A Pig Model of the Human Gastro-intestinal Tract

Giovanni Widmer
Tufts Cummings School of Veterinary Medicine

May 8th, 10:30 AM - 12:00 PM

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the [Immunology and Infectious Disease Commons](https://escholarship.umassmed.edu/cts_retreat), [Translational Medical Research Commons](https://escholarship.umassmed.edu/cts_retreat), and the [Veterinary Medicine Commons](https://escholarship.umassmed.edu/cts_retreat)

Repository Citation
Widmer G. (2013). A Pig Model of the Human Gastro-intestinal Tract. UMass Center for Clinical and Translational Science Research Retreat. https://doi.org/10.13028/t3d9-kx55. Retrieved from https://escholarship.umassmed.edu/cts_retreat/2013/presentations/6

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
COLLABORATIVE RESEARCH OPPORTUNITIES WITH TUFTS CUMMINGS SCHOOL OF VETERINARY MEDICINE (TCSVM)

Moderator: Dr. Sawkat Anwer, PhD, DMVH, Tufts Cummings School of Veterinary Medicine (TCSVM)

Presenter: Dr. Giovanni Widmer, PhD, TCSVM
16S amplicon sequencing

V1V2: Illumina HiSeq2500
150-nt single-end sequencing

V6: Illumina HiSeq2000
100-nt single-end sequencing
16S rRNA PCR strategy

Primary PCR V6
- **Adaptor**: ACACCTTTCCCCCAACGCGAAGAACCTTACC
- **Custom Sequencing Primer**: N60 AGGTGNTGCATGGCTGTCGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNN
- **Barcode Read Primer**: ADAPTOR
- **Region**: 972–990

Secondary PCR V6
- **Adaptor**: ACACCTTTCCCCAGAGTTTGATYMTGGCTCAG
- **Barcode Read Primer**: N312 ACTCCTACGGGAGGCAGCAGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNN
- **Region**: 1051–1069

Secondary PCR V1V2
- **Adaptor**: ACACCTTTCCCCAGAGTTTGATYMTGGCTCAG
- **Barcode Read Primer**: N312 ACTCCTACGGGAGGCCAGCACTCGGAAGAGGCCACACGTCTGAACTCCAGTCACNNNNNN
- **Region**: 7–27
- **Region**: 338–356

Secondary PCR V1V2 with Universal Barcode Primer
- **Adaptor**: ACACCTTTCCCCAGAGTTTGATYMTGGCTCAG
- **Barcode Read Primer**: N312 ACTCCTACGGGAGGCAGCAGATCGGAAGAGGCCACACGTCTGAACTCCAGTCACNNNNNN
- **Region**: 7–27
- **Region**: 338–356

The diagram illustrates the PCR strategy with custom sequencing and barcode read primers for 16S rRNA amplification.
fecal transplants: human -> pig
taxonomy

experiment 1
adult-Similac

experiment 2
infant-Similac

experiment 3
adult-solid

age (days)

Phylum-level classification (count)

- Actinobacteria
- Bacteroidetes
- Firmicutes
- Tenericutes
- Proteobacteria
- unclassified
- Verrucomicrobia

fecal transplants: human -> pig
taxonomy

experiment 1
adult-Similac

experiment 2
infant-Similac

experiment 3
adult-solid
fecal transplant: PCoA based on Unifrac distance

numbers indicate day post-inoculation
fecal transplant: effect of diet

experiment 1
adult-Similac

experiment 2
infant-Similac

experiment 3
adult-solid
ACKNOWLEDGMENTS

Quanshun Zhang sample prep, animal experiments
Alex Walker DNA extraction, library prep
Kevin Huynh DNA extraction, library prep
Rachel Sora animal care
Patty Boucher animal care
Albert Tai Tufts Genomics Core
Kip Bodi Tufts Genomics Core
Huyen Bum Kim data analysis
Durwood Marshall UIT support