RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis

Chao-Tao Tang 1†, Qian Liang 1†, Li Yang 1†, Xiao-Lu Lin 2†, Shan Wu 1†, Yong Chen 1, Xin-Tian Zhang 1, Yun-Jie Gao 1 and Zhi-Zheng Ge 1*

1 Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 2 Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China

Background: Gastric cancer (GC), one of the most common cancers worldwide, is highly malignant and fatal. Ras-related protein in brain 31 (RAB31), a member of the RAB family of oncoproteins, participates in the process of carcinogenesis and cancer development; however, its role in GC progression is unknown.

Methods: In our study, 90 pairs of tissue microarrays were used to measure the levels of RAB31 protein by immunohistochemistry, and 22 pairs of fresh tissue were used to measure the levels of RAB31 mRNA by quantitative PCR. We also investigated the effects of RAB31 on tumor growth both in vitro and in vivo.

Results: RAB31 was overexpressed in GC tissues, and its overexpression predicted poor survival in patients. In a nude mouse model, depletion of RAB31 inhibited tumor growth. In vitro, silencing of RAB31 suppressed cell viability, promoted cell cycle arrest, enhanced apoptosis, and affected the expression of cell cycle and apoptotic proteins; these effects were mediated by glioma-associated oncogene homolog 1 (GLI1). Co-immunoprecipitation and immunofluorescence assays confirmed that RAB31 interacted with GLI1. In addition, luciferase reporter assays and Western blotting showed that microRNA-30c-2-3p modulated the RAB31/GLI1 pathway by targeting the 3′-untranslated region of RAB31.

Conclusions: Collectively, these data show that RAB31 is regulated by microRNA-30c-2-3p, and functions as an oncogene in GC tumorigenesis and development by interacting with GLI1. Therefore, targeting the miR-30c-2-3p/RAB31/GLI1 axis may be a therapeutic intervention for gastric cancer.

Keywords: RAB31, GLI1, gastric cancer, miR-30c-2-3p, prognosis, proliferation
INTRODUCTION

Gastric cancer (GC) is one of the most common cancers worldwide and has a high fatality rate (1). Helicobacter pylori, recognized as the main cause of this disease, causes damage to the gastric epithelium due to sustained inflammation and direct invasion (2). GC patients are prone to local recurrence and distant metastases, resulting in a low 5-year survival rate (3). Although there are many treatment strategies for GC, such as surgery, chemotherapy, and radiotherapy, their success rates have been low (3, 4). Therefore, there is an urgent need to develop more effective, targeted therapies for this disease.

Ras-related protein in brain 31 (RAB31) (also called Rab22b) is a member of the RAB family, which belongs to the Ras superfamily of small GTPases and is also characterized as the RAB5 subfamily (5). RAB31 was first isolated in 1996 from melanoma cells and was found to have significant homology with RAB22; hence, it was named RAB22b (6). As with other members of the RAB family, RAB31 is expressed throughout the cell and mainly functions to regulate vesicular intracellular membrane transport (7). Initially, RAB31 was found to be involved in the transport of many substances such as glucose transporter type 4, epidermal growth factor receptor, and mannose-6-phosphate receptors (8–10). Recently, it was also found to play a significant role in human cancers such as breast cancer, glioblastoma, and hepatocellular cancer (11, 12). In breast cancer, RAB31 was first identified as an independent prognostic factor, and was subsequently found to interact with the mucin 1 C-terminal subunit oncoprotein to promote cancer progression and subsequent tamoxifen resistance in patients (13–16). However, the function of RAB31 in GC is unknown. Therefore, we determined if it plays a similar role in GC progression.

MicroRNAs (miRNAs) are short single-stranded non-coding RNA molecules (~20–25 nucleotides in length) that play a critical role in gene expression (17). Their key function is to directly bind the 3′ untranslated regions (3′-UTRs) of complementary messenger RNAs (mRNAs) to degrade or inhibit their translation (17). Increasing evidence has confirmed that miRNAs also bind to coding regions (18). In addition, many miRNAs such as miR-30a-5p (19) and miR-155 (20) have been confirmed as oncogenes or suppressors of tumor growth and metastasis. miRNAs play vital roles in various pathological processes such as cell proliferation, cell stemness, and the aggressiveness of GC cells (21, 22).

Glioma-associated oncogene homolog 1 (GLI1), a transcript of Hedgehog (Hh) signaling, strongly promotes GC development (23). In the etiology of GC, it has been confirmed that GLI1 is involved in H. pylori infection and promotes chronic information (24, 25). Furthermore, the mechanism through which GLI1 enhances GC development involves many oncogenes, such as NAPDH oxidase 4 (26), Mucin 5AC, Oligomeric Mucus/Gel-Forming (27), and Wnt proteins (28), leading to increased resistance to chemotherapy drugs (29, 30). Recently, it was shown that Hh signaling via Smoothened and GLI1 requires involvement of the RAB family (31). RAB23 interacts with GLI1 to promote the progression of tumors such as breast, prostate, and ovarian cancers (32–34).

In this study, we analyzed the level of RAB31 expression in GC tissue and the correlation with clinical information. Overexpression of RAB31 promoted GLI1 expression, subsequently inducing the activation of downstream oncogenes and enhancing GC cell proliferation and inhibiting apoptosis. In addition, miR-30c-2-3p regulated the expression of RAB31 by binding the 3′-UTR, and regulated GLI1 expression to reverse the effects of RAB31.

MATERIALS AND METHODS

Patients and Tissue Samples

A total of 90 patients with an initial diagnosis of GC between December 2009 and June 2010 at Renji Hospital, affiliated with the Medical College, Shanghai Jiaotong University School (Shanghai, China) were included in this study. All patients provided signed informed consent and did not undergo preoperative treatment. The surgical tissues were fixed in formalin and embedded in paraffin. Detailed clinicopathological information such as age, gender, and tumor clinical stage is shown in Table 1. We also collected 22 pairs of fresh tumor tissues and para-tumor tissues from GC patients to measure the level of RAB31 mRNA. The process of extracting mRNA from tissues was very similar to that used for extracting cellular mRNA.

Characteristic	Category	Low	High	P value
Age	≤ 60	16	11	0.087
	> 60	25	38	
Gender	Male	31	37	0.991
	Female	10	12	
TNM	I/II	23	16	0.025
	III/IV	18	33	
Tumor location	Cardia	24	22	0.197
	Other sites	17	27	
Lymph node metastasis	No	16	9	0.029
	Yes	25	40	
Tumor size	≥ 5 cm	19	33	0.045
	< 5 cm	22	16	
T stage	T1/T2	17	22	0.086
	T3/T4	24	37	
Distant metastasis	No	40	41	0.029
	Yes	1	8	
GLI1	Low	31	13	0.000
	High	10	36	

P value was italicized when P < 0.05. HR, Hazard ratio; CI, Confidence interval.

Abbreviations: GC, Gastric cancer; GLI1, GLI Family Zinc Finger 1; RAB31, Member RAS Oncogene Family 31; IHC, immunohistochemistry; GSEA, gene set enrichment analysis; GEPIA, Gene Expression Profiling Interactive Analysis.
Bioinformatics Analysis
To explore the level of RAB31 expression in GC tissues, we used the Oncomine Cancer Microarray database (https://www.oncomine.org) and assessed the levels of RAB31 among different tissue specimens. Additionally, we investigated the correlation between RAB31 and GLI1 expression with the Gene Expression Profiling Interactive Analysis (GEPIA) tool and a gene set enrichment analysis (GSEA) which was performed as depicted in our previous study (35). We also used mirWalk 2.0, miRanda, and Targetscan to predict miRNAs that target RAB31. Then we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify the miRNAs involved in the Hh signaling pathway, and investigated the level of miRNA expression in GC tissues using the YM500v2 database (http://ngs.ym.edu.tw/ym500v2/index.php)(36). Finally, we created a survival curve of the predicted miRNAs using the The Cancer Genome Atlas (TCGA) database.

Cell Culture
All of the GC cell lines utilized were the same as those previously described (26). Cells were cultured in RPMI 1640 medium (Gibco, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (FBS), and maintained at 37°C in an atmosphere of 5% CO2.

Transfection
First, cells were seeded in 6-well plates for 24 h. Then we transfected plasmids and small interfering RNA (siRNA) using the Genmute reagent (SignaGen Laboratories, Rockville, MD, USA) according to the manufacturer’s instructions. The pCMV-RAB31 cDNA plasmid was constructed by OBIO Company (Shanghai, China); the corresponding control plasmid was pCDNA3.1(+) (+). The RAB31 cDNA plasmid comprising 588 bp was constructed according to the NM sequence (NM_006868), and cloned into the pcDNA3.1(+) eukaryotic expression vector. The wild-type and mutant RAB31 3′UTR plasmids were constructed by NEWGEORGE (Shanghai, China), and the psiCHECK-2 vector served as the empty vector control. The wild-type RAB31 3′UTR plasmid sequence was identified in the Pubmed database according to the RAB31 gene symbol, and was constructed according to the database. The sequences of the wild-type and mutant RAB31 3′UTR plasmids are provided in Data Sheet 1. Transfection of RAB31 miRNA mimics and inhibitor was performed using the Dharmocon reagent (Dharmocon, USA) and co-transfection of the miRNA inhibitor and RAB31 siRNA was done using Lipofectamine™ 3000 (Invitrogen™, Carlsbad, CA, USA). The siRNA sequences were designed by GenePharma Company (Shanghai, China) and are presented in Table S1.

Quantitative PCR
Tissue RNA extraction was performed as previously described (26). Briefly, all of the fresh tissues were homogenized using Trizol reagent (Takara, Tokyo, Japan), and extracted using chloroform and isopropyl alcohol. The concentrations of total RNA were measured using NanoDrop 2000 (Thermo Scientific, Wilmington, DE, USA). The complementary DNA was synthesized with reagents purchased from Takara according to the manufacturer’s instructions. Quantitative PCR (qPCR) was performed using SYBR Green and other reagents (Takara), according to a previously described method (37). The primer sequences of RAB31 were as follows: forward 5′-ATCTTTGGCGTTGTGTTT-3′ and reverse 5′-ATGCGCTATTAGGGTAG-3′. The primer sequences of 18S and GLI1 were the same as previously reported. The primer sequences of hsa-mir-30c-2-3p and U6 (HmiRQP0395 and HmiRQP9001, respectively) were constructed by GeneCopeia (GuangZhou, China).

Cell Proliferation and Colony Formation Assays
The protocols used for the cell proliferation and colony formation assays were in accordance with a previous study (26). Briefly, for the cell proliferation assay, cells (2 × 10^5) were incubated in 96-well plates overnight and treated the next day. The cell viability reagent was added to the plates in serum-free medium (1:10) and incubated for 2 h, after which the optical density at 450 nm was measured; this was repeated every 24 h for 96 h. For the colony formation assay, 800 cells were seeded in 6-well plates and cultured for 12 days. Then cell colonies were fixed in formaldehyde and stained with 1% crystal violet. Finally, the number of colonies was compared among RAB31-depletion group, control group and RAB31-overexpression group.

Cell Cycle and Apoptosis Assays
These assays were conducted as previously described (35). Cells were seeded in 6-well plates and cultured for 72 h. After the cells were collected, they were washed once and fixed in 70% ethyl alcohol for 24 h. Then the cell cycle was measured using flow cytometry after being stained with propidium iodide (PI) (BD Biosciences, Franklin Lakes, NJ, USA) for 30 min. For the apoptosis assay, the cells and supernatant were collected together and washed with 1X binding buffer. Apoptosis was measured after double staining with Annexin V FITC/PI (BD Biosciences) for 15 min. The results of the cell cycle and apoptosis were analyzed using FlowJo VX10 software.

Western Blotting
Western blotting was performed according to a previously described protocol (35). Briefly, cells in a 6-well plate were lysed on ice with RIPA buffer containing protease inhibitors, and the lysates were centrifuged at 12,000 rpm at 4°C for 10 min. The protein concentration was measured using the BCA Protein Assay Kit (23227; Thermo Fisher Scientific, Waltham, MA, USA). Then proteins were resolved on 10% SDS-PAGE gels and electrotransferred to the Pure Nitrocellulose Blotting Membrane (Pall Corporation, Port Washington, NY, USA). The membrane was blocked in 5% milk, and incubated overnight at 4°C with the following primary antibodies: RAB31 (1:400, 16182-1-AP; Proteintech, Rosemont, IL, USA), GLI1 (1:1,000, ab134906; Abcam, Cambridge, MA, USA), cyclin D1 (1:5,000, ab134175; Abcam), c-Myc (1:1,000, ab39688; Abcam), B-cell lymphoma 2 (Bcl-2) (1:1,000, ab32124, Abcam), and Bcl-2-associated X protein (BAX) (1:1,000, ab32503, Abcam). After washing, the
FIGURE 1 | RAB31 is overexpressed in GC tissues and is positively correlated with poor prognosis. (A–D). Representative box plots of RAB31 expression from the Oncomine database \(P < 0.001 \). (E) Expression level of RAB31 in cancer and para-carcinoma tissues of 22 patients as determined by qPCR \(P < 0.01 \). (F) The receiver operating characteristic of specificity and sensitivity was created to assess potential predictive values. (G) The different expression levels of RAB31 in different stages of GC are shown by the violin plot, \(P < 0.05 \). (H) Representative IHC images of RAB31 staining in gastric tumor and non-tumor tissues (scale bar, 100 \(\mu \)m). (I) Overall survival analysis of GC patients with low versus high RAB31 expression. Survival rate was calculated by Kaplan–Meier survival analysis \(n = 90; P < 0.001 \), log-rank test). (J) Survival curve was created using the GEPIA tool \(P < 0.05 \).

membrane was incubated at room temperature for 1 h with the same secondary antibodies as those used in our previous study \(1:3,000; \) WeiAo Pharmaceutical, Sichuan, China \(35 \). The protein signals were detected using the ChemiDocTM Imaging System (Bio-Rad, Hercules, CA, USA).

Immunohistochemistry

The GC specimens were first processed into tissue microarrays. Then the microarrays were dewaxed, followed by antigen retrieval and incubation overnight at 4°C with the following primary antibodies: RAB31 \(1:50, 16182-1-AP, \) Proteintech) and...
TABLE 2 | Univariate and multivariate analyses of prognostic factors for survival among patients with GC.

	Univariable analysis	Multivariable analysis		
	HR (95%CI)	P	HR (95%CI)	P
Age				
(≥65 vs. <65)	1.0925	0.087		
Sex				
(male vs. female)	1.193	0.574		
Tumor location				
(antrum vs. other parts)	0.617	0.066		
Tumor size				
(≥5cm vs. <5cm)	4.301	0.000	2.822	0.005
Distant metastasis				
(Yes or No)	2.454	0.039	1.408	0.454
Lymph node metastasis				
(Yes or No)	2.778	0.003	1.461	0.380
TNM stage				
(T1/T2 vs. T3/T4)	1.856	0.039	0.757	0.419
GLI1				
(high vs. low)	4.153	0.000	2.209	0.031
RAB31				
(high vs. low)	5.965	0.000	3.67	0.000

P value was italicized when P < 0.05. HR, Hazard ratio; CI, Confidence interval.

GLI1 (1:100, ab134906; Abcam). Finally, the microarrays were washed and incubated with secondary antibody for 1 h, followed by staining with DAB reagent. The intensity of staining and the percentage of positively stained cells were analyzed according to a previously described method (37). The immunohistochemistry (IHC) results were scored as follows: high expression (scores 7–9), moderate expression (scores 4–7), and low expression (scores 0–3), and blindly and independently assessed by pathologists.

Luciferase Reporter Assay

A 522 bp fragment of RAB31 3′-UTR that contained a site for has-mir-30c-2-3p binding was designed and cloned into a luciferase reporter plasmid that included a wild-type and mutant (NEWGEORGE). According to the instructions of the Luc-Pair™ Duo-Luciferase Assay Kit 2.0 (GeneCopoeia), cells were transfected with the 3′-UTR plasmid and has-mir-30c-2-3p mimics or the negative control (NC) using Lipofectamine™ 3000 (Invitrogen™). After 24 h, the fluorescence intensity was measured by the Luc-Pair™ Duo-Luciferase Assay Kit 2.0.

Immunofluorescence Assay

GC cells were incubated in chamber slides for 24 h, fixed in 4% paraformaldehyde for 20 min, and permeabilized with 0.1% Triton X-100 for 1 h. Next, cells were incubated with RAB31 (1:100, H00011031-M03; Abnova, Taipei, Taiwan) or GLI1 (1:100, ab49314; Abcam) primary antibody overnight at 4°C, after which the slides were washed three times. Finally, cells were incubated with goat anti-rabbit or anti-mouse IgG fluorescent secondary antibody (Thermo Fisher Scientific), and the nuclei were stained with DAPI. The cells were examined by confocal fluorescence microscopy at wavelengths of 488 and 594 nm.

Co-immunoprecipitation

A co-immunoprecipitation (Co-IP) experiment was performed to determine if there was an interaction between RAB31 and GLI1 proteins. GC cells were seeded in 6-well plates overnight. Then cells were scraped in the presence of RIPA lysis buffer. A volume of 2 µL primary antibody, 50 µL Protein A-Agarose (sc-2001; Santa Cruz Biotechnology, Dallas, TX, USA), and 500 µL phosphate-buffered saline (PBS) was mixed together and incubated for 2 h. Next, the cellular proteins were incubated with RAB31 (15182-1-AP; Proteintech), GLI1 (ab134906; Abcam), or IgG (BL003A, Bio-Sharp, Shanghai, China) primary antibody overnight at 4°C on a rocking platform. The next day, the cells were centrifuged at 3,000 rpm at 4°C and washed twice with PBS containing protein inhibitors, followed by Western blotting with the primary antibodies used for the Co-IP experiments.

Nude Mouse Subcutaneous Tumor Model

To determine the effects of RAB31 knockdown on tumor growth in vivo, we subcutaneously implanted MKN45 GC cells (5 × 10^6 in 0.15 mL PBS) into 4-week-old male BALB/c nude mice, as previously described (37). Once the xenograft tumors measured 3–4 mm, we randomly divided the mice into three groups: PBS, control, and RAB31 adenovirus groups. Then we treated the mice every second day and measured the tumor size for 15 days. Finally, after 20 days, we removed the tumors from the mice and measured the tumor weights.

Statistical Analysis

Statistical analysis was conducted as previously described (26). All of the values are shown as the mean ± standard deviation (SD) and were analyzed using SPSS and GraphPad software. The Kaplan–Meier survival curve of RAB31 was created to analyze the survival time of GC patients, and Cox regression analysis was performed to predict independent risk factors. A significant difference was identified using the two-tailed Student’s *t*-test. *P* < 0.05 were considered statistically significant.

RESULTS

Overexpression of RAB31 in GC Patients Predicts Poor Survival

To evaluate the expression of RAB31 in GC tissues, we measured RAB31 expression using the Oncomine database. As shown in Figures 1A–D, the level of RAB31 expression was noticeably higher in tumor tissues than in non-cancer tissues. To confirm the high level of RAB31 mRNA expression in tumor tissues, we collected 22 pairs of fresh tissues from GC patients and performed qPCR. RAB31 mRNA expression was markedly higher in the tumor tissues than in the normal tissues, and RAB31 mRNA could be regarded as a predictor based on an area under the curve of 0.8409 (Figures 1E,F).
Depletion of RAB31 inhibits GC cell proliferation, blocks cell cycle progression, and promotes apoptosis in vitro. (A) Expression of RAB31 protein in six GC cell lines. (B) Western blot analysis of RAB31 in AGS and MKN45 cell lines after transfection of RAB31 siRNA; GAPDH was used as the control. (C,D) Viability of AGS and MKN45 cells after depleting RAB31 expression, as determined by the CCK8 assay. (E) Images from the colony formation assays in AGS and MKN45 cells.
In addition, using the GEPIA tool, we found that expression of RAB31 varied in different clinicopathological stages and was enhanced in advanced GC, which was determined from the violin plot (Figure 1G). To investigate the level of RAB31 protein expression, we performed IHC experiments using tissue microarrays, and found that RAB31 protein expression was also higher in GC tissues compared to normal tissues (Figure 1H). Based on the IHC results, we divided patients into two groups (low RAB31 and high RAB31 expression), and evaluated specific clinical features between the two groups. As shown in Table 1, features such as tumor-node-metastasis (TNM), lymph node metastasis, and tumor size were significantly correlated with RAB31 expression. Moreover, we created a Kaplan–Meier survival curve and found that patients with high RAB31 expression had poorer survival (Figure 1I), consistent with the database results (Figure 1J). In a regression analysis model of survival, we found that patients with RAB31 overexpression had a poorer prognosis regardless of the results of the univariable or multivariable analysis (Table 2). TNM stage, lymph node metastasis, and distant metastasis were also prognostic predictors (Table 2).

RAB31 Promotes GC Cell Proliferation and Inhibits Apoptosis via Targeting GLI1

To determine the role of RAB31 in GC carcinogenesis, we measured RAB31 expression in GC cell lines. As shown in Figure 2A, RAB31 expression was highest in AGS and MKN45 cell lines. Then, we transfected siRAB31 into AGS and MKN45 cells and measured the effects of RAB31 knockdown by Western blotting (Figure 2B). As expected, RAB31 expression was reduced after transfection of siRAB31. Hence, we measured cell viability and colony formation using AGS and MKN45 cells following downregulation of RAB31 expression, and found that downregulation impaired cell growth and colony formation compared to control cells transfected with siNC (Figures 2C–E). Cell cycle and apoptosis assays showed that knockdown of RAB31 significantly halted the cell cycle in the G1 phase and promoted apoptosis (Figures 2F,G). Due to the decreased cell proliferation demonstrated by the in vitro assays, we examined the effects of RAB31 silencing on tumor growth in vivo using a tumor model in which AGS cells were injected subcutaneously into nude mice. As shown in Figures 3A,B, the size and weight of tumors with transfection of RAB31 siRNA adenovirus were smaller than those treated with scrambled adenovirus or PBS. Moreover, we created a tumor growth curve by measuring tumor size every other day, and found that RAB31 siRNA tumors grew more slowly than those in the control group (Figure 3C). Subsequently, we investigated the effects of RAB31 on tumor growth by IHC and found that Ki67 and RAB31 expression was lower in the RAB31 siRNA group than in the NC group (Figure 3D).

The GLI1 pathway has been well documented as a downstream signaling pathway of RAB subfamily members (31, 38). Therefore, we performed gene set enrichment analysis (GSEA) to determine the function of RAB31 in GC, and found that GLI1 was involved in RAB31-mediated inhibition of apoptosis (Figures 3E–G). Then we tested the correlation between RAB31 and GLI1 expression by GEPIA, and found that RAB31 expression was positively associated with GLI1 expression (Figure 3H). Next, we performed qPCR using 22 pairs of fresh GC tissues and found that RAB31 expression was highly correlated with GLI1 expression (Figure 3I), consistent with the database results. To further analyze the relationship between RAB31 and GLI1, IHC of 90 tissue microarrays was performed to confirm the correlation between RAB31 and GLI1 expression. A marked association between the expression of RAB31 and GLI1 protein was observed in GC tissue (Figure 3J). Hence, we attempted to determine whether GLI1 mediates the function of RAB31 in GC cell growth and apoptosis. To this end, we created a cell model that overexpressed RAB31 by transducing RAB31 plasmid (Figure 4A). Subsequently, we performed several cell function experiments in RAB31-overexpressing cells with simultaneous GLI1 knockdown. According to our cell viability and colony formation assays, overexpression of RAB31 enhanced cell proliferation and knockdown of GLI1 expression blocked the effects induced by overexpression (Figures 4B–D). Similar results were obtained from the cell cycle and apoptosis assays, as overexpression of RAB31 promoted cell cycle progression and inhibited apoptosis, which was impaired by silencing of GLI1 expression (Figures 4E,F). To further demonstrate the molecular mechanisms of GLI1 regulation of RAB31, Western blotting was performed to determine if GLI1 protein levels were regulated by RAB31. The expression of GLI1 was reduced by silencing of RAB31, and expression of the cell cycle-related proteins cyclin D1 and c-Myc was also decreased, as well as that of the anti-apoptotic protein Bcl-2 and the pro-apoptosis protein BAX (Figures 5A,B). The enhanced expression of cyclin D1, c-Myc, and Bcl-2 proteins, and the decreased expression of BAX were due to RAB31 overexpression, which was impaired by knockdown of GLI1 expression (Figures 5C,D). We confirmed that RAB31 interacts with GLI1 by Co-IP and reverse Co-IP assays (Figures 5E,F). To verify the co-localization of RAB31 and GLI1, we performed immunofluorescence assays. As shown in Figure 5G, there was strong fluorescence intensity in the nucleus and moderate intensity in the cytoplasm and cytomembrane, illustrating that RAB31 protein was co-localized with GLI1. We also measured the immunofluorescence intensity of GLI1 and RAB31 proteins after overexpressing RAB31, and found that the intensity of GLI1 and RAB31 and that of the merged picture also increased. These results showed that the co-localization and correlation between RAB31 and GLI1 was stronger immunofluorescence intensity.
FIGURE 3 | Depletion of RAB31 suppressed tumor growth in vivo and biological data predicted RAB31 function via interaction with GLI1. (A) Xenograft tumors were excised from the mice. (B,C) Measurements of xenograft tumor volumes and weights. (D) IHC staining of RAB31 and Ki-67 in tumor specimens from mouse tumor tissues (Scale bar, 100 µm). (E) GSEA analysis of the TCGA dataset showed the association between RAB31 expression and apoptosis signaling pathways. (F) (Continued)
these miRNAs were ranked by miRWalk 2.0, miRanda, and Targetscan tools to predict the miRNAs involved in the GLI1 pathway; then we performed KEGG pathway analysis of the identified miRNAs that may bind the 3′-UTR of RAB31 (Data Sheet 2). We further demonstrate that miR-30c-2-3p functions as a suppressor gene by targeting RAB31, we co-transfected the miR-30c-2-3p inhibitor with RAB31 siRNA, and found that the enhanced cell proliferation induced by the miR-30c-2-3p inhibitor was impaired by RAB31 siRNA (Figures 7D, E). Consistent with this conclusion, the increased expression of RAB31 and GLI1 proteins and their downstream proteins induced by miR-30c-2-3p was impaired by RAB31 siRNA (Figures 7F, G). These data showed that miR-30c-2-3p regulated GLI1 and its downstream proteins by targeting RAB31.

DISCUSSION

The results of this study illustrated the roles of RAB31 in GC cell proliferation and apoptosis, and also showed that miR-30c-2-3p regulated RAB31, which subsequently mediated cell growth and apoptosis via the GLI1 signaling pathway. In addition, we found that the overexpression of RAB31 predicted poor survival times in GC patients.

GC is one of the most malignant cancers worldwide, and is responsible for 8–15% of all cancer-related deaths (39). The rapid growth and early metastasis of tumor cells, which are dependent on nutrient transport, are the main causes of GC malignancy and the poor prognosis of GC patients (40). RAB GTPases are critical regulators of membrane trafficking, and mediate many biological processes of which dysregulation may lead to disease (41–44). Recently, they were identified as being important stimuli for tumorigenesis (45–47). For example, RAB1 serves as a significant mediator of endoplasmic reticulum-to-Golgi transport, which regulates cellular function and is linked to different cellular signaling pathways such as nutrient signaling, Notch signaling, and autophagy (45). Similarly, RAB31 has been shown to promote cell proliferation and inhibit apoptosis in some cancers, such as breast, hepatocellular, and ovarian cancers (11, 14, 48). Here, we uncovered a novel mechanism by which RAB31 promotes GC progression. We found that the expression of RAB31 was upregulated in GC tissues through qPCR analysis of fresh tissues and IHC of tissue microarrays (Figures 1E, H). We also found that the overexpression of RAB31 was significantly associated with specific clinicopathological characteristics and a shorter survival time, which strongly suggests that RAB31 may be a novel prognostic biomarker for GC. In addition, in vitro and in vivo assays demonstrated that the depletion of RAB31 attenuated cell growth and promoted apoptosis.

Previously, we confirmed that GLI1 is a significant mediator of GC progression, in accordance with the conclusions of other studies (26, 49, 50). Furthermore, RAB23, similar to RAB31, has been confirmed as a powerful regulator of tumorigenesis via the interaction with GLI1 signaling (38, 51, 52). Therefore,
RAB31 promotes GC progression through activation of the GLI1 pathway in vivo. (A) Western blotting was performed to evaluate the overexpression of RAB31 after transfection of plasmids into MKN45 cells. (B–F) AGS and MKN45 cells with enhanced RAB31 expression and vector control were transfected simultaneously with GLI1 siRNA and siNC, respectively. (B,C) The viability of AGS and MKN45 cells was determined by the CCK8 assay. (D) Representative images of (Continued)
we performed GSEA using the TCGA databank and found that RAB31 regulates apoptosis by targeting GLI1. We also performed Co-IP assays and immunofluorescence experiments and found that RAB31 interacted and co-localized with GLI1 (Figures 5E, F). The rescue experiments showed that the depletion of GLI1 attenuated the effects on cell proliferation, the cell cycle, and apoptosis induced by the overexpression of RAB31, suggesting that GLI1 regulates the oncogenic functions of RAB31. Furthermore, through analysis of the miRNA database, we found that the RAB31/GLI1 axis was regulated by miR-30c-2-3p. Previous studies showed that miR-30c-2-3p functions as a tumor suppressor gene by targeting cellular signaling factors in various cancers such as breast cancer and renal cell carcinoma (53, 54). In GC, it was shown that miR-30c-2-3p exhibits low expression and is linked to clinical features such as TNM stage (55). Similarly, we found that patients...
FIGURE 6 | miR-30c-2-3p has low expression in GC and inhibits GC cell proliferation, blocks the cell cycle, and promotes apoptosis in vitro. (A) The results obtained on the Hh signaling pathway via analysis using Targetscan, miRWalk 2.0, miRDB databases, and KEGG pathway analysis are shown by the histogram, according to the P-value. (B,C) The heat plot showing miRNA expression in GC and the histogram showing miR-30c-2-3p expression were created using the YM500v2 tool. (Continued)
FIGURE 6 | (D) Kaplan-Meier curve for overall survival was created using clinical information from the TCGA databank in GC patients with high and low miR-30c-2-3p expression levels ($P < 0.05$). (E) qPCR analysis of miR-30c-2-3p in MKN45 cells after transfection of mimics or the inhibitor. (F,G) Viability of AGS and MKN45 cells after upregulation or downregulation of miR-30c-2-3p expression was determined by the CCK8 assay. (H) Significant images of colony formation assays using AGS and MKN45 cells are shown on the left, and the average colony formation from three experiments is shown by histogram on the right ($P < 0.01$). (I,J) Cell cycle and apoptosis were assessed by flow cytometry in AGS and MKN45 cell lines transfected with miR-30c-2-3p mimics and the inhibitor. Representative images are shown on the left and the results of triplicate assays are on the right. Results are shown as the mean ± SD (*$P < 0.05$, **$P < 0.01$, and ***$P < 0.001$).

FIGURE 7 | miR-30c-2-3p is involved in the RAB31/GLI1 pathway and regulates GC cell growth and apoptosis via binding to the 3′-UTR of RAB31. (A) Luciferase reporter assay was performed using MKN45 cells to determine if miR-30c-2-3p binds to the 3′-UTR of RAB31. (B,C) RAB31, GLI1, cyclin D1, BAX, and Bcl-2 expression was detected by Western blotting in AGS and MKN45 cells after transfection with miR-30c-2-3p mimics or the inhibitor; GAPDH was used as the control. (D,E) Cell viability was assessed in AGS and MKN45 cells transfected with the miR-30c-2-3p inhibitor and RAB31 siRNA. (F,G) Western blotting was conducted to investigate the levels of RAB31, GLI1, and its downstream proteins in AGS and MKN45 cells co-transfected with the miR-30c-2-3p inhibitor.

with low miR-30c-2-3p expression were predicted to have poor survival rates (Figures 6C, D). Moreover, in the in vitro assays, the upregulation or downregulation of miR-30c-2-3p expression inhibited cell growth or promoted cell growth, respectively. Similar to other miRNAs that degrade or inhibit specific mRNAs by binding the 3′-UTR of targeted genes.
(56), we demonstrated that miR-30c-2-3p functioned through binding the 3′-UTR of RAB31 and subsequently mediated GLI1 expression. Interestingly, the inhibition of miR-30c-2-3p rescued the growth inhibition of GC cells induced by silencing of RAB31 (Figures 7D, G). Thus, the results of our study provide evidence to support the novel regulatory axis of miR-30c-2-3p/RAB31/GLI1 in the development of GC.

CONCLUSIONS

In conclusion, the results of our study provide robust evidence to support the function of RAB31 in the regulation of GC cell proliferation and apoptosis. Moreover, we uncovered a novel mechanism whereby downregulation of RAB31 suppresses the expression of GLI1 and inhibits the expression of cyclin D1, c-Myc, BAX, and Bcl-2 proteins, leading to GC cell growth retardation, cell cycle arrest, and apoptosis. We also demonstrated that miR-30c-2-3p is involved in the RAB31/GLI1 axis by targeting the 3′-UTR of RAB31 and regulating cell proliferation. Therefore, our data demonstrates the great significance of miR-30c-2-3p/RAB31/GLI1 signaling in the development of GC, which may serve as a potential target for GC therapy.

AVAILABILITY OF DATA AND MATERIALS

All data generated or analyzed during this study are included in this published article and its additional files.

REFERENCES

1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. (2001) 2:333–43. doi: 10.1016/S1470-2045(01)00486-7
2. Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer (2003) 3:592–600. doi: 10.1038/nrc1141
3. Lordick F, Siewert JR. Recent advances in multimodal treatment for gastric cancer: a review. Gastric Cancer (2005) 8:78–85. doi: 10.1007/s10120-005-0321-2
4. Wohrer SS, Raderer M, Hejna M. Palliative chemotherapy for advanced gastric cancer. Ann Oncol. (2004) 15:1585–95. doi: 10.1093/annonc/mdl422
5. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal J. 17:e1002217. doi: 10.1371/journal.pcel.1002217
6. Chen D, Guo J, Miki T, Tachibana M, Gahl WA. Molecular cloning of two novel rab genes from human melanocytes. J Biol Chem. (2011) 286:6661–70. doi: 10.1002/jcb.20116
7. Chua CE, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med. (2015) 19:1–10. doi: 10.1111/jcmm.12043
8. Hou JC, Pessin JE. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol. (2007) 19:466–73. doi: 10.1016/j.cceb.2007.04.018
9. Ng EL, Ng JJ, Liang F, Tang BL. Rab22B is expressed in the CNS as troglia independent prognostic factor. Breast Cancer Res Treat (2008) 111:229–40. doi: 10.1007/s10549-007-9782-6
10. Grismayer B, Bolch S, Seubert T, Kirchner T, Schaab S, Baretton G, et al. Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells. Mol Cancer (2012) 11:62. doi: 10.1186/1476-4598-11-62
11. Jin C, Rajabi H, Pitroda S, Li A, Kharbanda A, Weichselbaum R, et al. Cooperative interaction between the MUC1-C oncoprotein and the Rab31 GTPase in estrogen receptor-positive breast cancer cells. PLoS ONE (2012) 7:e39432. doi: 10.1371/journal.pone.0039432
12. Kharbanda A, Rajabi H, Jin C, Raina D, Kufe D. Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Mol Cancer Res. (2013) 11:714–23. doi: 10.1158/1541-7786.MCR-12-0668
13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell (2004) 116:281–97. doi: 10.1016/S0092-8674(04)00045-5
14. Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. (2013) 23:604–15. doi: 10.1101/gr.139758.112
15. Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL, et al. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting EZF7. Cell Death Dis. (2018) 9:410. doi: 10.1038/s41419-018-0444-x

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The research was approved by the Ethics Committee of Renji Hospital, School of Medicine, Shanghai Jiao Tong University.

AUTHOR CONTRIBUTIONS

C-TT, QL, and Z-ZG conceived and designed the study. C-TT and LY performed the experiments and drafted the manuscript. SW and X-LL helped to analyze the data. Y-JG, X-TZ, and YC helped to collect the information on patients. Z-ZG supervised the experiments and revised the manuscript. All of the authors reviewed the manuscript and approved the final version.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (No. 81670505), the Shanghai Municipal Education Commission: Gaofeng Clinical Medicine grant support (No. DLY201501), and the Three-year action plan for Shin Kang of Shanghai (No. 16CR3113B).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2018.00554/full#supplementary-material
39. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Cancer J Clin. (2015) 65:87–108. doi: 10.3322/caac.21262

40. Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol. (2014) 20:13756–66. doi: 10.3748/wjg.v20.i13.13756

41. Kural FR, Kohrs FE, Jin EJ, Hiesinger PR. Rab GTPases and membrane trafficking in neurodegeneration. Curr Biol. (2018) 28:R471–86. doi: 10.1016/j.cub.2018.02.010

42. Jalagadugula G, Goldfinger LE, Mao G, Lambert MP, Rao AK. Defective Rab18-related megakaryocytic ER-to-Golgi transport in RUNX1 haploinsufficiency: impact on von Willebrand factor. Blood Adv. (2018) 2:797–806. doi: 10.1182/bloodadvances.2017104274

43. Fremont S, Echard A. Membrane Trafficking in the last steps of cytokinesis. Curr Biol. (2018) 28:R458–70. doi: 10.1016/j.cub.2018.01.019

44. Actis Dato V, Grosso RA, Sanchez MC, Fader CM, Chiabrando GA. Insulin-induced exocytosis regulates the cell surface level of low density lipoprotein-related protein-1 in Muller Glial cells. Biochem J. (2018) 475:1669–85. doi: 10.1042/BBC20170891

45. Yang XZ, Li XX, Zhang YL, Rodriguez-Rodriguez L, Xiang MQ, Wang HY, et al. Rab11 in cell signaling, cancer and other diseases. Oncogene (2016) 35:5699–704. doi: 10.1038/onc.2016.81

46. Wang S, Hu C, Wu F, He S. Rab25 GTPase: functional roles in cancer. Traffic. (2017) 18:64591–9. doi: 10.18632/oncotarget.19571

47. Shaughnessy R, Echard A. Rab35 GTPase and cancer: linking membrane trafficking to tumorigenesis. Traffic. (2018) 19:247–52. doi: 10.1111/tra.12546

48. Pan Y, Zhang Y, Chen L, Liu Y, Feng Y, Yan J. The critical role of Rab31 in cell proliferation and apoptosis in cancer progression. Mol Neurobiol. (2016) 53:4331–47. doi: 10.1007/s12051-015-9378-9

49. Zhao Y, Huang J, Zhang L, Qu Y, Li J, Yu B, et al. Mir-133b is frequently decreased in gastric cancer and its overexpression reduces the metastatic potential of gastric cancer cells. BMC Cancer (2014) 14:34. doi: 10.1186/1471-2407-14-34

50. Ohita M, Tateishi K, Kanai F, Watabe H, Kondo S, Guleb B, et al. p53-independent negative regulation of p21/cyclin-dependent kinase-interacting protein 1 by the sonic hedgehog-glioma-associated oncogene 1 pathway in gastric carcinoma cells. Cancer Res. (2005) 65:10822–9. doi: 10.1158/0008-5472.CAN-05-0777

51. Yang L, Clinton JM, Blackburn ML, Zhang Q, Zou J, Zielinska-Kwiatkowska A, et al. Rab23 regulates differentiation of ATDC5 chondroprogenitor cells. J Biol Chem. (2008) 283:10649–57. doi: 10.1074/jbc.M706795200

52. Sun HJ, Liu YJ, Li N, Sun ZY, Zhao HW, Wang C, et al. Sublocalization of Rab23, a mediator of Sonic hedgehog signaling pathway, in hepatocellular carcinoma cell lines. Mol Med Rep. (2012) 6:1276–80. doi: 10.3892/mmr.2012.1094

53. Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, et al. MicroRNA-30c-2–3p negatively regulates NF-kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol. (2015) 9:1106–19. doi: 10.1016/j.molonc.2015.01.008

54. Mathew LK, Lee SS, Skuli N, Rao S, Keith B, Nathanson KL, et al. Restricted expression of mir-30c-2–3p and mir-30a-3p in clear cell renal cell carcinomas enhances HIF2alpha activity. Cancer Discov. (2014) 4:533–60. doi: 10.1158/2155-9953.EPD-14-0110

55. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell (2005) 122:6–7. doi: 10.1016/j.cell.2005.06.036

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.