Critical Regions for Activation Gating of the Inositol 1,4,5-Trisphosphate Receptor*

Received for publication, January 21, 2003, and in revised form, March 4, 2003
Published, JBC Papers in Press, March 5, 2003, DOI 10.1074/jbc.M300646200

Keiko Uchida‡§, Hiroshi Miyayuchi¶¶, Teiichi Furuichi**, Takayuki Michikawa‡ ‡‡, and Katsuhiko Mikoshiba‡ ‡‡§§

From the ‡‡Division of Molecular Neurobiology, Department of Basic Medical Science, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan, the ¶¶Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan, the **Department of Neurosurgery, Japanese Red Cross Medical Center, 4-1-22 Hiro-o, Shibuya-ku, Tokyo 150-8935, Japan, the ‡‡§§Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan, and the ‡‡ Calcium Oscillation Project, International Cooperative Research Project, Japan Science and Technology Corporation, 3-4-4, Shirokanedai, Minato-ku, Tokyo 108-0071, Japan

To understand the molecular mechanism of ligand-induced gating of the inositol 1,4,5-trisphosphate (IP₃) receptor (IP₃R)/Ca²⁺ release channel, we analyzed the channel properties of deletion mutants retaining both the IP₃-binding and channel-forming domains of IP₃R₁. Using intrinsically IP₃R-deficient cells as the host cells for receptor expression, we determined that six of the mutants, those lacking residues 1–223, 651–1130, 1267–1910, 1845–2042, 1845–2216, and 2610–2748, did not exhibit any measurable Ca²⁺ release activity, whereas the mutants lacking residues 1131–1379 and 2736–2749 retained the activity. Limited trypsin digestion showed that not only the IP₃-gated Ca²⁺-permeable mutants lacking residues 1131–1379 and 2736–2749, but also two nonfunctional mutants lacking residues 1–223 and 651–1130, retained the normal folding structure of at least the C-terminal channel-forming domain. These results indicate that the regions of IP₃R₁, viz., residues 1–223 and 651–1130, are critical for IP₃-induced gating. We also identified a highly conserved cysteine residue at position 2613, which is located within the C-terminal tail, as being essential for channel opening. Based on these results, we propose a novel five-domain structure model in which both N-terminal and internal coupling domains transduce ligand-binding signals to the C-terminal tail, which acts as a gatekeeper that triggers opening of the activation gate of IP₃R₁ following IP₃ binding.

Inositol 1,4,5-trisphosphate (IP₃) is a second messenger that is produced by hydrolysis of phosphatidylinositol 4,5-bisphosphate in response to activation by extracellular stimuli of the G protein- or tyrosine kinase-coupled receptors on the plasma membrane in various cell types (1). IP₃ mediates the release of Ca²⁺ from intracellular storage sites such as the endoplasmic reticulum by binding to the IP₃ receptor (IP₃R)/Ca²⁺ release channel. IP₃-induced Ca²⁺ release (IICR) regulates numerous physiological processes, including fertilization, cell proliferation, development, muscle contraction, secretion, learning, and memory. In this signal transduction pathway, the IP₃R works as a switch that converts the information carried by extracellular stimuli into intracellular Ca²⁺ signals.

IP₃-gated intracellular Ca²⁺ release channels are composed of four IP₃R subunits (2). There are at least three types of IP₃R (IP₃R₁, IP₃R₂, and IP₃R₃) (3), and they exist as both homo- and heterotetramers (4). The structure of IP₃Rs has traditionally been divided into three functional domains (3, 5): the N-terminal ligand-binding domain; the modulatory/coupling domain; and the C-terminal transmembrane/channel-forming domain, which contains six putative membrane-spanning regions. The transmembrane region is required for the intermolecular interaction in the formation of a tetrameric complex (6–9), and it is likely that the C-terminal cytoplasmic region just following the putative membrane-spanning regions has a supportive role in the association among the subunits (6, 9). An ion conduction pore has been proposed to be located in the hydrophobic segment between the fifth and sixth transmembrane regions (10, 11). The primary sequence of the transmembrane domain adjacent to the pore-forming segment is highly homologous to that of the rymodine receptor (RyR), another type of intracellular Ca²⁺ release channel, suggesting that these two channels might share a common structure for the conduction of Ca²⁺ ions.

Each IP₃R subunit has a single high affinity IP₃-binding site (2). The IP₃-binding core, a minimum essential region for specific IP₃ binding (12), resides among residues 226–578 of mouse IP₃R₁ (2749 amino acids) (13), and it contains 11 essential basic amino acids for IP₃ binding (14). The N-terminal 225 residues, which are close to the IP₃-binding core, have been thought to function as a suppressor for IP₃ binding because their deletion from the N-terminal 734-amino acid region results in significant enhancement of IP₃-binding activity (12, 15). IICR is a positively cooperative process (16–18), i.e. the binding of at least two IP₃ molecules to a single tetrameric IP₃R channel is required for channel opening. IP₃ binding elicits a large conformational change in the N-terminal cytoplasmic portion of the IP₃R (19). Furthermore, the C-terminal cytoplasmic region following the transmembrane domain is thought to be involved in the IP₃-induced gating of the receptor because monoclonal antibody (mAb) 18A10, whose epitope is located in the C-terminal portion of mouse IP₃R₁ (13, 20, 21), has an inhibitory effect on IICR, without causing any decrease in the
affinity of the receptor for IP$_3$ (21). Controlled trypsinization induces fragmentation of mouse IP$_3$R1 into five major fragments, and all four N-terminal cytoplasmic fragments, which contain the IP$_3$-binding core, are associated directly or indirectly with the remaining C-terminal fragment, which contains the channel domain (22). The trypsinized IP$_3$R retains significant ICR activity, indicating that intramolecular interaction within a subunit and/or intermolecular interaction between neighboring subunits could effect functional coupling between IP$_3$ binding and channel opening (22). However, the sites of the interfaces between the cytoplasmic fragments and the channel domain and the molecular mechanism of their coupling remain to be elucidated.

IICR has been shown to occur in a quantal manner in permeabilized cells and isolated endoplasmic reticulum membranes (23, 24). The addition of submaximal concentrations of IP$_3$ in the presence of Ca$^{2+}$-pump inhibitors leads to the partial release of sequestered Ca$^{2+}$, and the amount of released Ca$^{2+}$ varies with the concentration of IP$_3$ (24). Although the Ca$^{2+}$ release terminates abruptly, because it can be reinitiated by an additional increment in IP$_3$ concentration (24), the rapid termination of Ca$^{2+}$ release is not due to ordinary inactivation or desensitization of the receptor. Purified IP$_3$R reconstituted into lipid vesicles reveal a quantal Ca$^{2+}$ flux (17, 25), indicating that the quantal release of Ca$^{2+}$ is an intrinsic property of the IP$_3$R. Similar behavior was observed for the RyR, which mediates Ca$^{2+}$-induced Ca$^{2+}$ release from intracellular Ca$^{2+}$ stores (26), but has not been observed for other ligand-gated ion channels on the plasma membrane, suggesting that the quantal release is a fundamental and unique property of the intracellular Ca$^{2+}$ release channels.

To understand the molecular basis of the ligand-induced gating of the IP$_3$R, we analyzed a series of internal deletion mutants and site-directed mutants of mouse IP$_3$R1 expressed in intrinsically IP$_3$-deficient R23-11 cells (27). We found that at least two regions and a cysteine residue are essential for IP$_3$-dependent gating of IP$_3$R1. These findings provide us with new insight into the gating mechanism of the IP$_3$R.

EXPERIMENTAL PROCEDURES

Plasmid Constructions—For transfection of mouse wild-type IP$_3$R1 cDNA, pBact-STneoB-C1 (28) was used. Seven deletion mutant cDNAs of mouse IP$_3$R1, D651–2610, D2749, a KpnI fragment isolated from green fluorescent protein-fused IP3R-D223 (22) as the template DNA. An XhoI–KpnI fragment isolated from green fluorescent protein-fused IP$_3$R-D223 (28) was subcloned into pBactS-C1, the mutated cDNAs were subcloned into pBact-STneoB (28) at the SalI sites. All PCR products and mutations were confirmed by DNA sequencing.

Generation of Wild-type and Deletion Mutant IP$_3$R1-expressing Cell Lines—R23-11 cells (27) were cultured in RPMI 1640 medium supplemented with 10% fetal calf serum, 1% chicken serum, 50 µg/mL 2-mercaptoethanol, 4 mM glutamine, 100 units/ml penicillin, and 100 µg/mL streptomycin at 39.5 °C in 5% CO$_2$. Expression plasmids were linearized and transfected into R23-11 cells by electroporation as previously described (27) or by lipofection (Effectene, QIAGEN Inc.). Several stable clones were selected in medium containing 2 mg/mL G418 (Sigma) ~7–10 days after transfection. Expression of the IP$_3$R and its mutants was confirmed by immunoblotting with mAbs 4C11 and/or 1A10 using cell lysates boiled in SDS-PAGE sample buffer (5 mM EDTA, 50 mM Tris-HCl, pH 6.8, 100 mM dithiothreitol, 2% SDS, and 10% glycerol). Immunoblot analysis was performed as described previously (22).

Preparation of Membrane Fractions from Stable Cells Expressing Mouse IP$_3$R1 and Its Mutants—Membrane fractions were prepared in accordance with the protocol for mouse cerebella described by Michikawa et al. (18), with minor modifications. Cells were collected by centrifugation, washed twice with cold phosphate-buffered saline, and homogenized in ice-cold homogenization buffer (5 mM Na$_2$-ATP, 0.1 mM EGTA, 1 mM 2-mercaptoethanol, and 20 mM HEPES-NaOH, pH 7.4) containing protease inhibitors (0.1 mM phenylmethylsulfonyl fluoride, 10 µg/mL leupeptin, 10 µg/mL pepstatin A, and 10 µg/mL E-64) by 40 strokes in a chilled glass-Teflon Potter homogenizer at 1000 rpm. The homogenate was centrifuged at 1100 × g for 10 min at 2 °C. The supernatant was centrifuged at 100,000 × g for 10 min at 2 °C. The pellet was resuspended in an appropriate volume of wash buffer (600 mM KC1, 5 mM Na$_2$-ATP, 20 mM Na$_2$-P$_2$O$_5$, 1 mM 2-mercaptoethanol, and 100 mM HEPES-KOH, pH 7.2) containing protease inhibitors. The suspension was centrifuged at 1100 × g for 10 min, and the supernatant was centrifuged at 63,000 × g for 30 min at 2 °C. The pellet was finally suspended in an appropriate volume of Ca$^{2+}$ release buffer (110 mM KC1, 10 mM NaCl, 5 mM KH$_2$PO$_4$, 1 mM 2-mercaptoethanol, and 50 mM HEPES-KOH, pH 7.2) containing protease inhibitors to a final concentration of ~15 mg/mL protein. Ca$^{2+}$ release buffer was passed over Chelex 100 (Bio-Rad) to eliminate any extra free Ca$^{2+}$ before use. The membrane fractions were either used immediately or frozen in liquid nitrogen and stored at ~80 °C until used.

[3H]IP$_3$ Binding Assay Using Membrane Fractions—The IP$_3$ binding assay was performed as described previously (6). The membrane fractions (50–200 µg/tube) were incubated with 9.6 nM [3H]IP$_3$ (PerkinElmer Life Sciences) in 100 µl of binding buffer (50 mM Tris-HCl, pH 8.0, 1 mM EGTA, and 1 mM 2-mercaptoethanol) for 10 min at 4 °C. After centrifugation, the pellets were dissolved in Solvable (PerkinElmer Life Sciences), and the radioactivity was measured with a scintillation counter (Beckman LS6500). Nonspecific binding was measured in the presence of 10 µM unlabeled IP$_3$ (Dojin Laboratories).

[14]HlIP, Binding Assay Using Membrane Fractions—The IP$_3$ binding assay was performed as described previously (6). The membrane fractions (50–200 µg/tube) were incubated with 9.6 nM [14]HlIP, (PerkinElmer Life Sciences) in 100 µl of binding buffer (50 mM Tris-HCl, pH 8.0, 1 mM EGTA, and 1 mM 2-mercaptoethanol) for 10 min at 4 °C. After centrifugation, the pellets were dissolved in Solvable (PerkinElmer Life Sciences), and the radioactivity was measured with a scintillation counter (Beckman LS6500). Nonspecific binding was measured in the presence of 10 µM unlabeled IP$_3$ (Dojin Laboratories).

IICR Assay for Membrane Fractions—The membrane fractions were suspended in Ca$^{2+}$ release buffer supplemented with 1 µg/mL oligomycin (Sigma), 2 mM MgCl$_2$, 25 µg/mL creatine kinase (Roche Applied Science), 10 mM creatine phosphate (Sigma), and 2 µM Fura-2 (Molecular Probes, Inc.) and used at a concentration of 200–300 µg/mL protein. Fluorescence was recorded at 510 nm with alternate excitation of 340 and 380 nm (F$_{340}$ and F$_{380}$, respectively). Using a CAF-110 spectrophotometer (Japan Spectroscopic Co.), signals were recorded every 0.01 s with MacLab Version 3.6 (ADInstruments) at 30 °C. When the Ca$^{2+}$ uptake induced by the addition of 1 mM ATP reached a steady level, 2 µM thapsigargin was added to eliminate active Ca$^{2+}$ uptake through intrinsic Ca$^{2+}$ pumps. The rate of leakage from the membrane fractions following the addition of thapsigargin was almost linear. When the ratio of fluorescence intensity (F$_{340}$/F$_{380}$) reached 1.2, corresponding to ~170 nm free Ca$^{2+}$, various concentrations of IP$_3$ were added. At the end of each experiment, 2 mM CaCl$_2$ and 10 mM EGTA were added successively for normalization and calibration (30).

Limited Trypsin Digestion of Mutant Receptors—Limited trypsin digestion was performed as described previously (22). Microsomal fractions (0.25–5 mg/mL) of wild-type and mutant IP$_3$R1-expressing cells were incubated with 0.01–10 µg/mL trypsin in trypsination buffer (120 mM KCl, 1 mM EDTA, 50 mM Tris-HCl, pH 8.0) at 35 °C for 10 min. The trypsin was inactivated by the

2 Y. Tateishi, M. Hattori, T. Michikawa, M. Iwai, K. Uchida, T. Nakayama, T. Nakamura, T. Inoue, and K. Mikoshiba, unpublished data.

3 H. Miyauchi, K. Uchida, T. Kirino, T. Michikawa, and K. Mikoshiba, manuscript in preparation.
Fig. 1. Deletion and site-directed mutants of IP₃R₁. A, schematic diagram of the primary structure of mouse IP₃R₁. SI, SII, and SIII represent the regions spliced out in alternative splicing variants. The striped box represents the IP₃-binding core (residues 226–578). The black boxes (M1,2,3,4,5,6) represent putative membrane-spanning regions. The regions containing epitopes for antibodies N1, 4C11, 10A6, 1ML1, and 18A10 and the anti-(1718–31) antibody are indicated by thick horizontal lines. Five tryptic fragments (I–V) (22) are indicated by thin horizontal lines. B, structures of the deletion and point mutants. Open boxes represent deleted regions. Open circles denote the sites of single amino acid substitutions of serine for cysteine.

Fig. 2. Western blot analysis of wild-type and mutant IP₃R₁ molecules expressed in R23-11 cells. A, membrane proteins prepared from stable cell lines were analyzed by Western blot analysis using antibody 1ML1. Lane 1, R23-11 cells (10 μg); lane 2, high level wild-type IP₃R₁-expressing cells (KMN13; 1 μg); lane 3, low level wild-type IP₃R₁-expressing cells (KMN107; 10 μg); lanes 4–11, cells expressing D1–223, D651–1130, D1131–1379, D1692–1731, D1845–2042, D1845–2216, D2610–2748, D2736–2749, C19765, C2610S, C2613S, and C2610/2613S, respectively. Molecular mass markers are shown on the left in kilodaltons. B, are the results from Western blot analysis with mAb 4C11. Lane 1, R23-11 cells (1 μg); lane 2, high level wild-type IP₃R₁-expressing cells (KMN13; 0.1 μg); lane 3, cells expressing D2610–2748 (1 μg). Molecular mass markers are shown on the left in kilodaltons.

addition of 50 μg/ml soybean trypsin inhibitor (Sigma) and 0.1 mM phenylmethylsulfonyl fluoride. After the addition of an equal volume of SDS-PAGE sample buffer, reaction mixtures were incubated at 55 °C for 30 min. The digested proteins were separated by 8% SDS-PAGE and then analyzed by Western blotting with anti-IP₃R₁ antibodies N1, 4C11, 10A6, 1ML1, and 18A10 and the anti-(1718–31) antibody (see Fig. 1A) (22).

RESULTS

Expression of Deletion Mutants of IP₃R₁ in Intrinsically IP₃R-deficient R23-11 Cells—As previously reported (6), we constructed 17 internal deletion mutants of mouse IP₃R₁. Among these mutants, we selected seven (Fig. 1B) containing both the IP₃-binding region (residues 226–578) and the putative transmembrane domain (residues 2276–2589) to investigate the critical regions for the coupling with ligand binding and channel opening. In addition, we constructed two mutants lacking residues 1–223 and 2736–2749, respectively (Fig. 1B). To express these mutant receptors, we introduced the mutant cDNAs into R23-11 cells and established stable cell lines by selection with 2 mg/ml G418. Fig. 2A illustrates the results from Western blot analysis of the membrane fractions prepared from these stable cell lines using anti-IP₃R₁ polyclonal antibody 1ML1, whose epitope lies within residues 2504–2523 of IP₃R₁ (Fig. 1A) (10). All of the mutant receptors except D2610–2748 were detected with an appropriate molecular mass (Fig. 2A). Because D2610–2748 was not well recognized by antibody 1ML1, we confirmed the expression of D2610–2748 by Western blot analysis using anti-IP₃R₁ mAb 4C11 (20). As shown in Fig. 2B (open arrowhead), an additional signal with a low molecular mass was detected, indicating that degradation (or truncation) of D2610–2748 occurs in R23-11 cells.

Recombinant protein	Affinity (Kₐ)	Bₐ₉₉	Hill coefficient
Wild-type	20 ± 5	13 ± 9	1.0 ± 0.05
D1-223	1.5 ± 0.4²	14 ± 3	1.5 ± 0.2²
D651-1130	150 ± 30²	5.2 ± 3	0.85 ± 0.1
D1131-1379	12 ± 1	9.2 ± 7	1.1 ± 0.2
D1267-2110	57 ± 5⁰	4.2 ± 1	1.0 ± 0.04
D1692-1731	22 ± 6²	3.8 ± 2	0.99 ± 0.05
D1845-2042	41 ± 3⁰	1.7 ± 0.9	1.0 ± 0.08
D1845-2216	48 ± 10⁰	2.1 ± 0.5	0.92 ± 0.02
D2610-2748	67 ± 50²	1.5 ± 1	1.0 ± 0.07
D2736-2749	23 ± 5²	7.2 ± 0.4	0.95 ± 0.07

a p < 0.05 by Student’s t test.

b p < 0.01 by Student’s t test.

TABLE I

IP₃-binding properties of the deletion mutants

Values are expressed as means ± S.D. (n = 3).

*H[IP₃]₃-binding Activities of Deletion Mutant IP₃R₁s—The IP₃-binding activities of the internal deletion mutant receptors expressed in R23-11 cells were measured by equilibrium *H[IP₃]₃-binding analysis as described previously (6). There was no significant IP₃-binding activity in the membrane fraction obtained from the R23-11 cells (data not shown). Therefore, we measured the ligand-binding activity of the exogenously expressed IP₃R using membrane fractions obtained from the stable cell lines. The IP₃-binding properties of wild-type and deletion mutant IP₃R₁s are summarized in Table I. Wild-type
IP$_3$R1 expressed in R23-11 cells showed a single high affinity IP$_3$-binding site with a dissociation constant of 20 nM \((n = 3)\). This value is close to those of native IP$_3$R1 expressed in the mouse cerebellum \((n = 31)\) and cDNA-derived IP$_3$R1 expressed in L cells \((n = 6)\), and SF9 cells \((n = 32)\). Mutant receptors D1131–1379, D1692–1731, D1845–2042, and D1845–2216 exhibited binding affinity similar to that of wild-type IP$_3$R1 (Table I). The IP$_3$-binding affinity of mutant receptors D1267–2110, D1845–2042, and D1845–2216 was 2–3-fold lower (Table I), and mutant D651–1130 had 7.5-fold lower affinity for IP$_3$ (Table I). Mutant D1–223 exhibited, however, significantly higher affinity for IP$_3$ (Table I), consistent with a previous

![Figure 3](image-url) - IP$_3$-dependent Ca$^{2+}$ release activity of wild-type and mutant IP$_3$R1. A, representative time courses of the Ca$^{2+}$ release from the microsomal fractions containing wild-type (WT) and mutant IP$_3$R1. Ca$^{2+}$ release was monitored in the presence of 2 μM thapsigargin. IP$_3$ (10 μM) was added at the times indicated by the arrowheads. Constant leakage (see “Experimental Procedures”) was subtracted from each trace. The Ca$^{2+}$ release activity of mutant IP$_3$R1 was measured in at least three independent experiments. B, time courses of Ca$^{2+}$ release through wild-type IP$_3$R1 following the addition of different IP$_3$ concentrations. IP$_3$ was added at time 0.

![Figure 4](image-url) - Fragmentation of wild-type and mutant IP$_3$R1 by limited trypsin digestion. Crude microsomal fractions (0.25–5 mg/ml protein) were treated with various concentrations of trypsin. Tryptic fragments I and III–V (22) were detected by Western blotting using antibodies N1 and 10A6, the anti-(1718–31) antibody, and antibody M1L1, respectively. Each major tryptic fragment is indicated by a closed arrow. A, wild-type IP$_3$R1; B, D2736–2749; C, D1131–1379; D, D1–223; E, D651–1130; F, D2610–2748. Trypsin concentrations (micrograms/ml) are indicated above each lane. Molecular mass markers are shown on the left in kilodaltons.
report showing that residues 1–223 act as a suppressor for IP3 binding (12). It has been reported that IP3 binding to the IP3R is not cooperative (31, 33), and the same property holds true for the wild-type receptor and all of the mutant receptors except D1–223 expressed in R23-11 cells (Table I). Both the Western blot (Fig. 2) and IP3 binding (Table I) analyses showed that the amount of IP3R protein expressed in each cell line was different. The amounts of the mutant IP3Rs expressed were in the range of 1.5–9.2 pmol/mg of protein (Table I); and therefore, we used two stable cell lines (KMN13 and KMN107) expressing different amounts of wild-type IP3R1 as controls in the following experiments. The Bmax values for KMN13 and KMN107 were 13 ± 9 and 0.77 ± 0.2 pmol/mg of protein, respectively (Table I).

IICR Activity of Wild-type and Deletion Mutant IP3Rs—To investigate the Ca2+ release activity of the mutant IP3Rs, IICR from the membrane fractions prepared from each stable cell line was measured in the presence of the Ca2+ pump inhibitor thapsigargin. No Ca2+ release was observed from membrane fractions prepared from R23-11 cells even after the addition of 10 μM IP3 (Fig. 3A), indicating that using R23-11 cells as host tissues (34, 35), exhibited Ca2+ release activity by exogenously expressed IP3R1. Fig. 3B shows the time course of the Ca2+ release activity mediated by recombinant wild-type IP3R1 after the addition of various concentrations of IP3. Both the rate and amplitude of Ca2+ release depended on the concentration of IP3 added, indicating that IP3R1 expressed in R23-11 cells exhibits the quantal Ca2+ release that is known to be an intrinsic property of native IP3R1 (17, 25). As previously reported (11), D1692–1731, which corresponds to the SII′ alternative splicing variant of IP3R1 observed in peripheral tissues (34, 35), exhibited Ca2+ release after the addition of 10 μM IP3 (Fig. 3A). Among the eight artificial mutants (D1–223, D651–1130, D1131–1379, D2126–2110, D1845–2042, D1845–2216, D2610–2748, and D2736–2749), only D1131–1379 and D2736–2749 possessed measurable Ca2+ release activity (Fig. 3A). Under the conditions employed, we could detect IICR from membrane fractions prepared from the low level IP3R1-expressing KMN107 cells (Fig. 3A), which contained 0.77 ± 0.2 pmol of IP3-binding sites/mg of protein. The expression levels of all the internal deletion mutants in each stable cell line were higher than the expression level of wild-type IP3R1 in KMN107 cells (Table I). These findings suggest that none of the mutants except D1131–1379 and D2736–2749 act as IP3-gated Ca2+ release channels.

Limited Trypsin Digestion of Mutant IP3Rs—Mouse cerebellar IP3R1 is trypsinized into five major fragments (I–V) (Fig. 1A) (22). Limited proteolysis provides direct evidence of protein folding (36). To probe the tertiary structure of the mutant IP3Rs, we analyzed the trypsinized fragments of recombinant IP3R1. Because R23-11 cells contain an intrinsic mAb 4C11-reactive protein whose molecular mass is similar to that of tryptic fragment II of IP3R1 (data not shown), we analyzed four tryptic fragments (I and III–V) of the recombinant receptors. As shown in Fig. 4A, wild-type IP3R1 expressed in R23-11 cells was digested into the same four fragments, indicating that recombinant IP3R1 retains native structure. We found that trypsin digestion of the Ca2+-releasing mutant D2736–2749 generated the same four trypsinized fragments (Fig. 4B), indicating that D2736–2749 folds in the same manner as wild-type IP3R1. Trypsination of the other functional mutant, D1131–1379, also generated fragments IV and V (Fig. 4C). However, D1131–1379, which exhibited markedly decreased Ca2+ release activity (Fig. 3A), was digested with much lower concentrations of trypsin (Fig. 4C). This difference in trypsin sensitivity suggests that the deletion of amino acids 1131–1379 influences the structure of the C-terminal channel domain. Tryptic fragments of the three functionless mutants, D1–223, D651–1130, and D2610–2748, are shown in Fig. 4 (D–F, respectively). Fragments III–V were generated by trypsin digestion of D1–223 (Fig. 4D). Trypsination of D651–1130, which lacks a cleavage site between fragments II and III (22), generated fragments IV and V (Fig. 4E). Both D1–223 and D651–1130 exhibited trypsin sensitivity similar to that of wild-type IP3R1, suggesting that at least the C-terminal channel domains of these mutants fold correctly. By contrast, only fragments I and III were generated by trypsin digestion of D2610–2748 (Fig. 4F), and fragments IV (40 kDa) and V (91 kDa) were not detected (open arrows). These results indicate that deletion of residues 2610–2748 induces a significant distortion of the folding structure of the C-terminal channel domain of IP3R1.

Identification of the Cysteine Residue Essential for IP3-induced Gating of IP3R1—The C-terminal cytoplasmic region following the transmembrane domain has been found to be highly conserved in both the IP3R and RyR families (13), indi-

![Fig. 5. Conserved cysteine residues in the C-terminal tail. The C-terminal 48-amino acid sequences next to the transmembrane regions in all three types of IP3R and RyRs are compared. Asterisks and colons indicate identical and similar residues, respectively. Cys2610 and Cys2613 are highly conserved in both the IP3R and RyR families (13), indicating that D2736–2749 act as IP3-gated Ca2+ release activity by exogenously expressed IP3R1.](image)
Critical Regions for IP₃R Gating

FIG. 6. Western blot analysis and IP₃-dependent Ca²⁺ release activity of the cysteine mutants. A. Western blot analysis of mutants C1976S, C2610S, C2613S, and C2610S/C2613S with antibody 1M11. Lane 1, R23-11 cells (10 μg/ml); lane 2, high level wild-type IP₃R₁-expressing cells (KMN13; 1 μg/ml); lane 3, low level wild-type IP₃R₁-expressing cells (KMN107; 10 μg/ml); lanes 4–7, cells expressing C1976S, C2610S, C2613S, and C2610S/C2613S (10 μg each), respectively. Molecular mass markers are shown on the left in kilodaltons. B. Time courses of the Ca²⁺ release from the microsomal fractions containing cysteine mutants. Ca²⁺ release was monitored in the presence of 2 μM thapsigargin. IP₃ (2.5 μM) was added at the times indicated by the arrowheads. Constant leakage was subtracted from each trace.

cating that this region is involved in the formation of a critical structure that is required for some common functions of the intracellular Ca²⁺ release channels. One of the remarkable features of this region is that it contains two cysteine residues that are conserved in all of the intracellular Ca²⁺ release channels. Both the IP₃R and RyR channels are known to be modified by sulfhydryl reagents (37–39); therefore, we analyzed whether or not the two conserved cysteine residues, Cys²⁶¹⁰ and Cys²⁶¹³ (Fig. 5), are essential for the gating function in mouse IP₃R₁. We generated three mutant receptors (C2610S, C2613S, and C2610S/C2613S) in which Cys²⁶¹⁰ and/or Cys²⁶¹³ was replaced with serine (Fig. 1B). We also constructed a mutant receptor (C1976S) in which Cys²⁻⁹⁷⁶ was replaced with serine (Fig. 1B). All of the mutated cDNAs were introduced into R23-11 cells, and stable cell lines expressing mutant receptors were established. Equilibrium [³H]IP₃ binding assay showed that all of the cysteine mutants bound IP₃ with affinities similar to that of wild-type IP₃R₁ (Table II). The expression levels of the mutant receptors were in the range of 1–10 pmol/mg of protein (Table II), and the amounts of all of the mutant receptors expressed in each established cell line were higher than the expression level of wild-type IP₃R₁ in KMN107 cells.

We then examined the Ca²⁺ channel activities of the mutant receptors by measuring IICR from the membrane fractions prepared from the stable cell lines. We found that substitution of serine for Cys²⁶¹⁰ and/or Cys²⁶¹³ completely abolished the Ca²⁺ release activity, whereas no such effect was apparent upon substitution of serine for Cys²⁻⁹⁷⁶ (Fig. 6). Limited trypsin digestion of C1976S, C2610S, and C2610S/C2613S generated fragments I and III–V (Fig. 7, A, C, and D, closed arrows), indicating that these mutants retain a normal structure. By contrast, trypsin digestion of C2610S generated fragments I, III, and IV (Fig. 7B, closed arrow), but not fragment V (open arrow), indicating that the single amino acid substitution at Cys²⁶¹⁰ induces a significant structural alteration of the C-terminal channel domain of IP₃R₁.

DISCUSSION

Most cells, including mammalian cultured cells, express two or all three types of the IP₃R (4, 40). Thus, measurement of the actual channel activities of recombinant IP₃Rs in most cells is difficult because of the background activities of the endogenous IP₃Rs. In this study, we used R23-11 cells, which intrinsically lack all of the three IP₃Rs (27), as the host cells to exclude the background effects of the endogenous IP₃Rs. Under the conditions used, neither IP₃₄ᵦ₃-binding activity nor IP₃₄ᵦ₃-elicted Ca²⁺ release activity was detected in membrane fractions prepared from R23-11 cells (Fig. 3A). Wild-type IP₃R₁ expressed in KMN13 cells revealed affinity for IP₃ (Kᵦ = 20 ± 5 nM) (Table I) similar to that of native (31) and recombinant (6, 28, 32) mouse IP₃R₁ and mediated Ca²⁺ release from microsomal vesicles in an IP₃₄ᵦ₃-dependent manner (Fig. 3B). Wild-type IP₃R₁ expressed in KMN13 cells revealed quantal Ca²⁺ release (Fig. 3B), which is thought to be an intrinsic property of native IP₃Rs (17, 25), suggesting that recombinant IP₃R₁ in R23-11 cells functions properly. Using this system, we determined that six of the mutants investigated in this study, those lacking residues 1–223, 651–1130, 1267–2110, 1845–2042, 1845–2216, and 2610–2748, did not exhibit any measurable Ca²⁺ release activity, whereas the mutants lacking residues 1131–1379 and 2736–2749 retained the activity. [³H]IP₃ binding analysis showed that all of these nonfunctional mutants except D1–223 possessed lower IP₃₄ᵦ₃-binding affinity (Table I). However, 98.5% of the receptors of even the lowest affinity mutant, D651–1130, whose Kᵦ is 150 nM (Table I), would have been occupied when 10 μM IP₃ was applied. Therefore, the decrease in IP₃₄ᵦ₃-binding affinity is unlikely to be the primary cause of the loss of function of these mutants. The limited trypsin digestion of the crude membrane fractions prepared from the mutant-expressing cells showed that not only the IP₃₄ᵦ₃-gated Ca²⁺-permeable mutants, D1131–1379 and D2736–2749, but also two nonfunctional mutants, D1–223 and D651–1130, generated fragments IV and V (Fig. 4). All of these mutants except D1131–1379 exhibited trypsin sensitivity similar to that of wild-type IP₃R₁, indicating that these mutants retain a normal folding structure in at least the C-terminal channel-forming domain. Immunocytochemical staining suggested that all of the mutants were localized on the Ca²⁺ stores of the cells (data not shown). Hence, we concluded that at least two regions, viz. regions 1–223 and 651–1130, are required for the IP₃₄ᵦ₃-dependent gating of IP₃R₁.

The Critical Region 1–223 Is Known as a Suppressor of IP₃ Binding—Deletion of the residues on the N-terminal side of the IP₃₄ᵦ₃-binding core has a complicated effect on the IP₃-binding activity (12). A short deletion of the N-terminal 31 residues of the mutants investigated in this study, those lacking residues 1–220, 223, or 225 amino acids shows 10-fold higher affinity for IP₃ than did wild-type IP₃R₁ (Table I). In
addition, we found that the IP_3 binding of D1–223 was positively cooperative (Table I), indicating that the intersubunit interaction may be elicited (or modified) in the tetrameric complex composed of D1–223. Limited trypsin digestion showed that the mutant is likely to retain the normal folding structure of the C-terminal channel-forming domain (Fig. 4D). Surprisingly, D1–223 did not exhibit any measurable Ca^{2+} release activity (Fig. 3A). These data therefore clearly indicate that residues 1–223 are required for the functional coupling between IP_3 binding and channel opening.

Homer (42)- and calmodulin (43)-binding sites are localized in region 1–223 of IP_3R1. Homer forms an adaptor complex that couples between group 1 metabotropic glutamate receptors and IP_3Rs, and it has recently been reported to be capable of associating with RyR1 and up-regulating its Ca^{2+} release activity (44). The Homer-binding motif (PPXXFR) is present in residues...
Fig. 8. Five-domain structure model of IP$_3$R1. In this model, the structure of IP$_3$R1 is divided into five functional domains, viz. an N-terminal coupling domain (residues 1–225), a ligand-binding domain (residues 226–578), an internal coupling domain (residues 579–2275), a transmembrane domain (residues 2276–2589), and a gatekeeper domain (residues 2590–2749). The signal of IP$_3$ binding is transferred through both the N-terminal and internal coupling domains to the gatekeeper domain, which triggers a conformational change in the activation gate formed within the transmembrane domain.

49–54 (PPKKFR) of mouse IP$_3$R1 (42). Calmodulin interacts with residues 49–81 and 106–128 in a Ca$^{2+}$-dependent and Ca$^{2+}$-independent manner (43). These binding proteins within the critical region 1–223 may modulate the gating of IP$_3$R1.

The Critical Region 651–1130 Is Close to the IP$_3$-binding Core—In region 651–1130 of IP$_3$R1, the alternative splicing site (between amino acids 917 and 918) referred to as SIII is present (45), but the functional significance of the SIII segment (nine residues) has not yet been elucidated. There are three possible Ca$^{2+}$-binding sites within regions 660–745, 741–849, and 994–1059 (46), suggesting that region 651–1130 is involved in the Ca$^{2+}$-dependent regulation of IP$_3$R function. Recently, Bosanac et al. (14) unveiled the three-dimensional structure of the IP$_3$-binding domain (residues 224–604) that covers the IP$_3$-binding core (residues 226–578) of IP$_3$R1 in the presence of IP$_3$. The IP$_3$-binding domain forms an asymmetric boomerang-like structure that consists of an N-terminal β-trefoil domain (residues 224–436) and a C-terminal α-helical domain (residues 437–604) containing three armadillo repeat-like folds. IP$_3$ fits into a cleft formed by these two arms of the boomerang. Our data described here suggest that region 651–1130, which immediately follows the IP$_3$-binding core, is essential for IP$_3$-induced gating of the channel. What kind of roles does this region have? It is known that other proteins containing armadillo repeats such as β-catenin (47) and importins (48) have >10 repeats. Based on the analysis of the amino acid sequence of IP$_3$R1, Bosanac et al. (14) suggested that, in IP$_3$R1, the armadillo repeat-like folds extend to the C-terminal region of the IP$_3$-binding core. It is predicted that many α-helical domains are formed over the entire region 651–1130 (14), and deletion of residues 1131–1379 did not abolish the IP$_3$-dependent Ca$^{2+}$ release activity (Fig. 3A). We therefore speculate that the armadillo repeat-like fold-containing α-helical domain, which is essential for IP$_3$-induced gating, is formed within residues 440–1130. This region might constitute part of the bridge that connects the IP$_3$-dependent conformational change in the IP$_3$R with channel opening.

Recently, Hamada et al. (49) showed that the purified IP$_3$R from mouse cerebellum contains two distinctive structures: a windmill-like structure and a square-shaped structure. Ca$^{2+}$ reversibly promotes transition from the square- to the windmill-shaped structure, with relocation of the four peripheral IP$_3$-binding domains. This observation predicts the presence of a hinge region that changes its conformation drastically following Ca$^{2+}$ binding to the receptor. Hamada et al. (49) examined the Ca$^{2+}$-dependent structural change of the purified IP$_3$R by limited protease digestion analysis. The results show that a 38-kDa fragment detected using anti-IP$_3$R1 mAb 4C11 is specifically generated by cleavage in a solution containing CaCl$_2$, but not in an EDTA-containing solution. The epitope of antibody 4C11 was mapped within residues 679–727 in IP$_3$R1 (13); and therefore, region 651–1130 found in this study is a strong candidate for the hinge region. The presence of Ca$^{2+}$-binding sites within this region (46) also supports this hypothesis.

Nonfunctional Mutants D1267–2110, D1845–2042, and D1845–2216—Because the nonfunctional mutants D1267–2110, D1845–2042, and D1845–2216 do not have cleavage sites between tryptic fragments IV and V (Arg1931, Arg1923, and Lys1929) (22), we could not evaluate the folding structure of the C-terminal channel-forming domain of these mutants. Therefore, we did not determine whether the deleted regions include critical regions for activation gating or whether the deletions simply distort the structure of the receptor. Notably, the deleted regions in these mutants include (or are close to) the Ca$^{2+}$-sensor region found in IP$_3$R1 (50). Cytoplasmic Ca$^{2+}$ is a coagonist for the IP$_3$R (51); and thus, the IP$_3$- and Ca$^{2+}$-binding signals must be combined on the IP$_3$R. More detailed analysis of the regions deleted in these mutants may help us to better understand the molecular mechanism of gating, in particular, the Ca$^{2+}$-dependent processes during channel opening.

Region 2610–2748 May Be Required for the Correct Folding of IP$_3$R1—The C-terminal region following the sixth transmembrane region may play some part in channel gating of the IP$_3$R because mAbs that recognize this region have been reported to either inhibit (21) or enhance (52) IICR. In addition, it has been suggested that the C terminus is involved in subunit assembly of the IP$_3$R channel complex (6, 9). It has been shown that, although a truncation mutant of IP$_3$R1 that lacks all of the transmembrane regions and the succeeding C terminus (amino acids 2218–2749) is present as a monomer, a deletion mutant that lacks only the transmembrane regions (amino acids 2212–2605) forms dimers (6), suggesting that the C-terminal 144 amino acids (positions 2606–2749) are involved in the intersubunit interaction of IP$_3$R1. Facilitation of multimer formation of mutant IP$_3$Rs with two or more transmembrane regions is observed if the mutants are fused to the C-terminal 145 residues (9); however, recombinant IP$_3$R1 lacking the C-terminal 145 residues forms tetramers (9), suggesting that this C-terminal region is not essential for the formation of the tetrameric channel complex. In this study, we found that deletion of amino acids 2610–2748 completely abolished the activity of the IP$_3$R channel. D2610–2748 was not well recognized by antibody 1ML1 (Fig. 2A). Limited trypsin digestion of mutant D2610–2748 did not generate tryptic fragments IV and V (Fig. 4F), suggesting that deletion of residues 2610–2748 affects the folding struc-
The Essential Cysteine Residue in the C-terminal Tail—We found that the site-directed mutants C2610S, C2613S, and C2610S/C2613S did not exhibit any measurable Ca

2 release activity (Fig. 6). As shown in Fig. 7, limited trypsin digestion of C2613S and C2610S/C2613S generated all four tryptic fragments (I and III–V), whereas trypsinization of C2610S generated only three tryptic fragments (I, III, and IV). These results indicate that Cys

2613 is required for the functional coupling between IP

3 binding and channel opening. The results of trypsinization of C2610S suggest that substitution of Cys

2610 disrupts the correct folding in at least the C-terminal channel-forming domain of the IP

R. This is puzzling, however, because C2610S/C2613S generated all four tryptic fragments. The effect of a single amino acid substitution at Cys

2610 could be explained if the cysteine at position 2613 in the C2610S mutant elicits an artificial modification (such as disulfide formation, S-nitrosylation, or palmitoylation) that induces a serious distortion in the folding structure of the C-terminal channel domain. These modifications might be prevented in the presence of Cys

2610. This explanation suggests a direct or indirect structural interaction between Cys

2610 and Cys

2613 in wild-type IP

R1.

These cysteine residues are also conserved in the RyR family (Fig. 5). Involvement of the cysteine residues in intracellular Ca

2 channel gating has been postulated on the basis of evidence that thiol reagents such as oxidized glutathione and thimerosal enhance the Ca

2 release activity (40). As shown in Fig. 7, limited trypsin digestion of C2613S and C2610S/C2613S generated all four tryptic fragments (I and III–V), whereas trypsinization of C2610S generated only three tryptic fragments (I, III, and IV). These results indicate that Cys

2613 is required for the functional coupling between IP

3 binding and channel opening. The results of trypsinization of C2610S suggest that substitution of Cys

2610 disrupts the correct folding in at least the C-terminal channel-forming domain of the IP

R. This is puzzling, however, because C2610S/C2613S generated all four tryptic fragments. The effect of a single amino acid substitution at Cys

2610 could be explained if the cysteine at position 2613 in the C2610S mutant elicits an artificial modification (such as disulfide formation, S-nitrosylation, or palmitoylation) that induces a serious distortion in the folding structure of the C-terminal channel domain. These modifications might be prevented in the presence of Cys

2610. This explanation suggests a direct or indirect structural interaction between Cys

2610 and Cys

2613 in wild-type IP

R1.

These cysteine residues are also conserved in the RyR family (Fig. 5). Involvement of the cysteine residues in intracellular Ca

2 channel gating has been postulated on the basis of evidence that thiol reagents such as oxidized glutathione and thimerosal enhance the Ca

2-mobilizing activity of both IP

R and RyR channels (1). There are nine cysteine residues conserved in both families (13). As shown in Fig. 6, substitution of the conserved cysteine residue at position 1976 did not affect the activity of IP

R1, whereas substitution of Cys

2610 or Cys

2613 caused loss of function of IP

R1. It is possible that thiol reagents directly attack the cysteine residues at positions 2610 and/or 2613 and enhance channel activity. Further studies are required to elucidate the exact target sites of thiol reagents and the mechanism of the enhancement of channel gating induced by these reagents.

Cysteine residues located in the C-terminal region following the transmembrane domain are known to be involved in the gating of some ion channels on the plasma membrane, such as cyclic nucleotide-gated channels (53–55) and voltage-dependent and inwardly rectifying K

+ channels (56, 57). In the presence of oxidants, a certain C-terminal cysteine residue in both of these plasma membrane channels reacts with a cysteine residue located in the N-terminal region in the same or different subunit. This reaction depends on the states of the channels, and the formation of disulfide bonds results in channel potentiation. On the N-terminal side of the transmembrane domain, the IP

R possesses 18 cysteine residues that are conserved in the IP

R family. Thus, examining the interaction between the N and C termini via the formation of disulfide bonds in the presence of some oxidants according to the gating states would be useful in understanding the conformational changes that occur during IP

R gating.

A Novel Five-domain Structure Model for the IP

R—We found that two regions, viz., regions 1–223 and 651–1130, and Cys

2613 are crucial for the IP

3-induced gating of IP

R1. How do they contribute to the activation gating of IP

R1? Recently, the open pore conformation of K

+ channels (MthK) was resolved at a resolution of 3.3 Å (58, 59). Structural comparison between KcsA and MthK (closed and open K

+ channels) revealed that pore-lining inner helices form the channel gate and that bending of the inner helices causes channel opening. In the bent configuration, the inner helices form a wide (12 Å) entryway. The gating hinge is a glycine residue located in the middle of the inner helices. The glycine residue is highly conserved in voltage- and ligand-gated channels with two or six membrane-spanning segments per subunit, suggesting that the bending of the inner helices is a common mechanism for channel opening. The IP

R has been proposed to have the same structural arrangement of the pore-forming domain as the voltage-gated K

+ channels (10); therefore, the IP

R pore may also be equipped with the same gating mechanism. Pore-lining inner helices that contain the gating hinges in the MthK channel correspond to the sixth membrane-spanning segment of the IP

R. It is of interest to note that a glycine residue is also present within the sixth membrane-spanning segment of all three types of the IP

R. This structural similarity suggests that the channel gate is formed by the sixth membrane-spanning helix of the IP

R. One of the striking differences between the IP

R and other ligand-gated channels with six membrane-spanning segments, such as cyclic nucleotide-gated channels, is in the location of the ligand-binding site. Both the IP

3-binding site and the Ca

2+ -binding sites are positioned on the N-terminal side of the transmembrane domain of the IP

R, whereas in other ligand-gated channels, the ligand-binding sites are located in the C-terminal cytoplasmic region that is close to the pore-lining inner helices. In these ligand-gated channels, the ligand-binding signals may be transferred directly to the pore domain and cause bending of the inner helices to open the channels. The ligand-binding signals of the IP

R may be transferred to the pore domain in a different manner. Based on the results presented here, we propose a novel five-domain structure model in which the C-terminal tail works as a gatekeeper for activation-induced gating of the IP

R (Fig. 8). In this model, conformational changes in the IP

3-binding domain caused by IP

3 binding are transmitted through both the N-terminal and internal coupling domains to the C-terminal tail, which then triggers channel opening. Cys

2613 in the C-terminal tail may be critical for receiving the IP

3-binding signal and/or for triggering channel opening. Further studies on the structure and function of the IP

R using the described experimental approach may provide us with an exact answer for the long-awaited question, “How does the binding of IP

3 at the N terminus gate the C-terminal Ca

2+ permeation pore?”

Acknowledgments—We thank Dr. T. Kuroki for the kind gift of the DT40 and R23-11 cell lines. We thank Drs. T. Inoue, M. Hattori, A. Mizutani, and K. Hamada for valuable discussions and Drs. A. Miyawaki, H. Mizuno, and C. Hirashima for support and advice during the course of this work. We thank Dr. M. Ikura for critical reading of the manuscript. We also thank Drs. M. Kuroki and T. Yasuda for assistance with the cell culture technique and helpful discussions. We thank Y. Ueno and M. Iwai for excellent technical assistance. K. U. thanks Drs. N. Matsuo, T. Takahashi, and Y. Koijma for providing this research opportunity.

REFERENCES

1. Berridge, M. J. (1993) Nature 361, 315–325

2. Maeda, N., Kawasaki, T., Nakade, S., Yokota, N., Taguchi, T., Kasai, M., and Mikoshiba, K. (1991) J. Biol. Chem. 266, 1109–1116

3. Furuchi, T., and Mikoshiba, K. (1995) J. Neurochem. 64, 953–960

4. Monka, T., Miyawaki, A., Sugiyama, T., Yoneshima, H., Yamamoto-Hino, M., Furuchi, T., Saruta, T., Hasegawa, M., and Mikoshiba, K. (1995) J. Biol. Chem. 270, 14790–14794

5. Südhof, T. C., Newton, C. L., Archer, B. T., III, Ushkaryov, Y. A., and Mignery, G. A. (1991) EMBO J. 10, 3199–3206

6. Miyawaki, A., Furuchi, T., Ryoo, Y., Yoshikawa, S., Nakagawa, T., Sayato, T., and Mikoshiba, K. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 491–495

7. Joseph, S. K., Boehning, D., Pierson, S., and Nicchitta, C. V. (1997) J. Biol. Chem. 272, 1579–1588

8. Sawyer, L. G., Miyawaki, A., Muto, A., Takeshita, H., Yamamoto, A., Michikawa, T., Furuchi, T., and Mikoshiba, K. (1997) Biochem. J. 323, 273–280

9. Grass, D. L., Borrego-Diaz, E., Perez, P. J., and Mignery, G. A. (1991) J. Biol. Chem. 266, 1093–1100

10. Kurosaki, T., Tashiro, Y., and Mikoshiba, K. (1994) J. Biol. Chem. 269, 9184–9189

11. Boehning, D., Joseph, S. K., Mak, D. O., and Foskett, J. K. (2001) Biophys. J. 81, 117–124

12. Yoshikawa, F., Morita, M., Monka, T., Michikawa, T., Furuchi, T., and
Critical Regions for IP$_3$R Gating

Mikoshiba, K. (1996) J. Biol. Chem. 271, 18277–18284

13. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K. (1989) Nature 342, 32–38

14. Bossac, I., Altatt, J. R., Mal, T. E., Chan, J., Talarico, S., Tong, F. K., Tong, K. I., Yoshikawa, F., Furuichi, T., Iwai, M., Michikawa, T., Mikoshiba, K., and Ikura, M. (2002) Nature 420, 696–700

15. Yoshikawa, F., Uehiya, T., Iwasaki, H., Tomomori-Sato, C., Tanaka, T., Furuichi, T., and Mikoshiba, K. (1999) Biochem. Biophys. Res. Commun. 257, 792–797

16. Meyer, T., Wensing, T., and Stryer, L. (1990) Biochemistry 29, 32–37

17. Hirota, J., Michikawa, T., Miyawaki, A., Furuichi, T., Okura, I., and Mikoshiba, K. (1996) J. Biol. Chem. 270, 1724–1730

18. Michikawa, T., Hirota, J., Kawano, S., Hiraoka, M., Yamada, M., Furuichi, T., and Mikoshiba, K. (1995) J. Biol. Chem. 270, 10946–10951

19. Mignery, G. A., and Sudhof, T. C. (1990) EMBO J. 9, 3893–3898

20. Maeda, N., Niinobe, M., Nakahara, K., and Mikoshiba, K. (1988) J. Neurochem. 51, 1724–1730

21. Nakade, S., Maeda, N., and Mikoshiba, K. (1991) J. Biol. Chem. 264, 316–327

22. Yoshikawa, F., Iwasaki, H., Michikawa, T., Furuichi, T., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 316–327

23. Mualem, S., Pandol, S. J., and Becker, T. G. (1989) J. Biol. Chem. 264, 205–212

24. Meyer, T., and Stryer, L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 3841–3845

25. Ferris, C. D., Cameron, A. M., Huganir, R. L., and Snyder, S. H. (1992) Nature 356, 350–352

26. Györke, S., and Fill, M. (1993) Science 260, 807–809

27. Sugawara, H., Kurosaki, M., Takata, M., and Kurosaki, T. (1997) EMBO J. 16, 3978–3988

28. Miyawaki, A., Furuichi, T., Maeda, N., and Mikoshiba, K. (1990) Neuron 5, 11–18

29. Zhang, S., Minutani, A., Higashine, C., Higo, T., Bannai, H., Nakayama, T., Hattori, M., and Mikoshiba, K. (2003) J. Biol. Chem. 278, 4048–4056

30. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450

31. Maeda, N., Niinobe, M., and Mikoshiba, K. (1990) EMBO J. 9, 61–67

32. Yoneshima, H., Miyawaki, A., Michikawa, T., Furuichi, T., and Mikoshiba, K. (1997) Biochem. J. 322, 591–596

33. Suppatpate, S., Worley, P. F., Baraban, J. M., and Snyder, S. H. (1988) J. Biol. Chem. 263, 1530–1534

34. Nakagawa, T., Okano, H., Furuichi, T., Aruga, J., and Mikoshiba, K. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 6244–6248

35. Danoff, S. K., Ferris, C. D., Denath, C., Fischer, G. A., Munemitsu, S., Ullrich, A., Snyder, S. H., and Ross, C. A. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 2951–2955

36. Price, N. C., and Johnson, C. M. (1989) in Protolytic Enzymes: A Practical Approach (Beynon, R. J., and Bonds, J. S., eds) pp. 163–180, IRL Press, Oxford

37. Misiaen, H., Taylor, C. W., and Berridge, M. J. (1991) Nature 352, 241–244

38. Bootman, M. D., Taylor, C. W., and Berridge, M. J. (1992) J. Biol. Chem. 267, 2511–2519

39. Kaplin, A. I., Ferris, C. D., Voglmaier, S. M., and Snyder, S. H. (1994) J. Biol. Chem. 269, 28972–28978

40. De Smedt, H., Misiaen, L., Parys, J. B., Henning, R. H., Sienaert, I., Vanlengen, S., Gisens, A., Himpens, B., and Casteels, R. (1997) Biochem. J. 322, 575–583

41. Yoshikawa, F., Iwasaki, H., Michikawa, T., Furuichi, T., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 382–384

42. Tu, J. C., Xiao, B., Yuan, P. J., Lanahan, A. A., Leoffert, K., Li, M., Linden, D. J., and Worley, P. F. (1998) Neuron 21, 717–726

43. Sienaert, I., Nadif Kasri, N., Vanlengen, S., Vays, J. B., Callawaert, G., Misiaen, H., and De Smedt, H. (2002) Biochem. J. 365, 269–277

44. Feng, W., Tu, J., Yang, T., Vernon, P. S., Allen, P. D., Worley, P. F., and Pesah, I. N. (2002) J. Biol. Chem. 277, 44722–44730

45. Nuccifora, F. C., Jr., Li, S. H., Danoff, S., Ullrich, A., and Ross, C. A. (1995) Mol. Brain Res. 32, 291–296

46. Sienaert, I., Misiaen, L., De Smedt, H., Parys, J. B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899–25906

47. Huber, A. H., Nelson, W. J., and Weiss, W. I. (1997) Cell 90, 871–882

48. Cingolani, G., Petosa, C., Weis, K., and Muller, C. W. (1999) Nature 399, 221–229

49. Hamada, K., Miyata, T., Mayanagi, K., Hirota, J., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 21115–21118

50. Miyawaki, T., Mizushima, A., Hirose, K., Yamazawa, T., Beppozanymi, I., Kurosaki, T., and Ino, M. (2001) J. Biol. Chem. 276, 1674–1680

51. Finch, E. A., Turner, T. J., and Goldin, S. M. (1991) Science 252, 443–446

52. Fadool, D. A., and Ache, B. W. (1992) J. Biol. Chem. 267, 907–918

53. Gordon, S. E., Varruz, M. D., and Zagotta, W. N. (1997) Neuron 19, 431–441

54. Broillet, M. C. (2000) Biochem. J. 365, 15135–15141

55. Rosenbaum, T., and Gordon, S. E. (2002) Neuron 33, 703–713

56. Schultz, G. T., Nagaya, N., and Papanicolaou, D. M. (1996) Biochemistry 35, 12133–12140

57. Schultz, U., Hahn, H., Wiesinger, H., Ruppersberg, J. P., and Fakler, B. (1998) J. Biol. Chem. 273, 34575–34579

58. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Nature 417, 515–522

59. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Nature 417, 523–526
