Heat treatment intensification of meat culinary products by applying the combined method is discussed in the article. The essence of this method is using a conductive and intermittent infrared heat supply. Some results of research are given. The main aim of research is optimizing the heat treatment optimization of products to improve the quality of finished products. An experimental device is used for this purpose. This unit consists of the stainless steel working chamber placed with two IR heating elements and electric burner for conductive heating in it. Generalized quality index was used as parameters of frying process optimization. This index is calculated based on the sensory evaluation of the samples and the cooking time. Indices of chemical, biological and microbiological compositions, organoleptic evaluation of quality for control and experimental samples were determined using standard techniques. The authors suggest the use of research results for development of the device of combined frying of meat culinary products in foodservice companies.

Keywords: intensification, heat treatment, steak, crust, conductive heating, infrared heating.

References
1. Rogov, I. A., Nekrutman, S. V. (1974). Sverhspokochastotnii i infrezhnyi nagrev pishevykh produktov. Moscow: Pishevaia promyshlennost', 583.
2. Ostrovskii, L. V. (1978). Infrauvrashnyi nagrev v obshevestvennom pitanii. Moscow: Ekonomika, 104.
3. Berhang, R., Yubits, V. Translated from German: Levitin, B. I. (1963). Tekhniku IK-nagревa. Moscow-Leningrad: Gosenergiosdat, 168.
4. Muratov, Yu. R. (1984). Issledovanie protsesa termoozrabochnii miassikh kulinarhnykh isdelii pri impul'snom IK-energopoode. 24.
5. Yuln, O. V., Porescheyu, M. I., Tarasenko, I. I., Krasnyukh, O. P., Litus, Yu. F. (1995). Teplovyi protsess ta apanyvity na pidpyreivstva hromosudskho kharchuvannia. Kyiv: Vipol, 176.
6. Moore, K. (1979). Microwave technology points to creative routes for new product ideas, developments. Food Product Development, 7, 36–57
7. Sharmk retseptur biaudh i kulinarhnych isdelii dla predpiriapiti obshevestvennogo pitania. (1982). Moscow: Ekonomka, 720.
8. Hammer, G. F. (1998). Aktuelle ausser internationalen Fluscherforschung. Technologie von Elesch und Fleischverarbeitung. Fleischwirtschafts, vol. 78, No. 10, 1083–1085.
9. Gremen, M. (1982). Sensory adlity and energy use for Scrumbled egg and beef patties heated in institute — oral microwave and convection ovens. Food Sci., Vol. 47, NO. 3, 871–874.
10. Fedorov, R. G. et al. (1987). Vybor optimal'nyh parametrov teploprovodiva za zharko. Promyshlenniaa esa teplotelnika, 5, 61–63.

Effect of Electroactivated Water on the Development of Surface Meat Microflora

An influence of electroactivated water fractions on development of surface meat microflora is given in the article. Quantitative and qualitative composition of surface meat microflora at its processing by catholyte, anolyte and tap water (control) is investigated. The study was conducted over 6 days. It is noted that population of microorganisms on the 3rd day by 45 % less than in the control sample, and six days for 70 % less than in controls at anolyte processing. According to obtained data catholyte shows no bactericidal properties at the surface microflora. Qualitative analysis of microflora showed that lactic Leucosomes and acidophil are discovered at anolyte processing. This fact is positive for raw meat microflora because the lactic acid bacteria prolong the shelf life of meat and suppress putrefactive microflora. Influence of anolyte is also compared with influence of food chemical acids with the same pH. It is determined that inhibition of microorganisms for anolyte processing and 10 % acetic acid is almost the same, but this acetic acen concentration causes significant deterioration of the organoleptic properties of meat and denaturation of the surface proteins. The study can be used in meat processing technology to improve the microbiological safety of raw materials and lengthening periods of storage of meat and meat products.

Keywords: electroactivated water, anolyte, surface microflora, meat, bactericidal effect.

References
1. Arzhakov, P. V. (2009). Mikroorganizmy odin iz osnovnykh etiologicheskikh faktorov sagrizhannya miasa. Veterinarnia patologiia, 4, 5–8.
2. Skulovets, M. V., Yakimets, O. V. (2015). Faktory, vliianshie na kacheste miasa pri pervichnoi pererabotke skotka. Vestnik Bryanskoi gosudarstvennaya sel'skos plates'stvennaya akademii, 3–1. Available: http://cyberleninka.ru/article/n/faktory-vliyanishche-nachestvo-
3. Milios, K. T., Drominos, E. H., Zoiopoulos, P. E. (2014, September). Food Safety Management System validation and verification in meat industry: Carcass sampling methods for microbiological hygiene criteria — A review. Food Control, Vol. 47, 74–81. doi:10.1016/j.foodcont.2014.02.041
4. Froikistova, N. A. (2010). Bakterii vedi bakuud pomyxma — vosbuditelii porch produktdn pitania. Aktual'nye voprosy mikrobiologii, virsologii, epizootologii i biotehnologii, Vol. 3, 88.
5. Mann, E., Wetzel, S. U., Pinion, B., Metzler-zebel, B. U., Wagner, M., Schmitz-Esser, S. (2016, July). Psychrophilic spolders dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Science, Vol. 117, 36–40. doi:10.1016/j.meatsci.2016.02.034
6. Gill, C. O., Badoni, M. (2004, February). Effects of peroxoacetic acid, acilified sodium chloride or lactic acid solutions on the microflora of chilled beef carcasses. International Journal of Food Microbiology, Vol. 91, No. 43–50. doi:10.1016/1665-0436(03)00329-5
7. Nesterenko, A. A., Reshetnyak, A. I., Potokina, Yu. V. (2012). Priimenenye osoma pri hranenii miasoproduktov. Vestnik NGIEI, 5, 65–61.
8. Olaye, O. A. (2014). Characteristics of lactic acid bacteria being proposed as starter cultures for extending the shelf life of a Nigerian grilled meat product isre. Asian Journal of Science and Technology, Vol. 5, No. 11, 639–643.
9. Son, O., Golotin, V., Saluyk, E. (2014). On improving the quality of meat semifinished items on indicators of microbiological purity Tehnicheskie nauki — ot teori k praktike, 40. Available: http://cyberleninka.ru/article/n/povysheniya-kachestva-myasnykh-polubuultraktivatorov-po-pokazateluyu-mikrobiologicheskoy-chistoty
10. Shechinaeva, E. A., Borisenok, A. A., Borisenko, L. A., Sudakova, N. V. (2007). Elektromehanosnaia aktivatsia kaks sposob bezazer-
gentnogo regulirovania sostava zhidikh pishevyh sred. Stavropol: SevKavGTU, 144.
11. Gnako, E. N., Kravets, V. I., Leschenko, E. V., Omelchenko, A. (2011). Emergence of the Science and Technology of Electroactivated Aqueous Solutions. Applications for Environmental and Food Safety. Environmental Security and Ecoterrorism. Netherlands: Springer, 101–116. doi:10.1007/978-90-489-1235-5_8
12. Dydykin, A. S., Alansev, P. A., Bogatyrev, A. N., Stehin, A. A. (2012). Emergences of Food Microorganisms in Practical Use Electromehanices-
13. Aider, M., Gnatko, E., Benali, M., Plutakhin, G., Kastychuk, A. (2012, July). Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. Innovative Food Science & Emerging Technologies, Vol. 15, 38–49. doi:10.1016/j.ifset.2012.02.002
14. Vinnikova, L., Pronkina, K. (2015). Vpve electroaktivovanoi vody na microboliichnii pokazyk musni syrovyyny. Naukovyi pratsi Odeskoi natsionalnoi akademii kharchuvших tekhnikh, 48, 110–114.

Improving Quality of Apple Powder Confectionery

Comprehensive analysis of domestic and foreign literature on the use of processed products of vegetable raw materials in the manufacture of confectionery is conducted. Use of apple powder is promising direction in this case.

Rational formulation and production technology of apple biscuit, fruit gingerbread, butter-apple and protein-apple creams were developed on the basis of the experimental elaborations and mathematic programming: a rational number of additives for biscuit — 10 %; gingerbread — 10 %; butter cream — 20 %, protein cream — 30 % of

Abstracts and References
apple puree. New technologies promote rational use of raw materials and improve the quality of confectionery.

Analysis of the chemical composition of the developed products represents a significant increase in the number of vitamins, minerals, and reducing calories.

Quality models of proposed products were developed and built. The research results show an improvement of quality of products with the apple powder and to increase their biological value.

Keywords: apple powder, apple biscuit, fruit gingerbread, butter-apple cream, protein-apple cream.

References

1. Tkachenko, A. S. (2013). Poshuky shlyakhiv zvizzhennia energetychnoi tsinnosti boroshnianykh kondyterskykh vyrobiv. Naukovyi visnyk Poltavs’kogo universytetu ekonomiki i turizmu, 1(27), 94–97.

2. Plotnikova, T.V., Triapki, E.V. (2006). Plodovo-izadnye poroshchiki v mnykh isdeliach. Proizvodstvo & Ingredience, 2, 20–21.

3. Perfolia, O. V., Mitrokhin, M. A. (2008). Utilizaion of powders from fruit and vegetable refuse for flour confectionery assortment expansion. Destinazioni nauki i tehnik, APK, 4, 48–50.

4. Rahimev, U. Yu., Atahansov, Shh. N., Atamirsaeva, S. T., Hozhiev, R. M., Dadamirsaev, M. H. (2014). Izpolsovanie poroshchki-polufabriyakta, poluchenego is vtorichenogo syriya sokovyh proizvodstv. Dostizheniya nauki i tehniki, vol. 117, 151–152.

5. Gaissanov, A. O., Prohas'ko, L. S., Popova, M. A., Lukinyh, S. V., Assenova, B. K. (2014). Izpolsovanie vtorichenogo y rastitel'nogo syriya is produkty pishchevyh. Dostizheniya nauki i tehniki, vol. 117, 153–154.

6. Rebesh, M. B., Navomla, N. N., Laksminik, N. N., Sinina, O. V., Salishov, N. N. (2011). O tsinnosti obozhishenya kondyterskikh isdeli i mikroimunnosti. Tehnologiya i tovarovedenie isvedavanykh pishchevyh produktov, 4, 70–75.

7. Borodai, D. (16.06.2015). Vykorystannya netradytsiynoi syriyny rozhnychnoho pokhodianahy iz yakosti zaharchuchoi dobyvky prehrobnykh i boroshnianykh kondyterskykh vyrobiv. Nauchna biblioteka i UISPA. Stati studentiv, mahistriv, aspirantiv. Tehnologiya i tovarovedenie isvedavanykh pishchevyh produktov, 4, 70–75.

8. Kudrjaschova, A. (2006). Novye napravleniya nauchno-technicheskogo razvitia v oblasti pitania, sdorov’ia i ekologii. Persheva promyschленnosto, 9, 110–114.

9. Kasabova, K., Samokhvalova, O., Olimyk, S. (2013). Kharakteristika novykh isdeliiy is novych isdely iz plodyno-sosnovogo melanji. Periodika sel’hosyr’ya, 7, 37.

10. Sheludko, V. M. (2011). Novyi vidy boroshnianykh kondyterskykh vyrobiv. Ohliad kondyterskoho rynku, 189–191.

11. Shelnudko, V. M. (2011). Novyi vidy boroshnianykh kondyterskykh vyrobiv. Ohliad kondyterskoho rynku, 6, 30–32.

12. Oshlyad kondyterskoho rynku. (2014). Natsionalnye resursyache shchitno «Riurik». Available: http://riruk.com.ua/our-research/sectoral-reviews.html

RESEARCH OF FATTY ACID AND MINERAL COMPOSITION OF SOFT BODY OF FRESHWATER BIVALVES (GENUS ANODONTA) IN THE NORTHERN UKRAINE

page 17–23

The fatty acid and mineral composition of the freshwater bivalves (genus Anodonta) in the north of Ukraine are determined for the first time and compared with the investigated data on the type of soft body of freshwater bivalves of genus Anodonta and genus Mytilus. It was revealed that the amount of iodine contained in a soft body of bivalves of genus Anodonta provides almost half the daily requirement of this element and contained amounts of salts of heavy metals does not exceed the maximum permissible concentrations for aquatic organisms. Amount of calcium and phosphorus in the soft body of bivalves of genus Anodonta in the obtained ash in times greater than their number in the body of the soft marine counterparts, which provides a better absorption of iodine in the body because these elements are its synergists. The possibility of using freshwater bivalves of genus Anodonta as a complete and biologically healthy food was proved. This product provides the body with vital essential fatty acids, micro and macro elements and helps the prevention of iodine deficiency disorders.

References

1. Mglntes, A. I., Lovacheva, G. N., Aleshchina, N. M. et al. (2000). Sprourochek technologii oshchetnennogo pitania. Moskva: Kolos, 416.

2. Lipatov, N. N., Bashchikrov, O. I., Gevorgian, A. L. (2003). Analiz alimentaarnoi adekvatnosti zhirovых komponentov perspektivnyh vidov syriya, balansiruynogo produktu pitania detey v vrosate ot 10 let. Naukovedenie i konkurentnaospozhnoy tehnologii produktov: pitania so spetsial’nymi svoistvami. Urgl: VNIMS, 255–255.

3. Avtyn, A. P., Zhadanov, A. A., Rysh, M. A., Struchkova, L. S. (2005). Mikroelementy ladynyu: etiologiya, klassifikatsiya, patogenezi, orhanoaptika. Moskva: Medgta, 496.

4. Korzun, V. N. (2009). Theoretical Basis for the Creation and Use of the Products for Special Purpose – Environment and Health, 1, 63–68.

5. Karta iododefizita v Ukrainy: okolo 80 regionov s defizitom ioda. (07.30.2013). Thryo.info. Available: http://thryo.info/v-ukrainsia-nashchty-vyaeta-około-80-regionów-s-defizitem-ioda/.

6. Gorbunov, A. V., Lyapunov, S. M., Frontasyeva, M., Pavlov, S. S. (2015) Intake of Choline and Phospholipids by Body with Food in Central Regions of the European Part of Russia. Food and Nutrition, 11, 168–178. doi:10.4236/ins.2015.61018

7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2014). Scientific Opinion on the substantiation of a health claim related to iodine and contribution to normal cognitive development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal, 12(1), 3517. doi:10.2903/j.efsa.2014.3517

8. Lipatov, N. N., Sachinov, G. Yu., Bashchikrov, O. I. (2001). Formoobrazovannyi analiz amino- i zhirookishtnogo sostava syriya vtorichenogo dlia proektirovaniia detskogo pitania s sadavamiy pishevoi adekvatnosti. Hranienie, perebroshka sel’hosyr’ya, 8, 11–14.

9. Akulin, V. N., Shchipkivka, S. P., Bimov, Yu. G. et al. (1995). Konservirovanny syr’ y is sosseyessov – ishotchina polinenasyhennykh kislot. Nauka i tekhnika, 4, 45–56.

10. Chilton, F., Murphy, R., Wilson, B., Sergeant, S., Ainsworth, H., Maglinets, A. I., Lovacheva, G. N., Aleshchina, N. M. et al. (2000). EFSA Panel on Dietetic Products, Nutrition and Allergies. Food and Nutrition, 6, 1993–2022. doi:10.3390/nu6051993

11. Citron, V. N., Parats, A. M., Bruslova, K. M. et al. (2004). Novi pidkhody v kharchovyi biokhimi. Central Regions of the European Part of Russia. Food and Nutrition, 11, 70, 17–17.

12. Zimmermann, M. B., Kühler, J. (2002). October. The Impact of Iron and Selenium Deficiencies on Iodine and Thyroid Metabolism: Biochemistry and Relevance to Public Health. Thymol, 12, № 10, 867–876. doi:10.1007/s00726-010-1649-4

13. Golovko, N., Golovko, T., Gelikh, A. (2015). Investigation of amino acid structure of proteins of freshwater bivalve mussels from the

ISSN 2226-3780
RESEARCH OF LIPOLYTIC PROCESSES IN FUNCTIONAL PRODUCTS MADE FROM RAW MATERIALS OF THE CARPATHIAN REGION

page 23–29

The article presents the results of research of lipolytic processes in the production and maturation of Bryndza cheese made from cow, sheep and goat milk, and their mixtures. It has been established that a Bryndza cheese made from goat milk, compared with cheese from cow and sheep milk, and their mixtures contained in 1.77 and 1.99 times more saturated fatty acids, and 1.27 and 1.36 times less unsaturated fatty acids.

Peculiarities of accumulation of flavoring substances after the change of technological modes of cheese brining are shown. Experimental cheese samples had a higher content of flavoring substances, volatile organic acids, esters, diacetyl compared to controls, and the highest content of which was observed in the Bryndza cheese made from goat milk.

Keywords: technology, cheese, lipolysis, fatty acids, volatile organic acids, esters, diacetyl.

References
1. Gulati, S. K., Byers, E. B., Byers, Y. G., Ashes, J. R., Scott, T. W. (1997, May). Effect of feeding different fat supplements on the fatty acid composition of goat milk. Animal Feed Science and Technology, Vol. 66, #1–4, 159–164. doi:10.1016/S0377-8401(96)01117-0
2. Jensen, R. G. (2002, February). The Composition of Bovine Milk Lipids: January 1995 to December 2000. Journal of Dairy Science, Vol. 85, #2, 295–330. doi:10.3168/jds.s0022-0302(02)70479-4
3. Jensen, R. G., Ferreis, A. M., Lammi-Keefe, C. J., Henderson, R. A. (1990, February). Lipids of Bovine and Human Milks: A Comparison. Journal of Dairy Science, Vol. 73, #2, 223–240. doi:10.3168/jds.s0022-0302(90)78666-3
4. Gorbatova, K. K. (2004). Fiziko-himicheskie biohimicheskie osnovy protsessov molochnyh produktov. St. Petersburg: Gzhytskyj, 362.
5. Galukh, B. I. (2009). Research of Fatty Acids Composition of Milk Mixtures Using for Brinza Cheese Production from Raw Material of the Carpathian Region. Bulletin of Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj, Vol. 11, #2, Part 5, 25–29.
6. Kritchevsky, D., Tepper, S. A., Wright, S., Czarnecki, S. K., Wilt, T. A., Nicolosi, R. J. (2004, July). Conjugated linoleic acid isomer effects in atherosclerosis: Growth and regression of lesions. Lipids, Vol. 39, #10, 611–616. doi:10.1007/s11745-004-1273-8
7. Tricon, S., Burdge, G. C., Kew, S. et al. (2004). Effects of a trans-10, cis-12 conjugated Linoleic acid on immune cell function in healthy humans. The American Journal of Clinical Nutrition, Vol. 80, #6, 1626–1633.
8. Nudda, A., McGuire, M. A., Battaceone, G., Pulina, G. (2005, April). Seasonal Variation in Conjugated Linoleic Acid and Viscous Acid in Milk Fat of Sheep and its Transfer to Cheese and Ricotta. Journal of Dairy Science, Vol. 88, #4, 1311–1319. doi:10.3168/jds.s0022-0302(05)72707-1
9. Umanskii, M. S. (2000). Selektivnyi lipolis v biotehnologii syr. Farmatsiya, 245.
10. Bufla, M., Guamas, B., Pavia, M., Trujillo, A. J. (2001, January). Lipolyis in cheese made from raw, pasteurized or high-pressure-treated goats' milk. International Dairy Journal, Vol. 11, #1, 175–179. doi:10.1016/S0958-6946(01)00044-9
11. Park, Y. W. (2001, June). Proteolysis and Lipolysis of Goat Milk Cheese. Journal of Dairy Science, Vol. 84, E84–E92. doi:10.3168/jds.s0022-0302(01)70202-0
12. Ovsiankina, N. A., Belov, A. N., Shetinin, M. P. (2002). Gidrolitiches-koe deistvie na molochnyi zhir nekotorykh shchitamnov Lacococcus lactis s raslichnym urovnom proteoliticheskoi aktivnosti. Materiały 2-oi Vserossiiskoi nauchno-tekhnicheskoi konferentsii «Sovremennye dostizheniya biotehnologii». Vol. 2. Stavropol': Severo-Vavkasskii GTU, 174.
13. Kondylj, E., Katsiari, M. C. (2001). Differences in lipolysis of Greek hard cheeses made from sheep’s, goat’s, or cow’s milk. Milchwissenschaft, Vol. 56, #8, 444–446.
14. Fuku, O., Ferreira, I. M. P. L. V. O., Ferreira, M. A. (2003, October). Quantification of Short-Chain Free Fatty Acids in «Terrincho» Ewe Cheese: Intravarietal Comparison. Journal of Dairy Science, Vol. 86, #9, 3102–3109. doi:10.3168/jds.s0022-0302(03)73910-1
15. Mallatou, H., Pappa, E., Massouras, T. (2003, January). Changes in free fatty acids during ripening of ‘Teleme’ cheese made with ‘ewe’s’, ‘goats’, ‘cows’ or a mixture of ‘ewe’s’ and ‘goats’ milk. International Dairy Journal, Vol. 13, #2–3, 211–219. doi:10.1016/s0958-6946(02)00153-x
16. Halukh, B., Dronyk, H. V. (25.10.2010). Method for making brine cheese «Brynza Prykarpat’ska». Patent of Ukraine № 53999, MPK (2006.01) A23C 19/02, 19/082. Appl. № u201004572. Filed 19.04.2010. Bull. № 20. Available: http://uapatents.com/7-33999-sposob-virobnictva-roszolnogo-siru-brinza-prykarpat’ska.html
17. Folch, J., Less, M., Stoane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, Vol. 226, № 1, 497–500.
18. Inihov, G. S., Brio, N. P. (1971). Metody analiza molok a molochnykh produktov. Moscow: Pishevaia promyshlennost’, 275.
19. Carbonell, M., Nunez, M., Fernandez-Garcia, E. (2002, November). Evolution of the volatile components of ewe raw milk La Serena cheese during ripening. Correlation with flavour characteristics. Lait, Vol. 82, #6, 683–698. doi:10.1016/j.lait.2002042
20. Di Cagnno, R., Banks, J., Sheehan, L., Fox, P. F., Brechany, E. Y., Corsetti, A., Gobbetti, M. (2003, January). Comparison of the microbiological, compositional, biochemical, volatile profile and sensory characteristics of three Italian PDO ewes’ milk cheeses. International Dairy Journal, Vol. 13, #12, 961–972. doi:10.1016/s0958-6946(03)01415-6
21. Barron, L. J. R., Redondo, Y., Flanagan, C. E., Perez-Elortondo, F. J. et al. (2005, April). Comparison of the volatile composition and sensory characteristics of Spanish PDO cheeses manufactured from ewes’ raw milk and animal rennet. International Dairy Journal, Vol. 15, #4, 371–382. doi:10.1016/j.idairyj.2004.08.005
22. Moatsou, G., Massouras, T., Kandarakis, I., Amlantakis, E. (2002, September). Evolution of proteolysis during the ripening of traditional Feta cheese. Lait, Vol. 82, #5, 601–611. doi:10.1016/j.lait.2002036
23. Kaminarides, S., Stamou, P., Massouras, T. (2007, January). Changes of organic acids, volatile aroma compounds and sensory characteristics of Halloumi cheese kept in brine. Food Chemistry, Vol. 100, #1, 219–225. doi:10.1016/j.foodchem.2005.09.039
24. Efthymiou, C. (1967, January). Major Free Fatty Acids of Feta Cheese. Journal of Dairy Science, Vol. 50, #1, 20–24. doi:10.3168/jds.s0022-0302(67)87345-4
25. Smtt, G., Verheul, A., van Kranenburg, R., Ayal, E., Siezen, R., Engels, W. (2000, April). Cheese flavour development by enzymatic conversions of peptides and amino acids. Food Research International, Vol. 33, #3–4, 153–160. doi:10.1016/S0958-6946(01)00029-6

CHANGE OF TECHNOLOGICAL INDICATORS FOR SOFT CHEESE WITH BRAIN DEPENDING ON THE RYE BRAN DOSE

page 29–33

Assortment of cheese is the most diverse of dairy products and has several hundred items that can satisfy the needs of the most demanding customers. However, there are many studies on the creation of new types of cheese, the composition of which, in addition to milk, will include plant raw material. These products are called combined products and their including in the diet is provided energy homeostasis of the consumer. When creating combined dairy products, researchers try to correct the amino acid, fatty acid, vitamin and mineral composition of products to provide health promoting properties.
The object of research is technology of soft cheese made from cheese «Feta» with adding plant components (rye bran) in the normalized mix of this cheese.

Currently it is important to provide sufficient content of dietary fiber in the human diet. Cereals are often used for this purpose, but rye bran has advantage because they have more fiber content than other.

Thus, the aim of this work was to develop a new type of technology of soft cheese with rye bran, which enriches the cheese with dietary fiber. The newly created product will facilitate removal of dietary fiber. In addition, soft cheeses are the protein products and inclusion of non-dairy raw materials in their composition will enhance their organoleptic properties, active acidity, health promoting properties.

Keywords: soft cheese, rye bran, organoleptic properties, active acidity, health promoting products.

References
1. Dudki, M. S., Shelkunov, L. F. (1997). Osnovy proizvodstva kom-sychuzhnyh syrov. Moscow: MAIK «Nauka», 304.
2. Syrodelie, 2–3 (1997). Syrkin, V. G. (1983). Osazhdenie ple-nok i pokrytiy nizhaleniem metalloangoonchekh sostesnokh. Moscow: Nauka, 322.
3. Romodanova, V. O., Danchuk, Yu. I. (2004). Osoblyvosti tekhnolohii produktsii hromadskoho kharchuvannia z vykorystanniam molochnykh napolyvnykh. Kyiv: Naukova dumka, 304.
4. Ostroumov, L. A., Bobylin, V. V. (1998). Osnovy vidi migakh kiwochno-sychuzhnyh syr. Strodelie, 2–3, 12–14.
5. Voronv, V. O. (1995). Primenenie zheleznyh oksidov ZnO2 i Zn2O3 dlia novoi tehniki. Voronezh: VPI, 466.
6. Syrodelie, 2–3 (1997). Syrkin, V. G. (1983). Nitevidnye kristally dlia novoi tehniki. Moscow: Nauka, 118.
7. Pogozheva, A. V. (1998). Pishevye volokna v lechebno-profilakticheskom pitanii. Voprosy pitaniia, 1, 39–42.
8. Molotchnaia promyslovist, 3(12), 52–55.
9. Smoliat, V. I. (1991). Uchev no probekhov: Sysheevye volokna v lechebno-profilakticheskom pitanii. Voprosy pitaniia, 1, 39–42.
10. Pomeran’ceva, E. A., Koslova, M. G., Leonova, L. S., Dobrovolsk, K., Gai, A. M., Gudin, A. K., Tret’iako, Y. D. (2007). Nitevidnye kristally. Materiialy III Vserossiiskoi konferentsii «Nitevidnye kristally», Voronezh: VPI, 231.
11. Syrodelie, 2–3 (1997). Syrkin, V. G. (1983). Nitevidnye kristally dlia novoi tehniki. Moscow: Nauka, 118.
12. Shtybin, M. L., Uman, L. M., Usman, O. A., Livintseva, I. V. (2005). Proizvodstvo molochnykh produkts pro slavkomy napolvitelymi. Molochnaia promyschkelnost, 10, 18.
of Applied Physics, Vol. 16, № 8, 1089–1094. doi:10.1088/0508-3443/16/8/305
20. Thornton, P. R., James, D. W. F., Lewis, C., Bradford, A. (1966, July). Silicon whisker growth by the vapour-liquid-solid process. Philosophical Magazine, Vol. 14, № 127, 165–177. doi:10.1080/14786436608218998
21. Kamadjev, P. R., Mladjov, L. K., Velchev, N. B. (1966). C. r. Acad. Bulgare sci., № 19, 779.
22. Barns, R. L., Ellis, W. C. (1964). The Journal of The Minerals, Metals & Materials Society, Vol. 16, 761.
23. Barns, R. L., Ellis, W. C. (1965). Whisker Crystals of Gallium Arsenide and Gallium Phosphide Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 36, № 7, 2296. doi:10.1063/1.1714466
24. Laverko, E. N., Marahonov, V. M., Poliakov, S. M. (1965). Crystallography Reports, № 10, 132.
25. Holonyak, N., Wolfe, C. M., Moore, J. S. (1965). Vapor-Liquid-Solid Growth of Gallium Phosphide. Applied Physics Letters, Vol. 6, № 4, 64. doi:10.1063/1.1754167
26. Iida, S., Sugita, Y. (1966). GaAs-Whisker Crystals Containing Germanium Core. Applied Physics Letters, Vol. 8, № 4, 77. doi:10.1063/1.1754494
27. Sitarik, J. P. (1966). Preparation and Morphology of Boron Filamentary Crystals Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 37, № 6, 2309. doi:10.1063/1.1708826
28. Wagner, R. S. (1968, January). A solid-liquid-vapor etching process. Journal of Crystal Growth, Vol. 3–4, 159–161. doi:10.1016/0022-0248(68)90117-6
29. Mutafochye, B., Kern, R., George, C. (1965, May). Sur le mecanisme de croissance des whiskers. Physics Letters, Vol. 16, № 1, 32–33. doi:10.1016/0031-9163(65)90388-4
30. Barber, D. J. (1964, July). Electron microscopy and diffraction of aluminum oxide whiskers. Philosophical Magazine, Vol. 10, № 103, 75–94. doi:10.1080/14786436408224209
31. Edwards, P. L., Happe, R. J. (1962). Beryllium Oxide Whiskers and Platelets. Journal of Applied Physics, Vol. 33, № 3, 943. doi:10.1063/1.1777195
32. Yoda, E. (1960, May 15). Anomalous Growth of MoO3 3 Crystals. Journal of the Physical Society of Japan, Vol. 15, № 5, 821–829. doi:10.1143/jpsj.15.821

INFLUENCE OF AMOUNT OF GRAPHITE AND MODIFYING AGENT ON THE PROPERTIES OF PERICLASE-CARBON REFRACTORIES

One of the main components of periclase-carbon materials is graphite, which provides high thermal conductivity and slag resistance of refractories. However, at temperatures of 600 °C it begins to oxidize. To prevent oxidation it is proposed to modify the sol-gel graphite by composition based on nickel salts for further formation of graphite by composition based on nickel salts for further formation of graphite. However, at temperatures of 600 °C it begins to oxidize. To prevent oxidation it is proposed to modify the sol-gel graphite by composition based on nickel salts for further formation of graphite.

This research focuses on the study of the influence of the amount of graphite and modifying agent on the properties of periclase-carbon refractories. The samples were prepared by mixing periclase, carbon, and graphite with varying amounts of graphite and modifying agent. The properties studied included thermal conductivity, slag resistance, and mechanical properties.

Key words: periclase-carbon refractories, antioxidant, phenol-
formaldehyde resin, modifier agent.

References

1. Kolpakov, S. V. (2003). Sostojanie metallurgicheskoi i ogneupornoi promyshlennosti mira i stran SNG. Novye ogneupory, 10, 84–85.
2. Malyshevych, I. P., Treshchenkov, N. A. (2004). Progressivnye napravleniya v proizvodstvo ogneuporov dlia metallurgii Ukrainy i stran SNG. Novye ogneupory, 11, 69–71.
3. Kaplan, F. S., Aksel’rodi, L. M., Puchkelevich, N. A., Koptelov, V. N., Mariasev, I. G., Yarushchina, T. V. (2003). Teploprovoznost’ uglerodnoodnoshenosti ogneuporov. Novye ogneupory, 6, 46–49.
4. Aneris, S. G., Borisenko, O. N., Povoshchuk, V. V., Kolesnikova, A. A. (2011). Vliyanie solii nikelia na protsess gidroli 1.0 v SNG. Novye ogneupory, 10, 44–50.
5. Kamadjev, P. R., Mladjov, L. K., Velchev, N. B. (1966). C. r. Acad. Bulgare sci., № 19, 779.
6. Barns, R. L., Ellis, W. C. (1964). The Journal of The Minerals, Metals & Materials Society, Vol. 16, 761.
7. Barns, R. L., Ellis, W. C. (1965). Whisker Crystals of Gallium Arsenide and Gallium Phosphide Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 36, № 7, 2296. doi:10.1063/1.1714466
8. Laverko, E. N., Marahonov, V. M., Poliakov, S. M. (1965). Crystallography Reports, № 10, 132.
9. Holonyak, N., Wolfe, C. M., Moore, J. S. (1965). Vapor-Liquid-Solid Growth of Gallium Phosphide. Applied Physics Letters, Vol. 6, № 4, 64. doi:10.1063/1.1754167
10. Iida, S., Sugita, Y. (1966). GaAs-Whisker Crystals Containing Germanium Core. Applied Physics Letters, Vol. 8, № 4, 77. doi:10.1063/1.1754494
11. Sitarik, J. P. (1966). Preparation and Morphology of Boron Filamentary Crystals Grown by the Vapor-Liquid-Solid Mechanism. Journal of Applied Physics, Vol. 37, № 6, 2309. doi:10.1063/1.1708826
12. Wagner, R. S. (1968, January). A solid-liquid-vapor etching process. Journal of Crystal Growth, Vol. 3–4, 159–161. doi:10.1016/0022-0248(68)90117-6
13. Mutafochye, B., Kern, R., George, C. (1965, May). Sur le mecanisme de croissance des whiskers. Physics Letters, Vol. 16, № 1, 32–33. doi:10.1016/0031-9163(65)90388-4
14. Barber, D. J. (1964, July). Electron microscopy and diffraction of aluminum oxide whiskers. Philosophical Magazine, Vol. 10, № 103, 75–94. doi:10.1080/14786436408224209
15. Edwards, P. L., Happe, R. J. (1962). Beryllium Oxide Whiskers and Platelets. Journal of Applied Physics, Vol. 33, № 3, 943. doi:10.1063/1.1777195
16. Yoda, E. (1960, May 15). Anomalous Growth of MoO3 3 Crystals. Journal of the Physical Society of Japan, Vol. 15, № 5, 821–829. doi:10.1143/jpsj.15.821

ABSTRACTS AND REFERENCES

Organic and inorganic ion-exchange materials containing incorporated inorganic particles of ion exchangers are characterized by enhanced selectivity for ions of toxic metals and resistant to poisoning by organic substances. An important task for achieve the necessary kinetic parameters of ion exchange is to reduce the size of the incorporated particles that is particularly important for hydrated
Determination of reaction areas for the sulfur conversion during low-metamorphosed coal oxidative desulfurization

Page 48-53

Taken into account the global trends of metallurgy, in order to save energy, new technologies in blast furnaces are actively developed in Ukraine, namely, substitution of natural gas for pulverized coal (PC). However, use of this technique is complicated by inconsistencies of characteristics of a large part of domestic coal with requirements that apply to PC raw materials, primarily because of the high sulfur content in it.

To solve this problem, it is proposed to use the method of coal oxidative desulfurization that consists in selective conversion of pyritic sulfur by vapor-air mixture. However, the content of sulfur in coal is not the only requirement, so the task of research is determination of process parameters that will enable to minimize the destruction and burning of organic carbon that occurs during its oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.

Series of experiments on detailed determination of patterns for high-sulfur low-metamorphosed coal oxidative desulfurization to produce raw materials for PC are begun in this article. The effect of linear velocity of the oxidant and the grain size of raw materials on the process is determined and the values of these factors when produce raw materials for PC are oxidative desulfurization.
very dilute solutions, also thanks to its constructive design, the pro-
cessing solutions by the contact non-equilibrium plasma with
analysis of ProsPecTs To oBTaining nanosized
metal compounds By TreaTmenT of The WaTer
Technoiogy audiT and producTion reserves — № 3/3(29), 2016
ISSN 2226-3780

References
1. Ershov, B. G. (2001). Metal nanoparticles in aqueous solutions: elec-
tronic, optical and catalytic properties. Russian Chemical Journal, Vol. XIII, № 3, 20–30.
2. Dhan, N. A., Raj, C. P., Gedanken, A. (1998). Synthesis, Characteriza-
tion, and Properties of Metallic Copper Nanoparticles. Chemistry of Materials, Vol. 10, № 3, 1446–1452. doi:10.1021/cm9708269
3. Takasaki, M., Harada, K. (1986). Plasma induced reaction in aqueous
solution. Science and Technology, Vol. 126, № 2, 31–52.
4. Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kro-
es, G. et al. (2012, June 7). The 2012 Plasma Roadmap. Journal of Physics D: Applied Physics, Vol. 45, № 23, 235001. doi:10.1088/0022-
3727/45/23/235001
5. Balar, V. P., Zaika, A. B., Kuznetsov, V. P., Sverjakin, I. A. (2008). The technology of plasma cleaning polluted water and activation of water solutions. Industrial Ecology, 1, 69–73.
6. Kravchenko, A. V., Rudnicki, A. G., Nesterenko, A. F., Kublanov-
sky, V. S. (1996). The effectiveness of the use of electrical methods of destruction nonionine PMO — industrial waste. Electroplating and Surface Treatment, Vol. 4, № 3, 49–54.
7. Pivovarov, A. A., Sergeeva, O. V. (2003). Removing the polyvalent metal ions from waste water in electroplating method by plasma. Bulletin of NTU «KhPI», Special Issue «Chemistry, Chemical Engineering and Ecology», 14, 77–84.
8. Pivovarov, A. A., Sitnik, S. V., Pololy, M. N. (1996). Energy saving technology of extracting precious metals from industrial waste. Ecology and Heat Engineering, Proceedings of the International Confe-
rence. Dnepropetrovsk, 112.
9. Chernyak, V. Y., Okrzeski, S. V., Lebedev, D. O., Voronin, P. N., Tsybulya, P. N. (1997). Removal of heavy metals from aqueous solutions in the processing of non-self-discharge plasma. Plasmotechnol-
giya-97. Zaporozhye, 35–57.
10. Pivovarov, A. A., Sergeeva, O. V., Tishchenko, A. P. et al. (2007). Plasmachemical extraction of polyvalent metals from wastewater in electroplating. Questions of Chemistry and Chemical Technology, 6, 230–237.
11. Pivovarov, A., Frolova, L., Tsiep, E., Vorob’eva, M. (2014). Obta-
ning of nanodispersed ferrous pigments using contact nanoequi-
librium plasma. Eastern-European Journal Of Enterprise Technologies, 5(6(71)), 17–21. doi:10.5587/1729-4061.2014.27705
12. Kravchenko, A. V., Kublanovsky, V. S., Pivovarov, A. A., Pastovoj-
tenko, V. P. (2013). Low-temperature electrosynthesis theory and practice. Dnepropetrovsk: Aktsept, 229.
13. Pivovarov, A. A., Kravchenko, A. V., Tishchenko, A. P., Nikolen-
ko, N. V., Sergeeva, O. V., Vorob’eva, M. I., Treshchuk, S. V. (2015). Contact Nonequilibrium Plasma as a Tool for Treatment of Wa-
ter and Aqueous Solutions: Theory and Practice. Russian Journal of General Chemistry, Vol. 85, № 5, 1339–1350. doi:10.1134/
S0036024415050497
14. Sergeeva, O. (2014). Obtaining of micro- and nanoscale copper compounds by plasma-chemical treatment of solutions. Technology Audit And Production Reserves, 5(3(19)), 19–22. doi:10.5587/2312-
8372.2014.27943
15. Sergeeva, O., Pivovarov, A. (2016). Characteristics of oxygenated cobalt compounds obtained by plasma chemical treatment of aqueous
solutions. NTU «KPI» Bulletin Series: New Solutions In Modern Technologies, 12 (1184), 176–180. doi:10.20998/2413-4295.2016.12.26
16. Sergeeva, O., Pivovarov, A. (2016). Theoretical analysis of the fine
powder of the copper oxides by received of plasmachemical by treat-
ment of solution CuSO4. NTU «KPI» Bulletin Series: New Solutions In Modern Technologies, 62, 155–159.
FEATURES OF DESIGN OF RATIONAL INTERNAL SHAPE OF ATHLETICS SHOES FOR CHILDREN-ATHLETES 12–16 YEARS OLD

page 57–62

Shoes of sportmen of each kind of sport is, on the one hand, a special sports equipment, drafted to enhance athletic achievements, quality and efficiency of the training process and on the other hand it is a device, which should protect the lower limb of an athlete from adverse environment possible clashes, bumps etc. Compliance of sports shoes with foot and shin of the athlete largely determines the positive performance of sports challenges.

There is enough information on methods of designing certain types of athletic shoes for different sports in the current technical literature. However there is not enough research relating to the impact of stress on the foot of an athlete in the course of sports biomechanical movements in the system «feet — footwear — support». Physiological characteristics of the influence of long-term athletics trainings on the movements in the system «feet — footwear — support». Physiological characteristics of the influence of long-term athletics trainings on the body of the child-athlete are also studied not enough.

Object of the research is a rational internal shape and design of children’s sports athletic footwear of age group 12–16 years old.

Existing size range of shoes in our market does not meet shape and size of children’s feet. Using for a long time such inappropriate shoes can influence the child’s foot and even cause deformities.

As a result of analytical review of features efficient internal shape of sports athletic shoes design generalization and analysis of existing systems of efficient internal shape design of sports athletic shoes have been made, calculated and empirical transition from shapes and sizes of a foot to shapes and sizes of lasts has been analyzed, biomechanical prerequisites for building a sustainable footwear have been defined and contact and non-contact methods to obtain information about the characteristics of movement of athletes have been analyzed.

However, to design a rational internal shape of athletic shoes for children athletes with improved functional and performance characteristics it is necessary to conduct a comprehensive analysis of the load on the moving system, examine the speed of the contact, geometry of the foot in contact and the type of movements for each athletic discipline which requires further additional research.

Keywords: sport shoes, foot, athletics, design, construction, rational internal shape, biomechanics.

References
1. Polovnikov, I. I., Farnieva, O. V. (1987). Design of athletic shoes. Moscow: Legprombytizdat, 128.
2. In: Ozolin, N. G., Markov, D. P. (2002). Athletics, Physical Education. Ed. 2. Moscow: Physical education and sport, 672.
3. Polovnikov, I. I. (2001). Design of sports shoes bottom. Kyiv: Knowledge, 152.
4. Polovnikov, I. I. (2000). Biomechanical features of sports shoe design. Kyiv: Knowledge, 163.
5. Vasilev, S. G. (1989). Improving the structural design of special sports shoes. Moscow, 332.
6. Gladysheva, A. A., Kuznetsova, O. A., Fomin, E. V. (1988). Features of morphological organization of young volleyball players. Proceedings of republican scientific conference «Pedagogical and biological aspects of physical education and sports training in Kyrgyzstan». Frunze: KGFK, 276.
7. Koike, S., Okina, S. (2012). A modeling method of sport shoes for dynamic analysis of shoe-body coupled system. Procedia Engineering, Vol. 34, 272–277.
8. Rechert, J. L. (1958, April 5). Competitive athletics for pre-teenage children. Jama, Vol. 166, No 14, 1701–1707. doi:10.1001/jama.1958.02990140053007.
9. Jones, B. V. (1980, July 19). Corrective shoes for children. BMJ, Vol. 281, No 6234, 230–230. doi:10.1136/bmj.281.6234.230
10. Pfister, G. (2001, March). Sport, Technology and Society: From Snow Shoes to Racing Skis. Culture, Sport, Society, Vol. 4, No 1, 73–98. doi:10.1080/1366817011009811
11. Petrus, B. B., Kanyanets’, S. E., Konoval, V. P. (2011). Girth and breadth of feet anthropometric study of children aged 12–16 years old. Bulletin of Kyiv: National University of Technology and Design, 6, 219–223.
12. Petrus, B. B., Chalyh, D. A., Konoval, V. P. (2010). Anthropometric studies of children athletes aged 12–16 years old. Bulletin of Kyiv: National University of Technology and Design, 1, 131–140.
13. Lyba, V. P. (1996). Theory and practice of designing comfortable shoes. Moscow, 314.
14. Lokumovich, V. Kh. (1980). The structural analysis of the quality of the shoe. Moscow: Light Industry, 160.
15. Zhybin, Yu. P., Klyuchnikova, V. M., Kochetkova, T. S., Fokin, V. A. (1982). Design of leather products. Moscow: Light and food industries, 230.
16. Fokin, V. A. (1980). Theoretical and methodological bases of designing efficient internal shape of footwear. Moscow, 305.
17. Ilchenko, V. V. (1983). The method of designing a rational side surface of the shoe last, based on the spatial anthropometry of foot. Moscow, 151.
18. Reznik, N. F., Omelchenko, N. M., Konoval, V. P. (2001). Research of anthropogenic and biomechanical prerequisites of rational design of children's shoes and footwear. Bulletin of the Technological University of Podillya, 5, 114–115.
19. 75 Shoes and Orthotics — knee joint loading (2007, October). Journal of Science and Medicine in Sport, Vol. 10, 38. doi:10.1016/j.jsams.2007.07.0081-6
20. Lyba, V. P., Kiselev, S. Yu., Fokin, V. A. (1992). Calculation of parameters of the cross sections of rational shoe last. Radiotelectronics and technology of light industry, 1, 65–68.
21. Konoval, V. P. (1994). Theoretical and practical bases of creation and fixing the shape of shoes. Kyiv, 316.
22. Chertenko, L. P., Konoval, V. P. (2001). Design of parameters of shoe lasts in CAD based on anthropometric data of human feet. Bulletin of the Technological University of Podillya, 5, 112–113.
23. Omelchenko, P. V., Chertenko, L. P., Konoval, V. P. (2000). Automated design of shoe lasts in three dimensions. Bulletin of BALPU, 2, 215–216.
24. Pervaya, N. V., Omelchenko, N. M., Konoval, V. P. (2001). Check of the distribution patterns of dimensional parameters of feet of children engaged in gaming sports. Bulletin of the Technological University of Podillya, 5, 109–110.
25. Cholewa, E., Kaszuba, Z., Kozlovska, B., Luba, R.; Translated from Polish: Timchenko, R. S.; In: Farnieva, O. V. (1981). Basics of rational design of lasts and shoes. Moscow: Light and food industries, 247.
26. In: Laputin, A. M. (2005). Sports Biomechanics. Kyiv: «Olympic literature» of National University of Education and Sports of Ukraine, 320.
27. In: Laputin, A. N. (2000). Practical biomechanics. Kyiv: Naukovy Svit, 298.
28. Donskoy, D. D., Zatsiorsky, V. M. (1979). Biomechanics. Moscow: FIS, 264.
29. Denysyuk, L. V., Konoval, V. P., Polovnikov, I. I. (2010). Biomechanical study of the functional state of the feet of sportsman-rider. Light Industry, 3, 38–39.
30. Gorbachik, V. E. (1998). Design and technology solutions to enhance the ergonomic properties of the shoe. Moscow, 442.
31. Dibolshag, V. (1980). Foot and shoes. Evaluation of the properties of materials. Schuh-Techn. Int. [Schuh-Techn. + abc], Vol. 74, No 6, 172–174.

MATHEMATICAL DESCRIPTION OF PROCESSES IN SEPARATION UNIT FOR GAS MIXTURES DURING DISPOSAL OF WASTE

page 62–67

The system of material and energy balance equations to calculate the steady-state operation of energy-technological unit for low-temperature separation of multicomponent hydrocarbon mixtures formed during the gasification of waste is given. The aim of this research is...
a mathematical description of the separation processes of multicomponent hydrocarbon mixtures formed during water gasification by the system of closing equations and determination of mass portions of hydrocarbon gas mixture components. To achieve the aim of research, mathematical models for each individual functional elements of the unit are developed and the values of controlled parameters (temperature, pressure, mass flow rate and mass fraction of hydrocarbon gas mixture components) are determined in each control section by the method of successive approximations. Component composition of the streams is obtained: one — the fuel gas suitable for the maintenance of the waste gasification process, the other two — compressed product (analogue of automotive compressed natural gas).

Combined methods of UV radiation and other physical and chemical techniques (ultrasound, chlorination, microwaves) make it possible to solve complex and specific problems on a laboratory scale. The proposed UV combined methods for germicidal disinfection can be used for disinfection of not only drinking water and wastewater, and for a variety of objects of agriculture, food and medical industries.

Keywords: UV radiation, UV disinfection, combined methods, ozonation, chlorination, ultrasound, microwave frequency.

References
1. Meyer, A., Seitz, E. (1952). Ultraviolet radiation. Preparation and measurement applications in medicine, biology and engineering. Translation from German. Moscow: Foreign Literature Publishing House, 574.
2. Karmazinov, F. V., Kostyuchenko, S. V., Kudryavtsev, N. N., Khramenkov, S. V. (2012). UV technology in the modern world. Dolgo- prudny: PH «Intell», 392.
3. Semenov, A. A., Kozhushko, G. M., Sakhno, T. V. (2016). Device for germicidal disinfection of drinking water by using ultraviolet radiation. Bulletin of Karaganda University. Series «Physics», 1(81), 77–80.
4. Semenov, A., Sakhno, T., Barashkov, N. (2016, March 13–17). Ultraviolet disinfection of drinking water: Role of the camera's geometry and degree of mixing water during irradiation in laminar flow. 25th American Chemical Society National Meeting and Exposition: Division of Environmental Chemistry. San Diego.
5. Goncharuk, V. V., Potapchenko, N. G. (1998). Current state of water disinfection. Chemistry and technology of water. 20(2), 191–217.
6. Akhmedova, O. O., Stepanov, S. F., Soshitov, A. G., Bakhitiazov, K. N. (2009). Increasing the efficiency of local wastewater treatment plant for a set of combined electro-stimulation methods. Modern problems of science and education, 5, 56–60.
7. Zagorski, V. A., Kozlov, M. N., Danilovich, D. A. (1998). Disinfection of wastewater. Third International Congress «Water: Ecology and Technology». Moscow, 400–401.
8. Bergman, L. E. (1957). Ultrasonic and its applications in science and technology. Ed. 2. Translation from German. Moscow: Foreign Literature Publishing House, 726.
9. Shkhnmatova, P. A., Kurkina, P. V. (2005). A study of the biological activity of ozone to aquatic organisms. 7th All-Union Symposium on the Modern Problem of Forecasting, Quality Control of Water Reservoirs and Ozoneation. Tallinn, 78–79.
10. Alekseeva, L. P., Draginsky, V. L. (1957). Ultrasonic disinfection. Chemistry and technology of water. 20(2), 139–144.
11. Trukhacheva, T. V., Gorev, V. B., Malama G. A., Astakhov V. A. (1992). Kinetics of microorganisms under the influence of ozone. Microbiology, 61(4), 660–665.
12. Blume, T., Neis, U. (2005). Improving chlorine disinfection of wastewater by ultrasound application. Water Sci. Technol, 52(10–11), 139–144.
13. Farshbaf Dadjour, M., Ogino, C., Matsumura, C., Nakamura, S., Shizui, M. (2006, March). Disinfection of Legionella pneumophila by ultrasonic treatment with TiO2. Water Research, 40(6), 1317–1342. doi:10.1016/j.watres.2005.12.047.
The Evaluation of Anaerobic Digestion Efficiency for Wastewater Treatment

The object of study is regularities of the anaerobic digestion process for drains treatment. This helps to improving environment. The method of anaerobic digestion is effective for wastewater treatment from biological contaminants. The important advantage of the method is lack of negative effect to environment. Biogas is released during the process. Strict temperature limits and lack of oxygen are the process.

It was found that the optimum temperature of the process is 54–55°C. At temperatures below 37°C the amount of Enterobacteriaceae decreases even in comparison with the initial values, and the content of helminths increases. Increasing the temperature to 45°C the amount of Enterobacteria is still present in the sludge. At a temperature of 55°C the content of Enterobacteriaceae decreases. Continuous and fed batch ways of fermentation process are found to be the most effective.

Keywords: filtrate, municipal solid waste landfill, anaerobic digestion.

References
1. Korinevskaia, V. Yu., Shchana, T. P. (2011). Otkhod gorodskikh sistem kak potencial'nyi resurs i istochnik sagravleniya okruzhayushchey prirodnoi sredy. Vestnik Odesksogo gosudarstvennogo eko-logicheskogo universiteta, 11, 20–28.
2. Guerrero, L. A., Maas, G., Hogland, W. (2013, January). Solid waste management challenges for cities in developing countries. Waste Management, vol. 33, № 1, 220–232. doi:10.1016/j.wasman.2012.09.008
3. Porta, D., Milani, S., Luzzaro, A. I., Peracci, C. A., Forastiere, F. (2000). Systematic review of epidemiological studies on health effects associated with management of solid waste. Environmental Health, vol. 8, № 1, 60–66. doi:10.1186/1476-069X-8-60
4. Varnavskaia, I. V. (2008). Analiz uslovii obrasovaniia i sostava stochki xonov v poligone tverdyh bytovyh othodov. Ekologiya i promyshlennost', № 1, 7–14.
5. Velikanov, N. L., Velikanova, M. N., Kolobov, A. V. (2009). Ochistka stochki xonov v svalor tverdyh bytovyh othodov, otdel'nyh alianz i sooruzhenii. Issvetstia Kaliningradskogo gosudarstvennogo tehnicheskogo universiteta, 15, 60–64.
6. Mairov, A. S., Sedov, Yu. A., Parahin, Yu. A. (2009). Elektrohimicheska ochistka korovstvenno-bytovyh i promyshlennikh stochhn xonov. Vodoeokhlostr, № 10, 41–43.
7. Stalinskii, D. V. et al. (2009). Voprosy oshchistki stochnih xonov v poligone tverdyh bytovyh othodov. Naukovichy bytnykh bytovyh othodov. Vestnik MGOU. Seriia: Estestvennye nauki, 4, 27–31.
8. Sadyhov, G. R. (2013). Issledovanie vliianiia uskoritelia na sakono-myshshchennost' stochki xonov v poligone tverdyh bytovyh othodov. Ekologiya i prom'yshlennost', № 1, 7–14.
9. Velikanov, N. L., Velikanova, M. N., Kolobov, A. V. (2009). Ochistka stochki xonov v svalor tverdyh bytovyh othodov, otdel'nyh alianz i sooruzhenii. Issvetstia Kaliningradskogo gosudarstvennogo tehnicheskogo universiteta, 15, 60–64.
10. Federation, V. A. (2004). Analiz kineticheskih uravnenii dlia protsessa anaerobnogo sbrazhivaniia v metatanke s periodicheskoi sagruschennosti'. Polsunovskii vestnik, № 1, 244–248.
11. Poinapen, J., Ekama, G. A. (2010). Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor — Part 4: Bed settling characteristics. Water SA, vol. 35, № 5, 553–560. doi:10.4314/wsa.v35i5.49181
12. Vartanian, V. A. (2004). Analiz kineticheskikh uravnenii dlia protsessa anaerobnogo sbrazhivaniia v metatanke s periodicheskoi sagruschennosti'. Polsunovskii vestnik, № 1, 244–248.
13. Poinapen, J., Ekama, G. A. (2010). Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor — Part 6: Development of a kinetic model for BSR. Water SA, vol. 35, № 6, 203–213.
14. Kiev, O. V. (2011). Metanohenez i tekhnolohichni skhemy otryzveniya bytovих othodov. Alternativnye istochniki energii, 10(92), 41–47.
15. Sadyhov, G. R. (2013). Isledovanie vliianiia uskoritelia na sakono-myshshchennost' stochki xonov v poligone tverdyh bytovyh othodov. Vestnik MGOU. Seriia: Estestvennye nauki, 4, 27–31.
16. Tomei, M., Braguglia, C., Mininni, G. (2008, September). Anaerobic degradation kinetics of particulate organic matter in untreated and sonicated sewage sludge: Role of the inoculum. Bioresource Technology, vol. 99, № 4, 6119–6126. doi:10.1016/j.biortech.2007.12.035
17. Kiely, G., Tayfur, G., Dolan, C., Tanji, K. (1997, March). Physiological and mathematical modelling of anaerobic digestion of organic wastes. Water Research, vol. 31, № 3, 534–540. doi:10.1016/s0043-1354(96)00175-3
18. Shavkun, V., Kapustin, A. (2012). Metody isledovaniia poligona tverdyh bytovyh othodov. Visnyk Pravyzdobo derzychuho tekhnichnogo universitetu. Ser. Tekhnichni nauki, 25, 265–273.