Isolation and Large Scale Expansion of Human Endothelial Progenitor Cells from Peripheral Blood

The existence of the circulating endothelial progenitor cells (EPCs) was discovered in 1997 [2]. Despite twenty years of intensive investigation, EPCs definition and identifying markers have remained unclear and somewhat controversial [3]. EPCs are often mixed up with tissue resident endothelial cells and pro-angiogenic hematopoietic cells. However, recent findings clarified these aspects and now EPCs could be commonly defined as CD34+/–CD146+CD309(VEGFR–2)+CD45–CD31+cells from peripheral blood, displaying clonal proliferative potential, replating ability, and in vivo vessel forming activity [3, 6].

These unique properties make these cells valuable objects for regenerative medicine, e. g. for the therapy of cardiovascular diseases, especially for the treatment of ischemic states of different etiology. EPCs successfully promoted neovascularization and regeneration of ischemic tissues in animal models, e. g. murine ischemic hind limb model and rat myocardial ischemia model [1]. EPCs are also widely used in human clinical trials. However, most of clinical trials involve freshly isolated EPC-enriched cell fraction from venous blood (using only one or two surface antigens for identification). This
miocardia крысы [1]. Эндотелиальные клетки-предшественники также широко применяют в клинических испытаниях на людях. При этом в большинстве случаев используют свежевыделенную фракцию клеток из венозной крови, обогащенную EPC (с применением только для идентификации одного или двух поверхностных антителен). Однако данный подход не обеспечивает высокие результаты [7]. В связи с этим изоляция и масштабное культивирование EPC in vitro для получения высококачественной терапевтической дозы остаются актуальными для инновационной клеточной терапии при ишемических расстройствах, восстановлении сосудов и эквивалентной трофической поддержке трехмерных тканевых эквивалентов.

В связи с вышеизложенным целью данной работы были разработаны малоинвазивного метода получения EPC и подбор условий их масштабного культивирования in vitro для получения терапевтической дозы.

Эксперименты проводили в соответствии с нормами биоэтики и биологической безопасности, подтвержденными разрешением биоэтической комиссии Медицинской компании ilaya®. Все доноры подписали информированное согласие на забор крови.

Культура EPC. Мононуклеарные клетки (MNC – mononuclear cells) извлекали из 20 мл гепаринизированной венозной крови пациента 30-минутным центрифугированием в градиенте плотности «Histopaque®-1077» («Sigma-Aldrich», США) при 400 г и 4°C. Полученные MNC дважды промывали в PBS и высевали в два культуральные фланки 75 см² («SPL», Корея), покрытых коллагеном, в селективную коммерческую среду для роста эндотелия M1 «Lonza Clonetics EGM™-2MV BulletKit™» («Lonza», Италия) или в самостоятельную собранную среду M2: MCDB 131 («Gibco», Великобритания); 5% FBS («Sigma-Aldrich»); 2 мл/мл гепарин натрия («Indar», Украина); 1 нг/мл VEGF; 10 нг/мл EGF; 2 нг/мл bFGF; 20 нг/мл IGF; 0,2 мкг/мл аскорбат-2-фосфата (все производства «Sigma-Aldrich») в мультигазовом инкубаторе («Binder CB 210», Германия) в атмосфере 5% CO₂, 5% O₂ и насыщающей влажности 97%. Клетки субкультивировали смесью трипсина/ ЭДТА (0,1 и 0,02% соответственно) в PBS («Sigma-Aldrich»). Плотность посева составляла 3 × 10³ клеток на 1 см². Время удвоения популяции клеток рассчитывали по стандартной формуле:

\[PDT = \frac{T}{3.31} \log \left(\frac{X_2}{X_0} \right) \]

где \(T \) – время культивирования; \(X_k \) – количество полученных клеток; \(X_0 \) – количество засеянных клеток.

Расчет колониеобразующих единиц (KOE). Для оценки потенциала клоногенности EPC 20 мл гепа-

approach can explain somewhat non-promising results of some of these studies [7]. Therefore the isolation and in vitro large scale expansion of EPCs in order to obtain a high-quality therapeutic dose have remained an actual goal for innovative cell therapy in ischemic disorders, vascular repair and 3D tissue living equivalent trophic support.

Thus the aim of this study was the development of the low invasive EPC isolation method together with their large-scale expansion in vitro in order to obtain a therapeutic dose.

All the experiments were done in accordance with the bioethics and biological safety norms confirmed by the permission of Medical Company ilaya® Bioethics Committee. All the donors have signed an informed consent before blood donation.

EPC culture. Mononuclear cells (MNCs) were concentrated from 20 ml of heparinized venous blood of a patient by centrifugation in Histopaque®-1077 density gradient (Sigma-Aldrich, USA) at 400 g for 30 min at 4°C. The obtained MNCs were washed twice in PBS and seeded either in two collagen-coated 775 cm² culture flasks (SPL, Korea) into the selective commercial endothelium growth medium M1 Lonza Clonetics EGM™-2MV BulletKit™ (Lonza, Italy) or in self-formulated EPCs medium, M2: MCDB 131 medium (Gibco, UK); 5% FBS (Sigma-Aldrich, USA); 2 U/ml heparin sodium (Indar, Ukraine); 1 ng/ml VEGF; 10 ng/ml EGF; 2 ng/ml bFGF; 20 ng/ml IGF; 0.2 µg/ml hydrocortisone; 1 µg/ml ascorbate-2-phosphate (all manufactured by Sigma-Aldrich, USA) in a multi-gas incubator (Binder CB 210, Germany) in atmosphere of 5% CO₂ and 5% O₂ and a saturating humidity of 97%. Cells were subcultured with a 0.1/0.02% trypsin/EDTA mixture in PBS (Sigma-Aldrich, USA). The seeding density was 3 × 10³ cells per 1 cm². The cell population doubling time (PDT) was calculated according to the following standard formula:

\[PDT = \frac{T}{3.31} \log \left(\frac{X_2}{X_0} \right) \]

where \(T \) – cell culture time; \(X_k \) – number of obtained cells; \(X_0 \) – number of plated cells.

Colony forming units (CFUs) calculating. To assess the EPC clonogenic potential, 20 ml heparinized whole blood vs. MNC fraction isolated from 20 ml blood over Histopaque®-1077 density gradient each sample was seeded each per one collagen-coated 175 cm² culture flask (SPL, Korea) in growth medium Lonza Clonetics EGM™-2MV BulletKit™ and cultured for 14 days. The cells were both fixed and stained for CFU calculating.

EPC tube formation assay. The EPCs were added to the Matrigel™ Matrix-coated (Corning, USA) well of 24-well plate (SPL, Korea) at the density of 10³ cells per 200 µL, at a final medium volume of 200 µL per
ринизированной цельной крови либо фракции MNC, выделенных из 20 мл крови в градиенте плотности «Histopaque®-1077», каждый образец высевали в один культуральный флакон 175 см², покрытый коллагеном («SPL») в питательной среде «Lonza Clonetics EGM™-2MV BulletKit™» и культивировали в течение 14 суток. Клетки фиксировали и окрашивали для подсчета КОЕ.

Анализ способности EPC к формированию трубчатых структур. Эндотелиальные клетки-предшественники выделяли в 24-луночный планшет («SPL»), покрытый «Matrigel™ Matrix» («Corning», США) с плотностью 10⁴ кл в 200 мкл при конечном объеме среды 200 мкл на лунку. Затем их инкубировали при 37°C, 5% CO₂, 5% О₂, в течение ночи в среде «Lonza Clonetics EGM™-2MV BulletKit™». За это время EPC образовали хорошо сформированные трубчатые сети. Кариотипирование EPC проводили на пассаже P4 методом GTG-banding [9].

Проточная цитометрия. Фенотип клеток оценивали с помощью FACS (fluorescence-activated cell sorting) на проточном цитометре «BD FACSAria» («BD Pharmingen», «BD Horizon», США). Окрашивание мононуклеарными антителами (PerCP-Cy5.5, PerCP-Cy5.5-конъюгированные мышьяковистые антитела против CD105 человека; APC-конъюгированные мышьяковистые антитела против CD73 человека; FITC-конъюгированные мышьяковистые антитела против CD90 человека; PE-Cy5-конъюгированные мышьяковистые антитела против HLA-DR человека; PE-Cy7-конъюгированные мышьяковистые антитела против CD31 человека; APC-конъюгированные мышьяковистые антитела против CD34 человека; FITC-конъюгированные мышьяковистые антитела против CD45 человека; PE-CF594-конъюгированные мышьяковистые антитела против CD49f человека; BV421-конъюгированные мышьяковистые антитела против CD166 человека; PE-конъюгированные мышьяковистые антитела против CD309 человека) выполняли согласно инструкции производителя («BD Pharmingen», «BD Horizon»).

Выделение EPC и культивирование in vitro. Одной из основных проблем культивирования EPC является их выделение, поскольку доля в общем содержании мононуклеарных клеток периферической крови составляет около 1,7 × 10⁴ [10]. В качестве источника EPC использовали венозную кровь взрослого человека, поскольку данный метод является наименее инвазивным для получения биоматериала. Первоначально мы высевали цельную венозную кровь в культуральные флаконы, покрытые коллагеном (5 мл крови на флакон 75 см²), но этот способ оказался менее эффективным по сравнению с предварительной концентрацией мононуклеарных клеток в градиенте плотности «Histopaque®-1077», что позволяло почти полностью удалить эритроциты. Затем мы высевали мононуклеарные клетки из 10 мл крови в флаконы well. Then they were incubated at 37°C, 5% CO₂, 5% О₂ overnight in Lonza Clonetics EGM™-2MV BulletKit™ medium. During this time EPCs developed well-formed tube networks. EPCs were karyotyped at P4 using GTG banding technique [9].

Flow cytometry. The cell phenotype was assessed by FACS (fluorescence-activated cell sorting) with the BD FACSAria flow cytometer (BD Pharmingen, BD Horizon, USA). Staining with the monoclonal antibodies (PerCP-Cy5.5 mouse anti-human CD105, APC mouse anti-human CD73, FITC mouse anti-human CD90, PE-Cy5 mouse anti-human HLA-DR, PE-Cy7 mouse anti-human CD31, APC mouse anti-human CD34, FITC mouse anti-human CD45, PE-CF594 mouse anti-human CD49f, BV421 mouse anti-human CD166, PE mouse anti-human CD309) was performed according to the manufacturer’s instructions (BD Pharmingen, BD Horizon).

EPCs isolation and in vitro expansion. One of the main difficulties in EPC culture is their isolation as their content among the peripheral blood mononuclear cells is about 1.7 × 10⁴ [10]. We aimed to use the adult venous blood as the source of EPCs as this allowed the less invasive uptake method. Initially we tried seeding the whole venous blood on the collagen-coated cell culture flasks (5 ml of blood per 75 cm² flask), but it appeared less effective compared to prior mononuclear cells concentration using Histopaque®-1077 density gradient, which allowed almost complete erythrocytes elimination. Finally we seeded mononuclear cells from 10 ml of blood per 75 cm² collagen-coated flask in M1 or M2 EPC media. The EPC colonies appeared after 5–10 days in culture (Fig. 1A). Interestingly, there was no correlation between the initial number of mononuclear cells seeded and the resulting number of colonies (data were not shown). Obtained cultures successfully expanded until P4 without significant changes in morphology (Fig. 1B). Unfortunately, most cultures showed growth arrest at P5–P6. Nevertheless, this time of *in vitro* expansion was sufficient to obtain a therapeutic dose of 20–80 × 10⁶ cells. The average PDT value for EPCs cultured in M1 was (35.0 ± 2.0) h vs (44.5 ± 2.8) h in M2 (p < 0.05). The number of EPC colonies was 7.1 ± 1.2 (whole blood) vs. (13.3 ± 1.7) (MNC fraction: (52.3 ± 4.9) mln MNCs per 20 ml whole blood per donor) per 175 flask (p < 0.02). During all the time of *in vitro* culture the cells were stable and maintained normal karyotype (Fig. 1C).

EPC tube formation. In order to assess functional properties of EPCs after *in vitro* expansion, we performed a tube-forming assay. Consistently with the previous reports [6], all of the obtained EPC cultures readily formed capillary-like structures in the Matrigel™ Matrix (Fig. 1D).

EPC phenotype. The obtained EPCs displayed typical CD31⁺CD34⁺/CD146⁺CD309 (VEGFR–2)⁺CD45⁻
75 см², покрытые коллагеном, в средах М1 или М2. Колонии EPC появились в культуре через 5–10 суток (рис. 1, A). Интересно, что никакой корреляции между начальным числом за- сеянных мононуклеарных кле- ток и полученным количеством колоний установлено не было (данные не приводятся). Полученные культуры успешно культивировались до P4 без значи- тельных морфологических из- менений (рис. 1, B). Однако у большинства культур на P5–P6 произошла остановка роста. Тем не менее данного времени было достаточно для получения терапевтической дозы 20–80 × 10⁶ кл. Среднее значение PDT для EPC, культивируемых в М1, составило (35,0 ± 2,0) против (44,5 ± 2,8) ч в М2 (p < 0,05). Число колоний EPC составляло 7,1 ± 1,2 (целая кровь) против 13,3 ± 1,7 ((52,3 ± 4,9) млн MNC на 20 мл цельной крови на донора) на культуральный флакон 175 см² (p < 0,02). В течение всего периода культи- вирования in vitro клетки были стабильными и сохраняли нормальный карийотип (рис. 1, C).

Способность EPC к формированию трубчатых структур. Функциональные свойства EPC после культивирования in vitro оценивали по их способности к формированию трубчатых структур. Согласно ре-}

Fig. 1. Cultured EPC morphology, phenotype and functional characteristics. A – EPC colony in primary culture; B – cell monolayer morphology at P3; C – normal male karyotype at P4 (GTG banding); D – capillary-like structures formation in Matrigel™ Matrix.

Рис. 1. Морфологическое строение, фенотип и функциональные характеристики EPC в культуре: A – колония EPC в первичной культуре; B – морфология клеточного монослой на P3; C – нормальный мужской карийотип на P4 (GTG banding); D – формирование капилляроподобных структур в «Matrigel™ Matrix».

Fig. 2. Cultured cells immunophenotype at P4, FACS, data presented as mean ±SD for five populations.

Рис. 2. Иммунофенотип клеток в культуре на P4, FACS, данные представлены как среднее ± стандартное отклонение для пяти популяций.
В целом наши данные показывают, что EPC можно успешно выделять из венозной крови и культивировать in vitro для получения значительных терапевтических доз с сохранением их свойств. Полученные результаты открывают новые возможности применения EPC в регенеративной медицине: стимуляция ангиогенеза при сложных ишемических нарушениях и трофическая поддержка трехмерных тканевых эквивалентов.

Литература

1. Asahara T., Kawamoto A., Masuda H. et al. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 2011; 29(11): 1650–1655.
2. Asahara T., Murohara T., Sullivan A. et al. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science 1997; 275(5302): 964–966.
3. Basile D., Yoder M. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol 2014; 229(1): 10–16.
4. Bouvard C., Gaf sou B., Dizier B. et al. Alpha-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells. Arterioscler Thromb Vas Biol 2010; 30(8): 1569–1575.
5. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317.
6. Ingram D., Mead L., Tanaka H. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104(9): 2752–2760.
7. Mitchell A., Fujisawa T., Newby D. et al. Vascular injury and repair: a potential target for cell therapies. Future Cardiol 2015; 11(1): 45–60.
8. Ohneda O., Ohneda K., Arai F. et al. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 2001; 98(7): 2134–2142.
9. Schreck R., Distefo C. Chromosome Banding Techniques. Cur Prot Hum Genet 2001; Chapter 4: Unit 4.2.
10. Yoder M., Mead L., Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109(5): 1801–1809.

References

1. Asahara T., Kawamoto A., Masuda H. et al. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 2011; 29(11): 1650–1655.
2. Asahara T., Murohara T., Sullivan A. et al. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science 1997; 275(5302): 964–966.
3. Basile D., Yoder M. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol 2014; 229(1): 10–16.
4. Bouvard C., Gaf sou B., Dizier B. et al. Alpha-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells. Arterioscler Thromb Vas Biol 2010; 30(8): 1569–1575.
5. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317.
6. Ingram D., Mead L., Tanaka H. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104(9): 2752–2760.
7. Mitchell A., Fujisawa T., Newby D. et al. Vascular injury and repair: a potential target for cell therapies. Future Cardiol 2015; 11(1): 45–60.
8. Ohneda O., Ohneda K., Arai F. et al. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 2001; 98(7): 2134–2142.
9. Schreck R., Distefo C. Chromosome Banding Techniques. Cur Prot Hum Genet 2001; Chapter 4: Unit 4.2.
10. Yoder M., Mead L., Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109(5): 1801–1809.