Measurement of Residual 152Eu Activity Induced by Atomic Bomb Neutrons in Nagasaki and the Contribution of Environmental Neutrons to This Activity

KIYOSHI SHIZUMA1*, SATORU ENDO1, MASAHARU HOSHI2, JUN TAKADA2, MASAYORI ISHIKAWA2, KAZUO IWATANI3, HIROMI HASAI4, TAKAMITSU OKA5, SHOICHIRO FUJITAA6, TADAHIKI WATANABE6, TOMOAKI YAMASHITA7 and TETSUJI IMANAKA8

152Eu activity/Atomic bomb/DS86/Neutrons.

Residual 152Eu activities induced by neutrons from the Nagasaki atomic bomb were measured for nine mineral samples located up to 1,061 m in the slant range and one control sample at 2,850 m from the hypocenter. A chemical separation to prepare europium-enriched samples was performed for all samples, and gamma ray measurements were carried out with a low background well-type germanium detector. In this paper, the measured specific activities of 152Eu are compared with activation calculations based on the DS86 neutron fluence and the 93Rev one. The calculated-to-measured ratios are also compared with those of 60Co and 36Cl. The present results indicate that the measurements agree to the calculation within a factor of three as observed in the nuclear tests at Nevada. The activation level of environmental neutrons and the detection limit for 152Eu are also discussed.

INTRODUCTION

The radiation dosimetry system (DS86) for survivors of the Hiroshima and Nagasaki atomic bombings was assessed1) in 1987. In the evaluation of low energy neutrons, a discrepancy between the residual 60Co measurement by Hashizume et al.2) and an activation calculation in both cities was pointed out in the final assessment report3). Since residual activity data were scarce at that time, 152Eu data were unable to confirm the 60Co discrepancy. After the assessment of DS86, additional residual activity data for 152Eu4–5), 60Co6–9), 36Cl10) and 63Ni11) were acquired to confirm the DS86 neutron fluence, and the evaluation of neutron transport calculation was extensively performed by U.S. and Japanese working groups. A status report 12) was published recently; however, the discrepancy problem was not clarified.

MATERIALS AND METHODS

Mineral samples

The sampling locations of nine mineral samples (NM1–NM9) are shown in Fig. 1. A control sample NM10 (at Maruo-machi) was 2,850 m southwest of the hypocenter. The sampling place, material, altitude, slant range, and sample weight are given in Table 1. Most samples were collected from the surface of old stone walls facing to the epicenter without any shielding. The surface of the rocks (andesite) was scratched to a depth of about 1 cm. The sample
134 K. SHIZUMA et al.

NM3 was the wall tiles obtained from the rooftop of the Nagasaki University Hospital at a site 20 m above the ground.

To calculate the ground range (GR) of the sample, the hypocenter coordinate on the new map of Nagasaki by Kerr et al.\(^{18}\) was used; the east-west and north-south coordinates of the hypocenter are 34.2475 and -25.3945. The slant range (SR) of the sample was calculated based on the burst height given as 503 \pm 10 m\(^{18}\). Since Nagasaki lies topologically on an inclined plane, the slant range was calculated from the following equation by considering the altitude from the sea level (S_l) at the sampling location and the ground level (G_l) at the sampling site:

$$SR^2 = GR^2 + (503 + 5.2 - S_l - G_l)^2,$$

where the altitude of the hypocenter from the sea level was taken to be 5.2 m.

Table 1. Mineral samples collected in Nagasaki for 152Eu measurement.

No.	Place	Materiala	Coordinateb (x, y)	Sea level (m)	Ground level (m)	Ground range (m)	Slant range (m)	Sampling weight (g)	Enriched sample (g)	Eu content (ppm)
NM 1	Yana Bridge	R	33.936, -25.405	1	1.0	311 \pm 20	594 \pm 22	360	5.6	3.8 \pm 0.2
NM 2	Urakami Church	R	34.645, -25.167	16	1.7	458 \pm 20	671 \pm 22	250	2.1	4.1 \pm 0.4
NM 3	Nagasaki Univ. Hospital	T	34.629, -25.925	30	20.0	653 \pm 21	809 \pm 23	240	3.5	10.4 \pm 0.9
NM 4	Gokoku Shrine-B	R	33.704, -25.036	16	2.5	651 \pm 20	815 \pm 22	1000	4.3	13.1 \pm 0.5
NM 5	Gokoku Shrine-A	R	33.704, -25.036	16	1.0	651 \pm 20	816 \pm 22	800	3.5	8.1 \pm 0.3
NM 6	Nanzan School-A	R	34.509, -24.741	30	1.5	704 \pm 20	850 \pm 22	650	5.4	5.7 \pm 0.3
NM 7	Shimoda House	R	34.600, -26.093	9	4.0	782 \pm 20	926 \pm 22	963	12.8	4.4 \pm 0.2
NM 8	Prefectural Gymnasium-B	R	33.504, -24.896	10	1.5	895 \pm 20	1024 \pm 22	1000	5.9	5.0 \pm 0.2
NM 9	St. Maria School	R	33.323, -25.210	21	1.0	943 \pm 20	1061 \pm 22	1000	3.8	5.0 \pm 0.2
NM10	Maruo-machi (control)	R	33.964, -28.230	30	0.5	2850 \pm 20	2889 \pm 22	1400	4.8	2.1 \pm 0.2

aR = rock, T = tile. bNew city map of Nagasaki.

Fig. 1. The locations of mineral samples (NM1–NM9) and the hypocenter of the atomic bomb in Nagasaki.

Fig. 2. The chemical procedure to prepare the europium-enriched sample.

Sample preparation

All mineral samples were ground to powder under 100 mesh. A preliminary gamma ray measurement indicated that gamma rays from 152Eu were not observed for any sample except NM1, which was the sample nearest the hypocenter. Thus the chemical separation procedure shown in Fig. 2 was performed for all samples to enrich the europium concentration. The process was as follows. A powdered sample of 50 g was fused with about 120 g of NaOH pellets in a nickel crucible by heating at 450°C for 2 h.
The fused mass was dissolved in 1 liter of water, and the precipitate (hydroxide) was filtered with a filter paper (Toyo Advantec Co., No. 5A). The precipitate was dissolved in hydrochloric acid, and NaOH solution was added to adjust the pH to 3. After centrifugation, the supernatant was collected, and the NaOH solution added to adjust the pH to 13. Then the precipitate was filtered, washed with water, and dried, and about 1 g of enriched sample was obtained. During this process, the natural activities of uranium and thorium chains included in the sample were also enriched. To remove these activities, small amounts of Na$_2$SO$_4$ and BaCl$_2$ were added to the supernatant to form BaSO$_4$ for coprecipitating the background activities, where a CeCl$_3$ solution was added as a carrier for europium. All these processes were repeated four times and 2–13 g of enriched sample was obtained.

A portion of the enriched sample was used for the activation analysis of the stable europium and the rest was pressed into a polypropylene test tube of 13-mm diameter and 75-mm height for the gamma-ray measurement with well-type Ge detector.

Stable europium content in the enriched sample was determined by neutron activation to produce 152mEu (half-life = 9.3 h) by using 252Cf neutron source at the Research Institute for Radiation Biology and Medicine, Hiroshima University: A couple of 0.3 g samples were taken from the enriched sample and 50 μg of europium was added to one of them. These samples were irradiated about two days, and the gamma ray measurement was performed immediately after the irradiation. The weights of enriched samples and the europium contents are given in Table 1.

Gamma-ray measurement

The europium samples were measured with a low-background spectrometer composed of a well-type Ge detector, which has a 120 cm3 crystal volume, then shielded with 20-cm-thick lead and incorporated with an anticoincidence circuit to suppress the cosmic ray background. The 344 keV gamma ray of the radioactivity of 152Eu was used to avoid interference lines from natural radioactivities. One run was continued for more than 106 s, and each sample was measured three times. An example of the gamma-ray spectrum of the sample NM7 is shown in Fig. 3. Partial gamma-ray spectra around the 344 keV gamma ray from 152Eu for mineral samples. NM1: Yana Bridge (GR = 311 m); NM5: Gokoku Shrine-B (651 m); NM6: Nanzan school-A (GR = 704 m); NM9: St. Maria school (943 m); and NM10: control sample (GR = 2,850 m).

Data deduction and results

The specific activity of 152Eu immediately after the bomb explosion was obtained by correcting the elapsed time and using a half-life of 13.542 ± 0.010 yr for 152Eu. The results are given in Table 2. The errors concerned with the specific activities are due to the peak counts (8–49%), the stable europium concentra-
tion (4%), and the detection efficiency (10%). The total error range was from 13% to 50%. The specific activities of 152Eu as a function of the slant range are shown in Fig. 5. The results by Nakanishi et al. are also shown in the figure. The calculation of activation to produce 152Eu in a free field in air based on the DS86 neutron fluence and revised neutron fluence $93Rev^*$ is shown in the figure by solid and dotted lines, respectively. The associated calculated-to-measured (C/M) ratios are also given in Table 2.

DISCUSSION

Background contribution and detection limit

In the previous work\(^1\), the environmental neutron activation to produce 60Co was experimentally examined by measuring 4 g of cobalt oxide. It was found that actual thermal neutron flux might be a factor of about three lower than the value in the UNSCEAR report\(^2\). Since the amount of enriched europium from the atomic bomb exposed samples is several tens of micrograms, the activity level induced by environmental neutrons is about three order lower than that of the atomic-bomb induced activity in both cities.

The detection limit of interested radioactivity depends on the background counts in the gamma ray peak region. It is important to know the detection limit of the spectrometer; whether the peak counts are really reliable. The critical level $L_C = 2.33 \sigma_b$\(^2\), where σ_b is a standard deviation of background counts, was adopted as detectable minimum counting rate (d.m.c). The peak counting rate (n_0) and d.m.c (n^*) for the Nagasaki samples and some of the Hiroshima samples are given in Table 4. According to the ratios of n_0/n^* as given in this table, the measurements are almost at detection limit of about 1,100 m in the slant range in Nagasaki and 1,300 m in Hiroshima.

152Eu activity as a function of distance

The calculation of neutron fluence of DS86 was revised in 1993. In the neutron fluence $93Rev$, the neutron energy group of the source term was increased to 46 groups from 27 groups, and the data base of the neutron cross sections was changed to ENDF/B-6, from ENDF/B-5. This change reduced the thermal activation rate near the hypocenter at Nagasaki by nearly a factor of two.

The measured specific activities of 152Eu as a function of the slant range are shown in Fig. 5. Nakanishi et al.\(^{13,16}\) reported the 152Eu data for twelve rocks and roof tiles sampled at nine locations in the 500–1,000 m slant range from the hypocenter. They performed gamma ray measurements with a low-background coaxial and/or a planer Ge(Li) detectors. The 152Eu radioactivity was deduced from the samarium X rays. More recently, Nakanishi et al.\(^{16}\) reported six 152Eu data for the roof tiles sampled at 1,100 m and 1,170 m in slant range. As shown in Fig. 5, the present data are consistent with the Nakanishi’s data within about 900 m, except for two anomaly high data at 600 m and

Table 2. Results of 152Eu measurement and calculated-to-measured ratios (C/M) for Nagasaki samples.

No.	Place	Slant range (m)	152Eu/60Co (Bq mg$^{-1}$)	Calculated C/M ratio
			152Eu	
			152Eu/60Co (Bq mg$^{-1}$)	DS86 93Rev
			152Eu/60Co (Bq mg$^{-1}$)	DS86 93Rev
NM1	Yana Bridge	594 ± 22	24.8 ± 2.9	16.0 ± 1.7
NM2	Urakami Church	671 ± 22	6.50 ± 1.10	6.20 ± 1.7
NM3	Nagasaki Univ.	809 ± 23	2.07 ± 0.28	1.90 ± 0.10
NM4	Gokoku Shrine B	815 ± 22	3.57 ± 0.63	1.70 ± 0.10
NM5	Gokoku Shrine A	816 ± 22	2.73 ± 0.36	1.70 ± 0.10
NM6	Nanzan School	850 ± 22	1.58 ± 0.33	1.30 ± 0.10
NM7	Shimoda House	926 ± 22	1.25 ± 0.42	0.67 ± 0.10
NM8	Prefectual Gymnasium A	1024 ± 22	0.96 ± 0.30	0.26 ± 0.10
NM9	St. Maria School	1061 ± 22	0.86 ± 0.40	0.22 ± 0.10

60Co specific activity immediately after bomb explosion.

Hiroshima samples are summarized in Table 3 assuming that 152Eu reaches to saturation activity of 88 mBq g$^{-1}$ with the neutron flux of 8.0×10^{-3} n cm$^{-2}$ s$^{-1}$ reported in the UNSCEAR report\(^21\). Since the amount of enriched europium from the atomic bomb exposed samples is several tens of micrograms, the activity level induced by environmental neutrons is about three order lower than that of the atomic-bomb induced activity in both cities.

The detection limit of interested radioactivity depends on the background counts in the gamma ray peak region. It is important to know the detection limit of the spectrometer; whether the peak counts are really reliable. The critical level $L_C = 2.33 \sigma_b$\(^2\), where σ_b is a standard deviation of background counts, was adopted as detectable minimum counting rate (d.m.c). The peak counting rate (n_0) and d.m.c (n^*) for the Nagasaki samples and some of the Hiroshima samples are given in Table 4. According to the ratios of n_0/n^* as given in this table, the measurements are almost at detection limit of about 1,100 m in the slant range in Nagasaki and 1,300 m in Hiroshima.

Fig. 5. Specific activity of 152Eu at the time of the explosion as a function of the slant range. Data from Nakanishi et al.\(^{13,16}\) are shown for comparison. The solid and dotted lines indicate the calculation in a free field in the air.
AMS method is a very sensitive technique, however, the range) are in agreement with the overall calculations. Since the data has some problems. One problem is that its values in higher surface: the surface cement in a depth of a few cm typically gives profiles of 152Eu for 22 cores taken from stone embankments. 1,000 m in the ground range. They also measured depth in rocks from embankments sampled at 76 locations within scattered; two are higher than the calculation and others lower. A possible reason of their data scattering at 1,100 m might be that two of the roof tiles were not directly exposed to the bomb. Beyond 900 m, present data are comparable with Nakanishi’s two higher values at 1,100 m.

Okajima and Miyajima14 reported several 152Eu activity data in rocks from embankments sampled at 76 locations within 1,000 m in the ground range. They also measured depth profiles23 of 152Eu for 22 cores taken from stone embankments. Their data, however, cannot be compared with the present results because of their insufficient accuracy as a result of extensive scattering.

\textbf{Comparison between calculated and measured activities}

The C/M ratios of 152Eu as a function of the slant range and of 60Co and 36Cl are shown in Fig. 6. The 36Cl data taken by Straume \textit{et al.}55 at three locations (822, 1,187, and 1,261 m in the slant range) are in agreement with the overall calculations. Since the AMS method is a very sensitive technique, however, the 36Cl data has some problems. One problem is that its 36Cl values in concrete strongly depend on the depth of the sample from the surface: the surface cement in a depth of a few cm typically gives higher 36Cl values than the inside concrete. Another problem results is coming from its very long half-life (3×10^7 y) of 36Cl. Since 36Cl is also induced by environmental neutrons, the background activity must be subtracted correctly. Recently, Ruehm \textit{et al.}26 reported preliminary 36Cl data by AMS for granite samples collected in Hiroshima. Their data were collected from 590 to 1,484 m in the slant range. The results at short distances were lower than the DS86 calculation, and those at intermediate distances (1,045–1,350 m) were close to the calculation. In a comparison of their data with 152Eu and 60Co at long distances, the background 36Cl in each sample must be subtracted correctly because the background level determination might be different for each sample as a result of its very long half-life.

As described in our previous work17, the 60Co data determined for five steel samples were in agreement with Hashizume’s 60Co data. The results were roughly in agreement with the calculation.

Nagasaki-type bombs, Ranger-Fox Shot and Buster-Dog Shot, were tested at the Nevada Test Site and gold activation was measured25,26. The measurement was compared with the values reported by Okajima and Miyajima14. The agreement was improved for the calculation after addition of contribution from delayed neutrons. As a result, the agreement between the gold activation values and calculations was better than a factor of three over all ranges27. The present 152Eu data and our previous 60Co data17 are somewhat similar to

\begin{table}[h]
\centering
\caption{Contribution of environmental neutron activation for residual 152Eu measurement in Nagasaki and Hiroshima.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Sample & Place & Date of measurement & Slant range (m) & Sample weight (g) & Europium content (ppm) & Europium weight (µg) & BG activitya B (mBq) & 152Eu activityb A₀ (mBq) & Ratio B/A₀ \\
\hline
\textbf{Nagasaki} & & & & & & & & & \\
NM1 & Yana Bridge & 990908 & 594 & 4.0 & 3.8 & 15 & 3.1×10^{-3} & 6.3 ± 0.1 & 2.1 ± 0.4 \\
NM2 & Urakami Church & 940906 & 671 & 2.1 & 4.1 & 8.6 & 8.0×10^{-4} & 4.7 ± 1.2 & 1.6 ± 1.4 \\
NM3 & Nagasaki Univ. Hospital & 940917 & 809 & 3.0 & 10 & 31 & 2.7×10^{-4} & 5.2 ± 1.7 & 5.2 ± 1.4 \\
NM4 & Gokoku Shrine-B & 991026 & 815 & 3.3 & 13 & 43 & 3.8×10^{-3} & 2.1 ± 1.0 & 5.3 ± 1.3 \\
NM5 & Gokoku Shrine-A & 991012 & 816 & 2.5 & 8.1 & 33 & 2.9×10^{-4} & 5.5 ± 0.7 & 1.8 ± 0.4 \\
NM6 & Nanzan School-A & 990922 & 850 & 4.0 & 5.8 & 23 & 2.0×10^{-3} & 0.6 ± 0.1 & 3.6 ± 1.0 \\
NM7 & Shimoda House & 000128 & 926 & 4.0 & 4.4 & 18 & 1.6×10^{-4} & 1.4 ± 0.5 & 1.1 ± 0.4 \\
NM8 & Prefectural Gymnasium & 000331 & 1,024 & 4.0 & 5.0 & 20 & 1.7×10^{-3} & 0.3 ± 0.1 & 4.9 ± 1.3 \\
NM9 & St. Maria School & 000114 & 1,061 & 4.0 & 3.8 & 20 & 1.8×10^{-4} & 1.1 ± 0.5 & 1.6 ± 0.4 \\
\hline
\textbf{Hiroshima}c & & & & & & & & & \\
1 & Shima Hospital (7-4) & 910117 & 579 & 2.1 & 3.5 & 7.2 & 6.3×10^{-4} & 73 ± 10 & 8.7 ± 1.0 \\
45 & Naka Telephone Office & 901114 & 774 & 3.4 & 8.0 & 27 & 2.4×10^{-3} & 52 ± 5 & 4.6 ± 0.5 \\
56 & Kodo Primary School & 910525 & 916 & 3.5 & 2.8 & 10 & 8.8×10^{-4} & 4.1 ± 1.2 & 1.9 ± 0.4 \\
65 & City Hall & 910221 & 1,171 & 1.7 & 12.4 & 21 & 1.8×10^{-3} & 2.1 ± 1.1 & 8.6 ± 1.4 \\
68 & Primary School & 901119 & 1,450 & 3.4 & 10.6 & 36 & 3.2×10^{-3} & 1.7 ± 1.2 & 1.9 ± 0.3 \\
\hline
\end{tabular}
\footnotesize{aSaturation activity of 152Eu assuming 88mBq/g. bRadioactivity in the Eu-enriched sample at the time of the measurement. cTaken from Ref. 4.}
\end{table}
Specific 152Eu activities were determined for nine Nagasaki mineral samples exposed to the atomic bomb. The present data indicate a slight deviation from the calculation, but the measured data agree with the calculation within a factor of three overall ranges.

CONCLUSION

Specific 152Eu activities were determined for nine Nagasaki mineral samples exposed to the atomic bomb. The present data indicate a slight deviation from the calculation, but the measured data agree within a factor of three overall ranges. The measured data agree with the calculations within a factor of three up to the slant range of 1,061 m. Further measurements of activation data should be necessary to clarify the discrepancy problem.

ACKNOWLEDGEMENTS

We would like to thank Nagasaki Kokusai Bunka Kaikan and Dr. Shunzo Okajima for their kind help in regarding to the sample acquisition and Ms. Rosalyn Vu of the Radiation Effects Research Foundation for editorial assistance in preparing the manuscript. This work was supported by grants from the Ministry of Education and the Ministry of Health and Welfare, Japan, and the Radiation Effects Research Foundation, Hiroshima, Japan. *Personal communication (1996) with S.D. Egbert, Science Applications International Corp., 10260 Campus Point Dr., MS C3 San Diego, California 92121, USA. 93Rev is based on the same assumption as DS86, with an improved source energy/angle resolution, more recent air cross sections, and finer energy resolution in transport calculations. The details are also described in Ref. 12.

REFERENCES

1. The Radiation Effects Research Foundation (1987) US-Japan Joint reassessment of atomic bomb radiation dosimetry in Nagasaki and Hiroshima.
Hiroshima and Nagasaki, Final report. Vols. 1 and 2, Ed. W.C. Roesch, Radiation Effects Research Foundation, Hiroshima.

2. Hashizume, T., Maruyama, T., Shiragai, A. and Tanaka, S. (1967) Estimation of the air dose from the atomic bombs in Hiroshima and Nagasaki. Health Phys. 13: 149–161.

3. Nakashishi, T., Ohtani, H., Mizuochi, R., Miyaji, K., Yamamoto, T., Kobayashi, K. and Inamana, T. (1991) Residual neutron-induced radionuclides in samples exposed to the nuclear explosion over Hiroshima: Comparison of the measured values with the calculated values. J. Radiat. Res. Suppl. 32: 69–82.

4. Shizuma, K., Iwatani, K., Hasai, H., Hoshi, M., Oka, T. and Morishima, H. (1993) Residual 152Eu and 60Co activities induced by neutrons from the Hiroshima atomic bomb. Health Phys. 65: 272–282.

5. Shizuma, K., Iwatani, K., Hasai, H., Hoshi, M. and Oka, T. (1997) 152Eu depth profiles in granite and concrete cores exposed to the Hiroshima atomic bomb. Health Phys. 72: 848–855.

6. Kimura, T., Takano, N., Iba, T., Fujita, S., Watanabe, T., Maruyama, T. and Hamada, T. (1990) Determination of specific activity of cobalt (60Co/C) in steel samples exposed to the atomic bomb in Hiroshima. J. Radiat. Res. 31: 207–213.

7. Kerr, G. D., Dyer, F. F., Emery, J. F., Pace, J., àV, Brodzinski, R. L. and Marcum, J. (1990) Activation of cobalt by neutrons from the Hiroshima bomb. Report No. ORNL-65900, Oak Ridge National Laboratory; Oak Ridge, TN.

8. Shizuma, K., Iwatani, K., Hasai, H., Oka, T., Morishima, H. and Hoshi, M. (1992) Specific activities of 60Co and 152Eu in samples collected from the Atomic Bomb Dome in Hiroshima. J. Radiat. Res. 33: 151–162.

9. Shizuma, K., Iwatani, K., Hasai, H., Oka, T., Endo, S., Takada, J., Hoshi, M., Fujita, S., Watanabe, T. and Inanaka, T. (1998) Residual 60Co activity in steel samples exposed to the Hiroshima atomic-bomb neutrons. Health Phys. 75: 278–284.

10. Straume, T., Egbert, S. D., Woolson, W. A., Finkel, R. C., Kubic, P. W., Gove, H. E., Sharma, P. and Hoshi, M. (1992) Neutron discrepancies in the new DS86 Hiroshima dosimetry system. Health Phys. 63: 421–426.

11. Shibata, T., Nogawa, N., Hasai, H., Shizuma, K., Iwatani, K., Hoshi, M. and Oka, T. (1994) A method to estimate the fast neutron fluence for the Hiroshima atomic bomb. J. Phys. Soc. Jpn. 63: 3546–3547.

12. National Research Council (2001) Status of the Dosimetry for the Radiation Effects Research Foundation (DS86), National Academy Press, Washington, D.C.

13. Nakashishi, T., Morimoto, T., Komura, K. and Sakanoue, M. (1983) Europium-152 in samples exposed to the nuclear explosions at Hiroshima and Nagasaki. Nature 302: 132–134.

14. Okajima, S. and Miyajima, J. (1983) Measurement of neutron-induced 152Eu radioactivity in Nagasaki. In: U.S.-Japan Joint Workshop for Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki, pp. 156–167, Radiation Effects Research Foundation, Hiroshima.

15. Straume, T., Harris, L. J., Marchetti, A. A. and Egbert, S. D. (1994) Neutrons confirmed in Nagasaki and at the Army Pulsed Radiation Facility: Implications for Hiroshima. Radiat. Res. 138: 193–200.

16. Nakashishi, T., Miwa, K. and Ohki, R. (1998) Specific radioactivity of europium-152 in roof tiles exposed to atomic bomb radiation in Nagasaki. J. Radiat. Res. 39: 243–250.

17. Shizuma, K., Endo, S., Hoshi, M., Takada, J., Iwatani, K., Hasai, H., Oka, T., Shimazaki, T., Okamura, Y., Fujita, S., Watanabe, T. and Inanaka, T. (2002) Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background activation by environmental neutrons. J. Radiat. Res. 43: 387–396.

18. Kerr, G. D., Pace, J. V., àV, Mendelsohn, E., Loewe, W. E., Kaul, D. C., Dolatshahi, F., Egbert, S. D., Gritzner, M., Scott, Jr., W. H., Marcum, J., Kosako, T. and Kanda, K. (1987) Transport of initial radiations in air over ground. In: US-Japan Joint Reassessment of Atomic Radiation Dosimetry in Hiroshima and Nagasaki, Final Report, Vol. I, Ed. W. C. Roesch, pp. 63–142, Radiation Effects Research Foundation, Hiroshima.

19. Shizuma, K., Fukami, K., Iwatani, K. and Hasai, H. (1992) Low-background shielding of Ge detectors for the measurement of residual 152Eu radioactivity induced by neutrons from the Hiroshima atomic bomb. Nucl. Instrum. Methods B66: 459–464.

20. Peker, L. K. (1989) Nuclear Data Sheets for A=152. Nuclear Data Sheets 58: 93–241.

21. United Nations Science Committee on the Effects of Atomic Radiation (1988) Sources, Effects and Risks of Ionizing Radiation, p. 107, United Nations Press. New York.

22. Currie, L. A. (1968) Limits for qualitative detection and quantitative determination. Anal. Chem. 40: 586–593.

23. Tatsumi-Miyajima, J. (1991) Physical dosimetry at Nagasaki—152Eu of stone embankment and electron spin resonance of teeth from atomic bomb survivors. J. Radiat. Res. Suppl.: 83–98.

24. Ruehm, W., Huber, T., Kato, K. and Nolte, E. (2000) Measurement of 36Cl at Munich—A Status Report. Technical Report SBI 122, Ludwig-Maximilians University, Munich.

25. Kerr, G. D., Pace àV, J. V., Mendelsohn, E., Loewe, W. E., Kaul, D. C., Dolatshahi, F., Egbert, S. D., Marcum, J., Kosako, T. and Kanda, K. (1987) Transport of Initial Radiation in Air Over Ground. Roesch, W.C., Ed. US-Japan Joint reassessment of atomic bomb radiation dosimetry in Hiroshima and Nagasaki, final report. Vol. I, pp. 66–142. Ed. W. C. Roesch, Radiation Effects Research Foundation, Hiroshima.

26. Dolatshahi, F., Kaul, D. C. and Egbert, S. D. (1987) Delayed neutrons In: US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki, Final Report, Vol. 2, pp. 95–112, Ed. W. C. Roesch, Radiation Effects Research Foundation, Hiroshima.

27. Loewe, E., Mendelsohn, E., Hamada, T., Maruyama, T., Oka, S., Pace, J. V., àV, Sakanoue, M., Kondo, S., Hashizume, T., Marcum, J. and Woolson, W. A. (1987) Measurements of neutron fluences. In: US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki, Final Report, Ed. W. C. Roesch, Vol. I, pp. 185–204, Radiation Effects Research Foundation, Hiroshima.