Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy

Alireza Rafieerad, Weiang Yan, Keshav Narayan Alagarsamy, Abhay Srivastava, Niketa Sareen, Rakesh C. Arora, and Sanjiv Dhingra*

MXene nanomaterials have sparked significant interest among interdisciplinary researchers to tackle today's medical challenges. In particular, colloidal MXene quantum dots (MQDs) offer the high specific surface area and compositional flexibility of MXene while providing improvements to aqueous stability and material-cell interactions. The current study for the first time reports the development and application of immunoengineered tantalum-carbide (Ta$_4$C$_3$T$_x$) MQDs for in vivo treatment of transplant vasculopathy. This report comes at a critical juncture in the field as poor long-term safety of other MXene compositions challenge the eventual clinical translatability of these materials. Using rational design and synthesis strategies, the Ta$_4$C$_3$T$_x$ MQDs leverage the intrinsic anti-inflammatory and anti-apoptotic properties of tantalum to provide a novel nanoplatform for biomedical engineering. In particular, these MQDs are synthesized with high efficiency and purity using a facile hydrofluoric acid-free protocol and are enriched with different bioactive functional groups and stable surface TaO$_2$ and Ta$_2$O$_5$. Furthermore, MQDs are spontaneously uptaken into antigen-presenting endothelial cells and alter surface receptor expression to reduce their activation of allogeneic T-lymphocytes. Finally, when applied in vivo, Ta$_4$C$_3$T$_x$ MQDs ameliorate the cellular and structural changes of early allograft vasculopathy. These findings highlight the robust potential of tailored Ta$_4$C$_3$T$_x$ MQDs for future applications in medicine.

1. Introduction

Low-dimensional carbon-based nanomaterials are unquestionably the "wonder materials" of today. Since the discovery of graphene in 2004, graphene and its derivatives have been studied extensively in electronic circuits, energy storage, light processing, chemical processing, and biomedical applications.[1–6] More recently, 0D graphene and MXene quantum dots (MQDs) have been found to possess broad immunomodulatory activity through interactions with a variety of immunologically active cells.[7–12] In particular, newer MQDs have potential to offer improved dispersibility, tunability, and biocompatibility over traditional graphene materials while maintaining immunomodulatory bioactivity.[13–15] However, the field remains in a relative infancy and the detailed mechanisms of action of these materials have remained elusive so far.[16] Furthermore, currently available evidence is largely based on in vitro studies and MXene materials have not yet been explored in vivo in a clinically relevant inflammatory disease model.

Recently, we reported the biocompatibility and anti-inflammatory effects of titanium carbide (Ti$_3$C$_2$T$_x$) MQDs in low concentrations.[11] Notably, these MQDs effectively suppressed proinflammatory T$_{H}1$ polarization of naïve CD4$^+$ T-lymphocytes under synthetic in vitro conditions. These revelations have sparked significant interest in immunoengineering Ti$_3$C$_2$T$_x$ MXenes for clinical applications.[16] In particular, MXene-based approaches are being developed to treat refractory inflammatory conditions...
and suppress rejection of transplanted tissue constructs.[11,16] However, the long-term bioinertness of titanium-based materials has since been called into question.[17,18] In fact, several reports on the cytotoxicity of Ti3C2Tx MXene at medium-to-high concentrations raised significant concern on the eventual clinical translatable of these materials.[19,20] Future application of this technology therefore hinges on addressing this fundamental limitation.

In response to this challenge, other MXene compositions, such as niobium carbide (Nb2C), have been developed with reduced cytotoxic potential.[21–23] However, niobium has not been commonly used in biomedical applications and their long-term safety remains poorly understood.[24] On the other hand, tantalum-based biomaterials are well studied and have been previously shown to possess improved corrosion resistance, biocompatibility, and bioactivity over those derived from titanium.[25–27] In particular, tantalum oxides have been shown to be more stable and inert than their titanium-based counterparts, which contributes to the excellent biological safety profile of tantalum-based materials.[28–34] These finding have been corroborated by the synthesis of highly desirable Ta4C3T x MQDs has not been reported yet. MQDs are uniquely suitable for biomedical and immunoengineering applications due to their improved aqueous stability and subcellular-level interactions.[35] Development of Ta4C3Tx MQDs is therefore urgently needed to keep pace with this rapidly evolving field.

Herein, we present the design, fabrication, characterization, and application of immunomodulated tantalum carbide (Ta4C3Tx) MXene quantum dots for in vitro and in vivo immunomodulatory applications. This Ta4C3Tx MQDs were rationally designed for biomedical applications through a tailored etching, exfoliation, and hydrothermal process. As-synthesized MQDs exhibited high concentrations of MXene surface functional groups as well as the surface tantalum oxides (TaO2 and Ta2O5), which contributed to its excellent biocompatibility with human cells. In particular, high concentrations of Ta4C3Tx MQDs did not induce oxidative stress and cytotoxicity in cultured human endothelial cells (ECs). Furthermore, these MQDs were spontaneously internalized into ECs and mechanically contributed to reducing the immunogenicity of these cells through regulation of T-cell activation. Finally, when applied in an in vivo model of organ transplant rejection, intravenous administration of Ta4C3Tx MQDs reduced both immune cell infiltration and structural degeneration within transplanted tissues. Taken together, this study highlights the future potential of tailored Ta4C3Tx MQDs in immunomodulation and other biomedical applications.

2. Results and Discussion

2.1. Rationale, Design, and Synthesis of Ta4C3Tx MQDs

The engineering of biomedically relevant nanomaterials requires strict control of their chemical composition, structure, and properties.[31] The deliberate choice of tantalum-based MXene in this study arises from considerations of both biocompatibility and bioactivity. Despite ample evidence on the biomedical efficacy of Ti3C2Tx MXene nanosheets and quantum dots, increasing concerns on their potential cytotoxicity, albeit at higher doses, cannot be ignored. Large quantities of exposed titanium oxides (TiO2 and Ti3O5) can form on the surface of Ti3C2Tx MQDs during the hydrothermal process or upon aqueous dispersion.[38–40] Additionally, Ti3C2Tx MXene products can spontaneously oxidize under ambient storage conditions to form transition metal oxide particles.[31] The presence of titanium oxides is particularly concerning in designing materials for biomedical applications, as it can catalyze the production of reactive oxygen species (ROS) and generate oxidative stress to nearby cells and tissues.[42–44] This surge in ROS also induces the release of proinflammatory cytokines from resident tissue macrophages, which hinders the functionality of immunomodulatory materials.

Therefore, in the current study, Ta4C3Tx MQDs were specifically designed with biomedical applications in mind and synthesized using a facile methodology to accommodate these design requirements. The Ta4AlC3 MAX phase was chemically etched and exfoliated to form accordion-like Ta4C3Tx MNs using hydrochloric acid/sodium fluoride (HCl/NaF) as etchant. The resultant MXene products were subsequently dispersed in pure distilled water and further treated by bath sonication to obtain multi-, oligo-, and single-layered Ta4C3Tx MXene nanocrystals. Finally, the obtained aqueous colloidal suspension underwent hydrothermal treatment at 180 °C for 12 h to obtain 0D Ta4C3Tx MQDs. A step-by-step schematic of the production of Ta4C3Tx MQDs is presented in Figure 1A.

Despite milder nature of the HCl/NaF etchant over hydrofluoric acid (HF), effectiveness of this etching process has already been demonstrated for niobium and vanadium carbide (V2C) MXenes, which carry similar formation energies to Ta4C3Tx MXene. [45–47] Furthermore, there are several distinct advantages to this approach. First, the fluoride salt etchant is expected to produce fewer surface defects than HF treatment, thereby reducing opportunities for oxidative degradation and increasing the stability and shelf-life of the end product.[41,48] Second, this etching process facilitates intercalation of cations and water between the MXene layers, thereby weakening interlayer interactions.[48] This results in expansion of the interlayers spacing in MXene nanosheets and facilitates the subsequent delamination process. Last, this approach reduces the manufacturing challenges associated with use of concentrated HF while maintaining the strict tunability of the MXene end products. In this study, NaF was specifically chosen over the conventional LiF due to cytotoxic concerns associated with lithium moieties in the structure of MXenes.[44]

Furthermore, the Ta4C3Tx MXene nanosheets were treated by ultrasonication and subsequent homogenization to enhance its specific surface area and aqueous colloidal dispersibility. In particular, mechanical vibration and/or sonication treatment increases the degree of cationic intercalation and further increases interlayer spacing. As a result, the obtained colloidal solutions contained well dispersed and electrostatically stabilized MXene nanosheets. Furthermore, colloidal suspensions of MXene flakes produced from this process are less likely to clump or aggregate, thereby increasing its accessibility for further functionalization.[49] This protocol, therefore, offers potential for the industrial development of bioactive and clinically translatable Ta4C3Tx MQDs.
2.2. Proposed Reaction Chemistry for Synthesis of Ta₄C₃Tₓ MQDs

The proposed chemical reactions for the synthesis of Ta₄C₃Tₓ MQDs in the above described fabrication process are presented in Figure 1B. Exfoliation of the Ta₄AlC₃ MAX phase was achieved using a two-step approach. First, the MAX phase powder was chlorinated by treatment with 12 M HCl at 60 °C to significantly remove the surface Al layer through formation of aluminum chloride (AlCl₃). Additionally, the presence of NaF in the etching solution completed the exfoliation process through the formation of sodium hexafluoroaluminate (Na₃AlF₆), further removing any remaining Al traces. This led to successful production of multilayered Ta₄C₃Tₓ MXene nanosheets (Figure 1B, Equation (1)). Moreover, the presence of NaF during the agitation process resulted in further surface functionalization with abundant —OH groups. Furthermore, the proposed reaction chemistry also supports effective fluorination of the end product with rich —F surface terminals. Together, these mechanisms of reactions enabled facile exfoliation of Ta₄AlC₃ MAX phase powder and efficient synthesis of 2D Ta₄C₃Tₓ MXene nanosheets (Figure 1B, Equations (1)–(3)).

The chemical reactions that occurred during functionalization process of the colloidal dispersions arose after partial oxidation of Ta₄C₃Tₓ MXene nanosheets through a hydrothermal process to form Ta₄C₃Tₓ MQDs with concentrated functional groups as well as stable surface tantalum oxides.
Equation (4)). The hydrothermal process led to the formation of tantalum oxide (both TaO2 and Ta2O5) layers on the surface of Ta4C3T x MQDs, presumably through a secondary crystal nucleation mechanism (Figure 1B, Equations (5) and (6)). It is important to note that these chemical reactions also facilitate the formation of additional –OH and =O groups on the surface of MQDs after hydrothermal treatment. Additionally, chemical interactions of existing Cl-, F-, and Na-based compounds with the surface of Ta4C3T x are expected to occur during the synthesis process as well. Therefore, different stable surface functional groups can be readily identified on the surface of MQDs, supporting its chemical stability and bioactivity.

2.3. Microstructural Characterization of Ta4C3T x MQDs

Successful synthesis of Ta4C3T x MQDs using our innovative synthetic process was confirmed using transmission electron microscopy (TEM), fast Fourier transform (FFT) analysis, selected area diffraction (SAED) analysis, and energy-dispersive X-ray spectroscopy (EDS). Scanning electron microscopy (SEM) images of the Ta4AlC3 MAX phase and its corresponding EDS analysis showed bulk morphology with an atomic percentage of 19.77% for Al in the composition (Figure S1, Supporting Information). TEM images of Ta4C3T x nanosheets after treatment with HCl/NaF demonstrated stacked basal planes of the MXene layers (Figure 1G). Additionally, high-resolution TEM (HRTEM) and SAED images of exfoliated Ta4C3T x MXene flakes confirmed a symmetric crystalline structure consisting of layers with a spacing of ≈0.260 nm, which can be assigned to the d-spacing of the flakes confirmed a symmetric crystalline structure consisting of layers with ≈0.238 nm; Figure 1H; Figure S3C, Supporting Information). Notably, amorphous rings were seen in the SAED analysis of Ta4C3T x MQDs (Figure S3A, Supporting Information). TEM images of Ta4C3T x MQDs identified characteristic Ta4C3T x nanosheets agreed well with previous reports, confirming that the planar structure of sheets remained stable and unperturbed during the synthesis process.[58] Furthermore, EDS elemental and mapping analysis of this sample clearly depicted significant removal of Al from the structure of MAX phase (Figure S2, Supporting Information).

The subsequent mechanical processing and hydrothermal treatment at 180 °C resulted in successful formation of surface functionalized Ta4C3T x MQDs (Figure 1F). HRTEM images of the acquired MQDs revealed well-defined quantum structure with a particle size of less than 5 nm in diameter (Figure 1G; Figure S3A,B, Supporting Information). Furthermore, Ta4C3T x MQDs exhibited a highly crystalline diffraction pattern with multiple differently oriented planes. In particular, the corresponding SAED/FFT patterns displayed a crystalline structure of MQDs with an atomic d-spacing of ≈0.338 nm (inner plane: ≈0.238 nm; Figure 1H; Figure S3C, Supporting Information). Notably, amorphous rings were seen in the SAED analysis of Ta4C3T x MQDs and can be attributed to remaining noncrystalline carbon-based particles.[18] Interestingly, these properties were unchanged when the material was evaluated more than 1 year after the synthesis, supporting high microstructural stability of the colloidal Ta4C3T x MQDs (Figure S3D–F, Supporting Information). Finally, EDS elemental analysis of Ta4C3T x MQDs retained the low atomic percentage of Al at less than 1%, which is consistent with what was seen in the MNSs (Figure S4, Supporting Information). Together, these observations provide robust evidence that the HF-free etching and subsequent hydrothermal treatment employed in this study has successfully fabricated highly stable crystalline Ta4C3T x MQDs.

To further characterize the structural transformation of MAX phase to Ta4C3T x MQDs, X-ray diffraction (XRD) analysis was performed. Our data demonstrated that the main characteristic (002) peak of MXene clearly emerged at ≈5° 2θ in the Ta4C3T x MQDs sample (Figure 2A,B). Simultaneously, the Ta4AlC3 peaks were significantly downshifted after the exfoliation and hydrothermal process. In particular, one of the main MAX phase peaks at ≈16° 2θ was completely removed from the XRD spectra of Ta4C3T x MQDs (Figure S5, Supporting Information). Additionally, a minor amorphous curve between 10° and 30° 2θ was identified in the XRD pattern of Ta4C3T x MQDs (Figure 2B,C). As described in the previous section, this change reflects the remaining carbon dots formed during the hydrothermal process. Furthermore, a contamination peak of tantalum carbide (TaC) in the XRD spectrum of the MAX phase at ≈50° 2θ disappeared completely in the XRD spectrum of Ta4C3T x MQDs, reflecting the efficiency of synthesis and purity of the end product.

A new dominant peak was seen at ≈12° 2θ in the Ta4C3T x MQDs, corresponding to the addition of a crystalline tantalum carbide-based oxide composite in the structure of MQDs. Identification of alpha-alumina (α-Al2O3) peaks in the XRD pattern of MQDs provided further evidence for effective removal of Al and the conversion of its remaining traces to oxide form. Additionally, there were two new precise peaks, which emerged in the XRD spectra of the MQDs, corresponding to TaO2 (110) and Ta2O5 (010). The detection of transition metal oxide formation during hydrothermal process reflects both theoretical and experimental evidence available in the literature.[19] Furthermore, the XRD pattern of the Al-etched Ta4C3T x revealed enlarged lattice spacing in the atomic structure of MQDs (Figure 2B). This expansion is largely attributed to surface functionalization during the synthesis process. Thus, these characterizations demonstrated successful production of surface modified Ta4C3T x MQDs.

Next, the surface functional groups of Ta4C3T x MQDs were evaluated using Fourier-transform infrared spectroscopy (FTIR). The FTIR spectrum of Ta4C3T x MQDs identified characteristic Ta=–O, Ta=–F bonds of Ta4C3T x X-MXenes (Figure 2D). Additionally, FTIR assessment revealed the vibrations of key surface functional groups, including –OH, C–F, C=O, Ta=–C, Ta=–O, and Ta=–F, available in the structure of Ta4C3T x MQDs. The FTIR stretching of these bonds was detected at the wavelengths of ≈500 to 3500 nm. The presence of a C–F peak in the spectrum of Ta4C3T x MQDs at ≈1200 cm⁻¹ suggested efficient fluorination of particles during synthesis process. Additionally, a weak vibration was identified at ≈3100 cm⁻¹ that may suggest the presence of amine functional group (=NH2).[10] This characterization confirmed the presence of quantities of function groups on the surface of Ta4C3T x MQDs and indicated the successful fabrication of functionalized particles.

Last, X-ray photoelectron spectroscopy (XPS) was used to characterize the surface-bonding structures of Ta4C3T x MQDs. Wide-scan survey comparison of Ta4AlC3 MAX phase and its derived product revealed the generation of high quality MQDs during the synthesis process (Figure 2E; Figure S6A, Supporting Information). In particular, the Al 2p narrow scan XPS
spectrum of Ta₄C₃Tₓ MQDs confirmed the efficacy of etching process in removing Al layers from the structure of the MAX phase (Figure S6B, Supporting Information). Additionally, the high-resolution C 1s spectrum of Ta₄C₃Tₓ MQDs contained the combination of Ta=C, C–C, C–N, C=C, C=O, and C=O peaks fitted at binding energies between 280 and 290 eV.
Additionally, the O 1s spectrum identified oxygen-containing peaks located between 526 and 536 eV, signifying a high level of oxygen-containing functional groups on the surface of these MQDs (Figure 2G).

The Ta 4f narrow scan of Ta4C3Tx MQDs displayed prominent 4f 5/2 and 4f 7/2 peaks of tantalum and tantalum oxide at the binding energies of 20 to 30 eV (Figure 2H). In particular, formation of lateral species of Ta4+ and Ta5+ as main Ta-oxide structures (TaO2 and Ta2O5) was detected at binding energies of ≈24 to 25 eV. Furthermore, in agreement with the proposed chemical reactions, XPS high-resolution spectra of Cl 2p, Na 1s, and F 1s demonstrated the formation of additional surface functions on MQDs by the HCl/NaF etchant (Figure S6C–E, Supporting Information). In particular, the Cl 2p spectrum exhibited a combination of metal-chloride peaks (3/2 and 1/2) at binding energies of ≈197 to 200 eV and nonmetal Cl at ≈201 eV. Moreover, the XPS spectra of Na 1s depicted a dominant peak at ≈1071 eV assigned to Na+ ions. This region contains two peaks at the binding energies of ≈1067 and 1069 eV corresponding to the interaction of Na+ with Ta-oxide and Ta–C, respectively. Additionally, as discussed in the previous section, the rationally designed synthesis protocol enabled a mechanism to fluorinate the surface of Ta4C3Tx MQDs, as confirmed by the high-resolution F 1s spectrum. Of note, two peaks were fitted at binding energies of ≈684 and 687 eV, attributed to Ta–F (atomic percentage: 71.82%) and C–F (atomic percentage: 28.18%), respectively. These measurements served as another confirmation to successful surface modification of Ta4C3Tx MQDs during the synthesis process. Detailed quantification of the identified Ta–O, Ta–C Tx, C–O, C=O, C–N, C=O, Ta4C3Ox, Ta4C3(OH)x, Ta–F, C–F, Ta–Cl, and Na+ groups of MQDs is presented in Table S1 in the Supporting Information. Overall, the XPS analysis of as-synthesized Ta4C3Tx MQDs agreed very well with our XRD and FTIR characterizations and confirmed that the employed synthesis procedure reported in the current study was highly efficient and suitable for targeted applications.

2.4. Thermal, Optical, and Surface Properties of Ta4C3Tx MQDs

The surface properties of MXene nanostructures are defined by their synthesis conditions. In this regard, effective fabrication methods must be applied to obtain MXene materials with the desired surface terminations and long-term stability. Previously, thermogravimetric analysis (TGA) has been used to characterize the temperature-dependent desorption of surface terminations of MXene materials. This method can effectively quantify the thermal stability of surface functional groups and terminations after annealing. In the current study, the stability of Ta4C3Tx MQDs was evaluated using TGA. Under vacuum condition, the –OH functional group is the first species to desorb from the surface of heated MXenes, starting at...
temperatures above 300 °C.[52] Notably, the signal of −OH desorption from the MXene samples can be significantly masked by the release of deprotonated H₂O during TGA measurement. However, defunctionalization of surface −OH groups in the structure of MXenes subsequently lead to partial electron transformation of this group into more stable oxygen-containing functional species. Our TGA curve of Ta₄C₃Tₓ MQDs depicted a slight mass-loss between ~150 and 300 °C, and its char residue was 10% at around 600 °C (Figure 3A). However, our TGA data showed almost no mass loss after 350 °C, and in this temperature range, its char residue was as higher than 91% (Figure 3B).

Interestingly, our TGA data demonstrated that annealing Ta₄C₃Tₓ MQDs up to 800 °C had no significant effects on its surface termination and did not result in significant decomposition of material. A minor mass gain (~1%) was observed at annealing temperature above 800 °C and can most likely be attributed to oxidation of impurities or slight decomposition of the material. In contrast, TGA curve of Ta₄C₃Tₓ MQDs generated under normal atmospheric conditions showed a continuous increase in its mass percentage due to oxidation process, starting at ~600 °C (Figure 3C). As apparent in our results, the heat flow data of differential scanning calorimetry (DSC) curves are in good agreement with the obtained TGA in both argon and atmospheric conditions (Figure 3B,C). Together, this data supports that the employed HF-free protocol in the current study was able to successfully synthesize highly stable Ta₄C₃Tₓ MQDs.

Furthermore, the MXene materials are relatively transparent in visible lights and are known to possess excellent optical properties.[53] These specific properties precisely depend on the tailored intercalation, interlayer spacing, and surface architecture of individual MXene materials. Therefore, surface modification and functionalization during the synthesis of MXene structures can be used to achieve desired absorption and optical properties. To this regard, we assessed the UV–visible absorption spectra of an aqueous colloidal dispersion of Ta₄C₃Tₓ MQDs. In particular, MQDs at different concentrations of ~30 to 300 μg mL⁻¹ were examined to characterize their optical properties. The UV–visible spectrum of Ta₄C₃Tₓ MQDs at 230 to 990 nm demonstrated a clear dose-dependent absorption profile for the dispersed particles (Figure 3D–F; Figure S7A, Supporting Information). Strong absorption was noted in the area of ~300 nm, corresponding to the lateral carbon structure of Ta₄C₃Tₓ MQDs. In fact, due to the colloidal nature of Ta₄C₃Tₓ MQDs, a linear correlation between absorption and concentration of particles could be observed for the MQDs, which can be described using the Beer–Lambert law (Equations (S1) and (S2), Supporting Information). Based on the measured standard curves, the α value was calculated to be 0.525 and 0.573 L g⁻¹ cm⁻¹ at 404 and 808 nm, respectively, which can be used as a robust parameter for future studies using Ta₄C₃Tₓ MQDs. Subsequently, the long-term colloidal stability of aqueous MQDs dispersion was further confirmed six months after the initial synthesis and characterization (Figure S7B, Supporting Information). As shown in these optical micrographs, the developed environment-friendly protocol in the current study resulted in the fabrication of stable surface-modified and uniform MQD suspensions without significant stacking and agglomeration of the particles at the test concentrations of 250 μg mL⁻¹.

The surface charge of synthetic nanomaterials also has a significant effect on their bioactive properties.[54] In the next experiment, the surface charge behavior of the Ta₄C₃Tₓ MQDs was assessed at a concentration of 75 μg mL⁻¹ and different pH values. The zeta potential (ζ) data in the current study suggested that as-synthesized Ta₄C₃Tₓ MQDs have a surface charge between −5 and −10 mV at pH 7 (Figure 3G). However, the MQDs exhibit pH-dependent change in the surface charge, with the point of zero charge (PZC) at a pH of ~2 and progressively more negative surface charge at higher pHs. This observation can be explained by the abundance of surface carboxyl groups, which demonstrate pH-dependent ionization, and is consistent with the previously reported analysis of other MXene counterparts.[55] Notably, the zeta measurements in the current study revealed a slight increase (around 10%) in the surface charge of the MQDs from pH 10 to 12, which may be attributed to changes in the structure of particles or surface functional groups under strong alkaline conditions. Nevertheless, the negative surface charge of these Ta₄C₃Tₓ MQDs likely contributes to the bioactivity of these quantum dots through facilitation of material–cell interactions. Furthermore, we assessed the electrical conductivity of aqueous, colloidal suspension of Ta₄C₃Tₓ MQDs. At a concentration of 250 μg mL⁻¹, the MQDs showed a remarkably high electrical conductivity of 10 543 ± 77 μS cm⁻¹ (Figure S8, Supporting Information). Taking all these accounts together, the data strongly supports the successful development of a new nontoxic Ta₄C₃Tₓ MQDs functional material with excellent microstructure and surface properties for targeted biomedical and other potential applications, including therapeutic, cancer therapy, regenerative nanomedicine, electronic, and water filtration.

2.5. Biocompatibility of Ta₄C₃Tₓ MQDs

The biocompatibility of as-synthesized Ta₄C₃Tₓ MQDs was assessed in vitro using cocultures with human umbilical vein endothelial cells (HUVECs). The ECs form the lining of blood vessels and serve as the first point of contact between the body and intravenously delivered nanomaterials. These cells also play important roles in the regulation of inflammation, coagulation, and nutrient delivery to different tissues. Endothelial toxicity can therefore significantly limit the future biomedical applications of nanomaterials.[23]

Furthermore, previous studies have reported that other forms of MXenes, such as Ti₃C₂Tₓ MXenes, can increase cellular ROS levels, create oxidative stress to nearby cells, and cause cellular damage.[39–41] This increase in ROS also induces the release of proinflammatory cytokines from resident tissue macrophages and interferes with anti-inflammatory and immunomodulatory properties of implanted biomaterials in the body.[56] Therefore, in the current study, we first assessed if the presence of Ta₄C₃Tₓ MQDs causes any ROS generation in cells. The HUVECs were cultured with or without different doses of Ta₄C₃Tₓ MQDs (2 to 100 μg mL⁻¹ in phosphate-buffered saline (PBS)) for 24 h. The intracellular ROS levels were assessed using the CellROX green fluorescent dye. It is evident from our data that Ta₄C₃Tₓ MQDs did not increase intracellular ROS levels across the concentration range used in this study (Figure 4A,B). In fact,
the highest concentration of MQDs (100 μg mL⁻¹) appeared to attenuate the oxidative stress compared to vehicle control group (Figure 4A,B). These data highlight the unique advantages afforded by the structural composition of Ta-based MXenes over their titanium counterparts.

Next, the biocompatibility of Ta₄C₃Tₓ MQDs with HUVECs was investigated using the CellEvent fluorescence-based apoptosis detection kit that detects the activities of caspase-3 and caspase-7. These two caspases are the primary executioners of programmed cell death in cells subject to insurmountable stressful conditions. The activation of both caspase-3 and caspase-7 are reported to be associated with cellular apoptosis and cell death. In the current study, HUVECs were subjected to nutrient deprivation and subsequently cultured with Ta₄C₃Tₓ MQDs for 24 h. As shown in Figure 4C, Ta₄C₃Tₓ MQDs up to 100 μg mL⁻¹ exhibited no significant activation of caspase-3 and caspase-7 when compared with the controls. Therefore, Ta₄C₃Tₓ MQDs are cyto-compatible and do not cause any cellular damage. Furthermore, among the concentrations used for subsequent studies (0.5 to 20 μg mL⁻¹), no significant differences were observed in cellular cytotoxicity and proliferation at any Ta₄C₃Tₓ MQD concentrations for up to 7 days (Figure 4D,E; Figure S9, Supporting Information). These findings further establish the importance of rationally designed and synthesized Ta₄C₃Tₓ MQDs for future biomedical applications.

2.6. Immunomodulatory Properties of Ta₄C₃Tₓ MQDs

The immunomodulatory properties of Ta₄C₃Tₓ MQDs were investigated in vitro using cocultures of activated HUVECs and human peripheral blood mononuclear cells (PBMCs). As the barrier between blood and tissues, ECs play a critical role in the pathophysiology of organ transplant rejection. After allograft transplantation (donor-derived), ECs are activated and act as antigen-presenting cells to the recipient immune system, leading to immune activation, vascular injury, and subsequent rejection of the allograft (donor organ). In particular, recruitment of proinflammatory type 1 T helper (TH1) cells is critical to the development and progression of allograft rejection. Thus, in this study, we examined the immunomodulatory effects of Ta₄C₃Tₓ MQDs using activated HUVECs, PBMCs, and TH1 cells as a model for organ transplant rejection (Figure 5A).

First, Ta₄C₃Tₓ MQDs at a concentration of 2 μg mL⁻¹ were cultured with antibody-activated and TH1-directed human PBMCs in the absence of HUVECs to look for direct immunomodulatory effects. We have previously reported for the first time that titanium carbide (Ti₃C₂Tx) MQDs display direct immunomodulatory effects. As shown in Figure S10 in the Supporting Information, Ta₄C₃Tₓ MQDs do not appear to exert statistically significant immunomodulatory effects on their own, in the absence of ECs as antigen-presenting cells, after 1 week of culture. Specifically, no differences were observed in the percentage of interferon-gamma (IFN-γ) expressing T-lymphocytes (Control 74.3%, MQDs 76.3%, ns) or in the proliferation of T-lymphocytes (Control 36.8-fold, MQDs 37.3-fold, ns). Furthermore, these experiments also confirmed the biocompatibility of Ta₄C₃Tₓ MQDs with human lymphocytes, with no obvious differences in T-cell viability seen after 1 week of culture (Control 83.4%, MQDs 83.2%, ns; Figure 5B). These findings are congruent with previous reports on graphene quantum dots (GQDs), which also possess no direct immunomodulatory
effects on lymphocytes and require antigen-presenting cells to exert their effects.[8]

To test this hypothesis, HUVECs were treated with Ta₄C₃Tₓ MQDs at 2 µg mL⁻¹ for 24 h prior to activation with IFN-γ at 10 units mL⁻¹ for 24 h. As shown in Figure S11 in the Supporting Information, robust activation was achieved at this time point with significant upregulation of human leukocyte antigen class II (HLA-DRα). These cells were subsequently cocultured with
PBMNCs in medium containing Ta₄C₃Tₓ MQDs at 2 µg mL⁻¹ and interleukin-2 (IL-2) at 5 ng mL⁻¹ for 9 days (Figure 5C). As shown in Figure 5D-G, Ta₄C₃Tₓ MQDs exerted distinct immunomodulatory effects on T-lymphocytes through activated HUVECs. In particular, Ta₄C₃Tₓ MQDs significantly reduced the percentage of IFN-γ+ T₁ cells among the CD4+ T-lymphocyte population after coculture with activated HUVECs (Vehicle 12.7%, MQDs 14.9%, p < 0.05; Figure 5F). These effects were not seen in the unactivated HUVEC group (Vehicle 12.15%, MQDs 12.04%, ns). Interestingly, no significant differences were observed in the proportion of interleukin-4 (IL-4) expressing type 2 T helper (T₂) cells among cocultures with both activated (Vehicle 1.6%, MQDs 1.4%, ns; Figure 5G) and unactivated (Vehicle 1.9%, MQDs 1.7%, ns) HUVECs. These findings are in line with previous reports, which showed that GQDs interact with antigen-presenting dendritic cells to reduce the proportion of proinflammatory IFN-γ+ T₁ cells after in vitro stimulation.[8] However, unlike GQDs, Ta₄C₃Tₓ MQDs do not induce upregulation of T₁,T₂ T-lymphocytes. T₁,T₂ cells are known to exacerbate allergic reactions and contribute toward activation of the humoral immune system.[60,61] Thus, these findings strongly support the hypothesis that Ta₄C₃Tₓ MQDs can produce beneficial immunomodulatory effects in clinically relevant models.

2.7. Mechanism of Immunomodulation by Ta₄C₃Tₓ MQDs

To understand the mechanisms of immunomodulation through Ta₄C₃Tₓ MQDs, the direct interaction of Ta₄C₃Tₓ MQDs with HUVECs were investigated. Interestingly, it was discovered in the current study that Ta₄C₃Tₓ MQDs were rapidly uptaken by endothelial cells and localize near the nucleus of the cell (Figure 6A). The abundance of negatively charged hydroxyl-, carboxyl-, chlorine-, fluorne-, and amine-based functional groups on the surface of Ta₄C₃Tₓ MQDs might have facilitated this internalization.[62] Furthermore, pH-dependent changes in the surface charge of Ta₄C₃Tₓ MQDs (Figure 3G) might have facilitated their endosomal escape shortly after internalization.[63] As Ta₄C₃Tₓ MQDs become less negatively charged, they can interact with the membrane of the endosomes to escape into the cytoplasm. This ultimately allows them to interact with nuclear and cytoplasmic proteins and participate in subsequent immunomodulatory signaling.

To gain insight into the mechanisms of immunomodulatory signaling induced by Ta₄C₃Tₓ MQDs, a quantitative polymerase chain reaction (qPCR)-based gene expression analysis of common immunologic pathways was performed in HUVECs (Figure 6B,C). As shown here (Figure 6B,C), Ta₄C₃Tₓ MQDs do not significantly alter expression of genes related to antigen presentation (IRF1, TAP1, HLA-A, B2M, HLA-DR, CIITA), cellular adhesion (PECAM-1, VE-Cadherin), lymphocyte recruitment (VCAM-1, ICAM-1, E-Selectin, and P-Selectin), or chemokine signaling (CCLI-2, CXCL9, CXCL10). Rather, a significant shift in the expression pattern of surface co-stimulatory and co-inhibitory molecules in ECs was observed in the current study. As shown in Figure 6D, there was a 3.3-fold increase in the expression level of the programmed death ligand 1 (PD-L1) in activated HUVECs treated with Ta₄C₃Tₓ MQDs compared with those treated with the vehicle (p < 0.05). Simultaneously, there was a trend toward a 1.3-fold decrease in the expression level of the CD86 in activated HUVECs treated with Ta₄C₃Tₓ MQDs (p = 0.18). Both PD-L1 and CD86 are reported to be involved in T-cell activation pathways via antigen presenting cells. PD-L1 acts as a co-inhibitor to T-cell activation while CD86 acts as a coactivator.[64,65] Therefore, by altering the relative expression of PD-L1 and CD86 in antigen-presenting endothelial cells, Ta₄C₃Tₓ MQDs have the mechanistic potential to reduce host inflammatory activation against allogeneic organs and tissues (Figure 6E). These Ta₄C₃Tₓ MQDs are therefore promising materials for future applications in preventing allograft rejection and regenerative medicine.

2.8. Application of Ta₄C₃Tₓ for In Vivo Immunomodulation

Finally, a rat model of allograft vasculopathy was used to explore the immunomodulatory effects of the synthesized Ta₄C₃Tₓ MQDs in vivo. After solid organ transplantation, donor endothelial injury and activation results in the activation of allo-reactive T-lymphocytes in the recipient. One of the pathologic mechanisms for ultimate loss of the allograft is the development of allograft vasculopathy.[66-68] This inflammatory condition uniquely manifests as accelerated narrowing of the blood vessels within transplanted hearts, lungs, and kidneys.[69-71] Currently established treatments are largely ineffective and Ta₄C₃Tₓ MXene-based immunomodulation may offer promise as a novel therapy for this therapeutic challenge.

In the current study, the descending thoracic aorta was harvested from male Lewis rats and transplanted as an interposition graft into the abdominal aorta of male Sprague-Dawley rats (Figure 7A-C). Ta₄C₃Tₓ MQDs at a dose of 1 mg kg⁻¹ body weight (or an equivalent volume of saline, for control animals) were injected through the tail vein immediately after the transplantation. Animals were followed for one week after surgery, during which no adverse effects were observed with respect to the physical appearance, behavior, and body weight of animals. Blood and tissues were then collected for subsequent analysis. No gross histologic differences were noted in the lungs, liver, and kidneys between the treatment groups (Figure S12, Supporting Information). However, as shown in Figure 7D, histologic sections of the abdominal aorta from transplanted animals showed obvious inflammatory changes when compared with sham animals. Furthermore, significant differences were noted in both endothelial proliferation and adventitial immune cell infiltration between control and MQD-treated animals (Figure 7E, arrows). Animals treated with intravenous Ta₄C₃Tₓ MQDs appeared to have reduced endothelial injury and immune cell infiltration when compared with those injected with saline.

To quantify the degree of vascular injury, immunohistochemistry was performed against alpha-smooth muscle actin (α-SMA), which is a marker for blood vessel integrity. An early sign of allograft vasculopathy is immunologic-mediated loss of α-SMA expressing medial smooth muscle cells.[72,73] Here, we noted a significant decrease in the amount of medial α-SMA within the transplanted aortic segments of control animals (Figure 8A). Furthermore, this loss of medial α-SMA appeared to be ameliorated in animals treated with intravenous Ta₄C₃Tₓ.
MQDs. When normalized against a segment of native thoracic aorta, transplanted aortic segments of treated animals displayed significantly better relative α-SMA expression than control animals (Vehicle 0.8-fold, MQDs 1.4-fold, p < 0.0001; Figure 8B).

Figure 6. Mechanistic evaluation of the immunomodulatory effects of Ta4C3T MQDs. A) Light microscopy demonstrated that Ta4C3T MQDs were readily internalized into HUVECs after 24 h of culture. B,C) Quantitative PCR analysis was used against genes involved in antigen presentation, cellular adhesion, lymphocyte recruitment, and chemokine signaling. Activation of HUVECs using IFN-γ resulted in an increase in proinflammatory signaling. No significant differences were observed between cells treated with 20 µg mL⁻¹ of Ta4C3T MQDs and the vehicle control. D) Treatment with Ta4C3T MQDs was found to alter the expression of the T-cell co-inhibitor PD-L1 and the T-cell coactivator CD86 on the surface of activated HUVECs. A significant increase was noted in the endothelial expression of PD-L1, and a trend toward a decrease of CD86 was observed after treatment with 20 µg mL⁻¹ of Ta4C3T MQDs. E) Schematic representation of the immunomodulatory mechanisms of Ta4C3T MQDs. MQDs are internalized into cells through active endocytosis, after which their surface architecture facilitates endosomal escape. They then participate in immunomodulatory signaling to alter the ratio of surface coactivator and co-inhibitors, which subsequently results in reduced T-cell activation.
Congruent with these observed changes, a higher number of infiltrating adventitial cytotoxic CD8+ T-lymphocytes were observed within transplanted aortic segments of control animals when compared with those treated with Ta4C3T6 MQDs (Figure 8C). Additionally, these findings were corroborated by flow cytometric identification of circulating CD4+CD25+...
regulatory T-lymphocytes (Tregs) performed one week after transplantation (Figure 8D,E). The Tregs are known to play a significant role in the development of immunologic tolerance after transplantation and higher numbers of Tregs is associated with reduced allograft vasculopathy after transplantation. In our study, transplanted animals had a numeric drop in the number of circulating Tregs (Sham 19.1%, Vehicle 15.5%, \(p = 0.12 \)) when compared with sham animals, which was ameliorated by treatment with Ta4C3T\(_x\) MQDs (Vehicle 15.5%, MQDs 20.9%, \(p < 0.05 \)). This supports the proposed hypothesis that treatment with Ta4C3T\(_x\) MQDs reduces immune activation, promotes allograft tolerance, and prevents immune-mediated damage of transplanted allogeneic vascular segments. Taken together, these findings are highly suggestive of an in vivo immunomodulatory role for Ta4C3T\(_x\) MQDs in the treatment of allograft vasculopathy.

3. Conclusion

In conclusion, the analysis within the current study presented the rational design, development, and application of immuno-engineered tantalum carbide (Ta4C3T\(_x\)) MXene quantum dots. As-synthesized Ta4C3T\(_x\) MQDs exhibited high concentrations of functional surface groups to facilitate their role in biomedical applications. Upon in vitro testing, these Ta4C3T\(_x\) MQDs exhibited a direct interaction with human endothelial cells while maintaining excellent biocompatibility. In particular, Ta4C3T\(_x\) MQDs are rapidly uptaken into ECs and reduce their ability to activate allogeneic T-lymphocytes through regulation of surface coactivator and co-inhibitor molecules. Additionally, when applied in an in vivo model of allograft vasculopathy, Ta4C3T\(_x\) displayed strong immunomodulatory functions and reduced early development of allograft vasculopathy. This study for
the first time highlights the strength and future potential of a rationally designed Ta$_4$C$_3$T$_x$ MQDs in immunomodulation.

Other biomedical applications.

4. Experimental Section

Synthesis of Ta$_4$C$_3$T$_x$ MQDs

The 0D Ta$_4$C$_3$T$_x$ MQDs were synthesized from Ta$_2$AlC$_3$. MAX phase was etched through synthesis to form 2D Ta$_4$C$_3$T$_x$. MXene nanosheets were obtained from HCl (216147, Fisher Scientific Co.) and NaF (≥99%, Sigma-Aldrich). Briefly, Ta$_2$AlC$_3$ powder (Laizhou Kai Kai Ceramic Material Co., Ltd.) was slowly immersed and stirred in a mixture solution containing 12 M HCl and 4 M NaF at 60 °C for 48 h. The precipitated flakes were collected by high-speed centrifugation, followed by several washing steps with pure distilled water at 10 000 rpm for 15 min each. The collected precipitates were freeze-dried for 48 h and then dried in an air oven at 60 °C for 24 h. The resultant MXene nanosheets were further treated by bath sonication and probe homogenizer for 60 and 15 min, respectively, to obtain multi-, oligo-, and monolayer flakes, before being further treated by the hydrothermal process at 180 °C for 12 h. The collected aqueous MQDs suspensions were then sterilized using a steam autoclave and used for further experiments.

Physicochemical Characterization of Ta$_4$C$_3$T$_x$ MQDs

Morphology and microstructural properties of materials were characterized using FESEM (SEM 450, Thermo Fisher Scientific), TEM (FEI Talos F200X S/TEM, Thermo Fisher Scientific), EDS, FTIR (Nicolet Nexus 870, Thermo Fisher Scientific), XPS (PHI Quantera, Physical Electronics, Inc.), and XRD (Bruker diffractometer). X-ray diffraction peaks were collected in the range from 5° to 80° 2θ using a continuous scan with a rate of 3° min$^{-1}$ and a report interval of 0.05°.

Thermogravimetric and Optical Analysis: The TGA/DSC assessment of the Ta$_4$C$_3$T$_x$ MQDs was performed using a Q-600 SDT (TA-Instruments) on a DSC-TGA Standard Module at a heating rate of 10 °C min$^{-1}$ in air and argon (100 mL min$^{-1}$). The temperature ramped up to 100 °C with a heating rate of 10 °C min$^{-1}$, kept isothermal for 10 min, and ramped as high as 1000 °C. Furthermore, the optical properties of the aqueous Ta$_4$C$_3$T$_x$ MQDs suspensions at a concentration of ~50 µg mL$^{-1}$ were assessed by the Cytation5 Imaging Multi-Mode Reader (BioTek) at different excitation–emission wavelengths.

Zeta Potential Measurements

The surface charge of an aqueous Ta$_4$C$_3$T$_x$ MQDs colloidal suspension at a concentration of ~75 µg mL$^{-1}$ was assessed using the Nanobrook ZetaPALS (Brookhaven Instruments) at different pH of 2, 4, 6, 8, 10, and 12. The pH of the aqueous MQDs was titrated with the addition of adequate amounts of 12 M HCl and 12 M sodium hydroxide (NaOH) solutions. The electrical conductivity of aqueous Ta$_4$C$_3$T$_x$ MQDs was adjusted at the same concentration using 0.1 phosphate-buffered saline. The experiments were replicated for 12 cycles, and the average values were reported.

Animals and Ethics

All animal protocols were approved by the University of Manitoba Animal Care Committee and to standard operating procedures. The images showing cellular uptake are presented in the manuscript.

Endothelial Cell Culture: Pooled human umbilical vein endothelial cells were obtained from Lonza (C2519A) and cultured in EGM-2 (CC-3162, Lonza) using manufacturer protocols. Briefly, cells were thawed in prewarmed EGM-2 medium and seeded onto T-25 flasks at a density of 2500 cells cm$^{-2}$. The EGM-2 media was changed every 48 h thereafter. Cells were subcultured at 80% confluency using Trypsin (25200056, Gibco) and seeded into new vessels at 2500 cells cm$^{-2}$. Prior to use, cells were further characterized to express the typical endothelial markers CD144 and vWF (Figure S13, Supporting Information).

Immunomodulation Assays: HUVECs were plated on 24-well plates at a density of 20 000 cells per well and allowed to attach for 24 h.

Immunomodulation Assays: HUVECs were plated on 24-well plates at a density of 20 000 cells per well and allowed to attach for 24 h.

Immunomodulation Assays: HUVECs were plated on 24-well plates at a density of 20 000 cells per well and allowed to attach for 24 h.

Immunomodulation Assays: HUVECs were plated on 24-well plates at a density of 20 000 cells per well and allowed to attach for 24 h.
The cells were then treated with MQDs at 2 \(\mu \text{g mL}^{-1} \) for 24 h. Subsequently, HUVECs were activated using IFN-\(\gamma \) (570202, BioLegend) at a concentration of 10 units mL\(^{-1} \) for 24 h. Cells were then washed in preparation for subsequent coculture experiments. Human PBMNCs were isolated from whole blood obtained from healthy volunteers preparation for subsequent coculture experiments. Human PBMNCs were grown in Advanced RPMI 1640 medium (12633012, Gibco), 0.055 \(\text{m} \) 2-mercaptoethanol (M3148, Sigma-Aldrich), and 20 units mL\(^{-1} \) of soluble anti-CD3 antibody (300313, BioLegend) and 2 \(\mu \text{g mL}^{-1} \) of soluble anti-CD28 antibody (302913, BioLegend) at the start of culture immediately after isolation. Cells were grown in Advanced RPMI 1640 medium (12633012, Gibco) supplemented with 10% FBS (12483020, Gibco), 2 \(\times 10^{-3} \) M GlutaMAX (35050061, Gibco), 1:100 penicillin–streptomycin (15140122, Gibco), 0.055 \(\times 10^{-3} \) M 2-mercaptoethanol (M3148, Sigma-Aldrich), and 20 units mL\(^{-1} \) recombinant human IL-2 (589102, BioLegend). For T\(_{\text{H}1}\) polarization, the medium was also supplemented with 10 ng mL\(^{-1} \) recombinant human IL-12 (573002, BioLegend). The cells were cultured for one week and analyzed using flow cytometry.

Flow Cytometry: The list of flow cytometry antibodies and the concentrations used are presented in Table S3 in the Supporting Information. Briefly, cells were collected after the aforementioned experiments in ice-cold Flow Cytometry (FACS) buffer consisting of phosphate-buffered saline, 1% bovine serum albumin, 2 \(\times 10^{-3} \) M EDTA, and 0.1% sodium azide. Cells were then fixed and permeabilized using the eBioscience Staining Buffer Set (00-5522-00, Thermo Fisher Scientific) and stained for 1 h at room temperature using manufacturer recommended antibody concentrations. Prior to analysis, cells were washed once in FACS buffer and resuspended in 100 \(\mu \text{L} \) of FACS buffer. Cells were analyzed on the CytoFLEX Flow Cytometer (Beckman Coulter) with the appropriate fluorescence-minus-one and isotype controls. Data analysis was performed using CytExpert Software version 2.3.1.22 (Beckman Coulter, Brea, California). For analysis of in vivo samples, live cell staining was performed. Briefly, peripheral blood mononuclear cells were collected from blood using a Ficoll density gradient (Histopaque-1083, 10831, Sigma-Aldrich). Cells were then washed in ice-cold FACS buffer and stained for 1 h at 4 \(^\circ \text{C} \) using manufacturer recommended antibody concentrations. Prior to analysis, cells were washed in ice-cold FACS buffer and resuspended in 100 \(\mu \text{L} \) of FACS buffer. The eBioscience 7-AAD Viability Staining Solution was used to exclude nonviable cells (00-6993-50, Thermo Fisher Scientific). Cells were analyzed on the CytoFLEX Flow Cytometer with the appropriate fluorescence-minus-one and isotype controls. Data analysis was performed using CytExpert Software version 2.3.1.22.

Quantitative PCR Analysis: The list of primers used for quantitative PCR is presented in Table S4 in the Supporting Information. Total cellular RNA was isolated using the Aurum Total RNA Mini Kit (7326820, Bio-Rad) and quantified using a NanoDrop Spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized using the High-Capacity cDNA Reverse Transcriptase Kit (4368814, Thermo Fisher Scientific) using the manufacturer recommended protocol. qPCR was performed using the CFX384 Touch Real-Time PCR Detection System (Bio-Rad) with the appropriate no template controls.

In Vivo Aortic Transplantation Model: Animal care and anesthesia was performed using standard operating procedures at the University of Manitoba. After induction of anesthesia, donor Lewis rats underwent a median sternotomy where the mediastinal structures were removed. Immediately afterward, the thoracic aorta was mobilized and harvested, taking care to mark the proximal end and to ligate branch vessels to ensure subsequent hemostasis. The donor aorta was stored in ice-cold saline for subsequent transplantation. Recipient animals underwent induction of anesthesia and median laparotomy. The abdominal viscera were displaced to access the retroperitoneum. The infrarenal abdominal aorta was isolated using careful dissection and branch vessels inferior to the gonadal arteries were ligated. Next, clamps were placed on the abdominal aorta and a segment was resected. The previously harvested donor thoracic aortic segment was then anastomosed as an interposition graft using two end-to-end anastomosis with 8-0 Prolene sutures. Hemostasis was ensured using a combination of pressure and Surgicel. Good pulses were appreciated in the distal segment of the aorta prior to closure. The abdominal viscera was then replaced into the abdomen and the abdomen was closed in a routine fashion. Animals were kept for one week, after which point the transplanted aortic segment as well as a segment of the thoracic aorta were harvested from each animal for subsequent analysis. Blood was also collected at the time of harvest for flow cytometry.
Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

allograft vasculopathy, bioactive material, hydrofluoric acid-free synthesis, in vivo immunomodulation, Ta2CuTi, MXene quantum dots

Received: July 14, 2021
Revised: August 24, 2021
Published online: September 8, 2021
