NOTES ON FROBENIUS STABLE DIRECT IMAGES

SHO EJIRI

ABSTRACT. In this note, we prove the coherence of Frobenius stable direct images in a new case. We also show a generation theorem regarding to it. Furthermore, we prove a corresponding theorem in characteristic zero.

1. Introduction

Let X be a normal projective variety over an algebraically closed field of positive characteristic, let Δ be an effective \mathbb{Q}-Weil divisor on X, and let M be a Cartier divisor on X. In [12] (cf. [11]), Schwede introduced the subspace

$$S^0(X, \sigma(X, \Delta) \otimes \mathcal{O}_X(M)) \subseteq H^0(X, \mathcal{O}_X(M)),$$

which is defined as the stable image of the trace maps of iterated Frobenius morphisms. This notion was relativized by Hacon and Xu [8] to establish the three dimensional minimal model program in positive characteristic (Definition 2.1). For a morphism $f : X \to Y$ to a variety Y, they define the subsheaf

$$S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M)) \subseteq f_*\mathcal{O}_X(M)$$

by a way similar to that of $S^0(X, \sigma(X, \Delta) \otimes \mathcal{O}_X(M))$. From the definition, we cannot not see whether or not the sheaf $S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))$ is coherent. The coherence is proved in [8] Proposition 2.15], under the assumption that $M - (K_X + \Delta)$ is f-ample. In this note, we show the coherence of the sheaf under a weaker assumption:

Theorem 1.1. Let the base field be an F-finite field. Let X be a normal projective variety and let Δ be an effective \mathbb{Q}-Weil divisor on X such that $i(K_X + \Delta)$ is Cartier for an integer $i > 0$ not divisible by p. Let $f : X \to Y$ be a morphism to a projective variety Y of dimension n. Let M be a Cartier divisor on X. If $M - (K_X + \Delta)$ is relatively semi-ample over an open subset $V \subset Y$, then

$$\text{Im} \left(f_*\phi_{(X,\Delta)}^{(e)}(M) \right) |_V = S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))|_V$$

for e large and divisible enough. In particular, $S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))$ is coherent over V.

We also prove a generation theorem on $S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))$.

Theorem 1.2. With the notation of Theorem 1.1, if $M - (K_X + \Delta)$ is nef and f-semi-ample, then the sheaf

$$\left(S^0_{f_*}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M)) \right) \otimes \mathcal{L}^n \otimes \mathcal{A}$$

is generated by its global sections for ample line bundles \mathcal{L} and \mathcal{A} with $|\mathcal{L}|$ free.
For a related result, see [14, Theorem 1.11]. Furthermore, we show a corresponding theorem in characteristic zero to Theorem 1.2.

Theorem 1.3. Let the base field be a field of characteristic zero. Let X be a normal projective variety and let Δ be an effective \mathbb{Q}-Weil divisor on X such that $K_X + \Delta$ is \mathbb{Q}-Cartier. Let $f : X \to Y$ be a morphism to a projective variety Y of dimension n. Let M be a Cartier divisor on X. If $M - (K_X + \Delta)$ is nef and f-semi-ample, then

$$f_* (\mathcal{J}(X, \Delta)(M)) \otimes \mathcal{L}^n \otimes \mathcal{A} \quad \text{and} \quad f_* (\mathcal{J}_{\text{NLIC}}(X, \Delta)(M)) \otimes \mathcal{L}^n \otimes \mathcal{A}$$

are generated by its global sections for ample line bundles \mathcal{L} and \mathcal{A} with $|\mathcal{L}|$ free. In particular, if, furthermore, (X, Δ) is log canonical, then $f_* \mathcal{O}_X(M) \otimes \mathcal{L}^n \otimes \mathcal{A}$ is generated by its global sections.

Here, $\mathcal{J}(X, \Delta)$ (resp. $\mathcal{J}_{\text{NLIC}}(X, \Delta)$) is the multiplier ideal (resp. the non-lc ideal sheaf) associated to (X, Δ) (Definition 2.2). Theorem 1.3 should be compared with [6, Corollary 1.7]. Also, for several results related to Theorem 1.3, see [5, Section 9].

Theorem 1.3 does not hold in positive characteristic. Indeed, Moret-Bailly [10] constructed a semi-stable fibration $g : S \to \mathbb{P}^1$ of characteristic $p > 0$, where S is a smooth projective surface, such that $g_* \omega_S \otimes \mathcal{O}(2) \cong \mathcal{O}(-1) \oplus \mathcal{O}(p)$ (see also [13, Proposition 3.16]).

The above theorems are proved in Section 3. In Section 4, we consider a question that generalizes Fujita’s freeness conjecture.

Acknowledgements. The author wishes to express his thanks to Professors Osamu Fujino, Masataka Iwai and Shin-ichi Matsumura for helpful comments. He is grateful to Professor Shunsuke Takagi for a fruitful question.

2. Terminologies and definitions

In this section, we define some terminologies and notions.

Let k be a field of characteristic $p \geq 0$. By a *variety* we mean an integral separated scheme of finite type over k.

Let X be a normal variety and let $\Delta = \sum_{i=1}^d \delta_i \Delta_i$ be a \mathbb{Q}-Weil divisor on X, where each Δ_i is a prime divisor. We define the *round down* $\lfloor \Delta \rfloor$ (resp. *round up* $\lceil \Delta \rceil$) of Δ by $[\Delta] := \sum_{i=1}^d \lfloor \delta_i \rfloor \Delta_i$ (resp. $[\Delta] := \sum_{i=1}^d \lceil \delta_i \rceil \Delta_i$). Also, we use the following notation:

$$\{\Delta\} := \Delta - [\Delta]; \quad \Delta^{-1} := \sum_{\delta_i = 1} \Delta_i; \quad \Delta^{>1} := \sum_{\delta_i > 1} \Delta_i; \quad \Delta^{<1} := \sum_{\delta_i < 1} \Delta_i.$$

Assume that $p > 0$. Let X be a variety. Let $F_X^e : X \to X$ denote the e-times iterated absolute Frobenius morphism of X.

Let k be an F-field field, i.e., a field of characteristic $p > 0$ with $[k : k^p] < +\infty$. Let X be a normal variety and let Δ be an effective \mathbb{Q}-Weil divisor on X such that $i(K_X + \Delta)$ is Cartier for an integer $i > 0$ not divisible by p. Let M be a Cartier divisor on X. Let $f : X \to Y$ be a projective morphism to a variety Y. We define
Let e_0 be the smallest positive integer such that $i|(p^{e_0} - 1)$. For each $e \geq 1$ with $e_0|e$, applying $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X(M))$ to the composite of

$$\mathcal{O}_X \xrightarrow{F_{X}^{e}} F_{X}^{e} \mathcal{O}_X \rightarrow F_{X}^{e} \mathcal{O}_X((p^{e} - 1)\Delta),$$

we obtain the morphism

$$\phi_{(X, \Delta)}^{(e)}(M) : F_{X}^{e} \mathcal{O}_X((1 - p^{e})(K_{X} + \Delta) + p^{e}M) \rightarrow \mathcal{O}_X(M)$$

by the Grothendieck duality. Pushing this forward by f, we get

$$f_{\ast} \phi_{(X, \Delta)}^{(e)}(M) : F_{Y}^{e} f_{\ast} \mathcal{O}_X((1 - p^{e})(K_{X} + \Delta) + p^{e}M) \rightarrow f_{\ast} \mathcal{O}_X(M).$$

Note that $f_{\ast} F_{X}^{e} = F_{Y}^{e} f_{\ast}$. By the construction, we see that $f_{\ast} \phi_{(X, \Delta)}^{(e)}(M)$ factors through $f_{\ast} \phi_{(X, \Delta)}^{(e)}(M)$ for $e \geq e' \geq 1$ with $e_0|e$ and $e_0|e'$, so

$$\text{Im} \left(f_{\ast} \phi_{(X, \Delta)}^{(e)}(M) \right) \subseteq \text{Im} \left(f_{\ast} \phi_{(X, \Delta)}^{(e')} (M) \right).$$

Definition 2.1. With the above notation, we define

$$S^{0}_{\ast} f_{\ast}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M)) := \bigcap_{e \geq 1, e_0|e} \text{Im} \left(f_{\ast} \phi_{(X, \Delta)}^{(e)}(M) \right) \subseteq f_{\ast} \mathcal{O}_X(M).$$

We cannot see from the definition whether or not $S^{0}_{\ast} f_{\ast}(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))$ is coherent.

Next, we define the multiplier ideal sheaf $\mathcal{J}(X, \Delta)$ and the non-lc ideal sheaf $\mathcal{J}_{\text{NLC}}(X, \Delta)$.

Definition 2.2. Let the base field be a field of characteristic zero. Let X be a normal projective variety and let Δ be an effective \mathbb{Q}-Weil divisor such that $K_{X} + \Delta$ is \mathbb{Q}-Cartier. Let $\pi : Z \rightarrow X$ be a resolution of X with $K_{Z} + \Delta_{Z} = \pi^{\ast}(K_{X} + \Delta)$ such that $\text{Supp}(\Delta_{Z})$ is simple normal crossing.

- We define the **multiplier ideal sheaf** $\mathcal{J}(X, \Delta)$ by
 $$\mathcal{J}(X, \Delta) := \pi_{\ast} \mathcal{O}_{Z}(-\lfloor \Delta_{Z} \rfloor).$$

- (Definition 2.1) We define the **non-lc ideal sheaf** $\mathcal{J}_{\text{NLC}}(X, \Delta)$ by
 $$\mathcal{J}_{\text{NLC}}(X, \Delta) := \pi_{\ast} \mathcal{O}_{Z}(\lfloor -(\lfloor \Delta_{Z}^{\leq 1} \rfloor - \lfloor \Delta_{Z}^{> 1} \rfloor) \rfloor + \lfloor \Delta_{Z}^{> 1} \rfloor) = \pi_{\ast} \mathcal{O}_{Z}(-\lfloor \Delta_{Z} \rfloor + \Delta_{Z}^{= 1}).$$

By [3, Proposition 2.6], we see that $\mathcal{J}_{\text{NLC}}(X, \Delta)$ is independent of the choice of the resolution $\pi : Z \rightarrow X$, so $\mathcal{J}_{\text{NLC}}(X, \Delta)$ is well-defined. We see from the definition that $\mathcal{J}(X, \Delta) = \mathcal{O}_X$ (resp. $\mathcal{J}_{\text{NLC}}(X, \Delta) = \mathcal{O}_X$) if and only if (X, Δ) is Kawamata log terminal (resp. log canonical).

3. Proofs of the theorems

We first prove Theorem 1.1.

Proof of Theorem 1.1. We prove (1). We use the notation in Section 2. Put $\mathcal{I}^{(e)} := \text{Im} \left(f_{\ast} \phi_{(X, \Delta)}^{(e)}(M) \right)$ for each $e \geq 1$ with $e_0|e$. We show that there is an ample line
bundle \mathcal{L} on Y such that $\mathcal{I}^{(e)} \otimes \mathcal{L}$ is globally generated on Y for $e \gg 0$ with $e_0|e$. If this holds, then for each $e \geq e' > 0$ with $e_0|e$ and $e_0|e'$, we have

$$H^0(Y, \mathcal{I}^{(e')} \otimes \mathcal{L}) \otimes_k \mathcal{O}_Y \longrightarrow \mathcal{I}^{(e')} \otimes \mathcal{L},$$

$$H^0(Y, \mathcal{I}^{(e)} \otimes \mathcal{L}) \otimes_k \mathcal{O}_Y \longrightarrow \mathcal{I}^{(e)} \otimes \mathcal{L},$$

where k is the base field and the horizontal arrows are surjective on V. Note that the equality follows from the fact that the space of global sections is of finite dimension. Hence, $(\mathcal{I}^{(e)} \otimes \mathcal{L})|_V = (\mathcal{I}^{(e')} \otimes \mathcal{L})|_V$, which implies that $\mathcal{I}^{(e)}|_V = \mathcal{I}^{(e')}|_V$.

Set $N := M - K_X - \Delta$. Then iN is Cartier. Since N is relatively ample over V, there is $d \geq 2$ with $i|d$ and $m_0 \geq 1$ such that the natural morphism

$$f_*\mathcal{O}_X(dN) \otimes f_*\mathcal{O}_X(mN + M) \rightarrow f_*\mathcal{O}_X((d + m)N + M)$$

is surjective on V for $m \geq m_0$ with $i|m$. Let \mathcal{L} be an ample line bundle on Y such that \mathcal{L} and $f_*\mathcal{O}_X(dN) \otimes \mathcal{L}$ are globally generated. We prove that $\mathcal{I}^{(e)} \otimes \mathcal{L}^{n+1}$ is globally generated on V for each $e \gg 0$ with $e_0|e$. Let q_e and r_e be integers such that $p^e - 1 = q_e d + r_e$ and $m_0 \leq r_e < m_0 + d$. Note that if $e_0|e$, then $i|r_e$.

Put $\mathcal{G} := \bigoplus_{m_0 \leq r < m_0 + d, i|r} f_*\mathcal{O}_X(r N + M)$. We then have the following sequence of morphisms that are surjective on V for each $e \geq 1$ with $e_0|e$:

$$\mathcal{I}^{(e)} \otimes \mathcal{L}^{n+1}$$

\[F_{Y*}^e \left(f_* \mathcal{O}_X((p^e - 1)N + M) \otimes \mathcal{L}^{p^e(n+1)} \right) \]

\[\left(f_* \mathcal{O}_X((p^e - 1)N + M) \otimes \mathcal{L}^{p^e(n+1)} \right) \]

\[\cong F_{Y*}^e \left(f_* \mathcal{O}_X(dN) \otimes f_* \mathcal{O}_X(r_e N + M) \otimes \mathcal{L}^{p^e(n+1-q_e)} \right) \]

\[\cong F_{Y*}^e \left(\left(\bigoplus \mathcal{O}_Y \right) \otimes f_* \mathcal{O}_X(r_e N + M) \otimes \mathcal{L}^{p^e(n+1-q_e)} \right) \]

\[\cong \bigoplus F_{Y*}^e \left(f_* \mathcal{O}_X(r_e N + M) \otimes \mathcal{L}^{p^e(n+1-q_e)} \right) \]

Therefore, it is enough to show that $F_{Y*}^e \left(\mathcal{G} \otimes \mathcal{L}^{p^e(n+1-q_e)} \right)$ is globally generated for $e \gg 0$. We check that the sheaf is 0-regular with respect to \mathcal{L} in the sense of Castelnuovo–Mumford ([3, Theorem 1.8.5]). For each $0 < j \leq n$, we have

$$H^j \left(Y, F_{Y*}^e \left(\mathcal{G} \otimes \mathcal{L}^{p^e(n+1-q_e)} \right) \otimes \mathcal{L}^{-j} \right) = H^j \left(Y, F_{Y*}^e \left(\mathcal{G} \otimes \mathcal{L}^{p^e(n+1-j-q_e)} \right) \right)$$

Note that F_{Y*}^e is finite, since k is F-finite. By $q_e/p^e \xrightarrow{e \to +\infty} 1/d < 1$, we get $p^e(n + 1 - j - q_e) \xrightarrow{e \to +\infty} +\infty$, so our claim follows from the Serre vanishing theorem. □

Next, we show Theorem 1.2. To this end, we need Lemma 3.2. To prove the following:
Lemma 3.1 ([2] Lemma 3.4]). Let $f : X \to Y$ be a morphism between projective varieties over a field. Let \mathcal{F} be a coherent sheaf on X. Let D be an ample Cartier divisor on X. Then there exists an integer $m_0 \geq 1$ such that

$$f_*\mathcal{F}(mD + N)$$

is generated by its global sections for each $m \geq m_0$ and every nef Cartier divisor N on X.

Lemma 3.2. Let $f : X \to Y$ be a morphism between projective varieties over a field. Let \mathcal{F} be a coherent sheaf on X. Let D be a nef and f-semi-ample Cartier divisor on X. Let A be an ample line bundle on Y. Then there exists integers $n_0 \geq 1$ and $l_0 \geq 1$ such that

$$f_*\mathcal{F}(nD) \otimes A^l$$

is generated by its global sections for all $n \geq n_0$ and $l \geq l_0$.

Proof. Since D is f-semi-ample, there are projective morphisms $\sigma : X \to W$ and $\tau : W \to Y$ with $\tau \circ \sigma = f$ such that $mD \sim \sigma^*D'$ for an $m \geq 1$ and a nef and τ-ample Cartier divisor D' on Z. Set $\mathcal{F}' := \bigoplus_{i=0}^{m-1} \mathcal{F}(iD)$. Replacing $f : X \to Y$, D and \mathcal{F} by $\tau : W \to Y$, D' and $\sigma^*\mathcal{F}'$, respectively, we may assume that D is f-ample. Since D is nef and f-ample, $D + f^*A$ is ample, where A is a Cartier divisor with $\mathcal{O}_Y(A) \cong A$. Then by Lemma 3.1, there is an $m_0 \geq 1$ such that

$$f_*\mathcal{F}(nD + l|f^*A) \cong f_*\mathcal{F}(nD) \otimes A^l$$

is globally generated for each $n \geq m_0$. \hfill \Box

Proof of Theorem 1.3. We use the same notation as that of the proof of Theorem 1.1. By Theorem 1.1, it is enough to show that $\mathcal{T}^{(e)} \otimes \mathcal{L}^n \otimes \mathcal{A}$ is globally generated for $e \gg 0$ with $e_0|e$. By Lemma 3.2, there is an $l \geq 1$ such that

$$f_*\mathcal{O}_X(mN + M) \otimes \mathcal{A}^l$$

is globally generated for each $m \geq 1$ with $i|m$. We then have the following sequence of surjective morphisms for each $e \geq 1$ with $e_0|e$:

$$\mathcal{T}^{(e)} \otimes \mathcal{L}^n \otimes \mathcal{A} \leftarrow (F_{Y*}^e (f_*\mathcal{O}_X ((p^e - 1)N + M) \otimes \mathcal{A}^p)) \otimes \mathcal{L}^n$$

$$\cong (F_{Y*}^e (f_*\mathcal{O}_X ((p^e - 1)N + M) \otimes \mathcal{A}^l \otimes \mathcal{A}^{p^e - l})) \otimes \mathcal{L}^n$$

$$\cong (F_{Y*}^e (\bigoplus \mathcal{O}_Y) \otimes \mathcal{A}^{p^e - l}) \otimes \mathcal{L}^n$$

When $e \gg 0$, we see that the last sheaf is 0-regular with respect to \mathcal{L} by an argument similar to the proof of Theorem 1.1 so it is globally generated, and hence so is $\mathcal{T}^{(e)} \otimes \mathcal{L}^n \otimes \mathcal{A}$. \hfill \Box

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. We first prove the statement on $\mathcal{J}_{\text{NLC}}(X, \Delta)$. One can easily check that we may assume that the base field is an algebraically closed field. Let $\pi : Z \to X$ be a resolution of (X, Δ) with $K_Z + \Delta_Z = \pi^*(K_X + \Delta)$ such that $\text{Supp}(\Delta_Z)$ is simple normal crossing. Put $\Delta' := \{\Delta_Z\} + \Delta_Z^{\leq 1}$. Then each coefficient in Δ' is at
most one and \(\text{Supp}(\Delta')\) is simple normal crossing. Set \(M' := \pi^*M - [\Delta_Z] + \Delta_Z^{-1}\). Then
\[
M' - (K_Z + \Delta') = \pi^*M - [\Delta_Z] + \Delta_Z^{-1} - K_Z - \{\Delta_Z\} - \Delta_Z^{-1} = \pi^*M - K_Z - \Delta_Z = \pi^*(M - (K_X + \Delta)),
\]
so \(M' - (K_Z + \Delta')\) is nef and \(g\)-semi-ample, where \(g := f \circ \pi : Z \to Y\). We also have \(\pi_*\mathcal{O}_Z(M') \cong \mathcal{J}_{\text{NLC}}(X, \Delta)(M)\) by the projection formula. Let \(L\) (resp. \(A\)) be a Cartier divisor on \(Y\) such that \(\mathcal{O}_Y(L) \cong \mathcal{L}\) (resp. \(\mathcal{O}_Y(A) \cong \mathcal{A}\)). Put \(L^{(i)} := (n-i)L + \frac{1}{2}A\) for each \(0 < i \leq n\). Then each \(L^{(i)}\) is ample, and \(M' - (K_Z + \Delta') + g^*L^{(i)}\) is semi-ample. Indeed, since \(M' - (K_Z + \Delta')\) is nef and \(g\)-semi-ample, there are projective morphisms \(\sigma : X \to W\) and \(\tau : W \to Y\) with \(\tau \circ \sigma = g\) such that \(M' - (K_Z + \Delta') \sim_Q \sigma^*N\) for a nef and \(\tau\)-ample \(\mathbb{Q}\)-Cartier divisor \(N\), and then \(N + \tau^*L^{(i)}\) is ample, so \(M' - (K_Z + \Delta') + g^*L^{(i)}\) is semi-ample. Therefore, we can find an effective \(\mathbb{Q}\)-divisor \(F^{(i)} \sim_Q M' - (K_Z + \Delta') + g^*L^{(i)}\) such that the support of \(\Delta^{(i)} := \Delta' + F^{(i)}\) is simple normal crossing and that each coefficient in \(\Delta^{(i)}\) is at most one. Then
\[
M' + g^*((n - i)L + A) - (K_Z + \Delta^{(i)}) = M' + g^*((n - i)L + A) - (K_Z + \Delta') - F^{(i)} \\
\sim_Q M' + g^*((n - i)L + A) - (K_Z + \Delta') - M' + K_Z + \Delta' - g^*L^{(i)} = g^*\left((n - i)L + A - (n - i)L - \frac{1}{2}A\right) = g^*\left(\frac{1}{2}A\right),
\]
so we can apply [1] Theorem 3.2 or [3] Theorem 6.3, from which we obtain that
\[
0 = H^i(Y, g_*\mathcal{O}_Z(M' - g^*((n - i)L + A))) \\
\cong H^i(Y, f_*(\mathcal{J}_{\text{NLC}}(X, \Delta)(M - f^*((n - i)L + A)))) \\
\cong H^i(Y, f_*(\mathcal{J}_{\text{NLC}}(X, \Delta)(M))) \otimes \mathcal{L}^{n-i} \otimes \mathcal{A}
\]
for each \(0 < i \leq n\). This implies that \(f_*(\mathcal{J}_{\text{NLC}}(X, \Delta)(M))) \otimes \mathcal{L}^{n} \otimes \mathcal{A}\) is 0-regular with respect to \(\mathcal{L}\) in the sense of Castelnuovo–Mumford, and hence it is globally generated ([3] Theorem 1.8.5]).

The statement on \(\mathcal{J}(X, \Delta)\) can be proved by an argument similar to the above, by putting \(\Delta' := \{\Delta_Z\}\) and \(M' := \pi^*M - [\Delta_Z]\).

\[Q \square\]

4. Question

In this section, we consider the following question:

Question 4.1. Let the base field be an algebraically closed field of characteristic zero. Let \(X\) be a normal projective variety and let \(\Delta\) be an effective \(\mathbb{Q}\)-Weil divisor on \(X\) such that \((X, \Delta)\) is log canonical. Let \(M\) be a Cartier divisor on \(X\). Let \(f : X \to Y\) be a surjective morphism to a smooth projective variety \(Y\) of dimension \(n\). If \(M - (K_X + \Delta)\) is nef and \(f\)-semi-ample, then is
\[
f_*\mathcal{O}_X(M) \otimes \mathcal{L}^{n+1}
\]
generated by its global sections for an ample line bundle \(\mathcal{L}\) on \(Y\)?
This question is a generalization of Fujita's freeness conjecture.

In positive characteristic, Question 4.1 has been already answered negatively, even if we employ \(S^0 f_*(\sigma(X, \Delta) \otimes \mathcal{O}_X(M)) \) instead of \(f_* \mathcal{O}_X(M) \). Indeed, Gu–Zhang–Zhang [7] constructed a smooth projective surface \(S \) on which there is an ample Cartier divisor \(A \) such that

\[
f_* \mathcal{O}_S(K_S) \otimes A^3 \cong S^0 f_*(\sigma(S, 0) \otimes \mathcal{O}_S(K_S)) \otimes A^3 \cong \omega_S \otimes A^3
\]

is not globally generated, where \(f = \text{id} : S \to S \).

We answer affirmatively Question 4.1 when \(Y \) is a smooth projective curve.

Theorem 4.2. Let the base field be an algebraically closed field of characteristic \(p \geq 0 \). Let \(X \) be a normal projective variety and let \(\Delta \) be a \(\mathbb{Q} \)-Weil divisor on \(X \) such that \(K_X + \Delta \) is \(\mathbb{Q} \)-Cartier. Let \(f : X \to Y \) be a morphism to a smooth projective curve \(Y \). Let \(M \) be a Cartier divisor on \(X \) such that \(M - (K_X + \Delta) \) is nef and \(f \)-semi-ample, and let \(\mathcal{L} \) be an ample line bundle on \(Y \).

1. **Suppose that** \(p = 0 \). **Then**

\[
f_*(\mathcal{J}_{\text{NLC}}(X, \Delta)(M)) \otimes \mathcal{L}^l
\]

is generated by its global sections for \(l \geq 2 \).

2. **Suppose that** \(p > 0 \) and \(i(K_X + \Delta) \) is Cartier for an integer \(i > 0 \) not divisible by \(p \). **Then**

\[
(S^0 f_*(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))) \otimes \mathcal{L}^l
\]

is generated by its global sections for \(l \geq 2 \).

Proof. First, we prove (1). Take a closed point \(y \in Y \). It is enough to show that

\[
H^1(Y, f_*(\mathcal{J}_{\text{NLC}}(X, \Delta)(M)) \otimes \mathcal{L}^l(-y)) = 0.
\]

This follows from the proof of Theorem 1.3, since \(\mathcal{L}^l(-y) \) is ample.

Next, we show (2). By the same argument as the above, it is enough to show that

\[
H^1(Y, (S^0 f_*(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))) \otimes \mathcal{A}) = 0
\]

for an ample line bundle \(\mathcal{A} \) on \(Y \). By Theorem 1.1 and the proof of Theorem 1.2 we have the surjective morphism

\[
\bigoplus F_{Y*} \mathcal{A}^{l-1} \to (S^0 f_*(\sigma(X, \Delta) \otimes \mathcal{O}_X(M))) \otimes \mathcal{A}
\]

for an \(l \geq 1 \) and each \(e \) large and divisible enough. Hence, it suffices to prove that

\[
H^1(Y, F_{Y*} \mathcal{A}^{l-1}) = 0,
\]

but this follows from an argument similar to that of the proof of Theorem 1.1. \(\square \)

References

[1] F. Ambro. Quasi-log varieties. *Proc. Steklov Inst. Math.*, 240:214–233, 2003.

[2] S. Ejiri. Positivity of anti-canonical divisors and \textit{F}-purity of fibers. *Algebra Number Theory*, 13(9):2057–2080, 2019.

[3] O. Fujino. Theory of non-lc ideal sheaves: basic properties. *Kyoto J. Math.*, 50(2):225–245, 2010.

[4] O. Fujino. Fundamental theorems for the log minimal model program. *Publ. Res. Inst. Math. Sci.*, 47(3):727–789, 2011.

[5] O. Fujino. On mixed-\(\omega \)-sheaves. *arXiv preprint arXiv:1908.00171*, 2019.
[6] O. Fujino and S.-i. Matsumura. Injectivity theorem for pseudo-effective line bundles and its applications. *Trans. Amer. Math. Soc. Ser. B*, 8(27):849–884, 2021.

[7] Y. Gu, L. Zhang, and Y. Zhang. Counterexamples to Fujita’s conjecture on surfaces in positive characteristic. *Adv. Math.*, 400:108271, 2022.

[8] C. D. Hacon and C. Xu. On the three dimensional minimal model program in positive characteristic. *J. Amer. Math. Soc.*, 28:711–744, 2015.

[9] R. K. Lazarsfeld. *Positivity in Algebraic Geometry I*, volume 49 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge*. Springer-Verlag Berlin Heidelberg, 2004.

[10] L. Moret-Bailly. Familles de courbes et de variétés abéliennes sur \mathbb{P}^1. In *Astérisque*, volume 86, pages 125–140. Société Mathématique de France, 1981.

[11] Z. Patakfalvi. Semi-positivity in positive characteristics. *Ann. Sci. École Norm. Sup.*, 47(5):991–1025, 2014.

[12] K. Schwede. A canonical linear system associated to adjoint divisors in characteristic $p > 0$. *J. Reine Angew. Math.*, 696:69–87, 2014.

[13] J. Shentu and Y. Zhang. On the simultaneous generation of jets of the adjoint bundles. *J. Algebra*, 555:52–68, 2020.

[14] L. Zhang. Subadditivity of Kodaira dimensions for fibrations of three-folds in positive characteristics. *Adv. Math.*, 354:106741, 2019.

Department of Mathematics, Graduate School of Science, Osaka Metropolitan University, Osaka City, Osaka 558-8585, Japan

Email address: shoejiri.math@gmail.com