Introduction

Capsule polysaccharide (CPS) are fundamental virulence factors for a wide range of Gram-negative (e.g. *Klebsiella pneumoniae* and *Escherichia coli*) and Gram-positive (e.g. *Streptococcus pneumoniae* and *Staphylococcus aureus*) bacterial pathogens. Much work has been undertaken to investigate the regulation and mechanism of synthesis of this critical component of the cell, with our primary focus understanding the mechanism of regulation of the Wzy-dependent CPS of *Streptococcus pneumoniae* [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

Streptococcus pneumoniae, commonly known as the pneumococcus, is a major human pathogen responsible for significant morbidity and mortality worldwide [16]. Both management and prevention of pneumococcal disease is becoming ever more difficult due to elevated rates of antibiotic resistance and increasing evidence of serotype switching and vaccine evasion to the current vaccine [17]. The additional lack of antibiotics in the development pipeline, serotype switching and vaccine evasion to the current vaccine [17]. The elevated rates of antibiotic resistance and increasing evidence of pneumococcal disease is becoming ever more difficult due to this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with *Klebsiella pneumoniae* which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

Abstract

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including *Streptococcus pneumoniae*. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In *Streptococcus pneumoniae*, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both *in vitro* and *in vivo* at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 *S. pneumoniae*. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with *Klebsiella pneumoniae* which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

PCPs are found in the CPS loci of many other Gram-positive bacteria [28,31,32]; in the latter they are fused into one protein encoding protein-tyrosine kinase (PTK) [28]. CpsC- and CpsD-related proteins are found in both Gram-positive and Gram-negative bacteria [28,31,32]; in the latter they are fused into one protein (called a PCP2a protein) such as EsoP from *Sinorhizobium meliloti* [33] and Wzc from *E. coli* K-12 and K30 [11] (For recent reviews on PCPs see [32,34,35]).

CpsB is metal-dependent protein tyrosine phosphatase (PTP) that is completely unrelated to any PTPs in eukaryotes, with homologues only found in other Gram-positive bacteria [7].

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including *Streptococcus pneumoniae*. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In *Streptococcus pneumoniae*, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both *in vitro* and *in vivo* at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 *S. pneumoniae*. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with *Klebsiella pneumoniae* which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including *Streptococcus pneumoniae*. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In *Streptococcus pneumoniae*, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both *in vitro* and *in vivo* at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 *S. pneumoniae*. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with *Klebsiella pneumoniae* which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including *Streptococcus pneumoniae*. The biosynthesis of Wzy-dependent capsules in both Gram-negative and –positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In *Streptococcus pneumoniae*, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both *in vitro* and *in vivo* at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 *S. pneumoniae*. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated Gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with *Klebsiella pneumoniae* which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.
Interestingly, strains constructed with mutations in cpsB have produced different results, with some studies reporting lower levels of CPS [6,7,21], whereas others see an increase [8]. This has led to confusion about the role of the phosphorylation of CpsD and whether there is a positive or negative correlation of CpsD-P with CPS synthesis. Our hypothesis is that when CpsD is phosphorylated synthesis of CPS is enabled, whereas when de-phosphorylated by CpsB, the CPS is attached to the cell wall [6]. If correct this hypothesis would mean that mutants in both cpsB and cpsD would exhibit significantly lower levels of CPS, as either synthesis or attachment would be hindered. While there has been some discrepancy as to the affect defined mutations in cpsB have on CPS, all studies to date have shown that cpsB mutants are essentially avirulent in numerous animal models of infection [6,8,21]. Thus, CpsB represent a novel target for the development of anti-virulence drugs against S. pneumoniae and other Gram-positive pathogens.

Gram-negative bacteria such as E. coli [4], and Klebsiella pneumoniae [36] also possess PTPs that regulate CPS and exopolysaccharide biosynthesis. However, the representative PTP, Wzb, is not homologous to CpsB, but rather belongs to the family of low molecular weight protein tyrosine phosphatases [10,37]. In E. coli K-12 and K30, deletion of the gene encoding Wzb results in no synthesis of colanic acid [1] (an exopolysaccharide produced by all E. coli isolates under stress conditions) and CPS [12], respectively. In other words, this PTP is thought to be essential for Gram-negative CPS synthesis.

The aim of this study was to identify chemical inhibitors of CpsB. To do so, we developed a screen in order to identify inhibitors of CpsB phosphate activity. Using this assay, we discovered a compound (fascioquinol E; FQE) that could inhibit CpsB phosphate activity both in vitro and in vivo. This inhibition consequently resulted in lower levels of CPS, and increased attachment of S. pneumoniae to a macrophage cell line. Furthermore, FQE also inhibited the E. coli PTP Wzb, and resulted in lower levels of CPS synthesis in K. pneumoniae. This suggests that the phosphatase activity of the PTPs CpsB and Wzb are essential for CPS production in S. pneumoniae D39 and Type I strains, and K. pneumoniae K1, respectively. FQE represents an attractive first step in the search for lead compounds that could be developed into “anti-virulence drugs”, which rather than targeting essential bacterial processes, target important virulence factors limiting the infectivity of the pathogen [38].

Results

Screening a Marine Extract Library for Inhibitors of CpsB Dephosphorylation of p-Nitrophenyl Phosphate

We utilised the ability of CpsB to catalyse the dephosphorylation of p-nitrophenyl phosphate (pNPP) to develop an assay suitable for high throughput screening [7]. The reaction was linear, inhibited by broad phosphatase inhibitor sodium orthovanadate, and was dependent on MnCl2, while a mutated form of CpsB based on previous studies (CpsBH5H7) produced approximately 5% activity (data not shown) [39]. The assay produced a Z factor of >0.7, suggesting it was highly suitable for high throughput screening of inhibitors. Having optimised the CpsB assay, we used it to screen a Marine Extract Library comprising 2784 extracts derived from southern Australian and Antarctic marine invertebrates and algae. Each extract was screened in duplicate (see Figure 1) with high reproducibility revealing 17 extracts (0.6% hit rate) displaying greater than 30% inhibition of CpsB. In a proof-of-concept study we evaluated the CpsB inhibitory activity of a series of novel meroterpenes that had recently been isolated and reported from one of these priority extracts, generated from a deep-water southern Australian marine sponge Fasciospongia sp. (CMB-02028) [40].

Fascioquinol E as a CpsB Inhibitor

In a prior 2011 investigation into the secondary metabolites produced by Fasciospongia sp. (CMB-02028), Zhang et al. [40] described six novel metabolites, fascioquinols A-F. On screening pure samples of fascioquinols A-F we established that fascioquinol E (FQE) was the dominant inhibitor of CpsB dephosphorylation of pNPP with an IC50 of 5.21 μM (Figure 2A & 2B).

In the 2011 report, FQE was noted as a modest Gram positive antibacterial (IC50 = 3–5 μM) that was not cytotoxic against human gastric (AG) and colorectal (HT-29) adenocarcinoma, neuroblastoma (SH-Sy5Y) and human foreskin fibroblast (HFF-1) cell lines (IC50 > 30 μM) [40]. When we tested FQE antibiotic activity against S. pneumoniae, it inhibited the growth of D39 with an MIC (MIC = 3 μM) similar to that seen against other Gram-positive bacteria [40]. In order to determine if inhibition of CpsB activity was resulting in cell death, we also tested FQE against a D39 cpsB mutant. FQE also inhibited growth of this strain (MIC = 3 μM) with the same MIC, suggesting that inhibition of CpsB was not essential for its antibacterial effects. Controls with solvent alone showed no bactericidal activity.

In order to exclude that FQE was simply chelating manganese from the buffer (albeit unlikely as 1 mM Mn2+ was used), we performed the CpsB inhibitory assays with increasing concentrations of the inactive CpsB(H5H7) protein while CpsB WT was incubated with FQE (10 μM). With increasing concentrations of CpsB(H5H7), pNPP dephosphorylation by CpsB WT significantly increased, resulting in much less inhibition by FQE (Figure 2C). Thus, increasing concentrations of CpsB(H5H7) competed away the inhibitory effects of FQE, suggesting that inhibition by FQE is competitive and that FQE inhibits the phosphatase by directly binding to CpsB.
In vivo Effect of FQE on CapsD Tyrosine Autophosphorylation

While FQE inhibited the phosphatase activity of CpsB in vitro, we were interested to see if this would also inhibit activity in vivo. Thus, we grew D39 S. pneumoniae to mid log phase (OD_{600} = 0.35) and added FQE. A time course experiment showed that FQE had some effect on D39 CFU at 5 μM (although it did not reach statistical significance), but at 2.5 μM and below showed no growth inhibition (Figure 3A). As a read out of phosphatase activity of CpsB, we determined levels of CpsD-P in whole cell lysates made after one hour incubation with FQE, using Western immunoblot probing with anti-CpsD [28] and anti-phosphotyrosines. When grown in the presence of FQE, CpsD levels remained approximately 3 and 2 fold at similar levels to the untreated control (Figure 3B). However, the levels of CpsD-P increased by approximately 3 and 2 fold when incubated with 5 and 2.5 μM FQE, respectively. Thus, even when there was no impact on growth, FQE inhibited CpsD activity. This increase did not appear to be as much as seen in an otherwise isogenic D39cpsBΔA mutant (Figure 3D) [28], likely due to the residual activity of CpsB. However, this illustrated that FQE was able to inhibit CpsB phosphatase activity both in vitro and in vivo.

In vivo Effect of FQE on Capsule Size

With FQE affecting the tyrosine phosphorylation of CapsD, we wanted to see if this resulted in a subsequent reduction in CPS. The first method utilized was the colorimetric uronic acid assay [41], as glucuronic acid is a component of the Type 2 repeat unit [20]. This assay showed that CPS synthesis was reduced by approximately 47% with 5 μM and 28% with 2.5 μM FQE (Figure 4A). When incubated with 1.25 μM FQE, uronic acid levels did not decrease. Additionally, CPS preparations were separated on SDS-PAGE, transferred to nylon and probed with a polyclonal antibody against Type 2 CPS. This showed similar results to those seen with the uronic acid assay, with reduction of CPS levels at 5 and 2.5 μM, but no effect at 1.25 μM (Figure 4B). Control strains D39cpsBCDA and D39cpsBΔ showed reductions as previously reported [21].

We also tested FQE against a S. pneumoniae serotype 1 invasive clinical isolate. Serotype 1 possesses galacturonic acid in its CPS, allowing us to measure FQE mediated affect on CPS by the uronic acid assay again. Incubation with 5 and 2.5 μM FQE resulted in 38% ± 9.6 and 30% ± 18 reductions in uronic acid respectively (n = 4). Thus, this data suggested that FQE mediated inhibition of CpsB phosphatase activity resulted in lower levels of CPS synthesis in S. pneumoniae.

CpsB and Wzb Are Essential for Capsule Synthesis

The CPS of S. pneumoniae is primarily thought to be critical through its ability to act as an anti-phagocytic factor [19]. Additionally, unencapsulated pneumococci show increased adherence to a variety of cell types [6]. Thus, we sought to investigate whether FQE could affect the ability of pneumococci to associate with the murine macrophage cell line, RAW 264.7. D39 was incubated with 5, 2.5 and 1.25 μM FQE for 1 h as described above, and association with the macrophage cell line was determined as outlined in the methods. Concentrations of FQE (5 and 2.5 μM) that inhibited CPS production (Figure 4A) also significantly increased the association of D39 with RAW 264.7 cells (5 μM – P<0.01; 2.5 μM – P<0.05) (Figure 5). This was comparable with the increased association seen with an otherwise isogenic D39cpsBΔA mutant.

A novel feature of FQE was that it increased the association of pneumococci to macrophages. We also tested FQE against a S. pneumoniae serotype 1 invasive clinical isolate. Serotype 1 possesses galacturonic acid in its CPS, allowing us to measure FQE mediated affect on CPS by the uronic acid assay again. Incubation with 5 and 2.5 μM FQE resulted in 38% ± 9.6 and 30% ± 18 reductions in uronic acid respectively (n = 4). Thus, this data suggested that FQE mediated inhibition of CpsB phosphatase activity resulted in lower levels of CPS synthesis in S. pneumoniae.

CpsB and Wzb Are Essential for Capsule Synthesis

As previous data had shown that CpsB was able to act on the Gram-negative PTK Wzc [10], this suggested that CpsB and the PTP from E. coli, Wzb, showed significant similarity in their active sites [10]. Thus, we investigated whether FQE could also inhibit Wzb’s ability to catalyze dephosphorylation of pNPP. Interestingly, FQE inhibited the activity of purified Wzb with a similar IC_{50} as CpsB (Figure 6A), suggesting that FQE may also be able to inhibit CPS production in Gram-negative bacterial pathogens.

Klebsiella pneumoniae is a Gram-negative pathogen which causes primarily nosocomial infections. The pathogen possesses highly similar homologs to Wzb and Wzc from E. coli [36]. Additionally, the CPS has been shown to be critical for its ability to cause invasive disease [42]. Thus, we investigated whether FQE could...
inhibit CPS production in *K. pneumoniae* as well as in the pneumococcus. *K. pneumoniae* K1 [43] was grown to mid-log phase (OD₆₀₀ ≈ 0.4) and then incubated with FQE for 1 h. The uronic acid colorimetric assay was used to quantify CPS as K1 serotype CPS possesses glucuronic acid as a component of its CPS [44]. As FQE does not inhibit the growth of Gram-negative bacteria, we were able to utilize it at higher concentrations [40]. FQE was also able to inhibit CPS synthesis in *K. pneumoniae*, although approximately 5 fold more inhibitor was required (20 μM) (Figure 6B). The latter was not unexpected, as the presence of the outer membrane of Gram-negative bacteria confers decreased permeability to very small molecules. Thus, this result indicated that inhibition of Wzb in Gram-negative bacteria also results in reduced CPS production.

Discussion

Capsular polysaccharide is a crucial virulence determinant for a wide range of bacterial pathogens, both Gram-positive and -negative. Interestingly, its regulation is similar across both genera, with a PTP and a PTK controlling synthesis of one major class of CPS. We are particularly interested in the regulation of its synthesis in the major human pathogen, *Streptococcus pneumoniae*.
The study of this system in *S. pneumoniae* and other bacterial pathogens has to date been confined to the use of otherwise isogenic strains containing mutations in the various genes comprising the regulatory system. However, this is not ideal, as the regulatory locus is comprised of an operon, with mutations potentially resulting in subtle unanticipated effects. Thus, in order to study the system using alternate methods, we set out to discover inhibitors of the *S. pneumoniae* PTP, CpsB. Utilising the ability of CpsB to dephosphorylate pNPP, we performed a screen of a marine extract library culminating in the discovery of a novel meroterpenic sulphate, FQE, which inhibited CpsB phosphatase activity with an IC50 of 5.21 μM. FQE had previously been shown to have antibacterial effects against Gram-positive but not Gram-negative bacteria [40], but this activity appeared unrelated to CpsB as it was able to inhibit the growth of a *cpsB* mutant.

Using FQE at concentrations where bacterial growth was not significantly inhibited, we showed that incubation of *S. pneumoniae* D39 with FQE resulted in increased levels of CpsD-P, but not CpsD levels itself. This suggested that FQE penetrates the cell and inhibits CpsB phosphatase activity, at concentrations that do not affect growth. Furthermore, we saw a significant decrease in CPS production when both D39 and a Type 1 strain were incubated with FQE. This suggested that full activity of the PTP CpsB is essential for the ability of the pathogen to produce a fully encapsulated cell. Additionally, at levels which resulted in decreased levels of CPS synthesis, we saw increased attachment of D39 to the mouse macrophage cell line, RAW 264.7, similar to the levels seen with an otherwise isogenic mutant in *cpsB*. Attachment to macrophages is crucial for the ability of the host to clear pneumococcal infection [45], and the CPS is a crucial factor in this anti-phagocytic ability [19]. Thus, this suggested that the PTP CpsB is crucial for encapsulation, and the subsequent full virulence of the pathogen.

Previous studies using deletion knockout mutants have provided conflicting results as to whether CpsB activity is essential for CPS synthesis. We have seen in numerous strain backgrounds that CpsB is required for the full expression of CPS through the use of *cpsB* mutants [6,7,21], while Bender et al. (2003) saw a slight increase in CPS in D39 [8]. Additionally, we showed that deletion of the phosphorylated tyrosine residues at the C-terminus of CpsD also resulted in an unencapsulated bacterium [46]. The results presented here support the conclusion that CpsB function is critical for complete synthesis of pneumococcal CPS. Interestingly, a recent study has suggested a novel role for CpsC and CpsD in the synthesis of CPS at the division septum [47]. This study did not investigate whether CpsB also plays a similar role, although this seems unlikely as the C-terminal cluster of tyrosines in CpsD was not required. Thus, this suggests that there may be multiple methods of regulation controlling CPS production in the pneumococcus (septal and non-septal).

FQE also inhibited activity of the PTP from *E. coli*, Wzb, at similar levels to that seen for CpsB. While CpsB and Wzb show no structural similarity, a recent study compared the PTPs and found that they shared common chemical features, explaining why CpsB can dephosphorylate Wzc, and, in our case, FQE can inhibit both PTPs [10]. FQE is not a simple promiscuous phosphatase inhibitor as it is unable to inhibit another
The inhibition of Wzb prompted us to investigate whether FQE could also inhibit Gram-negative CPS synthesis in *E. pneumoniae*, an important nosocomial human pathogen that has a PTP homologous to Wzb [36]. Incubation of *E. pneumoniae* K1 with FQE resulted in lower levels of CPS synthesis, suggesting that activity of the PTP in Gram-negative bacteria is also important for complete CPS synthesis. Furthermore, as FQE had no effect on the growth of Gram-negative bacteria, this result gives further support to a direct inhibition of PTP. Other studies have shown that in *E. coli* expression of Wzb is critical for CPS expression [12], and that the extent of phosphorylation of the PTK influences the amount of CPS produced [11]. Thus, this study provides further credence to these results and reinforces the importance of Wzb in CPS biosynthesis.

The small molecule inhibition (FQE) of PTP activity in both a Gram-positive and -negative pathogen leading to lower levels of CPS provides strong evidence that these PTPs are suitable targets for the development of an anti-virulence drug. Such a class of anti-virulence therapeutics would differ from conventional antibiotics in that they would not inhibit the growth of the bacteria but would suppress virulence and down-regulate the intensity and impact of any infection. While it is generally accepted that anti-virulence antibacterials would invoke less selective pressure on bacteria, it is important to consider that the critical nature of CPS in *vivo*, such as through resistance to opsonophagocytosis as well as in competition with other microbes [48], may result in the selection of pneumococci resistant to drugs such as FQE. However, with the ever increasing need for novel anti-microbials, we have shown that the conserved capsule regulatory system appears to be a promising target. We are currently working on optimizing the FQE, CpsB inhibitory pharmacophore, and investigating the additional priority hits detected in our screening program, with a view to discovering and developing more potent inhibitors of Wzb and CpsB activity.

Materials and Methods

Growth Media and Growth Conditions

S. pneumoniae D39 [49] and type 1 (WCH 4496) [50] were grown in Todd-Hewitt broth with 1% Bacto yeast extract (THY) and C+Y [51] respectively, or on blood agar. Agar plates were grown at 37°C in 5% CO₂. Broth cultures were grown at 37°C without agitation. *Escherichia coli* strains and *E. pneumoniae* Kpn1 [43] were grown in Luria-Bertani broth (10 g/L Tryptone, 5 g/L yeast extract, 5 g/L NaCl) broth or agar, with transformation carried out using CaCl₂-treated cells. D39cpsBD and D39cpsBCDA were previously described [6].

Expression and Purification of His₆CpsB, His₆BH5H7 & His₆Wzb

CpsB from TIGR4 cloned under control of a pBAD promoter (pWQ553) was transformed into *E. coli* Lemo21(DE3) [52]. 6× HisCpsB expression was induced by induction for 3 hours 0.1% (v/v) arabinose. The soluble recombinant protein was purified using an AKTA prime plus (GE Life Sciences) with a Hitrap column as described by the manufacturer. The protein was concentrated using Vivastep 6 (GE Healthcare). The protein was stable in 50% (v/v) glycerol. His₆CpsB[H130T] was purified using the same method. His₆Wzb was expressed and purified as described previously [12].

Construction of CpsBH5H7

H5 and H7 of CpsB from pWQ553 were mutated to alanine using QuikChange® Site Directed mutagenesis kit (Stratagene) according to the manufacturer’s instructions. Oligonucleotides used were AS50 (ATGATAGACATCGCATCCG-GCAATCGTTTTTGGATG) and AS51 (CATCAAAAAC-GATTGCCTGATGGGATGTATCATTACAT).

p-Nitrophenyl Phosphate Dephosphorylation

His₆CpsB catalysis of pNPP (1.5 mM) (Sigma) dephosphorylation was carried out in 100 μL of 1 M Tris pH 8.0 with 1 mM MnCl₂ in 96 well flat bottom tray (Corning) [7]. Reactions were incubated at 37°C with [AC] recorded every minute on PowerWave XS (Biotek). After 10 min, change in absorbance was calculated. The Z’ was calculated using a previously published equation [53]. Catalysis using His₆Wzb was carried out using the same method, however buffer was 1 M Tris, pH 7.0 and 100 nM His₆Wzb was used.

Natural Product Extract Partitioning and Fractionation

Marine algae and invertebrate samples were collected from southern Australian and Antarctic waters between 1984–2002. No specific permits were required for the described field studies. The freshly collected samples were frozen (~4°C) for shipping to the laboratory, where they were thawed, catalogued, diced, and steeped in aqueous ethanol for prolonged storage in ~20°C. A portion of the ethanol extracts were dried by rotary evaporation (~<40°C) and partitioned between n-butanol and water. The n-butanol extracts were dried and made up to a standard concentration, and were screened in the CpsB assay by measuring the inhibition of pNPP dephosphorylation. One active extract, generated from the *Fasicospongia* sp. sponge has been studied in detail [40]. Screening of the pure compounds isolated from *Fasicospongia* sp. led to the identification of fasicosquinol E (FQE) as the most active compound.

Western Immunoblotting

Whole cell lysates from equal numbers of cells or CPS preparations were separated on 12% SDS-PAGE and transferred to Immobilon-P (Millipore) (anti-Phosphotyrosine, Santa Cruz Biotechnology catalog no. sc-7020), Nitrobind (GE Water and Process Technologies) (anti-CpsD [28]) or Hybond-N (Amersham Biotechnology catalog no. sc-7020), Nitrobind (GE Water and Process Technologies) (anti-Cps2 [Statens Serums Institut]). Membranes were probed with primary antibody overnight and after washes incubated as appropriate either with horseradish peroxidase-conjugated goat anti-rabbit or goat anti-mouse secondary antibodies (Biomediq DPC) for 2 h. The membrane was then incubated with chemiluminescence blotting substrate (Sigma) for 5 min. Chemiluminescence was detected by Kodak Image Station 4000 MM Pro.

Uronic Acid Assay

The quantitative uronic acid assay [41] was undertaken for *S. pneumoniae* D39 and type 1 as described previously [6] with CPS preparations from cultures grown in THY and C+Y respectively. All samples were equalized such that CPS was being determined for equal number of cells from each sample. For *K. pneumoniae*, the uronic acid assay and CPS preparations were undertaken according to the method previously described [54]. Briefly, samples (500 μL) of bacterial cultures were removed and mixed with 100 μL of 1% Zwittergent 3–14 detergent (Calbiochem, Meudon, France) in 100 mM citric acid (pH 2.0). This mixture was incubated at 50°C for 20 min. After it was
centrifuged for 5 min at 14,000 rpm, 300 µL of the supernatant was transferred to a new tube and absolute ethanol was added to a final concentration of 80%. The mixture was placed at 4°C for 20 min. After centrifugation (14,000 rpm), the supernatant was decanted and the pellet was dissolved in 200 µL of distilled water.

Cell Association Assay

RAW 264.7 (murine macrophage-like) cells (ATCC; Catalog number TIB-71) were grown to confluence in a 24 well tissue culture plate (Nalge Nunc International) (approximately 18 h) at 37°C, 5% CO2. Bacteria grown to mid-log phase at 37°C with aerobiosis were washed once with PBS and resuspended in RPMI of DMEM (without supplements) as appropriate. Tissue culture cells were washed once with fresh media and 500 µL of the appropriate supplemented media added. 100 µL of undiluted bacterial suspension was added to each well and a sample retained to determine the inoculation dose. Plates were centrifuged at 500×g for 5 min to increase interaction of bacteria and cells and incubated for 30 min at 37°C, 5% CO2. Wells were washed three times with fresh media and 100 µL of 0.1% (v/v) Triton X-100 added for 10 min at RT to lyse the eukaryote cell membranes.

References

1. Vincent C, Duclos B, Grangeasse C, Vagany E, Riberdy M, et al. (2000) Relationship between capsular polysaccharide and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304: 311–321.

2. Olivares-Illana V, Meyer P, Bechet E, Gueguen-Chaignon V, Soulat D, et al. (2008) Structural basis for the regulation mechanism of the tyrosine kinase CspB from Streptococcus pneumoniae. PLoS Biol 6: e143.

3. Soudar D, Jault JM, Duclos B, Geourjon C, Cozzone AJ, et al. (2006) Streptococcus pneumoniae operates protein-tyrosine phosphorylation through a specific mechanism. J Biol Chem 281: 14048–14056.

4. Vincent C, Doublet P, Grangeasse C, Vagany E, Cozzone AJ, et al. (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wx, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181: 3472–3477.

5. Byehe JP, Morona JK, Paton JC, Morona R (2011) Identification of Streptococcus pneumoniae Cps2C Residues That Affect Capsular Polysaccharide Polymerization, Cell Wall Ligation, and Cps2DPhosphorylation. J Bacteriol 193: 2341–2346.

6. Morona JK, Morona R, Paton JC (2006) Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc Natl Acad Sci U S A 103: 8555–8560.

7. Morona JK, Morona R, Miller DC, Paton JC (2002) Streptococcus pneumoniae capsule biosynthesis protein CspBd is a novel manganese-dependent phosporylase-protein phosphatase. J Bacteriol 184: 577–583.

8. Bender MH, Yother J (2001) CpsB is a modulator of capsule-associated tyrosine kinase Wzc and implications in capsular polysaccharide export. Mol Microbiol 40: 1315–1325.

9. Brueggemann AB, Pai R, Crook DW, Beall B (2007) Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog 3: e168.

10. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, et al. (2009) Bad bugs, no drugs: no ESCAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 49: 1124–1127.

11. Hyams C, Cambrelein E, Cohen JM, Bax K, Brown JS (2010) The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78: 704–713.

12. Bentely S, Aenensen DM, Movriod A, Saunders D, Rabbittsweich E, et al. (2009) Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2: e31.

13. Morona JK, Miller DC, Morona R, Paton JC (2004) The effect that mutations in CpsB of Streptococcus pneumoniae have on virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6: 328–334.

Antimicrobial Growth Assay

S. pneumoniae D39 was inoculated into broth and then incubated with FQ1 at a range of concentrations in THY at 37°C in a 96 well tray sealed with Breath easy membrane (Sigma) in Powerwave XS. A500 readings were taken every 20 min for 16 h.

Acknowledgments

We thank Professor Chris Whitfield for the supply of plasmid pWQ533 and for his critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: AJS RM. Performed the experiments: AJS. Analyzed the data: AJS RM. Contributed reagents/materials/analysis tools: AAS HZ RJC. Wrote the paper: AJS RM AAS RJC.
34. Morona R, Purins L, Tocijl A, Matte A, Cygler M (2009) Sequence-structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends Biochem Sci 34: 78–84.

35. Grangeasse C, Terreux R, Nesler S (2010) Bacterial tyrosine-kinases: structure-function analysis and therapeutic potential. Biochim Biophys Acta 1804: 620–634.

36. Preneta R, Jarraud S, Vincent G, Doublet P, Duclos B, et al. (2002) Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B Biochem Mol Biol 131: 103–112.

37. Lesceg E, Hu Y, Xu H, Hu W, Chen J, et al. (2006) The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. J Biol Chem 281: 19570–19577.

38. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9: 117–128.

39. Lescop E, Hu Y, Xu H, Hu W, Chen J, et al. (2006) The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. J Biol Chem 281: 19570–19577.

40. Zhang H, Khalil ZG, Capon RJ, Lai SY, Chang SC, Wang JT (2006) Fascioquinols A-F: bioactive meroterpenes from a deep-water southern Australian marine sponge, Fasciospongia sp. Tetrahedron 62: 2591–2595.

41. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54: 484–489.

42. Cortes G, Borrell N, de Astorza B, Gomez C, Suálela J, et al. (2002) Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70: 2583–2590.

43. Cooper JM, Finlay-Jones JJ, Hill NL, Rowley D (1983) Local immunity to klebsiella pneumonia in the lungs of mice. J Infect Dis 147: 312–317.

44. Chuang YP, Fang CT, Lai SY, Chang SC, Wang JT (2006) Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193: 645–654.

45. Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119: 1909–1909.

46. Morona JK, Morona R, Miller DC, Paton JC (2003) Mutational analysis of the carboxy-terminal (YGX4 repeat domain of CpsD), an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol 185: 3009–3019.

47. Henriques MX, Rodrigues T, Carido M, Ferreira L, Filipe SR (2011) Synthesis of capsular polysaccharide at the division septum of Streptococcus pneumoniae is dependent on a bacterial tyrosine kinase. Mol Microbiol 82: 515–534.

48. Lysek GS, Liejek RS, Brown SP, Weiser JN (2010) Within-host competition drives selection for the capsule virulence determinant of Streptococcus pneumoniae. Curr Biol 20: 1222–1226.

49. Avery OT, Macleod CM, McCarrt M (1944) Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types : Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J Exp Med 79: 137–158.

50. Harvey RM, Sorether UH, Ogumiyi AD, Smith-Vaughan HC, Leach AJ, et al. (2011) A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence. PLoS One 6: e19650.

51. McAllister LJ, Tseng HJ, Ogumiyi AD, Jennings MP, McEwan AG, et al. (2009) Molecular analysis of the fop permease complex of Streptococcus pneumoniae. Mol Microbiol 53: 899–901.

52. Wanger S, Klenpsch MM, Schlegel S, Appel A, Draheim R, et al. (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Nad Acad Sci U S A 105: 14371–14376.

53. Zhang JH, Chan TD, Oldenburg KR (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4: 67–73.

54. Domenico P, Schwartz S, Canha BA (1989) Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 57: 3778–3782.