Highly Efficient Rubber-to-Stainless Steel Bonding by Nanometer-
Thin Cross-linked Polymer Brushes

Kristian Birk Buhl,†,‡ Rasmus Krag Møller,§,# Simon Heide-Jørgensen,¶,†‡ Andreas Nygaard Kolding,* V Mikkel Kongsfelt,¶ Michal Kazimierz Budzik,¶ Mogens Hinge,* Steen Utrup Pedersen,∥ and Kim Daasbjerg

1Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark
2Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, Aarhus DK-8000, Denmark
3Radisurf ApS, Arresøvej 5B, Risskov DK-8240, Denmark
4Supporting Information

ABSTRACT: Stainless steel (SS) surfaces were grafted with poly(glycidyl methacrylate) (PGMA) brushes that were post-modified using allylamine, diallylamine, and propylamine as reagents. Likewise, poly[2-(diethylamino)-ethyl methacrylate] brushes were synthesized. All samples were compression molded with uncured ethylene-propylene-diene M-class rubber and dicumyl peroxide and vulcanized for 12 min at 170 °C. The efficiency of the novel bonding solution was evaluated through peel experiments. Two parameters, the fracture toughness (\(G_c\)) and the cohesive-to-adhesive fracture ratio (\(A_c\)), were calculated to evaluate the strength and the performance of the coupling, respectively. For the nanometer-thin PGMA films modified with allylamine, in particular, full cohesive fracture was obtained. The obtained values of \(G_c\) (15.4 ± 1.1 N mm\(^{-1}\)) and \(A_c\) (1.00 ± 0.01) matched those obtained for a micrometer-thick commercial bonding agent. Cross-linking of polymer brushes by intermolecular reactions by the primary amines proved to have a significant impact on the type of fracture (cohesive/adhesive) and the performance of the adhesives.

1. INTRODUCTION

Over the last decades, the development of components employing surface modifications has become a major research field of both academic and industrial interest. Properties such as cell adhesion, fouling resistance, low friction, and wettability may be designed by chemical adjustment of the first few nanometers of a component surface. Hence, continued development of new and more beneficial ways of surface design is pertinent.

Adhesion of rubber to a metal is important for various purposes, including bridge bearings, mounts in car engines, tires, and so on.5-7 What makes rubber particularly efficacious for such applications is its high elasticity and resistance to oxygen, ozone, ultraviolet light, and heat.8 Unfortunately, most rubbers have a low wettability, and it is hard to create adhesion to metals, rendering interlocking designs the common solution. One interesting approach for handling the adhesion issue is through a chemical modification of either the rubber or the metal. Functionalization of rubber includes halogenation, cyclization, or copolymerization with polar monomers to increase the wettability.9 Still, pretreatment of the metal is the most extensively used approach to enhance metal–rubber adhesion. Solution-based organic primers and binders are widely employed, and components such as chlorinated polymers and poly(butadiene) are required (among a variety of other additives) to obtain strong adhesion.10,11 The challenge with these primers is that they are applied in large amounts (at least a few micrometers in thickness) and are unable to establish covalent bonds all the way from the metal surface to the rubber. For these reasons, development of highly efficient thin-layer primer systems would be desirable.

Several methodologies can be applied for a surface-confined polymerization, that is, free radical polymerization (thermal, photochemical, or radiochemical), controlled radical polymerization, anionic polymerization, or electropolymerization. In this work, we used the controlled radical polymerization approach because the aim was to produce brushes covalently anchored to the substrate with good control of length and with minimal cross-linking of the brushes. Anchoring of polymer brushes to metal surfaces is a versatile approach of making a
metal compatible with a given coating. \(^2,12\) Several methods have been designed to ensure both durability and high grafting densities of polymer brushes generating a nanometer-thin primer layer. \(^13\)−\(^16\) Specifically, poly(glycidyl methacrylate) (PGMA) and poly[2-(diethyl amino)ethyl methacrylate] (PDEAEMA) polymer brushes may be grown from various surfaces using a controlled radical polymerization. The PGMA brushes can subsequently be modified, exploiting the fact that nucleophiles such as amines, \(^17,18\) thiols, \(^19\) and azides \(^20\) are able to open the oxirane ring.

In this way, using, for example, allyl- or diallylamine as nucleophile, allylic groups can be introduced to exploit their ability to couple with, for example, an ethylene-propylene-diene M-class (EPDM) rubber during the thermal peroxide free-radical curing process. \(^8,21\) This would create covalent bonding across the entire interface to ensure strong metal−rubber adhesion. Usually, rubber additives such as triallyl isocyanurate would be introduced to promote effective cross-linking of EPDM rubber by free radical addition and cyclopolymerization reactions. \(^7\) It is also known that polymerization of diallylamine normally yields highly cross-linked polymer networks. \(^22\)

It is worth noting that with allylamine serving as a nucleophile in the ring opening of the oxirane groups in PGMA, it would itself be transformed into a secondary amine. This secondary amine can react further, either intra- or intermolecularly, with another oxirane ring in the PGMA films to give a cross-linked brush structure, even before the curing process. \(^17,23\) If this kind of cross-linking is unwanted while the introduction of allyl groups is still a goal, the nucleophile to go for would be the secondary diallylamine.

Figure 1 presents an overview of the steps involved in this work. First, PGMA and PDEAEMA polymer brushes are grown from stainless steel (SS) along with PGMA polymer brushes modified using either allylamine, diallylamine, or propylamine as the nucleophile. The brush films are analyzed by ellipsometry, infrared reflectance−absorption spectroscopy (IRRAS), and X-ray photoelectron spectroscopy (XPS). Samples are then installed in a sample holder and compression-molded with EPDM rubber covalently linking rubber and polymer brushes (see Figure S1, Supporting Information). Bonding properties are evaluated by peel testing and subsequent three-dimensional (3D) scanning of the fractured surfaces. The fracture toughness (\(G_c\)) and cohesive-to-adhesive fracture ratio (\(A_r\)) are used to quantify the adhesive strength and performance of the joints. The different bonding systems are compared in terms of reactivity toward the EPDM rubber, and the impact of the ability of the primary amines to covalently link the polymer films inter- and intramolecularly is discussed. A commercial and traditional bonding agent, Chemosil (see Materials and Methods), is used as the reference system.

2. RESULTS AND DISCUSSION

2.1. Examination of the Reaction Protocol. Scheme 1 outlines the general procedure used for producing polymer...
brushes at the SS surfaces. In brief, the SS samples were electrografted using the diazonium salt approach, specifically 4-(2-hydroxyethyl)benzene diazonium tetrafluoroborate (HEBD), to generate surface-attached primary alcohols (SSOH). These were acylated to afford tertiary bromoalkyl groups (SSBr), that is, the radical initiators.24 Polymer brushes (SSPGMA) were then grown from SSBr using the surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP) protocol.25−29

Next, the PGMA brushes were post-modified under various conditions using either of the three amines, that is, allylamine, propylamine, or diallylamine, as a reagent to open the oxirane rings (Scheme 2). This produced three kinds of modified samples in terms of (A) SS_{allyl}, (B) SS_{propyl}, or (C) SS_{diallyl}. In fact, the SS_{diallyl} sample came in two versions, that is, SS_{diallyl-1}, to denote that 0.41 M diallylamine was used in the post-modification step, and SS_{diallyl-2} using a higher concentration of 0.81 M.

Figure 2A shows that the dry film thickness (d) of the PGMA brushes on SSPGMA increases proportionally with time, as expected for SI-ARGET-ATRP. Next, the reaction of diallylamine with SSPGMA was investigated. In general, the dry film thickness of the corresponding SS_{diallyl-1} samples consistently increases by 10−20 nm. Figure 2B illustrates the trend in the relative thickness increase due to the reaction with the diallylamine in terms of a plot of $d_{diallyl-1}/d_{PGMA}$ versus d_{PGMA}. It is seen that $d_{diallyl-1}/d_{PGMA}$ decreases from 1.44 ± 0.11 to 1.15 ± 0.06 as d_{PGMA} increases, suggesting that the reaction mechanism changes as the brush layer thickness increases.
Film Thicknesses, d, at 3010 and 2950 cm$^{-1}$, diallylamine is high. In contrast, for the thicker bottom unmodified, the top of the brush structure, leaving oxirane rings at the end of the reaction. The determined value of $d_{diallyl-2}/d_{PGMA}$ becomes as high as 1.78 ± 0.15. This indicates that for short PGMA brushes, essentially, every single oxirane ring reacts if the availability of diallylamine is high. In contrast, for the thicker films, the concentration of diallylamine decreases with the distance from the top of the brush structure, leaving oxirane rings at the bottom unmodified.

Using allylamine and propylamine as nucleophiles gives $d_{allyl}/d_{PGMA} = 1.31 \pm 0.08$ and $d_{propyl}/d_{PGMA} = 1.45 \pm 0.05$. In the latter case, this is close to the 1.42 expected for a 1:1 amine--oxirane reaction ratio, whereas in the former case, the value is equally close to the 1.2 expected for a 1:2 amine--oxirane reaction ratio. Note that the concentrations used for both of these amines are high (>0.6 M), making their availability throughout the film high. One interesting aspect of the three reactions is that although the secondary diallylamine cannot participate in a cross-linking reaction with two oxirane moieties, the primary allylamine and propylamine can. Ultimately, complete cross-linking of the brush structure would result in a 1:2 amine--oxirane ratio, which, thus, seems to be an option for at least the allylamine. In addition, the extent of a potential chain reaction involving the alkox anion from an opened ring with another oxirane seems to be insignificant because this would have resulted in an even smaller mass gain and, accordingly, a smaller film thickness increase.

To support these propositions obtained from the ellipsometry measurements, we resorted to recording the IRRAS spectra of the produced samples (Figure 3). For SS_{PGMA} bands at 3010 and 2950 cm$^{-1}$ are assigned to the C–H sp3 bond stretching, that at 1735 cm$^{-1}$ to the C=O bond stretch of an unconjugated ester group, those at 1510–1430 cm$^{-1}$ to C–H deformations, those at 1310–1035 cm$^{-1}$ to C–O stretching, and that at 909 cm$^{-1}$ to the oxirane ring deformation. For SS_{allyl}, $SS_{diallyl-2}$, and SS_{propyl} the IRRAS spectra show a complete disappearance of the oxirane band (using concentrations of 0.67 M allylamine, 0.81 M diallylamine, and 0.61 M propylamine). This is seen most clearly from the spectrum of SS_{propyl}, whereas in the spectra of SS_{allyl} and $SS_{diallyl-2}$, a new close-by peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed. In comparison, the spectrum of $SS_{diallyl-1}$ (based on the lower diallylamine concentration of 0.41 M) shows oxirane groups close to the C=O peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed. In comparison, the spectrum of $SS_{diallyl-1}$ (based on the lower diallylamine concentration of 0.41 M) shows oxirane groups close to the C=O peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed. In comparison, the spectrum of $SS_{diallyl-1}$ (based on the lower diallylamine concentration of 0.41 M) shows oxirane groups close to the C=O peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed. In comparison, the spectrum of $SS_{diallyl-1}$ (based on the lower diallylamine concentration of 0.41 M) shows oxirane groups close to the C=O peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed. In comparison, the spectrum of $SS_{diallyl-1}$ (based on the lower diallylamine concentration of 0.41 M) shows oxirane groups close to the C=O peak at 930 cm$^{-1}$, attributed to C–H out-of-plane bending from the introduced olefin moieties, is observed.

Table 1 provides the atomic concentrations of the SS_{PGMA}, SS_{allyl}, $SS_{diallyl-2}$, and SS_{propyl} samples recorded by XPS along with the ratios of dry thin film thicknesses, d_{PGMA}, Determined by Ellipsometry.

sample	C (%)	O (%)	Cl (%)	N (%)	N/C ratio	d_{PGMA}
SS_{PGMA}	72.5	27.0	0.2	0.3	0.004	1
SS_{allyl}	71.2	24.3	0.1	4.2	0.059	1.31
$SS_{diallyl-2}$	71.2	22.0	0.1	4.4	0.063	1.78
SS_{propyl}	72.9	22.8	0.1	4.2	0.058	1.45

aFor all investigations, d_{PGMA} is in the 30–50 nm range. bTraces of sodium, sulfur, phosphorus, and zinc were detected.
SS_{POMA} and SS_{allyl} (Figure S4 and Table S2, Supporting Information) show the large extent by which the characteristic C 1s signal from the oxirane C—O—C group in SS_{POMA} is diminished after modification with allylamine. At the same time, the intensity of the aliphatic components (C—C) is increased as expected.

For the SS_{propyl} and SS_{allyl} samples, the N/C ratios are 0.058 and 0.059, respectively, being equal to the expected 0.059 in the case of a 1:2 amine—oxirane reaction (repeating C₁₅O₃N units; see Schemes 1 and 2). For a 1:1 amine—oxirane reaction, the N/C ratio would be 0.1 (repeating C₁₀O₃N units, see Schemes 1 and 2). Hence, the results indicate that cross-bonding of polymer segments, either inter- or intramolecularly, takes place when modifying with primary amines. In comparison, SS_{diallyl-2} (secondary amine) shows a N/C ratio of 0.063, which is slightly lower than the 0.077 (repeating C₁₃O₃N units; see Schemes 1 and 2) expected of a 1:1 amine—oxirane ratio. These results are in accordance with the interpretation of the δ/d_{POMA} determinations for diallylamine and allylamine, although the 1.45 for the propylamine seems to be too high considering that the expected value for a cross-bonding situation is 1.2. In a previous study, where PGMA brushes were reacted with propylamine in aqueous medium, a depth profiling XPS study showed an enrichment of nitrogen in the upper layers. This indicated that the amine—oxirane stoichiometry presumably changed from 1:1 in the upper brush layer to a smaller value in the lower brush layer. A direct comparison with our investigation is made difficult by the fact that two different solvents are used, that is, N,N-dimethylformamide and water.

2.2. Peel Test of SS_{Chemosil} and SS_{allyl}. Figure 4 (left) presents peel curves of three SS_{Chemosil} reference samples and two SS_{allyl} samples along with pictures of relevant fracture surfaces. Four stages in response to the applied loading could be identified: (1) loading of the specimen, during which the rubber arm is bent and streched, (2) stable crack propagation, (3) unstable crack propagation, and (4) loss of load carrying capacity. For the SS_{Chemosil} samples, the peel curves consistently achieved high forces, leaving the exposed surface area (7.85 × 7.85 mm²) completely covered with rubber after fracture (Figure 4, picture 1). The peel curve from the two SS_{allyl} samples displays about the same high force as that from SS_{Chemosil} with the characteristic four stages of load response indicating cohesive fracture (Figure 4, picture 2).

Table 2 provides the average <i>G_c</i> and <i>A_c</i> values determined for the peeled samples. For SS_{Chemosil} they are in good agreement with the literature, showing full cohesive fracture (<i>A_c = 1</i>). It should be noted that a low <i>A_c</i> may still result in a large <i>G_c</i> if the cohesive fracture area covers the entire width (perpendicular to the crack growth direction) of the exposed sample area. Furthermore, in the case of cohesive fracture, <i>G_c</i> does not quantify the interfacial toughness but the toughness of the rubber. In the case of SS_{allyl}i, the values of <i>G_c</i> (15.4 ± 1.1) and <i>A_c</i> (1.00 ± 0.01) are similar to those of the SS_{Chemosil} reference (15.2 ± 0.4, and 1.00 ± 0.00). This is an encouraging result, considering that the thickness of the SS_{allyl}i interface is in the nanometer range and at least 100 times thinner than that of the commercial Chemosil system. The SS_{allyl}i samples were synthesized from initiator-based SS_{Br}i samples with an atomic percentage of Br ≈ 2.2 (determined by XPS), which turned out to be an important feature. With low grafting density samples having less than 1% Br (produced according to previous studies), the peel results showed large variations (Table S3, Supporting Information).

In our previous study, we promoted adhesion by activating PGMA brushes with drop-cast benzoyl peroxide (BPO). Some adhesion was found, although a severe problem was encountered in having a rather non-uniform distribution of BPO on the surface along with the “washing” away of BPO from the edges during compression molding, a problem which could be anticipated to be even larger with the injection molding technique. Herein, we exploit the availability of radicals in the interface during the vulcanization to form directly the chemical bonds between the modified PGMA brushes and the EPDM rubber. Specifically, the allylic and aliphatic radicals formed by H abstraction in the EPDM rubber can react by addition to the double bonds in the allyl- and diallylamine-modified PGMA brushes.

2.3. Peel Test of SS_{diallyl-2}. With SS_{diallyl-2} large adhesively fractured areas are visible (Figure 4, picture 3), indicating that the fracture behavior is less consistent than that of SS_{allyl}i. The value of <i>A_c</i> (0.55 ± 0.37) shows a large variation in cohesive fracture and comes with a corresponding lower and fluctuating <i>G_c</i> (11.9 ± 3.1). The initial expectation was that the SS_{diallyl-2} samples would promote a higher degree of covalent linking in the rubber/brush interface because of the higher numbers of allyl groups available. However, the adhesion becomes weaker, which presumably is associated with the inability of the secondary amines to cross-link the brush structure.

2.4. Peel Test of SS_{propyl} and SS_{DEAE}MA. The SS_{propyl} substrates show reasonably good adhesive properties (Figure 4, picture 4), although the propyl group contains no double bonds (<i>G_c</i> = 12.0 ± 1.9 and <i>A_c</i> = 0.95 ± 0.10). Hence, a lack of unsaturated bonds in itself is not sufficient to prevent the radical chemistry — in terms of addition and/or combination reactions occurring during curing — from establishing covalent bonding between the brushes and the rubber. Both the amine and the secondary alcohol (formed upon ring opening) in SS_{propyl} facilitate H abstraction and subsequent addition to olefins in the rubber. Importantly, the lone pairs on the heteroatoms exert a stabilizing effect on an adjacent radical center once formed. Surprisingly, the SS_{DEAE}MA samples show no adhesive properties, even if the intrinsic reactivity of SS_{DEAE}MA would be expected to be similar to that of SS_{propyl}. Most likely, this can be explained by a somewhat different polymer brush structure of SS_{DEAE}MA, considering that it is produced directly in SI-ARGET-ATRP (Scheme 1); the monomer already contains the amine functionality. Finally, it should be noted that the SS_{POMA} sample itself shows no adhesion at all to the rubber.
polymer brushes. In contrast, SSdiallyl and SSPDEAEMA are unable to establish cross-linking of the polymer brushes. The fact that the primary allylamine and propylamine can establish cross-linking of the polymer brushes and consistently obtained an adhesion as strong as that provided by potentiostatic electrolysis of 2 mM HEBD in DCM, stoichiometric acid catalyst, the exception being GMA and DEAEMA, which were passed through an aluminum oxide column before polymerization to remove the inhibitor. Standard procedures were followed to prepare the supporting electrolyte tetrabutylammonium tetrafluoroborate (Bu4NBF4) and 4-(2-hydroxyethyl)benzene diazonium tetrafluoroborate (HEBD). Stainless steel (ASTM316) plates were cut into test pieces of 2 × 10 × 10 mm3 size (Jensen Metal A/S, Denmark) (Supporting Information, Figure S1, item 4). They were polished for 1 h using a diamond suspension (Struer, grain size of 9 μm) followed by 10 min sonication in Milli-Q water and in acetone. Noncured EPDM rubber (Shore 70) containing dicumyl peroxide (DCP) was used for compression molding. A commercial bonding agent, Chemosil 211/411 (Lord Corporation, USA), was spray-painted on the steel surfaces, annealed at 140 °C for 1 h to yield a 30 μm layer, and used as a reference sample (SSChemosil).

2.5. Effect of Cross-Linking on Stress Distribution along the Bondline. Until now, we have only paid little attention to the effect that cross-linking in the brush structure exerts on the adhesion properties. Following the analysis of adhesive joints given by Penado et al.,38 the length of the process zone in a peel experiment, that is, the region of tensile stress in front of the crack tip, depends on the stiffness. The stiffness is understood to be a combination of material and geometrical parameters of both the rubber and the adhesive, in particular, the elastic modulus (E) and the thickness. The stress distribution in front of the crack affects the overall fracture process. Increasing the cross-linking density of, for example, rubber increases its E modulus39,40 and consequently the process zone length, thereby, altering the stress distribution.41,42 Distributing the stresses over a larger area means that the peak stress reduces and, thus, makes the structure appear tougher.

As a result, cross-linking the polymer brushes by modification with primary amines may increase the process zone length and enhance the adhesive strength of the polymer films. The remarkable bonding ability of the SSdiallyl samples is thus attributed to the cross-linked polymer structure. Likewise, the enhanced adhesion observed for the propylamine can be assigned to the corresponding cross-linked nature of the polymer brushes. In contrast, SSdiallyl and SSPDEAEMA are unable to reinforce the brush structure by internal cross-linking, and therefore, the adhesion abilities become poor.

3. CONCLUSIONS
PGMA brushes were covalently grafted from stainless steel and modified with allylamine, diallylamine, and propylamine. In addition, a PDEAEMA brush film containing a tertiary amine was produced in a direct polymerization without the need for the final post-modification step. All modified samples were over-molded with EPDM rubber, cured, and peel tested to evaluate the adhesion between the SS and the rubber. The nanometer-thin PGMA brushes modified with allylamine consistently obtained an adhesion as strong as that provided by a micrometer-thick commercial bonding agent. This holds promise for potential industrial applications of such brushes. For the diallylamine- and propylamine-based PGMA brushes, the adhesion was inconsistent but much better than that of PDEAEMA. The fact that the primary allylamine and propylamine can establish cross-linking of the polymer brushes during post-modification is suggested to have a significantly positive effect on both the fracture toughness and the cohesive-to-adhesive fracture ratio of the adhesives.

4. MATERIALS AND METHODS

4.1. Materials. Acetone (HPLC grade), acetonitrile (MeCN, HPLC grade), methanol (MeOH, HPLC grade), N,N-dimethylformamide (DMF, HPLC grade), dichloromethane (DCM, HPLC grade), glycidyl methacrylate (GMA, 99%), 2-(diethylamino)ethyl methacrylate (DEAEMA, 99%), 2-bromoisobutyril bromide (BIBB, 98%), 2,2′-bipyridine (BiPy, >99%), triethylamine (TEA, >99%), sodium ascorbate (NaAsc, >99%), allylamine (98%), diallylamine (99%), and propylamine (>99%) were all purchased from Sigma Aldrich, and CuIICl2·2H2O (99%) from Merck. The materials were all used without further purification, the exception being GMA and DEAEMA, which were passed through an aluminum oxide column before polymerization to remove the inhibitor. Standard procedures were followed to prepare the supporting electrolyte tetrabutylammonium tetrafluoroborate (Bu4NBF4) and 4-(2-hydroxyethyl)benzene diazonium tetrafluoroborate (HEBD). Stainless steel (ASTM316) plates were cut into test pieces of 2 × 10 × 10 mm3 size (Jensen Metal A/S, Denmark) (Supporting Information, Figure S1, item 4). They were polished for 1 h using a diamond suspension (Struer, grain size of 9 μm) followed by 10 min sonication in Milli-Q water and in acetone. Noncured EPDM rubber (Shore 70) containing dicumyl peroxide (DCP) (AVK Gummi A/S) was used for compression molding. A commercial bonding agent, Chemosil 211/411 (Lord Corporation, USA), was spray-painted on the steel surfaces, annealed at 140 °C for 1 h to yield a 30 μm layer, and used as a reference sample (SSChemosil).

4.2. Preparation of Initiator Layer. Electrochemical grafting was performed on SS substrates using the protocol described elsewhere.24 In short (see Scheme 1), SS substrates were modified by potentiostatic electrolysis of 2 mM HEBD in 0.1 M Bu4NBF4/MeCN for 300 s at a potential 0.2 V more negative than the voltammetric peak potential, Epc. The peak potential was determined from an initial cyclic voltammetric sweep carried out at a sweep rate of 0.1 V s−1. Next, the formed hydroxyl terminated SS samples (SSOH) were acylated in 0.46 M BIBB and 0.05 M TEA in DCM at room temperature. This afforded a bromine terminated radical initiator layer film (SSBr). The SSOH and SSBr samples were rinsed in MeCN and DCM, respectively, and sonicated for 10 min in acetone.
4.3. Polymerization. For the SI-ARGET-ATRP, solutions of 1:1 (v/v) MeOH–Milli-Q water (2 × 4.5 mL) and GMA (1 mL, 0.8 M) were mixed in a Schlenk flask, placed in an ice bath, and purged with Ar for 15 min under stirring. BiPy (12.4 mg, 8.0 mM), NaAsc (7 mg, 3.5 mM), and CuIICl2-H2O (6.8 mg, 4.0 mM) were added, and the solution was purged with Ar for additional 10 min. SSb substrates were immersed into the reaction mixture and polymerized at 0 °C for 0.25–2.0 h under an Ar atmosphere (Scheme 1). To examine the liveliness of the polymerization, the substrates were pulled out of the solution at 15 min intervals and flushed with Ar. The samples produced (SSPGMA) were rinsed with Milli-Q water and MeOH, followed by sonication in acetone. The polymerization of DMEAMA followed the same procedure to obtain corresponding modified samples denoted SSpDMEAMA.

4.4. PGMA Modification with Amine Reagents. The amine reactant was added to a three-necked flask containing 19 mL of DMF. The solution was flushed with Ar for 10 min and heated to a given reaction temperature. Samples were immersed in the solution and kept there under an Ar atmosphere for ~18 h. The modified samples were rinsed with DMF and sonicated for 10 min in acetone. Table 3 lists the specific conditions used in each case.

Table 3. Post-modification Conditions for SSpgMA Samples

reactant	bp (°C)	vol (mL)	conc (mol L−1)	temp (°C)	sample name
propylamine	48	1	0.61	48	SSpropil
allylamine	54	1	0.67	54	SShid
diallylamine	109	1	0.41	70	SSdial-1
diallylamine	109	2	0.81	70	SSdial-2

*Notations used are: bp: boiling point, vol: volume of amine added, conc: concentration of amine, and temp: reaction temperature.

4.5. Compression Molding. Compression molding was employed to cure the rubber and facilitate bond formation between rubber and the SS samples. Two modified SS samples and one blank SS sample were fitted in a sample holder (Figure S1, item 3) and placed in a heated aluminum mold (PID regulated, Eagle model #1048) in a hydraulic press (Carver model #3912). The aluminum molds (Figure S1, items 1, 6, and 7) were preheated to 170 °C. A sheet of nonvulcanized rubber (Figure S1, item 2), of approx. 80 × 20 × 6 mm3 size, was placed on top of the sample holder, and 6 tons of pressure was applied for 12 min at 170 ± 2 °C. Finally, the over-molded samples were post-cured in an oven (Binder E28, Holm og Halby, DK) for 4 h at 150 °C.

4.6. Peel Testing. A full description of the test setup and the data treatment is provided elsewhere.32 In general, peel tests were conducted on a universal testing machine (Zwick Z005, Zwick GmbH & Co. KG, Ulm-Einsingen, Germany) under a loading rate of 0.5 mm s−1. A custom-made fixture consisting of a sled and a base both fixed to the testing machine was designed. Translating on low-friction brass wheels, the sled ensured a constant peel angle close to 90°. This setup differs from the usual peel experiment where an inextensible tape is peeled along a macroscopically homogeneous growth path. Either two or three specimens separated from each other by an 8.5 mm nonbonded area provided a discontinuous path. Equation 1 was used to calculate the peel energy (P).

\[P = F/b \] (1)

In this expression, F is the measured force, and b is the width of the crack perpendicular to the peel direction, that is, the width of the exposed sample area (b = 7.85 mm). It is assumed that P equals the fracture toughness (Gc), once the crack starts to propagate.

4.7. Optical Profilometry. Fracture regions were examined with a 3D macroscopic scanner (VR-3200, Keyence, Japan) with 160× magnification to determine the type of fracture (interfacial/adhesive or cohesive). The fraction of the cohesively failed area relative to the exposed surface area (7.85 × 7.85 mm2), \(A_c / A_{total} \), was determined for each sample as a quantitative measure of the bonding quality.

4.8. Ellipsometry. For dry film thickness measurements, a rotating analyzer ellipsometer (Dre, Germany) with a He–Ne laser (632.8 nm) was used. The SS substrates were irradiated at a 75° angle of incidence. The parameters Δ (phase shift) and ψ (ratio of amplitude upon reflection) were measured and processed in the Ellips32 software. The software calculated the complex refractive index of the bare surfaces from Δ and ψ, whereas for the modified surfaces, a three-layer optical model was used. The refractive index of the organic film was assumed to be 1.55, independent of the thickness. Three measurements per SS sample were performed on three different spots for all substrates, both pre- and post-modification. Film thicknesses reported for brush modified samples were all subtracted for the initiator layer thickness.

4.9. Infrared Reflectance–Absorption Spectroscopy (IRRAS). A Nicolet 6700 FTIR spectrometer (Thermo Fisher Scientific, Denmark) equipped with a Varian external experiment module with a narrow band mercury–cadmium–telluride (MCT/A) detector cooled with liquid nitrogen was employed for recording the IRRAS spectra. The spectral resolution and number of scans averaged were 4 cm−1 and 200, respectively. All spectra were recorded at room temperature in a dry atmosphere. The logarithm of the p-polarized reflectivity of the film divided by the reflectivity of the bare substrate was presented as IRRAS absorbance. The substrates were irradiated at an incident angle of 80°. Baseline correction was performed using the OMNIC 8.2 software, and spectra were normalized with respect to the C==O absorbance.

4.10. X-ray Photoelectron Spectroscopy (XPS). A Kratos Axis Ultra-DLD spectrometer (Kratos Analytical Ltd, UK) with a monochromatic Al Kα X-ray source at power = 150 W was used for the XPS analysis. All survey spectra were acquired by accumulation of two sweeps from 0 to 1400 eV at a pass energy of 160 eV and a pass energy of 20 eV for high-resolution spectra. The pressure in the chamber was kept below 5 × 10−9 mbar during measurements. An electron flood gun was employed as a neutralizer, and the C 1s peak of C=C−C−H components was used as reference for charge correction with binding energy \(\equiv 285.0 \) eV. Data collections were obtained from three measurement points on one sample. Spectral processing was carried out using CasaXPS v2.3.15 software (Casa Software Ltd, Teignmouth, U.K.).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b02312.
IRRA spectrum of \(SS_{GMA}\) treated with 0.41 M diallylamine in DMF for 16 h, XPS survey and HR spectra of modified stainless steel samples, and a table showing relevant information pertaining to the low grafting density samples, including concentration of BIBB, reaction time, atomic percentage of Br, ratio of dry film thicknesses, and fracture toughness and cohesive-to-adhesive fracture ratio for \(SS_{Bjyl}\) (PDF)

AUTHOR INFORMATION

Corresponding Author
E-mail: kdaa@chem.au.dk.

ORCID
Simon Heide-Jørgensen: 0000-0002-4622-9674
Steen Uttrup Pedersen: 0000-0002-8919-2576
Kim Daasbjerg: 0000-0003-0212-8190

Present Address
A.N.K.: VELUX A/S, Industrivej 20, Østbirk DK-8752, Denmark

Author Contributions
*These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Funding from The Innovation Fund Denmark (MoAd 5163-0005SB) is gratefully acknowledged. The authors wish to thank AVK GUMMI A/S, and RadiSurf ApS for help and providing the materials used in the study. M.Sc. Christoffer Ege Friis is acknowledged for the development of the compression molder.

REFERENCES

(1) Al Qahtani, W. M. S.; Schille, C.; Spintzyk, S.; Al Qahtani, M. S. A.; Engel, E.; Geis-Gerstorfer, J.; Rupp, F.; Scheideler, L. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. *Biomed. Tech.* 2017, 62, 75–87.

(2) Friis, J. E.; Brøns, K.; Salmi, Z.; Shimizu, K.; Subbiahdoss, G.; Holm, A. H.; Santos, O.; Pedersen, S. U.; Meyer, R. L.; Daasbjerg, K.; Iruthayaraj, J. Hydrophilic Polymeric Brush Layers on Stainless Steel Using Multilayered ATRP Initiator Layer. *ACS Appl. Mater. Interfaces* 2016, 8, 30616–30627.

(3) Banquy, X.; Burdýnska, J.; Lee, D. W.; Matyjaszewski, K.; Israelachvili, J. Bioinspired Bottle-Brush Polymer Exhibits Low Friction and Amontons-like Behavior. *J. Am. Chem. Soc.* 2014, 136, 6199–6202.

(4) Samyn, P. Wetting and hydrophobic modification of cellulose surfaces for paper applications. *J. Mater. Sci.* 2013, 48, 6455–6498.

(5) Conrad, T.; Winter, F.;-O.; Roland, J. Rubber-metal sleeve bearing. U.S. Patent 9,556,903, January 31, 2017.

(6) Falkley, M. E.; Brewis, D. M.; Finch, C. A.; Tonge, J. S.; Armstrong, K. B.; Packham, D. E.; Lindsay, J. A.; Lake, G. J.; Lewis, P. M.; Van Ooij, W. J.; Martin-Martinez, J. M. In *Handbook of Adhesion*, 2nd ed.; Packham, D. E., Ed.; Wiley: Chichester, U.K., 2005; pp 395–438.

(7) Phethaisit, C.W.; Namahoot, J.; Saengkittiyut, K.; Ruaamcharoen, J.; Ruaamcharoen, P. Green metal organic coating from recycled PETs and modified natural rubber for the automobile industry. *Prog. Org. Coat.* 2015, 86, 181–189.

(8) van Duin, M. Chemistry of EPDM cross-linking, *Kautsch. Gummi Kunstst.* 2002, 55, 150.

(9) Lee, L.-H. Fundamentals of Adhesion, 1st ed.; Springer: New York, 2013; pp 60.

(10) Schelbach, R.; Lange, I. Rubber-Metal Composite. U.S. Patent 6,379,752, April 30, 2002.

(11) Auerbach, R. A.; Berry, D. B. Adhesive compositions. U.S. Patent 5,036,122, July 30, 1991.

(12) Shimizu, K.; Malmos, K.; Holm, A. H.; Pedersen, S. U.; Daasbjerg, K.; Hinge, M. Improved Adhesion Between PMMA and Stainless Steel Modified with PMMA Brushes. *ACS Appl. Mater. Interfaces* 2014, 6, 21308–21315.

(13) Matrab, T.; Chehimi, M. M.; Perruchot, C.; Adenier, A.; Guillèz, A.; Save, M.; Charleux, B.; Cabet-Deliry, E.; Pinson, J. Novel Approach for Metallic Surface-Initiated Atom Transfer Radical Polymerization Using Electrografted Initiators Based on Aryl Diazonium Salts. *Langmuir* 2005, 21, 4686–4694.

(14) Hong, C.-Y.; You, Y.-Z.; Pan, C.-Y. Synthesis of Water-Soluble Multilayered Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization. *Chem. Mater.* 2005, 17, 2247–2254.

(15) Jordan, R.; Ulman, A. Surface Initiated Living Cationic Polymerization of 2-Oxazolines. *J. Am. Chem. Soc.* 1998, 120, 243–247.

(16) Kim, N. Y.; Jeon, N. L.; Choi, I. S.; Takami, S.; Harada, Y.; Finnie, K. R.; Girolami, G. S.; Nuzzo, R. G.; Whitesides, G. M.; Laibinis, P. E. Surface-Initiated Ring-Opening Metathesis Polymerization on Si/SiO2. *Macromolecules* 2000, 33, 2793–2795.

(17) Barbey, R.; Laporte, V.; Alnabuli, S.; Klok, H.-A. Postpolymerization Modification of Poly(glycidyl methacrylate) Brushes: An XPS Depth-Profilig Study. *Macromolecules* 2013, 46, 6151–6158.

(18) Xu, F. J.; Cai, Q. J.; Li, Y. L.; Kang, E. T.; Neoh, K. G. Covalent Immobilization of Glucose Oxidase on Well-Defined Poly(glycidyl methacrylate)—Si(111) Hybrids from Surface-Initiated Atom-Transfer Radical Polymerization. *Biomacromolecules* 2005, 6, 1012–1020.

(19) De, S.; Khan, A. Efficient synthesis of multifunctional polymers via thiol–epoxy “click” chemistry. *Chem. Commun.* 2012, 48, 3130–3132.

(20) Lillethorup, M.; Shimizu, K.; Plumeré, N.; Pedersen, S. U.; Daasbjerg, K. Surface-Attached Poly(glycidyl methacrylate) as a Versatile Platform for Creating Dual-Functional Polymer Brushes. *Macromolecules* 2014, 47, 5081–5088.

(21) van Duin, M.; Orza, R.; Peters, R.; Chechik, V. Mechanism of Peroxide Cross-Linking of EPDM Rubber. *Macromolecular Symposium* 2010, 291, 292–296.

(22) Vivekanandam, T. S.; Gopalan, A.; Vasudevan, T.; Umaphathy, S. Sonoochemical cyclopolymerization of diallylamine. *Eur. Polym. J.* 2000, 36, 385–392.

(23) Edmondson, S.; Huck, W. T. S. Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. *J. Mater. Chem.* 2004, 14, 730–734.

(24) Iruthayaraj, J.; Chernyy, S.; Lillethorup, M.; Ceccato, M.; Rén, T.; Hinge, M.; Kingshott, P.; Besenbacher, F.; Pedersen, S. U.; Daasbjerg, K. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer. *Langmuir* 2011, 27, 1070–1078.

(25) Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Grafting from Surfaces for "Everyone": ARGET ATRP in the Presence of Air. *Langmuir* 2007, 23, 4528–4531.

(26) Zhu, B.; Edmondson, S. Polydopamine-melanin initiators for surface-initiated ATRP. *Polymer* 2011, 52, 2141–2149.

(27) Hansson, S.; Östmark, E.; Carlmark, A.; Malmström, E. ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers. *ACS Appl. Mater. Interfaces* 2009, 1, 2651–2659.

(28) Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. *Proc. Natl. Acad. Sci. U. S. A.* 2006, 103, 15309–15314.

(29) Wang, J.-S.; Matyjaszewski, K. Controlled “living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. *J. Am. Chem. Soc.* 1995, 117, 5614–5615.
(30) Williams, H. D.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 6th ed.; McGraw-Hill Education: Maidenhead, Berkshire, 2008; pp 48–61.
(31) Djouani, F.; Connan, C.; Delamar, M.; Chehimi, M. M.; Benzarti, K. Cement paste–epoxy adhesive interactions. Constr. Build. Mater. 2011, 25, 411.
(32) Heide-Jørgensen, S.; Möller, K. B.; Pedersen, S. U.; Daasbjerg, K.; Hinge, M.; Budzik, M. K. Efficient Bonding of Ethylene-Propylene-Diene M-class Rubber to Stainless Steel Using Polymer Brushes as a Nanoscale Adhesive. Int. J. Adhes. Adhes. 2018, 87, 31–41.
(33) Ansarifar, M. A.; Zhang, J.; Baker, J.; Bell, A.; Ellis, R. J. Bonding properties of rubber to steel, aluminum and nylon 6.6. Int. J. Adhes. Adhes. 2001, 21, 369–380.
(34) Bao, Z.; Bruening, M. L.; Baker, G. L. Control of the Density of Polymer Brushes Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules 2006, 39, 5251–5258.
(35) Urry, W. H.; Stacey, F. W.; Huyser, E. S.; Juveland, O. O. The Peroxide- and Light-induced Additions of Alcohols to Olefins. J. Am. Chem. Soc. 1953, 76, 450–455.
(36) Wayner, D. D. M.; Clark, K. B.; Rauk, A.; Yu, D.; Armstrong, D. A. C–H Bond Dissociation Energies of Alkyl Amines: Radical Structures and Stabilization Energies. J. Am. Chem. Soc. 1997, 119, 8925–8932.
(37) Dombrowski, G. W.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R. α-C–H Bond Dissociation Energies of Some Tertiary Amines. J. Org. Chem. 1999, 64, 427–431.
(38) Penado, F. E. A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer. J. Compos. Mater. 1993, 27, 383–407.
(39) Maugis, D.; Barquins, M. Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D: Appl. Phys. 1978, 11, 1989.
(40) Shanahan, M. E. R.; Michel, F. Physical adhesion of rubber to glass: cross-link density effects near equilibrium. Int. J. Adhes. Adhes. 1991, 11, 170–176.
(41) Saleesung, T.; Reichert, D.; Salwächter, K.; Sirisinha, C. Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer 2015, 56, 309–317.
(42) Flory, P. J.; Jr Rehner, J. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520.
(43) Diget, J. S.; Petersen, H. N.; Scharup-Jensen, H.; Sørensen, A. U.; Nielsen, T. T.; Pedersen, S. U.; Daasbjerg, K.; Larsen, K. L.; Hinge, M. Synthesis of β-Cyclodextrin Diazonium Salts and Electrochemical Immobilization onto Glassy Carbon and Gold Surfaces. Langmuir 2012, 28, 16828–16833.