Research Article

Inhibition of Rho Kinase Induces Antioxidative Molecules and Suppresses Reactive Oxidative Species in Trabecular Meshwork Cells

Tomokazu Fujimoto,1 Toshihiro Inoue,1 Saori Ohira,1 Nanako Awai-Kasaoka,1 Takanori Kameda,2 Miyuki Inoue-Mochita,1 and Hidenobu Tanihara1

1Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
2Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto 606-8501, Japan

Correspondence should be addressed to Toshihiro Inoue; noel@da2.so-net.ne.jp

Received 21 February 2017; Revised 22 May 2017; Accepted 30 May 2017; Published 19 July 2017

Academic Editor: Ciro Costagliola

Copyright © 2017 Tomokazu Fujimoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To investigate the effect of rho kinase inhibitors on oxidative stress in trabecular meshwork (TM) cells. Methods. TM cells were isolated from the eyes of cynomolgus monkeys. Y-27632 and menadione were used to inhibit rho kinase and induce production of reactive oxygen species (ROS), respectively. The cynomolgus monkey array and 12,613 probes were used in DNA microarray analysis, and the affected genes were categorized using gene ontology analysis. The mRNA levels of the target genes were confirmed by real-time RT-PCR. Intracellular oxidative stress was detected using a fluorescent reagent sensitive to ROS. Cell viability was assessed by the WST-8 assay.

Results. Gene ontology analysis revealed upregulation of genes involved in antioxidant activity, and upregulation of catalase was confirmed by real-time RT-PCR after 30 min treatment with Y-27632. Production of ROS was increased by menadione, and the effect was partly suppressed by pretreatment with Y-27632. At a lower dose of menadione, Y-27632 stimulated TM cells and significantly increased their viability following menadione treatment compared to control cells.

Conclusion. Using microarray analysis, Y-27632 was shown to upregulate antioxidative genes including catalase and partially reduce ROS production and cell death by oxidative stress caused by menadione.

1. Introduction

Oxidative stress is a major physiological phenomenon, mediated through the production of reactive oxygen species (ROS), such as peroxides, superoxide, hydroxyl radical, and singlet oxygen. ROS play an important role in cell homeostasis and pathogen response and are therefore essential in biological processes. In contrast, increases in ROS are seen in various age-related diseases including glaucoma [1]. For instance, in the aqueous humor of glaucoma patients, the levels of oxidative stress markers are significantly increased [2–5]. Additionally, oxidative DNA damage is reportedly increased in the trabecular meshwork (TM) of glaucoma patients [6, 7]. These findings indicate that the TM of glaucomatous eyes is continuously exposed to oxidative stress, and therefore, damage to TM may increase outflow resistance and the risk of glaucoma progression. In line with this, lower systemic antioxidant capacity is related to higher intraocular pressure (IOP) levels in open-angle glaucoma patients [8]. Moreover, glaucoma-related genes, such as CYP1B1 and FOXC1, are reportedly linked to oxidative stress in the eyes [9–12]. Taken together, control of oxidative stress in the eye may be a therapeutic target to slow glaucoma progression.

Rho-rho kinase (ROCK) signaling controls polymerization of actin and thereby mediates various cell functions, such as contraction, migration, phagocytosis, and mitosis. Inhibition of ROCK increases aqueous outflow by depolymerizing F-actin in TM cells and Schlemm’s canal endothelial cells [13, 14]. A ROCK inhibitor, ripasudil, has been
approved as an IOP-lowering drug in Japan [15]. Ripasudil significantly reduces the IOP of glaucoma patients upon either single or multiple administration [16, 17]. However, ROCK inhibitors have drawn attention as antioxidative drugs against cardiovascular diseases and chronic renal injury [18, 19]. Indeed, ripasudil (also known as K-115) has been reported to have a neuroprotective effect on the optic nerve by suppressing oxidative stress in an animal model [20]. Thus, the effect of ROCK inhibitors on oxidative stress in TM cells is of interest from a therapeutic point of view against glaucoma.

Here, we show the results of an exhaustive investigation using a microarray, revealing that treatment with Y-27632, a well-known ROCK inhibitor, upregulates antioxidative molecules in TM cells, inhibits ROS production, and promotes cell survival.

2. Materials and Methods

2.1. Cell Culture. Trabecular meshwork (TM) cells were isolated from the eyes of cynomolgus monkeys (Shin Nippon Biomedical Laboratories, Kagoshima, Japan) according to the method described previously [21]. Primary TM cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Wako, Osaka, Japan) supplemented with 10% FBS, 2 mM glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, and 0.5 μg/mL amphotericin B at 37°C in 5% CO2. These cells were used after 2–5 passages. The character of the isolated cells in the present study was confirmed by expression of specific TM markers (caveolin 1, collagen 4α5, matrix gla protein, tissue inhibitor of metalloproteinase 3, and vascular cell adhesion protein 1), phagocytosis function, and myocilin induction by dexamethasone as described previously [22].

2.2. DNA Microarray Analysis. Custom cDNA microarray analysis was performed using a Combimatrix microarray (Combimatrix, Mukilteo, WA) as described previously [23]. Briefly, the cynomolgus monkey array was designed to detect directly labeled mRNA from 12,613 probes. Confluent TM cells in 100-mm dishes were treated with 25 μM Y-27632 (Merck Millipore, Darmstadt, Germany) or vehicle (deionized water) for 30 min. Total RNA was extracted from the cells, and the integrity and concentration of total RNA was measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Fluorescence-labeled antisense RNA was synthesized by direct incorporation of Cy5-UTP or Cy3-UTP, using each RNA sample and an RNA Transcript SureLABEL Core kit (Takara Bio, Shiga, Japan). Labeled antisense RNAs were hybridized simultaneously with the microarray chips. DNA microarray preparation, hybridization, processing, scanning, and analyses were performed according to the manufacturer’s instructions (Filgen, Nagoya, Japan). Fluorescent images of hybridized microarrays were obtained with a GenePix 4000B Scanner (Molecular Devices, Sunnyvale, CA). Array-Pro Analyzer Ver4.5 (Media Cybernetics, Silver Spring, MD) was used to determine the signal intensity of each spot and its local background. Scanned images were analyzed using Microarray Data Analysis Tool Ver3.2 software (Filgen). Signals from Y-27632 treated cells were compared with those from vehicle-treated cells, and genes that showed greater than 3/2-fold change in expression in at least one of the pairwise probe comparisons were considered upregulated, whereas those that showed a change of expression smaller than 2/3-fold were considered downregulated. These analyses were performed three times using TM cells from different monkeys independently, and genes with common differences in expression among the three experiments were identified as affected genes. The affected genes were further analyzed by gene ontology, in which putative functions of gene products were categorized as “biological process,” “cellular component,” or “molecular function” by a BLAST homology search of EST sequences available from the National Center for Biotechnology Information.

2.3. Real-Time RT-PCR. Total RNA was isolated from cultured TM cells treated with Y-27632 for 30 min using NucleoSpin RNA (Macherey-Nagel, Düren, Germany). Total RNA was reverse transcribed (PrimeScript RT Master Mix; Takara Bio Inc., Shiga, Japan) according to the manufacturer’s protocol. Quantitative real-time RT-PCR was performed using an ABI Prism 7000 (Life Technologies). Reactions were performed in 20 μL of reaction mixture containing 10 μL PCR master mix (SYBR Premix Ex Taq II; Takara Bio Inc.), 0.4 μM primer pairs, and 2 μL cDNA samples. The gene-specific primer pairs were as follows: monkey catalase, forward (F) 5′-GCA AAT CTG TGA GGC CGG GG-3′; reverse (R) 5′-GCC CGA ATC TTT GA-3′; AGC GTT TAC TTT GA-3′; (R) 5′-CCG CGG TCC TAT TCC ATT ATT-3′. The thermal cycling conditions were 95°C for 30 s and 40 cycles of 95°C for 5 s and 60°C for 31 s. All PCR reactions were performed in duplicate. Relative expression of catalase in the Y-27632-treated samples was compared to that in control samples using the comparative CT method (ΔΔCT method); 18S ribosomal RNA was used as an endogenous control. The threshold cycle, Ct, was determined after setting the threshold in the linear amplification phase of the PCR reaction and ΔCT was defined as ΔCT = Ct (target gene) – Ct (18S rRNA). Relative expression of the target gene was calculated as:

\[\Delta \Delta C_T = \Delta C_T (treated \ sample) - \Delta C_T (control) \]

2.4. Intracellular Oxidative Stress Detection. The effects of Y-27632 on the production of ROS were evaluated using CellROX® green reagent (Life Technologies) in the TM cells. These cells were cultured on 6 cm dishes in DMEM containing 10% FBS and antibiotics at 37°C in 5% CO2. After cells had grown to confluence, they were pretreated with Y-27632 for 30 min and then stimulated with 100 μM menadione (Sigma, St. Louis, MO) for 1 h. CellROX reagent was then added to each dish to give a final concentration of 5 μM and incubated for 30 min at 37°C. After incubation, TM cells were washed in PBS and detached by trypsin/EDTA solution and centrifuged at 1200 rpm for 3 min. The supernatant was removed, and cells were fixed in 4% paraformaldehyde in PBS for 15 min and then centrifuged twice at 1200 rpm for 3 min, resuspending in PBS after each
Table 1: Genes that are upregulated in TM cells.

Accession number	Human RefSeq description	Fold change			
DW528016	gi	75750485	ref	NM_004773.2 Homo sapiens zinc finger, HIT type 3 (ZNHIT3), mRNA	6.79928
CJ434702	gi	20986504	ref	NM_002753.2 Homo sapiens mitogen-activated protein kinase 10 (MAPK10), transcript variant 1, mRNA	5.85538
AB168851	gi	224586874	ref	NM_033124.4 Homo sapiens coiled-coil domain-containing 65 (CCDC65), mRNA	5.77453
AB169150	gi	223555972	ref	NR_026827.1 Homo sapiens hypothetical LOC84856 (LOC84856), noncoding RNA	5.01086
DW523643	gi	225903398	ref	NM_001146152.1 Homo sapiens cytochrome P450, family 51, subfamily A, polypeptide 1 (CYP51A1), transcript variant 2, mRNA	4.6977
AB168218	gi	85060516	ref	NM_199321.2 Homo sapiens zona pellucida-binding protein 2 (ZPBP2), transcript variant 2, mRNA	4.52052
AB168199	gi	156523965	ref	NM_001102470.1 Homo sapiens alcohol dehydrogenase 6 (class V) (ADH6), transcript variant 1, mRNA	3.89514
AB172502	gi	50897849	ref	NM_00101936.1 Homo sapiens actin filament-associated protein 1-like 2 (AFAP1L2), transcript variant 1, mRNA	3.8421
CJ448047	gi	46909588	ref	NM_002731.2 Homo sapiens protein kinase, cAMP-dependent, catalytic, beta (PRKACB), transcript variant 2, mRNA	3.75324
DC857227	gi	239752603	ref	XM_002348257.1 PREDICTED: Homo sapiens similar to immunoglobulin lambda-like polypeptide 1 (LOC100294459), mRNA	3.66898
CJ449582	gi	9506614	ref	NM_019023.1 Homo sapiens protein arginine methyltransferase 7 (PRMT7), mRNA	3.64058
EF208813	gi	194424805	ref	NM_008393.9 Homo sapiens glutamate receptor, metabotropic 2 (GRM2), transcript variant 1, mRNA	3.5509
DQ417745	gi	66571326	ref	NM_020914.3 Homo sapiens ring finger protein 213 (RNF213), mRNA	3.51668
AB049894	gi	117676364	ref	NM_014350.2 Homo sapiens tumor necrosis factor, alpha-induced protein 8 (TNFAIP8), transcript variant 1, mRNA	3.47535
AB233416	gi	124236165	ref	NM_005123.2 Homo sapiens nuclear receptor subfamily 1, group H, member 4 (NR1H4), mRNA	3.46906
AB174726	gi	22208962	ref	NM_016150.3 Homo sapiens ankyrin repeat and SOCS box-containing 2 (AS2B), mRNA	3.30479
AB174122	gi	209862773	ref	NM_002483.4 Homo sapiens carinoembryonic antigen-related cell adhesion molecule 6 (nonspecific cross-reacting antigen) (CEACAM6), mRNA	3.27904
AB173773	gi	38569483	ref	NM_017641.2 Homo sapiens kinesin family member 21A (KIF21A), mRNA	3.26679
DK578446	gi	18246916	ref	NM_018179.3 Homo sapiens activating transcription factor 7-interacting protein (ATF7IP), mRNA	3.25607
CJ488707	gi	45333915	ref	NM_178456.2 Homo sapiens chromosome 20 open reading frame 85 (C20orf85), mRNA	3.24156
DC639327	gi	154800442	ref	NM_005074.9 Homo sapiens solute carrier family 17 (sodium phosphate), member 1 (SLC17A1), mRNA	3.23693
BB889566	gi	32483409	ref	NM_005083.3 Homo sapiens group-specific component (vitamin D-binding protein) (GC), mRNA	3.22662
DQ417744	gi	194248050	ref	NM_000839.3 Homo sapiens glutamate receptor, metabotropic 2 (GRM2), transcript variant 1, mRNA	3.1862
AB168486	gi	195972893	ref	NM_152764.2 Homo sapiens chromosome 16 open reading frame 73 (C16orf73), mRNA	3.17552
AB047624	gi	45464748	ref	NM_004984.2 Homo sapiens kinesin family member 5A (KIF5A), mRNA	3.1749
CJ446015	gi	187761371	ref	NM_004044.5 Homo sapiens 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), mRNA	3.17026
AB171508	gi	89276768	ref	NM_002747.3 Homo sapiens mitogen-activated protein kinase 4 (MAPK4), mRNA	3.12296
DC639656	gi	148596496	ref	NM_001098483.1 Homo sapiens chromosome 10 open reading frame 125 (C10orf125), transcript variant 1, mRNA	3.11887
AB048996	gi	211938419	ref	NM_002898.3 Homo sapiens RNA-binding motif, single stranded interacting protein 2 (RBMS2), mRNA	3.11444
DC630823	gi	215422360	ref	NM_004786.2 Homo sapiens thioredoxin-like 1 (TXNL1), transcript variant 1, mRNA	3.09601
AB173283	gi	197927150	ref	NM_006158.3 Homo sapiens neurofilament, light polypeptide (NEFL), mRNA	3.09117
DC633065	gi	34486089	ref	NM_001452.2 Homo sapiens ornithine decarboxylase antizyme 1 (OAZ1), mRNA	3.0599
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
AB174730	gi	115387109	ref	NM_017831.3 Homo sapiens ring finger protein 125 (RNF125), mRNA	3.03611
AB046044	gi	170650673	ref	NM_000440.2 Homo sapiens phosphodiesterase 6A, CGMP-specific, rod, alpha (PDE6A), mRNA	3.03568
AB179171	gi	82546851	ref	NM_175605.3 Homo sapiens intraflagellar transport 88 homolog (Chlamydomonas) (IFT88), transcript variant 1, mRNA	3.029
AB051155	gi	35493712	ref	NM_017890.3 Homo sapiens vacuolar protein sorting 13 homolog B (yeast) (VPS13B), transcript variant 5, mRNA	3.00764
AB072740	gi	155029549	ref	NM_000440.2 Homo sapiens phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A), mRNA	3.00753
BB881371	gi	162809333	ref	NM_000440.2 Homo sapiens pregnancy-zone protein (PZP), mRNA	2.99069
CJ463711	gi	215272411	ref	NM_001142334.1 Homo sapiens ataxin 2-binding protein 1 (A2BP1), transcript variant 6, mRNA	2.98758
AB170648	gi	5174424	ref	NM_006052.1 Homo sapiens Down syndrome critical region gene 3 (DSCR3), mRNA	2.9606
AB220465	gi	58331245	ref	NM_000817.2 Homo sapiens glutamate decarboxylase 1 (brain, 67 kDa) (GAD1), transcript variant GAD67, mRNA	2.95173
AB062990	gi	33149330	ref	NM_000817.2 Homo sapiens glutaredoxin (thioltransferase) (GLRX), transcript variant 1, mRNA	2.94787
AB220509	gi	139394620	ref	NM_000440.2 Homo sapiens phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A), mRNA	2.87085
AB070086	gi	22538813	ref	NM_002864.2 Homo sapiens pregnancy-zone protein (PZP), mRNA	2.84456
AB173147	gi	194294550	ref	NM_006574.3 Homo sapiens chondroitin sulfate proteoglycan 5 (neuroglycan C) (CSPG5), mRNA	2.84449
AB051133	gi	28329444	ref	NM_014379.2 Homo sapiens potassium channel, subfamily V, member 1 (KCNV1), mRNA	2.82677
AB174705	gi	51477720	ref	NM_011003811.1 Homo sapiens testis-expressed 11 (TEX11), transcript variant 1, mRNA	2.81863
CJ469703	gi	169646771	ref	NM_001142437.1 Homo sapiens ST3 beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), transcript variant 2, mRNA	2.80672
AB220438	gi	109633045	ref	NM_000440.2 Homo sapiens phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A), mRNA	2.79215
BB881475	gi	170650673	ref	NM_000440.2 Homo sapiens phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A), mRNA	2.78342
AB168610	gi	62632749	ref	NM_014616.1 Homo sapiens ATPase, class VI, type 11B (ATP11B), mRNA	2.78321
AB173806	gi	134031964	ref	NR_003491.1 Homo sapiens myocardial infarction associated transcript (nonprotein coding) (MIAT), noncoding RNA	2.77238
AB063045	gi	190570175	ref	NM_000817.2 Homo sapiens glutaredoxin (thioltransferase) (GLRX), transcript variant 1, mRNA	2.75285
AB168446	gi	223278411	ref	NM_006574.3 Homo sapiens chondroitin sulfate proteoglycan 5 (neuroglycan C) (CSPG5), mRNA	2.75194
CJ473171	gi	215490055	ref	NM_001142434.1 Homo sapiens meningeoma-expressed antigen 5 (hyaluronidase) (MGEA5), transcript variant 2, transcript variant 2, mRNA	2.75719
CJ450383	gi	83641894	ref	NM_031157.2 Homo sapiens heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), transcript variant 2, mRNA	2.75394
DW528650	gi	58430810	ref	NM_148912.2 Homo sapiens abhydrolase domain-containing 11 (ABHD11), transcript variant 1, mRNA	2.74831
AB362499	gi	48255911	ref	NM_012338.3 Homo sapiens tetraspanin 12 (TSPAN12), mRNA	2.72049
AB173195	gi	19604386	ref	NM_002198.2 Homo sapiens interferon regulatory factor 1 (IRF1), mRNA	2.71854
AB168743	gi	18836107	ref	NM_001127458.1 Homo sapiens cardiolipin synthase 1 (CRLS1), transcript variant 2, mRNA	2.70642
CJ444006	gi	157151724	ref	NM_000443333.3 Homo sapiens ribonuclease, RNase K (RNASEK), mRNA	2.70019
DK583186	gi	156631002	ref	NM_006913.3 Homo sapiens ring finger protein 5 (RNF5), mRNA	2.68579
AB168582	gi	239757151	ref	NM_002345145.1 PREDICTED: Homo sapiens hypothetical protein LOC100292623 (LOC100292623), mRNA	2.68370
BB884235	gi	70906436	ref	NM_000509.4 Homo sapiens fibrinogen gamma chain (FGG), transcript variant gamma-A, mRNA	2.67887
AB070088	gi	148613875	ref	NM_144715.3 Homo sapiens EF-hand domain family, member B (EFHB), mRNA	2.67438
AB174502	gi	239757416	ref	NM_002435835.1 PREDICTED: Homo sapiens similar to hCG2019710 (LOC100294049), mRNA	2.73964
AB172306	gi	196162714	ref	NM_0024786.2 Homo sapiens zinc finger, DHHC-type-containing 11 (ZDHHC11), mRNA	2.72031
BB878691	gi	19743563	ref	NM_000766.3 Homo sapiens cytochrome C505, family 2, subfamily A, polypeptide 13 (CYP2A13), mRNA	2.70019
AB174483	gi	55775474	ref	NM_194326.2 Homo sapiens ribosomal protein S19-binding protein 1 (RPS19B1), mRNA	2.68579
DC632651	gi	22538474	ref	NM_018955.2 Homo sapiens ubiquitin B (UBB), mRNA	2.66418
AB168353	gi	197927266	ref	NM_004388.2 Homo sapiens chitobase, di-N-acetyl (CTBS), mRNA	2.64444
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
AB169323	gi[156616291][ref	NM_018100.3 Homo sapiens EF-hand domain (C-terminal)-containing 1 (EFHC1), mRNA	2.6433		
AB048961	gi[209413742][ref	NM_005458.6 Homo sapiens gamma-aminobutyric acid (GABA) B receptor, 2 (GABBR2), mRNA	2.6395		
AB173162	gi[37347880][ref	NM_015113.3 Homo sapiens zinc finger, ZZ-type with EF-hand domain 1 (ZZEF1), mRNA	2.6361		
AB179192	gi[237681201][ref	NM_014944.3 Homo sapiens ankyrin repeat domain 7 (ANKRD7), mRNA	2.6221		
CJ469417	gi[169790802][ref	NM_005271.2 Homo sapiens glutamate dehydrogenase 1 (GLUD1), mRNA	2.62134		
AB172772	gi[61835190][ref	NM_006578.3 Homo sapiens guanine nucleotide-binding protein (G protein), beta 5 (GNB5), transcript variant 1, mRNA	2.6192		
DC857715	gi[169234652][ref	NM_007360.2 Homo sapiens killer cell lectin-like receptor subfamily K, member 1 (KLRK1), mRNA	2.6192		
AB179131	gi[239754513][ref	NM_019644.3 Homo sapiens solute carrier family 27 (fatty acid transporter), member 4 (SLC27A4), mRNA	2.61058		
CJ490982	gi[61835190][ref	NM_006578.3 Homo sapiens guanine nucleotide-binding protein (G protein), beta 5 (GNB5), transcript variant 1, mRNA	2.61058		
DC647811	gi[57013237][ref	NM_006082.2 Homo sapiens tubulin, alpha 1b (TUBA1B), mRNA	2.57848		
AB055358	gi[225735571][ref	NM_00134664.1 Homo sapiens sterile alpha motif domain-containing 13 (SAMD13), transcript variant 3, mRNA	2.55922		
CJ490832	gi[61835190][ref	NM_006578.3 Homo sapiens guanine nucleotide-binding protein (G protein), beta 5 (GNB5), transcript variant 1, mRNA	2.55922		
DC636940	gi[49574509][ref	NM_016013.2 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1 (NDUFAF1), mRNA	2.55767		
AB171587	gi[197304748][ref	NM_000972.2 Homo sapiens internexin neuronal intermediate filament protein, alpha (INA), mRNA	2.53491		
AB070172	gi[32490571][ref	NM_001134664.1 Homo sapiens sterile alpha motif domain-containing 13 (SAMD13), transcript variant 3, mRNA	2.55767		
DW528013	gi[225735571][ref	NM_00134664.1 Homo sapiens sterile alpha motif domain-containing 13 (SAMD13), transcript variant 3, mRNA	2.55767		
AB171212	gi[225735571][ref	NM_00134664.1 Homo sapiens sterile alpha motif domain-containing 13 (SAMD13), transcript variant 3, mRNA	2.55767		
CJ471599	gi[225735571][ref	NM_00134664.1 Homo sapiens sterile alpha motif domain-containing 13 (SAMD13), transcript variant 3, mRNA	2.55767		
AB168153	gi[48225856][ref	NM_001097579.1 Homo sapiens G protein-coupled receptor 34 (GPR34), transcript variant 4, mRNA	2.50236		
AB173823	gi[48225856][ref	NM_001097579.1 Homo sapiens G protein-coupled receptor 34 (GPR34), transcript variant 4, mRNA	2.50236		
AB169074	gi[18390348][ref	NM_000972.2 Homo sapiens MAD2 mitotic arrest deficient-like 1 (yeast) (MAD2L1), mRNA	2.49912		
DK583616	gi[18390348][ref	NM_000972.2 Homo sapiens MAD2 mitotic arrest deficient-like 1 (yeast) (MAD2L1), mRNA	2.49912		
CJ471599	gi[18390348][ref	NM_000972.2 Homo sapiens MAD2 mitotic arrest deficient-like 1 (yeast) (MAD2L1), mRNA	2.49912		
AB179111	gi[18390348][ref	NM_000972.2 Homo sapiens MAD2 mitotic arrest deficient-like 1 (yeast) (MAD2L1), mRNA	2.49912		
AB060868	gi[23199979][ref	NM_002470.2 Homo sapiens zinc finger, matrix type 3 (ZMAT3), transcript variant 1, mRNA	2.48362		
AB056810	gi[12613101][ref	NM_138694.3 Homo sapiens polycystic kidney and hepatic disease 1 (autosomal recessive) (PKHD1), transcript variant 1, mRNA	2.48299		
DC645529	gi[4501988][ref	NM_001134.1 Homo sapiens alpha-fetoprotein (AFP), mRNA	2.46808		
AB050420	gi[189095267][ref	NM_000554.4 Homo sapiens cone-rod homeobox (CRX), mRNA	2.45627		
AB243403	gi[116253483][ref	NM_002701.4 Homo sapiens POU class 5 homeobox 1 (POU5F1), transcript variant 1, mRNA	2.4534		
AB173020	gi[94420687][ref	NM_002358.3 Homo sapiens alpha-fetoprotein (AFP), mRNA	2.45627		
DC643036	gi[4501988][ref	NM_001134.1 Homo sapiens alpha-fetoprotein (AFP), mRNA	2.45627		
BB889704	gi[142976728][ref	NM_016245.3 Homo sapiens hydroxysteroid (17-beta) dehydrogenase 11 (HSD1B11), mRNA	2.43894		
DW522619	gi[34147617][ref	NM_018100.3 Homo sapiens EF-hand domain (C-terminal)-containing 1 (EFHC1), mRNA	2.43416		
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
DC645828	gi	16332359	ref	NM_033487.1 *Homo sapiens* cell division cycle 2-like 1 (PITSLRE proteins) (CDC2L1), transcript variant 3, mRNA	2.43092
AB050260	gi	203098333	ref	NM_032133.4 *Homo sapiens* MYCBP-associated protein (MYCBPAP), mRNA	2.41286
CJ436262	gi	150010638	ref	NM_015276.1 *Homo sapiens* ubiquitin specific peptidase 22 (USP22), mRNA	2.39886
AB056381	gi	225735571	ref	NR_027416.1 *Homo sapiens* nuclear factor erythroid-derived 2-like 3 pseudogene (LOC100272146), noncoding RNA	2.39471
CJ443349	gi	83367079	ref	NM_003801.3 *Homo sapiens* glycosylphosphatidylinositol anchorattachment protein 1 homolog (yeast) (GPA1A), mRNA	2.39333
AB171767	gi	162723751	ref	NM_144586.5 *Homo sapiens* LY6/PLAUR domain-containing 1 (LYPD1), transcript variant 1, mRNA	2.393
AB056817	gi	58535452	ref	NM_001011649.1 *Homo sapiens* CDK5 regulatory subunit-associated protein 2 (CDK5RAP2), transcript variant 2, mRNA	2.39285
AB174345	gi	145208007	ref	NM_173688.2 *Homo sapiens* Na’/K’-transporting ATPase interacting 3 (NKAIN3), mRNA	2.39236
DC648733	gi	134133239	ref	NM_032151.4 *Homo sapiens* terin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 2 (PCBD2), mRNA	2.39231
CJ430507	gi	189083855	ref	NM_000815.4 *Homo sapiens* gamma-aminobutyric acid (GABA) A receptor, delta (GABRD), mRNA	2.38598
AB172049	gi	41281366	ref	NM_001440.2 *Homo sapiens* exostoses (multiple)-like 3 (EXTL3), mRNA	2.37312
CJ489397	gi	71143136	ref	NM_005342.2 *Homo sapiens* high-mobility group box 3 (HMGB3), mRNA	2.36471
AB170096	gi	42741653	ref	NM_007375.3 *Homo sapiens* TAR DNA-binding protein (TARDBP), mRNA	2.36217
AB056391	gi	169216999	ref	XM_001720515.1 PREDICTED: *Homo sapiens* similar to pro-pol protein (LOC100129323), mRNA	2.3496
AB056319	gi	167900475	ref	NM_001080850.2 *Homo sapiens* coiled-coil domain-containing 30 (CCDC30), mRNA	2.34558
DK579603	gi	84626579	ref	NM_025108.2 *Homo sapiens* chromosome 16 open reading frame 59 (C16orf59), mRNA	2.3426
CJ431113	gi	226246632	ref	NM_027451.1 *Homo sapiens* hypothetical LOC647979 (LOC647979), noncoding RNA	2.34265
DK580610	gi	34335291	ref	NM_033312.4 *Homo sapiens* thiosulfate sulfurtransferase (rhodanese) (TST), nuclear gene encoding mitochondrial protein, mRNA	2.3462
AB168450	gi	81295815	ref	NM_005141.3 *Homo sapiens* fibrinogen gamma chain (FGG), mRNA	2.3463
DQ159931	gi	163659857	ref	NM_000828.4 *Homo sapiens* glutamate receptor, ionotrophic, AMPA 3 (GRIA3), transcript variant 2, mRNA	2.33939
AB173516	gi	36287116	ref	NM_014319.3 *Homo sapiens* LEM domain-containing 3 (LEM3D), mRNA	2.33925
AB173575	gi	56550100	ref	NM_020978.3 *Homo sapiens* amylase, alpha 2B (pancreatic) (AMY2B), mRNA	2.33548
AB169015	gi	93327710	ref	NM_173812.4 *Homo sapiens* dpy-19-like 2 (C. elegans) (DPY19L2), mRNA	2.33006
BB898675	gi	70964348	ref	NM_021870.2 *Homo sapiens* fibrinogen gamma chain (FGG), transcript variant gamma-B, mRNA	2.32385
DK579646	gi	153791317	ref	NM_032332.2 *Homo sapiens* mitogen-activated protein kinase organizer 1 (MORGI1), transcript variant 2, mRNA	2.32308
AB071115	gi	111548669	ref	NM_153376.2 *Homo sapiens* coiled-coil domain-containing 96 (CCDC96), mRNA	2.31599
DC632824	gi	23110926	ref	NM_002799.2 *Homo sapiens* proteasome (prosome, macropain) subunit, beta type, 7 (PSMB7), mRNA	2.31501
BB898632	gi	18895719	ref	NM_005141.3 *Homo sapiens* fibrinogen beta chain (FGB), mRNA	2.3131
AB292416	gi	143770740	ref	NM_001083899.1 *Homo sapiens* glycoprotein VI (platelet) (GP6), transcript variant 1, mRNA	2.311
AB055350	gi	67782353	ref	NM_001024844.1 *Homo sapiens* CD82 molecule (CD82), transcript variant 2, mRNA	2.31014
AB168962	gi	210147405	ref	NM_152621.5 *Homo sapiens* sphingomyelin synthase 2 (SGMS2), transcript variant 1, mRNA	2.30806
AB168166	gi	156415985	ref	NM_014579.2 *Homo sapiens* solute carrier family 39 (zinc transporter), member 2 (SLC39A2), mRNA	2.30287
AB172981	gi	73692942	ref	NM_001010927.2 *Homo sapiens* T-cell lymphoma invasion and metastasis 2 (TIAM2), transcript variant 2, mRNA	2.29903
CJ441025	gi	153252025	ref	NM_001830.3 *Homo sapiens* chloride channel 4 (CLCN4), mRNA	2.29786
CJ445440	gi	42764686	ref	NM_022652.2 *Homo sapiens* dual specificity phosphatase 6 (DUSP6), transcript variant 2, mRNA	2.29536
AB179072	gi	156119614	ref	NM_006901.2 *Homo sapiens* myosin IXA (MYO9A), mRNA	2.28584
AB060229	gi	239756940	ref	XM_001718053.2 PREDICTED: *Homo sapiens* similar to CD300C antigen (LOC100130520), mRNA	2.28415
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
CJ480802	gi[71772428][ref]NM_001021.3 Homo sapiens ribosomal protein S17 (RPS17), mRNA	2.28212			
DK581053	gi[63054873][ref]NM_001615.3 Homo sapiens actin, gamma 2, smooth muscle, enteric (ACTG2), mRNA	2.27782			
AB046030	gi[169210010][ref]XR_040492.1 PREDICTED: Homo sapiens hypothetical LOC44036 (LOC44036), mircRNA	2.27371			
AB174638	gi[44680147][ref]NM_001615.3 Homo sapiens solute carrier family 23 (nucleobase transporters), member 2 (SLC23A2), transcript variant 2, mRNA	2.2635			
CJ469779	gi[95147340][ref]NM_004603.2 Homo sapiens syntaxin 1A (brain) (STX1A), mRNA	2.25959			
DC632108	gi[225637497][ref]MN_000282.2 Homo sapiens propionyl coenzyme A carboxylase, alpha polypeptide (PCCA), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA	2.25785			
AB170956	gi[65506441][ref]NM_001126102.1 Homo sapiens interferon stimulated exonuclease gene 20 kDa-like 2 (ISG20L2), mRNA	2.25755			
DC858184	gi[13569959][ref]NM_031471.5 Homo sapiens 18S ribosomal RNA (LOC100008588), noncoding RNA	2.25575			

Table 1: Continued.
Table 1: Continued.

Accession number	Human RefSeq description	Fold change
AB171550	gil[19913413][ref]NM_014203.2 *Homo sapiens* adaptor-related protein complex 2, alpha 1 subunit (AP2A1), transcript variant 1, mRNA	2.1589
AB173954	gil[188595678][ref]NM_014959.2 *Homo sapiens* caspase recruitment domain family, member 8 (CARD8), mRNA	2.13719
AB071125	gil[89903024][ref]NM_001031735.2 *Homo sapiens* chromosome 19 open reading frame 36 (C19orf36), transcript variant 1, mRNA	2.13665
AB063014	gil[170650671][ref]NM_001122769.1 *Homo sapiens* Leber congenital amaurosis 5 (LCA5), transcript variant 2, mRNA	2.13524
DC631520	gil[189163527][ref]NM_001127700.1 *Homo sapiens* mammalian ether-a-go-go related potassium channel (HERG), transcript variant 4, mRNA	2.1306
AK240628	gil[160298141][ref]NM_000668.4 *Homo sapiens* alcohol dehydrogenase 1B (class I), beta polypeptide (ADH1B), mRNA	2.12458
AB171495	gil[30794215][ref]NM_030961.1 *Homo sapiens* tripartite motif-containing 56 (TRIM56), mRNA	2.12446
DC646861	gil[91807120][ref]NM_033087.3 *Homo sapiens* asparagine-linked glycosylation 2, alpha-1,3-mannosyltransferase homolog (S. cerevisiae) (ALG2), transcript variant 1, mRNA	2.12291
AY650365	gil[27436932][ref]NM_172337.1 *Homo sapiens* orthodenticle homeobox 2 (OTX2), transcript variant 2, mRNA	2.11514
DW527197	gil[219555668][ref]NM_052855.3 *Homo sapiens* ankyrin repeat domain 40 (ANKRD40), mRNA	2.115
AB171287	gil[188497721][ref]NM_00123735.1 *Homo sapiens* cancerspecific 15S rRNA (CST15), transcript variant 2, mRNA	2.11438
AB173764	gil[219879811][ref]NM_004575.2 *Homo sapiens* SH2B adaptor protein 3 (SH2B3), mRNA	2.10791
DK582787	gil[221316657][ref]NM_004811.2 *Homo sapiens* leupaxin (LPXN), transcript variant 2, mRNA	2.10555
AB070128	gil[226491198][ref]NM_182496.2 *Homo sapiens* complement component 9 (C9), mRNA	2.10225
DK577398	gil[52426772][ref]NM_002122.3 *Homo sapiens* major histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1), mRNA	2.09004
AB169904	gil[34176011][ref]NM_004309.3 *Homo sapiens* rho GDP dissociation inhibitor (GDI) alpha (ARHGDIA), mRNA	2.08484
AB220503	gil[237681178][ref]NM_01160260.1 *Homo sapiens* cannabinoid receptor 1 (brain) (CN1R1), transcript variant 6, mRNA	2.08434
AB173401	gil[239750034][ref]XR_039406.2 PREDICTED: *Homo sapiens* similar to yippee-like 5 (*Drosophila*), miscRNA	2.08407
AB171785	gil[253970447][ref]NM_014253.3 *Homo sapiens* rho GDP dissociation inhibitor (GDI) alpha (ARHGDIA), transcript variant 3, mRNA	2.08184
AB171491	gil[117938287][ref]NM_004171.3 *Homo sapiens* solute carrier family 1 (glial high affinity glutamate transporter), member 2 (SLC1A2), mRNA	2.08078
AB174571	gil[182765446][ref]NM_00131711.2 *Homo sapiens* endoplasmic reticulum-Golgi intermediate compartment (ERGIC) 1 (ERGIC1), mRNA	2.07886
AB063092	gil[34577113][ref]NM_015576.1 *Homo sapiens* ELKS/RAB6-interacting/CAST family member 2 (ERC2), mRNA	2.07171
AB056378	gil[189163523][ref]NM_033064.4 *Homo sapiens* ataxia, cerebellar, Cayman type (ATCA5), mRNA	2.06758
AB055299	gil[163644324][ref]NM_00112732.1 *Homo sapiens* MCF-2, cell line derived transforming sequence-like (MCF2L), transcript variant 1, mRNA	2.06139
AB172748	gil[119220563][ref]NM_04852.2 *Homo sapiens* one cut homeobox 2 (ONECUT2), mRNA	2.05909
AB172478	gil[239746981][ref]XR_078603.1 PREDICTED: *Homo sapiens* similar to putative p150 (LOC100288106), miscRNA	2.05792
AB170807	gil[236498580][ref]NM_173569.3 *Homo sapiens* ubiquitin cofactor 2 (UBR2), mRNA	2.05471
EF208824	gil[239740919][ref]XM_002344047.1 PREDICTED: *Homo sapiens* similar to major histocompatibility complex, class II, DQ beta 1, transcript variant 2 (LOC100294318), mRNA	2.05031
AB169481	gil[150417992][ref]NM_033312.2 *Homo sapiens* CDC14 cell division cycle 14 homolog A (S. cerevisiae) (CDC14A), transcript variant 2, mRNA	2.04992
AB171520	gil[56243494][ref]NM_004582.6 *Homo sapiens* ribosomal protein S6 kinase, 90 kDa, polypeptide 3 (RPS6KA3), mRNA	2.0465
DC629151	gil[215982788][ref]NM_00477.5 *Homo sapiens* albumin (ALB), mRNA	2.04345
DC640591	gil[208609965][ref]NM_001135664.1 *Homo sapiens* RAB7, member RAS oncogene family-like 1 (RAB7L1), transcript variant 4, mRNA	2.04167
BB887273	gil[215,982,788][ref]NM_000477.5 *Homo sapiens* albumin (ALB), mRNA	2.0414
Table 1: Continued.

Accession number	Human RefSeq description	Fold change			
CJ435276	gi	75,812,975	ref	NM_001033574.1 Homo sapiens archaelysin family metalloproteinase 2 (AMZ2), transcript variant 6, mRNA	2.04064
DC643114	gi	33519462	ref	NM_004544.2 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42 kDa (NDUFA10), nuclear gene encoding mitochondrial protein, mRNA	2.03575
CJ36048	gi	62865867	ref	NM_004102.3 Homo sapiens fatty acid-binding protein 3, muscle and heart (membrane-derived growth inhibitor) (FABP3), mRNA	2.03528
AB179303	gi	196162694	ref	NM_003401.3 Homo sapiens X-ray repair complementing defective repair in Chinese hamster cells 4 (XRCC4), transcript variant 1, mRNA	2.03322
AB171313	gi	146219840	ref	NM_020709.1 Homo sapiens PNMA-like 2 (PNMAL2), mRNA	2.02925
AB173369	gi	149363694	ref	NM_01009984.1 Homo sapiens chromosome 20 open reading frame 194 (C2orf194), mRNA	2.01079
AB171481	gi	18496982	ref	NM_015526.1 Homo sapiens CAP-GLY domain-containing linker protein 3 (CLIP3), mRNA	2.00151
AB174068	gi	88472123	ref	NR_002833.1 Homo sapiens dpy-19-like 2 pseudogene 1 (C. elegans) (DPY19L2P1), noncoding RNA	1.99958
AB504343	gi	239753181	ref	XM_00245525.1 PREDICTED: Homo sapiens similar to hCG2041348 (LOC100293610), mRNA	1.99905
DK577438	gi	88899575	ref	NM_002622.4 Homo sapiens prefoldin subunit 1 (PFN1), mRNA	1.99519
AB172315	gi	239753426	ref	XR_038411.2 PREDICTED: Homo sapiens similar to eukaryotic translation elongation factor 1 beta 2 (LOC640973), miscRNA	1.99372
BB895222	gi	38372939	ref	NM_001185.2 Homo sapiens alpha-2-glycoprotein 1, zinc-binding (AZGP1), mRNA	1.99214
AB173728	gi	111154086	ref	NM_020631.3 Homo sapiens pleckstrin homology domain-containing, family G (with Rhof domain) member 5 (PLEKHG5), transcript variant 1, mRNA	1.98959
DK647709	gi	28416926	ref	NM_005260.2 Homo sapiens purinergic receptor P2X, ligand-gated ion channel, 4 (P2RX4), mRNA	1.98692
AB504919	gi	156766083	ref	NM_031418.2 Homo sapiens anocytamin 3 (ANO3), mRNA	1.98684
AB179103	gi	8860913	ref	NM_021818.2 Homo sapiens salvador homolog 1 (Drosophila) (SAV1), mRNA	1.97681
AB504673	gi	18498342	ref	NM_014861.2 Homo sapiens ATPase, Ca++ transporting, type 2C, member 2 (ATP2C2), mRNA	1.97604
AB172144	gi	190341103	ref	NM_015163.5 Homo sapiens tripartite motif-containing 9 (TRIM9), transcript variant 1, mRNA	1.97599
DK583369	gi	171460955	ref	NM_003800.4 Homo sapiens ubiquitin-specific peptidase like 1 (USPL1), mRNA	1.9752
AB174098	gi	110815799	ref	NM_024345.3 Homo sapiens DDB1 and CUL4-associated factor 10 (DCAF10), mRNA	1.97309
DW526268	gi	31083173	ref	NM_181078.1 Homo sapiens interleukin 21 receptor (IL21R), transcript variant 2, mRNA	1.97258
AB171701	gi	20544144	ref	NM_139062.1 Homo sapiens casein kinase 1, delta (CSNK1D), transcript variant 2, mRNA	1.96537
CJ493302	gi	1736150	ref	NM_004724.2 Homo sapiens Zw10, kinetochore associated, homolog (Drosophila) (ZW10), mRNA	1.96534
DK577545	gi	24797075	ref	NM_002121.4 Homo sapiens major histocompatibility complex, class II, DP beta 1 (HLA-DPB1), mRNA	1.96346
CJ458429	gi	71067335	ref	NM_031462.2 Homo sapiens CD99 molecule-like 2 (CD99L2), transcript variant 1, mRNA	1.96208
AB172752	gi	32698785	ref	NM_182490.1 Homo sapiens zinc finger protein 227 (ZNF227), mRNA	1.95671
AB171668	gi	40385866	ref	NM_199227.1 Homo sapiens methionine aminopeptidase 1D (MAP1D), mRNA	1.95399
AB051117	gi	82617625	ref	NM_001037293.1 Homo sapiens paralentin 2 (PALM2), transcript variant 2, mRNA	1.9528
AB169059	gi	91992151	ref	NM_000616.3 Homo sapiens CDC4 protein kinase regulatory subunit 1B (CKS1B), transcript variant 1, mRNA	1.95226
CJ443230	gi	60940845	ref	NM_002258.4 Homo sapiens chromosome 6 open reading frame 106 (C6orf106), transcript variant 2, mRNA	1.95082
AB178987	gi	38045951	ref	NM_021030.2 Homo sapiens zinc finger protein 14 (ZNF14), mRNA	1.94816
AB172387	gi	16365999	ref	NM_052839.3 Homo sapiens pannexin 2 (PANX2), transcript variant 1, mRNA	1.94536
AB168775	gi	223468671	ref	NM_001145135.1 Homo sapiens carnitine palmitoyltransferase 1B (muscle) (CPT1B), nuclear gene encoding mitochondrial protein, transcript variant 6, mRNA	1.94062
DC633198	gi	206725531	ref	NM_001826.2 Homo sapiens CDC28 protein kinase regulatory subunit 1B (CKS1B), transcript variant 1, mRNA	1.93773
AB172044	gi	25168266	ref	NM_170709.1 Homo sapiens serum/glucocorticoid-regulated kinase family, member 3 (SGK3), transcript variant 2, mRNA	1.93453
DK578185	gi	239754745	ref	XM_002346052.1 PREDICTED: Homo sapiens hypothetical protein LOC100293771 (LOC100293771), mRNA	1.93421
AB171597	gi	113951732	ref	NM_012095.4 Homo sapiens adaptor-related protein complex 3, mu 1 subunit (AP3M1), transcript variant 2, mRNA	1.93313
AB179405	gi	31543301	ref	NM_032600.2 Homo sapiens coiled-coil domain-containing 54 (CCDC54), mRNA	1.93038
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
AB179267	gi	37594443	ref	NM_015896.2 Homo sapiens zinc finger, MYND-type-containing 10 (ZMYND10), mRNA	1.92859
DC640525	gi	35493837	ref	NM_004902.2 Homo sapiens RNA-binding motif protein 39 (RBM39), transcript variant 2, mRNA	1.92337
AB049869	gi	239753181	ref	NM_00245525.1 PREDICTED: Homo sapiens similar to hCG2041348 (LOC100293610), mRNA	1.92159
DW528250	gi	52487034	ref	NM_004618.3 Homo sapiens topoisomerase (DNA) III alpha (TOP3A), mRNA	1.91924
DC636463	gi	78214521	ref	NM_00135258.1 Homo sapiens ribosomal protein L38 (RPL38), transcript variant 2, mRNA	1.91826
AB179052	gi	11551031	ref	NM_004432.2 Homo sapiens ELAV- (embryonic lethal, abnormal vision, Drosophila-) like 2 (Hu antigen B) (ELAVL2), mRNA	1.91696
AB168809	gi	37622352	ref	NM_003551.2 Homo sapiens nonmetastatic cells 5, protein expressed in nucleoside-diphosphate kinase (NME5), mRNA	1.91336
CJ435007	gi	115527063	ref	NM_004859.3 Homo sapiens clathrin, heavy chain (Hc) (CLTC), mRNA	1.91318
AB171499	gi	50845406	ref	NM_031444.2 Homo sapiens chromosome 22 open reading frame 13 (C22orf13), mRNA	1.91088
DC647333	gi	118600974	ref	NM_007269.2 Homo sapiens syntaxin-binding protein 3 (STXBP3), mRNA	1.90575
AB172403	gi	142976637	ref	NM_017420.3 Homo sapiens SIX homeobox 4 (SIX4), mRNA	1.89362
AB174282	gi	31543080	ref	NM_016210.2 Homo sapiens transcript variant 2, mRNA	1.89271
DC648759	gi	6382072	ref	NM_002345525.1 PREDICTED: Homo sapiens similar to hCG2041348 (LOC100293610), mRNA	1.89851
AB169033	gi	195927038	ref	NM_001786.3 Homo sapiens cell division cycle 2, G1 to S and G2 to M (CDC2), transcript variant 1, mRNA	1.88515
AB173309	gi	209447072	ref	NM_001135806.1 Homo sapiens synaptotagmin I (SYT1), transcript variant 3, mRNA	1.88194
AB063003	gi	116603563	ref	NM_018218.2 Homo sapiens ubiquitin-specific peptidase 40 (USP40), mRNA	1.88102
AB171041	gi	8678650	ref	NM_014800.9 Homo sapiens engulfment and cell motility 1 (ELMO1), transcript variant 1, mRNA	1.87945
CJ470094	gi	209447072	ref	NM_018222.4 Homo sapiens chimerin (chimaerin) 1 (CHN1), transcript variant 1, mRNA	1.87132
AB171236	gi	19743893	ref	NM_133480.1 Homo sapiens transcriptional adaptor 3 (NGG1 homolog, yeast)-like (TADA3L), transcript variant 2, mRNA	1.86897
BB885210	gi	32484947	ref	NM_006721.2 Homo sapiens adenosine kinase (ADK), transcript variant ADK-long, mRNA	1.86865
AB169067	gi	188528615	ref	NM_182911.3 Homo sapiens testis-specific, 10 (TSGA10), transcript variant 2, mRNA	1.86706
CJ464698	gi	221307560	ref	NR_026669.1 Homo sapiens synaptosomal-associated protein, 91 kDa homolog (mouse) (SNAP91), transcript variant 2, transcripted RNA	1.86542
AB179482	gi	51173716	ref	NM_006720.3 Homo sapiens actin-binding LIM protein 1 (ABL1IM1), transcript variant 4, mRNA	1.85972
CJ442615	gi	239745120	ref	XR_015162.2 PREDICTED: Homo sapiens hypothetical protein LOC727880 (LOC727880), missRNA	1.85021
CJ435208	gi	170650722	ref	NM_014236.3 Homo sapiens glyceronephosphate O-acyltransferase (GNPAT), mRNA	1.8499
AY650307	gi	51999155	ref	NM_001723.2 Homo sapiens chromodomain helicase DNA-binding protein 4 (CHD4), mRNA	1.84509
DW525872	gi	77404354	ref	NM_003908.3 Homo sapiens eukaryotic translation initiation factor 2, subunit 2, 38 kDa (EIF2S2), mRNA	1.84501
DW529999	gi	78190459	ref	NM_000978.3 Homo sapiens ribosomal protein L23 (RPL23), mRNA	1.84409
AB174451	gi	223941821	ref	NM_014342.2 Homo sapiens mitochondrial carrier homolog 2 (E. coli) (MTCH2), mRNA	1.84017
AB169205	gi	109948303	ref	NM_018225.2 Homo sapiens smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans) (SMU1), mRNA	1.82627
CJ441961	gi	19913444	ref	NM_016257.2 Homo sapiens hippocalcin-like 4 (HPCAL4), mRNA	1.8159
AY650384	gi	141803509	ref	NM_058164.2 Homo sapiens olfactomedin 2 (OLFM2), mRNA	1.81587
DC647305	gi	38372918	ref	NM_001728.2 Homo sapiens basigin (Ok blood group) (BSG), transcript variant 1, mRNA	1.8093
AB172260	gi	112382251	ref	NM_18313.2 Homo sapiens spectrin, beta, nonerythrocytic 1 (SPTBN1), transcript variant 2, mRNA	1.80742
AB173850	gi	194097340	ref	NM_002616.2 Homo sapiens period homolog 1 (Drosophila) (PER1), mRNA	1.80415
AB168762	gi	242247096	ref	NM_001340.3 Homo sapiens cyclin, basic protein of sperm head cytoskeleton 2 (CYLC2), mRNA	1.80079
AB173856	gi	60302919	ref	NM_001752.2 Homo sapiens catalase (CAT), mRNA	1.79676
Accession number	Human RefSeq description	Fold change			
------------------	--	--------------			
AB060862	gi	221219051	ref	NM_01924.4 Homo sapiens radial spoke 3 homolog (Chlamydomonas) (RSPH3), mRNA	1.79563
CJ470793	gi	224586819	ref	NR_027265.1 Homo sapiens Golgi apparatus protein 1 (GLG1), transcript variant 5, transcribed RNA	1.79405
DW528583	gi	239787383	ref	NM_015139.2 Homo sapiens solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylglactosamine dual transporter), member D1 (SLC35D1), mRNA	1.79359
DK580881	gi	194394144	ref	NM_145870.2 Homo sapiens glutathione transferase zeta 1 (GSTZ1), transcript variant 1, mRNA	1.792
AB173997	gi	225543100	ref	NR_027378.1 Homo sapiens hypothetical LOC64376 (LOC64376), noncoding RNA	1.79131
AJ650356	gi	223718142	ref	NM_1729354.2 Homo sapiens reelin (RELN), transcript variant 2, mRNA	1.78729
DK584117	gi	15967154	ref	NM_015658.2 Homo sapiens SCAN domain-containing 1 (SCAND1), transcript variant 1, mRNA	1.78008
DC621384	gi	15431296	ref	NM_00977.2 Homo sapiens ribosomal protein L13 (RPL13), transcript variant 1, mRNA	1.77763
DK577712	gi	109148541	ref	NM_015605.2 Homo sapiens alanyl-tRNA synthetase (AARS), mRNA	1.77723
AB174251	gi	253314435	ref	NR_027995.1 Homo sapiens ankyrin repeat domain 20 family, member A2 pseudogene (LOC284232), noncoding RNA	1.77027
AB174247	gi	50897295	ref	NM_01002923.1 Homo sapiens IGF-like family member 4 (IGF4L), mRNA	1.76977
CJ490195	gi	78190459	ref	NM_000297.3 Homo sapiens ribosomal protein L23 (RPL23), mRNA	1.76768
AB171831	gi	167466275	ref	NM_152542.3 Homo sapiens protein phosphatase 1K (PP1K), mRNA	1.76709
DK5828810	gi	90652856	ref	NM_032818.2 Homo sapiens chromosome 9 open reading frame 100 (C9orf100), mRNA	1.765
AB170534	gi	108773786	ref	NM_00321.2 Homo sapiens retinoblastoma 1 (RB1), mRNA	1.76182
AB171096	gi	110347436	ref	NM_01042545.1 Homo sapiens latent transforming growth factor beta-binding protein 4 (LTBP4), transcript variant 3, mRNA	1.75594
AB1668611	gi	21077068	ref	NM_000856.2 Homo sapiens TBP-like 1 (TBPL1), mRNA	1.74839
CJ492188	gi	30181234	ref	NM_034447.2 Homo sapiens zinc finger protein 165 (ZNF165), mRNA	1.74753
AB171700	gi	115527063	ref	NM_004585.3 Homo sapiens clathrin, heavy chain (Hc) (CLTC), mRNA	1.74656
AB171366	gi	22748942	ref	NM_152445.1 Homo sapiens family with sequence similarity 161, member B (FAM161B), mRNA	1.74405
AB168566	gi	148664196	ref	NM_017950.2 Homo sapiens coiled-coil domain-containing 40 (CCDC40), mRNA	1.74135
AB171657	gi	221316692	ref	NM_198449.2 Homo sapiens ribosomal protein L13 (RPL13), transcript variant 3, mRNA	1.73933
AB056888	gi	17772767	ref	NM_152826.2 Homo sapiens-sorting nexin 1 (SNX1), transcript variant 3, mRNA	1.73868
AB168849	gi	156766042	ref	NM_00103146.1 Homo sapiens GRB10-interacting GYF protein 2 (GIGYF2), transcript variant 3, mRNA	1.73412
AB172848	gi	95113665	ref	NM_018157.2 Homo sapiens resistance to inhibitors of cholinesterase 8 homolog B (C. elegans) (RJC8B), mRNA	1.72749
AB048894	gi	148727250	ref	NM_007137.2 Homo sapiens zinc finger protein 81 (ZNF81), mRNA	1.71845
DW524469	gi	239753181	ref	NM_02345525.1 PREDICTED: Homo sapiens similar to hCG2041348 (LOC100293610), mRNA	1.71582
AB173566	gi	89242130	ref	NM_014305.2 Homo sapiens TDP-glucose 4,6-dehydratase (TGD5), mRNA	1.71406
DC634783	gi	116812576	ref	NM_016019.2 Homo sapiens LUC7-like 2 (S. cerevisiae) (LUC7L2), mRNA	1.71163
AB168438	gi	64276485	ref	NM_005689.2 Homo sapiens serologically defined colon cancer antigen 10 (SDCCAG10), mRNA	1.71108
AB174725	gi	169194555	ref	XR_040716.1 PREDICTED: Homo sapiens hypothetical LOC439950 (LOC439950), miscRNA	1.70933
AB1707086	gi	208879448	ref	NM_006265.2 Homo sapiens RAD21 homolog (S. pombe) (RAD21), mRNA	1.70551
CJ431422	gi	117938253	ref	NM_00177441.1 Homo sapiens BCL2-associated transcription factor 1 (BCLAF1), transcript variant 3, mRNA	1.70446
AB048954	gi	148596971	ref	NM_014951.2 Homo sapiens zinc finger protein 365 (ZNF365), transcript variant A, mRNA	1.70334
AB173447	gi	40828829	ref	NM_000361.2 Homo sapiens thrombomodulin (THBD), mRNA	1.70293
AB173287	gi	242117988	ref	NM_014702.4 Homo sapiens KIAA0408 (KIAA0408), mRNA	1.70162
CJ489820	gi	218505834	ref	NM_00142782.1 Homo sapiens membrane-associated guanylate kinase, WW, and PDZ domain-containing 3 (MAGI3), transcript variant 1, mRNA	1.68381
AB173372	gi	78190481	ref	NM_025221.5 Homo sapiens Kv channel-interacting protein 4 (KCNI4P), transcript variant 1, mRNA	1.68058
AB172865	gi	31795545	ref	NM_012450.2 Homo sapiens solute carrier family 13 (sodium/sulfate symporters), member 4 (SLC13A4), mRNA	1.67878
Accession number	Human RefSeq description	Fold change			
------------------	--------------------------	-------------			
AB168329	gi	223468562	ref	NM_005628.2 Homo sapiens solute carrier family 1 (neutral amino acid transporter), member 5 (SLC1A5), transcript variant 1, mRNA	1.67642
AB171546	gi	55956903	ref	NM_005922.2 Homo sapiens mitogen-activated protein kinase kinase 4 (MAP3K4), transcript variant 1, mRNA	1.67151
AB063093	gi	194248055	ref	NM_002045.3 Homo sapiens growth-associated protein 43 (GAP43), transcript variant 2, mRNA	1.66805
AB220449	gi	23510394	ref	NM_138966.2 Homo sapiens neuronplin- (NRP-) and tolloid- (TLL-) like 1 (NETO1), transcript variant 3, mRNA	1.66789
AB169208	gi	22547155	ref	NM_002018.2 Homo sapiens flightless I homolog (Drosophila) (FLII), mRNA	1.66361
AB168324	gi	116014337	ref	NM_030981.2 Homo sapiens RAB1B, member RAS oncogene family (RAB1B), mRNA	1.66298
AB169835	gi	50726964	ref	NM_013392.2 Homo sapiens nuclear receptor-binding protein 1 (NRBP1), mRNA	1.65785
AB173501	gi	195539333	ref	NM_018176.3 Homo sapiens growth-associated protein 43 (GAP43), transcript variant 2, mRNA	1.65067
DC630946	gi	183227689	ref	NM_002049.3 Homo sapiens GATA-binding protein 1 (globin transcription factor 1) (GATA1), mRNA	1.65062
AB063075	gi	239743824	ref	XM_001128647.3 PREDICTED: Homo sapiens hypothetical LOC728701 (LOC728701), mRNA	1.65564
AB169782	gi	170932491	ref	NM_198399.1 Homo sapiens cyclic AMP-regulated phosphoprotein, 21 kD (ARPP-21), transcript variant 2, mRNA	1.65067
CJ477467	gi	133778911	ref	NM_003309.2 Homo sapiens TSPY-like 1 (TSPYL1), mRNA	1.65062
BB900725	gi	31542685	ref	NM_025125.2 Homo sapiens chromosome 10 open reading frame 57 (C10orf57), mRNA	1.64409
DC625559	gi	45578132	ref	NM_000039.1 Homo sapiens apolipoprotein A-I (APOA1), mRNA	1.63274
AB169782	gi	38261964	ref	NM_198399.1 Homo sapiens cyclic AMP-regulated phosphoprotein, 21 kD (ARPP-21), transcript variant 2, mRNA	1.62995
CJ445723	gi	90903230	ref	NM_002111.6 Homo sapiens huntingtin (HTT), mRNA	1.58107
DC630899	gi	83641894	ref	NM_031157.2 Homo sapiens heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), transcript variant 2, mRNA	1.57689
AB168476	gi	219555742	ref	NM_015353.5 Homo sapiens mediator complex subunit 13-like (MED13L), mRNA	1.57355
DC642541	gi	209879972	ref	NM_003702.3 Homo sapiens regulator of G-protein signaling 20 (RGS20), transcript variant 2, mRNA	1.64376
AB171804	gi	66932910	ref	NM_014676.2 Homo sapiens pumilio homolog 1 (Drosophila) (PUM1), transcript variant 2, mRNA	1.62995
DC625559	gi	4557320	ref	NM_000039.1 Homo sapiens apolipoprotein A-I (APOA1), mRNA	1.631
AB172266	gi	170932491	ref	NM_030770.2 Homo sapiens transmembrane protease, serine 5 (TMPRSS5), mRNA	1.62995
AB173763	gi	62953115	ref	NM_01017523.1 Homo sapiens BTB (POZ) domain-containing 11 (BTBD11), transcript variant b, mRNA	1.62499
AB172974	gi	111161293	ref	NM_005746.2 Homo sapiens nicotinamide phosphoribosyltransferase (NAMPT), mRNA	1.62078
AB179155	gi	187608347	ref	NM_145046.3 Homo sapiens calreticulin 3 (CALR3), mRNA	1.6111
AB169148	gi	153792481	ref	NM_033048.4 Homo sapiens regulator of G-protein signaling 20 (RGS20), transcript variant 2, mRNA	1.60704
AB172446	gi	193083128	ref	NM_001128920.1 Homo sapiens MAP/microtubule affinity-regulating kinase 3 (MARK3), transcript variant 4, mRNA	1.59852
DC852298	gi	195572796	ref	NM_001130917.1 Homo sapiens leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2 (LILRA2), transcript variant 1, mRNA	1.58107
AB046637	gi	209571546	ref	NM_018095.4 Homo sapiens Kelch repeat and BTB (POZ) domain-containing 4 (KBTBD4), transcript variant 1, mRNA	1.58107
CJ445723	gi	90903230	ref	NM_002111.6 Homo sapiens huntingtin (HTT), mRNA	1.57689
DC630899	gi	83641894	ref	NM_031157.2 Homo sapiens heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), transcript variant 2, mRNA	1.5766
AB168476	gi	219555742	ref	NM_015353.5 Homo sapiens mediator complex subunit 13-like (MED13L), mRNA	1.57355
DC642541	gi	209879972	ref	NM_003702.3 Homo sapiens regulator of G-protein signaling 20 (RGS20), transcript variant 2, mRNA	1.57215
AB170370	gi	224177554	ref	NM_002340.5 Homo sapiens lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase) (LS), transcript variant 1, mRNA	1.57006
DC636538	gi	7164876	ref	NM_001014.3 Homo sapiens ribosomal protein S10 (RPS10), mRNA	1.56413
DC648258	gi	4557818	ref	NM_000277.1 Homo sapiens phenylalanine hydroxylase (PAH), mRNA	1.56396
AB168688	gi	75709218	ref	NM_001532.4 Homo sapiens cleavage stimulation factor, 3 pre-RNA, subunit 1, 50 kDa (CSTF1), transcript variant 2, mRNA	1.56349
CJ486539	gi	194018543	ref	NM_031451.4 Homo sapiens testis expressed 101 (TEX101), transcript variant 1, mRNA	1.55338
AB173591	gi	56699472	ref	NM_006298.2 Homo sapiens zinc finger protein 192 (ZNF192), mRNA	1.54892
AB168460	gi	56090619	ref	NM_01007531.1 Homo sapiens NFkB-activating protein-like (NKAPL), mRNA	1.54807
spin. FITC fluorescence of TM cells was analyzed using a Cell Sorter SH800 (Sony Biotechnology, Tokyo, Japan).

2.5. Cell Viability Assay. The effects of Y-27632 on TM cell viability were evaluated using the WST-8 assay (Cell Counting Kit-8, Dojindo Laboratories, Kumamoto, Japan). Cells were seeded on 96-well plates (1 × 10^4 cells/well) and incubated at 37°C under 5% CO2 overnight. After pretreatment with Y-27632 for 30 min, cells were stimulated with H2O2 or menadione for 24 h. CCK-8 reagents were added into each well and incubated for 2 h at 37°C. Absorbance at 450 nm was determined using a microplate reader (Multiskan FC, Thermo Fisher Scientific). Cell viability was expressed as a percentage of control (vehicle-treated) cells.

2.6. Direct Antioxidant Activity of Y-27632. Direct antioxidant activity was assessed by 2-methyl-6-p-methoxyphenylethynylimidazopyrazinone (AB-2950 MPEC; ATTO, Tokyo, Japan), a superoxide-sensitive luminescent reagent, encoding mitochondrial protein, mRNA

Accession number	Human RefSeq description	Fold change	
AB046102	gi	NM_001080475.2 Homo sapiens pleckstrin homology domain containing, family M, member 3 (PLEKHM3), mRNA	1.53926
AB097526	gi	NM_207332.1 Homo sapiens glutamate-rich 1 (ERIC1H), mRNA	1.53642
AB052134	gi	NM_024827.3 Homo sapiens histone deacetylase 11 (HDAC11), transcript variant 1, mRNA	1.53543
AB170181	gi	NM_007208.2 Homo sapiens mitochondrial ribosomal protein L3 (MRPL3), nuclear gene	1.52903
AB171241	gi	NM_138421.2 Homo sapiens serum amyloid A-like 1 (SAAL1), mRNA	1.52713
AB171237	gi	NM_015732.2 Homo sapiens patatin-like phospholipase domain-containing 8 (PNPLA8), mRNA	1.52587
DC625517	gi	NM_177947.2 Homo sapiens armadillo repeat containing, X-linked 3 (ARMCX3), transcript variant 2, mRNA	1.52547
AB168964	gi	NM_001696.3 Homo sapiens ATPase, H+ transporting, lysosomal 31 kDa, V1 subunit E1 (ATP6V1E1), transcript variant 1, mRNA	1.52424
DC631115	gi	NM_02348112.1 PREDICTED: Homo sapiens similar to immunoglobulin lambda locus (LOC100290481), mRNA	1.51711
DC640134	gi	NM_014655.2 Homo sapiens solute carrier family 25, member 44 (SLC25A44), transcript variant 1, mRNA	1.51672
AB173691	gi	NM_013301.2 Homo sapiens coiled-coil domain-containing 106 (CCDC106), mRNA	1.50477
AB168370	gi	NM_022752.5 Homo sapiens zinc finger protein 574 (ZNF574), mRNA	1.50452

2.7. Statistical Analysis. Data are presented as means ± standard error. Statistical comparisons of multiple groups were performed using the Tukey-Kramer HSD test and Dunnett’s test, and those of two groups were performed using Wilcoxon rank sum test and Wilcoxon signed rank test. Differences were considered statistically significant at P < 0.05.

3. Results

3.1. Microarray Expression Profile in Y-27632-Treated TM Cells. Among the 12,613 genes analyzed by microarray, the affected genes are listed in Tables 1 and 2; 444 genes were upregulated, and 56 were downregulated. Significantly upregulated and downregulated gene categories based on gene ontology analysis in Y-27632 treated TM cells are listed in Tables 3 and 4. Gene ontology analysis revealed that the upregulated genes were related to various cellular functions including antioxidant activity (P = 0.014), and downregulated genes were related to integrin complexes (P = 0.039), and calcium ion transport into the cytosol (P = 0.008). In the category of antioxidant activity, upregulated genes were homologous to human gene coding catalase (P = 0.046), thioredoxin domain-containing 2 (also known as spermatozoa; P = 0.032), nucleoredoxin (P = 0.017), albumin (probe 1, P = 0.002; probe 2, P = 0.021), and glutathione transferase zeta 1 (P = 0.004). Upregulation of the mRNA of catalase, an extensively investigated antioxidant, was confirmed by real-time RT-PCR and found to be 1.5 times higher in TM cells treated with Y-27632 compared to the control TM cells (P = 0.032; Figure 1(a)). In contrast, four other genes involved in antioxidant activity were not significantly affected after treatment with Y-27632 (data not shown).

3.2. Effects of Y-27632 on the Production of Reactive Oxygen Species in TM Cells. To assess the effects of Y-27632 on the production of ROS in TM cells, we utilized a fluorogenic probe that exhibits bright fluorescence upon oxidation by ROS. In the absence of an oxidative reagent, the fluorescence
Accession number	Human RefSeq description	Fold change			
DC624859	gi	215982788	ref	NM_000477.5 Homo sapiens albumin (ALB), mRNA	0.11952
AB171761	gi	148271033	ref	NM_173495.2 Homo sapiens patched domain-containing 1 (PTCHD1), mRNA	0.13543
AB047615	gi	7080382	ref	NM_004285.3 Homo sapiens hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase (H6PD), mRNA	0.17649
DC621007	gi	38016905	ref	NR_001578.1 Homo sapiens L-threonine dehydrogenase (TDH), noncoding RNA	0.20061
CJ443677	gi	38327038	ref	NM_002154.3 Homo sapiens heat shock 70 kDa protein 4 (HSPA4), mRNA	0.2086
DC622138	gi	145386530	ref	NM_01084392.1 Homo sapiens D-dopachrome tautomerase (DdT), transcript variant 2, mRNA	0.21134
BB891761	gi	35519462	ref	NM_004544.2 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42 kDa (NDUFA10), nuclear gene encoding mitochondrial protein, mRNA	0.23147
CJ444181	gi	226437566	ref	NM_001018060.2 Homo sapiens apoptosis-inducing factor, mitochondrial-associated 3 (AIFM3), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA	0.24045
AB171890	gi	118572602	ref	NM_001079514.1 Homo sapiens ubinuclein 1 (UBN1), transcript variant 2, mRNA	0.24676
AB174511	gi	153792041	ref	NM_020823.1 Homo sapiens transmembrane protein 181 (TMEM181), mRNA	0.29472
AB168319	gi	116256484	ref	NM_006781.3 Homo sapiens chromosome 6 open reading frame 10 (C6orf10), mRNA	0.3015
DW526909	gi	20302159	ref	NM_005999.2 Homo sapiens translin-associated factor X (TNAX), mRNA	0.32949
AB173471	gi	154354995	ref	NM_002222.4 Homo sapiens inositol 1,4,5-triphosphate receptor, type 1 (ITPR1), transcript variant 2, mRNA	0.33982
BB898986	gi	16703944	ref	NM_002024.3 Homo sapiens complement factor 1 (CFI), mRNA	0.34234
DK578390	gi	56778580	ref	NM_01008963.5 Homo sapiens THAP domain-containing 7 (THAP7), transcript variant 2, mRNA	0.35502
CJ444326	gi	209413724	ref	NM_003692.3 Homo sapiens transmembrane protein with EGF-like and two follistatin-like domains 1 (TMEFF1), mRNA	0.3719
AB048874	gi	239753181	ref	NM_002345525.1 PREDICTED: Homo sapiens similar to hCG2041348 (LOC100293610), mRNA	0.38524
DC635743	gi	239750740	ref	NM_002347480.1 PREDICTED: Homo sapiens similar to hCG2038941 (LOC100290006), mRNA	0.3882
CJ442045	gi	96975096	ref	NM_016577.3 Homo sapiens Rab6B, member RAS oncogene family (RAB6B), mRNA	0.39034
BB897881	gi	31542685	ref	NM_02125.2 Homo sapiens chromosome 10 open reading frame 57 (C10orf57), mRNA	0.39308
AB168422	gi	194305636	ref	NM_144594.2 Homo sapiens gametocyte-specific factor 1 (GTSF1), mRNA	0.40601
DW524779	gi	226342870	ref	NR_027449.1 Homo sapiens TBC1 domain family, member 15 (TBC1D15), transcript variant 4, transcribed RNA	0.44075
DC630545	gi	39812105	ref	NM_198941.1 Homo sapiens serine incorporator 3 (SERINC3), transcript variant 2, mRNA	0.44508
AB172901	gi	42544225	ref	NM_020857.2 Homo sapiens vacuolar protein sorting 18 homolog (S. cerevisiae) (VPS18), mRNA	0.44872
DW528888	gi	40066843	ref	NM_027232.2 Homo sapiens AT-rich interactive domain 1B (SWI1-like) (ARID1B), transcript variant 2, mRNA	0.44985
DC636880	gi	17738314	ref	NM_006835.2 Homo sapiens cyclin I (CCNI), mRNA	0.45196
AB220379	gi	185134767	ref	NM_002524.3 Homo sapiens neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS), mRNA	0.46121
AB055316	gi	22643731	ref	NM_000104339.2 Homo sapiens zyg-11 homolog A (C. elegans) (ZYG11A), mRNA	0.46399
DC641070	gi	58331227	ref	NM_005223.3 Homo sapiens deoxyribonuclease I (DNASE1), mRNA	0.46575
AB056428	gi	49574533	ref	NM_032782.3 Homo sapiens hepatitis A virus cellular receptor 2 (HAVCR2), mRNA	0.46705
AB168577	gi	146260272	ref	NM_00108451.1 Homo sapiens leukemia NUP98 fusion partner 1 (LNP1), mRNA	0.46891
AB048999	gi	225735571	ref	NR_027416.1 Homo sapiens nuclear factor erythroid-derived 2-like 3 pseudogene (LOC100227146), noncoding RNA	0.47824
AB174085	gi	142360382	ref	NM_176815.3 Homo sapiens dihydrofolate reductase-like 1 (DHFR1), mRNA	0.49049
DC642335	gi	148491081	ref	NM_001343.2 Homo sapiens-disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila) (DAB2), mRNA	0.4971
AB173771	gi	38176290	ref	NM_001233.3 Homo sapiens caveolin 2 (CAV2), transcript variant 1, mRNA	0.49863
DW523198	gi	145312264	ref	NM_033266.3 Homo sapiens endoplasmic reticulum to nucleus signaling 2 (ERN2), mRNA	0.50158
AF492282	gi	52630343	ref	NM_021983.4 Homo sapiens major histocompatibility complex, class II, DR beta 4 (HLA-DRB4), mRNA	0.50533
AB047937	gi	194097480	ref	NM_020412.4 Homo sapiens chromatin-modifying protein 1B (CHMP1B), mRNA	0.51198
AB179165	gi	118136291	ref	NM_006465.2 Homo sapiens AT-rich interactive domain 3B (bright-like) (ARID3B), mRNA	0.51349
AJ585530	gi	75709168	ref	NM_002260.3 Homo sapiens killer cell lectin-like receptor subfamily C, member 2 (KLRC2), mRNA	0.52335
intensity was not significantly different in TM cells treated with Y-27632 compared to control (3673.2 ± 3.3 versus 3755.0 ± 735.0; Figure 1(b)). In the presence of 100 μM menadione, the fluorescence intensity was significantly elevated (16097.7 ± 1133.0; P < 0.0001); this elevation was partly suppressed by treatment with Y-27632 (11443.6 ± 1332.2; P = 0.0182), suggesting that Y-27632 reduces ROS production in TM cells under oxidative stress.

3.3. Effects of Y-27632 on the Viability of TM Cells under Oxidative Stress. Finally, we investigated the effects of Y-27632 on the viability of TM cells under oxidative stress. As shown in Figure 2(a), menadione reduced TM cell viability in a dose-dependent manner. At a lower dose of menadione, Y-27632-stimulated TM cells regained significant viability against menadione treatment compared to control cells (P = 0.0238). In contrast, the effects of Y-27632 on cell viability were not significant at a higher dose of menadione.

3.4. Direct Antioxidant Activity of Y-27632. To confirm the extracellular antioxidant activity of Y-27632, we assessed xanthine oxidase-induced superoxide production using a luminescent reagent. As shown in Figure 2(b), there was no significant difference in ROS production between the control and Y-27632 treatment. Thus, Y-27632 does not appear to affect extracellular oxidants.

4. Discussion

In the present study, we have identified the antioxidative effect of Y-27632 in TM cells by microarray analysis, an exhaustive investigation of gene expression, and shown that Y-27632 partially suppresses ROS production and cell death induced by menadione. To the best of our knowledge, this is the first report to show the antioxidant effect of ROCK inhibitor on TM cells. Previously, we presented
depolymerization of F-actin before morphometric recovery from oxidative stress in TM cells [24], suggesting a correlation between oxidative stress and regulation of the actin cytoskeleton in TM cells. In other tissues, rho-kinase was identified as a mediator of various diseases associated with inflammation and oxidative stress, and inhibition of rho-kinase has been drawing attention as a promising therapeutic strategy. For instance, activation of the rho/rho-kinase pathway is related to the pathophysiology of chronic renal injury, and long-term fasudil treatment has renoprotective effects in this malignant hypertension model. The mechanism of the renoprotective effect of fasudil, a nonspecific ROCK inhibitor, was suggested to involve a combination of factors, including inhibition of the TGF-β-collagen cascade, control of inflammation, reduction of oxidative stress, and upregulation of eNOS [18]. Clinical studies with fasudil have suggested that it may be useful for the treatment of a wide range of cardiovascular diseases [19]. Importantly, rho-kinase inhibitors block ROS production by suppressing CyPA secretion from vascular smooth muscle cells [25], suggesting the beneficial effect of rho-kinase inhibitors against cardiovascular diseases.

Recently, Yamamoto and colleagues demonstrated the neuroprotective effect of the ROCK inhibitor K-115, a novel IOP-lowering drug, using the mouse optic crush model [20]. They showed the effect was at least partially dependent on suppression of ROS production via inhibition of Nox1 expression in retinal ganglion cells. We also showed that ROCK inhibitors’ antioxidative effects are indirect using monkey TM cells. However, in the present study using microarray analysis, Nox family genes were not identified as affected, but catalase was upregulated after treatment with Y-27632. This disagreement might be caused by differences in species and/or tissues. Thus, the precise molecular mechanisms of the antioxidative effect of ROCK inhibitors have not been clarified completely. On the other hand, a recent study
Ontology	Term	Changed genes	Total genes	P value
Cellular component	Cell projection	31 (1)	331 (38)	0.0000306
Cellular component	Neuron projection	20 (6)	180 (28)	0.0000901
Cellular component	Cell projection part	17 (0)	142 (0)	0.000135
Biological process	Regulation of neurotransmitter levels	8 (0)	47 (2)	0.00148
Molecular function	Calcium channel regulator activity	4 (3)	11 (9)	0.00225
Cellular component	Presynaptic membrane	5 (5)	20 (20)	0.0024
Cellular component	Plasma membrane part	45 (0)	706 (2)	0.00259
Biological process	Synaptic transmission	16 (10)	170 (66)	0.00374
Molecular function	Channel regulator activity	5 (0)	23 (0)	0.00421
Biological process	Cellular nitrogen compound biosynthetic process	21 (0)	255 (0)	0.00443
Biological process	L-Glutamate import	3 (3)	6 (4)	0.00456
Cellular component	Platelet alpha granule	5 (1)	24 (2)	0.00472
Biological process	Transmission of nerve impulse	17 (0)	189 (3)	0.00563
Molecular function	Anion:cation symporter activity	4 (0)	15 (0)	0.00565
Molecular function	Sodium:dicarboxylate symporter activity	3 (3)	7 (7)	0.00585
Biological process	L-Amino acid import	3 (0)	7 (0)	0.00632
Biological process	Amino acid import	3 (0)	7 (0)	0.00632
Cellular component	Axon part	6 (0)	38 (2)	0.00665
Biological process	Regulation of mitotic cell cycle	8 (1)	62 (6)	0.00683
Molecular function	Anion transmembrane transporter activity	8 (0)	66 (5)	0.00813
Biological process	Cell-cell signaling	21 (4)	268 (74)	0.00841
Molecular function	High-affinity glutamate transmembrane transporter activity	2 (2)	2 (2)	0.00875
Cellular component	Cytoplasmic vesicle part	9 (0)	83 (2)	0.00918
Biological process	Deoxyribonucleoside triphosphate biosynthetic process	2 (0)	2 (0)	0.00923
Biological process	Response to calcium ion	5 (4)	28 (25)	0.00969
Molecular function	Rho guanyl-nucleotide exchange factor activity	5 (5)	29 (29)	0.00984
Biological process	Carboxylic acid transport	9 (0)	81 (1)	0.01005
Molecular function	Phosphatidylinositol binding	3 (3)	9 (9)	0.01012
Molecular function	Dicarboxylic acid transmembrane transporter activity	3 (0)	9 (0)	0.01012
Biological process	Organic acid transport	9 (0)	82 (0)	0.01077
Biological process	Glutamate metabolic process	3 (0)	9 (4)	0.01091
Biological process	Dicarboxylic acid transport	3 (3)	9 (7)	0.01091
Cellular component	Axoneme	4 (2)	19 (5)	0.01104
Molecular function	Structural constituent of cytoskeleton	5 (5)	31 (31)	0.01251
Cellular component	Cytoplasmic membrane-bounded vesicle lumen	4 (0)	20 (0)	0.01285
Cellular component	Platelet alpha granule lumen	4 (4)	20 (20)	0.01285
Cellular component	Dendritic spine	4 (4)	20 (20)	0.01285
Cellular component	Neuron spine	4 (0)	20 (0)	0.01285
Cellular component	Axon	9 (6)	89 (62)	0.01361
Cellular component	Neurofilament	2 (2)	3 (3)	0.01394
Molecular function	Antioxidant activity	5 (2)	32 (12)	0.01401
Biological process	Rho protein signal transduction	7 (1)	57 (15)	0.01403
Molecular function	Phenylalanine 4-monoxygenase activity	2 (2)	3 (3)	0.0142
Biological process	ER to Golgi vesicle-mediated transport	4 (4)	20 (20)	0.01457
Cellular component	Vesicle lumen	4 (0)	21 (1)	0.01484
Biological process	D-Amino acid transport	2 (0)	3 (0)	0.01497
Biological process	D-Aspartate import	2 (2)	3 (3)	0.01497
Biological process	D-Aspartate transport	2 (0)	3 (0)	0.01497
Biological process	Glutamate biosynthetic process	2 (2)	3 (3)	0.01497
Ontology	Term	Changed genes	Total genes	P value
--------------------------	---	---------------	-------------	----------
Biological process	2′-Deoxyribonucleotide biosynthetic process	2 (0)	3 (0)	0.01497
Biological process	Fatty acid transport	4 (1)	21 (6)	0.01681
Molecular function	Ras guanyl-nucleotide exchange factor activity	5 (0)	34 (3)	0.01737
Biological process	Regulation of cell cycle process	6 (0)	47 (0)	0.01912
Biological process	Nucleoside triphosphate biosynthetic process	8 (1)	76 (3)	0.0195
Molecular function	Transporter activity	34 (8)	556 (147)	0.01993
Molecular function	Monocarboxylic acid binding	4 (0)	23 (0)	0.02002
Cellular component	Neurofilament cytoskeleton	2 (0)	4 (1)	0.02037
Biological process	Pyrimidine nucleoside triphosphate biosynthetic process	3 (0)	12 (0)	0.02063
Cellular component	Neurofibrilament cytoskeleton			
Molecular function	Oxidoreductase activity, acting on paired donors, with incorporation of one atom of oxygen	2 (1)	4 (2)	0.02075
Molecular function	Thioredoxin-disulfide reductase activity	2 (2)	4 (4)	0.02075
Biological process	Regulation of secretion	8 (0)	77 (0)	0.0208
Biological process	Neurotransmitter biosynthetic process	2 (2)	4 (4)	0.02186
Biological process	Tetrahydrobiopterin metabolic process	2 (1)	4 (1)	0.02186
Biological process	Deoxyribonucleoside triphosphate metabolic process	2 (0)	4 (1)	0.02186
Cellular component	Clathrin coat	4 (1)	24 (1)	0.02193
Biological process	Response to metal ion	8 (0)	78 (3)	0.02216
Cellular component	Transport vesicle membrane	3 (0)	13 (0)	0.02236
Biological process	Neurotransmitter metabolic process	3 (1)	13 (3)	0.02465
Biological process	Long-chain fatty acid transport	3 (2)	13 (4)	0.02465
Molecular function	Oxidoreductase activity, acting on sulfur group of donors	4 (0)	25 (0)	0.02549
Molecular function	Organic acid:sodium symporter activity	3 (0)	14 (0)	0.02707
Molecular function	Phosphoinositide binding	6 (2)	53 (30)	0.02738
Molecular function	Carboxylic acid binding	8 (0)	84 (5)	0.02754
Cellular component	MHC protein complex	4 (0)	26 (0)	0.02764
Molecular function	DNA topoisomerase type I activity	2 (2)	5 (5)	0.02831
Molecular function	Solute:sodium symporter activity	4 (0)	26 (0)	0.02853
Cellular component	Synapse	13 (10)	167 (116)	0.0289
Biological process	L-Amino acid transport	3 (0)	14 (1)	0.02906
Biological process	Cilium morphogenesis	3 (1)	14 (3)	0.02906
Cellular component	Secretory granule	8 (3)	86 (27)	0.02929
Biological process	Positive regulation of myeloid leukocyte differentiation	2 (0)	5 (0)	0.0298
Biological process	Glutamate catabolic process	2 (0)	5 (0)	0.0298
Biological process	Sulfate transport	2 (2)	5 (5)	0.0298
Biological process	Deoxyribonucleotide biosynthetic process	2 (0)	5 (2)	0.0298
Cellular component	Endomembrane system	26 (1)	416 (14)	0.03019
Cellular component	External side of plasma membrane	6 (5)	55 (49)	0.03035
Cellular component	Plasma membrane	64 (48)	1224 (935)	0.03044
Cellular component	Endocytic vesicle membrane	3 (3)	15 (12)	0.03078
Cellular component	Clathrin coated vesicle membrane	4 (0)	27 (3)	0.0308
Cellular component	Intrinsc to organelle membrane	8 (0)	87 (0)	0.03095
Biological process	Regulation of rho protein signal transduction	5 (5)	39 (29)	0.03101
Biological process	Neurotransmitter secretion	4 (3)	26 (11)	0.03114
Cellular component	Synapse part	10 (0)	117 (2)	0.03187
Biological process	Vitamin transport	3 (1)	15 (1)	0.03386
Molecular function	Symporter activity	6 (6)	57 (44)	0.03631
Ontology	Term	Changed genes	Total genes	P value
--------------------------------	---	---------------	-------------	-----------
Molecular function	Syntaxin-1 binding	2 (2)	6 (6)	0.03678
Molecular function	Ion channel inhibitor activity	2 (1)	6 (2)	0.03678
Biological process	Cell communication	34 (4)	562 (40)	0.03717
Cellular component	Endocytic vesicle	4 (1)	29 (10)	0.03772
Biological process	Regulation of mitosis	4 (2)	28 (7)	0.03839
Biological process	Regulation of nuclear division	4 (0)	28 (0)	0.03839
Biological process	Response to inorganic substance	10 (1)	118 (8)	0.03843
Biological process	Phosphatidylcholine biosynthetic process	2 (2)	6 (5)	0.03869
Biological process	Interleukin-1 beta secretion	2 (0)	6 (0)	0.03869
Biological process	Interleukin-1 secretion	2 (0)	6 (0)	0.03869
Biological process	Regulation of interleukin-1 beta secretion	2 (0)	6 (0)	0.03869
Biological process	Cdc42 protein signal transduction	2 (1)	6 (3)	0.03869
Biological process	L-Phenylalanine catabolic process	2 (2)	6 (6)	0.03869
Biological process	L-Phenylalanine metabolic process	2 (0)	6 (0)	0.03869
Biological process	Tyrosine metabolic process	2 (0)	6 (1)	0.03869
Biological process	Multicellular organisational aging	2 (1)	6 (2)	0.03869
Biological process	Aspartate transport	2 (0)	6 (3)	0.03869
Biological process	Negative regulation of transforming growth factor beta receptor signaling pathway	2 (2)	6 (6)	0.03869
Biological process	Neurofilament cytoskeleton organization	2 (1)	6 (5)	0.03869
Molecular function	Chloride ion binding	4 (4)	29 (29)	0.0389
Biological process	L-Glutamate transport	3 (0)	16 (7)	0.03904
Biological process	Platelet activation	3 (2)	16 (11)	0.03904
Biological process	Positive regulation of secretion	5 (0)	42 (1)	0.03976
Molecular function	Substrate-specific transporter activity	28 (0)	463 (0)	0.04034
Biological process	Nucleotide biosynthetic process	12 (0)	151 (7)	0.04052
Cellular component	Microtubule basal body	3 (3)	17 (17)	0.04062
Molecular function	Calcium-dependent protein binding	3 (3)	17 (17)	0.04164
Biological process	Anion transport	7 (0)	73 (10)	0.04185
Molecular function	Solute:cation symporter activity	5 (0)	44 (0)	0.04201
Biological process	Purine nucleoside triphosphate biosynthetic process	7 (0)	74 (0)	0.0443
Biological process	Acidic amino acid transport	3 (0)	17 (0)	0.04461
Biological process	Pyrimidine nucleoside metabolic process	3 (0)	17 (1)	0.04461
Biological process	Pyrimidine nucleotide biosynthetic process	3 (0)	17 (4)	0.04461
Cellular component	MHC class II protein complex	3 (3)	18 (18)	0.04607
Molecular function	Oxidoreductase activity, acting on sulfur group of donors, NAD, or NADP as acceptor	2 (0)	7 (2)	0.04608
Molecular function	Fatty acid transporter activity	2 (1)	7 (3)	0.04608
Molecular function	Channel inhibitor activity	2 (0)	7 (1)	0.04608
Molecular function	DNA topoisomerase activity	2 (1)	7 (2)	0.04608
Biological process	Regulation of cytokine production	7 (0)	75 (0)	0.04684
Molecular function	NADP or NADPH binding	3 (3)	18 (17)	0.04721
Biological process	Nucleobase, nucleoside, and Nucleotide biosynthetic process	12 (0)	157 (0)	0.04725
Biological process	Nucleobase, nucleoside, nucleotide, and nucleic acid biosynthetic process	12 (0)	157 (0)	0.04725
Biological process	G1 phase	2 (1)	7 (1)	0.04845
Cellular component	Lamellipodium	4 (4)	32 (32)	0.04965
Cellular component	Transport vesicle	4 (1)	32 (11)	0.04965
Table 4: Gene ontology of downregulated genes in Y-27632-treated TM cells.

Ontology Term	Changed genes	Total genes	p value	
Molecular function Endonuclease activity, active with either ribo- or deoxyribonucleic acids and producing 5'phosphomonoesters	2 (0)	13 (0)	0.00279	
Biological process Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	2 (2)	16 (14)	0.00421	
Cellular component MHC class II protein complex	2 (2)	18 (18)	0.00606	
Molecular function D-Dopachrome decarboxylase activity	1 (1)	1 (1)	0.01065	
Molecular function Glucose 1-dehydrogenase activity	1 (1)	1 (1)	0.01065	
Molecular function Glucose-6-phosphate dehydrogenase activity	1 (1)	1 (1)	0.01065	
Molecular function Deoxyribonuclease I activity	1 (1)	1 (1)	0.01065	
Molecular function 5'-Phosphoadenosine 5'-phosphosulfate transmembrane transporter activity	1 (1)	1 (1)	0.01065	
Biological process Olfactory behavior	1 (1)	1 (1)	0.01091	
Biological process Positive regulation of dopamine receptor signaling pathway	1 (1)	1 (1)	0.01091	
Biological process Regulation of dopamine receptor signaling pathway	1 (0)	1 (0)	0.01091	
Biological process 5'-Phosphoadenosine 5'-phosphosulfate transport	1 (1)	1 (1)	0.01091	
Biological process Negative regulation of neuron apoptosis	2 (2)	28 (28)	0.01148	
Cellular component MHC protein complex	2(0)	26(0)	0.01171	
Molecular function Toxin binding	1 (1)	2 (2)	0.01594	
Molecular function C2H2 zinc finger domain binding	1 (1)	2 (2)	0.01594	
Molecular function Dopachrome isomerase activity	1 (1)	2 (2)	0.01594	
Molecular function 6-Phosphogluconolactonase activity	1 (1)	2 (2)	0.01594	
Molecular function Hedgehog receptor activity	1 (1)	2 (2)	0.01594	
Molecular function Dihydrofolate reductase activity	1 (1)	2 (2)	0.01594	
Molecular function Purine nucleoside transmembrane transporter activity	1 (0)	2 (1)	0.01594	
Biological process Cytolysis by symbiont of host cells	1 (0)	2 (0)	0.01632	
Biological process Cytolysis of cells in other organism during symbiotic interaction	1 (0)	2 (0)	0.01632	
Biological process Cytolysis of cells of another organism	1 (0)	2 (0)	0.01632	
Biological process Disruption by symbiont of host cells	1 (0)	2 (0)	0.01632	
Biological process Hemolysis by symbiont of host erythrocytes	1 (1)	2 (2)	0.01632	
Biological process Hemolysis of cells in other organism	1 (0)	2 (0)	0.01632	
Biological process Hemolysis of cells in other organism during symbiotic interaction	1 (0)	2 (0)	0.01632	
Biological process Killing by symbiont of host cells	1 (0)	2 (0)	0.01632	
Biological process Maintenance of mitochondrion location	1 (1)	2 (2)	0.01632	
Biological process Modification by organism of cell membrane in other organism	1 (0)	2 (0)	0.01632	
Biological process Modification by symbiont of host cell membrane	1 (0)	2 (0)	0.01632	
Biological process Modification by symbiont of host cellular component	1 (0)	2 (0)	0.01632	
Biological process Modification by symbiont of host structure	1 (0)	2 (0)	0.01632	
Biological process Modification of cellular component in other organism	1 (0)	2 (0)	0.01632	
Biological process Modification of structure of other organism during symbiotic interaction	1 (0)	2 (0)	0.01632	
Biological process Caveola assembly	1 (1)	2 (2)	0.01632	
Biological process Membrane raft assembly	1 (0)	2 (0)	0.01632	
Biological process Positive regulation of G-protein coupled receptor protein signaling pathway	1 (0)	2 (1)	0.01632	
Biological process Chromatin-mediated maintenance of transcription	1 (1)	2 (2)	0.01632	
Biological process Positive regulation of gene expression, epigenetic	1 (0)	2 (0)	0.01632	
Biological process ncRNA catabolic process	1 (0)	2 (0)	0.01632	
Biological process rRNA catabolic process	1 (1)	2 (2)	0.01632	
Biological process Purine nucleoside transport	1 (0)	2 (1)	0.01632	
Biological process Striated muscle cell differentiation	2 (1)	38 (5)	0.0199	
Biological process Antigen processing and presentation	2 (2)	38 (32)	0.0199	
Ontology	Term	Changed genes	Total genes	P value
--------------------------	--	---------------	-------------	-----------
Molecular function	Copper ion binding	2 (2)	39 (38)	0.01996
Molecular function	Endodeoxyribonuclease activity, producing 5’-phosphomonoesters	1 (0)	3 (1)	0.0212
Cellular component	Membrane	24 (17)	2769 (1768)	0.02168
Biological process	Maintenance of organelle location	1 (0)	3 (0)	0.02171
Biological process	Melanin biosynthetic process	1 (1)	3 (3)	0.02171
Biological process	Melanin metabolic process	1 (0)	3 (0)	0.02171
Biological process	Endoplasmic reticulum calcium ion homeostasis	1 (1)	3 (1)	0.02171
Biological process	Multicellular organismal water homeostasis	1 (0)	3 (0)	0.02171
Biological process	Renal water homeostasis	1 (1)	3 (1)	0.02171
Biological process	Positive regulation of Rac protein signal transduction	1 (1)	3 (3)	0.02171
Biological process	Apoptosis	7 (3)	522 (189)	0.0221
Biological process	Programmed cell death	7 (0)	525 (2)	0.02273
Cellular component	Extrinsic to internal side of plasma membrane	1 (1)	3 (3)	0.02347
Cellular component	Spectrin	1 (1)	3 (3)	0.02347
Molecular function	Endonuclease activity	2 (2)	43 (30)	0.02378
Molecular function	Nucleoside transmembrane transporter activity	1 (0)	4 (1)	0.02643
Biological process	Regulation of neuron apoptosis	2 (0)	45 (2)	0.02693
Biological process	Detection of visible light	1 (1)	4 (1)	0.02706
Biological process	Chemosensory behavior	1 (0)	4 (3)	0.02706
Biological process	Protein maturation by protein folding	1 (1)	4 (4)	0.02706
Biological process	Cellular chaperone-mediated protein complex assembly	1 (1)	4 (2)	0.02706
Biological process	Mitochondrial outer membrane translocase complex assembly	1 (1)	4 (4)	0.02706
Biological process	Outer mitochondrial membrane organization	1 (0)	4 (0)	0.02706
Biological process	Glycine biosynthetic process	1 (1)	4 (2)	0.02706
Cellular component	Membrane part	21 (0)	2325 (1)	0.02771
Biological process	Cellular membrane organization	4 (0)	212 (30)	0.02909
Biological process	Membrane organization	4 (0)	212 (0)	0.02909
Biological process	Neuron apoptosis	2 (0)	48 (3)	0.03021
Biological process	Neuron death	2 (0)	48 (0)	0.03021
Biological process	Muscle cell differentiation	2 (0)	49 (1)	0.03134
Biological process	Disruption of cells of other organism during symbiotic interaction	1 (0)	5 (0)	0.03239
Biological process	Killing of cells in other organism during symbiotic interaction	1 (0)	5 (0)	0.03239
Biological process	Water homeostasis	1 (0)	5 (1)	0.03239
Biological process	Endoplasmic reticulum organization	1 (1)	5 (5)	0.03239
Biological process	Membrane raft organization	1 (0)	5 (1)	0.03239
Biological process	Pinocytosis	1 (1)	5 (2)	0.03239
Biological process	Nucleoside transport	1 (0)	5 (2)	0.03239
Biological process	Response to light stimulus	2 (0)	51 (8)	0.03364
Biological process	Cell death	7 (0)	578 (68)	0.03597
Biological process	Vesicle-mediated transport	5 (2)	336 (120)	0.03622
Biological process	Death	7 (0)	579 (0)	0.03626
Biological process	Positive regulation of signaling pathway	3 (0)	133 (0)	0.03743
Biological process	Modification by host of symbiont morphology or physiology	1 (0)	6 (0)	0.03769
Biological process	ER overload response	1 (1)	6 (5)	0.03769
Biological process	Regulation of Rac protein signal transduction	1 (0)	6 (1)	0.03769
Molecular function	Actin binding	3 (3)	139 (121)	0.03769
Cellular component	HOPS complex	1 (1)	6 (6)	0.04072
Molecular function	Intramolecular oxidoreductase activity, transposing C=C bonds	1 (0)	7 (0)	0.04196
Biological process	Detection of light stimulus	1 (0)	7 (0)	0.04296
reported that Y-27632 induced p-53-mediated apoptosis in hemangioma [26]. In the present study, we indicated that ROCK inhibitor e

ected cell survival in TM cells. This is an interesting point since ROCK inhibitor-induced effects such as cell death or cell protection were changed by differences of cell types.

TM has a critical role in the maintenance of aqueous outflow resistance through the regulation of extracellular matrix metabolism, phagocytosis of debris, and empty space associated with tissue contraction [27, 28]. Indeed, the number of TM cells is decreased in glaucomatous eyes [29], suggesting that functional TM cells are essential in controlling IOP. In this context, oxidative stress is a potential cause of cellular dysregulation in TM, both functionally and numerically, because it has been suggested that the TM of glaucomatous eyes is continuously exposed to oxidative stress.

Table 4: Continued.

Ontology	Term	Changed genes	Total genes	P value
Biological process	Metabotropic glutamate receptor signaling pathway	1 (1)	7 (4)	0.04296
Biological process	Regulation of synaptic transmission, GABAergic	1 (1)	7 (2)	0.04296
Cellular component	Internal side of plasma membrane	1 (0)	7 (4)	0.04641
Molecular function	Scavenger receptor activity	1 (1)	8 (8)	0.04708
Biological process	Interaction with symbiont	1 (0)	8 (1)	0.0482
Biological process	Modification by symbiont of host morphology or physiology	1 (0)	8 (0)	0.0482
Biological process	Chaperone-mediated protein complex assembly	1 (0)	8 (4)	0.0482
Biological process	Positive regulation of Ras protein signal transduction	1 (0)	8 (4)	0.0482
Biological process	Positive regulation of small GTPase-mediated signal transduction	1 (0)	8 (0)	0.0482
Biological process	Synaptic transmission, GABAergic	1 (0)	8 (1)	0.0482
Biological process	Actin filament capping	1 (1)	8 (6)	0.0482
Biological process	Pentose-phosphate shunt	1 (1)	8 (7)	0.0482
Biological process	Calcium ion transport	2 (1)	63 (41)	0.04876
Cellular component	Intrinsic to membrane	17 (0)	1867 (20)	0.0491

Figure 1: (a) Quantitative PCR analysis of catalase mRNA. The TM cells were treated with 25 μM Y-27632 for 30 min. The relative expression level of catalase of samples treated with Y-27632 was compared to that of the control sample using the comparative Ct method (ΔΔCt method). The 18S ribosomal RNA was used as an endogenous control. Data are shown as mean ± SE from six independent experiments. *P < 0.05 compared with control by Wilcoxon rank sum test. (b) The effects of Y-27632 on the intracellular production of reactive oxygen species (ROS). The TM cells were treated with or without 25 μM Y-27632 for 30 min, followed by 100 μM menadione stimulated for 1 h. ROS were detected by CellROX reagent, and the fluorescence of the TM cells were measured by cell sorter SH800. Data are shown as mean ± SE from five independent experiments. **P < 0.01 and *P < 0.05 compared with control by the Wilcoxon rank sum test (a) and Tukey Kramer HSD test (b).
stress [2–7]. Thus, an antioxidant drug might reduce oxidative stress in TM cells, slowing progression of glaucomatous damage in outflow tissues. Though it remains unknown whether clinically used eye-drops containing ripasudil have significant antioxidative effects on TM cells in vivo, the present study’s findings may be clinically relevant.

The effect of Y-27632 on cell survival under oxidative stress was significant, but limited. Since glaucoma progresses chronically in the majority of the patients, the acute oxidative damage in the present study may not reflect pathological conditions in glaucomatous TM cells, which is one of the limitations of the present study. Another limitation is that the antioxidative effects of ROCK inhibition were not corroborated in vivo. Further studies are required to acquire more clinically relevant evidence of the effects of ROCK inhibitor on oxidative stress in TM.

5. Conclusion
Microarray analysis reveals that Y-27632 upregulates antioxidative genes including catalase and partially reduces the ROS production and cell death by oxidative stress induced by menadione.

Conflicts of Interest
Dr. Hidenobu Tanihara has received consulting fees from Kowa and MSD and board membership fees from Senju Pharmaceutical, Santen Pharmaceutical, Alcon Japan, and Pfizer Japan.

Acknowledgments
This work was supported by the JSPS KAKENHI Grant nos. 26293375, 15K15636, and 26462664.

References
[1] M. A. Babizhayev, K. S. Vishnyakova, and Y. E. Yegorov, “Oxidative damage impact on aging and age-related diseases: drug targeting of telomere attrition and dynamic telomerase activity flirting with imidazole-containing dipeptides,” Recent Patents on Drug Delivery & Formulation, vol. 8, no. 3, pp. 163–192, 2014.
[2] S. M. Ferreira, S. F. Lerner, R. Brunzini, P. A. Evelson, and S. F. Llesuy, “Oxidative stress markers in aqueous humor of glaucoma patients,” American Journal of Ophthalmology, vol. 137, no. 1, pp. 62–69, 2004.
[3] A. A. Ghanem, L. F. Arafa, and A. El-Baz, “Oxidative stress markers in patients with primary open-angle glaucoma,” Current Eye Research, vol. 35, no. 4, pp. 295–301, 2010.
[4] V. Zanon-Moreno, P. Marco-Ventura, A. Lleo-Perez et al., “Oxidative stress in primary open-angle glaucoma,” Journal of Glaucoma, vol. 17, no. 4, pp. 263–268, 2008.
[5] A. Goyal, A. Srivastava, R. Sihota, and J. Kaur, “Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients,” Current Eye Research, vol. 39, no. 8, pp. 823–829, 2014.
[6] A. Izzotti, S. C. Sacca, C. Cartiglia, and S. De Flora, “Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients,” American Journal of Medicine, vol. 114, no. 8, pp. 638–646, 2003.
Y. Zhao, S. Wang, C. M. Sorenson et al., "Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma," Archives of Ophthalmology, vol. 123, no. 4, pp. 458–463, 2005.

M. Tanito, S. Kaidzu, Y. Takai, and A. Ohira, "Correlation between systemic oxidative stress and intraocular pressure level," PLoS One, vol. 10, no. 7, article e0133582, 2015.

Y. Tang, E. A. Scheef, S. Wang et al., "CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression," Blood, vol. 113, no. 3, pp. 744–754, 2009.

Y. Zhao, S. Wang, C. M. Sorenson et al., "Cyp1b1 mediates periostin regulation of trabecular meshwork development by suppression of oxidative stress," Molecular and Cellular Biology, vol. 33, no. 21, pp. 4225–4240, 2013.

Y. A. Ito, I. S. Goping, F. Berry, and M. A. Walter, " Dysfunction of the stress-responsive FOXC1 transcription factor contributes to the earlier-onset glaucoma observed in Axenfeld-Rieger syndrome patients," Cell Death & Disease, vol. 5, article e1069, 2014.

F. B. Berry, J. M. Skarie, F. Mirzayans et al., "FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A," Human Molecular Genetics, vol. 17, no. 4, pp. 490–505, 2008.

M. Honjo, H. Tanihara, M. Inatani et al., "Effects of rho-associated kinase inhibitor Y-27632 on intraocular pressure and outflow facility," Investigative Ophthalmology and Visual Sciences, vol. 42, no. 1, pp. 137–144, 2001.

P. V. Rao, P. F. Deng, J. Kumar, and D. L. Epstein, "Modulation of aqueous humor outflow facility by the rho kinase-specific inhibitor Y-27632," Investigative Ophthalmology and Visual Sciences, vol. 42, no. 5, pp. 1029–1037, 2001.

K. P. Garnock-Jones, "Ripasudil: first global approval," Drugs, vol. 74, no. 18, pp. 2211–2215, 2014.

H. Tanihara, T. Inoue, T. Yamamoto et al., "Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension," American Journal of Ophthalmology, vol. 156, no. 4, pp. 731–736, 2013.

H. Tanihara, T. Inoue, T. Yamamoto et al., "Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials," JAMA Ophthalmology, vol. 133, no. 7, pp. 755–761, 2015.

T. Nishikimi and H. Matsuoka, "Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effect of rho-kinase inhibitor in hypertensive glomerulosclerosis," Journal of Pharmacological Sciences, vol. 100, no. 1, pp. 22–28, 2006.

K. Satoh, Y. Fukumoto, and H. Shimokawa, "Rho-kinase: important new therapeutic target in cardiovascular diseases," American Journal of Physiology Heart and Circulatory Physiology, vol. 301, no. 2, pp. H287–H296, 2011.

K. Yamamoto, K. Maruyama, N. Himori et al., "The novel rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma," Investigative Ophthalmology and Visual Sciences, vol. 55, no. 11, pp. 7126–7136, 2014.

T. Fujimoto, T. Inoue, T. Kameda et al., "Involvement of RhoA/Rho-associated kinase signal transduction pathway in dexamethasone-induced alterations in aqueous outflow," Investigative Ophthalmology and Visual Sciences, vol. 53, no. 11, pp. 7097–7108, 2012.

M. Inoue-Mochita, T. Inoue, T. Fujimoto et al., "p38 MAP kinase inhibitor suppresses transforming growth factor-beta2-induced type 1 collagen production in trabecular meshwork cells," PLoS One, vol. 10, no. 3, article e0120774, 2015.

T. Kameda, T. Inoue, M. Inatani et al., "The effect of rho-associated protein kinase inhibitor on monkey Schlemm’s canal endothelial cells," Investigative Ophthalmology and Visual Sciences, vol. 53, no. 6, pp. 3092–3103, 2012.

N. Awai-Kasaoka, T. Inoue, T. Kameda, T. Fujimoto, M. Inoue-Mochita, and H. Tanihara, "Oxidative stress response signaling pathways in trabecular meshwork cells and their effects on cell viability," Molecular Vision, vol. 19, pp. 1332–1340, 2013.

K. Satoh, P. Nigro, T. Matoba et al., "Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms," Nature Medicine, vol. 15, no. 6, pp. 649–656, 2009.

M. K. Qiu, S. Q. Wang, C. Pan et al., "ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma," Oncology Reports, vol. 37, no. 5, pp. 2987–2993, 2017.

U. Roy Chowdhury, C. R. Hann, W. D. Stamer, and M. P. Fautsch, "Aqueous humor outflow: dynamics and disease," Investigative Ophthalmology and Visual Sciences, vol. 56, no. 5, pp. 2993–3003, 2015.

J. A. Vranka, M. J. Kelley, T. S. Acott, and K. E. Keller, "Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma," Experimental eye Research, vol. 133, pp. 112–125, 2015.

J. Alvarado, C. Murphy, and R. Juster, "Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals," Ophthalmology, vol. 91, no. 6, pp. 564–579, 1984.