Decreased Prostaglandin D$_2$ Levels in Major Depressive Disorder Are Associated with Depression-Like Behaviors

Cuilin Chu, PhD; Hui Wei, PhD; Wanwan Zhu, PhD; Yan Shen, MSc; Qi Xu, PhD

State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Correspondence: Qi Xu, PhD, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 5 Dong Dan San Tiao, Dong Cheng District, Beijing, China 100005 (xuqi@pumc.edu.cn).

Abstract

Background: Prostaglandin (PG) D$_2$ is the most abundant prostaglandin in the mammalian brain. The physiological and pharmacological actions of PGD$_2$ in the central nervous system seem to be associated with some of the symptoms exhibited by patients with major depressive disorder. Previous studies have found that PGD$_2$ synthase was decreased in the cerebrospinal fluid of major depressive disorder patients. We speculated that there may be a dysregulation of PGD$_2$ levels in major depressive disorder.

Methods: Ultra-performance liquid chromatography-tandem mass spectrometry coupled with a stable isotopic-labeled internal standard was used to determine PGD$_2$ levels in the plasma of major depressive disorder patients and in the brains of depressive mice. A total of 32 drug-free major depressive disorder patients and 30 healthy controls were recruited. An animal model of depression was constructed by exposing mice to 5 weeks of chronic unpredictable mild stress. To explore the role of PGD$_2$ in major depressive disorder, selenium tetrachloride was administered to simulate the change in PGD$_2$ levels in mice.

Results: Mice exposed to chronic unpredictable mild stress exhibited depression-like behaviors, as indicated by reduced sucrose preference and increased immobility time in the forced swimming test. PGD$_2$ levels in the plasma of major depressive disorder patients and in the brains of depressive mice were both decreased compared with their corresponding controls. Further inhibiting PGD$_2$ production in mice resulted in an increased immobility time in the forced swimming test that could be reversed by imipramine.

Conclusion: Decreased PGD$_2$ levels in major depressive disorder are associated with depression-like behaviors.

Keywords: prostaglandin D$_2$, major depressive disorder, mice, patients, depression-like behaviors

Introduction

Major depressive disorder (MDD) is one of the most common and debilitating mental disorders, demonstrating high prevalence and mortality (Kessler et al., 2003; Kessler and Bromet, 2013). It is characterized by episodes of depressed mood or a loss of interest or pleasure in daily activities for more than 2 weeks (Nestler et al., 2002). MDD occurs frequently and causes a heavy burden on society (Sartorius, 2001). The World Health Organization (WHO) has projected that MDD will be the second leading cause of disability by the year 2020 (Murray and Lopez, 1996). However, despite a variety of hypotheses proposed over...
Prostaglandin (PG) D$_2$ is a biologically active lipid mediator that is widely distributed in the peripheral tissues and central nervous system (CNS). In the CNS, PGD$_2$ acts as a neuromodulator. Research regarding the role of PGD$_2$ in the development of major depressive disorder (MDD) is limited. Here, using a method with ultra-performance liquid chromatography-tandem mass spectrometry coupled with a stable isotopic labeled internal standard, we found that PGD$_2$ levels in the plasma of MDD patients and in the brains of depressive mice were both decreased. Further inhibition of PGD$_2$ production led to behavioral despair in the forced swimming test.

Materials and Methods

Experimental Design

We first investigated PGD$_2$ levels in the plasma of MDD patients. Then we constructed an animal model of depression by exposing mice to chronic unpredictable mild stress (CUMS) and assessed the content of PGD$_2$ in the mice brains. Considering the roles of PGD$_2$ in the CNS, we further examined the effects of PGD$_2$ reduction on depression-like behaviors in mice by administering SeCl$_4$. Moreover, the depression-like behavior induced by decreased PGD$_2$ was validated by administrating one of the classic antidepressants, imipramine. Depression-like behaviors in mice were evaluated by open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST). Grip strength test (GST) was performed to exclude the possibility that the immobility of mice in the FST induced by SeCl$_4$ was due to muscle dysfunction.

Participants and Samples

Unrelated patients ($n = 32$, age range 17–60 years) diagnosed with MDD using the Structured Clinical Interview for DSM-IV were recruited from the Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China. All participants were first-episode patients. Patients’ depression severity was assessed by at least 2 consultant psychiatrists according to the 17-item Hamilton Depression Rating Scale (HDRS). Patients were divided into anxious and nonanxious depression. Anxious depression was defined as MDD with high levels of anxiety symptoms, as reflected in a HDRS anxiety/somatization factor score >7. The anxiety/somatization factor included 6 items from the 17-item HDRS: the items for psychic anxiety, somatic anxiety, hypochondriasis, and insight (Fava et al., 2008). Healthy controls ($n = 32$, age range 25–45 years) without a family history of psychosis in the prior 2 generations were recruited through posted advertisements. All the participants were of the Chinese Han origin and geographically came from northern China. None of the patients or healthy controls enrolled in this study showed a history of substance dependence or abuse, nor had any of the participants taken any psychotropic medications or nonsteroidal anti-inflammatory drugs within 4 weeks. All the participants provided written informed consent, and the study was approved by the Ethics Committee of the Chinese Academy of Medical Sciences and Peking Union Medical College.

Peripheral venous blood samples were collected between 8:00 AM and 10:00 AM from participants in a resting state, following a 12-h overnight fast. Whole blood was collected into chilled EDTA-treated vacutainer tubes and placed on wet ice. The plasma was promptly separated by centrifugation (1500 x rpm at 4°C for 10 minutes) and aliquoted into polypropylene tubes. All samples were stored at -80°C until analysis.

Animals

Male 8- to 12-week-old C57BL/6J mice (Vital River) weighing 22- to 6 g were housed in plastic cages with free access to food and water ad libitum under standard conditions (12-h-light/ -dark cycle; lights on from 8:00 AM to 8:00 PM; 22 ± 2°C ambient temperature; 55 ± 10% relative humidity). All experimental
procedures were approved by the Animal Ethics Committee of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and were conducted in accordance with the institutional guidelines for animal care and use set by the Beijing Administration Office of Laboratory Animals.

Chronic Unpredictable Mild Stress (CUMS) Model

Upon arrival, wild-type C57BL/6j mice were allowed to acclimate to the experimental environment for 1 week. Body weights and basic sucrose preferences of all animals were measured before they were separated into 2 groups (10/group): the experimental group and the control group. The control group was housed in normal conditions and manipulated once a week only for cage cleaning, whereas the experimental group was subjected to the CUMS model for 5 weeks. The CUMS procedure was performed according to the protocol described previously (Willner, 2005) with minor modifications. The unpredictable mild stressors used in this study included restraint (in 50-mL cylindrical plastic tubes with holes for air flow, 1 hour), food and water deprivation (12 hours), crowded housing (10 animals per cage, 12 hours), cage titling (45°, 12 hours), soiled bedding (pour water into sawdust bedding, 12 hours), removal of sawdust (12 hours), an elevated Plexiglas platform (1 m tall, 21 × 21 cm, 30 minutes), a hot stimulus (45°C in a square transparent Plexiglas box placed on an electric blanket, 10 minutes), overnight illumination, and reversed light/dark cycle. All the stressors were randomly applied throughout the 5-week experiment, and the same stressor appeared at least every 2 days to avoid animals’ habituation. After 5 weeks of CUMS, behavioral tests were performed in order. Then the mice were sacrificed for sample collection. The whole brain of each animal was removed and quickly washed in ice-cold PBS and frozen in liquid nitrogen before transfer to -80°C for storage. The timeline of the CUMS procedure and sample collection was shown as Figure 2A.

Behavioral Tests

All behavioral tests were conducted during the light phase. Before the tests, mice were introduced to the experiment room to acclimate to the environment for at least 2 hours. Behavioral tests were performed by slightly modifying the methods reported earlier (Ku et al., 2016).

OFT

The apparatus used in the OFT was an open box (50 cm x 50 cm x 50 cm) with a Plexiglas floor that was divided into 16 equal-sized squares. The squares were further subdivided into a central zone with 4 inner squares and a peripheral zone with the other 12 squares close to the wall. Each mouse was placed individually into the central zone at the beginning of the test and allowed to move freely for a total time of 5 minutes. The locomotor activity of the mice was monitored and traced with an automatized video-tracking system (Ethisvision 9.0, Noldus) as previously described (Prut and Belzung, 2003). The apparatus was thoroughly cleaned with 75% ethanol followed by water between each test.

SPT

All the mice experienced 2 SPTs. The first test was to examine the basic sucrose preference of the mice and the second test was to examine the effects of the experimental factors. Before the first test there was a habituation phase. During the habituation phase, mice were housed in groups and were trained to become acclimated to drinking from 2 identical bottles: one containing 1% sucrose solution (w/v) and the other containing tap water. This phase persisted for 48 hours (the sucrose and water bottles switched every 24 hours to avoid position preference). Once the habituation phase ended, the first SPT began. Mice were introduced to the experimental room housing individually and were deprived of food and water for 12 h. Then, a 2-hour test of sucrose preference was performed. During the test, mice were presented simultaneously with 2 identical bottles, one containing 1% sucrose solution (w/v) and the other containing tap water. The positions of the bottles were switched every 1 hour. Sucrose consumption and water consumption were measured by comparing the weights of the bottles before and after the test. Sucrose preference was shown by calculating the ratio of sucrose consumption to the total consumption of sucrose and tap water. Mice with a basic sucrose preference below 65% were excluded from the CUMS procedure (Strekalova et al., 2011).

FST

The FST was carried out following the protocol of Rupniak et al. (Rupniak et al., 2001). Briefly, mice were individually forced to swim in transparent glass cylinders (diameter 14 cm, height 20 cm) containing 15 cm of water at 25 ± 1°C. The swimming behaviors of each mouse were video-recorded for 6 minutes. The latency to the first episode of immobility and the total duration of immobility during the last 4 minutes were scored. Immobility was defined as no movement or passively floating with only enough movement to keep the head above water.

GST

The GST was conducted according to the manufacturer’s instructions (Bioseb - In Vivo Research Instruments). Briefly, mice were held by the tail and raised above the grid. Mice were allowed to grasp the grid using their forelimbs and were then pulled backward following the axle of the sensor until they released the grid. The force achieved by the animal was displayed on the screen. The test was repeated 3 consecutive times within the same session, and the mean of all trials was recorded for grip strength for that animal.

Relative Quantitation of Plasma PGD₂ in Patients and Controls

Relative quantitation of plasma PGD₂ in patients and controls was completed with an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based method (Zhang et al., 2015). Plasma PGD₂ was extracted by solid-phase extraction. Briefly, 250 µL of patient and control plasma samples were thawed on ice and mixed with 5 µL of 1% BHT (Cayman Chemicals) and PGD₂-d₄ (400 pg, Cayman Chemicals) before loading onto Oasis 10 mg HLB cartridges (Waters Co). Solid-phase extraction cartridges were conditioned and equilibrated according to the manufacturer’s instructions and washed with 1 mL of 5% methanol (LC-MS grade, Fisher Scientific). After drying under a high vacuum for 20 minutes, PGD₂ was eluted with 1 mL of methanol and evaporated to dryness under a gentle stream of nitrogen at room temperature. Samples were reconstituted in 40 µL of acetonitrile/water (30:70) (LC-MS grade, Fisher Scientific) prior to injection into the LC-MS/MS system (AB SCIEX QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo electrospray ionization source, Shimadzu Prominance
LC-20AD UFLC system, and a CTC autosampler). The detailed chromatographic and mass spectographic parameters can be found in the supplementary Methods and Materials.

PGD₂, and PGE₂ Quantitation in the Mouse Brain

Cervical dislocation was performed to kill mice before brain sampling, except for those mice used in the CUMS procedure. Mice used in the CUMS procedure, including the control group, were sacrificed for brain sampling under deep anesthesia with chloral hydrate (500 mg/kg, Sangon Biotech). The protocol of PGD₂ and PGE₂ quantitation in the mouse brain has been described in detail previously (Masoodi and Nicolaou, 2006). A SepPak tC18 40 mg 96-well plate (Waters Co.) was used for the solid phase extraction of the 2 prostaglandins in this study. Simply, the whole brain of each mouse was weighed and homogenized in water (LC-MS grade, Fisher Scientific) with a superfine homogenizer (Fliko, Shanghai, China). The homogenization process was kept on ice. Next, 500 µL of homogenate containing 50 mg of brain tissue was transferred to a new Eppendorf tube and adjusted to 15% methanol (v/v) before mixing with 40 ng PGD₂-d₄ and PGE₂-d₄ (Cayman Chemicals). The mixture was centrifuged (4°C, 12,000 × rpm, 15 minutes) and acidified with 20 µL HAc (Amresco Inc.) to a pH of 3.0 and then placed on ice in the dark for 20 minutes. Immediately after, the acidified supernatant was loaded onto the 96-well plate that had been pretreated with 1 mL of methanol followed by 1 mL of water. The cartridges were then washed with 1.5 mL of 15% methanol, 1.5 mL of water, and 1 mL of hexane (HPLC grade, Sigma-Aldrich) in succession. Finally, the PGs were eluted with 1 mL of methyl formate (HPLC grade, Sigma-Aldrich) and dried under a gentle stream of nitrogen. The residues were reconstituted in 37 µL of acetonitrile/water (30:70).

Chromatographic separation and MS analysis were conducted according to the method used in the quantitation of plasma PGD₂. Calibration lines were prepared for the absolute quantitation of PGD₂ and PGE₂ in the brain (see supplementary Methods and Materials).

Drug Treatments

Selenium tetrachloride (SeCl₄, Sigma Aldrich) was dissolved in sterile saline. Aliquots were prepared and stored at -20°C. Before each experiment, an appropriate number of aliquots was taken to thaw at room temperature, and the pH was adjusted to 7.2 by the addition of 0.2 M NaOH. SeCl₄ was administered 2 hours before the behavioral tests. Imipramine hydrochloride (Sigma Aldrich) was freshly prepared in sterile saline each time before administration. The dose of imipramine (20 mg/kg) used in this study was previously reported to cause antidepressant activity in the forced swimming test (Popik et al., 2003; Garcia et al., 2008). Imipramine was given 30 minutes before the test. The protocol of PGD₂ and PGE₂ levels in the mouse brain, a 1-way ANOVA followed by Bonferroni’s post-hoc test was applied. A 2-way ANOVA was conducted to evaluate interactions between imipramine administration and SeCl₄ pretreatment on mice immobility time in the FST. Specific methods of analysis are also described in the figure legends. All data are expressed as the mean ± SEM, and a value of P < .05 was considered significant.

Results

Sample Characteristics

As shown in Table 1, a total of 32 MDD patients (38.50 ± 12.1 years) and 30 healthy controls (34.13 ± 6.7 years) were recruited. There were no significant differences between controls and MDD patients in age, gender, race, or history of substance abuse. MDD patients were first-episode patients of depression. All the participants were free from psychotropic medications and had not taken any nonsteroidal anti-inflammatory drugs within 4 weeks.

MDD patients were subdivided into anxious and nonanxious depression. As shown in Table 2, there were no significant differences between patients with anxious and nonanxious depression in age, gender, or family history of MDD. The anxiety/somatization factor score of patients with anxious depression was significantly higher than that of patients with nonanxious depression (P < .001).

Table 1. Demographic and Clinical Characteristics of Participants

Characteristic	MDD	Control	P value
n	32	30	
Age (y) (mean, SD)	38.50 (12.1)	34.13 (6.7)	.083a
Female/male (n)	20/12	16/14	.465a
Race	Han Chinese	Han Chinese	
History of substance abuse (n)	0	0	
Drug use within 4 weeks (n)	0	0	
HDRS–17 total score (mean, SD)	22.3 (3.3)		

Abbreviations: HDRS–17, 17-item Hamilton Depression Rating Scale; MDD, major depressive disorder.

aChi-squared test.

Table 2. Clinical Characteristics of MDD Patients

Characteristic	Anxious depression	Nonanxious depression	P value
n	21	11	
Age (y) (mean, SD)	38.76 (1.5)	5.36 (1.0)	<.001c
Female/male (n)	12/9	8/3	.387b
Family history of MDD (n)	6	6	.149b
Anxiety/somatization subscale score (mean, SD)	8.76 (1.5)	5.36 (1.0)	<.001c

Abbreviation: MDD, major depressive disorder.

bChi-squared test.

cMann-Whitney U test.

Statistics

Data analysis was performed by using IBM SPSS Statistics (Version 22). For human participants, the chi-squared test was applied to test the differences in gender. Difference in age was analyzed by unpaired Student’s t test. A 2-way ANOVA was performed to analyze PGD₂ levels with gender (male, female) and group (MDD, control) as between-subject factors. The anxiety/somatization subscale score did not follow a normal distribution, so a Mann-Whitney U test was used. For animals, data of the behavioral tests were compared using unpaired Student’s t test except for the data of the SPT in the CUMS procedure. The data was analyzed by Mann-Whitney U test. To examine the main effects of SeCl₄ (0, 1, and 2.5 mg/kg) on PGD₂ and PGE₂ levels in the mouse brain, a 1-way ANOVA followed by Bonferroni’s post-hoc test was applied. A 2-way ANOVA was conducted to evaluate interactions between imipramine administration and SeCl₄ pretreatment on mice immobility time in the FST. Specific methods of analysis are also described in the figure legends. All data are expressed as the mean ± SEM, and a value of P < .05 was considered significant.
Reduction of PGD\textsubscript{2} Levels in the Plasma of MDD Patients

The 2-way ANOVA revealed a significant effect of group (F\textsubscript{1,58} = 16.20, P < .001), a significant effect of gender (F\textsubscript{1,58} = 8.17, P < .01), but not a significant interaction between gender and group (F\textsubscript{1,58} = 0.254, P = .596). Figure 1B showed that plasma PGD\textsubscript{2} concentrations in MDD patients were significantly decreased compared with controls (P < .001), and plasma PGD\textsubscript{2} concentrations in males were significantly higher than females (P < .01). Because patients with MDD often also suffer from anxiety (Fawcett and Kravitz, 1983), and PGD\textsubscript{2} was shown to induce anxiolytic-like activity (Zhao et al., 2009), we divided the MDD patients into anxious and nonanxious depression to explore whether there existed a difference of plasma PGD\textsubscript{2} levels between the 2 groups. As illustrated by Figure 1C, there was no significant difference in plasma PGD\textsubscript{2} levels between patients with anxious and nonanxious depression (P = .176).

Depression-Like Behaviors and Decreased PGD\textsubscript{2} Levels in the Brains of Mice Exposed to CUMS

To explore whether the change of PGD\textsubscript{2} also existed in the CNS, we constructed an animal model of depression by exposing mice to CUMS and detected the PGD\textsubscript{2} levels in the mice brains. After 5 weeks of CUMS, depression-like behaviors of mice were assessed using the OPT, SPT, and FST. Compared with the control group, the CUMS mice demonstrated significant decreases in PGD\textsubscript{2} concentration in the brain (P < .001) (Figure 2F). However, an i.p. injection of SeCl\textsubscript{4} at 2.5 mg/kg did cause a phenotype of behavioral despair in mice, which was represented by significantly increased immobility time in the FST (P < .05) (Figure 3G). The GST was conducted to exclude the possibility that the depression-like behaviors induced by SeCl\textsubscript{4} in mice might be the result of muscle dysfunction. As shown in Figure 3H, no difference was found between mice injected with 2.5 mg/kg SeCl\textsubscript{4} and saline in the GST (P = .851).

Inhibiting PGD\textsubscript{2} Production by an i.p. Injection of SeCl\textsubscript{4} Caused Behavioral Despair in Mice

We investigated the PGD\textsubscript{2} content in the brains of mice at 2 hours after an i.p. injection of SeCl\textsubscript{4} at a dose of 1 and 2.5 mg/kg body weight. As shown in Figure 3A, 2.5 mg/kg SeCl\textsubscript{4} significantly inhibited PGD\textsubscript{2} production (P < .01). No effect of SeCl\textsubscript{4} on PGE\textsubscript{2} content was found (F\textsubscript{2,15} = 0.29, P = .752) (Figure 3B).

To explore whether PGD\textsubscript{2} had a causal role in depression, we then examined the effects of 2.5 mg/kg SeCl\textsubscript{4} on depression-like behaviors in mice. The control mice were treated with an equal volume of saline. Compared with the control mice, the total distance traveled by the mice injected with 2.5 mg/kg SeCl\textsubscript{4} in the OFT was significantly decreased (P < .01, Figure 3C), but the time spent in the central zone showed no difference (P = .848, Figure 3D). In the SPT, there was no significant difference between the 2 groups treated with either 2.5 mg/kg SeCl\textsubscript{4} or saline (P = .361) (Figure 3F). However, an i.p. injection of SeCl\textsubscript{4} at 2.5 mg/kg did cause a phenotype of behavioral despair in mice, which was represented by significantly increased immobility time in the FST (P < .05) (Figure 3G). The GST was conducted to exclude the possibility that the depression-like behaviors induced by SeCl\textsubscript{4} in mice might be the result of muscle dysfunction. As shown in Figure 3H, no difference was found between mice injected with 2.5 mg/kg SeCl\textsubscript{4} and saline in the GST (P = .851).

Figure 1. Reduction of plasma prostaglandin (PGD\textsubscript{2}) concentration in major depressive disorder (MDD) patients. (A) Representative chromatograms of PGD\textsubscript{2} and its stable isotopic internal standard PGD\textsubscript{2}-d\textsubscript{4} in sample. (B) Analysis of the relative PGD\textsubscript{2} concentration in MDD patients and controls. The mean peak area ratio between the PGD\textsubscript{2} and PGD\textsubscript{2}-d\textsubscript{4} of female controls was set as 1. Open and closed circles represent males and females, respectively. Two-way ANOVA. (C) Plasma PGD\textsubscript{2} concentration in patients with anxious and nonanxious depression. The mean peak area ratio between PGD\textsubscript{2} and PGD\textsubscript{2}-d\textsubscript{4} of nonanxious depression was set as 1. Open and closed circles represent individual's PGD\textsubscript{2} concentration in patients with nonanxious and anxious depression, respectively. Unpaired Student's t test. Data are mean ± SEM. *P < .05, **P < .01, ***P < .001; ns, no significance.
Imipramine reversed SeCl₄-induced behavioral despair in the FST

The effect of the classic antidepressant imipramine (20 mg/kg) on mice pretreated with 2.5 mg/kg SeCl₄ in the FST was assessed to validate the behavioral despair induced by SeCl₄ (Figure 4). The 2-way ANOVA revealed a significant effect of imipramine treatment (F(1,24) = 13.83, P < .01), a significant effect of SeCl₄ pretreatment (F(1,24) = 7.43, P < .05), and a significant interaction between imipramine treatment and SeCl₄ pretreatment (F(1,24) = 5.37, P < .05). Further simple main effects analysis showed that imipramine completely blocked the increase in immobility time elicited by SeCl₄ in the FST (F(1,24) = 18.22, P < .001).

Discussion

In the present study, with accessibility to a more sensitive and specific quantitative method, we found that the PGD₂ levels in the plasma of MDD patients and in the brains of depressive mice were both decreased compared with their corresponding controls. Simulation of this decreased PGD₂ in mice by pharmacologically inhibiting PGD₂ production led to depression-like behaviors.

PGD₂ is a relatively unstable molecule that can be degraded nonenzymatically to yield PGs of the J₂ series (Kikawa et al., 1984; Shibata et al., 2002), and it shares a very similar structure with other PGs such as PGE₂. Accurate quantification of PGD₂ in plasma has been a challenge for some time. As a result, the investigation of the role of PGD₂ in the pathophysiology of MDD may primarily depend on the sensitive and specific determination of PGD₂ content in the disease state. With use of stable isotopic labeled internal standard to correct for matrix effects, the UPLC-MS/MS-based method was reported to be the most accurate quantitative approach (Xu et al., 2007). In this study, using UPLC-MS/MS coupled with stable isotopic labeled internal standard PGD₂-d₄, we found that PGD₂ levels in the plasma of MDD patients were lower than those of healthy controls. And there was no significant difference in PGD₂ levels between patients with anxious and nonanxious depression. Our results are inconsistent with previous studies that have reported an
Several lines of evidence indicate that PGs act through autocrine or paracrine means (Ashby, 1998; Jabbour et al., 2002); therefore, the reduction of PGD2 levels in the plasma of MDD patients could not possibly represent the change in PGD2 levels in the brain. To explore the change in PGD2 levels in the brain, we applied a well-established animal model of depression by exposing mice to CUMS (Willner, 2005). Because the reduction of plasma PGD2 concentration in MDD patients occurs regardless of gender, we used only male mice in this study. After exposure to CUMS for 5 weeks, mice exhibited depression-like behaviors, including reduced sucrose preference representative of anhedonia (Willner et al., 1987) and extended immobility time indicative of behavioral despair (Cryan et al., 2002). We extracted PGD2 from the mouse brains and performed PGD2 quantitation. Our inference that exposure to CUMS inhibited PGD2 production was consistent with the decrease in plasma PGD2 levels found in MDD patients. It would be valuable if the plasma PGD2 levels of the CUMS mice could be measured. However, because the plasma PGD2 levels of mice under normal conditions were extremely low and because of the limits of our current technology, we failed to detect the PGD2 levels in mouse plasma.

Previous studies have demonstrated that the physiological and pharmacological actions of PGD2 in the CNS seem to be associated with the symptoms exhibited by MDD patients (Ohinata et al., 2008; Urade and Hayaishi, 2011). We tested whether the application of SeCl4 can induce depression-like behaviors. Indeed, the administration of SeCl4 caused the phenotype of behavioral despair in mice, as represented by a remarkably longer immobility time in the FST. The administration of SeCl4 also inhibited spontaneous locomotor activity in mice. To exclude the possibility that the hypolocomotion was caused by muscle dysfunction, which in turn might affect the immobility in the FST, the grip strength of mice injected with SeCl4 was tested. As a result, the administration of SeCl4 showed no influence on the performance of mice in the GST. This finding revealed that SeCl4-induced increased immobility in the FST was primarily an indication of behavioral despair. This conclusion was further confirmed by the fact that pretreatment with the antidepressant imipramine completely reversed the increases in immobility time induced by SeCl4 in the FST. PGD2 inhibition showed no influence on the time of mice spent in the central zone of the OFT. The increase in immobility time in the FST might indicate that there was no relationship between PGD2 reduction and anxious behavior, which was in line with the result that patients with anxious and nonanxious depression had no difference in plasma PGD2 levels. Behavioral despair was suggested to be associated with glutamate release and NMDA receptor-mediated transmission in the CA3 region of hippocampus (Wang et al., 2015), while anhedonia was mainly regulated by medial prefrontal cortex-controlled interactions between the dopaminergic midbrain and the striatum (Ferenczi et al., 2016). Future studies exploring the underlying mechanism and pathway involved in the effect of PGD2 in depression may help to explain the different influences of inhibited PGD2 production in the SPT and FST.

Several mechanisms may account for the depression-like behaviors caused by inhibited PGD2 production. For instance, X. Liang et al. (Liang et al., 2005) reported that PGD2-induced cAMP production and mediated neuronal protection via the DP1 receptor; however, cAMP signaling was found to be decreased in the brains of unmedicated depressed patients (Fujita et al., 2016). Thus, by influencing cAMP signaling, resultant deficiencies in PGD2 may ultimately lead to depressive symptoms. Besides, accumulating evidence indicates

Figure 3. Inhibition of prostaglandin (PGD2) production and induction of behavioral despair by SeCl4. (A) PGD2 and (B) PGE2 contents in the brain of mice after an i.p. injection of SeCl4 at a dose of 1 and 2.5 mg/kg body weight for 2 hours. One-way ANOVA followed by Bonferroni’s posthoc test (n = 6/group). (C) Total distance moved and (D) total time spent in the central zone in the open field test (OFT) after an injection of 2.5 mg/kg SeCl4, (E) Sucrose preference before and (F) 2 hours after an injection of 2.5 mg/kg SeCl4, (G) Immobility time in the forced swim test (FST) after an injection of 2.5 mg/kg SeCl4, (H) Grip strength test (GST) after an injection of 2.5 mg/kg SeCl4. Unpaired Student’s t test (n = 8/group). Data are mean ± SEM. *P < .05, **P < .01. For each test, separate cohorts of mice were used.

increase in the level of salivary PGD2 in major depression after implementing a radioimmunoassay for PGD2 detection (Ohishi et al., 1988; Nishino et al., 1989). The different results may be mainly attributed to the different methods. As radioimmunoassay is an antibody-based method that may suffer from cross-reactivity and result in reduced selectivity (Tate and Ward, 2004).
that inflammation may participate in the development of MDD. Proinflammatory cytokines such as interleukin-1, tumor necrosis factor-α, and interferon-γ have been associated with depressive behaviors in mice (Asnis et al., 2003; Goshen et al., 2008; Kaster et al., 2012). Recent evidence reveals that PGD₂ is an anti-inflammatory regulator and participates in the resolution of inflammation (Gilroy et al., 1999; Yoon et al., 2008; Kong et al., 2016). As a result, deficiency in PGD₂ may lead to a failure of inflammatory resolution, which in turn accelerates depression. However, the exact mechanism remains to be clarified.

To the best of our knowledge, this is the first study to explore PGD₂ levels in the peripheral blood of MDD patients. It is also the first investigation of PGD₂ levels in the animal depression model. The results should be validated in a larger sample and repeated in additional animal models of depression. In addition to pharmacological inhibitors, a better method for suppressing PGD₂ production is also needed to clarify the role of PGD₂ in MDD. Moreover, samples from the CNS of MDD patients, such as cerebrospinal fluid, should be used to investigate changes in PGD₂ levels.

In summary, the present study has clearly demonstrated that PGD₂ levels are decreased in the plasma of MDD patients and in the brains of depressive mice. The inhibition of PGD₂ involvement in MDD may benefit the development of preventive and therapeutic targets for MDD in the future.

References

Ashby B (1998) Co-expression of prostaglandin receptors with opposite effects: a model for homeostatic control of autocrine and paracrine signaling. Biochem Pharmacol 55:239–246.

Asnis GM, De La Garza R 2nd, Kohn SR, Reinus JF, Henderson M, Shah J (2003) IFN-γ-induced depression: a role for NSAIDs. Psychopharmacol Bull 37:29–50.

Cai S, Huang S, Hao W (2015) New hypothesis and treatment targets of depression: an integrated view of key findings. Neuroscience bulletin 31:61–74.

Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245.

Ditzen B, Tang N, Jastorff AM, Teplyska L, Yassouridis A, Maccarrone G, Uhr M, Bronisch T, Miller CA, Holsboer F, Turk CW (2012) Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology 37:1013–1025.

Eguchi N, Minami T, Shirafuji N, Kanaoka Y, Tanaka T, Nagata A, Yoshida N, Urade Y, Ito S, Hayaishi O (1999) Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci U S A 96:726–730.

Fava M, Rush AJ, Alpert JE, Balasubramanek GM, Wisniewski SR, Carmin CN, Biggs MM, Zisook S, Leuchter A, Howland R, Warden D, Trivedi MH (2008) Difference in treatment outcome in outpatients with anxious versus nonanxious depression: a STAR*D report. Am J Psychiatry 165:342–351.

Fawcett J, Kravitz HM (1983) Anxiety disorders and their relationship to depressive illness. J Clin Psychiatry 44:8–11.

Ferenczi EA, Zalocsusky KA, Liston C, Grosenick L, Warden MR, Amaty D, Katovich K, Mehta H, Patenaule B, Ramakrishnan C, Kalanithi P, Etkin A, Knutson B, Glover GH, Deisseroth K (2016) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351:eaac9698.

Fujita M, Richards EM, Nicu MJ, Ionescu DF, Zoghbi SS, Hong J, Telu S, Hines CS, Pike VW, Zarate CA, Innis RB (2016) cAMP signaling in brain is decreased in unmedicated depressed patients and increased by treatment with a selective serotonin reuptake inhibitor. Mol Psychiatry.

Gamble-George JC, Baldi R, Halladay L, Kocharian A, Hartley N, Silva CG, Roberts H, Haymer A, Marnett LJ, Holmes A, Patel S (2016) Cyclooxygenase-2 inhibition reduces stress-induced affective pathology. Elife 5.

Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, Steritz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Progress in neuro-psychopharmacology and biological psychiatry 32:140–144.

Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–710.

Gonzalez-Rodriguez P, Li Y, Martinez F, Zhang L (2014) Dexamethasone protects neonatal hypoxic-ischemic brain injury via L-PGDS-dependent PGD₂-DP1-pERK signaling pathway. PloS One 9:e114470.

Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur Y, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728.

Gross HA, Dunner DL, Lefleur D, Meltzer HL, Muhlbaier HL, Fieve RR (1977) Prostaglandins. A review of neuropsychophysiology and psychiatric implications. Archiv Gen Psychiatry 34:1189–1196.
blockade of the substance P (NK1) receptor in assays for anti-depressant and anxiolytic drugs. Behav Pharmacol 12:497–508. Sartorius N (2001) The economic and social burden of depression. J Clin Psychiatry 62:8–11.

Shibata T, Kondo M, Osawa T, Shibata N, Kobayashi M, Uchida K (2002) 15-deoxy-delta 12,14-prostaglandin D2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem 277:10459–10466.

Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437.

Strekalova T, Couch Y, Khodol N, Boyks M, Malin D, Leprince P, Steinbusch HM (2011) Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9.

Sublette ME, Russ MJ, Smith GS (2004) Evidence for a role of the arachidonic acid cascade in affective disorders: a review. Bipolar Disord 6:95–105.

Tanaka K, Furuyashiki T, Kitaoka S, Senzai Y, Imoto Y, Seginiida E, Deguchi Y, Breyer RM, Breyer MD, Narumiya S (2012) Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. J Neurosci 32:4319–4329.

Tate J, Ward G (2004) Interferences in immunoassay. Clin Biochem Rev 25:105–120.

Ueno R, Narumiya S, Ogorochi T, Nakayama T, Ishikawa Y, Hayashi O (1982) Role of prostaglandin D2 in the hypothermia of rats caused by bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 79:6093–6097.

Urade Y (2008) [Structure and function of prostaglandin D synthase]. Tanpakushitsu Kakusan Koso 53:217–226.

Urade Y, Hayashi O (2000) Prostaglandin D2 synthase: structure and function. Vitam Horm 58:89120.

Wang Y, Zhang D, Lu XY (2015) Dentate gyrus–CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin. Mol Psychiatry 20:509–519.

Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110.

Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358–364.

Wolfe LS, Cocciani F (1979) The role of prostaglandins in the central nervous system. Annu Rev Physiol 41:669–684.

Xu A, Cui S, Wang JH (2016) Incoordination among subcellular compartments is associated with depression-like behavior induced by chronic mild stress. Int J Neuropsychopharmacology 19.

Xu RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. Pharm Biomed Anal 44:342–355.

Yoon HJ, Jeon SB, Kim IH, Park EJ (2008) Regulation of TLR2 expression by prostaglandins in brain glia. J Immunol 180:8400–8409.

Zhang X, Yang N, Ai D, Zhu Y (2015) Systematic metabolic analysis of eicosanoids after omega-3 polyunsaturated fatty acid supplementation by a highly specific liquid chromatography-tandem mass spectrometry-based method. J Proteome Res 14:1843–1853.

Zhao H, Ohinata K, Yoshikawa M (2009) Central prostaglandin D(2) exhibits antinociceptive-like activity via the DP(1) receptor in mice. Prostaglandins Other Lipid Mediat 88:68–72.