Conic Parameterization in $PG(2, 25)$

Emad B. Al-Zangana*, Elaf A.S. Shehab

Department of Mathematics, College of Science, Mustansiriyah University, IRAQ

*Correspondent author email: e.b.abdulkareem@uomustansiriyah.edu.iq

Abstract

The main aim of this paper is to parameterize the conics form through the inequivalent 5-arcs in $PG(2, 25)$ using one-one correspondence property between line and conic. The inequivalent 6-arcs in $PG(2, 25)$, also have been computed with some examples.

Keywords: Projective space, arc, conic.

Introduction

In $PG(2, q)$, the projective plane of order q, there have been many characterizations of the classical curves given by the zeros of quadratic forms called conics. For example, Al-Zangana studied the group effect on the conic in $PG(2, q), q=19, 29, 31$ [1] [2]. Also, Al-Zangana started to parameterized the conics through the inequivalent 5-arc in $PG(2, 19), PG(2, 23)$ [1][3]. It is worth mentioning that, the projective plane $PG(2, 25)$ has been studied by calculated the complete arcs only as in [4] [5].

The purpose of the research is to compute the 5-arc and then parameterized the conics through these 5-arc in $PG(2, 15)$. Also, in this paper, the inequivalent 6-arcs have been computed and then show that, there is a unique 6-arc with ten B-points but does not form a 10-arc.

Preliminary

Definition 1[6]. A k-arc, K in projective plane $PG(2, q)$ is a set of k points no three of them are collinear, but there is some two collinear. A k-set, S in projective line $PG(1, q)$ is a set of k distinct points.

Definition 2[6]. A line ℓ of $PG(2, q)$ is an i-secant of a k-arc K if $|\ell \cap K| = i$. A 2-secant is called a bisecant, a 1-secant is a unisecant and a 0-secant is an external line. The number of bisecants through a point Q out of K is called the index of Q with respect to K.

Definition 3[6]. Let K be an arc and c_i be the number of points of $PG(2, q) \setminus K$ with index exactly i. A point of index three is called a Brianchon point or B-point for short.

During this research, write $ij \cdot kl \cdot mn = P_1P_2\cap P_3P_4\cap P_5P_6$ for B-point, where P_iP_j represent the line through the points P_i and P_j.

Definition 4[6]. The zero set of the form F of degree two

$$V(F) = V(aX_0^2 + bX_1^2 + cX_2^2 + dX_0X_1 + eX_0X_2 + fX_1X_2)$$

is called plane quadric. A non-singular plane quadric is called conic.

For details about groups that appear in this paper like, $Z_n \cong Z_m = \text{semi direct product group}$. $S_n = \text{symmetric group of degree n}$, $V_4 = \text{Klein 4-group}$ and $A_n = \text{alternating group of degree n}$, see [7].

To start with this research, the points and lines of $PG(2,25)$ are needed to construct.

The projective plane of order twenty five, $PG(2,25)$, has 651 points and lines, 26 points
on each line and 26 lines passing through each point.
Let \((X) = X^3 - \beta^{16} X - \beta \in F_{25}[X] \), where \(\beta \) is the primitive element of \(F_{25} \). Then \(f \) is primitive polynomial over \(F_{25} \) since
\[
f(0) = \beta^{13}, \quad f(1) = \beta^2, \quad f(\beta) = \beta^{21}, \quad f(\beta^2) = \beta^{10}, \quad f(\beta^3) = \beta^5, \quad f(\beta^4) = \beta, \quad f(\beta^5) = \beta^{16}, \quad f(\beta^6) = \beta^{11}, \quad f(\beta^7) = \beta^5, \quad f(\beta^8) = \beta^{13}, \quad f(\beta^{11}) = \beta^{23}, \quad f(\beta^{10}) = \beta^{20}, \quad f(\beta^{12}) = \beta^{16}, \quad f(\beta^{25}) = \beta, \quad f(\beta^{14}) = \beta^5, \quad f(\beta^{15}) = \beta^{10}, \quad f(\beta^{16}) = \beta^7, \quad f(\beta^{17}) = \beta^6, \quad f(\beta^{18}) = \beta^{18}, \quad f(\beta^{19}) = \beta^{10}, \quad f(\beta^{20}) = \beta^{13}, \quad f(\beta^{21}) = \beta^{15}, \quad f(\beta^{22}) = 1, \quad f(\beta^{23}) = \beta^6.
\]
That is, \(f \) irreducible over \(F_{25} \), but \(f \) has three zeros \(\gamma, \gamma^{25}, \gamma^{625} \) in \(F_{25^3} \), where \(\gamma \) is the primitive element of \(F_{25^3} \). Therefore, the companion matrix of \(f \)
\[
C(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \beta & \beta^{16} & 0 \end{pmatrix}
\]
cycle is projectivity, and then the points of \(PG(2,25) \) are
\[
P(i) = (1,0,0)C(f)^i.
\]
Dually, the lines of \(PG(2,25) \) are
\[
P(i) = \ell \ell_1 C(f)^i,
\]
where \(i = 0,1,\ldots,650 \) and \(\ell \ell_1 = V(X_2) \). The line \(\ell \ell_1 \) in numeral form is
\[
1, 2, 4, 44, 65, 74, 93, 162, 170, 176, 215, 252, 269, 310, 397, 422, 454, 472, 501,
\]
\[
506, 516, 528, 532, 539, 552, 587.
\]
For a comprehensive bibliography and more theoretical details about the lines and points structure see [6], and about field theory see [8].

Inequivalent 5-Arcs
From the fundamental theorem of projective geometry, there is projectively a unique 4-arc called frame. The stabilizer group of any 4-arc is \(S_4 \). Let \(\Gamma_{25} = \{U_0, U_1, U_2, U\} \) be the representative 4-arc (standard frame) where
\[
U_0 = [1,0,0] = P(0), \quad U_1 = [0,1,0] = P(1), \quad U_2 = [0,0,1] = P(2), \quad U = [1,1,1] = P(603).
\]
The 5-arcs are formed by adding points of index zero and the inequivalent one are computed using mathematical program language Gap as summarized in the following theorem.

Theorem 5. In \(PG(2,25) \), there are eight inequivalent 5-arcs through \(\Gamma_{25} \). The values of the constants \(c_i \) for any 5-arc are \(c_0 = 421; \ c_1 = 210; \ c_2 = 15 \). These arcs with their stabilizer group types are given in Table 1.

\(\mathcal{A}_i \)	The 5-arc	SG- type
\(\mathcal{A}_1 \)	\(\Gamma_{25}UP(\beta^{16}, \beta^6, 1) \)	\(Z_2 \)
\(\mathcal{A}_2 \)	\(\Gamma_{25}UP(\beta^{18}, \beta^{15}, 1) \)	\(I \)
\(\mathcal{A}_3 \)	\(\Gamma_{25}UP(\beta^7, \beta^{10}, 1) \)	\(Z_2 \)
\(\mathcal{A}_4 \)	\(\Gamma_{25}UP(\beta^{10}, \beta^9, 1) \)	\(Z_2 \)
\(\mathcal{A}_5 \)	\(\Gamma_{25}UP(\beta^{18}, \beta^{15}, 1) \)	\(Z_5 \times Z_4 \)
\(\mathcal{A}_6 \)	\(\Gamma_{25}UP(\beta^{22}, \beta^{23}, 1) \)	\(Z_2 \)
\(\mathcal{A}_7 \)	\(\Gamma_{25}UP(\beta^{14}, \beta^{18}, 1) \)	\(I \)
\(\mathcal{A}_8 \)	\(\Gamma_{25}UP(\beta^{20}, \beta, 1) \)	\(S_3 \)

Conic Representation through 5- Arc
It is well known that, through any 5-arc there is a unique conic and the rational points \(X \) of the conic \(C^* = V(X_1 - X_0X_2) \) parameterized as \((t^2, t, 1) \) [6]. So, There is a unique conic through each 5-arc, \(\mathcal{A}_i \), and since each of this arcs passes through \(\Gamma_{25} \), therefore, each conic \(C_{\mathcal{A}_i} \), take the form
\[
C_{\mathcal{A}_i} = V(F_{\mathcal{A}_i}) = X_0X_1 + aX_0X_2 - (a + 1)X_1X_2.
\]
After substituted the fifth point of the arcs \(\mathcal{A}_i \) into \(F_{\mathcal{A}_i} \) the following are deduced.
Lemma 6 [9].
On $PG(1,25)$, there are precisely eight distinct pentads given with their stabilizer groups in Table 2 and Table 3.

Type	The pentads
P_1	$\{\infty, 0, 1, \beta^{12}, \beta^6\}$
P_2	$\{\infty, 0, 1, \beta^{12}, \beta^2\}$
P_3	$\{\infty, 0, 1, \beta^{12}, \beta^2\}$
P_4	$\{\infty, 0, 1, \beta^{12}, \beta^3\}$
P_5	$\{\infty, 0, 1, \beta^4, \beta^2\}$
P_6	$\{\infty, 0, 1, \beta^4, \beta^5\}$
P_7	$\{\infty, 0, 1, \beta, \beta^2\} \quad \Rightarrow \quad \{\infty, 0, 1, \beta, \beta^2\}$
P_8	$\{\infty, 0, 1, \beta, \beta^6\}$

Using the corresponding properties between $PG(1,25)$ and the conic C^*, the eight 5-sets, P_i in Table 2 are transformed by $t \mapsto (t^2, t, 1)$ into 5-arcs, P_i^* in C^* but not through the frame Γ_{25}, where $C^* = \{1, 3, 19, 42, 47, 111, 149, 157, 174, 210, 217, 273, 288, 303, 325, 348, 357, 416, 430, 466, 509, 549, 597, 603, 623, 631\}$. Each P_i^* is projectively equivalent to 5-arc, \mathcal{A}_i as given below.

- $P_1^* = \{1,3,603,357,210\}$
- $P_2^* = \{1,3,603,357,273\}$
- $P_3^* = \{1,3,603,357,42\}$
- $P_4^* = \{1,3,603,357,228\}$
- $P_5^* = \{1,3,603,111,42\}$

Type	SG-type
P_1	$Z_5 \times Z_4 = \langle 1/(t + \beta^{12}), (t\beta^{18} + \beta^{12}) \rangle$
P_2	1
P_3	$Z_2 = ((t + 1)/(t + \beta^{12}))$
P_4	1
P_5	$Z_2 = (\beta^4/t)$
P_6	$S_3 = ((\beta^8 t + 1), \beta^5 t/(t + \beta^{17}))$
P_7	$Z_2 = (\beta^2/t)$
P_8	$Z_2 = (t/(t + \beta^{12}))$
Theorem 7. By uniqueness properties of conics, the parameterization of each conic $C_{\mathcal{A}_i}$ are given below using the matrix transformation between C^* and $C_{\mathcal{A}_i}$. Let $t \in F_{25} \cup \{\infty\}$.

Inequivalent 6-Arcs

After calculating the orbit of each 5-arc \mathcal{A}_i and adding one point from each orbit to \mathcal{A}_i, the 6-arcs are constructed. In the following theorem the details of inequivalents 6-arcs are given.

Theorem 8: In $PG(2,25)$, there are 365 inequivalent 6-arcs through the standard frame. These arcs partitioned according to stabilizer group types and the parameters $[c_0, c_1, c_2, c_3]$ as given below.

$C_{\mathcal{A}_i}$	Matrix trans. of $C_{\mathcal{A}_i}$ to C^*	Parameterization of $C_{\mathcal{A}_i}$
$C_{\mathcal{A}_1}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{10} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-1}(t^2-\beta^{-1}t),\beta^{-10}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_2}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{10} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-1}(t^2-\beta^{-1}t),\beta^{-10}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_3}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{4} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-11}(t^2-\beta^{-1}t),\beta^{-4}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_4}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{19} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-15}(t^2-\beta^{-1}t),\beta^{-19}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_5}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{14} \\ \beta^{15} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-10}(t^2-\beta^{-1}t),\beta^{-15}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_6}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{5} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-13}(t^2-\beta^{-1}t),\beta^{-5}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_7}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{13} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-2}(t^2-\beta^{-1}t),\beta^{-13}(1-\beta t), \beta^{-13}t)$ $\}$
$C_{\mathcal{A}_8}$	$\begin{pmatrix} \beta & 0 & 0 \\ 0 & 0 & \beta^{6} \\ \beta^{12} & \beta^{13} & \beta^{14} \end{pmatrix}$	$\{$ $P(\beta^{-20}(t^2-\beta^{-1}t),\beta^{-6}(1-\beta t), \beta^{-13}t)$ $\}$

SG-type:No.	
l: 255	
Z_7: 53	
Z_3^2: 29	
V_4: 5, Z_4: 4	
S_3: 12	
A_4: 5	
G_{36}: 1	
S_5: 1	

The elements of the group G_{36} have order as follows.
\[G_{36} \]

Ord(g):No.
2: 9
3: 8
4: 18

\([c_0, c_1, c_2, c_3]\)	:No.
[320, 300, 15, 10]	:1
[324, 288, 27, 6]	:6
[326, 282, 33, 4]	:9
[327, 279, 36, 3]	:32
[328, 276, 39, 2]	:50
[329, 273, 42, 1]	:133
[330, 270, 45, 0]	:134

Example 9:
The unique 6-arc with stabilizer group of order 120 and ten \(B \)-points is \(\mathcal{H} = A_5 \cup P(\beta^{12}, \beta^{18}, 1) \).
The arc \(\mathcal{H} \) in numeral form is \(\{1, 2, 3, 603, 17, 430\} \).
The ten \(B \)-points of \(\mathcal{H} \) in numeral form is \(\mathcal{K}_{10} = \{176, 93, 396, 268, 624, 380, 533, 351, 517, 574\} \), where

\(ij \cdot kl \cdot mn\)	Point in coordinate form	Point in numeral form
12 \cdot 34 \cdot 56	\(P(1,1,0)\)	176
12 \cdot 35 \cdot 46	\(P(\beta^{12}, 1,0)\)	93
13 \cdot 24 \cdot 56	\(P(1,0,1)\)	396
13 \cdot 26 \cdot 45	\(P(\beta^{12}, 0,1)\)	268
14 \cdot 25 \cdot 36	\(P(\beta^{18}, 1,1)\)	624
14 \cdot 26 \cdot 35	\(P(\beta^{12}, 1,1)\)	380
15 \cdot 23 \cdot 46	\(P(0, \beta^6, 1)\)	533
15 \cdot 24 \cdot 36	\(P(1, \beta^6, 1)\)	351
16 \cdot 23 \cdot 45	\(P(0, \beta^{18}, 1)\)	517
16 \cdot 25 \cdot 34	\(P(\beta^{18}, \beta^{18}, 1)\)	574

The set \(\mathcal{K}_{10} \) does not form 10-arc since it has ten 3-secants as given below.

\(\mathcal{K}_{10} \cap \ell_{93}\)	= 93,268,624
\(\mathcal{K}_{10} \cap \ell_{112}\)	= 176,380,533
\(\mathcal{K}_{10} \cap \ell_{176}\)	= 176,268,351
\(\mathcal{K}_{10} \cap \ell_{265}\)	= 268,533,574
\(\mathcal{K}_{10} \cap \ell_{323}\)	= 93,396,574
\(\mathcal{K}_{10} \cap \ell_{348}\)	= 93,351,517

References

[1] E. B. Al-Zangana, "The geometry of the plane of order nineteen and its application to error-correcting codes," Ph.D. Thesis, University of Sussex, UK, 2011.

[2] E. B. Al-Zangana, "Groups effect of types \(D_5 \) and \(A_5 \) on the points of projective plane Over \(F_q \), \(q = 29, 31 \)," Ibn Al-Haitham Jour. for Pure and Appl. Sci., vol. 26, no. 3, pp. 410-423, 2013.

[3] E. B. Al-Zangana, "Results in projective geometry PG(\(r, 23 \)) \(r = 1, 2 \)," Ibn Al-Haitham Jour. for Pure and Appl. Sci., vol. 26, no. 3, pp. 964-971, 2016.

[4] Marcugini, S., Milani, A. and Pambianco, F., "Complete arcs in PG(2,25): The spectrum of the sizes and the classification of the smallest complete arcs," Discrete Mathematics, vol. 307, pp. 739-747, 2007.

[5] Coolsaet, K. and Sticker, H., "A full classification of the complete \(k \)-arcs of PG(2,23) and PG(2,25)," Journal of Combinatorial Designs, vol. 17, no. 6, pp. 459-477, 2009.

[6] Hirschfeld, J. W. P., Projective geometries over finite fields, 2nd edition.: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.

[7] Thomas, A. D. and Wood, G. V., Group tables. Shiva Mathematics Series; 2: Shiva Publishing Ltd, 1980.

[8] Lidl, R. and Niederreiter, H., Finite fields, 2nd edition.: Cambridge, 1997.

[9] Al-Zangana, E. B. and Shehab, E. A., "Classification of \(k \)-sets in PG(1,25), for \(k = 4, ..., 13 \)" Iraqi Journal of Science, vol. 59, no. 1B, pp. 360-368, 2018.