Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR) — part VI, foot and ankle

Luca Maria Sconfienza1,2 • Miraude Adriaensen3 • Domenico Albano1,4 • Andrea Alcala-Galiano5 • Georgina Allen6,7 • Maria Pilar Aparisi Gómez8,9 • Giacomo Aringhiere10 • Alberto Bazzocchi11 • Ian Beggs12 • Vito Chianca13,14 • Angelo Corazza1 • Danooob Dalili15 • Miriam De Dea16 • Jose Luis del Cura17 • Francesco Di Pietto18 • Elena Drakonaki19 • Fernando Falcao de Castro20 • Dimitrios Filippidis21 • Salvatore Gatto22 • Andrew J Grainger23 • Simon Greenwood24 • Harun Gupta25 • Amanda Isaac15,26 • Slavcho Ivanoski27,28 • Monica Khanna29 • Andrea Klauser30 • Ramy Mansour31 • Silvia Martin32 • Vasco Mascarenhas33,34 • Giovanni Mauri35,36 • Catherine McCarthy37 • David McKeon38 • Eugene McNally37 • Kalliopi Melaki39 • Carmelo Messina1 • Rebeca Mirón Mombiela40 • Ricardo Moutinho33,41 • Cyprian Olchowy42 • Davide Orlandi43 • Raquel Prada González44 • Mahesh Prakash45 • Magdalena Posadowska46 • Saulius Rutkauskas47 • Žiga Snoj48,49 • Alberto Stefano Tagliafico50,51 • Alexander Talaska52 • Xavier Tomas53 • Violeta Vasilevska Nikodinovska54,55 • Jelena Vučetić56 • David Wilson6 • Federico Zaottini51 • Marcello Zappia57,58 • Marina Obradov59

Received: 27 March 2021 / Accepted: 7 June 2021 / Published online: 25 August 2021
© The Author(s) 2021

Abstract

Objectives Clarity regarding accuracy and effectiveness for interventional procedures around the foot and ankle is lacking. Consequently, a board of 53 members of the Ultrasound and Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR) reviewed the published literature to evaluate the evidence on image-guided musculoskeletal interventional procedures around this anatomical region.

Methods We report the results of a Delphi-based consensus of 53 experts from the European Society of Musculoskeletal Radiology who reviewed the published literature for evidence on image-guided interventional procedures offered around foot and ankle in order to derive their clinical indications. Experts drafted a list of statements and graded them according to the Oxford Centre for evidence-based medicine levels of evidence. Consensus was considered strong when > 95% of experts agreed with the statement or broad when > 80% but < 95% agreed. The results of the Delphi-based consensus were used to write the paper that was shared with all panel members for final approval.

Results A list of 16 evidence-based statements on clinical indications for image-guided musculoskeletal interventional procedures in the foot and ankle were drafted after a literature review. The highest level of evidence was reported for four statements, all receiving 100% agreement.

Conclusion According to this consensus, image-guided interventions should not be considered a first-level approach for treating Achilles tendinopathy, while ultrasonography guidance is strongly recommended to improve the efficacy of interventional procedures for plantar fasciitis and Morton’s neuroma, particularly using platelet-rich plasma and corticosteroids, respectively.
Key Points

- The expert panel of the ESSR listed 16 evidence-based statements on clinical indications of image-guided musculoskeletal interventional procedures in the foot and ankle.
- Strong consensus was obtained for all statements.
- The highest level of evidence was reached by four statements concerning the effectiveness of US-guided injections of corticosteroid for Morton’s neuroma and PRP for plantar fasciitis.

Keywords

Interventional radiology · Ultrasonograph · Ankle · Foot · Achilles tendon

Abbreviations

AT Achilles degenerative tendinopathy
ESSR European Society of Musculoskeletal Radiology
HA Hyaluronic acid
PF Plantar fasciitis
PRP Platelet-rich plasma
RCT Randomized controlled trials
US Ultrasonography

Introduction

Musculoskeletal interventional procedures are routinely performed around the foot and ankle, including injections and variable interventions on tendons, bursae, plantar fascia, nerves, and joints [1–3]. Some of them are superficial and can be easily approached using palpation, but others generally require imaging, specifically ultrasonography (US), to guide the procedure and to accurately deliver the medications [4–6]. Indeed, foot and ankle musculoskeletal structures can be very small and located close to neurovascular bundles that can be damaged during the procedures [7–9]. No clear guidelines have been produced concerning the use of imaging guidance for musculoskeletal interventional procedures around the foot and ankle. Clarity is needed regarding the accuracy and effectiveness of these interventions. These procedures are widely adopted by different physicians, but there is no consensus on which image-guided procedures should be considered first, particularly when involving relatively novel approaches, including hyaluronic acid (HA), regenerative medications like platelet-rich plasma (PRP), or ablation (e.g., radiofrequency and cryoablation of Morton’s neuroma) [10–12]. The Ultrasound and the Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR) carried out a collaborative task, with the support of its Research Committee, to analyze the published literature on image-guided musculoskeletal interventional procedures in the lower limb to establish clinical indications (upcoming publication in Eur Radiol). We report the evidence-based statements for clinical indications of image-guided musculoskeletal interventional procedures around the foot and ankle listed by an expert board of the ESSR after a Delphi method performed a review of current literature.

Materials and methods

Institutional Review Board approval was not needed as no patients were directly involved. This paper arises from the review of published evidence on image-guided interventional musculoskeletal procedures around the foot and ankle. Similar to previous ESSR consensus papers [13–16], a literature-based Delphi method of review was used. It includes multiple rounds of evaluation of the existing literature to assess the opinion of a panel of experts on this topic. A list of statements were discussed and drafted to reach a final shared agreement [17]. We used the AGREE II tool to guarantee the quality of the working flow [18]. The different steps of the Delphi method are thoroughly explained and reported as supplementary material.

Results

1. Image-guided injections are safe and feasible to treat Achilles degenerative tendinopathy (AT), but there is insufficient evidence from randomized controlled trials (RCT) to support them over conservative therapies.

Level of evidence: 1
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Both the Cochrane Review of 2015 [19] and Maffulli’s systematic review [20] concluded that there is insufficient evidence from RCTs to support the use of injection therapies. The evidence has not changed since then. Previous meta-analyses of RCTs demonstrated no superiority of US-guided PRP injections over placebo [11, 21–25]. Notably, PRP injections and dry needling have similar short-term results with weekly injections of PRP or dry needling for 3 weeks having shown no clinical difference at 3 or 6 months [26]. A systematic review reported local US-guided corticosteroid injections have no therapeutic role to treat AT [27] and subcutaneous fat atrophy and tendon damage may occur [28]. A systematic review of many high-quality RCTs showed corticosteroid injections reduced pain in the short term compared with other interventions, but this effect was reversed in the intermediate and long term [29]. There is controversial evidence that bone
marrow aspirate and stem cells help in the treatment of AT, with few studies suggesting a potential short-term clinical improvement, with no role for imaging to predict or assess the response [30, 31]. A meta-analysis reported that prolotherapy may be safe and effective for AT [32]. However, long-term studies and RCTs are still missing and one RCT found no clinical difference between prolotherapy and the control group. No significant pain variation was found between polidocanol and lidocaine injection for AT [33].

High-volume injections seem to be effective at treating AT, but confounding factors such as corticosteroid, aprotinin, dry needling, or eccentric exercise prevent assessment of this method alone [34, 35].

2. **Image-guided anesthetic-corticosteroid injections into the anterior and posterior tibial tendon sheaths are safe and may provide effective diagnosis and treatment in patients with anterior and posterior tibial tendon tenosynovitis.**

Level of evidence: 3
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Several studies reported complete or near-complete prolonged symptom relief after anesthetic-corticosteroid injections for tenosynovitis unresponsive to conservative management [36–40]. A study [39] using US guidance successfully demonstrated excellent improvement of the tendon sheath effusion and synovial hypertrophy around the anterior and posterior tibial tendon 4 weeks after injection.

3. **US-guided corticosteroid injections are more effective than palpation-guided injections to treat plantar fasciitis (PF) providing significant short-term pain relief, particularly when combined with strength training and stretching.**

Level of evidence: 2
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

A meta-analysis included 5 RCTs with 149 patients and concluded that US-guided injections were superior with regard to VAS, tenderness threshold, response rate, plantar fascia thickness, and hypoechogenicity. There was no difference in heel pad thickness and heel tenderness index [41]. A comparative trial concluded that device-assisted US-guided injection for treating PF was superior to palpation-guided injection [42]. US-guided corticosteroid injections are associated with lower heel pain recurrence when compared to palpation guidance. Comparative trials of US-guided corticosteroid injections versus placebo reported greater pain relief in the corticosteroid arm lasting up to 12 weeks [43]. Case series in the literature report efficacy of corticosteroid injections for PF with objective measurement of the therapeutic effect on proximal PF without significant deterioration of heel pad mechanical properties [44–47]. Combining corticosteroid injections with strength training and stretching is superior both in the short- and in the long term and can be recommended as a first-line treatment in patients with PF [48].

4. **US-guided PRP injections for PF are safe and provide significant pain relief in chronic PF, with better clinical outcome at mid- and long-term follow-up if compared with corticosteroid injections.**

Level of evidence: 1
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Four meta-analysis studies having compared US-guided PRP and corticosteroid support the use of PRP instead of corticosteroids, highlighting the favorable and long-lasting clinical outcomes in patients with chronic PF [10, 49–51].

5. **The effectiveness of US-guided injections with ozone, hyaluronic acid, or botulinum toxin type A has not still sufficiently proven to be recommended for PF.**

Level of evidence: 3
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Limited number of outcome-based investigation studies reported the effectiveness of those methods to treat painful PF without inducing fat pad atrophy [52–54]. Most studies are case series or trials comparing different doses of the same substance [54], but no comparative studies are available.

6. **US and fluoroscopy guidance improves the accuracy of joint injections in the foot and ankle although these procedures can be safely performed with palpation alone.**

Level of evidence: 4
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Intra-articular injections of the foot and ankle using palpation and US were conducted on a cadaver model and were both 100% accurate [55]. The risk of extravasation into the ankle or peroneal tendon sheath is higher when injections are unguided [56]. When injections are used for diagnostic purposes and surgical decision-making, especially in abnormal joints, imaging guidance is useful. The use of US or fluoroscopy significantly improved the accuracy of injections into the tarsometatarsal joints [55]. A cadaveric study on talonavicular...
joint injection accuracy showed that the needle was correctly positioned in all US-guided injections, while it was misplaced in all cases of blind injections [57]. In juvenile idiopathic arthritis patients with ankle synovitis, image-guided intra-articular corticosteroid injections resulted in longer remission time when compared with palpation guidance [58].

7. Image-guided corticosteroid injections for midfoot joint osteoarthritis might provide short-term improvement, but further studies are warranted to support their clinical use.

Level of evidence: 4
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Two uncontrolled studies of intra-articular corticosteroid injections for midfoot osteoarthritis led to short-term improvement with poor long-term outcome [59, 60]. Symptom improvement reported at 3–4 months was generally not sustained at 12 months [59, 60]. Larger prospective RCTs are needed.

8. PRP and prolotherapy are safe methods to treat osteochondral lesions of the talus with promising results, but evidence on efficacy is limited.

Level of evidence 4
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

PRP and prolotherapy are shown to be safe methods to treat talus osteochondral lesions and might be considered treatment options for younger patients and for patients with early stage and small lesions, as reported in a single retrospective cohort study including 49 patients ($n = 27$ prolotherapy, $n = 22$ PRP) [61]. Prolotherapy is cheaper and less invasive [61]. However, further studies are still required.

9. Intraarticular foot and ankle anesthetic injections performed under imaging guidance offers precise information about pain source.

Level of evidence: 4
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Fluoroscopically guided foot and ankle joint anesthetic injections aid diagnosis and have a potential for targeted therapy when combined with corticosteroids. Large and small joints in the foot and ankle are readily accessible [62, 63]. Anesthetic response for surgical planning is controversial [64, 65], as many foot joints are interconnected, with a potential confounding effect, but when correlated with magnetic resonance or computed tomography arthrography, they may help confirm the diagnosis [63, 66].

10. US-guided tarsal tunnel decompression is a feasible procedure in cadavers, but clinical value is unknown.

Level of evidence: 4
Agree, $n = 52$; disagree, $n = 1$; abstain, $n = 0$. Agreement = 98%

US-guided tarsal tunnel decompression associated with flexor retinaculum release was feasible in a cadaveric study without any vascular or neurological damage [67]. However, no data is available about in-vivo feasibility and efficacy.

11. US-guided injections of bursae around the foot are technically feasible, but clinical value is unknown.

Level of evidence: 5
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Foot bursae aspiration and injection could be performed in a wide series of rheumatologic and degenerative conditions [68], but evidence about the interventional approach for foot bursitis is poor. There is minor evidence for intermetatarsal bursa US-guided corticosteroid injection feasibility and its therapeutic role in Morton’s syndrome [69].

12. US-guided deep retrocalcaneal bursa injections are feasible.

Level of evidence: 4
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Deep retrocalcaneal bursa injections are feasible and effective both under US [70] and fluoroscopy [71] guidance but there is more evidence for US guidance [72]. A direct comparison between the two methods is not available, and the evidence about injection indications is weak. Local US-guided corticosteroid injection of the retrocalcaneal bursa improves bursitis symptoms but risks Achilles tendon rupture [73].

13. US-guided corticosteroid injections are the most effective image-guided interventional procedure to improve pain in patients with Morton’s neuroma, especially in the first 3 months.

Level of evidence: 1
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%
A systematic review identified eight different types of interventions for Morton’s neuroma. The most frequent procedure was US-guided corticosteroid (7 studies) and sclerosing injections (7 studies). A meta-analysis of two RCTs conducted in the same study found that US-guided corticosteroid injections decreased pain more than controls. Other RCTs reported the efficacy of mobilization or extracorporeal shockwave therapy versus control. Treatment success was evaluated for extracorporeal shockwave therapy versus control and for corticosteroids versus footwear padding. Sclerosing and Botox injections, radiofrequency ablation, and cryoneurolysis had been investigated only by case studies with limited methodological quality [74].

Results from a patient-blinded trial [75] comparing US-guided injection of either corticosteroid-anesthetic or anesthetic alone demonstrated that the corticosteroid group had significantly better clinical improvement at 1 and 3 months. Controversial results have been reported by a double-blinded RCT [76] comparing three US-guided injections of either corticosteroid-anesthetic or local anesthetic alone, showing no clinical differences between the groups at 3 and 6 months.

14. US guidance improves the effectiveness of different interventional procedures for Morton’s neuroma if compared to palpation guidance, particularly for corticosteroid injection.

Level of evidence: 1
Agree, \(n = 53\); disagree, \(n = 0\); abstain, \(n = 0\). Agreement = 100%

When compared to palpation guidance, US was proven to increase the effectiveness of interventional procedures in patients with Morton’s neuroma. A systematic review [77] reported that US guidance may produce better short- and long-term pain relief after corticosteroid injection and can reduce surgical referral rate, and need for additional procedures after ethanol injection. An RCT [78] concluded that US-guided injection of Morton’s neuroma provides significant improvement at 45, 60, and 90 days compared with palpation-guided injections. Multiple studies reported the use of US guidance using different types of intervention with satisfactory results: corticosteroids [69, 75, 76, 79–81], alcohol [82–88], radiofrequency [89–91], and hyaluronic acid [92]. A case study concluded that the injection of Morton’s neuroma was better tolerated via a dorsal approach and the preliminary use of local anesthetic did not confer any benefit [93]. There is conflicting evidence about the relationship between Morton’s neuroma size and efficacy of US-guided anesthetic and/or corticosteroid injection. A case-control study [94] concludes that size and age appear to be predictors for further treatment within 2 years from corticosteroid injection. Another case study [95] reported that the effectiveness of corticosteroid injection appears to be more significant and long-lasting for lesions < 5 mm. However, results from a patient-blinded RCT [75] comparing corticosteroid-anesthetic versus anesthetic alone reported that the neuroma size did not significantly influence the treatment effect.

15. US-guided ethanol injection of Morton’s neuroma is relatively safe and well-tolerated, but further investigations are required to clearly demonstrate its clinical value prior to supporting this procedure.

Level of evidence: 2
Agree, \(n = 53\); disagree, \(n = 0\); abstain, \(n = 0\). Agreement = 100%

A systematic review [88] found that ethanol injections appear to be safe, although some papers report short-term side effects due to an inflammatory reaction. Ethanol concentration and US guidance versus unguided injections vary. Evidence suggests ethanol has a sclerosing histological effect on the interdigital nerve, but all reviewed studies had methodological flaws causing bias and poor evidence. A level 3 [87] and multiple level 4 studies [82, 83, 85, 86, 88] explored treatment with US-guided ethanol injection, with good tolerance and high success rate. A prospective case series [84] demonstrated that short-term benefits from ethanol injection exist with considerable morbidity and no long-term benefit. Pain and satisfaction scores showed significant deterioration after 5 years. Fluoroscopic and electroneurographic guidance gave a success rate (defined as free of pain in daily life) of more than 82% per single ethanol injection with no recurrence over 5 years [96].

16. Image-guided thermal ablation of Morton’s neuroma is safe with promising initial results and might reduce the need for surgery in the short term.

Level of evidence: 4
Agree, \(n = 53\); disagree, \(n = 0\); abstain, \(n = 0\). Agreement = 100%

Case series reported the use of radiofrequency ablation as a safe and efficient potential treatment for Morton’s neuroma [90, 91]. A case series [89] reported successful symptom relief in > 85% of cases, and only 10% of patients needed surgery in the short term. Radiofrequency ablation has the disadvantage of being more expensive compared to corticosteroid injections. Neurolysis is a treatment used for chronic peripheral pain, with cryotherapy being recognized as a well-tolerated procedure among the different methods of nerve ablation. MR-guided Morton’s neuroma cryoablation has been reported by Cazzato et al as a feasible and tolerated technique with initially promising results requiring further investigation [12]. Friedman and colleagues reported good clinical results from a retrospective study on 20 patients subjected to US-guided cryoablation of Morton’s neuroma [97].
Discussion

This panel listed 16 evidence-based statements on clinical indications of image-guided musculoskeletal interventional procedures in the foot and ankle, with strong consensus reached for all statements. The highest level of evidence was reached by four statements concerning the effectiveness of US-guided injections of corticosteroid for Morton’s neuroma and PRP for PF, and also concerning the limited role of injection therapies in AT.

Despite the safety and efficacy of image-guided injections for AT, the superiority of these procedures over conservative therapies has not been proven, leading us to consider them a second-level approach for treating patients with AT (statement #1).

Regarding PF, prospective RCTs demonstrated the added value of US guidance to improve the clinical outcome of interventional procedures over blinded injections (statement #3). The highest level of evidence paper showed that US-guided PRP injections have better and long-lasting effects than US-guided corticosteroid injections in patients with PF (statement #4). In patients with Morton’s neuroma, the highest level of evidence papers showed that US guidance improves the efficacy of several interventional procedures (statement #14), particularly corticosteroid injections used to improve pain in the short-/mid-term (statement #13). Although ethanol injections, radiofrequency, and cryoablation seem to be safe alternatives for treating Morton’s neuroma, the clinical value of these interventions still needs further clarification (statements #15 and #16).

Anecdotal reports and small case series have shown the feasibility, safety, and effectiveness of image-guided injections of ankle/foot joints (statements #6–9) and bursae (statements #11–12), with too limited evidence to support these in routine clinical practice.

In conclusion, 16 statements about image-guided musculoskeletal interventional procedures around the foot and ankle have been produced by an expert panel of the ESSR. Image-guided interventions should not be considered a first-level approach for AT. US is strongly recommended as a guidance for interventions for PF and Morton’s neuroma to improve the effectiveness of the procedures, particularly using PRP and corticosteroids, respectively.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00330-021-08125-z.

Acknowledgements All authors are members of the Ultrasound and/or Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR).

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement.

Declarations

Guarantor The scientific guarantor of this publication is Luca Maria Sconfienza, MD, PhD.

Conflict of interest The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary for this paper.

Informed consent Written informed consent was not required for this study because no informed consent was needed as this paper does not involve patients.

Ethical approval Institutional Review Board approval was not required because this paper does not involve patients.

Methodology

- Multicentre study

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Med 123:314–321. https://doi.org/10.1007/s11547-017-0842-7

2. Soneji N, Peng PWH (2016) Ultrasound-guided interventional procedures in pain medicine: a review of anatomy, sonoanatomy, and procedures: Part V: Ankle Joint. Reg Anesth Pain Med 41:99–116. https://doi.org/10.1097/AAP.0000000000000344

3. Hansford BG, Mills MK, Hanrahan CJ, Yablon CM (2019) Pearls and pitfalls of fluoroscopic-guided foot and ankle injections: what the radiologist needs to know. Skelet Radiol 48:1661–1674. https://doi.org/10.1007/s00256-019-03226-9

4. Albano D, Chianca V, Tormenta S et al (2017) Old and new evidence concerning the crucial role of ultrasound in guiding intra-articular injections. Skelet Radiol 46:963–964. https://doi.org/10.1007/s00256-017-2644-3

5. Albano D, Vicentin I, Messina C, Sconfienza LM (2020) Postsurgical Achilles calcific tendinopathy treated with ultrasonoguided percutaneous irrigation. Skelet Radiol 49:1475–1480. https://doi.org/10.1007/s00256-020-03453-5

6. Walter WR, Burke CJ, Adler RS (2017) Ultrasound-guided therapeutic injections for neural pathology about the foot and ankle: a 4 year retrospective review. Skelet Radiol 46:795–803. https://doi.org/10.1007/s00256-017-2624-7
7. Albano D, Aringhieri G, Messina C et al (2020) High-frequency and ultra-high frequency ultrasound: musculoskeletal imaging up to 70 MHz. Semin Musculoskelet Radiol 24:125–134. https://doi.org/10.1055/s-0039-3401042
8. Yablonskiy C (2013) Ultrasound-guided interventions of the foot and ankle. Semin Musculoskelet Radiol 17:60–68. https://doi.org/10.1055/s-0033-1333916
9. Solka CM, Adler RS (2002) Ultrasound-guided interventions in the foot and ankle. Semin Musculoskelet Radiol 6:163–168. https://doi.org/10.1055/s-0032-23362
10. Hohmann E, Tetsworth K, Glatt V (2020) Platelet-rich plasma versus corticosteroids for the treatment of plantar fasciitis: a systematic review and meta-analysis. Am J Sports Med. https://doi.org/10.1177/0363545620937293
11. Krogh TP, Ellingsen T, Christensen R et al (2016) Ultrasound-guided injection therapy of Achilles tendinopathy with platelet-rich plasma or saline. Am J Sports Med 44;1990–1997. https://doi.org/10.1177/0033815616647958
12. Cazzato RL, Garnon J, Ramamurthy N et al (2016) Percutaneous MR-guided cryoablation of Morton’s neuroma: rationale and technical details after the first 20 patients. Cardiovasc Intervent Radiol 39:1491–1498. https://doi.org/10.1007/s00270-016-1365-7
13. Sconfienza LM, Adriaensen M, Albano D et al (2020) Clinical indications for image guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part III, nerves of the upper limb. Eur Radiol 30:1498–1506. https://doi.org/10.1007/s00330-019-06479-z
14. Sconfienza LM, Albano D, Allen G et al (2018) Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol. https://doi.org/10.1007/s00330-018-5474-3
15. Sconfienza LM, Adriaensen M, Albano D et al (2020) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part I, shoulder. Eur Radiol 30:903–913. https://doi.org/10.1007/s00330-019-06419-x
16. Sconfienza LM, Adriaensen M, Albano D et al (2020) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—Part II, elbow and wrist. Eur Radiol 30:2220–2230. https://doi.org/10.1007/s00330-019-06545-6
17. Steurer J (2011) The Delphi method: an efficient procedure to generate knowledge. Skelet Radiol 40:959–961. https://doi.org/10.1007/s00256-011-1145-z
18. Messina C, Vitale JA, Pedone L et al (2020) Critical appraisal of papers reporting recommendation on sarcopenia using the AGREE II tool: a EuroAIM initiative. Eur J Clin Nutr 74:1164–1172. https://doi.org/10.1038/s41430-020-0638-z
19. Kearney RS, Parsons N, Metcalfe D, Costa ML (2015) Injection therapy and prolotherapy on chronic painful Achilles tendinopathy—a systematic review including meta-analysis. Scand J Med Sci Sports 25:4–15. https://doi.org/10.1111/sms.12898
20. Ebbesen BH, Molgaard CM, Olesen JL et al (2018) No beneficial effect of Polidocanol treatment in Achilles tendinopathy: a randomised controlled trial. Knee Surgery, Sport Traumatol Arthrosc 26:2038–2044. https://doi.org/10.1007/s00167-017-4675-7
21. Boesen AP, Hansen R, Boesen ML et al (2017) Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion Achilles tendinopathy: a randomized double-blind prospective study. Am J Sports Med 45:2034–2043. https://doi.org/10.1177/0091384717702862
22. Boesen AP, Langberg H, Hansen R et al (2019) High volume injection with and without corticosteroid in chronic midportion achilles tendinopathy. Scand J Med Sci Sports 29:1223–1231. https://doi.org/10.1111/sms.13450
23. De Vos RJ, Weir A, Van Schie HTM et al (2010) Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. J Am Med Assoc 303:144–149. https://doi.org/10.1001/jama.2009.1986
24. De Jonge S, De Vos RJ, Weir A et al (2011) One-year follow-up of platelet-rich plasma treatment in chronic achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med 39:1623–1629. https://doi.org/10.1177/0363545110404877
25. Nauwelaers AK, Van Oost L, Peers K (2020) Evidence for the use of PRP in chronic midsubstance Achilles tendinopathy: a systematic review with meta-analysis. Foot Ankle Surg. https://doi.org/10.1016/j.fas.2020.07.009
26. Abate M, Di Carlo L, Salini V (2019) Platelet rich plasma compared to dry needling in the treatment of non-inserional Achilles tendinopathy. Phys Sportsmed 47:232–237. https://doi.org/10.1080/00913847.2018.1548886
27. Metcalfe D, Achten J, Costa ML (2009) Glucocorticoid injections in lesions of the Achilles tendon. Foot Ankle Int 30:661–683. https://doi.org/10.3113/FAI.2009.0661
28. Drakonaki EE, Allen GM, Watura R (2016) Ultrasound-guided intervention in the ankle and foot. Br J Radiol. https://doi.org/10.1259/bjr.20150577
29. Coombes BK, Bisset L, Vicenzino B (2010) Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet 376:1751–1767. https://doi.org/10.1016/S0140-6736(10)61160-9
30. Usuelli FG, Grassi M, Maccario C et al (2018) Intratendinous adipe-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up Knee Surgery, Sport Traumatol Arthrosoc 26;2000–2010. https://doi.org/10.1007/s00167-017-4479-9
31. Albano D, Messina C, Usuelli FG, et al (2017) Magnetic resonance and ultrasound in achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2017.08.006
32. Morath O, Kubosch EJ, Tacymans J et al (2018) The effect of sclero-therapy and prolotherapy on chronic painful Achilles tendinopathy—a systematic review including meta-analysis. Scand J Med Sci Sports 28:4–15. https://doi.org/10.1111/sms.12898
33. Ebbesen BH, Molgaard CM, Olesen JL et al (2018) No beneficial effect of Polidocanol treatment in Achilles tendinopathy: a randomised controlled trial. Knee Surgery, Sport Traumatol Arthrosc 26:2038–2044. https://doi.org/10.1007/s00167-017-4675-7
34. Boesen AP, Hansen R, Boesen ML et al (2017) Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion achilles tendinopathy: a randomized double-blind prospective study. Am J Sports Med 45;2034–2043. https://doi.org/10.1177/0363546517702862
35. Boesen AP, Langberg H, Hansen R et al (2019) High volume injection with and without corticosteroid in chronic midportion achilles tendinopathy. Scand J Med Sci Sports 29:1223–1231. https://doi.org/10.1111/sms.13450
36. Jaffe NW, Gilula LA, Wissman RD, Johnson JE (2001) Diagnostic and therapeutic ankle: outcomes and complications. AJR Am J Roentgenol 176:365–371. https://doi.org/10.2214/ajr.176.2.1760365
37. Cooper AJ, Mizel MS, Patel PD et al (2007) Comparison of MRI and local anesthetic tendon sheath injection in the diagnosis of posterior tibial tendon tenosynovitis. Foot Ankle Int 28;1124–1127. https://doi.org/10.3113/FAI.2007.1124
38. Peters SE, Laxer RM, Connolly BL, Parra DA (2017) Ultrasound-guided steroid tendon sheath injections in juvenile idiopathic arthritis: a 10-year single-center retrospective study. Pediatr Rheumatol. https://doi.org/10.1186/s12969-017-0155-3
73. Turmo-Garuz A, Rodas G, Balius R et al (2014) Can local corticosteroid injection in the retrocalcaneal bursa lead to rupture of the Achilles tendon and the medial head of the gastrocnemius muscle? Musculoskelet Surg 98:121–126. https://doi.org/10.1007/s12306-013-0305-9

74. Matthews BG, Hum SE, Harding MP et al (2019) The effectiveness of non-surgical interventions for common plantar digital compressive neuropathy (Morton’s neuroma): a systematic review and meta-analysis. J Foot Ankle Res. https://doi.org/10.1186/s13047-019-0320-7

75. Thomson CE, Beggs I, Martin DJ et al (2013) Methylprednisolone injections for the treatment of Morton neuroma: a patient-blinded randomized trial. J Bone Jt Surg Am 95:790–798. https://doi.org/10.2106/JBJS.L.01780

76. Lizano-Díez X, Ginés-Cespedosa A, Alentorn-Geli E et al (2017) Corticosteroid injection for the treatment of Morton’s neuroma: a prospective, double-blinded, randomized, placebo-controlled trial. Foot Ankle Int 38:944–951. https://doi.org/10.1177/1071100717709569

77. Morgan P, Monaghan W, Richards S (2014) A systematic review of ultrasound-guided and non-ultrasound-guided therapeutic injections to treat Morton’s neuroma. J Am Podiatr Med Assoc 104:337–348. https://doi.org/10.7547/0003-0538-104.4.337

78. Ruiz Santiago F, Prados Olleta N, Tomás Muñoz P et al (2019) Short term comparison between blind and ultrasound guided injection in Morton’s neuroma. Eur Radiol 29:620–627. https://doi.org/10.1007/s00330-018-5670-1

79. Saygi B, Yildirim Y, Saygi EK et al (2005) Morton neuroma: comparative results of two conservative methods. Foot Ankle Int 26:556–559. https://doi.org/10.1177/107110070502600711

80. Markovic M, Crichton K, Read JW et al (2008) Effectiveness of ultrasound-guided corticosteroid injection in the treatment of Morton’s neuroma. Foot Ankle Int 29:483–487. https://doi.org/10.1113/foot.2008.0483

81. Park YH, Lee JW, Choi GW, Kim HJ (2018) Risk factors and the associated cutoff values for failure of corticosteroid injection in treatment of Morton’s neuroma. Int Orthop 42:323–329. https://doi.org/10.1007/s00264-017-3707-8

82. Hughes RJ, Ali K, Jones H et al (2007) Treatment of Morton neuroma associated cutoff values for failure of corticosteroid injection in Morton’s neuroma: initial experience. Clin Radiol 74:815.e9–815.e13. https://doi.org/10.1016/j.crad.2019.07.002

83. Lee K, Hwang IY, Ryu CH et al (2018) Ultrasound-guided hyaluronic acid injection for the management of Morton’s neuroma. Foot Ankle Int 39:201–204. https://doi.org/10.1177/1071100717739578

84. Yap LP, McNally E (2012) Patient’s assessment of discomfort during ultrasound-guided injection of Morton’s neuroma: Selecting the optimal approach. J Clin Ultrasound 40:330–334. https://doi.org/10.1002/jcu.21926

85. Mahadevan D, Salmasi M, Whybry N et al (2016) What factors predict the need for further intervention following corticosteroid injection of Morton’s neuroma? Foot Ankle Surg 22:9–11. https://doi.org/10.1016/j.fas.2015.03.007

86. Weekes A, Haddad BZ, Ong CTG et al (2012) Efficacy of corticosteroid injection versus size of plantar interdigital neuroma. Foot Ankle Int 33:722–726. https://doi.org/10.1177/10711007120120722

87. Pabinger C, Malaj I, Lothaller H et al (2020) Improved injection technique of ethanol for Morton’s neuroma: initial experience and clinical outcomes. J Ultrasound Med 39:2015–2024. https://doi.org/10.7863/jum.2012.2034

Publisher’s note Springer Nature remains neutral with regard to jurisdic- tional claims in published maps and institutional affiliations.

Affiliations
Luca Maria Sconfienza 1,2 • Miraude Adriaensen 3 • Domenico Albano 1,4 • Andrea Alcala-Galiano 5 • Georgina Allen 6,7 • Maria Pilar Aparisi Gómez 8,9 • Giacomo Aringhieri 10 • Alberto Bazzocchi 11 • Ian Beggs 12 • Vito Chianca 13,14 • Angelo Corazza 1 • Danoob Dallì 15 • Miriam De Dea 16 • Jose Luis del Cura 17 • Francesco Di Pietto 18 • Elena Drakonaki 19 • Fernando Facal de Castro 20 • Dimitrios Filippiadis 21 • Salvatore Giacono 22 • Andrew J Grainger 23 • Simon Greenwood 24 • Harun Gupta 25 • Amanda Isaac 15,26 • Slavcho Ivanoski 27,28 • Monica Khanna 29 • Andrea Klauzer 30 • Ramy Mansour 31 • Silvia Martin 32 • Vasco Mascarenhas 33,34 • Giovanni Mauri 35,36 • Catherine McCarthy 37 • David McKeon 38 • Eugene McNally 39 • Kalliopi Melaki 39 • Carmelo Messina 1 • Rebeca Mirón Mombiela 40 • Ricardo Moutinho 33,41 • Cyprian Olchowy 42 • Davide Orlandi 43 • Raquel Prada González 44 • Mahesh Prakash 45 • Magdalena Posadzy 46 • Saulius Rutkaukas 47 • Ziga Snoj 48,49 • Alberto Stefano Tagliafico 50,51 • Alexander Talaska 52 • Xavier Tomas 53.
53 Radiology Dpt. MSK Unit. Hospital Clinic (CDIC), University of Barcelona (UB), Barcelona, Spain
54 University Institute of Radiology, Skopje, Macedonia
55 Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
56 Radiology Department, Hospital ICOT Ciudad de Telde, Las Palmas, Spain
57 Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
58 Varelli Institute, Naples, Italy
59 Department of Radiology, Sint Maartenskliniek, Nijmegen, The Netherlands