USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS

ROLAND DE PUTTER1,2, OLIVIER DORÉ1,2, AND SUDEEP DAS3

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
2 California Institute of Technology, Pasadena, CA 91125, USA
3 High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

Received 2013 August 9; accepted 2013 November 24; published 2013 December 23

ABSTRACT

Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution $p(z_{\text{ph}}|z)$ is calibrated very accurately a priori (bias and scatter known to ~ 0.002 for, e.g., EUCLID), the additional constraint on $p(z_{\text{ph}}|z)$ from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in $dn/dz(z)$. Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMiRE-like (EUCLID-like) combination of lensing and redshift surveys, where SuMiRE stands for Subaru Measurement of Images and Redshifts. However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

Key words: cosmological parameters – cosmology: observations – dark energy – galaxies: photometry – gravitational lensing: weak – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

Weak gravitational lensing, the subtle distortion of galaxy images by large-scale structure along the line of sight, is a potentially powerful cosmological probe and has been identified as one of the key future probes of dark energy (Albrecht et al. 2006; see, e.g., Bartelmann & Schneider 2001; Hoekstra & Jain 2008; Weinberg et al. 2013 for reviews). Promising results have already been obtained with existing data; see, for instance, Massey et al. (2007a, 2007b), Fu et al. (2008), Schrabback et al. (2010), Huff et al. (2011), Kilbinger et al. (2013), and Heymans et al. (2013). Ongoing and upcoming surveys, such as the Dark Energy Survey5, the Subaru Hyper Suprime Cam (HSC) lensing survey5, LSST6, and EUCLID (Laureijs et al. 2011), are expected to deliver shear measurements with sky coverage of more than an order of magnitude larger than what is currently available and thus have the potential to strongly improve constraints on dark energy and other cosmological parameters from weak lensing.

However, before the full potential of these upcoming data can be reached, there are a number of serious challenges that need to be addressed, such as correcting for the effect of the point spread function on galaxy images and reaching galaxy shape measurements with $<10^{-3}$ level precision, modeling nonlinear and baryonic effects on the matter power spectrum, and understanding the contribution to the cosmic shear signal from intrinsic alignments.

Another main challenge comes from the requirement that the redshift distribution of lensing source galaxies be known to high precision. It is this question that motivates the research presented in this paper. Since the depth and large number density of typical lensing source galaxy samples preclude the possibility of obtaining spectroscopic redshifts for all galaxies, the standard approach is to employ broadband photometry, using the measured flux through a number of bands to estimate redshifts. These photometric redshifts (photo-z’s) can also be used to divide the sample into tomographic bins, which allows the extraction of information on redshift evolution of the background cosmology and large-scale structure.

The photo-z estimator can be characterized by the distribution of estimated redshifts z_{ph}, given an object’s true redshift z, $p(z_{\text{ph}}|z)$. Since photometric redshifts are essentially based on very low resolution spectra, they tend to have large uncertainties ($\sigma_z \sim 0.03–0.1$). While this large width of the photo-z distribution is not a big problem for weak lensing studies (the lensing kernel is very broad anyway), the shape of the distribution needs to be known to high precision to avoid biasing cosmological parameter estimates. For example, Ma et al. (2006; see also Huterer 2002; Huterer et al. 2004, 2006) have shown that both the width and the bias of this distribution need to be known to better than about 0.003–0.01 (depending on the dark energy model considered) for future surveys.

In order to characterize the photo-z distribution, spectroscopic redshifts are required for a large, representative subsample of galaxies7 (in addition, depending on the photo-z method used, spectroscopic redshifts are needed to “train” the photo-z estimator). For upcoming surveys, this would require samples of $\sim 10^7$ faint ($i \sim 22–26$) spectroscopic galaxies with large

5 http://www.darkenergysurvey.org
6 http://www.lsst.org/
7 Alternatively, a large spectroscopic sample could even be used to directly characterize the source redshift distribution without using photo-z’s. However, there would be no way to do tomography in that approach.
redshift success rates and few redshift failures (e.g., Cunha et al. 2012). For many upcoming weak lensing surveys, it is not at all clear if appropriate spectroscopic samples will be available.

A complementary/alternative method that can be used either to directly estimate the redshift distribution of a (source) galaxy sample or to calibrate the photo-z distribution was proposed in Newman (2008). In this method, angular cross correlations between the number density of source galaxies and the number density of an overlapping sample of spectroscopic galaxies in various redshift bins are used to deduce the average source galaxy number density in these bins. The spectroscopic galaxies are only required to cover the same volume (or a subvolume) as the source galaxies so that they trace the same matter density modes and are not required to be drawn from the same sample as the source galaxies.

While the focus of this work is the application to weak lensing source samples, the cross-correlation method can be applied more generally to any sample for which the redshift distribution is desired. The expected performance of the cross-correlation method has been studied in detail in previous works (Newman 2008; Matthews & Newman 2010, 2012; Schulz 2010; McQuinn & White 2013; see also Schneider et al. 2006; Bernstein & Huterer 2010) and interesting results have been obtained on how the success of the method depends on survey properties and on what the main potential obstacles are. While conclusions vary somewhat between works depending on their focus, the cross-correlation technique looks promising based on these studies. The approach has also been applied to existing data with some success (Phillipps 1985; Masjedi et al. 2006; Ho et al. 2008; Ménard et al. 2013).

The goal of this paper is to quantify to what extent measurements of the lensing source distribution via the cross-correlation method improve the expected cosmological constraints from cosmic shear data. In other words, we wish to know to what degree the cross-correlation method mitigates the loss of information in a cosmic shear analysis due to uncertainty in the source distribution. This question has only indirectly been studied in previous work. Typically, the accuracy of the redshift distribution reconstruction is ascertained, translated to an uncertainty on the average redshift and the redshift scatter/width of a sample, and then compared with requirements on these quantities from weak lensing forecasts available elsewhere in the literature (e.g., Ma et al. 2006). While these previous studies show that the cross-correlation method is promising, a more quantitative study would provide more insight. In this paper, we therefore present an integrated analysis of the use of the cross-correlation technique in conjunction with a forecast of cosmology constraints from cosmic shear, explicitly showing how dark energy (and other) constraints from cosmic shear are affected by the information on the lensing source redshift distribution obtained from the cross correlations.

We will consider two examples of upcoming combinations of overlapping lensing and redshift surveys: (1) Subaru Measurement of Images and Redshifts (SuMiRe), the combination of the HSC lensing survey and the Prime Focus Spectrograph (PFS) spectroscopic galaxy survey (Ellis et al. 2012) and (2) EUCLID, which will carry out both types of surveys. We will use the Fisher matrix formalism to forecast parameter constraints, with a focus on the dark energy equation of state. The resulting uncertainties approximately correspond to the uncertainties expected to be obtained from a maximum likelihood estimator or optimal quadratic estimator (McQuinn & White 2013).

One of the main potential problems with the cross-correlation method is that the effect of the source redshift distribution on the observed angular cross correlations is degenerate with the redshift evolution of the source galaxy bias (see also Schulz 2010; Bernstein & Huterer 2010; Matthews & Newman 2010; McQuinn & White 2013). This means that the strength of the cross-correlation technique crucially depends on the (prior) knowledge of this bias evolution. We will in this work go significantly beyond previous studies of this issue by allowing for an arbitrary redshift dependence of the galaxy bias (defined in narrow redshift slices) and studying how the source redshift distribution reconstruction and cosmological constraints depend on the priors places on the bias evolution.

We consider two scenarios for the application of the cross-correlation method, roughly dividing the paper into two parts. In the first part of the paper (Sections 2–7), we will study the use of the cross-correlation technique in combination with photometric redshift information. This analysis follows the more or less standard method in the literature, where the source distribution in tomographic bins is determined by the shape of $p(z_{ph}|z)$, taken for simplicity to be a Gaussian. The information from cross correlations between the source galaxy number density and spectroscopic galaxies then comes in as a way to measure the parameters (the bias and width specified at different redshift) defining $p(z_{ph}|z)$. Questions of particular interest we will address, in addition to that of the degeneracy with bias evolution, are the dependence on the smallest scale used ($\sim k_{max}^{-1}$) in the cross-correlation analysis and the dependence on how well the photo-z distribution was calibrated (e.g., by using a deep spectroscopic galaxy sample) before the information from cross correlations is employed.

The outline of this first part of the paper is as follows. In Section 2, we review the relevant expressions describing the cosmic shear signal and the roles of the source redshift distribution and the photo-z parameters. In Section 3, we briefly describe the assumed survey specifications for the HSC and EUCLID lensing surveys. We then forecast cosmological constraints from these surveys (including a cosmic microwave background (CMB) prior) in Section 4 and highlight the dependence on the assumed knowledge of the source distribution. Next, in Section 5, we review the formality of the cross-correlation technique and describe our galaxy bias priors, while in Section 6 we describe the PFS and EUCLID spectroscopic surveys. The main results of the first part of the paper are then presented in Section 7, where we consider dark energy (and other) constraints when combining the information on the source redshift distribution from the cross correlations with the cosmological information encoded in the weak lensing power spectra.

In the (much shorter) second part of the paper, Section 8, we consider a different approach and study the case of an unknown source distribution without photo-z information. On the one hand, we will quantify how well such a distribution can be measured in narrow redshift bins directly from the cross correlations with the spectroscopic sample (this is also what has been done in previous works). On the other hand, we will ask which components of the source redshift distribution need to be known, and how well, in order for cosmic shear constraints...
not to be impacted. We then compare these two results to gain more insight into how the cross-correlation method improves cosmological constraints from weak lensing and therefore into the results of the prior sections.

We end the paper with a discussion and our conclusions in Section 9.

2. COSMIC SHEAR (THEORY)

The weak lensing convergence of source galaxies in a tomographic bin i is given by

$$\kappa_i(\hat{n}) = \int dz W_i(z) \delta(D(z), \hat{n}; z),$$

where $D(z)$ is the radial coordinate distance to redshift z, $\delta(x, z)$ is the relative matter overdensity, and the kernel

$$W_i(z) = \left[\frac{3}{2} H_0^2 \Omega_m (1 + z) D(z) H^{-1}(z) \right] \int dz f_i(z_s) D(z, z_s) D(z_s).$$

(2)

Here, H_0 and Ω_m are the present values of the Hubble rate and the matter density relative to the critical density and $D(z, z')$ is the radial coordinate distance from redshift z to redshift z' (in a spatially flat universe, $D(z, z') = D(z') - D(z)$). Finally, $f_i(z)$ is the redshift distribution of source galaxies in the ith bin, normalized to unity, i.e.,

$$f_i(z) \equiv \left(\int dz' \frac{d n_i}{d z'}(z') \right)^{-1} \frac{d n_i}{d z}(z).$$

(3)

where $d n_i / d z(z)$ is the number of galaxies per steradian per unit redshift. We summarize these properties in the left column of Table 1.

The power spectra and cross spectra of the convergence are (in the Limber approximation; Limber 1954) given by

$$C^{ij}_z = \int dz H(z) D(z) W_j(z) W_j(z) P \left(\frac{\ell + \frac{1}{2}}{D(z)}, z \right).$$

(4)

where $P(k, z)$ is the matter power spectrum at redshift z. The convergence spectra probe cosmology both through their dependence on the matter power spectrum and through the dependence on the distances and expansion rate appearing in the line-of-sight integral. An important advantage of gravitational lensing over many other probes of large-scale structure is that it directly measures the matter density field as opposed to a tracer of it, avoiding the need to model the bias of such a tracer (note, however, that Equation (4) assumed general relativity to relate metric perturbations to the matter density).

To describe the source redshift distribution, we use what is more or less the standard in the literature for forecasts that includes photometric redshift calibration uncertainties, see, e.g., Ma et al. (2006), Huterer et al. (2006), Ma & Bernstein (2008), and Hearin et al. (2010). We assume that the galaxies have photometric redshifts z_{ph}, characterized by a distribution $p(z_{\text{ph}} | z)$ (the probability density for the photometric redshift, given the true galaxy redshift), and that the tomographic bins are defined by cuts in z_{ph}. The (true) redshift distribution in a bin is then

$$\frac{d n_i}{d z}(z) = \frac{d n}{d z}(z) \int_{z_{\text{low}}^i}^{z_{\text{high}}^i} d z_{\text{ph}} p(z_{\text{ph}} | z),$$

(5)

where z_{low}^i and z_{high}^i are the boundaries of the bin. The true redshift distribution of the full sample, $(d n / d z)(z)$, is assumed to be known and will depend on the survey under consideration (given explicitly in Section 3). The normalized distribution in a given bin can be trivially obtained from Equations (5) and (3).

As a baseline model for the photo-z distribution, we assume a Gaussian

$$p(z_{\text{ph}} | z) = \frac{1}{\sqrt{2\pi} \sigma(z)} e^{-\frac{1}{2} (z_{\text{ph}} - z_{\text{true}}(z)) / \sigma(z)},$$

(6)

characterized by a scatter $\sigma(z)$ and a bias $b(z)$. We parameterize the photo-z scatter and bias by the values of $\sigma(z)$ and $b(z)$ at 11 equally spaced redshifts in the range $0 - 3$. The values of $\sigma(z)$ and $b(z)$ at arbitrary redshift are then obtained by interpolation. We assume a fiducial of $\sigma(z) = 0.05 (1 + z)$ and $b(z) = 0$. To incorporate uncertainty in the photo-z distribution, the 11 pairs of (σ_i, b_i) values are treated as free parameters, on which priors can later be imposed. In reality, the photo-z distribution is typically not Gaussian, but the Gaussian form serves as a simple ansatz with which to study uncertainty in the width and average of the photo-z distribution. For future work, it would be interesting to include, e.g., skewness of the distribution and the possibility of outliers to study catastrophic redshift failures.

The model described above clearly presents an oversimplified description of the use of photometric redshifts with a real survey, but should suffice for a first investigation of how useful cross correlations are for optimizing cosmological information in cosmic shear by calibrating the source redshift distribution. Another simplification we will make is to ignore the effect of intrinsic alignments (e.g., Pen et al. 2000; Catelan et al. 2001; Hirata & Seljak 2004; Heymans et al. 2013; Heavens et al. 2000), optimistically assuming that for the galaxy types where this effect matters it can be modeled and removed.

Table 1

Properties of the Weak Lensing Surveys Considered in This Paper

Survey Type	HSC and EUCLID Weak Lensing Surveys	WFIRST Weak Lensing Surveys
Number density	$\bar{n}_A = 20$ arcmin$^{-2}$	$\bar{n}_A = 30$ arcmin$^{-2}$
Sky coverage	1500 deg2	15000 deg2
Shape noise	$\sigma(\gamma) = 0.22$	$\sigma(\gamma) = 0.22$
Redshift distribution	$dn/dz \propto z^2 e^{-z/(2a)}$, $(z) = 1.0$	$dn/dz \propto z^2 e^{-z/(2a)}$, $(z) = 0.96$ (median 0.9)
Tomography	5 bins	5 bins
Multipole range	$\ell = 20$–2000	$\ell = 20$–2000

Note: HSC = Hyper Suprime-Cam Survey, EUCLID = European Space Agency’s Cosmic Life Observing Data Investigation.
Figure 1. Source distribution of the full sample (solid) and galaxies in tomographic bins (dashed) for HSC (black) and EUCLID (red). For HSC, the source bins are defined by $q_{\text{pho}} = 0.0-0.6-1.0-4.0$ and for EUCLID they are defined by the cuts $q_{\text{pho}} = 0.0-0.4-0.8-1.2-1.6-2.0-3.5$.

(A color version of this figure is available in the online journal.)

3. WEAK LENSING SURVEYS

We consider two upcoming weak lensing surveys: the HSC wide field survey, starting in 2013, and that of the EUCLID satellite (Laureijs et al. 2011), scheduled to launch in 2020. The main specifications of each experiment are listed in Table 1. For HSC, the specifications are based on Oguri & Takada (2011) and for EUCLID the specifications are based on Amendola et al. (2013). Figure 1 shows the source distributions for the full sample and in the individual bins for each experiment.

4. EFFECT OF UNCERTAINTY IN THE PHOTO-z DISTRIBUTION

We use the Fisher matrix formalism (see, e.g., Tegmark et al. 1997) to forecast constraints from weak lensing on cosmological (and photo-z) parameters. The matter power spectra that serve as input for this calculation are computed using the public Boltzmann code CAMB (Lewis et al. 2000). We consider a spatially flat universe with dynamical dark energy parameterized by the equation of state function

$$w(a) = w_0 + w_a(1 - a).$$

We thus have eight parameters in total, with fiducial values $w_0 = 0.02258, \omega_b = 0.1109, \Omega_m = 0.734, \sigma_8 = 0.8, n_s = 0.96, \omega_b = -1, w_a = 0, \text{ and } \tau = 0.086$, where τ is the optical depth to reionization. Weak lensing on its own places only weak constraints on the dark energy parameters because of parameter degeneracies. Hence, we combine weak lensing with a forecasted CMB prior from the Planck (Planck Collaboration et al. 2013a, 2013b, 2013c) experiment. The Planck Fisher matrix employed here was calculated using the specifications given in Table 2. We assume only multipoles $\ell < 2000$ are used and neglect CMB lensing to be on the conservative side and to avoid having to model covariance between the CMB spectra and the lensing spectra. Forecasted constraints much stronger than the ones we will show could be obtained by adding more datasets, but since we would like to isolate as much as possible the constraining power of weak lensing, we will not follow this path. We study the results for different surveys below. While we

will consider uncertainties on all parameters, the main quantity of interest will be the dark energy figure of merit (FOM; Albrecht et al. 2006), defined here as

$$\text{FOM} = (\text{Det}(\text{Cov}[w_0, w_a]))^{-1},$$

which is inversely proportional to the area enclosed by a fixed confidence level contour in the $w_0 - w_a$ plane. Note that, unlike in the definition of the Dark Energy Task Force, we do not marginalize over spatial curvature Ω_K, but instead fix it to zero.

We use linear power spectra as input to calculate the derivatives going into the Fisher matrix and also to compute the covariance matrix of the observables. The latter calculation assumes Gaussianity of the shear field, leading to a diagonal covariance matrix. As we briefly illustrate at the end of Section 4.1, using the information in the nonlinear power spectra would lead to significantly stronger forecasted constraints. However, using the nonlinear signal, but ignoring the non-Gaussian contributions (specifically the off-diagonal contributions) to the covariance matrix, overestimates the constraining power of weak lensing (see, e.g., Takada & Jain 2009; Kiessling et al. 2011). While this mainly manifests itself in an underestimate of the multi-dimensional volume of the allowed region in parameter space and individual parameter uncertainties are not affected strongly, we still prefer to present conservative constraints that do not use the information in the nonlinear regime at all. Since our main interest in this work is the dependence of parameter constraints on the level of knowledge of the source redshift distribution, rather than the exact values of the forecasted uncertainties or FOM, this is not a choice of great consequence.

4.1. HSC

We show the cosmic shear angular power spectra (solid) in our fiducial cosmology, the shape noise power spectra (dashed), and the uncertainty in the binned angular power spectrum in Figure 2. A comparison of the noise and signal spectra shows that the measurement becomes noise dominated above a critical multipole in the range $\ell = 100–1000$ depending on the redshift bin (and on the bin widths chosen). However, by averaging over the large number of available modes, the power spectrum itself can be measured with high accuracy to much higher multipoles, as is shown by the error bars. Using these spectra and their derivatives with respect to cosmological and photo-z parameters, we construct a Fisher matrix.

In Table 3, we show the resulting parameter uncertainties and dark energy FOM. When perfect knowledge of the photo-z parameters is assumed (i.e., fixing the σ_z and b_z parameters), adding weak lensing to Planck significantly improves cosmological constraints, causing an increase of the dark energy FOM by a factor 20 and the tightening parameter uncertainties by up to a factor of five. The third column, however, shows the results in the case where the 22 photo-z parameters are left free.
Table 3
Forecasted Cosmological Constraints for the HSC Weak Lensing Survey

$\sigma(p)$	Planck	Planck + $\gamma \gamma$ (Known σ_z, b_z)	Planck + $\gamma \gamma$ (“Free” σ_z, b_z)
ω_b	0.00013	0.00011	0.00013
ω_c	0.0011	0.00069	0.0011
Ω_Λ	0.18	0.051	0.17
n_s	0.0033	0.0027	0.0033
σ_8	0.20	0.043	0.20
w_0	1.5	0.61	1.5
w_a	3.7	1.6	3.7
FOM	= $1/\sqrt{\det\text{Cov}}$	0.47	9.5

Notes. Uncertainties and dark energy FOM are shown for Planck (left column), Planck + cosmic shear with known/fixed photo-z parameters (middle), and Planck + cosmic shear with a priori unknown photo-z parameters (right). The photo-z scatter $\sigma_z(z)$ and bias $b_z(z)$ are specified at 11 redshifts in the range $z = 0–3$ and interpolated in between.

Table 4
Same as Table 3, But with Nonlinear Shear Spectra Instead

$\sigma(p)$	Planck	Planck + $\gamma \gamma$ (Known σ_z, b_z)	Planck + $\gamma \gamma$ (“Free” σ_z, b_z)
ω_b	0.00013	0.000097	0.0012
ω_c	0.0011	0.00044	0.0011
Ω_Λ	0.18	0.018	0.13
n_s	0.0033	0.0023	0.0031
σ_8	0.20	0.019	0.15
w_0	1.5	0.29	0.85
w_a	3.7	0.82	1.6
FOM	= $1/\sqrt{\det\text{Cov}}$	0.47	29

Finally, we show in Table 4 the forecasted parameter constraints found when using nonlinear matter power spectra (both for the derivatives and the covariances) to calculate the Fisher matrix. Using the nonlinear information improves the dark energy FOM by a factor of three in the case of known photo-z parameters. Moreover, the nonlinear power spectrum helps break some of the degeneracy between cosmological parameters and the photo-z distribution (as discussed in Hearin et al. 2012), as well as allowing some prior on the photo-z parameters we now find that without the Planck-only case. For reasons discussed above, we will from now only use the linear power spectra in our Fisher matrix calculations, but it is good to keep in mind that this is gives rather conservative error estimates.

4.2. EUCLID

For EUCLID’s lensing survey, the angular power spectra and noise spectra are shown in Figure 3 for a subset of the six tomographic bins, showing that the shear measurements become...
noise-dominated at scales $\ell > \ell_{\text{max}}$, with $\ell_{\text{max}} = 30–600$, depending on the bin. The error bars on the binned angular spectra are significantly smaller than in the case of HSC, mainly because of the 10 times larger sky coverage for EUCLID (note, however, that because of the different binning choices, one cannot make a direct quantitative comparison between the two figures).

The forecasted parameter uncertainties are given in Table 5. As in the case of HSC, cosmic shear strongly improves cosmological parameter constraints provided that the photo-z distribution is known. With EUCLID, the improvement is even more spectacular than before, giving more than a factor of 300 increase in the FOM. Allowing freedom in the photo-z parameters (without an external prior) degrades this information again, which is appropriate for scales $\ell > D/\Delta D$ (see Loverde & Afshordi 2008), where D and ΔD are the distance to and width of the redshift slice, respectively. (McQuinn & White 2013) have recently shown that the Limber approximation is appropriate for the application considered here because most of the information on the source redshift distribution comes from scales well into the $\ell > D/\Delta D$ regime. To be careful, we choose $\ell_{\text{min}} = 20$ in our forecast so that the above inequality is satisfied approximately for all included modes (the largest/worst case value of $D/\Delta D$ will actually be 35, but, again, not much information comes from the modes at $\ell < D/\Delta D$, so our choice of ℓ_{max} should suffice for a forecast).

We will divide the spectroscopic sample into a large number of narrow redshift slices and will treat the spectroscopic redshifts as infinitely accurate so that the redshift distribution within a slice has zero weight outside of its defining redshift bounds. In the limit of an infinitely narrow bin at redshift z_i, $f_i^{(\text{s})}(z) \rightarrow \delta^{(D)}(z - z_i)$ (where $\delta^{(D)}$ is the Dirac delta function), so that the

5. CROSS CORRELATIONS (THEORY)

We now consider including a galaxy sample with spectroscopic redshifts that covers the same area of the sky as the photometric sample of lensing source galaxies. We stress that the galaxy selection of this sample does not need to overlap with that of the lensing source galaxy sample. All that matters is that the two samples overlap in surveyed volume, so that the galaxy densities trace the same underlying dark matter density. In practice, the spectroscopic sample will most likely consist of more luminous galaxies, with a smaller number density, than the lensing source sample. Allowing for the possibility of dividing both the photometric (labeled p) and spectroscopic (labeled s) samples into bins, the auto- and cross correlations of the overdensities in these bins are given by Equation (4):

$$C^{ij} = \int dz \frac{H(z)}{D^2(z)} W_i(z) W_j(z) P\left(\frac{\ell + \frac{1}{2}}{D(z)} z\right),$$

where now the kernels are given by

$$W^i(z) = b^{(p)}(z) f_i(z)$$

for the bin(s) of photometric source galaxies, where $b^{(p)}(z)$ is the galaxy bias of this sample and $f_i(z)$ the normalized redshift distribution, and by

$$W^i(z) = b^{(s)}(z) f_i^{(s)}(z)$$

for the spectroscopic bins, with $b^{(s)}(z)$ and $f_i^{(s)}(z)$ describing the bias and distribution of the spectroscopic galaxies. Equation (8) assumes the Limber approximation, which, for the auto spectra, is appropriate for scales $\ell > D/\Delta D$ (see Loverde & Afshordi 2008), where D and ΔD are the distance to and width of the redshift slice, respectively. (McQuinn & White 2013) have recently shown that the Limber approximation is appropriate for the application considered here because most of the information on the source redshift distribution comes from scales well into the $\ell > D/\Delta D$ regime. To be careful, we choose $\ell_{\text{min}} = 20$ in our forecast so that the above inequality is satisfied approximately for all included modes (the largest/worst case value of $D/\Delta D$ will actually be 35, but, again, not much information comes from the modes at $\ell < D/\Delta D$, so our choice of ℓ_{max} should suffice for a forecast).

We will divide the spectroscopic sample into a large number of narrow redshift slices and will treat the spectroscopic redshifts as infinitely accurate so that the redshift distribution within a slice has zero weight outside of its defining redshift bounds. In the limit of an infinitely narrow bin at redshift z_i, $f_i^{(s)}(z) \rightarrow \delta^{(D)}(z - z_i)$ (where $\delta^{(D)}$ is the Dirac delta function), so that the

Table 5

$\sigma(p)$	Planck	Planck + $\gamma\gamma$ (Known σ_z, b_z)	Planck + $\gamma\gamma$ (“Free” σ_z, b_z)
ω_c	0.00013	0.000093	0.00013
ω_b	0.0011	0.00031	0.0011
Ω_m	0.18	0.13	0.18
n_s	0.0033	0.0031	0.0033
σ_8	0.20	0.12	0.20
w_0	1.5	1.4	1.5
w_a	3.7	3.6	3.7
FOM	0.47	162	1.5

Notes. Uncertainties and dark energy FOM are shown for Planck (left column), Planck + cosmic shear with known/variable σ_z, b_z parameters (middle), and Planck + cosmic shear with a priori unknown σ_z, b_z parameters (right). The photo-z scatter $\sigma_z(z)$ and bias $b_z(z)$ are specified at 11 redshifts in the range $z = 0–3$ and interpolated in between.
cross correlation with a photometric bin \(j \) becomes
\[C_{ij}^{ij} = \frac{H(z_i)}{D^2(z_i)} b^{iP}(z_i) b^{jP}(z_j) f_j(z_i) P \left(\frac{\ell + \frac{1}{2}}{D(z_i) z_i} \right) \]
(note that the Limber approximation can still be applied here because the photometric galaxy distribution is assumed to be spread out in redshift). The cross correlation is thus proportional to \(f_j(z_i) \), the redshift distribution of photometric galaxies in the \(j \)th source bin at redshift \(z_i \). This is what motivates cross correlating with a large number of spectroscopic redshift bins to reconstruct the full function \(f_j(z) \). The spectroscopic galaxy bias in Equation (10) can in principle be obtained from the auto spectrum of the spectroscopic galaxies. Moreover, the auto spectrum of the photometric sample may contain additional information on \(f_j(z) \) as well. We therefore include in our analysis not just the photo-spec cross correlations (\(ps \)), but also the auto-correlations (\(pp \) and \(ss \)).

We will neglect the effect of magnification bias on the auto and cross spectra. Magnification bias may act as a double-edged sword (see also McQuinn & White 2013 for an interesting discussion of magnification bias on redshift distribution estimation from cross correlations). On the one hand, it introduces a correction to Equation (10), so that the cross spectra are no longer directly proportional to \(f_j(z_i) \) and the correction is non-trivial to model because of the uncertainty in the power-law index of the source galaxy number versus flux threshold relation, \(a^{P_p} \). On the other hand, the additional signal may help break the bias degeneracy we will discuss below. We leave further investigation of this possibility for future work.

Of course, to extract all information from the shear/convergence field and the galaxy overdensities, one would use all possible correlations, including for example the cross correlations between shear and the spectroscopic galaxies (galaxy–galaxy lensing). However, we here wish to focus specifically on the use of the spectroscopic galaxies to measure the lensing source distribution. For this reason, we will only consider the \(sp, ss, \) and \(pp \) spectra (in addition to the lensing power spectrum discussed in the previous section and a CMB prior). Moreover, the galaxy overdensities do not only carry information on the redshift distribution, but also direct cosmological information. For the reason explained above however, and to be on the conservative side, we will first calculate a Fisher matrix for the parameters determining \(f_j(z) \), marginalized over the cosmological parameters, using \(sp, ss, \) and \(pp \). We then add this Fisher matrix to the full Fisher matrix from weak lensing and the CMB. This way, we are not including directly any cosmological information encoded in the galaxy clustering. Moreover, any degeneracy between the effect of the source redshift distribution and the effect of cosmological parameters is thus explicitly marginalized over, unlike in previous studies.

5.1. The Role of Galaxy Bias Evolution

Equation (4) shows that all the spectra involving the photometric sample are only sensitive to the bias and the redshift distribution through their product, \(b^{iP}(z_j) f_j(z) \), giving rise to an exact degeneracy between the two functions (Schulz 2010; Bernstein & Huterer 2010; Matthews & Newman 2010; McQuinn & White 2013). This is a potentially serious challenge for the cross-correlation technique. In the following, we will first show how well this technique works in the case where the photometric galaxy bias function is known exactly a priori. We will also study the more realistic case where it is not and we ask what prior is needed on the galaxy bias for the method to still be useful.

To do this, we will treat the galaxy bias of the source sample as scale-independent (appropriate in the linear regime), with the redshift evolution modeled as a piecewise constant function in redshift bins, with the value in each bin given by a parameter \(b^{lP} \).

We assume a fiducial \(b^{lP} = 1 \) for all \(i \). The binning choice will be discussed for each survey in Section 6. The case of a priori unknown galaxy bias is reproduced by leaving these parameters free, without an external prior. We will then consider two types of bias priors.

1. Imposing independent priors \(\sigma(b^{lP}) \) on the binned bias parameters. In this case, the required prior depends on the choice of redshift bins in which the galaxy bias is assumed piecewise constant. Specifically, in the limit of a large number of bins (bin width \(\Delta z \) small), we find empirically that the scaling is approximately
\[\sigma(b^{lP})_{\text{req}} \propto (\Delta z)^{-1/2}. \]
To quantify the prior in a binning-independent manner, we thus define
\[\sigma(b^{lP}) = \sigma_{\text{bias}} \sigma_{\text{diag}} / \sqrt{\Delta z} \]
for all redshift bins \(i \) and will quote the quantity \(\sigma_{\text{bias}} \sigma_{\text{diag}} \). This can be thought of as the prior on the average galaxy bias in a bin in fixed width \(\Delta z = 1 \).

2. Assuming the redshift dependence of the bias to be linear in redshift (expanded around a central redshift \(z_0 = 1.0 \), the precise choice of which is irrelevant),
\[b^{lP} = b^{lP}_0 + b^{lP}(z_i - z_0), \]
and applying a prior to the coefficient,
\[\sigma(b^{lP}) \equiv \sigma_{\text{bias}}^\text{lin}. \]
Here, \(z_i \) is the central redshift of the \(i \)th galaxy bias redshift bin. We note that the prior on any redshift-independent contribution to \(b^{lP}(z) \) is irrelevant, as a constant galaxy bias is not degenerate with \(f(z) \) because of the normalization constraint on the latter function.

We will not study the important question of how to obtain a prior on the bias evolution of the source sample. This is a difficult question, deserving of a paper of its own. As stated above, the source for the number density per unit area of the source sample, to first order, is directly proportional to the product \(b^{lP}(z) f_j(z) \) (considering the \(j \)th tomographic bin) so that this quantity alone can never be used to break the degeneracy. However, as we discussed briefly, there is also a magnification bias contribution. The source term for this contribution is similar in nature to the

\[\sigma(b^{lP})_{\text{req}} \]
source for the cosmic shear signal itself. It thus does not depend on galaxy bias and in principle carries information on the source distribution that is independent of galaxy bias. While this information is unfortunately not localized in redshift, it has been found that it may still be possible to use it to constrain the galaxy bias to $\sim 10\%$ (McQuinn & White 2013). Another way of avoiding the bias degeneracy may be to consider the signal in the nonlinear regime, where the one-halo term and nonlinear bias may carry additional information. Because of nonlinear evolution and nonlinear galaxy bias, there may also be valuable information in statistics beyond the two-point function, for instance in the various bispectra involving photometric and spectroscopic galaxy overdensities. Finally, it may be enough to put bounds on the bias evolution from theory, using models and/or simulations to predict the galaxy bias evolution as a function of redshift, luminosity, color, etc. In this work, however, we will simply quantify what level of knowledge of the galaxy bias evolution is required for the cross-correlation method to benefit weak lensing studies. These results can then be used as a target for whatever method (or combination of methods) to determine the galaxy bias.

Finally, for the galaxy bias of the spectroscopic sample, we again assume a scale-independent bias described by a free parameter, $b^p_{i,j}$, for each spectroscopic galaxy bin. We will not impose external priors on the spectroscopic galaxy bias because it can be measured quite accurately using the power spectra of the spectroscopic sample (since there the redshift distribution is assumed to be known perfectly). We describe our (survey dependent) choice of binning in the next section.

6. SPECTROSCOPIC REDSHIFT SURVEYS

We consider two upcoming galaxy redshift surveys that overlap with the lensing surveys discussed in Section 3. For HSC, we study the PFS cosmology survey (Ellis et al. 2012), also with the Subaru telescope, and planned to start in early 2018. Together, these surveys are known as SuMIRe. EUCLID has its own redshift survey, of which we study the complementarity with its lensing survey. Our forecasts of the spectroscopic surveys are based on the specifications in Ellis et al. (2012; PFS) and Amendola et al. (2013; EUCLID). We assume the same sky coverage for each spectroscopic survey as for its matching lensing survey (see Table 1). Figure 4 depicts the assumed comoving number density of spectroscopic galaxies as a function of redshift for each survey.

For the fiducial galaxy bias, we follow Table 2 of Ellis et al. (2012) for PFS and $b^p_{i,j} = \sqrt{1+z}$ for EUCLID. We use the binning $z = 0.6-0.8-1.0-1.2-1.4-1.6-2.0-2.4$ (7 bins) for PFS and $z = 0.65-0.75-0.85-0.95-1.05-1.15-1.25-1.35-1.45-$ $1.55-1.65-1.75-1.85-1.95-2.05$ (14 bins) for EUCLID. We remind the reader that each redshift bin has an independent spectroscopic galaxy bias parameter associated with it. Finally, we need to specify the bins that define the photometric galaxy bias parameters. Here, we choose $z = 0.0-0.6-0.8-1.0-1.2-1.4-1.6-2.0-2.4-4$ for both surveys (i.e., coinciding with the PFS spectroscopic bins, but adding a bin at the low- and high-redshift ends). Note that the bin widths for the $b^p_{i,j}(z)$ are typically smaller than the tomographic redshift bin widths to allow for as general as possible a redshift dependence of $b^p_{i,j}(z)$.

The redshift bins above are our default choices. We will also consider the effect of varying these choices and will show that our results are robust with respect to the details of the binning of the spectroscopic sample and the binning defining the galaxy bias evolution.

When including galaxy clustering, we apply a cutoff to avoid using modes that are too far into the nonlinear regime, $\ell_{\text{max},i} = k_{\text{max}} \cdot D(z_i)$, where $D(z_i)$ is the comoving angular diameter distance (as in Section 2) to the central redshift of the ith bin. Our standard choice for the comoving wave vector is $k_{\text{max}} = 0.2 \text{ h Mpc}^{-1}$, but we will study in detail the k_{max} dependence of our results. We keep the cutoff in the cosmic shear analysis constant at $\ell_{\text{max}} = 2000$ unless explicitly stated otherwise.

7. RESULTS OF CROSS-CORRELATION TECHNIQUES

7.1. SuMIRe

7.1.1. Photo-z Calibration Using Cross Correlations

We now use the galaxy clustering information in SuMIRe, i.e., the $7 \cdot 7 = 49$ sp cross spectra, the $(1/2)7(7+1) = 28$ ss auto spectra (although only the 7 auto spectra actually contain information because of the absence of overlap between the spectroscopic bins), and the $(1/2)7(7+1) = 28$ pp auto spectra, to constrain the 22 photo-z parameters $[\sigma_z, b_{z,i}]$. We marginalize over the cosmological parameters in the process. Because of the large freedom in the redshift evolution of $\sigma_z(z)$ and $b_z(z)$, the resulting uncertainties in the individual photo-z parameters are very large ($\sigma(\sigma_{z,i})$ and $\sigma(b_{z,i}) \gg 1$). However, this does not necessarily mean there is no useful photo-z information in the galaxy clustering spectra. What matters is how well the $ps + pp + ss$ constrain the linear combinations of photo-z parameters that are degenerate with the effect of cosmological parameters on the lensing spectra. It is possible for some parameter directions to be well (enough) constrained while the individual $\sigma_{z,i}$ and $b_{z,i}$ parameters have large error bars.

We next consider explicitly to what extent the photo-z information from $ps + pp + ss$ helps the weak lensing (+Planck) analysis of cosmological parameters. In Table 6, we repeat in the first and last column the cases discussed in Section 4 of free photo-z parameters (no external priors) and exactly known photo-z parameters, respectively. These are the two extreme cases to which we can compare the results using the

Figure 4. Assumed comoving number density of spectroscopic galaxies as a function of redshift for the PFS survey (black) and for EUCLID (red).

(A color version of this figure is available in the online journal.)
cross-correlation technique. Ideally, adding the photo-z information from \(ps + pp + ss \) will bring the uncertainties and FOM close to the case of perfectly known photo-z parameters. What we actually find is listed in the two central columns. The second column lists the results when the galaxy bias of the photometric (source) sample is known perfectly. There is clear improvement, with the dark energy FOM increasing by more than a factor of four. However, the result is a long way off from the case of perfectly known photo-z parameters. In the third column, we consider the constraints when the redshift evolution of the photometric galaxy bias is unknown a priori (i.e., self-calibrated by the \(ps + pp + ss \) data). We see that leaving \(b^\gamma(z) \) free deteriorates constraints, but only by about 25%.

7.1.2. Including Information from Direct Photo-z Calibration

It is instructive to compare the yield of the cross-correlation technique to imposing a simple diagonal prior on the photo-z parameters. This prior represents the level of calibration that has been achieved for the photo-z estimator. For simplicity, we consider the case where we can place a constant prior on all photo-z parameters, \(\sigma_{\text{prior}}(\sigma_{z,i}) = \sigma_{\text{prior}}(b_{z,i}) = \sigma_{\text{prior}} \) for all \(i \). We find that the obtained FOM in Table 6 of FOM = 2.3(1.7) for a known (unknown) photometric galaxy bias can also be reached with a prior \(\sigma_{\text{prior}} = 0.04(0.05) \). It is likely that photometric redshifts will be calibrated to this level so that using the \(ps + pp + ss \) galaxy clustering information in the absence of a prior on the photo-z parameters is not better than having a prior and not using the information from \(ps + pp + ss \) at all. However, this is not the proper comparison to make. In reality, there will always be some prior on the photo-z parameters and we should ask the question how much improvement one gets from adding \(ps + pp + ss \).

We address this question in Table 7, where we show the dark energy FOM with and without \(ps + pp + ss \) for different priors on the photo-z parameters. We find that if \(\sigma_{\text{prior}} \) is larger than \(\approx 0.01 \), adding galaxy clustering information causes a significant improvement in the FOM, but if the prior is better than this, the cross-correlation technique does not add much.

When \(ps + pp + ss \) improves constraints, there is a significant advantage to knowing the galaxy bias. For instance, if the photo-z prior is \(\sigma_{\text{prior}} = 0.05 \), the FOM is 7.0 if \(b^\gamma(z) \) is assumed to be known and 4.7 when it is left free. We tested how well the galaxy bias needs to be known prior to improve from FOM = 4.7 to (close to) FOM = 7.0. Applying an independent prior to each bin (see the first bullet point in the discussion in the end of Section 5), we find that any percent-level prior \(\sigma^\text{bias} \) significantly improves the dark energy FOM. For example, \(\sigma^\text{bias} = 0.02 \) gives FOM = 5.7 (approximately halfway between the cases of unknown and known galaxy bias), and \(\sigma^\text{bias} = 0.01 \) gives FOM = 6.3. Using our second type of galaxy bias prior (the second bullet point in the discussion in the end of Section 5), we find that any prior \(\sigma^\text{bias} \) brings the FOM virtually all the way to its optimal value FOM = 7.0. In other words, merely imposing that the galaxy bias is linear in redshift constrains the bias evolution sufficiently for it to not hinder the determination of the photo-z parameters using \(ps + pp + ss \).

7.1.3. Dependence on \(k_{\max} \) and Modeling of the Photo-z Distribution

We now consider the dependence of the dark energy FOM on the maximum wave vector, \(k_{\max} \). This is the field of \(ps + ss + pp \). We keep the range of scales used for the lensing analysis fixed (\(\ell_{\max} = 2000 \)). The results (again for both known galaxy bias and free galaxy bias) are shown in Figure 5. The top left panel gives the FOM in the absence of any prior on the
Figure 5. Dependence of the SuMIRe dark energy FOM on the largest wave vector, k_{max}, included in the analysis of the cross and auto spectra ($ps + pp + ss$). Our default choice is $k_{\text{max}} = 0.2 \, h \, \text{Mpc}^{-1}$. Top left: no photo-$z$ prior. Top right: $\sigma_{\text{prior}} = 0.05$. Bottom: $\sigma_{\text{prior}} = 0.01$. Results are shown for the case of known photometric galaxy bias and of free (self-calibrated) galaxy bias. In all cases, the dependence of the photo-z information (which is the information from $ps + pp + ss$ that we focus on in this work and that drives the improvement in weak lensing constraints on dark energy) on k_{max} past $k_{\text{max}} = 0.2 \, h \, \text{Mpc}^{-1}$ is rather weak, showing that there is not much to gain from pushing the analysis to smaller scales. All results shown include a Planck prior.

(A color version of this figure is available in the online journal.)

photo-z parameters, the top right panel describes the case of a (very modest) prior $\sigma_{\text{prior}} = 0.05$, and the bottom plot is for a stronger prior $\sigma_{\text{prior}} = 0.01$. In each case, the k_{max} dependence beyond our default choice $k_{\text{max}} = 0.2 \, h \, \text{Mpc}^{-1}$ is not very strong.

Finally, we wish to point out that the success of the cross-correlation method depends strongly on how much freedom is allowed in the photo-z distribution and its evolution. In the above, we have chosen a fairly general approach with a total of 22 photo-z parameters. We now briefly consider the results when we assume the photo-z distribution $p(z_{\text{ph}}|z)$ to be redshift-independent, i.e., the parameters σ_z and b_z are constants. We choose a fiducial $\sigma_z = 0.1$ (equal to the value of $\sigma(z)$ in the previous redshift-dependent model at the average redshift $z = 1$) and $b_z = 0$ and now have only two free photo-z parameters. In this case, the shear-only FOM = 1.9 is already almost four times as large as in the case of redshift-dependent photo-z parameters (fixing the photo-z parameters gives FOM = 9.3, which is similar to the original result, as expected). Adding the information from $ps + pp + ss$ increases the FOM to FOM = 8.9(8.6) for fixed (free) photometric galaxy bias. In this more restricted photo-z model, the cross-correlation method is thus significantly more powerful. Moreover, the constraints from $ps + pp + ss$ on the individual photo-z parameters are now quite strong (unlike in the more general model): $\sigma(b_z) = 0.004$ and $\sigma(\sigma_z) = 0.004$ (here, no galaxy bias prior is assumed).

7.2. EUCLID

7.2.1. Photo-z Calibration Using Cross Correlations

We now consider the photo-z information in the EUCLID lensing source sample and the EUCLID spectroscopic galaxy sample. Using the cross and auto spectra $ps + pp + ss$, we find strong direct constraints on a large number of the $\sigma_{z,i}$ and $b_{z,i}$ parameters, with the uncertainties in the best-measured nodes $\sigma(b_{z,i}) \sim 0.001$ and $\sigma(\sigma_{z,i}) \sim 0.002$ (assuming no galaxy bias prior). Table 8 (cf. Table 6) shows the effect of the photo-z prior from $ps + pp + ss$ on the cosmological constraints from cosmic shear (+Planck). We again find that the cross-correlation technique significantly improves the weak lensing
Good as the case where there is no uncertainty in the shape of the photodistribution. Moreover, not knowing the bias not at the level of cosmic shear with a perfectly known source
the case for SuMIRe, the constraints with
62(26) for a known (unknown) source galaxy bias. As was
knowledge on the photo-

\(\sigma_{100} \) even if no prior is imposed on the slope of this relation

\(\omega_c \)

The Astrophysical Journal, 780:185 (18pp), 2014 January 10
de Putter, Doré, & Das

Table 8
Forecasted Constraints for EUCLID, Using the Cross-correlation Method to Calibrate Photo-z Parameters

\(\sigma(p) \)	\(\gamma \gamma \) ("Free" \(\sigma_z, b_z \))	\(\gamma \gamma + ps + pp + ss (b^p_p(z)) \) Known	\(\gamma \gamma + ps + pp + ss (b^p_p(z)) \) Unknown	\(\gamma \gamma \) (Known \(\sigma_z, b_z \))
\(\omega_b \)	0.00013	0.000096	0.00011	0.000093
\(\omega_k \)	0.0011	0.00040	0.00065	0.00031
\(\Omega_b \)	0.13	0.025	0.050	0.013
\(\eta_z \)	0.0031	0.0022	0.0025	0.0021
\(\sigma_k \)	0.12	0.021	0.042	0.011
\(w_p \)	1.4	0.27	0.54	0.14
\(w_z \)	3.6	0.67	1.3	0.36
FOM = 1/\sqrt{\text{DetCov}}	1.5	62	26	162

Notes. The far left and far right columns show the extreme cases where the galaxy clustering information \((ps + pp + ss) \) is not used and the photo-z parameters are either assumed to be unknown a priori (far left), or known exactly (far right). The two columns in the middle include the \(ps + pp + ss \) information and assume no prior knowledge on the photo-z parameters. The cross-correlation method thus is an improvement relative to the case of a priori unknown photo-z parameters, but is not as good as the case where there is no uncertainty in the shape of the photo-z distribution. All results shown include a Planck prior.

Table 9
Dark Energy FOM for EUCLID as a Function of the Prior Knowledge of the Photo-z Parameters

Prior on \(\sigma_z, b_z \)	\(\gamma \gamma \)	\(\gamma \gamma + ps + pp + ss \) (Known \(b^p_p(z) \))	\(\gamma \gamma + ps + pp + ss \) (Unknown \(b^p_p(z) \))
No prior	1.5	62	26
0.05	3.9	101	61
0.02	10	106	75
0.01	26	114	96
0.005	61	127	119
0.002	124	145	143
0.001	150	154	153
0.0	162	162	162

Notes. Columns show results for shear only (left) and shear with \(ps + pp + ss \) (middle and right). Depending on the prior on the photo-z parameters, the cross-correlation method can help strongly improve the dark energy constraint relative to the case with shear information only. All results shown include a Planck prior.

Bounds relative to the case of (a priori) unknown photo-z parameters, with the dark energy FOM increasing from 1.5 to 62(26) for a known (unknown) source galaxy bias. As was the case for SuMIRe, the constraints with \(ps + pp + ss \) are still not at the level of cosmic shear with a perfectly known source distribution. Moreover, not knowing the bias \(b^p_p(z) \) aversely affects the constraints (decreasing the FOM by \(\sim 60\% \)).

7.2.2. Including Information from Direct Photo-z Calibration

The gains from the cross-correlation method shown in Table 8, i.e., FOM = 62(26), are equivalent to having a photo-z prior \(\sigma_{\text{prior}} = 0.005(0.010) \), showing the strength of this technique for a survey like EUCLID. In Table 9, we show the constraints with and without the use of \(ps + pp + ss \) for various external priors on the photo-z parameters. Unless this prior is very strong, \(\sigma_{\text{prior}} < 0.002 \), the cross-correlation method always helps to strongly improve the cosmological constraints.

Considering as an example the case of a photo-z prior \(\sigma_{\text{prior}} = 0.05 \) (as we did for SuMIRe), the FOM ranges from FOM = 61–101, depending on how much information on \(b^p_p(z) \) is available. We find that a diagonal bias prior \(\sigma_{\text{bias}} = 0.005 \) gives a FOM halfway between these two extremes (FOM = 81), while an even stronger prior \(\sigma_{\text{bias}} \leq 0.002 \) is essentially equivalent to knowing the galaxy bias perfectly, increasing the FOM to FOM \(\geq 94 \). The bias knowledge requirements are thus stricter than in the case of SuMIRe. On the other hand, imposing \(b^p_p(z) \) to be linear in \(z \) is already enough to ensure FOM \(\geq 100 \) even if no prior is imposed on the slope of this relation (i.e., \(\sigma_{\text{bias}} \)).

7.2.3. Dependence on \(k_{\text{max}} \)

The dependence of our forecasts on the smallest modes included in the galaxy clustering analysis is shown in Figure 6 for several choices of the external photo-z prior \(\sigma_{\text{prior}} \). As before, the \(k_{\text{max}} \) is not particularly strong beyond our default choice of \(k_{\text{max}} = 0.2 h \) Mpc\(^{-1} \).

8. GENERAL REDSHIFT DISTRIBUTION
(No Photo-z Information)

In the previous sections, we have assumed that photometric redshifts are available for the lensing source galaxies, taking into account that the photo-z distributions may not be perfectly known. This uncertainty in the photo-z distribution translates into uncertainty in the lensing source redshift distribution, which in turn translates into additional uncertainty in the cosmological parameters obtained from cosmic shear tomography (or into a parameter bias if the effect is not properly modeled). The photo-z parameters cannot be properly calibrated by the cosmic shear data themselves and we have shown that the resulting degradation in cosmological parameter uncertainties can be very large, depending on the prior knowledge of the photo-z parameters.

The main goal of the previous sections (and of this work) was to quantify to what extent cross correlations between the source galaxies and an overlapping sample of spectroscopic galaxies (in addition to the auto-correlations of these samples) can calibrate the photo-z distribution and mitigate the degradation of cosmological parameter estimation from cosmic shear. This addresses directly the question of how useful the cross-correlation technique will be for supporting the constraining power of
Figure 6. Dependence of the EUCLID dark energy FOM on the largest wave vector, k_{max}, included in the analysis of the cross and auto spectra ($ps + pp + ss$). Our default choice is $k_{\text{max}} = 0.2 \text{ h Mpc}^{-1}$. Top left: no photo-\(z\) prior. Top right: $\sigma_{\text{prior}} = 0.05$. Bottom: $\sigma_{\text{prior}} = 0.01$. Results are shown for the case of a known photometric galaxy bias and a free (self-calibrated) galaxy bias. In all cases, the dependence of the photo-\(z\) information (which is the information from $ps + pp + ss$ that we focus on in this work and that drives the improvement in weak lensing constraints on dark energy) on k_{max} past $k_{\text{max}} = 0.2 \text{ h Mpc}^{-1}$ is rather weak, showing that there is not much to gain from pushing the analysis to smaller scales. All results shown include a Planck prior. (A color version of this figure is available in the online journal.)

upcoming lensing surveys. However, because of the assumption of having photo-\(z\)’s and because of the joint analysis with a focus on the end product (i.e., the cosmological parameters), the analysis thus far does not give much insight into how well *in general* the cross-correlation method can constrain redshift distributions or what knowledge of the source distribution is required for a lensing analysis. We will address these questions individually in this section. First, we will consider an a priori completely unknown, arbitrary galaxy redshift distribution and study how well it can be measured (Section 8.1) using the cross correlations and auto-correlations of the overlapping galaxy number densities (the $ps + pp + ss$ spectra). We will not assume any photometric redshift information in this section and will pay specific attention to the dependence of our results on our knowledge of galaxy bias evolution. Compared with the rest of this work, Section 8.1 follows more closely the spirit of previous studies on the subject of using cross correlations to constrain (source) redshift distributions; see Ho et al. (2008), Newman (2008), Bernstein & Huterer (2010), Matthews & Newman (2010), Schulz (2010), McQuinn & White (2013), and Ménard et al. (2013).

In Section 8.2, we then ask which specific properties (or modes) of the source distribution do we really need to know in order to not weaken cosmological parameter constraints. Comparing how well $ps + pp + ss$ measures the source distribution to what is the requirement from lensing will then give more insight into when the cross-correlation technique is useful.

Throughout this section, unless otherwise specified, we assume the survey properties of SuMIRe, as described in Sections 3 and 6. While the galaxy sample that we use to measure the redshift distribution is no longer assumed to have photometric redshift estimates, we will still refer to it as the p sample (and s refers to the spectroscopic sample). Since for our discussion in Section 8.1 this sample also no longer has to be a lensing source sample, we will no longer refer to it as the photometric or source sample, but will instead call it the target sample.

8.1. Measuring a General Redshift Distribution Using the Cross-correlation Technique

We consider a target sample of galaxies with a distribution based on what would be obtained when applying a photometric redshift cut $z_{\text{ph}} = 0.8–1.2$ to the HSC source sample, with $\sigma_z = 0.05(1 + z)$, $b_z \equiv 0$. Instead of using the exact resulting distribution, we approximate it by a piecewise constant function defined in $N_{dz/\Delta z}$ bins. The fiducial distributions are depicted
Figure 7. Uncertainties in the redshift distribution after reconstruction with the cross-correlation technique (i.e., using cross spectra p_s and auto spectra p_p and s_s). We assume an HSC-like survey (but do not use photometric redshift information). In the top panels, the redshift distribution of the p sample is allowed to vary in $N_{dn/dz} = 5$ redshift bins, while the bottom panels depict the case of $N_{dn/dz} = 10$. The results strongly depend on how much knowledge of the galaxy bias $b(p)(z)$ is assumed.

In the left panels, we consider the effect of a diagonal prior on the bias bins, while in the right panels, we study the case of a prior on the slope of the bias-redshift relation (see the text for details).

(A color version of this figure is available in the online journal.)

by the black lines in Figure 7 for $N_{dn/dz} = 5$ (top panels) and $N_{dn/dz} = 10$ (bottom). The redshift bins cover the range $z = 0.6–1.6$ and have a width $\Delta z = 0.2(0.1)$ for $N_{dn/dz} = 5(10)$.

To quantify how well $f(z)$ (the normalized source distribution, as before) can be reconstructed by the cross-correlation method, we treat its value in each bin as a free parameter, f_i, in the Fisher matrix (imposing the normalization condition $\int dz f(z) = 1$). For each $f(z)$ bin, we define one slice of spectroscopic galaxies with the same redshift range (thus giving rise to $N_{sn/dz}$ spectroscopic slices). Each spectroscopic bin has a corresponding free galaxy bias parameter (as before). Moreover, in each of these redshift bins, we allow for a free galaxy bias of the target (p) sample and, in addition, two free target bias parameters for the bins $z = 0–0.6$ and $z = 1.6 – \infty$.

Thus, in total, we consider $N_{sn/dz}$ s_s auto spectra (the s_s; cross spectra are zero in the Limber approximation because of the absence of redshift overlap), $N_{dn/idz}$ s_p cross spectra, and one p_p auto spectrum as our (prospected) dataset and $N_{cosmo} + N_{b/p} + N_{b/p} + N_{dn/idz} = 7 + N_{dn/idz} + 7 + N_{dn/idz} + 9 + 3N_{dn/idz}$ parameters (making 24 or 39, in practice). We wish to stress again that the constraints on the target redshift distribution we will present have any degeneracy with cosmological parameters taken into account and marginalized over. No CMB prior is included so that any degeneracy between $f(z)$ and cosmological parameters has to be broken by the galaxy spectra themselves.

Our main results are shown in Figure 7. We first consider the case where the target galaxy bias $b(p)(z)$ is known exactly (but the cosmological parameters and spectroscopic galaxy bias are marginalized over). The resulting uncertainties in the reconstructed redshift distribution are indicated by the black error bars in the top (bottom) panels for the case $N_{dn/idz} = 5(10)$ (for these errors, there is no difference between the left and right panels). In both cases, errors as small as 2% can be reached on $f(z)$ in the central bins. The uncertainties on $f(z)$ do not vary strongly between bins, but the relative uncertainties do vary because of the lower fiducial values in the bins on the edge of the distribution. In those bins, the relative uncertainties are of order unity or larger. The measurement of the redshift distribution corresponds to a determination of the sample’s mean redshift of $\sigma(\langle z \rangle) \approx 0.005$ (independent of the number of bins $N_{sn/dz}$).

The bounds above, however, rely strongly on our assumption that the galaxy bias is known exactly and will deteriorate when uncertainty in the bias (of the p sample) is allowed. In fact, if we allow the bias to be completely free (no prior) in the redshift
bins discussed above, the error bars on \(f(z) \) approach infinity (not shown in the figure) and we are left with no information on the redshift distribution. This was to be expected because of the exact degeneracy between a free \(b^{(p)}(z) \) and \(f(z) \).

We now consider the constraints when independent bias measurements and/or theoretical considerations allow us to place a prior on the galaxy bias evolution, again employing the two types of priors discussed in Section 5: a diagonal prior \(\sigma_{\text{bias}}^{\text{diag}} \) or a prior on the slope of the bias-redshift relation (assuming linearity): \(\sigma_{\text{lin}}^{\text{bias}} \). The left panels show that a weak prior \(\sigma_{\text{diag}}^{\text{bias}} = 0.1 \) (i.e., \(\sigma(b^{(p)}) = 0.1/\sqrt{\Delta z} \), where \(\Delta z \) is the bin width) makes it possible again to measure \(f(z) \), although still with rather large error bars (typical relative uncertainties \(\sim 30\% \), \(\sigma((z)) \sim 0.02 \)). Qualitatively similar results (but somewhat stronger) can be obtained by imposing \(f(z) \) to be a linear function of redshift and applying a weak prior \(\sigma_{\text{lin}}^{\text{bias}} = \sigma(b^{(p)}) = 1 \) (right panels).

Applying priors an order of magnitude stronger (\(\sigma_{\text{diag}}^{\text{bias}} = 0.01 \) or \(\sigma_{\text{lin}}^{\text{bias}} = 0.1 \) (see Figure 7) is almost equivalent to knowing the bias exactly for the purpose of the redshift distribution reconstruction.

We have shown above that to reconstruct a general galaxy redshift distribution using the cross-correlation technique, it is crucial to have prior knowledge of the galaxy bias evolution. On the bright side, the required bias prior for the method to be successful is not very strict and might be within reach (under the simple assumptions made in this forecast). In the analysis with a cosmic shear focus in the previous sections, in contrast, we had found that a bias prior, while useful, was not as important as here. In particular, even in the absence of such a prior, information on the photo-z parameters (and thus on \(f(z) \)) could be obtained from the cross-correlation method. The crucial difference, however, in the former analysis is that the true underlying distribution \(dn/dz(z) \) was assumed to be known and that multiple source bins were used. In that case, at the redshifts where the true redshift distributions of neighboring tomographic slices overlap, we are sensitive to both \(f(z)b^{(p)}(z) \) and \(f_{\text{sys}}(z)b^{(p)}(z) \), where \(f_{\text{sys}}(z) \) and \(f_{\text{sys}}(z) \) are the normalized redshift distributions in neighboring bins. The combination (specifically the ratio) of these quantities contains information on the photo-z parameters that does not suffer from the bias degeneracy. Therefore, the photo-z parameters could be constrained (weakly) even without making assumptions about \(b^{(p)}(z) \). Note, however, that this is only the case because the galaxy bias was assumed to be a function of redshift only. An additional dependence on color for instance would require us to model the bias of galaxies in separate tomographic bins as independent functions, thus reinstating the bias degeneracy.

To conclude this section, it is instructive to compare the analysis above with the study in Bernstein & Huterer (2010). While the focus there is on outliers in the redshift distribution due to catastrophic redshift failures, the methodology is very similar to the one followed in this section. Among other things, Bernstein & Huterer (2010) forecast constraints from the cross-correlation method on the contamination rate \(c_{\mu\nu} \), and compare these with the maximum uncertainty allowed in this quantity in order to not bias dark energy constraints. This contamination rate is the fraction of galaxies with tomographic redshifts in a redshift bin \(\mu \) that have a true redshift in the redshift bin \(\nu \). Therefore, identifying the bin \(\mu \) with the sample studied in this section (defined by \(z_{\text{ph}} = 0.8–1.2 \)), we can simply relate \(c_{\mu\nu} = f_{\mu} \Delta z \) (with \(f_{\mu} \) being the parameter used above, describing the normalized target number density in bin \(\mu \)). While the formal setup is thus very similar, it is difficult to compare in detail our results in terms of \(f_{\mu} \) to theirs in terms of \(c_{\mu\nu} \). First of all, Bernstein & Huterer (2010) focus on outliers in the distribution, i.e., non-zero contamination at a true redshift far removed from the photometric redshift. Second, different survey properties are assumed in the forecasts. The study of redshift outliers is beyond the scope of this work. We therefore stick to a brief discussion of our results in this section in light of the study by Bernstein & Huterer (2010), but refrain from a detailed, quantitative comparison of results.

We will consider the case with \(N_{\text{dr/ds}} = 5 \) and a diagonal galaxy bias prior, as depicted in the top left panel of Figure 7. First, Bernstein & Huterer (2010) find that \(c_{\mu\nu} \) needs to be known to \(\sim 0.001–0.003 \) precision to avoid a large bias in the dark energy equation of state, although this requirement depends strongly on survey properties, such as the sky coverage, and on which \(z - z_{\text{spec}} \) bin is considered. If the galaxy bias is known exactly, we find uncertainties from WFIRST comparable to the contamination rate of \(f_{\mu} \Delta z \) = 0.006–0.008. The fact that these numbers are comparable is consistent with the finding in the previous sections that the cross-correlation method can indeed help partially undo the deterioration of dark energy constraints due to an uncertain source distribution.

We next consider the knowledge of the galaxy bias required for the cross-correlation method to be successful. Bernstein & Huterer (2010) give a simple estimate of the contribution to the uncertainty in \(c_{\mu\nu} \) due to the uncertainty in the (photometric) galaxy bias. Translating it to our notation, we get \(\sigma(f_{\mu}/f_{\nu}) \approx \sigma(b^{(p)})/b^{(p)} = \sigma(b^{(p)}) \). The choices \(\sigma_{\text{bias}}^{\text{diag}} = 0.01, 0.1 \) depicted in the top left panel of Figure 7 thus correspond to error contributions \(\sigma(f_{\mu}/f_{\nu}) \approx 0.02, 0.2 \), respectively (because \(\Delta z = 0.2 \)). The relative uncertainty in \(f_{\mu} \) when the galaxy bias is known perfectly is \(\sigma(f_{\mu}/f_{\nu}) = 0.02–0.07 \) in the first four bins, but much larger in the last bin, \(z = 1.4–1.6 \), so that the error contribution due to uncertainty in the galaxy bias is subdominant when the strong galaxy bias prior \(\sigma_{\text{bias}}^{\text{diag}} = 0.01 \) is applied. Indeed, this explains why we saw that the forecasted uncertainties on \(f_{\mu} \) are only slightly bigger when \(\sigma_{\text{bias}}^{\text{diag}} = 0.01 \) compared to when \(\sigma_{\text{bias}}^{\text{diag}} = 0.0 \). However, for the weaker galaxy bias prior, \(\sigma_{\text{bias}}^{\text{diag}} = 0.1 \), the contribution to the uncertainty in \(f_{\mu} \) from galaxy bias uncertainty \(\sigma(f_{\mu}/f_{\nu}) \approx 0.2 \) is much larger than the uncertainty in the case of known galaxy bias for all but the final redshift bin. The constraints on \(f_{\mu} \) in the first four bins for \(\sigma_{\text{bias}}^{\text{diag}} = 0.1 \) are thus dominated by the galaxy bias uncertainty and are of the order \(\sigma(f_{\mu}/f_{\nu}) \approx 0.2 \). The redshift bin \(z = 1.4–1.6 \) gives some insight in the case of redshift outliers, in the sense that it describes a true redshift range rather far removed from the photometric redshifts and that the fiducial abundance in this bin is low (only about 0.4% of the sample resides in this bin). We find that the uncertainty in \(f_{\mu} \) for a perfectly known galaxy bias is comparable to the uncertainty in \(f_{\mu} \) in the other bins. This means that the relative uncertainty is much larger, \(\sigma(f_{\mu}/f_{\nu}) \approx 1.6 \), which in turn means that the effect of a poorly determined galaxy bias will be small unless the galaxy bias prior is extremely weak, \(\sigma(b^{(p)}) > 1.6 \). As noted in Bernstein & Huterer (2010), the larger the fiducial abundance in a redshift bin, the more problematic the uncertainty in the galaxy bias will be. The above suggests that to properly constrain outlier fractions using the cross-correlation technique, uncertainty in the galaxy bias may be less of a problem than, e.g., getting a sufficient number of spectroscopic galaxies at the same redshifts as the outliers, while for the central part of the
redshift distribution (with larger abundance), the galaxy bias will play a larger role. However, more study is required to draw any final conclusions. To summarize this paragraph, we find that the results shown in Figure 7 are consistent with a simple estimate of the effect of an uncertain galaxy bias, as presented in Bernstein & Huterer (2010).

8.2. Lensing Requirements on the Redshift Distribution Measurement

We now isolate the main question on the other end of the procedure of using cross correlation to improve weak lensing as a cosmological probe: what do we need to know about the lensing source redshift distribution to optimize cosmological parameter constraints from cosmic shear? For simplicity, we will study this question for the case of a single source bin, with the same fiducial redshift distribution (and parameterization in terms of redshift bins) as in the previous subsection. Considering variations \(\delta f(z) \) from the fiducial \(f(z) \), the effects of certain modes on the shear power spectrum will be orthogonal to the effects of cosmological parameters so that uncertainty in these modes would not affect cosmological parameter constraints. We here ask which modes/components of \(f(z) \) we do need to know because they are degenerate with cosmological parameters. Note that these conclusions will hold only for a given model and might change if we include, e.g., massive neutrinos, etc.

We study this question by considering the cosmological parameter bias \(\delta p \) induced by assuming the wrong source distribution, where \(\delta f(z) \) is the difference between the assumed and the true distribution. Note that this bias is closely related to the increase in variance \(\sigma^2(p) \) in the case where the uncertainty in \(f(z) \) is modeled properly and marginalized over.\(^{11}\)

In the Fisher matrix formalism, the parameter bias is given by

\[
\delta p_i = -\sum_{j=1}^{N} \sum_{k=1}^{N_{\text{bins}}} (F^{N})_{ij}^{-1} F_{jk}^{(N+N_{\text{bins}})} \delta f_k \equiv \sum_{k=1}^{N_{\text{bins}}} \left(\frac{\partial \delta p_i}{\partial \delta f_k} \right) \delta f_k,
\]

(14)

where \(\delta p_i \) is the bias in the \(i \)th cosmological parameter, \(N \) is the number of parameters not including the \(N_{\text{bins}} \) parameters describing the source distribution, \(F^{(N)} \) is the Fisher matrix restricted to those parameters, \(F^{(N+N_{\text{bins}})} \) the Fisher matrix for the complete parameter space, and \(\delta f_k \) is the offset in the binned values of the normalized source redshift distribution \(f(z) \). In the limit of a large number of redshift bins, it is convenient to approximate this in terms of continuous functions and to write the parameter bias as the product of \(\alpha_i \), which is the inner product of \(\delta f(z) \) with a mode picking out the redshift dependence degenerate with \(p_i \) and a factor \(\partial \delta p_i / \partial \alpha_i \), determining the amplitude of the parameter bias. In equation form:

\[
\delta p_i = \frac{\partial \delta p_i}{\partial \alpha_i} \alpha_i, \tag{15}
\]

with

\[
\alpha_i \equiv \int dz \, v'(z) \delta f(z), \tag{16}
\]

\(^{11}\) Specifically, the requirement for the parameter bias \(\delta p \) to be small compared with the uncertainty \(\sigma(p) \) is equivalent to the requirement for the relative change in parameter uncertainty (due to marginalization over uncertainty in \(f(z) \)) to be small compared with the uncertainty in \(p \) in the case where \(f(z) \) is known.

and the normalized mode defining the inner product (assuming uniform redshift bins \(\Delta z_i = \Delta z \) for all bins \(i \)) is given by

\[
v'(z) \propto \frac{\partial \delta p_i}{\partial \delta f_k}, \quad \text{s.t.} \quad \int dz \, (v'(z))^2 = 1 \tag{17}
\]

(this fully defines \(v'(z) \), except for its sign, which is arbitrary). An alternative interpretation of \(\alpha_i \) is the coefficient of the mode \(v'(z) \) in an expansion of \(\delta f(z) \):

\[
\delta f(z) = \alpha v'(z) + \sum_j c_j v'_j(z), \tag{18}
\]

where the modes in the second term on the right-hand side can be part of any basis with

\[
\int dz \, v'_i(z) v'_j(z) = 0. \tag{19}
\]

In Figure 8 (left panel), we show the modes \(v'(z) \) for the seven cosmological parameters considered in this work for the case of cosmic shear data with a Planck prior. Strikingly, the mode \(v'(z) \) is almost the same for each parameter except \(\Omega_{\Lambda} \), showing that the only property of \(\delta f(z) \) that matters is its inner product with this set of two distinct modes. Uncertainty in orthogonal components of \(\delta f(z) \) would not lead to cosmological parameter bias (or additional uncertainty). The main reason that all these modes are so similar, even though they describe the degeneracy directions with very different cosmological parameters, is the inclusion of the CMB prior. This prior already constrains rather tightly a large number of parameters. Considering the principal components of the CMB-only Fisher matrix, we find that weak lensing only moderately improves three of these (and the other four not at all). Thus, the only variations in \(f(z) \) that can affect joint cosmological parameter constraints are the ones biasing parameters in this three-dimensional subvolume of the total cosmological parameter space. This significantly narrows down the range of possible modes. In fact, we have checked that, when only the weak lensing data are considered, the \(v'(z) \) modes differ much more strongly, confirming that the reason for them being the same in our case is the inclusion of the CMB prior.

Table 10 shows the parameter bias resulting from an offset in the coefficient \(\alpha_i \) (which, for a given \(\delta f(z) \), hardly depends on \(i \) because of the near-universality of the mode \(v'(z) \)). The left

Parameter	\(\delta p/\alpha \)	\((\delta p/\alpha)/\sigma_\alpha(p) \)
\(\omega_b \)	0.00016	1.3
\(\omega_c \)	-0.0021	-1.9
\(\Omega_{\Lambda} \)	-0.033	-0.20
\(n_s \)	0.0019	0.58
\(\sigma_8 \)	0.092	0.51
\(w_0 \)	4.7	3.7
\(w_a \)	-16	-6.4

Note. Left column: response of cosmological parameter bias to variations in the relevant component (\(\alpha_i \), defined by the modes \(v'(z) \) shown in the left panel of Figure 6) of the offset between the assumed and true source redshift distributions. An HSC-like survey, together with CMB information from Planck, is assumed. Right column: same as left, but normalized by the parameter uncertainty in the case of a perfectly known source distribution.
column shows the change in parameter bias per unit change in \(\alpha_i \) and the right column shows the same quantity normalized by the uncertainty in the cosmological parameter. Judging from the second column, the parameters most affected by a misestimate of (or by uncertainty in) second column, the parameters most affected by a misestimate of the uncertainty in the cosmological parameter. Judging from the tables discussed above. Left: results for the case of an HSC-like lensing survey (but using only one tomographic bin; see the text) with a Planck prior. Right: same as the left, but with \(f_{k_i} = 1 \) for the lensing survey.

(A color version of this figure is available in the online journal.)

In summary, in the simple case considered above of cosmic shear in a single tomographic bin, the requirement on the knowledge of the source distribution is

\[
\int dz \delta f(z) v^{w_a}(z) < 0.16, \tag{20}
\]

where \(v^{w_a}(z) \) is given by the cyan curve in Figure 8. In the present case (single lensing source bin with CMB prior, etc.), this constraint is more or less satisfied even when the source distribution is self-calibrated using the lensing information (i.e., no external information from cross correlations). Specifically, we find \(\sigma(\alpha_{w_a}) = 0.17 \) (the uncertainties of the other coefficients \(\sigma(\alpha_i) \) are in the range 0.16–2.5 for all parameters, but we have confirmed that \(w_a \) is the parameter most affected by uncertainty in \(dn/dz(z) \)) so that even without additional information, the uncertainty in \(f(z) \) does not affect the weak lensing+Planck cosmological constraints much.

However, upon further inspection, the reason for this is simply that a single source bin at \(z_{ph} = 0.8–1.2 \), with HSC-like survey specifications, does not add much information to the CMB-only case even with perfect knowledge of \(f(z) \). Variations in \(f(z) \) thus do not have a large effect on the final cosmological constraints and the requirement on the knowledge of \(f(z) \) is weak. We therefore consider next the more interesting case where the lensing measurement does add significant information to the Planck-only case. We achieve this by simply considering a full-sky shear measurement of a source sample with the same properties as above (except for the sky coverage). The resulting modes \(v^i(z) \) are shown in the right panel of Figure 8 and the response of cosmological parameters to variations in the coefficients \(\alpha_i \) in Table 11. The modes \(v^i(z) \) are now even more similar across the set of cosmological parameters. Since now the lensing contributes more to parameter constraints, they are more sensitive to uncertainty in \(f(z) \), as is shown best in the second column of Table 11.

The strictest requirement on \(f(z) \) again comes from \(w_a \). In order not to bias this parameter significantly, \(\alpha_{w_a} < 1 / 9.2 < 0.11 \) is needed. The uncertainty in \(\alpha_{w_a} \) from the shear power spectrum itself (+ Planck) is \(\sigma(\alpha_{w_a}) = 0.14 \) (in general, \(\sigma(\alpha_i) = 0.14–0.30 \)). Thus, marginalizing over the uncertainty in \(f(z) \), the constraint on \(w_a \) is weakened by a factor \((1 + (9.2 \cdot 0.14)^2)^{1/2} \approx 1.6 \) compared with the case of known \(f(z) \) \((\sigma(w_a) = 2.3 \rightarrow 3.7) \). Other parameter uncertainties increase by smaller factors, but overall this is a significant degradation of cosmological information. On the other hand, using the cross-
and auto spectra $sp+pp+ss$ (as used in the previous subsection; 1500 deg2 sky coverage), fixing $b^{(P)}(z)$, we find a constraint $\sigma(\alpha_{z}) = 0.016$ (in fact, for all parameters, $\sigma(\alpha_{z}) = 0.016$) so that the effect of $f(z)$ on parameter constraints becomes negligible.

8.3. Summary

The study above has broken down the procedure followed in this paper into its two main components.

1. Weak lensing constraints are weakened if $f(z)$ is not known accurately enough and we have quantified above which properties of $f(z)$ need to be constrained and with what precision. We have done this for the particular case of a single source distribution (no tomography). The specific results will depend on many assumptions, but the methodology above can be generally applied. Moreover, a result that appears robust against changes in the fiducial source redshift distribution is that the main property of $f(z)$ that affects cosmological constraints is an inner product of $f(z)$ with a mode of the shape depicted in Figure 8 that crosses zero only once. The dominant effect of such a mode is to shift the average redshift of the distribution.

2. The other component, discussed in Section 8.1, is how well the cross-correlation technique can provide an external measurement of $f(z)$. We have shown that this method can provide a strong measurement of $f(z)$, provided that sufficient knowledge of the galaxy bias evolution $b^{(P)}(z)$ is available. This measurement of $f(z)$ can then be propagated to a measurement of the mode coefficients (inner products) α_{i}, which can be compared with the requirement of a cosmic shear cosmology analysis. The quantitative results are strongly dependent on survey and sample assumptions, but we have given an example for illustration. In general, it appears that with sufficient knowledge of $b^{(P)}(z)$, the cross-correlation technique provides enough $f(z)$ information to restore the power of cosmic shear to its level in the case of perfectly known $f(z)$, but the specific galaxy bias prior requirement differs from case to case.

The analysis in this section takes a rather different approach than our main forecasts for realistic surveys in the previous sections, but we hope that by isolating the phenomenology involved in the Fisher forecasts of those sections, we have provided a bit more insight into those constraints.

9. DISCUSSION AND CONCLUSIONS

We have studied the use of cross correlations between lensing source galaxies and an overlapping sample of spectroscopic galaxies as a method to measure the source galaxy redshift distribution and to thus improve cosmic shear as a cosmological probe. We used the Fisher matrix formalism to, for the first time, directly forecast the impact on cosmological constraints of this cross-correlation technique, focusing on dark energy constraints from two types of future experiments: a ground-based SuMIRe-like survey (HSC lensing + PFS redshift survey) and a space-based EUCLID-like survey. For the main results of this paper, we have considered the scenario where the source galaxies have photometric redshifts, which are used to divide the source sample into tomographic bins, so that the redshift distribution in each bin is known perfectly (only) in the limit where the photo-z distribution is known exactly.

We first considered weak lensing constraints in the absence of galaxy density cross-correlation information and have shown that cosmic shear can strongly improve dark energy constraints relative to the case of (unlensed) CMB information only (increasing the dark energy FOM by factors of 20–300 for HSC-EUCLID), if and only if the photo-z parameters (defining the photo-z distribution) are known well. We confirmed the well-known result from the literature that in order for weak lensing to reach its full potential as a dark energy probe, the photo-z distribution needs to be known at the level $\sigma(\alpha_{z}, \sigma(b_{z}) < 0.01$.

We then considered to what extent the cross-correlation technique can restomify the cosmology constraints from weak lensing by measuring the photo-z parameters (we remind the reader that we do not use information on cosmological parameters present in the galaxy cross and auto spectra, only the information on the source redshift distribution). We list some key results below.

1. Starting with the case where there is no prior knowledge of the photo-z parameters, the cross-correlation technique results in strong improvements in the forecasted weak lensing uncertainties. For the SuMIRe-like survey, the effect of the cross-correlation information on the dark energy FOM is equivalent to placing a prior $\sigma_{\text{prior}} = \sigma(\alpha_{z}) = \sigma(b_{z}) \approx 0.04–0.05$ (known galaxy bias and free galaxy bias, respectively) on the photo-z parameters at all redshifts. For the EUCLID-like survey, using the cross correlations is equivalent to an even better-known photo-z distribution, $\sigma_{\text{prior}} \approx 0.005–0.010$. One reason for the increased success of the method in the case of EUCLID is the fact that EUCLID’s spectroscopic survey has much better coverage of the low-redshift end of the distribution.

2. In the more realistic case where some level of prior knowledge of the photo-z distribution is assumed, e.g., coming from calibration of the photo-z estimator using galaxy spectra for a representative subsample of the source galaxies, the cross-correlation approach still strongly improves constraints, unless the prior on the photo-z distribution is very strong. For example, for SuMIRe, with a prior $\sigma_{\text{prior}} = 0.05$ on the photo-z parameters, including the information from the cross-correlation technique improves the dark energy FOM by more than a factor $4–3$ (known galaxy bias–free galaxy bias) relative to the case without this information. For EUCLID, with the same photo-z prior, the gains are even more spectacular, giving a factor $40–17$ improvement. Only when the photo-z calibration is better than $\sigma_{\text{prior}} \approx 0.01(0.002)$ for SuMIRe (EUCLID) do the benefits from the cross-correlation method become negligible ($\lesssim 10\%$). We do note that, even in the cases where the dark energy FOM is significantly enhanced by use of the cross-correlation information, it does not reach all the way to the value that could have been obtained if the source redshift distribution was known perfectly.

3. The power of the cross-correlation method, however, depends strongly on the assumed knowledge of the galaxy bias evolution of the source sample. We have modeled the galaxy bias as a free function of redshift, defined by independent bias values in a large number of redshift bins and have considered both the case of a priori completely unknown values of these bias parameters and various levels of prior knowledge (including knowing the galaxy bias exactly). For example, again in the case with a photo-z calibration at the $\sigma_{\text{prior}} = 0.05$ level, assuming exact knowledge of $b^{(P)}(z)$ yields a 49% (66%) larger dark energy FOM (and therefore effective survey volume) for SuMIRe (EUCLID) than when no prior knowledge of $b^{(P)}(z)$ is assumed. The
optimal constraints of the known bias case can be approached by imposing a bias prior $\sigma_{\text{bias}}^2 \lesssim 0.02$ ($\sigma_{\text{bias}}^2 \lesssim 0.005$) for SuMIRe (EUCLID). This prior can be seen as the prior on the galaxy bias per redshift bin of width $\Delta z = 1$; see Section 5.1. As discussed in Section 8.1, the reason that the cross-correlation technique still provides some information in the absence of a galaxy bias prior can be explained by our simple model for the source distribution, which allows the extraction of information from the overlap in tomographic bins that does not suffer from the bias degeneracy. This would likely not work in practice, however.

To gain more insight into the results described above, we have included a section (Section 8) showing to what degree a single redshift distribution can be reconstructed in redshift bins using the cross-correlation method in the absence of photometric z information. In this case, we have confirmed that without any galaxy bias prior, no information on the sample’s redshift distribution can be obtained. We have found that a reasonable reconstruction of the distribution ($\sim 30\%$ uncertainties) can be achieved with a bias prior $\sigma_{\text{bias}}^2 \approx 0.1$. A prior order of magnitude smaller results in an optimal reconstruction of the redshift distribution (in the sense that it can not be improved by tightening the prior even more), with error bars in individual redshift bins as small as 2%.

In the same section, we determined, for each cosmological parameter, which component (or mode) of the source redshift distribution needs to be known in order to not bias that parameter in a cosmic shear study. We have demonstrated that, when weak lensing is combined with the CMB, this mode varies very little between different cosmological parameters and predominantly describes a shift in the average redshift of the distribution. With only weak lensing data (including the CMB prior, as always), the coefficient of this mode is typically not well measured, leading to a degradation of cosmological constraints. However, the galaxy cross (and auto) spectra are capable of measuring this coefficient much more accurately, thus explaining how the cross-correlation technique aids weak lensing as a cosmological probe.

In summary, our results confirm that using cross correlations to constrain the source redshift distribution (whether on its own or, more realistically, in combination with photometric redshifts) has the potential to significantly improve the constraining power of upcoming weak lensing surveys, although the level of success depends strongly on our ability to constrain the bias evolution of the source galaxies. While these are very encouraging results, we have made several simplifications and additional research is needed to clarify how the method is affected by changes in these assumptions. For example, it would be interesting to go beyond the Gaussian description of the photo-z distribution and include, among other things, outliers in the distribution. It would also be useful to study extensions of the cosmological model considered in this work, including massive neutrinos, modifications of gravity, etc. Moreover, it is not clear what the role of magnification bias will be (whether it will weaken the cross-correlation approach or improve it by helping to break the degeneracy between redshift distribution and galaxy bias). Finally, the fact that the photo-z parameters could be measured even in the absence of a galaxy bias prior really hinges on the assumption that the galaxy bias is a function of redshift only.

A more general treatment would allow for a dependence on galaxy properties such as color (so that the bias of galaxies in different tomographic bins at the same true redshift is not necessarily equal), which, if left otherwise unconstrained by additional data or modeling, would worsen the constraints from the cross-correlation method.

The authors thank Carlos Cunha, Patrick MacDonald, Jeffrey Newman, David Schlegel, David Spergel, and Masahiro Takada for useful discussions. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by NASA ATP grant 11-ATP-090.

REFERENCES

Albrecht, A., Bernstein, G., Cahn, R., et al., 2006, arXiv:astro-ph/0609591
Amendola, A., Appleby, S., Bacon, D., et al., 2013, LRR, 16, 6
Bartelmann, M., & Schneider, P. 2001, PhR, 340, 291
Bernstein, G., & Huterer, D. 2010, MNRAS, 410, 1399
Cai, Y.-C., & Bernstein, G. 2012, MNRAS, 422, 1045
Catelan, P., Kamankowski, M., & Blandford, R. D. 2001, MNRAS, 320, L7
Cunha, C. E., Huterer, D., Lin, H., Busha, M. T., & Wechsler, R. H. 2012, arXiv:1207.3347
Fang, W., Hu, W., & Lewis, A. 2008, PhRvD, 78, 087303
Fu, L., Semboloni, E., Hoekstra, H., et al., 2008, A&A, 479, 9
Gaztañaga, E., Eriksen, M., Crocce, M., et al., 2012, MNRAS, 422, 2904
Hearin, A. P., Zentner, A. R., & Ma, Z., 2010, ApJ, 720, 1351
Heavens, A., Refregier, A., & Heymans, C. 2000, MNRAS, 319, 649
Heymans, C., Grocutt, E., Heavens, A., et al., 2013, MNRAS, 432, 2433
Hirata, C. M., & Seljak, U. 2004, PhRvD, 70, 063526
Ho, S., Hirata, C., Padmanabhan, N., Seljak, U., & Bahcall, N. 2008, PhRvD, 78, 043519
Hoekstra, H., & Jain, B. 2008, AANPS, 58, 99
Huff, E. M., Elmer, T., Hirata, C. M., et al., 2011, arXiv:1112.3143
Huterer, D. 2002, PhRvD, 65, 063001
Huterer, D., Kim, A., Krauss, L. M., & Broderick, T. 2004, ApJ, 615, 595
Huterer, D., Takada, M., Bernstein, G., & Jain, B. 2006, MNRAS, 366, 101
Kiessling, A., Taylor, A. N., & Heavens, A. F. 2011, MNRAS, 416, 1045
Kiibinger, M., Fu, L., Heymans, C., et al., 2013, MNRAS, 430, 2200
Laureijs, R., Amiaux, J., Arduini, S., et al., 2011, arXiv:1110.3193
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Limber, D. N. 1954, ApJ, 119, 655
Loverde, M., & Afshordi, N. 2008, PhRvD, 78, 123506
Ma, Z., & Bernstein, G. 2008, ApJ, 682, 39
Ma, Z., Hu, W., & Huterer, D. 2006, ApJ, 656, 21
Masjedi, M., Hogg, D. W., Cool, R. J., et al., 2006, ApJ, 644, 54
Massey, R., Rhodes, J., Ellis, R., et al., 2007a, Natur, 445, 286
Massey, R., Rhodes, J., Leauthaud, A., et al., 2007b, ApJS, 172, 239
Matthews, D. J., & Newman, J. A. 2010, ApJ, 721, 456
Matthews, D. J., & Newman, J. A. 2012, ApJ, 745, 180
McQuinn, M., & White, M. 2013, MNRAS, 433, 2857
Menard, B., Scranon, R., Schmidt, S., et al., 2013, arXiv:1303.4722
Newman, J. A. 2008, ApJ, 684, 88
Oguri, M., & Takada, M. 2011, PhRvD, 83, 023008
Pen, U.-L., Lee, J., & Seljak, U. 2000, ApJL, 543, L107
Phillips, S. 1985, MNRAS, 212, 857
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., 2013a, arXiv:1303.5062
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., 2012b, arXiv:1303.5075
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., 2012c, arXiv:1303.5076
Schneider, M., Knox, L., Zhan, H., & Connolly, A. 2006, ApJ, 651, 14
Schrabback, T., Hartlap, J., Joachimi, B., et al., 2010, A&A, 516, A63
Schulz, A. E. 2010, ApJ, 724, 1305
Takada, M., & Jain, B. 2009, MNRAS, 395, 2065
Takada, M., Ellis, R., Chiba, M., et al., 2012, arXiv:1206.0737
Tegmark, M., Taylor, A., & Heavens, A. 1997, ApJ, 480, 22
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al., 2013, PhR, 530, 87