Some Conditions for P-Solubility of Finite Groups

Jehad Jumah Jaraden and Awni Faez Al-Dababseh
Department of Mathematics and Statistics, Al-Hussein Bin Talal University, Ma'an, Jordan

Abstract: A subgroup H of a group G is c-subnormal in G if G has a subnormal subgroup T such that $HT=G$ and $3H \subseteq HG$. Using this concept, in Jaraden obtain some new conditions for solubility of a finite group are given. Here we obtain local versions of these results.

Key words: Finite group, p-soluble group, maximal subgroup, normal index, c-subnormal subgroup

INTRODUCTION

All groups that we consider are finite. Let M be a maximal subgroup of a group G. Then normal index $|G|$: Min of M in G is equal to $|H/K|$ where H/K is a chief factor of G such that $K \subseteq M$ and $H \not\subseteq M$ (we note that every two chief factors with such property are isomorphic). This concept was introduced by Deskins where the following nice result was proved: A group G is soluble if and only if for every its maximal subgroup M it is true that $|G|$: $M_l = |G|$: Min. Local versions of this result were obtained by many researchers. In Wang, analyzing the concept of normal index, introduced the following important concept: A subgroup H of a group G is said to be c-normal if there exists a normal subgroup T such that $HT = G$ and $3H \subseteq HG$ (where HG is the intersection of all G-conjugates of H, i.e., the unique largest normal subgroup of G contained in H). Using this concept Wang obtained several new interesting results on soluble and supersoluble groups. The concept of c-normal subgroup was used and analyzed. In particular, by Jaraden the following its generalization was considered.

Definition: A subgroup H of a group G is said to be c-subnormal in G if there exists a subnormal subgroup T such that $HT = G$ and $3H \subseteq HG$.

Using this concept, by Jaraden obtained some new conditions for solubility of a group were obtained. Here we prove the following theorems.

Theorem 1: A group G is p-soluble if and only if every maximal subgroup M with $p \mid |G|$: Min is c-subnormal in G.

Theorem 2: A group G is p-soluble if and only if it has a p-soluble maximal subgroup M such that either $p \mid |G|$: Min or M is c-subnormal in G.

PRELIMINARIES

Notation is standard. We shall need the following well known facts about subnormal subgroups.

Lemma 1: Let G be a group, H be a subgroup of G. Then the following statements hold:
- If H is subnormal in G and $M \subseteq G$, then $H \subseteq M$.
- If $K \trianglelefteq G$ and H is subnormal in G, then HK/K is subnormal in G/K.

Lemma 2: Let L be a minimal normal subgroup of a group G and T be a subnormal subgroup of G. Then $L \subseteq NG(T)$.

The following useful lemma was proved by Beidleman and Spencser.

Lemma 3: Let M be a maximal in G subgroup, N/G and N_M. Then $|G/M| = |G/N: M/N| = |G/N: M/N|.$

Lemma 4: (Frattini argument). Let N be a normal subgroup of a group G and N_p be a Sylow p-subgroup of N. Then $G = NNG(Np)$.

Recall that a primitive group is a group G such that for some maximal subgroup U of G, $UG = 1$.

A primitive group is of one of the following types (see [8; A.,(15.2)]):
- $Soc(G)$, the socle of G is an abelian minimal normal subgroup of G, complemented by U.
- $Soc(G)$ is a non-abelian minimal normal subgroup of G.
- $Soc(G)$ is the direct product of the two minimal normal subgroups of G which are both non-abelian and complemented by U.

Corresponding Author: Jehad Jumah Jaraden, Department of Mathematics and Statistics, Al-Hussein Bin Talal University, Ma'an, Jordan

168
Lemma 5: Let \(M \) be a maximal subgroup of \(G \) with \(MG = 1 \), where \(G \) is a primitive group of type 2. Let \(R = \text{Soc}(G) \) be the socle of \(G \). If \(R \setminus M = 1 \), then \(M \) is a primitive group of type 2 and the simple component of \(R \) is isomorphic to a section of a simple component of \(\text{Soc}(M) \).

We shall also need the following observations on c-subnormal subgroups.

Lemma 6: Let \(G \) be a group and \(H \) a subgroup of \(G \). Then the following statements are true:

- If \(H \) is c-subnormal in \(G \) and \(H \trianglelefteq K \trianglelefteq G \), then \(H \) is c-subnormal in \(K \);
- Let \(K/G \) and \(K \trianglelefteq H \). Then \(H \) is c-subnormal in \(G \) if and only if \(H/K \) is c-subnormal in \(G/K \);
- If \(K/G \trianglelefteq H \) is c-subnormal in \(G \), then \(HK/K \) is c-subnormal in \(G/K \).

Proofs of Theorem 1 and 2

Proof of Theorem 1: First assume that \(G \) is a p-soluble group. Let \(M \) be a maximal subgroup of \(G \). Assume that \(p \mid |G: M| \). Let \(H/MG \) be a chief factor of \(G \). Then \(p \mid |H/MG| \) and so \(H/MG \) is an abelian p-group. Hence \(H \trianglelefteq M = MG \). Thus \(M \) is c-subnormal in \(G \).

Now assume that every maximal subgroup \(M \) of \(G \) with \(p \mid |G: M| \) is c-subnormal in \(G \). We shall show that \(G \) is p-soluble. Assume that it is false and let \(G \) be a counterexample with minimal order. Then

- \(p \mid |G| \) (it is evident)
- \(G \) is not simple. Indeed, assume that \(G \) is simple and let \(M \) be a maximal in \(G \) subgroup. Then \(p \mid |G: M| \) and so by hypothesis \(M \) is c-subnormal in \(G \). Let \(T \) be a subnormal subgroup of \(G \) such that \(MT = G \) and \(T \trianglelefteq MG = 1 \). Then \(|T| = |G: M| \). Hence \(G \) is not simple.
- If \(R \) is a minimal normal subgroup of \(G \), then \(R = \text{Soc}(G) \) is the unique minimal normal subgroup of \(G \), \(R \) is not abelian and \(p \mid |R| \).

Let \(H \) be a non-indentity normal subgroup of \(G \). And let \(M/H \) be a maximal subgroup of \(G/H \). Assume \(p \mid |G/H: M/H| \) and so by hypothesis \(M \) is c-subnormal in \(G \). Now using Lemma 6, we see that \(M/H \) is c-subnormal in \(G/H \). Thus the hypothesis holds for \(G/H \). But \(|G/H| < |G| \) and so by the choice of \(G \) we conclude that \(G/H \) is p-soluble. Since the class of all p-soluble groups is a formation we see that \(R = \text{Soc}(G) \) is the unique minimal normal subgroup of \(G \). It is clear also that \(p \mid |R| \) and that \(R \) is not abelian.

- \(G \) has a maximal subgroup \(M \) such that \(R \trianglelefteq M \) and \(p \mid |G: M| \).
- Indeed, let \(R_p \) be a Sylow p-subgroup of \(R \), \(P \) be a Sylow p-subgroup of \(G \) such that \(R_p \trianglelefteq P \). Let \(N = \text{NG}(R_p) \) be the normalizer of \(R_p \) in \(G \). Then \(|R_p| = |R| \cdot |P| \cdot |P| \). Besides since \(R \) is not abelian, we have \(N \neq G \). Now let as choose a maximal subgroup \(M \) of \(G \) such that \(N \trianglelefteq M \). Then of course \(p \mid |G: M| \). We note also that \(R \trianglelefteq M \). Indeed, by Frattini argument, \(G = RN \). But \(N \trianglelefteq M \) and so \(R \trianglelefteq M \).
- \(M \) has a subnormal complement \(T \) in \(G \).

Since by (4) \(R \trianglelefteq M \), we have \(MG = 1 \) and so \(p \mid |R| \). Hence by hypothesis \(M \) is c-subnormal in \(G \). Therefore \(G \) has a subnormal subgroup \(T \) such that \(TM = G \) and \(T \triangleright M \).

- Final contradiction.

Let \(L \) be a minimal subnormal subgroup of \(G \) contained in \(T \). Let \(L^n \) be the normal closure of \(L \) in \(G \). Then \(L^n \neq 1 \) and so \(R \trianglelefteq L^n \). Assume that \(L \trianglelefteq R \). Then by Lemma 1,

\[
L \triangleright R \text{ is a subnormal subgroup of } G \text{ and } 1 \trianglelefteq L \trianglelefteq R \trianglelefteq L^n. \text{ Hence } L = 1, \text{ since } L \text{ is a minimal subnormal subgroup of } G. \text{ By Lemma 2, } R \trianglelefteq \text{NG}(L). \text{ Hence } L = 1, \text{ since } L \trianglelefteq \text{CG}(R). \text{ Since } \text{CG}(R) \trianglelefteq G \text{ and } R \trianglelefteq \text{CG}(R). \text{ Then } R \text{ is an abelian group. This contradiction shows that } L \trianglelefteq R. \text{ Since } R \text{ is a minimal normal subgroup of } G,
\]

- \(R = A_1 \times \cdots \times A_t \), where \(A_1 = A_2 = \cdots = A_t = A \) and \(A \) is a non-abelian simple group. Hence \(L = A \). Clearly \(p \) divides the order \(|A| \) of the group \(A \). Hence \(p \) divides the order \(|L| \) of the group \(L \). By Lagrange’s theorem the order \(|L| \) of the group \(L \) divides the order \(T \) of the group \(T \). Hence the prime \(p \) divides \(|T| \). We have known that \(G = TM \) and \(T \triangleright M \). Hence \(|G| = |T| = |M| \mid |G| \mid |M| \mid |M| \). But the prime \(p \) does not divide the index \(|G: M| \) of \(M \) in \(G \). Hence \(p \) does not divide \(|T| \). This contradiction shows that \(G \) is a p-soluble group.

The theorem is proved.

Proof of Theorem 2: In view of Theorem 1 we have only to prove the sufficiency. Assume that it is false and let \(G \) be a counterexample with minimal order. Then
• G/N is p-soluble for every non-identity normal subgroup N of G.

Indeed, if N \not\subseteq M, then G/N = MN/N = M/N M 3 M is p-soluble. Let N \subseteq M. Then M/N is a p-soluble maximal subgroup of G/N such that either M/N is c-subnormal in G or p \mid |G/N|: M/Nn = |G|: Mn. Hence the hypothesis holds for G/N and so G/N is p-soluble by the choice of G since |G/N| < |G|.

• G has unique minimal normal subgroup H which is non-abelian and p \mid |H| (it directly follows from (1)).

• G has a subnormal subgroup T such that G = TM and T \cap M = 1.

Since by hypothesis M is p-soluble, then in view of (2) H \not\subseteq M. Now it is clear that |H| = |G|: Mn and so by (2), p \mid |G|: Mn. Hence by hypothesis M is c-subnormal in G. Let T be a subnormal in G subgroup such that TM = G and T 3 M \subseteq MG. But H \subseteq M and so MG = 1. Hence T 3 M = 1. (4) If

1 = H0 \leq H1 \leq \ldots \leq Hn = T = T0 \leq T1 \leq \ldots \leq Tm = G (1)

is a composition series of G, then every factor T1/T0, T2/T1, \ldots, Tm/Tm−1 is either a group of order p or a p’-group.

It is clear |G|: T = |T1/T0||T2/T1|\ldots |Tm/Tm−1|. Now we consider the following series

1=T03M\leq T13M \leq \ldots \leq Tm−1 3 M \leq Tm 3 M = M (2)

Evidently Ti−1 3 M \lhd Ti 3 M for all i = 1, 2, \ldots, m. Note also that

|T1 3 M)/(T0 3 M)||T2 3 M)/(T1 3 M)|\ldots |Tm 3 M)/(Tm−1 3 M)| = |M| = |G|: T = |T1/T0||T2/T1|\ldots |Tm/Tm−1|.

Since

(Ti 3 M)/(Ti−1 3 M) = (Ti 3 M)/(Ti 3 M)|Ti−1 = T1−(Ti 3 M)/Ti−1 \leq T/Ti−1, |(Ti 3 M)/(Ti−13 M)| \leq |T/Ti−1|

for all i = 1, 2, \ldots, m, a so (Ti 3 M)/(Ti−1 3 M) | Ti/Ti−1 is a simple group for all i = 1, 2, \ldots, m. Thus series (2) is a composition series of the group M. By hypothesis M is p-soluble. Hence every factor of the series (2) is either a group of order p or a p’-group and so every factor T1/T0, T2/T1, \ldots, Tm/Tm−1 is too.

\[H\cap M = 1. \]

Let H = A1 \times \ldots \times At where A1 = \ldots = At = A is a non-abelian simple group. Let us consider the following composition series of G:

\[1 \leq A1 \leq A1A2 \leq \ldots \leq A1A2\ldots At−1 \leq H = K0 \leq K1 \leq \ldots \leq Kr = G \quad (3) \]

By Jordan-Holder Theorem [8; I,11.5] there exist indices i1, i2, \ldots, it such that

A1 = Hi1/Hi1−1, A1A2/A1 = Hi2/Hi2−1 \ldots ,A1A2\ldots At−1 = Hit/Hit−1. Hence |H| \leq |T| = |G|: Mn. But |G|: Mn = |H|: H 3 M 1 and so H\cap M = 1.

Final contradiction.

Let A be a composition factor of H. In view of (2), the group G is primitive of type 2 and so by (5) and Lemma 5, A is isomorphic to some section D/L where D \leq \text{Soc}(M). But by hypothesis M is p-soluble and so A is p-soluble. Then H is a p-soluble group and therefore H is a p-group, contrary to (2). The theorem is proved.

SOME APPLICATIONS

Theorems 1: and 2 have many corollaries. The most important of them we consider in this section.

Corollary 1: A group G is soluble if every its maximal subgroup M is c-subnormal in G\[^{[1]}\].

Corollary 2: A group G is soluble if it has a soluble maximal subgroup M which is c-subnormal in G\[^{[12]}\].

Corollary 3: A group G is soluble if every its maximal subgroup M is c-normal in G\[^{[7]}\].

Corollary 4: A group G is soluble if it has a soluble maximal subgroup M which is c-normal in G\[^{[7]}\].

It was proved that for a maximal subgroup M of a group G the following conditions are equivalent\[^{[7]}\]:

- M is c-normal in G;
- |G: M| = |G: Mn|.

Thus one can obtain from Theorem 1,2 the following known results.
Corollary 5: (W.E. Deskins[2]) A group G is soluble if for every its maximal subgroup M we have $|G:M| = |G:M_n|$.

Corollary 6: (A. Ballester-Bolinches[5]) A group G is p-soluble if for every its maximal subgroup M we have either $p | |G:M_n|$ or $|G:M| = |G:M_n|$.

REFERENCES

1. Jaraden Jehad, 2000. Some conditions for solubility. Math. J. Okayama Univ., 42: 1-5.
2. Deskins, W.E., 1959. On maximal subgroups. Proc. Symp. Pure Math., 1: 100-104.
3. Skiba, A.N., 1978. Strongly saturated formations of finite groups. Dokl. AN BSSR, 12: 431-434.
4. Beidleman, J.C. and A.E. Spenser, 1972. The normal index of maximal subgroups of finite groups. Illinois J. Math., 16: 95-101.
5. Ballester-Bolinches, A., 1990. On the normal index of maximal subgroups in finite groups. J. Pure Appl. Algebra, 64: 113-118.
6. Mukherjee, N.P. and P. Bhattacharya, 1988. The normal index of a finite group. Pacific J. Math., 132: 141-149.
7. Wang, Y., 1996. C-Normality of groups and its properties. J. Algebra, 180: 954-965.
8. Doerk, K. and T. Hawkes, 1992. Finite soluble groups. Walter de gruyter, Berlin/New York.
9. Wenbin Guo, 2000. The theory of classes of groups. Science Press-Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London.
10. Huppert, B., 1967. Endliche gruppen I, Springer-Verlag. Heidelberg/New York.
11. Lauente, J., 1985. Eine Note uber nichtabelsche Hauptfaktoren und maximale Untergruppen einer endlichen Gruppe, Comm. Algebra, 13: 2025-2036, 2025-2036.
12. Zhu, L., W. Guo and K.P. Shum, Weakly C-normal subgroups of finite groups and their properties. To appear in Communications in Algebra.