Supplementation of Catfish (Clarias gariepinus) Oil Enriched with Omega-3 Soft Capsule Improves Oxidative Stress and Cognitive Function in Elderly

Taufiq ATMADJA1, Clara KUSHARTO2 and Tiurma SINAGA2

1 Department of Nutrition, Silivanghi University, Indonesia
2 Department of Nutrition, IPB University, Indonesia

(Received June 19, 2019)

Summary Elderly is defined as an age group that is susceptible to various diseases. The aging process in the elderly is associated with an increase in oxidative stress activity which can lead to various health problems which are a major cause of high mortality and morbidity. This study aimed to analyze the effect of supplementation of catfish (Clarias gariepinus) oil enriched with omega-3 soft capsule on oxidative stress and cognitive function of elderly people. The design of this study was a single blind randomized control trial. A total of 29 elderly subjects were chosen following these inclusion criteria: aged >60 y; had dyslipidemia; and signed the informed consent. Subject were divided into three groups i.e. SO (soy-bean oil), CFO (commercial fish oil), and CO with omega-3 (catfish oil enriched with omega-3). The intervention was 1,000 mg oil/d administered for 90 d. The results showed that different supplementation groups had significant effects on oxidative stress and cognitive function (p<0.05). Supplementation of catfish oil enriched with omega-3 was able to significantly decreased malondialdehyde (MDA) level (p<0.05) and significantly increased mini mental state examination (MMSE) score (p<0.05). Overall, CO with omega-3 supplementation for 90 d was able to improve oxidative stress and cognitive function of the elderly better than other groups.

Key Words elderly, catfish oil, oxidative stress, cognitive function.

The population of elderly in Indonesia is increasing every year. Based on the results of Susenas 2016, the number of elderly in Indonesia reached 22.4 million or 8.69% of the population and in 2018 it is estimated that the number of elderly people will reach 24.7 million. This indicates that there is an increase in life expectancy. On the other hand, the elderly is defined as an age group susceptible to disease and is associated with high mortality and morbidity. Old age can affect several aspects of life, including physical, biological, psychological, and social changes as a result of the aging process or the occurrence of degenerative diseases (1).

The aging process in the elderly is associated with an increase in oxidative stress activity which can induce health problems which is a cause of high mortality and morbidity (2, 3). Health problems that are often experienced by the elderly include dyslipidemia, atherosclerosis, diabetes mellitus, hypertension, dementia, heart disease, and cognitive disorders (4, 5). Cognitive impairment is a major clinical problem in people with dementia and is most often experienced by the elderly. Nutritional factors can accelerate the decline in cognitive function (6, 7).

Essential fatty acids have a role as antioxidants (8). The high circulation of essential fatty acids, especially omega-3 in the body, is associated with low levels of proinflammation (9–11). Fish consumption containing high essential fatty acids can reduce oxidative stress in the body by decreasing the levels of F2-isoprostan and malondialdehyde (12–14). Several studies have shown that high concentrations of PUF A can affect membrane neurons and neurotransmission in the brain (15).

Previous research showed that giving catfish oil containing high PUF A was able to reduce beta amyloid concentration in cerebrospinal fluid in long-tailed monkeys (Macaca fascicularis) as a biological marker associated with increased cognitive function (16). The objective of this study was to analyze the effect of supplementation of catfish (Clarias gariepinus) oil enriched with omega-3 soft capsule on oxidative stress and cognitive function of elderly people.

MATERIALS AND METHODS

Participants. Population of this study were elderly people who lived in Ciherang District, Bogor, Indonesia (n=100) (Fig. 1). Screening data was conducted for all subjects to select those who met the inclusion and exclusion criteria: (1) people aged >60 y old; (2) had dyslipidemia; (3) did not suffer from other disease except dyslipidemia; (4) did not consume any supplements that have similar materials with the intended treatment; (5) was not part of other research; (6) signed informed consent. After data screening, about 30 participants were selected (6 men and 23 woman with a mean age

E-mail: taufiq.firdaus@unsil.ac.id
of 66.1±5.3 [±SD] y). As many as 70 participants were excluded on the basis of the criteria. Participants were randomly allocated into three groups i.e. SO (soybean oil), CFO (commercial fish oil), and CO with Omega-3 (catfish oil enriched omega-3). The first group (n=10; men, n=2; women, n=8; mean age, 64.9±4.7 y) received soybean oil (SO), the second group (n=10; men, n=2; women, n=8; mean age, 65.9±5.4 y) received commercial fish oil (CFO), whereas the third group (n=10; men, n=3; women, n=7; mean age, 68.3±6.4 y) received CO with Omega-3 (catfish oil enriched omega-3).

Study design. The study was designed as a single blind randomized controlled trial. This research has received ethical approval from Health Research Ethics Committee of the Faculty of Medicine, University of Indonesia (No.991/UN2.F1/ETIK/2016).

Intervention. The supplementation was conducted for 90 d. The capsule contained 1,000 mg oil based on the group which consumed 1 capsule/d. The fatty acids contained in SO was SFA (13.38%), MUFA (21.38%) and PUFA (49.81%), CFO was SFA (15.53%), MUFA (16.14%) and PUFA (28.05%); CO+Omega-3 was SFA (26.08%), MUFA (37.40%) and PUFA (17.37%). Before supplementation period was started, all participants were gathered to receive the research introduction, sign informed consent, and have instruction on how to consume the capsules. In order to control the capsule consumption, subjects were given a compliance card to prove that they have consumed the capsules.

Cognitive function and oxidative stress of subjects were assessed at baseline and after 90-d supplementation. The tube containing the supplement was visible to the participants. However, the participants in each group were blinded in the sense that they could not distinguish between the supplements.

Cognitive function. Estimation of cognitive function were conducted by using Mini-Mental State Examination (MMSE), in which the participants had to answer several questions by themselves with the help of examiner. The MMSE was used as a dementia screening. The MMSE (total 30 points) measured several cognitive areas, including orientation (10 points), registration (3 points) attention and calculation (5 points), recall (3 points), and language (9 points) (17, 18).

Oxidative stress. Oxidative stress were analyzed using malondialdehyde (MDA) parameters. MDA estimation was performed by spectrophotometric method of Monnier et al. (19). Venous blood was drawn by nurse, and the serum was carefully separated, transferred to micro tubes, and stored until analysis.

Statistical analysis. All data were expressed as mean±SD. The change value between 90-d intervention and baseline for each groups was assessed with analysis of paired t-test while the difference in changes (change value=90-d intervention value–baseline value) among the groups was assessed using analysis of variance (ANOVA). When ANOVA result was significant, Duncan post hoc test was performed to compare the changes among the groups.

All statistical analysis were carried out using SPSS 16.0 software program. p<0.05 was used to determine statistical significance.

RESULTS

In this study, 30 subjects were participated but one man dropped out during the study. Thus, the total number of participants was 29 subjects.

In regard to oxidative stress, the differences in changes among groups in malondialdehyde levels were significant (p=0.001) (Table 1). Only in SO and CO+Omega-3 that decrease are significant. The level of malondialdehyde of subjects in the CO+ Omega-3 groups decreased from 3.37±0.60 μg/mL to 2.39±0.50 μg/mL.

In regard to cognitive function, the differences in changes among groups in MMSE score were also significant (p=0.003) (Table 2). MMSE scores were only increased in the CO+ Omega-3 group (p<0.05). After the 90-d supplementation, The MMSE score in the CO+ Omega-3 group increased from 26.7±2.2 to 27.4±2.1.
**Supplementation of Catfish Oil**

The results are in line with previous studies, which indicated that consumption of fish oil high in essential fatty acids can significantly improve cognitive abilities in aspects of verbal fluency and memory. PUFAs in fish oil are able to maintain cognitive function by maintaining membrane fluidity, increasing synaptic and neurotransmitter functions, improving learning and memory performance and supplying neuroprotective effect (21).

In addition, the administration of essential fatty acids derived from PUFA can reduce the concentration of \( \beta \)-amyloid in blood vessels and in the cerebrospinal fluid. The decrease in \( \beta \)-amyloid concentration is one of the biological markers to improve cognitive function (22).

**DISCUSSION**

In this study, we found that daily supplementation of SO and \( \text{CO} + \text{Omega-3} \) (1,000 mg) for 90-d improved malondialdehyde level in elderly people. The results are in line with previous studies, which showed that consumption of fish oil high in essential fatty acids can reduce oxidative stress levels. Catfish oil used in this study contained monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) although the PUFA is the lowest but the MUFA is highest, which also acted as antioxidants (13). Antioxidant is a molecule which can prevent the negative effects of oxidation and protect the cells and tissues in the body from the damage caused by free radicals (20).

Previous study revealed that supplementation with 50 g of catfish biscuit/d and 1 g of catfish oil/d for 60 d could significantly reduce TG levels by 15%, MDA levels by 14%, and tended to suppress the increased LDL-c and ox-LDL levels (14). These results were consistent with another study, which indicated that consumption of essential fatty acids was able to reduce the rate of inflammation as well as inhibited the occurrence of oxidative stress in the body (9–11).

At the basic level, MMSE scores in all group were not the same. This is suspected because there are other factors that influence the assessment of MMSE including the subject’s educational history. \( \text{CO} + \text{Omega-3} \)-supplementation for 90-d increased MMSE scores significantly. The results are in line with previous studies, which exhibited that supplementation of monounsaturated fatty acids (MUFA) in subjects aged 55–80 y significantly improved cognitive abilities in aspects of verbal fluency and memory. PUFAs in fish oil are able to maintain cognitive function by maintaining membrane fluidity, increasing synaptic and neurotransmitter functions, improving learning and memory performance and supplying neuroprotective effect (21).

In addition, the administration of essential fatty acids derived from PUFA can reduce the concentration of \( \beta \)-amyloid in blood vessels and in the cerebrospinal fluid. The decrease in \( \beta \)-amyloid concentration is one of the biological markers to improve cognitive function (22).

**Table 1. Malondialdehyde (MDA) level at baseline and after the 90-d supplementation and their change in SO, CFO, and \( \text{CO} + \text{Omega-3} \).**

| Group        | Baseline       | 90-d           | Change          | \( p \)-value |
|--------------|----------------|----------------|-----------------|--------------|
| SO           | 2.99±0.56      | 2.24±0.47**    | −0.75±0.76\(^b\) | 0.01         |
| CFO          | 2.98±0.66      | 2.82±0.87      | −0.16±1.07\(^c\) |              |
| \( \text{CO} + \text{Omega-3} \) | 3.37±0.60      | 2.39±0.50***   | −0.98±0.57\(^e\) |              |

Values are means±SD; Means of the changes in a column without a common letter differ, \( p<0.05 \). Different from baseline by paired \( t \)-test, \( *p<0.05 \), \( **p<0.01 \), \( ***p<0.001 \). \( p \)-value represent the differences in the change of MDA among groups assessed by ANCOVA. SO, soybean oil; CFO, commercial fish oil; \( \text{CO} + \text{Omega-3} \), catfish oil + omega-3.

**Table 2. Mini-Mental State Examination (MMSE) at baseline and after the 90-d supplementation and their change in SO, CFO, and \( \text{CO} + \text{Omega-3} \).**

| Group        | Baseline       | 90-d           | Change          | \( p \)-value |
|--------------|----------------|----------------|-----------------|--------------|
| SO           | 21.60±3.47     | 19.80±4.44     | −1.80±3.96\(^b\) | 0.01         |
| CFO          | 21.55±6.26     | 21.22±5.58     | −0.32±2.34\(^b\) |              |
| \( \text{CO} + \text{Omega-3} \) | 14.70±3.23     | 19.20±5.13     | 4.50±4.17\(^e\)  |              |

Values are means±SD; Means of the changes in a column without a common letter differ, \( p<0.05 \). Different from baseline by paired \( t \)-test, \( *p<0.05 \), \( **p<0.01 \), \( ***p<0.001 \). \( p \)-value represent the differences in the change of MMSE among groups assessed by ANCOVA. SO, soybean oil; CFO, commercial fish oil; \( \text{CO} + \text{Omega-3} \), catfish oil + omega-3.
ables that might influence the cognitive function of the subjects. Sampling site was also chosen purposively, hence the results of this study could not be generalized in other populations.

Disclosure of state of COI

No conflicts of interest to be declared.

REFERENCES

1) Fatmah. 2006. Low immunity response to the Old Human Body. *Makara Health Series* **10**: 47–53.
2) Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F. 2013. Proinflammatory cytokines, aging, and age-related diseases. *J Am Med Dir Assoc* **14**(12): 877–882.
3) Sanchez MA, Favier H, Meunier M, Venneria E, O’Connor JM, Maiani G, Coudray C, Roussel AM. 2005. Age-related oxidative stresses and antioxidant parameter in middle-aged and older European subject: The zenith study. *Eur J Nutr* **52**(2): 58–62.
4) Flood M, Newman A. 2007. Obesity in older adults: Synthesis of findings and recommendations for clinical practice. *J Gerontol Nurs* **33**(12): 19–35.
5) Mukhopadhyay SK. 2012. Study of lipid profile in obese individual and the effect of cholesterol lowering agents on them. *Al Ameh J Med Sci* **5**(2): 147–151.
6) Craft S. 2009. The role of metabolic disorders in Alzheimer disease and vascular demenias: two roads converged. *Arch Neural* **66**(3): 300–305.
7) Fratiglioni L, Mangialasche F, Qiu C. 2010. Brain aging: lessons from community studies. *Nutr Rev* **68**(12): 119–127.
8) Mori TA, Croft KD, Puddey IB, Beilin LJ. 1999. An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. *Anal Biochem* **268**(1): 117–125.
9) Far FR, Harris WS, Garg S, Na B, Whooley MA. 2009. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in patients with stable coronary artery disease: The Heart and Soul Study. *Atherosclerosis* **205**(2): 538–543.
10) Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik JM. 2006. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. *J Clin Endocrinol Metab* **91**(2): 439–446.
11) Kalogeropoulos N, Fanagiotakos DB, Pitsavos C, Chrysohou C, Roussinou G, Toutouza M, Stefanadis C. 2010. Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. *Clin Chim Acta* **411**(7): 584–591.
12) Wasim KM, Arivarasan NA, Priyamvada S, Khan SA, Khan S, Yusufi ANK. 2013. Protective effect of ω-3 polyunsaturated fatty acids (PUFA) on sodium nitrite induced nephrotoxicity and oxidative damage in rat kidney. *J Funct Foods* **5**(2): 956–967.
13) Pipingas A, Sinclair A, Croft KD, Januszewski AS, Jenkins AJ, Mori TA, Cockerel R, Grima NA, Stough C, Scholey A, Myers SP, Sali A, Pase MP. 2014. Fish oil and multivitamin supplementation reduces oxidative stress but not inflammation in healthy older adults: A randomised controlled trial. *J Funct Foods* **19**(2): 949–957.
14) Dainey NC, Kusharto CM, Madanijah S, Nasrun MWS, 2016. Catfish (*Clarias gariepinus*) biscuit and oil supplementation and its effect on lipid profile, oxidative stress markers and cognitive function of the elderly. *Int J Sci Basic Appl Res* **28**(3): 181–194.
15) Cooper, Janelle L. 2003. Dietary Lipids in the Aetiology of Alzheimer’s Disease. Implications for Therapy. *Drugs Aging* **20**(6): 399–418.
16) Ngadiarti I, Kusharto CM, Briawan D, Marliyati SA, Sajuthi D. 2013. Fermented Catfish Oil on Cognitive Function. *Pak J Nutr* **12**(9): 827.
17) Velayudhan L, Rya SH, Raczek M, Philpot M, Lindesay J, Critchfield M, Livingston G. 2014. Review of brief cognitive tests for patients with suspected dementia. *Int Psychogeriatr* **26**: 1247–1262.
18) Folstein MF, Folstein SE, McHugh PR. 1975. Mini mental state. A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* **12**: 189–198.
19) Momnier DG, Erdelmeier I, Chaudiere J, Yadon JC. 1998. Method of colorimetric analysis of malonic dialdehyde and 4-hydroxy-2-enaldehydes as indexes of lipid peroxidation, kits for carrying out said method, substituted indoles for use in said method and their preparation. US Patent No. 5726063.
20) Valtaena SD, Del Rio N, Pellegrini D, Ardigo L, Framinzi S, Salvatore PM, Ratti P, Riso I, Zavaroni F, Brighenti. 2007. The total antioxidant capacity of the diet is an independent predictor of plasma β-carotene. *Eur J Clin Nutr* **61**(1): 69–76.
21) Hashimoto M, Hossain S, Shimada T, Shido O. 2006. Docosahexaenoic acidinduced protective effect against impaired learning in amyloid beta-fused rats is associated with increased synaptosomal membrane fluidity. *Clin Exp Pharmacol Physiol* **33**(10): 934–939.
22) Fernandes DP, Rezende PAC, Rocha GP, Filipgueiras MDS, Moreira PRs, Allenas RCG. 2015. Effect of eicosapentaenoic acid and docosahexaenoic acid supplementations to control cognitive decline in dementia and Alzheimer’s disease: a systematic review. *Nutr Hosp* **32**(2): 528–533.
23) Aggett PJ, Haschke R, Heine W. 1991. Comment on the content and composition of lipids in infant formulas. ESPGAN Committee on Nutrition. *Acta Pediatr Scand* **80**(8): 887–896.