Universally complete spaces of continuous functions

Jan Harm van der Walt

Abstract. We characterise Tychonoff spaces X so that $C(X)$ is universally σ-complete and universally complete, respectively.

Mathematics Subject Classification (2010). Primary 46E05; Secondary 46A40, 54G10.

Keywords. Vector lattices, continuous functions, P-spaces.

1. Introduction

Recently, Mozo Carollo [2] showed, in the context of point-free topology, that the vector lattice $C(X)$ of continuous, real valued functions on a Tychonoff (completely regular T_1) space X is universally complete if and only if X is an extremally disconnected P-space. This paper aims to make this result and its proof accessible to those members of the positivity community who, like the author, are less familiar with point-free topology. In so doing, and based on results due to Fremlin [7] and Veksler and Ge˘ıler [15], we obtain a refinement of Mozo Carollo’s result. In particular, we characterise those Tychonoff spaces X for which $C(X)$ is laterally σ-complete. We also include some remarks on σ-order continuous duals of spaces $C(X)$ which are universally σ-complete.

The paper is organised as follows. In Section 2 we introduce definitions and notation used throughout the paper, and recall some results from the literature. Section 3 contains the main results of the paper, namely, characterisations of those Tychonoff spaces X for which $C(X)$ is universally complete and universally σ-complete, respectively.

2. Preliminaries

Throughout this paper X denotes a Tychonoff space; that is, a completely regular T_1 space. $C(X)$ stands for the lattice of all real-valued and continuous functions on X. For $u \in C(X)$, $Z(u)$ denotes the zero set of u; that is, $Z(u) = u^{-1}[\{0\}]$. The co-zero set of u is $Z^c(u) = X \setminus Z(u)$. The collection
of zero sets in X is denoted $\mathbf{Z}(X)$, while $\mathbf{Z}^c(X)$ consists of all co-zero sets in X. For $x \in X$ the collection of open neighbourhoods of x is denoted \mathcal{N}_x, and \mathcal{N}_x^* denotes the set of clopen neighbourhoods of x. A zero-neighbourhood of $x \in X$ is a set $V \in \mathbf{Z}(X)$ so that x belongs to the interior of V. The collection of all zero-neighbourhoods of $x \in X$ is denoted \mathcal{N}_x^\ast, and $\mathcal{N}_x^c = \mathcal{N}_x \cap \mathbf{Z}^c(X)$. Observe that $\mathbf{Z}^c(X)$ is a basis for the topology of X. Hence for each $x \in X$ and every $V \in \mathcal{N}_x$ there exists $U \in \mathcal{N}_x^c$ so that $U \subseteq V$. Furthermore, for every $V \in \mathcal{N}_x$ there exists $W \in \mathcal{N}_x^\ast$ so that $W \subseteq V$. The standard reference for all of this is \cite{9}.

We write 1 for the function which is constant one on X. More generally, for $A \subseteq X$, the indicator function of A is 1_A. The constant zero function is 0.

We recall, see for instance \cite{9}, that X is

(i) \textit{basically disconnected} if the closure of every co-zero set is open;

(ii) \textit{extremally disconnected} if the closure of every open set is open.

Every extremally disconnected space is basically disconnected, but not conversely \cite{9} Problem 4N]. Since $\mathbf{Z}^c(X)$ is a basis for the topology on X, every basically disconnected space is zero-dimensional\footnote{The term zero-dimensional should be understood in terms of small inductive dimension \cite[Definition 1.1.1 & Proposition 1.2.1]{6}, as opposed to the Lebesgue covering dimension used in \cite{9}.}; that is, it has a basis consisting of clopen sets. The converse is false. For instance, \mathbb{Q} is zero-dimensional, the set of all open intervals with irrational endpoints forming a basis of clopen sets, but not basically disconnected, since $(0, 1)$ is a co-zero set whose closure is not open.

Each of the properties (i) and (ii) of X corresponds to order-theoretic properties of $C(X)$, see for instance \cite[Theorems 43.2, 43.3, 43.8 & 43.11]{13}. In particular, X is

(i*) basically disconnected if and only if $C(X)$ is Dedekind σ-complete, if and only if $C(X)$ has the principle projection property;

(ii*) extremally disconnected if and only if $C(X)$ is Dedekind complete, if and only if $C(X)$ has the projection property.

X is a P-space \cite{5} if the intersection of countably many open sets in X is open. Equivalently, X is a P-space if $Z(u)$ is open (hence clopen) for every $u \in C(X)$. Clearly, every discrete space is a P-space, but the converse is false, see \cite{9} Problem 4N]. In fact, there exists a P-space without any isolated points \cite{9} Problem 13P]. Evidently, every P-space is basically disconnected (in particular, every $Z \in \mathbf{Z}(X)$ is open), but not conversely, see \cite{9} Problem 4M].

The following basic lemma may well be known, but we have not found it in the literature. We include the simple proof for the sake of completeness.

\textbf{Lemma 2.1.} Let X be zero-dimensional. Then the following statements are equivalent.

(i) X is a P-space.
(ii) The intersection of countably many clopen sets is clopen.
(iii) The union of countably many clopen sets is clopen.

Proof. By definition, (i) implies (ii) and (iii), and, (ii) and (iii) are equivalent. It therefore suffices to show that (ii) implies (i).

Assume that (ii) is true. For each \(n \in \mathbb{N} \) let \(U_n \) be an open subset of \(X \). Let \(U = \bigcap \{ U_n : n \in \mathbb{N} \} \). If \(U = \emptyset \) we are done, so assume that \(U \neq \emptyset \). Fix any \(x \in U \). Since \(X \) is zero-dimensional, there exists for each \(n \in \mathbb{N} \) a set \(V_n \in \mathcal{N}_x^* \) so that \(V_n \subseteq U_n \). Let \(V = \bigcap_{n \in \mathbb{N}} V_n \). Then \(x \in V \subseteq U \) and, by assumption, \(V \) is clopen, hence open. Therefore \(U \) is open so that \(X \) is a P-space. \(\square \)

We recall, for later use, the following results of Fremlin \[7] and Veksler and Geiler \[15], respectively; see also \[1\].

Theorem 2.2. Let \(L \) be a Dedekind complete vector lattice. Then the following statements are equivalent.

(i) \(L \) is universally complete.
(ii) \(L \) is universally \(\sigma \)-complete and has a weak order unit.

Theorem 2.3. Let \(L \) be an Archimedean vector lattice. The following statements are true.

(i) If \(L \) is laterally complete then \(L \) has the projection property.
(ii) If \(L \) is laterally \(\sigma \)-complete then \(L \) has the principle projection property.

3. Universally complete \(C(X) \)

We begin this section with a characterisation of those \(X \) for which \(C(X) \) is universally \(\sigma \)-complete.

Theorem 3.1. The following statements are equivalent.

(i) \(C(X) \) is laterally \(\sigma \)-complete.
(ii) \(C(X) \) is universally \(\sigma \)-complete.
(iii) \(X \) is a P-space.

Proof. Assume that \(C(X) \) is laterally \(\sigma \)-complete. It follows from Theorem 2.3(ii) that \(C(X) \) has the principle projection property. Therefore \(C(X) \) is Dedekind \(\sigma \)-complete, hence universally \(\sigma \)-complete. Conversely, if \(C(X) \) is universally \(\sigma \)-complete then, by definition, it is laterally \(\sigma \)-complete. Hence (i) and (ii) are equivalent.

Assume that \(C(X) \) is laterally \(\sigma \)-complete. Then \(C(X) \) has the principle projection property so that \(X \) is basically disconnected, hence zero-dimensional. We show that \(X \) is a P-space.

By Lemma 2.1 it suffices to show that the intersection of countably many clopen subsets of \(X \) is clopen. Assume that \(U_k \subseteq X \) is clopen for each \(k \in \mathbb{N} \), and let \(U = \bigcap \{ U_k : k \in \mathbb{N} \} \). We claim that \(U \) is clopen.

Let \(V_0 = X \), \(V_1 = U_1 \) and, for each natural number \(n > 1 \), let \(V_n = U_1 \cap \ldots \cap U_n \). Then \(V_n \) is clopen for each \(n \in \mathbb{N} \), \(U = \bigcap \{ V_n : n \in \mathbb{N} \} \)
and $V_{n+1} \subseteq V_n$ for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $W_n = V_{n-1} \setminus V_n$. Then each W_n is clopen and $W_n \cap W_m = \emptyset$ whenever $n \neq m$. Moreover, $\bigcup\{W_n : n \in \mathbb{N}\} = X \setminus U$. Indeed, the inclusion $\bigcup\{W_n : n \in \mathbb{N}\} \subseteq X \setminus U$ is immediate. For the reverse inclusion, consider some $x \in X \setminus U$. There exists $n \in \mathbb{N}$ so that $x \in X \setminus V_n$. Let $n_0 = \min\{n \in \mathbb{N} : x \in X \setminus V_n\}$. Then, since $V_0 = X$, $x \in V_{n-1} \setminus V_n = W_n$. Hence $x \in \bigcup\{W_n : n \in \mathbb{N}\}$.

Let $w_n = n1_{W_n}$, $n \in \mathbb{N}$, and $F = \{w_n : n \in \mathbb{N}\}$. Then $F \subseteq C(X)^+$ and the w_n are mutually disjoint. Therefore, since $C(X)$ is universally σ-complete, $w = \sup F$ exists in $C(X)$.

Fix $x \in U$. There exists $V \in \mathcal{N}_x$ so that $w(y) < w(x) + 1$ for all $y \in V$. Fix a natural number $N_0 \geq w(x) + 1$. Then, for all $n \geq N_0$ and $y \in W_n$, $w(y) \geq w_n(y) = n \geq N_0 \geq w(x) + 1$ so that $y \notin V$. Therefore $V \cap W_n = \emptyset$ for all $n \geq N_0$. Let $W = V_{N_0} \cap V$. Then $W \in \mathcal{N}_x$ and, since $W_n \cap V_{N_0} = \emptyset$ for all $n < N_0$, $W \cap W_n = \emptyset$ for all $n \in \mathbb{N}$. Therefore $W \subseteq X \setminus \bigcup\{W_n : n \in \mathbb{N}\} = U$.

This shows that U is open, and, since each U_k is closed, U is also closed, hence clopen. By Lemma 2.3, X is a P-space. Hence (i) implies (iii).

Assume that X is a P-space. Consider a countable set F of mutually disjoint elements of $C(X)^+$. We observe that for each $x \in X$ there is at most one $u \in F$ so that $u(x) > 0$. Hence the function

$$w : X \ni x \mapsto \sup\{u(x) : u \in F\} \in \mathbb{R}^+$$

is well defined. We claim that $w \in C(X)$ so that $w = \sup F$ in $C(X)$.

Fix $x \in X$. Assume that $w(x) > 0$. Then there exists $u \in F$ and $V \in \mathcal{N}_x$ so that $u(y) = w(y) > 0$ for all $y \in V$. Hence w is continuous at x. Suppose $w(x) = 0$. Then $u(x) = 0$ for all $u \in F$. Since X is a P-space there exists for each $u \in F$ a $V_u \in \mathcal{N}_x$ so that $u(y) = 0$ for every $y \in V_u$. The set $V = \cap\{V_u : u \in F\}$ is an open neighbourhood of x, and $w(y) = 0$ for all $y \in V$. Hence w is continuous at x. Thus w is continuous at every $x \in X$, hence on X. Therefore $C(X)$ is laterally σ-complete. Hence (iii) implies (i). \qed

Mozo Carollo’s characterisation of those X for which $C(X)$ is universally complete now follows easily.

Corollary 3.2. The following statements are equivalent.

(i) $C(X)$ is laterally complete.

(ii) $C(X)$ is universally complete.

(iii) X is an extremally disconnected P-space.

Proof. Assume that $C(X)$ is laterally complete. By Theorem 2.3 (i), $C(X)$ has the projection property and is therefore Dedekind complete, hence universally complete. Conversely, if $C(X)$ is universally complete, then it is laterally complete. Therefore (i) and (ii) are equivalent.

Assume that $C(X)$ is universally complete. Then, since $C(X)$ is Dedekind complete, X is extremally disconnected, and by Theorem 3.1 X is a P-space.
Suppose that $C(X)$ is an extremally disconnected P-space. Then $C(X)$ is Dedekind complete and, by Theorem 3.1, laterally σ-complete. Since $C(X)$ has a weak order unit, it is universally complete by Theorem 2.2. □

Remark 3.3. Isbell [11] showed that if X is an extremally disconnected P-space, and X has non-measurable cardinal, then X is discrete. It is consistent with ZFC that every cardinal is non-measurable.

Corollary 3.4. The following statements are equivalent.

(i) $C(X)$ is laterally σ-complete.

(ii) $C(X)$ is universally σ-complete.

(iii) X is a P-space.

(iv) $C(X)$ is a von Neumann regular ring.

(v) $C(X)$ is z-regular.

Remark 3.5. Recall that a space X is called realcompact if for every Tychonoff space Y containing X as a proper dense subspace, the map $C(Y) \ni f \mapsto f|_X \in C(X)$ is not onto; that is, X is not C-embedded in Y, see [5, page 214]

If X is a realcompact P-space, then $C(X)^\sim$ has a peculiar structure. Indeed, due to a result of Fremlin [7, Proposition 1.15], every $\varphi \in C(X)^\sim$ is a finite linear combination of linear lattice homomorphisms form $C(X)$ into \mathbb{R}. Xiong [16] showed that every such homomorphism is a positive scalar multiple of a point evaluation. Hence

$$C(X)^\sim = \text{span}\{\delta_x : x \in X\} = c_{00}(X).$$

However, each δ_x is σ-order continuous. Indeed, consider a decreasing sequence (u_n) in $C(X)^+$ so that $\inf\{u_n(x) : n \in \mathbb{N}\} > 0$ for some $x \in X$. Then there exists a real number $\epsilon > 0$ so that for every $n \in \mathbb{N}$ there exists $V_n \in \mathcal{N}_x$ such that $u_n(y) > \epsilon$ for every $y \in V_n$. Since X is a P-space, $V = \bigcap\{V_n : n \in \mathbb{N}\}$ is open. Therefore there exists $v \in C(X)$ so that $0 < v \leq \epsilon 1$ and $v(y) = 0$ for $y \in X \setminus V$. Since $u_n(y) > \epsilon$ for all $y \in V$ and $n \in \mathbb{N}$ it follows that $0 \leq v \leq u_n$ for all $n \in \mathbb{N}$; hence u_n does not decrease to 0 in $C(X)$. This shows that $\delta_x \in C(X)^\sim$.

Combining all of the above, we see that

$$C(X)^\sim = \text{span}\{\delta_x : x \in X\} = c_{00}(X) = C(X)^\sim.$$

Remark 3.6. The condition that $\delta_x \in C(X)^\sim$ for all $x \in X$ does not imply that X is a P-space. In fact, this property characterises the so called almost-P-spaces introduced by Veksler [14], see also [12]. A space X is an almost-P-space if the nonempty intersection of countably many open sets has nonempty

\[\text{span}\{\delta_x : x \in X\} = c_{00}(X) = C(X)^\sim.\]

\footnote{For every $u \in C(X)$ there exists $v \in C(X)$ so that $u = vu^2$.}

\footnote{Every proper prime z-ideal in $C(X)$ is a minimal prime z-ideal, see [3, 4] for details.}

\footnote{Realcompact spaces were introduced by Hewitt [10] under the name “Q-spaces”, and defined as follows: X is a Q-space if every free maximal ring ideal in $C(X)$ is hyper-real. See for instance [12 Problem 8A no. 1] for the equivalence of our definition and Hewitt’s.
interior; equivalently, every \(Z \in \mathcal{Z}(X) \) has nonempty interior. Thus every P-space is an almost-P-space, but not conversely, see [12].

De Pagter and Huijsmans [4] showed that \(C(X) \) has the \(\sigma \)-order continuity property if and only if \(X \) is an almost-P-space. Hence, if \(X \) is an almost-P-space, then \(\delta_x \in C(X)_c \) for every \(x \in X \). For the converse, suppose that \(X \) is not an almost-P-space. Then there exists \(u \in C(X)^+ \) so that \(Z(u) \) has empty interior. For each \(n \in \mathbb{N} \), let \(u_n = 1 \wedge (nu) \). Then \((u_n) \) is increasing and bounded above by 1. Let \(v \in C(X) \) be an upper bound for \((u_n) \). If \(x \in X \setminus Z(u) \) then \(\sup\{u_n(x) : n \in \mathbb{N}\} = 1 \) so that \(v(x) \geq 1 \). Since \(Z(u) \) has empty interior and \(v \) is continuous, it follows that \(v(x) \geq 1 \) for all \(x \in X \). Therefore \(u_n \uparrow 1 \) in \(C(X) \). But if \(x \in Z(u) \), then \(\delta_x(u_n) = u_n(x) = 0 \) for every \(n \in \mathbb{N} \) so that \(\delta_x \notin C(X)_c \).

References

1. C. D. Aliprantis and O. Burkinshaw, \textit{Locally solid Riesz spaces}, Academic Press, New York-London, 1978.
2. I. Mozo Carollo, \textit{On the universal completion of pointfree function spaces}, J. Pure Appl. Algebra \textbf{225} (2021), no. 2, 106490.
3. B. de Pagter and C. B. Huijsmans, \textit{On \(z \)-ideals and \(d \)-ideals in Riesz spaces. I}, Nederl. Akad. Wetensch. Indag. Math. \textbf{42} (1980), no. 2, 183–195.
4. \textit{_______, On \(z \)-ideals and \(d \)-ideals in Riesz spaces. II}, Nederl. Akad. Wetensch. Indag. Math. \textbf{42} (1980), no. 4, 391–408.
5. R. Engelking, \textit{General topology}, second ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.
6. \textit{_______, Theory of dimensions finite and infinite}, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995.
7. D. H. Fremlin, \textit{Inextensible Riesz spaces}, Math. Proc. Cambridge Philos. Soc. \textbf{77} (1975), 71–89.
8. L. Gillman and M. Henriksen, \textit{Concerning rings of continuous functions}, Trans. Amer. Math. Soc. \textbf{77} (1954), 340–362.
9. L. Gillman and M. Jerison, \textit{Rings of continuous functions}, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
10. E. Hewitt, \textit{Rings of real-valued continuous functions. I}, Trans. Amer. Math. Soc. \textbf{64} (1948), 45–99.
11. J. R. Isbell, \textit{Zero-dimensional spaces}, Tohoku Math. J. (2) \textbf{7} (1955), 1–8.
12. R. Levy, \textit{Almost-P-spaces}, Canadian J. Math. \textbf{29} (1977), no. 2, 284–288.
13. W. A. J. Luxemburg and A. C. Zaanen, \textit{Riesz spaces. Vol. I}, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971.
14. A. I. Veksler, \(P' \)-points, \(P' \)-sets, \(P' \)-spaces. A new class of order-continuous measures and functionals, Dokl. Akad. Nauk SSSR \textbf{212} (1973), 789–792.
15. A. I. Veksler and V. A. Geĭler, \textit{Order completeness and disjoint completeness of linear partially ordered spaces}, Sibirsk. Mat. Ž. \textbf{13} (1972), 43–51.
16. H. Y. Xiong, *A characterization of Riesz spaces which are Riesz isomorphic to $C(X)$ for some completely regular space $X*, Nederl. Akad. Wetensch. Indag. Math. **51** (1989), no. 1, 87–95.

Jan Harm van der Walt
Department of Mathematics and Applied Mathematics
University of Pretoria
Corner of Lynnwood Road and Roper Street
Hatfield 0083, Pretoria
South Africa
e-mail: janharm.vanderwalt@up.ac.za