Optimization of Teak Wood Furniture Production Using Linear Programming Method at Sumenep East Java Indonesia

Siti Nurul Afiyah¹, M. Syaifuddin², Nur Lailatul Aqromi³

¹,²,³ Institut Teknologi dan Bisnis Asia Malang, Indonesia
Correspondence: noeroel@asia.ac.id

Abstract
3R Furniture company produces some products, i.e., doors, chairs, cabinets, tables, and frames. This company has some problems with maximizing production and minimizing the cost of production. The 3R furniture company has not managed demand properly because it has not been able to synchronize the company's available resources with fulfilling consumer demand. This study aims to determine the number of products produced by the "3R" Furniture Company by utilizing available resources and finding the maximum profit obtained by the "3R" Furniture Company in Sumenep Regency. This research was conducted at the "3R" Furniture Company in Sumenep Regency, especially on Kangean Island. Linear programming is an operational research model usually used to solve optimization problems. The simplex method is a method that can be used in linear programming, which serves to find optimal solutions. This research aims to optimize the benefits of 3R Furniture company. The respondents consisted of 4 people, one business owner and three labor representatives from the "3R" Furniture business. The results showed that the number of products produced to obtain maximum profit was 30 units of tables by utilizing existing resources. The maximum gain from creating a table is Rp. 20999.998.

INTRODUCTION

In Kangean Island, the furniture company, namely 3R furniture, processed wood products into doors, chairs, cabinets, tables, and frames. The wood used as the primary material for production is teak wood. The company was founded on a land area of 900 M2 in 2005. The owner of this industry is Mr. Abdurrahman, who has pioneered and developed this industry until now. This company has some problems maximizing the benefit and minimizing the production cost. Determining the amount of production, a plan is needed. In furniture companies 3R, the capacity of production decisions still does not consider labor capacity and material availability.

For example, in the case of raw materials, the company cannot produce certain types because the raw materials are unavailable and are still waiting for delivery. Because the company uses a piece-rate system, the results obtained are different for each worker, both in terms of products produced and time. The availability of company resources at the 3R furniture company is a problem in production planning, which influences the expected profit and is hard to estimate. The 3R furniture company has not managed demand properly because it has not been able to synchronize the company's available resources with fulfilling consumer demand. The optimization of the production process cannot be achieved, and profits cannot be predicted correctly and precisely.

Production is the creation of products (goods/services). It also can be interpreted as an activity or process of transforming inputs into outputs. Operational management is a process or action of making products by transforming inputs into results. Production and operations
management can also be defined as managing and coordinating various resources' effective and efficient use to create products or improve their value[1].

The Linear Programming method is an option that will determine the amount of production of each furniture product so that the optimization of the production process can be achieved precisely and adequately. Several previous studies have discussed the implementation of this linear programming[2], [3], [12], [13], [4]–[11].

The application of this linear programming also determines how many units must be produced by the 3R furniture industry located in Kangean. This furniture industry has several cabinets with the same primary raw material: teak wood. The products made include Decorative Cabinets, Tulet Hanging Cabinets, Chairs, Doors, Windows, Frames, and Tables. These seven products are the most often ordered from customers in large or small quantities. Based on the problems above, it is necessary to research to optimize the production process of furniture products to obtain maximum profit.

METHOD

In this study, data analysis uses a linear programming model simplex method. The simplex method is one of the solutions of linear programming in which the process of finding the solution is by using an iteration path, namely determining the possible point of the goal to be achieved with the help of a table until the optimal solution is obtained. The simplex method begins with one by one feasible point test to determine whether the objective function has achieved optimal results or has not achieved optimal results. When the results obtained from one possible point have not reached optimal results, proceed with the next feasible point, and so on until the objective function accepts optimal results if there is one[12].

The simplex method is a calculation using an iteration path. Before performing iteration calculations, first, change the general form of linear programming to a standard format. Changing the common form begins by changing the equation of the constraint function and adding the initial basis variable to each of the existing constraint functions. The initial basis variable indicates that the activity has not been carried out on the previous resource. The constraint function in general form, even though it is in the form of an equation, must be changed first[14]–[17].

Some things must be considered before changing the general form of simplex into standard form, namely:
1) The inequality with the form \(\leq \) in the general structure of the constraint function is first converted into equation = by adding one slack variable.
2) Change the inequality in general form \(\geq \) into equation = on the constraint function by subtracting one surplus variable.
3) Constraint function with equation = in general form plus artificial variable (artificial variable).

Iterative calculations using the simplex method must be made in tabular form so that the general form that has been converted into standard form is entered into the simplex table in Table 1 [11].

Base Variable	\(x_1 \)	\(x_2 \)	...	\(x_n \)	\(S_1 \)	\(S_2 \)	...	\(S_n \)	\(NK \)
\(Z \)	\(-c_1\)	\(-c_2\)	...	\(-c_n\)	0	0	0	0	0
\(S_1 \)	\(a_{11} \)	\(a_{12} \)	...	\(a_{1n} \)	1	0	0	0	\(b_1 \)
\(S_2 \)	\(a_{21} \)	\(a_{22} \)	...	\(a_{2n} \)	0	1	0	0	\(b_2 \)
...			
\(S_n \)	\(a_{m1} \)	\(a_{m2} \)	...	\(a_{mn} \)	...	1		\(b_m \)	

Copyright © 2022, Numerical: Jurnal Matematika dan Pendidikan Matematika
Print ISSN: 2580-3573, Online ISSN: 2580-2437
$Z = \text{objective function}$

$C_n = \text{coefficient value from objective decision variable } x_n$

$x_n = \text{decision variable to-} n$

$S_n = \text{slack variable to-} n$

$a(mn) = \text{resource requirements m for every } x_n$

$b_m = \text{total resources}$

$n = \text{total decision variable from 1, 2, ... , n}$

$m = \text{total of types of resources used from 1, 2.. m}$

It is necessary to pay attention to the steps in solving the simplex method. These steps are [18]–[20]:

1) Changing the objective function with constraints, after all the objective functions are changed, the objective function is changed to an implicit part,

2) Arrange the equations into tabular form.

3) Selecting a key column, the key column to be determined is seen from the objective function line, with the smallest negative value.

4) Selecting the key row, the key row is determined by looking at the smallest ratio value. The ratio value is obtained by dividing the right and key column values.

5) Changing the value of the key row, the value of the key row is changed by dividing all the values in the key row by the key number then there will be an exit variable and an incoming variable.

6) Change the values in the key row with the formula $\text{New row} = \text{old row} - (\text{coefficient per key column} \times \text{key row value})$

Continue to improve the steps above until optimal results are found. Optimal results will be obtained when the values in the objective function are all positive.

RESULT AND DISCUSSION
Production Optimization System Analysis in 3R Furniture

Figure 1 is a diagram or Flow chart system of 3R furniture where there is some data with different needs or users. The admin can manage all the data. The user only sees the graph, and the cashier can make sales. For Production, 3R Furniture Company faces some constraints. They are raw materials and operational costs. Data processing using linear programming simplex method assisted by WINQSB software shows the results of production optimization obtained by 3R.
Furniture Company. Based on the production optimization process results, the optimal solution consists of a combination of products, resource status, and sensitivity analysis.

Then, based on the production data provided by the 3R Furniture, there are some products released by the 3R furniture such as Wardrobe, Cupboard, Chairs, Door, Table, windows, etc. Furthermore, those items have different costs, production times, and profits.

Research Design

In data collection, the production capacity data, amount of raw material inventory, the composition of materials for production, and processing time of each product have been obtained. Furthermore, these data will be used to create a mathematical model in the form of a linear program that will be completed with the help of the WINQSB program so that output will be produced that provides optimal information and sensitivity analysis from the existing system discussion.

Production Types	X₁	X₂	X₃	X₄	X₅	X₆	X₇
Wardrobe	1500	750	800	300	100	300	150
Cupboard	2050	1700	1500	800	150	750	500
Chairs	600	600	200	200	100	150	150
Doors	8050	3500	2700	1700	400	1300	1500

Table 2. Production Types

Products	Time Estimation of Production per 1 unit (hour/unit)
Wardrobe	56
Cupboard	32
Chairs	56
Door	8
Window	1
Frame	4
Table	8

Table 3. Working Hours

Products	Raw Materials (wood)
Wardrobe	20
Cupboard	17
Chairs	8
Door	3
Window	1.5
Frame	7.5
Table	1.5
Based on the Data above, the Mathematic model will be implemented in a linear program. Then, supporting WINQSB, the solution will be found.

1. Decision Variable

A decision variable is a variable that explains the decisions made entirely. Decision Variable will determine the numbers of Wardrobe, Cupboard, Chairs, Door, Table, windows, frames, and tables that must be produced. Based on the Field research, the variable of decision is as follows:

- \(X_1 = \text{Wardrobe} \)
- \(X_2 = \text{Cupboard} \)
- \(X_3 = \text{Chairs} \)
- \(X_4 = \text{Door} \)
- \(X_5 = \text{Window} \)
- \(X_6 = \text{Frame} \)
- \(X_7 = \text{Table} \)

2. Objectives Function

Objective Function is a function of the decision variable to be maximized or minimized. To assist in making the objective function, it can be seen in Table 3.1, namely the product production table. The objective function is as follows:

\[
Z_{\text{max}} = 3900X_1 + 450X_2 + 200X_3 + 400X_4 + 50X_5 + 100X_6 + 700X_7
\]

3. Constraint Function

Constraint Function consists of Raw Materials availability table, working hours table, and Raw Materials uses table. The Constraint Function is as follows:

a) Raw Materials Constraints
\[
20X_1 + 17X_2 + 8X_3 + 3X_4 + 1.5X_5 + 7.5X_6 + 1.5X_7 \leq 1755
\]

b) Working Hours Constraints
\[
56X_1 + 32X_2 + 56X_3 + 8X_4 + 1X_5 + 4X_6 + 8X_7 \leq 240
\]

Constraints indicate the capacity of the supply of wood raw materials and working hours for production, raw materials as many as (1755 sheets) and working hours (240 hours). So that the complete formulation model for the problem of the optimum production amount to get the optimal production amount of the product produced at the 3R Furniture Company with the simplex method is as follows:

1) Replacing of Objectives Function to Constraints Function

- Objectives Function:
\[
Z_{\text{max}} = -3900X_1 - 450X_2 - 200X_3 - 400X_4 - 50X_5 - 100X_6 - 700X_7
\]

- Constraints Function:
\[
20X_1 + 17X_2 + 8X_3 + 3X_4 + 1.5X_5 + 7.5X_6 + 1.5X_7 + S_1 \leq 1755
\]
\[
56X_1 + 32X_2 + 56X_3 + 8X_4 + 1X_5 + 4X_6 + 8X_7 + S_2 \leq 240
\]
2) Arranging Equation into the table

Table 5. Arranging of Equation

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	NK
Z	-3900	-450	-200	-400	-50	-100	-700	0	0	0
S_1	20	17	8	3	1.5	7.5	1.5	1	0	1755
S_2	56	32	56	8	1	4	8	0	1	240

3) Determining of Pivot Columns

Pivot Columns is a columns that has a row value Z which means as negative for biggest number.

Table 6. Determining of Key Columns

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	RE
Z	-3900	-450	-200	-400	-50	-100	-700	0	0	0
S_1	20	17	8	3	1.5	7.5	1.5	1	0	1755
S_2	56	32	56	8	1	4	8	0	1	240

4) Determining Pivot Row

The smallest index is for determining of Pivot row

\[
\text{Index} = \frac{\text{Right element}}{\text{Pivot column element}}
\]

Table 7. Determining of Key Row

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	RE
Z	-3900	-450	-200	-400	-50	-100	-700	0	0	0
S_1	20	17	8	3	1.5	7.5	1.5	1	0	1755
S_2	56	32	56	8	1	4	8	0	1	240

5) Determining of new Pivot row element

Current Pivot row = Pivot row / Pivot number

Table 8. Determining of new pivot row value

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	NK
Z										
S_1										
X_1	1	4	1	1	1	1	1	0	1	30
	7	7	56	14	7	56	7			

6) Replacing the Pivot row element

Current Row = old row – (Pivot column element * New Pivot row)
Table 9. Iteration table 1

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	NK
Z	0	12450	3700	1100	275	250	37.5	250	0	87.5
S_1	0	39	-12	1	8	85	19	0	-5	11685
X_1	1	4	1	1	1	1	0	1	30	

Table 10. Iteration Table 2

NB	X_1	X_2	X_3	X_4	X_5	X_6	X_7	S_1	S_2	NK
Z	1000	2350	4700	300	37.5	250	0	0	87.5	20999.998
S_1	19	11	-5	3	1313	27	0	1	-3	1710
X_7	7	4	7	1	1/8	1/2	0	1	30	

Figure 2. Simplex Table
The calculation of profit optimization with the simplex method obtained maximum results, namely profits obtained by using all available production time and labor to produce tables (X_7), namely a total of 30 units of tables resulting in a gain of Rp. 20999.998. Based on these results, it can be seen that the linear programming method can be used in profit optimization. These results are related to research that uses the linear programming method to solve optimization cases.

In this study, the validation was carried out by testing. This test is done by involving calculations. This test aims to measure the level of truth of the calculation results of the system made. The test method is by performing calculations with different inputs or case studies, and the accounting results will be matched with data from the case studies. The test table can be seen in Table 11.

No	Case Study	System Result Testing	Case Study Optimization Result	Accordance
1	$Z = 30X_1 + 40X_2$ Constrain : $3X_1 + 4X_2 \leq 120$			
$X_2 \leq 20$				
$2X_1 + 2X_2 \leq 40$	$Z_{max} = 800$			
$Z_{max} = 800$	equal			
2	$Z = 5X_1 + 3X_2$ Constrain : $2X_1 \leq 8$			
$X_2 \leq 15$				
$6X_1 + 5X_2 \leq 30$	$Z_{max} = 27 \frac{1}{2}$			
$Z_{max} = 27 \frac{1}{2}$	equal			
No	Case Study	System Result Testing	Case Study Optimization Result	Accordance
----	------------	-----------------------	-------------------------------	------------
3	\(Z = 60X_1 + 80X_2\)			
Constrain :				
\(2X_1 + 2X_2 \leq 16\)				
\(3X_1 + 5X_2 \leq 30\)				
\(2X_1 + 3X_2 \leq 36\)				
\(Z_{\text{max}} = 540\)				
\(Z_{\text{max}} = 540\)				
				equal
4	\(Z = 8X_1 + 6X_2\)			
Constrain :				
\(4X_1 + 2X_2 \leq 60\)				
\(2X_1 + 4X_2 \leq 48\)				
\(Z_{\text{max}} = 132\)				
\(Z_{\text{max}} = 132\)				
				equal
5	\(Z = 15X_1 + 18X_2 + 12X_3\)			
Constrain :				
\(10X_1 + 12X_2 + 8X_3 \leq 120\)				
\(18X_1 + 15X_2 + 6X_3 \leq 135\)				
\(12X_1 + 16X_2 + 6X_3 \leq 150\)				
\(Z_{\text{max}} = 180\)				
\(Z_{\text{max}} = 180\)				
				equal
6	\(Z = 8X_1 + 9X_2 + 4X_3\)			
Constrain :				
\(X_1 + X_2 + 2X_3 \leq 2\)				
\(2X_1 + 3X_2 + 4X_3 \leq 3\)				
\(7X_1 + 6X_2 + 2X_3 \leq 8\)				
\(Z_{\text{max}} = 31/3\)				
\(Z_{\text{max}} = 31/3\)				
				equal
7	\(Z = 30.000X_2 + 50.000X_2\)			
Constrain :				
\(2X_1 \leq 8\)				
\(3X_2 \leq 15\)				
\(6X_1 + 5X_2 \leq 30\)				
\(Z_{\text{max}} = 275000\)				
\(Z_{\text{max}} = 275000\)				
				equal
8	\(Z = 5X_1 + 4X_2\)			
Constrain :				
\(6X_1 + 4X_2 \leq 24\)				
\(X_1 + 2X_2 \leq 6\)				
\(-X_1 + X_2 \leq 1\)				
\(X_2 \leq 2\)				
\(Z_{\text{max}} = 21\)				
\(Z_{\text{max}} = 21\)				
				equal
9	\(Z = 60X_1 + 30X_2 + 20X_3\)			
Constrain :				
\(8X_1 + 6X_2 + X_3 \leq 48\)				
\(4X_1 + 2X_2 + 1.5X_3 \leq 20\)				
\(2X_1 + 1.5X_2 + 0.5X_3 \leq 8\)				
\(X_2 \leq 5\)				
\(Z_{\text{max}} = 280\)				
\(Z_{\text{max}} = 280\)				
				equal
10	\(Z = 180X_1 + 170X_2\)			
Constrain :				
\(40X_1 + 20X_2 \leq 100\)				
\(48X_1 + 24X_2 \leq 120\)				
\(Z_{\text{max}} = 850\)				
\(Z_{\text{max}} = 850\)				
				equal
Based on the test results contained in table 10, it can be concluded that as many as 10 data samples produce accuracy values according to the following calculations: Accuracy element counting = \(\frac{10}{10} \times 100\% = 100\% \). So based on the results of tests carried out on the system with as much as 10 data, the accuracy value obtained is 100% accurate, which shows that the optimization system is functioning correctly.

CONCLUSION

Based on the findings and results, several conclusions can be drawn that the mathematical model for optimizing cost production in 3R Furniture consists of the objective and constraint functions. The objective function is maximizing the sum of the multiplication between the contributions of production costs with the decision variables of each style on each machine. The constraints function is the constraints of working hours, demand, and use of wood. The working hours constraints for each device must be less than 24 hours, the demand constraints for each style produced on the seven machines are at least the same or more than the order, and the wood capacity constraints indicate that the seven types made in each production must less than or equal to the production capacity for each exhibition, and the decision variable must be non-negative. The working hours constraint for each machine must be less than 24 hours, the demand constraints for each style produced on the seven machines are at least the same or more than the order, and the wood capacity constraints indicate that the seven types made in each production must less than or equal to the production capacity for each show, and the decision variable must be non-negative.

This study also concluded that the cost of producing 3R furniture by the 3R Furniture Company is optimal. It can be shown by the calculation of the program that I made that fulfills the objective function and the constraint function. In other words, the result obtained is the optimal value. In addition, because the profit from the calculation carried out by the 3R Furniture Company is Rp. 20,999,998.00 from the table production carried out by the 3R Furniture Company, it can be concluded that the table production profit by the 3R Furniture Company is optimal.

REFERENCES

[1] C. S. Efendi, D. D. Pratiknyo, and I. E. Sugiono, Perpustakaan Nasional RI : Katalog Dalam Terbitan Susunan Tim Penyusun. .

[2] A. Farag, S. Al-Baiyat, and T. C. Cheng, “Economic load dispatch multiobjective optimization procedures using linear programming techniques,” IEEE Trans. Power Syst., vol. 10, no. 2, pp. 731–738, May 1995, doi: http://dx.doi.org/10.1109/59.387910.

[3] M. de Paly, J. Hecht-Méndez, M. Beck, P. Blum, A. Zell, and P. Bayer, “Optimization of energy extraction for closed shallow geothermal systems using linear programming,” Geothermics, vol. 43, pp. 57–65, Jul. 2012, doi: http://dx.doi.org/10.1016/j.geothermics.2012.03.001.

[4] P. C. Kuo, R. A. Schroeder, S. Mahaffey, and R. R. Bollinger, “Optimization of operating room allocation using linear programming techniques,” J. Am. Coll. Surg., vol. 197, no. 6, pp. 889–895, Dec. 2003, doi: http://dx.doi.org/10.1016/j.jamcollsurg.2003.07.006.

[5] S. Christian, “Penerapan Linear Programming untuk Mengoptimalkan Jumlah Produksi dalam Memperoleh Keuntungan Maksimal pada CV Cipta Unggul Pratama,” The Winners,
T. Chandra, “Penerapan Algoritma Simpleks dalam Aplikasi Penyelesaian Masalah Program Linier,” J. TIMES, vol. IV, no. 1, pp. 18–21, 2015, http://ejournal.stmik-time.ac.id/index.php/jurnalTIMES/article/viewFile/216/85.

A. Saryoko, “Metode Simpleks dalam Optimasi Hasil Produksi,” J. Informatics Educ. Prof., vol. 1, no. 1, pp. 27–36, 2016.

A. Muslimat, R. Pratama, and G. Ramayanti, “Implementasi Linear Programming Untuk Memaksimalkan Keuntungan Implementasi Linear Programming Untuk Memaksimalkan Keuntungan,” November 2017, pp. 183–189, 2018.

S. Aprilyanti, I. Pratiwi, and M. Basuki, “Optimasi Keuntungan Produksi Kemplang Panggung Menggunakan Linear Programming Melalui Metode Simpleks,” Semin. dan Konf. Nas. IDEC, no. May, 2018.

L. Hakim, H. Paramu, and E. B. Gusminto, “Penerapan Linear Programming Dalam Penentuan Kombinasi Produk Guna Memaksimalkan Laba Pada Ud Putera Sroedji Jember,” Bisma, vol. 12, no. 3, p. 300, 2018, doi: http://dx.doi.org/10.19184/bisma.v12i3.9000.

D. R. Indah and P. Sari, “Penerapan Model Linear Programming Untuk Mengoptimalkan Jumlah Produksi Dalam Memperoleh Keuntungan Maksimal (Studi Kasus pada Usaha Angga Perabot),” J. Manaj. Inov., vol. 10, no. 2, pp. 98–115, 2019, http://www.jurnal.unsyiah.ac.id/JInoMan.

M. Hilman, “Optimasi Jumlah Produksi Produk Furniture Pada Pd . Surya Mebel Di Kecamatan Cipaku Dengan Metode Linier Programming,” vol. 03, no. 01, pp. 85–97, 2016.

H. Rusdiana, P. H. Moh Ali Ramdhani, and M. Guru Besar UIN Sunan Gunung Djati Bandung, Penerbit CV Pustaka Setia Bandung. 2014.

R. Alterovitz, E. Lessard, J. Pouliot, L-C. J. Hsu, J. F. O’Brien, and K. Goldberg, “Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs,” Med. Phys., vol. 33, no. 11, pp. 4012–4019, Oct. 2006, doi: http://dx.doi.org/10.1118/1.2349685.

R. H. Bartels and G. H. Golub, “The simplex method of linear programming using LU decomposition,” Commun. ACM, vol. 12, no. 5, pp. 266–268, May 1969, doi: http://dx.doi.org/10.1145/362946.362974.

M. E. Lalami, V. Boyer, and D. El-Baz, “Efficient Implementation of the Simplex Method on a CPU-GPU System,” in 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, May 2011, pp. 1999–2006, doi: http://dx.doi.org/10.1109/IPDPS.2011.362.

J. A. J. Hall, “Towards a practical parallelisation of the simplex method,” Comput. Manag. Sá., vol. 7, no. 2, pp. 139–170, Apr. 2010, doi: 10.1007/s10287-008-0080-5.

D. Gale, “Linear Programming and the Simplex Method, Volume 54, Number 3."

J. C. Nash, “The (Dantzig) simplex method for linear programming,” Comput. Sci. Eng., vol. 2, no. 1, pp. 29–31, 2000, doi: http://dx.doi.org/10.1109/5992.814654.

H. M. V. Samani and A. Mottaghi, “Optimization of Water Distribution Networks Using Integer Linear Programming,” J. Hydraul. Eng., vol. 132, no. 5, pp. 501–509, May 2006, doi: http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132:5(501).
