DNA Logic Multiplexing Using Toehold-Mediated Strand Displacement

CONGZHOU CHEN1, HONGYU WANG1, ENQIANG ZHU2, XIAOLONG SHI2, AND JIN XU1

1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

Corresponding author: Jin Xu (jxu@pku.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFA0706400, and in part the National Natural Science Foundation of China under Grant 61872101, Grant 61702075, Grant 61902005, Grant 61632002, Grant 61572213, and Grant 61772376.

ABSTRACT Since the discovery of the DNA Strand Displacement mechanism, researchers have implemented a lot of applications, such as DNA computing, DNA Circuits, Logic gates, and Chemical Reaction network. To achieve those functions, a well-designed system is essential, among which the toehold domains and migration domains play a vital role. In this paper, we designed three basic logic gates based on the toehold mediates DNA strand displacement mechanism, and utilized them to struct a three-layer multiplexer DNA logic circuit. However, the traditional INHIBIT gate annihilated all the inputs strands which obscure the multiplexer in further applications. Therefore, we improved the INHIBIT gate, so the desired input strand can be selected, and the corresponding output strand can be identified. Lastly, we adjusted the multiplexer and realized a cyclic DNA circuit. The simulation results verified the efficiency and reliability of our multiplexer DNA logic circuits. Our method has the ability in architecting complex DNA integrated circuits.

INDEX TERMS DNA strand displacement, logic circuits, INHIBIT gate, demultiplexer.

I. INTRODUCTION DNA as a natural material is an excellent tool for many applications. It was used as a novel material for nanostructures, as its length and diameter are in nanometer [1]–[4]. The natural affinity of DNA made it a perfect medium for drug delivery and bio-detection [5]–[7]. Most importantly, the Watson-Crick base-pairing provides the foundation for bio-computing [8]–[9], information storage [10]–[11], synthetic biology [12], etc. One crucial technology for DNA based computing is the DNA combinatorial strand displacement (DSD) [13].

The toehold mediates DNA strand replacement was proposed by Turberfield et al. [13]. The DSD principle involves the short single strand domain (toehold) and the replacement of paired double strands. The diagram of DSD mechanism is illustrated in Fig 1. Various DSD based computing systems were verified [14]–[16], the traditional logic gate such as AND, OR, NOR, and INHIBIT gate [17]–[19]. Complex Chemical Reaction Network (CRN) such as polynomial and logarithms Network [20], Enzymatic reaction Network, and other networks are outstanding works [21]–[24].

In prior works, researchers involved in assembling simple logic gates to complex cascaded circuits or improving the traditional logic gates. To assemble large scale circuits, Qian et al. proposed the seesaw gate and verified its abilities, cascade and parallel-connected them into large scale logic circuits [25]. Salehi and coworkers designed four basic formations and computed some advanced mathematic formulas based on the DSD system [20]. While some researchers involved in improving the traditional logic gate to implement novel applications. Song et al. designed autocatalytic amplifiers to compute logarithmic and exponential formulas [26]. DelRosso et al. designed a DNA molecular Regenerator and used it for regeneration and multiple cycles of computing [27]. Song et al. introduced an architecture method to program DSD reaction networks on cell membranes [28]. Additionally, they presented another architecture for fast and compact DNA circuits on Bst2.0 DNA polymerase [29].

In the DNA-based circuits, most gate motifs are use-once only, which are strands consuming. There are some works about constructing renewable circuits [30]–[33], [37]. Song et al. used azobenzene isomerization for designing...
the renewable DNA seesaw logic circuits [30]. Eshra and El-Sayed utilized the DNA-zyme machine as an odd parity checker, and the enzyme-based machine is reusable [31]. Additionally, Eshra and her coworkers built renewable DNA circuits by reversing the hairpin-gate motif [32]. Garg et al. used the dual-rail logic method to realize renewable DNA circuits [33].

Notably, the introduction of the INHIBIT gate that competes with the input strands helps giving an instant stop, avoided the priming of output and secondary productions. Researchers have designed many INHIBIT gates [34]–[37]. Niu et al. designed a triquetrous INHIBIT gate and implemented a 4-to-2 encoder [34]. Zhang et al. used the hairpin shape structure as the INHIBIT gate and architected a recycle DNA circuit [37]. However, the traditional INHIBIT gate completely quenched the input signals. Therefore, we intend to improve the traditional INHIBIT gate and use it for further applications.

In this paper, we architected a multiplexer DNA logic circuit based on DNA strand displacement. Besides, we improved the INHIBIT gate and used it as a demultiplexer so that different input signals were selected and different output signals can be identified. Lastly, we adjusted the multiplexer and fulfilled a cyclic circuit, which can be extended for more potential applications.

II. RESULTS

A. BASIC LOGIC GATES

The primary logic gate, such as AND, OR, INHIBIT can be integrated into more complex circuits. Here, we designed these three basic gates by DNA strand displacement, and structured a 3-layer 3-to-2 circuit. The structure of those gates is shown in Table. 1.

As shown in the AND gate, the output strand has two domains that connected with the substrate. Only if Input1 and Input2 coexist and react with this substrate together, the output strand can be completely replaced and released the output signal “1”. While in the OR gate, the substrate is a complex, consist of two segments with toehold t_1 and t_2. Usually, the OR gate has two input strands and one output strand. But in this work, the existence of the output strand or not represents the result of “1”/“0”. If one of the input strands Input1/Input2 exists, it will react with the substrate then release the output signal “1”. In the INHIBIT gate, the control strand (INHIBIT Substrate), complement Input1 and Input2. If there still exist the INHIBIT strands, the input strands will be quenched. The control strand servers as a threshold, and we can set threshold gate for the input and output signal.

B. LOGIC CASCADED CIRCUITS

We used those three basic logic gates, constructed a three-layer logic circuit. The initial Inputs and Joints are in Table. 2, and the structure of this circuit is shown in Fig. 2.

As shown in Table. 2, the initial input strands are Input1 with toehold t_1 and domain a, Input2 with toehold t_2 and domain b, separately. The initial joint substrates are Joint1, Joint2, and Joint3. When Input1 and Input2 transmit to Joint1, they will react with joint substrate (Joint1), and produce the output strands: Output1 and Output2. The two output strands will transfer to the next joint substrate (Joint3), and react with Joint3, product the final output signals: Signal1 and Signal2. Signal 1&2 are tethered with the same signal (labeled as a-tether(n), b-tether(n)), either exist of Input1 or Input2, this reaction pathway produces the Final output signal “1”. That is the first pathway.
FIGURE 3. The reaction network of the proposed logic circuit, automatically formed by the DSD simulation software. The "sp" is the abbreviation of "species", and those species are the in-process produces.

TABLE 2. The initial Inputs and substrate (joints).

Joint1	Joint2	Joint3
\(t_1 \)	\(t_2 \)	\(t_3 \)
\(a \)	\(b \)	\(c \)

In the second reaction pathway, Input1 and Input2 transmit to the joint substrate (Joint2). They will work together to replace the original domain and release the output strand, Output3 (the AND gate reaction). Then Output3 transmits to the joint substrate (Joint3), and produce the final signals: Signal1 and Signal2. If either loss of the Input strands, this pathway will be obscured, with no final signal, giving logic signal “0”.

The two pathways are integrated into the multiplexer. The truth table is shown in table3, and the reaction network is illustrated in Fig. 3.

Simulation results (Fig. 4) and the truth table (Table. 3) show the output signal according to different input situations. We set the concentrations of Input1 and Input2 are all 70nM, the Control strand is 75nM. If Input1 and Input2 both exist in the system, then the Control strand will be 150nM. The Control strand is just a little more than input strands. Hence, while existing INHIBIT gate, the Final output will be “0”.

We also found that the trajectory of Final output Signal1&2 has a difference. The output signal trajectory in “(1,0,0;1)” and “(0,1,0;1)” are the same. While in “(1,1,0;1)”, trajectories of those two Signals have a small gap. We think it is because the AND gate reaction rate is slower than the OR gate, as Input1 and Input2 must work......
C. DEMULTIPLEXER

In this logic circuit, the INHIBIT gate completely quenched the input signals. Those input strands are wasted and cannot be reused. Hence, we improved the INHIBIT gate so that input strands can be integrated and co-worked in further reactions. We redesigned the INHIBIT gate, both input strands can be inhibited but have the change for further branch immigration. The improved INHIBIT gate is shown in Fig. 5.

After reacting, Input1 and Input2 DNA strands are integrated into this INHIBIT substrate. The improved INHIBIT gate can restrain the input signals, but toehold domain t_1 and t_2 aren’t annihilated. That is, the unpaired toehold t_x, t_y, and t_m are the remained domains where input strands can be replaced. In this improved inhibit gate, Input1 can be immigrated by Tx strand (toehold t_x with domain a, from 5’ to 3’ direction); Input2 can be immigrated by Ty strand (toehold t_y with domain b, from 5’ to 3’ direction); Input 1&2 can be immigrated by Tm strand from this substrate, simultaneously. The reactions are shown in Fig. 6, reaction network of Demultiplexer is shown in supplementary Fig. S1.

With the extra strands Tx, Ty, and Tm, the improved INHIBIT gate can be functioned as a demultiplexer. Tx strand (70nM), then the Input1 strand will be produced form the inhibit substrate, and Signal1 will be the output. The same situation, we added Ty, Signal2 is the Final output. In this method, Input1 and Input2 are selected, and different Output Signal1 and Signal2 are identified. Additionally, if we add the Tm strands, it will produce the Input1 and Input2, simultaneously.

In the demultiplex simulation results, Input1 and Input2 become the in-process produces, hence they are labeled as sp1 and sp2 by the DSD software, separately. The yellow curve (Input1) and purple curve (Input2) rise rapidly when adding the extra strands Tx (or Ty), then they are consumed by the downstream reactions (multiplexer circuits). Therefore, the trajectory is risen at the beginning and then slowly falls to zero.

D. CYCLIC MOLECULAR CIRCUIT

In this multiplexer circuits, the concentrations of Input1 and Input2 are 70nM, and the concentration of the Improved INHIBIT substrate is 150nM. The INHIBIT gate just annihilates all the inputs strands. And we set the concentrations of Tx, Ty, Tm are all 70nM. Hence, the concentration of Final output stands is decided by Tx, Ty, Tm. (Downstream Joints
are all oversupplied) We wondered whether this system could be adjusted when adding the extra input strand (Tx, Ty, Tm). The system can continuously produce Input1 and Input2 so that the circuits cyclically reacted.

To fulfill this assumption, we adjusted the Final output signal strand1&2, added extra toehold domain t on them, as shown in Fig. 8. Therefore, the Output Signal 1&2 can participate in the cyclic reactions to produce the input strands. We added 70nM of Tx (Ty/Tm) in this cyclic reaction system. Fig. 9 is the simulation results, and the Reaction cycle is illustrated in Fig. 10.

Comparing the simulation results in Fig. 9 and Fig. 7, several differences illustrate the cyclic reaction. First, the final concentration of Signal 1&2 is 10nM, while in Fig. 7, the final concentration of them is 35nM. Therefore, the signal degradation is about 28.6% (10/35). Second, the reaction time is different. In Fig. 7, Signal 1&2 were produced in 300s. In Fig. 10, the Signal 1&2 took 1500s to fall to 10nM. Therefore, three cyclic reactions occurred in the system. Lastly, the concentrations of Joints are all constant variables in this simulation (we set constant order for Joints when simulation), therefore the cyclic reaction won’t stop because of exhausting of the Joints. Judging by those facts, we think the cyclic reaction circuit works.

III. DISCUSSION

The mechanism of DSD is the toehold mediates strands immigration. The toehold domain is short sequences that can fast bind to its base-pair domain and displace the other part by its migration domain. To make sure all the reactions are toehold-mediated. We only design the necessary domains in the whole system. This is the reason why all the Inputs, Outputs, and Joints are so short. There are only two migration domains in this system (a&b); the key exchanges are in the toehold domains. As we added extra toehold domain in the final output strands, and formed a cyclic reaction network. Researchers can add extra migration domains on our system to fulfill some functions, such as feedback circuits, mathematical formulas, DNA-based computing, etc.

In this paper, we architected a 3-layer logic cascaded circuit based on the DNA combinatorial strand displacement, and verified its logic truth through DSD simulation. Besides, we improved the INHIBIT gate so that it can be used as a demultiplexer. In many multilayer DNA circuits [20], [34], [35], the outputs are mixed, and the individual strand can’t be selected. The proposed demultiplexer has significant usages in signal selection. Lastly, we modified the toehold domain on the output strands, and formed a cyclic reaction network. The cyclic system is different from the above-mentioned works [30]–[32]. We do not add extra strands to pull back motifs [32] or use extra mechanisms for reverse [30], [31], the key point in our cyclic circuits is the cyclic replacement of the toehold domains. (Adding additional strand to restore the circuits is also viable in the proposed system as shown in supplementary Fig. S2) The system demonstrated that the proposed circuit has powerful potentials for large scale computing and other functions.

In the future, we intend to use this logic circuit to form more complex structures and fulfill more functions. The system can be ejected into the living cell, and implement the in-cell computing. We can also apply our circuits onto surface substrates and complete the surface aid computing, such as on membrane, on DNA origami, etc. The proposed circuits can be adapted and utilized on DNA computing, nanocircuits, and other fields.

REFERENCES

[1] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature, vol. 440, no. 7082, pp. 297–302, Mar. 2006.
[2] X. Shi, W. Lu, Z. Wang, L. Pan, G. Cui, J. Xu, and T. H. LaBean, “Programmable DNA tile self-assembly using a hierarchical sub-tile strategy,” Nanotechnology, vol. 25, no. 7, Jan. 2014, Art. no. 075602.
[3] X. Shi, C. Chen, X. Li, T. Song, Z. Chen, Z. Zhang, and Y. Wang, “Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles,” Soft Matter, vol. 11, no. 43, pp. 8484–8492, Nov. 2015.
N. V. DelRosso, S. Hews, L. Spector, and N. D. Derr, “A molecular T. Song, S. Garg, R. Mokhtar, H. Bui, and J. Reif, “Design and analysis R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and H. Yan, “DNA self-assembly J. Xu, ”Probe machine,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, J. Yang, Z. Yin, Z. Tang, K. Huang, J. Cui, and C. Chen, “A spatially Z. Tang, Z. X. Yin, X. Sun, J. Z. Cui, Y. Jiang, and R.-S. Wang, “Dynamically M. Blawat, K. Gaedke, I. Hütter, X.-M. Chen, B. Turczyk, S. Inverso, P. W. K. Rothemund, N. Papadakis, and E. Winfree, “Algorithmic self-assembly of DNA sierpinskis triangles,” PLoS Biol., vol. 2, no. 12, p. e424, Dec. 2004. Y. Erfich and D. Zielinski, “DNA fountain enables a robust and efficient storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, Mar. 2017. M. Blawat, K. Gaedke, I. Hütter, X.-M. Chen, B. Turczyk, S. Inverso, B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data storage,” Procedia Comput. Sci., vol. 80, pp. 1011–1022, Jan. 2016. A. Hernandez-Garcia, N. A. Estrich, M. W. T. Werten, J. R. C. Van Der Maarel, T. H. LaBean, F. A. de Wolf, M. A. C. Stuart, and R. de Vries, “Precise coating of a wide range of DNA templates by a protein polymer with a DNA binding domain.” ACS Nano, vol. 11, no. 1, pp. 144–152, Dec. 2016. A. J. Turberfield, J. C. Mitchell, B. Yurke, A. P. Mills, I. M. Blakey, and F. C. Simmel, “DNA fuel for free running nanomachines,” Phys. Rev. Lett., vol. 90, no. 11, Mar. 2003, art. no. 118102. G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips, and G. Seelig, “A spatially localized architecture for fast and modular DNA computing,” Nature Nanotechnol., vol. 12, no. 9, pp. 920–927, Jul. 2017. Z. Yin, J. Cui, and C. Zhen, “Molecular beacon computing model for maximum weight clique problem,” Math. Comput. Simul., vol. 151, pp. 147–155, Sep. 2018. J. Yang, Z. Yin, Z. Tang, K. Huang, J. Cui, and X. Yang, “Search computing model for the knapsack problem based on DNA origami,” Mater. Express, vol. 9, no. 6, pp. 553–562, Sep. 2019. Z. Tang, Z.-X. Yin, X. Sun, J.-Z. Cui, J. Yang, and R.-S. Wang, “Dynamically NAND gate system on DNA origami template,” Comput. Biol. Med., vol. 109, pp. 112–120, Jun. 2019. S. M. Douglas, I. Bachelet, and G. M. Church, “A logic-gated nanorobot for targeted transport of molecular payloads,” Science, vol. 335, no. 6070, pp. 831–834, Feb. 2012. C. Zhang, J. Yang, S. Jiang, Y. Liu, and H. Yan, “DNAzyme-based logic gate-mediated DNA self-assembly,” Nano Lett., vol. 16, no. 1, pp. 736–741, Dec. 2015. S. A. Salehi, X. Liu, M. D. Riedel, and K. K. Parhi, “Computing mathematical functions using DNA via fractional coding,” Sci. Rep., vol. 8, no. 1, p. 8312, May 2018. J. Yang, R. Wu, Y. Li, Z. Wang, L. Pan, Q. Zhang, Z. Lu, and C. Zhang, “Entropy-driven DNA logic circuits regulated by DNA-enzyme,” Nucleic Acids Res., vol. 46, no. 16, pp. 8532–8541, Jul. 2018. A. A. Green, J. Kim, D. Ma, P. A. Silver, J. J. Collins, and P. Yin, “Complex cellular logic computation using ribocomputing devices,” Nature, vol. 548, no. 7665, pp. 117–121, Jul. 2017. A. J. Genot, J. Bath, and A. J. Turberfield, “Combinatorial displacement of DNA strands: Application to matrix multiplication and weighted sums,” Angew. Chem. Int. Ed., vol. 52, no. 4, pp. 1189–1192, Dec. 2012. C. Liu, E. Zhu, Q. Zhang, and X. Wei, “Modeling of agent cognition in extensive games via artificial neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4857–4868, Oct. 2018. L. Q. Zhang, Q. Jiang, N. Li, L. Dai, Q. Liu, L. Song, J. Wang, Y. Li, B. Ding, and Y. Du, “DNA origami as an in vivo drug delivery vehicle for cancer therapy.” ACS Nano, vol. 8, no. 7, pp. 6633–6643, Jun. 2014. R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and H. Yan, “DNA self-assembly for nanomedicine,” Adv. drug Del. Rev., vol. 62, no. 6, pp. 617–625, 2010. X. Li, T. Song, Z. Chen, X. Shi, C. Chen, and Z. Zhang, “A universal fast colorimetric method for DNA signal detection with DNA strand displacement and gold nanoparticles,” J. Nanomaterials, vol. 2015, pp. 1–9, 2015. J. Xu, “Probe machine,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 7, pp. 1405–1416, Jul. 2016. A. J. Genot, J. Bath, and A. J. Turberfield, “Combinatorial displacement of DNA strands based on combinatorial displacement of DNA strands,” J. Theor. Nanosci., vol. 12, no. 7, pp. 1161–1164, Jul. 2015. E. Zhu, C. Chen, Y. Yao, and W. Xiong, “Biochemical logic circuits based on DNA combinatorial displacement,” IEEE Access, vol. 8, pp. 34096–34103, 2020, doi: 10.1109/ACCESS.2020.2974024. C. Zhang, Z. Wang, Y. Liu, J. Yang, X. Zhang, Y. Li, L. Pan, Y. Ke, and H. Yan, “Nicking-activated reactant recycle to implement entropy-driven DNA circuit,” J. Amer. Chem. Soc., vol. 141, no. 43, pp. 17189–17197, Sep. 2019.
XIAOLONG SHI received the Ph.D. degree in systems engineering from the Huazhong University of Science and Technology. He was a Tenured Professor with the Huazhong University of Science and Technology, and he is currently the Dean/Professor of the Institute of Computer Science and Technology, Guangzhou University.

JIN XU received the first Ph.D. degree from Xi’an Jiaotong University in 1993, and received the second Ph.D. degree from the Beijing Institute of Technology in 1994. He is currently a Tenured Professor at Peking University.

He has published more than 200 SCI papers as the first or corresponding author. He has led 10 national projects, including NSFC project, “973” Project, “863” Project, etc. His main research areas include graph theory, biological computing, and information security.

* * *