Article
On the Poisson Stability to Study a Fourth-Order Dynamical System with Quadratic Nonlinearities

Alexander N. Pchelintsev ©0000-0003-4136-1227

Citation: Pchelintsev, A.N. On the Poisson Stability to Study a Fourth-Order Dynamical System with Quadratic Nonlinearities. Mathematics 2021, 9, 2057. https://doi.org/10.3390/math9172057
Received: 18 July 2021
Accepted: 17 August 2021
Published: 26 August 2021

1. Introduction

As it is known [1], the calculation of the Lyapunov exponents is used for the classification of attractors of dynamical systems. The combinations of signs of such values determine the attractor type: an equilibrium position, limit cycle, multidimensional torus or strange attractor. The dynamics of the corresponding solutions are called static, periodic, quasiperiodic, or chaotic. The computational procedure for determining the Lyapunov exponents is mainly based on the Benettin’s algorithm [2]. However, in [3,4] the points of limiting solutions were investigated for the Poisson stability, which made it possible to understand whether we have a quasiperiodic or chaotic regime. In [4], it was done for the Jafari–Sprott system [5].

It is noteworthy [6] that a point \(y \) of the phase space is called positively Poisson stable (\(P^+ \)), if for any neighborhood \(U \) of the point \(y \) and for any \(T_P > 0 \) there is a time value \(t \geq T_P \) for which the trajectory of the dynamical system enters into the neighborhood \(U \). Similarly, if there is \(t \leq -T_P \) such that the trajectory enters into the neighborhood \(U \), then the point \(y \) is negatively Poisson stable (\(P^- \)). A point is called Poisson stable, if it is \(P^+ \) and \(P^- \)–stable.

The boundedness of the limiting solutions of dissipative systems implies [6–10] that any steady-state oscillation mode is described by Poisson-stable trajectories. This also applies to dynamical chaos. A trajectory different from the equilibrium position is said to be Poisson stable if it verifies the property of returning in an arbitrarily small \(\epsilon \)-neighborhood of each of its points an infinite number of times. Such returns are called the Poincaré recurrences. In [10, p. 146], the author notes that "the study of the statistics of the Poincaré recurrences is a powerful tool for the analysis and classification of dynamic modes. Apparently, the potentialities of this approach have not yet been fully exhausted in modern nonlinear dynamics". For example, the returns follow one another regularly for quasiperiodic regimes. Then [10, p. 145] "the dynamic chaos is a situation when the Poincaré recurrences to the \(\epsilon \)-neighborhood of the initial point do not show regularity, the time interval between two successive returns turns out to be different each time, and some statistical distribution of the times of return is arisen" [11,12]. An example of the Poincaré recurrences analysis based on the Kac’s theorem [13–18], for a discrete dynamical system with a chaotic non-hyperbolic attractor is given in [16].

As it is known, for the most of dissipative systems, the formulas for a general solution of the system in a class of any known functions with well-studied properties have not yet been found. Therefore, numerical methods are used. The use of classical numerical methods (such as Euler method, Runge-Kutta 4th order method, Adams methods, etc.) for constructing approximate solutions in attractors of dynamical systems leads to significant errors over large sections of time due to the instability of the studied chaotic regimes. In general, the problem of numerical modeling with control of the accuracy of obtained solution and the choice of a platform for computer implementation is relevant today [19], since small errors introduced at each integration step cause exponential divergence of close trajectories. More recently, the numerical FGBFI
method (Firmly Grounded Backward-Forward Integration) has been proposed in [3,4,20], based on the power series method for dynamical systems with quadratic nonlinearities. The main advantages of this method are as follows:

1. The recurrence relations are obtained for calculating the coefficients of the expansion of solutions in a power series for any dynamical system with quadratic nonlinearities in a general form;
2. The convergence of the power series is studied. A simple formula for calculations is derived (in comparison with that [21] obtained in the known literature) for calculating the length of the integration step in a general form;
3. The criteria for checking the accuracy of the approximate solution are obtained. The control of the accuracy and configuration of the approximate solution of a dynamical system uses forward and backward time, which makes the numerical method reliable (degrees of piecewise polynomials, the value of the maximum integration step, etc.);
4. The FGBFI method allows to construct high-precision approximations to non-extendable solutions of a system of autonomous differential equations with a quadratic right-hand side. Like for instance the system of the form

\[\dot{x} = 1 + x^2. \]

In this case, the numerical solution computed with FGBFI will never cross the asymptote and will approach it arbitrarily close.

Thus, it is a high-precision method for constructing the trajectory arc of the system for any time interval. This makes it possible to track the Poincaré recurrences to any neighborhood of the trajectory points, since the resulting computational error can be smaller than the radius of the monitored neighborhoods.

This article considers a fourth-order dissipative system [22], in which, in the opinion of its authors, there is a hyperchaos. The goals of the research are: (1) to find the Poincaré recurrences in the attractor of this system for the approximate solutions obtained by the FGBFI method and to analyze the statistics of return times; (2) to apply the modified Benettin’s algorithm [20] to refine the computation of the Lyapunov exponents.

2. Bohr’s almost periodic functions

It is noteworthy [23, pp. 368, 418, 419] that the function (trajectory of a dynamical system) \(F(t) \in \mathbb{R}^n \) is called Bohr’s almost periodic in the sense that if for any \(\varepsilon > 0 \) there exists a relatively dense set of almost periods \(\tau_F = \tau_F(\varepsilon) \) of the function \(F(t) \) with \(\varepsilon \)-accuracy, i.e. there is the positive number \(L = L(\varepsilon) \) such that any interval \([a; a + L] \) contains at least one number \(\tau_F \) for which the inequality

\[|F(t + \tau_F) - F(t)| < \varepsilon \]

holds at \(t \in \mathbb{R} \). Note that for an almost periodic function (and, in general, for a Poisson stable trajectory), different from a periodic function, with decreasing number \(\varepsilon \) the number \(L(\varepsilon) \) must increase indefinitely, otherwise the function would be periodic.

Usually (see, for example, [10]) in nonlinear dynamics, almost periodic functions are called quasiperiodic.

Note an important theorem in the theory of dynamical systems [10, p. 147]: if a non-periodic trajectory is Poisson and Lyapunov stable, then it is almost periodic.

Since we will be investigating the Poincaré recurrences, it is noteworthy that for an almost periodic trajectory (as follows from the above definition), such returns must form a relatively dense set. An example of a sequence that is not a relatively dense set is:

\[0, 1^2, 2^2, 3^2, \ldots, \]

since

\[\sup_q \left| (q + 1)^2 - q^2 \right| = \infty, \]

i.e. in the given example, the distance between neighboring elements grows with the growth of \(q \). A similar situation was observed in a numerical experiment for the Poincaré recurrences in the case of a chaotic solution of the Chen system [3].
3. Dissipative system of the fourth order

Let us consider a fourth-order system [22]

\[
\begin{align*}
\dot{x}_1 &= ax_2 - ax_1 - cx_4, \\
\dot{x}_2 &= bx_1 - x_2 - x_1x_3 - fx_4, \\
\dot{x}_3 &= x_1x_2 - cx_3, \\
\dot{x}_4 &= kx_2x_3 - dx_4,
\end{align*}
\]

(1)

where \(a, b, c, d, e, f\) and \(k\) are positive parameters. The divergence of the vector field \(G\) defined by the right-hand side of the system (1) is equal to

\[
\text{div } G = -(a + 1 + c + d) < 0.
\]

Then the system (1) is dissipative. Hence, there is the ball \(B_a \subset \mathbb{R}^4\), into which each trajectory of the system (1) is immersed forever, after a while. Therefore, there is a limit set (attractor) such that all trajectories of the dynamical system are attracted when \(t \to \infty\) [6].

Let us investigate the dynamics of the system (1) for the values of the parameters \(a = 7, b = 50, c = 3, d = 10, e = 5, f = 5\) and \(k = 1.5\). In this case, it is possible to determine the position and radius of the ball \(B_a\) from the data obtained in [22]. Also, in this article the Lyapunov exponents were determined: \(LE_1 = 2.1040, LE_2 = 0.3563, LE_3 = 0\) and \(LE_4 = -23.4508\), indicating a hyperchaos in the system (1). Therefore, its solutions are highly unstable, which requires the use of special numerical procedures for large time intervals.

Let us consider the application of the FGBFI method for constructing approximations to the solutions of the system (1) using high-precision calculations.

4. The FGBFI method

Following [4], we will rewrite the system (1) as

\[
\dot{X} = AX + \Phi(X),
\]

(2)

where

\[
X(t) = [x_1(t) \ x_2(t) \ x_3(t) \ x_4(t)]^T, \quad \Phi(X) = [\varphi_1(X) \ \varphi_2(X) \ \varphi_3(X) \ \varphi_4(X)]^T,
\]

\[
\varphi_p(X) = \langle Q_pX, X \rangle, \quad p = 1, 4, \quad A = \begin{bmatrix}
-a & a & 0 & -e \\
b & -1 & 0 & -f \\
0 & 0 & -c & 0 \\
0 & 0 & 0 & -d
\end{bmatrix},
\]

\[
Q_1 = 0, \quad Q_2 = \begin{bmatrix}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad Q_3 = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}, \quad Q_4 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & k & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

Let us expand the solution

\[
X(t) = \sum_{i=0}^{\infty} Y_i t^i,
\]

(3)

where \(X(0) = Y_0\) is an initial condition for the system (2), the vector \(Y_0\) is given,

\[
Y_i = [v_{i,1} \ v_{i,2} \ v_{i,3} \ v_{i,4}]^T, \quad v_{i,p} \in \mathbb{R}, \quad p = 1, 4.
\]
Let
\[\Psi_i = [\psi_{i,1} \; \psi_{i,2} \; \psi_{i,3} \; \psi_{i,4}]^T \]
and
\[\psi_{i,p} = \sum_{j=0}^{i} (Q_p Y_j, Y_{i-j}), \; p = 1; 4. \]

The recurrence relations for calculating the coefficients of the power series have the form [4]
\[Y_j = \frac{AY_{j-1} + \Psi_{j-1}}{j} \] (4)
for \(j \in \mathbb{N} \).

Since the criteria for checking the accuracy of the obtained numerical solution require repeated calculations in forward and backward time, we need to have a guaranteed estimate of the convergence interval of the power series (3) for a given vector \(Y_0 \). In [4], a theorem is proved on the estimate of this interval for systems with a quadratic right-hand side.

The norms are calculated:
\[
\|A\| = \|A\|_1 = \max\{a + b, a + 1, c, e + f + d\} = 57, \\
\|Q_1\| = 0, \; \|Q_2\| = \|Q_3\| = 1, \; \|Q_4\| = k, \\
\mu = 4 \cdot \max_{p=1;4} \|Q_p\| = 4 \cdot 1.5 = 6.
\]

Next, two auxiliary numbers are calculated as functions of \(Y_0 \):

\[
h_1(Y_0) = \|Y_0\| = \sum_{p=1}^{4} |v_{0,p}|, \\
h_2(Y_0) = \begin{cases} \\
\mu h_1^2(Y_0) + (\|A\| + 2\mu)h_1(Y_0), & \text{if } h_1 > 1, \\
\|A\| + \mu & \text{otherwise},
\end{cases}
\]
or
\[
h_2(Y_0) = \begin{cases} \\
6 \cdot \|Y_0\|^2 + 69 \cdot \|Y_0\|, & \text{if } \|Y_0\| > 1, \\
63 & \text{otherwise}.
\end{cases}
\]

Then the series (3) converges for \(t \in [-\tau, \tau] \), where
\[\tau = \tau(Y_0) = \frac{1}{h_2(Y_0) + \delta}, \] (5)
\(\delta \) is any positive number (can be taken very small).

It can be seen from the formula (5) that the length of the convergence interval depends on the choice of the initial condition for the system (2). This fact is confirmed by computational experiments, for example, for the Lorenz system [24].

It is worth noting that a similar approach can be applied to systems with cubic nonlinearities, but when the derivative on the left side of the system is of the second (or higher) order. For example, in [25] this was done for the Duffing equation.

Usually, in calculations, many researchers work with subnormal real numbers of single or double precision, presented in the IEEE 754 format [26]. The main drawback here is the fixed accuracy of the representation of real numbers, which may not allow us numerically constructing approximations to unstable solutions of systems of differential equations on the large time intervals. Therefore, for high-precision calculations, the GNU MPFR library [27,28] is used.

Next, consider the algorithm [20] for the numerical construction of an approximate solution of a dynamical system in forward and backward time:
1. **Set** the number \(b_m \) of bits under the mantissa of a real number and the precision \(\epsilon_{pw} \) for estimate of the common term of power series. Note that \(b_m \) defines the machine epsilon \(\epsilon_m \). Let us choose \(b_m \) so that the precision of representation of the real number is with a margin, i.e.

\[
\epsilon_m \ll \epsilon_{pw};
\]

2. \(t := 0; \)
3. **Set** \(X(0) \in B_a \) for the system (2) and value the number \(\text{way} \) that determines the direction in time: \(\text{way} = 1 \) is gone forward in time, \(\text{way} = -1 \) is gone backward in time;
4. **Set** \(T \): the length of the time interval on which the numerical integration will be performed;
5. \(\text{ended} := \text{false}; \)
6. **Calculate** the integration step \(\Delta t := \tau(X(0)) \) by the formula (5);
7. \(\text{If} \ \Delta t > T - t, \text{then} \ \Delta t := T - t, t := T; \)
8. \(\text{Else} \ t := t + \Delta t; \)
9. \(\Delta t := \text{way} \cdot \Delta t; \)
10. **Let** \(Y_0 := X(0); \)
11. **Calculate** the approximate value \(X(\Delta t) \) by summing the terms of the series (3) to such a value \(i \), where the following inequality holds

\[
\|Y_i\| \cdot |\Delta t|^i < \epsilon_{pw};
\]

12. **Print** \(\text{way} \cdot t, X(\Delta t); \)
13. **If** \(X(\Delta t) \notin B_a, \text{then} \) we got out the compact \(B_a \). Then **write** "Decrease the value \(\epsilon_{pw} \) and/or \(\epsilon_m \); ended := true;
14. **If** \(t = T, \text{then} \) ended := true;
15. **If** ended, **then terminate** the algorithm;
16. **Goto** step 6.

As can be seen, the algorithm is universal in the direction of numerical integration in time.

Next, we consider the criteria for verifying the accuracy of the resulting solution. For this we assume

\[
\Omega = [t_0, t_1] \cup [t_1, t_2] \cup \ldots \cup [t_{N - 1}, t_N],
\]

\[
t_0 = 0, \ t_N = \text{way} \cdot T,
\]

\[
\Delta t^\text{way}_l = t_l - t_{l-1} = \tau(X_{l-1}(\Delta t^\text{way}_{l-1})), \ X_0 = X(0), \ l = 1; N^\text{way},
\]

where \(l \) is an index of the interval \([t_{l-1}, t_l]\), on which the series (3) is converged, \(N^\text{way} \) is a number of such intervals for the direction \(\text{way} \) on time. Since on each interval \([t_{l-1}, t_l]\) during calculations we truncate the series (3) to some polynomial \(X_l(t) \) approximating the solution of the system (2) on it (i.e. locally), then we denote by \(n^\text{way}_l \) the degree of the polynomial \(X_l(t) \). Then we introduce the notation:

\[
n^\text{max} = \max_l n^\text{way}_l, \ \ l^\text{max} = \ind\max_l n^\text{way}_l, \ \Delta t^\text{max} = \text{way} \cdot \max_l |\Delta t^\text{way}_l|,
\]

\[
d^\text{max} = \ind\max_l |\Delta t^\text{way}_l|.
\]

In [4], the following criteria for checking the accuracy of the obtained solution were proposed:

1. The accuracy \(\varepsilon_a \) of approximation at \(\text{way} = 1 \) is a frequently used criterion in applications of numerical methods for solving differential equations. When the inequality (6) is true, it is necessary to increase the degrees of all polynomials \(n^\text{way}_l \), obtaining the next approximation, and compare the distance \(\delta_a \) between the obtained approximate solutions on the interval \([0, T]\) with the value \(\varepsilon_a \). If \(\delta_a > \varepsilon_a \), then we increase the powers of \(n_l \), otherwise we have to use the obtained solution;
Table 1: The Poincaré recurrences for the point (9), $\Delta t_P = 10^{-4}$, $T = 15$ for reaching the attractor.

Time moment t_k^*	Value d_k^*
0.3655	0.0423764
0.7310	0.0137840
1.0965	0.0323213
1.4620	0.0196461
1.8275	0.0173865
2.1930	0.0209083
2.5585	0.0135900
2.9240	0.0206764
3.2895	0.0194286
3.6550	0.0197196
4.0205	0.0237665
4.3860	0.0213908
4.7515	0.0259931
5.1170	0.0259931
5.4825	0.0288078
5.8480	0.0311426
6.2135	0.0320319
6.5790	0.0356643
6.9445	0.0362604
7.3101	0.0340862
7.6756	0.0325096
8.0411	0.0305410
8.4066	0.0280697
8.7721	0.0268135
9.1376	0.0243143
9.5031	0.0231314
9.8686	0.0211890

2. The radius ε_R of the neighborhood of the initial point, to which the approximate solution should return in backward time is another criterion. In other words, we need to select the accuracy of ε_{pw} so that the following inequality holds

$$\left| X_{\tilde{N}}^{(-1)} (\Delta t_{\tilde{N}}^{(-1)}) - X(0) \right| < \varepsilon_R,$$

where $\tilde{N} = N^{(-1)}$. Note here that we do not know the exact solution to the system (2), but we do know its initial point. Then we can set how many digits are in each component of the vector $X_{\tilde{N}}^{(-1)} (\Delta t_{\tilde{N}}^{(-1)})$ after the point must match the digits of the corresponding components $X(0)$. The problem is that a large amount of computation is required (due to repetitions of the forward and backward traverse in time). The solutions of the system (2), as a rule, are highly unstable in the backward time: they immediately leave from the attractor, because in our calculations, we are near it, no matter how accurate ε_{pw} is taken. Therefore, in the above algorithm, we control the finding of the trajectory within the boundaries of the set B_a;

3. The comparison of configurations of approximate solutions in forward and backward time is necessary to determine the numbers (7), describing approximate solutions. Next, check

$$N \approx \tilde{N}, \quad n_{\max}^{(1)} \approx n_{\max}^{(-1)}, \quad t_{\max}^{(1)} + \left| t_{\max}^{(-1)} \right| \approx T,$$

$$d_{\max}^{(1)} + d_{\max}^{(-1)} \approx N, \quad t_{\max}^{(1)} + \left| t_{\max}^{(-1)} \right| \approx T.$$

Unlike criteria 1 and 2, we control here the arguments of the approximate solutions.
Table 2: The Poincaré recurrences for the point (10), $\Delta t_P = 10^{-4}$, $T = 40$ for reaching the attractor.

Time moment t_k	Value d_k
0.3655 0.7310 1.0965 1.4620 1.8275 2.1930 2.5585 2.9240 3.2895 3.6590 4.0205 4.3860 4.7515 5.1171 5.4826 5.8481 6.2136 6.5791 6.9446 7.3101 7.6756 8.0411 8.4066 8.7721 9.1376 9.5031 9.8686	0.00133861 0.00267728 0.00401586 0.00535439 0.00669292 0.00803134 0.00936979 0.01070810 0.01204650 0.01338470 0.01472300 0.01606120 0.01739930 0.01774010 0.01774010 0.01824967 0.01878067 0.01932167 0.01987267 0.02042367 0.02097467 0.02152567 0.02207667 0.02262767 0.02317867 0.02372967 0.02428067 0.02483167 0.02538267 0.02593367 0.02648467 0.02703567 0.02758667 0.02813767 0.02868867 0.02923967 0.02979067 0.03034167 0.03089267 0.03144367 0.03199467 0.03254567 0.03309667 0.03364767 0.03419867 0.03474967 0.03530067 0.03585167 0.03640267 0.03695367 0.03750467 0.03805567 0.03860667 0.03915767 0.03970867 0.04025967 0.04081067 0.04136167 0.04191267 0.04246367 0.04301467 0.04356567 0.04411667 0.04466767 0.04521867 0.04576967 0.04632067 0.04687167 0.04742267 0.04797367 0.04852467 0.04907567 0.04962667 0.05017767 0.05072867 0.05127967 0.05183067 0.05238167 0.05293267 0.05348367 0.05403467 0.05458567 0.05513667 0.05568767 0.05623867 0.05678967 0.05734067

Table 3: The Poincaré recurrences for the point (10), $\Delta t_P = 10^{-6}$, $T = 40$ for reaching the attractor.

Time moment t_k	Value d_k · 10^{-3}
0.365504 0.731007 1.096510 1.462010 1.827520 2.193020 2.558530 2.924030 3.289530 3.659040 4.020540 4.386040 4.751550 5.117050 5.482550 5.848060 6.213560 6.579070 6.944570 7.310070 7.675580 8.041080 8.406580 8.772090 9.137590 9.503100 9.868600	1.105410 1.096510 0.348186 0.792419 1.799740 0.697982 0.397935 1.498770 1.031780 0.048264 1.146250 1.403530 0.304245 0.793828 1.754720 0.656571 0.442487 1.541010 1.008280 0.091034 1.189060 1.359960 0.261577 0.837369 1.711900 0.613282 0.485547
5. Analysis of the Poincaré recurrences for a fourth-order system

In [22, p. 3221], the authors indicated that there is a hyperchaos for the considered parameters of the system (1). For example, the authors found it for the initial condition

\[x_1(0) = 10, \quad x_2(0) = 50 \cdot \sin 10 \approx -27.2011, \quad x_3(0) = 10, \quad x_4(0) = 10. \] (8)

Let us verify it.

Using the numerical method FGBFI, we construct the trajectory arc from the point (8) on the time interval \([0, T], T = 15\) getting close to the attractor. Let us indicate the parameters of the numerical method:

\[b_m = 128, \quad \epsilon_m = 5.87747 \cdot 10^{-39}, \quad \epsilon_{pw} = 10^{-20}. \]

We get the next point at the end time:

\[X(15) = [6.2355509634533960831, 2.0140572482317481452, 35.4929323328531102196, -43.5507482101916799734]^T. \] (9)

Note that in the numerical experiment by to the first criterion for checking the accuracy, decreasing the value of \(\epsilon_{pw}\), the number of indicated correct signs in coordinates is preserved.

Next, we take the point (9) as the initial point and track the Poincaré recurrences for it. In order to reduce the amount of calculations without moving backward in time (so as not to take too small a value of \(\epsilon_{pw}\)), we look at the times when there is a return to the neighborhood of the initial point for different values \(\epsilon_{pw}\). This is necessary to control the accuracy of the obtained points, choosing such the value \(\epsilon_{pw}\) that these moments of time do not differ significantly.

To determine the Poincaré recurrences, we choose the small time step \(\Delta t_P > 0\). Let us denote \(X_k\) the coordinates of the \(k\)-th point of the considered trajectory arc, corresponding to the time moment

\[t_k = k\Delta t_P, \quad k = 1; N_P. \]

We introduce the distance

\[d_k = |X_k - X(0)|. \]

To track the Poincaré recurrences, we fix such values \(k = k^*\), moving in the trajectory arc, when there are the local rapprochements with the point \(X(0)\), i.e.

\[d_{k^* - 1} > d_{k^*} & \quad d_{k^*} < d_{k^* + 1} & \quad d_{k^*} < 1. \]

For the point (9) for \(T_P = 10\) and \(\Delta t_P = 10^{-4}\), the returns are shown in Tabl. 1. As can be seen from this table, the rapprochement with the initial point occurs at approximately the same time (i.e., we have regularity), which suggests the idea of a limit cycle in the system (1). Decrease in the value of \(\Delta t_P\) does not cause significant changes in Tabl. 1.

In this case to show the absence of chaos in the system (1), we take the time value \(T = 40\) (instead of \(T = 15\), which was used to obtain the coordinates of the point (9)) to reach the attractor. We get the following point at the end time:

\[X(40) = [1.6321991613781496393, 8.7300523565474285155, 39.6961687172415982460, 54.8461996449311966025]^T. \] (10)

Similarly, for the point (10), the Poincaré recurrences shown in Tabl. 2 for \(T_P = 10\) and \(\Delta t_P = 10^{-4}\). As we can be seen from this table, returns are getting closer. Therefore, we will decrease the value \(\Delta t_P\), setting it equal to \(\Delta t_P = 10^{-7}\). We get the returns shown in Tabl. 3.

From this iterative procedure, we see that the limiting trajectory in this case is a cycle with a period \(T_c \approx 0.3655\). Its projections are shown in Figs. 1 and 2.

To select the value \(\Delta t_P\), this step must be reduced until the rapprochement distance \(d_{k^*}\) changes significantly.

This approach was also applied for other initial conditions. As a result, we get the same cycle.

Next, we investigate the stability of the resulting cycle by calculating the Lyapunov exponents.
Figure 1. Projection of the cycle of the system (1) with the period $T_c \approx 0.3655$ into the space $x_1 - x_2 - x_3$.

Figure 2. Projection of the cycle of the system (1) with the period $T_c \approx 0.3655$ into the space $x_1 - x_2 - x_4$.
Figure 3. The graph of the change in time of the Lyapunov exponent LE_1.

Figure 4. The graph of the change in time of the Lyapunov exponent LE_2.
Figure 5. The graph of the change in time of the Lyapunov exponent LE_3.

Figure 6. The graph of the change in time of the Lyapunov exponent LE_4.
6. Calculation of the Lyapunov exponents

In [20], a modification of the algorithm for calculating the Lyapunov exponents for a model describing the growth of a cancerous tumor was considered. Next, we will consider a generalization of this algorithm for dynamical systems with a quadratic right-hand side of the \(n \)-th order. Note that an other algorithm for calculating the Lyapunov exponents based on calculating the fundamental matrix of the dynamical system and its QR decomposition is proposed in [29]. The procedure described below can also be applied to it.

First, we define the form of the linearized system of equations. Let us denote the perturbations by

\[x_{n+1}(t), x_{n+2}(t), \ldots, x_{2n}(t). \]

We define the form of the following expression using the rule for differentiating the sums and products:

\[
\frac{\partial (Q_p X, X)}{\partial x_j} \cdot x_{n+j} = \frac{\partial}{\partial x_j} \left(\sum_{i=1}^{n} \sum_{k=1}^{n} q_{i,k}^{(p)} x_i x_k \right) \cdot x_{n+j} =
\]

\[
\left(\sum_{k=1}^{n} q_{j,k}^{(p)} x_k + \sum_{i=1}^{n} q_{i,j}^{(p)} x_i \right) \cdot x_{n+j} = \sum_{i=1}^{n} q_{i,j}^{(p)} x_i x_{n+j},
\]

where \(p = 1, n, j = 1, n \). Let us find the product

\[
\left[\frac{\partial (Q_p X, X)}{\partial x_1}, \frac{\partial (Q_p X, X)}{\partial x_2}, \ldots, \frac{\partial (Q_p X, X)}{\partial x_n} \right] \cdot \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{2n} \end{bmatrix} =
\]

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} \left(q_{i,j}^{(p)} + q_{j,i}^{(p)} \right) x_i x_{n+j} = \sum_{j=n+1}^{2n} \sum_{i=1}^{n} \left(q_{i,j-n}^{(p)} + q_{j-n,i}^{(p)} \right) x_i x_j.
\]

Next, we extend the system (1) by adding to it a linearized system, which also has a quadratic right-hand side. To do this, we introduce the extended matrix \(\tilde{A} \):

\[
\tilde{A} = [\tilde{a}_{i,j}]_{2n \times 2n}, \quad \tilde{a}_{i,j} = \begin{cases} a_{i,j}, & \text{if } i = 1, n & \& j = 1, n, \\ a_{i-n, j-n}, & \text{if } i = n+1, 2n & \& j = n+1, 2n, \\ 0, & \text{otherwise}. \end{cases}
\]

The vector function \(\tilde{X}(t) \) is equal to

\[
\tilde{X}(t) = [x_1(t) \ x_2(t) \ \ldots \ \ x_n(t) \ x_{n+1}(t) \ \ldots \ x_{2n}(t)]^\top.
\]

Based on the formula (11), we have a quadratic form on the right-hand side of the linearized system for each equation. Then, to reduce the system to general form, we introduce the following extended matrix:

\[
\tilde{Q}_l = [\tilde{q}_{i,j}^{(l)}]_{2n \times 2n},
\]

for \(l = 1, n : \quad \tilde{q}_{i,j}^{(l)} = \begin{cases} q_{i,j}^{(l)}, & \text{if } i = 1, n & \& j = 1, n, \\ 0, & \text{otherwise}, \end{cases}
\]

for \(l = n + 1, 2n : \quad \tilde{q}_{i,j}^{(l)} = \begin{cases} q_{i,j-n}^{(l-n)} + q_{j-n,i}^{(l-n)}, & \text{if } i = 1, n & \& j = n+1, 2n, \\ 0, & \text{otherwise}. \end{cases}
\]
We get an extended system similar to the system (2):

\[\dot{\tilde{X}} = \tilde{A} \tilde{X} + \tilde{\Phi}(\tilde{X}), \]
(12)

where

\[\tilde{\Phi} = [\tilde{\varphi}_1(\tilde{X}) \ldots \tilde{\varphi}_{2n}(\tilde{X})]^T, \]

\[\tilde{\varphi}_l(\tilde{X}) = (\tilde{Q}_l \tilde{X}, \tilde{X}), \ l = 1; 2n. \]

To obtain the domain of convergence of the power series that is a solution to the system (12), the norms of the matrices are calculated

\[\|\tilde{A}\|, \|\tilde{Q}_1\|, \|\tilde{Q}_2\|, \ldots, \|\tilde{Q}_{2n}\| \]

and the number

\[\tilde{\mu} = 2n \max_{p=1}^{2n}\|\tilde{Q}_p\|. \]

Let

\[\tilde{X}(t) = \sum_{i=0}^{\infty} \tilde{Y}_i t^i, \]
(13)

where \(\tilde{Y}_0 = \tilde{X}(0) \) is the initial condition for the system (12),

\[\tilde{\Psi}_i = [\tilde{\psi}_{i,1} \ldots \tilde{\psi}_{i,2n}]^T \]

and

\[\tilde{\psi}_{i,p} = \sum_{j=0}^{i} (\tilde{Q}_p \tilde{Y}_j, \tilde{Y}_{j-i}), \ p = 1; 2n. \]

By analogy with the system (2), two auxiliary numbers are calculated as functions of \(\tilde{Y}_0 \):

\[\tilde{h}_1(\tilde{Y}_0) = \|\tilde{Y}_0\|, \]

\[\tilde{h}_2(\tilde{Y}_0) = \begin{cases} \tilde{\mu} \tilde{h}_1^2(\tilde{Y}_0) + (\|\tilde{A}\| + 2\tilde{\mu}) \tilde{h}_1(\tilde{Y}_0), & \text{if } \tilde{h}_1 > 1, \\ \|\tilde{A}\| + \tilde{\mu} & \text{otherwise}. \end{cases} \]

Then the power series (13) converges for \(t \in [-\tilde{\tau}, \tilde{\tau}] \), where

\[\tilde{\tau} = \tilde{\tau}(\tilde{Y}_0) = \frac{1}{\tilde{h}_2(\tilde{Y}_0) + \delta}, \]

\(\delta \) is any positive number.

Let us consider a modification of Benettin’s algorithm for calculating the Lyapunov exponents using the Gram–Schmidt orthogonalization [10, pp. 163-165]:

1. **Divide** a given time interval \([0, T]\) (usually the value \(T \) is large) into short intervals by the length

\[\tau_M = \frac{T}{M}, \]

where \(M \) is the number of such intervals.
2. **Let** \(X^* \) is a point of the researched solution; e.g., (10);
3. \(k := 0; \)
4. \(Y^{(k)} := X^*; \)
5. **Let** \(Z^{(k)}_{(p)} \) is the column vectors of initial perturbations from \(n \)-components (the real numbers), \(p = 1; n \) (\(p \) is a number of the perturbation vector);
6. **Assign** to each component of the vector \(Z^{(k)}_{(p)} \) random number in the range \([0, 1]\);

7. \(LE_p := 0, p = \frac{1}{\tau_M} \) (the initial values of the sums at calculating the Lyapunov exponents);

8. **Orthogonalize** and **normalize** to unity the system of vectors \(Z^{(k)}_{(1)}, Z^{(k)}_{(2)}, \ldots, Z^{(k)}_{(n)} \);

9. \(k := k + 1; \)

10. **For** \(p \) from 1 to \(n \) with step 1:

 Beginning of cycle

 Let

 \[X(0) := \begin{bmatrix} Y^{(k-1)} \\ Z^{(k-1)}_{(p)} \end{bmatrix}. \]

 Find \(\tilde{X}(\tau_M) \) for the system (12) on algorithm, described in Sec. 4.

 Assign to vectors \(Y^{(k)}_p \) and \(Z^{(k)}_{(p)} \) the matching vector blocks \(\tilde{X}(\tau_M) \), i.e.

 \[\begin{bmatrix} Y^{(k)}_p \\ Z^{(k)}_{(p)} \end{bmatrix} := \tilde{X}(\tau_M). \]

 Note that for all values of \(p \) the vector \(Y^{(k)}_p \) is the same.

 End of cycle

11. **For** \(p \) from 1 to \(n \) with step 1:

 Beginning of cycle

 \[S := Z^{(k)}_{(p)} - \sum_{i=1}^{p-1} \left< Z^{(k)}_{(p)}, Z^{(k)}_{(i)} \right> \cdot Z^{(k)}_{(i)}; \]

 \[LE_p := LE_p + \log |S|; \]

 \[Z^{(k)}_{(p)} := \frac{S}{|S|}. \]

 End of cycle

12. **If** \(k < M \), then **Goto** step 9;

13. \(LE_p := \frac{LE_p}{M \cdot \tau_M}, p = \frac{1}{\tau_M}; \)

14. **Print** \(LE_p, p = \frac{1}{\tau_M}. \)

For the point (10), the Lyapunov exponents were found using the described algorithm for \(T = 100, M = 20000 \) and \(\tau_M = 0.005 \). Next, we give them the approximate values:

\[LE_1 \approx 0, \ LE_2 \approx -0.498, \ LE_3 \approx -0.499, \ LE_4 \approx -20.002. \]

As can be seen, their signature corresponds to a stable limit cycle in the system (1), which confirms the presence of the cycle, found through the study of the Poincaré recurrences. Note that in [30] an alternative numerical-analytical scheme for constructing periodic solutions of systems with a quadratic right-hand side was proposed using an example of the Lorenz system. Now this scheme is actively developing in [31–33] to find periodic solutions of nonlinear systems of differential equations.

The graphs of changes in the Lyapunov exponents over time are shown in Figs. 3 – 6.

The source codes of all computing programs are located at [34].

7. **Conclusion**

In this article, the author investigates the limiting regimes corresponding to different initial points of the phase space. As a result, we get the same cycle shown in Fig. 1 and 2. Consequently, there is no hyperchaos in system (1).

The analysis of the Poincaré recurrences, described in the goals of research, showed that the rapprochement with the initial point occurs approximately at the same time (i.e., we have a regularity). This indicates a limit cycle in the system (1).
Stabilization of the behavior of the values of the Lyapunov exponents in Figs. 3–6 indicates the correctness of finding their limiting values over a relatively short time interval [0, 100].

Thus, the limiting trajectory investigated using the analysis of the Poincaré recurrences and the high-precision calculation of the Lyapunov exponents (i.e., different methods) is the limit cycle which contradicts the results in [22] for the values of the parameters $a = 7, b = 50, c = 3, d = 10, e = 5, f = 5$ and $k = 1.5$ of the system (1). The obtained data is available at [34]. Most likely, the authors of the article [22] made a typo indicating such values of the parameters at which they found a hyperchaos.

A significant novelty of the article is the high-precision method for searching for the Poincaré recurrences on attractors of dynamical systems with a quadratic right-hand side, also a modification of Benettin’s algorithm for finding the Lyapunov exponents in order to check the found limiting regimes.

The methods described in the article can be used to study not only periodic regimes, but also quasiperiodic and chaotic regimes for dynamical systems with a quadratic right-hand side. According to the statistics of Poincaré recurrences, we can determine the dimension of the attractor and compare it with the dimension obtained when calculating the Lyapunov exponents (for example, the articles [17, 18]).

The advantage of the considered algorithm of calculating the Lyapunov exponents is combination of the linearized system of equations and the original dynamical system in general form (12) for finding the state and perturbation vectors together.

8. Acknowledgments

The reported study was funded by RFBR for the research project No. 20-01-00347.

References

1. Sprott, J.C. *Elegant Chaos: Algebraically Simple Chaotic Flows*; World Scientific Publishing: Singapore, 2010; 304 pp.; doi:10.1142/7183
2. Tancredi, G.; Sánchez, A., Roig, F. A comparison between methods to compute Lyapunov exponents. *The Astronomical Journal* **2001**, *121*, 1171–1179, doi:10.1086/318732
3. Lozi, R.; Pchelintsev, A.N. A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case. *International Journal of Bifurcation and Chaos* **2015**, *25*, 1550187, 10 pp. doi:10.1142/S0218127415501874
4. Lozi, R.; Pogonin, V.A.; Pchelintsev, A.N. A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. *Chaos, Solitons and Fractals* **2016**, *91*, 108–114, doi:10.1016/j.chaos.2016.05.010
5. Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. *The European Physical Journal Special Topics* **2015**, *224*, 1469–1476, doi:10.1140/epjst/e2015-02472-1
6. Nemytskii, V.V.; Stepanov, V.V. *Qualitative Theory of Differential Equations*; Dover Publications; New York, 1989; 523 pp.
7. Afanas’ev, A.P.; Dzyuba, S.M. Method for constructing minimal sets of dynamical systems. *Differential Equations* **2015**, *51*, 831–837, doi:10.1134/S001226615070010
8. Afanas’ev, A.P.; Dzyuba, S.M. Construction of the minimal sets of differential equations with polynomial right-hand side. *Differential Equations* **2015**, *51*, 1403–1412, doi:10.1134/S0012266115110014
9. Afanas’ev, A.P.; Dzyuba, S.M. On recurrent trajectories, minimal sets, and quasiperiodic motions of dynamical systems. *Differential Equations* **2005**, *41*, 1544–1549, doi:10.1007/s10625-005-0312-1
10. Kuznetsov, S.P. *Dynamical Chaos*; 2nd ed.; Fizmatlit; Moscow, 2006; 356 pp.; in Russian.
11. Afraimovich, V.; Lin, W.; Rulkov, N. Fractal dimension for Poincaré recurrences as an indicator of synchronized chaotic regimes. *International Journal of Bifurcation and Chaos* **2000**, *10*, 2323–2337, doi:10.1142/S0218127400001456
12. Afraimovich, V.; Zaslavsky, G.M. Fractal and multifractal properties of exit times and Poincaré recurrences. *Physical Review E* **1997**, *55*, 5418–5426, doi:10.1103/PhysRevE.55.5418
13. Kac, M.; Uhlenbeck, G.E.; Hibbs, A.R.; Pol, B.V.D.; Gillis, J. *Probability and Related Topics in Physical Sciences*; Interscience; New York, 1959; 266 pp.
14. Penné, V.; Saussol, B.; Vaihenti, S. Fractal and statistical characteristics of recurrence times. *International Conference on Disorder and Chaos in honour of Giovanni Paladin* **1998**, *8*, 163–171, doi:10.1051/jp4:1998622
15. Afraimovich, V.; Ugalde, E.; Urias, J. *Fractal Dimensions for Poincaré Recurrences*; Volume 2; Elsevier; Amsterdam, 2006; 258 pp.
16. Anishchenko, V.S.; Khairulin, M.; Strelkova, G.; Kurths, J. Statistical characteristics of the Poincaré return times for a one-dimensional nonhyperbolic map. *The European Physical Journal B* **2011**, *82*, 219–225, doi:10.1140/epjb/e2011-20184-0
17. Anishchenko, V.S.; Birukova, N.I.; Astakhov, S.V.; Boev, S.V. Poincaré recurrences time and local dimension of chaotic attractors. *Russian Journal of Nonlinear Dynamics* **2012**, *8*, 449–460, in Russian.
18. Anishchenko, V.S.; Boev, Ya.I.; Semenova, N.I.; Strelkova, G.I. Local and global approaches to the problem of Poincaré recurrences. Applications in nonlinear dynamics. *Physics Reports* **2015**, *587*, 1–39, doi:10.1016/j.physrep.2015.05.004

19. Guedes, P.F.S.; Nepomuceno, E.G. Some remarks on the performance of Matlab, Python and Octave in simulating dynamical systems. *Anais do 14º Simpósio Brasileiro de Automação Inteligente* **2019**, *1*, 554–560, doi:10.17648/sbai-2019-111188

20. Pchelintsev, A.N. An accurate numerical method and algorithm for constructing solutions of chaotic systems. *Journal of Applied Nonlinear Dynamics* **2020**, *9*, 207–221, doi:10.5890/JAND.2020.06.004

21. Babadzhanjanz, L.K.; Sarkissian, D.R. Taylor series method for dynamic systems with control: convergence and error estimates. *Journal of Mathematical Sciences* **2006**, *139*, 7025–7046, doi:10.1007/s10958-006-0404-3

22. Dong, E.; Zhang, Z.; Yuan, M.; Ji, Y.; Zhou, X.; Wang, Z. Ultimate boundary estimation and topological horseshoe analysis on a parallel 4D hyperchaotic system with any number of attractors and its multi-scroll. *Nonlinear Dynamics* **2019**, *95*, 3219–3236, doi:10.1007/s11071-018-04751-3

23. Demidovich, B.P. *Lectures on Mathematical Theory of Stability*; Nauka; Moscow, 1967; 472 pp; in Russian.

24. Pchelintsev, A.N. Numerical and physical modeling of the dynamics of the Lorenz system. *Numerical Analysis and Applications* **2014**, *7*, 159–167, doi:10.1134/S1995423914020098

25. Pchelintsev, A.N.; Ahmad, S. Solution of the Duffing equation by the power series method. *Transactions of TSTU* **2020**, *26*, 118–123, doi:10.17277/vestnik.2020.01.pp.118-123

26. Overton, M.L. *Numerical Computing with IEEE Floating Point Arithmetic*; SIAM; Philadelphia, 2001, 106 pp; doi:10.1137/1.9780898718072

27. GNU MPFR Library for Multiple-Precision Floating Point Computations with Correct Rounding. Available online: http://www.mpfr.org (accessed on 18 July 2021).

28. Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P. MPFR: A multiple-precision binary floating-point library with correct rounding. *ACM Transactions on Mathematical Software* **2007**, *33*, 13, 15 pp, doi:10.1145/1236463.1236468

29. Pchelintsev, A.N. A numerical-analytical method for constructing periodic solutions of the Lorenz system. *Differencialnie Uravnenia i Protsesy Upravlenia* **2020**, *4*, 59–75, https://diffjournal.spbu.ru/pdf/20403-jdecp-pchelintsev.pdf

30. Luo, A.C.J.; Huang, J. Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. *Journal of Vibration and Control* **2011**, *18*, 1661–1674. doi:10.1177/1077546311421053

31. Luo, A.C.J. *Toward Analytical Chaos in Nonlinear Systems*; John Wiley & Sons; Chichester, 2014, 258 pp.

32. Luo, A.C.J.; Guo, S. Analytical solutions of period-1 to period-2 motions in a periodically diffused brusselator. *Journal of Computational and Nonlinear Dynamics* **2018**, *13*, 090912, 8 pp. doi:10.1115/1.4038204

33. Pchelintsev, A. The reliable calculations for the 4-th order system. *GitHub*. Available online: https://github.com/alpchelintsev/4th_order_system (accessed on 18 July 2021).