Correction

Correction: Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

Hans Neubauer¹, Susan E Clare¹,², Wojciech Wozny³, Gerhard P Schwall³, Slobodan Poznanovic³, Werner Stegmann³, Ulrich Vogel⁴, Karl Sotlar⁴,⁵, Diethelm Wallwiener¹, Raffael Kurek¹,⁶, Tanja Fehm¹ and Michael A Cahill³,⁷

¹Department of Obstetrics and Gynecology, University of Tuebingen, Calwerstraße, 72076 Tübingen, Germany
²Current Address: Department of Surgery, Indiana University School of Medicine, W Walnut Street, Indianapolis, Indiana, 46202, USA
³ProteoSys AG, Carl-Zeiss-Straße, 55129 Mainz, Germany
⁴Department of Pathology, University of Tuebingen, Liebermeisterstraße, 72076 Tübingen, Germany
⁵Current Address: Department of Pathology, Ludwig-Maximilians-University of Munich, Thalkirchnerstraße, 80337 Munich, Germany
⁶Current Address: Merck-Serono - Global Clinical Development Unit Oncology, Merck KGaA, Frankfurter Straße, 64293 Darmstadt, Germany
⁷School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia

Corresponding author: Michael A Cahill, mike.cahill@arcor.de

Published: 13 January 2009

This article is online at http://breast-cancer-research.com/content/11/1/401
© 2009 BioMed Central Ltd

Following the publication of our article [1] we noticed an error in the abstract, within the paragraph headed ‘Results’. The serine residue, serine-181, referred to in this paragraph should be serine-180.

The paragraph should therefore read as follows:

Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-180 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of comedo type, PGRMC1 was expressed in glucose transporter 1 negative or positive poorly oxygenated cells surrounding the necrotic core, surrounded by a more distal halo of ER-positive cells.

References

¹. Neubauer N, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Vogel U, Sotlar K, Wallwiener D, Kurek R, Fehm T, Cahill MA: Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Research 2008, 10:R85.