Some examples of kinetic scheme whose diffusion limit is Il’in’s exponential-fitting
Laurent Gosse, Nicolas Vauchelet

To cite this version:
Laurent Gosse, Nicolas Vauchelet. Some examples of kinetic scheme whose diffusion limit is Il’in’s exponential-fitting. Numerische Mathematik, 2019, 141 (3), pp.627-680. hal-01590822v2

HAL Id: hal-01590822
https://hal.science/hal-01590822v2
Submitted on 18 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Some examples of kinetic schemes whose diffusive limit is Il’in’s exponential-fitting

L. Gosse∗, N. Vauchelet†

June 18, 2018

Abstract

This paper is concerned with diffusive approximations of peculiar numerical schemes for several linear (or weakly nonlinear) kinetic models which are motivated by wide-range applications, including radiative transfer or neutron transport, run-and-tumble models of chemotaxis dynamics, and Vlasov-Fokker-Planck plasma modeling. The well-balanced method applied to such kinetic equations leads to time-marching schemes involving a “scattering S-matrix”, itself derived from a normal modes decomposition of the stationary solution. One common feature these models share is the type of diffusive approximation: their macroscopic densities solve drift-diffusion systems, for which a distinguished numerical scheme is Il’in/Scharfetter-Gummel’s “exponential fitting” discretization. We prove that the well-balanced schemes relax, within a parabolic rescaling, towards the Il’in exponential-fitting discretization by means of an appropriate decomposition of the S-matrix. This is the so-called asymptotic preserving (or uniformly accurate) property.

Keywords: Discrete-Ordinates (DO); Diffusive approximation; Exponential fitting scheme; Kinetic well-balanced scheme; Run-and-Tumble; Uniformly accurate scheme; Vlasov-Fokker-Planck.

2010 AMS subject classifications: 65M06, 34D15, 76M45, 76R50.

1 Introduction and contextualization

1.1 General setup

Drift-diffusion equations, like (1.3), arise naturally as diffusive approximations of numerous kinetic equations when time t and space x variables are conveniently rescaled. Such parabolic equations, in a context of semiconductor modeling, sparked the development of so-called “uniformly accurate” (nowadays rephrased “asymptotic-preserving” (AP)) numerical methods: see e.g. [2, 3, 20, 34, 47, 49]. A thorough survey of such algorithms is presented in the book [48]. The “exponential-fitting” Il’in/Scharfetter-Gummel algorithm realizes one of the first well-balanced (WB) schemes for a parabolic equation in divergence form, like drift-diffusion equations, and is uniformly accurate (or AP), too, in the vanishing viscosity limit (contrary to the more standard Crank-Nicolson method). Recently well-balanced numerical methods have been proposed in [24, Part II] to discretize kinetic equations. The formulation of these schemes involves so-called scattering S-matrices built on exponential “Knudsen layers”. Accordingly, it is quite natural to wonder how this approach may be adapted to build well-balanced numerical methods which

*Istituto per le Applicazioni del Calcolo, via dei Taurini, 19, 00185 Rome, Italy, Email: l.gosse@ba.iac.cnr.it
†Université Paris 13, Sorbonne Paris Cité, CNRS UMR 7539, Laboratoire Analyse Géométrie et Applications, 93430 Villetaneuse, France. Email: vauchelet@math.univ-paris13.fr
1. are “uniformly accurate” (or AP) within a diffusive rescaling of variables?
2. lead asymptotically to an “exponential-fitting” discretization?

In this paper, we intend to give a positive answer to both these questions for three examples of kinetic equations for which an explicit form of the S-matrix is known. Let $f(t,x,v)$ be a distribution function, depending on time $t > 0$, position $x \in \mathbb{R}$, and velocity $v \in V$: we shall consider,

- a first kinetic model, in parabolic scaling, which reads
 \[
 \varepsilon \partial_t f^\varepsilon + v \partial_x f^\varepsilon = \frac{1}{\varepsilon} \left(\int_{-1}^{1} T_\varepsilon(t,x,v') f^\varepsilon(t,x,v') \, \frac{dv'}{2} - T_\varepsilon(t,x,v) f^\varepsilon(t,x,v) \right). \tag{1.1}
 \]
 When $T_\varepsilon \equiv 1$, the well-known conservative radiative transfer equation is recovered, which, as $\varepsilon \to 0$, approaches the heat equation. When modeling chemotactic motions of bacteria, equation (1.1) is the so-called Othmer-Alt model \cite{44}. The tumbling rate T_ε describes the response to variations of chemical concentration along a bacteria’s path. When the parameter $\varepsilon \to 0$, it is now well-established that the macroscopic density $\rho := \int_{-1}^{1} f(v) \, dv$ solves the Keller-Segel system \cite{14}.

- a related model, the Vlasov-Fokker-Planck system, for which the integral collision term is reduced to a diffusion operator. It reads, in parabolic scaling,
 \[
 \varepsilon \partial_t f^\varepsilon + v \partial_x f^\varepsilon + E \cdot \partial_v f^\varepsilon = \frac{1}{\varepsilon} \partial_v (v f^\varepsilon + \kappa \partial_v f^\varepsilon). \tag{1.2}
 \]
 It converges, as $\varepsilon \to 0$ towards the drift-diffusion equation, \cite{43,46,54}.

1.2 Scope and plan of the paper

An object lying at the center of our matters is the so-called “exponential-fit” (Il’in \cite{34}, Scharfetter-Gummel \cite{49}, or Chang-Cooper \cite{16}) numerical scheme for 1D drift-diffusion equations, that we briefly recall now. Consider,

\[
\partial_t \rho - \partial_x (D \partial_x \rho - E \rho) = 0, \quad 0 \leq D, \quad E \in \mathbb{R}. \tag{1.3}
\]

This equation is discretized by means of a conservative numerical flux:

\[
\frac{\rho_j^{n+1} - \rho_j^n}{\Delta t} - \frac{F_j^n - F_{j-\frac{1}{2}}^n}{\Delta x} = 0, \tag{1.4}
\]

where ρ_j^n is an approximation of $\rho(t^n,x_j)$. The flux F_j^n is an approximation of $J := D \partial_x \rho - E \rho$ at each interface of the grid $x_{j-\frac{1}{2}}$, which is derived by taking advantage of stationary solutions.

\[
J = D \partial_x \overline{\rho}(x) - E \overline{\rho}(x), \quad \overline{\rho}(0) = \rho_{j-1}, \quad \overline{\rho}(\Delta x) = \rho_j^n.
\]

Then, elementary calculations lead to:

\[
F_{j-\frac{1}{2}}^n := J = E \frac{\rho_{j-1}^n - \exp(-E \Delta x/D) \rho_j^0}{1 - \exp(-E \Delta x/D)}. \tag{1.5}
\]

Scheme (1.4)–(1.5) constitutes the classical Il’in/Sharfetter Gummel scheme \cite{20,34,47,49}. Our main result may be formulated as:
Theorem 1.1 Let (2.10)–(2.9) be a numerical scheme relying on a S-matrix for any of the linear $1+1$ kinetic equations (1.1) and (1.2) in parabolic scaling. Then, for $0 \leq \varepsilon \ll 1$, and uniformly in $\Delta x > 0$,

- each one, among the three considered S-matrices acting in (2.10)–(2.9), admits a decomposition of the type (2.11); such a decomposition yields a Well-Balanced/Asymptotic-Preserving IMEX scheme like (2.12);

- when $\varepsilon \to 0$ in the numerical scheme, the corresponding macroscopic densities satisfy the Il’In/Sharfetter-Gummel scheme (1.4)–(1.5).

Obviously, such a general statement contains several former ones, among which the two-stream Goldstein-Taylor model relaxing to the heat equation, [29], or the so-called “Cattaneo model of chemotaxis”, [22]; some of these results were surveyed in [24, Part II]. Yet, as a guideline for more involved calculations, we first explain in §3 how the limiting process works for a simple two-stream approximation of (1.1), the so-called “Greenberg-Alt” model of chemotaxis [32]. We mention that for this simple two-velocity model, a numerical scheme formulated in terms of (2.10) with 2×2 S-matrices is provided in both [24, page 158] and [30, Lemma 4.1] (for the purpose of hydrodynamic limits, though). Another type of closely related “diffusive limit” involving a 2×2 S-matrix was studied in [27].

This elementary calculation carried out on the two-stream “Greenberg-Alt” model (3.18) reveals why it is rather natural to expect that a well-balanced algorithm (3.24) (based on stationary solutions) may relax, within a parabolic scaling, toward the exponential-fit scheme (3.21)–(3.22) for the corresponding asymptotic Keller-Segel model. However, as our Theorem 1.1 covers also continuous-velocity models discretized with general quadrature rules, we present in §2 our strategy of proof: in particular, the general scheme involving a scattering matrix is presented in (2.10) and the importance of the decomposition of the scattering matrix (2.11) is emphasized. In §4, such a strategy is applied to the simplest case of continuous equation, namely the “grey radiative transfer” model (4.29). For this system, it is shown in Theorem 1.6 that our numerical scheme relaxes to the finite-difference discretization of the heat equation (4.55). In §5, the case of the Othmer-Alt [44] model of chemotaxis dynamics (5.56)–(5.57) is handled in a similar manner (at the price of more intricate computations, though), yielding asymptotically the scheme (5.59), this is Theorem 5.5. At last, in §6 the case of a Vlasov-Fokker-Planck model (6.74) is studied, and its asymptotic convergence towards (6.76) is studied.

An essential difference between Vlasov-Fokker-Planck kinetic models and the ones involving an integral collision operator (1.29), (5.56) is that, being exponential polynomials, stationary solutions of (6.74) may not constitute Chebyshev T-systems on $v \in (0, +\infty)$; definition of Chebyshev T-systems is recalled in [2] below. This drawback has to be compensated by supplementary assumptions on the set of discrete velocities, like (6.84) and (6.85). Accordingly, general properties of eigenfunctions for each of the stationary kinetic models are stated in Appendix, along with a new result on exponential monomials, see [38].

Remark 1.2 (Notations) When $u \in \mathbb{R}^N$ and $v \in \mathbb{R}^M$, the matrix $u \otimes v$ is an element of $\mathcal{M}_{N \times M}$ whose coefficients are $(u_k v_\ell)$. We will also commonly use the abuse of notations

$$\frac{1}{1 + u \otimes v} \in \mathcal{M}_{N \times M}, \text{ with coefficients } \left(\frac{1}{1 + u_k v_\ell}\right)_{k,\ell}.$$

The present work somehow completes the former ones [26, 30, 31] where hydrodynamic limits, involving finite-time concentrations, were considered; hereafter, diffusive limits yielding smooth solutions
are studied, and general conclusions are identical: the schemes proposed in [24, Part II], involving \(S \)-matrices based on stationary solutions, yield more accurate discretizations of the asymptotic regime. Namely, the upwind scheme for hydrodynamic limit (instead of Lax-Friedrichs, [35]), and exponential-fitting in the diffusive one.

2 A general strategy for proving Main Theorem 1.1

2.1 Haar property, Chebyshev \(T \)-systems and Markov systems

We first recall basic notions from standard (one-dimensional) approximation theory, following mostly [15, Chapter 3].

Definition 2.1 Let \(n \in \mathbb{N} \) and \(F_n = (f_1, f_2, \ldots, f_n) \) be a family of functions, continuous on an interval \(I \subset \mathbb{R} \): it is endowed with the Haar property if, for any strictly increasing family \(X = (x_1, x_2, \ldots, x_n) \in \Gamma^n \), the family of \(n \) vectors \((f_1(x_1), f_2(x_2), \ldots, f_n(x_n))\) is linearly independent. Equivalently, the determinant never vanishes: \(\forall (x_1, x_2, \ldots, x_n) \in \Gamma^n, \ x_1 < x_2 < \ldots < x_n, \)

\[
\begin{vmatrix}
 f_1(x_1) & f_2(x_1) & \cdots & f_n(x_1) \\
 f_1(x_2) & f_2(x_2) & \cdots & f_n(x_2) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1(x_n) & f_2(x_n) & \cdots & f_n(x_n)
\end{vmatrix} \neq 0. \quad (2.6)
\]

Such a family \(F_n \) constitutes a Chebyshev \(T \)-system on the interval \(I \).

The simplest example of \(T \)-system on \(I = \mathbb{R} \) is the monomials family, for which the determinant (2.6) is the well-known Vandermonde determinant.

Definition 2.2 Let \(F = (f_1, f_2, \ldots) \) be an infinite sequence of functions, continuous on an interval \(I \subset \mathbb{R} \): it is said to be a Markov system if, for any \(n \in \mathbb{N} \), the extracted finite family \(F_n \subset F \) is a Chebyshev \(T \)-system.

A standard, yet important result is the following:

Proposition 2.3 Let \(n \in \mathbb{N} \) and \(F_n = (f_1, f_2, \ldots, f_n) \) be as in Definition 2.1: it is a \(T \)-system on \(I \) if and only if any (real) linear combination,

\[
\forall (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n, \quad I \ni x \mapsto \sum_{i=1}^n a_i f_i(x), \quad (2.7)
\]

admits at most \(n - 1 \) real roots on \(I \).

Remark 2.4 Determinants of the type (2.6) are called “alternant determinants”, see [51, Chapter 4]. Moreover, the Haar property is closely related to “total positivity” of matrices, see e.g. [21].

Being the “Hadamard product” the component-wise product of two \(n \times n \) matrices,

\[
(A \circ B)_{1 \leq i,j,n} := A_{i,j} B_{i,j},
\]

Garloff and Wagner, in [24, page 100], explain that the Haar property is not generally preserved by multiplying elements of two \(T \)-systems with each other. A first exception is given by two generalized Vandermonde matrices \(G_n = (x_i^j)_{1 \leq i,j,n} \) sharing either the set of points \(X \) or the exponents \(\alpha_i \)’s. A second one is given by non-negative exponential monomials: see Theorem A.1.
2.2 General strategy for building AP and WB schemes

Let us first give a Discrete-Ordinates (DO) setup. A spatial domain is gridded with nodes \(x_j = x_0 + j\Delta x, \ j \in \mathbb{Z} \) and a velocity domain, \(V \), symmetric with respect to 0, by \(v_k, k = -K, \ldots, -1, 1, \ldots, K, 0 < v_1 < v_2 < \ldots < v_K \), and \(v_{-k} = -v_k \). We denote

\[
\mathcal{V} = (v_1, \ldots, v_K)^\top \in \mathbb{R}^K, \quad \mathcal{V} := \text{diag}(v_1, \ldots, v_K, v_1, \ldots, v_K) \in \mathcal{M}_{2K}(\mathbb{R}).
\]

Corresponding weights \((\omega_k)_{k=1,\ldots,K}\) may be given by a Gauss quadrature, so

\[
\int_\mathcal{V} \phi(v)dv \text{ is approximated by } \sum_{k=1}^{K} \omega_k(\phi(v_k) + \phi(-v_k)).
\]

The time step will be denoted \(\Delta t > 0 \).

We consider a kinetic system in parabolic scaling

\[
\varepsilon \partial_t f + v \partial_x f = \frac{1}{\varepsilon} \mathcal{L}(f), \quad t, x, v \in \mathbb{R}_+^* \times \mathbb{R} \times \mathcal{V},
\]

where \(\mathcal{L} \) is a linear operator, depending on the nature of the given problem. We assume that when \(\varepsilon \to 0 \) the macroscopic density, defined by \(\rho := \int_\mathcal{V} f(v)dv \), converges to a solution of a drift-diffusion kind of equation (1.3).

Let a discretization of the distribution function at time \(t^n \), be \((f^n_j(\pm v_k))_{j,k}\). Our general strategy for building AP and WB schemes follows these steps.

- **1st step. Determination of the \(S \)-matrix.** In order to build a well-balanced scheme, i.e. which preserves equilibria, it is important to be able to compute stationary solutions. Let us consider the following stationary problem with incoming boundary conditions on \((0, \Delta x)\) for each \(j = 1, \ldots, N_x \),

\[
\varepsilon \partial_x \bar{f} = \mathcal{L}_{j-\frac{1}{2}}(\bar{f}), \quad \bar{f}(0, \mathcal{V}) = f_{j-1}(\mathcal{V}), \quad \bar{f}(\Delta x, -\mathcal{V}) = f_j(-\mathcal{V}).
\]

(2.8)

In this system \(\mathcal{L}_{j-\frac{1}{2}} \) is a discretization of \(\mathcal{L} \) on \((x_{j-1}, x_j)\) such that \(\mathcal{L}_{j-\frac{1}{2}} \) is a linear operator. Notice that it is enough to solve the problem with \(\varepsilon = 1 \) thanks to the change of variable \(x \to x/\varepsilon \). The unknown of the problem is the function \(\bar{f} \) and we want to determine the outgoing flux \((\bar{f}(\Delta x, \mathcal{V})) \). Since (2.8) is linear, the computation of the outgoing flux involves a so-called scattering matrix \(S_{j-\frac{1}{2}}^\varepsilon \) defined by

\[
\begin{pmatrix}
\bar{f}_{j-\frac{1}{2}}^+(\mathcal{V}) \\
\bar{f}_{j-\frac{1}{2}}^-(\mathcal{V})
\end{pmatrix} =
\begin{pmatrix}
\bar{f}(\Delta x, \mathcal{V}) \\
\bar{f}(0, -\mathcal{V})
\end{pmatrix} =
S_{j-\frac{1}{2}}^\varepsilon
\begin{pmatrix}
\bar{f}_{j-1}^+(\mathcal{V}) \\
\bar{f}_{j-1}^-(\mathcal{V})
\end{pmatrix}.
\]

(2.9)

Several \(S \)-matrices for various kinetic models are provided in [24 Part II], including the approach based on Case’s elementary solutions [1].

- **2nd step. Well-balanced scheme.** Once the scattering matrix is known, one may define the well-balanced scheme as (see [25])

\[
\begin{pmatrix}
(f^n_{j+1}(\mathcal{V})) \\
(f^n_{j-1}(\mathcal{V})^{-1})
\end{pmatrix} =
\begin{pmatrix}
f^n_j(\mathcal{V}) \\
(f^n_{j-1}(\mathcal{V})^{-1})
\end{pmatrix} -
\frac{\Delta t}{\varepsilon \Delta x} \mathcal{V}
\begin{pmatrix}
f_j(\mathcal{V}) - \bar{f}_{j-\frac{1}{2}}^+(\mathcal{V}) \\
f_{j-1}(\mathcal{V}) - \bar{f}_{j-\frac{1}{2}}^-(\mathcal{V})
\end{pmatrix}.
\]

(2.10)

It verifies the well-balanced property, i.e. stationary states are preserved.
• **3rd step. Asymptotic preserving scheme.** Obviously to have an uniformly accurate scheme and to be able to pass to the limit as $\varepsilon \to 0$ into the scheme (2.10), we need to treat implicitly terms in $1/\varepsilon$. To do so, a crucial step is the decomposition

\[S^\varepsilon_{j-1/2} = S^0_{j-1/2} + \varepsilon S^{1,\varepsilon}_{j-1/2} \]

(2.11)

Finally, the scheme (2.10)–(2.9) becomes

\[
\begin{pmatrix}
 f^n_{j+1}(\mathcal{V}) \\
 f^n_{j-1}(\mathcal{V})
\end{pmatrix}
+ \frac{\Delta t}{\varepsilon \Delta x} \mathcal{V} \left[
\begin{pmatrix}
 f^n_{j+1}(\mathcal{V}) \\
 f^n_{j-1}(\mathcal{V})
\end{pmatrix}
- S^0_{j-1/2} \begin{pmatrix}
 f^n_{j+1}(\mathcal{V}) \\
 f^n_{j-1}(\mathcal{V})
\end{pmatrix}
\right]
= \frac{\Delta t}{\Delta x} \mathcal{V} S^{1,\varepsilon}_{j-1/2} \begin{pmatrix}
 f^n_{j+1}(\mathcal{V}) \\
 f^n_{j-1}(\mathcal{V})
\end{pmatrix},
\]

(2.12)

Recall that an approximation of macroscopic density is recovered thanks to the quadrature by

\[
\forall j, n, \quad \rho^n_j := \sum_{k=1}^K \omega_k (f^n_j(v_k) + f^n_j(-v_k)).
\]

(2.13)

2.3 Strategy for the proof of the main result

The aim of this paper is to prove that, at least for the kinetic systems (1.1) and (1.2) for which scattering matrices are well established, the limit as $\varepsilon \to 0$ of scheme (2.12) leads to the I’In/Sharfetter Gummel scheme (1.4)–(1.5) for the macroscopic density defined in (2.13). A first ingredient in the proof will be to establish that actually the leading order term in the decomposition (2.11) writes with $K \times K$ block matrices

\[
S^0_{j-1/2} = \begin{pmatrix}
 0_K & S^0_{1,j-1/2} \\
 S^0_{1,j-1/2} & 0_K
\end{pmatrix}
\quad \text{and} \quad
S^{1,\varepsilon}_{j-1/2} = \begin{pmatrix}
 S^{1,\varepsilon}_{1,j-1/2} & S^{1,\varepsilon}_{1,2,j-1/2} \\
 S^{1,\varepsilon}_{3,j-1/2} & S^{1,\varepsilon}_{4,j-1/2}
\end{pmatrix}.
\]

As a consequence, scheme (2.12) can be recast in IMEX (IMplicit-EXplicit [7, 15]) form,

\[
\mathcal{R}_\varepsilon \begin{pmatrix}
 f^n_{j+1}(\mathcal{V}) \\
 f^n_{j-1}(\mathcal{V})
\end{pmatrix}
= \varepsilon f^n_{j+1}(\mathcal{V}) \\
+ \frac{\varepsilon \Delta t}{\Delta x} \mathcal{V} \begin{pmatrix}
 S^{1,\varepsilon}_{1,j-1/2} f^n_{j-1}(\mathcal{V}) + S^{1,\varepsilon}_{2,j-1/2} f^n_{j+1}(\mathcal{V}) \\
 S^{1,\varepsilon}_{3,j+1/2} f^n_{j-1}(\mathcal{V}) + S^{1,\varepsilon}_{4,j+1/2} f^n_{j+1}(\mathcal{V})
\end{pmatrix},
\]

(2.14)

for a matrix \mathcal{R}_ε (which details depend on each kinetic model) given by,

\[
\mathcal{R}_\varepsilon = \varepsilon \mathcal{I}_{2K} + \frac{\Delta t}{\Delta x} \mathcal{V} \begin{pmatrix}
 \mathcal{I}_K & -S^0_{1,j-1/2} \\
 -S^{0}_{1,j+1/2} & \mathcal{I}_K
\end{pmatrix}
\xrightarrow{\varepsilon \to 0} \mathcal{R}_0 := \frac{\Delta t}{\Delta x} \mathcal{V} \begin{pmatrix}
 \mathcal{I}_K & -S^0_{1,j-1/2} \\
 -S^{0}_{1,j+1/2} & \mathcal{I}_K
\end{pmatrix}.
\]

To ensure global solvability of such a scheme in the diffusive limit, we shall argue according to the analysis performed for continuous equations, see for instance [30, Chap. 5], namely by proving that:

- $\text{Ker}(\mathcal{R}_0)$ is a vectorial line, closely related to Maxwellian distributions;
- its range is a hyperplane which contains all kinetic distributions with vanishing macroscopic densities (i.e. null moments of order zero).
These conditions are discrete analogues of the Fredholm alternative holding for continuous limits. Yet, we write that kinetic densities have a Hilbert expansion, \(f = f^0 + \varepsilon f^1 + \ldots \). Injecting into (2.14), we first deduce by identifying the term at order 0 in \(\varepsilon \) that \(f^0 \in \text{Ker}(R_0) \). Identifying the terms at order 1 in \(\varepsilon \), we get

\[
R_0 \left(\left\{ f^1_j \right\}^{n+1}_j(V) \right) = \left(\left\{ (f^0)_j^n - (f^0)_j^{n+1}(V) \right\}, \left\{ (f^0)_j^n - (f^0)_j^{n+1}(-V) \right\} \right)
\]

(2.15)

This equation admits a solution iff the right hand side belongs to the range of \(R_0 \). Taking moments of order zero allows us to deduce the asymptotic discretization governing the numerical macroscopic density.

To summarize, the main issues are:

- to compute the scattering matrix \(S \) and determine its decomposition (2.11);
- to study the kernel and the range of \(R_0 \);
- to establish that taking the moment of order zero of (2.15) leads to II’In/Sharfetter Gummel scheme for macroscopic density.

Finally, for future use, we recall the following result:

Lemma 2.5 (Lemma 3.1 in [10], Prop. 1 in [25]) Let \(\Gamma \) be the following diagonal matrix,

\[
\Gamma = \begin{pmatrix}
\text{diag}(\omega_k v_k)_{k=1,\ldots,K} & 0_K \\
0_K & \text{diag}(\omega_k v_k)_{k=1,\ldots,K}
\end{pmatrix},
\]

then, being given a nonnegative initial data \(f^{0}_{j}(\pm V) \), the scheme (2.10) preserves both non-negativity and the (discrete) \(L^1 \) norm of \(f^{n}_{j}(\pm V) \) as soon as

\[
\max(V)\Delta t \leq \varepsilon \Delta x, \quad \text{CFL condition},
\]

\(\forall j, \quad \Gamma S^{n}_{j-1/2} \Gamma^{-1} \) is left-stochastic (each column summing to 1).

Moreover, it preserves its \(L^\infty \) norm as well if \(S^{n}_{j-1/2} \) is right-stochastic (each row summing to 1).

3 The two-stream Greenberg-Alt kinetic model

For the sake of simplicity, we first start our exposition by a very simple model consisting in a two-velocity kinetic model.

3.1 Diffusive limit of the continuous system

The simplest two-velocity kinetic model describing the motion of bacteria by chemotaxis was given in [32]. Let \(f^+ (f^-) \) be the distribution function of right-moving (left-moving) bacteria, the following system describes their motion governed by a run and tumble process (see also e.g. [14, 17])

\[
\varepsilon \partial_t f^\pm + \partial_x f^\pm = \pm \frac{1}{2\varepsilon} \left((1 + \varepsilon \phi(\partial_x S)) f^- - (1 - \varepsilon \phi(\partial_x S)) f^+ \right).
\]

(3.18)
The quantity S is the chemoattractant concentration, and solves
\[-\partial_{xx}S + S = \rho. \] (3.19)

Macroscopic quantities being $\rho = f^+ + f^-$ (density) and $J = \frac{1}{\varepsilon}(f^+ - f^-)$ (current), adding and subtracting former equations yields,
\[\partial_t \rho + \partial_x J = 0, \quad \varepsilon^2 \partial_t J + \partial_x \rho = \phi(\partial_x S)\rho - J. \]

Letting formally $\varepsilon \to 0$ in the second equation,
\[J = \phi(\partial_x S)\rho - \partial_x \rho, \]
and yields the well-known Keller-Segel, system when coupled with (3.19),
\[\partial_t \rho - \partial_{xx} \rho + \partial_x \left(\phi(\partial_x S)\rho \right) = 0. \] (3.20)

3.2 Exponential-fit scheme for Keller-Segel equation

We first recall the Il’in/Sharfetter Gummel scheme for system (3.20), which writes under the form (1.3) with $D = 1$ and $E = \phi(\partial_x S)$. Assuming that approximations $(\rho_j^n)_j$ of $\rho(t^n, x_j)$ and $(S_j^n)_j$ of $S(t^n, x_j)$ are available, we denote
\[\forall j, \quad \phi^n_{j-1/2} = \phi\left(\frac{S^n_j - S^n_{j-1}}{\Delta x}\right). \]

Then, the Il’In/Sharfetter Gummel scheme (1.4)–(1.5) reads, in this framework,
\[\mathcal{J}^{n}_{j-1/2} = \frac{\phi^n_{j-1/2}}{1 - \varepsilon^{\phi^n_{j-1/2} - 1/2 - \varepsilon^{\phi^n_{j-1/2} - 1/2} + 1}}\left(\rho^n_{j-1} - \varepsilon^{\phi^n_{j-1/2} - 1} + \varepsilon^{\phi^n_{j-1/2} - 1}\rho^n_j\right), \] (3.21)
which gives (constant) currents. Then densities are updated by,
\[\rho^{n+1}_j = \rho_j^n + \frac{\Delta t}{\Delta x}(\mathcal{J}^n_{j-1/2} - \mathcal{J}^n_{j+1/2}). \] (3.22)

3.3 Asymptotic preserving and well-balanced scheme

We follow the strategy proposed in §2.2. Let us assume that $(f_j^{n,+}, f_j^{n,-})_j$ are known at time t^n along with an approximation S^n_j of $S(t^n, x_j)$, giving $\phi^n_{j-1/2} = \phi(\frac{S^n_j - S^n_{j-1}}{\Delta x})$.

• 1st step. Scattering matrix. It is computed by solving the stationary system in (x_{j-1}, x_j) with incoming boundary conditions,
\[
\begin{aligned}
\partial_x \mathcal{J}^+ &= \frac{1}{\varepsilon^{\phi^n_{j-1/2}}}(1 + \varepsilon^{\phi^n_{j-1/2}} - (1 - \varepsilon^{\phi^n_{j-1/2}})\mathcal{J}^+)

\mathcal{J}^+(x_{j-1}) &= f^+_{j-1}; \quad \mathcal{J}^-(x_j) = f^-_j.
\end{aligned}
\] (3.23)

The unknown for this problem are interface values $f^+_{j-1/2} := \mathcal{J}^+(x_{j-1})$ and $f^-_{j-1/2} := \mathcal{J}^-(x_j)$. System (3.23) may be solved exactly by, first, subtracting both equations,
\[\partial_x (\mathcal{J}^+ - \mathcal{J}^-) = 0, \quad \mathcal{J} := \frac{1}{\varepsilon}((\mathcal{J}^+ - \mathcal{J}^-) \text{ is constant in } (x_{j-1}, x_j).} \]
and then, adding them, so that by denoting \(\overline{\rho} = \overline{f}^+ + \overline{f}^- \),
\[
\partial_x \overline{\rho} = \phi_j^{n}/2 \overline{\rho} - \overline{J}, \quad e^{-\phi_j^{n}/2 \Delta x} \overline{p}_j - \overline{p}_{j-1} = \frac{\overline{f} - \overline{\rho} - 1}{\phi}.
\]
Thus the system to be solved is
\[
f_{j-1}^+ - \overline{f}_{j-1/2} = \overline{f}_{j-1/2}^- - f_{j-1}^- \\
e^{-\phi_j^{n}/2 \Delta x} (f_{j-1}^- + \overline{f}_{j-1/2}^+) - (f_{j-1}^+ + \overline{f}_{j-1/2}^-) = e^{-\phi_j^{n}/2 \Delta x} \frac{1}{\varepsilon \phi_j^{n}} (f_{j-1}^+ - \overline{f}_{j-1/2}^-).
\]
After easy computations,
\[
\overline{f}_{j-1/2}^+ = f_{j-1}^+ + \frac{2\varepsilon \phi_j^{n}/2}{e^{-\phi_j^{n}/2 \Delta x} - 1 - \varepsilon \phi_j^{n}/2 (1 + e^{-\phi_j^{n}/2 \Delta x})}, \\
\overline{f}_{j-1/2}^- = f_{j-1}^- - \frac{2\varepsilon \phi_j^{n}/2}{e^{-\phi_j^{n}/2 \Delta x} - 1 - \varepsilon \phi_j^{n}/2 (1 + e^{-\phi_j^{n}/2 \Delta x})}.
\]
Following [24] pp.157–58 (or [26]), one may rewrites the latter system by defining a S-matrix,
\[
\left(\begin{array}{c} \overline{f}_{j-1/2}^+ \\ \overline{f}_{j-1/2}^+ \end{array} \right) = S_{j-1/2} \left(\begin{array}{c} f_{j-1}^+ \\ f_{j-1}^- \end{array} \right),
\]
which (with shorthand notation \(\mathcal{E} = e^{-\phi_j^{n}/2 \Delta x} \)) reads
\[
S_{j-1/2} = \left(\begin{array}{cc} \frac{-2\varepsilon \phi_j^{n}/2}{e^{-1 - \varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} - 2\varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} & 1 + \frac{2\varepsilon \phi_j^{n}/2 \mathcal{E}}{e^{-1 - \varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} - 2\varepsilon \phi_j^{n}/2 \mathcal{E}} \\ 1 + \frac{-2\varepsilon \phi_j^{n}/2 \mathcal{E}}{e^{-1 - \varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} - 2\varepsilon \phi_j^{n}/2 \mathcal{E}} & \frac{2\varepsilon \phi_j^{n}/2 \mathcal{E}}{e^{-1 - \varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} - 2\varepsilon \phi_j^{n}/2 \mathcal{E}} \end{array} \right).
\]
Notice that it is clearly left-stochastic.

- **2nd step. WB scheme.** Following [20], we consider
\[
\left\{ \begin{array}{l} f_{j-1/2}^{n+1} = f_{j-1}^{n+1} - \frac{\Delta t}{\Delta x} (f_{j-1}^{n+1} - \mathcal{T}_{j-1}^+) \\
 f_{j-1/2}^{n-1} = f_{j-1}^{n-1} - \frac{\Delta t}{\Delta x} (f_{j+1}^{n-1} - \mathcal{T}_{j-1}^-)
\end{array} \right.
\]
(3.24)

- **3rd step. AP scheme.** For such a simple case, the decomposition (2.11) is straightforward:
\[
S_{j-1/2} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) + 2\varepsilon \cdot \frac{\phi_j^{n}/2}{\mathcal{E} - 1 - \varepsilon \phi_j^{n}/2 (1 + \mathcal{E})} \left(\begin{array}{cc} -1 & \mathcal{E} \\ \mathcal{E} & -1 \end{array} \right).
\]
(3.25)
By treating implicitly the first (stiff) term and plugging into the scheme (2.10),
\[
\left\{ \begin{array}{l} f_{j-1/2}^{n+1} = f_{j-1}^{n+1} - \frac{\Delta t}{\Delta x} (f_{j-1}^{n+1} - f_{j-1}^{n-1}) + \frac{\Delta t}{\Delta x} \mathcal{T}_{j-1/2}^+ \\
 f_{j-1/2}^{n-1} = f_{j-1}^{n-1} - \frac{\Delta t}{\Delta x} (f_{j+1}^{n-1} - f_{j-1}^{n+1}) - \frac{\Delta t}{\Delta x} \mathcal{T}_{j-1/2}^-
\end{array} \right.
\]
(3.26)
For this simple case, the limit $\varepsilon \to 0$ may be performed easily. Adding the first two equations in (3.26), we obtain,

$$\rho_n^m = f_{j}^{+m} + f_{j}^{-m}, \quad \rho_{n+1}^n = \rho_n^n - \frac{\Delta t}{\Delta x} (\mathcal{T}_{j+1/2} - \mathcal{T}_{j-1/2}).$$ \hspace{1cm} (3.27)

Letting then $\varepsilon \to 0$, we deduce easily from (3.26) that

$$J_{n+1/2}^j \to -2\phi_{n+1/2} - 2\varphi_{n+1/2} e^{-\phi_{n+1/2}},$$

$$\varepsilon \to 0.$$ \hspace{1cm} (3.28)

Injecting (3.28) into (3.27), Il'in scheme for Keller-Segel system (3.20) is found.

Remark 3.1 All computations are explicit, so there is no real need of \mathcal{R}_ε when passing to the limit.

From (3.26), we get the matrix already met in [29, §3],

$$\mathcal{R}_\varepsilon = \left(\begin{array}{cc} \varepsilon + \frac{\Delta t}{\Delta x} & -\frac{\Delta t}{\Delta x} \\ -\frac{\Delta t}{\Delta x} & \varepsilon + \frac{\Delta t}{\Delta x} \end{array} \right) \varepsilon \to 0 \mathcal{R}_0 = \frac{\Delta t}{\Delta x} \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right).$$

Thus, $\text{Ker}(\mathcal{R}_0) = \text{Vect}\{(1, 1)^\top\}$ and $(u, v)^\top \in \text{Im}(\mathcal{R}_0)$ iff $u + v = 0$.

4 Heat equation as a diffusive limit of radiative transfer

Let us consider the kinetic model (1.1) in the simple case $T_\varepsilon \equiv 1$:

$$\varepsilon \partial_t f + v \partial_x f = \frac{1}{\varepsilon} \left(\int_{-1}^1 f(t, x, v') \frac{dv'}{2} - f \right).$$ \hspace{1cm} (4.29)

The macroscopic density, at the limit $\varepsilon \to 0$, satisfies the heat equation

$$\partial_t \rho - \frac{1}{3} \partial_{xx} \rho = 0, \quad \rho(t, x) = \int_{-1}^1 f(t, x, v) dv.$$ \hspace{1cm} (4.30)

Equation (4.29) is usually referred to as to “gray radiative transfer”; more specific models can be drawn by replacing the uniform integral kernel $\frac{1}{2}$ by an even, nonnegative, function of the velocity variable, $0 \leq \mathcal{K}(v) = \mathcal{K}(-v)$,

$$\varepsilon \partial_t f + v \partial_x f = \frac{1}{\varepsilon} \left(\mathcal{K}(v) \int_{-1}^1 f(t, x, v') dv' - f \right), \quad \int_{-1}^1 \mathcal{K}(v) = 1.$$ \hspace{1cm} (4.30)

For this system, the velocity domain being $V = (-1, 1)$, we assume that the set (ω_k, v_k) introduced in [22] satisfies the mild restrictions,

$$\sum_{k=1}^K \omega_k = 1, \quad \sum_{k=1}^K \omega_k v_k^2 = \frac{1}{3}, \quad v_{-k} = -v_k.$$ \hspace{1cm} (4.31)
4.1 Solving the stationary problem

Let us first investigate some useful properties on the stationary equation for general nonnegative kernel T:

Proposition 4.1 Let $\bar{f}(x,v) = \exp(-\lambda x)\phi_\lambda(v)$ be a separated-variables solution of the stationary equation

$$v \partial_x \bar{f} = \int_{-1}^{1} T(v') \bar{f}(x,v') d\nu(v') - T(v) \bar{f}, \quad v \in (-1,1),$$

where ν is a probability measure on $(-1,1)$. Then, we have

$$\phi_\lambda(v) = \frac{1}{T(v) - \lambda v}, \quad \int_{-1}^{1} \frac{T(v)}{T(v) - \lambda v} d\nu(v) = 1. \quad (4.33)$$

Moreover, the following orthogonality relation holds

$$\forall \lambda \neq \mu, \quad \int_{-1}^{1} v \phi_\lambda(v) \phi_\mu(v) T(v) d\nu(v) = 0. \quad (4.34)$$

In particular, for $\lambda = 0$,

$$\phi_0(v) = \frac{1}{T(v)}, \quad \forall \mu \neq 0, \quad J_\mu = \int_{-1}^{1} v \phi_\mu(v) d\nu(v) = 0.$$

The λ are usually called the “eigenvalues” and the corresponding ϕ_λ are the “Case’s eigenfunctions”.

Remark 4.2 Under assumption $[4.31]$ on the discrete velocity set, we may choose the measure $\nu = \frac{1}{2} \sum_{k=-K}^{K} \omega_k \delta(v - v_k)$ in this proposition. Then, relation $[4.34]$ becomes

$$\forall \lambda \neq \mu, \quad \sum_{k=-N}^{N} \omega_k v_k \phi_\lambda(v_k) \phi_\mu(v_k) T(v_k) = 0. \quad (4.35)$$

In particular, for $\lambda = 0$,

$$\forall \mu \neq 0, \quad \sum_{k=1}^{N} \omega_k v_k (\phi_\mu(v_k) - \phi_\mu(-v_k)) = 0. \quad (4.36)$$

Proof. Inserting the ansatz $\bar{f}(x,v) = \exp(-\lambda x)\phi_\lambda(v)$ into $[4.32]$ implies

$$(T(v) - \lambda v)\phi_\lambda(v) = \int_{-1}^{1} T(v)\phi_\lambda(v) d\nu(v).$$

By linearity, ϕ_λ is defined up to a constant, we may fix this constant by imposing

$$\int_{-1}^{1} T(v)\phi_\lambda(v) d\nu(v) = 1.$$

It gives the relations $[4.33]$. Then, for two eigenvalues $\lambda \neq \mu$, we have

$$(T(v) - \lambda v)\phi_\lambda(v) = 1; \quad (T(v) - \mu v)\phi_\mu(v) = 1.$$
We multiply the first identity by \(T(v)\phi_{\mu}(v) \), the second by \(T(v)\phi_{\lambda}(v) \), and integrate over \(dv(v) \), we obtain after subtracting the resulting identities
\[
(\lambda - \mu) \int_{-1}^{1} v\phi_{\lambda}(v)\phi_{\mu}(v)T(v)\,dv(v) = 0.
\]
We deduce the orthogonality relation in (4.34).

4.2 The scattering matrix and its decomposition \((2.11)\)

Following the strategy proposed in Section \(2.2 \), we first determine the scattering matrix and its expansion \((2.11)\). The stationary problem with incoming boundary data reads, for an index \(j \),
\[
\varepsilon v\partial_{x} \overline{f} = \frac{1}{2} \int_{-1}^{1} \overline{f}(v')dv' - \overline{f}, \quad \text{on } (0, \Delta x), \tag{4.37}
\]
\[
\overline{f}(0, v) = f_{j-1}(v), \quad \overline{f}(\Delta x, -v) = f_{j}(-v), \tag{4.38}
\]
where \((f_{j-1}(|v|), f_{j}(-|v|))\) are “incoming values”, and outgoing ones read:
\[
\overline{f}_{j-1/2}(|v|) = \overline{f}(\Delta x, |v|), \quad \overline{f}_{j-1/2}(-|v|) = \overline{f}(0, -|v|).
\]

In view of Proposition \((4.1)\), equation (4.33) in the particular case \(T = 1 \), the discrete eigenelements are given by
\[
\frac{1}{2} \sum_{k=1}^{K} \omega_{k} \left(\frac{1}{1 - \lambda v_{k}} + \frac{1}{1 + \lambda v_{k}} \right) = 1, \quad \phi_{\lambda}(v) = \frac{1}{1 - \lambda v}.
\]
Clearly, we have that if \(\lambda \) is an eigenvalue, then \(-\lambda\) is also an eigenvalue and \(\phi_{-\lambda}(v) = \phi_{\lambda}(-v) \). We observe also that the eigenvalue \(\lambda = 0 \) is double; the eigenvectors are 1 and \(x - \varepsilon v \). (Indeed we verify easily that such functions solve (4.37)). Therefore, a quite general stationary solution is obtained by truncating to the first \(2K \) eigenmodes, (see e.g. \([11, 11, 24]\))
\[
\overline{f}(x, v) = a_{0} + b_{0}(x - \varepsilon v) + \sum_{\ell=1}^{K-1} \left(\frac{a_{\ell} e^{-\lambda_{\ell} x/\varepsilon}}{1 - \lambda_{\ell} v} + \frac{b_{\ell} e^{\lambda_{\ell} (x-\Delta x)/\varepsilon}}{1 + \lambda_{\ell} v} \right), \quad \lambda_{\ell} \geq 0.
\]
We denote the vector of so-called “normal modes”, \(0 \leq \lambda := (\lambda_{1}, \ldots, \lambda_{K-1})^{T} \), and the matrix of “Case’s eigenfunction”
\[
\Phi^{\pm}(x) = \begin{pmatrix} e^{-\lambda x/\varepsilon} & e^{\lambda (x-\Delta x)/\varepsilon} \\
1 \mp \varepsilon \otimes \lambda & 1 \pm \varepsilon \otimes \lambda \end{pmatrix} 1_{R^{K}} \in \mathcal{M}_{K \times 2K}(R),
\]
such that \(\overline{f}(x, \pm \varepsilon) = \Phi^{\pm}(x) \begin{pmatrix} a \\ b \end{pmatrix} \), with the notations \(a = (a_{1}, \ldots, a_{K-1}, a_{0})^{T} \) and \(b = (b_{1}, \ldots, b_{K-1}, b_{0})^{T} \). (We recall that the notation \(\frac{1}{1 \mp \varepsilon \otimes \lambda} \) denotes the matrix in \(\mathcal{M}_{K}(R) \) whose coefficients are \((\frac{1}{1+\varepsilon_{k}\lambda_{\ell}})_{k,\ell} \). Thanks to the boundary conditions (4.35) we have
\[
\begin{pmatrix} \overline{f}(0, \varepsilon) \\ \overline{f}(\Delta x, -\varepsilon) \end{pmatrix} = \begin{pmatrix} \Phi^{+}(0) \\ \Phi^{-}(\Delta x) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}, \quad \begin{pmatrix} \overline{f}(\Delta x, \varepsilon) \\ \overline{f}(0, -\varepsilon) \end{pmatrix} = \begin{pmatrix} \Phi^{+}(\Delta x) \\ \Phi^{-}(0) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.
\]
Thus, we deduce (see also [24, Chap. 9 pp.175-176]), that the solution of (4.37)–(4.38) is expressed as,
\[
\left(\frac{\tilde{f}_{j-1/2}(V)}{\tilde{f}_{j-1/2}(-V)} \right) = \tilde{M}_\varepsilon M_\varepsilon^{-1} \left(\frac{f_{j-1}(V)}{f_{j-1}(-V)} \right),
\]
where
\[
\tilde{M}_\varepsilon := \begin{pmatrix}
\Phi^+(\Delta x) \\
\Phi^-(0)
\end{pmatrix} = \begin{pmatrix}
\begin{pmatrix}
e^{-\lambda \Delta x/\varepsilon} & 1 \\
\frac{1}{{1+V}\otimes\lambda} & 1
\end{pmatrix}
&
\begin{pmatrix}
\frac{1}{{1+V}\otimes\lambda} & \Delta x 1 \mathbb{R}^K - \varepsilon V \\
e^{-\lambda \Delta x/\varepsilon} & 1
\end{pmatrix}
\end{pmatrix},
\]
\[
M_\varepsilon := \begin{pmatrix}
\Phi^+(0) \\
\Phi^-(\Delta x)
\end{pmatrix} = \begin{pmatrix}
\begin{pmatrix}
e^{-\lambda \Delta x/\varepsilon} & 1 \\
\frac{1}{{1+V}\otimes\lambda} & 1
\end{pmatrix}
&
\begin{pmatrix}
\frac{1}{{1+V}\otimes\lambda} & -\varepsilon V \\
e^{-\lambda \Delta x/\varepsilon} & 1
\end{pmatrix}
\end{pmatrix}.
\]
Thus we have obtained the first statement of the following Proposition:

Proposition 4.3 The scattering matrix for the radiative transfer system is given by
\[
\mathcal{S}_\varepsilon = \tilde{M}_\varepsilon M_\varepsilon^{-1}, \quad \text{(independent of } j)\]
where \(\tilde{M}_\varepsilon \) and \(M_\varepsilon \) are given in (4.39)–(4.40). It admits the decomposition
\[
\mathcal{S}_\varepsilon = \begin{pmatrix}
0_K \\
I_K - \zeta \gamma
\end{pmatrix} + \varepsilon B_\varepsilon, \quad \text{where } B_\varepsilon := \frac{1}{\varepsilon} (A_\varepsilon M_\varepsilon^{-1} - A_0 M_0^{-1}),
\]
with \(A_\varepsilon = \tilde{M}_\varepsilon - \begin{pmatrix}
0_K \\
I_K
\end{pmatrix} M_\varepsilon,\)
\[
\zeta = \left(\frac{1}{{1-\bar{V}\otimes\lambda}} \right) - \left(\frac{1}{{1+\bar{V}\otimes\lambda}} \right) \in \mathcal{M}_{K\times K-1}(\mathbb{R}),
\]
and \(\gamma \in \mathcal{M}_{K-1\times K}(\mathbb{R}),\) \(\beta^T \in \mathbb{R}^K \) are such that
\[
\gamma \left(\frac{1}{{1-\bar{V}\otimes\lambda}} \right) = I_{K-1}, \quad \gamma 1_{\mathbb{R}^K} = 0_{\mathbb{R}^K-1},
\]
\[
\beta^T \left(\frac{1}{{1-\bar{V}\otimes\lambda}} \right) = 0_{\mathbb{R}^K-1}^T, \quad \beta^T 1_{\mathbb{R}^K} = 1.
\]

Remark 4.4 The existence of \(\gamma \) and \(\beta \) is provided by Proposition 4.1, (iii) in Appendix. It’s good to have an “intuitive idea” of the nature of \(\zeta, \gamma \) and \(\beta \):

- **First**, \(\zeta : \mathbb{R}^{K-1} \rightarrow \mathbb{R}^K \) converts a set of \(K-1 \) spectral coefficients into the restriction to \(v \in \mathcal{V} \) of a kinetic density \(F(v) \) having a specific property,
\[
\forall v_k \in \mathcal{V}, \quad F(v_k) = -F(-v_k), \quad \text{so } \sum_{k=1}^K \omega_k (F(v_k) + F(-v_k)) = 0.
\]

- **Then**, \(\gamma : \mathbb{R}^K \rightarrow \mathbb{R}^{K-1} \) recovers \(K-1 \) spectral coefficients corresponding to “damped modes” (Knudsen layers) out of \(K \) samples of any kinetic density \(F(v_k) \). More precisely, if we consider a given steady kinetic density,
\[
\forall v_k \in \mathcal{V}, \quad G(v_k) = a_0 + \sum_{\ell=1}^{K-1} \frac{a_\ell}{1 - v_k \lambda_\ell},
\]
then \(\gamma [G(\mathcal{V})] = (a_1, a_2, \ldots, a_{K-1}) \): this is meaningful for \(\varepsilon \ll 1. \)
Oppositely, β detects the “Maxwellian part” in the decomposition of G, that is, the a_0 coefficient, so that $\beta^\top [G(V)] = a_0$.

Yet, consider the product $\zeta \gamma : \mathbb{R}^K \to \mathbb{R}^K$, applied to $G(V)$. It produces,

$$((\zeta \gamma[G])(v_k) = \sum_{\ell=1}^{K-1} a_\ell \left(\frac{1}{1 - v_k \lambda_\ell} - \frac{1}{1 + v_k \lambda_\ell} \right), \quad k = 1, \ldots, K,$$

so that,

$$\forall v_k \in V, \quad (I_K - (\zeta \gamma))[G](v_k) = a_0 + \sum_{\ell=1}^{K-1} \frac{a_\ell}{1 + v_k \lambda_\ell}.$$

Proof.

1. Based on the simple case (3.25), we define A^ε such that,

$$\forall \varepsilon > 0, \quad \mathcal{S}^\varepsilon = \begin{pmatrix} 0_K & I_K \\ I_K & 0_K \end{pmatrix} + A^\varepsilon M^{-1},$$

which clearly yields:

$$A^\varepsilon = \tilde{M}^\varepsilon - \begin{pmatrix} 0_K & I_K \\ I_K & 0_K \end{pmatrix} M^\varepsilon = \begin{pmatrix} \zeta e^{-\lambda \Delta x/\varepsilon} & 0_{R^K} & -\zeta & 2\varepsilon \\ -\zeta & 0_{R^K} & \zeta e^{-\lambda \Delta x/\varepsilon} & 2\varepsilon \end{pmatrix},$$

As $\varepsilon \to 0$,

$$A^\varepsilon \to A_0 = \begin{pmatrix} 0_K & (-\zeta) & 0_{R^K} \\ -\zeta & 0_K \\ 0_{R^K} & 0_K \end{pmatrix}, \quad (4.45)$$

along with,

$$M^\varepsilon \to M_0 = \begin{pmatrix} \frac{1}{1 - \mathcal{V} \otimes \lambda} & 1_{R^K} \\ 1_{R^K} & \frac{1}{1 - \mathcal{V} \otimes \lambda} & 0_K & \Delta x 1_{R^K} \end{pmatrix},$$

with the notation

$$M_{01} = \begin{pmatrix} \frac{1}{1 - \mathcal{V} \otimes \lambda} \\ 1_{R^K} \end{pmatrix}, \quad M_{02} = \begin{pmatrix} \frac{1}{1 - \mathcal{V} \otimes \lambda} \\ \Delta x 1_{R^K} \end{pmatrix}.$$

2. We now intend to compute the following inverse,

$$M_0^{-1} = \begin{pmatrix} M_{01}^{-1} & M_{02}^{-1} & 0_K \\ -M_{02}^{-1} (0_K \times (K-1)) & 1_{R^K} & 0_K \\ 0_{R^K} & 0_{R^K} & M_{02}^{-1} \end{pmatrix}, \quad (4.46)$$

where

$$M_{01}^{-1} = \begin{pmatrix} \gamma \end{pmatrix} \beta^\top \in \mathcal{M}_{K,K}(\mathbb{R}), \quad M_{02}^{-1} = \begin{pmatrix} \gamma \end{pmatrix} \beta^\top \in \mathcal{M}_{K,K}(\mathbb{R}),$$

being γ a matrix of size $(K - 1) \times K$ and β an element in \mathbb{R}^K, such that (4.43) and (4.44) hold. From the expression (4.45) and (4.46), it comes:

$$A_0 M_0^{-1} = \begin{pmatrix} (-\zeta) & 0_{R^K} M_{02}^{-1} (0_K \times (K-1)) & 1_{R^K} M_{01}^{-1} \\ -\zeta & 0_{R^K} M_{01}^{-1} & 0_K \end{pmatrix}.$$
• We first observe that
\[
(-\zeta \mathbf{0}_{\mathbb{R}K}) \begin{pmatrix} \gamma \\ \beta^\top \end{pmatrix} = (-\zeta \mathbf{0}_{\mathbb{R}K}) \begin{pmatrix} \gamma \\ \Delta x \beta^\top \end{pmatrix} = -\zeta \gamma.
\]

• Then, using the second identity in (4.43),
\[
A_0 M_0^{-1} = \begin{pmatrix} 0_K & -\zeta \gamma \\ -\zeta \gamma & 0_K \end{pmatrix}.
\]

Finally, we reach the decomposition (4.42).

Lemma 4.5 With identical notation as Proposition 4.3 as \(\varepsilon \to 0\),
\[
B_\varepsilon = \frac{1}{\Delta x} \begin{pmatrix} (2I_K - \zeta \gamma) \mathbf{V} \beta^\top & -(2I_K - \zeta \gamma) \mathbf{V} \beta^\top \\ -(2I_K - \zeta \gamma) \mathbf{V} \beta^\top & (2I_K - \zeta \gamma) \mathbf{V} \beta^\top \end{pmatrix} + o(1). \tag{4.47}
\]

Proof. From (4.42), and using the form,
\[
M_\varepsilon = M_0 + \begin{pmatrix} 0_K \times (K-1) & 0_K \times (K-1) \\ \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} & \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} \\ \frac{\varepsilon^\alpha \Delta x}{1+\nu \Delta x} & \frac{\varepsilon^\alpha \Delta x}{1+\nu \Delta x} \end{pmatrix} - \varepsilon \mathbf{V},
\]
we get
\[
B_\varepsilon = \frac{1}{\varepsilon}(A_\varepsilon - A_0 M_0^{-1} M_\varepsilon) M_\varepsilon^{-1}
= \frac{1}{\varepsilon}(A_\varepsilon - A_0) M_\varepsilon^{-1}
+ \begin{pmatrix} 0_K \times (K-1) & 0_K \times (K-1) \\ \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} & \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} \end{pmatrix} - \varepsilon \mathbf{V} M_\varepsilon^{-1},
\]
where \(\delta_\varepsilon = \frac{1}{\varepsilon} \varepsilon^{\Delta x/\varepsilon} \to 0\) as \(\varepsilon \to 0\). Then,
\[
B_\varepsilon = \begin{pmatrix} (\zeta \delta_\varepsilon + \zeta \gamma \frac{1}{1+\nu \Delta x}) \delta_\varepsilon & 0_K \\ 0_K \times (K-1) & (\zeta \gamma \frac{1}{1+\nu \Delta x}) \delta_\varepsilon \end{pmatrix}
\begin{pmatrix} 0_K & 0_K \times (K-1) \\ \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} & \frac{\varepsilon^{1+\alpha}}{1+\nu \Delta x} \end{pmatrix}
\begin{pmatrix} (2I_K + \zeta \gamma) \mathbf{V} \\ (2I_K - \zeta \gamma) \mathbf{V} \end{pmatrix} M_\varepsilon^{-1}. \tag{4.48}
\]
As \(\varepsilon \to 0\), we get from (4.48)
\[
B_\varepsilon = \frac{1}{\varepsilon}(A_\varepsilon M_\varepsilon^{-1} - A_0 M_0^{-1}) \bigg|_{\varepsilon \to 0} B_0 := \begin{pmatrix} 0_K \times (2K-1) & -(2I_K + \zeta \gamma) \mathbf{V} \\ 0_K \times (2K-1) & (2I_K - \zeta \gamma) \mathbf{V} \end{pmatrix} M_0^{-1}.
\]

With the expression of the inverse of \(M_0\) in (4.46), we get
\[
B_0 = \frac{1}{\Delta x} \begin{pmatrix} (2I_K - \zeta \gamma) \mathbf{V} \beta^\top \mathbf{1}_{\mathbb{R}K} \beta^\top & -(2I_K - \zeta \gamma) \mathbf{V} \beta^\top \\ -(2I_K - \zeta \gamma) \mathbf{V} \beta^\top \mathbf{1}_{\mathbb{R}K} \beta^\top & (2I_K - \zeta \gamma) \mathbf{V} \beta^\top \end{pmatrix}.
\]

Thanks to (4.43), we have \(\beta^\top \mathbf{1}_{\mathbb{R}K} = 1\) and we are done.
4.3 Emergence of the macroscopic discretization

Thanks to Proposition 4.3, we have at hand the expansion of the scattering matrix with respect to ε; then, we may write the final scheme (2.12) for the radiative transfer equation,

$$
\left(\begin{array}{c}
\frac{f_{j+1}^n(V)}{f_{j-1}^n(-V)} \\
\frac{f_{j+1}^n(-V)}{f_{j-1}^n(V)}
\end{array} \right) + \frac{\Delta t}{\varepsilon \Delta x} \mathcal{V} \left(\begin{array}{c}
\frac{f_{j+1}^n(V) - (I_K - \zeta \gamma) f_{j-1}^n(V)}{f_{j-1}^n(-V) - (I_K - \zeta \gamma) f_{j+1}^n(V)} \\
\frac{f_{j+1}^n(-V) - (I_K - \zeta \gamma) f_{j-1}^n(V)}{f_{j-1}^n(V) - (I_K - \zeta \gamma) f_{j+1}^n(-V)}
\end{array} \right) = \left(\begin{array}{c}
\frac{f_{j+1}^n(V)}{f_{j-1}^n(-V)} \\
\frac{f_{j+1}^n(-V)}{f_{j-1}^n(V)}
\end{array} \right) + \frac{\Delta t}{\Delta x} \mathcal{V} \mathcal{B}_\varepsilon \left(\begin{array}{c}
\frac{f_{j+1}^n(V)}{f_{j-1}^n(-V)} \\
\frac{f_{j+1}^n(-V)}{f_{j-1}^n(V)}
\end{array} \right).
$$

(4.49)

We are now in position to state our main result for the radiative transfer equation, whose proof is postponed to the next subsection.

Theorem 4.6 The scheme (4.49) for the radiative transfer equation (4.29) is well-balanced and uniformly accurate (AP) with respect to ε. Moreover, assuming (4.31), when $\varepsilon \to 0$, the macroscopic density $\rho_j^0 := \sum_{k=-K}^K \omega_k f_j^n(v_k)$ solves the centered finite difference scheme for the heat equation (4.30).

As notice in §2.3, we may rewrite (4.49) in IMEX form (see (2.14)),

$$
\frac{1}{\varepsilon} \mathcal{R}_\varepsilon \left(\begin{array}{c}
f_j^{n+1}(V) \\
f_j^{n+1}(-V)
\end{array} \right) = \left(\begin{array}{c}
f_j^n(V) \\
f_j^n(-V)
\end{array} \right) + \frac{\Delta t}{\Delta x} \mathcal{V} \left(\begin{array}{c}
B_{1\varepsilon} f_{j-1}^n(V) + B_{2\varepsilon} f_j^n(-V) \\
B_{3\varepsilon} f_j^n(V) + B_{4\varepsilon} f_{j+1}^n(-V)
\end{array} \right),
$$

(4.50)

where we use the notation $B_\varepsilon = \begin{pmatrix} B_{1\varepsilon} & B_{2\varepsilon} \\ B_{3\varepsilon} & B_{4\varepsilon} \end{pmatrix}$, and

$$
\mathcal{R}_\varepsilon = \varepsilon I_{2N} + \frac{\Delta t}{\Delta x} \mathcal{V} \left(\begin{array}{cc}
I_K & \zeta \gamma - I_K \\
\zeta \gamma & I_K
\end{array} \right).
$$

(4.51)

Solving this system amounts to the inversion of matrix \mathcal{R}_ε. By construction, this scheme satisfies the well-balanced property and is asymptotic preserving.

Proposition 4.7 Assume that for all discrete eigenvalues λ_i, $i = 1, \ldots, K-1$, identity (4.36) holds, i.e.

$$
\sum_{k=1}^K \frac{\omega_k v_k}{1 - v_k \lambda_i} - \frac{1}{1 + v_k \lambda_i} = 0.
$$

Then the scheme (4.50) is mass-preserving, uniformly when $\varepsilon \ll 1$.

Proof. It is mostly a consequence of Lemma 2.5 and Proposition 4.3. Indeed, by Lemma 2.6, $\Gamma S \varepsilon \Gamma^{-1}$ needs to be left stochastic for any $\varepsilon > 0$, which implies (by Proposition 4.3) that, for $\varepsilon \ll 1$, the matrix

$$
\Gamma \left(\begin{array}{cc}
0_K & I_K - \zeta \gamma \\
I_K - \zeta \gamma & 0_K
\end{array} \right) \Gamma^{-1}
$$

is left stochastic.

Hence, for all $j = 1, \ldots, K$, the sum of the j^{th} column is equal to 1, that is $\sum_{k=1}^K \omega_k v_k (\zeta \gamma)_{kj} = 0$. Accordingly, it comes (by general assumptions) that,

$$
\sum_{k=1}^K \omega_k v_k (\zeta \gamma)_{kj} \sum_{i=1}^{K-1} \omega_k v_k \left(\frac{1}{1 - v_k \lambda_i} - \frac{1}{1 + v_k \lambda_i} \right) \gamma_{ij} = 0.
$$

\[\square \]
4.4 Consistency with the diffusive limit

This subsection is devoted to the proof of Theorem 4.6.

Proof of Theorem 4.6

When \(\varepsilon \to 0 \), we get from (4.48)

\[
B_\varepsilon \to B_0 = \frac{1}{\Delta x} \left((2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top + (2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top \right).
\]

Moreover, with (4.51),

\[
\mathcal{R}_\varepsilon = \mathcal{R}_0 + \varepsilon \mathbf{I}_{2K}, \quad \text{where } \mathcal{R}_0 := \frac{\Delta t}{\Delta x} \mathbf{V} \left(\begin{array}{cc} \mathbf{I}_K & \zeta \gamma - \mathbf{I}_K \\ \mathbf{I}_K & \mathbf{I}_K \end{array} \right).
\]

Assuming that \(f \) admits a Hilbert expansion \(f = f^0 + \varepsilon f^1 + o(\varepsilon) \). We inject into scheme (4.50). Then by identifying the term in power of \(\varepsilon \), we get

\[
\mathcal{R}_0 \left(\left\{ f_{j}^{n+1}(\mathcal{V}) \right\} \right) = 0, \tag{4.52}
\]

and at order 0 in \(\varepsilon \),

\[
\mathcal{R}_0 \left(\left\{ f_{j}^{1}(\mathcal{V}) \right\} \right) = \left(\left\{ f_{j}^{0}(\mathcal{V}) - f_{j}^{0}(\mathcal{V}) \right\} \right) \tag{4.53}
\]

\[
+ \frac{\Delta t}{2\Delta x^2} \mathbf{V} \left(\begin{array}{c} (2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top (f_{j}^{0}(\mathcal{V}) - f_{j}^{0}(\mathcal{V})) \\ (2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top (f_{j+1}^{1}(\mathcal{V}) - f_{j}^{0}(\mathcal{V})) \end{array} \right).
\]

We will make use of Lemma \(A.2 \) in the Appendix, which may be applied with \(\mu = \lambda \) since (4.36) holds, it gives:

- Ker(\(\mathcal{R}_0 \)) = Span(\(\mathbf{1}_{\mathbb{R}^{2K}} \)),
- Im(\(\mathcal{R}_0 \)) = \{ \mathbf{Z} = (Z_1 Z_2)^\top, Z_i \in \mathbb{R}^K \text{ such that } \sum_{k=1}^K \omega_k (Z_{1k} + Z_{2k}) = 0 \}.

Roughly speaking, the range of \(\mathcal{R}_0 \) is an hyperplane containing kinetic densities which moment of order zero vanishes. Its kernel is the (one-dimensional) vectorial line of constant kinetic densities, which are the Maxwellians for (4.29). We deduce from (4.52)

\[
\left\{ f_{j}^{0}(\mathcal{V}) \right\} = \frac{\rho_{j}^{n+1}}{2} \mathbf{1}_{\mathbb{R}^K}, \quad \rho_{j} = \sum_{k=1}^K \omega_k (f_{j}^{n}(v_k) + f_{j}^{n}(-v_k)). \tag{4.54}
\]

Then, injecting (4.54) into (4.53) and using (4.44), we obtain

\[
\mathcal{R}_0 \left(\left\{ f_{j}^{1}(\mathcal{V}) \right\} \right) = \frac{1}{2} \left(\left(\rho_{j}^{n+1} - \rho_{j}^{n} \right) \mathbf{1}_{\mathbb{R}^K} \right) + \frac{\Delta t}{\Delta x^2} \mathbf{V} \left(\frac{(2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top (\rho_{j+1}^{n} - \rho_{j}^{n})}{(2\mathbf{I}_K - \zeta \gamma) \mathbf{V} \beta^\top (\rho_{j+1}^{n} - \rho_{j}^{n})} \right).
\]

Moreover, by definition of \(\mathcal{R}_0 \), we have

\[
\frac{1}{2\Delta x} \mathcal{R}_0 \left(\frac{(\rho_{j+1}^{n} - \rho_{j}^{n})}{(\rho_{j+1}^{n} - \rho_{j}^{n})} \right) = \frac{\Delta t}{2\Delta x^2} \mathbf{V} \left(\frac{(\rho_{j+1}^{n} - \rho_{j}^{n})}{(\rho_{j+1}^{n} - \rho_{j}^{n})} + (\zeta \gamma - \mathbf{I}_K) \mathbf{V} (\rho_{j+1}^{n} - \rho_{j}^{n}) \right).
\]
Therefore, adding the last two equalities, we deduce that
\[R_0 \left(\{f^1\}_{j}^{n+1}(V) - \frac{1}{2\Delta x} V(\rho_{j+1}^n - \rho_{j}^n) \right) \]
\[\{f^1\}_{j}^{n+1}(-V) - \frac{1}{2\Delta x} V(\rho_{j-1}^n - \rho_{j}^n) \]
\[= \frac{1}{2}(\rho_j^n - \rho_j^{n+1})1_{\mathbb{R}^{2N}} + \frac{\Delta t}{2\Delta x^2} V^2(\rho_{j+1}^n + \rho_{j-1}^n - 2\rho_j^n). \]

A solution exists iff the right hand side belongs to \(\text{Im}(R_0) \), so by Lemma \(\text{A.2} \)
\[0 = \rho_j^n - \rho_j^{n+1} + \frac{\Delta t}{\Delta x^2} (\rho_{j-1}^n - 2\rho_j^n + \rho_{j+1}^n) \sum_{k=1}^{K} \omega_k v_k^2. \]

We conclude the proof thanks to \(\text{[I31]} \).

5 Othmer-Alt model for one-dimensional chemotaxis

5.1 Continuous diffusive limit toward Keller-Segel

We consider now a model of chemotaxis in parabolic scaling, (see also \[18\])
\[\varepsilon \partial_t f + v \partial_x f = \frac{1}{\varepsilon} \left(\int_V T_{\varepsilon}(t,x,v') f(t,x,v') \frac{dv'}{2} - T_{\varepsilon}(t,x,v) f(t,x,v) \right). \]

The tumbling rate \(T_{\varepsilon} \) describes the response to variations of chemical concentration along the path of bacteria. Among several choices,\[10, 44\], we choose
\[T_{\varepsilon}(t,x,v) = 1 + \varepsilon \phi(v \partial_x S(t,x)), \quad \phi \text{ an odd function}. \]

In applications, the quantity \(S \) models the concentration of the chemoattractant which is released by bacteria themselves. It is then computed thanks to an elliptic/parabolic equation depending on the density of bacteria. Since we only focus on the diffusive limit of the kinetic system, we will consider that \(S \) is given, which boils down, from a numerical point of view, to treat explicitly in time the equation for \(S \).

Formally, the limit \(\varepsilon \to 0 \) may be obtained easily by performing a Hilbert expansion, \(f = f^0 + \varepsilon f^1 + \ldots \), equating each term in power of \(\varepsilon \) in \(\text{[5.56]} \),
\[f^0 = \frac{1}{2} \rho^0, \quad \rho^0 = \int_V f^0(v) \, dv; \]
\[f^1 - \frac{1}{2} \int_V f^1(v') \, dv' = \frac{1}{2} \int_V \phi(v' \partial_x S) f_0(v') \, dv' - \phi(v \partial_x S) f_0 - v \partial_x f^0. \]

Since \(\phi \) is odd, \(V = (-1, 1) \) is symmetric and \(f^0 \) is independent of \(v \), the first term of the right hand side vanishes. By conservation, we have
\[\partial_t \int_V f^0(v) \, dv + \partial_x \int_V v f^1(v) \, dv = 0. \]

Along with the expressions of \(f^0 \) and \(f^1 \),
\[\partial_t \rho^0 - \partial_x \left(\frac{1}{3} \partial_x \rho^0 + E \rho^0 \right) = 0, \quad E = \frac{1}{2} \int_V v \phi(v \partial_x S) \, dv. \]

18
Sharfetter-Gummel scheme

The Il’in/Sharfetter-Gummel scheme (1.4)–(1.5) for this latter equation reads

\[\rho_{j}^{n+1} = \rho_{j}^{n} + \frac{\Delta t}{\Delta x} (J_{n, j-\frac{1}{2}} - J_{n, j+\frac{1}{2}}), \quad J_{n, j-\frac{1}{2}} = \rho_{j}^{n} - E_{j-\frac{1}{2}} - \rho_{j-1}^{n}, \quad (5.59) \]

where \(E_{j-\frac{1}{2}} \) is a discretization of \(E \) at each interface of the mesh.

Remark 5.1 Clearly, if \(\phi \equiv 0 \), the former model (4.29) is recovered out of (5.56), along with its limit (4.30), being a particular case of (5.58). Accordingly, (4.31) appears as a restriction of (5.59) when \(E_{j-\frac{1}{2}} \equiv 0 \). However, the situation \(\phi \not\equiv 0 \) gives rise to sufficiently strong peculiarities so that we choose, in this paper, to neatly distinguish between both cases.

As in the previous Section, \(V = (-1, 1) \), the set \(\{\omega_{k}, v_{k}\}_{k} \) is assumed to verify (4.31).

5.2 Asymptotic expansion of eigenvalues

Let us focus on the eigenvalues of the discrete problem, computed thanks to the condition in (4.33), which, for \(\nu = \frac{1}{2} \sum_{k=-K}^{K} \omega_{k} \delta(v - v_{k}) \), reads

\[1 = \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_{k} T_{\varepsilon}(v_{k})}{T_{\varepsilon}(v_{k}) - \lambda^{\varepsilon} v_{k}}. \quad (5.60) \]

Clearly, \(\lambda = 0 \) is a solution. Thanks to (4.31), we deduce from the latter equality that nonzero eigenvalues verify

\[\sum_{k=-N}^{N} \frac{\omega_{k}}{v_{k}} T_{\varepsilon}^{\top}(v_{k}) = 0, \quad \text{for} \quad \lambda^{\varepsilon} \neq 0. \]

By studying the variations of the left-hand side with respect to \(\lambda^{\varepsilon} \), one deduces the existence of exactly \(2K - 1 \) distinct solutions which are interlaced in the following way

\[\frac{T_{\varepsilon}(v_{-1})}{v_{-1}} < \lambda_{K+1}^{\varepsilon} < \frac{T_{\varepsilon}(v_{-2})}{v_{-2}} < \ldots < \frac{T_{\varepsilon}(v_{-K})}{v_{-K}} < \lambda_{0}^{\varepsilon} \]

\[< \frac{T_{\varepsilon}(v_{K})}{v_{K}} < \lambda_{1}^{\varepsilon} < \frac{T_{\varepsilon}(v_{K-1})}{v_{K-1}} < \lambda_{2}^{\varepsilon} < \ldots < \lambda_{K-1}^{\varepsilon} < \frac{T_{\varepsilon}(v_{1})}{v_{1}}. \]

The sign of \(\lambda_{0}^{\varepsilon} \) is given by the sign of \(\sum_{k=-K}^{K} \omega_{k} v_{k}/T_{\varepsilon}(v_{k}) \).

In the following, we always assume that \(\lambda_{0}^{\varepsilon} < 0 \), the opposite case can be treated in the same way. Then, the vectors of negative/positive eigenvalues are,

\[\lambda^{\varepsilon}_{-} = (\lambda_{-K+1}^{\varepsilon}, \ldots, \lambda_{-1}^{\varepsilon})^{\top}, \quad \lambda^{\varepsilon}_{+} = (\lambda_{1}^{\varepsilon}, \ldots, \lambda_{K-1}^{\varepsilon})^{\top}. \]

Lemma 5.2 When \(\varepsilon \rightarrow 0 \), we have \(\lambda_{l} = \lambda_{l}^{0} + \varepsilon \lambda_{l}^{1} + o(\varepsilon) \) where

\[\lambda_{0}^{0} = 0, \quad \lambda_{0}^{1} = 3 \sum_{k=1}^{K} \omega_{k} v_{k} \phi(v_{k} \partial_{x} S). \]
For $\ell \neq 0$, λ^0_ℓ are the symmetric ($\lambda^0_{-\ell} = -\lambda^0_\ell$) eigenvalues of

$$1 = \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_k}{1 - \lambda^0_k v_k},$$

and

$$\lambda^1_\ell \sum_{k=-K}^{K} \frac{\omega_k v_k}{(1 - \lambda^0_k v_k)^2} = \lambda^0_\ell \sum_{k=-K}^{K} \frac{\omega_k v_k \phi(v_k \partial_x S)}{(1 - \lambda^0_k v_k)^2}.$$

We denote by

$$\lambda^0 = (\lambda^0_1, \ldots, \lambda^0_{K-1})^T$$

the vector of positive eigenvalues at the limit $\varepsilon \to 0$.

Proof. Letting $\varepsilon \to 0$ in (5.60), eigenvalues λ^0 are solutions of

$$1 = \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_k}{1 - \lambda^0 v_k}.$$

Symmetry of the set $\{\omega_k, v_k\}_k$ implies that if λ^0 is solution, then $-\lambda^0$ is, too. As a consequence $\lambda^0_+ = -\lambda^0_-$, and $\lambda^0_0 = 0$. Assuming an asymptotic expansion $\lambda^0_\ell = \lambda^0_k + \varepsilon \lambda^1_\ell + o(\varepsilon)$, and expanding the relation (5.60) with (5.57), we get

$$1 = \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_k}{1 - \lambda^0 v_k - \varepsilon v_k (\lambda^1 - \phi(v_k \partial_x S)\lambda^0) + o(\varepsilon)}$$

$$= \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_k}{1 - \lambda^0 v_k} \left(1 + \varepsilon \frac{v_k (\lambda^1 - \phi(v_k \partial_x S)\lambda^0)}{1 - \lambda^0 v_k} + o(\varepsilon)\right).$$

Thus, for $\ell \neq 0$,

$$\lambda^1_\ell \sum_{k=-K}^{K} \frac{\omega_k v_k}{(1 - \lambda^0_k v_k)^2} = \lambda^0_\ell \sum_{k=-K}^{K} \frac{\omega_k v_k \phi(v_k \partial_x S)}{(1 - \lambda^0_k v_k)^2}.$$

For $\ell = 0$, this relation gives $\lambda^0_0 = 0$, forcing us to go at the second order in ε to compute λ^1_0; postulating that $\lambda^0_0 = \varepsilon \lambda^1_0 + \varepsilon^2 \lambda^2_0 + \ldots$, it comes

$$1 = \frac{1}{2} \sum_{k=-K}^{K} \frac{\omega_k}{1 - \varepsilon v_k (\lambda^1_0 + \varepsilon \lambda^2_0)/(1 + \varepsilon \phi(v_k \partial_x S))}$$

$$= \frac{1}{2} \sum_{k=-K}^{K} \omega_k \left(1 + \varepsilon v_k \frac{\lambda^1_0 + \varepsilon \lambda^2_0}{1 + \varepsilon \phi(v_k \partial_x S)} + \varepsilon^2 v_k^2 (\lambda^0_0)^2 + o(\varepsilon^2)\right).$$

We get

$$0 = \sum_{k=-K}^{K} \omega_k v_k \lambda^1_0 + \varepsilon \sum_{k=-K}^{K} \omega_k \left(- v_k \phi(v_k \partial_x S)\lambda^0_0 + v_k \lambda^2_0 + v_k^2 (\lambda^1_0)^2\right) + o(\varepsilon).$$

By symmetry of the set $\{\omega_k, v_k\}$, we have $\sum_{k=-K}^{K} \omega_k v_k = 0$. Then, assumptions (4.31) yield two solutions, among which we discard the null one, it gives

$$\lambda^1_0 = \frac{3}{2} \sum_{k=-K}^{K} \omega_k v_k \phi(v_k \partial_x S).$$
Being \(\phi \) an odd function and by symmetry of \(\{\omega_k, v_k\}_k \), the claim is proved.

5.3 Corresponding scattering \(S \)-matrix

A general stationary solution reads, (see the separation of variables in [9])

\[
\mathcal{F}(x, v) = \sum_{\ell=1}^{K-1} a_\ell e^{-\lambda_\ell x / \varepsilon} T_\varepsilon(v) - \lambda_\ell v + \frac{\overline{\alpha}}{T_\varepsilon(v)} + a_0 \left(\frac{e^{-\lambda_0 \varphi}}{T_\varepsilon(v) - \lambda_0 v} - \frac{1}{T_\varepsilon(v)} \right).
\]

The spectral component of the “zero-eigenfunction” \(1/T_\varepsilon(v) \) was split between \(\overline{\alpha} \) and \(a_0 \). Like for radiative transfer (see [12]), where \(\phi \equiv 0 \), the \(S \)-matrix is,

\[
S^\varepsilon = \tilde{N}^\varepsilon (N^\varepsilon)^{-1}, \quad \text{(dependent of } j - \frac{1}{2}) \tag{5.61}
\]

where the \(j - \frac{1}{2} \) index was dropped for the sake of simplicity of the scripture,

\[
N^\varepsilon = \begin{pmatrix}
\frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} \\
\frac{e^{-\lambda_\ell x / \varepsilon}}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} \\
\frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} \\
\frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell}
\end{pmatrix},
\]

\[
\tilde{N}^\varepsilon = \begin{pmatrix}
\frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} & \frac{1}{T_\varepsilon(v)} \\
\frac{e^{-\lambda_\ell x / \varepsilon}}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} \\
\frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} \\
\frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell} & \frac{1}{T_\varepsilon(v) + \lambda_\ell}
\end{pmatrix}.
\]

The main differences with radiative transfer, as in [11], are that 0 is a simple eigenvalue but becomes a double eigenvalue when \(\varepsilon \to 0 \), and that all above quantities depend on the index \(j \), which lead to more intricate computations.

5.4 Decomposition of the scattering matrix

We want to compute the expansion \((5.61) \) for this scattering matrix.

Lemma 5.3 The scattering matrix for the kinetic model for chemotaxis, defined in \((5.61) \) admits the following asymptotic expansion in \(\varepsilon \),

\[
S^\varepsilon = \begin{pmatrix}
0_K & \mathbf{I}_K - \varepsilon^0 \gamma \\
\mathbf{I}_K - \varepsilon^0 \gamma & 0_K
\end{pmatrix} + \varepsilon B^\varepsilon, \quad B^\varepsilon = \frac{1}{\varepsilon}(A^\varepsilon(N^\varepsilon)^{-1} - A^0(N^0)^{-1}),
\]

where \(A^\varepsilon = \tilde{N}^\varepsilon - \begin{pmatrix}
0_K & \mathbf{I}_K \\
\mathbf{I}_K & 0_K
\end{pmatrix} N^\varepsilon \), and where the matrices \(\gamma \in \mathcal{M}_{K-1 \times K}(\mathbb{R}) \) and \(\varepsilon^0 \in \mathcal{M}_{K \times K-1}(\mathbb{R}) \) satisfy,

\[
\gamma = \frac{1}{1 - V \otimes \lambda^0} I_{K-1}, \quad \gamma 1_{R^K} = 0_{R^{K-1}},
\]

\[
\varepsilon^0 = \frac{1}{1 - V \otimes \lambda^0} - \frac{1}{1 + V \otimes \lambda^0}.
\]
Remark 5.4 Lemma 5.3 is the equivalent of Lemma 4.3 in the case of the radiative transfer equation. The existence of γ is also provided by Proposition A.1 (iii) in Appendix.

Proof. The index $j - 1/2$ is again dropped since there is no possible confusion.

1. When $\varepsilon \to 0$, being T_ε given in (5.57) and using Lemma 5.2

$$
\frac{1}{T_\varepsilon(V) - \lambda_0^\varepsilon V} - \frac{1}{T_\varepsilon(V)} \to 0, \quad \frac{e^{-\lambda_0^\varepsilon \Delta x / \varepsilon}}{T_\varepsilon(V) - \lambda_0^\varepsilon V} - \frac{1}{T_\varepsilon(V)} \to e^{-\lambda_0^\varepsilon \Delta x} - 1.
$$

so that $S^\varepsilon \to S^0$, where $S^0 = \tilde{N}^0(N^0)^{-1}$. Since $\lambda^0 := \lambda_+^0 = - \lambda_-^0$,

$$
N^0 = \begin{pmatrix}
\frac{1}{1 - V \otimes \lambda^0} & 1_{R^K} \\
0_{K \times K - 1} & \frac{1}{1 - \lambda^0 \otimes V}
\end{pmatrix}
\begin{pmatrix}
0_K \\
(1 - e^{-\lambda_0^\varepsilon \Delta x / \varepsilon} - 1)1_{R^K}
\end{pmatrix},
$$

$$
\tilde{N}^0 = \begin{pmatrix}
\frac{1}{1 + \lambda^0 \otimes V} & 1_{R^K} \\
0_{K \times K - 1} & \frac{1}{1 + \lambda^0 \otimes V}
\end{pmatrix}
\begin{pmatrix}
0_k \\
(1 - e^{-\lambda_0^\varepsilon \Delta x / \varepsilon} - 1)1_{R^K}
\end{pmatrix}.
$$

2. Using γ defined in (5.63), we define also $\beta \in \mathbb{R}^K$ such that

$$
\beta^\top \frac{1}{1 - V \otimes \lambda^0} = 0_{R^K}, \quad \beta^\top 1_{R^K} = 1. \quad (5.65)
$$

Then, we may write

$$
(N^0)^{-1} = \begin{pmatrix}
\frac{\gamma}{1 - V \otimes \lambda^0 - 1} & 0_K \\
(0_{K \times K - 1} \gamma) & 0_K
\end{pmatrix}
\begin{pmatrix}
1_{R^K} \\
1_{R^K}
\end{pmatrix},
$$

$$
= \begin{pmatrix}
\frac{\gamma}{e^{-\lambda_0^\varepsilon \Delta x / \varepsilon} - 1} & 0_K \\
(0_{K \times K - 1} \gamma) & 0_K
\end{pmatrix}
\begin{pmatrix}
1_{R^K} \\
1_{R^K}
\end{pmatrix}.
$$

By definition,

$$
A^\varepsilon = \tilde{N}^\varepsilon - \begin{pmatrix}
0_K & 1_K \\
1_K & 0_K
\end{pmatrix} N^\varepsilon, \quad \text{and so} \quad S^\varepsilon = \begin{pmatrix}
0_K & 1_K \\
1_K & 0_K
\end{pmatrix} A^\varepsilon (N^\varepsilon)^{-1}.
$$

3. Let us denote

$$
\zeta^\varepsilon_\pm = \frac{\pm 1}{T_\varepsilon(V) - \lambda_+^\varepsilon V} - \frac{\pm 1}{T_\varepsilon(-V) + \lambda_-^\varepsilon V} \in \mathcal{M}_{K \times K - 1}(\mathbb{R}),
$$

$$
\zeta^\varepsilon_0 = \frac{1}{T_\varepsilon(V) - \lambda_0^\varepsilon V} - \frac{1}{T_\varepsilon(-V) + \lambda_0^\varepsilon V} \in \mathbb{R}^K.
$$

As $\varepsilon \to 0$, we obtain the limit

$$
\zeta^\varepsilon_\pm \to \zeta^0 = \frac{1}{1 - V \otimes \lambda^0} - \frac{1}{1 + V \otimes \lambda^0}, \quad \text{and} \quad \zeta^\varepsilon_0 \to 0.
$$
From the expression,
\[
A^\varepsilon = \left(\begin{array}{ccc}
 e^{-\lambda_+ \Delta x/\varepsilon} & \frac{1}{T_\varepsilon(\nu)} & -\zeta_+ \\
-\zeta_+ & e^{\lambda_- \Delta x/\varepsilon} & \frac{1}{T_\varepsilon(-\nu)} \\
\frac{1}{T_\varepsilon(-\nu)} & \frac{1}{T_\varepsilon(\nu)} & 1
\end{array}\right),
\]
(5.66)
in the limit \(\varepsilon \to 0\), we get
\[
A^0 = \left(\begin{array}{ccc}
 0 & 0 & 0 \\
 -\zeta^0 & 0 & 0 \\
 0 & 0 & 0
\end{array}\right),
\] (5.67)
Thus we reach decomposition (5.62).

5.5 Emergence of an asymptotic scheme

We deduce the final scheme from (2.12), which mostly reads as (4.49),
\[
\left(\begin{array}{c}
f_{j}^{n+1}(\nu) \\
f_{j}^{n+1}(-\nu)
\end{array}\right) + \frac{\Delta t}{\varepsilon \Delta x} \varepsilon \sum_{k=0}^{K} \left(B_{j,k}^{1\varepsilon} f_{j}^{n}(\nu) - B_{j,k}^{2\varepsilon} f_{j}^{n}(-\nu) \right)
= \left(\begin{array}{c}
 f_{j}^{n}(\nu) \\
f_{j}^{n}(-\nu)
\end{array}\right),
\]
(5.68)
Denoting \(B^\varepsilon = \left(\begin{array}{cc}
 B_{1\varepsilon} & B_{2\varepsilon} \\
 B_{3\varepsilon} & B_{4\varepsilon}
\end{array}\right)\), we may rewrite (5.68) as
\[
\frac{1}{\varepsilon} \mathcal{R}_j^\varepsilon \left(\begin{array}{c}
f_{j}^{n+1}(\nu) \\
f_{j}^{n+1}(-\nu)
\end{array}\right) = \left(\begin{array}{c}
f_{j}^{n}(\nu) \\
f_{j}^{n}(-\nu)
\end{array}\right) + \frac{\Delta t}{\Delta x} \varepsilon \sum_{k=0}^{K} \left(B_{j+k/2}^{1\varepsilon} f_{j}^{n}(\nu) + B_{j-k/2}^{2\varepsilon} f_{j}^{n}(-\nu) \right),
\]
(5.69)
where
\[
\mathcal{R}_j^\varepsilon = \varepsilon I_{2K} + \frac{\Delta t}{\Delta x} \varepsilon \left(\begin{array}{cc}
 I_K & -\zeta_j^0 \\
 \zeta_j^0 & -I_K
\end{array}\right).
\]
(5.70)
After inversion of the matrix \(\mathcal{R}_j^\varepsilon\), by construction, this scheme satisfies both the well-balanced property and is asymptotic preserving.

Our main result for the Othmer-Alt model for chemotaxis (5.56) reads:

Theorem 5.5 The scheme (5.69) for the chemotaxis model (5.56) is well-balanced and uniformly accurate (AP) with respect to \(\varepsilon\). Moreover, when \(\varepsilon \to 0\), the macroscopic density \(\rho_j^n := \sum_{k=-K}^{K} \omega_k f_j^n(v_k)\)
satisfies the Sharfetter-Gummel discretization (5.59), where \(E_{j+\frac{1}{2}} := \sum_{k=1}^{K} \omega_k v_k \phi(v_k \partial_x S_{j+\frac{1}{2}})\).

The proof of this Theorem is done in the next subsection.
5.6 Consistency with the limit $\varepsilon \to 0$

We first state the following technical Lemma (dropping the subscript $j - \frac{1}{2}$ since there is no possible confusion):

Lemma 5.6 When ε goes to 0,

$$B^\varepsilon = \begin{pmatrix} B_0^{1\varepsilon} & B_0^{2\varepsilon} \\ B_0^{3\varepsilon} & B_0^{4\varepsilon} \end{pmatrix} \to B^0 = \begin{pmatrix} B^{10} & B^{20} \\ B^{30} & B^{40} \end{pmatrix},$$

where

$$\begin{align*}
B^{10} &= -\frac{e^{-\lambda_0 \Delta x}}{e^{-\lambda_0 \Delta x} - 1} (2 - \zeta_0^0) \phi(V \partial_x S) \beta^T; \\
B^{20} &= (\zeta_0^0 - 1) \frac{\phi(V \partial_x S) - V \otimes \lambda_1}{(1 - V \otimes \lambda_0)^2} + \frac{\phi(V \partial_x S) - V \otimes \lambda_1}{(1 + V \otimes \lambda_0)^2} \gamma \\
&\quad + \frac{1}{e^{-\lambda_0 \Delta x} - 1} (2 - \zeta_0^0) \phi(V \partial_x S) \beta^T; \\
B^{30} &= (\zeta_0^0 - 1) \frac{-\phi(V \partial_x S) + V \otimes \lambda_1}{(1 - V \otimes \lambda_0)^2} + \frac{-\phi(V \partial_x S) + V \otimes \lambda_1}{(1 + V \otimes \lambda_0)^2} \gamma \\
&\quad + \frac{1}{e^{-\lambda_0 \Delta x} - 1} (2 - \zeta_0^0) \lambda_0^1 V \beta^T; \\
B^{40} &= -\frac{1}{e^{-\lambda_0 \Delta x} - 1} (2 - \zeta_0^0) \lambda_0^1 V \beta^T;
\end{align*}$$

with γ, ζ_0^0, and β defined in (5.63), (5.64), and (5.65) respectively.

Proof.

1. First, rewrite

$$B^\varepsilon = \frac{1}{\varepsilon} (A_\varepsilon - A_0) N\varepsilon^{-1} + \frac{1}{\varepsilon} (A_0 - A_0 N\varepsilon^{-1} N\varepsilon^{-1}).$$

From (5.66) and (5.67), we have

$$A_\varepsilon - A_0 = \left(\frac{1}{\varepsilon} e^{-\lambda_\varepsilon \Delta x / \varepsilon} \zeta_\varepsilon^0 - \frac{1}{\varepsilon} \zeta_\varepsilon^0 \right) \frac{1}{\varepsilon} \left(\frac{1}{T_\varepsilon(V)} - \frac{1}{T_\varepsilon(-V)} \right) \frac{1}{\varepsilon} \left(\frac{1}{T_\varepsilon(V)} - \frac{1}{T_\varepsilon(-V)} \right),$$

where, from (5.57),

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\frac{1}{T_\varepsilon(V)} - \frac{1}{T_\varepsilon(-V)} \right) = -2\phi(V \partial_x S).$$

2. Denoting $\lambda_{\varepsilon}^1 = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (\lambda_{\varepsilon}^0 - \lambda^0)$ (as in Lemma 5.2), we get

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (\zeta_\varepsilon^0 - \zeta_0^0) = \frac{V \otimes \lambda_{\varepsilon}^1 - \phi(V \partial_x S)}{(1 \mp V \otimes \lambda_0)^2} - \frac{V \otimes \lambda_0^1 - \phi(V \partial_x S)}{(1 \pm V \otimes \lambda_0)^2}.$$

Also,

$$\frac{1}{\varepsilon} \zeta_\varepsilon^0 \to -2\phi(V \partial_x S) + 2\lambda_0^1 V.$$

Thus, when $\varepsilon \to 0$,

$$\lim_{\varepsilon \to 0} \frac{A_\varepsilon - A_0}{\varepsilon} = \begin{pmatrix} 0_{K \times K - 1} & \frac{\phi(V \partial_x S) - V \otimes \lambda_1^1}{(1 - V \otimes \lambda_0)^2} - \frac{\phi(V \partial_x S) - V \otimes \lambda_1^1}{(1 + V \otimes \lambda_0)^2} & -2\phi(V \partial_x S) \\
\frac{\phi(V \partial_x S) - V \otimes \lambda_1^1}{(1 + V \otimes \lambda_0)^2} - \frac{\phi(V \partial_x S) - V \otimes \lambda_1^1}{(1 - V \otimes \lambda_0)^2} & 2\phi(V \partial_x S) & 0_{K \times K - 1} \end{pmatrix}.$$
3. Thanks to the fact that $\gamma \frac{1}{-V \otimes \lambda^0} = I_{K-1}$, it comes

$$\frac{1}{\varepsilon} (A_0 - A_0 N_0^{-1} N_\varepsilon) = \left(\begin{array}{c} \zeta^0 \gamma \left(\frac{e^{-\lambda_+ \Delta x / \varepsilon}}{T_{\varepsilon}(V)} \frac{1}{1 - V \otimes \lambda^0} - \frac{1 - V \otimes \lambda^0}{T_{\varepsilon}(V_0)} \right) \\ \zeta^0 \gamma \left(\frac{e^{-\lambda_- \Delta x / \varepsilon}}{T_{\varepsilon}(V) - V \otimes \lambda_+} - \frac{1 - V \otimes \lambda^0}{T_{\varepsilon}(V)} \right) \end{array} \right).$$

Since $\gamma 1_{\mathbb{R}^K} = 0_{\mathbb{R}^{K-1}}$, we have

$$\gamma \frac{1}{\varepsilon T_{\varepsilon}(V)} = \gamma \left(\frac{1}{T_{\varepsilon}(V)} - 1_{\mathbb{R}^K} \right) = \gamma \frac{-\phi(V \partial_x S)}{1 + \varepsilon \phi(V \partial_x S)} \xrightarrow{\varepsilon \to 0} - \gamma \phi(V \partial_x S).$$

We have also

$$\frac{\gamma}{\varepsilon} \left(\frac{1}{T_{\varepsilon}(V) - V \otimes \lambda_+} - \frac{1}{1 - V \otimes \lambda^0} \right) \xrightarrow{\varepsilon \to 0} \gamma \frac{-\phi(V \partial_x S) + V \otimes \lambda^1_+}{(1 - \lambda^0 \otimes V)^2}.$$

Then,

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (A_0 - A_0 N_0^{-1} N_\varepsilon) = \left(\begin{array}{c} \zeta^0 \gamma \left(0_{K \times K-1} \right) - \phi(V \partial_x S) \right) \\ \zeta^0 \gamma \left(\frac{\phi(V \partial_x S) - V \otimes \lambda^1_+}{(1 - \lambda^0 \otimes V)^2} - \phi(V \partial_x S) \right) \end{array} \right).$$

4. Gathering these computations, we reach

$$B^0 := \lim_{\varepsilon \to 0} B^\varepsilon$$

$$= \lim_{\varepsilon \to 0} \frac{A^\varepsilon - A^0}{\varepsilon} (N^0)^{-1} + \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (A_0 - A_0 (N^0)^{-1} N^\varepsilon) (N^0)^{-1}$$

$$= \begin{pmatrix} B^{10} & B^{20} \\ B^{30} & B^{40} \end{pmatrix},$$

where $B^{10}, B^{20}, B^{30},$ and B^{40} are expressed in Lemma 5.6.

Proof of Theorem 5.5 We proceed as in Section 4.4. First, we have obviously from (5.70) $R^\varepsilon = \varepsilon I_{2K} + R^0_j$ where

$$R^0_j := \frac{\Delta \ell}{\Delta x} \left(\begin{array}{c} I_K \\ \zeta^0 \left(\frac{1}{2} \gamma_j \frac{1}{2} - I_K \right) \end{array} \right).$$

Assuming that f admits an Hilbert expansion $f = f^0 + \varepsilon f^1 + \ldots$, we get, by injecting this expansion into (5.69) and identifying the term in power of ε,

$$R^0_j \begin{pmatrix} \{ f_0^0 \}_{j}^{n+1}(V) \\ \{ f_0^0 \}_{j+1}^{n+1}(-V) \end{pmatrix} = 0,$$

(5.71)

25
Thus equation (5.71) implies
\[\forall \ell, \sum_{k=1}^{K} \omega_k \nu_k (\zeta^0)_{k\ell} = 0, \]
we may apply Lemma A.2 and deduce
- \(\text{Ker}(R_j^0) = \text{Span}\{1_{R^K}\} \),
- \(\text{Im}(R_j^0) = \{Z = (Z_1, Z_2)^\top, Z_i \in R^K \text{ such that } \sum_{k=1}^{K} \omega_k (Z_{1k} + Z_{2k}) = 0\} \).

Since from (4.36) we have that \(\sum_{k=1}^{K} \omega_k \nu_k (\zeta^0)_{k\ell} = 0 \), we may apply Lemma A.2 and deduce

\[\{f^0\}_{j+1}^{-1}(\pm V) = \frac{\rho^0}{2}1_{R^K}. \]

Thanks to the relations,
\[\gamma 1_{R^K} = 0_{R^{K-1}}, \quad \beta^\top 1_{R^K} = 1, \]
we deduce from the expression of \(B^0 \) in Lemma 5.6

\[B_{j-\frac{1}{2}}^{10} 1_{R^K} = -\frac{\lambda^1_{0,j-\frac{1}{2}} \Delta x}{e^{-\lambda^1_{0,j-\frac{1}{2}} \Delta x} - 1} (2 - \zeta^0) \phi (V\partial_x S_{j-\frac{1}{2}}); \]
\[B_{j-\frac{1}{2}}^{20} 1_{R^K} = \frac{1}{e^{-\lambda^1_{0,j-\frac{1}{2}} \Delta x} - 1} (2 - \zeta^0) \phi (V\partial_x S_{j-\frac{1}{2}}); \]
\[B_{j+\frac{1}{2}}^{10} 1_{R^K} = (2 - \zeta^0) \phi (V\partial_x S_{j+\frac{1}{2}}) + \frac{\lambda^1_{0,j+\frac{1}{2}} \Delta x}{e^{-\lambda^1_{0,j+\frac{1}{2}} \Delta x} - 1} (2 - \zeta^0); \]
\[B_{j+\frac{1}{2}}^{20} 1_{R^K} = -\frac{\lambda^1_{0,j+\frac{1}{2}} \Delta x}{e^{-\lambda^1_{0,j+\frac{1}{2}} \Delta x} - 1} (2 - \zeta^0) \phi (V). \]

The solvability condition for (5.73) is that its right hand side belongs to \(\text{Im}(R_j^0) \). Then, we multiply each line by \(\omega_k \) and add over \(k \) to obtain

\[0 = \rho^0_j - \rho^{n+1}_j + \frac{\Delta t}{\Delta x} \left(e^{-\lambda^1_{0,j-\frac{1}{2}} \Delta x} \rho^{n}_{j-1} + \rho^0_j \sum_{k=1}^{K} \omega_k \nu_k \phi (v_k \partial_x S_{j-\frac{1}{2}}) \right) \]
\[+ \rho^0_j \sum_{k=1}^{K} \omega_k \nu_k \phi (v_k \partial_x S_{j+\frac{1}{2}}) + \frac{\lambda^1_{0,j+\frac{1}{2}} (\rho^0_j - \rho^{n+1}_j)}{e^{-\lambda^1_{0,j+\frac{1}{2}} \Delta x} - 1} \sum_{k=1}^{K} \omega_k \nu_k^2 \right), \]

26
where we have used also \(\forall \ell, \sum_{k=1}^{K} \omega_{k} v_{k}(\zeta^{0})_{k\ell} = 0 \). From Lemma 5.2 and assumptions (4.31), it comes

\[
\frac{1}{3} \lambda_{1}^{n} = \sum_{k=1}^{K} \omega_{k} v_{k}(v_{k} \partial_{x} S).
\]

Denoting \(E_{j-\frac{1}{2}} := \sum_{k=1}^{K} \omega_{k} v_{k}(v_{k} \partial_{x} S_{j-\frac{1}{2}}) \), the above scheme rewrites as

\[
\rho_{j}^{n+1} = \rho_{j}^{n} + \frac{\Delta t}{\Delta x} \left(-E_{j-\frac{1}{2}} - \frac{E_{j+\frac{1}{2}}}{e^{3E_{j+\frac{1}{2}} \Delta x}} - 1 + \frac{E_{j-\frac{1}{2}}}{e^{3E_{j-\frac{1}{2}} \Delta x}} - 1 \right),
\]

in which we recognize the Sharfetter-Gummel scheme (5.59).

\[\square \]

6 Diffusive limit of Vlasov-Fokker-Planck kinetic equations

6.1 Presentation of the continuous model

This kinetic model reads, see [43, 49, 54], in parabolic scaling,

\[
\begin{align*}
\varepsilon \partial_{t} f^{\varepsilon} + v \partial_{x} f^{\varepsilon} + E \cdot \partial_{v} f^{\varepsilon} &= \frac{1}{\varepsilon} \partial_{v} (v f^{\varepsilon} + \kappa \partial_{v} f^{\varepsilon}), \\
0 < \varepsilon &\ll 1.
\end{align*}
\]

(6.74)

The electric field is denoted \(E \) and may derive from a potential \(\phi \) through the relation \(E = \pm \partial_{x} \phi \). When such a potential \(\phi \) depends self-consistently on the macroscopic density of electrons (through the Poisson equation), one speaks about the Vlasov-Poisson-Fokker-Planck system. To keep the exposition simple, we shall assume that a steady electric field \(E(x) \) is given. When \(\varepsilon \to 0 \), the kinetic distribution in (6.74) relaxes to a Maxwellian,

\[
f^{\varepsilon} \to \rho^{0} \frac{1}{\sqrt{2\pi \kappa}} e^{-v^{2}/2\kappa},
\]

where the macroscopic density \(\rho^{0} \) solves a drift-diffusion (continuity) equation,

\[
\partial_{t} \rho^{0} + \kappa \partial_{x} \left(\frac{E}{\kappa} \rho^{0} - \partial_{x} \rho^{0} \right) = 0.
\]

(6.75)

The Sharfetter-Gummel scheme associated to this system reads

\[
\rho_{j}^{n+1} = \rho_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\overline{J}_{j-\frac{1}{2}}^{n} - \overline{J}_{j+\frac{1}{2}}^{n} \right),
\]

(6.76)

\[
\overline{J}_{j-\frac{1}{2}}^{n} = E_{j-\frac{1}{2}} \frac{\rho_{j-1}^{n} - e^{-E_{j-\frac{1}{2}} \Delta x / \kappa}}{1 - e^{-E_{j-\frac{1}{2}} \Delta x / \kappa}}.
\]

6.2 Spectral decomposition of stationary solutions

Consider the Fokker-Planck stationary problem with inflow boundaries,

\[
v \partial_{x} \overline{f} = \frac{1}{\varepsilon} \partial_{v} \left((v - \varepsilon E) \overline{f} + \kappa \partial_{v} \overline{f} \right), \quad \varepsilon, \kappa > 0.
\]

(6.77)
A convenient “separated variables” ansatz reads now, (see e.g. \[8\])

\[\overline{f}(x, v) = \exp(-\lambda x - \mu v)\psi_\lambda(v), \]

so that one recovers a standard Sturm-Liouville eigenvalue problem (see \[4\] and \[24\] Chapter 12.3) with a discrete spectrum. The null eigenvalue \(\lambda = 0 \) is double, its two associated non-damped modes are denoted \(\Psi_{\pm 0} \) ("diffusion solutions" in \[19\]) among which appears a space-homogeneous mode:

\[\Psi_{\pm 0}(x, v) = \exp(-\frac{\mu_{\pm 0 x}}{\varepsilon})\psi_{\pm \ell}(v), \]

where

- when \(E > 0 \),
 \[\mu_0^\pm = 0; \quad \psi_0^\pm(v) = \exp(-\frac{(v - |\varepsilon E|)^2}{2\kappa}); \]
 \[\mu_{-0}^\pm = -\frac{\varepsilon E}{\kappa}; \quad \psi_{-0}^\pm(v) = \exp(-\frac{|\varepsilon E|^2}{2\kappa})\exp(-\frac{v^2}{2\kappa}); \]

- when \(E < 0 \),
 \[\mu_0^\pm = \frac{\varepsilon E}{\kappa}; \quad \psi_0^\pm(v) = \exp(-\frac{|\varepsilon E|^2}{2\kappa})\exp(-\frac{(v + |\varepsilon E|)^2}{2\kappa}); \]
 \[\mu_{-0}^\pm = 0; \quad \psi_{-0}^\pm(v) = \exp(-\frac{-(v + |\varepsilon E|)^2}{2\kappa}). \]

Other eigenfunctions \(\Psi_{\pm \ell} \), for \(\ell \in \mathbb{N}^* \), are explicitly given in \[24\] p. 251:

\[\Psi_{\pm \ell}(x, v) = \exp(-\frac{\mu_{\pm \ell x}}{\varepsilon})\psi_{\pm \ell}(v), \]
\[\psi_{\pm \ell}(v) = \exp(-\frac{\mu_{\pm \ell}^v}{\varepsilon})H_{\ell}(\tilde{v}_{\pm \ell})\exp(-\frac{(\tilde{v}_{\pm \ell})^2}{2\kappa}), \]

where \(H_{\ell} \) is the \(\ell \)th Hermite polynomial and

\[\mu_{\pm \ell}^v = -\frac{\varepsilon E \pm \sqrt{E^2 + 4\kappa \ell}}{2\kappa}, \quad \tilde{v}_{\pm \ell} = \frac{v - 2\mu_{\pm \ell}^v \kappa - \varepsilon E}{\sqrt{2\kappa}}. \]

Hermite’s polynomials are such that \(\text{deg}(H_{\ell}) = \ell \) and \(H_{\ell}(-X) = (-1)^{\ell}H_{\ell}(X) \). They are orthogonal with respect to a strongly-growing (indefinite) weight:

\[\int_{\mathbb{R}} v\psi_{\pm k}^\ell(v)\psi_{\pm \ell}^\ell(v)\exp\left(\frac{(v - \varepsilon E)^2}{2\kappa}\right)\, dv = 0, \quad \text{if } k \neq \ell. \]

A spectral decomposition follows, for smooth enough functions \(\overline{f}(x, v) \) \[5, 13\],

\[\overline{f}(x, v) = \alpha_{+0}\Psi^\ell_0(x, v) + \alpha_{-0}\Psi_{-0}^\ell(x, v) + \sum_{\ell \geq 1} \left(\alpha_{\ell}\Psi^\ell_{\ell}(x, v) + \alpha_{-\ell}\Psi_{-\ell}^\ell(x, v) \right). \]

By inserting the space-homogeneous eigenfunction associated to \(k = 0 \), one sees from \(6.80\) that none in all the set of \(\Psi_{\pm \ell}, \ell > 0 \), can carry any net macroscopic flux:

\[\forall \ell \neq 0, \quad \int_{\mathbb{R}} v\psi_{\pm \ell}(v)\psi_{0}(v)\exp\left(\frac{(v - \varepsilon E)^2}{2\kappa}\right)\, dv = \int_{\mathbb{R}} v\psi_{\pm \ell}(v)\, dv = 0. \]
For future use, we compute the limit as $\varepsilon \to 0$ of the above expressions. We obtain straightforwardly, as $\varepsilon \to 0$,

$$
\psi_{\pm 0}^{0}(v) = \exp\left(-\frac{v^2}{2\kappa}\right);
$$ \hspace{1cm} (6.83a)

$$
\psi_{\pm \ell}^{0}(v) = H_{\ell}\left(\frac{v \mp 2\sqrt{\kappa} \ell}{\sqrt{2\kappa}}\right) \exp\left(-\frac{v^2}{2\kappa} \pm v\sqrt{\frac{\ell}{\kappa}} - 2\ell\right), \quad \text{for } \ell \in \mathbb{N}^*.
$$ \hspace{1cm} (6.83b)

We deduce from the symmetry of Hermite polynomials that we have the identity $\psi_{-\ell}^{0}(-v) = (-1)^{\ell}\psi_{\ell}^{0}(v)$. These expressions do not depend on $E \in \mathbb{R}$.

6.3 Assumptions on the set of discrete velocities and weights.

As mentioned in the introduction, and contrary to the Case’s functions, being exponential polynomials, solutions of the stationary Vlasov-Fokker-Planck equation, do not constitute a Chebyshev T-system on $(0, +\infty)$.

Indeed, if we assume that the family \{\psi_{0}^{0}, \ldots, \psi_{K-1}^{0}\} is endowed with the Haar property, then any non-zero linear combination of these functions will have no more than $K-1$ roots on $(0, +\infty)$; otherwise, denoting v_{0}, \ldots, v_{K-1} these roots, $\det(\psi_{0}^{0}(v_{k}))_{k,\ell} = 0$ (see Proposition 2.3). However, it is not difficult to find ad-hoc coefficients a_{0}, \ldots, a_{K-1}, for which the function

$$
\mathbb{R}^{+} \ni v \mapsto a_{0}\psi_{0}^{0}(v) + \sum_{\ell = 1}^{K-1} a_{\ell}\psi_{\ell}^{0}(v)
$$

admits more than $K-1$ roots on $(0, +\infty)$. For instance,

- for $K = 2$, the function (after simplification by $\exp(-v^2/2\kappa)$),

$$
v \mapsto \frac{3}{2} + \frac{v - 2}{\sqrt{2}}e^v
$$

has two positive roots, approximately given by 0.1216 and 1.5495;

- For $K = 3$, the function

$$
v \mapsto -2.75 + 0.2e^v(v - 2) + e^{\sqrt{2}v}\left(\frac{v^2}{2} - 2\sqrt{2}v + 3\right)
$$

admits three positive roots, approximately given by 0.132, 0.796 and 4.192.

The number of real roots for exponential polynomials admits the Pólya-Szegő estimate as an upper bound, see Appendix 3.1. However, exponential monomials do satisfy the Haar property on $(0, +\infty)$ as shown in Theorem A.1.

Accordingly, we must prescribe some assumptions on the set of discrete velocities. More precisely, we assume that v_{1}, \ldots, v_{K} are chosen such that,

given $K \in \mathbb{N}$, \quad $\det\left(\begin{array}{cccc}
\psi_{0}^{0}(\mathcal{V}) & \psi_{1}^{0}(\mathcal{V}) & \cdots & \psi_{K-1}^{0}(\mathcal{V}) \\
\psi_{0}^{0}(-\mathcal{V}) & \psi_{1}^{0}(-\mathcal{V}) & \cdots & \psi_{K-1}^{0}(-\mathcal{V})
\end{array}\right) \neq 0$, \hspace{1cm} (6.84)

and such that the family

$$
\left\{ \begin{pmatrix}
\psi_{0}^{0}(\mathcal{V}) \\
\psi_{0}^{0}(-\mathcal{V})
\end{pmatrix}, \begin{pmatrix}
\psi_{1}^{0}(\mathcal{V}) \\
\psi_{1}^{0}(-\mathcal{V})
\end{pmatrix}, \cdots, \begin{pmatrix}
\psi_{K-1}^{0}(\mathcal{V}) \\
\psi_{K-1}^{0}(-\mathcal{V})
\end{pmatrix}, \begin{pmatrix}
\psi_{0}^{0}(\mathcal{V}) \\
\psi_{0}^{0}(-\mathcal{V})
\end{pmatrix}, \cdots, \begin{pmatrix}
\psi_{K-1}^{0}(\mathcal{V}) \\
\psi_{K-1}^{0}(-\mathcal{V})
\end{pmatrix} \right\}
$$

is linearly independent in \mathbb{R}^{2K}.

(6.85)
We assume moreover that the corresponding weights ω_k are such that the orthogonality relation (6.82) holds true at the discrete level, i.e.
\[\forall \ell = 1, \ldots, K - 1, \quad \sum_{k=1}^{K} \omega_k v_k (\psi^0_{\pm \ell}(v_k) - \psi^0_{\mp \ell}(-v_k)) = 0. \] (6.86)

Thanks to the relation $\psi^0_{-\ell}(-v_k) = (-1)^\ell \psi^0_{\ell}(v_k)$, it suffices to get the above identity only for positive ℓ.

Finally we mention the following Lemma which shows that actually assumptions (6.84) and (6.85) hold at the continuous level.

Lemma 6.1 For any $N \in \mathbb{N}$, the family $(\psi^0_0, \psi^0_1, \ldots, \psi^0_{N-1})$ given by (6.79) is linearly independent on $v \in (0, +\infty)$, and also on $v \in \mathbb{R}$.

Proof. Given N, we have to show the linear independence on \mathbb{R} and on $(0, +\infty)$. The result on \mathbb{R} is a direct consequence of the orthogonality relation (6.80). Thus we are left to prove the result on $(0, +\infty)$. After expanding the Gaussian term in (6.79) and normalizing coefficients, any linear combination with $\varepsilon = 0$ rewrites,
\[\forall v \in (0, +\infty), \quad \sum_{i=0}^{N-1} \lambda_i \exp(\mu_i v) \frac{H_i(\tilde{v}_i)}{H_{N-1}(\tilde{v}_{N-1})} = 0, \]

Since $H_{N-1} \neq 0$ for v big enough, it suffices to let $v \to +\infty$ in
\[\lambda_{N-1} + \sum_{i=0}^{N-2} \lambda_i \exp((\mu_i - \mu_{N-1}) v) \frac{H_i(\tilde{v}_i)}{H_{N-1}(\tilde{v}_{N-1})} = 0, \]

in order to get $\lambda_{N-1} = 0$ because $\mu_i - \mu_{N-1} \leq C < 0$. Successive coefficients vanish for the same reason. Hence for any N, the family $(\psi^0_i)_{i<N}$ is linearly independent on \mathbb{R}^+. \qed

6.4 Corresponding scattering S-matrix

The stationary problem with incoming boundary condition reads
\[v \partial_x \overline{f} = \frac{1}{\varepsilon} \partial_v ((v - \varepsilon E_{j-1/2}) \overline{f} + \kappa \partial_v \overline{f}), \quad \text{on } (0, \Delta x), \] (6.87)
\[\overline{f}(0, v) = f^n_{j-1}(v), \quad \overline{f}(\Delta x, -v) = f^n_{j}(-v). \] (6.88)

Based on (6.81) and (6.78), we seek spectral approximations obtained by truncating (6.81) to the first $2K$ modes,
\[\overline{f}(x, v) = \alpha_0 \psi^0_0(v) e^{-\mu_0 \varepsilon x/\varepsilon} + \alpha_{-\ell} \psi^0_\ell(v) e^{-\mu_{-\ell} x/\varepsilon} + \sum_{\ell=1}^{K-1} \alpha_{\pm \ell} \psi^\pm_{\pm \ell}(v) e^{-\mu_{\pm \ell} x/\varepsilon}. \] (6.89)
Coefficients α_{ℓ} in this full-range expansion follow from incoming boundary conditions (6.88), according to a linear system: for $k = 1, \ldots, K$,

$$\bar{f}(0, v_k) = f_{j-1}^{\alpha}(v_k) = \alpha_0 \psi_0^x(v_k) + \alpha_{-0} \psi_{-0}^x(v_k) + \sum_{\ell=1}^{K-1} \alpha_{\pm \ell} \psi_{\pm \ell}^x(v_k),$$

$$\bar{f}(\Delta x, -v_k) = f_{j+1}^{\alpha}(-v_k) = \alpha_0 \psi_0^x(-v_k) e^{-\mu_{\ell}^x \Delta x / \varepsilon} + \alpha_{-0} \psi_{-0}^x(-v_k) e^{-\mu_{\ell}^x \Delta x / \varepsilon} + \sum_{\ell=1}^{K-1} \alpha_{\pm \ell} \psi_{\pm \ell}^x(-v_k) e^{-\mu_{\ell}^x \Delta x / \varepsilon}.$$

The $K \times (K - 1)$ matrix of eigenvectors associated to nonzero eigenvalues is

$$\psi^x_{\pm}(\mathbb{V}) = (\psi^x_{\pm 1}(\mathbb{V}) \ldots \psi^x_{\pm K-1}(\mathbb{V})),$$

so that,

$$\begin{pmatrix} \alpha_+ \\ \alpha_- \end{pmatrix} = (\mathcal{M}^\varepsilon)^{-1} \begin{pmatrix} f_{j-1}^{\alpha}(\mathbb{V}) \\ f_{j}^{\alpha}(-\mathbb{V}) \end{pmatrix},$$

where \mathcal{M}^ε is the $2K \times 2K$ matrix defined by

$$\mathcal{M}^\varepsilon = \begin{pmatrix} \psi^x_+(\mathbb{V}) & \psi^x_0(\mathbb{V}) & \psi^x_-(\mathbb{V}) & \psi^x_{-0}(\mathbb{V}) \\ \psi^x_+(-\mathbb{V}) e^{-\mu_{\ell}^x \Delta x / \varepsilon} & \psi^x_0(-\mathbb{V}) e^{-\mu_{\ell}^x \Delta x / \varepsilon} & \psi^x_-(-\mathbb{V}) e^{-\mu_{\ell}^x \Delta x / \varepsilon} & \psi^x_{-0}(-\mathbb{V}) e^{-\mu_{\ell}^x \Delta x / \varepsilon} \end{pmatrix}.$$

Outgoing values of \bar{f} follow thanks to (6.89),

$$\bar{f}(\Delta x, \mathbb{V}) = \alpha_0 \psi_0^x(\mathbb{V}) e^{-\mu_0^x \Delta x / \varepsilon} + \alpha_{-0} \psi_{-0}^x(\mathbb{V}) e^{-\mu_{-0}^x \Delta x / \varepsilon} + \sum_{\ell=1}^{K-1} \alpha_{\pm \ell} \psi_{\pm \ell}^x(\mathbb{V}) e^{-\mu_{\pm \ell}^x \Delta x / \varepsilon},$$

$$\bar{f}(0, -\mathbb{V}) = \alpha_0 \psi_0^x(-\mathbb{V}) + \alpha_{-0} \psi_{-0}^x(-\mathbb{V}) + \sum_{\ell=1}^{K-1} \alpha_{\pm \ell} \psi_{\pm \ell}^x(-\mathbb{V}).$$

Then, denoting

$$\widetilde{\mathcal{M}}^\varepsilon = \begin{pmatrix} \psi^x_+(\mathbb{V}) e^{-\mu_+^x \Delta x / \varepsilon} & \psi^x_0(\mathbb{V}) e^{-\mu_0^x \Delta x / \varepsilon} & \psi^x_-(-\mathbb{V}) e^{-\mu_{-}^x \Delta x / \varepsilon} & \psi^x_{-0}(\mathbb{V}) e^{-\mu_{-0}^x \Delta x / \varepsilon} \\ \psi^x_+(-\mathbb{V}) & \psi^x_0(-\mathbb{V}) & \psi^x_-(-\mathbb{V}) & \psi^x_{-0}(-\mathbb{V}) \end{pmatrix},$$

we get

$$\begin{pmatrix} \bar{f}(\Delta x, \mathbb{V}) \\ \bar{f}(0, -\mathbb{V}) \end{pmatrix} = \widetilde{\mathcal{M}}^\varepsilon (\mathcal{M}^\varepsilon)^{-1} \begin{pmatrix} f_{j-1}^{\alpha}(\mathbb{V}) \\ f_{j}^{\alpha}(-\mathbb{V}) \end{pmatrix}.$$

Accordingly, the scattering matrix is defined by,

$$S_{j-1/2}^\varepsilon = \widetilde{\mathcal{M}}^\varepsilon (\mathcal{M}^\varepsilon)^{-1}. \quad \text{(dependent on } j - \frac{1}{2})$$

6.5 Decomposition of the scattering matrix

We perform the computation in the case $E > 0$. Computations in the case $E < 0$ are similar. We start from the expression,

$$S^\varepsilon = \widetilde{\mathcal{M}}^\varepsilon (\mathcal{M}^\varepsilon)^{-1} = \widetilde{N}^\varepsilon (N^\varepsilon)^{-1},$$
where (expressions of $\mu_{\pm 0}^\varepsilon$ are used),

$$
N^\varepsilon = \begin{pmatrix}
\psi_+^\varepsilon(V) & \psi_0^\varepsilon(V) & \psi_-^\varepsilon(V)e^{\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(V)e^{-E\Delta x/\kappa} \\
\psi_+^\varepsilon(-V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(-V) & \psi_-^\varepsilon(-V) & \psi_0^\varepsilon(-V)e^{-E\Delta x/\kappa}
\end{pmatrix},
$$

$$
\widetilde{N}^\varepsilon = \begin{pmatrix}
\psi_+^\varepsilon(V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(V) & \psi_-^\varepsilon(V)e^{\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(V)e^{-E\Delta x/\kappa} \\
\psi_+^\varepsilon(-V) & \psi_0^\varepsilon(-V) & \psi_-^\varepsilon(-V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(-V)e^{-E\Delta x/\kappa}
\end{pmatrix}.
$$

Moreover, the product $\widetilde{N}^\varepsilon(N^\varepsilon)^{-1}$ is invariant if, in both matrices N^ε and $\widetilde{N}^\varepsilon$, we subtract to the last column $e^{-E\Delta x/\kappa}$ times the Kth column, i.e.

$$
S^\varepsilon = \widetilde{N}^\varepsilon(N^\varepsilon)^{-1},
$$

with

$$
N^\varepsilon = \begin{pmatrix}
\psi_+^\varepsilon(V) & \psi_0^\varepsilon(V) & \psi_-^\varepsilon(V)e^{\mu_+^\varepsilon \Delta x/\varepsilon} & (\psi_+^\varepsilon(V) - \psi_0^\varepsilon(V))e^{-E\Delta x/\kappa} \\
\psi_+^\varepsilon(-V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0(-V) & \psi_-^\varepsilon(-V) & (\psi_+^\varepsilon(-V) - \psi_0^\varepsilon(-V))e^{-E\Delta x/\kappa}
\end{pmatrix},
$$

$$
\widetilde{N}^\varepsilon = \begin{pmatrix}
\psi_+^\varepsilon(V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & \psi_0^\varepsilon(V) & \psi_-^\varepsilon(V)e^{\mu_+^\varepsilon \Delta x/\varepsilon} & (\psi_+^\varepsilon(V) - \psi_0^\varepsilon(V))e^{-E\Delta x/\kappa} \\
\psi_+^\varepsilon(-V) & \psi_0(-V) & \psi_-^\varepsilon(-V)e^{-\mu_+^\varepsilon \Delta x/\varepsilon} & (\psi_+^\varepsilon(-V) - \psi_0^\varepsilon(-V))e^{-E\Delta x/\kappa}
\end{pmatrix}.
$$

Noticing that when $\varepsilon \to 0$, $\psi_\pm^0(V) \to \exp(-\frac{y^2}{2\kappa})$, we may pass to the limit $\varepsilon \to 0$ in the latter matrices and get $S^\varepsilon \to S^0 = N^0(\widetilde{N}^0)^{-1}$ with

$$
N^0 = \begin{pmatrix}
\psi_+^0(V) & \exp(-\frac{y^2}{2\kappa}) & 0_K \\
0_{K \times K-1} & \exp(-\frac{y^2}{2\kappa}) & (1 - e^{-E\Delta x/\kappa})\exp(-\frac{y^2}{2\kappa})
\end{pmatrix},
$$

$$
\widetilde{N}^0 = \begin{pmatrix}
0_{K \times K-1} & \exp(-\frac{y^2}{2\kappa}) & \psi_0^0(V) & (1 - e^{-E\Delta x/\kappa})\exp(-\frac{y^2}{2\kappa}) \\
0_{K \times K-1} & \exp(-\frac{y^2}{2\kappa}) & 0_K
\end{pmatrix}.
$$

Lemma 6.2 Under assumption (6.84) on the set of discrete velocities, the S-matrix (6.90) admits the asymptotic expansion in ε,

$$
S^\varepsilon = \begin{pmatrix}
0_K & I_K - \frac{\zeta^\varepsilon_0}{\gamma_{\pm 0}^\varepsilon} \\
I_K - \frac{\zeta^\varepsilon_{\pm \gamma}}{\gamma_{\pm}^\varepsilon} & 0_K
\end{pmatrix} + \varepsilon B^\varepsilon, \quad B^\varepsilon = \frac{i}{\varepsilon}(\widetilde{N}^\varepsilon(N^\varepsilon)^{-1} - \widetilde{N}^0(N^0)^{-1}),
$$

where the matrices $\gamma_+ \in \mathcal{M}_{K-1 \times K}(\mathbb{R})$ and $\zeta_+^0 \in \mathcal{M}_{K \times K-1}(\mathbb{R})$ satisfy,

$$
\gamma_+ = \begin{pmatrix}
\gamma_1^\top \\
\vdots \\
\gamma_{K-1}^\top
\end{pmatrix} \quad \text{where} \quad \gamma_{\ell} \in \mathbb{R}^K, \quad \gamma_{\ell}^\top \psi_0^0(V) = \delta_{k\ell}, \quad \gamma_{\ell}^\top \exp(-\frac{y^2}{2\kappa}) = 0;
$$

$$
\zeta_+^\varepsilon = \begin{pmatrix}
\zeta^\varepsilon_{\pm 1} & \ldots & \zeta^\varepsilon_{\pm (K-1)}
\end{pmatrix}, \quad \zeta^\varepsilon_{\pm \ell} = \psi_+^\varepsilon(V) - \psi_{\pm \ell}^\varepsilon(-V) \in \mathbb{R}^K.
$$

Remark 6.3 Existence of γ_+ is guaranteed by assumption (6.84). Notice that since the limits ψ_0^ε in (6.83) do not depend on E, the first term in the decomposition of the scattering matrix is independent on E, hence on j.

Proof.
1. Let vector $\beta \in \mathbb{R}^K$ be such that
\[
\beta^T \psi_\ell^0(\mathcal{V}) = 0; \quad \beta^T \exp\left(-\frac{\gamma^2}{2\kappa}\right) = 1.
\] (6.96)

Moreover, since
\[
\gamma_+ = \begin{pmatrix} \gamma_1^T \\ \vdots \\ \gamma_{K-1}^T \end{pmatrix},
\]
it comes that
\[
\begin{pmatrix} \gamma_+ \\ \beta^T \end{pmatrix} = \begin{pmatrix} \psi_\ell^0(\mathcal{V}) \\ \exp\left(-\frac{\gamma^2}{2\kappa}\right) \end{pmatrix}^{-1},
\] (6.97)

where the latter matrix is invertible thanks to assumption (6.84). It brings also that,
\[
\sum_{\ell=1}^{K-1} \psi_\ell^0(\mathcal{V}) \gamma_\ell^T + \exp\left(-\frac{\gamma^2}{2\kappa}\right) \beta^T = I_K.
\] (6.98)

2. Similarly, as $\psi_{-\ell}(\mathcal{V}) = (-1)^\ell \psi_\ell^0(-\mathcal{V})$, then denoting
\[
\gamma_- = \begin{pmatrix} -\gamma_1^T \\ \gamma_2^T \\ \vdots \\ (-1)^{K-1} \gamma_{K-1}^T \end{pmatrix},
\]
it comes that,
\[
\begin{pmatrix} \gamma_- \\ \beta^T \end{pmatrix} = \begin{pmatrix} \psi_{-\ell}^0(-\mathcal{V}) \\ (1 - e^{-E\Delta x/\kappa}) \exp\left(-\frac{\gamma^2}{2\kappa}\right) \end{pmatrix}^{-1}.
\] (6.99)

3. We deduce from both (6.97) and (6.99) that,
\[
(A^0)^{-1} = \begin{pmatrix} \gamma_+ \\ \beta^T \end{pmatrix} \begin{pmatrix} 0 \\ 0_{K-1} \end{pmatrix} - \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0_{K-1} \end{pmatrix} \exp\left(-\frac{\gamma^2}{2\kappa}\right) \beta^T,
\]
and so, with (6.91)–(6.92),
\[
S^\varepsilon \rightarrow S^0 := \tilde{N}^0(A^0)^{-1},
\]
has the form (6.93), with
\[
\tilde{N}^0(A^0)^{-1} = \begin{pmatrix} 0_K \\ \sum_{\ell=1}^{K-1} \psi_{-\ell}^0(-\mathcal{V}) \gamma_\ell^T + \exp\left(-\frac{\gamma^2}{2\kappa}\right) \beta^T \end{pmatrix} \begin{pmatrix} 0_K \\ \sum_{\ell=1}^{K-1} \psi_\ell^0(\mathcal{V}) \gamma_\ell^T + \exp\left(-\frac{\gamma^2}{2\kappa}\right) \beta^T \end{pmatrix},
\]

Using (6.98) allows to complete the proof.
Lemma 6.4 For $E > 0$,

$$B^0 := \lim_{\varepsilon \to 0} B^\varepsilon = \left(\begin{array}{c} B_{10} \\ B_{30} \\ B_{40} \end{array} \right),$$ \hspace{1cm} (6.100)

where

$$B^{10} = \frac{1}{1 - e^{-\frac{E\Delta x}{\kappa}}} \frac{2EV}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right) \beta^T - \frac{1}{1 - e^{-\frac{E\Delta x}{\kappa}}} \frac{\zeta^0_+ + \gamma^+ \left(\frac{EV}{\kappa} - \frac{E^2}{\kappa} \right)}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right) \beta^T;$$

$$B^{20} = \left(\frac{d\zeta_+}{d\varepsilon} \right)_{\varepsilon=0} + \frac{\zeta^3_+}{\kappa} + \frac{d\psi_+(-V)}{d\varepsilon} \left(\frac{d\zeta^3_+}{d\varepsilon} \right)_{\varepsilon=0} \gamma - \frac{e^{-\frac{E\Delta x}{\kappa}}}{1 - e^{-\frac{E\Delta x}{\kappa}}} \frac{2EV}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right) \beta^T;$$

$$B^{30} = \left(\frac{\zeta^3_+}{\kappa} + \frac{d\psi_+(-V)}{d\varepsilon} \right) \left(\frac{d\zeta^3_+}{d\varepsilon} \right)_{\varepsilon=0} \gamma + \frac{1}{1 - e^{-\frac{E\Delta x}{\kappa}}} \frac{2EV}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right) \beta^T;$$

$$B^{40} = \frac{e^{-\frac{E\Delta x}{\kappa}}}{1 - e^{-\frac{E\Delta x}{\kappa}}} \left(\frac{2EV}{\kappa} - \frac{E^2}{\kappa} \right) \exp\left(-\frac{V^2}{2\kappa}\right) \beta^T.$$

Proof. Rewriting $B^\varepsilon = \frac{1}{\varepsilon}(\tilde{N}^\varepsilon - \tilde{N}^0(\mathcal{A}^0)^{-1}\mathcal{N}^\varepsilon)(\mathcal{N}^\varepsilon)^{-1}$, it comes,

$$B^\varepsilon \mathcal{N}^\varepsilon = \frac{1}{\varepsilon}(\tilde{N}^\varepsilon - \tilde{N}^0(\mathcal{A}^0)^{-1}\mathcal{N}^\varepsilon) = \frac{1}{\varepsilon} \left(\begin{array}{c} A^{1\varepsilon} \\ A^{2\varepsilon} \\ A^{3\varepsilon} \\ A^{4\varepsilon} \end{array} \right),$$

with

$$A^{1\varepsilon} = \left(\zeta^+ + \zeta^0_+ + \psi_+^\varepsilon(-V) \right) e^{-\frac{2E\Delta x}{\kappa}};$$

$$A^{2\varepsilon} = \left(\zeta^+ + \zeta^0_+ + \psi_+^\varepsilon(-V) \right) \left(\zeta^0_0 + \zeta^0_+ \psi_0(-V) - (\zeta^0_0 + \zeta^0_+ \psi_0(-V)) e^{-\frac{E\Delta x}{\kappa}} \right);$$

$$A^{3\varepsilon} = \left(\zeta^0_+ + \psi_+^\varepsilon(V) - \zeta^0_0 \right) \left(\zeta^0_0 + \zeta^0_+ \psi_0(V) - \zeta^0_0 \right);$$

$$A^{4\varepsilon} = \left(\zeta^0_0 + \zeta^0_+ \psi_0(V) - \zeta^0_0 \right) e^{-\frac{E\Delta x}{\kappa}} \left(\zeta^0_0 + \zeta^0_+ \psi_0(V) - \zeta^0_0 \right).$$

When $E > 0$, $\zeta^0_0 = 0$, whereas if $E < 0$, $\zeta^0_0 = 0$.

Accordingly, for $E > 0$,

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\psi_0^\varepsilon(V) - \exp\left(-\frac{V^2}{2\kappa}\right) \right) = \frac{d\psi_0^\varepsilon(V)}{d\varepsilon} \left|_{\varepsilon=0} = \frac{EV}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right);$$

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\psi^\varepsilon_0(V) - \exp\left(-\frac{V^2}{2\kappa}\right) \right) = -\frac{E^2}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right);$$

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \zeta_0^\varepsilon = \frac{2EV}{\kappa} \exp\left(-\frac{V^2}{2\kappa}\right),$$

and the expression (6.100) follows by doing $B^0 = (\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} A^\varepsilon) (\mathcal{A}^0)^{-1}$.

\[\square \]
6.6 Uniform accuracy with respect to ε of the final scheme

We deduce the final scheme from (6.12), which reads like (6.68),

$$
\begin{aligned}
\left(f_j^{n+1}(\mathcal{V}) \right)_{j-1} + \frac{\Delta t}{\varepsilon \Delta x} \nabla \left(f_j^{n+1}(\mathcal{V}) - (I_K - \zeta_0^+ \gamma_+)(j-1) - (I_K - \zeta_0^+ \gamma_+)(j+1) \right) \\
&= \left(f_j^n(\mathcal{V}) \right)_{j-1} + \frac{\Delta t}{\Delta x} \mathcal{B}_{j-1} \left(f_j^n(\mathcal{V}) \right)_{j-1}.
\end{aligned}
$$

(6.101)

Denoting again $\mathcal{B} = \left(B_{1\varepsilon} B_{2\varepsilon} B_{3\varepsilon} B_{4\varepsilon} \right)$, the scheme (6.101) rewrites as

$$
\frac{1}{\varepsilon} \mathcal{R}^\varepsilon \left(f_j^{n+1}(\mathcal{V}) \right) = \left(f_j^n(\mathcal{V}) \right)_{j-1} + \frac{\Delta t}{\Delta x} \mathcal{B}_{j-1} \left(B_{1\varepsilon} f_j^n(\mathcal{V}) + B_{2\varepsilon} f_j^n(\mathcal{V}) + B_{3\varepsilon} f_j^n(\mathcal{V}) + B_{4\varepsilon} f_j^n(\mathcal{V}) \right),
$$

(6.102)

where

$$
\mathcal{R}^\varepsilon = \varepsilon I_{2K} + \frac{\Delta t}{\Delta x} \mathcal{B}_{j-1} \left(B_{1\varepsilon} f_j^n(\mathcal{V}) + B_{2\varepsilon} f_j^n(\mathcal{V}) + B_{3\varepsilon} f_j^n(\mathcal{V}) + B_{4\varepsilon} f_j^n(\mathcal{V}) \right).
$$

After inversion of the matrix \mathcal{R}^ε, by construction, the scheme (6.101) satisfies the well-balanced property and is asymptotic preserving. We also define:

$$
\sigma_0 = \sum_{k=1}^{K} \omega_k e^{-\frac{v^2}{2\kappa}}, \quad \sigma_2 = \sum_{k=1}^{K} \omega_k v^2 e^{-\frac{v^2}{2\kappa}}.
$$

(6.103)

We can now state our main result for the Vlasov-Fokker-Planck equation:

Theorem 6.5 The scheme (6.102) is a well-balanced approximation for the Vlasov-Fokker-Planck system (6.74). It is uniformly accurate (AP) with respect to ε. More precisely, if we assume that (6.84), (6.85) and (6.86) hold, and that $\sigma_2 = \kappa \sigma_0$ in (6.103). Then, as $\varepsilon \to 0$, the macroscopic density $\rho_0^\varepsilon := \sum_{k=-K}^{K} \omega_k f_j^n(v_k)$ satisfies the Sharpfetter-Gummel discretization (6.76).

Remark 6.6 By integration by parts, we notice that, based on (6.105),

$$
\int_0^{+\infty} v^2 e^{-\frac{v^2}{(2\kappa)}} dv = \kappa \int_0^{+\infty} e^{-\frac{v^2}{(2\kappa)}} dv.
$$

Therefore, assuming $\sigma_2 = \kappa \sigma_0$ in Theorem 6.5 boils down to assume that the latter equality is also true at the discrete level.

Proof. As above, we have $\mathcal{R}^\varepsilon = \mathcal{R}^0 + \varepsilon I_{2K}$, where

$$
\mathcal{R}^0 := \frac{\Delta t}{\Delta x} \mathcal{B}_{j-1} \left(B_{1\varepsilon} f_j^n(\mathcal{V}) + B_{2\varepsilon} f_j^n(\mathcal{V}) + B_{3\varepsilon} f_j^n(\mathcal{V}) + B_{4\varepsilon} f_j^n(\mathcal{V}) \right).
$$

Assuming that f admits a Hilbert expansion $f = f^0 + \varepsilon f^1 + o(\varepsilon)$, we get by identifying the terms in power of ε in (6.102),

$$
\mathcal{R}^0 \left(\left\{ f_j^n \right\}_{j}^{n+1}(\mathcal{V}) \right) = 0,
$$

(6.104)
and
\[
\mathcal{R}^0 \left(\left\{ f^{1}_{j} \right\}^{n+1}_{j=1}(\mathcal{V}) \right) = \left(\left\{ f^{0}_{j} \right\}^{n+1}_{j=1}(\mathcal{V}) \right).
\]

Under assumptions (6.84), (6.85), and (6.89), we may apply Lemma A.1 in Appendix. Hence

- \(\text{Ker}(\mathcal{R}^0) = \text{span} \left(\exp(-\frac{\mathcal{V}^2}{2\kappa}) \right) = \text{span} \left(\psi^0_0(\mathcal{V}) \right) \),
- \(\text{Im}(\mathcal{R}^0) = \left\{ Z = (Z_1 Z_2)^\top, Z_i \in \mathbb{R}^K \text{ such that } \sum_{k=1}^{K} \omega_k(Z_{1k} + Z_{2k}) = 0 \right\} \).

Then, equation (6.104) implies that \(f^0 \) is an element of Ker(\(\mathcal{R}^0 \)):
\[
\left\{ f^0 \right\}^{n+1}_{j=1}(\mathcal{V}) = \frac{\rho^n_{j+1}}{2\sigma_0} \exp(-\frac{\mathcal{V}^2}{2\kappa}).
\]

Injecting this expression into (6.105), we deduce,
\[
\begin{align*}
\mathcal{R}^0 \left(\left\{ f^{1}_{j} \right\}^{n+1}_{j=1}(\mathcal{V}) \right) &= \frac{\rho^n_{j+1}}{2\sigma_0} \exp(-\frac{\mathcal{V}^2}{2\kappa}) \left((\rho^n_{j} - \rho^n_{j+1}) \exp(-\frac{\mathcal{V}^2}{2\kappa}) \right) \\
&\quad+ \frac{\Delta t}{2\sigma_0 \Delta x} \sqrt{V} \left(B_{j - \frac{1}{2}}^{10} \exp(-\frac{\mathcal{V}^2}{2\kappa}) \rho^n_{j-1} + B_{j + \frac{1}{2}}^{20} \exp(-\frac{\mathcal{V}^2}{2\kappa}) \rho^n_{j} \\
&\quad+ B_{j + \frac{1}{2}}^{30} \exp(-\frac{\mathcal{V}^2}{2\kappa}) \rho^n_{j} + B_{j + \frac{1}{2}}^{40} \exp(-\frac{\mathcal{V}^2}{2\kappa}) \rho^n_{j+1} \right).
\end{align*}
\]

This equation admits a solution iff the right hand side belongs to Im(\(\mathcal{R}^0 \)). Applying again Lemma A.1 we deduce the solvability condition:
\[
\rho^n_{j} - \rho^n_{j+1} + \frac{\Delta t}{2\sigma_0 \Delta x} \sum_{k=1}^{K} \omega_k v_k \left((B_{j - \frac{1}{2}}^{10} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k \rho^n_{j-1} + (B_{j - \frac{1}{2}}^{20} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k \rho^n_{j} \\
&\quad+ (B_{j + \frac{1}{2}}^{30} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k \rho^n_{j} + (B_{j + \frac{1}{2}}^{40} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k \rho^n_{j+1} \right) = 0.
\]

Using (see (6.91) and (6.96))
\[
\gamma_{\pm} \exp(-\frac{\mathcal{V}^2}{2\kappa}) = 0_{K \times K}, \quad \beta^\top \mathbf{1}_{K} = 1,
\]
we deduce from the expression (6.100) of \(B^0 \),
\[
\begin{align*}
\sum_{k=1}^{K} \omega_k v_k (B_{j - \frac{1}{2}}^{10} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k &= \frac{1}{1 - e^{-E_{j - \frac{1}{2}} \Delta x / \kappa}} \frac{2E_{j - \frac{1}{2}} \omega_k v_k^2 \exp(-\frac{\mathcal{V}^2}{2\kappa})}{\kappa} \\
\sum_{k=1}^{K} \omega_k v_k (B_{j + \frac{1}{2}}^{20} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k &= -\frac{1}{1 - e^{-E_{j + \frac{1}{2}} \Delta x / \kappa}} \frac{2E_{j + \frac{1}{2}} \omega_k v_k^2 \exp(-\frac{\mathcal{V}^2}{2\kappa})}{\kappa} \\
\sum_{k=1}^{K} \omega_k v_k (B_{j + \frac{1}{2}}^{30} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k &= -\frac{1}{1 - e^{-E_{j + \frac{1}{2}} \Delta x / \kappa}} \frac{2E_{j + \frac{1}{2}} \omega_k v_k^2 \exp(-\frac{\mathcal{V}^2}{2\kappa})}{\kappa} \\
\sum_{k=1}^{K} \omega_k v_k (B_{j + \frac{1}{2}}^{40} \exp(-\frac{\mathcal{V}^2}{2\kappa}))_k &= \frac{1}{1 - e^{-E_{j + \frac{1}{2}} \Delta x / \kappa}} \frac{2E_{j + \frac{1}{2}} \omega_k v_k^2 \exp(-\frac{\mathcal{V}^2}{2\kappa})}{\kappa}.
\end{align*}
\]
Thus, we may rewrite the limiting scheme as

\[
0 = \rho_j^n - \rho_j^{n+1} + \frac{\sigma_2\Delta t}{\sigma_0\Delta x} \left(\frac{E_{j-\frac{1}{2}}\rho_{j-1}^n e^{-E_{j-\frac{1}{2}}\Delta x/\kappa}}{1 - e^{-E_{j-\frac{1}{2}}\Delta x/\kappa}} - \frac{E_{j+\frac{1}{2}}\rho_j^n e^{-E_{j+\frac{1}{2}}\Delta x/\kappa}}{1 - e^{-E_{j+\frac{1}{2}}\Delta x/\kappa}} \right).
\]

By assumption \(\sigma_2 = \kappa\sigma_0\), we recognize the Sharfetter-Gummel scheme (6.76).

\[\Box\]

7 Conclusion and outlook

In this paper, we proved (at the price of heavy technicalities) that most the discretizations advocated in [24] Part II, for 1 + 1 kinetic models endowed with a non-trivial diffusive limit, converge toward Il’in/Scharfetter-Gummel’s “exponential-fitting” scheme. Such a property implies that IMEX discretizations (5.69) and (6.102), which rely on \(S\)-matrices, should be “uniformly accurate” (in the sense of, e.g., [6, 20, 48]) with respect to the Peclet number,

\[
\text{Pe} = \left| E_{j-\frac{1}{2}} \right| \text{ for (5.59)}, \quad \text{Pe} = \left| \frac{E_{j-\frac{1}{2}}}{\kappa} \right| \text{ for (6.76)}.
\]

In order to ensure strong stability properties for the overall discretization, the \(S\)-matrices should be endowed with left/right-stochastic properties, as recalled in Lemma 2.5: in particular, the requirement (2.17) is important for mass-preservation. This is closely related to “matrix balancing techniques” and Sinkhorn’s algorithm, [33, 50]. Especially, results in [33] ensure that one can often adjust a slightly noisy \(S\)-matrix to recover a closely related one satisfying both (2.17) and the “right-stochastic” criterion.

Besides, computations in Section 6 indicate the importance of having steady solutions \(\mathbb{R}^+ \ni v \mapsto \Psi_{\pm n}(x, v)\) being a \(T\)-system for any \(x > 0\) and \(n < N \in \mathbb{N}\). Such an issue appears to be specific to kinetic models like Fokker-Planck equations, involving a local differential operator as the collision mechanism. Indeed, the corresponding stationary boundary-value problem is usually solved by means of a modulation of Sturm-Liouville eigenfunctions, for which the so-called “Haar property” (2.6) is not obvious; for instance it may lead to “generalized polynomials”, like e.g. exponential ones, for which the equivalent condition (2.7) is not satisfied in general, as recalled in our Appendix 3.1.

We now emphasize two possible applications of these schemes, one partly studied, the other being essentially an outlook extending the present work:

- Some 1 + 1 kinetic models of chemotaxis dynamics exhibit (in sharp contrast with diffusive Keller-Segel approximations) bi-stability phenomena of traveling waves, within certain ranges of parameters. Practical computational simulations were achieved in [10] thanks to numerical algorithms based on both \(S\)-matrices and \(L\)-splines discretizations of diffusive equations [28].

- In [11] Chap. 6 and [12] Chap. 5] Cercignani explains how the formalism of “Case’s elementary solutions” can be extended to linearized BGK models of the Boltzmann equation in 1 + 1 dimensions (see also the paper [40] and numerical computations in [23]). In particular, in [12] pp. 106–108], a (formal) passage from kinetic heat transfer system toward linearized Navier-Stokes-Fourier equations. The discretization of the heat transfer system was presented in e.g. [24] Chap. 14], so that some techniques developed in this paper may shed light onto the corresponding macroscopic behavior.
Acknowledgment

We gladly thank Prof. Christian Krattenthaler (Vienna) for his kind help in the study of the Haar property satisfied by exponential monomials.

This work is supported by French/Italian PICS project MathCell (CNRS/CNR). NV acknowledges partial support from french “ANR Blanche” project Kibord: ANR-13-BS01-0004.

Appendix

1 Some properties on Case’s eigenelements

In this Appendix, we establish some useful properties on the eigenfunctions defined in Proposition 4.1. First we show that the set of Case’s eigenfunctions is endowed with the Haar property (see Definition 2.1).

Proposition A.1 Denote $\phi_\lambda(v) = \frac{1}{1-\lambda v}$ for $\lambda \geq 0$, then the following properties hold:

(i) Let $0 < \lambda_1 < \ldots < \lambda_{K-1}$ and $0 < v_1 < \ldots < v_K$. We denote $V = (v_1, \ldots, v_K)^T$. Then, the family $\{1_{R^K}, \phi_{\lambda_1}(V), \ldots, \phi_{\lambda_{K-1}}(V)\}$ is a basis of R^K.

(ii) The set $(\phi_\lambda)_{\lambda \geq 0}$ is a Markov system on R^*_+ in the sense of Def. 2.2.

(iii) There exists $\beta \in R^K$ and $\gamma \in M_{K-1 \times K}(R)$ such that

$$\begin{pmatrix} \beta^T \\ \gamma \end{pmatrix} = \begin{pmatrix} 1_{R^K} & \phi_{\lambda_1}(V) & \ldots & \phi_{\lambda_{K-1}}(V) \end{pmatrix}^{-1}.$$

Proof. These properties are shown by studying convenient polynomials.

(i) As the family contains K vectors, it suffices to show its linear independence: Assume

$$\exists a_0, a_1, \ldots, a_K, \quad a_0 1_{R^K} + \sum_{i=1}^{K-1} a_i \phi_{\lambda_i}(V) = 0_{R^K},$$

let us show that $a_0 = a_1 = \ldots = a_{K-1} = 0$. Using the expression of ϕ_λ and multiplying,

$$\forall k \in \{1, \ldots, K\}, \quad \left(a_0 + \sum_{i=1}^{K-1} a_i \frac{1}{1-\lambda_i v_k} \right) \times \prod_{j=1}^{K-1} (1-\lambda_j v_k) = 0.$$

Thus, for any $k \in \{1, \ldots, K\}$, the polynomial

$$v \mapsto P(v) := a_0 \prod_{j=1}^{K-1} (1-\lambda_j v) + \sum_{i=1}^{K-1} a_i \prod_{j=1, j\neq i}^{K-1} (1-\lambda_j v)$$

has degree $K - 1$, but K roots $\{v_1, \ldots, v_K\}$, so that P is a null polynomial, i.e.

$$\forall v \in R, \quad P(v) = 0.$$

Identifying the term of higher degree, we deduce that $a_0 = 0$. Then, taking $v = 1/\lambda_i$, $i \in \{1, \ldots, K-1\}$, we obtain $a_i = 0$, for all $i \in \{1, \ldots, K-1\}$.
(ii) From (i), since the values of both $K \in \mathbb{N}$ and λ's are arbitrary, the set $(\phi_{\lambda}(v))_{\lambda \geq 0}$ clearly constitutes a Markov system.

(iii) The point (i) implies that the matrix
\[
\begin{pmatrix}
\mathbf{1}_K & \phi_{\lambda_1}(V) & \cdots & \phi_{\lambda_{K-1}}(V)
\end{pmatrix}
\] is invertible.

For our next property, we consider two sets of positive numbers $0 < \lambda_1 < \ldots < \lambda_{K-1}$ and $0 < \mu_1 < \ldots < \mu_{K-1}$ with corresponding Case’s eigenfunctions $(\phi_{\lambda})_\lambda$ and $(\phi_{\mu})_\mu$. We denote γ_1, respectively γ_2, the corresponding matrices defined in Proposition A.1 (iii) for the set (λ_i), respectively (μ_i). We introduce
\[
\zeta_1 = \begin{pmatrix}
\phi_{\lambda_1}(V) - \phi_{\lambda_1}(-V), \ldots, \phi_{\lambda_{K-1}}(V) - \phi_{\lambda_{K-1}}(-V)
\end{pmatrix}
\]
\[
\zeta_2 = \begin{pmatrix}
\phi_{\mu_1}(V) - \phi_{\mu_1}(-V), \ldots, \phi_{\mu_{K-1}}(V) - \phi_{\mu_{K-1}}(-V)
\end{pmatrix}
\]
Then, let us denote
\[
\mathcal{H} = \begin{pmatrix}
I_K & \zeta_2 \gamma_2 - I_K \\
\zeta_1 \gamma_1 - I_K & I_K
\end{pmatrix}.
\]

The following Lemma shed light onto the kernel and the range of \mathcal{H}:

Lemma A.2 With the above notations, let us assume moreover that
\[
\forall \ i, \ \sum_{k=1}^{K} \omega_k v_k(\phi_{\lambda_i}(v_k) - \phi_{\lambda_i}(-v_k)) = \sum_{k=1}^{K} \omega_k v_k(\phi_{\mu_i}(v_k) - \phi_{\mu_i}(-v_k)) = 0.
\]

Then, the matrix \mathcal{H} is such that:

- $\text{Ker}(\mathcal{H}) = \text{Span}(\mathbf{1}_{2K})$,
- $\text{Im}(\mathcal{H}) = \left\{ Z = (Z_1, Z_2)^T, \ Z_i \in \mathbb{R}^K \text{ such that } \sum_{k=1}^{K} \omega_k (Z_{1k} + Z_{2k}) = 0 \right\}$.

Proof.

- Pick $Y = (Y_1, Y_2)^T \in \text{Ker}(\mathcal{H})$, then
\[
Y_1 - Y_2 = \zeta_1 \gamma_1 Y_1 = -\zeta_2 \gamma_2 Y_2.
\]

Since, from Proposition A.1, the families $\{\mathbf{1}_K, \phi_{\lambda_1}(V), \ldots, \phi_{\lambda_{K-1}}(V)\}$ and $\{\mathbf{1}_K, \phi_{\mu_1}(V), \ldots, \phi_{\mu_{K-1}}(V)\}$ are basis of \mathbb{R}^K, we may write
\[
Y_1 = a_0 + \sum_{\ell=1}^{K-1} a_{\ell} \phi_{\lambda_{\ell}}(V), \quad Y_2 = b_0 + \sum_{\ell=1}^{K-1} b_{\ell} \phi_{\mu_{\ell}}(V).
\]

By definition of ζ_i and γ_i, $i = 1, 2$, we have
\[
\zeta_1 \gamma_1 Y_1 = \sum_{\ell=1}^{K-1} a_{\ell} (\phi_{\lambda_{\ell}}(V) - \phi_{\lambda_{\ell}}(-V)), \quad \zeta_2 \gamma_2 Y_2 = \sum_{\ell=1}^{K-1} b_{\ell} (\phi_{\mu_{\ell}}(V) - \phi_{\mu_{\ell}}(-V)).
\]
Thus from the equalities $Y_1 = Y_2 - \zeta_2 \gamma_2 Y_2$ and $Y_2 = Y_1 - \zeta_1 \gamma_1 Y_1$, we deduce
\[
a_0 - b_0 + \sum_{\ell=1}^{K-1} \left(a_\ell \phi_{\lambda_\ell}(\mathcal{V}) - b_\ell \phi_{\mu_\ell}(-\mathcal{V}) \right) = 0, \\
a_0 - b_0 + \sum_{\ell=1}^{K-1} \left(a_\ell \phi_{\lambda_\ell}(-\mathcal{V}) - b_\ell \phi_{\mu_\ell}(\mathcal{V}) \right) = 0.
\]
We now proceed as in the proof of Proposition A.1 by introducing the polynomial
\[
v \mapsto Q(v) := (a_0 - b_0) \prod_{i=1}^{K-1} (1 - \lambda_i v) \prod_{j=1}^{K-1} (1 + \mu_j v) \\
+ \sum_{\ell=1}^{K-1} a_\ell \prod_{i=1, i \neq \ell}^{K-1} (1 - \lambda_i v) \prod_{j=1}^{K-1} (1 + \mu_j v) - \sum_{\ell=1}^{K-1} b_\ell \prod_{i=1}^{K-1} (1 - \lambda_i v) \prod_{j=1, j \neq \ell}^{K-1} (1 + \mu_j v).
\]
This is a polynomial of degree $2(K-1)$ which admits the $2K$ roots, $\pm v_1, \ldots, \pm v_K$ (from above equalities). So it is the null polynomial. Picking the values $v = 1/\lambda_\ell$ and $v = -1/\mu_\ell$, $\ell = 1, \ldots, K-1$, we deduce that $a_0 = b_0$, $a_\ell = 0$, and $b_\ell = 0$, for $\ell = 1, \ldots, K-1$. Therefore, $Y_1 = Y_2 = a_0 1_{\mathbb{R}^K}$.

- Consider an element in the range of \mathcal{H}, $Z = \mathcal{H} Y$, with $Z = (Z_1 \ Z_2)^T$, $Y = (Y_1 \ Y_2)^T$, $Z_i \in \mathbb{R}^K$, $Y_i \in \mathbb{R}^K$, $i = 1, 2$. Then,
\[
\sum_{k=1}^{K} \omega_k (Z_{1k} + Z_{2k}) = \sum_{k=1}^{K} \omega_k v_k \sum_{\ell=1}^{K} ((\zeta_1 \gamma_1)_{k\ell} Y_{1\ell} + (\zeta_2 \gamma_2)_{k\ell} Y_{2\ell}).
\]
Applying our assumption, we get
\[
\forall \ell, \quad \sum_{k=1}^{K} \omega_k v_k (\zeta_1 \gamma_1)_{k\ell} = 0, \quad \sum_{k=1}^{K} \omega_k v_k (\zeta_2 \gamma_2)_{k\ell} = 0,
\]
so, for any $Z = (Z_1 \ Z_2)^T \in \text{Im}(\mathcal{H})$, we have $\sum_{k=1}^{K} \omega_k (Z_{1k} + Z_{2k}) = 0$. The dimension of $\text{Ker}(\mathcal{H})$ is 1, so, thanks to the rank-nullity Theorem, equalities are as claimed in Lemma A.2.

\section{Properties of eigenelements of VFP}

This appendix is devoted to the proof of an analogue of Lemma A.2 for the VFP case under assumptions on the set of discrete velocities. We first define the useful notations. Let $\psi_0^\ell, \ell = 0, \ldots, K-1$, be defined as in (6.83). Let us assume that assumptions (6.84), (6.85) and (6.86) on the velocity quadrature hold. Therefore, there exists $\beta \in \mathbb{R}^K$ and $\gamma \in \mathcal{M}_{K-1 \times K}(\mathbb{R})$ such that
\[
\begin{pmatrix} \beta^T \\ \gamma \end{pmatrix} = \begin{pmatrix} \psi_0^0(\mathcal{V}) & \psi_0^1(\mathcal{V}) & \cdots & \psi_0^{K-1}(\mathcal{V}) \end{pmatrix}^{-1}.
\]
We introduce $\zeta_\ell := \psi_\ell^0(\mathcal{V}) - \psi_\ell^0(-\mathcal{V})$, and $\zeta := (\zeta_1 \ \cdots \ \zeta_{K-1}) \in \mathcal{M}_{K \times K-1}(\mathbb{R})$. Then we denote the matrix
\[
\mathcal{H} = \begin{pmatrix} \mathbf{I}_K & \zeta \gamma - \mathbf{I}_K \\ \zeta^\gamma - \mathbf{I}_K & \mathbf{I}_K \end{pmatrix}.
\]
Lemma A.1 With the above notations, if we assume that (6.84), (6.85), and (6.86) hold. Then, we have

- $\text{Ker}(\mathcal{H}) = \text{span} \left(\exp\left(-\frac{\gamma^2}{2\kappa}\right) \right) = \text{span} \left(\psi_0^0(\mathcal{V}) \right)$,
- $\text{Im}(\mathcal{H}) = \left\{ \mathbf{Z} = (Z_1 Z_2)^\top, Z_i \in \mathbb{R}^K \text{ such that } \sum_{k=1}^K \omega_k (Z_{1k} + Z_{2k}) = 0 \right\}$.

Proof. We proceed as in the proof of Lemma A.2

- Let $\mathbf{Y} = (Y_1, Y_2)^\top \in \text{Ker}(\mathcal{H})$, then
 $$Y_1 - Y_2 = \zeta \gamma Y_1 = -\zeta \gamma Y_2.$$

By assumption (6.84), the family $\{\psi_0^0(\mathcal{V}), \psi_1^0(\mathcal{V}), \ldots, \psi_{K-1}^0(\mathcal{V})\}$ is a basis of \mathbb{R}^K, then, we may write
 $$Y_1 = \sum_{\ell=0}^{K-1} a_\ell \psi_\ell^0(\mathcal{V}), \quad Y_2 = \sum_{\ell=0}^{K-1} b_\ell \psi_\ell^0(\mathcal{V}).$$

Simple computations using the definition of ζ and γ and recalling that $\psi_0^0(\mathcal{V}) = \exp(-\frac{\gamma^2}{2\kappa})$, give
 $$\zeta \gamma Y_1 = \sum_{\ell=1}^{K-1} a_\ell (\psi_\ell^0(\mathcal{V}) - \psi_\ell^0(-\mathcal{V})), \quad \zeta \gamma Y_2 = \sum_{\ell=1}^{K-1} b_\ell (\psi_\ell^0(\mathcal{V}) - \psi_\ell^0(-\mathcal{V})).$$

Thus the equalities $Y_1 = Y_2 - \zeta \gamma Y_2$ and $Y_2 = Y_1 - \zeta \gamma Y_1$ imply
 $$(a_0 - b_0) \exp\left(-\frac{\gamma^2}{2\kappa}\right) + \sum_{\ell=1}^{K-1} \left(a_\ell \psi_\ell^0(\mathcal{V}) - b_\ell \psi_\ell^0(-\mathcal{V}) \right) = 0,$$
 $$(a_0 - b_0) \exp\left(-\frac{\gamma^2}{2\kappa}\right) + \sum_{\ell=1}^{K-1} \left(a_\ell \psi_\ell^0(-\mathcal{V}) - b_\ell \psi_\ell^0(\mathcal{V}) \right) = 0.$$

From assumption (6.85), we deduce that $a_0 = b_0$, $a_\ell = 0$, $b_\ell = 0$, for $\ell = 1, \ldots, K - 1$. As a consequence $Y_1 = Y_2 = a_0 \psi_0^0(\mathcal{V})$.

- Consider an element in the range of \mathcal{H}, $\mathbf{Z} = \mathcal{H} \mathbf{Y}$, with $\mathbf{Z} = (Z_1 Z_2)^\top$, $\mathbf{Y} = (Y_1, Y_2)^\top$, $Z_i \in \mathbb{R}^K$, $Y_i \in \mathbb{R}^K$, $i = 1, 2$. Then,
 $$\sum_{k=1}^K \omega_k (Z_{1k} + Z_{2k}) = \sum_{k=1}^K \omega_k v_k \sum_{\ell=1}^K (\zeta \gamma)_{k\ell} (Y_{1\ell} + Y_{2\ell}).$$

Applying our assumption, we get
 $$\forall \ell, \quad \sum_{k=1}^K \omega_k v_k (\zeta \gamma)_{k\ell} = 0,$$

so, for any $\mathbf{Z} = (Z_1 Z_2)^\top \in \text{Im}(\mathcal{H})$, we have $\sum_{k=1}^K \omega_k (Z_{1k} + Z_{2k}) = 0$. The dimension of $\text{Ker}(\mathcal{H})$ is 1, so, thanks to the rank-nullity Theorem, $\text{rank}(\mathcal{H}) = K - 1$, which allows to conclude the proof.
3 Some properties of exponential polynomials

3.1 Elementary proof of the Pólya-Szegö estimate

Hereafter, following [37, page 10], we establish by induction a simple bound on the number of real roots of an exponential polynomial; for various extensions, see [52, 53]

∀n ∈ N, \(f_n(x) = \sum_{i=0}^{n-1} P_i(x) \exp(\mu_i x) \), \(\mu_i \in \mathbb{R} \), \(\deg(P_i) = k_i \).

We intend to show that, for any \(n \in \mathbb{N} \), \(f_n \) admits at most \(N_n - 1 \) roots, where

\[
N_n = \left(\sum_{i=0}^{n-1} (1 + k_i) \right) .
\] (A.1)

We use an induction on \(n \):

- for \(n = 1 \), the exponential polynomial reads \(f_1(x) = P_0(x) \exp(\mu_0 x) \) so it admits at most \(k_0 = N_1 - 1 \) roots.

- Assume the property (A.1) holds for \(f_n \), so that it admits at most \(N_n - 1 \) real roots. Let \(M \) be the number of real roots of \(f_{n+1} \), and define

\[
\forall x \in \mathbb{R}, \quad f_{n+1}(x) \exp(-\mu_n x) = \sum_{i=0}^{n} P_i(x) \exp((\mu_i - \mu_n) x)
\]

\[
= P_n(x) + \sum_{i=0}^{n-1} P_i(x) \exp((\mu_i - \mu_n) x).
\]

By the classical Rolle’s theorem for smooth functions, its \((1 + k_n)^{th}\) derivative

\[
\forall x \in \mathbb{R}, \quad g_{n+1}(x) = \frac{d(1+k_n)}{dx(1+k_n)}[f_{n+1}(x) \exp(-\mu_n x)]
\]

\[
= \sum_{i=0}^{n-1} \frac{d(1+k_n)}{dx(1+k_n)}[P_i(x) \exp((\mu_i - \mu_n) x)],
\]

admits at least \(M - (1 + k_n) \) roots. But since \(g_{n+1} \) is an exponential polynomial to which (A.1) applies, it comes that

\(M - (1 + k_n) \leq N_n - 1 \), so that \(M \leq N_n + (1 + k_n) - 1 := N_{n+1} - 1 \).

3.2 Haar property for exponential monomials

Although the former estimate suggests that exponential polynomials is not a Chebyshev \(T \)-system, \(non-negative \) exponential monomials do satisfy the Haar property on \((0, +\infty)\):

Theorem A.1 (Krattenthaler, [38]) Let \((x_0, x_1, \ldots, x_{n-1}) \in \mathbb{R}_+^n \), \((y_0, y_1, \ldots, y_{n-1}) \in \mathbb{R}_+^n \) be non-negative with \(y_0 < y_1 < \cdots < y_{n-1} \). Moreover, let \((z_0, z_1, \ldots, z_{n-1}) \in \mathbb{N}_+^n \) be non-negative integers with \(z_0 < z_1 < \cdots < z_{n-1} \). The generalized Vandermonde determinant,

\[
\det_{0 \leq i,j < n} (e^{y_j x_i} x_i^{z_j}) \] (A.2)

vanishes if and only if two of the \(x_i \)’s are equal to each other.

The proof of this result relies on an expansion of the exponential and the use of Schur functions [39, 41, 42].
References

[1] R.E. Aamodt, K.M. Case, *Useful identities for half-space problems in linear transport theory*, Ann. Physics 21 (1963) 284–301.

[2] M. Ainsworth, W. Dorfler, *Fundamental systems of numerical schemes for linear convection-diffusion equations and their relationship to accuracy*, Computing 66 (2001) 199–229.

[3] D.N. De G. Allen, *A suggested approach to finite difference representation of differential equations*, Quart. J. Mech. Appl. Math. 15 (1962) 11–33

[4] R. Beals, *Partial-range completeness and existence of solutions to two-way diffusion equations*, J. Math. Phys. 24 (1983) 1932–??.

[5] R. Beals, V. Protopopescu, *Half-range completeness for the Fokker-Planck equation*, J. Stat. Phys. 32 (1983) 565–584.

[6] A.E. Berger, J.M. Solomon, M. Ciment, *An analysis of a uniformly accurate difference method for a singular perturbation problem*. Math. Comp. 37 (1981) 79–94.

[7] S. Boscarino, L. Pareschi, G. Russo, *Implicit-Explicit Range-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit*, SIAM J. Sci. Comp. 35 (2013), 22–51.

[8] M.A. Burschka, U.M. Titulaer; *The Kinetic Boundary Layer for the Fokker-Planck Equation with Absorbing Boundary*. Journal of Statistical Physics, Vol. 25, No. 3, 1981.

[9] V. Calvez, G. Raoul, C. Schmeiser, *Confinement by biased velocity jumps: aggregation of Escherichia coli*, Kineic &. Related Models 8 (2015) 651–666.

[10] V. Calvez, L. Gosse, M. Twarogowska, *Traveling chemotactic aggregates at mesoscopic scale and bi-stability*, submitted.

[11] C. Cercignani, *Mathematical methods in kinetic theory*, Plenum, New York (1969).

[12] C. Cercignani, *Slow Rarefied Flows; Theory and Application to Micro-Electro-Mechanical Systems*, Progress in Mathematical Physics, Birkhäuser Verlag (2006).

[13] C. Cercignani, C. Sgarra, *Half-Range Completeness for the Fokker-Planck Equation with an External Force*, J. Stat. Phys. 66 (1992) 1575–1582.

[14] F. Chalub, P. Markowich, B. Perthame, and C. Schmeiser, *Kinetic models for chemotaxis and their drift-diffusion limits*, Monats. Math. 142 (2004) 123–141.

[15] E.W. Cheney, *Introduction to approximation theory*, 2nd Edition, Amer. Math. Society 1998.

[16] J.S. Chang, J. Cooper, *A Practical Difference Scheme for Fokker-Planck Equations*, J. Comput. Phys. 6 (1970) 1–16.

[17] Y. Dolak, C. Schmeiser, *Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms*, J. Math. Biol. 51 (2005) 595–615.

[18] C. Emako, M. Tang, *Well-balanced and asymptotic preserving schemes for kinetic models*, ArXiv
[19] N.J. Fisch, M. Kruskal, Separating variables in two-way diffusion equations, J. Math. Phys. 21 (1980) 740–750.

[20] E.C. Gartland, Jr., On the uniform convergence of the Scharfetter-Gummel discretization in one dimension, SIAM J. Numer. Anal. 30 (1993) 749–758.

[21] M. Gasca, Ch. Micchelli (Editors), Total Positivity and Its Applications, Series Mathematics and Its Applications, 359 (1996), Springer.

[22] L. Gosse, Asymptotic-Preserving and Well-Balanced scheme for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes, J. Math. Anal. Appl. 388 (2012) 964–983.

[23] L. Gosse, Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic Relat. Mod. 5 (2012) 283–323.

[24] L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws, SIMAI Springer Series 2 Springer (2013) - ISBN 978-88-470-2891-3.

[25] L. Gosse, Redheffer products & numerical approximation of currents in one-dimensional semiconductor kinetic models, SIAM Multiscale Model. Simul. 12 (2014) 1533–1560.

[26] L: Gosse, A well-balanced scheme able to cope with hydrodynamic limits for linear kinetic models, Applied Math. Letters 42 (2015) 1521.

[27] L. GOSSE, A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation, BIT Numerical Analysis 55 (2015) 433–458.

[28] L. Gosse, Viscous equations treated with \mathcal{L}-splines and Steklov-Poincaré operator in two dimensions, in Innovative Algorithms & Analysis, DOI: 10.1007/978-3-319-49262-9_6.

[29] L. Gosse, G. Toscani, An asymptotic preserving well-balanced scheme for the hyperbolic heat equation, C.R. Acad. Sci. Paris Série I, 334 (2002) 1-6.

[30] L. Gosse, N. Vauchelet, Numerical high-field limits in two-stream kinetic models and 1D aggregation equations, SIAM J. Sci. Comput. 38 (1) (2016), A412–A434.

[31] L. Gosse, N. Vauchelet, Hydrodynamic singular regimes in 1+1 kinetic models and spectral numerical methods, J. Math. Anal. Appl. 445 (2017), no 1, 564–603.

[32] J. Greenberg, W. Alt, Stability results for a diffusion equation with functional shift approximating a chemotaxis model, Trans. Amer. Math. Soc. 300 (1987) 235–258.

[33] D. Hershikowitz, U.G. Rothblum, H. Schneider, Classifications of nonnegative matrices using diagonal equivalence, SIAM J. Matrix Anal. Appl. 9 (1988) 455-460

[34] A.M. Ilin, A difference scheme for a differential equation with a small parameter affecting the highest derivative, in Russian, Matematicheskie Zametki 6 (1969) 237–248.

[35] F. James, N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM J. Num. Anal., 53 no 2 (2015), 895–916.

[36] A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics 773. Springer, Berlin, 2009.
[37] S. Karlin, W. Studden, **Tchebycheff systems, with applications in analysis and statistics.** J. Wiley & Sons, N.Y. 1966.

[38] C. Krattenthaler, personal communication.

[39] C. Krattenthaler, **Watermelon configurations with wall interaction: exact and asymptotic results,** J. Physics: Conf. Series 42 (2006), 179–212.

[40] J.T. Kriese, T.S. Chang, C.E. Siewert, **Elementary solutions of coupled model equations in the kinetic theory of gases,** Int. J. Eng. Sci. 12 (1974) 441–470.

[41] B. Lindström, **On the vector representations of induced matroids,** Bull. London Math. Soc. 5 (1973), 85–90.

[42] I. G. Macdonald, **Symmetric Functions and Hall Polynomials,** second edition, Oxford University Press, New York/London, 1995.

[43] J. Nieto, F. Poupaud, J. Soler, **High field limit for the Vlasov-Poisson-Fokker-Planck system,** Arch. Rat. Mech. Anal. 158 (2001) 29–59.

[44] H. Othmer, T. Hillen, **The diffusion limit of transport equations II: Chemotaxis equations,** SIAM J. Appl. Math. (2002) 62, 1222–1250.

[45] L. Pareschi, G. Russo, **Implicit-Explicit Runge-Kutta schemes for stiff systems of differential equations,** Recent Trends in Numerical Analysis, Edited by L. Brugnano and D. Trigiante, 3 (2000) 269-289.

[46] F. Poupaud, J. Soler, **Parabolic limit and stability of the Vlasov-Poisson-Fokker-Planck system,** M3AS 10 (2001) 1027–1045.

[47] H.-G. Roos, **Ten ways to generate the Il’in and related schemes,** J. Comput. Applied Math. 53 (1993) 43–59.

[48] H.-G. Roos, M. Stynes, L. Tobiska, **Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems;** 2nd edition. Springer Series in Computational Mathematics 24 (2008). ISBN: 978-3-540-34466-7.

[49] D.L. Scharfetter, H.K. Gummel, **Large signal analysis of a silicon read diode oscillator,** IEEE Trans. Electron Dev., 16(1) 64–77, (1969).

[50] R. Sinkhorn, **A relationship between arbitrary positive matrices and doubly stochastic matrices,** Ann. Math. Statist. 35 (1964) 876–879.

[51] R. Vein, P. Dale, **Determinants and their applications in Mathematical Physics;** Applied Mathematical Sciences 134 (1999). Springer.

[52] M. Voorhoeve, **On the Oscillation of Exponential Polynomials,** Math. Zeitschrift 151 (1976) 277–294.

[53] F. Wielonsky, **A Rolle’s theorem for real exponential polynomials in the complex domain,** J. Math. Pures Appl. 80 (2001) 389–408.

[54] S. Wollman, E. Ozizmir, **Numerical approximation of the Vlasov-Poisson-Fokker-Planck system in one dimension,** J. Comput. Phys. 202 (2005) 602–644.