Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia

Daniel Forberg1, Tobias Schwob1, Muhammad Zaheer1,2, Martin Friedrich1, Nobuyoshi Miyajima3 & Rhett Kempe1

Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.
The search for sustainable living under conditions in which there is an increasing energy demand calls for the replacement of the dominant fossil-fuel-based technologies that are currently employed. Two central issues of this global challenge are energy storage and the use of indigestible and abundantly available biomass as a carbon source. The concept of a ‘hydrogen economy’ including hydrogen-based energy storage was suggested over 40 years ago. Hydrogen possesses a high energy density, is an environmentally friendly energy carrier and is suitable for mobile application. Due to significant technical and safety concerns regarding cryogenic liquid and compressed hydrogen, chemical hydrogen storage is a highly attractive alternative especially for large-scale energy storage.

Molecular hydrogen carriers based on the diversity of molecular compounds from which hydrogen can be liberated are particularly promising. H₂-release has been described for a variety of different classes of compounds, such as cycloalkanes, N-heterocycles, 1,2-BN-heterocycles, methanol or formic acid, ammonia borane, hydrous hydrazine and hydrazine borane. Methanol might be the most attractive or mature molecular hydrogen carrier for irreversible hydrogen storage. It can be produced sustainably from CO₂ (ref. 6) and hydrogen liberation can occur efficiently under mild conditions. In this low temperature reforming process, three equivalents of dihydrogen are liberated, with one originating from water, the oxygen atom of which contributes to CO₂ formation. For the reversible storage of hydrogen, N-heterocycles have been earmarked as promising candidates. The presence of N atoms in carbocyclic compounds completely hydrogenating and dehydrogenating is interested in developing an efficient reusable catalyst capable of hydrogenating and dehydrogenating N-heterocycles under relatively mild conditions. N-ethylcarbazole (NEC), which has a theoretical hydrogen storage capacity of 5.8 wt%, was chosen as a model N-heterocycle for catalyst identification. It is a solid with a melting point of 68°C and a negligible toxicity, whereas the hydrogenated product, dodecahydro-N-ethylcarbazole (12H-NEC), is a liquid under ambient conditions with a boiling point above 220°C. Thus, it can be handled similarly to diesel fuel. Consequently, large-scale automated and especially decentralized energy applications for domestic or commercial buildings seem feasible by means of NEC and an appropriate catalyst. The hydrogenation of NEC can be accomplished by heterogeneous ruthenium (Ru) catalysts, while palladium (Pd)-based solid catalysts have been reported to be efficient in the dehydrogenation of NEC. Reusable single catalysts would extend the applicability of NEC-based hydrogen storage significantly. In their patents, Pez et al. performed the hydrogenation and dehydrogenation of NEC in a single reactor system using two different catalysts. Given that the most efficient catalysts for NEC-hydrogenation are Ru-based and the most efficient ones for 12H-NEC-dehydrogenation are Pd-based, potential novel single-catalysts for reversible hydrogen storage should comprise both metals. Synergistic effects of Pd catalysts, when combined with other transition metals, have been reported for hydrogenation reactions and can be rationalized by assuming a lower hydride-binding energy in a metal alloy. Recently, the silicon carbonitride (SiCN) matrix has been introduced as an attractive support for metal catalysts. Amorphous SiCN is very robust thermally and chemically inert. The N-atoms of such a support permit the generation of very small metal nanoparticles despite the high pyrolysis temperature and high metal loadings. The polymer based synthesis protocol for SiCN, operating by crosslinking polysilazanes and subsequent pyrolysis, allows the introduction of porosity in various ways. For instance, metal-mediated nanoporosity and meso-structuring via sacrificial polyolefin components have been reported.

By mixing the commercially available Ru complex and the aminopyridinate palladium complex (ref. 39) with the commercially available polysilazane HTT1800, followed by crosslinking and pyrolysis, bimetallic nanocomposite catalysts are accessible. The variation of the molar ratio of both metals allows an optimization of the performance of the catalyst with regard to both, the hydrogenation and dehydrogenation steps. A Pd-to-Ru ratio of 2 was found to be optimal. Amorphous SiCN, N₂ sorption revealed metal mediated porosity with a bimodal pore size distribution centered at 1.5 (minor) and 4.6 nm (major) and a specific surface area (Brunauer-Emmett-Teller model) of 82 m² g⁻¹ for Pd₃Ru@SiCN. Transmission electron microscopy (TEM) revealed a nanocomposite in which the metal particles are homogenously distributed over the SiCN matrix (Fig. 1b). High-resolution TEM analysis resulted in a d-spacing of 224.1 ± 2.1 pm, which is in accordance with the expected value of 224.6 pm for the (111) reflex of cubic crystalline Pd (Fig. 1b, inset). The averaged Pd particle size was determined to be 1.6 nm by TEM (Fig. 1c). High-angle annular dark-field and energy dispersive X-ray spectroscopy (EDX) investigations confirmed the existence of metallic Pd nanoparticles and of homogenously distributed Ru clusters smaller than 1 nm in size and undetectable via X-ray diffraction (Fig. 1d–g).

Results

Catalyst synthesis and characterization. First, we became interested in developing an efficient reusable catalyst capable of completely hydrogenating and dehydrogenating N-heterocycles under relatively mild conditions. N-ethylcarbazole (NEC), where a combination of condensation and hydrogen liberation occurs efficiently under mild conditions. In this low temperature reforming process, three equivalents of dihydrogen are liberated, with one originating from water, the oxygen atom of which contributes to CO₂ formation. For the reversible storage of hydrogen, N-heterocycles have been earmarked as promising candidates. The presence of N atoms in carbocyclic compounds completely hydrogenating and dehydrogenating is interested in developing an efficient reusable catalyst capable of hydrogenating and dehydrogenating N-heterocycles under relatively mild conditions. N-ethylcarbazole (NEC), which has a theoretical hydrogen storage capacity of 5.8 wt%, was chosen as a model N-heterocycle for catalyst identification. It is a solid with a melting point of 68°C and a negligible toxicity, whereas the hydrogenated product, dodecahydro-N-ethylcarbazole (12H-NEC), is a liquid under ambient conditions with a boiling point above 220°C. Thus, it can be handled similarly to diesel fuel. Consequently, large-scale automated and especially decentralized energy applications for domestic or commercial buildings seem feasible by means of NEC and an appropriate catalyst. Recently, the silicon carbonitride (SiCN) matrix has been introduced as an attractive support for metal catalysts. Amorphous SiCN is very robust thermally and chemically inert. The N-atoms of such a support permit the generation of very small metal nanoparticles despite the high pyrolysis temperature and high metal loadings. The polymer based synthesis protocol for SiCN, operating by crosslinking polysilazanes and subsequent pyrolysis, allows the introduction of porosity in various ways. For instance, metal-mediated nanoporosity and meso-structuring via sacrificial polyolefin components have been reported.

By mixing the commercially available Ru complex and the aminopyridinate palladium complex (ref. 39) with the commercially available polysilazane HTT1800, followed by crosslinking and pyrolysis, bimetallic nanocomposite catalysts are accessible. The variation of the molar ratio of both metals allows an optimization of the performance of the catalyst with regard to both, the hydrogenation and dehydrogenation steps. A Pd-to-Ru ratio of 2 was found to be optimal (Pd₃Ru@SiCN). N₂ sorption revealed metal mediated porosity with a bimodal pore size distribution centered at 1.5 (minor) and 4.6 nm (major) and a specific surface area (Brunauer-Emmett-Teller model) of 82 m² g⁻¹ for Pd₃Ru@SiCN. Transmission electron microscopy (TEM) revealed a nanocomposite in which the metal particles are homogenously distributed over the SiCN matrix (Fig. 1b). High-resolution TEM analysis resulted in a d-spacing of 224.1 ± 2.1 pm, which is in accordance with the expected value of 224.6 pm for the (111) reflex of cubic crystalline Pd (Fig. 1b, inset). The averaged Pd particle size was determined to be 1.6 nm by TEM (Fig. 1c). High-angle annular dark-field and energy dispersive X-ray spectroscopy (EDX) investigations confirmed the existence of metallic Pd nanoparticles and of homogenously distributed Ru clusters smaller than 1 nm in size and undetectable via X-ray diffraction (Fig. 1d–g).

Catalyst screening and reversible hydrogen storage. A comparison of Pd₃Ru@SiCN with a variety of Pd, Ru and Ir catalysts including catalyst mixtures reveals the superiority of our bimetallic catalyst in hydrogen uptake and release (Fig. 2a). The Pd₃Ru@SiCN catalyst hydrogenated NEC quantitatively at 110°C and only 20 bar H₂ pressure and thus exceeded the efficiency of other commercial Ru catalysts and of Ir@SiCN.
by far. We included an efficient heterogeneous Ir catalyst\(^4\) in our comparison due to the reported perhydrogenation and perdehydrogenation activity of a homogenous Ir catalyst\(^4\).

The exhaustive dehydrogenation of 12H-NEC to NEC by the Pd\(_2\)Ru@SiCN catalyst could be performed at 180°C reaction temperature within 7 h. Again, other commercially

Figure 1 | Synthesis and characterization of the nanocomposite catalyst Pd\(_2\)Ru@SiCN. (a) A solution of complex 1 and complex 2 in tetrahydrofuran (THF) was mixed with the polysilazane HTT1800 and crosslinked at 110 °C for 24 h using dicumylperoxide (DCP) as a radical initiator. The solvent was removed and the resulting black-brown metallopolymer was pyrolysed under N\(_2\) atmosphere at 750 °C. (b) High-resolution TEM picture of the catalyst (scale bar, 20 nm) with magnification of one Pd nanoparticle and fast Fourier transform (FFT, scale bar, 1 nm). (c) Pd particle size distribution. (d) High-angle annular dark-field (HAADF) picture (scale bar, 5 nm). (e) Energy dispersive X-ray spectroscopy (EDX) analysis of the matrix and Pd particle. (f) EDX mapping of Pd (scale bar, 5 nm). (g) EDX mapping of Ru (scale bar, 5 nm). a.u., arbitrary units.

Figure 2 | Catalyst screening and reversible hydrogen storage in NEC. (a) Hydrogenation of NEC to 12H-NEC; 110 °C, p(H\(_2\)) = 20 bar, 1 mmol NEC, 0.52 mol% active metal, 36 h. (b) Dehydrogenation of 12H-NEC to NEC; 180 °C, 2 mmol 12H-NEC, 0.52 mol% active metal, 7 h. The hydrogen uptake and release values were calculated by gas chromatography (GC) and GC-mass spectrometry (MS) analysis. The maximum hydrogen uptake or release is 5.8 wt% (calculated based on the substrate). (c) Catalyst reusability and reversible hydrogen storage in NEC: 1.0 g (5.12 mmol) N-ethylcarbazole, 200 mg Pd\(_2\)Ru@SiCN (0.52 mol% active metal); hydrogenation: 110 °C, 20 bar H\(_2\), 36 h; dehydrogenation: 180 °C, 20 h. The hydrogen uptake and release values were calculated by GC and GC-MS analysis and based on the preceding step.
Development of a novel hydrogen storage system. The storage of hydrogen with the NEC/12H-NEC system is limited to a capacity of 5.8 wt% (The current DOE target is 5.5 wt% for the year 2017. For details, please visit their website. Targets for onboard automotive hydrogen storage systems, US Department of Energy, Office of Energy, Efficiency and Renewable Energy, http://energy.gov/eere/fuelcells/hydrogen-storage. Now, with an efficient catalysts system for reversible hydrogen storage in hand, we set out to identify an N-heterocycle with a higher storage capacity and amenable to a simple, sustainable synthesis. Lignin, a three-dimensional biopolymer, comprises 15–30% of the lignocellulosic biomass, which is abundant along with negligible food chain competition. In addition, it is barely used. The main lignin building blocks are 1,2-di-alkoxybenzenes ([Fig. 3](#)), and their hydrogenolysis proceeds mostly in combination with hydrogenation leading to cyclohexane-1,2-diol. Cyclohexane-1,2-diol could be reacted with ammonia applying the borrowing hydrogen methodology leading to a 2-aminocyclohexanol intermediate, which then can undergo dehydrogenation and condensation steps to form perhydrophenazine(s) ([Fig. 3a](#)). Ir@SiCN converts cyclohexane-1,2-diol and ammonia selectively to 1,2,3,4,6,7,8,9-octahydrophenazine in 74% isolated yield ([Fig. 3a](#)). Octahydrophenazine can be quantitatively dehydrogenated to phenazine with the Pd2Ru@SiCN catalyst and then used in consecutive hydrogen storage cycles ([Fig. 3b](#)) or used directly. Hydrogenation was performed by dissolving phenazine in a dioxane/water mixture at 115 °C and 50 bar H2 pressure. The addition of water led to higher hydrogenation rates. After removal of the solvent, the residual tetradecahydrophenazine was dehydrogenated at 190 °C. The hydrogen uptake/release was demonstrated for seven consecutive cycles under identical conditions. For a detailed product distribution, please see Supplementary Table 5. Besides some minor variations of hydrogen uptake and/or release over these seven cycles, the Pd2Ru@SiCN catalyst was still capable of mediating a hydrogen uptake of more than 7.0 wt% in the last cycle ([Fig. 3b](#)). The released hydrogen was collected, quantified and analysed regarding its purity for one experiment. The calculated released hydrogen based on the conversion of the N-heterocycle (6.26 wt%) was in good agreement with the actually liberated and collected amount (6.19 wt%). We could not detect CO formation.

Figure 3 | Sustainable synthesis of octahydrophenazine from cyclohexanediol and ammonia and its use as a reversible hydrogen carrier.

(a) A section of the lignin structure with alkoxybenzene subunits marked by green circles (top). Lignin can be converted to cyclohexane-1,2-diol using existing methodologies (hydrogenolysis). Synthesis of octahydrophenazine from cyclohexane-1,2-diol and ammonia (bottom). (b) Catalyst reusability and reversible hydrogen storage with phenazine: 360 mg (2 mmol) phenazine, 70 mg Pd2Ru@SiCN (0.36 mol% active metal). Hydrogenation: 115 °C, 50 bar H2, 2 ml dioxane, 0.5 ml water, 24 h. Dehydrogenation: 190 °C, 0.75 ml diglyme, 24 h. The hydrogen uptake and release values were calculated by GC and GC-MS analysis and based on the preceding step. The maximum hydrogen uptake or release is 7.2 wt% (calculated based on the substrate not considering the solvent). The values for the uptake and release of H2 are based on those of the preceding step.
Methods

Catalyst synthesis. Under an argon atmosphere, complex 1 (29 mg, 0.09 mmol), complex 2 (84 mg, 0.18 mmol), and dicumylperoxide (5 mg, 2.9 wt%) were dissolved in 1.5 ml of tetrahydrofuran and the commercially available polysilazane HTT1800 (173 mg) was added. The reaction vial was placed in a preheated oil bath at 120 °C for 24 h. After removing of the solvent by reduced pressure, the brown-black solid was pyrolysed under N2 atmosphere: heating of 1 °C per minute to 300 °C, holding time 1 h at 300 °C, heating of 5 °C per minute to 750 °C, holding time 1 h at 750 °C and cooling of 4 °C per minute to room temperature. For a detailed characterization of the different SiCN catalysts please see Supplementary Figs 1–13. For more details, please see also Supplementary Methods.

Reversible hydrogen storage. A reaction vial containing a solution of 360 mg (2 mmol) phenazine and 70 mg Pd,Re@SiCN in 2 ml dioxane and 0.5 ml water was given in a 250 ml stainless steel autoclave. The autoclave was flushed with hydrogen three times and a hydrogen pressure of 50 bar was adjusted. The reactor was heated to 115 °C for 24 h. After cooling of room temperature, a sample for GC and GC/mass-spectrometry was taken and the mixture was transferred to a 20 ml Schlenk tube. The solvents were removed under reduced pressure and 0.75 ml diglyme was added. The tube was evacuated and flushed with argon for three times and a slight argon flow of 4-6 ml min−1 was adjusted. The tube was placed in a preheated metal bath at 200 °C (190 °C reaction temperature). After 24 h the mixture was cooled to room temperature under argon atmosphere and a sample for GC and GC/mass-spectrometry analysis was taken. The released gas was additionally analysed by GC and no CO formation could be detected (Supplementary Figs 12–13). The devices used for the reversible hydrogen storage are shown in Supplementary Fig. 14. For more details, please see also Supplementary Methods.

Synthesis of octahydrophenazine. In a glass vial, Ir@SiCN (ref. 40) catalyst (250 mg, 0.08 mol% active metal) and cyclohexane-1,2-diol (2.32 g, 20 mmol) was added. The mixture was dissolved in 1.5 ml of tetrahydrofuran and the commercially available polysilazane HTT1800 (173 mg) was added. The reaction vial was placed in a preheated oil bath at 120 °C for 24 h. After removing of the solvent by reduced pressure, the brown-black solid was pyrolysed under N2 atmosphere: heating of 1 °C per minute to 300 °C, holding time 1 h at 300 °C, heating of 5 °C per minute to 750 °C, holding time 1 h at 750 °C and cooling of 4 °C per minute to room temperature. For a detailed characterization of the different SiCN catalysts please see Supplementary Figs 1–13. The devices used for the reversible hydrogen storage are shown in Supplementary Fig. 14. For more details, please see also Supplementary Methods.

Data availability. All data is available from the authors on reasonable request.

References

1. Bockris, J. O’M. A hydrogen economy. Science 176, 1323 (1972).
2. Sartbaeva, A., Kuznetsov, V. L., Wells, S. A. & Edwards, P. P. Hydrogen nexus in a sustainable energy future. Energy Environ. Sci. 1, 79–83 (2008).
3. Schlaphaus, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).
4. Eberle, U., Felderhoff, M. & Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009).
5. Zhu, Q.-L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 8, 478–512 (2015).
6. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).
7. Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013).
8. Rodriguez-Lugo, R. E. et al. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat. Chem. 5, 342–347 (2013).
9. Balaranan, E., Khaskin, E., Leitus, G. & Miletin, D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat. Chem. 5, 122–125 (2013).
10. Pez, G. P. et al. Hydrogen storage reversible hydrogenation of pi-conjugated substrates. World Patent, WO 2005/0000457 A2 (2005).
11. Clot, E., Eisenstein, O. & Crabtree, R. H. Computational structure–activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 2007, 2231–2233 (2007).
12. Crabtree, R. H. Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134–138 (2008).
13. Chakraborty, S., Brennessel, W. W. & Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 136, 8564–8567 (2014).
14. Fujita, K.-I., Tanaka, Y., Kobayashi, M. & Yamaguchi, R. Homogeneous perdehydrogenation and perhydrogenation of fused bicyclic N-heterocycles catalyzed by iridium complexes bearing a functional bipyridilinate ligand. J. Am. Chem. Soc. 136, 4829–4832 (2014).
15. Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 1–7 (2015).
16. Hu, P., Yehoshua, B.-D. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. 55, 1061–1064 (2016).
17. Michlik, S. & Kempe, R. A sustainable catalytic pyrrole synthesis. Nat. Chem. 5, 140–144 (2013).
18. Michlik, S. & Kempe, R. Regioselectively functionalized pyridines from sustainable resources. Angew. Chem. Int. Ed. 52, 6326–6329 (2013).
19. Sriman, D., Yehoshua, B.-D. & Milstein, D. Direct synthesis of pyridines and quinolines by coupling of gamma-aminobutyric acid with secondary alcohols liberating H2 catalyzed by ruthenium pincer complexes. Chem. Commun. 49, 6632–6634 (2013).
20. Debl, N., Ament, K. & Kempe, R. A sustainable multicomponent pyrimidine synthesis. J. Am. Chem. Soc. 137, 12804–12807 (2015).
21. Zaheer, M. & Kempe, R. Hydrogenolysis of aryl ethers: a key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015).
22. Vispure, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).
23. Teichmann, D. et al. Energy storage in residential and commercial buildings via liquid organic hydrogen carriers (LOHC). Energy Environ. Sci. 5, 9044–9054 (2012).
24. Teichmann, D., Arlt, W., Wasserscheid, P. & Freymann, R. A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ. Sci. 4, 2767–2773 (2011).
25. Ehblagon, K. M., Tam, K. & Tsang, S. C. E. Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ. Sci. 5, 8621–8630 (2012).
26. Wechsler, D., Cui, Y., Dean, D., Davis, B. & Jessop, P. G. Production of H2 from combined endothermic and exothermic hydrogen carriers. J. Am. Chem. Soc. 130, 17195–17203 (2008).
27. Pez, G. P. et al. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US Patent, US 7353951 B1 (2008).
28. Hermansdörfer, J. et al. Ni/Pd/Mil101: Synergistic catalysis with cavity conform Ni/Pd nanoparticles. Angew. Chem. Int. Ed. 51, 11473–11477 (2012).
29. Leppert, L., Kempe, R. & Kümmel, S. Hydrogen binding energies and electronic structure of Ni–Pd particles: a clue to their special catalytic properties. Phys. Chem. Chem. Phys. 17, 26410–26418 (2015).
30. Kamperman, M. et al. Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles. Nano Lett. 9, 2756–2762 (2009).
31. Glaz, G. et al. Copper containing SiCN precursor ceramics (Cu@SiCN) as selective hydrogen oxidation catalysts using air as an oxidant. Chem. Eur. J. 16, 4231–4238 (2010).
32. Colombo, P., Riedel, R., Soraru, G. D. & Kleebe, H.-J. (eds). Polymer derived Ceramics - From Nano-Structure to Applications (DEStech Publications, 2012).
33. Zaheer, M., Schmalz, T., Motz, G. & Kempe, R. Polymer derived non-oxide ceramics modified with late transition metals. Chem. Soc. Rev. 41, 5102–5116 (2012).
34. Zaheer, M. et al. Robust microporous monoliths with integrated catalytically active metal sites investigated by hyperpolarized 129Xe NMR. Chem. Mater. 24, 3952–3963 (2012).
35. Kamperman, M., Garcia, C. B. W., Du, P., Ow, H. & Wiesner, U. Ordered mesoporous ceramics stable up to 1500 °C from diblock copolymer mesophases. J. Am. Chem. Soc. 126, 14708–14709 (2004).
36. Jones, B. H. & Lodge, T. P. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template. J. Am. Chem. Soc. 131, 1676–1677 (2009).
37. Pillai, S. K. T. et al. SiCN nanofibers with a diameter below 100 nm synthesized via concerted block copolymer formation, microphase separation, and crosslinking. Small 9, 984–989 (2013).
38. Ewert, J.-K. et al. Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J. Mater. Chem. A 3, 18906–18912 (2015).
39. Spannenberg, A., Arndt, P. & Kempe, R. Yttrate-mediated ligand transfer and direct synthesis as a route to amidopalladium complexes. Angew. Chem., Int. Ed. 37, 832–835 (1998).
40. Forberg, D. et al. The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles. Catal. Sci. Technol. 4, 4188–4192 (2014).
41. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).
42. Gunanathan, C. & Milstein, C. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 47, 8661–8664 (2008).
43. Watson, A. J. A. & Williams, J. M. J. The give and take of alcohol activation. Science 329, 635–636 (2010).
44. Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 249 (2013).

Acknowledgements
We acknowledge financial support from the Deutsche Forschungsgemeinschaft, SFB 840, B1.

Authors contributions
D.F. carried out the synthesis and hydrogen storage experiments and analysed the spectroscopic data. T.S. carried out the hydrogen release quantification experiments. M.Z. synthesized the Pd@SiCN catalyst. M.F. and N.M. carried out the TEM and energy dispersive X-ray spectroscopy characterizations. D.F. and R.K. designed the experiments and co-wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Forberg, D. et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 7, 13201 doi: 10.1038/ncomms13201 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/