Improved DØ W Boson Mass Determination

The DØ Collaboration *
Fermi National Accelerator Laboratory, Batavia, Illinois 60510
(November 21, 2018)

Abstract

We present a measurement of the W boson mass in proton-antiproton collisions at $\sqrt{s} = 1.8$ TeV based on a data sample of 82 pb$^{-1}$ integrated luminosity collected by the DØ detector at the Fermilab Tevatron. We utilize $e\nu$ events in which the electron shower is close to the phi edge of one of the 32 modules in the DØ central calorimeter. The electromagnetic calorimeter response and resolution in this region differs from that in the rest of the module and electrons in this region were not previously utilized. We determine the calorimeter response and resolution in this region using $Z \rightarrow ee$ events. We extract the W boson mass by fitting to the transverse mass and to the electron and neutrino transverse momentum distributions. The result is combined with previous DØ results to obtain an improved measurement of the W boson mass: $m_W = 80.483 \pm 0.084$ GeV.

*Submitted to the International Europhysics Conference on High Energy Physics, July 12–18, 2001, Budapest, Hungary, and to the XXth International Symposium on Lepton and Photon Interactions at High Energies, July 23–28, 2001, Rome, Italy.
M. Narain, V.S. Narasimham, H.A. Neal, J.P. Negret, S. Negroni, T. Nunnemann, D. O’Neil, V. Oguri, B. Olivier, N. Oshima, P. Padley, L.J. Pan, K. Papageorgiou, A. Para, N. Parashar, R. Partridge, N. Parua, M. Paterno, A. Patwa, B. Pawlik, J. Perkins, M. Peters, O. Peters, P. Pétroff, R. Piegaia, B.G. Pope, E. Popkov, H.B. Prosper, S. Protopopescu, J. Qian, R. Raja, S. Rajagopalan, M. Rijssenbeek, LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France

DAPNIA/Service de Physique des Particules, CEA, Saclay, France

Universidad de los Andes, Bogotá, Colombia

Charles University, Center for Particle Physics, Prague, Czech Republic

Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic

Universidad San Francisco de Quito, Quito, Ecuador

Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France

CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France

Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France

LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France

DAPNIA/Service de Physique des Particules, CEA, Saclay, France

Universität Mainz, Institut für Physik, Mainz, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Tata Institute of Fundamental Research, Mumbai, India

Seoul National University, Seoul, Korea

CINVESTAV, Mexico City, Mexico

(DØ Collaboration)
FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
Institute of Nuclear Physics, Kraków, Poland
Joint Institute for Nuclear Research, Dubna, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
Institute for High Energy Physics, Protvino, Russia
Lancaster University, Lancaster, United Kingdom
Imperial College, London, United Kingdom
University of Arizona, Tucson, Arizona 85721
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
University of California, Davis, California 95616
California State University, Fresno, California 93740
University of California, Irvine, California 92697
University of California, Riverside, California 92521
Florida State University, Tallahassee, Florida 32306
University of Hawaii, Honolulu, Hawaii 96822
Fermi National Accelerator Laboratory, Batavia, Illinois 60510
University of Illinois at Chicago, Chicago, Illinois 60607
Northern Illinois University, DeKalb, Illinois 60115
Northwestern University, Evanston, Illinois 60208
Indiana University, Bloomington, Indiana 47405
University of Notre Dame, Notre Dame, Indiana 46556
Iowa State University, Ames, Iowa 50011
University of Kansas, Lawrence, Kansas 66045
Kansas State University, Manhattan, Kansas 66506
Louisiana Tech University, Ruston, Louisiana 71272
University of Maryland, College Park, Maryland 20742
Boston University, Boston, Massachusetts 02215
Northeastern University, Boston, Massachusetts 02115
University of Michigan, Ann Arbor, Michigan 48109
Michigan State University, East Lansing, Michigan 48824
University of Nebraska, Lincoln, Nebraska 68588
Columbia University, New York, New York 10027
University of Rochester, Rochester, New York 14627
State University of New York, Stony Brook, New York 11794
Brookhaven National Laboratory, Upton, New York 11973
Langston University, Langston, Oklahoma 73050
University of Oklahoma, Norman, Oklahoma 73019
Brown University, Providence, Rhode Island 02912
University of Texas, Arlington, Texas 76019
Texas A&M University, College Station, Texas 77843
Rice University, Houston, Texas 77005
University of Virginia, Charlottesville, Virginia 22901
University of Washington, Seattle, Washington 98195
I. INTRODUCTION

Measurements of the W boson mass are of fundamental interest since they help constrain the Standard Model and the Higgs boson mass [1]. Recent measurements of the W boson mass have been made by DØ [2] and CDF [3] at the Tevatron and by the LEP experiments [4]. Previous measurements by DØ have relied on $W \rightarrow e\nu$ events in which the electron was detected in the central calorimeter or the forward calorimeters. The central calorimeter is divided azimuthally into 32 modules [5]. Electrons incident close to the azimuthal module boundaries were found to have a reduced response and degraded energy resolution. These “edge” electrons were excluded from our W and Z boson data samples in previous measurements. In this paper, we report a new measurement of the W boson mass using these edge electrons. We rely on $Z \rightarrow ee$ events in which at least one electron is detected in the edge region to calibrate the response of the calorimeter. $Z \rightarrow ee$ events in which only one electron is incident at a central calorimeter module boundary are also used to additionally constrain the electromagnetic calorimeter energy scale for non-edge electrons, thereby improving our previous measurements based on non-edge electrons.

II. EVENT SELECTION AND DETECTOR CALIBRATION

Direct measurement of the W boson mass m_W at DØ is performed using $W \rightarrow e\nu$ events from $p\bar{p}$ collisions at a center-of-mass energy of 1.8 TeV. A detailed description of the method used to measure m_W is given in Ref. [2]. Events are selected by requiring the presence of an isolated electron with high transverse momentum (p_T) and large missing transverse energy (E_T). The W boson mass is extracted by fitting Monte Carlo templates to the observed kinematic distributions. Maximum likelihood fits are made to the transverse mass $m_T = \sqrt{2p_T^e p_T^\nu (1 - \cos \phi_{e\nu})}$, electron transverse momentum p_T^e, and neutrino transverse momentum p_T^ν. Here, $\phi_{e\nu}$ is the azimuthal angle between the electron and neutrino. The three W boson mass measurements are combined taking into account correlations to obtain the final result. A Monte Carlo simulation is used to provide the expected lineshapes of the distributions as a function of m_W. The Monte Carlo contains all resolution effects and backgrounds as determined from data.

The W boson sample for this measurement is selected requiring $E_T > 25$ GeV and a high-quality isolated electron in the central calorimeter (CC) with $p_T^e > 25$ GeV and $\Delta\phi < 0.1 \times 2\pi / 32 = 0.02$ radians, where $\Delta\phi$ is the angle between the electron direction and the closest CC module boundary. The electron direction is calculated from the center-of-gravity of the track in the central drift chamber and the event vertex position. Electrons satisfying these criteria are referred to as “C electrons”, while non-edge electrons which have $\Delta\phi > 0.02$ radians are called “C electrons”. The number of candidate edge-electron W events selected by applying the above criteria was 3 853. For comparison, our previous central calorimeter measurement using the 1994-95 data set was based on 28 323 candidates.

We also select $Z \rightarrow ee$ candidates requiring two isolated electrons with $p_T^e > 25$ GeV with dielectron invariant mass 60 GeV < m_{ee} < 120 GeV. Events are required to have one electron in the edge region. The second electron may also be in the edge region (C-C events), or it may be in the non-edge region (C-E events), or in one of the end calorimeters (C-E events).
The numbers of Z candidates selected are 470 \tilde{C}-C events, 47 \tilde{C}-\tilde{C} events, and 154 \tilde{C}-E events. Backgrounds to the edge electron W and Z samples are determined using the same methods used in our previous analyses.

The calorimeter response to edge electrons is illustrated in Fig. 1, which compares the reconstructed dielectron invariant mass distributions of \tilde{C}-C and C-C events. Above the Z peak, the distributions are consistent with one another, but at low m_{ee} there is an excess of events in the edge sample indicating that a fraction of the edge electrons have a lower electromagnetic response in the calorimeter. The difference between the distributions is well described by a single Gaussian function. This suggests that the electromagnetic calorimeter response for edge-electrons can be described by the sum of two Gaussians, one with the same mean and width as for non-edge electrons and the second with a reduced response and degraded energy resolution. This is consistent with expectations, since the high voltage electrodes are set back near the module edge, thus reducing the electric field in that region and giving lower response. There is no evidence for increased energy deposit in the backing hadron calorimeter module that would occur if particles were passing within a crack between EM modules. We assume that a fraction f_{edge} of the edge electrons has a reduced response and degraded energy resolution, while the remaining edge electrons have the same response and energy resolution as non-edge electrons. Thus, for the fraction f_{edge} of edge electrons, the calorimeter response is parameterized by

$$E_{\text{meas}} = \alpha_{\text{edge}} E_{e}^{\text{true}} + \delta$$

The offset δ was found to be consistent with the offset previously used in the parameterization.
of non-edge electrons, while the scale α_{edge} must be separately determined for the edge electrons. The energy resolution is parameterized by:

$$\left(\frac{\sigma_E}{E}\right)^2 = (c_{\text{edge}})^2 + \left(\frac{s}{\sqrt{E}}\right)^2 + \left(\frac{n}{E}\right)^2$$

where the sampling term s and noise term n are the same as for non-edge electrons. The parameters f_{edge}, α_{edge}, and c_{edge} are determined by fitting the invariant mass distribution of \bar{C}-C events to two Gaussians, assuming a Z boson mass equal to the measured LEP value. This fit gives

$$f_{\text{edge}} = 0.346 \pm 0.076$$
$$\alpha_{\text{edge}} = 0.912 \pm 0.018$$
$$c_{\text{edge}} = 0.101^{+0.028}_{-0.018}.$$

Figure 2 shows a fit to the dielectron invariant mass distribution using the sum of two Gaussians, one with the edge parameters determined above and the other with the parameters for non-edge electrons previously determined from C-C events. The parameterization gives a good description of the observed data.

![Figure 2](image_url)

FIG. 2. Dielectron mass distribution for \bar{C}-C events. The dashed histogram shows the maximum likelihood fit and the solid curve is the background contribution.

III. RESULTS

The results of the fits to the transverse mass and electron and neutrino transverse momentum distributions are shown in Fig. 3. The results are:
FIG. 3. Distributions of m_T, p_T^e, and p_T^ν from the edge electron W data. The superimposed dashed histograms show the maximum likelihood fits and the solid curves show the estimated backgrounds.
The errors are statistical only. The systematic errors are listed in Table I. Combining these measurements taking into account systematic errors and their correlations gives the final result for the edge electron W mass:

$$m_W = 80.574 \pm 0.405 \text{ GeV}$$

Source	m_T Fit	p_T Fit	p_T' Fit
W Statistics	234	263	311
Edge EM scale (α_{edge})	265	309	346
CC EM scale (α_{cc})	128	131	113
CC EM offset (δ_{cc})	142	139	145
Calorimeter uniformity	10	10	10
Electron angle calibration	38	40	52
Backgrounds	10	20	20
CC EM resolution (c_{cc})	15	18	2
Edge EM resolution (c_{edge})	268	344	404
Fraction of events (f_{edge})	8	14	22
Recoil response	20	16	46
Recoil resolution	25	10	90
Electron removal	15	15	20
Selection bias	2	9	20
Parton luminosity	9	11	9
Radiative corrections	4	8	0
PDF	0	64	9
$p_T(W)$	10	50	25
W-boson width	10	10	10

TABLE I. W mass uncertainties (in MeV) in the edge electron measurements. The uncertainties due to the edge electron parameters f_{edge}, α_{edge}, and c_{edge} are explained in the text, while details of the other sources of uncertainty are given in Ref. [2].

The Č-C $Z \to ee$ data sample provides a means to additionally constrain the central calorimeter scale α_{CC} and resolution constant term c_{CC} for non-edge electrons. Fitting to the observed m_{ee} distribution yields $\alpha_{\text{CC}} = 0.9552 \pm 0.0023$. The Č-E events can also be used to fit for α_{CC} and α_{EC} yielding $\alpha_{\text{CC}} = 0.9559 \pm 0.0107$ and $\alpha_{\text{EC}} = 0.9539 \pm 0.0085$. These values are consistent with the results obtained in our earlier analyses of non-edge and EC events and can be combined with them taking into account the correlations to improve the energy scale uncertainty, and hence the uncertainty on the W boson mass measurement.
IV. COMBINED W MASS RESULTS

To obtain the final result for the W boson mass, we combine the following measurements:

(i) The Run 1a W mass measurement from a fit to m_T

(ii) The three Run 1b central calorimeter measurements from fits to m_T, p_T^e, and p_T^ν

(iii) The three Run 1b end calorimeter measurements from fits to m_T, p_T^e, and p_T^ν

(iv) The three edge electron measurements from fits to m_T, p_T^e, and p_T^ν

The measurements in (ii) and (iii) include the improvement due to the additional constraints on the EM calorimeter energy scale from edge events as discussed above.

The final combined result is

$$m_W = 80.483 \pm 0.084 \text{ GeV}$$

This represents an improved error of 7 MeV over our previously published result ($80.482 \pm 0.091 \text{ GeV}$ [2]). A major part of the improved uncertainty is due to the use of the Č-C events to constrain the EM calorimeter energy scale for non-edge electrons.

V. CONCLUSION

We have improved the uncertainty in the DØ measurement of the W boson mass, using $W \rightarrow e\nu$ and $Z \rightarrow ee$ events in which electrons are detected in the edge region at the boundary between modules of the central calorimeter. The new result is $m_W = 80.483 \pm 0.084 \text{ GeV}$.

ACKNOWLEDGEMENTS

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Énergie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), and the A.P. Sloan Foundation.
REFERENCES

* Visitor from University of Zurich, Zurich, Switzerland.

[1] J. Erler, Phys. Rev. D 63, 071301 (2001);
[2] DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 80, 3008 (1998); Phys. Rev. D 58, 092003 (1998); Phys. Rev. Lett. 84, 222 (2000); Phys. Rev. D 62, 092006 (2000).
[3] CDF Collaboration, T. Affolder et al., hep-ex/0007044, submitted to Phys. Rev. D.
[4] The LEP Collaborations, the LEP Electroweak Working Group, the SLD Heavy Flavour and Electroweak Working Group, hep-ex/0103048.
[5] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods A338, 185 (1994).