Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In this paper we propose Geometric SMOTE (G-SMOTE) as a generalization of the SMOTE data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of the input space, around each selected minority instance. While in the basic configuration this region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid and finally to a line segment, emulating, in the last case, the SMOTE mechanism. The performance of G-SMOTE is compared against multiple standard oversampling algorithms. We present empirical results that show a significant improvement in the quality of the generated data when G-SMOTE is used as an oversampling algorithm.

1 Introduction

Learning from imbalanced data is a non trivial and important problem for the research community and the industry practitioners [Chawla et al., 2003]. An imbalanced learning problem is defined as a classification task for binary or multi-class datasets where a significant asymmetry exists between the number of instances for the various classes. The dominant class is called the majority class while the rest of the classes are called the minority classes [Chawla et al., 2003]. The Imbalance Ratio (IR), defined as the ratio between the majority class and each of the minority classes, depends on the type of application and for binary problems values between 100 and 100.000 have been observed [Chawla et al., 2002], [Barua et al., 2014].

Multiple real-world applications are connected to imbalanced data. Examples include medical diagnosis, information retrieval systems, fraud detection, detection of oil spills in radar images, direct marketing, automatic classification of land use and land cover in remote sensing images, detection of rare particles in experimental high-energy physics, telecommunications management and bioinformatics [Rehan et al., 2004], [He and Garcia, 2009], [Clearwater and Stern, 1991], [Graves et al., 2016], [Verbeke et al., 2012], [Zhao et al., 2008]. Standard learning methods induce a bias in favor of the majority class. Specifically, during the training phase, the minority classes contribute less to the minimization of the objective
function. Also the distinction between noisy and minority class instances is often difficult. The result is that the performance of the classifiers, evaluated on metrics appropriate for imbalanced data, is low. An important observation is that in many of these applications the misclassification cost of the minority classes is often higher than the misclassification cost of the majority class [Domingos, 1999], [Ting, 2002]. Therefore the methods that address the class imbalance problem aim to increase the classifier’s accuracy for the minority classes.

There are three main approaches to deal with the class imbalance problem [Fernández et al., 2013]. The first is the modification or creation of algorithms that reinforce the learning towards the minority class. The second approach is the application of cost-sensitive methods at the data or algorithmic level in order to minimize higher cost errors. The third and more general approach is the modification at the data level by re-balancing the class distribution through under-sampling, over-sampling or hybrid methods.

Our focus in this paper is oversampling techniques, which result in the generation of artificial data for the minority class. Standard oversampling methods, inspired by Synthetic Minority Oversampling Technique (SMOTE) algorithm [Chawla et al., 2002], generate synthetic samples along the line segment that joins minority class samples. Contrary to this, the approach proposed in this paper, G-SMOTE, selects a minority class instance, as well either a majority or a minority sample, and defines a flexible geometric region around it. The flexibility of the geometric boundaries is controlled by an appropriate parametrization of the algorithm.

For the evaluation of G-SMOTE as an oversampling method an experimental analysis is performed, based on various publicly available datasets from Machine Learning Repository. Then the proposed method is compared to SMOTE algorithm, Borderline SMOTE [Han et al., 2005] and ADASYN [He et al., 2008]. For the classification of the binary class data two classifiers and three evaluation metrics are applied.

The sections in the paper are organized as follows. In section 2, an overview of related previous works and existing sampling methods is given. In Section 3, the motivation for G-SMOTE is presented, while section 4 describes the proposed method in detail. In section 5 the experimental results are presented and conclusions from their analysis are provided in section 6.

2 Related work

In this section we provide a short review of the oversampling methods. A review of the other methods can be found in [Galar et al., 2012], [Chawla, 2005]. Oversampling methods generate synthetic examples for the minority class and add them to the training set. The simplest approach, Random Oversampling, duplicates randomly selected minority class instances. The disadvantage of this approach is that the exact replication of training examples can increase the risk of overfitting since the classifier is exposed to the same information.

An alternative approach that aims to eliminate this problem and generate new data is SMOTE. Synthetic data are generated along the line segment that joins minority class samples. SMOTE has the disadvantage that, since the separation between majority and minority class clusters is not often clear, noisy samples may be generated [He and Garcia, 2009]. To avoid this scenario various modifications of SMOTE have been proposed. SMOTE + Edited Nearest Neighbor [Batista et al., 2004] combination applies the edited nearest neighbor rule [Wilson, 1972] after the generation of artificial examples through SMOTE to remove any misclassified instances, based on the classification by its three nearest neighbors. Safe-Level SMOTE [Bunkhumpornpat et al., 2009] modifies the SMOTE algorithm by applying a weight degree, the safe level, in the data generation process. Borderline-SMOTE [Han et al., 2005], MWMOTE (Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning) [Barua et al., 2007]
ADASYN and its variation KernelADASYN [Tang and He, 2015] aim to avoid the generation of noisy samples by identifying the borderline instances of the majority and minority classes that in turn are used to identify the informative minority class samples.

The methods above address the problem of between-class imbalance [Nekooeimehr and Lai-Yuen, 2016]. Another type of problem is the within-class imbalance [Nekooeimehr and Lai-Yuen, 2016], [Bunkhumpornpat et al., 2012], [Cieslak and Chawla, 2008], [Jo and Japkowicz, 2004]. i.e. when sparse or dense sub-clusters of minority or majority instances exist. Clustering based oversampling methods that deal with the between-class imbalance problem have recently been proposed. These methods are initially partitioning the input space and then apply sampling methods in order to adjust the size of the various clusters. Cluster-SMOTE [Cieslak et al., 2006] applies the k-means algorithm and then generates artificial data by applying SMOTE in the clusters. Similarly DBSMOTE [Bunkhumpornpat et al., 2012] uses the DB-SCAN algorithm to discover arbitrarily shaped clusters and generates synthetic instances along a shortest path from each minority class instance to a pseudo-centroid of the cluster. A-SUWO [Nekooeimehr and Lai-Yuen, 2016] creates clusters of the minority class instances with a size, which is determined using cross validation and generates synthetic instances based on a proposed weighting system. SOMO [Douzas and Bacao, 2017] creates a two dimensional representation of the input space and based on it, applies the SMOTE procedure to generate intra-cluster and inter-cluster synthetic data that preserve the underlying manifold structure.

Other types of oversampling approaches are based on ensemble methods [Wang et al., 2015], [Sun et al., 2015] such as SMOTEBoost [Chawla et al., 2003] and DataBoost-IM [Guo and Viktor, 2004]. Finally a different type of oversampler is based on the Conditional Generative Adversarial Networks [Douzas and Bacao, 2017]. Contrary to the previous methods, this method aims to approximate the true data distribution and generate data for the minority class.

3 Motivation

In the previous section various informative oversampling methods were presented as effective way to re-balance the data distribution. However, there are scenarios where SMOTE and its variations may encounter a variety of problems. This section describe some of these cases and motivates the proposed G-SMOTE algorithm. Some of the inefficiencies of the SMOTE based algorithms are the following:

1. Generation of noisy examples that penetrate in the area of the majority class examples.

SMOTE, as well as many other methods, applies the k-nearest neighbor approach during the sample generation phase. In order to generate an artificial example x_{gen} from an existing minority class example x, first the kNN approach randomly selects another minority class sample x' from the k-nearest neighbors of x. Then x_{gen} is generated by using a linear interpolation of x and x' which can be expressed as $x_{gen} = x + \alpha \cdot (x' - x)$, where α is a random number drawn from the uniform distribution in the $[0, 1]$ interval. Thus x_{gen} lies in the line segment between x and x'. Nevertheless, the appropriate value of k cannot be determined in advance and the results of oversampling are sensitive to it, as is shown in the next examples. A large value can result in the generation of noisy samples since x' might be a noisy sample that has penetrated in the majority class area as is shown in Fig. 1. Even a small value of k does not always avoid the above scenario since x might already be a noisy sample. This scenario can also be seen in Fig. 2. The generation of noisy samples can reduce the accuracy of predictions for both the minority and majority classes [Kotsiantis et al., 2006].
As was mentioned above a small value of k can be chosen in order to avoid the generation of noisy samples. Another approach is to generate a new instance between a selected observation and one of its neighbors from the same cluster [Barua et al., 2014]. Both of these choices have the consequence that the generation of synthetic examples might occur in dense minority class areas as is shown in Fig. 3. These samples are less useful because they do not add any new information to the imbalanced data set.
and may lead to overfitting. Thus it is desirable to expand the data generation process in areas where minority examples are absent. Fig. 4 presents a scenario where the number of \(k \)-nearest neighbors is increased in order to generate two inter-cluster instances. This attempt results in the generation of a noisy instance.

Figure 3: An instance belonging to a minority class cluster and one of its 5-nearest neighbors are selected. An observation belonging to the same cluster is generated.

Figure 4: An attempt to generate intercluster instances by increasing the number of \(k \)-nearest neighbors of the selected instances. One of the generated instances penetrates in the majority class area.
4 The proposed method

In the previous section some insufficiencies of the existing methods that may apply in various cases were described. We propose a novel data generation procedure, G-SMOTE, which is an extension of the SMOTE algorithm and has three main objectives:

1. To define a safe area around each selected minority class instance such that the generated artificial minority instances inside this area are not noisy.

2. To increase the variety of generated samples by expanding the minority class area.

3. To parametrize the above characteristics based on a small number of transformations with a geometrical interpretation.

4.1 G-SMOTE algorithm

The complete algorithm in pseudo-code is the following:

Algorithm

\[G \text{-} \text{SMOTE}\left(S_{maj}, S_{min}, N, k, \alpha_{trunc}, \alpha_{def}, \alpha_{sel}\right) \]

Inputs

1. \(S_{maj} \): Set of majority class samples.

2. \(S_{min} \): Set of minority class samples.

3. \(N \): Total number of synthetic samples to be generated.

4. \(k \): Number of nearest neighbors.

5. \(\alpha_{trunc} \): Truncation factor with \(-1 \leq \alpha_{trunc} \leq 1\).

6. \(\alpha_{def} \): Deformation factor with \(0 \leq \alpha_{def} \leq 1\).

7. \(\alpha_{sel} \): Neighbor selection strategy with \(\alpha_{sel} \in \{\text{minority, majority, combined}\}\).

Procedure begin

1. Shuffle \(S_{min} \)

2. Repeat until \(N \) minority instances are selected, each multiple times if necessary, in the order that appear in \(S_{min} \):

 2.1. Let \(x_{center} \in S_{min} \) the selected minority class instance of \(p \) components.

 2.2. If \(\alpha_{sel} = \text{minority} \):
2.2.1. Calculate the k nearest neighbors of x_{center} from S_{min}. Let x_{surface} one of them, randomly selected.

2.2.2. Calculate a radius from the relation $R \leftarrow d(x_{\text{center}}, x_{\text{surface}})$.

2.3. Else if $\alpha_{\text{sel}} = \text{majority}$:

2.3.1. Calculate x_{surface} as the nearest neighbor of x_{center} from S_{maj}.

2.3.2. Calculate a radius from the relation $R \leftarrow d(x_{\text{center}}, x_{\text{surface}})$.

2.4. Else if $\alpha_{\text{sel}} = \text{combined}$:

2.4.1. Calculate the k nearest neighbors of x_{center} from S_{min}. Let x_{min} one of them, randomly selected.

2.4.2. Calculate the euclidean distance $d_{\text{min}} \leftarrow d(x_{\text{center}}, x_{\text{min}})$.

2.4.3. Calculate x_{maj} as the nearest neighbor of x_{center} from S_{maj}.

2.4.4. Calculate the euclidean distance $d_{\text{maj}} \leftarrow d(x_{\text{center}}, x_{\text{maj}})$.

2.4.5. Calculate a radius from the relation $R \leftarrow d(x_{\text{center}}, x_{\text{surface}})$ where $x_{\text{surface}} \leftarrow \arg\min_{x_{\text{min}}, x_{\text{maj}}} (d_{\text{min}}, d_{\text{maj}})$.

2.5. Generate a synthetic sample $x_{\text{gen}} \leftarrow \text{hyperball}(\text{center}=0, \text{radius}=1)$.

2.6. Transform1 the synthetic sample by $x_{\text{gen}} \leftarrow \text{truncate}(x_{\text{gen}}, x_{\text{center}}, x_{\text{surface}}, \alpha_{\text{trunc}})$.

2.7. Transform2 the synthetic sample by $x_{\text{gen}} \leftarrow \text{deform}(x_{\text{gen}}, x_{\text{center}}, x_{\text{surface}}, \alpha_{\text{def}})$.

2.8. Transform3 the synthetic sample by $x_{\text{gen}} \leftarrow \text{translate}(x_{\text{gen}}, x_{\text{center}}, R)$.

2.9. Add the sample x_{gen} to the set of generated samples S_{gen}.

Output

The set S_{gen} of generated synthetic examples.

Geometric functions1,2,3

Definitions for truncate and deform functions:

Define the unit vector $e_{//} \leftarrow \frac{x_{\text{surface}} - x_{\text{center}}}{\|x_{\text{surface}} - x_{\text{center}}\|}$ (1).

Define the projection of x_{gen} to $e_{//}$ as $x_{//} = x_{\text{gen}} \cdot e_{//}$ where \cdot is the euclidean dot product.

Define $x_{//} \leftarrow x_{//} e_{//}$ (2) and $x_{\bot} \leftarrow x_{\text{gen}} - x_{//}$.

Function $\text{hyperball}(\text{center}=0, \text{radius}=1)$:

\[\text{Output} \]

The set S_{gen} of generated synthetic examples.

Geometric functions1,2,3

Definitions for truncate and deform functions:

Define the unit vector $e_{//} \leftarrow \frac{x_{\text{surface}} - x_{\text{center}}}{\|x_{\text{surface}} - x_{\text{center}}\|}$ (1).

Define the projection of x_{gen} to $e_{//}$ as $x_{//} = x_{\text{gen}} \cdot e_{//}$ where \cdot is the euclidean dot product.

Define $x_{//} \leftarrow x_{//} e_{//}$ (2) and $x_{\bot} \leftarrow x_{\text{gen}} - x_{//}$.

Function $\text{hyperball}(\text{center}=0, \text{radius}=1)$:
Generate a vector \(\mathbf{v}_{\text{normal}} \leftarrow (v_1, \ldots, v_p) \) of \(p \) random numbers from the normal distribution \(N(0,1) \).

Calculate the unit vector \(\mathbf{e}_{\text{sphere}} \leftarrow \frac{\mathbf{v}_{\text{normal}}}{|\mathbf{v}_{\text{normal}}|} \) (3) where \(|\cdot| \) is the euclidean norm.

Calculate the vector \(\mathbf{x}_{\text{gen}} \leftarrow r^{1/p}\mathbf{e}_{\text{sphere}} \) (4) where \(r \) is a random number from the uniform distribution \(U(0,1) \).

Return \(\mathbf{x}_{\text{gen}} \).

Function 1 \textit{truncate}(\(\mathbf{x}_{\text{gen}}, \mathbf{x}_{\text{center}}, \mathbf{x}_{\text{surface}}, \alpha_{\text{trun}} \)):

\[
\text{If } \mathbf{x}_{\text{surface}} \neq \mathbf{x}_{\text{center}}:\n\text{If } |\alpha_{\text{trun}} - x//| > 1 : \quad (5) \\
\text{Assign } \mathbf{x}_{\text{gen}} \leftarrow \mathbf{x}_{\text{gen}} - 2x// \quad (6).
\]

Return \(\mathbf{x}_{\text{gen}} \).

Function 2 \textit{deform}(\(\mathbf{x}_{\text{gen}}, \mathbf{x}_{\text{center}}, \mathbf{x}_{\text{surface}}, \alpha_{\text{dist}} \)):

\[
\text{If } \mathbf{x}_{\text{surface}} \neq \mathbf{x}_{\text{center}}:\n\text{Assign } \mathbf{x}_{\text{gen}} \leftarrow \mathbf{x}_{\text{gen}} - \alpha_{\text{def}}x_\perp \quad (7).
\]

Return \(\mathbf{x}_{\text{gen}} \).

Function 3 \textit{translate}(\(\mathbf{x}_{\text{gen}}, \mathbf{x}_{\text{center}}, R \)):

\[
\text{Return } \mathbf{x}_{\text{center}} + R \cdot \mathbf{x}_{\text{gen}} \quad (8).
\]

4.2 Details and justification of the G-SMOTE algorithm

As explained above, SMOTE compared to Random Oversampling, improves the diversity of generated samples by linearly interpolating generated samples between two minority class instances. However on high-dimensional data SMOTE does not change the class-specific mean values while it decreases the data variability and it introduces correlation between samples [Blagus and Lusa, 2013]. Contrary to this, G-SMOTE extends the linear interpolation mechanism by introducing a geometric region where the data generation process occurs. At the most general choice of hyper-parameters, this geometric region of the input space is a truncated hyper-spheroid. The various steps of the G-SMOTE algorithm can be described in detail as follows:

1, 2: The data are shuffled and the process described below is repeated \(N \) times until \(N \) artificial points have been generated.

2.1: A minority class instance \(\mathbf{x}_{\text{center}} \) is selected as the center of a geometric region. The order of selection follows the order of the data set points after shuffling in step 1. Therefore if \(N \) is greater than \(S_{\text{min}} \), then some of the minority class samples will be selected more than once.
2.2: In this case the neighbor selection strategy is based only on the minority class and it is identical to the selection strategy of SMOTE. Initially the k nearest neighbors of x_{center} from the set S_{min} are identified. One of them, $x_{surface}$, is randomly selected and its distance from x_{center} is defined as the radius R. Fig. 5 presents an example of a minority class instance selection among the $k = 4$ nearest neighbors of x_{center}. The time complexity of this selection strategy depends on the choice of the algorithm and increases with the dimensionality of the input space as well as the value of the k parameter [Vaidya, 1989]. Therefore for a wide set of realistic cases restricting the search of nearest neighbors to the minority class has a lower computational cost than including the majority class instances in the search space.

![Diagram showing the minority selection strategy](image)

Figure 5: An example of the minority selection strategy. A minority class instance is defined as the center of the hyper-spheroid and one of its $k = 4$ minority class nearest neighbors is selected as the surface point. Their distance is equal to the radius R of the hyper-spheroid.

2.3: As explained in section 3, one of the drawbacks of the minority selection strategy is that it may lead to the generation of data penetrating deeply in the majority class area. The majority selection strategy eliminates this scenario. More specifically, the nearest neighbour of x_{center} from the set S_{maj} is identified as $x_{surface}$ and its distance from x_{center} is defined as the radius R. The consequence of this selection is that when a random minority class point is generated inside this radius, it is ensured that its distance from x_{center} is not higher than the distance between x_{center} and any majority class instance. On the other hand, since any information about the minority class is discarded, this strategy might aggressively expand the minority class area, resulting effectively to noise generation. Fig. 6 presents an example of the nearest majority class instance selection among the majority class neighbors of x_{center}. A disadvantage of the majority selection strategy is that the computational cost compared to the minority selection strategy may be higher, especially for datasets with high IR values.
Figure 6: An example of the majority selection strategy. A minority class instance is defined as the center of the hyper-spheroid and its closest majority class neighbor is selected as the surface point. Their distance is equal to the hyper-spheroid radius R.

2.4: The combined selection strategy initially applies the minority and majority selection strategies, identifying x_{min} and x_{maj} as the selected minority and majority class instances, respectively. The surface point x_{surface} is defined to be either x_{min} or x_{maj} so that its distance from the center x_{center} is minimized. This minimum distance is set equal to the radius R of the (truncated) hyper-spheroid with symmetry axis in the $x_{\text{surface}} - x_{\text{center}}$ direction. Fig. 7 and fig.8 present both of these scenarios i.e. when x_{surface} is identified either as a minority or majority class instance. In any case since $R \leq d_{\text{maj}}$ and the generation of artificial samples will occur in a distance d from x_{center} with $d \leq R$, the above definitions imply that $d \leq d_{\text{maj}}$. Therefore following the combined selection strategy, the expansion of the minority class area relative to the selected as a center minority class sample is restricted by the nearest majority class neighbor of the center, ensuring that the generation of noisy samples is avoided. Contrary to pure majority selection strategy, the expansion is not only safe but it is further restricted by the presence of minority class instances. The drawback of the combined, similarly to the majority selection strategy, is that it has a higher computational cost compared to the SMOTE/minority selection strategy.
Figure 7: A minority class sample is defined as the surface point since it is closer to the center than the nearest majority class instance.

Figure 8: The closest to the center majority class sample is defined as the surface point since it is closer to the center than the selected instance from the k nearest minority class neighbors of the center.

2.5: This step starts the data generation process. A random point e_{sphere} is generated on the surface of a unit hyper-sphere centered at the origin of the input space, using equation (3). Applying equation (4), the point e_{sphere} is transformed to a random generated point x_{gen} inside the unit hyper-sphere. The final result of this process is a random generated point, uniformly distributed, within the unit hyper-sphere [DasGupta, 2011]. Fig. 9 shows an example of this process in two dimensions.
2.6: In this step a transformation is applied to the generated point x_{gen}.

We observe that the center x_{center} and the selected surface point $x_{surface}$ define a special direction in the input space which is represented by the unit vector $e//$, of equation (1). SMOTE mechanism, in the case where the surface point is a minority class instance, exploits this direction by generating synthetic samples at the line segment between x_{center} and $x_{surface}$. G-SMOTE algorithm parametrizes a generalized version of the SMOTE mechanism. More specifically, the unit vector $e//$ defines a family of parallel hyper-planes which are perpendicular to it. We define a linear mapping between α_{trunc} and the point determined by the intersection of each hyper-plane and the parallel to $e//$ diameter. Therefore each one of these hyper-planes corresponds to a particular value of α_{trunc} and partitions the hyper-sphere interior in to two areas. Let P the hyper-plane that passes through the origin and P' the hyper-plane for a specific non-zero value of α_{trunc}. When $\alpha_{trunc} > 0$, the area that does not include the $e//$, point is truncated from the interior of the hyper-sphere, in the sense that if the x_{gen} point belongs to it then it is mapped with respect to P to the symmetric point $x_{gen} - 2x//$, of equation (6), where $x//$ is defined in equation (2). Condition (5) checks if the x_{gen} is in the truncated area. Fig. 10 shows an example of the above transformation. When $\alpha_{trunc} < 0$, the transformation is similarly defined but in this case the truncation occurs in the area that includes the $e//$ point. In both cases, the absolute value of the hyper-parameter α_{trunc} controls the extent of the truncation. Fig. 11 presents the truncated hyper-sphere areas for various positive and negative values of α_{trunc}. A final observation is that the above transformation effectively corresponds to a modification of the initial uniform probability distribution in the hyper-sphere. The truncated area acquires a zero value for the p.d.f., while its P-symmetric mapped area doubles its initial p.d.f. value.
2.7: This step describes a transformation that corresponds to the deformation of the hyper-sphere into a hyper-spheroid. More concretely, the point x_{gen} is moved to a perpendicular direction to the unit vector $e_{//}$, towards the parallel to $e_{//}$ diameter. This mapping is controlled by the α_{def} hyper-parameter and from equation (7) changes linearly with it. Therefore any point located at the surface of the hyper-sphere will remain to the surface of the new boundary while all the axes, except the one defined by the $e_{//}$ unit vector, rescale by the factor α_{def}. This effectively corresponds to the formation of a hyper-spheroid boundary with symmetry axis at the $e_{//}$ direction. Similarly to the truncation,
the deformation transformation further modifies the initially uniform probability distribution. Fig. 12 presents a deformation of the unit hyper-sphere and the resulting mapping of the \(x_{\text{gen}} \) point. Fig. 13 shows the effect of increasing the \(\alpha_{\text{def}} \) values on the hyper-sphere deformation.

![Diagram](image)

Figure 12: A *deform* transformation is applied and the generated point is mapped to a new point towards the diameter of the hyper-sphere.

![Diagram](image)

Figure 13: The effect of increasing \(\alpha_{\text{def}} \) on the hypersphere deformation. The last case corresponds to a line segment.

2.8: The final step of the algorithm is the translation of the generated point by the \(x_{\text{center}} \) vector and the rescaling by the value of the radius \(R \). The combined result of this two transformations is described in equation (8). Fig. 14 and fig. 15 show the resulting boundaries of the permissible data generation.
area as well as a random generated point x_{center}, of the two different scenarios presented in fig. 7 and fig. 8, after the application of truncation, deformation and translation.

Figure 14: Boundaries of permissible data generation area for the scenario of fig 7.

Figure 15: Boundaries of permissible data generation area for the scenario of fig 8.

5 Research methodology

In order to test the performance of G-SMOTE we used 13 imbalanced data sets from the Machine Learning Repository UCI which have diverse characteristics. Table 1 shows a summary of these data
The performance of G-SMOTE was evaluated and compared against the following oversampling methods: SMOTE, Borderline SMOTE1, Borderline SMOTE2 and ADASYN. Since total accuracy is not appropriate for imbalanced datasets F-measure, G-mean and Area Under the ROC Curve (AUC) are used [He and Garcia, 2009].

A ranking score was applied to each oversampling method for every combination of the 13 data sets, 3 evaluation metrics and 2 classifiers. Additionally to the 5 oversampling algorithms we also included the performance of the classifiers when no oversampling is used. Therefore the ranking score for the best performing method is 1 and for the worst performing method is 6. The Friedman test was applied to the ranking results. Generally the Friedman test is used to detect differences in the results across multiple experimental attempts, when the normality assumption may not hold. The null hypothesis is whether the classifiers have a similar performance across the oversampling methods and evaluation metrics when they are compared to their mean rankings.

For the evaluation of the oversampling methods, Logistic Regression (LR) [McCullagh and Nelder, 1989] and Gradient Boosting Classifier (GBC) [Friedman, 2001] were used. In order to evaluate the performance of the algorithms n-fold cross validation was applied with n = 5. Before training, in each stage \(i \in \{1, 2, ..., n\} \) of the n-fold cross validation procedure, synthetic data \(T_{g,i} \) were generated based on the training data \(T_i \) of the \(n-1 \) folds such that the resulting \(T_{g,i} \cup T_i \) training set becomes perfectly balanced. This enhanced training set in turn was used to train the classifier. The performance evaluation of the classifiers was done on the validation data \(V_i \) of the remaining fold.

A variety of hyper-parameters were used for the classifiers and the over-samplers, and the highest cross validation score for each combination of datasets, classifiers, over-samplers and evaluation metrics was reported. More specifically, the GBC hyper-parameter grid included the four combinations resulting from \(\text{max depth} \in \{5, 8\} \) and \(\text{number of estimators} \in \{50, 100\} \). For SMOTE and the two kinds of Borderline SMOTE, the optimal value of \(k \) nearest neighbors was selected as \(k \in \{3, 4\} \), while for ADASYN the same value was set to \(k = 3 \). Finally a hyper-parameter grid was generated for G-SMOTE including the three different selection strategies, the number of nearest neighbors \(k \in \{3, 4\} \), the truncation factor \(\alpha_{\text{trunc}} \in \{-1.0, 0.0, 0.5, 1.0\} \) and the deformation factor \(\alpha_{\text{def}} \in \{0.0, 0.5, 1.0\} \).

The experimental procedure was repeated 5 times and the reported results include the average values between the experiments. The implementation of the classifiers and standard oversampling algorithms

Dataset name	Features	Instances	Minority	Majority	Imbalance Ratio
Breast	9	106	36	70	1.94
Ecoli	7	336	52	284	5.46
Eucalyptus	8	642	98	544	5.55
Glass	9	214	70	144	2.06
Haberman	3	306	81	225	2.78
Heart	13	270	120	150	1.25
Iris	4	150	50	100	2.00
Libra	90	360	72	288	4.00
Liver	6	345	145	200	1.38
Pima	8	768	268	500	1.87
Segment	16	2310	330	1980	6.00
Vehicle	18	846	199	647	3.25
Wine	13	178	71	107	1.51

Table 1: Description of the datasets.
6 Experimental results

The cross validation results for each combination of datasets, classifiers, over-samplers and metrics are shown in Table 2:

Dataset	Classifier	Metric	No over-sampling	SMOTE	Borderline SMOTE1	Borderline SMOTE2	ADASYN	Geometric SMOTE
Breast	GBC	F	0.700	0.715	0.727	0.705	0.673	0.722
Breast	GBC	G	0.770	0.780	0.795	0.774	0.748	0.789
Breast	GBC	AUC	0.867	0.867	0.867	0.867	0.858	0.874
Breast	LR	F	0.687	0.732	0.747	0.734	0.730	0.748
Breast	LR	G	0.752	0.799	0.812	0.803	0.798	0.812
Breast	LR	AUC	0.884	0.890	0.888	0.889	0.889	0.896
Ecoli	GBC	F	0.781	0.777	0.773	0.770	0.662	0.821
Ecoli	GBC	G	0.868	0.872	0.868	0.862	0.861	0.904
Ecoli	GBC	AUC	0.948	0.945	0.945	0.940	0.937	0.960
Ecoli	LR	F	0.249	0.716	0.682	0.641	0.473	0.718
Ecoli	LR	G	0.378	0.894	0.885	0.870	0.759	0.900
Ecoli	LR	AUC	0.934	0.935	0.929	0.924	0.896	0.936
Eucalyptus	GBC	F	0.551	0.526	0.540	0.535	0.506	0.549
Eucalyptus	GBC	G	0.682	0.699	0.703	0.714	0.688	0.730
Eucalyptus	GBC	AUC	0.878	0.869	0.872	0.87	0.841	0.874
Eucalyptus	LR	F	0.207	0.529	0.530	0.513	0.468	0.540
Eucalyptus	LR	G	0.399	0.790	0.787	0.785	0.757	0.797
Eucalyptus	LR	AUC	0.857	0.886	0.883	0.879	0.870	0.890
Glass	GBC	F	0.779	0.774	0.774	0.774	0.758	0.792
Glass	GBC	G	0.831	0.830	0.833	0.836	0.822	0.846
Glass	GBC	AUC	0.924	0.920	0.918	0.919	0.911	0.929
Glass	LR	F	0.505	0.657	0.648	0.651	0.650	0.661
Glass	LR	G	0.613	0.733	0.715	0.714	0.719	0.734
Glass	LR	AUC	0.824	0.825	0.814	0.818	0.819	0.825
Haberman	GBC	F	0.339	0.393	0.388	0.385	0.376	0.426
Haberman	GBC	G	0.505	0.558	0.551	0.549	0.542	0.584
Haberman	GBC	AUC	0.627	0.637	0.641	0.636	0.619	0.668
Haberman	LR	F	0.239	0.477	0.485	0.481	0.418	0.484
Haberman	LR	G	0.376	0.622	0.632	0.628	0.578	0.628
Haberman	LR	AUC	0.686	0.693	0.688	0.684	0.650	0.694
Heart	GBC	F	0.745	0.750	0.753	0.754	0.739	0.761
Heart	GBC	G	0.771	0.775	0.776	0.779	0.765	0.781
Heart	GBC	AUC	0.859	0.862	0.864	0.864	0.856	0.868
Heart	LR	F	0.822	0.822	0.823	0.824	0.820	0.826
Heart	LR	G	0.840	0.840	0.841	0.841	0.837	0.843
Heart	LR	AUC	0.902	0.903	0.901	0.900	0.901	0.903
Iris	GBC	F	0.923	0.937	0.915	0.922	0.911	0.939
Iris	GBC	G	0.944	0.954	0.939	0.945	0.940	0.956
Iris	GBC	AUC	0.980	0.985	0.978	0.984	0.972	0.988
Iris	LR	F	0.334	0.648	0.637	0.636	0.674	0.657
Iris	LR	G	0.453	0.731	0.715	0.712	0.752	0.739
Iris	LR	AUC	0.793	0.792	0.747	0.745	0.803	0.801
Libra	GBC	F	0.780	0.850	0.839	0.876	0.786	0.924
Libra	GBC	G	0.821	0.890	0.875	0.915	0.847	0.946
Libra	GBC	AUC	0.943	0.969	0.962	0.976	0.931	0.987
Libra	LR	F	0.316	0.575	0.512	0.475	0.631	0.565
Libra	LR	G	0.432	0.742	0.686	0.659	0.779	0.738
Table 2: Cross validation score results for all combinations of datasets, classifiers, metrics and over-samplers.

Dataset	Classifier	Metric	No oversampling	SMOTE	Borderline SMOTE1	Borderline SMOTE2	ADASYN	Geometric SMOTE
Libra	LR	AUC	0.737	0.766	0.733	0.708	0.776	0.765
Liver	GBC	F	0.636	0.630	0.639	0.644	0.642	0.657
Liver	GBC	G	0.688	0.681	0.687	0.693	0.686	0.701
Liver	GBC	AUC	0.753	0.752	0.755	0.754	0.756	0.758
Liver	LR	F	0.579	0.633	0.622	0.629	0.626	0.640
Liver	LR	G	0.644	0.669	0.658	0.661	0.650	0.669
Liver	LR	AUC	0.713	0.712	0.707	0.709	0.710	0.715
Pima	GBC	F	0.623	0.651	0.654	0.652	0.644	0.659
Pima	GBC	G	0.704	0.728	0.731	0.729	0.722	0.734
Pima	GBC	AUC	0.812	0.811	0.806	0.806	0.800	0.822
Pima	LR	F	0.617	0.675	0.675	0.674	0.676	0.677
Pima	LR	G	0.692	0.748	0.747	0.746	0.747	0.749
Pima	LR	AUC	0.825	0.827	0.825	0.824	0.824	0.830
Segment	GBC	F	0.925	0.927	0.912	0.887	0.856	0.934
Segment	GBC	G	0.941	0.967	0.961	0.960	0.956	0.970
Segment	GBC	AUC	0.996	0.997	0.995	0.994	0.990	0.997
Segment	LR	F	0.648	0.645	0.634	0.622	0.552	0.640
Segment	LR	G	0.749	0.881	0.881	0.888	0.850	0.881
Segment	LR	AUC	0.942	0.942	0.930	0.923	0.922	0.944
Vehicle	GBC	F	0.923	0.927	0.929	0.925	0.923	0.935
Vehicle	GBC	G	0.951	0.958	0.958	0.961	0.962	0.969
Vehicle	GBC	AUC	0.994	0.994	0.995	0.994	0.993	0.995
Vehicle	LR	F	0.940	0.941	0.940	0.895	0.816	0.940
Vehicle	LR	G	0.961	0.968	0.967	0.958	0.924	0.969
Vehicle	LR	AUC	0.995	0.995	0.995	0.992	0.983	0.995
Wine	GBC	F	0.911	0.908	0.912	0.907	0.875	0.933
Wine	GBC	G	0.925	0.923	0.927	0.922	0.898	0.943
Wine	GBC	AUC	0.979	0.978	0.978	0.975	0.965	0.986
Wine	LR	F	0.928	0.935	0.939	0.937	0.898	0.938
Wine	LR	G	0.941	0.947	0.951	0.950	0.918	0.951
Wine	LR	AUC	0.992	0.992	0.991	0.992	0.985	0.993

Table 3: Results for mean ranking of over-samplers across the datasets.

As explained in section 5, for every row of table 2, a ranking score in the range 1 to 6 is assigned to each over-sampler. Then the mean ranking of the oversampling methods across the data sets for each combination of a classifier and evaluation metric is presented in Table 3:

Classifier	Metric	No oversampling	SMOTE	Borderline SMOTE1	Borderline SMOTE2	ADASYN	Geometric SMOTE
GBC	F	4.08	3.38	3.23	3.69	5.46	1.15
GBC	G	4.85	3.46	3.31	3.15	5.15	1.08
GBC	AUC	3.38	3.46	3.54	3.77	5.69	1.15
LR	F	5.08	2.92	3.15	3.85	4.31	1.69
LR	G	5.62	2.85	3.00	3.62	4.31	1.62
LR	AUC	3.46	2.38	4.54	4.92	4.46	1.23

Table 4: Results for the application of the Friedman test.

The results of the application of the Friedman test are shown in Table 4:
Table 4: Results for Friedman's test.

Therefore at a significance level of $a = 0.05$ the null hypothesis is rejected, i.e. the classifiers do not perform similarly in the mean rankings across the oversampling methods and evaluation metrics. Additionally from the mean ranking results of table 3 we conclude that G-SMOTE performs better than the other oversampling methods.

7 Conclusions

In this paper we presented G-SMOTE, a new oversampling algorithm, that extends the SMOTE data generation mechanism. G-SMOTE selects a safe radius around each minority class instance and generates artificial data within a (truncated) hyper-spheroid. G-SMOTE performance was evaluated on 13 datasets with different imbalance ratios and compared to multiple oversampling methods, using Logistic Regression and Gradient Boosting Machine as classifiers.

The results show that G-SMOTE performs better compared to the other methods. The explanation for this improvement in performance relates to the ability of G-SMOTE to generate a variety of artificial data in safe areas of the input space, while, at the same time, aggressively increasing the diversity of the minority class. G-SMOTE parametrizes efficiently the data generation process and adapts to the special characteristics of each imbalanced dataset.

G-SMOTE can be a useful tool for researchers and practitioners since it results in the generation of high quality artificial data and only requires the tuning of a small number of parameters.

References

[Barua et al., 2014] Barua, S., Islam, M. M., Yao, X., and Murase, K. (2014). MWMOTE - Majority weighted minority oversampling technique for imbalanced data set learning. *IEEE Transactions on Knowledge and Data Engineering*, 26(2):405–425.

[Batista et al., 2004] Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. *ACM SIGKDD Explorations Newsletter - Special issue on learning from imbalanced datasets*, 6(1):20–29.

[Blagus and Lusa, 2013] Blagus, R. and Lusa, L. (2013). SMOTE for high-dimensional class-imbalanced data. *BMC Bioinformatics*, 14(1):106.

[Bunkhumpornpat et al., 2009] Bunkhumpornpat, C., Sinapiromsaran, K., and Lursinsap, C. (2009). Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem. In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, volume 5476 LNAI, pages 475–482.

[Bunkhumpornpat et al., 2012] Bunkhumpornpat, C., Sinapiromsaran, K., and Lursinsap, C. (2012). DBSMOTE: Density-based synthetic minority over-sampling technique. *Applied Intelligence*, 36(3):664–684.

[Chawla, 2005] Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview. In *Data Mining and Knowledge Discovery Handbook*, pages 853–867. Springer-Verlag.

[Chawla et al., 2002] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. *Journal of Artificial Intelligence Research*, 16:321–357.

[Chawla et al., 2003] Chawla, N. V., Lazarevic, A., Hall, L., and Boyer, K. (2003). SMOTEBoost: improving prediction of the minority class in boosting. *Principles of Knowledge Discovery in Databases, PKDD-2003*, pages 107–119.

[Cieslak and Chawla, 2008] Cieslak, D. and Chawla, N. V. (2008). Start globally, optimize locally, predict globally: Improving performance on imbalanced data. In *Proceedings - IEEE International Conference on Data Mining, ICDM*, pages 143–152.

[Cieslak et al., 2006] Cieslak, D. A., Chawla, N. V., and Striegel, A. (2006). Combating imbalance in network intrusion datasets. In *2006 IEEE International Conference on Granular Computing*, pages 732–737.

[Clearwater and Stern, 1991] Clearwater, S. H. and Stern, E. G. (1991). A rule-learning program in high energy physics event classification. *Computer Physics Communications*, 67(2):159–182.

[DasGupta, 2011] DasGupta, A. (2011). *Probability for Statistics and Machine Learning*. Springer New York.

[Domingos, 1999] Domingos, P. (1999). MetaCost: A General Method for Making Classifiers Cost-Sensitive. *Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining*, 55:155–164.

[Douzas and Bacao, 2017] Douzas, G. and Bacao, F. (2017). Effective data generation for imbalanced learning using Conditional Generative Adversarial Networks. *Expert Systems with Applications*.

[Fernández et al., 2013] Fernández, A., López, V., Galar, M., del Jesus, M. J., and Herrera, F. (2013). Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. *Knowledge-Based Systems*, 42:97–110.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29(5):1189–1232.

[Galar et al., 2012] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2012). A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches.

[Graves et al., 2016] Graves, S., Asner, G., Martin, R., Anderson, C., Colgan, M., Kalantari, L., and Bohlman, S. (2016). Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data. *Remote Sensing*, 8(2).
[Guo and Viktor, 2004] Guo, H. and Viktor, H. L. (2004). Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach. ACM SIGKD Explorations Newsletter - Special issue on learning from imbalanced datasets, 6(1):30–39.

[Han et al., 2005] Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-SMOTE: A New Oversampling Method in Imbalanced Data Sets Learning. In Lecture Notes in Computer Science, pages 878–887. Springer Berlin Heidelberg.

[He et al., 2008] He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In Proceedings of the International Joint Conference on Neural Networks, pages 1322–1328.

[He and Garcia, 2009] He, H. and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9):1263–1284.

[Jo and Japkowicz, 2004] Jo, T. and Japkowicz, N. (2004). Class imbalances versus small disjuncts. ACM SIGKDD Explorations Newsletter, 6(1):40.

[Kotsiantis et al., 2006] Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Handling Imbalanced Datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1):25–36.

[Lemaitre et al., 2016] Lemaitre, G., Nogueira, F., and Aridas, C. K. (2016). Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of Machine Learning Research, 18:1–5.

[McCullagh and Nelder, 1989] McCullagh, P. and Nelder, J. (1989). Generalized Linear Models.

[Nekooeimehr and Lai-Yuen, 2016] Nekooeimehr, I. and Lai-Yuen, S. K. (2016). Adaptive semi-supervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications, 46:405–416.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python, volume 12.

[Rehan et al., 2004] Rehan, A., Kwek, S., and Japkowicz, N. (2004). Applying Support Vector Machine to Imbalanced Datasets. In Machine Learning: ECML 2004, pages 39–50. Springer Berlin Heidelberg.

[Sun et al., 2015] Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., and Zhou, Y. (2015). A novel ensemble method for classifying imbalanced data. Pattern Recognition, 48(5):1623–1637.

[Tang and He, 2015] Tang, B. and He, H. (2015). KernelADASYN: Kernel based adaptive synthetic data generation for imbalanced learning. In 2015 IEEE Congress on Evolutionary Computation. IEEE.

[Ting, 2002] Ting, K. M. (2002). An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE Transactions on Knowledge and Data Engineering, 14(3):659–665.

[Vaidya, 1989] Vaidya, P. M. (1989). An O(n log n) algorithm for the all-nearest-neighbors Problem. Discrete & Computational Geometry, 4(2):101–115.

[Verbeke et al., 2012] Verbeke, W., Dejaeger, K., Martens, D., Hur, J., and Baesens, B. (2012). New
Insights into Churn Prediction in the Telecommunication Sector: A Profit Driven Data Mining Approach. *European Journal of Operational Research*, 218(1):211–229.

[Wang et al., 2015] Wang, S., Minku, L. L., and Yao, X. (2015). Resampling-Based Ensemble Methods for Online Class Imbalance Learning. *IEEE Transactions on Knowledge and Data Engineering*, 27(5):1356–1368.

[Wilson, 1972] Wilson, D. L. (1972). Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. *IEEE Transactions on Systems, Man and Cybernetics*, 2(3):408–421.

[Zhao et al., 2008] Zhao, X. M., Li, X., Chen, L., and Aihara, K. (2008). Protein Classification with Imbalanced Data. *Proteins: Structure, Function and Genetics*, 70(4):1125–1132.