Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part V, knee

Luca Maria Sconfienza1,2 · Miraude Adriaensen3 · Domenico Albano1,4 · Andrea Alcala-Galiano5 · Georgina Allen6,7 · Maria Pilar Aparisi Gómez8,9 · Giacomo Aringhieri10 · Alberto Bazzocchi11 · Ian Beggs12 · Vito Chianca13,14 · Angelo Corazza1 · Danoob Dalili15 · Miriam De Dea16 · Jose Luis del Cura17 · Francesco Di Pietto18 · Elena Drakonaki19 · Fernando Facal de Castro20 · Dimitrios Filippidis21 · Salvatore Gitto2 · Andrew J. Grainger22 · Simon Greenwood23 · Harun Gupta24 · Amanda Isaac15,25 · Slavcho Ivanoski26,27 · Monica Khanna28 · Andrea Krause29 · Ramy Mansour30 · Silvia Martin31 · Vasco Mascarenhas32,33 · Giovanni Mauri34,35 · Catherine McCarthy36 · David McKean37 · Eugene McNally36 · Kalliopi Melaki38 · Rebeca Mirón Mombiela39 · Ricardo Moutinho32,40 · Marina Obradov41 · Cyprian Olchowy42 · Davide Orlandi43 · Raquel Prada Gonzalez44 · Mahesh Prakash45 · Magdalena Posadzy46 · Saulius Rutkauskas47 · Žiga Snoj48,49 · Alberto Stefano Tagliafico50,51 · Alexander Talaska52 · Xavier Tomas53 · Violeta Vasiljevska-Nikodinovska27,54 · Jelena Vucetic55 · David Wilson56 · Federico Zaottini51 · Marcello Zappia56,57 · Carmelo Messina1

Received: 5 March 2021 / Revised: 26 July 2021 / Accepted: 7 August 2021 / Published online: 14 September 2021
© The Author(s) 2021, corrected publication 2022

Abstract

Objectives Interventional procedures around the knee are widely adopted for treating different musculoskeletal conditions. A panel of experts from the Ultrasound and Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR) reviewed the existing literature to assess the evidence on image-guided musculoskeletal interventional procedures around the knee, with the goal of highlighting some controversies associated with these procedures, specifically the role of imaging guidance, as well as the efficacy of the medications routinely injected.

Methods We report the results of a Delphi-based consensus of 53 experts in musculoskeletal radiology, who reviewed the published literature for evidence on image-guided interventional procedures around the knee to derive a list of pertinent clinical indications.

Results A list of 10 statements about clinical indications of image-guided procedures around the knee was created by a Delphi-based consensus. Only two of them had the highest level of evidence; all of them received 100% consensus.

Conclusions Ultrasonography guidance is strongly recommended for intra-articular and patellar tendinopathy procedures to ensure the precision and efficacy of these treatments. Prospective randomized studies remain warranted to better understand the role of imaging guidance and assess some of the medications used for interventional procedures around the knee.

Key Points
• A list of 10 evidence-based statements on clinical indications of image-guided interventional procedures around the knee was produced by an expert panel of the ESSR.
• Strong consensus with 100% agreement was obtained for all statements.
• Two statements reached the highest level of evidence, allowing us to strongly recommend the use of ultrasonography to guide intra-articular and patellar tendon procedures to ensure higher accuracy and efficacy of these treatments.

Keywords Interventional radiology · Knee · Patellar tendon · Platelet-rich plasma · Hyaluronic acid

Abbreviations
ESSR European Society of Musculoskeletal Radiology
HA Hyaluronic acid
PRP Platelet-rich plasma
Introduction

Interventional procedures around the knee are widely utilized to treat different musculoskeletal conditions. Some of these interventions (e.g., injections or aspirations) are often performed without image guidance, particularly by orthopedists. However, image guidance ensures correct needle position for optimal medication delivery, avoiding injuries to adjacent neurovascular bundles [1–5]. Currently, image guidance for musculoskeletal procedures around the knee has not been incorporated into established guidelines, due to sparse and contentious evidence on its clinical impact in the literature. Moreover, the choice of the procedure is debatable, as new approaches, such as the use of hyaluronic acid (HA) and platelet-rich plasma (PRP), have been recently introduced to treat both joint and tendon conditions [6–8]. Accordingly, the Ultrasound (US) and Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR), together with its Research Committee, initiated in 2019 a collaborative task dedicated to reviewing the existing literature on image-guided musculoskeletal interventional procedures in the lower limb and providing evidence for its clinical indications. This paper reports the list of statements provided by an expert panel of the ESSR and obtained by a Delphi process on published literature evaluating image-guided interventions around the knee.

Materials and methods

Institutional review board approval was not needed as no patient-specific data were involved. This paper concludes the task carried on by an expert panel of the ESSR which reviewed the evidence of image-guided musculoskeletal interventional procedures in the lower limb. Here, we report the results focusing on tendon, joint, and bursal interventions around the knee. As previously done [9–12], we used a literature-based Delphi process of evidence review including multiple discussion rounds to evaluate the opinion of experts on debatable topics, drafted on the basis of the existing literature, to obtain a final shared agreement [13]. The AGREE II tool was followed to guarantee the quality of this analysis [14]. Supplementary material includes the explanation of the Delphi method steps. The Oxford Centre for Evidence-based Medicine evidence levels were employed to assess the evidence of published papers [15].

Results

1. Intra-articular US-guided procedures around the knee joint, such as arthrocentesis and intra-articular injections, are more accurate than palpation-guided procedures, resulting in improved fluid aspiration and injection therapeutic outcome(s).

Level of evidence, 1
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

A systematic review reported that image-guided and particularly US-guided knee injections are more accurate than palpation-guided procedures [16]. A randomized trial also reported superior accuracy of the US-guided technique performed by trainees as compared with palpation-guided procedures performed by experienced clinicians [17]. Accuracy rates were high (95–100%) and similar when injecting the joint through in-plane superolateral, mid-lateral, and mid-medial approaches [18]. Accuracy rates were also high (95%) using an out-of-plane technique with mid-lateral [19] and mid-medial [20] approaches—although some authors reported that an out-of-plane mid-medial approach could result in decreased accuracy [19]. Similarly, accuracy rates of US-guided knee arthrocentesis have been reported to be superior to palpation guidance [21]. Most studies reported superior injection benefits [22] and +183% improved joint aspiration with improved 2-week outcome [23] using US-guided rather than palpation-guided procedures. Randomized trials comparing US-guided and palpation-guided corticosteroid intra-articular injections [17, 22] reported pain reduction at 2-week follow-up, 107% increase in the responder rate, and 36% increase in therapeutic duration with subsequent cost reduction, using US guidance [22]. In knee osteoarthritis treated with HA injections, the use of US guidance resulted in enhanced functional and pain-score improvement after 6 and 12 weeks [24], with long-term decreased knee arthroplasty rate [25] when compared to palpation guidance. In emergency settings, both blind and US-guided arthrocentesis were successful, although the latter led to higher volume aspiration for novice practitioners [26].

2. US-guided knee joint injections of corticosteroid-anesthetic give short-to-midterm pain relief and functional improvement in inflammatory arthritis. Although similar outcomes may be observed in osteoarthritis, efficacy is controversial, and alternative analgesic therapies (such as oxygen-ozone) have been proposed, but evidence supporting their use remains limited.
Level of evidence, 2
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

In a randomized study, US-guided injections of corticosteroid-anesthetic demonstrated pain relief and improved function at 2 and 6 weeks in patients with inflammatory arthritis [17]. In knee osteoarthritis, US-guided intra-articular administration of corticosteroid-anesthetic has been shown to produce similar clinical and functional outcomes at 1, 2, and 4 weeks in a randomized study compared to oxygen-ozone injection [27], as well as in a cohort study [28]. However, no outcome difference was found in another randomized trial comparing US-guided injections of placebo or corticosteroid at 2-week follow-up [29]. These findings are consistent with a systematic review and meta-analysis including both US-guided and palpation-guided injections, where no clear clinical advantage of corticosteroids use was found in the short-to-midterm [30]. Furthermore, repeated corticosteroid use has been reported to accelerate cartilage volume loss in a 2-year clinical trial that randomized patients with knee osteoarthritis to triamcinolone or placebo injections [31]. Hence, current evidence supports the use of US-guided injections of corticosteroid-anesthetic in inflammatory arthritis, but it is contradictory about their efficacy and cautious about the long-term safety of repeated injections in knee osteoarthritis.

Regarding other US-guided intra-articular analgesic treatments, a randomized controlled study compared oxygen-ozone efficacy with that of corticosteroid at 1 week, 1 month, and 3 months [27]. Both therapies were effective in improving symptoms and functional outcomes at 1 week and 1 month. This improvement was sustained for 3 months in patients treated with oxygen-ozone but not with corticosteroids [27].

3. US-guided HA intra-articular injections are safe and improve pain scores and function in knee osteoarthritis, showing greater efficacy than steroids in the long term.

Level of evidence, 3
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Systematic reviews of overlapping meta-analyses found that HA injections are effective in treating knee osteoarthritis with no increased risk of adverse events [32], with positive effects lasting up to 26 weeks [33]. Most studies used blind techniques to perform injections. Nevertheless, a case–control retrospective study reported that US-guided HA injection improved pain and function at 6-month follow-up [34]. Greater pain reduction was observed compared to intra-articular corticosteroid injections [34]. These findings are concordant with a previous meta-analysis including high-quality randomized trials using intra-articular corticosteroid and HA injections, regardless of the injection approach [35]. Efficacy on pain was greater in the corticosteroid group in the short term (up to 1 month), similar in midterm (3 months), and greater in the HA group in the long term (6 months) [35]. US guidance improved injection accuracy and clinical outcomes at 6- and 12-week follow-up compared with palpation-guided injections in a randomized trial [24]. Long-term, precise intra-articular injection of HA by US guidance was associated with a reduced knee arthroplasty rate compared to the palpation-guided approach, particularly in obese patients [25, 32].

4. US-guided injections of regenerative medications have been reported to show clinical benefit by relieving pain and enhancing function in patients with knee osteoarthritis but lack randomized controlled trial evidence.

Level of evidence, 3
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

Regenerative therapies have emerged as alternative strategies to treat knee osteoarthritis. Among them, blood derivatives such as PRP [36], autologous conditioned serum [37], and autologous protein solution [38] intra-articular administration under US guidance safely produced clinical improvement observed early after treatment and sustained up to 1 year thereafter [36–38]. Adding growth hormone to PRP improved joint function in the short term [39]. However, the efficacy of blood derivatives remains controversial. A randomized controlled trial reported similar improvements up to 6 months after saline injection [38]. Larger randomized controlled studies providing longer-term follow-up are needed.

US-guided injections of other regenerative substances, such as adipose-derived stem cells [40] and amniotic membrane/umbilical cord particulate [41], have shown clinical and functional improvements up to 6 and 12 months after treatment in non-controlled studies on small series. Evidence regarding their clinical use remains limited. Prolotherapy has been reported to be less effective than PRP in reducing pain and functional limitation in patients with knee osteoarthritis [36].

5. US-guided procedures around the menisci are promising for short-term pain management, but evidence supporting their use is limited.

Level of evidence, 4
Agree, $n = 53$; disagree, $n = 0$; abstain, $n = 0$. Agreement = 100%

In patients with knee osteoarthritis and meniscal extrusion [42], tear, or degeneration [43], US-guided
meniscus-targeted corticosteroid injections have been reported to relieve pain at short-term follow-up (at 1–4 weeks [42] and 5–6 weeks on average [43]). The absence of a control group is the main limitation of these studies. However, these preliminary findings encourage future higher-quality research. US-guided drainage of meniscal cysts with subsequent corticosteroid and anesthetic injection has been proposed as a safe and well-tolerated option to delay surgery, with complete symptom resolution reported at an average follow-up of 10 months in more than half of patients [44]. Higher-quality studies with longer-term follow-up are absent.

6. In fat pad–related anterior knee pain syndromes, US-guided corticosteroid-anesthetic injection and fat pad alcohol ablation might be safe and effective in short-term pain reduction, although no randomized studies are available.

Level of evidence, 4
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Anterior knee pain may be associated with inflammation, hypertrophy, or edema of fat pads resulting in impingement syndromes [45, 46]. US-guided corticosteroid-anesthetic injections are safe and effective in the short-term reduction of pain secondary to suprapatellar fat pad inflammation [45]. A non-randomized study compared physical therapy with and without prior US-guided corticosteroid-anesthetic injection for suprapatellar fat-pad edema, showing a greater pain reduction in the injected patients at 1-month follow-up but not at 6-month follow-up [45]. Furthermore, an uncontrolled study on 12 patients with infrapatellar fat pad impingement syndrome evaluated the efficacy of serial US-guided ethanol-bupivacaine injections, resulting in pain reduction at 6-week follow-up [46]. However, the evidence is still limited.

7. US-guided dry needling is effective in improving function and pain in patellar tendinopathy (PT), especially if associated with PRP. Conflicting results about the clinical effectiveness of PRP in PT do not allow supporting the use of this treatment as a first-line approach.

Level of evidence, 1
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

A meta-analysis on nonsurgical approaches for PT confirmed that dry needling was one of the non-invasive treatments demonstrating clinical improvement [47]. Retrospective and case studies showed clinical improvement at 4 weeks in around 74% of cases [48–51]. Housner reported excellent to good satisfaction scoring at 4 weeks in 81% of 47 patients with recalcitrant PT with, however, one tendon rupture [49]. Pain improvement for refractory PT was reported combining two dry needlings with autologous blood injections performed 4 weeks apart [52]. US-guided PRP injection combined with dry needling and eccentric loading exercise was shown to be more effective than dry needling alone in refractory PT at 12 weeks [53]. Furthermore, dry needling was more effective than eccentric loading exercises alone [53]. PRP injection was more effective than extracorporal shockwave therapy at 6 and 12 months follow-up [54]. High-volume and PRP injections were reported as having similar efficacy in the short term, while positive effects of high-volume injections gradually diminished and PRP showed greater efficacy in the medium term. However, their combination provided better results at 6 months [55]. Conversely, one study showed PRP alone had a similar clinical effect at 12 weeks when compared to saline [56].

8. Other US-guided treatments have been shown to be safe for treating PT (corticosteroid, high-volume injections, prolotherapy, sclerosing injections with polidocanol, and HA). However, no studies compared them; thus clinical superiority of one treatment over another still needs clarification.

Level of evidence, 3
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Peritendinous corticosteroid injection for PT has been shown to be more effective than placebo at 3 months. However, it caused reversible short-term skin atrophy in 37% [57]. Further, some patients presented symptoms of relapse within 6 months when combined with aggressive rehabilitation.

US-guided high-volume injection has shown good short-term results in athletes and nonathletes [58, 59]. US-guided high-volume corticosteroid-anesthetic and saline injection have shown good results in PT [58, 59]. One study recommended post-injection physical therapy using eccentric loading [59]. Conversely, ambiguous results have been reported using high-volume image-guided injection for PT, with all patients showing clinical improvement, but 6/28 patients required surgery after treatment and 2/28 had additional corticosteroid injection [60].

Hyperosmolar dextrose prolotherapy can be safely used to treat intractable Osgood-Schlatter’s disease and chronic PT in young adolescents and adults. Some evidence suggests greater symptom improvement after prolotherapy than the usual conservative treatment [61, 62]. However, a randomized controlled trial on 49 knees with Osgood-Schlatter’s disease failed to show any pain difference after prolotherapy compared to lidocaine injection alone [63].
Small-cohort randomized controlled studies on sclerosing injections on groups of athletes and nonathletes reported improvement in knee function with short-term pain reduction [64, 65]. Moreover, this technique seems to offer long-term pain relief [66, 67].

US-guided HA injection is a safe and feasible treatment for PT pain [68]. US-guided peritendinous injections of HA performed on three occasions 1 week apart were safe, showing pain relief, a decrease in tendon thickness, and decreasing neovascularization at 3 weeks [69]. In a small series, 3 weeks of HA peritendinous injections showed a reduction in swelling and tenderness without adverse events [70].

9. **US-guided aspiration, wall fenestration, and corticosteroid injection of Baker’s cysts are safe and effective procedures in relieving pain and reducing cyst volume in patients with Baker’s cysts secondary to internal knee derangement.**

Level of evidence, 3
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

Although Baker’s cyst therapy depends on the primary cause, percutaneous interventions can be safely performed under US guidance [71–73]. In patients with knee osteoarthritis, US-guided Baker’s cyst aspiration and corticosteroid-anesthetic injection have shown significant pain relief and cyst diameters decrease up to 4 [71, 72] and 8 weeks [73]. Direct Baker’s cyst injection gave a greater size reduction and better clinical outcomes compared to an anterior knee joint injection at 4- and 8-week follow-up [73]. Aspiration and corticosteroid injection performed better than stand-alone physical therapy, even though their combination further ameliorated symptoms [72]. At long-term follow-up in patients with knee osteoarthritis [74] or other knee pathologies [75], US-guided aspiration, wall fenestration in the case of multilocular cysts, and injection of anesthetic and corticosteroid showed similar clinical benefit by relieving pain [74, 75] and reducing cyst volume [74]. A significant correlation exists between volume reduction and clinical improvement [74]. Baker’s cyst recurrence was noted in complex cysts, without any significant pain change between the patients with simple and complex cysts [74]. Close follow-up may be advantageous so the treatment can be repeated in case of recurrence [74]. In two case reports, US-guided sclerotherapy with hypertonic dextrose has been used as a treatment option for Baker’s cyst treatment [76, 77], but the clinical value has not still been demonstrated. US-guided intervention in Baker’s cyst when visually observed by the patient can be used as a positive bio-feedback, favorably affecting the treatment outcome [78].

10. **US-guided corticosteroid injections are more effective than blind injections to treat pes anserinus bursitis, but the added value of imaging to guide other periarticular injections (excluding patellar tendon and Baker’s cyst) has not been demonstrated.**

Level of evidence, 3
Agree, n = 53; disagree, n = 0; abstain, n = 0. Agreement = 100%

A prospective randomized cadaveric study has shown that US-guided injections in the pes anserinus bursa are feasible and more accurate than palpation-guided injections [79]. A prospective controlled study comparing US-guided to blind corticosteroid injections into the pes anserinus bursa of patients with bursitis showed that the US-guided injections resulted in greater improvement at 1 and 4 weeks compared to blind injections [80]. Based on review papers, possible interventions in the prepatellar bursa include US-guided corticosteroid injection into an inflamed bursa or aspiration for diagnosis of infection or other synovial pathology [81]. However, no information about efficacy is available. Smith et al. showed 83–100% accuracy of needle placement into the popliteus tendon sheath. Finnoff et al. achieved 92% accuracy in injecting the pes anserinus bursa with US guidance but only 17% accuracy using landmark injections [79]. Jose et al. injected corticosteroid and anesthetic into the medial collateral ligament bursa [82], while Hong et al. used the same mixture for iliotibial band syndrome [83]. More studies comparing guidance modalities and corticosteroids to other therapies are needed.

Discussion

We found some evidence concerning image-guided procedures around the knee. In all statements, US guidance has been established as pivotal, as accuracy and clinical outcome are generally higher compared to palpation-guided procedures with the highest level of evidence (statement #1). Moreover, US-guided injection of corticosteroid-anesthetic has proven to be effective in the short-to-midterm follow-up for treating inflammatory arthritis with a level of evidence 2 (statement #2). Conversely, despite being seemingly safe and effective in treating osteoarthritis, strong evidence is still lacking for US-guided injections of HA (statement #3) and regenerative medications (statement #4). Furthermore, only small case series are available for US-guided procedures around the menisci and injections and alcohol ablation in knee anterior fat pad–related syndromes, reporting promising results that require to be further confirmed by larger series.

Regarding periarticular treatments, PT is the most investigated topic. According to our results, US-guided dry
needling is highly effective in PT with a higher level of evidence (statement #7). Notably, although the association of PRP to dry needling seems to improve the outcome, there are still conflicting results concerning the value of PRP alone for PT, leading us to recommend avoiding this treatment as a first-line strategy. Although different safe and effective US-guided treatment options exist, no randomized prospective studies have effectively clarified which one should be preferred as the best choice (statement #8). Last, US-guided treatments of Baker’s cyst (statement #9) and pes anserinus bursitis (statement #10) are both safe and effective, but the level of evidence of these procedures is still too low to strongly recommend these treatments.

In summary, ten statements regarding US-guided musculoskeletal interventions around the knee have been provided by a working group of experts from the ESSR. US guidance is strongly recommended for intra-articular and PT procedures to ensure higher accuracy and efficacy. Prospective randomized studies remain warranted, especially for knee procedures with low levels of evidence.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00330-021-08258-1.

Acknowledgements All of the authors are members of the Ultrasound and/or Interventional Subcommittees of the European Society of Musculoskeletal Radiology (ESSR).

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement. The authors state that this work has not received any funding.

Declarations

Guarantor The scientific guarantor of this publication is Luca Maria Sconfienza, MD PhD.

Conflict of Interest The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and Biometry No complex statistical methods were necessary for this paper.

Informed Consent No informed consent was needed as this paper does not involve patients.

Ethical Approval Institutional Review Board approval was not required because this paper does not involve patients.

Methodology Literature-based Delphi process

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian Survey by the Italian College of Musculoskeletal Radiology. Radiol Medica 123:314–321
2. Albano D, Chianca V, Tormenta S et al (2017) Old and new evidence concerning the crucial role of ultrasound in guiding intra-articular injections. Skeletal Radiol 46:963–964. https://doi.org/10.1007/s00256-017-2644-3
3. Chan BY, Lee KS (2018) Ultrasound intervention of the lower extremity/pelvis. Radiol Clin North Am 56:1035–1046. https://doi.org/10.1016/j.rcl.2018.06.011
4. Sheth T, Miranda OM, Johnson B (2021) Assessment of patient satisfaction, functionality, and quality of life after ultrasound-guided knee intervention: a prospective study. Clin Rheumatol 40:735–740. https://doi.org/10.1007/s10067-020-05254-6
5. Sconfienza LM, Albano D, Messina C et al (2020) Ultrasound-guided percutaneous tenotomy of the long head of biceps tendon in patients with symptomatic complete rotator cuff tear: in vivo non-controlled prospective study. J Clin Med 9:2114. https://doi.org/10.3390/jcm9072114
6. Albano D, Messina C, Usuelli FG et al (2017) Magnetic resonance and ultrasound in Achilles tendinopathy: predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur J Radiol 95:130–135. https://doi.org/10.1016/j.ejrad.2017.08.006
7. Strauss EJ, Hart JA, Miller MD et al (2009) Hyaluronic acid viscosupplementation and osteoarthritis: current uses and future directions. Am J Sports Med 37:1636–1644. https://doi.org/10.1177/0363546508326984
8. Ren H, Zhang S, Wang X, et al (2020) Role of platelet-rich plasma in the treatment of osteoarthritis: a meta-analysis. J Int Med Res. https://doi.org/10.1177/0300060520964661
9. Sconfienza LM, Albano D, Allen G et al (2018) Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol 28:5338–5351. https://doi.org/10.1007/s00330-018-5474-3
10. Sconfienza LM, Adriaensen M, Albano D, et al (2020) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part I, shoulder. Eur Radiol. https://doi.org/10.1007/s00330-019-06419-x
11. Sconfienza LM, Adriaensen M, Albano D et al (2020) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part II, elbow and wrist. Eur Radiol 30:2220–2230
12. Sconfienza LM, Adriaensen M, Albano D et al (2020) Clinical indications for image-guided interventional procedures in the musculoskeletal system: a Delphi-based consensus paper from the European Society of Musculoskeletal Radiology (ESSR)—part III, nerves of the upper limb. Eur Radiol 30:1498–1506. https://doi.org/10.1007/s00330-019-06479-z
26. Wiler JL, Costantino TG, Filippone L, Satz W (2010) Comparison of papers reporting recommendation on sarcopenia using the AGREE II tool: a EuroAIM initiative. Eur J Clin Nutr 74:1164–1172. https://doi.org/10.1038/s41430-020-0638-z

27. Babaei-Ghazani A, Najarzadeh S, Mansoori K et al (2018) The efficacy of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA 317:1967. https://doi.org/10.1001/jama.2017.5283

28. Xing D, Wang B, Liu Q et al (2016) Intrarticular hyaluronic acid in treating knee osteoarthritis: a PRISMA-compliant systematic review of overlapping meta-analysis. Sci Rep 6:32790. https://doi.org/10.1038/srep32790

29. Henriksen M, Christensen R, Klokker L et al (2015) Evaluation of the benefit of corticosteroid injection before exercise therapy in patients with osteoarthritis of the knee. JAMA Intern Med 175:923. https://doi.org/10.1001/jamainternmed.2015.0461

30. Jüni P, Hari R, Rutjes AW, et al (2015) Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev 2–3. https://doi.org/10.1002/14651858.CD005328.pub3

31. McAlindon TE, LaValley MP, Harvey WF et al (2017) Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA 317:1967. https://doi.org/10.1001/jama.2017.5283

32. Xing D, Wang B, Liu Q et al (2016) Intra-articular hyaluronic acid in treating knee osteoarthritis: a PRISMA-compliant systematic review of overlapping meta-analysis. Sci Rep 6:32790. https://doi.org/10.1038/srep32790

33. Campbell KA, Erickson BJ, Saltzman BM et al (2015) Local visscosupplementation injection clinically superior to other therapies in the treatment of osteoarthritis of the knee: a systematic review of overlapping meta-analyses. Arthroscopy 31:2036–2045. e14. https://doi.org/10.1016/j.arthro.2015.03.030

34. Parisi S, Ditto MC, Priora M, et al (2020) Ultrasound-guided intra-articular injection: efficacy of hyaluronic acid compared to glucocorticoid in the treatment of knee osteoarthritis. Minerva Med. https://doi.org/10.23736/S0002-4806.19.06190-1

35. He W, Kuang M, Zhao J et al (2017) Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: a meta-analysis. Int J Surg 39:95–103. https://doi.org/10.1016/j.ijsu.2017.01.087

36. Rahimzadeh P, Imani F, Faiz SHR et al (2018) The effects of injecting intra-articular platelet-rich plasma or prolotherapy on pain score and function in knee osteoarthritis. Clin Interv Aging 13:73–79. https://doi.org/10.2147/CIA.S147757

37. Barreto A, Braun TR (2017) A new treatment for knee osteoarthritis: clinical evidence for the efficacy of Arthrokine™ autologous conditioned serum. J Orthop 14:4–9. https://doi.org/10.1016/j.jor.2016.10.008

38. Kon E, Engelbreit L, Verdonk P et al (2018) Clinical outcomes of knee osteoarthritis treated with an autologous protein solution injection: a 1-year pilot double-blinded randomized controlled trial. Am J Sports Med 46:171–180. https://doi.org/10.1177/0363546517732734

39. Rahimzadeh P, Imani F, Faiz S-H-R, et al (2016) Adding intra-articular growth hormone to platelet rich plasma under ultrasound guidance in knee osteoarthritis: a comparative double-blind clinical trial. Anesthesiol Pain Med. https://doi.org/10.5812/apm.41719

40. Panchal J, Malanga G, Sheinkop M (2018) Safety and efficacy of percutaneous injection of Lipogems micro-fractured adipose tissue for osteoarthritic knees. Am J Orthop (Belle Mead NJ) 47:1–11. https://doi.org/10.12788/aaj.2018.0098

41. Castellanos R, Tighe S (2019) Injectable amniotic membrane/umbilical cord particulate for knee osteoarthritis: a prospective, single-center pilot study. Pain Med 20:2283–2291. https://doi.org/10.1093/pm/pnz143

42. Di Sante L, Venditto T, Ioppolo F et al (2019) Injectable amniotic membrane/umbilical cord particulate for knee osteoarthritis: a prospective, single-center pilot study. Pain Med 20:2283–2291. https://doi.org/10.1093/pm/pnz143

43. Di Sante L, Venditto T, Ioppolo F et al (2019) Ultrasound-guided injection of a painful knee osteoarthritis with medial meniscus extrusion: a case series study. Muscle Ligaments Tendons J 07:331. https://doi.org/10.32098/mljt.02.2017.16

44. Wilderman I, Berkovich R, Meaney C et al (2019) Meniscus-targeted injections for chronic knee pain due to meniscal tears or degenerative fraying: a retrospective study. J Ultrasound Med 38:2853–2859. https://doi.org/10.1002/jum.14987

45. MacMahon PJ, Brennan DD, Duke D et al (2007) Ultrasound-guided percutaneous drainage of meniscal cysts: preliminary clinical experience. Clin Radiol 62:683–687. https://doi.org/10.1016/j.crad.2007.02.007

46. Ozdemir ZM, Ayingoz U, Korkmaz MF, et al (2016) Ultrasoundography-guided injection for quadriceps fat pad edema:
preaminary report of a six-month clinical and radiological follow-up. J Belgian Soc Radiol. https://doi.org/10.5334/jbr-btr.1148

46. House CV, Connell DA (2007) Therapeutic ablation of the infrapatellar fat pad under ultrasound guidance: a pilot study. Clin Radiol 62:1198–1201. https://doi.org/10.1016/j.crad.2007.07.005

47. Chen PC, Wu KT, Chou WY et al (2019) Comparative effectiveness of different nonsurgical treatments for patellar tendinopathy: a systematic review and network meta-analysis. Arthroscopy – J Arthrosc Relat Surg 35:3117–3131.e2. https://doi.org/10.1016/j.arthro.2019.06.017

48. Kanaan Y, Jacobson JA, Jamadar D et al (2013) Sonographically guided patellar tendon fenestration: prognostic value of preprocedure sonographic findings. J Ultrasound Med 32:771–777. https://doi.org/10.7863/ultra.32.5.771

49. Housner JA, Jacobson JA, Morag Y et al (2010) Should ultrasound-guided needle fenestration be considered as a treatment option for recalcitrant patellar tendinopathy? A retrospective study of 47 cases. Clin J Sport Med 20:488–490. https://doi.org/10.1097/JSM.0b013e3181f617f

50. Testa V, Capasso G, Maffulli N, Bifulco G (1999) Ultrasound-guided percutaneous longitudinal tenotomy for the management of patellar tendinopathy. Med Sci Sports Exerc 31:1509–1515. https://doi.org/10.1097/00005768-199910000-00003

51. Housner JA, Jacobson JA, Misko R (2009) Sonographically guided percutaneous needle tenotomy for the treatment of chronic tendinosis. J Ultrasound Med 28:1187–1192. https://doi.org/10.7863/ultra.28.9.1187

52. James SL, Ali K, Pocock C et al (2007) Ultrasound-guided dry needling and autologous blood injection for patellar tendinosis. Br J Sports Med 41:518–521. https://doi.org/10.1136/bjsm.2006.034868

53. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT (2014) Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med 42:610–618. https://doi.org/10.1177/0363546514526512

54. Vetrano M, Castorina A, Vulpiani MC et al (2013) Platelet-rich plasma versus focused shock waves in the treatment of Jumper’s knee in athletes. Am J Sports Med 41:795–803. https://doi.org/10.1177/0363546513475345

55. Abate M, Di Carlo L, Verna S et al (2018) Synergistic activity of platelet rich plasma and high volume image guided injection for patellar tendinopathy. Knee Surgery, Sport Traumatol Arthrosc 26:3645–3651. https://doi.org/10.1007/s00167-018-4930-6

56. Scott A, LaPrade RF, Harmon KG et al (2019) Platelet-rich plasma for patellar tendinopathy: a randomized controlled trial of leukocyte-rich PRP or leukocyte-poor PRP versus saline. Am J Sports Med 47:1654–1661. https://doi.org/10.1177/0363546519837954

57. Fredberg U, Bolvig L, Pfeiffer-Jensen M et al (2004) Ultrasoundography as a tool for diagnosis, guidance of local steroid injection and together with pressure algometry, monitoring of the treatment of athletes with chronic jumper’s knee and Achilles tendinitis: a randomized, double-blind, placebo-controlled study. Scand J Rheumatol 33:94–101. https://doi.org/10.1080/03009740310004126

58. Maffulli N, Del Buono A, Oliva F et al (2016) High-volume image-guided injection for recalcitrant patellar tendinopathy in athletes. Clin J Sport Med 26:12–16. https://doi.org/10.1097/JSM.0000000000000242

59. Morton S, Chan O, King J et al (2014) High volume image-guided Injections for patellar tendinopathy: a combined retrospective and prospective case series. Muscles Ligaments Tendons J 4:214–219. https://doi.org/10.11138/mltj/2014.4.2.214

60. Nielsen TG, Miller LL, Mygind-Klavsen B, Lind M (2020) High-volume image-guided injection in the chronic recalcitrant non-insertional patellar tendinopathy: a retrospective case series. J Exp Orthop. https://doi.org/10.1186/s40634-020-00299-7

61. Ryan M, Wong A, Rabago D et al (2011) Ultrasound-guided injections of hyperosmolar dextrose for overuse patellar tendinopathy: a pilot study. Br J Sports Med 45:972–977. https://doi.org/10.1136/bjsm.2010.081455

62. Topol GA, Podesta LA, Reeves KD, et al (2011) Hyperosmolar dextrose injection for recalcitrant Osgood-Schlatter disease. Pediatrics. doi: https://doi.org/10.1542/peds.2010-1931

63. Nakase J, Oshima T, Takata Y et al (2020) No superiority of dextrose injections over placebo injections for Osgood-Schlatter disease: a prospective randomized double-blind study. Arch Orthop Trauma Surg 140:197–202. https://doi.org/10.1007/s00024-019-03297-2

64. Hoksrud A, Øhberg L, Alfredson H, Bahr R (2006) Ultrasound-guided sclerosis of neovessels in painful chronic patellar tendinopathy: a randomized controlled trial. Am J Sports Med 34:1738–1746. https://doi.org/10.1097/01AMS.0b013e31833f9168

65. Willberg L, Sunding K, Forssblad M et al (2011) Sclerosing polidocanol injections or arthroscopic shaving to treat patellar tendinopathy/jumper’s knee? A randomised controlled study. Br J Sports Med 45:414–415. https://doi.org/10.1136/bjsm.2010.082446

66. Hoksrud A, Bahr R (2011) Ultrasound-guided sclerosing treatment in patients with patellar tendinopathy (Jumper’s knee): 44-month follow-up. Am J Sports Med 39:2377–2380. https://doi.org/10.1177/0363546511417097

67. Hoksrud A, Torgalsen T, Harstad H et al (2012) Ultrasound-guided sclerosis of neovessels in patellar tendinopathy: a prospective study of 101 patients. Am J Sports Med 40:542–547. https://doi.org/10.1177/0363546511433012

68. Kumai T, Muneta T, Tsuchiya A et al (2014) The short-term effect after a single injection of high-molecular-weight hyaluronic acid in patients with enthesopathies (lateral epicondylitis, patellar tendinopathy, insertionial Achilles tendinopathy, and plantar fasciitis): a preliminary study. J Orthop Sci 19:603–611. https://doi.org/10.1007/s00776-014-0579-2

69. Fogli M, Giordan N, Mazzoni G (2017) Efficacy and safety of hyaluronic acid (500–730kDa) ultrasound-guided injections on painful tendinopathies: a prospective, open label, clinical study. Muscles Ligaments Tendons J 7:388–395. https://doi.org/10.11138/mltj/2017.7.2.388

70. Frizziero A, Oliva F, Vittadini F et al (2019) Efficacy of ultrasound-guided hyaluronic acid injections in Achilles and patellar tendinopathies: a prospective multicentric clinical trial. Muscles Ligaments Tendons J 9:305–313. https://doi.org/10.32098/ mtlj.03.2019.01

71. Di Sante L, Paoloni M, Ioppolo F et al (2010) Ultrasound-guided aspiration and corticosteroid injection of Baker’s cysts in knee osteoarthritis. Am J Phys Med Rehabil 89:970–975. https://doi.org/10.1097/PHM.0b013e3181fc7da2

72. Di Sante L, Paoloni M, Dimaggio M et al (2012) Ultrasound-guided aspiration and corticosteroid injection compared to horizon- tional therapy for treatment of knee osteoarthritis complicated with Baker’s cyst: a randomized, controlled trial. Eur J Phys Rehabil Med 48:561–567

73. Bandinelli F, Fedi R, Generini S et al (2012) Longitudinal ultrasound and clinical follow-up of Baker’s cysts injection with
steroids in knee osteoarthritis. Clin Rheumatol 31:727–731. https://doi.org/10.1007/s10067-011-1909-9
74. Köroğlu M, Çalışoğlu M, Eriş HN et al (2012) Ultrasound guided percutaneous treatment and follow-up of Baker’s cyst in knee osteoarthritis. Eur J Radiol 81:3466–3471. https://doi.org/10.1016/j.ejrad.2012.05.015
75. Smith MK, Lesniak B, Baraga MG, Kaplan L, Jose J (2015) Treatment of popliteal (Baker) cysts with ultrasound-guided aspiration, fenestration, and injection. Sports Health 7:409–414. https://doi.org/10.1177/1941738115585520
76. Yavuz F, Kibar S, Balaban B (2016) Hypertonic dextrose injection for the treatment of a Baker’s cyst. J Clin Diagnostic Res 10:YD01–YD02. https://doi.org/10.7860/JCDR/2016/17919.7290
77. Centeno CI, Schultz J, Freeman M (2008) Sclerotherapy of Baker’s cyst with imaging confirmation of resolution. Pain Physician 11:257–261
78. Çağlayan G, Ö兹çakar L, Kaymak SU et al (2016) Effects of sono-feedback during aspiration of Baker’s cysts: a controlled clinical trial. J Rehabil Med 48:386–389. https://doi.org/10.2340/16501977-2049
1446 European Radiology (2021) 32:1438–1447
1046 European Radiology (2021) 32:1438–1447

Authors and Affiliations
Luca Maria Sconfienza1,2, Mirauae Adriaensen3, Domenico Albano1,4, Andrea Alcala-Galiano5, Georgina Allen6,7, Maria Pilar Aparisi Gómez5,9, Giacomo Aringhieri10, Alberto Bazzocchi11, Ian Beggs12, Vito Chianca13,14, Angelo Corazza1, Danoo B Dalili15, Miriam De Dea16, Jose Luis del Cura17, Francesco Di Pietto18, Elena Drakonaki19, Fernando Facal de Castro20, Dimitrios Filippaidis21, Salvatore Gitto2, Andrew J. Grainger22, Simon Greenwood23, Harun Gupta24, Amanda Isaac15,25, Slavcho Ivanoski26,27, Monica Khanna28, Andrea Klausen29, Ramy Mansou23, Silvia Martín31, Vasco Mascarenhas32,33, Giovanni Mauri34,35, Catherine McCarthy36, David McKeen37, Eugene McNally36, Kalliopi Melaki38, Rebeca Mirón Mombiela39, Ricardo Moulinho30,40, Marina Obradov41, Cyprian Olchowy42, Davide Orlandi43, Raquel Prada González44, Mahesh Prakash45, Magdalena Posadzy46, Saulius Rutkauskas47, Žiga Snoj48,49, Alberto Stefano Tagliafico50,51, Alexander Talaska52, Xavier Tomas53, Violeta Vasilevska-Nikodinovska27,54, Jelena Vucetic55, David Wilson6, Federico Zaottini51, Marcello Zappia56,57, Carmelo Messina1

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
2 Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Milan, Italy
3 Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, Heerlen, Brunssum, Kerkrade, the Netherlands
4 Sezione Di Scienze Radiologiche, Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Università Degli Studi Di Palermo, Palermo, Italy
5 Hospital Universitario, 12 de Octubre, Madrid, Spain
6 St Luke’s Radiology Oxford Ltd, Oxford, UK
7 University of Oxford, Oxford, UK
8 Department of Radiology, Auckland City Hospital, Auckland, New Zealand
9 Department of Radiology, Hospital Vithas Nueva de Octubre, Valencia, Spain
10 Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
11 Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
12 Analytic Imaging, Edinburgh, UK
13 Ospedale Evangelico Betania, Napoli, Italy
14 Clinica Di Radiologia EOC IIMSI, Lugano, Switzerland
15 School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
16 Studio MSK, Belluno, Italy
17 Hospital Universitario Donostia, San Sebastian, Spain
18 Dipartimento Di Diagnostica Per Immagini, Pineta Grande Hospital, Castel Volturno, Italy
19 MSK Radiology Services, Heraklion, Crete, Greece
20 Hospital General Universitario de Valencia, Valencia, Spain
21 2nd Department of Radiology, University General Hospital “ATTIKON” Medical School, National and Kapodistrian University of Athens, Haidari, Athens, Greece
22 Cambridge University Hospitals, Cambridge, UK
23 Mid Cheshire Hospitals NHS Foundation Trust, Cheshire, UK
24 Leeds Teaching Hospitals, Leeds, UK
25 Guy’s and St Thomas’ Hospitals, London, UK
26 Department of Radiology, Special Hospital for Orthopedic Surgery and Traumatology, St. Erazmo, Ohrid, North Macedonia
27 Medical Faculty, University Ss. Cyril and Methodius in Skopje, Skopje, Macedonia
28 Imperial College Healthcare NHS Trust, London, UK
29 Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
30 Oxford Musculoskeletal Radiology, Oxford University Hospitals, Oxford, UK
31 Hospital Universitario Son Llatzer, Palma, Spain
32 Musculoskeletal Imaging Unit, Hospital da Luz, Lisbon, Portugal
33 AIRC, Advanced Imaging Research Consortium, Lisbon, Portugal
34 Division of Interventional Radiology, Istituto Europeo Di Oncologia IRCCS, Milan, Italy
35 Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
36 Oxford Musculoskeletal Radiology, Oxford, UK
37 Buckinghamshire Healthcare NHS Trust, Aylesbury, UK
38 Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
39 Department of Radiology, Herlev og Gentofte Hospital, Herlev, Denmark
40 Hospital de Loulé, Loulé, Portugal
41 Present Address: Department of Radiology, Sint Maartenskliniek, Nijmegen, The Netherlands
42 Department of Oral Surgery, Wroclaw Medical University, Wroclaw, Poland
43 Department of Radiology, Ospedale Evangelico Internazionale, Genoa, Italy
44 Hospital POVISA, Vigo, Spain
45 Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
46 Indywidualna Praktyka Lekarska Magdalena Posadzy, Poznan, Poland
47 Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
48 Institute of Radiology, University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
49 Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
50 Department of Health Sciences, University of Genova, Genoa, Italy
51 IRCCS Ospedale Policlinico San Martino, Genoa, Italy
52 Department of Radiology, AUVA Trauma Center, Vienna, Austria
53 Radiology Dpt. MSK Unit. Hospital Clinic (CDIC), University of Barcelona (UB), Barcelona, Spain
54 University Institute of Radiology in Skopje, Clinical Center “Mother Theresa”, Skopje, Macedonia
55 Radiology Department, Hospital ICOT Ciudad de Telde, Las Palmas, Spain
56 Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
57 Varelli Institute, Naples, Italy