Ultracold atom-molecule collisions with fermionic atoms

J. P. D’Incao, 1 B. D. Esry, 2 and Chris H. Greene 1

1 Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
2 Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA

Elastic and inelastic properties of weakly bound s- and p-wave molecules of fermionic atoms that collide with a third atom are investigated. Analysis of calculated collisional properties of s-wave dimers of fermions in different spin states permit us to compare and highlight the physical mechanisms that determine the stability of s-wave and p-wave molecules. In contrast to s-wave molecules, the collisional properties of p-wave molecules are found to be largely insensitive to variations of the p-wave scattering length and that these collisions will usually result in short molecular lifetimes. We also discuss the importance of this result for both theories and experiments involving degenerate Fermi gases.

PACS numbers: 03.75.Ss, 34.50.Cx, 34.50.-s, 31.15.xj

I. INTRODUCTION

In the past decade, the advent of magnetic field control of interatomic interactions near a Feshbach resonance has rapidly sparked both experimental capabilities and theoretical understanding in the field of ultracold quantum gases. Using s-wave Feshbach resonances in an atomic Fermi gas with two different spin states [1], fundamental problems such as the crossover between Bose-Einstein condensation and the Bardeen-Cooper-Schrieffer-type superfluidity [2] have become accessible experimentally, allowing tests of fundamental theories and studies of novel phenomena (see [1] and references within). Recently, the observation of p-wave Feshbach resonances in spin-polarized Fermi gases [2] instigated theoretical studies that predicted a variety of novel many-body phenomena [3]. Moreover, the recent experimental observation of p-wave molecules in a 40K Fermi gas has provided a starting point for further investigations of novel many-body phenomena in the strongly interacting regime [4]. The experimental realization of the theoretical predictions will hinge on the lifetime and stability of p-wave molecules, since, e.g., the long lifetime predicted [2] and found [4,5] for s-wave molecules was one of the key ingredients that facilitated the observation of fermionic superfluid behavior in dilute gases. In Ref. [2], though, it was found that p-wave molecules are short-lived which limits the possible types of states that can be created for p-wave molecular condensates.

In this paper, we explore the physics of three-body collisions involving both s-wave and p-wave molecules with the goal of understanding what determines their different levels of stability. For both s- and p-wave cases, the dominant contribution to the inelastic atom-molecule rate coefficient at sufficiently low collision energies has s-wave character and therefore does not vanish, even at zero temperature. Such processes thus play an important role for atom-molecule mixtures near a p-wave Feshbach resonance. Our results indicate that many of the characteristics of p-wave 40K2 molecules are likely to be shared by other atomic species. This expectation is based on the universal nature of our results that are discussed below. We have also found that, near a p-wave Feshbach resonance, s-wave atom-molecule collisions are likely to be insensitive to the presence of the Feshbach resonance, in contrast to the s-wave case. However, our results indicate that while inelastic p-wave atom-molecule collisions are suppressed, elastic p-wave atom-molecule collisions are enhanced near a p-wave resonance. We then briefly discuss the three-body parameters that might be important for understanding many-body aspects in degenerate Fermi gases with resonant p-wave interactions. The primary goal of the present study is to discuss calculations carried out for both s- and p-wave molecules that highlight the main mechanisms that cause their lifetimes to be so different.

Near a two-body Feshbach resonance, the physics that determines the collisional properties of s-wave molecules is closely related to what has been called Efimov physics [6, 8]. Efimov physics occurs when the two-body s-wave scattering length, \(a_s = -\lim_{k \to 0} \tan \delta_s / k \) with \(\delta_s \) the phase shift and \(k \) the wave number, is abnormally large compared to the characteristic range \(r_0 \) of the interatomic interactions. For s-wave molecules composed of fermions in different spin states, say FF′, Efimov physics predicts a universal repulsive effective interaction for FF′ + F collisions which is responsible for the \(a_s^{-3.33} \) suppression of atomic and molecular losses [8, 9]. For FF′ + F collisions, Efimov physics also predicts that the atom-molecule scattering length should be \(a_{ad} \approx 1.2 a_s \), which ensures a strong atom-molecule interaction in the many-body quantum gas, and which provides efficient evaporation cooling near a Feshbach resonance. A positive \(a_{ad} \) can also protect the atom-molecule mixture against collapse.

However, as has been shown experimentally [8], near a p-wave Feshbach resonance the situation differs strikingly and p-wave molecules composed of spin-polarized fermions in a single internal substate, say FF, tend to have short lifetimes. Only recently has atom-molecule scattering for large p-wave scattering lengths, \(a_p = \lim_{k \to 0} (-\tan \delta_p / k^3)^{1/3} \), been studied [13, 14]. (Note that the p-wave scattering is sometimes characterized equivalently by the “p-wave scattering volume” \(V_p \equiv a_p^3 \).)
Three-body recombination of spin-stretched fermions received earlier attention \cite{13,15} where it was shown that recombination rate could be significant near a \(p \)-wave resonance despite the Fermi statistics suppression. More recently, the recombination channel in the \(FFF \) system was studied using a zero-range \(p \)-wave pseudopotential interaction \cite{10}. There, the existence of a large number of weakly bound three-body states analogous to the Efimov states for bosons \cite{7} was proposed. In our calculations, we found similar three-body states at the simplest level of approximation of the hyperspherical adiabatic representation. They disappear, however, once nonadiabatic effects are included, which leads us to speculate that these nonadiabatic corrections might also eliminate the three-body states found in Ref. \cite{10}. Moreover, it is not clear whether the energy dependence neglected in their \(p \)-wave pseudopotentials \cite{11} affects the universality of the results predicted in Ref. \cite{10}. Our results presented here do not suffer from such limitations because our two-body finite range model potential intrinsically includes such corrections.

In this paper we focus on atom-molecule scattering properties and find that both elastic and inelastic \(s \)-wave \(FFF \) processes are largely and surprisingly insensitive to variations of \(a_p \) and potentially explain the loss rates observed in Ref. \cite{10}. This result agrees with the qualitative arguments in Ref. \cite{12}. We trace the insensitivity of the atom-molecule losses to the weakly attractive effective atom-molecule interaction and to the fact that the size of a \(p \)-wave molecule is mainly determined by \(r_0 \) and therefore does not change as \(a_p \) varies, in contrast to \(s \)-wave molecules whose size is directly related to \(a_s \). Our results, therefore, indicate that the insensitivity to variations of \(a_p \) of both elastic and inelastic \(FFF \) processes is likely to be a universal property of \(p \)-wave molecules. Based on these results we also speculate on which few-body parameters are important for many-body theories for spin-polarized Fermi gases.

\section{Theoretical Background}

We have extracted the three-body elastic and inelastic collisional properties of \(s \) - and \(p \)-wave molecules from numerically converged solutions of the three-body Schrödinger equation carried out in the adiabatic hyperspherical representation \cite{12}, using model finite-range two-body interactions. This representation offers a simple, unifying picture from which we can quantitatively determine and then qualitatively interpret the origin of the significantly different collisional properties of \(s \)- and \(p \)-wave molecules.

In the adiabatic hyperspherical representation, the three-body system is described in terms of the hyperspherical hyperspherically defined by

\[
-\frac{1}{2\mu} \frac{d^2}{dR^2} + W_{v}(R) \] \(F_{v}(R) \)

\[
+ \sum_{\nu\neq v} V_{\nu\nu'}(R)F_{\nu'}(R) = EF_{v}(R),
\]

where \(\mu = m/\sqrt{3} \) is the three-body reduced mass for three identical particles (\(m \) being the atomic mass), \(E \) is the total energy, \(F_{v} \) is the hyperradial wave function, and \(\nu \) is a collective index that represents all quantum numbers necessary to label each channel. In the above expression, \(V_{\nu\nu'} \) are the nonadiabatic couplings calculated in terms of the \(R \) derivative of the hyperangular solutions \cite{12}. In Eq. (1), the nonadiabatic couplings \(V_{\nu\nu'} \) drive transitions between different channels, represented by the effective potentials \(W_{\nu} \).

In our calculations we have used the two-body model interaction

\[
v(r_{ij}) = -D \operatorname{sech}^2(r_{ij}/r_0),
\]

where \(r_{ij} \) is the interatomic separation. We have taken \(r_0 \) to be the van der Waals length \cite{16} for \(^{40}\text{K} \) atoms, \(r_0 = \frac{1}{2}(a_{b0})^{1/4} \approx 65 \text{ a.u.} \), and \(m \) to be the \(^{40}\text{K} \) atomic mass. We varied \(a_s \) and \(a_p \) by changing the potential depth \(D \) around the vicinity of the value that produces a weakly bound state of \(s \)- and \(p \)-wave character, respectively. For \(FFF' \) systems we adjusted \(D \) to produce two deeply bound \(FF \) molecules (one \(s \)-wave and one \(p \)-wave) in addition to the weakly bound \(s \)-wave molecule, and we neglected \(FF \) interactions. For \(FFF \) systems, we adjusted \(D \) to produce one deeply bound \(p \)-wave molecule and one weakly-bound \(p \)-wave molecule. In a more realistic model for \(p \)-wave interactions near a Feshbach resonance, however, one needs to consider the magnetic dipole-dipole interaction which treats the resonance in terms of its angular momentum projection \(m_p = 0 \) and \(m_p = \pm 1 \) \cite{17}. The model, which does not include dipole-dipole interactions, is applicable to \(m_p = 0 \) and \(|m_p| = 1 \) resonances individually and does not include coupling between \(m_p = 0 \) and \(|m_p| = 1 \) molecules.

At ultracold energies, the dominant contribution for both \(FF + F \) and \(F + FF' \) collisions comes from the relative \(s \)-wave, which implies that the dominant three-body symmetry for \(FFF' \) is \(J^\pi = 0^+ \, (J \text{ is the total orbital angular momentum and } \pi \text{ is the total parity}) \). While for \(FFF \) it is \(J^\pi = 1^+ \). Figure 1 shows typical effective potentials \(W_{\nu} \) for \(FFF' \) [Fig. 1(a)] and \(FFF \) systems [Fig. 1(b)] obtained for \(a_s \approx 300 \) and \(a_p \approx 170 \text{ a.u.} \), respectively. For these scattering lengths, the binding energy for \(s \)-wave molecules, \(E_{0}^b \approx 1/ma_p^2 \), and \(p \)-wave molecules, \(E_{1}^p \approx 2r_p/ma_p^3 \) \cite{12}, are comparable, making it easier to contrast the two cases.

In Fig. 1 the series of effective potentials that converge to zero as \(R \rightarrow \infty \) are three-body continuum channels representing collisions between three free atoms. Lowering potentials represent atom-molecule entrance or escape channels; notice that there are two \(FF + F \) channels.
in Fig. (b) converging to the p-wave FF molecule energy at large R due the possible $l = 0$ and $l = 2$ atom-molecule relative angular momenta allowed for $J^* = 1^+$. In Fig. (b) we also sketch the elastic and inelastic pathways that are of interest here.

From the figure, we notice a fundamental difference between the initial $FF'F + F$ and $FF + F$ collision channels. For $FF'F + F$ collisions, the effective potential is repulsive (proportional to $1/R^2$) in the range $r_0 \ll R \ll a_s$, while the $l = 0$ effective potential for $FF + F$ collisions is attractive in the analogous range $r_0 \ll R \ll a_p^{3/2}/r_p^{1/2}$ [the quantity $a_p^{3/2}/r_p^{1/2}$ can be understood from the length scale defined by the molecular binding energy $1/k_p = (mE_b)^{-1/2}$. The presence of a repulsive barrier for $FF'F + F$ collisions whose range scales with a_s suggests that a_{ad} should be proportional to a_s, in analogy to scattering from a hard sphere of radius a_s. The inelastic processes for this case, however, should be suppressed as a_s increases, since it becomes increasingly difficult for the system to tunnel to the region $R \approx r_0$ where the coupling to the deeper molecular states lies. We have verified this statement from our calculations of the nonadiabatic couplings in Eq. (b). In fact, in Ref. [5] it was demonstrated that the suppression of the inelastic losses scale with a as $a_s^{4/3}a_p = a_s^{-3.33}$, where r_0 is related with the strength of the repulsive potential barrier in the range $r_0 \ll R \ll a_s$. In contrast, the presence of an attractive potential for $FF + F$ collisions instead of a repulsive potential allows the atom and molecule to approach each other closely without any suppression of the inelastic transition probability. In addition, the absence of a repulsive barrier does not allow us to make an analogy to scattering from a hard sphere, which implies that a_{ad} is not necessarily a simple function proportional to a_p.

In Refs. [12, 13], it has been speculated that there is one trimer state in this attractive potential that can cause resonant enhancement of the elastic and inelastic rates when varying a_p. As we show below, in our calculations (see Fig. 2) we do observe resonant effects for elastic and inelastic $FF + F$ collisions, and we do associate them with the formation of a trimer state as predicted in Refs. [12, 13]. However, we believe such trimer states are likely to be non-universal in the sense that their energy as a function of a_p depends on the short-range physics not fully represented by the two-body parameters in Ref. [12, 13]. Therefore, the resonant peaks in the elastic and inelastic rates will likely depend on a purely three-body non-universal parameter, similar to the problem with identical bosons where all three-body observables depend on a three-body parameter representing the short-range physics [7, 8, 19].

III. ELASTIC AND INELASTIC ATOM-MOLECULE COLLISIONS

We have verified the qualitative behavior described above for the elastic and inelastic rates by solving the Schrödinger equation (1) in coupled hyperradial form using an R-matrix approach [20]. We define the atom-molecule scattering length in terms of the real part of the complex phase-shift obtained from the S-matrix element $\exp(2i\delta_{ad}) = S_{ad,ad}$ associated with the atom-molecule channel,

$$a_{ad} = -\lim_{k_{ad} \to 0} \frac{\text{Re} \left[\tan \delta_{ad} \right]}{k_{ad}},$$

with $k_{ad} = 2\mu_{ad}(E + E_b)^{1/2}$ where $\mu_{ad} = 2m/3$ and E_b is the binding energy of the weakly bound dimer. For inelastic collisions, we define the vibrational relaxation
We have calculated final collision channels (atom+deeply bound molecule). where \(i \) represents the initial collision channel (atom+weakly bound molecule); and \(f \), all possible final collision channels (atom+deeply bound molecule). We have calculated \(a_{ad} \) and \(V_{rel} \) for values of \(s_0 \) and \(a_{p} \) ranging from \(r_0 \approx 65 \) a.u. up to approximately 70 \(r_0 \) at a collision energy of 1 nK, in order to satisfy the \(k_{ad} \rightarrow 0 \) limit in Eq. (3). The results are shown in Figs. 2(a) and (b).

For \(FF' + F \) collisions, we have obtained both \(a_{ad} \) and \(V_{rel} \) in the \(s_0 \gg r_0 \) regime that verifies the \(a_{ad} \approx 1.2s_0 \) universal prediction 8 and reproduces the strong \(a_s^{-3.33} \) suppression of the inelastic rate 8, 9. This scenario is rather favorable for the realization of cold atom-molecule mixtures since it combines strong elastic rates with suppression of atomic and molecular losses.

On the other hand, \(FF + F \) elastic and inelastic processes involving \(p \)-wave molecules are quite different. For smaller values of \(a_{p} \), we observe a strong variation of both \(a_{ad} \) and \(V_{rel} \) [see Fig. 2] due to the presence of a trimer state 13, 14 that becomes unbound as \(a_{p} \) increases. As we mentioned before, we do not expect the energy of such a trimer state, nor the value of \(a_{p} \) at which it appears, to be universal, since they both depend on the short-range physics. Consequently, the resonance position in Fig. 2 can change, and eventually disappear, for different choices of the two-body interaction. However, near a \(p \)-wave two-body Feshbach resonance, i.e., in the regime \(a_{p} \gg r_0 \), our results for \(a_{ad} \) and \(V_{rel} \) are insensitive to variations of \(a_{p} \). We rationalize this result by recognizing that even though \(a_{p} \) changes substantially, the size of the weakly-bound \(p \)-wave molecule is practically unchanged. We expect that this insensitivity of \(a_{ad} \) and \(V_{rel} \) to variations of \(a_{p} \) is universal but that their actual values will not be universal since the system must access small \(R \) where details of the two-body interactions become important. Further, it can be demonstrated by a simple WKB analysis 8 that the constant character of \(V_{rel} \) as a function of \(a_{p} \) is ensured provided the effective potential falls off faster than \(1/R^2 \). From our numerical calculations, for instance, we found that \(a_{ad} < 0 \) in the regime \(a_{p} \gg r_0 \), in contrast to the \(a_{ad} > 0 \) result of Refs. 13, 14.

The consequences of the three-body physics discussed above for the lifetime and stability of spin-polarized fermionic mixtures of atoms and molecules are very different from the scenario found for a gas of fermions in two different spin states. The constant value of \(a_{ad} \) for \(a_{p} \gg r_0 \) means that atom-molecule collisions will not help much for evaporative cooling, unless \(a_{ad} \) is unnaturally large. More importantly, the insensitivity of \(V_{rel} \) to \(a_{p} \) implies that the molecular lifetimes do not change as we approach the point of divergence of \(a_{p} \), in contrast to \(s \)-wave molecules whose lifetime increases near a zero-energy Fano-Feshbach resonance. These results are in agreement with recent experimental data for an atom-molecule gas mixture of \(^{40} \)K atoms 8, where it was found that the lifetimes of both \(m_p = 0 \) and \(|m_p| = 1 \) molecules do not depend on the magnetic field and therefore on \(a_{p} \). In Ref. 8, however, it was found that the molecules were shorter-lived than one would expect based on the magnetic field independent \(two \)-body dipolar relaxation rates. More recently 21, loss rates substantially below those found in 8 were observed after the atoms had been removed from the trap, leaving only molecules. Therefore, since both dipolar relaxation and atom-molecule collisions yield molecular losses independent of the magnetic field, we believe that the shorter molecular lifetimes were due to vibrational relaxation as we have calculated here. Our prediction of approximately constant atom-molecule losses also demonstrates that even when atoms are prepared in their lowest hyperfine state, and therefore dipolar relaxation is energetically forbidden, a magnetic field independent molecular lifetime is likely to be found for

\[
V_{rel} = \sum_{f} \frac{(2J + 1)f}{\mu_{ad}k_{ad}} |S_{f-i}|^2, \tag{4}
\]

where \(i \) represents the initial collision channel (atom+weakly bound molecule); and \(f \), all possible final collision channels (atom+deeply bound molecule). We have calculated \(a_{ad} \) and \(V_{rel} \) for values of \(s_0 \) and \(a_{p} \) ranging from \(r_0 \approx 65 \) a.u. up to approximately 70 \(r_0 \) at a collision energy of 1 nK, in order to satisfy the \(k_{ad} \rightarrow 0 \) limit in Eq. (3). The results are shown in Figs. 2(a) and (b).

For \(FF' + F \) collisions, we have obtained both \(a_{ad} \) and \(V_{rel} \) in the \(s_0 \gg r_0 \) regime that verifies the \(a_{ad} \approx 1.2s_0 \) universal prediction 8 and reproduces the strong \(a_s^{-3.33} \) suppression of the inelastic rate 8, 9. This scenario is rather favorable for the realization of cold atom-molecule mixtures since it combines strong elastic rates with suppression of atomic and molecular losses.

On the other hand, \(FF + F \) elastic and inelastic processes involving \(p \)-wave molecules are quite different. For smaller values of \(a_{p} \), we observe a strong variation of both \(a_{ad} \) and \(V_{rel} \) [see Fig. 2] due to the presence of a trimer state 13, 14 that becomes unbound as \(a_{p} \) increases. As we mentioned before, we do not expect the energy of such a trimer state, nor the value of \(a_{p} \) at which it appears, to be universal, since they both depend on the short-range physics. Consequently, the resonance position in Fig. 2 can change, and eventually disappear, for different choices of the two-body interaction. However, near a \(p \)-wave two-body Feshbach resonance, i.e., in the regime \(a_{p} \gg r_0 \), our results for \(a_{ad} \) and \(V_{rel} \) are insensitive to variations of \(a_{p} \). We rationalize this result by recognizing that even though \(a_{p} \) changes substantially, the size of the weakly-bound \(p \)-wave molecule is practically unchanged. We expect that this insensitivity of \(a_{ad} \) and \(V_{rel} \) to variations of \(a_{p} \) is universal but that their actual values will not be universal since the system must access small \(R \) where details of the two-body interactions become important. Further, it can be demonstrated by a simple WKB analysis 8 that the constant character of \(V_{rel} \) as a function of \(a_{p} \) is ensured provided the effective potential falls off faster than \(1/R^2 \). From our numerical calculations, for instance, we found that \(a_{ad} < 0 \) in the regime \(a_{p} \gg r_0 \), in contrast to the \(a_{ad} > 0 \) result of Refs. 13, 14.

The consequences of the three-body physics discussed above for the lifetime and stability of spin-polarized fermionic mixtures of atoms and molecules are very different from the scenario found for a gas of fermions in two different spin states. The constant value of \(a_{ad} \) for \(a_{p} \gg r_0 \) means that atom-molecule collisions will not help much for evaporative cooling, unless \(a_{ad} \) is unnaturally large. More importantly, the insensitivity of \(V_{rel} \) to \(a_{p} \) implies that the molecular lifetimes do not change as we approach the point of divergence of \(a_{p} \), in contrast to \(s \)-wave molecules whose lifetime increases near a zero-energy Fano-Feshbach resonance. These results are in agreement with recent experimental data for an atom-molecule gas mixture of \(^{40} \)K atoms 8, where it was found that the lifetimes of both \(m_p = 0 \) and \(|m_p| = 1 \) molecules do not depend on the magnetic field and therefore on \(a_{p} \). In Ref. 8, however, it was found that the molecules were shorter-lived than one would expect based on the magnetic field independent \(two \)-body dipolar relaxation rates. More recently 21, loss rates substantially below those found in 8 were observed after the atoms had been removed from the trap, leaving only molecules. Therefore, since both dipolar relaxation and atom-molecule collisions yield molecular losses independent of the magnetic field, we believe that the shorter molecular lifetimes were due to vibrational relaxation as we have calculated here. Our prediction of approximately constant atom-molecule losses also demonstrates that even when atoms are prepared in their lowest hyperfine state, and therefore dipolar relaxation is energetically forbidden, a magnetic field independent molecular lifetime is likely to be found for

\[
V_{rel} = \sum_{f} \frac{(2J + 1)f}{\mu_{ad}k_{ad}} |S_{f-i}|^2, \tag{4}
\]
other atomic species, but now limited by three-body loss processes. In the absence of atoms, molecule-molecule elastic and inelastic processes should also be important. We speculate that these are also likely to be insensitive to variations of \(a_p \) (see also Ref. [14]), based on the fact that the size of a \(p \)-wave molecule does not depend on \(a_p \).

IV. FEW-BODY PARAMETERS FOR MANY-BODY THEORIES

The fact that \(a_{ad} \) does not seem to depend on \(a_p \) raises the question whether \(a_{ad} \) will be the important parameter for theories attempting to describe many-body aspects of atom-molecule mixtures in spin-polarized Fermi gases. A constant value of \(a_{ad} \) across a Feshbach resonance essentially means that the atom-molecule interaction does not “feel” the presence of the \(p \)-wave resonance. From this perspective, the atom-molecule interaction is not controllable, and the atom-molecule mixture cannot be claimed to be strongly interacting near the resonance. For this reason, we have also performed some preliminary calculations to explore \(p \)-wave atom-molecule collisions. For \(J^\pi = 0^+, 1^+, \) and \(2^+ \) (which are all the symmetries that allow \(p \)-wave collisions between an atom and a \(p \)-wave molecule), we have found that the three-body effective potentials are now repulsive in the range \(r_0 < R < a_p^{3/2}/r_p^{1/2} \), instead of attractive as found for \(J^\pi = 1^- \). The presence of such a repulsive barrier suppresses inelastic \(p \)-wave atom-molecule collisions [8], making these collisions less important than \(s \)-wave collisions in determining the lifetime of \(p \)-wave molecules. On the other hand, the repulsive barrier indicates that the \(p \)-wave atom-molecule scattering length, \(a_{ad}^{p} \), should be proportional to \(a_p^{3/2}/r_p^{1/2} \), again in analogy to scattering from a hard-sphere. Therefore, it is likely that \(a_{ad}^{p} \) will be an important parameter for many-body theories of atom-molecule mixtures near a \(p \)-wave resonance, since \(a_{ad}^{p} \) is a controllable parameter. Experimentally, however, \(p \)-wave atom-molecule interactions will be comparably difficult to control as \(p \)-wave atom-atom interactions because of the suppression of the energy dependent elastic cross-sections. Certainly, it will be necessary to explore in depth the importance of \(a_{ad}^{p} \), but this discussion is outside the scope of this paper.

V. SUMMARY

In this paper, we have determined the atom-molecule scattering length, \(a_{ad} \), and vibrational relaxation rate, \(V_{rel} \), for collisions involving \(s \)- and \(p \)-wave molecules of fermionic atoms as a function of \(a_s \) and \(a_p \), which can be controlled with two-body Feshbach resonances. We have determined \(a_{ad} \) and \(V_{rel} \) for \(s \)-wave molecules of fermionic atoms in different spin states, verifying previously derived results. We could thus identify the mechanisms that control the collisional properties of \(p \)-wave molecules. For spin-polarized systems, we have found that both \(a_{ad} \) and \(V_{rel} \) are insensitive to variations of the two-body \(p \)-wave scattering length \(a_p \) for \(a_p > r_0 \), consistent with the recent experimental data in Ref. [5]. We expect the results for \(a_{ad} \) and \(V_{rel} \) to be universal with respect to their insensitivity to variations of \(a_p \) but their values can change for different atomic species. We also speculated that, due to the constant character of \(a_{ad} \), the relevant parameter for many-body theories for a spin-polarized mixture of atoms and molecules is likely to be associated with \(p \)-wave collisions between a fermionic atom and a \(p \)-wave molecule. Our preliminary results indicate that the \(p \)-wave scattering length for such collisions, \(a_{ad}^{p} \), is likely to be proportional to \(a_p^{3/2}/r_p^{1/2} \).

Note that the very recent preprint by Jona-Lasinio et al. [13] argues that the threshold exponent for three-body recombination of spin-polarized fermions should be proportional to \(K_3 \propto a_p^{15/2}/r_p^{1/2} \) at large \(p \)-wave scattering lengths. This differs slightly from the prediction of Suno et al. [15] that \(K_3 \propto a_p^{8} \). The derivation of Suno et al. was, in fact, based on dimensional analysis, starting from the assumption that \(a_p \) was the dominant length scale. In fact, it is now understood that \(a_p \) alone does not adequately describe the dominant length scale for two-body \(p \)-wave scattering, implying that a modification of the dimensional analysis prediction of Suno et al. should be expected. Investigation of this point will be relegated to future studies.

This work was supported by the National Science Foundation and the Air Force Office of Scientific Research. We also want acknowledge the Keck Foundation for providing computational resources.

[1] C. A. Regal, C. Ticknor, J. L. Bohn, and, D. S. Jin, Nature (London) 424, 47 (2003); S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, and R. Grimm, Science 302, 2101 (2003); M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004); G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, ibid. 95, 020404 (2005).

[2] D. M. Eagles, Phys. Rev. 186, 456 (1969).

[3] C. A. Regal, C. Ticknor, J. L. Bohn, and, D. S. Jin, Phys. Rev. Lett. 90, 053201 (2003); K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, ibid. 95, 230401 (2005); J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702(R) (2004); C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach, W. Ket-
terle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, \textit{ibid} \textbf{71}, 045601 (2005).

[4] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett. \textbf{94}, 230403 (2005); C.-H. Cheng and S.-K. Yip, \textit{ibid}. \textbf{95}, 070404 (2005); Y. Ohashi, \textit{ibid}. \textbf{94}, 050403 (2005); M. Iskin and C. A. R. Sá de Melo, \textit{ibid}. \textbf{96}, 040402 (2006); A. Bulgac, M. McNeil Forbes, and A. Schwenk, \textit{ibid}. \textbf{97}, 020402 (2006).

[5] J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. \textbf{98}, 200403 (2007).

[6] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. \textbf{92}, 083201 (2004); J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, \textit{ibid}. \textbf{91}, 240401 (2003); S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, \textit{ibid}. \textbf{91}, 240402 (2003); K. E. Strecker, G. B. Partridge, and R. G. Hulet, \textit{ibid}. \textbf{91} 080406 (2003).

[7] V. Efimov, Sov. J. Nucl. Phys. \textbf{12}, 589 (1971); \textbf{29}, 546 (1979); Nucl. Phys. \textbf{A210}, 157 (1973).

[8] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. \textbf{94}, 213201 (2005).

[9] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. \textbf{93}, 090404 (2004).

[10] J. H. Macek and J. Sternberg, Phys. Rev. Lett. \textbf{97}023201 (2006); J. H. Macek, Nucl. Phys. A \textbf{790}, 747 (2007).

[11] R. Stock, A. Silberfarb, E. L. Bolda, and I. H. Deutsch, Phys. Rev. Lett. \textbf{94}, 023202 (2005); L. Pricoupenko, Phys. Rev. A \textbf{73}, 012701 (2006).

[12] H. Suno, B. D. Esry, C. H. Greene and J. P. Burke, Jr., Phys. Rev. A \textbf{65}, 042725 (2002).

[13] M. Jona-Lasinio, L. Pricoupenko, and Y. Castin, \texttt{arXiv:0708.0610v1} [cond-mat.other];

[14] J. Levinsen, N. R. Cooper, and V. Gurarie, Phys. Rev. Lett. \textbf{99}, 210402 (2007).

[15] H. Suno, B. D. Esry, and C. H. Greene, Phys. Rev. Lett. \textbf{90}, 053202 (2003); H. Suno, B.D. Esry, and C.H. Greene, New J. Phys. \textbf{5}, 53 (2003).

[16] T. Köhler, and K. Göral, and Paul S. Julienne, Rev. Mod. Phys. \textbf{78}, 1311 (2006).

[17] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev. A \textbf{69}, 042712 (2004).

[18] This approximate value for the binding energy of p-wave dimers can be obtained assuming the effective range expansion $k^3 \cot \delta_p \approx -1/a_p^3 - k^2/2r_p$ and determining the poles of the scattering amplitude.

[19] E. Braaten and H.-W. Hammer, Phys. Rep. \textbf{428}, 259 (2006).

[20] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys. \textbf{68}, 1015 (1996).

[21] D. S. Jin, J. P. Gaebler, and J. T. Stewart, International Conference on Laser Spectroscopy, Telluride, Colorado, (2008) in press.