Tag retention in and effects of passive integrated transponder tagging on survival and swimming performance of a small-bodied darter

Tyler R. Swarr1 | Christopher A. Myrick1 | Ryan M. Fitzpatrick2

1Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
2Research, Policy and Planning Section, Colorado Parks and Wildlife, Fort Collins, Colorado, USA

Abstract
Fisheries biologists have been hesitant to use passive integrated transponder (PIT) tags in small-bodied fishes (40–200 mm TL) such as darters (Percidae: Etheostomatinae) because of the fishes' size and potential effect on swimming performance. The authors used constant acceleration trials to evaluate the swimming performance of Arkansas darters *Etheostoma cragini* in control (no incision or tag), sham (incision and suture) or PIT tagged (surgically implanted 8 × 1.4 mm intra-peritoneal PIT tag) treatments. Tag retention and fish survival were monitored for up to 199 days post-tagging. Maximum swimming velocity did not differ between control, sham and PIT tag treatments, nor was maximum swimming velocity affected by the tagging procedure. Tag retention was 100%, and the overall survival of tagged fish was 88% in the swimming study, and 100% in the long-term study, suggesting that small PIT tags are suitable for use in darters. The authors include a brief meta-analysis on the results reported by 20 studies that PIT tagged small-bodied fishes, representing 38 species and nine families of freshwater fish.

1 | INTRODUCTION

Conservation and management of native fishes requires an understanding of their life history, ecology and habitat preferences, and population status (Bestgen et al., 2007; Fausch et al., 2002), information that can often be gleaned through mark-recapture or mark-resight studies. Nonetheless, such studies are challenging for species whose body size or morphology precludes them from consideration for most mark or tag types, such as darters (Percidae: *Etheostomatinae*). Darters are disproportionately imperilled compared to other groups of North American fishes (Helfman, 2007). Of the 203 recognized species of darters, 54 (26%) are designated as critically Endangered, Endangered or Vulnerable to extinction (IUCN, 2019). Because the group is of growing conservation concern, the development of effective monitoring methods is crucial.

Passive integrated transponder (PIT) tags are widely used to individually identify and discretely monitor the movement of fishes. When coupled with fixed or mobile antenna arrays (Fetherman et al., 2014; Ficke, 2015), fisheries biologists can identify individual fish and collect spatiotemporal and movement information. Large fishes (> 200 mm) can be tagged externally (Castro-Santos et al., 1996; Haro et al., 2004), or internally (Lee et al., 2009). Smaller fishes are generally tagged intraperitoneally to reduce impacts on swimming ability caused by external tags or tags in the axial swimming muscles (Clark, 2016; D’Amico et al., 2021; Ficke et al., 2012).

The authors of this study are aware of three published studies that describe attempts to PIT tag darters. Baxter (2015) tagged Kentucky arrow darters *Etheostoma spilotum* Gilbert 1887 using 8.4 mm PIT tags in the field. *E. spilotum* is a relatively large species of darter with adults ranging from 60 to 125 mm TL. Baxter (2015) did not report fish
survival or tag retention rates due to the nature of the study. Musselman (2007) PIT tagged limited numbers of orangethroat darter *Etheostoma spectabile* (Agassiz 1854) (*n* = 9) and greenside darter *Etheostoma blennioides* Rafinesque 1819 (*n* = 3) using 12 mm PIT tags and reported survival exceeding 80% 60 days post-tagging. The survival of *E. spectabile* in the study drastically declined after 60 days to 56% survival, which was attributed to a poor diet. Schumann et al. (2020) tagged Johnny darter *Etheostoma nigrum* Rafinesque 1820 with 8 mm tags in a 42 d study and reported 63% survival and 70% retention.

Tagging methodology can drastically affect survival. Baxter (2015) and Musselman (2007) both used handheld tagged guns to inject tags into the body cavity of the fish, as did Ruetz III et al. (2006) with mottled sculpins *Cottus bairdi* Girard 1850, Pennock et al. (2016) with southern redbelly dace *Chrosomus erythrogaster* (Rafinesque 1820), and Johnston and Smithson (1999) with bluntface shiner *Cyprinella camura* (Jordan & Meek 1884) and Creek chub *Semotilus atromaculatus* (Mitchell 1818). The injection approach is commonly used for larger species. A number of studies on tagging survival and tag retention with small-bodied fishes such as striped jumprock *Moxostoma rupiscartes* Jordan & Jenkins 1889, bullhead *Cottus gobio* L. 1758, red shiner *Cyprinella lutrensis* (Baird and Girard 1853), Roach *Rutilus rutilus* (L. 1758) and dace *Leuciscus leuciscus* (L. 1783) have used a surgical approach (Bolland et al., 2009; Bruymdonx et al., 2002; Cary et al., 2017; Pennock, 2017; Pennock et al., 2016; Skov et al., 2005). Archdeacon et al. (2009) reported that 64–67 mm TL Rio Grande silvery minnow *Hybognathus amarus* (Girard 1856) experienced higher survival when 12 mm PIT tags were surgically implanted (>87%) rather than injected (50%). Similarly, Baras et al. (1999) reported higher survival (71%–100%) in small (1.9–13.7 g) Nile tilapia *Oreochromis niloticus* (L. 1758) with surgically implanted tags vs. those with injected tags (10%–50%). Moreover, Ficke (2015) noted that Iowa darters *Etheostoma exile* (Girard 1859) and *Etheostoma nigrum* have a relatively small peritoneal cavity; the pilot dissections of preserved *E. nigrum*, *E. exile* and Arkansas darters *Etheostoma cragini* Gilbert 1885 confirmed that this is similar for these three darter species, suggesting that a surgical approach to tagging is warranted.

Determining whether PIT tags impact darter health and behaviour is an important step in their potential adoption as a monitoring method, as one of the key assumptions of any tagging approach is that the tags do not affect the survival or behaviour of the tagged organisms (Guy et al., 1996). The authors used this study to develop a surgical technique for PIT tagging *E. cragini* and evaluated tag retention, fish survival post-tagging and the effects of PIT tags on swimming performance. In addition, they evaluated survival and tag retention in fish whose incisions were sutured following tag insertion when compared to fish with un-sutured incisions.

2 | MATERIALS AND METHODS

2.1 | Source of fish and fish care

The care and use of experimental animals complied with United States animal welfare laws, guidelines and policies as approved by Colorado State University Institutional Animal Care and Use Committee (protocol reference number 15-5712A). Hatchery-reared *E. cragini* (mean ± S.E. TL: 51 ± 3 mm; mean wet weight: 1.40 ± 0.28 g) from the Colorado Parks and Wildlife Native Aquatic Species Restoration Facility (Alamosa, CO) were held in a 340 l round polyethylene tank receiving 5–10 l min⁻¹ of air-saturated water at 20 ± 0.5°C through a spray bar that produced a current of 0.05–0.10 m s⁻¹ along the periphery of the tank. The laboratory was kept under a natural photoperiod for Fort Collins, Colorado, USA (40.581° N, 105.138° W). A cover was provided in the form of PVC pipe, PVC sheets and artificial aquatic plants. Fish were fed daily satiation rations of thawed bloodworms.

Individual fish were taken from the holding tank and placed in a 0.9 l tank for 24 h prior to the first measurement of swimming performance and treatment application. Fish were randomly assigned to one of three treatments: control (handled, but no surgery or tag), sham (surgery and suture without a PIT tag) and PIT tagged (8 mm PIT tag surgically implanted into the fish’s body cavity and sutured closed) with a sample size of 15 darters per treatment.

2.2 | Swimming performance measurement

The constant acceleration test (CAT) swimming methodology was used to measure the maximum swimming velocities (*V*_{max}) of *E. cragini* (Leavy & Bonner, 2009). The constant acceleration approach was used because it requires fish to use a full range of swimming gaits and should indicate whether one particular gait was more susceptible to the effects of PIT tag insertion than the others. Secondarily, the high relative velocities reached in a CAT trial force fish to use their fastest-swimming gait and require the use of most of the axial swimming muscles.

Individual fish *V*_{max} was measured at three time points to evaluate the short-term effects of PIT tagging on fish swimming ability:

- T_C: Immediately prior to surgical treatment application to determine baseline swimming ability;
- T₁: One day following the surgical treatment; and
- T₇: Seven to eight days after the treatment.

Fish were swum in a Loligo Model 32 swim flume (32 l volume, 55 × 14 × 14 cm test section; velocity range of 3–110 cm s⁻¹; Loligo Systems, Denmark). Fish were given 1 h to become familiar with the flume with a 11 cm s⁻¹ current for rheotaxis. At the beginning of the constant acceleration trial, water velocity increased from the starting velocity by 5 cm s⁻¹ every 5 s until exhaustion, defined as partial or full-body impingement for more than 5 s on the rear screen of the swimming chamber. The velocity at exhaustion was defined as the maximum exposure velocity (*V*_{max}) and was recorded in both cm s⁻¹ and body lengths per second (BL s⁻¹). If fish were found to be “cheating,” defined as resting on the rear screen of the flume or resting in a low velocity area of the flume, the current was momentarily reversed to encourage swimming behaviours. Non-performing fish, or fish that refused to swim in one of the trials, were removed from the study (Table 1).
Table 1: Effects of tagging procedure on the survival, tag retention rate and baseline swimming ability (T0), and 1- and 7 day post-tagging swimming performance (T1 and T7–8) of Etheostoma cragini

Treatment	n	TL (mm)	Wt (g)	Survival rate (%)	Tag retention rate (%)	Maximum swimming velocity (BL/s)	Non-performers
Swim-control	15	51 (3)	1.40 (0.26)	100	-	13.1 (1.8)	1
Swim-sham	15	52 (3)	1.41 (0.28)	100	-	11.9 (1.8)	4
Swim-tag	17	52 (3)	1.41 (0.26)	88	100	12.8 (1.6)	3
Suture	16	51 (3)	1.42 (0.31)	100	100	-	-
No suture	29	53 (3)	1.50 (0.20)	100	100	-	-

Note: Tagged fish had an 8.0 × 1.4 mm PIT tag surgically implanted in their peritoneal cavity. Survival and tag retention were monitored for 199 days post-treatment application for control, sham and tag groups. Values are means with S.D. in parentheses. Incisions of PIT tagged fish were sutured for this portion of the study. There were no statistically significant differences in maximum swimming velocity within or between treatments (RMANOVA; P > 0.05). Additionally, survival and tag retention were monitored for 243 days for E. cragini tagged with 8 mm PIT tags where incisions were sutured closed or left open. There were no statistically significant differences between suture and no suture treatments (X²; P > 0.05).

2.3 Tagging procedure

After the initial swimming trial, all darters were anaesthetised using 40 mg l⁻¹ of tricaine methanesulfonate, weighed (g) and measured (TL, mm). Control fish were placed in a recovery tank supplied with air-saturated fresh water for approximately 5 min until equilibrium was regained. Once fish had gained equilibrium, they were returned to their individual holding tank, and Kordon® Pond Fish Protector™ was added at a concentration of 0.4 ml l⁻¹ to ease stress and maintain the fish’s mucous coating (Swanson et al., 1996). Fish in the sham and PIT tag treatments were weighed and measured, and then a #12 scalpel blade was used to make a 2 mm long ventral incision oriented along the anterior–posterior axis, slightly offset from the ventral midline, just anterior of the vent to prevent the incision from becoming irritated as the fish rubbed on the bottom of the tank. The incision was closed using Braunamid DS24 polyamide monofilament suture attached to a 24 mm curved suture needle. Once fish recovered from the anaesthesia, they were returned to their individual 0.9 l tank with the same post-handling treatment as the control fish.

Darters in the PIT tag treatment underwent the same procedures as the fish in the sham surgery treatment, with the additional step of having an 8.0 × 1.4 mm PIT tag (FDX-B, 134.2 kHz ISO, 0.027 g; Oregon RFID, Portland, OR, USA) inserted anteriorly into the incision prior to the suturing of the incision. These tags weighed less than 2% of the total weight of the fish, following the Cooke et al. (2011) suggestion that tags should weigh less than 12% of the fish’s body weight.

Fish were swum at T1 and T7–8 using the same procedures as before. Survival of all groups and tag retention of fish in the tagged treatment were monitored daily for up to 199 days. Repeated-measures ANOVAs were used to determine if there were significant differences in \(V_{\text{max}} \) in body lengths per second (BL s⁻¹) between treatments (Control, Sham or Tag) and swimming trial (Pre-treatment, 1 day post-tagging, and 7–8 days post-tagging).

2.4 Suture vs. non-suture comparison

During the study, it became apparent that suturing the fish posed three challenges: (a) it was challenging to suture such small fish; (b) the probability of harming the fish was high if body wall was improperly pierced with the suture needle; (c) suturing added 30–45 s to each tagging event. To address these challenges, the authors conducted a follow-up study comparing the tag retention and survival of sutured vs. un-sutured E. cragini.

Randomly selected individual darters were placed in 9 l holding tanks and fasted for 24 h prior to surgery. Fish were randomly assigned to either the sutured or un-sutured group. A PIT tag was inserted into the peritoneal cavity as described above, with fish receiving a suture (\(n = 16 \)) or no suture (\(n = 29 \)). Fish were inspected daily for the presence of a suture and closure of the incision. Fish remained in the individual tanks for 21 days post-tagging and were then moved to a communal 340 l holding tank. Tag retention and survival were monitored daily for up to 221 additional days.

2.5 Survey of small-bodied fish tagging literature

The authors reviewed 20 published studies that focused on PIT tagging small-bodied fishes. Studies were included in the review if the study species was a non-salmonid and if the study included fish under 150 mm TL. The authors made note of the species, fish size (or size range), tag size, tagging method, survival and tag retention percentages, sample size and study duration. They used this data set to identify common trends in the use of PIT tags with small-bodied fish. These included identifying the most commonly used tag sizes, evaluating the ratio of tag size to fish size, and determining the most relative frequency of different tagging approaches (e.g., surgery vs. injection). They also conducted a series of simple analyses (one-way ANOVA) to see whether there were broad trends with respect to the effects of tag size and tagging method on fish survival rates and tag retention.
Family	Species	Common name	Fish size (various units)	Tag size (mm)	Tagging method	n	Survival (%)	Retention (%)	Study duration (days)	Reference
Catostomidae	Catostomus commersoni	White sucker	118 mm TL	12.5	S	19	32	100	30	Ficke et al., 2012
	Catostomus commersoni	White sucker	139 mm TL	23	S	18	44	100	30	Ficke et al., 2012
	Catostomus commersonii	White sucker	52–169 mm TL	8 × 1.4	S	30	90	90	42	Schumann et al., 2020
	Hypentelium nigricans	Northern hog sucker	47–97 mm TL	8 × 1.4	S	19	100	100	7	Cary et al., 2017
	Moxostoma rupiscartes	Striped jumprock	59–81 mm TL	8 × 1.4	S	4	100	100	7	Cary et al., 2017
Centrarchidae	Lepomis megalotis	Longear sunfish	56–131 mm SL	14	I	57	61	70	180	Johnston & Smithson, 1999
Cichlidae	Micropterus dolomieu	Smallmouth bass	148 mm TL	23	I	25	96	100	60	Musselman, 2007
	Oreochromis niloticus	Nile tilapia	< 3 g	10.3 × 2.1	I	10	0	N/A	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	3–4 g	10.3 × 2.1	I	10	20	50	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	4–7 g	10.3 × 2.1	I	10	30	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	7–15 g	10.3 × 2.1	I	10	50	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	15–20 g	10.3 × 2.1	I	10	90	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	20–25 g	10.3 × 2.1	I	10	100	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	< 3 g	10.3 × 2.1	S	12	83	90	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	3–4 g	10.3 × 2.1	S	14	71	90	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	4–7 g	10.3 × 2.1	S	7	100	86	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	7–15 g	10.3 × 2.1	S	7	100	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	< 3 g	10.3 × 2.1	S w/suture	8	75	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	3–4 g	10.3 × 2.1	S w/suture	11	73	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	4–7 g	10.3 × 2.1	S w/suture	12	92	100	49	Baras et al., 1999
	Oreochromis niloticus	Nile tilapia	7–15 g	10.3 × 2.1	S w/suture	24	100	100	49	Baras et al., 1999
Cottidae	Misgurnus anguillicaudatus	Oriental weather Loach	84 mm TL	12.5 × 2.07	I	32	93	97	30	Kano et al., 2013
	Misgurnus anguillicaudatus	Oriental weather Loach	84 mm TL	12.5 × 2.07	S	32	97	97	30	Kano et al., 2013
Cottidae	Cottus bairdii	Mottled sculpin	50–80 mm TL	8 × 1.4	I	43	97.7	100	7	Cary et al., 2017
	Cottus bairdii	Mottled sculpin	55–59 mm TL	12 × 2.1	I	9	100	100	28	Ruetz et al. 2006
	Cottus bairdii	Mottled sculpin	60–69 mm TL	12 × 2.1	I	8	88.9	88.9	28	Ruetz et al. 2006
	Cottus bairdii	Mottled sculpin	≥ 70 mm TL	12 × 2.1	I	9	100	100	28	Ruetz et al. 2006
Family	Species	Common name	Fish size (various units)	Tag size (mm)	Tagging method	n	Survival (%)	Retention (%)	Study duration (days)	Reference
------------	--------------------------	-------------------	----------------------------	---------------	----------------	------	--------------	---------------	------------------------	-----------------------------
Cottidae	Cottus gobio	Bullhead	70 mm TL	12 × 2.1	S	6	100	100	28	Bruyndoncx et al., 2002
	Cottus gobio	Bullhead	50–60 mm	12 × 2.1	S	13	100	100	49	Knaepkens et al., 2007
	Cottus gobio	Bullhead	65–79 mm	12 × 2.1	S	21	100	90	49	Knaepkens et al., 2007
	Cottus gobio	Bullhead	80–94 mm	12 × 2.1	S	10	90	100	49	Knaepkens et al., 2007
Cyprinidae	Campostoma anomalum	Central stoneroller	94 mm TL	12	I	8	88	100	90	Musselman, 2007
	Chrosomus erythrogaster	Southern redbelly dace	48–71 mm TL	8 × 1.4	I	30	97	86	30	Pennock et al., 2016
	Chrosomus erythrogaster	Southern redbelly dace	48–71 mm TL	9 × 2.15	I	30	80	40	30	Pennock et al., 2016
	Cyprinella camura	Bluntface shiner	62–95 mm SL	14	I	31	87	6	80	Johnston & Smithson, 1999
	Cyprinella lutrensis	Red shiner	48–74 mm TL	9 × 2.15	S	40	97	82	48	Pennock, 2017
	Hybognathus amarus	Rio Grande silvery minnow	67 mm SL	12.5 × 2.07	I	80	50	89	32	Archdeacon et al., 2009
	Hybognathus amarus	Rio Grande silvery minnow	65 mm SL	12.5 × 2.07	S	80	87	90	32	Archdeacon et al., 2009
	Squalius cephalus	Chub	113 mm TL	12 × 2.1	S	80	97.5	100	182	Bolland et al., 2009
	Squalius cephalus	Chub	167 mm TL	23 × 3.4	S	101	98	100	182	Bolland et al., 2009
	Squalius cephalus	Chub	169 mm TL	23 × 3.4	S w/glue	100	100	100	182	Bolland et al., 2009
	Leuciscus leuciscus	Dace	115 mm TL	12 × 2.1	S	80	96.3	100	182	Bolland et al., 2009
	Leuciscus leuciscus	Dace	121 mm TL	23 × 3.4	S w/glue	80	72.5	96.6	182	Bolland et al., 2009
	Luxilus cardinalis	Cardinal shiner	91 mm TL	12	I	12	100	100	90	Musselman, 2007
	Luxilus cornutus	Common shiner	44–123 mm TL	8 × 1.4	S	30	100	60	42	Schumann et al., 2020
	Nocomis leptcephalus	Bluehead chub	40–100 mm TL	8 × 1.4	S	144	96.5	99	7	Cary et al., 2017
	Notropis girardi	Arkansas river shiner	51 mm TL	8 × 1.4	I	15	53	50	120	Moore & Brewer, 2021
	Notropis girardi	Arkansas river shiner	51 mm TL	8 × 1.4	I	15	47	57	120	Moore & Brewer, 2021
	Notropis lutpinnis	Yellowfin shiner	51–87 mm TL	8 × 1.4	S	89	93.2	99	7	Cary et al., 2017
	Notropis stramineus	Sand shiner	52–67 mm TL	9 × 2.15	S	38	97	51	48	Pennock, 2017
	Notropis stramineus	Sand shiner	47–71 mm TL	8 × 1.4	S	30	90	76.7	42	Schumann et al., 2020
	Oregonichthys crameri	Oregon chub	54.9	8.4 × 1.4	I	120	94	95	150	Bangs et al., 2013
Family	Species	Common name	Fish size (various units)	Tag size (mm)	Tagging method	n	Survival (%)	Retention (%)	Study duration (days)	Reference
--------------	--------------------------------	----------------------	--------------------------	---------------	----------------	----	---------------	---------------	------------------------	--------------------------------
Cyprinidae	Oregonichthys crameri	Oregon chub	55.3	9 × 2.15		1	100	82	150	Bangs et al., 2013
	Platygobio gracilis	Flathead chub	119 mm TL	12.5		23	100	100	20	Ficke et al., 2012
	Rhinichthys atratulus	Blacknose dace	46–90 mm TL	8 × 1.4		30	100	100	40	Schumann et al., 2020
	Rutilus rutilus	Roach	116 mm TL	12.1 × 3.85		21	100	100	120	Bolland et al., 2009
	Rutilus rutilus	Roach	133 mm TL	23.1 × 3.85		16	100	100	120	Bolland et al., 2009
	Rutilus rutilus	Roach	104 mm TL	23.1 × 3.85		14	100	100	140	Bolland et al., 2009
	Semotilus atromaculatus	Creek chub	39–101 mm TL	8 × 1.4		30	100	100	20	Cary et al., 2017
	Fundulus sciadiceus	Plains topminnow	39–66 mm TL	8 × 1.4		14	100	96.7	42	Schumann et al., 2020
	Noturus exilis	Slender madtom	77 mm TL	12 × 2.15		12	100	100	100	Musselman, 2007
	Noturus flavus	Stonecat	143 mm TL	8 × 1.4		14	100	100	100	D’Amico et al., 2021
	Noturus gyrinus	Talbot madtom	175 mm TL	12.1 × 2.12		23	100	100	100	D’Amico et al., 2021
	Noturus phaeus	Brown madtom	38–95 mm TL	8 × 1.4		14	100	100	31	Johnston & Smithon, 1999

Notes:
- TL = Total length
- SL = Standard length
- I = Implant
- C2 = Suture
- S = Suture
- w/glue = With glue
- w/suture = With suture
- P = Permanently implanted

References:
- Bangs et al., 2013
- Ficke et al., 2012
- Schumann et al., 2020
- Bolland et al., 2009
- Ficke et al., 2012
- Johnston & Smithon, 1999
- Schumann et al., 2020
- Ficke et al., 2012
- Ficke et al., 2012
- Skov et al., 2005
- Cary et al., 2017
- Johnston & Smithon, 1999
- Muselman, 2007
- D’Amico et al., 2021
- D’Amico et al., 2021
- Schumann et al., 2020
- Schumann et al., 2020
- Schumann et al., 2020
- Johnston & Smithon, 1999
TABLE 2 (Continued)

Family	Species	Common name	Fish size (various units)	Tag size (mm)	Tagging method	n	Survival (%)	Retention (%)	Study duration (days)	Reference
Percida	Etheostoma blennioides	Greenside darter	95 mm TL	12	I	3	100	100	60	Musselman, 2007
	Etheostoma cragini	Arkansas darter	53 mm TL	8.0 × 1.4	S	29	100	100	243	This study
	Etheostoma cragini	Arkansas darter	52 mm TL	8.0 × 1.4	S w/suture	15	100	100	199	This study
	Etheostoma cragini	Arkansas darter	51 mm TL	8.0 × 1.4	S w/suture	16	100	100	243	This study
	Etheostoma nigrum	Johnny darter	36–69 mm TL	8 × 1.4	S	30	63.3	70	42	Schumann et al., 2020
	Etheostoma specabile	Orangethroat darter	> 50 mm TL	8.4 × 1.4	I	9	56	88	60	Musselman, 2007
	Etheostoma spilotum	Kentucky arrow darter		60 mm T	12	121	N/A	N/A	N/A	Baxter, 2015
	Perca fluviatilis	Eurasian perch	65–90 mm FL	11 × 2.2	I	30	60	77	28	Baras et al., 2000
	Perca fluviatilis	Eurasian perch	65–90 mm FL	11 × 2.2	S	30	77	80	28	Baras et al., 2000

Abbreviations: n.r., not reported; P, polymer.

Note: Fish sizes are presented in the units provided in the reference; tagging methods are coded as S = surgery, I = injection.

RESULTS

3. Differences in total lengths and wet weights of E. cragini used in the various treatments

- E. cragini swimming performance measurements (PERMANOVA; P = 0.12; df = 1) were not statistically significant for control and sham groups, and 88% for the tag group in the swimming portion of the study. The lower survival was caused by the insertion approach, except for surgery with sutures, where reported as non-performers in the swimming study. The mortalities were thought to have resulted from injuries incurred during suturing. Sutures were also inserted using a surgical approach without sutures (45.5% of studies), followed by the larger 23 mm tags (14.8% of the time). The most commonly used (54.5%) tags were in the 10–14 mm length range, with 8.9% PIT tags being used 30.7% of the time.

- The summary of studies that focused on tagging small-bodied fishes is shown in Table 2. This table includes information from 38 species of small-bodied fishes (36–20 mm total length) and includes 17 reported cases of small-bodied fishes (36–174 mm mean TL at 80 mm in nine families, tagged with PIT tags ranging from 8 to 23 mm in length. The studies took 40–60 s depending on the experience of the tagger: suturing took 45–60 s and 60 s depending on the experience of the tagger: suturing closed 3–5 days post-surgery for unfixed fish. The mortalities were thought to have resulted from injuries incurred during suturing. Sutures were also inserted using a surgical approach without sutures (45.5% of studies), followed by the larger 23 mm tags (14.8% of the time). The most commonly used (54.5%) tags were in the 10–14 mm length range, with 8.9% PIT tags being used 30.7% of the time.

- The summary of studies that focused on tagging small-bodied fishes is shown in Table 2. This table includes information from 38 species of small-bodied fishes (36–174 mm mean TL at 80 mm in nine families, tagged with PIT tags ranging from 8 to 23 mm in length. The studies took 40–60 s depending on the experience of the tagger: suturing took 45–60 s and 60 s depending on the experience of the tagger: suturing closed 3–5 days post-surgery for unfixed fish. The mortalities were thought to have resulted from injuries incurred during suturing. Sutures were also inserted using a surgical approach without sutures (45.5% of studies), followed by the larger 23 mm tags (14.8% of the time). The most commonly used (54.5%) tags were in the 10–14 mm length range, with 8.9% PIT tags being used 30.7% of the time.

- The summary of studies that focused on tagging small-bodied fishes is shown in Table 2. This table includes information from 38 species of small-bodied fishes (36–174 mm mean TL at 80 mm in nine families, tagged with PIT tags ranging from 8 to 23 mm in length. The studies took 40–60 s depending on the experience of the tagger: suturing took 45–60 s and 60 s depending on the experience of the tagger: suturing closed 3–5 days post-surgery for unfixed fish. The mortalities were thought to have resulted from injuries incurred during suturing. Sutures were also inserted using a surgical approach without sutures (45.5% of studies), followed by the larger 23 mm tags (14.8% of the time). The most commonly used (54.5%) tags were in the 10–14 mm length range, with 8.9% PIT tags being used 30.7% of the time.

- The summary of studies that focused on tagging small-bodied fishes is shown in Table 2. This table includes information from 38 species of small-bodied fishes (36–174 mm mean TL at 80 mm in nine families, tagged with PIT tags ranging from 8 to 23 mm in length. The studies took 40–60 s depending on the experience of the tagger: suturing took 45–60 s and 60 s depending on the experience of the tagger: suturing closed 3–5 days post-surgery for unfixed fish. The mortalities were thought to have resulted from injuries incurred during suturing. Sutures were also inserted using a surgical approach without sutures (45.5% of studies), followed by the larger 23 mm tags (14.8% of the time). The most commonly used (54.5%) tags were in the 10–14 mm length range, with 8.9% PIT tags being used 30.7% of the time.
(83.1%). Fish size did affect retention, wherein larger fish generally had higher retention rates (ANOVA, F = 10.60; P = 0.002). Increased tag retention had a slight positive correlation with tag size (ANOVA, F = 4.442; P = 0.038), and a stronger negative correlation with greater tag-to-fish ratios (ANOVA; F = 8.77; P = 0.004).

4 | DISCUSSION

The results show that it is possible to tag E. crugini ≥ 48 mm TL with 8 mm PIT tags without significantly affecting swimming ability or survival. Despite the relatively large size of the PIT tags (up to 16% of the fish’s TL, but <2% of their weight), the surgical approach allowed the authors to successfully tag the fish and, importantly, did not violate two of the key assumptions of any marking or tagging operation—there was no significant difference in survival between tagged and untagged individuals and that the tags did not affect the physical performance of the fish. Indeed, the continued growth of some individuals of E. crugini (up to 12 mm during 199 d post-tagging period) and the sexual maturation of male and female darters were further evidence that the tags had little impact on the fish.

In this study, the use of sutures did not improve tag retention and sutures were identified as the likely cause of mortality for two of the fish. Additionally, sutures remained in the body for 4–9 days after the incision healed in non-sutured fish. This extended timeframe where sutures are present, especially in benthic species like darters, increases the likelihood of issues in the wild where the suture could get caught on external objects.

4.1 | Review of small-bodied fish PIT tagging

Surgical technique and tag size can affect the survival of small-bodied fishes post-surgery. Four studies on small-bodied fish PIT tagging reported better survival following surgical implantation when compared to injection (Archdeacon et al., 2009; Baras et al., 1999; Baras et al., 2000; Kano et al., 2013; Table 2). Tag size relative to fish body size also affects survival. Acolas et al. (2007) tagged brown trout Salmo trutta L. 1758 of varying sizes with 11.5 × 2.1 mm PIT tags and found that larger fish had higher survival. Baras et al. (1999) tagged Oreochromis niloticus using a variety of surgical techniques and at different sizes with 10.3 × 2.1 mm PIT tags and found that survival was almost always higher for larger fish for any given surgical procedure (surgery, surgery and suture, and injection) (Table 2). Ficke et al. (2012) also noted that survival decreased (68.4% to 62.5%) for Semotilus atromaculatus of similar size when a larger tag (12 mm vs. 23 mm) was used (Table 2). Because larger fish have a larger peritoneal cavity, it is intuitive that their bodies can accommodate a larger tag. Future studies tagging small-bodied fish should consider body cavity size before choosing a tag size, remembering the functional limitations of smaller tags with regard to tag type (full duplex vs. half duplex) and tag detection range.

Suturing small-bodied fish is not recommended due to the increased likelihood of accidental injury during the suturing process. Baras et al. (1999) noted lower survival rates 49 days after surgery on two size (weight) classes of Oreochromis niloticus (< 3 g and 4–7 g) for sutured fish (75%; 91.7%) compared to non-sutured fish (83.3%; 100%) showing the potential for mortality when suturing small-bodied fish. A similar result was reported by Skov et al. (2005) in their study on the survival of Rudd Scardinius erythrophthalmus (L.1758) and Rutilus rutillus with 23 mm tags that were surgically implanted with and without sutures. Mortality of R. rutillus and S. erythrophthalmus only occurred in the suture group, and because of this, the authors recommended avoiding sutures in small-bodied cyprinids. Interestingly, D’Amico et al. (2021) used sutures to close PIT tagging incisions in the Stonecat Noturus flavus (Rafinesque 1818) and had survival rates of 89% over 840 days for regular 12 mm PIT tags and survival rates of 99% over 751 days for fish tagged with polymer-coated 12 mm tags (Table 2). The results from the sutured vs. non-sutured comparison indicate that tag retention and survival were comparable to that of sutured fish, so there appears to be no benefit to the use of sutures for darters. One possible approach for situations where there is a desire to close the incision would be to use surgical glue. Bolland et al. (2009) reported that the survival of R. rutillus and Chub Squalius cephalus with surgically implanted tags was high (>97%) and largely unaffected by using surgical glue to close the incision, whereas Leuciscus leuciscus with glued incisions survived at a lower rate (72.5% vs. 96.3%) over the course of a 182-day study (Table 2).

The results of this study show that E. crugini ≥ 48 mm TL can successfully be tagged with 8 mm PIT tags without impairing their swimming ability and long-term survival. A study on blackspotted topminnow Fundulus olivaceus (Storer 1845) reported similar findings, and also found PIT tags impacted neither gonadal development nor swimming kinematics (Clark, 2016). The authors successfully applied the same tagging technique to other small-bodied fishes including flathead chub Platygobio gracilis (Richardson 1836) and Noturus flavus with success, supporting the view that the technique is applicable to other taxa (D’Amico et al., 2021; Swarr, 2018). More broadly, the results of the studies included in Table 2 and the meta-analysis suggest that the use of 12 mm or smaller PIT tags is appropriate for a number of small-bodied species, provided that the PIT tags selected for use are no more than 17% of the fish’s total length.

The ability to use PIT tags in small-bodied fishes could improve monitoring and conservation efforts for these smaller species by allowing fisheries biologists to monitor their movements with passive or mobile antenna arrays placed in stream networks, at fish passage structures, in laboratory studies, or by allowing rapid broodstock identification in conservation hatcheries. For smaller fish, it may be possible to use alternative technologies, such as the p-Chips evaluated by Moore and Brewer (2021), though that technology may not be suitable for remote detection of fish in the field, at least using current techniques.

ACKNOWLEDGEMENTS

The authors would like to thank M. Barreras, S. McCollum, J. Rehurek, E. Rohloff, K. Rohwer, C. Tyler and the many members of the CSU Fish Physiological Ecology Laboratory for technical support and
assistance with fish husbandry and running this experiment. We thank N. Abercrombie, D. Ebner, A. Wasserstein and R. Winkelman for volunteering their time. Dr. K. Bestgen and Dr. B. Bledsoe provided thoughtful comments, support and guidance on the project and commented upon early drafts of this manuscript. Funding for this project was provided by the Great Plains Landscape Conservation Cooperative, Colorado Parks and Wildlife, the Warner College of Natural Resources, and the Office of the Vice President for Research at Colorado State University. We greatly appreciate the comments by the reviewers as they helped us improve the scope and content of the manuscript.

AUTHOR CONTRIBUTIONS
T. R. S.: Ideas, data generation, experimental design, data analyses, fish husbandry and manuscript preparation. C. A. M. Ideas, manuscript preparation, data analyses, fish husbandry and funding. R. M. F. Manuscript preparation, fish acquisition and funding.

ORCID
Christopher A. Myrick https://orcid.org/0000-0002-6017-7209

REFERENCES
Acolas M.L., Roussel J.M., Lebel J.M., & Baglinière J.L. (2007). Laboratory experiment on survival, growth and tag retention following PIT injection into the body cavity of juvenile brown trout (Salmo trutta). Fisheries Research, 86(2-3), 280–284. https://doi.org/10.1016/j.fishres.2007.05.011

Archeacon, T. P., Remshardt, W. J., & Knecht, T. L. (2009). Comparison of two methods for implanting passive integrated transponders in Rio Grande silvery minnow. North American Journal of Fisheries Management, 29, 346–351.

Bangs, B. L., Falcy, M. R., Scheerer, P. D., & Clements, S. (2013). Comparison of three methods for marking a small floodplain minnow. Animal Biotelemetry, 1, 18.

Baras, E., Westerlopp, L., Mélard, C., Philippart, J.-C., & Bénech, V. (1999). Evaluation of implantation procedures for PIT-tagging juvenile Nile tilapia. North American Journal of Aquaculture, 61, 246–251.

Baras, E., Malbrouck, C., Houbart, M., Kestemont, P., & Mélard, C. (2000). The effect of PIT tags on growth and physiology of age-0 cultured Eurasian perch Perca fluviatilis of variable size. Aquaculture, 185, 159–173.

Baxter, J. (2015). Distribution, movement, and ecology of Etheostoma boultoni (Gilbert), the Kentucky Arrow Darter, in Gilberts Big Creek and Elisha Creek, Red Bird River Basin, Clay and Leslie Counties, Kentucky. Master’s thesis. Eastern Kentucky University, Richmond, KY, USA. Retrieved from https://ecompass.uky.edu/etd/337/

Bestgen, K. R., Hawkins, J. A., White, G. C., Christopherson, K. D., Hudson, J. M., Fuller, M. H., ..., Sorensen, T. A. (2007). Population status of Colorado Pikeminnow in the Green River basin, Utah and Colorado. Transactions of the American Fisheries Society, 136, 1356–1380.

Bolland, J. D., Cown, I. G., & Lucas, M. C. (2009). Evaluation of VIE and PIT tagging methods for juvenile cyprinid fishes. Journal of Applied Ichthyology, 25, 381–386.

Bruyndoncx, L., Knaepkens, G., Mees, W., Bervoets, L., & Eens, M. (2002). The evaluation of passive integrated transponder (PIT) tags and visible implant elastomer (VIE) marks as new marking techniques for the bullhead. Journal of Fish Biology, 60, 260–262.

Cary, J. B., Holtbrook, J. L., Reed, M. E., Austin, T. B., Steffensen, M. S., Kim, S., ..., Kanno, Y. (2017). Survival of upper Piedmont stream fishes implanted with 8-mm passive integrated transponder tags. Transactions of the American Fisheries Society, 146, 1223–1232.

Castro-Santos, T., Haro, A., & Walk, S. (1996). A passive integrated transponder (PIT) tag system for monitoring fishways. Fisheries Research, 3, 253–261.

Clark, S. R. (2016). Effects of passive integrated transponder tags on the physiology and swimming performance of a small-bodied stream fish. Transactions of the American Fisheries Society, 145, 1179–1192.

Cooke, S. J., Woodley, C. M., Brad Eppard, M., Brown, R. S., & Nelsen, J. L. (2011). Advancing the surgical implantation of electronic tags in fish: A gap analysis and research agenda based on a review of trends in intracoelomic tagging effects studies. Reviews in Fish Biology and Fisheries, 21, 127–151.

D’Amico, T. W., Winkelman, D. L., Swarr, T. R., & Myrick, C. A. (2021). Retention of passive integrated transponder tags in a small-bodied catfish. North American Journal of Fisheries Management, 41, 187–195.

Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. Bioscience, 52, 483–498.

Fetherman, E. R., Avila, B. W., & Winkelman, D. L. (2014). Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers. North American Journal of Fisheries Management, 34, 1065–1077.

Ficke, A. D., Myrick, C. A., & Kondratieff, M. C. (2012). The effects of PIT tagging on the swimming performance and survival of three nonsalmonid freshwater fishes. Ecological Engineering, 48, 86–91.

Ficke, A. D. (2015). Mitigation measures for barriers to Great Plains fish migration. Doctoral dissertation. Colorado State University, Fort Collins, CO. Retrieved from https://mountainscholar.org/handle/10217/166913

Guy, C. S., Blankenship, H. L., & Nielsen, L. A. (1996). Tagging and marking. In B. R. Murphy & D. W. Willis (Eds.), Fisheries techniques (2nd ed., pp. 353–383). Bethesda, MD: American Fisheries Society.

Haro, A., Castro-Santos, T., Noreika, J., & Odel, M. (2004). Swimming performance of upstream migrant fishes in open-channel flow: A new approach to predicting passage through velocity barriers. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1590–1601.

Helfman, G. S. (2007). Fish conservation. Washington, DC: Island Press.

IUCN. (2019). The IUCN Red List of Threatened Species. Version 2019. Retrieved from https://www.iucnredlist.org [6 February 2019].

Johnston, C. E., & Smithson, E. B. (1999). Retention of passive integrated transponder (PIT) tags for individual identification of warmwater stream fishes. Southeastern Fishes Council Proceedings, 38, 1–4.

Kano, Y., Kawaguchi, Y., Yamashita, T., Sekijima, T., Shimatani, Y., & Taniguchi, Y. (2013). A passive integrated transponder tag implanted by a new alternative surgical method: Effects on the oriental weather loach (Misgurnus anguillicaudatus) and application in a small irrigation system. Landscape Ecological Engineering, 9, 281–287.

Knaepkens, G., Maerten, E., Tudorache, C., De Boeck, G., & Eens, M. (2007). Evaluation of passive integrated transponder tags for marking the bullhead (Cottus gobio), a small benthic freshwater fish: Effects on survival, growth and swimming capacity. Ecology of Freshwater Fish, 16, 404–409.

Lee, J., Park, I. S., & Cho, S. H. (2009). Long-term effects of passive integrated transponder tagging on the growth of olive flounder, Paralichthys olivaceus. Journal of the World Aquaculture Society, 40, 134–139.

Leavy, T. R., & Bonner, T. H. (2009). Relationships among swimming ability, current velocity association, and morphology for freshwater loaches. North American Journal of Fisheries Management, 29, 72–83.

Moore, D. M., & Brewer, S. K. (2021). Evaluation of visual implant elastomer, PIT, and p-Chip tagging methods in a small-bodied minnow species. North American Journal of Fisheries Management, 41, 1066–1078.

Musselman, W. C. (2007). The importance of maintaining shallow-water habitats for the movement and survival of stream fishes. (Master’s thesis, University of Missouri, Columbia, MO). Retrieved from https://search.proquest.com/openview/
Pennock, C. A. (2017). Effects of PIT tags on red shiner Cyprinella lutrensis and sand shiner Notropis stramineus. Transactions of the Kansas Academy of Science, 120, 87–93.

Pennock, C. A., Frenette, B. D., Waters, M. J., & Gido, K. B. (2016). Survival of and tag retention in southern redbelly dace injected with two sizes of PIT tags. North American Journal of Fisheries Management, 36, 1386–1394.

Ruetz, C. R., Ill, Earl, B. M., & Kohler, S. L. (2006). Evaluating passive integrated transponder tags for marking mottled sculpins: Effects on growth and mortality. Transactions of the American Fisheries Society, 135, 1456–1461.

Schumann, D. A., Graeb, K. N., Wagner, M. D., Graeb, B. D. S., Prenosil, E., & Hoekwater, J. (2020). Suitability of surgically implanted 8-mm passive integrated transponder tags for small-bodied fishes. Journal of Applied Ichthyology, 36, 682–692.

Skov, C., Brodersen, J., Broenmark, C., Hansson, L. A., Hertonsson, P., & Nilsson, P. A. (2005). Evaluation of PIT-tagging in cyprinids. Journal of Fish Biology, 67, 1195–1201.

Swanson, C., Mager, R. C., Doroshov, S. I., & Cech, J. J. (1996). Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Transactions of the American Fisheries Society, 125, 326–329.

Swarr, T. R. 2018. Improving rock ramp fishways for small-bodied Great Plains fishes. (Master’s thesis. Colorado State University, Fort Collins, CO). Retrieved from https://mountainscholar.org/handle/10217/191487

How to cite this article: Swarr, T. R., Myrick, C. A., & Fitzpatrick, R. M. (2022). Tag retention in and effects of passive integrated transponder tagging on survival and swimming performance of a small-bodied darter. Journal of Fish Biology, 100(3), 705–714. https://doi.org/10.1111/jfb.14984