Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Identification of differentially expressed long non-coding RNAs in CD4⁺ T cells response to latent tuberculosis infection

Zhengjun Yi a,1, Jianhua Li a, Kunshan Gao a, Yurong Fu b,*,1

a Department of Laboratory Medicine of Affiliated Hospital of Weifang Medical University, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261031, China
b Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China

Accepted 7 June 2014
Available online 27 June 2014

KEYWORDS
LncRNA; MRNA; CD4⁺ T cell; Tuberculosis; Signaling pathway

Summary
Objective: To identify differentially expressed long non-coding RNAs (lncRNAs) in CD4⁺ T cells triggered upon latent tuberculosis (TB) infection.
Methods: Expression profiles of lncRNAs and mRNAs in CD4⁺ T cells from individuals with latent TB infection (LTBI), active TB and healthy controls were analyzed by microarray assay and four lncRNAs were selected for validation using real time-quantitative polymerase chain reaction (RT-qPCR). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway based approaches were used to investigate biological functions and signaling pathways affected by the differentially expressed mRNAs.
Results: LncRNAs and mRNAs in CD4⁺ T cells were involved in LTBI and active TB disease. Compared with healthy controls, 449 lncRNAs and 461 mRNAs were deregulated in LTBI group, 1,113 lncRNAs and 1,490 mRNAs were deregulated in active TB group, as well as 163 lncRNAs and 187 mRNAs were differentially expressed in both LTBI and active TB group. It was worth noting that 41 lncRNAs and 60 mRNAs were deregulated between three groups. Most deregulated lncRNAs were from intergenic regions (~50%), natural antisense to protein-coding loci (~20%), or intronic antisense to protein-coding loci (~10%). Significantly enriched signaling pathways based on deregulated mRNAs were mainly involved in mitogen-activated protein kinase (MAPK) signaling pathway, cytokine–cytokine receptor interaction, Toll-like receptor signaling pathway, etc.
Introduction

Tuberculosis (TB), causing more than 1.3 million deaths in 2013, is still one of the biggest killers among the infectious diseases. It is estimated that nearly one-third of the world’s population is infected with *Mycobacterium tuberculosis* (MtB) and about 90% of them have asymptomatic, latent TB infection (LTBI). Overall, without treatment, about 10% of individuals with LTBI will develop active TB disease at some time in their lives. However, the underlying mechanisms of LTBI and its reactivation remain largely unknown. Host immune response against MtB is complex and multifaceted. Identification of immune mediators which contribute to LTBI and reactivation is useful for early diagnosis, prevention and treatment of TB disease.

CD4+ T cells play an important role in host defense against intracellular pathogens, including MtB. Genome-wide transcriptional analysis is a widely used method for the study of complex diseases. Noncoding RNAs play an important role in modulating gene transcription. Based on their length, noncoding RNAs are divided into 2 major classes: short (<200 nucleotides) and long (>200 nucleotides). MicroRNAs are a large group of short noncoding RNA and their roles have been relatively well studied in human biology and disease. In contrast to micro-RNAs, long noncoding RNAs (lncRNAs) are much less known concerning their functions. Recent evidence indicates that lncRNAs play important roles in many physiological and pathological processes, such as cell differentiation, apoptosis, proliferation and cancer. However, little is known about the role of lncRNAs in TB disease.

CD4+ T cell-mediated immunity plays a pivotal role in modulation of immune homeostasis and control of MtB growth. In the study, to investigate whether lncRNAs were involved in TB infection, expression profiles of both lncRNAs and mRNAs in CD4+ T cells from subjects with LTBI or active TB were detected and the relationship between deregulated lncRNAs and their adjacent protein-coding genes as well as deregulated mRNAs related to signaling pathways were analyzed.

Materials and methods

Human subjects

Patients with active pulmonary TB were enrolled from Weifang Chest Hospital in Shandong Province, China. Both LTBI subjects and healthy control individuals were recruited from the staff in Affiliated Hospital of Weifang Medical University and Weifang Chest Hospital. The clinical characteristics of 30 patients with active TB (ATB group), 25 subjects with LTBI (LTBI group) and 30 healthy controls (HCo group) were presented in Table 1. Diagnosis of active pulmonary TB was based on typical clinical symptoms, such as cough, fever, fibrocavitary lung infiltrate on chest radiograph, and at least one sputum culture positive or both sputum smear and culture positive. Diagnosis of LTBI was based on the results of tuberculin skin test (TST) and interferon-gamma release assay (IGRA) (T-SPOT.TB, Oxford Immunotec, Oxfordshire, U.K.). All LTBI subjects had no history of recent contact with active TB patients. Before starting the study, pre-analytical evaluations were performed for detection of tumors and infectious diseases such as hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. Participants were excluded if they had a history of TB, diabetes, tumor or other infectious disease.

The study was approved by the Ethics Committee of Weifang Medical University and conducted in accordance with the Declaration of Helsinki. All participants provided informed consent before commencement of the study.

Isolation of CD4+ T cells

Peripheral blood mononuclear cells (PBMCs) were separated from whole blood by use of Ficoll (TBD, Tianjin, China)

### Table 1 Characteristics of the participants.

| Characteristics | HCo group (n = 30) | LTBI group (n = 25) | ATB group (n = 30) |
|-----------------|-------------------|-------------------|-------------------|
| Male/female     | 18/12             | 16/9              | 19/11             |
| Age, mean (range) years | 38.8 ± 16.7 (21–55) | 34.6 ± 13.2 (25–50) | 43.9 ± 17.2 (18–58) |
| TST test        | Negative          | Positive          | Not applicable    |
| IGRA            | Negative          | Positive          | Not applicable    |

IGRA, Interferon-Gamma release assays. All patients with active pulmonary TB had clinical signs and symptoms, such as cough, fever, and fibrocavitary lung infiltrate on chest radiograph. Healthy controls and LTBI involved in the study were free of clinical symptoms of any infectious disease.

HCo: healthy control; LTBI: latent TB infection; ATB: active TB. There were no significant differences in age (P >0.05, one-way ANOVA test) or gender (P >0.05, chi-square test) between three groups.
density gradient centrifugation before anti-TB treatment. CD4⁺ T cells were isolated from PBMCs by negative selection using CD4⁺ T Cell Isolation Kit (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. Briefly, PBMCs were resuspended in appropriate volume of cold MagCellect buffer and labeled with negative selection biotinylated antibodies. Labeled cells were incubated with MagCellect Streptavidin Ferrofluid and MagCellect Magnet. CD4⁺ T cells were then enriched by depleting of unwanted cells. To achieve high purity of isolation, CD4⁺ T cells were negatively selected again from the above enriched cells. Flow cytometric analysis showed that the purity of isolated CD4⁺ T cells was more than 90% (Fig. S1). All samples were stored in liquid nitrogen until further use. Four samples of each group were used for microarray expression analysis and all samples were used for real time-quantitative polymerase chain reaction (RT-qPCR).

RNA extraction and quality control

Total RNA was extracted from purified CD4⁺ T cells using TRIozol® Reagent (Invitrogen, Carlsbad, CA, USA) and further purified with RNeasy mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The quantity and purity of isolated RNA for each sample were assessed on a NanoDrop Spectrophotometer ND-1000. RNA integrity for each sample was determined using denaturing gel electrophoresis. For spectrophotometer analysis, samples with OD260/OD280 ratio between 1.8 and 2.1 and OD260/OD230 ratio >1.8 were only acceptable. For electrophoresis analysis, samples should be free of genomic DNA contamination and ratio of 28S/18S band intensities should be greater than 2.0.

Microarray analysis of lncRNA and mRNA expression

Sample labeling and array hybridization were performed using Agilent One-Color Microarray-Based Gene Expression Analysis protocol (Agilent, Santa Clara, CA, USA) according to the manufacturer’s instructions. Briefly, 4 qualified RNA samples of each group were amplified and transcribed into fluorescent cRNA. Labeled cRNA samples were then purified using RNeasy Mini Kit (Qiagen, Hilden, Germany). Concentration and specific activity of labeled cRNA samples were subsequently measured using a NanoDrop ND-1000. After passing quality test, 1 µg labeled cRNA for each sample was used for hybridization on a Human LncRNA Array v 2.0 (8 x 60 K, Arraystar) with 33,045 lncRNA and 30,215 mRNA probes (each probe being replicated 4 times on each array). After hybridization, microarrays were washed, fixed, and then scanned using an Agilent DNA Microarray Scanner (G2505B) (Agilent, Santa Clara, CA, USA). Positive control probes of 20 housekeeping genes (NM_002455, NM_021009, NM_006013, NM_001536, NM_003746, NM_002107, NM_002455, NM_021009, NM_006013, NM_001536, NM_003746, NM_002107,

Figure 1  The scatter plots showed lncRNA variation (A) and mRNA variation (B) between chips. HCo: healthy control; LTBI: latent TB infection; ATB: active TB.
of chromatin modification, transcriptional and post-transcriptional processing. 

To reveal the potential roles of lncRNA in TB infection and shed light on the underlying mechanisms of LTBI and its reactivation, the study mainly focused on analysis of the deregulated lncRNAs and relationship between them and adjacent protein-coding genes.

### Statistical analysis

Data were presented as mean \( \pm \) standard deviation (SD). ANOVA test or student’s t test was used for statistical analysis. \( P < 0.05 \) was considered statistically significant.

### Results

#### Differential expression of lncRNAs and mRNAs in CD4+ T cells between groups

Microarray analysis showed lncRNA and mRNA expression variations between chips (Fig. 1). In order to identify the most significant candidates, lncRNAs or mRNAs with at least two-fold expression changes were selected. After data normalization, we determined hundreds of differentially expressed lncRNAs between groups in Ensembl, RNAdb, NRED, lincRNA, misc_RNA, UCSC_knowngene, H-invDB, HOX cluster, RefSeq_NR and UCR (FDR < 0.05).

Compared with HCo group, 449 lncRNAs (305 of them up-regulated) and 1, 113 mRNAs (550 of them up-regulated) were deregulated in LTBI group and ATB group, respectively, and 163 lncRNAs (94 of them up-regulated) were differentially expressed in both LTBI group and ATB group (FDR < 0.05). Moreover, compared with ATB group, 685 lncRNAs (521 of them up-regulated) were differentially

### Gene ontology and Kyoto encyclopedia of genes and genomes pathway analysis based on differentially expressed mRNAs

Gene ontology (GO) (www.geneontology.org) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.ad.jp/kegg/) were used to investigate biological functions and signaling pathways affected by differentially expressed mRNAs. \(^{12,14}\) It was considered statistically significant only if a \( P \)-value was less than 0.05.

### Analysis of relationship between lncRNAs and adjacent protein-coding genes

LncRNA originates from complex transcriptional loci and regulates gene expression through epigenetic regulation
Figure 3  Differentially expressed mRNAs (A) and lncRNAs (B) between three groups. HCo: healthy control (n = 4); ATB: active TB (n = 4); LTBI: latent TB infection (n = 4). Red indicated high relative expression and green indicated low relative expression. One ANOVA test was used for statistical analysis. LncRNA or mRNA with expression fold change $>2$ and with FDR adjusted $P$ value $<0.05$ was considered statistically significant.
expressed in LTBI group (FDR < 0.05) (Fig. 2). It was worth noting that, 41 lncRNAs were deregulated between three groups, 23 of which showed similar expression tendency in both LTBI group and ATB group compared with HCo group (FDR < 0.05) (Fig. 3, Table 2).

Compared with HCo group, 461 mRNAs (267 of them up-regulated) were differentially expressed in LTBI group, 1,490 mRNAs (694 of them up-regulated) were differentially
LncRNAs were largely unaltered. Only a few lncRNAs and of adjacent protein-coding genes of the 16 deregulated protein-coding region (Table 4). However, expression levels around a known protein-coding region (i.e., not intergenic). More and more evidence suggests that lncRNAs play important roles in regulation of gene expression. To reveal potential roles of lncRNAs in TB infection, we analyzed the relationship between differentially expressed lncRNAs and adjacent protein coding genes. The majority of differentially expressed lncRNAs are from intergenic regions (~50%), natural antisense to protein-coding loci (~20%), or intronic antisense to protein-coding loci (~10%), with the others representing overlapping transcripts from exons or introns in both sense and antisense directions, exon sense-overlapping, or bidirectional regions. Among the 685 differentially expressed lncRNAs between LTBI group and ATB group, 463 of them are oriented in or around a known protein-coding region (i.e., not intergenic). Among the 41 differentially expressed lncRNAs among three groups, 16 of them are oriented in or around a known protein-coding region (Table 4). However, expression levels of adjacent protein-coding genes of the 16 deregulated lncRNAs were largely unaltered. Only a few lncRNAs and their associated protein-coding genes were differentially expressed simultaneously between two groups: both uc002hix.2 and its adjacent protein-coding gene CCL4L1 mRNA were down-regulated in ATB group compared with LTBI group as well as HCo group. Levels of NR_024586 lncRNA and ENST00000431999 lncRNA as well as their associated protein-coding genes MLL5 mRNA and CYP1B1 mRNA were down-regulated in ATB group compared with HCo group (FDR < 0.05) (Fig. 3, Table 3).

**Confirmation of microarray results by RT-qPCR**

Four lncRNAs were randomly selected for confirmation of microarray results using RT-qPCR. Data showed that, compared with HCo group, 4 lncRNAs showed similar expression tendency in both LTBI group and ATB group: ENST00000429730 and uc011ncc.1 were down-regulated, while ENST00000457582 and chr2:192293450-192304436 were up-regulated in both LTBI group and ATB group; compared with ATB group, ENST00000429730 and uc011ncc.1 were increased, while ENST00000457582 and chr2:192293450-192304436 were decreased in LTBI group (Fig. 4). The results were consistent with those obtained by microarray analysis.

**Relationship between lncRNAs and adjacent protein-coding genes**

GO and KEGG pathway analysis of deregulated mRNAs

GO analysis showed that the differentially expressed mRNAs between LTBI group and ATB group were significantly enriched in cell communication, immune response, MAPKK cascade, toll signaling pathway, etc. Pathway analysis indicated that the deregulated mRNAs between LTBI group and ATB group were mainly involved in MAPK signaling pathway, cytokine–cytokine receptor interaction, chemokine signaling pathway, natural killer cell mediated cytotoxicity, toll-like receptor signaling pathway, Fc gamma R-mediated phagocytosis, antigen processing and presentation, p53 signaling pathway, NOD-like receptor signaling pathway and metabolism of xenobiotics by cytochrome P450 (P-value < 0.05 after multiple testing correction) (Table 5).

**Discussion**

Expression profiles of genes involved in the pathogenesis of LTBI and active TB have been widely studied, however, the molecular regulatory mechanisms underlying TB disease
| Seqname | GeneSymbol | Source | RNA length | Chrom | Relationship | Associated gene_name |
|---------|------------|--------|------------|-------|--------------|---------------------|
| DA194797 | lincRNA-ZMIZ1-6 | lincRNA | 549 | chr10 | Intergenic | |
| AK097793 | | | | | | |
| ENST00000435410 | LA16c-59E1.2 | Ensembl | 822 | chr22 | Intergenic | C18orf1 |
| uc002wjz.1 | BC012193 | UCSC_knowngene | 1317 | chr20 | Bidirectional | PANK2 |
| ENST00000504382 | CTD-2227C6.3 | Ensembl | 526 | chr5 | Intergenic | |
| ENST00000515307 | AL590666.2 | Ensembl | 2293 | chr1 | Natural antisense | NGS |
| ENST00000430604 | RP11-3N2.4 | Ensembl | 821 | chr7 | Intergenic | |
| ENST00000421166 | RP4-681L3.2 | Ensembl | 230 | chr1 | Natural antisense | SLC26A9 |
| AK127405 | | | | | | |
| X51779 | | | | | | |
| BC010527 | | | | | | |
| ENST00000457582 | DEFA8P | Ensembl | 285 | chr8 | Intergenic | |
| AK055252 | | | | | | |
| chr2:192293450-19234436+ | lincRNA-OBFC2A-4 | lincRNA | 10987 | chr2 | Intergenic | C15orf38-AP352 |
| ENST00000502325 | AC005593.2 | Ensembl | 515 | chr5 | Bidirectional | FNIPI |
| ENST00000417670 | C088P | Ensembl | 633 | chr2 | Intergenic | |
| G42993 | | | | | | |
| ENST00000429214 | RP11-162G10.5 | Ensembl | 826 | chr10 | Bidirectional | ZNF248 |
| CR593590 | | | | | | |
| ENST00000429730 | AC079767.4 | Ensembl | 492 | chr2 | Intergenic | MPPE1 |
| ENST00000515242 | AC215219.2 | Ensembl | 1643 | chr12 | Intergenic | |
| uu011cma.1 | BC068238 | UCSC_knowngene | 2289 | chr6 | Intergenic | |
| uu011cma.1 | DDX11L family member | UCSC_knowngene | 1643 | chrY | Intergenic | |
| ENST00000456688 | RP11-327P2.5 | Ensembl | 569 | chr13 | Bidirectional | DHRS12 |
| HIT000093257 | | | | | | |
| uc010jub.1 | AK293020 | UCSC_knowngene | 375 | chr6 | Intergenic | NFKB1 |
| AK054860 | | | | | | |
| AK023939 | | | | | | |
| ENST00000509488 | RP11-241F15.6 | Ensembl | 521 | Chr4 | Intergenic | |
| ENST00000430956 | RP3-406A7.1 | Ensembl | 242 | Chr6 | Intergenic | |
| ENST00000431999 | C2orf58 | Ensembl | 527 | chr2 | Natural antisense | |
| AA564991 | lincRNA-PPYR1-2 | lincRNA | 385 | chr10 | Intergenic | CYP1B1 |
| | | | | | | |
| ENST00000510008 | AC068137.8 | Ensembl | 774 | chr2 | Intergenic | GPR1N2 |
| ENST00000443470 | | | | | | |
| AF086279 | RP4-696P19.2 | Ensembl | 744 | chr6 | Intergenic | SYT15 |
| NR_024586 | | | | | | |
| uc010rog.1 | LOC100216545 | RefSeq_NR | 3615 | chr7 | Bidirectional | ANXA8 |
| uc002hlx.2 | CCL4L | UCSC_knowngene | 17357 | chr11 | Intergenic | ANXA8L1 ANXA8B |
| | | | | | | |
(continued on next page)
remains unclear. LncRNAs have been shown to be involved in major mechanisms of gene expression regulation, such as initiating chromatin remodeling, targeting transcription factors, directing transcriptional and post-transcriptional processing. Increasing studies have reported that many lncRNAs are deregulated in human diseases. The mechanisms of action of lncRNAs, however, are still unclear. Therefore, we performed the study to better reveal the potential role of lncRNAs in contributing to TB infection.

It was interesting to note that more lncRNAs and mRNAs were deregulated in ATB group than LTBI group. The data indicated that more genes in CD4+ T cells were involved in active TB than LTBI. Compared with ATB group, 685 lncRNAs (521 of them up-regulated) and 639 mRNAs (497 of them up-regulated) were differentially expressed in LTBI group, respectively. The result suggested that transcriptional activity was more decreased in active TB than that in LTBI.

Moreover, 41 lncRNAs were differentially expressed between three groups and 23 of them showed similar expression tendency in both LTBI group and ATB group compared with HCo group. The results suggested that both active TB and LTBI might possess, at least partly, similar regulatory mechanisms. Increasing evidence indicates that many lncRNAs are associated with various infectious diseases. More than 4,800 lncRNAs were involved in the host response to EV71 infection. Approximately 500 lncRNAs were differentially expressed during coronavirus infection. A genetic variant in HULC lncRNA contributed to risk of HBV-related hepatocellular carcinoma in a Chinese population. LncRNAs can be used as biomarkers for many infectious diseases. The data suggested that lncRNAs might be widely involved in various infectious diseases. Recent data showed that NEAT1 (uc010rog.1) played an important role in the innate immune response to influenza virus and herpes simplex virus by facilitating the expression of antiviral genes including cytokines such as interleukin-8 (IL-8). Another data reported that NEAT1 was involved in the replication of HIV-1 and knockdown of NEAT1 enhanced virus production. Our results showed that NEAT1 lncRNA was down-regulated in both ATB group and LTBI group compared with HCo group. The data suggested that NEAT1 may be involved in host response to pathogen infection such as TB disease. Despite much progress, function of NEAT1 is still not well-defined. Only a few lncRNAs were found to be associated with various diseases. However, their potential functions of most deregulated lncRNAs, such as ENST00000393334, AK125689, ENST00000457582 and NR_002191, are still largely unknown.

Table 4 (continued)

| Seqname        | GeneSymbol | Source | RNA length | Chrom | Relationship | Associated_gene_name |
|----------------|------------|--------|------------|-------|--------------|----------------------|
| ENST00000454438 | AC108039.3 | Ensembl | 364        | chr2  | Intergenic   |                      |
| ENST00000509378 | RP11-39C10.1 | Ensembl | 2057       | chr4  | Intronic antisense | 1-Mar              |
| ENST00000427227 | ZEB2AS     | Ensembl | 1187       | chr2  | Natural antisense | ZEB2               |
| ENST00000446001 | RP11-501119.3 | Ensembl | 332        | chr6  | Natural antisense | GFOD1              |

UCSC_knowngene: UCSC known genes annotated as "noncoding", near coding" or "antisense" (http://genome.ucsc.edu/cgi-bin/hgTables/); Ensembl: Ensembl (http://www.ensembl.org/index.html); H-invDB: H-invDB (http://www.h-invitational.jp/); RNAdb: RNAdb2.0 (http://research.imb.uq.edu.au/rnadb/); NRED: NRED (http://jsm-research.imb.uq.edu.au/nred/cgi-bin/rncrnadb.pl); lincRNA: lincRNA identified by John Rinn’s group (Guttman et al., 2009; Khalil et al., 2009); misc_lncRNA: other sources.

Relationship: the relationship of lncRNA and its nearby coding gene. "sense_overlapping": the lncRNA’s exon is overlapping a coding transcript exon on the same genomic strand; "intronic": the lncRNA is overlapping the intron of a coding transcript on the same genomic strand; "natural antisense": the lncRNA is transcribed from the antisense strand and overlapping with a coding transcript; "bidirectional": the lncRNA is oriented head to head to a coding transcript within 1000 bp; "intergenic": there are no overlapping or bidirectional coding transcripts nearby the lncRNA.

Source: The source of lncRNA is collected from. RefSeq_NR: RefSeq validated noncoding RNA.

Table 5 The list of enriched KEGG pathways of the differentially expressed mRNAs in CD4+ T cells in active TB group versus LTBI group.

| Pathway ID | Definition                           | Gene count | P value  |
|------------|-------------------------------------|------------|----------|
| hsa04010   | MAPK signaling pathway              | 268        | 0.0012   |
| hsa04060   | Cytokine–cytokine receptor interaction | 265        | 0.0001   |
| hsa04062   | Chemokine signaling pathway         | 189        | 0.0035   |
| hsa04650   | Natural killer cell mediated cytoxicity | 137        | 0.0002   |
| hsa04620   | Toll-like receptor signaling pathway | 102        | 0.0164   |
| hsa04666   | Fc gamma R-mediated phagocytosis    | 95         | 0.0241   |
| hsa04612   | Antigen processing and presentation | 78         | 0.0002   |
| hsa04115   | p53 signaling pathway               | 69         | 0.0087   |
| hsa04621   | NOD-like receptor signaling pathway | 59         | 0.0180   |
| hsa00980   | Metabolism of xenobiotics by cytochrome P450 | 53        | 0.0161   |

Enriched KEGG pathways were used for analysis of the differentially expressed mRNAs between active TB group and LTBI group. P-values after multiple testing corrections <0.05.
A recent report showed that a 251-gene signature from PBMC could accurately distinguish patients with active TB from both individuals with LTBI and healthy controls. One hundred and forty-four blood transcripts were able to distinguish TB from controls and other lung diseases, such as pneumonia and lung cancer. A distinct whole blood 86-gene transcriptional signature of active TB is distinct from other diseases. Specific molecular signatures in PBMC could distinguish active TB from LTBI after antigen stimulation with purified protein derivative of tuberculin (PPD) in vitro. The data suggested that PBMCs play important roles in the immune response to TB infection. CD4+ T cells are important components of PBMCs and here we investigated transcriptional signature of CD4+ T cells in TB infection. In the study, 60 mRNAs were differentially expressed between three groups and 50 of them showed similar expression tendency in both LTBI group and ATB group compared with HCo group, which suggested that both active TB and LTBI might have, at least partly, similar regulatory mechanisms. In the study, it was worth mentioning that most of the differentially expressed mRNAs in PBMCs were not deregulated in CD4+ T cells, which was consistent with our recent miRNA expression results. These data indicated that the major cell type in PBMCs that showed deregulated mRNAs may not be CD4+ T cells and response to TB infection of PBMCs may not be consistent with that of CD4+ T cells. Further studies are needed to explore the inconsistency between our results and published data.

Most of the differentially expressed lncRNAs between LTBI and active TB, which opened up a new and interesting avenue toward an improved understanding of the relationship between lncRNA homeostasis in CD4+ T cells and TB infection. Role of lncRNAs in TB infection was just beginning to be explored and it was difficult to synthesize our results to reach a definitive conclusion based on this single study. As only 4 samples from each group were extensively evaluated, future studies are necessary to replicate, expand these findings in more patient samples. Moreover, further investigation of lncRNA roles may help to elucidate the underlying mechanisms of LTBI and its reactivation.

Role of the funding source

This work was funded by grants from the Shandong Provincial Natural Science Foundation of China (No. ZR2010HM073) and the National Natural Science Foundation of China (No. 81100006, No. 30972639). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

We thank the researchers in the Shanghai KangChen Bio-tech for their technical support.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jinf.2014.06.016

References

1. Parkash O. Vaccine against tuberculosis: a view. J Med Microbiol 2014;63(Pt 6):777–9.
2. Dorhoi A, Iannaccone M, Maertzdorf J, Nouailles G, Weiner 3rd J, Kaufmann SH. Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease. Front Immunol 2014;5:36.
3. Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J Immunol 2010;185:15–22.
4. Gouvier L, Abel B, Hughes EJ, Scriba TJ, Kagina BM, de Kock M, et al. Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 2010;29:51–7.
5. Harari A, Rozot V, Enders FB, Perreau M, Stalder JM, Nicod LP, et al. Dominant TNF-α + Mycobacterium tuberculosis-specific
CD4+ T cell responses discriminate between latent infection and active disease. *Nat Med* 2011;17:372–6.

6. Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+ T cells contain early extrapolumonary tuberculosis (TB) dissemination and rapid TB progression and sustain multifactorial functions of CD8+ T and CD3+ lymphocytes: mechanisms of CD4+ T cell immunity. *J Immunol* 2014;192:2120–32.

7. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. *Science* 2010;330:612–6.

8. Mizutani R, Wakamatsu A, Tanaka N, Yoshida H, Tochigi N, Suzuki Y, et al. Identification and characterization of novel genotoxic stress-inducible nuclear long non-coding RNAs in mammalian cells. *PLoS One* 2012;7:e34949.

9. Vislovukh A, Vargas TR, Polleskaya A, Groisman I. Role of 3′-untranslated region translational control in cancer development, diagnostics and treatment. *World J Biol Chem* 2014;5:40–57.

10. Lee JT. Epigenetic regulation by long noncoding RNAs. *Science* 2012;338:1435–9.

11. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. *Cell* 2011;145:178–81.

12. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. *Nature* 2010;464:1071–6.

13. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. *Nucleic Acids Res* 2010;38:D355–60.

14. Zhang T, Jiang M, Chen L, Niu B, Cai Y. Prediction of gene phylogenotypes based on GO and KEGG pathway enrichment scores. *Biomed Res Int* 2013;2013:870795.

15. Tsai MC, Manor O, Wan Y, Mosumparamarat N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. *Science* 2010;329:689–93.

16. Lee C, Kikyo N. Strategies to identify long noncoding RNAs involved in gene regulation. *Cell Biosci* 2012;2:37.

17. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic non-coding RNA induced within cell-cycle promoters. *Cell* 2010;142:409.

18. Jin G, Sun J, Isaacs SD, Wiley KE, Kim ST, Chu LW, et al. Human polymorphisms at long non-coding RNAs (IncRNAs) and association with prostate cancer risk. *Carcinogenesis* 2011;32:1655–9.

19. Sui W, Li H, Ou M, Tang D, Dai Y. Altered long non-coding RNA expression profile in patients with IgA-negative mesangial proliferative glomerulonephritis. *Int J Mol Med* 2013;30:173–8.

20. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfar S, Coffman EJ, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. *Science* 2011;331:593–6.

21. Yin Z, Guan D, Fan Q, Su J, Zheng W, Ma W, et al. IncRNA expression signatures in responses to enterovirus 71 infection. *Biochem Bioph Res Commun* 2013;430:629–33.

22. Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ, Proll S, et al. Unique signatures of long non-coding RNA expression in response to virus infection and altered innate immune signaling. *MBio* 2010;1(5). pii: e00206-10.

23. Liu Y, Pan S, Liu L, Zhai X, Liu J, Wen J, et al. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. *PLoS One* 2012;7:e35145.