We report nine travellers with confirmed chikungunya virus infection, returning from tourist areas of Thailand to Sweden, Switzerland, the United Kingdom, Romania, Israel and France, diagnosed in January and February 2019. These sentinel tourists support the intensification of chikungunya virus circulation in Thailand and highlight the potential for importation to areas at risk of local transmission.

Since the start of 2019, the EuroTravNet/GeoSentinel and TropNet data collection networks for the surveillance of travel-related morbidity have identified nine patients with chikungunya virus (CHIKV) infection imported from Thailand to Sweden, Switzerland, the United Kingdom (UK), Romania, Israel and France. In comparison, the last CHIKV infection reported to EuroTravNet/GeoSentinel in travellers from Thailand was a suspected case in Romania in January 2018. Only three other cases were reported to this network during the past 3 years from Thailand, and none in travellers returning to Europe. Here, we present the clinical and travel data of eight travellers notified to EuroTravNet/GeoSentinel and one notified to TropNet with confirmed chikungunya disease imported from Thailand within 2 months.

Characteristics of travellers returning from Thailand with chikungunya virus infection

The average length of stay of the nine travellers in Thailand was 22 days (range: 10–35 days) and the average delay between arrival in Thailand and onset of chikungunya symptoms was 16 days (range: 5–22 days). Places visited by the travellers in the period before chikungunya onset are shown in the Figure.

The patients’ median age was 37 years (range: 14–73 years), and seven of the nine were female. Underlying conditions were reported in three patients (Table). Acute symptoms included fever and joint pains in all patients, seven had a rash, five reported headache, two had lymphadenitis, five developed oedema or joint swelling (acute thrombophlebitis was excluded in Case 3). Case 8 experienced malaise, fever and loss of consciousness and subsequent head trauma because of the fall. Three patients were hospitalised in Thailand (Cases 1, 3 and 8) and one after returning to their home
Figure

Places of exposure visited by travellers before chikungunya virus infection, Thailand, January–February 2019 (n = 9)

Source: Map from Wikimedia Commons, the free media repository: https://commons.wikimedia.org/wiki/File:Thailand_Physiography.jpg
Table
Overview of nine confirmed chikungunya cases among travellers returning from Thailand, by date of onset, January–February 2019 (n = 9)

Case	Reporting country	Places visited	Period of exposure	Age	Underlying conditions	Date of onset	Clinical acute symptoms	Outcome	Recovery status as at 22 Feb 2019	Diagnosis method (positive tests)
1	Sweden	Koh Lanta	27 Oct–28 Nov 2018	75 years	Yes	19 Nov 2018	Fever and arthralgia	Persistent arthralgia and arthritis in fingers, wrists and right foot; pains in upper arms; difficulties with walking and activities of daily life	No (chronic chikungunya)	Anti-CHIKV IgM ELISA (InBios, Seattle, US) and IgG (in-house IF) in week 6 at Karolinska University Hospital, Stockholm
2	Sweden	Koh Lanta	16 Dec 2018–2 Jan 2019	30 years	None	4 Jan 2019	Fever, lymphadenitis, arthralgia, myalgia, headache and diffuse rash	Persistent arthralgia, difficulties walking long distances, special regime of half-time work	No	Anti-CHIKV IgM ELISA (InBios, Seattle, US) and IgG (in-house IF) on day 14 at Karolinska University Hospital, Stockholm
3	Switzerland	Bangkok, Phuket, Koh Yao Noi, Kho Phi, Chang Mai from 8 Jan 2019	18 Dec 2018–12 Jan 2019	50 years	Yes	5 Jan 2019	4-day fever, polyarthralgia, myalgia, rash and asthenia	Persistent incapacitating joint pain and oedema in lower limbs	No	Anti-CHIKV IgM and IgG ELISA (Euroimmun, Lübeck, Germany) on day 18 at Geneva University Hospital
4	Romania	Phuket and Kata Beach	3–13 Jan 2019	15 years	None	12 Jan 2019	2-day fever, arthralgia mainly involving the hands, axillary lymphadenitis and rash on the upper and lower extremities	Recovered	Yes	CHIKV RT-PCR [1] on day 2, anti-CHIKV IgM and IgG ELISA (Euroimmun, Lübeck, Germany) on day 19 at Cantacuzino Institute, Bucharest
5	United Kingdom	Bangkok, Khao Lak, Khao Sok, mainland Krabi and Koh Lipe	25 Dec 2018–15 Jan 2019	25 years	None	13 Jan 2019	Fever, ankle pain and mild generalised headache	Persistent arthralgia	No	CHIKV RT-PCR [1] and anti-CHIKV IgM ELISA (Euroimmun, Lübeck, Germany) on day 4 at Hospital for Tropical Diseases, London
6	United Kingdom	Bangkok, Khao Lak, Khao Sok, mainland Krabi and Koh Lipe	25 Dec 2018–15 Jan 2019	35 years	None	14 Jan 2019	Fever, joint pain in ankles and back, generalised headache, transient rash on chest and widespread rash on day 8	Persistent arthralgia	No	CHIKV RT-PCR on day 3 [1] at Hospital for Tropical Diseases, London
7	Israel	Koh Samui	13 Jan–3 Feb 2019	20 years	None	18 Jan 2019	Fever, rash and joint pain	Persistent arthralgia	No	Anti-CHIKV IgM and IgG ELISA (Euroimmun, Lübeck, Germany) on day 24 at Sheba Medical Center, Tel Aviv
8	France	Bangkok, Koh Lanta and Koh Samui	15–31 Jan 2019	35 years	Yes	25 Jan 2019	3-day fever, headache, nausea, vomiting, malaise, rash and joint pain	Acute left ankle synovitis requiring crutches to walk on day 8	Yes	CHIKV RT-PCR [1] on day 7, anti-CHIKV IgM ELISA (Euroimmun, Lübeck, Germany) on day 10 at CNR IHU-Mediterranean Infection, Marseille
9	Switzerland	Phuket	9 Jan–13 Feb 2019	60 years	None	25 Jan 2019	3-day fever, chills, headache, myalgia, arthralgia, abdominal pain, 3-day itching generalised rash, dysgeusia	Swelling joint pain in both feet and knees, neck pains and irritation of the oesophagus	No	Anti-CHIKV IgM and IgG, ELISA (Euroimmun, Lübeck, Germany) on day 24 at Schweizerisches Tropen-Institut, Basel

CHIKV: chikungunya virus; IF: immunofluorescence; IgG: immunoglobulin G; US: United States.

* Ages are rounded to the nearest five-year age group.

* Underlying conditions that occurred: hypothyroidism (taking levothyroxin), hypertension (treated) and pancreas resection; familial hypercholesterolaemia; beta thalassaemia and carpal tunnel syndrome.
country (Case 4); the remaining five were outpatients. All nine cases were confirmed after their return at the laboratory of the reporting site as detailed in the Table. Alternative diagnoses including arboviral infection with dengue and Zika viruses as well as malaria were ruled out at the time of chikungunya diagnosis using smear tests, dengue virus NS1-antigen, RT-PCR and/or serological tests depending on the delay since onset of symptoms and using tests referenced at the different diagnostic laboratories mentioned in the Table.

Eight of the nine CHIKV-infected travellers received non-steroidal anti-inflammatory drugs (NSAID) for persistent arthralgia. Case 9 was treated with intravenous corticosteroids at the acute stage in Thailand. Only two travellers completely recovered within 3 weeks (Case 4 and Case 8). In contrast, the woman in her 70s (Case 1) developed post-chikungunya chronic rheumatism (lasting more than 3 months). She is heavily impaired in her activities of daily life and has been referred to rheumatology for evaluation.

Simultaneous case of dengue infection imported from Thailand

A teenage sibling travelling with Case 4 developed fever 4 days before leaving Thailand, followed by a petechial rash, mild arthralgia at the acute stage and mild axillary lymphadenitis. On the day after return to their country of residence, NS1 antigen was positive for dengue virus and RT-PCR for dengue-1 virus was positive in urine while RT-PCR and serology for CHIKV-infection were negative in serum [1]. Their parents travelling with them have remained asymptomatic.

Discussion

Beginning in October 2018, the Thai Ministry of Public Health reported a major increase in the number of chikungunya cases in the country. In November alone, 1,132 cases were reported, and by 10 December 2018, this had risen to 2,143 cases, compared with a total of 10 cases in 2017 [2]. From 1 January to 10 February 2019, 1,652 patients from 17 provinces were reported; mostly affecting Phuket, Pattani, Songkhla, Narathiwat and Phang Nga provinces, with the highest morbidity rate in the southern region [3].

We suspect that all infections in our traveller case series were acquired in southern Thailand. For people who develop symptomatic chikungunya illness, the incubation period is typically 4–7 days (range: 1–12 days) [4]. Bangkok was the point of entry (airport) with a short initial stop for Cases 3, 5, 6 and 8 who developed first symptoms, respectively, 18, 19, 20 and 11 days after their arrival. Case 3 visited Chang Mai in the north of Thailand after the onset of chikungunya symptoms. Two patients developed chikungunya symptoms after spending at least 2 days in Phuket, two others in Koh Samui, and two others in Koh Lanta. One patient became symptomatic after returning to his country of residence.

These nine confirmed cases demonstrate that travellers are currently at risk of CHIKV infection in many tourist areas in southern Thailand. Only one of them had received pre-travel advice. Furthermore, in September 2018, there was a report to EuroTravnet/GeoSentinel of a suspected chikungunya case in a traveller returning from Malaysia to Spain, and chikungunya cases are currently reported from the Malaysian Ministry of Health [5], indicating an extension of this outbreak to neighbouring Asian countries. Given the global traffic to South East Asia, and Thailand in particular [6], there is a need to raise awareness to travellers and healthcare providers about the risk of arboviral diseases.

As confirmed by local sources [7], Case 4 and her sibling attest that CHIKV and the endemic dengue virus are co-circulating in Thailand. The weekly number of dengue fever cases in Thailand seems similar to those recorded in 2018 at the same period with around 150 cases per week in the South [8]. Furthermore, 15 dengue cases have been recorded in the GeoSentinel database in travellers returned from Thailand since the start of 2019.

Prescription of NSAID for suspected arboviral disease imported from South East Asia should be contraindicated when it is not possible to differentiate between dengue and chikungunya viruses, to avoid haemorrhagic complications. Besides, these are known to be more severe in patients with co-infections [9,10]. In addition, careful attention to adequate hydration is essential to minimise feelings of light-headedness and malaise [4].

A distinguishing characteristic of CHIKV infection, in contrast to dengue, is prolonged musculoskeletal disorders [11]. In this case series, all adult women developed long-lasting joint pains; these symptoms were worst in the oldest case (Case 1) and in Case 9 who was treated early in her disease course with corticosteroids, which are not recommended because of the rebound effect after withdrawal [4]. The management of persistent pains relies mainly on a complete therapeutic dose of NSAID after the acute febrile stage, in combination with physical and rehabilitation medicine [4]. Populations at higher risk of complications, including women older than 40 years, persons with underlying rheumatic diseases and athletes, who are planning travel to Thailand and neighbouring countries, should be made aware of the risk of disabilities [11] and of the need for all-day preventive measures against vectors using physical (clothing, bed nets) and chemical (topical repellents with DEET and permethrin impregnations) barriers [12].

The competent vector *Aedes albopictus* has become widely established in some parts of Europe and Israel since 1979. In 2006, CHIKV was first imported into Europe from outbreaks in the Indian Ocean [13]. Consequently, these locations are at risk of introduction and potential epidemics [14,15].
References

1. Pastorino B, Bessaud M, Grandadam M, Murri S, Tolou H, Peyrefitte CN. Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J Virol Methods. 2005;124(1-2):65-71. https://doi.org/10.1016/j.jviromet.2004.11.002 PMID: 15664052

2. Bureau of Epidemiology, Ministry of Public Health, Thailand (MoPH). National disease surveillance (Report 506, 4861): Chikungunya. Mueang Nonthaburi District: MoPH; 2018. Available from: http://www.boe.moph.go.th/boedb/surdata/506/wk/4861/en.pdf

3. Bureau of Epidemiology, Ministry of Public Health, Thailand (MoPH). National disease surveillance (Report 506, 5262): Chikungunya. Mueang Nonthaburi District: MoPH; 2019. Available from: http://www.boe.moph.go.th/boedb/surdata/506/wk/5262/en_0526_en.pdf

4. Simon F, Javelle E, Cable A, Bouquillard E, Troisgros O, Gentile G, et al. French guidelines for the management of chikungunya (acute and persistent presentations). November 2014. Med Mal Infect. 2015;45(7):243-6. https://doi.org/10.1016/j.medmal.2015.05.007 PMID: 26195684

5. Malay Mail. Health DG: Selangor records highest number of Chikungunya cases. Petaling Jaya: Dato’ Siew Ka Wai; 2019. Available from: https://www.malaymail.com/news/malaysia/2019/02/09/health-dg-selangor-records-highest-chikungunya-cases/1721775

6. Gaessler D, Kester J, Paulose H, Alizada H, Valentin B. Global travel patterns: an overview. J Travel Med. 2017;24(4). https://doi.org/10.1093/jtm/tax007 PMID: 28637267

7. Bureau of Epidemiology, Ministry of Public Health, Thailand (MoPH). National disease surveillance (Report 506, 0362): Dengue fever. Mueang Nonthaburi District: MoPH; 2019. Available from: http://www.boe.moph.go.th/boedb/surdata/506/wk/0362/en_0362_en.pdf

8. Bureau of Epidemiology, Ministry of Public Health Thailand (MoPH). National disease surveillance (Report 506, 3861): Dengue fever. Mueang Nonthaburi District: MoPH; 2018. Available from: http://www.boe.moph.go.th/boedb/surdata/506/wk/3861/en.pdf

9. Edwards T, Signor LDC, Williams C, Donis E, Cuevas LE, Adams ER. Co-infections with chikungunya and dengue viruses, Guatemala, 2015. Emerg Infect Dis. 2016;22(1):2003-7. https://doi.org/10.3201/eid2201.150925 PMID: 27767914

10. Rosso F, Pacheco R, Rodríguez S, Bautista D. Co-infection by Aedes aegypti and Aedes albopictus. Int J Trop Med Infect. 2016;33(4):464-7. https://doi.org/10.4067/ S0716-10182016000400013 PMID: 27905632

11. van Aalst M, Nelen CM, Goorhuis A, Stijnis C, Grobusch MP. Long-term sequelae of chikungunya virus disease: A systematic review. Travel Med Infect Dis. 2017;15:8-22. https://doi.org/10.1016/j.tmaid.2017.01.004 PMID: 28636938

12. Public Health Agency of Canada. CATMAT Statement: Measures to Prevent Arthropod Bites. Canada Communicable Disease Report Monthly (CCDR). 2012;38:ACS-3. Available from: https://www.canada.ca/en/public-health/services/reports-publications/canada-communicable-disease-report-cdcr/monthly-issue/2012-38-statement-on-personal-protective-measures-prevent-arthropod-bites.html

13. Pfeffer MP, Löschter T. Cases of chikungunya imported into Europe. Euro Surveill. 2006;11(3):E060316.2. PMID: 16807489

14. Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Trop Med Infect. 2018;67:25-35. https://doi.org/10.1016/j.ijtmm.2017.11.026 PMID: 29196275

15. Leshem E, Bin H, Shalom U, Perkin M, Schwartz E. Risk for emergence of dengue and chikungunya virus in Israel. Emerg Infect Dis. 2012;18(2):345-7. https://doi.org/10.3201/eid1802.111645 PMID: 22305194

16. Vega-Rúa A, Lourenço-de-Oliveira R, Mousson L, Vazeille M, Fuchs S, Yébakima A, et al. Chikungunya virus transmission

Conclusion

These nine cases, occurring over a period of 2 months, indicate a rise in the number of travel-associated CHIKV infections in southern Thailand with a risk of importation to Europe. At the same time, they illustrate the long-term burden of chikungunya infection. Awareness among clinicians, information and appropriate management of travellers returning from Thailand and neighbouring countries, as well as early detection of imported cases and immediate mosquito control strategies, are vital for preventing CHIKV dissemination and related morbidity.

Acknowledgements

We would like to acknowledge Geta VancEA; Cornelia-Svetlana Ceianu from ‘CanTaczucino’ National Medico-Military Institute for Research and Development, Romania; Gilda Grad and Isabelle Leparco-Goffart from the French National Reference Laboratory for arboviruses, Marseille, France; all participating TropNet’s, EuroTravNet’s and or Geosentinel Sites’ Directors including in alphabetical order Francisco Chappuis, Andreas Neumayr, Adrian Sanchez and Eli Schwartz; and Julien Ripamonti for his help with the map.

The molecular assay in the Romanian patient was funded through CCCDI-UERIFISCDI project PN-III-P1.2-PCCDI-2017-0005/2018. Geosentinel, the Global Surveillance Network of the International Society of Travel Medicine (ISM), is supported by a cooperative agreement (U50CK00189) from the Centers for Disease Control and Prevention, International Society of Travel Medicine, and (U50CK00189) from the Centers for Disease Control and Prevention, International Society of Travel Medicine, and Public Health Agency of Canada.

Conflict of interest

None declared.

Authors’ contributions

Carole Eldin, Simin-Aysel Florescu, Corneliu Popescu, Ani Ioana Cotar, Hilimir Asgeirsson, Gilles Eperon, Eyal Leshem, Shilan Jmor, Victoria Johnston, Johannes Blum, Israel Molina, Vanessa Field and Nancy Pietroski provided travel history as well as clinical and biological information on the travelers. Emilie Javelle created the first draft of the manuscript and modified it according to the editorial team’s comments. Emilie Javelle, Vanessa Field, Davidson H. Hamer and Philippe Gautret reviewed and edited the manuscript. All authors provided input and reviewed the final version of the manuscript.
potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl Trop Dis. 2015;9(5):e0003780. https://doi.org/10.1371/journal.pntd.0003780 PMID: 25993633

17. Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science. 1960;131(3407):1102-3. https://doi.org/10.1126/science.131.3407.1102 PMID: 14399343

18. Rianthavorn P, Prianantathavorn K, Wuttirattanakowit N, Theamboonlers A, Poovorawan Y. An outbreak of chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. Int J Infect Dis. 2010;14(Suppl 3):e161-5. https://doi.org/10.1016/j.ijid.2010.01.001 PMID: 20417442

19. Vairo F, Mammone A, Lanini S, Nicastrì E, Castilletti C, Carletti F, et al. Local transmission of chikungunya in Rome and the Lazio region, Italy. PLoS One. 2018;13(12):e0208896. https://doi.org/10.1371/journal.pone.0208896 PMID: 30576334

20. Calba C, Guerbois-Galla M, Franke F, Jeannin C, Auzet-Caillaud M, Grard G, et al. Preliminary report of an autochthonous chikungunya outbreak in France, July to September 2017. Euro Surveill. 2017;22(39):17-00647. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00647 PMID: 29019313

License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2019.