11-4-2014

Two Distinct Microbial Communities Revealed in the Sponge Cinachyrella

Marie L. Cuvelier
Florida International University

Emily Blake
Nova Southeastern University

Rebecca Mulheron
Nova Southeastern University

Peter J. McCarthy
Florida Atlantic University

Patricia Blackwelder
Nova Southeastern University, pblackwe@nova.edu

See next page for additional authors

Find out more information about Nova Southeastern University and the Oceanographic Center.

Follow this and additional works at: http://nsuworks.nova.edu/occ_facarticles

Part of the Marine Biology Commons, and the Microbiology Commons

NSUWorks Citation
Marie L. Cuvelier, Emily Blake, Rebecca Mulheron, Peter J. McCarthy, Patricia Blackwelder, Rebecca Vega-Thurber, and Jose V. Lopez. 2014. Two Distinct Microbial Communities Revealed in the Sponge Cinachyrella. Frontiers in Microbiology : 1-12. http://nsuworks.nova.edu/occ_facarticles/229.

This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Oceanography Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.
Authors

Rebecca Vega-Thurber
Oregon State University

Jose V. Lopez
Nova Southeastern University, joslo@nova.edu

This article is available at NSUWorks: http://nsuworks.nova.edu/occ_facarticles/229
Two distinct microbial communities revealed in the sponge Cinachyrella

Marie L. Cuvelier1*, Emily Blake2, Rebecca Mulheron2, Peter J. McCarthy3, Patricia Blackwelder2,4, Rebecca L. Vega Thurber2 and Jose V. Lopez2

1 Biological Sciences Department, Florida International University, Miami, FL, USA
2 Oceanographic Center, Nova Southeastern University, Dania Beach, FL, USA
3 Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
4 Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

*Correspondence: Marie L. Cuvelier, Biological Sciences Department, Florida International University, 3000 NE 151st Street, Miami, FL, USA. E-mail: cuvelierml@gmail.com

INTRODUCTION

Sponges are one of the most primitive Metazoan life forms with fossils dating from at least 580 million years ago (Li et al., 1998; Ryan et al., 2013). Today, there are more than 8500 described extant sponge species, most of which are marine (van Soest et al., 2012). Marine sponges are ecologically important components of the benthic community due to their wide diversity and high biomass (Ilan et al., 2004; de Goeij et al., 2013). In addition, they play a key functional role linking benthic and pelagic ecosystems, as they efficiently remove particulate organic carbon from the seawater (Diaz and Rützler, 2001; Ilan et al., 2004; Webster et al., 2011). Indeed, these sessile invertebrates are able to filter considerable amounts of seawater; a 1 kg sponge can filter up to 24000 L of water per day (Vogel, 1977). Because they are efficient filter feeders, many sponges can live in nutrient-poor habitats such as tropical reefs. However, because of their feeding mode, they are also directly affected by water quality and are vulnerable to marginal environmental conditions (Webster and Blackall, 2009).

Many sponge species consistently harbor dense and diverse microbial communities including bacteria, archaea and eukaryotes (Taylor et al., 2007b). Symbionts can contribute up to 50% of the sponge biomass (Wilkinson, 1978a,b,c; Hentschel et al., 2006). Sponge-associated microorganisms include members of two archaeal lineages and >30 different bacterial and candidate phyla (Taylor et al., 2007b; Webster et al., 2008; Zhu et al., 2008; Sipkema et al., 2009; Schmitt et al., 2012). Many of these taxa form monophyletic sponge-specific clusters.

Abbreviations: AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; LMA, low microbial abundance; HMA, high microbial abundance; SG1, sponge group 1; SG2, sponge group 2.

Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Wiener index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Wiener index: 5.95 ± 0.25). Hosts’ 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalii. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

Keywords: marine sponge, symbionts, diversity, archaea, pyrosequencing, 16S rRNA, microbiome
even though they are found in geographically and phylogenetically distinct sponge hosts (Taylor et al., 2007b; Simister et al., 2012).

Although sequencing technology has revealed much about the structural diversity of sponge associated microbiomes, relatively little is known about the specific ecological relationships and interactions among these sponge symbionts and their host (Taylor et al., 2007a; Webster and Taylor, 2012). While sponges are believed to provide a favorable environment to their symbionts, the contribution of the symbionts to the host is less well understood. However, phylogenetic inference suggests that associated bacteria and archaea are capable of a range of metabolic processes that can benefit their hosts such as ammonium-oxidation (Steger et al., 2008), nitrite-oxidation (Hentschel et al., 2002), nitrogen fixation (Wilkinson and Fay, 1979), sulfate reduction (Hoffmann et al., 2005), and photosynthesis (Wilkinson and Fay, 1979; Bayer et al., 2008; Hoffmann et al., 2009; Mohamed et al., 2010; Schäppy et al., 2010). However, it is possible that sponges and some, or all, of their microbes coexist in a more commensal or even parasitic style relationship with their hosts as opposed to a truly mutualistic one.

Further, how sponges distinguish between symbionts, food and pathogens is still unclear (Webster and Blackall, 2009). Recent studies have compared sponge microbial communities from phylogenetically distant hosts in the same location and from closely related sponges at different locations (Hentschel et al., 2002; Webster et al., 2010; Schmitt et al., 2012; Jeong et al., 2013; Montalvo et al., 2014; Kennedy et al., 2014). Thus, studies have established a “core microbial community” that would be present in many host taxa under various space and time conditions (Schmitt et al., 2012).

Here, we compare the microbial communities of different specimens of the sponge genus Cinachyrella collected from the same South Florida location at two different times of year. Cinachyrella (class Demospangiidae), is common in coastal waters of South Florida as well as the Caribbean, with three species (C. kuekenthali, C. alloclada, and C. apion) present in these locations (Cárdenas et al., 2009). While C. apion is usually small and lives mainly near the mangrove area in shallow waters, C. kuekenthali and C. alloclada typically occur on reefs (Rützler and Smith, 1992; Cárdenas et al., 2009). However, these species are extremely difficult to visually differentiate and require careful examination of the spicules for identification at the species level (Cárdenas et al., 2009, personal observation).

Much debate currently exists concerning the identification of these species, with morphological diagnostic characters conflicting with molecular phylogenies created from marker genes. For example, using the 28S rRNA gene, cox1 gene and a combination of the two former genes and 18S rRNA, Szitenerg et al. (2013) showed that, Cinachyrella australiensis contains several cryptic sympatric populations. Within the present study, we explore the microbiome of Cinachyrella specimens collected from the same natural environment. The purpose of the study was to describe the baseline microbial community of Cinachyrella in order to develop this sponge as a future experimental model. Interestingly, we discovered that based on different microbial communities, our samples formed two distinct groups of sponges, independent of the time of collection, indicating that Cinachyrella can harbor very distinct symbionts.

MATERIAL AND METHODS

SPONGE AND SEAWATER COLLECTION

Cinachyrella specimens were collected by SCUBA diving from the Inner Reef (as defined by Walker, 2012), Broward County, Florida, USA (N 26° 03′ 01″, W 80° 06′ 18″) at a depth of 6.1 m, on Aug 2, 2011, on Oct 24, 2011, and Feb 15, 2012, under a Florida Fish and Wildlife Conservation Commission Fishing License and a Special Activity License (-12-1372-372a). Sponges were identified as the genus Cinachyrella (family Tetillidae, Sollas, 1886; van Soest et al., 2014) given their characteristic orange to yellow color, subglobo-lar shape and hispid surface. Water temperatures reached 30.3, 23.9, and 22.8°C in August, October and February, respectively. A total of 64 individuals were collected in total. Here, we present detailed results for six individuals consisting of three individuals on October and February (henceforth labeled as Sponge 1, 2, 3 (Sp1, Sp2, Sp3) Oct and Sponge 4, 5, 6 (Sp4, Sp5, Sp6) Feb. The other 58 individuals were subjected to various experimental conditions in aquaculture, and we provide a preliminary analysis of these samples (Supplementary Material). In-depth results of the different experiments for these samples are not shown. Individuals were cut at the base with a dive knife, placed in individual Nasco Whirl Pak bags filled with ambient seawater and brought to the surface. Samples were stored in the shade and maintained at ambient seawater temperature until transported back to the laboratory (within 2 h of collection). Surface seawater was also collected each time (one replicate in October and one replicate in February) from the dive site in 50 L carboys. These seawater samples were used to confirm that microbial communities associated with the sponge were specific to the sponges and not amplified from seawater DNA. Upon return to the laboratory, sponges were quartered with a sterile knife, frozen in liquid nitrogen, and placed at −80°C for long-term storage. Seawater (0.5 L) was filtered onto a 0.22 μm Supor filter (Pall Life Science, Ann Arbor, MI) by vacuum filtration (<10 mm Hg), the filters were frozen in liquid nitrogen, and stored at −80°C.

DNA EXTRACTION

Approximately ¼ of a sponge was used for DNA extraction. In a sterile petri dish, the sample was defrosted and the ectoderm (darker outer layer) was immediately removed using a sterile scalpel. The endoderm was transferred to a new petri dish and 5 ml of buffer (10 mM Tris pH = 7.6, 100 mM EDTA, 20 mM NaCl) was added. The sponge endoderm was minced, mixed in buffer, and the cell suspension collected into 1.7 mL tubes. These sponge suspensions were centrifuged for 15 min at 16,000 g at 4°C. Supernatant was decanted and the pellets transferred and extracted using the MO BIO PowerSoil DNA isolation kit according to the manufacturer’s instructions (MO BIO, Carlsbad, CA).

Seawater filters also were extracted with the MO BIO PowerSoil kit to avoid yield discrepancy between DNA extraction protocols. The filters were placed into bead tubes (provided by the kit) and cut into fine pieces using sterile dissection scissors. DNA was extracted according to the manufacturer’s instructions.
using a 2 min bead-beating step (instead of 10 min vortexing step).

SPONGE 28S rRNA GENE PCR AND ANALYSIS

For molecular systematics, our methods followed those prescribed by the Porifera Tree of Life project (Thacker et al., 2013). Specifically, the 28S rRNA gene was amplified using the 28F63mod (5′- ACC CGC TGA AYT TAA GCA TAT HAN TMA G- 3′) and 28R2077sq (5′- GAG CCA ATC CCT WTC CCG ARG TT- 3′) (Thacker et al., 2013). PCR consisted of one reaction of 50 µL with: 1 µM each forward and reverse primer, 1 µL of template DNA, 2.5 mM MgCl₂, 0.2 mM dNTPs and 1.25 unit of Taq (High Fidelity Taq, TaKARa Otsu, Shiga, Japan). Thermal cycling was initiated with denaturation at 94°C for 3 min, followed by 30 cycles of: 45 s at 94°C, 60 s at 55°C, and 72°C for 6 min and a final extension step for 10 min at 72°C. PCR products were visualized on a 1.5% agarose gel (containing Gel Red). PCR products were cloned and sequenced on an ABI 377 automated DNA sequencer at the University of Alabama, Birmingham using the primer: 28R1411 (5′- GTT GTT ACA CACTCC TTA GCG G-3′). Two samples (Sp5 Feb and Sp6 Feb) had low quality sequences and were removed from the study. The nearest relative for each sequence was determined using the NCBI BLASTn tool against the GenBank non redundant database.

16S rRNA GENE PCR AND ANALYSIS

Approximately 291 bp of the 16S rRNA gene was amplified by PCR using the universal bacterial and archaeal primers (targeting the V4 region of the gene): 515F (5′- GTGCCAGCMGCCG CGGTAA- 3′) and 806R (5′- GGACTACHVGGGTWTCTAAT- 3′) (Caporaso et al., 2011), which contained a unique barcode used to tag each PCR product. This primer set was chosen because it targets a broad range of bacterial and archaeal taxa with the exception of a few groups (Bates et al., 2011; Caporaso et al., 2011). PCR consisted of two reactions of 50 µL with (for each reaction): 1 µM each forward and reverse primer, 1 µL of template DNA, 2.5 mM MgCl₂, 0.2 mM dNTPs and 1.25 unit of Taq (High Fidelity Taq, TaKARA Otsu, Shiga, Japan). Thermal cycling was initiated with denaturation at 94°C for 3 min, followed by 30 cycles of: 45 s at 94°C, 60 s at 50°C and 72°C for 90 s and a final extension step for 10 min at 72°C. PCR products were visualized on a 1.5% agarose gel (containing Gel Red). Successful reactions (i.e., with a clear band, two reactions of 25 µL were pooled and purified with the Agencourt AMPure kit (Beckman Coulter, Beverly, MA), using 1.8× vol. of AMPure bead slurry and eluted in 10 mM Tris pH 7.5. Each sample was quantified using PicoGreen dsDNA reagent (Invitrogen, Carlsbad, CA). Purified products were sequenced on a 454 Life Science Genome Sequencer FLX (Roche) at Advanced Genetic Technologies Center at the University of Kentucky.

Sequences were analyzed using QIIME version 1.6 (Caporaso et al., 2010b). Only sequences with a mean quality score >25 and of length >280 bp were included in the analysis. Sequences were then assigned to each barcode and denoised using the denoise_wrapper option (Reeder and Knight, 2010) in QIIME. Operational Taxonomic Units (OTU) were picked using the UCLUST method (Edgar, 2010) and sequences with ≥97% identities were considered as one OTU. A representative sequence was chosen for each OTU and the taxonomic identity of each representative was assigned (in QIIME) using the RDP Classifier (Wang et al., 2007) against the Greengene 12_10 database (McDonald et al., 2012). Chimera sequences were removed using the ChimeraSlayer option (Haas et al., 2011). Sequences were aligned (using PyNAST with default parameters set in QIIME, Caporaso et al., 2010a) and screened with Lane mask to remove gaps and hypervariable regions (Lane, 1991). A representative phylogenetic tree was built using FastTree (Price et al., 2010) and used for further analysis in QIIME (alpha, beta diversity from weighted UniFrac, Lozupone and Knight, 2005 and principal coordinate analysis generated from the UniFrac distances). T-tests (Microsoft Excel) were used to compare the relative abundance of each microbial phylum present in the samples of SG1 and SG2. A P value less than 0.05 was considered statistically significant. A principal coordinate analysis generated from the weighted UniFrac distances and an analysis of similarity (ANOSIM, 999 permutations) were generated in QIIME for all the 64 sponge individuals.

RESULTS

MOLECULAR PHYLOGENETICS CONFIRM SPONGES ARE CINACHYRELLA

All the partial 28S rRNA gene sequences obtained were most similar to the single C. kuekanthali 28S rRNA sequence present in Genbank (KC869490.1). Two 28S rRNA gene sequences (Sp5 and Sp6) could not be included in this study because of poor quality. Sp1 Oct and Sp4 Feb displayed 97% identity to C. kuekanthali and Sp2 Oct and Sp3 Oct had 99% identity to the same sequence (C. kuekanthali). Results showed that Sp1 Oct and Sp4 Feb were most closely related to each other (99.3% identity compared to ~97% identity to the other two samples). Similarly, Sp2 Oct and Sp3 Oct were 100% identical to each other respectively, but only ~97% identical to the other two samples (Table 1).

Based on the 28S rRNA gene sequences, the samples therefore form two groups, one group including: Sp1 Oct and Sp4 Feb and another group including: Sp2 Oct and Sp3 Oct. These are similar to the two groups observed after analysis of the microbiomes (see below).

CINACHYRELLA SPECIMENS HARBOR A DIVERSITY OF UNIQUE BACTERIA AND ARCHAEA

After quality control and chloroplast sequence removal, a total of 16,811 sequences were analyzed including 13,947 from

Table 1	Percent identity between the 28S rRNA gene partial sequences of C. cinachyrella samples (Sp1- 4: sponge 1- 4) collected in October 2011 (Oct) and February 2012 (Feb) from South Florida and C. kuekanthali (C. kuek.; GenBank: KC869490.1; Panama).				
	Sp1 Oct	Sp2 Oct	Sp3 Oct	Sp4 Feb	C. kuek.
Sp1 Oct	100				
Sp2 Oct	97.3	100			
Sp3 Oct	97.3	100	100		
Sp4 Feb	99.3	96.9	96.9	100	
C. kuek.	96.9	99.8	99.8	96.5	100

www.frontiersin.org November 2014 | Volume 5 | Article 581 | 3
sponges (ranging from 1185 to 3616 sequences/animal) and 2864 from seawater (ranging from 1340 to 1524 sequences/sample) (Table 2). Results indicated that Cinachyrella specimens harbor a diverse community of symbionts, including members of all three Domains of life (Bacteria, Archaea and Eukaryotes). Here, the analysis of the eukaryotic community is not presented. In total, 951 OTUs (measured at 97% identity) were identified among all samples (including seawater), of which 19 were archaeal and 932 were bacterial. A total of 639 OTUs (12 archaeal and 627 bacterial OTUs) were present in the sponge symbiont community, and OTU richness in the sponges was lower than the seawater except for one sample (Sp3 Oct, 341 OTUs). The seawater microbial community contained a total of 450 OTUs (10 archaeal and 440 bacterial OTUs), and OTU richness was similar in both samples (246 vs. 285 OTUs) across sampling times (Table 2).

CINACHYRELLA CONTAIN DISTINCT AND CANALIZED MICROBIOMES COMPARED TO SEAWATER

Rarefaction analysis demonstrated that for some samples (Seawater Oct, Seawater Feb, Sp2 Oct and Sp3 Oct), the diversity was high enough such that sequencing depth was likely not sufficient to evaluate the rarer members of the community and that further sequencing would be necessary to reveal the true diversity (Supplementary Figure 1). Yet the rarefaction analysis here confirmed that most sponge samples’ microbiome was less diverse than seawater (Supplementary Figure 1). Chaol richness estimates for sponges varied from 124 to 529 phylotypes and 440 and 510 OTUs for the seawater (t = −1.9, 0.05 < P < 0.1). Similarly, the Shannon-Wiener indices for the Cinachyrella samples were lower on average (3.1–6.2), but not statistically different than for the seawater (6.2 and 6.3; Table 2 t = −1.9, 0.05 < P < 0.1).

Comparatively, 21 bacterial and 2 archaeal phyla and candidate phyla were detected in the sponges vs. 27 bacterial and 2 archaeal phyla and candidate phyla in the seawater. Here, we use the term “candidate phylum” to define a phylum that can be identified from genetic sequences, but lacks cultured representatives (Hugenholtz et al., 1998). Most bacterial sequences were classified, but a small portion (2.7 ± 0.9% in sponges and 2.8 ± 0.003% in seawater samples) could not be assigned to any known phylum.

MICROBIAL COMMUNITY COMPOSITION DEFINES TWO CINACHYRELLA TAXA

Both sequence taxonomy (Table 1) and PCoA analyses (Figure 1) suggest that the Cinachyrella specimens in this study form two distinct groups and may represent different taxa of sponge. We defined here these groups as Sponge Group 1 (SG1) and Sponge Group 2 (SG2; Figure 1). SG1 incorporates samples that spanned both seasons (Sp1 Oct, Sp4 Feb, Sp5 Feb, and Sp6 Feb) while SG2 is composed of just two samples from one season (Sp2 Oct and Sp3 Oct). In addition, the PCoA analysis for all 64 sponges samples (See Material and Methods) confirmed that Sp1-6 were split among two groups of sponges defined by their microbial communities (Supplementary Figure 2), even though 58 of these samples were placed in aquaculture under various conditions (results of experiments not shown). ANOSIM analysis (using all 64 sponge samples) confirmed that these were statistically different (R = 0.9926, P = 0.001).

The marked differences in these two groups are demonstrated by comparisons of the diversity of microbial taxa in each. SG2

Table 2 | Overview of the number of sequences, OTUs (97% identities) and diversity indices for six sponges (Sp1-6: sponge 1-6) and seawater (SW) samples collected in October 2011 (Oct) and February 2012 (Feb).

Sample ID	Total #reads	Total OTUsa	Chao1*	Observed OTUsb	Shannon*
SEAWATER					
SW Oct	1340	246 (0)	440	221	6.2
SW Feb	1524	285 (1)	510	239	6.3
GROUP "SG1"					
Sp1 Oct	1185	90 (2)	176	86	3.7
Sp4 Feb	2386	179 (0)	267	119	4.2
Sp5 Feb	1755	105 (1)	191	79	3.3
Sp6 Feb	3616	115 (1)	124	61	3.1
GROUP "SG2"					
Sp2 Oct	2254	220 (1)	289	156	5.7
Sp3 Oct	2751	341 (0)	529	203	6.2

aNumber in parentheses denotes the number of unclassified OTUs included in the total.

*1100 reads were subsampled to calculate diversity indices.

Figure 1: PCoA analysis of weighted UniFrac distance. UniFrac measures phylogenetic distances between OTUs sets within a phylogenetic tree. Here, we used weighted UniFrac, which takes into account relative abundances of OTUs (as opposed to presence/absence only). Samples formed three groups: a seawater group (samples circled in gray), SG1 (samples circled in red) and SG2 (samples circled in blue). Ovals circling samples are for visual guidance and do not represent any statistical grouping.
samples harbored a more diverse community of microbes as measured by a mean Shannon–Wiener diversity index of 5.95 ± 0.25 (s.e.m.) compared to 3.73 ± 0.22 in the SG1 community (t = −6.8, P < 0.01; Table 2). Further, SG2 contained taxa from 21 different bacterial phyla and candidate phyla and 2 archaeal phyla; SG1 contained about half that with 12 bacterial and candidate phyla, and 2 archaeal phyla.

Overall, both sponge groups were dominated by Proteobacteria (SG1: 63.5 ± 2.9%; SG2: 38.9 ± 1.0%), but Alphaproteobacteria were more abundant (t = 5.23, P < 0.01) in SG1 (38.3 ± 3.8%) than in SG2 (7.9 ± 0.2%). Proteobacteria in SG2 were dominated by the Gammaproteobacteria (22.1 ± 1.1%, Figure 2). Actinobacteria were also present in both sponge groups, but were in significantly greater numbers (t = 3.23, P < 0.05) in SG1 (12.2 ± 2.0%, Figure 2) than SG2 (2.6 ± 0.6%, Figure 2). SG2 harbored the candidate phylum Poribacteria (6.4 ± 2.9%) that was first discovered from sponge tissues and can be widespread in these invertebrates (Fieseler et al., 2004; Lafi et al., 2009). In contrast Poribacteria was below the detection limit in SG1 (t = −3.67, P < 0.05; Figure 2).

Only a few bacterial phyla or classes were not significantly different in abundance between SG1 and SG2: Bacteroidetes (t = −0.049, P > 0.05), Chlamydiae (t = −2.08, P > 0.1), Firmicutes (t = −1.63, P > 0.1), Beta- (t = 1.22, P > 0.1), Delta- (t = 0.08, P > 0.1), Gammaproteobacteria (t = −2.23, P > 0.05), and SAR406 (t = −0.42, P > 0.1, Figure 2). On the contrary, many phyla were present in SG2 at >1% (mean), but in very low abundance (<0.07% mean) or below detection limits in SG1 and included: Acidobacteria (t = −4.03, P < 0.02), Chloroflexi (t = −22.09, P < 0.001), Gemmatimonadetes (t = −4.154, P < 0.02), Nitrospirae (t = −18.01, P < 0.001), PAUC34f (t = −17.63, P < 0.001) and Verrucomicrobia (t = −11.99, P < 0.001, Figure 2).

In SG1, a few OTUs noticeably dominated the community and composed >10.0% of all the sequences. These included one unclassified Alphaproteobacteria OTU (30.0 ± 4.4%), one OTU in the Cenarchaeaceae family (18.3 ± 1.1%; Supplementary Figure 3), and one unclassified Actinobacteria OTU (11.9 ± 2.0%). In SG2, none of the OTUs represented more than 10% of all the community.

Another striking difference in the communities was the relative abundance of archaeal sequences. Archaeal sequences represented a large portion (18.5 ± 1.1%) of all the sequences recovered from SG1 samples, but only 6.9 ± 0.7% for SG2 samples (t = 9.23, P < 0.01; Figure 2). In SG1, one archaeal OTU in Cenarchaeaceae family (mentioned above) was dominant (99.3 ± 0.3%). In SG2, 68.2 ± 15.0% of archaeal reads also fell into one Cenarchaeaceae family OTU, but this OTU was different from the main one in SG1. A small proportion (5.8 ± 2.3%) of the SG2 archaeal sequences were assigned to the phylum Thaumarcheota, which was almost absent (except for three sequences) from SG1 (t = 7.48, P < 0.01). These data indicate that the sponges collected in our study, while physically reminiscent, in the same genus, and from the same environment harbor distinct enough microbial communities to warrant a re-evaluation of their phylogenetic relationship.
SEAWATER ARCHEAL AND BACTERIAL COMMUNITIES ARE DISTINCT FROM SPONGES’

In the overlying seawater, Proteobacteria (45.0 ± 0.9%)—and particularly Alpha- (23.6 ± 0.6%) and Gamma- (19.0 ± 2.1%)—were the most abundant taxa of bacteria. In addition, Bacteroidetes (19.4 ± 2.2%), Cyanobacteria (17.6 ± 0.3%), and Actinobacteria (7.0 ± 3.7%) were the only other bacterial phyla that comprised >2% of all the reads.

The seawater-derived archaeal sequences represented 2.5 ± 0.2% of sequences and mostly belonged to the Thaumarchaeota, in particular the Marine Group II or Marine Group III. Marine Group II represented 89.3 ± 4.4% of all seawater archaeal sequences with a single OTU with pronounced dominance (58.5 ± 6.0%; Supplementary Figure 2).

CINACHYRELLA’S CORE AND VARIABLE MICROBIAL COMMUNITIES

To further examine the distinct microbial communities, core and variable members of each group were compared. The numbers of common OTUs between SG1 and SG2 was relatively low, with only 95 shared OTUs representing 22.4% of the OTUs in SG2 and 30.5% in SG1. This was approximately equivalent to the numbers of OTUs the seawater shared with SG1 (94 OTUs) and SG2 (103 OTUs, Figure 3A).

Within each sponge group, 136 common OTUs were found in SG2 samples, as compared to 21 shared in the two SG1 samples (Figures 3B,C). In SG2, these common OTUs belonged to 2 archaeal and 14 bacterial phyla, with the most abundant being (≥8 shared OTUs): Bacteroidetes, Chloroflexi, Cyanobacteria, and Proteobacteria. Interestingly, the samples in SG2 also shared 12 unclassified bacterial OTUs. In SG1, the shared OTUs belonged to the Crenarchaeota, Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria. The diversity among sponge samples of the same group was similar at the class level, but not shared at the family or genus level. In most cases, many of the OTUs were present in only one of the sponge samples. Out of all the sponge samples, 83 OTUs were present in at least 50% of the samples and 23 OTUs in at least 70% of the sponge samples. Within SG1 and SG2, 107 and 424 OTUs respectively were present in at least 50% of the samples and 55 and 135 OTUs respectively were present in at least 70% of the samples. The only 11 OTUs common to all the sponge samples (i.e., the core community) were assigned to the Proteobacteria (Alpha- and Gamma-) as well as Cyanobacteria, the Bacteroidetes and the Actinobacteria.

MICROBIAL COMMUNITY FUNCTIONAL INSIGHTS

QIIME analysis of the 16S rRNA gene sequences revealed that microbes with potential contribution to the nitrogen cycle were present. SG2 samples contained OTUs belonging to the genera Cenarchaeum (18.4 ± 12.1% of the archaeal reads) and Nitrosopumilus (6.9 ± 5.9% of archaeal reads). These genera are part of the ammonia-oxidizing archaea (AOA) that oxidize ammonia to nitrite (Preston et al., 1996; Walker et al., 2010). In SG1, AOA sequences belonging to the family Cenarchaeaceae were also present. Bacteria involved in the second step of nitrification, the oxidation of nitrite to nitrate were present in SG2 samples. These belonged to two OTUS in the family Nitrospiraceae (phylum...
DISCUSSION

Since our field collections were confined to a relatively small portion of the reef, we did not intend or expect to collect two apparently divergent *Cinachyrella* taxa. The sponges in this study were collected as part of a broader study involving greater number of specimens used for aquaculture. Upon analysis of the all the samples, it became clear that sponges formed two groups based on their microbial communities. The sponges in aquaculture (data not shown) were subject to different conditions. We therefore decided to present here only the data from sponges collected from the reef and never kept in aquaculture. In the present study, although we have confirmed that these specimens belong to the genus *Cinachyrella*, their exact taxonomic and phylogenetic identification goes beyond the scope of this paper, as the taxonomy of this genus and family (Tetillidae) is still under much debate (see introduction and Sziteneberg et al., 2013). However, our findings are consistent, but not totally sufficient (due to low sample number and the low 28S rRNA sequence quality of two of our six samples) to prove the idea presented by Cárdenas et al. (2012) that microbiome signatures may be useful traits to delineate some sponge taxa. Thus, additional samples and a more comprehensive histology and electron microscopy analyses of the spicules would be needed to confirm the species identity of these sponge individuals. However, given the clear differences in the microbiomes of these sponge taxa, a simple PCR diagnostic of one or more variable members of the sponges’ microbiota could also be used.

Overall, our results are similar to those of Chambers et al. (2013). There, the authors showed that two sponge morphs initially assigned to the genus *Paratetilla* (Demospiongiae, Tetillidae) had different microbial communities, sharing less than 43% similarity. Within each morph group, microbial community similarity varied between 65 and 94% between individuals. Using COI gene, the authors confirmed that one of the sponge morphs actually belonged to the genus *Cinachyrella*, “challenging the value of the morphological characters used in the classification of these genera” (Chambers et al., 2013). Similar to our results, the bacterial communities were different for the two groups, even for specimens collected from the same location.

DIVERSE MICROBES ARE PRESENT IN CINACHYRELLA

Multiple studies have shown that marine sponges can harbor a large diversity of microbes and the microbial taxa richness present in our *Cinachyrella* tissue samples (90–341 OTUs) was within the range of other sponge species. An extensive study targeting 32 species from eight different locations worldwide revealed each sponge carried between 225 and 364 OTUs (at 97% identity) with sequence coverage similar to our study (Schmitt et al., 2012). As expected, when sequencing depth was much greater, OTU richness was higher, reaching numbers between 1099 and 2996 OTUs (95% identity) in three Pacific sponge species (Webster et al., 2010). Total taxon richness (at a higher sequencing depth) was also greater in *C. australiensis* sampled from the coast of Indonesia, in which 800 phyotypes were present (Cleary et al., 2013). In subtropical waters of Key Largo, FL, USA (close to our study site), the barrel sponge *Xestospongia muta* had Shannon diversity indices comparable to the lower range of our *Cinachyrella* samples (Montalvo and Hill, 2011). However, *Cinachyrella* contained fewer OTUs than *Axinella corrugata* (at least 1000 OTUs per specimen) collected less than a few miles away from our study site (White et al., 2012). Compared to the coral *Orbicella faveolata* (formerly *Montastraea faveolata*; Kimes et al., 2013), our sponge samples showed similar diversity, for which 943 bacterial clones contained 178 OTUs (97% similarity threshold), with Chao1 estimates of 307 ribotypes (Sunagawa et al., 2009). Similarly, the coral *O. annularis* sampled from various sites at Curaçao Island harbored 163–323 bacterial OTUs (Barott et al., 2011).

CINACHYRELLA HARBOUR FUNCTIONALLY DIVERSE MICROBES

A small percentage of the bacterial 16S rRNA gene fragments could not be further classified indicating that some of the bacterial diversity remains unexplored. This number was much lower than those reported for *A. corrugata* collected nearby, in which 36% of the reads obtained by amplification of the 16S rRNA gene V1-V3 regions were not assigned to any bacterial phylum (White et al., 2012). In their pyrosequencing study of *C. australiensis* and *C. australiensis*, Kim et al. (2012) amplified the V1-V3 region of the 16S rRNA gene from the barrel sponge. The pyrosequencing study revealed that up to 22% of the reads obtained by amplification of the 16S rRNA gene fragment targeting 32 species from eight different locations worldwide was not assigned to any bacterial phylum (White et al., 2012).
Suberites diversicolor microbiomes, Cleary et al. (2013) also found 34% of bacterial OTUs unclassified at the phylum level. There, the primers used targeted the V3-V4 regions while the V4 region was used for this *Cinachyrella* study.

In sponges, the dominant microbial phyla can vary with taxonomy and across geographical location or habitat. High microbial abundance (HMA) sponges usually harbor many bacterial taxa while low microbial abundance (LMA) sponges typically have one or few numerically dominant taxa and a few less abundant ones (Hentschel et al., 2003; Giles et al., 2013). In this study, SG1 samples contained few taxa with pronounced dominance, resembling LMA sponges in terms of microbial equitability, but also encompassed many other phylotypes, atypical of LMA sponges. SG2 samples clearly harbored a more diverse microbial community, similar to HMA sponges. It is important to note that the similarity of these sponge groups to HMA and LMA was inferred solely based on the structure of the microbiomes and an in-depth historical study was not performed on these samples to confirm microbial abundance.

SG2 samples contained the candidate phylum *Poribacteria*, but this taxon was below detection limits in both SG1 and seawater. This is notable because *Poribacteria* are typical members of sponge microbiomes, but have mostly been detected in HMA sponges (Hochmuth et al., 2010). This taxon can be diverse, as shown by Schmitt et al. (2012) who detected a total of 437 *Poribacteria* OTUs in the 32 sponges species studied, with up to 79 different *Poribacteria* OTUs (97% identity) per species. In our *Cinachyrella*, *Poribacteria* were only classified as two OTUs. This lower diversity related to *Poribacteria* might be distinctive of *Cinachyrella* because only four OTUs were present in *C. australiensis* specimens from open ocean habitats in Indonesia and similar to our SG1, *Poribacteria* were undetected in specimens collected from nearby marine lakes (Cleary et al., 2013).

Ciliophora also was below detection limits in SG1. This again might be typical of LMA sponges as the *Ciliophora* were absent in LMA sponges from the Red Sea, the Caribbean Sea and the South Pacific Ocean and present in low numbers in other LMA sponges (Schmitt et al., 2011; Giles et al., 2013). In SG2, *Ciliophora* sequences were grouped into 12 OTUs, close to the range (14–21 OTUs) Schmitt et al. (2011) reported for HMA sponges, but lower than the 502 OTUs (97% identity) retrieved from another 32 sponge species (Schmitt et al., 2012).

Giles et al. (2013) studied the microbiomes in six species of LMA sponges using clone libraries and found that the phyla *Acidobacteria*, *Ciliophora* and *Gemmatimonadetes* were not detected. Here, SG1 samples also were missing these phyla (with the exception of three sequences of *SAR202-Ciliophora* and two sequences in the *Gemmatimonadetes*). These three bacterial phyla were also missing in eight of the 13 species analyzed by Jeong et al. (2013). The other five species contained a high microbial diversity with a large proportion of *Ciliophora* (this group was called the CF group because of the *Ciliophora*).

We also found a large portion of unclassified *Proteobacteria* in the sponge, but not in the seawater suggesting that it was not a consequence of the analysis. In the sponges *Raspatilla ramosa* and *Stelligera stuposa*, 32 and 17% of the *Proteobacteria* sequences, respectively, were unclassified as opposed to only 1% in the seawater (Jackson et al., 2012). Further exploration suggests that many of our unclassified *Proteobacteria* OTUs are sponge-specific and the presence of large clusters of sponge-specific and sponge- and coral-specific bacteria in the invertebrates have been described (Simister et al., 2012). Interestingly, our results related to *Proteobacteria* were similar to Cleary et al. (2013). In their study, *Alphaproteobacteria* were more abundant in *C. australiensis* from marine lakes than open ocean habitats. In our *Cinachyrella* samples, *Alphaproteobacteria* were significantly more abundant in the SG1 than SG2. These might again be typical of some LMA sponges as Kamke et al. (2010) also recovered a large portion of *Alphaproteobacteria* clones from LMA sponges.

Cinachyrella symbionts also belonged to the Archaea (6.9–18.5%), in proportions within the wide range recorded for four deep water (4–65%) and three shallow water sponges from the Red Sea (4–28%) (Lee et al., 2011; Kennedy et al., 2014). All of the archaeal sequences in *Cinachyrella* fell within two phyla: *Thaumarchaeota* and *Euryarchaeota*, with most of the archaea belonging to the *Thaumarchaeota*, which is widespread in sponges (Webster et al., 2001; Margot et al., 2002; Lee et al., 2011; Kennedy et al., 2014; Polónia et al., 2014). Archaeal reads grouped into a low number of OTUs, with a few numerically dominant ones, similar to the four species sampled by Kennedy et al. (2014), which had 70% of the *Thaumarchaeota* sequences separated in three OTUs. The phylum *Thaumarchaeota* includes AOA, performing the first step of nitrification using ammonium excreted by sponges as a metabolic waste product (Jiménez and Ribes, 2007; Bayer et al., 2008; Hoffmann et al., 2009). Ammonia oxidation by archaea is believed to be widespread in marine environments (Francis et al., 2005; Kônneke et al., 2005; Schleper et al., 2005) and was detected both the LMA and HMA sponges (Schläppy et al., 2010). In addition to the AOA, nitrite-oxidizing bacteria catalyzing the second step of nitrification were found in SG2. Hentschel et al. (2002) detected early on clones affiliated with nitrite-oxidizing phylum *Nitrospirae* in sponges. The proportion of this phylum varies greatly between host species, ranging from 0.6% in *Xestospongia testudinaria* from the Red Sea (Lee et al., 2011) to 24% in *Stelligera stuposa* from Irish waters (Jackson et al., 2012). Overall, in the present study, it appears that only one group of *Cinachyrella* (SG2) harbors the microbes required for both steps of nitrification.

THE TWO SPONGE GROUPS ONLY SHARE A SMALL CORE MICROBIOME

Symbionts in SG1 and SG2 were very different at the OTU level with both groups only sharing a small core microbial community as seen in many sponges. For example, *C. australiensis* from open ocean habitat and marine lakes only shared 9.4% of their OTUs (Cleary et al., 2013), lower than the percentage shared between SG1 and SG2. In contrast, the sponge genus *Xestospongia* often showed exceptionally high overlap in OTUs. For example, *X. muta* (collected from Florida) and *X. testudinaria* (from Indonesia) shared 85% of the reads (=245 OTUs) between the two species (Montalvo et al., 2014). However, after surveying 32 sponge species, Schmitt et al. (2012) concluded that phylogeny of the host (i.e., how closely related sponges were) did not correlate with the bacterial composition. Similarly, host sponge
phylogeny—except for the genus _Xestospongia_—did not affect the similarity of the symbionts communities in sponges from Orpheus Island (Webster et al., 2013). Nevertheless, when triplicate individuals of the same species (including _Cinachyra_ sp.) were analyzed, conserved (>65% similarity) microbial communities were observed (Webster et al., 2013). This is consistent with the pyrosequencing characterization of _A. corrigata_ symbiont communities in S. Florida (White et al., 2012), which showed relatively high similarities among multiple individuals and across hundreds of km. In _Cinachyrella_, the numbers of shared OTUs between SG1 samples (12–24%) and SG2 samples (39–62%) was low. Giles et al. (2013) and Schmitt et al. (2012) suggest environmental factors such as temperature, salinity or nutrient levels might impact symbiont population structures. In their study, species from tropical waters had more similar bacterial communities. This did not hold true at a smaller scale as we observed distinct communities in the two sponge groups from the same environment, independent of spatial or temporal scales.

Considering many sponges (including _Cinachyrella_) have a reduced core and large variable microbial community, it would be reasonable to assume that different OTUs perform distinct functions within the sponge. However, using a metagenomic approach, a recent study showed that taxonomically divergent sponges can harbor phylogenetically diverse symbionts with functional equivalence (Fan et al., 2012). The authors were able to show that six sponge species possess similar functional profiles distinct from the ones obtained for the seawater microbial communities (Fan et al., 2012). These findings suggest that key functions in marine sponges might be performed by different microbial taxa and a phylogenetically similar “core microbial community” may therefore not be essential to meet the sponge requirements. Moreover, perhaps the concept of a “core” microbiome, for Porifera at least, may have to be redefined altogether to emphasize function over symbiont identity. This view may not be so far fetched when considering that bacteria can often drastically change their metabolic activities through horizontal gene transfers (Costa et al., 2009).

Together with recent and ongoing molecular microbiome analyses of adjacent coastal waters and reef invertebrate hosts (unpublished), this study contributes to a growing spatiotemporal profile of microbiome dynamics in subtropical South Florida (Negandhi et al., 2010; White et al., 2012). These results also help provide a baseline characterization for _Cinachyrella_, which may be developed for further experimental studies, due to its hardiness in aquaculture, relative ease of collection and maintenance.

AUTHOR CONTRIBUTIONS

Marie L. Cuvelier, Emily Blake, Rebecca L. Vega Thurber, Peter J. McCarthy, and Jose V. Lopez designed research; Marie L. Cuvelier, Emily Blake, and Jose V. Lopez performed sampling; Marie L. Cuvelier performed DNA extractions and 16S rRNA amplicon preparation; Emily Blake performed sponge taxonomy analysis; Rebecca Mulheron performed 28S rRNA PCR; Marie L. Cuvelier, Rebecca L. Vega Thurber, and Jose V. Lopez analyzed data; Marie L. Cuvelier, Emily Blake, Peter J. McCarthy, Patricia Blackwelder, Rebecca L. Vega Thurber, and Jose V. Lopez wrote the paper. Funding was awarded to Jose V. Lopez, Rebecca L. Vega Thurber, Peter J. McCarthy, and Patricia Blackwelder.

ACKNOWLEDGMENTS

This work was supported by a Year 1 BP Gulf of Mexico Research Initiative grant to the Florida Institute of Oceanography. Therefore, data has been uploaded to the Gulf of Mexico Research Initiative data portal—https://data.gulfresearchinitiative.org. Molecular phylogeny of sponges was supported by the National Science Foundation’s “Assembling the Porifera Tree of Life” (PorToL.org) grant DEB-0820791 to JVL. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. We thank Alexandra Campbell, Ari Halperin, Dawn Formica, Ian Rodericks, Katy Brown, Keri O’Neal, Megan Zappe, Peter Grasso, Rory Welsh, Captain Lance Robinson and Assistant Harbor Master Brian Buskirk for assistance with the SCUBA diving and sample collections and processing. We thank Dr. Robert Thacker, Dr. Paco Cárdenas, Dr. Cristina Díaz and other PorToL members for assistance with the _Cinachyrella_ taxonomy. We also thank Dr. Jesse Zaneveld, Dr. Dana Wilson for constructive discussion on the data analysis. This is Harbor Branch Oceanographic Institute contribution number 1940. 28S rRNA sequences have been deposited in GenBank under accession no. KM588360 through 588363. 16S rRNA sequences have been deposited in NCBI SRA under accession no. SRP047337.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fmicb.2014.00581/abstract

Supplementary Figure 1 | Rarefaction curves (note: SW Feb is under the Sp6 Feb line).

Supplementary Figure 2 | PCoA analysis of weighted UniFrac distance.

UniFrac measure phylogenetic distances between OTUs sets within a phylogenetic tree. Here, we used weighted UniFrac, which takes into account relative abundances of OTUs (as opposed to presence/absence only). 64 sponge individuals were used in total and Sp1 through Sp6 are labeled.

Supplementary Figure 3 | Number of OTUs, abundance and classification of all the sequences present in the seawater (Oct and Feb), Sponge Group 1 (Sp1 Oct, Sp4 Feb, Sp5 Feb, Sp6 Feb) and Sponge Group 2 (Sp2 Oct and Sp3 Oct). Each OTU is classified at the lowest ranking.

REFERENCES

Barott, K. L., Rodriguez-Brito, B., Janouskovec, J., Marhaver, K. L., Smith, J. E., Keeling, P., et al. (2011). Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral _Montastrea annularis_. *Environ. Microbiol.* 13, 1192–1204. doi: 10.1111/j.1462-2920.2010.02419.x

Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., and Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. *ISME J.* 5, 908–917. doi: 10.1038/ismej.2010.171

Bayer, K., Schmitt, S., and Hentschel, U. (2008). Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge _Aplysina aerophoba_. *Environ. Microbiol.* 10, 2942–2955. doi: 10.1111/j.1462-2920.2008.01582.x

Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L., and Knight, R. (2010a). PyNAST: a flexible tool for aligning sequences to a
possible role for Poribacteria as producers of methyl-branched fatty acids. Chembiochem 11, 2572–2578. doi: 10.1002/978-3-642-79605-9_10

Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaels, W., et al. (2005). An aerobic world in sponges. Geomicrobiol. J. 22, 1–10. doi: 10.1080/0149045050922505

Hoffmann, E., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H. T., et al. (2009). Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243. doi: 10.1111/j.1462-2920.2009.01944.x

Hugenholtz, P., Goebel, B. M., and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 6793–6793.

Ilan, M., Gugel, J., and van Soest, R. (2004). Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia 89, 388–410. doi: 10.1080/0149045050922505

Jackson, S. A., Kennedy, J., Morrissey, J. P., O’Gara, F., and Dobson, A. D. W. (2012). Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb. Ecol. 64, 105–116. doi: 10.1007/s00228-011-0002-x

Jeong, I.-H., Kim, K.-H., and Park, J.-S. (2013). Analysis of bacterial diversity in sponges collected off Chujado, an Island in Korea, using barcoded 454 pyrosequencing: analysis of a distinctive sponge group containing Chloroflexi. J. Microbiol. 51, 570–577. doi: 10.1007/s12275-013-3426-9

Jiménez, E., and Ribes, M. (2007). Sponges as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponges. Limnol. Oceanogr. 52, 948–958. doi: 10.4319/lo.2007.52.5.0948

Kamke, J., Taylor, M. W., and Schmitt, S. (2010). Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA and 16S rRNA gene comparisons. ISME J. 4, 498–508. doi: 10.1038/ismej.2009.143

Kennedy, J., Flemer, B., Jackson, S. A., Morrissey, J. P., O’Gara, F., and Dobson, A. D. W. (2014). Evidence of a putative deep sea specific microbiome in marine sponges. PLoS ONE 9:e91092. doi: 10.1371/journal.pone.091092

Kimes, N. E., Johnson, W. R., Torralba, M., Nelson, K. E., Weil, M., and Morris, P. J. (2013). The Montastrea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline. Environ. Microbiol. 15, 2082–2094. doi: 10.1111/1462-2920.12130

Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546. doi: 10.1038/nature03911

Lafi, F. F., Fuest, J. A., Fieseler, L., Engels, C., Goh, W. L., and Hentschel, U. (2009). Widespread distribution of Poribacteria in Demospongiae. Appl. Environ. Microbiol. 75, 5695–5699. doi: 10.1128/AEM.00359-09

Lane, D. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, eds E. Stackebrandt and M. Goodfellow (West Sussex: John Wiley & Sons), 115–175.

Lee, O. O., Yang, Y., Lafi, F. F., Al-Suwailem, A., and Qian, P.-Y. (2011). Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 5, 650–664. doi: 10.1038/ismej.2010.165

Li, C.-W., Chen, J.-Y., and Hua, T.-E. (1998). Precambrian sponges with cellular structures. Science 279, 879–882. doi: 10.1126/science.279.5352.5287

Lozupone, C., and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005

Margot, H., Acebal, C., Toril, E., Amils, R., and Puentes, J. F. (2002). Consistent evidence of crenarchaeal Archaea in sponges of the genus Axinella. Mar. Biol. 140, 739–745. doi: 10.1007/s00227-001-0740-2

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., et al. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618. doi: 10.1038/ismej.2011.139

Mohamed, N. M., Saito, K., Tal, Y., and Hill, R. T. (2010). Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 4, 38–48. doi: 10.1038/ismej.2009.84

Moisander, P. H., Beinart, R. A., Hewson, L., White, A. E., Johnson, K. S., Carlson, C. A., et al. (2010). Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327, 1512–1514. doi: 10.1126/science.1185468
Montalvo, N. F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J., and Hill, R. T. (2014). Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE 9:e90517. doi: 10.1371/journal.pone.0090517

Montalvo, N. F., and Hill, R. T. (2011). Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216. doi: 10.1128/AEM.0285-11

Negandhi, K., Blackwelder, P. L., Ereskovsky, A. V., and Lopez, J. V. (2010). Florida reef sponges harbor coral disease-associated microbes. Symbiosis 51, 117–129. doi: 10.1007/s10960-010-9259-1

Polónia, A. R. M., Cleary, D. F. R., Duarte, L. N., de Voogd, N. J., and Gomes, N. C. M. (2014). Composition of Archaea in seawater, sediment, and sponges in the kepulauan seribu reef system, Indonesia. Microb. Ecol. 67, 553–567. doi: 10.1007/s00248-013-0365-2

Preston, C. M., Wu, K. Y., Molinski, T. F., and DeLong, E. F. (1996). A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. U.S.A. 93, 6241–6246. doi: 10.1073/pnas.93.13.6241

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e10810. doi: 10.1371/journal.pone.0010810

Reeder, J., and Knight, R. (2010). Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat. Methods. 7, 668–669. doi: 10.1038/nmeth.1668

Rützler, K., and Smith, K. (1992). Guide to western Atlantic species of cinachyrella Polónia, A. R. M., Cleary, D. F. R., Duarte, L. N., de Voogd, N. J., and Gomes, N. C. M. (2014). Composition of Archaea in seawater, sediment, and sponges in the kepulauan seribu reef system, Indonesia. Microb. Ecol. 67, 553–567. doi: 10.1007/s00248-013-0365-2
Wilkinson, C. R., and Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279, 527–529. doi: 10.1038/279527a0
Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F., et al. (2001). Unicellular cyanobacteria fix N₂ in the subtropical North Pacific Ocean. Nature 412, 635–638. doi: 10.1038/3508063
Zhu, P., Li, Q., and Wang, G. (2008). Unique microbial signatures of the Alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55, 406–414. doi: 10.1007/s00248-007-9285-3

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 June 2014; accepted: 15 October 2014; published online: 04 November 2014.
Citation: Cuvelier ML, Blake E, Mulheron R, McCarthy PJ, Blackwelder P, Vega Thurber RL and Lopez JV (2014) Two distinct microbial communities revealed in the sponge Cinachyrella. Front. Microbiol. 5:581. doi: 10.3389/fmicb.2014.00581
This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology.
Copyright © 2014 Cuvelier, Blake, Mulheron, McCarthy, Blackwelder, Vega Thurber and Lopez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.