Validation of an International Classification of Disease, 10th revision coding adaptation for the Charlson Comorbidity Index in United States healthcare claims data

Julie Beyrer1 | Janna Manjelievksaia2 | Machaon Bonafede2 | Gregory Lenhart2 | Sandra Nolot1 | Diane Haldane1 | Joseph Johnston1

1Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, Indiana, USA
2IBM’s Life Sciences, IBM Watson Health, Cambridge, Massachusetts, USA

Correspondence
Julie Beyrer, Lilly Corporate Center, Indianapolis, IN 46285, USA.
Email: beyrerj@lilly.com

Funding information
Eli Lilly and Company

Abstract

\textbf{Purpose:} An International Classification of Disease (ICD-10) Charlson Comorbidity Index (CCI) adaptation had not been previously developed and validated for United States (US) healthcare claims data. Many researchers use the Canadian adaption by Quan et al (2005), not validated in US data. We sought to evaluate the predictive validity of a US ICD-10 CCI adaptation in US claims and compare it with the Canadian standard.

\textbf{Methods:} Diverse patient cohorts (rheumatoid arthritis, hip/knee replacement, lumbar spine surgery, acute myocardial infarction [AMI], stroke, pneumonia) in the IBM® MarketScan® Research Databases were linked with the IBM MarketScan Mortality file. Predictive performance was measured using c-statistics for binary outcomes (1-year and postoperative mortality, in-hospital complications) and root mean square prediction error (RMSE) for continuous outcomes (1-year all-cause medical costs, index hospitalization costs, length of stay [LOS]), after adjusting for age and sex. C-statistics were compared by the method of DeLong and colleagues (1988); RMSEs, by resampling.

\textbf{Results:} C-statistics were generally high (≥ 0.8) for mortality but lower for in-hospital complications (≈0.6–0.7). RMSEs for costs and hospitalization LOS were relatively large and comparable to standard deviations. Results were similar overall between the US and Canadian adaptations, with relative differences typically <1%.

\textbf{Conclusions:} This US-based coding adaptation and a previously published Canadian adaptation resulted in similar predictive ability for all outcomes evaluated but may have different construct validity (not evaluated in our study). We recommend using adaptations specific to the country of data origin based on good research practice.

\textbf{KEYWORDS}
administrative claims, Charlson Comorbidity Index, comorbidity, ICD-10, United States, validation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2021 Eli Lilly and Company, \textit{Pharmacoepidemiology and Drug Safety} published by John Wiley & Sons Ltd.
1 | INTRODUCTION

Comorbid illnesses are important indicators of health, and their presence increases the risk of mortality and other health outcomes. The Charlson Comorbidity Index (CCI) was developed to measure the burden of disease from comorbidities and predict 1-year mortality risk. The CCI is a commonly used algorithm to measure comorbidities and adjust for risk in health outcomes and similar studies; a Google Scholar search for the published CCI validation resulted in more than 30,000 citations. The CCI score is determined by 19 comorbid conditions, and a weight is assigned to each based on its severity. The weights for an individual are summed to derive his or her CCI score. With the widespread use of administrative databases for clinical outcomes research, adaptations of the CCI to the International Classification of Disease, 9th Revision, Clinical Modification (CM) were created and validated.

In 1992, the tenth revision to the International Classification of Disease (ICD-10) was published by the World Health Organization, and efforts were made outside the United States (US) to adapt the CCI to ICD-10. Sundararajan et al (2007) compared the performance of three ICD-10 coding adaptations and reported that the Canadian version by Quan et al outperformed the others. Discrepancies among the adaptations may have arisen due to different approaches used to develop them, as well as variations among country-specific ICD-10 modifications. The performance of these CCI adaptations in US healthcare data is unknown because different ICD-10 coding adaptations and realworld reimbursement requirements of different countries can influence the performance of algorithms.

We developed an ICD-10 coding adaptation for the US; the full current code set is available in machine-readable files at https://doi.org/10.5281/zenodo.3604394. The primary objective of this study was to validate our ICD-10 CCI adaptation in a US administrative claims database that included mortality data. We evaluated the predictive performance of our ICD-10 CCI coding adaptation and compared its performance with that of the ICD-10 CCI coding adaptation developed in Canada, which is currently being used by many for US healthcare research since there is presently no published validated algorithm for US healthcare claims. Rather than focusing on a single condition or outcome, we sought to validate the coding adaptation for diverse cohorts (i.e., rheumatoid arthritis, hip or knee replacement, lumbar spine surgery, acute myocardial infarction [AMI], stroke, and pneumonia) and outcomes (i.e., 1-year and postoperative mortality, in-hospital complications, 1-year all-cause medical costs, index hospitalization costs, and length of stay [LOS]).

2 | METHODS

2.1 Coding adaptations

The same comorbidities and weights from the original study by Mary Charlson and colleagues (1987) were used for both coding adaptations; only the International Classification of Disease (ICD) codes for each comorbidity were adapted. The US ICD-10 coding adaptation was developed by coding experts at Optum360, IBM Watson Health, and Eli Lilly and Company, who reviewed the US adaptation of ICD codes, including but not limited to the use of ICD-9-CM and ICD-10-CM crosswalks (Centers for Medicare and Medicaid Services [CMS] general equivalency mappings [GEMs] and additional crosswalks available in Optum360® Encoder Pro.com). Medical experts on our team considered the Deyo and Quan concepts and their categorizations (e.g., mild vs. moderate or severe) to determine which to include in each Charlson category. The full code lists are provided in Table S1. Coding trends were evaluated in a US claims data source, the IBM® MarketScan® Research Databases, during the fourth quarters of 2014 (ICD-9) and 2015 (ICD-10).

2.2 Data sources

This validation was performed using 2 IBM MarketScan Research Databases—the Commercial Claims and Encounters Database and the Medicare Supplemental Database. These databases include the

KEY POINTS

- The Charlson Comorbidity Index (CCI) is a widely used algorithm for measuring comorbidities and risk adjustment, but an International Classification of Disease (ICD-10) adaptation of the CCI for United States (US) healthcare claims data sources had previously not been developed and validated.
- We developed and evaluated the predictive performance of an ICD-10 US adaptation of the CCI and compared its performance with an ICD-10 Canadian adaptation (Quan et al 2005) for outcomes of 1-year mortality, postoperative mortality, in-hospital complications, 1-year medical costs, index hospitalization costs, and index hospitalization length of stay.
- C-statistics for mortality outcomes using either the US or Canadian adaptation were close to or exceeded 0.8 for patient cohorts (range 0.670–0.875), indicating high predictive power for 1-year and postoperative mortality.
- Predictive power was equally poor for both CCI coding adaptations for in-hospital complications, 1-year medical costs, index hospitalization costs, and index hospitalization length of stay.
- Using the Canadian adaptation had minimal impact on predictive ability but could result in different construct validity (i.e., erroneous assignment of individual comorbidities) given different ICD-10 coding adaptations and real-world reimbursement environments in Canada and the US; construct validity was not evaluated in our study. We recommend using adaptations specific to the country of origin of the data, consistent with good research practice guidelines.
healthcare experience of approximately 25 million unique individuals annually, reflecting the combined healthcare service use of individuals covered in a variety of health plan types across the US. The study sample was limited to a subset of patients with data available in the IBM MarketScan Mortality File.

The Commercial Claims and Encounters Database primarily contains the claims of patients covered by employer-sponsored health plans. The Medicare Supplemental Database includes the claims of Medicare beneficiaries with employer-sponsored supplemental coverage. The two databases are the same in terms of their structure and available data fields. Both contain inpatient, outpatient, and pharmacy claims, including any claims paid under a coordination-of-benefit arrangement, and therefore provide a complete assessment of patients’ healthcare resource utilization and costs covered by insurers. The IBM MarketScan Mortality File is developed through a linkage to the Social Security Administration Master Death File (SSMDF) and includes the presence and date of death. The IBM MarketScan Mortality File is complete only for those states who submit death data to the SSMDF; therefore, the study cohorts were limited to individuals residing in those states during our study period.

A request for waiver under 45 CFR 164.512(i) was obtained from the New England Institutional Review Board before the study was conducted.

2.3 Study populations

Adults (ages 18 years or older) with evidence of rheumatoid arthritis (inpatient or outpatient), hip or knee replacement (inpatient), lumbar spine surgery (inpatient), AMI (inpatient), stroke (inpatient), or pneumonia (inpatient or outpatient) between October 01, 2016 and April 01, 2017 were included in the study. The patient selection criteria used to identify these conditions or procedures relied on validated algorithms and are shown in Appendix A. These six medical conditions were selected to understand the performance of the CCI in diverse populations. The index date was the date of the patient’s first diagnosis (any) code for RA; first principal diagnosis code for stroke, AMI, and pneumonia; or first hospital admission date for lumbar spine surgery and hip/knee replacement during the index period. For all outcome analyses except for mortality outcomes, patients were required to have at least 12 months of continuous enrollment with medical and pharmacy benefits before the index date (i.e., pre-index period) and following the index date (i.e., post-index period). For mortality outcomes analyses, patients who died within 12 months after the index date were permitted and were followed until date of death. Patients with capitated claims were flagged and a gross pay amount was assigned to capitated services with a pay proxy, which used noncapitated claims and was specific to US region, year, and current procedural terminology (CPT) code (where applicable).

2.4 Outcome measures

Predictive performance was measured for 1-year and postoperative mortality, in-hospital complication, 1-year all-cause medical costs, and index hospitalizations costs and LOS. The CCI score and outcomes were developed using all claims during a 6-month pre-index period.

One-year mortality (the proportion of patients who died within 1 year of index date) was measured using the IBM MarketScan Mortality File. All costs were assessed using fully adjudicated and paid

Variable	Rheumatoid arthritis N (%)	Hip or knee replacement N (%)	Lumbar spine surgery N (%)	Acute myocardial infarction N (%)	Stroke N (%)	Pneumonia N (%)
Patients in MarketScan® CCAE/ MDCR with conditions of interest between October 1, 2016 and April 1, 2017 and in SSMDF	37 856 (100)	30 024 (100)	12 005 (100)	9053 (100)	7603 (100)	129 955 (100)
≥18 years of age on the index date	37 829 (99.9)	30 004 (99.9)	11 619 (96.8)	9053 (100)	7591 (99.8)	108 366 (83.4)
Continuous enrollment with medical and pharmacy benefits in the 12 months prior to the index date	29 665 (78.4)	25 811 (86.0)	9611 (80.1)	7638 (84.4)	6472 (85.1)	89 578 (68.9)
Continuous enrollment with medical and pharmacy benefits in the 12 months after the index date or deceased in SSMDF	23 555 (62.2)	19 322 (64.4)	7034 (58.6)	5491 (60.7)	4244 (55.8)	63 980 (49.2)

Abbreviations: CCAE/MDCR, Commercial and Medicare supplemental databases; N, number of patients in the cohort; SSMDF, Social Security Administration Master Death File.

For all outcome analyses except for mortality outcomes, patients were required to have at least 12 months of continuous enrollment with medical and pharmacy benefits following the index date as well as prior to the index date (12-month pre-index period). For mortality outcomes analyses, patients who died within 12 months following the index date were permitted and were followed until date of death.
Variable	Rheumatoid arthritis	Hip or knee replacement	Lumbar spine surgery	Acute myocardial infarction	Stroke	Pneumonia
	Mean (SD) or N (%)	Mean (SD) or N (%)	Mean (SD) or N (%)	Mean (SD) or N (%)	Mean (SD) or N (%)	Mean (SD) or N (%)
Age	55.6 (11.5)	62.2 (9.8)	56.6 (13.3)	62.3 (12.7)	65.0 (14.4)	56.9 (17.1)
Male	5697 (24.2)	9251 (47.9)	3543 (50.4)	3980 (72.5)	2518 (59.3)	31 526 (49.3)
Geographic region						
Northeast	5961 (25.3)	4510 (23.3)	1261 (17.9)	1287 (23.4)	984 (23.2)	15 461 (24.2)
North central	4002 (17.0)	5440 (28.2)	1885 (26.8)	1500 (27.3)	1202 (28.3)	17 393 (27.2)
South	11 275 (47.9)	7350 (38.0)	3026 (43.0)	2159 (39.3)	1596 (37.6)	24 095 (37.7)
West	2268 (9.6)	1975 (10.2)	845 (12.0)	536 (9.8)	455 (10.7)	6908 (10.8)
Unknown	49 (0.2)	47 (0.2)	17 (0.2)	9 (0.2)	7 (0.2)	123 (0.2)
Insurance plan type						
Comprehensive/indemnity	1609 (6.8)	3624 (18.8)	1194 (17.0)	1217 (22.2)	1219 (28.7)	11 593 (18.1)
EPO/PPO	14 797 (62.8)	10 297 (53.3)	3804 (54.1)	2852 (51.9)	2008 (47.3)	34 358 (53.7)
POS/POS with capitation	911 (3.9)	760 (3.9)	298 (4.2)	217 (4.0)	150 (3.5)	2593 (4.1)
HMO	2235 (9.5)	1849 (9.6)	649 (9.2)	434 (7.9)	350 (8.2)	5707 (8.9)
CDHP/HDHP	3829 (16.3)	2650 (13.7)	1042 (14.8)	727 (13.2)	488 (11.5)	9308 (14.5)
Missing/unknown	174 (0.7)	142 (0.7)	47 (0.7)	44 (0.8)	29 (0.7)	421 (0.7)
Population density						
Urban	20 504 (87.0)	16 494 (85.4)	6018 (85.6)	4576 (83.3)	3704 (87.3)	55 255 (86.4)
Rural	3004 (12.8)	2786 (14.4)	1004 (14.3)	907 (16.5)	533 (12.6)	8648 (13.5)
Unknown	47 (0.2)	42 (0.2)	12 (0.2)	8 (0.1)	7 (0.2)	77 (0.1)
Charlson comorbidities in the 6 months pre-index	1.40 (1.30)	0.87 (1.41)	1.15 (1.85)	1.49 (2.10)	1.71 (2.19)	1.44 (2.19)
CCI-US adaptation						
CCI-Canadian adaptation	1.39 (1.26)	0.83 (1.37)	1.10 (1.80)	1.42 (2.04)	1.61 (2.11)	1.38 (2.14)
Cerebrovascular disease	601 (2.6)	709 (3.7)	406 (5.8)	355 (6.5)	1087 (25.6)	4044 (6.3)
CPD	2689 (11.4)	2249 (11.6)	926 (13.2)	645 (11.7)	442 (10.4)	16 006 (25.0)
Congestive heart failure	533 (2.3)	696 (3.6)	271 (3.9)	557 (10.1)	375 (8.8)	5867 (9.2)
Dementia	74 (0.3)	159 (0.8)	57 (0.8)	92 (1.7)	188 (4.4)	2021 (3.2)
Diabetes without chronic complications	2948 (12.5)	3516 (18.2)	1395 (19.8)	1506 (27.4)	1116 (26.3)	11 565 (18.1)
Diabetes with chronic complications	841 (3.6)	966 (5.0)	489 (7.0)	629 (11.5)	540 (12.7)	4683 (7.3)
Hemiplegia/paraplegia	40 (0.2)	31 (0.2)	85 (1.2)	21 (0.4)	163 (3.8)	540 (0.8)
HIV/AIDS	9 (0.0)	26 (0.1)	37 (0.5)	24 (0.4)	8 (0.2)	262 (0.4)
amounts. All-cause medical costs included inpatient, outpatient (including emergency room, office visits, and other outpatient), prescription, and all other healthcare costs during the 1-year post-index period. All costs were adjusted for inflation using the medical care component of the Consumer Price Index and standardized to 2018 US dollars.

For cohorts defined by operative procedures, postoperative mortality was defined as death occurring either during the index inpatient admission or within a 6-week period following hospital discharge date. In-hospital complications were captured using ICD-10-CM diagnosis and diagnosis-related group codes for complications of treatment. Complications were identified as conditions that were not the principal causes of the inpatient admission and included serious infections and transfusions (see Appendix B for a full list of conditions and codes). Hospital LOS and costs were calculated for the index hospitalization for any patient whose index event was identified on an inpatient claim.

2.5 | Statistical analyses

The predictive abilities of the US and Canadian adaptations were measured using methods appropriate for each type of outcome. For outcomes of 1-year mortality, postoperative mortality, and in-hospital complications, the area under the receiver operating characteristic curve (c-statistic) was calculated. For outcomes of hospitalization LOS, hospitalization costs, and 1-year all-cause medical costs, the root mean square prediction error (RMSE) between actual and predicted values was calculated. The rationale for selecting these performance statistics was relevance and ease of interpretation for the target audience for this research (i.e., researchers using the CCI in US healthcare claims data).

Generalized linear regression models were fit to patient-level data to calculate predicted outcomes for comparison with actual outcomes. Each model included the numeric CCI score, age, and sex as explanatory items. For binary outcomes, the model included a binomial error with logistic link; for LOS, the model included a negative binomial error with log link; and for cost outcomes, the model included a gamma error with log link. For binary outcomes, the model included a negative binomial error with log link. For LOS, the model included a gamma error with log link. For cost outcomes, the model included a gamma error with log link. The c-statistic was calculated. For outcomes of hospitalization LOS, hospitalization costs, and 1-year all-cause medical costs, the root mean square prediction error (RMSE) between actual and predicted values was calculated. The c-statistic was calculated.

Statistical significance of the difference in performance between the two CCI versions was determined by the method of DeLong et al (1988) paired analysis for binary outcomes. For continuous outcomes of cost and LOS, statistically significant differences were determined by resampling mean square error differences with 1000 replications, with replacement, to identify differences for which the 95% confidence interval crossed zero. Statistical significance of the difference in performance between the two CCI versions was determined by the method of DeLong et al (1988) paired analysis for binary outcomes. For continuous outcomes of cost and LOS, statistically significant differences were determined by resampling mean square error differences with 1000 replications, with replacement, to identify differences for which the 95% confidence interval crossed zero.

Reported p-values were not adjusted for multiple comparisons. Statistical significance was determined when p-values <0.05 were considered significant. Reported p-values were not adjusted for multiple comparisons. Statistical significance was determined when p-values <0.05 were considered significant.

Statistical analyses were conducted in SAS® (version 9.4) statistical package (SAS Institute Inc., Cary, North Carolina).

3 | RESULTS

3.1 | Characteristics of study population

A total of 123,626 patients met the study inclusion criteria across the six disease cohorts (Table 1). The characteristics of studied individuals varied across the disease cohorts. Table 2 provides a breakdown of the characteristics of patients across the disease cohorts.

Table 2: Characteristics of patients across disease cohorts

Disease Cohort	N	Percentage
Rheumatoid arthritis	23,555	18.7%
Hip or knee replacement	19,322	15.6%
Lumbar spine surgery	7,034	5.7%
Acute myocardial infarction	4,244	3.4%
Stroke	4,244	3.4%
Pneumonia	63,980	51.8%

Note: Percentages may not sum to 100% due to rounding.

Abbreviations: CCI, Charlson Comorbidity Index; CDHP, Consumer Directed Health Plan; CPD, chronic pulmonary disease; EPO, Exclusive Provider Organization; HDHP, High Deductible Health Plan; HIV/AIDS, human immunodeficiency virus/acquired immunodeficiency syndrome; HMO, Health Maintenance Organization; N, number of patients in the cohort; POS, Point of Service; PPO, Preferred Provider Organization; PVD, peripheral vascular disease; SD, standard deviation.

aAny malignancy, including lymphoma and leukemia, except malignant neoplasm of skin.
bRheumatic disease is both a comorbidity in the CCI and the study cohort in this instance, which explains the high frequency.
are shown in Table 2. The mean age of patients was approximately 55–65 years across the cohorts. Patient sex was predominantly male in the AMI and stroke cohorts, female in the rheumatoid arthritis cohort, and evenly balanced in the hip or knee replacement, lumbar spine surgery, and pneumonia cohorts. A majority were enrolled in exclusive provider organization/preferred provider organization (EPO/PPO) plans. A substantial portion of patients resided in the South, with relatively few patients in the West, reflecting the underlying demographics of the commercial and Medicare supplemental data within the IBM MarketScan Research Databases.

Frequencies of pre-index Charlson comorbidities are shown in Table 2. Our US ICD-10 CCI adaptation produced a slightly higher index CCI score (means ranging from 0.87 to 1.71) than the Canadian adaptation (means ranging from 0.83 to 1.61; Table 2). The most commonly observed comorbidities across cohorts were chronic pulmonary disease (ranging from 10.4% to 25.0%) and diabetes without chronic complications (ranging from 12.5% to 27.4%; Table 2). Although not a comorbidity in the context of RA, rheumatologic disease codes were commonly observed in the RA cohort as could be expected.

The stroke cohort had the highest 1-year mortality rate (10.6%), while the rheumatoid arthritis cohort had the lowest (0.2%) (Table 3). The proportion of patients with postoperative mortality was 1.1% and 0.2% among the lumbar spine surgery and hip or knee replacement cohorts, respectively. The pneumonia cohort had the highest proportion of patients with in-hospital complications (75.1%), while the hip or knee replacement cohort had the lowest proportion (8.5%). Mean 1-year medical costs ranged from $38 116 in the pneumonia cohort to $113 505 in the lumbar spine surgery cohort. Among patients with an inpatient admission, mean hospitalization costs ranged from $25 961 in the pneumonia cohort to $70 526 in the lumbar spine surgery cohort and the mean LOS for the index hospitalization ranged from 2.38 days for the hip or knee replacement cohort to 5.05 days for the pneumonia cohort.

C-statistics across cohorts for 1-year mortality models ranged from 0.67 to 0.87 (Figure 1(A)) and for postoperative mortality models ranged from 0.80 to 0.93 (Figure 1(B)). Mortality c-statistics were similar between the US and Canadian coding adaptations with relative percentage differences in the range of −0.17% to 0.79% (Table 4). C-statistics for in-hospital complications models ranged from 0.57 to 0.69 (Figure 1(C)), with relative percentage differences ranging from −0.32% to 0.76% (Table 4).

For both coding adaptations, the RMSEs for 1-year medical costs, index hospitalization costs, and LOS were relatively large, similar to the mean and standard deviations (Figure 2(A–C)). The relative

TABLE 3 Descriptive summary of outcomes

Cohort	N	1-year mortality (%)	Hosp mortality (%)	Hosp complication (%)	1-year cost ($)	Hosp LOS days	Hosp cost ($)
Rheumatoid arthritis	23 555	0.2	N/A	2491	41.0	23 510	45 055
Hip or knee replacement	19 322	0.5	0.2	19 243	8.5	19 243	65 513
Lumbar spine surgery	7034	2.1	1.1	6895	21.4	6895	113 505
Acute myocardial infarction	5491	6.4	N/A	5149	24.2	5149	95 399
Stroke	4244	10.6	N/A	3809	25.1	3809	92 170
Pneumonia	63 980	3.1	N/A	16 271	75.1	62 038	38 116

Abbreviations: Hosp, hospital; LOS, length of stay; N, number of patients in the cohort; N/A, not applicable.

*The 1-year mortality analyses include patients with evidence of death during the 12-month follow-up period (Social Security Administration death master file) or at least 12 months of follow-up time.

*One-year mortality was defined as dying within 12-month follow-up.

*In-hospital mortality was defined as dying during the index inpatient admission or within a 6-week period following hospital discharge.

*Hospital complications analyses include patients with 12-month follow-up. Patients in pneumonia and rheumatoid arthritis cohorts without an inpatient admission during the 12-month follow-up period were excluded from this analysis.

*Hospital complications were defined as having an ICD-10-CM diagnosis for infection, ICD-10 procedure for blood transfusion, or diagnosis-related group for complications of treatment during the index hospitalization (see Appendix B for full list of concepts and codes).

*One-year medical cost analyses include patients with 12 months of follow-up time.

*Cost is represented as means and were adjusted for inflation using the medical care component of the Consumer Price Index and standardized to 2018 US dollars.

*Hospital LOS and cost analyses include patients with 12 months of follow-up time and hospitalization on the index date and includes patients who did not have a hospitalization.

*Hospital LOS is represented as mean days of the index hospitalization.

*Hospital costs are represented as means for the index hospitalization and adjusted for inflation using the medical care component of the Consumer Price Index and standardized to 2018 US dollars.
percentage RMSE differences for 1-year medical costs ranged from −5.61% in the pneumonia cohort to 0.20% in the stroke cohort (Table 4). The relative percentage differences for hospitalization costs and LOS for the index hospitalization ranged from −0.26% to 0.45% (Table 4). Statistically significant differences were observed between coding adaptations for the pneumonia cohort for 1-year mortality and in-hospital complications and for the lumbar spine surgery cohort for in-hospital complications.
Abbreviations: LOS, length of stay; N/A, not applicable.

generally considered well discriminating, while 0.6 and below are con-
tions used to create the CCI.
to do with the underlying medical conditions than the ICD-10 code
tions, evidence that the predictive ability of the algorithms had more
across cohorts than between the US and Canadian coding adapta-
formed. Greater variation in c-statistics and RMSE was observed
in the context of large sample sizes and many statistical tests per-
a few of the comparisons resulted in p values <0.05, but this could be expected
in the context of large sample sizes and many statistical tests per-
Greater variation in c-statistics and RMSE was observed across cohorts than between the US and Canadian coding adapta-
evidence that the predictive ability of the algorithms had more
to do with the underlying medical conditions than the ICD-10 code
sets used to create the CCI.

For the binary outcome measures, c-statistics of 0.8 and above are
generally considered well discriminating, while 0.6 and below are con-
sidered poorly discriminating. The c-statistic exceeded 0.8 for the
mortality outcomes (1-year and postoperative mortality) for many
cohorts. The exceptions were 1-year mortality c-statistics for the stroke
and AMI cohorts; the smaller (<0.8) c-statistics observed could be
expected for medical conditions in the emergency care setting where
other factors not assessed in claims (e.g., the severity and distribution
of vascular disease and health delivery factors like how quickly the
patient receives care and where it is received) are likely to have a
greater impact on mortality outcomes. Smaller (<0.8) c-statistics were
observed for in-hospital complications, indicating worse predictive abil-
ity for in-hospital complications than for mortality; however, the pre-
dictive ability of each model was consistently similar between the US and
Canadian adaptations. The definition of in-hospital complications was
different in this study than that used in a previous ICD-9-CM valida-
tion. Deyo and colleagues (1992) tailored the definition of complic-
tions to a single study cohort of lumbar spine surgery patients while
this study defined complications more broadly to apply across multiple
and diverse cohorts, which may explain the poorer predictive ability
observed for the in-hospital complication models in our study.

Both increases and decreases of very small magnitude in predictive
ability were observed when comparing the performance metrics of our
US-based adaptation versus the Canadian adaptation. A few of
the models. However, again, similar results were observed for both
the US and Canadian adaptations.

For the continuous outcome measures, RMSE is a frequently used
and widely recognized measure, but there is no single threshold to
define good predictive ability of these models (i.e., how well predicted
costs correspond with observed costs). The RMSEs for 1-year and
index hospitalization medical costs and LOS were relatively large, rep-
resenting a large proportion of the means, and similar in magnitude to
the standard deviation; we interpreted this as poor predictive ability
of the models. However, again, similar results were observed for both
the US and Canadian adaptations.

Because of different codes or categorization of codes in some
cases, our US CCI coding adaptation produced slightly higher index
scores than the Canadian coding adaptation (Table 2). While there
were only two codes in the publication by Quan et al that did not appear in our coding adaptation, there were over 400 codes in our
coding adaptation that either do not appear in the Quan et al publica-
ton or are included in a different category (e.g., differences in inter-
pretation between “diabetes with chronic complications” and
“diabetes without chronic complications”). Some differences in coding
were due to different interpretations of the code range implied in
Quan’s publication, Table 1 (e.g., E10.6 is included but not E10.6*,
which we interpreted to mean a single E10.6 code only and not
including the full range of codes under E10.6). To promote clarity in
the interpretation of code lists, we provide a machine-readable list of
our individual ICD-10 codes along with the codes from Quan’s publi-
cation used in this study (https://doi.org/10.5281/zenodo.3604394)
as well as the full code list in Table S1. However, some differences in coding
are due to different ICD-10 coding adaptations between Canada and the US. Some codes in the US ICD-10 system represent
different concepts or do not exist in the Canadian ICD-10 system. For example, US billable ICD-10 codes that specify “with coma” or “with-
out coma” (e.g., E13.10, E13.11, E13.649, E13.641, E13.00, E13.01,
K72.90, K72.91, K72.10, K72.11, K70.40, K70.41) were not present in
the Canadian ICD-10 adaptation. Because the number of relevant
codes in the US exceeds the number of relevant codes in the Cana-
dian ICD-10 system for some comorbidities, there are more opportu-
nities to identify the comorbidity in US data and increase the score.

Condition	1-year mortality	Hospital complication	Postoperative mortality	1-year total cost	Hospital LOS	Hospital cost
Acute myocardial infarction	0.10%	0.10%	N/A	−0.33%	0.02%	−0.01%
Hip or knee replacement	−0.02%	0.19%	−0.07%	−0.32%	−0.05%	−0.02%
Lumbar spine surgery	0.79%	0.76%	0.69%	−0.14%	0.45%	0.02%
Pneumonia	−0.17%	−0.24%	N/A	−5.61%	−0.04%	0.01%
Rheumatoid arthritis	0.30%	0.53%	N/A	−0.24%	−0.26%	0.22%
Stroke	0.26%	−0.32%	N/A	0.20%	0.01%	−0.02%

Abbreviations: LOS, length of stay; N/A, not applicable.

*Percentage difference in c-statistics for 1-year mortality, in-hospital mortality, and hospital complications during the index hospitalization and in root
mean square prediction error (RMSE) for 1-year medical costs, hospital LOS for the index hospitalization, and hospital costs for the index hospitalization.

Calculated as the US adaptation minus the Canadian adaptation, divided by the Canadian adaptation and expressed as a percentage.

b 95% confidence interval for difference in predictive ability for 1-year total cost for pneumonia = (−11.97%, 0.75%).

4 Discussion

The US and Canadian ICD-10 coding adaptations of the CCI, including
age and sex effects, performed similarly in this study of diverse
patient groups and outcomes in US healthcare commercial claims.
Both increases and decreases of very small magnitude in predictive
ability were observed when comparing the performance metrics of our
US-based adaptation versus the Canadian adaptation. A few of
the comparisons resulted in p values <0.05, but this could be expected
in the context of large sample sizes and many statistical tests per-
formed. Greater variation in c-statistics and RMSE was observed
across cohorts than between the US and Canadian coding adapta-
evidence that the predictive ability of the algorithms had more
to do with the underlying medical conditions than the ICD-10 code
sets used to create the CCI.

For the binary outcome measures, c-statistics of 0.8 and above are
generally considered well discriminating, while 0.6 and below are con-
sidered poorly discriminating. The c-statistic exceeded 0.8 for the
mortality outcomes (1-year and postoperative mortality) for many
cohorts. The exceptions were 1-year mortality c-statistics for the stroke
and AMI cohorts; the smaller (<0.8) c-statistics observed could be
expected for medical conditions in the emergency care setting where
other factors not assessed in claims (e.g., the severity and distribution
of vascular disease and health delivery factors like how quickly the
patient receives care and where it is received) are likely to have a
greater impact on mortality outcomes. Smaller (<0.8) c-statistics were
observed for in-hospital complications, indicating worse predictive abil-
ity for in-hospital complications than for mortality; however, the pre-
dictive ability of each model was consistently similar between the US and
Canadian adaptations. The definition of in-hospital complications was
different in this study than that used in a previous ICD-9-CM valida-
tion. Deyo and colleagues (1992) tailored the definition of complic-
tions to a single study cohort of lumbar spine surgery patients while
this study defined complications more broadly to apply across multiple
and diverse cohorts, which may explain the poorer predictive ability
observed for the in-hospital complication models in our study.
FIGURE 2 Performance (root mean square errors) of models predicting 1-year all-cause medical costs (A), index hospitalization costs (B), and index hospitalization length of stay (C). Patients included in the 1-year all-cause cost models are those with 12 months of follow-up time. Costs were adjusted for inflation using the medical care component of the Consumer Price Index and standardized to 2018 US dollars (A). Patients included in the index hospitalization costs models are those with 12 months of follow-up time and hospitalization on the index date. Costs were adjusted for inflation using the medical care component of the Consumer Price Index and standardized to 2018 US dollars (B). Patients included in the index hospitalization length of stay models are those with 12 months of follow-up time and hospitalization on the index date (C). All models include as explanatory items the numeric CCI score, numeric age, and indicator of female sex. The CCI score was calculated based on both inpatient and outpatient claims during the 6-month period prior to Index. RMSE is the root mean square error (MSE) of total cost in $ thousands or length of stay in days. CCI, Charlson Comorbidity Index; RMSE, root mean square error.
We do not know whether using the Canadian code set results in erroneous assignment of individual comorbidities since we did not evaluate construct validity of the CCI codes (e.g., verification of individual comorbidities through medical chart review). However, there is a potential for worse construct validity when using a coding adaptation to identify concepts in a data source from a different country, given differences in coding adaptations and real world reimbursement environments.16

An important question and limitation of the current study concerns future updates of Charlson comorbidity codes over time as newer ICD-10 concepts and codes are introduced in the US. For example, the ICD-9-CM Charlson adaptation by Deyo and colleagues2 does not include some codes for dementia (i.e., 294.10, 294.11, 294.20, 294.21, 331.0, 331.11) or mild liver disease (i.e., 070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.6, 070.9, 570, 571.0, 571.1, 571.3, 571.8). Many of these codes became effective in US healthcare claims after the time of Deyo’s study. Omitting these codes has been shown to appreciably decrease the observed rate of comorbidities in US healthcare claims.17 Our US adaptation represents a point in time early in the adoption and evolution of ICD-10, but future changes in ICD will be important for researchers to review and consider when deciding how to use this coding adaptation.

Our intent was not to evaluate whether the original Charlson concepts or weights can be improved upon; others have considered these issues.29-33 Our aim was to evaluate the predictive validity of an ICD-10 coding adaptation for Charlson comorbidities in US healthcare data and compare it with a standard that many researchers in the US were likely using in the absence of a previously validated US coding adaptation. In general, both the US and Canadian adaptations performed well and similarly in this study.

5 | CONCLUSION

This US-based coding adaptation and a previously published Canadian adaptation14 performed similarly well for mortality outcomes and more poorly for in-hospital complications, costs, and LOS. While both ICD-10 CCI coding adaptations resulted in similar c-statistics and RMSEs (predictive ability) in these US healthcare data, using the Canadian adaptation with US claims data could result in erroneous assignment of individual comorbidities (i.e., worse construct validity) given different ICD-10 coding adaptations and real world reimbursement environments in Canada and the US. Based on good research practice guidelines, we recommend using adaptations specific to the country of origin of the data.16

ETHICS STATEMENT

This manuscript is the original work of all the authors. The data were presented in part (1-year mortality outcome results) poster presentation at the 25th annual meeting of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) in May 2020 and published as an abstract in the meeting supplement (Beyrer J, Manjelievskaia J, Bonafede M, et al PMU40 validation of an ICD-10 coding adaption for the Charlson Comorbidity Index in United States healthcare administrative data. Value Health. 2020;23 (Suppl 1):S240. https://doi.org/10.1016/j.jval.2020.04.814).

ACKNOWLEDGMENTS

The authors wish to thank the expert coding support staff at IBM Watson Health and Optum360 for their review and recommendations on Charlson code concepts and Barbara Johnson for scientific contributions during protocol development. We acknowledge and thank Angela Lorio at Syneos Health for editorial review and Tony Zagar and David Nelson of Eli Lilly and Company for statistical peer review and quality review, respectively. We also thank Hude Quan and Danielle Southern for their help in understanding CCI Canadian ICD-10 codes and concepts.

CONFLICT OF INTEREST

Julie Beyrer, Sandra Nolot, Diane Haldane, and Joseph Johnston are employees and shareholders of Eli Lilly and Company. Machaon Bonafede, Janna Manjelievskaia, and Gregory Lenhart are employees of IBM Watson Health.

ORCID
Julie Beyrer https://orcid.org/0000-0002-7331-2625

REFERENCES

1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-383. https://doi.org/10.1016/0021-9681(87)90171-8.

2. Deyo RA, Cherkin DC, Cicin MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613-619. https://doi.org/10.1016/0895-4356(92)90133-8.

3. D’Hoore W, Sicotte C, Tilquin C. Risk adjustment in outcome assessment: the Charlson comorbidity index. Methods Inf Med. 1993;32(5):382-387. https://doi.org/10.1055/s-0038-1634956.

4. Romano PR, Roost LL, Jollis JG. Further evidence concerning the use of a clinical comorbidity index with ICD-9-CM administrative data. J Clin Epidemiol. 1993;46(10):1085-1090. https://doi.org/10.1016/0895-4356(93)90106-B.

5. D’Hoore W, Bouckaert A, Tilquin C. Practical considerations on the use of the Charlson comorbidity index with administrative data bases. J Clin Epidemiol. 1996;49(12):1429-1433. https://doi.org/10.1016/s0895-4356(96)00271-5.

6. Newschaffer CJ, Bush TL, Benkert LT. Comorbidity measurement in elderly female breast cancer patients with administrative medical records data. J Clin Epidemiol. 1997;50(6):725-733. https://doi.org/10.1016/s0895-4356(97)00050-4.

7. Roos LL, Stranc L, James RC, Li J. Complications, comorbidities, and mortality: improving classification and prediction. Health Serv Res. 1997;32(2):229-238.

8. Glance LG, Dick AW, Osler TM, Mukamel DB. Does date stamping ICD-9-CM codes increase the value of clinical information in administrative data? Health Serv Res. 2006;41(1):231-251. https://doi.org/10.1111/j.1475-6773.2005.00419.x.

9. Luthi JC, Troillet N, Eisenring MC, et al. Administrative data out-performed single-day chart review for comorbidity measure. Int J Qual Health Care. 2007;19(4):225-231. https://doi.org/10.1093/intqhc/mzm017.
10. Mnatzaganian G, Ryan P, Norman PE, Hiller JE. Accuracy of hospital morbidity data and the performance of comorbidity scores of predictors of mortality. J Clin Epidemiol. 2012;65(1):107-115. https://doi.org/10.1016/j.jclinepi.2011.03.014.

11. World Health Organization (WHO). International classification of diseases and related health problems, 10th revision. 1992.

12. Hafnon P, Eggl Y, van Melle G, Chevalier J, Wasserfallen JB, Burnand B. Measuring potentially avoidable hospital readmissions. J Clin Epidemiol. 2002;55(6):573-587. https://doi.org/10.1016/s0895-4356(01)00521-2.

13. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57(12):1288-1294. https://doi.org/10.1016/j.jclinepi.2004.03.012.

14. Quan H, Sundararajan V, Hafnon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-1139. https://doi.org/10.1097/01.mlr.0000182534.19821.83.

15. Sundararajan V, Quan H, Hafnon P, et al. International methodology consortium for coded health information (IMECCHI). Cross-national comparative performance of three versions of the ICD-10 Charlson index. Med Care. 2007;45(12):1210-1215. https://doi.org/10.1097/MRL.0b013e3181484347.

16. Schulman KL, Berenson K, Tina Shih YC, et al. A checklist for ascertaining study cohorts in oncology health services research using secondary data: report of the ISPOR oncology good outcomes research practices working group. Value Health. 2013;16(4):655-669. https://doi.org/10.1016/j.jval.2013.02.006.

17. Beyrer J, Nolot S, Haldane DC, Johnston J. Developing an ICD-10-CM version of Charlson comorbidities for United States real-world healthcare data [abstract PRM27]. Value Health. 2017;20(5):A315. Retrieved from: https://www.ispor.org/heor-resources/presentatio ns-database/presentation/ispor-22nd-annual-international-meeting/developing-an-icd-10-cm-version-of-charlson-comorbidities-for-united-states-real-world-healthcare-data Accessed 07 July 2020.

18. As-Sanie S, Soliman AM, Evans K, Erpelding N, Lanier R, Katz NP. Healthcare utilization and cost burden among women with endometriosis by opioid prescription status in the first year after diagnosis: a retrospective claims database analysis. Jt Comm J Qual Patient Saf. 2020;46(12):524-531. doi:10.1016/j.jcq.2020.09.003.

19. Vieira MC, Conway D, Cox GM, et al. Time to treatment failure following initiation of fingolimod versus teriflunomide for multiple sclerosis: a retrospective US claims study. Curr Med Res Opin. 2020;36(2):261-270. https://doi.org/10.1080/03007995.2019.1690440.

20. Youn B, Trikalinos NA, Mor V, Wilson IB, Dahabreh IJ. Real-world use and survival outcomes of immune checkpoint inhibitors in older adults with non-small cell lung cancer. Cancer. 2020;126(5):978-985. https://doi.org/10.1002/cncr.32624.

21. Aronsky D, Haug PJ, Lager C, Dean NC. Accuracy of administrative data for identifying patients with pneumonia. Am J Med Qual. 2005;20(6):319-328. https://doi.org/10.1177/1062860505280358.

22. Singh JA, Ayub S. Accuracy of VA databases for diagnoses of knee replacement and hip replacement. Osteoarthritis Cartil. 2010;18(12):1639-1642. https://doi.org/10.1111/j.1063-4584.2010.01003.x.

23. Chung CP, Rohan P, Krishnaswami S, McPheeters ML. A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data. Vaccine. 2013;31(suppl 10):K41-K61. https://doi.org/10.1016/j.vaccine.2013.03.075.

24. Metcalfe A, Neudam A, Forde S, et al. Case definitions for acute myocardial infarction in administrative databases and their impact on in-hospital mortality rates. Health Serv Res. 2013;48(1):290-318. https://doi.org/10.1111/j.1475-6773.2012.01440.x.

25. Kaziourek O, Martin BI, Stevens JP, McGuire KJ. Validation of an administrative coding algorithm for classifying surgical indication and operative features of spine surgery. Spine (Phila Pa 1976). 2015;40(2):114-120. https://doi.org/10.1097/BRS.0000000000000682.

26. McCormick N, Bhole V, Lacaille D, Avina-Zubieta JA. Validity of diagnostic codes for acute stroke in administrative databases: a systematic review. PLoS One. 2015;10(8):e013834. https://doi.org/10.1371/journal.pone.013834.

27. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-845. https://doi.org/10.2307/2531595.

28. Shewhart WA, Wilks SS. Assessing the Fit of the Model. In: Hosmer DW, Lemeshow S, (Eds), Applied Logistic Regression. 2 New York, NY: John Wiley and Sons; 2000:160-164. https://doi.org/10.1002/047122146.ch5.

29. Klabunde CN, Potosky AL, Legler JM, Warren JL. Development of a comorbidity index using physician claims data. J Clin Epidemiol. 2000;53(12):1258-1267. https://doi.org/10.1016/s0895-4356(00)00256-0.

30. Klabunde CN, Legler JM, Warren JL, Baldwin LM, Schrag D. A refined comorbidity measurement algorithm for claims-based studies of breast, prostate, colorectal, and lung cancer patients. Ann Epidemiol. 2007;17(8):584-590. https://doi.org/10.1016/j.jannepidem.2007.03.011.

31. Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676-682. https://doi.org/10.1093/aje/kwp433.

32. Sun JW, Rogers JR, Her Q, et al. Adaptation and validation of the combined comorbidity score for ICD-10-CM. Med Care. 2017;55(12):1046-1051. https://doi.org/10.1097/MLR.0000000000000824.

33. Glasheen WP, Cordier T, Gumpina R, Haugh G, Davis J, Renda A. Charlson comorbidity index: ICD-9 update and ICD-10 translation. Am Health Drug Benefits. 2019;12(4):188-197.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Beyrer J, Manjelievskaia J, Bonafede M, et al. Validation of an International Classification of Disease, 10th revision coding adaptation for the Charlson Comorbidity Index in United States healthcare claims data. Pharmacoeconomics Drug Saf. 2021;30:582-593. https://doi.org/10.1002/pds.5204.

APPENDIX A: PATIENT SELECTION CRITERIA USED TO IDENTIFY CONDITIONS OR PROCEDURES

Specific medical codes used to identify the cohorts are available in machine readable format on zenodo.org (https://doi.org/10.5281/zenodo.3968742).

Rheumatoid arthritis (RA)

Patients will be identified as having RA based on an adaptation of published claims-based algorithms with high positive predictive values.
Patients will be required to have an ICD-10-CM diagnosis code for RA, an encounter with a rheumatologist, and evidence of disease-modifying antirheumatic drug (DMARD) use during the study period in either an inpatient or outpatient setting. In the outpatient setting, to determine whether to use all outpatient claims or restrict to non-diagnostic claims on professional medical encounters, separate sample counts will be calculated and compared. Depending on sample size, patients may not be required to have evidence of a rheumatologist encounter to be included in the RA cohort.

Hip or knee replacement

Patients will be identified as having undergone hip or knee replacement based on a validated algorithm using administrative data (ICD-9-CM) with a PPV of 95% for knee replacements and 98% for hip replacements and adapted to ICD-10-CM. Patients will be required to have an inpatient claim with an ICD-10-CM diagnosis or procedure (Current Procedural Terminology (CPT), ICD-10-PCS) code for knee or hip replacement during the study period.

Lumbar spine surgery

Patients will be identified as having lumbar spine surgery based on a validated claims-based algorithm (using ICD-9-CM) and adapted to ICD-10-CM. Patients will be required to have an inpatient procedure (CPT, ICD-10-PCS) code indicating lumbar fusion, with or without decompression, for back pain, herniated disc, stenosis, spondylolisthesis or scoliosis during the study period. The specificity of this algorithm ranges from 85.6% to 97.3%, depending on the surgery indication.

Acute myocardial infarction

Patients will be identified as having AMI based on a validated algorithm using administrative data with a PPV of 82.2%. Patients will be required to have an inpatient claim with an ICD-10-CM diagnosis for AMI (I21-I22) in the primary diagnosis position during the study period.

Stroke

Patients will be identified as having a stroke based on a systematic review analyzing the validity of stroke codes in administrative databases. Patients will be required to have an inpatient claim with a diagnosis of acute stroke (ICD-10-CM I60, I61, I63) during the study period, as these codes are highly predictive of true cases of acute stroke.

Pneumonia

To the best of our knowledge, there is a lack of validated U.S. claims-based algorithms to identify pneumonia with a high PPV. Aronsky et al (2005) examined the accuracy of administrative data for identifying patients with pneumonia using ICD-9-CM diagnosis and diagnosis-related group (DRG) codes and found that the sensitivity ranged from 47.8% to 66.2% and PPV ranged from 72.6% to 80.8%, with DRG codes being significantly less precise in identifying pneumonia patients. For this study, we propose identifying pneumonia patients based on the Centers for Medicare and Medicaid Services' (CMS) method of using ICD-10-CM diagnosis codes for pneumonia in the primary position in an inpatient or outpatient setting.

APPENDIX B: CODES USED TO DEFINE IN-HOSPITAL COMPLICATIONS

Codes used to define in-hospital complications are available in machine readable format on zenodo.org (https://doi.org/10.5281/zenodo.3968784).

APPENDIX C: CODES USED TO DEFINE EACH CHARLSON COMORBIDITY

Codes used to define each Charlson Comorbidity are available in machine readable format on zenodo.org (https://doi.org/10.5281/zenodo.3604394) or in the tabular format shown in Table S1. SAS programs for implementing this CCI are available here: https://github.com/beyrerj/US_ICD10_Charlsonindex