One-Dimensional Edge Transport in Few-Layer WTe₂

Artem Kononov,* Gulibusitan Abulizi, Kejian Qu, Jiaqiang Yan, David Mandrus, Kenji Watanabe, Takashi Taniguchi, and Christian Schönenberger*

ABSTRACT: WTe₂ is a layered transitional-metal dichalcogenide (TMD) with a number of intriguing topological properties. Recently, WTe₂ has been predicted to be a higher-order topological insulator (HOTI) with topologically protected hinge states along the edges. The gapless nature of WTe₂ complicates the observation of one-dimensional (1D) topological states in transport due to their small contribution relative to the bulk. Here, we study the behavior of the Josephson effect in magnetic field to distinguish edge from bulk transport. The Josephson effect in few-layer WTe₂ reveals 1D states residing on the edges and steps. Moreover, our data demonstrates a combination of Josephson transport properties observed solely in another HOTI—bismuth, including Josephson transport over micrometer distances, extreme robustness in a magnetic field, and nonsinusoidal current-phase relation (CPR). Our observations strongly suggest the topological origin of the 1D states and that few-layer WTe₂ is a HOTI.

KEYWORDS: WTe₂, 1D edge states, Josephson effect, nonsinusoidal CPR, higher order topological insulators

Materials with nontrivial topology attract a lot of attention due to their intriguing properties and the potential to harness them for quantum computing. Nonabelian excitations, occurring when topology meets superconductivity, are especially interesting for applications. Many realizations of these excitations have been proposed and implemented recently, including designing topological superconductivity by combining spin-orbit interaction and Zeeman effect with normal s-wave superconductors, or by proximity inducing superconductivity in topological insulators. Recently, it has also been demonstrated that one can engineer them in hinge states of a higher-order topological insulator (HOTI) combined with proximity induced superconductivity. The layered TMD WTe₂, which in the form of a 3D crystal is a Weyl semimetal and a 2D topological insulator in the form of a monolayer, has been predicted to be a HOTI hosting topological hinge states on the edges and steps of the crystal. However, the bulk conductivity of WTe₂ complicates the observation of these states. One way to overcome bulk conductivity is to use local measurement techniques such as scanning tunneling spectroscopy. Another possibility is to employ the Josephson effect. Here, the evolution of the critical current $I_c(B_{∥})$ with a perpendicular magnetic field $B_{∥}$ is connected with the current distribution in the plane by a Fourier transform. The asymmetry of the critical current can provide additional information about properties of the supercurrent carrying states. The asymmetric Josephson effect (AJE) is expected in systems with a nonsinusoidal CPR, which is often linked with the presence of Andreev bound states with high transmission. The AJE has been previously observed in a 2D topological insulator coupled to a superconductor.

Here, we reveal 1D states along edges and steps in few-layer WTe₂ by studying the Josephson effect in a perpendicular magnetic field. The superconducting contacts required for Josephson junctions are realized by a lithographically patterned Pd film that is in contact with clean WTe₂ and induces superconductivity therein. We found that a Josephson current can be measured over distances up to 3 μm and that it withstands magnetic fields up to 2 T, suggesting its 1D nature with a very tight lateral confinement. Moreover, transport through these 1D states shows signatures of the asymmetric Josephson effect. We think that the observed behavior can be a result of Josephson transport through hinge states due to higher-order topology in WTe₂.

Figure 1(a) demonstrates an optical image of our first device. It consists of a few-layer (~12) thick WTe₂ flake covered with hBN and placed on the prepatterned Pd leads on
SQUID-like oscillations in magnetic field. The central peak of Φ_0 at $B_{\perp} = 0.27$ mT is given by a combination of a Fraunhofer pattern creating a peak of critical current at zero magnetic field and a SQUID-like pattern with more than 50 visible oscillations. The period of these oscillations correspond to a single flux quantum $\Phi_0 = h/2e$ through the area enclosed by the SQUID.27

Figure 2(b) shows the measured $I_c(B_{\perp})$ dependence for the two 1 μm long JJs. The critical current oscillates with perpendicular magnetic field. The central peak of I_c has a width between one and two oscillations periods. The amplitude of the oscillations is decaying faster at smaller fields and slower at larger ones. The measured $I_c(B_{\perp})$ is a combination of a Fraunhofer pattern creating a peak of critical current at zero magnetic field and a SQUID-like pattern with more than 50 visible oscillations. The period of these oscillations $\Delta B \sim 0.27$ mT is given by a flux Φ_0 through the effective area of the junction S_{eff}. From S_{eff} we obtain an effective junction length $l_{\text{eff}} = S_{\text{eff}}/W = 1.75 \mu$m, where $W \sim 4.3 \mu$m is the sample width. l_{eff} is larger than the length of the junction L due to the penetration of magnetic field into the superconducting leads. A coexistence of the SQUID and Fraunhofer behavior indicates the presence of edge and bulk supercurrent. The latter can be carried by the bulk of the crystal or by Fermi arc surface states.27 A persistence of the SQUID-like oscillations in magnetic field means that the edge supercurrent is carried by very narrow states.

To obtain the spatial distribution of the supercurrent, we performed a Fourier transform of $I_c(B_{\perp})$ by following the Dynes–Fulton approach.25,26 This method assumes a sinusoidal CPR and a nearly symmetric supercurrent distribution across the width of the junction. In this case the minima of $I_c(B_{\perp})$ should approach zero. The result of the Fourier transform should therefore be more accurate for junction 2 as compared to junction 1, since the $I_c(B_{\perp})$ minima are found to be much closer to zero in junction 2. Figure 2(c) shows the result of the transformation for junction 2. The supercurrent peaks are very close to zero in junction 2. Figure 1(c) shows the result of the Fourier transform for junction 2. The supercurrent peaks are very close to zero in junction 2.

Figure 1(b) demonstrates experimental dV/dI dependencies of three junctions with lengths 1–3 with lengths 1, 1, and 2 μm, respectively. The 1 μm long junctions demonstrate zero differential resistance at small currents as a result of the Josephson effect. The measured differential resistances dV/dI of three junctions 1–3 with lengths 1, 1, and 2 μm, respectively. The 1 μm long junctions demonstrate zero differential resistance at small currents as a result of the Josephson effect.
narrow, suggesting a strong edge confinement. The width of these supercurrent density peaks obtained from the Gaussian fit is below 80 nm.

There is another reason, beyond an asymmetric current distribution, why the oscillations in Figure 2(b) are not reaching zero; this can be caused by a nonsinusoidal CPR of the edge states. We can immediately confirm that the CPR is nonsinusoidal. This is seen as follows. The ratio of the critical currents of the two edge states I_{cH}/I_{cL} is obtained from the ratio of the average critical current to the critical current oscillation amplitude $I_{cH}/I_{cL} = (I_{cmax} + I_{cmin})/(I_{cmax} - I_{cmin})$. For junction 1, this ratio is large, $\sim 7 > 1$, hence, corresponding to a highly asymmetric SQUID. In such an asymmetric SQUID, the dependence of $I_c(B_{\perp})$ on B_{\perp} mimics directly the CPR of the edge state with the lower critical current. But, $I_c(B)$ for junction 1 is clearly not a sine function, as one can see from Figure 2(b) and Figure 3.

Additional evidence for a nonsinusoidal CPR can be obtained by looking at the symmetry of the dependence $I_c(B_{\perp})$ as a function of B_{\perp}. For a conventional Josephson junction with a sinusoidal CPR, $I_c(B_{\perp})$ should be symmetrical with respect to current reversal $I_c(B_{\perp}) = I_c(-B_{\perp})$ and magnetic field reversal $I_c(-B_{\perp}) = I_c(B_{\perp})$. Two requirements to break these symmetries are a nonsinusoidal CPR and an asymmetry in the current distribution. However, the time-reversal symmetry conserves I_c upon simultaneous reversal of the magnetic field and the current $I_c^{\pm}(B_{\perp}) = I_c^{\mp}(-B_{\perp})$.

As is apparent from Figure 3(a), $I_c^{\pm}(B_{\perp})$ breaks the symmetries both with current and field reversal. The symmetry is restored when the current and magnetic field are reversed simultaneously, as illustrated in Figure 3(b). The time-reversal symmetry allows us to exclude flux trapping in the JJ as a reason for the observed asymmetries. The asymmetries in Figure 3 match the prediction of AJE and require a nonsinusoidal CPR and an asymmetry in current distribution.

We have found before that the supercurrent in few-layer WTe$_2$ is of 1D nature, flowing predominately along the edges and has a nonsinusoidal CPR. With the next sample we demonstrate that 1D conducting states can also reside at step edges of WTe$_2$, and they are remarkably robust. Device 2, shown in Figure 4(a), is as before a hBN-covered few-layer
The Josephson effect is present in junctions that are up to 3 μm long. (c) Critical current $I_c(B)$ as a function of perpendicular magnetic field B. Inset: $I_c(B)$ for the 2 μm long junction zoomed in to the small magnetic field region. A fast periodic oscillation with an amplitude of \sim1% is clearly discerned. (d) Sketch of a cross section of the sample near the step from 5L to 2L, illustrating the possibility that multiple 1D channels along the step appear.

Figure 4(b) shows dV/dI traces for different junctions normalized by the length of the junction. The differential resistance goes to zero for 1–3 μm long junctions, indicating the presence of Josephson current. The normal state resistance per unit length is comparable for all junctions, yielding \sim100 Ω μm$^{-1}$. For this sample, the product $I_cR_N \sim 150–380$ μV, depending on the junction and the way the normal state resistance R_N is defined. This value is close to the theoretical prediction for a short ballistic Josephson junction: $I_cR_N = \pi \Delta/e \sim 540$ μV. Here, we estimate the energy gap following the formula $\Delta(T = 0) = 1.76k_B T_c^{17}$ with $T_c = 1.1$ K defined as the maximal temperature where signs of superconductivity in the samples are still present. The agreement between the I_cR_N product and the theoretical value implies that there is a strong proximity effect and the JJs are close to the short ballistic limit.

The Josephson current for all junctions survives magnetic fields above 1 T, see Figure 4(c). This is inconsistent with a uniform supercurrent, since even for the shortest junction it would correspond to $B_S/\Phi_0 \sim 2000$ flux quantum through the JJ area. A robust large field supercurrent implies highly localized 1D channels that carry the supercurrent. The only possible place for these states are the steps from the five-layer part to bilayers, since the bilayer itself does not conduct. At a closer look, oscillations of $I_c(B)$ are visible for the 2 μm long junction, see the inset to Figure 4(c). The oscillations are clearly of a SQUID character with a period $\Delta B \sim 0.33$ mT. This period yields a smaller area $S = \Phi_0/\Delta B \sim 6.1$ μm2 than the relevant junction’s area of 9 μm2. This mismatch is likely a consequence of the sample geometry and discussed in more detail in the Supporting Information.

The measurement of $I_c(B)$ of the 2 μm long junction shows additional oscillations with a larger period of $\delta B \sim 0.3$ T (red arrows in Figure 4(c)). Similar oscillations were previously observed for topological hinge states in bismuth and were linked to a difference in wavevectors of electrons and holes forming the Andreev pairs. The observed period of oscillations is in agreement with the expected value $\delta B \sim 2\pi h v_F/\gamma_d \Phi_0 L \sim 0.15–0.7$ T, where $L = 2 \mu m$ is the length of the junction, $v_F \sim 2 \times 10^3$ ms$^{-1}$ the Fermi velocity, and $\gamma_d \sim 10–50$ the Landé g-factor. Alternatively, a slower oscillation could reflect the presence of multiple states on terraces from the five layers to the bilayer, as illustrated in Figure 4(d). The width d of this region can be estimated from the ratio of the periods of the slow $\delta B \sim 0.3$ T and fast oscillations $\delta B \sim 0.33$ mT and the width of the junction $W \sim 4.5 \mu m$, where $d \sim W/\delta B \sim 5$ nm. This value is an upper estimate for the width of the edge states.

The observation of strong Josephson coupling through 1D edge states with nonsinusoidal CPR suggests a topological origin of these states. The only predicted 1D topological states in few-layer WTe$_2$ are hinge states of a HOTI. We think that this is very plausible, since our data reproduces many features previously observed in bismuth, which is a HOTI. However, there are still some open questions. Currently we cannot resolve if the states are indeed residing on opposite hinges as expected in a HOTI. Also, the critical current values are higher than expected for a single ballistic channel $I_c^{1D} = \pi \Delta/eR_0 \approx \gamma_c/2 $ \sim 20 nA. This discrepancy is also present in bismuth and can be accounted by multiple states at several terraces on the edges and degeneracy of edge states due to multiple orbitals.

In conclusion, we present an experimental study of Josephson transport in encapsulated few-layer WTe$_2$ samples. Our data strongly suggest the presence of 1D states residing on steps and edges of WTe$_2$. The Josephson currents in these 1D states are extremely robust. They survive magnetic fields up to 2 T and extend over distances up to 3 μm. Moreover, the supercurrent demonstrates signs of nonsinusoidal CPR. Our findings fit well with the recent prediction of higher-order topological insulator states in WTe$_2$ and demonstrate many
features previously observed only in another HOTI, i.e., bismuth. 10,34

Note. During the preparation of this manuscript we became aware of two recent preprints 37,38 demonstrating edge transport in WTe2 obtained by the proximity effect from superconducting Nb leads. The experimental results in these preprints are in good agreement with our conclusions. In comparison to the former, our samples are in the thin limit and they additionally demonstrate a stronger Josephson coupling over longer distances. They thereby provide a more compelling evidence for Josephson coupling through highly localized narrow 1D states residing on the steps of WTe2.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00658.

Methods; superconductivity induced in WTe2 by normal leads, superconductivity and Josephson effect in a few-layer WTe2 device in a Hall bar geometry; supercurrent distribution in the device 2; and differential resistance as a function of magnetic field and current for the device 2 (PDF)

Accession Codes
All data in this publication are available in numerical form in the Zenodo repository at 10.5281/zenodo.3526560.

AUTHOR INFORMATION

Corresponding Authors
Artem Kononov – Department of Physics, University of Basel, CH-4056 Basel, Switzerland; Institute of Solid State Physics of the Russian Academy of Sciences - Chernogolovka, Chernogolovka 142432, Russia; orcid.org/0000-0002-3778-8239; Email: Artem.Kononov@unibas.ch
Christian Schönengerber – Department of Physics and Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland; orcid.org/0000-0002-5652-460X; Email: Christian.Schoenenberger@unibas.ch

Authors
Gulibustan Abulizi – Department of Physics, University of Basel, CH-4056 Basel, Switzerland
Kejian Qu – Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
Jiaqiang Yan – Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; orcid.org/0000-0001-6625-4706
David Mandrus – Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Kenji Watanabe – National Institute for Material Science, Tsukuba 305-0044, Japan; orcid.org/0000-0003-3701-8119
Takashi Taniguchi – National Institute for Material Science, Tsukuba 305-0044, Japan; orcid.org/0000-0002-1467-3105

Complete contact information is available at:

https://pubs.acs.org/10.1021/acs.nanolett.0c00658

Author Contributions
A.K. fabricated the devices 1 and 2, performed the measurements, and analyzed the data. G.A. optimized the fabrication recipe, developed the thickness determination method by optical contrast, and together with A.K. fabricated and measured device S1. K.Q., J.Y., and D.M. provided WTe2 crystals. K.W. and T.T. provided hBN crystals. A.K prepared the manuscript. C.S. initiated and supervised the project and participated in all discussions. All authors contributed to the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank D. Indosele for the help with measurements of the critical current and fruitful discussions, M. Endres for his help with the exfoliation and identification of WTe2 flakes, M. Joodaki for her contribution to the optical identification of WTe2 flakes thickness, and A. Baumgartner for fruitful discussions. A.K. was supported by the Georg H. Endress foundation. This project has received further funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 787414 TopSupra), from the Swiss National Science Foundation through the National Centre of Competence in Research Quantum Science and Technology (QST), and from the Swiss Nanoscience Institute (SNI). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, and CREST (JPMJCR15F3), JST. D.M. and J.Y. acknowledge support from the U.S. Department of Energy (U.S. DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division.

REFERENCES

(1) Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083.
(2) kitaev, A.Yu. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 2001, 44, 131.
(3) Fu, L.; Kane, C. L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 2008, 100, 096407.
(4) Jack, B.; et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 2019, 364, 125S.
(5) Solyanov, A. A.; et al. Type-II Weyl semimetals. Nature 2015, 527, 495–498.
(6) Li, P.; Wen, Y.; He, X.; Zhang, Q.; Xia, C.; Yu, Z.-M.; Yang, S. A.; Zhu, Z.; Alshareef, H. N.; Zhang, X.-X.; et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 2017, 8, 2150.
(7) Fei, Z.; et al. Edge conduction in monolayer WTe2. Nat. Phys. 2017, 13, 677.
(8) Wu, S.; Fatemi, V.; Gibson, Q. D.; Watanabe, K.; Taniguchi, T.; Cava, R. J.; Jarillo-Herrero, P. Observation of the quantum spin Hall effect up to 100 K in a monolayer crystal. Science 2018, 359, 76–79.
(9) Wang, Z.; Wieder, B. J.; Li, J.; Yan, B.; Bernevig, B. A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XVTe2 (X = Mo,W). Phys. Rev. Lett. 2019, 123, 186401.
(10) Murani, A.; Kasumov, A.; Sengupta, S.; Kasumov, Y. A.; Volkov, V. T.; Khodos, I. D.; Brisset, F.; Delargenne, R.; Chepelianskii, A.; Debloch, R.; Bouchiat, H.; Gueron, S. Ballistic edge states in...
Bismuth nanowires revealed by SQUID interferometry. Nat. Commun. 2017, 8, 15941.
(11) Schindler, F.; et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918.
(12) Shvetsov, O. O.; Kononov, A.; Timonina, A. V.; Kolesnikov, N. N.; Deviatov, E. V. Realization of a Double-Slit SQUID Geometry by Fermi Arc Surface States in a WTe2 Weyl Semimetal. JETP Lett. 2018, 107, 774.
(13) Dyne, R. C.; Fulton, T. A. Supercurrent density distribution in Josephson Junctions. Phys. Rev. B 1971, 3, 3015.
(14) Chen, C.; He, J.; Ali, M. N.; Lee, G. H.; Fong, K. C.; Law, K. T. Asymmetric Josephson effect in inversion symmetry breaking topological materials. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 98, 075430.
(15) Sochnikov, I.; Maier, L.; Watson, C. A.; Kirtley, J. R.; Gould, C.; Tkachov, G.; Hankiewicz, E. M.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.; Moler, K. A. Nonsinusoidal Current-Phase Relationship in Josephson Junctions from the 3D Topological Insulator HgTe. Phys. Rev. Lett. 2015, 114, 066801.
(16) Bocquillon, E.; et al. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 2017, 12, 137.
(17) Tinkham, M. Introduction to Superconductivity, 2nd ed.; McGraw-Hill, Inc.: New York, 1996.
(18) Kang, D.; et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 2015, 6, 7804.
(19) Pan, X.-C.; et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 2015, 6, 7805.
(20) Asaba, T.; Wang, Y.; Li, G.; Xiang, Z.; Tinsman, C.; Chen, L.; Zhou, S.; Zhao, S.; Laleyra, D.; Li, Y.; Mi, Z.; Li, L. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2. Sci. Rep. 2018, 8, 6520.
(21) Sajadi, E.; et al. Gate-induced superconductivity in a monolayer topological insulator. Science 2018, 362, 922.
(22) Fatemi, V.; et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 2018, 362, 926.
(23) Shao, B.; Eich, A.; Sanders, C.; Nqankeu, A. S.; Bianchi, M.; Hofmann, P.; Khajetoorians, A. A.; Wehling, T. O. Pseudodoping of a metallic two-dimensional material by the supporting substrate. Nat. Commun. 2019, 10, 180.
(24) Shvetsov, O. O.; Esin, V. D.; Timonina, A. V.; Kolesnikov, N. N.; Deviatov, E. V. Surface superconductivity in three-dimensional Cd3As2 semimetal at the interface with a gold contact. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 99, 125305.
(25) Tiwari, B.; Goyal, R.; Jha, R.; Dixit, A.; Awana, V. P. S. PdTe: a 4.5 K type-II BCS superconductor. Supercond. Sci. Technol. 2015, 28, 055008.
(26) Teknowijoyo, S.; et al. Nodeless superconductivity in the type-II Dirac semimetal PdTe2: London penetration depth and pairing-symmetry analysis. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 98, 024508.
(27) Kononov, A.; et al. Signature of Fermi arc surface states in Andreev reflection at the WTe2 Weyl semimetal surface. EPL 2018, 122, 27004.
(28) Kurter, C.; Finck, A. D. K.; Hor, Y. S.; Van Harlingen, D. J. Evidence for an anomalous current–phase relation in topological insulator Josephson junctions. Nat. Commun. 2015, 6, 7130.
(29) Pribiag, V.; Beukman, A.; Qu, F.; et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat. Nanotechnol. 2015, 10, 593–597.
(30) Nanda, G.; et al. Current-Phase Relation of Ballistic Graphene Josephson Junctions. Nano Lett. 2017, 17, 3396.
(31) Golod, T.; Rydh, A.; Krasnov, V. M. Detection of the Phase Shift from a Single Abrikosov Vortex. Phys. Rev. Lett. 2010, 104, 227003.
(32) Wang, L.; et al. Tuning magnetotransport in a compensated semimetal at the atomic scale. Nat. Commun. 2015, 6, 8892.