New suppressors of signal-sequence mutations, prlG, are linked tightly to the secE gene of Escherichia coli

Joan Stader,1 Lisa J. Gansheroff,2 and Thomas J. Silhavy

Department of Biology, Princeton University, Princeton, New Jersey 08544 USA

Analysis of more than 100 extragenic suppressors of the lamB14D signal-sequence mutation (changes Val in the hydrophobic core region at position 14 to Asp) has revealed alterations that appear to lie at prlA (secY) and secA (prlD), two loci known to be mutable to suppressor alleles, and a new suppressor termed prlG. One allele of the new suppressor class, prlG1, has been characterized in some detail. This suppressor counteracts, to some degree, the export defect conferred by a variety of signal-sequence mutations in two different genes, lamB and malE. Genetic analysis shows that the dominant suppressor mutations are linked tightly to, and probably allelic with, the gene secE. This result, coupled with data obtained with conditional-lethal alleles of secE (see accompanying paper by Schatz et al.), argues strongly that SecE is an important component of the cellular protein export machinery in Escherichia coli.

[Key Words: Protein secretion; α receptor; outer membrane; secE]

Received March 7, 1989; revised version accepted April 14, 1989.

Escherichia coli strains carrying signal-sequence mutations have been used in genetic selections with the objective of identifying genes encoding components of the cellular export machinery. The rationale of such selections is that if the signal sequence interacts with one or more components of the export machinery, then it should be possible to obtain suppressor mutations in genes encoding these components that will restore some level of function to the altered signal sequence. This approach has been applied successfully with signal-sequence mutations in two genes of the maltose regulon, lamB (Emr et al. 1981; Trun and Silhavy 1987) and malE (Bankaitis and Bassford 1985; Ryan and Bassford 1985).

The lamB gene specifies an outer-membrane protein that acts both as a maltoporin to facilitate transport of maltose (Luckey and Nikaido 1980) and dextrins, and as the receptor for the bacteriophage λ (Randall-Hazelbauer and Schwartz 1973). Accordingly, LamB− strains exhibit a Dex− (inability to use dextrins as a carbon source) λ' phenotype. Such strains can still use maltose because this sugar can cross the outer membrane via other porin proteins. The malE gene specifies the periplasmic maltose-binding protein that is required absolutely for both maltose and dextrin transport (Shuman 1982).

Starting with a strain that carries a signal-sequence mutation in lamB, suppressor mutations have been identified by selecting Dex+. These suppressors lie in two genes, prlA and prlC (Emr et al. 1981). Similar selections with malE signal-sequence mutations have revealed suppressors also at prlA and, in addition, prlD (Bankaitis and Bassford 1985; Ryan and Bassford 1985). Subsequent studies have shown that prlA is allelic with secY (Shiba et al. 1984) and that at least some of the prlD alleles lie in the secA gene (Fikes and Bassford 1989). Conditional-lethal mutations at secY and secA cause a pleiotropic defect in protein export (Oliver and Beckwith 1981; Ito et al. 1983) and this combination of genetic data, coupled with recent biochemical evidence (Bacallo et al. 1986; Fan and Tai 1987; Cabelli et al. 1988), establishes that these proteins are components of the cellular export machinery. The prlC suppressors exert their effects in a manner that is different from prlA and prlD, and the function of the wild-type PrlC protein is not yet understood (Trun and Silhavy 1989).

Evidence suggests that the signal-sequence may perform multiple functions during the export process (Stader et al. 1986; Thom and Randall 1988). Accordingly, different signal-sequence mutations may cause export defects for different mechanistic reasons. If this is true, then different signal-sequence mutations may yield different types of suppressors. A test of this hypothesis requires that selection for suppressors be performed with a spectrum of signal-sequence mutations. In the past this has been problematic because most signal-sequence mutations do not cause a severe block in export and, thus, do not confer distinctive phenotypes; indeed, some are indistinguishable from the wild type phenotypically. In the case of lamB, for example, previous selections

1Present addresses: School of Basic Life Sciences, University of Missouri–Kansas City, Kansas City, Missouri 64110 USA; 2Harvard Medical School, Boston, Massachusetts 02115 USA.

GENES & DEVELOPMENT 3:1045–1052 © 1989 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/89 $1.00 1045
were done with a deletion mutation that removes 12 amino acids from the signal sequence. It seemed possible that new suppressors might be revealed if less drastic mutations were employed.

Using highly purified dextrins, we have been able to devise more stringent conditions for selecting suppressors of lamB signal-sequence mutations (Trun and Silhavy 1987). Analysis of a large number of suppressors of the mutation lamB14D again has yielded mutations that appear to reside in prlA and secA but, in addition, a new locus (termed prlG) has been uncovered. Genetic analysis suggests that these mutations are allelic to secE, a gene described in the accompanying paper (Schatz et al. 1989).

Results

Mutagenesis and selection of Dex+ revertants of STA14D

STA14D carries a point mutation in lamB that changes the valine residue at position 14 of the signal sequence to an aspartic acid residue. This substitution causes a pronounced defect in the export of lamB (Stader et al. 1986; Stader and Silhavy 1988). Dex+ revertants of STA14D were obtained either spontaneously or following UV irradiation as described in Materials and methods. In a typical experiment, 10⁸ cells were spread on dextrin minimal agar, and after 2 days several hundred revertants could be identified. It is not possible from these data to calculate an accurate reversion frequency because the lamB14D mutation is leaky. Accordingly, there is substantial background growth. We observed, however, that UV irradiation increased the number of revertants by 20-fold.

Following selection, 6–8 Dex+ colonies were picked from each plate and their phenotypes on MacConkey agar were compared. If isolates from the same plate had identical phenotypes they were assumed to be siblings, and only one was examined further. Isolates that exhibited a very weak Dex+ phenotype on MacConkey agar were discarded. Of 123 Dex+ revertants characterized, 46 occurred spontaneously and 77 were obtained following UV irradiation.

Initial characterization of revertants

Besides the desired suppressor mutation, at least three other mutational events could confer a Dex+ phenotype to STA14D: (1) Mutations that alter the structural gene for another outer membrane porin and thus bypass the requirement of LamB for dextrin entry (Benson and DeCloux 1985), (2) true revertants of the lamB14D mutation, or (3) intragenic suppressor mutations that restore function to the altered lamB signal sequence. To distinguish these possibilities, the following tests were employed.

Bypass mutations are identified simply. Since they do not cause LamB export to the outer membrane, the revertant cells remain resistant to λ. Mutations of this type are quite rare. Indeed, strains containing a deletion within lamB revert at frequencies 100-fold lower than that observed with STA14D under the conditions we employ.

True revertants or strains that carry intragenic suppressor mutations can be recognized because the Dex+ mutation lies in lamB. To identify these, we used a Tn10 insertion that is linked to lamB by 45% in a transduction cross. A P1 lysate grown on a strain carrying this insertion linked to lamB14D was used to transduce each of the revertants to Tet+. If the Dex+ mutation lies at lamB, then we expect that ~45% of the Tet+ transductants would become Dex−, owing to loss of the suppressor. In this manner, we determined that 21 (17%) of the 123 revertants contain mutations linked tightly to lamB. These were not studied further. These experiments demonstrate also that the remaining 102 must contain an extragenic suppressor mutation.

Mapping the suppressor mutations

Extragenic suppressor mutations that restore function to an altered signal sequence are likely to reside in genes that specify a component of the cellular export machinery such as prlA (Emr et al. 1981), secA (Oliver and Beckwith 1981), SecB (Kumamoto and Beckwith 1983), or SecD (Gardel et al. 1987). Indeed, suppressors have been identified at prlA (Emr et al. 1981) and secA (Fikes and Bassford 1989) already. In addition, suppressors have been found at prlC (Emr et al. 1981; Trun and Silhavy 1987). To determine whether the extragenic suppressors mapped to any of these loci, we employed strains, which contain a Tn10 linked to each in a transduction cross analogous to that described above, to identify intragenic suppressor mutations at lamB. In this manner we found 83 (81%) suppressors linked to prlA and 12 (12%) linked to secA. Although these suppressors have not been characterized further, we suspect that they represent new alleles of prlA and secA, respectively.

It was somewhat surprising that no additional prlC suppressors were identified, as some alleles of this gene are known to suppress lamB14D (Trun and Silhavy 1987, 1989). However, prlC suppression of lamB14D is weak, and it is possible that these suppressors were discarded in our initial screening. A negative result from secB was not unexpected because it has been reported that SecB interacts with precursors at sites other than the signal sequence (Collier et al. 1988; Trun et al. 1988). None of the suppressors mapped to secD.

Mapping the new locus, prlG

To facilitate mapping of the seven remaining suppressor mutations, a Tn10 insertion that was linked genetically to the suppressor locus was identified as described in Materials and methods. Initially, this was done with two of the suppressors that exhibited the highest level of suppression in phenotypic tests with lamB14D. Subsequent transductions with a particular Tn10 insertion that was 90% linked to one suppressor revealed that it was also 90% linked to the other. Indeed, it was found
that all of the seven remaining suppressors exhibited 90% linkage to the same Tn10 insertion. Given these results, it seems likely that all seven are alleles of the same gene, and tentatively we have termed this gene prlG.

Because Tn10 insertions confer a phenotype that can be selected simply, we decided to localize prlG on the chromosome indirectly by first mapping the linked Tn10. Initial experiments involved patch matings [see Materials and methods] with three different Hfr strains, HfrG6, AL205, and AL210, carrying the particular Tn10 insertion. We found that HfrG6 (origin 66; clockwise transfer) could transfer the Tn10 efficiently, whereas AL205 (origin 61; counterclockwise transfer) and AL210 (origin 97; clockwise transfer) could not. This suggests that the Tn10 lies between 66 and 97 min. To map the location of the Tn10 insertion more precisely, matings between HfrG6 and P210 [argE thr-1] were performed selecting either for Arg+ or Thr+. Analysis of the exconjugants revealed linkage of the Tn10 to argE. This was confirmed by P1 transduction, which shows linkage of 46%.

The prlG1 suppressor is dominant

Known suppressors of signal-sequence mutations are dominant in diploid analysis. This reflects the fact that these mutations are missense mutations that alter, rather than abolish, function. To test the behavior of prlG1 in diploid analysis, we use the F' factor KLF10. This episome carries chromosomal DNA from metB to malK and therefore should carry the wild-type prlG+ gene. LG9.1 is a prlG1 lamB14D strain into which recA::kan argE::Tn10 were introduced by transduction. The F' factor was introduced into this strain by mating with E7127 and selection for ArgE+ . Exconjugants were purified and their Dex phenotype and sensitivity to phage λ were determined. We found these phenotypes to be identical to the parent strain LG9.1, therefore we conclude that prlG1 is dominant to the wild type.

prlG1 is linked tightly to, and probably allelic with, secE

During the course of this work, Riggs et al. [1988] identified a new sec gene secE, by isolating mutants in which expression of a secA–lacZ gene fusion is increased. In addition to causing secA derepression, the secE mutation confers a cold-sensitive growth defect that appears to result from a pleiotropic defect in protein export. Of special interest was the fact that secEcs501 exhibited 50% linkage with argE in a transduction cross, raising the possibility that this mutation and prlG1 might affect the same gene. Consistent with this hypothesis is the fact that prlG1 and secEcs501 are greater than 90% linked as measured by P1 transduction.

To map prlG1 more precisely with respect to secE, we took advantage of a specialized λ transducing phage isolated by S. Sullivan and M. Gottesman [pers. comm.]. This phage, λU101, contains a 2.2-kb chromosomal insert with two genes, secE and U, the latter identified originally as a suppressor of nusA1. [In the accompanying paper by Schatz et al. 1989, λU101 is described in more detail.] We wished to determine whether λU101 carried prlG+ also.

Because the prlG1 suppressor mutation is dominant, complementation tests with λU101 cannot be used directly to determine whether the phage carries prlG+. Instead, we asked whether or not the chromosomal DNA carried by the transducing phage is homologous to prlG1 by determining whether this phage can be used to exchange alleles of prlG by recombination. λU101 is cl857 and int-. Accordingly, lysogens occur primarily by recombination at the region of homology resulting in a λ prophage that is flanked by chromosomal DNA in direct repeat. When the prophage excises, chromosomal DNA either to the right or to the left will be lost depending on the position at which the recombination event occurs. If the phage carries prlG+, then it should be possible to exchange the chromosomal prlG1 with the wild-type allele carried by the prophage. To test this possibility, λU101 was lysogenized into LG9 [lamB14D prlG1] by selecting immunity at 30°C. As expected, the lysogen JS5 formed red [Dex+] colonies on dextrin MacConkey agar. As a control, we also constructed a lysogen in a wild-type background, JS4, which also formed red colonies on dextrin MacConkey agar. Cultures of these strains were grown to midlogarithmic phase at 30°C and then were shifted to 39°C for 90 min to induce prophage excision. Dilutions of the cultures were plated on dextrin MacConkey agar and incubated overnight at 39°C. All colonies arising from JS4 were red [Dex+] and non-immune. In contrast, about one-third to one-half of the colonies arising from JS5 were white [Dex-]; the rest were red, but all were nonimmune. We conclude from these results that λU101 carries chromosomal DNA that is homologous to prlG1. Thus, prlG1 must be linked tightly to secE and given the export-related phenotype of prlG1, we think it likely that the suppressor is an allele of secE.

Suppression of other signal-sequence mutations by prlG1

To assess the spectrum of signal-sequence mutations suppressed by prlG1, strains were constructed containing the suppressor mutation in combination with 11 lamB and 4 male signal-sequence mutations. The relevant phenotypes of these strains then were compared with the phenotypes of the various mutants without the suppressor. Results obtained with the lamB signal-sequence mutations are shown in Table 2. We find that prlG1 has an ameliorating effect in most of the lamB signal-sequence mutants, however, in no case is pronounced suppression observed. Data obtained with the male signal-sequence mutants were similar. Some suppression was observed with maleE14-1, Δ12-18, and Δ18-1; none was observed with maleE10-1 (data not shown). Again, the phenotypic effects were slight.

To provide biochemical evidence for the suppression
Table 1. Bacterial strains

Strain	Description	Source
E. Gold:		
AL205	HfrKL16 origin 61'	N. Allgood
	counterclockwise	
AL210	HfrH Δlac opp origin 97'	N. Allgood
	clockwise	
BW6175	HfrPK3 argE::Tn10-thr-1	B. Wanner
	leuB6 thi-1 lacY1 azI5 tonA21	
	supE44	
ECB475	MC4100 proC::Tn10	Gardel et al. (1987)
	tsx::Tn5	
HfrG6his	HfrG6 his origin 66'	laboratory stock
	clockwise	
JS3	STA14D malf::Tn10	this study
LG1	STA1000 Tn10 90% linked to	this study
	prlG1	
LG3	STA14D Tn10 90% linked to	this study
	prlG1	
LG9	STA14D prlG1 (original isolate)	this study
LG10	LG9 Tn10 90% linked to prlG+	this study
MC4100	F- araD139ΔargF-lac(U169	Casadaban (1976)
	rpsL150 relA1	
	fliB-5301 ptsF25 deoC1 thiA1	
MCR106	MC4100 lamBs106	Emr and Silhavy (1980)
MM152	MC4100 zhe::Tn10 malf	Kumamoto and Beckwith (1985)
	zecB::Tn10	
NT106	MC4100 lamBΔ60	N. Trun
	zhe::Tn10	
NT192	STA1000 lamBΔ78	N. Trun
	secB::Tn5	
NT350	MC4100 lamBΔ60	Trun and Silhavy (1987)
	zha::Tn10	
P210	AB1133 ompF F- thr-1 leuB6	R. Misra
	proA2 lacY1 supE44	
	galK2 hisG4	
	rpsL31 mnt11	
	argE3 thi-1 xyl-5	
	ara14	
PB1101	MC4100 malE18-1	Bedouelle et al. (1980)
RL361	MC4100 malEΔ12-18	Bankaitis et al. (1984)
STA14D	STA1000 lamB14D	Stader and Silhavy (1988)
STA100	STA14D argE::Tn10	this study
STA101	STA14D prlG1	this study
STA102	STA14D prlG1	this study
STA103	STA14D malf::Tn10	this study

of the export defect caused by the signal-sequence mutations, we performed pulse-chase assays to monitor the rate of signal-sequence processing. In most cases, little, if any, effect was observed, this is not terribly surprising in light of the phenotypes. Phenotypic effects provide a much more sensitive method for detecting small changes in export efficiency than does the biochemical pulse-chase assay. With two lamB signal-sequence mutations, 17D and 17R, increased rates of processing were observed (Fig. 1). These two mutations are notable because they confer moderate export defects; in other words, they are quite leaky. Accordingly, it is possible that suppression is observed more easily with these mutations under the experimental conditions employed. In any event, results with these mutations demonstrate that the suppressor works by increasing export of the mutant LamB proteins.

There is a slight, but measurable, negative effect of the prlG1 mutation on the export of wild-type LamB. The effect can be seen both in Dex and phage sensitivity phenotypes (Table 2) as well as in the pulse-chase assay (Fig. 1). This negative effect is not observed with wild-type maltose-binding protein. Although the significance of this effect is not yet clear, it provides further evidence that the prlG1 mutation affects an export-related process.

Discussion

The lamB14D signal-sequence mutation confers a Dex− phenotype because the mutant lamB precursor is exported poorly (Emr and Silhavy 1980; Stader et al. 1986; Stader and Silhavy 1988). The prlG suppressors relieve this defect by restoring export of the mutant precursor, thus allowing a greater percentage of LamB molecules to reach the outer membrane. This increase in functional
LamB is evidenced by enhanced use of dextrins and a greater sensitivity to phage λ. In addition, with certain lamB signal-sequence mutations, an increased rate of signal-sequence processing is observed. This provides biochemical evidence for an increase in export because the enzyme responsible for this cleavage event is located at the outer surface of the inner membrane (Zwizinski and Wickner 1980).

It seems likely that suppressors of signal-sequence mutations, such as priG, work by broadening the specificity of the cellular protein export machinery so that recognition of the mutant precursor is restored. The fact that the suppressor mutations are dominant in diploid analysis is consistent with such an altered activity and it argues against an effect caused by functional impairment. Broadened specificity could reflect a direct physical interaction between the cellular component affected by the suppressor mutation and the signal sequence, or it could occur by a more indirect means. For example, the export machinery may be a complex of different proteins and alterations in one could affect function of another. Genetic evidence to support a direct interaction would come from the demonstration of allele specificity, i.e., a certain suppressor would be specific for a particular signal-sequence mutation. However, all known suppressors exhibit rather broad specificity for signal-sequence mutations and priG is no exception. The priG1 suppressor affects a variety of signal-sequence mutations in both lamB and malE. This fact, however, should not be construed as indicating the lack of direct interaction. Given the great sequence diversity of signal sequences, inability to demonstrate allele specificity need not be surprising. The specificity of the wild-type export machinery must be quite broad as well. Thus, the potential for direct interaction between the components defined by suppressor mutations and the signal sequence remains an attractive possibility.

We have demonstrated that the priG1 mutation lies within a 2.2-kb segment of chromosomal DNA. This DNA segment is known to encode two proteins, SecE and ‘U’ (Schatz et al. 1989). Although we have no direct evidence for a direct interaction between these proteins and the signal sequence, the ability of priG1 to affect a variety of mutations suggests a role in the export machinery.

Table 2. Effects of the priG1 suppressor in various lamB signal-sequence mutants

lamB allele	priG allele	Dex sensitivity	MacConkey sensitivity	LB sensitivity	glucose sensitivity	maltose sensitivity
+	+	1	1	1	1	1
+	+	1	1	1	1	1
6S	+	1	1	1	1	1
6S	+	1	1	1	1	1
Δ60	+	5	5	5	5	5
Δ60	+	5	5	5	5	5
Δ78	+	4	4	4	4	4
Δ78	+	4	4	4	4	4
12D	+	3	3	4	4	4
12D	+	3	3	4	4	4
13D	+	2	3	4	4	4
13D	+	2	3	4	4	4
14D	+	5	5	5	5	5
14D	+	5	5	5	5	5
15E	+	4	4	4	4	4
15E	+	4	4	4	4	4
16E	+	4	4	5	5	5
16E	+	4	4	5	5	5
17D	+	1	2	2	2	2
17D	+	1	2	2	2	2
17R	+	1	2	1	1	1
17R	+	1	2	1	1	1
19K	+	4	3	3	3	3
19K	+	4	3	3	3	3
19R	+	4	4	5	5	5
19R	+	4	4	5	5	5

Phenotypes were scored on a scale of 1 to 5, with 1 corresponding to wild type and 5 corresponding to a total defect (i.e., the phenotype of a lamB deletion strain). Phenotypes scored as 2, 3, or 4 are intermediate, with 2 more closely resembling the wild type, and with 4 more closely resembling the deletion strain. See Materials and methods for details.
Stader et al.

evidence, we think it likely that the prlG suppressors are alleles of secE. Conditional-lethal mutations in secE show defects in protein export [Riggs et al. 1988; Schatz et al. 1989], and this relationship is compelling. Moreover, we note that prlG1 causes a slight export defect for wild-type LamB, a phenotype that clearly is analogous to that seen with known secE alleles. In contrast, mutations in U have no known effects on protein export. The fact that two completely different genetic approaches appear to have identified the same gene is striking, and it seems that this protein must play an important role in protein export.

Results presented here validate the use of suppressors of signal-sequence mutations for the identification of genes that specify components of the export machinery. More than 100 extragenic suppressors of lamB14D were characterized, and all were found to be linked tightly to genes whose products function in protein export; 81% at prlA/secY, 12% at secA/prlD, and 7% at prlG/secE. Clearly, there is a high probability of success. Given the extent to which this approach has been applied in E. coli, it could be argued that most, if not all, of the target genes [i.e., genes that can be mutated to give a suppressor phenotype] have been identified. In other organisms, however, this approach could prove quite useful.

Materials and methods

Bacterial strains and phages

All strains are derivatives of E. coli K12 and are described in Table 1. The bacterial strains used in this study, the STA100 series, are all derived from STA14D [Stader and Silhavy 1988] and were constructed by P1 transduction.

To introduce prlG1 into the STA14D background, the strain was first transduced to Tet^r with a P1 lysate grown on BW6175 [argE⁻::Tnl0]. The resulting strain STA100 subsequently was transduced to Arg⁻ with a P1 lysate grown on LG9 [prlG1]. The resulting strain, STA102 [prlG1 lamB14D] is phenotypically λ⁺. The various lamB signal-sequence mutations were introduced into the STA14D background in a two-step procedure. First, strain STA105 was transduced to Tet^r with a P1 lysate grown on TST6 [malE⁻::Tnl0]. This yielded two strains, STA105 (lamB14D) and STA106 (lamB⁺). The P1 lysates grown on the various lamB mutants then were used to transduce Mal⁺. Acquisition of the tightly linked lamB allele was verified by marker rescue in all cases.

Strains carrying lamB signal-sequence mutations fall into two phenotypic classes, those that confer a λ⁺ phenotype [lamB alleles 12D, 13E, 14D, 15E, 16E, 19K, 19R, Δ78, and Δ60] and those that are λ⁻ [lamB alleles 6S, 17D, and 17R]. To simplify identification of the desired transductant in the Mal⁺ transduction described in the preceding paragraph, STA105 was used as the recipient for alleles that confer a λ⁺ phenotype and STA106 was used for alleles that confer a λ⁻ phenotype. In this manner, acquisition of the desired lamB allele could be scored by a change in phage sensitivity in the marker-rescue experiments.

Media and chemicals

Liquid and solid media were prepared as described previously [Silhavy et al. 1984]. Dextrins were obtained from Plansteil Laboratories, Inc. [Waukegan, Illinois] as a malto-oligosaccharide mixture and used in the preparation of media as described by Trun and Silhavy [1987]. Tetracycline was purchased from U.S. Biochemical Corp. [Cleveland, Ohio] and used at a concentration of 25 μg/ml.

Genetic techniques

P1 transduction, conjugation, and other standard techniques were carried out as described previously [Miller 1972, Silhavy et al. 1984]. 'Patch' mating was done by growing a patch of donor (Tet^r) cells overnight at 37°C on an L-plate and replica-plating the patches onto a plate that had been spread with a lawn of the recipient (Str^r) cells. The plate was incubated at 37°C for 2 hr, then replica-plated onto an L-plate containing tetracycline to select for the recipients and streptomycin to counterselect the donor. The exconjugates were incubated overnight, purified by streaking, and screened for the appropriate markers.

Isolation of Dex⁺ spontaneous revertants

The spontaneous mutants were isolated either by streaking isolated colonies of STA14D to dextrin minimal agar or by spreading 10⁶ cells that had been grown overnight in L-broth. The agar plates were incubated at 37°C for 2 days at which time revertants could be recognized as papillae that grew out of the dense background. The papillae were picked and were purified several times on dextrin minimal agar.

Isolation of UV-induced Dex⁺ revertants

UV irradiation was employed to yield 99.9% killing as described by Miller [1972]. Briefly, overnight cultures were harvested and resuspended in 0.1 M MgSO₄. The cells were then exposed to UV irradiation of 1500 ergs/mm² followed by the addition of L-broth. The irradiated cells then were grown overnight in the dark at 37°C. Cells were then spread onto dextrin minimal agar and revertants were purified as described above.

Phenotypic characterization of pseudorevertants

Lamb phenotypes of strains carrying a suppressor and a particular signal-sequence mutation were scored in several ways. To assess an increase in maltoporin function, the strains were streaked on dextrin MacConkey agar. On this media, increased Lamb function correlates with an increased red color. An increase in phage receptors at the cell surface was detected by cross-streaking the mutant strains against λvir on various media, L-agar, maltose, or glucose minimal agar, and scoring sensitivity. On such media Lamb synthesis is uninduced, induced, or repressed, respectively. Wild-type strains score as sensitive on all media; strains that express very little Lamb at the cell surface are sensitive only when Lamb synthesis is induced fully. malE phenotypes were scored on maltose MacConkey agar.

Isolation of strains with TnlO linked to the prlG suppressor

A P1 lysate prepared on a population of cells containing random TnlO insertions was used to transduce strains containing the prlG suppressors to Tet⁻. Transductants that were Tet^r, Dex⁻, Mal⁺, and λ⁻ contain a TnlO linked to the wild-type allele of the suppressor. P1 was grown on these strains and used to transduce the prlG mutants to obtain a TnlO linked to the sup-
pressor locus. The suppressor then was moved to a clean genetic background by transducing STA14D to Tet⁺ and scoring for Dex⁺.

Pulse labeling and immune precipitation

Cell cultures were grown and pulse-labeled at 37°C as described previously (Stader et al. 1986).

SDS-polyacrylamide gel electrophoresis and autoradiography

Gel electrophoresis and autoradiography were carried out as described previously (Stader et al. 1986).

Acknowledgments

We thank Peter Schatz, Jon Beckwith, Susan Sullivan, and Max Gottesman for communicating results prior to publication, and Susan DiRenzo for help with the manuscript. This research was supported by grants from the National Institute of General Medical Sciences (GM-34821) to T.J.S., and by an American Cancer Society Postdoctoral Fellowship to J.S.

References

Bacallo, R., E. Crooke, K. Shiba, W. Wickner, and K. Ito. 1986. The secY protein can act post-translationally to promote bacterial protein export. J. Biol. Chem. 261: 12907–12910.

Bankaitis, V.A., B.A. Rasmussen, and P.J. Bassford, Jr. 1984. Intragenic suppressor mutations that restore export of maltose-binding protein with a truncated signal peptide. Cell 37: 243–252.

Bankaitis, V.A. and P.J. Bassford, Jr. 1985. Proper interaction between at least two components is required for efficient export of proteins to the *Escherichia coli* cell envelope. J. Bacteriol. 161: 169–178.

Benson, S.A. and A. DeCloux. 1985. Isolation and characterization of outer membrane permeability mutants in *Escherichia coli* K12. J. Bacteriol. 163: 361–367.

Bedouelle, H., P.J. Bassford, Jr., A.V. Fowler, I. Zakian, J. Beckwith, and M. Hofnung. 1980. Mutations which alter the phage lambda receptor from *Escherichia coli*: inhibition by higher oligosaccharides of maltose series. Biochem. Biophys. Res. Commun. 93: 166–171.

Miller, J.H. 1972. *Experiments in molecular genetics*. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Oliver, D.B. and J. Beckwith. 1981. *E. coli* mutants pleiotropically defective in the export of secreted proteins. Cell 25: 756–772.

Randall-Hazellauer, L.L. and M. Schwartz. 1973. Isolation of the phage lambda receptor from *Escherichia coli* K12. J. Bacteriol. 116: 1436–1446.

Riggs, P.D., A.I. Derman, and J. Beckwith. 1988. A mutation affecting the regulation of a secA-lacZ fusion defines a new sec gene. Genetics 118: 571–579.

Ryan, J.P. and P.J. Bassford, Jr. 1985. Post-translation export of maltose-binding protein in *Escherichia coli* strains harboring *male* signal-sequence mutations and either prl⁺ or prl suppressor alleles. J. Biol. Chem. 260: 14832–14837.

Schatz, P.J., P.D. Riggs, A. Jacq, M.J. Fath, and J. Beckwith. 1989. The secE gene encodes an integral membrane protein required for protein export in *E. coli*. Genes Dev. 3: 1035–1044.

Shiba, K., K. Ito, T. Yura, and D.P. Cerretti. 1984. A defined mutation in the protein export gene within the *spc* ribosomal protein operon of *Escherichia coli*: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J. 3: 631–635.

Shuman, H.A. 1982. Active transport of maltose in *Escherichia coli* K12, role of the periplasmic maltose binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J. Biol. Chem. 257: 5455–5461.

Silhavy, T.J., M.L. Berman, and L.W. Enquist. 1984. *Experiments with gene fusions*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Stader, J., S.A. Benson, and T.J. Silhavy. 1986. Kinetic analysis of *lamB* mutants suggests the signal sequence plays multiple roles in protein export. J. Biol. Chem. 261: 15075–15080.

Stader, J. and T.J. Silhavy. 1988. A progenitor of the outer membrane *lamB* trimer. J. Bacteriol. 170: 1973–1974.

Thom, J.R. and L.L. Randall. 1988. Role of the leader peptide of maltose-binding protein in two steps of the export process. J. Bacteriol. 170: 5564–5561.

Trun, N.J. and T.J. Silhavy. 1987. Characterization and in vivo cloning of prlC, a suppressor of signal sequence mutations in *Escherichia coli* K12. Genetics 116: 513–521.

Trun, N.J., J. Stader, A. Lupas, C. Kumamoto, and T.J. Silhavy. 1988. Two cellular components, PrlA and SecB, that recog-
Stader et al.

nize different sequence determinants are required for efficient protein export. J. Bacteriol. 170: 5928–5930.
Trun, N.J. and T.J. Silhavy. 1989. PrlC, a suppressor of signal sequence mutations in Escherichia coli, can direct the insertion of the signal sequence into the membrane. J. Mol. Biol. 205: 665–676.
Zwizinski, C. and W. Wickner. 1980. Purification and characterization of leader [signal] peptidase from Escherichia coli. J. Biol. Chem. 255: 7973–7977.
New suppressors of signal-sequence mutations, prlG, are linked tightly to the secE gene of Escherichia coli.

J Stader, L J Gansheroff and T J Silhavy

Genes Dev. 1989, 3:
Access the most recent version at doi:10.1101/gad.3.7.1045