Assessing the Expression of Aquaporin 3 Antigen-Recognition Sites in Oral Squamous Cell Carcinoma

Chatchaphan Udompatanakorn, DDS,*† Naomi Yada, DDS, PhD,* and Kou Matsuo, DDS, PhD*

Abstract: Aquaporin 3 (AQP3) serves as a water and glycerol transporter facilitating epithelial cell hydration. Recently, the involvement of AQP3 in cancers has been reported. However, the immunohistochemical expression of AQP3 in carcinomas remains controversial. We hypothesized that differences in aquaporin 3 antigen recognition (AQP3 AR) may influence their expressions. Thus, our study aimed to assess the immunostaining patterns of 3 AQP3 AR sites in oral squamous cell carcinoma (OSCC) and to compare the adjacent areas of high-grade epithelial dysplasia (HG-ED) and normal oral mucosa (NOM). The study group included formalin-fixed OSCC samples (n = 51) with adjacent regions of HG-ED (n = 12) and NOM (n = 51). The tissues were stained with anti-AQP3 antibodies (AR sites at amino acid (AA) 250-C terminus, AA180-228, and N terminus AA1-80) by immunohistochemistry. Our results showed that strong membranous immunostaining was observed for AQP3 AR sites at the AA250-C terminus and AA180-228 in all the samples for NOM and weak AQP3 immunostaining for both the AR sites in all the 12 samples for HG-ED. The invasive front of OSCC samples showed that AQP3 AR at the AA250-C terminus decreased in 42/51 samples (82.4%) and AA180-228 in 47/51 samples (92.2%). Conversely, in the AQP3 AR site at N terminus AA1-80, all samples of the NOM showed negative or slightly positive staining in the cytoplasm of the lower layers. AQP3 expression was increased in 12/12 cases (100%) and 46/51 cases (90.2%) in the HG-ED and invasive front of OSCC, respectively. AQP3 may be used as a biomarker for detecting malignant transformations. AQP3 AR site differences influence their immunohistochemical expression in OSCC.

Key Words: oral cavity, squamous cell carcinoma, epithelial dysplasia, aquaporin 3, immunohistochemistry

(Exp Immunohistochem Mol Morphol 2020;28:611–620)

O ral and oropharyngeal cancers together comprise the sixth most common form of cancer in the world. More than 90% of oral cancers are oral squamous cell carcinomas (OSCCs). OSCC is often preceded by oral potentially malignant disorders such as leukoplakia, which is defined as a white plaque of questionable risk, once other known diseases or disorders that carry no increased risk for cancer are ruled out. The presence of epithelial dysplasia in oral potentially malignant disorders is an important prognostic indicator of malignant transformation.

At present, surgery is the preferred treatment for OSCC. However, the 5-year survival rates (28% to 50%) remain unsatisfactory despite progress in the treatment of OSCC over the past few decades.

Aquaporins (AQPs) are water channel proteins that facilitate transepithelial water movement across the cell membrane. In humans, 13 isoforms (AQP0 to AQP12) have been identified. AQPs are categorized as aquaporins.
(AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8), which exclusively transport water; aquaglyceroporins (AQP3, AQP7, AQP9, and AQP10), which can transport water, glycerol, and other small molecules; and superaquaporins (AQP11 and AQP12), whose physiological roles remain unclear.6 Previous studies on mice have reported the immunohistochemical expressions and possible roles of AQP3 in carcinomas remains controversial.7,8 Several studies have indicated that overexpression of AQP3 may contribute to tumor cell proliferation in various solid tumors such as gastric adenocarcinoma (GC) and esophageal squamous cell carcinomas (SCCs).14–16 In contrast, growing evidence shows that AQP3 expression decreases in urothelial carcinomas (UCs) and SCCs of the skin, with the molecular mechanism being unclear.17,18 To the best of our knowledge, a few studies have reported the immunohistochemical expressions and possible roles of AQP3 in OSCC, the results of which are controversial.16,19,20 Kusayama et al16 and Ishimoto et al19 used anti-AQP3 antibody prepared from the N terminus AA1-80 peptide of AQP3 in their immunohistochemical studies and reported that AQP3 immunostaining was overexpressed in the OSCC samples, when compared with the normal oral mucosa (NOM) samples. The authors supposed that AQP3 may be involved in the focal adhesion kinase-mitogen-activated protein kinase pathway, which regulates tumor progression and growth in the human OSCC cell lines.16,19 In contrast, in our previous study (2014), we used anti-AQP3 antibody prepared from the AA180-228 peptide of AQP3 in our study and showed that AQP3 immunostaining in OSCC tissues was weaker than that in NOM tissues.20 We suggested that decreased AQP3 expression may be associated with more aggressive tumor behavior and that it increased the incidence of lymphatic metastasis.20 To solve the discrepancy of AQP3 expression in

Table 1. Clinicopathologic Features of 51 Oral Squamous Cell Carcinoma Samples

Characteristics	Cases (%)
Sex	
Male	32 (62.7)
Female	19 (37.3)
Age	
≥ 65	33 (64.7)
< 65	18 (35.3)
Location	
Tongue	38 (74.5)
Gingiva	5 (9.9)
Floor of the mouth	4 (7.8)
Buccal mucosa	4 (7.8)
Histologic grade	
Well	38 (74.5)
Moderate to poor	13 (25.5)
T status	
T1	28 (54.9)
T2+T3	23 (45.1)
Lymphatic metastasis	
Yes	22 (43.1)
No	29 (56.9)

Table 2. Primary Antibodies of AQP3 Used in this Study

No.	Recognized Parts of AQP3	Antibody Host	Clone No.	Dilution	Antigen Retrieval	Incubation	Supplier
1	AA250-C terminal	PR	ab153694	1:1000	CB, 98°C, 40 min	4°C, ON	Abcam
2	AA180-228	PR	V214	1:100	Not performed	RT, 1 h	Bioworld Technology Inc.
3	N terminal-AA1-80	PR	sc-20811	1:100	CB, 98°C, 40 min	4°C, ON	Santa Cruz

AQP3 indicates aquaporin 3; CB, citrate buffer (pH 6.0); ON, overnight; PR, rabbit polyclonal; RT, room temperature.

Table 3. Expression of AQP3 in the 3 Different AQP3 Antigen Recognitions

No. Cases (%)	AQP3 Recognition	Score	NOM (N = 51)	HG-ED (N = 12)	OSCC (N = 51)
AA250-C terminal	HM	51 (100)	0 (0)	43 (84.3)	9 (17.6)
AA180-228	LM	0 (0)	12 (100)	8 (15.7)	42 (82.4)
N terminal-AA1-80	LC	51 (100)	0 (0)	40 (78.4)	5 (9.8)

AQP3 indicates aquaporin 3; HM, high membranous expression, labeling index > 50%; HG-ED, high-grade epithelial dysplasia; HM, high membranous expression, labeling index > 50%; IF, invasive front; LC, low cytoplasmic expression, labeling index ≤ 50%; LM, low membranous expression, labeling index ≤ 50%; NOM, normal oral mucosa; OSCC, oral squamous cell carcinoma; SP, superficial part.
carcinomas, accurate information about aquaporin 3 antigen-recognition (AQP3 AR) sites by anti-AQP3 antibodies is crucial. We hypothesized that differences in AQP3 AR may be indicative of their expression. We investigated the immunostaining patterns of the 3 different AQP3 AR sites in OSCC, comparing the adjacent areas of high-grade (moderate to severe) epithelial dysplasia (HG-ED) and NOM.

MATERIALS AND METHODS

Samples

In total, 51 formalin-fixed, paraffin-embedded biopsy and resection specimens of OSCC, containing simultaneous areas of NOM and/or HG-ED were chosen for this study. The histopathologic diagnoses were confirmed by 2 oral pathologists (N.Y. and K.M.). Clinical data on the patients, such as sex, age, and location, were also included. In addition, pathologic reports were used to assess the histologic grade, T status of the tumors, and lymphatic metastasis (Table 1). Each specimen was categorized as invasive front (IF) of OSCC (n = 51), superficial part (SP) of OSCC (n = 51), NOM (n = 51), and/or HG-ED (n = 12). This study was approved by the Kyushu Dental University Ethics Committee (approved number: 16-8).

Immunohistochemical Study

Between February 2004 and November 2017 at the Department of Oral Pathology, Kyushu Dental University, all the specimens were fixed with 10% formalin and were embedded in paraffin. Four-micrometer-thick sections were stained for AQP3.
deparaffinized in xylene and were serially rehydrated in ethanol. Endogenous peroxidase activity was then quenched with 3% hydrogen peroxide for 20 minutes. For antigen retrieval, if necessary, the sections were heated in 10 mM citrate buffer (pH 6.0) at 98°C for 40 minutes. Nonspecific protein binding was blocked by incubation in 10% normal goat serum for 10 minutes. Thereafter, the specimens were incubated with rabbit polyclonal anti-AQP3 antibodies (AR at AA250-C terminus, AA180-228, and N terminus AA1-80 parts of AQP3) for 1 hour at room temperature or overnight at 4°C. The recognized epitopes and other conditions are summarized in Table 2 and Figure 1B. The tissue sections were then incubated with the secondary antibody for 30 minutes at room temperature. Counterstaining was performed using Mayer's hematoxylin stain for 90 seconds, after which the sections were dehydrated serially in ethanol, cleared with xylene, and mounted on slides with a coverslip.

Evaluation of Immunohistochemistry

Localization of staining was recorded, and the labeling index (LI) was calculated by dividing the number of AQP3-positive epithelial cells by the total number of cells, and it was expressed in percentage. Expression of AQP3 localized at the basolateral membranes in the kidney’s collecting duct in normal human tissue microarrays was used as the positive control. For the AQP3 AR sites at AA250-C terminus and AA180-228, the criteria used to define AQP3-positive cells included complete membranous staining. Abnormal staining included absent membranous staining, and cytoplasmic and/or nuclear staining was considered as negative. For the AQP3 AR site at N terminus AA1-80, the epithelial cells were considered as positive when clear cytoplasmic staining was observed. A minimum of 500 cells was counted manually for each study group (NOM, HG-ED, SP, and IF of OSCC). Subsequently, the staining of AR sites at AA250-C terminus and AA180-228 was categorized as high membranous expression (HM: LI > 50%) and low membranous expression (LM: LI ≤ 50%). Staining of AR site at N terminus AA1-80 was categorized as high cytoplasmic expression (HC: LI > 50%) and low cytoplasmic expression (LC: LI ≤ 50%).

FIGURE 3. Averages of aquaporin 3 (AQP3) labeling index of the 3 different AQP3 antigen-recognition (AR) sites. The mean labeling index of AQP3 AR at AA250-C terminus (A) and AA180-228 (B) was significantly higher in normal oral mucosa (NOM) than that in high-grade epithelial dysplasia (HG-ED) and invasive front of oral squamous cell carcinoma (IF of OSCC) (P < 0.05). Conversely, the mean labeling index of AQP3 AR at N terminus AA1-80 (C) was significantly higher in HG-ED and IF of OSCC than that in NOM (P < 0.05).
Statistical Analysis

Yate χ^2 test was used to examine the association between AQP3 expression and clinicopathologic information. Mean labeling indices among the study groups were compared using the Mann-Whitney U test. A P-value <0.05 was considered significant.

RESULTS

Clinical and histopathologic data on the 51 OSCC samples are summarized in Table 1. No correlation between AQP3 expression and clinicopathologic information was observed (data not shown). The overall expression of AQP3 is summarized in Table 3.

Immunostaining of AQP3 AR at AA250-C Terminus

For NOM, all 51 samples showed diffuse, homogenous, and strong immunostaining in the cell membrane, with faint immunostaining in the cytoplasm of cells of the basal, suprabasal, and spinous layers (HM: 100% samples). AQP3 immunostaining was decreased in all the 12 samples of HG-ED (LM: 100% samples). In the SP of OSCC, 43/51 samples retained a considerable membranous expression (HM: 84.3% samples), whereas reduced expression of AQP3 was observed in 42/51 samples in the IF of OSCC (LM: 82.4% samples) (Figs. 2A–C).

The mean LI values of NOM, HG-ED, and IF of OSCC were 84.9 ± 3.1, 5.9 ± 3.9, and 17.4 ± 27.8, respectively. There was a statistically significant decrease in the mean LI of AQP3 AR at the AA250-C terminus in HG-ED and IF of OSCC compared with that of NOM ($P<0.05$) (Fig. 3A).

Immunostaining of AQP3 AR at AA180-228

For NOM, all 51 samples showed diffuse and strong membranous with faint cytoplasmic immunostaining in the suprabasal and spinous cell layers. The basal cells showed trace staining (HM: 100% samples). For HG-ED, SP, and IF of OSCC, AQP3 immunostaining was often
decreased, respectively, for 12/12 samples (LM: 100% samples), 35/51 samples (LM: 68.6% samples), and 47/51 samples (LM: 92.2% samples) (Figs. 2D–F).

The mean LI values for NOM, HG-ED, and IF of OSCC were 82.0 ± 3.7, 2.4 ± 2.6, and 7.3 ± 19.9, respectively. There was a statistically significant decrease in the mean LI of AQP3 AR at AA180-228 in HG-ED and IF of OSCC compared with that of NOM (P < 0.05) (Fig. 3B).

Immunostaining of AQP3 AR at N Terminus AA1-80

For the NOM, all 51/51 samples showed absent or slightly positive staining of the cytoplasm of basal and suprabasal layers (LC: 100% samples). For HG-ED, cytoplasmic AQP3 immunostaining increased to intermediate and upper portions in all 12 samples (HC: 100% samples). In the SP of OSCC, 40/51 samples showed cytoplasmic AQP3 positivity at the periphery of tumor nests, with weaker or almost negative staining in the center (LC: 78.4% samples). More diffuse with moderate to strong cytoplasmic AQP3 immunostaining was observed in 46/51 samples of the IF of OSCC (HC: 90.2% samples) (Figs. 2G–I).

The mean LI values for NOM, HG-ED, and IF of OSCC were 7.4 ± 4.7, 91.1 ± 7.5, and 89.9 ± 17.5, respectively. There was a statistically significant increase in the mean LI of AQP3 AR at N terminus AA1-80 in HG-ED and IF of OSCC compared with that of NOM (P < 0.05) (Fig. 3C).

DISCUSSION

Recently, AQP3 has been reported to be involved in several types of cancers. However, the immunohistochemical expression of AQP3 in carcinomas remains controversial.7,8

FIGURE 5. Schematic illustration of possible results of aquaporin 3 (AQP3) antigen-recognition (AR) site differences in high-grade epithelial dysplasia (HG-ED) and oral squamous cell carcinoma (OSCC). The dysplastic and tumor cells might produce a lot of nascent AQP3 protein. AA135-157, AA180-228, and AA250-C terminus parts of the nascent AQP3 protein might be degraded (described later), whereas N terminus AA1-80 part of the nascent AQP3 protein was retained and could be detected by anti-AQP3 antibody prepared from N terminus AA1-80 peptide of AQP3. Consequently, in the AQP3 AR site at N terminus AA1-80, cytoplasmic AQP3 immunostaining increased in the HG-ED and invasive front of OSCC. In contrast, membrane-type 1 matrix metalloproteinase and other proteases, which were secreted from the tumor cells, might bind the disordered regions (AA135-157, AA182-188, AA208-218, and AA269-276) of both mature (membranous) and nascent AQP3 proteins, resulting in degradation of these disordered regions and surrounding peptides. Thus, in the AQP3 AR sites at AA180-228 and AA250-C terminus, AQP3 immunostaining was decreased in HG-ED and invasive front of OSCC. Moreover, degradation of the disordered protein-asparagine-proline-alanine (NPA) site (AA215-217) may impair water movement across cell membranes and cause water retention around the dysplastic epithelium, which might result in discohesion and migration of the cancer cells.
Differences in AQP3 AR sites may influence the immunohistochemical expression patterns. To our knowledge, this is the first attempt to evaluate the immunostaining patterns of 3 different AQP3 AR sites in NOM, HG-ED, SP, and IF of OSCC, which would improve our understanding of the role of AQP3 in oral carcinogenesis.

AQP3 AR Site at N Terminus AA1-80

In AQP3 AR site at N terminus AA1-80, NOM stained negative or slightly positive in the cytoplasm of basal and suprabasal layers. Normally, in human and rat tissues, AQP3 was clearly expressed in the cell membranes of the squamous epithelia in the skin and oral mucosa.13,21 It is probable that plenty of mature (membranous) AQP3s in the NOM may not be recognized by anti-AQP3 antibody prepared from the N terminus AA1-80 peptide of AQP3, while this antibody may recognize nascent AQP3 protein, which was slightly produced in the NOM (Fig. 4). Cytoplasmic AQP3 immunostaining was increased in HG-ED and IF of OSCC. It is possible that the dysplastic and tumor cells might generate a lot of nascent AQP3 protein. AA180-228 and AA250-C terminus regions of the nascent AQP3 protein might be degraded (described later), whereas the N terminus AA1-80 part of the nascent AQP3 protein was retained and could be detected by anti-AQP3 antibody prepared from N terminus AA1-80 peptide of AQP3 (Fig. 5).

Our results were in agreement with previous studies using anti-AQP3 antibody prepared from N terminus AA1-80 peptide of AQP3 in the dysplastic squamous epithelium of the cervix, SCC of the cervix, esophagus, and oral cavity, and GCs (Table 4).14–16,19,22,23 Increased N terminus AA1-80 part of nascent AQP3 protein in GC is associated with an increase in nuclear translocation of β-catenin, which leads to the proliferation of tumor cells.23 In addition, overexpression of N terminus AA1-80 part of nascent AQP3 protein correlates with downregulation of E-cadherin and overexpression of vimentin in poorly differentiated GC, thereby suggesting a role of AQP3 in the epithelial-to-mesenchymal transition process.15 Moreover, in OSCC, overexpression of N terminus AA1-80 part of nascent AQP3 protein may be related to the focal adhesion kinase-mitogen-activated protein kinase signaling pathway, resulting in tumor cell proliferation.16,19

AQP3 AR Sites at AA180-228 and AA250-C Terminus

In AQP3 AR sites at AA180-228 and AA250-C terminus, AQP3 staining was strong in the cell membrane, but it was faint in the cytoplasm of the NOM, which is consistent with the fact that AQP3 is a transmembrane protein.13,21,24 A large amount of mature (membranous) AQP3 with a small amount of nascent AQP3 protein in the NOM may be recognized by anti-AQP3 antibody prepared from AA180-228 and AA250-C terminus peptide of AQP3 (Fig. 4). AQP3 immunostaining was decreased in HG-ED and IF of OSCC. It is widely accepted that tumor cells secrete proteases that can degrade the tumor barriers and thus facilitate tumor progression and invasion.25 Membrane-type 1 matrix metalloproteinase is one of the proteases that degrade extracellular matrix proteins.

TABLE 4. Summary of AQP3 Antigen Recognitions at N Terminus AA1–80 Expression Patterns in the Reported Carcinomas

No.	Recognized Part of AQP3	Organ	Antibody	Host	Expression Pattern Type	Expression Pattern Type Expression Pattern References				
1	N terminal	Stomach	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
2	N terminal	Esophagus	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
3	N terminal	Oral cavity	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
4	N terminal	Cervix	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
5	N terminal	Stomach	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
6	N terminal	Oral cavity	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
7	N terminal	Cervix	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
8	N terminal	Stomach	PR	Rabbit polyclonal	Increased CP	Increased CP, SCC, gastric mucosa, invasive front; NP, not performed; PR, rabbit polyclonal; SCC, squamous cell carcinoma.				
No.	Recognized Part of AQP3	Antibody Host	Organ	Type	Expression Pattern	Expression Pattern	Type	Expression Pattern	References	
-----	-------------------------	---------------	-------	------	-------------------	-------------------	------	-------------------	------------	
1	C terminal	PR	Lung	BSE	MB	NC	SCC	62% of cases showed loss of MB	Liu et al 29	
2	C terminal	PR	Lung	BSE	MB	NC	BAC with invasive ADC SCC	Machida et al 30		
3	C terminal	PR	Skin	Squamous epithelium	MB	NC	100% of cases showed loss of MB	Voss et al 18		
4	C terminal	PG	Urinary bladder	Urothelium	MB	NC	100% of cases showed loss of MB	Rubenwolf and colleagues 31,32		
5	C terminal	PR	Urinary bladder	Urothelium	MB	NC	41% of cases showed loss of MB	Otto et al 17		
6	C terminal	PR	Thyroid gland	C cells and follicular cells	Almost negative	NP	90% of cases showed increased MB	Niu et al 33		
7	C terminal	PG	Urinary bladder	Urothelium	MB	NC	67% of cases showed loss of MB	Rubenwolf et al 34		
8	AA180-228	PR	Oral cavity	Squamous epithelium	MB	Loss of MB	SCC	Generally the loss of MB	Matsuo and Kawano 30	
9	C terminal	PR	Skin	Squamous epithelium	MB	NC	SCC	Generally the loss of MB	Seleti et al 35	
10	C terminal	PR	Liver	Hepatocyte	Almost negative	NP	93% of cases showed increased MB	Peng et al 36		
11	C terminal	PR	Pancreas	Ductal cells	Urothelium	Almost negative	NP	PDA	100% of cases showed loss of MB	Direito et al 37,38
12	C terminal	PR	Prostate gland	Glandular epithelial cells	Almost negative	NP	High-risk PC	Generally the loss of MB	Brundl et al 39	
13	C terminal	PR	Breast	Ductal cells	MB	NC	TNBC	61% of cases showed increased MB	Zhu et al 40	
14	C terminal	PR	Oral cavity	Squamous epithelium	MB	Loss of MB	SCC	84% of cases of the IF part showed loss of MB	This study	
15	C terminal	PR	Oral cavity	Squamous epithelium	MB	Loss of MB	SCC	92% of cases of the IF part showed loss of MB	This study	

AA indicates amino acid; ADC, pulmonary adenocarcinoma; AQP3, aquaporin 3; BAC, bronchioloalveolar carcinoma; BSE, bronchial surface epithelium; HCC, hepatocellular carcinoma; IF, invasive front; MB, membranous expression; MTC, medullary thyroid carcinoma; NP, not performed; PC, prostate adenocarcinoma; PDA, pancreatic ductal adenocarcinoma; PG, goat polyclonal; PR, rabbit polyclonal; pT1 UC, urothelial carcinoma invades connective tissue; pT2 UC, urothelial carcinoma invades muscle; SCC, squamous cell carcinoma; TNBC, triple-negative breast cancer.
Assessing the Expression of AQP3 AR Sites in OSCC

CONCLUSIONS

To summarize, AQP3 could be used as a novel biomarker for detecting malignant transformations in the squamous epithelium. Our findings show that the differences in AQP3 AR sites affect their immunohistochemical expression in OSCC. In the AQP3 AR sites at C terminus AA180, AQP3 immunostaining was found to be increased in the dysplastic squamous epithelium compared with the normal squamous epithelium, whereas in AQP3 AR sites at AA180-228 and AA250-C terminus, AQP3 expression was weaker and reduced in the dysplastic squamous epithelium than that in the normal squamous epithelium. Our data suggest that understanding the AQP3 AR site of each anti-AQP3 antibody before performing an immunohistochemistry analysis is critical. A combination expression pattern of N terminus and C terminus parts of AQP3 might be a more accurate marker for detecting malignant transformation. However, it is possible that, on the basis of the field of carcinogenesis, the areas adjacent to carcinoma already harbor mutations that may not yet cause phenotypical features. Further studies, with the use of additional molecular biology, are warranted to confirm our results and precisely investigate the molecular mechanism underlying the role of AQP3 in carcinogenesis.

ACKNOWLEDGMENTS

The authors thank Yasunari Fukai (Lecturer in Mathematics Section of Primary Dental Education, Kyushu Dental University) for reviewing the statistical analysis in the manuscript.

REFERENCES

1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–316.
2. Reibel J, Gale N, Hille J, et al. Oral potentially malignant disorders and oral epithelial dysplasia. In: El-Naggar AK, Chan JKC, Grandis JR, Takata T, Skowtzig PJ, eds. WHO Classification of Head and Neck Tumours, 4th ed. Lyon, France: IARC; 2017:112–115.
3. Omura K. Current status of oral cancer treatment strategies: surgical treatment for oral squamous cell carcinoma. Int J Clin Oncol. 2014;19:423–430.
4. Montoro JR, Hicz HA, Souza LD, et al. Prognostic factors in squamous cell carcinoma of the oral cavity. Braz J Otorhinolaryngol. 2008;74:861–866.
5. Le Campion ACOV, Ribeiro CMB, Luiz RR, et al. Low survival rates of oral and oropharyngeal squamous cell carcinoma. Int J Dent. 2017;2017:5815493.
6. Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005;118:3225–3232.
7. Verkman AS, Hara-Chikuma M, Papadopolou MC. Aquaporins-new players in cancer biology. J Mol Med (Berl). 2008;86:523–529.
8. Marlar S, Jensen HH, Login FH, et al. Aquaporin-3 in cancer. Int J Mol Sci. 2017;18:2106.
9. Sales AD, Lobo CH, Carvalho AA, et al. Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation. Genet Mol Res. 2013;12:6718–6732.
10. Ishibashi K, Sasaki S, Saito F, et al. Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics. 1995;27:352–354.
11. Linding R, Russell RB, Neduva V, et al. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003;31:3701–3708.
12. Manneila M, Goto S, Kawashima S, et al. KEGG databases at GenomeNet. Nucleic Acids Res. 2002;30:42–46.
13. Mobasher A, Wray S, Marples D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol. 2005;36:1–14.
14. Shen L, Zhu Z, Huang Y, et al. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed Pharmacother. 2010;64:313–318.
15. Chen J, Wang T, Zhou YC, et al. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res. 2014;33:38.
16. Kusayama M, Wada K, Nagata M, et al. Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma. *Cancer Sci*. 2011;102:1128–1136.

17. Otto W, Rubenwolf PC, Burger M, et al. Loss of aquaporin 3 protein expression constitutes an independent prognostic factor for progression-free survival: an immunohistochemical study on stage pT1 urothelial bladder carcinoma. *BMC Cancer*. 2012;12:459.

18. Voss KE, Bollag RJ, Russel N, et al. Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders. *Arch Dermatol Res*. 2011;303:591–600.

19. Ishimoto S, Wada K, Usami Y, et al. Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma. *Int J Oncol*. 2012;41:67–75.

20. Matsuo K, Kawano K. Immunohistochemical distribution and morphometric analysis of aquaporin-3 in oral squamous cell carcinoma. *Int J Oral Maxillofac Surg*. 2014;43:13–21.

21. Matsuzaki T, Suzuki T, Koyama H, et al. Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. *J Histochem Cytochm*. 1999;47:1275–1286.

22. Shi YH, Chen R, Talafu T, et al. Significance and expression of aquaporin 1, 3, 8 in cervical carcinoma in Xinjiang Uygur women of China. *Asian Pac J Cancer Prev*. 2012;13:1971–1975.

23. Zhou Y, Wang Y, Wen J, et al. Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β/catenin pathway. *Oncotarget*. 2016;7:16529–16541.

24. Frigeri A, Gropper MA, Turck CW, et al. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membrane. *Proc Natl Acad Sci USA*. 1995;92:4328–4331.

25. Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. *Clin Chim Acta*. 2000;291:113–135.

26. Sakamoto T, Seiki M. Integrated functions of membrane-type 1 matrix metalloproteinase in regulating cancer malignancy: beyond a protease. *Cancer Sci*. 2017;108:1095–1100.

27. Kjaergaard M. Can proteins be intrinsically disordered inside a membrane? *Intrinsically Disord Proteins*. 2015;3:e984570.

28. Tompa P, Prilusky J, Silman I, et al. Structural disorder serves as a weak signal for intracellular protein degradation. *Proteins*. 2008;71:903–909.

29. Liu YL, Matsuzaki T, Nakazawa T, et al. Expression of aquaporin 3 (AQP3) in normal and neoplastic lung tissues. *Hum Pathol*. 2007;38:171–178.

30. Machida Y, Ueda Y, Shimasaki M, et al. Relationship of aquaporin 1, 3, and 5 expression in lung cancer cells to cellular differentiation, invasive growth, and metastasis potential. *Hum Pathol*. 2011;42:669–678.

31. Rubenwolf PC, Denzinger S, Otto W. Aquaporin 3 protein expression in transitional cell carcinoma: a potential marker with regard to tumor progression and prognosis? *Eur Urol*. 2012;61:627–631.

32. Rubenwolf PC, Georgopoulos NT, Clements LA, et al. Expression and localization of aquaporin water channels in human urothelium in situ and in vitro. *Eur Urol*. 2009;56:1013–1024.

33. Niu D, Kondo T, Nakazawa T, et al. Differential expression of aquaporins and its diagnosis utility in thyroid cancer. *PLoS ONE*. 2012;7:e40770.

34. Rubenwolf PC, Otto W, Denzinger S, et al. Expression of aquaporin water channels in human urothelial carcinoma: correlation of AQP3 expression with tumour grade and stage. *World J Urol*. 2014;32:991–997.

35. Seleit I, Bakry OA, Sharahy DA, et al. Evaluation of aquaporin-3 in nonmelanoma skin cancer: an immunohistochemical study. *Ultrasound Pathol*. 2015;39:306–317.

36. Peng R, Zhao GX, Li J, et al. Auphen and dibutyryl cAMP suppress growth of hepatocellular carcinoma by regulating expression of aquaporin 3 and 9 in vivo. *World J Gastroenterol*. 2016;22:3341–3354.

37. Direito I, Paulino J, Vigia E, et al. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. *J Surg Oncol*. 2017;115:980–996.

38. Breyer J, Otto W, Burger M, et al. Aquaporin 3 expression loss in urothelial carcinoma: association with tumor invasion depth, but not with grading? *Bladder Cancer*. 2017;3:31–34.

39. Brundl J, Wallinger S, Breyer J, et al. Expression, localization and potential significance of aquaporins in benign and malignant human prostate tissue. *BMC Urol*. 2018;18:75.

40. Zhu Z, Jiao L, Li T, et al. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. *Oncol Lett*. 2018;16:2661–2667.