Robotics in general surgery: A systematic cost assessment

Ioannis D. Gkegkes, Ioannis A. Mamais¹, Christos Iavazzo²

Department of Surgery, General Hospital of Attica “KAT”, ¹Department of Medicine, Medical School of Athens, University of Athens, Athens, Greece, ²Department of Gynaecological Oncology, Christie Hospital, Manchester, United Kingdom

Address for Correspondence: Dr. Ioannis D. Gkegkes, 141, Oropou Street, Nea Ionia, Athens 14232, Greece. E-mail: ioannisgkegkes@gmail.com

Abstract

The utilisation of robotic-assisted techniques is a novelty in the field of general surgery. Our intention was to examine the up to date available literature on the cost assessment of robotic surgery of diverse operations in general surgery. PubMed and Scopus databases were searched in a systematic way to retrieve the included studies in our review. Thirty-one studies were retrieved, referring on a vast range of surgical operations. The mean cost for robotic, open and laparoscopic ranged from 2539 to 57,002, 7888 to 16,851 and 1799 to 50,408 Euros, respectively. The mean operative charges ranged from 273.74 to 13,670 Euros. More specifically, for the robotic and laparoscopic gastric fundoplication, the cost ranged from 1534 to 2257 and 657 to 763 Euros, respectively. For the robotic and laparoscopic colectomy, it ranged from 3739 to 17,080 and 3109 to 33,865 Euros, respectively. For the robotic and laparoscopic cholecystectomy, ranged from 1163.75 to 1291 and from 273.74 to 1223 Euros, respectively. The mean non-operative costs ranged from 900 to 48,796 from 8347 to 8800 and from 870 to 42,055 Euros, for robotic, open and laparoscopic technique, respectively. Conversions to laparotomy were present in 34/18,620 (0.18%) cases of laparoscopic and in 22/1488 (1.5%) cases of robotic technique. Duration of surgery robotic, open and laparoscopic ranged from 54.6 to 328.7, 129 to 234, and from 50.2 to 260 min, respectively. The present evidence reveals that robotic surgery, under specific conditions, has the potential to become cost-effective. Large number of cases, presence of industry competition and multidisciplinary team utilisation are some of the factors that could make more reasonable and cost-effective the robotic-assisted technique.

Key words: Costs, general surgery, healthcare economics, outcomes, robotics, training

INTRODUCTION

The evolution of robotic technology during the last decade has facilitated the realisation of a great variety of operations in various surgical fields. The robotic-assisted technique has an important position among the other minimally invasive methods in general surgery. Several are the main advantages of robotic-assisted surgery, such as three-dimensional view of the operating field, low intraoperative blood loss, the precision of movements due to the elimination of surgeon tremor, utilisation of wristed instruments that improve dexterity and facilitate suturing, have made possible even the most complicated operations such as robotic pancreaticoduodenectomy. In contrast to the above-mentioned advantages, the absence of tactile feedback of the surgeon and the cost are the main weak points of the robotic technique.

Nowadays, the only commercially available robotic equipment “(da Vinci®, Intuitive Surgical Inc.; CA, USA) is characterised by...
elevated cost, including the cost of acquisition, training, and equipment-instrument cost, as well as that of maintenance of the robotic system (with an annual service contract, over 100,000 US dollars). This high cost can explain the reasons that decreased the widespread use of robotic-assisted surgery.\(^{[4]}\) According to van Dam et al., to amortise the initial capital for the acquisition of robotic devices, the technique should be applied on more than 300 surgical procedures per year for 7 years, equivalent to an amount of over 1000 Euros per patient.\(^{[4]}\) As a result, it can be easily understood that the robotic technology refers exclusively to surgical centres with a large volume of patients to achieve the per case charges as low as possible. The robotic instrumentation that has increased the cost of acquisition (almost over 1500 Euros per instrument), as well as a limited number of use (10 uses per instrument), represent another financial burden.\(^{[9]}\) Moreover, the reimbursement to the hospital for utilisation of the robot is in direct correlation with the type of health insurance and the health system itself, favouring the countries without universal health coverage.

The purpose of this review is to evaluate the till now available literature on the cost assessment of robotic technology in the field of general surgery.

METHODS

Data sources

A systematic search was held in PubMed (16 November 2015) and Scopus (16 November 2015) databases. The same search strategy was implemented in both PubMed and Scopus databases, consisted of a sequence of keywords: (Robot OR robotic OR telesurgery) AND (general surgery OR bariatric OR colorectal resection OR cholecystectomy OR appendicectomy OR pancreatectomy OR splenectomy OR fundoplication OR pancreaticoduodenectomy) AND (cost OR cost analysis). The references of each included study were also searched.

Study selection criteria

All comparative articles providing information regarding the cost evaluation of robotic technology in general surgery were regarded as valid for this review. Only articles published in English, German, French, Italian, Spanish and Greek were involved in this review. Abstracts, reviews, letters to the editor, short surveys, commentaries and editorials were not included in this review.

Definitions

Operative charges are constituted of the medical costs referred exclusively to operation (e.g. operating theatre, anaesthesia and surgical supply). Non-operative charges are constituted of all the costs not referred exclusively to the operation but to preoperative procedure and postoperative recuperation (e.g., postoperative medication, hospital stay, laboratory, and radiology). Total costs are constituted of the sum of operative and non-operative charges. All costs are calculated in Euros.

A total of 175 and 656 studies were retrieved, respectively, in PubMed and Scopus search among which 31 studies that have met the inclusion criteria of our systematic review.\(^{[6]-[36]}\) Three additional studies were included through hand-searching of included references.\(^{[11,23,25]}\) Figure 1 represents the followed search strategy (flow diagram).

The principal characteristics of the included studies in our review (demographics, type of operation, number of patients, total costs, operative charges, non-operative charges, robot charges included to the total costs, surgical equipment costs, operating theatre costs, length of hospital stay, number of conversions to laparotomy, duration of the operation and blood loss) are presented in Table 1.

Statistical considerations

Nonparametric statistical techniques were applied in this study. These methods are appropriate because the studies' data did not present normal distributions. Kruskal–Wallis test was used to test the differences in the median between the three surgical techniques (OP, LA, and RO) applied in various types of operations. The value of \(P < 0.05\) denoted statistical significance.

RESULTS

Among the 31 studies included, 7 referred to gastric fundoplication, 5 to adrenalectomy, 5 to colectomy, 4 to cholecystectomy, 3 to Roux-en-Y gastric bypass, 2 to pancreatectomy, 2 to rectal resection, 2 to splenectomy, 1 to positioning of adjustable gastric banding, 1 to sigmoidectomy, 1 to gastroenterostomy, 1 to rectopexy, 1
to sleeve gastrectomy and 1 to adhesiolysis. The median cost for adhesiolysis ranged from 21,995 to 32,020, and the weighted median average was 30,309.38 for 405,068 patients, regardless of the type of operation. The median cost for adrenalectomy ranged from 13,197 to 32,712 and the weighted median average was 38,093.38 for 20,465 patients, regardless of the type of operation. The median cost for cholecystectomy ranged from 23,307 to 23,561, and the weighted median average was 23,560.83 for 731,879 patients, regardless of the type of operation. The median cost for splenectomy ranged from 1898 to 5077, and the weighted median average was 3487.50 for 90 patients, regardless of the type of operation [Figure 2]. There was a significant difference between adhesiolysis, adrenalectomy and cholecystectomy as well (P < 0.01). Seven studies had 3 arms comparing robotic to open to laparoscopic, 2 studies had 2 arms comparing robotic to open while 22 studies compared robotic with the laparoscopic technique. Of the 31 studies listed, 14 had no surgical equipment or operating room costs. Of these 14, further 7 were not analysing any operative charges or non-operative charges but only total costs. 184,431 patients were operated by the open method, 1,006,285 patients with laparoscopic and 37,814 with robotic. The mean cost for robotic, open and laparoscopic ranged from 2539 to 57,002, 7888 to 16,851 and 1799 to 50,408 Euros, respectively. The mean operative charges ranged from 900 to 48,796, from 8347 to 8800 and from 870 to 42,055 Euros, for robotic, open and laparoscopic technique, respectively. The mean operative costs for splenectomy was 5075 Euros for robotic technique and 2992 Euros for laparoscopic technique. In twelve studies, the robotic costs were included in the estimation of operative charges. Surgical equipment costs varied between 644 and 6639 Euros. Operating theatre costs ranged from 636 to 4468 Euros per surgical case. Regarding adhesiolysis, adrenalectomy and cholecystectomy, the weighted median average costs were 29,703.10 for operative charges, 25,703.10 for laparoscopic charges and 22,122.32 for robotic charges. There was a significant difference between these three types of operations P < 0.05 [Figure 2].

The mean hospital stay (in days) for robotic, open and laparoscopic techniques ranged from 1.8 to 51, from 3 to 220 and from 2.3 to 11, respectively. More specifically, in robotic, open and laparoscopic gastric fundoplication, it ranged from 2.3 to 4, 6.1 to 7.9 and 2.3 to 5.2 days, respectively. For robotic and laparoscopic adrenalectomy, it ranged from 1.8 to 6.4 and 2 to 6.2 (median) days, respectively. For robotic, open and laparoscopic colectomy, it ranged from 5.2 to 7.46, 5 to 32 and 5.5 to 8.3, respectively. For robotic and laparoscopic cholecystectomy, it ranged from 2.7 to 4.58 and 2.3 to 4.84, respectively. In Roux-en-Y gastric bypass, for robotic, open and laparoscopic technique, it ranged from 3 to 7.8, 5 to 220 and from 3.3 to 11, respectively. In pancreactectomy, it ranged from 4 to 7.1, 3 to 25 and 6 to 7.3, respectively. In rectal resection, it ranged from 4 to 51, 4 to 24 and 10.8 ± 8.6, respectively. In splenectomy, it ranged from 5 to 11 and 4 to 7, respectively for the robotic and the laparoscopic technique. Conversions to laparotomy were performed in 34/18,620 (0.18%) cases of laparoscopic and in 22/1488 (1.5%) cases of robotic technique. The mean duration of robotic, open and laparoscopic techniques ranged from 54.6 to 328.7, 129 to 234 and from 50.2 to 260 min, respectively. Blood loss in robotic, open and laparoscopic ranged from 8.4 to 279, from 120 to 681 and from 12 to 667 ml, respectively.

DISCUSSION

The introduction of innovative and less invasive technologies in surgical fields has been adopted with great difficulty from

Figure 2: Estimated total costs in correlation of the surgical technique used in three types of operations

Gkegkes, et al.: Cost assessment of robotics in general surgery

Journal of Minimal Access Surgery | ??? | ??? | ???
First author, year[a]	Type of operation	Number of patients (%)	Total costs	Operative charges	Non-operative charges	Robot cost included (Y/N)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)	
Aghesioiysis, Salman, 2013[31]	OP 165,078/226,445 (16.3)	Median: 32,020 NR	NR	NR	NR	NR	NR	Median: 5.7	NR	NR	NR		
	LA 205,813/1,162,790 (17.7)	Median: 30,318 NR	NR	NR	NR	NR	Median: 4.7	NR	NR	NR			
	RO 34,177/37,270 (91.7)	Median: 21,995 NR	NR	NR	NR	NR	Median: 4.9	P<0.05	NR	NR	NR		
Adrenalectomy, Salman, 2013[31]	OP 16,530/226,445 (7.3)	Median: 39,692 NR	NR	NR	NR	NR	NR	Median: 6.7	NR	NR	NR		
	LA 3,488/1,162,790 (0.3)	Median: 31,207 NR	NR	NR	NR	NR	Median: 4.7	P<0.05	NR	NR	NR		
	RO 447/37,270 (1.2)	Median: 32,712 NR	NR	NR	NR	NR	Median: 6.7	P<0.05	NR	NR	NR		
Brunaud, 2008[11]	LA -	Mean: 1,799 NR	NR	NR	NR	NR	NR	Mean (SD): 6.4 (3)	5/100 (5)	Mean (SD): 99 (35) (40-275)	NR	NR	
	RO 100	Mean: 4,102 NR	NR	NR	NR	NR	Mean: 1.8	NR	NR	NR			
Prewitt, 2008[29]	OP -	NR	NR	NR	NR	NR	NR	-	NR	NR	NR		
	RO 16	Mean: 6,942 NR	NR	NR	NR	NR	Mean: 1.8	NR	NR	NR			
Winter, 2006[36]	OP 20/95 (21)	Median: 13,383 Median: 6,942	NR	NR	NR	NR	Mean: 1.8	NR	NR	NR			
	LA 45/95 (47)	Median: 13,197 Median: 6,334	NR	NR	NR	NR	Mean: 2	0/30	NR	NR			
	RO 30/95 (32)	Median: 15,842 Median: 9,508	NR	NR	NR	NR	Median: 2	0/30	Median (range): 185 (130-295)	NR	NR		
Morino, 2004[22]	LA 10/20 (50)	Mean: 2,005 Mean: 1,027 Mean: 991 Mean: 598	Mean: 991	Mean: 428	Mean: 5.4	Mean: 5.7	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 169 (136-215)	P<0.01		
	RO 10/20 (50)	Mean: 2,539 Mean: 1,510 Mean: 1,046	Mean: 873 Mean: 636 Mean: 3 (2-4) Mean: 3 (2-4)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 169 (136-215)	P<0.01		
Adjustable gastric banding, Muehlmann, 2003[34]	LA 10/20 (50)	Mean: 4,587 Mean: 4,587	Mean: 1,089 Mean: 1,089	Mean (range): 3 (2-4) Mean (range): 3 (2-4)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 169 (136-215)	P<0.01	
	RO 10/20 (50)	Mean: 6,964 Mean: 1,089	Mean (range): 97 (60-140)	Mean (range): 3 (2-4) Mean (range): 3 (2-4)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 0/10	Mean (range): 5.4 (4-8)	Mean (range): 5.7 (4-9)	Mean (range): 169 (136-215)	P<0.01	

Contd...
First author, year[ref]	Type of operation	Number of patients (%)	Total costs	Operative charges	Non-operative charges	Robot cost included (Y/N)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)
Cholecystectomy												
Buzat, 2013[12]	LA	10/30 (33)	NR	NR	NR	N	Mean: 945	NR	0/10	Mean (SD): 85.5 (11.8)	Mean (SD): 12 (7.5)	
	RO	20/30 (67)	NR	NR	Mean: 935	NR		NR	0/20	Mean (SD): 84.6 (20.5)	Mean (SD): 8.4 (7.3)	P=0.2289
Salman, 2013[31]												
	LA	731,395/1,162,790 (62.9)	NR	NR	NR	NR	Median‡: 23,561	NR	0/10	Mean (SD): 85.5 (11.8)	Mean (SD): 12 (7.5)	
	RO	484/37,270 Median: 1,307	NR	NR	NR	NR	Median‡: 23,307	NR	0/20	Mean (SD): 84.6 (20.5)	Mean (SD): 8.4 (7.3)	P=0.2289
Breitenstein, 2008[10]												
	LA	50/100 (50) Mean (SD): 4,581 (1,433)	Mean: 1,223	Mean: 3,390	Y	NR	Mean: 1,291	Mean: 4,598	0/50	Mean (SD): 4.84 (2.2)	Mean (SD): 50.2 (29.2)	NR
	RO	50/100 (50) Mean (SD): 5,861 (1,290)	Mean: 1,291	Mean: 4,598	NR	NR	Mean (SD): 4.58 (1.9)	Mean (SD): 54.6 (31.6)	P=0.54	Mean (SD): 1.30††	Mean (SD): 1.55††	NR
Heemskerk, 2005[18]												
	LA	12/24 (50) Mean: 2,148.45 P<0.001	Mean: 273.74	Mean: 1,874.71 Y	-	NR	Mean: 1,163.75	Mean: 2,165.32	0/12	Mean (SD): 2.3	Mean (SD): 1.30††	NR
	RO	12/24 (50) Mean: 3,329.07 P<0.001	Mean: 2,571	Mean: 2,596	Y	NR	Mean: 889.18	Mean: 165.32	0/12	Mean (SD): 2.7	Mean (SD): 1.55††	P=0.17
Colectomy												
Keller, 2013[21]	LA	17,265/1,809 (95.9)	Mean: 31,970	Mean: 2,571	Y	Mean: 2,252	Mean: 29,399	Mean: 2,596	0/17,265	Mean (SD): 6.13	Mean (SD): 201	NR
	RO	744/18,099 (4.1)	Mean: 39,160	Mean: 3,572	P<0.001	Mean: 3,588	Mean: 3,777	Mean: 7.46	0/744	Mean (SD): 261	Mean (SD): 0.001	P=0.211
Park, 2012[28]	LA	35/70 (50) Mean (SD): 7,561 (1,178)	Mean: 5,014	Mean: 2,596	Y	Mean (SD): 4,468 (4.91)	Mean (SD): 8.3 (4.2)	Mean (SD): 0.35	Mean (SD): 130 (43)	Mean (SD): 56.8 (31.3)	Mean (SD): 35.8 (26.3)	MEAN (SD): 35.8 (26.3)
	RO	35/70 (50) Mean (SD): 8,964 (1,998)	Mean: 7,451	Mean: 1,572	Y	Mean (SD): 6,639 (979)	Mean (SD): 7.9 (4.1)	Mean (SD): 0.13	Mean (SD): 195 (41)	Mean (SD): 35.8 (26.3)	Mean (SD): 35.8 (26.3)	MEAN (SD): 35.8 (26.3)

Contd...
First author, year[8]	Type of operation	Number of patients (%)	Total costs	Operative charges	Non-operative charges	Robot cost included (Y/N)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)	
Bertani, 2011[8]	OP	45/109 (41.3)	Mean: 7,888	NR	NR	Y	Mean: 1,694	Mean: 795	Median (range): 6 (5-32)	-	Median (range): 133	Median (range): 150	
	LA	30/109 (27.5)	Mean: 7,968	NR	NR		Mean: 2,066	Mean: 1,128	Median (range): 5 (3-12)	2/30 (6.7)	Median (range): 210 (150-360)	Median (range): 110 (50-300)	
	RO	34/109 (31.2)	Mean: 10,027	NR	NR		Mean: 3,166	Mean: 1,011	Median (range): 5 (4-17)	2/34 (5.9)	Median (range): 194 (130-301)	Median (range): 170 (80-1,000)	
de Souza, 2010[4]	LA	135/175 (77.1)	Median (range): 9,057	Median (range): 5,458	NR	NR	Mean (SD): 6,816 (3,743)	Mean (SD): 3,200 (639)	Mean (SD): 5.5 (3.4)	1/135 (0.74)	Median (SD): 118.08 (38.1)	Median (SD): 50 (100-600)	
	RO	40/175 (22.9)	Median (range): 11,131	Median (range): 6,816	NR	NR	Mean (SD): 2,176 (350)	Mean (SD): 4,294 (669)	Mean (SD): 5.2 (5.8)	1/40 (2.5)	Median (SD): 158.93 (36.69)	Median (SD): 50 (10-240)	
Rawlings, 2007[30]	LA	15/32 (46.9)	Mean (SD): 5,954 (2,069)	NR	NR	NR	Mean (SD): 1,358 (382)	Mean (SD): 3,200 (639)	Mean (SD): 5.5 (3.4)	2/15 (13.3)	Median (SD): 169.2 (37.5)	Median (SD): 66.3 (50.7)	
	RO	17/32 (53.1)	Mean (SD): 6,825 (3,743)	NR	NR	NR	Mean (SD): 2,176 (350)	Mean (SD): 4,294 (669)	Mean (SD): 5.2 (5.8)	0/17	Median (SD): 218.9 (44.6)	Median (SD): 40 (24.9)	
Sigmoideotomy	Rawlings, 2007[30]	LA	12/25 (48)	Mean (SD): 7,889 (8,642)	NR	NR	NR	Mean (SD): 1,650 (698)	Mean (SD): 3,668 (1,177)	Mean (SD): 6.6 (8.3)	0/12	Median (SD): 199.4 (44.5)	Median (SD): 65.4 (52.1)
	RO	13/25 (52)	Mean (SD): 9,097 (8,989)	NR	NR	NR	Mean (SD): 2,330 (470)	Mean (SD): 4,468 (903)	Mean (SD): 6.0 (7.3)	2/13 (15.4)	Median (SD): 225.2 (37.1)	Median (SD): 90.4 (60)	
Rectal resection	Baek, 2012[7]	LA	150/304 (49.3)	Mean (SD): 7,311 (2,600)	Mean (SD): 5,634	Y	Mean (SD): 2,457 (544)	Mean (SD): 10.8 (8.6)	-	Median (SD): 219.7 (71.2)	Median (SD): 126.2 (267.7)		
	RO	154/304 (50.7)	Mean (SD): 10,731 (2,800)	Mean (SD): 6,483 (1,167)	Mean (SD): 4,248		Mean (SD): 644 (7,194)	Mean (SD): 11.1 (7.0)	-	Median (SD): 285.2 (69.1)	Median (SD): 167.8 (26.1)		
Bertani, 2011[8]	OP	34/86 (39.5)	Mean (SD): 9,858	NR	NR	Y	Mean: 2,511	Mean: 954	Median (range): 7 (4-24)	Q/34	Median (range): 164 (100-350)	Median (range): 120 (50-2,000)	
	RO	52/86 (60.5)	Mean: 11,214	NR	NR		Mean: 3,140	Mean: 1,417	Median (range): 6 (4-51)	2/52 (4)	Median (range): 260 (190-370)	Median (range): 100 (50-1,000)	

Contd...
First author, year	Type of operation	Number of patients (%)	Total costs	Operative charges	Non-operative charges	Robot cost included (YN)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)	
Gastroenterostomy													
Wormer, 2013[31]	LA	29.677/29.959 (99.1)	Mean (SD): 31,317 (17,120)	NR	NR	NR	NR	NR	Mean (SD): 2.2 (1.5)	NR	NR	NR	
	RO	282/29.959 (0.9)	Mean (SD): 44,574 (21,165)	NR	NR	NR	NR	NR	Mean (SD): 2.5 (2.4)	P<0.05	NR	NR	NR
Fundoplication													
Owen, 2014[27]	OP	2,168/12,079 (18)	Mean (SD): 9,353 (10,244)	NR	NR	NR	NR	NR	Mean (SD): 6.1 (7.2)	P<0.05	NR	NR	NR
	LA	9,572/12,079 (79.2)	Mean (SD): 5,838 (5106)	NR	NR	NR	NR	NR	Mean (SD): 2.8 (3.6)	P<0.05	NR	NR	NR
	RO	339/12,079 (2.8)	Mean (SD): 7,799 (4,426)	P<0.05	NR	NR	NR	NR	Mean (SD): 3 (3.5)	P<0.05	NR	NR	NR
Wormer, 2013[31]	LA	7,484/7,756 (96.5)	Mean (SD): 24,139 (17,622)	NR	NR	NR	NR	NR	Mean (SD): 2.3 (2)	NR	NR	NR	
	RO	27,727,756 (3.5)	Mean (SD): 27,576 (15,484)	P<0.05	NR	NR	NR	NR	Mean (SD): 2.3 (2)	NR	NR	NR	
Nakadi, 2010[26]	LA	11/20 (55)	Mean (SEM): 5,907 (168)	Mean (SEM): 1,525 (35)	Mean: 4,382	N	Mean: 76	NR	Mean (SEM): 4.1 (0.3)	0/11	Mean (SEM): 96 (5)	NR	
	RO	9/20 (45)	Mean (SEM): 27,561 (99)	Mean (SEM): 1,553 (40)	Mean: 26,008	N	Mean: 1,214	P<0.001	Mean (SEM): 4.4 (0.2)	1/9 (11.1)	Mean (SEM): 137 (12)	P=0.01	
Andeberg, 2009[26]	OP	10/34 (29.4)	Mean: 10,521	NR	Mean: 8,347	N	NR	NR	Mean (SD): 7.9 (2.8)	NR	Mean (SD): 129 (43)	NR	
	LA	10/34 (29.4)	Mean: 8,982	NR	Mean: 5,494	NR	NR	NR	Mean (SD): 5.2 (3.0)	NR	Mean (SD): 207 (52)	NR	
	RO	14/34 (41.2)	Mean: 9,584	NR	Mean: 4,015	Mean: 2,081	NR	NR	NR	Mean (SD): 3.8 (1.9)	P=0.002	Mean (SD): 207 (47)	P=0.003
Heemskerk, 2007[29]	LA	11/22 (50)	Mean: 3,376.35	NR	NR	NR	NR	NR	Mean: 4	0/11	Mean: 135	NR	
	RO	11/22 (50)	Mean: 4,363.82	P=0.033	NR	NR	NR	NR	Mean: 4	0/11	Mean: 176	P=0.094	
Mueller-Stich, 2007[35]	LA	20/40 (50)	Mean (SD): 2,743 (483)	Mean (SD): 763 (115)	NR	NR	NR	NR	Mean (SD): 3.3 (0.8)	0/40	Mean (SD): 102 (19)	NR	
	RO	20/40 (50)	Mean (SD): 3,244 (512)	Mean (SD): 1,534 (111)	NR	NR	NR	NR	Mean (SD): 2.9 (0.8)	0/40	Mean (SD): 88 (18)	NR	
Table 1: Contd...

First author, year[ref]	Type of operation	Number of patients (%)	Total costs	Operative charges	Non-operative charges	Robot cost included (Y/N)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)
Morino, 2006[23]	LA	25/50 (50)	Mean: 1,527	Mean: 657	Mean: 870	N	Mean: 100	Mean: 557	Mean (range): 2.9 (2-6)	0/25	Mean (SEM): 11.1 (10.6)	NR
	RO	25/50 (50)	Mean: 3,157	Mean: 2,257	Mean: 900	P<0.001	Mean: 1,454	Mean: 803	Mean (range): 3 (2-7)	1/25 (4)	Mean (SEM): 131.3 (18.3)	P<0.001
Pancreatectomy Kang, 2011[20]	LA	25/45 (55.6)	Mean (SD): 2,829 (1,263)	Mean (SD): 1,628 (460)	NR	Y	NR	NR	Mean (range): 7.3 (3.0)	NR	Mean (SD): 258.2 (118.6)	NR
	RO	20/45 (44.4)	Mean (SD): 6,085 (637)	Mean (SD): 4,215 (279)	NR	NR	NR	NR	Mean (range): 7.1 (2.2)	P=NS	Mean (SD): 328.7 (121.8)	NR
Waters, 2010[21]	OP	22/57 (38.6)	Mean: 11,372	Mean: 2,572	Mean: 8,800	Y	NR	NR	Mean (range): 8 (3-25)	NR	Mean (range): 234 (136-437)	NR
	LA	18/57 (31.6)	Mean: 9,451	Mean: 2,251	Mean: 7,201	NR	NR	NR	Mean (range): 6 (3-34)	2/18 (11.1)	Mean (range): 224 (100-346)	NR
	RO	17/57 (29.8)	Mean: 7,758	Mean: 3,589	Mean: 4,169	NR	NR	NR	Mean (range): 4 (2-6)	2/17 (11.7)	Mean (range): 298 (191-418)	NR
Rectopexy Heemskerk, 2007[17]	LA	14/33 (42.4)	Mean: 3,115.55	NR	NR	Y	Mean: 780	NR	Mean (range): 4.3	0/19	Mean: 113	NR
	RO	19/33 (57.6)	Mean: 3,672.84	NR	NR	NR	Mean: 780	NR	Mean (range): 3.5	1/19 (5)	Mean: 152	NR
Roux-en-Y gastric bypass Hagen, 2012[16]	OP	524/990 (52.9)	Mean: 16,851	NR	NR	NR	Mean: 1,869	NR	Mean (range): 10.9 (5-220)	-	NR	NR
	LA	323/990 (32.6)	Mean: 15,897	NR	NR	NR	Mean: 4,025	NR	Mean (range): 16/323 (4.9)	NR	Mean (range): 11 (5-249)	NR
	RO	143/990 (14.5)	Mean: 14,187	NR	NR	NR	Mean: 3,845	NR	Mean (range): 2/143 (1.4)	P=0.038	Mean (range): 7.4 (4-24)	P=NS
Scozzari, 2011[33]	LA	423/533 (79.4)	Mean: 4,658.28	Mean: 2,318.28	Mean: 2,340	Y	Mean: 765.78	Mean: 1,402.5	Mean (range): 8.3 (3-99)	Mean (range): 0/423	Mean (range): 187 (75-360)	NR
	RO	110/533 (20.6)	Mean: 5,777.76	Mean: 3287.76	Mean: 2,490	P<0.001	Mean: 1,581.51	Mean: 1,856.25	Mean (range): 7.8 (3-65)	Mean (range): 0/110	Mean (range): 247.5 (90-405)	P<0.001

Contd...
Table 1: Contd...

First author, year	Type of operation	Number of patients (%	Total costs	Operative charges	Non-operative charges	Robot cost included (Y/N)	Surgical equipment costs	Operating room costs	Length of hospital stay (days)	Conversion to laparotomy (%)	Duration of surgery (min)	Blood loss (mL)		
Curet, 2009[13]	LAH	36/135 (26.7)	Mean: 50,408	NR	Mean: 42,055	NR	NR	NR	Mean: 3.3	NR	Mean: 183.3	NR		
	LAS	78/135 (57.8)	Mean: 48,503	NR	Mean: 39,418	NR	NR	NR	Mean: 3.6	NR	Mean: 185.6	NR		
	RO	21/135 (15.5) P=0.047	Mean: 57,002	NR	Mean: 48,796 P=0.015	NR	NR	NR	Mean: 3	NR	Mean: 181.7	NR		
Schraibman, 2014[32]	Sleeve Gastrectomy	LA	32/48 (66.7) Mean (range): 9,972 (23,518-54,645)	Mean (range): 7,138 (17,299-46,725)	NR	Y	NR	NR	Median (1st-3rd quartile): 3 (2-4)	NR	Median (1st-3rd quartile): 138 (115-170)	NR	Median (1st-3rd quartile): 148 (133-168)	P=0.211
	RO	16/48 (33.3) P<0.001	Mean (range): 15,521 (11,433-98,668) P=0.001	Mean (range): 13,670 (8,532-20,144) P=0.001	NR	NR	NR	Median (1st-3rd quartile): 3 (2-4) P=0.766	NR	Median (1st-3rd quartile): 148 (133-168)	P=0.211			
Gelmis, 2011[15]	Splenectomy	LA	45/90 (50) Median: 1,898	NR	NR	NR	NR	NR	Median: 5.3	5/45 (11.1)	Median: 125	NR		
	RO	45/90 (50) Median: 5,077	NR	NR	NR	NR	NR	Median: 5.1	4/45 (8.9)	Median: 153	P<0.05			
Bodner, 2005[9]	LA	6/12 (50) NR	Mean: 2,992	NR	Y	NR	NR	Median: 6 (4-7)	0/12	Mean: 127	Mean: <50			
	RO	6/12 (50) NR	Mean: 5,075	NR	Mean: 957	P<0.05	7 (5-11)	P<0.05	Mean: 154 (115-292)	P<0.05	Mean: <50	P<0.05		

OP: Open, LA: Laparoscopic, RO: Robotic, NR: Not referred, NA: Not applicable, Y: Yes, N: No, hr: Hour, SD: Standard deviation, SEM: Standard error of mean, NS: Not statistically significant, LAH: Laparoscopic handsewn technique, LAS: Laparoscopic stapled technique. *All costs are estimated in Euros. †Expressed in hours. *Comparison between open and robotic. **Comparison between open and laparoscopy. ***Comparison between laparoscopy and robotics. ‡Adjusted median.
the health care systems as a consequence of the lack of data and of the high costs (acquisition and maintenance) of every novel equipment.\cite{37} In the current finance situation, where a great portion of the world is facing difficulties to sustain the already present health structures, it would be considered scandalous to introduce new and highly expensive technique such as robotics as the new standard of care without the presence of strong evidence of significant cost-effectiveness and the comparison of minimally invasive methods to standard surgical techniques. Although cost related studies are complicated to be organised, it is essential that all parts involved, society and doctors should comprehend the impact of the cost of robotics.

Robotic-assisted surgery specifically requires equipment of elevated cost as a result of the novelty and the high specialisation of the utilised devices.\cite{5,38} The high cost of acquisition (over 1 million Euros) as well the expensive maintenance costs (almost 150,000 Euros/year) are obstacles that should be overcome. van Dam et al. have suggested that the costs of robotic equipment could be amortised, if the health care systems permit the application of robotic equipment on elevated number of patients.\cite{4} Furthermore, the absence of competition in the market of robotic equipment, especially after 2003, is one of the most important factors that maintain high the costs of robotic instrumentation.\cite{39}

More specifically, in 2003, the merge of the only two existed companies in the market of robotic devices was achieved, creating monopoly conditions.

The operating time is another essential reason that may cause great variations on the total surgical costs. Even though for private health structures, the length of the operating time is not an issue, for public health systems, which are financed by the government’s budget, every penny must be carefully spent. The setup of the robotic equipment, which is significantly longer compared to either the laparoscopic or the open one can increase the cost. However, it was shown that this time can be substantially improved when the surgical team is well trained.\cite{37}

Furthermore, the operative time is related to the experience of the surgical team. The type of surgical operation, as well as the surgeon’s capability and experience, are factors that influence considerably the learning curve.\cite{4} In addition, the costs are in correlation with the learning curve and are considered an additional cost caused by the fact that surgeons already went through a training program for both laparoscopic and open technique.\cite{40}

Nevertheless, it should be mentioned that an effective way to decrease the costs related to learning curve is the presence of great volume of patients and the necessity of virtual reality simulators.\cite{41,42}

Minimal invasive techniques have revealed to have an edge over laparotomy for the management of patients in a wide spectrum of pathologies.\cite{43,44} Keyhole incisions offer various advantages over the open surgical method, such as decrease of both postoperative pain and recovery time, less postoperative complications, reduced blood loss, and better cosmetic result. In particular, robotic techniques have a positive impact on specific patients’ categories, such as the reduction of operative costs and of hospital stay in elderly or morbidly obese patients. According to some studies, the total cost between both open and laparoscopic technique do not present statistically significant difference.\cite{45,46}

The extent of hospital stay has an important influence on the total charges of hospitalisation. The limited hospital stay is a principal characteristic of both robotic and laparoscopic approach as it is expected in comparison to the open method.\cite{5} Therefore, the decreased number of hospital days can amortise part of the increased operative costs of the minimally invasive techniques. Besides, the expenses of hospitalisation are also in strait correlation with the category of health care system and the type of health care structure.\cite{4,47} Differences between countries, private or public sectors render complex any approach to evaluate those cost data. Regarding the comparison of robotic procedures to laparoscopy, several studies claim that over hospital stay the robotic surgery seems to have a slight financial advantage over the standard laparoscopy.\cite{48} Nevertheless, currently, it appears that laparoscopy is a most economic approach among the other minimally invasive methods.

As presented in Table 1, the greater part of the studies referred to gastric fundoplication and showed that robotic is more expensive in comparison to laparoscopic technique. Despite the cost of acquisition the robotic devices, professional charges, operating theatre costs, surgical equipment costs present great variation in the included studies. Such a cost could be minimised if we also take into consideration the decrease of the hospital stay, the sooner return to normal patient’s activities, the reduction of blood loss and the decrease on conversion rates to laparotomy. Furthermore, by improving the robotic training of all personnel, the surgical time could be further reduced and as consequence favour the use of minimally invasive techniques.

The utilisation of robotics in almost every surgical field could be thought, in the future, as a valuable tool in common surgical practice. To realise this fact, both operative costs and unnecessary charges should be eliminated. The formation of specialised robotic units operating on great number of cases per year, the reduction of operating time per procedure by
specialised training on robotic approach, the decision for early discharge of the patients when that is possible and the minimisation of the number of instruments used per operation are some of the first steps that could be done in this direction. An additional proposal to minimise the cost is the multiple-use of the robotic equipment by multiple surgical specialties, good training of all the team members implicated while the acquisition of the robotic devices could be made through research funding or even charities.

Numerous limitations should be taken into consideration in the interpretation of the results of this review. The restricted number of the included studies and of the number of the included patients in these studies is in relation with the innovation of the technique. The study design, the volume of the surgical cases, the surgeon’s experience as well as the different hospital suppliers among the various institutions and the different countries are factors that render difficult any comparison between the robotic-assisted and the other techniques. Due to the lack of available data, we limited to evaluate the weighted median average cost of only the types of operations. The “cost” calculation is also difficult to be evaluated due to the existence of multiple variables, such as presence of diverse health systems and the differences between private and public sector. Cost is a difficult parameter to obtain from hospitals. We refer to cost, even when discussing professional fees, however the majority of the literature typically reports hospital charges rather than cost. Thus, somebody could highlight that the stated purpose for the review might be better stated to compare hospital charges for performing robotic surgery to more traditional approaches (open and/or laparoscopically). Based on our literature search, robotic-assisted technique cost more in comparison with laparoscopic or open procedures, although it appears that when the initial acquisition costs for robotic equipment is left apart then robotic techniques are the most effective method regarding costs. Nevertheless, because of great heterogeneity of the included studies and the absence of all the above mentioned information (indirect, direct, total, fixed or variable cost of each included study), in our opinion, safe conclusions could not be extracted on cost-effectiveness of robotic use in general surgery, due to more recent studies including operations performed by more well trained surgical teams. In addition, the lack of studies that refer on long-term clinical outcomes, such as quality adjusted life-year gained, is an obstacle on the realisation of a real cost-effective analysis. The costs related to readmission are difficult to be retrieved and included in the data analysis. Last but not least, the diverse types of operations included have different costs as well as different cost of total surgical time. Regarding, the adopted search strategy which was previously mentioned, it could be defined as restricted as a result of the exclusion of various publication types (such as abstracts, short surveys, reviews, etc.) and the limitation on the written language of the included studies.

CONCLUSION

The implement of robotic technology in operations of general surgery represent a novelty that may influence both the surgical treatment of numerous pathologies and the postoperative outcomes. The robotic assisted surgery has serious possibilities to evolve in a cost-effective technique, especially in centres with large number of cases, in spite of the undeniable elevated costs of acquisition and maintenance. Having as intention to increase the use of this surgical technique, it should be utilised not only on clinical treatment of patients but as well for the surgical training of all residents. The possible future industry competition in correlation with the technological development may steadily reduce the cost of the robotic equipment, making robotics a more cost-effective and affordable technique.

REFERENCES

1. Yu HY, Friedlander DE, Patel S, Hu JC. The current status of robotic oncologic surgery. CA Cancer J Clin 2013;63:45-56.
2. Boggi U, Signori S, De Lio N, Perrone VG, Vistoli F, Belluomini M, et al. Feasibility of robotic pancreaticoduodenectomy. Br J Surg 2013;100:917-25.
3. Smith JA Jr., Herrell SD. Robotic-assisted laparoscopic prostatectomy: Do minimally invasive approaches offer significant advantages? J Clin Oncol 2005;23:8170-5.
4. van Dam P, Hauspy J, Verkerkendorf L, Trinh XB, Van Dam PJ, Van Looy L, et al. Are costs of robot-assisted surgery warranted for gynecological procedures? Obstet Gynecol Int 2011;2011:973830.
5. Lotan Y. Is robotic surgery cost-effective: No. Curr Opin Urol 2012;22:66-9.
6. Anderberg M, Kockum CC, Arnhjornson E. Paediatric robotic surgery in clinical practice: A cost analysis. Eur J Pediatr Surg 2009;19:311-5.
7. Baek SJ, Kim SH, Cho JS, Shin JW, Kim J. Robotic versus conventional laparoscopic surgery for rectal cancer: A cost analysis from a single institute in Korea. World J Surg 2012;36:2722-9.
8. Bertani E, Chiappa A, Biffi R, Bianchi PP, Radice D, Branchi V, et al. Assessing appropriateness for elective colorectal cancer surgery: Clinical, oncological, and quality-of-life short-term outcomes employing different treatment approaches. Int J Colorectal Dis 2011;26:1317-27.
9. Bodner J, Kalfa-Ritsch R, Lucciarini P, Fish JH 3rd, Schmid T. A critical comparison of robotic versus conventional laparoscopic spleenectomies. World J Surg 2005;29:982-5.
10. Breitenstein S, Nocito A, Puhlan M, Held U, Weber M, Clavien PA. Robotic-assisted versus laparoscopic cholecystectomy: Outcome and cost analyses of a case-matched control study. Ann Surg 2008;247:987-93.
11. Brunaud L, Ayav A, Zarnegar R, Rouers A, Klein M, Boissel P, et al. Prospective evaluation of 100 robotic-assisted unilateral adrenalectomies. Surgery

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.
12. Buzad FA, Corne LM, Brown TC, Fagin RS, Hebert AE, Kaczmarek CA, et al. Single-site robotic cholecystectomy: Efficiency and cost analysis. Int J Med Robot 2013;9:365-70.

13. Curet MJ, Curet M, Solomon H, Liu G, Morton JM. Comparison of hospital charges for robotic, laparoscopic stapled, and laparoscopic handsewn Roux-en-Y gastric bypass. J Robot Surg 2009;3:75-8. Available from: http://link.springer.com/article/10.1007/s11701-009-0143-9. [Last accessed on 2016 May 13].

14. deSouza AL, Prasad LM, Park JJ, Mareck J, Blumetti J, Abcarian H. Robotic assistance in right hemicolectomy: Is there a role? Dis Colon Rectum 2010;53:1000-6.

15. Gelmini R, Franzoni C, Spaziani A, Patriti A, Casciola L, Saviano M. Laparoscopic splenectomy: Conventional versus robotic approach – A comparative study. J Laparoendosc Adv Surg Tech A 2011;21:393-9.

16. Hagen ME, Pugin F, Chassot G, Huber O, Buchs N, Iranmanesh P, et al. Reducing cost of surgery by avoiding complications: The model of robotic Roux-en-Y gastric bypass. Obes Surg 2012;22:62-61.

17. Heemskerk J, de Hoog DE, van Gemert WG, Baeten CG, Greve JW, Bouvy ND. Robot-assisted versus conventional laparoscopic rectopexy for rectal prolapse: A comparative study on costs and time. Dis Colon Rectum 2007;50:1823-30.

18. Heemskerk J, van Dam R, van Gemert WG, Beets GL, Greve JW, Jacobs MJ, et al. First results after introduction of the four-armed da Vinci Surgical System in fully robotic laparoscopic cholecystectomy. Dig Surg 2005;22:426-31.

19. Heemskerk J, van Gemert WG, Greve JW, Bouvy ND. Robot-assisted versus conventional laparoscopic Nissen fundoplication: A comparative retrospective study on costs and time consumption. Surg Laparosc Endosc Percutan Tech 2007;17:1-4.

20. Kang CM, Kim DH, Lee WJ, Chi HS. Conventional laparoscopic and robot-assisted spleen-preserving pancreatoduodenectomy: Does da Vinci have clinical advantages? Surg Endosc 2011;25:2004-9.

21. Keller DS, Senagore AJ, Lawrence JK, Champagne BJ, Delaney CP. Comparative effectiveness of robotic versus laparoscopic robotic colorectal resection. Surg Endosc 2014;28:212-21.

22. Morino M, Benincà G, Giraudo G, Del Genio GM, Rebecchi F, Gareno C. Robot-assisted vs laparoscopic adrenalectomy: A prospective randomized controlled trial. Surg Endosc 2004;18:1742-6.

23. Morino M, Pellegrino L, Giaccone C, Gareno C, Rebecchi F. Randomized clinical trial of robot-assisted versus robotic Nissen fundoplication. Br J Surg 2006;93:533-8.

24. Mühlmann G, Klaus A, Kirchmayr W, Wykypiel H, Unger A, Höller E, et al. Da Vinci robotic-assisted laparoscopic bariatric surgery: Is it justified in a routine setting? Obes Surg 2003;13:848-54.

25. Müller-Stich BP, Reiter MA, Wente MN, Bintintan VV, Köninger J, Büchler MW, et al. Robot-assisted versus conventional laparoscopic fundoplication: Short-term outcome of a pilot randomized controlled trial. Surg Endosc 2007;21:1800-5.

26. Nakadi IE, Mélot C, Clouset J, DeMoor V, Bétroune K, Feron P, et al. Evaluation of da Vinci Nissen fundoplication clinical results and cost minimization. World J Surg 2006;30:103-40.

27. Owen B, Simorov A, Siref A, Shostrom V, Oleynikov D. How does robotic anti-reflux surgery compare with traditional open and laparoscopic techniques: A cost and outcomes analysis. Surg Endosc 2014;28:1686-90.

28. Park JS, Choi GS, Park SY, Kim HJ, Ryu JK. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg 2012;99:1219-26.

29. Prewitt R, Rochkarev V, McBride CL, Kinney S, Oleynikov D. The patterns and costs of the da Vinci robotic surgery system in a large academic institution. J Robot Surg 2008;2:17-20. Available from: http://link.springer.com/article/10.1007%2Fs11701-008-0075-9. [Last accessed on 2016 May 13].

30. Rawlings AL, Woodland JH, Vegunta RK, Crawford DL. Robotic versus laparoscopic colectomy. Surg Endosc 2007;21:1701-8.

31. Salman M, Bell T, Martin J, Bhava K, Grim R, Ahuja. V.Use, cost, complications, and mortality of robotic versus nonrobotic general surgery procedures based on a nationwide database. Am Surg 2013;79:553-60.

32. Schrabman V, Macedo AL, Epstein MG, Soares MI, Maccapani G, Matos D, et al. Comparison of the morbidity, weight loss, and relative costs between robotic and laparoscopic sleeve gastrectomy for the treatment of obesity in Brazil. Obes Surg 2014;24:1420-4.

33. Scozzari G, Rebecchi F, Millo P, Rocchietto S, Allieta R, Morino M. Robot-assisted gastrojejunal anastomosis does not improve the results of the laparoscopic Roux-en-Y gastric bypass. Surg Endosc 2011;25:597-603.

34. Waters JA, Canal DF, Wiebke EA, Dumas RP, Beane JD, Aguilar-Saavedra JR, et al. Robotic distal pancreatectomy: Cost effective? Surgery 2010;148:814-23.

35. Winter JM, Talamin M, Stafield CL, Chang DC, Hundt JD, Dackiw AP, et al. Thirty robotic adrenalectomies: A single institution’s experience. Surg Endosc 2006;20:119-24.

36. Wormer BA, Dacey KT, Williams KB, Bradley JF 3rd, Walters AL, Augenstein VA, et al. The first nationwide evaluation of robotic general surgery: A regionalized, small but safe start. Surg Endosc 2014;28:767-76.

37. Heemskerk J, Bouvy ND, Baeten CG. The end of robot-assisted laparoscopy? A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery. Surg Endosc 2014;28:1388-98.

38. Turchetti G, Palla I, Pierotti F, Cuschieri A. Economic evaluation of da Vinci-assisted robotic surgery: A systematic review. Surg Endosc 2012;26:598-606.

39. Intuitive SW, the Free Encyclopedia. Available from: http://en.wikipedia.org/wiki/Intuitive_Surgical. [Last accessed on 2015 Sep 10].

40. Steinberg PL, Merguerian PA, Bihrle W 3rd, Seigne JD. The cost of learning robotic-assisted prostatectomy. Urolgy 2008;72:1068-72.

41. Albani JM, Lee DL. Virtual reality-assisted robotic surgery simulation. J Endourol 2007;21:285-7.

42. Iavazzo C, Papadopoulo EK, Gkegkes ID. Cost assessment of robotics in general surgery: A critical appraisal of scientific evidence on the use of robot-assisted laparoscopic surgery. J Obstet Gynaecol Res 2014;40:2125-30.

43. Blackmore AE, Wong MT, Tang CL. Evolution of laparoscopy in colorectal surgery: An evidence-based review. World J Gastroenterol 2014;20:4926-33.

44. Ng AE, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J 2014;20:241-50.

45. Gorter RR, Heij HA, Eker HH, Kazemier G. Laparoscopic appendectomy: State of the art. Tailored approach to the application of laparoscopic appendectomy? Best Pract Res Clin Gastroenterol 2014;28:211-24.

46. Magrina JE. Outcomes of laparoscopic treatment for endometrial cancer. Curr Opin Obstet Gynecol 2005;17:343-6.

47. Schreuder HW, Verheijen RH. Robotic surgery. BJOG 2009;116:198-213.

48. Seamon LG, Cohn DE, Henretta MS, Kim KH, Carlson MJ, Phillips GS, et al. Minimally invasive comprehensive surgical staging for endometrial cancer: Robotics or laparoscopy? Gynecol Oncol 2009;113:36-41.