Combination labeling of joins of fire cracker graph

S. Sriram¹* and K. Thirusangu²

Abstract
Let G be a graph with finite vertices p, finite edges q. An injective function is called a combination labelling if such that each edge has the label \(\binom{x}{y} \) or \(\binom{y}{x} \) according as \(x \leq y \) or \(x \geq y \). A graph with a combination labelling is called combination labelling graph. In this paper we study on the joins of Fire Cracker graph by joining one Fire Cracker graph with similar Fire Cracker graph and prove that it is Combination labelling graph. We further study on some properties connecting the Fire Cracker graph. We further analyse on finding the sum of the joins of Fire Cracker graph. We further analyse on finding the sum of the joins of Fire Cracker graph. We extend our discussion on Permutation labelling and strong k-combination labelling of Fire Cracker graph.

Keywords
Fire Cracker graph, Joins of Fire Cracker graph, Combination Labelling graph, Permutation labelling graph, Strong k-combination labelling.

AMS Subject Classification
05C78.

1. Introduction
A graph G consists of finite vertices and finite edges. Galian[1] has given an extensive survey on labelling. The beginning of labelings can be associated with Rosa. In studying the different labelling techniques in graph theory we have understood that combination labelling of graphs, permutation labelling of graphs, parity combination cordial labelling [3,4,5,6,7] is one such labelling which has predominant feature in various scientific problems. In order to utilise such labelling techniques we have here taken the Fire Cracker graph and have significantly added one Fire Cracker graph with another Fire Cracker graph and call it as joins of Fire Cracker graph. This technique helps in attaching as many number of joins of Fire Cracker graph so as to enable us to apply combination labelling and prove that they are combination labelling graph. Further we have analysed on the nature of such labelling by comparing it with the permutation labelling. In further motivated towards Strong k-combination labelling techniques we have also analysed on the possibility of Fire Cracker graph being a strong k-combination labelling. Combination Labelling was introduced by Suresh Manjanath Hegde, Sudhakar Shetty[2]. We refer to basic terms and terminology of graphs[8].

2. Preliminaries
In this section, we refer to some definitions which will be useful for our discussion in the course of working on the results for this paper.

Definition 2.1. A (p,q) graph G=(V,E) is said to be a permutation graph if there exists a bijection f:V(G) → 1,2,3,...p such that the induced edge function f:E(G) → N defined for each edge xy as f(x)Pf(y) or f(y)Pf(x) according as x > y or y > x.

Definition 2.2. A (p,q) graph G=(V,E) is said to be a combination labelling graph if there exists a bijection f:V(G) → 1,2,3,...p such that the induced edge function f:E(G) → N defined for each edge xy as \(\binom{x}{y} \) or \(\binom{y}{x} \) according as x > y or y > x.
Definition 2.3. A \((p,q)\) graph \(G\) is said to be a strong \(k\)-combination graph if there exists a bijection \(f:V(G)\) to \(1,2,3,\ldots, p\) such that the induced edge function \(g:E(G)\) to \(k,k+1,k+2,\ldots k+q-1\) defined for each edge \(xy\) as \(\binom{y}{x}\) or \(\binom{x}{y}\) according as \(x>y\) or \(x<y\).

Definition 2.4. \((n,k)\) fire cracker is a graph obtained by the concatenation of \(n\) \(k\)-stars by linking one leaf from each.

Definition 2.5. \(1\)-join Fire Cracker graph is defined as join of \((n,k)\) fire cracker graph with another \((n,k)\) fire cracker graph of the same order. Here we discuss the joins of fire cracker graph by fixing \(n=2\) and altering values of \(k\). We also try to attach M-joins of Fire Cracker graph to study on combination labelling graph.

3. Main Results

Theorem 3.1. \(1\)-Join Fire Cracker graph \(F_{2,2}\) is combination labelling graph

Proof. Consider the Fire Cracker graph \(F_{2,2}\) joining by an edge with another Fire Cracker graph \(F_{2,2}\) to form a \(1\)-join of Fire Cracker graph \(F_{2,2}\). Now the \(1\)-join Fire Cracker graph \(F_{2,2}\) so formed consists of the vertex set \(V = \{u_1, u_2, u_3, u_4\} U \{v_1^1, v_2^1, v_2^1, v_3^2\}\) and edge set \(E = \{e_1^1, e_2^1, e_3^1\}\) with total 8 vertices and 7 edges. Now on vertices being labelled for Fire Cracker graph \(F_{2,2}\) as follows

\[
\begin{align*}
 f(u_1^1) &= 4i - 3 \text{ for } i \text{ is odd and for } 1 \leq i \leq 4, j = 1, 3 \\
 f(u_2^1) &= 4i - 2 \text{ for } i \text{ is even and for } 1 \leq i \leq 4, j = 1, 3 \\
 f(v_i^j) &= 4i - 1 \text{ for } i \text{ is odd and for } 1 \leq i \leq 4, j = 1, 3 \\
 f(v_i^j) &= 4i \text{ for } i \text{ is even and for } 1 \leq i \leq 4, j = 1, 3
\end{align*}
\]

Now let us find the edge labelling as follows

\[
\begin{align*}
 f(e_{21}) &= \binom{u_2^1}{u_2^1} \text{ if } u_2^1 > u_2^1 \\
 f(e_{23}) &= \binom{u_2^1}{u_2^1} \text{ if } u_2^1 > u_2^1 \\
 f(e_{32}) &= \binom{v_1^1}{v_2^1} \text{ if } v_1^1 > v_2^1 \\
 f(e_{41}) &= \binom{u_2^1}{u_2^1} \text{ if } u_2^1 > u_2^1 \\
 f(e_{43}) &= \binom{v_1^1}{v_2^1} \text{ if } v_1^1 > v_2^1
\end{align*}
\]

Now on computing the edges the edge labelling follows a combination labelling and hence the \(1\)-join of Fire Cracker graph \(F_{2,2}\) is a combination labelling graph. Hence the proof.

\[\Box\]

Definition 3.2. We call \(1\)-join fire cracker graph \(F_{2,2}\) as basic Fire Cracker graph. We add to the basic Fire Cracker graph \(F_{2,2}\) increasing the value of \(k\) by 1 at each instance to obtain various \(1\)-join Fire Cracker graph \(F_{2,k}\), \(1\)-join Fire Cracker graph \(F_{2,k}\) and so on.

Theorem 3.3. \(1\)-join Fire Cracker graph \(F_{2,k}\) for \(k \geq 2\) is combination labelling graph
Theorem 3.4. Join Fire Cracker graph for $k \geq 2$ plays a vital role in identifying whether the Fire Cracker combination graph. We try to find the sum of the edges which our discussion with Combination labelling graph of M-Join Fire Cracker reference to Permutation labelling graph for M-join Fire Cracker find that the M-join of Fire Cracker graph is combination labelling graph and hence on combining we obtain M-join Fire Cracker graph.

Proof. Consider Fire Cracker graph $F_{2,k}$ for $k \geq 2$ by adding another Fire Cracker graph $F_{2,k}$ to form a 2-join Fire Cracker graph and the adopting the same procedure we can obtain M-join Fire Cracker graph $F_{2,k}$ for $k \geq 2$.

Theorem 3.4. M-Join Fire Cracker graph $F_{2,k}$ for $k \geq 2$ is combination labelling graph.

Proof. Consider the M-Join Fire Cracker graph $F_{2,k}$ for $k \geq 2$. Let us prove that it is combination labelling graph by adopting the method of mathematical induction. In the above theorem we have proved that 1-join Fire Cracker graph $F_{2,k}$ is combination labelling graph. Now let us assume that M-1 Join Fire Cracker graph $F_{2,k}$ is combination labelling graph. Now to prove that the theorem is true for M-Join Fire Cracker graph. Let us combine the M-1 join Fire Cracker graph $F_{2,k}$ with 1-join Fire Cracker graph which are both already a combination labelling graph and hence on combining we find that the M-join of Fire Cracker graph $F_{2,k}$ is combination labelling graph. Hence the proof.

Remark 3.5. The same understanding can be made with reference to Permutation labelling graph for M-join Fire Cracker graph $F_{2,k}$ for $k \geq 2$. But understanding the computation difficulty and the edge labels being a large number we restrict our discussion with Combination labelling graph of M-Join Fire Cracker graph $F_{2,k}$ for $k \geq 2$.

Remark 3.6. Further we try to analyse the M-Join Fire Cracker graph $F_{2,k}$ for $k \geq 2$ so obtained is whether strong k-combination graph. We try to find the sum of the edges which plays a vital role in identifying whether the Fire Cracker graph $F_{2,k}$ for $k \geq 2$ and its joins are strong k-combination graph.

Let us now define the sum for the Fire Cracker graph

\[
(f(u^i_{2,j-1})) = \begin{cases}
0 & \text{if } u^i_{2,j-1} > u^i_{2,i} \\
1 & \text{if } u^i_{2,j-1} = u^i_{2,i} \\
2 & \text{if } u^i_{2,j-1} < u^i_{2,i}
\end{cases}
\]

Definition 3.7. The Sum of the Fire Cracker graph $F_{2,k}$ for $k \geq 2$ is defined as S_1, S_2, \ldots where S_1 represents the sum of the edges of the first hand $(u^1_1w^1_1), (u^1_2w^1_2), \ldots (u^1_{k+1}w^1_{k+1})$ and S_2 represents the sum of the second hand $(w^2_1v^2_1), (w^2_2v^2_2), \ldots (w^2_{k+1}v^2_{k+1})$ and along with the edges $(v^1_1w^1_1), (v^1_2w^1_2), \ldots (v^1_{k+1}w^1_{k+1})$ and along with the joins $(v^2_1w^2_1), (v^2_2w^2_2), \ldots (v^2_{k+1}w^2_{k+1})$ where $(v^2_1u^2_1), (v^2_2u^2_2), \ldots (v^2_{k+1}u^2_{k+1})$ represents the 1-join edge between the two Fire Cracker graph and $(v^2_1w^2_1), (v^2_2w^2_2), \ldots (v^2_{k+1}w^2_{k+1})$ represents the 2-join edge between the Fire Cracker graph.

To put forward the theory on finding whether the Fire Cracker graph $F_{2,k}$ and its joins are strong k-combination graph we give a general condition for which the Fire Cracker graph $F_{2,k}$ is strong k-combination graph in the following theorem.

Theorem 3.8. Proving that M-join Fire Cracker graph $F_{2,k}$ is not a strong k-combination graph since the following condition holds good.

1. The sum of the edges so labelled is greater than to \[
\frac{(k-q-1)(k+q)}{2} - 1
\]

That is $S_q = \frac{(k-q-1)(k+q)}{2} - 1$

2. Some of the adjacent vertices of M-join of Fire Cracker graph labelled have a difference more than 1.

Proof. Consider Fire Cracker graph $F_{2,k}$by labelling the vertices and joining the Fire Cracker graph with another Fire Cracker graph such that the induced edges forms a combination labelling graph. Continuing the process we obtain M-join Fire Cracker graph. For suppose that the M-Join Fire Cracker graph $F_{2,k}$ is a combination labelling graph then we find according to the labelling techniques adopted in labelling given in the theorem for the vertices we find that the vertices u^i_1 and w^i_1, the vertices v^i_1 and v^i_2 are labelled with more than 2 difference and hence the combination between those vertices will increase the induced edge labelling and hence exceeding the total sum such that $S_q = \frac{(k-q-1)(k+q)}{2} - 1$ and hence both condition satisfy for the required theorem. Hence the Fire Cracker graph $F_{2,k}$ and its joins for $k > 2$ are not k-combination graph. Hence the theorem.

4. Example

In this section we give some examples illustrating the labelling techniques used for Fire Cracker Graph $F_{2,k}$ and its joins to prove that it is combination labelling and further we give example where we find the sum of the edges of Fire Cracker Graph and its joins to prove that it is not k-combination labeling. As a first one we illustrate 1-join of Fire Cracker graph $F_{2,1}$ below where we label the vertices and edges so as to prove that it is combination labeling graph.
Now let us consider the Fire Cracker graph $F_{2,2}$ and let us obtain the sum of the edges as explained:

We have the sum $S = S_1 + S_2 + f(u_1^1) + f(v_1^1)$.

Where $S_1 = f(u_1^1)$ Hence $S_1 = \binom{2}{1}$

$S_1 = 2$ In a similar computation we have $S_2 = 4$ and $f(u_1^1) = 3$

Hence the sum of the Fire Cracker graph $F_{2,2}$ as 9 and hence we can prove that Fire Cracker graph $F_{2,2}$ is strong k-combination labeling graph.

But we can compute that for the joins of Fire Cracker graph $F_{2,k}$ the combination labeling of graph is not a strong k-combination graph. On computing the sum of the 1-join of Fire Cracker graph $F_{2,3}$ we find that $S = 2 + 3 + 5 + 6 + 8 + 10 + 11 + 4 + 120 + 7 = 186$ Hence we can prove that 1-join Fire Cracker $F_{2,3}$ is not a strong k-combination labeling graph.

In general from the result obtained we find that M-join Fire Cracker $F_{2,3}$ is not a strong k-combination labeling graph.

5. Conclusion

We have identified in this paper Fire Cracker graph $F_{2,k}$ and have joined with set of Fire Cracker graph $F_{2,k}$ to form a M-Join Fire Cracker graph $F_{2,k}$ and have proved that it is combination labeling graph and studied on some characteristics of labelling them. We in future we like to identify some more graphs for which we can prove that it is combination labelling and try to find that whether they a strong k-combination graph or not.

References

[1] J.A Gallian, A Dynamic Survey of Graph Labeling, Twenty Second Edition, 2019
[2] Suresh Manjunath Hegde, Sudhakar Shetty, Combinatorial Labeling of Graphs, Applied Mathematics E-Notes, 6(2006), 251–258.
[3] R.Ponraj, S.Sathish Narayanan, A.M.S. Ramasamy, Parity Combination Cordial Labeling of Graphs, Jordan Journal of Mathematics and Statistics, 8(4)(2015), 293-308.
[4] R. Ponraj, Rajpal Singh and S.Sathish Narayanan, On parity combination cordial graphs, Palestine Journal of Mathematics, 6(1)(2017), 211–218.
[5] S. Sriram, R. Govindarajan, Odd Sum Labeling of Joins of H graph, Journal of Emerging Technologies and Innovative Research, 6(4)(2019), 811–814.
[6] S. Sriram and R. Govindarajan, Harmonic Mean Labeling of Joins of Square of Path Graph, International Journal of Research in Advent Technology, 7(3)(2019), 1–12.
[7] S. Sriram and R. Govindarajan, K. Thirusangu, Pell Labeling of Joins of Square of Path graph, International Journal of Engineering and Advanced Technology, 9(5)(2019), 12–19.
[8] J.Gross and J.Yellen, Handbook of Graph Theory, CRC Press, 2004.