In situ U-Pb Dating of Calcite from the South China Antimony Metallogenic Belt

Kai Luo, Jia-Xi Zhou, Yue-Xing Feng, I. Tonguc Uysal, Ai Nguyen, Jian-Xin Zhao, Jiawei Zhang

zhoujiaxi@ynu.edu.cn

HIGHLIGHTS
- The syn-ore calcite yielded an in situ U-Pb age of 115.3 ± 1.5 Ma.
- The South China antimony mineralization occurred during the early Cretaceous.
- Calcite in situ U-Pb dating can determine the timing of hydrothermal mineralization.

Luo et al., iScience 23, 101575 October 23, 2020 © 2020 The Author(s).
https://doi.org/10.1016/j.isci.2020.101575
SUMMARY
Accurately determining the age of hydrothermal ore deposits is difficult, because of lack of suitable mineral chronometers and techniques. Here we present the first LA-MC-ICPMS U-Pb age of carbonates from hydrothermal Sb deposits. Three stages of hydrothermal carbonates from the giant South China Sb metallogenic belt were identified: (1) pre-ore dolomite (Dol-I), (2) syn-ore calcite (Cal-II), and (3) post-ore calcite (Cal-III). The U and Pb isotopic data show that Cal-II yielded a lower intercept age of 115.3 ± 1.5 Ma (MSWD = 2.0), suggesting a Sb mineralization that corresponds to an extension event occurred during the early Cretaceous in South China. Although Cal-III yielded an age of 60.0 ± 0.9 Ma (MSWD = 1.5), indicating a potential tectonothermal event occurred in this belt during the early Cenozoic. Hence, in situ U-Pb dating of calcite offers a new way to determine the age of hydrothermal ore deposits.

INTRODUCTION
Dissolution-based carbonate U-Pb dating has been successfully applied to diagenesis of marine carbonate (Israelson et al., 1996; Cole, 2003), coral (Denniston, 2008), fossils (Walker et al., 2006) as well as speleothems (Richards et al., 1998; Woodhead et al., 2006; Victor et al., 2008; Pickering et al., 2010). However, previous bulk analysis using isotope dilution has limited application for most hydrothermal ore deposits. The limitations include: (1) the scarce of spike (e.g. 233U-205Pb) (Moorbath et al., 1987; Pickering et al., 2010; Engel et al., 2020); (2) low U and Pb contents (<1 ppm) within single hydrothermal carbonate minerals (Branon et al., 1996; Grandia et al., 2000; Coveney et al., 2000; Meinhold et al., 2020); and (3) a small spread of 238U/206Pb due to the average of isotopic zonation within the analytical volume (Li et al., 2014; Guillong et al., 2020; Roberts and Walker, 2016). Recently, in situ U-Pb isotopic analysis using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) equipped with ion counters provides the potential to date these carbonates (Coogan et al., 2016; Methner et al., 2016; Roberts and Walker, 2016; Roberts et al., 2017). Such method can help to identify high U/Pb ratios regions in a sub-mm scale and enable high spatial resolution (less than ca. 100 μm) and low detection limits (ca. 1 ppb Pb) (Woodhead et al., 2006; Li et al., 2014; Roberts and Walker, 2016; Goodfellow et al., 2017; Nuriel et al., 2017; Salih et al., 2020). It potentially targets and utilizes endmember μ 238U/204Pb domains, along with high-n datasets (Shen et al., 2019; Roberts et al., 2020), leading to an improvement in precision on the regressed age, and thus offers a new way to date hydrothermal ore deposits.

Antimony (Sb) is one of the critical metals and commonly found in epigenetic hydrothermal ore deposits (Seal et al., 2017). Precisely determining the age of Sb deposits can help to understand their origin and further prospecting (Scratch et al., 1984; Maheux, 1989; Lu, 1994; Wang, 2008; Tran et al., 2016; Xie et al., 2017). However, dating is a challenging work because of low radioisotope contents in their minerals (stibnite, carbonates, and quartz ± fluorite) (Gumiel and Arribas, 1987; Wu, 1993; Murao et al., 1999; Shen et al., 2011, 2013). Although there are some successful examples of calcite/fluorite Sm-Nd dating (e.g. Peng et al., 2003b), such method has certain limiting factors, such as high cost, low efficiency, unfavorable Sm/Nd ratios, and unavailability to differentiate multiple ore-forming generations (Uysal et al., 2007; Zhu et al., 2017).

The giant South China Sb metallogenic belt has supplied >50% of the world’s Sb metal resource (e.g. Wu, 1993; Fu et al., 2019b). Despite of much attention received (e.g. Xiao, 2014; Fu et al., 2019a, 2019b), the...
timing of Sb mineralization is still not well constrained. In this contribution, we use the Weizhai Sb deposit in the giant South China Sb metallogenic belt as a case study for LA-MC-ICPMS in situ U-Pb dating. The syn-ore calcite was identified by field mapping, mineralogy, in-situ elements, and C-O-Sr isotopic compositions. The aim of this study is to (1) establish a new and precise dating technique of hydrothermal ore deposits and (2) solve the currently challenging problem of timing and geodynamic setting of the South China Sb metallogenic belt.

Geological Setting

The giant South China Sb metallogenic belt covers an area between the Yangtze Block and the Cathaysia Block and is a part of the South China low-temperature metallogenic domain (Figure 1A; Hu et al., 2017). This belt hosts more than 500 Sb deposits accounting for 87% of the proven reserves in China and 55% of the world (Figure 1B; Wu, 1993; Fu et al., 2019b) and constitutes an important part of the circum-Pacific Sb metallogenic domain (Wu, 1993; Jin and Dai, 2007; Xiao, 2014). Antimony deposits in this belt are hosted in Proterozoic to Permian sedimentary rocks and structurally controlled by NE-trending folds and faults. The formation of these deposits was generally considered to be genetically related to large-scale extensional tectonics (e.g. Peng et al., 2003b; Hu et al., 2017; Li et al., 2018; Yang and Sun, 2018).

In the southwestern part of the South China Sb metallogenic belt, the Dushan Sb ore district hosts >30 Sb deposits (~287,000t Sb), including the Weizhai, Banpo, Banian, and Jiabai deposits (Figure 1C). These deposits are controlled by folds and faults, including (1) the NE-trending Dushan anticline formed in the Caledonian; (2) the NE-trending Dushan normal fault (29 km in length, 3–10m in width, and dipping SE with an angle of 50–80°); (3) the NNE-trending Lantu normal fault (35km in length, 1–5m in width, and dipping NW with an angle of >70°), and (4) numerous secondary folds and normal faults (Figures 1B and S1; e.g. Wang and Jin, 2010; Shen et al., 2013). These fractures underwent multiple transitions from compression to tension. Strong silicification, carbonatization, and pyritization occur in these faults, accompanying with large amounts of hydrothermal Sb, Hg, As, Pb, and Zn deposits.

The Sb ore bodies normally occur as veinlets defined by these faults (e.g. the Weizhai and Banpo deposits), or stratiform and lens-shaped ore bodies controlled by anticline and bedding fractures (e.g. the Banian and Jiabai deposits) (Figure S1). Among them, the Weizhai deposit (~21,000t Sb @ 4.18 wt. %) is hosted in argillaceous limestone and siltstone of the Lower Silurian. Sb mineralization is almost entirely constituted of stibnite occurring mainly columnar in texture. Field observations identified two modes of occurrence of the Sb ores, including brecciated and veined. Gangue minerals are quartz and carbonate minerals associated with sulfides (Figure 2A). The wall rock alteration includes silicification and carbonatization. The mineral assemblage and wall rock alteration can be compared with those of many other Sb deposits in the South China Sb metallogenic belt (Figures 2B and 2C).

Hydrothermal carbonate minerals in the Weizhai deposit are formed by three stages: pre-ore dolomite (Dol-I), syn-ore calcite (Cal-II), and post-ore calcite (Cal-III). Dol-I enclosing breccia of organic-rich carbonate wall rocks is featured by fine-grained, light yellow Fe-Mn-dolomite with local recrystallization and several to tens of centimeters in width (Figures 2A, 2D, and 2E). Cal-II is characterized by gray thick veins with coarse-grained stibnite, organic matters (Figure 7), and minor pyrite (Figures 2A and 2F). This stage of calcite occurs irregularly in several to tens of meters in length. Cal-III occurs as relatively thinner veins crosscutting all of the early stage carbonate minerals (Figures 2D–2F).

RESULTS

In Situ Trace Elements

Trace element contents of carbonates from the Weizhai deposit are listed in Table 1. Cal-II has an average 842 ppm Mg, 64.1 ppm Sr, 532 ppm Mn, 1927 ppm Fe, 0.07 ppm Pb, and 0.35 (0.04–0.88 ppm) ppm U (n = 44), whereas fifty-seven spot analyses of Cal-III have average 1241 ppm Mg, 146 ppm Sr, 970 ppm Mn, 2931 ppm Fe, 0.24 ppm Pb, and 0.27 (0.03–0.99) ppm U (n = 57), respectively. This is consistent with elemental mapping results, which shows that images of Ca are almost uniform, but Mg, Fe, and Mn are highly varied with a marked contrast between Cal-II and -III. Furthermore, U and Pb are heterogeneously distributed on the micrometer scale (Figures 3C and 4F).

Figure 5 shows the chondrite-normalized rare earth elements (REE) patterns for these carbonates. Dol-I is characterized by a light rare earth elements (LREE) enrichment with a mean LREE/HREE ratio of 4.66
Figure 5B), which is similar to those of carbonate wall rocks (avg. 7.49) (Figure 5A). In contrast, Cal-II and Cal-III are enriched in HREE with mean La$_N$/Yb$_N$ ratios of 0.07 and 0.15, respectively (Figures 5C and 5D).

Carbon and Oxygen Isotopic Compositions

δ^{13}C and δ^{18}O values of hydrothermal carbonates from the Weizhai deposit are listed in Table 2. Pre-ore dolomite has δ^{13}C and δ^{18}O values ranging from -2.8 to $-1.9\%_{oo}$ and $+17.8$ to $+18.4\%_{oo}$, respectively, as compared with those of syn-ore calcite ranging from -0.6 to $+0.4\%_{oo}$ and $+14.4$ to $+17.4\%_{oo}$, respectively (Figure 6).
Strontium Isotopic Ratios

Table 2 lists $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of hydrothermal carbonates from the Weizhai deposit, ranging from 0.714688 to 0.718653 (2σ). The mean $^{87}\text{Sr}/^{86}\text{Sr}$ ratios decrease from Dol-I (0.718413), to Cal-II (0.715714) and Cal-III (0.714688).

Calcite In Situ U-Pb Age

Among the pre-screened hydrothermal carbonates of three stages from the Weizhai deposit, Cal-II and -III has datable U/Pb ratios (0.05–70; Figure S2; Table 3) with 133–1281 ppb U (mean 475 ppb) and 11–215 ppb Pb (mean 58 ppb), compared with Dol-I of U/Pb ratios (0.03–0.12) with 81–504 ppb U (mean 183 ppb) and 1614–7110 ppb Pb (mean 3895 ppb). As shown in Figure 7, Cal-II has 27 spots with U-Pb data falling on well-defined lines in the isochron plot (2σ analytical and propagated uncertainty) and yields an age of 115.3 ± 1.5 Ma (MSWD = 2.0) (Table 3). Cal-III has an isochron defined by 16 U-Pb data points with a highly radiogenic lower intercept and a significantly younger age of 60.0 ± 0.9 Ma (MSWD = 1.5).

DISCUSSION

Reliability of Calcite In Situ U-Pb Age

Sampling technique using the laser ablation system help to exploit the potential for micro-scale heterogeneity in carbonates and obtain high $\mu (^{238}\text{U}/^{204}\text{Pb})$ values and a large spread of U-Pb ratios (U/Pb = 0.05–70; Table 3). However, concentrations of U and Pb in calcites from the Weizhai Sb deposit range down to tens of ppb, compared with traditional U-bearing accessory minerals often with >100ppm U in zircon and >1ppm U in meteoric-water-sourced carbonates (e.g. speleothem and tufas) (Woodhead et al., 2006). Such extremely low U and Pb contents in calcites cannot be sufficiently measured by conventional Q-ICP-MS or MC-ICP-MS (Kylander-Clark, 2020).

Accordingly, at the highest mass end of collector array of the Nu Plasma II MC-ICPMS, we employ an ETP (electron multiplier) discrete dynode multiplier dedicated to static measurement of low signal ^{238}U. Such discrete dynode multiplier is characterized by higher sensitivity (100 μm, 3 J/cm², 10 Hz, $^{238}\text{U} > 500000$ cps/ppm, ^{207}Pb blank = 10–100 cps) with ~3–10 times higher than that of Q-ICP-MS (Liu et al., 2019; Shen et al., 2019; Cheng et al., 2020).
Stage	Mg	Ca	Sr	Mn	Fe	La	Ce	Pr	Nd	Sm	Eu	Tb	Gd	Dy	Ho	Er	Tm	Yb	Lu	Pb	Th	U	LREE/HREE	LaN/YbN	
Wall rock	Max	145500	404500	2780	7010	182000	270	499	50.9	169	20.5	2.65	1.94	10.1	11.6	2.05	5.27	0.83	5.91	0.87	316	41.2	9.10		
(n = 26)	Min	38200	380600	321	2714	34600	2.34	5.37	0.67	3.39	2.14	0.64	0.67	3.91	4.36	0.79	2.11	0.28	1.78	0.25	1.15	0.89	0.61		
	Mean	95836	397896	1036	4552	79128	39.8	80.1	8.90	33.8	6.88	1.32	1.09	6.83	6.54	1.20	3.22	0.46	3.03	0.43	56.2	11.1	2.01	7.49	9.42
Dol-I	Max	165700	402800	869	3519	99500	23.3	59.0	6.98	27.6	6.05	1.17	1.56	7.77	9.64	1.66	4.16	0.55	3.49	0.48	7.11	0.75	0.50		
(n = 43)	Min	87500	396400	212	2481	71920	6.30	13.5	1.52	6.50	1.69	0.38	0.37	2.77	2.23	0.43	1.07	0.12	0.57	0.08	1.61	0.02	0.08		
	Mean	137751	400142	505	2946	89831	14.4	34.2	3.92	15.5	3.46	0.70	0.71	4.18	4.64	0.43	1.07	0.12	0.57	0.08	1.61	0.02	0.08		
Cal-II	Max	1139	404700	218	896	2680	0.51	1.81	0.32	1.96	1.18	0.38	1.20	4.26	10.8	2.57	7.72	1.03	5.67	0.72	0.58	0.44	0.88		
(n = 69)	Min	424	396400	15.0	206	856	0.01	0.03	0.01	0.07	0.09	0.05	0.16	0.65	1.03	0.17	0.40	0.04	0.22	0.03	0.00	0.02	0.04		
	Mean	842	400362	64.1	532	1927	0.11	0.41	0.08	0.58	0.47	0.18	0.46	1.93	3.35	0.65	1.69	0.21	1.17	0.15	0.07	0.19	0.35	0.19	0.07
Cal-III	Max	2650	407700	1060	1700	4170	2.52	7.26	1.10	6.43	3.86	1.27	2.35	10.5	17.6	3.57	9.49	1.20	6.37	0.78	1.84	1.51	0.99		
(n = 19)	Min	466	395700	15.1	568	1244	0.0007	0.0013	0.0011	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
	Mean	1241	400488	146	970	2931	0.25	0.77	0.14	0.95	0.80	0.27	0.47	2.25	3.30	0.64	1.69	0.21	1.22	0.16	0.24	0.17	0.27	0.32	0.15

Table 1. LA-ICP-MS In Situ Element Composition (ppm) of Carbonates from the Weizhai Sb Deposit

Note: LREE/HREE = (La + Ce + Pr + Nd + Sm + Eu)N/(Gd + Dy + Ho + Er + Tm + Yb + Lu)N, δEu = 2Eu/(Sm + Gd).
Taking the advantage of high sensitivity and static analysis, our employment of LA-MC-ICPMS could achieve superior internal error (i.e. <1% 2σ) for U and Pb isotopic compositions with good signal intensity for samples as those in this study. As shown in plot of $^{238}\text{U}/^{206}\text{Pb}-^{207}\text{Pb}/^{206}\text{Pb}$ (Figure 7), the scatters (mean standard weighted deviation (MSWD = 2.0 & 1.5)) of U and Pb isotopic compositions are sufficiently small and less than 2.5, suggesting a precise regression due to well-behaved closed system behavior (Brooks et al., 1972). Besides, through cross-calibration by AHX-1a (Figure S3; Table S1), the matrix-matched carbonate reference materials ASH-15D (3.001 ± 0.012 Ma; Mason et al., 2013; Vaks et al., 2013; Nuriel et al., 2017) attained the expected age within uncertainty (ASH-15D: 2.957 ± 0.033 Ma, MSWD = 1.7; the data have been shown in Figure S4 and Table S1), confirming that the derived ages are accurate.

In this study, therefore, the ages of 115.3 ± 1.5 Ma (MSWD = 2.0) and 60.0 ± 0.9 Ma (MSWD = 1.5) obtained from two types of calcites from the Weizhai Sb deposit (Figure 7) are meaningful and can represent significant geological events.
Determination of Syn-Ore Calcite

Since calcite often has multi-stage generation in hydrothermal systems, its relationship with Sb mineralization cannot be easily established using conventional optical microscope (Morishita, 2012; Zhu et al., 2017). In this study, CL petrography, major, minor, and trace elements, C-O and Sr isotopes, further help to characterize the syn-ore calcite.

The high spatial resolution of CL can be an useful tool for identifying micrometer-scale calcite grain growth zonation and alteration and characterizing different generations formed from different fluids (e.g. Barnaby and Rimstidt, 1989; Tullborg et al., 2008; Milodowski et al., 2018). Figure 2D shows that pre-ore Dol-I with a

Figure 4. Element Mapping of Different Stages of Carbonates from the Weizhai Sb Deposit
Transmitted light image (A) and element mapping of Ca (B), Mg (C), Mn (D), Fe (E), and U (F) of hydrothermal carbonates, showing U concentration heterogeneity in Cal-II and Cal-III.

Figure 5. Chondrite-Normalized REE patterns of Different Stages of Carbonates from the Weizhai Sb Deposit
Carbonate wall rock (A), pre-ore Dol-I (B), syn-ore Cal-II (C), and post-ore Cal-III (D). The chondrite values are from Sun and Mcdonough (1989).
dark-grey CL color is cemented by calcite of two late stages. Syn-ore Cal-II filling in fissures of Dol-I is typically high in the CL intensity and forms a bright orange luminescent. Post-ore Cal-III gray calcite veinlets crosscut both Dol-I and Cal-II crystals with an immediate contact, which rules out the alteration and reprecipitation during the latest hydrothermal event (Roberts et al., 2020). Because of Fe²⁺ serving as the dominant luminescence quencher (Peyrotty et al., 2020), Cal-II with lower Fe concentration exhibits bright CL responses in calcite as being different from that of Cal-III, which is supported by the in situ element data (Table 1).

Other elements, such as Mg, Sr, Ba, Mn, and Fe, can be used to distinguish between syn-ore and post-ore calcites (e.g. Alexandre, 2010; Wang et al., 2018). Data of carbonates from the Weizhai deposit, which were plotted, form two distinct clusters in the Sr/Ca versus Ba/Ca (Figure 3A) and Fe versus Mn (Figure 3B) diagrams, supplemented by different REE patterns (Figure 5), indicating that Cal-II and Cal-III may have different origin from Dol-I and carbonate wall rocks (Scholle and Ulmer-Scholle, 2003; Uysal et al., 2007). Lower Mg, Sr, Mn, and Fe contents of Cal-II are unlikely to be attributed to less fluid-rock interaction, demonstrated by the inconsistent liner relationship of Fe versus Mn between Cal-II and Cal-III (Figure 3B; Bau and Dulski, 1995; Hori et al., 2013). Instead, such elemental signature may reflect separate fluid source with contrasting elemental compositions (e.g. Sb).

δ¹³C and δ¹⁸O values of Cal-II and Cal-III from the Weizhai deposit well overlap with those of calcites from other regional Sb deposits in South China (Figure 6A). Such calcites have slightly lower δ¹⁸O values than those of Dol-I. The ⁸⁷Sr/⁸⁶Sr ratios of Cal-II and -III ranging from 0.7147 to 0.7166 are also similar to those of the Xujiashan (0.7109–0.7154) and Banxi (0.7112–0.7176) Sb deposits but higher than ⁸⁷Sr/⁸⁶Sr ratios of Phanerozoic marine carbonates (0.7068–0.7092; Figure 6B; Veizer and Compston, 1974). The Cal-II and –III Sr isotopic values can be compared with those of the Mesoproterozoic strata in South China (⁸⁷Sr/⁸⁶Sr120Ma ranges from 0.7127 to 0.7261; Figure 6C; Ma et al., 2003; Peng et al., 2003b). This probably indicates that the Sb-bearing fluid derived or flowed through radiogenically ⁸⁷Sr-enriched rocks, e.g. the Mesoproterozoic Banxi Group (Peng et al., 2003b).

Table 2. C, O, and Sr Isotopic Compositions of Carbonates and Strata Units from the South China Sb Metallogenic Belt

Deposit/Strata	Sample No.	Stage	δ¹³C_{PDB} (‰)	δ¹⁸O_{SMOW} (‰)	⁸⁸Sr	⁸⁷Sr/⁸⁶Sr	± 2σ	Ref.
Weizhai WZ05-4 Dol-I	–1.9	+17.8	14.9	0.718653	0.000007	This study		
WZ05-5	–2.8	+18.4	15.3	0.718173	0.000007			
WZ05-2 Cal-II	–0.4	+17.2	16.8	0.714795	0.000006			
WZ05-3	–0.6	+17.4	16.1	0.716632	0.000006			
WZ05-1 Cal-III	–0.3	+16.1	15.3	0.714688	0.000007			
WZ02	+0.4	+14.4						
Banpo	–2.4––0.5	+10.9––14.7						Xiao, 2014
Xujiashan Syn-ore calcite	–3.9––2.1	+11.5––15.3	0.7109–0.7154	Shen et al. (2007)				
Pre-ore calcite	–0.7––2.0	+18.6––19.6	0.7096–0.7097					
Xikuangshan Syn-ore calcite	–7.0––2.1	+11.0––17.9	0.710198–0.714435	Peng and Hu (2001)				
Banxi								Li et al., 2018
Qinglong Fluorite					0.70766–0.70932	Peng et al. (2003a)		
Phanerozoic marine carbonates					0.7068–0.7092	Veizer and Compston, 1974		
Mesoproterozoic Banxi Group					0.7127–0.7261	Ma et al., 2003; Peng et al. (2003b)		

Note: Ore-forming age of 120 Ma was used to calculate initial ⁸⁷Sr/⁸⁶Sr ratios of metamorphism rocks, the Mesoproterozoic Banxi Group, which has ⁸⁷Sr/⁸⁶Sr ranging from 0.7131 to 0.7287.
Therefore, the above geochemical evidence, supported by field observations, establishes a set of complementary criteria for confirming the syn-ore calcite.

Implications for Sb Mineralization of the South China Sb Metallogenic Belt

Due to the lack of suitable minerals for reliable radiometric dating, the age of Sb mineralization in South China is still under debate. A few conventional methods such as Rb-Sr and Ar-Ar dating of fluid inclusion of quartz/calcite, quartz electron spin resonance (ESR), and fluorite/calcite Sm-Nd dating have been employed in an attempt to constrain the timing of Sb mineralization, but yielded a large range of ages (mostly ca. 435–402 Ma and 156–101 Ma; Table 4). These ages were often questionable because of the isochron...
Stage	238U/206Pb	Int2SE	207Pb/206Pb	Int2SE	Approx. U_ppb	Approx. Pb_ppb	U/Pb
Cal-II	43.44	1.795	0.2340	0.0160	448	11	41
	46.78	1.017	0.1640	0.0140	807	12	70
	45.18	0.6398	0.2029	0.0082	1281	25	52
	33.29	0.6829	0.3871	0.0095	807	41	20
	39.60	0.6271	0.2838	0.0088	693	22	32
	43.68	1.176	0.2310	0.0140	781	18	13
	36.95	0.4132	0.3412	0.0074	1079	43	25
	38.29	1.379	0.3230	0.0160	676	26	26
	45.44	0.6917	0.2020	0.0120	977	19	53
	16.44	0.3799	0.6682	0.0089	210	38	5.5
	19.63	2.457	0.5980	0.0220	434	60	7.3
	25.38	2.158	0.5120	0.0290	311	28	11
	22.74	1.733	0.5550	0.0310	156	19	8.1
	15.64	0.4495	0.6840	0.0110	133	27	4.9
	19.91	1.114	0.6130	0.0170	171	25	6.8
	16.56	0.5925	0.6570	0.0100	288	52	5.6
	19.35	1.376	0.6280	0.0160	298	46	6.5
	13.76	0.7777	0.6970	0.0100	475	111	4.3
	10.12	1.008	0.7349	0.0080	359	119	3.0
	12.56	0.7678	0.7070	0.0110	285	79	3.6
	10.36	1.055	0.7310	0.0120	208	67	3.1
	5.723	0.0970	0.8140	0.0056	245	153	1.6
	9.599	0.5165	0.7499	0.0098	283	101	2.8
	6.115	0.4351	0.8169	0.0044	348	215	1.6
	8.240	1.365	0.7820	0.0120	279	121	2.3
	7.203	0.2030	0.8032	0.0095	152	72	2.1
Cal-III	37.28	0.9314	0.5642	0.0091	855	56	15
	61.42	1.305	0.3930	0.0110	703	19	37
	71.73	1.557	0.3280	0.0110	1018	19	53
	42.19	1.924	0.5260	0.0170	460	26	18
	70.99	2.560	0.2890	0.0180	289	7	44
	24.28	0.5099	0.6709	0.0072	396	50	8.0
	8.800	0.5441	0.7990	0.0110	132	54	2.5

Table 3. LA-MC-ICP-MS U-Pb Dating of Hydrothermal Calcite from the Weizhai Sb Deposit

(Continued on next page)
precision or the multi-stage presence of dating minerals and abundant non-primary fluid inclusions. For example, the Qinglong Sb deposit in the western South China Sb metallogenic belt was dated at quite different ages (ca. 146 Ma, 125 Ma, and 104 Ma) by using different dating minerals/methods (Zhu, 1998; Peng et al., 2003b).

The newly obtained ca. 115 Ma may indicate the Sb mineralization event between the Yangtze Block and the Cathaysia Block, corresponding to the large-scale Early Cretaceous (ca. 125–100 Ma) extension after the Yanshanian orogenic period (ca. 180–125 Ma) (Mao et al., 2010; Wang, 2012; Wang, 2013; Hu, 2015). Despite the poor timing constraints, the Yanshanian movement (ca.180–100 Ma) is generally considered to be the main driving force for the widespread low-T hydrothermal Hg, Sb, and Au mineralization in South China (Table 4; Wang and Wen, 2015; Su et al., 2009a; Hu et al., 2017). These hydrothermal mineralization are predominantly located in Jurassic NE trending folds and thrusts, and Early Cretaceous NE trending normal faults (Wan, 2010), which is in good agreement with NE-trending trap structures the Dushan Sb ore district featured in this study (Figure 1C).

The younger age (ca. 60 Ma) may reflect a tectonothermal event during the early Cenozoic in the region. This age is within previously published age range of 66.4–51.6 Ma through ESR dating of quartz from

Stage	238U/206Pb	Int2SE	207Pb/206Pb	Int2SE	Approx._U_ppb	Approx._Pb_ppb	U/Pb
22.63	1.550	0.6940	0.0140	179	23	7.8	
68.51	3.855	0.3440	0.0280	781	17	45	
36.99	3.402	0.5660	0.0250	414	33	13	
58.30	4.408	0.3880	0.0330	420	13	32	
5.228	0.4047	0.8110	0.0100	145	109	1.3	
0.1770	0.0030	0.8510	0.0017	88	1925	0.05	
0.1964	0.0045	0.8519	0.0014	107	2150	0.05	
9.724	0.3800	0.7771	0.0076	241	87	2.8	
10.70	0.2905	0.7780	0.0110	126	40	3.2	

Table 3. Continued

Figure 7. Tera-Wasserburg Concordia Diagrams (238U/206Pb versus 207Pb/206Pb) of LA-MC-ICPMS U-Pb Data of Syn-ore and Post-ore Calcites from the Weizhai Sb Deposit Error ellipses are at 2σ.
Ore Deposit	Host Strata	Host Rock	Ore-Type	Dating Method	Results (Ma)	Ref.
Weizhai	Devonian-Silurian	Limestone, siltstone	Sb	Calcite in situ U-Pb	115.3 ± 1.5	This study
Banpo	Devonian	Sandstones	Sb	Quartz Fls K-Ar	145	Wang, 1994
				Calcite Sm-Nd	130.5 ± 3.0	Xiao, 2014
					128.2 ± 3.2	J.S. Wang (2012)
					126.4 ± 2.7	
Maxiong	Cambrian, Devonian	Dolostones, sandstones	Sb	Quartz Fls Ar-Ar	141	Wei (1993)
				Quartz Fls Rb-Sr	156	
Muli	Devonian	Carbonates	Sb	Quartz Fls Ar-Ar	165	Hu et al. (2007)
Qinglong	Permian	Marine volcanic rocks	Sb (Au)	Quartz Fls Rb-Sr	101.0 ± 2.9	Xiao, 2014
				Fluorite ESR	104	Zhu (1998)
				Quartz ESR	125.2	
				Fluorite Sm-Nd	148 ± 8	Peng et al., 2003b
					142 ± 16	
					141 ± 20	Wang (2013)
				Calcite Sm-Nd	148 ± 13	J.S. Wang (2012)
					142.3 ± 7.9	
Xujiashan	Upper Ediacaran	Carbonates, clastic rocks	Sb	Calcite Sm-Nd	402	Shen, 2008
Pingcha	Lower Ediacaran	Carbonates, clastic rocks	Sb	Quartz Fls Rb-Sr	435 ± 9	Peng and Dai, 1998
Woxi	Neoproterozoic Banxi Group	Low-grade metamorphic rocks	Sb-Au	Scheelite Sm-Nd	402 ± 6	Peng et al., 2002
				Quartz Fls Ar-Ar	423.2 ± 1.2	
					416.2 ± 0.8	
Zhazixi	Neoproterozoic Banxi Group	Low-grade metamorphic rocks	W-Sb	Scheelite Sm-Nd	227.3 ± 6.2	Y.L. Wang (2012)
Banxi	Neoproterozoic Banxi Group	Low-grade metamorphic rocks	Sb	Stibnite Rb-Sr	129.4 ± 2.4	Li et al. (2018)
				Stibnite Sm-Nd	130.4 ± 1.9	
				Zircon (U-Th)/He	130–120	Fu et al. (2019a)
					123.8 ± 3.8	Li et al. (2020)
				Zircon (U-Th)/He	156–117	Fu et al. (2019b)
Xikuangshan	Devonian	Carbonates, clastic rocks	Sb	Calcite Sm-Nd	155.5 ± 1.1	Peng et al., 2003b
					124.1 ± 3.7	
					156.3 ± 12	Hu et al. (1996)
				Zircon (U-Th)/He	156–117	Fu et al. (2019b)
Lannigou	Triassic	Clastic rocks, carbonates	Au	Quartz Fls Rb-Sr	105.6 ± 4.5	Su et al. (1998)
					142 ± 2	Liu et al. (2006)
Shuiyindong	Permian	Clastic rocks, carbonates	Au	Calcite Sm-Nd	134 ± 3	Su et al., 2009a
Zimudang	Permian, Triassic	Clastic rocks	Au	Calcite Sm-Nd	148.4 ± 4.8	Wang (2013)
Jialing-La’e	Ordovician	Carbonates	Hg	Calcite Sm-Nd	129 ± 20	Wang and Wen (2015)

Table 4. Age Summary of Major Hydrothermal Ore Deposits in the South China Low-T Metallogenic Domain
Abbreviations: Fls, fluid inclusions; ESR, electron spin resonance.
the giant Xikuangshan Sb deposit in the South China Sb metallogenic belt (Jin, 2002). At the same time, it is temporally consistent with the apatite fission track age (61.5 ± 5.9 Ma; Wang et al., 2018), indicating an uplift event in South China. This is probably attributed to a change in the direction and speed of the subduction (ca. 60–40 Ma) of the Pacific Plate beneath the Eurasian Plate (Li et al., 2005; Tang et al., 2014).

Furthermore, compared with enrichment of LREE signature of pre-ore stage (Figures 5A and 5B), enriched HREE signatures were observed in both stage-II and -III calcites (Figures 5C and 5D). The HREE enrichment may reflect a source of (bi) carbonate-rich ligands in an evolving and cooling hydrothermal fluid, which preferentially mobilize HREE in near neutral to basic waters in basinal environments (Wood, 1990; Bau and Dulski, 1995; Rolland et al., 2003; Middleton et al., 2015). This REE signature can also be found in many other hydrothermal Sb and Au deposits in South China (e.g. the Qinglong and Xikuangshan Sb deposits, the Paiting, Miaolong, and Shuiyindong Au deposits; Figure 1B; Peng et al., 2003a, Xie et al., 2013; Peng et al., 2014, Su et al., 2009b).

Therefore, our new calcite in situ U-Pb ages indicate that the Sb mineralization of the giant South China Sb metallogenic belt occurred during the early Cretaceous, followed by a significant tectono thermal event during the early Cenozoic.

Conclusion

1. The calcite LA-MC-ICPMS in situ U-Pb dating is recommended for future use in age determination of hydrothermal ore deposits with extremely low U and Pb contents and a large spread of U/Pb ratios.
2. The new U-Pb age of 115.3 ± 1.5 Ma represents the timing of main-stage Sb mineralization during the early Cretaceous; 60.0 ± 0.9 Ma probably indicates a tectono thermal event occurred during the early Cenozoic.

Limitations of the Study

More in situ U-Pb ages of calcites from the giant South China antimony metallogenic belt are required. Future systematic studies would shed light on this issue.

Resource Availability

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Prof. Jia-Xi Zhou (email: zhoujiaxi@ynu.edu.cn).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
This study did not generate code. The published article contains all datasets generated in this study.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101575.

ACKNOWLEDGMENTS

This research was financially supported by the National Natural Science Foundation of China (41872095 and U1812402), Guizhou Scientific and Technology Fund (QKHJZ [2015] 2081), and the Talents Program Project of Yunnan Province (YNQR-QNRC-2018-104). We thank Mr. Xiu-Ting Shen, De-Lin Tang, Yong-Gao Lu, and Tian-Long Meng for the help in field work; Drs. Gang Xia and Faye Liu (The University of Queensland) for the help in laboratory; Dr. Guo-Tao Sun (Yunnan University), Prof. Mei-Fu Zhou (The University of Hongkong), and Dr. En-Tao Liu (China University of Geosciences, Wuhan) for fruitful discussions.
AUTHOR CONTRIBUTIONS
Study design: K.L. and J.X.Zhou. Sampling: K.L., J.X.Zhou, and J.W.Z. Analytical methods design: Y.X.F and J.X.Zhao. Data analysis and interpretation: K.L., A.N., and Y.X.F. Drafting manuscript: K.L., J.X.Zhou, I.T.U., and Y.X.F. Revising manuscript: All authors.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: May 15, 2020
Revised: July 17, 2020
Accepted: September 15, 2020
Published: October 23, 2020

REFERENCES
Alexandre, P. (2010). Mineralogy and geochemistry of the sodium metasomatism-related uraninite occurrence of Aricheng South, Guyana. Mineralium Deposita 45, 351–367.

Barnaby, R.J., and Rintzle, J.D. (1989). Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. GSA Bulletin 101, 795–804.

Bau, M., and Dulski, P. (1995). Comparative study of yttrium and rare-earth element behaviours in Mesozoic calcite and Paleozoic fluid flow. Science 269, 327–328.

Brannon, J.C., Cole, S.C., Podosek, F.A., Ragan, V.M., Coveney, R.M., Wallace, M.W., and Bradley, A.J. (1996). Th-Pb and U-Pb dating of ore-stage calcite and Paleozoic fluid flow. Science 271, 491–493.

Brooks, C., Hart, S.R., and Wendt, I. (1972). Realistic use of two-error regression treatments as applied to Rb-Sr data. Rev. Geophys. 10, 551–577.

Cheng, T., Zhao, J.X., Feng, Y.X., Pan, W.Q., and Liu, D.Y. (2020). In-situ LA-ICP-MS U-Pb dating method for low-uranium carbonate minerals. Chin. Sci. Bull. 65, 150–154.

Cole, J.M. (2003). Uranium-lead Dating of Late Cenozoic Sedimentary Carbonates: Potential for Application to Paleoanthropological Time Scales, Ph.D. Thesis (State University of New York at Stony Brook).

Coogan, A.L., Parrish, R., and Roberts, N. (2016). Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating. Geology 44, 147–150.

Coveney, R.M., Ragan, V.M., and Brannon, J.C. (2000). Temporal benchmarks for modeling Phanerozoic flow of basinal brines and hydrocarbons in the southern Midcontinent based on radiometrically dated calcite. Geology 28, 795–798.

Denniston, R.F. (2008). Caribbean chronostratigraphy refined with U-Pb dating of a Miocene coral. Geology 36, 1103–1104.

Engel, J., Maas, R., Woodhead, J., Tympel, J., and Greig, A. (2020). A single-column extraction chemistry for isotope dilution U-Pb dating of carbonate. Chem. Geol. 531, 119311.

Fu, S.L., Hu, R.Z., Yan, J., Lan, Q., and Gao, W. (2019a). The mineralization age of the Banxi Sb deposit in Xiangzhong metalliclogic province in southern China. Ore Geolgy Rev. 112, 103033.

Fu, S.L., Hu, R.Z., Batt, G., Danisk, M., Evans, N., and Mi, X. (2019b). Zircon (U-Th)/He thermochronometric constraints on the mineralization of the giant Xikuangshan Sb deposit in central Hunan, South China. Mineralium Deposita 55, 901–912.

Goodfellow, B.W., Viola, G., Bingen, B., Nuriel, P., and Kylander-Clark, A.R.C. (2017). Meso-Cenozoic uplifting and exhumation of the banxi Sb deposit: implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China. Geosci. Front. 11, 1323–1335.

Guillong, M., Wotzlawa, J.F., Looser, N., and Laurent, O. (2020). New analytical and data evaluation protocols to improve the reliability of U-Pb LA-ICP-MS carbonate dating. https://doi.org/10.5194/gchron-2019-20.

Gunmii, P., and Arribas, A. (1987). Antimony deposits in the iberoian Peninsula. Econ. Geology 82, 1453–1463.

Horii, M., Ishikawa, T., Nagaishi, K., Lin, K., Wang, B.S., You, C.F., and Kano, A. (2013). Prior calcite precipitation and source mixing process for fluid flow in a Mesozoic extensional basin from Iberian Peninsula. J. Geochem. Explor. 69, 377–380.

Jin, J.F. (2002). Locating mechanism of superlarge antimony deposit—Xikuangshan antimony deposit example. Bulletin of Mineralogy Petrology and Geochemistry 21, 145–151.

Jin, Z.G., and Dai, T.G. (2007). A discussion on the geological and geochemical characteristics and metallogenic model of the Banpo antimony ore field in Dushan, Guizhou Province. Geophysics. Geochem. Explor. 31, 129–132.

Kylander-Clark, A.R.C. (2020). Expanding limits of laser-ablation U-Pb carbonate geochronology. Geochron. Discuss., 1–25. https://doi.org/10.5194/gchron-2020-17.

Li, Q., Parrish, R.R., Horstwood, M.S.A., and McArthur, J.M. (2014). U-Pb dating of ceramics in Mesozoic ammonites. Chem. Geology 376, 76–83.

Lin, X.M., Wang, Y.J., Tan, K.X., and Peng, T.P. (2005). Mesozo-Cenozoic uplifting and exhumation on Yunkaidashan: evidence from fission track thermochronology. China Science Bulletin 50, 903–909.

Li, H., Wu, Q.H., Evans, N.J., Zhou, Z.K., and Lin, Z.W. (2018). Geochemistry and geochronology of the banxi Sb deposit: implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China. Gondwana Res. 55, 112–134.

Li, H., Danišk, M., Zhou, Z.K., Jiang, W.C., and Wu, J.H. (2020). Integrated U-Pb, Lu-Hf and (U-Th)/He analysis of zircon from the Banxi Sb deposit and its implications for the low-temperature mineralization in South China. Geosci. Front. 11, 1323–1335.

Liu, P., Li, P.G., Ma, R., Han, Z.H., Yang, G.L., and Ye, D.S. (2006). A gold deposit associated with pyroclastic rock and hydrothermal exhalation: Nibuo gold deposit in Guizhou province, China. Mineral. Deposits 1, 101–110.
Liu, E.T., Zhao, J.X., Pan, S.Q., Yan, D.T., Lu, J., Hua, S.B., Gong, Y., and Zou, K. (2019). A new technology of basin fluid geochemistry: in-situ U-Pb dating of calcite. Earth Sci. 44, 698–712.

Lu, G.Q. (1994). A Genetic Link between the Gold-Mercury Mineralization and Petroleum Evolution: a Case of the Danzhai Gold-Mercury Deposit. Ph.D. Thesis (Universite du Quebec a Chicoutimi (Canada)).

Ma, D.S., Pan, J.Y., and Xie, Q.L. (2003). Ore sources of Sb(Au) deposits in central Hunan: II. Evidence of isotopic geochemistry. Mineral Deposits 22, 78–87.

Maheux, P.J. (1989). A Fluid Inclusion and Light Stable Isotope Study of Antimony-Associated Gold Mineralization in the Bridge River District, British Columbia, Canada, M.Sc. Thesis (University of Alberta (Canada)).

Mao, J.W., Xie, G.Q., Pirajno, F., Ye, H.S., Wang, Y.B., Li, Y.F., Xiang, J.F., and Zhao, H.J. (2010). Carbon and oxygen isotope systematics of the Xikuangshan giant antimony deposit, central Hunan. Geol. Rev. 57, 34–47.

Peng, J.T., and Hu, R.Z. (2001). Carbon and oxygen isotope systematics in the Xikuangshan giant antimony deposit, central Hunan. China Science Bulletin 47, 1134–1137.

Peng, J.T., Hu, R.H., Zhao, J.H., Fu, Y.Z., and Lin, Y.X. (2003a). Scheelite Sm-Nd dating and quartz Ar-Ar dating for the W-Au-Sb deposit, western Hunan. Chin. Sci. Bull. 48, 2640–2646.

Peng, J.T., Hu, R.Z., and Burnard, P.G. (2003b). Samarium–neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer. Chem. Geology. 200, 129–136.

Peng, J.T., and Dai, T.G. (1998). On the mineralization epoch of the Xufenggou metallogenic province. Geology and Prospecting 34, 37–41.

Peng, Y.W., Gu, X.X., Zhang, Y.M., Liu, L., Wu, C.Y., and Chen, S.Y. (2014). Ore-forming process and ore genesis of the Xujiashan antimony deposit, Hubei Province. Geochimica et Geophysical 15, 284–303.

Richardson, D.A., Bottrell, S.H., Cliff, R.A., Strohle, K., and Rowe, P.J. (1998). U-Pb dating of a spearleth of Quaternary age. Geochimica et Cosmochimica Acta 62, 3683–3688.

Rolland, Y., Cox, S., Boullier, A.M., Pennacchioni, G., and Mancktelow, N. (2003). Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters 214, 203–219.

Salth, N.M., Mansurberg, H., Kolo, K., Gerdes, A., and Præst, A. (2020). U-Pb Direct Dating of Multiple Diagenetic Events in the Upper Cretaceous Carbonate Reservoir of Bekkheim Formation (AAPG Middle East Meetings).

Scholle, P.A., and Ulmer-Scholle, D.S. (2003). Carbonate diagenesis: eogenetic metacrite diagenesis. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis (American Association of Petroleum Geologists).

Shen, N.P., Peng, J.T., Yuan, S.D., Zhang, D.L., Yu, Y.Z., and Hu, R.Z. (2007). Carbon, oxygen and strontium isotope geochemistry of calcites from Xujianshan antimony deposit, Hubei Province. Geochimica 36, 479–485.

Shen, N.P., Peng, J.T., Hu, R.Z., Liu, S., and Coulson, I.M. (2011). Strontium and lead isotopic study of the carbonate-hosted Xujianshan antimony deposit from Hubei province, south China: implications for its origin. Resource Geol. 61, 52–62.

Shen, N.P., Su, W.C., Fu, Y.Z., Xu, C.X., Yang, J.H., and Cai, J.L. (2013). Characteristics of sulfur and lead isotopes for banian antimony deposit in Dushan area, Guizhou province, China: implication for origin of ore-forming materials. Acta Mineral. Sin. 33, 271–277.

Scratch, R.B., Wauston, G.P., Kerrich, R., and Hutchinson, R.W. (1984). Fracture-controlled orogen-quadrate mineralization, Lake George Deposit, New Brunswick: mineralogy, geochmistry, alteration, and hydrothermal regimes. Economic Geology 79, 1159–1166.

Schulz, K.J., Seal, R.R., Deyoung, J.H., Sutphin, D.M., Drew, L.J., Carlin, J.F., and Berger, B.R. (2017). Antimony, chap. C. In Critical Mineral Resources of the United States: Economic Geology and Prospects for Future Supply, K.J. Schulz, J.H. Deyoung, R.R. Seal, and D.C. Bradley, eds. (US Geological Survey Professional Paper 1906), pp. C1–C17.

Shen, N.P. (2008). Geochemistry and metallogenic mechanism of the Xujianshan antimony deposit in Hubei Province, China. Ph.D. thesis. Institute of Geochemistry, Chinese Academy of Sciences.

Shen, A.J., Hu, A.P., Cheng, T., Liang, F., Pan, W.Q., Feng, Y.X., and Zhao, J.X. (2019). Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet. Explor. Dev. 46, 1127–1140.

Su, W.C., Hu, R.Z., Xia, B., Xia, Y., and Liu, Y. (2009a). Calcite Sm-Nd isochron age of the Shuyu mine Carlin-type gold deposit, Guizhou, China. Chemical Geology 258, 269–274.

Su, W.C., Heinrich, C.A., Petike, T., Zhang, X.C., Hu, R.Z., and Xia, B. (2009b). Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids. Economic Geology 104, 73–93.
Su, W.C., Yang, K.Y., Hu, R.Z., and Chen, F. (1998). Fluid inclusion chronologic study of the Carlin-type gold deposits in southwestern China: as exemplified by the Lannigou gold deposit, Guizhou province. Acta Mineral. Sin. 18, 359–362.

Sun, S.S., and Mcdonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345.

Tang, S.L., Yan, D.P., Qiu, L., Gao, J.F., and Wang, C.L. (2014). Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana 25, 1644–1659.

Tran, T.H., Nevalko, P.A., Ngo, T.P., Svetlitskaya, T.V., Vu, H.L., Redin, Y.O., Tran, T.A., Pham, T.D., and Ngo, T.H. (2016). Geology, geochemistry and sulphur isotopes of the Hat Han gold-antimony deposit, NE Vietnam. Ore Geol. Rev.

Tullborg, E.L., Drake, H., and Sandstrom, B. (2008). Palaeohydrogeology: A methodology based on fracture mineral studies. Applied Geochemistry 23, 1881–1897.

Uysal, I.T., Zhao, J.X., Golding, S.D., Lawrence, M.G., Gilkinson, M., and Collerson, K.D. (2007). Sm-Nd dating and rare-earth element tracing of the Aqaba, Negev Desert recorded in speleothems from the Negev Desert, Israel. Earth Planet. Sci. Lett. 258, 85–100.

Veizer, J., and Compston, W. (1974). 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim. Cosmochim. Acta 38, 1461–1484.

Victor, P., Carol, H., and Yemane, A. (2008). Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 319, 1377–1380.

Walker, J., cliff, R.A., and Latham, A.G. (2006). U-Pb isotopic age of the Sw 573 hominid from Sterkfontein, South Africa. Science 314, 1592–1594.

Wan, T.F. (2010). Tectonics of Jurassic-Early Epoch of Early Cretaceous (The Yanhsanian Tectonic Period, 200-135 Ma) (Springer). https://doi.org/10.1007/978-3-642-11868-5.

Wang, X.K. (1994). Guizhou Dushan antimony deposit geology (Yunnan Science and Technology Press).

Wang, H.W.H. (2008). Study on Sb Mineralized Condition and Metallogenic Model of the South Section of Western Tianshan, China, Ph.D. Thesis (Northeastern University).

Wang, J.S. (2012). Mineralization, Chronology and Dynamic Research of Low Temperature Metallogenic Domain, Southwest China, PhD thesis (Institute of Geochemistry, Chinese Academy of Science).

Wang, Z.P. (2013). Genesis and Dynamic Mechanism of the Epithermal Ore Deposits, SW Guizhou, China: a Case Study of Gold and Antimony Deposits, Unpublished Ph.D. thesis (Institute of Geochemistry, Chinese Academy of Sciences), pp. 1–150.

Wang, Y.L., and Jin, S.C. (2010). Geochemistry characteristics comparison of inclusion in Banpo and Banian antimony deposit of Guizhou. Nonferrous Metals 62, 127–132.

Wang, J.S., and Wen, H.J. (2015). Sm-Nd dating of hydrothermal calcites from Jiola-Lae Mercury deposit, Guizhou Province. J. Jilin Univ. (Earth Sci. Ed.) 45, 1384–1393.

Wang, J.S., Han, Z.C., Li, C., Gao, Z.H., Yang, Y., and Zhou, G.C. (2018). REE, Fe and Mn contents of calcites and their prospecting significance for the Banqi carlin-type gold deposit in southwestern China. Geotectonica et Metallogenia 42, 494–504.

Xie, Z.J., Xia, Y., Cline, J.S., Yan, B.W., Wang, Z.P., Tan, Q.P., Wu, S.R., and Fan, E.C. (2013). Geochemical characteristics and metallogenic materials source of Carlin-type gold deposits in Sandu-Danzhai metallogenic zone, Guizhou. Bull. Mineral. Petrol. Geochm. 33, 326–333.

Xie, Z.J., Xia, Y., Cline, J.S., Yan, B.W., Wang, Z.P., Tan, Q.P., and Wei, D.T. (2017). Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA. Mineralium Deposita 52, 69–84.

Yang, X.Y., and Sun, W.D. (2018). Jurassic and Cretaceous (Yanshannian) tectonics, magmatism and metallogenesis in South China: preface. Int. Geol. Rev. 60, 1321–1325.

Zhu, L.M. (1998). Elemental association and metallogenesis in South China: preface. Int. Geol. Rev. 60, 1321–1325.

Zhu, L.M. (1998). Elemental association and metallogenesis in South China: preface. Int. Geol. Rev. 60, 1321–1325.

Zhu, L.M. (1998). Elemental association and metallogenesis in South China: preface. Int. Geol. Rev. 60, 1321–1325.

Zhu, L.M. (1998). Elemental association and metallogenesis in South China: preface. Int. Geol. Rev. 60, 1321–1325.
Supplemental Information

In situ U-Pb Dating of Calcite
from the South China Antimony Metallogenic Belt

Kai Luo, Jia-Xi Zhou, Yue-Xing Feng, I. Tonguc Uysal, Ai Nguyen, Jian-Xin Zhao, and Jiawei Zhang
Figure S1. Schematic section of the Dushan Sb ore district, South China. Related to Figure 1c.
Figure S2. LA-ICP-MS U-Pb screening spots (red dots) of Dol-I, Cal-II and Cal-III. Related to Figure 2a.
Figure S3. Tera-Wasserburg plots for LA-MC-ICPMS U-Pb data from AHX-1a. Related to Figure 7 and Table 3.
Figure S4. Tera-Wasserburg plots for LA-MC-ICPMS U-Pb data from ASH-15D. Related to Figure 7 and Table 3.
Table S1. LA-MC-ICPMS in situ U-Pb data for standards NIST-614, ASH15D and AHX-1a. Related to Figure 7 and Table 3.

Comments	238U/206Pb	238U/206Pb Int2SE	207Pb/206Pb	207Pb/206Pb Int2SE
NIST614_1	0.6961	0.0030	1.4366	0.0062
NIST614_2	0.7029	0.0038	1.4227	0.0077
NIST614_3	0.7098	0.0032	1.4088	0.0064
NIST614_4	0.7004	0.0032	1.4278	0.0065
NIST614_5	0.6952	0.0033	1.4384	0.0068
NIST614_6	0.6963	0.0025	1.4362	0.0052
NIST614_7	0.6997	0.0036	1.4292	0.0074
NIST614_8	0.7036	0.0032	1.4213	0.0065
NIST614_9	0.7070	0.0039	1.4144	0.0078
NIST614_10	0.7063	0.0037	1.4158	0.0074
NIST614_11	0.7552	0.0037	1.3242	0.0065
NIST614_12	0.7064	0.0037	1.4156	0.0074
NIST614_13	0.7066	0.0028	1.4152	0.0056
NIST614_14	0.7066	0.0030	1.4152	0.0060
NIST614_15	0.7062	0.0033	1.4160	0.0066
NIST614_16	0.7067	0.0032	1.4150	0.0064
NIST614_17	0.7094	0.0034	1.4096	0.0068
NIST614_18	0.7110	0.0038	1.4065	0.0075
NIST614_19	0.7068	0.0033	1.4148	0.0066
NIST614_20	0.6952	0.0033	1.4384	0.0068
NIST614_21	0.7098	0.0034	1.4088	0.0067
NIST614_22	0.7068	0.0026	1.4148	0.0052
NIST614_23	0.7073	0.0032	1.4138	0.0064
NIST614_24	0.7089	0.0037	1.4106	0.0074
NIST614_25	0.7091	0.0035	1.4102	0.0070
NIST614_26	0.7094	0.0039	1.4096	0.0077
NIST614_27	0.6759	0.0031	1.4795	0.0068
ASH15D_1	2212	68.53	0.0590	0.0130
ASH15D_2	1623	47.44	0.2590	0.0160
ASH15D_3	2058	194.75	0.0760	0.0250
ASH15D_4	2283	62.55	0.0780	0.0150
ASH15D_5	2037	95.40	0.0840	0.0210
ASH15D_6	2257	71.34	0.0600	0.0130
ASH15D_7	2232	59.79	0.0640	0.0130
ASH15D_8	1869	55.90	0.2020	0.0150
ASH15D_9	1389	32.79	0.3550	0.0130
ASH15D_10	2242	60.33	0.0455	0.0076
ASH15D_11	2257	56.05	0.0906	0.0097
ASH15D_12	2188	81.40	0.0750	0.0140
ASH15D_13	2188	52.67	0.0681	0.0087
ASH15D_14	2879	75.40	0.0580	0.0100
ASH15D_15	2994	98.61	0.0600	0.0120
ASH15D_16	2155	88.25	0.0630	0.0160
ASH15D_17	2183	243.1	0.0710	0.0490
ASH15D_18	2237	105.1	0.0730	0.0270
ASH15D_19	1953	80.11	0.1420	0.0220
ASH15D_20	2273	67.15	0.0630	0.0100
ASH15D_21	1953	53.41	0.1440	0.0160
ASH15D_22	2304	84.95	0.0500	0.0180
ASH15D_23	2128	203.7	0.0740	0.0090
ASH15D_24	1923	48.08	0.1680	0.0150
ASH15D_25	2370	73.00	0.0570	0.0150
ASH15D_26	1912	62.15	0.1680	0.0130
ASH15D_27	2179	61.70	0.0820	0.0140
ASH15D_28	2132	63.65	0.0950	0.0110
ASH15D_29	2101	52.96	0.1380	0.0150
ASH15D_30	2124	43.74	0.1081	0.0085
ASH15D_31	2257	81.53	0.0630	0.0150
ASH15D_32	2110	89.02	0.1220	0.0200
ASH15D_33	2090	38.87	0.1099	0.0086
ASH15D_34	2183	61.97	0.0870	0.0130
AHX-1a_1	31.91	0.3767	0.0581	0.0030
AHX-1a_2	30.79	0.4834	0.0673	0.0044
AHX-1a_3	31.52	0.4569	0.0593	0.0042
AHX-1a_4	30.57	0.4393	0.0766	0.0051
AHX-1a_5	31.04	0.6165	0.0671	0.0058
AHX-1a_6	31.20	0.4576	0.0667	0.0039
AHX-1a_7	31.98	0.3784	0.0548	0.0032
AHX-1a_8	30.75	0.5012	0.0670	0.0047
AHX-1a_9	31.19	0.4086	0.0591	0.0039
AHX-1a_10	30.47	0.4828	0.0642	0.0052
AHX-1a_11	30.73	0.3305	0.0606	0.0029
AHX-1a_12	31.23	0.5072	0.0724	0.0064
AHX-1a_13	30.58	0.9352	0.0742	0.0082
AHX-1a_14	31.54	0.4177	0.0635	0.0044
AHX-1a_15	31.27	0.7138	0.0781	0.0084
AHX-1a_16	31.08	0.5894	0.0726	0.0061
AHX-1a_17	31.01	0.4807	0.0706	0.0050
AHX-1a_18	31.15	0.6211	0.0637	0.0048
AHX-1a_19	31.41	0.4143	0.0670	0.0048
AHX-1a_20	31.18	0.4959	0.0631	0.0057
AHX-1a_21	30.79	0.3981	0.0761	0.0056
AHX-1a_22	31.20	0.4283	0.0607	0.0042
AHX-1a_23	31.57	0.3288	0.0662	0.0036
--------	-------	-------	-------	-------
AHX-1a_24	31.28	0.4696	0.0600	0.0042
AHX-1a_25	31.38	0.3643	0.0596	0.0029
AHX-1a_26	30.67	0.4420	0.0775	0.0051
AHX-1a_27	31.67	0.4011	0.0579	0.0030
Transparent Methods

Representative ores from the ore body of the Weizhai Sb deposit were cut into finely polished surfaces and secured in epoxy mount. These mounts were then carefully polished with 1000 grade emery paper, and washed with Milli-Q water in an ultrasonic bath for 15 min. After characterization of Cathode luminescence (CL) and back scanning electron (BSE), microdrilling was performed to six selected carbonate veins from these mounts for acid-dissolved carbon (C), oxygen (O) and strontium (Sr) isotopic analyses.

Carbon and oxygen isotopic analysis

Bulk carbon and oxygen isotope analysis was undertaken at the Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, using a Finnigan MAT-253 mass spectrometer. Calcite reacted with 100% phosphoric acid (H₃PO₄) to produce CO₂. The analytical precision calculated from replicate analyses of unknown samples was ±0.05‰ for δ¹³C and ±0.08 ‰ for δ¹⁸O. The C and O isotopic compositions are reported relative to Vienna Pee Dee Belemnite (V-PDB) (Friedman and O’Neil, 1977). δ¹⁸OSMOW = 1.03086 \times δ¹⁸OPDB + 30.86. The C and O isotopic compositions are expressed vs. SMOW and vs. PDB, respectively.

Strontium isotopic analysis

Strontium isotope compositions (⁸⁷Sr/⁸⁶Sr ratios) were obtained in the Radiogenic Isotope Facility (RIF), University of Queensland, Australia. 50 mg of carbonate powder samples were weighed into Teflon beakers and digested
in weak acetic acid to dissolve only the carbonate fraction and avoid leaching
of radiogenic 87Sr and Rb from the non-carbonate constituents of the samples.

87Sr/86Sr measurement was conducted on a Nu Plasma I multi-collector
inductively-coupled plasma mass spectrometry (MC-ICPMS) after Sr was
separated following standard cation exchange column procedures and
standard SRM 987 was used for external calibration. The Sr blanks with the
resin are less than 50 pg and at least four orders of magnitude lower than the
sample Sr (> 1000 ng). A SRM 987 standard was run after every five samples
were measured. Long-term repeated measurement of the SRM 987 standard
on this machine yields a mean 87Sr/86Sr value of 0.710250 ± 0.000032 (2σ).

In situ trace element analysis by LA-ICPMS

In situ trace elements of carbonates were measured using an ASI
RESOlution 193 nm excimer UV ArF laser ablation system with a dual-volume
Laurin Technic ablation cell integrated with a Thermo iCap RQ quadruple mass
spectrometer at the University of Queensland Centre for Geoanalytical Mass
Spectrometry, RIF. The samples were thoroughly cleaned with soap, followed
by MilliQ water with assistance of a sonication, and dried them overnight at
60°C on a hot plate. Samples were then mounted to a sample holder and
placed in the ablation cell. The mass spectrometer was tuned by scanning a
NIST612 glass reference material with a laser parameters of 50 mm spot size,
a 3 mm/s speed, and a 10 Hz repetition rate, to achieve an optimal condition of
high sensitivity and low double charge and oxide rates. Sample ablation was performed with a laser beam of 3J/cm², a spot size of 100 mm, and a repetition rate at 10 Hz. The ablated aerosols were driven into a funnel and were carried to the mass spectrometer by a mixture of ultrapure He and Ar gases with a minor amount of N₂ for boosting transport efficiency and elemental intensity. The sample spots were run in between the reference material Durango apatite, NIST612 and NIST614 which was used as a calibration standard for data reduction undertaken using Iolite 3.6 (Paton et al, 2011). Calcium was assumed to be 40% in the samples, and used as an internal standard for data normalization.

Elemental mapping was performed using the same laser ablation system with similar carry gas settings as described in Ubide et al. (2019). A selected inter-mineral area of calcite and dolomite was mapped using a laser energy of 3J/cm², a repetition rate of 10Hz, 30x30 mm spot size, the overlaps between raster line of 1 μm, and the stage translation speed of 50 μm/s. The background data was collected for 20 s at the beginning of each raster line. The data reduction was performed using Iolite 3.6.

In situ U-Pb isotopic analysis by LA-MC-ICPMS

In situ U-Pb isotopic analysis was also undertaken at the RIF, using a Nu Plasma II Multi-Collector ICP-MS interfaced with a RESolution 193nm excimer UV ArF laser ablation system with a dual-volume Laurin Technic ablation cell. Prior to U-Pb dating analysis, the carbonate minerals were screened and
laser-fired by ~5s for each spots while the U/Pb data was acquired using a Thermo ICap RQ ICP-MS. This aims to firstly remove any surficial contamination (first 3s data) and identify a large spread of U/Pb domains (last 2s data). The MC-ICP-MS was equipped with 6 ion counters, in a static mode with an integration time of 0.2s. 238U was measured on IC5 while 208Pb, 207Pb, and 206Pb isotopes were collected on IC0, IC1, IC2, respectively. Due to high Hg interference from the argon gas on the mass 204Hg, the data on IC3 (204Pb) and IC4 (202Pb) were ignored (Shen et al., 2019; Cheng et al., 2020).

The isotopic U and Pb data of samples were acquired from 100um spots with laser energy 3J/cm2 and a repetition rate of 10Hz for 20s for background measurement, 25s for ablation time, and 8s for washout time. NIST614 glass and matrix-matched standards (ASH-15D and AHX-1a) was also run with a ‘standard-sample bracketing’ technique throughout the measurement and used as the external standard for the purposes of monitoring instrumental drift and isotope fractionation, and laser induced elemental fractionation. Data reduction was performed using Iolite 3.6 (Paton et al., 2010). U and Pb concentrations were semi-quantitatively calculated, using NIST614 as the calibration standard. The approximate U or Pb concentration for each spot analysis was calculated by the total counts of U or Pb isotopes.

For mass-bias correction of the measured 238U/206Pb, we used the 3.001±0.012 Ma (2σ) calcite speleothem ASH-15D standard dated by thermal ionization mass spectrometry (TIMS) (Mason et al., 2013; Vaks et al., 2013;
Nuriel et al., 2017) and the 209.8±1.3 Ma (weighted mean age; n=21, MSWD=2.7) standard AHX-1a dated by LA-MC-ICPMS (Cheng et al., 2020). The corrected U-Pb isotopic data of the calcite standard AHX-1a was plotted on the Tera-Wasserburg diagram (238U/206Pb vs. 207Pb/206Pb) using the Isoplot v4.15 software (Ludwig, 2011) to obtain the measured age. The offset factor between the measured age and the true age of this calcite standard was used to normalize the 238U/206Pb ratios of the samples (Detailed correction procedure see Roberts et al. (2017)). After normalization process, the U-Pb isotopic data of the samples was plotted on the Tera-Wasserburg diagrams. The common Pb isotopic composition is determined by the y-intercept delineating the 207Pb/206Pb ratio.

Supplemental References

Friedman, I. & O'Neil, J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. US Government Printing Office. 440.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518. https://doi.org/10.1039/c1ja10172b.

Shen, A.J., Hu, A.P., Cheng, T., Liang, F., Pan, W.Q., Feng, Y.X., Zhao, J.X. (2019) Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Petroleum Exploration and Development. 46, 1127-1140.
Cheng, T., Zhao, J.X., Feng, Y.X., Pan, W.Q. & Liu, D.Y. (2020). In-situ LA-MC-ICPMS U-Pb dating method for low-uranium carbonate minerals. Chinese Science Bulletin. 65, 150-154.

Ludwig, K. R. (2011). Isoplot/Ex, Version 4.15: A geochronological toolkit for Microsoft Excel: Geochronology Center Berkeley, v. 4.

Mason, A.J., Henderson, G.M. & Vaks, A. (2013). An acetic acid-based extraction protocol for the recovery of U, Th and Pb from calcium carbonates for U-(Th)-Pb geochronology. Geostandards and Geoanalytical Research. 37, 261-275.

Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., Hacker, B.R. & Craddock, J.P. (2017). The onset of the Dead Sea transform based on calcite age-strain analyses. Geology. 45, 587-590.

Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., Smith, C.J., Horstwood, M.S.A. & Condon, D.J. (2017). A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems. 18, 2807-2814.

Vaks, A., Woodhead, J., Bar-Matthews, M., Ayalon, A., Cliff, R.A., Zilberman, T., Matthews, A. & Frumkin, A. (2013). Pliocene–Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel. Earth and Planetary Science Letters. 368, 88-100.

Ubide, T., Caulfield, J., Brandt, C., Bussweiler, Y., Mollo, S., Di Stefano, F., Nazzari, M., and Scarlato, P. (2019). Deep magma storage revealed by
multi-method elemental mapping of clinopyroxene megacrysts at
Stromboli volcano. Frontiers in Earth Science. 7, 239.