Multiple-marker phylogeny and morphological evidence reveal two new species in Steccherinaceae (Polyporales, Basidiomycota) from Asia

Ting Cao¹², Jia-Rui Yu¹², Trang Thị Thu Nguyễn³, Hai-Sheng Yuan¹

¹ CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China ² University of the Chinese Academy of Sciences, Beijing 100049, China ³ Department of Microbiology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam

Corresponding author: Hai-Sheng Yuan (hsyuan@iae.ac.cn)

Academic editor: A. Vizzini | Received 20 August 2020 | Accepted 23 February 2021 | Published 5 April 2021

Citation: Cao T, Yu J-R, Nguyễn TTT, Yuan H-S (2021) Multiple-marker phylogeny and morphological evidence reveal two new species in Steccherinaceae (Polyporales, Basidiomycota) from Asia. MycoKeys 78: 169–186. https://doi.org/10.3897/mycokeys.78.57823

Abstract
Two new wood-inhabiting fungi, *Mycorrhaphium subadustum* sp. nov. and *Trullella conifericola* sp. nov., are proposed and described from Asia based on ITS, nrLSU and *tef1* molecular phylogeny and morphological characteristics. *Mycorrhaphium subadustum* is characterized by a stipitate basidiocarp, velutinate pileal surface concentrically zoned, hydnoid hymenophore, a dimitic hyphal system in spine trama and monomitic in context, absence of gloeocystidia, presence of cystidioles and the non-amyloid, cylindrical to ellipsoid basidiospores. *Trullella conifericola* is characterized by a laterally stipitate basidiocarp with flabelliform to semicircular pileus, hirtellous pileal surface with appressed coarse hair and concentrically zoned and sulcate, tiny pores (10–12 per mm), a dimitic hyphal system, absence of any type of cystidia, short clavate basidia and thin-walled, smooth, cylindrical to allantoid basidiospores. Phylogenetic analyses based on a three-marker dataset were performed using maximum likelihood and Bayesian inference methods. The two new species formed isolated lineages with full support in Steccherinaceae. The distinguishing characters of the two new species as well as allied species are discussed, and a key to species of *Mycorrhaphium* is provided.

Keywords
Hydnaceous fungus, molecular phylogeny, polypores, taxonomy, wood-inhabiting fungi

Copyright Ting Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Steccherinaceae Parmasto was typified by the genus *Steccherinum* Gray (1968). It belongs to the residual polyporoid clade of the Polyporales Gäum. (Basidiomycota). It is a distinct and well-defined group based on phylogenetic evidence (Miettinen et al. 2012; Binder et al. 2013). Steccherinaceae includes around 23 genera according to Zmitrovich (2018). The taxa in this family show highly variable morphological and anatomical features. For instance, the basidiocarps range from resupinate (e.g. *Junghuhnia* Corda.) to pileate (e.g. *Austeria* Miettinen and *Flabellaophora* G. Cunn.), and the hymenophore can be poroid (e.g. *Citripora* Miettinen) or hydnoid (e.g. *Mycorrhaphium* Maas Geest. and *Steccherinum* Gray). The hyphal system ranges from monomitic (e.g. *Caudicicola* Miettinen, M. Kulju & Kotir. and *Elaphroporia* Z.Q. Wu & C.L. Zhao), dimitic (e.g. *Antrodiella* Ryvarden & I. Johans.) to trimitic (e.g. *Metuloidea* G. Cunn.). Any type of cystidia can be absent (e.g. *Frantisekia* Spirin & Zmitr.) or take the form of gloeocystidia (e.g. *Antella* Miettinen and *Butyrea* Miettinen) or encrusted cystidia (e.g. *Flaviporus* Murrill). The basidiospores are typically cylindrical, allantoid (e.g. *Nigroporus* Murrill and *Trullella* Zmitr.) or ellipsoid (e.g. *Steccherinum* Gray). Nevertheless, the members of the family also share several characters including the white-rot nutritional mode, small pores or densely arranged spines, smooth and relatively small basidiospores, and mainly cyanophilic but inamyloid hyphae (Gray 1821; Corda 1842; Murrill 1905; Maas Geesteranus 1962; Cunningham 1965; Ryvarden and Johansen 1980; Spirin et al. 2007; Yuan and Dai 2009; Yuan and Wu 2012; Yuan et al. 2012; Yuan 2014; Miettinen and Ryvarden 2016; Kotiranta et al. 2017; Wu et al. 2018; Zmitrovich 2018).

Morphological and phylogenetic analyses have provided more accurate identification and contributed to the definition of the taxonomic status of the genera in Steccherinaceae. In recent years, phylogenetic analysis based on multi-marker data has been widely used in the taxonomy of these fungi (He and Dai 2012; Miettinen et al. 2012; Binder et al. 2013; Dai et al. 2014; Miettinen and Ryvarden 2016; Justo et al. 2017; Kotiranta et al. 2017; Westphalen et al. 2018; Yuan et al. 2018; Yuan et al. 2020).

The species of the Steccherinaceae are widely distributed all over the world. During the investigation of specimens in Steccherinaceae from Asia, several specimens which represent two undescribed species were found. The morphological and molecular features showed that they belong to the genus *Mycorrhaphium* and *Trullella*. In this study, we describe them as two new species based on morphological characteristics and three-marker phylogenetic analyses.

Material and methods

Morphological studies

The studied specimens were deposited at the herbarium of the Institute of Applied Ecology, Chinese Academy of Sciences (IFP). Microscopic procedures followed Yuan...
and Qin (2018). Microscopic observations were made on tissue sections mounted in cotton blue and Melzer's reagent to test for any amyloid and/or dextrinoid reactions (cotton blue: 0.1 mg Methyl blue (SIGMA, PCode: 1001545602) dissolved in 60 g pure lactic acid; Melzer's reagent: 1.5 g KI (potassium iodide), 0.5 g I (crystalline iodine), 22 g chloral hydrate, distilled water 20 mL). The following abbreviations are used in the text: KOH = 2.5% potassium hydroxide; CB = cotton blue; CB+/– = cyanophilous/acyanophilous; IKI = Melzer’s reagent; IKI– = neither amyloid nor dextrinoid; L_m = mean spore length (arithmetic average of all spores); W_m = mean spore width (arithmetic average of all spores); Q = variation in the ratios of L_m/W_m between specimens studied, and n = total number of spores measured from a given number of specimens. Sections were studied at magnifications up to ×1000 using a Nikon Eclipse E600 microscope (Tokyo, Japan) with phase-contrast illumination, and dimensions were estimated subjectively with an accuracy of 0.1 μm. Microscopic drawings were made with the aid of a drawing tube. The spores’ measurements excluded the apiculus, and 5% of the measurements at each end of the range are given in parentheses. The spores’ measurements were made with a Nikon SMZ 645 stereomicroscope. Special colour terms are from Kornerup and Wanscher (1981).

Molecular procedures and phylogenetic analyses

DNA was extracted from dried herbarium specimens with a Thermo Scientific Phire Plant Direct PCR kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) according to the manufacturer’s instructions and was used for the polymerase chain reaction (PCR). Nuclear ribosomal RNA markers were used to determine the phylogenetic position of the new species. The internal transcribed spacer (ITS) was amplified with the primers ITS4 (5’ TCCTCCGCTTATTGATATGC 3’) and ITS5 (5’ GGAAGTAAAAGTACACAAGG 3’); LR0R (5’ ACCCGCTGAACTTAAGC 3’) and LR7 (5’ TACTCCACCAAGATCT 3’) for partial nrLSU; 983F (5’ GCYCCYGGHCAYCGTGAYTTYAT 3’) and 2218R (5’ ATGACACCRACRCRRGYTG 3’) for tef1 (White et al.1990; Gardes and Bruns 1993; Rehner and Buckley 2005; Matheny et al. 2007).

PCR reactions were performed in 30 μL reaction mixtures containing 15 μL of 2×Phire Plant PCR buffer, 0.6 μL Phire Hot Start II DNA Polymerase, 1.5 μL of each PCR primer (10 μM), 10.5 μL double deionized H$_2$O (ddH$_2$O), and 0.9 μL template DNA. The PCR thermal cycling program condition was set as follows: initial denaturation at 95 °C for 5 min, followed by 34 cycles at 95 °C for 30 s, the annealing temperatures were as follows: 58.9 °C for ITS4/ITS5, 47.2 °C for LR0R/LR7, 57.6 °C for 983F/2218R, then 72 °C for 20 s, and a final extension at 72 °C for 7 min. PCR amplification was confirmed on 1% agarose electrophoresis gel stained with ethidium bromide (Stöger et al. 2006) and sequenced at the Beijing Genomics Institute (BGI) with the same primers as used in PCR. The newly generated DNA sequences were assembled and manually modified with the software DNAMAN8 (Lynnon Biosoft, Quebec, Canada). The sequences quality control followed the guidelines by Nilsson...
et al. (2012). All newly obtained sequences were submitted to GenBank (Sayers et al. 2020). Sequences from allied genera were based on the studies of Miettinen et al. (2012), Yuan (2014) and Westphalen et al. (2019) or found in GenBank (http://www.ncbi.nlm.gov) using the BLAST option and downloaded (Table 1). DNA alignments were performed using the MAFFT v.7.471 online service (https://mafft.cbrc.jp/alignment/server/index.html; Katoh et al. 2019). Intron regions of tef1 as well as low-homology regions of ITS1 and ITS2 were removed before phylogenetic analyses, and the sequence datasets were combined using BioEdit v 7.2.6 (Hall 2005).

Bayesian analysis and Maximum likelihood were applied to the ITS + nrLSU + tef1 dataset. All characters were weighted, and gaps were treated as missing data. Bayesian analysis with MrBayes 3.2.7 (Ronquist et al. 2012) implemented the Markov Chain Monte Carlo (MCMC) technique. The combined dataset was divided into seven partitions: ITS1, 5.8S, ITS2, nrLSU and tef1 1st, 2nd as well as 3rd codon positions. The best-fit models selected were K80+G for ITS1, GTR+I+G for 5.8S, JC+G for ITS2, GTR+I+G for nrLSU, JC for tef1 1st, TrNef+G for tef1 2nd and GTR+I+G tef1 3rd which were determined by the jModelTest 2.1.10 (Darriba et al. 2012) based on the Corrected Akaike Information Criterion (AICc). Four simultaneous Markov chains were run with 10 million generations and starting from random trees and keeping one tree every 100th generation until the average standard deviation of split frequencies was below 0.01. The value of burn-in was set to discard 25% of trees when calculating the posterior probabilities. Bayesian posterior probabilities were obtained from the 50% majority rule consensus of the trees kept. A Maximum Likelihood (ML) analysis uses the seven-partitions’ database which is the same as Bayesian analysis and performed in RAxML v8.2.4 (Stamatakis 2014). The best tree was obtained by performing 1000 rapid bootstrap inferences followed by a thorough search for the most likely tree (Stamatakis et al. 2008). Phylogenetic trees were checked and modified in FigTree 1.4 (Rambaut 2012). The combined dataset and trees were deposited in TreeBASE (No. S27633).

Results

Phylogenetic analyses

Multiple-marker analyses provide an advantage of accurately and promptly discovering a new species or genus (Taylor et al. 2000). Therefore, we used three markers in our dataset which included 75 ITS, 68 nrLSU and 20 tef1. The combined dataset includes two species belonging to the genera *Mycorrhaphium* and *Trullella* respectively, and other 69 samples from 23 allied genera. *Climacocystis borealis* (Fr.) Kotl. & Pouzar was used as the outgroup. The data matrix comprised 163 sequences and had an aligned length of 2121 bases. Bayesian analysis resulted in an average standard deviation of split frequencies = 0.004878. The maximum likelihood and Bayesian analyses produced similar topologies and therefore, only the ML tree is shown in Figure 1.
Table 1. Specimens and sequences used in this study. Type specimens are indicated as superscript T and the newly generated sequences in this study are in bold.

Species	GenBank No.	Specimen/culture voucher	Locality	References		
Antella americana (Ryvarden & Gilks) Ryvarden	JN710509	JN710509	JN710711	KHL 11949	Sweden	Miettinen et al. 2012
A. americana	EU232186	EU232270	–	HHH 4100-Sp	USA	GenBank Database
A. chinensis (H.S. Yuan) Miettinen	JX110844	KC485542	–	Dai 9019\(^1\)	China	2013
A. chinensis	JX110843	KC485541	–	Dai 8874\(^1\)	China	2013
A. niemelaei (Vamplea & Vlasik) Miettinen	AF126876	–	–	Renvall 3218	Finland	Johansson et al. 2000
A. niemelaei	AF126877	–	–	Haikonen 14727	Finland	Johansson et al. 2000
A. lactea H.S. Yuan	KC485530	KC485548	–	Yuan 5720\(^2\)	China	2014
A. lactea	KC485532	KC485550	–	Yuan 5757\(^2\)	China	2014
A. semispina (Berk. & M.A. Curtis) Ryvarden	JN710521	JN710521	–	X242	Canada	Miettinen et al. 2012
Astrodialla sp.	JN710523	JN710523	–	Núñez 1040	Japan	Miettinen et al. 2012
A. stipitata H.S. Yuan & Y.C. Dai	KC485525	KC485544	–	Yuan 5640	China	2014
Astraporrella neotropica Ryvarden	HQ659221	HQ659221	–	Miettinen XI021	Belize	Miettinen et al. 2012
Austeria citrea (Berk.) Miettinen	JN710511	JN710511	–	X171	New Zealand	Miettinen et al. 2012
Butyrea lutesalba (P. Karst.) Miettinen	JN710558	JN710558	JN710719	isolate 5403	Estonia	Miettinen et al. 2012
B. japonica (Núñez & Ryvarden) Miettinen & Ryvarden	JN710556	JN710556	JN710718	isolate 10202\(^2\)	Japan	Miettinen et al. 2012
B. japonica	KC485536	KC485553	–	Li 1648	China	2014
Cuhabolithia seuletii (Boudouet & Galzin) Pařek	AF141626	AF141626	–	FCUG 722	Sweden	GenBank Database
Citropora barnaensis Miettinen	JN710526	JN710526	–	OMM9999\(^4\)	China	Miettinen et al. 2012
Climacocystis borealis (Fr.) Kort. & Pouzar	JN710527	JN710527	–	KHL 13318	Estonia	Miettinen et al. 2012
Elaphroporaria ailaoshanensis Z.Q. Wu & C.L. Zhao	MG231568	MG748854	–	CLZhao 595\(^5\)	China	Wu et al. 2018
E. ailaoshanensis	MG231572	MG748855	–	CLZhao 596	China	Wu et al. 2018
Esbeirodon fimbriatum (Pers.) Banker	JN710530	JN710530	–	KHL 11905	Sweden	Miettinen et al. 2012
Flabelliporona sp1	JN710533	JN710533	–	Miettinen 14305	Indonesia	Miettinen et al. 2012
Flabelliporona sp2	JN710534	JN710534	–	Miettinen 11443	Indonesia	Miettinen et al. 2012
Flabelliporona sp3	JN710535	JN710535	–	Syamsi NOM677	Indonesia	Miettinen et al. 2012
Flabelliporona sp4	JN710536	JN710536	–	Ryvarden 34508	USA	Miettinen et al. 2012
Flabelliporona sp.	MT269765	MT259330	MT793111	isolate 12794	China	This study
F. sp.	MT269766	MT259331	MT793112	isolate 12796	China	This study
Flaviporus brownii (Humb.) Donk	KY175008	KY175008	KY175022	MWA 362/12	Ecuador	Westphalen et al. 2018
F. brownie	JN710538	JN710538	–	X462	Australia	Miettinen et al. 2012
F. liemanni (Fr.) Ginnis	JN710509	JN710539	–	X249	China	Miettinen et al. 2012
F. liemanni	KC502914	–	–	Yuan 1766	China	2014
Frantiseka mutschelklausenii (Pilát ex Pilát) Spirin	FJ496670	FJ496678	–	BRNM 710170	Czech Republic	Tomáškovský et al. 2010
F. mutschelklausenii	JN710544	JN710544	–	isolate 1377	Australia	Miettinen et al. 2012
F. ustoni Y.C. Dai & Niemelä	KC485526	–	–	Dai 8249	China	2014
F. ustoni	KC485527	KC485545	–	Wei 3081	China	2014
Junghuhnia crustacea (Jungh.) Ryvarden	JN710553	JN710553	–	X626	Indonesia	Miettinen et al. 2012
J. micropora Spirin, Zmitr. & Malyshova	JN710559	JN710559	JN710720	Spirin 2652	Russia	Miettinen et al. 2012
Lanelliporora americana	JN710567	JN710567	–	Lasser 10119	Ecuador	Miettinen et al. 2012
Lecanorectis fractipes (Berk. & M.A. Curtis) Jülich	KX378866	KC378866	–	MT 13/2012	Brazil	Westphalen et al. 2016
The two new species *Mycorrhaphium subadustum* and *Trulella conifericola* were both defined with three markers and they form full-support (100% ML and 1.00 BPP) isolated lineages respectively in this study. The new species *M. subadustum*...
Two new species in Steccherinaceae

Figure 1. Maximum likelihood tree based on the combined ITS + nrLSU + tef1 sequence dataset illustrating the phylogeny of *Myccorrhaphium subadustum* and *Trullella conifericola* and related taxa in Steccherinaceae. The new species are in bold. Branches are labelled with maximum likelihood bootstrap higher than 50% and Bayesian posterior probabilities more than 0.95.

clustered together with *Myccorrhaphium* spp. and form a subclade with American *M. adustum*. In case of another new species *T. conifericola*, although the material of *T. conifericola* Cui 2851 was only provided with ITS sequences, it showed a high similarity of ITS to the other two samples (Yuan 12657 and Yuan 12655) with 99.59% and 98.77% respectively. Furthermore, the morphological and anatomical features, distribution and the coniferous-saprophytic habit suggested it represented an individual which belongs to *T. conifericola*. Three samples of *T. conifericola* get together with another six samples from the *Trullella* clade with support 92% in ML and 1.00 BPP. The phylogenetic tree obtained in this study is similar to that of Miettinen et al. (2012). All the species were divided into 23 main clades which include *Antella*, *Myccorrhaphium*, *Amelochroa*, *Trullella* and *Antella*.
Antrodiella, Atraporiella, Austeria, Butyrea, Cabalodontia, Citripora, Elaphroporia, Etheirodon, Flabellophora, Flaviporus, Frantisekia, ‘Glaesia’, Jungbuhnia, Lamellocarps, Laweomyces, Metuloidae, Mycorrhaphium, Nigroporus, ‘Scetum’, Steccherinum, Trullella and Xanthoporus. It is notable that the genera Austeria, Flabellophora, Mycorrhaphium, Nigroporus and Trullella formed a large clade in Steccherinaceae with a strong support (85% ML and 1.00 BPP).

Taxonomy

Mycorrhaphium subadustum T. Cao & H.S. Yuan, sp. nov.
MycoBank No: 838509
Figures 2, 3

Diagnosis. Basidiocarps stipitate; pileus semicircular to dimidiate; pileal surface velutinate, concentrically zonate, pileal margin yellowish white; hymenophore hydnoid. Hyphal system dimitic in spine trama and monomitic in context; generative hyphae with clamp connections; cystidia and gloeocystidia absent, cystidiols present. Basidiospores cylindrical to allantoid, CB–, IKI–.

Holotype. China. Liaoning Province, Huanren County, Laotudingzi Nature Reserve, on fallen branch of angiosperm, 4.VIII.2018, Yuan 12976 (holotype IFP 019374).

Etymology. Subadustum (Lat.), referring to the affinity with *M. adustum*.

Description. Basidiocarps annual, stipitate, solitary or imbricate, corky to soft fibrous, without odor and taste when fresh, light in weight when dry. *Pilei* semicircular to dimidiate, 2.5–4.5 cm wide and 0.3 cm thick. *Pileal surface* velutinate, smooth, concentrically zonate, yellowish white to greyish orange (4A2–5B4); margin acute, yellowish white (4A2). Hymenophore hydnoid; spines crowded, evenly distributed, greyish orange (5B4), fibrous, subulate to terete, straight to somewhat flexuous, solitary or confluent, up to 1 mm long, 5–7 per mm; sterile margin smooth, yellowish grey (4B2), up to 2 mm wide. Context yellowish white (3A2), leathery, azonate, homogeneous, up to 0.5 mm thick. Stipe up to 3 cm long, 1 cm wide, straight and base inflated, surface tomentum eventually glabrous, brownish orange (5C4).

Hyphal structure. Hyphal system monomitic in context, dimitic in spine trama; generative hyphae often with clamp connections and simple septate occasionally present; skeletal hyphae thick-walled to subsolid, CB+, IKI–; tissues pale yellow in KOH.

Context. Generative hyphae with clamp connections, colorless, thin- to slightly thick-walled, frequently branched, 3–5 μm diam; skeletal hyphae absent.

Spines. Generative hyphae often with clamp connections, simple-septate occasionally present, colorless, thin- to slightly thick-walled, moderately branched, 2.5–4 μm diam; skeletal hyphae thick-walled to subsolid, unbranched, subparallel along the spine, 3–5 μm diam. Gloeocystidia absent; cystidiols present among the basidia, fusiform, 8–12 × 1.5–3 μm. Basidia clavate, with a basal clamp and four sterigmata, 8–13.5 × 2–3.5 μm; basidioles in shape similar to basidia, but slightly smaller.
Two new species in Steccherinaceae

Figure 2. Basidiocarps of *Mycorrhaphium subadustum* (IFP 019374, holotype). Scale bar: 10 mm.

Basidiospores cylindrical to ellipsoid, colorless, thin-walled, smooth, CB—, IKI—, (3.5—)3.8–4.0(4.2) × (1.5–)1.8–1.9(–2.0) μm, \(L_m = 3.89 \mu m \), \(W_m = 1.83 \mu m \), \(Q = 2.13–2.17 \) (n = 60/2).

Type of rot. White rot.

Distribution. In temperate zones.

Additional specimen examined. CHINA. Jilin Province, Antu Country, Changbai Mountain Nature Reserve, Huangsongpu, on fallen branch of angiosperm, 2.VIII.2008, *Dai 10173* (IFP 008336).

Trullella conifericola T. Cao & H.S. Yuan, sp. nov.

MycoBank No: 836287

Figures 4, 5

Diagnosis. Basidiocarps annual, sessile or laterally stipitate; pileus flabelliform to semicircular; pileal surface hirtellous, with appressed coarse hair, concentrically zonate and sulcate; pores round to angular. Hyphal system dimitic; generative hyphae with clamp connections; skeletal hyphae CB+, IKI—. Basidiospores cylindrical to allantoid, thin-walled.
Figure 3. Microscopic structures of *Mycorrhaphium subadustum* (IFP 019374, holotype) a Basidiospores b Basidia and basidioles c Cystidioles d Hyphae from spine trama e Hyphae from context.

Holotype. **VIETNAM.** Lam dong Province, Lac Duong District, Lac Duong District, Bidoup Nui Ba National Park, on fallen branch of *Pinus kesiya*, 15.X.2017, Yuan 12655 (holotype IFP 019372).

Etymology. *Conifericola* (Lat.), referring to growth on the coniferous substrate.

Description. *Basidiocarps* annual, sessile or laterally stipitate, solitary to imbricate, without special odor or taste, leathery when fresh, shrinking, hard corky and
light in weight upon drying. *Pileus* flabelliform to semi-circular, applanate, projecting 4–10 cm and 1 cm thick at the base; pileal surface hirtellous, with appressed coarse hair, concentrically zonate and sulcate, alternating white and greyish orange (6A1–6B3) when fresh, yellowish white (2A2/3A2/4A2) and nearly azonate when dry; margin acute, drying involute and wavy. *Pore surface* light orange (5A4), shiny; pores round to angular, tiny, 10–12 per mm, hardly visible to the naked eye; dissepiments entire; sterile margin ca. 1 mm wide. *Context* color paler than pores and upper surface, yellowish white (2A2–3A2), soft corky, azonate, 0.5–1.5 mm thick. *Tubes* non-stratified, concolorous with pore surface, dense, ca. 1.5 mm thick when dry. *Stipe* round, glabrous and smooth, light yellow to greyish yellow (4A4–4B5), 0.5–2 cm long and 2–4 mm in diam, dense and homogenous.

Hyphal structure. *Hyphal system* dimitic: generative hyphae bearing clamp connections, skeletal hyphae CB+, IKI–; tissues unchanged in KOH.

Context. Dominated by generative hyphae, interwoven; generative hyphae hyaline, thin- to slightly thick-walled, clamp connections abundant, frequently branched, 2.5–5.5 μm diam; skeletal hyphae hyaline, thick-walled with a wide lumen, unbranched, 1.5–5 μm diam.
Figure 5. Microscopic structures of *Trullella conifericola* (IFP 019372, holotype) a basidiospores b basidia and basidioles c hyphae from trama d hyphae from context.

Tubes. Dominated by skeletal hyphae, interwoven; generative hyphae hyaline, thin- to slightly thick-walled, moderately branched, 2–4 μm diam; skeletal hyphae hyaline, thick-walled to semisolid, straight to flexuous, unbranched, 1.5–3.5 μm diam. Cystidia or other sterile hymenial elements absent. Basidia short 8–15 × 4–5.5 μm,
Two new species in Steccherinaceae

clavate, 4-sterigmata of 0.5–1 μm in length, with a clamp connection at base; basidi-oles similar to basidia in shape, but slightly smaller.

Basidiospores. Cylindrical to allantoid, slightly curved, hyaline, thin-walled, smooth, CB–, IKI–, (4.0–)4.1–5.5(–5.8) × (1.6–)1.8–2.3(–2.5) μm, $L_m = 4.94$ μm, $W_m = 2.09$ μm, $Q = 2.36–2.45$ (n = 60/2).

Ecology. On fallen gymnosperm branch, causing a white rot.

Distribution. In high altitude area of subtropical to tropical zones.

Additional specimens examined. CHINA. Fujian Prov., Wuyishan Forest Park, on fallen trunk of *Pinus kesiya*, 16.IX.2005, *Cui 2851* (IFP 000645). VIETNAM. Lam dong Province, Lac Duong District, Bidoup Nui Ba National Park, on fallen branch of *Pinus kesiya*, 15.X.2017, *Yuan 12657* (IFP 019373).

Discussion

The phylogenetic profiling showed that the new species *Mycorrhaphium subadustum* as well as *Trullella conifericola* are nested in the Steccherinaceae which belongs to the residual polyporoid clade (Miettinen et al. 2012; Binder et al. 2013; Zmitrovich 2018; Westphalen et al. 2019) where they emerge robustly supported isolated lineages. Furthermore, these lineages are supported by morphological characteristics.

Mycorrhaphium was recommended by Maas Geesteranus (1962) and typified by *M. adustum*. The two samples of the new species *M. subadustum* (Yuan 12976 and Dai 10173) clustered in *Mycorrhaphium* clade, were both collected on fallen branches of angiosperm from northeast of China. The similarity of ITS and nrLSU sequences between the two samples of *M. subadustum* are 99.00% as well as 99.64% respectively, and they form a full-support isolated lineage which is closely related to *M. adustum*, the type species of the genus. The type material of *M. subadustum* Yuan 12976 have a 95.56% similarity of ITS sequences with the American *M. adustum* KHL12255. Morphologically, *M. subadustum* is similar to *M. adustum* in having the velutinate and concentrically zonate pileal surface, presence of clamps and simple septa, a dimitic hyphae system in spine trama and monomitic in context, absence of cystidia as well as gloeocystidia and the non-amyloid basidiospores. However, *M. adustum* often have a dark-colored pileal margin, which is distinctly different from the yellowish white ones of *M. subadustum*. Anatomically, the new species can be differentiated from *M. adustum* by the slender generative hyphae in context (3–5 μm vs. 4–6.3 μm), cyanophilous hyphae and presence of cystidiols (Maas Geesteranus 1962; Ryvarden 1989; Westphalen et al. 2019).

Mycorrhaphium embraced nine species (http://www.indexfungorum.org, 2020) and among which there are others two species described from Asia: *Mycorrhaphium sessile* H.S. Yuan & Y.C and *M. stereoides* Maas Geest. *M. sessile* is a species described from China, but the characteristics such as the sessile basidiocarps and presence of gloeocystidia can differentiate it from *M. subadustum* (Yuan and Dai 2009). *Mycorrhaphium stereoides* is related to *M. subadustum* in having stipitate basidiocarps, hyd-
noid hymenophore, a monomitic hyphal system in context and dimitic in spines, but differs from it by the presence of gloecystidia and the larger basidiospores (4–6.3 × 2.5–3.8 μm) (Maas Geesteranus 1971). The North Europe Mycorrhapheium pusillum (Brot.) Maas Geest. is closely related to M. subadustum in having the stipitate basidiocarps as well as pale colored and zonate pileal surface, but differs it by the presence of gloecystidia, absence of clamps and the broader basidiospores (Q = 1.52 in M. pusillum vs. 2.13–2.17 in M. subadustum) (Tervonen et al. 2015). Mycorrhapheium ursinum Decock & Ryvarden is a new species from African; its habit of growing on the soil can be distinguished from M. subadustum. Ryvarden (1989) as well as Mossebo and Ryvarden (2003) have provided keys to a part of species in Mycorrhapheium and after which several new taxa have been described. We provide a new key to the whole described species (except M. ursinum) of the genus in this study.

In the phylogenetic tree, nine samples of Trullella species which include the new species T. conifericola form the clade with strong support (92% ML and 1.00 BPP). Trullella is a genus which was originally proposed as ‘Trulla’ by Miettinen and Ryvarden (2016) and renamed by Zmitrovich (2018). Trullella conifericola is quite an extraordinary species in the genus because of its coniferous-saprophytic habit. The type species of Trullella, T. dentipora (Ryvarden & Iturr.) Zmitr., was described from South America. Trullella dentipora, together with the other species of the genus, inhabits dead angiosperm trees (e.g. Quercus and Cecropia peltata) (Patouillard 1902; Murrill 1907; Miettinen and Ryvarden 2016). Morphologically and anatomically, T. conifericola resembles others Trullella spp. in having sessile or laterally stipitate basidiocarps, mostly small and regular pores, a dimitic hyphal structure, nearly monomitic in the context, and curved cylindrical spores. However, the new species can be distinctly differentiated from other species by having a hirtellous pileal surface with appressed coarse hair, larger spores than those of previous Trullella species (Lm = 4.94 μm and Wm = 2.09 μm in T. conifericola vs Lm = 4.00–4.77 μm and Wm = 1.39–1.91 μm in others Trullella spp.), and inhabiting fallen gymnosperm branches. Trullella composed of six species as of now, and the key to these species was provided by Miettinen and Ryvarden (2016).

Besides, the genera Mycorrhapheium and Trullella together with Austeria, Flabellophora and Nigroporus form a large clade in the phylogenetic tree with strong support (85% ML and 1.00 BPP), and share similar morphological features, including zonate or sulcate pileal surfaces, tiny pores or dense spines and a context that is entirely or almost monomitic. They form a distinct subgroup in the Steccherinaceae.

Key to species of worldwide Mycorrhapheium

1 Hymenophore hydnoid ...2
– Hymenophore poroid..M. hispidum Westph. & Miettinen
2 Spores less than 3.5 μm long..3
– Spores more than 3.5 μm long...4
3 Stipe present, spines less than 2 mm long....M. adustulum (Banker) Ryvarden
– Stipe absent, spines up to 4 mm long...M. sessile
Two new species in Steccherinaceae

Step	Description	Species
4	Spines less than 5 mm long, spores less than 5 \(\mu \)m long	.. 5
	Spines up to 10 mm long, spores up to 6.3 \(\mu \)m long	\(M. \) stereoides
5	Pileal less than 2 cm wide, gloeocystidia present	.. \(M. \) pusillum (Brot.) Maas Geest.
	Pileal more than 2 cm wide, gloeocystidia absent	.. 6
6	Habit on the ground	.. 7
7	Spines more than 3 mm long	\(M. \) africanum (Mossebo & Ryvarden)
	Spines less than 3 mm long	\(M. \) citrinum (Ryvarden)
8	Pileal margin black, hyphae acyanophilous	\(M. \) adustum
	Pileal margin yellowish white, hyphae cyanophilous	\(M. \) subadustum

Acknowledgements

This research was financed by the National Natural Science Foundation of China (Project Nos. 31770028, 31970017 & 31470148) and the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences (Project No. ZSBR-015).

References

Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjökvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson KH, Townsend J, Grigoriev IV, Hibbett DS (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350–1373. https://doi.org/10.3852/13-003

corda acj (1842) Anleitung zum Studium der Mykologie. Prague, 384 pp.

cunningham gh (1965) Polyporaceae of New Zealand. New Zealand Department of Scientific and Industrial Research Bulletin 164: 1–304.

dai yc, xue hj, vlasák j, rajchenberg m, wang b, zhou lw (2014) Phylogeny and global diversity of \(Polyporus \) group \(Melanopus \) (Polyporales, Basidiomycota). Fungal Diversity 64: 133–144. https://doi.org/10.1007/s13225-013-0248-3

darriba d, taboada gl, doallo r, posada d (2012) JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: e772. https://doi.org/10.1038/nmeth.2109

gardes m, bruns td (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

grey sf (1821) A natural arrangement of British plants 1: 1–824.

Hall T (2005) BioEdit: biological sequence alignment editor for Win95/98/NT/2K/XP. Ibis Therapeutic, Carlsbad.

He SH, Dai YC (2012) Taxonomy and phylogeny of \(Hymenochaete \) and allied genera of \(Hymenochaetaceae \) (Basidiomycota) in China. Fungal Diversity 56: 77–93. https://doi.org/10.1007/s13225-012-0174-9
Johannesson H, Renvall P, Stenlid J (2000) Taxonomy of *Antrodiella* inferred from morphological and molecular data. Mycological Progress 104: 92–99. https://doi.org/10.1017/S0953756299008953

Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824. https://doi.org/10.1016/j.funbio.2017.05.010

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kornerup A, Wanscher J (1981) Methuen Handbook of Colour Fletcher. Norwich, 252 pp.

Kotiranta H, Kulju M, Miettinen O (2017) *Caudicicola gracilis* (Polyporales, Basidiomycota), a new polypore species and genus from Finland. Annales Botanici Fennici 54: 159–167. https://doi.org/10.5735/085.054.0325

Maas Geesteranus RA (1962) Hyphal structures in *Hydnum*. Persoonia 2: 377–405.

Maas Geesteranus RA (1971) Hydnaceous fungi of the eastern old world. Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde 60: 1–176.

Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF; Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Froslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43: 430–451. https://doi.org/10.1016/j.ympev.2006.08.024

Miettinen O, Larsson E, Sjökvist E, Larsson KH (2012) Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28: 251–270. https://doi.org/10.1111/j.1096-0031.2011.00380.x

Miettinen O, Ryvarden L (2016) Polypore genera *Antella*, *Austeria*, *Butyrea*, *Citripora*, *Metuloidea* and *Trulla* (Steccherinaceae, Polyporales). Annales Botanici Fennici 53: 157–172. https://doi.org/10.5735/085.053.0403

Mossebo DC, Ryvarden L (2003) The genus *Mycorrhaphium* in Africa. Mycotaxon 88: 229–232.

Murrill WA (1905) The Polyporaceae of North America: XI. A synopsis of the brown pileate species. Bulletin of the Torrey Botanical Club 32: 353–371. https://doi.org/10.2307/2478499

Murrill WA (1907) Polyporaceae, Part 1. North American Flora 9: 1–72.

Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson KH, Larsson E, Köljalg U (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4: 37–63. https://doi.org/10.3897/mycokeys.4.3606

Parmasto, E (1968) Conspectus systematis coriciacearum. Institutum Zoologicum & Botanicum Academiae Scientiarum R.P.S.S Estoniae, Tartu.

Patouillard NT (1902) Champignons de la Guadeloupe, recueillis par le R.P. Duss. Bulletin de la Société Mycologique de France 18: 171–186.
Two new species in Steccherinaceae

Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/

Rehner SA, Buckley EP (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Ryvarden L (1989) Mycorrhaphtium citrinum sp. nov. (Basidiomycetes, Aphyllorhlorales). Memoirs of the New York Botanical Garden 49: 344–347.

Ryvarden L, Johansen I (1980) A preliminary polypore flora of East Africa, 636 pp.

Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I (2020) GenBank. Nucleic Acids Research 48: 84–86. https://doi.org/10.1093/nar/gkaa1023

Spirin W, Zmitrovich I, Malysheva V (2007) Steccherinum tenuispinum (Polyporales, Basidiomycota), a new species from Russia, and notes on three other species. Annales Botanici Fennici 44: 298–302. https://www.jstor.org/stable/23727802

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 75: 758–771. https://doi.org/10.1080/10635150802429642

Stöger A, Schaffer J, Ruppitsch W (2006) A rapid and sensitive method for direct detection of Erwinia amylovora in symptomatic and asymptomatic plant tissues by polymerase chain reaction. Journal of Phytopathology 154: 469–473. https://doi.org/10.1111/j.1439-0434.2006.01130.x

Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32. https://doi.org/10.1006/fgbi.2000.1228

Tervonen K, Spirin V, Halme P (2015) Redescription of Mycorrhaphtium pusillum, a poorly known hydnoid fungus. Mycotaxon 130: 549–554. https://doi.org/10.5248/130.549

Tomšovský M, Menkis A, Vasaitis R (2010) Phylogenetic relationships in European Ceriporia-psis species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biology 114: 350–358. https://doi.org/10.1016/j.funbio.2010.02.004

Westphalen MC, Tomšovský M, Rajchenberg M, Gugliotta MA (2016) Morphological and phylogenetic studies of two new neotropical species of Loueomyces (Polyporales, Basidiomycota). Mycological Progress 15: 967–975. https://doi.org/10.1007/s11557-016-1223-7

Westphalen MC, Rajchenberg M, Tomšovský M, Gugliotta AM (2018) A re-evaluation of Neotropical Junghuhnia s.l. (Polyporales, Basidiomycota) based on morphological and multi-gene analyses. Persoonia 41: 130–141. https://doi.org/10.3767/persoonia.2018.41.07

Westphalen MC, Tomšovský M, Gugliotta AM, Rajchenberg M (2019) An overview of Antrodialiella and related genera of Polyporales from the Neotropics. Mycologia 111: 813–831. https://doi.org/10.1080/00275514.2019.1633895

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ
Wu ZQ, Xu TM, Shen Sh, Liu XF, Luo KY, Zhao CL (2018) Elaphroporia ailaoshanensis gen. et sp. nov. in Polyporales (Basidiomycota). MycoKeys 29: 81–95. https://doi.org/10.3897/mycokeys.29.22086

Yuan HS (2013) Antrodiella chinensis sp. nov., a Chinese representative of the Antrodiella americana complex. Mycological Progress 12: 437–443. https://doi.org/10.1007/s11557-012-0852-8

Yuan HS (2014) Molecular phylogenetic evaluation of Antrodiella and morphologically allied genera in China. Mycological Progress 13: 353–364. https://doi.org/10.1007/s11557-013-0921-7

Yuan HS, Dai YC (2009) Hydnaceous fungi of China 2. Mycorrhiphiun sessile sp. nov. Nova Hedwiga 88: 205–209. https://doi.org/10.1127/0029-5035/2009/0088-0205

Yuan HS, Dai YC, Wu SH (2012) Two new species of Juncuhbinia (Basidiomycota, Polyporales) from Taiwan and a key to all species known worldwide of the genus. Sydowia 64: 137–145.

Yuan HS, Qin WM (2018) Multiple genes phylogeny and morphological characters reveal Destrinoporus aquaticus gen. et sp. nov. (Polyporales, Basidiomycota) from southern China. Mycological Progress 17: 773–780. https://doi.org/10.1007/s11557-018-1392-7

Yuan HS, Wu SH (2012) Two new species of Stecherinum (Basidiomycota, Polyporales) from Taiwan. Mycoscience 53: 133–138. https://doi.org/10.1007/S10267-011-0139-Y

Yuan HS, Lu X, Decock C (2018) Molecular and morphological evidence reveal a new genus and species in Auriculariales from tropical China. MycoKeys 35: 27–39. https://doi.org/10.3897/mycokeys.35.25271

Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousafl N, Sun GY, Liu SY, Wu F, Lin CG, Dayarathne MC, Giberton TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjani M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren YH, Castañeda-Ruiz RF, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW (2020) Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 104: 1–266. https://doi.org/10.1007/s13225-020-00461-7

Zmitrovich IV (2018) Conspectus systematis Polyporacearum v. 1.0. Folia Cryptogamica Petropolitana 6: 3–145.