On the Factorization of Network Reliability with Perfect Nodes

Juan Manuel Burgosa, Franco Robledo Amozab

aInstituto de Matemáticas, Universidad Nacional Autónoma de México, Unidad Cuernavaca. Av. Universidad s/n, Col. Lomas de Chamilpa. Cuernavaca, Morelos México, 62209.
Email: burgos@matcuer.unam.mx

bLaboratorio de Probabilidad y Estadística
Facultad de Ingeniería, Universidad de la República
Julio Herrera y Reissig 565
11300, Montevideo, Uruguay.
Email: frobledo@fing.edu.uy

Abstract
A new general K-network reliability factorization theorem is proved. Beside its theoretical mathematical importance the theorem shows how to do parallel processing in exact network reliability calculations in order to reduce the processing time of this NP-hard problem. It also shows a factorization of the Random Cluster Model of Statistical Mechanics in the non cluster limit.

Keywords: Network Reliability, Graph Theory, Factorization, Parallel Processing, Random Cluster Model

1. Introduction
The K-network reliability factorization theorem [Mo] and the reduction transformations (series-parallel, polygon-to-chain [Wo] and delta-star [Ga]) are the key stone of the known factoring algorithms [SC] for the network reliability exact calculation. Beside these results and the well known factorization through an articulation point, no other general factorization theorem is known in exact K-network reliability calculation. This paper gives a new general factorization theorem solving the following problem:

Problem: Given a decomposition of a stochastic graph G by subgraphs G_1 and G_2 only sharing nodes, express the reliability of G in terms of the
reliabilities of the graphs resulting from G_1 and G_2 identifying the common nodes shared by them in all possible ways.

Exact calculation of K-network reliability is a NP-hard problem [Co] so it is necessary to know how to do parallel processing in order to reduce the processing time. This theorem has the following immediate parallel processing application: Suppose we are willing to calculate the exact network reliability of a stochastic graph $G = (V, E, (p_e)_{e \in E})$ with m edges and perfect nodes. A priori the processing time involve 2^m steps. Cutting the graph G through a set of nodes obtaining G_1 and G_2 with approximately $m/2$ edges each, the solution of the above problem allow us to calculate the reliability of G with $2^{m/2}$ steps in each processing line.

As another application, it is shown in the appendix a non trivial factorization of the Random Cluster Model of statistical mechanics in the non cluster limit.

2. Preliminaries

2.1. K-Reliability

The mathematical model of a Network whose nodes are perfect and its edges can fail is a stochastic graph [Co]; i.e. an undirected graph with associated Bernoulli variables to its edges.

Definition 2.1. An undirected graph G is a pair (V, E) such that V is finite set whose elements will be called nodes and E is a subset of $\{\{a, b\} / a, b \in V\} \times \mathbb{N}$ whose elements will be called edges such that for each pair of distinct edges $((a_1, b_1), n_1), (\{a_2, b_2\}, n_2) \in E$ we have that $n_1 \neq n_2$.

Definition 2.2. A stochastic graph G is a tern (V, E, Φ) such that (V, E) is a graph and $\Phi : E \to Ber$ is a function which associates a Bernoulli variable to each edge in such a way that these variables are independent.

Each Bernoulli variable is characterized by a parameter p in the $[0, 1]$ closed interval and we can write a stochastic graph as $(G, \{p_e\}_{e \in E})$ where G is an undirected graph and p_e is the parameter of the variable $\Phi(e)$. Nodes and edges of G will be denoted by $V(G)$ and $E(G)$ respectively.

Definition 2.3. A state \mathcal{E} of the graph $G = (V, E)$ is a function $\mathcal{E} : E \to \{0, 1\}$. An edge e will be called operative if $\mathcal{E}(e) = 1$ and will be called non-operative otherwise.
Consider a subset K of $V(G)$. A state E of the graph G will be called a K-PathSet (or K-operative) if K is contained in the set of nodes of any of the edge-connected components of the graph resulting from removing the non-operative edges of G. Otherwise the state will be called a K-CutSet.

Definition 2.4. The K-Reliability of a stochastic graph G is

$$R_K(G) = P(E \text{ is a } K\text{-PathSet})$$

Because of the independence of the bernoulli variables associated to the edges, we can calculate the K-Reliability in the following way:

$$P(E) = \prod_{e_i \in E(G)} p_{i}^{E(e_i)}(1 - p_{i})^{1-E(e_i)}$$

Where

$$R_K(G) = \sum_{E \text{ is a } K\text{-PathSet}} P(E)$$

2.2. Simple Factorization

Definition 2.5. Consider an edge $e = (\{v, w\}, n) \in E$ of a graph $G = (V, E)$ and define the following equivalence relation in V: $a \sim b$ if $a = b$ or $\{a, b\} = \{v, w\}$. Consider the surjective canonical function $\pi : V \to V/\sim$ such that $\pi(a) = [a]_{\sim}$. We define the contraction of an edge e in G as the graph $G \cdot e$ such that

$$G \cdot e = (V/\sim, E \cdot e)$$

Where $E \cdot e = \{(\pi(a), \pi(b)), n\} / \{(a, b), n\} \in E - \{e\}$ (see Figure 2). We will denote by $K_e = \pi(K)$ the new distinguished set of nodes contained in $V(G \cdot e)$ where K is the distinguished set of nodes in $V(G)$.

Definition 2.6. Consider an edge $e = (\{v, w\}, n) \in E$ of the graph $G = (V, E)$. We define the deletion of the edge e of G as the graph (see Figure 1)

$$G - e = (V, E - \{e\})$$

The following is the simple factorization proposed for the first time by Moskovitz [Mo]:

Proposition 2.1. Consider a stochastic graph G and a subset K of its nodes. For any edge e_i of G we have that

$$R_K(G) = p_i R_{K_i}(G \cdot e_i) + (1 - p_i) R_K(G - e_i)$$
Definition 2.7. Define the following partial order in the set of states of G: $\mathcal{E} \leq \mathcal{F}$ if $\mathcal{E}^{-1}(1) \subset \mathcal{F}^{-1}(1)$. The state \mathcal{E} is a K-minpath if it is minimal in the set of K-PathSets.

The K-PathSets have the following coherence property: If $\mathcal{E} \leq \mathcal{F}$ and \mathcal{E} is a K-PathSet, then \mathcal{F} is a K-PathSet. For every K-PathSet \mathcal{F} there is a K-minpath \mathcal{E} such that $\mathcal{E} \leq \mathcal{F}$. We conclude that the set of K-PathSets equals the set of states \mathcal{F} greater or equal to some K-minpath. This motivates the following definition [Co]:

Definition 2.8. An edge e of a graph G will be called K-irrelevant if $\mathcal{E}(e) = 0$ for each K-minpath \mathcal{E}.

Proposition 2.2. If e is a K-irrelevant edge of a stochastic graph G, then

$$R_K(G) = R_K(G - e)$$

2.3. K-Reliability Polynomial

Consider a graph G and the stochastic graph G_p whose underlying graph is G and its Bernoulli variables are identical and independents with parameter p. By proposition 2.1 and the finiteness of the graph, we have that the K-Reliability is a polynomial respect to the parameter p.
Definition 2.9. $R_K(p) = R_K(G_p)$ is the es K-Reliability polynomial of G.

See that

$$R_K(p) = \sum_{i=0}^{n} C^K_i p^i (1-p)^{n-i}$$

where C^K_i is the number of K-pathsets with exactly i operative edges and n is the number of edges in G. In particular, the calculation of the K-Reliability polynomial is equivalent to the calculation of the numbers C^K_i. Each K-minpath is a Steiner tree of G which covers K (if K is the set of nodes of G, then a K-minpath is a spanning tree). The calculation of the K-Reliability polynomial solves the following NP-complete problem: Given a number b and a subset of nodes K, Is there a Steiner tree which covers K with edge number less than or equal to b? To answer this question we just have to see weather or not $m \leq b$ where C^K_m is the first non zero coefficient of the above expression. In fact, we have the following [Co]:

Proposition 2.3. The Calculation of the K-Reliability polynomial is a NP-hard problem.

3. Combinatorics of the Problem

Hypothesis 1: In the whole paper, G_1, G_2 and G are graphs with distinguished subset of nodes K_1, K_2 and K respectively such that $G = G_1 \cup G_2$, $K = K_1 \cup K_2$ and

$$\{k_1, k_2, \ldots, k_n\} = K_1 \cap K_2 = G_1 \cap G_2$$

Hypothesis 2: We assume in the whole paper that for each node $v \in K$ there exists a path in G that joins v with some vertex $k_i \in K_1 \cap K_2$.

These Hypothesis are illustrated in figure 3. In view of the first hypothesis, it is reasonable to assume the second one, otherwise $R_K(G) = 0$ and there would be no necessity for any calculation. For notational convenience, the K subscript in $R_K(G)$ will be omitted in the rest of the paper.

Lemma 3.1. G is K-connected if and only if G is $\{k_1, k_2, \ldots, k_n\}$-connected.

Proof: The direct is trivial. Conversely, take a pair o nodes a and b in K. There are paths P_a y P_b connecting a and b with k_i y k_j respectively.
Because G is $\{k_1, k_2, \ldots k_n\}$-connected, there is a path P connecting k_i with k_j. The concatenation of the paths P_a, P and P_b joins a with b. □

The previous lemma motivates the following definition.

Definition 3.1. Consider the equivalence relation: $k_i \sim^l k_j$ if there is a path in G_l joining k_i with $k_j, l = 1, 2$. The connectivity state of G_l is the partition of $\{k_1, k_2, \ldots k_n\}$ given by

$$C_l = \{k_1, k_2, \ldots k_n\}/\sim^l$$

Denote by Con the set of partitions of $\{k_1, k_2, \ldots k_n\}$. Figure 4 shows some useful notational and diagrammatical ways to represent a connectivity state.

Definition 3.2. For each connectivity state A denote by G_l^A the graph resulting of the identification of the nodes in $\{k_1, k_2, \ldots k_n\}$ of G_l by the state A; i.e. given the graph $G_l = (V, E)$ define $G_l^A = (V/\sim^A, E^A)$ where

$$E^A = \{ ((\pi(a), \pi(b)), n) / (\{a, b\}, n) \in E \}$$

and \sim^A is the equivalence relation in V generated by A with the canonical surjection

$$\pi : V \to V/\sim^A$$

such that $\pi(a) = [a]_{\sim^A}$. The distinguished set of nodes is $K_l^A = \pi(K_l)$.

Definition 3.3. The set of connectivity states of G is $Con \times Con$ and (C_1, C_2) is the connectivity state of G where C_l is the connectivity state of $G_l, l = 1, 2$.

The rest of the section is devoted to the translation of the probabilistic problem given in the introduction into a purely combinatorial one.
Definition 3.4. Consider a stochastic graph $G = (V, E, (p_e)_{e \in E})$ and define

$$P_l(C) = P(C = C_l)$$
$$P_G(A, B) = P((A, B) = (C_1, C_2))$$

where A, B and C are connectivity states and $l = 1, 2$.

The connectivity states can be seen as a partition of the sample space of states of G_l where $l = 1, 2$, so

$$1 = \sum_{C \in Con} P_l(C)$$

Because the random Bernoulli variables of the edges of G are independent, connectivity states of G_1 are independent of those of G_2 so $Con \times Con$ is a partition of the sample space of states of G and

$$P_G(A, B) = P_1(A)P_2(B)$$

Definition 3.5. We say that a connectivity state (A, B) of G is connected if

$$\{k_1, k_2, \ldots, k_n\} / \sim = \{\{k_1, k_2, \ldots, k_n\}\}$$

where \sim is the following equivalence relation in $\{k_1, k_2, \ldots, k_n\}$: $k_i \sim_A k_j$ or $k_i \sim_B k_j$.

Figures 5 and 6 show examples of connectivity states of G. This way we have the following formula for the K-reliability of G:

$$R(G) = \sum_{(A, B) \text{ connected}} P_G(A, B) = \sum_{(A, B) \text{ connected}} P_1(A)P_2(B)$$
also given in [Ro] (under a different notational scheme) where an algorithm for the reliability exact calculation is developed based on it. The above formula is not a factorization theorem. This formula suggests the following algebraic construction: Consider the \mathbb{Q}-vector space V generated by Con and the linear functional $P_l : V \to \mathbb{R}$ which is the linear extension of the probability P_l (we are abusing of the notation and denoting the functional by the same name). This way we get the functional

$$P_1 \otimes P_2 : V \otimes V \to \mathbb{R}$$

and the following expression for the reliability:

$$R(G) = P_1 \otimes P_2 \left(\sum_{ (A,B) \text{ connected} } A \otimes B \right)$$

Definition 3.6. Denote by $R_A(G_l)$ the K_l^A-reliability of G_l^A

Lemma 3.2. $R_A(G_l) = \sum_{B \setminus (A,B) \text{ connected} } P_l(B)$

Proof: Observe that G_l^A is K_l^A-connected if and only if C_l verifies that (A,C_l) is connected so

$$R_A(G_l) = P(C_l \in \{B \setminus (A,B) \text{ connected}\})$$

8
and because the set of connectivity states is a partition of the sample space of the states of G_t, we get the result.

We can rewrite the above formula with the functional P_1:

$$R_A(G_t) = P_1 \left(\sum_{B \cap (A,B) \text{ connected}} B \right)$$

Then we have finally translated the original probabilistic problem in the following combinatorial one:

Problem (Combinatorial Version): *Express the vector $R \in V \otimes V$ given by $R = \sum_{(A,B) \text{ connected}} A \otimes B$ in terms of the vectors $R_A \in V$ given by (see Figure 7)*

$$R_A = \sum_{B \cap (A,B) \text{ connected}} B$$

The relation between the combinatorial and the probabilistic problem is given by the functional $P_1 \otimes P_2 : V \otimes V \rightarrow \mathbb{R}$; i.e. Acting on the combinatorial expression by $P_1 \otimes P_2$ gives the probabilistic one.

4. **The Factorization Theorem**

Considering an ordering in the base Con we can write

$$R = \sum_{i,j=1}^{m} a_{ij} A_i \otimes A_j$$

where m is the cardinal of Con and $A = (a_{ij})$ is the matrix given by $a_{ij} = 1$ if (A_i, A_j) is connected and $a_{ij} = 0$ if it is not. The matrix A will be called
the connectivity matrix. Consider the linear operator $T : V \to V$ such that $T(A) = R_A$.

Lemma 4.1. The connectivity matrix is symmetric and is the associated matrix of the operator T relative to the ordered base Con.

Proof: By definition, A is symmetric. Relative to the base Con we have

$$[T(A_j)]_{Con} = [R_A]_{Con} = (a_{1j}, a_{2j}, \ldots, a_{mj})$$

so

$$[T]_{Con} = (a_{ij})$$

□

The next proposition will be proved in the next section (Proposition 5.7).

Proposition 4.2. The operator T has determinant

$$\det(T) = \pm \prod_{A \in Con} (m_A - 1)!$$

where m_A is the number of classes in the connectivity state A. In particular, T is an automorphism of V; i.e. $T \in \text{Aut}_Q(V)$.

Observation 4.1. The operator $zT : \mathbb{Z}\langle Con \rangle \to \mathbb{Z}\langle Con \rangle$ such that $T(A) = R_A$ whose relation with the operator T is

$$T = \mathbb{Q} \otimes zT$$

is not an automorphism of the \mathbb{Z}-vector space generated by Con if $n > 2$. In fact, its cokernel is (Proposition 5.10)

$$\text{Coker}(zT) \simeq \frac{\mathbb{Z}\langle Con \rangle}{\mathbb{Z}\langle R_A \rangle / \mathbb{A} \in Con} \simeq \bigoplus_{A \in Con} \mathbb{Z}(m_A - 1)!$$

where m_A is the number of classes in the connectivity state A.

Observation 4.2. If we write the above proposition in terms of the connectivity matrix,

$$\det(A) = \pm \prod_{A \in Con} (m_A - 1)!$$

we see that the left hand side of the equality is in some sense topological (it is related to connectedness) while the right hand side is combinatorial. It is a beautiful result.
Finally we have the factorization theorem which solves the posed combinatorial problem. This is the main theorem of the paper.

Theorem 4.3. Let \((b_{ij}) = A^{-1}\) where \(A\) is the connectivity matrix. Then

\[
R = \sum_{i,j=1}^{m} b_{ij} R_{A_i} \otimes R_{A_j}
\]

and the above expression doesn’t depend on the order of the base \(Con\).

Proof: By lemma 4.1, we have

\[
A_j = \sum b_{ij} R_{A_j}
\]

so

\[
R = \sum_{h,i,j,k=1}^{m} a_{ij} b_{ki} b_{hj} R_{A_k} \otimes R_{A_h}
\]

Because \((a_{ij})\) and \((b_{ij})\) are inverses

\[
\sum_{i=1}^{m} b_{ki} a_{ij} = \delta_{kj}
\]

and we get

\[
R = \sum_{h,j,k=1}^{m} \delta_{kj} b_{hj} R_{A_k} \otimes R_{A_h} = \sum_{h,k=1}^{m} b_{hk} R_{A_k} \otimes R_{A_h}
\]

Finally, because \(A\) is symmetric, its inverse is too so

\[
R = \sum_{h,k=1}^{m} b_{hk} R_{A_k} \otimes R_{A_h}
\]

We have to show that the expression above is independent of the order in the base \(Con\). It is enough to make an intrinsic formulation not depending on any order of the base:

\[
R = \sum_{\mathcal{A} \in Con} \mathcal{A} \otimes R_{\mathcal{A}}
\]

\[
= \sum_{\mathcal{A} \in Con} T^{-1}(T(\mathcal{A})) \otimes R_{\mathcal{A}}
\]

\[
= \sum_{\mathcal{A} \in Con} T^{-1}(R_{\mathcal{A}}) \otimes R_{\mathcal{A}}
\]

11
The above expression is the one we were looking for. Fixing an order in the base, the last expression reduces to the original one relative to this order. □

As it was mentioned in the previous section, we solved the posed probabilistic problem just applying the functional $P_1 \otimes P_2$ on the last expression:

Corollary 4.4. Under the hypothesis and notation of the previous theorem,

$$R(G) = \sum_{i,j=1}^{m} b_{ij} R(G_{1}^{A_i}) R(G_{2}^{A_j})$$

The case $n = 1$ is clear and reproduces the well known factorization respect to an articulation point. Let’s see how the theorem works in a cutset of size two; i.e $n = 2$. Ordering the base Con by

$$Con = \{12, \widehat{12}\}$$

we get the connectivity matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

and its inverse

$$A^{-1} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

so

$$R = R_{12} \otimes R_{12} + R_{12} \otimes R_{12} - R_{12} \otimes R_{12}$$

Figure 8 shows this factorization. See the appendix for another proof of this result.

Let’s see the case $n = 3$. Ordering the base Con by:

$$Con = \{123, 1\widehat{23}, 1\widehat{32}, \widehat{12} 3, \widehat{12} 3\}$$
we get the connectivity matrix

\[A = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{pmatrix} \]

and its inverse

\[A^{-1} = \frac{1}{2} \begin{pmatrix}
1 & -1 & -1 & -1 & 2 \\
-1 & -1 & 1 & 1 & 0 \\
-1 & 1 & -1 & 1 & 0 \\
-1 & 1 & 1 & -1 & 0 \\
2 & 0 & 0 & 0 & 0
\end{pmatrix} \]

The following expression for the \(n = 3 \) factorization is illustrated in Figure 9:

\[
R = R_{123}^\ast \otimes R_{123} + R_{123} \otimes R_{123}^\ast + \ldots
\]

\[
+ \frac{1}{2} (R_{123} \otimes R_{123} - R_{123} \otimes R_{123} - R_{132} \otimes R_{132} - R_{123} \otimes R_{123})
\]

\[
+ \frac{1}{2} (R_{132} \otimes R_{123} + R_{123} \otimes R_{132} - R_{132} \otimes R_{123} - R_{123} \otimes R_{132})
\]

\[
+ \frac{1}{2} (R_{132} \otimes R_{123} + R_{123} \otimes R_{132} - R_{132} \otimes R_{123} - R_{123} \otimes R_{132})
\]

5. The Connectivity Matrix

5.1. Connectivity Matrix Determinant

In this section we will identify a connectivity state with its symmetry: i.e. there is a one to one correspondence

\[S_A \rightarrow \mathcal{A} \]

between the connectivity states and the subgroups generated by transpositions of the permutation group \(S_n \) such that

\[\mathcal{A} = \{ k_1, k_2, \ldots k_n \}/S_A \]

This means that the connectivity state \(\mathcal{A} \) is the set of orbits of \(\{ k_1, k_2, \ldots k_n \} \) under the action of the subgroup generated by transpositions \(S_A \).
Observation 5.1. The subgroups must be generated by transpositions to get a maximal subgroup under the above condition and to get the inverse correspondence

$$A \rightarrow S_A$$

We could think of the connectivity states as representations of the subgroups generated by transpositions of the permutation group.

This identification shows that the connectivity states have a natural commutative monoid structure with unit

$$e = \{id\} \cong \{\{k_1\}, \{k_2\}, \ldots \{k_n\}\}$$

under the product

$$A \cdot B = \langle A \cup B \rangle$$

Because the product of subgroups generated by transpositions is generated by transpositions, this product is well defined. Observe that under the identification, Con has also a natural partial order given by inclusion. From now on we will denote by the same name Con the set of partitions of $\{k_1, k_2, \ldots k_n\}$ and the set of subgroups generated by transpositions of the permutation group S_n.
This identification provides a useful and elegant way to characterize the connectivity state of G: $(\mathcal{A}, \mathcal{B})$ is connected if and only if

$$\mathcal{A} \cdot \mathcal{B} = S_n$$

Definition 5.1. The permutation group S_n acts by conjugation in the connectivity states:

$$\sigma(\mathcal{A}) = \sigma \mathcal{A} \sigma^{-1}$$

where $\mathcal{A} \in \text{Con}$.

In particular we have conjugation classes in Con; i.e. the orbits in Con under the action of S_n: $\mathcal{A} \sim \mathcal{B}$ if there is a permutation σ such that $\mathcal{A} = \sigma(\mathcal{B}) = \sigma \mathcal{B} \sigma^{-1}$.

Lemma 5.1. Consider a permutation σ in S_n. Then $\sigma : \text{Con} \to \text{Con}$ is unital monoid morphism; i.e. $\sigma(\{\text{id}\}) = \{\text{id}\}$ and

$$\sigma(\mathcal{A} \cdot \mathcal{B}) = \sigma(\mathcal{A}) \cdot \sigma(\mathcal{B})$$

Proof: It is clear that $\sigma(\{\text{id}\}) = \{\text{id}\}$. Let’s show that σ is a monoid morphism. See that $\sigma(\mathcal{A} \cdot \mathcal{B})$ contains $\sigma(\mathcal{A})$ and $\sigma(\mathcal{B})$ so, by definition,

$$\sigma(\mathcal{A} \cdot \mathcal{B}) \supset \sigma(\mathcal{A}) \cdot \sigma(\mathcal{B})$$

See also that, $\sigma^{-1}(\mathcal{A} \cdot \mathcal{B})$ contains \mathcal{A} and \mathcal{B} so, by definition,

$$\mathcal{A} \cdot \mathcal{B} \subset \sigma^{-1}(\mathcal{A} \cdot \mathcal{B})$$

Acting by σ we get

$$\sigma(\mathcal{A} \cdot \mathcal{B}) \subset \sigma(\mathcal{A}) \cdot \sigma(\mathcal{B})$$

\square

This way, the \mathbb{Q}-vector space V generated by the commutative monoid Con is an associative and commutative \mathbb{Q}-algebra with unit. The unital monoid morphism σ extends linearly to a unital algebra morphism where σ is a permutation.

Consider the linear operator $\pi : V \to V$ such that $\pi(S_n) = S_n$ and for every connectivity state \mathcal{A} distinct from S_n,

$$\pi(\mathcal{A}) = \prod_{\mathcal{B} / \mathcal{B} \not\subset \mathcal{A}} (\mathcal{A} - \mathcal{A} \cdot \mathcal{B})$$
Lemma 5.2. Consider a connectivity state A. The vector $\pi(A)$ verifies the following properties:

1. $B \cdot \pi(A) = 0 \; \forall B \neq A$
2. $C \cdot \pi(A) = \pi(A) \; \forall C \leq A$
3. $\pi(\sigma(A)) = \sigma(\pi(A)) \; \forall \sigma \in S_n$

In particular, $A \cdot \pi(A) = \pi(A)$ and $B \cdot \pi(A) = 0$ for every connectivity state B distinct and conjugated to A.

Proof:

1. The algebra is commutative and Con is a base of idempotents; i.e.
 $A^2 = A$ for every connectivity state A.
2. It is enough to see that $C \cdot A = A$ if $C \leq A$.
3. $\sigma(\pi(A)) = \sigma \left(\prod_{B / B \neq A} (A - A \cdot B) \right)$

 $= \prod_{B / B \neq A} (\sigma(A) - \sigma(A) \cdot \sigma(B))$

 $= \prod_{\sigma(B) / \sigma(B) \neq \sigma(A)} (\sigma(A) - \sigma(A) \cdot \sigma(B))$

 $= \pi(\sigma(A))$

 where we used in the last identity that σ is invertible.

\square

Definition 5.2. For each connectivity state A we define its connectivity number as the coefficient of S_n in the expression of $\pi(A)$; i.e.

$\pi(A) = \ldots + \alpha_A S_n$

See that, by the third item of lemma 5.2 the connectivity number is invariant under conjugation:

$\alpha_A = \alpha_{\sigma(A)}$

for every permutation σ. The object of the following lemmas is to calculate the connectivity numbers and show that they are non zero.
Definition 5.3. Denote by Γ_n the graph with n nodes and one edge joining every pair of nodes. Denote by Γ_n^A the resulting graph from the identification of the nodes $\{1, 2, \ldots, n\}$ in Γ_n by the classes of A.

Let G be a stochastic graph and consider its reliability polynomial $R(G)$. Denote by $mgr(R(G))$ the term of $R(G)$ whose degree equals the edge number of G. See that if G has an irrelevant edge, then $mgr(R(G)) = 0$ and in case $mgr(R(G))$ is non zero, then this term equals the highest degree term of the polynomial.

Lemma 5.3. Consider a stochastic graph G with k edges between a pair of distinct nodes i and j of G. Consider the resulting graph \tilde{G} by deleting $k - 1$ edges between the nodes i and j of G. Then,

$$mgr(R(G)) = (-p)^{k-1} mgr\left(R(\tilde{G})\right)$$

Proof: The result is clear for $k = 1$. Suppose there are $k > 1$ edges between the nodes i and j of G and that the result holds for an amount less than or equal to $k - 1$ of them. Consider an edge a between the nodes i and j. A simple factorization on the edge a gives

$$R(G) = p R(G \cdot a) + (1 - p) R(G - a)$$

where $G \cdot a$ is the resulting graph by the contraction of a and $G - a$ is the resulting graph by deleting a. See that the edge number of $G \cdot a$ and $G - a$ is the edge number of G minus one and because $k > 1$, $G \cdot a$ has irrelevant edges. This way,

$$mgr(R(G)) = (-p) mgr(R(G - a))$$

By the inductive hypothesis, we get the result. \qed

Lemma 5.4. The reliability polynomial of Γ_n is

$$R(\Gamma_n) = \pm(n - 1)! p^g + \ldots$$

where the highest degree of the expression g equals the edge number of Γ_n:

$$g = \binom{n}{2}$$
Proof: In this proof we will make an abuse of notation identifying the reliability polynomial with its graph. We claim that

\[\text{mgr}(\Gamma_{n+1}) = (-1)^{n+1} n \text{mgr}(\Gamma_n) p^n \]

Because \(\Gamma_2 = p \) and \(\Gamma_1 = 1 \) we have the result for the \(n = 1 \) case. Suppose the claim is true for every natural less than or equal to \(n \).

The Figure 10 shows the relation between the distinct graphs \(\Gamma \). By a simple factorization on the edge joining the nodes \(n \) and \(n+1 \) of the graph \(\Gamma_{n+1} \) and the above lemma we have that

\[\Gamma_{n+1} = p(-p)^{n-1} \Gamma_n + \ldots + (1-p) H_{n+1} \]

where the dots denote terms whose degree is less than the edge number of \(\Gamma_{n+1} \) and the graph \(H_{n+1} \) results from deleting the edge joining the nodes \(n \) and \(n+1 \) of the graph \(\Gamma_{n+1} \), see Figure 11.

By the inductive hypothesis,

\[\text{mgr}(\Gamma_n) = (-1)^n (n-1) \text{mgr}(\Gamma_{n-1}) p^{n-1} \]

and the fact that the relation between the graphs \(\Gamma_n \) and \(\Gamma_{n-1} \) is the same as the one between \(H_{n+1} \) and \(\Gamma_n \) (see Figures 10 and 11), we have the following
relation
\[\text{mgr}(H_{n+1}) = (-1)^n(n-1) \text{mgr}(\Gamma_n) p^{n-1} \]
Then, we have that
\[\Gamma_{n+1} = p(-p)^{n-1} \Gamma_n + \ldots + (1-p)(-1)^{n-1}(n-1) \Gamma_n p^{n-1} + \ldots = (-1)^{n+1}n \Gamma_n p^n + \ldots \]
where the dots denote terms whose degree is less than the edge number of
\(\Gamma_{n+1} \). We conclude that
\[\text{mgr}(\Gamma_{n+1}) = (-1)^{n+1}n \text{mgr}(\Gamma_n) p^n \]
which proves the claim. This recursive relation shows that \(\text{mgr}(\Gamma_n) \) is non
zero so it equals the highest degree term of \(\Gamma_n \):
\[\Gamma_n = (-1)^{n+(n-1)+\ldots}(n-1)!p^{(n-1)+\ldots} + \ldots \]
and this concludes the lemma. \(\square \)

Lemma 5.5. Consider a connectivity state \(\mathcal{A} \) with \(m \) classes \(a_1, a_2, \ldots, a_m \).
Then
\[R(\Gamma_n^A) = \pm(m-1)!p^g + \ldots \]
where the highest degree \(g \) of the expression equals the non irrelevant edge
number of \(\Gamma_n^A \):
\[g = \sum_{i \neq j} a_i a_j \]

Proof: We will make the same abuse we did in the proof before identifying
the reliability polynomial with its graph. The graph \(\Gamma_n^A \) has \(m \) nodes (these
are the \(m \) classes of \(\mathcal{A} \), \(\left(\frac{a_i}{2} \right) \) irrelevant edges in each node \(i \) respectively and \(a_i a_j \) edges joining the nodes \(i \) and \(j \).

Consider the graph \(\bar{\Gamma}_n^\mathcal{A} \) resulting from deleting all the irrelevant edges of the graph \(\Gamma_n^\mathcal{A} \). This way \(\Gamma_n^\mathcal{A} \) and \(\bar{\Gamma}_n^\mathcal{A} \) have the same reliability polynomial. By the lemma 5.3 we have the following relation between the graphs \(\bar{\Gamma}_n^\mathcal{A} \) and \(\Gamma_m \):

\[
\text{mgr}(\bar{\Gamma}_n^\mathcal{A}) = (-p)^{\sum_i (a_i - 1)} \text{mgr}(\Gamma_m) = (-p)^{\sum_i (a_i - 1)} (\pm (m - 1)! \ p^\left(\frac{m}{2}\right)) = \pm (m - 1)! \ p^\sum_i a_i a_j
\]

and this concludes the proof. \(\square \)

Lemma 5.6. Consider a connectivity state \(\mathcal{A} \) with \(m \) classes. Then,

\(\alpha_{\mathcal{A}} = \pm (m - 1)! \)

Proof: We claim that

\[
\pi(\mathcal{A}) = \mathcal{A} \cdot \left(\prod_{\tau \text{ transp.} / \langle \tau \rangle \not\subseteq \mathcal{A}} (e - \langle \tau \rangle) \right)
\]

In effect, consider a connectivity state \(\mathcal{B} \) such that \(\mathcal{B} \not\subseteq \mathcal{A} \). There is a transposition \(\tau \) in \(\mathcal{B} \) not belonging to \(\mathcal{A} \). Because \(\mathcal{A} \subset \mathcal{A} \cdot \mathcal{B} \) and \(\langle \tau \rangle \subset \mathcal{A} \cdot \mathcal{B} \) we have that \(\mathcal{A} \cdot \langle \tau \rangle \subset \mathcal{A} \cdot \mathcal{B} \) so

\[
\mathcal{A} \cdot \mathcal{B} \cdot (\mathcal{A} - \mathcal{A} \cdot \langle \tau \rangle) = \mathcal{A} \cdot \mathcal{B} - \mathcal{A} \cdot \mathcal{B} = 0
\]

This implies that

\[
\mathcal{A} \cdot \mathcal{B} \cdot \left(\prod_{\tau \text{ transp.} / \langle \tau \rangle \not\subseteq \mathcal{A}} (\mathcal{A} - \mathcal{A} \cdot \langle \tau \rangle) \right) = 0
\]

so we have the following expression for the vector \(\pi(\mathcal{A}) \):

\[
\pi(\mathcal{A}) = \prod_{\tau \text{ transp.} / \langle \tau \rangle \not\subseteq \mathcal{A}} (\mathcal{A} - \mathcal{A} \cdot \langle \tau \rangle) = \mathcal{A} \cdot \left(\prod_{\tau \text{ transp.} / \langle \tau \rangle \not\subseteq \mathcal{A}} (e - \langle \tau \rangle) \right)
\]

20
which proves the claim. In particular, the last expression implies that
\[\alpha_A = C_0 - C_1 + C_2 - C_3 + \ldots \]
where \(C_i \) is the number of subsets \(F \) with cardinal \(i \) of the set of transpositions \(\{\tau \, \text{transp.} \, / \, \langle \tau \rangle \not\in \mathcal{A}\} \) such that \(\langle F \rangle \cdot \mathcal{A} = S_n \).

Identifying the transposition \((ij)\) with the edge joining the nodes \(i \) and \(j \) of \(\Gamma_n \), it is clear that \(C_i \) is the pathsets number (operational states number) of \(\Gamma^A_n \) with just \(i \) operational edges. This way we have that
\[
R(\Gamma^A_n) = C_0(1 - p)^g + C_1 p(1 - p)^{g-1} + C_2 p^2(1 - p)^{g-2} + \ldots \\
= (-1)^g (C_0 - C_1 + C_2 - C_3 + \ldots) p^g \\
= (-1)^g \alpha_A \, p^g + \ldots
\]
where \(g \) is the non irrelevant edge number of \(\Gamma^A_n \) and the dots denote terms whose degree is less than \(g \). By the above lemma this implies
\[\alpha_A = \pm (m - 1)! \]

Consider the connectivity state conjugation classes \(\{\mathcal{O}_1, \mathcal{O}_2, \ldots \mathcal{O}_k\} \). The number of classes a connectivity state has is invariant under conjugation so we can define \(m_{\mathcal{O}_i} \) as the number of classes in some connectivity state in \(\mathcal{O}_i \).

Identifying each level of the Hasse diagram (inclusion diagram) of the subgroups generated by transpositions of \(S_n \) and because conjugated states necessary belong to the same level of this diagram, we can order the connectivity states in \(\text{Con} \) in the following way: We order some conjugation class \(\mathcal{O}_i \) of the first level, then we order some other conjugation class \(\mathcal{O}_j \) of the same level and we continue the process until we have order all the conjugation classes of the first level. After that, we order the second level in the same way as we did in the first and so on until we have order all the connectivity states. The given order in \(\text{Con} \) verifies
\[\mathcal{A}_i < \mathcal{A}_j \Rightarrow i < j \]

We will call a coherent order an order in \(\text{Con} \) verifying the above property.

Proposition 5.7. The determinant of the operator \(T \) such that \(T(\mathcal{A}) = R_A \) is
\[
det(T) = \pm \prod_{i=1}^{k} (m_{\mathcal{O}_i} - 1)!^{\sharp \mathcal{O}_i}
\]
Proof: Choose a coherent order in the base Con and consider the connectivity matrix A relative to this order. Consider the matrix B associated to the operator π relative to the chosen coherent order in Con. Because of the identity proved in the last lemma

$$\pi(A) = A \cdot \left(\prod_{\tau \text{ transp.} / \langle \tau \rangle \neq \langle \tau \rangle} (e - \langle \tau \rangle) \right)$$

we have that B is an inferior triangular matrix with ones in its diagonal,

$$B = \begin{pmatrix} 1 & 0 & \ldots & 0 \\ * & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \ldots & 1 \end{pmatrix}$$

In particular,

$$\det(B) = 1$$

We can think about the expression of the vector $\pi(A)$ in terms of the base Con as elementary row operations on the matrix A so, by lemma 5.2, we have the following identity:

$$B^t A = \begin{pmatrix} \alpha_{\mathcal{O}_1} I_{\mathcal{O}_1} & 0 & \ldots & 0 \\ * & \alpha_{\mathcal{O}_2} I_{\mathcal{O}_2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \ldots & \alpha_{\mathcal{O}_k} I_{\mathcal{O}_k} \end{pmatrix}$$

Because $\det(B^t) = \det(B) = 1$ we conclude that

$$\det(A) = \prod_{i=1}^{k} \alpha_{\mathcal{O}_i} \cdot \text{tr}_{\mathcal{O}_i}$$

and by the last lemma we finish the proof. \square

As an example, let’s see the $n = 4$ case. The connectivity states conjugation classes are:
\[
\begin{align*}
\mathcal{O}_1 &= \{ 1234 \} \\
\mathcal{O}_2 &= \{ 12 \overset{\uparrow}{34}, 13 \overset{\downarrow}{24}, 14 \overset{\uparrow}{23}, 23 \overset{\uparrow}{4}, 13 \overset{\downarrow}{24}, 12 \overset{\uparrow}{34} \} \\
\mathcal{O}_3 &= \{ 14 \overset{\downarrow}{23}, 13 \overset{\downarrow}{24}, 12 \overset{\uparrow}{34} \} \\
\mathcal{O}_4 &= \{ 1 \overset{\uparrow}{234}, 2 \overset{\downarrow}{134}, 3 \overset{\uparrow}{124}, 123 \overset{\downarrow}{4} \} \\
\mathcal{O}_5 &= \{ 1 \overset{\uparrow}{234} \}
\end{align*}
\]

then we have that \(m_{\mathcal{O}_i}\) equals 4, 3, 2, 2, 1 respectively. By the above proposition the determinant of the connectivity matrix is:

\[
\begin{align*}
\text{det}(A) &= \pm (4-1)! \cdot (3-1)! \cdot (2-1)! \cdot (2-1)! \cdot (1-1)! \cdot 1 = \pm 384
\end{align*}
\]

5.2. Connectivity Matrix Inverse

We can give another monoid structure on \(\text{Con}\), defining the product as the intersection of the subgroups generated by transpositions where \(S_n\) is now the unit. In the same way as before, each permutation in \(S_n\) is a unital monoid morphism and its extension to a the \(\mathbb{Q}\)-algebra \(V\) (commutative and associative with unit, generated by the monoid \(\text{Con}\)) is a unital algebra morphism.

Consider the linear operator \(\xi : V \to V\) such that \(\xi(\{ \text{id} \}) = \{ \text{id} \}\) and for every connectivity state \(A\) distinct from \(\{ \text{id} \}\) we have

\[
\xi(A) = \bigcap_{C \cap \xi(A) \neq \emptyset}(A - C)
\]

Lemma 5.8. Consider a connectivity state \(A\). The vector \(\xi(A)\) verifies the following properties:

1. \(B \cap \xi(A) = 0 \forall B \leq A\)
2. \(C \cap \xi(A) = \xi(A) \forall C \geq A\)
3. \(\xi(\sigma(A)) = \sigma(\xi(A)) \forall \sigma \in S_n\)

Proof: The same proof as in lemma 5.2
Theorem 5.9. Consider a coherent order in Con and the matrices B and D associated to the operators π and ξ in the base Con. Consider also the matrix
\[
C = \begin{pmatrix}
\alpha_{\circ_1}^{-1} I_{\circ_1} & 0 & \ldots & 0 \\
0 & \alpha_{\circ_2}^{-1} I_{\circ_2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \alpha_{\circ_k}^{-1} I_{\circ_k}
\end{pmatrix}
\]
Then,
\[
A^{-1} = B \ C \ D
\]

Proof: Following the proof in 5.7, by lemma 5.2, i j component of the matrix $C \ B^t \ A$ is one if $A_j \leq A_i$; i.e. $A_j \cap A_i = A_i$ and zero otherwise.

We can see the expression of the vector $\xi(A)$ in terms of the base Con as elementary row operations on the matrix $C \ B^t \ A$ and observing that this expression only has elements C such that $C \preceq A$, by lemma 5.8 and the fact that $B \not\preceq A$ and $C \preceq A$ implies $B \not\preceq C$, we have that
\[
I = D^t \ C \ B^t \ A
\]
Because A is symmetric, the transpose of the last expression shows that A has also a right inverse so $A^{-1} = B \ C \ D$.

As an example consider the $n = 3$ case. A coherent order on the base Con is
\[
\text{Con} = \{123, 1 \overline{23}, 1 \overline{32}, 12 \overline{3}, 13 \overline{2}, 123\}
\]
Let’s Calculate the matrices B, C y D of the previous theorem:
\[
\begin{align*}
\pi(123) &= 123 - \overline{12}3 - \overline{13}2 - 1\overline{23} + 2.\overline{123} \\
\pi(\overline{12}3) &= \overline{12}3 - \overline{123} \\
\pi(\overline{13}2) &= \overline{13}2 - \overline{123} \\
\pi(1\overline{23}) &= 1\overline{23} - \overline{123} \\
\pi(\overline{123}) &= \overline{123}
\end{align*}
\]
and the matrix associated to π on the base Con is
\[
B = \begin{pmatrix}
1 & -1 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
2 & -1 & -1 & -1 & 1
\end{pmatrix}
\]
See that the entries of the last row are the respective connectivity numbers so
\[
C = \begin{pmatrix}
\frac{1}{2} & -1 \\
-1 & -1 \\
-1 & 1
\end{pmatrix}
\]
\[
\xi(123) = 123 \\
\xi(\widehat{12}3) = \widehat{12}3 - 123 \\
\xi(\widehat{13}2) = \widehat{13}2 - 123 \\
\xi(\widehat{1}23) = \widehat{1}23 - 123 \\
\xi(\widehat{123}) = \widehat{123} - \widehat{12}3 - \widehat{13}2 - \widehat{1}23 + 2.123
\]
and the matrix associated to ξ on the base Con is
\[
D = \begin{pmatrix}
1 & -1 & -1 & -1 & 2 \\
1 & 0 & 0 & -1 \\
1 & 0 & -1 \\
1 & -1 \\
1
\end{pmatrix}
\]
By the previous theorem, the connectivity matrix inverse is
\[
A^{-1} = \begin{pmatrix}
1 & -1 & -1 & -1 & 2 \\
-1 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
2 & -1 & -1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & -1 \\
-1 & -1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -1 & -1 & -1 & 2 \\
1 & 0 & 0 & -1 \\
1 & 0 & -1 \\
1 & -1 \\
1
\end{pmatrix}
\]
25
The permutation group S_3 has the peculiarity that its minimal subgroups coincide with its maximal ones and this is the reason why the matrix D equals the transpose of B in this particular case. This phenomenon occurs only in this case. The inverse connectivity matrix calculation follows exactly the same steps as in the case before and it is realized through the algebra generated by the connectivity states monoid.

5.3. Invariant Factors

By the theorem 5.9 we can see the connectivity numbers unless sign as the invariant factors of the abelian torsion group:

$$\frac{\mathbb{Z}\langle \text{Con} \rangle}{\mathbb{Z}\langle R_A \ / \ A \in \text{Con} \rangle}$$

In effect, we have the following theorem:

Theorem 5.10.

$$\frac{\mathbb{Z}\langle \text{Con} \rangle}{\mathbb{Z}\langle R_A \ / \ A \in \text{Con} \rangle} \cong \bigoplus_{i=1}^{k} \mathbb{Z}(m_{\text{Con}})$$

Proof: Following the proof of theorem 5.9 because B and D are triangular matrices with integer entries and ones in its diagonal, B and D are invertible in $M_m(\mathbb{Z})$; i.e.

$$B, D \in GL_m(\mathbb{Z})$$

In particular ξ is an automorphism of $\mathbb{Z}\langle \text{Con} \rangle$:

$$\xi \in \text{Aut}(\mathbb{Z}\langle \text{Con} \rangle)$$

This way we have that

$$DA = \begin{pmatrix} \alpha_{\sigma_1} & I_{\sigma_1} & 0 & \cdots & 0 \\ 0 & \alpha_{\sigma_2} & I_{\sigma_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{\sigma_k} & I_{\sigma_k} \end{pmatrix} B^{-1}$$

Consider the subgroup N of $\mathbb{Z}\langle \text{Con} \rangle$ generated by the vectors $\alpha_A \mathcal{A}$ such that \mathcal{A} is a connectivity state. Because of lemma 4.1 the fact that B is invertible in $M_m(\mathbb{Z})$ and the identity

$$\xi(R_{A_j}) = \sum_{i=1}^{m} a_{ij} \xi(A_i) = \sum_{i,k=1}^{m} d_{ki} a_{ij} A_k = \sum_{i,k=1}^{m} \alpha_k \delta_{ki} e_{ij} A_k = \sum_{i=1}^{m} e_{ij}(\alpha_i A_i)$$
where \((e_{ij}) = B^{-1}\) and \((d_{ij}) = D\), we conclude that \(N\) is isomorphic by \(\xi\) to the subgroup of \(\mathbb{Z}\langle Con\rangle\) generated by the vectors \(R_A\). We have the following commutative diagram with exact rows:

\[
0 \longrightarrow \mathbb{Z}\langle R_A / A \in Con \rangle \longrightarrow \mathbb{Z}\langle Con \rangle \longrightarrow \mathbb{Z}(\langle Con \rangle / \langle R_A / A \in Con \rangle) \longrightarrow 0
\]

\[
0 \longrightarrow N \longrightarrow \mathbb{Z}\langle Con \rangle \longrightarrow \bigoplus_{i=1}^{k} \mathbb{Z}(m_{O_i} \cdot 1)! \longrightarrow 0
\]

where lemma [5.6] was used. By the five lemma (well known result in Homological Algebra, see [We]), we have the result.

As an example, in the \(n = 3\) case we have

\[
\frac{\mathbb{Z}\langle Con \rangle}{\mathbb{Z}\langle R_A / A \in Con \rangle} \simeq \mathbb{Z}_2
\]

while in the \(n = 4\) case we have

\[
\frac{\mathbb{Z}\langle Con \rangle}{\mathbb{Z}\langle R_A / A \in Con \rangle} \simeq \mathbb{Z}_6 \oplus \mathbb{Z}_2^6 \simeq \mathbb{Z}_3 \oplus \mathbb{Z}_2^7
\]

In contrast to the \(n = 3, 4\) cases, the invariant factors in the \(n > 4\) cases are not just the prime decomposition of the connectivity matrix determinant. For example, consider the \(n = 5\) case:

\(O\)	\#\(O\)	\(m_O\)
\(\boxed{12345}\)	1	5
\(\boxed{12 345}\)	10	4
\(\boxed{12 34 5}\)	15	3
\(\boxed{123 45}\)	10	3
\(\boxed{1234 5}\)	5	2
\(\boxed{123 45}\)	10	2
\(\boxed{12345}\)	1	1

and we have that

\[
\frac{\mathbb{Z}\langle Con \rangle}{\mathbb{Z}\langle R_A / A \in Con \rangle} \simeq \mathbb{Z}_{4!} \oplus \mathbb{Z}_{5!}^{10} \oplus \mathbb{Z}_2^{15} \oplus \mathbb{Z}_2^{10} \simeq \mathbb{Z}_8 \oplus \mathbb{Z}_3^{11} \oplus \mathbb{Z}_2^{35}
\]

27
Appendix A. Another Proof of the n=2 case

In this section, connected means edge-connected.

Lemma Appendix A.1. Consider a graph \(G \) and subgraphs \(G_1 \) and \(G_2 \) with distinguished sets of nodes \(K_1 \) and \(K_2 \) respectively such that \(G = G_1 \cup G_2 \) and \(\{a,b\} = K_1 \cap K_2 = G_1 \cap G_2 \) (see the next Figure). Define \(K = K_1 \cup K_2 \). If \(G \) is \(K \)-connected, then \(\hat{G}_1 \) is \(\hat{K}_1 \)-connected and \(\hat{G}_2 \) is \(\hat{K}_2 \)-connected, where \(\hat{G}_i \) and \(\hat{K}_i \) is the graph and set resulting from the identification of the nodes \(a \) and \(b \) in the graph and set \(G_i \) and \(K_i \) respectively.

Proof: Consider \(k \) in \(K_1 \). There is a path in \(G \) connecting \(k \) with \(a \). Then, there is a subpath in \(G_1 \) connecting \(k \) with \(a \) or \(b \); i.e., there is a path in \(\hat{G}_1 \) connecting \(k \) with \(a = b \). This is true for every \(k \) in \(\hat{K}_1 \) so \(\hat{G}_1 \) is \(\hat{K}_1 \)-connected. In the same way as before, \(\hat{G}_2 \) is \(\hat{K}_2 \)-connected. \(\Box \)

Lemma Appendix A.2. Under the hypothesis of the previous lemma, \(G \) es \(K \)-connected if and only if one of the following items holds:

i. \(G_1 \) is \(K_1 \)-connected and \(\hat{G}_2 \) is \(\hat{K}_2 \)-connected.

ii. \(G_2 \) is \(K_2 \)-connected and \(\hat{G}_1 \) is \(\hat{K}_1 \)-connected.

Proof: By the previous lemma \(\hat{G}_1 \) is \(\hat{K}_1 \)-connected and \(\hat{G}_2 \) is \(\hat{K}_2 \)-connected. Suppose that \(G_2 \) is not \(K_2 \)-connected; i.e., there are nodes \(u, v \) in \(K_2 \) such that there is no path in \(G_2 \) connecting them.

We claim that \(G_1 \) is \(K_1 \)-connected. Suppose that it is not; i.e., there are nodes \(x, y \) in \(K_1 \) such that there is no path in \(G_1 \) connecting them. However, \(G \) is \(K \)-connected through paths \(\gamma_1 \) and \(\gamma_2 \) in \(G \) connecting \(x \) with \(u \) and \(y \) with \(v \) respectively. Because \(\gamma_1 \) and \(\gamma_2 \) contain the nodes \(a \) or \(b \) (but not the same node), we conclude that \(a \) or \(b \) are not connected in \(G \). In effect, if they were connected by a path in \(G \), then it would exist a subpath connecting them in \(G_1 \) or \(G_2 \) so \(x \) and \(y \) or \(u \) and \(v \) would be connected. This is absurd.
because G is K-connected and the nodes a and b are in K. We conclude that G_1 is K_1-connected.

Conversely, suppose without loss of generality that G_1 is K_1-connected and \hat{G}_2 is \hat{K}_2-connected. We claim that G is K-connected. In effect, consider k_1 and k_2 in K. If k_1 and k_2 are in K_1, then there is a path in G_1 connecting k_1 with k_2 and because $G_1 \subset G$ this path is also in G. If k_1 is in K_1 and k_2 is in K_2, then there is a path in G_2 connecting k_2 with a or b. Suppose without loss of generality that k_2 is connected with a. There is a path in G_1 connecting a with k_1. The concatenation of these paths connects k_1 with k_2 in G. The argument for the case k_1 in K_2 and k_2 in K_1 is the same. Finally, if k_1 and k_2 are in K_2, then there are paths in G_2 connecting k_1 and k_2 with a or b. If these paths connect k_1 and k_2 with the same point, then k_1 and k_2 are connected in $G_2 \subset G$, otherwise there is a path in G_1 connecting a with b and the concatenation of these three paths connects k_1 with k_2 in G. □

As a corollary we have the factorization formula in the $n = 2$ case (see figure 8).

Theorem Appendix A.3. Under the hypothesis of lemma Appendix A.1 we have that

$$R_K(G) = R_{K_1}(G_1)R_{K_2}(\hat{G}_2) + R_{\hat{K}_1}(\hat{G}_1)R_{K_2}(G_2) - R_{K_1}(G_1)R_{K_2}(G_2)$$

Proof: By the previous lemma Appendix A.2, the set of K-PathSets is the union of the sets of states $C_1 \cup C_2$ which verify the items i and ii of the lemma. The intersection of these sets is the set of states verifying that G_1 is K_1-connected and G_2 is K_2-connected. From the identity

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

and the independence follows the result. □

As a corollary, taking $a = b$ in the previous formula we get the well known factorization respect to an articulation node.
Appendix B. The n=4 case

For the case \(n = 4 \), ordering the base \(Con \) by:

\[
Con = \{1234, 12 \overset{34}{\leftrightarrow}, 13 \overset{24}{\leftrightarrow}, 23 \overset{14}{\leftrightarrow}, 12 \overset{23}{\leftrightarrow}, 13 \overset{24}{\leftrightarrow}, 23 \overset{14}{\leftrightarrow}, 12 \overset{23}{\leftrightarrow}, \ldots \}
\]

we get the connectivity matrix

\[
A = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

and its inverse
\[A^{-1} = \frac{1}{6} \begin{pmatrix}
-1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -2 & -2 & -2 & -2 & 6 \\
1 & 2 & -1 & -1 & -1 & -1 & 1 & 1 & -2 & -1 & -1 & 2 & 2 & 0 \\
1 & -1 & 2 & -1 & -1 & -1 & 1 & -2 & 1 & -1 & 2 & -1 & 2 & 0 \\
1 & -1 & -1 & 2 & -1 & -1 & 1 & 1 & 2 & -1 & -1 & 2 & 0 \\
1 & -1 & -1 & -1 & 2 & -1 & -1 & 2 & 1 & 1 & -1 & 2 & -1 & 0 \\
1 & -1 & -1 & -1 & -1 & 2 & -1 & 1 & -2 & 1 & 2 & -1 & 2 & -1 & 0 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & -2 & 2 & 2 & -1 & -1 & 0 \\
-1 & 1 & 1 & -2 & -2 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & 0 \\
-1 & 1 & -2 & 1 & 1 & -2 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & 0 \\
-1 & -2 & 1 & 1 & 1 & -2 & -1 & -1 & 1 & 1 & 1 & 1 & 0 \\
-2 & -1 & -1 & 2 & -1 & 2 & 2 & 1 & 1 & 1 & -1 & -1 & -1 & 0 \\
-2 & -1 & 2 & -1 & 2 & -1 & 2 & 1 & 1 & 1 & -1 & -1 & -1 & 0 \\
-2 & 2 & -1 & -1 & 2 & 2 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 \\
-2 & 2 & 2 & 2 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \]

\[R = R_{1234} \otimes R_{1234} + R_{1234} \otimes R_{1234} + \ldots \]

31
Appendix C. Factorization of the Random Cluster Model in the non Cluster Limit

In Statistical Mechanics, the random cluster model [Gri] partition function of a stochastic edge connected graph $G = (V, E, (p_e)_{e \in E})$ is given by

$$Z(q, G) = \sum_{\omega \in \Omega} \prod_{e \in E} q^{k(\omega)e} p_e^{\omega(e)}(1 - p_e)^{1-\omega(e)}$$

where $\Omega = \{0, 1\}^E$ is the set of states and $k(\omega)$ is the number of connected components of the state ω. The parameter q gives weight based on the number of closed sets of connected vertices including isolated ones; i.e. clusters. The $q = 1$ case is the percolation model and the $q > 1$ case prefers more clusters while the $q < 1$ case prefers fewer clusters. The non cluster limit is the $q \approx 0$ case. It is easy to see that a factorization of G as the one described in the paper is realized as the product of partition functions in percolation theory:

$$Z(1, G) = Z(1, G_1) Z(1, G_2)$$

and this is the only known factorization in the cluster random model. Because of the following relation between the random cluster model and the all terminal reliability:

$$Z(q, G) = q R_{All}(G) + O_2(q)$$

we have the following factorization in the non cluster limit (see Theorem 4.3):

$$\frac{\partial Z(q, G)}{\partial q} \bigg|_{q=0} = \sum_{i,j=1}^m b_{ij} \frac{\partial Z(q, G_1^{A_i})}{\partial q} \bigg|_{q=0} \frac{\partial Z(q, G_2^{A_j})}{\partial q} \bigg|_{q=0}$$

where b is the connectivity matrix inverse.

References

[Bi] N.L.Biggs, *Algebraic Graph Theory*, Cambridge, Cambridge University Press, 1993.

[Co] C.J.Colbourn, *The Combinatorics of Network Reliability*, New York, Oxford University Press, 1987.
[Ga] J.P.Gadani, *System effectiveness evaluation using star and delta transformations*, IEEE Trans.Reliability, R-30, No1, 41-47, 1981.

[Gri] G.Grimmet, *The Random-Cluster Model*, Springer, Berlin, 2006.

[Mo] F.Moskovitz and R.A.D.Center, *The analysis of redundancy networks*, Rome Air Development Center, Air Research and Development Center, United States Air Force, 1958.

[Ro] A.Rosenthal, *Computing the Reliability of Complex Networks*, Siam J.Aplied Math., 32, No2, 384-393.

[Rot] J.J.Rotman, *Advanced Modern Algebra*, Prentice Hall, 2nd printing, 2003.

[SC] A.Satyanarayana, M.Chang, *Network Reliability and the Factoring Theorem*, Networks, 13 (1983), 107-120.

[We] C.A.Weibel, *An Introduction to Homological Algebra*, Cambridge Studies in Advanced Mathematics, vol.38, Cambridge University Press, 1994.

[Wo] R.K.Wood, *A factoring algorithm using polygon-to-chain reductions for computing k-terminal network reliability*, Networks, 15 (1985), 173-190.