Comparative Analysis of the Molodensky and Kotsakis Ellipsoidal Heights Transformation between Geocentric and Non-Geocentric Datums

S. O. Eteje a* and V. N. Ugbelase b

a Eteje Surveys and Associates, Benin City, Nigeria.
b Danhill Geosurveys, Issele-Uku, Nigeria.

Authors’ contributions
This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JGEESI/2021/v25i1030323
(1) Dr. Wen-Cheng Liu, National United University, Taiwan.
(2) Polina Lemenkova, Université Libre de Bruxelles, Belgium.
(1) Dr. Sivanthi Aditanar College of Engineering, India.
Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here:
https://www.sdiarticle5.com/review-history/81459

ceived 17 October 2021
Accepted 20 December 2021
Published 22 December 2021

Original Research Article

ABSTRACT

The non-availability of ellipsoidal heights of local geodetic Datums has made it necessary for the application of ellipsoidal heights transformation models to the available global ellipsoidal heights to obtain their respective theoretical heights in local Datums. It is required to know the accuracy, as well as reliability of any model of interest before its application. For that reason, this study comparatively analyses the Molodensky and Kotsakis models for the transformation of ellipsoidal heights between geocentric and non-geocentric Datums to determine the reliability of the Kotsakis model. The Global Navigation Satellite System (GNSS) data of the used stations were processed in World Geodetic System 1984 (WGS84) datum to obtain their global geographic coordinates and ellipsoidal heights. The coordinates, ellipsoidal heights and the transformation parameters between WGS84 and Minna Datums were applied to the Molodensky and Kotsakis models to compute the Clarke 1880 theoretical heights of the stations. The Molodensky model was used as a reference to which the Kotsakis model ellipsoidal heights were compared to obtain the Kotsakis model ellipsoidal heights discrepancies, as well as residuals. The residuals were used to compute the
Root Mean Square Error (RMSE) of the Kotsakis model. The computed RMSE, as well as reliability of the model is 1.244 m. The study concluded that the low reliability, as well as accuracy of the Kotsakis model might be as a result of the two rotation datum shift parameters in it as they are the main differences between the two models.

Keywords: Datum; ellipsoidal; geocentric; height; kotsakis; model; molodensky; transformation.

1. INTRODUCTION

Practical height computation from the processed observed Global Navigation Satellite System (GNSS) data requires the application of geoid height to the ellipsoidal height obtained from the processed observations. Ellipsoidal heights are theoretical heights obtained from the GNSS observations, which are measured from the surface of the reference ellipsoid to the observed point on the earth surface [1]. Non-geocentric datum ellipsoidal heights are not readily available in most of the GNSS observation areas and regions. Most GNSS height adjustments, as well as fitting during observations processing are done using the orthometric heights of the existing controls, used as reference stations in the observation. However, ellipsoidal heights are applied to the GNSS observation for theoretical height adjustment, likewise orthometric height to spirit levelling for practical heights reduction. The orthometric heights are measured along the gravity vector direction and referenced to the geoid, as well as the mean seal level [2]. The ellipsoidal and orthometric heights have their respective reference surfaces. The erroneous use of the orthometric height for the GNSS observations processing to obtain local ellipsoidal heights of points is as a result of the unavailability of ellipsoidal heights in the observation area or region. The Clarke 1880 ellipsoid adopted for geodetic computation in Nigeria is flatter and bigger compared to the WGS 84 spheroid (see Fig. 1). Nigeria is located between latitudes 4°N and 14°N, which is closer to the equator than the North Pole. So, it is expected that the ellipsoidal heights computed on the Clarke 1880 are smaller in value than those computed on the World Geodetic System 1984 (WGS84) ellipsoid.

The local, as well as non-geocentric datum ellipsoidal heights can be obtained from the conversion of ellipsoidal heights computed on the global, as well as geocentric (WGS84) ellipsoid. The conversion can be achieved through the application of the 5-parameters Molodensky’s model [3,4,5] and the 8-parameters Kotsakis model [6] for ellipsoidal heights transformation between the geocentric and non-geocentric Datums, as well as reference frames. The Molodensky model involves the use of the 3 translation datum shift parameters, change in semi-major axis and difference in flattening between the two reference frames, as well as ellipsoids while the Kotsakis model comprises 3 translation and 2 rotation datum shift parameters, change in scale, change in semi-major axis and difference in flattening between the two reference ellipsoids. The Molodensky method was recently used by [7] for the determination of the ellipsoidal height of the Nigerian geodetic/Minna datum and Root Mean Square Error (RMSE) of 0.00m was achieved. The method was compared with other two methods and was recommended as the best among the three methods. The Kotsakis method has not really been applied to Nigeria. Here, the Molodensky method is used as a reference to which the Kotsakis method is compared to determine its reliability. Consequently, this study comparatively analyses the Molodensky and Kotsakis ellipsoidal heights transformation between geocentric and non-geocentric Datums models to determine the reliability of the Kotsakis model.

2. METHODOLOGY

The adopted methodology involves the transformation of geocentric datum (WGS84) ellipsoidal heights obtained from the GNSS observations to local ellipsoidal height in the Nigeria Minna datum using the Molodensky and Kotsakis methods and comparing their results. The application of the two methods requires the use of the 5-parameters Molodensky change in ellipsoidal height computation model, 8-parameters Kotsakis model, datum shift, as well as transformation parameters between the WGS84 and Minna Datums, and the two Datums, as well as ellipsoids properties (semi-major axis and flattening).
Fig. 1. Relationship between WGS84 and Clarke 1880 ellipsoids

2.1 The 5-Parameters Molodensky Model

The 5-parameters Molodensky model used for the transformation of ellipsoidal heights between geocentric and non-geocentric reference frames is [3,4,5,7,8].

\[
\Delta h_{\text{WGS84}} = T_x \cos \phi \cos \lambda + T_y \cos \phi \sin \lambda + T_z \sin \phi - \Delta a \left(\frac{a}{R_N} \right) + \Delta f \left(\frac{b}{a} \right) R_N \sin^2 \phi
\]
(1)

Where,

\(T_x, T_y, T_z \) = Translation parameters between WGS84 and Minna Datum.

\(\phi, \lambda \) = Geographic coordinates (Latitude and Longitude) of points.

\(a \) = Equatorial radius of the Clarke 1880 ellipsoid.

\(b \) = Polar radius of the Clarke 1880 ellipsoid.

\(f \) = Flattening of the Clarke 1880 ellipsoid.

\(\Delta a \) = Change in equatorial radius between the two ellipsoids (Minna minus WGS84)

\(\Delta f \) = Change in flattening between the two ellipsoids (Minna minus WGS84)

\(R_N = \text{Radius of curvature in prime vertical} = \frac{a}{\left(1 - e^2 \sin^2 \phi \right)^{1/2}} \)
(2)

\(e^2 = \text{Eccentricity squared} = 2f - f^2 = \frac{a^2 - b^2}{a^2} \)
(3)

\(b = a(1 - f) \)
(4)

Having computed \(\Delta h_{\text{WGS84}} \), the non-geocentric (Clarke 1880) ellipsoidal heights (\(h_{\text{Clarke1880}} \)) are obtained using [5,7]

\[
h' - h = \delta h(t_x) + \delta h(t_y) + \delta h(t_z) + \delta h(e_x) + \delta h(e_y) + \delta h(e_z) + \\
+ \delta h(\delta a) + \delta h(\delta f)
\]
(6)

2.2 The 8-Parameters Kotsakis Model

The 8-parameters Kotsakis model used for the transformation of ellipsoidal heights between geocentric and non-geocentric reference frames is [6].
Where,

\[\delta h(t_x) = t_x \cos \varphi \cos \lambda \] (7)
\[\delta h(t_y) = t_y \cos \varphi \sin \lambda \] (8)
\[\delta h(t_z) = t_z \sin \varphi \] (9)
\[\delta h(\varepsilon_x) = -\varepsilon_x N e^2 \sin \varphi \cos \varphi \sin \lambda \] (10)
\[\delta h(\varepsilon_y) = \varepsilon_y N e^2 \sin \varphi \cos \varphi \cos \lambda \] (11)
\[\delta h(\delta s) = (a W + h) \delta \varepsilon \] (12)
\[\delta h(\delta a) = -W \delta a \] (13)
\[\delta h(\delta f) = \frac{a(1-f)}{W} \sin^2 \varphi \delta f \] (14)
\[W = \sqrt{1 - e^2 \sin^2 \varphi} \] (10)

N in equations (10) and (11) is the radius of curvature in prime vertical as given in equation (2).

The quantities \(\delta a = \Delta a = a' - a \) and \(\delta f = f' - f \) correspond to the difference in the numerical values for the semi-major axis and the flattening of the reference ellipsoid, as these are used in the respective reference frames, GRF1 and GRF2 [6].

2.3 Transformation Parameters between WGS84 and Minna Datum (Clarke 1880 Ellipsoid)

The transformation parameters from WGS84 to Minna datum are [9]

\[
\begin{align*}
T_x &= 93.809786 \pm 0.3758573 \text{Dm} \\
T_y &= 89.748672 \pm 0.3758573 \text{Dm} \\
T_z &= -118.83766 \pm 0.3758573 \text{Dm} \\
R_x &= 0.00001087 \text{m} \pm 0.000001 \text{m} 1322 \\
R_y &= 0.00000184213 \text{m} \pm 0.000001 \text{m} 9539 \\
R_z &= 0.000002164542 \pm 0.0000001 \text{m} 5997 \\
S &= 0.99999393 \pm 0.000001 \text{m} 8219
\end{align*}
\] (11)

2.4 The Nigerian Geodetic and WGS 84 Datums

The Nigerian geodetic datum (Clarke 1880 ellipsoid) and WGS84 ellipsoid semi-major axes (a) and flattening (f) are respectively [10] 6378249.145 m and 1/293.465, and 6378137.000 m and 1/298.257223563.

\[\Delta a = a' - a = 112.145 \]
\[\Delta f = f' - f = 0.00005475 \times 713951853 \]

2.5 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) of a model is computed to indicate its accuracy, as well as reliability. Here, the RMSE is computed by comparing the transformed ellipsoidal heights obtained from the two models using the Molodensky model as a reference. The computation of the RMSE of the transformation model is done using [11].

\[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_i^2} \] (12)

Where,

\[e_i^2 = (h_{\text{Molodensky}} - h_{\text{Kotsakis}})^2 \]

\(h_{\text{Molodensky}} \) = Molodensky model ellipsoidal height

\(h_{\text{Kotsakis}} \) = Kotsakis model ellipsoidal height.

\(n \) = Number of points.

A total of 11 GNSS points located within Edo State were used in the study. The observation of the points was carried out with 5 dual-frequencies GNSS receivers. The geographic coordinates and ellipsoidal heights of the points were processed on the WGS84 ellipsoid using the Compass Post-processing software as the study involves the transformation of global dataset to local. Table 1 shows the geocentric (WGS84) datum geographic coordinates and ellipsoidal heights of the used stations.

The changes in ellipsoidal heights between the WGS84 and Clarke 1880 spheroids and the Clarke 1880 ellipsoidal heights regarding the Molodensky model were respectively computed...
using equations (1) and (5) while those of the Kotsakis model were computed using equation (6). The computations were done with computer programs developed in this study, as shown in Figs. 2 and 3 for Molodensky and Kotsakis models respectively. The reliability, as well as the root mean square error of the Kotsakis model, was computed using equation (12).

Fig. 2. Molodensky model change in ellipsoidal heights computation

Fig. 3. Kotsakis model Clarke 1880 ellipsoidal heights computation
3. RESULTS AND DISCUSSION

Table 2 presents the discrepancies in the ellipsoidal heights and Root Mean Square Error, RMSE of the Kotsakis model. They were computed to show the range of the discrepancies, as well as the differences in ellipsoidal heights between the two models and the accuracy of the Kotsakis model relative to the Molodensky model. It can be seen from Table 2 that the minimum and maximum discrepancies of the Kotsakis model ellipsoidal heights are -0.1775m and 1.7459m respectively. It implies that the Kotsakis model ellipsoidal heights discrepancies range from -0.1775 to 1.7459m. The computed range is limited to the used stations, as well as the location of the points (Edo State). I can also be seen in Table 2 that the RMSE of the Kotsakis model is 1.244m which implies that the model has a reliability, as well as accuracy of 1.244m. The low accuracy of the model might be as a result of the two rotation datum shift parameters terms in it since they are the main differences between the two models.

Station	WGS 84 Datum	Latitude (Decimal. Degree)	Longitude (Decimal. Degree)	Ellipsoidal Height (m)
PBG134	6.649591731	6.452589697	288.3613	
PBG135	6.649728933	6.453639294	287.9072	
PBG137	6.668296786	6.569276181	79.7948	
PBG138	6.668789994	6.569330301	79.3260	
PBG139	6.668562142	6.569937992	75.3667	
BEM606	6.301587494	5.631167753	97.4262	
ENV100D	6.302732483	5.631117192	96.5354	
EDRP01	6.078586636	5.668000589	58.5810	
EDRP02	6.078633864	5.669642153	58.5242	
UHA100	6.740425822	6.431753056	188.3327	
UHA101	6.740359064	6.461059308	184.7541	

4. CONCLUSION

The study has comparatively analyzed the Molodensky and Kotsakis ellipsoidal heights transformation between geocentric and non-geocentric Datums models and determined the accuracy, as well as reliability of the Kotsakis model. The study has determined the range of the discrepancies of the Kotsakis model limited to the used stations to be -0.1775 to 1.7459m. It has also determined the accuracy of the Kotsakis model to be 1.244m. It again stated that the low accuracy of the model might result from the two rotation datum shift parameters terms in it.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Lee J, Kwon JH, Lee Y. Analyzing Precision and Efficiency of Global Navigation Satellite System-Derived Height Determination for Coastal and Island Areas. Applied Sciences. 2021;11:5310-1-11. Available:https://doi.org/10.3390/app1111 5310.

2. Tata H, Olatunji RI. Determination of Orthometric Height Using GNSS and EGM Data: A Scenario of the Federal University of Technology Akure. International Journal of Environment and Geoinformatics (IJEGEO). 2021;8(1):100-105. Available:https://doi.org/10.30897/ijegeo.7 54808.

3. Deakin RE. The Standard and Hybrid Molodensky Coordinates Transformation Formulæ. Department of Mathematics and Geospatial Sciences, RMIT University, Australia; 2004. Available:http://www.mygeodesy.id.au/documents/Molodensky%20V2.pdf. Accessed 5th December, 2021.

4. Ziggah YY, Yakubu I, Kumi-Boateng B. Analysis of Methods for Ellipsoidal Height Estimation- The Case of a Local Geodetic Reference Network. Ghana Mining Journal. 2016;16(20):1-9. Available:http://dx.doi.org/10.4314/gm.v16i 2.1.

5. Hart L, Jackson KP, Okeke Fl. Modern Development for the Improvement of Accuracy of Nigerian Coordinate Transformation Process Using the Adapted NTv2 Model: The Critical Issues of the Mathematical Algorithm. International Journal of Geosciences. 2020;11:768-781. Available:https://doi.org/10.4236/ijg.2020.1 11039.

6. Kotsakis C. Transforming Ellipsoidal Heights and Geoid Undulations between Different Geodetic Reference Frames. Journal of Geodesy. 2008;82:249–260. Available:https://doi.org/10.1007/s00190- 007-0174-9.

7. Uzodinma VN. Computation of Clarke 1880 Ellipsoidal Heights for the Nigerian Minna Datum. Nigerian Journal of Geodesy. 2019;3(1):40-45.

8. Abubeker MH. Determination of Parameters for Datum Transformation between WGS 84 and ADINDAN-Ethiopia. Published MSc. Thesis of the Department of Geodesy and Geomatics, Addis Ababa Institute of Technology (AAIT), Addis Ababa University Addis Ababa, Ethiopia; 2019. Available:http://213.55.95.56/bitstream/han dle/123456789/23487/Abubeker%20Mohammed.pdf?sequence=1&isAllowed=y. Accessed 5th December, 2021.

9. Eteje SO, Oduyebo OF, Olulade SA. Comparative Analysis of Three Geodetic Datum Transformation Software for Application between WGS84 and Minna Datums. International Journal of Engineering Science and Computing. 2018;8(12):19410-19417.

10. Eteje SO, Oduyebo OF, Olulade SA. Comparison of the Positions Computed from DGPS/GNSS Observations Using the New/Unified and Various Old Transformation Parameters in Nigeria. International Journal of Engineering Science and Computing (IJESC), 2018;8(12):19378-19385.

11. Chai T, Draxler RR. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature. Geoscientific Model Development. 2014;7:1247-1250. Available:http://dx.doi.org/10.5194/gmd-7- 1247-2014.

© 2021 Eteje and Ugbelase; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/81459