Supplementary data

Low level expression of the Type II restriction-modification system confers potent bacteriophage resistance in *Escherichia coli*

Karolina Wilkowska ¹, Iwona Mruk ¹, Beata Furmanek-Blaszk ¹, and Marian Sektas ¹*

1. Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, Poland

*author for correspondence:
Department of Microbiology, University of Gdansk
Wita Stwosza 59, 80-308 Gdansk, Poland; Tel.: (+4858) 5236068
e-mail: marian.sektas@ug.edu.pl
Supplementary Figure S1. Genetic map of pACYCeco and pIM-RM plasmids carrying EcoRI R-M system.
Supplementary Figure S2. Potential for EcoRI endonuclease production and *in vitro* restriction activity detected at cell lysates carrying pBAD-RM plasmid.

(A) Production level of M.EcoRI and R.EcoRI proteins after 1, 2, 3 and 4 hours of 0.04% arabinose induction of *ecoRIRM* operon expression.

(B) Digestion of lambda phage DNA with serial dilutions of bacterial lysate after 2 hours of induction. Bacterial lysate was prepared by Belavin method (Belavin et al., 1988). The reaction mixture contained 0.4 μg λ DNA and the appropriately diluted lysate. Digestion was carried out in optimal buffer for R.EcoRI at 37°C for 30 min. K - λ DNA digested with 10 u of R.EcoRI (Fermentas).
Supplementary Figure S3. Relative restriction of above constructs expressed in Xer/cer mutant strains as value of efficiency of plaque forming units.
Supplementary Table S1. Plasmids used in this study.

Name	Relevant characteristic(s) or sequence	Source
pACYC184	P15A derivative, Tc^R, Cm^R	Chang and Cohen, 1978
pACYC-35T	pACYCp derivative with single deletion mutation in -35 sequence (TTAAGG→aTAAGG)	this work
pACYC-35T2	pACYCp derivative with double deletion mutation in -35 sequence (TTAAGG→aaAAGG)	this work
pACYCara	pACYCcer derivative with *araC*-P_{araBAD} promoter cloned into Smal site	this work
pACYCblaRBS	pACYCpR derivative with partial *bla* RBS region of pBR322	this work
pACYCcer	pACYCeco derivative with broad deletion (1476-3909 bp[SmaI]) encompassing *tetA* gene and P_{L1-nutL} region, while retaining all Xer/cer recombination region, Cm^R	this work
pACYCΔnutL	pACYCeco derivative with deletion including *nutL* region	this work
pACYCΔnutLacZ	pACYCΔnut derivative with insertion of a promoterless *lacZ* gene (SmaI-DraI of pRS415) between MluI-BglII (deletion of P_R promoter and a proximal part of *ecoRIR* gene)	this work
pACYCeco	Wild type EcoRI R-M system with additional upstream *P_{L1-nutL}* region of λ phage in pACYC184, Cm^RTc^R	Katna et al., 2010
pACYCecoARAlacZM	pACYCara derivative with *ecoRIRK113A* gene and *lacZ* gene inserted in SpeI site of *ecoRIM* as translational fusion, subcloned frompACYClacZM	this work
pACYCecoARAlacZR	pACYCara derivative with PCR created *lacZ* gene inserted in BglIII site of *ecoRIR* gene as translational fusion	this work
pACYClacZ pACYCeco derivative with promoterless *lacZ* gene (SmaI-DraI of pRS415) inserted between MluI-BglII (deletion of the *Pr* promoter and a proximal part of *ecoRIR* gene) this work

pACYClacZM pACYCeco derivative with *ecoRIRK113A* gene and *lacZ* gene inserted in SpeI site of *ecoRIM* as translational fusion, subcloned from pIM-RMI lacM this work

pACYClacZR pACYCeco derivative with PCR created *lacZ* gene inserted in BglIII site of *ecoRIR* gene as translational fusion this work

pACYCxerCD pACYCcer derivative with deletion of *Pcer* promoter and binding sites for ArgR and PepA (box1) retaining PepA box2, *xerC* and *xerD* binding sites this work

pACYCpR pACYCeco derivative with minimal *Pr* promoter (deletion downstream of XbaI site:1429-4042 bp) this work

pACYCpR* pACYCp with triple mutation of -35 sequence of *Pr* (TTAAGG→TTGACA) this work

pACYCpR*RBS pACYCpR* derivative with partial *bla* RBS region of pBR322 this work

pACYCtet pACYCpR derivative with *PtetA* promoter instead of *Pr* this work

pBAD24 pBR322 ori replicon with arabinose *ParaBAD* inducible promoter, *Ap*^R Guzman et al., 1995

pBAD24N pBAD24 derivative with *E. coli* λ phage N antitermintor protein gene cloned in XbaI site, under *ParaBAD* control this work

pBADecoM pBAD24 derivative with *ecoRIM* gene cloned between NcoI-HindIII sites this study

pBAD-RM *ecoRIRM* genes cloned under *araC*-*ParaBAD* control unit(insertion of NcoI site overlapping translation initiation site of *ecoRIR* gene (CCATGG) caused substitution of the second codon Ser to Ala (TCT→GCT) in R. EcoRI protein this work

pBR322 pMB1 replicon Tet^R, *Ap*^R Bolivar et al., 1977

pIM-RM Wild type EcoRI R-M system in pACYC184 backbone; *Cm*^R Mruk et al., 2011
Vector	Description	Source
pIM27	Restriction defective pIM-RM derivative with deleted HindIII-BglII fragment of *ecoRIR*	Mruk et al. 2011
pIM-RM113A	pIM-RM derivative with mutagenized *ecoRIR* gene (K113A) causing production of inactive EcoRI ERase	this work
pIM-RMkan	pIM-RM derivative with HincII fragment with *kan* kanamycine resistance gene inserted in PvuII-PvuII promoter-proximal part of the *cat* gene, Km^R Cm^S	this work
pIM-RMlacZM	pIM-RMspeIM derivative with PCR created *lacZ* gene inserted in SpeI site of *ecoRIM* gene as translational fusion	this work
pIM-RMlacZR	pIM-RM derivative with PCR created *lacZ* gene inserted in BglII site of *ecoRIR* gene as translational fusion	this work
pIM-RMspeIM	pIM-RM derivative with HincII fragment with *tetA* tetracycline resistance gene inserted in PvuII-PvuII promoter-proximal part of the *cat* gene, Tet^R Cm^S	this work
pINTtsCm	λ [−] Int-delivery pSC101Ts replicon containing thermoinducible expression cassette cI857-P_{K::-int}, Cm^R	Hasan et al., 1994
pKRP11	The source of *kan* kanamycine resistance gene	Reece and Phillips, 1995
pRS415	The source of *lacZ* gene for transcriptional/translational fusion	Simons et al., 1987
pUC18	*P_{lac}* expression vector, Ap^R	Yanisch-Perron et al., 1985
Supplementary Table S2. List of oligonucleotides used in this study.

No	Name	Sequence (5’→3’)	Comment
1	35dT (f)	TAAGGGATTATGGTAAATCAAACG	Primers 1 and 34 were used to PCR mutagenization by deletion of the -35 sequence of P_R promoter (ΔT)TAAGG, (pACYC-35T)
2	35dT2 (f)	AAGGGATTATGGTAAATCAAACG	Primers 2 and 34 were used to PCR mutagenization of the -35 sequence of P_R promoter by deletion (ΔTT)AAGG, thus only -10 extended promoter TGTATAATA remained (pACYC-35T2)
3	blaRBS (f)	ATAAATGCTTCAATAATATTGGAACATGGATT CATGTCTAAT	Primers 3 and 29 used to exchange downstream part of P_R promoter (between NdeI site and GAA - SD sequence) by part of corresponding fragment from bla gene (underlined); ATG initial codon bold (pACYCblaRBS)
4	crRNAf	TCGGAATTACTGGGCGTAAAG	Primers 4 and 5 specific to 16S rrn genes, were used for RT-qPCR
5	crRNAr	CCTCCAGATCTCTACGCATTTC	
	Primer Code	Sequences	Description
---	-------------	-----------	-------------
6	ecoMfor	GCATTTGCTATGTAGAGAATAAAGAA	Primers 6 and 7 specific to *ecoRIM* gene were used for RT-qPCR
7	ecoMrev	AGATCAATGCTCTCCGAACTG	
8	ecoRfor	GGAGATCAAGATTTAATGGCTGC	Primers 8 and 9 specific to *ecoRIR* gene were used for RT-qPCR
9	ecoRrev	CAACCCTCCATCTGGTCTT	
10	Enullf	TGCTGAAGCCGACACCAAGG	Primers 10 and 11 used to alter 113 lysine (AAA) to alanine residue (GCA) of *ecoRIR* gene
11	Enullr	TG**T**Cggcttcagcaaca	
12	lacBf	GGAATCTATTTACGATCTCACTG GCC	Primers 12 and 13 used for PCR production of *lacZ* gene to translational fusion with *ecoRIR* gene from BglII site (underlined). Note that LacZ is lacked by first 3 natural amino acids, thus *lacZ* gene starting from ATT (in bold)
13	lacBr	GCAGATCTGGCCTGCCCCGGTTAT	
14	lacMf	GGAC**T**GTATTTACGATCTCACTG GCC	Primers 14 and 15 used for creation of *lacZ* gene to translational fusion with *ecoRIM* gene from SpeI site (underlined). Note that LacZ is lacked by first 3 natural amino acids, thus *lacZ* gene starting from ATT (in bold),
15	lacMr	GGAC**T**GTGGCCTGCCCCGGTTAT	
16	MecoEnd (r)	GACGAAGCTTTATGATCTCAAGAAA	Primers 16 and 27 used for PCR production of the complete
	Primer	Sequence	
---	--------	----------	
17	Nend (r)	TCTAAGCTTCTAGATAAGAGGAATC	
18	Nfor (f)	AAGTCTAGAAAGCTAACTGACAGGAGA	
19	nutL (r)	GGGCAAATCCCTGTGTTGGTTGGGG	
20	nutR (f)	GGGTGTCAGTGCCTGCTGCTG	
21	PcerL (r)	GGGCTGACTTCAGGTGCTACATTGG	
22	PcerR (f)	GGGTCTGACCATCGTGGTGCTAGGG	
23	Peco35 (f)	CTagatacaattgacagattatggtaaatcacaagctatgtaaatcatactatcgaca	
24	Peco35 (r)	CTagatacaattgacagattatggtaaatcacaagctatgtaaatcatactatcgaca	

Promoterless *ecoRIRM* operon to clone in pBAD24 vector under arabinose P_{araBAD} inducible promoter, between NcoI-HindIII sites of (pBAD-RM). Primers 17 and 18 were used to PCR creation of *E. coli* λ phage N antiterminator protein gene to clone in XbaI site (underlined) of pBAD24 vector, under arabinose P_{araBAD} inducible promoter (pBAD24N). Primers 19 and 20 used to deletion of *nutL* region of pACYCeco by PCR. SmaI site (underlined) in junction was created (pACYCΔnut). Primers 21 and 22 used to PCR deletion of 2433 bp fragment of pACYCeco carrying *tetA* gene and $P_{L1-nutL}$ region. SmaI site (underlined) was created in junction (pACYCcer). Primers 23 and 24 were used to anneal and insert between XbaI and NdeI sites (underlined) of pACYCeco, to change -35 sequence (in bold) of the minimal P_{R} promoter (TTAAGG→TGACA), (pACYCp*).
	Primer	Sequence	Description
25	PecoF (f)	CTAGATACAATTTAAGGATTATGTAATCAAANCGTATGTTAAATCTATCGACAGA	Primers 25 and 26 were used to anneal and insert between XbaI and NdeI sites (underlined) of pACYCeco, to create the minimal P_R promoter region, -35 and -10 sequences in bold, (pACYCp)
26	PecoR (r)	TATGTCGATGATTAACATACGTTTGATTTACCATAAATCCCTATTATGATAT	
27	Pmlu (f)	GGGATCGCGCTGAACGCGTTTTAGC	27 and 21 used to delete P_{cer} promoter and binding sites for ArgR and PepA (box1), while retaining PepA box2, xerC and xerD binding sites, and also P_R promoter (pACYCxerCD)
28	PEcoNco (f)	CATGCATGGCTAATAAAAAACAGTCA	Primer specific to a proximal part of ecoRI gene, NcoI sites underlined, ATG bold, substitution Ser2Ala (TCT→GCT)
29	PRNde (r)	CATATGTCGAGATTAACATACGT	Primer 29 was used in pair with primer 3
30	SpeMf	GGTNTTACTAGTACGGCGTGCGTTTTAGC	Primers 30 and 31 used to create SpeI site (underlined) in ecoRIM gene. Position of A nucleotide (in bold) is 253 nt of the gene
31	SpeMr	CGCCTACTAGTATACCCCCAGTGTTATTATTC	
32	TETp1 (f)	CTAGATTATGTGGCAGCCTGTATCATGATAAGCGTTAATGCGGTAGTTATTAC	Primers 32 and 33 were used to anneal and insert between XbaI and NdeI sites (underlined) of pACYCeco, to create the construct pACYCtet, when ecoRIM genes are under control of constitutive P_{tetA} promoter
33	TETp2 (r)	TATGATAAAACTACCCGATTAAAGCTTTATGGATGATAAAGCTGAACATATAAT	
	Xbaleft (r)	TTGTATCTAGAAATTTTTATCTGATTAATAAG	Primer 34 is a pair for 1 and 2, XbaI sequence is underlined
---	-------------	----------------------------------	---
34	XecoMBad	AGCCATGGCTAGAAATGCAACAAACAAAG	Primers 34 and 17 used to PCR creation of *ecoRM* gene clone into NcoI-HindIII sites of pBAD24
Supplementary Table S3. Comparison of efficiency of plaque forming units of λ_{vir} phage after infection of *E. coli* ER1992 bacteria with constructs derived from pACYCeco plasmid

Plasmid	PFU	EOP	Restriction relative to pIM-RM
pACYCeco	$(5.2 \pm 0.9) \times 10^3$	1.6×10^{-5}	1250
pACYCcer	$(5.7 \pm 1.9) \times 10^3$	1.8×10^{-5}	1111
pACYCpR*	$(6.7 \pm 4.0) \times 10^3$	2.1×10^{-5}	952
pACYCpR	$(8.3 \pm 3.3) \times 10^3$	2.6×10^{-5}	769
pACYCxerCD	$(1.6 \pm 0.1) \times 10^4$	5.0×10^{-5}	400
pIM-RMkan	$(5.3 \pm 0.9) \times 10^4$	1.6×10^{-4}	125
pIM-RM	$(7.0 \pm 0.9) \times 10^6$	0.02	1
pACYCblaRBS	$(1.2 \pm 0.7) \times 10^7$	0.04	0.5
pBAD-RM	$(4.2 \pm 0.4) \times 10^7$	0.13	0.15
pIM27	$(3.2 \pm 1.5) \times 10^8$	1	0.02
SUPPLEMENTARY REFERENCES

Belavin P.A., Dedkov V.S., Degtiarev S.Kh. (1988) A method for detecting restriction endonucleases in bacterial colonie. Prikl Biokhim Mikrobiol. 24, 121-124.

Chang A.C.Y., and Cohen, S.N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156.

Guzman L.M., Belin,D., Carson,M.J. and Beckwith,J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose P_{BAD} promoter. J. Bacteriol., 177, 4121-4130.

Katna A., Boratynski R., Furmanek-Blaszk B., Zolcinska N., and Sektas M., (2010) Unbalanced restriction impairs SOS-induced DNA repair effects. J Microbiol Biotech 20, 30-38.

Bolivar F., Rodriguez,R.L., Greene,P.J., Betlach,M.C., Heyneker,H.L., Boyer,H.W., Crosa,J.H. and Falkow S. (1977) Construction and characterization of new cloning vehicles, II: a multipurpose cloning system. Gene 2, 95-113.

Mruk I., Liu, Y., Ge, L., Kobayashi, I. (2011) Antisense RNA associated with biological regulation of a restriction-modification system. Nucleic Acids Res. 39, 5622-5632.

Hasan N., Koob, M. and Szybalski, W. (1994) Escherichia coli genome targeting. I. Cre-lox-mediated in vitro generation of ori′ plasmids and their in vivo chromosomal integration and retrieval. Gene 150, 51-56.

Reece K.R. and G.J. Phillips. (1995) New plasmids carrying antibiotic-resistance cassettes. Gene 165, 141-142.

Simons RW, Houman F, and Kleckner N. (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85-96.

Yanisch-Perron C., Vieira C., and Messing J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.