Non-Markovian large amplitude motion and nuclear fission

V. M. Kolomietz and S. V. Radionov

Institute for Nuclear Research, 03680 Kiev, Ukraine

(Dated: December 8, 2008)

Abstract

The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many body system, a set of coupled dynamical equations for the collective classical variables and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed. The approach is applied to the descant of the nucleus from the fission barrier.
I. INTRODUCTION

Nuclear large scale dynamics (nuclear fission, heavy ion collisions etc.) is a good probe for the investigation of complex time evolution of finite Fermi systems. The conceptual question is here how collective modes of motion appear in a system with many degrees of freedom and how they interact with all other intrinsic modes. Nuclear collective dynamics can be studied by using the concept of macroscopic motion for a few collective degrees of freedom, which are chosen to describe gross properties of the nucleus [1, 2, 3]. Such a kind of approach is acceptable for a slow collective motion where the fast intrinsic degrees of freedom exert forces on the collective variables leading to a transport equation. The crucial point of such an approach is the separation of the total energy of the system into potential energy, collective kinetic energy and dissipation energy. Moreover the dissipation of collective motion implies fluctuations in the corresponding collective variables, as follows from the fluctuation-dissipation theorem [4].

Dissipation of the nuclear collective energy reveals itself, for instance, as the non-zero contribution of the internucleonic collisions to the widths of the nuclear giant multipole resonances. On the other hand, the experimental observation of the finite variance of the kinetic energy of the fission fragments manifests the fact that fluctuations have to be also associated with the collective variables. Both the dissipation and the fluctuations can be described by the introduction of friction and random forces, related to each other by the fluctuation-dissipation theorem. In this respect, the Fokker-Planck or Langevin approaches can be used to study the nuclear large scale dynamics, see Refs. [5, 6] and references therein. In general, basic equations of motion for the macroscopic parameters, describing complex dynamics of the many-body systems like nuclei, have non-Markovian structure. One of the first considerations of memory (non-Markovian) effects for classical liquids can be found in Ref. [7]. For the dynamics of nuclei, memory effects have been investigated within different approaches. In this respect, one can mention the dissipative diabatic model [8], the linear response theory [3] and the fluid dynamic approach [10, 13]. In this paper, we would like to apply the non-Markovian dynamics to the study of the nuclear fission’s characteristics and clarify the role of the fluctuation and memory effects in the descant of the nucleus from the fission barrier to the scission point.

The plan of the paper is as follows. In Sect. II we derive the non–Markovian Langevin
equation of motion for the nuclear shape variables starting from the collisional kinetic equation. Sect. III is devoted to details of the numerical determination of the saddle–to–scission time and pre–scission kinetic energy in presence of the memory effects and the random force for the descent of the nucleus from the barrier to the scission point. Summary and conclusions are given in Sect. IV. We assume that dynamics of nuclear many body system can be described as a coupled motion of macroscopic collective modes and intrinsic nucleonic ones. The slow collective modes of the nuclear large–amplitude motion are treated in terms of a set of classical time–dependent variables $\mathbf{q}(t) \equiv \{q_1(t), q_2(t), ..., q_N(t)\}$, while the fast intrinsic modes are described quantum mechanically through the time–evolution of occupancies of nucleonic many body states.

The intrinsic dynamics can be determined through the Liouville equation for the density matrix operator $\hat{\rho}$,

$$\frac{\partial \hat{\rho}(t)}{\partial t} + i \hat{L}(t) \hat{\rho}(t) = 0, \tag{1}$$

where \hat{L} is the Liouville operator defined in terms of the commutator, $\hat{L} \hat{\rho} = [\hat{H}, \hat{\rho}] / \hbar$ of the nuclear many body Hamiltonian $\hat{H}(\mathbf{q}[t])$.

Using Zwanzig’s projection technique [11] and a basis of adiabatic eigenenergies E_k and eigenfunctions Ψ_k of the nuclear many body Hamiltonian $\hat{H}(\mathbf{q}[t])$ [12], we can get dynamical equations for a non–diagonal part of the density matrix,

$$\rho_{nm}(t) = -i \sum_i \int_0^t dt' \dot{q}_i(t') \exp\left[-i \frac{\omega_{nm}(t-t')}{\omega_{nm}} \right] \left[h_{i,mn}(t') \rho_{nn}(t') - h_{i,nm}(t') \rho_{mm}(t') \right], \tag{2}$$

and its diagonal part,

$$\frac{\partial \rho_{nn}(t)}{\partial t} = \frac{2}{\hbar^2} \sum_{i,j} \dot{q}_i(t) \int_0^t dt' \dot{q}_j(t') \sum_{m \neq n} h_{i,rm}(t) h_{j,mn}(t') \frac{\cos[\omega_{nm}(t-t')]}{\omega_{nm}^2} \times [\rho_{mm}(t') - \rho_{nn}(t')]. \tag{3}$$

Here, $\omega_{nm} = (E_n - E_m) / \hbar$ and matrix elements $h_{i,nn} = |\partial \hat{H} / \partial q_i|_{nn}$ measure the coupling between the quantum nucleonic and the macroscopic collective subsystems.

To proceed further, we use a random matrix theory developed in our previous paper [12] for the case of a single collective coordinate. We omit all intermediate steps and give a basic diffusion–like equation of motion for the ensemble averaged occupancies $\bar{\rho}(E, t)$ of the many body states $E \equiv E_n$:

$$\Omega(E) \frac{\partial \bar{\rho}(E, t)}{\partial t} = \sum_{i,j} s_{ij} \dot{q}_i(t) \int_0^t dt' \exp \left(-\frac{|t-t'|}{\hbar / \Gamma_{ij}} \right) Y_{ij}(q[t], q'[t']) \dot{q}_j(t').$$
\[
\partial \frac{\partial}{\partial E} \omega(E) \frac{\partial \rho(E, t')}{\partial E},
\]
where \(s_{ij} \) and \(\Gamma_{ij} \) are, correspondingly, the strengths and widths of the energy distributions of the ensemble averaged coupling matrix elements \(h_{i, nm} \). \(Y(\vec{q}(t), \vec{q}(t')) \) are the correlation functions measuring how strong the coupling matrix elements correlate at different collective deformation parameters \(\vec{q}(t) \) and \(\vec{q}(t') \), and \(\omega(E) \) is the nuclear many body level density at excitation energy \(E \).

II. ENERGY RATE

In order to define properly dynamics of the classical collective parameters \(\vec{q}(t) \) within the cranking approach, one has to consider total energy of the nuclear many body system, which can be written as

\[
\Sigma(t) = E_{gs}(q) + \text{Tr}\{\hat{H}[\vec{q}(t)] \hat{\rho}(t)\}.
\]

Differentiating over time both sides of Eq. (5), we get

\[
\frac{d\Sigma}{dt} = \sum \dot{q}_i \frac{\partial E_{gs}}{\partial q_i} + \sum \dot{q}_i \sum \left(\frac{\partial \hat{H}}{\partial q_i} \right)_{mn} \rho_{mn} + \sum E_n \frac{\partial \rho_{mn}}{\partial t} + \sum \dot{q}_i \sum \left(\frac{\partial \hat{H}}{\partial q_i} \right)_{nn} \rho_{nn}.
\]

The first term in the right-hand side of (6) describes a change of the collective potential energy. The second term depends on the non-diagonal component of the density matrix \(\rho_{nm}(t) \). Its time evolution is caused by the virtual transitions among adiabatic states of the nuclear many body Hamiltonian. We believe that such a term is a microscopic source for the appearance of the collective kinetic energy:

\[
\left(\frac{d\Sigma}{dt} \right)^{virt} \approx \sum \dot{q}_i \sum \dot{q}_j B_{ij}(\vec{q})\dot{q}_j,
\]

where \(B_{ij} \) is a collective mass parameter,

\[
B_{ij} = \sum_{n,m} h_{i, nm} h_{j, mn} \omega_{nm}^{-3} [\rho_{mn} - \rho_{nn}].
\]

The third term in the right-hand side of (6) is defined by the real transitions between adiabatic many body states thus, defining dissipation of energy associated with the nuclear collective motion:

\[
\left(\frac{d\Sigma}{dt} \right)^{real} = \sum \dot{q}_i(t) s_{ij} \int_{E_{gs}}^{+\infty} dE \Omega(E) \sum \int_0^t dt' \exp \left(\frac{-|t - t'|}{\hbar/(h/\Gamma_{ij})} \right) Y_{ij}(\vec{q}(t), \vec{q}(t')) \dot{q}_j(t') \times \frac{\partial}{\partial E} \Omega(E) \frac{\partial \rho(E, t')}{\partial E},
\]

\[
4
\]
see Eq. (11). It can be shown that the fourth term in the right-hand side of (6) is described by the slopes of the adiabatic eigenenergies $\partial E_n/\partial q_i$ and within our random matrix approach is neglected compared to the other terms.

Collecting Eqs. (7) and (9), one obtains for (6),

$$\left(\frac{d\Sigma}{dt} \right) = \sum_i \dot{q}_i(t) F_i(\bar{q}[t], \dot{q}[t], t),$$ \hfill (10)

where quantities F_i mean forces acting on the collective subsystem given by

$$F_i = \sum_j B_{ij} \ddot{q}_j + \frac{\partial E_{gs}}{\partial q_i} + \int_{E_{gs}}^{+\infty} dE E \Omega(E) \sum_j \int_0^t dt' \exp \left(-\frac{|t-t'|}{\hbar/\Gamma_{ij}} \right) Y_{ij}(\bar{q}(t), \bar{q}(t') \dot{q}_j(t')$$

$$\times \frac{\partial}{\partial E} \left[\Omega(E) \frac{\partial \bar{\rho}(E,t')}{\partial E} \right].$$ \hfill (11)

III. EQUATIONS OF MOTION FOR THE COLLECTIVE PARAMETERS

To get equations of motion for unknown collective parameters, we assume that all partial contributions to the energy rate (10) are zero [12]

$$F_i \equiv 0.$$ \hfill (12)

Thus, collective dynamics satisfy the following set of equations

$$\sum_j B_{ij} \ddot{q}_j = -\frac{\partial E_{gs}}{\partial q_i} - s_{ij} \int_{E_{gs}}^{+\infty} dE E \Omega(E) \sum_j \int_0^t dt' \exp \left(-\frac{|t-t'|}{\hbar/\Gamma_{ij}} \right) Y_{ij}(\bar{q}(t), \bar{q}(t') \dot{q}_j(t')$$

$$\times \frac{\partial}{\partial E} \left[\Omega(E) \frac{\partial \bar{\rho}(E,t')}{\partial E} \right].$$ \hfill (13)

can demonstrate that for the constant temperature level density, $\Omega() = const \cdot \exp(E/T)$, where T is the temperature of the nucleus, we obtain a closed set of equations of motion for the collective parameters:

$$\sum_j B_{ij} \ddot{q}_j = -\frac{\partial E_{gs}}{\partial q_i} - \frac{s_{ij}}{T} \int_{E_{gs}}^{+\infty} dE E \Omega(E) \sum_j \int_0^t dt' \exp \left(-\frac{|t-t'|}{\hbar/\Gamma_{ij}} \right) Y_{ij}(\bar{q}(t), \bar{q}(t') \dot{q}_j(t')$$

$$\times \frac{\partial}{\partial E} \left[\Omega(E) \frac{\partial \bar{\rho}(E,t')}{\partial E} \right].$$ \hfill (14)

It should be pointed out that Eq. (14) describes the ensemble averaged collective dynamics, i.e., averaged over many different random realizations of the intrinsic nucleonic subsystem. In this way, of course, we loose information about the quantum fluctuations of the intrinsic
degrees of freedom of the nuclear many body system which, in principle, may be important. In order to try to take them into account somehow, we introduce a phenomenological stochastic force term, $\xi_i(t)$, into the collective equations of motion (14) and requiring that the fluctuation-dissipation theorem is hold,

$$\langle \xi_i(t)\xi_j(t') \rangle = T_{ij}Y_{ij}(\vec{q}(t), \vec{q}(t'))\exp\left(-\frac{|t-t'|}{\hbar/\Gamma_{ij}}\right).$$

(15)

this, the collective dynamics gets a form of the non–Markovian Langevin equations of motion

$$\sum_j B_{ij}\ddot{q}_j = -\frac{\partial E_{gs}}{\partial q_i} - \frac{s_{ij}}{T} \int_{E_{gs}}^{+\infty} dE \Omega(E) \sum_j \int_0^t dt' \exp\left(-\frac{|t-t'|}{\hbar/\Gamma_{ij}}\right) Y_{ij}(\vec{q}(t), \vec{q}(t')\dot{q}_j(t')
$$

$$\times \frac{\partial}{\partial E} \left[\Omega(E) \frac{\partial \rho(E, t')}{\partial E} \right] + \xi_i(t).$$

(16)

IV. NUMERICAL CALCULATIONS

Now we turn to the numerical determination of nuclear fission characteristics. We study the symmetric fission of highly excited heavy nuclei whose space shape may be obtained by rotation of some profile function $W^2(z)$ around z–axis. It is considered a 2-parametric family of the Lorentz shapes [2]:

$$W^2(z) = (z^2 - \zeta_0^2)(z^2 + \zeta_2^2)/Q,$$

(17)

where the multiplier $Q = -\zeta_0^3(\zeta_0^2/5 + \zeta_2^2)$ guarantees the conservation of the nuclear volume. Here, all quantities of the length dimension are expressed in units of the radius R_0 of the spherical equalvolume nucleus. The parameter ζ_0 defines an elongation of the figure, while the parameter ζ_2 is responsible for the neck of the figure. Thus, in the case of $\zeta_2 = \infty$ we have a spheroidal shape and for $\infty < \zeta_2 < 0$ the neck appears.

The adiabatic collective potential energy of deformation E_{gs} were taken from [2]. The equations of motion (16), (15) were solved numerically with the help of the simplest Euler method with the initial conditions corresponding to the saddlepoint deformation and the initial kinetic energy $E_{kin} = 1$ MeV (initial neck velocity $\dot{\zeta}_2 = 0$). The numerical calculations were performed for the symmetric fission of a nucleus 236U at temperature $T = 2$ MeV. We define the scission line from the condition of the instability of the nuclear shape with respect to any variations of the neck radius:

$$\frac{\partial^2 E_{gs}}{\partial \rho_{\text{neck}}^2} = 0,$$

(18)
where $\rho_{\text{neck}} = \zeta_2 \sqrt{\zeta_0(\zeta_0^2/5 + \zeta_2^2)}$ is the neck radius.

We considered a time of the nuclear descent from the saddle point to the scission (18). The total number of 2×10^4 trajectories $\zeta_0(t), \zeta_2(t)$, generated by the different random realizations of the random forces $\xi_i(t)$, were taken into consideration in order to define the dynamic path of the system (16), (15). To simplify the problem and clarify the role of the random force in the nonMarkovian dynamics of the system, we stopped running trajectories $\zeta_0(t), \zeta_2(t)$ when they cross the line $\rho_{\text{neck}}(\zeta_0, \zeta_2) = \rho_{\text{neck}}^{\text{Newt}}$, where $\rho_{\text{neck}}^{\text{Newt}}$ is the neck radius value determined from the Newtonian nonMarkovian dynamics (i.e., when the stochastic terms are absent in Eqs. (16), (15)).

In Fig. 1, we show the Langevin (solid line) and Newtonian (dashed line) dynamic trajectories of the neck radius $\rho_{\text{neck}}(t)$. Horizontal line in the figure gives the scission value of the neck radius $\rho_{\text{neck}}^{\text{Newt}}$ derived from the Newtonian calculation.

A histogram of the distribution p of the saddle-to-scission times t_{sc} is given in Fig. 2. We found that the most probable and mean value of the descent time are significantly smaller than the Newtonian estimation of t_{sc} shown by a vertical line. In fact, the random force speeds up the process of descent from the fission barrier. Indeed, the action of a random force, in some sense, ”shakes loose” the system giving rise to a smaller time of motion between two given points comparing to the corresponding time for the unperturbed system. It should be pointed out that this is hold both for Markovian Langevin dynamics (it may be demonstrated analytically for some quite simple models) and non-Markovian Langevin dynamics. The last feature is demonstrated in Fig. 3, where the mean value $\langle t_{\text{sc}} \rangle$ of the descent time is plotted versus the memory time $\tau \equiv \hbar/\Gamma_{ij}$ for the Langevin (solid line) and Newtonian (dashed line) paths of the system.

As seen in Fig. 3, the difference between the two nonMarkovian calculations of the mean saddle-to-scission time grows with the memory time. This fact may be explained by the correlation properties of the random forces in the nonMarkovian Langevin equations, see Eq. (16). As can be seen from Eq. (15), the increase of the memory time τ amplifies the correlation in the collective coordinates $\zeta_0(t), \zeta_2(t)$ at two subsequent moments of time t and $t + \Delta t$. As a consequence of that, one might expect that a quite big change, occurred for the coordinates $\zeta_0(t), \zeta_2(t)$ at time t, will give rise to a sufficiently big change for $\zeta_0(t), \zeta_2(t)$ even at the next time step $t + \Delta t$. This tendency will be stronger as far as the memory time τ grows up. Therefore, in average the system will reach the scission faster as compared to
the non-Markovian motion of the system.

V. SUMMARY AND CONCLUSIONS

Within non-Markovian Langevin approach, we have demonstrated a consistent description of nuclear large amplitude dynamics, including the memory effects and the random force. We have averaged the intrinsic nucleonic dynamics (2), (3) over suitably chosen statistics of the randomly distributed coupling matrix elements and the energy spacings. Owing to this procedure, we have derived the diffusion-like equation of motion for the smeared occupancies \(\tilde{\rho}(E, t) \) of the adiabatic many body states. Note that the obtained equation of motion for \(\tilde{\rho}(E, t) \) is the non-Markovian one, where the memory effects depend on the width of the randomly distributed matrix elements.

Applying the ensemble averaging procedure, we have also derived the collective mass parameter and the internal energy rate. Finally, we derive a set of coupled dynamic equations for the macroscopic variables which take into consideration the time variation of the occupancies of the intrinsic nuclear states. Following the fluctuation-dissipation theorem, we have incorporated also the relevant random force into the macroscopic equations of motion. The main contribution to the rate of dissipation energy is due to the jump probabilities leading to a rate of dissipation which depends essentially on the total energy of the nucleus. The final result shows that a time irreversible energy exchange between the collective and internal degrees of freedom is possible when the level density increases with energy. We have applied our approach to the description of the descent of the nucleus from the fission barrier. We show that the random force accelerate significantly the process of descent from the barrier for both the Markovian and nonMarkovian Langevin dynamics. We have observed that the difference between the two nonMarkovian calculations (see Fig. 3) of the mean saddle-to-scission time grows with the memory time. This fact may be explained by the correlation properties of the random force in the non-Markovian Langevin equations.

[1] P.J. Siemens and A.S. Jensen, *Elements of Nuclei: Many-body Physics with the Strong Interaction* (Addison and Wesley, 1987).
Fig. 1. Typical Langevin (solid line) and Newtonian (dashed line) trajectories of the neck radius ρ_{neck} of the system (16), (15). Horizontal line is the value of neck radius at the scission (18) $\rho_{\text{neck}}^{\text{Newt}}$ derived from the corresponding Newtonian dynamics.

Fig. 2. Histogram of a probability density p of the descent times t_{sc} for the non-Markovian Langevin dynamics (16), (15) at the memory time $\tau \equiv \hbar / \Gamma_{ij} = 2 \times 10^{-23}$ s, when the size of memory effects in the system is quite small. The vertical line gives the Newtonian estimation for the descent time.

Fig. 3. The mean value of the descent time $\langle t_{sc} \rangle$ for the non-Markovian Langevin dynamics (16), (15) versus the memory time τ is shown by solid line. The Newtonian calculation of the descent time is given by the dashed line.
