Q-COMPLEMENTS ON LOG SURFACES

I. YU. FEDOROV AND S. A. KUDRYAVTSEV

Introduction

In this paper the log surfaces without Q-complement are classified. In particular, they are non-rational always. This result takes off the restriction in the theory of complements and allows one to apply it in the most wide class of log surfaces \((S, D)\), where the pair \((S, D)\) is log canonical and the divisor \(- (K_S + D)\) is nef. For more information see the papers [5] and [2], especially [5, Theorems 2.3 and 4.1], [2, Theorems 2.1 and 3.1].

The work has been completed during the stay at Max-Planck-Institut für Mathematik in 2003. We would like to thank MPIM for hospitality and support.

1. Classification theorem

We work over an algebraically closed field \(k\) of characteristic zero. The main definitions, notations and notions used in the paper are given in [1], [3].

Definition 1.1. Let \((X, D)\) be a pair, where \(D\) is a subboundary. Then a \(\mathbb{Q}\)-complement of \(K_X + D\) is a log divisor \(K_X + D'\) such that \(D' \geq D\), \(K_X + D'\) is log canonical and \(n(K_X + D') \sim 0\) for some \(n \in \mathbb{N}\).

Example 1.2. [5, Example 1.1] 1) Let \(E\) be an indecomposable vector bundle of rank two and degree 0 over an elliptic curve \(Z\). Then \(E\) is a nontrivial extension

\[
0 \rightarrow \mathcal{O}_Z \rightarrow \mathcal{E} \rightarrow \mathcal{O}_Z \rightarrow 0,
\]

see [4]. Consider the ruled surface \(X = \mathbb{P}_Z(\mathcal{E})\). Let \(C\) be the unique section corresponding to the exact sequence. Note that \(C|_C \sim \det \mathcal{E} \sim 0\), \(-K_X \sim 2C\) [4]. In particular, \(-K_X\) is nef and Mori cone \(\overline{NE}(X)\) is generated by two rays \(R_1 = \mathbb{R}_+[C]\) and \(R_2 = \mathbb{R}_+[f]\), where \(f\) is a fiber.

We claim that \(C\) is the unique curve in \(R_1\). In fact, let there is a curve \(L \neq C\) in \(R_1\) then \(L \equiv mC\), where \(m = L \cdot f \geq 2\). It is

This work was done with the partial support of the Russian Foundation for Basic Research (grant no. 02-01-00441), the Leading Scientific Schools (grant no. 00-15-96085) and INTAS-OPEN (grant no. 2000#269.)
easy to prove that \(L \sim mC \). Therefore the linear system \(|L|\) gives a structure of an elliptic fibration on \(X \) with a multiple fiber \(C \). Hence \(C|_C \) is an \(m \)-torsion element in \(\text{Pic}(C) \), a contradiction with \(C|_C \sim 0 \).

We proved that the log surface \((X, cC)\) does not have \(\mathbb{Q} \)-complement, where \(0 \leq c \leq 1 \).

2) Consider the pair \((X, C)\) from the previous example. Let \(P_1, \ldots, P_r \) be the arbitrary points of \(C \). Take any number of blow-ups at \(P_1, \ldots, P_r \). We obtain the pair \((\tilde{X}, \tilde{C})\), where \(K_{\tilde{X}} + \tilde{C} = g^*(K_X + C) \) and \(\tilde{C} \) is a proper transform of \(C \). It is clear that \((\tilde{X}, \tilde{C})\) does not have \(\mathbb{Q} \)-complement. If we contract any chains of \((-2)\)-curves on \(\tilde{X} \) and maybe \(\tilde{C} \) (if it is possible) then the log surface obtained does not have \(\mathbb{Q} \)-complement also.

It is obvious that all these log surfaces do not have complement too (see the definition of complement in [3, Definition 4.1.3]).

Theorem 1.3. Let \(S \) be a normal projective surface and \(D \) be a boundary on \(S \) such that \(K_S + D \) is log canonical and \(- (K_S + D)\) is nef. Assume that \((S, D)\) does not have \(\mathbb{Q} \)-complement. Then the pair \((S, D)\) is of example 1.2, in particular \(S \) is non-rational.

Proof. Let \(f: \tilde{S} \to S \) be a minimal resolution and \(K_{\tilde{S}} + \tilde{D} = f^*(K_S + D) \). Then the pair \((\tilde{S}, \tilde{D})\) does not have \(\mathbb{Q} \)-complement too. By abundance theorem [1, Theorem 8.5] the kodaira dimension \(k(\tilde{S}) = -\infty \). Consider two cases.

A) Let \(\tilde{S} \) be a rational surface. Since \(\tilde{S} \not\cong \mathbb{P}^2, \mathbb{F}_0 \) then some model of \(\tilde{S} \) is \(\mathbb{F}_n \) \((n \geq 1)\). We have \(g: \tilde{S} \to \mathbb{F}_n \to Z \cong \mathbb{P}^1 \). Let \(\tilde{E}_\infty \) be the proper transform of the minimal section of \(\mathbb{F}_n \).

Now we construct the divisor \(\tilde{D}' \geq \tilde{D} \) such that \(K_{\tilde{S}} + \tilde{D}' \equiv 0/Z \), \((K_{\tilde{S}} + \tilde{D}') \cdot \tilde{E}_\infty = 0 \) and the pair \((\tilde{S}, \tilde{D}')\) is log canonical. Hence \(K_{\tilde{S}} + \tilde{D}' \equiv 0 \) and \(K_{\tilde{S}} + \tilde{D}' \) is a \(\mathbb{Q} \)-complement of \(K_{\tilde{S}} + \tilde{D} \) by abundance theorem, a contradiction.

Let \(f_1, \ldots, f_k \) be the reducible fibers of \(g \). Let \(f_1', \ldots, f_k' \) be any irreducible components of \(f_1, \ldots, f_k \). By considering the linear system \(|mE_0|\) on \(\mathbb{F}_n \), where \(E_0 \) is a zero section and \(m \gg 0 \) we obtain a free pencil \(|L|\) on \(\tilde{S} \) such that \(L \cdot \tilde{E}_\infty = 0 \) and \(f_i \cap L_{\text{gen}} \subset f_i' \) are the generic points of \(f_i' \) for the general element \(L_{\text{gen}} \in |L| \). Hence adding the required number of different \(L_{\text{gen}} \) and general fibers of \(g \) we obtain \(\tilde{D}' \).

B) Let \(\tilde{S} \) be a non-rational surface. Then we have a contraction onto a curve \(f: \tilde{S} \to Z \), where general fiber is \(\mathbb{P}^1 \) and \(p_a(Z) \geq 1 \). By [3, Lemma 8.2.2, Corollary 8.2.3] no components of \(\text{Supp} \tilde{D} \) are contained
in the fibers of \(f \) and the pair \((\tilde{S}, \tilde{D})\) is canonical. There are two variants.

1) Let \(\tilde{D} = \tilde{C} + \tilde{D}_1 \), where \(\tilde{C} \) is an irreducible curve. Hence \(p_a(Z) = 1 \) and we have a birational contraction \(\tilde{S} \to \overline{S} \) such that \(K_{\tilde{S}} + \tilde{D} \equiv 0/\overline{S} \), where \(\overline{S} \) is a minimal model of \(\tilde{S} \). Therefore the pair \((\overline{S}, \overline{D})\) is without \(\mathbb{Q} \)-complement, where \(\overline{D} \) is the image of \(\tilde{D} \). By [4, Corollary 2.2] and [11] the surface \(\overline{S} \) is of example (1.2 1) and \(\overline{D} = \overline{C} \). Q.E.D.

2) Let \(\tilde{D} = \sum d_i \tilde{D}_i \), where \(d_i < 1 \) and let \(\overline{S} \) be a minimal model of \(\tilde{S} \). By [2, Proof of theorem 3.1] we have \(E^2 \geq 0 \) for every curve \(E \) on \(\overline{S} \), \(p_a(\overline{D}) = \overline{D} = 1 \), \(K_{\overline{S}} \cdot \overline{D}_i = \overline{D}_i^2 = \overline{D}_i \cdot \overline{D}_j = 0 \) for all \(i, j \). It follows easily that we can consider \(\tilde{D}' = \tilde{D}_1 + \sum_{i \geq 2} d_i \tilde{D}_i \) instead of \(\tilde{D} \) by [4] (if \(\tilde{D} = 0 \) then \(\tilde{D}' = \tilde{C} \), where \(\tilde{C} \) is a proper transform of an irreducible curve \(\overline{C} \) such that \(K_{\overline{S}} \cdot \overline{C} = \overline{C}^2 = 0 \)). The problem is reduced to the variant 1).

Remark 1.4. The log surface without complement is the same one. This fact is proved similarly. Thus the log surfaces with complement are equivalent to the log surfaces with \(\mathbb{Q} \)-complement.

References

[1] **Kollar J. et al Flips and abundance for algebraic threefolds // Astérisque 1992. V. 211.**

[2] **Kudryavtsev S. A. Complements on log surfaces // e-print math.AG/0304437**

[3] **Prokhorov Yu. G. Lectures on complements on log surfaces // MSJ Memoirs V. 10. 2001.**

[4] **Hartshorne R. Algebraic Geometry // Springer 1977.**

[5] **Shokurov V. V. Complements on surfaces // J. of Math. Sci. 2000. V. 102. no. 2. P. 3876–3932.**

Igor Fedorov: Number Theory Department, Steklov Institute of Mathematics of RAS, 119991 Moscow, Russia

E-mail address: ifedorov@mi.ras.ru

Sergey Kudryavtsev: Department of Algebra, Faculty of Mathematics, Moscow State University, 117234 Moscow, Russia

E-mail address: kudryav@mech.math.msu.su

3