Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
antigen testing. The remaining 10 cases were diagnosed retrospectively by serologic detection of antibodies to the following Legionella species and serogroups (sg): L. pneumophila sg1 (1), L. pneumophila sg5 (1), L. longbeachae sg1 (5), L. longbeachae sg2 (1) and L. sainthelensi (2). L. pneumophila sg1 and L. longbeachae sg1 were detected in cooling towers on the site. Comparison between cooling tower and clinical isolates of L. pneumophila sg1 using SBT allelic profiles showed 100% DNA sequence homology. Disinfection of the cooling tower contamination and prevention of recurrence was implemented.

Conclusion: The DNA sequencing data provided strong evidence that the illnesses among patients with L. pneumophila sg1 infection were likely due to exposures on the site, presumably to aerosols generated by cooling towers. The sources of infection for the remaining nine persons with legionellosis is less clear. The findings of this investigation raise the previously-unreported possibility of L. longbeachae transmission from cooling towers, however this was not proven in this outbreak.

http://dx.doi.org/10.1016/j.ijid.2016.11.341

20.140

Laboratory response to Middle East Respiratory Syndrome outbreak in Korea, 2015

J.-S. Yang*, H.-D. Jung, S. Park, J.-G. Nam, S.S. Kim

*a KCDC, KNIH, Cheongju/KR
b KCDC,KNIH, Cheongju/KR
c KCDC,KNIH, Cheongju/KR

Purpose: As part of the outbreak control, the capacity of laboratories to respond rapidly and properly to an emergency was significant on MERS outbreak in Korea, 2015. We investigated the effectiveness of expanded diagnostic laboratories for molecular diagnosis of MERS-CoV and evaluated the status of diagnostic system for future disease outbreak in South Korea.

Methods & Materials: Molecular diagnosis for MERS-CoV initially has performed by the Korea National Institute of health using in-house and customized research-use-only(RUO) version of multiplex realtime RT-PCR targeted upE and ORF1a gene based on WHO guideline. A total of 17 Provincial level laboratories(PHERI) were only prepared for screening test using RUO realtime RT-PCR kit targeted upE, and evaluated through a national EQA program.

However, with the increase of demand for test, MERS-CoV laboratory network has been continuously expanded. PHERI and 5 private diagnostic centers started to test for screening and confirmation since June 7th, and 40 designated hospitals were only performed screening test by the reason of no reporting using 4 kinds of RUO commercial kits. To assess the quality of molecular diagnostics, external quality assessment (EQA) allowing the laboratories was set out using blinded panel test and confirmatory test. In this study, a retrospective review of laboratory reporting data was carried out of all patients suspected of MERS-CoV during the MERS outbreak.

Results: KNIH reduced the test time using 1 steps of screening and confirmation, simultaneously, instead of 2 steps regarding to WHO algorithm. A total of 44,748 MERS-CoV tests had been performed, and 733 were positive. The number of confirmed cases increased gradually and peaked on the early of June, and MERS virus testing peaked in mid-to-late June(over 1000 test per a day) and waning by July. More than 76% of testing was completed within one day. Most of the specimens(80%) were sputum and lower respiratory specimen.

Conclusion: During the MERS outbreak in Korea, laboratory cooperation and expansion has been well initiated testing massive quantities of specimens from patients suspecting MERS-CoV infection. However, several improvements may allow to more successful cooperation for effective disease control and future research.

http://dx.doi.org/10.1016/j.ijid.2016.11.342

20.141

‘Why didn’t you see it coming?’: Surveillance by and in the media—Journalistic research on outbreak detection taking the example of Ebola Virus Disease in Uganda and West Africa

F. Badenschier

Science Journalist, Cologne/DE

Purpose: A package of papers, “Avis de décès 2013/2014”: This lasted for three years. The first was in June 2014, when three people died. The second was in 2015, when the number of deaths rose to 14. The third, and final, was in early 2016, when 39 people died. The first case was detected in 03/2014, scientists and journalists arrived to trace the transmission chain of the virus. However, I went there to reconstruct the transmission chain of infection: who had known what when?

I also went to Uganda to see how the country had set up a completely new surveillance system after its first, severest Ebola outbreak.

For me as a science journalist focusing on NTD, Global Health, Health Systems in LMIC, the purpose of this project was double-pronged. To inform the public; Surveillance and IHR are technical terms, difficult to illustrate to lay persons. But it is important and possible to do so. To correct misperceptions: The WHO and others were blamed for taking action too late during the early stages of the outbreak. But to be able to respond to an outbreak, organizations have to know that a potential public health emergency is occurring somewhere.

Methods & Materials: Scientific approach: fieldwork in Uganda, Guinea; methods from social sciences, epidemiology, e.g. interviews with key persons, observational studies; triangulating collected data.

Journalistic materials: audio/video recordings, photography.

Results: In retrospect, it became obvious that the EVD outbreak in Guinea could have been detected earlier—if the information chain hadn’t been interrupted.

Radio documentary: 27 min, manuscript: http://bit.ly/1YNzADF, audio: bit.ly/1UQBqG6;

Online multimedia story: 30 min, manuscript: bit.ly/1RP0Cq0, pageflow: http://bit.ly/1ITDvMH;

both published by the German public radio news channel Deutschlandfunk on the occasion of the second anniversary of the death of “Patient Zero”.

Conclusion: Journalists are strategic interlocutors in outbreak detection initiatives and IHR.

They can contribute to surveillance structures or adopt a kind of epidemiological role.

And sometimes journalists can even help to improve surveillance systems: After my stories were broadcast, I received a call: “The CDC in Guinea had no idea what the CDC in Uganda had done before,” and waning by July. More than 76% of testing was completed within one day. Most of the specimens(80%) were sputum and lower respiratory specimen.