Bifurcation and Chaos Analysis for a Discrete Ecological Developmental Systems

Xiaowei Jiang (✉ jxw07045136@126.com)
School of Automation, China University of Geosciences, Wuhan 430074, P.R.China

Chaoyang Chen
Hunan University of Science and Technology

Xian-He Zhang
Hubei Normal University

Ming Chi
Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology

Huaicheng Yan
East China University of Science and Technology

Original Research

Keywords: Ecological developmental systems, Flip bifurcation, Neimark-Sacker bifurcation, Stability, Chaos

DOI: https://doi.org/10.21203/rs.3.rs-173722/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

This work concentrates on the dynamic analysis including bifurcation and chaos of a discrete ecological developmental systems. Specifically, it is a prey-predator-scavenger (PPS) system, which is derived by Euler discretization method. By choosing the step size h as a bifurcation parameter, we determine the set consist of all system's parameters, in which the system can undergo flip bifurcation (FB) and Neimark-Sacker bifurcation (NSB). The theoretical results are verified by some numerical simulations. It is shown that the discrete systems exhibit more interesting behaviors, including the chaotic sets, quasiperiodic orbits, and the cascade of period-doubling bifurcation in orbits of periods-2, 4, 8, 16. Finally, corresponding to the two bifurcation behaviors discussed, the maximum Lyapunov exponent is numerically calculated, which further verifies the rich dynamic characteristics of the discrete system.

Full-text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures

Figure 1

(a) Bifurcation diagram of system (2) in (h; x) plane with the initial value (0.4; 0.2; 0.3); (b) The largest Lyapunov exponents associated with (a).
Figure 2

(a) Local amplification corresponding to Fig.1 for h 2 [0.18; 0.205]; (b) The largest Lyapunov exponents associated with (a).

Figure 4

(a) Bifurcation diagram of system (2) in (h; x) plane with the initial value (1.5; 0.2; 0.4); (b) The largest Lyapunov exponents.
Figure 6

Phase portrait for different values of bifurcation parameter h.