Modeling Air Temperature Inside an Organic Vegetable Greenhouse

Vita Ayu Kusuma Dewi1), Budi Indra Setiawan2), Budiman Minasny3), Liyantono1) and Roh Santoso Budi Waspodo2)

1) Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, IPB University, Bogor, West Java, Indonesia
2) Department of Civil and Environmental Engineering, Faculty of Agricultural Technology, IPB University, Bogor, West Java, Indonesia
3) School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Australia

ABSTRACT

Air temperature is an important microclimate parameter in a greenhouse as it influences root growth and controls plant growth and development. Thus, the precise monitor and model temperature under greenhouse is needed to maintain the plants in optimal conditions. This research aims to model the temperature under a greenhouse using energy balance model. The study monitored the temperature inside and outside the greenhouse in a humid tropical environment. Based on the data, heat exchange constants of greenhouse components were derived, they were: 0.0029 (solar radiation), 0.8 (air) and 0.01 (heat exchange from greenhouse component). The calibrated model enables the calculation of temperature inside a greenhouse based on its outside air temperature, wind speed, and solar radiation. Testing the model against an independent time series showed the high accuracy of the model with an R2 value of 0.99, RMSE = 0.0085 and model efficiency Ef = 0.99. Based on the results, most advantageous strategies for air temperature control inside the greenhouse include the control of air ventilation.

INTRODUCTION

Planting media, climate, and plant parameters are the three main factors that control plant growth (Morakinyo, Kalani, Dahanayake, Ng, & Chow, 2017). Climate factors that greatly affect plant growth are solar radiation, air temperature, wind speed, and rainfall (Hatfield & Prueger, 2015). Indonesia has a humid tropical climate with humidity of about 80% and air temperature that reaches up to 35°C. Such conditions can severely affect plant growth (William, Suharto, & Tanudjaja, 2016). Thus, a greenhouse or a green house becomes one of the solutions to control the climate (Mutui, Sesabo, Ishengoma, & Opile, 2012).

The microclimate inside the greenhouse might be different from the outside or field. The microclimate is defined as the set of climatic factors that have a direct physical effect on an environment (Wong, Lai, Low, Chen, & Hart, 2016). The microclimate is influenced by several factors such as wind speed, humidity, irrigation, etc. (Ebrahimabadi, Nilsson, & Johansson, 2015). Air temperature is an important microclimate parameter under the greenhouse that can impact on the root growth and controls how fast or slow a plant develops (Runkle, 2006). Besides that, the air temperature is also significant parameter to calculate water consumption through evapotranspiration (Muharomah, Setiawan, Purwanto, & Liyantono, 2020). Thus, it is important to be able to predict the air temperature inside the greenhouse to maintain optimal temperature condition based on the plants need.

Several studies have proposed models to predict the temperature inside the greenhouse using empirical data such as time series analysis, the artificial neural network or mechanistic models as shown in Table 1. Those researches were conducted in the semi-tropical regions which have four seasons. Furthermore, the greenhouse used in this study has unique characteristics that are different from the published reports. Those published
results cannot be applied in the humid tropical region such as in Indonesia (Sethi, Sumathy, Lee, & Pal, 2013). However, models based on mass and energy balance are universal and thus can be adapted and calibrated for greenhouses in Indonesia.

This research aims to derive a predictive equation for the temperature inside a greenhouse in Indonesia by applying an energy balance method.

MATERIALS AND METHODS

The research was conducted at the organic vegetable greenhouse with natural ventilation, located at the Department of Civil and Environmental Engineering, IPB University from 5 February to 26 June 2018.

Greenhouse Description

The size of the greenhouse was 9 x 3 m (27 m²). The orientation of the greenhouse was the east-west direction. The greenhouse was covered with a polycarbonate roof and a net wall (Fig. 1). The crops used was (Brassica oleracea var. alboflagbra) with organic fertilization. Vegetable seedlings were grown for about 14 days outside the greenhouse and then transplanted under the greenhouse in a soil media for 40 days.

The measurement of solar radiation was carried out using the Decagon PYR Pyranometer sensor while the air temperature was measured using using Decagon VP-4 (Temperature, Humidity and Pressure Sensor) sensor. The data were collected every 15 minutes during the three periods of study (3 times cultivation for 140 days).

Model Development

Air temperature inside the greenhouse was influenced by environmental factors, such as solar radiation, wind speed, and outside air temperature. The energy balance of a greenhouse can be written as Equation 1 (Boulard & Wang, 2000), and the heat transfer equation can be defined by Equation 2 (Lienhard IV & Lienhard V, 2008).

\[
Q_{\text{sol}} = Q_{\text{con}} + Q_{\text{vent}} + Q_{\text{evp}} + Q_{\text{sto}} \quad \text{1)}
\]

\[
\frac{dQ}{dt} = m c \frac{dT}{dt} \quad \text{2)}
\]

where:
- \(Q\) is heat transfer rate (W),
- \(\frac{dQ}{dt}\) is rate of change internal thermal energy,
- \(m\) is mass,
- \(c\) is specific heat coefficient,
- \(Q_{\text{sol}}\) is the energy balance equation consists of solar radiation,
- \(Q_{\text{con}}\) is heat transfer from the surface,
- \(Q_{\text{vent}}\) is heat loss by infiltration and ventilation,
- \(Q_{\text{evp}}\) is heat by transpiration, and
- \(Q_{\text{sto}}\) is heat storage in the greenhouse.

Table 1. Past study about air temperature modeling inside a greenhouse

Researcher	Location	Type of Greenhouse	Crop	Method
Frausto, Pieters, & Deltour, 2003	Western European	Unheated and naturally ventilated	-	Auto regressive model
Kittas, Bartzanas, & Jaffrin, 2003	The Mediterranean	Shaded greenhouse with evaporative cooling	-	Simple climate model
Lekouch, El Jazouli, Wifaya, & Bouirden, 2011	South region of Morocco	Naturally ventilated in plastic greenhouse	Tomato	Energy balance
Ma et al., 2019	China	Closed with cooling system	-	Heat transfer equation
Reyes-Rosas, Molina-Aiz, Valera, López, & Khamkure, 2017	The Mediterranean	Naturally ventilated with a polypropylene mulch covering	Tomato	Energy balance
Arslan & Dölek, 2019	Turkey	Heated greenhouse with coal	-	Energy and mass balances
Singh, Singh, & Singh, 2018	Hot and semi arid (India)	Naturally ventilated in plastic greenhouse	Cucumber	Heat or mass transport processes
Zhao, Teitel, & Barak, 2001	Israel	Closed and naturally ventilated, commercial greenhouse	Tomato	Ventilation rate equation
Based on the heat transfer theory, a greenhouse can be defined as a system of heat from solar radiation, heat in the air, and heat absorbed by components of the greenhouse. In mathematical terms, they were formulated into Equation 3.

\[
\tau R (1 - \varepsilon) - \frac{\rho C_p G}{S_g} (T_{in} - T_{out}) - \frac{S_c h}{S_g} (T_{in} - T_{out}) = 0 \quad 3 \]

where:
\(\tau \) is coefficient of transmissivity,
\(R \) is solar radiation outside greenhouse (W/m²),
\(\varepsilon \) is coefficient of evaporation,
\(\rho \) is density of air (kg/m³),
\(C_p \) is specific heat of air (W s/kg K),
\(G \) is ventilation rate (m³/s),
\(S_g \) is area of the ground (m²),
\(S_c \) is area of the cover (m²),
\(T_{in} \) = inside air temperature (K),
\(T_{out} \) = outside temperature (K), and
\(h \) is overall heat exchange coefficient (W/m² K).

Overall, the heat exchange coefficient is a function of wind speed given from Equation 4, and the ventilation rate is a function by the wind speed and ventilation rate, given from Equation 5.

\[
h = a + b U_v \quad \text{4)}
\]

\[
G = \frac{W U_v + \rho_C G}{S_g} \quad \text{5)}
\]

Mesmoudi, Soudani, & Bournet (2010) simplified Equation 6 to Equation 7.

\[
T_{in} = T_{out} + \frac{\tau R (1 - \varepsilon)}{a S_g + b S_g U_v + \rho_C G} \quad \text{6)}
\]

\[
T_{in} = T_{out} + \frac{\tau R a}{\gamma + \beta U_v} \quad \text{7)}
\]

where:
\(a, b, W = \text{constant}, \)
\(U_v = \text{wind speed in outside greenhouse (m/s)} \)
\(\nu_0 = \text{ventilation rate not include the wind (m}^3/\text{s)} \)

Equation 3 is further rearranged into Equation 6:

\[
\text{Model Calibration and Validation}
\]

Outlier data were first separated before analysis. Outliers are defined as data that have different statistical properties and characteristics of the general data and have relatively few incidence events (Iqbal, Habib, Khan, & Kashif, 2020). Outlier data were calculated by outlier equation (Chow, Maidment, & Mays, 1988).

Statistical criteria were calculated to calibrate the quality of the model, and these includes the
coefficient of determination (R^2), root mean square error (RMSE) and model efficiency (Ef) (Tribouillois et al., 2018). Equation 8 and 9 show the RMSE and model efficiency formula. The accuracy of the model was evaluated by comparing the predicted and measured data.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2} \quad \text{.. 8)$$

$$Ef = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \sigma)^2} \quad \text{.. 9)$$

where:

- n = number of data,
- P_i = predicted values,
- O_i = observed values and
- σ = mean of observed values.

RESULTS AND DISCUSSION

The air temperature inside the greenhouse was higher compared to the outside (Fig. 3). The air temperature distribution within the greenhouse and open space during the study period are shown as in Fig. 2 and Table 2. The average daily temperature requirement for kailan vegetable growth is 25-35°C. At low temperatures, the plants will show degenerative symptoms, like the death of leaf tissue, and eventually the plants die. At high temperatures, the plants will die because the evaporation process is too large.

According to observations, the temperature range under the greenhouse was not in accordance with the temperature range needed by kailan for optimal growth, the maximum and minimum temperature inside the greenhouse exceed from the daily requirement of the tested plant. To control the temperature inside the greenhouse, therefore, the components that contributed to the largest heat inside the greenhouse were examined properly.

Based on the air temperature data, the highest air temperature occurred on 16 April 2018 (outside) and 25 March 2018 (inside). The minimum air temperature occurred on 18 March 2018 on both inside and outside of greenhouse.

Table 2. Statistics of air temperature data

Data	Max	Median	Min	Mean	Std. Dev
Air Temperature Outside (Tout)	39.00	25.40	20.70	26.73	3.56
Air Temperature Inside (Tin)	39.80	25.80	21.00	27.20	3.74

Fig. 2. Air temperature distribution inside the greenhouse during observation period
Fig. 3. Air temperature in the inside and outside greenhouse (25 March 2018)

Fig. 4. Coefficient of transmissivity
The coefficient of transmissivity was estimated from 7452 solar radiation data. Data were analyzed using linear regression to understand the relationship between radiation inside and outside the greenhouse. Radiation in outside and inside greenhouse during study has a linear relationship with an estimated coefficient of transmissivity of 0.455 and $R^2 = 0.88$ (Fig. 4).

Daily transmissivity was changed every day and influenced by the amount of sunlight and the roof conditions. The decrease on transmissivity can be caused by dirty roof due to dust or other materials. These increment of transmissivity occurred when the roof transparency increased when the dirt was wiped out during by rainfall.

Heat Constants of Greenhouse Components

At least three constants that are related with the energy balance equation in the greenhouse. α represents the function of solar radiation, β for heat exchange, and γ for air component from greenhouse components. α, β and γ were obtained from an optimization of Equation 6 based on measured data using the Solver function on Microsoft Excel. The data of T_{in}, T_{out}, τ, R and U_e were obtained from primary and secondary field observations. There are 13374 data from 5 months measurements that were used to this analysis and the results are presented in Table 3.

Table 3. Constants representing greenhouse components calibrated from observations.

Constants	Value
α	0.0029
γ	0.8000
β	0.0100

The model with optimised parameters has $R^2 = 0.98$ (Fig. 5) and RMSE = 0.0050. The result was better than the findings of Mesmoudi, Soudani, & Bourret (2010) that has an RMSE value of 0.0668. From α, β and γ, other components, i.e. ϵ (coefficient of evaporation), a, b, w (constants of ventilation rate) and ν_o (ventilation rate not include the wind) were also derived using the Solver optimizer, as shown in Table 4.

Table 4 and Table 5 show the results of data analysis by month and commutative for the whole period (5 months). The results indicated analysing data for the whole period has better accuracy than analysing the data month-by-month.
Sethi, Sumathy, Lee, & Pal (2013) stated that the coefficients in each greenhouse are different because the value depends on the in situ environmental conditions. Different heat transfer coefficients were also reported by several studies (e.g., Abdel-Ghany & Kozai, 2006; Fernández & Bailey, 1992; Feuilloley & Issanchou, 1996; Nijskens, Deltour, Coutisse, & Nisen, 1984).

Modeling Air Temperature Inside the greenhouse

The analysis using 5 month data gave the lowest RMSE with high R^2 (Table 4). Thus, equation 10 can be used to predict air temperature inside the greenhouse.

$$T_{in} = T_{out} + \frac{0.0029T_R}{0.8 + 0.01U_w} \hspace{1cm} \text{(10)}$$

Furthermore, this calibrated equation allows a comparison of the values between the predicted and measured temperature inside the greenhouse.

Validation

Air temperature inside greenhouse was built using five months data. In this validation step, the air temperatures inside the greenhouse during October 2018 can be predicted. A comparison of the predicted with the observed temperature inside the greenhouse showed that the model has an excellent fit with RMSE = 0.0085 and $R^2 = 0.98$ as presented in Fig. 6. The model can predict the temperature condition inside a greenhouse as viewed in Table 6 and Fig. 7.

Table 4. Constants value based on data analysis by month and all data
Time - Parameter

February
March
April
May
June
5-month

Table 5. RMSE and R^2 based on analysis by month and all data
Time Parameter

February
March
April
May
June
5-month

Table 6. Value of statistical criteria
Parameter

R^2
$RMSE$
Ef

Air Temperature Control Strategy inside a Greenhouse

Based on equation 10, the air temperature inside greenhouse was affected by air temperature, solar radiation and wind speed from outside of the greenhouse. Solar radiation is difficult to control, and the best way to control temperature is using ventilation. Equation 7 shows that if the solar radiation component is higher than the wind speed, the air temperature inside the greenhouse will increase.

Hassanien, Li, & Lin (2016) divided temperature control strategy in greenhouse into the heating, cooling, lighting, and CO₂ enrichment systems. Ganguly & Ghosh (2011) reported that cooling technology was used to reduce the air temperature, such as a fan pan evaporative cooling that can reduce the temperature down to 4-5°C. A sensor network was also used to monitoring the environmental condition inside greenhouse and the sensor was connected to a temperature controlling device (Prabhu, 2016), though the methods as considered costly for small-scale greenhouse.
Fig. 6. Correlation of the predicted and observed values of air temperature inside the greenhouse

Fig. 7. Predicted and observed air temperature inside the greenhouse (Day 1 and Day 31)
Natural ventilation could be an option in which the air inside the greenhouse will be replaced by cooler air temperature from outside (Rodríguez, Berenguel, Guzman, & Ramírez-Arias, 2015). Kacira et al. (2008) reported additional natural ventilation in each side of a greenhouse can significantly reduce inside air temperature. Natural ventilation does not work well if outside wind velocity is low. Thus, the combination of natural ventilation with another methods like shading system can be an alternative way out in reducing air temperature inside the greenhouse during such conditions (Both, 2008). Roof shade can be adjusted depending on the solar radiation conditions in greenhouse (Sethi, Sumathy, Lee, & Pal, 2013).

CONCLUSION

The sources of heat component inside the greenhouse were solar radiation, outside air temperature and heat exchange from greenhouse component. The constants values of these components were calculated as 0.0029 from solar radiation, 0.8 from outside air temperature and 0.01 from the heat exchange from greenhouse components. Air temperature inside greenhouse could be calculated using $T_{in} = T_{out} + \frac{0.0029A_{s}}{R_{n}}$ based on environmental data in outside greenhouse. The accuracy of the model to predict inside temperature in greenhouse was considered high with R^2 value of 0.99, RMSE = 0.0085 and Ef = 0.99.

REFERENCES

Abdel-Ghany, A. M., & Kozai, T. (2006). On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer. *Energy Conversion and Management, 47*(15–16), 2612–2628. https://doi.org/10.1016/j.enconman.2005.10.024

Arslan, G., & Dölek, S. (2019). Dynamic modeling of microclimate conditions of a greenhouse coupled with coal fired hot-air furnace. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-19.* https://doi.org/10.1080/15567036.2019.1635231

Both, A. J. (2008). *Greenhouse temperature management.* New Jersey, USA. Retrieved from https://nj-vegetable-crops-online-resources.rutgers.edu/wp-content/uploads/2015/06/Greenhouse-Temperature-Management.pdf

Boulard, T., & Wang, S. (2000). Greenhouse crop transpiration simulation from external climate conditions. *Agricultural and Forest Meteorology, 100*(1), 25–34. https://doi.org/10.1016/S0168-1923(99)00082-9

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). *Applied hydrology.* USA: McGraw-Hill, Inc. Retrieved from http://theodore-odroid.ttu.edu/documents/university-courses/ge-3354/2-Readings/CMM1988/Applied%20Hydrology%20VT%20Chow%201988.pdf

Ebrahimabadi, S., Nilsson, K. L., & Johansson, C. (2015). The problems of addressing microclimate factors in urban planning of the subarctic regions. *Environment and Planning B: Planning and Design, 42*(3), 415–430. https://doi.org/10.1068/b130117p

Fernández, J. E., & Bailey, B. J. (1992). Measurement and prediction of greenhouse ventilation rates. *Agricultural and Forest Meteorology, 58*(3–4), 229–245. https://doi.org/10.1016/0168-1923(92)90063-A

Feuilloley, P., & Issanchou, G. (1996). Greenhouse covering materials measurement and modelling of thermal properties using the hot box method, and condensation effects. *Journal of Agricultural and Engineering Research, 65*(2), 129–142. https://doi.org/10.1006/jear.1996.0085

Frausto, H. U., Pieters, J. G., & Deltour, J. M. (2003). Modelling greenhouse temperature by means of autoregressive models. *Biosystems Engineering, 84*(2), 147–157. https://doi.org/10.1016/S1537-5110(02)00239-8

Ganguly, A., & Ghosh, S. (2011). A review of ventilation and cooling technologies in agricultural greenhouse application. *Iranica Journal of Energy & Environment, 2*(1), 32–46. Retrieved from http://www.idosi.org/ije2/2(1)11/5.pdf

Hassanien, R. H. E., Li, M., & Lin, W. D. (2016). Advanced applications of solar energy in agricultural greenhouses. *Renewable and Sustainable Energy Reviews, 54*, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. *Weather and Climate Extremes, 10*, 4–10. https://doi.org/10.1016/j.wace.2015.08.001

Iqbal, M. Z., Habib, S., Khan, M. I., & Kashif, M. (2020). Comparison of different techniques for detection of outliers in case of multivariate data. *Pakistan Journal of Agricultural Science, 57*(3), 865-
869. Retrieved from http://www.pakjas.com.pk/papers/3190.pdf

Kacira, M., Sase, S., Ikeguchi, A., Ishii, M., Giacomelli, G., & Sabeh, N. (2008). Effect of vent configuration and wind speed on three-dimensional temperature distributions in a naturally ventilated multi-span greenhouse by wind tunnel experiments. ISHS Acta Horticulturae, 801, 393–401. https://doi.org/10.17660/ActaHortic.2008.801.41

Kittas, C., Bartzanas, T., & Jaffrin, A. (2003). Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85(1), 87–94. https://doi.org/10.1016/S1537-5110(03)00018-7

Lekouch, K., El Jazouli, M., Wifaya, A., & Bouirden, L. (2011). Natural ventilation and microclimatic performance of gothique type greenhouse in south region of Morocco. International Review of Mechanical Engineering, 5(3), 505–512. Retrieved from https://www.researchgate.net/publication/286341440_Natural_ventilation_and_microclimatic_performance_of_gothique_type_greenhouse_in_south_region_of_Morocco

Lienhard IV, J. H., & Lienhard V, J. H. (2008). A heat transfer textbook (3rd ed.). Cambridge, MA: Phlogiston Press. Retrieved from http://gr.xjtlu.edu.cn/LiferayFCKeditor/UserFiles/File/A Heat Transfer Textbook, 3rd edition.pdf

Ma, D., Carpenter, N., Maki, H., Rehman, T. U., Tuinstra, M. R., & Jin, J. (2019). Greenhouse environment modeling and simulation for microclimate control. Computers and Electronics in Agriculture, 162, 134–142. https://doi.org/10.1016/j.compag.2019.04.013

Mesmoudi, K., Soudani, A., & Bournet, P. E. (2010). Determination of the inside air temperature of a greenhouse with tomato crop under hot and arid climates. Journal of Applied Sciences and Environmental Management, 5(2), 117–129. Retrieved from https://hal.archives-ouvertes.fr/hal-00729706/

Morakinyo, T. E., Kalani, K. W. D., Dahanayake, C., Ng, E., & Chow, C. L. (2017). Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings, 145, 226–237. https://doi.org/10.1016/j.enbuild.2017.03.066

Muharomah, R., Setiawan, B. I., Purwanto, M. Y. J., & Liyanoto. (2020). Temporal crop coefficients and water productivity of lettuce (Lactuca sativa L.) hydroponics in planthouse. Agricultural Engineering International: CIGR Journal, 22(1), 22-29. Retrieved from https://cigrjournal.org/index.php/Ejourn/article/view/5656

Mutui, T., Sesabo, J., Ishengoma, E., & Opile, W. (2012). Impact of climate change on agricultural production and mitigation approaches in developing countries. African Journal of Horticultural Science, 6, 92–100. Retrieved from http://hakenya.net/ajhs/index.php/ajhs/article/view/94

Nijskens, J., Deltour, J., Coutisse, S., & Nisen, A. (1984). Heat transfer through covering materials of greenhouses. Agricultural and Forest Meteorology, 33(2–3), 193–214. https://doi.org/10.1016/0168-1923(84)90070-4

Prabhu, B. (2016). Environmental monitoring and greenhouse control by distributed sensor network. International Journal of Advanced Networking and Applications, 5(5), 2060–2066. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2675960

Reyes-Rosas, A., Molina-Aiz, F. D., Valera, D. L., López, A., & Khamkure, S. (2017). Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch. Computers and Electronics in Agriculture, 142, 9–28. https://doi.org/10.1016/j.compag.2017.08.020

Rodríguez, F., Berenguel, M., Guzman, J. L., & Ramírez-Arias, A. (2015). Modeling and control of greenhouse crop growth. Advances in Industrial Control. Springer International Publishing. https://doi.org/10.1007/978-3-319-11134-6

Runkle, E. (2006). Temperature effects on floriculture crops and energy consumption. OFA Bulletin, (894), 4p. Retrieved from http://www.microfarms.com/technical/greenhousecd/greenhouse/temperature/Temperature_Effects_on_Floriculture_Crops_by_Runkle.pdf

Sethi, V. P., Sumathy, K., Lee, C., & Pal, D. S. (2013). Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies. Solar Energy, 96, 56–82. https://doi.org/10.1016/j.solener.2013.06.034

Singh, M. C., Singh, J. P., & Singh, K. G. (2018). Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media. Computers and Electronics in Agriculture, 154, 227–238. https://doi.org/10.1016/j.compag.2018.08.044
Tribouillois, H., Constantin, J., Willaume, M., Brut, A., Ceschia, E., Tailec, T., … Therond, O. (2018). Predicting water balance of wheat and crop rotations with a simple model: AqYield. *Agricultural and Forest Meteorology*, 262, 412–422. https://doi.org/10.1016/j.agrformet.2018.07.026

William, Suharto, H., & Tanudjaja, H. (2016). Sistem pemantauan dan pengendalian parameter lingkungan pertumbuhan pada tanaman hidroponik. *TESLA: Jurnal Teknik Elektro*, 18(2), 188–207. Retrieved from https://journal.untar.ac.id/index.php/tesla/article/view/305

Wong, P. P. Y., Lai, P. C., Low, C. T., Chen, S., & Hart, M. (2016). The impact of environmental and human factors on urban heat and microclimate variability. *Building and Environment*, 95, 199–208. https://doi.org/10.1016/j.buildenv.2015.09.024

Zhao, Y., Teitel, M., & Barak, M. (2001). Vertical temperature and humidity gradients in a naturally ventilated greenhouse. *Journal of Agricultural and Engineering Research*, 78(4), 431–436. https://doi.org/10.1006/jaer.2000.0649