Factors Promoting Development of Fibrosis in Crohn’s Disease

Rogler, Gerhard; Hausmann, Martin

DOI: https://doi.org/10.3389/fmed.2017.00096

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-143635
Journal Article
Accepted Version

Originally published at:
Rogler, Gerhard; Hausmann, Martin (2017). Factors Promoting Development of Fibrosis in Crohn’s Disease. Frontiers in Medicine: 4:00096.
DOI: https://doi.org/10.3389/fmed.2017.00096
Factors Promoting Development of Fibrosis in Crohn's Disease

Gerhard Rogler, MD PhD¹,² and Martin Hausmann, PhD¹

¹Department of Gastroenterology and Hepatology, University Hospital, University of Zurich, Zurich, Switzerland
²Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland

ADDRESS:

Gerhard Rogler, MD, PhD;
Department of Gastroenterology and Hepatology, University Hospital Zurich,
University of Zurich
Rämistrasse 100
8091 Zurich, Switzerland
Phone: +41-44-255-9519
Fax: +41-44-255-9497
E-mail: gerhard.rogler@usz.ch

Financial support: Supported by grants from the Swiss National Science Foundation to GR: the Swiss IBD Cohort Study (Grant No. 3347CO-108792).
Abstract

The concepts on the pathophysiology of intestinal fibrosis in Crohn’s disease (CD) have changed in recent years. Some years ago fibrosis was regarded to be a consequence of long standing inflammation with subsequent destruction of the gut wall matrix followed by scar formation and collagen deposition. Fibrosis in CD patients appeared to be an irreversible process that could hardly be influenced. Therefore, the main target in CD therapy was to control inflammation in order to avoid fibrosis development. Many of these assumption seem to be only partially true. Inflammation may be a necessary prerequisite for the initiation of fibrosis. However, when the pathophysiologic processes that lead to fibrosis in CD patients have been initiated fibrosis development may be independent of inflammation and may continue even when inflammation is under good medical control. Fibrosis in CD also may be reversible. After strictureplasty local collagen deposits decrease or even disappear. With new animal models for intestinal fibrosis on the horizon, we need to spend more efforts on understanding the factors influencing fibrosis in CD patients to finally find specific therapies. In this context it will be as important to find markers and quantitative imaging tools to have reliable endpoints for clinical trials in fibrosing CD.
Introduction

Fibrosis in general can be characterized as exaggerated accumulation of collagen-rich extracellular matrix (ECM) in a tissue normally containing much less connective tissue with permanent or transient local expansion of mesenchymal cells or mesenchymal like cells and subsequent impairment of organ function [1]. Traditionally, fibrosis in CD has been seen as a relatively slow process needing many months to develop [2]. In the discussion of delayed diagnosis of CD it is usually emphasized that stricturing complications of CD and severe fibrosis of CD intestine could by avoided by a timely diagnosis [3]. However, recent data indicate that this may not necessarily be the case. A rapid development of fibrosis in some patients seems to be possible. Rapid re-occurrence of fibrosis has been described in patients that undergo liver transplantation for hepatic fibrosis or cirrhosis [4]. Rapid lung fibrosis could be induced by inhalative toxins in animal models [5; 6] and rapid liver fibrosis is seen in some models of primary sclerosing cholangitis [7]. These data and further evidence supports the concept that under certain circumstances fibrosis and subsequent stricture formation in some CD patients may be much faster than traditionally assumed.

It is evident from clinical findings that fibrosis only develops in segments of the gut where inflammation in the context of CD is present [1]. Fibrosis in gut segments that never showed inflammatory involvement has not been reported. While this seems to be obvious, it is less clear what factors really trigger the process.

Another “dogma” also has been revised recently. It is no longer believed that only primary mesenchymal cells such as fibroblasts or smooth muscle cells can contribute to fibrosis in
CD [1]. Cells that contribute to fibrosis in CD patients may also derive from intestinal epithelial cells via a process called epithelial to mesenchymal transition (EMT) [1; 2; 8; 9] or from endothelial cells via endothelial-to-mesenchymal transition (EndoMT) [10].

A third important new aspect in the discussion is the assumption that fibrosis in CD may not be irreversible [11; 12]. After strictureplasty in patients with CD suffering from clinical strictures the fibrosis in the gut wall was later on found to be reduced or even completely absent [13]. Reversibility of fibrosis had been demonstrated before in other fibrotic diseases such as liver fibrosis [14].

Intestinal fibrosis subsequently is neither necessarily a very slow process, nor completely dependent on the presence of inflammation, nor irreversible [1; 2; 9; 12; 15]. Therefore, it appears to be important to review the cellular and molecular factors that contribute to fibrogenesis in CD.

Factors activating matrix producing cells

Matrix-producing cells are activated by paracrine signals, autocrine factors, and pathogen-associated molecular patterns (PAMPs) derived from microorganisms or damage-associated molecular patterns (DAMPs) that interact with pattern recognition receptors (PRRs) [1; 2; 12; 15]. Transforming growth factor β (TGF-β) is an important mediator of mesenchymal cell activation. Its important role as a central regulator of fibrosis has been emphasized for many tissues and diseases [16; 17; 18; 19; 20; 21; 22; 23; 24]. TGF-β expression is found to be upregulated in inflamed mucosa of inflammatory bowel disease (IBD) patients [25; 26; 27; 28]. In addition, also inhibitory molecules of TGF-
β action such as SMAD7 are upregulated in CD mucosa [29; 30]. Recent therapeutic approaches now targets SMAD7 expression by an anti-sense oligonucleotide (Mongersen) to allow more TGF-β action mainly of regulatory T-cells [31]. It will be interesting to see whether a parallel activation of mesenchymal cells can be prevented [32]. Data on mesenchymal cell activation and collagen deposition derived from clinical trials that are under way with Mongersen will help us to understand which role TGF-β plays for the activation of mesenchymal cells, for the initiation of EMT or EndoMT and for gut wall fibrosis in CD patients.

Other factors that play an important role in activating mesenchymal cells are activins [33], connective tissue growth factor (CTGF) [34; 35; 36], platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-1, -2), epidermal growth factor (EGF), and endothelins (ET-1, -2, -3) [2; 12; 15]. All of those factors increase collagen synthesis by mesenchymal cells upon stimulation [2; 12; 15]. The relative contribution of the respective factors and whether synergies are developed is unclear. Therefore, it is also unclear whether targeting one of those factors in an anti-fibrotic therapeutic approach would make sense [1].

Besides those specific factors inflammation per se is a strong activator of mesenchymal cells and also contributes to EMT and EndoMD [1; 8]. Therefore, it has been assumed by many authors that control of inflammation would prevent the development of gut wall fibrosis. This seems to be questionable now. Recent epidemiological data indicate that biologicals have reduced the number of surgeries performed due to insufficient control of inflammation. However, despite effective and much better control of inflammation the
development of CD in general from a B1 phenotype (only inflammatory) to a B2 (fibrotic) or B3 (penetrating) phenotype seems not to be significantly reduced [37; 38]. This raises the important questions whether inflammatory mediators and molecules trigger the fibrotic process early and whether this process finally becomes independent from inflammation. If this would be the case – and there is quite some evidence to support this assumption – the development of anti-fibrotic therapies would be absolutely mandatory. If we cannot interfere with the progression of fibrosis in a significant number of patients with our current therapeutic armamentarium, the need for new drug development becomes obvious.

Animal models to study fibrosis-promoting factors and potential therapies

Several animal models for the study of intestinal fibrosis have been proposed and described [1]. All of them have some advantages as well as disadvantages and none of them really resembles intestinal fibrosis of CD patients. Spontaneous intestinal fibrosis does not occur in rodent models and therefore all models require some manipulation and artificial conditions.

The first models used to study intestinal fibrosis were models in which colonic inflammation was chemically induced, such as the trinitrobenzene-sulfonic acid (TNBS) and chronic dextran sodium sulfate (DSS) colitis in mice [1]. Some collagen deposition and fibrosis is observed in these models. However, fibrosis is usually inconsistent and the experimental duration until the occurrence of fibrosis limits the applicability of the mentioned mouse models. In addition, the contribution of the chemical trigger of the
inflammation (TNBS or DSS) raises some concerns with respect to pathophysiological relevance. Similar to those chemically triggered models, the injection of the bacterial-wall derived compound peptidoglycan-polysaccharide (PG-PS) into the gut wall induces inflammation and fibrosis [39]. While this model is an example for fibrosis triggered by microbial products, it is unclear whether bacteria play an essential role in CD fibrosis. The SAMP1/Yit mouse was reported to develop spontaneous inflammation with ileitis and fibrosis [40; 41]. However, the access to this model is limited and the extent of fibrosis seems to depend on the vivarium the mice are bred in.

To be able to study therapeutic interventions with the target of inhibiting intestinal fibrosis we established a new – but still very artificial model. For the study of bronchiolitis obliterans and bronchial fibrosis pulmonologists had developed a heterotopic transplant model of trachea in rats [42]. We adopted this model and investigated whether the heterotopic transplantation of small intestine into the neck fold of rats would also be followed by the development of fibrosis. Indeed, we detected a rapid fibrosis of the small intestinal wall occurring within two weeks [43]. This was associated with increased expression of typical mediators of fibrosis such as αvβ6 integrin, IL-13, and TGF-β [43]. Further, we detected a loss of intestinal epithelium morphology, could demonstrate exaggerated collagen deposition, which led to luminal wall thickening culminating in a veritable fibrotic occlusion of the intestinal lumen [43]. As the available reagents to study fibrosis in rats are limited and it was desirably to study certain knock out or transgenic animal models we investigated whether the heterotopic transplant model also would work in mice (figure 1A-C). As expected, we found a similar time course of development
of fibrosis in the mouse model [44]. C57BL/6 are used as donors for isogeneic transplantation into C57BL/6 recipients in this model. Interestingly a rapid re-vascularization occurs in the intestinal grafts in the neck fold (figure 1D-F). In small intestinal grafts isolated up to 21 days after transplantation the lumen was obstructed by granulation tissue and fibrotic material (figure 1G-J and [44]). The grafts partially had lost their typical crypt structure which in some specimen occurred already at day two after transplantation indicating that hypoxia may have an important role for this development. Collagen layer thickness was observed to be significantly increased in grafts in a time-dependent manner (figure 2A-B and [44]). Confirmatively Tgf-β and collagen mRNA was observed to be significantly increased in a time-dependent manner (figure 2C-E and [44]). We used this newly developed model to study established anti-fibrotic drugs and their effect on the development of fibrosis [44]. Pirfenidone so far is the best established therapy for idiopathic lung fibrosis [45; 46; 47]. When we applied pirfenidone three times a day for six days by oral gavage we found that the collagen layer was significantly decreased in comparison to the collagen layer thickness in grafts from vehicle treated mice [44]. Similar, TGF-β mRNA expression was significantly decreased upon pirfenidone treatment compared to vehicle [44].

Factors involved in tissue remodeling

Additional factors involved in intestinal fibrosis that have not been discussed so far regulate the turnover of the extracellular matrix (ECM) [2; 12; 15; 48]. It is generally assumed that in normal tissue i.e. in the normal intestinal wall there is a fine balance
between ECM production and degradation [1]. This balance is maintained on one hand by matrix metalloproteinases (MMPs) that break down and degrade ECM and on the other hand tissue inhibitors of matrix metalloproteinases (TIMPs) that counteract this degrading activity. Under pathophysiologic conditions, when ECM production is increased and surpasses degradation intestinal fibrosis will occur. In human CD strictures increased expression of MMPs and also TIMPs has been observed. However, it is difficult of course to functionally investigate the balance and dynamics between the different pro-degrading and degradation-inhibiting proteins and mechanisms.

Further functions of MMP-9 include the regulation of cell migration, invasion, cell signaling as well as induction and regulation of EMT in multiple tissues [49; 50; 51]. In fact MMP-9 is the most abundantly expressed tissue degrading and re-modelling protease in inflamed CD tissue [52]. In biopsies from CD patients, MMP-9 was found as latent (pro-) and mature form [53]. Further, serum and urinary levels of MMP-9 correlate with disease activity in CD patients. It has been suggested that MMP-9 serum levels could be a useful marker of CD disease activity in children. In DSS colitis in mice targeted deletion of MMP-9 has a protective effect, whereas mice overexpressing MMP-9 develop more severe colitis [53].

As MMPs are obviously involved in intestinal fibrosis we determined the expression of tissue remodeling proteases MMP-2, -9, -13 and TIMP-1 in our heterotopic transplant model by real-time PCR. When mice were treated with pirfenidone a significant decrease in MMP-9 mRNA expression was observed [44]. Similar, MMP-2, -13 and TIMP-1 mRNA expression was decreased upon pirfenidone [44].
Further, we investigated, whether the therapeutic neutralization of MMP-9 by specific antibodies would alter the development of fibrosis in the heterotopic transplant model. When we treated mice in our model with two different anti-MMP-9 antibodies the lumen of the intestinal grafts was only partially obstructed and some crypt structures were still present [53]. Whereas the collagen layer was much thicker in grafts harvested from the isotype control-treated group, grafts harvested from anti-MMP-9 antibody-treated mice showed almost “normal” collagen layer thickness [53]. Treatment with the two anti-MMP-9 antibodies was followed by lower accumulation of newly synthesized collagen, significantly thinner collagen layer and lower collagen-specific amino acid hydroxyproline. Expression of MMP-9 and TIMP-1 were not significantly changed by the MMP-9 antibody treatment [53]. When we assessed gelatinase activity in homogenates from our grafts by zymography and by ELISA all day-14 explants exhibited increased total MMP-9 and the MMP-9 antibody treatment was followed by some reduction of MMP-9 activity in the explants [53].

Summary

We have just started to more specifically understand the factors and pathways that lead to intestinal fibrosis. This is necessary to address the high clinical need of focused treatment of fibrosis in CD patients. New animal models may be helpful to screen for successful therapies. In some models such as the heterotopic transplant model of small intestinal segments pirfenidone and anti-MMP-9 antibodies have provided promising
results. Further studies will be necessary to confirm these results and to find additional factors promoting development of fibrosis in CD.
References:

[1] F. Rieder, C. Fiocchi, and G. Rogler, Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology 152 (2017) 340-350.e6.

[2] G. Latella, J. Di Gregorio, V. Flati, F. Rieder, and I.C. Lawrance, Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scandinavian journal of gastroenterology 50 (2015) 53-65.

[3] A.M. Schoepfer, M.A. Dehlavi, N. Fournier, E. Safroneeva, A. Straumann, V. Pittet, L. Peyrin-Biroulet, P. Michetti, G. Rogler, S.R. Vavricka, and I.B.D.C.S. Group, Diagnostic delay in Crohn's disease is associated with a complicated disease course and increased operation rate. The American journal of gastroenterology 108 (2013) 1744-53; quiz 1754.

[4] B.B. Vasavada, and C.L. Chan, Rapid fibrosis and significant histologic recurrence of hepatitis C after liver transplant is associated with higher tumor recurrence rates in hepatocellular carcinomas associated with hepatitis C virus-related liver disease: a single center retrospective analysis. Exp Clin Transplant 13 (2015) 46-50.

[5] J. Dong, and Q. Ma, TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation. Nanotoxicology 11 (2017) 41-51.

[6] J. Dong, and Q. Ma, Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Part Fibre Toxicol 13 (2016) 60.

[7] N. Ikenaga, S.B. Liu, D.Y. Sverdlov, S. Yoshida, I. Nasser, Q. Ke, P.M. Kang, and Y. Popov, A new Mdr2(-/-) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. The American journal of pathology 185 (2015) 325-34.

[8] F. Rieder, J. Brenmoehl, S. Leeb, J. Scholmerich, and G. Rogler, Wound healing and fibrosis in intestinal disease. Gut 56 (2007) 130-9.

[9] F. Rieder, and C. Fiocchi, Intestinal fibrosis in IBD—a dynamic, multifactorial process. Nature reviews. Gastroenterology & hepatology 6 (2009) 228-35.

[10] F. Rieder, S.P. Kessler, G.A. West, S. Bhilocha, C. de la Motte, T.M. Sadler, B. Gopalan, E. Stylianou, and C. Fiocchi, Inflammation-induced endothelial- to-mesenchymal transition: a novel mechanism of intestinal fibrosis. The American journal of pathology 179 (2011) 2660-73.

[11] G. Latella, R. Sferra, S. Speca, A. Vetuschi, and E. Gaudio, Can we prevent, reduce or reverse intestinal fibrosis in IBD? European review for medical and pharmacological sciences 17 (2013) 1283-304.

[12] I.C. Lawrance, G. Rogler, G. Bamias, C. Breynaert, J. Florholmen, G. Pellino, S. Reif, S. Speca, and G. Latella, Cellular and Molecular Mediators of Intestinal Fibrosis. Journal of Crohn’s & colitis (2015).
[13] T. Yamamoto, V.W. Fazio, and P.P. Tekkis, Safety and efficacy of strictureplasty for Crohn’s disease: a systematic review and meta-analysis. Dis Colon Rectum 50 (2007) 1968-86.
[14] M.J. Arthur, Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122 (2002) 1525-8.
[15] G. Latella, G. Rogler, G. Bamias, C. Breynaert, J. Florholmen, G. Pellino, S. Reif, S. Speca, and I.C. Lawrance, Results of the 4th scientific workshop of the ECCO (I): Pathophysiology of intestinal fibrosis in IBD. Journal of Crohn’s & colitis (2014).
[16] A. Loboda, M. Sobczak, A. Jozkowicz, and J. Dulak, TGF-beta1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators of inflammation 2016 (2016) 8319283.
[17] X.M. Meng, D.J. Nikolic-Paterson, and H.Y. Lan, TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12 (2016) 325-38.
[18] B. Sutariya, D. Jhonsa, and M.N. Saraf, TGF-beta: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 38 (2016) 39-49.
[19] F. Xu, C. Liu, D. Zhou, and L. Zhang, TGF-beta/SMAD Pathway and Its Regulation in Hepatic Fibrosis. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 64 (2016) 157-67.
[20] J.M. Munoz-Felix, M. Gonzalez-Nunez, C. Martinez-Salgado, and J.M. Lopez-Novoa, TGF-beta/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacology & therapeutics 156 (2015) 44-58.
[21] X.M. Meng, P.M. Tang, J. Li, and H.Y. Lan, TGF-beta/Smad signaling in renal fibrosis. Frontiers in physiology 6 (2015) 82.
[22] R. Weiskirchen, and S.K. Meurer, BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci (Landmark Ed) 18 (2013) 1407-34.
[23] R. Samarakoon, J.M. Overstreet, and P.J. Higgins, TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cellular signalling 25 (2013) 264-8.
[24] A. Biernacka, M. Dobaczewski, and N.G. Frangogiannis, TGF-beta signaling in fibrosis. Growth factors 29 (2011) 196-202.
[25] C. Li, R.S. Flynn, J.R. Grider, K.S. Murthy, J.M. Kellum, H. Akbari, and J.F. Kuemmerle, Increased activation of latent TGF-beta1 by alphaVbeta3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflammatory bowel diseases 19 (2013) 2829-39.
[26] C. Li, A. Iness, J. Yoon, J.R. Grider, K.S. Murthy, J.M. Kellum, and J.F. Kuemmerle, Noncanonical STAT3 activation regulates excess TGF-beta1 and collagen I expression in muscle of stricturing Crohn’s disease. Journal of immunology 194 (2015) 3422-31.
[27] M. Scarpa, M. Bortolami, S.L. Morgan, A. Kotsafti, C. Ruffolo, R. D’Inca, E. Bertin, L. Polese, D.F. D’Amico, G.C. Sturniolo, and I. Angriman, TGF-beta1 and IGF-1 and anastomotic recurrence of Crohn's disease after ileo-colonic resection. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract 12 (2008) 1981-90.
[28] B. Del Zotto, G. Mumolo, A.M. Pronio, C. Montesani, R. Tersigni, and M. Boirivant, TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn's disease and ulcerative colitis. Clinical and experimental immunology 134 (2003) 120-6.

[29] F. Zorzi, E. Calabrese, I. Monte Leone, M. Fantini, S. Onali, L. Biancone, F. Pallone, and G. Monte Leone, A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn's disease. Alimentary pharmacology & therapeutics 36 (2012) 850-7.

[30] G. Monte Leone, M.C. Fantini, S. Onali, F. Zorzi, G. Sancesario, S. Bernardini, E. Calabrese, F. Viti, I. Monte Leone, L. Biancone, and F. Pallone, Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn's disease. Molecular therapy : the journal of the American Society of Gene Therapy 20 (2012) 870-6.

[31] G. Monte Leone, M.F. Neurath, S. Ardizzzone, A. Di Sabatino, M.C. Fantini, F. Castiglione, M.L. Scribano, A. Armuzzi, F. Caprioli, G.C. Sturniolo, F. Rogai, M. Vecchi, R. Atrey, F. Bossa, S. Onali, M. Fichera, G.R. Corazza, L. Biancone, V. Savarino, R. Pica, A. Orlando, and F. Pallone, Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. The New England journal of medicine 372 (2015) 1104-13.

[32] S. Danese, G. Fiorino, and L. Peyrin-Biroulet, Targeting SMAD7 in Crohn's Disease by Mongersen: Therapeutic Revolution Under Way? Gastroenterology 149 (2015) 1121-3.

[33] A.U. Dignass, S. Jung, J. Harder-d’Heureuse, and B. Wiedenmann, Functional relevance of activin A in the intestinal epithelium. Scandinavian journal of gastroenterology 37 (2002) 936-43.

[34] D. Beddy, J. Mulsow, R.W. Watson, J.M. Fitzpatrick, and P.R. O'Connell, Expression and regulation of connective tissue growth factor by transforming growth factor beta and tumour necrosis factor alpha in fibroblasts isolated from strictures in patients with Crohn’s disease. Br J Surg 93 (2006) 1290-6.

[35] F.F. di Mola, P. Di Sebastiano, A. Gardini, P. Innocenti, A. Zimmermann, M.W. Buchler, and H. Friess, Differential expression of connective tissue growth factor in inflammatory bowel disease. Digestion 69 (2004) 245-53.

[36] J. Dammeier, M. Brauchle, W. Falk, G.R. Grotendorst, and S. Werner, Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? The international journal of biochemistry & cell biology 30 (1998) 909-22.

[37] S.F. Jeuring, T.R. van den Heuvel, L.Y. Liu, M.P. Zeegers, W.H. Hameeteman, M.J. Romberg-Camps, L.E. Oostenbrug, A.A. Masclee, D.M. Jonkers, and M.J. Pierik, Improvements in the Long-Term Outcome of Crohn’s Disease Over the Past Two Decades and the Relation to Changes in Medical Management: Results from the Population-Based IBDSL Cohort. The American journal of gastroenterology 112 (2017) 325-336.

[38] T.R. van den Heuvel, D.M. Jonkers, S.F. Jeuring, M.J. Romberg-Camps, L.E. Oostenbrug, M.P. Zeegers, A.A. Masclee, and M.J. Pierik, Cohort Profile: The Inflammatory Bowel Disease South Limburg Cohort (IBDSL). Int J Epidemiol (2015).
[39] R.B. Sartor, S.K. Anderle, N. Rifai, D.A. Goo, W.J. Cromartie, and J.H. Schwab, Protracted anemia associated with chronic, relapsing systemic inflammation induced by arthropathic peptidoglycan-polysaccharide polymers in rats. Infect Immun 57 (1989) 1177-85.
[40] W. Strober, K. Nakamura, and A. Kitani, The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. The Journal of clinical investigation 107 (2001) 667-70.
[41] T.T. Pizarro, L. Pastorelli, G. Bamias, R.R. Garg, B.K. Reuter, J.R. Mercado, M. Chieppa, K.O. Arseneau, K. Ley, and F. Cominelli, SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflammatory bowel diseases 17 (2011) 2566-84.
[42] J.S. Gammie, S. Li, N. Kawaharada, Y.L. Colson, S. Yousem, S.T. Ildstad, and S.M. Pham, Mixed allogeneic chimerism prevents obstructive airway disease in a rat heterotopic tracheal transplant model. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 17 (1998) 801-8.
[43] M. Hausmann, T. Rechsteiner, M. Caj, C. Benden, M. Fried, A. Boehler, and G. Rogler, A new heterotopic transplant animal model of intestinal fibrosis. Inflammatory bowel diseases 19 (2013) 2302-14.
[44] R. Meier, C. Lutz, J. Cosin-Roger, S. Fagagnini, G. Bollmann, A. Hunerwadel, C. Mamie, S. Lang, A. Tchouboutkov, F.E. Weber, A. Weber, G. Rogler, and M. Hausmann, Decreased Fibrogenesis After Treatment with Pirfenidone in a Newly Developed Mouse Model of Intestinal Fibrosis. Inflammatory bowel diseases 22 (2016) 569-82.
[45] A. Xaubet, A. Serrano-Mollar, and J. Ancochea, Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert opinion on pharmacotherapy 15 (2014) 275-81.
[46] Y. Takeda, K. Tsujino, T. Kijima, and A. Kumanogoh, Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis. Patient preference and adherence 8 (2014) 361-70.
[47] T.E. King, Jr., W.Z. Bradford, S. Castro-Bernardini, E.A. Fagan, I. Glaspole, M.K. Glassberg, E. Gorina, P.M. Hopkins, D. Kardatzke, L. Lancaster, D.J. Lederer, S.D. Nathan, C.A. Pereira, S.A. Sahn, R. Sussman, J.J. Swigris, P.W. Noble, and A.S. Group, A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England journal of medicine 370 (2014) 2083-92.
[48] F. Rieder, T. Karrasch, S. Ben-Horin, A. Schirbel, R. Ehehalt, J. Wehkamp, C. de Haar, D. Velin, G. Latella, F. Scaldaferrri, G. Rogler, P. Higgins, and M. Sans, Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. Journal of Crohn’s & colitis 6 (2012) 373-85.
[49] J. Kurzepa, A. Madro, G. Czechowska, J. Kurzepa, K. Celinski, W. Kazmierzak, and M. Slomka, Role of MMP-2 and MMP-9 and their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary & pancreatic diseases international : HBPD INT 13 (2014) 570-9.
[50] A.R. Farina, and A.R. Mackay, Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 6 (2014) 240-96.
[51] J. Vandooren, P.E. Van den Steen, and G. Opdenakker, Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 48 (2013) 222-72.

[52] A. Kofla-Dlubacz, M. Matusiewicz, M. Krzystek-Korpacka, and B. Iwanczak, Correlation of MMP-3 and MMP-9 with Crohn's disease activity in children. Digestive diseases and sciences 57 (2012) 706-12.

[53] L. Goffin, S. Fagagnini, A. Vicari, C. Mamie, H. Melhem, B. Weder, C. Lutz, S. Lang, M. Scharl, G. Rogler, Y. Chvatchko, and M. Hausmann, Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflammatory bowel diseases 22 (2016) 2041-57.
Figures

Figure 1: Heterotopic transplantation, re-vacularization and luminal occlusion of the graft. (A) Small bowel resections are extracted from C57BL/6 mice. (B) For isogeneic transplantation the resection (arrow) is implanted into subcutaneous tissue in the neck of C57BL/6 mice. (C) The graft is freed from the pouch and harvested from the neck of the recipient 14 days post transplantation. (D - F) Grafts in the neck of recipient animals observed in situ present a decreased length but are otherwise macroscopically intact. Blood vessels from the surrounding tissue stretch towards the graft where they form a dense network (2 fold magnification). (G) Histologic cross sections of freshly isolated small intestine (day 0). Small bowel resections are extracted from C57BL/6 mice, implanted into C57BL/6 mice for isogeneic transplantation and explanted at day (H) 2, (I) 6 and (J) 14 after transplantation. Transmitted light microscopy, H&E staining. Grafts revealed luminal occlusion.
Figure 2: Collagen layer thickness and Tgf-β, Col1a1 and Col3a1 mRNA are significantly increased in grafts from the heterotopic transplantation model in a time-dependent manner. Small bowel resections are extracted from RAG2 knockout mice and implanted into RAG2 knockout mice for isogeneic heterotopic transplantations. (A) Sirius Red staining. Transmission light microscopy and polarized light microscopy. (B) Collagen layer thickness measurement using transmission light microscopy confirmed significantly increased collagen layer thickness in a time-dependent manner (** p < 0.01, *** < 0.001, ANOVA, Dunn’s multiple comparison test). Thickness was calculated from at least eight places in representative areas at 10-fold magnification for each single graft. (C) Tgf-β qPCR. (D) Col1a1. (E) Col1a3. * p < 0.05, ** p < 0.01, Kruskal-Wallis test, Dunn’s multiple comparison test.