A report on the role of nuclear microtubules in the budding yeast nucleus during quiescence.

An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence

Abstract

The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochore remains attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit.

Introduction

Most cells spend the majority of their life in quiescence, a condition defined as a temporary arrest of proliferation. This cellular state is poorly understood and it has been proposed that different quiescent states may be reached depending on the cell’s history (O’Farrell, 2011). Saccharomyces cerevisiae has been a valuable model organism for studying this complex resting state (Daignan-Fornier and Sagot, 2011; Klosinska et al., 2011; De Virgilio, 2012). When yeast cells enter quiescence after carbon source exhaustion, they assemble particular structures such as actin bodies, proteasome storage granules, chaperone-containing granules, etc. (Sagot et al., 2006; Narayanaswamy et al., 2009; Noree et al., 2010; Liu et al., 2012; Shah et al., 2013), some of which appear to be conserved in other organisms (Jensen and Larsson, 2004; Laporte et al., 2008; Noree et al., 2010; Poulter et al., 2010). Although in most cases the physiological “raison d’être” of these structures remains to be determined, it is clear that they are not simply useless amorphous aggregates (Daignan-Fornier and Sagot, 2011b).

Microtubules (MTs) are essential asymmetric polymers involved in a wide variety of cellular processes (Wade, 2009). The MT “minus” end is poorly dynamic and generally associated with a MT-organizing center (MTOC) required for MT nucleation. By contrast, the MT “plus” end is highly dynamic and alternates between periods of growth and shortening, a behavior called dynamic instability (Mitchison and Kirschner, 1984). MT dynamics is tightly controlled by a vast collection of MT-associated proteins (MAPs) and can be modulated by tubulin post-translational modifications (Hammond et al., 2008; van der Vaart et al., 2009).

In mitosis, budding yeast cells display dynamic cytoplasmic MTs (astral MTs [aMTs]) that are critical for the correct positioning of the nucleus (Markus et al., 2012). Inside the nucleus, the mitotic spindle is composed of kinetochore MTs (kMTs) that capture centromeres and pull them apart during anaphase. This process is helped by non-kinetochore MTs that drive mitotic spindle elongation through the action of MT cross-linking proteins and associated motors (Winery and Bloom, 2012). MTs are nucleated by the γ-TuC complex found on the spindle pole body (SPB), the yeast equivalent of the centrosome (Pereira and Schiebel, 1997; Erleman et al., 2012).

In interphase, the budding yeast nucleus adopts an organization that resembles the Rabl configuration first described in salamanders and commonly found in plants and Drosophila (Rabl, 1885; Hochstrasser et al., 1986; Jin et al., 1998, 2000; Bystricky et al., 2004; Schubert and Shaw, 2011). In this configuration,
the nucleolus is located opposite to the SPB and most telomeres are maintained at the nuclear periphery (Zimmer and Fabre, 2011; Taddei and Gasser, 2012). Short kMTs (~300 nm) link each centromere to the SPB, keeping them clustered together in a “rosette” (Gucci et al., 1997; Jin et al., 1998, 2000; O’Toole et al., 1999; Bystricky et al., 2004). This clustering is lost if kMT–centromere attachment is disrupted or if kMTs are destabilized by pharmacological treatment (Jin et al., 2000). Whether MT-dependent centromere clustering in interphase is important for the fidelity of chromosome segregation in the subsequent anaphase is an open question. Besides, it was shown that in proliferating *S. cerevisiae*, kMT–centromere attachments are lost only very briefly, just during the time required for centromere replication in S phase (Winey and O’Toole, 2001; Kitamura et al., 2007; Tanaka et al., 2010).

Here we show that upon quiescence entry, cells assemble a long and astonishingly stable array of nuclear MTs (nMTs) that spans the entire nucleus. This nMT array emanates from the SPB, its opposite extremity being associated with several MAPs and kinetochores. Importantly, centromeres also localize on the nMT array. Consequently in quiescence, the nucleus is drastically reorganized. Upon quiescence exit, nMTs disassemble, dragging with them attached centromeres. As a result, cells go back to a Rabl-like configuration and reenter the cell cycle without losing MT–centromere attachment. Finally, mutants that do not display nMT array are impaired for both survival in quiescence and quiescence exit.

Results and discussion

Microtubules form a nuclear array in quiescent *S. cerevisiae*

MT organization was analyzed in wild-type (WT) cells expressing GFP-Tub1. As shown in Fig. 1 A, proliferating G1 cells displayed 1–3 long cytoplasmic aMTs and short and hardly detectable nuclear kMTs. Strikingly, we observed that a few hours after carbon exhaustion, a thick array of nMTs was present in the quiescent cell’s nucleus. In parallel, as the time in quiescence increased, fewer aMTs were detected in the cytoplasm (Fig. 1 A, yellow bars). In most cells, the nMT array spanned the entire nucleus, sometimes even deforming the nuclear membrane (Fig. S1, A and B). Colocalization of Tub1–RFP with Spc72 or the γ-TuC components Tub4 and Spc97 showed that the nMT array was associated with the SPB (Fig. 1 B). Of note, the SPB did not seem to be drastically altered in quiescence (Fig. S1 C). Fluorescence line-scan slope calculation along the nMT array revealed that its extremities were unequal. Indeed, the SPB-associated end displayed a slope similar to the one measured for short mitotic spindles (Fig. 1 C). This suggested that the nMT array emanated from the SPB. By contrast, at the opposite extremity, slopes were less steep, indicating that within the nMT array MTs were heterogeneous in length (Fig. 1 C, red slopes). Next, we localized proteins known to be associated with the MT plus-end (Kumar and Wittmann, 2012). Stu2, a XMAP215 family member and Bik1, the CLIP170 homologue, localized to both extremities of the nMT array (Fig. 1 D). In some cells, few discrete dots were also detected along the nMT array (Fig. 1 D, arrows). This further supported the idea that within the array, not all the MTs were of the same length. Interestingly, Bik1, the EB1 homologue, was localized all along the nMT array (Fig. 1 D). As Bik1 specifically recognizes GTP-bound tubulin, it could be that some GTP-tubulin remnants may be present along nMTs, as shown for mammalian MTs (Dimitrov et al., 2008). Finally, nMT arrays emanating from the SPB were observed in quiescent cell nuclei by EM (Fig. 1 E and Fig. S1 D). Taken together, these experiments establish that upon quiescence entry, cells assemble an array of parallel MTs that originates from the SPB and traverses the entire nucleus.

The nMT array is composed of stable MTs*

As previously shown (Carminati and Stearns, 1997), we observed highly dynamic MTs in proliferating G1 cells (Fig. 2 A and Fig. S2 A). By comparison, in 7-d-old quiescent cells the nMT array length remained remarkably constant (Fig. 2 B). This behavior was confirmed for cells in early quiescence (4 d), in which both aMTs and nMT array can be detected simultaneously (Fig. 2 C). MT stabilization was verified in quiescent cells expressing various nMT-associated MAPs (Fig. S2 B). FRAP experiments further showed that no significant GFP-Tub1 turnover could be detected within the nMT array (Fig. 2 D). Lastly, drugs that destabilize dynamic MTs had no effect on quiescent cells nMT array, whereas in proliferating G1 cells dynamic MTs were rapidly lost. Cytoplasmic aMT disappearance attested that drugs entered quiescent cells (compare Fig. 1 A with 2 E; and see Fig. S2, D and E). Importantly, drugs had no effect on nMT arrays whatever the timing of their addition after carbon exhaustion (Fig. 2 E), suggesting that MT stability was not acquired with the time spent in quiescence but was a result of quiescence entry.

In quiescence, the nucleus is drastically reorganized*

In proliferating *S. cerevisiae*, the nucleolus is localized opposite to the SPB (Hernandez-Verdun et al., 2010). In quiescent cells, we found that the nucleolus (Sik1-RFP) was no longer localized opposite to the SPB, but rather on the side of the nMT array (Fig. 3 A). This was confirmed by EM experiments (Fig. 3 B and Fig. S3 A). Of note, the nucleolus was very small, which was expected because in quiescence translation is drastically reduced (Fuge et al., 1994).

We then analyzed the localization of kinetochore proteins. Interestingly, among the six kinetochore subcomplexes (Westermann et al., 2007; Gascoigne and Cheeseman, 2011), five were found localized both at the SPB and at the tip of the nMT array (Fig. 3 C and Fig. S3 B). In some cells, immobile dots of kinetochore proteins could also be detected along the nMT array (Fig. S2 C). As these dots were insensitive to MT-destabilizing drugs (see Fig. 5 D), we conjectured that they correspond to the plus end of shorter stable MTs. The sixth kinetochore subcomplex, the Dam1 complex, form rings along MTs in vitro (Miranda et al., 2005; Westermann et al., 2006; Joglekar et al., 2010; Ramey et al., 2011). In quiescent cells, it was detected all along the nMT array (Fig. 3 C and Fig. S3 B).

The fact that all kinetochore subcomplexes were associated with the nMT array prompted us to look at centromeres. First, we
Microtubules in quiescent yeast cells

And the kinetochores/centromeres, because they are still associated with the nMT plus-end, are no longer found all clustered near the SPB as in G1 cells, but rather localize along or at the tip of the nMT array (Table S1). The fact that centromeres remained attached to MT extremities while MT elongate to form the nMT array gives a mechanistic explanation for the pioneer observation of the reduced centromeres clustering at SPBs in the nucleus of early quiescent cells (Jin et al., 1998).

Several MAPs are required for nMT array formation

Next, we searched for MAPs that would be required for quiescent cells nMT array formation and/or stability. Deletion of various MAP-encoding genes had no effect on quiescent cell nMT array (Fig. 4 A and Fig. S3, E and F). By contrast, nMT array formation was strongly impaired in cells deleted for kar3, dynein (dyn1), or subunits of the dynactin complex (jnm1, nip100, arp1,
were causing SPOC activation, thus preventing quiescence establishment. However, we found that the majority of the kar3Δ, dyn1Δ, or nip100Δ dead cells were not budded cells (Fig. 4 D), and in quiescence the number of bi-nucleated cells did not suffice to account for the number of dead cells (Fig. S3 I). Moreover, kar3Δ, dyn1Δ, or nip100Δ cells displayed actin bodies (Fig. S3 J), structures specifically assembled upon quiescence entry (Sagot et al., 2006). Furthermore, activation of SPOC by other routes (deletion of KIP2, KAR9, or ASE1; Winey and Bloom, 2012) did not prevent nMT formation and had no drastic effect on cell capacity to face quiescence (Fig. 4, A, D, and E).

Importantly, in the absence of nMT array, the number of dead cells increased with the time spent in quiescence (Fig. 4 D). In good agreement, kar3Δ, dyn1Δ, or nip100Δ cells that have just entered quiescence were capable of giving rise to a progeny, whereas this ability decreased with the time spent in quiescence (Fig. 4 E). This was also observed for the other dynactin mutants (Fig. S3 K). Taken together, these experiments indicate that kar3Δ, dynein, and dynactin mutant cells do enter quiescence but fail to form an nMT array. This correlates with a progressive loss of viability. Of note, dynactin is involved in a checkpoint that monitors cell wall integrity (Suzuki et al., 2004), yet, providing osmotic support by sorbitol addition did not improve dynactin mutant survivability in quiescence (Fig. S3 L).

Cells unable to assemble nMT array are impaired for both survival in quiescence and quiescence exit

To investigate the physiological function of the nMT array, we analyzed the phenotypes of mutants impaired for the assembly of this structure in quiescence. We found that a significant percentage of kar3Δ, dyn1Δ, or nip100Δ cells were dead after 7 or 14 d in culture (Fig. 4 D). Kar3, dynein, and dynactin are involved in spindle orientation during mitosis. Defects in this process cause the accumulation of budded cells with misoriented spindle or bi-nucleated cells. Consequently, activation of the spindle position checkpoint (SPOC) delays exit from mitosis (Caydasi et al., 2010; Winey and Bloom, 2012). We first hypothesized that in kar3Δ, dyn1Δ, or nip100Δ cells, defects in spindle orientation were causing SPOC activation, thus preventing quiescence establishment. However, we found that the majority of the kar3Δ, dyn1Δ, or nip100Δ dead cells were not budded cells (Fig. 4 D), and in quiescence the number of bi-nucleated cells did not suffice to account for the number of dead cells (Fig. 4 I). Moreover, kar3Δ, dyn1Δ, or nip100Δ cells displayed actin bodies (Fig. S3 J), structures specifically assembled upon quiescence entry (Sagot et al., 2006). Furthermore, activation of SPOC by other routes (deletion of KIP2, KAR9, or ASE1; Winey and Bloom, 2012) did not prevent nMT formation and had no drastic effect on cell capacity to face quiescence (Fig. 4, A, D, and E). Importantly, in the absence of nMT array, the number of dead cells increased with the time spent in quiescence (Fig. 4 D). In good agreement, kar3Δ, dyn1Δ, or nip100Δ cells that have just entered quiescence were capable of giving rise to a progeny, whereas this ability decreased with the time spent in quiescence (Fig. 4 E). This was also observed for the other dynactin mutants (Fig. S3 K). Taken together, these experiments indicate that kar3Δ, dynein, and dynactin mutant cells do enter quiescence but fail to form an nMT array. This correlates with a progressive loss of viability. Of note, dynactin is involved in a checkpoint that monitors cell wall integrity (Suzuki et al., 2004), yet, providing osmotic support by sorbitol addition did not improve dynactin mutant survivability in quiescence (Fig. S3 L).
Microtubules in quiescent yeast cells

• Laporte et al.

In fact, a sole addition of glucose was sufficient to trigger nMT array disassembly (Fig. 5 A). This suggested that carbon source was the signal for MT remodeling upon quiescence exit, as previously shown for other quiescence-specific structures (Laporte et al., 2011). We can envision that upon quiescence exit, the nMT array disassembly is needed to regenerate the pool of free tubulin that will be required for the mitotic spindle formation, just as it was recently proposed for each subsequent round of mitoses during proliferation (Woodruff et al., 2012). Localization of kinetochore proteins indicated the nMT array shortening was progressive and not influenced by MT-destabilizing drugs (Fig. 5 B). By contrast, Bim1-GFP was quickly lost from the nMT array (Fig. 5 C), suggesting that a likely GTP-tubulin cap was rapidly dismantled upon quiescent exit. Furthermore, efficient nMT array disassembly required de novo synthesis of proteins, as it was significantly slowed down by cycloheximide (CHX; Fig. 5 D). Interestingly, in the presence of CHX, Bim1,
array shortening (Fig. 5 E), strongly suggesting that centromeres stayed attached to the nMT array while it depolymerized.

Altogether, our findings establish that quiescent cells assemble a monopolar spindle-like structure that emanates from Dad2, and Nuf2 remained on the nMT array (Fig. 5 D), indicating that their displacement was driven by neo-synthesized proteins. Finally, upon cell re-feeding, the distance between the SBP and CEN IV decreased with a similar kinetic to the nMT array shortening (Fig. 5 E), strongly suggesting that centromeres stayed attached to the nMT array while it depolymerized.

Figure 4. Kar3, dynein, and dyneinactin mutants are involved in nMT array formation and impaired for both quiescence survival and exit. (A) nMT formation was tested in 4-d-old cells expressing Bim1-3GFP and deleted for the indicated MAP. The nMT array stability was tested by nocodazole treatment (22.5 µg/µL). Numbers indicate the percentage of cells with nMT array. Of note, in dyn1Δ, kar3Δ, nip100Δ, jnm1Δ, ldb18Δ, and arp1Δ, most of the nMT arrays scored were shorter and thinner than in WT. (B) In the absence of nMT array, the nucleolus mainly localizes opposite to the SPB. Nucleus organization was scored as indicated: nucleolus localizing opposite to SPB (orange), in the nucleus half opposite to the SPB (green), or close to the SPB (gray). Cells expressing Bim1-3GFP (green) and Sik1-RFP (blue) stained with Hoechst (red) are shown. (C) In the absence of nMT array, Stu2-GFP localizes at SPB proximity. Distances were measured between the SPB and the Stu2-GFP dot. The distribution of the distances measured in two experiments is shown (WT, n = 241; arp1Δ, n = 274; dyn1Δ, n = 217). Bars: (A–C) 2 µm. (D) Mutants that cannot assemble nMT array have a reduced viability in quiescence. Cell viability was scored after 2 (yellow), 7 (light blue), and 14 d (dark blue) using methylene blue. Plain bars, unbudded dead cells; dashed bars, budded dead cells. (E) Colony-forming capacity measured for cells grown for 2 (yellow), 7 (light blue), or 14 d (dark blue). Percentages are given using WT cells as reference. (F) 12-d-old alive cells were micro-manipulated and tested for their ability to give rise to a colony. (G) Kinetics of new bud emergence upon quiescent exit.

Dad2, and Nuf2 remained on the nMT array (Fig. 5 D), indicating that their displacement was driven by neo-synthesized proteins. Finally, upon cell re-feeding, the distance between the SBP and CEN IV decreased with a similar kinetic to the nMT array shortening (Fig. 5 E), strongly suggesting that centromeres stayed attached to the nMT array while it depolymerized.

Altogether, our findings establish that quiescent cells assemble a monopolar spindle-like structure that emanates from
Microtubules in quiescent yeast cells

Laporte et al.

In this study, the authors investigated the role of microtubules (MTs) in quiescent yeast cells. They used several strategies to modify the MTs, including integrating plasmids at specific loci to express GFP-tagged MTs or other proteins. The plasmids used included pRS306 backbone, URA3, and pRS305 backbone, LEU2, among others. They monitored the MT array's behavior upon re-feeding with YPDA or 2% glucose and the effects of nocodazole (22.5 µg/µL) and CHX on MT disassembly.

Key findings include:

1. The MT array slowly shrinks upon quiescence exit (Figure 5A).
2. The distance between the Nuf2-GFP SPB-associated dot and the MT array Nuf2-GFP tip-associated dot decreases upon cell re-feeding with or without nocodazole (Figure 5B).
3. Bim1-3GFP rapidly dissociates from the MT array upon quiescence exit in the presence of nocodazole (Figure 5C).
4. The MT array disassembly is slowed down in the presence of CHX (Figure 5D).
5. The variation of the distance between the SPB (Spc29-RFP) and CEN IV upon cell re-feeding is shown (Figure 5E).

The MT array is composed of highly stable nMTs, yet the precise molecular mechanism responsible for MT stabilization remains to be discovered. As suggested by quiescence exit experiments in the presence of CHX, one hypothesis could be that MT-stabilizing proteins are no longer present in quiescent cells. Conversely, but not exclusively, MT stabilization in the nucleus could be enhanced by the activity of one or several MAPs. The physiological function of the MT array is still mysterious, yet it drives a drastic reshaping of the nucleus. This raises the intriguing possibility that an MT-driven nuclear reorganization is contributing to cell survival both during quiescence and reentry into the proliferation cycle.

Materials and methods

Yeast strains and growth conditions

Integrative plasmids pTUB1-CFP-TUB1 (HIS3) or pTUB1-GFP-TUB1 (LEU2) are derivatives of PB1002 and were a gift of D. Pellman (Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA; Tirnauer et al., 1999). The RFP (tdimer 2(12); Campbell et al., 2002) sequence carried by plasmids p4587 and p4453 were integrated at the 3′ end of the NUP2 and TUB1 endogenous loci, respectively. The plasmid p2568 (pRS304 backbone, TRP1) was used to integrate a GFP sequence at the 3′ end of the SPC42 endogenous locus and was a gift of P. Sorger (Harvard Medical School, Boston, MA; He et al., 2000). Three tandem copies of GFP sequences carried by plasmids p4754 and p4753 were integrated at the 5′ end of the Dyn1 chromosomal locus and were a gift of D. Pellman (Sheeman et al., 2003). Three tandem copies of GFP sequences carried by plasmid p4756 were integrated at the 5′ end of the Arp1 chromosomal locus. The functionality of Arp1-3GFP was tested by crossing Arp1-3GFP–expressing cells with a strain deleted for kar9. RFP (tdimer(2)12) sequence carried by plasmid p3696 was integrated at the 5′ end of the Htb1 chromosomal locus. Details of the plasmid constructions are available upon request.

All the strains used in this study are isogenic to BY4741, BY4742, or BY4743 available from Euroscarf. Yeast strains carrying GFP fusions were obtained from Invitrogen. Strain KBY8065 (Fig. 3F) was a gift of K. Bloom (University of North Carolina at Chapel Hill, Chapel Hill, NC; Stephens et al., 2011). Strain JW2687, a gift of J-Q. Wu (The Ohio State University, Columbus, OH; Coffman et al., 2011), was transformed with p4143 (pRS306 backbone, URA3) and used in Fig. 3D. Strains A5811

Figure 5. nMT array slowly shrinks upon quiescence exit. (A) MT organizations before and after quiescent cells re-feeding with YPDA or with 2% of glucose. WT cells expressing GFP-Tub1 (green) and Nup2-RFP (red) are shown. (B) The MT array slowly shrinks upon quiescence exit. The distance between the Nuf2-GFP SPB-associated dot and the MT array Nuf2-GFP tip-associated dot was measured upon cell re-feeding with or without nocodazole (22.5 µg/µL). The distribution of the distances measured in two experiments is shown (top: n = 217 for t0, 313 for t30, 217 for t60, and 166 for t90; bottom: n = 290 for t0, 88 for t30, 138 for t10, and 99 for t90). (C) Bim1-3GFP rapidly dissociated from the MT array upon quiescence exit in the presence of 22.5 µg/µL nocodazole. The distance of the distances measured in two experiments is shown (n = 213 for t0, 291 for t30, 138 for t10, and 99 for t90). (D) The MT array disassembly is slowed down in the presence of CHX. Quiescent cells (4 d) were re-fed with YPDA in the presence of the indicated drug(s) and imaged after 90 min. (E) Variation of the distance between the SPB (Spc29-RFP) and CEN IV upon cell re-feeding. Details of the plasmid constructions are available upon request.

(diploid) and A15978 were gifts of A. Amon (Massachusetts Institute of Technology, Cambridge, MA; Lee et al., 2004) and were respectively transformed with p4143 (Fig. 3 E) or p2568 (Fig. 3 G). Strains A15978 and A5244, gifts of A. Amon, were transformed with p4143 (Fig. S3 C) and p2568 (Fig. S3 D).

For all experiments, yeast cells were grown in liquid YPDA medium at 30°C in flasks at 4 or 7 d as specified in each figure, except for Fig. 3, E–G and 5, A–D, for which growth was followed for 3 d. In Fig. S3 C, yeast cells were grown in liquid YPDA medium with or without 1 M sorbitol (Sigma–Aldrich) at 30°C in flasks for indicated times.

For quiescence exit in the sole presence of glucose, cells were washed twice with water, then inoculated in glucose 2% at 0.6–1 OD800nm and incubated at 30°C. For quiescence exit in the presence of MT-destabilizing drugs, cells were washed twice with water before incubation for 1 h in the presence of the drug before quiescence exit. For scoring new bud emergence upon quiescence exit, ConA-FITC (Sigma–Aldrich) was added to a final concentration of 0.2 g/L onto a 12-d-old cell culture. Cells were then incubated for 1 h at 30°C, washed twice, and then transferred into YPDA in the absence of Con-A-FITC (Sahin et al., 2008).

Cell staining

Actin phallloid staining was done as described in Sagar et al. (2006). In brief, cells were fixed with formaldehyde (3.7% final), washed, and stained for 24 h with Alexa Fluor 568-phallloid (Invitrogen). Cells were then washed twice, resuspended in a mounting solution containing 70% glycerol and 5 mg/l paraphenylenediamine, and imaged at room temperature using the Cy3 filter described below. DNA was stained by incubating cells for 5 min at 30°C with Hoechst (Invitrogen) at 0.5 mg/ml.

Cell viability

Cell viability in quiescence was measured using methylene blue. Colony-forming capacity was addressed after 2, 7, and 14 d at 30°C by plating 200 cells on YPDA, as measured using a particle counter (Multisizer 4; Beckman Coulter). Micro-manipulation of quiescent cells was performed as described in Laporte et al. (2011). In brief, 12-d-old cells grown in liquid YPDA were stained for 5 min with methylene blue; 10 µl of cell suspension was then deposited onto a YPDA plate. Cells that were not stained (i.e., alive cells) were micro-manipulated using a Singer MSM system (Singer Instrument Co. Ltd.).

Fluorescence microscopy

Cells were observed in a fully automated inverted microscope (model 200M; Carl Zeiss) equipped with an MS-2000 stage (Applied Scientific Instrumentation), a 300-Watt xenon light source (Lambda LS; Sutter Instrument), a 100x 1.4 NA Plan-Apochromat objective, and a five-position filter turret.

For GFP imaging, we used a FITC filter (excitation, HQ487/25; emission, HQ535/40; beam splitter, Q505lp). For RFP imaging we used a Cy3 filter (Ex: HQ535/50 – Em: HQ610/75 – BS: Q565lp). For Hoechst imaging we used a DAPI filter (Ex: 360/40 – Em: 460/50 – BS: 500lp). For YFP imaging we used a YFP filter (excitation, HQ500/20; emission, HQ535/30; beam splitter, Q515lp). All the filters are from Chroma Technology Corp. Images were acquired using a CoolSnap HQ camera (Roper Scientific). The microscope, camera, and shutters (Uniblitz) were controlled by SlideBook software 5.0 (Intelligent Imaging Innovations). Images are, unless specified, 3D maximal projections of z-stacks performed using a 0.27-µm step. Few microliters of cell culture were deposited onto a glass slide and directly imaged at room temperature.

FRAP experiments were done on an inverted microscope (model DMI 6000; Leica) equipped with a spinning disk confocal head (CSU-X1; Yokogawa Corporation of America), a QuantEM camera (Photometrics), and a scanner FRAP system (Roper Scientific). The diode lasers used were at 408 nm and 491 nm. The objective used was a HCX PL APO CS 100× oil (1.4 NA). The z-stacks were done with an objective scanner (Piezo P721; LLQ; Physik Instrumente). This system was controlled by MetaMorph software (Molecular Devices). Few microliters of the cell culture were deposited onto a glass slide holding an agarose pad (1.5%) and the coverslip was sealed with VALAP and directly imaged at room temperature.

Data analysis

In Fig. 1 C, a line scan (l1) of 3-pixel width containing both GFP signal and background was drawn along the nMT array using ImageJ software (National Institutes of Health, Bethesda, MD). A line of 6-pixel width (at the same location) was drawn in order to calculate the intensity of the surrounding background (b2). The real intensity (ir) was calculated as follows: ir = (I2 × 6) / (I1 × 3) and ib = ir – 11 – (jb/3). We arbitrarily set the highest fluorescence value for each line scan to 100%. On the graph, depending on the directionality of the line scan, 0 or 100% fluorescence was set to 0 µm on the x axis.

To measure MT length variation (Fig. 2 and Fig. S2), position of the SPB and the plus-end extremities of the MT structure (aMT or nMT array) were followed over time. Euclidian distances (D) between two positions were calculated as follows: D = √ ([x2 – x1]2 + [y2 – y1]2). In time-lapse series, the first measured length was set to zero and the variation was calculated according to this reference. SPB/centromere and SPB/kinetochore Euclidian distance measurements were done using the MTrack plugin in ImageJ, their respective positions being determined in the best focal plane.

Fluorescence recovery was corrected for background noise and continuous photobleaching using ImageJ software, and then normalized to the fluorescent 1 h measured before bleach (Voytas et al., 2008). The fluorescence intensity of a region of interest (5 × 4 pixels) was measured on maximal projection of z-stacks. The fluorescence intensity I was calculated over time as follows: I = (Icurrent – ibackground). Photobleaching was measured on unbleached nMT arrays, and the intensity was corrected using I = I1 × (Unbleached first point / Unbleached last point), where y is a specific time point over time.

The relative position of the nucleus versus the SPB was determined using a central symmetry axis along the nucleus drawn from the SPB.

To determine the location of Arp1/Dyn1 toward membrane nuclei, a line scan (l1) of 5-pixel width containing both GFP/RFP signal and background was drawn along the GFP/RFP signal using ImageJ software. A line of 10-pixel width (at the same location) was drawn in order to calculate the intensity of the surrounding background (I2). The real intensity (Ir) was calculated as follows: Ir = ([x2 × 10] – [i1 × 5]) and ib = I1 – (Ib/5). Individual Arp1/Dyn1/Nup2 Gaussian fits were determined and aligned using GFP fits set to 0 on the x axis. GFP/RFP average fits are displayed in Fig. S3 H.

Cell viability experiments, each strain was grown in independent duplicates and each plating done in triplicate. Micro-manipulation was done twice on more than 150 cells.

electron microscopy

Immunostaining was done as described in Sagar et al. (2006). Cells were washed for 5 min with 1 mg/ml glycine, then 5 min with fetal calf serum. Cells were then incubated for 45 min with polyclonal rabbit anti-β-tubulin antibodies diluted 1:250 (a gift of K. Gull, University of Oxford, Oxford, UK; Woods et al., 1989). After a rinse with Tris-buffered saline containing 0.1% bovine serum albumin, cells were incubated for 45 min at room temperature with anti-mouse IgG conjugated to 10-nm gold particles (BioCell Laboratories, Inc.). For freeze substitution, yeast were deposited on a copper grid (400 mesh) coated with Formvar. Grids were immersed in liquid propane held at −180°C by liquid nitrogen, then transferred in a 4% osmium tetroxide solution in dry acetone at −82°C for 72 h. Grids were then shifted to room temperature and washed three times with dry acetone. Cells were stained with 1% uranyl acetate then washed once with dry acetone. Samples were gradually filtered with araldite (Fluka). Ultrathin sections were contrasted with lead citrate and observed using an 80-kV electron microscope (model 7650; Hitachi) at the Bordeaux Imaging Center.

Glucose concentration was measured using the α-glucose/α-fructose UV test kit (Roche). Cytochalasine (Sigma–Aldrich) was added to a final concentration of 180 µM.

Online supplemental material

Fig. S1 (A and B) shows the nuclear membrane deformation induced by nMT arrays in quiescent cells. Fig. S1 C shows fluorescence quantification of various SPB components. In Fig. S1 D another example of nMT array visualized by DM was shown. Fig. S2 A displays MT dynamics for cells in early quiescence. Fig. S2 B shows dynamics of Bim1-GFP, Dad2-GFP, and Nu2-GFP in quiescent cells. Fig. S2 C points to immobile Nu2-GFP dots detected along the nMT array. Fig. S2 D and E displays nMT array resistance to various MT-destabilizing drugs. In Fig. S3 A, the relocation of the nucleus is observed by immuno-EM. In Fig. S3 B, kinetochore protein localization in quiescent cells is shown. In Fig. S3 C and D the distance between CEN IV and the SPB is measured. Images of MAP deletion mutants
expressing Bim1-3GFP or Tub1-RFP are shown respectively in Fig. S3, E and F. In Fig. S3 G, distribution of the distances between the SBP and Spc24-GFP are displayed. Fig. S3 H shows dynein and dynactin localization in quiescent cells. Fig. S3 I and J indicates the percentage of dead cells, bi-nucleated cells, and cells with actin bodies in mutant without nMT array. In Fig. S3 K, the viability in quiescence of various mutants is indicated. In Fig. S3 L, the effect of sorbitol on cell survivability in quiescence is tested. Table S1 indicates the localization of various MAPs in quiescent cells. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201306075/DC1. Additional data are available in the JCB DataViewer at http://dx.doi.org/10.1083/jcb.201306075.

We express our profound gratitude to J.P. Javerzat for his precious comments about our work and his great help in writing this manuscript. We are grateful to I. Blanchon, B. Daignan-Fornier, M. Gupta, A. Paolotti, D. Pellman, and P. Tran for helpful discussions about our work. We are thankful to A. Amon, K. Bloom, B. Gooche, D. Pellman, and J.-Q. Vu for providing yeast strains. FRAP was done in the Bordeaux Imaging Center with the help of Christel Poujal.

This work was supported by the Université Bordeaux 2, Conseil Régional d’ Aquitaine, a Young Investigator grant from the Agence Nationale pour la Recherche (IC08 310804 to I. Sagot), and an Association pour la Recherche sur le Cancer Grant (ARC, SF20101201558 to I. Sagot).

Submitted: 13 June 2013
Accepted: 10 October 2013

References

Bystricky, K., P. Heun, L. Gehlen, J. Langowski, and S.M. Gasser. 2004. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc. Natl. Acad. Sci. USA. 101:16095–16500. http://dx.doi.org/10.1073/pnas.0402766101

Campbell, R.E., O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias, and R.Y. Tsien. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA. 99:7877–7882. http://dx.doi.org/10.1073/pnas.082243699

Carminati, J.L., and T. Stearns. 1997. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138:629–641. http://dx.doi.org/10.1083/jcb.138.3.629

Caydasi, A.K., B. Ibrahim, and G. Pereira. 2010. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div. 5:28. http://dx.doi.org/10.1186/1747-1028-5-28

Coffman, V.C., P. Wu, M.R. Parton, and J.Q. Wu. 2011. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J. Cell Biol. 195:563–572. http://dx.doi.org/10.1083/jcb.201106078

Daignan-Fornier, B., and I. Sagot. 2011a. Proliferation/quiescence: the controversial “aller-retour”. Cell Div. 6:10. http://dx.doi.org/10.1186/1747-1028-6-10

Daignan-Fornier, B., and I. Sagot. 2011b. Proliferation/Quiescence: When to start? Where to stop? What to stock? Cell Div. 6:20. http://dx.doi.org/10.1186/1747-1028-6-20

De Virgilio, C. 2012. The essence of yeast quiescence. FEMS Microbiol. Rev. 36:306–339. http://dx.doi.org/10.1111/j.1574-6976.2011.00287.x

Dimitrov, A., M. Quesnoit, S. Moutel, I. Cantaloube, C. Poüs, and F. Perez. 2012. The essence of yeast quiescence. J. Cell Div. 181:737–745. http://dx.doi.org/10.1086/670028

Laporte, D., A. Lebaudy, A. Sahin, B. Pinson, J. Ceschin, B. Daignan-Fornier, and I. Sagot. 2011. Metabolic status rather than cell cycle signals control quiescence entry and exit. J. Cell Biol. 192:949–957. http://dx.doi.org/10.1083/jcb.20111311

Lee, R.H., B.M. Kuburz, and A. Amon. 2004. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Cell. Biol. 14:2168–2182. http://dx.doi.org/10.1083/jcb.200412.033

Li, C., S.W. Chiu, H.Y. Lee, and J.Y. Leu. 2012. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol. Biol. Cell. 23:1231–1242. http://dx.doi.org/10.1091/mbc.E11-09-0752

Laporte, D., B. Salin, B. Daignan-Fornier, and I. Sagot. 2008. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J. Cell Biol. 181:737–745. http://dx.doi.org/10.1083/jcb.200711154

Laporte, D., A. Lebaudy, A. Sahin, B. Pinson, J. Ceschin, B. Daignan-Fornier, and I. Sagot. 2011. Metabolic status rather than cell cycle signals control quiescence exit and exit. J. Cell Biol. 192:949–957. http://dx.doi.org/10.1083/jcb.20111311

Markus, S.M., K.A. Kalutkiewicz, and W.L. Lee. 2012. Astral microtubule asymmetry provides directional cues for spindle positioning in budding yeast. Exp. Cell Res. 318:1400–1406. http://dx.doi.org/10.1016/j.yexcr.2012.04.006

Microtubules in quiescent yeast cells...
