Multilevel Context Representation for Improving Object Recognition

Andreas Kölsch¹, Muhammad Zeshan Afzal¹² and Marcus Liwicki¹³
a_koelsch12@cs.uni-kl.de, afzal@iupr.com, marcus.liwicki@unifr.ch

¹MindGarage, University of Kaiserslautern
²Insiders Technologies GmbH
³University of Fribourg

Abstract

In this work, we propose the combined usage of low- and high-level blocks of convolutional neural networks (CNNs) for improving object recognition. While recent research focused on either propagating the context from all layers, e.g. ResNet, (including the very low-level layers) or having multiple loss layers (e.g. GoogLeNet), the importance of the features close to the higher layers is ignored. This paper postulates that the use of context closer to the high-level layers provides the scale and translation invariance and works better than using the top layer only. In particular, we extend AlexNet and GoogLeNet by additional connections in the top n layers. In order to demonstrate the effectiveness of the proposed approach, we evaluated it on the standard ImageNet task. The relative reduction of the classification error is around 1-2% without affecting the computational cost. Furthermore, we show that this approach is orthogonal to typical test data augmentation techniques, as recently introduced by Szegedy et al. (leading to a runtime reduction of 144 during test time).

1. Introduction

While it is quite easy for humans to distinguish between objects in an image, it can be a very challenging task for a computer. Not only can objects appear in different sizes and angles, but also backgrounds and lighting conditions may vary and many other factors can change the way an object is displayed [44]. Furthermore, some object classes have a very low inter-class variance (cf. Fig. 2), while other classes might have a very high intra-class variance (cf. Fig. 3) [13, 10]. Consequently, both the details of an image and the greater context are important for successful classification. Another factor, that makes image classification hard is the presence of several objects in one image (cf. Fig. 4). When it comes to realistic applications of object recognition models, the task is exacerbated even further by computational constraints. Some applications, e.g. in autonomous cars, require very fast, yet accurate predictions [40, 23], while other applications, especially those in mobile devices, constrain the amount of available memory and processing power.

In the last years, neural networks have had great success in many tasks related to computer vision. For the task of object recognition, particularly convolutional neural networks (CNNs) have become the state of the art [11]. Thanks to now available computational resources and efficient GPU implementations [17, 5], it is also possible to train very deep CNNs. In 2012, Krizhevsky et al. proposed an eight-layer deep CNN [19], which, due to its groundbreaking performance, laid the foundation of using these networks for image classification. Two years later, 19-layer [38] and 22-layer networks [39] were presented, which performed even better. In 2015, He et al. proposed an even deeper network architecture with 152 layers [14], and most recently the development of ever deeper CNNs culminated with PolyNet with several hundred layers [47] (see Section 2).

While this trend towards deeper networks is evident, the basic architecture of CNNs has never changed fundamentally. They always consist of a number of stacked convolutional layers with a non-linear squashing function [16, 20,
section 4 the novel network architectures and the training methodology are described in detail and large scale experiments are performed. The results are presented in section 5 which is followed by the discussion in section 6 and conclusion in section 7.

2. Related Work

Both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been used for solving key computer vision problems [21]. Some example areas such as object recognition and detection [19, 39, 14, 47, 42], semantic segmentation [3, 25, 27, 32], describing images with text [18, 43, 41, 7] and also generating the images using text [9, 28, 33, 34, 46] show the effectiveness of the deep learning models for solving challenging tasks. The RNNs did not receive much attention for object recognition and the work in this area is rather sparse due to the following reasons: First by the virtue of their architecture that is suitable for temporal data processing. Secondly, due to the temporal dependencies, the processing of RNNs is inefficient in comparison to CNNs. However, the work of Visin et al. [42] had signified that contextual processing of pixels can help to recognize the objects better. Their proposed architecture was named as ReNet and it was recommended as an alternative approach to CNNs. In another work, Biswas et al. [1] concatenated different variations (degradations) of the same object and processed it temporally. They used each variation of the object as one time step for RNNs. However, their experiments are limited to MNIST [22] and COIL-20 [31] data sets and the validity and the computational viability of their approach remains undiscovered for large data sets e.g., ImageNet [35]. A combination of CNNs and RNNs has also been reported by Linag et al. [24]. Their proposed ar-
The Inception architecture relies both on the efficiency of CNNs and power of contextual processing of RNNs. As our proposed work aims to extend existing deep CNN architectures, the following paragraphs briefly describe the state-of-the-art deep CNN architectures for object recognition.

One well-known benchmark for several visual tasks, including image classification, is the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [35]. It allows the participating teams to compare the performance of their developed models. The data set used for the competition consists of 1.000 image classes containing 1.2 million labeled images for training, 50.000 labeled validation images and 100.000 unlabeled images which are used to compare the performance of the submitted entries.

In 2012, Krizhevsky et al. have, for the first time, used a deep CNN in the ILSVRC and won the image classification with a significant margin, outperforming all traditional methods [19]. The winning architecture consists of five convolutional layers which are followed by three fully connected layers. The first and second layer use local response normalizations and max-pooling before passing the activations to the next layer. The fifth convolutional layer is again followed by a max-pooling layer which provides the input to the fully-connected layers. To prevent overfitting, the fully-connected layers use dropout [16]. Rectified linear units (ReLU) are used as activation function in all layers [30]. AlexNet achieves a top-5 error rate of 16.422% on the ILSVRC test data set.

Since then, many other teams have developed a variety of different CNN architectures to further reduce the classification error of these networks [14, 38, 39]. First of all, Szegedy et al. presented the 22-layer GoogLeNet in 2014, which achieved a top-5 error rate of 6.656% on the ILSVRC 2014 test data set with an ensemble of 7 networks. The network is using the Inception architecture [39] which is different from other approaches, as it employs not stacked convolutional layers, but stacked building blocks which themselves consist of multiple convolutional layers (cf. Fig. 5). Therefore, it is a network-in-network approach [26]. As the network is so deep, it employs two auxiliary loss layers during training to allow for efficient backpropagation of the error.

Note that the general idea of adding skip-connections (so-called residual connections) has been recently introduced by He et al. in [14, 15]. However, the motivation and effects are fundamentally different. In ResNet, the skip-connections go through all the layers, letting the layers mainly pass the information through the network with minor additive terms. This mainly overcomes the vanishing gradient problem and allows learning architectures with hundreds of layers. Contrary, the main idea in this paper is to use the extracted features of multiple layers directly for classification. The only work which comes close to our idea is the proposal of Center-Multilayer Features (CMF) as proposed by Seuret et al.[37]. They used stacked convolutional auto-encoders (SCAE) for classifying an image or the center pixel of a patch. This idea is similar to our pre-study (section 3) where we use multiple feature representations from fine-tuned networks. However, their network architecture is shallow and they use features from all the layers.

Apart from novel network architectures, a lot of work has been done to understand how the networks are learning and how they can be improved [12, 29]. Especially visualization techniques have helped to get an understanding of the
Table 1: Accuracy achieved by networks on validation sets after training with inputs from conv5 only and inputs from conv4 (normalized) and conv5.

	conv5	conv4 & conv5
10 classes	90.60%	91.60%
20 classes	83.40%	84.10%
50 classes	78.72%	80.12%
100 classes	68.36%	71.10%

convolutional layers [45]. Despite all the research that has been done to develop new CNN architectures, novel architectures typically employ more layers or make use ensembling techniques [48]. However, both approaches typically require more computational resources at training and inference time.

3. Pre-study

To investigate, whether it is worth pursuing the idea of using features from multiple layers, we run a set of small-scale experiments. We use a publicly available model\(^1\) of AlexNet that is pre-trained on ImageNet. This model is used to extract and store the activations generated by the fourth and fifth convolutional layers (conv4 and conv5) during a forward pass of the images. Then, we train a three-layer fully-connected neural network on these activations which, except for the last layer, equals the fully-connected part of AlexNet (cf. Fig. 6). As is common, the last layer is adjusted in size to match the number of classes. We repeat the experiment with several subsets of the ILSVRC data set. The network is trained and evaluated on the activations of 10, 20, 50 and 100 randomly selected classes of the data set.

To get a baseline, we run a set of experiments, in which the network is trained solely on the activations from conv5 that were extracted before. In another set of experiments, we use the same classes, but train the network on the activations of conv4 concatenated with conv5. It turns out, we have to balance the number of activations passed to the fc6 connected layer (fc6) is not only presented with the activations from conv5, but also with activations from conv4 (cf. Fig. 7). Since after max-pooling, the conv5 layer has only \(256 \times 6 \times 6\) values, but conv4 has \(384 \times 13 \times 13\) values, we have to balance the number of activations passed to the fc6 layer. Therefore, we add a max-pooling of conv4, before concatenating the values with the conv5 values. Furthermore, to resemble the normalization that was done in the small scale experiments (cf. Section 3), we use \(tanh\) after the pooling to compress the activations. A detailed comparison of the layer sizes of AlexNet and AlexNet++ is given in Table 2.

4. Large Scale Experiments

With the results from section 3 we step the experiments up and train entire CNNs from scratch on the ILSVRC data set.

\(^1\)https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

4.1. Network Architectures

We propose two neural network architectures in this section. The network architectures are strict extensions of the existing networks AlexNet and GoogLeNet. Unlike most CNNs, including AlexNet and GoogLeNet, the proposed networks feed the classification part of the network with information not only from the highest-level convolutional layer, but with information from the two highest-level convolutional layers. We call the enhanced versions of these networks AlexNet++ and GoogLeNet++.

4.1.1 AlexNet++

The original AlexNet is an eight-layer deep CNN in which each layer processes the features extracted by the subjacent layer only. As already said, the proposed AlexNet++ differs from the original AlexNet in the way, that the first fully connected layer (fc6) is not only presented with the activations from conv5, but also with activations from conv4 (cf. Fig. 7). Since after max-pooling, the conv5 layer has only \(256 \times 6 \times 6\) values, but conv4 has \(384 \times 13 \times 13\) values, we have to balance the number of activations passed to the fc6 layer. Therefore, we add a max-pooling of conv4, before concatenating the values with the conv5 values. Furthermore, to resemble the normalization that was done in the small scale experiments (cf. Section 3), we use \(tanh\) after the pooling to compress the activations. A detailed comparison of the layer sizes of AlexNet and AlexNet++ is given in Table 2.

4.1.2 GoogLeNet++

GoogLeNet is the 22-layer network architecture, that won the ILSVRC2014 [39]. Unlike AlexNet, the architecture consists of stacked building blocks which consist of convolutional layers (cf. Fig. 5). Due to its depth, the original
Figure 7: AlexNet++ architecture with unchanged AlexNet part in gray and the new part colored.

Figure 8: Top part of the GoogLeNet++ architecture. The new connection is marked red. The lower layers of the network are built as proposed by Szegedy et al. [39].

The proposed GoogLeNet++ architecture concatenates the activations of the two highest level building blocks, before they are passed to the fully connected layer (cf. Fig. 8). Table 3 gives a detailed comparison of the layer sizes of GoogLeNet and GoogLeNet++.

4.2. Training Details

We train a version of AlexNet++ and GoogLeNet++ from scratch on the ILSVRC training data. To allow for a fair comparison, the unchanged versions of AlexNet and GoogLeNet are also trained on the same training data and setup. All networks are trained on a single NVidia Tesla K20X using the Caffe framework [17].

AlexNet and AlexNet++ are trained for 90 epochs using stochastic gradient descent with an initial learning rate of 0.01 which is divided by 10 after 30 and 60 epochs. The momentum is set to 0.9 and the weight decay is 0.0005 as proposed by Krizhevsky et al. [19]. Both networks use a batch size of 256 images to speed up the training. As proposed in the original architecture, we initialize the weights with a gaussian distribution with a mean of zero and a standard deviation of 0.01. The biases are initialized differently from the original approach. While Krizhevsky et al. set the
Table 3: Input size of the layers of GoogLeNet and GoogLeNet++

Layer	GoogLeNet	GoogLeNet++
conv1	3 × 224 × 224	3 × 224 × 224
pool1	64 × 112 × 112	64 × 112 × 112
conv2	64 × 56 × 56	64 × 56 × 56
pool2	192 × 56 × 56	192 × 56 × 56
inception3a	192 × 28 × 28	192 × 28 × 28
inception3b	256 × 28 × 28	256 × 28 × 28
pool3	480 × 28 × 28	480 × 28 × 28
inception4a	480 × 14 × 14	480 × 14 × 14
inception4b	512 × 14 × 14	512 × 14 × 14
inception4c	512 × 14 × 14	512 × 14 × 14
inception4d	512 × 14 × 14	512 × 14 × 14
inception4e	528 × 14 × 14	528 × 14 × 14
pool4	832 × 14 × 14	832 × 14 × 14
inception5a	832 × 7 × 7	832 × 7 × 7
inception5b	832 × 7 × 7	832 × 7 × 7
pool5	1024 × 7 × 7	1856 × 7 × 7
fc	1024 × 1 × 1	1856 × 1 × 1
prob	1000	1000

The GoogLeNet and GoogLeNet++ networks are trained for five million iterations with a batch size of 32, i.e. for 133 epochs. We train the networks with stochastic gradient descent with a polynomial update of the learning rate, as proposed by Sergio Guadarrama3. This means, the learning rate is updated at every iteration to

\[
 lr = \text{initial}_lr \times \left(1 - \frac{\text{iter}}{\max\text{.iter}}\right)^{\text{power}}
\]

where the initial learning rate is set to 0.01 and power is 0.5. The momentum is 0.9, weight decay is set to 0.0002. To initialize the network, we use normalized initialization 8.

4.2.1 Data Augmentation

The four networks described above are trained on the ILSVRC training data set with no additional data. To artificially enlarge the data set, we use a rather simple data augmentation technique. Namely, we resize all images to 256 × 256 pixels, subtract the mean pixel value in a pre-processing step and then randomly crop patches in the size

\[
 \text{Image size: } 224 \times 224, \text{crop size: } 224 \times 224
\]

of the network input from these, i.e. 227 × 227 pixels for AlexNet, 224 × 224 pixels for GoogLeNet. Finally, we randomly mirror the images horizontally. An example is given in Fig. 9.

Note, that Krizhevsky et al. and Szegedy et al. use more aggressive data augmentation techniques. However, in the case of GoogLeNet, the given details are very vague and not described in a reproducible way. In the case of the original AlexNet approach, the rectangular images are preprocessed by scaling them such that the shorter edge measures 256 pixels and then a 256 × 256 patch is cropped from the center. This scaling preserves the aspect ratio, but does not use the outer regions of an image at all. We decided to not perform more aggressive data augmentation techniques as our idea is orthogonal to the augmentation ideas, i.e., even if more data augmentation is performed, it is still possible to use the Multilevel Context representation.

5. Benchmarking and Results

To compare our extended versions of AlexNet and GoogLeNet with the original ones, we use the labeled ILSVRC validation data set. Remember, we not only set out to improve the classification performance of the existing networks, but also, to keep the additional computational costs low. Therefore, this section covers both, the classification accuracy of the models and the time needed for classification and training.

We use two evaluation methods to measure the accuracy of the networks. First, we classify the validation images using a single-crop technique, i.e., we resize them to 256 × 256 pixels and use the center crop. Secondly, the networks are tested with the multi-crop technique proposed in 39. Specifically, the images are resized such that the shorter dimension is 256, 288, 320 and 352 pixels long. Then 3 square crops are taken from each of these images, i.e., the left, center and right part for landscape pictures or the top,
Table 4: Accuracy achieved by networks on validation sets using center crops only and averaging over 144 crops as described by Szegedy et al. [39]

	Top-1	Top-5		
	center crop	144 crops	center crop	144 crops
AlexNet	58.17%	58.54%	80.82%	81.18%
AlexNet++	58.47%	58.93%	81.25%	81.47%
GoogLeNet	68.89%	68.86%	88.91%	89.26%
GoogLeNet++	69.42%	69.05%	89.25%	89.35%

Table 5: Time needed for passing one batch through the network. The batch size for AlexNet and AlexNet++ is 256, the batch size for GoogLeNet and GoogLeNet++ is 32.

	Forward	Backward	Σ
AlexNet	254.87 ms	654.04 ms	909.01 ms
AlexNet++	271.29 ms	686.76 ms	958.16 ms
GoogLeNet	112.26 ms	283.31 ms	395.71 ms
GoogLeNet++	112.51 ms	284.76 ms	397.42 ms

Table 4 presents the accuracy on the validation data set which is achieved by the four trained networks. As can be seen, the extended networks outperform the original versions with all evaluation techniques. Furthermore, the accuracy achieved by the new models with only one crop is at least comparable to the accuracy achieved by the original models using 144 crops. In the case of GoogLeNet, the Top-1 accuracy of the new network using only one crop is even more than 0.5% higher than the accuracy of the original network using 144 crops (this corresponds to around 2% relative error reduction).

Table 5 shows the time needed for forward and backward passes through the different networks. Obviously, the timings are specific to hardware and software. In our case, all timings are made using caffe 1.0rc3 and a NVidia Tesla K20X. AlexNet++ takes about 5% longer for training, i.e., combined forward and backward pass. However, the accuracy achieved by AlexNet++ using just center crops is comparable and in the case of top-5 accuracy even higher than what AlexNet achieves using 144 crops (see Table 4). Given this result, it is actually reasonable to say AlexNet++ is more than 100 times faster to reach a comparable accuracy.

For GoogLeNet++, the difference in runtime for both forward and backward pass is negligibly small. This is due to the fact, that the GoogLeNet architecture already has a concatenation layer before the fully connected layer and thus, no new layers have to be added to combine the two highest level building blocks (cf. Fig. 8). A combined forward- backward pass with GoogLeNet++ is only 0.4% slower than with the original GoogLeNet. Therefore, training the extended network takes only marginally longer. At inference time, the difference decreases to a mere 0.2% which makes the GoogLeNet++ very well-suited for productive usage.

6. Discussion

Our approach postulates that the higher level layers are useful for achieving better performance both in terms of recognition accuracy and computational cost. In order to demonstrate the validity of the claim, we performed a simple experiment using AlexNet. In this experiment, the features from all of the convolutional layers were concatenated. Two observations were made: first, the training took significantly longer (almost 3 times) and secondly, the accuracy was suboptimal (almost 2% less in terms of absolute error). The best performance was achieved by concatenating the features of the top 2 layers.

The networks trained in this work could not reproduce the drastic error reduction that Szegedy et al. have reported [39] by using the 144 image crops at test time. The main reason for this is that we have used less aggressive data augmentation during training or due to different weight initializations. Unfortunately, Szegedy et al. do not report the
details on how the GoogLeNet model was initialized. Also, they report error reduction by ensembling multiple trained networks. However, this is not in the scope of this paper. The main purpose of this paper is to show that features from lower level convolutional layers that are close to the highest level provide useful and complementary information for classification.

Noteworthy, as shown in this paper, when training our networks with the same data augmentation and hyperparameters, the extended architectures presented in this work outperform the original ones. This applies to both networks (AlexNet and GoogLeNet) in both evaluation scenarios (no data augmentation during testing or using 144 test samples).

7. Conclusion

In this paper, we presented a successful approach for extending existing CNN architectures in order to boost their classification performance. We have demonstrated the effectiveness of this approach by enhancing the network architectures of AlexNet and GoogLeNet and training them from scratch on the ILSVRC data set. We consider networks that are totally different in nature to prove the generality of the proposed approach. Also, it is shown that at almost no additional cost, the relative error rates of the original networks decrease by up to 2%. This fact makes the extended networks a very well suited choice for usage in production environments. The quantitative evaluation signifies that the new approach could be, at inference time, introduced environments. The quantitative evaluation signifies that the extended networks a very well suited choice for usage in production environments. Also, it is shown that at almost no additional cost, the relative error rates of the original networks decrease by up to 2%. This fact makes the extended networks a very well suited choice for usage in production environments. The quantitative evaluation signifies that the new approach could be, at inference time, introduced environments.

References

[1] S. Biswas, M. Z. Afzal, and T. Breuel. Using recurrent networks for non-temporal classification tasks. In Neural Networks (IJCNN), 2014 International Joint Conference on, pages 135–140. IEEE, 2014. 2
[2] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 111–118, 2010. 2
[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062, 2014. 2
[4] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmidhuber. Flexible, high performance convolutional neural networks for image classification. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page 1237. Barcelona, Spain, 2011. 2
[5] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS Workshop, 2011. 1
[6] G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 8609–8613. IEEE, 2013. 1
[7] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2625–2634, 2015. 2
[8] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010. 6
[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014. 2
[10] C. Goring, A. Freytag, E. Rodner, and J. Denzler. Fine-grained categorization–short summary of our entry for the imagenet challenge 2012. arXiv preprint arXiv:1310.4759, 2013. 1
[11] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, and G. Wang. Recent advances in convolutional neural networks. arXiv preprint arXiv:1512.07108, 2015. 1
[12] K. He and J. Sun. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5353–5360, 2015. 3
[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015. 1
[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016. 1, 2, 3
[15] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European Conference on Computer Vision, pages 630–645. Springer, 2016. 3
[16] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012. 1, 3
[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 1, 5
[18] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128–3137, 2015. 2
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In
