A REMARK ON RATIONAL CHEREDNIK ALGEBRAS AND DIFFERENTIAL OPERATORS ON THE CYCLIC QUIVER

Abstract. We show that the spherical subalgebra $U_{k,c}$ of the rational Cherednik algebra associated to $S_n \wr C_\ell$, the wreath product of the symmetric group and the cyclic group of order ℓ, is isomorphic to a quotient of the ring of invariant differential operators on a space of representations of the cyclic quiver of size ℓ. This confirms a version of [EG, Conjecture 11.22] in the case of cyclic groups. The proof is a straightforward application of work of Oblomkov, [O], on the deformed Harish–Chandra homomorphism, and of Crawley–Boevey, [CB1] and [CB2], and Gan and Ginzburg, [GG], on preprojective algebras.

1. Introduction

1.1. The representation theory of symplectic reflection algebras has links with a number of subjects including algebraic combinatorics, resolutions of singularities, Lie theory and integrable systems. There is a family of symplectic reflection algebras associated to any symplectic vector space V and finite subgroup $\Gamma \leq Sp(V)$, but a simple reduction allows one to study those subgroups Γ which are generated by symplectic reflections (i.e. by elements whose set of fixed points is of codimension two in V). This essentially focuses attention on two cases:

(1) $\Gamma = W$, a finite complex reflection group, acting on $V = \mathfrak{h} \oplus \mathfrak{h}^*$ where \mathfrak{h} is a reflection representation of W;

(2) $\Gamma = S_n \wr G$, where G is a finite subgroup of $SL_2(\mathbb{C})$, acting naturally on $(\mathbb{C}^2)^n$.

The representation theory in the first case is mysterious at the moment: several important results are known but there is no general theory yet. On the other hand a geometric point of view on the representation theory in the second case is beginning to emerge. A key fact is that in this case the singular space V/Γ admits a crepant resolution of singularities: the representation theory of the symplectic reflection algebra is then expected to be closely related to the resolution. In the case $\Gamma = S_n$ (i.e. G is trivial) there are two approaches to this: the first is via noncommutative algebraic geometry, [GS], the second via sheaves of differential operators, [GG]. In this paper we extend the second approach to the groups $\Gamma = \Gamma_n = S_n \wr C_\ell$.

1.2. To state the result here we need to introduce a little notation. Let Q be the cyclic quiver with ℓ vertices and cyclic orientation. Choose an extending vertex (in this case any vertex) 0. Then let Q_∞ be the quiver obtained by adding one vertex named ∞ to Q that is joined to 0 by a single arrow.

We will consider representation spaces of these quivers. Let $\delta = (1,1,\ldots,1)$ be the affine dimension vector of Q, and set $\epsilon = e_\infty + n\delta$, a dimension vector for Q_∞. Let $\text{Rep}(Q, n\delta)$ and $\text{Rep}(Q_\infty, \epsilon)$ be the representation spaces of these quivers with the given dimension vectors. There is an action of $G = \prod_{r=0}^{\ell-1} GL_n(\mathbb{C})$ on both.
these spaces. In fact, the action of the scalar matrices in G is trivial on $\text{Rep}(Q, n\delta)$ (but not on $\text{Rep}(Q, \epsilon)$) so in this case the action descends to an action of $PG = G/\mathbb{C}^*$. Let $\mathfrak{X} = \text{Rep}(Q, n\delta) \times \mathbb{P}^{n-1}$. There is an action of PG on \mathfrak{X}.

1.3. Let $D(\text{Rep}(Q, \epsilon))$ denote the ring of differential operators on the affine space $\text{Rep}(Q, \epsilon)$, $D_X(nk)$ the sheaf of twisted differential operators on \mathfrak{X} and $D(\mathfrak{X}, nk)$ its algebra of global sections. The group action of G (respectively PG) on $\text{Rep}(Q, \epsilon)$ (respectively \mathfrak{X}) differentiates to an action of $g = \text{Lie}(G)$ (respectively $pg = \text{Lie}(PG)$) by differential operators. This gives mappings

\[\hat{\tau} : g \rightarrow D(\text{Rep}(Q\infty, \epsilon)), \quad \tau : pg \rightarrow D_X(nk). \]

1.4. Let $U_{k,c}$ be the spherical subalgebra of type $S_n \wr C_\ell$ (this is defined in Section 3.4).

Theorem. For all (k, c) there are isomorphisms of algebras

\[\left(\frac{D(\text{Rep}(Q\infty, \epsilon))}{I_{k,c}} \right)^G \cong \left(\frac{D(\mathfrak{X}, nk)}{I_c} \right)^{PG} \cong U_{k,c}, \]

where $I_{k,c}$ is the left ideal of $D(\text{Rep}(Q\infty, \epsilon))$ generated by $(\hat{\tau} - \chi_{k,c})(g)$ and I_c is the left ideal of $D(\mathfrak{X}, nk)$ generated by $(\tau - \chi_c)(pg)$ for suitable characters $\chi_{k,c} \in g^*$ and $\chi_c \in pg^*$ (which are defined in Section 4).

Note that it is a standard fact that the left hand side is an algebra. The proof of the theorem has two parts. One part constructs a filtered homomorphism from the left hand side to the right hand side using as its main input the work of Oblomkov, [O]. The other part proves that the associated graded homomorphism is an isomorphism and is a simple application of results of Crawley-Boevey, [CB1] and [CB2], and of Gan–Ginzburg, [GG].

1.5. We give an application of this result in Section 4.

1.6. While writing this down, we were informed that the general version of [EG, Conjecture 11.22] has been proved in [EGGO]. That result is more general than the work presented here and requires a new approach and ideas to overcome problems that simply do not arise for the case $\Gamma = S_n \wr C_\ell$.

2. Quivers

2.1. Once and for all fix integers ℓ and n. We assume that both are greater than 1. Set $\eta = \exp(2\pi i / \ell)$.

2.2. Let Q be the cyclic quiver with ℓ vertices and cyclic orientation. Choose an extending vertex (in this case any vertex) 0. Then let $Q\infty$ be the quiver obtained by adding one vertex named ∞ to Q that is joined to 0 by a single arrow. Let \underleftarrow{Q} and $\underrightarrow{Q\infty}$ denote the double quivers of Q and $Q\infty$ respectively.

We will consider representation spaces of these quivers. Let $\delta = (1, 1, \ldots, 1)$ be the affine dimension vector of Q, and set $\epsilon = e_\infty + n\delta$, a dimension vector for $Q\infty$. Recall that

\[\text{Rep}(Q, n\delta) = \bigoplus_{r=0}^{\ell-1} \text{Mat}_n(\mathbb{C}) = \{ (X_0, X_1, \ldots, X_{\ell-1}) \} = \{ (X) \} \]
and
\[\text{Rep}(Q_\infty, \epsilon) = \bigoplus_{r=0}^{\ell-1} \text{Mat}_n(\mathbb{C}) \oplus \mathbb{C}^n = \{(X_0, X_1, \ldots, X_{\ell-1}, i) \} = \{(X, i)\}. \]

Let \(G = \prod_{r=1}^{\ell-1} GL_n(\mathbb{C}) \) be the base change group. If \(g = (g_0, \ldots, g_{\ell-1}) \) then \(g \) acts on \(\text{Rep}(Q, n\delta) \) by
\[g \cdot (X_0, X_1, \ldots, X_{\ell-1}) = (g_0X_0g_1^{-1}, g_1X_1g_2^{-1}, \ldots, g_{\ell-1}X_{\ell-1}g_0^{-1}) \]
and on \(\text{Rep}(Q_\infty, \epsilon) \) by
\[g \cdot (X_0, X_1, \ldots, X_{\ell-1}, i) = (g_0X_0g_1^{-1}, g_1X_1g_2^{-1}, \ldots, g_{\ell-1}X_{\ell-1}g_0^{-1}, goi). \]

The action of the scalar subgroup \(\mathbb{C}^* \) is trivial in the first action (but not the second), so we can consider the first action as a \(PG \)-action where \(PG = G/\mathbb{C}^* \). Let \(\mathfrak{g} \) and \(\mathfrak{pg} \) be the Lie algebras of \(G \) and \(PG \) respectively.

2.3. Let \(\mathfrak{h}^{\text{reg}} \subset \mathbb{C}^n \) be the affine open subvariety consisting of points \(x = (x_1, \ldots, x_n) \) such that
(i) if \(i \neq j \) then \(x_i \neq \eta^m x_j \) for all \(m \in \mathbb{Z} \),
(ii) for each \(1 \leq i \leq n \) \(x_i \neq 0 \).

This is the subset of \(\mathbb{C}^n \) on which \(\Gamma_n = S_n \rtimes C_\ell \) acts freely.

2.4. We can embed \(\mathfrak{h}^{\text{reg}} \) into \(\text{Rep}(Q, n\delta) \) by first considering a point \(x = (x_1, \ldots, x_n) \in \mathfrak{h}^{\text{reg}} \) as a diagonal matrix \(X = \text{diag}(x_1, \ldots, x_n) \) and then sending this to \(X = (X, X, \ldots, X) \). We denote the image of \(\mathfrak{h}^{\text{reg}} \) in \(\text{Rep}(Q, n\delta) \) by \(\mathcal{S} \).

Let \(T_\Delta \) be the subgroup of \(G \) with elements \((T, T, \ldots, T)\) where \(T \) is a diagonal matrix in \(GL_n(\mathbb{C}) \). Then \(T_\Delta \) is the stabiliser of \(\mathcal{S} \). So consider the mapping
\[\pi : G/T_\Delta \times \mathfrak{h}^{\text{reg}} \to \text{Rep}(Q, n\delta) \]
given by \(\pi(gT_\Delta, x) = g \cdot X \). If we let \(G \) act on \(G/T_\Delta \times \mathfrak{h}^{\text{reg}} \) by left multiplication then \(\pi \) is a \(G \)-equivariant mapping.

Lemma. \(\pi \) is an étale mapping with covering group \(\Gamma_n \). In fact its image \(\text{Rep}(Q, n\delta)^{\text{reg}} \) is open in \(\text{Rep}(Q, n\delta) \) and we have an isomorphism
\[\omega : G/T_\Delta \times_{\Gamma_n} \mathfrak{h}^{\text{reg}} \to \text{Rep}(Q, n\delta)^{\text{reg}}. \]

Proof. Let \(\mathcal{S} = \{X : x \in \mathfrak{h}^{\text{reg}}\} \) and set \(N_G(\mathcal{S}) = \{g \in G : g \cdot \mathcal{S} = \mathcal{S}\} \) and \(Z_G(\mathcal{S}) = \{g \in G : g \cdot X = X \) for all \(X \in \mathcal{S}\}. \)

Suppose \(g \cdot X = Y \) for some \(X, Y \in \mathcal{S} \). This implies that for each \(0 \leq i \leq \ell - 1 \)
\[g_i \text{diag}(x)^{\ell} g_i^{-1} = \text{diag}(y)^{\ell}. \]

The hypotheses on \(\mathfrak{h}^{\text{reg}} \) imply that both \(\text{diag}(x)^{\ell} \) and \(\text{diag}(y)^{\ell} \) are regular semisimple in \(\mathbb{C}^n \). Two such elements are conjugate if and only if \(g_i \in N_{GL_n(\mathbb{C})}(T) = T \rtimes S_n \) where \(T \) is the diagonal subgroup of \(GL_n(\mathbb{C}) \).

So there exists \(\sigma \in S_n \) such that for all \(i \) we have \(g_i = t_i \sigma \) for some \(t_i \in T \), and for all \(1 \leq r \leq n \) we
have that $x'_{σ (r)} = y'_r$. Hence $x_{σ (r)} = η ^{m_r} y_r$ for some \(m_r \in \mathbb{Z} \). Now we find that $Y = g \cdot X$ implies that $\text{diag}(y_r) = t_i t_{i+1}^{-1} \text{diag}(η ^{m_r} y_r)$. Since $y_r \neq 0$ this shows that $t_{i+1} = \text{diag}(η ^{m_r}) t_i$ for each i. Hence we find that $gT_Δ = (σ, \text{diag}(η ^{m_r}) σ, \ldots, \text{diag}(η ^{m_r}) t_{\ell - 1} σ) T_Δ$.

In particular, if $X = Y$ we see from above that each $m_r = 0$, so that $Z_G(S) = T_Δ$. Thus the group $Γ_n$ is isomorphic to $N_G(S)/Z_G(S)$ via the homomorphism that sends $(η ^{m_1}, \ldots, η ^{m_r}) σ$ to $(σ, \text{diag}(η ^{m_r}) σ, \ldots, \text{diag}(η ^{m_r}) t_{\ell - 1} σ) T_Δ$.

Now suppose that $π(gT_Δ, x) = π(hT_Δ, y)$. Then $(h^{-1} g) \cdot X = Y$ and so we see that $h^{-1} g \in N_G(S)$. This shows that $π$ is the composition

$$G/T_Δ \times h\text{reg} \longrightarrow G/T_Δ \times Γ_n \times h\text{reg} \longrightarrow \text{Rep}(Q, nδ)^{\text{reg}}.$$

The first mapping factors out the action of $Γ_n$, and since $Γ_n$ acts freely on $h\text{reg}$ this is an étale mapping. Hence, to finish the lemma, it suffices to show that $\text{Rep}(Q, nδ)^{\text{reg}}$ is open in $\text{Rep}(Q, nδ)$.

We claim first that $\text{Rep}(Q, nδ)^{\text{reg}}$ is the set O of representations of Q which decompose into n simple modules of dimension $δ$ and whose endomorphism ring is n-dimensional. To prove this observe that any element of $\text{Rep}(Q, nδ)^{\text{reg}}$ is isomorphic to a representation of the form X and so it decomposes into the n indecomposable modules X_1, \ldots, X_n of dimension $δ$ where $X_i = (x_1, x_2, \ldots, x_δ)$ (the condition $x_i \neq 0$ implies simplicity). Now the representation X_i is isomorphic to the representation $(1, 1, \ldots, 1, x_i)$. By hypothesis $x_i \neq x_j$ so we deduce that the representations X_i are pairwise non-isomorphic which ensures that the endomorphism ring of X is n-dimensional. This proves the inclusion $\text{Rep}(Q, nδ)^{\text{reg}} \subseteq O$. On the other hand, if V belongs to O then $V = V_1 \oplus \ldots \oplus V_n$ where each V_i is isomorphic to a representation $(1, 1, \ldots, 1, ν_i)$ for some non-zero scalars $ν_i$. Moreover, since $\dim \text{End}(V) = n$ the $ν_i$ must be pairwise distinct. Now, let $η_i$ be an $ℓ$-th root of $ν_i$. Then V_i is isomorphic to $(η_1, \ldots, η_i)$. Therefore V is isomorphic to the representation X where $x = (η_1, \ldots, η_n)$.

Now we must show that O is open in $\text{Rep}(Q, nδ)$. We use first the fact that the canonical decomposition of the vector $n δ$ is $δ + δ + \cdots + δ$, [Scho, Theorem 3.6]. This means that the representations of $\text{Rep}(Q, nδ)$ whose indecomposable components all have dimension $δ$ form an open set. Now, consider the morphism f from $\text{Rep}(Q, δ)$ to C which sends the representation $(λ_1, \ldots, λ_ℓ)$ to the product $λ_1 \ldots λ_ℓ$. The open set $f^{-1}(C^*)$ consists of the simple representations of dimension vector $δ$. Therefore the subset of $\text{Rep}(Q, nδ)$ consisting of representations which decompose as the sum of n simple representations of dimension vector $δ$ is open. On the other hand, the function from $\text{Rep}(Q, nδ)$ to N which sends a representation V to $\dim \text{End}(V)$ is upper semi-continuous. Thus $\{ V : \dim \text{End}(ν) \leq n \}$ is an open set in $\text{Rep}(Q, nδ)$. Intersecting these two sets shows that O is open, as required.

\[\square \]

2.5. Now we’re going to move from Q to $Q_∞$. So let’s start with the following

$$\{(gT_Δ, x, i) : g_0^{-1} i \text{ is a cyclic vector for } \text{diag}(x)\} \subset (G/T_Δ \times Γ_n \times h^{\text{reg}}) \times \mathbb{C}^n.$$
By applying $\omega^{-1} \times \text{id}_{\mathbb{C}^n}$ this corresponds to an open subset of $\text{Rep}(Q, n\delta) \times \mathbb{C}^n = \text{Rep}(Q_\infty, \epsilon)$. Call that set U_∞. This is a G–invariant open set since the G–action on triples is given by

$$h \cdot ([gT_\Delta, x], i) = ([hgT_\Delta, x], h_0i)$$

so $g_0^{-1}i$ is cyclic for diag(x) if and only if $(h_0g_0)^{-1}h_0i$ is cyclic for diag(x). Observe too that U_∞ is an affine variety. Indeed it is defined by the non–vanishing of the morphism

$$s : (G/T_\Delta \times \Gamma_n, h^{reg}) \times \mathbb{C}^n \rightarrow \mathbb{C}$$

which sends $([gT_\Delta, x], i)$ to $(g_0^{-1}i) \wedge \text{diag}(x) \cdot (g_0^{-1}i) \wedge \cdots \wedge \text{diag}(x)^{n-1} \cdot (g_0^{-1}i)$.

Lemma. The G–action on U_∞ is free and projection onto the second component

$$\pi_2 : U_\infty \rightarrow h^{reg}/\Gamma_n$$

is a principal G–bundle.

Proof. Suppose that $h \cdot ([gT_\Delta, x], i) = ([gT_\Delta, x], i)$. Then $[g^{-1}hgT_\Delta, x] = [T_\Delta, x]$, so by Lemma 2.4 $g^{-1}hg \in T_\Delta$.

We have that $h_0i = i$. Setting $i' = g_0^{-1}i$ implies that $g_0^{-1}h_0g_0i' = i'$. By hypothesis i' is a cyclic vector for diag(x). So in the standard basis i' decomposes as $\sum \lambda_j e_j$ where each λ_j is non–zero. Therefore the only diagonal matrix that fixes i' is the identity element. In other words $g_0^{-1}h_0g_0 = I_n$. Since $g^{-1}hg \in T_\Delta$ this implies that $g^{-1}hg = \text{id}$. Thus $h = \text{id}$ and this proves that the action is free.

It remains to prove that each fibre of π_2 is a G–orbit. So take $([gT_\Delta, x], i) \in \pi_2^{-1}([x])$. This equals $g \cdot ([T_\Delta, x], g_0^{-1}i)$. Now $g_0^{-1}i$ is a cyclic vector for diag(x) so it has the form $\sum \lambda_j e_j$ with each λ_j non–zero. Let $t = \text{diag} (\lambda_1, \ldots, \lambda_n)$ and consider $t = (t, \ldots, t) \in T_\Delta$. We have

$$([gT_\Delta, x], i) = gt^{-1}([T_\Delta, x], g_0^{-1}i) = gt([T_\Delta, x], \sum_{j=1}^n e_j).$$

This proves that each fibre of π_2 is indeed a G–orbit. \hfill \square

2.6. Let $\text{Rep}(Q_\infty, \epsilon)$ be the representation space for the doubled quiver Q_∞: we can naturally identify it with $T^* \text{Rep}(Q_\infty, \epsilon)$. The group G acts on the base and hence on the total space of the cotangent bundle. The resulting moment map

$$\mu : \text{Rep}(Q_\infty, \epsilon) \rightarrow \mathfrak{g}^* \cong \mathfrak{g}$$

is given by

$$\mu(X, Y, i, j) = [X, Y] + ij.$$

Theorem (Gan–Ginzburg, Crawley–Boevey). Let $\mu^{-1}(0)$ denote the scheme–theoretic fibre of μ.

1. $\mu^{-1}(0)$ is reduced, equidimensional and a complete intersection.

2. The moment map μ is flat.

3. $\mathbb{C}[\mu^{-1}(0)]^G \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]/\Gamma_n$.

5
Proof. (i) This is [GG, Theorem 3.2.3].

(ii) This follows from [CB1, Theorem 1.1] and the dimension formula in [GG, Theorem 3.2.3(iii)].

(iii) This is [CB2, Theorem 1.1]

2.7. Let \(X = \{(X, i) \in \text{Rep}(Q, n\delta) \times \mathbb{P}^{n-1}\} \). This space is the quotient of the (quasi–affine) open subvariety

\[U = \{(X, i) : i \neq 0\} \subset \text{Rep}(Q_{\infty}, \epsilon) \]

by the scalar group \(\mathbb{C}^* \). Thus there is an action of \(P G \) on \(X \).

Since \(T^* \mathbb{P}^{n-1} = \{(i, j) : i \neq 0, ji = 0\}/\mathbb{C}^* \)
we have

\[T^* X = \{(X, Y, i, j) \in \text{Rep}(Q_{\infty}, \epsilon) : i \neq 0, ji = 0\}/\mathbb{C}^* \]

The \(P G \) action on \(X \) gives rise to a moment map

\[\mu_X : T^* X \to \mathfrak{p}g^* \cong \mathfrak{pg}. \]

Let

\[\mu_X^{-1}(0) = \{(X, Y, i, j) \in \text{Rep}(Q_{\infty}, \epsilon) : i \neq 0, ji = 0, [X, Y] + ij = 0\}/\mathbb{C}^* \]

denote the scheme theoretic fibre of 0.

Proposition. There is an isomorphism \(\mathbb{C}[\mu_X^{-1}(0)]^{P G} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{G_{\mu}} \).

Proof. Consider the \(G \)–equivariant open subvariety of \(\mu^{-1}(0) \) given by the non–vanishing of \(i \). The variety \(\mu^{-1}(0) \) is determined by the conditions \([X, Y] + ij = 0 \), so if we take the trace of this equation then we see that \(0 = Tr(ij) = Tr(ji) = ji \). Thus we see that \(\{(X, Y, i, j) \in \text{Rep}(Q_{\infty}, \epsilon) : i \neq 0, ji = 0\} \cap \mu^{-1}(0) \) is an open subvariety of \(\mu^{-1}(0) \) so in particular reduced by Theorem 2.6(1). Hence factoring out by the action of \(\mathbb{C}^* \leq G \) shows that \(\mu_X^{-1}(0) \) is reduced and that there is a \(P G \)–equivariant morphism

\[\mu_X^{-1}(0) \to \mu^{-1}(0)/\mathbb{C}^*. \]

This induces an algebra map

\[\alpha : \mathbb{C}[\mu^{-1}(0)]^G \to \mathbb{C}[\mu_X^{-1}(0)]^{P G}. \]

We now follow some of the proof of [GG, Lemma 6.3.2]. Write \(O_1 \) for the conjugacy class of rank one nilpotent matrices in \(\mathfrak{gl}(n) \), and let \(\overline{O}_1 \) denote the closure of \(O_1 \) in \(\mathfrak{gl}(n) \). The moment map \(v : T^* \mathbb{P}^{n-1} \to \mathfrak{gl}(n)^* \cong \mathfrak{gl}(n) \) that sends \((i, j) \) to \(ij \) gives a birational isomorphism \(T^* \mathbb{P}^{n-1} \to \overline{O}_1 \). Let \(J \subset \mathbb{C}[\mathfrak{gl}(n)] = \mathbb{C}[Z] \) be the ideal generated by all \(2 \times 2 \) minors of the matrix \(Z \) and also by the trace function. Then \(J \) is a prime ideal whose zero scheme is \(\overline{O}_1 \) and the pullback morphism \(v^* : \mathbb{C}[\mathfrak{gl}(n)]/J \to \mathbb{C}[T^* \mathbb{P}^{n-1}] \) is a graded isomorphism.
where the first mapping is $\text{id} \times \nu$ and the second mapping θ sends (X, Y, Z) to $[X, Y] + Z_0$ where Z_0 indicates that we place the matrix Z on the copy of $\mathfrak{gl}(n)$ associated to vertex 0. We have a graded algebra isomorphism
\[\mathbb{C}[T^* \text{Rep}(Q, n\delta)] \otimes \mathbb{C}[\mathfrak{gl}(n)] / J \rightarrow \mathbb{C}[T^* X]. \]

Now write $\mathbb{C}[X, Y, Z] = \mathbb{C}[T^* \text{Rep}(Q, n\delta)] \times \mathbb{C}[\mathfrak{gl}(n)]$, and let $\mathbb{C}[X, Y, Z]/([X, Y] + Z_0)$ denote the ideal in $\mathbb{C}[X, Y, Z]$ generated by all matrix entries of the ℓ matrices $[X, Y] + Z_0$. Let I denote the ideal $\mathbb{C}[X, Y, Z]/([X, Y] + Z_0) + \mathbb{C}[X, Y] \otimes J \subset \mathbb{C}[X, Y, Z]$. From the above we have

\[\mathbb{C}[\mu_X^{-1}(0)] \cong \mathbb{C}[T^* \text{Rep}(Q, n\delta)] / \mathbb{C}[T^* \text{Rep}(Q, n\delta) \times \mathbb{C}[\mathfrak{gl}(n)]] \theta^* (\mathfrak{gl}(n)) = \mathbb{C}[X, Y, Z] / I. \]

Define an algebra homomorphism $r : \mathbb{C}[X, Y, Z] \rightarrow \mathbb{C}[X, Y]$ by sending $P \in \mathbb{C}[X, Y, Z]$ to the function $(X, Y) \mapsto P(X, Y, -[X, Y]_0)$. Obviously r induces an isomorphism $\mathbb{C}[X, Y, Z] / \mathbb{C}[X, Y, Z]/([X, Y] + Z_0) \cong \mathbb{C}[X, Y] / I_1$ where I_1 is the ideal of $\mathbb{C}[\text{Rep}(Q, n\delta)] = \mathbb{C}[X, Y]$ generated by the elements
\[\sum_{h(a)=i} X_a X_{a^*} - \sum_{t(a)=i} X_{a^*} X_a \]
for all i not equal to zero. Observe that the linear function $P : (X, Y, Z) \mapsto Tr Z = Tr([X, Y] + Z_0)$ belongs to the ideal $\mathbb{C}[X, Y, Z]/([X, Y] + Z_0)$. We deduce that the mapping r sends $\mathbb{C}[X, Y] \otimes J$ to the ideal generated by
\[\text{rank}(\sum_{h(a)=0} X_a X_{a^*} - \sum_{t(a)=0} X_{a^*} X_a) \leq 1. \]
Thus we obtain algebra isomorphisms
\[\mathbb{C}[\mu_X^{-1}(0)] \cong \mathbb{C}[X, Y, Z] / I \cong \mathbb{C}[T^* \text{Rep}(Q, n\delta)] / I_2 \]
where I_2 is ideal generated by the elements
\[\sum_{h(a)=i} X_a X_{a^*} - \sum_{t(a)=i} X_{a^*} X_a \]
for all $1 \leq i \leq \ell - 1$, and
\[\text{rank}(\sum_{h(a)=0} X_a X_{a^*} - \sum_{t(a)=0} X_{a^*} X_a) \leq 1. \]

By [LP, Theorem 1] the G–invariant (respectively PG–invariant) elements of $\mathbb{C}[\text{Rep}(Q_\infty, \epsilon)]$ (respectively $\mathbb{C}[\text{Rep}(Q, n\delta)]$) are generated by traces along oriented cycles. Since all oriented cycles in Q are oriented cycles in Q_∞ we have a surjective composition of algebra homomorphisms
\[(2.7.1) \quad \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^\ell_n \cong \mathbb{C}[\mu^{-1}(0)]^G \rightarrow \mathbb{C}[\mu_X^{-1}(0)]^{PG} \rightarrow \left(\mathbb{C}[\text{Rep}(Q, n\delta)] / I_2 \right)^{PG}, \]
where the first isomorphism is Theorem 2.6(3). The left hand side is a domain of dimension $2 \dim \mathfrak{h}$, so to see that the mapping is an isomorphism it suffices to prove that the right hand side also has dimension $2 \dim \mathfrak{h}$.
Let I_3 be the ideal of $\mathbb{C}[\text{Rep}(Q, n\delta)]$ generated by the elements
\[
\sum_{h(a) = i} X_a X_{a^*} - \sum_{t(a) = i} X_{a^*} X_a
\]
for all i. This is the ideal of the zero fibre of the moment map for the PG–action on $\text{Rep}(Q, n\delta)$. This ideal contains I_2 since the rank condition on the matrices is implied by the commutator condition. So there is a surjective mapping
\[
\frac{\mathbb{C}[\text{Rep}(Q, n\delta)]^{PG}}{I_2^{PG}} \to \frac{\mathbb{C}[\text{Rep}(Q, n\delta)]^{PG}}{I_3^{PG}}.
\]
We do not know yet whether the right hand side is reduced or not, but by [CB2, Theorem 1.1] the reduced quotient of the right hand side is the ring of functions of the variety $(\mathfrak{h} \oplus \mathfrak{h}^*)/\Gamma_n$. As this variety has dimension $2 \dim \mathfrak{h}$ we deduce that the composition in (2.7.1) is an isomorphism, and hence that
\[
\mathbb{C}[\mu_X^{-1}(0)]^{PG} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]/\Gamma_n.
\]

\[\square\]

Remark. In passing let us note that the commutativity of the following diagram
\[
\begin{array}{ccc}
\mathbb{C}[T^* \text{Rep}(Q, n\delta)] & \xrightarrow{\iota} & \mathbb{C}[T^* \text{Rep}(Q, n\delta)] \otimes \mathbb{C}[T^* \mathbb{P}^{n-1}] \\
& \downarrow{\nu^*} & \downarrow{\iota} \\
\mathbb{C}[T^* \text{Rep}(Q, n\delta)] \otimes C[\Omega_1] & \xrightarrow{\rho} & \mathbb{C}[T^* \text{Rep}(q, n\delta)]/I_2 \\
\end{array}
\]
where $\iota(f) = f \otimes 1$, shows that $\text{im } \iota$ maps surjectively onto $\mathbb{C}[\mu_X^{-1}(0)]$.

3. Differential operators

3.1. Symplectic reflection algebras. Let C_ℓ be the cyclic subgroup of $SL_2(\mathbb{C})$ generated by $\sigma = \text{diag}(\eta, \eta^{-1})$.

The vector space $V = (\mathbb{C}^2)^n$ admits an action of $S_n \wr C_\ell = S_n \times (C_\ell)^n$: $(C_\ell)^n$ acts by extending the natural action of C_ℓ on \mathbb{C}^2, whilst S_n acts by permuting the n copies of \mathbb{C}^2. For an element $\gamma \in C_\ell$ and an integer $1 \leq i \leq n$ we write γ_i to indicate the element $(1, \ldots, \gamma, \ldots, 1) \in C_\ell^n$ which is non–trivial in the i–th factor.

3.2. The elements $S_n \wr C_\ell$ whose fixed points are a subspace of codimension two in V are called symplectic reflections. In this case their conjugacy classes are of two types:

(S) the elements $s_{ij} \gamma_i \gamma_j^{-1}$ where $1 \leq i, j \leq n$, $s_{ij} \in S_n$ is the transposition that swaps i and j, and $\gamma \in C_\ell$.

(C_\ell) the elements γ_i for $1 \leq i \leq n$ and $\gamma \in C_\ell \setminus \{1\}$.

There is a unique conjugacy class of type (S) and $\ell - 1$ of type (C_ℓ) (depending on the non–trivial element we choose from C_ℓ). We will consider a conjugation invariant function from the set of symplectic reflections
to \(\mathbb{C} \). We can identify it with a pair \((k, c)\) where \(k \in \mathbb{C} \) and \(c \) is an \(\ell - 1 \)–tuple of complex numbers: the function sends elements from \((S)\) to \(k \) and the elements \((\sigma^m)_i \) to \(c_m \).

3.3. There is a symplectic form on \(V \) which is induced from \(n \) copies of the standard symplectic form \(\omega \) on \(\mathbb{C}^2 \). If we pick a basis \(\{x, y\} \) for \(\mathbb{C}^2 \) such that \(\omega(x, y) = 1 \) then we can extend this naturally to a basis \(\{x_i, y_i : 1 \leq i \leq n\} \) of \(V \) such that the \(x \)'s and the \(y \)'s form Lagrangian subspaces and \(\omega(x_i, y_j) = \delta_{ij} \). We let \(TV \) denote the tensor algebra on \(V \): with our choice of basis this is just the free algebra on generators \(x_i, y_i \) for \(1 \leq i \leq n \). The symplectic reflection algebra \(H_{k, c} \) associated to \(S_n \wr C_\ell \) is the quotient of \(TV * (S_n \wr C_\ell) \) by the following relations:

\[
\begin{align*}
&x_i x_j = x_j x_i, & y_i y_j = y_j y_i & \text{for all } 1 \leq i, j \leq n \\
y_i x_i - x_i y_i = 1 + \frac{k}{2} \sum_{j \neq i} \sum_{\gamma \in C_\ell} \gamma \gamma_j^{-1} + \sum_{\gamma \in C_\ell \setminus \{1\}} C\gamma \gamma_i & \text{for } 1 \leq i \leq n \\
y_i x_j - x_j y_i = -\frac{k}{2} \sum_{m=0}^{\ell-1} \eta^m s_{ij}(\sigma^m)_i(\sigma^m)_j^{-1} & \text{for } i \neq j.
\end{align*}
\]

(NB: my \(k \) is \(-k\) for Oblomkov.)

3.4. **The spherical algebra.** The symmetrising idempotent of the group algebra \(C(S_n \wr C_\ell) \) is

\[
e = \frac{1}{|S_n \wr C_\ell|} \sum_{w \in S_n \wr C_\ell} w.
\]

The subalgebra \(eH_{k, c}e \) is denoted by \(U_{k, c} \) and called the **spherical algebra.** It will be our main object of study.

3.5. **Rings of differential operators.** Recall the definition of \(\mathfrak{X} \) from 2.7. Let \(D_\mathfrak{X}(nk) \) denote the sheaf of twisted differential operators on \(\mathfrak{X} \) and let \(D(\mathfrak{X}, nk) \) be its algebra of global sections. This is simply the tensor product \(D(\text{Rep}(Q, nk)) \otimes D_{\mathbb{P}^{n-1}}(nk) \). (The twisted differential operators on \(\mathbb{P}^{n-1} \) can be defined as follows. Let \(A_n = \mathbb{C}[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n] \) be the \(n \)–th Weyl algebra. This is a graded algebra with \(\text{deg}(x_i) = 1 \) and \(\text{deg}(\partial_i) = -1 \). The degree zero component is the subring generated by the operators \(x_i \partial_j \) which, under the commutator, generate the Lie algebra \(\mathfrak{gl}(n) \). Call this subring \(R \). Let \(E = \sum_{i=1}^n x_i \partial_i \in R \) be the Euler operator. Then \(D(\mathbb{P}^{n-1}, nk) \) is the quotient of \(R \) by the two–sided ideal generated by \(E - nk \).

The group action of \(PG \) on \(\mathfrak{X} \) differentiates to an action of \(\mathfrak{pg} \) on \(\mathfrak{X} \) by differential operators. This gives a mapping

\[(3.5.1) \quad \tau : \mathfrak{pg} \rightarrow D_\mathfrak{X}(nk).\]

(One way to understand this is to start back with \(U \subset \text{Rep}(Q_{\infty}, \epsilon) \) and look at the \(G \) action on \(U \). Differentiating the \(G \)–action gives an action of \(\mathfrak{g} \) by differential operators on \(U \), \(\hat{\tau} : \mathfrak{g} \rightarrow D_U \). Since \(\mathbb{C}^* \) acts trivially on \(\text{Rep}(Q, n\delta) \) and by scaling on \(i \in \text{Rep}(Q_{\infty}, \epsilon) \) we find that \(\hat{\tau}(\text{id}) = 1 \otimes E \) where \(\text{id} = (I_n, I_n, \ldots, I_n) \in \mathbb{C} \subset \mathfrak{g} \). Thus we get an action of \(\mathfrak{pg} \) on \((D_U / D_U(1 \otimes E - nk))^\mathbb{C}^* = D_\mathfrak{X}(nk)\).
3.6. Recall the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ and its quotient $\mathfrak{pg} = \text{Lie}(PG)$ which is simply $\mathfrak{g}/\mathbb{C} \cdot \text{id}$ where $\text{id} = (I_n, \ldots, I_n) \in \mathfrak{g}$. Let $\chi_c : \mathfrak{g} \to \mathbb{C}$ send an element $(X) = (X_0, \ldots, X_{\ell-1}) \in \mathfrak{g}$ to

$$
\chi_c(X) = \sum_{r=0}^{\ell-1} C_r \text{Tr}(X_r)
$$

where $C_r = \ell^{-1}(1 - \sum_{m=1}^{\ell-1} \eta^{m \ell} c_m)$ for $1 \leq r \leq \ell - 1$ and $C_0 = \ell^{-1}(1 - \ell - \sum_{m=1}^{\ell-1} c_m)$. Observe that

$$
\chi_c(\text{id}) = \text{Tr}(I_n) \sum_{r=0}^{\ell-1} C_r = n \sum_{r=0}^{\ell-1} \sum_{m=0}^{r-1} -\eta^{rm} c_m = 0.
$$

In particular χ_c is actually a character of \mathfrak{pg}.

Let $\chi_k : \mathfrak{g} \to \mathbb{C}$ send an element $(X) = (X_0, \ldots, X_{\ell-1})$ to $\chi_k(c) = k \text{Tr}(X_0)$.

We will be regularly using the character $\chi_{k,c} \in \mathfrak{g}^*$ defined by $\chi_{k,c} = \chi_c + \chi_k$.

3.7. Let us recall Oblomkov’s deformed Harish–Chandra homomorphism, [O]. By Lemma 2.4 $\omega(\mathfrak{h}^{\text{reg}}/\Gamma_n)$ is a subset of $\text{Rep}(Q, n\delta)^{\text{reg}}$ which is a slice for the PG–action on $\text{Rep}(Q, n\delta)$. Let

$$
W'_k = (y_1 \ldots y_n)^{-k} C(0)[y_1^{\pm 1}, \ldots, y_n^{\pm 1}],
$$

a space of multivalued functions on $(\mathbb{C}^*)^n$. The Lie algebra \mathfrak{g} acts on W'_k by projection onto its 0–th summand $\mathfrak{gl}(n)$, and then by the natural action of $\mathfrak{gl}(n)$ on polynomials (so E_{ij} acts as $y_i \partial / \partial y_j$). With this action the identity matrix in $\mathfrak{gl}(n)$ becomes the Euler operator E which acts by multiplication by $-nk$. Thus we can make W'_k a \mathfrak{pg}-module by twisting W'_k by the character χ_k since then id acts trivially. If we call this module W_k then $W_k = W'_k \otimes \chi_k$. Now define Fun' to be the space of functions on $\text{Rep}(Q, n\delta)$ of the form

$$
f = \hat{f} \prod_{i=0}^{\ell-1} \det(X_i)^{r_i}
$$

where \hat{f} is a rational function on $\text{Rep}(Q, n\delta)^{\text{reg}}$ regular on \mathcal{S}, $r_i = \sum_{j=0}^{i} C_j + \sigma$ and $\sigma = \ell^{-1} \sum_{r=0}^{\ell-1} sC_r$. Then $(\text{Fun}' \otimes W_k)^{\mathfrak{pg}}$ is a space of (\mathfrak{pg}, χ_c)–semiinvariant functions defined on a neighbourhood of \mathcal{S} which take values in W_k. This space is a free $\mathbb{C}[\mathfrak{h}^{\text{reg}}/\Gamma_n]$–module of rank 1, the isomorphism being given by restriction to \mathcal{S}. (Note that the determinant of an element of the form (X, \ldots, X) is $\det(X) \sum r_i = 1$ as $\sum r_i = 0$.) Any \mathfrak{pg}–invariant differential operator, D, acts on such a function, f. Oblomkov defines his homomorphism to be the restriction of $D(f)$ to \mathcal{S}.

3.8. We can view the above procedure in terms of $\text{Rep}(Q_\infty, \epsilon)$. Thanks to Lemma 2.5 we use $\mathcal{S}_\infty = \mathcal{S} \times (1, \ldots, 1) \in U_\infty$ as a slice for the G–action. The space $\mathcal{S} \times (\mathbb{C}^*)^n$ is a closed subset of U_∞ since the condition that i be cyclic for $\text{diag}(x_1, \ldots, x_n)$ is equivalent to $i \in (\mathbb{C}^*)^n$. Thus functions on a neighbourhood of \mathcal{S}_∞ in U_∞ can be identified with functions from a neighbourhood of \mathcal{S} taking values in functions on $(\mathbb{C}^*)^n$. In particular, we can consider elements on $(\text{Fun}' \otimes W_k)^{\mathfrak{pg}}$ first as $(\mathfrak{g}, \chi_{k,c})$–semiinvariant functions from a neighbourhood of \mathcal{S} taking values in W'_k and hence as $(\mathfrak{g}, \chi_{k,c})$–semiinvariant functions on an open set in a
neighbourhood of \(S_{\infty} \). We can apply any element of \(D \in D(U_{\infty})^g \) to these \((g, \chi_{k,c})\)-semiinvariant functions and then restrict to \(S_{\infty} \) to get a homomorphism

\[
\tilde{\vartheta}_{k,c} : D(U_{\infty})^g \to D(\mathfrak{h}_{\text{reg}}/\Gamma_n).
\]

3.9. Since \(\text{Rep}(Q_{\infty}, \epsilon) = \text{Rep}(Q, n\delta) \times \mathbb{C}^n \) there is a mapping

\[
\mathcal{G} : D(\text{Rep}(Q, n\delta))^p_{\mathbb{R}} \to D(U_{\infty})^g
\]

which sends \(D \in D(\text{Rep}(Q, n\delta))^p_{\mathbb{R}} \) to \((D \otimes 1)\). Oblomkov’s homomorphism is \(\tilde{\vartheta}_{k,c} \circ \mathcal{G} \).

3.10. Differentiating the \(G \)-action on \(U_{\infty} \) gives a Lie algebra homomorphism \(\hat{\tau} : \mathfrak{g} \to \text{Vect}(U_{\infty}) \) which we extend to an algebra map

\[
\hat{\tau} : U(\mathfrak{g}) \to D(U_{\infty}).
\]

By Lemma 2.5 \(U_{\infty} \) is a principle \(G \)-bundle over \(\mathfrak{h}_{\text{reg}}/\Gamma_n \), so (a generalisation of) [Schw, Corollary 4.5] shows that the kernel of \(\tilde{\vartheta}_{k,c} \) is \((D(U_{\infty})((\hat{\tau} - \chi_{k,c})(\mathfrak{g})))^g \). Moreover, since the finite group \(\Gamma_n \) acts freely on \(\mathfrak{h}_{\text{reg}} \) we can identify \(D(\mathfrak{h}_{\text{reg}}/\Gamma_n) \) with \(D(\mathfrak{h}_{\text{reg}}) \Gamma_n \).

3.11. Recall that

\[
D_X(nk) \cong \left(\frac{D_U}{D_U(\hat{\tau} - \chi_k)(\mathbb{C} \cdot \text{id})} \right)^C.
\]

Hence we have

\[
(D^G_X(nk)) \cong \left(\frac{D_X(nk)}{D_X(nk)(\tau - \chi_c)(pg)} \right)^{PG},
\]

where \(U = \{(X, i) : i \neq 0\} \subset \text{Rep}(Q_{\infty}, n\delta) \) as in 2.7. Now we consider the restriction mapping \(D_U \to D(U_{\infty}) \). Composing the global sections of the above isomorphism with this restriction and the homomorphism \(\tilde{\vartheta}_{k,c} \) gives

\[
\mathcal{R}_{k,c} : \left(\frac{D(X, nk)}{D(X, nk)(\tau - \chi_c)(pg)} \right)^{PG} \to D(\mathfrak{h}_{\text{reg}}) \Gamma_n.
\]

3.12. Let

\[
\delta_{k,c}(x) = \delta^{-k-1} \delta^\sigma_{\Gamma}
\]

where \(\delta = \prod_{1 \leq i < j \leq n} (x_i^f x_j^f) \) and \(\delta_T = \prod_{i=1}^n x_i \). Define a twisted version of \(\mathcal{R}_{k,c} \) above

\[
\mathcal{R}_{k,c}(D) = \delta_{k,c}^{-1} \circ \mathcal{R}_{k,c}'(D) \circ \delta_{k,c}
\]

for any differential operator \(D \).
3.13. Our main result is the following.

Theorem. For all values of \(k \) and \(c \), the homomorphism \(\mathcal{R}_{k,c} \) has image \(\im \theta_{k,c} \). In particular we have an isomorphism

\[
\theta_{k,c}^{-1} \circ \mathcal{R}_{k,c} : \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}} \sim \rightarrow U_{k,c}.
\]

Proof. Let us abuse notation by writing \(U_{k,c} \) for the image of \(\mathcal{U}_{k,c} \) in \(D(\mathfrak{h}_{\text{reg}})^{\Gamma_n} \) under \(\theta_{k,c} \).

Since \(\mathfrak{X} = \text{Rep}(Q,n\delta) \times \mathbb{P}^{n-1} \) there is a mapping

\[
D(\text{Rep}(Q,n\delta))^{\mathfrak{p} \mathfrak{g}} \rightarrow D(\mathfrak{X},nk)^{\mathfrak{p} \mathfrak{g}} \rightarrow D(\mathfrak{h}_{\text{reg}})^{\Gamma_n}
\]

which sends \(D \in D(\text{Rep}(Q,n\delta))^{\mathfrak{p} \mathfrak{g}} \) to \(\mathcal{R}_{k,c}(D \otimes 1) \). Recall \(\tau \) from (3.5.1). Since \(\text{gr} \tau = \mu^*_\lambda \) we have an inclusion \(\text{gr}(D(\mathfrak{X},nk))\mu^*_\lambda(\mathfrak{p} \mathfrak{g}) \subseteq \text{gr}(D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})) \). This gives a graded surjection

\[
p : \left(\frac{D(\mathfrak{X},nk)}{\text{gr}(D(\mathfrak{X},nk))\mu^*_\lambda(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}} \rightarrow \text{gr} \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}}.
\]

By Remark 2.7 the composition

\[
\text{gr} D(\text{Rep}(Q,n\delta))^{\mathfrak{p} \mathfrak{g}} \rightarrow \text{gr} D(\mathfrak{X},nk)^{\mathfrak{p} \mathfrak{g}} \rightarrow \left(\frac{D(\mathfrak{X},nk)}{\text{gr}(D(\mathfrak{X},nk))\mu^*_\lambda(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}} \rightarrow \text{gr} \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}}
\]

is surjective. Thus the homomorphism

\[
D(\text{Rep}(Q,n\delta))^{\mathfrak{p} \mathfrak{g}} \rightarrow \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}}
\]

is also surjective. In particular, by 3.9 this implies that the image of \(\mathcal{R}_{k,c} \) equals the image of Oblomkov’s Harish–Chandra homomorphism, which, by [O, Theorem 2.5], is \(U_{k,c} \).

Thus we have a filtered surjective homomorphism

\[
\mathcal{R}_{k,c} : \left(\frac{D(\mathfrak{X},nk)}{D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}} \rightarrow U_{k,c}.
\]

Thus the dimension of the left hand side is at least \(2 \dim \mathfrak{h} = \dim U_{k,c} \). By Proposition 2.7

\[
\left(\frac{D(\mathfrak{X},nk)}{\text{gr}(D(\mathfrak{X},nk))\mu^*_\lambda(\mathfrak{p} \mathfrak{g})} \right)^{\mathfrak{p} \mathfrak{g}} \cong \mathbb{C}[\mu^{-1}_\lambda(0)]^{\mathfrak{p} \mathfrak{g}} \cong \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^{\Gamma_n}.
\]

Hence \(p \) is a surjection from a domain of dimension \(2 \dim \mathfrak{h} \) onto an algebra of dimension at least \(2 \dim \mathfrak{h} \) and is hence an isomorphism. Thus \((D(\mathfrak{X},nk)/D(\mathfrak{X},nk)(\tau - \chi_c)(\mathfrak{p} \mathfrak{g}))^{\mathfrak{p} \mathfrak{g}} \) is a domain of dimension \(2 \dim \mathfrak{h} \). This implies that \(\mathcal{R}_{k,c} \) is an isomorphism. \(\square \)
4. Application: Shift functors

4.1. The Holland-Schwarz Lemma. We want to understand the space

\[D(\text{Rep}(Q_\infty, \epsilon)) \]

As we observed in the proof of Theorem 3.13 there is a natural surjective homomorphism

\[\frac{\text{gr} D(\text{Rep}(Q_\infty, \epsilon))}{\text{gr} D(\text{Rep}(Q_\infty, \epsilon)) \mu^*(\mathfrak{g})} \rightarrow \text{gr} \left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})} \right). \]

It turns out that this is an isomorphism.

Lemma (Schwarz, Holland). The homomorphism (4.1.1) is an isomorphism of \(\mathbb{C}[T^* \text{Rep}(Q_\infty, \epsilon)] \)-modules.

Proof. This is [H, Lemma 2.2] since, by Theorem 2.6(2), the moment map \(\mu \) is flat. \(\square \)

4.2. This lets us prove the second part of the isomorphism in the statement of Theorem 1.4.

Lemma. There is an algebra isomorphism

\[\left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})} \right)^G \rightarrow \left(\frac{D(X, nk)}{D(X, nk)(\hat{\tau} - \chi_{k,c})(\text{pg})} \right)^{PG}. \]

Proof. We have a natural \(\text{pg} \)-equivariant mapping

\[D(\text{Rep}(Q_\infty, \epsilon))^{G^*} \rightarrow D_{U}^{G^*} \rightarrow D_X(nk) \]

which induces a homomorphism

\[D(\text{Rep}(Q_\infty, \epsilon))^G \rightarrow \left(\frac{D(X, nk)}{D(X, nk)(\hat{\tau} - \chi_{k,c})(\text{pg})} \right)^{PG}. \]

This is surjective since, as we observed in the proof of Theorem 3.13, the image of \(D(\text{Rep}(Q, n\delta))^{PG} \subset D(\text{Rep}(Q_\infty, \epsilon)^G \) spans the right hand side. By (3.11.1) the kernel of this homomorphism includes the ideal \((D(\text{Rep}(Q, \infty), \epsilon)(\hat{\tau} - \chi_{k,c})(\mathfrak{g})^G. \) Hence we have a surjective homomorphism

\[\left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})} \right)^G \rightarrow \left(\frac{D(X, nk)}{D(X, nk)(\hat{\tau} - \chi_{k,c})(\text{pg})} \right)^{PG}. \]

By Lemma 4.1 and Proposition 2.7 there is an isomorphism

\[\left(\frac{\text{gr} D(\text{Rep}(Q_\infty, \epsilon))}{\text{gr} D(\text{Rep}(Q_\infty, \epsilon))(\hat{\tau} - \chi_{k,c})(\mathfrak{g})} \right)^G = \left(\frac{\text{gr} D(\text{Rep}(Q_\infty, \epsilon))}{\text{gr} D(\text{Rep}(Q_\infty, \epsilon)) \mu^*(\mathfrak{g})} \right)^G = \mathbb{C}[\mu^{-1}(0)]^G = \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]^\Gamma. \]

This shows that the algebra on the left is a domain of dimension of \(2 \dim \mathfrak{h} \) and so (4.2.1) is also injective, as required. \(\square \)
4.3. **Shifting.** The previous two lemmas provide us with an interesting series of bimodules. Given a character Λ of G we define

$$B^\Lambda_{k,c} = \left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\tau - \chi_{k,c})(g)} \right)^\Lambda$$

to be the set of (G, Λ)–semiinvariants. Thanks to Lemma 4.2 and Theorem 3.13 this is a right $U_{k,c}$–module.

Now observe that if $x \in g$ and $D \in D(\text{Rep}(Q_\infty, \epsilon))^\Lambda$ then

$$[\tau(x), D] = \lambda(x)D$$

where $\lambda = d\Lambda$. It follows that $B^\Lambda_{k,c}$ is also a left $(D(\text{Rep}(Q_\infty, \epsilon))/D(\text{Rep}(Q_\infty, \epsilon))(\tau - \chi_{k,c} - \lambda)(g))^G$–module. So tensoring sets up a shift functor

$$S^\Lambda_{k,c} : \left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\tau - \chi_{k,c})(g)} \right)^G \longrightarrow \left(\frac{D(\text{Rep}(Q_\infty, \epsilon))}{D(\text{Rep}(Q_\infty, \epsilon))(\tau - \chi_{k,c} - \lambda)(g)} \right)^G.$$

4.4. The character group of G is isomorphic to \mathbb{Z}^ℓ via

$$(i_0, \ldots, i_{\ell-1}) \mapsto ((g_0, \ldots, g_{\ell-1}) \mapsto \prod_{r=0}^{\ell-1} \det(g_r)^{i_r}).$$

Corresponding to the standard basis element ϵ_i is the character χ_i of g which sends $X \in g$ to $\text{Tr}(X_i)$.

Lemma. The bimodule corresponding to χ_i is a $(U_{k,c}, U_{k',c'})$–bimodule where $k' = k + 1$ and $c' = c + (1 - \eta^{-i}, 1 - \eta^{-2i}, \ldots, 1 - \eta^{-(\ell-1)i})$.

Proof. Recall that (k, c) corresponds to the character of g we called $\chi_{k,c}$ which is defined as

$$\chi_{k,c}(X) = (C_0 + k) \text{Tr}(X_0) + \sum_{j=1}^{\ell-1} C_j \text{Tr}(X_j),$$

where $C_r = \ell^{-1}(1 - \sum_{m=1}^{\ell-1} \eta^{mr} c_m)$ for $1 \leq r \leq \ell - 1$ and $C_0 = \ell^{-1}(1 - \ell - \sum_{m=1}^{\ell-1} c_m)$. We need to calculate (k', c') so that $\chi_{k,c} + \chi_i = \chi_{k',c'}$. So we have

$$(\chi_{nk,c} + \chi_i)(X) = (C_0 + k) \text{Tr}(X_0) + \text{Tr}(X_i) + \sum_{j=1}^{\ell-1} C_j \text{Tr}(X_j) = (C_0' + k') \text{Tr}(X_0) + \sum_{j=1}^{\ell-1} C'_j \text{Tr}(X_j).$$

Calculation shows that $k' = k + 1$ and that if $i = 0$ then $C'_j = C_j$ and otherwise

$$C'_j = C_j + \begin{cases} -1 & \text{if } j = 0 \\ 1 & \text{if } j = i \\ 0 & \text{otherwise}. \end{cases}$$

These unpack to give $c'_m = c_m + 1 - \eta^{-mi}$. \qed
4.5. **Question.** Thus for each $0 \leq i \leq \ell - 1$ we have a *shift functor*

$$S_i : U_{k,c}-\text{mod} \to U_{k+1,c'}-\text{mod}$$

where c' is as above. When is this an equivalence of categories?

Remarks.
1. *We have been able to prove this is an equivalence when (k,c) can be reached from $(0,0)$ by shifting.*
2. *Shift functors are also constructed in [BC] and [V]. Hopefully they agree with the functors here.*

References

[BC] Y. Berest and O. Chalykh, Quasi–invariants of complex reflection groups, *in preparation.*

[BEG] Y. Berest, P. Etingof and V. Ginzburg, Cherednik algebras and differential operators on quasi–invariants, *Duke Math. J.* **118**, 279–337.

[CB1] W. Crawley–Boevey, Geometry of the moment map for representations of quivers, *Compositio Math.*, **126**, (2001), 257–293.

[CB2] W. Crawley–Boevey, Decomposition of Marsden–Weinstein reductions for representations of quivers, *Compositio Math.* **130** (2002), 225–239.

[EG] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, *Invent. Math.*, **147** (2002), 243–348.

[EGGO] P. Etingof, W.L. Gan, V. Ginzburg and A. Oblomkov, private communication.

[GG] W.L. Gan and V. Ginzburg, Almost commuting variety, D–modules, and Cherednik algebras, *RT:0409262*, March 2005.

[GS] I. Gordon and J.T. Stafford, Rational Cherednik algebras and Hilbert schemes I and II, *to appear in Adv.Math. and Duke Math. Jour.*

[H] M. Holland, Quantization of the Marsden–Weinstein reduction for extended Dynkin quivers, *Ann. scient. Éc. Norm. Sup.*, (1999), 813–834.

[LP] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, *Trans. Amer. Math. Soc.*, **317**, (1990), 585–598.

[LS] T. Levasseur and J.T. Stafford, The kernel of a homomorphism of Harish–Chandra, *Ann. scient. Éc. Norm. Sup.*, **29**, (1996), 385–397.

[O] A. Oblomkov, Deformed Harish–Chandra homomorphism for the cyclic quiver, *RT:0504395*, April 2005.

[Scho] A. Schofield, General representations of quivers, *Proc. London Math. Soc* **65** (1992), 46–64.

[Schw] G.W. Schwarz, Lifting differential operators from orbit spaces, *Ann. scient. Éc. Norm. Sup.*, **28**, (1995), 253–306.

[V] R. Vale, Diagonal coinvariants for $Z_m \wr S_n$, *RT:0505416*, May 2005.