Discriminatory proofreading regimes in non-equilibrium systems

Arvind Murugan, 1, 2 David A Huse, 3 and Stanislas Leibler 1, 4

1 Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, U.S.A.
2 SEAS, Harvard University, Cambridge, Massachusetts 02138, USA.
3 Physics Department, Princeton University, Princeton, NJ 08544, U.S.A.
4 Laboratory of Living Matter, The Rockefeller University, 1230 York Ave., New York, NY 10065, U.S.A.

We use ideas from kinetic proofreading, an error-correcting mechanism in biology, to identify new kinetic regimes in non-equilibrium systems. These regimes are defined by the sensitivity of the occupancy of a state of the system to a change in its energy. In biochemical contexts, higher sensitivity corresponds to stronger discrimination between molecular substrates with different energetics competing in the same reaction. We study this discriminatory ability in systems with discrete states that are connected by a general network of transitions. We find multiple regimes of different discriminatory ability when the energy of a given state of the network is varied. Interestingly, the occupancy of the state can even increase with its energy, corresponding to an “anti-proofreading” regime. The number and properties of such discriminatory regimes are limited by the topology of the network. Finally, we find that discriminatory regimes can be changed without modifying any “hard-wired” structural aspects of the system but rather by simply changing external chemical potentials.

Non-equilibrium systems often show varied behavior that depends on many parameters and details of the system. While it may be easy to investigate any particular point in the parameter space of a given system, it is harder to identify qualitative regimes relevant across systems. For example, the occupancy of states at thermal equilibrium is simply given by the Boltzmann distribution $\psi_{eq}(E) \sim e^{-\frac{E}{k_B T}}$ which depends only on the energy E of a state and the temperature T. When driven out of equilibrium, the occupancy of states could in principle depend on all the details of the space of states of the system and the network of paths connecting them. There has been much effort invested in understanding non-equilibrium steady states (their occupancy of states, fluxes and entropy production) in order to model the many systems in physics [5–10] and biology [11–16] that operate out of equilibrium.

In this paper, we identify steady-state kinetic regimes that can be exhibited by general systems that are driven out of equilibrium. These regimes are characterized by the change in the occupancy of a state in response to a change in its energy, with all driving forces held fixed.

We draw on intuition from generalized versions of a biological error correcting mechanism called kinetic proofreading. In biochemical contexts, two molecular substrates, one of them undesirable, might compete to participate in the same enzymatic reaction with different binding energies. Hopfield and Ninio [17, 18] proposed a non-equilibrium “kinetic proofreading” mechanism which enhances the effect of the binding energy difference on reaction rates. As a result, reactions with the weakly binding substrate are suppressed to a much larger extent than one would expect at equilibrium. Kinetic proofreading has been evoked to explain very low error rates in a host of biochemical reactions despite the similarity of competing substrates; in DNA replication despite the similarity of the four nucleic acids, in protein synthesis despite the similarity of t-RNA molecules [17–20], in immune response that discriminates between native and foreign proteins [21] and in many other biological phenomena [13, 15, 22, 23]. In all of these cases, proofreading enhances discrimination between competing substrates by making the occupancy of a biochemical state more sensitive to changes in its energy.

The central proposition of our paper is that non-equilibrium systems like proofreading mechanisms can be designed to have co-existing regimes of varying discrimination. In the context of proofreading, some undesirable substrates can be highly discriminated against while other substrates of even weaker binding energy can actually be promoted. The number and properties of such co-existing discriminatory regimes are constrained by the topology of the network of paths connecting the system’s states. Within these constraints, we can design variable discrimination through an appropriate choice of kinetic parameters that might be “hardwired”, for example, in the structural and dynamical properties of molecules.

On the other hand, non-equilibrium steady states are always powered by external sources of free energy, such as ATP hydrolysis in the case of proofreading. We find that merely changing the chemical potential of these external sources can change the discrimination characteristics. The ability to tune such characteristics on the fly, without having to change any hardwired properties, raises interesting ways in which natural and synthetic systems can respond to the environment.

I. ONE-LOOP NETWORK

We can illustrate many of our results using the simple 3-state system shown in Fig. 1A, with stochastic transitions governed by kinetic rates k_{ij}. We will then generalize these results to non-equilibrium networks with many
more states and pathways (Fig. 2). The model shown in Fig. 2A was introduced by Hopfield and Ninio [17] as a non-equilibrium solution to the following discrimination problem in biochemistry: Enzyme E reacts with a substrate R, forms complexes ER, ER^*, and thus processes R into a biologically active product (R-Product). However, a structurally similar competing substrate W might also be able to undergo the same set of reactions with E, with less favorable energetics, releasing an undesirable product W-Product.

The steady-state occupancies $\psi_{ER}, \psi_{ER^*}, \psi_E$ are given by solving the master equation,

$$
\partial_t \psi_i = \sum_j w_{ij}^R \psi_j - w_{ij}^R \psi_i = 0.
$$

where w_{ij}^R are the kinetic constants k_{ij} shown on the network to the left in Fig 2A. Occupancies $\psi_{EW}, \psi_{EW^*}, \psi_E$ of the W-network are given by solving the same equation with modified kinetic constants w_{ij}^W shown to the right in Fig 2A. The kinetics of W and R differ because the binding energy of EW is lower than ER by Δ; hence the off-rates w_{ii}^W, w_{ii}^W are higher than the corresponding rates for R by a factor of e^Δ. We do not consider the case of discrimination due to variable activation barriers studied in [23, 24].

The error rate is the ratio of W-Product to R-Product formation, given (in the limit of slow formation rate f from the complexes EW, ER) by [17],

$$
\eta(\Delta) = \frac{\psi_{EW}}{\psi_E} \times \frac{\psi_E}{\psi_{ER}}.
$$

If the system is at equilibrium and not driven, the rates w_{ij}^W, w_{ij}^W will both satisfy detailed balance: we can write $w_{ij}^W / w_{ji}^S = e^{-(V_i^S - V_j^S)}$ where $S = R$ or W and V_i^S is the energy of state i. (We have set $\beta = 1/k_BT = 1$.) It is easy to see that $\eta(\Delta) = e^{-\Delta}$, the Boltzmann distribution.

Hopfield and Ninio proposed that discrimination between R and W can be much higher if the system is driven out of equilibrium by coupling some of the reactions to ATP hydrolysis. The rates w_{ij}^W, which take ATP coupling into account, will no longer obey detailed balance but can written as,

$$
\frac{w_{ij}^W}{w_{ji}^S} = e^{-(V_i^S - V_j^S) + \mu_{ij}}.
$$

Here $S = R$ or W. μ_{ij} is the external driving potential on the $i \leftrightarrow j$ reaction due to ATP coupling and is conservatively assumed to not distinguish between W and R. Hopfield and Ninio identified a particular limit of kinetics w_{ij}^W, w_{ij}^W in which such driving would result in an error rate $\eta \sim e^{-2\Delta}$ that is typically significantly lower than the equilibrium error rate $e^{-\Delta}$. This mechanism has been invoked to explain low error rates in biochemical processes like protein synthesis [24].

Physically, the error rate $\eta(\Delta)$ is a measure of how much the occupancy ψ_{ER} of state ER changes when the energy of ER is raised by Δ, with external driving forces μ_{ij} held fixed. A larger change in occupancy implies higher discriminatory power between substrates in the biochemical reaction. Hence we will find it useful to define a local measure of this discriminatory ability, the discriminatory index,

$$
\nu(\Delta) \equiv -\frac{\partial \log \eta(\Delta)}{\partial \Delta}.
$$

At equilibrium, $\nu(\Delta) = 1$ while $\nu(\Delta) = 2$ in the kinetic limit uncovered by Hopfield and Ninio.

Discriminatory regimes The central observation of our paper is that η and ν are not constant but rather functions of Δ. The full plot of $\log \eta(\Delta)$ with kinetic parameters in Hopfield’s [17] proposed limit is shown in Fig. 2B (blue curve). The classical result of $\eta \sim e^{-2\Delta}$...
only holds for $\Delta < 8k_B T$ (in this example) after which $\log \eta(\Delta)$ quickly transitions to a different regime with slope -1 (the equilibrium value). Proofreading is less effective for substrates with Δ in this regime. We say that the network exhibits two co-existing “discriminatory regimes”, i.e., two distinct regions of Δ characterized by $\nu \approx 2$ and $\nu \approx 1$ respectively.

Malleability of regimes: If we choose an alternative set of kinetic constants k_{ij}, distinct from the limit in [17, 22], we find a qualitatively different set of regimes with $\nu \approx 0$ and $\nu \approx 1$, shown in Fig. 1B,C (orange). In this sense, discriminatory regimes are malleable and can be changed through an appropriate choice of kinetic constants. (See SI for the values of k_{ij} for both curves and for a 2-loop network example.)

Anti-proofreading: The kinetic limit corresponding to $\nu < 1$ (Fig. 1C orange) uses non-equilibrium effects to actually lower the discrimination between W and R; the weakly binding substrate W with $\Delta < 6k_B T$ forms as much product as strongly binding R since $\nu \approx 0$ and $\eta(\Delta) \sim 1$. This is an example of an “anti-proofreading” regime, in which higher energy states can have higher occupancy.

Size of regimes and chemical potentials: The size of the discriminatory regimes shown in Fig. 1C can be quantified by the area between the graph of $\nu(\Delta)$ and the equilibrium value $\nu_{eq} = 1$. This area is in fact equal to the net chemical potential around the loop $\mu = \mu_{12} + \mu_{23} + \mu_{31}$ that is used to drive the system. Thus higher chemical potentials are needed to enhance discrimination across a wider range of energies.

External shaping of regimes: The relationship between chemical potential and the shape of $\eta(\Delta)$ and $\nu(\Delta)$ implies that we can modify discriminatory regimes without having to change any kinetic constants “hard-wired” in the structure of the enzyme. For example, we can switch from the kinetics corresponding to the blue curve in Fig. 1C to the orange curve’s by flipping the sign of chemical potentials μ_{ij} — i.e., by driving the system in the reverse direction around the reaction loop.

II. GENERAL NETWORKS

We will now show how the kinetics of a general driven network can give rise to the variable discriminatory regimes discussed above. We will find that topology of the network limits the number, size and index ν of discriminatory regimes that can be achieved.

A general driven network with multiple interconnected pathways is shown in Fig. 2. We have only shown the kinetics for substrate W, whose binding energy to E is lower than that for R by Δ. This binding energy difference can be reflected in the kinetics in many different ways. The only requirement is that the equilibrium constant computed along any path from start $(E + S)$ to finish (ES) for $S = R$ and $S = W$ must differ by a factor of e^Δ. For now, we assume that the distinction in kinetics is localized in one reaction along each pathway as shown in Fig. 2. We connect such reactions by an imaginary line that we call the “discriminatory fence” (dotted line in Fig. 2), which divides the network in two. Reactions on either side of the fence do not discriminate between W and R. When driven out of equilibrium, the occupancy of EW can be made as low as $\eta(\Delta) \sim e^{-\Delta}$ or as high as e^{Δ} (relative to ER).

A. Limit of highest discrimination

To gain intuition about general networks, we begin with the kinetic limit that leads to the highest possible discriminatory index $\nu > 0$ (strongest proofreading) in any network. This kinetic limit generalizes several particular models of biological error correction [15, 28–31] and is defined by three properties:

(i) The kinetics pick out a dominant path, shown in green in Fig 3A, from state $E + S$ to the final state ES; the system can reach ES only by traversing this path.

(ii) The dominant path must parallel the discriminatory fence on the products (i.e., ES) side of the network before reaching ES. As a result, as the system travels down the dominant path towards ES, it is constantly exposed to pathways (shown in red) that cross the fence back to the reactants $(E + S)$ side.
(iii) The kinetics need to ensure that if the system crosses the fence to the reactants side along a (red) discard pathway, the system moves back towards $E + S$ along a path like that shown in bold. Hence we refer to the (red) pathways as discard pathways since they stop progress along the dominant path.

Hence a typical trajectory in Fig. 3A involves the system attempting to traverse the green path to the final state ES but being frequently discarded through the red fence-crossing reactions. The kinetics described thus far apply to both $S = R$ and $S = W$ substrates. The only distinction is that W is more likely to take each discard pathway across the discriminatory fence. To see this, note the probability of being discarded is determined by the kinetic constants d_i for the discard pathway and f_i for the forward direction on the dominant pathway (see inset in Fig. 3A). Since d_i is higher for W than for R by a factor e^Δ, W is less likely to proceed forward along the dominant path by a factor δ_i shown in Fig. 3A.

In the limit of high discards $d_i \gg f_i$, the ratio of the forward probabilities $\delta_i = e^{-\Delta}$. If there are c such discard paths branching off the dominant path, the net probability of reaching ES is lower for W than for R by a factor $\eta(\Delta) \sim e^{-c\Delta}$, giving the highest possible discriminatory index $\nu = c$.

We note that much time is wasted in this limit since both R and W are frequently discarded along the dominant path and reaction completion is an exponentially unlikely event. Energy is also wasted since the system preferentially executes counterclockwise trajectories in the network shown in Fig. 3 such preferential cycling breaks detailed balance and consumes free energy from an external source (such as ATP hydrolysis) during each cycle. An alternative kinetic regime which trades a small increase in error for a large saving in time and energy was found in [32].

Anti-Proofreading: If the dominant path parallels the discriminatory fence on the reactants side ($E + S$) side instead (Fig. 3B), we find a counterintuitive “anti-proofreading” regime with $\nu < 0$ and $\eta(\Delta) \sim e^{-(c-2)\Delta}$. The discard pathways now cross the fence from the reactants to product side. Unlike in the proofreading case, we assume that there is a high chance of reversing the discard reaction immediately. As a result, the system bounces back and forth repeatedly along a discard path before either proceeding forward along the dominant path or going back to the initial state along the bold black path in Fig. 3B. As shown in the SI, substrate W is more likely to bounce back across the fence and resume progress along the dominant path by a factor $\delta_i(\Delta) > 1$. Hence the weakly-binding substrate W reaching the final state EW more often than R reaches ER. In other words, the occupancy of the state ES increases as its energy is raised.

B. Sculpting multiple discriminatory regimes

The kinetic pathways for highest positive and negative discrimination suggest how variable discriminatory regimes arise for a general network. As shown in the Fig. 3 inset for the case of positive discrimination, each $\delta_i(\Delta) = (d_i + f_i)/(d_i e^{\Delta} + f_i)$ provides varying discrimination that depends on Δ and the discard d_i and forward f_i kinetics at that point. In the limits described in Fig. 3 the occupancy ratio $\eta(\Delta)$ is (approximately) a product of δ_i along the dominant path:

$$\eta(\Delta) \sim \delta_1(\Delta)\delta_2(\Delta) \ldots \delta_i(\Delta).$$

As a result, we can design a large network to show mul-
multiple discriminatory regimes like that shown in Fig. 4A through a choice of dominant path and a choice of δ_i's along the path. In Fig. 4B, the dominant path switches midway from paralleling the discriminatory fence on the reactants side (like in Fig. 3B) to the products side (like in Fig. 4A). We position the regimes as shown (blue and orange plots) through two different choices of kinetic constants d_i, f_i, r_i, b_i. These constants determine $\delta_i(\Delta)$ (see Fig. 2 and Eq. 5) along the dominant path. (See SI for numerical values of d_i, f_i and more on $\delta_i(\Delta)$. We added a constant to the orange curve in (A) to fit both curves in the same plot.)

C. Network topology constrains regimes

With $\eta(e^\Delta) = p(e^\Delta)/q(e^\Delta)$, we find that the degrees of the polynomials p, q are bound by c, the number of intersections between the discriminatory fence and the network. As a result, topological properties of the proofreading reaction network constrain the shape of $\eta(\Delta)$ and index $\nu(\Delta)$:

(i) The largest positive and negative values of ν are limited by c: $-(c-2) < \nu < c$.

(ii) The number of distinct discriminatory regimes - determined by the number of monomials in p, q - is also bounded by c.

(iii) The extremal values attained by ν over all Δ are related by $\nu_{\text{max}} - \nu_{\text{min}} \leq c$.

(iv) The intersection number c cannot exceed the number of linearly independent pathways. Equivalently, in terms of the number of linearly independent loops n in the network, $c \leq n + 1$.

(v) This sets an absolute limit on the discrimination between two substrates whose binding energies differ by Δ by a proofreading network with n loops:

$$e^{(n-1)\Delta} \geq \eta(\Delta) \geq e^{-(n+1)\Delta}. \quad (6)$$

If the discriminatory fence intersects only $c < n + 1$ reactions, then $e^{(c-2)\Delta} \geq \psi(\Delta) \geq e^{-c\Delta}$. For the network shown in Fig. 2, $c = 7$ while $n = 18$.

(vi) We find that the minimal chemical potentials required for a discriminatory index $\nu(\Delta)$ are given by the areas of the n discriminatory regimes in the graph of $\nu - 1$. When $\nu < 1$, the area and chemical potential required are negative, indicating that the corresponding loop must be driven in the opposite direction. We leave a study of the precise mapping between the n linearly independent chemical potentials μ_i in a network with n loops and the n resulting regimes to future work.

D. Localized discrimination fence and von Neumann’s error correcting scheme

We have assumed that the binding energy difference Δ is localized in a set of reactions, one along each pathway from $E + S$ to $E S$, that define the sharp discriminatory fence. Consider the alternatives shown in Fig. 5 where the energy Δ is spread over multiple reactions along each pathway or (C) where the energy difference Δ is localized in a reaction common to both pathways. Proofreading can only combine independent discriminatory power in parallel pathways that form loops. Hence while the network in Fig. 5(A) achieves discrimination of $e^{-2\Delta}$, (B) and (C) can only achieve lower discrimination of $e^{-(1-\alpha)\Delta} \times e^{-2\alpha\Delta} = e^{-(1-\alpha)\Delta} = e^{-\Delta}$ respectively. (In (B), we assume $0 \leq \alpha \leq 1$ so that no individual reaction has discriminatory power greater than $e^{-\Delta}$.)

We can think of proofreading as a biochemical implementation of von Neumann’s [33] reliable machine made of redundant unreliable components. von Neumann constructed logical machines that failed only when all of the individual error-prone components failed. Thus the machine itself has a lower error rate than the individual components, provided the components have independent probabilities of failure. In proofreading, each pathway can complete the entire reaction in isolation with an error rate of $e^{-\Delta}$ but the network as a whole can have a lower error rate $\eta(\Delta) < e^{-\Delta}$. In this context, the two pathways of Fig. 5(A) are like von Neumann components with fully independent error rates while the error rates of the pathways in (B) and (C) are not independent and cannot be combined as effectively.
FIG. 5. (A) Discrimination is highest when the energy difference Δ is localized to a discriminatory fence that cuts through as many reactions as possible. In (B) and (C), a fraction α or all of energy difference Δ is in reactions common to both pathways ($0 \leq \alpha \leq 1$). Proofreading acts by multiplying the effect of discrimination in parallel and independent reactions but cannot enhance discriminatory reactions common to both pathways.

III. DISCUSSION

By generalizing kinetic proofreading, we have uncovered new kinetic regimes in systems driven out of equilibrium, characterized by how much the occupancy of a state changes due to a change in its energy. The occupancy can fall with energy much faster than at equilibrium (conventional proofreading) but we also found anti-proofreading regimes where the occupancy of a state increases with increasing energy. We found bounds on the number, size and discriminatory ability of regimes in terms of topological properties of the network of transitions between states.

We were able to identify kinetic limits associated with discriminatory regimes in terms of a dominant path that parallels the discriminatory fence (the collection of reactions whose kinetics account for the change in energy of a state). We need such an understanding of kinetics that is not tied to a particular network in order to be able to incorporate non-equilibrium driving into synthetic systems to achieve particular goals. Such a general picture is also useful in studying proofreading properties of biochemical circuits, which are often large, complex and designed to perform several functions besides proofreading.

Biologically, having proofreading ability vary with binding energy can be useful when a biochemical reaction is presented with a family of competing substrates. The same proofreading scheme might be able to enhance discrimination between two given substrates while in fact suppressing differences between another pair, depending on their binding energies.

We emphasize that our results apply to networks that represent any driven system, including systems unrelated to biological kinetic proofreading. For example, the states of the network could represent different stages of assembly of microtubules [32] or synthetic self-assembled structures [54, 55]. Our results then might point the way to incorporating driving forces into the assembly pathways in synthetic systems, reducing errors in the final structure.

An intriguing feature of the schemes discussed here is the possibility of changing the discriminatory regimes by changing only the chemical potentials μ_i, without having to change any hard-wired structural kinetics. Such an ability to change discriminatory properties on the fly could be useful in both natural and synthetic systems; the network can switch between suppressing the reaction with a substrate and promoting it, depending on the environment or other considerations.

ACKNOWLEDGMENTS

We would like to thank John J.Hopfield and Luca Peliti for stimulating discussions. We are also grateful to Luca Peliti for detailed comments on a draft of this paper.

[1] C. Bustamante, J. Liphardt, and F. Ritort. The Nonequilibrium Thermodynamics of Small Systems. *Physics Today*, 58(7):870000–48, July 2005.
[2] U. Seifert. Stochastic thermodynamics: principles and perspectives. *The European Physical Journal B - Condensed Matter and Complex Systems*, 64:423–431, 2008. 10.1140/epjb/e2008-00001-9.
[3] D.Q. Jiang, M. Qian, and M.P. Qian. *Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems*. Number no. 1833 in Lecture Notes in Mathematics. Springer, 2004.
[4] T Chou, K Mallick, and R K P Zia. Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. *Reports on Progress in Physics*, 74(11):116601, 2011.
[5] J Schnakenberg. Network theory of microscopic and macroscopic behavior of master equation systems. *Reviews of Modern physics*, 48(4):571–585, 1976.
[6] R. K. P. Zia and B. Schmittmann. A possible classification of nonequilibrium steady states. *Journal of Physics A Mathematical General*, 39:L407–L413, June 2006.
[7] R. K. P. Zia and B. Schmittmann. Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states. *Journal of Statistical Mechanics: Theory and Experiment*, 7:12, July 2007.
[8] Bernard Derrida. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. *Journal of Statistical Mechanics: Theory and Experiment*, 2007(07):P07023, 2007.
[9] T. Schmiedl and U. Seifert. Stochastic thermodynamics of chemical reaction networks. *Journal of Chemical Physics*, 126(4):044101, January 2007.
[10] Suriyanarayanan Vaikuntanathan, Todd R Gingrich, and Phillip L Geissler. Dynamic phase transitions in simple driven kinetic networks. arXiv, July 2013.

[11] T.L. Hill. Free energy transduction and biochemical cycle kinetics, (dover, mineola, new york, 1989). 1989.

[12] Hong Qian. Cycle kinetics, steady state thermodynamics and motors a paradigm for living matter physics. Journal of Physics: Condensed Matter, 17(47):S3783, 2005.

[13] Hong Qian. Open-system nonequilibrium steady state: Statistical thermodynamics, fluctuations, and chemical oscillations. The Journal of Physical Chemistry B, 110(31):15063–15074, 2006. PMID: 16884217.

[14] U. Seifert. Stochastic thermodynamics of single enzymes and molecular motors. The European Physical Journal E: Soft Matter and Biological Physics, 34:1–11, 2011. 10.1140/epje/i2011-11026-7.

[15] Yuhai Tu. The nonequilibrium mechanism for ultra-sensitivity in a biological switch: Sensing by Maxwell’s demons. Proceedings of the National Academy of Sciences of the United States of America, 105(33):11737–11741, 2008.

[16] Ganhui Lan, Pablo Sartori, Silke Neumann, Victor Sourjik, and Yuhai Tu. The energy-speed-accuracy trade-off in sensory adaptation. Nat Phys, 8(5):422–428, March 2012.

[17] JJ Hopfield. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proceedings of the National Academy of Sciences of the United States of America, 71(10):4135, 1974.

[18] J Ninio. Kinetic amplification of enzyme discrimination. Biochimie, 57(5):587–595, 1975.

[19] Magnus Johansson, Jingji Zhang, and Måns Ehrenberg. Rate and accuracy of bacterial protein synthesis revisited. Current opinion in microbiology, 11(2):141–147, 2008.

[20] Tsvi Tlusty, Roy Bar-Ziv, and Albert Libchaber. Protein–DNA computation by stochastic assembly cascade. Proceedings of the National Academy of Sciences of the United States of America, 99(18):11589–11592, 2002.

[21] TW McKeithan. Kinetic proofreading in T-cell receptor signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 92(11):5042–5046, 1995.

[22] Tsvi Tlusty, Roy Bar-Ziv, and Albert Libchaber. High-fidelity dna sensing by protein binding fluctuations. Phys. Rev. Lett., 93:258103, Dec 2004.

[23] Hao Ge, Min Qian, and Hong Qian. Stochastic theory of nonequilibrium steady states. part ii: Applications in chemical biophysics. Physics Reports, 510(3):87 – 118, 2012. Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics.

[24] Charles H Bennett. Dissipation-error tradeoff in proof-reading. BioSystems, 11(2-3):85–91, 1979.

[25] Pablo Sartori and Simone Pigolotti. Kinetic versus Energetic Discrimination in Biological Copying. Phys. Rev. Lett., 110(18):188101, 2013.

[26] Magnus Johansson, Martin Lovmar, and Måns Ehrenberg. Rate and accuracy of bacterial protein synthesis revisited. Current opinion in microbiology, 11(2):141–147, 2008.

[27] J Ninio. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities. Proceedings of the National Academy of Sciences of the United States of America, 84(3):663, 1987.

[28] Grégoire Altan-Bonnet and Ronald N Germain. Modeling T Cell Antigen Discrimination Based on Feedback Control of Digital ERK Responses. Plos Biol, 3(11):e356, 2005.

[29] Roy Bar-Ziv, Tsvi Tlusty, and Albert Libchaber. Protein-DNA computation by stochastic assembly cascade. Proceedings of the National Academy of Sciences of the United States of America, 99(18):11589–11592, 2002.

[30] TW McKeithan. Kinetic proofreading in T-cell receptor signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 92(11):5042, 1995.

[31] MA Savageau. Accuracy of proofreading with zero energy cost. Journal of Theoretical Biology, 93(1):179–195, 1981.

[32] Arvind Murugan, David A Huse, and Stanislas Leibler. Speed, dissipation, and error in kinetic proofreading. Proceedings of the National Academy of Sciences of the United States of America, 109(30):12034–12039, 2012.

[33] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In C. Shannon and McCarthy, editors, Automata Studies. Princeton University Press, Princeton, NJ., 1956.

[34] Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded DNA tiles. Nature, 485(7400):623–626, May 2012.

[35] N P King, W Sheffler, M R Sawaya, B S Volmar, J P Sumida, I Andre, T Gonen, T O Yeates, and D Baker. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science, 336(6085):1171–1174, May 2012.