Pharmacologic inhibition of LAT1 predominantly suppresses transport of large neutral amino acids and downregulates global translation in cancer cells

Kou Nishikubo¹, Ryuichi Ohgaki¹,², Hiroki Okanishi¹, Suguru Okuda¹,³, Minhui Xu¹, Hitoshi Endou⁴, Yoshikatsu Kanai¹,²

¹Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
²Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
³Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
⁴J-Pharma Co., Ltd., Yokohama, Japan

Correspondence
Yoshikatsu Kanai and Ryuichi Ohgaki, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
Email: ykanai@pharma1.med.osaka-u.ac.jp, ohgaki@pharma1.med.osaka-u.ac.jp
TEL: 06-6879-3521
FAX: 06-6879-3529
Supplementary figure S1

Figure S1

LAT1 expression in pancreatic cancer cells. Full blot image of Fig. 1. LAT1 expression in HPAC, MIA PaCa-2, PANC-1, and SUIT-2 cells detected by western blotting with short exposure. Positions of pre-stained molecular weight markers are also shown in merge.
Figure S2

Proliferation of pancreatic cancer cells. HPAC, MIA PaCa-2, PANC-1, and SUIT-2 cells were cultured for 3 days (72 hr). Cell proliferation was measured by Cell Counting Kit-8 every day to calculate the fold increase relative to Day 0. Data were shown as mean ± SD (n = 8).
Figure S3

Effects of JPH203 on the uptake of acidic amino acids in the absence and presence of Na⁺.

Uptake of L-[¹⁴C] Asp and L-[¹⁴C] Glu (1 µmol/L) was measured in HPAC, MIA PaCa-2, PANC-1, and SUIT-2 cells for 1 min in Na⁺-free (-) or Na⁺-containing (+) HBSS with or without JPH203 (30 µmol/L). Data are shown as mean ± SD (n = 4).