Nonfactorizable Contribution to B-Meson Decays to s-Wave Mesons

Maninder Kaur*, Supreet Pal Singh and R. C. Verma
Department of Physics, Punjabi University, Patiala, Punjab – 147002, India
*maninderphy@gmail.com (Corresponding Author)

ARTICLE INFORMATION

Received: January 24, 2021
Accepted: May 27, 2021
Published Online: August 31, 2021

ABSTRACT

Two-body weak decays of bottom mesons into two pseudoscalar and pseudoscalar and vector mesons, are examined under isospin analysis to study nonfactorizable contribution.

Keywords: Weak Hadronic decays, Nonfactorization, Isospin formalism

DOI: 10.15415/jnp.2021.91019

1. Introduction

There has been a growing interest in studying the nonfactorizable terms [1-4] of weak hadronic decays of charm and bottom mesons. We study the nonfactorizable contributions to various Cabibbo–Kobayashi–Maskawa (CKM) favored decays of B-mesons. Unfortunately, it has not been possible to calculate such contributions from the first principle, as these are non-perturbative in nature. Earlier attempts involved to find how much nonfactorizable contributions are required from the empirical details for weak charm hadronic decays [5-7]. We determine these contributions in the respective isospin $I=1/2$ and $3/2$ amplitudes for $B \to \pi D / B \to \rho D$ and $B \to \pi D^*$ decay modes by taking $N_c = 3$ to calculate the factorizable terms. The ratio of the nonfactorizable amplitude in these channels also seems to follow a universal value for all the above decay modes.

2. Methodology

The effective weak Hamiltonian for Cabibbo enhanced B-mesons decays is given by

$$H_w = \frac{G_F}{\sqrt{2}} V_{ub} V^*_{cd} \left[c_1 \left(\bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2 \right) + c_2 \left(\bar{q}_2 q_1 \right) \right],$$

where $\bar{q}_1 q_2 = \bar{u}_1 \gamma_\mu (1 - \gamma_5) d_2$ denotes color singlet $V-A$ Dirac current and the QCD coefficients at bottom mass scale [4] are

$$c_1(\mu) = 1.12, \quad c_2(\mu) = -0.26. \quad (2)$$

where $\mu = m_B^2$, the values of c_1 and c_2 are taken from [5], and Fierz transforming the product of two Dirac currents of (1) in N_c color- space, we get

$$\left(\bar{c} u \right) \left(\bar{d} b \right) = \frac{1}{N_c} \left(\bar{c} u \right) \left(\bar{d} b \right) + \frac{1}{2} \left(\lambda^a u \right) \left(d \lambda^a b \right) \quad (3)$$

And similar term for $\left(\bar{c} u \right) \left(\bar{d} b \right)$, where λ^a are the Gell-Mann matrices. By using (3) and its analogue we reduced the effective Hamiltonian to describe color-favored (CF) and color-suppressed (CS) decays, respectively.

3. Results and Discussion

We applied the isospin formalism, and express decay amplitudes in terms of isospin reduced amplitudes $(A_{12}^{12}, A_{12}^{10})$ and as final-state interaction phase difference

$$\delta = \left(\delta_{12} - \delta_{14} \right).$$
There are many calculations for form factors and decay constants, such as light-cone sum rules [8], perturbative QCD approach, and lattice QCD [9-13] etc. We write nonfactorizable part in terms of isospin C. G. coefficients as scattering amplitudes for spurion + $B \rightarrow \pi D$ process:

$$A^{\pi'} (\bar{B}^0 \rightarrow \pi^- D^+) = \frac{1}{\sqrt{3}} e^{i\theta_0} \left[A_{3/2}^{\pi D} + \sqrt{2} A_{1/2}^{\pi D} e^{i\theta} \right] ,$$

$$A^{\pi} (\bar{B}^0 \rightarrow \pi^0 D^0) = \frac{1}{\sqrt{3}} e^{i\theta_0} \left[\sqrt{2} A_{1/2}^{\pi D} - A_{3/2}^{\pi D} e^{i\theta} \right] ,$$

$$A^D (\bar{B}^- \rightarrow \pi^- D^0) = \sqrt{3} A_{1/2}^{\pi D} e^{i\theta_0} .$$

Branching ratio for two body B-meson decays to pseudoscaler mesons is related to decay amplitude

$$B (\bar{B} \rightarrow P_1 P_2) = \frac{\tau_B}{\sqrt{2}} G_{V, P_1, P_2} \left[\frac{p}{8 \pi m_B^2} \right]^{1/2} \left| A (\bar{B} \rightarrow P_1 P_2) \right|^2 \tag{5}$$

where τ_B is the life time of B-meson, G_{V, P_1, P_2} is the product of the CKM matrix elements [1], p is the magnitude of the 3-momentum of the final state particles in the rest frame of B-meson and $A (\bar{B} \rightarrow P_1 P_2)$ is the decay amplitude. We have calculated isospin reduced amplitudes, $A_{3/2}^{\pi D}$ and $A_{1/2}^{\pi D}$

$$\left| A_{3/2}^{\pi D} \right|^{\exp.} = (1.272 \pm 0.065) \text{GeV}^3 ,$$

$$\left| A_{1/2}^{\pi D} \right|^{\exp.} = (1.323 \pm 0.018) \text{GeV}^3 , \tag{6}$$

using the experimental value [1], where the factorizable parts are calculated by using BSW model [3], expressed as

$$A^I (\bar{B}^0 \rightarrow \pi^- D^+) = a_{1/2} f_{3/2} (m_B^2 - m_B^2)^{F_{3/2}^{BD} (m_B^2)} = 2.178 \pm 0.009 \text{GeV}^3 ,$$

$$A^I (\bar{B}^0 \rightarrow \pi^0 D^0) = - \frac{1}{\sqrt{2}} a_{1/2} f_{3/2} (m_B^2 - m_B^2)^{F_{3/2}^{BD} (m_B^2)}$$

$$= - (0.139 \pm 0.025) \text{GeV}^3 \tag{7}$$

$$A^I (\bar{B}^- \rightarrow \pi^- D^0) = a_{1/2} f_{3/2} (m_B^2 - m_B^2)^{F_{3/2}^{BD} (m_B^2)} + a_{3/2} f_{1/2} (m_B^2 - m_B^2)^{F_{1/2}^{BD} (m_B^2)}$$

$$= 2.377 \pm 0.009 \text{GeV}^3$$

Table 1: Comparison of final results for all the decay modes.

Decay modes	$\bar{B} \rightarrow \pi D$	$\bar{B} \rightarrow \rho D$	$\bar{B} \rightarrow \pi D^*$
$A^{\pi D}_{1/2}$	-0.730 ± 0.065	-0.081 ± 0.024	-0.064 ± 0.011
$A^{\pi D}_{3/2}$	-2.492 ± 0.018	-0.317 ± 0.009	-0.272 ± 0.004
$\alpha = A^{\pi D}_{1/2} / A^{\pi D}_{3/2}$	0.293 ± 0.026	0.256 ± 0.078	0.237 ± 0.043

Summary and Conclusions

The motivation for the exploration of nonfactorizable term has been the failure of the large-N_c limit, which was supposed to be supported by the D-meson phenomenology, especially when extended to the B-meson sector. For instance, D-decays demand a negative value for α, indicating $N_c \rightarrow \infty$ limit, whereas B-meson decays clearly favor positive value for α. Therefore, it has been suggested to investigate the effect of...
nonfactorizable terms in the heavy quark decays keeping the real value of color $N_c = 3$.

We determine A_{nf}^{12} and A_{nf}^{32} (as shown in table), for all the decay modes, $\bar{B} \to \pi D / \bar{B} \to \rho D$ and $\bar{B} \to \pi D^*$. We notices that the non-factorizable amplitudes shows as increasing pattern with decreasing momenta available to the final state particles, i.e.,

$$|A^e(\bar{B} \to \pi D^*)| > |A^e(\bar{B} \to \rho D)| > |A^e(\bar{B} \to \pi D)| \quad (11)$$

This behavior is understandable, since low momentum states are likely to be affected more through the exchange of soft gluons and can acquire larger non-factorizable contributions [8]. We observe that in all the decay modes, the non-factorizable isospin amplitude A_{nf}^{12} bears the same ratio, with in the experimental errors, as well as same sign, A_{nf}^{32} amplitude.

References

[1] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

[2] M. A. Shifman, Nucl. Phys. B 388, 346 (1992). https://doi.org/10.1016/0550-3213(92)90616-J

[3] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C - Particles and Fields 29, 637 (1985).

[4] T. E. Browder and K. Honscheid, Prog. Nucl. Part. Phys. 35, 81 (1995). https://doi.org/10.1016/0146-6410(95)00042-H

[5] A. N. Kamal, A. B. Santra, T. Uppal and R. C. Verma, Phys. Rev. D 53, 2506 (1996). https://doi.org/10.1103/PhysRevD.53.2506

[6] A. N. Kamal and A. B. Santra, Phys. Rev. D 51, 1415 (1995). https://doi.org/10.1103/PhysRevD.51.1415

[7] A. N. Kamal and T. N. Pham, Phys. Rev. D 50, 395 (1994). https://doi.org/10.1103/PhysRevD.50.395

[8] A. C. Katoch, K. K. Sharma and R. C. Verma, J. Phys. G: Nucl. Part. Phys. 23, 807 (1997). https://doi.org/10.1088/0954-3899/23/7/006

[9] R. C. Verma, J. Phys. G: Nucl. Part. Phys. 39, 025005 (2012). https://doi.org/10.1088/0954-3899/39/2/025005

[10] A. Bharucha, D. M. Straub and R. Zwicky, J. High Energ. Phys. 2016, 98 (2016). https://doi.org/10.1007/JHEP08(2016)098

[11] R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Phys. Rev. D 89, 094501 (2014). https://doi.org/10.1103/PhysRevD.89.094501

[12] R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Pos LATTICE 2014, 372 (2015). https://doi.org/10.22323/1.214.0372

[13] H. Na et al. (HPQCD Collaboration), Phys. Rev. D 92, 054510 (2015). https://doi.org/10.1103/PhysRevD.92.054510

[14] J. Dingfelder and T. Mannel, Rev. Mod. Phys. 88, 035008 (2016). https://doi.org/10.1103/RevModPhys.88.035008
