Quantum message-passing algorithm for optimal and efficient decoding

Christophe Piveteau and Joseph M. Renes
Institute for Theoretical Physics, ETH Zürich
Simple quantum decoding problem

Classical message

Classical encoder

W W W W

Quantum decoder

Decoded message

Uniformly random

Linear code

CQ channel

???
Simple quantum decoding problem

classical message

classical encoder

W W W W

quantum decoder

decoded message

uniformly random

linear code

CQ channel

Follow BP and try to decode bitwise…
BPQM algorithm

- Introduced at ISIT 2017: “Belief propagation decoding of quantum channels by passing quantum messages”
- Studied by Rengaswamy et al. at ISIT 2020
 - Simplification in sequential decoding
 - Block optimality in a 5-bit example
- What’s new this year?
 - Actual message passing version — original does not pass all info!
 - Efficient implementation — above flaw means original algorithm not efficient!
 - Application to non-tree codes via approximate cloning
 - Proof of block optimality for all tree codes
Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions
Outline

- Variation of classical BP
 - BPQM: Passing quantum messages for single bit estimation
 - Successive BPQM for entire codewords
 - Loopy BPQM
- Summary and open questions
Belief propagation decoding as tensor network contraction

Contract to find estimate of X_2 given observed $y_1y_2y_3y_4$.

Run in parallel to estimate all other codeword bits.
Belief propagation decoding acting on output bits: BSC

- Associate a bit b and likelihood $\ell = \frac{\delta}{1-\delta}$ to each node
- Traverse tree from leaves to root, generating node (b, ℓ) data from children node data.
Belief propagation decoding acting on output bits: BSC

- Associate a bit \(b \) and likelihood \(\ell = \frac{\delta}{1-\delta} \) to each node
- Traverse tree from leaves to root, generating node \((b, \ell)\) data from children node data.

- Leaf nodes: \(b \) is channel output, \(\delta \) from \(W \)
- At + nodes: \(b = b_1 \oplus b_2 \) and \(\ell = \frac{\ell_1 + \ell_2}{1 + \ell_1 \ell_2} \).
- At = nodes: \(b = b_1 \). Determine parity \(k = b_1 \oplus b_2 \), set \(\ell_2 \leftarrow \ell_2^{(-1)^k} \) and then \(\ell = \ell_1 \ell_2 \)
- At root, generate estimate given the root bit \(b \) and \(\ell \).
Belief propagation decoding acting on output bits: BSC

- Message passing: b and ℓ
- The operations add to the factor graph, but then it simplifies by channel combining rules.
- Results in a single input to a BSC whose output is the root bit b, with channel param. ℓ
- Completely unnecessary, of course: LLR processing in BP includes both b and ℓ
Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions
BP for decoding CQ channel outputs

Pick the simplest possible quantum extension:

Channel with symmetric pure state outputs $\left| \varphi_x \right>$
BP for decoding CQ channel outputs

Pick the simplest possible quantum extension:
Channel with symmetric pure state outputs $|\varphi_x\rangle$

Need to construct a measurement to estimate X_2 from $Q_1Q_2Q_3Q_4$

Tensor network contraction method not possible!
CQ channel output description

Bloch vector:
\[\hat{n} = z \hat{z} + (-1)^x \sqrt{1 - z^2} \hat{x} \]

Like \(\ell' \) from BSC:
Small value indicates a reliable channel
Quantum message passing algorithm: BPQM

- Associate a qubit and \(z \) parameter to each node
- Traverse the tree from \(W \) leaves to root
Quantum message passing algorithm: BPQM

- Associate a qubit and z parameter to each node
- Traverse the tree from W leaves to root
- At $=$ nodes: Apply unitary $U(z_1, z_2)$ and keep just 1st qubit. Set $z = z_1 z_2$.
- At $+$ nodes: Apply CNOT, measure 2nd qubit $\rightarrow k$. Reset $z_2 \leftarrow (-1)^k z_2$ and set param to $\frac{z_1 + z_2}{1 + z_1 z_2}$.
- Measure root qubit in \hat{x} basis.
Quantum message passing algorithm: BPQM

- \Rightarrow: Apply unitary $U(z_1, z_2)$, discard 2nd qubit. Set param to $z_1 z_2$.
- \oplus: Apply CNOT, measure 2nd qubit $\rightarrow k$. Discard 2nd qubit. Reset $z_4 \leftarrow (-1)^k z_4$ and set param to $\frac{z_3 + z_4}{1 + z_3 z_4}$.
- Measure last qubit in \hat{x} basis.
Quantum message passing algorithm: BPQM

- Implements optimal bitwise measurement: operations are actually reversible
- Factor graph simplifies as before, to a single classical input and pure state output.
- Messages passed are one part classical (z), one part quantum (qubit)
Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions
Successive BPQM for decoding entire codeword
Successive BPQM for decoding entire codeword

- **Problem**: Intermediate measurements.
 Solution: Perform BPQM coherently (“deferred measurement”). Rewind the circuit after measuring the output qubit.
Successive BPQM for decoding entire codeword

- **Problem**: Intermediate measurements.
 Solution: Perform BPQM coherently.
 Rewind the circuit after decoding each bit.

- **Problem**: Exponential overhead from + controls.
 Solution: Quantize z register. Uncompute after use.

- **Problem**: Need infinite dimensions for z register.
 Solution: Discretize to finite precision.
 For target error ε, register size only $O(\log 1/\varepsilon)$.

- All messages passed are now quantum!
Outline

- Variation of classical BP
- BPQM: Passing quantum messages for single bit estimation
- Successive BPQM for entire codewords
- Loopy BPQM
- Summary and open questions
Loopy BPQM: Setup

Unroll Tanner graph to computational graph

Run BPQM:
Initialize leaves with approximately cloned qubits and appropriate z
Loopy BPQM: Performance

![Graphs showing the performance of Loopy BPQM with different channel parameters.](image)

Figure 17: Numerical results from decoding X_1, X_5 and the complete codeword in the 8-bit code.
Outline

• Variation of classical BP

• BPQM: Passing quantum messages for single bit estimation

• Successive BPQM for entire codewords

• Loopy BPQM

• Summary and open questions
Summary & Open questions

- **BPQM**: efficient bitwise-optimal quantum message passing decoder
- Also blockwise optimal!
- Applications to capacity-achieving polar codes:
 - BPSK on pure loss Bosonic channel for transmitting classical information
 - CSS codes for amplitude damping channel for transmitting quantum information
- LDPC codes?
- Codes with loops?
- BPQM for mixed state output channels?