BCF-GROUPS WITH ELEVATED RANK DISTRIBUTION

DANIEL C. MAYER

ABSTRACT. Infinitely many large Schur σ-groups G with logarithmic order $\log(G) = 19 + e$, non-elementary bicyclic commutator quotient $G/G' \simeq C_{3^e} \times C_3$, $e \geq 2$, elevated rank distribution $g(G) = (3, 3, 3, 3)$, punctured transfer kernel type $\kappa(G) \sim (144; 4)$ and soluble length $s_l(G) = 3$ are constructed. Up to $e \leq 4$, they are realized as 3-class field tower groups $\text{Gal}(\mathbb{F}_3^\infty(K)/K)$ of imaginary quadratic number fields $K = \mathbb{Q}(\sqrt{d})$, $d < 0$. Their metabelianizations $M = G/G''$ are BCF-groups with $\log(M) = 8 + e$ and bicyclic third lower central factor $\gamma_3(M)/\gamma_4(M) \simeq C_3 \times C_3$.

1. Introduction

Let G be a pro-3 group or finite 3-group with bicyclic commutator quotient $G/G' \simeq C_{3^e} \times C_3$ having one non-elementary factor with exponent $e \geq 2$. Then G possesses four maximal self-conjugate subgroups H_1, \ldots, H_3, H_4, and by the rank distribution of G we understand the quartet

$$g(G) := [\operatorname{rank}_3(H_1/H_1'), \ldots, \operatorname{rank}_3(H_3/H_3'); \operatorname{rank}_3(H_4/H_4')].$$

Let $\gamma_j(G)$ be the lower central series of G. When the factors $\gamma_j(G)/\gamma_{j-1}(G) \simeq C_3$ are all cyclic, for $j \geq 2$, then G is called a CF-group, according to Asione et al. [4]. CF means cyclic factors. Otherwise, at least the factor $\gamma_3(G)/\gamma_4(G) \simeq C_3 \times C_3$ is bicyclic, and G is called a BCF-group, according to Nebelung [28]. BCF means bicyclic or cyclic factors. Recall that, since $\gamma_2(G) = \langle s_2, \gamma_3(G) \rangle$, the factor $\gamma_2(G)/\gamma_3(G) \simeq C_3$ is always cyclic, generated by the main commutator $s_2 = [y, x]$ of the two-generated group $G = \langle x, y \rangle$. For a BCF-group G, we have $\gamma_3(G) = \langle s_3, t_3, \gamma_4(G) \rangle$ with higher non-trivial commutators $s_3 = [s_2, x]$ and $t_3 = [s_2, y]$.

In [27] § 2, we introduced the concept of punctured transfer kernel types

$$\kappa(G) := [\operatorname{ker}(T_1), \ldots, \operatorname{ker}(T_3); \operatorname{ker}(T_4)]$$

for 3-groups $G = \langle x, y \rangle$ with $G/G' \simeq C_{3^e} \times C_3$, $e \geq 2$. Here, $T_i : G/G' \to H_i/H_i'$ denotes the Artin transfer homomorphism from G to H_i. It turned out that at least three kernels are two-dimensional, equal to the complete 3-elementary subgroup $\langle x^{e-1}, y, G'/G' \rangle$ of G/G', when G is a CF-group. Consequently, metabelian CF-groups can be realized arithmetically only by second 3-class groups $\text{Gal}(\mathbb{F}_3^\infty(K)/K)$ of real quadratic fields $K = \mathbb{Q}(\sqrt{d})$, $d > 0$, but not for imaginary quadratic fields with $d < 0$, where all kernels must be one-dimensional.

In [27] §§ 5 and 7, we investigated how BCF-groups G with moderate rank distribution $g(G) \in \{2, 2, 2, 3\}, \{2, 2, 3, 3\}$ are populated by second 3-class groups $\text{Gal}(\mathbb{F}_3^\infty(K)/K)$ and 3-class field tower groups $\text{Gal}(\mathbb{F}_3^\infty(K)/K)$ of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$, $d < 0$, with non-elementary bicyclic 3-class groups $\text{Cl}_3(K) \simeq C_{3^e} \times C_3$, $e \geq 2$.

In the present article we continue this research enterprise for BCF-groups G with elevated rank distribution $g(G) = (3, 3, 3, 3)$ and punctured transfer kernel type $B.18$, $\kappa(G) \sim (144; 4)$. Their exo-genetic propagation has been clarified in [27 Thm. 17].

Date: Thursday, 07 October 2021.

2010 Mathematics Subject Classification. Primary 20D15, 20E18, 20E22, 20F05, 20F12, 20F14; secondary 11R37, 11R32, 11R11, 11R20, 11R29, 11Y40.

Key words and phrases. pro-3 groups, finite 3-groups, BCF-groups, generator rank, relation rank, Schur σ-groups, balanced presentation, extremal root path principle, low index normal subgroups, kernels of Artin transfers, abelian quotient invariants of first and second order, elevated rank distribution, p-group generation algorithm, descendant trees, antimony principle; three-stage Hilbert 3-class field towers, maximal unramified pro-3 extensions, unramified cyclic cubic extensions, unramified nonic extensions, imaginary quadratic fields, non-elementary bicyclic 3-class groups, Galois action, punctured capitulation type B.18, minimal discriminants.

Research supported by the Austrian Science Fund (FWF): projects J0497-PHY, P26008-N25, and by EUREA.
2. Arithmetical realization

It is of the greatest importance to emphasize that the assumptions concerning the punctured transfer kernel type $\kappa(G)$, and the logarithmic abelian quotient invariants of first order

$$\alpha_1(G) := [H_1/H'_1, \ldots, H_3/H'_3; H_4/H'_4]$$

and of second order

$$\alpha_2(G) := (G/G'; [H_i/H_i'; (H_{i,j}/H'_{i,j})(H_{i,j}=3)]_{1 \leq i \leq 4})$$

of the Schur σ-groups in the following six main theorems are perfectly tailored for applications in algebraic number theory and class field theory. According to the Artin reciprocity law \[2,3\], these invariants can be interpreted for an arbitrary algebraic number field K as the punctured capitulation type $\kappa(L) := [\ker(\tau_1), \ldots, \ker(\tau_3); \ker(\tau_4)]$ of the extension homomorphisms

$$\tau_i : \text{Cl}_3(K) \to \text{Cl}_3(L_i), \quad a\mathcal{P}_K \to (a\mathcal{O}_L)\mathcal{P}_{L_i},$$

of 3-classes from K to the four unramified cyclic cubic extensions L_i, the logarithmic abelian type invariants

$$\alpha_1(K) := [\text{Cl}_3(L_1), \ldots, \text{Cl}_3(L_3); \text{Cl}_3(L_4)]$$

of the 3-class groups of the fields L_i, and the logarithmic abelian type invariants

$$\alpha_2(K) := (\text{Cl}_3(K); [\text{Cl}_3(L_1); (\text{Cl}_3(L_{i,j})|_{L_{i,j}=3})_{1 \leq i \leq 4})$$

of all unramified (but not necessarily abelian) 3-extensions of degree at most nine of K. For details see \[25\]. In this article, we investigate applications to the simplest algebraic number fields, namely imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with negative fundamental discriminants $d < 0$.

3. Main theorems

The six main theorems are the crucial achievements of the present article. They show that Schur σ-groups \[16,1,9\] with elevated rank distribution also become periodic for sufficiently large exponents $e \geq 5$, similarly as Schur σ-groups with moderate rank distribution for $e \geq 5$, according to \[27\].

3.1. Schur σ-groups G. In all theorems, the symbols $e^+ := e + 1$, $e^- := e - 1$ are used for abbreviation. Isomorphism classes of groups are identified in accordance with 16,13,17.

Theorem 1. A total of 54 Schur σ-groups G with commutator quotient $G/G' \simeq (3^e, 3)$, punctured transfer kernel type $B.18, \kappa(G) \sim (144; 4)$, elevated rank distribution $\varphi(G) = (3, 3, 3; 3), first abelian quotient invariants $\alpha_1(G) \sim [e^{+21}, e^{11}, e^{11}; e^{-21}], second abelian quotient invariants $\alpha_2(G) \sim (e_1; e^{+21}; e^{1111}, (e^{+21})^3, (e^{+2})^9)$,

$$\begin{align*}
&[e^{11}; e^{2111}, (e^{+21})^3, (e^{+2})^9], \\
&[e^{11}; e^{2111}, (e^{+1111})^3, (e^{+2})^9], \\
&[e^{-21}; e^{1111}, (e^{31})^3, (e^{21})^8, (e^{-22})] \\
\end{align*}$$

and (minimal) logarithmic order $\log(G) = 19 + e$ is given for each $e \geq 9$ by the term

$$G = W_a[-#1;1]e^{-9} - #1; p - #1; q - #1; 1 \text{ with } p \in \{2, 3\} \text{ and } q \in \{1, 2, 3\},$$

where 9 distinct periodic roots with $1 \leq a \leq 9, \tilde{a} = 1$ for $a \leq 3, \tilde{a} = 2$ for $a \geq 4$, are denoted by

$$W_a := (2187, 3) - #3; 2 - #4; 24 - #3; 14 - #4; a - #2; \tilde{a} - #2; 1.$$

Theorem 2. A total of 162 Schur σ-groups G with commutator quotient $G/G' \simeq (3^e, 3)$, punctured transfer kernel type $B.18, \kappa(G) \sim (144; 4)$, elevated rank distribution $\varphi(G) = (3, 3, 3; 3), first abelian quotient invariants $\alpha_1(G) \sim [e^{+21}, e^{11}, e^{11}; e^{-21}], second abelian quotient invariants $\alpha_2(G) \sim (e_1; e^{+21}; e^{2111}, (e^{+1111})^3, (e^{+2})^9)$,

$$\begin{align*}
&[e^{11}; e^{2111}, (e^{+21})^3, (e^{+2})^9], \\
&[e^{11}; e^{2111}, (e^{+21})^3, (e^{+2})^9], \\
&[e^{-21}; e^{1111}, (e^{31})^3, (e^{21})^8, (e^{-22})] \\
\end{align*}$$

and (minimal) logarithmic order $\log(G) = 19 + e$ is given for each $e \geq 9$ by the term

$$G = W_{a,b}[-#1;1]e^{-9} - #1; p - #1; q - #1; 1 \text{ with } p \in \{2, 3\} \text{ and } 1 \leq q \leq N,$$
where 45 distinct periodic roots with $1 \leq a \leq 27$, $\tilde{a} = 1$, $1 \leq b \leq 3$, $N = 1$ for $a \in \{3, 4, 8, 12, 13, 17, 21, 22, 26\}$ and $\tilde{a} = 2$, $b = 1$, $N = 3$ otherwise, are denoted by

$$W_{a, b} := (2187, 3) - #3; 2 - #4: 26 - #3; 14 - #4; a - #2; \tilde{a} - #2; b.$$

Theorem 3. A total of 324 Schur σ-groups G with commutator quotient $G/G' \simeq (3^e, 3)$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, elevated rank distribution $\varrho(G) = (3, 3, 3, 3)$, first abelian quotient invariants $\alpha_1(G) \sim [e^{+21}, e^{2111}, (e^{+2111})^3, (e^2)^9]$, second abelian quotient invariants

$$\alpha_2(G) \sim (e1; [e^{+21}; e^{2111}, (e^{+2111})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9];$$

$$[e^{-21}; e^{2111}, (e^{+211})^3, (e^2)^9];$$

and (minimal) logarithmic order $\text{loc}(G) = 19 + e$ is given for each $e \geq 9$ by the term

$$G = W_{\ell, k, a}[-#1; 1]^{e-9} - #1; p - #1; q - #1; r \text{ with } p \in \{2, 3\} \text{ and } q, r \in \{1, 2, 3\},$$

where 18 distinct periodic roots with $(\ell, k) \in \{(28, 5), (30, 2)\}$ and $1 \leq a \leq 9$ are denoted by

$$W_{\ell, k, a} := (2187, 3) - #3; 2 - #4; \ell - #3; k - #4; a - #2; 1 - #2; 1.$$

Theorem 4. A total of 162 Schur σ-groups G with commutator quotient $G/G' \simeq (3^e, 3)$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, elevated rank distribution $\varrho(G) = (3, 3, 3, 3)$, first abelian quotient invariants $\alpha_1(G) \sim [e^{+21}, e^{11}, e^{11}; e^{-21}]$, second abelian quotient invariants

$$\alpha_2(G) \sim (e1; [e^{+21}; e^{2111}, (e^{+2111})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9];$$

$$[e^{-21}; e^{2111}, (e^{+211})^3, (e^2)^9];$$

and (minimal) logarithmic order $\text{loc}(G) = 19 + e$ is given for each $e \geq 9$ by the term

$$G = W_{a, b}[-#1; 1]^{e-9} - #1; p - #1; q - #1; 1 \text{ with } p \in \{2, 3\} \text{ and } 1 \leq q \leq N,$$

where 45 distinct periodic roots with $1 \leq a \leq 27$, $\tilde{a} = 1$ for $a \leq 9$, $\tilde{a} = 2$ for $a \geq 10$, $1 \leq b \leq 3$, $N = 1$ for $a \in \{1, 5, 9, 11, 15, 16, 21, 22, 26\}$ and $b = 1$, $N = 3$ otherwise, are denoted by

$$W_{a, b} := (2187, 3) - #3; 2 - #4; 31 - #3; 29 - #4; a - #2; \tilde{a} - #2; b.$$

Theorem 5. A total of 162 Schur σ-groups G with commutator quotient $G/G' \simeq (3^e, 3)$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, elevated rank distribution $\varrho(G) = (3, 3, 3, 3)$, first abelian quotient invariants $\alpha_1(G) \sim [e^{+21}, e^{11}, e^{11}; e^{-21}]$, second abelian quotient invariants

$$\alpha_2(G) \sim (e1; [e^{+21}; e^{2111}, (e^{+2111})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9],$$

$$[e^{11}; e^{2111}, (e^{+21})^3, (e^2)^9];$$

$$[e^{-21}; e^{2111}, (e^{+211})^3, (e^2)^9];$$

and (minimal) logarithmic order $\text{loc}(G) = 19 + e$ is given for each $e \geq 9$ by the term

$$G = W_{a, b}[-#1; 1]^{e-9} - #1; p - #1; q - #1; 1 \text{ with } p \in \{2, 3\} \text{ and } q \in \{1, 2, 3\},$$

where 27 distinct periodic roots with $1 \leq a \leq 9$ and $1 \leq b \leq 3$ are denoted by

$$W_{a, b} := (2187, 3) - #3; 2 - #4; 33 - #3; 32 - #4; a - #2; 1 - #2; b.$$
Theorem 6. A total of 162 Schur σ-groups G with commutator quotient $G/G' \simeq (3^r, 3)$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, elevated rank distribution $\varrho(G) = (3, 3, 3, 3)$, first abelian quotient invariants $\alpha_1(G) \sim (e^+21, e11, e11; e^-21)$, second abelian quotient invariants $\alpha_2(G) \sim (e1; [e^+21; e2111, (e^+211)^3, (e^+2)9], [e11; e2111, (e^+21)^3, (e^+2)9], [e11; e2111, (e^+21)^3, (e^+2)9], [e^-21; e2111, (e211)^3, (e21)^3, (e21)^9, e^-22])$ and (minimal) logarithmic order $\log(G) = 19 + e$ is given for each $e \geq 9$ by the term $(21) \quad G = W_{a,b}[-\#1; 1]e^{-9} - \#1; p - \#1; q - \#1; 1$ with $p \in \{2, 3\}$ and $q \in \{1, 2, 3\}$, where 27 periodic roots with $1 \leq a \leq 9, \tilde{a} = 1$ for $a \in \{2, 6, 7\}$, $\tilde{a} = 2$ otherwise, and $1 \leq b \leq 3$ are $(22) \quad W_{a,b} := \langle 2187, 3 \rangle - \#3; 2 - \#4; 37 - \#3; 32 - \#4; a - \#2; \tilde{a} - \#2; b$.

Remark 1. The periodic twig $-\#1; p - \#1; q - \#1; r$ of the terms for the Schur σ-groups G in the main theorems contains 6 terminal leaves on average. However, for Theorem 3 there are 18, and for Theorems 2 and 4 there are partially only 2.

For each $e \geq 9$, all main theorems together yield 1026 Schur σ-groups G with $\log(G) = 19 + e$, which are descendants of 171 distinct periodic roots W with fixed logarithmic order $\log(W) = 25$.

Exemplarily we give a succinct proof for the last main theorem, namely Theorem 6.

Proof. (Proof of Theorem 6) For a fixed step size $s \geq 1$, we denote by N the number of all immediate descendants of a 3-group, and by C the number of capable immediate descendants with positive nuclear rank $\nu \geq 1$. Generally, let $X := \langle 2187, 3 \rangle - \#3; 2 - \#4; 37 - \#3; 32$. This is a non-metabelian 3-group of type (729, 3). We consider a chain of exo-genetic propagations:

- X has $N = C = 27$ for $s = \nu = 4$ but only the first 9 descendants are of type $\langle 2187, 3 \rangle$.
- Each $X - \#4; a$ with $1 \leq a \leq 9$ has $N = C = 6$ for $s = \nu = 2$ but only the first, resp. second, descendant, indicated by $\tilde{a} \in \{1, 2\}$, is of type $\langle 6561, 3 \rangle$.
- Each $X - \#4; a - \#2, \tilde{a}$ with $1 \leq a \leq 9$ has $N = C = 9$ for $s = \nu = 2$ but only the first 3 descendants are of type $\langle 19683, 3 \rangle$.
- Each $W_{a,b} := X - \#4; a - \#2, \tilde{a} - \#2; b$ with $1 \leq a \leq 9$ and $1 \leq b \leq 3$ has 6 Schur σ-descendants $W_{a,b}[-\#1; 1]e^{-9} - \#1; p - \#1; q - \#1; 1$ with $p \in \{2, 3\}$ and $q \in \{1, 2, 3\}$, for each $e \geq 9$.

Together this census yields $9 \cdot 3 \cdot 6 = 162$ Schur σ-groups, for each $e \geq 9$. \qed

The following supplementary theorem provides a warranty for the fact that the information in the six main theorems is exhaustive and complete.

Theorem 7. (Exhaustion Theorem.)

Let G be a Schur σ-group with non-elementary bicyclic commutator quotient $G/G' \simeq C_{3^r} \times C_{3}$, $e \geq 9$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, elevated rank distribution $\varrho(G) = (3, 3, 3, 3)$, and first abelian quotient invariants $\alpha_1(G) \sim [(e + 1)21, e11, e11; (e - 1)21]$. Then

- if G has logarithmic order $\log(G) = 19 + e$, then G is of one of the shapes in the six main Theorems 2 - 6 (inclusively the shape of $\alpha_2(G)$) and has soluble length $\sl(G) = 3$;
- if G is not of one of the shapes in the six main Theorems 7 - 10 then G has logarithmic order $\log(G) > 19 + e$ and different second abelian quotient invariants $\alpha_2(G)$.

3.2. Second derived quotients G/G''. Periodicity of metabelianizations with elevated rank distribution sets in earlier for $e \geq 5$ already.

Corollary 1. The metabelianization $M = G/G''$ of a Schur σ-group G with commutator quotient $G/G' \simeq (3^r, 3)$, $e \geq 5$, punctured transfer kernel type B.18, $\varpi(G) \sim (144; 4)$, logarithmic abelian quotient invariants of first order $\alpha_1(G) \sim [(e + 1)21, e11, e11; (e - 1)21]$, and logarithmic order $\log(G) = 19 + e$ is given by one of the two candidates

$(23) \quad M \simeq \langle 2187, 3 \rangle - \#3; 2 - \#2; 93[-\#1; 1]e^{-5} - \#1; i$ with $i \in \{2, 3\}$.
Their logarithmic order is \(\log(M) = 8 + e \), i.e., the second derived subgroup \(G'' \) is of constant logarithmic order \(\log(G'') = 11 \), in fact, it is abelian of constant type \(G'' \simeq (332111) \). A parametrized polycyclic power commutator presentation of the members \((2187, 3) \) in terms of the commutators
\[
(x, y) \mid x^3 = 1, y^3 = s_3 s_4^2, s_2^3 = s_4 t_4^2, s_3^5 = s_5, t_3^2 = s_5^2, [x, y] = s_4 t_4 s_5, [x, s_2] = s_5, t_5 = s_5
\]
in terms of the commutators \(s_2 = [y, x], s_3 = [s_2, x], t_3 = [s_2, y], s_4 = [s_3, x], t_4 = [t_3, y], s_5 = [s_4, x], t_5 = [t_4, y] \).

The justification of the periodicities in Theorems 1–6 and Corollary 1 will be developed in § 12.

4. Layout of the paper

Since the periodicity in the crucial Theorems 1–6 sets in with exponent \(e = 9 \), we devote §§ 6, 8 and 10 to the detailed discussion of the regular cases \(2 \leq e \leq 4 \). We do not go into the details of the irregular intermediate cases \(5 \leq e \leq 8 \), which are clarified sufficiently by Figure 1. In § 12 we illuminate the long and winding road to the actual verification of the periodicity of Schur \(\sigma \)-groups \(G \) with elevated rank distribution \(\rho(G) = (3, 3, 3; 3) \) and commutator quotient \(G/G' \simeq (3^2; 3) \), which was expected by ourselves for \(e \geq 9 \) in analogy to the periodicity for \(e \geq 5 \) in the case of moderate rank distribution [27]. Arithmetical applications to 3-class field tower groups \(\text{Gal}(F_3^\infty(K)/K) \) of imaginary quadratic fields \(K = \mathbb{Q} (\sqrt{d}) \) with fundamental discriminants \(d < 0 \) and non-elementary 3-class groups \(\text{Cl}_2(K) \simeq (3^2, 3) \) are given in §§ 13 and 14 for \(a_i \geq 2 \) and \(e \leq 4 \). In §§ 13 and 14, where arithmetical realizations of \(5 \leq e \leq 6 \) are just possible (with CPU-time a week) it becomes clear that \(e = 7 \) (CPU-time several months) and \(e = 8 \) (CPU-time several years) are outside of a reasonable and realistic arithmetical enterprise, aggravated by internal Magma errors, due to huge absolute discriminants \(|d| \). A conclusion concerning the general structure of the logarithmic abelian quotient invariants \(\alpha_2 \) of second order is essentially drawn in § 15. In §§ 6, 8 and 10 we also consider \(\log(G) > 19 + e \). The case \(e = 2 \) was also investigated in [26].

5. Root path to Schur \(\sigma \)-groups

In order to find \(\sigma \)-groups [24, Dfn. 3.1, p. 91], and in particular Schur \(\sigma \)-groups [11, 10], \(G \) with commutator quotient \(G/G' \simeq (3^2; 3) \) and punctured transfer kernel type \(B.18, \varpi(G) \sim (144; 4) \), it is necessary to take into consideration the associated \(\text{scaffold type} \) \(b.31, \varpi \sim (044; 4) \), since the two-dimensional transfer kernel 0 of a parent can shrink to the one-dimensional transfer kernel 1 for a descendant. This is a consequence of the \textit{antitony principle} for the Artin pattern \((\varpi, \alpha) \) of parent descendant pairs. The situation is similar to [24 § 3.2.2 and Fig. 2, pp. 91–92] and [21 Fig. 1–2, pp. 24–25], both for elementary \(G/G' \simeq (3, 3) \). Now we have non-elementary \(G/G'' \).

Proposition 1. The root path of the bifurcation \(B := (2187, 3) - #3; 2 \) of infinite order,
\[
(25) \ 1 \xi = 2 \pi_p(B) = (9, 2) \xi = 2 \pi_1^2(B) = (81, 3, 3) \xi = 3 \pi_1(B) = (2187, 3) \xi = 3 B = (2187, 3) - #3; 2,
\]
has step sizes \((2, 2, 3, 3)\) and contains two vertices with \(\text{scaffold type} \) \(b.31, \varpi \sim (044; 4) \), which give rise to Schur \(\sigma \)-groups with \(\text{type} B.18, \varpi(G) \sim (144; 4) \), and to their metabelianizations \(G'' \).

Proof. There are only three groups \(G \) with \(G/G' \simeq (9, 3) \), i.e. \(e = 2 \), and order \#\(G = 81 \), namely the non-abelian groups \(G \simeq (81, 3) \) with \(\varpi(G) \sim (000; 0) \), a.1, \(G \simeq (81, 4) \) with \(\varpi(G) \sim (444; 4) \), a.20, and \(G \simeq (81, 6) \) with \(\varpi(G) \sim (111; 1) \), a.1. According to the antitony principle for the Artin pattern \((\varpi, \alpha) \), the latter two groups are discouraged as predecessors of descendants with \(\varpi \sim (044; 4) \) or \(\varpi \sim (144; 4) \). Moreover, they are not \(\sigma \)-groups. The unique remaining group \(G = (81, 3) \) has the root path \(G \xi = 2 \pi_1(B) = (9, 2) = C_3 \times C_3 \xi = 2 \pi_1^2(G) = (1, 1) = 1 \). In order to stay at \(e = 2 \), the descendant \(D = (729, 10) \) with scaffold type \(b.31, \varpi(D) \sim (044; 4) \), must be selected. The unique immediate \(\sigma \)-descendant \(F = (6561, 165) \) of \(D \) is already the fork between the desired Schur \(\sigma \)-group \(S \) and its metabelianization \(S/S'' \simeq F - #2; 85 \). See § 12 Figure 8. \(\square \)
6. 3-GROUPS WITH COMMUTATOR QUOTIENT (9, 3)

In Table 1 we list the second AQI α_2 of the 30 non-metabelian step size-4 descendants $F - #4; \ell$ with $1 \leq \ell \leq 30$ of the metabelian fork $F = (729, 10) - #2; 2$. The general structure of α_2 is

\begin{equation}
\alpha_2(G) = [21; (\tau_0; 22111, D_1), (211; 22111, D_2), (211; 22111, D_3); (211; 22111, D_4)],
\end{equation}

where each dodecuplet D_i, $1 \leq i \leq 4$, consists of a triplet T_i and a nonet N_9. The metabelianization $M = G/G''$ is given by the step size-2 descendant $F - #2; m$ with $m \in \{82, 83, 84, 85\}$ of F. The smallest logarithmic order, soluble length, of a Schur σ-descendant S of G is $lo(S), sl(S)$.

ℓ	τ_0	T_1	T_2	N_1	N_2	N_3	N_4	m	$lo(S)$	$sl(S)$
1	222	22111	221	221	221	221	3111	32	82	∞
2	222	22111	221	321	321	321	321	32	83	21
3	222	3211	221	321	321	321	321	32	82	25
4	222	3211	221	321	321	321	321	32	83	21
5	222	3211	221	321	321	321	321	32	82	25
6	222	3211	221	321	321	321	321	32	83	24
7	222	3211	221	321	321	321	321	32	82	∞
8	222	3211	221	321	321	321	321	32	83	25
9	222	3211	221	321	321	321	321	32	82	25
10	222	3211	221	321	321	321	321	32	83	21
11	222	3211	221	321	321	321	321	32	82	21
12	222	3211	221	321	321	321	321	32	83	21
13	222	3211	221	321	321	321	321	32	82	21
14	222	3211	221	321	321	321	321	32	83	21
15	222	3211	221	321	321	321	321	32	82	21
16	3211	32	321	321	321	321	321	32	84	25
17	3211	32	321	321	321	321	321	32	85	21
18	3211	32	321	321	321	321	321	32	84	28
19	3211	32	321	321	321	321	321	32	85	21
20	3211	32	321	321	321	321	321	32	84	∞
21	3211	32	321	321	321	321	321	32	85	21
22	3211	32	321	321	321	321	321	32	84	21
23	3211	32	321	321	321	321	321	32	85	21
24	3211	32	321	321	321	321	321	32	84	21
25	3211	32	321	321	321	321	321	32	85	21
26	3211	32	321	321	321	321	321	32	84	21
27	3211	32	321	321	321	321	321	32	85	21
28	3211	32	321	321	321	321	321	32	84	∞
29	3211	32	321	321	321	321	321	32	85	21
30	3211	32	321	321	321	321	321	32	82	∞

Theorem 8. The Schur σ-groups S with commutator quotient $S/S' \simeq (9, 3)$, punctured transfer kernel type $B.18$, $\chi(S) \sim (144; 4)$, and first AQI $\alpha_1(S) \sim (\tau_0, 211, 211; 211)$ are descendants of 30 non-metabelian 3-groups $G = (729, 10) - #2; 2 - #4; \ell$ whose invariants are listed in Table 1. In the case of finite order $lo(S) < \infty$, their invariants usually coincide with those of the predecessor G. For $lo(S) = 21$ they have three stages, $sl(S) = 3$, for $lo(S) \in \{24, 28\}$ four stages, $sl(S) = 4$, and for $lo(S) = 25$ they have $3 \leq sl(S) \leq 4$. Their metabelianization $S/S'' \simeq G/G''$ is $M = (729, 10) - #2; 2 - #2; m$, where $m \in \{82, 83\}$, $\tau_0 = 222$ for $1 \leq \ell \leq 15$, and $m \in \{84, 85\}$, $\tau_0 = 321$ for $16 \leq \ell \leq 30$.

The minimum $lo(S) = 21$ occurs for 20 values ℓ, 24 for 2, 25 for 3, 28 for 1, and ∞ for 4.
7. Imaginary quadratic fields K with $\text{Cl}_3(K) \simeq C_9 \times C_3$

The 875 imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with fundamental discriminants $-1000000 < d < 0$ and 3-class group $\text{Cl}_3(K) \simeq C_9 \times C_3$ were computed by means of Magma \cite{17} in 7782 seconds of CPU time, that is more than two hours. In Table 2, the first nineteen cases with punctured capitulation type B.18, $\varkappa(K) \sim (144; 4)$, are listed. The abelian quotient invariants $\alpha_1(K)$ of first order of only eleven of them are uni-polarized and in the ground state. For details see \cite{20}.

Table 2. Nineteen fields $K = \mathbb{Q}(\sqrt{d})$ with $\text{Cl}_3(K) \simeq C_9 \times C_3$ and $\varkappa(K) \sim (144; 4)$

No.	d	factors	$\alpha_1(K)$	remark
45	-89923	prime	(222, 211, 211; 321)	bi-polarized
87	-150319	13, 31, 373	(321, 211, 211; 321)	
124	-194703	3, 64, 901	(321, 211, 211; 321)	
161	-242255	5, 13, 3727	(222, 211, 211; 321)	bi-polarized
203	-294983	13, 22, 691	(222, 211, 211; 321)	
304	-389371	401, 971	(431, 211, 211; 321)	first excited state
305	-389435	5, 71, 1097	(222, 211, 211; 321)	
306	-409380	2, 3, 5, 6823	(222, 211, 211; 321)	bi-polarized
397	-481567	271, 1177	(222, 211, 211; 321)	bi-polarized
413	-494771	61, 8111	(321, 211, 211; 321)	
418	-497859	3, 263, 631	(321, 211, 211; 321)	bi-polarized
438	-518835	3, 5, 34, 589	(222, 211, 211; 321)	
470	-553807	433, 1279	(222, 211, 211; 321)	
482	-566168	2, 17, 23, 181	(321, 211, 211; 321)	
635	-761855	5, 17, 8963	(222, 211, 211; 321)	
637	-763972	2, 11, 97, 179	(222, 211, 211; 321)	
661	-793992	2, 3, 33, 083	(321, 211, 211; 321)	bi-polarized
729	-857743	prime	(431, 211, 211; 321)	highly bi-polarized
743	-876948	2, 3, 73, 079	(222, 211, 211; 321)	

In Table 3, we give the abelian quotient invariants $\alpha_2(K)$ of second order of the eleven fields in the uni-polarized ground state contained in Table 2. The general structure of $\alpha_2(K)$ is the following

\begin{equation}
\alpha_2(K) = [\tau_0; (\tau_0; 22111, D_1), (211; 22111, D_2), (211; 22111, D_3); (211; 22111, D_4)]
\end{equation}

where $\tau_0 \in \{222, 321\}$, and each dodecaplet D_i, $1 \leq i \leq 4$, consists of a triplet and a nonet.

Table 3. Details for eleven fields $K = \mathbb{Q}(\sqrt{d})$ in Table 2

No.	τ_0	D_1	D_2	D_3	D_4	remark
87	321	(41111)3(32)9	(321)3(32)9	(321)3(32)9	(321)3(32)9	ref. 29
124	321	(32111)3(32)9	(321)3(32)9	(321)3(32)9	(3111)3(32)9	ref. 16,19,23,25,27
203	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(22211)3(221)9	extreme
305	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(22211)3(221)9	extreme
413	321	(32111)3(32)9	(321)3(32)9	(321)3(32)9	(3111)3(32)9	ref. 16,19,23,25,27
438	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(22211)3(221)9	ref. 4,6
470	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(3111)3(32)9	ref. 10,12,13,15
482	321	(32211)3(32)9	(32211)3(32)9	(321)3(32)9	(22111)3(32)9	extreme
635	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(3111)3(32)9	ref 3,5,11,14
637	222	(32111)3(221)9	(321)3(32)9	(321)3(32)9	(3111)3(32)9	ref 10,12,13,15
743	222	(32111)3(221)9	(321)3(32)9	(321)3(221)9	(3111)3(32)9	ref 10,12,13,15
The following theorem provides evidence of a new class of algebraic number fields with 3-class group of type $\text{Cl}_3(K) \simeq (9, 3)$ whose 3-class field tower consists of exactly three stages.

Theorem 9. An imaginary quadratic field $K = \mathbb{Q}(\sqrt{d})$ with non-elementary 3-class group $\text{Cl}_3(K) \simeq C_9 \times C_3$ of rank two, punctured capitulation type $B.18$, $\varkappa(K) \sim (144; 4)$, and abelian type invariants $\alpha_2(K)$ of second order of the shape in Formula (27) with either

\begin{align*}
(28) \quad & \tau_0 = 2^3, \quad D_1 = (32111)^3(221)^9, \quad D_2 = (321)^3(32)^9, \quad D_3 = (321)^3(32)^9, \quad D_4 = (321)^3(32)^9 \\
(29) \quad & \tau_0 = 2^3, \quad D_1 = (32111)^3(221)^9, \quad D_2 = (321)^3(32)^9, \quad D_3 = (321)^3(32)^9, \quad D_4 = (32111)^3(221)^9 \\
(30) \quad & \tau_0 = 2^3, \quad D_1 = (32111)^3(221)^9, \quad D_2 = (321)^3(32)^9, \quad D_3 = (321)^3(32)^9, \quad D_4 = (32111)^3(32)^9 \\
(31) \quad & \tau_0 = 321, \quad D_1 = (41111)^3(32)^9, \quad D_2 = (321)^3(32)^9, \quad D_3 = (321)^3(32)^9, \quad D_4 = (321)^3(32)^9
\end{align*}

possesses a finite 3-class field tower

$$K = F_3^0(K) < F_3^1(K) < F_3^2(K) < F_3^3(K) = F_3^\infty(K)$$

with precise length $\ell_3(K) = 3$.

In the following corollary, Theorem 9 is supplemented by information on the Galois group $G = \text{Gal}(F_3^\infty(K)/K)$ and its metabelianization $M = G/G'' \simeq \text{Gal}(F_3^2(K)/K)$.

Corollary 2. Let K be a field with properties as in the assumptions of Theorem 4. Then the automorphism group $G = \text{Gal}(F_3^\infty(K)/K)$ of the full 3-class field tower of K is a non-metabelian Schur σ-group with soluble length $\text{sl}(G) = 3$, order $\#G = 3^{21}$ and nilpotency class $\text{cl}(G) = 9$. The second 3-class group $M = \text{Gal}(F_3^2(K)/K)$ of K is a metabelian σ-group of order $\#M = 3^{10}$ and nilpotency class $\text{cl}(M) = 5$.

Proof. Formula (28) leads to either $\ell = 2, m = 83 [26, \text{Lem. 10}]$ or $\ell = 7, m = 82$.

Formula (29) leads to $\ell \in \{4, 6\}, m = 83$ and $108 = 81 + 27$ candidates for $G [26, \text{Lem. 6}]$.

Formula (30) leads to either $\ell \in \{10, 13\}, m = 82$ or $\ell \in \{12, 15\}, m = 83 [26, \text{Lem. 8}]$.

Formula (31) leads to $\ell = 29, m = 85$ and 27 candidates for $G [26, \text{Lem. 10}]$.

Let $B := (6561, 165) = (729, 10) - \#2; 2$ in the notation of [6, 13] be the common fork of the root paths of all finite 3-groups G of non-elementary bicyclic commutator quotient $G/G' \simeq C_9 \times C_3$, punctured transfer kernel type B.18, $\varkappa(G) \sim (144; 4)$, and logarithmic abelian quotient invariants of first order $\alpha_1(G) = (21; \tau_0, 211, 211, 211)$ with $\tau_0 \in \{222, 321\}$. Then the candidates for G are given in the shape $B - \#4; \ell - \#2; k - \#4; j - \#1; i - \#2; h$ with $1 \leq \ell \leq 72, 1 \leq k \leq 41, 1 \leq j \leq 27, 1 \leq i \leq 5$, where k is determined uniquely as a function $k = k(\ell)$ of ℓ, j runs through all possible values, i is determined uniquely as a function $i = i(j)$ of j, and $1 \leq h \leq 3 [20]$. \hfill \Box

Example 1. The quadratic fields K with fundamental discriminants $d = -518835$ and $\ell \in \{4, 6\}$, respectively $d \in \{-553807, -763972, -876948\}$ and $\ell \in \{10, 12, 13, 15\}$, respectively $d = -150319$ and $\ell = 29$, have punctured capitulation type $\varkappa(K) \sim (144; 4)$ and are examples of field possessing a 3-class field tower with exactly three stages, $\ell_3(K) = 3$, of relative degrees

$$[F_3^3(K) : F_3^2(K)] = 3^{11}, \quad [F_3^2(K) : F_3^1(K)] = 3^7, \quad [F_3^1(K) : F_3^0(K)] = 3^3,$$

and Galois group $\text{Gal}(F_3^3(K)/K)$ of order 3^{21}.

Remark 2. The quadratic fields K with fundamental discriminants $d = -761855$ and $\ell \in \{3, 5, 11, 14\}$, respectively $d \in \{-194703, -494771\}$ and $\ell \in \{16, 19, 23, 25, 27\}$, have punctured capitulation type $\varkappa(K) \sim (144; 4)$ and $3 \leq \ell_3(K) \leq 4$.

The quadratic fields K with fundamental discriminants $d \in \{-294983, -389435\}$ and punctured capitulation type $\varkappa(K) \sim (144; 4)$ have an infinite 3-class field tower.
8. 3-GROUPS WITH COMMUTATOR QUOTIENT (27, 3)

In Table 4 we list the second AQI α_2 of the 30 non-metabellian step size-4 descendants $F - \#4; \ell$ with $43 \leq \ell \leq 72$ of the metabellian fork $F = (2187, 3) - \#2; 10$. The general structure of α_2 is

$\alpha_2(G) = [31; (421; 32111, D_1), (311; 32111, D_2), (311; 32111, D_3); (221; 32111, D_4)],$

where each dodecuplet D_i, $1 \leq i \leq 3$, consists of a triplet T_i^3 and a nonet N_i^9. However, D_4 consists of a triplet T_4^3 and either a nonet N_4^9 or an octet O_5^8 and a singlet S_4. The metabelianization $M = G/G''$ is given by the step size-2 descendant $F - \#2; m$ with $m \in \{88, 90\}$ of the fork F. The smallest logarithmic order, soluble length, of a Schur σ-descendant S of G is $\text{lo}(S), \text{sl}(S)$.

ℓ	T_1	N_1	T_2	N_2	T_3	N_3	T_4	N_4	O_4	S_4	m	$\text{lo}(S)$	$\text{sl}(S)$
43	4211	42	42	42	421	42	3211	321			34	88	37
44	4211	42	421	321	42	331	321	321	222		90	88	22
45	4211	42	421	321	42	331	321	321	222		90	88	22
46	4211	42	421	321	42	331	321	321	222		90	88	22
47	4111	42	4111	42	4111	42	3211	321			34	88	37
48	4111	42	4111	42	4111	42	3211	321			90	88	37
49	4111	42	4111	42	4111	42	3211	321			90	88	37
50	4211	42	421	321	42	331	321	321	222		90	88	22
9. Imaginary Quadratic Fields K with $\text{Cl}_3(K) \simeq C_{27} \times C_3$

The 930 imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with fundamental discriminants $-3000000 < d < 0$ and 3-class group $\text{Cl}_3(K) \simeq C_{27} \times C_3$ were computed together with their punctured capitulation types $\mathcal{z}(K)$ and first abelian type invariants $\alpha_1(K)$ by means of the computational algebra system Magma [17] in 19 132 seconds of CPU time, that is more than 5 hours. In Table 5, the first 16 cases with punctured capitulation type B.18, $\mathcal{z}(K) \sim (144; 4)$, and uni-polarized abelian type invariants $\alpha_1(K)$ of first order in the ground state are listed. Bi-polarized cases and excited states are excluded.

Table 5. Sixteen fields $K = \mathbb{Q}(\sqrt{d})$ with $\text{Cl}_3(K) \simeq C_{27} \times C_3$ and $\mathcal{z}(K) \sim (144; 4)$

No.	d	factors	$\alpha_1(K)$
15	-163736	2, 97, 211	$(421, 311, 311; 221)$
25	-218123	59, 3697	$(421, 311, 311; 221)$
75	-428935	5, 13, 6599	$(421, 311, 311; 221)$
121	-615467	19, 29, 1117	$(421, 311, 311; 221)$
202	-892459	31, 28789	$(421, 311, 311; 221)$
234	-985727	463, 2129	$(421, 311, 311; 221)$
304	-1216407	3, 47, 8627	$(421, 311, 311; 221)$
322	-1263279	3, 421093	$(421, 311, 311; 221)$
328	-1283531	701, 1831	$(421, 311, 311; 221)$
357	-1358087	prime	$(421, 311, 311; 221)$
407	-1502187	3, 500729	$(421, 311, 311; 221)$
425	-1561043	11, 191743	$(421, 311, 311; 221)$
433	-1588196	2, 23, 61283	$(421, 311, 311; 221)$
475	-1752787	67, 26161	$(421, 311, 311; 221)$
508	-1853828	2, 463457	$(421, 311, 311; 221)$
590	-2052195	3, 5, 136813	$(421, 311, 311; 221)$

In Table 6, we give the abelian type invariants $\alpha_2(K)$ of second order of the 16 fields in the uni-polarized ground state contained in Table 5. They were computed with the aid of Magma [17] in 74 318 seconds of CPU time, that is nearly 21 hours. The general structure of $\alpha_2(K)$ is

$$\alpha_2(K) = [31; (421; 32111, D_1), (311; 32111, D_2), (311; 32111, D_3); (221; 32111, D_4)]$$

where each dodecuplet D_i, $1 \leq i \leq 3$, consists of a triplet and a nonet, and D_4 consists of a triplet, an octet and a singlet. A reference to Table 4 is added. It usually admits the determination of the length $\ell_3(K)$ of the 3-class field tower of K.

Example 2. According to Tables 5 and 6 together with Theorem 11 we get the following 5 examples of 3-class field towers with precisely three stages, $\ell_3(K) = \text{sl}(S) = 3$:

- $d \in \{-218123, -1358087\}$ both with $\ell \in \{51, 66\}$,
- $d = -892459$ with $\ell \in \{44, 59\}$,
- $d = -1263279$ with $\ell \in \{52, 70\}$ and $\text{lo}(S) = 25$,
- $d = -1752787$ with $\ell \in \{46, 50, 63, 65\}$.

In contrast, the 3-class field tower is infinite for $d \in \{-163736, -428935, -985727, -1561043\}$. No statement is possible for $d \in \{-1216407, -1283531, -1502187, -1853828, -2052195\}$, since the associated Schur σ-groups S are unknown.

Example 3. As a particular highlight we point out the unique example of a 3-class field tower with precisely four stages, $\ell_3(K) = \text{sl}(S) = 4$, for $d = -1588196$ with $\ell \in \{43, 58\}$ and $\text{lo}(S) = 37$. As opposed, the precise length is unknown for $d = -615467$ with $\ell \in \{53, 71\}$ and $3 \leq \ell_3(K) = \text{sl}(S) \leq 4$.
Table 6. Details for the fields $K = \mathbb{Q}(\sqrt{d})$ in Table 5

No.	D_1	D_2	D_3	D_4	reference	$\ell_3(K)$
15	$(4211)^3(42)^9$	$(4211)^3(42)^9$	$(3221)^3(321)^9$	$(3311)^3(321)^8(222)$	57.69 var.	∞
25	$(4211)^3(42)^9$	$(4211)^3(42)^9$	$(421)^3(321)^9$	$(32111)^3(321)^8(222)$	51.66	3
75	$(42111)^3(42)^9$	$(42111)^3(42)^9$	$(4211)^3(321)^9$	$(32213)^3(321)^8(222)$	57.69 var.	∞
121	$(4211)^3(42)^9$	$(421)^3(321)^9$	$(321)^3(321)^8(222)$	$(331)^3(321)^8(222)$	53.71	4 or 3
202	$(4211)^3(42)^9$	$(4111)^3(42)^9$	$(421)^3(321)^9$	$(3311)^3(321)^8(222)$	44.59	3
234	$(42111)^3(42)^9$	$(42111)^3(42)^9$	$(4211)^3(321)^9$	$(3311)^3(321)^8(222)$	57.69 var.	∞
304	$(51111)^3(42)^9$	$(421)^3(321)^9$	$(331)^3(321)^8(222)$	$(331)^3(321)^9$	48.61 var.	?
322	$(4211)^3(42)^9$	$(421)^3(321)^9$	$(4111)^3(42)^9$	$(331)^3(321)^9$	52.70	3
328	$(51111)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(331)^3(321)^9$	55.67 var.	?
357	$(4211)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(32111)^3(321)^8(222)$	51.66	3
407	$(51111)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(331)^3(321)^8(222)$	48.61 var.	?
425	$(42111)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(3311)^3(321)^8(222)$	57.69 var.	∞
433	$(4211)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(32111)^3(321)^8(222)$	43.58	4
475	$(4211)^3(42)^9$	$(4111)^3(42)^9$	$(421)^3(321)^9$	$(331)^3(321)^8(222)$	46.50, 63.65	3
508	$(51111)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(331)^3(321)^9$	55.67 var.	?
590	$(51111)^3(42)^9$	$(421)^3(321)^9$	$(421)^3(321)^9$	$(331)^3(321)^8(222)$	56.68 var.	?

Theorem 11. For an imaginary quadratic field $K = \mathbb{Q}(\sqrt{d})$, $d < 0$, with 3-class group $\text{Cl}_3(K) \simeq (27,3)$ and punctured capitulation type B.18, $\epsilon \sim (144; 4)$, the 3-class field tower consists of precisely three stages with Schur σ-group $G = \text{Gal}(\mathbb{F}_3^3(K)/K)$ of order $\# G = 3^{22}$ and nilpotency class $\text{cl}(G) = 9$, if the following conditions for the abelian type invariants $\alpha_2(K)$ of second order in Formula (13) are satisfied. In the notation of the SmallGroups database [6] and the ANUPQ package [13], the 3-class field tower group is given by

$$G \simeq (2187, 3) - \#2; 10 - \#4; \ell (\ell - \#2)$, where $43 \leq \ell \leq 72$ is determined by the second $\text{AQI} \alpha_2$, $1 \leq k \leq 41$ is determined by ℓ, $1 \leq j \leq 27$ is determined by ℓ, $1 \leq i \leq 2$ is determined by ℓ, and $1 \leq h \leq N$ is arbitrary below an upper bound $N \in \{1, 3\}$ determined by ℓ.

- $\ell \in \{51, 66\}$, $N \in 3$, i.e. 162 candidates for G,
 if $D_1 = (4211)^3(42)^9$, $D_2 = (421)^3(42)^9$, $D_3 = (421)^3(321)^9$, $D_4 = (32111)^3(321)^8(222)$;
- $\ell \in \{44, 59\}$, $N = 1$, i.e. 54 candidates for G,
 if $D_1 = (4211)^3(42)^9$, $D_2 = (421)^3(321)^9$, $D_3 = (4111)^3(321)^9$, $D_4 = (331)^3(321)^8(222)$.

The metabelianization $M = G/G'' \simeq \text{Gal}(\mathbb{F}_3^3(K)/K)$, which is isomorphic to the second 3-class group of K, has order $\# M = 3^{11}$, nilpotency class $\text{cl}(M) = 5$ and is given by

$$M \simeq (2187, 3) - \#2; 10 - \#2; m$$

where $m = 88$ if $\ell \leq 57$, and $m = 90$ if $\ell \geq 58$.

Proof. Among the 14 descendants $(2187, 3) - \#2; 10 - \#4; \ell$ which give rise to Schur σ-groups of minimal order 3^{22}, that is $\ell \in \{44, 46, 48, 50, 51, 54, 56, 59, 61, 63, 65, 66, 68, 72\}$, the second AQI in the statements are unique. It remains to check the other 16 values of $43 \leq \ell \leq 72$ with Tbl. <ref> <ref>.

10. 3-GROUPS WITH COMMUTATOR QUOTIENT (81, 3)

In Table 7, we list the second AQI α_2 of the 30 non-metabelian step-4 descendants $B - \#4; \ell$ with $80 \leq \ell \leq 109$ of the metabelian fork $B = (2187, 3) - \#3; 2$. The general structure of α_2 is

$$\alpha_2(G) = [41; (521; 42111, D_1), (411; 42111, D_2), (411; 42111, D_3); (321; 42111, D_4)]$$

where each dodecuplet $D_i, 1 \leq i \leq 3$, consists of a triplet T_i^3 and a nonet N_i^3, and D_4 usually consists of a triplet T_4^3, an octet O_4^3, and a singlet S_4. The metabelianization $M = G/G''$ is
given by the step size-2 descendant \(B - \#2; m \) with \(m \in \{100, 102\} \) of the fork \(B \). The smallest logarithmic order, soluble length, of a Schur \(\sigma \)-descendant \(S \) of \(G \) is \(\text{lo}(S), \text{sl}(S) \).

Table 7. Invariants of \(G = \langle 2187, 3 \rangle - \#3; 2 - \#4; \ell \) with \(80 \leq \ell \leq 109 \)

| \(\ell \) | \(T_1 \) | \(N_1 \) | \(T_2 \) | \(N_2 \) | \(T_3 \) | \(N_3 \) | \(T_4 \) | \(D_4 \) | \(O_4 \) | \(S_4 \) | \(m \) | \(\text{lo}(S) \) | \(\text{sl}(S) \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 80 | 5211 | 52 | 521 | 52 | 521 | 52 | 3311 | \((331)^6(322)^2\) | 421 | 322 | 100 | 46 |
| 95 | 5211 | 52 | 521 | 52 | 521 | 52 | 3311 | \((331)^6(322)^2\) | 421 | 322 | 102 | 46 |
| 81 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 100 | 23 |
| 96 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 102 | 23 |
| 82 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 100 | 23 |
| 99 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 102 | 23 |
| 83 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 100 | 23 |
| 87 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 102 | 23 |
| 100 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 102 | 23 |
| 102 | 5211 | 52 | 521 | 421 | 5111 | 52 | 431 | 4211 | 322 | 102 | 23 |

Theorem 12. The Schur \(\sigma \)-groups \(S \) with commutator quotient \(S/S' \simeq (81, 3) \), punctured transfer kernel type B.18, \(\alpha(S) \sim (144; 4) \), and first AQI \(\alpha_1(S) \sim (521, 411, 411; 321) \) are descendants of the 30 non-metabelian 3-groups \(G = \langle 2187, 3 \rangle - \#3; 2 - \#4; \ell \) whose invariants are listed in Table 7. In the case of finite order \(\text{lo}(S) < \infty \), their invariants coincide with those of the predecessor \(G \). For \(23 \leq \text{lo}(S) \leq 26 \) they have three stages \(\text{sl}(S) = 3 \), for \(40 \leq \text{lo}(S) < \infty \) four stages \(\text{sl}(S) = 4 \) and for \(\text{lo}(S) \leq 29 \) they have \(3 \leq \text{sl}(S) \leq 4 \). For \(80 \leq \ell \leq 94 \) their metabelianization \(S/S'' \simeq G/G'' \) is \(M = \langle 2187, 3 \rangle - \#3; 2 - \#2; 100 \), and for \(95 \leq \ell \leq 109 \) it is \(M = \langle 2187, 3 \rangle - \#3; 2 - \#2; 102 \).

The minimum \(\text{lo}(S) = 23 \) occurs for 14 values \(\ell \), 26 for 1, 29 for 7, 40 for 2, 46 for 2, and \(\infty \) for 4.

Remark 3. Table 4 and Theorem 10 were completed on 24 August 2021. After the discovery of the fork \(B = \langle 2187, 3 \rangle - \#3; 2 \) on 26 August 2021, Table 4 could be computed immediately: For all \(1 \leq e \leq 4 \), exemplary representatives of multiplets of Schur \(\sigma \)-groups \(S \) with commutator quotient \(S/S' \simeq (3^e, 3) \) can be found according to the principle of extremal root paths (see Figure 3),

\[
S \xrightarrow{\pi_1} \pi(S) \xrightarrow{\pi_2} \pi^2(S) \xrightarrow{\pi_3} \pi^3(S) \xrightarrow{\pi_4} \pi^4(S) \xrightarrow{\pi_5} \pi^5(S) = B.
\]

This is not possible any longer for \(e \geq 5 \), due to the beginning discrepancy between parents \(\pi(G) \) and \(p \)-parents \(\pi_p(G) \) of finite 3-groups \(G \).
11. Imaginary quadratic fields \(K \) with \(\text{Cl}_3(K) \simeq C_{81} \times C_3 \)

The 2174 imaginary quadratic fields \(K = \mathbb{Q}(\sqrt{d}) \) with fundamental discriminants \(-20 \, 000 \, 000 < d < 0\) and 3-class group \(\text{Cl}_3(K) \simeq C_{81} \times C_3 \) were computed by means of the computational algebra system Magma [17] in 141,586 seconds of CPU time, that is nearly two days. In Table 8, the first eight cases with punctured capitulation type B.18, \(\kappa(K) \sim (144;4) \), are listed. The abelian quotient invariants \(\alpha_1(K) \) of first order of only six of them are uni-polarized and in the ground state.

Table 8. Eight fields \(K = \mathbb{Q}(\sqrt{d}) \) with \(\text{Cl}_3(K) \simeq C_{81} \times C_3 \) and \(\kappa(K) \sim (144;4) \)

No.	\(d \) factors	\(\alpha_1(K) \)	remark
31	\(-936311\) prime	\((521,411,411;321)\)	
49	\(-1240879\) 107,11597	\((521,411,411;321)\)	
57	\(-1437179\) 19,75641	\((521,411,411;321)\)	
78	\(-1723864\) 2,215483	\((521,411,411;321)\)	
80	\(-1749655\) 5,349931	\((521,411,411;321)\)	
86	\(-1818223\) 11,165293	\((521,411,411;321)\)	
96	\(-1854319\) 281,6599	\((532,411,411;321)\) first excited state	
109	\(-2003179\) 61,32839	\((521,411,411;332)\) bi-polarized	

In Table 9, we give the abelian quotient invariants \(\alpha_2(K) \) of second order of the six fields in the uni-polarized ground state contained in Table 8. The general structure of \(\alpha_2(K) \) is the following

\[\alpha_2(K) = [41; (521; 42111, D_1), (411; 42111, D_2), (411; 42111, D_3); (321; 42111, D_4)] \]

where each dodecupt D, \(1 \leq i \leq 3 \), consists of a triplet and a nonet, and D 4 usually consists of a triplet, an octet and a singlet. But the constitution of D 4 may occasionally be irregular.

Table 9. Details for six fields \(K = \mathbb{Q}(\sqrt{d}) \) in Table 8

No.	\(D_1 \)	\(D_2 \)	\(D_3 \)	\(D_4 \)	remark
31	\((521)^3(52)^9\)	\((511)^3(52)^9\)	\((521)^3(421)^9\)	\((431)^3(421)^8(322)\)	ref. 81,96
49	\((521)^3(52)^9\)	\((511)^3(52)^9\)	\((521)^3(421)^9\)	\((431)^3(421)^8(322)\)	ref. 83,87,100,102
57	\((521)^3(52)^9\)	\((521)^3(52)^9\)	\((521)^3(421)^9\)	\((4211)^3(421)^8(322)\)	ref. 88,103
78	\((521)^3(52)^9\)	\((521)^3(52)^9\)	\((521)^3(421)^9\)	\((321)^3(331)^6(322)^3\)	Magma int. err.
80	\((6111)^3(52)^9\)	\((521)^3(52)^9\)	\((521)^3(421)^9\)	\((431)^3(421)^8(322)\)	irregular
86	\((521)^3(52)^9\)	\((511)^3(52)^9\)	\((521)^3(52)^9\)	\((431)^3(421)^8(322)\)	ref. 83,87,100,102

Theorem 13. For an imaginary quadratic field \(K = \mathbb{Q}(\sqrt{d}) \), \(d < 0 \), with 3-class group \(\text{Cl}_3(K) \simeq (81,3) \) and punctured capitulation type B.18, \(\kappa \sim (144;4) \), the 3-class field tower consists of precisely three stages with Schur \(\sigma \)-group \(G = \text{Gal}(\mathbb{Q}_3(K)/K) \) of order \#G = 3^{2^3} \) and nilpotency class \(\text{cl}(G) = 9 \), if the following conditions for the abelian quotient invariants \(\alpha_2(K) \) of second order in Formula (37) are satisfied. In the notation of the SmallGroups database [6] and the ANUPQ package [13], the 3-class field tower group is given by

\[G \simeq (2187,3) - \#3; 2 - \#4; \ell - \#2; k(\ell) - \#4; j - \#1; i(j) - \#2; h, \]

where \(80 \leq \ell \leq 109 \) is determined by the second AQI \(\alpha_2 \), \(1 \leq k \leq 41 \) is determined by \(\ell \), \(1 \leq j \leq 27 \) is arbitrary, \(1 \leq i \leq 2 \) is determined by \(j \), and \(1 \leq h \leq N \) is arbitrary below an upper bound \(N \in \{1,3\} \) determined by \(\ell \).

- \(\ell \in \{81,96\} \), \(N = 1 \), i.e. 54 candidates for \(G \),

if \(D_1 = (5211)^3(52)^9 \), \(D_2 = (521)^3(421)^9 \), \(D_3 = (5111)^3(52)^9 \), \(D_4 = (431)^3(421)^8(322) \);
In contrast, no statement is possible for examples of 3-class field towers with precisely three stages, Example 4. According to Tables 8 and 9 together with Theorem 13, we get the following

\[M \simeq \langle 2187, 3 \rangle - \#3; 2 - \#2; m, \]

where \(m = 100 \) if \(\ell \leq 93 \), and \(m = 102 \) if \(\ell \geq 96 \).

Proof. The root \(\langle 2187, 3 \rangle - \#3; 2 \) can be viewed as usual descendant of \((6561, 216)\) with step size \(s = 2 \). Among the 14 descendants \(\langle 2187, 3 \rangle - \#3; 2 - \#4; \ell \) which give rise to Schur \(\sigma \)-groups of minimal order \(3^{23} \), that is \(\ell \in \{81, 83, 85, 87, 88, 91, 93, 96, 98, 100, 102, 103, 105, 109\} \), the second AQI in the statements are unique. It remains to check the other 16 values of \(80 \leq \ell \leq 109 \). \(\square \)

Example 4. According to Tables 8 and 9 together with Theorem 13, we get the following 4 examples of 3-class field towers with precisely three stages, \(\ell_3(K) = \text{sl}(S) = 3 \):

- \(d = -936311 \) with \(\ell \in \{81, 96\} \),
- \(d = -1240879 \) and \(d = -1818223 \) both with \(\ell \in \{83, 87, 100, 102\} \),
- \(d = -1437179 \) with \(\ell \in \{88, 103\} \).

In contrast, no statement is possible for \(d = -1749655 \).

12. MOTIVATION FOR SEEKING THE NEW PERIODICITIES OF SCHUR \(\sigma \)-GROUPS

In our previous work [27 § 7, Thm. 4 and Thm. 7], we found a periodicity of pairs of *metabelian* Schur \(\sigma \)-groups \(G \) with \(G/G' \simeq (3^e, 3) \), \(e \geq 3 \), and type \(D.11, \kappa \sim (124; 1) \), which is illustrated by Figure 1.

Figure 1. Periodic metabelian Schur \(\sigma \)-groups \(G \) with \(G/G' \simeq (3^e, 3) \), \(e \geq 3 \)

![Figure 1](image)

In the Figures 1 – 4 all directed edges lead from descendants \(D \) to \(p \)-parents \(\pi_p(D) = D/P_{\gamma_{p-1}}(D) \), rather than to parents \(\pi(D) = D/\gamma_e(D) \). The figures admit actual descendant construction.
In the main theorem [27 § 9, Thm. 12] of the previous work, we provided evidence of another periodicity of pairs of non-metabelian Schur \(\sigma \)-groups \(G \) with \(G/G' \simeq (3^e, 3) \), \(e \geq 5 \), and four types \(D.5, \sim (211; 3) \), \(C.4, \sim (311; 3) \), \(D.10, \sim (411; 3) \), and \(D.6, \sim (123; 1) \), which is illustrated for one member of the pair of type \(D.10 \) by Figure 2.

Figure 2. Schur \(\sigma \)-groups \(G \) with \(\varrho(G) \sim (2, 2, 3; 3) \), \(G/G' \simeq (3^e, 3) \), \(2 \leq e \leq 7 \)

Figure 2 shows that the construction process for the eight non-metabelian Schur \(\sigma \)-groups \(G \) with order \(\#G = 3^7 + e \) and punctured transfer kernel types \(D.10, C.4, D.5, \) and \(D.6 \), becomes increasingly difficult for the commutator quotients \(G/G' \simeq (27, 3), (81, 3), (243, 3) \). For the
commutator quotient $G/G' \simeq (729, 3)$, however, an unexpected tranquilization occurs, and the construction process becomes settled with a simple step size one periodicity.

Figure 3. Schur σ-groups G with $g(G) \sim (3, 3, 3; 3)$, $G/G' \simeq (3^e, 3)$, $2 \leq e \leq 4$
The investigation of periodic Schur σ-groups G with moderate rank distribution $\varrho(G) \sim (2, 2; 2; 3)$ or $\varrho(G) \sim (2, 2, 3; 3)$ was completed in [27]. Although we were conscious that the difficulties will increase significantly, the tree diagram in Figure 3 inspired us to look at cases with elevated rank distribution on 21 August 2021. In Figure 3 we see how large Schur σ-groups G with logarithmic order $\text{lo}(G) = 19 + e$ and commutator quotient $G/G' \simeq (3^e, 3)$, $1 \leq e \leq 4$, can be constructed with the aid of the p-group generation algorithm [29, 30], which is implemented in the ANUPQ package [13] of the computational algebra system Magma [17]. In these four cases, the exponent e is not bigger than the nilpotency class $\text{cl}(F) = 4$ of the metabelian fork F with bifurcation to non-metabelian vertices

$G \xrightarrow{s=3} \pi(G) \xrightarrow{s=1} \pi^2(G) \xrightarrow{s=4} \pi^3(G) \xrightarrow{s=2} \pi^4(G) \xrightarrow{s=4} \pi^5(G) = F.$

They form the extremal root path of the Schur σ-group G, which is weighted by the maximal step sizes $s = v$ equal to the nuclear rank of the parent. In this region, parents and p-parents coincide.

Figure 3 for $2 \leq e \leq 4$, which is continued by Figure 4 for $4 \leq e \leq 13$, documents the stagnating state of our research enterprise on 31 August 2021, due to group theoretic problems. The initial cases were still in the region where parents and p-parents coincide,

for $e = 3 : \langle 2187, 3 \rangle \xrightarrow{s=2} \langle 2187, 3 \rangle \rightarrow \#2; 10 \xrightarrow{s=4} \langle 2187, 3 \rangle \rightarrow \#2; 10 \rightarrow \#4; 51 \leftarrow \ldots \text{ etc.}$

for $e = 4 : \langle 2187, 3 \rangle \rightarrow \#3; 2 \xrightarrow{s=4} \langle 2187, 3 \rangle \rightarrow \#3; 2 \rightarrow \#4; 81 \leftarrow \ldots \text{ etc.}$

However, the case $e = 5$ was outside of our reach already. We tried to look at the descendant $(2187, 3) - \#3; 2 - \#5; 1$, which has $G/G' \simeq (243, 3)$, but we got too big AQI of first order, namely $(622, 511, 511; 421)$ instead of $(621, 511, 511; 421)$.

At the commutator quotient $(81, 3) = (3^e, 3)$ with $e = 4$ the exponent e overtake the nilpotency class of the bifurcation $\text{cl}(F) = 4$. It was not clear if the bifurcation will vanish for $(243, 3)$, but eventually it turned out that $B = (2187, 3) - \#3; 2$ is simultaneous bifurcation for all commutator quotients $(3^e, 3)$ with $e \geq 4$. It can thus be called a bifurcation of infinite order.

After a lot of trial and error we succeeded in the construction of the desired Schur σ-groups G with logarithmic order 24, $G/G' \simeq (243, 3)$, i.e. $e = 5$, type B.18, $x \sim (144; 4)$, AQI $a_1 \sim (621, 511, 511; 421)$, and $s = 3$. The mystery was solved on 06 September 2021 in the following way, which finally lead to Figure 1 on 13 September 2021. Let $B := (2187, 3) - \#3; 2$.

In a first step, we looked for the metabelianization $M = G/G''$, and we got two unique solutions: $M = B - \#2; 93 - \#1; i$ with $i \in \{2, 3\}$.

In a second step, we sought the non-metabelian Schur σ-group G. There are 15 possible starting points, $B - \#4; k$ with $23 \leq k \leq 37$, but only $k \in \{24, 26, 28, 30, 31, 33, 37\}$ leads to Schur σ-groups with minimal $\text{lo}(G) = 19 + e$. (The other values of k lead to $M = B - \#2; 92 - \#1; i$ with $i \in \{2, 3\}$.) Exemplarily we take $k = 37$ in Figure 4. The classical root path with respect to the usual lower central becomes disconnected. The first non-metabelian vertex is irregular, $B - \#4; 37 - \#1; i$ with $i \in \{2, 3\}$. It is isolated, since it has nuclear rank zero, and thus is useless for the construction. The remaining four non-metabelian vertices are regularly connected, beginning at $B - \#4; 37 - \#3; j$ with $j \in \{73, 114\}$. We take $j = 73$ in Figure 1, which therefore illustrates a particular instance of the main Theorem 6. The structure of the relevant tree diagrams for the other five main Theorems 1-5 is the same as in Figure 1.

Concerning the bifurcations, we have the following information:

Theorem 14. The bifurcations possess nearly identical pc-presentations: there are in fact only three bifurcations, $B = (6561, 165)$ for $(9, 3)$, $B = (2187, 3) - \#2; 10$ for $(27, 3)$, and the bifurcation of infinite order $B = (2187, 3) - \#3; 2$ for any $(3^e, 3)$ with $e \geq 4$. Denote some crucial commutators by $s_2 = [y, x]$, $s_3 = [s_2, x]$, $t_3 = [s_2, y]$, $s_4 = [s_3, x]$, $t_4 = [t_3, y]$, $s_5 = [s_4, x]$, $t_5 = [t_4, y]$. Then the polyecyclic pc-presentation is given by

$$B = \langle x, y \mid x^{3^e} = 1, y^3 = s_3 s_4, s_2 = s_4 t_2, [x, y] = s_4 t_4 \rangle$$

with $e = 2$, respectively $e = 3$, respectively $e = 4$.

Figure 4. Schur σ-groups G with $g(G) \sim (3, 3, 3; 3)$, $G/G' \simeq (3^e, 3)$, $4 \leq e \leq 13$
13. Imaginary Quadratic Fields K with $\text{Cl}_3(K) \simeq C_{243} \times C_3$

The 1784 imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with fundamental discriminants $-60\,000\,000 < d < 0$ and 3-class group $\text{Cl}_3(K) \simeq C_{243} \times C_3$ were computed by means of the computational algebra system Magma [17] in 451,227 seconds of CPU time, that is nearly a full week. In Table 10 the first seven cases with punctured capitulation type B.18, $\kappa(K) \sim (144; 4)$, are listed. The abelian quotient invariants $\alpha_1(K)$ of first order of only six of them are uni-polarized and in the ground state.

No.	d	factors	$\alpha_1(K)$	remark
60	$-5\,629\,151$	11,631,811	(621; 511, 511; 421)	
65	$-5\,702\,003$	prime	(621; 511, 511; 421)	
73	$-6\,124\,411$	prime	(621; 511, 511; 421)	
77	$-6\,219\,188$	2, 1,554,797	(621; 511, 511; 421)	
116	$-8\,513\,951$	prime	(621; 511, 511; 421)	bi-polarized
149	$-10\,401\,044$	2, 41,63421	(621; 511, 511; 421)	
155	$-10\,607\,215$	5, 2,121,443	(621; 511, 511; 421)	

In Table 11 we give the abelian quotient invariants $\alpha_2(K)$ of second order of the six fields in the uni-polarized ground state contained in Table 10. The general structure of $\alpha_2(K)$ is the following (41) $\alpha_2(K) = [51; (621; 52111, D_1), (511; 52111, D_2), (511; 52111, D_3); (421; 52111, D_4)]$ where each dodecuplet D_i usually consists of a triplet and a nonet. Only the constitution of D_4 is occasionally irregular.

No.	D_1	D_2	D_3	D_4	remark
60	$(6211)^3(62)^9$	$(6211)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(431)^6(422)^2(332)$	irregular
65	$(6211)^3(62)^9$	$(6211)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(521)^8(422)$	Magma int. err.
73	$(6211)^3(62)^9$	$(6211)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(521)^8(422)$	Magma int. err.
77	$(621)^3(62)^9$	$(621)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(521)^8(422)$	Magma int. err.
149	$(6211)^3(62)^9$	$(6211)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(521)^8(422)$	Magma int. err.
155	$(6211)^3(62)^9$	$(6211)^3(62)^9$	$(521111)^1(521)^9$	$(5311)^3(521)^8(422)$	Magma int. err.

14. Imaginary Quadratic Fields K with $\text{Cl}_3(K) \simeq C_{729} \times C_3$

The 263 imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with fundamental discriminants $-60\,000\,000 < d < 0$ and 3-class group $\text{Cl}_3(K) \simeq C_{729} \times C_3$ were computed by means of the computational algebra system Magma [17] in 411,074 seconds of CPU time, that is nearly a full week. In Table 12 the eleven cases with punctured capitulation type B.18, $\kappa(K) \sim (144; 4)$, are listed. The abelian quotient invariants $\alpha_1(K)$ of first order of only eight of them are uni-polarized and in the ground state.

In Table 13 we give the abelian quotient invariants $\alpha_2(K)$ of second order of the eight fields in the uni-polarized ground state contained in Table 12. The general structure of $\alpha_2(K)$ is the following (42) $\alpha_2(K) = [61; (721; 62111, D_1), (611; 62111, D_2), (611; 62111, D_3); (521; 62111, D_4)]$ where each dodecuplet D_i usually consists of a triplet and a nonet. Only the constitution of D_4 is frequently (or even always) irregular.
Table 12. Eleven fields $K = \mathbb{Q}(\sqrt{d})$ with $\text{Cl}_3(K) \simeq C_{729} \times C_3$ and $\varpi(K) \sim (144; 4)$

No.	d	factors	$\alpha_1(K)$	remark
9	-8716319	$2,111,4129$	$(721,611,611;521)$	
17	-11598911	$19,610,469$	$(721,611,611;521)$	
28	-17054671	prime	$(732,611,611;521)$	first excited state
94	-32670951	$3,10,890,317$	$(721,611,611;521)$	
133	-38393396	$2,9,598,349$	$(721,611,611;521)$	
141	-39551231	$17,283,8221$	$(721,611,611;543)$	highly bi-polarized
144	-39948359	$11,719,5051$	$(721,611,611;521)$	
197	-50631279	$3,293,57601$	$(721,611,611;521)$	
198	-50963071	$439,116,089$	$(721,611,611;521)$	
242	-57507455	$5,11,501,491$	$(721,611,611;521)$	
247	-58142996	$2,14,535,749$	$(721,611,611;532)$	bi-polarized

Table 13. Details for eight fields $K = \mathbb{Q}(\sqrt{d})$ in Table 12

No.	D_1	D_2	D_3	D_4	remark
9	$(721)^3(72)^6$	$(721)^4(621)^6$	$(721)^3(72)^6$	$(531)^6(522)^2(432)$	irregular
17	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular
94	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular
133	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular
144	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular
197	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular
198	$(721)^3(72)^6$	$(621)^3(621)^6$	$(721)^3(72)^6$	$(631)^3(531)^6(522)^2(432)$	irregular

Remark 4. In §4 we have mentioned that it is rather hopeless to continue the search for imaginary quadratic fields $K = \mathbb{Q}(\sqrt{d})$ with bigger 3-class groups $\text{Cl}_3(K) \simeq C_{3e} \times C_3$ for $e \geq 7$. Firstly because of the immense amount of required CPU-time, and secondly in view of Magma internal errors which occur with increasing frequency during the computation of abelian type invariants $\alpha_2(K)$ of the second order for nonic relative extensions L/K with absolute degree 18.

Nevertheless, we mention some interesting observations in experiments with $e = 7$ and $e = 8$. Concerning $e = 7$, we found six ground states of type B.18 with $\alpha_1(K) \sim (821,711,711;621)$ for $d \in \{-37,648,463, -42,705,359, -122,519,927, -138,616,719, -154,511,167, -193,538,383\}$, and a bipolarization with $\alpha_1(K) \sim (821,711,711;632)$ for $d = -206,130,371$. Five of these seven discriminants are prime. The first two minimal hits of the desired 3-class group are the primes $d = -32,681,951$ with $\alpha_1(K) \sim (81,81,821;711)$ and type D.5, $\varpi(K) \sim (112;3)$, $d = -35,574,431$ with $\alpha_1(K) \sim (81,81,711;711)$ and type D.11, $\varpi(K) \sim (124;1)$.

Concerning $e = 8$, we were at least able to discover three minimal hits of the desired 3-class group, though not of type B.18, $\varpi(K) \sim (144;4)$. All discriminants are prime: $d = -98,311,919$ with $\alpha_1(K) \sim (91,91,932;811)$ a first excited state of type D.5, $\varpi(K) \sim (112;3)$, $d = -201,210,239$ with $\alpha_1(K) \sim (91,91,811;811)$ and type D.11, $\varpi(K) \sim (124;1)$, and $d = -209,606,759$ with $\alpha_1(K) \sim (91,91,91;822)$ and type D.6, $\varpi(K) \sim (123;1)$.

15. A general theorem

The previous sections with concrete results for various fixed values of the exponent $2 \leq e \leq 20$ in the non-elementary bicyclic commutator quotient $G/G' \simeq (3^e,3)^\langle e \rangle$ suggest the following generalization with upper bound $B := 20$.

Please note that the above text is a natural representation of the given image, and it is not intended to be read as an interconnected note to the original text.
Theorem 15. In dependence on the exponent $3 \leq e \leq B$, the abelian quotient invariants $\alpha_2(G)$ of second order of finite Schur σ-groups G with commutator quotient $G/G' \simeq (e1)$, punctured transfer kernel type $B.18$, $x(K) \sim (144;4)$, and logarithmic order $\log(G) = 19 + e$ are given by

\[\alpha_2(G) = (e1; (e+1)21; e2111, D_1), (e11; e2111, D_1), (e11; e2111, D_2), (e11; e2111, D_3); ((e-1)21; e2111, D_4)], \]

where each dodecuplet D_i consists of a triplet T_i^3 and a nonet N_i^3, except for $i = 4$, where the nonet N_4^3 is replaced by an octet O_4^3 and a singlet S_4:

\[T_i \in \{(e+1)2111, (e+1)1111\}, \quad N_i = (e+1)2, \]

\[T_i \in \{(e+1)21, (e+1)111\}, \quad N_i \in \{(e+1)2, e21\}, \quad \text{for } 2 \leq i \leq 3, \]

\[T_4 \in \{e31, e211\}, \quad O_4 = e21, \quad S_4 = (e-1)22. \]

Conjecture 1. Theorem 15 remains true for any upper bound $B \geq 21$.

Remark 5. $T_i = e211$ for $2 \leq i \leq 3$ can also occur but it leads to bigger logarithmic order $\log(G) > 19 + e$. The same is true for a nonet N_i^3 with $N_4 = e21$ in the fourth dodecuplet D_4. Theorem 15 was stated on 31 August 2021.

16. Conclusion

In our invited key note [25] at the 3rd International Conference on Mathematics and its Applications (ICMA) Casablanca, 28 February 2020, we offered supervision of a Ph.D. thesis about 3-groups with non-elementary commutator quotient to the young researchers who listened to our talk and presentation with vigilance. That was eighteen months ago, immediately before the breakout of the worldwide Corona crisis, which prohibited any further scientific collaboration with personal contact. In the present article and its predecessor [27] we actually wrote this “thesis” ourselves, thereby discovering several groundbreaking and totally unexpected simple periodicities.

17. Acknowledgements

The author thanks Professor M. F. Newman from the Australian National University in Canberra, Australian Capital Territory, for his encouragement and aid during the preparation of this article.

The author acknowledges financial support by the Austrian Science Fund (FWF): projects J0497-PHY, P26008-N25 and by the Research Executive Agency of the European Union (EUREA).

References

[1] M. Arrigoni, On Schur σ-groups, Math. Nachr. 192 (1998), 71–89.
[2] E. Artin, Beweis des allgemeinen Reziprozitatsgesetzes, Abh. Math. Sem. Univ. Hamburg 5 (1927), 353–363.
[3] E. Artin, Idealklassen in Oberkörperrn und allgemeines Reziprozitatsgesetz, Abh. Math. Sem. Univ. Hamburg 7 (1929), 46–51.
[4] J. A. Aschero, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17 (1977), 257–274.
[5] T. Bemborn, The capitulation problem in class field theory, Dissertation, Univ. Göttingen, 2012.
[6] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, 2005, an accepted and refereed GAP package, available also in MAGMA.
[7] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.
[8] W. Bosma, J. J. Cannon, C. Fieker, A. Steele (eds.), Handbook of Magma functions, Ed. 2.26, Sydney, 2021.
[9] N. Boston, M. R. Bush and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, Math. Ann. 368 (2017), No. 1, 633–669, DOI 10.1007/s00208-016-1449-3.
[10] M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, J. Number Theory 147 (2015), 766–777, DOI 10.1016/j.jnt.2014.08.010.
[11] B. Eick, C. R. Leedham-Green, M. F. Newman, and E. A. O’Brien, On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2, Int. J. Algebra Comput. 23 (2013), 1243–1288.
[12] C. Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), No. 235, 1293–1303.
[13] G. Gamble, W. Nickel, and E. A. O’Brien, ANU p-Quotient — p-Quotient and p-Group Generation Algorithms, 2006, an accepted GAP package, available also in MAGMA.
[14] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982), 1–25.
[15] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of computational group theory, Discrete mathematics and its applications, Chapman and Hall/CRC Press, Boca Raton, 2005.
[16] H. Koch und B. B. Venkov, Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers, Asterisque 24–25 (1975), 57–67.

[17] MAGMA Developer Group, MAGMA Computational Algebra System, Version 2.26-7, Univ. Sydney, 2021, (http://magma.maths.usyd.edu.au).

[18] D. C. Mayer, Principalization in complex S_3-fields, Congressus Numerantium 80 (1991), 73–87 (Proc. of the Twentieth Manitoba Conf. on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990).

[19] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (2012), No. 3–4, 467–495, DOI 10.1007/s00605-010-0277-x.

[20] D. C. Mayer, Periodic bifurcations in descendant trees of finite p-groups, Adv. Pure Math. 5 (2015), No. 1, 162–195, DOI 10.4236/apm.2015.54020.

[21] D. C. Mayer, New number fields with known p-class tower, Tatra Mt. Math. Pub. 64 (2015), 21–57, DOI 10.1515/tmmp-2015-0040, Special Issue on Number Theory and Cryptology ‘15.

[22] D. C. Mayer, Artin transfer patterns on descendant trees of finite p-groups, Adv. Pure Math. 6 (2016), No. 2, 66–104, DOI 10.4236/apm.2016.62008, Special Issue on Group Theory Research, January 2016.

[23] D. C. Mayer, p-Capitulation over number fields with p-class rank two, J. Appl. Math. Phys. 4 (2016), No. 7, 1280–1293, DOI 10.4236/jamp.2016.47135.

[24] D. C. Mayer, Modeling rooted m-trees by finite p-groups, Chapter 5, pp. 85–113, in the Open Access Book Graph Theory — Advanced Algorithms and Applications, Ed. B. Sirmacek, InTech d.o.o., Rijeka, January 2018, DOI 10.5772/intechopen.68703.

[25] D. C. Mayer, Pattern recognition via Artin transfers applied to class field towers, 3rd International Conference on Mathematics and its Applications (ICMA) 2020, Faculté des Sciences d’ Ain Chock Casablanca (FSAC), Université Hassan II, Casablanca, Morocco, invited keynote February 28, 2020, http://www.algebra.at/DCM@ICMA2020Casablanca.pdf.

[26] D. C. Mayer, Schur σ-groups with abelian quotient invariants (9,3), arXiv:2006.09177.

[27] D. C. Mayer, Bicyclic commutator quotients with one non-elementary component, arXiv:2108.10754.

[28] B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Universität zu Köln, 1989.

[29] M. F. Newman, Determination of groups of prime-power order, pp. 73–84 in: Group Theory, Canberra, 1975, Lecture Notes in Math., Vol. 573 (1977), Springer, Berlin.

[30] E. A. O’Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), 677–698.

[31] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math. 171 (1934), 19–41.

[32] I. R. Shafarevich, Extensions with prescribed ramification points (Russian), Publ. Math., Inst. Hautes Études Sci. 18 (1964), 71–95. (English transl. by J. W. S. Cassels in Amer. Math. Soc. Transl., II. Ser., 59 (1966), 128–149.)

[33] O. Taussky, A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.