Formation Mechanism of Al2O3-YAG Amorphous Ceramic Coating Deposited via Atmospheric Plasma Spraying

Zheyi Zhang
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Yizhaotong Ai
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Xinghua Zhong
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Yin Zhuang
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Jing Sheng
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Jinxing Ni
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Shunyan Tao
SICCAS: Shanghai Institute of Ceramics Chinese Academy of Sciences

Kai Yang
kaiyang@mail.sic.ac.cn
Shanghai Institute of Ceramics Chinese Academy of Sciences

Research Article

Keywords: Atmospheric plasma spraying, Al2O3-YAG, Amorphous ceramic coating, Formation mechanism, Crystallization chemistry

DOI: https://doi.org/10.21203/rs.3.rs-703470/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

This study mainly investigated the formation mechanism of Al_2O_3-YAG ($\text{Al}_5\text{Y}_3\text{O}_{12}$) amorphous coating prepared by atmospheric plasma spraying. Nano and micro-sized powders with low eutectic point ratio were selected as raw materials for comparison. XRD, SEM and EBSD were used to analyze the phase composition, morphologies, phase distribution and structure of the coating. The crystal structures of the possible existed phases were studied to analyze the crystallization chemistry of powder droplets. It is concluded that the composition ratio of powders and particle size should be also considered as the key factors for the preparation of amorphous coatings besides the high enthalpy and ultra-fast cooling rate of thermal spray technology. The as-sprayable powder chose multiple components with low eutectic point ratio distributed uniformly at nano-scale or sub-micro scale, and can reacted to form the new phase crystal with high coordination numbers of cations.

1. Introduction

Amorphous materials have the characteristic of long-range disordered structure and short-range ordered clusters, and possess scientific and engineering interest for decades\[1, 2\]. As one of the numerous amorphous materials, inorganic amorphous coatings have been widely used in mechanical, electrical, magnetic, wear-resistant and anti-corrosion fields\[3–5\]. The common inorganic amorphous coatings are mainly amorphous alloys\[6–9\], such as Fe-based, Ni-based and Co-based amorphous alloys. However, in the early research of amorphous alloy, because the cooling speed of molten metal powder was very fast, the amorphous alloys were mostly formed in the shape of thin strip or filament, and their application scope was greatly limited due to the small size \[2, 5\]. Therefore, the amorphous formation mechanism of amorphous alloys had been deeply studied to prepare the bulk amorphousness. And it is generally believed that as long as the cooling rate of the melt is fast enough, the melt of all the substances can form amorphousness\[10, 11\]. Nevertheless, not every preparation method can achieve the sufficient cooling rate in the actual preparation of amorphous alloys. According to the preparation results of multiple series of amorphous alloys, Inoue[12] proposed the three requirements for the fabrication of amorphous alloys: ⅠThe alloy must be a multi-element system composed of more than three elements; ⅡThe atomic size ratio of the main constituent elements in the alloy is greater than 12%; ⅢThe three main constituent elements in the alloy have a negative mixing enthalpy. The summary of this law provides empirical guidance for the preparation of amorphous alloys. However, the glass transition temperature of amorphous alloys is generally not high \(300 \sim 600\)°C\[8, 13–16\], and the initial crystallization activation energy of them is also low \(\text{No more than } 600\) kJ/mol \[17–20\]. Therefore, the stability of these amorphous alloys was poor under harsh service conditions, which changed the microstructure of the coating and further affected the performance of the coating.

Recently, some manufactured amorphous ceramic coatings have been deposited. Noticeably, these amorphous ceramic coatings have high crystallization temperature\[21–24\], which make them have excellent microstructure stability in a wide temperature range for the application under harsh services conditions. In our previous work, the Al_2O_3-YAG amorphous ceramic coating was deposited via
atmospheric plasma spraying (APS) used the Al$_2$O$_3$/YAG powders. The glass transition temperature of the Al$_2$O$_3$-YAG amorphous coating was 905.5°C at 5 °C/min, and the initial crystallization activation energy of that was 807.8 kJ/mol by Kissinger method, so Al$_2$O$_3$-YAG amorphous ceramic coating had better high temperature microstructure stability than other 30 kinds of amorphous materials [21]. Moreover, this coating possessed greater crack propagation resistance and lower wear rate under severe wear conditions with high PV values (P: contact pressure; V: friction velocity) than conventional crystalline oxide ceramic coatings (such as Al$_2$O$_3$ coating, Al$_2$O$_3$-Cr$_2$O$_3$ coating)[25, 26]. The crack propagation resistance was due to the existence of amorphous phase, which increased the crack growth tolerance of the coating and the ability of plastic deformation. Therefore, as-sprayed Al$_2$O$_3$-YAG amorphous ceramic coating with high content of amorphous phase is expected to be used under thermal-mechanical coupling harsh conditions with high PV value. However, the formation mechanism of amorphous ceramic coating is still ambiguous. In order to better guide the application of Al$_2$O$_3$-YAG amorphous ceramic coating, the formation mechanism of Al$_2$O$_3$-YAG amorphous ceramic coating need to be further studied.

Previous studies suggested that the formation mechanism of amorphous ceramic coatings was due to the thermal spraying with high enthalpy and ultra-fast cooling rate[26, 27]. However, this conclusion was slightly inadequate. It has been publicly reported that the XRD patterns of single Al$_2$O$_3$ coating and Y$_2$O$_3$ coating prepared by various plasma spraying processes were a mainly crystalline state, some coatings contain nanocrystals and have no obvious characteristics of amorphous phase[28, 29]. Therefore, it is not enough to form the amorphous ceramic coating only with high enthalpy and ultra-fast cooling rate under the current technology. According to the results of reported studies, it is concluded that the ceramic coatings containing the amorphous phase successfully prepared were belong to the multicomponent system like Al$_2$O$_3$-ZrO$_2$‖Al$_2$O$_3$-YSZ‖Al$_2$O$_3$-ZrO$_2$-SiO$_2$ and TeO$_2$–Bi$_2$O$_3$–V$_2$O$_5$–Na$_2$O–TiO$_2$ [22–24, 30–32]. Especially, the ratio of multi-component in sprayable powders was at low eutectic point, then the amorphous ceramic coating can be successfully prepared. Accordingly, the powders with the low eutectic point ratio combined with thermal spraying technology can be used to fabricate high melting point amorphous ceramic coating. In this study, the Al$_2$O$_3$-YAG amorphous ceramic coating was prepared by plasma spraying, and the main purpose was to study the formation mechanism of the amorphous phase in Al$_2$O$_3$-YAG coating to supply the guidance for the coating application.

2. Experimental Procedure

2.1 Materials and preparation

Commercially available nano-size Al$_2$O$_3$ (D$_{50}$=76.4 nm, Wuxi Tuoboda Titanium dioxide products Co., Ltd., Wuxi, China) and Y$_2$O$_3$ powders (D$_{50}$=74.2 nm, Ganzhou Jiayuan New material Co., Ltd., Ganzhou, China) were used as feedstocks. Before spraying, the powders were mixed uniformly with the low eutectic molar ratio (Al$_2$O$_3$:Y$_2$O$_3$ were equal to 82:18) to spray granulation. And the granulation powders were further
heat-treated to obtain Al₂O₃/YAG powders for the preparation of Al₂O₃-YAG amorphous ceramic coating, the preparation process can refer to our previous work[33]. The stainless steels (1Cr18Ni9Ti) with the dimension of 30mm×15mm×1.25mm were used as substrate. Prior to spray, the substrates were sandblasted to increase the surface roughness and then cleaned by ultrasonic. The NiCr powders were deposited as bond coating. The Al₂O₃/YAG powders were prepared for Al₂O₃-YAG amorphous coating. The powders were deposited by the Multicoat atmospheric plasma spraying system equipped with F4MB-XL gun (Sulzer Metco AG, Wohlen, Switzerland). The spraying parameters are listed in Table 1. Meanwhile, the micro-sized Al₂O₃ (D₅₀= 17.2μm, Shenyang emery wheel factory, Shenyang, China) and Y₂O₃ powders (D₅₀= 39.0μm, Jinzhou Jinjiang Spraying Material Co. Ltd, Jinzhou, China) were mixed uniformly with low eutectic molar ratio to prepare Al₂O₃-Y₂O₃ coating as contrast reference.

Table 1.

Parameters	Bond coating	Top coating
Arc current (A)	580-620	640-680
Power, kW	40-45	45-50
Primary plasma gas (Ar), slpm	55-60	46-50
Secondary plasma gas (H₂), slpm	7-9	8-10
Carrier gas (Ar), slpm	3-4	3.8-4.2
Powder feed rate, g/min	10-20	30-40
Spray distance (mm)	100-120	100-120

2.2 Coating characterization

The phase composition of powders and coatings were characterized by X-ray diffraction (XRD, D/Max-2550, Rigaku, Tokyo, Japan) with the 2θ range of 10°-80° and the scanning speed was 2°/min. The morphologies of coatings were observed by scanning electron microscope (SEM, TM3000, HITACHI, Tokyo, Japan) with Energy disperse spectroscopy (EDS). Electron backscattered diffraction (EBSD) technology was carried out to analyze the phase structure in the coatings preparation. Prior to EBSD testing, ion beam polishing was necessary for coating samples. To better analyze the crystallization chemistry behavior of powder droplets in the deposition process, the software Diamond 3.2 was used to draw the crystal structure of the phase involved in this study.

3. Result And Discussion
3.1 Phase composition analysis

The phase composition of powders and corresponding coatings (Al$_2$O$_3$-YAG and Al$_2$O$_3$-Y$_2$O$_3$) were displayed in Fig. 1(a) and (b). As illustrated in Fig. 1(a), a big bulge appeared in the Al$_2$O$_3$-YAG coating, indicated that there was the amorphous phase existed and the content of amorphous phase was about 80%. The crystallization diffraction peaks of α-Al$_2$O$_3$ (rhombohedral) and YAG (cubic) also existed in the Al$_2$O$_3$-YAG coating, which originated from un-melted powders or the recrystallization of the droplets. Notably, there were no γ-Al$_2$O$_3$ (cubic) in as-sprayed Al$_2$O$_3$-YAG coating, while the α-Al$_2$O$_3$ had undergone phase transformation to γ-Al$_2$O$_3$ in Al$_2$O$_3$-Y$_2$O$_3$ coating. It is widely accepted that the lower critical nucleation energy between liquid and solid of γ-Al$_2$O$_3$ than that of α-Al$_2$O$_3$ is the main reason why γ-Al$_2$O$_3$ is preferential forming in the coating[34,35]. However, there had no γ-Al$_2$O$_3$ in Fig. 1(a), so it speculated that the crystallization diffraction peaks of α-Al$_2$O$_3$ might be from the un-melted powders, and the component of α-Al$_2$O$_3$ in the droplets not crystallized or crystallized very little, so the crystallization diffraction peaks of YAG might be also from the un-melted powders. Beyond that, the c-Y$_2$O$_3$ (cubic) also transformed to m-Y$_2$O$_3$ (monoclinic) in Al$_2$O$_3$-Y$_2$O$_3$ coating. Be similar to γ-Al$_2$O$_3$, the m-Y$_2$O$_3$ was also formed. Noticeably, the crystallization diffraction peaks of Al$_2$O$_3$-Y$_2$O$_3$ coating in Fig. 1(b) were broadened, which meant some nanocrystals existed in the coating. The compounds of Al$_2$Y$_4$O$_9$ (YAM), AlYO$_3$ (YAP) and Al$_5$Y$_3$O$_12$ (YAG) were not found in Fig. 1(b), which indicated that micro-sized α-Al$_2$O$_3$ and c-Y$_2$O$_3$ powders hardly reacted during deposition, so the deposition process of Al$_2$O$_3$/Y$_2$O$_3$ powders in plasma spray was mainly belong to physical changes. Moreover, the existence of α-Al$_2$O$_3$ and c-Y$_2$O$_3$ indicated that there might also had un-melted powders in Al$_2$O$_3$-Y$_2$O$_3$ coating.

3.2 Micro-morphologies of as-sprayed coatings

Fig. 2 showed the micro-morphologies of as-sprayed Al$_2$O$_3$-YAG amorphous coating. The coating was deposited on the 1Cr18Ni9Ti substrate and the thickness was about 300μm. The characteristics of most droplet spreading were obviously observed in the surface morphologies of the coating. Beyond that, there were few particles in the yellow circle in Fig. 2(b), which might be caused by the impact crushing of un-melted granulate powders. Some un-melted areas appeared in the cross-sectional morphologies, which may be explained that the part of powders was insufficiently heated during deposition. Based on this result, the crystallization diffraction peaks of α-Al$_2$O$_3$ and YAG that existed in Fig. 1(a) were supposed to be from un-melted powders. Meanwhile, a few micro-cracks appeared in the cross-sectional morphologies of Al$_2$O$_3$-YAG coating, which may result from the volume shrinkage due to the rapid cooling of the droplets during deposition. Moreover, there had some bright or dark tiny stripes distributed in the cross-sectional morphologies. The result of EDS showed that the bright stripes contained higher Y element content, which denoted the YAG crystalline phase. Similar stripes features have been found in the publicly reported about some amorphous coatings, but there had no crystal diffraction peaks in the XRD pattern.
of these coatings[36,37]. Hence, these stripes in Fig. 2(d) might be the melted elements in amorphous phase were not uniformly distributed or nanocrystals from recrystallization.

The morphologies of as-sprayed Al₂O₃-Y₂O₃ coating were displayed in Fig. 3. According to the principle of backscattered electron imaging, Al₂O₃ and Y₂O₃ can be easily distinguished. In the surface morphologies of Al₂O₃-Y₂O₃ coating, the distribution of Y₂O₃ was not uniformly. Moreover, the coating cross-sectional morphologies also had bright and dark stripes, and the bright stripe was Y₂O₃ while the dark one was Al₂O₃. Comparing to the Al₂O₃-YAG coating, the difference was that there were more stripes in the Al₂O₃-Y₂O₃ coating and the stripes size was larger, which caused by large particle size of powder. Furthermore, the characteristics of the un-melted region did not be clearly observed in the SEM image of the coating although the powder was presumed not completely fused due to the reservation of α-Al₂O₃ and c-Y₂O₃ in the coating.

3.3 The phase distribution of as-sprayed coating

Fig. 4 demonstrated EBSD images of Al₂O₃-YAG amorphous ceramic coating. Most of the area in the image was black due to the 100nm resolution of EBSD, which indicated the amorphous phase and nanocrystals (no more than 100nm) were not collected. Notably, the bright and dark tiny stripes from Al₂O₃-YAG amorphous coating in Fig. 2(d) were also not found, which also proved that the tiny stripes may be from the melted elements non-uniformly distributed in amorphous phase or nanocrystals from recrystallization. There only had α-Al₂O₃ and YAG in the un-melted area and not found γ-Al₂O₃, so the speculation proposed in section 3.1 that the component of α-Al₂O₃ not crystallized or crystallized very little was right.

The EBSD images of as-sprayed Al₂O₃-Y₂O₃ coating were revealed in Fig. 5. The results of phase detection showed that there were m-Y₂O₃ and γ-Al₂O₃ beside the initial phase of α-Al₂O₃ and c-Y₂O₃. From Fig. 5(a), the deposition of the powder droplet was mainly in the form of lamellar stacking, and there were many voids between the lamellar structures. Moreover, it can be clearly seen that the edge of the voids was dominated by small grains, so the voids may be nano-crystals or amorphousness. After being sprayed, the amount of α-Al₂O₃ phase in Al₂O₃-Y₂O₃ coating decreased a lot, and most of α-Al₂O₃ transformed to γ-Al₂O₃, so the component of α-Al₂O₃ phase in droplets might mainly be formed to γ-Al₂O₃. While the residual α-Al₂O₃ phase in the coating might be dominated from un-melted powders. Of course, the α-Al₂O₃ phase can also be reserved by increasing the interface temperature between liquid and solid[38,39]. By contrast, there were not so much c-Y₂O₃ transformed to m-Y₂O₃, but the m-Y₂O₃ was dominated by small grains and also mainly appeared in the edge of the voids.

In the analysis of Fig. 1(b), the YAM/YAP and YAG were not found, so the deposition process of Al₂O₃/Y₂O₃ powders in plasma spray speculated might belong to physical changes. This phenomenon was mainly attributed to the fact that the mechanically uniformly mixed α-Al₂O₃ and c-Y₂O₃ powders
were not uniformly distributed in nano-scale or sub-microscale. The distance of different phases between the powder droplets was large so that the internal ions cannot effectively diffused and reacted with each other. Actually, the effectively diffusion and reaction of ions only occurred at the interface of different phase droplets, but the reaction was incomplete due to the insufficient reaction time during deposition and improper size ratio of powder[40]. The crystallization process of droplets was not easy at the edge of the lamellar structures from Fig. 5. The reason was that the micro-powders of Al$_2$O$_3$ and Y$_2$O$_3$ reacted, but the new phases (YAM, YAP or YAG) formed by reaction maybe not easy to crystallize. It was verified that the YAG coating was prepared by plasma spraying was dominated by amorphousness from XRD pattern[41,42]. Thusly, the crystallization resistance of droplets increased as the more sufficient mutual diffusion of Al$_2$O$_3$ and Y$_2$O$_3$ at the nano-scale or sub-microscale. From this point of view, the Al$_2$O$_3$-YAG amorphous ceramic coating can be successfully deposited was ascribed to the fact that the particle size of the feedstock powder was nanometer or sub-micrometer and mixed more uniformly. Therefore, the crystallization resistance of Al$_2$O$_3$/YAG powders droplets was large during deposition. However, the phenomenon that the powder droplets with different phases distributed uniformly were difficult to crystallize was not be explained clearly. The possible reason may be related to the chemical behavior of crystallization. Beyond that, the composition ratio of powders and particle size can be also considered as the key factors for the preparation of amorphous coatings.

3.4 Crystallization chemical process in powder droplets solidification

From the result of XRD and EBSD, the α-Al$_2$O$_3$ was heated and turned into droplet, the droplet transformed as γ-Al$_2$O$_3$ in recrystallization. Many literatures have explained this phenomenon from the viewpoint of nucleation energy, but few reports have considered it from the perspective of crystallization chemistry of melt. Usually, low coordination number means low probability of between ions meeting in the melt during crystallization [43]. Fig. 6 displayed the schematic diagram of the crystal structure of the possible existed phases in this study. The first row in Fig. 6 is the initial phases crystal structure of the powders used in this study. The second row is new-generated phases crystal structure in the coating. The second row is the possible mesophases crystal structure from the chemical reaction of Al$_2$O$_3$ and Y$_2$O$_3$. Table 2 listed the coordination number of Al element or Y element in above-mention crystals. The coordination number of Al element in α-Al$_2$O$_3$ is 3 and that in γ-Al$_2$O$_3$ is 4, so the reason that α-Al$_2$O$_3$ droplets transformed to γ-Al$_2$O$_3$ is that because Al element has higher coordination number and had more chance to form lattice in γ-Al$_2$O$_3$, so the γ-Al$_2$O$_3$ preferentially crystallized. The coordination number of Y element for c-Y$_2$O$_3$ and m-Y$_2$O$_3$ is 6, so the droplets of c-Y$_2$O$_3$ transformed to m-Y$_2$O$_3$ or recrystallized to c-Y$_2$O$_3$. Notably, the density of m-Y$_2$O$_3$ was less than c-Y$_2$O$_3$ in table 2, which meant m-Y$_2$O$_3$ has less stacking density than c-Y$_2$O$_3$, so the m-Y$_2$O$_3$ is probably easier to form. Specially, the coordination number of Al and Y element in YAG was really high, but the Al$_2$O$_3$/YAG powders via plasma spray formed to amorphousness. The coordination number of Al and Y element was also high in YAM and YAP crystals. And the strip-like voids
in Fig. 5 were that the new phase like YAM, YAP and YAG reacted by Al_2O_3 and Y_2O_3 were not easy to crystallize due to ultra-fast cooling of plasma spraying. Therefore, higher coordination numbers may be more preferable to form amorphousness in a particular situation, which seems conflict to the viewpoint that low coordination number denotes low probability between ions meeting during crystallization.

Table 2

The relevant crystallographic data from some compounds in this study

Compound	Crystal system	Space group	Density, g/cm3	Coordination number	Ref	
α-Al_2O_3	Rhombohedral	R-3c	4.05	3	[44]	
γ-Al_2O_3	Cubic	Fd-3m	3.67	4	[45]	
$\text{c-Y}_2\text{O}_3$	Cubic	Ia-3d	5.03	-	6	[46]
$\text{m-Y}_2\text{O}_3$	Monoclinic	C 2/m	4.98	-	6	[47]
YAG	Cubic	Ia-3d	4.12	4, 6	8	[48]
YAP	Orthorhombic	Pbnm	5.35	6	6	[49]
YAM	Monoclinic	P1 21/c1	4.52	4	6,7	[50]

According to other research[51,52], the phase diagram of the Al_2O_3-Y_2O_3 system was drawn in Fig. 7. The Al_2O_3-Y_2O_3 system has four eutectic point. And when the melt simultaneously crystallizes to YAG and Al_2O_3, this eutectic point has the lowest melting points (1820$^\circ$C). It is worth noting that the melting point of melt decreases as the melt contains both Al_2O_3 and Y_2O_3, so the crystallization chemical behavior of different phases will hinder each other's crystallization process can be proved. Fig. 8 illustrated the schematic diagram of possible bonding modes of Al and Y with O in droplet. Although the high coordination number ion/atom means high probability of between ions meeting to form ion groups, low coordination number ion/atom also has chance to bond. The crystal structures formed by different bonding methods are not always stable at a given temperature, and those crystals are easy to transform to the most thermodynamically stable structure at that temperature. For example, γ-Al_2O_3 are preferential crystallization from high temperature to room temperature in APS deposition, but it conflicts to the fact that γ-Al_2O_3 crystal is not stable in high temperature ($\geq1000^\circ$C) and can transform to α-Al_2O_3 at high temperature. One possible explanation is that γ-Al_2O_3 crystal structure can be formed in high temperature, and it is unstable and need time to transform as the more stable structure like α-Al_2O_3, but it can be reserved due to the insufficient time during the APS deposition. Therefore, the crystal with thermodynamically stable structure is usually not easy to form due to the fact that the formation of
different ion groups also need time to transform to the thermodynamically stable structure, so the crystallization process was hindered.

3.5 The formation mechanism of amorphous phase in Al₂O₃-YAG amorphous ceramic coating

Fig. 9 displayed the formation mechanism of amorphousness in plasma-sprayed Al₂O₃-YAG amorphous ceramic coating. The amorphous phase formation process of Al₂O₃-YAG coating can be summarized as follows: the nano-size or sub-micro size scale uniformly distributed multivariate powders with eutectic molar ratio were rapidly heated and fully melted to form a high temperature melt in the plasma plume, then the molten droplets impacted the surface of the substrate/coating at a high speed and quenched, resulted in a steep temperature gradient between the melt and the deposition interface. The melt possessed priority to form ion/atom groups with high coordination number of cations. Meanwhile, the low coordination number of cations in ion/atom groups also formed. Different ion/atom groups can interfere with each other, which hindered the nucleation and growth of crystals, so that the amorphization can be realized due to the fact that droplets were not structurally regulated within a limited time in ultra-fast cooling process of plasma spraying.

Accordingly, there are three requirements for the formation of Al₂O₃-YAG amorphous ceramic coating: A heat source with a high enough temperature can heat the crystal materials to be melt that the internal atoms/ions tend to be disordered. Ultra-fast cooling rate which makes the internal atoms/ions of the melt have insufficient time to diffuse into the lattice of crystal and crystallize. The as-sprayable powder should chose multivariate powders with low eutectic point ratio distributed uniformly at nano-scale or sub-micro scale and can be reacted to form the new phase crystal with high coordination numbers of cations.

4. Conclusion

The formation mechanism of amorphous phase in plasma-sprayed Al₂O₃-YAG amorphous ceramic coating prepared by Al₂O₃/YAG powder with low eutectic point was mainly investigated, and the Al₂O₃/Y₂O₃ micro-powder as a contrast to prepare crystalline coating. Different to other research, this study revealed the effect of melt crystallization chemistry on crystallization process, and proved that the selection of powder also has an important effect on the preparation of amorphous ceramic coating. In summary, there have three requirements to prepare Al₂O₃-YAG amorphous ceramic coating in preparation technology and as-sprayed powder. The preparation technology requires high enthalpy and ultra-fast cooling rate. And the as-sprayable powder should choose multivariate powders with low eutectic point ratio distributed uniformly at nano-scale or sub-micro scale and could react to form the new phase crystal with high coordination numbers of cations.
Declarations

Acknowledgments

This research is jointly supported by Sub-project of key basic research projects of basic strengthening program (Grant No. 172-04), National Nature Science Foundation of China (Grant No. 51772311) and Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2016230).

References

1. Ma J, Yang C, Liu X, Shang B, Yang Y (2019) Fast surface dynamics enabled cold joining of metallic glasses. Sci Adv 5:eaax7256
2. Jiang C, Chen H, Wang G, Chen Y, Dargusch M (2017) Improvements in Microstructure and Wear Resistance of Plasma-Sprayed Fe-Based Amorphous Coating by Laser-Remelting. J Therm Spray Technol 26:1–9
3. Yang Y, Zhang C, Peng Y, Yu Y, Liu L (2012) Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros Sci 59:10–19
4. Singh A, Bakshi SR, Agarwal A, Harimkar SP (2010) Microstructure and tribological behavior of spark plasma sintered iron-based amorphous coatings. Mater Sci Eng A 527:5000–5007
5. Ma HR, Chen XY, Li JW et al (2016) Fe-based amorphous coating with high corrosion and wear resistance. Surf Eng 33:56–62
6. Chang C, Zhang J, Shen B, Wang W, Inoue AJ (2014) J.o.M.R. Pronounced enhancement of glass-forming ability of Fe-Si-B-P bulk metallic glass in oxygen atmosphere. J Mater Res 29:1217–1222
7. Zhou W, Kong LT, Li JF, Zhou YH (2012) Effects of Cr addition on glass-forming ability and mechanical properties of Cu-Zr-Al bulk metallic glass. J Mater Sci 47:4996–5001
8. Zhou X, Zhou H, Zhao Z, Liu R, Zhou Y (2012) A study of non-isothermal primary crystallization kinetics and soft magnetic property of Co$_{65}$Fe$_4$Ni$_2$Si$_{15}$B$_{14}$ amorphous alloy. J Alloys Compd 539:210–214
9. Wang AP, Wang ZM, Zhang J, Wang JQ (2007) Deposition of HVAF-sprayed Ni-based amorphous metallic coatings. J Alloys Compd 440:225–228
10. W.; KLEMENT; R., et al. Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature (London). 1960, 187, 869–870
11. Chen HS, Turnbull D (1969) Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metall 17:1021–1031
12. Inoue A, Takeuchi A (2004) Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater Sci Eng A 375–377:16–30
13. Chen Y-T, Lin SH, Hsieh WH (2013) Differential scanning calorimetric determination of the thermal properties of amorphous Co$_{60}$Fe$_{20}$B$_{20}$ and Co$_{40}$Fe$_{40}$B$_{20}$ thin films. Appl Phys Lett 102:051901–051905

14. Zhang Y, Chen J, Chen GL, Liu XJ (2006) Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl Phys Lett 89:131901–131904

15. Lu Y, Huang Y, Wei X, Shen J (2012) Close correlation between transport properties and glass-forming ability of an FeCoCrMoCBY alloy system. Intermetallics 30:144–147

16. Salehi M, Shabestari SG, Boutorabi SMA (2013) Nano-crystal development and thermal stability of amorphous Al–Ni–Y–Ce alloy. J Non-Cryst Solids 375:7–12

17. Saraswat S, Mehta N, Sharma SD (2016) Applicability of Augis–Bennett relation for determination of activation energy of glass transition in some Se rich chalcogenide glasses. J Mater Res Technol 5:111–116

18. Zhang JT, Wang WM, Ma HJ et al (2010) Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys. Thermochim Acta 505:41–46

19. Gong P, Yao K, Zhao S (2015) Cu-alloying effect on crystallization kinetics of Ti$_{41}$Zr$_{25}$Be$_{28}$Fe$_{6}$ bulk metallic glass. J Therm Anal Calorim 121:697–704

20. Gong P, Zhao S, Wang X, Yao K (2015) Non-isothermal crystallization kinetics and glass-forming ability of Ti$_{41}$Zr$_{25}$Be$_{28}$Fe$_{6}$ bulk metallic glass investigated by differential scanning calorimetry. Appl Phys A 120:145–153

21. Rong J, Yang K, Zhuang Y et al (2018) Non-isothermal crystallization kinetics of Al$_2$O$_3$-YAG amorphous ceramic coating deposited via plasma spraying. J Am Ceram Soc 101:2888–2900

22. Kim H-J, Kim YJ (1999) Amorphous phase formation of the pseudo-binary Al$_2$O$_3$–ZrO$_2$ alloy during plasma spray processing. J Mater Sci 34:29–33

23. Song X, Suhonen T, Sun C et al (2015) Microstructure, Microhardness and Crystallization Behavior of Amorphous Al$_2$O$_3$-YSZ Coating prepared by Air Plasma Spraying. Surf Rev Lett 22:1550047

24. Chraska T, Pala Z, Mušálek R, Medičiký J, Vilémová M (2015) Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering. J Therm Spray Technol 24:637–643

25. Yang K, Rong J, Feng J et al (2017) Excellent wear resistance of plasma-sprayed amorphous Al$_2$O$_3$–Y$_3$Al$_5$O$_{12}$ ceramic coating. Surf Coat Technol 326:96–102

26. Yang K, Rong J, Zhuang Y et al (2019) Microstructure and High PV Wear Behavior of Novel Amorphous Al$_2$O$_3$-YAG Ceramic Coating Fabricated by Atmospheric Plasma Spraying. J Therm Spray Technol 28:803–825

27. Yang K, Rong J, Feng J et al (2016) In-situ fabrication of amorphous/eutectic Al$_2$O$_3$–YAG ceramic composite coating via atmospheric plasma spraying. J Eur Ceram Soc 36:4261–4267

28. Kim SJ, Lee JK, Oh YS, Kim S, Lee SM (2015) Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y$_2$O$_3$ Coatings Fabricated by Suspension Plasma
Spray. J Korea Ceram Soc 52:395–402

29. Yang K (2016) In situ Formed α-Al$_2$O$_3$ Nanocrystals Repaired the Preexisting Microcracks in Plasma-Sprayed Al$_2$O$_3$ Coating via Stress-Induced Phase Transformation. J Therm Spray Technol 25:518–525

30. Chraska T, Neufuss K, Dubsky J, Ctibor P, Klementova M (2008) Fabrication of Bulk Nanocrystalline Ceramic Materials. J Therm Spray Technol 17:872–877

31. Syala E (2017) Kinetic characterization of TeO$_2$–Bi$_2$O$_3$–V$_2$O$_5$–Na$_2$O–TiO$_2$ glass system. Ceram Int 43:6156–6162

32. Zhou X, Shukla V, Cannon WR, Kear BH (2003) Metastable Phase Formation in Plasma-Sprayed ZrO$_2$ (Y$_2$O$_3$)–Al$_2$O$_3$. J Am Ceram Soc 86:1415–1420

33. Zhang Z, Yang K, Rong J et al. Study on Process Optimization of Sprayable Powders and Deposition Performance of Amorphous Al$_2$O$_3$-YAG Coatings. Coatings. 2020, 10

34. Mcpherson R (1980) On the formation of thermally sprayed alumina coatings. J Mater Sci 15:3141–3149

35. Deng W, Li S, Hou G et al (2017) Comparative study on wear behavior of plasma sprayed Al$_2$O$_3$ coatings sliding against different counterparts. Ceram Int 43:6976–6986

36. Medricky J, Lukac F, Csaki S et al. Improvement of Mechanical Properties of Plasma Sprayed Al$_2$O$_3$–ZrO$_2$–SiO$_2$ Amorphous Coatings by Surface Crystallization. Materials. 2019, 12

37. Jiang C-p, Xing Y-z, Zhang F-y, Hao J (2012) -m. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying. International Journal of Minerals Metallurgy Materials 19:657–662

38. You Y, Ito A, Tu R, Goto T (2010) Low-temperature deposition of α-Al$_2$O$_3$ films by laser chemical vapor deposition using a diode laser. Appl Surf Sci 256:3906–3911

39. You Y, Ito A, Tu R, Goto T (2011) Deposition of α-Al$_2$O$_3$ films on Ti(C, N)-based cermet substrate by laser chemical vapor deposition using a diode laser. J Ceram Soc Jpn 119:570–572

40. Kupp ER, Kochawattana S, Lee SH, Misture S, Messing GL (2014) Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction. J Mater Res 29:2303–2311

41. Ctibor P, Sedláek J, Hudec T Dielectric properties of Ce-doped YAG coatings produced by two techniques of plasma spraying. Boletín de la Sociedad Española de Cerámica y Vidrio. 2021, 02

42. Wang W, Zeng P, Wang H, Yu J, Wu L Effect of Sulfur Acid Corrosion on the Luminescent Intensity of Plasma-Sprayed YAG:Ce Coatings. J Therm Spray Technol. 2017

43. Weyl WA (1950) Glass formation in nonsilicate systems. J Chem Educ 27:520–524

44. Tsirelson VG, Antipin MY, Gerr R. RG (1985) Ruby structure peculiarities derived from X-ray diffraction data localization of chromium atoms and electron deformation density. Phys Status Solidi A 87:425–433
45. Liu RS, Shi WC, Cheng YC, Huang CY (1997) Crystal Structures and Peculiar Magnetic Properties of α- and γ-Al₂O₃ Powders. Mod Phys Lett B 11:1169–1174
46. Baldinozzi G, Bérar J, Calvarin G (1998) Rietveld Refinement of Two-Phase Zr-Doped Y₂O₃. Mater Sci Forum 278–281:680–685
47. Wu B, Zinkevich M, Aldinger F, Wen D, Lu C (2010) Ab initio study on structure and phase transition of A-type and B-type rare earth sesquioxides Ln₂O₃ (Ln = La-Lu, Y, and Sc) based on density function theory. J Solid State Chem 39:3280–3287
48. Dobrzycki L, Bulska E, Pawlak DA, Frukacz Z, Woz´niak K (2004) Structure of YAG crystals doped/substituted with erbium and ytterbium. Inorg Chem 43:7656–7664
49. Ross NL, Zhao J, Angel RJ (2004) High-pressure single-crystal X-ray diffraction study of YAlO₃ perovskite. J Solid State Chem 177:1276–1284
50. Yamane H, Shimada M, Hunter BA (1998) High-Temperature Neutron Diffraction Study of Y₄Al₂O₉. J Solid State Chem 141:466–474
51. Fabrichnaya O, Seifert HJ, Ludwig T, Aldinger F, Navrotsky A (2002) The assessment of thermodynamic parameters in the Al₂O₃-Y₂O₃ system and phase relations in the Y-Al-O system. Scand J Metall 30:175–183
52. Suzuki M, Sodeoka S, Inoue T (2005) Control of structure and properties on AlO/YAG composite coating prepared by plasma spray process. J Jpn Inst Met 69:23–30

Figures

![Figure 1](image_url)

Figure 1

XRD patterns of the powders and as-sprayed coating: (a) Al2O3-YAG (b) Al2O3-Y2O3.
Figure 2

Micro-morphologies of as-sprayed Al2O3-YAG amorphous ceramic coating: (a)- (b) surface morphologies; (c)- (d) cross-sectional morphologies
Figure 3

Micro-morphologies of as-sprayed Al2O3-Y2O3 coating: (a)-(b) surface morphologies; (c)-(e) cross-sectional morphologies; (f) EDS of the coating in (d)
Figure 4

EBSD images of as-sprayed Al2O3-YAG amorphous ceramic coating

Figure 5

EBSD images of as-sprayed Al2O3-Y2O3 coating
Figure 6

The schematic diagram of the crystal structure of the possible existed phases in this study
Figure 7

Phase diagram of the Al2O3 - Y2O3 system
Figure 8

Schematic diagram of possible bonding modes of Al and Y with O in droplet
Figure 9

The formation mechanism of amorphous phases in plasma-sprayed Al2O3-YAG amorphous ceramic coating