Aflatoxin B1 Contamination of Dairy Feeds after Storage in Farm Practice in Tropical Environment

WANTANWA MONGKON¹, YOSHIKO SUGITA-KONISHI², WASANA CHAISRI¹, AND WITAYA SURIYASATHAPORN¹*

¹Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Mae Hia, Chiang Mai Province, 50100, Thailand
²Department of Food and Life Sciences, The Graduate School of Life and Environmental Sciences, Azabu University, Tokyo 2298501, Japan

Received 26 November, 2015/Accepted 9 June, 2016

The objective of this study was to determine the contamination of aflatoxin B1 (AF-B1) when keeping various dairy feeds in a farm environment. The study was carried out from March to May 2011 and involved 63 small holder dairy farms belonging to a single dairy cooperative in Chiang Mai province, Thailand. All feed samples used for milking cows including 4 commercial concentrates (CC1 to CC4), by-products from local corn processing factories fermented in plastic bags (SIL), and corn and cob meal or corn dust (CCD). Feed samples were collected 2 times at before and after storage. Farmers were requested to store CC1 to CC4 and CCD for a month and SIL for a week using their routine on-farm storage arrangements. All samples were measured for their AF-B1 concentrations by ELISA. Results showed that AF-B1 concentrations of CC1 to CC4, SIL and CCD before storage were 5.1, 4.1, 4.0, 4.2, 5.5 and 5.5 µg/kg, respectively, and after storage the concentration of AF-B1 were 9.7, 6.5, 9.8, 12.3, 11.4 and 20.0 µg/kg, respectively. CCD at after storage was the only feed that had mean level more than 20 µg/kg. Concentrations of AF-B1 at before storage in all feeds were significantly lower than after storage (P<0.01), and the increased ratio of AF-B1 levels was approximately 2 to 3 times. The study concluded that increased AF-B1 levels are related to feed types and farm conditions.

Key words : Dairy feed / Aflatoxin B1 / Commercial concentrate / Storage.

INTRODUCTION

Aflatoxins are toxic compounds that are mostly produced by Aspergillus flavus and A. parasiticus. Among aflatoxins, aflatoxin B1 (AF-B1) is highly toxic and carcinogenic to many animal species including human (Rao et al., 1977). For dairy cattle, toxicity of AF-B1 in feeds manifests as decreases in feed intake and efficacy, growth rate, milk production, health performance and reproductive performance, and increases in stress susceptibility, weight loss and liver damage. These symptoms incur economic losses in animal husbandry.

Production of AF-B1 is influenced by the type of substrate, fungal species, moisture content of the substrate, presence of minerals, and relative humidity of the surroundings, temperature and physical damage of the substrate (Alonso et al., 2011; Viquez et al., 1996). In a tropical country, Uganda, the extent of AF-B1 contamination is strongly influenced by differences in climatic conditions and storage time (Kaaya and Kyamuhangire, 2006). Maize samples stored for more than six months were found to contain AF-B1 greater than the 20 µg/kg which is the FDA/WHO regulatory limit as mean level (Kaaya and Kyamuhangire, 2006). In India, it was observed that AF contamination in storage was dependent on the storage system (Ahmad, 1993).

In Thailand, the storage times of energy-based feeds used in dairy farms vary from a few days to a few months depending on feed types. Dry feeds such as commercial concentrates with 2-level of plastic bag package...
and by-products from local feed processing factories, the so-called commodities, are kept for at least one month. In contrast, silages, for example corn silage, are kept for at least a week. Despite the aflatoxin contamination of dairy feeds has been reported, little information is so far available regarding the aflatoxin contamination after storage in naturally farm practice. Therefore, the objective of this study was to investigate the AF-B1 concentrations when storing various feeds in a farm environment.

MATERIALS AND METHODS

Farm and feeds management
The study was carried out from March to May 2011 and involved 63 small holder dairy farms belonging to a single dairy cooperative in Chiang Mai province, Thailand. For feeding management, all farms had 2 sources of feeds, that is, energy sources as roughages, and protein sources as commercial concentrates and commodities. Commercial concentrates from 4 feed factories (CC1 to CC4) were available from local markets including a dairy cooperative shop, and were usually purchased once a month. During the study period (late summer in Thailand) the energy sources were mostly straw, but some farms could purchase by-products from local corn processing factories composed of corn husks and cobs on the cob without corn kernels. Approximately 1000 kg of feeds were packed into a big plastic bag, and were sold as dairy roughages, the so-called SIL. A commodity, corn and cob meal or corn dust (CCD) is used as a supplemented protein-source feed in dairy industries in Thailand (Jala and Srichana, 2011). The SIL was usually purchased weekly, and the corn dust was usually purchased at the beginning of the dry season and used continuously for the whole summer.

Study design and feed sample collection
An observational cohort study was designed to differentiate concentrations of AF-B1 in feeds before and after storing in the farm environment. Feed samples were collected twice before and after storage. The intervals between before and after storage depended on the farm routine storage times for feeds. All feeds used for milking cows, except fresh roughages and straws, were collected before storage. After first collection, all feed packages were opened as they were ready to use, and stored in accordance with routine farm storage practice. The collections of after storage were performed either a week later for SIL or a month later for CC1 to CC4 and CCD. The feed samples were collected according to the technique prescribed by the Department of Livestock Development, Thailand (Department of Livestock Development, 2009). These samples were placed in plastic bags, transported to the laboratory in styrofoam boxes with recyclable ice and stored at -20°C until AF-B1 analysis.

Sample preparation
All feed samples were carefully mixed and finely ground, and then extracted by putting 20 g of ground samples into an Erlenmeyer flask. Then 100 ml of 70% methyl alcohol was added and the flask was revolved at 300 rpm for 30 min, after which the mixtures were filtered by Whatman no.4.

AF-B1 analysis
AF-B1 was determined by a direct competitive Enzyme-Linked Immunosorbent Assay using DOA-Aflatoxin F ELISA Test Kit (Chinaphuti et al., 2002). Briefly, 50 µl of either AF-B1 standards or the diluted samples were added into the antibody coated wells, 50 µl of AF-B1-HRP conjugate was added to each well, slightly shaken, and then incubated at room temperature for 30 min. The contents of the well were dumped into the appropriate waste container and the plate was washed 3-5 times by 0.01M phosphate buffer saline + 0.5% Tween 20 (PBS-T). After 100 µl of tetramethyl-benzidine substrate was added to the well and incubated 10 min at room temperature, then 100 µl of stopping solution (0.3M phosphoric acid) was added. The absorbance was measured at 450 nm using an automated MicroELISA reader (Biotex Instrument, 1996). The average absorbance was calculated and the results were expressed as maximal percentage of binding:

\[
\% \text{ maximal binding} = \frac{B}{B_0} \times 100
\]

Where B is the mean absorbance of aflatoxin standards or feed extract samples and B0 is the mean absorbance of aflatoxin standard at concentration 0 µg/kg.

Statistical analysis
AF-B1 concentration was calculated by maximal binding percentages. The natural logarithms were applied to adjust the AF-B1 concentrated data to the normal distributed data for further statistical analysis. Correlation of AF-B1 concentration between before and after storage was performed by Pearson’s correlation coefficient. Comparisons of AF-B1 concentrations between before and after storage were separately performed for each feed using repeated mixed model analysis; Proc mixed (SAS, 1997). The significance level was defined at P<0.05.

RESULTS AND DISCUSSION
The standard curve of the ELISA test kit is shown in Fig.1. The LOD of this AF-B1 test kit of commercial

\[
\text{...}
\]

\[
\text{...}
\]
AF-B1 IN DAIRY FEEDS AFTER STORAGE

23.2% (n=29) in after storage sample showed higher than 20 µg/kg. The percentage of samples exceeding 20 µg/kg during storage was 22.5% (27/120) (Fig.2). Viewed individually, 19.5% (17/87) of CC1-CC4, 33.3% (6/18) of SILEAGE, and 26.6% (4/15) of CCD, exhibited the percentage of aflatoxin contamination after storage over FDA regulatory levels limit.

Concentrations of AF-B1 before and after storage for

Feed type	Average Recovery Percentage (%)	LOQ (µg/kg)
Commercial concentrate (CC1, 2, 3, 4)	88.4	3.43
Corn dust (CCD)	86.6	3.12
Silage (SIL)	90.7	6.93

Numbers of samples for CC1 to CC4, CCD and SIL were 32, 14, 14, 29, 20 and 16, respectively. The storage conditions for feeds in the farms which supplied the feed in this study are described in Table 2. Even though feed samples were collected from farms located in the same area, feed storage practice and storage conditions were different in each farm. Ranges of AF-B1 at before and after storage were 3.95-39.9 µg/kg and 4.11-114.9 µg/kg, respectively. Relationships of concentrations of AF-B1 of feeds between before and after storage in logarithm base 2 scales are shown in Fig 2. Based on FDA regulatory levels for AF-B1 (20 µg/kg), 3.15% (n=5) in before storage sample and
each feed are separately shown in Fig. 3. AF-B1 concentrations of CC1 to CC4, SIL, and CCD at before storage were 5.1, 4.1, 4.0, 4.2, 5.5 and 5.5 µg/kg, respectively, and at after storage were 9.7, 6.5, 9.8, 12.3, 11.4 and 20.0 µg/kg, respectively. CCD was the only feed that was detected at more than 20 µg/kg as mean level after storage for 1 month in farm conditions. In contrast to a previous study, maize samples stored for more than six months were reported to be detected at greater than 20 µg/kg as mean levels (Kaaya and Kyamuhangire, 2006).

In comparison between before and after storage time, concentrations of AF-B1 in all feeds at before were lower than after storage significantly (P<0.01). The increased ratio of each feed type was 1.79-2.64 in CC1 to CC4, 2.04 in SIL, and 3.66 in CCD, respectively. This result demonstrated that CCD had a significantly larger increase AF-B1 level than other feed types because of mechanical and chemical composition such as moisture contents. After 1-month storage, CCD and one of commercial concentrate had the highest increase of AF-B1 concentration of more than 3 times. However, after just 1 week storage, the increased ratio of SIL was about 2 times. The reason why the increase ratio of SIL was higher than other feed types which were kept for more than 1 month is probably because it was kept in open bags. Increases of AF-B1 during storage might be caused by growths of fungi in feeds when the storage area had optimal humid climate and temperature (Alonso et al., 2011; Creepy, 2002; Viquez et al., 1996). In addition, feed storage management and storage conditions promoted mold growth and subsequent aflatoxin production (Richard et al., 2009).

In comparison among feed types, no significant difference was observed in AF-B1 concentrations of feeds at before storage, but CCD at 1 month storage increased AF-B1 after storage more than that of other feeds (P<0.05). Compared to commercial concentrates stored for a month, a concentration of AF-B1 for SIL after 1 week storage was not significantly different from that of CC1, CC3 and CC4, but was significantly higher than that of CC2. Differences after storage for any feeds might be related to storage conditions of feeds and feed mechanical and chemical composition such as moisture content in grain and corn seed (Jayaraman and Kyamuhangire, 2006; Oberheu and Dabbert, 2001). For storage condition, the higher increases of AF-B1 concentrations in both SIL and CCD might be due to the greater quantity of air transferred into the feed, as compared with commercial concentrates (CC1 to CC4) that were contained in 2 levels of bag: inner and outer plastic bags. In this study, SIL had a high moisture content and was mostly placed outside the storage room in high temperatures; the changed conditions might be appropriate for aflatoxin-producing fungi.

It is generally accepted that AF-B1 in feed transfers to milk as aflatoxin M1 (van Egmond, 1989; Veldman, 1992). The mean percent of daily AF-B1 intake that was transferred to aflatoxin M1 was 1.74 (Frobish et al., 1986). In this area, average day milk yield for crossbred Holstein-Friesians was 11.8±0.5 kg/day (Pongpliachan et al., 2003) and the average weight of used concentrates was 5 kg/cow/day (data not shown). The calculated AF-B1 concentration in concentrates must be less than approximately 7 µg/kg to prevent aflatoxin M1 levels in milk exceeding the EU limit of 0.05 µg/l. In our study, only 30% of samples before storage had AF-B1 above 7 µg/kg, and this might indicate that predicted aflatoxin M1 concentration in milk must be lower than 0.05 µg/l. This was in agreement that aflatoxin M1 in milk in this area was mostly less than 0.05 µg/l (Mongkon et al., 2014; Suriyasathaporn and Nakprasert, 2012).

In this study, AF-B1 concentrations of dairy feeds in Thailand at before storage were acceptable for the Thai limit, as FDA limitation, of AF-B1 at 20 µg/kg, but were relatively high for the EU limit of 5 µg/kg. However, 1-month storage at farm condition of commercial concentrates and corn dust increased AF-B1 concentration to approximately 2 to 3 times of that before storage, and corn silage stored for a week at farm condition increased AF-B1 at about 2 times. These indicate that increased AF-B1 levels are related to feed types and farm condition. Farmers should carefully store all feeds and use them as soon as possible to avoid the increase of AF-B1 in animal feeds.
ACKNOWLEDGMENTS

The authors acknowledge the Royal Golden Jubilee Ph.D. Program, the Thailand Research Fund, and the National Research Council for financial support. The authors also thank the officers and farmers of Patang Dairy Cooperative for data and sample collection.

REFERENCES

1. Ahmad, S. K. (1993) Mycoflora changes and aflatoxin production in stored blackgram seeds. J. Stored Prod. Res., 29, 33-36.
2. Alonso, V. A., González-Pereyra, M. L., Armando, M. R., Dogi, C. A., Dalcero, A. M., Rosa, C. A. R., Chiazziera, S. M., and Cavagliéi, L. R. (2011) Silage contribution to aflatoxin B1 contamination of dairy cattle feed. In Aflatoxins: Detection, Measurement and Control (DrFrineno Torres-Pacheco, Ed.), pp.37-53, InTech Publishers, Croatia.
3. Biotex Instrument, Inc. (1996) Microplate spectrophotometer: Epoch 2 Touch screen. United States.
4. Chinaphuti, A., Trikarunasawat, C., Wongurai, A., and Kositcharoenkul, S. (2012) Use of blue–greenish yellow fluorescence test on feeds and its association with aflatoxin m1 contamination in bulk tank milk. J. Food Prot., 77, 284-291.
5. Creepy, E. E. (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxcol. Lett., 127, 19-28.
6. Department of Livestock Development, Thailand. (2009) Feedstuffs sampling technique. Available at: http://www.dld.go.th/regions5/images/stories/region5/download/f01.doc (21 August 2010).
7. Frobish, R. A., Bradley, B. D., Wagner, D. D., Long-Bradley, P. E., and Hairston, H. (1986) Aflatoxin residues in milk of dairy cows after ingestion of naturally contaminated grain. J. Food Prot., 49, 781-785.
8. Iqbal, J., Ashgar, M. A., Ahmed, A., Khan, M. A., and Jamil, K. (2014) Aflatoxins contamination in Pakistani brown rice: a comparison of TLC, HPLC, LC-MS/MS and ELISA techniques. Toxicol. Mech. Methods, 24, 544-551.
9. Jala, A., and Srihana, D. (2011) Utilization of corn dust as additive of corn silage. Thammasat Int. J. Sci. Tech., 19, 13-28.
10. Jayaraman, P., and Kalyanasundaram, I. (1994) Changes in moisture content, mycoflora and aflatoxin content of rice bran during storage. Mycopathologia, 126, 115-120.
11. Kaaya, A. N., and Kyamuhangire, W. (2006) The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda. Int. J. Food Microbiol., 110, 217-223.
12. Kang ethe, E. K., and Lang’a, K. A. (2009) Aflatoxin B1 and aflatoxin M1 contamination of animal feeds and milk from urban Centers in Kenya. Afr. Health Sci., 9, 218-226.
13. Mongkon, W., Poopalathep, A., Kumagai, S., and Suriyasathaporn, W. (2014) Use of blue–greenish yellow fluorescence test on feeds and its association with aflatoxin m1 contamination in bulk tank milk. J. Food Prot., 77, 284-291.
14. Oberheu, D. G., and Dabbert, C. B. (2001) Aflatoxin production in supplemental feeders provided for northern bobwhite in Texas and Oklahoma. J. Wildl. Dis., 37, 475-480.
15. Pongpiachan, P., Rodtian, P., and Öta, K. (2003) Reproduction of cross- and purebred Friesian cattle in northern Thailand with special reference to their milk production. Asian-Aust. J. Anim. Sci., 16, 1033-1101.
16. Quintana, R. V., Sanchez-Alarcon, J., Tenorio, M. G., Deng, Y., Waliszewski, S. M., and Valera, M. A. (2012) Preventive strategies aimed at reducing the health risks of aflatoxin B1. Toxicol. Environ. Health Sci., 4, 71-79.
17. Rao, C. Y., Fink, R. C., Wolfe, L. B., Leberman, D. F., and Burge, H. A. (1997) A study of aflatoxin production by Aspergillus flavus growing on wallboard. J. Am. Biol. Safety Assoc., 2, 36-42.
18. Richard, E., Heutte, N., Bouchart, V., and Garon, D. (2009) Evaluation of fungal contamination and mycotoxin production in maize silage. Anim. Feed Sci. Technol., 148, 309-320.
19. SAS Institute, Inc. (1997) SAS/STAT software: changes and enhancements through release 6.12. Cary, NC.
20. Suriyasathaporn, W., and Nakprasert, W. (2012) Seasonal patterns of aflatoxin M1 contamination in commercial pasteurised milk from different areas in Thailand. Food Addit. Contam., 5, 145-149.
21. Van Egmond, H. P. (1989) Introduction. In: Mycotoxins in dairy products (Van Egmond, H. P., ed.), pp.1-9, Elsevier Applied Science, London.
22. Veldman, A. (1992) Effect of Sorbentia on carry-over of aflatoxin from cow feed to milk. Michelwissenschaft, 47, 777-780.
23. Viquez, O. M., Castell-Perez, M. E., and Shelby, R. A. (1996) Occurrence of fumonisin B1 in maize growing Costa Rica. J. Agric. Food Chem., 44, 2789-2791.