The uncorrelated long term γ-ray and X-ray variability of blazars and its implications on disk-jet coupling

Debbijoy Bhattacharya1, Ranjeev Misra2, A.R. Rao3, P. Sreekumar4

1Manipal Centre for Natural Sciences, Manipal University, Manipal - 576104, Karnataka, India
2Inter-University Centre for Astronomy and Astrophysics, Pune - 411007, India
3Tata Institute of Fundamental Research, Mumbai - 400005, India
4Space Astronomy Group, ISRO Satellite Centre, Bangalore - 560017, India

ABSTRACT
We examine the long term (~ 10 years) γ-ray variability of blazars observed by EGRET and Fermi and find that for six sources the average flux varied by more than an order of magnitude. For two of these sources (PKS 0208-512 and PKS 0528+134), there were extensive observations (at various observing periods) by EGRET. Hence these dramatic variations are not due to a single short time-scale flare, but reflect long term changes in the average flux. Over the last twenty years, these two sources were also the target of several X-ray observatories (e.g. ROSAT, ASCA, RXTE, BeppoSAX, Chandra, Suzaku, XMM-Newton and Swift). While the ratios of the average γ-ray fluxes between EGRET and Fermi observations are 22.9 ± 1.9 and 12.6 ± 1.5, their estimated $2 - 10$ keV X-ray flux do not show such dramatic variations. The X-ray emission from such flat spectrum radio quasars (FSRQs) are believed to be due to synchrotron self Compton, while γ-rays originate from inverse Comptonization of external soft photons from an accretion disk and/or broad line region. We argue that in this scenario, the only explanation for the uncorrelated variability is that there was an order of magnitude decrease in the external soft photons, while the jet parameters remained more or less constant. This result indicates that perhaps the accretion and jet processes are not tightly coupled in these sources.

Key words: galaxies: active — galaxies: jets — quasars: individual: PKS 0208-512 — quasars: individual: PKS 0528+134 — gamma-rays: galaxies — X-rays: galaxies

1 INTRODUCTION
Blazars are a subclass of active galactic nuclei (AGN) whose bolometric luminosity is dominated by γ-rays which sometimes extends to TeV energies. According to the unification scenario (Urry & Padovani 1995), they are jet dominated sources having a small jet to line-of-sight angle. They show high variability through-
They considered both synchrotron self Compton (SSC) and external Compton (EC) emission processes in their model and their results indicated that while X-rays are mainly produced via the SSC, γ-rays are dominated by EC process. This has been confirmed by using more detailed models and for other FSRQs (e.g., Abdo et al. 2010a; Palma et al. 2011; Sahayanathan & Godambe 2012, Mukherjee et al. 1999).

Blazars show variability in γ-rays over different time scales ranging from flares as short as ∼1 hour to flares extending for days or months (Hartman et al. 1999; Mattox et al. 1997; Hartman et al. 2001; Boettcher 2004). Blazars are also variable on still longer timescales of years or decades. The most striking evidence for this is that a fraction of the EGRET detected blazars are still not detected by the more sensitive Fermi telescope. Moreover, some EGRET blazars (e.g., PKS 0208-512) were found to be mostly in the low state during Fermi observations. While there have been several studies regarding the rapid variability and flaring activity of blazars and their possible connection to varying jet parameters (e.g., Böttcher 2003; Sahayanathan & Godambe 2012), it is not clear whether the very long term (~10 years) variations are similar or if they are intrinsically different phenomena.

In this work we study the long term variability (~10 year) of FSRQ that were monitored by EGRET during its operation (1991-1997) by comparing their average EGRET flux with those measured recently by Fermi i.e. after 2007. From 1997 to 2007, there was no γ-ray observatory available to study these sources at GeV energies (γ-ray satellite AGILE was launched in 2007, but no long term monitoring has been reported). There are pointed X-ray observations of these sources by different satellites (e.g., ROSAT, RXTE-PCA, BeppoSAX, SWIFT, etc.). Our motivation is to examine any correlation between the γ-rays and X-rays, which in turn would provide important clues to the main driver of the long term variability. We concentrate on the γ-ray and X-ray variability, since SED modelling indicates that although they both arise from the same region (indeed the same electron distribution), their radiative mechanisms are different and hence their response to variation in the intrinsic jet properties will be different.

Abdo et al. (2010b) and Palma et al. (2011) studied the relatively short term variability of blazars utilizing quasi-simultaneous multiwaveband observations. Abdo et al. (2010b) carried out quasi simultaneous multiwaveband observations of 5 γ-ray loud blazars between 2008 October and 2009 January. Using the result from SED modelling they argue that the difference between the low and high state of luminous blazars is due to the different kinetic power of the jet which is most likely related to the varying bulk Lorentz factor of outflow within the blazar emission zone. Palma et al. (2011) reported that PKS 0528+134 did not show any significant variability in γ-ray band on 1–2 weeks timescales. They found moderate variability in X-rays (∆F_X/⟨F_X⟩ ∼ 50%) and most radio frequencies (∆F_R/⟨F_R⟩ ∼ 20%) on timescales of 1–2 weeks. In optical bands the variability is found to be of up to ∆R ≤ 1 on timescale of several hours. However, the physics driving the long term variability may be different than the short term one.

Source Name	F_{EGRET}^a	F_{Fermi}^a	R^a
PKS 0208-512	86.7 ± 4.6	3.79 ± 0.24	22.9 ± 1.9
3EGJ 1614+3424	10.1 ± 1.5	0.49 ± 0.11	20.6 ± 5.5
PKS 1622-29	40.1 ± 3.1	2.40 ± 0.26	16.7 ± 2.2
PKS 0336-01	21.4 ± 5.0	1.35 ± 0.17	15.9 ± 4.2
PKS 0528+134	32.4 ± 1.2	2.57 ± 0.29	12.6 ± 1.5
PKS 1454-354	1.1 ± 0.3	11.9 ± 0.42	0.09 ± 0.02

^a γ-ray (> 1 GeV) flux during EGRET and Fermi observations in 10^{-9} photon cm^{-2} s^{-1}. R is the ratio of the EGRET to Fermi flux.

Figure 1. EGRET lightcurve (> 100 MeV) of PKS 0208-512 (top panel) and PKS 0528+134 (bottom panel) averaged over each viewing period. The dash line indicates the average P1234 flux value. MJD 48200 and MJD 50000 correspond to 1990 November 5 and 1995 October 10 respectively.

2 OBSERVATIONS

From the 3rd EGRET point source catalogue (Hartman et al. 1999), blazars have been identified using multi-wavelength information (Hartman et al. 1999; Mattox, Hartman, & Reimer 2001). Using a different identification technique Sowards-Emmerd et al. (2003, 2004) have obtained a more complete census of plausible blazar counterparts. We use their source list augmented with source identifications from 3rd EGRET catalogue in regions of the sky that were not covered by Sowards-Emmerd et al. (2003, 2004). We further consider only FSRQs with a cumulative source detection significance > 4σ for sources above the Galactic plane (|θ| > 10°) and > 5σ for those in the Galactic plane (−10° ≤ θ ≤ 10°). The γ-ray flux averaged over all the cycles of EGRET observations (P1234) were used for our calculations. The P1234 flux has been calculated from the counts map over four cycles. Our final source list contains 56 FSRQs out of which 38 are also present in the 2nd Fermi catalogue. To be compatible with the Fermi data, we consider only EGRET γ-ray fluxes above 1 GeV, which are calculated from the average spectral index and > 100 MeV flux quoted in the 3rd EGRET catalogue.

We find 5 FSRQs which are brighter by an order of magnitude or more during EGRET era compared to the average flux observed from Fermi data while there is one source that is fainter by a factor of ∼10 (Table 1).

We focus first on two of these highly variable six sources (PKS 0208-512 and PKS 0528+134) that have been detected in several EGRET viewing cycles. These two sources were also observed in X-rays by different satellites during EGRET to Fermi era. Figure 1 top and bottom panels show EGRET lightcurves of PKS 0208512 and PKS 0528+134 respectively. The dash line indicates the P1234 average flux value. The figure shows that there was extensive coverage of these sources by EGRET and the average values are not dominated by a single, short time-scale flare.
PKS 0208-512 shows the maximum flux variations with an average flux over the subset of data.

Table 2. Summary of X-ray observations of PKS 0208-512 and PKS 0528+134

Satellite	Date	Energy band (keV)	Fluxa	Flux$_{2-10keV}$b	Ref.c
PKS 0208-512	1990-1991	0.1 – 2.4	1.72 ± 0.36	0.98 ± 0.21	1
ASCA	1995	0.5 – 10	9.49	6.70	2
ASCA	1996	2 – 10	5.77	5.77	3
BeppoSax	2001	2 – 10	4.7	4.7	4, 5
Chandra	2001	2 – 10	2.1d	2.1d	6
SWIFT	2005	0.5 – 10	3.4	1.9	7, 8
SWIFT	2008	0.5 – 10	2.7	1.6	7, 8
Suzaku	2008	2 – 10	1.37 ± 0.06	1.37 ± 0.06	7

PKS 0528+134	1990-1991	0.1 – 2.4	3.13 ± 0.63	3.99 ± 0.80	1, 9, 10
ASCA	1994	2 – 10	3.5$^{+0.8}_{-0.4}$	3.5$^{+0.8}_{-0.4}$	11
ASCA	1995	2 – 10	8.98	8.98	3
RXTE-PCA	1996	2 – 10	10.62 ± 0.70e	10.62 ± 0.70e	6
BeppoSax	1997	2 – 10	2.5	2.5	5, 12
RXTE-PCA	1999	2 – 10	7.00 ± 0.58e	7.00 ± 0.58e	-
Suzaku	2008	2 – 10	2.8	2.8	13
RXTE-PCA	2009	2 – 10	< 7.85e	< 7.85e	-
XMM-Newton	2009	0.2 – 2	0.28$^{+0.03}_{-0.04}$	1.35 ± 0.11	13
SWIFT	2009	0.2 – 10	4.0 ± 0.6	3.0 ± 0.5	14

aReported X-ray flux in 10$^{-12}$ erg cm$^{-2}$s$^{-1}$ in the energy band given in column 3.
bUsing the fluxes and spectral parameters observed in different energy bands given in references the X-ray fluxes are converted in 2-10 keV energy band in 10$^{-12}$ erg cm$^{-2}$s$^{-1}$ unit.
cReferences: 1: Brinkmann, Siebert, & Bolte (1994); 2: Reeves & Turner (2000); 3: Ueda et al. (2001); 4: Tavecchio et al. (2002); 5: Donato, Sambruna, & Gliozzi (2005); 6: Ghisellini et al. (1999); 7: Abdo et al. (2010b); 8: Zhang et al. (2010); 9: Zhang et al. (1994); 10: Mukherjee et al. (1996); 11: Sambruna et al. (1997); 12: Schwartz et al. (2006); 13: Palma et al. (2011); 14: Ghisellini, Tavecchio, & Ghirlanda (2009).
dFlux has been calculated from the rest-frame 2 – 10 keV luminosity given in the reference.
eAveraged over the observations shown in Fig. 2.

PKS 0528+134 is one of the most luminous blazars detected by EGRET and showed several flaring episodes from 1990 to 1997 (Mukherjee et al. 1997). It was also detected by both OSSE and COMPTEL onboard CGRO (McNaron-Brown et al. 1995; Collmar et al. 1997) and has been observed simultaneously at other wavelengths (Mukherjee et al. 1999 and references therein). PKS 0208-512 shows the maximum flux variations with an average EGRET flux that is 22.9 ± 1.9 times higher than the average Fermi flux. Over the last twenty years, both sources were observed by several X-ray satellites and Table 2 gives their X-ray fluxes as reported. These different instruments measured X-ray fluxes in different energy bands (column 3 of Table 2). Using the reported spectral parameters, we converted the observed flux in different energy bands into flux in the 2-10 keV band. Specifically, we used the reported column density and spectral index to model the spectrum in both sources.

Figure 2. RXTE-PCA lightcurve of PKS 0528+134. The left-hand branch of points of the top panel represents the observations during 1996 August and September, and the middle and right-hand branch represent observations during 1999 January and May, respectively. The bottom panel represents observations during 2009. The horizontal dash line indicates the average flux over the subset of data.

Figure 3 compares the γ-ray and X-ray fluxes at different times for the two sources. EGRET γ-ray fluxes are averaged over each observing period (~2 weeks) and the Fermi flux is averaged over the first two years of observation. X-ray fluxes are from pointed observations. While there is considerable scatter in the X-ray fluxes, there is no evidence for a dramatic decrease in X-ray flux, especially for PKS 0528+134. For PKS 0208-512, there is a hint of a decrease in the X-ray flux if one neglects the early ROSAT point. However, this decrease is at most a factor of 3, which is significantly less than the variation in the γ-ray flux of a factor of 23. Thus, we conclude that the large variability observed in γ-rays is not seen in X-rays.
and Fermi era. The number of observations do not permit a reliable conclusion. For the other four sources with high γ-ray flux variability, only sparse X-ray observations are available. Nevertheless we report all available X-ray fluxes in Table 3. For PKS 1622-29, we have analysed existing RXTE PCA observations of 1997 and 2000. As compared to the early ROSAT observation, X-ray flux has increased in contrast to γ-ray emission which decreased. However, the small number of observations do not permit a reliable conclusion. For the rest, there are no reported X-ray observations during both EGRET and Fermi era.

Statistical errors on the measured flux have been reported for some of the observations. However, due to the uncertainties in the relative normalisations between different instruments and in the extrapolation to the 2-10 keV band, systematic errors on flux could be higher, but not expected to be larger than a factor of 2.

For two of the blazars, PKS 0528+134 and PKS 1622-29, the RXTE All Sky Monitor (ASM) lightcurves are available in the RXTE website [http://xte.mit.edu/asm/cl/One-Day.html]. However, the long term time averaged count rates for these sources PKS 0528+134 and PKS 1622-29 are not significantly higher than the systematic positive bias expected in ASM data (Chinitis et al. 2009). Thus ASM did not detect these sources.

It is to be noted that X-ray coverage of these sources are quite sparse and hence, the actual short term variability can be under-sampled. However, our main aim is to search for any long term variability which is less affected by the under-sampling of light curves. Also, for PKS 0528+134, quasi-simultaneous gamma-ray and X-ray observations have been carried out during almost all EGRET observations. It was observed that apart from a single huge flare, the variation in both X-ray and gamma-ray emission during these times are less than a factor of 3.

Satellite	Date	Energy band (keV)	Flux a	Flux 2–10 keV b	Ref. c	
PKS 1622-29	ROSAT	1990-1991	0.1−2.4	0.32±0.08	0.31±0.08	1.2
	RXTE-PCA	1997	2−10	11.95±0.26	11.95±0.26	-
	RXTE-PCA	2006	2−10	14.49±0.25	14.49±0.25	-
PKS 0336-01	Einstein	1979−1980	0.15−3.5	0.48±0.20	0.68±0.28	3
	ROSAT	1990-1991	0.1−2.4	0.98±0.29	0.73±0.22	1
PKS 1454-354	ROSAT	1990-91	0.1−2.4	0.510	0.290	1.4
	SWIFT	2008 January	2−10	0.6±0.12	0.6±0.12	5
	SWIFT	2008 September	2−10	1.8±0.4	1.8±0.4	5
3EGJ 1614+3424	ROSAT	1990-91	0.1−2.4	0.401	0.228	1.4

Summary of X-ray observations of other four FSRQs

For the other four sources with high γ-ray flux variability, only sparse X-ray observations are available. Nevertheless we report all available X-ray fluxes in Table 3. Using fluxes and spectral parameters observed in different energy bands given in references X-ray fluxes are derived for a common 2-10 keV energy band in 10^{−12} erg cm^{−2} s^{−1} unit. References: 1: Brinkmann et al. (1994) 2: Mattox et al. (1997) 3: Owen, Helfand, & Spangler (1981) 4: Massaro et al. (2009) 5: Chisellini et al. (2009).

Specifically, Mukherjee et al. (1999) carried out a multiwavelength study of PKS 0528+134 during EGRET observations and SED modelling showed that during the γ-ray high state, the γ-ray emission was due to external Compton (EC) emission. Using Fermi observations, Palma et al. (2011) also carried out a coordinated multi-wavelength campaign and similarly concluded that as expected for FSRQs, the γ-ray emission is mainly due to EC process while SSC process is the primary X-ray emission mechanism.

In this scenario, we investigate variability in which jet or environment parameters can give rise to a strong variation in the EC component (i.e. γ-rays) while not affecting the SSC one (i.e. X-rays). Variation of the magnetic field density is ruled out since that would affect SSC and not the EC emission. Similarly, a change in the number density of electron n would affect SSC more (n^8) than the EC emission (n^6). Since, blazar emission is highly beamed, observed flux is a sensitive function of the Doppler beaming factor (δ). For a discrete jet, synchrotron self Compton emission is proportional to δ^{5(1−α)}, whereas, external Compton flux is proportional to δ^{5(1−α/2)}, where α is the energy spectral index. The average value of γ-ray photon spectral index (Γ = α + 1) derived from Fermi and EGRET data sets are 2.47 ± 0.19 and 2.34 ± 0.15 respectively (Abdo et al. 2010a; Bhattacharya, Sreekumar, & Mukherjee 2009) and hence variation in α cannot be the cause of the γ-ray intensity variation. For the average value of α = 1.4, the Doppler factor δ would need to decrease by ∼ 1.4 to cause a factor of 10 decrease in the EC flux. However, this would have led to a decrease in the SSC component as well by a factor of ∼ 5, which was not observed. Thus, variation in any of the intrinsic jet parameters such as number density,

3 DISCUSSION

In leptonic jet models, non-thermal electrons in the jet produce synchrotron emission. These electrons upscatter the synchrotron photons (SSC) and also photons coming out from accretion disk and/or broad line region (BLR) (EC) via the inverse Compton process. These emission processes contribute to the SED of blazars and modelling suggests that γ-ray emissions of FSRQs are dominated by EC process while the X-rays are primarily due to SSC (e.g., 3C 279: Pan et al. 1999; Abd et al. 2010a; Sahayanathan & Godambe 2013, PKS 0528+134: Palma et al. 2011). On the other hand, SEDs of BL Lac sources are better fitted by synchrotron self Compton (SSC) emission (e.g., Mrk 501: Petry et al. 2000; Abdo et al. 2010a). Recent progress in theoretical models for blazar emission is summarised by Boettcher (2010).
magnetic field, spectral index or Doppler factor cannot explain the uncorrelated variation in X-ray/γ-ray emission.

The EC emission is proportional to the external photon flux from accretion disk or BLR region, while SSC emission is independent. If the external photon flux was a factor of ~ 10 more during EGRET observation time, then it would naturally explain why γ-rays remained nearly constant. This has important implications on the relationship between the jet and the accretion process. If the flux from the disk or BLR, which is connected to the accretion process, can change by an order of magnitude but the average intrinsic properties of the jet are not affected, it implies very weak or no coupling between the accretion and jet emission processes.

For PKS 0528+134, the X-ray observations showed no significant variation (Fig. 3). It is evident that average X-ray flux with an error of one percent over two year of Fermi observations. The boxes represent EGRET fluxes (> 1 GeV) averaged over each observing period (~ 2 weeks). The scale for gamma-ray fluxes is shown in the right side of the figure. MID 48000 and MID 56000 correspond to 1990 April 19 and 2012 March 14 respectively.

Apart from synchrotron process, the photometric observation will have contributions from accretion disk, BLR region and also from the host galaxies. So the photometric flux is not always dominated by synchrotron and/or synchrotron self Compton processes. PKS 0528+134 was observed in optical during few EGRET observing periods and the variation is within a factor of ~ 3. This source was also observed in optical during the night of 2001 August 29 (Whiting et al. 2003; Palma et al. 2011) also observed the source in the first two years of Fermi observations. The boxes represent EGRET fluxes (> 1 GeV) averaged over each observing period (~ 2 weeks). The scale for gamma-ray fluxes is given in the right side of the figure. MID 48000 and MID 56000 correspond to 1990 April 19 and 2012 March 14 respectively.

This decrease in Doppler factor alone cannot explain the observed large γ-ray flux variation. An additional decrease in the external photon flux by a factor of ~ 5 is required. Thus in this extreme case, a factor of 5 change in the accretion process caused only a modest ~ 1.17 factor change in the Doppler factor, implying that the accretion and jet processes are not tightly coupled.

If the external photons arising from the accretion disk or the BLR region did indeed change significantly over time, one can observe a significant decrease in the optical broad line flux during the Fermi era compared to EGRET. Such a decrease, would be a direct evidence for the proposed model. However, in order to obtain an average optical flux long term spectroscopic monitoring of these sources in optical is required. While, there were several photometric observations of PKS 0528+134 (e.g. Villata et al. 1997; Raiteri et al. 1998; Mukherjee et al. 1999), optical spectroscopic observations have been carried out only in recent years (Palma et al. 2011).

Apart from synchrotron process, the photometric observation will have contributions from accretion disk, BLR region and also from the host galaxies. So the photometric flux is not always dominated by synchrotron and/or synchrotron self Compton processes. PKS 0528+134 was observed in optical during few EGRET observing periods and the variation is within a factor of ~ 3. This source was also observed in optical during the night of 2001 August 29 (Whiting et al. 2003; Palma et al. 2011) also observed the source in 2009 and the variation between these observations (BVR band) is a factor of ~ 2.

There were only few optical observations of PKS 0208-512. This source was observed in optical wavebands during the nights of 2001 August 29 (Whiting et al. 2003) and 2008 December 14 (Abdo et al. 2010b). So, it is not possible to have a meaningful long term average of optical emission from this object.

PKS 1622-29 was monitored in optical (mainly in R band) for more than a decade by the program for Extragalactic Astronomy (PEGA) (Osterman Meyer et al. 2008). Though the source showed strong variation in shorter time scale (Fig. 1 and 2 of Osterman Meyer et al. 2008), the long term average variation is within a factor of ~ 3. However, the number of pointed observations is too few to derive a reliable long term average flux. More importantly, a huge γ-ray flare of this source was observed with EGRET and hence, the calculated EGRET average flux may be overestimated. Therefore, we have mainly considered PKS 0208-512 and PKS 0528+134 for our analysis. Unfortunately, as per our knowledge, there are no reported optical spectra of these blazars during both EGRET and Fermi times.

Radio emission probably originates in a different emission region than that of X-ray and γ-ray. Hence, the high frequency radio flux might be delayed by a few months to that of X-rays and γ-rays. Since the main objective of this work is to study the long term behaviour of blazars (~ 10 year), due to the longer cooling time scales at radio wavelengths, the high-frequency radio power could be a good representative for the long time-averaged jet power. PKS 0528+134 has been observed at a wavelength of 850 μm from 1997 April to 2004 December using SCUBA camera at the James Clerk Maxwell Telescope (Jenness, Robson, & Stevens 2010). A total of 129 observations were carried out over 62 nights. The source did not show large variations during this period ($\frac{F_{\nu_{\text{max}}}}{F_{\nu_{\text{min}}}} < 3$). Lonsdale, Doeleman, & Phillips (1998) conducted a survey of bright extragalactic radio sources with 3 mm (100 GHz) VLBI. They reported that the 3 mm fluxes are 2.9 Jy and 2.5 Jy as measured by Kitt Peak and Haystack telescopes and MPIR 100 me-
The measured 150 GHz flux of PKS 0208-512 is 1268 ± 86 mJy utilising the observation with Arcminute Cosmology Bolometer Array Receiver (ACBAR) during 2002 observing seasons (Kuo et al. 2007). WMAP has detected PKS 0208-512 and no significant variation is noticed among one year averaged, three year averaged and five year averaged fluxes (Bennett et al. 2003; Hinshaw et al. 2007; Wright et al. 2009). Using the five year WMAP data, Chen & Wright (2009) reported that observed 41 GHz, 61 GHz and 94 GHz fluxes of this source are (2.7 ± 0.2) Jy, (2.7 ± 0.2) Jy and (1.8 ± 0.4) Jy respectively. PKS 0208-512 has been observed at other high radio frequencies at different times and no large flux variation is noticed (e.g., Ricci et al. 2006; Massardi et al. 2008; Murphy et al. 2010; Tingay et al. 2003; etc.).

The results obtained in this work need to be confirmed for other highly variable γ-ray sources through reliable long term X-ray monitoring data. It would also be interesting to study long term behaviour of such sources at other wavelengths which may provide additional clues on the strength of coupling between the jet and accretion process.

ACKNOWLEDGEMENTS

This work is based on the data provided by the ASM/RXTE teams at MIT and at the RXTE SOF, GOF and High Energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center.

REFERENCES

Abdo A. A. et al., 2010a, ApJ, 716, 30
Abdo A. A. et al., 2010b, ApJ, 716, 835
Abdo A. A. et al., 2010c, ApJ, 720, 435
Ackermann M. et al., 2011, ApJ, 743, 171
Agudo I., Thum C., Wiesemeyer H., Krichbaum T. P., 2010, ApJS, 189, 1
Atwood W. B. et al., 2009, ApJ, 697, 1071
Bennett C. L. et al., 2003, ApJS, 148, 97
Bhattacharya D., Sreekumar P., Mukherjee R., 2009, Research in Astronomy and Astrophysics, 9, 85
Biglami G. F. et al., 1981, A&A, 93, 71
Boettcher M., 2004, in ESA Special Publication, Vol. 552, Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe, 16-20 February 2004, Munich, Germany, V. Schoenfelder, G. Lichti, & C. Winkler, ed., p. 543
Boettcher M., 2010, ArXiv e-prints, astro-ph:1006.5048
Böttcher M., 2007, Ap&SS, 309, 95
Böttcher M. et al., 2003, ApJ, 596, 847
Brinkmann W., Siebert J., Boller T., 1994, A&A, 281, 355
Cara M., Lister M. L., 2008, ApJ, 674, 111
Chen X., Wright E. L., 2009, ApJ, 694, 222
Chitnis V. R., Pendharkar J. K., Bose D., Agrawal V. K., Rao A. R., Misra R., 2009, ApJ, 698, 1207
Collmar W. et al., 1997, A&A, 328, 33
Donato D., Sambruna R. M., Gliozzi M., 2005, A&A, 433, 1163
Ferrari A., 1998, ARA&A, 36, 539
Ghisellini G. et al., 1999, A&A, 348, 63
Ghisellini G., Tavecchio F., Ghirlanda G., 2009, MNRAS, 399, 2041
Gu M., Cao X., Jiang D. R., 2009, MNRAS, 396, 984
Hartman R. C. et al., 1999, ApJS, 123, 79
Hartman R. C. et al., 2001, ApJ, 558, 583
Hinshaw G. et al., 2007, ApJS, 170, 288
Jenness T., Robson E. I., Stevens J. A., 2010, MNRAS, 401, 1240
Kanbach G. et al., 1988, Space Sci. Rev., 49, 69
Kellermann K. I. et al., 2004, ApJ, 609, 539
Kembhavi A., 1999, Quasar and Active Galactic Nuclei. Cambridge University Press, —1999
Krolik J., 1999, Active Galactic Nuclei. Princeton University Press, —1999
Kuo C. L. et al., 2007, ApJ, 664, 687
Lanyi G. E. et al., 2010, ApJ, 139, 1695
Lee S.-S., Lobanov A. P., Krichbaum T. P., Witzel A., Zensus A., Bremer M., Greve A., Greving M., 2008, AJ, 136, 159
Lister M. L., Homan D. C., 2005, AJ, 130, 1389
Lonsdale C. J., Doeleman S. S., Phillips R. B., 1998, AJ, 116, 8
Marscher A. P., 2009, ArXiv e-prints, astro-ph:0909.2576
Massardi M. et al., 2008, MNRAS, 384, 775
Massardi M., López-Camargo M., González-Nuevo J., Herranz D., de Zotti G., Sann J. L., 2009, MNRAS, 392, 733
Massaro E., Giommi P., Leto C., Marchegiani P., Maselli A., Perri M., Piranomonte S., Sclavi S., 2009, A&A, 495, 691
Mattox J. R., Hartman R. C., Reimer O., 2001, ApJS, 135, 155
Mattox J. R., Wagner S. J., Malkan M., McGlynn T. A., Schachter J. F., Grove J. E., Johnson W. N., Kurfess J. D., 1997, ApJ, 476, 692
Maury A. J. et al., 2010, A&A, 512, A40
McNaron-Brown K. et al., 1995, ApJ, 451, 575
Mukherjee R. et al., 1997, ApJ, 490, 116
Mukherjee R. et al., 1999, ApJ, 527, 132
Mukherjee R. et al., 1996, ApJ, 470, 831
Murphy T. et al., 2010, MNRAS, 402, 2403
Nolan P. L. et al., 2012, ApJS, 199, 31
Osterman Meyer A. et al., 2008, AJ, 136, 1398
Owen F. N., Helfand D. J., Spangler S. R., 1981, ApJ, 250, L55
Palmi N. I. et al., 2011, ApJ, 735, 60
Petrov L., Hirota T., Homma M., Shibata K. M., Jike T., Kobayashi H., 2007, AJ, 133, 2487
Petry D. et al., 2000, ApJ, 536, 742
Pian E. et al., 1999, ApJ, 521, 112
Raiteri C. M., Ghisellini G., Villata M., de Francesco G., Lanteri L., Chiaberge M., Peila A., Antico G., 1998, A&AS, 127, 445
Reeves J. N., Turner M. J. L., 2000, MNRAS, 316, 234
Ricci R., Randioni I., Gruppioni C., Sault R. J., de Zotti G., 2006, A&A, 445, 465
Sahayanathan S., Godambe S., 2012, MNRAS, 419, 1660
Sambruna R. M. et al., 1997, ApJ, 474, 639
Schwartz D. A. et al., 2006, ApJ, 640, 592
Sikora M., Błażejowski M., Begelman M. C., Moderski R., 2001, ApJ, 554, 1
Sowards-Emmerd D., Romani R. W., Michelson P. F., 2003, ApJ, 590, 109
Sowards-Emmerd D., Romani R. W., Michelson P. F., Ulvestad J. S., 2004, ApJ, 609, 564
Tavecchio F. et al., 2002, ApJ, 575, 137
Tingay S. J., Jauncey D. L., King E. A., Tzioumis A. K., Lovell J. E. J., Edwards P. G., 2003, PASJ, 55, 351
Ueda Y., Ishisaki Y., Takahashi T., Makishima K., Ohashi T., 2001, ApJS, 133, 1
Urry C. M., Padovani P., 1995, PASP, 107, 803
Villata M. et al., 1997, A&AS, 121, 119
Whiting M. T., Majewski P., Webster R. L., 2003, PASA, 20, 196
Wiren S., Valtaoja E., Terasranta H., Kotilainen J., 1992, AJ, 104, 1009
Wright E. L. et al., 2009, ApJS, 180, 283
Zhang S., Collmar W., Torres D. F., Wang J.-M., Lang M., Zhang S.-N., 2010, A&A, 514, A69
Zhang Y. F., Marscher A. P., Aller H. D., Aller M. F., Terasranta H., Valtaoja E., 1994, ApJ, 432, 91