Abstract

We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (-1)-homogeneous axisymmetric solutions with non-zero swirl on $S^2 \setminus \{S, N\}$, emanating from the four dimensional solution surface.

1 Introduction

Consider the incompressible stationary Navier-Stokes equations (NSE) in \mathbb{R}^3:

$$\begin{cases}
- \Delta u + u \cdot \nabla u + \nabla p = 0, \\
\text{div } u = 0.
\end{cases} \tag{1}$$

The equations are invariant under the scaling $u(x) \to \lambda u(\lambda x)$ and $p(x) \to \lambda^2 p(\lambda x)$, $\lambda > 0$. We study solutions which are invariant under the scaling. For such solutions u is (-1)-homogeneous and p is (-2)-homogeneous. We call them (-1)-homogeneous solutions according to the homogeneity of u.

We will write the NSE (1) in spherical coordinates (r, θ, ϕ). A vector field u can be written as

$$u = u_r e_r + u_\theta e_\theta + u_\phi e_\phi,$$
where
\[
e_r = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}, \quad e_\theta = \begin{pmatrix} \cos \theta \cos \phi \\ \cos \theta \sin \phi \\ -\sin \theta \end{pmatrix}, \quad e_\phi = \begin{pmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{pmatrix}.
\]
A vector field \(u \) is called axisymmetric if \(u_r, u_\theta \) and \(u_\phi \) are independent of \(\phi \), and is called no-swirl if \(u_\phi = 0 \).

Landau discovered in [3] a three parameter family of explicit (-1)-homogeneous solutions of the stationary NSE (1), which are axisymmetric and with no swirl. These solutions are now called Landau solutions. The NSE (1) in the axisymmetric no-swirl case was converted earlier to an equation of Riccati type by Slezkin in [11]. The Riccati type equation was later independently derived by Yatseyev using a different method in [17], where various exact solutions were given. The Landau solutions were also independently found by Squire in [13]. Tian and Xin proved in [15] that all (-1)-homogeneous, axisymmetric nonzero solutions of (1) in \(C^2(\mathbb{R}^3 \setminus \{0\}) \) are Landau solutions. A classification of all (-1)-homogeneous solutions was given by Šverák in [14]; all (-1)-homogeneous nonzero solutions of (1) in \(C^2(\mathbb{R}^3 \setminus \{0\}) \) are Landau solutions. He also proved in the same paper that there is no nonzero (-1)-homogeneous solution of the stationary NSE in \(C^2(\mathbb{R}^n \setminus \{0\}) \) for \(n \geq 4 \). In dimension \(n = 2 \), he characterized all such solutions satisfying a zero flux condition.

In [10], Serrin modeled the tornado by (-1)-homogeneous axisymmetric solutions of the three dimensional incompressible stationary Navier-Stokes equations in the half space with zero boundary conditions and one singularity on the unit sphere.

More recently, Karch and Pilarczyk showed in [2] that Landau solutions are asymptotically stable under any \(L^2 \) perturbations. Classifications of homogeneous solutions to the 2-dimensional and 3-dimensional stationary Euler equations are studied respectively in [6] by Luo and Shvydkoy, and in [11] by Shvydkoy. More studies on (-1)-homogeneous axisymmetric solutions of the stationary NSE (1) can be found in [1], [7], [8], [9], [10] and [16].

We are interested in analyzing solutions which are smooth on \(S^2 \) minus finite points. We have classified in [1] all axisymmetric no-swirl solutions with one singularity at the south pole. They form a two dimensional surface with boundary in appropriate function spaces. These solutions are among the solutions found in [17], where the solutions were obtained by a different method. It was proved in [4] that there are no other solutions with precisely one singularity at the south pole. It was also proved there that there exists a curve of axisymmetric solutions with nonzero swirl emanating from every point in the interior and one part of the boundary of the surface of no-swirl solutions, while there is no such curve from any point on the other part of the boundary. Uniqueness results of nonzero swirl solutions near the no-swirl solution surface were also given in [4]. Our main result in this paper is the classification of all (-1)-homogeneous, axisymmetric no-swirl solutions of (1) which are smooth on \(S^2 \setminus \{S, N\} \), where \(S \) is the south pole and \(N \) is the north pole. They are identified as a 4-dimensional surface with boundary in appropriate function spaces. We have established smoothness properties of the solutions surface in the four parameters. These properties are used in a subsequent paper [5] where we study the existence of (-1)-homogeneous axisymmetric solutions.
with non-zero swirl on $S^2 \setminus \{S, N\}$, emanating from the 4-dimensional solution surface.

A (-1)-homogeneous axisymmetric vector field u is divergence free if and only if
\begin{equation}
 u_r = -\frac{du_\theta}{d\theta} - u_\theta \cot \theta. \tag{2}
\end{equation}

We work with a new unknown function and a different independent variable:
\begin{equation}
 x := \cos \theta, \quad U_\theta := u_\theta \sin \theta. \tag{3}
\end{equation}

As explained in [4], (u, p) is a (-1)-homogeneous axisymmetric no-swirl solution of (1) if and only if $u_\phi = 0$, u_r is given by (2), p is given by
\begin{equation}
 p = -\frac{1}{2} \left(\frac{d^2 u_r}{d\theta^2} + (\cot \theta - u_\theta) \frac{du_r}{d\theta} + u_r^2 + u_\theta^2 \right), \nonumber
\end{equation}
and U_θ satisfies, for some constants $c_1, c_2, c_3 \in \mathbb{R}$,
\begin{equation}
 (1 - x^2) U'_\theta + 2x U_\theta + \frac{1}{2} U''_\theta = P_c(x) := c_1(1 - x) + c_2(1 + x) + c_3(1 - x^2), \tag{4}
\end{equation}
where "'$'$" denotes differentiation in x, and $c := (c_1, c_2, c_3)$.

For each $c_1 \geq -1$ and $c_2 \geq -1$, define
\begin{equation}
 \tilde{c}_3(c_1, c_2) := -\frac{1}{2} \left(\sqrt{1 + c_1} + \sqrt{1 + c_2} \right) \left(\sqrt{1 + c_1} + \sqrt{1 + c_2} + 2 \right). \tag{5}
\end{equation}

Define
\begin{equation}
 J := \{ c \in \mathbb{R}^3 \mid c_1 \geq -1, c_2 \geq -1, c_3 \geq \tilde{c}_3(c_1, c_2) \}. \nonumber
\end{equation}

Theorem 1.1. There exist $U^+_\theta(c)(x) \in C^0(J \times [-1, 1])$, such that for every $c \in J$, $U^+_\theta(c) \in C^\infty(-1, 1)$ satisfy (4) in $(-1, 1)$, and $U^+_{\theta}(c) \leq U_\theta \leq U^+_{\theta}(c)$ for any solution U_θ of (4) in $(-1, 1)$. Moreover, if $c_3 > \tilde{c}_3(c_1, c_2)$, $U^-_{\theta} < U_{\theta}^+$ in $(-1, 1)$, and if $c_3 = \tilde{c}_3(c_1, c_2)$,
\begin{equation}
 U_{\theta}^+(c) = U_{\theta}^-(c) = U_{\theta}^+(c_1, c_2) := (1 + \sqrt{1 + c_1})(1 - x) + (-1 - \sqrt{1 + c_2})(1 + x). \tag{6}
\end{equation}

Next, for $c \in J$, introduce
\begin{equation}
 \gamma^+(c) := U_{\theta}^+(c)(0), \quad \gamma^-(c) := U_{\theta}^-(c)(0). \nonumber
\end{equation}

Define
\begin{equation}
 I := \{ (c, \gamma) \in \mathbb{R}^4 \mid c_1 \geq -1, c_2 \geq -1, c_3 \geq \tilde{c}_3(c_1, c_2), \gamma^- \leq \gamma \leq \gamma^+(c) \}. \nonumber
\end{equation}

Theorem 1.2. For each (c, γ) in I, equation (4) has a unique solution $U^c_{\theta, \gamma}$ in $C^\infty(-1, 1) \cap C^0[-1, 1]$ satisfying $U^c_{\theta, \gamma}(0) = \gamma$. Moreover, these are all (-1)-homogeneous axisymmetric no-swirl solutions of the Navier-Stokes equations (1) on $S^2 \setminus \{S, N\}$.

3
Clearly, $U_{\theta}^{c,-\gamma}(c) = U_{\theta}^{c,+}(c)$ for $c \in J$. Theorem 1.1 and Theorem 1.2 give a classification of all (-1)-homogeneous axisymmetric, no-swirl solutions of Navier-Stokes equations in $C^2(S^2 \setminus \{S, N\})$. There is a 1-1 correspondence between $U_{\theta}^{c,-\gamma}$ and points in the four dimensional surface I.

Recall that Landau solutions are

$$U_{\theta}(x) = \frac{2(1 - x^2)}{x + \lambda}, \quad |\lambda| > 1,$$

and they correspond to $U_{\theta}^{c,-\gamma}$ with $c = 0$ and $\gamma \in (-2, 2) \setminus \{0\}$.

The solutions in $C^\infty(S^2 \setminus \{S\})$ correspond to $U_{\theta}^{c,-\gamma}$ with $c_2 = 0$, $c_1 = -2c_3$ and $\gamma^- < \gamma < \gamma^+$.

Define

$$\tau_1(c_1) := 2 - 2\sqrt{1 + c_1}, \quad \tau_2(c_1) := 2 + 2\sqrt{1 + c_1}, \quad \tau'_1(c_2) := -2 - 2\sqrt{1 + c_2}, \quad \tau'_2(c_2) := -2 + 2\sqrt{1 + c_2}. \quad (7)$$

Theorem 1.3. Suppose $(c, \gamma) \in I$, then

(i) If $c_3 > c_3(c_1, c_2)$, then $\gamma^- < \gamma^+$, and for any $\gamma^- \leq \gamma < \gamma^+$, $U_{\theta}^{c,-\gamma} < U_{\theta}^{c,+\gamma}$ in $(-1, 1)$. Moreover,

$$\{(x, y) \mid -1 < x < 1, U_{\theta}^{c,-\gamma}(c, \gamma)(x) \leq y \leq U_{\theta}^{c,+\gamma}(c, \gamma)(x)\} = \bigcup_{\gamma \in [\gamma^-, \gamma^+]} \{(x, U_{\theta}^{c,-\gamma}(x)) \mid -1 < x < 1\}.$$

(ii)

$$U_{\theta}^{c,-\gamma}(-1) := \begin{cases} \tau_2(c_1), & \text{when } \gamma = \gamma^+, \\ \tau_1(c_1), & \text{otherwise}, \end{cases} \quad U_{\theta}^{c,+\gamma}(1) := \begin{cases} \tau'_1(c_2), & \text{when } \gamma = \gamma^-, \\ \tau'_2(c_2), & \text{otherwise}. \end{cases}$$

In addition to the continuity of γ^+ and γ^- in J, they have further smoothness properties.

Theorem 1.4. γ^+ is in $C^\infty(J \setminus \{c \mid c_1 = -1\})$, and $\gamma^+(-1, c_2, c_3)$ is in $C^\infty(J \cap \{c \mid c_1 = -1\})$ as a function of (c_2, c_3). γ^- is in $C^\infty(J \setminus \{c \mid c_2 = -1\})$, and $\gamma^-(c_1, -1, c_3)$ is in $C^\infty(J \cap \{c \mid c_2 = -1\})$ as a function of (c_1, c_3).

We also have the smoothness properties of $U_{\theta}^{c,-\gamma}$ in (c, γ). Let the subsets J_k, $1 \leq k \leq 4$, of J be defined as

$$J_1 := \{c \in J \mid c_1 > -1, c_2 > -1, c_3 > \bar{c}_3\}, \quad J_2 := \{c \in J \mid c_1 = -1, c_2 > -1, c_3 > \bar{c}_3\},$$

$$J_3 := \{c \in J \mid c_1 > -1, c_2 = -1, c_3 > \bar{c}_3\}, \quad J_4 := \{c \in J \mid c_1 = -1, c_2 = -1, c_3 > \bar{c}_3\}.$$

We define the following subsets of I: for $1 \leq k \leq 4$, let

$$I_{k,1} := \{(c, \gamma) \in I \mid c \in J_k, \gamma^- < \gamma < \gamma^+(c)\},$$

$$I_{k,2} := \{(c, \gamma) \in I \mid c \in J_k, \gamma = \gamma^+(c)\},$$

$$I_{k,3} := \{(c, \gamma) \in I \mid c \in J_k, \gamma = \gamma^-(c)\}.$$
As mentioned earlier, the following estimates of $U_\theta^{c,\gamma}$ are needed in our next paper on the existence of (-1)-homogeneous axisymmetric solutions of (1) with nonzero swirl on $\mathbb{S}^2 \setminus \{S, N\}$.

Theorem 1.5. Let K be a compact set contained in one of $I_{k,l}$, $1 \leq k \leq 4$, $l = 1, 2, 3$. Then $U_\theta^{c,\gamma}$ is in $C^\infty(K \times (-1, 1))$. Moreover,

(i) If $k = 1$ and $l = 1, 2, 3$, or $(k, l) = (2, 2)$ or $(3, 3)$, then for $-1 < x < 1$,

$$|\partial_\gamma^\alpha \partial^j_\gamma U_\theta^{c,\gamma}(x)| \leq C(m, K), \text{ for any } 0 \leq |\alpha| + j \leq m, \tag{9}$$

where $j = 0$ if $l = 2, 3$; $\alpha_1 = 0$ if $k = 2$; and $\alpha_2 = 0$ if $k = 3$.

(ii) If $(k, l) = (2, 1)$ or $(2, 3)$ or $(4, 3)$, then for $-1 < x < 1$,

$$\left(\ln \frac{1 + x}{3}\right)^2 |\partial_\gamma^\alpha \partial^j_\gamma U_\theta^{c,\gamma}(x)| \leq C(m, K), \text{ for any } 1 \leq |\alpha| + j \leq m, \alpha_1 = 0, \tag{10}$$

where $j = 0$ if $l = 3$, and $\alpha_2 = 0$ if $k = 4$.

(iii) If $(k, l) = (3, 1), (3, 2)$ or $(4, 4)$, then for $-1 < x < 1$,

$$\left(\ln \frac{1 - x}{3}\right)^2 |\partial_\gamma^\alpha \partial^j_\gamma U_\theta^{c,\gamma}(x)| \leq C(m, K), \text{ for any } 1 \leq |\alpha| + j \leq m, \alpha_2 = 0, \tag{11}$$

where $j = 0$ if $l = 2$, and $\alpha_1 = 0$ if $k = 4$.

(iv) If $(k, l) = (4, 1)$, then for $-1 < x < 1$, and for any $1 \leq |\alpha| + j \leq m$, $\alpha_1 = \alpha_2 = 0$,

$$\left(\ln \frac{1 + x}{3}\right)^2 \left(\ln \frac{1 - x}{3}\right)^2 |\partial_\gamma^\alpha \partial^j_\gamma U_\theta^{c,\gamma}(x)| \leq C(m, K). \tag{12}$$

To make the above notations clear, we point out that if $(k, l) = (1, 2)$, estimate (9) means that for any compact set $K_1 \subset J_1$, $\left|\partial_\gamma^\alpha \left(U_\theta^{c,\gamma}(x)\right)\right| \leq C(m, K_1)$. For other $I_{k,l}$ with $l = 2$ or 3, the left hand sides in (9)-(11) are interpreted analogously.

Remark 1.1. The estimates in Theorem 1.5 are optimal in each $I_{k,l}$, see examples in Theorem 3.1 in [4].

Acknowledgment. The work of the second named author is partially supported by NSF grant DMS-1501004.

2 Proof of Theorems

2.1 Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3

As mentioned in Section 1, we work with the function U_θ and the variable x given in (3). As explained in [4], the stationary NSE (1) of (-1)-homogeneous axisymmetric no-swirl solutions can be reduced to (4) for some constants c_1, c_2 and c_3. We will show that the existence of solutions of (4) in $C^1(-1, 1)$ depends on the constants c_1, c_2 and c_3.

Recall the definitions in (7) and (8).
Lemma 2.1. Let \(\delta > 0, U_\theta \in C^1\((-1, -1 + \delta)\) satisfy (4) with \(c_1, c_2, c_3 \in \mathbb{R} \). Then \(c_1 \geq -1 \) and \(U_\theta(-1) := \lim_{x \to -1^+} U_\theta(x) \) exists and is finite. Moreover,

\[U_\theta(-1) = \tau_1(c_1) \quad \text{or} \quad \tau_2(c_1). \]

Proof. By Proposition 7.1 in [4], \(\lim_{x \to -1^+} U_\theta(x) \) exists and is finite and

\[\lim_{x \to -1^+} (1 + x)U'_\theta(x) = 0. \]

Sending \(x \) to \(-1\) in (4) leads to

\[-2U_\theta(-1) + \frac{1}{2}U_\theta(-1)^2 = 2c_1. \]

Thus,

\[c_1 = \frac{1}{4} [U_\theta(-1) - 2]^2 - 1 \geq -1, \]

and \(U_\theta(-1) = \tau_1(c_1) \) or \(\tau_2(c_1). \)

Lemma 2.1'. Let \(\delta > 0, U_\theta \in C^1(1 - \delta, 1) \) satisfy (4) with \(c_1, c_2, c_3 \in \mathbb{R} \). Then \(c_2 \geq -1 \) and \(U_\theta(1) := \lim_{x \to 1^-} U_\theta(x) \) exists and is finite. Moreover,

\[U_\theta(1) = \tau'_1(c_2) \quad \text{or} \quad \tau'_2(c_2). \]

Proof. Consider \(\tilde{U}_\theta(x) := -U_\theta(-x) \), and apply Lemma 2.1 to \(\tilde{U}_\theta \).

Lemma 2.2. If \(|c| \leq A\) for some constant \(A > 0\), then there exists some constant \(C \), depending only on \(A \), such that all \(C^1 \) solutions \(U_\theta \) of (4) in \((-1, 1)\) satisfy

\[|U_\theta(x)| \leq C, \quad -1 < x < 1. \]

Proof. By Lemma 2.1 there is some \(C_1(A) > 0 \), such that \(|U_\theta(\pm 1)| \leq C_1(A)\) for all solutions \(U_\theta \) of (4) in \((-1, 1)\).

If \(\sup_{-1 < x < 1} |U_\theta(x)| \leq 8C_1(A) \), the proof is finished. Otherwise, there exists some \(\bar{x} \in (-1, 1) \) such that \(|U_\theta(\bar{x})| = \max_{-1 \leq x \leq 1} |U_\theta(x)| > 8C_1(A) \). We may assume that \(U_\theta(\bar{x}) > 8C_1(A) \), since the other case can be handled similarly. Then there exists some \(-1 < \tilde{x} < \bar{x} \) such that \(U_\theta(\tilde{x}) = \frac{U_\theta(\tilde{x})}{2} \) and \(U'_\theta(\tilde{x}) \geq 0 \). By equation (4), we have

\[-U_\theta(\bar{x}) + \frac{1}{8}U_\theta^2(\bar{x}) \leq 2\bar{x}U_\theta(\bar{x}) + \frac{1}{2}U'_\theta(\tilde{x}) \leq P_c(\tilde{x}) \leq C_2(A). \]

It follows that \(U_\theta(\bar{x}) \leq C_3(\bar{x}) \). The proof is finished.

Lemma 2.3. Let \(c_1 \geq -1, \tau = \tau_2(c_1) \) or \(\tau = \tau_1(c_1) \not\in \{0, -2, -4, -6, \ldots \} \). Then for every \(c_2, c_3 \in \mathbb{R} \), there exist \(\delta > 0 \) depending only on an upper bound of \(\sum_{i=1}^3 |c_i| \) and a positive lower bound of \(\inf_{k \in \mathbb{N}} |\tau + 2k| \), and a sequence \(\{a_n\}_{n=1}^\infty \) such that

\[|a_n| \leq \left(\frac{1}{2\delta} \right)^n, \]
and

\[U_\theta(x) := \tau + \sum_{n=1}^{\infty} a_n (1 + x)^n \]

is a real analytic solution of \[f \] in \((-1, -1 + \delta)\). Moreover, \(U_\theta \) is the unique real analytic solution of \[f \] in \((-1, -1 + \delta')\) satisfying \(U_\theta(-1) = \tau \) for any \(0 < \delta' \leq \delta \).

Proof of Lemma 2.3 Let \(s = 1 + x \). Rewrite

\[P_e(x) = 2c_1 + (-c_1 + c_2 + 2c_3)(1 + x) - c_3(1 + x)^2 =: \tilde{c}_1 + \tilde{c}_2 s + \tilde{c}_3 s^2. \]

Suppose that \(U_\theta = \tau + \sum_{n=1}^{\infty} a_n s^n \), then \(U'_\theta = \sum_{n=1}^{\infty} na_n s^{n-1} \). Plug them into (4),

\[
\begin{align*}
\text{LHS} & = s(2-s) \sum_{n=1}^{\infty} na_n s^{n-1} + 2(s-1)(\tau + \sum_{n=1}^{\infty} a_n s^n) + \frac{1}{2} (\tau + \sum_{n=1}^{\infty} a_n s^n)^2 \\
& = \frac{1}{2} \tau^2 - 2\tau + ((2 + a_1)\tau) s + \sum_{n=2}^{\infty} ((2n - 2 + \tau) a_n + (3 - n) a_{n-1} + \frac{1}{2} \sum_{k+l=n, k,l \geq 1} a_k a_l) s^n \\
& = \tilde{c}_1 + \tilde{c}_2 s + \tilde{c}_3 s^2 = \text{RHS}.
\end{align*}
\]

Compare coefficients,

- \(n = 0 \), \(\frac{1}{2} \tau^2 - 2\tau = \tilde{c}_1 \), so \(\tau = 2 \pm \sqrt{4 + 2c_1} = \tau_1(c_1) \) or \(\tau_2(c_1) \),
- \(n = 1 \), \((a_1 + 2)\tau = \tilde{c}_2\), so \(a_1 = \frac{\tilde{c}_2}{\tau} - 2\),
- \(n = 2 \), \((2 + \tau) a_2 + a_1 + \frac{1}{2} a_1^2 = \tilde{c}_3\), so \(a_2 = \frac{1}{\tau+2}(\tilde{c}_3 - a_1 - \frac{1}{2} a_1^2) \).

For \(n \geq 3 \),

\[(2n - 2 + \tau) a_n + (3 - n) a_{n-1} + \frac{1}{2} \sum_{k+l=n, k,l \geq 1} a_k a_l = 0.\]

Since for any \(n \geq 1 \), \(\tau \neq -2(n-1) \),

\[a_n = -\frac{1}{2n - 2 + \tau} \left(\frac{1}{2} \sum_{k+l=n, k,l \geq 1} a_k a_l + (3 - n) a_{n-1} \right), \quad (13) \]

it can be seen that \(a_n \) is determined by \(a_1, ..., a_{n-1} \), thus determined by \(c_1, c_2, c_3 \) and \(\tau \).

Claim: there exists some \(a > 0 \) large, depending only on an upper bound of \(\sum_{i=1}^{3} |c_i| \) and a positive lower bound of \(\inf_{k \in \mathbb{N}} |\tau + 2k| \), such that

\[|a_n| \leq a^n. \]

Proof of Claim: Choose \(a > 1 \) large such that for \(1 \leq n \leq 100|\tau| + 100 \), \(|a_n| \leq a^n \).

Now for \(n > 100|\tau| + 100 \), suppose that for \(1 \leq k \leq n - 1 \), \(|a_k| \leq a^k \), then by induction and the recurrence formula (13),

\[|a_n| \leq \frac{2}{3(n-1)} \left| \frac{1}{2} (n-1)a^n + (n-3)a^{n-1} \right| \leq \left(\frac{1}{3} + \frac{2(n-3)}{3(n-1)a} \right) a^n \leq a^n. \]
The claim is proved.

So for $\delta < \frac{1}{a}$, $U_\theta = \tau + \sum_{n=1}^{\infty} a_n s^n$, with $s = 1 + x$, is a real analytic solution of (1) in $(-1, -1 + \delta)$. The uniqueness of U_θ is clear from the proof above.

Lemma 2.3’. Let $c_2 \geq -1$, $\tau' = \tau'_1(c_2)$ or $\tau' = \tau'_2(c_2) \notin \{0, 2, 4, 6, \ldots \}$. Then for every $c_1, c_3 \in \mathbb{R}$, there exist $\delta > 0$, depending only on an upper bound of $\sum_{i=1}^{3} |c_i|$ and a positive lower bound of $\inf_{k \in \mathbb{N}} |\tau' - 2k|$, and a sequence $\{a_n\}_{n=1}^{\infty}$ such that

$$|a_n| \leq \left(\frac{1}{2\delta}\right)^n,$$

and

$$U_\theta(x) := \tau' + \sum_{n=1}^{\infty} a_n (1 - x)^n$$

is a real analytic solution of (4) in $(1 - \delta, 1)$. Moreover, U_θ is the unique real analytic solution of (4) in $(1 - \delta, 1)$ satisfying $U_\theta(1) = \tau'$ for any $0 < \delta' \leq \delta$.

The following two lemmas give some local comparison results.

Lemma 2.4. Suppose $0 < \delta < 2$, $U_\theta, \tilde{U}_\theta \in C^1(-1, -1 + \delta) \cap C^0[-1, -1 + \delta]$ satisfy

$$(1 - x^2)U'_\theta + 2xU_\theta + \frac{1}{2} U^2_\theta \geq (1 - x^2)\tilde{U}'_\theta + 2x\tilde{U}_\theta + \frac{1}{2} \tilde{U}^2_\theta, \quad -1 < x < -1 + \delta.$$

Suppose also that one of the following two conditions holds.

(i) $U_\theta(-1) \geq \tilde{U}_\theta(-1) > 2$.

(ii) $U_\theta(-1) = \tilde{U}_\theta(-1) = 2$, and

$$\limsup_{x \to -1+} \int_{-1+\delta}^{x} \frac{-2 + U_\theta(s)}{1 - s^2} ds < +\infty. \quad (14)$$

Then either

$$U_\theta > \tilde{U}_\theta, \quad \text{in } (-1, -1 + \delta),$$

or there exists $\delta' \in (0, \delta)$ such that

$$U_\theta \equiv \tilde{U}_\theta, \quad \text{in } (-1, -1 + \delta').$$

Proof. Let $g = U_\theta - \tilde{U}_\theta$, then $g(-1) \geq 0$ and g satisfies

$$g' + b(x)g \geq \frac{1}{2(1 - x^2)} g^2 \geq 0, \quad \text{for all } x \in (-1, -1 + \delta), \quad (15)$$

where $b(x)$ is given by

$$b(x) = (1 - x^2)^{-1}(2x + U_\theta). \quad (16)$$

Let

$$w(x) = e^{\int_{-1+\delta}^{x} b(s) ds} g(x).$$

Then w satisfies, using (15), that

$$w'(x) \geq 0 \quad \text{in } (-1, -1 + \delta).$$

8
Under condition either (i) or (ii), we have
\[\limsup_{x \to -1^+} \int_{-1+\delta}^{x} b(s) ds < +\infty. \]
Using this and the fact that \(g(-1) \geq 0 \), we have \(\liminf_{x \to -1^+} w(x) \geq 0 \). Therefore, using (17), we have either \(w > 0 \) in \((-1, -1+\delta)\) or there exists a constant \(\delta' \), \(0 < \delta' < \delta \) such that \(w \equiv 0 \) in \((-1, -1+\delta')\). The lemma is proved.

Corollary 2.1. For \(c_1 > -1, c_2, c_3 \in \mathbb{R} \) and \(0 < \delta < 2 \), there exists at most one solution \(U_\theta \) of (4) in \(C^1(-1, -1+\delta) \) satisfying
\[\lim_{x \to -1^+} U_\theta(x) = \tau_2(c_1). \]

Proof. Since \(\tau_2(c_1) > 2 \) for \(c_1 > -1 \), the uniqueness follows from (i) of Lemma 2.4. \(\square \)

Similarly, we have

Lemma 2.4'. Suppose \(0 < \delta < 2, \ U_\theta, \tilde{U}_\theta \in C^1[1-\delta, 1] \cap C^0[1-\delta, 1] \) satisfy
\[(1-x^2)U'_\theta + 2xU_\theta + \frac{1}{2}U^2_\theta \geq (1-x^2)\tilde{U}'_\theta + 2x\tilde{U}_\theta + \frac{1}{2}\tilde{U}^2_\theta, \quad 1-\delta < x < 1. \]
Suppose also that one of the following two conditions holds.

(i) \(U_\theta(1) \leq \tilde{U}_\theta(1) < -2 \),
(ii) \(U_\theta(1) = \tilde{U}_\theta(1) = -2 \), and
\[\limsup_{x \to 1^-} \int_{1-\delta}^{x} \frac{2 + U_\theta(s)}{1-s^2} ds < +\infty. \]
Then either
\[U_\theta < \tilde{U}_\theta, \quad \text{in \((1-\delta, 1) \),} \]
or there exists \(\delta' \in (0, \delta) \) such that
\[U_\theta \equiv \tilde{U}_\theta, \quad \text{in \((1-\delta', 1) \).} \]

Corollary 2.1'. For \(c_2 > -1, c_1, c_3 \in \mathbb{R} \) and \(0 < \delta < 2 \), there exists at most one solution \(U_\theta \) of (4) in \(C^1(1-\delta, 1) \) satisfying
\[\lim_{x \to 1^-} U_\theta(x) = \tau'_1(c_2). \]

Now we are ready to analyze the global behavior of axisymmetric, no-swirl solutions of NSE (4) in \((-1, 1)\). The behavior of solutions depends closely on parameters \(c_1, c_2, c_3 \in \mathbb{R} \).

Recall the definition of \(\tilde{c}_3(c_1, c_2) \) given by (15), we have
Lemma 2.5. Suppose $c_1 \geq -1$, $c_2 \geq -1$, $c_3 = \bar{c}_3(c_1, c_2)$, then $U_{\theta}^*(c_1, c_2)$ given by (4) is the unique C^1 solution of (3) in $(-1, 1)$. In particular,

$$U_{\theta}^*(c_1, c_2)(-1) = \tau_2(c_1), \quad U_{\theta}^*(c_1, c_2)(1) = \tau_1'(c_2).$$

Proof. A direct calculation shows that $U_{\theta}^* := U_{\theta}^*(c_1, c_2)$ is a C^1 solution of (4) in $(-1, 1)$. It remains to prove the uniqueness.

Let U_{θ} be a C^1 solution of (4) in $(-1, 1)$, $U_{\theta} \neq U_{\theta}^*$. By Lemma 2.1 and Lemma 2.4, U_{θ} can be extended as a function in $C^0[-1, 1]$, $U_{\theta}(-1) \in \{\tau_1(c_1), \tau_2(c_1)\}$, $U_{\theta}(1) \in \{\tau_1'(c_2), \tau_2'(c_2)\}$. By Corollary 2.1 and (ii) of Lemma 2.4, we know that there exists a constant $0 < \delta_1 < \frac{1}{2}$ such that $U_{\theta} < U_{\theta}^*$ in $(-1, -1 + \delta_1)$. Similarly, by Corollary 2.1 and (ii) of Lemma 2.4, we know that there exists a constant $0 < \delta_2 < \frac{1}{2}$ such that $U_{\theta} > U_{\theta}^*$ in $(1 - \delta_2, 1)$. Therefore, there exists a point $\bar{x} \in (-1 + \delta_1, 1 - \delta_2)$ such that $U_{\theta} (\bar{x}) = U_{\theta}^* (\bar{x})$. Standard uniqueness theory of ODE implies that $U_{\theta} \equiv U_{\theta}^*$ in $(-1, 1)$. This is a contradiction.

Lemma 2.6. Suppose $c_1 \geq -1$, $c_2 \geq -1$, $c_3 < \bar{c}_3(c_1, c_2)$, then (4) has no solution in $C^1(-1, 1)$.

Proof. If U_{θ} is a C^1 solution of (4) in $(-1, 1)$. By Lemma 2.1 and Lemma 2.4, U_{θ} can be extended as a function in $C^0[-1, 1]$, $U_{\theta}(-1) \in \{\tau_1(c_1), \tau_2(c_1)\}$, $U_{\theta}(1) \in \{\tau_1'(c_2), \tau_2'(c_2)\}$.

By Lemma 2.5, $U_{\theta}^* := U_{\theta}^*(c_1, c_2)$ is the unique solution of (4) with $c_3 = \bar{c}_3(c_1, c_2)$. Since $c_3 < \bar{c}_3(c_1, c_2)$, $U_{\theta} \neq U_{\theta}^*$ in any open interval in $(-1, 1)$. We first assume that $U_{\theta} (\bar{x}) > U_{\theta}^* (\bar{x})$ at some point $\bar{x} \in (-1, 1)$. Since $c_3 < \bar{c}_3(c_1, c_2)$ we have

$$(1 - x^2)U_{\theta}' + 2xU_{\theta} + \frac{1}{2}U_{\theta}^2 < (1 - x^2)U_{\theta}' + 2xU_{\theta} + \frac{1}{2}(U_{\theta}^*)^2, \quad -1 < x < 1. \quad (18)$$

Since $U_{\theta}(-1) \leq U_{\theta}^* (-1)$, we have, in view of Lemma 2.4, there exists $\delta > 0$ such that $U_{\theta} < U_{\theta}^*$ in $(-1, -1 + \delta)$. Now with $U_{\theta} (\bar{x}) > U_{\theta}^* (\bar{x})$ and $U_{\theta} < U_{\theta}^*$ in $(-1, -1 + \delta)$, there exist a point $\xi \in (-1 + \delta, \bar{x})$ such that

$$U_{\theta}(\xi) = U_{\theta}^*(\xi), \quad U_{\theta}'(\xi) \geq U_{\theta}^{'*}(\xi),$$

which contradicts inequality (18) at ξ.

Similar arguments lead to a contradiction when $U_{\theta} (\bar{x}) < U_{\theta}^* (\bar{x})$ for some $\bar{x} \in (-1, 1)$ by showing $U_{\theta} > U_{\theta}^*$ near $x = 1$. The lemma is proved.

Lemma 2.7. Suppose $c_1 \geq -1$, $c_2 \geq -1$, $c_3 > \bar{c}_3(c_1, c_2)$. Let $U_{\theta}^+(c)$ be the power series solution, obtained in Lemma 2.3 with $U_{\theta}^+(c)(-1) = \tau_2(c_1)$, of (4) in $(-1, -1 + \delta)$, then $U_{\theta}^+(c)$ can be extended to be a solution of (4) in $(-1, 1)$, and $U_{\theta}^+(c)(1) = \tau_1'(c_2)$. Let $U_{\theta}^-(c)$ be the power series solution, obtained in Lemma 2.3 with $U_{\theta}^-(c)(1) = \tau_1'(c_2)$, of (4) in $(-1, -1 + \delta)$, then $U_{\theta}^-(c)$ can be extended to be a solution of (4) in $(-1, 1)$, and $U_{\theta}^-(c)(-1) = \tau_1(c_1)$. Moreover, $U_{\theta}^{-}(c) < U_{\theta}^+(c)$ in $(-1, 1)$.

10
Proof. We only need to prove that $U^{+}_\theta := U^{+}_\theta (c)$ can be extended to be a solution of (1) in $(-1,1)$ and $U^{+}_\theta (1) = \tau'_2(c_2)$, since similar arguments work for $U^{-}_\theta (c)$.

Standard existence theory of ODE implies that U^{+}_θ can be extended to the maximal interval of existence, say $(-1,\xi)$, $\xi \in (-1,\delta,1]$. Since $c_3 > c_3(c_1,c_2)$, we have, with $U^{+}_\theta := U^{+}_\theta (c_1,c_2)$,

$$(1-x^2)U^{+\prime}_\theta + 2xU^{+}_\theta + \frac{1}{2}(U^{+}_\theta)^2 > (1-x^2)U^{\prime}_\theta + 2xU^{*}_\theta + \frac{1}{2}(U^{*}_\theta)^2, \quad -1 < x < \xi.$$

Since $U^{+}_\theta (-1) = U^{*}_\theta (-1) = \tau_2(c_1)$, by Lemma 2.4 and the fact that $U^{+}_\theta , U^{*}_\theta$ can not coincide in any open interval, we have $U^{+}_\theta > U^{*}_\theta$ in $(-1,\xi)$.

If $\xi < 1$, since U^{+}_θ is bounded from below by U^{*}_θ, there exists a sequence of points $\{x_i\}$ satisfying

$$x_1 < x_2 < x_3 < \cdots < \xi, \quad \lim_{i \to \infty} x_i = \xi,$$

$$U^{+}_\theta (x_1) < U^{+}_\theta (x_2) < U^{+}_\theta (x_3) < \cdots, \quad \lim_{i \to \infty} U^{+}_\theta (x_i) = +\infty.$$

Then, in each interval (x_i, x_{i+1}), we can find a point y_i such that

$$x_i < y_i < x_{i+1}, \quad U^{+}_\theta (y_i) \geq U^{+}_\theta (x_i), \quad U^{+\prime}_\theta (y_i) \geq 0.$$

Taking $x = y_i$ in equation (1), and sending i to infinity, we obtain a contradiction. So $\xi = 1$. By Lemma 2.1, $\lim_{r \to 1^+} U^{+}_\theta (x)$ exists and is finite.

We have extended U^{+}_θ to be a solution of (1) in $C^1(-1,1) \cap C^0[-1,1]$ and $U^{+}_\theta > U^{*}_\theta$ in $(-1,1)$.

Similarly, U^{-}_θ can be extended to $C^0[-1,1]$, and $U^{-}_\theta < U^{*}_\theta < U^{+}_\theta$ in $(-1,1)$.

By Lemma 2.1, $U^{+}_\theta (1) \in \{\tau'_1(c_2), \tau'_2(c_2)\}$. If $c_2 = -1$, $\tau'_1(c_2) = \tau'_2(c_2)$, so $U^{+}_\theta (1) = \tau'_2(c_2)$. If $c_2 > -1$, since $U^{-}_\theta (1) = \tau'_1(c_2)$ and $U^{+}_\theta > U^{-}_\theta$ in $(-1,1)$, by Corollary 2.1, we have $U^{+}_\theta (1) = \tau'_2(c_2)$. Similarly, $U^{-}_\theta (-1) = \tau_1(c_1)$. Lemma 2.7 is proved.

Lemma 2.8. Suppose $c_1 \geq -1$, $c_2 \geq -1$, $c_3 > \bar{c}_3(c_1,c_2)$, then any C^1 solution U^{\prime}_θ of (2) in $(-1,1)$ other than $U^{\pm}_\theta (c)$ satisfies

$$U^{-}_\theta (c) < U^{\prime}_\theta < U^{+}_\theta (c), \quad \text{in} (-1,1),$$

$$U^{\prime}_\theta (1) = \tau_1(c_1), \quad U^{\prime}_\theta (1) = \tau'_2(c_2).$$

Proof. By Lemma 2.1 and Lemma 2.1, U^{\prime}_θ can be extended to $C^0[-1,1]$ with $U^{\prime}_\theta (-1) = \tau_1(c_1)$ or $\tau_2(c_1)$, and $U^{\prime}_\theta (1) = \tau'_1(c_2)$ or $\tau'_2(c_2)$.

We only need to prove $U^{\prime}_\theta < U^{+}_\theta (c)$ in $(-1,1)$ and $U^{\prime}_\theta (-1) = \tau_1(c_1)$, since similar arguments imply that $U^{\prime}_\theta > U^{-}_\theta (c)$ in $(-1,1)$ and $U^{\prime}_\theta (1) = \tau'_2(c_2)$.

From the standard uniqueness theory of ODE, we know that the graph of U^{\prime}_θ and $U^{+}_\theta (c)$ can not intersect in $(-1,1)$. So we either have $U^{\prime}_\theta < U^{+}_\theta (c)$ in $(-1,1)$ or $U^{\prime}_\theta > U^{+}_\theta (c)$ in $(-1,1)$.

If $U^{\prime}_\theta > U^{+}_\theta (c)$ in $(-1,1)$, then, by Lemma 2.1, $U^{\prime}_\theta (-1) = U^{+}_\theta (c)(-1) = \tau_2(c_1) \geq 2$. Note that $U^{+}_\theta (c)$ satisfies (1), we can apply Lemma 2.4 to obtain $U^{\prime}_\theta \leq U^{+}_\theta (c)$, a contradiction. So $U^{\prime}_\theta < U^{+}_\theta (c)$ in $(-1,1)$.

If $\tau_1(c_1) < \tau_2(c_1)$, the uniqueness result Corollary 2.1 implies that $U^{\prime}_\theta (1) = \tau_1(c_1)$. If $\tau_1(c_1) = \tau_2(c_1)$, we again have $U^{\prime}_\theta (1) = \tau_1(c_1)$. Lemma 2.8 is proved.

11
Proof of Theorem 1.1 For $c \in J$, if $c_3 = \breve{c}_3$, by Lemma 2.5 $U_\theta^c(c_1, c_2)$ in (1) is the unique solution of (1) in $(-1, 1)$.

If $c_3 > \breve{c}_3$, let $U_\theta^c(c)$ and $U_\theta^c(c)$ be the functions in Lemma 2.7. By Lemma 2.3 Lemma 2.3, Lemma 2.7 and Lemma 2.8, $U_\theta^c(c) \in C^\infty(-1, 1) \cap C^0[-1, 1]$ satisfy (1) in $(-1, 1)$, and $U_\theta^c(c) < U_\theta^c(c)$. Moreover, $U_\theta^c(c) \leq U_\theta^c(c) < U_\theta^c(c)$ for any solution U_θ of (1) in $(-1, 1)$.

Now we prove the continuity of $U_\theta^c(c)(x)$ in (c, x), the same arguments applies to $U_\theta^c(c)$.

For every $(\hat{c}, \hat{x}) \in J \times [-1, 1]$, we prove the continuity of $U_\theta^c(c)$ at (\hat{c}, \hat{x}). By Lemma 2.3 there exists some $\delta > 0$, such that $U_\theta^c(c)(x)$ is continuous in $(B_1(\hat{c}) \cap J) \times [-1, -1 + \delta]$, where $B_1(c)$ is the unit ball in R^3 centered at \hat{c}.

Consider

\[
\begin{align*}
(1 - x^2)U_\theta' + 2xU_\theta + \frac{1}{2}U_\theta^2 &= P_c(x) = c_1(1 - x) + c_2(1 + x) + c_3(1 - x^2), \\
U_\theta(-1 + \frac{\delta}{2}) &= a,
\end{align*}
\]

(19)

for a close to $a_0 := U_\theta^c(c)(-1 + \frac{\delta}{2})$.

By standard ODE theories, for any $0 < \epsilon < 2 - \delta$, there exists some positive constants μ, such that $U_\theta^c(c) \in C((a_0 - \mu, a_0 + \mu) \times (B_1(\hat{c}) \cap J) \times [-1 + \frac{\delta}{2}, 1 - \epsilon])$.

The continuity of $U_\theta^c(c)(x)$ at $\hat{x} = 1$ follows from Lemma 2.11 which will be given later.

Proof of Theorem 1.2 Let $(c, \gamma) \in I$. If $c_3 = \breve{c}_3$, then $\gamma = \gamma^+ = \gamma^-$ by Theorem 1.1 $U_\theta^{\gamma, \gamma} := U_\theta^{\pm}(c)$ given by (1) is the unique solution of (1) satisfying $U_\theta^{\gamma, \gamma}(0) = \gamma$.

If $c_3 > \breve{c}_3(c_1, c_2)$, and $\gamma = \gamma^\pm(c)$, then $U_\theta^{\gamma, \gamma} := U_\theta^c(c)$ is the unique solution of (1) satisfying $U_\theta^{\gamma, \gamma}(0) = \gamma$.

For $c_3 > \breve{c}_3(c_1, c_2)$, and $\gamma^- < \gamma < \gamma^+(c)$, let $U_\theta^{\gamma, \gamma}$ be the unique local solution of (1) satisfying $U_\theta^{\gamma, \gamma}(0) = \gamma$. By standard ODE theory, $U_\theta^{\gamma, \gamma}$ can be extended to a C^∞ solution in $(-1, 1)$ satisfying $U_\theta^- < U_\theta^c < U_\theta^+(c)$.

By Lemma 2.1 and Lemma 2.1, $U_\theta^{\gamma, \gamma}$ can be extend as a function in $C^0[-1, 1]$.

To complete the proof of Theorem 1.2, it remains to show that $\{U_\theta^{\gamma, \gamma} \mid (c, \gamma) \in J\}$ are all the solutions.

For $c \in R^3$, let U_θ^c be a solution of (1) in $(-1, 1)$, By Lemma 2.1 and Lemma 2.1, $c_1 \geq -1$ and $c_2 \geq -1$. Then by Lemma 2.6 $c_3 \geq \breve{c}_3$. So $c \in J$. By Theorem 1.1 we have $U_\theta^- < U_\theta < U_\theta^+(c)$. So $\gamma := U_\theta(0)$ satisfies $\gamma^- \leq \gamma \leq \gamma^+(c)$, and $U_\theta = U_\theta^{\gamma, \gamma}$.

Lemma 2.9. Suppose $c_1 \geq -1$, $c_2 \geq -1$, $c_3 > \breve{c}_3(c_1, c_2)$, then $\gamma^- < \gamma^+(c)$, and the graphs

$K_1(\gamma) := \{ (x, U_\theta^{\gamma, \gamma}(x)) \mid -1 < x < 1 \}$, \quad $\gamma^- \leq \gamma \leq \gamma^+(c),$

foliate the set

$K_2 := \{ (x, y) \mid -1 < x < 1, U_\theta^{\gamma, \gamma^+}(x) \leq y \leq U_\theta^{\gamma, \gamma^-}(x) \}$

12
in the sense that for any \(\gamma, \gamma' \in \mathbb{R}, \gamma^-(c) \leq \gamma < \gamma' \leq \gamma^+(c) \), \(U_{\theta}^{c, \gamma} < U_{\theta}^{c, \gamma'} \) in \((-1, 1)\) and \(K_2 = \bigcup_{\gamma^- \leq \gamma \leq \gamma^+(c)} K_1(\gamma) \). Moreover, \(U_{\theta}^{c, \gamma} \) is a continuous function of \((c, \gamma, x)\) in \(J \times [\gamma^-(c), \gamma^+(c)] \times (-1, 1)\).

Proof. By standard uniqueness theories of ODE,

\[
U_{\theta}^{c, \gamma^-} < U_{\theta}^{c, \gamma} < U_{\theta}^{c, \gamma'} < U_{\theta}^{c, \gamma^+} \quad \text{in} \quad (-1, 1), \quad \text{for} \quad \gamma^- < \gamma < \gamma' < \gamma^+(c).
\]

It is obvious that \(K_1(\gamma) \subseteq K_2 \). On the other hand, let \((x_0, y_0) \in K_2\), so \(-1 < x_0 < 1\) and \(U_{\theta}^{c, \gamma^-}(x_0) < y_0 < U_{\theta}^{c, \gamma^+}(x_0) \). By standard existence and uniqueness theories of ODE, there exists a \(C^1 \) solution \(U_{\theta} \) of (1) in \((-1, 1)\) satisfying \(U_{\theta}(x_0) = y_0 \) and \(U_{\theta}^{c, \gamma^-} < U_{\theta} < U_{\theta}^{c, \gamma^+} \) in \((-1, 1)\). In particular,

\[
\gamma^- = U_{\theta}^{c, \gamma^-}(0) < U_{\theta}(0) < U_{\theta}^{c, \gamma^+}(0) = \gamma^+.
\]

\(U_{\theta} = U_{\theta}^{c, \gamma} \) with \(\gamma = U_{\theta}(0) \) and therefore \(x_0, y_0 \in K_1(\gamma) \). We have proved that \(K_2 = \bigcup_{\gamma^- \leq \gamma \leq \gamma^+} K_1(\gamma) \).

The continuity of \(U_{\theta}^{c, \gamma} \) for \((c, \gamma, x)\) in \(J \times [\gamma^-(c), \gamma^+(c)] \times (-1, 1)\) can be derived from (1), and the continuous dependence of ODE on its boundary conditions.

Proof of Theorem 1.3 Theorem 1.3 follows from Lemma 2.5 - Lemma 2.9

\[\square\]

2.2 Proof of Theorem 1.4 and Theorem 1.5

In the following context, in \(J \cap \{c \in J \mid c_1 = -1\} \), \(U_{\theta}^+(c) = U_{\theta}^+(-1, c_2, c_3) \) is viewed as a function of \((c_2, c_3)\), and \(\partial^\alpha U_{\theta}^+(c)(x) \) means \(\partial^\alpha_{(c_2, c_3)} U_{\theta}^+(c)(x) \). In \(J \cap \{c_1 = -1\} \), \(U_{\theta}^-(c) = U_{\theta}^-(c_1, -1, c_3) \) is viewed as a function of \((c_1, c_3)\), and \(\partial^\alpha U_{\theta}^-(c)(x) \) means \(\partial^\alpha_{(c_1, c_3)} U_{\theta}^-(c)(x) \).

Lemma 2.10. For any integer \(m \geq 0 \), and any compact subset \(K \) contained in either \(J \setminus \{c \mid c_1 = -1\} \) or \(J \setminus \{c \in J \mid c_1 = -1\} \), there exist some positive constants \(\delta \) and \(C \), depending only on \(m \) and \(K \), such that \(U_{\theta}^+(c) \in C^m(K \times (-1, -1 + \delta)) \), and

\[
|\partial^\alpha U_{\theta}^+(c)(x)| \leq C, \quad x \in (-1, -1 + \delta), c \in K, |\alpha| \leq m. \tag{20}
\]

Proof. Let \(\alpha = (\alpha^1, \alpha^2, \alpha^3) \) denote a multi-index where \(\alpha^i \geq 0, i = 1, 2, 3 \). The partial derivative \(\partial^\alpha = \partial^\alpha_{c_1} \partial^\alpha_{c_2} \partial^\alpha_{c_3} \) and the absolute value \(|\alpha| = \sum_{i=1}^3 \alpha^i \).

By Lemma 2.5 and its proof, there exists \(\delta > 0 \), depending only on \(K \), such that for \(c \in K, U_{\theta}^+(c) \) can be expressed as

\[
U_{\theta}^+(c)(x) = \tau + \sum_{n=1}^{\infty} a_n (1 + x)^n, -1 < x < -1 + \delta,
\]

where

\[
\tau = \tau_2(c_1) = 2 + 2\sqrt{1 + c_1},
\]

13
\[a_1 = \frac{-c_1 + c_2 + 2c_3}{\tau} - 2, \quad a_2 = \frac{-1}{\tau + 2}(c_3 + a_1 + \frac{1}{2}a_1^2), \]
(21)

\[a_n = -\frac{1}{2n - 2 + \tau} \left(\frac{1}{2} \sum_{k+l=n, k,l \geq 1} a_k a_l + (3-n)a_{n-1} \right), \quad n \geq 3, \]
(22)

and

\[|a_n| \leq \left(\frac{1}{2\delta} \right)^n. \]
(23)

Estimate (23) guarantees that the power series expansion of \(U^+_\theta(c)(x) \) is uniformly convergent in \((-1, -1 + \delta)\).

By the above expressions and relations it can be seen that \(\tau(c) \) and \(a_n(c) \) are all \(C^\infty \) functions of \(c \) in \(J \). So to prove the lemma, we just need to show that there exists some \(\delta' > 0 \), depending only on \(m \) and \(K \), such that for any multi-index \(\alpha \) satisfying \(1 \leq |\alpha| \leq m \), the series

\[\frac{\partial^{\alpha} \tau}{\partial c^{\alpha}} + \sum_{n=1}^{\infty} \frac{\partial^{\alpha} a_n}{\partial c^{\alpha}} (1 + x)^n \]
(24)

is absolutely convergent in \((-1, -1 + \delta')\) uniformly for \(c \in K \).

Case 1: \(K \subset J \setminus \{ c \mid c_1 = -1 \} \).

Let \(C(m, K) \) be a constant depending only on \(m \) and \(K \) which may vary from line to line. If \(K \) is a compact set in \(J \setminus \{ c \mid c_1 = -1 \} \), there exists some constant \(\delta_1(K) > 0 \), such that \(4 + 4c_1 \geq \delta_1(K) \). Using this, (21), (22), and the fact that \(\tau > 2 \), we have

\[\left| \frac{\partial^{\alpha} \tau}{\partial c^{\alpha}} \right| \leq C(m, K), \quad \left| \frac{\partial^{\alpha} a_n}{\partial c^{\alpha}} \right| \leq C(m, K), \quad \forall 1 \leq n \leq 2, 0 \leq |\alpha| \leq m, c \in K. \]
(25)

Next, let \(g_n(c) := \frac{1}{2n - 2 + \tau} \). By the above estimates and the fact that \(\tau > 2 \), we have

\[\left| \frac{\partial^{\alpha} g_n}{\partial c^{\alpha}} \right| \leq \frac{C(m, K)}{n}, \quad \text{for all } 1 \leq |\alpha| \leq m, c \in K, \text{ and } n \geq 1. \]
(26)

To prove the existence of \(\delta' \) such that the series in (24) is convergent for all \(1 \leq |\alpha| \leq m \) uniformly in \(K \), we will only need to show the following:

Claim: there exists some \(a > 0 \), depending only on \(m \) and \(K \), such that

\[(P_n): \quad |\partial^{\alpha} a_n(c)| \leq a^{n(|\alpha|+1)}, \quad \text{for } 1 \leq |\alpha| \leq m, \text{ and } c \in K \]

holds for all \(n \geq 1 \).

Proof of Claim: We prove it by induction on \(n \). Let \(a \) be a constant to be determined in the proof.

By estimate (25), there exists some constant \(\tilde{a} \), depending only on \(m \) and \(K \), such that for all \(a \geq \tilde{a} \), \((P_1)\) and \((P_2)\) hold. We may assume that \(\tilde{a} \geq \frac{1}{2\delta} \) so that we know from (23) that

\[|a_n(c)| \leq \tilde{a}^n, \]
(27)
for all \(c \in K \) and \(n \geq 1 \).

Now for \(n \geq 3 \), suppose that for some \(a \geq \bar{a} \), \((P_k)\) holds for all \(1 \leq k \leq n - 1 \). Let \(Q_n(c) := \sum_{k+l=n, k,l \geq 1} a_k a_l \). Then (22) can be written as

\[
a_n = -\frac{1}{2} g_n Q_n + (n - 3) g_n a_{n-1}.\]

So

\[
\partial^\alpha a_n = -\frac{1}{2} \partial^\alpha (g_n Q_n) + (n - 3) \partial^\alpha (g_n a_{n-1}). \tag{28}
\]

Using (26), by computation we have

\[
|\partial^\alpha (g_n Q_n)| \leq C(m, K) \max_{\alpha_1 \leq \alpha} |\partial^\alpha_1 Q_n|.
\]

Let \(a \geq \bar{a} \), using the definition of \(Q_n(c) \), by induction we have that,

\[
|\partial^\alpha (g_n Q_n)| \leq C(m, K) \max_{\alpha_1 \leq \alpha} \max_{\alpha_2 \leq \alpha_1} \sum_{k+l=n, k,l \geq 1} a_k a_l |\partial^{\alpha_1 - \alpha_2} a_k|,
\]

\[
\leq C(m, K) \max_{\alpha_1 \leq \alpha} \max_{\alpha_2 \leq \alpha_1} a_k^{(|\alpha_2|+1)} a_l^{(|\alpha_1 - \alpha_2|+1)} \leq C(m, K) a^n |\alpha|+1.
\]

Similarly, by (26), (27) and the induction hypothesis, we have

\[
|\partial^\alpha (g_n a_{n-1})| \leq C(m, K) a^{(n-1)|\alpha|+1}, \tag{30}
\]

Plug (29) and (30) in (28), we have that for \(|\alpha| \geq 1\),

\[
|\partial^\alpha a_n| \leq C(m, K) a^{n(|\alpha|+1)}-1.
\]

If from the beginning we use \(a = \max \{\bar{a}, C(m, K)\} \) for the induction hypothesis, we have

\[
|\partial^\alpha a_n| \leq a^{n(|\alpha|+1)}.
\]

So the claim is true for all \(n \). The lemma is proved for \(K \subset J \setminus \{c \mid c_1 = -1\} \).

Case 2: \(K \subset J \cap \{c \mid c_1 = -1\} \).

In this case \(\tau = 2 \) and \(g_n(c) \) is a constant in \(K \). By similar arguments as in Case 1, we have the same estimate for \(a_n \) and the proof is finished.

Corollary 2.2. For any \(K \subset J \setminus \{c \mid c_1 = -1\} \) or \(J \cap \{c \mid c_1 = -1\} \), \(U_\theta^+(c) \in C^\infty(K \times (-1,1)) \). Moreover, for any \(\epsilon > 0 \), \(m \in \mathbb{N} \), there exists some positive constant \(C \), depending only on \(m, K, \) and \(\epsilon \), such that

\[
||\partial^\alpha U_\theta^+(c)||_{L^\infty(-1,1-\epsilon)} \leq C(m, K, \epsilon), \quad 0 \leq |\alpha| \leq m. \tag{31}
\]
Proof. We know that $U_\theta^+(c)$ satisfies (41) in $(-1,1)$ and $||U_\theta^+||_{L^\infty(-1,1)} \leq C$, where C depends only on K. By Lemma 2.10 for any positive integer m, there exist some positive constants δ and C, depending only on m and K, such that $U_\theta^+(c) \in C^m(K \times (-1,1))$ and θ holds.

Consider (19) for a close to $a_0 := U_\theta^+(c)(-1 + \frac{\delta}{2})$. By standard ODE theories, for any $0 < \epsilon < 2 - \delta$, there exist some positive constants μ and C, depending on m, K and ϵ, such that if $|a - a_0| < \mu$, then there exists a solution $U_\theta > C^m((a_0 - \mu, a_0 + \mu) \times K \times [-1 + \frac{\delta}{4}, 1 - \epsilon])$ of (19), and

$$|\partial_\theta^\alpha \partial_\epsilon^\beta U_\theta| \leq C, \quad |\beta|, |\alpha| \leq m, c \in K, -1 + \frac{\delta}{4} < x < 1 - \epsilon.$$

It follows, also in view of (20), that $U_\theta^+(c) = U_\theta|_{a=a_0}$ satisfies (31). \Box

Similarly to Lemma 2.10 and Corollary 2.2 we have

Lemma 2.10'. For any integer $m \geq 0$, and any compact set K contained in either $J \setminus \{c \in J \mid c_2 = -1\}$ or $J \cap \{c \in J \mid c_2 = -1\}$, there exist some positive constants δ and C, depending only on m and K, such that $U_\theta^-(c) \in C^m(K \times (1 - \delta, 1))$, and

$$|\partial_\theta^\alpha \partial_\epsilon^\beta U_\theta| \leq C, \quad x \in (1 - \delta, 1), c \in K, |\alpha| \leq m.$$

Corollary 2.2'. For any $K \subset J \setminus \{c \in J \mid c_2 = -1\}$ or $J \cap \{c \in J \mid c_2 = -1\}$, $U_\theta^- \in C^\infty(K \times (-1,1))$. Moreover, for any $\epsilon > 0$, $m \in \mathbb{N}$, there exists some positive constant C, depending only on m, K, and ϵ, such that

$$||\partial_\theta^\alpha \partial_\epsilon^\beta U_\theta^-||_{L^\infty(-1+\epsilon,1)} \leq C, \quad 0 \leq |\alpha| \leq m.$$

Theorem 1.3 can be obtained from Corollary 2.2 and Corollary 2.2.

To prove Theorem 1.3, we make the following observations.

By Corollary 2.2 and Corollary 2.2, we know that for $1 \leq k \leq 4$ and $l = 2,3$, $U_\theta^+(c)$ and $U_\theta^-(c)$ are smooth in $I_{k,l}$. Here the smoothness means $U_\theta^+(c)$ and $U_\theta^-(c)$ are smooth restricted to each $I_{k,l}$.

By standard ODE theory, since U_θ satisfies (41), it is smooth in $I_{k,1}$ for each $1 \leq k \leq 4$. So a solution U_θ of the initial value problem

$$\begin{cases}
(1 - x_2)U_\theta' + 2xU_\theta + \frac{1}{2}U_\theta'' = P_c(x),
-1 < x < 1,
U_\theta(0) = \gamma,
\end{cases}$$

(32)

is smooth with respect to (c, γ) in each $I_{k,l}$, $1 \leq k \leq 4, 1 \leq l \leq 3$. It remains to prove the estimates (i)-(iv) in Theorem 1.3.

We first make some estimates about the solutions U_θ of (32).

Recall that for each $(c, \gamma) \in I$, there is a solution $U_\theta = U_\theta^{c,\gamma}$ satisfying (32).

Lemma 2.11. Let K be a compact subset of $I \setminus \{(c, \gamma) \mid \gamma = \gamma^+(c)\}$. Then for any $\epsilon > 0$, there exists some $\delta > 0$, depending only on ϵ and K, such that for any $(c, \gamma) \in K$,

$$|U_\theta^{c,\gamma}(x) - U_\theta^{c,\gamma}(-1)| < \epsilon, \quad -1 < x < -1 + \delta.$$

16
Proof. We prove it by contradiction. Suppose the contrary, there exist some $\epsilon > 0$ and a sequence $(c^i, \gamma^i) \in K$ and $-1 < x_i < -1 + \frac{1}{j}$, such that

$$|U^c_{\theta} \gamma^i(x_i) - U^c_{\theta} \gamma^i(-1)| \geq \epsilon.$$

Since K is compact, there exist a subsequence, still denoted as (c^i, γ^i), and some $(c, \gamma) \in K$, such that $(c^i, \gamma^i) \to (c, \gamma)$ as $i \to \infty$.

Denote $U^c_{\theta} = U^c_{\theta} \gamma^i$. By standard ODE theory, we have that $U^c_{\theta} \to U^c_{\theta} := U^c_{\theta} \gamma$ in $C^1_{loc}(-1, 1)$. We first assume that

$$U^c_{\theta}(x_i) \geq U^c_{\theta}(-1) + \epsilon. \quad (33)$$

Since $(c, \gamma), (c^i, \gamma^i) \in K$, we have $\gamma < \gamma^+(c)$ and $\gamma^i < \gamma^+(c^i)$. Then, by Theorem 1.3 (ii), $U^c_{\theta}(-1) = 2 - 2\sqrt{1 + c_1}$ and $U^c_{\theta}(-1) = 2 - 2\sqrt{1 + c_1}$.

Since $c^i \to c$, we have $U^c_{\theta}(-1) \to U^c_{\theta}(-1)$, and therefore for sufficiently large i,

$$U^c_{\theta}(x_i) > U^c_{\theta}(-1) + \frac{\epsilon}{2}. \quad (34)$$

Case 1: $U^c_{\theta}(-1) < 2$.

There exists some $\epsilon_1 > 0$, such that $U^c_{\theta}(-1) + 3\epsilon_1 < \min\{2, U^c_{\theta}(-1) + \frac{\epsilon}{2}\}$. For sufficiently large i we have $U^c_{\theta}(-1) < 2 - \epsilon_1$. Since $U^c_{\theta} \to U^c_{\theta}$ in $C^1_{loc}(-1, 1)$, we have

$$\lim_{i \to \infty} U^c_{\theta}(-1 + \frac{1}{j}) = U^c_{\theta}(-1 + \frac{1}{j}).$$

By the continuity of U^c_{θ},

$$\lim_{j \to \infty} U^c_{\theta}(-1 + \frac{1}{j}) = U^c_{\theta}(-1).$$

Thus for large j, there exists $i_j \geq j$, such that $-1 < x_i < -1 + \frac{1}{j}$ and

$$U^c_{\theta}(-1 + \frac{1}{j}) \leq U^c_{\theta}(-1 + \frac{1}{j}) + \frac{\epsilon_1}{10} \leq U^c_{\theta}(-1) + 2\epsilon_1.$$

By (33), $U^c_{\theta}(x_{i_j}) > U^c_{\theta}(-1) + 2\epsilon_1$.

Choose $\tilde{x}_{i_j} \in (x_{i_j}, -1 + \frac{1}{j})$, satisfying

$$U^c_{\theta}(\tilde{x}_{i_j}) = U^c_{\theta}(-1) + 2\epsilon_1 \leq 2 - \frac{\epsilon_1}{2} \quad \text{and} \quad (U^c_{\theta})'(\tilde{x}_{i_j}) \leq 0.$$

Plugging U^c_{θ} and \tilde{x}_{i_j} in $(\ref{eq:energy})$, using the above, we have

$$2\tilde{x}_{i_j} U^c_{\theta}(\tilde{x}_{i_j}) + \frac{1}{2} (U^c_{\theta})^2(\tilde{x}_{i_j}) \geq P_{c^i}(\tilde{x}_{i_j}). \quad (35)$$

Sending $j \to \infty$ in (35) leads to

$$h(\xi) := -2\xi + \frac{1}{2} \xi^2 \geq P_c(-1),$$

17
where $\xi := U_\theta(-1) + 2\epsilon_1 \in (U_\theta(-1), 2)$.

Since $h(s)$ is a decreasing function when $s \leq 2$, we have

$$h(\xi) < h(U_\theta(-1)) = P_c(-1),$$

a contradiction.

Case 2: $U_\theta(-1) = 2$.

By (34) and the convergence of $U_i^\theta(-1)$ to $U_\theta(-1)$, we may choose $\tilde{x}_i \in (-1, x_i)$ satisfying

$$U_\theta^i(\tilde{x}_i) = U_\theta(-1) + \frac{\epsilon}{4} = 2 + \frac{\epsilon}{4}, \text{ and } (U_\theta^i)'(\tilde{x}_i) \geq 0.$$

Plugging U_θ^i and \tilde{x}_i in (4), using the above, we have

$$2\tilde{x}_i U_\theta^i(\tilde{x}_i) + \frac{1}{2}(U_\theta^i(\tilde{x}_i))^2 \leq P_c(\tilde{x}_i).$$

Sending $i \to \infty$, the above leads to

$$h(2) < h(2 + \frac{\epsilon}{4}) \leq P_c(-1) = h(U_\theta(-1)) = h(2),$$

a contradiction.

Now, if instead of (33),

$$U_\theta^i(x_i) \leq U_\theta^i(-1) - \epsilon,$$

then for sufficiently large i, we have

$$U_\theta^i(x_i) < U_\theta(-1) - \frac{\epsilon}{2}.$$

As in the proof of Case 1, there exists $\tilde{x}_{ij} \to -1$, such that

$$U_\theta^{ij}(\tilde{x}_{ij}) = U_\theta(-1) - \frac{\epsilon}{2} =: \xi, \text{ and } (U_\theta^{ij})'(\tilde{x}_{ij}) \geq 0.$$

Plugging U_θ^{ij} and \tilde{x}_{ij} in (4), using the above, we have

$$2\tilde{x}_{ij} U_\theta^{ij}(\tilde{x}_{ij}) + \frac{1}{2}(U_\theta^{ij}(\tilde{x}_{ij}))^2 \leq P_c^{ij}(\tilde{x}_{ij}).$$

Sending $j \to \infty$ in the above leads to

$$h(\xi) := -2\xi + \frac{1}{2}\xi^2 \leq P_c(-1).$$

Since $h(s)$ is a decreasing function when $s \leq 2$, we have

$$h(\xi) > h(U_\theta(-1)) = P_c(-1),$$

a contradiction.

Similarly we have
Lemma 2.11’. Let \(K \) be a compact subset of \(I \setminus \{(c, \gamma) \mid \gamma = \gamma^-(c)\} \). Then for any \(\epsilon > 0 \), there exists some \(\delta > 0 \), depending only on \(\epsilon \) and \(K \), such that for any \((c, \gamma) \in K \),

\[
|U^c_{\theta} - U^c_{\theta}(1)| < \epsilon, \quad 1 - \delta < x < 1.
\]

Proof. For convenience, let us denote \(U_{\theta} = U^c_{\theta} \), \(\alpha_0 = \sqrt{1 + \alpha_1} \), \(\tau_1 = \tau_1(c_1) = 2 - 2\sqrt{1 + \alpha_1} \), and \(\tau_2 = \tau_2(c_1) = 2 + 2\sqrt{1 + \alpha_1} \). Since \(\gamma < \gamma^+(c) \), \(U^c_{\theta}(1) = \tau_1 \).

By Lemma 2.11, there exists some \(\delta \), such that for any \((c, \gamma) \in K \),

\[
|U^c_{\theta}(x) - U^c_{\theta}(1)| \leq C|1 + x|^{\min\{\sqrt{1 + \alpha_1}, 1\} - \epsilon}, \quad -1 < x < -1 + \delta.
\]

Lemma 2.12. Let \(K \) be a compact subset of \(I \setminus \{(c, \gamma) \mid c_1 = -1 \text{ or } \gamma = \gamma^+(c)\} \). Then for any \(\epsilon > 0 \), there exist some positive constants \(\delta \) and \(C \), depending only on \(\epsilon \) and \(K \), such that for any \((c, \gamma) \in K \),

\[
|U^c_{\theta}(x) - U^c_{\theta}(1)| \leq C(1 - x)^{\min\{1 + \alpha_2, 1\} - \epsilon}, \quad 1 - \delta < x < 1.
\]

Proof. For convenience, let us denote \(U_{\theta} = U^c_{\theta} \), \(\alpha_0 = \sqrt{1 + \alpha_1} \), \(\tau_1 = \tau_1(c_1) = 2 - 2\sqrt{1 + \alpha_1} \), and \(\tau_2 = \tau_2(c_1) = 2 + 2\sqrt{1 + \alpha_1} \). Since \(\gamma < \gamma^+(c) \), \(U^c_{\theta}(1) = \tau_2 \).

By Lemma 2.11, there exists some \(\delta = \delta(\epsilon, K) > 0 \), such that \(|U_{\theta}(x) - \tau_1| < \epsilon \) for all \(x \in (-1, -1 + \delta) \). By Lemma 2.2, \(|U_{\theta}(x)| \leq C(K) \) and therefore \(|h(x)| \leq C(K)(1 + x) \) for \(x \in (-1, 1) \). So for all \(x \in (-1, -1 + \delta) \),

\[
w < \int_{-1+\delta}^{x} \frac{\tau_1 - \tau_2 - \epsilon}{2(1 - s^2)} ds + C(K) \leq (-\alpha_0 - \frac{\epsilon}{4}) \ln(1 + x) + C(\epsilon, K),
\]

and

\[
w > \int_{-1+\delta}^{x} \frac{\tau_1 - \tau_2 + \epsilon}{2(1 - s^2)} ds - C(K) \geq (-\alpha_0 + \frac{\epsilon}{4}) \ln(1 + x) - C(\epsilon, K).
\]

Thus

\[
e^w \leq C(\epsilon, K)(1 + x)^{-\alpha_0 - \frac{\epsilon}{4}}, \quad e^{-w} \leq C(\epsilon, K)(1 + x)^{\alpha_0 - \frac{\epsilon}{4}}.
\]

Plugging this into (36), we have

\[
|U_{\theta} - \tau_1| \leq C(\epsilon, K)(1 + x)^{\alpha_0 - \frac{\epsilon}{4}} + C(\epsilon, K)(1 + x), \quad -1 < x < -1 + \delta.
\]

Lemma 2.12’. Let \(K \) be a compact subset of \(I \setminus \{(c, \gamma) \mid c_2 = -1 \text{ or } \gamma = \gamma^+(c)\} \). Then for any \(\epsilon > 0 \), there exists some positive constants \(\delta \) and \(C \), depending only on \(\epsilon \) and \(K \), such that for any \((c, \gamma) \in K \),

\[
|U^c_{\theta}(x) - U^c_{\theta}(1)| \leq C(1 - x)^{\min\{1 + \alpha_2, 1\} - \epsilon}, \quad 1 - \delta < x < 1.
\]
Lemma 2.13. Let K be a compact subset of $I \cap \{(c, \gamma) \mid c_1 = -1, \gamma < \gamma^+(c)\}$. Then for any $\epsilon > 0$, there exists some $\delta > 0$, depending only on ϵ and K, such that for any $(c, \gamma) \in K$,

$$|(U_{\theta}^{c, \gamma} - 2) \ln \left(\frac{1 + x}{3}\right) - 4| < \epsilon, \quad -1 < x < -1 + \delta.$$

Proof. If $U_{\theta} := U_{\theta}^{c, \gamma}$ is a solution of (32) with $(c, \gamma) \in I$, $c_1 = -1$, and $\gamma < \gamma^+(c)$, we have $U_{\theta}(-1) = 2$. Denote

$$g := g^{c, \gamma} = (U_{\theta} - 2) \ln \left(\frac{1 + x}{3}\right), \quad -1 < x < 0.$$

Then by Theorem 1.3 in [4], $g(-1) = 4$, $g(x)$ satisfies

$$(1 - x^2) \ln \left(\frac{1 + x}{3}\right) g' - (1 - x)g + \frac{1}{2}g^2 = H_{c, \gamma}(x) := (P_c(x) - 2(1 + x)U_{\theta} + 2) \left(\ln \frac{1 + x}{3}\right)^2. \quad (37)$$

We prove the lemma by contradiction. Assume there exist some $\epsilon > 0$ and a sequence $(c^i, \gamma^i) \in K$ and $-1 < x_i < -1 + \frac{1}{i}$, such that

$$|g^{c^i, \gamma^i}(x_i) - g^{c^i, \gamma^i}(-1)| = |g^{c^i, \gamma^i}(x_i) - 4| \geq \epsilon.$$

Since K is compact, there exist a subsequence, still denoted as (c^i, γ^i), and some $(c, \gamma) \in K$, such that $(c^i, \gamma^i) \to (c, \gamma)$ as $i \to \infty$.

Denote $g_i := g^{c^i, \gamma^i}$. By standard ODE theory, we have that $g_i \to g := g^{c, \gamma}$ in $C^1_{loc}(-1, 1)$. As explained earlier, $g(-1) = 4$.

We first assume that

$$g_i(x_i) \geq 4 + \epsilon. \quad (38)$$

Using this and the fact that $g_i \to g$ in $C^1_{loc}(-1, 1)$, by similar arguments as in the proof of Lemma 2.11, we have that there exist $x_i \leq \tilde{x}_i \to -1$, such that

$$\xi_i := g_i(\tilde{x}_i) = 4 + \frac{\epsilon}{\sqrt{i}} =: \xi, \text{ and } g'_i(\tilde{x}_i) \leq 0.$$

Let $h(s) := -2s + \frac{1}{2}s^2$. By (37) we have that

$$-(1 - \tilde{x}_i)g_i(\tilde{x}_i) + \frac{1}{2}g_i^2(\tilde{x}_i) \leq H_{c^i, \gamma^i}(\tilde{x}_i).$$

Sending $i \to \infty$, we have

$$h(\xi) \leq H_{c, \gamma}(-1) = 0.$$

On the other hand, since $\xi > 0$, so $h(\xi) > 0$. A contradiction.

Now if instead of (38), we have

$$g_i(x_i) \leq 4 - \epsilon.$$

Without loss of generality, we assume that $0 < \epsilon < 1$. As in Case 1 of the proof of Lemma 2.11, there exists $\tilde{x}_{ij} \to -1$, such that

$$g_i(\tilde{x}_{ij}) = 4 - \frac{\epsilon}{\sqrt{i}} =: \xi, \text{ and } g'_i(\tilde{x}_{ij}) \geq 0.$$

20
By (37) we have that

\[-(1 - \tilde{x}_{ij})g_{ij}(\tilde{x}_{ij}) + \frac{1}{2}g_{ij}^2(\tilde{x}_{ij}) \geq H_{c_{ij},\gamma_{ij}}(\tilde{x}_{ij}).\]

Sending \(i \to \infty\), we have

\[h(\xi) \geq H_{c,\gamma}(-1) = 0.\]

On the other hand, since \(3 < \xi < 4\), so \(h(\xi) < h(4) = 0\). A contradiction. \(\square\)

Similarly, we have

Lemma 2.13'. Let \(K\) be a compact subset of \(I \cap \{(c, \gamma) \mid c_2 = -1, \gamma > \gamma^-(c)\}\). Then for any \(\varepsilon > 0\), there exists some \(\delta > 0\), depending only on \(\varepsilon\) and \(K\), such that for any \((c, \gamma) \in K\),

\[|(U_0^{c,\gamma} + 2) \ln \left(\frac{1 - x}{3}\right) + 4| < \varepsilon, \quad 1 - \delta < x < 1.\]

The next lemma strengthens Lemma 2.13.

Lemma 2.14. Let \(K\) be a compact subset of \(I \cap \{(c, \gamma) \mid c_1 = -1, \gamma < \gamma^+(c)\}\). Then for any \(\varepsilon > 0\), there exists some positive constants \(\delta\) and \(C\), depending only on \(\varepsilon\) and \(K\), such that for any \((c, \gamma) \in K\),

\[|U_0^{c,\gamma}(x) - 2 - \frac{4}{\ln \frac{1 + x}{3}}| \leq C \left| \ln \frac{1 + x}{3} \right|^{-2+\varepsilon}, \quad -1 < x < -1 + \delta.\]

Proof. For convenience let us denote \(U_0 = U_0^{c,\gamma}\). Let \(V := U_0 - 2 - \frac{4}{\ln \frac{1 + x}{3}}\). Then \(V\) satisfies the equation

\[(1 - x^2)V' + \frac{4}{\ln \frac{1 + x}{3}}V + \frac{1}{2}V^2 = h(x),\]

where \(h := P_c(x) - P_c(-1) - \frac{4(1+x)}{(\ln \frac{1 + x}{3})^2} - 2(1 + x)V - 4(1 + x) - \frac{8(1+x)}{\ln \frac{1 + x}{3}}.\) We have, using Lemma 2.11 that there exists some \(\delta = \delta(c, K)\), such that \(|h| \leq C(c, K)(1 + x)\) for all \(x \in (-1, -1 + \delta)\).

Let \(w := \int_{-1}^{x} \frac{1}{2}V' + \frac{4}{\ln \frac{1 + x}{3}} ds\). We have

\[V = V \left(-\frac{1}{2}\right) e^{-w} + e^{-w} \int_{-1}^{x} e^{w} \frac{h}{1 - s^2} ds. \tag{39}\]

Since \(V \left(-\frac{1}{2}\right) = U_0 \left(-\frac{1}{2}\right) - 2 + \frac{4}{\ln 2}\), we have \(|V \left(-\frac{1}{2}\right)| \leq C(K)\). By Lemma 2.13 making \(\delta = \delta(c, K) > 0\) smaller if necessary, we have \(|(U_0 - 2) \ln \frac{1 + x}{3} - 4| < \varepsilon\), i.e. \(|V| \leq \frac{\varepsilon}{\ln \frac{1 + x}{3}}\), for all \(-1 < x < -1 + \delta\). We also have \(|h| \leq C(c, K)(1 + x)\) for all \(x \in (-1, -1 + \delta)\). Thus for all \(-1 < x < -1 + \delta < -\frac{1}{2}\), we have

\[w \leq C(c, K) + \int_{-1+\delta}^{x} \frac{4 + \frac{5}{2}}{(1 - s^2) \ln \frac{1 + x}{3}} \leq C(c, K) + (2 + \varepsilon) \ln \left(-\frac{1 + x}{3}\right),\]

21
and

\[w \geq -C(\epsilon, K) + \int_{-1+\delta}^{x} \frac{4 - \epsilon}{(1 - s^2) \ln \frac{1 + s}{3}} \geq -C(\epsilon, K) + (2 - \epsilon) \ln(- \ln \frac{1 + x}{3}). \]

So

\[e^w \leq C(\epsilon, K) \left| \ln \frac{1 + x}{3} \right|^{2+\epsilon}, \quad e^{-w} \leq C(\epsilon, K) \left| \ln \frac{1 + x}{3} \right|^{-2+\epsilon}. \]

Plugging this into (39), we have

\[|V| \leq C(\epsilon, K) \left| \ln \frac{1 + x}{3} \right|^{-2+\epsilon}. \]

The proof is finished. \(\square\)

Similarly we have the following strengthening of Lemma 2.13:

Lemma 2.14’. Let \(K \) be a compact subset of \(I \cap \{(c, \gamma) \mid c_1 = -1, \gamma > \gamma^+(c)\} \). Then for any \(\epsilon > 0 \), there exists some positive constants \(\delta \) and \(C \), depending only on \(\epsilon \) and \(K \), such that for any \((c, \gamma) \in K \),

\[|U_{c,\gamma}^{\theta}(x) + 2 + \frac{4}{\ln \frac{1 + x}{3}}| < C \left| \ln \frac{1 - x}{3} \right|^{-2+\epsilon}, \quad 1 - \delta < x < 1. \]

Now using Lemma 2.11–Lemma 2.14, we prove the following estimates of partial derivatives of \(U_{\theta} := U_{c,\gamma}^{\theta} \) with respect to \((c, \gamma) \) on each \(I_{k,l} \).

Lemma 2.15. For any \(\epsilon > 0 \), \(m \in \mathbb{N} \), and compact subset \(K \) of \(I \setminus \{(c, \gamma) \mid c_1 = -1 \text{ or } \gamma = \gamma^+(c)\} \), there exists some positive constant \(C \), depending only on \(m, K, \) and \(\epsilon \), such that

\[\sum_{1 \leq |\alpha| + |j| \leq m} |\partial^\alpha_{\gamma} \partial_j^c U_{\theta}| \leq C, \quad -1 < x < 1 - \epsilon. \]

Proof. We prove the lemma by induction. We use \(C(m, K, \epsilon) \) and \(C \) to denote constants which may be different from line to line, and their dependence is clear from the context.

We know by (32) that

\[(1 - x^2) \left(\frac{\partial U_{\theta}}{\partial \gamma} \right)' + (2x + U_{\theta}) \left(\frac{\partial U_{\theta}}{\partial \gamma} \right) = 0, \]

\[(1 - x^2) \left(\frac{\partial U_{\theta}}{\partial c_i} \right)' + (2x + U_{\theta}) \left(\frac{\partial U_{\theta}}{\partial c_i} \right) = \partial_{c_i} P_c(x), \]

and \(\frac{\partial U_{\theta}(0)}{\partial \gamma} = 1, \frac{\partial U_{\theta}(0)}{\partial c_i} = 0, i = 1, 2, 3. \) Denote

\[a(x) = a_{c,\gamma}(x) = \int_0^x \frac{2s + U_{\theta}}{1 - s^2} ds. \quad (40) \]
Then
\[\frac{\partial U_\theta}{\partial \gamma} = e^{-a(x)}, \]

(41)

and for \(i = 1, 2, 3, \)
\[\frac{\partial U_\theta}{\partial c_i} = e^{-a(x)} \int_0^x e^{a(s)} \frac{\partial c_i}{\partial c} P_c(s) \frac{ds}{1 - s^2}. \]

(42)

By the definition of \(a(x), \) Lemma 2.2 and Lemma 2.12 we have that there exists some constant \(C = C(\epsilon, K) \) such that
\[e^{-a(x)} \leq C(1 + x)^{-\frac{v_\epsilon + 1}{2}}, \quad e^a(x) \leq C(1 + x)^{-\frac{v_\epsilon + 1}{2}}, \quad -1 < x < 1 - \epsilon. \]

Since when \((c, \gamma) \in K, U_\theta(1) < 2,\) there exists some \(C(K, \epsilon), \) such that \(e^{-a(x)} \leq C(K, \epsilon).\) Thus by (41) and (42) we have that for \(-1 < x < 1 - \epsilon,\)
\[\sum_{|\alpha|+j=1} |\partial_\alpha \partial_j U_\theta| \leq C(K, \epsilon). \]

Now for \(m \geq 2,\) suppose that \(C(m_1, K, \epsilon) \) exist for all \(1 \leq m_1 \leq m - 1,\) then for any \(|\alpha| + j = m,\)
\[(1 - x^2)(\partial_\alpha \partial_j U_\theta)' + 2x \partial_\alpha \partial_j U_\theta + \frac{1}{2} \partial_\alpha \partial_j (U_\theta^2) = \partial_\alpha \partial_j P_c(x). \]

This leads to
\[(1 - x^2)(\partial_\alpha \partial_j U_\theta)' + (2x + U_\theta) \partial_\alpha \partial_j U_\theta = h, \]
where
\[h := -\frac{1}{2} \sum_{0 \leq (\alpha, j), 0 < |\alpha| + j < m} \begin{pmatrix} \alpha \\ \alpha_1 \end{pmatrix} \begin{pmatrix} j \\ j_1 \end{pmatrix} \partial^\alpha \partial^{j_1} \partial_\gamma U_\theta \partial^{\alpha_1-j_1} U_\gamma. \]

Notice that \(\partial_\alpha \partial_j U_\theta(0) = 0 \) for all \(|\alpha| + j \geq 2,\) we have
\[\partial_\alpha \partial_j U_\theta = e^{-a(x)} \int_0^x e^{a(s)} h(s) \frac{ds}{1 - s^2}. \]

By the induction assumption, \(h \in L^\infty(-1, 1 - \epsilon) \) and there exists some positive constant \(C, \) depending only on \(m, K, \) and \(\epsilon \) such that \(|h|_{L^\infty(-1, 1 - \epsilon)} \leq C.\) So we have
\[|\partial_\alpha \partial_j U_\theta|_{L^\infty(-1, 1 - \epsilon)} \leq C. \]

The proof is finished. \(\Box \)

Similarly, using Lemma 2.2 and Lemma 2.12 we have

Lemma 2.15'. For any \(\epsilon > 0, m \in \mathbb{N}, \) and compact subset \(K \) of \(I \setminus \{(c, \gamma) | c_2 = -1 \text{ or } \gamma = \gamma^-(c)\}, \) there exists some positive constant \(C, \) depending only on \(m, K, \) and \(\epsilon, \) such that
\[\sum_{1 \leq |\alpha| + j \leq m} |\partial_\alpha \partial_j U_\theta| \leq C, \quad -1 + \epsilon < x < 1. \]
Lemma 2.16. For any $\epsilon > 0$, $m \in \mathbb{N}$, and compact subset K of $I \cap \{(c,\gamma) \mid c_1 = -1, \gamma < \gamma^+(c)\}$, there exists some positive constant C, depending only on m, K, and ϵ, such that

$$\sum_{1 \leq |\alpha| + j \leq m, \alpha_1 = 0} \left(\ln \frac{1 + x}{3} \right)^2 |\partial_c^\alpha \partial_j^i U_\theta| \leq C, \quad -1 < x < 1 - \epsilon.$$

Proof. We prove the lemma by induction. Denote $C(m, K, \epsilon)$ and C to be constants which may vary from line to line, and their dependence is clear from the context. Similar as the proof of Lemma 2.15, we have (41) and (42) where $a(x)$ is defined by (40). By the definition of $a(x)$, Lemma 2.2 and Lemma 2.14, there exists some constant $C = C(m, K, \epsilon)$, such that

$$e^{-a(x)} \leq C \left(\ln \frac{1 + x}{3} \right)^{-2}, \quad e^{a(x)} \leq C \left(\ln \frac{1 + x}{3} \right)^2.$$

Notice in this case, $i = 2$ or 3 in (42), and $|\partial_c P_c| \leq C(1 + x)$ for some constant C depending only on K, so we have that for $-1 < x < 1 - \epsilon$,

$$\sum_{|\alpha| + j = 1} \left(\ln \frac{1 + x}{3} \right)^2 |\partial_c^\alpha \partial_j^i U_\theta| \leq C(K, \epsilon).$$

Now suppose that $C(m_1, K, \epsilon)$ exists for all $1 \leq m_1 \leq m - 1$. As in the proof of the previous lemma we have, for all $|\alpha| + j = m$ and $\alpha_1 = 0$, that

$$\partial_c^\alpha \partial_j^i U_\theta = C e^{-a(x)} + e^{a(x)} \int_{-1 + \frac{1}{2}}^x e^{a(s)} \frac{h(s)}{1 - s^2} ds,$$

where

$$h := \frac{1}{2} \sum_{0 \leq (\alpha_1, j_1) \leq (\alpha, j), 0 < |\alpha_1| + j_1 < m} \left(\begin{array}{c} \alpha \\ \alpha_1 \end{array} \right) \left(\begin{array}{c} j \\ j_1 \end{array} \right) \partial_c^{\alpha_1} \partial_j^{j_1} U_\theta \partial_c^{\alpha - \alpha_1} \partial_j^{j - j_1} U_\theta.$$

Then, by the induction assumption, $h \in L^\infty(-1, 1 - \epsilon)$ and there is some positive constant C, depending only on m, K, and ϵ, such that $(\ln \frac{1 + x}{3})^4 |h(x)| \leq C$ for all $-1 < x < 1 - \epsilon$. Using this estimate we then have

$$\left(\ln \frac{1 + x}{3} \right)^2 |\partial_c^\alpha \partial_j^i U_\theta| \leq C.$$

The lemma is proved. \hfill \Box

Similarly, using Lemma 2.14, we have

Lemma 2.16'. For any $\epsilon > 0$, $m \in \mathbb{N}$, and compact subset K of $I \cap \{(c,\gamma) \mid c_2 = -1, \gamma > \gamma^-(c)\}$, there exists some positive constant C, depending only on m, K, and ϵ, such that

$$\sum_{1 \leq |\alpha| + j \leq m, \alpha_2 = 0} \left(\ln \frac{1 - x}{3} \right)^2 |\partial_c^\alpha \partial_j^i U_\theta| \leq C(m, K, \epsilon), \quad -1 + \epsilon < x < 1.$$

Theorem 1.3 follows from Corollary 2.2, Corollary 2.2', Lemma 2.15, 2.15', 2.16 and 2.16'.
References

[1] M. A. Goldshtik, A paradoxical solution of the Navier-Stokes equations. Prikl. Mat. Mekh. 24 (1960), 610-621. Transl., J. Appl. Math. Mech. (USSR) 24 (1960), 913-929.

[2] G. Karch and D. Pilarczyk, Asymptotic stability of Landau solutions to Navier-Stokes system, Arch. Ration. Mech. Anal. 202 (2011), 115-131.

[3] L. Landau, A new exact solution of Navier-Stokes Equations, Dokl. Akad. Nauk SSSR 43 (1944), 299-301.

[4] L. Li, Y.Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. I. One singularity, arXiv: 1609.08197 v1[math. AP] 26 Sep 2016. To appear in Arch. Ration. Mech. Anal.

[5] L. Li, Y.Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. III, in preparation.

[6] X. Luo and R. Shvydkoy, 2D homogeneous solutions to the Euler equation, Communications in Partial Differential Equations 40 (2015), 1666-1687.

[7] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 1. Basic conservation principles and characterization of axial causes in swirl-free flow, Journal of Fluid Mechanics 155 (1985), 327-341.

[8] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 2. One-parameter swirl-free flows, Journal of Fluid Mechanics 155 (1985), 343-358.

[9] A. F. Pillow and R. Paull, Conically similar viscous flows. Part 3. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, Journal of Fluid Mechanics 155 (1985), 359-379.

[10] J. Serrin, The Swirling Vortex, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 271 (1972), 325-360.

[11] R. Shvydkoy, Homogeneous Solutions to the 3D Euler System, arXiv:1510.03378 v1[math.AP] 12 Oct 2015.

[12] N. A. Slezkin, On an exact solution of the equations of viscous flow, Uch. zap. MGU, no. 2, 89-90, 1934.

[13] H. B. Squire, The round laminar jet, Quart. J. Mech. Appl. Math. 4 (1951), 321-329.

[14] V. Šverák, On Landau’s solutions of the Navier-Stokes equations, Problems in mathematical analysis. No. 61. J. Math. Sci. (N. Y.) 179 (2011), 208-228. arXiv: math/0604550 (2006).

[15] G. Tian and Z. P. Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal. 11 (1998), 135-145.

[16] C. Y. Wang, Exact solutions of the steady state Navier-Stokes equation, Annu. Rev. Fluid Mech. 23 (1991), 159-177.
[17] V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, National Advisory Committee for Aeronautics, Technical Memorandum, no 1349, 1950.