The Canarias Einstein Ring: a Newly Discovered Optical Einstein Ring

M. Bettinelli1,2,3*, M. Simioni1,2,3, A. Aparicio2,1, S. L. Hidalgo1,2, S. Cassisi4,1, A. R. Walker5, G. Piotto3,6, F. Valdes7

1Instituto de Astrofísica de Canarias, Via Láctea S/N, E-38200 La Laguna, Tenerife, Spain
2Department of Astrophysics, University of La Laguna, E-38200 La Laguna, Tenerife, Canary Islands, Spain
3Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy
4INAF-Osservatorio Astronomico di Teramo, Via M. Maggini, I-64100 Teramo, Italy
5Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
6INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
7National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85719, USA

*E-mail: mbettine@iac.es, marghebettinelli@gmail.com

Accepted 2016 May 12. Received 2016 April 18; in original form 2016 February 18.

ABSTRACT

We report the discovery of an optical Einstein Ring in the Sculptor constellation, IAC J010127-334319, in the vicinity of the Sculptor Dwarf Spheroidal Galaxy. It is an almost complete ring (\(\sim 300''\)) with a diameter of \(\sim 4.5\) arcsec. The discovery was made serendipitously from inspecting Dark Energy Camera (DECam) archive imaging data. Confirmation of the object nature has been obtained by deriving spectroscopic redshifts for both components, lens and source, from observations at the 10.4 m Gran Telescopio CANARIAS (GTC) with the spectrograph OSIRIS. The lens, a massive early-type galaxy, has a redshift of \(z = 0.581\) while the source is a starburst galaxy with redshift of \(z = 1.165\). The total enclosed mass that produces the lensing effect has been estimated to be \(M_{\text{tot}} = (1.86 \pm 0.23) \times 10^{12} M_\odot\).

Key words: galaxies; evolution – galaxies: distances and redshifts – galaxies: elliptical and lenticular, cD – galaxies: starburst – gravitational lensing: strong

1 INTRODUCTION

Strongly lensed galaxies are very important in the study of galaxy formation and evolution because they permit derivation of important physical parameters such as the total mass of the lensing object, without any assumption on the dynamics. Cases in which the Einstein ring (ER) is almost complete and the central lensing galaxy isolated are rare; these permit constraining with great accuracy the enclosed mass within the projected Einstein radius \(\Theta_E\) (Kochanek et al. 2001). Miralda-Escudé & Lehár (1992) predicted several \(10^6\) optical ER to be detectable over the whole sky, down to a magnitude limit of \(B = 26\) and a lower limit for the enclosed mass of \(M \sim 5 \times 10^{11} M_\odot\). This notwithstanding, despite extensive surveys (see for example Bolton et al. 2008; Stark et al. 2013) only a few tens of complete or nearly complete optical ERs have been identified so far, and among these objects, only a few show a close similarity, in morphology and elongation of the ring, to the one we discuss in the present work.

The first ER to be discovered is the radio source MGC1131+0456 (Hewitt et al. 1988). Warren et al. (1996) reported the discovery of a partial ER (\(\sim 170''\)) with \(\Theta_E \sim 1.35\) arcsec; the background OII emitting galaxy at \(z = 3.595\) is lensed by an elliptical massive galaxy at \(z = 0.485\). This is the first known case in the literature of a ER discovered at optical wavelengths. Cabanac et al. (2005) discovered an almost complete ER (\(\sim 260''\)) with \(\Theta_E \sim 1.48\) arcsec produced by a massive and isolated elliptical galaxy at \(z = 0.986\). The source galaxy is a starburst at \(z = 3.773\). Then, a similar ER to the one we report in this Letter, in morphology, but not in the physics of the source galaxy, a BX galaxy, is the so called “Cosmic Horseshoe” (Belokurov et al. 2007); the ring extension is similar to the one we report here, (\(\sim 300''\)), but the Einstein radius is double, \(\Theta_E \sim 5\) arcsec; the lensing galaxy has a huge mass of \(\sim M = 5.4 \times 10^{12} M_\odot\). Other partial ER discovered recently are: the “Cosmic Eye” (Smail et al. 2007), the “8 o’clock arc” (Allam et al. 2007) and the “Clone” (Lin et al. 2009).

Here we report the discovery of IAC J010127-334319, an optical, almost complete ER, that we refer to as the “Canarias Einstein Ring”, noticed as a peculiar object in DECam images. No previous reference to the object has been found in the literature. Subsequently we observed it with OSIRIS@GTC for a spectroscopic confirmation of its nature.
Table 1. List of parameters

Lens	Right ascension(J2000): 01h01m27.83s
	Declination(J2000): −33°43′19.66″
	Redshift: 0.581 ± 0.001
	Surface brightness Lens \((g, r)\) [mag arcsec\(^{-2}\)]: 25.2, 22.2
	Apparent magnitude \((g, r)\): 23.61, 21.48
	Absolute magnitude \((g, r)\): −21.05, −23.18

Ring	Redshift: 1.165 ± 0.001
	Einstein radius: 2.16″ ± 0.13
	Enclosed mass \([10^{12} M_\odot]\): 1.86 ± 0.23
	Surface brightness A \((g, r)\) [mag arcsec\(^{-2}\)]: 23.7, 22.9
	Surface brightness B \((g, r)\) [mag arcsec\(^{-2}\)]: 23.9, 23.2
	Surface brightness C \((g, r)\) [mag arcsec\(^{-2}\)]: 23.7, 23.0
	Apparent magnitude \((g, r)\): 20.94, 20.12

In this Letter we provide the first physical parameters of this system. In the following discussion we assume a flat cosmology with \(\Omega_m = 0.3\), \(\Omega_\Lambda = 0.7\) and \(H_0 = 70\) km s\(^{-1}\) Mpc\(^{-1}\).

2 DISCOVERY

The serendipitous discovery of IAC J010217-334319 was made while performing photometry on stacked images, in \(g\) and \(r\) filters, taken with DECam (Flaugher et al. 2015) at the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory (CTIO), reduced with the NOAO Community Pipeline (Valdes et al. 2014) and obtained from the NOAO Science Archive (Seaman et al. 2002). The total exposure time is 7680 s in the \(g\) filter and 5700 s in the \(r\) filter. Figure 1 shows the resulting color composite image: it is evident that two components, ring and lensing galaxy, have been detected and in particular their spectra were not overlapping. The position of the slit was such that the spectra obtained for the ring refers to peak B.

For the pre-reduction we have used the OSIRIS Offline Pipeline Software (OOPS); sky subtraction and flux calibration were performed using IRAF\(^1\). We performed wavelength calibration using standard HgAr+Ne+Xe arc lamps; the resulting error on wavelength determination has been measured to be consistent with the above spectral resolution. We corrected the extracted spectra for instrumental response using observations of the spectrophotometric standard star GD140, a white dwarf, obtained the same night. The fluxes of this standard star are available in Massey et al. (1988).

4 ANALYSIS AND DISCUSSION

In order to derive the redshifts for the two components we noted the strong emission line in the source spectrum and the 4000 Å Balmer discontinuity in the lens spectrum. This led us to choose template models for a starburst galaxy and an early-type galaxy respectively, as specified below. Following line identification, we determined redshifts.

4.1 Lens

Using the template spectra by Kinney et al. (1996) results that the spectrum of the lens galaxy fits well the spectrum of a S0 galaxy (see Figure 2), a typical early-type galaxy characterized by a large increase in flux from the UV part of the spectrum to the optical. The 4000 Å Balmer discontinuity at \(\sim 6330\) Å is noticeable. The redshift of the lens galaxy is \(z = 0.581 ± 0.001\) and it has been determined from the measurements of: \(H\gamma\) \(λ3835.4\), Ca K \(λ3933.7\), Ca \(\Pi\) \(λ3968.5\), H\(\delta\) \(λ4141.8\), G-band \(λ4307.7\), Mg-b2 \(λ5172.7\), Mg-b1 \(λ5183.6\) (marked red features from left to right in Figure 2 middle panel).

\(^{1}\) IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
Figure 1. Composite g, r field of view of 2.5 arcmin x 2.5 arcmin centered on the object (on the left), North is up, while East points left; a zoom of the object with overplotted the best fitting circle, the slit position and width are also plotted as green lines (right upper panel); counts from photometry along the best fit circle of the ring (lower right panel): the measured sky value is indicated by the red solid line, the 1σ value is indicated by the red dashed one.

4.2 Source

For the source galaxy we used the template spectra by Calzetti et al. (1994) and we found that the spectrum best fitting our observed spectrum corresponds to a starburst galaxy in the case of clumpy scattering slab, where it is assumed that clumped dust is located close to the source of radiation. In such circumstances, Calzetti et al. (1994) show that scattering into the line of sight dominates over absorption by the dust, providing a significant positive contribution to the emerging radiation. This template spectrum fits well the strong O\textsc{ii} λ3727 emission line. We also identified the following lines: Fe\textsc{ii} λ2344.0, Fe\textsc{ii} λ2600.0, H\textsc{i} 11 λ3770.6, O\textsc{ii} λ3727.3, H\textsc{i} 10 λ3797.9 (marked blue features from left to right in Figure 2 upper panel). According to these features, we derived for the source galaxy a redshift of \(z = 1.165 \pm 0.001 \). We note that the selected slit position enable us to extract only the portion of the spectrum corresponding to peak B (see Figure 1); this notwithstanding, the O\textsc{ii} emission coming from the opposite side of the ring can be easily noted in our spectra.

4.3 Enclosed Mass Derivation

The strong circular symmetry of our object (see Figure 1) suggests that it can be approximated to the case of a circularly symmetric lens, with source and lens in the line of sight. Under these assumptions, for an arbitrary mass profile \(M(\Theta) \), (i.e. without assuming any particular model for the potential), we can apply the following relation (Narayan & Bartelmann 1996) and solve it for the mass.

\[
\Theta_E^2 = \frac{4G}{c^2} M(\Theta) \frac{d_{LS}}{d_L d_S} \tag{1}
\]

Here \(\Theta_E \) is the Einstein radius in radians; \(M(\Theta) \) is the mass enclosed within the Einstein radius; \(d_{LS}, d_L, d_S \) are the angular diameter distances respectively of source-lens, lens-observer and source-observer. These last quantities are related to the relative comoving distances and, in general, this relation depends on the assumed curvature of the Universe (Hogg 1999). In our case \(\Omega_K = 0 \) has been assumed and the resulting angular diameter distances are \(d_L = 951 h^{-1} \text{Mpc}, d_S = 1192 h^{-1} \text{Mpc} \) and \(d_{LS} = 498 h^{-1} \text{Mpc} \). We calculated a total mass \(M_{\text{tot}} = (1.86 \pm 0.23) \cdot 10^{12} M_\odot \) where the error on the mass (12%) is overwhelmingly due to the measurement error in the determination of the Einstein radius, that we have estimated to be 0.5 px which corresponds to 0.135 arcsec. The error on the redshift derives from the error estimated on the wavelength calibration which is \(\sim 5 \text{ Å} \). This value is consistent with the spectral resolution (4.96 Å px\(^{-1}\)) of the grating R300B that we used.

Under the assumption of a singular isothermal sphere (SIS) it is possible to give an estimate of the magnifica-
Figure 2. Top panel: source galaxy spectrum (in blue) with overplotted a starburst template spectrum by Calzetti et al. (1994). Middle panel: lens galaxy spectrum (in red) with overplotted an early-type galaxy template by Kinney et al. (1996). Bottom panel: measured wavelength displacement between observed and laboratory line position for the selected features (see text for details).

Figure 3. Best fitting SIE model obtained with the gravlens/lensmodel software. On the left (image plane): the source images positions are plotted as blue triangles, the fitted position recovered by the software as blue squares, the red central dot represents the position of the lensing galaxy and the red curve is the critical curve. On the right (source plane): the blue square represent the calculated position of the source; the caustics are shown in red.

We report the discovery of an almost complete ($\sim 300^\circ$) circular optical Einstein ring in the constellation of Sculptor. The gravitational lens is a massive luminous red galaxy at $z = 0.581$. The source galaxy is a starburst at redshift $z = 1.165$; its spectrum is dominated by a strong O\textsc{ii} emission line. Using these redshift determinations and the Einstein radius $\Theta_E = 2.38$ arcsec, we calculated the total enclosed mass that produced the lensing effect: $M_{\text{tot}} = (1.38 \pm 0.23) \times 10^{12}$ M_{\odot}.

All the parameters we determined for IAC J010127-334319 are listed in Table 1.
ACKNOWLEDGEMENTS

The authors thank the anonymous referee for the constructive comments that significantly improved the manuscript. The authors are grateful to all the GTC staff and in particular to Dr. A. Cabrera-Lavers for his support in refining the spectroscopical observations during the Phase-2. The authors also thank Dr. J. Falcón-Barroso for the helpful discussion.

This Letter is based on observations made with the GTC telescope, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, under Director’s Discretionary Time.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the DOE and NSF (USA), MISE (Spain), STFC (UK), HEFCE (UK), NC SA (UIUC), KICP (U. Chicago), CCAPP (Ohio State), MIFPA (Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), MINECO (Spain), DFG (Germany) and the collaborating institutions in the Dark Energy Survey, which are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NOAO, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, and Texas A&M University.

M.B., M.S., A.A., S.L.H., S.C. and G.P. acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) under grant AYA2013-42781.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Allam, S. S., Tucker, D. L., Lin, H., et al. 2007, ApJ, 662, L51
Belokurov, V., Evans, N. W., Moiseev, A., et al. 2007, ApJ, 671, L9
Bolton, A. S., Burles, S., Koopmans, L. V. E., et al. 2008, ApJ, 682, 964
Cabanac, R. A., Valls-Gabaud, D., Jaunsen, A. O., Lidman, C., & Jerjen, H. 2005, A&A, 436, L21
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Cepa, J. 1998, Ap&SS, 263, 369
Chilingarian, I. V., & Zolotukhin, I. Y. 2012, MNRAS, 419, 1727
Eisenstein, D. J., Annis, J., Gunn, J. E., et al. 2001, AJ, 122, 2267
Hewitt, J. N., Turner, E. L., Schneider, D. P., Burke, B. F., & Langston, G. I. 1988, Nature, 333, 537
Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150
Hogg, D. W. 1999, arXiv:astro-ph/9905116
Keeton, C. R. 2001, arXiv:astro-ph/0102340

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.