The nail as an investigative tool in medicine: What a dermatologist ought to know

Chander Grover, Shikha Bansal

Department of Dermatology and STD, University College of Medical Sciences and GTB Hospital,
1Department of Dermatology and STD, VMMC and Safdarjung Hospital, New Delhi, India

Abstract
The nail is an important skin appendage, but not many dermatologists are aware of the importance it receives outside our specialty. This article focuses on the nail in non-dermatological contexts. The nail is a keratinized matrix capable of continuous growth with the ability to incorporate various compounds within its structure. Therefore it can be used to monitor long-term consumption of drugs. It is also an excellent source of germ-line DNA for genetic analyses. With an increased understanding of nail physiology, there is now a better understanding of its connection to various pathologies as well. Nails, being peripherally placed, are easy to sample without significant discomfort to the patient, making them a valuable diagnostic tool. For this narrative review, we carried out a PubMed search using the key words “nail clipping,” “nail DNA,” “nail diabetes mellitus,” “nail clipping oncology,” and “nail forensics.” Retrieved articles were searched for information pertaining to non-dermatologic uses of nail for evaluation, which is presented in a narrative fashion. It is clear from recent literature that the nail is not just an inert skin appendage, but a dynamic window into the ever-changing metabolic and genetic milieu. We highlight the numerous roles of nail specimens, as well as point towards future research needed therein.

Key words: Biometrics, DNA, forensic science, forensic toxicology, nail clipping, oncology, selenium

Introduction
Over the years, there is increasing interest in the study of the nail in health and disease. We know of its special structure and biological uses. It is also useful in diagnosis and as a marker of systemic disease. However, not many dermatologists know the amount of attention it receives outside our specialty.

This article focuses on the non dermatological relevance of this appendage. With developments in molecular biology and genetics, the nail is increasingly being seen as an ideal source of obtaining human specimens. It has attained the status of “a true window”, not just to disease, but also to the health status of an individual.

Methods and Results
For this review, information was collected by a PubMed search of articles published regarding the nondermatological uses of nail specimens. We used the key-words “nail clipping,” “nail DNA,” “nail diabetes mellitus,” “nail clipping oncology,” “nail forensics,” and “nail biometrics.” The searches yielded 82, 685, 437, 8, 122, and 2 indexed articles respectively, in English. These articles were retrieved and classified as case reports, review articles, and clinical trials. Information pertaining to nondermatologic applications of nails was collected. The final data was analyzed and is presented in a narrative fashion.

Why Use the Nail?
With the increasing popularity of screening programs, the need for appropriate human tissue specimens has increased. The specimen should afford adequate sensitivity and specificity in detecting what it is supposed to detect; it should involve low costs, collection should cause minimal discomfort to both patients and practitioners,
and it should be easy to store and transport. The nail satisfies most of these criteria.

Conventionally, human blood and serum are commonly used for diagnosis; however, the importance of alternative tissue sources has increased over the years due to various reasons. Venous blood collection may prove difficult, especially in special populations, for large-scale programs, or for international collaborative investigations. Alternative tissue sources include card-based blood spots, buccal scrapes, hair samples and nail clippings as these are uniquely accessible as well as capable of delivering host DNA and other details. Nail as an alternative tissue source has been found useful for genetic diagnosis as a part of screening procedures, diagnostic procedures, assessment of adverse reactions, familial and population genetic profiling, and molecular autopsy studies. In fact, for molecular autopsy studies, nail may be the only specimen which can be used for defining the cause of death or for clinical genetic information important for the surviving family. In addition to the advantages of adequate sensitivity and specificity, low cost, ease of retrieval, minimal discomfort upon retrieval, and acceptability to both patients and practitioners, nail specimens are also easy to collect, store, and transport.

However, because of a lack of awareness and proper processing techniques in routine laboratories, nail samples have not widely been used as diagnostic tools.

Nail as a keratinized matrix
Both nail and hair are keratinized matrices capable of continuous growth, and incorporate compounds within their structure. This property can be utilized in monitoring long-term consumption of alcohol or drugs. Nail specimens are found useful in toxicology and especially as an alternative to hair specimens. Hair analysis has been established as a tool for drug testing, driving ability examination, detection of gestational drug exposure, criminal assault, and post-mortem toxicology. Correspondingly, our understanding of the mechanisms of incorporation of drugs into the hair matrix is advanced.

In contrast, literature on incorporation mechanisms in nails is sparse; nevertheless, we know the following mechanisms of drug incorporation in nails:

a. *Nail matrix incorporation* occurs during the formation of the nail plate via matrix blood flow. Thus, an incorporated drug would be detectable only when the nail grows enough to reach the free edge (10–18 weeks based on average nail growth rate)

b. *Nail bed incorporation* occurs during nail thickening. The nail bed contributes 21% of the nail thickness. A drug incorporated in this manner would be detectable in distal nail clippings much earlier (as early as 2–3 weeks) as well worked out for zolpidem, a drug used for drug-facilitated sexual assault. A single dose administered has been found to be detectable in all fingernail clippings from as early as 24 h to as late as 3.5 months. In fact, even the time of intake can be inferred from the analysis of single fingernail clippings. Nail analysis could thus be an alternative as well as a complement to hair analysis in cases of suspected drug-facilitated sexual assault, and for monitoring of consumption behaviour.

table 1 summarizes drugs routinely and reliably tested for, in nail specimens. This “nail biologic monitor” has been found useful in monitoring long-term exposure to drugs, micronutrients and xenobiotics; it can even help in temporal correlation with the supposed period of exposure.

Nail as a source of DNA
Fingernail material is an excellent source of germline DNA for genetic analyses in almost all clinical settings. Although the use of hair for this indication is well-known, there are practical problems, with hair specimens often being reported inferior for diagnostic use due to poorly detectable DNA. The Baylor SUDPEP Tissue Donation Program (STOP) reported that hair samples were often received without follicles or that their integrity may be compromised by prior chemical processing with hair-care products. Fingernails are a more reliable source of autologous DNA of high-quality.

The specialized structure of fingernails (embodying DNA in keratinized cells) makes DNA extraction more complex than with fresh somatic cells; hence, well-defined protocols and reagents have been designed for lysing keratin. These protocols optimize the yield and quality of pure, intact DNA which has been found good enough even for demanding techniques such as next-generation sequencing for HLA typing. Advanced techniques such as the PrepFiler Forensic DNA Extraction kit can yield a mean of 1 mg high-quality DNA (range, 0.5 to 2.3 mg) from 20 mg nail material (1 to 10 pieces of fingernail clippings, a few millimetres wide only). DNA extracted from toenails or fingernails has been used for genotyping and identification of individuals in genetic epidemiology and forensic studies. Some of the indications for nail plate-derived DNA are summarized in Table 2.

How to Collect Nail Specimens

Collection of nail specimens is as simple as collection of fingernail trimmings or overhang of nail plates. Specimens can be collected on a plain sheet of paper (as done for mycology) or in sterile 1.5 mL microcentrifuge tubes for more demanding DNA analyses. An adequate sample consists of at least 1 week of untampered fingernail growth (assuming an average growth rate of 3 mm/month). Except for daily hygiene, no additional nail cosmetic or nail treatment should have been done. Hands are thoroughly washed with soap and warm water and allowed to dry. Sterilized conventional metal nail clippers are used and whole nail trimmings are transferred into pre-labelled tubes or containers for transportation. These can easily be stored at room temperature until use. Depending on the analyses required, only one nail clipping may be collected (for serial detection of drugs) or ten nails (for DNA analyses) may be collected. For serial detection of drugs, ring fingernails are preferred (because of their medium growth rate) and serial collection from the same nail is advised.

Tables 3 and 4 summarize the advantages and disadvantages of using nails as a specimen.
Nail as an investigative tool: What a dermatologist ought to know

Techniques Used to Examine Nail
As the nail has a unique structure, specialized techniques are required to examine and quantify specific components. Some such techniques used for nail analysis are summarized below.

- **Laser-induced breakdown spectroscopy** is used for the analysis of varied biological substrates such as bacteria, teeth, hair, bones, and fingernails. It employs a focused high-power, short-pulsed laser beam directed onto the nail surface. Based on the analysis of emission spectra from the surface, varying elements can be analyzed.

- **High-performance liquid chromatography** has been used for determination of drugs such as selective serotonin-reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors in nail clippings. It has also been used as a speedy, simple and accurate technique in forensic toxicology for elucidating the cause of death or drug abuse.

- **Ultraperformance liquid chromatography–tandem mass spectrometry** has been used to detect triclosan and triclocarban in nails. The collected nail clippings are digested with sodium hydroxide and chromatographic separation is performed with methanol. Target compounds are then determined by mass spectrometry.

- **Micro-PIXE** (particle-induced X-ray emission) and **micro-RBS (Rutherford back-scattering spectrometry)** have been used to determine three-dimensional concentration maps of 18 elements in the human nail vizz., major elements (C, N, and O), minor elements (P, S, Cl, K, and Ca), and trace elements (Fe, Mn, Zn, Ti, Na, Mg, Rb, Sr, and Se).

- **Hard X-ray micro-analysis** has been used to examine arsenic distribution in nail clippings. Nail clippings embedded in polyester resin and cut in cross-sectional slices are analyzed for arsenic concentration in different areas.

- **Synchrotron-based XRF (X-ray fluorescence) mapping** has also been used to evaluate arsenic micro-distribution in toenail clippings.

Clinical Indications for Use of Nail Specimens
The diagnostic use of nail specimens is well established for the following indications:

Nail in diabetes mellitus
Diabetes mellitus is a metabolic disease characterized by high blood sugar either due to insufficient insulin production or poor responsiveness. Various systemic pathologic alterations and metabolic events in diabetes mellitus are known to affect the nail unit structure and composition, and a nail sample can be a useful for clinical investigations. Documented techniques for the detection and monitoring of diabetes in the nail unit include:

- Estimation of glycated nail proteins has been found to reflect average blood glucose control over the previous 6–9 months. An analysis is possible even on a 10 mg sample. The normal reference range for glycated nail protein is 0.55–3.60 μmol/g nail. In diabetics, the values are significantly higher (median, 4.07 μmol/g nail). Nail analysis could therefore be a simple alternative for diagnosing diabetes in persons from remote areas.
Nail samples are useful for monitoring

Technique used/remarks
Next-generation DNA sequencing is the technique used for this indication and nail samples have been found adequate for this application.
Nail has been a DNA source for genotyping and DNA extraction from nails can be of special relevance when the patient’s pretransplant recipient material (e.g., peripheral blood) is not available. In such a setting, nails serves as a reliable source of pure autologous DNA for genotyping, because other specimens like oral mucosal swabs and skin scrapings are likely to have already been invaded by donor leukocytes (from the previous transplantation) and are thus contaminated with nonautologous cells. Patients undergoing such procedures are likely to have already lost hair which could have been an alternative source of autologous DNA. It has been shown that even a single nail clipping can provide an adequate quantity and quality of recipient DNA for genotyping.
DNA extracted from toenails or fingernails has been used for genotyping and identification of individuals for the purpose of genetic epidemiology and forensic science.
Nail samples are useful for monitoring intra-individual biomarkers which are basically cell-free (circulating) DNA, proteins, or RNA, acting as indicators of underlying disease processes including cancers. Cellular necrosis and apoptosis induced by various insults, release significant amounts of such DNA into body fluids which can be used for tracking these pathologies. Nails, can sensitively reflect the status of these biomarkers, enabling noninvasive monitoring using RT-PCR and immune-blotting. Important nail biomarkers include circulating xenobiotic DNA like hepatitis B virus DNA; detection and monitoring of tumors, diabetes mellitus, trauma, stroke, endometriosis and multimodal therapy effects.
DNA isolated from fingernails is a reliable source of germline DNA needed as a control while evaluating cancer-specific clonal alterations in malignant haematological neoplasms.
SNP genotyping for analysing genetic variation in specimens can be done on nail specimens by phenol/chloroform extraction.

Table 2: Applications of nail plate-derived DNA

Indication
High-resolution HLA Class II genotyping in transplant recipients
Genotype analysis for assessing patient/donor chimerism in patients who have received allogeneic stem cell transplantation
Epidemiological studies
Investigation of specific biomarkers
Assessment of germline sequences (as control) for investigating cancer-specific clonal alterations
Single nucleotide polymorphism (SNP) genotyping

Table 3: Advantages of using nail as a specimen

- The nail unit is very vascular, hence serum concentrations of metabolites (including xenobiotic biomolecules and trace elements) is reliably reflected in nail specimens.
- Nail clippings can be obtained noninvasively in contrast to drawing peripheral blood. There is no harm and no pain, ensuring high compliance.
- Being noninvasive and easy, even self-collection is easily possible. This is especially useful when serial monitoring of biomarkers is required. Self-collection requires minimal instructions and ensures prolonged follow-up.
- Storage at room temperature is possible and no cold chain needs to be maintained even in tropical countries. There is no risk of samples getting spoilt and no special preservation is required.
- Cost-effectiveness is high. All steps including collection method, manpower requirement, storage and transport costs are low. Nail samples can also be easily transported over long distances. This is especially important for large-scale, national or international population screening programs.
- For international collaborations, the exchange of nail clippings is easier as compared to blood.
- Even onycholyzed nails or nails which are being shed off can be useful for analysis.
- Nails are formed continuously and permanently. They do not undergo any resting or growth stages, unlike hair.
- Fingernails are versatile specimens, useful for the constantly increasing genetic and genomic applications ranging from population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicism.
- Nail specimens can be used both as stand-alone samples or to complement other specimens that may be limited in terms of their quality or yield.
- Good quality studies are available providing reliable means of extraction from nail specimens as well as comparative nail levels in normal populations. A lack of reliable data was an initial drawback which has been successfully overcome, especially in the field of nail-based forensic toxicology.
- The hardness of nail specimens and a layered structure are advantageous in preventing damage to samples in the preanalytic phase. Preservation of integrity of biomolecules prevents major errors in interpretation downstream.
- Due to the time lag inherent between formation of nail at the matrix and its growth up to the nail edge, nail specimens offer a wide diagnostic window (extending over weeks, months or even years). This is in contrast to serum or urine samples, which can reflect only the present exposure or burden of xenobiotic. Analysis of nail clippings can indicate chronic exposure, which cannot be evaluated by conventional blood and urine analysis.
- Nail clippings can be obtained and used as a source of pure autologous DNA in practically any situation. This may not be possible with other specimens like hair (which may fall off), peripheral blood, oral mucosal epithelium, or epidermal cells (may not be suitable post-transplant or post-transfusion).
- Changes in the molecular structure of human fingernail proteins in diabetic and nondiabetic specimens have been documented on the basis of their Fourier transform infrared spectroscopy spectra. It has been concluded that nail proteins of diabetics contain α-helical structure (including the presence of amide II bonds), whereas nails of nondiabetic patients do not have the amide II structures. The dielectric properties of keratin–water system in diabetic
The nail has been proposed as a more reliable biological meter for arsenic than serum because elevated levels would be maintained in the former for a longer time. Further, external contamination of nails with arsenic is much less extensive compared to that of hair. Long-term exposure to arsenic can lead to adverse health effects through cancer initiation, though the exact mechanism of arsenic’s role in carcinogenesis remains unknown.

Mechanisms responsible for arsenic accumulation in nails are poorly understood. The affinity of arsenic to sulphhydryl groups of nail keratins may be responsible.

Forensic importance of nails

The nail plate is an important substrate for diagnosis in forensic science. Forensic casework routinely involves examination of fingernail scrapings and clippings for foreign DNA. In this scenario, both in-vivo and in-vitro analysis of nail specimens assumes significance. Though finger-nails may not be as useful as fingerprints for identification, in many cases broken fingernail plates have been used to associate a suspect with the victim by comparing ridge patterns.

Matte et al. reported that up to 19% of the general population may have foreign DNA beneath their fingernails, whereas foreign DNA may be detected in 33% of forensic fingernail samples. The normally present foreign DNA also tends not to persist for long. This needs to be taken into account by forensic analysts when providing an opinion on the relevance of foreign DNA under fingernails.

In forensic toxicology, reports abound on the usefulness of detecting drugs of abuse in nails. Brown et al. reported the utility of fingernail clippings in testing for levels of anabolic steroids in sports persons with doping charges. Other reports include amphetamine-type stimulants, methadone, cocaine breakdown products, phenylalkylamine derivatives, and cannabinoids being detected. Further, ethyl glucuronide (EtG) has been put forward as a new biomarker in nails for alcohol consumption behavior.

Miscellaneous medical disorders

Apart from the diseases discussed above, nail clippings/biopsies have been useful in other diseases. The utility of the “nail window” into systemic diseases cannot be undermined.

Table 4: Disadvantages of nail specimens

Disadvantage	Remarks
Fingernail samples may not be optimal for PCR-based assays	• PCR-based amplification of DNA derived from nails has been found to be poor, especially for larger amplicons. This suggests potential DNA degradation or fragmentation occurring within the keratin matrix^1
Current paucity of data about consistent baseline levels for some biomarkers in nails	• This is an essential prerequisite for monitoring the levels of individual biomarkers in health and disease. Expected levels and their correlations should be known across various specimens like serum, body fluids and nails. Effective monitoring of biomarkers is dependent on differentiating the disease from normal background variation^7
Postmortem nail analysis may not be useful in determining cause of death	• Postmortem nail analysis is useful in determining past drug administration. However, due to varying dynamics, there is generally no correlation between blood and nail concentrations. Hence determining cause of death may be tricky in some situations
Risk of contamination, especially with respect to analysis of xenobiotics in nail specimens	• Xenobiotic mRNA, e.g., dermatophyte mRNA has been shown to exist in infected nails. Similarly, small internal proteins may also exist in nails and such things can confound expected outcomes^11

PCR: Polymerase chain reaction
Nail biopsies have been found useful in gout to detect urate crystals in subungual horn. Tirado-González et al. described subungual urate crystals extruded subclinically in some cases of gout. Nail biopsies taken to evaluate fungal elements showed urate crystals instead and the history subsequently confirmed gout. It was reported that there were no tophi noted in or near the nail field. Such crystals probably occur via exudation/transudation of fluids into the nail structure, offering a “nail window” into haematic or metabolic abnormalities. The authors concluded that the cytological and histological findings in nail specimens could be used to evaluate nail diseases as well as systemic diseases.

Similarly, toenail nicotine levels have been used as biomarkers to predict the risk of coronary heart disease (CHD). In a nested case-control study involving 62,641 women followed up over 16 years, a statistically significant, dose-response association was seen between increased toenail nicotine levels and risk of CHD. The authors concluded that toenail nicotine levels are predictive of CHD among women independent of other risk factors.

Nails for biometrics

With advances in information technology, security aspects have become paramount. Authentication is a prerequisite for security with biometric authentication being an important mode. This involves automated recognition of individuals based on their physiological characteristics, identifying a person based on “who she/he is” rather than “what she/he has” (card, token, key); or “what she/he knows” (password, pin). Common characteristics used for biometrics include face recognition, fingerprints, handwriting, hand geometry, iris, vein, voice or retinal scan. The use of fingerprint patterns as biometric markers has been evaluated and found to be useful. Herein, authentication is based on unique individual ridge patterns of the nail bed reflected on the nail plate surface, which can be evaluated by computational analysis even in low-resolution images. This has proved to be a very unique and stable biometric identifier, good enough for forensic as well as civilian applications. Extensive experimentation has validated its use.

The low-resolution nail plate images are acquired with a contactless, unconstrained imaging setup analyzing texture-based feature descriptors. Then, computational analysis is used for integrating nail plates from three fingers. Outcomes of rigorous experimental analysis on 2700 nail plate images found this to be a promising biometric modality. Nail bed pattern can also be analyzed with a laser-based broadband interferometer technique. Another system measuring spacing of the capillary loops with highly monochromatic light has also been evolved.

Hand-based biometrics has high user acceptance and reliability. Of these, the fingernail plate is characterized by high individuality, with a high degree of distinctiveness, even among identical twins. Moreover, the hardened nail resists environmental effects, barring changes caused by nail diseases/disorders and malnutrition. This ensures high reproducibility as well.

Radiation dosimetry

Rapid and accurate determination of individual radiation exposure would be needed to screen exposed populations in case of a radiological/nuclear event. It has been seen that estimating the chemical or physical alterations produced in biomaterials can be used to determine the level of exposure. Radiation sensitivity of nails is relatively high and changes produced in nails exposed to radiation have been found to be a useful biodosimetry method. In addition, the radicals generated in condensed nail protein are stable over time. An ex-vivo estimation of severity of radiation exposure based on the electron paramagnetic resonance nail dosimetry was evaluated by He et al. Human nail clippings were used to evaluate stable radiation-induced signal. It was found that a reliable triage based on radiation dosage was possible. The technique also ensured immediate and rapid dose assessment.

This review has some limitations. The topic being vast, we may have missed additional diagnostic applications of the nail unit not adequately represented in the indexed literature. In addition, with expanding developments in the field, a compendium such as this may fall short of the latest information at times despite our efforts to make it up-to-date.

Conclusion

It is clear from the recent growth in literature that the nail is not just an inert skin appendage, but a dynamic part of the human body, reflective of the changes in the metabolic and genetic milieu. Nail specimens are a valuable diagnostic tool as they are easy to retrieve, reflecting of the changes in the metabolic and genetic milieu. Nail specimens are a valuable diagnostic tool as they are easy to retrieve, without causing significant discomfort. The coming years are likely to see more research and expansion of knowledge in this field.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Bahreini M, Ashrafi Khani B, Tavassoli SH. Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails. J Biomed Opt 2013; 18:107006.
2. Klassen TL, von Rüden EL, Drabek J, Noebels JL, Goldman AM. Comparative analytical utility of DNA derived from alternative human specimens for molecular autopsies and diagnostics. J Mol Diagn 2012; 14:451-7.
3. Gong IY, Tirona RG, Schwarz UJ, Crown N, Dresser GK, Lanne S, et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood 2011; 118:3163-71.
4. Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm 2009; 6:1297-303.
5. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005; 2:507-17.
6. Pirmohamed M. Acceptance of biomarker-based tests for application in clinical practice: Criteria and obstacles. Clin Pharmacol Ther 2010; 88:862-6.
7. Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 2011; 145:1036-48.
8. Johnson JN, Tester DJ, Bass NE, Ackerman MJ. Cardiac channel molecular autopsy for sudden unexpected death in epilepsy. J Child Neurol 2010; 25:916-21.
9. Skinner JR, Crawford J, Smith W, Aitken A, Heaven D, Evans CA,
Grover and Bansal

et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm 2011; 8:412-9.

10. Madry MM, Steuer AE, Binz TM, Baumgartner MR, Kraemer T. Systematic investigation of the incorporation mechanisms of zolpidem in fingernails. Drug Test Anal 2014; 6:533-41.

12. Pragst F, Balikova MA. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 2006; 370:17-49.

13. Cone EJ. Mechanisms of drug incorporation into hair. Forensic Sci Int 1993; 63:19-29.

14. Johnson M, Shuster S. Continuous formation of nail along the bed. Br J Dermatol 1993; 128:277-80.

15. Finlay AY. Pharmacokinetics of terbinafine in the nail. Br J Dermatol 1992; 126 Suppl:39:28-32.

16. Matthieu L, De Doncker P, Cauwenbergh G, Woenstehorbs R, van de Velde V, Janssen PA, et al. Itraconazole penetrates the nail via the nail matrix and the nail bed – an investigation in onychomycosis. Clin Exp Dermatol 1991; 16:374-6.

17. Laufen H, Zimmermann T, Yeates RA, Schumacher T, Wildfeuer A. The uptake of fluconazole in finger and toe nails. Int J Clin Pharmacol Ther 1999; 37:352-60.

18. Goulé JP, Saussereau E, Mahieu L, Bourg D, Groenwont S, Guerbet M, et al. Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. J Anal Toxicol 2009;33:92-98.

19. De Giovanni N, Fucci N. The current status of sweat testing for drugs of abuse: A review. Curr Med Chem 2013; 20:545-61.

20. Lorincz AL, Stoughton RB. Specific metabolic processes of skin. Adv Drug Deliv Rev 1992; 126 Suppl 39:28-32.

21. Munro CS, Shuster S. The route of rapid access of drugs to the distal end of the nail. Acta Derm Venereol 1992; 72:387-8.

22. Morris JS, Crane SB. Selenium toxicity from a misformulated diet supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients 2013;5:1024-57.

23. Kim JY, Cheong JC, Lee JI, Son JH, In MK. Rapid and simple GC-MS method for determination of psychotropic phenylalkylamine derivatives in nails using micro-pulverized extraction. J Forensic Sci 2012;57:228-33.

24. Lemos NP, Anderson RA, Robertson JR. The analysis of methadone in nail clippings from patients in a methadone-maintenance program. J Anal Toxicol 2000;24:656-60.

25. Kim JY, Cheong JC, Kim MK, Lee JI, In MK. Simultaneous determination of amphetamine-type stimulants and cannabinoids in fingernails by gas chromatography-mass spectrometry. J Chromatogr B 2006; 832:285-92.

26. Morini L, Colucci M, Ruberto MG, Groppi A. Determination of ethyl glucoridone in nails by liquid chromatography tandem mass spectrometry as a potential new biomarker for chronic alcohol abuse. J Forensic Sci 2001; 46:231-6.

27. Danzer M, Niklas N, Stabentheiner S, Hofer K, Pröll J, Stückler C, et al. Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: A transition from research to diagnostics. BMC Genomics 2013;14:221.

28. Tanigawara Y, Kitata T, Hiroto M, Sakaeda T, Komada F, Okumura K. Identification of N-acetyltransferase 2 and CYP2C19 genotypes for hair, buccal cell swabs, or fingernails compared with blood. Ther Drug Monit 2001;23:341-6.

29. Matsuhashi H, Shimozato K, Satsume N, Nikawa K, Yoshika K. A novel missense mutation in van der Woude syndrome: Usefulness of fingernail DNA for genetic analysis. J Dent Res 2006;85:1143-6.

30. van Breda SG, Hogervorst JG, Schouten LJ, Knaapen AM, van Delft JH, Golobohm RA, et al. Toenails: An easily accessible and long-term stable source of DNA for genetic analyses in large-scale epidemiological studies. Clin Chem 2007;53:1168-70.

31. Park J, Liang D, Kim JW, Luo Y, Huang T, Kim SY, et al. Nail DNA and possible biomarkers: A pilot study. J Prev Med Public Health 2012;45:235-43.

32. Lecomte T, Berger A, Zinzindohoué F, Micard S, Landi B, Blons H, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 2002;100:542-8.

33. Nie SJ, Yang YM, Tang WR, Xu BY, Jing Q, Xiao CJ, et al. Extraction and analysis of nuclear DNA from free margin of nail material. Yi Xue Xue Bao 2007;29:1373-7.

34. Anderson TD, Ross JP, Roby RK, Lee DA, Holland MM. A validation study for the extraction and analysis of DNA from human nail material and its application to forensic casework. J Forensic Sci 1999;44:1053-6.

35. Nakashima M, Tsuda M, Kinosita A, Kishino T, Kondo S, Shimokawa O, et al. Precision of high-throughput single-nucleotide polymorphism genotyping with fingernail DNA: Comparison with blood DNA. Clin Chem 2008;54:1746-8.

36. Nishiyori A, Fukuda K, Sata M, Tanikawa K. HBV DNA can be detected from nail clippings of HBs ag positive patients. Kurume Med J 2000;47:95-6.

37. Dekio S, Jidji J. Comparison of human hair and nail low-sulfur protein compositions on two-dimensional electrophoresis. J Dermatol 1989;16:284-8.

38. Oimomi M, Hatanaka H, Ishikawa K, Kubota S, Yoshimura Y, Baba S, et al. Increased fructose-lyase of nail protein in diabetic patients. Klin Wochenschr 1984;62:477-8.

39. Yoshida-Yamamoto S, Nishimura S, Okuno T, Rakuman M, Takii Y, et al. Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds. Heart Rhythm 2011; 8:412-9.

34. Steven Morris J, Stampfer MJ, Willett W. Dietary selenium in humans as a biomarker of metal exposure. J Anal Toxicol 2008;126 Suppl:39:28-32.

35. Morris JS, Nguyenyama R, Guthrie JM, Brockman JD, Spate VL, Robertson JD. Quality control in the neutron activation analysis of biological markers for selenium in epidemiological investigations. J Radioanal Nucl Chem 2008;276:7-13.

36. Gherase MR, Desouza ED, Farquharson MJ, McNeill FE, Kim CY, Fleming DE, et al. X-ray fluorescence measurements of arsenic micro-distribution in human nail clippings using synchrotron radiation. Physiol Meas 2013;34:1163-77.

37. Preuner S, Danzer M, Pröll J, Pötschler U, Latieschka A, Gabriel C, et al. High-quality DNA from fingernails for genetic analysis. J Mol Diagn 2014;16:459-66.

38. Schnrubel D, Daxberger H, Watzinger F, Lien T. Quantitative analysis of chimerism after allogeic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: The Vienna experience. Leukemia 2003;17:224-7.

39. Jones J, Jones M, Plate C, Lewis D, Fendrich M, Berger L, et al. Liquid chromatography-tandem mass spectrometry assay to detect ethyl glucoridone in human fingernail: Comparison to hair and gender differences. Am J Anal Chem 2012;3:83-91.

30. Carter LP. Potential impact of drug effects, availability, and binge drinking behavior. Anal Bioanal Chem 2012;402:1865-70.

31. Samek O, Beddows DC, Telle HH, Morris GW, Liska M, Kaiser J. Identification of N-acetyltransferase 2 and CYP2C19 genotypes for hair, buccal cell swabs, or fingernails compared with blood. Ther Drug Monit 2001;23:341-6.

32. Luken H, Zimmermann T, Yeates RA, Wildfeuer A. The uptake of fluconazole in finger and toe nails. Int J Clin Pharmacol Ther 1999; 37:352-60.

33. Laufen H, Zimmermann T, Yeates RA, Wildfeuer A. The uptake of fluconazole in finger and toe nails. Int J Clin Pharmacol Ther 1999;37:352-60.

34. Goulé JP, Saussereau E, Mahieu L, Bourg D, Groenwont S, Guerbet M, et al. Application of inductively coupled plasma mass spectrometry multielement analysis in fingernail and toenail as a biomarker of metal exposure. J Anal Toxicol 2009;33:92-98.

35. De Giovanni N, Fucci N. The current status of sweat testing for drugs of abuse: A review. Curr Med Chem 2013; 20:545-61.
et al. Tumor-specific p53 sequences in blood and peritoneal fluid of women with epithelial ovarian cancer. Am J Obstet Gynecol 2005;193:662-7.

55. Taback HN, Doss KE. Circulating nucleic acids and proteomics of plasma/serum: Clinical utility. Ann N Y Acad Sci 2004;1022:1-8.

56. Salani R, Davidson B, Fieg M, Mark C, Muller-Holznzer E, Gastl G, et al. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin Cancer Res 2007;13:5805-9.

57. Herrera LJ, Raja S, Gooding WE, El-Hefnawy T, Kelly L, Luketich JD, et al. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clin Chem 2005;51:113-8.

58. Inoue T, Kizawa K, Ito M. Characterization of soluble protein extracts from keratinized tissues: Identification of ubiquitin universally distributed in hair, nail, and stratum corneum. Biosci Biotechnol Biochem 2001;65:895-900.

59. Giasuddin AS, Jhuma KA, Haq AM. Applications of free circulating nucleic acids in clinical medicine: Recent advances. Bangladesh Med Res Councl Bull 2008;34:26-32.

60. Tong YK, Lo YM. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chim Acta 2006;363:187-96.

61. Pinzani P, Salvianti F, Pazzagli M, Orlando C. Circulating nucleic acids in cancer and pregnancy. Methods 2010;50:302-7.

62. Zachariah R, Schmid S, Radpour R, Buekki N, Fan AX, Hahn S, et al. Circulating cell-free DNA as a potential biomarker for minimal and mild endometriosis. Reprod Biomed Online 2009;18:407-11.

63. Zitt M, Muller HM, Rochel M, Schweinger V, Zitt M, Goebel G, et al. Collection of human cell-free DNA from plasma of patients with chronic lymphocytic leukemia. Cancer Genet Cytogenet 2009;198:29-35.

64. Dawber RP. The ultrastructure and growth of human nails. Arch Dermatol 1980;269:197-204.

65. Fleckman P. Anatomy and physiology of the nail. Dermatol Clin 1985;3:373-81.

66. Orentreich N, Markofsky J, Vogelman JH. The effect of aging on the rate of nail linear growth. J Invest Dermatol 1979;73:126-30.

67. Samanidou V, Pantazidou K, Kovatsi L, Njau S, Livanos A. A simple method of mutation analysis may contribute to discrepancies in reports with epithelial ovarian cancer. Am J Obstet Gynecol 2005;193:662-7.

68. Montgomery GW, Campbell MJ, Dickson P, Herbert S, Siemering K, Ewen-White K, et al. Estimation of the rate of SNP genotyping errors from DNA extracted from different tissues. Twin Res Hum Genet 2005;8:346-52.

69. Agulliu I, Schweitzer PA, Lanza SM, Burd RD, Rohein TE. Illumina DNA test panel-based genotyping of whole genome amplified-DNA extracted from hair samples: Performance and agreement with genotyping results from genomic DNA from buccal cells. Clin Chem Lab Med 2009;47:516-22.

70. Verbeek NE, van Kempen M, Gunning WB, Renier WO, Westland B, Lindhout D, et al. Adults with a history of possible dravet syndrome: An illustration of the importance of analysis of the SCN1A gene. Epidemiol Monit 2011;52:22-5.

71. Miller CJ, Cheung M, Sharma A, Clarke L, Helm K, Maurger D, et al. Method of mutation analysis may contribute to discrepancies in reports of (V599E) BRAF mutation frequencies in melanocytic neoplasms. J Invest Dermatol 2004;123:990-2.

72. Lane JA, Noble JA. Maximizing deoxyribonucleic acid yield from dried blood spots. J Diabetes Sci Technol 2010;4:250-4.

73. Multz C, Sticher I, Clavel J, Beaune P, Loriot MA. Collection of human genomic DNA from buccal cells for genetics studies: Comparison between cytobrush, mouthwash, and treated card. J Biomed Biotechnol 2005;2005:291-6.

74. Barker PE, Murthy M. Biomarker validation for aging: Lessons from mtDNA heteroplasmy analyses in early cancer detection. Biomark Insights 2009;4:165-79.

75. Tsuibo R, Okeke CN, Inoue A, Yamazaki M, Hiruma M, Ogawa H, et al. Identification and viability assessment of dermatophytes infecting nail based on quantitative PCR of dermatophyte actin (ACT) mRNA. Nihon Ishinkin Gakkai Zasshi 2002;43:91-3.

76. Baudelet M, Yu J, Bossu M, Joulet J, Wolf JP, Aranodo T. Discrimination of microbial samples using femtosecond laser-induced breakdown spectroscopy. Appl Phys Lett 2006;89:16903-6.

77. Rehse SJ, Jeyasingh NM, Diedrich J, Palchudhuri S. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy. J Appl Phys 2009;105:102034-13.

78. Samek, Liska M, Kaiser J, Beddows DC, Telle HH, Kukhlkysv SV. Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials. J Clin Laser Med Surg 2000;18:281-9.

79. Corsi M, Cristofoletti G, Hidalgo M, Legnaioli S, Palellesi V, Salvetti A, et al. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Opt 2003;42:6133-7.

80. Kasem NA, Russo RE, Harith MA. Influence of biological degradation and environmental effects on the interpretation of archaeological bone samples with laser-induced breakdown spectroscopy. J Anal At Spectrom 2011;26:1733-9.

81. Hosseinimakarem Z, Tavasshi SL. Analysis of human nails by laser-induced breakdown spectroscopy, J Biomed Opt 2011;16:057002.

82. Bahreini M, Hosseinimakarem Z, Tavasshi HS. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy. Appl Phys 2012;112:054701.

83. Shi Y, Zhang J, Lu L, Shao B. Determination of triclosan and triclocarban in human nails by solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry. Se Pu 2013;31:1040-5.

84. Pearce DC, Dowling K, Gerson AR, Sim MR, Sutton SR, Newville M, et al. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Sci Total Environ 2010;408:2590-9.

85. Gherase MR, Desouza ED, Farquharson MJ, McNeill FE, Kim CY, Fleming DE. X-ray fluorescence measurements of arsenic micro-distribution in human nail clippings using synchrotron radiation. Physiol Meas 2013;34:1163.

86. Hopp HC. The biological bases for using hair and nails for analyses of trace elements. Sci Total Environ 1977;7:71-89.

87. Baran R, Dawber RP, Haneke E, Tosti A, Bristow I, editors. A Text Atlas of Nail Disorders: Techniques in Investigation and Diagnosis. 3rd ed. London: Martin Dunitz, Taylor & Francis Group; 2005.

88. Sukumar A. Human nails as a biomarker of element exposure. Rev Environ Contam Toxicol 2006;185:141-77.

89. Kaminska-Winczorek G, Deja G, Polanska J, Jarosz-Chobot P. Diabetic microangiopathy in capillaroscopic examination of juveniles with diabetes type 1. Postepy Hig Med Dosw (Online) 2012;66:51-9.

90. Kishabongo AS, Katchunga P, Van Aken EH, Speekema MM, Lagnau S, Husein D, et al. Glycated nail proteins: A new approach for detecting diabetes in developing countries. Top Med Int Health 2014;19:58-64.

91. O’Rourke MA, Cantwell MM, Abnet CC, Brockman AJ, Murray LJ; FINBAR Study Group. Toenail trace element status and risk of Barrett’s oesophagus and oesophageal adenocarcinoma: Results from the FINBAR study. J Cancer 2012;13:1882-91.

92. Jablecka A, Olszewski J. Marzec E. Dielectric properties of keratin-water system in diabetic and healthy human fingernails. J Non Cryst Solids 2009;355:2456-60.

93. Nasli-Esfahani E, Faribod F, Larijani B, Ganjali MR, Norouzi P. Trace element analysis of hair, nail, serum and urine of diabetes mellitus patients by inductively coupled plasma atomic emission spectroscopy. Iran J Diabetes Lipid Disord 2011;10:1-9.

94. Mandal BK, Ogra Y, Anzai K, Suzuki KT. Speciation of arsenic in biological samples. Toxicol Appl Pharmacol 2004;198:307-18.

95. Karagas MR, Morris JS, Weiss E, Spate V, Baskett C, Greenberg ER, et al. Toenail samples as an indicator of drinking water arsenic exposure. Cancer Epidemiol Biomarkers Prev 1995;6:849-52.

96. Button M, Jenkin GR, Harrington CF, Watts MJ. Human toenails as a biomarker of exposure to elevated environmental arsenic. J Environ Monit 2009;11:610-7.

97. Lu G, Xu H, Chang D, Wu Z, Yao X, Zhang S, et al. Arsenic exposure is associated with DNA hypermethylation of the tumor suppressor gene p16. J Occup Med Toxicol 2014;9:42.
Nail as an investigative tool: What a dermatologist ought to know

98. Hughes ME. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002;133:1-16.

99. Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radiol Biol Med 2004;37:582-93.

100. Wilhelm M, Pesch B, Wittschie J, Jakubis P, Miskovic P, Keegan T, et al. Comparison of arsenic levels in fingernails with urinary as species as biomarkers of arsenic exposure in residents living close to a coal-burning power plant in Prievidza district, Slovakia. J Expo Anal Environ Epidemiol 2005;15:89-98.

101. MacDonell HL, Bialous LF. Evaluation of human fingernails as a means of personal identification. In: Wecht C, editor. Legal Medicine Annual. New York: Appleton-Century-Crofts; 1972. p. 135-43.

102. Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2009;214:516-59.

103. Matte M, Williams L, Frappier R, Newman J. Prevalence and persistence of foreign DNA beneath fingernails. Forensic Sci Int Genet 2012;6:236-43.

104. Brown HG, Perrett D. Detection of doping in sport: Detecting anabolic-androgenic steroids in human fingernail clippings. Med Leg J 2011;79:67-9.

105. Kim JY, Cheong JC, Kim MK, Lee JI, In MK. Simultaneous determination of amphetamine-type stimulants and cannabinoids in fingernails by gas chromatography-mass spectrometry. Arch Pharm Res 2008;31:805.

106. Kim JY, Shin SH, In MK. Determination of amphetamine-type stimulants, ketamine and metabolites in fingernails by gas chromatography-mass spectrometry. Forensic Sci Int 2010;194:108-14.

107. Lin DL, Yin RM, Liu HC, Wang CY, Liu RH. Deposition characteristics of methamphetamine and amphetamine in fingernail clippings and hair sections. J Anal Toxicol 2004;28:411-7.

108. Suzuki O, Hattori H, Asano M. Nails as useful materials for detection of methamphetamine or amphetamine abuse. Forensic Sci Int 1984;24:9.

109. Lemos NP, Anderson RA, Robertson JR. The analysis of methadone in nail clippings from patients in a methadone-maintenance program. J Anal Toxicol 2000;24:656.

110. Kim JY, Cheong JC, Lee JI, Son JH, In MK. Rapid and simple GC-MS method for determination of psychotropic phenylalkylamine derivatives in nails using micro-pulverized extraction. J Forensic Sci 2012;57:228.

111. Garside D, Ropero-Miller JD, Goldberger BA, Hamilton WF, Maples WR. Identification of cocaine analytes in fingernail and toenail specimens. J Forensic Sci 1998;43:974-9.

112. Lemos NP, Anderson RA, Robertson JR. Nail analysis for drugs of abuse: Extraction and determination of cannabis in fingernails by RIA and GC-MS. J Anal Toxicol 1999;23:147-52.

113. Morini L, Colucci M, Ruberto M, Propri A. Determination of ethyl glucuronide in nails by liquid chromatography tandem mass spectrometry as a potential new biomarker for chronic alcohol abuse and binge drinking behavior. Anal Bioanal Chem 2012;402:1865.

114. Jones J, Jones M, Plate C, Lewis D, Fendrich M, Berger L, et al. Liquid chromatography-tandem mass spectrometry assay to detect ethyl glucuronide in human fingernail: Comparison to hair and gender differences. Am J Anal Chem 2012;3:83.

115. Grover C, Chaturvedi UK, Reddy BS. Role of nail biopsy as a diagnostic tool. Indian J Dermatol Venereol Leprol 2012;78:290-8.

116. Tirado-González M, González-Serva A. The nail plate biopsy may pick up gout crystals and other crystals. Am J Dermatopathol 2011;33:351-3.

117. Al-Delaimy WK, Stamper MJ, Manson JE, Willett WC. Toenail nicotine levels as predictors of coronary heart disease among women. Am J Epidemiol 2008;167:1342-8.

118. Kumar A, Garg S, Hanmandlu M. Biometric authentication using finger nail plates. Expert systems with applications 2014;41:373-86.

119. Garg S, Kumar A, Hanmandlu M. Finger nail plate: A new biometric identifier. Int J Compt Syst Ind Manage Appl 2014;6:126-38.

120. Garg S, Kumar A, Hanmandlu M. Biometric Authentication Using Finger Nail Surface. In Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on 2012 November 27, IEEE; 2012. p. 497-502.

121. Topping A, Kuperschmidt V, Gormley A; Inventors; Topping, Allen, Kuperschmidt, Vladimir, Gormley, Austin, Assignee. Method and Apparatus for the Automated Identification of Individuals by the Nail Beds of their Fingernails. United States Patent US 5,751,835; May 1998.

122. Runne U, Orfanos CE. The human nail: Structure, growth and pathologic changes. Curr Prob Dermatol 2014;159:172-81.

123. Robson JR. Hardness of finger nails in well-nourished and malnourished populations. Br J Nutr 1974;32:389-94.

124. Reyes RA, Romanyukha A, Olsen C, Trompier F, Benevides L.A. Electron paramagnetic resonance in irradiated fingernails: Variability of dose dependence and possibilities of initial dose assessment. Radiat Environ Biophys 2009;48:295-310.

125. Reyes RA, Trompier F, Romanyukha A. Study of the stability of EPR signals after irradiation of fingernail samples. Health Phys 2012;103:175-80.

126. He X, Swarts SG, Demidenko E, Flood AB, Grinberg O, Gui J, et al. Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method. Radiat Prot Dosimetry 2014;159:172-81.

127. Swartz HM, Flood AB, Gougelet RM, Rea ME, Nicolalde RJ, Williams BB, et al. A critical assessment of biodosimetry methods for large-scale incidents. Health Phys 2010;98:95-108.

128. González‑Serva A. The nail plate biopsy may pick up gout crystals and other crystals. Am J Dermatopathol 2011;33:351-3.