ON A FUNCTIONAL EQUATION RELATED TO TWO–VARIABLE CAUCHY MEANS

TIBOR KISS AND ZSOLT PÁLES

Abstract. In this paper, we are dealing with the solution of the functional equation

\[\phi \left(\frac{x+y}{2} \right) \left(f(x) - f(y) \right) = F(x) - F(y), \]

calling the unknown functions \(\phi, f \) and \(F \) defined on a same open subinterval of the reals. Improving the previous results related to this topic, we describe the solution triplets \((\phi, f, F)\) assuming only the continuity of \(\phi \).

As an application, under natural conditions, we also solve the equality problem of two-variable Cauchy means and two-variable quasi-arithmetic means.

Mathematics subject classification (2010): 39B52, 46C99.

Keywords and phrases: Cauchy mean, quasi-arithmetic mean, functional equations involving means, equality problem of means.

REFERENCES

[1] J. ACZÉL, A mean value property of the derivative of quadratic polynomials-without mean values and derivatives, Math. Mag., 58(1):42–45, 1985.
[2] J. ACZÉL AND M. KUCZMA, On two mean value properties and functional equations associated with them, Aequationes Math., 38(2-3):216–235, 1989.
[3] Z. BALOGH, O. O. IBROGIMOV, AND B. S. MITYAGIN, Functional equations and the Cauchy mean value theorem, Aequationes Math., 90(4):683–697, 2016.
[4] L. R. BERRONE, Invariance of the Cauchy mean-value expression with an application to the problem of representation of Cauchy means, Int. J. Math. Math. Sci., (18):2895–2912, 2005.
[5] L. R. BERRONE, Generalized Cauchy means, Aequationes Math., 90(2):307–328, 2016.
[6] L. R. BERRONE AND J. MORO, On means generated through the Cauchy mean value theorem, Aequationes Math., 60(1-2):1–14, 2000.
[7] N. G. DE BRUIJN, Functions whose differences belong to a given class, Nieuw Arch. Wisk. (2), 23:194–218, 1951.
[8] N. G. DE BRUIJN, A difference property for Riemann integrable functions and for some similar classes of functions, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math., 14:145–151, 1952.
[9] J. GER, On Sahoo–Riedel equations on a real interval, Aequationes Math., 63(1-2):168–179, 2002.
[10] SH. HARUKI, A property of quadratic polynomials, Amer. Math. Monthly, 86(7):577–579, 1979.
[11] P. L. KANNAPPAN AND P. K. SAHOO, A property of quadratic polynomials in two variables, J. Math. Phys. Sci., 31(2-3):65–74 (2001), 1997.
[12] T. KISS AND ZS. PÁLES, On a functional equation related to two-variable weighted quasi-arithmetic means, J. Difference Equ. Appl., 24(1):107–126, 2018.
[13] B. KOCŁĘGA-KULPA AND T. SZOSTOK, On a functional equation connected to Gauss quadrature rule, Ann. Math. Sil., 22:27–40, 2008.
[14] B. KOCŁĘGA-KULPA AND T. SZOSTOK, On some functional equations connected to Hadamard inequalities, Aequationes Math., 75:119–129, 2008.
[15] B. KOCŁĘGA-KULPA AND T. SZOSTOK, On a functional equation connected to Hermite quadrature rule, J. Math. Anal. Appl., 414(2):632–640, 2014.
[16] B. KOCŁĘGA-KULPA, T. SZOSTOK, AND SZ. WĄSOWICZ, On functional equations connected with quadrature rules, Georgian Math. J., 2009.
On some equations stemming from quadrature rules, Ann. Univ. Paedagog. Crac. Stud. Math., 8:19–30, 2009.

Some functional equations characterizing polynomials, Tatra Mt. Math. Publ., 44:27–40, 2009.

Trapezoidal rule revisited, Bull. Inst. Math. Acad. Sin. (N.S.), 6(3):347–360, 2011.

Equality of Cauchy mean values, Publ. Math. Debrecen, 57:217–230, 2000.

Homogeneous Cauchy mean values, In Z. Darócz and Zs. Páles, editors, Functional Equations - Results and Advances, volume 3 of Advances in Mathematics, page 209–218. Kluwer Acad. Publ., Dordrecht, 2002.

Inequalities for Cauchy mean values, Math. Inequal. Appl., 5(3):349–359, 2002. Inequalities, 2001 (Timisoara).

Equality of two variable Cauchy mean values, Aequationes Math., 65(1-2):61–81, 2003.

A rational Szőto equation, Aequationes Math., 57(2-3):254–277, 1999.

Sequential derivatives and their application to a Szőto equation, Aequationes Math., 62(1-2):48–59, 2001.

Solution of a regularity problem in equality of Cauchy means, Publ. Math. Debrecen, 64(3-4):391–400, 2004.

Mean-value type equalities with interchanged function and derivative, Fasc. Math., (47):19–27, 2011.

A characterization of polynomials through Flett’s MVT, Publ. Math. Debrecen, 60:1–14, 2002.

Characterizing polynomial functions by a mean value property, Publ. Math. Debrecen, 52(3-4):597–609, 1998.

A remark on a mean value property, C. R. Math. Rep. Acad. Sci. Canada, 14(5):207–212, 1992.

Taylor’s theorem and functional equations, Aequationes Math., 60(3):258–267, 2000.

Mean value theorems and functional equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1998.

A functional equation related to symmetry of operators, Aequationes Math., 91(4):779–783, 2017.

The generalized sine function and geometrical properties of normed spaces, Opuscula Math., 35(1):117–126, 2015.

Convolution Type Functional Equations on Topological Abelian Groups, World Scientific Publishing Co. Inc., Teaneck, NJ, 1991.

Une équation fonctionnelle pour les différences divisées, Mathematica (Cluj), 26(49)(2):175–181, 1984.

A note on functionals equations connected with the Cauchy mean value theorem, Aequationes Math., 2018.