Double-spin cos phi asymmetry in semi-inclusive electroproduction

Oganessyan, K. A.; Mulders, P.J.G.; De Sanctis, E.

published in
Physics Letters B
2002

DOI (link to publisher)
10.1016/S0370-2693(02)01532-0

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Oganessyan, K. A., Mulders, P. J. G., & De Sanctis, E. (2002). Double-spin cos phi asymmetry in semi-inclusive electroproduction. Physics Letters B, 532(1-2), 87-92. https://doi.org/10.1016/S0370-2693(02)01532-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 29. Sep. 2023
Double-spin cos ϕ asymmetry in semi-inclusive electroproduction

K.A. Oganessyana,b, P.J. Muldersc, E. De Sanctisa

a INFN-Laboratori Nazionali di Frascati I-00044 Frascati, via Enrico Fermi 40, Italy
b DESY, Deutsches Elektronen Synchrotron Notkestrasse 85, 22603 Hamburg, Germany
c Division of Physics and Astronomy, Vrije Universiteit De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

Received 10 January 2002; received in revised form 15 February 2002; accepted 28 February 2002

Editor: G.F. Giudice

Abstract

We consider the double-spin cos ϕ asymmetry for pion electroproduction in semi-inclusive deep inelastic scattering of longitudinally polarized leptons off longitudinally polarized protons. We estimate the size of the asymmetry in the approximation where all twist-3 interaction-dependent distribution and fragmentation functions are set to zero. In that approximation at HERMES kinematics a sizable negative cos ϕ double-spin asymmetry for π^+ electroproduction is predicted.

© 2002 Published by Elsevier Science B.V.

PACS: 13.87.Fh; 13.60.-r; 13.88.+e; 14.20.Dh

1. Introduction

Semi-inclusive deep inelastic scattering (SIDIS) of leptons off a nucleon is a suitable process to extract information on the quark–gluon structure—correlations between the spins of hadron or quark/gluon and the momentum of the quark/gluon with respect to that of the hadron. The parton intrinsic transverse momentum allows in the SIDIS cross section particular non-perturbative correlations, which can be probed in measurements of azimuthal asymmetries. The complete tree-level result for the SIDIS cross section in terms of distribution (DF) and fragmentation (FF) functions at leading and subleading order in $1/Q$ has been given in Ref. [1]. In particular, the combination with T-odd fragmentation functions leads to single-spin asymmetries. The HERMES Collaboration has recently reported on the measurement of such single target–spin asymmetries in the distribution of the azimuthal angle ϕ of produced pions relative to the lepton scattering plane, in semi-inclusive charged and neutral pion production on a longitudinally polarized hydrogen target [2,3].

Other consequences of non-zero intrinsic transverse momentum of partons are the spin-independent cos ϕ and cos 2ϕ asymmetries [4] and double-spin azimuthal asymmetries [1,5]. In this Letter we investigate the specific cos ϕ azimuthal asymmetry at order $1/Q$ in semi-inclusive π^+ production with longitudinally polarized electrons on longitudinally polarized protons.

The kinematics of SIDIS is illustrated in Fig. 1: k_1 (k_2) is the 4-momentum of the incoming (outgoing) charged lepton, $Q^2 = -q^2$, where $q = k_1 - k_2$, is the 4-momentum of the virtual photon. The momentum P...
(\(P_h\)) is the momentum of the target (observed) hadron. The scaling variables are
\(x = Q^2 / (P \cdot q)\), \(y = (P \cdot q) / (P \cdot k_1)\), and \(z = (P \cdot P_h) / (P \cdot q)\). The momentum \(k_1T\) is the incoming lepton transverse momentum with respect to the virtual photon momentum direction, and \(\phi\) is the azimuthal angle between \(\Phi_h\) and \(k_1T\). We will consider the case of a polarized beam, the helicity being denoted by \(\lambda_e\). Note that for the specific case in which the target is polarized parallel (antiparallel) to the beam a transverse spin in the virtual photon frame arises which only can have azimuthal angle \(0 (\pi)\). The value of this transverse spin component is \(|S_T| = |S| \sin \theta_\gamma\),

\[(1) \]
where \(\theta_\gamma\) is the virtual photon emission angle and \(S\) is target polarization parallel/antiparallel to the incoming lepton momentum.

The quantity \(\sin \theta_\gamma\) is of order \(1/Q\) and given by

\[\sin \theta_\gamma = \sqrt{\frac{4M^2x^2}{Q^2} \left(1 - y - \frac{M^2y^2}{Q^2}\right)}, \]

where \(M\) is the nucleon mass. We will distinguish the situations by referring to \((LL)_{\text{lab}}\) which will produce both \(LL\) and \(LT\) polarization in the virtual photon frame.

2. The semi-inclusive cross section

The cross section for one-particle inclusive deep inelastic scattering is given by

\[d\sigma^{\ell+N \rightarrow \ell' + h + X}/dxdydzd\Phi_h/d_2k_T d_2p_T = \frac{\pi \alpha^2}{2Q^4z} L_{\mu\nu}^2 M W^{\mu\nu}. \]

The quantity \(L_{\mu\nu}\) is the well-known lepton tensor. The full expression for the symmetric and antisymmetric parts of the hadronic tensor \(W^{\mu\nu}\) at leading \(1/Q\) order are given by Eqs. (77), (78) of Ref. [1].

In order to investigate the \(\cos \phi\) azimuthal asymmetry we keep only the terms producing contributions in the cross section\(^1\) that are \(\phi\)-independent or proportional to \(\cos \phi\)

\[2M W^{\mu\nu} = 2z \int d^2k_Td^2p_T d_2\Phi_h/d_2k_T (p_T - \frac{P_{h\perp}}{z} - k_T) \times \left\{ -s_{\perp}^{\mu\nu} f_1 D_1 + i\epsilon_{\perp}^{\mu\nu} g_{1S} D_1 + \frac{2i\epsilon_1^{\mu\nu\perp}}{Q} f_1 \tilde{D}_1 \right. \]

\[+ \left. \frac{2i\epsilon_1^{\mu\perp\perp}}{Q} x f_1 D_1 + i\frac{2\epsilon_1^{\nu\perp\perp}}{Q} \left[x g_{1S} D_1 + \frac{M_{h\perp}}{M} h_{1S} E_1 \right] \right\}. \]

where \([\mu \nu]\) indicates symmetrization of indices and \([[\mu \nu]]\) indicates antisymmetrization. In the above expression we have used the shorthand notation \(g_{1S}\)

\[g_{1S}(x, P_T) = \left[S_L g_{1L}(x, P_T^2) + \frac{M_{h\perp}}{M} g_{1T}(x, P_T^2) \right] \]

and similarly for \(h_{1S}\).

\(^{1}\) To avoid ambiguities, we will use the same notations as in Ref. [1].
The contraction of leptonic and hadronic tensors leads to the cross section with the following terms

\[
\frac{d\sigma^{\ell+N\rightarrow \ell'+h+X}}{dx \, dy \, dz \, d^2 p_{h\perp}} = \frac{\pi q^2}{Q^2 y} \sum_q e_q^2 \sigma^q,
\]

where

\[
\sigma^q = \int d^2 p_T \, d^2 k_T \, z^2 s^2 \left(p_{h\perp} - z(p_T - k_T) \right)
\]

\[
\times \left\{ \begin{array}{l}
2 \left[1 + (1 - y)^2 \right] f_1^q(x, p_T^2) D_1^q(z, z^2 k_T^2) \\
- 8(2 - y) \sqrt{1 - y} \frac{1}{Q} \\
\times \left[k_T x f_1^q(x, p_T^2) D_1^q(z, z^2 k_T^2) \\
+ p_T x f_{-1}^q(x, p_T^2) D_{-1}^q(z, z^2 k_T^2) \\
+ 2 \lambda_c S_{L\perp}(2 - y) g_1^q(x, p_T^2) D_1^q(z, z^2 k_T^2) \\
- 8 \lambda_c S_{L\perp}(2 - y) \frac{1}{Q} \\
\times \left[k_T x g_1^q(x, p_T^2) \tilde{D}_1^q(z, z^2 k_T^2) \\
+ p_T x g_{1\perp}(x, p_T^2) \tilde{D}_{1\perp}^q(z, z^2 k_T^2) \\
+ \frac{M_t}{M} h_{1\perp}(x, p_T^2) \tilde{E}_{1\perp}^q(z, z^2 k_T^2) \right] \\
+ 2 \lambda_c y (2 - y) \left(p_T \cdot S_{T\perp} \right) \frac{1}{M} \\
\times g_1^q(x, p_T^2) D_1^q(z, z^2 k_T^2) \right\}.
\]

Here by \(k_T x (p_T x) \) we denote the x component of the final (initial) parton transverse momentum vector.

3. The correlation functions

In the asymmetries considered in this Letter a number of functions appear beyond the well-known leading twist DF’s \(f_1^q, g_1^q \) and \(h_{1\perp} \) and the FF \(D_1^q \). Note that we do not consider polarization in the fragmentation process. These additional functions are

- The DF’s \(g_{1\perp}^q \) and \(h_{1\perp} \), interpreted as distributions of longitudinally and transversely polarized quarks (of flavor \(q \)) in transversely and longitudinally polarized nucleons, respectively. The most interesting \(p_T \)-integrated functions in this case are the transverse moments

\[
g_{1\perp}^{q(n)}(x) = \int d^2 p_T \left(\frac{p_T^2}{2M^2} \right)^n g_{1\perp}^q(x, p_T^2).
\]

- The DF’s \(f_{-1\perp}^q \) and \(g_{1\perp}^q \) appear at subleading \((1/Q)\) order in the above expression.

- The FF’s \(D_{-1\perp}^q \) and \(E_{1\perp}^q \) appear at subleading \((1/Q)\) order.

For all of these functions the relevant transverse moments can be expressed into the leading twist functions \(f_1, g_1 \) and \(h_1 \) and interaction-dependent functions, indicated with a tilde. The relations are of the same type as the Wandzura–Wilczek relation [7] for the subleading function \(g_{1\perp}^q \) measured in inclusive leptoproduction with a transversely polarized target.

The relations needed in our case and details on them are found in Refs. [1,8]. For DF one needs

\[
\frac{s_{1\perp}^{(1)}(x)}{x} = \int_1^x \frac{dy}{y} g_1(1/y) - \frac{m}{M} \int_1^x \frac{dy}{y} h_1(1/y) - \frac{M_t}{M} \int_1^x \frac{dy}{y} h_{1\perp}(1/y),
\]

\[
\frac{h_{1\perp}^{(1)}(x)}{x^2} = - \frac{1}{M} \int_1^x \frac{dy}{y^2} g_1(1/y) - \frac{M_t}{M} \int_1^x \frac{dy}{y^2} h_{1\perp}(1/y) + \frac{1}{M} \int_1^x \frac{dy}{y^2} h_{1\perp}(1/y),
\]

\[
\frac{f_{-1}(x)}{x} = \frac{f_1(x)}{x} + f_{-1},
\]

\[
\frac{g_{1\perp}(x)}{x} = \frac{g_1(x)}{x} + \frac{m}{M} \frac{h_{1\perp}(x)}{x} + \frac{M_t}{M} \frac{h_{1\perp}(x)}{x},
\]

while for DF we need

\[
E(z) = \frac{m}{M_h} z D_1(z) + \tilde{E}(z),
\]

\[
D_{-1}(z) = z D_{-1}(z) + \tilde{D}_{-1}(z).
\]

The approximation that we will use below consists in setting all interaction dependent (tilde) functions to zero. There is in fact no justification for this, except the observation that the same approximation for \(g_{1\perp}^q \) (the Wandzura–Wilczek approximation (WW))
seems to work well [9]. We want to add another point concerning potential contributions in the cross section that have already been neglected, namely those proportional to $\alpha_s(Q^2)$. Contributions proportional to $\alpha_s(Q^2) \cdot f_1 \cdots$ will likely appear at the same point where the function $(M/Q) \cdots f^\perp$ appears [10], while contributions proportional to $\alpha_s(Q^2) \cdot g_1 \cdots$ will likely appear at the same point where the function $(M/Q) \cdots g_1^\perp$ appears.

4. Weighted cross section

We will consider the differential cross section integrated over the transverse momentum of the produced hadron with different weights and denote them by $[11, 12]

$$
\langle W \rangle_{AB} = \int d^2P_h \frac{dσ^{LL}(x,y)}{dx dy dz d^2P_h},
$$

where $W = W(P_h, \phi, \phi_s)$. With the subscripts AB we denote the polarization of the lepton and target hadron, respectively. We use U for unpolarized, L for longitudinally polarized and T for transversely polarized particles. From Eq. (7) we then obtain a number of asymmetries. For each of them we have indicated the results after setting all interaction dependent functions equal to zero, i.e., only keeping the twist-2 functions. The results are

$$
\sigma_{UU}^1 = (1)UU = \frac{[1 + (1 - y)^2]}{y} f_1(x)D_1(z),
$$

$$
\Delta\sigma_{LL}^1 = (1)LL = \lambda_e S_L(2 - y) g_1(x)D_1(z),
$$

$$
\sigma_{UU}^3 = (|P_h|^2 \cos\phi)_UU = - \frac{4}{Q} \frac{(2 - y)\sqrt{1 - y}}{y}
\times \left[M^2 x f^{(1)}(x)z D_1(z) - M^2 f_1(x)z \bar{D}^{(1)}(z) \right],
$$

$$
\Delta\sigma_{LL}^3 = (|P_h|^2 \cos\phi)_LL = 4\lambda_e \frac{S_L}{Q} \frac{\sqrt{1 - y}}{y} M^2 f_1(x)z D_1(z),
$$

$$
\frac{d\sigma^3_{LT}}{\sigma_{UU}} = \lambda_e |S_T|(2 - y) M^2 f_1(x)z D_1(z),
$$

$$
\Delta\sigma_{LL}^3 = (|P_h|^2 \cos\phi)_LL = 4\lambda_e \frac{S_L}{Q} \frac{\sqrt{1 - y}}{y} M^2 f_1(x)z D_1(z),
$$

$$
\frac{d\sigma^3_{LT}}{\sigma_{UU}} = \lambda_e |S_T|(2 - y) M^2 f_1(x)z D_1(z).
$$

The particular $\cos\phi$ momentum in the SIDIS cross section for which we will give an estimate is the following weighted integral of a cross section asymmetry,

$$
\frac{d\sigma^3_{LT}}{\sigma_{UU}} = \int d^2P_h \frac{d\sigma^3_{LT}}{\sigma_{UU}} |P_h|^2 \cos\phi \frac{(\sigma^{++} + \sigma^{--} - \sigma^{+-} - \sigma^{-+})}{4},
$$

$$
\frac{d\sigma^3_{LT}}{\sigma_{UU}} = \int d^2P_h \frac{d\sigma^3_{LT}}{\sigma_{UU}} |P_h|^2 \cos\phi \frac{(\sigma^{++} + \sigma^{--} + \sigma^{+-} + \sigma^{-+})}{4},
$$

Here σ^{++}, σ^{--} denote the cross section with antiparallel (parallel) polarization of the beam and target, respectively. They are given by $d\sigma^3_{LT}$ with $\phi_s = \pi(0)$ for σ^{++} and σ^{--} (and σ^{+-}), respectively. The quantity M_h is the mass of the final hadron. Using the Eqs. (16)–(23) and assuming 100% beam and target polarization one obtains

$$
\frac{d\sigma^3_{LT}}{\sigma_{UU}} = \frac{4\Delta\sigma_{LL}^3}{\sigma_{UU}} - \frac{d\sigma^3_{LT}}{\sigma_{UU}}.
$$

For the experimentally measured cross sections that is determined without weighing with the transverse momentum of the produced hadron we use a further approximation,

$$
A_{LL}^{\cos\phi}_{\text{lab}} \approx \frac{1}{|P_h|^2} \frac{d\sigma^3_{LT}}{\sigma_{UU}}.
$$

For the numerical estimate of $A_{LL}^{\cos\phi}_{\text{lab}}$ asymmetry we use the approximation, where only the twist-2 distribution and fragmentation functions are used, i.e., the interaction-dependent twist-3 parts are set

\[This \ leads \ to \ positive \ g_1(x). \]
Fig. 2. $A^{\cos \phi}_{(LL)_{lab}}$ for π^+ production as a function of Bjorken x. The dashed line corresponds to contribution of the $\Delta \sigma^{LL}_{1 \sigma_2}$, dot-dashed one to $d\sigma^{3}_{LT}$ and the solid line is the difference of those two.

It is important to point out that in this approximation the $\cos \phi$ asymmetry reduces to a kinematical effect conditioned by intrinsic transverse momentum of partons similar to the $\cos \phi$ asymmetry in unpolarized SIDIS [4].

Assuming a Gaussian parameterization for the distribution of the initial parton’s intrinsic transverse momentum, p_T, in the helicity distribution function $g_1(z, p_T^2)$ one can get

$$g_1^{(1)}(x) = \frac{\langle p_T^2 \rangle}{2M} g_1(x). \quad (27)$$

It is worth to note that these approximations lead to similar results obtained in the simple quark–gluon model with non-zero intrinsic transverse momentum in polarized SIDIS [5]. To estimate the transverse asymmetry contribution $d\sigma^{3}_{LT}$ into the $A^{\cos \phi}_{(LL)_{lab}}$, we proceed in the same way as in the Ref. [13].

In Fig. 2, the asymmetry $A^{\cos \phi}_{(LL)_{lab}}(x)$ of Eq. (26) for π^+ production on a proton target is presented as a function of x-Bjorken. The curves are calculated by integrating over the HERMES kinematic ranges corresponding to $1 \text{ GeV}^2 \leq Q^2 \leq 15 \text{ GeV}^2$, $4.5 \text{ GeV} \leq E_x \leq 13.5 \text{ GeV}$, $0.2 \leq z \leq 0.7$, $0.2 \leq y \leq 0.8$, and taking $\langle P_{t \perp} \rangle = 0.365 \text{ GeV}$ as input. The latter value is obtained in this kinematic region assuming a Gaussian parameterization of the distribution and fragmentation functions with $\langle p_T^2 \rangle = (0.44)^2 \text{ GeV}^2$ [14]. For the sake of simplicity, Q^2-independent parametrizations were chosen for the distribution, $g_1(x)$ [15], and fragmentation, $D_1(z)$ [16], functions.

From Fig. 2 one can see that the approximation where all twist-3 DF’s and FF’s are set to zero gives the large negative double-spin $\cos \phi$ asymmetry at HERMES energies. The ‘kinematic’ contribution to $A^{\cos \phi}_{(LL)_{lab}}(x)$ coming from the transverse component of the target polarization is small (up to 25% at large x-Bjorken).

5. Conclusion

The $\cos \phi$ double-spin asymmetry of SIDIS of longitudinally polarized electrons off longitudinally polarized protons was investigated. We only kept the $(1/Q)$-order contribution to the spin asymmetry that arises from intrinsic transverse momentum effects related to twist-two DF and FF similar to the $\cos \phi$ asymmetry in unpolarized SIDIS. With that approximation, a sizable negative $\cos \phi$ asymmetry is found for HERMES kinematics. It is shown that the ‘kinematical’ contribution from target transverse component (S_T) is small. The approximation used to estimate the double-spin $\cos \phi$ asymmetry is not complete in $1/Q$ order: it contains only $1/Q$ ‘kinematical’ twist-3 contribution. It is similar to Cahn’s approach [4] in unpolarized SIDIS, which describes well the experimental results from EMC [17] and E665 [18]. The complete behavior of azimuthal distributions needs the inclusion of higher-twist and pQCD contributions. Nevertheless, if one consider the kinematics with $P_{t \perp} < 1 \text{ GeV}$ and $z < 0.8$, the estimate shows the non-perturbative effects from the intrinsic transverse momentum of the partons in the nucleon. The double-spin $\cos \phi$ asymmetry is a good observable to investigate the importance of leading and subleading effects at moderate Q^2.

Acknowledgements

We would like to thank M. Anselmino, R.L. Jaffe and A. Schäfer for useful discussions. This work is part of the research performed under the European
Commission IHP program under contract HPRN-CT-2000-00130.

References

[1] P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461 (1996) 197; P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 484 (1997) 538, Erratum.
[2] HERMES Collaboration, A. Airapetian et al., Phys. Rev. Lett. 84 (2000) 4047.
[3] HERMES Collaboration, A. Airapetian et al., Phys. Rev. D 64 (2001) 097101.
[4] R.N. Cahn, Phys. Lett. B 78 (1978) 269; R.N. Cahn, Phys. Rev. D 40 (1989).
[5] A. Kotzinian, Nucl. Phys. B 441 (1995) 234.
[6] K.A. Oganessyan et al., hep-ph/9808368, Proc. of the workshop Baryons '98, Bonn, 22–26 September, 1998.
[7] S. Wandzura, F. Wilczek, Phys. Lett. B 72 (1977) 195.
[8] D. Boer, A. Henneman, P.J. Mulders, hep-ph/0104271.
[9] P.L. Anthony et al., Phys. Lett. B 458 (1999) 529; K. Abe et al., Phys. Rev. Lett. 74 (1995) 346.
[10] H. Georgi, H.D. Politzer, Phys. Rev. Lett. 40 (1978) 3.
[11] A.M. Kotzinian, P.J. Mulders, Phys. Lett. B 406 (1997) 373.
[12] D. Boer, P.J. Mulders, Phys. Rev. D 57 (1998) 5780.
[13] A.M. Kotzinian, P.J. Mulders, Phys. Rev. D 54 (1996) 1229.
[14] T. Sjostrand, Comput. Phys. Commun. 82 (1994) 74; T. Sjostrand, CERN-TH.7112/93; T. Sjostrand, hep-ph/9508391.
[15] S. Brodsky, M. Burkardt, I. Schmidt, Nucl. Phys. B 441 (1995) 197.
[16] E. Reya, Phys. Rep. 69 (1981) 195.
[17] M. Arneodo et al., EMC Collaboration, Z. Phys. C 34 (1987) 277.
[18] M.R. Adams et al., Fermilab E665 Collaboration, Phys. Rev. D 48 (1993) 5057.