SECOND HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

AABED MOHAMMED AND MASLINA DARUS

Abstract. By making use of the linear operator $\Theta^{\lambda, n}_m$, $m \in \mathbb{N} = \{1, 2, 3, \ldots\}$ and $\lambda, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ given by the authors, a class of analytic functions $S^{\lambda, n}_m(\alpha, \sigma) (|\alpha| < \pi/2, 0 \leq \sigma < 1)$ is introduced. The object of the present paper is to obtain sharp upper bound for functional $|a_2a_4 - a_3^2|$.

1. Introduction

Let \mathcal{A} denote the class of normalised analytic functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

where $z \in U := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Let S denote the class of all functions in \mathcal{A} which are univalent.

Robertson [14] introduced the class of starlike functions of order σ as follows:

Definition 1.1 ([14]). Let $\sigma \in [0, 1]$, $f \in S$ and

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \sigma, \; z \in U.$$

Then, we say that f is a starlike function of order σ on U and we denoted this class by $S^*(\sigma)$.

Spacek [15] introduced the class of spirallike functions of type α as follows:

Theorem 1.1 ([15]). Let $f \in S$ and $-\pi/2 < \alpha < \pi/2$. Then $f(z)$ is a spirallike function of type α on U if

$$\Re \left\{ e^{i\alpha} \frac{zf'(z)}{f(z)} \right\} > 0, \; z \in U.$$

We denoted this class by S_α.

Corresponding author: Maslina Darus.

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Hankel determinant, Positive real functions, Linear operator.
From Definition 1.1 and Theorem 1.1, it is easy to see ([17]) that starlike functions of order \(\sigma \) and spirallike functions of type \(\alpha \) have some relationships on geometry. Starlike functions of order \(\sigma \) map \(U \) into the right half complex plane whose real part is greater than \(\sigma \) by the mapping \(z f'(z)/f(z) \), while spirallike functions of type \(\alpha \) map \(U \) into the right half complex plane by the mapping \(e^{i\alpha} z f'(z)/f(z) \). Since \(\lim_{z \to 0} e^{i\alpha} z f'(z)/f(z) = e^{i\alpha} \), we can deduce that if we restrict the image of the mapping \(e^{i\alpha} z f'(z)/f(z) \) in the right complex plane whose real part is greater than a certain constant, then the constant must be smaller than \(\cos \alpha \).

Libera [16] introduced and studied the class \(S^\alpha_\sigma \) given as follows:

Definition 1.2 ([16]). Let \(\sigma \in [0, 1], -\pi/2 < \alpha < \pi/2 \) and \(f \in S \). Then \(f \in S^\alpha_\sigma \) if and only if
\[
\Re \left\{ e^{i\alpha} z f'(z)/f(z) \right\} > \sigma \cos \alpha, \quad z \in U.
\]

Obviously,
\[
S^0_\sigma = S^\ast(\sigma) \quad \text{and} \quad S^\sigma_0 = S_\sigma.
\]

For \(f_j \in \mathcal{A} \) given by
\[
f_j(z) = z + \sum_{k=2}^{\infty} a_{k,j} z^k \quad (j = 1, 2),
\]
the Hadamard product (or convolution) \(f_1 \ast f_2 \) of \(f_1 \) and \(f_2 \) is defined by
\[
(f_1 \ast f_2)(z) = z + \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k \quad (z \in U).
\]

We recall that a family of the Hurwitz-Lerch Zeta functions \(\Phi^{(\rho, \sigma)}_{\mu, \nu}(z, s, a) \) ([12]) is defined by
\[
\Phi^{(\rho, \sigma)}_{\mu, \nu}(z, s, a) = \sum_{n=0}^{\infty} \frac{(\mu)_n}{(\nu)_\sigma (n + a)^s},
\]
where
\[
(\mu \in \mathbb{C}; \ a, \nu \in \mathbb{C}\backslash \mathbb{Z}^-; \ \rho, \sigma \in \mathbb{R}^+; \ \rho < \sigma \ \text{when} \ s, z \in \mathbb{C}; \ \rho = \sigma \ \text{and} \ s \in \mathbb{C} \ \text{when} \ |z| < 1; \ \rho = s \ \text{and} \ \Re(s - \mu + \nu) > 1 \ \text{when} \ |z| = 1),
\]
contains as its special cases, not only the Hurwitz-Lerch Zeta function
\[
\Phi^{(\rho, \sigma)}_{\mu, \nu}(z, s, a) = \Phi^{(0, 0)}_{\mu, \nu}(z, s, a) = \sum_{n=0}^{\infty} \frac{z^n}{(n + a)^s},
\]
but also the following generalized Hurwitz-Zeta function introduced and studied earlier by Goyal and Laddha ([13]),
\[
\Phi^{(1, 1)}_{\mu, 1}(z, s, a) = \Phi_{\mu}(z, s, a) = \sum_{n=0}^{\infty} \frac{(\mu)_n}{n!} \frac{z^n}{(n + a)^s}, \quad \text{(1.2)}
\]
which, for convenience, are called the Goyal-Laddha-Hurwitz-Lerch Zeta function. Here \((x)_k\) is Pochhammer symbol (or the shifted factorial, since \((1)_k = k!\)) and \((x)_k\) given in terms of the Gamma functions can be written as

\[
(x)_k = \Gamma(x + k) / \Gamma(x) \begin{cases}
1, & \text{if } k = 0 \text{ and } x \in \mathbb{C}\setminus\{0\}; \\
x(x+1)...(x+k-1), & \text{if } k \in \mathbb{N} \text{ and } x \in \mathbb{C}.
\end{cases}
\]

It follows that the authors [1] introduced the linear operator \(\Theta^{\lambda,n}_m f(z)\) as the following.

For \(a = 1\), in (1.2), we consider the function

\[
G(z) = z\Phi\mu(z, s, 1) = z + \sum_{k=2}^{\infty} \frac{(\mu)_{k-1}}{(k-1)!} \frac{z^k}{k^s}.
\]

Thus

\[
G(z) * G(z)^{(-1)} = z + \sum_{k=2}^{\infty} \frac{(\lambda+1)_{k-1}}{(k-1)!} \frac{z^k}{(m)_k}.
\]

Now for \(s = n, \lambda \in \mathbb{N}_0\) and \(\mu = m \in \mathbb{N}\), we define the linear operator

\[
\Theta^{\lambda,n}_m f(z) = G(z)^{(-1)} * f(z). \quad \left(f \in \mathcal{A} \right)
\]

\[
= z + \sum_{k=2}^{\infty} \frac{(\lambda+1)_{k-1}}{(m)_{k-1}} a_k z^k.
\]

(1.3)

In [10], Noonan and Thomas stated that the \(q\)th Hankel determinant of the function \(f\) of the form (1.1) is defined for \(q \in \mathbb{N}\) by

\[
H_q(k) = \begin{vmatrix} a_k & a_{k+1} & \cdots & a_{k+q+1} \\ a_{k+1} & a_{k+2} & \cdots & a_{k+q+2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+q-1} & a_{k+q} & \cdots & a_{k+2q-2} \end{vmatrix}.
\]

We now introduce the following class of functions.

Definition 1.3. The function \(f \in \mathcal{A}\) is said to be in the class \(S^{\lambda,n}_m(\alpha, \sigma), \quad (|\alpha| < \pi/2, 0 \leq \sigma < 1)\) if it satisfies the inequality

\[
\Re \left\{ e^{i\alpha} \frac{\Theta^{\lambda,n}_m f(z)}{z} \right\} > \sigma \cos \alpha \quad (z \in \mathcal{U}).
\]

(1.4)

As is usually the case, we let \(P\) be the family of all functions \(p\) analytic in \(U\) for which \(\Re\{p(z)\} > 0\) and

\[
p(z) = 1 + c_1 z + c_2 z^2 + ..., \quad z \in \mathcal{U}.
\]

(1.5)
It follows from (1.4) that
\[f \in S_{m}^{\lambda,n}(\alpha,\sigma) \Leftrightarrow e^{\mu_{\lambda,n}} \frac{f(z)}{z} = [(1 - \sigma)p(z) + \sigma] \cos \alpha + i \sin \alpha, \tag{1.6} \]
where \(\alpha \) is real, \(|\alpha| < \pi/2 \) and \(p(z) \in P \).

We note that
\[
S_{1}^{0,0}(\alpha,\sigma) = \left\{ f : f \in A \text{ and } \Re \left\{ e^{i\mu} \frac{f(z)}{z} \right\} > \sigma \cos \alpha \right\},
\]
\[
S_{1}^{0,1}(\alpha,\sigma) = \left\{ f : f \in A \text{ and } \Re \left\{ e^{i\mu} f'(z) \right\} > \sigma \cos \alpha \right\},
\]
\[
S_{1}^{1,0}(0,0) = S_{1}^{1,1}(0,0) = S_{2}^{1,1}(0,0) = \mathcal{R} := \left\{ f : f \in A \text{ and } \Re \{ f'(z) \} > 0 \right\}.
\]

Remark 1.1 ([6]). The subclass \(\mathcal{R} \) was studied systematically by MacGregor ([11]) who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part.

It is well known ([9]) that for \(f \in S \) and given by (1.1) the sharp inequality \(|a_{3} - a_{2}^{2}| \leq 1 \) holds. This corresponds to the Hankel determinant with \(q = 2 \) and \(k = 1 \). For a given family \(\mathcal{F} \) of functions in \(A \), the sharp bound for the nonlinear functional \(|a_{2}a_{4} - a_{3}^{2}| \) is popularly known as the second Hankel determinant. This corresponds to the Hankel determinant with \(q = 2 \) and \(k = 2 \). The second Hankel determinant for some subclasses of analytic and univalent functions has been studied by many authors (see [2]-[6], [18], [19]).

In the present paper, we seek upper bound for the functional \(|a_{2}a_{4} - a_{3}^{2}| \left(f \in S_{m}^{\lambda,n}(\alpha,\sigma) \right) \).

Our investigation includes a recent result of Janteng et al. [2].

To prove our main result, we need the following lemmas.

Lemma 1.2 ([9]). Let the function \(p \in P \) and be given by the series (1.5). Then, the sharp estimate
\[|c_{k}| \leq 2 \quad (k \in \mathbb{N}) \]
holds.

Lemma 1.3 ([7] and [8]). Let the function \(p \in P \) be given by the series (1.5). Then
\[2c_{2} = c_{1}^{2} + x(4 - c_{1}^{2}) \tag{1.7} \]
for some \(x, |x| \leq 1 \) and
\[4c_{3} = c_{1}^{3} + 2(4 - c_{1}^{2})c_{1}x - c_{1}(4 - c_{1}^{2})x^{2} + 2(4 - c_{1}^{2})(1 - |x|^{2})z \tag{1.8} \]
for some \(z, |z| \leq 1 \).
2. Main results

We prove the following.

Theorem 2.1. Let the function \(f \) given by (1.1) be in the class \(S_m^{\lambda,n}(\alpha, \sigma) \). Then

\[
|a_2a_4 - a_3^2| \leq \frac{4m^2(1-\sigma)^2(1+m)^2 \cos^2 \alpha}{3^{2n}(\lambda + 1)^2(\lambda + 2)^2}.
\]

(2.1)

The estimate (2.1) is sharp.

Proof. Let \(f \in S_m^{\lambda,n}(\alpha, \sigma) \). Then from (1.6) we have

\[
e^{ia} \Theta_m^{\lambda,n} f(z) = [(1-\sigma)p(z) + \sigma] \cos \alpha + i \sin \alpha,
\]

where \(p \in P \) and is given by (1.5). Then

\[
e^{ia} \left\{ 1 + \sum_{k=2}^{\infty} \frac{(k+\lambda-1)!(m-1)!}{\lambda!(k+m-2)!} k^n a_k z^{k-1} \right\} = [(1-\sigma)(1 + \sum_{k=1}^{\infty} c_k z^k) + \sigma] \cos \alpha + i \sin \alpha.
\]

Comparing the coefficients, we get

\[
\begin{align*}
\frac{\lambda+1}{m} 2^n e^{ia} a_2 &= (1-\sigma)c_1 \cos \alpha, \\
\frac{(\lambda+2)(\lambda+1)}{m(m+1)} 3^n e^{ia} a_3 &= (1-\sigma)c_2 \cos \alpha, \\
\frac{(\lambda+3)(\lambda+2)(\lambda+1)}{m(m+1)(m+2)} 4^n e^{ia} a_4 &= (1-\sigma)c_3 \cos \alpha.
\end{align*}
\]

(2.2)

Therefore, (2.2) yields

\[
|a_2a_4 - a_3^2| = \frac{m^2(1-\sigma)^2(1+m) \cos^2 \alpha}{(\lambda + 1)^2(\lambda + 2)} \left| \frac{(m+2)c_1 c_3}{2^{3n}(\lambda + 3)} - \frac{c_2^2(m+1)}{3^{2n}(\lambda + 2)} \right|.
\]

Since the functions \(p(z) \) and \(p(e^{i\theta} z) \), \((\theta \in \mathbb{R})\) are members of the class \(P \) simultaneously, we assume without loss of generality that \(c_1 > 0 \). For convenience of notation, we take \(c_1 = c \), \(c \in [0,2] \). Using (1.7) along with (1.8), we get

\[
|a_2a_4 - a_3^2| = \frac{m^2(1-\sigma)^2(1+m) \cos^2 \alpha}{4(\lambda + 1)^2(\lambda + 2)} \left\{ \frac{(m+2)}{2^{3n}(\lambda + 3)} [c^4 + 2c^2(4-c^2)x - c^2(4-c^2)x^2] + 2c(4-c^2)(1-|x|^2)z - \frac{(m+1)}{3^{2n}(\lambda + 2)} [c^4 + 2c^2(4-c^2)x + x^2(4-c^2)^2] \right\}
\]

\[
= \frac{m^2(1-\sigma)^2(1+m) \cos^2 \alpha}{4(\lambda + 1)^2(\lambda + 2)} \left\{ \frac{(m+2)}{2^{3n}(\lambda + 3)} - \frac{(m+1)}{3^{2n}(\lambda + 2)} \right\} c^4 + \frac{(m+2)}{2^{3n}(\lambda + 3)} - \frac{(m+1)}{3^{2n}(\lambda + 2)} c^4 x
\]

\[
+ \left\{ \frac{(m+2)}{2^{3n}(\lambda + 3)} - \frac{(m+1)}{3^{2n}(\lambda + 2)} \right\} 2c^2(4-c^2)x
\]
\[-\left\{ \frac{c^2(m + 2)}{2^{3n}c(\lambda + 3)} + \frac{(m + 1)(4 - c^2)}{3^{2n}\lambda(\lambda + 2)} \right\} x^2(4 - c^2) + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)(1 - |x|^2)z \right].

An application of triangle inequality and replacement of $|x|$ by y give

$$|a_2a_4 - a_5^2| \leq \frac{m^2(1 - \sigma)^2(1 + m)c^2}{3\alpha} \left\{ \frac{(m + 2)}{2^{3n}(\lambda + 3)} - \frac{(m + 1)}{3^{2n}(\lambda + 2)} \right\} c^4 + \frac{2c^2y(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)(1 - y^2) \right\}\frac{y^2(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)$$

$$= G(c, y), \quad 0 \leq c \leq 2 \text{ and } 0 \leq y \leq 1. \quad (2.3)$$

We next maximize the function $G(c, y)$ on the closed square $[0, 2] \times [0, 1]$. Since

$$\frac{\partial G}{\partial y} = \frac{m^2(1 - \sigma)^2(1 + m)c^2}{3\alpha} \left\{ \frac{(m + 2)}{2^{3n}(\lambda + 3)} - \frac{(m + 1)}{3^{2n}(\lambda + 2)} \right\} c^4 + \frac{2c^2y(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)(1 - y^2) \right\}\frac{y^2(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)$$

$c - 2 < 0, 3^{2n}(m + 2)(\lambda + 2) > 2^{3n}(m + 1)(\lambda + 3)$, we have $\partial G/\partial y > 0$ for $0 < c < 2, 0 < y < 1$. Thus $G(c, y)$ cannot have a maximum in the interior of the closed square $[0, 2] \times [0, 1]$. Moreover, for fixed $c \in [0, 2], \max_{0 \leq y \leq 1} G(c, y) = G(c, 1) = F(c)$. Since

$$F(c) = \frac{m^2(1 - \sigma)^2(1 + m)c^2}{3\alpha} \left\{ \frac{(m + 2)}{2^{3n}(\lambda + 3)} - \frac{(m + 1)}{3^{2n}(\lambda + 2)} \right\} c^4 + \frac{2c^2y(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)(1 - y^2) \right\}\frac{y^2(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)$$

Then $F'(c) = \frac{2m^2(1 - \sigma)^2(1 + m)c^2}{(\lambda + 1)^2(\lambda + 2)^2} \left\{ \frac{(m + 2)}{2^{3n}(\lambda + 3)} - \frac{(m + 1)}{3^{2n}(\lambda + 2)} \right\} c^4 + \frac{2c^2(y(4 - c^2))}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)(1 - y^2) \right\}\frac{y^2(4 - c^2)}{2^{3n}(\lambda + 3)} + \frac{2(m + 2)}{2^{3n}(\lambda + 3)}c(4 - c^2)$, so that $F'(c) < 0$ for $0 < c < 2$ and has real critical point at $c = 0$. Also $F(c) > F(2)$. Therefore, $\max_{0 \leq c \leq 2} F(c)$ occurs at $c = 0$. Therefore, the upper bound of (2.3) corresponds to $y = 1, c = 0$. Hence

$$|a_2a_4 - a_5^2| \leq \frac{4m^2(1 - \sigma)^2(1 + m)^2c^2}{2^{3n}(\lambda + 1)^2(\lambda + 2)^2}. \quad (2.3)$$
which is the assertion (2.1). Equality holds for the function
\[f(z) = \left(\sum_{k=1}^{\infty} \frac{(m)_{k-1}}{(\lambda + 1)_{k-1}} k^n z^k \right) \ast e^{-i\alpha} \left[z \left(\frac{1 + (1 - 2\sigma)z^2}{1 - z^2} \cos \alpha + i \sin \alpha \right) \right]. \]

This completes the proof of the Theorem 2.1.

Remark 2.1. For \(\alpha = 0, \sigma = 0, \lambda = m = 1, n = 0 \) and for \(\alpha = 0, \sigma = 0, \lambda = 1, m = 2, n = 1 \) we get a resent result due to Janteng et al. [2] as in the following corollary.

Corollary 2.1. If \(f \in \mathcal{R} \) then
\[|a_2 a_4 - a_3^2| \leq \frac{4}{9}. \]
The result is sharp.

Acknowledgement

The work here is fully supported by MOHE Grant: UKM-ST-06-FRGS0244-2010, Malaysia.

References

[1] A. Mohammed and M. Darus, *An operator defined by convolution involving the generalized Hurwitz–Lerch zeta function*, Submitted

[2] A. Janteng, S. A. Halim, and M. Darus, *Coefficient inequality for a function whose derivative has positive real part*, J. Ineq. Pure and Appl. Math., 7(2)(2006), 1–5.

[3] A. Janteng, S. A. Halim, and M. Darus, *Hankel determinant for starlike and convex functions*, Int. Journal of Math. Analysis, 1(13)(2007), 619 – 625.

[4] A. K. Mishra and P. Gochhayat, *Second Hankel determinant for a class of analytic functions defined by fractional derivative functions*, International Journal of Mathematics and Mathematical Sciences, 2008, Article ID 153280, 10 pages.

[5] S. C. Soh and D. Mohamad, *Coefficient bounds for certain classes of close-to-convex functions*, Int. Journal of Math. Analysis, 2(27)(2008), 1343 – 1351.

[6] G. Murugusundaramoorthy and N. Magesh, *Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant*, Bulletin of Math. Anal. Appl., 1(3)(2009), 85–89.

[7] R. J. Libera and E. J. Zlotkiewicz, *Early coefficients of the inverse of a regular convex function*, Proc. Amer. Math. Soc., 85(2)(1982), 225–230.

[8] R. J. Libera and E. J. Zlotkiewicz, *Coefficient bounds for the inverse of a function with derivative in P*, Proc. Amer. Math. Soc., 87(2)(1983), 251–289.

[9] P. L. Duren, Univalent Functions, Springer–Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

[10] J. W. Noonan and D.K. Thomas, *On the second Hankel determinant of areally mean \(p -- \) valent functions*, Trans. Amer. Math. Soc., 223(2)(1976), 337–346.

[11] T. H. MacGregor, *Functions whose derivative has a positive real part*, Trans. Amer. Math. Soc., 104(1962), 532–537.

[12] S. D. Lin, H. M. Srivastava, *Some families of the Hurwitz–Lerch Zeta function and associated fractional derivative and other integral representations*, Appl. Math. Comput., 154(2004), 725–733.

[13] S. Goyal, R. K. Laddha, *On the generalized Riemann zeta function and the generalized Lambert transform*, Ganita Sandesh, 11(1997), 99–108.
[14] M.S. Robertson, *On the theory of univalent functions*, Ann. Math., **37**(1936), 374–408.

[15] L. Spacek, *Contribution la thorie des fonctions univalentes*, Casopis Pest Math., **62**(1932), 1219, (in Russian).

[16] J. R. Libera, *Univalent α − − spiral functions*, Canada. J. Math., **19**(1967), 449–456.

[17] Q. Xu and S. Lu, *The Alexander transformation of a subclass of spirallike functions of type β*, J. Ineq. Pure and Appl. Math, **10**(1)(2009), 1–7.

[18] T. Hayami and S. Owa, *Hankel determinant for p–valently starlike and convex functions of order α*, General Math., **17** (2009), 29–44.

[19] T. Hayami and S. Owa, *Generalized Hankel determinant for certain classes*, Int. J. Math. Anal., **4** (2010), 2573–2585.

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D. Ehsan, Malaysia.

E-mail: aabedukm@yahoo.com

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D. Ehsan, Malaysia.

E-mail: maslina@ukm.my