On graph theory Mertens’ theorems

Takehiro HASEGAWA (up date 01/Mar/2014)
Shiga University, Otsu, Shiga 520-0862, Japan
Seiken SAITO
Waseda University, Shinjuku, Tokyo 169-8050, Japan

July 3, 2015

Abstract

In this paper, we study graph-theoretic analogies of the Mertens’ theorems by using basic properties of the Ihara zeta-function. One of our results is a refinement of a special case of the dynamical system Mertens’ second theorem due to Sharp and Pollicott.

2010 Mathematical Subject Classification: 11N45, 05C30, 05C38, 05C50
Key words and phrases: Ihara zeta-functions, Mertens’ theorem, Primes in graphs

1 Introduction

Throughout this paper, we use the notation in the textbook [11] of Terras for graph theory and the (Ihara) zeta-function, and we often refer to basic facts included in this textbook.

In 1874, Mertens proved the so-called Mertens’ first/second/third theorems (the equalities (5)(13)(14) in [7], respectively). In 1991, Sharp studied the dynamical-systemic analogues of Mertens’ second/third theorems (Theorem 1 in [10]), and in 1992, Pollicott improved the error terms in the theorems of Sharp as follows (Theorem and Remark in [9]):

• Dynamical system Mertens’ second theorem: For a hyperbolic (and so geodesic) flow (which is not necessarily topologically weak-mixing) restricted to a basic set with closed orbits τ of least period $\lambda(\tau)$ and topological entropy $h > 0$, as $x \to \infty$,

$$\sum_{N(\tau) \leq x} \frac{1}{N(\tau)} = \log(\log x) + \gamma + \log\left(\frac{\text{Res}_{s=1} \zeta(s)}{\zeta(s)}\right) - \sum_{\tau} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(\tau)^n} + O\left(\frac{1}{\log x}\right),$$

where $N(\tau) = e^{h\lambda(\tau)}$, γ is the Euler-Mascheroni constant,

$$\zeta(s) = \prod_{\tau} \left(1 - \frac{1}{N(\tau)^s}\right)^{-1},$$

and $\text{Res}_{s=1} \zeta(s)$ denotes the residue of ζ at $s = 1$.

• Dynamical system Mertens’ third theorem: For the same flow, as $x \to \infty$,

$$\prod_{N(\tau) \leq x} \left(1 - \frac{1}{N(\tau)}\right) = \frac{e^{-\gamma}}{\text{Res}_{s=1} \zeta(s)} \cdot \frac{1}{\log x} \left(1 + O\left(\frac{1}{\log x}\right)\right).$$
(For the notation of dynamical systems, see the textbook [8] of Parry-Pollicott.) Note that Sharp and Pollicott did not explicitly write the dynamical system Mertens’ first theorem.

From the second theorem of Pollicott, the constant term (so-called Mertens constant) can be explicitly known, but the coefficients of $1/\log^k x$ cannot be computed. Our purpose in this paper is to present graph-theoretic analogies of the Mertens’ theorems whose coefficients can be explicitly known. So, our second theorem is a refinement of a special case of the theorem due to Pollicott in the sense that the coefficients of $1/\log^k x$ can be computed.

In the rest of this section, we introduce the notation of graph theory, next recall the notation and properties of the (Ihara) zeta-function, and last state the main theorem.

First, we recall the notation of graphs. Let X be an undirected graph with vertex set V of $\nu := |V|$ and edge set E of $\epsilon := |E|$. Simply, such a graph X is denoted by $X := (V, E)$.

A directed edge (or an arc) a from a vertex u to a vertex v is denoted by $a = (u, v)$, and the inverse of a is denoted by $a^{-1} = (v, u)$. The origin (resp. terminus) of a is denoted by $o(a) := u$ (resp. $t(a) := v$).

We can direct the edges of X, and label the edges as follows:

$$\tilde{E} := \{e_1, e_2, \ldots, e_\ell, e_{\ell+1} = e_1^{-1}, e_{\ell+2} = e_2^{-1}, \ldots, e_{2\ell} = e_\ell^{-1}\}.$$

A path $C = a_1 \cdots a_s$, where the a_i are directed edges, is said to have a backtrack (resp. tail) if $a_{j+1} = a_j^{-1}$ for some j (resp. $a_s = a_1^{-1}$), and a path C is called a cycle (or closed path) if $o(a_1) = t(a_s)$. The length $\ell(C)$ of a path $C = a_1 \cdots a_s$ is defined by $\ell(C) := s$.

A cycle C is called prime (or primitive) if it satisfies the following:

- C does not have backtracks and a tail;
- no cycle D exists such that $C = D^f$ for some $f > 1$.

The equivalence class $[C]$ of a cycle $C = a_1 \cdots a_s$ is defined as the set of cycles

$$[C] := \{a_1a_2 \cdots a_{s-1}a_s, a_2 \cdots a_{s-1}a_sa_1, \ldots, a_s a_1a_2 \cdots a_{s-1}\},$$

and an equivalence class $[P]$ of a prime cycle P is called prime. Let Δ_X and $\pi_X(n)$ denote

$$\Delta = \Delta_X := \gcd\{\ell(P) : [P] \text{ is a prime equivalence class in } X\},$$

$$\pi(n) = \pi_X(n) := |\{[P] : [P] \text{ is a prime equivalence class in } X \text{ with } \ell(P) = n\}|.$$

Throughout this paper, we always assume that X is a finite, connected, noncycle and undirected graph without degree-one vertices, and we denote by a symbol $[P]$ a prime equivalence class.

Next, we recall the zeta-function of $X = (V, E)$. The (Ihara) zeta-function of X is defined as follows (the equality (9) in [4], and also see Definition 2.2 in [11]):

$$Z_X(u) := \prod_{[P]} (1 - u^{\ell(P)})^{-1}$$

with $|u|$ sufficiently small, where $[P]$ runs through all prime equivalence classes in X. The radius of convergence of $Z_X(u)$ is denoted by R_X. Note that $0 < R_X < 1$ since X is a noncycle graph (see, for example, page 197 in [11]).

Let $W = W_X := (w_{ij})$ denote the edge adjacency matrix of a graph X, that is, a $2\epsilon \times 2\epsilon$ matrix defined by

$$w_{ij} := \begin{cases}
1 & \text{if } t(e_i) = o(e_j) \text{ and } e_j \neq e_i^{-1} \text{ for } e_i, e_j \in \tilde{E}, \\
0 & \text{otherwise}
\end{cases}$$
In this paper, our main theorem is:

Main Theorem. Suppose that \(X = (V, E) \) is a finite, connected, noncycle and undirected graph without degree-one vertices. Set

\[
a = a(N) := \left\lfloor \frac{N}{\Delta_X} \right\rfloor \Delta_X = N - \left\lfloor \frac{N}{\Delta_X} \right\rfloor \Delta_X,
\]

where \([x]\) (resp. \(\{x\}\)) denotes the integer (resp. fractional) part of the real number \(x\), and thus \(0 \leq a(N) < \Delta_X\). Then, the following items (1) (2) (3) hold:

1. **(Graph theory Mertens’ first Theorem)** As \(N \to \infty\),

\[
\sum_{n \leq N} n \cdot \pi_X(n) R_X^n = N - a(N) + A_X + K_X + O\left(\left(\rho_X R_X\right)^N\right)
\]

\[= \left\lfloor \frac{N}{\Delta_X} \right\rfloor \Delta_X + A_X + K_X + O\left(\left(\rho_X R_X\right)^N\right),\]

where the constants \(A_X\), \(K_X\) and \(\rho_X\) are defined by

\[
A_X := \sum_{\lambda \in \text{Spec}(W), \ |\lambda| < 1/R_X} \frac{\lambda R_X}{1-\lambda R_X}, \quad K_X := \sum_{n=1}^{\infty} \left(n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R_X^n,
\]

and

\[
\rho_X := \max\{|\lambda| : \lambda \in \text{Spec}(W), \ |\lambda| < 1/R_X\},
\]

respectively. (The convergence of \(K_X\) is shown in Section 3.)

2. **(Graph theory Mertens’ second Theorem)** As \(N \to \infty\),

\[
\sum_{n \leq N} \pi_X(n) R_X^n = \log N + \gamma + \log C_X - H_X
\]

\[+ \sum_{s=1}^{k} \left(a^s + s \sum_{m=0}^{s-1} \binom{s-1}{m} \frac{a^m B_{s-m} \Delta_X^{s-m}}{s-m} \right) \frac{1}{N^s} + O\left(\frac{1}{N^{k+1}}\right),
\]

for each \(k \geq 1\), where \(\gamma\) is the Euler-Mascheroni constant, \(B_s\) are the \(s\)-th Bernoulli numbers defined by

\[
\frac{t}{e^t - 1} = \sum_{s=0}^{\infty} B_s \frac{t^s}{s!},
\]

and the constants \(C_X\) and \(H_X\) are defined by

\[
C_X := -\frac{1}{R_X} \text{Res}_{u=R_X} Z_X(u), \quad H_X := -\sum_{n \geq 1} \frac{1}{n} \left(n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R_X^n,
\]

respectively. (The convergence of \(H_X\) is shown in Section 3.)

In particular \((k = 0)\), as \(N \to \infty\),

\[
\sum_{n \leq N} \pi_X(n) R_X^n = \log N + \gamma + \log C_X - H_X + O\left(\frac{1}{N}\right).
\]
(3) (Graph theory Mertens’ third Theorem, [2]) As $N \to \infty$,
\[
\prod_{n \leq N} (1 - R_X^n)^{\pi_X(n)} = \frac{e^{-\gamma}}{C_X} \cdot \frac{1}{N} \left(1 + O \left(\frac{1}{N} \right) \right).
\]

Note that our first theorem (1) is a refinement of a result in our previous paper [2] in the sense that the constant term $A_X + K_X$ is explicitly written, and note that our second theorem (2) is a refinement of a special case of the result due to Pollicott (Theorem (i) and Remark in [9]) in the sense that all the coefficients of $1/N$ can be explicitly computed. Our proofs in this paper are elementary (without the theory of the Ihara prime zeta-function which is studied in [2]), and moreover they are completely different from previous proofs.

Our theorems (1)(2) can be simplified under the assumption which all the degrees of vertices are greater than 2: If X is bipartite, then $\Delta_X = 2$, and so $a(2N) = 0$ or $a(2N+1) = 1$. Otherwise, $\Delta_X = 1$, and therefore $a(N) = 0$. (See, for details, Proposition 3.2 in [5].)

The contents of this paper are as follows. In the next section, we first prove a key lemma, which plays an important role in the proof of the main theorem, and next introduce the constants in the main theorem. In Section 3 we give the proof of the main theorem.

2 Key Lemma

In this section, in order to show the theorem, we introduce a key lemma and two constants.

The following facts are often used in this paper.

Fact. Suppose that $X = (V, E)$ satisfies the same conditions as the main theorem.

1. (Theorem 1.4 in [3], and also see Theorem 8.1 (3) in [11]) The poles of $Z_X(u)$ on the circle $|u| = R_X$ have the form $R_X e^{2\pi i a/\Delta_X}$, where $a = 1, 2, \ldots, \Delta_X$.

2. (Orthogonality relation, for example, see Exercise 10.1 in [11])

\[
\sum_{a=1}^{\Delta_X} e^{2\pi i a n/\Delta_X} = \begin{cases}
\Delta_X & \text{if } \Delta_X | n; \\
0 & \text{otherwise.}
\end{cases}
\]

3. (Two-term determinant formula, [3] and [1], and also see (4.4) in [11]) The zeta-function $Z_X(u)$ can be written as

\[
Z_X(u) = \frac{1}{\det(J_{2e} - Wu)} = \prod_{\lambda \in \text{Spec}(W)} (1 - \lambda u)^{-1}.
\]

The following key lemma plays an important role in the proof of the main theorem.

Key Lemma. Suppose that $X = (V, E)$ satisfies the same conditions as the main theorem.

(a) As $N \to \infty$,
\[
\sum_{n=1}^{N} \sum_{\lambda \in \text{Spec}(W)} (\lambda R_X)^n = \left[\frac{N}{\Delta_X} \right] \Delta_X + A_X + O \left((\rho_X R_X)^N \right),
\]

\[
\text{where } [x] \text{ denotes the integer part of the real number } x.
\]
(b) As $N \to \infty$,

\[
\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \text{Spec}(W)} (\lambda R_X)^n = \sum_{n=1}^{\lfloor N/\Delta \rfloor} \frac{1}{n} \log C_X + \log \Delta_X + O\left((\rho_X R_X)^N\right).
\]

(c) ([2]) Let $0 < \alpha < 1/2$ be a real number, and fix it. Then, there exists a natural number $N_0 = N_0(\alpha)$ such that for any $n \geq N_0$,

\[
\left| n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| < 2 \epsilon \left(1 - \frac{1}{R_X}\right)^{(1-\alpha)n}.
\]

(d) (cf. Section 2 in [6]) Set

\[
a = a(n) := N - \left\lfloor \frac{N}{\Delta_X} \right\rfloor \Delta_X,
\]

and thus $0 \leq a(N) < 1$. Then,

\[
\sum_{n=1}^{\lfloor N/\Delta \rfloor} \frac{1}{n} = \log N - \log \Delta_X + \gamma
\]

\[
- \sum_{s=1}^{k} \left(\frac{a^s}{s} + \sum_{m=0}^{s-1} \left(\frac{a^m B_{s-m} \Delta_X^{s-m}}{s-m} \right) \right) \frac{1}{N^s} + O\left(\frac{1}{N^{k+1}}\right)
\]

for each $k \geq 1$.

Proof. In this proof, we abbreviate the suffix X, that is, $R = R_X$, $\Delta = \Delta_X$, etc.

Let $\{a_n\}$ be a sequence of real numbers with $0 < a_n \leq 1$ for any n. Then, it follows from Facts (1)(2)(3) that we obtain the equality

\[
\sum_{n=1}^{N} a_n \sum_{\lambda \in \text{Spec}(W), \ |\lambda| = 1/R} (\lambda R_X)^n = \sum_{n=1}^{N} a_n \sum_{\lambda \in \text{Spec}(W), \ |\lambda| < 1/R} e^{-2\pi i an/\Delta} = \Delta \sum_{n=1}^{\lfloor N/\Delta \rfloor} a_n \Delta.
\]

(1)

Moreover, it follows by the triangle inequality that we obtain the inequality

\[
\left| \sum_{n>N} a_n \sum_{\lambda \in \text{Spec}(W), \ |\lambda| = 1/R} (\lambda R_X)^n \right| \leq \sum_{n>N} a_n \sum_{\lambda \in \text{Spec}(W), \ |\lambda| < 1/R} (|\lambda| R_X)^n
\]

\[
< 2 \epsilon \sum_{n>N} (\rho R)^n = \frac{2 \epsilon \rho R}{1 - \rho R} (\rho R)^N.
\]

(2)

In the proofs of the items (a)(b), we use the equality (1) and the inequality (2).

(a) Note that

\[
\sum_{n=1}^{N} \sum_{|\lambda| = 1/R} (\lambda R)^n - \left\lfloor \frac{N}{\Delta} \right\rfloor \Delta = \sum_{n=1}^{\lfloor N/\Delta \rfloor} \Delta - \left\lfloor \frac{N}{\Delta} \Delta \right\rfloor = 0
\]
by the equality (1). On the other hand, note that
\[
\left| \sum_{n=1}^{N} \sum_{|\lambda| < 1/R} (\lambda R)^n - A \right| = \left| \sum_{n>N} \sum_{|\lambda| < 1/R} (\lambda R)^n \right| < \frac{2\epsilon \rho R}{1 - \rho R} (\rho R)^N
\]
from the inequality (2). By combining these, the item (a) follows from the triangle inequality.

(b) Set the sums
\[
S_1(N) := \sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda| = 1/R} (\lambda R)^n \quad \text{and} \quad S_2(N) := \sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda| < 1/R} (\lambda R)^n.
\]

First, we consider the sum \(S_1(N)\). It follows from the equality (1) that
\[
S_1(N) = \sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda| = 1/R} (\lambda R)^n = \sum_{n=1}^{[N/\Delta]} \frac{1}{n}.
\]

Next, we compute the sum \(S_2(N)\). We now consider the constant defined by
\[
F := \log \prod_{|\lambda| < 1/R} \frac{1 - u}{1 - \lambda R} \left(= - \sum_{|\lambda| < 1/R} \log(1 - \lambda R) = \sum_{|\lambda| < 1/R, n \geq 1} \frac{1}{n} (\lambda R)^n \right),
\]
and then we obtain \(F = \log C_X + \log \Delta\). This is proved as follows: Note that
\[
C_X = \lim_{u \uparrow R} \frac{(R - u)Z_X(u)}{R} = \lim_{u \uparrow R} \left(1 - \frac{u}{R} \right) \prod_{\lambda \in \text{spec}(W), \lambda \neq 1/R} \frac{1}{1 - \lambda u} = \lim_{u \uparrow R} \prod_{\lambda \in \text{spec}(W), \lambda \neq 1/R} \frac{1}{1 - \lambda u} \prod_{\lambda \in \text{spec}(W), \lambda \neq 1/R} \frac{1}{1 - \lambda R}
\]
by the definition of \(C_X\) and Facts (1)(3). It is well known that
\[
\sum_{n=0}^{\Delta - 1} X^n = \frac{X^{\Delta - 1} - 1}{X - 1} = \prod_{a=1}^{\Delta - 1} \left(X - e^{-2\pi ia/\Delta} \right), \quad \text{and so} \quad \Delta = \prod_{a=1}^{\Delta - 1} \left(1 - e^{-2\pi ia/\Delta} \right).
\]

Combining these equalities, we obtain
\[
\prod_{|\lambda| < 1/R} \frac{1}{1 - \lambda R} = \prod_{\lambda \in \text{spec}(W), \lambda \neq 1/R} \frac{1}{1 - \lambda R} \cdot \prod_{|\lambda| = 1/R, \lambda \neq 1/R} (1 - \lambda R) = \prod_{\lambda \in \text{spec}(W), \lambda \neq 1/R} \frac{1}{1 - \lambda R} \cdot \prod_{a=1}^{\Delta - 1} \left(1 - e^{-2\pi ia/\Delta} \right) = C_X \cdot \Delta,
\]
and thus \(F = \log C_X + \log \Delta\).

It follows from the inequality (2) that we obtain the inequality
\[
|S_2(N) - F| = \left| \sum_{|\lambda| < 1/R} \sum_{n > N} \frac{1}{n} (\lambda R)^n \right| < \frac{2\epsilon (\rho R)^{N+1}}{1 - \rho R},
\]
that is,
\[S_2(N) = F + O ((\rho R)^N) = \log C_X + \log \Delta + O ((\rho R)^N). \]

Hence, by combining the above results, we obtain
\[
\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \text{Spec}(W)} (\lambda R)^n = S_1(N) + S_2(N)
\]
\[
= \sum_{n=1}^{[N/\Delta]} \frac{1}{n} + \log C_X + \log \Delta + O ((\rho R)^N).
\]

(c) Let \(\mu(n) \) denote the Möbius function. Note that \(\sum_{d|n} |\mu(d)| \leq n \). It is known that
\[
\pi(n) = \frac{1}{n} \sum_{d|n} \mu(d) N_{n/d}, \quad \text{and} \quad N_n = \sum_{\lambda \in \text{Spec}(W)} \lambda^n
\]
(see (10.3) and (10.4) in [11], respectively). Combining these equalities, we obtain
\[
n \cdot \pi(n) = \sum_{\lambda \in \text{Spec}(W)} \sum_{d|n} \mu(d) \lambda^{n/d},
\]
and therefore
\[
\left| n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| = \left| \sum_{\lambda \in \text{Spec}(W)} \sum_{d|n} \mu(d) \lambda^{n/d} \right| \\
\leq \sum_{\lambda \in \text{Spec}(W)} \sum_{d|n, \ d \geq 2} |\mu(d)| \cdot |\lambda|^{n/d} \leq \sum_{\lambda \in \text{Spec}(W)} \sum_{d|n, \ d \geq 2} |\mu(d)| \cdot |\lambda|^{n/2} \\
< n \sum_{\lambda \in \text{Spec}(W)} \left(\frac{1}{R} \right)^{n/2} \leq 2\epsilon n \left(\frac{1}{R} \right)^{n/2}.
\]

On the other hand, since \(0 < R < 1 \) and \(0 < \alpha < 1/2 \) by our assumptions, there exists a natural number \(N_0 = N_0(\alpha) \) such that for any \(n \geq N_0 \),
\[
n \leq \left(\frac{1}{R} \right)^{(1/2-\alpha)n}, \quad \text{and so} \quad n \left(\frac{1}{R} \right)^{n/2} \leq \left(\frac{1}{R} \right)^{(1-\alpha)n}.
\]
Hence, for any \(n \geq N_0 \),
\[
\left| n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| \leq 2\epsilon \left(\frac{1}{R} \right)^{(1-\alpha)n},
\]
and the assertion of the item (c) follows.

(d) It is known from the equality (9) in [6] that
\[
\left| \int_{[N/\Delta]}^{\infty} \frac{P_{2k+1}(x)}{x^{2k+2}} \, dx \right| = O \left(\frac{1}{N^{2k+1}} \right) \quad \left(= O \left(\frac{1}{N^{2k+1}} \right) \right),
\]
where \(P_{2k+1}(x) \) is a periodic Bernoulli polynomial. Note that \([N/\Delta] = (N-a)/\Delta \). Recall that the \((2s-1)\)-th Bernoulli numbers \(B_{2s-1} \) \((s \geq 1)\) are given by
\[
B_1 = -1/2 \quad \text{and} \quad B_{2s-1} = 0 \quad (s \geq 2).
\]
Then, it follows from the equality (7) in [6] and the above equality (3) that
\[
\sum_{n=1}^{[N/\Delta]} \frac{1}{n} - \gamma = \log \left[\frac{N}{\Delta} \right] + \frac{1}{2[N/\Delta]} - \sum_{s=1}^{k} \frac{B_{2s}}{2s[N/\Delta]^{2s}} + O \left(\frac{1}{N^{k+1}} \right),
\]
and therefore
\[
\sum_{n=1}^{[N/\Delta]} \frac{1}{n} - \gamma = \log \left[\frac{N}{\Delta} \right] - \sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} + O \left(\frac{1}{N^{k+1}} \right),
\]
which implies
\[
\sum_{n=1}^{[N/\Delta]} \frac{1}{n} - \gamma = \log \left[\frac{N}{\Delta} \right] - \sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} + O \left(\frac{1}{N^{k+1}} \right),
\]
On the other hand, since the inequality
\[
\binom{s-1+m}{m} = \frac{s-1+m}{m} \cdot \frac{s-2+m}{m-1} \cdot \ldots \cdot \frac{s+1}{2} \cdot \frac{1}{s^{m}}
\]
holds, we obtain the inequalities
\[
\sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} \sum_{m>k-s} \binom{s-1+m}{m} \left(\frac{a}{N} \right)^{m} \leq \sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} \sum_{m>k-s} \left(\frac{sa}{N} \right)^{m} \leq \sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} \left(\frac{sa}{N} \right)^{k-s+1} \frac{1}{1-sa/N}
\]
that is,
\[
\sum_{s=1}^{k} \frac{B_{s}}{s[N/\Delta]^{s}} \sum_{m>k-s} \binom{s-1+m}{m} \left(\frac{a}{N} \right)^{m} = O \left(\frac{1}{N^{k+1}} \right).
\]
Hence, combining the equalities (4) (5), we obtain
\[
\sum_{n=1}^{[N/\Delta]} \frac{1}{n} = \log N - \log \Delta + \gamma
\]
and the assertion of the item (d) follows after an elementary computation. □
By using KeyLemma (c), we can prove the convergences of constants.

Lemma 1. Suppose that $X = (V, E)$ satisfies the same conditions as the main theorem.

1. The series
 \[K_X = \sum_{n \geq 1} \left(n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R^n_X \]
 is convergent.

2. The series
 \[H_X = -\sum_{n \geq 1} \frac{1}{n} \left(n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R^n_X \]
 is convergent. Moreover,
 \[H_X = \sum_{|P|} \sum_{m \geq 2} \frac{1}{m} R^m(P) \]
 holds.

Proof. Let $\{a_n\}$ be a sequence of real numbers with $0 < a_n \leq 1$ for any n. Note that

\[
\left| \sum_{n \geq N_0} a_n \left(n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R^n \right| \leq \sum_{n \geq N_0} \left| n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| R^n
\]

\[
< 2 \epsilon \sum_{n \geq N_0} \left(\frac{1}{R} \right)^{(1-\alpha)n} R^n
\]

\[
\leq 2 \epsilon \sum_{n \geq 1} R^n = \frac{2 \epsilon R^\alpha}{1 - R^\alpha}
\]

by KeyLemma (c). Hence, the convergences of the items (1)(2) hold from this inequality.

Next, we show the equality of the item (2). Assume that $|u| < R$. It follows from Fact (3) and the definition of $Z_X(u)$ that

\[
\sum_{n \geq 1} \sum_{\lambda \in \text{Spec}(W)} \frac{\lambda^n}{n} u^n = \sum_{\lambda \in \text{Spec}(W)} \log(1 - \lambda u)^{-1} = \log Z_X(u) = \sum_{|P|} \log(1 - u^{\ell(P)})^{-1}
\]

\[
= \sum_{|P|} \sum_{m \geq 1} \frac{1}{m} u^{m\ell(P)} = \sum_{|P|} u^{\ell(P)} + \sum_{|P|} \sum_{m \geq 2} \frac{1}{m} u^{m\ell(P)}
\]

\[
= \sum_{n \geq 1} \pi(n) u^n + \sum_{|P|} \sum_{m \geq 2} \frac{1}{m} u^{m\ell(P)},
\]

and therefore

\[
-\sum_{n \geq 1} \frac{1}{n} \left(n \cdot \pi_X(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) u^n = \sum_{|P|} \sum_{m \geq 2} \frac{1}{m} u^{m\ell(P)}. \tag{6}
\]
On the other hand, by the graph theory prime-number theorem (see Theorem 10.1 in [11]), the radius of convergence of the function
\[P(u) = \sum_{\mathcal{P}} u^{e_\mathcal{P}} = \sum_{n \geq 1} \pi(n) u^n \]
is equal to \(R \). Note that \(R^2 < R \) since \(0 < R < 1 \). Then,
\[
\sum_{\mathcal{P}} \sum_{m \geq 2} \frac{1}{m} R^{m e_\mathcal{P}} \leq \sum_{\mathcal{P}} \sum_{m \geq 2} R^{m e_\mathcal{P}} = \sum_{\mathcal{P}} \frac{R^{2 e_\mathcal{P}}}{1 - R^{e_\mathcal{P}}} \leq \frac{1}{1 - R} \sum_{\mathcal{P}} R^{2 e_\mathcal{P}} \leq \frac{1}{1 - R} P(R^2) < +\infty.
\]
Hence, since both sides of the equality (6) are also convergent for \(u = R \), the assertion follows by the uniqueness of analytic continuation (namely, the principle of uniqueness).

3 Proof of the main theorem

In this section, we show the main theorem.

Proof. (The main theorem) (1) Assume that \(N \) is sufficiently large. Then, it follows from KeyLemma (c) that we obtain
\[
\left| \sum_{n=1}^{N} n \cdot \pi(n) R^n - \sum_{\mathcal{P}} \sum_{\lambda \in \text{Spec}(W)} (\lambda R)^n - K \right| = \left| \sum_{n > N} \left(n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R^n \right| \leq \sum_{n > N} \left| n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| R^n < 2\epsilon \sum_{n > N} \left(\frac{1}{R} \right)^{(1-\alpha)n} R^n = 2\epsilon R^{\alpha n} \frac{R^{N+1}}{1 - R^\alpha},
\]
and therefore by KeyLemma (a), we obtain
\[
\sum_{n=1}^{N} n \cdot \pi(n) R^n = \sum_{\mathcal{P}} \sum_{\lambda \in \text{Spec}(W)} (\lambda R)^n + K + O((\rho R)^N)
\]
\[
= \left[\frac{N}{\Delta} \right] \Delta + A + K + O((\rho R)^N)
\]
as \(N \to \infty \). Hence, the assertion of the item (1) follows.
(2) Suppose that \(N\) is sufficiently large. Then, it follows from KeyLemma (c) that

\[
\left| \sum_{n=1}^{N} \pi(n)R^n - \sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \text{Spec}(W)} (\lambda R)^n + H \right| = \left| \sum_{n>N} \left(\frac{\pi(n) - 1}{n} \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right) R^n \right|
\]

\[
\leq \sum_{n>N} \left| n \cdot \pi(n) - \sum_{\lambda \in \text{Spec}(W)} \lambda^n \right| R^n
\]

\[
< 2\epsilon \sum_{n>N} \left(\frac{1}{R} \right)^{(1-\alpha)n} R^n
\]

\[
= 2\epsilon \sum_{n>N} R^{\alpha n} = \frac{2\epsilon R^{\alpha(n+1)}}{1-R^\alpha},
\]

and therefore we obtain

\[
\sum_{n=1}^{N} \pi(n)R^n = \sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \text{Spec}(W)} (\lambda R)^n - H + O \left(R^{\alpha N} \right)
\]

as \(N \to \infty\). Hence, it follows from KeyLemmas (b)(d) that the assertion holds.

(3) Assume that \(N\) is sufficiently large, and define the following functions:

\[
H_{\leq N} = \sum_{n \leq N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R_{X}^{mn}, \quad \text{and} \quad H_{> N} = \sum_{n>N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R_{X}^{mn}.
\]

Note that \(H = H_{\leq N} + H_{> N}\) by Lemma \(\Box\) (2). It follows from the graph theory prime-number theorem (see Theorem 10.1 in [11]) that there exists a constant \(c_1 > 0\) such that for any \(n > N\),

\[
\pi(n) < \frac{c_1}{R^n}.
\]

Recall that \(0 < R < 1\) since \(X\) is a noncycle graph. Then, we obtain

\[
H_{> N} = \sum_{n>N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R_{X}^{mn} < c_1 \sum_{n>N} \sum_{m \geq 2} R^{(m-1)n}
\]

\[
= c_1 \sum_{n>N} \frac{R^n}{1-R^n} < c_1 \frac{1}{1-R} \sum_{n>N} R^n = \frac{c_1 R}{(1-R)^2} R^N,
\]

and therefore \(H_{> N} = O(R^N)\).

From the item (2) and the above result, we obtain

\[
\sum_{n \leq N} \pi(n)R^n + H_{\leq N} = \log N + \gamma + \log C_X - H_{> N} + O \left(\frac{1}{N} \right)
\]

\[
= \log N + \gamma + \log C_X + O \left(\frac{1}{N} \right).
\]
Since the left-hand side of the above equality is equal to
\[\sum_{n \leq N} \pi(n) R^n + H \leq N = \sum_{n \leq N} \pi(n) \sum_{m=1}^{\infty} \frac{1}{m} R^{mn} \]
\[= - \sum_{n \leq N} \pi(n) \log (1 - R^n) = - \log \left(\prod_{n \leq N} (1 - R^n)^{\pi(n)} \right), \]
we obtain
\[\prod_{n \leq N} (1 - R^n)^{\pi(n)} = \frac{e^{-\gamma}}{C_X} \cdot \frac{1}{N} \exp \left(O \left(\frac{1}{N} \right) \right) = \frac{e^{-\gamma}}{C_X} \cdot \frac{1}{N} \left(1 + O \left(\frac{1}{N} \right) \right), \]
and the assertion of the item (3) follows.

Remark. (1) When \(k = 0 \), our second theorem just corresponds to a special case of the second theorem due to Pollicott (see Section 1 in this paper). This is proved as follows:

In our case, the topological entropy is equal to the constant \(h = -\log R > 0 \). We now define \(u = R_s \), \(N(P) = e^{h\ell(P)} = R^{-\ell(P)} \) and \(x = e^{hN} \). Then, the left-hand side is equal to
\[\sum_{n \leq N} \pi(n) R^n = \sum_{\ell(P) \leq N} R^{\ell(P)} = \sum_{N(P) \leq x} \frac{1}{N(P)}. \]

On the other hand, the right-hand side can be transformed as follows. Note that
\[C_X = -\frac{1}{R} \cdot \lim_{u \to R} (u - R) Z_X(u) \]
\[= -\frac{1}{R} \cdot \lim_{s \to 1} \frac{R^s - R}{s - 1} \cdot \lim_{s \to 1} (s - 1) Z_X(R^s) = h \cdot \text{Res}_{s=1} Z_X(R^s). \]

It follows from Lemma 7 (2) that
\[H_X = \sum_{P} \sum_{n \geq 2} \frac{1}{n} R^{n\ell(P)} = \sum_{P} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^n}. \]

By combining the above results, we obtain
\[\log N + \gamma + \log C_X - H_X + O \left(\frac{1}{N} \right) \]
\[= \log (\log x) + \gamma + \log \left(\text{Res}_{s=1} Z_X(R^s) \right) - \sum_{P} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^n} + O \left(\frac{1}{\log x} \right). \]

Hence, we obtain
\[\sum_{N(P) \leq x} \frac{1}{N(P)} = \log (\log x) + \gamma + \log \left(\text{Res}_{s=1} Z_X(R^s) \right) - \sum_{P} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^n} + O \left(\frac{1}{\log x} \right). \]

(2) The error term \(O(1/N) \) in our second theorem can not be replaced by \(o(1/N) \) since in general, the coefficient \(\Delta/2 - a(N) \) of \(1/N \) is not equal to zero.
References

[1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717-797.

[2] T. Hasegawa and S. Saito, On a prime zeta-function of a graph, to appear, Pacific J. Math.

[3] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Automorphic forms and geometry of arithmetic varieties, 211-280, Adv. Stud. Pure Math., 15, Academic Press, Boston, MA, 1989.

[4] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.

[5] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), no. 1, 7-25.

[6] D. E. Knuth, Euler’s constant to 1271 places, Math. Comp. 16 (1962), 275-281.

[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46-62.

[8] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque No. 187-188 (1990), 268 pp.

[9] M. Pollicott, Agmon’s complex Tauberian theorem and closed orbits for hyperbolic and geometric flows, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1105-1108.

[10] R. Sharp, An analogue of Mertens’ theorem for closed orbits of Axiom A flows, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), no. 2, 205-229.

[11] A. A. Terras, Zeta functions of graphs: A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011.