SOME BOUNDS ON THE SIZE OF MAXIMUM G-FREE SETS IN GRAPHS

YASER ROWSHAN

Abstract. For given graph H, the independence number $\alpha(H)$ of H, is the size of the maximum independent set of $V(H)$. Finding the maximum independent set in a graph is a NP-hard problem. Another version of the independence number is defined as the size of the maximum induced forest of H, and called the forest number of H, and denoted by $f(H)$. Finding $f(H)$ is also a NP-hard problem. Suppose that $H = (V(H), E(H))$ be a graph, and G be a family of graphs, a graph H has a G-free k-coloring if there exists a decomposition of $V(H)$ into sets V_i, $i = 1, 2, \ldots , k$, so that $G \not\subseteq H[V_i]$ for each i, and $G \in G$. $S \subseteq V(H)$ is G-free, where the subgraph of H induced by S, be G-free, i.e. it contains no copy of G. Finding a maximum subset of H, so that $H[S]$ be a G-free graph is a very hard problem as well. In this paper, we study the generalized version of the independence number of a graph. Also giving some bounds about the size of the maximum G-free subset of graphs is another purpose of this article.

1. Introduction

All graphs considered here are undirected, simple, and finite graphs. For given graph $H = (V(H), E(H))$, its maximum degree and minimum degree are denoted by $\Delta(H)$ and $\delta(H)$, respectively. The degree and neighbors of v in H, denoted by $deg_H(v)$ (deg(v)) and $N_H(v)$, respectively. Suppose that H be a graph, and let V and V' be two disjoint subsets of $V(H)$. Suppose that W is any subset of $V(H)$, the induced subgraph $H[W]$ is the graph whose vertex set is W and whose edge set consists of all of the edges in $E(H)$ that have both endpoints in W. The set $E(V, V')$ is the set of all the edges vv', which $v \in V$ and $v' \in V'$. Recall that an independent set is a set of vertices in a graph, no two of which are adjacent. A maximum independent set in a graph is an independent set in which the graph contains no larger independent set. The independence number of a graph H is the cardinality of a maximum independent set, and denoted by $\alpha(H)$. This problem was solved by Erdős, and after that by Moon and Moser in [13]. There are very few works about counting the number of maximum independent sets, see [8, 10, 12] and [10]. Finding a maximum independent set in a graph is a NP-hard problem.

Another version of the independence number is the forest number of a graph. Let H be a graph, and $S \subseteq V(H)$, if $H[S]$ is acyclic, then S is called the induced forest of H. The forest number of a graph H is the size of a maximum induced forest of H, and is denoted by $f(H)$. The decycling number $\phi(H)$ of a graph H is the smallest number of vertices which can be removed from H so that the resultant graph contains no cycle. Thus, for a graph H of order n, $\phi(H) + f(H) = n$. The decycling number was first proposed by Beineke and Vandell [3]. There is a fairly large literature of papers dealing with the forest number of a graph. See for example [12, 14], and [10].

The first item of the next results is attributed to P.K. Kwok and has come as an exercise in [15], and the second item discussed in [4]. Suppose that $|V(H)| = n$, $\Delta(H) = \Delta$ and $|E(H)| = e$, then:

- (Kwok Bound): $\alpha(H) \leq n - \frac{\Delta}{2}$,
- (Borg Bound): $\alpha(H) \leq n - \left\lceil \frac{n-1}{\Delta} \right\rceil$.

2010 Mathematics Subject Classification. 05C69, 05C35.

Key words and phrases. Independence Number, G-free coloring, Forest Number, G-free Subset.
The Borg Bound is an efficiently countable upper bound for the $\alpha(H)$. However, generally gives an estimation, greater than or equal to the Kwok Bound.

Theorem 1. $[7]$ Let H is a graph with n member, and p is an integer, so that (A) holds, then: thus:

$$\alpha(H) \geq \frac{2n}{p}. \tag{A}$$

For any clique K in H there exists a member of $V(K)$ say v, so that $\deg(v) \leq p - |V(K)| - 1$.

1.1. G-free coloring.

The conditional chromatic number $\chi(H, P)$ of H, is the smallest integer k, for which there exists a decomposition of $V(H)$ into sets V_i, $i = 1, 2, \ldots, k$, so that for each i, $H[V_i]$ satisfies the property P, where P is a graphical property and $H[V_i]$ is the induced subgraph on V_i. Harary in 1985 presented this extension of graph coloring $[8]$. Suppose that G is a family of graphs, when P is the feature that a subgraph induced by each color class does not contain any copy of members of G, we write $\chi_G(H)$ instead of $\chi(H, P)$. A graph H has a G-free k-coloring if there exists a decomposition of $V(H)$ into sets V_i, $i = 1, 2, \ldots, k$, so that for each i, $H[V_i]$ does not include any copy of the members of G. For simplicity of notation, if $G = \{G\}$, then we write $\chi_G(H)$ instead of $\chi_G(H)$. An ordinary k-coloring of H can be viewed as G-free k-coloring of a graph H by taking $G = \{K_2\}$.

For any two graphs H and G, recall that $\chi_G(H)$ is the G-free chromatic number of the graph H, now suppose that S is a maximum subset of $V(H)$, so that $H[S]$ is G-free, therefore it is easy to say that $|S| \geq \frac{n[H]}{\chi_G(H)}$. By considering $H = K_6$ and $G = K_3$, one can check that $\chi_G(H) = 3$, that is $|S| = 2 = \frac{n[H]}{\chi_G(H)}$, which means that this bond is sharp. Set $G = \{C_n, n \geq 3\}$ and let H be a graph, therefore one can say that $|S| = f(H)$, where $H[S]$ is G-free and S has the maximum size possible. In this article, we prove results as follow:

Theorem 2. Let H and G are two graphs, where $|V(H)| = n, \Delta(H) = \Delta, |E(H)| = e_H, |E(G)| = e_G$ and $\delta(G) = \delta$. Then:

- $|S| \geq n + \frac{e_G + e_H - \Delta}{\delta}$
- $|S| \geq n - \frac{\delta n_3(S) + (\delta + 1)n_{\delta + 1}(S) + \ldots + \Delta n_{\Delta}(S)}{\Delta}$
- $|S| \leq n - \frac{\delta n_3(S) + (\delta + 1)n_{\delta + 1}(S) + \ldots + \Delta n_{\Delta}(S)}{\Delta}$

Theorem 3 (Main theorem). Let H and G are two graphs, where $|V(H)| = n$ and $\delta(G) = \delta$. Suppose that P is a positive integer, which for each connected component $X \in R(H)$, there exists a vertex of X say x, so that $\deg_H(x) \leq P - |X| - \delta$. Then:

$$|S| \geq \frac{(\delta + 1)n}{P}$$

Where S has the maximum size possible and $H[S]$ is G-free.

2. Main results

Let H and G are two graphs, in this section, we give some upper and lower bounds on the size of the maximum G-free subset of H. Next results offers further investigations to get some good bounds on the size of the maximum G-free subset of H and exact results, when feasible. The next results are examples of two graphs H and G, in which the maximum G-free subsets of H easily obtained.

- If $|V(H)| = n$, then $|S| = n$ if and only if (iff) H is G-free.
- If $|V(H)| = n$, then $|S| = n - 1$ iff either $H \cong G$ or $|V(G)| = n$ and $G \subseteq H$.
- If $H \cong K_n$, and G has m members, where $m \leq n$, then $|S| = m - 1$.
- If $|V(H)| = n$ and G has $n - 1$ members, then $|S| = n - 2$ iff $G \subseteq H \setminus \{v\}$ for each $v \in V(H)$.

In the next two theorems, we give lower and upper bounds on the size of the maximum G-free subset of H, in terms of the number of vertices and edges, maximum degree, and minimum degree of H and G.

Theorem 4. Suppose that H and G are two graphs, where $|V(H)| = n, \Delta(H) = \Delta, |E(H)| = e_H, |E(G)| = e_G$, and $\delta(G) = \delta$. Suppose that $S \subseteq V(H)$ is maximum G-free. Then:

$$|S| \geq n + \frac{e_G + e_{H'} - e_H - \Delta}{\delta}.$$

Where $e_{H'} = |E(H[V(H) \setminus S])|$.

Proof. Suppose that $S \subseteq V(H)$, where $H[S]$ is G-free and S has maximum size as possible, and $|S| = m$. As S is maximum, for each $v \in V(H) \setminus S$ so $H[S \cup \{v\}]$ contains at least one copy of G. Therefore, since $\deg_H(v) \leq \Delta$, thus $E(H[S]) \geq e_G - \Delta$. As each vertex of $V(H) \setminus S$ has at least δ neighbors in S, so we have:

$$e_H \geq (n - m)\delta + e_G - \Delta + e_{H'}.$$

Thus, it can be checked that:

$$m\delta \geq n\delta + e_G + e_{H'} - e_H - \Delta.$$

Hence, $m \geq n + \frac{e_G + e_{H'} - e_H - \Delta}{\delta}$. Which means that the proof is complete.

Theorem 5. Suppose that H and G are two graphs, where H has n members, $\Delta(H) = \Delta$. Let S be a maximum G-free subset of $V(H)$. Then:

$$n - \frac{\delta n_\delta(S) + (\delta + 1)n_{\delta+1}(S) + \ldots + \Delta n_\Delta(S)}{\delta} \leq |S| \leq n - \frac{\delta n_\delta(S) + (\delta + 1)n_{\delta+1}(S) + \ldots + \Delta n_\Delta(S)}{\Delta}.$$

Proof. Assume that $S \subseteq V(H)$, where $H[S]$ is G-free and S has maximum size as possible, and $|S| = m$. Suppose that $n_i(S)$ be the vertices of $V(H) \setminus S$, which has exactly i neighbors in S. Now by maximality of S, it is easy to check that $n_i(S) = 0$ for $i = 0, 1, 2, \ldots, \delta - 1$. So:

$$n - m = n_\delta(S) + n_{\delta+1}(S) + \ldots + n_m(S).$$

As each vertex of $V(H) \setminus S$ has at least δ and at most Δ neighbors in S, then:

$$\delta(n - m) \leq \delta n_\delta(S) + (\delta + 1)n_{\delta+1}(S) + \ldots + \Delta n_\Delta(S) = \sum_{v \in V(H) \setminus S} \deg(v) \leq (n - m)\Delta.$$

Therefore by Equation 2 it can be checked that:

- $m \geq n - \frac{\delta n_\Delta(S) + (\delta + 1)n_{\delta+1}(S) + \ldots + \Delta n_\Delta(S)}{\delta}$
- $m \leq n - \frac{\delta n_\Delta(S) + (\delta + 1)n_{\delta+1}(S) + \ldots + \Delta n_\Delta(S)}{\Delta}$

Which means that the proof is complete.

Combining Theorems 4 and 5, The correctness of Theorem 2 is obtained. In the next theorem, we generalize Theorem 4 to specify an appropriate lower bound for the size of the maximum G-free subgraphs of graph H. We need to determine a series of special subgraphs of H, which are expressed in the following definition:

Definition 6. Let H and G be two graphs, where $|V(H)| = n$ and $\delta(G) = \delta$. Suppose that S be the maximum subset of $V(H)$ so that $H[S]$ is G-free. Therefore as S has maximum size and $H[S]$ is G-free, then for each $v \in V(H) \setminus S$, it can be say that $H[S \cup \{v\}]$, contain at least one copy of G. In other word for each $v \in V(H) \setminus S$, there is at least one copy of $G - v$ in $H[S]$. Now, for each $v \in V(H) \setminus S$ define A_v as follows:

$$A_v = \{G_v, G_v \cong G - v \subseteq H[S]\}.$$
Assume that $N^i_v = N(v) \cap G^i_v$, for each $i \in \{1, \ldots, |A_v|\}$. Now for each $i \in \{1, \ldots, |A_v|\}$, define M^i_v as follow:

$$M^i_v = \{u \in V(H) \setminus S, \ N(u) \cap S = N^i_v\}.$$

Therefore, define $R(H)$ as follow:

$$R(H) = \{\text{Clique of } H[M^i_v], \text{ for each } i \in [A_v], \text{ and each } v \in V(H) \setminus S\}.$$

Where $[A_v] = \{1, 2, \ldots, |A_v|\}$.

To prove the next results, we present an argument that is similar to the proof of Theorem 11 in [7]. However, in our proof, we carefully choose a maximum G-free set S in the graph H, so that $|E(S, V(H) \setminus S)|$ is minimize and $H[S]$ is G-free. With this choice of S, we establish a property on H by considering the operation of replacing a vertex in S with $V(H) \setminus S$, to get a smaller number of edges between $V(H) \setminus S$ and S.

Theorem 7. Let H and G are two graphs, where $|V(H)| = n$ and $\delta(G) = \delta$. Suppose that P is a positive integer, where for each $X \in R(H)$, there exists a vertex of X say x, so that $\deg_H(x) \leq P - |X| - \delta$. Then:

$$|S| \geq \frac{(\delta + 1)n}{P}$$

Where $S \subseteq V(H)$, and S has the maximum size possible, so that $H[S]$ is G-free.

Proof. Suppose that m is the size of the maximum G-free subset of $V(H)$. Now set A as follow:

$$A = \{S \subseteq V(H), G \not\subseteq H[S], |S| = m\}.$$

Therefore, for any member of A, say S, we define $\beta(S)$ as follow:

$$\beta(S) = \sum_{y \in V(H) \setminus S} |N(y) \cap S| = \sum_{x \in S} |N(x) \cap (V(H) \setminus S)|.$$

In other word, $\beta(S) = |E(S, V(H) \setminus S)|$. Now we define B as follow:

$$B = \{\beta(S), S \in A\}.$$

Let β be a minimal members of B, and without loss of generality suppose that $\beta = \beta(S^*)$, that is $|E(S^*, V(H) \setminus S^*)|$ is minimize. Assume that $\gamma_i(S^*)$ be the vertices of $V(H) \setminus S^*$, such that its vertices have exactly i neighbors in S^*. Since $S^* \in A$, it is easy to check that $\gamma_i(S^*) = 0$ for $i = 0, 1, 2, \ldots, \delta - 1$. Hence, one can say that:

$$|V(H) \setminus S| = n - m = \gamma_\delta(S^*) + \gamma_{\delta+1}(S^*) + \ldots + \gamma_m(S^*).$$

Furthermore, by considering $\beta(S^*) = |E(S^*, V(H)) \setminus S^*|$, and by Equation 8 and 9 it is easy to say that:

$$\sum_{y \in S^*} |N(y) \cap (V(H) \setminus S^*)| = \delta \gamma_\delta(S^*) + (\delta + 1)\gamma_{\delta+1}(S^*) + \ldots + m\gamma_m(S^*) = \sum_{i=\delta}^m i\gamma_i(S^*).$$

Multiplying Equation 9 by $\delta + 1$, and subtracting Equation 8 we acquire the next:

$$(\delta + 1)(n - m) - \sum_{y \in S^*} |N(y) \cap (V(H) \setminus S^*)|$$

$$= (\delta + 1)(\gamma_\delta(S^*) + \gamma_{\delta+1}(S^*) + \ldots + \gamma_m(S^*)) - \sum_{y \in S^*} |N(y) \cap (V(H) \setminus S^*)|$$

$$= \gamma_\delta(S^*) - \gamma_{\delta+2}(S^*) - \ldots - (m - (\delta + 1))\gamma_m(S^*) \leq \gamma_\delta(S^*).$$

As $S^* \in A$, therefore by maximality of S^*, for each vertex of $V(H) \setminus S$ say v, one can say that $H[S \cup \{v\}]$ contains at least one copy of G, namely G_v. Suppose that v' be a vertex of $V(G_v)$ with
minimum degree in G_w. Let $N(v') \cap V(G') = X_\delta$. Hence X_δ is a fixed subset of S^* where $|X_\delta| = \delta$.

Now we define Y_{X_δ} as follow:

(7)
$$Y_{X_\delta} = \{w \in V(H) \setminus S^*, \forall w \in S^* = X_\delta\}.$$

In other word, assume that Y_{X_δ} is the set of all vertices in $V(H) \setminus S^*$, so that adjacent to each vertex of X_δ but no other vertices of $S^* \setminus X_\delta$, so every vertex in Y_{X_δ} has no neighbor in $S^* \setminus X_\delta$. Therefore, we have the next claim.

Claim 8. $H[Y_{X_\delta}]$ is a clique in H.

Proof. By contradiction, suppose that there exist at least two vertices of Y_{X_δ}, say x, x' so that $xx' \notin E(H)$. Therefore, since $S^* \in A$, one can check that $H[S^* \cup \{x\}]$ and $H[S^* \cup \{x'\}]$ contains at least one copy of G, say G_x and $G_{x'}$, respectively. Now, suppose that $x'' \in X_\delta$, and set $S'' = S^* \setminus \{x''\} \cup \{x, x'\}$, hence it is easy to see that:

$$|S'| = |S^*| + 1.$$

And $|N(x) \cap S'| = |N(x') \cap S'| = \delta - 1$, that is $H[S']$ is G-free, a contradiction to maximality of S^*. So $xx' \in E(H)$ for each $x, x' \in Y_{X_\delta}$, that is $H[Y_{X_\delta}]$ is a clique in H. ■

Therefore, by Claim 8 it can be checked that $Y_{X_\delta} \in R(H)$. Now for a fixed vertex of X_δ say x, assume that:

(8)
$$|N(x) \cap (V(H) \setminus S^*)| + |Y_{X_\delta}| + \delta \geq P.$$

So, by considering the vertices of Y_{X_δ}, we have the following claim:

Claim 9. For each $w \in Y_{X_\delta}$, we have $|N(w) \cap (V(H) \setminus S^*)| \geq |N_H(x)| - |N(x) \cap S^*|.$

Proof. By contradiction, suppose that there exists a vertex of Y_{X_δ} say w so that:

$$|N(w) \cap (V(H) \setminus S^*)| \leq |N_H(x)| - |N(x) \cap S^*| - 1.$$

Hence, as $w \in Y_{X_\delta}$, so $|N(w) \cap S^*| = \delta$. Therefore, it can be checked that $|N_H(w)| \leq |N_H(x)| - |N(x) \cap S^*| - \delta - 1$. Then set $S'' = S^* \setminus \{x\} \cup \{w\}$, hence seeing $|S''| = |S^*|$ is obvious. Also as $w \in Y_{X_\delta}$, $wx \in E(H)$, and $x \in S^*$, it can be checked that $H[S'']$ is G-free. Now by considering $\beta(S'')$ we have the following fact:

Fact 9.1. $\beta(S'') \leq \beta(S^*) - 1$.

proof of the fact: As $S'' = S^* \setminus \{x\} \cup \{w\}$, one can say that $\beta(S'') = \beta(S^*) + |N(x) \cap S^*| - |N(x) \cap (V(H) \setminus S^*)| + |N(w) \cap (V(H) \setminus S^*)| - |N(w) \cap S^*|$. As $|N(w) \cap S^*| = \delta$, and $|N(w) \cap (V(H) \setminus S^*)| \leq |N_H(x)| - |N(x) \cap S^*| - 1$, one can check that $|N(x) \cap S^*| - |N(x) \cap (V(H) \setminus S^*)| + |N(w) \cap (V(H) \setminus S^*)| - |N(w) \cap S^*| \leq -\delta$, that is:

(9)
$$\sum_{x \in S''} |N(x) \cap (V(H) \setminus S^*)| = \beta(S'') \leq \sum_{x \in S^*} |N(x) \cap (V(H) \setminus S^*)| - \delta = \beta(S^*) - \delta.$$

Therefore by Fact 9.1 $\beta(S'') \leq \beta(S^*) - 1$, where $S'' \in A$. A contradiction to minimality of $\beta(S^*)$. Hence for each $w \in Y_{X_\delta}$, we have $|N(w) \cap (V(H) \setminus S^*)| \geq |N_H(x)| - |N(x) \cap S^*|$. Which means that the proof of the claim is complete. ■

Therefore, by Claim 9.1 for each $w \in Y_{X_\delta}$ and each $x \in X_\delta$, we have the following equation:

$$|N(w) \cap (V(H) \setminus S^*)| \geq |N_H(x)| - |N(x) \cap S^*| = |N(x) \cap (V(H) \setminus S^*)|.$$

Therefore:

(10)
$$|N_H(w)| = |N(w) \cap (V(H) \setminus S^*)| + |N(w) \cap S^*| \geq |N(x) \cap (V(H) \setminus S^*)| + 1.$$
Therefore, as $Y_{X_\delta} \in R(H)$ and by Equation 11, $\deg(y) \geq P + 1 - |Y_{X_\delta}| - \delta$, for each $y \in Y_{X_\delta}$, which is a contradiction to assumption. Hence $|N(x) \cap (V(H) \setminus S^*)| \leq P - |Y_{X_\delta}| - \delta - 1$ for each $x \in X_\delta$. As $X_\delta \subseteq S^*$, so by Equation 6,

\[(\delta + 1)n \leq \gamma(S^*) + \sum_{y \in S^*} |N(y) \cap (V(H) \setminus S^*)| + (\delta + 1)m\]

\[\leq \sum_{y \in S^*} (|Y_{X_\delta}| + |N(y) \cap (V(H) \setminus S^*)| + \delta + 1) \leq |S^*|.P = mp.\]

Therefore, $(\delta + 1)n \leq m.P$, thus:

\[|S^*| = m \geq \frac{(\delta + 1)n}{P}\]

Which means that the proof is complete.

In Theorem 7 if we take $G = K_2$, then we get Theorem 1. By setting $\mathcal{G} = \{C_n, n \geq 3\}$ and any arbitrary graph for H, it is easy to say that $|S| = f(H)$, where S is the maximum subset of $V(H)$, so that $H[S]$ is \mathcal{G}-free and $f(H)$ is the forest number of H. In particular, by setting C as 2-regular connected graph in Theorem 7 we can show that the following result is true:

Theorem 10. Let H and G are two graphs, where $|V(H)| = n$ and $G \in \mathcal{C}$, that is G is a 2-regular connected graph (cycle). Suppose that P is a positive integer, where for each $X \in R(H)$ there exists a vertex of X say x, such that $\deg_H(x) \leq P - |X| - 2$. Then:

\[f(H) \geq \frac{3n}{P}\]

Where $f(H)$ is the forest number of H and $R(H)$ defined in 6.

Suppose that $\mathcal{G}_k = \{G, \omega(G) = k\}$, and H be any such graph. Also, assume that I is the maximum independent set in H. In the following theorem, a suitable lower bound for the size of the maximum \mathcal{G}_k-free subgraph of the graph H is determined.

Theorem 11. Suppose that $H = H_1$ is a graph, and I_1 is the maximum independent set in H_1 where $|I_1| = i_1$. For each $2 \leq j$, set $H_j = H_{j-1} \setminus I_{j-1}$, and set I_j as the maximum independent set in H_j, where $|I_j| = i_j$ for each $1 \leq j$. Then:

\[|S| \geq \sum_{j=1}^{k-1} i_j\]

Where S has the maximum size possible, and $H[S]$ is \mathcal{G}_k-free.

Proof. Since, for each j, I_j is the maximum independent set in H_j, then for each n, one can check that $|\omega(H[\cup_{j=1}^n I_j])| \leq n$. Therefore, for $n = k - 1$, we have $|\omega(H[\cup_{j=1}^{k-1} I_j])| \leq k - 1$. Now, as $\mathcal{G}_k = \{G, \omega(G) = k\}$, so U is a G-free subset of H for each $G \in \mathcal{G}_k$, where $U = \cup_{j=1}^{k-1} I_j$. Hence, it is clear to see that U is a \mathcal{G}_k-free subset of H. As $|U| = \sum_{j=1}^{k-1} i_j$, so:

\[|S| \geq |U| = \sum_{j=1}^{k-1} i_j\]

Which means that the proof is complete.
References

[1] Noga Alon, Dhruv Mubayi, and Robin Thomas. Large induced forests in sparse graphs. *Journal of Graph Theory*, 38(3):113–123, 2001.
[2] Sheng Bau, Nicholas C Wormald, and Samming Zhou. Decycling numbers of random regular graphs. *Random Structures & Algorithms*, 21(3-4):397–413, 2002.
[3] Lowell W Beineke and Robert C Vandell. Decycling graphs. *Journal of Graph Theory*, 25(1):59–77, 1997.
[4] Peter Borg. A sharp upper bound for the independence number. *arXiv preprint arXiv:1007.5426*, 2010.
[5] R. L. Brooks. On colouring the nodes of a network. *Proc. Cambridge Philos. Soc.*, 37:194–197, 1941.
[6] Frank Harary. Conditional colorability in graphs. In *Graphs and applications (Boulder, Colo., 1982)*, Wiley-Intersci. Publ., pages 127–136. Wiley, New York, 1985.
[7] Michael A Henning, Christian Löwenstein, Justin Southey, and Anders Yeo. A new lower bound on the independence number of a graph and applications. *The electronic journal of combinatorics*, pages P1–38, 2014.
[8] Glenn Hopkins and William Staton. Graphs with unique maximum independent sets. *Discrete Mathematics*, 57(3):245–251, 1985.
[9] Mihály Hujter and Zsolt Tuza. The number of maximal independent sets in triangle-free graphs. *SIAM Journal on Discrete Mathematics*, 6(2):284–288, 1993.
[10] Min-Jen Jou and Gerard J Chang. The number of maximum independent sets in graphs. *Taiwanese Journal of Mathematics*, 4(4):685–695, 2000.
[11] Richard M Karp. Reducibility among combinatorial problems. In *Complexity of computer computations*, pages 85–103. Springer, 1972.
[12] Christian Löwenstein, Anders Sune Pedersen, Dieter Rautenbach, and Friedrich Regen. Independence, odd girth, and average degree. *Journal of Graph Theory*, 67(2):96–111, 2011.
[13] John W Moon and Leo Moser. On cliques in graphs. *Israel journal of Mathematics*, 3(1):23–28, 1965.
[14] Narong Punnim. The forest number in several classes of regular graphs. *Chamchuri Journal of Mathematics*, 3:59–74, 2011.
[15] Douglas Brent West et al. *Introduction to graph theory*, volume 2. Prentice hall Upper Saddle River, 2001.
[16] Maolin Zheng and Xiaoyun Lu. On the maximum induced forests of a connected cubic graph without triangles. *Discrete mathematics*, 85(1):89–96, 1990.

1Y. Rowshan, Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

Email address: y.rowshan@iasbs.ac.ir