Comparison of black-grey-white box approach in system identification of a flight vehicle (Conference Paper) (Open Access)

Nugroho, L. Akmeliawati, R.

*Guidance, Navigation and Control, Rocket Technology Center/Pustekroket, LAPAN, Rumpin, Bogor, Indonesia
Department of Mechatronics Engineering, International Islamic University of Malaysia, Kuala Lumpur, 53100, Malaysia

Abstract

Developing an autonomous flight control system for a fixed-wing unmanned aerial vehicle (UAV) requires the mathematical representation of the system dynamics which can be obtained through system identification, such as using white, grey or black box methods. In this paper, three system identification methods; white method modeling using Cook formulas which is used analytically to develop the linear-time-invariant model structure with the aerodynamic coefficients of the UAV extracted from Missile DATCOM computations at certain flight conditions, and two empirical mathematical models constructed from non-linear flight simulator defined as the Greyificiation of Black Box Model (B2G) and Direct Grey to White Linkage (G2W). The comparison shows that both empirical methods prove to be very instrumental to contrast and produce higher sense of engineering than the analytical one. © Published under licence by IOP Publishing Ltd.
Agha, M., Kanistras, K., Saka, P.C., Valavanis, V., Rutherford, M. (2017). System Identification of Circulation Control UAV Using X-Plane Flight Simulation Software and Flight Data. *AIAA Modeling and Simulation Technologies Conference 2017*. Cited 2 times. https://doi-org.ezproxy.um.edu.my/10.2514/6.2017-3154

Saengphet, W., Tantrairatn, S., Thumtae, C., Srisertpol, J. (2017). Implementation of system identification and flight control system for UAV. In *2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017*, art. no. 7942783, pp. 678-683. ISBN: 978-150906087-0. doi: 10.1109/ICCAR.2017.7942783

Kuehme, D., Alley, N.R., Phillips, C., Cogan, B. (2014). Flight test evaluation and system identification of the Area-I Prototype-Technology-Evaluation Research Aircraft (PTERA). In *AIAA Flight Testing Conference 2014*. Cited 4 times. http://arc.aiaa.org/doi/book/10.2514/MFT14

Sim, A. (1991). *Modeling, Simulation, Flight Characteristics of An Aircraft 100,000ft* (NASA)

Sim, A. (1990). *Flight Characteristics of A Modified Schweizer 8GS 1-36 Sailplane at Low and Very High Angles of Attack*, pp. 175-195. Cited 4 times. (NASA)

Moes, T.R., Noffz, G.K., Cliff, K.W. (2000). *Results from F-188 Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures*. Cited 11 times. (Edwards, California: NASA Dryden Flight Research Center)

Tijani, I.B., Akmeliawati, R., Legowo, A. (2012). *Conference: The 20th International Symposium Mathematical Theory of Networks and Systems* (Melbourne Australia) System identification of parameterized state-space model of a small scale uav helicopter