CONCISE SYNTHESIS OF 1,3-DIACETOXY-2-[2'-(2'',4''-DIFLUOROPHENYL)PROP-2'-EN-1'-YL]PROPANE: AN INTERMEDIATE FOR POSACONAZOLE

Yunxiang Chen,1 Yangwei Huang,2 Xueqing Zhao,2 and Zhongming Li1
1College of Chemistry and Environment, Jianghan University, Wuhan, China
2Synthetic Group, Fujian Institute of Microbiology, Fuzhou, China

GRAPHICAL ABSTRACT

Abstract A concise process of 1,3-diacetoxy-2-[2'-(2'',4''-difluorophenyl)prop-2'-en-1'-yl]propane has been developed. Diethyl malonate was C-alkylated with 2,3-dichloropropene and then the ester groups were reduced by LiAlH4, followed by acylation to provide 2-(2'chloroprop-2'-en-1'-yl)-1,3-diacetoxypropane. The chloropropene was finally coupled with 2,4-difluorophenylmagnesium bromide and catalyzed by Fe(acac)3 to afford the title compound in good total yield.

Keywords 2,3-Dichloropropene; 2,4-difluorobromobenzene; posaconazole; tris(acetylacetonato)iron(III)

INTRODUCTION

Posaconazole (1) has been marketed as a novel extended-spectrum triazole antifungal agent for the treatment and prevention of life-threatening invasive fungal infection induced by many yeasts and molds.1 Because of its complicated structure, exploration for a novel synthetic process still attracts the attention of synthetic organic chemists.

Received February 12, 2014.
Address correspondence to Xueqing Zhao, Synthetic Group, Fujian Institute of Microbiology, Fuzhou 350007, China, or Zhongming Li, College of Chemistry and Environment, Jianghan University, Wuhan 430100, China. E-mail: zhaogangzhao@163.com; E-mail: lizhongm@jhun.edu.cn

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsyc.
Posaconazole (I)

The 2,2,4-trisubstituted tetrahydronfuran skeleton with two chiral centers (2 in Scheme 1) is a critical unit for posaconazole as well as other analogs.\cite{2-4} Previously these two chiral centers were built via asymmetric synthesis involving tedious procedures or expensive chiral auxiliary agents.\cite{5,6} Later a novel synthesis was developed with enzymatically catalyzed process as a key step for the conversion of 6 into 7 (Scheme 1).\cite{7,8}

Compared with the asymmetric synthetic methods reported, this enzymatic process undoubtedly prevailed in high efficiency and environmental friendliness. However, the preparation of precursor 5 still remained complicated and tedious as disclosed in the following four patents: (1) in the first patent, Friedel–Crafts reaction of 1,3-difluorobenzene and chloroacetyl acid chloride gave 2-chloro-2',4'-difluoroacetophenone. This ketone was treated with acetate sodium, reacted with a Wittig reagent, and finally hydrolyzed to afford 3, which could be converted into 5 as described in Scheme 1.\cite{5} (2) In the second patent, the preparation of the precursor 5 started from Friedel–Crafts reaction of 1,3-difluorobenzene and acetic anhydride and was followed by Wittig reaction, radical substitution reaction, and C-alkylation of diethyl malonate. A tough problem in the radical reaction was that it was difficult to separate several bromo-substituted by-products when scaled up.\cite{9} (3) In the third patent, a single step for preparing 5 was disclosed by condensation of 2,4-difluorobromobenzene, allene, and diethyl malonate catalyzed by Pd(PPh₃)₄ in the presence of sodium hydride.\cite{10} (4) In the last patent, the ene reaction of 2-chloro-2',4'-difluoroacetophenone with (trimethylsilyl)methylmagnesium chloride gave 2-(2,4-difluorophenyl)-3-chloroprop-1-ene, which was condensed with diethyl malonate to afford 5.\cite{11} However, all the reported methods are often involved in one or more

\begin{center}
Scheme 1. Chemoenzymatic route of literature to the intermediate (2) of posaconazole.
\end{center}
drawbacks at least, such as tedious steps, rare or expensive materials, and harsh conditions.

Herein we report a novel and straightforward synthesis of 1,3-diacetoxy-2-[2\'(2\'', 4\''-difluorophenyl)prop-2\'-en-1\'-yl]propane (12), which could be enzymatically resolved to yield chiral compound 7, a key intermediate to posaconazole (Scheme 2).

RESULTS AND DISCUSSION

In our initial approach diethyl malonate was C-alkylated in ethanol with inexpensive 2,3-dichloropropene (8) in the presence of sodium ethoxide, to give diethyl 2-(2\''-chloroprop-2\''-en-1\''-yl)-1,3-propandioate (9) in 89% yield.\(^{[12]}\) Further reduction of the ester groups of 9 with LiAlH\(_4\) in refluxing tetrahydrofuran (THF) afforded the diol 10 in 91% yield, which was further acylated with Ac\(_2\)O to quantitatively provide the diacetoxy 11.

The key step of 11 to 12 was involved in Kumada cross-coupling\(^{[13,14]}\) of a vinyl chloride with Grignard reagent of an aryl bromide. Usually, Kumada cross-coupling between aryl magnesium bromides and a vinyl chloride was performed with air-sensitive nickel(0) or palladium as a catalyst, both metals respectively with phosphine compounds as its ligand.\(^{[15–22]}\) In the past decade, iron(III) complexes have been successfully applied to catalyze the coupling and numerous functional groups are tolerated (alkyl and aryl bromides, amides, esters, and even ketones.\(^{[23–29]}\) Because of its ready availability, low cost, and environmental friendliness, iron complexes have been attracting the attention of chemists in the field of catalysts.

In our case, tris(acetylacetonato) iron(III) \([\text{Fe(acac)}_3]\) was applied to catalyze cross coupling of 11 with 2,4-difluorophenyl magnesium bromide in tetrahydrofuran (THF)–N-methylpyrrolidin-2-one (NMP) (3:2 v/v)\(^{[23,30]}\) to give the title product 12 in a moderate yield (76%).

CONCLUSION

A novel and concise synthesis of 1,3-diacetoxy-2-[2\'(2\'', 4\''-difluorophenyl)prop-2\'-en-1\'-yl]propane has been developed in four steps from 2,3-dichloropropene and diethyl malonate in an overall yield of 60%. The key cross coupling of 2,4-difluorophenylmagnesium bromide with 2-(2\''-chloroprop-2\''-en-1\''-yl)-1,3-diacetoxypropane was catalyzed by inexpensive and nonpoisonous \([\text{Fe(acac)}_3]\) to give
the title compound in an excellent yield. The trace by-products can be easily removed by extraction or vacuum distillation. This method may be a useful approach for the synthesis of its 2-(2-substituted prop-2-en-1-yl)-1,3-dioxypropene derivatives.

EXPERIMENTAL

All reactions were performed in oven-dried (120°C) glassware. THF was distilled from sodium under N₂. NMP and Et₃N (triethylamine) were distilled from CaH₂ under N₂. Absolute ethanol was distilled from magnesium under N₂. Melting points were determined with a Büchi 540 melting-point apparatus and were uncorrected. Thin-layer chromatography (TLC) was performed on glass plates (GF₂₅₄, 50 mm × 100 mm, Marine Chemical Company of Qingdao, China) and compounds were stained with aqueous solution of 0.05% KMnO₄ after development. NMR spectra were taken on Bruker Avance III (500 MHz) with tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded using Agilent 1100 Series LC/MSD Trap. Infrared (IR) spectra were recorded using Perkin–Elmer 1600 series FTIR. Elemental analyses were performed on a Leco CHNS-932 Elemental Analyzer, Leco Corporation (USA).

Diethyl 2-(2’-Chloroprop-2’-en-1’-yl)-1,3-propandioate (9)

A glass reactor was charged with diethyl malonate (1.15 kg, 7.19 mol) and potassium iodide (300 mg). Then a solution of sodium ethoxide (490.0 g, 7.21 mol) in alcohol (2.50 L) was added dropwise under stirring at room temperature. After the resulting solution had refluxed for 10 min, 2,3-dichloropropene (780.0 g, 7.03 mol) was added dropwise over a period of 2 h. The mixture was continued to reflux for 2 h and then cooled down to room temperature. The reaction mixture evaporated under reduced pressure via a rotavapor to leave an oily residue, to which water (3 L) was added. The mixture was extracted with ethyl acetate (2 × 2 L). The combined organic layers were washed with brine (2 L), dried over anhydrous Na₂SO₄ (0.1 kg) overnight, and filtered. The solvent was removed via a rotavapor and the residual oil was distilled under reduced pressure to give the compound 9 (1.47 kg, 89.1%) as a colorless oil, which could be used directly in the next step. Rf = 0.65 (petroleum ether–ethyl acetate = 5:1); (bp: 94–100°C/2–3 mbar); IR (KBr) ν/cm⁻¹ 2965, 1734, 1638, 1370, 1240, 632; ¹H NMR (500 MHz, CDCl₃) δ 5.23 (s, 1H), 5.20 (s, 1H), 4.22–4.15 (m, 4H), 3.73 (t, J = 7.5 Hz, 1H), 2.91 (d, J = 7.6 Hz, 2H), 1.25 (t, 6H); MS (ESI⁺) m/z: 235 [M + 1]⁺, 257 [M + Na]⁺.

2-(2’-Chloroprop-2’-en-1’-yl)-1,3-propanediol (10)

A glass reactor was charged with THF (3.65 L) and LiAlH₄ (365 g, 9.62 mol). A solution of 9 (1.50 kg, 6.40 mol) in THF (2.50 L) was added at 0°C over 2 h under stirring. After complete addition, the reactants were stirred for 10 min at this temperature and then allowed to reflux 8 h. After cooling by ice water, the reaction mixture was slowly poured with agitations into the dilute hydrochloric acid (10 L) [prepared by mixing concentrated hydrochloric acid (1.75 L) with ice water (8.50 L)]. The resulting mixture was extracted with CH₂Cl₂ (2 × 5 L). The combined organic layers were washed...
with saturated brine, dried over anhydrous Na₂SO₄ (1.5 kg) overnight, and filtered. The solvent was evaporated under reduced pressure to afford the crude compound \(10\) (880 g, 91.4%) as a pale yellow solid, which can be used without purification in the next step. \(R_f = 0.35\) (petroleum ether–acetone = 3:1); mp 32–38 °C; IR (KBr) \(\nu/cm^{-1}\) 3306, 2940, 1637, 1150, 1034, 895, 660; \(^1\)H NMR (500 MHz, MeOD-d₄): \(\delta\) 5.26 (d, 1H, \(J = 1.0\)), 5.22 (d, 1H, \(J = 1.1\)), 3.60 (d, 4H, \(J = 5.5\)), 2.42 (dd, 2H, \(J = 7.2, 0.6\)), 2.06–1.98 (m, 1H); MS (ESI\(^{+}\)) \(m/z\): 151 [M + H\(^+\)], 173 [M+Na\(^+\)]. Anal. calcd. for C₆H₁₁ClO₂ (150.60): C, 47.85; H, 7.36. Found: C, 47.74; H, 7.15.

2-(2'-Chloroprop-2'-en-1'-yl)-1,3-diacetoxypropane (11)

In a glass reactor was added a solution of \(10\) (1.00 kg, 6.64 mol) and Et₃N (2 L, 14.4 mol) in CH₂Cl₂ (8 L). Then Ac₂O (1.40 kg, 13.7 mol) was added dropwise under stirring during 1.5 h under ice-water cooling. The resulting mixture was stirred at room temperature for 4 h and then treated cautiously with saturated aqueous NaHCO₃ (15.0 L). The organic layer was separated, washed with brine (10 L), and dried over anhydrous Na₂SO₄ (1 kg). The solvent was removed under vacuum to give the compound \(11\) (1.51 kg, 96.8%) as a pale yellow oil. \(R_f = 0.69\) (petroleum ether–ethyl acetate = 5:1); IR (KBr) \(\nu/cm^{-1}\) 3110, 2960, 1745, 1637, 1435, 1368, 1232, 1158, 1043, 890, 635; \(^1\)H NMR (500 MHz, CDCl₃): \(\delta\) 5.24 (d, 1H, \(J = 1.3\)), 5.18 (d, 1H, \(J = 1.1\)), 4.10 (dd, 2H, \(J = 11.2, 4.6\)), 4.05 (dd, 2H, \(J = 11.2, 5.6\)), 2.46–2.40 (m, 3H), 2.05 (s, 6H); MS (ESI\(^{+}\)) \(m/z\): 235 [M + H\(^+\)], 257 [M+Na\(^+\)]. Anal. calcd. for C₁₀H₁₅ClO₄ (234.68): C, 51.18; H, 6.44. Found: C, 51.11; H, 6.27.

1,3-Diacetoxy-2-[2''-2',4''-difluorophenyl]prop-2'-en-1'-yl]propane (12)

In a 500-mL, three-necked flask a little of I₂ was added to the mixture of flame-dried magnesium turnings (5.82 g, 240 mmol) and 15 ml of absolute THF; several minutes later about 0.5 mL of 2,4-difluorobromobenzene was injected. After initiation of the reaction warmed by means of a heat gun, the rest of 2,4-difluorobromobenzene (44.4 g, 230 mmol) and THF (350 mL) were added slowly, and the reaction temperature was kept between 40 and 50 °C.

A 20-L glass reactor was charged with magnesium turnings (52.4 g, 2.16 mol), absolute THF (1 L), and the solution of the 2,4-difluorophenylmagnesium bromide. Then 2,4-difluorobromobenzene (400 g, 2.07 mol) and THF (2.3 L) were added during the reaction temperature between 40 and 50 °C, to give a solution of 2,4-difluorophenylmagnesium bromide. This solution of 2,4-difluorophenylmagnesium bromide was added dropwise to a solution of \(11\) (492 g, 2.10 mol) and tris(acetylacetonato) iron(III) [Fe(acac)₃] (22.0 g, 62.3 mmol, 3% equiv. referred to compound \(11\)) in a mixed solution of THF (3 L) and NMP (2 L) in a glass reaction vessel at −5 °C over 1.5 h. Stirring was continued for 30 min at this temperature, and then the reaction mixture was quenched with aqueous 1 M HCl (8 L). After the organic layer was isolated, the aqueous layer was extracted with CH₂Cl₂ (2 × 3 L). The combined organic layer was washed with saturated aqueous NaHCO₃ (6 L) and brine (2 × 6 L) and dried (MgSO₄). Solvents were removed via a rotavapor and the residue was distilled under
vacuum to afford the title compound 12 (498 g, 76.0% based on compound 11) as a light yellow oil. \(R_f = 0.46 \) (petroleum ether–ethyl acetate = 87:13) (bp 136–141 \(^\circ \)C/1–2 mbar); IR (KBr) \(\nu / \text{cm}^{-1} \) 3081, 2961, 1741, 1616, 1504, 1368, 969, 851, 607; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.23 (td, 1H, \(J = 8.6, 6.5 \)), 6.87–6.82 (m, 1H), 6.79 (ddd, 1H, \(J = 11.2, 8.8, 2.5 \)), 5.24 (d, 1H, \(J = 1.1 \)), 5.21 (s, 1H), 4.05 (dd, 2H, \(J = 11.1, 5.0 \)), 4.00 (dd, 2H, \(J = 11.1, 6.3 \)), 2.57 (d, 2H, \(J = 7.4 \)), 2.04–1.95 (m, 7H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 170.93 (s), 162.37 (dd, \(J_{CF} = 249.5 \) Hz, \(J_{CF} = 11.3 \) Hz), 159.86 (dd, \(J_{CF} = 249.5 \) Hz, \(J_{CF} = 11.3 \) Hz), 141.00 (s), 130.82 (dd, \(J_{CF} = 9.4, 5.9 \) Hz), 124.84 (dd, \(J = 14.3, 3.9 \) Hz), 118.70 (s), 111.40 (dd, \(J_{CF} = 21.0, 3.6 \) Hz), 104.21 (t, \(J_{CF} = 26.5 \)), 63.66 (s), 35.59 (s), 35.23 (d, \(J_{CF} = 3.7 \) Hz), 20.78 (s). MS (ESI\(^+\)) \(m/z \): 335 [M + Na]\(^+\). Anal. calcd. for C\(_{16}\)H\(_{18}\)F\(_2\)O\(_4\):(312.31): C, 61.53; H, 5.81. Found: C, 61.33; H, 5.63.

FUNDING

We thank Scientific Foundation of Fujian Province (2011J01095) for the support of this work.

SUPPLEMENTAL INFORMATION

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. Torres, H. A.; Hachem, R. Y.; Chemaly, R. F.; Kontoyiannis, D. P.; Raad, I. I. *Lancet Infect. Diseases* 2005, 5, 775–785.
2. Sakseha, A. K.; Girijavallabhan, V. M.; Lovey, R. G.; Wang, H.; Liu, Y.-T.; Ganguly, A. K.; Bennett, F. WO Patent 95/17407, 1995.
3. Andrews, D. R.; Gala, D.; Gosteli, J.; Guenter, F.; Leong, W.; Mergelsberg, I.; Sudhakar, A. WO Patent 96/33178, 1996.
4. Sakseha, A. K.; Girijavallabhan, V. M.; Lovey, R. G.; Pike, R. E.; Wang, H.; Liu, Y.-T.; Ganguly, A. K.; Bennett, F. WO Patent 96/38443, 1996.
5. Sakseha, A. K.; Girijavallabhan, V. M.; Lovey, R. G.; Wang, H.; Liu, Y.-T.; Ganguly, A. K.; Bennett, F. U.S. Patent 5,661,151, 1997.
6. Sakseha, A. K.; Girijavallabhan, V. M.; Wang, H.; Liu, Y. T.; Pike, R. E.; Ganguly, A. K. *Tetrahedron Lett.* 1996, 37, 5657–5660.
7. Sakseha, A. K.; Girijavallabhan, V. M.; Lovey, R.; Pike, R. E.; Wang, H. *Tetrahedron Lett.* 1995, 36(11), 1787–1790.
8. Morgan, B.; Dodds, D. R.; Zaks, A.; Andrews, D. R.; Klesse, R. J. *Org. Chem.* 1997, 62, 7736–7743.
9. Kuo, S. C.; Hou, D.; Zhan, Z. Y. U. S. Patent 5,349,099, 1994.
10. Sudhakar, A. U.S. Patent 5,442,093, 1995.
11. Thorsten, W.; Martin, L. WO Patent 2012/172015, 2012.
12. Djate, F.; Henin, J.; Laronze, J. Y.; Levy, J.; Noe, E.; Seraphin, D.; Zhang, Q.; Noe, E. *Tetrahedron Lett.* 1996, 37, 5701–5704.
13. Tamao, K.; Sumtani, K.; Kumada, M. *J. Am. Chem. Soc.* 1972, 94, 4347–4376.
14. Kumda, M. *Pure Appl. Chem.* 1980, 52, 669–679.
15. Lipshutz, B. H.; Tomiolka, T. P.; Blomgren, A.; Scalfani, J. A. *Inorg. Chim. Acta* **1999**, *296*, 164–169.
16. Huang, J.; Nolan, S. P. *J. Am. Chem. Soc.* **1999**, *121*, 9889–9890.
17. Ackermann, L.; Gschrei, C. J.; Althammer, A.; Riederer, M. *Chem. Commun.* **2006**, 1419.
18. Martin, R.; Buchwald, S. L. *J. Am. Chem. Soc.* **2007**, *129*, 3844–3845.
19. Wolf, C.; Xu, H. *J. Org. Chem.* **2008**, *73*, 162–167.
20. Tasler, S.; Lipshutz, B. H. *J. Org. Chem.* **2003**, *68*, 1190–1199.
21. Yoshikai, N.; Mashima, H.; Nakamura, E. *J. Am. Chem. Soc.* **2005**, *127*, 17978–17978.
22. Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D. *Angew. Chem. Int. Ed.* **2005**, *44*, 7216–7219.
23. Cahiez, G.; Avedissian, H. *Synthesis* **1998**, 1199–1205.
24. Dohle, W.; Kopp, F.; Cahiez, G.; Knochel, P. *Synlett* **2001**, 1901–1904.
25. Fürstner, A.; Brunner, H. *Tetrahedron Lett.* **1996**, *37*, 7009–7012.
26. Fakhakh, M. A.; Franck, X.; Hocquemiller, R.; Figadère, B. *J. Organomet. Chem.* **2001**, *624*, 131–135.
27. Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. *J. Am. Chem. Soc.* **2004**, *126*, 3686–3687.
28. Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. *Angew. Chem. Int. Ed.* **2007**, *46*, 4364–4366.
29. Sherry, B. D.; Fürstner, A. *Acc. Chem. Res.* **2008**, *41*, 1500–1511.
30. Santos, M. D.; Frank, X.; Hocquemiller, R.; Figadère, B.; Peyrat, J. F.; Provot, O.; Brion, J. D.; Alami, M. *Synlett* **2004**, 2697–2700.