A Geometric Proof of Mordell’s Conjecture for Function Fields

Kezheng Li*

Department of Mathematics, Capital Normal University, Beijing 100037, China

Abstract. Let C, C' be curves over a base scheme S with $g(C) \geq 2$. Then the functor $T \mapsto \{\text{generically smooth } T\text{-morphisms } T \times_S C' \to T \times_S C\}$ from $((S\text{-schemes}))$ to $((\text{sets}))$ is represented by a quasi-finite unramified S-scheme. From this one can deduce that for any two integers $g \geq 2$ and g', there is an integer $M(g, g')$ such that for any two curves C, C' over any field k with $g(C) = g$, $g(C') = g'$, there are at most $M(g, g')$ separable k-morphisms $C' \to C$. It is conjectured that the arithmetic function $M(g, g')$ is bounded by a linear function of g'.

0. Introduction

We recall the works of Y. Manin, H. Grauert and P. Samuel on Mordell’s conjecture for function fields (see [G] and [S]). A main part of the conjecture can be stated as follows.

Theorem 1. Let C, C' be two smooth projective curves over a field k, where C had genus $g \geq 2$. Then there are at most a finite number of finite separable k-morphisms from C' to C.

From this one can deduce that

Theorem 2. Let C be a smooth projective curve over a field k with genus $g \geq 2$. Then for any finitely generated field extension $K \supset k$, C has at most a finite number of smooth K-points over k.

Here a smooth K-point over k means a smooth k-morphism $\text{Spec}(K) \to C$, and this is equivalent to a k-algebra homomorphism $\phi : K(C) \to K$ (where $K(C)$ is the function field of C) such that $K \supset \text{im}(\phi)$ is a separably generated extension.

*Supported by NSFC of China, grant number 10531060
Theorem 2 can be restated as

Theorem 3. Let C be a smooth projective curve over a field k with genus $g \geq 2$, and X be a variety over k. Then there are at most a finite number of generically smooth k-morphisms $X \rightarrow C$.

(See also [B], [Hir], [Hr], [N], [Vol], [Voj] for some recent developments along this line.)

In this paper we will give a geometric proof for the above facts. Our main result is

Theorem 4. Let S be a noetherian scheme and C, C' be curves over S (i.e. smooth projective morphisms $C \rightarrow S$, $C' \rightarrow S$ of relative dimension 1 with geometrically integral fibers). Suppose the fibers of C over S all have genus $g \geq 2$. Then there is a quasi-finite unramified S-scheme T representing the following functor

$$
((S\text{-schemes})) \rightarrow ((\text{sets}))

T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C' \rightarrow T \times_S C\}
$$

where “generically smooth” means there is an open subscheme $U \subset T \times_S C'$, faithfully flat over T, such that $f|_U$ is smooth. In particular, there are at most a finite number of generically smooth S-morphisms from C' to C.

Some main ideas of the proof of Theorem 4 come from [L1] and [L2].

A special case of Theorem 4 is

Theorem 5. Let C, C' be smooth projective curves over a field k with genera $g(C) = g \geq 2, g(C') = g'$. Then there is a finite étale k-scheme T representing the following functor

$$
((k\text{-schemes})) \rightarrow ((\text{sets}))

T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_k C' \rightarrow T \times_k C\}
$$

This is slightly stronger than Theorem 1.

Using Theorem 4 and moduli theory on curves (cf. [M1] or [M2]), we can get

Theorem 6. For any two positive integers $g \geq 2$ and g', there is an integer $M(g, g')$ such that for any two curves C, C' over any field k with $g(C) = g, g(C') = g'$, it holds that

$$
\#\{\text{finite separable } k\text{-morphisms } C' \rightarrow C\} \leq M(g, g').
$$

Furthermore, for any finitely generated field extension $K \supset k$, there is an integer
$M(g, K/k)$ such that for any curve C over k with genus g, it holds that

$$\#\{\text{smooth } K\text{-points of } C \text{ over } k\} \leq M(g, K/k).$$

and for any variety X over k, there is an integer $M(g, X/k)$ such that for any curve C over k with genus g,

$$\#\{\text{generically smooth } k\text{-morphisms } X \to C\} \leq M(g, X/k).$$

This strengthens Theorem 1, Theorem 2 and Theorem 3.

From Theorem 4 and Theorem 6, one can also deduce that

Theorem 7. Let S be a noetherian scheme and $C_1, ..., C_m, C'_1, ..., C'_n$ be curves over S, such that the fibers of C_i over S all have genus $g_i \geq 2$ ($1 \leq i \leq m$), and the fibers of C'_j over S all have genus g'_j ($1 \leq j \leq n$). Let $X = C_1 \times_S \cdots \times_S C_m$, $Y = C'_1 \times_S \cdots \times_S C'_n$.

i) There is a quasi-finite unramified S-scheme T representing the following functor

$$((S\text{-schemes})) \to ((\text{sets})) \quad T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S Y \to T \times_S X\}$$

ii) If $S = \text{Spec}(k)$ for a field k, then any generically smooth k-morphism $f : Y \to X$ can be factored to a product of morphisms of curves. To be precise, there is an injective map $\lambda : \{1, 2, ..., m\} \to \{1, 2, ..., n\}$ and m finite separable morphisms $f_i : C'_\lambda(i) \to C_i$ over k, such that $f(x_1, ..., x_n) = (f_1(x_{\lambda(1)}), ..., f_m(x_{\lambda(m)})).$

iii) Let I be the set of all injective maps from $\{1, 2, ..., m\}$ to $\{1, 2, ..., n\}$. If $S = \text{Spec}(k)$ for a field k, then

$$\#\{\text{generically smooth } k\text{-morphisms } Y \to X\} \leq \sum_{\lambda \in I} \prod_{i=1}^m M(g_i, g'_\lambda(i)).$$

iv) Suppose $S = \text{Spec}(k)$ for a field k. Let $K = K(Y)$ (the function field of Y). Then

$$\#\{\text{smooth } K\text{-points of } X \text{ over } k\} \leq \sum_{\lambda \in I} \prod_{i=1}^m M(g_i, g'_\lambda(i)).$$

We conjecture that $M(g, g')$ is bounded by a linear function of g'. This holds when $g = g'$.

Acknowledgement. I wish to thank Kejian Xu for his stimulating discussions with me on this topic. This paper is related to a recent work of his (see [X]).
1. The main theorem

We first fix some terminologies. Let S be a scheme. By a curve over S we will mean a smooth projective morphisms $\pi : C \to S$ of relative dimension 1 with geometrically integral fibers; in this case if all of the fibers of π have the same genus g, we say C (or π) has genus g. Let X, Y be schemes over S. An S-morphism $f : X \to Y$ is called generically smooth if there is an open subscheme $U \subset X$, faithfully flat over S, such that $f|_U : U \to Y$ is smooth. If K is a field and $\text{Spec}(K)$ is an S-scheme, then an S-morphism $f : \text{Spec}(K) \to X$ is called a K-point of X over S; in this case we say the K-point is smooth if f is smooth. If X is a variety over a field k, we denote by $K(X)$ the function field of X.

Note that when X is a variety over a field k and K is a finitely generated field extension of k, a smooth K-point of X over k is equivalent to a k-algebra homomorphism $\phi : K(X) \to K$ such that $K \supset \text{im}(\phi)$ is a separably generated extension.

Lemma 1. Let S be a noetherian scheme and X, Y be flat projective S-schemes. Then there is a locally quasi-projective S-scheme T representing the following functor

$$\mathfrak{Mor}_{gs} : ((S \text{-schemes})) \to ((\text{sets}))$$

$$T \mapsto \{\text{generically smooth } T\text{-morphisms } T \times_S Y \to T \times_S X\}$$

Proof. By moduli theory, there is a locally quasi-projective S-scheme T' representing the following functor

$$((S \text{-schemes})) \to ((\text{sets}))$$

$$T \mapsto \{T\text{-morphisms } T \times_S Y \to T \times_S X\}$$

Here T' is a locally closed subscheme of the Hilbert scheme $\text{Hilb}_{Y \times_S X/S}$, which represents all of the flat closed subschemes of $Y \times_S X$ over S. Let $f : T' \times_S Y \to T' \times_S X$ be the universal morphism over T'. Then there is a largest open subscheme $U \subset T' \times_S Y$ such that $f|_U$ is smooth. Let T be the image of U under the projection $\text{pr}_1 : T' \times_S Y \to T'$ (this makes sense because pr_1 is flat, hence is an open map). It is easy to see that T represents \mathfrak{Mor}_{gs}. Q.E.D.

Lemma 2. Let C, C' be two curves over a field k with $g(C) = g \geq 2$, $g(C') = g'$. Let $f : C' \to C$ be a separable morphism over k. Then $d = \deg(f) \leq g' - 1$. Let $p' \in C'$, $p \in C$ be k-points. Let $X = C' \times_k C$, and take the ample invertible sheaf of X to be $O_X(D)$ for the divisor $D = p' \times_k C + C' \times_k p$. Then the graph $\Gamma_f \subset X$ of f has Hilbert polynomial $\chi(x) = (d + 1)x + 1 - g'$.
Proof. By Hurwitz’s theorem, we have $2g' - 2 \geq d(2g - 2) \geq 2d$, hence $d \leq g' - 1$. Since $\Gamma_f \cong C'$, by Riemann-Roch theorem we have $h^0(D') - h^1(D') = \deg(D') + 1 - g'$ for any divisor D' on Γ_f. Take $D' = D \cap \Gamma_f$, it is easy to see that $\deg(D') = d + 1$. Hence $\chi(n) = h^0(nD') - h^1(nD') = \deg(nD') + 1 - g' = (d + 1)n + 1 - g'$. This shows that $\chi(x) = (d + 1)x + 1 - g'$. Q.E.D.

Proposition 1. Let S be a noetherian scheme and C, C' be curves over S of genera $g \geq 2$ and g' respectively. Let T be the locally quasi-projective S-scheme representing the following functor

$$
\begin{align*}
((\text{S-schemes})) &\rightarrow ((\text{sets})) \\
T &\mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C' \rightarrow T \times_S C\}
\end{align*}
$$

(as in Lemma 1). Then T is quasi-finite and unramified over S.

Proof. First note that $\mathcal{Hilb}_{C' \times_S C/S}$ is a disjoint union of projective S-schemes $\mathcal{H}(\chi)$ indexed by (infinitely many) Hilbert polynomials χ. By Lemma 2, we see that $T \subset \mathcal{Hilb}_{C' \times_S C/S}$ is contained in a union of a finite number of $\mathcal{H}(\chi)$s for $\chi(x) = (d + 1)x + 1 - g'$, $1 \leq d < g'$. Hence T is quasi-projective. Therefore it is enough to show that the projection $q : T \rightarrow S$ is unramified.

Denote by $\Phi : T \times_S C' \rightarrow T \times_S C$ the universal morphism over T, and $\rho = \text{pr}_2 \circ \Phi : T \times_S C' \rightarrow C$.

Case 1: $S = \text{Spec}(k)$ for an algebraically closed field k. Let $t \in T$ be a k-point, and let $f : C' \rightarrow C$ be the corresponding separable k-morphism. Denote by $\zeta : \{t\} \cong \text{Spec}(k) \rightarrow T$ the inclusion. Let

$$
\alpha = (\rho, \rho \circ ((\zeta \circ \text{pr}_1) \times_k \text{id}_{C'}) : T \times_S C' \rightarrow C \times_k C
$$

(1)
i.e. $\alpha(t', x) = (\rho(t', x), f(x))$ $(\forall t' \in T)$. We have a commutative diagram

$$
\begin{align*}
\xymatrix{C' \cong \text{Spec}(k) \times_k C' \ar[d]_{\zeta \times_k \text{id}_{C'}} & \ar[r]^f & C \ar[d]_{\Delta} \\
T \times_S C' & \ar[l]_{\alpha} C \times_k C
}\end{align*}
$$

(2)

Let \mathcal{I}, \mathcal{J} and \mathcal{J}_0 be the ideal sheaves of the closed immersions Δ, $\zeta \times_k \text{id}_{C'}$, and ζ respectively. Clearly $\mathcal{J} \cong \text{pr}_1^* \mathcal{J}_0$. By (2), α induces a morphism $\alpha^* \mathcal{I} \rightarrow \mathcal{J}$. Applying $(\zeta \times_k \text{id}_{C'})^*$ we get a homomorphism of coherent sheaves on C':

$$
\begin{align*}
\eta : (\zeta \times_k \text{id}_{C'})^*(\alpha^* \mathcal{I}) &\cong f^*(\Delta^* \mathcal{I}) \cong f^*\Omega^1_{C'/k} \\
(\zeta \times_k \text{id}_{C'})^* \mathcal{J} &\cong (\zeta^* \mathcal{J}_0) \otimes_k \mathcal{O}_{C'} \cong \Omega^0_{C'}. \tag{3}
\end{align*}
$$
where \(n = \dim_k(\zeta^*\mathcal{J}_0) \).

We claim that \(\eta = 0 \). Indeed, if \(\eta \neq 0 \), then there would be a non-zero homomorphism \(\eta' : f^*\Omega^1_{C/k} \to \mathcal{O}_{C'} \). Since \(f^*\Omega^1_{C/k} \) is an invertible sheaf, \(\eta' \) would be a monomorphism. Therefore we would have a monomorphism \(H^0(\Omega^1_{C/k}) \hookrightarrow H^0(f^*\Omega^1_{C/k}) \hookrightarrow H^0(\mathcal{O}_{C'}) \cong k \), contrary to \(\dim_k(H^0(\Omega^1_{C/k})) = g \geq 2 \).

Let \(T \subset \mathcal{T} \) be the closed subscheme defined by the ideal sheaf \(\mathcal{J}_0^2 \), and \(V \subset C \times_k \mathcal{C} \) be the closed subscheme defined by the ideal sheaf \(\mathcal{T}^2 \). Then \(\alpha \) induces a morphism \(\alpha_1 : T \to V \). By \(\eta = 0 \) we see that \(\alpha_1^*(\mathcal{I}\mathcal{O}_V) = 0 \), hence \(\alpha_1 \) factors through \(\Delta(\mathcal{C}) \), i.e. \(\rho|_{T \times_k \mathcal{C}} = f \circ \text{pr}_2 : T \times_k \mathcal{C}' \to \mathcal{C} \). By the universality of \(\mathcal{T} \), we have a commutative diagram

\[
\begin{array}{ccc}
T & \xrightarrow{q} & \text{Spec}(k) \\
\downarrow \text{inclusion} & & \downarrow \zeta \\
\mathcal{T} & \xrightarrow{\text{id}} & \mathcal{T}
\end{array}
\]

(4)

where \(q \) is the projection. Hence \(\mathcal{J}_0\mathcal{O}_T = 0 \), i.e. \(\mathcal{J}_0 = \mathcal{J}_0^2 \). This means that

\[
\langle \Omega^1_{\mathcal{T}/k} \rangle_t \cong \zeta^*\mathcal{J}_0 = 0
\]

(5)

where \(\langle \Omega^1_{\mathcal{T}/k} \rangle_t \) is the fiber of \(\Omega^1_{\mathcal{T}/k} \) at \(t \), and \(\zeta^*\mathcal{J}_0 \) can be viewed as \(\mathcal{J}_0/\mathcal{J}_0^2 \) restricted to \(\{t\} \). Since \(t \) is an arbitrary closed point of \(\mathcal{T} \), we have \(\Omega^1_{\mathcal{T}/k} = 0 \), i.e. \(\mathcal{T} \) is unramified over \(k \).

Case 2: \(S = \text{Spec}(k) \) for an arbitrary field \(k \). Let \(\overline{k} \) be the algebraic closure of \(k \), and denote \(\overline{C} = C \otimes_k \overline{k}, \overline{C}' = C' \otimes_k \overline{k} \). Then \(\mathcal{T} \otimes_k \overline{k} \) represents

\[
((\overline{k}\text{-schemes})) \to (\text{(sets)})
\]

\[
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_k \overline{C}' \to T \times_k \overline{C}\}
\]

Hence \(\mathcal{T} \otimes_k \overline{k} \) is unramified over \(\overline{k} \) by Case 1. This shows that \(\mathcal{T} \) is unramified over \(k \).

Case 3: general case. We need to show that \(\Omega^1_{\mathcal{T}/S} = 0 \), for this it is enough to show \(\langle \Omega^1_{\mathcal{T}/S} \rangle_t = 0 \) for any closed point \(t \in \mathcal{T} \). Let \(s = q(t) \in S \), and let \(k \) be the residue field at \(s \) (i.e. \(\{s\} \) can be viewed as a morphism \(\text{Spec}(k) \to S \)). Denote by \(\mathcal{C}_s, \mathcal{C}'_s \) and \(\mathcal{T}_s \) the fibers of \(\mathcal{C}, \mathcal{C}' \) and \(\mathcal{T} \) over \(s \) respectively. Then \(\mathcal{T}_s \) represents

\[
((k\text{-schemes})) \to (\text{(sets)})
\]

\[
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_k \mathcal{C}'_s \to T \times_k \mathcal{C}_s\}
\]

Hence \(\mathcal{T}_s \) is unramified over \(k \) by Case 2, i.e. \(\Omega^1_{\mathcal{T}_s/k} = 0 \). Note that \(\Omega^1_{\mathcal{T}_s/k} \cong \Omega^1_{\mathcal{T}/S}|_{\mathcal{T}_s} \), we have \(\Omega^1_{\mathcal{T}/S} = 0 \). Q.E.D.
Lemma 3. Let \(\pi : X \to S \) be an unramified separated morphism of noetherian schemes. Then \(\pi \) has at most a finite number of sections \(\zeta : S \to X \).

Proof. Let \(\zeta : S \to X \) be a section of \(\pi \). It is easy to see the following diagram is cartesian:

\[
\begin{array}{ccc}
S & \xrightarrow{\zeta} & X \\
\downarrow{\zeta} & & \downarrow{\Delta} \\
X & \xrightarrow{\beta} & X \times_S X
\end{array}
\]

where \(\beta = (\zeta \circ \pi, \text{id}_X) \) (i.e. \(\beta(x) = (\zeta(\pi(x)), x) \)). Hence \(\zeta \) is a closed immersion because \(\Delta \) is a closed immersion. Let \(J \) be the ideal sheaf of \(\zeta(S) \subset X \), and \(I \) be the ideal sheaf of \(\Delta(X) \subset X \times_S X \). Then \(\beta^* I \cong J \) because (6) is cartesian. Since \(\pi \) is unramified, we have \(I = I^2 \). Hence \(J = J^2 \). This shows that \(X \) is a disjoint union of \(\zeta(S) \) with another closed subscheme, hence each connected component of \(S \) maps isomorphically to a connected component of \(X \) under \(\zeta \). Let \(\mathcal{X} \) be the set of connected components of \(X \) and \(\mathcal{G} \) be the set of connected components of \(S \) (both are finite sets). Then any \(\zeta \) is uniquely determined by an injective map from \(\mathcal{X} \) to \(\mathcal{G} \). Hence \(\pi \) has at most a finite number of sections. Q.E.D.

Theorem 1. Let \(S \) be a noetherian scheme and \(C, C' \) be curves over \(S \), where \(C \to S \) has genus \(g \geq 2 \). Then

i) There is a quasi-finite unramified \(S \)-scheme \(T \) representing the following functor

\[
((S\text{-schemes})) \to (\text{(sets)})
\]

\[
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C' \to T \times_S C\}
\]

ii) There are at most a finite number of generically smooth \(S \)-morphisms from \(C' \) to \(C \).

iii) In particular, if \(S = \text{Spec}(k) \) for a field \(k \), then there is a finite étale \(k \)-scheme \(\mathcal{T} \) representing the following functor

\[
((k\text{-schemes})) \to (\text{(sets)})
\]

\[
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_k C' \to T \times_k C\}
\]

and there are at most a finite number of finite separable \(k \)-morphisms from \(C' \) to \(C \).

Proof. i) For any connected component \(U \subset S \), the fibers of \(C' \) over \(U \) all have same genus. Let \(S_1, \ldots, S_n \) be the connected components of \(S \), \(C_i = C \times_S S_i \),
\[
C_i' = C' \times_S S_i \quad (1 \leq i \leq n).
\]
By Proposition 1, there is a quasi-finite unramified \(S_i\)-scheme \(T_i\) representing the following functor

\[
((S_i\text{-schemes})) \to ((\text{sets}))
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C_i' \to T \times_S C_i\}
\]

(1 \(\leq i \leq n\)). Clearly \(T = \biguplus_{i=1}^n T_i\) represents

\[
\{\text{S-schemes}\} \to ((\text{sets}))
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C' \to T \times_S C\}
\]

ii) Let \(q : T \to S\) be the projection, which is quasi-finite, hence separated. By i), a generically smooth \(S\)-morphism \(C' \to C\) is equivalent to a section \(\zeta : S \to T\) of \(q\). By Lemma 3, \(q\) has at most a finite number of sections, hence there are at most a finite number of generically smooth \(S\)-morphisms \(C' \to C\).

iii) When \(S = \text{Spec}(k)\) for a field \(k\), a \(k\)-scheme is quasi-finite unramified iff it is finite étale, and a \(k\)-morphism \(C' \to C\) is generically smooth iff it is finite separable. Hence the statements hold by i) and ii). Q.E.D.

This gives Theorem 0.4, Theorem 0.5 and Theorem 0.1.

Corollary 1. Let \(C\) be a curve of genus \(g \geq 2\) over a field \(k\).

i) For any finitely generated field extension \(K \supseteq k\), there are at most a finite number of \(k\)-algebra homomorphisms \(\phi : K(C) \to K\) such that \(K \supseteq \text{im}(\phi)\) is a separably generated extension. In other words, \(C\) has at most a finite number of smooth \(K\)-points over \(k\).

ii) For any variety \(X\) over \(k\), there are at most a finite number of generically smooth \(k\)-morphisms from \(X\) to \(C\).

Proof. i) Note that there is a one to one correspondence

\[
\{\text{smooth } K\text{-points of } C\text{ over } k\} \leftrightarrow \{\text{separably generated } k\text{-extensions } K(C) \hookrightarrow K\}
\]

Let \(k'\) be the algebraic closure of \(k\) in \(K\) (i.e. \(k' = \{a \in K | a\text{ is algebraic over } k\}\)), then \(k' \supseteq k\) is a finite extension. Let \(C' = C \otimes_k k'\), then \(K(C') \cong K(C)[k']\). Let \(m = |\text{Gal}(k'/k)|\), then every field extension \(K(C) \hookrightarrow K\) over \(k\) induces \(m\) field extensions \(K(C') \hookrightarrow K\). Therefore it is enough to show that there are at most a finite number of separably generated \(k'\)-extensions \(K(C') \hookrightarrow K\). Thus we may assume \(k = k'\), i.e. \(k\) is algebraically closed in \(K\).

Let \(n = \text{tr.deg}(K/k)\). Then we can take \(n\) subfields \(L_1, ..., L_n \subset K\) containing \(k\) with \(\text{tr.deg}(L_i/k) = n - 1 \quad (1 \leq i \leq n)\), such that for each \(i\), \(L_i\) is algebraically
closed in K, $L_i \subset K$ is separably generated, and $\bigcap_{i=1}^{n} L_i = k$. Let $C_i = C \otimes_k L_i$
$(1 \leq i \leq n)$. Then $g(C_i) = g(C) = g \geq 2$. Since $\text{tr.deg}(K/L_i) = 1$, there is an L_i-curve C_i' such that $K(C_i') \cong K$.

For any k-homomorphism $\phi : K(C) \to K$ such that K is separably generated over $\text{im}(\phi)$, there is at least one i such that $\text{im}(\phi) \not\subset L_i$ (hence $\text{im}(\phi) \cap L_i = k$), and $K(C) \otimes_k L_i \to K$ is smooth, hence induces an L_i-homomorphism $\phi_i : K(C_i) \to K$ such that $K \supset \text{im}(\phi_i)$ is a separable extension, which is equivalent to a finite separable L_i-morphism $C_i' \to C_i$. By Theorem 1.iii), there are at most a finite number of finite separable L_i-morphisms from C_i' to C_i. Note that ϕ_i uniquely determines ϕ, hence there is a monomorphism

\[
\{\text{smooth } K\text{-points of } C \text{ over } k\} \hookrightarrow \bigcup_{i=1}^{n} \{\text{finite separable } L_i\text{-morphisms } C_i' \to C_i\}
\]

This shows $\{\text{smooth } K\text{-points of } C \text{ over } k\}$ is a finite set.

ii) Let $K = K(X)$, then any generically smooth k-morphism from $f : X \to C$ gives a smooth K-point $f' : \text{Spec}(K) \to C$, and f is uniquely determined by f'. This gives a monomorphism

\[
\{\text{generically smooth } k\text{-morphisms } X \to C\} \hookrightarrow \{\text{smooth } K\text{-points of } C \text{ over } k\}
\]

Hence $\#\{\text{generically smooth } k\text{-morphisms } X \to C\} < \infty$. Q.E.D.

This gives Theorem 0.2 and Theorem 0.3.

2. Some consequences

In this section we will prove Theorem 0.6 and Theorem 0.7. First we generalize Theorem 1.1.

Theorem 1. Let S be a noetherian scheme and $C_1, \ldots, C_m, C_1', \ldots, C_n'$ be curves over S, such that for each i $(1 \leq i \leq m)$, $C_i \to S$ has genus $g_i \geq 2$. Let $T_{i,j}$ $(1 \leq i \leq m, 1 \leq j \leq n)$ be the S-scheme representing the following functor

\[
((S\text{-schemes})) \to ((\text{sets}))
\]

\[
T \mapsto \{\text{generically smooth } T\text{-morphisms } f : T \times_S C_j' \to T \times_S C_i\}
\]

as in Theorem 1.1, and let $f_{i,j} : T_{i,j} \times_S C_j' \to T_{i,j} \times_S C_i$ be the universal morphism. Let $X = C_1 \times_S \cdots \times_S C_m$ and $Y = C_1' \times_S \cdots \times_S C_n'$. Then there is a quasi-finite unramified S-scheme T representing the following functor

\[
\text{Mor}_{gs} : ((S\text{-schemes})) \to ((\text{sets}))
\]
$T \mapsto \{\text{generically smooth } T\text{-morphisms } T \times_S Y \to T \times_S X\}$

Furthermore,

$$\mathcal{T} \cong \prod_{\lambda \in I} \mathcal{T}_{1,\lambda(1)} \times_S \cdots \times_S \mathcal{T}_{m,\lambda(m)}$$ \hspace{1cm} (1)

where I is the set of all injective maps from $\{1, 2, \ldots, m\}$ to $\{1, 2, \ldots, n\}$, and the universal morphism over $\mathcal{T}_\lambda = \mathcal{T}_{1,\lambda(1)} \times_S \cdots \times_S \mathcal{T}_{m,\lambda(m)}$ is

$$f_\lambda = (f_{1,\lambda(1)} \times_S \cdots \times_S f_{m,\lambda(m)}) \circ (\text{id}_{\mathcal{T}_\lambda} \times_S q_\lambda) : \mathcal{T}_\lambda \times_S Y \to \mathcal{T}_\lambda \times_S X$$ \hspace{1cm} (2)

where $q_\lambda = \text{pr}_{\lambda(1)} \times_S \cdots \times_S \text{pr}_{\lambda(m)} : Y \to C_{\lambda(1)}' \times_S \cdots \times_S C_{\lambda(m)}'$ (i.e. $(x_1, \ldots, x_n) \mapsto (x_{\lambda(1)}, \ldots, x_{\lambda(m)})$). In particular, if S is connected, then for any generically smooth S-morphism $f : Y \to X$, there is a $\lambda \in I$ and generically smooth S-morphisms $\phi_i : C_{\lambda(i)}' \to C_i$ ($1 \leq i \leq m$) such that $f((x_1, \ldots, x_n) = (\phi_1(x_{\lambda(1)}), \ldots, \phi_m(x_{\lambda(m)}))$.

Proof. By Lemma 1.1, there is a locally quasi-projective S-scheme \mathcal{T} representing \mathfrak{Mor}_{gs}. Let $f : \mathcal{T} \times_S Y \to \mathcal{T} \times_S X$ be the universal \mathcal{T}-morphism. We now show that the projection $q : \mathcal{T} \to S$ is quasi-finite and unramified.

Case 1: $m = 1$. For each j ($1 \leq j \leq n$), denote by

$$Y_j = C_1' \times_S \cdots \times_S C_{j-1}' \times_S C_{j+1}' \times_S \cdots \times_S C_n'$$ \hspace{1cm} (3)

and $p_j : Y \to Y_j$ the projection. For each j ($1 \leq j \leq n$), f is equivalent to the morphism $\phi_j = p_j \times_S f : \mathcal{T} \times_S Y \to \mathcal{T} \times_S Y_j \times_S X$ over $\mathcal{T} \times_S Y_j$. Let $U_j \subset \mathcal{T}$ be the largest open subscheme over which ϕ_j is generically smooth. Then it is easy to see that ϕ_j is generically smooth over U_j. Hence there is an induced S-morphism $q_j : U_j \times_S Y_j \to \mathcal{T}_{1,j}$. Since $\mathcal{T}_{1,j}$ is quasi-finite over S, q_j factors through U_j. In other words, $f|_{U_j \times_S Y}$ is equal to the composition of the projection $\text{pr}_j : U_j \times_S Y \to U_j \times_S C_j'$ and the pull-back of $f_{1,j}$ via an S-morphism $h_j : U_j \to \mathcal{T}_j$. By the universality of \mathcal{T}, we see h_j is an isomorphism. Furthermore, for any point $t \in \mathcal{T}$, at least one ϕ_j is generically smooth over t, hence $\mathcal{T} = \bigcup_{j=1}^n U_j$. The above argument also shows that the U_j's are disjoint to each other. Therefore we have

$$\mathcal{T} \cong \prod_{j=1}^n \mathcal{T}_{1,j}$$ \hspace{1cm} (4)

over S, and the universal morphism over $\mathcal{T}_{1,j}$ is

$$f_{1,j} \circ \text{pr}_j : \mathcal{T}_{1,j} \times_S Y \to \mathcal{T}_{1,j} \times_S X$$ \hspace{1cm} (5)
Case 2: general case. Let \(T \) be a connected \(S \)-scheme. Then a \(T \)-morphism \(\phi : T \times_S Y \to T \times_S X \) is equivalent to \(m \) \(T \)-morphisms \(\phi_i = \text{pr}_i \circ \phi : T \times_S Y \to T \times_S C_i \). If \(\phi_i \) is generically smooth, then by Case 1, there is a unique \(j \) such that \(\phi_i = \psi_{ij} \circ \text{pr}_j \), where \(\psi_{ij} : T \times_S C'_j \to T \times_S C_i \) is the pull-back of \(f_{ij} \) via an \(S \)-morphism \(T \to T_{ij} \). Denote \(\lambda(i) = j \). It is easy to see that \(\phi \) is generically smooth iff every \(\phi_i \) is generically smooth and \(\lambda(i) \neq \lambda(i') \) for any \(i \neq i' \). Thus \(\lambda \in I \), and \(\phi \) is equal to the pull-back of \(f_\lambda \) via a unique \(S \)-morphism \(T \to T_\lambda \).

From this we see that \(T \) is isomorphic to a disjoint union of all \(T_\lambda \)'s, hence is quasi-finite and unramified over \(S \). Q.E.D.

In particular, in the case when \(S = \text{Spec}(k) \) for a field \(k \), we have

Corollary 1. Let \(C_1, ..., C_m, C'_1, ..., C'_n \) be curves over a field \(k \), with \(g(C_i) = g_i \geq 2 \) (\(1 \leq i \leq m \)), \(g(C'_j) = g'_j \) (\(1 \leq j \leq n \)). Let \(X = C_1 \times_k \cdots \times_k C_m \), \(Y = C'_1 \times_k \cdots \times_k C'_n \). Then for any generically smooth \(k \)-morphism \(f : Y \to X \), there is an injective map \(\lambda : \{1, 2, ..., m\} \to \{1, 2, ..., n\} \) and \(m \) finite separable morphisms \(f_i : C'_{\lambda(i)} \to C_i \) over \(k \), such that \(f(x_1, ..., x_n) = (f_1(x_{\lambda(1)}), ..., f_m(x_{\lambda(m)})) \).

Lemma 1. Let \(\pi : X \to S \) be a quasi-finite morphism of noetherian schemes. Then there is an integer \(M \) such that for any point \(s \in S \), the fiber \(X_s \) has degree \(\leq M \) over \(s \).

Proof. Since we are only concerned with the fiber degrees, we can assume \(S \) is reduced.

We use noetherian induction on \(S \), when \(X = \emptyset \) there is nothing to prove.

Suppose \(X \neq \emptyset \). Take a generic point \(\xi \in X \) such that \(\zeta = \pi(\xi) \) is not a specialization of any \(\pi(x) \) \((x \in X) \), hence any point of \(\pi^{-1}(\zeta) \) is a generic point of \(X \) (because \(\pi \) is quasi-finite). Take an open neighborhood \(U' \subset S \) of \(\zeta \) such that the generic points of \(\pi^{-1}(U') \) are all in \(\pi^{-1}(\zeta) \). Let \(V \subset S \) be the closure of \(\{\zeta\} \), with reduced induced scheme structure. Since \(\pi \) is quasi-finite, we can take an irreducible open neighborhood \(U \subset V \cap U' \) of \(\zeta \) such that \(\pi^{-1}(U) \to U \) is finite. Furthermore, noting that \(\pi^{-1}(U) \to U \) is generically flat, we can take \(U \) such that \(\pi^{-1}(U) \to U \) is flat, hence the fibers of \(\pi^{-1}(U) \to U \) all have degree \(d = \deg(\pi^{-1}(\zeta)/\zeta) \).

Take an open subset \(U_1 \subset U' \) such that \(U = U_1 \cap V \). Note that \(\pi^{-1}(U) = \pi^{-1}(U_1) \). Let \(S' = S - U_1 \) with reduced induced scheme structure, and let \(X' = X \times_S S' \). By noetherian induction, there is an integer \(M \) such that for any \(x \in X' \), the fiber degree \(\deg(X_s/s) \leq M \). Hence for any \(x \in X \), we have \(\deg(X_s/s) \leq \max(M, d) \). Q.E.D.
For any $g \geq 0$, there is a “catalog space of curves of genus g”, which is a quasi-projective scheme S_g over \mathbb{Z} together with a curve C_g over S_g such that for any curve C of genus g over any field k, there is at least one k-point $\text{Spec}(k) \to S_g$ over which the fiber of C_g is isomorphic to C. (We have many choices of S_g, and we don’t use the moduli space M_g of curves of genus g because M_g is not a fine moduli space, i.e. there is no universal curve over M_g.) For any $g \geq 2$ and $g' \geq 0$, denote by $S_{g,g'} = S_g \times S_{g'}$. Then over $S = S_{g,g'}$ there are two curves $C = C_g \times S_{g'}$ and $C' = S_g \times C_{g'}$, of genera g and g' respectively. By Theorem 1.1, there is a quasi-finite unramified S-scheme $T = T_{g,g'}$ representing

$$\{S\text{-schemes}\} \rightarrow ((\text{sets}))$$

$$T \mapsto \{\text{generically smooth } T \times_S C' \to T \times_S C\}$$

By Lemma 1, there is an integer M such that for any $s \in S$, the fiber T_s has degree $\leq M$ over s. For any field k and any two curves C, C' over k with $g(C) = g$, $g(C') = g'$, there is a k-point $s : \text{Spec}(k) \to S$ such that the fibers $T_s \cong C, T'_s \cong C'$ over k. By $\deg(T_s/s) \leq M$, we see there are at most M generically smooth (i.e. finite separable) k-morphisms from C' to C. Denote by $M(g,g') = M$, we get

Proposition 1. For any two curves C, C' over any field k with $g(C) = g, g(C') = g'$, we have

$$\#\{\text{finite separable } k\text{-morphisms } C' \to C\} \leq M(g,g').$$

Remark 1. We can take $M(g,g')$ to be the smallest integer such that Proposition 1 holds. In this way we define an integer-valued function of two integer variables $g \geq 2$ and g'. By Hurwitz’s Theorem, it is easy to see that $M(g,g') = 0$ when $g' < g$. For the bound of $M(g,g')$, we have the following conjecture.

Conjecture. There are constants $a, b \in \mathbb{R}$ such that $M(g,g') \leq ag' + b$ for any $g \geq 2$ and any g'.

The following example gives an evidence of the conjecture.

Example 1. Let C, C' be curves over a field k with $g(C) = g(C') = g \geq 2$. Then by Hurwitz’s theorem, any finite separable k-morphism $C' \to C$ is an isomorphism. Hence $\#\{\text{finite separable } k\text{-morphisms } C' \to C\} \leq |\text{Aut}(C/k)|$. It is well-known that $|\text{Aut}(C/k)| \leq ag + b$ for some constants a, b (this can be shown using Hurwitz’s theorem). In other words, the conjecture holds when $g = g'$.

Corollary 2. Let $K \supset k$ be a finitely generated field extension, and $g \geq 2$ be an integer. Then there is an integer $M(g,K/k)$ such that for any curve C over k with
genus g,

$$\#\{\text{smooth } K\text{-points of } C \text{ over } k\} \leq M(g, K/k).$$

Therefore for any variety X over k, there is an integer $M(g, X/k)$ such that for any curve C over k with genus g,

$$\#\{\text{generically smooth } k\text{-morphisms } X \to C\} \leq M(g, X/k).$$

Proof. For simplicity we may assume k is algebraically closed. Let $n = \text{tr.deg}(K/k)$.

Look at the proof of Corollary 1.1.i), there can be found n subfields $L_1, \ldots, L_n \subset K$ containing k with $\text{tr.deg}(L_i/k) = n − 1$ ($1 \leq i \leq n$), such that for each i, L_i is algebraically closed in K, $L_i \subset K$ is separably generated, and $\bigcap_{i=1}^{n} L_i = k$. For each i, there is an L_i-curve C_i' such that $K(C_i') \cong K$. Let $g_i' = g(C_i')$. For any k-curve C of genus g, a smooth K-point of C over k is equivalent to a finite separable L_i-morphism $C_i' \to C \otimes_k L_i$ for some i. Hence

$$\#\{\text{smooth } K\text{-points of } C \text{ over } k\} \leq \sum_{i=1}^{n} M(g, g_i').$$

We can take $M(g, K/k) = \sum_{i=1}^{n} M(g, g_i')$.

The last statement can be easily deduced by the first one, as in the proof of Corollary 1.1.ii). Q.E.D.

Proposition 1 and Corollary 2 together give Theorem 0.6.

By Corollary 1 and Proposition 1 we get Theorem 2.

Theorem 2. Let C_1, \ldots, C_m, C_1', \ldots, C_n' be curves over a field k, with $g(C_i) = g_i \geq 2$ ($1 \leq i \leq m$), $g(C_j') = g_j'$ ($1 \leq j \leq n$). Let $X = C_1 \times_k \cdots \times_k C_m$, $Y = C_1' \times_k \cdots \times_k C_n'$. Then

$$\#\{\text{generically smooth } k\text{-morphisms } Y \to X\} \leq \sum_{\lambda \in I} \prod_{i=1}^{m} M(g_i, g_{\lambda(i)}').$$

where I is the set of all injective maps from $\{1, 2, \ldots, m\}$ to $\{1, 2, \ldots, n\}$.

Corollary 3. Notation as in Theorem 2. For the field $K = K(Y)$ we have

$$\#\{\text{smooth } K\text{-points of } X \text{ over } k\} \leq \sum_{\lambda \in I} \prod_{i=1}^{m} M(g_i, g_{\lambda(i)}').$$

Proof. It is enough to show that for each i ($1 \leq i \leq m$), a smooth k-morphism $\text{Spec}(K) \to C_i$ is equivalent to a generically smooth k-morphism $Y \to C_i$. For
each \(j \) \((1 \leq j \leq n)\), let

\[
Y_j = C'_1 \times_k \cdots \times_k C'_{j-1} \times_k C'_{j+1} \times_k \cdots \times_k C'_n
\]

and let \(K_j = K(Y_j) \), viewed as a subfield of \(K \). For any smooth \(k \)-morphism \(\phi : \text{Spec}(K) \to C_i \), there is a \(j \) such that \(\phi \) is equivalent to a generically smooth \(K_j \)-morphism \(f : C'_j \otimes_k K_i \to C_i \otimes_k K_i \). This is then equivalent to a \(k \)-morphism \(\zeta : \text{Spec}(K_i) \to T_{i,j} \) (notation in Theorem 1). Note that the image of \(\zeta \) is a \(k \)-point, because \(Y_i \) has geometrically integral fibers. This shows that \(f = f_0 \otimes_k K_i \) for a finite separable \(k \)-morphism \(f_0 : C'_j \to C_i \), hence is equivalent to \(f_0 \circ \text{pr}_j : Y \to C_i \).

Q.E.D.

Theorem 1, Corollary 1, Theorem 2 and Corollary 3 together give Theorem 0.7.

Example 2. Let \(C \) be a curve of genus \(g \geq 2 \) over a field \(k \), and let \(X = C \times_k C \). Denote by \(\iota : X \to X \) the morphism by exchanging factors (i.e. \(\iota(x, y) = (y, x) \)). By Theorem 1 and Example 1, we see that any finite separable \(k \)-morphism \(X \to X \) is an isomorphism, and is either equal to \(\sigma \times_k \tau \) for some \(\sigma, \tau \in \text{Aut}(C/k) \), or equal to \((\sigma \times_k \tau) \circ \iota \) for some \(\sigma, \tau \in \text{Aut}(C/k) \). Hence \(\text{Aut}(X/k) \cong (\mathbb{Z}/2\mathbb{Z}) \rtimes (\text{Aut}(C/k) \times \text{Aut}(C/k)) \). Therefore \(|\text{Aut}(X/k)| = 2|\text{Aut}(C/k)|^2 \leq 2M(g, g)^2 \).

References

[B] M. Baker: Geometry over \(\bar{\mathbb{Q}} \) of small height, Part I. MSRI introductory workshop on rational and integral points on higher-dimensional varieties (2006)

[G] H. Grauert: Mordell’s Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper, Publ. Math. I.H.E.S. (1965)

[Hid] Haruzo Hida: \(p \)-adic Automorphic Forms on Shimura Varieties. Springer Monographs in Mathematics. Springer (2004)

[Hir] J.W.P. Hirschfeld: The number of points on a curve, and applications. Rendiconti di Matematica, Serie VII, Vol. 26, Roma (2006), 13-28

[hr] E. Hrushovski: The Mordell-Lang conjecture for function field. J. AMS Vol. 9, No. 3 (1996), 667-690

[L1] Ke-Zheng Li: Actions of group schemes (I). Compositio Math. 80, 55-74 (1991)
[L2] K. Li: Automorphism group schemes of finite field extensions. Max-Planck-Institut für Mathematik Preprint Series 2000 (28)

[L3] Ke-Zheng Li: Push-out of schemes and some applications. Max-Planck-Institut für Mathematik Preprint Series 2000 (29)

[L4] Ke-Zheng Li: Vector fields and automorphism groups. Algebraic Geometry Colloquium, Japan (2004), 119-126

[LO] K. Li & F. Oort: Moduli of Supersingular Abelian Varieties, LNM 1680. Springer (1998)

[M1] D. Mumford - The structure of the moduli spaces of curves and abelian varieties. In: Actes, Congrès international math. (1970), tome 1, 457-465. Paris: Gauthier-Villars (1971).

[M2] D. Mumford & J. Fogarty - Geometric Invariant Theory. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York (1982).

[N] J. Noguchi: A higher dimensional analogue of Mordell’s conjecture over function fields. Math. Ann. 258 (1981), 207-212

[S] P. Samuel: Compléments à un article de Hans Grauert sur la conjecture de Mordell, Publ. Math. I.H.E.S. tome 29 (1966), 55-62

[Vol] J.F. Voloch: Diophantine geometry in characteristic p: a survey (http://www.ma.utexas.edu/users/voloch/surveylatex/surveylatex.html)

[Voj] P. Vojta: Mordell’s conjecture over function fields. Invent. Math. 98 (1989), 115-138

[X] K. Xu: On the elements of prime power order in K_2 of a number field. To appaer in Acta Arithmetica.

Kezheng Li
Department of Mathematics
Capital Normal University
Beijing 100037, China
e-mail: kzli@gucas.ac.cn