevash in [7] and determine Turán numbers of several classes of \(r \)-graphs using so-called hypergraph Lagrangian method.

Definition 1.1 Let \(G \) be an \(r \)-graph on \([n]\) and let \(\vec{x} = (x_1, \ldots, x_n) \in [0, \infty)^n \). For every subgraph \(H \subseteq G \), define

\[
\lambda(H, \vec{x}) = \sum_{e \in E(H)} \prod_{i \in e} x_i.
\]

The Lagrangian of \(G \), denoted by \(\lambda(G) \), is defined as

\[
\lambda(G) = \max \{ \lambda(G, \vec{x}) : \vec{x} \in \Delta \},
\]

where

\[
\Delta = \{ \vec{x} = (x_1, x_2, \ldots, x_n) \in [0, \infty)^n : \sum_{i=1}^n x_i = 1 \}.
\]

The value \(x_i \) is called the weight of the vertex \(i \) and a vector \(\vec{x} \in \Delta \) is called a feasible weight vector on \(G \). A feasible vector \(\vec{y} \in \Delta \) is called an optimum weight vector on \(G \) if \(\lambda(G, \vec{y}) = \lambda(G) \).

Given an \(r \)-graph \(F \), we define the Lagrangian density \(\pi_\lambda(F) \) of \(F \) to be

\[
\pi_\lambda(F) = \sup \{ r! \lambda(G) : F \not\subseteq G \}.
\]

Proposition 1.2 \(\pi(F) \leq \pi_\lambda(F) \).

Proof. Let \(\varepsilon > 0 \) be arbitrary. Let \(n \) be large enough and let \(G_n \) be a maximum \(F \)-free \(r \)-graph on \(n \) vertices. We have

\[
\pi(F) \leq \frac{|G_n|}{\binom{n}{r}} + \varepsilon/2 \leq r! \sum_{e \in E(G_n)} \frac{1}{n^{|e|}} + \varepsilon = r! \lambda(G_n, (\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n})) + \varepsilon \leq r! \lambda(G_n) + \varepsilon \leq \pi_\lambda(F) + \varepsilon.
\]

The Lagrangian method for hypergraph Turán problems were developed independently by Sidorenko [18] and Frankl-Füredi [5], generalizing work of Motzkin and Straus [12] and Zykov [23]. More recent developments of the method were obtained by Pikhurko [16] and Norin and Yepremyan [14]. Based on these developments, Brandt, Irwin, and Jiang [2], and independently Norin and Yepremyan [15] were able to determine the Turán numbers of a large family of hypergraphs and thereby extending earlier
works in [1] [4] [8] [9] [17] [19]. The methods used by the two groups are quite different. The former group used Pikhurko’s stability method while the latter group used a refined stability method that they developed in [14]. In this paper, we extend a recent work on the topic by Hefetz and Keevash [7] on Lagrangians of intersecting 3-graphs to determine the maximum Lagrangian of a 3-graph not containing a matching of a given size. We also determine the maximum Lagrangian of a 3-graph not containing a linear star of a given size and the maximum Lagrangian of a 4-graph not containing a linear star of a given size. These results combined with the corresponding general theorems in [2] and [15] then allow us to determine the Turán numbers of some corresponding hypergraphs, which we now define as below.

We say that a pair of vertices \(\{i, j\} \) is covered in a hypergraph \(H \) if there exists \(e \in H \) such that \(\{i, j\} \subseteq e \). Let \(r \geq 3 \) and \(F \) be an \(r \)-graph. Let \(p \geq |V(F)| \). Let \(\mathcal{K}_p^F \) denote the family of \(r \)-graphs \(H \) that contains a set \(C \) of \(p \) vertices, called the core, such that the subgraph of \(H \) induced by \(C \) contains a copy of \(F \) and such that every pair in \(C \) that are not covered by \(F \) is covered by an edge of \(H \). We call \(\mathcal{K}_p^F \) the family of weak extensions of \(F \) for the given \(p \). If \(p = |V(F)| \), then we simply call \(\mathcal{K}_p^F \) the family of extensions of \(F \). Let \(H_p^F \) be a member of \(\mathcal{K}_p^F \) obtained as follows. Label the vertices of \(F \) as \(v_1, \ldots, v_{|V(F)|} \). Add new vertices \(v_{|V(F)|+1}, \ldots, v_p \). Let \(C = \{v_1, \ldots, v_p\} \). For each pair of vertices \(v_i, v_j \in C \) not covered in \(F \), we add a set \(B_{ij} \) of \(r - 2 \) new vertices and the edge \(\{v_i, v_j\} \cup B_{ij} \), where the \(B_{ij} \)'s are pairwise disjoint over all such pairs \(\{i, j\} \). We call \(H_p^F \) the extension of \(F \) for the given \(p \). If \(p = |V(F)| \), then we simply call \(H_p^F \) the extension of \(F \).

Let \(r, t \) be integers such that \(r \geq 3 \) and \(t \geq 2 \). The \(r \)-uniform \(t \)-matching, denoted by \(M_t^r \), is the \(r \)-graph with \(t \) pairwise disjoint edges. The \(r \)-uniform linear star of size \(t \), denoted by \(L_t^r \), is the \(r \)-graph with \(t \) edges such that these \(t \) edges contain a common vertex \(x \) but are pairwise disjoint outside \(\{x\} \).

In [7], Hefetz and Keevash determined the Lagrangian density of \(M_2^3 \) and the Turán number of the extension of \(M_2^3 \) for all sufficiently large \(n \). In this paper, we generalize their result to determine the Lagrangian density of \(M_t^3 \) for all \(t \geq 2 \). We also determine the Lagrangian densities of \(L_t^1 \) or \(L_t^4 \), for all \(t \geq 2 \). For each of the hypergraphs mentioned above, we determine the Turán numbers of their extensions for all sufficiently large \(n \). Our method differs from the one employed by Hefetz and Keevash [7]. For the matching problem, we use compression and induction. This allows us to obtain a short proof of the main result of [7] and solve the problem for general \(t \). We solve the linear star problem for \(r = 3, 4 \) by first studying a local version of the matching problem for \(r = 2, 3 \), respectively.

2 Preliminaries

In this section, we develop some useful properties of Lagrangian functions. The following fact follows immediately from the definition of the Lagrangian.

Fact 2.1 Let \(G_1, G_2 \) be \(r \)-graphs and \(G_1 \subseteq G_2 \). Then \(\lambda(G_1) \leq \lambda(G_2) \).

Given an \(r \)-graph \(G \) and a set \(S \) of vertices, the link graph of \(S \) in \(G \), denoted by \(L_G(S) \), is the hypergraph with edge set \(\{e \in (V(G) \setminus S) : e \cup S \in E(G)\} \). When \(S \) has only one element, e.g. \(S = \{i\} \), we write \(L_G(i) \) for \(L_G(\{i\}) \). Furthermore, when there is no confusion, we will drop the subscript \(G \). Given \(i, j \in V(G) \), define

\[
L_G(j \setminus i) = \{f \in \left(V(G) \setminus \{i, j\} \right)^{r-1} : f \cup \{j\} \in E(G) \text{ and } f \cup \{i\} \notin E(G) \},
\]
and define
\[\pi_{ij}(G) = (E(G) \setminus \{f \cup \{j\} : f \in L_G(j \setminus i)\}) \bigcup \{f \cup \{i\} : f \in L_G(j \setminus i)\} . \]

By the definition of \(\pi_{ij}(G) \), it’s straightforward to verify the following fact.

Fact 2.2 Let \(G \) be an \(r \)-graph on the vertex set \([n]\). Let \(x = (x_1, x_2, \ldots, x_n) \) be a feasible weight vector on \(G \). If \(x_i \geq x_j \), then \(\lambda(\pi_{ij}(G), x) \geq \lambda(G, x) \).

Part (a) of the following lemma is well-known (see [3] for instance). We include a short proof of it for completeness.

Lemma 2.3 Let \(r, t \geq 2 \) be integers. Let \(G \) be a \(M'_t \)-free \(r \)-graph on the vertex set \([n]\). Let \(i, j \) be a pair of vertices, then the following hold:
(a) \(\pi_{ij}(G) \) is \(M'_t \)-free.
(b) If \(G \) is also \(K_{tr-1} \)-free and \(\{i, j\} \) is contained in an edge of \(G \), then \(\pi_{ij}(G) \) is \(K_{tr-1} \)-free.

Proof. Suppose for contradiction that there exist \(i, j \) such that \(\pi_{ij}(G) \) contains a \(t \)-matching \(M \). Then there must be an edge \(e \) of \(M \) that is in \(\pi_{ij}(G) \) but not in \(G \). This implies that \(i \in e, j \notin e \) and \(e' = (e \setminus \{i\}) \cup \{j\} \in G \). If \(j \) is not covered by any edge of \(M \), then \((M \setminus \{e\}) \cup \{e'\}\) is a \(t \)-matching in \(G \), contradicting \(G \) being \(M'_t \)-free. Hence, \(\exists f \in M \) such that \(j \in f \). Let \(f' = (f \setminus \{j\}) \cup \{i\} \). By the definition of \(\pi_{ij}(G) \), \(f \) and \(f' \) must both exist in \(G \), or else \(f \) wouldn’t be in \(\pi_{ij}(G) \). But now, \((M \setminus \{e, f\}) \cup \{e', f'\}\) is a \(t \)-matching in \(G \), contradicting \(G \) being \(M'_t \)-free.

Next, suppose that \(G \) is \(K_{tr-1} \)-free and \(\{i, j\} \) is contained in some edge \(e \) of \(G \). Suppose for contradiction that \(\pi_{ij}(G) \) contains a \(t \)-matching \(M \). Clearly \(V(K) \) must contain \(i \). If \(V(K) \) also contains \(j \) then it is easy to see that \(K \) also exists in \(G \), contradicting \(G \) being \(K_{tr-1} \)-free. All the edges in \(K \) not containing \(i \) also exist in \(G \). By our assumption, \(V(K) \) contains at least \(tr - 1 - (r - 1) = (t - 1)r \) vertices outside \(e \). So \(K \) contains a \((t - 1)\)-matching \(M \) disjoint from \(e \), all of which lie in \(G \) by earliest discussion. Now, \(M \cup \{e\} \) is a \(t \)-matching in \(G \), a contradiction.

Next, we show that for \(r = 2 \), part (b) of Lemma 2.3 holds even without the assumption that \(\{i, j\} \) is contained in an edge.

Lemma 2.4 Let \(t \geq 2 \). Let \(G \) be an \(M'_2 \)-free and \(K^2_{2t-1} \)-free graph on \([n]\) and \(i, j \in [n] \). Then \(\pi_{ij}(G) \) is also \(K^2_{2t-1} \)-free.

Proof. Suppose for contradiction that \(\pi_{ij}(G) \) contains a copy \(K \) of \(K^2_{2t-1} \). Then \(\pi_{ij}(G) \not\cong G \) and \(K \) contains \(i \) but not \(j \) (note that \(\pi_{ij} \) does not change the common link of \(i \) and \(j \)). Since \(\pi_{ij}(G) \not\cong G \), \(L_G(i \setminus j) \not\subseteq \emptyset \). Also, \(L_G(i \setminus j) \not\subseteq \emptyset \), since otherwise \(K \subseteq G \). Let \(a \in V(L_G(i \setminus j)) \), \(b \in V(L_G(j \setminus i)) \). Note that any edge in \(\pi_{ij}(G) \) not containing \(i \) also exist in \(G \). Hence, \(K - \{i, a, b\} \) is a complete graph on at least \(2t - 4 \) vertices in \(G \), which contains a \((t - 2)\)-matching \(M \). Now, \(M \cup \{ia, jb\} \) is a \(t \)-matching in \(G \), a contradiction.

An \(r \)-graph \(G \) is *dense* if for every subgraph \(G' \) of \(G \) with \(|V(G')| < |V(G)|\) we have \(\lambda(G') < \lambda(G) \). This is equivalent to saying that all optimum weight vectors on \(G \) are in the interior of \(\Delta \), which means that no coordinate in an optimum weight vector is zero. We say that a hypergraph \(G \) *covers pairs* if every pair of its vertices is covered by an edge.
Fact 2.5 ([3]) Let $G = (V, E)$ be a dense r-graph. Then G covers pairs.

Definition 2.6 Let G be an r-graph on $[n]$ and a linear order μ on $[n]$. We say that G is left-compressed (or simply compressed) relative to μ if for all $i, j \in [n]$ with $i <_\mu j$ we have $\pi_{ij}(G) = G$. Let \bar{x} be a feasible weight vector on G. We say that G is \bar{x}-compressed if there exists a linear order μ on $V(G)$ such that $\forall i, j \in V(G)$ whenever $i <_\mu j$ we have $x_i \geq x_j$ and that G is left-compressed relative to μ.

Algorithm 2.7 Let G be an r-graph on $[n]$. Let \bar{x} be an optimum weight vector of G. If there exist vertices i, j, where $i < j$, such that $x_i > x_j$ and $L_G(j \setminus i) \neq \emptyset$, then replace G by $\pi_{ij}(G)$, continue this process until no such pair exists.

In the above algorithm, by relabelling the vertices if necessary, we may assume that $x_1 \geq x_2 \cdots \geq x_n$. Note that $s(G) = \sum_{e \in G} \sum_{i \in e} i$ is a positive integer that decreases by at least 1 in each step. Hence the algorithm terminates after finite many steps.

Algorithm 2.8 (Dense and compressed subgraph)

Input: An r-graph G.

Output: A dense subgraph $G' \subseteq G$ together with an optimum weight vector \bar{y} such that $\lambda(G', \bar{y}) = \lambda(G)$ and that G' is \bar{y}-compressed.

Step 1. If G is not dense, then replace G by a dense subgraph with the same Lagrangian. Otherwise, go to Step 2.

Step 2. Let \bar{y} be an optimum weight vector of G. If G is \bar{y}-compressed, then terminate. Otherwise, there exist vertices i, j, where $i < j$, such that $y_i > y_j$ and $L_G(j \setminus i) \neq \emptyset$, then replace G by $\pi_{ij}(G)$ and go to step 1.

Note that the algorithm terminates after finite many steps since Step 1 reduces the number of vertices by at least 1 in each step and Step 2 reduces the parameter $s(G)$ (similarly defined as above) by at least 1 in each step.

Lemma 2.9 Let G be a M^*_r-free r-graph and \bar{x} a feasible weight vector on G. Then the following hold:

(a) There exists a M^*_r-free r-graph H with $V(H) = V(G)$ such that $\lambda(H, \bar{x}) \geq \lambda(G, \bar{x})$ and that H is \bar{x}-compressed.

(b) There exists a dense M^*_r-free r-graph G' with $|V(G')| \leq |V(G)|$ together with an optimum weight vector \bar{y} such that $\lambda(G', \bar{y}) = \lambda(G') \geq \lambda(G)$ and that G' is \bar{y}-compressed. Furthermore, if G is $K^*_r[-1]$-free, then G' is $K^*_r[-1]$-free.

Proof. For (a), we apply Algorithm 2.7 to G and let H be the final graph obtained. That $\lambda(H, \bar{x}) \geq \lambda(G, \bar{x})$ follows from Fact 2.2. That H is M^*_r-free follows from Lemma 2.3. That H is \bar{x}-compressed follows from the fact that algorithm terminates after finite steps and it only terminates when the r-graph becomes compressed.

For (b), we apply Algorithm 2.8 to G and let G' be the final graph and \bar{y} the optimum weight vector on G implied by the algorithm. Since Algorithm terminates after finite many steps, G' and \bar{y} are well-defined. By Fact 2.2 $\lambda(G') \geq \lambda(G)$. By Lemma 2.3 G' is M^*_r-free. By the algorithm, G' is \bar{y}-compressed. Assume that G is $K^*_r[-1]$-free. In the process of obtaining G' we always take a dense subgraph first before applying a compression π_{ij}. Taking a subgraph preserves $K^*_r[-1]$-free condition.
For a dense graph, by Lemma 2.3 part (b) performing π_{ij} preserves K_{t-1}^r-free condition. So G' is K_{t-1}^r-free.

In [12], Motzkin and Straus determined the Lagrangian of any given 2-graph.

Theorem 2.10 (Motzkin and Straus [12]) If G is a 2-graph in which a maximum complete subgraph has t vertices, then $\lambda(G) = \lambda(K_t^2) = \frac{1}{2}(1 - \frac{1}{t})$.

Let G be an r-graph on $[n]$ and $\vec{x} = (x_1, x_2, \ldots, x_n)$ be a weight vector on G. If we view $\lambda(G, \vec{x})$ as a function in variables x_1, \ldots, x_n, then

$$\frac{\partial \lambda(G, \vec{x})}{\partial x_i} = \sum_{j \in E(G)} \prod_{j \in \{i\}} x_j.$$

We sometimes write $\frac{\partial \lambda}{\partial x_i}$ for $\frac{\partial \lambda(G, \vec{x})}{\partial x_i}$.

Fact 2.11 ([6]) Let G be an r-graph on $[n]$. Let $\vec{x} = (x_1, x_2, \ldots, x_n)$ be an optimum weight vector on G. Then

$$\frac{\partial \lambda(G, \vec{x})}{\partial x_i} = r \lambda(G)$$

for every $i \in [n]$ with $x_i > 0$.

Fact 2.12 Let G be an r-graph on $[n]$. Let $\vec{x} = (x_1, x_2, \ldots, x_n)$ be a feasible weight vector on G. Let $i, j \in [n]$, where $i \neq j$. Suppose that $L_G(i \setminus j) = L_G(j \setminus i) = \emptyset$. Let $\vec{y} = (y_1, y_2, \ldots, y_n)$ be defined by letting $y_\ell = x_\ell$ for every $\ell \in [n] \setminus \{i, j\}$ and letting $y_i = y_j = \frac{1}{2}(x_i + x_j)$. Then $\lambda(G, \vec{y}) \geq \lambda(G, \vec{x})$.

Furthermore, if the pair $\{i, j\}$ is not covered by any edge of G and $\lambda(G, \vec{y}) = \lambda(G, \vec{x})$, then $x_i = x_j$.

Proof. Since $L_G(i \setminus j) = L_G(j \setminus i) = \emptyset$, we have

$$\lambda(G, \vec{y}) - \lambda(G, \vec{x}) = \sum_{\{i,j\} \subseteq E(G)} \left[\frac{(x_i + x_j)^2}{4} - x_i x_j \right] \prod_{k \in \{i,j\}} x_k \geq 0.$$

If the pair $\{i, j\}$ is not covered by any edge of G then equality holds only if $x_i = x_j$.

As usual, if V_1, \ldots, V_s are disjoint sets of vertices then $\Pi_{i=1}^s V_i = V_1 \times V_2 \times \cdots \times V_s = \{(x_1, x_2, \ldots, x_s) : \forall i = 1, \ldots, s, x_i \in V_i\}$. We will use $\Pi_{i=1}^s V_i$ to also denote the set of the corresponding unordered s-sets.

If L is a hypergraph on $[m]$, then a blowup of L is a hypergraph G whose vertex set can be partitioned into V_1, \ldots, V_m such that $E(G) = \bigcup_{i \in L} \bigcap_{v \in V_i} V_i$. The following proposition follows immediately from the definition and is implicit in many papers (see [11] for instance).

Proposition 2.13 Let $r \geq 2$. Let L be an r-graph and G a blowup of L. Suppose $|V(G)| = n$. Then $|G| \leq \lambda(L)n^r$.

3 Lagrangian of an r-graph not containing a t-matching and related Turán numbers

3.1 Lagrangian density of M^3_t

Lemma 3.1 Let n, r, t be positive integers where $t \geq 2$ and $n \geq r \geq 2$. Let F denote the family of all r-graphs H with no isolated vertex on at most n vertices such that H is M^r_t-free and $H \neq K_{t-1}^r$. Then there
exists a dense \(r \)-graph \(G \in \mathcal{F} \) and an optimum vector \(\bar{x} \) on \(G \) such that \(\lambda(G, \bar{x}) = \max \{ \lambda(H) : H \in \mathcal{F} \} \) and that \(G \) is \(\bar{x} \)-compressed.

Proof. First note that if \(H \in \mathcal{F} \) then \(H \) is \(K_{10r-1} \)-free. Otherwise suppose \(H \) contains a copy \(K \) of \(K_{10r-1} \). Then since \(H \) has no isolated vertex and \(H \neq K_{10r-1} \), \(H \) contains some edge not in \(K \), in which case we can find a \(t \)-matching in \(H \), a contradiction. Let \(\lambda^* = \max \{ \lambda(H) : H \in \mathcal{F} \} \). Let \(G_1 \in \mathcal{F} \) be an \(r \)-graph with \(\lambda(G_1) = \lambda^* \). By Lemma 2.39 (b), there exists a \(M^r \)-free dense \(r \)-graph \(G' \) with \(|V(G'_1)| \leq |V(G_1)| \) such that \(\lambda(G'_1) \geq \lambda(G_1) \) and \(G'_1 \) is \(\bar{x} \)-compressed, where \(\bar{x} \) is an optimum vector of \(G'_1 \). Furthermore, \(G'_1 \) is \(K_{10r-1} \)-free. Hence \(G'_1 \in \mathcal{F} \). So \(\lambda(G'_1) = \lambda^* \). The claim thus holds by letting \(G = G'_1 \). \(\blacksquare \)

Hefetz and Keevash [7] established the Lagrangian density of \(M_3^3 \). We give a short new proof here.

Theorem 3.2 ([7]) Let \(G \) be an \(M_2^3 \)-free 3-graph. Then \(\lambda(G) \leq \lambda(K_5^3) = \frac{2}{27} \). Furthermore, if \(G \neq K_5^3 \) and \(G \) has no isolated vertex, then \(\lambda(G) \leq \lambda(K_3^3) - 10^{-3} \).

Proof. (new proof) It suffices to prove that if \(G \) is an \(M_2^3 \)-free 3-graph with no isolated vertex and \(G \neq K_5^3 \) then \(\lambda(G) \leq \lambda(K_5^3) - 10^{-3} \). By Lemma 3.11 it suffices to assume that \(G \) is dense and has an optimum weight vector \(\bar{x} \) such that \(G \) is \(\bar{x} \)-compressed. Suppose \(V(G) = [n] \). If \(n \leq 5 \), then \(\lambda(G) \leq \lambda(K_5^3) - 10^{-3} \), where \(K_5^3 \) is the 3-graph obtained by removing one edge from \(K_5^3 \). Hence, we may assume that \(n \geq 6 \). By our assumption, there exists a linear order \(\mu \) on \([n] \) such that \(\forall i, j \in [n] \) whenever \(i <_\mu j \) we have \(x_i \geq x_j \) and that \(G \) is compressed relative to \(\mu \) By relabelling if needed, we may assume that \(\mu \) is the natural order \(1 < 2 < \cdots < n \). Then \(x_1 \geq x_2 \geq \cdots \geq x_n \). By Fact 2.34 \(G \) covers pairs. So \(i(n-1)n \in G \), for some \(i < n - 1 \). Since \(G \) is compressed relative to the natural order, we have \(1(n-1)n \in G \). Again, since \(G \) is compressed relative to the natural order, this implies that \(\exists i, j, \text{ where } 2 \leq i < j \leq n, \text{ } 1ij \in G \). Suppose that \(G \{ \{2, \ldots, n\} \} \) contains an edge \(e \). Since \(n \geq 6 \), \(\exists i, j \in \{2, \ldots, n\} \), such that \(i, j \notin e \). Now, \(\{1ij, e\} \) forms a 2-matching in \(G \), contradicting \(G \) being \(M_2^3 \)-free. Hence \(G = \{1ij : 2 \leq i < j \leq n\} \). Assume that \(x_1 = a \). Since \(\vec{y} = (\frac{x_2}{1-a}, \ldots, \frac{x_n}{1-a}) \) is a feasible weight vector on \(L_G(1) \), by Theorem 2.10

\[
\lambda(G) = \lambda(G, \vec{x}) = a(1-a)^2 \lambda(L_G(1), \vec{y}) < \frac{1}{2} a(1-a)^2 \leq \frac{1}{4} \left[\frac{2a+(1-a)+(1-a)}{3} \right] = \frac{2}{27} < \lambda(K_5^3)-10^{-3}. \]

\(\blacksquare \)

We now extend Theorem 3.2 to determine (with stability) the maximum Lagrangian of a 3-graph not containing a \(t \)-matching, for all \(t \geq 2 \). Given an \(r \)-graph \(G = (V, E) \) and \(i \in V \), let \(I_G(i) = \{ e \in G : i \in e \} \).

Theorem 3.3 Let \(t \geq 2 \) be a positive integer. Let \(G \) be an \(M_t^3 \)-free 3-graph with no isolated vertex and \(G \neq K_3^{3t-1} \). Then there exists a positive real \(c_1 = c_1(t) \) such that \(\lambda(G) \leq \lambda(K_3^{3t-1}) - c_1 = \frac{1}{6} \left(\frac{3^t-1}{3^t-1} - 6c_1 \right) \).
Proof. By Lemma 3.1, it suffices to assume that G is dense and has an optimum weight vector \bar{x} such that G is \bar{x}-compressed. Suppose $V(G) = [n]$. Let K_{3t-1}^3 be the 3-graph obtained by removing one edge from K_{3t-1}^3. If $n \leq 3t-1$, then since $G \neq K_{3t-1}^3$, $\lambda(G) \leq \lambda(K_{3t-1}^3)$. So, we may assume that $n \geq 3t$. We use induction on t, with Theorem 5.2 forming the basis step $t = 2$. For the induction step, let $t \geq 3$. By our assumption, there exists a linear order μ on $[n]$ such that $\forall i, j \in [n], x_i \geq x_j$ if $i <_\mu j$ and that G is compressed relative to μ. By relabelling if needed, we may assume that μ is the natural order $1 < 2 < \cdots < n$. Then $x_1 \geq x_2 \geq \cdots \geq x_n$. By Fact 250 G covers pairs. So $i(n-1)n \in G$, for some $i < n-1$. Since G is compressed relative to the natural order, this implies $1(n-1)n \in G$ and furthermore

$$I_G(1) = \{1ij : 2 \leq i < j \leq n\}. \tag{1}$$

Suppose $x_1 = a$. Then $0 < a < 1$. Since $\bar{x} = (\frac{x_2}{1-a}, \ldots, \frac{x_n}{1-a})$ is a feasible weight vector on $L_G(1) = K_{n-1}^2$. By Theorem 2.10 we have

$$\lambda(I_G(1), \bar{x}) = a \cdot \sum_{2 \leq i < j \leq n} x_i x_j = a(1-a)^2 \lambda(L_G(1), \bar{x}) < 1/2 a(1-a)^2.$$

Let $F = G(\{2, 3, \ldots, n\})$. Suppose F contains a $(t-1)$-matching M. Since $n \geq 3t$, there exist distinct vertices $i, j \in [n] \setminus (V(M) \cup \{1\})$. By 1, $1ij \in G$. Now, $M \cup \{1ij\}$ is a t-matching in G, contradicting G being M_t^3-free. Hence F must be M_{t-1}^3-free. Note that \bar{x} is a feasible weight vector on F. By the induction hypothesis (by considering $F = K_{3t-4}^3$ or not), we have $\lambda(F, \bar{x}) \leq \lambda(K_{3t-4}^3)$. Thus,

$$\lambda(F, \bar{x}) = (1-a)^3 \cdot \lambda(F, \bar{x}) \leq (1-a)^3 \lambda(F) \leq (1-a)^3 \lambda(K_{3t-4}^3) = \left(\frac{3t-4}{3}\right)^3 \left(\frac{1-a}{3t-4}\right)^3.$$

Let $s = 3t-4$ and $\mu = \frac{2s-3s+2}{6s^2}$. We have

$$\lambda(G) = \lambda(G, \bar{x}) \leq \lambda(I_G(1), \bar{x}) + \lambda(F, \bar{x})$$

$$< \frac{1}{2} a(1-a)^2 + \left(\frac{s}{3}\right)^3 \left(\frac{1-a}{s}\right)^3$$

$$= \frac{1}{2} a(1-a)^2 + \frac{s^2 - 3s + 2}{6s^2} (1-a)^3$$

$$= (1-a)^2 \left(\frac{1}{2} a + \mu(1-a)\right)$$

$$= (1-a)^2 \left(\frac{1}{2} - \mu\right) a + \mu$$

$$= (1-a)(1-a) \left(2a + \frac{\mu}{\frac{1}{2} - \mu}\right) \cdot \left(\frac{1}{4} - \frac{1}{2} \mu\right)$$

$$\leq \left[\frac{1}{3} \left(1-a + 1 - a + 2a + \frac{\mu}{\frac{1}{2} - \mu}\right)\right]^3 \cdot \left(\frac{1}{4} - \frac{1}{2} \mu\right) \quad \text{(by the AM-GM inequality)}$$

$$= \frac{1}{54} \left(\frac{1}{2} - \mu\right)^2$$

$$= \frac{2s^4}{3(2s^2 + 3s - 2)^2}.$$

Since $s = 3t-4$, we have

$$\lambda(K_{3t-1}^3) = \left(\frac{3t-1}{3}\right)^3 \cdot \left(\frac{1}{3t-1}\right)^3 = \left(\frac{s+3}{3}\right) \cdot \left(\frac{1}{s+3}\right)^3 = \frac{s^2 + 3s + 2}{6(s+3)^2}.$$
Hence,
\[
\lambda(G) - \lambda(K_{3m-1}^3) \leq \frac{2s^4}{3(2s^2 + 3s - 2)^2} - \frac{s^2 + 3s + 2}{6(s + 3)^2}
\]
\[
= \frac{4s^4(s + 3)^2 - (2s^2 + 3s - 2)(s^2 + 3s + 2)}{6(2s^2 + 3s - 2)(s + 3)^2}
\]
\[
= -\frac{9s^4 + 15s^3 - 30s^2 - 12s + 8}{6(2s^2 + 3s - 2)(s + 3)^2},
\]
which is negative for every \(s \geq 2 \). Let
\[
c_1 = \min \left\{ \lambda(K_{3m-1}^3) - \lambda(K_{3m+2}^3), \frac{9s^4 + 15s^3 - 30s^2 - 12s + 8}{6(2s^2 + 3s - 2)(s + 3)^2} \right\}.
\]
Then \(\lambda(G) \leq \lambda(K_{3m+2}^3) - c_1 \) and the proof is complete.

Corollary 3.4 \(\pi_{\lambda}(M_t^3) = 3!\lambda(K_{3m-1}^3) = \frac{[3m-1]_3}{(3m-1)!} \).

Proof. Since \(K_{3m-1}^3 \) is \(M_t^3 \)-free, \(\pi_{\lambda}(M_t^3) \geq 3!\lambda(K_{3m-1}^3) \). On the other hand, by Theorem 3.3 \(\pi_{\lambda}(M_t^3) \leq 3!\lambda(K_{3m-1}^3) \). Therefore, \(\pi_{\lambda}(M_t^3) = 3!\lambda(K_{3m-1}^3) \).

3.2 Turán number of the extension of \(M_t^3 \)

The main result in this section is as follows.

Theorem 3.5 Let \(t \geq 2 \) be an integer. Then \(ex(n, H_{3t}^{M_t^3}) = t_{3t-1}^t(n) \) for sufficiently large \(n \). Moreover, if \(n \) is sufficiently large and \(G \) is an \(H_{3t}^{M_t^3} \)-free \(3 \)-graph on \([n] \) with \(|G| = t_{3t-1}^t(n) \), then \(G = T_{3t-1}^3(n) \).

To prove the theorem, we need several results from [2]. Similar results are obtained independently in [15].

Definition (2) Let \(m, r \geq 2 \) be positive integers. Let \(F \) be an \(r \)-graph that has at most \(m + 1 \) vertices satisfying \(\pi_{\lambda}(F) \leq \frac{|m|}{m^r} \). We say that \(K_{m+1}^F \) is \(m \)-stable if for every real \(\varepsilon > 0 \) there are a real \(\delta > 0 \) and an integer \(n_1 \) such that if \(G \) is a \(K_{m+1}^F \)-free \(r \)-graph with at least \(n \geq n_1 \) vertices and more than \(\left(\frac{|m|}{m^r} - \delta \right) \binom{n}{r} \) edges, then \(G \) can be made \(m \)-partite by deleting at most \(\varepsilon n \) vertices.

Theorem 3.7 (2) Let \(m, r \geq 2 \) be positive integers. Let \(F \) be an \(r \)-graph that either has at most \(m \) vertices or has \(m + 1 \) vertices one of which has degree 1. Suppose either \(\pi_{\lambda}(F) < \frac{|m|}{m^r} \) or \(\pi_{\lambda}(F) = \frac{|m|}{m^r} \) and \(K_{m+1}^F \) is \(m \)-stable. Then there exists a positive integer \(n_2 \) such that for all \(n \geq n_2 \) we have \(ex(n, H_{m+1}^{F^3}) = t_{m+1}^n(n) \) and the unique extremal \(r \)-graph is \(T_{m+1}^3(n) \).

Given an \(r \)-graph \(G \) and a real \(\alpha \) with \(0 < \alpha \leq 1 \), we say that \(G \) is \(\alpha \)-dense if \(G \) has minimum degree at least \(\alpha \binom{|V(G)|}{r-1} \). Let \(i, j \in V(G) \), we say \(i \) and \(j \) are nonadjacent if \(\{i, j\} \) is not contained in any edge of \(G \). Given a set \(U \subseteq V(G) \), we say \(U \) is an equivalence class of \(G \) if for every two vertices \(u, v \in U \), \(L_G(u) = L_G(v) \). Given two nonadjacent nonequivalent vertices \(u, v \in V(G) \), symmetrizing \(u \) to \(v \) refers to the operation of deleting all edges containing \(u \) of \(G \) and adding all the edges \(\{u\} \cup A, A \in L_G(v) \) to \(G \). We use the following algorithm from [2], which was originated in [16].
Algorithm 3.8 (Symmetrization and cleaning with threshold α)

Input: An r-graph G.
Output: An r-graph G^*.

Initiation: Let $G_0 = H_0 = G$. Set $i = 0$.

Iteration: For each vertex u in H_i, let $A_i(u)$ denote the equivalence class that u is in. If either H_i is empty or H_i contains no two nonadjacent nonequivalent vertices, then let $G^*_i = H_i$ and terminate. Otherwise let u, v be two nonadjacent nonequivalent vertices in H_i, where $d_{H_i}(u) \geq d_{H_i}(v)$. We symmetrize each vertex in $A_i(v)$ to u. Let G_{i+1} denote the resulting graph. If G_{i+1} is α-dense, then let $H_{i+1} = G_{i+1}$. Otherwise we let $L = G_{i+1}$ and repeat the following: let z be any vertex of minimum degree in L. We redefine $L = L - z$ unless in forming G_{i+1} from H_i we symmetrized the equivalence class of some vertex v in H_i to some vertex in the equivalence class of z in H_i. In that case, we redefine $L = L - v$ instead. We repeat the process until L becomes either α-dense or empty. Let $H_{i+1} = L$. We call the process of forming H_{i+1} from G_{i+1} “cleaning”. Let Z_{i+1} denote the set of vertices removed, so that $H_{i+1} = G_{i+1} - Z_{i+1}$. By our definition, if H_{i+1} is nonempty then it is α-dense.

Theorem 3.9 (2) Let $m, r \geq 2$ be positive integers. Let F be an r-graph that has at most m vertices or has $m + 1$ vertices one of which has degree 1. There exists a real $\gamma_0 = \gamma_0(m, r) > 0$ such that for every positive real $\gamma < \gamma_0$, there exist a real $\delta > 0$ and an integer n_0 such that the following is true for all $n \geq n_0$. Let G be an K_{m+1}^F-free r-graph on $[n]$ with more than $(\frac{m}{m^r} - \delta \gamma)^\binom{n}{r}$ edges. Let G^* be the final r-graph produced by Algorithm 3.8 with threshold $\frac{m}{r(m^r - 1)} - \gamma$. Then $|V(G^*)| \geq (1 - \gamma)n$ and G^* is $(\frac{m}{m^r} - \gamma)$-dense. Furthermore, if there is a set $W \subseteq V(G^*)$ with $|W| \geq (1 - \gamma_0)|V(G^*)|$ such that W is the union of a collection of at most m equivalence classes of G^*, then $G[W]$ is m-partite.

The following corollary is implicit in [2] and [15].

Corollary 3.10 Let $m, r \geq 2$ be positive integers. Let F be an r-graph that has at most $m + 1$ vertices with a vertex of degree 1 and $\pi_\lambda(F) \leq \frac{[m]}{m^r}$. Suppose there is a constant $c > 0$ such that for every F-free r-graph L with no isolated vertex and $L \not\cong K_{m}^r$, $\lambda(L) \leq \lambda(K_{m}^r) - c$. Then K_{m+1}^F is m-stable.

Proof. Let $\epsilon > 0$ be given. Let δ, n_0 be the constants guaranteed by Theorem 3.9. We can assume that δ is small enough and n_0 is large enough. Let $\gamma > 0$ satisfy $\gamma < \epsilon$ and $\delta + \gamma r < c$. Let G be a K_{m+1}^F-free r-graph on $n > n_0$ vertices with more than $(\frac{m}{m^r} - \delta\gamma)^\binom{n}{r}$ edges. Let G^* be the final r-graph produced by applying Algorithm 3.8 to G with threshold $\frac{m}{r(m^r - 1)} - \gamma$. By Algorithm 3.8, if S consists of one vertex from each equivalence class of G^*, then $G^*[S]$ covers pairs and G^* is a blowup of $G^*[S]$.

First, suppose that $|S| \geq m + 1$. If $F \subseteq G^*[S]$, then since $G^*[S]$ covers pairs we can find a member of K_{m+1}^F in $G^*[S]$ by using any $(m + 1)$-set that contains a copy of F as the core, contradicting G^* being K_{m+1}^F-free. So $G^*[S]$ is F-free. Since $|S| \geq m + 1$ and $G^*[S]$ covers pairs, clearly $G^*[S] \not\cong K_{m}^r$. Also, $G^*[S]$ has no isolated vertex. Hence, by our assumption, $\lambda(G^*[S]) \leq \frac{1}{r} \frac{[m]}{m^r} - c$. By Proposition 2.13, we have

$$|G^*| \leq \lambda(G^*[S])n^r \leq \left(\frac{1}{r} \frac{[m]}{m^r} - c\right)n^r < \left(\frac{[m]}{m^r} - c\right) \frac{n^r}{r!}. \quad (2)$$

Now, during the process of obtaining G^* from G, symmetrization never decreases the number of edges. Since at most γn vertices are deleted in the process (see Theorem 3.9),

$$|G^*| > |G| - \gamma n \left(\binom{n-1}{r-1}\right) \geq \left(\frac{[m]}{m^r} - \delta - \gamma r\right) \frac{n^r}{r} > \left(\frac{[m]}{m^r} - c\right) \frac{n^r}{r!}. \quad (3)$$
contradicting (2). So |S| ≤ m. Hence, W = V(G*) is the union of at most m equivalence classes of G*.

By Theorem 3.9, |W| ≥ (1 - γ)n and G[W] is m-partite. Hence, G can be made m-partite by deleting at most γn < εn vertices. Thus, K_{m+1}^F is m-stable.

Proof of Theorem 3.5. By Theorem 3.3 and Corollary 3.4, M_3^3 satisfies the conditions of Corollary 3.10. So, K_{3t-1}^F is (3t - 1)-stable. The theorem then follows from Theorem 3.7.

4 Local Lagrangians of M_t^r-free r-graphs and Lagrangians of L_t^r-free r-graphs and related Turán numbers

In this section we consider a local version of Lagrangians of M_t^r-free graphs for r = 2, 3. This will then be used to determine the Lagrangian density of a linear star L_t^r for r = 3, 4. Let 0 < b < 1 be a real. Given an r-graph G on [n], a feasible weight vector ⃗x = (x_1, . . . , x_n) is called a b-bounded feasible weight vector on G if ∀i ∈ [n], x_i ≤ b. If G has a b-bounded feasible weight vector, then we define the b-bounded Lagrangian of G as

\[
λ_0(G) = \max\{λ(G, ⃗x) : ⃗x is a b-bounded feasible weight vector on G\}.
\] (3)

If G does not have any b-bounded feasible weight vector, then we define λ_0(G) = 0. A feasible b-bounded weight vector ⃗x on G such that λ(G, ⃗x) = λ_0(G) is called an optimum b-bounded weight vector on G. We now consider λ_0(G) over M_t^r-free r-graphs for r = 2, 3 for appropriate values of b. For such a study, first we reduce the problem to the case where the r-graph in consideration is compressed and there exists an optimum b-bounded weight vector with some additional properties.

Lemma 4.1 Let 0 < b < 1 be a real. Let r, t ≥ 2 be integers. Let F be the family of all M_t^r-free r-graphs. There exists G ∈ F and an optimum b-bounded weight vector ⃗x on G such that

1. λ(G, ⃗x) = λ_0(G) = \max\{λ_0(H) : H ∈ F\}.

2. G is ⃗x-compressed.

3. All vertices of G have positive weight under ⃗x.

4. If u, v are any two vertices in G with weight less than b under ⃗x then \{u, v\} is covered in G.

Proof. Clearly, F is closed under taking subgraphs. Let λ* = \max\{λ_0(H) : H ∈ F\}. Among all r-graphs H ∈ F with λ_0(H) = λ*, let G be the one with the fewest possible vertices. Let ⃗x be an optimum b-bounded weight vector on G that has the maximum number of b-components. By Lemma 2.9 (a), we may assume that G is ⃗x-compressed (or else we could replace G with one that is ⃗x-compressed). If some vertex in G has 0 weight under ⃗x then deleting that vertex would give us a graph G′ ∈ F with λ_0(G′) = λ* and having fewer vertices than G, contradicting our choice of G. Hence, all vertices in G have positive weights under ⃗x. Now, suppose u, v are two vertices with weight less than b under ⃗x. Suppose that no edge of G contains both u and v. Without loss of generality suppose that λ(L_G(u), ⃗x) ≥ λ(L_G(v), ⃗x).

If we decrease the weight of v and increase the weight of u by the same amount, the total weight does not decrease. Hence, we can obtain an optimum b-bounded weight vector on G that either has more
b-components than \(\bar{x} \) or has weight 0 on \(v \). In the former, we get a contradiction to our choice of \(\bar{x} \). In the latter case, we get a contradiction to our choice of \(G \). Hence there must be some edge in \(G \) containing both \(u \) and \(v \). ■

For the purpose of studying \(L^3_t \)-free graphs, we will also need the following short lemma.

Lemma 4.2 Let \(r, t \geq 2 \). Let \(G \) be an \(L^3_t \)-free \(r \)-graph with at least \(t(r - 1) + 1 \) vertices and \(G \) covers pairs. Let \(x \in V(G) \). Then \(L(x) \) is \(K^{r-1}_{t(r-1)-1} \)-free. In particular, \(G \) is \(K^r_{t(r-1)-1} \)-free.

Proof. Suppose for contradiction that \(L(x) \) contains a copy \(K^{r-1}_{t(r-1)-1} \). By our assumption, \(\exists y \in V(G) \setminus (V(K) \cup \{x\}) \). Since \(G \) covers pairs, there exists \(e \in G \) that contains \(x \) and \(y \). Now we can find a copy of \(L^3_{t-1} \) using a \((t-1)\)-matching in \(K \) containing \(x \) that are disjoint from \(e \setminus \{x, y\} \), which together with \(e \) form a copy of \(L^3_t \) in \(G \), a contradiction. ■

4.1 Local Lagrangians of \(M^2_t \)-free graphs and Lagrangians of \(L^3_t \)-free 3-graphs and related Turán numbers

We start the subsection by developing some structural properties of \(M^2_t \)-free left-compressed graphs. Let \(n, t \) be positive integers, where \(t \geq 2 \) and \(n \geq 2t \). For each \(\ell \in [t-1] \cup \{0\} \), define

\[
F_{t,\ell}(n) = \left(\binom{2t-1-\ell}{2} \right) \cup \{ab : a \in \{1, \ldots, \ell\}, b \in \{2t-\ell, \ldots, n\}\}.
\]

Note that \(F_{t,\ell}(n) \) is \(M^2_t \)-free for each \(\ell \in [t-1] \cup \{0\} \).

Lemma 4.3 Let \(n, t \) be positive integers, where \(t \geq 2 \) and \(n \geq 2t \). Let \(G \) be an \(M^2_t \)-free 2-graph on \([n]\) that is left-compressed relative to the natural order. Then \(G \subseteq F_{t,\ell}(n) \) for some \(\ell \in [t-1] \cup \{0\} \).

Proof. For each \(i \in [t] \), let \(N_i = \{j \in [n] : j > i, ij \in G\} \). Since \(G \) is left-compressed relative to the natural order on \([n]\), we have either \(N_i = \emptyset \) or \(N_i = \{i+1, i+2, \ldots, m_i\} \) for some \(m_i > i \). Furthermore, \(N_1 \supseteq N_2 \supseteq \cdots \supseteq N_t \). For convenience, we define \(m_i = 1 \) for those \(i \in [t] \) with \(N_i = \emptyset \). Then \(\{m_1, \ldots, m_t\} \) is non-increasing. Let \(h \) be the largest \(i \in [t] \) such that \(m_i \leq 2t - i \). Note that \(h \) exists; otherwise \(\{i(2t+1-i) : i \in [t]\} \) is a \(t \)-matching in \(G \), a contradiction. Let \(\ell = h - 1 \). Then \(\ell \in [t-1] \cup \{0\} \). By our assumption, there is no edge from \([\ell+1, n] \) to \([2t-\ell, n] \). So \(G \subseteq F_{t,\ell}(n) \). ■

Lemma 4.4 Let \(n, t \) be positive integers, where \(t \geq 2 \) and \(n \geq 2t \). Let \(b \) be a real such that \(0 < b \leq \frac{1}{2} \). For each \(\ell \in [t-1] \), we have \(\lambda_b(F_{t,\ell}(n)) \leq \left(2^{t-1-2\ell} \right) b^2 + \ell b - \frac{\ell^2}{2} b^2 \).

Proof. Let \(\ell \in [t-1] \). Let \(\bar{x} = (x_1, \ldots, x_n) \) be a \(b \)-bounded feasible vector on \(F_{t,\ell}(n) \) such that \(\lambda(F_{t,\ell}(n), \bar{x}) = \lambda_0(F_{t,\ell}(n)) \). Using Fact 2.12 (note that any new weight vector produced by Fact 2.12 based on \(\bar{x} \) is also \(b \)-bounded), we may assume that \(x_1 = \cdots = x_\ell, x_{\ell+1} = \cdots = x_{2t-1-\ell} \text{ and } x_{2t-\ell} = \cdots = x_n \).
\[\cdots = x_n. \text{ Let } a = x_1, c = x_{\ell+1}, \text{ and } d = x_{2t-\ell} + \cdots + x_n = 1 - \ell a - (2t - 1 - 2\ell)c. \text{ We have} \]
\[
\lambda(F_{\ell,t}(n), \bar{x}) = \left(\frac{\ell}{2} \right) a^2 + \left(\frac{2t - 1 - 2\ell}{2} \right) c^2 + (2t - 1 - 2\ell)\ell a + la[1 - \ell a - (2t - 1 - 2\ell)c] \\
= \left(\frac{\ell}{2} \right) a^2 + \left(\frac{2t - 1 - 2\ell}{2} \right) c^2 + \ell a(1 - \ell a) \\
\leq \left(\frac{2t - 1 - 2\ell}{2} \right) b^2 + \ell b - \frac{t^2 + \ell}{2} a^2,
\]
where we used the fact that \(f(x) = \ell x - \frac{t^2 + \ell}{2} x^2 \) is increasing on \((-\infty, \frac{1}{\ell+1})\) and that \(a, c \leq b \leq \frac{1}{\ell+1}. \]
\]

\[\boxed{\text{Theorem 4.5}} \]
\[\text{Let } t \geq 2 \text{ be an integer. If } G \text{ is an } L_t^1\text{-free 3-graph, then } \lambda(G) \leq \lambda(K_{2t}^3). \text{ Furthermore, there is } c_2 = c_2(t) > 0 \text{ such that if } G \text{ is an } L_t^1\text{-free 3-graph that covers pairs and } G \neq K_{2t}^3 \text{ then } \lambda(G) \leq \lambda(K_{2t}^3) - c_2 = \frac{(2t-1)(t-1)}{12t^2} - c_2. \]

\[\text{Proof.} \quad \text{It suffices to assume that } G \text{ is dense (otherwise we consider an appropriate subgraph). So } G \text{ covers pairs. In this set up, it suffices to prove the second statement. So assume that } G \text{ covers pairs and } G \neq K_{2t}^3. \text{ Suppose } V(G) = [n] \cup \{0\}. \text{ If } n < 2t, \text{ then } \lambda(G) \leq \lambda(K_{2t}^3) \leq \lambda(K_{2t}^3) - c_2, \text{ by choosing } c_2 \text{ to be small enough, where } K_{2t}^3 \text{ denotes } K_{2t}^3 \text{ minus an edge. Hence, we may assume that } n \geq 2t. \text{ Let } \bar{x} = (x_0, x_1, \ldots, x_n) \text{ be an optimum weight vector on } G. \text{ Let } a = \max\{x_i : i \in V(G)\}. \text{ By relabeling if needed, we may assume that } x_0 = a. \text{ By Fact 2.11, } \lambda(L(0), \bar{x}) = \frac{\partial \lambda(G, \bar{x})}{\partial x_0} = 3\lambda(G), \text{ so it suffices to show that } \lambda(L(0), \bar{x}) \leq \frac{(2t-1)(t-1)}{12t^2} - 3c_2, \text{ for some sufficiently small positive real } c_2.
\]

Since \(G \) is \(L_t^1 \)-free, \(L(0) \) is \(M_t^2 \)-free. Since \(G \) covers pairs and \(n \geq 2t \), by Lemma 4.12, \(K_{2t-1}^3 \not\subset L(0). \)

We may view \(L(0) \) as a 2-graph on \([n] \). Let \(\tilde{y} = (\frac{x_0}{a}, \ldots, \frac{x_n}{a}) \).

Then \(\tilde{y} \) is a feasible weight vector on \(L(0) \). Furthermore, it is \(\frac{1}{1-a} \)-bounded. We consider two cases.

\[\text{Case 1. } a \geq \frac{1}{2t}. \]

Since \(L(0) \) is \(K_{2t-1}^2 \)-free, by Theorem 2.10, \(\lambda(L(0)) \leq \frac{1}{2}(1 - \frac{1}{2t-1}) \). Hence, for sufficiently small \(c_2 > 0 \),
\[
\lambda(L(0), \bar{x}) = (1 - a)^2 \lambda(L(0), \tilde{y}) \leq (1 - a)^2 \lambda(L(0)) \leq \left(\frac{2t-1}{2t} \right)^2 \frac{1}{2t-2} \leq \frac{(2t-1)(t-1)}{4t^2} - 3c_2.
\]

\[\text{Case 2. } a < \frac{1}{2t}. \]

Let \(b = \frac{a}{1-a} \). Then \(b < \frac{1}{2t-1} \leq \frac{1}{t} \). By Lemma 2.14(a), there exists a \(M_t^2 \)-free 2-graph \(H \) on \([n] \) such that \(\lambda(H, \tilde{y}) \geq \lambda(L(0), \tilde{y}) \) and such that \(H \) is \(\tilde{y} \)-compressed. Also, since \(L(0) \) is \(K_{2t-1}^2 \)-free, by Lemma 2.13 \(H \) is also \(K_{2t-1}^2 \)-free. By relabeling if needed, we may assume that \(y_1 \geq \cdots \geq y_n \) and that \(H \) is left-compressed relative to the natural order on \([n] \). By Lemma 4.3 \(H \subset F_{t,\ell}(n) \) for some \(\ell \in [t-1] \cup \{0\} \).

First, assume that \(\ell \in [t-1] \).

Since \(\tilde{y} \) is a \(b \)-bounded feasible weight vector on \([n] \), by Lemma 4.3, we have
Theorem 4.7

Since \(f \) if for every edge \(e \), we have

\[
\lambda(L(0), \vec{x}) = (1 - a)^2 \lambda(L(0), \vec{y}) \leq \lambda(H, \vec{y}) \leq \lambda(F_{t, \ell}(n), \vec{y})
\]

\[
\leq (1 - a)^2 \left(\frac{2t - 1 - 2\ell}{2} \right) \left(\frac{a}{1 - a} \right)^2 + \ell \frac{a}{1 - a} - \frac{\ell^2 + \ell}{2} \left(\frac{a}{1 - a} \right)^2
\]

\[
= \left(\frac{2t - 1 - 2\ell}{2} \right) a^2 + \ell a(1 - a) - \frac{\ell^2 + \ell}{2} a^2.
\]

Since \(f(x) = \ell x(1 - x) - \frac{\ell^2 + \ell}{2} x^2 \) increases on \((-\infty, \frac{1}{\ell+3}) \) and \(a < \frac{1}{2t} \leq \frac{1}{\ell+3} \), we have

\[
\lambda(L(0), \vec{x}) \leq \left(\frac{2t - 1 - 2\ell}{2} \right) \left(\frac{1}{2t} \right)^2 + \ell \frac{1}{2t} \left(1 - \frac{1}{2t} \right) - \frac{\ell^2 + \ell}{2} \left(\frac{1}{2t} \right)^2
\]

\[
= \left(\frac{2t - 1 - 2\ell}{2} \right) \left(\frac{1}{2t} \right)^2 + \ell \frac{1}{2t} \left(1 - \frac{2}{2t} \right) - \left(\frac{\ell}{2} \right) \left(\frac{1}{2t} \right)^2
\]

\[
= \lambda(F_{t, \ell}(2t - 1), \vec{z}),
\]

where \(z \) is a weight vector on \([2t - 1] \) with \(z = \left(\frac{1}{2t}, \ldots, \frac{1}{2t} \right) \). Since \(\ell \geq 1 \), \(F_{t, \ell}(2t - 1) \subseteq K_{2t-1}^{2t-1} \). Hence,

\[
\lambda(L(0), \vec{x}) \leq \lambda(K_{2t-1}^{2t-1}, \vec{z}) \leq \frac{(2t - 1)(t - 1)}{4t^2} - 3c_2,
\]

for sufficiently small \(c_2 > 0 \).

Finally, suppose \(\ell = 0 \). Note that \(F_{t,0}(n) \) consists of a copy of \(K_{2t-1}^{2t-1} \) and some isolated vertices. Since \(H \subseteq F_{t,0}(n) \) and \(H \) is \(K_{2t-1}^{2t-1} \)-free, we have \(\lambda(L(0), \vec{x}) \leq \lambda(H, \vec{x}) \leq \lambda(H) \leq \lambda(K_{2t-1}^{2t-1}) \). Hence (4) still holds for sufficiently small \(c_2 > 0 \). This completes our proof.

Corollary 4.6

\[
\pi_\lambda(L_t^3) = 3! \lambda(K_{2t}^3) = \frac{(2t)!}{(2t)^t}.
\]

Applying Theorem 4.5 Corollary 4.14 Corollary 3.11 and Theorem 3.7 we have

Theorem 4.7 Let \(t \geq 2 \) be an integer. Then \(\text{ex}(n, H_{2t+1}^3) = t_2^3(n) \) for sufficiently large \(n \). Moreover, if \(n \) is sufficiently large and \(G \) is an \(H_{2t+1}^3 \)-free 3-graph on \(n \) vertices with \(|G| = t_2^3(n) \) then \(G = T_{2t}^3(n) \).

Theorem 4.7 is part of a more general theorem obtained in [2] and [15]. However, the method we used in this section is self-contained and is very different from those used in [2] and [15].

4.2 Local Lagrangians of \(M_t^3 \)-free 3-graphs and Lagrangians of \(L_t^4 \)-free 4-graphs and related Turán numbers

Next, we consider local Lagrangians of \(M_t^3 \)-free 3-graphs. First, we focus on the \(t = 2 \) case. As before, we first develop some structural properties of \(M_t^3 \)-free 3-graphs. Given a 3-graph \(G \) on \([n] \), let \(L^+(1) \) and \(L^+(2) \) denote the links of 1, 2 of \(G \) in \([3, n]\) respectively, i.e.

\[
L^+(i) = \{ A \subseteq [3, n] : A \cup \{i\} \in G \}
\]

for \(i = 1, 2 \). We say a set \(S \subseteq V(G) \) is a vertex cover of \(G \) if for every edge \(e \) of \(G \), \(e \cap S \neq \emptyset \).
Lemma 4.8 Let $n \geq 6$ be an integer. Let G be an M_2^3-free 3-graph on $[n]$ with no isolated vertex that is left-compressed relative to the natural order on $[n]$. Then

(a) $\forall i \in [3,n], 12i \in G$,
(b) $\{1,2\}$ is a vertex cover of G, and
(c) $L^+(2)$ is M_2^3-free. Thus, if $L^+(2) \neq \emptyset$ then $L^+(2)$ is either a triangle or a star.

Proof. By our assumption, for some $i < j < n$, $ijn \in G$. Since G is left-compressed relative to the natural order on $[n]$, we have $12n \in G$. Since G is left-compressed, this further implies that $12i \in G$ for every $i \in [3,n]$. If G contains an edge e not containing 1 or 2, then $\{12i,e\}$ would form a 2-matching in G, for some $i \in [n], i \notin e$ and $i \neq 1,2$, contradicting G being M_2^3-free. Hence $\{1,2\}$ is a vertex cover of G. Finally, since G is left-compressed, $L^+(2) \subseteq L^+(1)$. If $L^+(2)$ contains a 2-matching, then we would obtain a 2-matching in G, a contradiction. So $L^+(2)$ is intersecting and must be either a star or a triangle.

Lemma 4.8 allows us to describe all left-compressed M_2^3-free 3-graphs on $[n]$.

Definition 4.9 For all integers $n \geq 5$, let

\[G_0(n) = \{1ij : 2 \leq i < j \leq n\}, \]

\[G_1(n) = \{12i : 3 \leq i \leq n\} \cup \{134, 135, 145, 234, 235, 245\}, \]

\[G_2(n) = \binom{[4]}{3} \cup \{12i, 13i, 14i : 5 \leq i \leq n\}, \]

\[G_3(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{234, 235, 145\}, \]

\[G_4(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{23i : 4 \leq i \leq n\}. \]

Lemma 4.10 Let $n \geq 6$ be an integer. Let G be an M_2^3-free 3-graph on $[n]$ that is left-compressed relative to the natural order on $[n]$. Then G is a subgraph of one of $G_0(n), G_1(n), G_2(n), G_3(n), G_4(n)$ given in Definition 4.9.

Proof. By Lemma 4.8 $\{1, 2\}$ is a vertex cover of G and $L^+(2)$ is either empty, or a triangle or a star. We now consider three cases.

Case 1. $L^+(2) = \emptyset$.
Since G is left-compressed, $L^+(i) = \emptyset$ for all $i \geq 2$. Hence $G \subseteq G_0(n) = \{1ij : 2 \leq i < j \leq n\}$.

Case 2. $L^+(2)$ is a triangle.
Since G is left-compressed, we have $L^+(2) = \{34, 35, 45\}$ and $L^+(1) \supseteq L^+(2)$. Since G contains no 2-matching, we must have $L^+(1) = L^+(2) = \{34, 35, 45\}$. Hence

\[G \subseteq G_1(n) = \{12i : 3 \leq i \leq n\} \cup \{134, 135, 145, 234, 235, 245\}. \]

Case 3. $L^+(2)$ is a star.
Since G is left-compressed, we have $L^+(2) = \{34, 35, \ldots, 3p\}$ for some $4 \leq p \leq n$. Since G contains no 2-matching, every member of $L(1 \setminus 2)$ must contain either 3 or 4. Further, if $p \geq 6$ then every member of $L(1 \setminus 2)$ must contain 3.
If $p = 4$, then
\[G \subseteq G_2(n) = \binom{[4]}{3} \cup \{12i, 13i, 14i : 5 \leq i \leq n\}. \]

If $p = 5$, then
\[G \subseteq G_3(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{234, 235, 145\}. \]

If $p \geq 6$, then
\[G \subseteq G_4(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{23i : 4 \leq i \leq n\}. \]

Let us recall the definition of the b-bounded Lagrangian $\lambda_b(G)$ of G, given in (3).

Lemma 4.11 Let b be a real with $0 < b \leq \frac{1}{3}$. Let G be a 3-uniform star. Then $\lambda_b(G) \leq \frac{1}{2}b(1-b)^2$.

Proof. Suppose $V(G) = [n]$. Without loss of generality suppose vertex 1 is the center of the star. Let \bar{x} be a b-bounded feasible vector on G with $\lambda(G, \bar{x}) = \lambda_b(G)$. Let $a = x_1$. Then $a \leq b$. Note that $(\frac{1}{1-b}, \dots, \frac{1}{1-b})$ is a feasible weight vector on $L_G(1)$. By Theorem 2.10 $\lambda(G, \bar{x}) \leq a \frac{1}{2}(1-a)^2 \leq \frac{1}{2}b(1-b)^2$, where the last inequality follows from the fact that the function $\frac{1}{2}x(1-x)^2$ increases on $[0, \frac{1}{3}]$ and that $0 < a \leq b \leq \frac{1}{3}$.

Lemma 4.12 Let G be an M^3_2-free 3-graph. For $0 < b \leq \frac{1}{5}$, we have
\[\lambda_b(G) \leq \max\{\frac{1}{2}b(1-b)^2, b^2 + 4b^3\}. \]

Furthermore, if $0 < b \leq \frac{1}{5}$ then $\lambda_b(G) \leq \frac{1}{4}b(1-b)^2$.

Proof. Suppose $V(G) = [n]$. By Lemma 4.11, we may assume that G has an optimum b-bounded weight vector \bar{x} such that G is \bar{x}-compressed, all vertices of G have positive weights under \bar{x}, and such that all pairs of vertices of weight less than b are covered in G. By relabeling the vertices of G if needed we may assume that $x_1 \geq \ldots \geq x_n$ and that G is left-compressed relative to the natural order on $[n]$.

Case 1. $x_{n-1} < b$.

In this case we have $x_{n-1}, x_n < b$. By our assumption, $\{n-1, n\}$ is covered in G. Since G is left-compressed, this implies that $\forall 2 \leq i < j \leq n, 1ij \in G$. If there is an edge of G' in $\{2, \ldots, n\}$ then since G is left-compressed, we have $234 \in G$. But then $234, 156$ forms a M^3_2 in G', contradiction. Hence $G' \subseteq G_0(n) = \{1ij : 2 \leq i < j \leq n\}$. By Lemma 4.11 $\lambda_b(G') \leq \lambda_b(G_0(n)) \leq \frac{1}{2}b(1-b)^2$.

Case 2. $x_{n-1} = b$.

In this case we have $x_1 = x_2 = \cdots = x_{n-1} = b$, $x_n \leq b$. By Lemma 4.10 $G' \subseteq G_i$ for some $i = 0, 1, 2, 3, 4$. Since $\lambda_b(G_0(n)) \leq \frac{1}{2}b(1-b)^2$, we may assume that $G' \subseteq G_i(n)$ for some $i \in [4]$. Since $G_1(n) = \{12i : 3 \leq i \leq n\} \cup \{134, 135, 145, 234, 235, 245\}$, \[
\lambda(G_1(n), \bar{x}) \leq 6b^3 + b^2(1-2b) = b^2 + 4b^3.
\]
Since $G_2(n) = \left(\left\lfloor \frac{n}{3} \right\rfloor \right) \cup \{12i, 13i, 14i : 5 \leq i \leq n\}$,
\[\lambda(G_2(n), \bar{x}) \leq 4b^3 + 3b^2(1 - 4b) = 3b^2 - 8b^3.\]

Since $G_3(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{234, 235, 145\}$,
\[\lambda(G_3(n), \bar{x}) \leq b^2(1 - 2b) + b^2(1 - 3b) + 3b^3 = 2b^2 - 2b^3.\]

Since $G_4(n) = \{12i : 3 \leq i \leq n\} \cup \{13i : 4 \leq i \leq n\} \cup \{23i : 4 \leq i \leq n\}$,
\[\lambda(G_4(n), \bar{x}) \leq b^3 + 3b^2(1 - 3b) = 3b^2 - 8b^3.\]

So
\[\lambda(G', \bar{x}) \leq \max\left\{\frac{1}{2}b(1 - b)^2, b^2 + 4b^3, 3b^2 - 8b^3, 2b^2 - 2b^3\right\} = \max\left\{\frac{1}{2}b(1 - b)^2, b^2 + 4b^3, 3b^2 - 8b^3\right\}.
\]

Note that $\frac{1}{2}b(1 - b)^2 - (3b^2 - 8b^3) \geq 0$ on $[0, \infty)$. Also, $\frac{1}{2}b(1 - b)^2 - (b^2 + 4b^3) \geq 0$ on $[0, \frac{1}{3}]$. The conclusion follows.

Next, we establish an upper bound on $\lambda_0(G)$ for M_3^t-free graphs G, where $t \geq 3$. We need the following lemma of Frankl.

Lemma 4.13 [3] If G is an n-vertex r-graph with matching number s then $|G| \leq s\left(\frac{n}{r-1}\right)^\frac{1}{2}$. ■

Lemma 4.14 Let n, r, t be positive integers, where $r, t \geq 2$, $n \geq tr$. Let G be an M_r^t-free graph on $[n]$ that is left-compressed relative to the natural order. Then $L_G(n)$ is M_r^{t-1}-free. Furthermore, if $r = 3$ and $\{n - 1, n\}$ is covered then $G[\{2, \ldots, n\}]$ is M_3^{t-1}-free.

Proof. Suppose for contradiction that $M = \{f_1, \ldots, f_t\}$ is a t-matching in $L_G(n)$. Together they cover $t(r - 1)$ vertices in $[n - 1]$. Since $n \geq tr$, there exist distinct vertices $v_1, \ldots, v_{t-1} \in [n - 1]$ that are not covered by M. Since G is left-compressed, $f_1 \cup \{v_1\}, \ldots, f_{t-1} \cup \{v_{t-1}\} \in G$, which together with $f_t \cup \{n\}$, form a t-matching in G, a contradiction.

Next, suppose $r = 3$ and $\{n - 1, n\}$ is covered. Since G is left-compressed we have $\forall 2 \leq i < j \leq n, 1ij \in G$. Suppose $G[\{2, \ldots, n\}]$ contains $(t - 1)$-matching M. Then since $n \geq 3t$, $[n \setminus \{1\}$ contains two vertices j, ℓ not covered by M. Now, $M \cup \{1j\ell\}$ is a t-matching in G, a contradiction. ■

Lemma 4.15 Let $t \geq 3$. Let G be an M_3^t-free 3-graph. Let $0 < b < \frac{1}{3t-1}$. Let \bar{x} be a b-bounded feasible weight vector on G such that all but one of the components of \bar{x} are b. Then
\[\lambda(G, \bar{x}) \leq \frac{t - 1}{2}b(1 - 3b + 4b^2).\]

Proof. Suppose $V(G) = [n]$. Note that $n \geq 3t$. By Lemma 2.9 (a), we may assume that G is \bar{x}-compressed. By relabeling the vertices of G if needed we may assume that $x_1 \geq \ldots \geq x_n$ and that G is left-compressed relative to the natural order on $[n]$. By our assumption, $x_1 = \cdots = x_{n-1} = b$. Suppose $x_n = \alpha b$, where $0 < \alpha \leq 1$. By Lemma 4.14 $L(n)$ is M_3^t-free. Hence by Lemma 4.13 $|L(n)| \leq (t - 1)(n - 1)$. Let G' denote the set of edges of G not containing n. Since G' is M_3^t-free, by Lemma 4.13 $|G'| \leq (t - 1)\left(\frac{n}{2}\right)$. Hence the contribution to $\lambda(G, \bar{x})$ of edges in G containing n or not
containing \(n\) are at most \((t - 1)(n - 1)b^2 \cdot \alpha b\) and \((t - 1)\left(\frac{n - 2}{2}\right)b^3\) respectively. Note that \((n - 1)b + \alpha b = 1\). Also, on \([0, 1]\) we have \(\alpha^2 - 3\alpha + \frac{1}{4} \geq -\frac{7}{4}\). Hence

\[
\lambda(G, \bar{x}) \leq (t - 1)\left(\frac{n - 2}{2}\right)b^3 + (t - 1)\alpha(n - 1)b^3
\]

\[
= \frac{t - 1}{2}(n^2 - 5n + 6 + 2\alpha n - 2\alpha)b^3
\]

\[
= \frac{t - 1}{2}\left(n - \frac{5}{2} + \alpha\right)^2 - \left(\frac{1}{4} - 3\alpha + \alpha^2\right)b^3
\]

\[
= \frac{t - 1}{2}\left(1 - \frac{3}{2}\right)b^2 - \left(\frac{1}{4} - 3\alpha + \alpha^2\right)b^3
\]

\[
\leq \frac{t - 1}{2}\left(1 - \frac{3}{2}\right)b^2 + \frac{7}{4}b^3
\]

\[
= \frac{t - 1}{2}b\left(1 - 3b + 4b^2\right).
\]

\[
\lambda(G, \bar{x}) \leq \frac{t - 1}{2}b(1 - 3b + 6b^2).
\]

Lemma 4.16 Let \(t \geq 3\) be an integer and \(b\) a real with \(0 < b < \frac{1}{3t - 1}\). Let \(G\) be an \(M_1^3\)-free 3-graph with \(n \geq 3t\) vertices. Then

\[
\lambda_b(G) \leq \frac{t - 1}{2}b(1 - 3b + 6b^2).
\]

Proof. Suppose \(V(G) = [n]\). If no \(b\)-bounded feasible weight vector exists, then \(\lambda_b(G) = 0\) by definition and the claim holds trivially. So assume that there exist \(b\)-bounded feasible weight vectors. By Lemma 4.14 we may assume that \(G\) has an optimum \(b\)-bounded weight vector \(\bar{x}\) such that \(G\) is \(\bar{x}\)-compressed, all vertices of \(G\) have positive weights under \(\bar{x}\), and such that all pairs of vertices of weight less than \(b\) are covered in \(G\). By relabeling the vertices of \(G\) if needed we may assume that \(x_1 \geq \ldots \geq x_n > 0\) and that \(G\) is left-compressed relative to the natural order on \([n]\).

We use induction on \(t\). For the basis step, let \(t = 3\). If \(x_{n-1} = b\), then by Lemma 4.15,

\[
\lambda(G, \bar{x}) \leq b(1 - 3b + 4b^2) \leq b(1 - 3b + 6b^2).
\]

Hence, we may assume that \(x_{n-1}, x_n < b\). By our assumption, \([n - 1, n]\) is covered in \(G\). Since \(G\) is left-compressed, we have \(\forall 2 \leq i < j \leq n, \forall i < j \in G\). Let \(G' = G[\{2, \ldots, n\}]\). By Lemma 4.14 \(G'\) is \(M_2^3\)-free. Since \(x_2 + \ldots + x_n = 1 - x_1 = 1 - b\), \(\bar{y} = \frac{1}{1 - b}(x_2, \ldots, x_n)\) is a \((\frac{1}{1 - b})\)-bounded feasible weight vector on \(G'\). Let \(b' = \frac{b}{1 - b}\). Since \(b \leq \frac{1}{3t - 1}\), \(b' = \frac{b}{1 - b} \leq \frac{b}{3t - 1}\). Since \(G'\) is \(M_2^3\)-free, and \(\bar{y}\) is a \(b'\)-bounded feasible weight vector on \(G'\), by Lemma 4.12

\[
\lambda(G', \bar{x}) = (1 - b)^3\lambda(G', \bar{y}) \leq (1 - b)^3 \cdot \frac{1}{2}b'(1 - b')^2 = \frac{1}{2}(1 - b)^3 \frac{b}{1 - b} \left(\frac{1 - 2b}{1 - b}\right)^2 = \frac{1}{2}b(1 - 2b)^2.
\]

Since the total contribution to \(\lambda(G, \bar{x})\) from the edges containing 1 is at most \(\frac{1}{2}b(1 - b)^2\), we have

\[
\lambda(G, \bar{x}) \leq \frac{1}{2}b(1 - b)^2 + \frac{1}{2}b(1 - 2b)^2 = \frac{1}{2}b(2 - 6b + 5b^2) < b(1 - 3b + 6b^2).
\]

Hence the claim holds. For the induction step, let \(t \geq 4\). As before, if \(x_{n-1} = b\), then by Lemma 4.15

\[
\lambda(G, \bar{x}) \leq \frac{t - 1}{2}b(1 - 3b + 4b^2) \leq \frac{t - 1}{2}b(1 - 3b + 6b^2).
\]

18
Hence, we may assume that $x_{n-1}, x_n < b$. By our assumption, \(\{n-1, n\} \) is covered in G. Since G is left-compressed we have $\forall 2 \leq i < j \leq n, 1ij \in G$. By Lemma 4.14 $G' = G'[\{2, \ldots, n\}]$ is M_{t-1}^3-free. Since $\bar{y} = \frac{1}{1-a}(x_2, \ldots, x_n)$ is a $(\frac{b}{1-a})$-bounded feasible weight vector on G', by induction hypothesis,

$$\lambda(G', \bar{x}) = (1 - b)^3 \lambda(G', \bar{y}) \leq (1 - b)^3 \frac{t - 2}{2} \frac{b}{1 - b} \left(1 - 3 \frac{b}{1 - b} + 6 \left(\frac{b}{1 - b}\right)^2 \right) = \frac{t - 2}{2} b(1 - 5b + 10b^2).$$

Since the total contribution to $\lambda(G, \bar{x})$ from the edges containing 1 is at most $\frac{1}{2} b(1 - b)^2$, we have

$$\lambda(G, \bar{x}) \leq \frac{1}{2} b(1 - b)^2 + \frac{t - 2}{2} b(1 - 5b + 10b^2).$$

$$= \frac{1}{2} b[(t - 1) - (5t - 8)b + (10t - 19)b^2]$$

$$< \frac{t - 1}{2} b(1 - 3b + 6b^2),$$

where the last inequality can be verified using the condition that $0 < b \leq \frac{1}{3t - 1}$ and $t \geq 4$.

Theorem 4.17 Let $t \geq 2$ be an integer. There exists a positive real $c_3 = c_3(t)$ such that the following holds. If G is an L_1^t-free 4-graph then $\lambda(G) \leq \lambda(K_{3t}^4) = \frac{(3t - 1)(3t - 2)(3t - 3)}{24(3t - 1)^3}$. Furthermore, if G also covers pairs and $G \neq K_{3t}^4$, then $\lambda(G) \leq \lambda(K_{3t}^4) - c_3$.

Proof. Since we may consider a dense subgraph covering pairs, it suffices to prove the second statement. Suppose that G is on $[n]$. If $n \leq 3t$, then the result holds obviously since $G \neq K_{3t}^4$. Now suppose that $n \geq 3t + 1$. Let \bar{x} be an optimum weight vector on G. Without loss of generality, suppose that $x_1 = \max\{x_i : i \in [n]\}$. Let $a = x_1$. By Fact 2.14 we have $\lambda(G) = \frac{1}{4} \frac{\partial \lambda}{\partial x_1}$. So it suffices to prove that

$$\frac{\partial \lambda}{\partial x_1} \leq \frac{(3t - 1)(3t - 2)(3t - 3)}{6(3t - 1)^3} - c_3$$

for some positive real $c_3 = c_3(t)$. Since G is L_1^t-free, $L(1)$ is an M_t^3-free 3-graph. Since G covers pairs, $L(1)$ is a 3-graph on $[n] \setminus \{1\}$ that contains no isolated vertex. Since G covers pairs and $n \geq 3t + 1$, by Lemma 4.2 $K_{3t - 1}^3 \not\subseteq L(1)$. Let $\bar{y} = \frac{1}{1-a}(x_2, \ldots, x_n)$. Then \bar{y} is an $(\frac{a}{1-a})$-bounded feasible weight vector on $L(1)$. We consider two cases.

Case 1. $a \geq \frac{1}{3t}$.

Since $L(1)$ is M_t^3-free, $L(1) \neq K_{3t-1}^3$ and has no isolated vertex, by Theorem 3.3

$$\lambda(L(1), \bar{y}) \leq \lambda(K_{3t-1}^3) - c_1 = \frac{(3t - 1)(3t - 2)(3t - 3)}{6(3t - 1)^3} - c_1.$$

Hence the claim holds by setting $c_3 = c_1$.

Case 2. $a < \frac{1}{3t}$.

Let $b = \frac{a}{1-a}$. Then $b < \frac{1}{3t - 1}$. By Lemma 4.10 we have

$$\frac{\partial \lambda}{\partial x_1} = (1 - a)^3 \lambda(L(1), \bar{y}) \leq (1 - a)^3 \frac{t - 1}{2} b(1 - 3b + 6b^2).$$

Substituting $b = \frac{a}{1-a}$ and simplifying we get

$$\frac{\partial \lambda}{\partial x_1} \leq (t - 1)a(5a^2 - \frac{5}{2}a + \frac{1}{2}).$$
Let \(f(a) = 5a^3 - \frac{1}{2}a^2 + \frac{1}{2}a \). Note that \(f'(a) > 0 \) always. So \(f(a) \) is increasing. Since \(a < \frac{1}{3t} \), we have
\[
\frac{\partial \lambda}{\partial x_1} \leq (t-1)f\left(\frac{1}{3t}\right) = \frac{(t-1)(9t^2 - 15t + 10)}{2(3t)^3} < \frac{(t-1)(3t-1)(3t-2)}{2 \cdot (3t)^3} - c_3 = \frac{(3t-1)(3t-2)(3t-3)}{6(3t)^3} - c_3,
\]
for \(t \geq 2 \) and sufficiently small positive real \(c_3 = c_3(t) \).

Corollary 4.18 \(\pi_\lambda(L_4^4) = 3! \lambda(K_{3,3}^4) = \frac{303}{20} \).

By Theorem 4.17, Corollary 4.18, Corollary 3.10, and Theorem 3.7, we get the following result.

Theorem 4.19 Let \(t \geq 2 \) be an integer. Then \(\text{ex}(n, H_{3t}^{4,4}) = t_{3t}^4(n) \) for sufficiently large \(n \). Moreover, if \(n \) is sufficiently large and \(G \) is an \(H_{3t}^{4,4} \)-free 4-graph on \(n \) vertices with \(|G| = t_{3t}^4(n) \) edges, then \(G = T_{3t}^4(n) \).

5 Concluding remarks

Another natural way to extend the Hefetz-Keevash result in [7] is to establish the maximum Lagrangian of an \(r \)-uniform intersecting family for \(r \geq 4 \), i.e. to determine the Lagrangian density of \(M_2^r \), for \(r \geq 4 \). The situation there is quite different from the \(r = 3 \) case. Hefetz and Keevash [7] conjectured that the maximum Lagrangian of an \(r \)-uniform intersecting family is achieved by a feasible weight vector on the star \(\{1ij : 2 \leq i < j \leq n \} \). This conjecture was recently confirmed for all \(r \geq 4 \) by Norin, Watts, and Yepremyan [13], who determined the Lagrangian density of \(M_2^r \) as well as the stability of the related Turán problem. For the stability part of their result, see also [22]. Independently, Wu, Peng, and Chen [21] had also confirmed the Hefetz-Keevash conjecture for \(r = 4 \).

References

[1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, *Disc. Math.* 8 (1974), 21-24.

[2] A. Brandt, D. Irwin, and T. Jiang, Stability and Turán numbers of a class of hypergraphs via Lagrangians, *Combin., Probab. & Comput.*, to appear (see also arXiv:1510.03461).

[3] P. Frankl, Extremal set systems, in *Handbook of Combinatorics*, Amsterdam, Elsevier, 1995, pp 1293-1329.

[4] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, *Combinatorica* 3 (1983), 341-349.

[5] P. Frankl, Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, *J. Combin. Theory Ser. A.* 52(1989), 129–147.

[6] P. Frankl, V. Rödl, Hypergraphs do not jump, *Combinatorica* 4 (1984), 149–159.
[7] D. Hefetz and P. Keevash, A hypergraph Turán theorem via Lagrangians of intersecting families, *J. Combin. Theory Ser. A* 120 (2013), 2020–2038.

[8] D. Mubayi, A hypergraph extension of Turán’s theorem, *J. Combin. Theory Ser. B* 96 (2006), 122–134.

[9] D. Mubayi and O. Pikhurko, A new generalization of Mantel’s theorem to k-graphs, *J. Combin. Theory Ser. B* 97 (2007), 669–678.

[10] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of graphs, *Mat. Lapok* 15 (1964), 228–238.

[11] P. Keevash, Hypergraph Turán problems, *Surveys in Combinatorics*, Cambridge University Press, (2011), 83–140.

[12] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, *Canad. J. Math* 17 (1965), 533–540.

[13] S. Norin, A. Watts, L. Yepremyan, personal communications.

[14] S. Norin, L. Yepremyan, Turán numbers of generalized triangles, [arXiv:1501.01913v1](https://arxiv.org/abs/1501.01913v1).

[15] S. Norin, L. Yepremyan, Turán numbers of extensions, [arXiv:1510.04689](https://arxiv.org/abs/1510.04689).

[16] O. Pikhurko, An exact Turán result for the generalized triangle, *Combinatorica* 28 (2008), 187–208.

[17] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, *J. Combin. Th. Ser. B* 103 (2013), 220-225.

[18] A.F. Sidorenko, On the maximal number of edges in a homogeneous hypergraph that does not contain prohibited subgraphs, *Mat. Zametki* 41 (1987), 433-455.

[19] A.F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, *Combinatorica* 9 (1989), 207–215.

[20] J. Talbot, Lagrangians of hypergraphs, *Combin., Probab. & Comput.* 11 (2002), 199–216.

[21] B. Wu, Y. Peng, P. Chen, On a conjecture of Hefetz and Keevash on the Lagrangian density of intersecting hypergraphs, manuscript.

[22] L. Yepremyan, Ph.D. dissertation, McGill University, 2016.

[23] A. A. Zykov, On some properties of linear complexes, *Mat. Sbornik, (N. S.)* 24 (66) (1949), 163–188.