Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis

LIN JIN,a,b CHENBEI CHANG,c KEVIN M. PAWLIK,d ARUNIMA DATTA,a,b LARRY M. JOHNSON,e TRUNG VU,a JOSEPH L. NAPOLIF, PRAN K. DATTAa,b

Key Words. Embryonic stem cells • Embryoid bodies • Retinoic acid • Neural differentiation

ABSTRACT

Retinoic acid (RA) signaling is essential for the differentiation of embryonic stem cells (ESCs) and vertebrate development. RA biosynthesis and metabolism are controlled by a series of enzymes, but the molecular regulators of these enzymes remain largely obscure. In this study, we investigated the functional role of the WD-domain protein STRAP (serine threonine kinase receptor-associated protein) in the pluripotency and lineage commitment of murine ESCs. We generated Strap knockout (KO) mouse ESCs and subjected them to spontaneous differentiation. We observed that, despite the unchanged characteristics of ESCs, Strap KO ESCs exhibited defects for lineage differentiation. Signature gene expression analyses revealed that Strap deletion attenuated intracellular RA signaling in embryoid bodies (EBs), and exogenous RA significantly rescued this deficiency. Moreover, loss of Strap selectively induced Cyp26A1 expression in mouse EBs, suggesting a potential role of Strap in RA signaling. Mechanistically, we identified putative Krüppel-like factor 9 (KLF9) binding motifs to be critical in the enhancement of non-canonical RA-signaling in embryoid bodies. Taken together, our study reveals an intrinsic role for STRAP in the regulation of RA signaling and provides new molecular insights for ESC fate determination.

SIGNIFICANCE STATEMENT

Embryonic stem cells (ESCs) have an unlimited potential to self-renew and commit differentiation. Differentiation involves a fine-tune cascade of events promoted temporally and spatially by the multiple signal pathways. The findings of this study implicate that serine threonine kinase receptor-associated protein (STRAP) is essential for the mouse ESC lineages differentiation and early Xenopus embryo development. STRAP negatively regulates Cyp26A1 transcript and loss of STRAP results in an accumulated level of CYP26A1 protein and subsequently interrupting the retinoic acid homeostasis. This provides a novel mechanistic basis of how RA signaling effectively induces ESC differentiation via STRAP.

INTRODUCTION

Retinoic acid (RA) synthesis from retinol (Vitamin A) follows a two-step enzymatic process. The first step is oxidation of retinol to retinaldehyde and is mainly controlled by the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families [1–3]. The second step is controlled by members of the retinaldehyde dehydrogenase (RALDH) family that oxidize retinaldehyde to RA [4]. Cellular RA levels are degraded by cytochrome p450 family 26 (CYP26) enzymes that are responsible for the metabolism of active all-trans-RA to inactive polar metabolites [5, 6]. It has been reported that loss of CYP26 enzymes in zebrafish and mice results in severe phenotypes with caudal truncations, homeotic transformations, and embryonic lethality [7, 8].

Retinoid signals are required for the acquisition of germ layer subset specification in mouse ESCs [9]. RA promotes neural differentiation and plays diverse roles in regulating mesoderm commitment and hematopoietic...
development in embryonic stem cells [10–12]. RA regulates the commitment of ES cells to form Pdx1+ pancreatic endoderm [13]. CYP26A1 activity regulates intracellular RA levels and transcriptional regulation of primary RA target genes during ES cell differentiation [14]. Conversely, RA itself regulates Cyp26A1. The proximal region of the murine Cyp26A1 promoter contains an attypical G-rich element for regulating RA-induced expression [15, 16]. Besides the induced expression by exogenous RA, the regulation of Cyp26A1 in ESC differentiation remains to be elucidated.

We have reported the identification of a novel WD40 domain-containing protein STRAP (serine threonine kinase receptor-associated protein), which is highly expressed in several human cancers and plays roles in promoting tumorigenicity as well as maintaining stemness of cancer-like cells [17, 18]. In this study, we found that Strap gene deletion negatively affects stem cell lineage commitment by attenuating RA signaling. Moreover, we found this reduced signaling is mediated, at least in part, by accumulated Cyp26A1 expression, resulting in a potential increased RA metabolism. Mechanistically, we have shown that Krüppel-like factor 9 (KLF9) enhances Cyp26A1 promoter activity in a non-RA-stimulated manner, which might account for the high Cyp26A1 expression in Strap KO EBs. Interestingly, STRAP is also required for body axis and eye development as well as anterior-posterior neural patterning in early Xenopus embryogenesis. Overall, our work reveals a new role of STRAP as a novel regulator of ESC differentiation.

Materials and Methods

Generation of Strap+/– Mice

Vectors with zinc finger nucleases (ZFNs) targeting the Strap gene were electroporated into V6.5 ESCs. Strap+/– ESCs were then injected into C57BL/6 blastocysts to generate chimeric mice. The chimeras were backcrossed with C57BL/6 mice, and the Strap+/– offspring were subsequently intercrossed for ESC derivation. Primer sequences are included in the Supporting Information. All animal experiments were carried out according to the guidelines for the care and use of laboratory animals of the University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC).

Cell Culture

ESCs were cultured on irradiated mouse embryonic fibroblasts (MEFs) in ESC medium containing Knockout DMEM medium (Gibco, Grand Island, NY), 15% murine ESC de

-Actin (Sigma, A5316). Microarray analysis was performed using the GeneChip 430 Mouse 2.0 Array from Affymetrix [20]. To define differentially expressed genes, we used a statistical threshold of log2FC > 1 or < –1 and FDR-adjusted p < .05 to generate gene lists. The filtered data were computed by Gene Set Enrichment Analysis (GSEA) software (http://www.broad.mit.edu/gsea). The degree of enrichment is indicated by a normalized enrichment score (NES).

Western Blotting

Whole-cell lysates were prepared in RIPA buffer. Proteins were separated by 10% SDS/PAGE and probed with primary antibodies. Primary antibodies included: OCT4 c-Myc, NANOG (Cell Signaling Technology); STRAP (BD Transduction Labs); KLF9 (ThermoFisher); Sp1 and CYP26A1 (Santa Cruz Biotechnology); β-Actin (Sigma, A5316).

Cloning of the Murine Cyp26A1 Promoter and Luciferase Assay

Genomic DNA was isolated from a C57BL/6 mouse. Based upon the location of the transcriptional start site, a 1,756-bp fragment from –1,636 to +120 in the 5′-flanking region of the Cyp26A1 gene was generated by PCR. The PCR products for full-length and deleted fragments were digested with KpnI and Smal, and subcloned into the pGL3-basic luciferase vector (Promega, Madison, WI). The Sp1 expression construct was a gift from Dr. Hans Rotheneder (University of Vienna, Austria). The KLF9 expression plasmid was kindly provided by Dr. Robert
Denver (University of Michigan, USA). Luciferase constructs with respective expression plasmids were transfected into cells. A β-galactosidase (β-Gal) plasmid was transfected to serve as an internal control.

Chromatin Immunoprecipitation Assay

Purification of sonicated nuclear lysates and immunoprecipitation (IP) were performed using an EZ-chromatin immunoprecipitation (ChIP) assay kit (Upstate Biotechnology, Lake Placid, NY). Sonicated DNA fragments were immunoprecipitated with the specific antibody. IgG was used as a negative control for IP. The DNA/protein complex was eluted using elution buffer and reversibly crosslinked.

Lentiviral Transduction

E14 ES cells were infected with STRAP or vector control lentivirus. The cells were then selected with puromycin. Stable STRAP knockdown cells were confirmed for STRAP expression by Western blotting.

Xenopus laevis

Xenopus embryos were obtained as described previously [21]. An antisense morpholino oligonucleotide (MO) was designed using Gene Tools and has the sequence: CCACIAGCGGAGCTATGTGAAT. For in situ hybridization, 25 ng of the MO was co-injected with 0.2 ng RNA encoding the tracer β-Gal into the two-cell-stage embryos. The embryos were stained with the β-Gal substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (Red-Gal). The digoxigenin-labeled probe was hybridized to the embryos, and the color was developed using a substrate for alkaline phosphatase (AP)-positive colonies (Fig. 1F), indicating that loss of STRAP has little effect on self-renewal potential of the undifferentiated embryonic stem cells.

To confirm the characteristics of the ESCs, we next determined the levels of several pluripotency markers, including OCT4, c-Myc and NANOG. Both the mRNA transcripts (data not shown) and the proteins of these genes were expressed at similar levels in WT and Strap-depleted ESCs (Fig. 1G). Taken together, our results suggest that Strap is not required for mouse ESC viability and identity.

Strap-Deficient ESCs Are Defective in Lineages Differentiation

Since deletion of Strap does not affect ESC proliferation or maintenance, the lethality of Strap knockout mice is probably caused by defects in ESC differentiation. To test this hypothesis, we examined cell differentiation in EBs derived from ESCs. Withdrawal of leukemia inhibitory factor (LIF) from the culture medium is the most frequently used method to induce EBs. Cells in such EBs consistently and spontaneously differentiate into lineages of all three embryonic germ layers [25–27].

At day 6 of differentiation, the number, size, and morphology of EBs derived from WT and Strap KO ESCs appear similar, indicating that Strap knockout does not affect early EB formation (Fig. 2A and Supporting Information Fig. S2A). Subsequently, WT EBs developed increasingly non-uniform shape and distinct regions with different cell density and compaction, implying formation of heterogeneous cell populations in the EBs (Fig. 2A, left panel). In contrast, Strap KO EBs maintained homogeneous cell population in size and shape (Fig. 2A, right panel), and the increase in EB diameter was also slowed drastically when compared with the WT EBs (Supporting Information Fig. S2A). Interestingly, the percentage of apoptotic cells in KO EBs is similar to that of WT EBs (data not shown), indicating that Strap knockout does not affect programmed cell death. Since cell cycle progression constitutes one of the critical rate-limiting steps during early ESC differentiation [28], we analyzed cell cycle of KO EBs. Despite reduced growth of EB at Day 10, the percentage of cells in each cell cycle phases remained similar in both WT and Strap KO EBs, indicating that no cell cycle transition defects occurred in Strap KO EBs (Fig. 2B). These results suggest that the absence of Strap does not influence cell cycle progression, but may result in defective cell differentiation programming.

To investigate whether the alteration of EB morphology truly reflects defects in cell differentiation, we assayed for the effect of depletion of Strap on the expression of lineage-specific genes directly. We cultured EBs over a 12-day period of differentiation and measured gene expression at four time

© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
points that reflect: (a) ground-state ESCs (D0), (b) multipotent progenitors (D4), (c) lineage-associated progenitors (D6–8), and (d) differentiated cell lineages (D12) [29]. qPCR analyses indicates that expression of the pluripotent genes Oct4, Nanog and Sox2 was reduced gradually to undetectable levels at D12 in EBs (Supporting Information Fig. S2B). As expected, lineage-specific markers for ectoderm (Nestin, Igf2, Pax6, and Vimentin), mesoderm (Twist, Pax3, Mef2c, and MyoD), and endoderm (Gata4, Gata6, and Sox17) were increasingly expressed in WT EBs over the incubation period. In contrast, Strap KO EBs expressed these lineage-specific markers at low levels at all the time points tested (Fig. 2C–2E). These data demonstrate that Strap regulates lineage commitment during EB differentiation without affecting functional pluripotent genes. Strap may therefore participate in specific aspects of EB differentiation. We next estimated the percentage of germ layer cells in both WT and KO EBs. Single cells dissociated from stage-defined EBs were immunostained with antibodies against CD133 (ectoderm), Gata-4 (endoderm) and Brachyury (mesoderm) and then subjected to flow cytometry analysis. There was no autonomous differentiation in ESCs (data not shown) and percentages of the marker-labeled cells were significantly lower in KO-EBs than those in WT EBs at the indicated time points (Supporting Information Fig. S2C), indicating that STRAP deletion led to defects of all three lineages commitment.

Retinoic Acid Signaling Is Impaired in Ectoderm and Endoderm Committed Strap-KO ESCs

Embryonic cell differentiation is regulated by multiple signaling pathways. GSEA transcriptomics analyses on our MEFs microarray data indicate that the pathway with the highest NES is RA signaling (Fig. 3A, upper panel; NES 2.122, p < .001) compared with other multiple pathways with a significantly positive NES, including TGF-beta Signaling (NES 1.927, p < .001), Growth Factor Signaling (NES 1.588, p < .001), Wnt Signaling (NES 1.491, p = .002), and Cell Adhesion Signaling (NES 1.280, p < .001).
Many target genes of the RA signaling pathway as well as their activating components, such as RA receptors (\(Rar\alpha\) and \(Rar\beta\)), retinoid X receptors (\(Rxr\alpha\) and \(Rxr\beta\)), CREB binding protein (\(Creb\beta\)), and retinol-binding protein 1 (\(Rbp-1\)) were upregulated significantly in \(Strap\) KO MEFs. Nevertheless, the repressors of this pathway including the nuclear receptor-co-repressor-2 (\(Ncor-2\)) and Histone deacetylase 1 (\(Hdac1\)) are mainly downregulated (Fig. 3A, upper panel), and the canonical RA metabolic genes are not appreciably affected by genetic inactivation of \(Strap\) (Fig. 3A, bottom panel).

Based on our MEFs data, we explored the possibility that \(STRAP\) may regulate RA signaling during lineage-commitment of ESCs. To test this, we harvested EBs at 4-, 8-, and 10-days following incubation under differentiation conditions and performed qPCR analysis of a set of RA signature genes, including \(Rar\alpha\), \(Rar\beta\), \(Crabp1\), \(Hoxa10\), \(Hoxb1\), \(Stra6\), and \(Stra8\) [9, 30–32]. In contrast to the cultured MEFs (Supporting Information Fig. S3A), \(Rar\alpha\), \(Rar\beta\), \(Crabp1\), and \(Hoxb1\) were significantly reduced in \(Strap\) KO EBs after LIF removal especially at Days 8–10, when compared with WT EBs (Fig. 3B, Supporting Information Fig. S3A). Since these genes are directly regulated by RA signaling at the transcription level, these results suggest that RA signaling is attenuated in \(Strap\) KO EBs during differentiation. In comparison, there is little change in the expressions of \(Hoxa10\) and \(Stra8\) in both WT and KO EBs, indicating the specificity of the effect of \(Strap\) on RA-regulated genes (Fig. 3B, Supporting Information Fig. S3A).

To verify that compromised RA signaling is indeed the key factor in impeding the expression of the above RA-responsive genes in \(Strap\) KO EBs, we performed the rescue assays by adding either 100 nM of Vitamin A (a precursor of RA) or 100 nM of all-trans RA to WT and \(Strap\) KO EBs at Day 6 and Day 8 under differentiation conditions. \(Strap\)-affected genes (\(Rar\alpha\), \(Rar\beta\), \(Crabp1\), and \(Hoxb1\)) were analyzed by qPCR analysis. While treatment with DMSO had little effect on gene expression in WT or \(Strap\) KO EBs (Fig. 3C, Supporting Information Fig. S3C), exposure to Vitamin A or all-trans RA dramatically increased the levels of \(Rar\alpha\), \(Rar\beta\), \(Hoxb1\), and \(Crabp1\) transcripts at day 8 in both WT and \(Strap\) KO EBs. Notably, the expression of these genes, with the exception of \(Crabp1\), was rescued in \(Strap\) KO EBs to a similar level as their WT counterparts (Fig. 3C).

To further examine whether \(Strap\) deficiency affects RA signaling-induced biological function, we cultured EBs in floating conditions in the absence of LIF for 4 days. Then, these EBs were plated into 12-well plates for additional 8 days with the treatment of all-trans RA (100 nM) every
2 days. Immunofluorescence staining of the pan-neuronal marker β-tubulin III was performed at day 12 [33]. A low density of β-tubulin III-positive neuronal fibers was observed in WT EBs even without RA treatment, reflecting autonomous self-differentiation of neurons in a small percentage of cells in the WT EBs (Fig. 3D, left upper panel). Exposure of the EBs to RA induced an extensive network of β-tubulin III positive neurites extending from the central cell aggregates (Fig. 3D, right upper panel). Unlike WT EBs, Strap KO EBs did not harbor neurites in the absence of RA (Fig. 3D, left bottom panel). However, they responded to RA to extend neurites, though the density of neurites was less compared with that in the WT EBs (Fig. 3D, right bottom panel). These results imply that Strap is required for optimal response to RA signaling during neuronal differentiation in EBs.

In addition to neuronal cell differentiation, RA signals are also shown to regulate cell fate in other germ layers [9]. Therefore, we examined the expression of several germ layer markers by qPCR in EBs treated with RA for 6 days, starting at the day-4 in differentiation media. RA induced the expression of the ectodermal markers Nestin and Pax6 and the endodermal markers Gata4 and Sox17 (Supporting Information Fig. S4A), but did not enhance the mesodermal markers Pax3 and Mef2C (data not shown). The results were consistent with the finding that RA favors ectodermal and endodermal differentiation lineages [33, 34]. When comparing the WT and the Strap KO EBs, we observed that both responded to RA in similar ways, resulting in similar patterns and levels of marker expression (Supporting Information Fig. S4A). Taken together, our data indicate that STRAP is involved in the RA-mediated differentiation and Strap KO ESCs fail to commit to ectodermal and endodermal lineages mainly due to inactivated RA signaling. Since the Strap KO EBs responded to exogenous RA, it suggests that Strap KO impairs RA signaling probably through effects on the production of RA.

Figure 3. Endogenous RA signaling is inactivated during differentiation of Strap KO ESCs. (A): Gene set enrichment analysis (GSEA) using gene expression profiles from Strap +/+ and Strap −/− MEFs. Representative gene expression patterns predicted RA signaling components were enriched in Strap−/− MEFs compared with Strap+/+ MEFs. (B): RNA was extracted from EBs cultured without leukemia inhibitory factor (LIF) for various time points, and the transcript levels of RA-responsive genes were assessed by RT-qPCR. Bars represent mean ± s.d., n = 3, *, p < .05; **, p < .01; ***, p < .005, when compared with the corresponding control. (C): RT-qPCR analyses of RA-specific gene expression at Day 8 and Day 10 during EB formation with VA or ATRA. DMSO was used as vehicle control. No significance between the two groups was observed. Bars represent mean ± s.d., n = 3. (D): Free-floating EBs formed after 4 days of suspension culture with removal of LIF. Individual EBs were seeded into 12-well plates with either RA (100 μM) or DMSO. 12-old-day EBs were fixed and stained for anti-β-tubulin III (green) to illustrate neuronal growth. Image magnification ×40. Abbreviations: ATRA, all-trans retinoid acid; KO, knockout; MEFs, mouse embryonic fibroblasts; NES, normalized enrichment score; RA, retinoic acid; VA, vitamin A; WT, wild-type.
Enhanced Expression of CYP26A1 Contributes to the Reduction in Endogenous RA Signaling in Strap KO EBs

To test whether RA metabolic enzymes are being regulated by STRAP during development, we performed RT-qPCR using total RNAs extracted from 10-day-old cultured EBs. We did not observe appreciable changes in the transcripts of enzymes for RA biosynthesis, including retinol dehydrogenase 10 (Rdh10), aldehyde dehydrogenase 2 (Raldh2), and cellular RA binding protein 2 (Crabp2) in Strap KO EBs compared with those in WT EBs (Fig. 4A). Unlike reduced Rara and Rarb in Strap KO EBs (Fig. 3B), another RA receptor, Rbp4 was not affected by Strap depletion (Fig. 4A). Interestingly, Cyp26A1, but not its paralog gene Cyp26B1, was strikingly enhanced in Strap KO EBs when compared with the corresponding WT EBs (Fig. 4A), implying that Cyp26A1 may be a specific target of STRAP. Several other genes including retinol dehydrogenase 1 (Rdh1), retinaldehyde dehydrogenase 1 (Raldh1), and Cyp26C1 were not detected by qPCR assays (data not shown). This suggests that different RA metabolic enzymes are selectively expressed during EB differentiation.

To determine the increase in CYP26A1 expression in Strap KO EBs during differentiation, we analyzed the expression of Cyp26A1 at different stages of EB differentiation. The level of Cyp26A1 mRNA was low at day 6 in WT EBs and did not increase much at day 8 and 10. The Strap KO EBs consistently showed a much higher level of Cyp26A1 mRNA from day 6 onward (Fig. 4B). We next measured dynamic patterns of CYP26A1 protein in the progress of differentiation by Western blot assays. We observed that CYP26A1 expression in WT EBs was detectable from day 6 and continuously expressed until D12 (Supporting Information Fig. S4B and Fig. 4C). Interestingly, downregulation of STRAP correlated with induced levels of CYP26A1 protein in EBs from day 8 of differentiation (Supporting Information Fig. S4B and Fig. 4C). To verify this observation in other cell models, we first established lentivirus-mediated stable shCtrl and shSTRAP E14 cells. The efficiency of STRAP knockdown in shSTRAP cells was greater than 80% compared with shCtrl cells (Fig. 4D) and reduced expression of STRAP was steadily maintained in KO EBs (Fig. 4E). We next cultured control and STRAP-KD EBs under the differentiation condition over a period of time. We observed that knockdown of STRAP in EBs induced the expression of CYP26A1 during the differentiation as compared with control EBs (Supporting Information Fig. S4C and Fig. 4E). Collectively, these data indicate that CYP26A1 could be a potential downstream target of STRAP and the absence of STRAP upregulates CYP26A1 through transcript level.

Figure 4. Loss of STRAP results in increased CYP26A1 mRNA and protein levels during EB differentiation. (A): RT-qPCR analyses of retinoid acid (RA) metabolic gene expression at Day 10 during EB formation. Bars represent mean ± s.d., n = 3 , ** , p < .01, when compared with the control. (B): RT-qPCR analyses of Cyp26A1 expression at Day 4, Day 6, Day 8, and Day 10 during EB formation. Each point represents mean ± s.d., n = 3. (C): Western blot analyses of the level of CYP26A1 in the indicated EBs at Day 10 and Day 12. β-Actin was used as a loading control. (D): Western blotting was used to determine the expression of STRAP protein in the control and STRAP knockdown E14 polyclonal cells. (E): Levels of CYP26A1 and STRAP in EBs derived from shSTRAP and shCtrl clones (E14) were determined by Western blotting using β-Actin as a loading control. (F): 8-day-old EBs were treated with CYP26A1 inhibitor, liarozole (50 μM), for 48 hours and total RNA from control and knockdown EBs was subjected to RT-qPCR analyses for detecting RA-targeted genes. No significance between the two groups was observed. Bars represent mean ± s.d., n = 3. Abbreviations: EBs, embryoid bodies; ESCs, embryonic stem cells; KO, knockout; STRAP, serine threonine kinase receptor-associated protein; WT, wild-type.

© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
If higher expression of CYP26A1 by Strap KO were indeed responsible for reduced RA signaling in EBs, we would expect that blocking CYP26A1 function would rescue the RA signaling. To test this hypothesis, we applied the CYP26 inhibitor liazol (50 μM) [35] for 48 hours and analyzed levels of the RA-regulated genes Rarβ, Crabp1, and Hoxb1. While the expression of these genes were downregulated in the absence of STRAP, inhibition of CYP26 elevated the expression of these genes to the levels similar to that in WT EBs (Fig. 4F). Taken together, these results indicate that upregulation of CYP26A1 in the absence of STRAP leads to impaired RA signaling in the EBs, thereby preventing efficient lineage differentiation.

Krüppel-like Factor 9 and Sp1 Coordinate to Regulate Cyp26A1 Transcription in EBs

Since we observed that knockout or shRNA-mediated downregulation of STRAP results in enhanced Cyp26A1 mRNA levels, it is likely that STRAP regulates transcription of Cyp26A1 during EB differentiation. Therefore, we constructed a set of luciferase-reporters containing either full-length (~1,636 to +120 bp) or a series of successive 5′ deletion of Cyp26A1 promoter (Fig. 5A). Luciferase activities were measured in WT or Strap shRNA E14 cells transfected with these reporters. In control cells, STRAP-induced promoter activity was maximum with ~665 bp construct. Moreover, in Strap-shRNA cells, increased luciferase activities were observed in the same set of reporters and activity was vanished when only ~200 bp of promoter sequence was present (Fig. 5A). The data suggest that STRAP may control the availability of the transcription factors (TFs) or regulate the affinity of these factors to cis-regulatory element(s) in the promoter to influence Cyp29A1 transcript levels.

To identify putative TFs that may be involved in the regulation of Cyp26A1 expression, we used MatInspector online tool (http://www.genomatic.de/matinpector) to compute TF binding scores on murine Cyp26A1 promoter (~1,700 to +120 bp).
Of the candidate TFs, Sp/KLF family members frequently scored high (>85) on the list. As KLF9 has been shown to promote Cytochrome P450 2D6 expression in mouse liver [36], we asked whether the Klf genes, Klf2, Klf7, and Klf9 with top ranking scores were expressed in the EBs, and whether their expression was affected by STRAP. Expression of Klf9, but not of klf2 or klf7, was greatly induced by Strap depletion during EB differentiation (Supporting Information Fig. S5A). High expression of KLF9 protein was observed in Strap KO EBs (Fig. 5B, Supporting Information Fig. S5B), and this occurred concurrently with enhanced CYP26A1 protein (Fig. 4D). This result implies that KLF9 levels are regulated by STRAP, and the protein might in turn control Cyp26A1 expression. To further investigate this, we co-transfected KLF9 expression vector with the luciferase reporter constructs containing different deletion fragments of Cyp26A1 promoter into E14 cells (Fig. 5C). Since Sp1 and KLF9 compete for the same binding sites in the target gene promoter [37], we co-transfected expression vectors for Sp1 either alone or with KLF9. KLF9 induced the luciferase activity from −665 and −422 vectors in comparison to the control vector (>3-fold) (Fig. 5C). Unexpectedly, the activation was further increased in the presence of Sp1, implying KLF9 significantly activated the Cyp26A1 promoter and Sp1 had an additive effect.

To further determine the mechanism of KLF9-mediated control of Cyp26A1 expression, we identified four putative KLF9 binding motifs (C/GCCC) within the promoter [38]. Among them, one is located in the distal region from the transcription start site (TSS), two are located upstream of the −200 bp sequence (middle region), and the fourth one is in between (Fig. 5D). To test whether these sites mediate the binding of KLF9/Sp1 to the endogenous Cyp26A1 locus, we performed chromatin immunoprecipitation (ChIP) assays using anti-KLF9 and anti-Sp1 antibodies followed by qPCR. As revealed in Figure 5E, higher occupancy of Sp1 and KLF9 (>3.5-fold and >5-fold, respectively) was detected on the middle region with two KLF9 putative binding sites in shSTRAP 10-day-old EBs compared with their corresponding shCtrl. In contrast, minimal signals with proximal and low signals with distal DNA fragments were detected, suggesting that KLF9 and Sp1 associate preferentially with the middle region of Cyp26A1 promoter. Collectively, these studies indicate that loss of STRAP results in KLF9/Sp1 recruitment to specific regions of the Cyp26A1 promoter that are important for its expression.

STRAP Affects Neural Patterning During Early Xenopus Development

It is well documented that RA signaling regulates anterior-posterior neural patterning as well as formation of the eyes in Xenopus. We thus use this system to address whether STRAP similarly controls AP neural patterning and eye development through RA signaling. We first analyzed the expression pattern of Strap by in situ hybridization. At gastrula stages, Strap RNA was seen in the mesodermal tissues surrounding the entire blastopore (Fig. 6A, panel a). Its expression was subsequently enriched in the neural plate during neurulation (Fig. 6A, panel b). At the end of the neurula stages, Strap transcripts were detected both in the brain and the spinal cord regions and in the migrating neural crest cells (Fig. 6A, panel c). This pattern persisted to the tailbud and the tadpole stages, with additional signals seen in the eyes, the otic vesicles, and the pronephros ducts (Fig. 6A, panels d and e). Many sites of Strap expression overlapped with those of other RA signaling components [39–41], suggesting that Strap may modulate RA signaling during Xenopus development.

To investigate the endogenous function of STRAP, we designed antisense morpholino oligonucleotides (MO) against Strap. Injection of the Strap-MO into the marginal zone (mesodermal precursors) led to interference with gastrulation movements (data not shown), whereas injection of the Strap-MO into the animal region (ectodermal cells) resulted in reduction of the head structure, malformation of the eyes, decreased melanocytes, and reduced body axis (Fig. 6B). These phenotypes are similar to those with RAα and RAβ knockdowns [39, 42]. To ascertain that the morphant phenotypes were indeed induced by Strap knockdown, we performed a rescue experiment using a Myc-tagged STRAP construct that cannot be targeted by the MO. Co-expression of the Myc-Strap RNA with the MO greatly rescued the morphant defects, so that both the length of the body axes and the formation of the eyes were restored to a large extent (Fig. 6C). The data imply that the effects of the Strap MO are specific and that Strap is required for body axis and eye development in early Xenopus embryogenesis.

To further analyze the defects induced by Strap-MO, we performed in situ hybridization (ISH) of a panel of neural markers. Otx2 is a marker for the forebrain and the midbrain. Engrailed (En) is a midbrain-specific gene. Krox20 is expressed in the hindbrain. HoxD4 and HoxB9 are both spinal cord markers, whereas Pax6 is expressed in the spinal cord, the diencephalon, and the eye fields. We injected the Strap-MO together with a lineage tracer β-Gal gene into one cell of the 2-cell stage embryos. The embryos were collected at late neural stages. ISH was then performed on the embryos, with the un-injected side as an internal control for marker expression. As shown in Figure 6D, the neural markers were expressed symmetrically on both sides in control. However, in embryos injected with Strap-MO, the markers were shifted posteriorly on the injected side relative to the control side, and the expression of Krox20 and Pax6 in the eye field was also reduced by Strap knockdown, similar to when RA signaling was impaired via knockdown or inhibition of its signaling components [39, 41, 43]. The results are thus consistent with the idea that STRAP may positively regulate RA signaling to influence anterior-posterior neural patterning.

Based on our cell culture studies, we hypothesize that Strap may regulate RA signaling via its control of expression of RA metabolic enzymes. We thus examined the expression of several RA metabolic enzymes in control and Strap morphant embryos by RT-qPCR. We observed a specific enhancement of Cyp26C1 expression when Strap was knocked down, but the levels of Cyp26A1, Cyp26B1 and Crabp2 were not altered significantly (Fig. 6E). The data suggest that Strap inhibits Cyp26C1 expression to affect neural patterning during early Xenopus development.

DISCUSSION

Tissue-specific cell fate during development is determined by multiple signals, such as WNT, BMP/SMAD, FGF/MAPK, Hippo,
NF-κB, JAK/STAT, and RA pathway [43]. Numerous studies have focused on the function of RA signaling in vertebrate development; however, its upstream regulation during ESC differentiation is largely unexplored. Based on gene expression profiling, we detected that endogenous RA signaling was attenuated in Strap-KO EBs (Fig. 3A, 3B). Importantly, this impaired signaling was restored when Vitamin A or all-trans RA was added back to the Strap-KO EB culture (Fig. 3C), suggesting that STRAP is indeed an effector of RA-regulated ESC differentiation. Notably, our study shows that RA could rescue the deficiency in ectodermal and endodermal lineages but not mesodermal commitment in KO-EBs. It could be due to two reasons: (a) loss of RA signaling is not a major trigger for the failure of mesodermal differentiation upon STRAP deletion, and (b) other signaling pathway(s) may be activated in RA-exposed KO-EBs and neutralize its effect.

We initially examined the expression of RA-metabolic genes in Strap-KO EBs during differentiation. Rdh10 and Raldh2, representing two key enzymes for RA synthesis, were analyzed with qRT-PCR and appeared to be similar in KO and WT EBs (Fig. 4A). Crabp2 was also not affected by the absence of Strap (Fig. 4A). Additionally, we observed that the levels of two RA nuclear receptors, Rarα and Rarβ, were reduced in KO EBs compared with WT EBs (Fig. 3C) and were dramatically rescued by exogenous RA (Fig. 3C). These results suggest that RA receptor activity was attenuated by the low potency of RA signaling and not a receptor deficiency. CYP26A1 is the critical RA-degrading enzyme and Cyp26A1 has also served as a well-known RA-responsive gene. Paradoxically, we found that CYP26A1 mRNA and protein levels were increased in KO cells during differentiation (Fig. 4A–4D), implying that higher expression of CYP26A1 might result in the RA degradation. These results are in agreement with the data from Xenopus model that loss of STRAP induces defective RA-signaling-induced phenotype probably through the upregulation of Cyp26C1 (Fig. 6E). Together, this supports the notion that the RA degradation pathway might be regulated by different p450 family members during evolution. Our future work will determine the mechanism of how STRAP regulates the p450 family during the Xenopus development. Overall, our data suggest
that STRAP regulates mouse ESC differentiation through CYP26A1-mediated RA signaling.

To understand how STRAP controls Cyp26A1 expression, we used luciferase and ChIP assays (Fig. 5). We showed that STRAP depletion led to increased expression of KLF9, which binds to Cyp26A1 promoter to increase its expression. KLF9 is a well-known transcriptional regulator, although its function during development is not well studied. KLF9 collectively associates with either transcriptional co-activators or co-repressors to influence the expression levels of genes [44, 45]. Our previous studies demonstrated that STRAP negatively modulates Sp1-dependent transcription [46], suggesting an important role of STRAP in regulating the binding of TFs to cis-acting sequences. Here, we observed that both KLF9 and Sp1 bound to the Cyp26A1 locus, perhaps due to the high sequence identity shared by these two proteins (Fig. 5B, 5E).

In Xenopus, RA signaling has been shown to regulate anterior-posterior neural patterning as well as eye development. We have observed that knockdown of Strap affects AP neural identity and eye formation, phenotypes generated by RAR

Collectively, we show that RA signals are required for the ESC lineage commitments and that STRAP positively regulates this process via specifically involving in RA signaling. These findings expand our understanding of the molecular mediators of RA signaling, and provide a novel mechanistic basis for how RA signaling effectively induces ESC differentiation via STRAP.

REFERENCES

1 Molotkov A, Fan X, Deltour L et al. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 2002;99:5337–5342.

2 Molotkov A, Deltour L, Foglio MH et al. Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J Biol Chem 2002;277:13804–13811.

3 Sandell LL, Sanderson BW, Moiseyev G et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 2007;21:1113–1124.

4 Kumar S, Sandell LL, Trainor PA et al. Alcohol and aldehyde dehydrogenases: Retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 2012;1821:198–205.

5 White JA, Guo YD, Baetz K et al. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 1996;271:29922–29927.

6 Fiorella PD1, Napoli JL. Microsomal retinoic acid metabolism. Effects of cellular retinoic acid-binding protein (type I) and C18-hydroxylation as an initial step. J Biol Chem 1994;14:10538–10544.

7 Uehara M, Yashiro K, Takaoka K et al. Removal of maternal retinoic acid by embryonic cyp26 is required for correct nodal expression during early embryonic patterning. Genes Dev 2009;23:1689–1698.

8 Sakai Y, Meno C, Fuji H et al. The retinoic acid-inactivating enzyme cyp26 is essential for establishing an uneven distribution of retinoic acid along the antero-posterior axis within the mouse embryo. Genes Dev 2001;15:213–225.

9 Stavridis MP, Collins BJ, Storey KG. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 2010;137:881–890.

10 Mahony S, Mazzoni EO, McCune S et al. Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol 2011;12:R2.

11 Yu C, Liu Y, Miao Z et al. Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hematopoietic-vascular precursors. Blood 2010;116:4786–4794.

12 Chanda B, Ditadi A, Iscove NN et al. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 2013;155:215–227.

13 Micallef SJ, Janes ME, Knezevic K et al. Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes 2005;54:301–305.

14 Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2008;315:331–354.

15 Loudig O, Babichuk C, White J et al. Cytochrome P450RAI(CYP26) promoter: A distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol Endocrinol 2000;14:1483–1497.

16 Kashyap V, Gudas LJ. Epigenetic Regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J Biol Chem 2010;285:14534–14548.

17 Halder SK, Amankanman G, Maddula R et al. Oncogenic function of a novel WD-domain protein, STRAP, in human carcinogenesis. Cancer Res 2006;66:6156–6166.

18 Jin L, Yu T, Yuan G et al. STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res 2017;77:5464–5478.

19 Chen WY, Delrow J, Corrin PD et al. Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis. Nat Genet 2004;36:304–312.

© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
mesenchymal morphology. Cell Signal 2010; 22:138–149.
21 Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol 2007; 303:93–107.
22 Harland RM. In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol 1991; 36:685–695.
23 Flisikowska T, Thorey IS, Offner S et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc-finger nucleases. PLoS One 2011; 6:e21045.
24 Hauschild J, Petersen B, Santiago Y et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 2011; 108:12013–12017.
25 Niwa H, Ogawa K, Shimosato D et al. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009; 460:118–122.
26 Nishikawa S, Jakt LM, Era T. Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 2007; 8:502–507.
27 Gerecht-Nir S, Cohen S, Itskovitz-Eldor J. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 2004; 86:493–502.
28 Li VC, Kirschner MW. Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proc Natl Acad Sci USA 2014; 111:9503–9508.
29 Stryjewska A, Dries R, Pieters T et al. Zeb2 regulates cell fate at the exit from epiblast state in mouse embryonic stem cells. Stem Cells 2017; 35:611–625.
30 Delacroix I, Moutier E, Altobelli G et al. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol 2010; 30:231–244.
31 Bouillet P, Sapin V, Chazaud C et al. Developmental expression pattern of Stra6, a retinoic-acid-responsive gene encoding a new type of membrane protein. Mech Dev 1997; 63:173–186.
32 Anderson EL, Baltus AE, Roepers-Gajadien HL et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA 2008; 105:14976–14980.
33 Kim M, Habiba A, Doherty JM et al. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 2009; 328:456–471.
34 Kinkel MD, Sefton EM, Kikuchi Y et al. Cyp26 enzymes function in endoderm to regulate pancreatic field size. Proc Natl Acad Sci USA 2009; 106:7864–7869.
35 Bruynseels J, De Coster RV, Van Rooy P et al. R752S1, a new inhibitor of steroid biosynthesis. Prostate 1990; 16:345–357.
36 Koh KH, Pan X, Zhang W et al. p ple-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice. Mol Pharmacol 2014; 86:727–735. Kru
37 Zhang XL, Zhang D, Michel FJ et al. Selective interactions of Kruppel-like Factor 9/basic transcription element-binding protein with progesterone receptor isoforms A and B determine transcriptional activity of progesterone-responsive genes in endometrial epithelial cells. J Biol Chem 2003; 278:21474–21482.
38 Mizuno S, Zhang D, Nair JR et al. KLF9 is a novel transcriptional regulator of bortezomib- and LBH589-induced apoptosis in multiple myeloma cells. Blood 2012; 119:1450–1458.
39 Shiozugu J, Katsuyama Y, Arima K et al. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 2004; 131:2653–2667.
40 Tanibe M, Michiue T, Yukita A et al. Retinoic acid metabolizing factor XCytp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis. Int J Dev Biol 2008; 52:893–901.
41 Strate I, Min TH, Iliev D et al. Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signaling during axis formation and patterning of the central nervous system. Development 2000; 136:461–472.
42 Koide T, Downes M, Chandraratna RAS et al. Active repression of RAR signaling is required for head formation. Genes Dev 2001; 15:2111–2121.
43 Perrimon N, Pitsouli C, Shilo BZ. Signal mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 2012; 4:a005975.
44 Imataka H, Sagawa K, Yasumoto K et al. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P450A1A gene. EMBO J 1992; 10:3663–3671.
45 Knoedler JR, Subramani A, Denver RJ. The Kruppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 1:299.
46 Jin L, Datta PK. Oncogenic STRAP functions as a novel netative retualtor of E cadherin and p21 by modulating the transcription factor Sp1. Cell Cycle 2014; 13:3909–3920.

See www.StemCells.com for supporting information available online.