The total disjoint irregularity strength of some certain graphs

Meilin I. Tilukaya, A.N.M. Salmanb

aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Ambon, Indonesia,
bCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

meilin.tilukay@fmipa.unpatti.ac.id, msalman@math.itb.ac.id

Abstract

Under a totally irregular total \(k \)-labeling of a graph \(G = (V, E) \), we found that for some certain graphs, the edge-weight set \(W(E) \) and the vertex-weight set \(W(V) \) of \(G \) which are induced by \(k = ts(G) \), \(W(E) \cap W(V) \) is a nonempty set. For which \(k \), a graph \(G \) has a totally irregular total labeling if \(W(E) \cap W(V) = \emptyset \)? We introduce the total disjoint irregularity strength, denoted by \(ds(G) \), as the minimum value \(k \) where this condition satisfied. We provide the lower bound of \(ds(G) \) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete graphs.

Keywords: total disjoint irregularity strength, total irregularity strength, irregular total labeling

Mathematics Subject Classification: 05C78

DOI: 10.19184/ijc.2020.4.2.2

1. Introduction

Let \(G \) be a finite, simple, and undirected graph with the vertex set \(V \) and the edge set \(E \). Let \(f : V \cup E \rightarrow \{1, 2, \cdots, k\} \) be a total \(k \)-labeling. Under \(f \), the weight of a vertex \(v \in V \) is \(w(v) = f(v) + \sum_{uv \in E} f(uv) \) and the weight of an edge \(uv \in E \) is \(w(uv) = f(u) + f(uv) + f(v) \). If all the vertex (or edge)-weights are distinct then \(f \) is called a vertex (or edge) irregular total
For instance, Fig. 1 shows a totally disjoint irregular total labeling of P_5, C_3, K_4, and K_5.

k-labeling and the minimum value k such that G has a vertex (or edge) irregular total k-labeling is called the total vertex (or edge) irregularity strength, denoted by $\text{tvs}(G)$ (or $\text{tes}(G)$), respectively. This parameter was introduced by Baca et al. [2]. They gave the boundary of $\text{tes}(G)$ and $\text{tvs}(G)$ and determined that for n vertices, $\text{tes}(C_n) = \text{tes}(P_n) = \left\lceil \frac{n+2}{3} \right\rceil$, $\text{tes}(P_n) = \left\lceil \frac{n+1}{3} \right\rceil$, $\text{tvs}(S_n) = \text{tes}(S_n) = \left\lceil \frac{n+1}{2} \right\rceil$, and $\text{tvs}(K_n) = 2$.

Later, Jendrol et al. [7] provided a better lower bound of $\text{tes}(G)$ and determined that $\text{tes}(K_5) = 5$ and $\text{tes}(K_n) = \left\lceil \frac{n^2-n+4}{6} \right\rceil$, for $n \neq 5$. For any tree T, Ivanco and Jendrol [6] proved that $\text{tes}(T)$ is equal to the lower bound. Nurdin et al. [9] gave the lower bound for tvs for any graph G.

Recently, Marzuki et al. [8] combined the properties of $\text{tes}(G)$ and $\text{tvs}(G)$ and gave new parameter called the total irregularity strength, denoted by $\text{ts}(G)$. It is the minimum value k for which G has a totally irregular total k-labeling. They proved that the lower bound $\text{ts}(G) \geq \max\{\text{tes}(G), \text{tvs}(G)\}$ is sharp for C_n and P_n except for P_2 or P_3. In [14], we proved that for $n \neq 2$, $\text{tes}(K_n) = \text{tes}(K_n)$. In [5], Indriati et al. proved that for $n \geq 3$, $\text{tes}(S_n) = \text{tvs}(S_n)$. For further reading, one can see [1], [3], [4], [5], and [10] - [13]. All these results showed that the lower bound is sharp.

Observing $\text{tes}(G)$, for the vertex weight-set $W(V)$ and the edge weight-set $W(E)$ under a totally irregular total labeling on G, $W(V) \cap W(E) \neq \emptyset$. Considering this condition, we define a new parameter called the total disjoint irregularity strength. A totally disjoint irregular total k-labeling of a graph G as a total labeling $f : V \cup E \rightarrow \{1, 2, \cdots, k\}$ which satisfies: (i) for any two vertices $x \neq y \in V$, $w(x) \neq w(y)$; (ii) for any two edges $x_1y_1 \neq x_2y_2 \in E$, $w(x_1y_1) \neq w(x_2y_2)$; (iii) $W(V) \cap W(E) = \emptyset$; where $W(V)$ (and $W(E)$) is the vertex (and edge) weight-set, respectively. The minimum value k such that a graph G has a totally disjoint irregular total labeling is called the total disjoint irregularity strength of a graph G, denoted by $\text{ds}(G)$. Thus, for any graph G,

$$\text{ds}(G) \geq \text{ts}(G).$$

For instance, Fig. 1 shows a totally disjoint irregular total labeling of P_3, C_3, K_4, and K_5.

In this paper, we determine ds of cycles, paths, stars, and complete graphs.

2. Main Results

Let $G = (V, E)$ be a connected graph. For G has a totally irregular total k-labeling $f : V \cup E \rightarrow \{1, 2, \cdots, k\}$, we need $|V| + |E|$ distinct weights. Let $\delta = \delta(G)$ (or $\Delta = \Delta(G)$) be the minimum (or maximum) degree of vertex in G, respectively. Let n_i be the number of vertices of degree i, where $i = \delta, \delta + 1, \cdots, \Delta$. Then $|V| = \sum_{i=\delta}^{\Delta} n_i$. Now, assume that $\delta = 1$. Let f be a optimal
labeling with respect to $ds(G)$. Then the maximum weight has to be at least $|E| + |V| + 1$. The maximum vertex weight is the sum of $\Delta + 1$ labels and every edge weight is the sum of three labels imply that $k \geq \lceil \frac{|E| + |V| + 1}{\Delta + 1} \rceil$. Moreover, when $n_1 \leq \Delta$, $|V| + |E|$ distinct weights are only exist if $\lceil \frac{|E| + |V| + 1}{\Delta + 1} \rceil \geq n_1$. In the other hand, when $n_1 \geq \Delta$, we have $2n_1$ distinct weights depend on 2 labels, such that $|V| + |E|$ distinct weights are only exist if $\lceil \frac{|E| + |V| + 1}{\Delta + 1} \rceil \geq n_1$. Hence, the minimum value $k \geq \max \{ n_1, \lceil \frac{|E| + n_1 + n_2 + 3}{3} \rceil \}$. If $v \notin V$, then $\delta \neq 1$. For f is optimal then the minimum weight is at least 3. Then, $k \geq \lceil \frac{|E| + n_1 + n_2 + 3}{3} \rceil$. Thus we have the lower bound of $ds(G)$.

Theorem 2.1. Let $G = (V, E)$ be a connected graph. Let v be a pendant vertex and $n_i (i = 1, 2)$ be the number of vertices of degree i. Then

$$ds(G) \geq \begin{cases} \max \left\{ n_1, \left\lceil \frac{|E| + n_1 + n_2 + 3}{3} \right\rceil \right\}, & \text{if } v \in V; \\ \left\lceil \frac{|E| + n_1 + n_2 + 3}{3} \right\rceil, & \text{if } v \notin V. \end{cases}$$

Our next results show that this lower bound is sharp.

Theorem 2.2. Let $m_1 \geq 3$ and $m_2 \in \mathbb{N}$. Let C_{m_1} be a cycle with m_1 vertices and P_{m_2} be a path with m_2 vertices. Then

$$ds(C_{m_1}) = \left\lceil \frac{2m_1 + 2}{3} \right\rceil;$$
$$ds(P_{m_2}) = \begin{cases} 3, & \text{for } m_2 = 3; \\ \left\lceil \frac{2m_2}{3} \right\rceil, & \text{otherwise}. \end{cases}$$

To prove Theorem 2.2, we need this lemma.

Lemma 2.1. For any integers y and $x_i, 1 \leq i \leq 2n$, let $\{x_i\}$ be a sequence. If the sum of 3 consecutive integers in $\{x_i\}$ is

$$x_i + x_{i+1} + x_{i+2} = \begin{cases} y + 2i - 2, & \text{for } 1 \leq i \leq n - 1; \\ y + 4n - 2i - 3, & \text{for } n \leq i \leq 2n - 2; \end{cases}$$

then

$$x_i = \begin{cases} x_{2n-1}, & \text{for } i = n - 3j \text{ and } 1 \leq j \leq \left\lceil \frac{2n}{3} \right\rceil; \\ x_{2n-i+2}, & \text{for } i = n - 3j + 1 \text{ and } 1 \leq j \leq \left\lceil \frac{2n}{3} \right\rceil. \end{cases}$$

Proof. Set all equations above as a linear system leads to the solution which is required. \qed

Now, we are able to prove Theorem 2.2.
Case 1. $m_2 = 3$

Suppose that $ds(P_3) = 2$. Since we need 5 distinct weight from 2 to 6, one endpoint (and its incidence edge) can be labeled by 1 to have smallest weight. In the other hand, maximum weight 6 only can occur when the rest vertices and edge are labeled by 2. Hence, there is one vertex and one edge of the same weight. Contrary to hypothesis. Thus, $ds(P_3) \geq 3$. By label P_3 as in Fig.1, we have $ds(P_3) = 3$.

Case 2. $m_1 \geq 3$ and $m_2 \neq 3$

It is trivial for $n = 2$. For $n_1 \geq 3$ and $n_2 \geq 2$, by Theorem 2.1, $ds(C_{m_1}) \geq t(m_1)$ and $ds(P_{m_2}) \geq t(m_2)$. For the reverse inequality, we construct $f_i : V \cup E \rightarrow \{1, 2, \ldots, t(m_i)\}$, for $i = 1, 2$, as follows: Let $f_1^{m_1} = \{v_1^{m_1}, v_2^{m_1}, \ldots, v_{m_1}^{m_1}\}$ and $f_2^{m_2} = \{v_1^{m_2}, v_2^{m_2}, \ldots, v_{m_2}^{m_2}\}$ be the alternating vertex (and edge) label-sets, where $f_1(v_i) = v_i^{m_1}$, $f_2(v_i) = v_i^{m_2}$, $f_1(e_i) = e_i^{m_1}$, $f_2(e_i) = e_i^{m_2}$, and $W(C_{m_1}) = \{w(v_i), w(e_i)\}$ for $1 \leq i \leq m_1$ and $W(P_{m_2}) = \{w(v_1), w(e_1), w(v_2), w(e_2), \ldots, w(v_{m_2})\}$ be the alternating vertex (and edge) weight-sets of C_{m_1} and P_{m_2}, respectively. Let

$$d(m_i) = \begin{cases} t(m_i) - 1, & \text{for } m_1 \equiv j \mod 3, j = 0, 1, m_2 \equiv j \mod 3, j = 0, 2; \\ t(m_i), & \text{for } m_1 \equiv 2 \mod 3, m_2 \equiv 1 \mod 3. \end{cases}$$

We prove by induction on m_i. For the base step, it is true that for $f_1^3 = \{1, 1, 2, 3, 1\}$, $f_2^3 = \{1, 2, 3, 4, 4, 1\}$, and $f_1^5 = \{1, 1, 2, 3, 4, 4, 1\}$, we have $W(C_3) = \{3, 4, 6, 8, 7, 5\}$, $W(C_4) = \{4, 5, 7, 8, 10, 11, 9, 6\}$, and $W(C_5) = \{3, 4, 5, 7, 8, 10, 11, 12, 9, 6\}$ and for $f_2^3 = \{1, 1, 2\}$, $f_2^4 = \{1, 1, 2, 3, 4\}$, and $f_2^5 = \{1, 1, 2, 3, 4, 4, 2, 3, 1, 3\}$, we have $W(P_2) = \{2, 4, 3\}$, $W(P_4) = \{2, 3, 4, 5, 7, 8, 6\}$, and $W(P_6) = \{2, 3, 5, 8, 11, 12, 10, 9, 6, 7, 4\}$ such that for $i = 1, 2$, f_1 is a totally disjoint irregular total $t(m_i)$ labeling, $ds(C_{m_1}) = t(m_1)$ for $m_1 \in \{3, 4, 5\}$ and $ds(P_{m_2}) = t(m_2)$ for $m_2 \in \{2, 4, 6\}$, where the maximum weight is $w(e_{d(m_i)})$.

For the inductive step, we assume that for all k_1 and k_2, f_1 is a totally disjoint irregular total t_1-labeling of C_{k_1} and f_2 is a totally disjoint irregular total t_2-labeling of P_{k_2}, where

$$e_{d_1(k_1)} = \begin{cases} t_1 - 1, & \text{for } i = 2, k_2 \equiv j \mod 9, j \in \{1, 2, 8\}; \\ t_1, & \text{for } i \in \{1, 2\}, k_2 \equiv j \mod 9, j \in \{0, 3, 4, 5, 6, 7\}; \end{cases}$$

$$v_{d_1(k_1)+1} = \begin{cases} t_1 - 1, & \text{for } i \in \{1, 2\}, k_1 = 6, k_2 \equiv j \mod 9, j \in \{5, 7, 8\}; \\ t_1, & \text{for } i \in \{1, 2\}, k_1 \neq 6, k_2 \equiv j \mod 9, j \in \{0, 1, 2, 3, 4, 6\}; \end{cases}$$

and the maximum weight is $w(e_{d_1(k_1)})$.

Let $G_{k_1} \cong C_{k_1}$ and $G_{k_2} \cong P_{k_2}$. To prove that $ds(G_{(k_1)+3}) = t(k_1 + 3) = ds(G_{k_1}) + 2$, we construct $G_{(k_1)+3}$ from G_{k_1} by subdivide $e_{d_1(k_1)}$ as described in Fig.2. Define $f_i^{(k_1)+3} = \{(v_1^{(k_1)+3}, e_{d_1(k_1)+1}^{(k_1)+3}), (v_2^{(k_1)+3}, e_{d_1(k_1)+3})\}$ and $f_i^{(k_1)+3} = f_i^{(k_1)+3}$. Setting $w(e_{d_1(k_1)}) = w(e_{d_2(k_1)+3})$ and $w(v_{d_1(k_1)+1}) = w(v_{d_2(k_1)+1})$, we have $a \neq b$ for $a, b \in W(G_{(k_1)+3}) \{v_1^{(k_1)+1}, e_{d_1(k_1)+1}^{(k_1)+1}, v_2^{(k_1)+2}, e_{d_1(k_1)+3}, e_{d_1(k_1)+1}\}$. Moreover, $e_{d_1(k_1)+3} = e_{d_1(k_1)+3}$ and $v_{d_1(k_1)+1} = e_{d_1(k_1)+1}$. This is sufficient to apply Lemma 2.1. Let \(x_i \mid 1 \leq i \leq 8 \) = \(e_{d_1(k_1)+3}, v_{d_1(k_1)+1}, e_{d_1(k_1)+1}, v_{d_1(k_1)+2}, e_{d_1(k_1)+2}, e_{d_1(k_1)+3}, v_{d_1(k_1)+3}, v_{d_1(k_1)+1} \) and \(y = w(e_{d_1(k_1)}) + 1 \). Then, we have $v_{d_1(k_1)+3} = e_{d_1(k_1)+2}$, $e_{d_1(k_1)+3} = v_{d_1(k_1)+1} + 2$, and $v_{d_1(k_1)+3} - 1 = e_{d_1(k_1)+3}$.
The total disjoint irregularity strength of some certain graphs | M.I. Tilukay and A.N.M. Salman

Figure 2. The construction of P_{k+3} from P_k

where

$$e^{(k_i)+3}_{(k_i)+1} = \begin{cases}
3, & \text{for } i = 1, k_i = 3; \\
2k_i + t(k_i), & \text{for } i = 1, k_i \neq 3; \\
2k_i - 2t(k_i) + 3, & \text{for } i = 2, k_i \equiv 8 \text{ mod } 9; \\
2k_i - 2t(k_i) + 2, & \text{for } i = 2, k_i \equiv j \text{ mod } 9, j \in \{1, 2, 5, 7\}; \\
2k_i - 2t(k_i) + 1, & \text{for } i = 2, k_i \equiv j \text{ mod } 9, j \in \{3, 4, 6\}.
\end{cases}$$

Then, it can be checked that the maximum label is $ds(G_{(k_i)+3}) + 2 = ds(G_{(k_i)+3})$. We have completed the labeling f_i on $G_{(k_i)+3}$ and have proved that f_i is a totally disjoint irregular total $t(k_i)$-labeling. Thus, for any positive integer $m_1 \geq 3$ and $m_2 \in \mathbb{N}$, $ds(C_{m_1}) = \left\lfloor \frac{2m_1+2}{3} \right\rfloor$, $ds(P_{m_2}) = \left\lceil \frac{2m_2}{3} \right\rceil$, for $m_2 \neq 3$ and $ds(P_3) = 3$.

Theorem 2.3. Let $n \in \mathbb{N}$, $n \geq 3$ and S_n be a star with $n+1$ vertices, then $ds(S_n) = n$.

Proof. Let $V(S_n) = \{v_i | 1 \leq i \leq n+1\}$ where v_{n+1} is the vertex of degree n. By Theorem 2.1, $ds(S_n) \geq n$. To prove the reverse inequality, we construct an irregular total labeling $f : V \cup E \rightarrow \{1, 2, \cdots , t\}$ by define $f(v_i) = i$ for $1 \leq i \leq n$ and $f(v_n) = n-2$, $f(v_{n+1}) = n$, $f(v_iv_{n+1}) = 1$ for $1 \leq i \leq n-1$, and $f(v_nv_{n+1}) = 3$. Hence, we have $w(v_i) = i+1$ for $1 \leq i \leq n-1$, $w(v_n) = n+1$, $w(v_{n+1}) = 2n+2$, $w(v_iv_{n+1}) = n + i + 1$ for $1 \leq i \leq n-1$, and $w(v_nv_{n+1}) = 2n+1$. See that $W(V) \cap W(E) = \emptyset$. Thus, f is a totally disjoint irregular total labeling and $ds(S_n) = n$ for $n \geq 3$. \hfill \Box

Next, by using our previous result in [14], we determine the exact value of $ds(K_n)$. For the convenience of reader, we provide the construction of totally irregular total labeling of K_n for $n \neq 5, 10, 12$ given in [14]. Let $\left\lfloor \frac{n^2-n+4}{6} \right\rfloor = t$ and $\left\lfloor \frac{n+1}{3} \right\rfloor = s$. We divide the vertex-set into 3 mutually disjoint subsets, say A, B, and C, where $A = \{a_i | 1 \leq i \leq s\}$, $B = \{b_i | 1 \leq i \leq n-2s\}$, and $C = \{c_i | 1 \leq i \leq s\}$. Let $f : V \cup E \rightarrow \{1, 2, \cdots , t\}$ defined by:

\begin{align*}
 f(a_i) &= 1, \quad \text{for } 1 \leq i \leq s; \\
 f(b_i) &= \binom{s}{2} + s(i-1) + 1, \quad \text{for } 1 \leq i \leq n-2s; \\
 f(c_i) &= t, \quad \text{for } 1 \leq i \leq s; \\
 f(a_i a_j) &= \binom{j-1}{2} + i, \quad \text{for } 1 \leq i < j \leq s; \\
 f(a_i b_j) &= i, \quad \text{for } 1 \leq i \leq s, 1 \leq j \leq n-2s; \\
 f(a_i c_j) &= s(i-1) + j, \quad \text{for } 1 \leq i, j \leq s; \\
 f(b_i b_j) &= s(n-s-i-j+2) - \left(\binom{s}{2} + \binom{j-1}{2}\right) + i, \quad \text{for } 1 \leq i < j \leq n-2s; \\
 f(b_i c_j) &= \binom{n-2s}{2} + s(n-s) - t + j + 1, \quad \text{for } 1 \leq i \leq n-2s, 1 \leq j \leq s; \\
 f(c_i c_j) &= \binom{n}{2} - 2(t-1) - \binom{s-1+i}{2} + j - i, \quad \text{for } 1 \leq i < j \leq s.
\end{align*}

(2)
Theorem 2.4. Let \(n \in \mathbb{N} \), \(n \notin \{ i \mid 6 \leq i \leq 59 \} \cup \{ 61, 62, 65, 68, 71, 74 \} \) and \(K_n \) be a complete graph with \(n \) vertices. Then

\[
ds(K_n) = \begin{cases}
n, & \text{for } n \leq 5; \\
\left\lceil \frac{n^2 - n + 4}{6} \right\rceil, & \text{otherwise.}
\end{cases}
\]

Proof. By 1 and Theorem 2.1, \(ds(K_n) \geq ts(K_n) \). Let \(t = \left\lceil \frac{n^2 - n + 4}{6} \right\rceil \). For the reverse inequality, we divide the proof into three cases as follows:

Case 1. \(n \leq 5 \)

It is obvious for \(n \leq 3 \). Now, suppose that \(ds(K_4) = 3 \). We need 10 distinct weight with minimum weight 3. We can label 2 vertices and one edge by label 1. In the other hand, the maximum weight should be 12. Labeling 3 edges and one vertex by label 3 implies that there are 2 edges with the same weight 7. Contrary to hypothesis. Thus, \(ds(K_4) \geq 4 \). To prove the upper bound for \(n = 4 \) or 5, we define \(f \) as in Fig. 1. Therefore, we have the exact value of \(ds(K_n) \) for \(n \leq 5 \).

Case 2. \(n = 77 \) or \(n \geq 80 \)

Consider that under the totally irregular total \(t \)-labeling of \(K_n \) in (2), the maximum edge weight is \(w(c_{s-1}c_s) = \left(\begin{array}{c} n \\ 2 \end{array}\right) + 2 \) and minimum vertex-weight is \(w(a_1) = \frac{s(s^2 - 1)}{6} + n \). It follow \(w(c_{s-1}c_s) < w(a_1) \) implies vertex-weight set and edge weight set are disjoint. Thus, \(ds(K_n) = t \) for \(n = 77 \) or \(n \geq 80 \).

Case 3. \(n \in \{ 60, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79 \} \)

Consider that under the totally irregular total \(t \)-labeling of \(K_n \) provided in (2), we met condition where the minimum vertex-weight \(w(a_1) \) is equal to the weight of an edge connecting vertices in \((B, C)\) or \((C, C)\). Then, we modify \(f \). Let \(E(K_n) = \{ e_i \mid 1 \leq i \leq n(n - 1)/2 \} \). Let \(e_p \in E(K_n) \) be an edge where \(w(a_1) = w(e_p) \). Since \(t \equiv 2 \mod 3 \), then \(f(e_{n(n-1)/2}) = f(c_{s-1}c_s) = t - 1 \). It implies that we can change \(f(e_i) \) by \(f(e_i) + 1 \), for \(p \leq i \leq n(n - 1)/2 \) without changing the maximum label such that \(W(V(K_n)) \cap W(E(K_n)) = \emptyset \). It complete the proof.

\(\square \)

Open Problem

1. For \(n \in \mathbb{N}, n \in \{ i \mid 6 \leq i \leq 59 \} \cup \{ 61, 62, 65, 68, 71, 74 \} \), find the exact value of \(ds(K_n) \).
2. For any graph \(G \), find \(ds(G) \).

References

[1] A. Achmad, M. Ibrahim, and M.K. Siddiqui, On the total irregularity strength of generalized Petersen graph, Math. Reports. 18 (68) (2016), 197–204.

[2] M. Bača, S. Jendrol’, M. Miller, and J. Ryan, On irregular total labelings, Discrete Math. 307 (2007), 1378–1388.

[3] J.A. Galian, A dynamic survey of graph labeling, Electron. J. Comb. 18 (2015), \# DS6.

[4] D. Indriati, Widodo, I.E. Wijayanti, and K.A. Sugeng, On the total irregularity strength of double-star and related graphs, Procedia Comput. Sci. 74 (2015), 118–123.
The total disjoint irregularity strength of some certain graphs | M.I. Tilukay and A.N.M. Salman

[5] D. Indriati, Widodo, I.E. Wijayanti, and K.A. Sugeng, On the total irregularity strength of star graphs, double-stars and caterpillar, *AIP Conf. Proc.* **1707** (2016), 020008-1–020008-6.

[6] J. Ivančo and S. Jendroľ, Total edge irregularity strength of trees, *Discuss. Math. Graph Theory.* **26** (2006), 449–456.

[7] S. Jendroľ, J. Miskuf, and R. Sotáč, Total edge irregularity strength of complete graphs and complete bipartite graphs, *Discrete Math.* **310** (2010), 400–407.

[8] C.C. Marzuki, A.N.M. Salman, and M. Miller, On the total irregularity strengths of cycles and paths, *Far East J. Math. Sci.* **82(1)** (2013), 1–21.

[9] Nurdin, E.T. Baskoro, A.N.M. Salman, and N.N. Gaos, On the total vertex irregularity strength of trees, *Discrete Math.* **310** (2010), 3043–3048.

[10] R. Ramdani, and A.N.M. Salman, On the total irregularity strength of some cartesian product graphs, *AKCE Int. J. Graphs Comb.* **10** 2013, 199–209.

[11] R. Ramdani, A.N.M. Salman, and H. Assiyatun, On the total irregularity strength of regular graphs, *J. Math. Fund. Sci.* **47(3)** (2015), 281–295.

[12] R. Ramdani, A.N.M. Salman, H. Assiyatun, A. Semaničová-Feňovčiková, and M. Bača, Total irregularity strength of three families of graphs, *Math. Comput. Sci.* **9** (2015), 229–237.

[13] M. Tilukay, A.N.M. Salman, and E.R. Persusessy, On the total irregularity strength of fan, wheel, triangular book, and friendship graphs, *Procedia Comput. Sci.* **74** (2015), 124–131.

[14] M. Tilukay, B.P. Tomasouw, F.Y. Rumlawang, and A.N.M. Salman, The total irregularity strength of complete graphs and complete bipartite graphs, *Far East J. Math. Sci.* **102(2)** (2017), 317–327.