ON THE TOPOLOGICAL ASPECTS OF ARITHMETIC
ELLiptic curves

KAZUMA MORITA

Abstract. In this short note, we shall construct a certain topological family which contains all elliptic curves over \Q and, as an application, show that this family provides some geometric interpretations of the Hasse-Weil L-function of an elliptic curve over \Q whose Mordell-Weil group is of rank ≤ 1.

1. Introduction

For any elliptic curve E over \Q, there exists a rational newform f such that we have $L(E, s) = L(f, s)$ and, in particular, the Fourier expansion of f tells us the eigenvalues of the Frobenius operator acting on the Tate module of the strong Weil curve modulo p. In this paper, we shall deform the Fourier expansion of f with respect to the arguments $\{\theta_p\}_p$ of these eigenvalues and construct a topological family attached to these deformed differential forms. This family contains all elliptic curves over \Q up to isogeny and we expect that we can deduce the arithmetic facts by using the topological methods. Actually, as an application, if E is an elliptic curve over \Q whose Mordell-Weil group is of rank ≤ 1, we will show that this family provides some geometric interpretations of the Hasse-Weil L-function of E.

Acknowledgments. The author would like to thank Professor Masanori Asakura and Iku Nakamura for useful discussions. This research was partially supported by JSPS Grant-in-Aid for Research Activity Start-up.

2. Review of the classical theory

Let \mathbb{H} be the upper half-plane and $\mathbb{H}^* = \mathbb{H} \cup \Q \cup \{\infty\}$ be the extended upper half-plane which is obtained by adding the cusps $\Q \cup \{\infty\}$. The modular group $\Gamma = \text{PSL}_2(\mathbb{Z})$ acts discontinuously on \mathbb{H} via linear fractional transformations. Let $\Gamma_0(N)$ denote the congruence subgroup

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \pmod{N} \right\}$$

Date: January 20, 2013.
1991 Mathematics Subject Classification. 11F03, 11G05, 11G40.
Key words and phrases. modular forms, elliptic curves, L-functions,
of Γ. The space of cusp forms of weight 2 for $\Gamma_0(N)$ will be denoted by $S_2(N)$. Then, every cusp form $f(z) \in S_2(N)$ ($z \in \mathbb{H}$) has the Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} a_n(f)q^n \quad (a_n(f) \in \mathbb{C}, \ q = e^{2\pi i z}).$$

We say that $f(z)$ is a normalized cusp form if we have $a_1(f) = 1$. On the other hand, the space of cusp forms $S_2(N)$ is equipped with the Hecke operators:

- $T_p : f(z) \mapsto pf(pz) + \frac{1}{p} \sum_{r=0}^{p-1} f\left(\frac{z+r}{p}\right)$ (for all the Hecke operators T_p)
- $U_p : f(z) \mapsto \frac{1}{p} \sum_{r=0}^{p-1} f\left(\frac{z+r}{p}\right)$ (for all p)

Proposition 2.1. Let $f(z) = \sum_{n=1}^{\infty} a_n(f)q^n$ be a rational newform. Then, the Fourier expansion of $f(z)$ satisfies the following conditions.

1. $a_{p^r+1}(f) = a_p(f)a_{p^r}(f) - \delta_N(p)pa_{p^r-1}(f)$ ($r \geq 1$)
2. $a_{mn}(f) = a_m(f)a_n(f)$ ($m,n \in \mathbb{Z}$, $(m,n) = 1$).

Given a rational newform f, we consider an associated period lattice

$$\Lambda_f = \{ \int_{\alpha}^{\beta} f(z)dz | \alpha, \beta \in \mathbb{H}, \alpha \equiv \beta \pmod{\Gamma_0(N)} \}$$

which is a discrete subgroup of \mathbb{C} of rank 2. Then, it is known that the quotient $E_f = \mathbb{C}/\Lambda_f$ is an elliptic curve over \mathbb{Q} of conductor N and that we have $L(E_f, s) = L(f, s)$ where the LHS denotes the Hasse-Weil L-function of E_f and the RHS denotes the Dirichlet L-series of f. Conversely, for any elliptic curve E over \mathbb{Q}, there exists a rational newform f such that we have $L(E, s) = L(f, s)$ ([Wi], [TW], [BCDT]). From this equality, we have the following result.

Proposition 2.2. For any prime $p \nmid N$, we have $a_p(f) = 1 + p - \#E_f(\mathbb{F}_p)$ and there exists $0 \leq \theta_p \leq \pi$ such that $a_p(f) = 2p^{\frac{1}{2}}\cos(\theta_p)$.

3. Deformation of the Fourier expansion

In this section, we shall deform the Fourier expansion of a rational newform with respect to the arguments $\{\theta_p\}_p$ (Proposition 2.2).

Definition 3.1. Let $F(z) = \sum_{n=1}^{\infty} a_n(F)q^n$ be a formal power series in $\mathbb{C}[[q]]$ which satisfies the following conditions.

1. If there exists a rational newform $f(z)$ such that we have $a_p(f) = a_p(F)$ for almost all primes p, put $F(z) = f(z)$. The coefficients of $F(z)$ are determined by Proposition 2.1 and 2.2.
(2) If there does not exist such a rational newform, assume that $F(z)$ is normalized (i.e. $a_1(F) = 1$) and that, for each prime p, there exists $0 \leq \theta_p^F \leq \pi$ such that we have

$$a_p(F) = 2p^{\frac{1}{2}} \cos(\theta_p^F).$$

Furthermore, the following compatible conditions are satisfied.

(a) $a_{p^{r+1}}(F) = a_p(F) a_{p^{r}}(F) - pa_{p^{r-1}}(F)$ \hspace{1em} ($r \geq 1$)

(b) $a_{mn}(F) = a_m(F) a_n(F)$ \hspace{1em} ($(m,n) = 1$).

Fix a power series $F(z) \in \mathbb{C}[[q]]$ as above. Let $\{\gamma_i\}_{i=1,2}$ denote any smooth path from α_i to β_i in \mathbb{H}^*. Consider an associated period lattice

$$\Lambda_F(\gamma_1, \gamma_2) = \{ \int_{\alpha_i}^{\beta_i} F(z) dz | \alpha_i \sim \beta_i, i=1,2 \}.$$

Note that, contrary to Λ_f, this $\Lambda_F(\gamma_1, \gamma_2)$ does not form a discrete subgroup of \mathbb{C} depending on the choice of $\{\gamma_i\}_{i=1,2}$. Thus, the quotient $E_F(\gamma_1, \gamma_2) = \mathbb{C}/\Lambda_F(\gamma_1, \gamma_2)$ is not an elliptic curve in general.

Definition 3.2. With notation as above, let Θ denote the topological family $\{E_F(\gamma_1, \gamma_2)\}$ where F (resp. $\{\gamma_i\}_{i=1,2}$) runs through any power series as in Definition 3.1 (resp. any smooth path in \mathbb{H}^*).

Remark 3.3. We can say that this topological family Θ is the smallest in the sense that it contains all elliptic curves over \mathbb{Q} up to isogeny and the associated rational newforms are all parametrized by the arguments $\{\theta_p\}_p$.

4. Applications

4.1. The case of rank 0. For any elliptic curve E over \mathbb{Q}, the Birch and Swinnerton-Dyer conjecture predicts that the rank of Mordell-Weil group $E(\mathbb{Q})$ is equal to the order of the zero of $L(E, s)$ at $s = 1$. In the case that we have $L(E, 1) \neq 0$, it is known that the Mordell-Weil group of E is of rank 0 ([CW]).

Now, assume that E is such an elliptic curve and that f is an associated rational newform satisfying $L(E, s) = L(f, s)$. Since the Dirichlet L-series $L(f, s)$ can be written via Mellin transform

$$L(f, s) = (2\pi)^s \Gamma(s)^{-1} \int_0^{i\infty} (-iz)^s f(z) \frac{dz}{z},$$

where $\Gamma(s)$ denotes the gamma function of s, the period integral $\int_0^{i\infty} f(z) dz$ does not vanish. Let I denote any smooth path from 0 to $i\infty$ in \mathbb{H}^*.

Example 4.1. Let $\{E_i\}_{i=1,2}$ be two elliptic curves over \mathbb{Q}. Assume that there exist a set of formal power series $\{F(z)\}_{F}$ as in Definition 3.1 and a set of smooth paths $\{J\} \in \mathbb{H}^*$ such that $\{E_F(I, J)\}_{F,J}$ forms a topological family of (non-degenerate) elliptic curves connecting E_1 and E_2. Then, Mordell-Weil groups of $\{E_i\}_{i=1,2}$ are of rank 0.
4.2. **The case of rank** 1. First, we shall recall the results of [GZ]. Let K be an imaginary quadratic field whose discriminant D is relatively prime to the level N of the rational newform f and let H denote the Hilbert class field of K. Fix an element σ in $\text{Gal}(H/K)$. Note that this Galois group is isomorphic to the class group Cl_K of K. Let \mathcal{A}_K be the class corresponding to σ and let $\theta_{\mathcal{A}_K}(z)$ denote the theta series

$$\theta_{\mathcal{A}_K}(z) = \sum_{n \geq 0} r_{\mathcal{A}_K}(n) q^n \quad (q = e^{2\pi i z})$$

where $r_{\mathcal{A}_K}(0) = \frac{1}{\zeta(2)} (\mathcal{O}_K : \text{the ring of integers in } K)$ and $r_{\mathcal{A}_K}(n)$ $(n \geq 1)$ is the number of integral ideals α in the class of \mathcal{A}_K with norm n. Define the L-function associated to the rational newform $f = \sum_n a_n q^n \in S_2(N)$ and the ideal class \mathcal{A}_K by

$$L_{\mathcal{A}_K}(f, s) = \left(\sum_{n \geq 1, (n, DN) = 1} \epsilon_K(n)n^{1-2s} \right) \cdot \left(\sum_{n \geq 1} a_n r_{\mathcal{A}_K}(n)n^{-s} \right)$$

where $\epsilon_K : (\mathbb{Z}/D\mathbb{Z})^* \to \{ \pm 1 \}$ denotes the character associated to K/\mathbb{Q}. Furthermore, for a complex character χ of the ideal class group of K, denote the total L-function by

$$L(f, \chi, s) = \sum_{\mathcal{A}_K} \chi(\mathcal{A}_K) L_{\mathcal{A}_K}(f, s).$$

Then, it is known that both of $L_{\mathcal{A}_K}(f, s)$ and $L(f, \chi, s)$ have analytic continuations to the entire plane and satisfy functional equations $(s \leftrightarrow 2 - s)$. Furthermore, if we put $L_{\epsilon_K}(f, s) = \sum_n \epsilon_K(n)a_n n^{-s}$ for $f = \sum_n a_n q^n$, we have $L(f, s)L_{\epsilon_K}(f, s) = L(f, 1, s)$. Note that $L_{\epsilon_K}(f, s)$ is the Hasse-Weil L-function of E' over \mathbb{Q} where E' denotes the twist of E over K ([GZ, p.309, 312]). The following thing is one of the main results of Gross-Zagier.

Proposition 4.2. ([GZ, p.230]) There exists a cusp form $g_{\mathcal{A}_K}$ of weight 2 on $\Gamma_0(N)$ such that we have

$$L'_{\mathcal{A}_K}(f, 1) = 32\pi^2 \frac{\#(\mathcal{O}_K^*)^2}{|D|^\frac{1}{2}} \cdot (g_{\mathcal{A}_K}, f)_N$$

where $(\ , \)_N$ denotes the Petersson inner product on cusp forms of weight 2 for $\Gamma_0(N)$. Thus, this formula leads to

$$L'(f, \chi, 1) = \sum_{\mathcal{A}_K} \chi(\mathcal{A}_K)L'_{\mathcal{A}_K}(f, 1) = 32\pi^2 \frac{\#(\mathcal{O}_K^*)^2}{|D|^\frac{1}{2}} \cdot \left(\sum_{\mathcal{A}_K} \chi(\mathcal{A}_K)g_{\mathcal{A}_K}, f \right)_N$$

Now, let E be an elliptic curve over \mathbb{Q} such that $L(E, s) = L(f, s)$ for some rational newform $f \in S_2(N)$. Assume that we have $\text{ord}_{s=1} L(E, s) = 1$. In this case, it is known that the Mordell-Weil group of E is of rank 1 ([Ko]). Furthermore, since the sign of the functional equation of $L(E, s) = L(f, s)$ is -1, we can choose an imaginary quadratic extension K/\mathbb{Q} such that $L_{\epsilon_K}(f, 1) \neq 0$ ([Wa]). In particular, it follows that we obtain $L'(f, 1, 1) \neq 0$ and thus $(\sum_{\mathcal{A}_K} 1(\mathcal{A}_K)g_{\mathcal{A}_K}, f)_N \neq 0$.

Let \(\{g_i\}_{i=1}^d \) (resp. \(\{h_j\}_{j=1}^e \)) denote a basis of the space of newforms (resp. oldforms) in \(S_2(N) \) over \(\mathbb{C} \). If we write \(\sum_{A_K} 1(A_K)g_{A_K} = \sum_{i=1}^d a_i g_i + \sum_{j=1}^e b_j h_j \) (\(a_i, b_j \in \mathbb{C} \)), put \(G_K = \sum_{i=1}^d a_i g_i \in S_2(N) \).

Definition 4.3. Let \(F(z) \in \mathbb{C}[[q]] \) \((q = e^{2\pi iz})\) be a formal power series as in Definition 3.1. Fix a fundamental domain \(R \) in \(\mathbb{H} \) for \(\Gamma_0(N) \). We say that \(F(z) \) is of level \(N \) with respect to \(R \) if we have

\[
(G_K, F(z))_{N,R} := \int_R G_K \cdot \overline{F(z)} dx dy \neq 0 \quad (z = x + iy)
\]

for some imaginary quadratic extension \(K/\mathbb{Q} \) whose discriminant is relatively prime to \(N \).

Example 4.4. Let us consider the following two cases.

1. Let \(\{F(z)\}_F \) be a set of formal power series of level \(N \) with respect to \(R \) such that we have \(L(F, 1) := -2\pi i \Gamma(1)^{-1} \int_0^{i\infty} F(z)dz = 0 \) and let \(\{I, J\}_{I,J} \) denote a set of smooth paths in \(\mathbb{H}^* \). Assume that two elliptic curves \(\{E_i\}_{i=1,2} \) over \(\mathbb{Q} \) of conductor \(N \) are connected by the topological family \(\{E_F(I, J)\}_{F,I,J} \). Then, Mordell-Weil groups of \(\{E_i\}_{i=1,2} \) are of rank 1.

2. On the other hand, let \(E_1 \) (resp. \(E_2 \)) be an elliptic curve over \(\mathbb{Q} \) of conductor \(N \) (resp. \(N' \)). Here, \(N' \) denotes a positive integer such that \(N' | N \) and \(N' < N \). Assume that the strong Birch and Swinnerton-Dyer conjecture holds ([C]). From the equality \(L'(f_i, 1)L_{\epsilon_{K_i}}(f_i, 1) = L'(f_i, 1, 1) \), we obtain \(L'(f_i, 1, 1) > 0 \) and thus \((G_{K_i}, f_i)_{N,R} > 0 \). Here, we choose imaginary quadratic fields \(K_i/\mathbb{Q} \) such that we have \(L_{\epsilon_{K_i}}(f_i, 1) \neq 0 \). Define a set of formal power series by

\[
F_t(z) = tf_1(z) + (1-t)f_2(z) \quad (0 \leq t \leq 1).
\]

In fancy language, we can say that the existence of (non-torsion) rational points on elliptic curves is partially governed by the singular locus of special fibers in \(\text{Spec}(\mathbb{Z}) \).

Remark 4.5. Let \(\{E_i\}_{i=1,2} \) be two elliptic curves over \(\mathbb{Q} \) of conductor \(N \) whose Mordell-Weil groups are of rank 1. Take rational newforms \(\{f_i\}_{i=1,2} \in S_2(N) \) such that we have \(L(f_i, s) = L(E_i, s) \). Assume that the strong Birch and Swinnerton-Dyer conjecture holds ([C]). From the equality \(L'(f_i, 1)L_{\epsilon_{K_i}}(f_i, 1) = L'(f_i, 1, 1) \), we obtain \(L'(f_i, 1, 1) > 0 \) and thus \((G_{K_i}, f_i)_{N,R} > 0 \). Here, we choose imaginary quadratic fields \(K_i/\mathbb{Q} \) such that we have \(L_{\epsilon_{K_i}}(f_i, 1) \neq 0 \). Define a set of formal power series by

\[
F_t(z) = tf_1(z) + (1-t)f_2(z) \quad (0 \leq t \leq 1).
\]

If we can take \(K_1 = K_2 \) (e.g. two elliptic curves of conductor 91 and \(\mathbb{Q}(\sqrt{-3}) \) [C, p.118 and 223-224]), we obtain \((G_{K_i}, F_t(z))_{N,R} > 0 \) for all \(0 \leq t \leq 1 \). Thus, though this set of formal power series \(\{F_t(z)\}_{0 \leq t \leq 1} \) (regrettably) does not satisfy the compatible conditions in Definition 3.1, two elliptic curves \(\{E_i\}_{i=1,2} \) are connected by this set of formal power series of level \(N \) anyway.
REFERENCES

[AL] Atkin, A. O. L.; Lehner, J.: Hecke operators on $\Gamma_0(m)$. Math. Ann. 185. 1970. 134–160.

[BCDT] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R.: On the modularity of elliptic curves over \mathbb{Q}: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939.

[C] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition. Cambridge University Press, Cambridge, 1997.

[CW] Coates, J.; Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223–251.

[DS] Diamond, F.; Shurman, J.: A first course in modular forms. GTM, 228. Springer-Verlag, New York, 2005.

[GZ] Gross, B.H.; Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225–320.

[Ku] Knapp, A.W.: Elliptic curves. Mathematical Notes, 40. Princeton University Press, Princeton, NJ, 1992. xvi+427 pp.

[Ko] Kolyvagin, V.A.: Finiteness of $E(\mathbb{Q})$ and $\mathcal{Y}(E, \mathbb{Q})$ for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671.

[TW] Taylor, R.; Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572.

[Wa] Waldspurger, J.L.: Correspondances de Shimura et quaternions. Forum Math. 3 (1991), no. 3, 219–307.

[Wi] Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443–551.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

E-mail address: morita@math.sci.hokudai.ac.jp