Introduction

The effects of climate change on organisms and ecological communities are a highly topical issue. Insects are a taxon with limited ability to regulate their body temperature and are thus directly impacted by both prevailing weather and longer term climate change. Research on insect-climate interactions has focused on the measurement of thermal thresholds and lethal limits ([11], [2], [3], [4]), responses to manipulated conditions representing different scenarios of climate warming ([5], [6], [7], [8]) and shifts in distributions or changes in phenology detected through analyses of long term datasets ([9], [10], [11], [12], [13], [14], [15]). In general, more is known about the low temperature ecophysiology of insects ([16], [17], [18], [19], [20], [21], [22], [23]) than the effects of high temperatures, though upper thermal limits have been measured for a number of species ([24], [25], [26], [27], [28]). Also, whilst many studies have measured critical thermal thresholds at both low ([20], [23], [29], [30], [31]) and high temperatures ([22], [32], [33], [34], [35], [36]), less is known about the impacts of sub-lethal thermal stress on surviving individuals, though effects on development and reproduction have been reported ([37], [38], [39], [40], [41]). Climate change can affect terrestrial ectothermic species by modifying the structure of their physical environment, and by the associated changes in the thermal regime or temperature profile of the habitat ([42], [43], [44]). The mechanistic link between the biophysical environment and individual performance will directly affect demographic (e.g. survivorship, growth and reproduction) and population level phenomena (e.g. density and age structure) ([45]). Thus, a central issue in insect ecophysiology is how environmental factors such as temperature affect physiological performance ([1], [46], [47], [48], [49]). Temperature has a direct effect on the growth and development of insects ([50], [51], [52], [53], [54], [55]). The temperature-development relationship is approximately linear, increasing progressively to a maximum level beyond which the rate decreases and the response curve becomes markedly asymmetrical through the effects of heat stress and approaching lethality ([21], [56], [57], [58], [59], [60]). In addition, both longevity and fecundity of insects reach a maximum at species-specific optimum temperatures and more or less symmetrically decrease at both the lower and upper limits of tolerance ([61], [62]). Understanding the behavioural and physiological responses of insects to thermal stress will inform predictions about how climate warming could affect distributions, changes in pest status, and the likelihood of species extinctions ([63]). A number of studies have investigated the effects of temperature on development and fecundity e.g. *Nilaparvata lugens* ([64], [65], [66], [67], [68], [69], [70]), small brown planthopper *Laodelphax striatellus* ([38], [71], [72]), the butterfly *Pararge aegeria* ([73]) and the pea leafminer *Liriomyza huidobrensis* ([74]).
The brown planthopper *Nilaparvata lugens* (Stål) (Order Hemiptera; Family Delphacidae) is the most serious rice pest in Asia, affecting a wide range of economically important rice crops that arise from the green revolution ([75], [76], [77], [78], [79]). *Nilaparvata lugens* is ‘sucking pest’ which removes sap from the xylem and phloem tissues of the rice stem ([80]). Severely damaged rice plants desiccate through the effects of feeding and ovipositor damage, a condition known as ‘hopper burn’ ([81]). *Nilaparvata lugens* is also a vector of rice virus diseases, such as ‘grassy stunt’ ([75], [82], [83], [84]). *Nilaparvata lugens* populations fluctuate in response to changing environmental conditions, both physical (abiotic) and biotic, and can lead to pest outbreaks ([85]). In general, *N. lugens* is endemic to the Asian sub-tropical region, though its range can expand temporarily every summer as far north as Japan and Korea through long-distance migrations from the tropics ([75], [86]). As tropical species experience less seasonal variation in temperature they generally have narrower thermal tolerances compared with temperate species ([87], [88], [89]).

Much of the previous research on *N. lugens* has focused on the effect of rearing at different constant or variable temperatures on development and fecundity ([69], [90]) and on the impact of variation in the dietary composition of resistant cultivars on reproductive output ([60], [73], [91]). By comparison, the effects of sub-lethal heat stress on development and reproduction have received little attention but are likely to become more important in a scenario of climate warming. The mean summer day time high temperature in China varies from 37 to 41 °C ([92]) and can rise to 50°C in some sub-tropical countries ([93]). Temperatures in this range are of interest because a recent study on *N. lugens* ([28]) found that nymphs were less heat tolerant than adults and concluded that in some parts of its distribution and under the current climatic regimes, juvenile stages of *N. lugens* could become immobilised through heat stress and might be killed by high temperature exposure. However, even though insects may survive thermal stress, there may be sub-lethal effects on key processes that would impact negatively on population abundance, and hence the pest status of species such as the brown plant hopper. This raises the interesting question of whether insects living in tropical areas are sufficiently heat tolerant to survive under current conditions and if they can also adapt to the more stressful climatic regimes that may be experienced in the future.

Using knowledge gained on the upper lethal temperatures of nymphal and adult *N. lugens*, this study investigated the effects of sub-lethal high temperatures applied at different life cycle stages on the subsequent development, reproduction and longevity.

Results

Effect of Sub-lethal High Temperatures on Development and Longevity

When first instar nymphs were exposed at their ULT50 of 41.8°C mean times required to complete nymphal development increased from 13.2±0.3 (n = 31) and 18.2±0.2 (n = 19) days for male and female nymphs to 18.7±0.2 (n = 21) and 19.0±0.2 (n = 29) days respectively in the treated insects. Exposure at the first instar increased the longevity of adult females (from 61.8% for treated male and 57.8% for treated female compared with the control group). However, there was no difference in mean egg production between nymphs that had been exposed as first instar nymphs (31.7% of control group) than in the untreated control at 128±16.6 (treated nymph male x treated nymph female) and 169±14.7 (treated male x treated female) ([28], p < 0.001, Figure 3), with a range of 267–627 eggs per female in the control, 34–317 in the treated nymph group and 84–326 in the treated adult group. Overall, mean egg production was most reduced when insects were exposed as first instar nymphs (31.7% of control group), than when both sexes were exposed as adults (reduction to 41.9% of control). However, there was no difference in mean egg production between treated nymph male x treated nymph female and treated male x treated female (p = 0.278).

Treated adult mating combinations. For the three mating combinations after exposure of adults at the ULT50 of 41.8°C the mean number of eggs produced per female: 169±3 14.7 (treated male x treated female), 249±6 21.3 (treated male x untreated female, range 75–436) and 233±17.2 (untreated male x treated female, range 94–412); F5, 76 = 25.470, with all adult mating combinations producing significantly fewer viable eggs than the control, p < 0.001, Figure 4). Overall mean egg production was most reduced when both sexes had been exposed as adults (reduction to 41.9% of control), with less affect when only one sex was exposed as an adult (61.8% for treated male and 57.8% for treated female compared with the control group).

Nilaparvata lugens produced viable eggs in all mating groups that included insects exposed at their respective ULT50 temperatures (Figure 5). However, for all the treatment groups there was some delay until the first egg hatched and the range of egg development times was also extended in all the treated groups: 11–16 days for treated nymphs, 10–21 days for treated adult male and female, 11–16 days for treated male x untreated female, 10–16 days for
untreated male x treated female, compared with 9–14 days in the control; all treated groups were significantly different to the control \((F_4, 95 = 10.616, p < 0.001)\), but there was no difference between any of the treated groups.

Discussion

Climate change operates on a global scale with wide-ranging and interrelated impacts across the social-economic-environmental interface \((94)\). A greater understanding of the effects of climate warming on agricultural and natural ecosystems will inform policies aimed at mitigating risks, particularly with regard to ectothermic organisms for which temperature is an important determinant of development, survival and distribution \((54), (55), (95), (96), (97)\). Insects have evolved a range of behavioural, physiological and biochemical adaptations to survive both seasonal and more acute fluctuations in temperature \((49)\), but there are limits above and below which species cannot survive. A recent study with the brown plant hopper *Nilaparvata lugens* found that around 50% of first instar nymphs were killed by a brief exposure at 41.8°C \((\text{ULT}_{50})\) and a similar proportion of adults at 42.5°C; both life cycle stages were immobilized by heat stress at lower temperatures \((28)\). Whilst lethal temperatures provide estimates of the limits to survival, it cannot be assumed that individuals that survive at temperatures close to these limits are unaffected by the exposure \((98)\). This study focused on the effects of sub-lethal high temperature exposure on the development and reproduction of *N. lugens*, a major pest of rice in tropical Asia.

After exposure of first instar nymphs at the \(\text{ULT}_{50}\) of 41.8°C development time to adult was significantly increased in both male and female *N. lugens*. The combination of nymphal development time and adult longevity resulted in an overall extension of the total life span of females but not males. A number of studies that have shown that males and females of several insect species differ in absolute performance capacities (e.g. consumption of resources, locomotor ability, duration of stress tolerance) when living under favourable (i.e. non-stressful) conditions \((48), (99), (100), (101)\). As temperature is known to have a major influence on various ‘rate-based’ processes in ectotherms \((48)\), the data suggest that there may be inherent differences in the thermal biology of males and females, or that they are differentially affected by exposure to high temperature. The results from this study also support the view that sub-lethal high temperatures can have a negative impact on insect development, especially at temperatures close to the upper thermal limit \((7), (102), (103)\). The physiological explanation for impeded development following high temperature stress may be related to deleterious effects on respiratory metabolism \((104), (105), (106), (107), (108), (109)\) or interference with the synthesis of hormones involved in the moulting process \((37), (110)\).

As the eggs of *N. lugens* are laid in plant tissue, it is not possible to determine accurately the number of viable eggs laid, as some eggs would be destroyed when dissected out of the rice stems. Emergence of first instar nymphs was therefore used as an indicator of reproductive output. High temperature stress exerted a number of sub-lethal effects on reproduction in *N. lugens*; fewer nymphs emerged from eggs, the period of egg development was extended, and some nymphs were unable to moult to the second instar. An important factor that may contribute to the negative effects of high temperature stress on both development and reproduction in *N. lugens* concerns the role of the intracellular
Figure 2. Range of development times for adults of *Nilaparvata lugens* after exposure as first instar nymphs at the ULT₅₀. N = 50 for control and treated groups (gender ratio as in Figure 1). doi:10.1371/journal.pone.0047413.g002

Figure 3. Mean number of eggs per female after exposure of first instar nymphs and adults of *Nilaparvata lugens* at their ULT₅₀. N = 20 pairs for each mating combination. Mean values with the same letter are not significantly different at p<0.05 level. doi:10.1371/journal.pone.0047413.g003
Figure 4. Mean number of eggs per female after exposure of adults of *Nilaparvata lugens* at their ULT$_{50}$. N = 20 pairs for each mating combination. Mean values with the same letter are not significantly different at p<0.05 level.
doi:10.1371/journal.pone.0047413.g004

Figure 5. Range of egg development times after exposure of first instar nymphs and adults of *Nilaparvata lugens* at their ULT$_{50}$. N = 20 pairs for each mating combination.
doi:10.1371/journal.pone.0047413.g005
In a study on the pine false webworm Acantholyda erythrocephala, eggs failed to hatch at around 30°C ([113]). It is possible that the secretion of hormones from neurosecretory cells associated with egg production is inhibited by a direct heat exposure ([30]), but after transfer to favourable conditions, the reproductive activities are resumed in both males and females, but with a net reduction in overall fecundity. High temperature exposure may also reduce mating success, sperm viability and oviposition, all of which would impact negatively on generation-to-generation population abundance ([114], [115]). Also, whilst the effects of sub-lethal heat stress on N. lugens reported here arose from very brief exposures, in nature, the time periods involved would be much longer, unless the insects showed some form of avoidance behaviour. For example, large leaves of the host plants of Manduca sexta L. became hotter during the day than smaller leaves such that by selecting smaller leaves for oviposition, the thermal buffering of extreme temperatures would increase egg survival and successful hatching ([116]). A further consideration is that populations reared under laboratory conditions over long periods of time and multiple generations (with periodic refreshment with wild stock) may become increasingly different from natural populations through genetic bottlenecks ([117]). However, as population of N. lugens had been in culture for less than two years (and completed 11–12 generations), such effects are unlikely with the studied colony. It is also recognised that the effects of extreme exposures associated with climate change will most likely be revealed over longer term timescales and be subject to important interactions with other physical and biological factors ([118], [119]).

With these provisos in mind, the results from this study can be placed in a wider ecological context. Based on climatic data from various countries across the distribution of N. lugens, Piyaphongkul et al. ([28]) concluded that although mean temperatures were generally below the estimated ULT50 values of nymphs (41.8°C) and adults (42.5°C) there were occasional extreme events that would overlap with these lethal temperatures, and that through heat-induced immobility at lower temperatures (at the CTmax), insects may not be able to move away from potentially lethal exposure, or as has been identified in this study, deleterious effects of reproduction. When insects are heated (or cooled) at rates that are faster than those experienced in nature, the observed mortality (or other deleterious effects) may be caused by the range of temperatures experienced, the rate of change, the most extreme temperature experienced or a combination of all factors. When adult N. lugens were heated at 0.5°C min⁻¹ to determine the ULT50 (42.5°C), no insects were killed until exposure at 42°C ([28]). As the same rate of warming was used in these experiments it seems reasonable to conclude that neither the change in temperature (approximately 20°C) nor the rate of increase in temperature are detrimental to survival per se – rather, it is the highest temperature experienced that impedes development and lowers fecundity.

Across the distribution of N. lugens in tropical Asia there is considerable variation in winter minimum temperatures and also heat waves and more prolonged ‘hot spells’ in summer ([120]). Extreme temperatures of over 45°C occur over the north-west part of the region during May–June, and several countries in this region have reported increasing surface temperature trends in recent decades. For example, the annual mean surface air temperature in Vietnam, Sri Lanka and India has increased by 0.30–0.57°C per 100 years ([121]). Moreover, regional climate change simulations for the 21st century by Atmosphere-Ocean General Circulation Models (AOGCMs) relative to the baseline period of 1961–1990 suggest that the area-average annual mean surface air temperature over land areas of Asia will be higher by 1.6±0.2°C in the 2020s, 3.1±0.3°C in the 2050s and 4.6±0.4°C in the 2080s as a result of increases in the atmospheric concentration of greenhouse gas emissions ([121], [122]). Importantly, the influence of temperature on insect development is related not only to the daily or monthly mean values, but also to the rate of temperature change that will sometimes include extreme exposures ([103], [119]). Whilst the experiments reported here and the previous study on the lethal and behavioural thermal thresholds ([23]) suggest that N. lugens may be adversely affected across parts of its current distribution by high temperature stress and progressive climate warming, for some insects a warmer climate may be beneficial, as has been observed with the range expansion of the coffee berry borer Hypothenemus hampei ([123]). As such, the opportunity to benefit from a warmer climate (or not to suffer deleterious effects) lies in part in the difference in temperature between the upper lethal limit (and the range over which sub-lethal effects occur) and prevailing and future climatic regimes, and the ability to exploit new areas where necessary resources are available, but temperature has previously been a barrier to establishment and residency. Indeed, whilst Piyaphongkul et al. ([28]) highlighted areas where N. lugens might experience thermal stress under current climates, and would be more likely to do so in warmer climate (unless acclimation occurred), there were also parts of the distribution where winter low temperatures currently prevent year-round survival, but which might become more favourable through climate change.

In summary, the results reported here indicate that the temperatures that kill around 50% of nymphs and adults of N. lugens also exert negative effects on development and longevity. The same exposures also lower fecundity through a combination of effects that operate through both of the sexes, in which the greatest effects occur when both males and females have experienced sub-lethal heat stress.

Materials and Methods

Insect Materials

Adults of N. lugens were originally collected from the MARDI Research Station at Pulau Pinang in Malaysia. All insects in the stock culture and before and after experiments were reared on rice seedlings, Oryza sativa L. cv. TN 1, in cages or perspex boxes covered with 1.22 mm ventilation mesh at 16:8 L:D and 23±0.5°C. Newly-hatched first-instar nymphs (within 48 h of hatching) and unmated adults (30–35 days old) were used in the experiments. All high temperature exposures were carried out in a programmable alcohol bath (Haake Phoenix 11 P2; Thermo Electron Corp., Germany) to an accuracy of ±0.5°C.

To investigate the effects of sub-lethal high temperature on development and fecundity of N. lugens, insects were exposed at their upper lethal temperature (ULT50). The ULT is determined
by exposing insects at progressively higher temperatures and recording the mortality at each temperature. The ULT50 is the estimated temperature at which 50% of the population is killed ([25]).

Effect of Sub-lethal High Temperatures on Development and Longevity

A sample of 150 newly-hatched first instar nymphs were warmed from 20°C at 0.5°C min⁻¹ to their ULT50 (41.8°C), held for 2 min and then cooled at the same rate back to 20°C; preliminary experiments had indicated the time required for nymphs to be held at the ULT50 to experience the desired exposure temperature. When insects are heated or cooled, for example, in an alcohol bath, there is a time delay between the bath reaching the set temperature and the insects achieving thermal equilibrium at this temperature. This lag time is dependent on the thermal properties of the exposure system ([124]) and, in general, larger insects will take longer to reach thermal equilibrium with the surrounding environment ([125], [126], [127], [128]). From the surviving population a sample of 30 nymphs was placed individually on rice seedlings in Perspex boxes in the standard rearing conditions. A control group of 50 first instar nymphs were held individually in the same conditions. Daily observations were made to record the time taken to moult to adult and total longevity in the treatment and control groups. As the gender of the treated and untreated insects could not be determined at the first instar stage, the male and female sample sizes were not equal. A split-plot method was used to determine the main effects of treatment on the development and longevity of N. lugens using temperature treatment and sex as fixed factors in SPSS 17.0 software. In the split plot design, sex was a split plot factor within the temperature treatment.

Effects of Sub-lethal High Temperatures on Fecundity

Nymphs. A sample 200 of newly-hatched first instar nymphs were heated from 20°C at 0.5°C min⁻¹ to their ULT50 (41.8°C), held for 2 min, and then cooled back to 20°C at the same rate. Each surviving nymph was maintained individually in a Perspex rearing box containing a rice seedling. After molting to adult, 20 treated females and males were randomly selected and transferred as pairs into separate rearing boxes with a rice seedling and maintained in the standard rearing conditions. Fecundity was measured by counting the number of emerging first instar nymphs at daily intervals until there was no further emergence.

Adults. A sample of 600 newly-hatched first-instar nymphs were reared together in a number of Perspex boxes containing rice seedlings until the late fifth instar, after which males and females were reared separately on rice seedlings to obtain unmated adults. For each mating combination, 100 adult virgin males and females were heated from 20°C at 0.5°C min⁻¹ to their ULT50 (42.5°C), held for 6 min and then cooled back to 20°C at the same rate. From the surviving populations and a control population of the same age, 20 randomly selected pairs were established for each of three mating combinations: treated male x treated female, treated male x untreated female, and untreated male x treated female. The control group was created by allowing nymphs to develop from first to fifth instar after which the sexes were separated; 20 male and female pairs were taken from this stock and then allowed to mate and oviposit under the same conditions. Fecundity was measured in the same way as in the experiment with first instar nymphs.

All data were analysed by one-way analyses of variance (ANOVA) to test for the effect of treatment on the number of emerged nymphs between treated nymphs and treated adults, and among adult mating combinations. Where significant differences occurred, the data were further analysed using Tukey’s honest significance difference post-hoc test and the Games-Howell test to separate statistically heterogeneous and non-heterogenous groups respectively.

Acknowledgments

Special thanks to colleagues in the Arthropod Ecophysiology laboratory at the University of Birmingham for their assistance and help.

Author Contributions

Conceived and designed the experiments: J. Piyaphongkul, J. Pritchard, J.S.B. Performed the experiments: J. Piyaphongkul. Analyzed the data: J. Piyaphongkul, J.S.B. Contributed reagents/materials/analysis tools: J. Piyaphongkul, J. Pritchard, J.S.B. Wrote the paper: J. Piyaphongkul, J.S.B.

References

1. Klok CJ, Sinclair BJ, Chown SL (2006) Upper thermal tolerance and oxygen limitation in terrestrial arthropods. J Exp Biol 209: 2131–2137.
2. Renault D, Vernon P, Yannier G (2005) Critical thermal maximum and body water loss in first instar larvae of three Cetoniidae species (Coleoptera). Journal of Thermal Biology 30: 611–617.
3. Klose MK, Anwood HL, Robertson RM (2006) Hyperthermic preconditioning of presymptomatic calcium regulation in Desophila. Journal of Neurophysiology 99: 2420–2430.
4. Hanna CJ, Cobb VA (2009) Critical thermal maximum of the green lynx spider, Peucetia viridans (Araneae, Oxyopidae). Journal of Arachnology 35: 183–196.
5. Estay SA, Lima M, Labra FA (2009) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modeling. Journal of Applied Entomology 133: 491–499.
6. Hegland SJ, Nielen A, Lazarro A, Bjørnæs AL, Totland O (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters 12: 104–105.
7. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213: 980–994.
8. Holmman GE, Toddham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.
9. Kersting U, Satar S, Uygun N (1999) Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. Journal of Applied Entomology 123: 23–27.
10. Parmesan C, Ryholthm N, Stefanescu C, Hill JK, Thomas CD, et al. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.
11. Karban R, Strauss SY (2004) Physiological tolerance, climate change, and a northward range shift in the spittlebug, Philaenus spumarius. Ecological Entomology 29: 251–254.
12. Terblanche JS, Chown SL (2006) The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tarantula fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology 209: 1064–1073.
13. Musolin DH (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13: 1565–1585.
14. Lefling M, Weerenbeek M, Van Dooremalen C, Ellers J (2010) Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod. Functional Ecology 24: 1291–1298.
15. Neff TF, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. Forest Ecology and Management 259: 831–938.
16. Block W, Baust JG, Franks F, Johnston IA, Bale JS (1990) Cold tolerance of insects and other arthropods (and discussion). Philosophical Transactions of the Royal Society of London. B. Biological Sciences 326: 613–633.
17. Bale JS, Block W, Worland MR (2000) Thermal tolerance and acclimation response of larvae of the sub-Antarctic beetle & Hexamima sp. (Coleoptera: Priymnophidae). Polar Biology 23: 77–84.
18. Elsidski MA, Benoit JB, Deslinger DL, Lee RE (2006) Desiccation tolerance and drought acclimation in the Antarctic colembolan Pygospio elegans. Journal of Insect Physiology 52: 1432–1439.
19. Sinclair BJ, Roberts SP (2005) Acclimation, shock and hardening in the cold. Journal of Thermal Biology 30: 557–562.

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e47413
31. Hazell S, Bale JS (2011) Low temperature thresholds: Are chill coma and
30. Iranipour S, Nozadbonab Z, Michaud JP (2010) Thermal requirements of
22. Powell SJ, Bale JS (2005) Low temperature acclimated populations of the grain
21. Lapointe SL, Borchert DM, Hall DG (2007) Effect of low temperatures on
48. Lailvaux SP, Irschick DJ (2007) Effects of temperature and sex on jump
46. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal
45. Dunham AE, Grant BW, Harder LD, Matson PA (2001) Thermal physiology and
44. Berrigan D, Huey RB (2000) Temperature and developmental rates in the insect
43. Berrigan D (2000) Thermal physiology of insects: An overview. J. Insect Physiol.
42. Berrigan D (2000) Some general principles of insect thermal ecology. PLoS
41. Hance T, Van BJ, Vernon P, Boivin G (2007) Impact of extreme temperatures
40. Morgan D (2000) Population dynamics of the bird cherry-oat aphid,
38. Okasha AYK (1970) Effects of sub-lethal high temperature on an insect,
37. Mock Uschanksky A, Mordukhaev A, Tolkachev S, Ziafosev O, Maksimov E
36. Maloney DR, Flowerdew K, Greenberg BD (2007) Thermal ecology and
35. Terblanche JS, Clusella-Trullas S, Deere JA, Chown SL (2008) Thermal
34. O’Neill KM, Rolston MG (2007) Short-term dynamics of behavioral
33. Piyaphongkul J, Pritchard J, Bale JS (2012) Can tropical insects stand the heat?
32. Woodrow RJ, Grace JK (1998) Thermal tolerances of four termite species
28. Piyaphongkul J, Pritchard J, Bale JS (2012) Can tropical insects stand the heat?
27. Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as
26. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
25. Powell SJ, Bale JS (2006) Testing the limits of thermal performance and
24. Powell SJ, Bale JS (2005) Low temperature acclimated populations of the grain
23. Chilawanya P, Terblanche JS (2011) Rapid thermal responses and thermal tolerance of
22. Powell SJ, Bale JS (2005) Low temperature acclimated populations of the grain
21. Lapointe SL, Borchert DM, Hall DG (2007) Effect of low temperatures on
20. Macmillan HA, Sinclair BJ (2011) Mechanisms underlying insect chill-coma.
19. Lapointe SL, Borchert DM, Hall DG (2007) Effect of low temperatures on
18. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
17. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
16. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
15. Zerebecki RA, Sorte CJB (2011) Temperature tolerance and stress proteins as
14. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
13. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
12. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
11. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
10. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
9. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
8. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
7. Powderly AL, Bush SJ, Nielson CA, Nakamura H, Doi K, et al. (2007) Unique
6. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
5. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
4. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
3. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
2. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain
1. Powell SJ, Bale JS (2007) Low temperature acclimated populations of the grain

Effects of Heat Stress on Nilaparvata lugens
threats to the sustainability of intensive rice production systems in Asia. Los Baños (Philippines) International Rice Research Institute. 315–326.

79. Dasso ALB, Barrion AT (2009) Taxonomy and General Biology of Delphacid Planthoppers in Rice Agroecosystems In: Hosog KL, Hardy G, editors. Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. Los Baños (Philippines) International Rice Research Institute. 5–156.

80. Liu ZY, Shi JJ, Zhang LW, Huang JF (2010) Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification. Journal of Zhejiang University - Science B 11: 71–78.

81. Du B, Zhang W, Liu B, Hu J, Wei Z, et al. (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences of the United States of America 106: 22163–22168.

82. Khosla GS, Lang KC (1974) Inheritance of resistance to grassy stunt virus and its vector in rice. Journal of Heredity 65: 135–136.

83. Dyck VA, Thomas B (1979) The brown planthopper problem. Brown planthopper: threat to rice production in Asia. Manila: International Rice Research Institute. 1–17.

84. Li J, Chen Q, Wang L, Liu J, Shang K, et al. (2011) Identification and characterization of Bph14 and Bph15 on brown planthopper, Nilaparvata lugens. Pest Management Science 67: 528–534.

85. Win SS, Muhamad R, Ahmad ZAM, Adam NA (2011) Population fluctuations of brown planthopper, Nilaparvata lugens Stål. and white backed planthopper, Sogatella furcifera Horvath on rice. Trends Applied Sci Res 8: 183–190.

86. Gurry GM, Liu J, Read DMV, Catinding JLA, Cheng JA, et al. (2011) Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae): pests and prospects for enhancing biological control by ecological engineering. Annals of Applied Biology 158: 149–176.

87. Ghalambor CK, Huey RB, Martin PR, Tevksbury J, Wang G (2006) Are temperature effects on body size evolution driven by the evolution of insect population growth rates: “warmer is better”. The American Naturalist 168: 512–520.

88. Bale JS (1999) Influence of extreme high temperature on the biology of Nilaparvata lugens (Sta˚l). Journal of Insect Physiology 33: 851–860.

89. Bonebrake TC, Deutsch CA (2012) Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93: 449–455.

90. Mochida O, Okada T (1979) Taxonomy and biology of Nilaparvata lugens. Zeitschrift fu¨r Aquarius 187: 25–28. 10.1002/aqu.443018702

91. Cheng CH (1985) Interactions between biotypes of the brown planthopper, Nilaparvata lugens Stål. and its vector in rice. Journal of General Physiology 46: 1151–1170.

92. Chen Y, Zhao J (1999) Influence of extreme high temperature on the biology of A1 and A2 neurosecretory neurons of Acherus fervidus (Coleoptera: Cerambycidae) larvae. European Journal of Entomology 96: 3410–3415.

93. Carpenter RB (1991) Effects of Heat Stress on Liriomyza satzvae (Pest Management Science 47: 193–206.

94. Leary N, Kulkarni J (2007) Climate change assessments in Asia. Climate change vulnerability and adaptation in developing country regions Nairobi. Kenya: United Nations Environment Programme. 89–108.

95. Casey TM (1992) Biophysical ecology and heat exchange in insects. American Zoologist 32: 225–237.

96. Fox JW, Morin PJ (2001) Effects of intra- and interspecific interactions on species responses to environmental change. Journal of Animal Ecology 70: 80–90.

97. Frazier MR, Huey RB, Berrigan D (2006) Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. The American Naturalist 168: 512–520.

98. Bale JS (1999) Insect cold hardiness: A matter of life and death. European Journal of Entomology 93: 369–378.

99. Muller E, Obermaier E (2012) Herbivore larval development at low springtime temperatures: the importance of short periods of heating in the field. Psych 345932: 1–7.

100. Harcourt DG (1969) The development and use of life tables in the study of natural insect populations. Annual Review of Entomology 14: 175–196.

101. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.

102. Muller E, Obermaier E (2012) Herbivore larval development at low springtime temperatures: the importance of short periods of heating in the field. Psych 345932: 1–7.

103. Davidsson J (1944) On the relationship between temperature and rate of development of insects at constant temperatures. Journal of Animal Ecology 13: 26–38.

104. Nespolo RF, Lardies MA, Bozinović F (2003) Intrapopulation variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J Exp Biol 206: 4309–4315.

105. Lekovic S, Cheng Li, Hou RF (1981) Studies on the intracellular yeast-like symbiote in the Brown Planthopper, Nilaparvata lugens. Zeitschrift für Angewandte Entomologie 92: 440–449.

106. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.

107. Harrold DT (1969) The development and use of life tables in the study of natural insect populations. Annual Review of Entomology 14: 175–196.

108. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.

109. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.

110. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.

111. Potter K, Davidowitz G, Woods HA (2009) Temperature-dependent oxygen limitation in insect eggs. Journal of Experimental Biology 202: 2267–2276.