A Review on Plastic Moulding Manufacturing Process and Parameters

Shailesh Singh¹, Sunil Sahai², Manoj Kumar Verma³

¹M.Tech. Student, Department of Mechanical Engineering, Institute of Engineering & Technology Dr. Ram Manohar Lohia Avadh University, Ayodhya, India
²,³Assistant Professor, Department of Mechanical Engineering, Institute of Engineering & Technology Dr. Ram Manohar Lohia Avadh University, Ayodhya, India

Received: 22 Aug 2020;
Received in revised form: 19 Oct 2020;
Accepted: 30 May 2021;
Available online: 09 Aug 2021
©2021 The Author(s). Published by AI Publication. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Keywords—Injection moulding, Parameters, Machining, Quality, Maintenance.

Abstract—Injection Mold Design is the process of designing and developing the tools, methods and techniques needed to improve efficiency and productivity. The basic management conditions are learned from conceptual development to product production. The impact of varied factors studied supported processing parameters. Since quality and productivity are two important conflicting goals in any machining process. Quality has got to be somewhat compromised, ensuring high productivity. Similarly, productivity is reduced, but efforts to enhance quality are channelized to make sure top quality and productivity, it's necessary to optimize the machining parameters. Various reactions of injection molding process quality supported performance parameters and methods are studied. The purpose of this paper is to illustrate the state of the plastic injection molding process. The working conditions are satisfied by the production of a product based on high quality.

I. INTRODUCTION

Modern-day injection molding tools are often a complex arrangement of mechanical, electrical, pneumatic, and hydraulic components that are expected to fulfill many demanding tasks. Whatever the complexity, mold design must specify a device that will work satisfactorily in production. Injection molding is the most commonly used manufacturing process for making plastic parts. A wide variety of products can be made using injection molding, which can vary greatly in their size, complexity, and application. The injection molding machine, raw plastic material, and mold are required for the injection molding process. The plastic is dissolved in the injection molding machine and then injected into the mold, where it cools and freezes at the end. This is one of the process that are greatly preferred in manufacturing industry because it can produce complex-shape plastic products and having good dimensional accuracy with short cycle times typical examples are automobile industry, casings and housings of products such as computer monitor, mobile phone and which has a thin shell feature.

II. LITERATURE REVIEW

Much research is being done to understand the important factors and design the molding processes. Much of the work over the past decade has been based on: theoretical, computer-based simulation models and practical experimental tests. (Erzurumlu & Ozcelik, 2006) used the Taguchi method to reduce the variance and sink index. In his study he considered mold temperature, melt temperature, packing pressure, rib cross section and rib layout angle and material PC / ABS, POM, PA66. They found in their research that PC / ABS plastic products, rib cross-sectional pom material plastic production and rib layout angle effect PA66 materials significantly affect plastic production. (Ozcelik et al., 2010) attempted to study the mechanical properties of materials using the Taguchi method. They are considered the melting temperature,
packing time, cooling time, injection pressure. (L. Zhao et al., 2010) study the sink marks error with simulation with the help of software mold flow and experiment with the Taguchi method. In their research they study the process parameters on polypropylene content and solubility, mold temperature. Injection Time, Pressure Holding, Cooling Time. (Stanek et al., 2011) A mold design study with the help of cadmol software. They claim that Cadmold software can calculate curing time based on molding time, speed and vulcanization time, and material and technical parameters. (Saman et al., 2009) Study the mold condition of the injection mold to create the proper molding system through CAD / CAE devices. They represent the right gating systems with the help of CATIA and MOLDFLOW software. (Gruber et al., 2011) A study on visual perceptual measurement of sink markings on injection molding components. They study the sink marks of plastic parts that are stable by increasing the holding pressure and other parameters. (X. Wang et al., 2013) studied warpage and sink defects with the help of rapid heat cycle molding technology. They study the effect of melting temperature, injection time, packing pressure, packing time and cooling time on the warpage with the help of Teguchi and ANOVA. (Gruber et al., 2014) Study visual acuity on the sink markings of injection molded parts and develop CCD images. (Rathi, Salunke, 2012) consider the parameters of injection pressure, mold closure speed, mold pressure, rear pressure and short shot defect in the study of the injection molding process. (Raos & Stojicic, 2014) studied the effect of injection speed and injection pressure of two processing parameters on the tensile strength of the plastic molded component. He did his analysis on the polyethylene content in plastics. They showed that injection pressure was an important factor influencing tensile content and that injection speed did not affect tensile strength. (Islam et al., 2013) studied the effect of pressure factors on the tensile strength of metal injection molding material. They found that as the pressure increases, the tensile strength of the molded part of the metal increases. (Li et al., 2007) studied the effects of processing parameters on the presence of weldline by the Taguchi experimental design method. Welders are obtained from the right door of the copy machine built with three gates. Images of mold products are taken with digital cameras. They are considered to be the major factors influencing the strength of the material polypropylene, such as the melting temperature, injection pressure, and injection speed. They showed that injection speed is a major factor in the visibility of weld lines. (P. Zhao et al., 2020) This review introduces methods and strategies on the sensing, optimization, and control of intelligent injection molding and summarizes recent studies in these three areas. (Q. Wang et al., 2019) An experimental work is carried on to study the effect of the micro injection molding parameters on the product weight in this paper. (Park & Dang, 2017) This work introduces a conformal cooling channels applied in a medium-size injection mold that makes an automotive part. We improved an existent mold in order to reduce the cycle time and improve the quality of molded part. (Chen et al., 2018) This article presents a method of efficiently designing a manufacturing process for injection molding by determining the optimal Pareto Set of control factor settings; here these are the values of the melt temperature, packing time, packing pressure, and cooling time of the molding machine. (Elduque et al., 2018) The importance of deeply analyzing the energy efficiency of the manufacturing process has been discussed in this study. (Yu et al., 2020) The numerical calculation is carried out by combining the viscoelastic constitutive equation White-Metzner and the fiber orientation model iARD-RPR and then verified by experiment. (Siregar et al., 2017) This paper present the design and development of an injection moulding machine for manufacturing lab that have features of low cost, bench top size, and have similar proses as in commercial injection moulding machine. (Wibowo et al., 2019) The results of the study of pure ABS recycling with recycle stated that the parameters of the melting temperature, injection pressure and holding pressure affect the optimal value of a result. (Lou & Xiong, 2020) The MU viscosity model was established based on the ultrasonic energy, the characteristic micro dimension, and the molecular chain length. Ultrasonic microinjection molding experiments were performed using microgrooves with different flow length ratios.

III. RESULT AND DISCUSSION

Most researchers have studied the injection molding process with different process parameters, different materials and different mathematical techniques. Some of them are listed below:
| S.No. | Paper title                                                                 | Year  | Parameters                                                                 | Material                          | Responses                                           |
|-------|-----------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| 1.    | General frameworks for optimization of plastic injection molding process parameters | 2014  | Melt temperature, mold temperature, injection pressure, injection time, packing pressure, packing time etc | Polycarbonate                     | Warpage, clamping force, tensile strength, residual stress, cooling time |
| 2.    | Optimization of Injection Moulding Process using Taguchi and ANOVA          | 2013  | Melt Temperature, Injection pressure, cooling time                           | -                                 | Tensile Strength                                     |
| 3.    | Analysis Of Injection Moulding Process Parameters                          | 2012  | Injection pressure, mould closing speed, mould pressure, back pressure       | PC AND ABS blend polymer (PC/ABS) made by Chi-Mei Company (Taiwan) | Warpage                                             |
| 4.    | Warpage control of thin-walled injection molding using local mold temperatures | 2015  | Mold temperature behavior of filling With Mold flow software               | Reprocessed ABS polymer is used       | Warpage                                           |
| 5.    | Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding | 2014  | Young’s modulus                                                             | Carbon steel AISI 1050 used as a Mold material and ABS used as plastic material used | Warpage                                           |
| 6.    | The use of Taguchi method in the design of plastic injection mould for reducing warpage | 2007  | Melt temperature (240-2900C), Filling Time (.1-.5 sec.), Packing Pressure (C 60-90), Packing Time (.6-1) | PP material with 40% calcium carbonate | Warpage                                           |
| 7.    | The impact of process parameter on test specimens deviations and their correlation with AE signals captured during the injection moulding cycle | 2013  | Cooling time (6-10 sec), Packing time (3-5 sec), Packing pressure (300-500 bar), Injection pressure (1000-1200 bar), injection speed (40-50 mm/sec), Melt temperature (230-2400C) | Polyacetal POM C9021 | Shrinkage and warpage                              |
| 8.    | Comparison of the warpage optimization in the plastic injection molding using | 2006  | Mold temperature (60-900C), Melt temperature (120-) | PMMA-80 is used | Warpage                                           |
| 9. | A study of the effects of process parameters for injection molding on surface quality of optical lenses | 2009 | Melt temperature (220-2300°C), screwspeed (5-15 m/min), injection speed(50-90mm/sec), injection pressure (1100-1300 bar), Packing time (7-13 sec), Mold temperature(60-800°C), Cooling rate(s) | Phenolic molding compound is shown | Surface waviness, roughness, light transmission |
| 10. | Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body | 2014 | No of gates, Gate size (18.68 mm to 22.86 mm),mold temperature (147.6 - 180.4), resin temperature(85.5-104.5),switch over by volumefilled (69.57-85.03%),switch over injection pressure (10.8-13.2Mpa), Curing time(108-132 s) | Polybutylene terephthalate (PBT) | Resin viscosity, curing percentage |
| 11. | Improvement of injection moulding processes by using dual energy signatures | 2014 | Processing time, power level | Polypropylene | Energy consumption |
| 12. | Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plasticblend | 2010 | Injection speed(10.74-10.98), Melting temperature (9.79-12.50), Injection pressure (10.70-11.12), holding pressure(10.48-11.47),holding time(10.36-11.15), cooling time(10.54-11.60) | Polypropylene | Shrinkage in cm |
| No. | Title                                                                 | Year | Key Parameters                                                                 | Domain                                                                                   |
|-----|----------------------------------------------------------------------|------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 13. | A principal component analysis model-based predictive controller for controlling part warpage in plastic injection molding | 2015 | Cavity pressure, cavity temperature                                             Warpage by coolant flow rate and cavity pressure temperature                             |
| 14. | Optimal cooling design                                               | 2013 | Cooling time, injection time                                                     GECycoloy C2950 PC/abs                                                                  Warpage, shrinkage, thermal residual stress, sink marks etc. |
| 15. | Finding efficient frontier of process parameters for injection molding | 2013 | Injection time (.5-1.5), injection pressure (100 to 140 MPa), packing pressure (80-120 Mpa), Packing time (7.5-12.5), cooling time (14-24 sec), coolant temperature (20-30), mold open time (4-6 sec), melt temperature (270-280), mold surface temperature (65-75) | Polyamide PAT considered                                                                   Shrinkage and warpage                            |
| 16. | Simulation and experimental study in determining Injection molding process parameters for thin-shell plastic parts via design of experimentation analysis | 2009 | Melt temperature (310-330), Mold temperature (115-135), Injection Speed (% 65-85), Packing pressure (40-45 Mpa) | Polypropylene and polystyrene                                                            Shrinkage and warpage                            |
| 17. | Parameter study in injection molding process using statistical methods and Invasive WEED algorithm | 2011 | Melting temperature (240-260), Injection Pressure (50-70), Packing Pressure (50-70 MPA), Packing time (5-15 sec) | Ultramid B3S (un-reinforced PA6 material)                                                  Shrinkage and Warpage                           |
| 18. | Optimisation of injection moulded parts by using ANN-PSO approach | 2006 | Mold temperature(40-80), Melt temperature (250-270), Flow rate (10-80, 103*mm3/sec), Packing pressure(25-40 Mpa) | - | Warpage |
| 19. | Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding | 2011 | Mold temperature(40-80), Melt temperature(200-280), Packing pressure(80-120), Packing time(8-12), Cooling time(15-25) | Polypropylene | Warpage |
| 20. | Reducing the shrinkage in Plastic injection moulded gear by GREY based Taguchi optimization method | 2012 | Melt temperature(200-240), Packing pressure(60-80), Packing time(5-15), Cooling time(30-50) | Powder material is used | Shrinkage |
| 21. | The use of Taguchi approach to determine the influence of injection-moulding parameters on the properties of green parts | 2006 | Injection speed, Mould temperature, Melt temperature, Holding pressure, Holding pressure time, Cycle time(15-30 sec) | Polypropylene | Shrinkage |
| 22. | A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameter | 2011 | Mold temperature, Melt temperature, Packing pressure, Packing time, Cooling time | - | Warpage and clamp force analysis |
| 23. | Practical application of Taguchi method for optimization processing parameters for plastic injection moulding- A retrospective review | 2013 | Mould temperature, Melt temperature, Gate dimension, Packing pressure, Packing time, Filling time, Filling pressure, Cooling time | - | Warpage |
Since raw materials are scarce and expensive, and energy costs are also increasing, mold design strategy should reduce costs and reduce resource consumption. Contraction, Warpage, sink marks, and weld lines are the four most challenging defects in the injection mold. In many cases, their formation is inevitable, especially for complex geometric components.

IV. CONCLUSION

There is a lot of effort in this area. But some of them have been successful, so this area needs special attention. This is because we know that many errors are caused by processing parameters based on this study. So the production control of processing parameters is necessary for the product. Based on the above table we find that each researcher focuses mostly on warpage and...
contraction. They also pay attention to the sink marks. But some researchers pay attention to weld lines and tensile strength. We have found from above that the study of recycling of plastics is necessary for the benefit of the community. It requires environmental friendly, recyclable material identification.

Therefore processing in this area should be done. So in order to increase the production of quality-based plastic products, studies on other process parameters are needed, which should be free of flaws.

REFERENCES

[1] Agazzi, V. Sobotka, R. Legoff, and Y. Jarny, “Optimal cooling design in injection moulding process-A new approach based on morphological surfaces,” Appl. Therm. Eng., vol. 52, no. 1, pp. 170–178, 2013, doi: 10.1016/j.applthermaleng.2012.11.019.

[2] Akbarzadeh and M. Sadeghi, “Optimization of shrinkage in Plastic injection moulding process using statistical methods and SA algorithm,” Appl. Mech. Mater., vol. 110–116, no. 2, pp. 4227–4233, 2012, doi: 10.4028/www.scientific.net/AMM.110-116.4227.

[3] Elduque, D. Elduque, I. Claveria, and C. Javierre, “Influence of material and injection moulding machine’s selection on the electricity consumption and environmental impact of the injection moulding process: An experimental approach,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 5, no. 1, pp. 13–28, 2018, doi: 10.1007/s40684-018-0002-0.

[4] Islam, H. N. Hansen, N. M. Esteves, and T. T. Rasmussen, “Effects of holding pressure & process temperatures on the mechanical properties of moulded metallic parts,” Annu. Tech. Conf. - ANTEC. Conf. Proc., vol. 1, no. April, pp. 483–487, 2013.

[5] A. M. Saman, A. H. Abdullah, and M. A. M. Nor, “Computer simulation opportunity in plastic injection mold development for automotive part,” ICCTD 2009 - 2009 Int. Conf. Comput. Technol. Dev., vol. 1, pp. 495–498, 2009, doi: 10.1109/ICCTD.2009.197.

[6] B. Berginc, “The use of the Taguchi approach to determine the influence of injection-moulding parameters on the properties of green parts,” Manuf. Eng., vol. 15, no. 1, pp. 63–70, 2006.

[7] B. Ozcelik, A. Ozbay, and E. Demirbas, “Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding,” Int. Commun. Heat Mass Transf., vol. 37, no. 9, pp. 1359–1365, 2010, doi: 10.1016/j.icheatmasstransfer.2010.07.001.

[8] B. Ozcelik and T. Erzurumlu, “Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm,” J. Mater. Process. Technol., vol. 171, no. 3, pp. 437–445, 2006, doi: 10.1016/j.jmatprot.2005.04.120.

[9] C. P. Chen, M. T. Chuang, Y. H. Hsiao, Y. K. Yang, and C. H. Tsai, “Simulation and experimental study in determining injection moulding process parameters for thin-shell plastic parts via design of experiments analysis,” Expert Syst. Appl., vol. 36, no. 7, pp. 10752–10759, 2009, doi: 10.1016/j.eswa.2009.02.017.

[10] D. P. Gruber, G. Berger, G. Pacher, and W. Friesenbichler, “Novel approach to the measurement of the visual perceptibility of sink marks on injection molding parts,” Polym. Test., vol. 30, no. 6, pp. 651–656, 2011, doi: 10.1016/j.polymertesting.2011.04.013.

[11] D. P. Gruber, J. Machter, D. Haba, G. R. Berger, G. Pacher, and W. Friesenbichler, “Measurement of the visual perceptibility of sink marks on injection molding parts by a new fast processing model,” Polym. Test., vol. 33, pp. 7–12, 2014, doi: 10.1016/j.polymertesting.2013.10.014.

[12] D. Kusić, T. Kek, J. M. Slabe, R. Svečko, and J. Grum, “The impact of process parameters on test specimen deviations and their correlation with AE signals captured during the injection moulding cycle,” Polym. Test., vol. 32, no. 3, pp. 583–593, 2013, doi: 10.1016/j.polymertesting.2013.02.006.

[13] D. Mathivanan, M. Nouby, and R. Vidhya, “Minimization of sink mark defects in injection moulding process – Taguchi approach,” Int. J. Eng. Sci. Technol., vol. 2, no. 2, 2010, doi: 10.4314/ijest.v2i2.59133.

[14] E. A. Wisbo, T. Sukarnoto, and Y. T. Wisbo, “Research of Injection Molding Parameters with Acrylonitrile Butadiene Styrene Composition Recycled Against Mechanical Properties,” J. Phys. Conf. Ser., vol. 1230, no. 1, pp. 0–15, 2019, doi: 10.1088/1742-6596/1230/1/012084.

[15] E. Müller, R. Schillig, T. Stock, and M. Schmeiler, “Improvement of injection moulding processes by using dual energy signatures,” Procedia CIRP, vol. 17, no. Imm, pp. 704–709, 2014, doi: 10.1016/j.procir.2014.01.110.

[16] F. Yin, H. Mao, L. Hua, W. Guo, and M. Shu, “Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding,” Mater. Des., vol. 32, no. 4, pp. 1844–1850, 2011, doi: 10.1016/j.matdes.2010.12.022.

[17] F. Yin, H. Mao, and L. Hua, “A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters,” Mater. Des., vol. 32, no. 6, pp. 3457–3464, 2011, doi: 10.1016/j.matdes.2011.01.058.

[18] G. Singh and A. Verma, “ScienceDirect 5th International Conference of Materials Processing and Characterization (ICMPC 2016),” vol. no. 00, 2015, pp. 1–11, 2016.

[19] H. Li, Z. Guo, and D. Li, “Reducing the effects of weldlines on appearance of plastic products by Taguchi experimental method,” Int. J. Adv. Manuf. Technol., vol. 32, no. 9–10, pp. 927–931, 2007, doi: 10.1007/s00170-006-0411-z.

[20] H. S. Park and X. P. Dang, “Development of a Smart Plastic Injection Mold with Conformal Cooling Channels,” Procedia Manuf., vol. 10, pp. 48–59, 2017, doi: 10.1016/j.promfg.2017.07.020.

[21] K. M. Tsai, C. Y. Hsieh, and W. C. Lo, “A study of the effects of process parameters for injection molding on surface quality of optical lenses,” J. Mater. Process.
[22] L. Zhao, B. Chen, J. Li, and S. Zhang, “Optimization of plastics injection molding processing parameters based on the minimization of sink marks,” 2010 Int. Conf. Mech. Autom. Control Eng. MACE2010, no. 09497, pp. 593–595, 2010, doi: 10.1109/MACE.2010.5536566.

[23] M. D. Rathi, Salunke, “Analysis Of Injection Moulding Process Parameters,” Int. J. Eng. Res. Technol., vol. 1, no. 8, pp. 1–5, 2012.

[24] M. Stanek, D. Manas, M. Manas, and O. Suba, “Optimization of injection molding process,” Int. J. Math. Comput. Simul., vol. 5, no. 5, pp. 413–421, 2011.

[25] M. Rahimi, M. Esfahanian, and M. Moradi, “Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding,” J. Mater. Process. Technol., vol. 214, no. 11, pp. 2359–2365, 2014, doi: 10.1016/j.mprtec.2014.04.028.

[26] N. C. Fei, N. M. Mehat, and S. Kamaruddin, “Practical Applications of Taguchi Method for Optimization of Processing Parameters for Plastic Injection Moulding: A Retrospective Review,” ISRN Ind. Eng., vol. 2013, pp. 1–11, 2013, doi: 10.1155/2013/462174.

[27] N. M. Mehat, S. Kamaruddin, and A. R. Othman, “Reducing the shrinkage in plastic injection moulded gear via grey-based-Taguchi optimization method,” Lect. Notes Eng. Comput. Sci., vol. 3, pp. 1369–1372, 2012.

[28] P. H. A. Chen, M. G. Villarreal-Marroquin, A. M. Dean, T. J. Santer, R. Mulyana, and J. M. Castro, “Sequential design of an injection molding process using a calibrated predictor,” J. Qual. Technol., vol. 50, no. 3, pp. 309–326, 2018, doi: 10.1080/00224065.2018.1474696.

[29] P. Raos and J. Stojicic, “Influence of Injection Moulding Parameters on Tensile Strength of Injection Moulded Part,” Manuf. Ind. Eng., vol. 13, no. 3–4, pp. 13–15, 2014, doi: 10.12776/mie.v13i3.4-142

[30] P. Zhao et al., “Intelligent Injection Molding on Sensing, Optimization, and Control,” Adv. Polym. Technol., vol. 2020, pp. 2020, doi: 10.1155/2020/7023616.

[31] Q. Wang, J. Wang, C. Yang, K. Du, W. Zhu, and X. Zhang, “Effect of process parameters on repeatability precision of weight for microinjection molding products,” Adv. Polym. Technol., vol. 2019, 2019, doi: 10.1155/2019/2604878.

[32] R. A. Siregar, S. F. Khan, and K. Umurani, “Design and development of injection moulding machine for manufacturing maboratory,” J. Phys. Conf. Ser., vol. 908, no. 1, pp. 0–5, 2017, doi: 10.1088/1742-6596/908/1/012067.

[33] R. Pareek and J. Bhamniya, “Optimization of Injection Moulding Process using Taguchi and ANOVA,” Int. J. Sci. Eng. Res., vol. 4, no. 1, pp. 1–6, 2013.

[34] R. Spina, “Optimisation of injection moulded parts by using ANN-PSO approach,” J. Achiev. Mater. Manuf. Eng., vol. 15, no. May, p. 146, 2006.

[35] S. C. Nian, C. Y. Wu, and M. S. Huang, “Warpage control of thin-walled injection molding using local mold temperatures,” Int. Commun. Heat Mass Transf., vol. 61, no. 1, pp. 102–110, 2015, doi: 10.1016/j.icheatmasstransfer.2014.12.008.

[36] S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol., vol. 182, no. 1–3, pp. 418–426, 2007, doi: 10.1016/j.jmatprot.2006.08.025.

[37] S. Kamaruddin, Z. A. Khan, and S. H. Foong, “Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend,” Int. J. Eng. Technol., vol. 2, no. 6, pp. 574–580, 2010, doi: 10.7763/ijet.2010.v2.i184.

[38] S. Zhang, R. Dubay, and M. Charest, “A principal component analysis model-based predictive controller for controlling part warpage in plastic injection molding,” Expert Syst. Appl., vol. 42, no. 6, pp. 2919–2927, 2015, doi: 10.1016/j.eswa.2014.11.030.

[39] T. Ertüzunlu and B. Ozçelik, “Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method,” Mater. Des., vol. 27, no. 10, pp. 853–861, 2006, doi: 10.1016/j.matdes.2005.03.017.

[40] W. Bin Young, “Effect of process parameters on injection compression molding of pickup lens,” Appl. Math. Model., vol. 29, no. 10, pp. 955–971, 2005, doi: 10.1016/j.apm.2005.02.004.

[41] W. L. Chen, C. Y. Huang, and C. Y. Huang, “Finding efficient frontier of process parameters for plastic injection molding,” J. Ind. Eng. Int., vol. 9, no. 1, 2013, doi: 10.1186/2251-712X-9-25.

[42] X. P. Dang, “General framework for optimization of plastic injection molding process parameters,” Simul. Model. Pract. Theory, vol. 41, pp. 15–27, 2014, doi: 10.1016/j.simpat.2013.11.003.

[43] X. Wang, G. Zhao, and G. Wang, “Research on the reduction of sink mark and warpage of the molded part in rapid heat cycle molding process,” Mater. Des., vol. 47, pp. 779–792, 2013, doi: 10.1016/j.matdes.2012.12.047.

[44] Y. Lou and J. Xiong, “Micro-ultrasonic viscosity model based on ultrasonic-assisted vibration micro-injection for high-flow length ratio parts,” Polymers (Basel), vol. 12, no. 3, 2020, doi: 10.3390/polym12030522.

[45] Y. qi Wang, J. gyu Kim, and J. il Song, “Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body,” Mater. Des., vol. 56, pp. 313–317, 2014, doi: 10.1016/j.matdes.2013.11.038.

[46] Y. Zhao et al., “Synergistic effect of radiation and traditional Chinese medicine rhizomatophyoonii ethanol extracts depends on p53 expression in treatment of Lewis mouse lung cancer cells,” African J. Tradit. Complement. Altern. Med., vol. 12, no. 1, pp. 109–114, 2015, doi: 10.4314/ajtcam.v12i11.16.

[47] Z. Yu et al., “Numerical Simulation during Short-Shot Water-Assisted Injection Molding Based on the Overflow Cavity for Short-Glass Fiber-Reinforced Polypropylene,” Adv. Polym. Technol., vol. 2020, pp. 1–13, 2020, doi: 10.1155/2020/3718670.

www.iijaers.com