Eventor: An Efficient Event-Based Monocular Multi-View Stereo Accelerator on FPGA Platform

Mingjun Li¹, Jianlei Yang¹, Yingjie Qi¹, Meng Dong², Yuhao Yang¹, Runze Liu³, Weitao Pan², Bei Yu⁴, Weisheng Zhao¹

¹ Beihang University, Beijing, China
² Xidian University, Xi’an, Shaanxi, China
³ Beijing Real Imaging Medical Technology Co., Ltd.
⁴ The Chinese University of Hong Kong, Hong Kong

July 12, 2022
Outline

• Research Background and Motivation
• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• Evaluation
• Conclusions
Outline

• **Research Background and Motivation**
• **Eventor**
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• **Evaluation**
• **Conclusions**
Multi View Stereo (MVS)

- **Multi View Stereo (MVS)**
 - **Input**: a set of **photographs** of an object or a scene
 - **Target**: estimate the most likely **3D shape** that explains those photographs
 - **Assumption**: known viewpoints
Event Camera

- **Event Camera**
 - Bio-inspired vision sensor (DVS)
 - Asynchronous output: event stream
 - \(e = < x, y, t, p > \) pixel coordinates, timestamp, polarity of brightness changes

- **Advantages**
 - Low latency (~1 micro-second)
 - High dynamic range (120 dB instead 60 dB)
 - Low data rate, low storage capacity (KB vs. MB)
 - Low power consumption (~20 mW)

[Scaramuzza D. Tutorial on Event-based Vision for High-Speed Robotics. URL: http://rpg.ifi.uzh.ch, 2015.]
Event-based Multi View Stereo (EMVS)

- Monocular EMVS
 - Estimate semi-dense 3D structure from an event camera with known trajectory
 - Critical task in the mapping part of monocular event-based SLAM

[Rebecq H, Gallego G, Mueggler E, et al. EMVS: Event-based multi-view stereo - 3D reconstruction with an event camera in real-time. IJCV’18.]
EMVS Application Scenarios

Event-based SLAM

Drones

Robots

Self-driving Cars

AR/VR

3D Map Modeling
Existing Works on Monocular EMVS

- [Kim et al., ECCV’16]
 - Three filters running in parallel to jointly estimate the motion of the event camera and 3D map
 - Only runs on GPUs for real-time performance and cannot process high event rate input (up to 1M events/s)

- [Gallego et al., CVPR’18]
 - A unified event processing framework for motion estimation, depth estimation and optical flow estimation
 - Only evaluated on a desktop CPU and no quantitative results are provided

- [Rebecq et al., IJCV’18]
 - Event-based space-sweep method
 - Runs in real-time on a desktop CPU (1.2 M events/s with a single core)

Existing Monocular EMVS implementations only run on desktop processors, with inadequate performance!
New Paradigm: EMVS vs MVS

- Question: Can we directly use existing MVS accelerators on EMVS?

	MVS	EMVS
Input Data	Frame-based images	Asynchronous event stream
Algorithm	Traditional multi-view stereo algorithm	Novel event-based multi-view stereo algorithm
Output	Dense/Sparse 3D reconstruction	Semi-dense 3D reconstruction

- Different data structure and algorithm pipelines!

Previous accelerators for frame-based MVS can not be directly applied to EMVS!
Challenges & Motivation

• Real-time Demand
 • EMVS: computational intensive
 • Utilize low-latency advantage: high computation speed required
 • Expected event processing rate: over 1.8 Million events per second

• Limited Platform Resources
 • Implement EMVS on embedded platforms: high energy efficiency processors required
 • Desktop processors (CPU or GPU): not practical for resources-limited and power-limited platforms

• New Computation Paradigm
 • Current EMVS algorithms: lack hardware-oriented optimization
 • Previous MVS accelerators: incompatible with EMVS

Accelerate monocular EMVS via algorithm-hardware co-optimization!
Outline

• Research Background and Motivation
• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• Evaluation
• Conclusions
EMVS Algorithm Framework

- Basic Framework
 - Monocular EMVS using event-based space-sweep method [Rebecq et al., IJCV’18]
 - Relatively high parallelism
 - Relatively low data dependency
 - Relatively low computational redundancy
 - Suitable for customized hardware (e.g. FPGA) acceleration
EMVS Algorithm Framework

- **Event Aggregation**
- Divide the event stream to event frames (i.e. event packets) which will be processed together.
EMVS Algorithm Framework

- Key Frame Selection
- Select key reference view and construct local discretized space volume (i.e. Disparity Space Image, DSI)

Event Stream → Event Aggregation → Event Frame

New Key Frame? (True)
- Scene Structure Detection (D)

False
- Reset DSI
- Point Cloud Conversion
- Map Updating
- Semi-Dense 3D Map

Event Back-Projection (P)

Volumetric Ray-Counting (R)
EMVS Algorithm Framework

- Event Back-Projection (P)
- Back-project events from the input event frame to the reference viewing space

- Event Stream
- Event Aggregation
- Event Frame
- New Key Frame?
 - True: Scene Structure Detection (D)
 - False: Reset DSI
- Volumetric Ray-Counting (R)
- Event Back-Projection (P)
- Map Updating
- Semi-Dense 3D Map

- Back-project events from the input event frame to the reference viewing space
EMVS Algorithm Framework

- Volumetric Ray-Counting (\mathcal{R})
- Count the number of back-projection rays that pass through each DSI voxel
EMVS Algorithm Framework

- **Scene Structure Detection (D)**
- Determine 3D points by finding local maximum of the ray density
EMVS Workload Profiling

EMVS Runtime Profiling %

- Scene Structure Detection (D): 7.23%
- Volumetric Ray-Counting (R): 6.92%
- Others: 6.92%
- $P + R$: 85.85%

Total: 100%

FPGA Acceleration

- Event Stream
- Event Aggregation
- Event Frame
- New Key Frame? Yes/No
 - Yes: Scene Structure Detection
 - No: Reset DSI
- Event Back-Projection (P)
- Volumetric Ray-Counting (R)
- Point Cloud Conversion
- Map Updating
- Semi-Dense 3D Map

Evaluated on the DAVIS event-camera dataset and simulator
Outline

• Research Background and Motivation
• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• Evaluation
• Conclusions
Critical Tasks Breakdown

- Two-step back-projection in P
- Canonical Event Back-Projection (CP): current event frame \rightarrow canonical homography plane
- Proportional Event Back-Projection (PP): canonical plane \rightarrow the whole viewing space (DSI)

Most computational intensive tasks: CP, PP, R
Hardware-Friendly Reformulation

- Partially Reschedule
 - Improve memory access efficiency
 - Reduce data transfer between FPGA and external memory
 - Compact computational intensive stages, efficiently accelerate them in a fully pipelined manner
Approximate Computing

Depth estimation error (AbsRel) comparison between different voting strategies

- **Bilinear Voting**
 - 1 projection updates 4 voxels

- **Nearest Voting**
 - 1 projection updates 1 voxel

- **Nearest voting**
 - Lower computation complexity
 - More hardware-friendly memory access pattern
 - Slightly higher reconstruction error

Adopt nearest voting strategy in volumetric ray-counting (R)

@ DAVIS Dataset: simulation_3planes, simulation_3walls, slider_close, slider_far
Hybrid Data Quantization

Table: data quantization strategies for \mathcal{P} and \mathcal{R}.

Quantized Data	Total #bit	#bit of Integer	#bit of Decimal
(x_e, y_e)	16	9	7
$\{x_e(\mathcal{CP}), y_e(\mathcal{CP})\}$	16	9	7
$\{x_e(\mathcal{PP}), y_e(\mathcal{PP})\}$	8	8	0
\mathcal{H}	32	11	21
ϕ	32	11	21
DSI Scores	16	16	0

- (x_e, y_e): input event coordinates
- $\{x_e(\mathcal{CP}), y_e(\mathcal{CP})\}$: back-projected event coordinates after \mathcal{CP}
- $\{x_e(\mathcal{PP}), y_e(\mathcal{PP})\}$: back-projected event coordinates after \mathcal{PP}
- \mathcal{H}: homography matrix used in \mathcal{CP}
- ϕ: parameters used in \mathcal{PP}
- **DSI Scores**: the number of back-projected viewing rays passing through each DSI voxel

- **Floating-point \rightarrow Fixed-point** (linear quantization)
- Save up to **50% memory requirement** and **data transfer bandwidth**
- Simplify computational logic
Hybrid Data Quantization

Table: data quantization strategies for \mathcal{P} and \mathcal{R}.

Quantized Data	Total #bit	#bit of Integer	#bit of Decimal
(x_e, y_e)	16	9	7
$\{x_e(\mathcal{CP}), y_e(\mathcal{CP})\}$	16	9	7
$\{x_e(\mathcal{PP}), y_e(\mathcal{PP})\}$	8	8	0
\mathcal{H}	32	11	21
ϕ	32	11	21
DSI Scores	16	16	0

- Maximum depth estimation error difference: **1.01%**

Accuracy of the quantized framework is acceptable.
Outline

• Research Background and Motivation

• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture

• Evaluation

• Conclusions
Computation Parallelism Analysis

Operator-Level Parallelism
- Multiple arithmetic logic units (ALUs) can be deployed for fine-grained parallelism

Event-Level Parallelism
- Different events can be processed in parallel and the computation stages can be fully pipelined

DSI-Level Parallelism
- Event back-projections and voting for different DSI voxels can be executed in parallel
Eventor Overall Architecture

- ARM-FPGA Heterogeneous Acceleration
- ARM configures DMA to transfer input data
- ARM fires up the FPGA acceleration modules
- FPGA Acceleration modules receive input event frames and update DSI data stored in DRAM
Eventor Overall Architecture

- **Canonical Projection Module**: executes CP
- **Proportional Projection Module**: executes PP, R
Canonical Projection Module

- **Buffer**: double-buffering structure
 - **Buf_H, Buf_E, Buf_P**: input buffers
 - **Buf_I**: intermediate buffer
- **PE_Z0**: executes CP, fully pipelined
 - **MV MAC Units** (matrix-vector multiply-accumulate units)
 - **Normalization Function Unit**
- **Canonical Projection Controller**
 - finite-state machine (FSM)
 Canonical Projection Module

- **Multiple ALUs** are deployed in PE_Z0 to accelerate matrix and vector calculation
- Input **events** are processed in a **fully-pipelined** scheme without data dependency
 - Exploit parallelism
 - Operator-Level
 - Event-Level
Proportional Projection Module

- **Data Allocator**: fetches and allocates input data
- **PE_Zi**: execute \mathcal{PP} and part of \mathcal{R}
 - Scalar MAC Units
 - Nearest Voxel Finder
 - Vote Address Generator
- **Buf_V**: double-buffering structure, output buffer
- **Vote Execute Unit**: votes DSI voxels (updates DSI scores), completes \mathcal{R}
- **Proportional Projection Controller**
Proportional Projection Module

- **Multiple ALUs** are deployed in PE_Zi to accelerate matrix and vector calculation
- Input events are processed in a **fully-pipelined** scheme without data dependency
- **Multiple PE_Zi** simultaneously back-project an event to **multiple DSI voxels**
 - Exploit parallelism
 - Operator-Level
 - Event-Level
 - DSI-Level
Pipelined Workflow

\[CP : \text{Canonical Event Back-Projection} \]
\[PP : \text{Proportional Event Back-Projection} \]
\[R : \text{Volumetric Ray-Counting} \]
Pipelined Workflow

- For **normal event frames**, two modules work simultaneously in a **pipelined** manner.
- The execution time of **CP** is overlapped.

Exploit parallelism: Event-Level

\[\mathcal{C}P : \text{Canonical Event Back-Projection} \]
\[\mathcal{P}P : \text{Proportional Event Back-Projection} \]
\[\mathcal{R} : \text{Volumetric Ray-Counting} \]
Outline

• Research Background and Motivation
• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• Evaluation
• Conclusions
Experimental Setup

• Hardware Implementation
 • Xilinx Zynq XC7Z020 SoC
 • Eventor clock 130 MHz, DDR clock 533 MHz

• Dataset
 • DAVIS Dataset: [Mueggler et al., The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. IJRR’17.]
 • Camera resolution: 240 × 180
 • Simulated sequences: simulation_3planes, simulation_3walls
 • Real scene sequences: slider_close, slider_far

• Baseline
 • Original EMVS implementation on Intel i5-7300HQ CPU

Table: The resources utilization of Eventor

	Utilization
# LUT	17538(32.97%)
# FF	22830(21.46%)
BRAM	64KB(11.43%)
Accuracy Analysis

The depth estimation error (AbsREL) of our reformulated hardware-friendly EMVS compared with original EMVS.

@ DAVIS Dataset

The accuracy of our reformulated framework is comparable to original EMVS!
Accelerator Performance Evaluation

Table: Performance comparison between Eventor and original EMVS runs on Intel i5 CPU

	Intel i5 CPU	Eventor
Runtime per Event Frame (μs / task)		
CPU	22.40	8.24
PP & R	559.55	551.58
Runtime per Event Frame (μs / frame)		
Normal Frame	581.95	551.58
Key Frame	581.95	559.82
Event Processing Rate (10^6 events / second)		
Normal Frame	1.76	1.86
Key Frame	1.76	1.83
Power (W)	45	1.86

*Each event frame consists of 1024 events

Eventor can achieve $24 \times$ improvement in energy efficiency compared with Intel i5 CPU!
Outline

• Research Background and Motivation
• Eventor
 • Algorithm Framework
 • Software Optimizations
 • Hardware Architecture
• Evaluation
• Conclusions
Conclusions

- An efficient EMVS accelerator, **Eventor**, is proposed for real-time applications and evaluated on Zynq FPGA platform.

- **Algorithm-hardware co-optimization** strategies are utilized to improve the system performance.

- **Eventor** could achieve \(24 \times\) improvement in **energy efficiency** compared with Intel i5 CPU.

- The overall performance could satisfy the requirements of **real-time reconstruction** on power-limited embedded platforms.
Thank You!

Q & A