Prevalence of trachoma in Yemen: results of population-based prevalence surveys of 42 evaluation units in nine governorates

Adnan Ali Thabit, Tawfik Al-Khatib, Wagdi Hazaea Mohammed Hail, Ahmed Al-Soofi, Najib Abdulaziz Abdullah Thabit, Jamal Boather, Abdulk Gabbar Abdullah, Rebecca Mann Flueckiger, Alexandre L. Pavluck, Rebecca Willis, Paul Courtright, Colin K. Macleod, Anthony W. Solomon & for the Global Trachoma Mapping Project

To cite this article: Adnan Ali Thabit, Tawfik Al-Khatib, Wagdi Hazaea Mohammed Hail, Ahmed Al-Soofi, Najib Abdulaziz Abdullah Thabit, Jamal Boather, Abdulk Gabbar Abdullah, Rebecca Mann Flueckiger, Alexandre L. Pavluck, Rebecca Willis, Paul Courtright, Colin K. Macleod, Anthony W. Solomon & for the Global Trachoma Mapping Project (2018) Prevalence of trachoma in Yemen: results of population-based prevalence surveys of 42 evaluation units in nine governorates, Ophthalmic Epidemiology, 25:sup1, 62-69, DOI: 10.1080/09286586.2018.1441426

To link to this article: https://doi.org/10.1080/09286586.2018.1441426

© 2018 World Health Organization. Published with license by Taylor & Francis. Published online: 31 Dec 2018.
Prevalence of trachoma in Yemen: results of population-based prevalence surveys of 42 evaluation units in nine governorates

Adnan Ali Thabit, a,b,c Tawfik Al-Khatib, a,b,d Wagdi Hazaee Mohammed Hail, a Ahmed Al-Soofi, a Najib Abdulaziz Abdullah Thabit, f Jamal Boather, f Abdulgkabbar Abdullah, f Rebecca Mann Flueckiger, f Alexandre L. Pavluck, g Rebecca Willis, g Paul Courtright, h Colin K. Macleod, i and Anthony W. Solomon, j, k for the Global Trachoma Mapping Project*

*Prevention of Blindness Program, Ministry of Public Health & Population, Sana’a, Yemen; a, b, c Department of Ophthalmology, College of Medicine, University of Sana’a, Sana’a, Yemen; d Eye Unit, Kuwait University Teaching Hospital, Sana’a, Yemen; e Eye Unit, Al-Thawra Hospital, Sana’a, Yemen; f World Health Organization Country Office, Sana’a, Yemen; g Ministry of Public Health & Population, Sana’a, Yemen; h Task Force for Global Health, Atlanta, GA, USA; i Kilimanjaro Centre for Community Ophthalmology, Division of Ophthalmology, University of Cape Town, Cape Town, South Africa; j Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK; k London Centre for Neglected Tropical Diseases Research, London, UK; l Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland

ABSTRACT

Purpose: In suspected trachoma-endemic areas of Yemen, we sought to determine the prevalence of the sign trachomatous inflammation—follicular (TF) in children aged 1–9 years, and the potential individual and household risk factors for TF in that age group. We also sought to determine the prevalence of trichiasis in adults aged ≥15 years.

Methods: We conducted a cluster-sampled survey in each of 42 evaluation units (EUs) comprising 166 rural districts of nine Governorates (Adh Dhale’a, Al Hodeihah, Al Jawf, Hadramoot, Hajjah, Ibb, Lahj, Ma’rib, Taiz) using the Global Trachoma Mapping Project systems and methodologies. Fieldwork was undertaken from September 2013 to March 2015. Risk factors for TF in children aged 1–9 years were evaluated using multilevel random effects logistic regression.

Results: The TF prevalence in children aged 1–9 years was ≥10% in two EUs (7 districts) and 5–9.9% in six EUs (24 districts). In adults aged ≥15 years, trichiasis prevalence was ≥0.2% in five EUs (19 districts). Being older (within the 1–9-year age bracket), being male, living in a household with higher numbers of children, and living in a household that reported the use of open defecation, were each independently associated with higher odds of TF.

Conclusions: These surveys provided baseline data to enable planning for trachoma elimination. The World Health Organization Alliance for the Global Elimination of Trachoma by 2020 stands ready to assist Yemen once security considerations permit further surveys and implementation of control activities.

ARTICLE HISTORY

Received 30 October 2017
Revised 6 February 2018
Accepted 12 February 2018

KEYWORDS

Global trachoma mapping project; prevalence; trachoma; trichiasis; Yemen

Introduction

Trachoma, caused by repeated ocular Chlamydia trachomatis infection,1 is or has recently been endemic in 11 of 22 countries in the World Health Organization (WHO)-defined Eastern Mediterranean Region.2 A major international effort to eliminate trachoma as a public health problem3 is currently underway, orchestrated by the WHO Alliance for the Global Elimination of Trachoma by 2020 (GET2020).4 To achieve this goal, WHO recommends the SAFE strategy (surgery, antibiotics, facial cleanliness, and environmental improvement)5 in all areas where trachoma prevalence exceeds elimination thresholds, based on population-based surveys.6-8 Data on the prevalence of trichiasis in adults, the blinding stage of disease, are used to plan surgical interventions; data on the prevalence of trachomatous inflammation—follicular (TF) in 1–9-year-olds are used for planning antibiotic, facial cleanliness, and environmental improvement interventions.9,10

The Republic of Yemen is located on the Arabian Peninsula, bordered on the north and east by Saudi Arabia and Oman respectively, and on the south and west by the Arabian Sea, the Gulf of Aden, and the Red Sea. There are 22 Governorates in addition to the capital Sana’a. Though previous trachoma rapid assessments11 identified a number of areas as being potentially trachoma-endemic, prior to this study, population-based

© 2018 World Health Organization. Published with license by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. In any use of this article, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL.
prevalence data were lacking. Preliminary analyses of some of the prevalence data presented here have been published elsewhere; this article presents the final data and explores associations of TF in 1–9-year-olds at individual and household levels.

Materials and methods

The National Prevention of Blindness Program in the Ministry of Public Health & Population was responsible for planning and coordination, field team training, data gathering, data upload and data approval. Training of field teams was undertaken in September 2013 in and near Sana’a and Marib City, Yemen. We used version 2 of the Global Trachoma Mapping Project (GTMP) training system, following principles that have been previously published.

We divided the suspected trachoma-endemic population into 42 unique evaluation units (EUs). By governorate, there were 2 EUs in Adh Dhala’ and 6 in Al Hodeiah, two in Al Jawf, 4 in Hadramoot, 7 in Hajjah, 6 in Ibb, 3 in Lahj, 1 in Ma’rib, and 11 in Taiz. In each EU, teams consisting of a grader, a recorder, a local facilitator, and a driver visited 24 clusters, which (after exclusion of urban areas) were selected with probability proportional to cluster population size. In each cluster, the protocol was explained to the village chief and local health care workers, and 30 households were selected from a village household list using systematic sampling. The examination protocol was explained to each eligible adult in their preferred language, and verbal consent for enrollment and examination was obtained. For eligible children, verbal consent was also obtained from parents or appropriate guardians. Eligible household members were those aged 1 year or above who, at the time of the survey, had lived for at least 6 months in the village or neighborhood. Consenting individuals were examined for signs of trachoma, graded according to the WHO simplified grading system, using a flashlight or direct sunlight plus a 2.5× binocular loupe. In addition to demographic data and examination findings, teams recorded responses to household-level questions on access to water and sanitation, supplementing information received about access to sanitation facilities through direct observation. All data were recorded in the GTMP-LINKS app running on Android smartphones. Full details are given elsewhere.

As for other trachoma mapping work conducted with the support of the GTMP, data cleaning and analysis was undertaken by a dedicated data manager (RW), then reviewed and approved by the national health ministry. For each cluster, the proportion of 1–9-year-olds with TF was adjusted by age in 1-year bands, using age distribution data from the 2004 census of Yemen as a reference. The EU-level TF prevalence was estimated as the arithmetic mean of the adjusted cluster-level proportions. Similarly, for each cluster, the proportion of ≥15-year-olds with trichiasis was adjusted by sex and age in 5-year bands, and the arithmetic mean of the adjusted cluster-level proportions used as the EU-level trichiasis prevalence in adults. We did not record the presence or absence of trachomatous conjunctival scarring and are therefore unable to confirm that trichiasis seen was due to trachoma, so refer here to the prevalence of trichiasis rather than the prevalence of “trachomatous trichiasis.”

Random effects logistic regression models were used to characterize clustering in the data, accounting for a three-tier hierarchy (at district, cluster, and household levels). Null models were used to estimate the effect of cluster variables on the outcome TF in children aged 1–9 years, and the strength of possible models compared using the likelihood ratio test. A multilevel random effects logistic regression model was used to evaluate variables associated with TF in children aged 1–9 years. A null model with age and sex variables was run, accounting for clustering in TF at district, cluster, and household level.

Ethical considerations

The protocol received approval from the ethics committees of the Ministry of Public Health & Population of Yemen (238L) and the London School of Hygiene & Tropical Medicine (6319). Individuals with active trachoma were treated with 1% topical tetracycline ointment. Individuals with trichiasis were offered surgery.

Results

Surveys were implemented from September 2013–March 2015, with teams visiting 24,321 households in 975 clusters across the 42 EUs. A total of 139,228 people (71,366 males, 67,862 females) were enumerated, and 123,468 (89%; 66,076 males, 57,392 females) were examined. Among the 61,274 residents (28,659 men, 32,615 women) aged ≥15 years, 47,021 (77%; 24,045 men, 22,976 women) were examined.

The EU-level prevalence of TF in children aged 1–9 years ranged from 0–12.6% (Table 1). There were two EUs (7 districts) that had TF prevalences ≥10%, and there were six EUs (24 districts) with TF prevalences of 5–9.9% (Table 1, Figure 1).

The prevalence of trichiasis was above the WHO elimination threshold of 0.2% in adults aged ≥15 years in 5 EUs (19 districts; Table 1 and Figure 2).
TF risk factors

Clustering of TF was strongest at household level: the random effects parameter estimate was 3.25 (standard error [SE] 1.16) at district level; 3.49 (SE 1.06) at cluster level; and 4.30 (SE 1.07) at household level. The model, accounting for clustering at both household and cluster levels, was a better fit to the data than the model accounting for clustering at household level alone (likelihood ratio test, \(p < 0.0001 \)). All subsequent models accounted for clustering at both household and cluster levels.

The results of univariable analyses against the outcome, TF in children aged 1–9 years, are shown in Table 1. Prevalence of trachomatous inflammation—follicular (TF) in children aged 1–9 years and trichiasis in those aged ≥15 years in 42 evaluation units (EUs) of Yemen, global trachoma mapping project, 2013–2015.

Governorate (EU code)	Districts included in EU	Estimated EU population	Number of 1–9-year-olds examined	TF prevalence in 1–9-year-olds, % (95% CI)\(^{a} \)	Number of ≥15-year-olds examined	Trichiasis prevalence in ≥15-year-olds, % (95% CI)\(^{a} \)
Adh Dhale’a (569)	Adh Dhale’a, Al Azareq, Al Hosha, Al Hosain, Al Shoaeed	350,966	1399	1.0 (0.5–1.4)	1276	0.0 (0.0–0.0)
Adh Dhale’a (570)	Damt, Jhaf, Jiban, Qatabah	301,565	1520	1.3 (0.5–2.1)	1329	0.1 (0.0–0.2)
Al Hodeidah (82)	Al Garri, Al Khwakhah, Hays, Jabal Ra’s	23,351	1384	0.8 (0.3–1.6)	1120	0.0 (0.0–0.0)
Al Hodeidah (83)	Al Mansuryah, At Tuhayat, Bayt al-Faqih, Zabid	141,770	1283	1.4 (0.6–2.6)	837	0.0 (0.0–0.0)
Al Hodeidah (84)	Al Darayhim, Al Hali, Al Hawak, As Sukhnah	404,001	1258	0.1 (0.0–0.3)	1008	0.1 (0.0–0.3)
Al Hodeidah (85)	Ad Dalai Al Hajaylah, Al Marawi’, Bajil, Bura	92,040	1401	2.6 (0.9–4.5)	1725	0.3 (0.1–0.6)
Al Hodeidah (86)	Al Mighlaf, Al Munirah, As Salif, As Zaydyi	54,279	1330	6.3 (4.3–8.7)	1880	0.1 (0.0–0.1)
Al Hodeidah (87)	Al Qanawis, Alwheyyah, Al Zuhrah	43,695	1389	10.3 (6.8–15.1)	1234	0.1 (0.0–0.2)
Al Jawf (88)	Al Humayan, Az Zair, Bait Al Anam, Khabb wa ash Shaaf, Karab al Marashi, Rajazah	293,882	907	5.4 (2.7–8.4)	785	0.2 (0.0–0.5)
Al Jawf (89)	Al Ghayl, Al Haim, Al Khali, Al Maslub, Al Matamnah, Al Maton	65,151	783	8.9 (4.1–12.5)	565	0.0 (0.0–0.0)
Hadramoout (583)	Al Dolialah, Alqaten, Arum, Dawaa, Hajar, Harehad	264,941	1434	1.9 (0.8–3.6)	881	0.0 (0.0–0.1)
Hadramoout (584)	Sayuoon, Shebam, Wadi Alameen,	249,235	1423	0.3 (0.0–1.0)	1250	0.0 (0.0–0.0)
Hadramoout (585)	Al Disoom, Khalil Ben Yameen, Sahh Tareem	229,593	1491	1.0 (0.4–2.1)	978	0.1 (0.0–0.3)
Hadramoout (586)	Aldees, Aliwa Da Wusaiae, Alshaheer, Broom Mafae, Khalil Ba Wazeer	298,644	1338	3.6 (2.0–5.9)	1199	0.1 (0.0–0.2)
Hajjah (587)	Alshal	185,595	1429	6.8 (4.5–9.9)	1399	0.1 (0.0–0.3)
Hajjah (588)	Al Jamra, Haradh, Midi, Mostaba	233,198	1687	4.8 (3.1–6.7)	1065	0.1 (0.0–0.2)
Hajjah (589)	Aljami, Khairan Al Muharaq, Khashar, Qarah, Wash Hah	395,764	1714	3.6 (2.4–5.1)	974	0.0 (0.0–0.1)
Hajjah (590)	Ash Shaghadherah, Bani Qais At Tur, Hajjah, Najirah, Sharis	311,056	1456	2.3 (1.2–3.6)	1134	0.1 (0.0–0.3)
Hajjah (591)	Aljaffal Ayemen, Absh Ash Sham, Al Mahabeshah, Kholan Ash Sharaf	261,495	1610	5.7 (3.1–8.9)	978	0.0 (0.0–0.0)
Hajjah (592)	Al Jamermah, Al Meftaf, Ash Shaleel, Koadenah, Qofil	312,348	1698	3.2 (1.7–4.6)	1067	0.0 (0.0–0.0)
Ibb (76)	Al Maghabrah, Bani Al Awam, Kholan Afar, Mabyan	288,087	1685	1.9 (0.7–3.3)	714	0.0 (0.0–0.0)
Ibb (77)	Al Qafir, Hazm Al Udayn, Hubaysh	141,160	1057	1.8 (0.9–2.7)	853	0.4 (0.1–0.8)
Ibb (78)	Al Udain, Far Al Udayn, Mudhaykhirah	35,812	870	6.3 (1.7–11.2)	686	0.17 (0.0–0.5)
Ibb (79)	As Sabrah, As Sayyani, Dh Al Suffal	98,199	793	12.6 (5.9–19.8)	1359	0.1 (0.0–0.1)
Ibb (80)	Al Dirhim, Al Mashannah, Baharijah, Jililah	238,810	1020	0.7 (0.0–1.7)	408	0.1 (0.0–0.3)
Ibb (81)	Al Mahkadhir, As Saddah, Yamir	78,439	1022	0.0 (0.0–0.0)	602	0.0 (0.0–0.0)
Ibb (82)	Al Nadirah, Ar Radmah, Ash Sha’ir	28,788	838	3.3 (2.3–4.8)	945	1.3 (0.4–2.6)
Lahj (562)	Labousou, Al Haad, AlMaffali	231,185	1469	2.1 (1.1–4.7)	722	0.0 (0.0–0.0)
Lahj (563)	Al Malah, Habeel Jaber, Haleemun, Radfan, Radfan	362,167	1408	0.8 (0.2–1.5)	1179	0.0 (0.0–0.0)
Lahj (564)	Al Musameer, Al Qabiya, Tor Alalba	408,847	1352	0.2 (0.0–0.4)	1051	0.0 (0.0–0.0)
Ma’rib (73)	Al Abdiyah, Al Jubah, Bidbadah, Harib, Harib Al Qaramish, Jabal Murad, Mahilyah, Majzar, Ma’rib, Ma’rib City, Midghal, Raghwah, Rababah, Sirwah	46,541	982	4.5 (2.7–6.3)	25	No estimate\(^{d}\)

\(^{a}\)Adjusted for age in 1-year age bands.

\(^{b}\)Adjusted for gender and age in 5-year age bands.

\(^{c}\)95% confidence intervals from bootstrapped adjusted-cluster-level proportions over 10,000 replicates; upper bound of confidence limit for zero count EU estimated from the exact binomial approximation.

\(^{d}\)Only 25 adults examined: too few for a reliable trichiasis prevalence estimate.

CI, confidence interval.
In the full multivariable model (Table 3), being a younger child, and being female were independently associated with lower odds of TF. Living in a household with higher numbers of children, and living in a household in which adults reported the use of open defecation, were independently associated with higher odds of TF.

Discussion

We believe this to be the largest collection of trachoma prevalence surveys ever reported from the Arabian Peninsula. Our field teams were able to generate high participation rates in communities selected for inclusion, with 89% of those living in sampled households consenting to and being examined for trachoma, resulting in the inclusion of more than 120,000 people. This, together with the robust nature of the GTMP approach to mapping,18 generates confidence that the findings are generally representative of the true trachoma prevalence in each of the 42 EUs at the time of fieldwork. The exception to this is the trichiasis prevalence estimate for Ma’tirib, which we have not reported here because (due to the fact that an unexpectedly large proportion of adults were working outside the governorate) only 25 adults were examined in the EU as a whole. In the remainder, relatively low prevalences of TF (compared to those recorded in many parts of Ethiopia,19–21 for example) were matched.
by low prevalences of trichiasis. Only eight EUs had TF prevalences in 1–9-year-olds ≥5%, and only five had trichiasis prevalence in ≥15-year-olds ≥0.2%, indicating a need for public health-level action. One EU (Al Jawf, 88) had prevalence estimates above the respective elimination thresholds for both TF and trichiasis.

Only one EU had a trichiasis prevalence in adults of ≥1% (Ibb 81: 1.3%, 95%CI 0.4–2.6), suggesting that the number of surgeries needed to reach the elimination target would, in general, have been relatively small at the time of these surveys, and that trachoma is not a significant cause of blindness in Yemen. This is consistent with other recent observations. A 2002 community-based survey of 707 individuals in rural areas of Taiz governorate found 7.9% of those aged ≥50 years had bilateral blindness, with cataract and age-related macular degeneration accounting for 86% of cases. Similar estimates of blindness prevalence were reported from rapid assessments of avoidable blindness conducted in 2009 in ≥50-year-olds in Amran (9.3%) and Lahj (10.8%) governorates. These previous studies did not identify any people with corneal blindness due to trachoma.

In our data, reported open defecation by adults was associated with higher odds of active trachoma in children in the same household, as also seen in previous studies. This is thought to relate to the fact that eye-seeking Musca sp. flies lay their eggs on surface-exposed

Figure 2. Evaluation unit-level prevalence of trichiasis in ≥15-year-olds, global trachoma mapping project, Yemen, 2013–2015. Internal boundaries represent districts.
Table 2. Univariable analysis of factors associated with trachomatous inflammation—follicular (TF) in 1–9-year-olds, global trachoma mapping project, Yemen, 2013–2015.

Individual	OR±	95% CI
Age group 1–4 years (vs. 5–9 years)	0.86	0.76–0.97
Female sex	0.83	0.74–0.93
≥8 people resident in the household	1.16	0.97–1.39
≥5 children aged 1–9 years resident in the household	1.62	1.34–1.97
Latrine type observed at household	1.0	1.0
Improved	1.0	1.0
Unimproved	1.0	1.0
Open defecation, bush or field	2.8	2.14–3.66
Household-reported use of open defecation, bush or field	2.5	1.94–3.21
Unimproved source of drinking water	2.2	1.96–1.57
Time to source of drinking water ≥30 minutes	1.54	1.21–1.98

±Univariable odds ratio from multilevel random effects logistic regression accounting for clustering at household- and cluster-level.

Household	OR±	95% CI
≥8 people resident in the household	1.16	0.97–1.39
≥5 children aged 1–9 years resident in the household	1.62	1.34–1.97
Latrine type observed at household	1.0	1.0
Improved	1.0	1.0
Unimproved	1.0	1.0
Open defecation, bush or field	2.8	2.14–3.66
Household-reported use of open defecation, bush or field	2.5	1.94–3.21
Unimproved source of drinking water	2.2	1.96–1.57
Time to source of drinking water ≥30 minutes	1.54	1.21–1.98

±Univariable odds ratio from multilevel random effects logistic regression accounting for clustering at household- and cluster-level.

Table 3. Multivariable analysis of factors associated with trachomatous inflammation—follicular (TF) in 1–9-year-olds, global trachoma mapping project, Yemen, 2013–2015.

Variable	OR±	p-value ∗b
Age 1–4 years (vs. 5–9 years)	0.86	0.012
Female sex	0.83	0.002
≥5 children aged 1–9 years in household	1.67	<0.0001
Household-reported use of open defecation, bush or field	2.47	<0.0001

±Odds ratio from multilevel hierarchical logistic regression accounting for clustering at household- and cluster-level.

| bLikelihood ratio test for inclusion of variable in/exclusion of variable from the final model. OR, odds ratio}

It has been suggested that provision of improved latrines could reduce the fecundity of these flies,24–25 and thereby limit transmission of ocular C. trachomatis infection in areas where flies are an important vector. However, the extent to which latrine use directly influences force of infection is unclear, insofar as latrine use could also represent a surrogate for other health-influencing parameters, such as education or economic opportunity.

We found that younger children had lower odds of TF. This finding contrasts with that of many other studies,19,21,26,27 where the burden of TF is typically found in pre-school children – the age group shown to harbor the bulk of the ocular C. trachomatis reservoir in environments in which this has been studied in detail.28,29 A shift of the burden of TF to higher age groups has been noted in areas where trachoma has lower overall prevalence, presumably because intensity of transmission (and age of first exposure) is lower in these areas. However, it has been suggested that clinical signs of active trachoma and C. trachomatis infection become decoupled at low prevalences,30 and we did not collect data on infection, so we will forgo further conjecture based on this finding.

In this article, we identify areas where, at the time of the surveys, trachoma was a public health problem as defined by WHO – albeit mostly at a relatively moderate level. A national trachoma action plan was subsequently developed and adopted by the Ministry of Public Health & Population. Unfortunately, to date its implementation has been impossible due to insecurity, which also prevented survey fieldwork in several further EUs: in Shabwah and Amran governorates, and in areas adjacent to EUs established here as requiring interventions. The catastrophic consequences of the war, which include loss of infrastructure, widespread famine, and wholesale internal displacement,31,32 may consign our data to be of historical interest only, since it could be some time before local health services can again prioritize trachoma elimination,33 and in the meantime, the populations of the EUs surveyed are likely to have changed both quantitatively and qualitatively. We hope fervently for a speedy end to the current conflict.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Funding

This study was principally funded by the Global Trachoma Mapping Project (GTMP) grant from the United Kingdom’s Department for International Development (DFID; ARIES: 203145) to Sightsavers, which led a consortium of non-governmental organizations and academic institutions to support health ministries to complete baseline trachoma mapping worldwide. The GTMP was also funded by the United States Agency for International Development (USAID)
References

1. Mabey DC, Solomon AW, Foster A. Trachoma. Lancet. 2003;362(9379):223–229.
2. World Health Organization. WHO Alliance for the Global Elimination of Trachoma by 2020: Progress Report on Elimination of Trachoma, 2014–2016. Wkly Epidemiol Rec. 2017;92(26):359–368.
3. World Health Assembly. Global Elimination of Blinding Trachoma. 51st World Health Assembly, Geneva, 16 May 1998, Resolution WHA51.11. Geneva: World Health Organization; 1998.
4. World Health Organization. Report of the Twentieth Meeting of the WHO Alliance for the Global Elimination of Trachoma by 2020. Geneva: World Health Organization; In press.
5. Francis V, Turner V. Achieving Community Support for Trachoma Control (WHO/PBL/93.36). Geneva: World Health Organization; 1993.
6. Smith JL, Haddad D, Polack S, et al. Mapping the global distribution of trachoma: why an updated atlas is needed. PLoS Negl Trop Dis. 2011;5(6):e973.
7. Solomon AW, Kurylo E. The global trachoma mapping project. Community Eye Health. 2014;27(85):18.
8. Smith JL, Sturrock HJ, Olives C, Solomon AW, Brooker SJ. Comparing the performance of cluster random sampling and integrated threshold mapping for targeting trachoma control, using computer simulation. PLoS Negl Trop Dis. 2013;7(8):e2389.
9. Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR. A simple system for the assessment of trachoma and its complications. Bull World Health Organ. 1987;65(4):477–483.
10. Solomon AW, Zondervan M, Kuper H, Buchan JC, Mabey DCW, Foster A. Trachoma Control: A Guide for Programme Managers. Geneva: World Health Organization; 2006.
11. Al-Khatib TK, Hamid AS, Al-Kuhlany AM, Al-Jabal MH, Raj'a'ya YA. Rapid assessment of trachoma in 9 governorates and Socotra Island in Yemen. East Mediterr Health J. 2006;12(5):566–572.
12. Thabit AA, Al-Khatib T. Prevalence of trachoma in four governorates in Yemen. Sana’a University J Med Sci. 2016;7(1):9–14.
13. Courtright P, Gass K, Lewallen S, et al. Global Trachoma Mapping Project: training for Mapping of Trachoma (Version 2). London: International Coalition for Trachoma Control; 2013. http://www.trachomacoalition.org/node/357.
14. Solomon AW, Pavluck A, Courtright P, et al. The Global Trachoma Mapping Project: methodology of a 34-country population-based study. Ophthalmic Epidemiol. 2015;22(3):214–225.
15. Central Statistical Organization. Republic of Yemen: Population and Housing Census 2004. Sana’a: Government of Yemen; 2004.
16. World Health Organization Alliance for the Global Elimination of Trachoma by 2020. Second Global Scientific Meeting on Trachomatous Trachiasis. Cape Town, 4–6 November 2015 (WHO/HTM/NTD/2016.5). Geneva: World Health Organization; 2016.
17. World Health Organization. Validation of Elimination of Trachoma as a Public Health Problem (WHO/HTM/NTD/2016.8). Geneva: World Health Organization; 2016.
18. Engels D. The Global Trachoma Mapping Project: a catalyst for progress against neglected tropical diseases. Ophthalmic Epidemiol. 2016;23(sup1):1–2.
19. Bero B, Macleod C, Alemayehu W, et al. Prevalence of and risk factors for trachoma in Oromia Regional State of Ethiopia: results of 79 population-based prevalence surveys conducted with the global trachoma mapping project. Ophthalmic Epidemiol. 2016;23(6):392–405.
20. Sherief ST, Macleod C, Gigar G, et al. The prevalence of trachoma in Tigray Region, Northern Ethiopia: results of 11 population-based prevalence surveys completed as part of the global trachoma mapping project. Ophthalmic Epidemiol. 2016;23(Sup1):94–99.
21. Adera TH, Macleod C, Endriyas M, et al. Prevalence of and risk factors for trachoma in southern nations, nationalities, and peoples’ region, Ethiopia: results of 40 population-based prevalence surveys carried out with the global trachoma mapping project. Ophthalmic Epidemiol. 2016;23(Sup1):84–93.
22. Al-Akily SA, Bamashmus MA, Al-Mohammad KA. Causes of blindness in people aged 50 years and over: community-based versus hospital-based study. East Mediterr Health J. 2010;16(9):942–946.
23. Al-Khatib T, Hameed A, Ahmed A. Rapid assessment of avoidable blindness in Amran and Lahj Governorates of Yemen. Sudam J Ophthalmol. 2013;5(1):9–16.
24. Emerson PM, Lindsay SW, Alexander N, et al. Role of flies and provision of latrines in trachoma control: cluster-randomised controlled trial. Lancet. 2004;363(9415):1093–1098.
25. Emerson PM Ecology and control of the trachoma vector Musca sorbens [Doctor of Philosophy thesis]. Durham: Department of Biological Sciences, University of Durham; 2001. http://etheses.dur.ac.uk/3995/. Accessed July 13, 2012.
26. Elshafie BE, Osman KH, Macleod C, et al. The epidemiology of trachoma in Darfur States and Khartoum State, Sudan: results of 32 population-based prevalence surveys. Ophthalmic Epidemiol. 2016;23(6):381–391.

27. Ko R, Macleod C, Pahau D, et al. Population-based trachoma mapping in six evaluation units of Papua New Guinea. Ophthalmic Epidemiol. 2016;23(Sup 1):22–31.

28. Burton MJ, Holland MJ, Faal N, et al. Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest Ophthalmol Vis Sci. 2003;44(10):4215–4222.

29. Solomon AW, Holland MJ, Burton MJ, et al. Strategies for control of trachoma: observational study with quantitative PCR. Lancet. 2003;362(9379):198–204.

30. Solomon AW, Foster A, Mabey DC. Clinical examination versus Chlamydia trachomatis assays to guide antibiotic use in trachoma control programmes. Lancet Infect Dis. 2006;6(1):5–6. author reply 7–8.

31. Roopanarine L, Wintour P, Dehghan SK, Algobhary A. Yemen at “point of no return” as conflict leaves almost 7 million close to famine. https://www.theguardian.com/global-development/2017/mar/16/yemen-conflict-7-million-close-to-famine; Accessed May 1, 2017.

32. Motahar G, Al-Sabahi M. Internal Displacement and Social Cohesion in Yemen. London: London School of Economics and Political Science; 2017. Retrieved from http://blogs.lse.ac.uk/mec/2017/07/18/internal-displacement-and-social-cohesion-in-yemen/; Accessed September 24, 2017.

33. The Lancet Infectious Diseases. Cholera in Yemen: war, hunger, disease and heroics. Lancet Infect Dis. 2017;17(8):781.

Appendix
The Global Trachoma Mapping Project Investigators are: Agatha Aboe (1,11), Liknaw Adamu (4), Wondu Alemayehu (4,5), Membere Alemu (4), Neal D. E. Alexander (9), Ana Bakhtiari (2,9), Berhanu Bero (4), Sarah Bovill (8), Simon J. Brooker (1,6), Simon Bush (7,8), Brian K. Chu (2,9), Paul Courtright (1,3,4,7,11), Michael Dejene (3), Paul M. Emerson (1,6,7), Rebecca M. Flueckiger (2), Allen Foster (1,7), Solomon Gadisa (4), Katherine Gass (6,9, Teshome Gebre (4), Zelalem Habtamu (4), Danny Haddad (1,6,7,8), Erik Harvey (1,6,10), Dominic Haslam (8), Khumbo Kalua (5), Amir B. Kello (4,5), Jonathan D. King (6,10,11), Richard Le Mesurier (4,7), Susan Lewallen (4,11), Thomas M. Lietman (10), Chad MacArthur (6,11), Colin Macleod (3,9), Silvio P. Mariotti (7,11), Anna Massey (8), Els Mathieu (6,11), Siobhain McCullagh (8), Addis Mekasha (4), Tom Millar (4,8), Caleb Mpyet (3,5), Beatriz Muñoz (6,9), Jeremiah Ngondi (1,3,6,11), Stephanie Ogden (6), Alex Pavluck (2,4,10), Joseph Pearce (10), Serge Resnikoff (1), Virginia Sarah (4), Boubacar Sarr (5), Alemayehu Sisay (4), Jennifer L. Smith (11), Anthony W. Solomon (1,2,3,4,5,6,7,8,9,10,11), Jo Thomson (4); Sheila K. West (1,10,11), Rebecca Willis (2,9).

Key: (1) Advisory Committee, (2) Information Technology, Geographical Information Systems, and Data Processing, (3) Epidemiological Support, (4) Ethiopia Pilot Team, (5) Master Grader Trainers, (6) Methodologies Working Group, (7) Prioritisation Working Group, (8) Proposal Development, Finances and Logistics, (9) Statistics and Data Analysis, (10) Tools Working Group, (11) Training Working Group.