Generalized hypergeometric series for Racah matrices in rectangular representations

A. Morozov

ITEP, Moscow 117218, Russia
Institute for Information Transmission Problems, Moscow 127994, Russia
National Research Nuclear University MEPhI, Moscow 115409, Russia

ABSTRACT

One of spectacular results in mathematical physics is the expression of Racah matrices for symmetric representations of the quantum group SU_q(2) through the Askey-Wilson polynomials, associated with the q-hypergeometric functions 4φ3. Recently it was shown that this is in fact the general property of symmetric representations, valid for arbitrary SU_q(N) – at least for exclusive Racah matrices \bar{S}. The natural question then is what substitutes the conventional q-hypergeometric polynomials when representations are more general? New advances in the theory of matrices \bar{S}, provided by the study of differential expansions of knot polynomials, suggest that these are multiple sums over Young sub-diagrams of the one, which describes the original representation of SU_q(N).

A less trivial fact is that the entries of the sum are not just the factorized combinations of quantum dimensions, as in the ordinary hypergeometric series, but involve non-factorized quantities, like the skew characters and their further generalizations – as well as associated additional summations with the Littlewood-Richardson weights.

1 Introduction

Racah matrices [1] describe the deviation from associativity in the product of representations and they play a prominent and increasing role in modern quantum field and string theory. Despite in many cases we need these quantities for sophisticated representations of infinite-dimensional algebras, they are still far from being well known even for the simplest quantum algebras SU_q(N). In these simple cases Racah matrices are responsible for at least two subjects of primary importance: modular transformations of conformal blocks [2] in 2d conformal field theory [3] and for calculation of knot invariants [4] (knot polynomials) in 3d Chern-Simons theory [5]. Part of the problem is that Racah matrices are actually maps, and explicit formulas are available in particular bases – what often makes these formulas non-invariant (this is often referred to as the multiplicity problem), and thus not-very-interesting for pure mathematicians. Thus the progress in the field is largely due to physical methods and inspirations – while the rigorous presentation awaits the completion of the phenomenological part of the story.

In the present paper we open one more new chapter of this exciting mystery-book: the relation between Racah matrices and hypergeometric orthogonal polynomials of the Askey-Wilson type [6]. Recently we reviewed the subject from the point of view of orthogonal polynomials [7], and now we approach it again from the Racah matrix side – with the natural question: what generalizes hypergeometric series if we switch from symmetric to generic representations of SU_q(N).

As the first step we demonstrated in [8] that exclusive Racah matrices $\bar{S}^R_{\mu\nu\tau}$,

$$(R \otimes \bar{R}) \otimes R \longrightarrow \bar{R} \quad \bar{S} \quad \left(R \otimes (\bar{R} \otimes R) \longrightarrow R \right)$$

needed for arborescent knot calculus of [9], in the case of symmetric representations $R = [r]$ are expressed through the hypergeometric Racah/Askey-Wilson polynomials for arbitrary algebra SU_q(N) (for $N = 2$ this is the classical result).

Not surprisingly, similar formulas follow from the general \bar{S}-calculus of [10]–[16]. Since this calculus is applicable to arbitrary representations R, and is especially well understood for rectangular $R = [r^*]$, this opens a possibility to generalize the hypergeometric realization. Relevant substitute of the hypergeometric series in this case are sums over Young diagrams with the entries made from the skew characters of su_q(N).

We begin from reminding the general ideas of \bar{S}-calculus in sec.2 and then describe in sec.3 what is currently known about the structure of the underlying F-functions and their relation [13] to skew Schur polynomials. After
that in secs. 4 and 5 we explain what happens in symmetric representations \(R = [r] \) and how the Askey-Wilson realization arises for them in this context. We conclude in sec. 6 with the suggestion that the formulas in sec. 2 are exactly the ones, which provide the extension of Askey-Wilson realization from symmetric to rectangular representations. Non-rectangular case is also straightforward, but there are still some technical difficulties to be resolved to handle non-trivial multiplicities – the most interesting part of both Racah and arborescent calculi. We refer to [15, 16] for explanations and leave non-rectangular case for the future considerations.

2 Factorization of differential expansion for double braids

According to [10, 11] and [12, 13] the rectangularly-colored HOMFLY for a double braid \((m, n)\)

\[
\frac{\chi^\ast_{\lambda}(N) = \text{Schur}\left\{ p_k = \frac{[Nk]}{[k]} \right\}}{h_\lambda = \prod_{(\alpha,\beta) \in \lambda} [\text{hook length}(\alpha,\beta)] = \prod_{(\alpha,\beta) \in \lambda} [\text{leg}(\alpha,\beta) + \text{arm}(\alpha,\beta) + 1]}
\]

is given by a factorized differential expansion [17]-[19]:

\[
H_{R}^{(m,n)} = \sum_{\mu,\nu \subseteq R} \frac{\sqrt{D_{\mu}D_{\nu}}}{d_{\mu}} S_{\mu \nu}^R \Lambda^m_{\mu} \Lambda^n_{\nu} = \sum_{\lambda \subseteq R} \chi^\ast_{\lambda}(r)\chi^\ast_{\lambda}(s) \cdot \{q\}^{2|\lambda|} h^2_\lambda \chi^\ast_{\lambda}(N + r)\chi^\ast_{\lambda}(N - s) \cdot \frac{F_{\lambda}^{(m)}F_{\lambda}^{(n)}}{F_{\lambda}^{(1)}F_{\lambda}^{(1-1)}}
\]

(1)

Here \(\{x\} = x - x^{-1} \), quantum numbers are \([n] = \{q^n\} \) and \(h_\lambda \) is denominator in

\[
\chi^\ast_{\lambda}(N) = \text{Schur}\left\{ p_k = \frac{[Nk]}{[k]} \right\} = \frac{1}{h_\lambda} \prod_{(\alpha,\beta) \in \lambda} [N + \alpha - \beta]
\]

(2)

given by the hook formula:

For the figure-eight knot 4_1 parameters are \((m, n) = (1, -1)\), and the last factor (the ratio of four \(F \)) is absent. Generic twist knots correspond to \(n = 1 \), and, since actually \(F_{\lambda}^{(-1)} = 1 \) the last ratio turns into just \(F_{\lambda}^{(m)} \).

The difference between knot and Racah calculi is that for the latter one we need not the \(F_{\lambda}^{(m)} \) as a total for a given \(m \), but its decomposition into particular eigenvalues, dictated by the evolution method of [20] and [18]. Among other things this eliminates the factor \(\{q\}^{2|\lambda|}h_\lambda \) from the expression for \(S \), making it from just the characters \(\chi^\ast \) at the topological locus [20] (quantum dimensions) with a small admixture of additional quantum-number factors.

\(F_{\lambda}^{(m)} \) are actually sums over \(m \)-the powers of the squared ”eigenvalues” \(\Lambda^m_{\mu} \), where \(\mu \) are Young sub-diagrams of \(\lambda \) – and according to [11] one can read from this eigenvalue expansion the Racah matrices \(S_{\mu \nu}^R \). According
to [13] the coefficients of the F expansion are essentially the skew characters \(\chi_{\lambda/\mu} = \sum \nu C_{\mu\nu}^{\lambda} \chi_\nu \) with the Littlewood-Richardson coefficients \(C_{\mu\nu}^{\lambda} \), defined from \(\chi_\mu \chi_\nu = \sum \lambda C_{\mu\nu}^{\lambda} \chi_\lambda \).

Eq.(1) and the general formula for F-expansion in [13] implies for the case of rectangular representation \(R = [r^s] \) with \(s \leq 2 \) that

\[
\sum_{\mu,\nu \subseteq \lambda \subseteq r} \frac{(-1)^{|\lambda|} \chi_\lambda^{(s)}(r) \chi_\lambda^{(s)}(s) \chi_\lambda^{(s)}(N + r) \chi_\lambda^{(s)}(N - s)}{\chi_\lambda^{(s)}(N)^2} \frac{C_{\mu/\nu}^{\lambda} \chi_{\mu/\nu}^{(s)}(N_{\mu/\nu}) \chi_{\mu/\nu}^{(s)}(N_{\mu/\nu}) \chi_{\mu/\nu}^{(s)}(N_{\mu/\nu}) \chi_{\mu/\nu}^{(s)}(N_{\mu/\nu})}{\chi_\lambda^{(s)}(N)} \chi_\lambda^{(s)}(N)
\]

(4)

where \(N_{\mu/\nu} = N + \sum i - \sum j - \lambda \)-dependent shift for the hook-parametrization [11] of \(\mu = (i_1, j_1 | i_2, j_2 | \ldots) \) and \(C_{\mu/\nu}^{\lambda} \) are some factorized quantities: ratios of quantum numbers \([N + u] \) with various shifts \(u \), also described in terms of the hook parameters \(\{i, j\} \) for \(\mu \) and \(\{a, b\} \) for \(\lambda \). As to \(D_{\mu} \) at the l.h.s., they are dimensions of representations, appearing in decomposition of the product \(R \otimes \bar{R} \) – for which rectangular \(R \) are in one-to-one correspondence with the Young sub-diagrams of \(R \) [12].

3 F-functions and G-factors

According to [11] and [13] the F-functions are best described in a peculiar hook parametrization of Young diagrams:

![Diagram of a 3-hook Young diagram](image)

\(a_1, a_2, a_3 \)
\(b_1, b_2, b_3 \)

The main drawback of this parametrization is that it changes discontinuously with the number of hooks: the empty diagram \(\emptyset \) is not a particular case of any 1-hook diagram \((a_1, b_1) \), of which the minimal is \([1] = (0, 0) \) and so on. Formally one could associate \(\emptyset \) with \(a_1 + b_1 = -1 \), but this is not quite respected by the formulas. Because of this one needs to write

\[
F^{(m)}(A, q) = \sum \frac{c_\lambda}{\{q\} |\lambda| h_\lambda \cdot \chi_\lambda(N)} \sum_{\mu \subseteq \lambda} f_\mu(N, q) \cdot \Lambda_\mu^m
\]

(5)

with different expressions for different hook numbers \(\#^h \). The F-functions depend explicitly on \(A = q^N \) and \(q \), but mostly are made from the quantum numbers, involving \(N \). The only exceptions are the squared eigenvalues

\[
\Lambda_\mu = \Lambda_{(i_1, j_1 | i_2, j_2 | \ldots)} = \prod_{k=1}^{\#^h} (A \cdot q^{i_k - j_k})^{2(i_k + j_k + 1)}
\]

(6)

and the overall coefficients

\[
c_\lambda = c_{(a_1, b_1 | a_2, b_2 | \ldots)} = \prod_{k=1}^{\#^h} (A \cdot q^{a_k - b_k})^{(a_k + b_k + 1)}
\]

(7)

Both, however, drop away from the expression (1) for the Racah matrix \(\tilde{S}^R - \Lambda_\mu \) because \(\tilde{S}_{\mu\nu}^R \) are coefficients of the A-expansion and \(c_\lambda \) because of cancellations, dictated by the properties:

\[
F^{(-1)}_\lambda = 1, \quad F^{(0)}_\lambda = \delta_{\lambda, \emptyset}, \quad F^{(1)}_\lambda = (-)^{\#^h (a_k + b_k + 1)} c_\lambda^2
\]

(8)

which are responsible for the simplicity of the differential expansion [17]-[19] at the r.h.s. of (1) for respectively the figure-eight knot \(4_1 \), unknot and the trefoil \(3_1 \). As already mentioned after (1), the factors \(\{q\} \) and \(h_\lambda \) also drop away from the expressions for HOMFLY polynomials and \(\tilde{S} \).
The sum rules (8) are non-trivial analogues of the elementary identity
\[
\sum_{\mu \subseteq \lambda} (-1)^{|\mu|} \cdot \chi_{\lambda/\mu} \cdot \chi_{\mu^{tr}} = \delta_{\lambda,\emptyset}
\]
(9)
which follows from the defining property of skew characters,
\[
\sum_{\mu \subseteq \lambda} \chi_{\lambda/\mu} \{p'_k\} \cdot \chi_{\mu^{tr}} \{p''_k\} = \chi_{\lambda} \{p'_k + p''_k\}
\]
(10)
and the transposition law
\[
\chi_{\mu} \{-p_k\} = (-1)^{|\mu|} \chi_{\mu^{tr}} \{p_k\}
\]
(11)
While (9) holds beyond the topological locus (i.e. for all values of time variables), it does not survive introduction of weights $A^{\pm 1}$ even on the locus, i.e. there is no analogue of the other two identities in (8).
The difficult part of the story is to describe f^0_{λ} which satisfy all the three. Currently they are fully known for $\lambda = (a_1, b_1(a_2, 0)$ what is enough to get the Racah matrices S for the case $R = [r, r]$ (actually, for this purpose $b_1 = 0, 1$ is sufficient). After (9) it is not such a big surprise that they involve skew characters, but exact formulas [11,13] are still not very easy to interpret and understand.
• For the empty diagram μ always
\[
f^0_{\emptyset} = 1
\]
(12)
• Since $\mu \subseteq \lambda$ the number of hooks $#^h_{\mu} \leq #^h_{\lambda}$. Thus for the single-hook λ it remains to describe only the contributions of the single-hook μ. These are relatively simple factorized expressions [11]:
\[
f^{i,j}_{(a,b)} = g^{i,j}_{(a,b)} \cdot K^{i,j}_{(a,b)} = (-)^{i+j+1} \cdot \frac{[a]!}{[a-i][i]!} \cdot \frac{[b]!}{[b-j][j]!} \cdot \frac{[a + b + 1]}{[i + j + 1]} \cdot \frac{D_{a}!D_{a+i+1}!}{D_{a+i+j+1}!} \cdot \frac{\tilde{D}_{j}!\tilde{D}_{j+i+1}!}{D_{b+j+1}!D_{b-j-1}!} \frac{D_{2a+1}D_{2a+1-j}}{D_{0}D_{1-j}}
\]
(13)
with
\[
g^{i,j}_{(a,b)} = (-)^{i+j+1} \frac{D_{2a+1}D_{2a+1-j}}{D_{0}D_{1-j}} \frac{(D_{a})^2}{D_{a+i+j+1}!D_{a-i-1}!} \frac{(\tilde{D}_{j})^2}{D_{b+j+1}!D_{b-j-1}!}
\]
and
\[
K^{i,j}_{(a,b)} = \frac{\chi^{a,b}_{\lambda/\mu}(N)}{\chi^a_{\lambda}(N)}
\]
(15)
Note that this combination involves χ_{μ} rather than $\chi_{\mu^{tr}}$, thus $\sum_{\mu \subseteq \lambda} (-1)^{|\mu|} K^{i,j}_{\lambda} \neq 0$ (in fact, it vanishes, but only for diagrams λ of odd size $|\lambda| = odd$, because $(-)^{|\mu|} \chi_{\mu}(p_k) = \chi_{\mu}((-)^k p_k)$, i.e. only odd times change sign).
Notation in (14) is: $D_{a} = [N + a]$, $D_{b} = [N - b]$ and $D_{a}! = \prod_{k=0}^{a} D_{k} = \frac{[N+a]!}{[N-a]!}$ and $D_{b}! = \prod_{k=0}^{b} \tilde{D}_{k} = \frac{[N]!}{[N-b-1]!}$ (note that these products start from $k = 0$ and include respectively $a + 1$ and $b + 1$ factors).
• For two-hook $\lambda = (a_1, b_1(a_2, b_2)$ the formulas are far more involved, and they are different for different number of hooks in μ:
\[
f^{i_1,j_1}_{(a_1,b_1)} \cdot g^{i_1,j_1}_{(a_1,b_1)} = g^{i_1,j_1}_{(a_1,b_1)} \cdot K^{i_1,j_1}_{(a_1,b_1)}(N) \cdot \xi^{i_1,j_1}_{(a_1,b_1)}(N)
\]
(16)
\[
f^{i_2,j_2}_{(a_2,b_2)} = \frac{[N + i_1 + i_2 + 1][N - j_1 - j_2 - 1]}{[N + i_1 - j_2][N + i_2 - j_1]} \cdot g^{i_2,j_2}_{(a_2,b_2)} \cdot K^{i_2,j_2}_{(a_2,b_2)}(N) \cdot \xi^{i_2,j_2}_{(a_2,b_2)}(N)
\]
(17)
Non-trivial are the correction factors:
\[
\xi^{i_1,j_1}_{(a_1,b_1)}(N) = \left[\frac{[N + a_2 - j_1][N - b_2 + i_1]}{[N + a_2 + i_1 + 1][N - b_2 - j_1 - 1]} \cdot \frac{K^{i_1,j_1}_{(a_1,b_1)}(N + i_1 - j_1)}{K^{i_1,j_1}_{(a_1,b_1)}(N)} \cdot \delta_{i_1,j_1-0} \right] + \frac{K^{i_1,j_1}_{(a_1,b_1)}(N + i_1 + 1, b_2)}{K^{i_1,j_1}_{(a_1,b_1)}(N + i_1 + 1, b_2)} \cdot \left[\frac{(1 - \delta_{i_1,0})(1 - \delta_{j_1,0})}{(1 - \delta_{a_2,0})(1 - \delta_{b_2,0})} \right] + \frac{K^{i_1,j_1}_{(a_1,b_1)}(N + i_1 + 1, b_2)}{K^{i_1,j_1}_{(a_1,b_1)}(N + i_1 + 1, b_2)} \cdot \left[\frac{(1 - \delta_{i_1,0})(1 - \delta_{j_1,0})}{(1 - \delta_{a_2,0})(1 - \delta_{b_2,0})} \right]
\]
(18)
and
\[
\xi^{i_2,j_2}_{(a_2,b_2)}(N) = \left[\frac{[N + i_2 + 2][N - j_2 + 2]}{[N + i_2 - 1][N + j_2 - 1]} \cdot \frac{K^{i_2,j_2}_{(a_2,b_2)}(N + i_2 + 2, b_2)}{K^{i_2,j_2}_{(a_2,b_2)}(N + i_2 + 2, b_2)} \cdot \delta_{b_2,0} \right] + \frac{K^{i_2,j_2}_{(a_2,b_2)}(N + i_2 + 2, b_2)}{K^{i_2,j_2}_{(a_2,b_2)}(N + i_2 + 2, b_2)} \cdot \left[\frac{(1 - \delta_{b_2,0})(1 - \delta_{a_2,0})}{(1 - \delta_{a_2,0})(1 - \delta_{b_2,0})} \right]
\]
(19)
Note that we provide expressions only for the case when \(a_2 \cdot b_2 = 0 \) (i.e. when either \(b_2 = 0 \) or \(a_2 = 0 \)), what is emphasized by boxes in above formulas. Sufficient for all the simplest non-symmetric rectangular representations \(R = [r, r] \) and \(R = [2r] \) are respectively \(b_2 = 0 \) and \(a_2 = 0 \). Note also, that \(K \) factorizes nicely for the single-hook diagrams \(\lambda \):

\[
K^{(i,j)}_{(a,b)}(N) = \frac{\chi^{(i,j)}_{(a,b)}(N) \cdot \chi^{(i,j)}_{(a,b)}(N)}{\chi^{(a,b)}_{(a,b)}(N)} = \frac{[a]! \cdot [b]! \cdot [a+b+1] \cdot \ldots \cdot [N]}{\ldots \cdot [N+j+1] \cdot [a+b-i] \cdot \ldots \cdot [N-i]} \cdot \frac{[N+i]!}{[N-j-1]!} \cdot \frac{[N+a-i-1]!}{[N+a]!} \cdot \frac{[N-b-1]!}{[N-b+j]!}.
\]

(19)

but does not do so for the two-hook \(\lambda \), even if \(\mu \) is still a single-hook, like in (18), e.g.

\[
K^{(1,1)}_{(3,1,1,0)}(N) \sim \chi^{(1,1)}_{(3,1,1,0)}(N) = \chi^{(1,1)}_{(3,1,1)}(N) + \chi^{(1,1)}_{(2,2)}(N) \sim A^2 q^8 + 2 A^2 q^6 + A^2 q^4 + A^2 q^2 - q^6 - q^4 - 2 q^2 - 1 \sim [3][2][N+2] + [4][N] \sim [2][N+2] + [N-2]
\]

(20)

Therefore there seems to be no freedom to change the somewhat mysterious shifts of \(N \) in these formulas.

In the case of \(a_2 \cdot b_2 \neq 0 \) skew characters are further deformed into still more complicated quantities [14], which still lack a proper identification.

4 Symmetric representations

For symmetric representations \(R = [r] \) with \(s = 1 \) we obtain from (1), by recursively substituting (5), (13), (14) and (19):

\[
\bar{a}_{\mu}^{[r]} = d_r \cdot \frac{[\mu]![\nu]![N-1]![N-2]!}{[N+\mu-2]![N+\nu-2]!} \cdot \sum_{\mu, \nu \leq \lambda \leq r} (-)^\lambda \frac{[\lambda]!}{[\lambda-\mu]!}[\lambda-\nu]! \cdot \frac{[N+r+\lambda-1]![N+\lambda-2]!}{[N+\lambda+\mu-1]![N+\lambda+\nu-1]!} = \frac{[r]!}{[\mu]![\nu]!} \cdot \chi^r_\mu(N)^2 \cdot \chi^r_\nu(N)^2 \cdot \sum_{\lambda = \max(\mu, \nu)} r \frac{(-)^\lambda [\lambda]!}{[\lambda-\mu]!}[\lambda-\nu]! \chi^r_\lambda(N+r) \chi^r_\lambda(N-1) \cdot \frac{\chi^r_\lambda(N+\mu) \chi^r_\lambda(N+\nu)}{\chi^r_\lambda(N+\mu) \chi^r_\lambda(N+\nu)}
\]

(21)

where used are also explicit expression for dimensions

\[
D_\mu = [N+2\mu-1][N-1] \left(\frac{[N+\mu-2]!}{[\mu]![N-1]!} \right)^2
\]

(22)

of representations in \(R \otimes \bar{R} = [r] \otimes [r]^{N-1} = \oplus_{\mu=0}^r [r+\mu, r^{N-2}, r-\mu] = \oplus_{\mu=0}^r [2\mu, \mu^{N-2}] \) to convert the original \(\sqrt{D_\mu D_\nu} \bar{S}_{\mu}^{[r]} \) into \(\bar{a}_{\mu}^{[r]} = (-)^{\mu+\nu} \frac{d}{\sqrt{D_\mu D_\nu}} \bar{S}_{\mu}^{[r]} \).

This expression is partly in terms of quantum dimensions \(\chi^r_\lambda \) and does contains neither skew characters, nor shifts. The only thing which reminds that the skew characters are somehow behind the scene is the presence of factorials \([\lambda-\mu]! [\lambda-\nu]! \) in denominator. Of course, it is possible to make this explicit, by rewriting (21) in the form (4):

\[
\bar{a}_{\mu}^{[r]} = \frac{1}{\chi^r_\mu(N-1) \chi^r_\mu(N-1)} \cdot \sum_{\lambda = \max(\mu, \nu)} r \frac{(-)^\lambda [\lambda]!}{[\lambda-\mu]!}[\lambda-\nu]! \cdot \frac{[N-1]!}{[\lambda-\mu]!}[\lambda-\nu]! \cdot \frac{\chi^r_{\lambda-\mu}(N+\mu) \chi^r_{\lambda-\mu}(N+\nu)}{\chi^r_\lambda(N+\mu) \chi^r_\lambda(N+\nu)}
\]

with relatively simple shifts \(N^{[\lambda]}_{[\mu]} = N+\mu-1 \), which are independent of \(\lambda \), and \(G \)-factors \(G^{[r]}_{[\lambda]} = (-)^\mu \frac{[N+\lambda-1]!(N+\mu-1)}{[N+\lambda+\mu-1](N+\mu-1)} \).

Example of \(R = [1] \):

In we denote the combination in the box in the last formula through \(B_\lambda \), then

\[
\bar{a}^{[1]} = \begin{pmatrix}
\frac{1}{\chi_0(N-1) \chi_0(N-1)} \cdot \frac{B_0 \chi_0(N) \chi_0(N) \chi_0(N) \chi_0(N) \chi_0(N)}{\chi_0(N-1) \chi_0(N-1)} & \frac{1}{\chi_0(N-1) \chi_0(N-1)} \cdot \frac{B_1 \chi_0(N+1) \chi_0(N+1) \chi_0(N+1) \chi_0(N+1) \chi_0(N+1)}{\chi_0(N-1) \chi_0(N-1)}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{\chi_1(N-1) \chi_1(N-1)} \cdot \frac{B_0 + B_1}{\chi_1(N-1) \chi_1(N-1)} & \frac{1}{\chi_1(N-1) \chi_1(N-1)} \cdot \frac{B_1}{\chi_1(N-1) \chi_1(N-1)}
\end{pmatrix}
\]

(23)
with \(B_1 = -[N + 1][N - 1] \) and \(B_0 = [N]^2 \).

After multiplication by \(\frac{(-)^{r+\ell}}{d_{[\ell]}} \sqrt{D_0 D_1} \) with \(D_0 = 1, D_1 = [N + 1][N - 1] \) and \(d_{[\ell]} = [N] \) this gives the unitary symmetric Racah matrix

\[
\tilde{S}^{[\ell]}_1 = \frac{1}{[N]}
\begin{pmatrix}
1 & \sqrt{[N + 1][N - 1]} \\
\sqrt{[N + 1][N - 1]} & -1
\end{pmatrix}
\]

(24)

Example of \(R = [2] \):

Similarly, in this case

\[
\begin{pmatrix}
\frac{B_0 x_0(N)(N)(N - 1)}{x_0(N)(N)(N - 1)} + \frac{B_1 x_0(N)(N)(N - 1)}{x_1(N)(N + 1)(N + 2)} + \frac{B_2 x_0(N)(N)(N - 1)}{x_2(N)(N + 2)(N + 3)} & x_0(N)(N + 1)(N + 1)\chi_1(N+1,N+1) + \frac{B_2 x_0(N)(N)(N - 1)}{x_2(N)(N + 2)(N + 3)} \\
x_1(N)(N + 1)(N + 1)\chi_1(N+1,N+1) + \frac{B_2 x_0(N)(N)(N - 1)}{x_2(N)(N + 2)(N + 3)} & x_0(N)(N)(N) + \frac{B_2 x_0(N)(N)(N - 1)}{x_2(N)(N + 2)(N + 3)}
\end{pmatrix}
\]

with \(B_0 = [N]^2, B_1 = -[N + 2][N - 1][N - 1][N - 1] \) and \(B_2 = [N - 1][N - 2][N - 1][N - 1] \).

Multiplication by \(\frac{(-)^{r+\ell}}{d_{[\ell]}} \sqrt{D_0 D_1} \) with \(D_0 = 1, D_1 = [N + 1][N - 1], D_2 = [N + 2][N - 1][N - 1] \) and \(d_{[2]} = [N][N - 1][N - 1][N - 1][N - 1] \) provides the unitary symmetric Racah matrix

\[
\tilde{S}^{[2]}_2 = \frac{[2]}{[N + 1][N]}
\begin{pmatrix}
\frac{1}{\sqrt{[N + 1][N - 1]}} & \frac{\sqrt{[N + 1][N - 1]}}{[N + 1][N - 1][N - 1][N - 1][N - 1]} \\
\frac{\sqrt{[N + 1][N - 1]}}{[N + 1][N - 1][N - 1][N - 1][N - 1]} & \frac{[N][N + 1][N - 1]}{[N + 3][N + 1][N + 1]}
\end{pmatrix}
\]

(26)

5 Hypergeometric series

Coming back to (21), one can make a change of summation variable \(\lambda = r - k \) to get a factorial \([k]!\) in the denominator. Then the sum turns into

\[
\sigma_{\mu \nu}^{[r]} = \frac{1}{\chi_\mu(N - 1)\chi_\nu(N - 1)} \sum_{k=0}^{\min(r - \mu, r - \nu)} (-)^{r - k} \frac{[r - k]!}{[r - \mu - k]!(r - \nu - k)!} \frac{[N + 2r - 1 - k]!(N + r - 2 - k)!}{[N + r + \mu - 1 - k]!(N + r + \nu - 1 - k)!} \sum_{k=\max(\mu, \nu)}^{\min(r, \mu + \nu)} (-)^{k} \frac{[k - \mu]!(k - \nu)!}{[r + \mu + N - 1]!(r + \nu + N - 1)!} \frac{[k + N + r - 1]!}{[k + N + r - 1]!(k + N + r - 1)!(k + N + r - 1)!}
\]

(27)

what is proportional to the \(q \)-hypergeometric polynomial

\[
\phi_{3} \left(\begin{array}{c}
\mu - r, \nu - r, 1 - N - r - \mu, 1 - N - r - \nu \\
-\mu - r, 2 - r - N, 2 - r - N
\end{array} \middle| z = q^2 \right)
\]

(28)

This looks different but is actually equivalent to the result of [8] for the same \(\dot{\sigma}_{\mu \nu}^{[r]} \):
\[4 \phi_3 \left(1 - 2r - N, \mu + r - \nu - r, \mu - r, \nu - r \mid z = q^2 \right) \] (29)

Note that (21) and (27) contain just five factorials in denominator, instead of seven in the first line of (29), which are usual in the standard formulas for SU_q(2) Racah matrices.

We remind [7] that in the balanced case, i.e. for \(\alpha_1 + \ldots + \alpha_{p+1} + 1 = \beta_1 + \ldots + \beta_p \), hypergeometric series are expressed through quantum numbers and

\[\sum_{n} \frac{[\alpha + n - 1]! \ldots [\alpha_{p+1} + n - 1]! \beta_1 - 1]! \ldots [\beta_p - 1]!}{[\alpha_1 - 1]! \ldots [\alpha_{p+1} - 1]! [\beta_1 + n - 1]! \ldots [\beta_p + n - 1]! [n]!} \sim \sum_{k} \frac{[-\beta_1 - n]! \ldots [-\beta_p - k]!}{[-\alpha_1 - k]! \ldots [-\alpha_{p+1} - k]! [k]!} \] (30)

6 Conclusion

In this sense (4) can be considered as the generalization of the q-hypergeometric polynomials, which is relevant for description of generic Racah matrices, at least in rectangular representations. In non-rectangular case some sub-diagrams \(\lambda \in R \) appear with non-trivial multiplicities and contribute additional terms into this expansion, see [15,16] for more details.

In general the elements of Racah matrix \(S^{[\mu,\nu]}_{[\lambda,\rho]} \) are expressed through quantum numbers, but are not factorized – for two reasons: because of the sum over sub-diagrams \(\lambda \in R \) and because the items in the sum are made not just from the nicely-factorized quantum dimensions \(\chi^s_{\lambda}, \chi^s_{\mu}, \chi^s_{\nu} \), but also from the skew characters \(\chi^s_{\lambda/\mu} \) and \(\chi^s_{\lambda/\nu} \) and their further generalizations, like (23) and (31) in [14], which do not have this factorization property. For \(R = [r,r] \) one can alternatively represent \(S \) as a triple sum with the Littlewood-Richardson weights

\[S^{[\mu,\nu]}_{[\lambda,\rho]} = \sum_{\mu', \nu', \rho, \lambda \in [r,r]} C^{\lambda}_{\mu \mu'} C^{\lambda}_{\nu \nu'} B_{\mu \nu'}^{\lambda \rho} \] (31)

then \(B_{\mu \nu'}^{\lambda \rho} \) will be factorized combinations of quantum numbers, but the number of sums seem to grow further for \(R = [r^s] \) with \(s \geq 3 \) [14].

Specifics of symmetric representations is that for them the skew characters \(\chi^s_{\lambda/[\mu]} = \chi^s_{\lambda/\mu} \) do factorize, \(C^{[\lambda]}_{[\mu], [\nu]} = \delta_{\mu + \nu', \lambda} \) and also the sum over \(\lambda \) is a one-fold sum – what reduces the generic triple sum (31) over Young diagrams to the ordinary q-hypergeometric polynomial, though of a rather complicated Askey-Wilson type \(4 \phi_3 \) with the fixed hypergeometric argument \(z = q^2 \).

Acknowledgements

This work was performed at the Institute for the Information Transmission Problems with the support from the Russian Science Foundation, Grant No.14-50-00150.

References

[1] G. Racah, Phys.Rev. 62 (1942) 438-462
E.P. Wigner, Manuscript, 1940, in: Quantum Theory of Angular Momentum, pp. 87133, Acad.Press, 1965; Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Acad.Press, 1959
L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, 1977
J. Scott Carter, D.E. Flath, M. Saito, The Classical and Quantum 6j-symbols, Princeton Univ.Press, 1995
S. Nawata, P. Ramadevi and Zodinmawia, Lett.Math.Phys. 103 (2013) 1389-1398, arXiv:1302.5143
A. Mironov, A. Morozov, A. Sleptsov, JHEP 07 (2015) 069, arXiv:1412.8432
[2] D. Galakhov, A. Mironov, and A. Morozov, JHEP 06 (2014) 050, arXiv/1311.7069
N. Nemkov, Eur.Phys.J. C77 (2017) 368, arXiv:1610.02000
M. Billo, M. Frau, F. Fucito, A. Lerda, J. F. Morales, R. Poghossian, D. Ricci Pacifici, JHEP 10 (2014) 131, arXiv:1406.7255
G. Aminov, A. Mironov and A. Morozov, JHEP (2017), arXiv:1709.04897
