Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
10.1 INTRODUCTION

Nanoparticles can be classified as particles of a size no greater than 100 nm, and their unique attributes to combat infection have received considerable attention within a range of diverse fields, including medicine and dentistry. Nanomaterials are increasingly finding uses in products such as antimicrobial surface coatings and semiconductors. These include spherical, cubic, and needle-like nanoscaled particles (approximately 5–100 nm) and near-nanoscaled devices (up to micrometers) [1]. Properties of nanoparticles, for example, their active surface area, chemical reactivity, and biological activity, can be dramatically different from those of micrometer-sized particles [2], and indeed the biocidal effectiveness of metallic nanoparticles has been suggested to be due to both their size and their high surface-to-volume ratio. These characteristics should allow them to closely interact with microbial membranes, and thus elicit an antimicrobial effect that is not solely due to the release of metal ions [3]. Metallic and other nanoparticles are now being combined with polymers and other base materials, and coated onto surfaces which may have a variety of potential antimicrobial applications within the oral cavity [4,5].

The oral cavity supports the growth of a wide diversity of microorganisms including bacteria, yeasts, and viruses; members of all groups being associated with oral infections. Bacteria are the predominant component of this resident microflora, and the diversity of species found in the oral cavity reflects the wide range of endogenously derived nutrients, the varied types of habitat for colonization including surfaces on the teeth, mucosa, and tongue, and the opportunity to survive as a biofilm. An oral biofilm can be classed as an aggregate of microorganisms in which cells adhere to each other and to a surface [6]. However, the relationship between this microflora and the host can be disrupted in a number of ways, resulting in the development of disease of the oral structures.

Potential habitats suitable for attachment within the oral cavity include the nonshedding hard tooth surfaces or soft, constantly replaced epithelial surfaces,
and conditions between sites vary with respect to oxygen levels and anaerobiosis, availability of nutrients, exposure to salivary secretions or gingival crevicular fluid (GCF), masticatory forces, and other variables such as oral hygiene procedures. The composition of the microbial flora of the mouth thus varies considerably from site to site and at different time points. Up to 1000 different species of bacteria at 10^8–10^9 bacteria per mL saliva or mg dental plaque are known to be associated with the oral cavity, and it has been suggested that only 50% of the bacteria found at these sites can be cultured [6].

Most bacterial infections within the oral cavity are polymicrobial in nature, and it is quite unusual to find any that are clearly due to a single species. The relative contribution of different bacterial components in such infections is thus difficult to determine. Oral infections may arise either from an endogenous source, that is, one yielding microorganisms normally found in the mouth, such as plaque-related dental caries and periodontal disease, or an exogenous source yielding microorganisms not normally found as part of the oral microflora. Dental caries and periodontal disease involve the adherence of bacteria and development of biofilms on both the natural and restored tooth surface. The use of nanotechnology offers the possibility to control the formation of these and other oral biofilms through the use of nanoparticles with biocidal, antiadhesive, and delivery capabilities.

10.2 BIOFILMS AND ORAL INFECTIONS

Biofilms of oral bacteria and yeasts can cause a number of localized diseases in the oral cavity, including dental caries, gingivitis, periodontitis, candidiasis, endodontic infections, orthodontic infections, and peri-implantitis [6].

10.2.1 FORMATION AND PROPERTIES OF ORAL BIOFILMS

Within the oral cavity the survival of microorganisms is dependent on their ability to adhere to surfaces and subsequently develop into a biofilm, a process influenced by the physical and chemical properties of the underlying surface [7]. On the tooth surface the initial colonizers adhere to the acquired pellicle, a salivary/dietary-derived proteinaceous layer, which can then influence the subsequent sequence of colonization by microorganisms [8]. The acquired pellicle also contains several salivary components such as secretory immunoglobulin A and lysozyme, and these provide both barrier and buffering functions [9]. Both demineralization and remineralization processes of the teeth are also mediated by the pellicle. In terms of bacterial colonization, many of the proteins that make up the pellicle act as receptors for the specific interaction with adhesins on the surface of pioneer bacterial species [9]. The pellicle layer is therefore of particular relevance for the interactions of both bacteria and nanoparticles with the tooth surface.
The strength of the forces involved in the initial attachment of bacteria is critical to their survival and the subsequent growth of the biofilm. The major growth of dental plaque mass then occurs by bacterial cell division within the biofilm rather than by coaggregation at the surface of the developing biofilm [10]. The initial communities of bacteria found within the supragingival plaque biofilm are of a relatively low diversity in comparison to those present in the mature communities of both supra- and subgingival plaque. Initial colonizers include *Streptococcus oralis*, *Streptococcus sanguinis*, and *Streptococcus mitis*. The coaggregating partners with these bacteria would then include predominantly Gram-negative species, for example, *Veillonella atypica*, *Eikenella corrodens*, and *Prevotella loescheii*. Coaggregation bridges between these early colonizers and *Fusobacterium nucleatum* are common and the latter then coaggregates with numerous late colonizers. Late colonizers include *Aggregatibacter actinomycetemcomitans*, *Prevotella intermedia*, *Treponema denticola*, and *Porphyromonas gingivalis* [10]. The interactions between oral bacteria are integral to biofilm development and maturation and include physical contact, metabolic exchange, molecular communication, and genetic material exchange.

Biofilms will accumulate on both the hard and soft oral tissues, and this community of microbial species is embedded in a matrix of bacterial components, salivary proteins/peptides and food debris [8]. Extracellular polymeric substances, produced by bacteria in a mature biofilm, contain large amounts of polysaccharides, proteins, nucleic acids, and lipids. These maintain the structural integrity of the biofilm and provide an ideal matrix for bacterial cell growth and survival [11]. The biofilm mode of growth is clearly distinguished from planktonic growth by a number of features, which includes the resistance to antimicrobial agents at concentrations that approach 1000 times greater than that required to kill planktonic microorganisms [12,13]. This is of particular significance in the development of nanoantimicrobials and the extrapolation of in vitro findings.

10.2.2 ORAL BIOFILMS AND DISEASE

10.2.2.1 Dental caries and periodontal disease

Dental caries is a destructive condition of the dental hard tissues that can progress to inflammation and death of vital pulp tissue, and if untreated it may lead to the eventual spread of infection to the periapical area of the tooth and beyond. The disease process involves acidogenic plaque bacteria, including *Streptococcus mutans*, *Streptococcus sobrinus*, and *Lactobacillus* spp. [14], whereas periodontal diseases can involve both the soft and hard tissues and are initiated by components of the plaque biofilm that develop on the hard root surface adjacent to the soft tissues of the supporting periodontium. Periodontal disease may be confined to the gingiva (gingivitis) or extend to the deeper supporting structures with destruction of the periodontal ligament and the alveolar bone that supports the teeth (periodontitis). This loss of attachment, with associated periodontal pocket...
formation, may ultimately lead to loosening and loss of the affected teeth. *P. gingivalis*, *Tannerella forsythia*, and *T. denticola* are now regarded as the major pathogens in advancing periodontitis [15].

Prevention of dental caries and periodontal diseases is traditionally targeted at mechanical or nonspecific control of the plaque biofilm because this is the precipitating factor. The use of antimicrobial agents represents a valuable complement to mechanical plaque control [16]. Such strategies should ideally control plaque biofilm formation without significantly affecting the biological equilibrium within the oral cavity. However, actual periods of exposure to antimicrobial agents during tooth brushing and mouth rinsing can be very short, and may amount to about 30 seconds, rather than the recommended 2 minutes [17].

10.2.2.2 Peri-implantitis

Implant systems are increasingly being used to replace missing teeth, and most integrate with bone without complications. Small amounts of plaque consisting mainly of *Streptococcus* and *Actinomyces* spp. will accumulate on successful implants. However, in peri-implantitis, anaerobic Gram-negative organisms predominate [18]. This infection is a key cause of dental implant failure whereby the induced inflammatory changes in the soft tissues surrounding oral implants lead to a progressive destruction of the supporting bone (classified as peri-implantitis and seen in up to 43% of implant-treated subjects) or soft tissues (classified as peri-implant mucositis and seen in up to 50% of implant-treated subjects) [19]. Current forms of treatment are often inadequate and may result in chronic infection requiring implant removal and costly resective and regenerative procedures in an attempt to restore and reshape the implant-supporting tissue [19]. The incorporation of nanoparticles into implant coatings may well offer useful osteoconductive and antimicrobial functionalities to prevent dental implant failure.

10.2.2.3 Candidiasis

The development of candidiasis, including denture stomatitis (chronic atrophic candidiasis), which can affect up to 65% of edentulous individuals [20] involves the formation of biofilm. Despite the use of antifungal drugs to treat denture stomatitis, infection can often recur. Chandra et al. [20], using a poly(methyl methacrylate) (PMMA) biofilm model, demonstrated that *Candida albicans* biofilms are potentially highly resistant to the currently used antifungal agents, with resistance developing with time and showing a correlation with biofilm maturation.

10.2.3 CONTROL OF ORAL BIOFILMS

Agents classified as antiplaque generally function by removing or disrupting biofilms, or prevent the formation of a new biofilm. However, they do not necessarily kill the microorganisms within the biofilm. In contrast, agents classified as antimicrobial act by inhibiting the growth of (bacteriostatic) or killing
bactericidal) microorganisms, which are defined as minimum inhibitory concentration (MIC) or minimum bactericidal concentration (MBC), respectively. The uptake and penetration of antimicrobial agents into biofilms are key considerations in the administration of therapeutics [21]. This is of particular importance within the oral cavity when these agents have to reach less accessible stagnation sites or through plaque to the enamel. The development of plaque control measures that require a minimum of patient compliance and professional healthcare intervention are therefore of particular interest [22]. Within this context, antimicrobial nanoparticles may be of particular value if retained at approximal teeth surfaces and below the gum margin. The anticaries potential of fluoride and other conventional antimicrobial/antiplaque agents, which are mostly deployed in mouthwashes and toothpastes, have been well characterized [16]. The potential of nanoparticles as constituents of topical agents to control oral biofilms through either their biocidal or antiadhesive capabilities has now emerged as an area that should be given serious consideration. The studies by Robinson and coworkers using the “Leeds in situ model,” a device that allows dental plaque to develop in situ on a removable human enamel surface, have helped in the assessment of novel antimicrobial agents and take into account the extremely complex microbial composition and architecture of plaque biofilms [23]. The use of such intact biofilms on natural tooth surfaces would be of particular value to a study of the penetration of nanoparticles and released ions. This model has indicated that plaque contains voids and channels, sometimes extending completely through the biomass to the underlying enamel [24] and may have considerable influence on the transfer of nanoparticles through biofilms. The main considerations are the physical and chemical characteristics of the particular nanoparticles used, including the surface charge and degree of hydrophobicity, the surface area-to-mass ratio of the plaque biofilm and the ability of the particles to adsorb to/be taken up at the biofilm surface. Within this context nanoparticles are potentially useful because it is possible to alter their surface charge, hydrophobicity, and other physical and chemical characteristics [25].

10.3 Antimicrobial Nanoparticles and Oral Biofilm Control

10.3.1 Nanoparticulate Metals as Antimicrobial Agents

Metals have been used for centuries as antimicrobial agents. Silver, copper, gold, titanium, and zinc have attracted particular attention, each having different properties and spectra of activity. Many oral products, including toothpastes, now incorporate powdered (micron-sized) zinc citrate or acetate to control the formation of dental plaque [26]. Powdered titanium dioxide is also commonly used as a whitener in toothpastes. Metallic nanoparticles have also been considered as dental implant coatings to improve antimicrobial efficiency.
With respect to nanoparticulate metals, the antimicrobial properties of silver \cite{27} and copper \cite{28} have received the most attention. Both of these have been coated onto or incorporated into various base materials \cite{29}, including PMMA \cite{30} and hydrogels \cite{31}. An inverse relationship between the size of nanoparticles and antimicrobial activity has been clearly demonstrated, where particles in the size range of 1 – 10 nm have been shown to have the greatest biocidal activity against bacteria \cite{3,32}. Indeed, it has been shown that smaller silver nanoparticles are more toxic than larger particles, more so when oxidized \cite{33}. At the nano-scale, Ag$^+$ ions are known to be released (leached) from the surface \cite{34}. Sotiriou et al. \cite{35} proposed that the antimicrobial activity of small (<10 nm) nanosilver particles is dominated by Ag$^+$ ions, while for larger particles (> 15 nm) the contributions of Ag$^+$ ions and particles to the antibacterial activity are comparable, the Ag$^+$ ion release being proportional to the exposed nanosilver surface area.

Particular nanoparticles, as a result of their small size, may be able to offer other advantages to the biomedical field through improved biocompatibility \cite{36}. Also, it appears that bacteria are far less likely to acquire resistance to metal nanoparticles than they are to other conventional and narrow-spectrum antibiotics \cite{37}. This is thought to occur because metals may act on a broad range of microbial targets, and many mutations would have to occur in order for the microorganisms to resist their antimicrobial activity. Shape may also affect the activity of nanoparticles. It has been demonstrated that the shape of silver nanoparticles can influence antimicrobial activity, as has been shown in the case of Escherichia coli \cite{37}. Truncated triangular silver nanoplates with a {111} lattice pattern as the basal plane showed the greatest biocidal activity compared with spherical and rod-shaped nanoparticles. The differences appear to be explained by the proportion of active facets present in nanoparticles of different shapes.

Exploitation of the toxic properties of nanoparticulate metals and metal oxides, in particular those that produce reactive oxygen species under UV light, such as titanium dioxide (TiO$_2$; Fig. 10.1A) and zinc oxide (ZnO; Fig. 10.1B), are finding increased use in antimicrobial formulations, with silver metal nanoparticles (5 – 40 nm) having been reported to inactivate most microorganisms, including HIV-1 \cite{38}. The high reactivity of nanotitanium dioxide and nanosilicon dioxide (SiO$_2$) is exploited extensively for their bactericidal properties in filters and coatings on substrates such as polymers, ceramics, glasses, and alumina \cite{39}. Significant activity using metal and metal oxide nanoparticles and their compound clusters against fungal and bacterial pathogens such as meticillin-resistant Staphylococcus aureus (MRSA) and E. coli has been demonstrated. These have also shown the capability to inactivate viruses, including severe acute respiratory syndrome, H1N1 swine flu, and H5N1 bird flu. For example, new broad-spectrum materials (5 – 60 nm) can reduce virus levels by 80% – 100% through direct or indirect contact. Nanoparticle preparations, including those based upon nickel (Ni, NiO), zirconium (ZrO$_2$), copper (Cu, CuO, and Cu$_2$O), titanium (TiO$_2$), zinc (ZnO), aluminum (Al$_2$O$_3$), silicon (IV) nitride (Si$_3$N$_4$), silver (Ag), and tungsten...
carbide (WC) have been compared as regards to their antimicrobial potential. Significant activity with Ag, ZnO, TiO$_2$ (in the presence of UV light), SiO$_2$, Cu, Cu$_2$O, and CuO against bacterial pathogens, including MRSA and *Pseudomonas aeruginosa*, has been demonstrated [40]. MBCs were found to be in the range of 0.1—5 mg/mL. In comparison, traditional antibiotics are effective at concentrations 1000-fold lower. NiO, Ni, Al$_2$O$_3$, TiO$_2$ (in the absence of UV light), Si$_3$N$_4$, WC (tungsten carbide), and ZrO$_2$ were found to lack antimicrobial activity at the concentrations tested. The oral pathogens *Streptococcus intermedius*, *P. gingivalis*, *F. nucleatum*, *P. intermedia*, and *A. actinomycetemcomitans* were also found
to be susceptible to Ag and CuO nanoparticles under anaerobic conditions with MBC values in the range 0.025–2.5 mg/mL [41].

10.3.1.1 Silver (Ag)

The antimicrobial actions of elemental silver, Ag$^+$ ions, and silver compounds have been extensively investigated [4]. In comparison to other metals, silver is relatively less toxic to human cells, albeit at very low concentrations. Ag$^+$ ions have been considered for a range of biomedical applications, including their use within the dental field as an antibacterial component in dental resin composites [42]. Silver also exhibits a strong affinity for zeolite, a porous crystalline material of hydrated aluminosilicate which can bind up to 40% Ag$^+$ ions within its structure. Silver zeolite has been incorporated into tissue conditioners, acrylic resins, and mouth rinses within the dental field [43–46]. Silver nanoparticles (Fig. 10.1C), either alone or together with other antimicrobial agents, have shown particularly encouraging results [27,47,48]. The use of silver salt nanoparticles instead of elemental silver or complex silver compounds to prevent biofilm formation on surfaces for both biomedical and more general use has been investigated. Using silver bromide precipitation to synthesize polymer-nanocomposites, surfaces comprised of this material were shown to resist biofilm formation. It was also shown to be possible, through controlling the size of the embedded AgBr, to modify the release of biocidal Ag$^+$ ions [49].

Surprisingly little is known about how nanoparticles behave in relation to microorganisms, particularly at the cellular level. The mechanism of the antimicrobial activity of silver is not completely understood, but is likely to involve multiple targets in comparison to the more defined targets of antibiotics. Studies have shown that the positive charge on the Ag$^+$ ion is critical for antimicrobial activity, allowing the electrostatic attraction between the negative charge of the bacterial cell membrane and positively charged nanoparticles [36]. In regards to molecular mechanisms of the inhibitory action of Ag$^+$ ions on microorganisms, it has been shown that DNA loses its ability to replicate [50], and the expression of ribosomal subunit proteins and other cellular proteins and enzymes necessary for ATP production become inactive [51]. It has also been hypothesized that Ag$^+$ ions affect membrane-bound respiratory enzymes [52]. However, the precise mechanism(s) of biocidal activity of silver nanoparticles against bacteria remains to be fully elucidated. The work of Sondi and Salopek-Sondi [27] demonstrated structural changes and damage to bacterial membranes resulting in cell death. These particular studies suggest that sulfur-containing proteins in the membrane or inside the cells and phosphorus-containing elements, such as DNA, are likely to be the preferential binding sites for silver nanoparticles. The contribution of Ag$^+$ ion release from nanoparticles to the overall antimicrobial activity remains unclear. It is suggested that a bacterial cell in contact with silver nanoparticles will take up Ag$^+$ ions, which possibly in turn will inhibit respiratory enzymes and so help to generate free radicals, and subsequent free-radical-induced damage to the cell membrane. In order to determine the relationship between free-radical
formation and antimicrobial activity, the use of antioxidants suggests that free radicals may be derived from the surface of silver nanoparticles [36]. The MIC and MBC of Ag nanoparticles were tested against several species of oral bacteria [41], with both MIC and MBC values of 250 μg/mL for *P. gingivalis* and 100 μg/mL for *P. intermedia, F. nucleatum*, and *A. actinomycetemcomitans*. In addition, Ag nanoparticles synthesized by employing a leaf extract of *Justicia glauca* to reduce silver nitrate have been evaluated against *S. mutans, S. aureus, Lactobacillus acidophilus, Micrococcus luteus, Bacillus subtilis, E. coli, P. aeruginosa*, and *C. albicans*, with MIC values recorded as between 25 and 75 μg/mL [53]. The MIC of AgNPs has been found to be related to particle size, with smaller Ag nanoparticles having a lower MIC. Pérez-Díaz et al. studied the relationship between different sizes of Ag nanoparticles and their MIC values using *S. mutans*, for particle size of 9.5 ± 1.1, 25.9 ± 2.6, and 78.7 ± 19.2 nm, the MICs were 4.0 ± 0, 8.0 ± 0, and 16.0 ± 0 ppm, respectively [54].

10.3.1.2 Copper (Cu)

In comparison to silver, fewer studies have reported the antimicrobial properties of copper. It is suggested that copper may well have a similar mode of action to that of silver. However, it remains unclear as to the precise mechanism by which copper nanoparticles exert activity against microorganisms. As with silver, it is thought that copper acts by combining with the –SH groups of key microbial enzymes. Yoon et al. [55] demonstrated superior antimicrobial activity with copper nanoparticles against *E. coli* and spore-forming *B. subtilis* when compared to silver nanoparticles. However, other studies demonstrate silver to have superior activity to copper against a wide range of different species and strains [40].

The antimicrobial properties of both silver and copper nanoparticles were also investigated by Ruparelia et al. [56] using strains of *E. coli, B. subtilis*, and *S. aureus*. The bactericidal effect of the nanoparticles was compared using disc diffusion tests and MIC and MBC determinations. Bacterial sensitivity was found to differ according to the species tested and the test system employed. For all strains of *S. aureus* and *E. coli*, the action of silver nanoparticles was found to be superior. Strain-specific variation for *S. aureus* was negligible, while some strain-specific variation was observed for *E. coli*. A higher sensitivity, as shown with *B. subtilis*, may be attributed to more amine and carboxyl groups (in comparison to other species) on the cell surface; these groups having a greater affinity for copper [57]. Released copper ions within the cell may then disrupt nucleic acid and key enzymes [58]. In theory, a combination of silver and copper nanoparticles may give rise to a more complete bactericidal effect, especially against a mixed population of bacteria. Indeed, the studies of Ren et al. [40] demonstrated that populations of Gram-positive and Gram-negative bacteria could be reduced by 68% and 65%, respectively, in the presence of 1.0 mg/mL nano copper oxide within 2 hours. This was significantly increased to 88% and 100%, respectively, with the addition of a relatively low concentration (0.05 mg/mL) of nanosilver.
10.3.1.3 Gold (Au)

Gold shows a weak antimicrobial effect in comparison to silver and copper. However, gold nanoparticles are employed in multiple applications involving biological systems. The binding properties of gold are exceptional, and this makes it particularly suitable for attaching ligands to enhance biomolecular interactions. Gold nanoparticles also exhibit an intense color in the visible range and contrast strongly for imaging by electron microscopy [59]. Despite all the current and potential applications for gold nanoparticles, there remains little information as to how these particles affect microorganisms. Growth-inhibition studies, to measure the effect of gold nanoparticles [polyethylene glycol (PEG) coated to allow dispersion] on *E. coli* at various concentrations, demonstrated no significant activity [60]. Studies with PEG-coated gold nanoparticles also showed no activity against *E. coli*. However, the growth of the Gram-negative *Proteus* species and *P. aeruginosa* was inhibited at a concentration of 1.0 mg/mL (R.P. Allaker, unpublished observations).

10.3.2 Nanoparticulate Metal Oxides as Antimicrobial Agents

Nanoparticulate metal oxides have been of particular interest as antimicrobial agents as they can be prepared with extremely high surface areas and unusual crystal morphologies that have a high number of edges, corners, and other potentially reactive sites [61]. However, certain metal oxides are now coming under close scrutiny because of their potential toxic effects [62]. Oxides under consideration as antimicrobial agents include those of copper, zinc oxide, iron oxide, titanium dioxide (titania), and tungsten trioxide (WO$_3$).

10.3.2.1 Copper oxide (CuO and Cu$_2$O)

Copper oxide (CuO) is a semiconducting compound with a monoclinic structure. CuO has attracted particular attention because it is the simplest member of the family of copper compounds and exhibits a range of potentially useful physical properties, such as high-temperature superconductivity, electron correlation effects, and spin dynamics [63,64]. Copper oxide is relatively cheap, easily mixed with polarized liquids (i.e., water) and polymers, and relatively stable in terms of both chemical and physical properties. Highly ionic nanoparticulate metal oxides, such as CuO, may be particularly valuable antimicrobial agents as they can be prepared with extremely high surface areas and unusual crystal morphologies [61].

Copper oxide (CuO) nanoparticles have been characterized, both physically and chemically, and investigated with respect to potential antimicrobial applications [40]. It was found that nanoscaled CuO, as generated by thermal plasma technology, demonstrated particle sizes in the range 20–95 nm with a mean surface area of 15.7 m2/g (Fig. 10.1D). CuO nanoparticles in suspension showed
activity against a range of bacterial pathogens, including MRSA and *E. coli*, with MBCs ranging from 0.1 to 5.0 mg/mL. The MIC and MBC of CuO nanoparticles against *P. gingivalis, P. intermedia, F. nucleatum,* and *A. actinomycetemcomitans* were determined by Vargas-Reus et al. [41]. They found that the MIC for CuO ranged from 250 to 500 μg/mL, and the MBC ranged from 250 to 2500 μg/mL, which are significantly higher when compared to silver. As with silver, studies of CuO nanoparticles incorporated into polymers suggest that release of ions may be required for optimum killing [40]. Incorporation of nano-CuO into porous elastomeric polyurethane films has demonstrated potential for a number of applications. Studies have shown this approach to be effective against MRSA within 4 hours of contact [65].

Cu₂O [copper (I) oxide; cuprous oxide] is a red powder and can also be produced as nanoparticles. Similar activity to CuO [copper (II) oxide; cupric oxide] has been shown against a range of species and strains [40,41]. For example, Cu₂O nanoparticles were shown to have MIC and MBC values less than 100 μg/mL for *P. gingivalis, P. intermedia,* and *F. nucleatum,* however, were not as active against *A. actinomycetemcomitans,* with both MIC and MBC values of 1000 μg/mL.

10.3.2.2 Zinc oxide (ZnO)

As in the case of other nanoparticulate metals and metal oxides, the antimicrobial mechanisms of zinc are not completely understood. Nanozinc oxide (nZnO) has received increasing attention, partly because it is stable under harsh processing conditions, but also because it is generally regarded as safe and biocompatible [61]. Studies have shown that some nanoparticulate metal oxides, such as ZnO, have a degree of selective toxicity to bacteria with a minimal effect on human cells [66–68]. ZnO nanoparticles show bactericidal effects against Gram-positive and Gram-negative species as well as to bacterial spores which are normally resistant to high temperature and high pressure [69]. The proposed mechanisms of antibacterial activity include induction of reactive oxygen species [70,71] and damage to the cell membrane with subsequent interaction of the nanoparticle with the intracellular contents [66] (Fig. 10.2).

Liu et al. [72] investigated the antimicrobial properties of nZnO nanoparticles against *E. coli* strain O157:H7 (verocytotoxin-producing). This strain was significantly inhibited as shown using scanning electron microscopy and transmission electron microscopy analyses to assess the morphological changes of bacterial cells. Leakage of intracellular contents and a degree of membrane disorganization were observed. Using Raman spectroscopy the intensities of lipid and protein bands were shown to increase after exposure to nZnO, whereas no significant change to nucleic acid was indicated. In comparison to silver nanoparticles (0.1 mg/mL), a higher concentration of zinc oxide (particle size: approximately 15–20 nm; surface area: 47 m²/g) is required to have growth-inhibitory (0.5–2.5 mg/mL) and killing effects (> 2.5 mg/mL) against a range of pathogens including *E. coli* and MRSA [73]. The antimicrobial properties of nZnO against
S. aureus were also investigated [74]. Coated substrates with nZnO reduced biofilm formation significantly and showed minimal toxic effect to eukaryotic cells. While with those organisms implicated in oral infections, including A. actinomycetemcomitans, P. gingivalis, P. intermedia, and F. nucleatum, greater sensitivity was demonstrated under anaerobic conditions, with growth-inhibitory and killing concentrations of 0.25–2.5 and 0.25–2.5 mg/mL, respectively [41]. It has also been demonstrated that glass surfaces coated with nZnO are able to produce reactive oxygen species that interfere with E. coli and S. aureus biofilm formation [75].

The antibacterial activity of ZnO nanoparticles is dependent on the concentration and surface area. Higher concentration and larger surface area to volume ratio of nZnO show improved antibacterial activity. Nair et al. [76] used ZnO particles ranging in size from 1.2 μm to 40 nm and showed that, as with nanosilver, the antibacterial capacity of ZnO increases with a reduction in particle size.
10.3.2.3 Titanium dioxide (TiO$_2$)

Titanium dioxide (TiO$_2$) is the commonest titanium compound, and its ability to act as a photocatalytic antimicrobial compound is well established [77]. TiO$_2$ is widely used in a number of applications, as a powder and increasingly in a nanoparticulate form, and is generally considered to be nontoxic at the concentrations normally employed. The antimicrobial properties of TiO$_2$ are related to its crystal structure, shape, and size [78]. However, there are concerns that nanotitanium oxide may present a hazard to health through inflammation as generated by the release of IL-1α [79]. The anatase form of nano-TiO$_2$ and UV light excitation are required to ensure maximum antimicrobial activity. TiO$_2$ photocatalysis is able to promote the peroxidation of the polyunsaturated phospholipid component of the microbial lipid membrane, induce loss of respiratory activity, and elicit cell death [80]. The study of Tsuang et al. [81] demonstrated TiO$_2$-mediated photocatalytic and bactericidal activities against obligate aerobes (P. aeruginosa), facultative anaerobes (S. aureus, E. coli, and Enterococcus hirae) and obligate anaerobes (Bacteroides fragilis). Concentrations of titanium oxide (predominantly anatase phase; in the absence of UV light; particle size: approximately 18 nm; surface area: 87 m2/g) required to have a growth-inhibitory and killing effect against a range of pathogens including E. coli and MRSA have been shown to be 1.0–2.5 and >2.5 mg/mL, respectively (K. Memarzadeh and R.P. Allaker 2012, unpublished observations). Meanwhile, with those organisms implicated in oral infections, including A. actinomycetemcomitans, P. gingivalis, P. intermedia, and F. nucleatum, growth-inhibitory and killing concentrations under anaerobic conditions are in the same order at 0.25–2.5 and >2.5 mg/mL, respectively [41].

One potential disadvantage of TiO$_2$ is its wide band-gap, which implies it is only fully bactericidal when it absorbs UV light. In addition, traditional TiO$_2$ photocatalysis is effective only upon irradiation with UV light at levels that could cause damage to human cells. Therefore, doping TiO$_2$ with transition metal ions and/or anions has been developed to provide alternatives. The study of Chambers et al., indicated that by doping TiO$_2$ with Ag, a band-gap shift towards the visible spectrum can be achieved; the Ag-TiO$_2$ produced had a bactericidal effect when in contact with S. mutans under visible light conditions [82].

10.3.2.4 Superparamagnetic iron oxide

Superparamagnetic iron oxide nanoparticles (SPIONs) are a special class of metal oxide nanoparticles with unique magnetic properties and superior biocompatibility. Recently, SPIONs were demonstrated to deeply penetrate into bacterial biofilms when an external magnetic field is applied, resulting in a high therapeutic index against Staphylococcus epidermidis and S. aureus infections [83]. Furthermore, Taylor et al. proposed that SPIONs in a concentration range of 10–2000 µg/mL were able to kill up to 25% of S. epidermidis populations in a 48-hour old biofilm, indicating the potential of using SPIONs to prevent implant infection [84].
The surface chemical functionalities of SPIONs have been suggested to be crucial to their antimicrobial properties [85]. It has been shown that SPIONs with different surface coatings, such as gold or silver, had significant antimicrobial activity against biofilms when compared to uncoated SPIONs [86]. The effects of various coatings on the antimicrobial properties of SPIONs against *S. aureus* were compared; the results demonstrated that uncoated SPIONs with concentration of 350 μg/mL led to bacterial death, whereas SPIONs with Ag, Au, and Ag/Au coatings killed the bacteria with a concentration of 80 μg/mL.

The antibacterial activity of SPIONs could be due to several mechanisms. The most critical reason suggested is related to oxidative stress as a result of reactive oxygen species generation. Reactive oxygen species include superoxide radicals, hydroxyl radicals, hydrogen peroxide, and singlet oxygen, that may cause chemical damage to proteins and DNA in bacteria. Second, electrostatic interactions between SPIONs and bacterial cell membranes can result in physical damage to the cell membrane, which ultimately leads to bacterial death [87]. The small size of SPIONs with a typical diameter around 10 nm can also contribute to their antimicrobial activities [88].

10.3.3 ORAL APPLICATIONS OF NANOPARTICULATE METALS AND METAL OXIDES

Silver nanoparticles have been investigated to reduce bacterial and fungal adhesion to oral biomaterials and devices, for example, incorporation into denture materials (Figs. 10.3 and 10.4) and orthodontic adhesives [89]. The optimum amount of silver nanoparticles used within such polymeric materials is of critical importance to avoid an adverse effect upon the physical properties of the polymer. The study of Ahn et al. [89] clearly demonstrated that experimental composite adhesives (ECAs) had rougher surfaces than conventional adhesives due to the addition of silver nanoparticles, with bacterial adhesion to ECAs being less than that to conventional adhesives and not influenced by saliva coating. No significant difference between ECAs and conventional adhesives was shown as regards bond shear strength.

Biofilm growth is known to contribute to secondary caries and the failure of resin-based dental composites. Within this context, zinc oxide nanoparticles have undergone in vitro testing using biofilm culture test systems [90]. ZnO nanoparticles blended into a variety of composites were shown to significantly inhibit *S. sobrinus* biofilm growth at concentrations not less than 10% w/w over a 3-day test period. The structural characteristics of composites would need to be carefully assessed with a 10% ZnO loading.

With reference to dental implants, numerous companies market novel synthetic hydroxyapatite (HA) materials as the “optimal” osteoconductive implant coating available, and some companies have developed nanoscaled varieties. Furthermore, combined nanohydroxyapatite and nZnO coatings have shown much
FIGURE 10.3
Scanning electron micrograph of a fractured PMMA/Ag nanocomposite containing approximately 0.04% w/w silver. Distribution of silver particles in the PMMA acrylic resin shown. (A) White areas are agglomerated silver nanoparticles distributed in the PMMA (×828 magnification). (B) Silver nanoparticles (white dots) with approximate mean size 88 nm distributed in the PMMA matrix (×50,000 magnification). PMMA, Poly(methyl methacrylate).

Reproduced with permission from D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver, Int. J. Antimicrob. Agents 34 (2009) 103–110.
potential as regards antimicrobial activity and biocompatibility [91]. Some have employed coatings and application methods different from the conventional coating techniques, including an HA material available in nanophase and a nanocrystalline silver-based antimicrobial coating that should reduce the potential for bacterial colonization. The antibacterial properties of an amorphous carbon film

FIGURE 10.4
Scanning electron micrograph (× 4000 magnification) of *Streptococcus mutans* in contact with composite resin (Z250, 3M ESPE Dental) with and without 1% w/w quaternary ammonium PEI nanoparticles. (A) After 1 h incubation without nanoparticles. (B) After 24 h incubation without nanoparticles showing bacterial growth and typical biofilm formation. (C) After 1 h of incubation with nanoparticles. (D) After 24 h of incubation with nanoparticles. There is a decrease in the amount of *S. mutans* present illustrating the bactericidal properties of PEI nanoparticles. PEI, Polyethylenimine.

Reproduced with permission from N. Beyth, I. Yudovin-Farber, R. Bahir, A.J. Domb, E.I. Weiss, Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans, Biomaterials 27 (2006) 3995–4002.
[92] incorporating silver nanoparticles in a 40 – 60 nm size range and deposited onto a standard titanium material have been evaluated. A significant reduction in mixed-biofilm counts compared to the standard titanium material was observed after 7 days using the coating with silver nanoparticles.

10.3.4 QUATERNARY AMMONIUM COMPOUNDS

Quaternary ammonium poly(ethylene imine) (QA-PEI) nanoparticles as an antimicrobial to incorporate into restorative composite resins have been developed [93] (Fig. 10.4). This may have distinct advantages over the currently used composite resins employed to restore hard tissues, which are known to possess several disadvantages, including development of biofilms on both teeth and the restorative material [4]. The traditional methods for preparing antibacterial composite materials have been to impregnate them with low-molecular-weight agents, such as Ag+ ions or iodine, that are then released slowly. Apart from the possible adverse effects on the mechanical properties of the composite, difficulties in controlling the release of such agents may be a potential drawback.

QA-PEI nanoparticles at a concentration of 1% w/w enabled complete in vitro growth inhibition of S. mutans to be achieved for at least 3 months [94]. The proposed mechanism of action of QA-PEI is suggested to be as a result of transfusion across, and damage to, the bacterial cell wall. The hydrophobic nature and positive charge of these particles are also thought to further enhance the antimicrobial activity. Surface chemical analysis of the restorative composite embedded with QA-PEI demonstrated a surface modification of higher hydrophobicity and the presence of quaternary amines when compared to the unmodified material. Further studies to optimize the release characteristics of QA-PEI and other potentially useful nanoparticulates from dental materials will be required.

10.3.5 BIOACTIVE GLASSES

Bioactive glasses (BGs) of the SiO2−Na2O−CaO−P2O5 system have been shown to possess antimicrobial activity through the release of ionic alkaline species over time and offer an alternative to calcium hydroxide as regards osteo-conductivity [95]. It has been reported that BGs have a broad antimicrobial effect on oral microorganisms, including S. mutans and C. albicans. The release of their ionic compounds (silicon, calcium, sodium, and phosphate) over time results in a high pH environment within closed systems, which is not well-tolerated by these microorganisms [96].

Those in the form of amorphous nanoparticles with a size of 20–60 nm may show an advantage over micron-sized material as the decrease in glass particle size should increase, by more than 10-fold, the active exchange surface of glass and surrounding liquid. In turn this would substantially increase ionic release into suspension and enhance antimicrobial efficacy. Waltimo et al. [95] monitored ionic dissolution profiles in simulated body fluid. Antimicrobial activity was
assessed against *Enterococcus faecalis* as a pathogen often isolated from root canal infections. They found that a shift from a micron- to a nanosize increased the release of silica by a factor of 10 and elicited a pH elevation of at least three units. The killing efficacy was also significantly higher.

The most widely known group of BGs is called 45S5 or Bioglass, which consists of 46.1 mol% SiO₂, 24.4 mol% Na₂O, 26.9 mol% CaO, and 2.6 mol% P₂O₅. Many studies have provided evidence for the potential beneficial use of 45S5 BGs as additives to dental materials to enhance their antimicrobial effects [95]. BG S53P4 has also been shown to have an antibacterial effect on some oral microorganisms. It has been demonstrated that this type of BG has significant effects on killing and inhibiting a wide range of opportunistic pathogens, including *S. aureus, E. coli, Fusobacterium necrophorum, P. gingivalis, S. mutans, A. actinomycetemcomitans, Peptostreptococcus anaerobius, P. intermedia,* and *Prevotella melaninogenica* [97–99].

BGs with specific ionic additions have also been demonstrated to have an antimicrobial effect against different species of bacteria. Silver-doped BGs (AgBG) have been investigated by Bellantone et al. [100]. They observed a bactericidal effect at an AgBG concentration of 10 mg/mL against *S. aureus, E. coli,* and *P. aeruginosa.* They also concluded that the antibacterial action of AgBG is attributed to the leaching of Ag ions from the glass matrix. The study of Liu et al. [101] demonstrated that the growths of *A. actinomycetemcomitans* and *P. gingivalis* were significantly inhibited by using fluoride-incorporated BGs, and this effect is dose-dependent. Furthermore, strontium-substituted BGs have also been tested to inhibit the growth of *A. actinomycetemcomitans* and *P. gingivalis* [102].

10.4 ANTI-ADHESIVE NANOPARTICLES AND ORAL BIOFILM CONTROL

10.4.1 CHITOSAN NANO- AND MICROPARTICLES

Chitosan is a biopolymer derived by the deacetylation of chitin, a natural polymer occurring in the exoskeleton of crustaceans. Chitosan has the properties of being biocompatible, biodegradable, nontoxic, and nonantigenic. The polymer is positively charged and soluble in acidic to neutral solution, enabling it to bind to mucosal surfaces. Both chitosan nano- and microparticles have been investigated as a potential platform for local delivery of drugs [103]. Chitosan nanoparticles are effective against a variety of microorganisms, and this effect can be further enhanced when silver salts are added [104]. Although antimicrobial irrigants (without chitosan), as employed to disinfect root canals in the treatment of endodontic infections are capable of killing *E. faecalis,* the bacterium frequently associated with this condition, endodontic restorations often fail [105]. The in vitro study of Kishen et al. [106] demonstrated that root canal surfaces treated with cationic antibacterial nanoparticulates such as zinc oxide alone and a
combination of zinc oxide and chitosan nanoparticles are able to significantly reduce \textit{E. faecalis} adherence to dentine. In theory, such surface treatment could prevent bacterial recolonization and biofilm formation in vivo. The study of Mirhashemi et al. demonstrated that ZnO-chitosan nanoparticles can inhibit the growth of \textit{S. mutans} and \textit{S. sanguinis} in a concentration-dependent manner [107].

10.4.2 SILICA AND SILICON NANOPARTICLES

Particles of a nano and micro size based upon the element silicon, designed to rapidly deliver antimicrobial and antiadhesive capabilities to the desired site within the oral cavity, have received attention [108]. Companies have used silica (silicon dioxide “SiO$_2$” and often classed as “microfine,” but with a particle size within the definition of nanoparticles) in toothpastes for many years, and some have actively sought new directions in this area through the use of porous silicon and nanocrystalline silicon technology to carry and deliver antimicrobials, for example, triclosan. These may well offer advantages to some of the slower and more prolonged delivery systems under investigation.

The use of silica nanoparticles to polish the tooth surface may help protect against damage by cariogenic bacteria, presumably because the bacteria can more easily be removed. This has been investigated on human teeth ex vivo [109]. Atomic force microscopy demonstrated lower nanometer-scale roughness obtained when silica nanoparticles were used to polish the surface of teeth as compared with conventional polishing pastes. It was also shown that adherent \textit{S. mutans} could be more easily removed. However, concerns remain as to the longevity of the effect, and whether the polished surface will inhibit mineralization and plaque formation in vivo. Spherical silica nanoparticles (up to 21 nm) deposited onto polystyrene surfaces by poly-cationic binding has been investigated with respect to the development of \textit{C. albicans} biofilms and invasive filament formation [110]. Modified surfaces were shown to reduce attachment and growth of \textit{C. albicans}, with the greatest effect observed with 7- and 14-nm particles. These effects could possibly be attributed to the surface topography or slow dissolution of the bound silica. Such treatment has the advantages of being nontoxic, simple to apply, and adaptable to three-dimensional surfaces.

Other novel systems based upon silica have been investigated with respect to the control of oral biofilms. The use of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells has been described [111]. The rapid diffusion of NO may well result in enhanced penetration into the biofilm matrix and therefore improved efficacy against biofilm-embedded bacteria. In vitro grown biofilms of \textit{P. aeruginosa}, \textit{E. coli}, \textit{S. aureus}, \textit{S. epidermidis}, and \textit{C. albicans} were exposed to NO-releasing silica nanoparticles. Over 99% of cells from each type of biofilm were killed via NO release. In comparison to small-molecule NO donors, the physicochemical properties, for example, hydrophobicity, charge, and size, of nanoparticles can be altered to increase antibiofilm efficacy [25].
10.4.3 HYDROXYAPATITE AND OTHER CALCIUM PHOSPHATE-BASED SYSTEMS

The application of nanoscaled HA particles has been shown to impact on oral biofilm formation and provides a remineralization capability [112,113]. Biomimetic approaches, based upon HA nanocrystals which resemble the structure at the nanoscale of abraded dental enamel crystallites, should allow adsorbed particles to interact with bacterial adhesins, reduce bacterial adherence, and hence impact on biofilm formation [114]. Abdulkareem et al. demonstrated the significant effect of nano-HA coatings on biofilm formation by *Streptococcus* spp. over a 96-hour period in a constant-depth film fermenter under aerobic conditions with artificial saliva and peri-implant sulcular fluid [91] (Fig. 10.5).

A number of oral healthcare products, including dentifrices and mouth rinses, have been developed containing nanosized apatite particles with and without protein-based additives [115,116]. It is suggested that the efficacy of these compounds can be attributed to the size-specific effects of the apatite nanoparticles. Casein phosphopeptide (CPP)—amorphous calcium phosphate (ACP) nanocomplex (Recaldent/MI Paste) is a particular technology based upon ACP and stabilized by CPP [117]. Use of this technology has demonstrated anticariogenic activity under both in vitro and in vivo conditions. The levels of calcium and phosphate ions in supragingival plaque have been shown to increase upon delivery of CPP—ACP in a mouth rinse form and promote remineralization of

![Nano-based HA particulates—predominantly rod-shaped and contain tiny nanosized holes (indicated with the arrows) that allow for an increased surface area. HA, Hydroxyapatite. Reproduced with permission from E.H. Abdulkareem, K. Memarzadeh, R.P. Allaker, J. Huang, J. Pratten, D. Spratt, Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials, J. Dent. 43 (2015) 1462–1469.](image)
enamel subsurface lesions [116]. Analysis of plaque samples demonstrated CPP–ACP nanocomplexes to be localized in plaque on the surface of bacterial cells and essentially confirm the studies by Rose [118,119], who demonstrated tight binding to S. mutans and the intercellular plaque matrix to provide a calcium ion reservoir. As a result of interaction with calcium binding sites and the masking of bacterial receptors on salivary molecules, CPP–ACP is thought to reduce bacterial colonization as shown with CPP–ACP germanium-treated surfaces [115].

10.5 PHOTODYNAMIC THERAPY AND THE USE OF NANOPARTICLES TO CONTROL ORAL BIOFILMS

Photodynamic therapy (PDT) is very well suited for the control of bacteria in oral plaque biofilms where there is relatively easy access for the application of the photosensitizing agent and light sources to areas requiring treatment [120]. This approach is now being utilized within the clinical setting in some countries. The killing of microorganisms with light depends upon cytotoxic singlet oxygen and free-radical generation by the excitation of a photoactivatable agent or sensitizer. The result of excitation is that the sensitizer moves from an electronic ground state to a triplet state, which then interacts with microbial components to generate cytotoxic species [121]. One of the advantages of light-activated killing is that the resistance to action of singlet oxygen is unlikely to become widespread in comparison to that experienced with more traditional chemical antimicrobial agents. A sensitizer ideally should absorb light at red to near-infrared wavelengths because these wavelengths are able to penetrate more. The most commonly tested sensitizers on bacteria have been tricyclic dyes (e.g., methylene blue, erythrosine), tetrapyrroles (e.g., porphyrins), and furocoumarins (e.g., psoralen). The use of nanoparticles within this area is now under investigation. For example, a complex of biodegradable and biocompatible poly(lactic-co-glycolic acid) and colloidal gold nanoparticles, loaded with methylene blue and exposed to red light at 665 nm, has been tested against planktonic E. faecalis and in experimentally infected root canals [122]. In theory, gold nanoparticle conjugates should have improved binding and cell wall penetration properties, and so should deliver a higher concentration of photoactive molecules. It remains to be fully established whether such conjugates will show an increased antibacterial activity when compared to more conventional treatments.

Most work on light-activated killing has been performed using suspensions of planktonic bacteria, with relatively few studies observing biofilm-grown microorganisms. In vitro biofilm-grown S. mutans cells demonstrated a 3-log reduction when treated with erythrosine and white light (500–650 nm) [123], while an approach using antibody- and erythrosine-labeled nanoparticles has shown the potential for targeting specific bacterial species in oral plaque biofilms (S. Wood
et al., unpublished observations). These in vitro studies, employing constant-depth film fermenters with gold nanoparticles conjugated to erythrosine and antibody to either *S. mutans* or *Lactobacillus casei*, have shown specific killing of target organisms in mixed-biofilm cultures.

Considerations in relation to the therapeutic use of light-activated killing of biofilms on host surfaces include: (1) direct toxicity of the sensitizer, (2) indirect toxicity of the sensitizer in terms of “by-stander” damage to adjacent host cells, (3) penetration into the biofilm, (4) light exposure time required to kill bacteria within in vivo biofilms, and (5) widespread relatively nonspecific bacterial killing [120]. The photosensitizer erythrosine has an advantage over other dyes because it is currently used in dentistry to visualize dental plaque in vivo, and so its lack of toxicity in the host is well established. For use in periodontitis, the dye needs to be applied subgingivally prior to fiberoptic laser light activation. However, when disease is present, the periodontal site has a marked flow of GCF into the pocket, and most photosensitizers lose some activity in the presence of extraneous protein. Also, some have virtually no effect in the presence of saliva and other body fluids. This is because the agents complex with proteins and host cells in the GCF and effectively compete for binding to bacteria. The use of nanoparticles as applied to PDT may help to overcome some of the issues associated with serum constituents.

10.6 Biocompatibility of Nanoantimicrobials within the Oral Cavity

Although the development and application of nanotechnology are of major importance in both industrial and consumer sectors, knowledge regarding the possible toxicity of nanotechnology products to humans is rather limited. In contrast, it is well known that copper in a non-nanoparticulate form is actively excreted from the body, non-nanoparticulate silver can accumulate within the body. However, the threat posed by these metals in a nanoparticulate remains unclear [124]. In order to understand the mechanism of toxicity, a thorough knowledge of the toxico-kinetic properties of nanoparticles is required. This includes information on the absorption, distribution, metabolism, and excretion of nanoparticles [125]. In theory, certain nanoparticles may be retained within the body for longer than desirable, and thus the safety profile becomes a matter of overriding significance. Nanomaterials are able to cross biological membranes and access cells, tissues, and organs that larger-sized particles normally cannot [126]. Nanomaterials can enter the bloodstream following inhalation or ingestion, and some can even penetrate the skin. However, a particle’s surface chemistry, which in some cases can be modified, can govern whether it should be considered further for biomedical applications [25].
Toxicology and biodynamic studies suggest that silica, silicon, and chitosan nanoparticles are relatively safe if introduced via the oral route [124]. Testing of NO-releasing silica nanoparticles (at the highest concentration tested of 8 mg/mL) with fibroblasts demonstrated that cell proliferation was inhibited to a lesser degree than with chlorhexidine [111]. Likewise, QA-PEI nanoparticles incorporated into composite resins to restore teeth at 1% w/w demonstrate no additional toxic effects on cultured cells or experimental animal tissue in comparison to unmodified composites [94]. BG nanoparticles generally have very good biocompatibility. In vitro investigations with MG-63 osteoblast-like cells reveal a high cyto-compatibility of nanoscale BG particles [127]. In comparison to other metals, silver is less toxic to human cells, and is only ever used at very low concentrations in vivo [27]. For example, silver nanoparticles have been shown to inhibit Candida spp. at a concentration of 0.2 μg/mL, which is markedly less than the concentration (30 μg/mL) required to demonstrate a toxic effect against human fibroblasts [128]. Besides, it has been reported that by incorporating AgNPs into titanium implant material, not only the antibacterial ability of the implant is enhanced, but also the surface remains biocompatible [129]. Similarly, nZnO has been shown to possess good biocompatibility. Memarzadeh et al. studied the cytotoxicity of nZnO against UMR-106 and MG-63 cells. The results indicated that UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines [74].

The safe use of nanotechnology and the design of nanomaterials for biological applications, including the control of oral biofilms, involve a thorough understanding of the interface between these materials and biological systems [25]. The interface comprises three interacting components: (1) the surface of the nanoparticle, (2) the solid—liquid interface and the effects of the surrounding medium, and (3) the contact zone with biological substrates. The nanoparticle characteristics of most importance as regards interaction with biological systems, whether mammalian or microbial, are chemical composition, surface function, shape and number of sides, porosity and surface crystallinity, heterogeneity, roughness, and hydrophobicity or hydrophilicity [130]. For example, it has been shown that titanium dioxide nanoparticles [131] act to resist the formation of surface biofilms through increased hydrophilicity in comparison to an unmodified surface.

The characteristics of the surface layer, such as zeta charge, nanoparticle aggregation, dispersion state, stability, and hydration as influenced by the characteristics of the surrounding medium (including ionic strength, pH, temperature, and the presence of organic molecules or detergents) are critically important. The contribution of surface charge to both mammalian and microbial interactions has been illustrated using surfactant-coated nanoparticles [132]. Antiadherent and antifungal effects were shown using buccal epithelial cells treated with nondrug-loaded poly(ethylcyanoacrylate) nanoparticles. Nanoparticles were prepared using emulsion polymerization and stabilized with cationic, anionic, or nonionic surfactants. Cationic surfactants, for example, cetrimide, which are known antimicrobial
agents, were the most effective in reducing *C. albicans* blastospore adhesion, and showed a growth-inhibitory and biocidal effect against the yeast. Production of nanoparticles with an anionic surfactant gave lower yields and wide particle size distributions. No evidence of killing against *C. albicans* was shown. Nonionic surfactant-coated nanoparticles produced intermediate kill rates. These studies clearly demonstrate the importance of surface charge on the nanoparticle surface. It is suggested that the buccal epithelium could possibly be treated using polymeric-type nanoparticles in a mouthwash-type formulation; in theory this would prime the potential target cells against adhesion and infection.

The in vivo screening of around 130 nanoparticles intended for therapeutic use has allowed detailed assessments as regards biocompatibility [25]. It was shown that the main independent particle variables which determine compatibility are size, surface charge, and dispersibility (particularly the effect of hydrophobicity). Cationic particles or particles with a high surface reactivity are more likely to be toxic (to both eukaryotes and prokaryotes). Larger, more hydrophobic or poorly dispersed particles, which would be rapidly removed by the reticuloendothelial system, were shown to be less toxic. Karlsson et al. [62] have shown that metal oxide nanoparticles are more toxic than at first envisaged at concentrations down to 40 μg/mL and show a high variation as regards different nanoparticle species to cause cytotoxicity, DNA damage, and oxidative DNA lesions. Toxic effects on cultured cells were assessed using trypan blue staining, the comet assay to measure DNA damage, and an oxidation-sensitive fluoroprobe to quantify the production of reactive oxygen species [62]. Copper oxide was found to be the most toxic and therefore may pose the greatest health risk. Nanoparticulate ZnO and TiO₂, both ingredients in sunscreens and cosmetics, also showed significant cytotoxic and DNA-damaging effects. The potential mechanisms of toxicity for these and other selected nanoparticles are listed in Table 10.1.

In order to help prevent aggregation of nanoparticles, stabilizing (capping) agents that bind to the entire nanoparticle surface can be used; these include water-soluble polymers, oligo- and poly-saccharides, sodium dodecyl sulfate, PEG, and glycolipids. The specific impact of surface capping, size scale, and aspect ratio of ZnO particles upon antimicrobial activity and cytotoxicity have been investigated [76]. PEG-capped ZnO nanoparticles demonstrated an increase in antimicrobial efficacy with a reduction in particle size. Again, Gram-negative bacteria were more affected than Gram-positive, which suggests that a membrane damage mechanism of action rather than one involving the production of reactive oxygen species is of overriding significance. PEG-capped nanoparticles were found to be highly toxic to human cells with a very low concentration (at 100 μM) threshold for cytotoxic action, whereas the concentration for antibacterial activity was 50 times greater (at 5 mM). It is hypothesized that the toxicity to eukaryotic cells is related to nanoparticle-enhanced apoptosis by up-regulation of the Fas ligand on the cell membrane [76].

An understanding of the interface between biological systems and nanomaterials should enable design features to be used to control the exposure,
bioavailability, and biocatalytic activities. A number of possible approaches are starting to be identified \cite{25} including changing ability to aggregate, application of surface coatings, and altering charge density and oxidative state. However, this may well compromise the intended selective toxicity of antimicrobial nanoparticles. It remains to be determined how potential mammalian toxicity issues will fully impact on the use of nanotechnology in the control of oral biofilms.

Table 10.1 Nanoparticle Cytotoxicity to Mammalian Cells

Nanoparticle	Cytotoxicity Mechanism
TiO$_2$	Reactive oxygen species production
Glutathione depletion and toxic oxidative stress	
Cell membrane disruption	
ZnO	Reactive oxygen species production
Dissolution and release of toxic cations	
Lysosomal damage	
Inflammation	
Ag	Dissolution and Ag$^{+}$ ion release inhibits respiratory enzymes and ATP production
Reactive oxygen species production	
Disruption of membrane integrity and transport processes	
Gold	Disruption of protein conformation
SiO$_2$	Reactive oxygen species production
Protein unfolding	
Membrane disruption	
Cu/CuO	DNA damage and oxidative stress

Adapted from A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, et al., Understanding biophysicochemical interactions at the nano--bio interface, Nat. Mater. 8 (2009) 543–557.

10.7 Conclusion

The application of nanoscaled antimicrobials to control oral infections, as a function of their biocidal, anti-adhesive, and delivery capabilities, shows much potential. Their use as constituents of prosthetic device coatings, topically applied agents, and within dental materials is being explored. Future developments will concentrate on those nanoparticles with maximal antimicrobial activity and minimal host toxicity. Antimicrobial nanoparticulate metals have received particular attention as a result of their durability. Although certain nanoparticles may be toxic to oral and other tissues, the surface physical and chemical characteristics of a given particle will help to determine whether or not it will have potential for oral applications. Approaches to alter biocompatibility and desired function are
being identified and these include changing the ability to aggregate, application of surface coatings, and altering oxidative state and charge density.

ACKNOWLEDGMENTS

The authors are grateful to International Journal of Antimicrobial Agents, Biomaterials, Microbiologist and Journal of Dentistry for permission to use material from 34:103–110 (2009), 27:3995–4002 (2006), 15:18–21 (2014), and 43:1462–1469 (2015), respectively.

REFERENCES

[1] B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 104 (2004) 3893–3946.
[2] R.P. Allaker, G.G. Ren, Potential impact of nanotechnology on the control of infectious diseases, Trans. R. Soc. Trop. Med. Hyg. 102 (2008) 1–2.
[3] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, The bactericidal effect of silver nanoparticles, Nanotechnology 16 (2005) 2346–2353.
[4] D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver, Int. J. Antimicrob. Agents 34 (2009) 103–110.
[5] M. Hannig, L. Kriener, W. Hoth-hannig, C. Becker-Willinger, H. Schmidt, Influence of nanocomposite surface coating on biofilm formation in situ, J. Nanosci. Nanotechnol. 7 (2007) 4642–4648.
[6] P.D. Marsh, M.A.O. Lewis, H. Rogers, D.W. Williams, M. Wilson, Marsh & Martin’s Oral Microbiology, sixth ed., Churchill Livingstone, 2016.
[7] C. Hannig, M. Hannig, The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man, Clin. Oral Investig. 13 (2009) 123–139.
[8] P.D. Marsh, D.J. Bradshaw, Dental plaque as a biofilm, J. Ind. Microbiol. 15 (1995) 169–175.
[9] M. Hannig, A. Joiner, The structure, function and properties of the acquired pellicle, Monogr. Oral Sci. 19 (2006) 29–64.
[10] P.E. Kolenbrander, R.J. Palmer, A.H. Rickard, N.S. Jakubovics, N.I. Chalmers, P.I. Diaz, Bacterial interactions and successions during plaque development, Periodontol 2000 42 (2006) 47–79.
[11] I.W. Sutherland, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology 147 (2001) 3–9.
[12] H.F. Jenkinson, R.J. Lamont, Oral microbial communities in sickness and in health, Trends Microbiol. 13 (2005) 589–595.
[13] K. Lewis, Riddle of biofilm resistance, Antimicrob. Agents Chemother. 45 (2001) 999–1007.
[14] J.M. Hardie, Oral microbiology: current concepts in the microbiology of dental caries and periodontal disease, Br. Dent. J. 172 (1992) 271–278.
L.A. Ximenez-Fyvie, A.D. Haffajee, S.S. Socransky, Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis, J. Clin. Periodontol. 27 (2000) 648–657.

P.C. Baehni, Y. Takeuchi, Anti-plaque agents in the prevention of biofilm-associated oral diseases, Oral Dis. 9 (Suppl. 1) (2003) 23–29.

F.J. van der Ouderaa, Anti-plaque agents. Rationale and prospects for prevention of gingivitis and periodontal disease, J. Clin. Periodontol. 18 (1991) 447–454.

R.P. Allaker, J.M. Hardie, sixth ed., Oral Infections, Topley and Wilson’s Microbiology and Microbial Infections, 3, Arnold, London, 1998, pp. 373–390.

N.U. Zitzmann, T. Berglundh, Definition and prevalence of peri-implant diseases, J. Clin. Periodontol. 35 (2008) 286–291.

J. Chandra, D.M. Kuhn, P.K. Mukherjee, L.L. Hoyer, T. McCormick, M.A. Ghannoum, Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance, J. Bacteriol. 183 (2001) 5385–5394.

P.S. Stewart, Diffusion in biofilms, J. Bacteriol. 185 (2003) 1485–1491.

M. Wilson, Susceptibility of oral bacterial biofilms to antimicrobial agents, J. Med. Microbiol. 44 (1996) 79–87.

P.S. Watson, H.A. Pontefract, D.A. Devine, R.C. Shore, B.R. Nattress, J. Kirkham, et al., Penetration of fluoride into natural plaque biofilms, J. Dent. Res. 84 (2005) 451–455.

S.R. Wood, J. Kirham, P.D. Marsh, R.C. Shore, B. Nattress, C. Robinson, Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy, J. Dent. Res. 79 (2000) 21–27.

A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, et al., Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater. 8 (2009) 543–557.

E. Giersten, Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo, Caries Res. 38 (2004) 430–435.

I. Sondi, B. Salopek-Sondi, Silver nanoparticles as an antimicrobial agent: a case study on Escherichia coli as a model for gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177–182.

N. Cioffi, L. Torsi, N. Ditaranto, L. Sabbatini, P.G. Zambonin, G. Tantillo, et al., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem. Mater. 17 (2005) 5255–5262.

Z. Li, D. Lee, X. Sheng, R.E. Cohen, M.F. Rubner, Two-level antibacterial coating with both release-killing and contact-killing capabilities, Langmuir 22 (2006) 9820–9823.

H. Boldyryeva, N. Umeda, O.A. Plaskin, Y. Takeda, N. Kishimoto, High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation, Surf. Coat. Tech. 196 (2005) 373–377.

W.F. Lee, K.T. Tsao, Preparation and properties of nanocomposite hydrogels containing silver nanoparticles by ex situ polymerization, J. Appl. Polym. Sci. 100 (2006) 3653–3661.

J. Verran, G. Sandoval, N.S. Allen, M. Edge, J. Stratton, Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension, Dyes Pigm. 73 (2007) 298–304.
C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, et al., Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12 (2007) 527–534.

T.M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol. 42 (2008) 4133–4139.

G.A. Sotiriou, S.E. Pratsinis, Antibacterial activity of nanosilver ions and particles, Environ. Sci. Technol. 44 (2010) 5649–5654.

J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, et al., Antimicrobial effects of silver nanoparticles, Nanomedicine 3 (2007) 95–101.

S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712–1720.

J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, et al., Interaction of silver nanoparticles with HIV-1, J. Nanobiotechnol. 3 (2005) 6.

J. Han, L. Chen, S. Duan, Q.X. Yang, M. Yang, C. Gao, et al., Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts, Biomed. Environ. Sci. 18 (2005) 176–180.

G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents 33 (2009) 587–590.

M.A. Vargas-Reus, K. Memarzadeh, J. Huang, G.G. Ren, R.P. Allaker, Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens, Int. J. Antimicrob. Agents 40 (2012) 135–139.

M. Herrera, P. Carrion, P. Baca, J. Liebana, A. Castillo, In vitro antibacterial activity of glass-ionomer cements, Microbiol 104 (2001) 141–148.

L.A. Casemiro, C.H. Gomes-Martins, C. Pires-de-Souza Fde, H. Panzeri, Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite—Part I, Gerodontontology 25 (2008) 187–194.

K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions, Dent. Mater. 16 (2000) 452–455.

T. Matsuura, Y. Abe, Y. Sato, K. Okamoto, M. Ueshige, Y. Akagawa, Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite, J. Dent. 25 (1997) 373–377.

M. Morishita, M. Miyagi, Y. Yamasaki, K. Tsuruda, K. Kawahara, Y. Iwamoto, Pilot study on the effect of a mouthrinse containing silver zeolite on plaque formation, J. Clin. Dent. 9 (1998) 94–96.

P. Li, J. Li, C. Wu, Q. Wu, J. Li, Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles, Nanotechnology 16 (2005) 1912–1917.

M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76–83.

V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials, J. Am. Chem. Soc. 128 (2006) 9798–9808.

Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.M. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of Ag + ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res. 52 (2000) 662–668.
[51] M. Yamanaka, K. Hara, J. Kudo, Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis, Appl. Environ. Microbiol. 71 (2005) 7589–7593.
[52] P.D. Bragg, D.J. Rainnie, The effect of Ag+ ions on the respiratory chain of Escherichia coli, Can. J. Microbiol. 20 (1974) 883–889.
[53] R. Emmanuel, S. Palanisamy, S.M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, et al., Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms, Mater. Sci. Eng. C Mater. Biol. Appl. 56 (2015) 374–379.
[54] M.A. Pérez-Díaz, L. Boegli, G. James, C. Velasquillo, R. Sanchez-Sanchez, R.E. Martinez-Martinez, et al., Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect, Mater. Sci. Eng. C Mater. Biol. Appl. 55 (2015) 360–366.
[55] K.Y. Yoon, J.H. Byeon, J.H. Park, J. Hwang, et al., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ. 373 (2007) 572–575.
[56] J.P. Ruparelia, A.K. Chatterje, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater. 4 (2008) 707–716.
[57] T.J. Beveridge, R.G.E. Murray, Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol. 141 (1980) 876–878.
[58] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Rad. Biol. Med. 18 (1995) 321–336.
[59] C. Lin, Y. Yeh, C. Yang, C. Chen, G. Chen, C.C. Chen, et al., Selective binding of mannose-encapsulated gold nanoparticles to type I pili in Escherichia coli, J. Am. Chem. Soc. 13 (2002) 155–168.
[60] D.N. Williams, S.H. Ehrman, T.R. Pullman Holoman, Evaluation of the microbial growth response to inorganic nanoparticles, J. Nanobiotechnol. 4 (2006) 3.
[61] P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents, Langmuir 18 (2002) 6679–6686.
[62] H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Moller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol. 21 (2008) 1726–1732.
[63] R.J. Cava, Structural chemistry and the local charge picture of copper oxide superconductors, Science 247 (1990) 656–662.
[64] J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Evidence for stripe correlations of spins and holes in copper oxide superconductors, Nature 375 (1995) 561.
[65] Z. Ahmad, M.A. Vargas-Reus, R. Bakhshi, F. Ryan, G.G. Ren, F. Oktar, et al., Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications, Methods Enzymol. 509 (2012) 87–99.
[66] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett. 6 (2006) 866–870.
[67] K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Appl. Phys. Lett. 90 (2007) 213902.
[68] L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res. 9 (2007) 479–489.
[69] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int. J. Nanomed. 7 (2011) 6003–6009.
[70] J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay, J. Microbiol. Methods 54 (2003) 177–182.
[71] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett. 279 (2008) 71–76.
[72] Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, M. Lin, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol. 107 (2009) 1193–1201.
[73] K. Memarzadeh, M. Vargas, J. Huang, J. Fan, R.P. Allaker, Nano metallic-oxides as antimicrobials for implant coatings, Key Eng. Mater. 493 (2012) 489–494.
[74] K. Memarzadeh, A.S. Sharili, J. Huang, S.C. Rawlinson, R.P. Allaker, Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants, J. Biomed. Mater. Res. A 103 (2015) 981–989.
[75] G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, E. Banin, ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility, RSC Adv. 2 (2012) 2314–2321.
[76] S. Nair, A. Sasidharan, V.V.D. Rani, D. Menon, S. Nair, K. Manzoor, et al., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, J. Mater. Sci. Mater. Med. 20 (2009) S235–S241.
[77] D.M. Blake, P.-C. Maness, Z. Huang, E.J. Wolfrum, W.A. Jacoby, J. Huang, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Methods 28 (1999) 1–50.
[78] F. Haghighi, S. Roudbar Mohammadi, P. Mohammadi, S. Hosseinkhani, R. Shipour, Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms, Infect. Epidemiol. Med. 1 (2013) 33–38.
[79] A.S. Yazdi, G. Guarda, N. Riteau, S.K. Drexler, A. Tardivel, I. Couillin, et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 19449–19454.
[80] P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Envirol. Microbiol. 65 (1999) 4094–4098.
[81] Y.H. Tsuang, J.S. Sun, Y.C. Huang, C.H. Lu, W.H.S. Chang, C.C. Wang, Studies of photokilling of bacteria using titanium dioxide nanoparticles, Artif. Organs 32 (2008) 167–174.
[82] C. Chambers, S.B. Stewart, B. Su, H.F. Jenkinson, J.R. Sandy, A.J. Ireland, Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers, Dent. Mater. 33 (2017) 115–123.
[83] M. Mahmoudi, V. Serpooshan, Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat, ACS Nano 6 (2012) 2656–2664.
References

[84] E.N. Taylor, T.J. Webster, The use of superparamagnetic nanoparticles for prosthetic biofilm prevention, Int. J. Nanomed. 4 (2009) 145–152.

[85] A. Verma, F. Stellacci, Effect of surface properties on nanoparticle—cell interactions, Small 6 (2010) 12–21.

[86] M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larra­mandi, T. Rojo, et al., Antibacterial properties of nanoparticles, Trends Biotechnol. 30 (2012) 499–511.

[87] B.K. Li, B.E. Logan, Bacterial adhesion to glass and metal-oxide surfaces, Colloids Surf. B 36 (2004) 81–90.

[88] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064–2110.

[89] S.J. Ahn, S.J. Lee, J.K. Kook, B.S. Lim, Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles, Dent. Mater. 25 (2009) 206–213.

[90] B. Aydin Sevnic, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles, J. Biomed. Mater. Res. B Appl. Biomater. 94 (2010) 22–31.

[91] E.H. Abdulkareem, K. Memarzadeh, R.P. Allaker, J. Huang, J. Pratten, D. Spratt, Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials, J. Dent. 43 (2015) 1462–1469.

[92] A. Almaguer-Flores, L.A. Ximenez-Fyvie, S.E. Rodil, Oral bacterial adhesion on amorphous carbon and titanium films: effect of surface roughness and culture media, J. Biomed. Mater. Res. B Appl. Biomater. 92 (2010) 196–204.

[93] N. Beyth, I. Yudovin-Farber, R. Bahir, A.J. Domb, E.I. Weiss, Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans, Biomaterials 27 (2006) 3995–4002.

[94] I. Yudovin-Farber, N. Beyth, A. Nyska, E.I. Weiss, J. Golenser, A.J. Domb, Surface characterization and biocompatibility of restorative resin containing nanoparticles, Biomacromolecules 9 (2008) 3044–3050.

[95] T. Waltimo, T.J. Brunner, M. Vollenweider, W.J. Stark, M. Zehnder, Antimicrobial effect of nanometric bioactive glass 45S5, J. Dent. Res. 86 (2007) 754–757.

[96] P. Stoor, E. Söderling, J.I. Salonen, Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand. 56 (1998) 161–165.

[97] D.C. Coraç-Huber, M. Fille, J. Hausdorfer, D. Putzer, M. Nogler, Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro, J. Orthop. Res. 32 (2014) 175–177.

[98] I. Gergely, A. Zazgyva, A. Man, A. Zuh, T. Pop, The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads, Acta Microbiol. Immunol. Hung. 61 (2014) 145–160.

[99] O. Lepparanta, M. Vaahhtio, T. Peltola, D. Zhang, L. Hupa, M. Hupa, Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro, J. Mater. Sci. Mater. Med. 19 (2008) 547–551.

[100] M. Bellantone, H.D. Williams, L.L. Hench, Broad-spectrum bactericidal activity of Ag-O-doped bioactive glass, Antimicrob. Agents Chemother. 46 (2002) 1940–1945.

[101] J. Liu, S.C. Rawlinson, R.G. Hill, F. Fortune, Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects, Dent. Mater. 32 (2016) 221–237.
CHAPTER 10 Nanoparticles and the control of oral biofilms

[102] J. Liu, S.C. Rawlinson, R.G. Hill, F. Fortune, Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects, Dent. Mater. 32 (2016) 412–422.

[103] Y. Wu, W. Yang, C. Wang, J. Hu, S. Fu, Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate, Int. J. Pharm. 295 (2005) 235–245.

[104] R.J. Pinto, S.C. Fernandes, C.S. Freire, P. Sadocco, J. Causio, C.P. Neto, et al., Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles, Carbohydr. Res. 348 (2012) 77–83.

[105] L.M. Lin, J.E. Skribner, P. Gaengler, Factors associated with endodontic failures, J. Endod. 18 (1992) 625–627.

[106] A. Kishen, Z. Shi, A. Shrestha, K.G. Neoh, An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal infection, J. Endod. 34 (2008) 1515–1520.

[107] A. Mirhashemi, A. Bahador, M. Kassaee, G. Daryakenari, M. Ahmad-Akhoundi, A. Sodagar, Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics, J. Med. Bacteriol. 2 (2015) 1–10.

[108] K.W. Stephen, Dentifrices: recent clinical findings and implications for use, Int. Dent. J. 43 (1993) 549–553.

[109] R.M. Gaikwaad, I. Sokolov, Silica nanoparticles to polish tooth surfaces for caries prevention, J. Dent. Res. 87 (2008) 980–983.

[110] B.G. Cousins, H.E. Allison, P.J. Doherty, C. Edwards, M.J. Garvey, D.S. Martin, et al., Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans, J. Appl. Microbiol. 102 (2007) 757–765.

[111] E.M. Hetrick, J.H. Shin, H.S. Paul, M.H. Schoenfisch, Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles, Biomaterials 30 (2009) 2782–2789.

[112] N. Roveri, E. Battistello, I. Foltran, E. Foresti, M. Iafisco, M. Lelli, et al., Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization, Adv. Mater. Res 47-50 (2008) 821–824.

[113] K.J. Cross, N.L. Huq, E.C. Reynolds, Casein phosphopeptides in oral health chemistry and clinical applications, Curr. Pharm. Des. 13 (2007) 793–800.

[114] S.C. Venegas, J.M. Palacios, M.C. Apella, P.J. Morando, M.A. Blesa, Calcium modulates interactions between bacteria and hydroxyapatite, J. Dent. Res. 85 (2006) 1124–1128.

[115] C. Rahiotis, G. Vougiouklakis, G. Eliades, Characterization of oral films formed in the presence of a CPP–ACP agent: an in situ study, J. Dent. 36 (2008) 272–280.

[116] E.C. Reynolds, F. Cai, P. Shen, G.D. Walker, Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum, J. Dent. Res. 82 (2003) 206–211.

[117] E.C. Reynolds, Calcium phosphate-based remineralization systems: scientific evidence? Aust. Dent. J. 53 (2008) 268–273.

[118] R.K. Rose, Binding characteristics of Streptococcus mutans for calcium and casein phosphopeptide, Caries Res. 34 (2000) 427–431.

[119] R.K. Rose, Effects of an anticariogenic casein phosphopeptide on calcium diffusion in streptococcal model dental plaques, Arch. Oral Biol. 45 (2000) 569–575.

[120] R.P. Allaker, C.W.I. Douglas, Non-conventional therapeutics for oral infections, Virulence 6 (3) (2015) 196–207.

[121] A.J. MacRobert, S.G. Bown, D. Phillips, What are the ideal photoproperties for a sensitizer? Ciba Found. Symp. 146 (1989) 4–12.
T.C. Pagonis, J. Chen, C.R. Fontana, H. Devalapally, K. Ruggiero, X. Song, et al., Nanoparticle-based endodontic antimicrobial photodynamic therapy, J. Endod. 36 (2010) 322–328.

S. Wood, D. Metcalf, D. Devine, C. Robinson, Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms, J. Antimicrob. Chemother. 57 (2006) 680–684.

R.N. Seetharam, K.R. Sridhar, Nanotoxicity: threat posed by nanoparticles, Curr. Sci. 93 (2006) 769–770.

W.I. Hagens, A.G. Oomen, W.H. de Jong, F.R. Cassee, A.J. Sips, What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 49 (2007) 217–229.

Z. Yang, Z.W. Liu, R.P. Allaker, P. Reip, J. Oxford, Z. Ahmad, et al., A review of nanoparticle functionality and toxicity on the central nervous system, J. R. Soc. Interface 7 (2010) 411–422.

M. Mačkovič, A. Hoppe, R. Detsch, D. Mohn, W.J. Stark, E. Spiecker, et al., Bioactive glass (type 4555) nanoparticles: in vitro reactivity on nanoscale and biocompatibility, J. Nanopart. Res. 14 (2012) 966.

A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, et al., Antifungal activity of silver nanoparticles against Candida spp., Biomaterials 30 (2009) 6333–6340.

F. Parnia, J. Yazdani, V. Javaherzadeh, S.M. Dizaj, Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes, J. Pharm. Pharm. Sci. 20 (2017) 148–160.

A. Nel, T. Xia, I. Madler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (2006) 622–627.

M.L. Luo, J.Q. Zhao, W. Tang, S. Pu, Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles, Appl. Surf. Sci. 49 (2005) 76–84.

P.A. McCarron, R.F. Donnelly, W. Marouf, D.E. Calvert, Anti-adherent and antifungal activities of surfactant-coated poly(ethylcyanoacrylate) nanoparticles, Int. J. Pharm. 340 (2007) 182–190.