Regional and Sectoral Structures and Their Dynamics of Chinese Economy: A Network Perspective from Multi-Regional Input-Output Tables

Tao Wang1, Shiyin Xiao1, Jun Yan2, and Panpan Zhang3,*

1School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, China
2Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
3Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA

*Corresponding author. Email: panpan.zhang@pennmedicine.upenn.edu

February 25, 2021
Abstract

A multi-regional input-output table (MRIOT) containing the transactions among the region-sectors in an economy defines a weighted and directed network. Using network analysis tools, we analyze the regional and sectoral structure of the Chinese economy and their temporal dynamics from 2007 to 2012 via the MRIOTs of China. Global analyses are done with network topology measures. Growth-driving province-sector clusters are identified with community detection methods. Influential province-sectors are ranked by weighted PageRank scores. The results revealed a few interesting and telling insights. The level of inter-province-sector activities increased with the rapid growth of the national economy, but not as fast as that of intra-province economic activities. Regional community structures were deeply associated with geographical factors. The community heterogeneity across the regions was high and the regional fragmentation increased during the study period. Quantified metrics assessing the relative importance of the province-sectors in the national economy echo the national and regional economic development policies to a certain extent.

Keywords: backbone structure, dynamical analysis, input-output table, network analysis, region-sector economy
1 Introduction

The rapid growth of the Chinese economy over the last three decades has drastically elevated its importance in the global economy. The annual growth rate of gross domestic product (GDP) during 1990–2010 was 10.4% (International Monetary Fund, 2020). The growth in China was a driving force for the recovery of the world from the financial crisis in 2008 (Lin, 2011). As the Chinese economy matured, the growth slowed down to 6.74% over 2015–2019, but it was still much higher than that of the world economy, 2.82%, during the same period (The World Bank, 2020c). In 2019, China contributed 16.34% to the global GDP, second only to the United States and almost tripling the contribution by Japan which ranked the third (The World Bank, 2020b). China has become an integrated part of the global economy. As a top trader, China accounted for 10.14% of the global imports (The World Bank, 2020d) and 10.61% of the global exports in 2019 (The World Bank, 2020a). Behind the growth, there have been dramatic structural changes such as urbanization and industrialization (Fan et al., 2003; Chen et al., 2011). The regional and sectoral structures of the Chinese economy are heavily affected by internal government’s policies such as the Great Western Development Strategy (Jia et al., 2020) or external factors such as the World Trade Organization accession in 2001 (Chow, 2003) and the 2008 global financial crisis (Yuan et al., 2010).

Given its size and impact, the Chinese economy is central to important regional and sectoral structure issues in economic development theory and practice. The disparities in sectoral structure and economic growth at the province level in China are high and have been increasing (e.g., Fan et al., 2011; Li and Haynes, 2011; Lee et al., 2012). Liberalized and globalized industries are mostly aggregated in the coastal regions while low technology, resource-based, and protected industries are widely dispersed in the inland regions (e.g., He and Wang, 2012). Emerging industries are more likely to enter the regions that are globalized, economically liberalized and fiscally healthy (He et al., 2018). On one hand, the distribution of value-added across regions has been flattened due to the expansion of inter-regional trade (Meng et al., 2017). On the other hand, growing inter-regional competition and
local protection have jointly led to various inter-regional trade barriers and severe regional fragmentation (Young, 2000; Poncet, 2005). Understanding the regional and sectoral structures of the Chinese economy is critical for economic development and resource efficiency not only in China but also the entire world.

Multi-regional input-output tables (MRIOTs) are the most prevalent tool for studying the inter-dependencies among the sectors from different regions in an economy. An MRIOT records the transactions among the sectors within multiple regions (e.g., Moses, 1955; Leontief and Strout, 1963). A few MRIOTs at the global level have been available with bilateral trade information for a large number of countries annually for several decades (Tukker and Dietzenbacher, 2013). MRIOTs at the province level within China, however, are not readily available. Based on the survey-based input-output tables at the province level released by the government, Chinese MRIOTs have been compiled for 2007 and 2012 (Liu et al., 2012, 2018). The tables and their extensions have been used in the analyses of the impact of government infrastructural plans (Ji et al., 2019), provincial and sector-level material footprints (Liang et al., 2017; Jiang et al., 2019), and cross-country sectoral price comparison (Fujikawa and Milana, 2002), among others.

An MRIOT inherently defines a weighted directed network which facilitates analyses with statistical methods for networks. The world input-output tables (WIOTs) (Timmer et al., 2015) are MRIOTs at the global level. Traditional tools for input-output table analysis include multipliers, linkages, and structural paths (Defourny and Thorbecke, 1984; Feser and Bergman, 2000), which measure the impact from each region-sector in the table. In contrast, network analysis tools enable not only the measures at the region-sector level such as centrality, but also the natural investigation on local clustering, community detection, and backbone extraction as well as global network features such as assortativity and clustering coefficient (Leonidov and Serebryannikova, 2019; Xu and Liang, 2019). With a sequence of input-output tables over different years, the dynamic changes of network features can be investigated, which are of great value in structural and regional analyses (Cerina et al., 2015;
del Río-Chanona et al., 2017; Amador and Cabral, 2017). For the Chinese MRIOTs, in part due to their limited availability, no network analysis has been done to study the regional and sectoral structure of the Chinese economy.

Our contributions are two-fold. First, to the best of our knowledge, this is the first comprehensive network analysis of the MRIOTs of China to study regional and sectoral structure of the Chinese economy. Through the analysis, we have evidently observed a clear pattern of increased regional fragmentation from 2007 to 2012. Some of the research outcomes have not been reported in the literature, and may not be straightforwardly uncovered via traditional input-output analysis tools. Our second contribution is the application of several novel network measures specifically developed for weighted and directed networks to analyze the Chinese MRIOTs. The MRIOTs lead to networks that are both weighted and directed. If weight and/or direction are disregarded like in some existing analyses, the features of the networks such as assortativity and centrality are not precisely summarized. The new network measures help correct the misleading results and inaccurate inference driven from the classical unweighted versions.

The rest of the manuscript is organized as follows. In Section 2, we give a brief introduction of the compiled MRIOTs in China, and demonstrate the network analysis setup. The specific network analysis methods are presented in Section 3, followed by the applications to the MRIOTs in Section 4. Finally, we address some concluding remarks and follow-up discussions in Section 5.

2 MRIOTs of China

The MRIOTs of China are available for the year of 2007 (Liu et al., 2012), 2010 (Liu et al., 2014), and 2012 (Liu et al., 2018). The databases were jointly developed by the Institute of Geographic Sciences and the Natural Resources Research of the Chinese Academy of Sciences, and the National Bureau of Statistics of China. The entries of inter-province-
Table 1: Fundamental structure of an MRIOT.

Intermediate input	Intermediate use	Final use	Total output
region 01	region 01		II
sector 01	sector 30		
...	...		
region 30			
sector 01			
...	...		
...	...		
Imports	III		
Value added	IV		
Total input			

sector economic transactions were obtained by applying the gravity model (Bergstrand, 1985; Sargent, 2007) to the input-output tables reported by all the participating provinces. Table 1 shows the fundamental structure of MRIOT. We focus on the 2007 and 2012 tables in the present study because the compilation of the 2010 table was based on the 2007 table in addition to the input-output tables of the 17 provinces rather than direct data collection and investigation (Mi et al., 2018), which might cause measurement errors and bias. An MRIOT consists of four parts: (I) intermediate flow matrix, (II) final use, (III) imports, and (IV) value added. The intermediate flow matrix records the economic exchanges among the sectors from different provinces, reflecting their intricate economic relations (e.g., supply and demand) as well as their interdependence and mutual constraints.

The data in the MRIOTs were pre-processed to prepare for the analyses. The 2007 table covered 30 provincial units with each containing 30 sectors. The 2012 table, however, covered 31 provincial units due to the debut of Tibet and 42 sectors that were further divided from the 30 sectors in the 2007 table. For the purpose of comparison over time, we only included the 30 provinces that appeared in both tables and aggregated the 42 sectors in 2012 to the
Table 2: Description of the sectors in the MRIOTs

Code	Sector	Code	Sector
01	Agriculture, forestry, animal husbandry and fishery	16	General and specialist machinery
02	Coal mining and processing	17	Transport equipment
03	Petroleum and gas extracting	18	Electrical equipment
04	Metals mining/processing	19	Electronic equipment
05	Nonmetal mining/processing	20	Instrument and meter
06	Food processing and tobaccos	21	Other manufacturing
07	Textiles	22	Electricity and heat production and supply
08	Clothing, leather, fur, etc.	23	Gas and water production and supply
09	Wood processing and furnishing	24	Construction
10	Paper making, printing, stationery, etc.	25	Transport and storage
11	Petroleum refining, coking, etc.	26	Wholesale and retail
12	Chemical industry	27	Hotel and restaurant
13	Nonmetal products	28	Leasing and commercial services
14	Metallurgy	29	Scientific research
15	Metal products	30	Other services

30 sectors in 2007. Table 2 lists the codes with detailed descriptions for the 30 sectors. The monetary units for both tables were set to be 10,000 Chinese Yuan (CNY). To adjust for inflation, we converted the entries in the 2012 table to 2007 CNY using the GDP price deflator (The World Bank, 2020e).

We constructed the multi-regional input-output networks (MRIONs) based on the MRIOTs. In an MRION, each vertex represents a sector within a province; each directed edge represents the existence of transaction from the source province-sector to the target province-sector, with weight representing the multiplier of the transaction 10,000 CNY. Therefore, the MRIONs are weighted and directed. The number of vertices in each MRION is 900. The link densities are respectively 0.7685 in 2007 and 0.9212 in 2012, suggesting that the vertices in the MRIONs are densely connected. The top two panels of Figure 1 show chord visualizations of the MRIONs aggregated according to sectors for 2007 and 2012 with self-loops removed. Each of the outer arcs with a distinct color represents a sector, with arc length representing the sum of the inflows and outflows. A chord from one arc to another represents
Figure 1: Intermediate flows (across multiple regions) in the MRIONs from 2007 and 2012. The top two panels are for sectors (aggregated with respect to provinces), where the codes are referred to Table 2. The bottom two panels are for provinces (aggregated with respect to sectors), where the codes are referred to Appendix A. The bandwidth of chord (connecting the arcs) is proportional to the size of economic flow. Long arcs indicate large outputs. The unit of economic flow is 100 billion CNY.

the transaction from the corresponding sector to the other. Its width is proportional to the volume of the transaction, while its color remains the same as the color of the source sector. For both years, the main suppliers are “metallurgy” (14), “chemical industry” (12), “other
services” (30), and “agriculture, forestry, animal husbandry and fishery” (01). They supply a large portion of the intermediate products or services that are needed by other sectors. The most notable receivers are “construction” (24) and “other services” (30). These two sectors may have strong pulling effects on the whole economy. Especially in “construction” (24), the proportion of inflows in its inter-sectoral transaction exceeds 90%. One notable change from 2007 to 2012 is the share of the transactions associated with sector “scientific research” (29), which is quadrupled from 0.24% to 0.97%.

In addition, we provide the chord visualizations of the MRIONs aggregated by provinces (with self-loops removed as well) for 2007 and 2012, shown in the bottom two panels in Figure 1. The arcs and chords are defined analogously as the top ones. The main suppliers in 2007 were Hebei (03), Guangdong (19) and Jiangsu (10), but Hebei (03) was replaced with Shandong (15) in 2012, indicating that the production capacity of Shandong (15) got strongly (from 2007 to 2012). For both years, the most notable receivers were Jiangsu (10), Zhejiang (11) and Guangdong (19). These three provinces have promoted a large number of inter-provincial trade exchanges with the others across the nation. In fact, the majority of the provinces presenting high inter-provincial trade amount were from the coastal region. In spite of the substantial drops in the proportions of inter-provincial trade in Guangdong (19) and Zhejiang (11) from 2007 to 2012, they were still top 5 over the nation and remained the driving forces contributing to the multi-regional economy in China. More quantitative assessment calls for detailed network analyses.

3 Methods

Our approach to investigating the MRIOTs of China are network-based analytics. Let $G(V, E)$ denote a directed network that consists of a set of vertices V and a set of edges E. By convention, each vertex $i \in V$ represents a data point. Given a pair of vertices $i, j \in V$, if there is a directed edge from i to j, then we have $e_{ij} \in E$. Vice versa, the existence of
an edge $e_{ij} \in E$ suggests a (directed) link from i to j. One of the most popular ways of displaying a network structure is adjacency matrix. For a network with $n = |V|$ vertices, its adjacency matrix is denoted by $A := (a_{ij})_{n \times n}$ with $a_{ij} = 1$ if $e_{ij} \in E$ and $a_{ij} = 0$ otherwise. For a weighted and directed network, the weighted counterpart is denoted by $W := (w_{ij})_{n \times n}$, where w_{ij} represents the weight of edge e_{ij}. The weighted adjacency matrix W is equivalent to A if $w_{ij} = 1$ for all $e_{ij} \in E$.

3.1 Degree and strength distributions

In a directed network, the degree of a vertex i (denoted d_i) is comprised of in-degree (denoted by $d_i^{(\text{in})}$) and out-degree (denoted by $d_i^{(\text{out})}$), which are, respectively, the number of edges pointing into and emanating out of vertex i. To account for edge weight, we define the in-strength and out-strength of vertex i as $s_i^{(\text{in})} := \sum_{j \in V} w_{ji}$ and $s_i^{(\text{out})} := \sum_{j \in V} w_{ij}$, respectively. The strength of vertex i, s_i, is the sum of its in-strength and out-strength. In traditional network analyses, degrees and strengths are used to show the importance of the vertices in a network (Newman, 2010).

The degree distribution is the probability distribution $\pi(\cdot)$ of the vertex degrees over the entire network; that is, $\pi(k)$ is the probability of a vertex having degree $k \in \{0, 1, 2, \ldots\}$. The degree distribution plays an important role in theoretical and applied network analyses. In a completely random network (Erdős and Rényi, 1959), the degree distribution is Poisson, whereas the tail of the degree distribution of a scale-free network (Barabási and Albert, 1999) follows a power law. Pennock et al. (2002) pointed out that most real networks fall between these two extreme classes. It is evident that the degree distributions of economic networks are likely to exhibit power-law patterns (Gabaix, 1999; Kaplow, 2008). The goodness-of-fit of power-law tails can be tested based on the Kolmogorov–Smirnov statistic (Clauset et al., 2009) with p-values obtained from bootstrapping.

In a weighted network, the strength distribution, which is based on the vertex strengths, usually better captures the network structure than the degree distribution. While the degree
distribution is always discrete, the strength distribution can be either discrete or continuous, depending on the characteristic of weight. As the MRIONs are weighted and directed, we conducted analogous analyses on the strength, in-strength and out-strength distributions and made comparisons with their degree counterparts.

3.2 Assortativity

Assortativity (or assortative mixing) refers to the tendency that the vertices in a network are connected according to a pair of (vertex-specific) features (Newman, 2002). It is a measure of homophily among the vertices based on two given features. A commonly used assortativity measures is the degree-degree correlation (Newman, 2002; van der Hofstad and Litvak, 2014), which is analogous to Pearson correlation coefficient. Its value is between -1 and 1, with a positive (negative) value indicating that high-degree vertices are more likely to be connected with high-degree (low-degree) vertices. This measure is amenable to directed networks (Newman, 2003; Foster et al., 2010). See Noldus and Van Mieghem (2015) for a comprehensive survey.

Since the MRIONs are not only directed but also weighted, we adopted a class of assortativity measures proposed by Yuan et al. (2021) to incorporate edge weight and direction. Let $(\alpha, \beta) \in \{\text{in}, \text{out}\}$ index the type of strength. The assortativity based on α- towards β-type strength is

$$
\rho_{\alpha,\beta}(G) = \frac{\sum_{i,j \in V} w_{ij} \left[(s_{i}^{(\alpha)} - \bar{s}_{\text{sou}}^{(\alpha)}) (s_{j}^{(\beta)} - \bar{s}_{\text{tar}}^{(\beta)}) \right]}{W \sigma_{\text{sou}}^{(\alpha)} \sigma_{\text{tar}}^{(\beta)}},
$$

where $W := \sum_{i,j \in V} w_{ij}$ is the total weight, $s_{i}^{(\alpha)}$ is the α-type strength of source vertex i, $s_{j}^{(\beta)}$ is the β-type strength of target vertex j,

$$
\bar{s}_{\text{sou}}^{(\alpha)} = \frac{\sum_{i,j \in V} w_{ij} s_{i}^{(\alpha)}}{W} \quad \text{and} \quad \bar{s}_{\text{tar}}^{(\beta)} = \frac{\sum_{i,j \in V} w_{ij} s_{j}^{(\beta)}}{W}
$$
are, respectively, the weighted mean of the α-type strength of the source vertices and β-type strength of the target vertices, and

$$
\sigma_{\text{sou}}^{(\alpha)} = \sqrt{\frac{\sum_{i,k \in V} w_{ik} \left(s_i^{(\alpha)} - \bar{s}_{\text{sou}}^{(\alpha)} \right)^2}{W}} \quad \text{and} \quad \sigma_{\text{tar}}^{(\beta)} = \sqrt{\frac{\sum_{k,j \in V} w_{kj} \left(s_j^{(\beta)} - \bar{s}_{\text{tar}}^{(\beta)} \right)^2}{W}}
$$

are the associated weighted standard deviations. A positive (negative) $\rho_{\alpha,\beta}(G)$ suggests assortative-mixing (disassortative-mixing), and zero assortativity indicates no obvious pattern of assortative- or disassortative-mixing.

For a network like MRION, the weighted adjacency matrix can be decomposed into one comprised of diagonal blocks only and another comprised of off-diagonal blocks. The former contains the information of economic transactions within each province (called intra-province), while the latter records the exchanges across multiple provinces (called inter-province). The proposed assortativity measure can be applied to the decomposed adjacency matrices to investigate the correlation structures at the intra- and inter-province levels.

3.3 Clustering coefficient

Clustering coefficient is a measure quantifying the tendency that the vertices in a network are clustered together, usually characterized by a high density of connections among them (Opsahl and Panzarasa, 2009). Clustering coefficient is also known as transitivity coefficient in the literature (Newman et al., 2002). Classical clustering coefficient was proposed for undirected and unweighted networks (Watts and Strogatz, 1998), and later were extended to weighted and directed networks (Grindrod, 2002; Barrat et al., 2004; Onnela et al., 2005; Zhang and Horvath, 2005; Fagiolo, 2007; Clemente and Grassi, 2018).

In the present study, we adopted the weighted and directed clustering coefficients developed by Clemente and Grassi (2018). The local clustering coefficient of vertex i in an unweighted and undirected network $G(V,E)$ is the ratio of the number of links connecting the neighbors of i (i.e., $\{j \in V : e_{ij} \in E\}$) to the maximum possible value. When edges have
weights, the weighted adjacency matrix W plays an important role. Self-loops are removed prior to the computation since they do not practically contribute to the network clustering property. The clustering coefficient can be concisely expressed via matrix notations:

$$C_i^{\text{tot}} = \frac{\left[(W + W^\top)(A + A^\top)\right]_{ii}^2}{2s_i(d_i - 1) - (AW + WA)_{ii}},$$

(2)

where A^\top is the transpose of A, and B_{ii} is the (i,i)th element of matrix B.

The superscript distinguishes it from the four kinds of distinct local clustering coefficients induced from four types of directed triangles (Fagiolo, 2007; Clemente and Grassi, 2018). Namely, they are in-, out-, mid- and cyc-clustering coefficients. When computing a specific local clustering coefficient, the denominator needs to be updated to the number of corresponding triplets. For instance, the local in-clustering coefficient of i is the number of triangles such that the neighbors (say, j and k) both link towards i alongside with an edge (in either direction) connecting j and k out of the number of triplets with both j and k generating directed edges to i (disregarding whether or not j and k are connected). All of the other local clustering coefficients are defined in an analogous manner. The local out-clustering coefficient of i is the proportion of triangles which have two edges from i pointing to j and k and an edge linking j and k in either direction. The local mid-clustering coefficient of i considers the proportion of the triangles in which i is a middleman: neighbor j (or k) either has a direct link to neighbor k (or j) or forms a directed path $j \to i \to k$ (or $k \to i \to j$). The local cyc-clustering coefficient of i only counts the triangles of which the directed edges form a cycle. See Figure 8 in Appendix B for graphic illustrations and the formulae therein for practical computation. Accordingly, there are five kinds of global clustering coefficients on the network base, obtained by averaging the associated local clustering coefficients over all the vertices.

Similar to assortativity, any kind of clustering coefficients introduced in this section can be applied to the decomposed adjacency matrices of MRION to uncover the clustering
properties at the intra- and intro-provincial levels.

3.4 Community detection

Community detection aims to group the entities with similar characteristics in a network to the same community. The entities in the same community are densely linked, while those from different communities are loosely linked. There are two major classes of community detection methods, model-based (Snijders and Nowicki, 1997; Handcock et al., 2007) and metric-based (Girvan and Newman, 2002; Ouyang et al., 2020). In this study, we used a metric-based method for community detection in MRIONs. Interested readers are referred to Goldenberg et al. (2010) for a comprehensive survey for community detection techniques.

Specifically, we exploited the modularity maximization algorithm proposed by Newman (2006). An objective function called modularity is defined to measure the quality of clustering strategies, and is then maximized. The underlying principle of modularity maximization is that the number of links among the vertices within a community is significantly more than expected at random (based on the Erdös–Rényi model which is generally used as the null model), while the counterpart across different communities is significantly less. Newman’s algorithm is built upon recursive bi-partitioning. For a weighted and undirected network \(G(V, E) \), its modularity matrix \(B := (b_{ij})_{n \times n} \) is defined as

\[
b_{ij} := w_{ij} - \frac{s_is_j}{W},
\]

where \(W \) is identical to that defined in Section 3.2. The term \(s_is_j/W \) is interpreted as the expected weight of the edges connecting \(i \) and \(j \) if all the edges are randomly placed among the vertices in the network. Let \(c := (c_i)_{i=1}^n \) denote a clustering strategy. A bi-partitioning algorithm admits two clusters, so \(c_i \)'s take value 1 or \(-1\) representing distinct membership.
Given c, we define a modularity score as

$$Q = \frac{1}{W} \sum_{i,j} b_{ij} I(c_i = c_j),$$

where $I(\cdot)$ is the indicator function.

The expression of Q can be regarded as a reward-penalty system. Given $c_i = c_j$, the value of Q increases if $b_{ij} > 0$, but decreases if $b_{ij} < 0$. Besides, the larger b_{ij} is (given $c_i = c_j$), the more reward is granted. Subsequent bi-partitioning continues within each resulting community until no more partition in any existing community leads to an increase in modularity score.

For large networks, parsimonious algorithms (Clauset et al., 2004; Ng et al., 2001; Ouyang et al., 2020) are needed to solve the optimization problem. We adopted the greedy algorithm developed by Clauset et al. (2004).

3.5 Centrality

The centrality of each vertex measures its relative importance in a network. Vertices with high centrality scores altogether form the main frame of the network. There are various ways of defining centrality depending on practical needs and interpretations, such as degree centrality (Barrat et al., 2004), closeness and betweenness (Newman, 2001), and eigenvector centrality (Bonacich, 1987). We considered a measure extended from eigenvector centrality, namely PageRank (PR, Brin and Page, 1998), that was originally used for ranking websites by Google.

We propose an extension of classical PR for weighted and directed networks. This extension is different from the existing ones that are specifically designed for analyzing citation networks (Xing and Ghorbani, 2004; Ding, 2011). We define the PR centrality of vertex $i \in V$ as

$$P_i = \gamma \sum_{j \in V} \left(\theta \frac{w_{ji}}{s_j^{\text{out}}} + (1 - \theta) \frac{a_{ji}}{d_j^{\text{out}}} \right) P_j + \frac{(1 - \gamma) \beta_i}{\sum_{i \in V} \beta_i}, \quad i = 1, \ldots, n,$$

(3)
where $\theta \in [0, 1]$ is a tuning parameter indicating the proportion of edge weight (versus edge number) accounted in PR, γ is a damping factor that prevents the algorithm from getting stuck in sinking vertices (those without outgoing edges), and β_i is a prior measure (usually independent of network structure) of the relative importance of vertex i. When there is no information available for γ, it takes value 0.85 as suggested by Page et al. (1998). In spite of the prior information specified by β_i’s, Equation (3) suggests that a vertex receives a high PR score (with $\theta = 1$) if (i) it receives a large number of incoming edges from the others in the network; (ii) the weights of the incoming edges linking to it are large; (iii) the senders themselves have high PR scores.

When there is no prior information about β_i’s, they can be set the same, in which case the second term in Equation (3) is simplified to $(1 - \gamma)/n$. A standard method to solve Equation (3) is power iteration, but the convergence of this algorithm may be slow for large-scale networks. A remedy is to utilize the stochastic process theory and convert the problem to finding the stable distribution of an underlying Markov Chain (Berkhin, 2005). The investigations of the crucial properties of the proposed PR measure will be reported elsewhere.

3.6 Backbone

The backbone of a network is the fundamental but essential structure of a network (Xu and Liang, 2019). Non-essential links, which act like noise in a large network, can be removed without affecting the backbone. Extracting the backbone of a massive and dense network like MRION is critical, as hundreds of edges with minimal weights would overwhelm the analysis. Proper removal of non-essential edges helps succinctly characterize a complex network system, and meanwhile enhance computation speed. There have been a few promising backbone extraction methods, such as the disparity filter method (Serrano et al., 2009; Zhang and Zhu, 2013), the locally adaptive network sparsification algorithm (Foti et al., 2011), and two classes of node-based filtering approaches (Ghalmane et al., 2020). We used the disparity
filter method which has been applied to the analysis of WIOTs by Xu and Liang (2019).

The rational of the disparity filter method is as follows. Consider the normalized weights of the \(d \in \mathbb{Z}^+ \) edges of a vertex. Under the null hypothesis that the normalized weights are generated from a uniform random assignment, they can be regarded as obtained by dividing the unit interval by \((d - 1)\) randomly placed points. The lengths of the subintervals, which represent the normalized weights, have density function

\[
p(x; d) = (d - 1)(1 - x)^{d-2}, \quad x \in (0, 1).
\]

An overly large normalized weight relative to this distribution means that the corresponding edge is unlikely to be from the uniform random assignment, which supports the corresponding edge to be part of the backbone. This idea can be formulated as obtaining the p-value of each normalized weight. Define \(\tilde{w}_{ij} = w_{ij}/s_i \). The p-value of \(\tilde{w}_{ij} \) is

\[
\delta_{ij}(\tilde{w}_{ij}; d_i) = \int_{\tilde{w}_{ij}}^{1} p(x; d_i)dx.
\]

The backbone with level \(\alpha \in (0, 1) \) is obtained by retaining only those edges whose p-values are less than \(\alpha \).

For a directed network, normalized out- and in-strength of each edge can be defined similarly as \(\tilde{w}_{ij}^{(\text{out})} = w_{ij}/s_{i}^{(\text{out})} \) and \(\tilde{w}_{ij}^{(\text{in})} = w_{ij}/s_{j}^{(\text{in})} \) for all \(i, j \in V \). The corresponding p-values are \(\delta_{ij}(\tilde{w}_{ij}^{(\text{out})}; d_{i}^{(\text{out})}) \) and \(\delta_{ij}(\tilde{w}_{ij}^{(\text{in})}; d_{j}^{(\text{in})}) \), respectively. For backbone with level \(\alpha \in (0, 1) \), edge \(e_{ij} \) is preserved if at least one of the two p-values is less than \(\alpha \).

In some rare cases of \(d_{i}^{(\text{out})} = 1, d_{i}^{(\text{in})} = 1 \) or \(d_{i}^{(\text{out})} = d_{i}^{(\text{in})} = 1 \), special treatments may be needed, depending on the specific features of the networks as well as the practical interpretation of network heterogeneity. These rare cases do not occur in our study. In Figure 2, we present the sub-networks of the MRION in 2012 consisting of the sectors only from top 5 regional GDP provinces with significance level \(\alpha \in \{10^{-3}, 10^{-4}\} \). Though the sub-networks remain dense, they relatively better reflect the basic structure of the MRION, and
Figure 2: Examples of the sub-MRIONs comprised of the sectors from the provinces with top 5 regional GDP in 2012. The self-loops are not presented. The significance levels of α are respectively 10^{-3} (left panel) and 10^{-4} (right panel).

furthermore, suggest province-based market fragmentation as well as community structure, which are consistent with some of the results shown in Section 4.

4 Results

We apply the methods in Section 3 to the 2007 and 2012 MRIONs of China, and present the corresponding results. The interpretations of the analysis results are given from both statistical and economic perspectives.

4.1 Degree and strength distributions

Figure 3 shows the histograms for the in-, out- and total-degree distributions of the MRIONs in 2007 and 2012. These degree distributions appear to share two features. First, there is a strictly positive probability of zero degree, which corresponds to province-sectors with no
edges (i.e., isolated vertices). For example, the sectors “coal mining and processing” (02), “metals mining/processing” (04) and “nonmetal mining/processing” (05) in Shanghai are singletons with neither inbound nor outbound links. Second, the nonzero degrees are close to the maximum degree and skewed to the left, more significantly reflected in out-degrees than in-degrees. This is a result of heavily connected province-sectors. From 2007 to 2012, all three degree distributions shifted to the right with more left skewness, suggesting the increase in the number of links among the province-sectors during this period in China.

More information about the magnitude of the economic transactions is provided in the strength distributions on the log scale shown in Figure 4. The strength distributions are mixtures of a point mass at zero and a positive continuous distribution. Such distributions are often used to model zero-inflated non-negative continuous data through the mechanism
of two-part models or hurdle models (Liu et al., 2019). The mass at zero is inherited from the zero degrees from the degree distributions. The positive strengths on the log scale are skewed to the left. On the original scale, however, the positive strengths are skewed to the right. Similar to the degree distributions, the strength distributions all shifted to the right from 2007 to 2012 with most of the quartiles more than doubled, reflecting an expansion of the economic transactions among the province-sectors during this period.

The tail of the strength distribution is of great importance, especially in extreme value theory, as it characterizes the features of the distribution far way from the mean, indicating the relative probability of the occurrence of some “unusual” events, i.e., extensively large strength sectors. Specifically, we are interested in a particular class of heavy tail distributions—power laws, which, as mentioned in Section 3.1, have been observed in a vari-
Figure 5: Tail distributions of in-, out- and total-strength of the MRIONs in 2007 and 2012 (bottom two panels). Their correspondingly zoomed tails after the estimated thresholds are given in the top two panels.

ety of economic networks. Figure 5 shows the empirical survival curves of the three strength distributions in 2007 and 2012 with both axis on the log scale. Empirical distributions of such shapes appear to be typical for MRIONs (e.g., Xu and Liang, 2019). The tails of the distributions show plausible linear patterns (on the log-scale) which are the characteristics of power laws. To verify, we performed goodness-of-fit tests for power law tails (Clauset et al., 2009). Table 3 summarizes the estimated thresholds and exponent parameters as well as the p-values of the power law tails beyond the estimated thresholds obtained from bootstrapping. The power law provides adequate fit to all three strength distributions in 2012 and the out-strength distribution in 2007; it is rejected at significance level 0.01 for the in-strength
Table 3: Estimated parameters for power-law tails for the in-, out- and total-strength distributions of the MRIONs in 2007 and 2012 and p-values of the goodness-of-fit test; the unit of threshold is 1 million CNY.

	2007 In-strength	2007 Out-strength	2007 Total-strength	2012 In-strength	2012 Out-strength	2012 Total-strength
Threshold	9.11	20.91	20.99	20.83	24.41	46.96
Exponent	2.65	3.56	2.84	3.19	3.29	3.33
p-value	0.00	0.27	0.01	0.18	0.46	0.42

Table 4: Five kinds of assortativity coefficients (including “total” that does not account for edge direction) of the (national, intra-province and inter-province) MRIONs in 2007 and 2012, where “UW” and “W” respectively represents the unweighted and weighted versions of the assortativity measures.

Type	2007 National UW	2007 Intra-prov. UW	2007 Inter-prov. W	2012 National UW	2012 Intra-prov. UW	2012 Inter-prov. W
in-in	–0.010 0.501 0.258 0.610	–0.033 0.023	–0.003 0.573 0.209 0.649	–0.008 –0.022		
in-out	–0.001 0.447 0.124 0.549	–0.006 –0.024	–0.001 0.516 0.109 0.594	–0.002 –0.034		
out-in	–0.123 0.493 0.007 0.599	–0.136 0.117	–0.110 0.563 0.010 0.635	–0.111 0.130		
out-out	–0.024 0.474 0.070 0.572	–0.028 0.047	0.015 0.536 0.095 0.618	0.016 –0.001		
total	–0.070 0.418 0.140 0.544	–0.080 0.046	–0.030 0.457 0.158 0.561	–0.031 0.028		

and total-strength distribution in 2007. This is consistent with the lower panels of Figure 5, which show the empirical conditional survival curves beyond the estimated thresholds. For the out-strength, the smaller exponent parameter estimate in 2012 than in 2007 indicates heavier tails in the magnitude of the extremely large transactions in 2012 than in 2007.

4.2 Assortativity

Table 4 summarizes a collection of assortativity coefficients for the MRIONs of 2007 and 2012. For each year, the assortativity coefficients were computed for both directed (four types) links and undirected links; intra-province links, inter-province links, and nationwide links; unweighted links and weighted links.

Our first observation is that the unweighted assortativity coefficients (Newman, 2002;
Foster et al., 2010) are not informative for characterizing the MRIONs. The unweighted versions are similar to the weighted versions only for inter-province links, which are all close to zero. For nationwide links and intra-province links, the weighted and unweighted assortativity coefficients of all five types, including four directed and one undirected, are notably different. The maximum magnitude of the unweighted version is only 0.123 (out-in in 2007), which is much lower than the magnitudes of the weighted versions in the range of 0.4–0.6. The two versions have completely different signs for all five types of nationwide links in 2007. The unweighted versions suggest that there is a negligible pattern of disassortative mixing, while the weighted versions suggest assortative mixing. The weighted versions are more consistent with intuition. Some existing analyses of the WIOTs without weight also reported “close to zero” assortativity coefficients (e.g., Cerina et al., 2015), which need to be revisited by using the weighted definition (Yuan et al., 2021).

Based on the results from the weighted definitions, the assortativity coefficients for nationwide links of all kinds have magnitude from 0.4 to 0.6. These are moderately strong assortative mixing. Take the out-in assortativity for nationwide links as an example. The coefficient of 0.493 in 2007 and 0.563 in 2012 suggest that province-sectors with large inputs are likely to take high transaction volumes from the others with high outputs in the network. Decomposing the weighted adjacency matrix helps separate the contributions respectively from intra-province and inter-province links. All five assortativity coefficients for intra-province links are much greater than those for inter-province links, which are close to zero. That is, economic transactions among the sectors from the same province are extensively close, with high transaction volumes; in contrast, sectors across multiple regions are relatively loosely connected, and the majority of the transaction volumes represented by existing link weights are extremely small. The differences between intra- and inter-province assortativity coefficients support the well-known regional fragmentation (Poncet, 2005).

The assortativity coefficients of all types for nationwide links and intra-province links increased from 2007 to 2012, while those for inter-province links remained close to zero.
Figure 6: Five kinds of assortativity coefficients (national level) at a sequence of significance levels, \(\alpha = \{0.001, 0.002, \ldots, 0.999\} \) in 2007 and 2012.

The increases in nationwide links are therefore attributed to the increase in intra-province links, suggesting an increase in the degree of provincial segmentation. One possible explanation, for example, is that the economic stimulus plan after the 2008 financial crisis stimulated the construction industry most, which propagated to upstream metal and non-metal mining/processing sectors within each province. Despite the increased inter-provincial transactions, there is no clear assortative pattern among these transactions in contrast to the intra-provincial transactions.

The assortativity coefficient provides a platform to demonstrate the effectiveness of backbone. Figure 6 shows the national assortativity coefficients for the backbones of the MRIONs in 2007 and 2012 for a sequence of significance levels \(\alpha = \{0.001, 0.002, \ldots, 0.999\} \). For each year, the value of each type of assortativity coefficient increases, but only slightly, with the decrease of \(\alpha \) due to the removal of the non-essential edges. The removed edges are supposed to impose limited impact on the overall structure of the network. As a result, the
Table 5: Total, cycle-, middleman-, in- and out-clustering coefficients of the MRIONs at national, intra-province and inter-province levels in 2007 and 2012.

Type	2007		2012			
	National	Intra-prov.	Inter-prov.	National	Intra-prov.	Inter-prov.
Total	0.874	0.942	0.855	0.968	0.969	0.937
Cycle	0.828	0.933	0.815	0.960	0.962	0.933
Middleman	0.927	0.952	0.888	0.975	0.975	0.942
In	0.914	0.949	0.881	0.968	0.971	0.935
Out	0.843	0.939	0.819	0.966	0.967	0.939

The magnitude of change in each assortativity coefficient is small. Further, for each \(\alpha \), all kinds of the assortativity coefficients in 2012 are greater than their counterparts in 2007, which is consistent with the results from Table 4. Therefore, backbone is a parsimonious and powerful tool for uncovering the fundamental and essential properties of a network, especially for the large-scale networks that are likely to cause computational expensiveness.

4.3 Clustering coefficients

Clustering coefficients were computed with and without edge direction for three types of links, nationwide, intra-province, and inter-province, in the 2007 and 2012 MRIONs; see Table 5. All the clustering coefficients have large values (close to 1), providing stronger evidence than simple link densities for immense connectivity of the MRIONs. The larger values of 2012 suggest a higher tendency that the province-sectors would cluster together in terms of forming triangles. Decomposing the nationwide links to intra-province and inter-province links reveals that the nationwide increase from 2007 to 2012 was mainly due to the increase in inter-province components. For example, the nationwide cycle-clustering coefficient increased from 0.828 to 0.960; the intra-province coefficient 0.933 in 2007 was quite high, leaving not much room to increase; the inter-province coefficient increased from 0.815 in 2007 to 0.933 in 2012. The emergence of more transactions across the inter-province sectors may be attributed to the government’s strategies and policies such as the Great Western
Development Strategy. The increase in inter-province transaction is not in contradiction to its small proportion in the overall magnitude, so it did not affect the manifestation of regional fragmentation in China.

Among the four types of directed clustering coefficients, the cycle- and out-clustering coefficients have increased more notably than the others. In a cyclic-triangle connection, each province-sector is an upstream as well as a downstream of its neighbors. A higher value of cycle-clustering coefficient indicates a higher proportion of triangular (supply and demand) chains formed by the province-sectors. In an out-triangle connection, a province-sector is always the upstream to its neighbors. A higher value of out-clustering coefficient suggests an increased proportion transactions among the downstream sectors.

4.4 Community detection

The community detection results from modularity maximization are visualized in two side-by-side heat maps in Figure 7 for 2007 and 2012. For each heat map, province-sectors in the same community have the same color. Between the two years, however, the colors are not comparable because these colors are nominal within each community detection task. There were 39 and 40 communities in 2007 and 2012, respectively. A common feature is that most sectors from the same province belong to the same community. This is expected, as intra-province economic ties are naturally tighter than inter-province economic ties for geographic, historical, and administrative reasons. An interesting discovery is that heavy industry sectors, such as “coal mining and processing” (02), “petroleum and gas extracting” (03), and “metals mining/processing” (04) usually form singletons independent from province-based communities. For example, Shanghai as a manufacturing and business center usually inquires a high demand of raw materials like coal, which heavily relies on the supplies from other provinces. Consequently, “coal mining and processing” (02) of Shanghai forms a singleton instead of falling into the same community formed by the most of the other sectors in Shanghai.
From 2007 to 2012, the community structure has shown a notable change. Sectors from the provinces in the same geographic region tended to stay in the same community in 2007. For example, three northeastern provinces Heilongjiang, Jilin, and Liaoning were in one community; four northwestern provinces Xinjiang, Ningxia, Qinghai, and Gansu belonged to another community; two central north provinces Shanxi and Hebei were placed in the same community. In 2012, however, this pattern was no longer observed, each province appearing to be a community of its own. A closer look at the data reveals that the growth rate of inter-province trade is much smaller than that of intra-province trade. In 2007, there were 9.6 trillion CNY of inter-province trade and 35.5 trillion CNY intra-province trade. In 2012, the inter-province trade increased to 12.8 trillion CNY (an increase of 30%), while the intra-province trade increased to 68.4 trillion CNY (an increase of 90%). In some provinces, Jilin for instance, there has been almost no change in inter-province trade from 2007 to 2012, whereas the intra-province trade has been tripled.

The community detection results again echo the regional fragmentation of the Chinese economy at the province level (Poncet, 2005). In the early 2000s, under the effect of regional
integration strategies such as the Great Western Development and Northeast Revitalization, the transactions among the sectors in certain regions mushroomed, forming multi-province communities. In response to the 2008 global financial crisis, the central government advocated a four trillion Chinese economic stimulus plan, which sustained the economic growth while the world economy slowed down (Ouyang and Peng, 2015). The majority of these funds were reallocated from the budget of provincial and local governments, which supported infrastructure projects and housing developments; some assisted local governments to lend to state-owned companies to develop housing estates (Chen et al., 2013). Therefore, by 2012, the extent of the regional fragmentation has expanded despite the goals of the regional integration strategies in the early 2000s. The extent of the regional fragmentation in Chinese economy after 2012 is of great interest when the 2017 MRIOT becomes available.

4.5 Centrality

The PR scores were used to rank the relative importance of province-sectors in the Chinese economy. The damping factor was set to be $\gamma = 0.85$ as recommended by Brin and Page (1998). For different values of $\theta = \{0, 1\}$, we computed the PR scores for the 900 province-sectors in 2007 and 2012 with or without accounting for prior information. Specifically, the total value added (TVA) of each province-sector was adopted as node-specific prior information, as it indicates the value added contributed by each sector to the national economy. The TVAs of province-sectors in each year are recorded in quadrat IV of the MRIOT; see Table 1. We present the province-sectors with top 10 PR scores in Table 6.

Without considering the weight ($\theta = 0$), most of the top 10 province-sectors are from Beijing in 2007 and from Hainan in 2012. Beijing’s top ranking in 2007 may be explained by its special function as the nation’s capital with an advantage in access to the resources nationwide. The preparation for the 2008 Olympic Games in urban infrastructure, ecological environment, electronic technology and other aspects had a huge pull effect on the economic development of Beijing, especially in the manufacturing sectors. Nonetheless, the sizes of
Table 6: The top 10 province-sectors in PR scores ($\gamma = 0.85$) from the MRIONs in 2007 and 2012 with and without TVA (total value-added) as prior information.

Rank	$\theta = 0$	$\theta = 1$				
	No prior	No prior	Using TVA as prior			
	2007	2012	2007	2012	2007	2012
1	Beijing 15	Hainan 21	Beijing 30	Yunnan 24	Guangdong 30	Yunnan 24
2	Beijing 10	Hainan 12	Guangdong 30	Zhejiang 24	Beijing 30	Guangdong 30
3	Beijing 14	Hainan 06	Yunnan 24	Guangdong 24	Guangdong 19	Guangdong 24
4	Beijing 16	Hainan 17	Guangdong 19	Jiangsu 17	Jiangsu 30	Zhejiang 24
5	Beijing 12	Hainan 14	Guangdong 18	Hebei 24	Shandong 06	Jiangsu 30
6	Beijing 13	Hainan 16	Guangdong 17	Shandong 24	Zhejiang 30	Jiangsu 17
7	Beijing 17	Hainan 09	Jiangsu 30	Shanghai 24	Guangdong 18	Shandong 06
8	Jiangsu 17	Hainan 13	Guangdong 08	Qinghai 24	Shanghai 30	Jiangsu 12
9	Jiangsu 18	Tianjin 12	Shandong 06	Sichuan 24	Jiangsu 12	Shandong 12
10	Jiangsu 22	Hebei 06	Shanghai 30	Xinjiang 24	Shandong 30	Guangdong 19

The sectors in Beijing are smaller than those in eastern coastal provinces such as Guangdong or Jiangsu. The top ranking of Beijing without weight is, therefore, not consistent with wide perceptions. The top ranking of seven sectors in Hainan in 2012 is even more puzzling. As an island with a small population, Hainan is known to be relatively less developed compared with other provinces in China. The unweighted PR scores are not satisfying in measuring the centrality in the context of MRIONs.

With PR scores fully based on weights instead of counts ($\theta = 1$), the top 10 province-sectors have changed dramatically. Province-wise, most of the top 10 province-sectors in 2007 are from the eastern coast (Guangdong, Jiangsu, Shandong, and Shanghai). These provinces are more developed than others, and consistently make large contribution to the national GDP. In 2012, however, some sectors from much less developed provinces (Shaanxi, Qinghai, and Xinjiang) joined those from traditional developed provinces in the top 10. This may be a result of these less developed provinces in northwest China benefiting from the effectiveness of the China Western Development policy. Sector-wise, the sector of “other services” (30) appeared most often in the top 10 in 2007, but “construction” (24) became dominant in 2012. Note that “other services” cover some essential services like financial services and information...
technology, both of which are critical to modern economic development. It is evident that these services have provided unprecedented support to the growth of many other sectors in China in the early 2000s. The 2008 global financial crisis struck many such services. Much of the four-trillion CNY stimulus program funded projects like railway, highway, bridge, and aviation construction. Further, one of the aims of the China Western Development program was to strengthen the infrastructure construction in the participating provinces.

Utilization of TVA as prior information led to noticeable changes in both lists of top 10 PR province-sectors. The changed results are more consistent with the intuition more than otherwise. For 2007, Guangdong became less dominant than otherwise, albeit still with the highest frequency in the top 10. Most of the provinces came from the eastern/southern coast (except for Beijing). Different from the diversity in province, “other services” (30) appeared to be most influential sector-wise, as it occupied six positions of the top ten. The impact of the TVA prior is more notable in 2012 than in 2007. Sectors from western provinces like Shaanxi, Qinghai and Xinjiang were gone, while sectors from the coastal provinces emerged in the top 10 list. The “construction” (24) sector is less dominant, but remaining most frequent in the top 10. Other leading province-sectors are “other services” (30) from Guangdong and Jiangsu and “chemical industry” (12) from Jiangsu and Shandong. The updated results with the TVA prior makes more sense because TVA contains information about the self-loops which were otherwise discarded but are useful in assessing centrality.

It is worth special attention that “construction” (24) of Yunnan is top 1 in 2012 in spite of the inclusion of prior information. Although a developing inland province, Yunnan is one of the largest tourist province in China. The fast development of tourism in Yunnan has boosted the development of infrastructure construction such as transportation facilities and hotel accommodations. Located in the geographical center of Asia, connecting southeast Asia with China and inland with coastal regions, Yunnan has been crucial to the China Western Development. With favorable domestic policies and economic cooperation with Southeast Asian countries, Yunnan’s GDP grew with a rate consistently higher than the
national average during this period, for which the construction sector played an important pulling role (Su, 2014).

The PR score provides another opportunity to demonstrate the effectiveness of backbone. Table 7 summarizes the province-sectors with top 10 PR scores in the backbones of MRIONs with significance level $\alpha = \{10^{-3}, 10^{-4}\}$. No drastic change in the lists for both 2007 and 2012 are observed. Only two new province-sectors, “clothing, leather, fur” (08) and “transport equipment” (17) from Guangdong, ranked among the top 10 in both of the backbones but not in the original 2007 MRION. In fact, they were ranked respectively at 13 and 14 in the original MRION, with small difference in the magnitude of PR score from the bottom of top 10. For 2012, the province-sectors in the top 10 list remained the same for both backbones, in spite of some changes in order. The traditional strong sectors “construction” (24) and “other services” (30) in Guangdong, “transport equipment” (17) in Jiangsu and “construction” (24) in Zhejiang surpassed “construction” (24) in Yunnan. This was because “construction” (24) in Yunnan is more connected by insignificant edges in the MRION of 2012, but these edges are filtered out in the backbones. Between the two lists for the backbones at different significance levels, we only observe small dispersion in province-sector orders. For instance, in the two lists of 2012, the province-sectors at rank 3 and 4 and

Rank	$\alpha = 1$	$\alpha = 10^{-3}$	$\alpha = 10^{-4}$			
	2007	2012	2007	2012	2007	2012
1	Guangdong 30	Yunnan 24	Guangdong 30	Guangdong 24	Guangdong 30	Guangdong 24
2	Beijing 30	Guangdong 30	Beijing 30	Guangdong 30	Beijing 30	Guangdong 30
3	Guangdong 19	Guangdong 24	Guangdong 19	Zhejiang 24	Guangdong 19	Jiangsu 17
4	Jiangsu 30	Zhejiang 24	Shandong 06	Jiangsu 17	Shandong 06	Zhejiang 24
5	Shandong 06	Jiangsu 30	Jiangsu 30	Yunnan 24	Jiangsu 30	Yunnan 24
6	Zhejiang 30	Jiangsu 17	Guangdong 18	Jiangsu 30	Guangdong 08*	Jiangsu 30
7	Guangdong 18	Shandong 06	Guangdong 08*	Shandong 06	Guangdong 18	Shandong 06
8	Shanghai 30	Jiangsu 12	Guangdong 17*	Jiangsu 12	Zhejiang 30	Jiangsu 12
9	Jiangsu 12	Shandong 12	Zhejiang 30	Guangdong 19	Guangdong 17*	Shandong 12
10	Shandong 30	Guangdong 19	Shandong 30	Shandong 12	Shandong 30	Guangdong 19
those at rank 9 and 10 were respectively switched, with the rest remaining identical. This comparison, again, shows that backbone is capable of capturing the centrality measures of the vertices in the MRIONs.

5 Discussions

MRIOTs provide a natural arena for network analyses to study regional and sectoral structure of an economy. Our study of MRIONs of China in 2007 and 2012 is the first network analysis of its kind for the Chinese economy. All three types of strength distributions (in, out, and total) were found to be skewed to the left, where the degree of skewness of each increases over time. For each MRION, the positive assortative coefficients suggests assortative mixing across the province-sectors, especially intra-province-sectors. As indicated by close-to-one clustering coefficients, the province-sectors tend to cluster together, and the tendency increased inter-province transactions. Province-based community structures were detected. There were communities containing multiple provinces In 2007 but none in 2012, suggesting increased regional fragmentation. The most essential province-sectors in the Chinese economy were found through a new class of weighted PR measures. Province-wise, Guangdong, Jiangsu and many eastern coastal provinces contain most sectors in the top list. Sector-wise, “construction” (24) and “other services” (30) appear to be dominant.

Our study suggests a few methodological caveats for network analysis of MRIONs. First, it is critical to account for edge weight when summarizing MRIONs as these networks are weighted; otherwise, misleading inference may be made. For example, unweighted assortativity coefficients suggest almost no assortative (or disassortative) mixing in the MRIONs, whereas the weighted counterparts indicate a moderately positive assortative mixing. While no weight is accounted, the classical PR algorithm have produced a top 10 list in 2012 containing 8 sectors form Hainan, which is not consistent with the fact. Rather, the weighted PR algorithm (with or without using TVA as prior information) has provided a much more
reasonable result. Second, precise interpretation of the network measures is crucial. For instance, clustering coefficient is a relative measure. A large local clustering coefficient of a vertex only tells how likely its two neighbors are connected; it says nothing about how many neighbors it has. For instance, the province-sector of the highest local clustering coefficient in 2012 is given to “construction” (24) from Inner Mongolia according to the computation. This specific province-sector receives a high value since it has fewer neighbors compared to the rest in the nation, leading to a higher proportion conversely. Lastly, when ranking the vertices in a network, we recommend to make full use of the possible vertex-specific auxiliary information, which helps lead to more intuitive results. These caveats may be applicable to networks beyond MRIONs.

Acknowledgments

Tao Wang and Shiyong Xiao were supported by the National Bureau of Statistics of China (2018lz33).

A Province codes

Table 8 summarizes the code and the names of the 30 provinces used in the chord graph in Figure 1.

B Four types of local clustering coefficients

In practice, the formulations of the four kinds of local clustering coefficients are respectively given by

\[
C_i^{\text{in}} = \frac{\left[W^T \left(A + A^T \right) A \right]_{ii}}{2 s_i^{\text{in}} \left(d_i^{\text{in}} - 1 \right)},
\]

(4)
Table 8: Codes of the provinces in the MRIONs

Code	Province	Code	Province
01	Beijing	16	Henan
02	Tianjin	17	Hubei
03	Hebei	18	Hunan
04	Shanxi	19	Guangdong
05	Inner Mongolia	20	Guangxi
06	Liaoning	21	Hainan
07	Jilin	22	Chongqing
08	Heilongjiang	23	Sichuan
09	Shanghai	24	Guizhou
10	Jiangsu	25	Yunnan
11	Zhejiang	26	Shaanxi
12	Anhui	27	Gansu
13	Fujian	28	Qinghai
14	Jiangxi	29	Ningxia
15	Shandong	30	Xinjiang

\[C_{i}^{\text{out}} = \frac{[W(A + A^\top)A^\top]_{ii}}{2s_{i}^{(\text{out})}(d_{i}^{(\text{out})} - 1)}, \quad (5) \]

\[C_{i}^{\text{mid}} = \frac{(W^\top AA^\top + WA^\top A)_{ii}}{\left(s_{i}^{(\text{in})}d_{i}^{(\text{out})} + s_{i}^{(\text{out})}d_{i}^{(\text{in})}\right) - (AW + WA)_{ii}}, \quad (6) \]

\[C_{i}^{\text{cyc}} = \frac{[WA^2 + W^\top (A^\top)^2]_{ii}}{\left(s_{i}^{(\text{in})}d_{i}^{(\text{out})} + s_{i}^{(\text{out})}d_{i}^{(\text{in})}\right) - (AW + WA)_{ii}}. \quad (7) \]

References

Amador, J. and S. Cabral (2017). Networks of value-added trade. *The World Economy* 40(7), 1291–1313.

Barabási, A.-L. and R. Albert (1999). Emergence of scaling in random networks. *Science* 286(5439), 509–512.

Barrat, A., M. Barthélemy, R. Pastor-Satorras, and A. Vespignani (2004). The architecture
Figure 8: Four types of triangles proposed in Fagiolo (2007), and reused in Clemente and Grassi (2018).

of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America 101(11), 3747–3752.

Bergstrand, J. H. (1985). The gravity equation in international trade: Some microeconomic foundations and empirical evidence. The Review of Economics and Statistics 67(3), 474–481.

Berkhin, P. (2005). A survey on PageRank computing. Internet Mathematics 2(1), 73–120.

Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182.
Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web search engine. *Computer Networks and ISDN Systems 30*(1), 107–117.

Cerina, F., Z. Zhu, A. Chessa, and M. Riccaboni (2015, 07). World input-output network. *PLoS ONE 10*(7), 1–21.

Chen, D., S. Khan, X. Yu, and Z. Zhang (2013). Government intervention and investment comovement: Chinese evidence. *Journal of Business Finance & Accounting 40*(3–4), 564–587.

Chen, S., G. H. Jefferson, and J. Zhang (2011). Structural change, productivity growth and industrial transformation in China. *China Economic Review 22*(1), 133–150.

Chow, G. C. (2003). Impact of joining the WTO on China’s economic, legal and political institutions. *Pacific Economic Review 8*(2), 105–115.

Clauset, A., M. E. J. Newman, and C. Moore (2004). Finding community structure in very large networks. *Physical Review E 70*(6), 066111.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009). Power-law distributions in empirical data. *SIAM Review 51*(4), 661–703.

Clemente, G. P. and R. Grassi (2018). Directed clustering in weighted networks: A new perspective. *Chaos, Solitons & Fractals 107*, 26–38.

Defourny, J. and E. Thorbecke (1984). Structural path analysis and multiplier decomposition within a social accounting matrix framework. *The Economic Journal 94*(373), 111–136.

del Río-Chanona, R. M., J. Grujić, and H. Jeldtoft Jensen (2017). Trends of the world input and output network of global trade. *PLoS ONE 12*(1), 1–14.

Ding, Y. (2011). Applying weighted PageRank to author citation networks. *Journal of the American Society for Information Science and Technology 62*(2), 236–245.
Erdös, P. and A. Rényi (1959). On random graphs. i. *Publicationes Mathematicae Debrecen* 6, 290–297.

Fagiolo, G. (2007). Clustering in complex directed networks. *Physical Review E* 76, 026107.

Fan, S., R. Kanbur, and X. Zhang (2011). China’s regional disparities: Experience and policy. *Review of Development Finance* 1(1), 47–56.

Fan, S., X. Zhang, and S. Robinson (2003). Structural change and economic growth in China. *Review of Development Economics* 7(3), 360–377.

Feser, E. J. and E. M. Bergman (2000). National industry cluster templates: A framework for applied regional cluster analysis. *Regional Studies* 34(1), 1–19.

Foster, J. G., D. V. Foster, P. Grassberger, and M. Paczuski (2010). Edge direction and the structure of networks. *Proceedings of the National Academy of Sciences of the United States of America* 107(24), 10815–10820.

Foti, N. J., J. M. Hughes, and D. N. Rockmore (2011). Nonparametric sparsification of complex multiscale networks. *PLoS ONE* 6(2), 1–10.

Fujikawa, K. and C. Milana (2002). Input-output decomposition analysis of sectoral price gaps between Japan and China. *Economic Systems Research* 14(1), 59–79.

Gabaix, X. (1999). Zipf’s law for cities: An explanation. *The Quarterly Journal of Economics* 114(3), 739–767.

Ghalmane, Z., C. Cherifi, H. Cherifi, and M. El Hassouni (2020). Extracting backbones in weighted modular complex networks. *Scientific Reports* 10(1), 15539.

Girvan, M. and M. E. J. Newman (2002). Community structure in social and biological networks. *Proceedings of the National Academy of Sciences of the United States of America* 99(12), 7821–7826.
Goldenberg, A., A. X. Zheng, S. E. Fienberg, and E. M. Airoldi (2010). A survey of statistical network models. *Foundations and Trends in Machine Learning* 2(2), 129–233.

Grindrod, P. (2002). Range-dependent random graphs and their application to modeling large small-world proteome datasets. *Physical Review E* 66, 066702.

Handcock, M. S., A. E. Raftery, and J. M. Tantrum (2007). Model-based clustering for social networks. *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 170, 301–354.

He, C. and J. Wang (2012). Regional and sectoral differences in the spatial restructuring of Chinese manufacturing industries during the post-WTO period. *GeoJournal* 77(3), 361–381.

He, C., Y. Yan, and D. Rigby (2018). Regional industrial evolution in China. *Papers in Regional Science* 97(2), 173–198.

International Monetary Fund (2020). GDP, current prices [data file]. Available online: https://www.imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD.

Ji, J., Z. Zou, and Y. Tian (2019). Energy and economic impacts of China’s 2016 economic investment plan for transport infrastructure construction: An input-output path analysis. *Journal of Cleaner Production* 238, 117761.

Jia, J., G. Ma, C. Qin, and L. Wang (2020). Place-based policies, state-led industrialisation, and regional development: Evidence from China’s Great Western Development Programme. *European Economic Review* 123, 103398.

Jiang, M., P. Behrens, T. Wang, Z. Tang, Y. Yu, D. Chen, L. Liu, Z. Ren, W. Zhou, S. Zhu, C. He, A. Tukker, and B. Zhu (2019). Provincial and sector-level material footprints in China. *Proceedings of the National Academy of Sciences of the United States of America* 116(52), 26484–26490.
Kaplow, L. (2008). Pareto principle and competing principles. In S. N. Durlauf and L. E. Blume (Eds.), *The New Palgrave Dictionary of Economics*, pp. 4807–4812. London, UK: Palgrave Macmillan.

Lee, B.-S., J. Peng, G. Li, and J. He (2012). Regional economic disparity, financial disparity, and national economic growth: Evidence from China. *Review of Development Economics* 16(2), 342–358.

Leonidov, A. and E. Serebryannikova (2019). Dynamical topology of highly aggregated input–output networks. *Physica A: Statistical Mechanics and its Applications* 518, 234–252.

Leontief, W. and A. Strout (1963). Multiregional input-output analysis. In T. Barna (Ed.), *Structural Interdependence and Economic Development: Proceedings of an International Conference on Input-Output Techniques, Geneva, September 1961*, pp. 119–150. London, UK: Palgrave Macmillan UK.

Li, H. and K. E. Haynes (2011). Economic structure and regional disparity in China: Beyond the Kuznets transition. *International Regional Science Review* 34(2), 157–190.

Liang, S., Y. Wang, T. Zhang, and Z. Yang (2017). Structural analysis of material flows in China based on physical and monetary input-output models. *Journal of Cleaner Production* 158, 209–217.

Lin, J. Y. (2011). China and the global economy. *China Economic Journal* 4(1), 1–14.

Liu, L., Y.-C. T. Shih, R. L. Strawderman, D. Zhang, B. A. Johnson, and H. Chai (2019). Statistical analysis of zero-inflated nonnegative continuous data: A review. *Statistical Science* 34(2), 253–279.

Liu, W., J. Chen, Z. Tang, H. Liu, D. Han, and F. Li (2012). *Theory and Practice of*
Liu, W., Z. Tang, J. Chen, and P. Yang (2014). *The 2010 China Multi-Regional Input-Output Table of 30 Provincial Units*. Beijing, China: China Statistics Press.

Liu, W., Z. Tang, and M. Han (2018). *The 2012 China Multi-Regional Input-Output Table of 31 Provincial Units*. Beijing, China: China Statistics Press.

Meng, B., Y. Fang, J. Guo, and Y. Zhang (2017). Measuring China’s domestic production networks through trade in value-added perspectives. *Economic Systems Research* 29(1), 48–65.

Mi, Z., J. Meng, H. Zheng, Y. Shan, and D. Guan (2018). A multi-regional input-output table mapping China’s economic outputs and interdependencies in 2012. *Scientific Data* 5(1), 180155.

Moses, L. N. (1955). The stability of interregional trading patterns and input-output analysis. *The American Economic Review* 45(5), 803–826.

Newman, M. E. J. (2001). Scientific collaboration netowrks. ii. Shortest paths, weighted networks, and centrality. *Physical Review E* 64(1), 016132.

Newman, M. E. J. (2002). Assortative mixing in networks. *Physical Review Letters* 89(20), 208701.

Newman, M. E. J. (2003). Mixing patterns in networks. *Physical Review E* 67(2), 026126.

Newman, M. E. J. (2006). Modularity and community structure in networks. *Proceedings of the National Academy of Sciences of the United States of America* 103(23), 8577–8582.

Newman, M. E. J. (2010). *Networks: An Introduction*. New York, NY, USA: Oxford University Press.
Newman, M. E. J., D. J. Watts, and S. H. Strogatz (2002). Random graph models of social networks. *Proceedings of the National Academy of Sciences of the United States of America* 99(suppl 1), 2566–2572.

Ng, A. Y., M. I. Jordan, and Y. Weiss (2001). On spectral clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), *Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic*, Cambridge, MA, USA, pp. 849–856. The MIT Press.

Noldus, R. and P. Van Mieghem (2015). Assortativity in complex networks. *Journal of Complex Networks* 3(4), 507–542.

Onnela, J.-P., J. Saramäki, J. Kertész, and K. Kaski (2005). Intensity and coherence of motifs in weighted complex networks. *Physical Review E* 71, 065103.

Opsahl, T. and P. Panzarasa (2009). Clustering in weighted networks. *Social Networks* 31(2), 155–163.

Ouyang, G., D. K. Dey, and P. Zhang (2020). Clique-based method for social network clustering. *Journal of Classification* 37(1), 254–274.

Ouyang, M. and Y. Peng (2015). The treatment-effect estimation: A case study of the 2008 economic stimulus package of China. *Journal of Econometrics* 188(2), 545–557.

Page, L., S. Brin, R. Motwani, and T. Winograd (1998). The PageRank citation ranking: Bringing order to the web. In P. H. Enslow and A. Ellis (Eds.), *Proceedings of the 7th International World Wide Web Conference*, pp. 161–172. Elsevier.

Pennock, D. M., G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles (2002). Winners don’t take all: Characterizing the competition for links on the web. *Proceedings of the National Academy of Sciences of the United States of America* 99(8), 5207–5211.
Poncet, S. (2005). A fragmented China: Measure and determinants of Chinese domestic market disintegration. *Review of International Economics* 13(3), 409–430.

Sargento, A. L. M. (2007). Empirical examination of the gravity model in two different contexts: Estimation and explanation. *Review of Regional Research* 27(2), 107–127.

Serrano, M. Á., M. Boguñá, and A. Vespignani (2009). Extracting the multiscale backbone of complex weighted networks. *Proceedings of the National Academy of Sciences of the United States of America* 106(16), 6483–6488.

Snijders, T. A. B. and K. Nowicki (1997). Estimation and prediction for stochastic block-models for graphs with latent block structure. *Journal of Classification* 14(1), 75–100.

Su, X. (2014). Multi-scalar regionalization, network connections and the development of Yunnan province, China. *Regional Studies* 48(1), 91–104.

The World Bank (2020a). Exports of goods and services (current US$) [data file]. Available online: https://data.worldbank.org/indicator/NE.EXP.GNFS.CD.

The World Bank (2020b). GDP (current US$) [data file]. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

The World Bank (2020c). GDP growth (annual %) [data file]. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG.

The World Bank (2020d). Imports of goods and services (current US$) [data file]. Available online: https://data.worldbank.org/indicator/NE.IMP.GNFS.CD.

The World Bank (2020e). Inflation, GDP deflator (annual %) - China [data file]. Available online: https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG?locations=CN.

Timmer, M. P., E. Dietzenbacher, B. Los, R. Stehrer, and G. J. de Vries (2015). An illustrated user guide to the World Input–Output Database: The case of global automotive production. *Review of International Economics* 23(3), 575–605.
Tukker, A. and E. Dietzenbacher (2013). Global multiregional input-output framework: An introduction and outlook. *Economic Systems Research* 25(1), 1–19.

van der Hofstad, R. and N. Litvak (2014). Degree-degree dependencies in random graphs with heavy-tailed degrees. *Internet Mathematics* 10(3–4), 287–334.

Watts, D. J. and S. H. Strogatz (1998). Collective dynamics of ‘small-world’ networks. *Nature* 393(6684), 440–442.

Xing, W. and A. A. Ghorbani (2004). Weighted PageRank algorithm. In *Proceedings of the 2nd Annual Conference on Communication Networks and Services Research*, Piscataway, NJ, USA, pp. 305–314. IEEE.

Xu, M. and S. Liang (2019). Input-output networks offer new insights of economic structure. *Physica A: Statistical Mechanics and its Applications* 527, 121178.

Young, A. (2000). The razor’s edge: Distortions and incremental reform in the People’s Republic of China. *The Quarterly Journal of Economics* 115(4), 1091–1135.

Yuan, C., S. Liu, and N. Xie (2010). The impact on Chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis. *Energy* 35(4), 1805–1812.

Yuan, Y., J. Yan, and P. Zhang (2021). Assortativity coefficients for weighted and directed networks. ArXiv preprint, arXiv:2101.05389.

Zhang, B. and S. Horvath (2005). A general framework for weighted gene co-expression network analysis. *Statistical Applications in Genetics and Molecular Biology* 4(1), Article17.

Zhang, X. and J. Zhu (2013). Skeleton of weighted social network. *Physica A: Statistical Mechanics and its Applications* 392(6), 1547–1556.