PROTECTIVE EFFECT OF ROTENONE AGAINST LIPOPOLYSACCHARIDE AND D-GALACTOSAMINE-INDUCED HEMATOTOXICITY

SAMRAT RAKSHIT1, ANJANI VERMA1, SATENDRA KUMAR NIRALA2, MONIKA BHADAURIA1*

1Department of Zoology, Toxicology and Pharmacology Laboratory, Guru Ghasidas University, Bilaspur, Chhattisgarh, India. 2Department of Rural Technology and Social Development, Laboratory of Natural Products, Guru Ghasidas University, Bilaspur, Chhattisgarh, India.

Email: bhadauria_monika@rediffmail.com

Received: 27 May 2019, Revised and Accepted: 24 June 2019

ABSTRACT

Objective: The aim of the present study was to investigate the protective efficacy of rotenone against lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced altered hematology.

Methods: Hematotoxicity was induced by coinjection of LPS (50 µg/kg i.p.) and D-GalN (300 mg/kg i.p.). Rotenone (5, 10 and 20 mg/kg p.o.) was administered for 6 days as a pre-treatment. Blood was collected through puncturing the retro-orbital sinus to analyze blood parameter. Serum was separated to analyze glucose, triglyceride, and cholesterol.

Results: The present study revealed decreased in red blood cells, platelets, hemoglobin, and hematocrit value while a significant increase in white blood cells, lymphocyte, and monocytes were observed in LPS and D-GalN treated rats. LPS and D-GalN administration significantly decrease glucose level while serum lipid profile (triglycerides and cholesterol level) were increased significantly at 5% level of significance. LPS and D-GalN-induced altered hematological and serological variables were restored toward control by rotenone pretreatment for 6 days in dose-dependent manner.

Conclusion: It can be said that LPS and D-GalN administration resulted in alteration of various hematological parameters and rotenone at 20 mg/kg dose restored significant alteration toward control due to the presence of antioxidant activity of rotenone.

Keywords: Rotenone, Hematology, Serum lipid, Lipopolysaccharide, D-galactosamine.

INTRODUCTION

Increased oxidative stress alters the balance between pro-oxidants (free radicals) and antioxidants, which is been linked to many human diseases or disorders at present [1]. Free radicals such as reactive oxygen species and reactive nitrogen species are produced in excessive amounts during oxidative stress. Antioxidative defense system (AOS) components are responsible for neutralizing this oxidative stress and protect various cell damages [2]. Erythrocytes contain hemoglobin and unsaturated fatty acids, which makes it a suitable target for peroxidation [3]. With the help of AOS components, these cells could protect themselves from oxidative injuries incurred under physiological conditions [4]. Hematology deals with the study of the numbers and morphology of the red cells (erythrocytes), white cells (leukocytes), and the platelets (thrombocytes) and the use of these results in the diagnosis and monitoring of disease [5]. From the diagnosis of a number of diseases to the investigation of the extent of the damage to blood can be done by hematological observation [6]. Physiological status of animals reflects in hematological parameters [7]. As blood circulates almost everything, any toxicity can be detected by the blood [8]. Animals with good hematalogy showed good performance [9]. Different metabolites and constituents that play an important role in physiological, nutrition, and pathological status of an organism [10] dramatically change with physiological conditions of health [6]. Afolabi 2011 [11] suggested that stress induced by environmental, nutritional, and pathological factors could alter hematological parameters. Lipopolysaccharide (LPS) is one of the main components of the bacterial cell wall and is responsible for generating oxidative stress [12] and inflammation [13]. LPS also activates proinflammatory cytokines, which cause toxicity [14]. D-Galactosamine (D-GalN) is an amino sugar, when metabolized in liver generates a mixture of hexosamines and causes selective uridine triphosphate deficiency, inhibition of ribonucleic acid synthesis, bilirubin conjugation, liver detoxification [15], and disturbances in the biosynthesis of glycoproteins [16]. As a result of depletion of the necessary enzymes involves in energy production from glucose and another substance, a crisis of energy occurs due to D-GalN and its metabolites. D-GalN is also reported to mediate inflammation-induced toxic damage in animals [17]. Rotenone is a member of pea family (Leguminosae), which is very abundant in the roots of plants. From ancient time, rotenone is been used by humankind [18]. Rotenone is harmless to mammals, especially when administered by oral route [19]. Rotenone has a beneficial effect on mammary tumors in Osborne-mendel rats [20]. Therefore, rotenone could be effective against LPS and D-GalN-induced hematotoxicity.

METHODS

Animals

Healthy and pathogen free wistar rats. (female, 150±10 g) were housed under standard laboratory conditions (12 h periodic light and dark cycle; temperature about 25°C±2°C, standard animal diet in palleted forms and water ad libitum) after purchasing from defense research development establishment, Gwalior. The experiment was conducted in accordance with the committee for the purpose of control and supervision of experiments on animal (CPCSEA), Chennai, India. No animals were sacrificed, only blood was collected by puncturing the retroorbital sinus. The experimental protocol was approved by the Institutional Animal Ethics Committee (994/Ere/Go/06/CPCSEA).

Chemicals

D-GalN, LPS, and rotenone were obtained from Sigma-Aldrich Co Ltd., USA.
Dose preparation of rotenone, LPS, and D-GalN for the study of hematotoxicity

Animals were administered with D-GalN (300 mg/2ml/kg) first and then LPS (50 mg/2ml/kg) after 1 h to induce hematotoxicity. Doses of LPS and D-GalN were prepared separately in 0.9% normal saline according to Wei et al. [21] and Jin et al. [22] respectively. Doses of rotenone (5, 10, and 20 mg/kg p.o.) were prepared in 1% gum acacia.

Experimental design

Acclimatized animals were divided into six groups of six animals each. Each group of animals received vehicle and different doses of rotenone for 6 days, as explained in Table 1. On the 6th day, LPS and D-GalN were injected into animals to induce acute blood toxicity. After 18 h of last treatment, animals were euthanized, on puncturing retro-orbital venous sinus blood samples were collected, and serum was isolated.

Hematological studies

For hematological indices, blood was collected in heparinized tubes and kept at 4°C. Blood analyzer (Anlytica HEMA 2062+) was employed to determine white blood cell (WBC) count, red blood cell (RBC) count, platelet count, hemoglobin (HGB), hematocrit (HCT), lymphocyte (LYM), and monocyte (MON) count.

Serological studies

Serum was separated from blood and used for the determination of glucose, triglyceride, and cholesterol by kit method (The ERBA Chem 5 V3 Germany). Kits were purchased from ERBA Manheim, Germany.

Statistical analysis

Results are presented as mean ± SE of six animals used in each group. Statistical significance was determined by one-way analysis of variance (p≤0.05) followed by Tukey’s post hoc honestly significant difference (HSD post-hoc test) to test a comparison among different treatment groups (p≤0.05) [23].

RESULTS

Effect of rotenone on hematological variables

Co-administration of LPS and D-GalN resulted alterations of different hematological variables presented in Table 2. RBCs, HGB, HCT, and platelets content were significantly downed, whereas the number of WBCs including LYMs and MONs were significantly increased (p<0.05).

Table 1: Experimental regimen

Groups	Treatment	Day 1–6: 10 AM	Day 6: 04 PM	Day 7: 10 AM
1	Control	Vehicle only (1% gum acacia)	Vehicle only (saline)	Euthanasia
2	Rotenone per se	Rotenone (20 mg/kg)	Vehicle only (saline)	Euthanasia
3	Experimental control	Rotenone (10 mg/kg)	Vehicle only (saline)	Euthanasia
4	Therapy 1	Rotenone (5 mg/kg)	Vehicle only (saline)	Euthanasia
5	Therapy 2	Rotenone (10 mg/kg)	Vehicle only (saline)	Euthanasia
6	Therapy 3	Rotenone (20 mg/kg)	Vehicle only (saline)	Euthanasia

LPS: Lipopolysaccharide, GalN: D-Galactosamine

Table 2: Therapeutic effect of rotenone on hematological variables against lipopolysaccharide/d-galactosamine induced hematotoxicity in rats

Parameter	Control	Rote per 20 mg/kg	LPS+GalN	LPS+GalN+Rote 10 mg/kg	LPS+GalN+Rote 20 mg/kg	ANOVA F-value
Hemoglobin (g/dL)	15.5±0.78	15.4±0.77	10.9±0.55	12.8±0.64*	13.9±0.70*	14.6±0.73*
Hematocrit (%)	44.8±2.25	43.6±2.19	35.6±1.79	36.5±1.84*	40.7±2.05*	41.1±2.07*
RBCs (10^6/mm^3)	7.03±0.29	7.62±0.40	6.1±0.31	6.53±0.33*	6.89±0.35*	7.29±0.37*
WBCs (10^3/mm^3)	11.9±0.60	11.7±0.59	17.7±0.09	16.5±0.83*	15.9±0.80*	12.7±0.64*
Platelets (10^9/mm^3)	67.6±33.9	68.2±34.3	498±25.0	517±25.99*	552±27.75*	607±30.57*
Lymphocyte count	24.3±1.22	25.6±1.29	65.5±3.29	63.5±3.19*	54.6±2.75*	46.2±2.32*
Monocyte count	6.80±0.34	6.70±0.34	12.5±0.63	11.1±0.56*	9.80±0.49*	8.30±0.42*

Data are mean±SE of n=6; *significant at 5% for ANOVA. ©control versus LPS+GalN; ©LPS+GalN versus LPS+GalN+rotenone (5 mg/kg/10 mg/kg/20 mg/kg); control versus rotenone (5 mg/kg/10 mg/kg/20 mg/kg); ©rotenone (5 mg/kg) versus rotenone (10 mg/kg); ©rotenone (5 mg/kg) versus rotenone (20 mg/kg); and ©rotenone (10 mg/kg) versus rotenone (20 mg/kg) for Tukey’s post hoc HSD analysis at p<0.05. LPS: Lipopolysaccharide, GalN: D-Galactosamine, Rote: Rotenone, RBCs: Red blood cells, WBCs: White blood cells, SE: Standard error, HSD: Honestly significant difference
as well as the level of carbon dioxide returned to the lungs [8,31]. The increase RBC count and hemoglobin content in rotenone administered group may be due to a better iron supply. Rotenone could modulate heme metabolism, thereby minimize the hematotoxicity [32].

Blood platelets are considered to be involved in blood clotting. A prolonged or delayed clot formation during an excessive loss of blood in the case of injury was suggested in low platelet concentration. Packed cell volume or HCT is the percentage (%) of RBCs in blood [33] that is responsible for the transport of oxygen and absorbs nutrients [8]. Decreased HCT shows poor transportation and thus results in decreased primary and secondary polycythemia. HGB, the iron-containing metalloprotein in the RBCs of all vertebrates facilitates oxygen-transport [34]. This transportation of oxygen by HGB helps the animal harvest energy from the oxidation of ingested food and transport carbon dioxide out of the body to maintain other body functions [8]. According to Peters et al., 2011 [35], HCT and HGB are major indices for evaluating circulatory erythrocytes and are significant in the diagnosis of anemia and also serve as useful indices of the bone marrow capacity to produce RBCs in mammals [30,36].

WBC and its subtypes are responsible for providing protection against infections. They defend the body by deploying phagocytes into an antibody-mediated immune response against invasion by foreign organisms. Animals with low WBCs are at high risk of disease infection, but very high counts imply that animals are generating more antibodies as there is high degree of foreign particles [37]. Infection or antigenic metabolites can also enhance the WBCs along with its differentials to strengthen the immune response. Thus, increased WBC,MONs, and LYMs account for toxic condition in the body [8,38]. Previous study by Chandra et al., 2018, suggested an improvement in hematological parameters leads to better physiological condition and health improvement. It was also suggested that plant secondary metabolites can improve hemoglobin by inducing antioxidative variables toward control after being affected by various toxicity [39]. Rotenone is also a secondary metabolite of various plants; thus, rotenone could follow the same mechanism, thereby improving the hematopathy.

Reports suggested that significant decrease in blood glucose levels occurs during D-GalN and LPS induction as liver contains a full complement of the necessary enzymes involved in glucose homeostasis and certain toxic substance-induced liver injury may alter the blood glucose level [40]. Alterations in lipid metabolism resulted in increased levels of plasma cholesterol and triglyceride in D-GalN/LPS challenged rats when compared to control. An imbalance between lipid biosynthesis and degradation might explain increased plasma cholesterol and triglyceride [41]. Lipoprotein lipase seems to be partially responsible for the elevated plasma triglyceride levels [42]. Rotenone could inhibit the lipid peroxidation of the cells, thereby improving the cellular homeostasis of various enzymes involved in lipid and carbohydrate metabolism.

CONCLUSION

From the present investigation, it can be concluded that rotenone at 20 mg/kg dose potentially reversed hematological alteration occurred due to LPS and D-GalN exposure. Thus, rotenone can be used as a blood protectant or blood purifier.

Table 3: Therapeutic effect of rotenone on glucose and serum lipids against lipopolysaccharide/d-galactosamine induced hematotoxicity

Parameter	Control	Rote per se Rote 20 mg/kg	LPS+GalN	LPS+GalN+Rote 5 mg/kg	LPS+GalN+Rote 10 mg/kg	LPS+GalN+Rote 20 mg/kg	ANOVA F-value
Glucose (mg/dL)	114.5±7.3	120.6±6.03	64.3±3.23*	95.0±4.78* 61%	99.0±4.98* 69%	108.5±5.3* 87%	18.0Ψ
Triglyceride (mg/dL)	32.1±1.61	33.9±1.70	118.5±9.3*	78.8±3.96* 45%	55.3±2.79* 52%	44.2±2.22* 85%	113Ψ
Cholesterol (mg/dL)	15.3±0.77	15.8±0.79	39.6±1.99*	32.1±1.61* 30%	26.3±1.32* 54%	21.9±1.10* 72%	60.7Ψ

Data are mean±SE of n=6; *significant at 5% for ANOVA. *Control versus LPS+D-GaN; **LPS+D-GaIn versus LPS+D-GaIn+rotenone (5 mg/kg/10 mg/kg/20 mg/kg); *rotenone (5 mg/kg) versus rotenone (20 mg/kg); and *rotenone (10 mg/kg) versus rotenone (20 mg/kg) for Tukey’s post hoc HSD analysis at α=0.05. LPS: lipopolysaccharide, D-GaIn: D-galactosamine, Rote: Rotenone, SE: Standard error, HSD: Honestly significant difference

ACKNOWLEDGMENT

The authors are grateful to the Department of Zoology, Guru Ghasidas Vishwavidyalaya for providing laboratory facilities and fellowship to Samrat Rakshit and UGC, New Delhi, for partial financial assistance with startup grant [20-1/2012(BSR)/20-12(3/2012) to Dr. Monika Bhadauria.

CONTRIBUTION OF AUTHORS

Bhadauria M designed the study. Rakshit S carried out the experimental work and drafted the manuscript and was involved in the preparation of the manuscript. Verma A helped to carry out experimental work and data compilation. Nirala SK edited the manuscript. Both Bhadauria M and Nirala SK supervised the entire work. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

None of the authors holds any conflicts of interest.

REFERENCES

1. Srinivasan N, Sahyanarayana D. Antioxidant and hepato protective activity of various extracts of Indigoferaferariusfer biogamble against d-galactosamine induced toxicity in rats. Int J Pharm Pharm Sci 2014;10:111-4.
2. Pamplona R, Costantini D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 2011;301:R843-63.
3. Krishnamoorthy VK, Rather IA. Protective effects of Emblica officinalis (Anila) on metal-induced lipid peroxidation in human erythrocytes. Pak J Pharm Sci 2016;29:1023-6.
4. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015;97:55-74.
5. Manual M. Hematologic Reference Ranges. The Merck Veterinary Manual; 2012. Available from: https://www.merckvetmanual.com/SearchResults?query=hematologic+reference+ranges.
6. Togun V, Oseni B, Ogunjide A, Arewa T, Hammerd A, Ajonjebu D, et al. Effects of Chronic Lead Administration on the Haematological Parameters of Rabbits-a Preliminary Study. Proceeding of 41st Conference Agriculture Society of Nigeria; 2007. p. 341.
7. Khan TA, Zafar F. Haematological study in response to varying doses of estrogen in broiler chicken. Int J Poult Sci 2005;4:748-51.
8. Olafedehan C, Obun A, Yusuf M, Adebawo O, Olafedehan A, Awoofola A, et al. Effects of Residual Cyanide in Processed Cassava Meal Peals on Haematological and Biochemical Indices of Growing Rabbits. Vol. 2. Proceeding of 35th Annual Conference of Nigeria Society for Animals Production; 2010. p. 212.
9. Isaac I, Ahb A, Akpan B, Ekateau I. Haematological Properties of Different Breeds and Sexes of Rabbits. Proceeding of 18th Annual Conference Animals Science Association of Nigeria; 2013. p. 24-7.
10. Aderemi F. Effects of replacement of wheat bran with cassava root sievate supplemented or unsupplemented with enzyme on the haematology and serum biochemistry of pullet chicks. Trop J Anim Sci 2014;4:174-53.
11. Afolabi KD, Akinsinuyo AO, Abdullah AR, Olajide R, Akinleye SB. Haematological parameters of the Nigerian local grower chickens fed varying dietary levels of palm kernel cake. Poljoprivreda 2011;17:74-8.
12. Kallapura G, Pumford NR, Hernandez-Velasco X, Hargisand B, Tellez G. Mechanisms involved in lipopolysaccharide derived ROS and RNS oxidative stress and septic shock. J Microbiol Res Rev 2014;2:6-11.
