Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

Lyndi M. Rice,1* Melissa Donigan,2§ Muhua Yang,3§ Weidong Liu,§ Devanshi Pandya,§ Biny K. Joseph,§ Valerie Sodi,§ Tricia L. Gearhart,§ Jenny Yip,§ Michael Bouchard,§ and Joseph T. Nickels, Jr.‡1

From the ‡1 Oncoveda Cancer Institute and the ‡1 Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691 and the ‡1Department of Molecular Biology and Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129

Background: The sterol response element-binding protein-2 (SREBP-2) regulates LDLR gene expression.

Results: Protein phosphatase 2A regulates SREBP-2 binding to an LDLR promoter SRE.

Conclusion: PP2A regulates LDL uptake.

Significance: A novel pathway regulating LDL uptake has been elucidated.

LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake.

Cholesterol biosynthesis and uptake are important pathways that are required for cell maintenance because cholesterol is an essential lipid and is important for maintaining membrane fluidity, raft formation, and steroid and bile acid syntheses (1–4). Moreover, proper LDL-C uptake is essential for maintaining normal LDL-C blood level. Cholesterol itself is an important second messenger regulating developmental cell signaling (5–7). Deregulation of cholesterol metabolism leads to a chronic increase in blood plasma cholesterol level, which is a major risk factor for cardiovascular disease and atherosclerosis.

Current drug therapies (statins) have targeted de novo cholesterol biosynthesis as treatment for cardiovascular disease (8–10). Although statins are able to reduce blood plasma cholesterol levels by inhibiting HMG-CoA reductase (HMGCR), ~10−20% of patients are unable to tolerate treatment and have irrevocable joint pain and, in some cases, liver toxicity (11–15). Moreover, statins have a threshold as far as how low they can reduce LDL-C; thus, ~55−65% of patients still remain at risk for cardiovascular events (16). These patients may go on a higher dose of statin, which in some cases increases the incidence of side effects (17). Thus, novel therapies treating lipid disorders are needed to help statin-intolerant individuals. One such potential biologic therapy that is in clinical trials targets Pcsk9, which is involved in the degradation of Ldlr (18).

De novo cholesterol biosynthesis requires the induction of genes regulated by the transcription factor known as SREBP-2, one of three SREBPs encoded by mammalian cells. SREBP-2, along with SREBP-1a, activates genes required for cholesterol biosynthesis and LDL-C uptake, whereas SREBP-1c is important for fatty acid synthesis (19).

SREBP-2 is localized in the ER when cholesterol level is high but is transported to the Golgi and cleaved in response to a decrease in cholesterol sensed by sterol cleavage-activating protein (19). Two cleavage events within the Golgi by site 1 and site 2 protease lead to the generation of a soluble SREBP-2 active fragment transcription factor (SREBP-2af) that is transported to the nucleus (20). Nuclear SREBP-2af binds SREs in the promoters of genes required for de novo cholesterol biosynthesis, resulting in increased gene expression. These include protein; SREBP-2af, SREBP-2 active fragment transcription factor; LDLR, low density lipoprotein receptor; HMGCR, HMG-CoA reductase; OA, okadaic acid; Cs1, control siRNA; ChREBP, carbohydrate-binding element-binding protein transcription factor; qRT-PCR, quantitative RT-PCR.

*This work was supported by the Genesis Biotechnology Group.
1 Both authors contributed equally to this work.
2 To whom correspondence should be addressed: The Institute of Metabolic Disorders LLC, Genesis Biotechnology Group, 1000 Waterview Dr., Hamilton, NJ 08691. Tel: 609-786-2870; E-mail: jnickels@venenumbiodesign.com.
3 The abbreviations used are: LDL-C, low density lipoprotein-cholesterol; PP2A, protein phosphatase 2A; SREBP, sterol response element-binding.
Regulation of LDL-C Uptake by PP2A

HMGR, HMGSI (HMG-CoA synthase), FDFT1 (squalene synthase), and the LDLR gene required for LDL-C uptake (21).

PP2A is a heterotrimeric serine/threonine protein phosphatase that regulates many cell events, including cell cycle progression and cell signaling pathways (22). PP2A is composed of a core enzyme dimer consisting of a catalytic subunit (C) and an A structural subunit (22). The AC dimer recruits specific B regulatory subunits (23). There are several reports indicating that genes, many encoding several isoforms, encode for the B regulatory subunits that confer substrate specificity and/or regulatory subunits (24–28). Thus, it seems that PP2A targets multiple factors regulating lipid metabolism, lipid trafficking, and lipid-dependent signaling.

We were interested in identifying novel drug targets to treat cardiovascular disease and atherosclerosis. Here, we uncovered a novel role for PP2A in regulating LDL-C uptake. PP2A is required for SREBP-2-dependent activation of LDLR gene expression in response to cholesterol depletion. PP2A directly binds to SREBP-2, altering its phosphorylation status, which causes an enhanced ability to bind an LDLR SRE promoter site. Increased binding causes increased Ldlr level and increased LDL-C uptake.

EXPERIMENTAL PROCEDURES

Cell Lines, Plasmids, and siRNA Treatment—HepG2 cells were grown in minimum Eagle’s medium supplemented with 10% FBS, 1% sodium pyruvate, 1% non-essential amino acids, and 0.1% gentamycin (Invitrogen). THLE-3 cells were grown in BEMG (Clonetics) supplemented with 10% FBS, 5 ng/ml EGF, and 70 ng/ml phosphoethanolamine (Sigma). Rat primary hepatocytes were isolated as described (29). Rats were anesthetized with 60 mg of ketamine/kg of rat and 7.5 mg of xylazine/kg. 50 kilounits/ml of heparin was injected into the femoral vein, and the primary hepatocytes were seeded at a density of 1 × 10^6 cells in growth medium (Williams E medium supplemented with 1% sodium pyruvate, 2 mM glutamine, 4 μl/ml ITS medium supplement (1 mg/ml recombinant human insulin; 0.55 mg/ml human transferrin (iron-free), 0.5 μg/ml sodium selenite), 5 μg/ml hydrocortisone, 0.01 μg/ml EGF, and 25 μg/ml gentamicin). After the initial 3-h incubation, the medium was removed and replaced with growth medium (as above, without gentamycin and with 0.1% DMSO). All cells were plated on collagen-coated plates and were incubated at 37 °C, 5% CO₂. Depending on the statin and cell line used, the concentration of statin ranged from 25 to 75 μM. 10 nm okadaic acid (OA; Calbiochem) was used for inhibition of PP2A activity. All animal procedures were reviewed and approved by the Drexel University College of Medicine institutional animal care and use committee.

For HepG2 and THLE-3 cells, 100 nm Csi or PPP2Casí siRNA (Dharmacon) was transfected at 48 and 24 h prior to statin treatment using dharmafect 4 transfection reagent. Cells were then treated with lovastatin (Sigma), atorvastatin, or simvastatin for 24 h. Cells were harvested, washed in 1× PBS (Invitrogen), and stored at −80 °C until processing. Rat primary hepatocyte were treated with Csi or 150 nm PPP2Casí siRNA after the initial 3-h incubation and again the next morning, prior to the addition of 75 μM lovastatin after 8 h. Cells were harvested 24 h later (30, 31).

The full-length SREBP-2 was cloned into pEGFP-C1 plasmid (Clontech) via Xhol and SacII restriction enzyme sites. The EGFP is linked to the N terminus of SREBP-2. The construct (EGFP-SREBP-2) was confirmed by sequencing.

Lentivirus Production and Overexpression of PP2CA and PPME-1—PP2CA and PPME-1 lentiviral ORF plasmid constructs were obtained from GeneCoeia. To produce ORF lentivirus, 293T packing cells (ATCC) were transfected with second generation packaging plasmids, including gag, pol, and rev (pMDL g/p RRE, RSV-REV, and pVSVG) together with PP2CA-ORF- or PPME-1-ORF-targeting plasmids using Lipofectamine 2000 as indicated (Invitrogen). Lentivirus was harvested and filtered at 24 and 48 h post-transfection.

To infect HepG2-targeting cells, freshly harvested lentivirus was added to virus-containing medium supplemented with hexadimethrine bromide (Polybrene). 48 h postinfection, the cells were subjected to puromycin selection, and the medium was replaced every other day for more than a week. To assay for the infected cells, control and infected cells were either not treated or treated with 50 μlLovastatin for 5–6 h. The cells were then gently rinsed one time with PBS and pelleted for total RNA extraction.

RNA Extraction and qRT-PCR—RNA was extracted from cells using the RNeasy kit (Qiagen) according to the manufacturer’s protocol. 50 ng of RNA was used as a template in the one-step RT-PCR (Quanta) according to the suggested protocol. qRT-PCR was completed on an MxPro 3000 (Stratagene), and data were analyzed using MxPro software. Relative expression was determined by normalizing the expression of all genes of interest to GAPDH expression (ΔCt), and data were represented as -fold change compared with the vehicle-treated sample (ΔΔCt).

The primers used for qRT-PCR were designed using Beacon Designer software and were ordered from IDT. For the HepG2 and THLE-3 human cell lines, the primers used were as follows: GAPDH-FOR, 5′-TGGGATCTACGTGAGAACC-3′; GAPDH-REV, 5′-GGTTGTCGCTTGTGAAGTC-3′; LDLR-FOR, 5′-GCTTCTGTCTCACTGGCAA-3′; LDLR-REV, 5′-AATGCCGAGAGATGCACTT-3′; PPP2CA-FOR, 5′-TGTCGAGTCCAGGGTCAG-3′; PPP2CA-REV, 5′-TGCCACAAATCTCTAAA-3′.

The primer sets used for rat primary hepatocytes were RnGAPDH-FOR (5′-GAAATTTCAACGCGCACTGA-3′), RnGAPDH-REV (5′-ACATACTCAGCACCAGAAG-3′); RnLDLR-FOR (5′-AGTTGGAATATTGACAGT-3′), RnLDLR-REV (5′-ATGGCGGTTGGTGAAGAG-3′), RnPPP2CA-FOR (5′-GATACTGTGACAGAGGATATAC-3′), and RnPPP2CA-REV (5′-CAAGCGTGTAGGAG-3′).

Protein Extraction, SDS-PAGE, and Western Analysis—Cells were resuspended in radioimmune precipitation assay buffer and sonicated at 4 °C on ice using the Diagenode Biorupter, for 10 min, using a 30-s on, 30-s off cycle. Cell debris was pelleted by centrifugation for 10 min and cell lysates were collected and analyzed for protein content using a Bradford assay (Bio-Rad). 50 μg of whole cell extract was boiled at 100 °C for 10 min and
Regulation of LDL-C Uptake by PP2A

loaded onto a 10% denaturing gel, and proteins were then transferred to 0.45-μm nitrocellulose (Whatman). Blots were blocked in 5% milk/TBST prior to incubation with primary and secondary antibodies (Amersham Biosciences). Antibodies were detected with the ECL detection kit from Amersham Biosciences. Primary antibodies for SREBP-2, LDLR, FDFT1, PPP2CA (protein phosphatase 2A α catalytic subunit), and GAPDH were purchased from Abcam and were diluted to the suggested concentrations for Western blotting.

Subcellular Fractionation—HepG2 cells were harvested, and pellets were washed in 1× PBS prior to resuspension in Dignam Buffer A (10 mM Tris, pH 7.6, 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM DTT) and incubation on ice for 15 min. Cells were lysed by passage through a 25-gauge needle and centrifuged. The clear lysate was collected as the non-nuclear fraction (cytoplasm), and the pellet was resuspended in radioimmune precipitation assay buffer + propidium iodide and sonicated. Debris was pelleted by centrifugation and clear supernatant was collected as the nuclear fraction. 25 μg of protein lysates was loaded onto 10% SDS-polyacrylamide gels and separated by electrophoresis. SREBP-2, PPP2CA, and GAPDH antibodies were used as described above, and anti-Lamin B (Santa Cruz Biotechnology, Inc.) was used as a nuclear marker. Anti-GAPDH (Rockland) was used as a cytosolic marker.

Immunocytochemistry Staining—48 h after HepG2 cells were transfected with control siRNA or PPP2CA siRNA, they were treated with 60 μM lovastatin or DMSO for 6 h. They were then fixed and labeled with rabbit anti-LDLR antibody (Cayman Chemicals, Ann Arbor, MI), followed by incubation of Alexa Fluor 488-conjugated anti-rabbit secondary antibody (Invitrogen). After antibody incubation, cells were mounted with fluorescent mounting medium containing DAPI (Invitrogen) for counterstaining. Fluorescence microscopy was performed using a 20× objective on a Leica DMI6000 confocal microscope, and images were processed using LAS AF software.

GF-P-SREBP-2 Fluorescence Microscopy—HepG2 cells were transfected with control siRNA or PPP2CA siRNA, and 24 h later, EGFP-SREBP-2 was transfected into the cells by Lipofectamine 2000 (Invitrogen). The next day, the cells were treated with 40 μM lovastatin or DMSO for 1 h. The cells were then fixed and mounted with DAPI-containing mounting buffer to visualize nuclei. The translocation of the SREBP-2 N terminus was examined by fluorescence microscopy (Leica DMi6000B).

LDL Uptake Assay—24 h after HepG2 cells were transfected with control siRNA or PPP2CA siRNA, they were washed with PBS and incubated overnight in lipoprotein-deficient medium to induce the expression of LDLR. The next day, cells were treated with 60 μM lovastatin or DMSO for 6 h. LDL uptake was initiated by incubating cells grown in serum-deficient medium with 5 μg/ml BODIPY-LDL (Invitrogen). Uptake of BODIPY-LDL was measured after a 30-min incubation at 37 °C. Cells were fixed and mounted with fluorescent mounting medium containing DAPI (Invitrogen) for counterstaining. Intercellular BODIPY-LDL was visualized using fluorescence microscopy.

Phosphatase Assays and Immunoprecipitation—Cells were trypsinized (Invitrogen) and immediately processed as follows. Cells were counted and resuspended in 1 ml of lysis buffer (50 mM Hepes, 0.1 mM EGTA, 0.1 mM EDTA, 120 mM NaCl, 0.5% Nonidet P-40, pH 7.5, 25 μg/ml leupeptin, 25 μg/ml pepstatin, 2 μg/ml aprotinin, 1 mM PMSF) per 1×10⁷ cells, as detailed in the DuolC set PP2A phosphatase activity kit (R&D Systems).

In order to IP PP2A, protein was quantified with the Bradford Assay (Bio-Rad), and 1 mg of whole cell extract was precleared with 40 μl of a 50% protein G-agarose slurry (Millipore) for 2 h at 4 °C. PP2A was immunoprecipitated overnight with 5 μg of rat anti-PP2A (R&D Systems) at 4 °C. Immunocomplexes were collected with 20 μl of protein G-agarose for 1 h at 4 °C. The protein G-agarose was washed two times with 1 ml of wash solution (0.05% Tween 20 in 1× PBS, pH 7.2) at 4 °C for 5 min. Proteins were boiled off of the agarose in 2× SDS-PAGE loading buffer at 100 °C for 10 min, and total IP lysate was loaded onto 10% polyacrylamide gels for Western analysis. Blots were probed with antibodies against PPP2CA, anti-SREBP-2, and anti-GAPDH (Abcam). SREBP-2 was immunoprecipitated using 5 μg of a rat anti-PPP2CA monoclonal antibody from Millipore. For nuclear co-immunoprecipitation, the nuclear IP kit from Active Motif was used according to the manufacturer’s instructions.

Phosphorylation Analysis of SREBP-2—Cells were incubated in the absence or presence of lovastatin and either Csi or PPP2CA. Cell-free lysates were obtained, and total phosphothreonine-, phosphoserine-, or phosphotyrosine-phosphorylated proteins were immunoprecipitated using polyclonal antibodies against phosphothreonine, phosphoserine, or phosphotyrosine (1:1,000 dilutions) (Sigma). Immunoprecipitates were resolved by SDS-PAGE and transferred to nitrocellulose membranes. The degree of phosphorylated SREBP-2 present was determined by Western analysis, using anti-SREBP-2 polyclonal antibodies (1:250 dilution). For the corollary experiment, SREBP-2 was immunoprecipitated using anti-SREBP-2 antibodies, and the degree of phosphorylation was determined using anti-phosphoantibodies and Western analysis. Densitometry was performed using ImageQuant software.

Chromatin Immunoprecipitation Analysis of the DNA Binding Activity of SREBP-2—Cells grown in the absence or presence of statin were treated with 1% formaldehyde for 15 min at room temperature. Cross-linking was stopped by the addition of 125 mM glycine. Cells were washed, pelleted, and washed with PBS. Cells were then lysed using lysis buffer (50 mM HEPES, pH 7.5, containing 140 mM NaCl, 0.1% Triton X-100, 0.1% sodium deoxycholate, and a protease mixture) and spun down to remove cellular debris. 1 mg of the resulting supernatant was used for immunoprecipitating SREBP-2-bound DNA for 1 day at 4 °C, using 5 μg of anti-SREBP-2 polyclonal antibodies.

Immunoprecipitated complexes were isolated after 1 h at 4 °C using protein A-agarose beads with salmon sperm DNA (Millipore). The beads were washed with lysis buffer containing 500 mM NaCl, and finally with 10 mM Tris-HCl, pH 8.0, containing 0.25 mM LiCl, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, followed by a wash with Tris-EDTA, pH 8.0. SREBP-2-DNA complexes were eluted from beads using 50 mM Tris-HCl, pH 8.0, containing 10 mM EDTA, and 1% SDS. Cross-linking was reversed using 5 mM NaCl at 65 °C for 6 h. Samples were then diluted using 500 mM Tris-HCl, pH 8.0, containing 10 mM EDTA and 0.67% SDS. Samples were treated with 250 μg
of Proteinase K for 1 h at 37 °C. DNA was eluted from samples using the DNA Easy kit (Qiagen). Purified DNA was used to PCR-amplify bound DNA. PCR products were resolved by 1.5% agarose gel electrophoresis.

Cyclohexamide Protein Stability Assay—HepG2 cells were grown in minimum Eagle’s medium supplemented with 10% FBS, 1% sodium pyruvate, 1% l-glutamine, and 1% non-essential amino acids. All cells were plated on collagen-coated plates and incubated at 37 °C, 5% CO₂, 100 nM Csi or PPP2CAsi (Dharmacon) was transfected at 48 and 24 h prior to statin treatment using dharmafect 4 transfection reagent. Cells were then treated with 75 μM lovastatin (Sigma) for 24 h. Cells were then treated with 5 μg/ml cyclohexamide for 0, 1, 2, 4, and 8 h. Cells were harvested, washed in 1× PBS (Sigma), and stored at −80 °C until processing.

Cells were resuspended in 1× radioimmune precipitation assay buffer and sonicated at 4 °C on ice for 10 min (30-s on, 30-s off cycle). Cell debris was pelleted by centrifugation for 10 min, and cell lysates were collected and analyzed for protein content using the Bradford assay. Whole cell extract was boiled at 100 °C for 10 min and loaded onto a 15% denaturing gel and run at 100 V for 90 min. Proteins were then transferred to nitrocellulose using the iBlot transfer device (Invitrogen). Blots were blocked in 5% milk-TBST prior to incubation with anti-SREBP-2 (Abcam) and secondary anti-mouse HRP. Antibodies were detected using an ECL detection kit from Millipore and a charge-coupled device camera (GE ImageQuant LAS 4000).

Electrophoretic Mobility Shift Assay—Nuclear extracts were prepared from HepG2 cells using the nuclear extract kit (Active Motif, Carlsbad, CA) as described by the manufacturer. Wild type (WT) and mutant probes were synthesized as single-stranded oligonucleotides with Biotin 3′-end labeling (Integrated DNA Technology). The sequences of the probes were as follows: LDLR SRE, WT forward (5′-GGTTGAGACACTTGGAAAATCACCCACGCTCCCTCCCCTGC-3′) and reverse (5′-TTTGAAAATCACCCCACTGCCCTCCCCCTGC-3′); mutant forward (5′-GGTTGAGACACTTGGAAAATCACCCACGCTCCCTCCCCTGC-3′) and reverse (5′-TTTGAAAATCACCCCACTGCCCTCCCCCTGC-3′). EMSA binding reactions were performed at room temperature for 30 min and consisted of nuclear extract in 1X binding buffer (50% glycerol, 100 mM MgCl₂, 1 μg/μl poly(dl-dC), 1% Nonidet P-40, 1 M KCl, 100 mM EDTA, and 5 μM DNA probe). The mixture was run on 6% non-denaturing polyacrylamide gel. Transfer and detection were performed as described above.

FIGURE 1. Okadaic acid inhibits lovastatin-induced gene expression. HepG2 cells were grown as described under “Experimental Procedures,” in the absence or presence of lovastatin (Lov), okadaic acid (OA), or lovastatin and okadaic acid (Lov/OA) for 24 h. The PP2A inhibitor okadaic acid (10 nM) was added for the final 8 h, mRNA expression was determined using qRT-PCR, and protein level was determined by Western analysis using polyclonal antibodies. A, relative level of LDLR expression. B, relative level of SREBP-2 expression. C, relative level of HMGR expression. D, Ldr protein levels. E, relative densitometry units calculated using Ldr protein levels in D. **, p < 0.001. Error bars, S.E.

RESULTS

The Protein Phosphatase Inhibitor Okadaic Acid Blocks SREBP-2-dependent LDLR Gene Expression—To determine whether PP2A was required for LDLR gene expression, PP2A activity was chemically reduced using 10 nM OA, and SREBP-2 was indirectly activated using the HMGR inhibitor, lovastatin. The relative levels of LDLR gene expression and protein were determined. PP2A phosphatase activity was decreased by >85% at this OA concentration (data not shown). The level of cell cholesterol was decreased by 30% (data not shown).

OA treatment had little effect on basal LDLR expression as determined by qRT-PCR (Fig. 1A, Control versus OA). In the presence of lovastatin, LDLR gene expression increased by
Regulation of LDL-C Uptake by PP2A

2.5-fold (Fig. 1A, Control versus Lov). This fold increase is in good agreement with previous data (32, 33). No increase in expression was seen in cells treated withLovastatin and OA (Fig. 1A, Lov versus Lov OA). OA treatment had no effect on Lovastatin-induced expressions of HMGCR and SREBP-2 (Fig. 1, B and C). Ldlr protein level increased 3.0-fold in response toLovastatin treatment, whereas there was no increase whenPP2A activity was abolished (Fig. 1, B and C). Treatment with the cholesterol-depleting agent hydroxypropyly-cyclodextrin or simvastatin/atorvastatin gave similar results (not shown).

PP2A Is Required for SREBP-2-dependent Sterol Gene Expression—Because OA (10 nM) can inhibit other protein phosphatases, PP2A activity was reduced using siRNA methods. siRNA against the catalytic subunit of PP2A was used to reduce activity (PPP2CAsi).

PPP2CAsi treatment decreased PPP2CA gene expression and protein by ~90% (Fig. 2, A and B, Csi versus PPP2CAsi). Control cells had a 2.5-fold increase in LDLR expression in response to Lovastatin (Fig. 2C, Csi versus Csi Lov). Ppp2ca depletion abolished this increase (Fig. 2C, PPP2CAsi versus PPP2CAsi Lov). The depletion of Ppp2ca had no effect on the expressions of SREBP-1c-dependent genes, including acetyl carboxylase (ACC1), fatty acid synthase (FAS1), and PPARγ (PPARG) (Fig. 2, D–F, PPP2CAsi versus PPP2CAsi Lov). Ldlr protein increased 2.0-fold in control cells in response to Lovastatin (Fig. 2, G and H, Csi, Con versus Lov) but not in Ppp2ca-depleted cells (Fig. 2, G and H, PPP2CAsi, Con versus Lov). Similar results were obtained using THLE-3 cells and rat primary hepatocytes (not shown).

Overexpression of the Protein Phosphatase 2A Methylesterase Results in the Loss of PP2A-dependent LDLR Gene Expression—The catalytic subunit of PP2A is demethylated on Lys-309 by the Pme-1 demethylase (PPME1), causing a reduction in phosphatase activity (34).

FIGURE 3. Altering the methylation status of Ppp2ca results in decreased SREBP-2 activity. HepG2 cells were transiently transfected with overexpression plasmids pCMV-PPME1 or pCMV-PPP2CA and were grown in the presence of 75 µMLovastatin for 24 h. Cells were harvested, and protein levels were determined by Western analysis. A, protein levels of Pme-1 and Ldlr. B, protein levels of Ppp2ca and Ldlr. **, p < 0.001. Actin, loading control.

FIGURE 2. siRNA directed against PP2A inhibits Lovastatin-induced gene expression. HepG2 cells were grown as described under “Experimental Procedures,” in the absence (−Lov) or presence (+Lov) ofLovastatin. Cells were treated with 100 nM non-targeting siRNA (Csi) or siRNA directed against the α catalytic subunit of PP2A (PPP2CAsi) at 48 and 24 h prior to Lovastatin treatment. 75 µMLovastatin was added for 24 h, and cells were harvested. mRNA expression was determined using qRT-PCR. A, relative expression of PPP2CA. B, relative expression of PPP2CAsi. C, relative expression of Ldlr. D, relative expression of ACC1. E, relative level of FAS1 expression. F, relative level of PPARG expression. G, Ldlr protein levels. H, relative densitometry units calculated using Ldlr protein levels in G. **, p < 0.001. GAPDH, glyceraldehyde phosphate dehydrogenase, loading control. Error bars, S.E.

FIGURE 4. Regulation of LDL-C Uptake by PP2A.
To further substantiate the requirement of PP2A for LDLR expression, PPME1 or the PPP2CA catalytic subunit of PP2A was overexpressed, and LDLR expression and protein were determined. Ectopic overexpression of PPME1 resulted in ~7-fold overexpression of protein (Fig. 3A), whereas Ppp2ca was overexpressed by ~5-fold (Fig. 3B).

The overexpression of PPME1 decreased lovastatin-induced LDLR expression by ~75%, whereas PPP2CA overexpression caused an additional 4-fold increase over drug-treated control cells (not shown). Ldlr protein level was decreased in Pme-1-overexpressing cells (Fig. 3A), whereas it was increased when Ppp2ca was overexpressed (Fig. 3B).

PP2A Is Not Required for Lovastatin-induced SREBP-2 Processing and Nuclear Translocation—When the level of cholesterol is high, full-length SREBP-2 localizes to the endoplasmic reticulum as an inactive protein. When the level of cholesterol becomes decreased, it traffics to the Golgi (20, 35), where it is proteolytically cleaved, releasing a soluble active transcription factor (SREBP-2af) that translocates to the nucleus, where it induces cholesterol gene expression by binding to SREs.

To begin to determine the step where PP2A regulates SREBP-2 activity, SREBP-2 proteolytic processing and nuclear translocation were examined in Ppp2ca-depleted cells. A nuclear fraction was used for these experiments and was purified by subcellular fractionation and ultracentrifugation. Fraction purity was assessed by Western analysis using antibodies directed against nuclear Lamin B and cytosolic Gapdh (Fig. 4).

FIGURE 4. Loss of Ppp2ca does not affect SREBP-2 cleavage and nuclear translocation. HepG2 cells were grown in the absence (Con) or presence of lovastatin (Lov). Cells were treated with 100 nM non-targeting siRNA (Csi) or siRNA directed against the catalytic subunit of PP2A (PPP2CAsi) at 48 and 24 h prior to lovastatin treatment. 75 µM lovastatin was added for 24 h, and cells were harvested. Cells were lysed and centrifuged as described under “Experimental Procedures” in order to obtain nuclear fractions. Cell protein was resolved by SDS-PAGE, and proteins were detected using Western analysis. Lamin was used as a nuclear marker. Gapdh was used as a non-nuclear marker. SREBP-2af, cleaved SREBP-2. A, non-nuclear fraction. B, nuclear fraction.

FIGURE 5. GFP-SREBP-2 translocates into the nucleus in cells lacking PP2A. HepG2 cells were transfected with no siRNA (Control), control siRNA (Csi), or siRNA directed against the catalytic subunit of PP2A (PPP2CAsi), in the absence (~Lov) or presence (~Lov) of lovastatin. pEGFP-SREBP-2 was transfected into cells that were subsequently treated with 40 µM lovastatin or DMSO for 1 h, fixed, and mounted with DAPI-containing mounting buffer to visualize nuclei. The movement of GFP-SREBP-2 was examined by fluorescence microscopy (Leica DMI6000B).
In untreated control cells, GFP-SREBP-2 localized to a perinuclear organelle (Fig. 5, control) that co-stained with the ER marker, PDI (not shown). Upon the addition of lovastatin, full-length GFP-SREBP-2 was cleaved, and GFP-SREBPaf translocated to the nucleus (Fig. 5, Control + Lov). Similar results were obtained using cells transfected with a control siRNA (Fig. 5, Csi versus Csi + Lov). The loss of the Ppp2ca had no effect on SREBP-2 af translocation in the presence of lovastatin (Fig. 5, PPP2CAsi versus PPP2Asi + Lov). Greater than 90% of transfected cells had the localization patterns shown.

LDL-C Uptake Requires PP2A—LDL-C uptake was assayed using the fluorescence-labeled lipid, BODIPY-LDL. In the absence of lovastatin, control cells had little BODIPY-LDL staining (Fig. 6, Csi - Lov). Upon the addition ofLovastatin, a drastic increase was seen in intercellular BODIPY-LDL staining, indicative of increased LDL-C uptake (Fig. 6, Csi + Lov).

PP2A Is Required for SREBP-2 DNA Binding to a LDLR SRE in Response to Lovastatin Treatment—The fact that SREBP-2 af translocated to the nucleus in the absence of Ppp2ca indicated that its function was regulated at a point downstream of transport and nuclear entry, quite possibly at the point of promoter binding. Thus, SREBP-2 af SRE promoter binding was assayed in the absence and presence of Ppp2ca and lovastatin using ChIP and EMSA.

ChIP analyses revealed that under basal conditions, Ppp2ca depletion slightly altered SREBP-2 af binding to a LDLR promoter SRE in the absence of lovastatin, when compared with untreated cells (Fig. 7, A and B, Csi - Lov versus PPP2CAsi - Lov). Whereas a 5-fold increase in binding was seen in the presence of both lovastatin and Ppp2ca (Fig. 7, A and B, Csi - Lov versus Csi + Lov), Ppp2ca-depleted cells showed a decrease in SREBP-2 af LDLR promoter binding in the presence ofLovastatin (Fig. 7, A and B, Csi + Lov versus PPP2CAsi + Lov). Ppp2ca depletion had no effect on lovastatin-induced binding to a HMGCR SRE (Fig. 7, A and B, Csi + Lov versus PPP2CAsi + Lov).

EMSA analysis was next performed using wild type and mutant LDLR SREs. Under cholesterol-rich conditions in the presence of Ppp2ca, SREBP-2 af displayed a low basal level of binding to the WT SRE (Fig. 8A, Con Ppp2ca, lane 3). Binding was seen as a doublet. The binding was specific because no
binding was seen to a mutated SRE (mutant) (Fig. 8A, Con Ppp2ca, lane 4). The addition of excess unlabeled probe eliminated binding to the wild type SRE (Fig. 8A, Con Ppp2ca, lane 5). The addition of anti-SREBP-2 antibodies to the reaction caused an increase in band intensity (Fig. 8A, Con Ppp2ca, lane 7). This type of result, where the addition of antibody does not result in a supershift, still indicates specific binding and has been previously observed (36, 37). Binding was specific because no binding was observed to a mutated SRE in the presence of antibody (Fig. 8A, Con Ppp2ca, lane 8). Finally, the addition of anti-GAPDH antibodies to the labeled probe did not result in the appearance of bands (Fig. 8A, Con Ppp2ca, lane 9).

In the presence of lovastatin and Ppp2ca, WT promoter binding band intensity was increased, compared with that seen under cholesterol-rich conditions (Fig. 8B, Lov Ppp2ca, lane 3 versus Fig. 8A, Con Ppp2ca, lane 3). Promoter binding was specific (Fig. 8B, Lov Ppp2ca, lane 5), and the addition of GAPDH antibodies did not cause the appearance of nonspecific bands (Fig. 8B, Lov Ppp2ca, lane 9). When Ppp2ca was depleted, promoter binding was eliminated under cholesterol-rich conditions (Fig. 8C, Con ppp2ca[*], lanes 3 and 7) and severely reduced in the presence of lovastatin (Fig. 8D, Lov ppp2ca[*], lanes 3 and 7).

Loss of PP2A Does Not Alter the Half-life of SREBP-2—One possibility to explain the loss of SRE binding is that SREBP-2 is degraded much faster in the absence of Ppp2ca. To address this question, the half-lives of nuclear SREBP-2 were determined in the presence and absence of lovastatin and Ppp2ca. In the absence of lovastatin and presence of Ppp2ca, SREBP-2^{af} was degraded over a period of 8 h, with a half-life of ∼4 h (Fig. 9, A and B, Con, −Lov). In contrast, SREBP-2^{af} accumulated in the presence of both lovastatin and Ppp2ca (Fig. 9, A and B, Con, + Lov). Similar results were observed in the absence of Ppp2ca (Fig. 9, A and C, Ppp2si, −Lov). Thus, the loss of SRE binding seen in the ChIP and EMSA studies was not due to increased degradation of SREBP-2 protein.

PP2A Binds SREBP-2—Co-immunoprecipitation was next used to determine whether Ppp2ca directly bound to SREBP-2^{af}. Ppp2ca was immunoprecipitated, interacting proteins were resolved by SDS-PAGE, and Western analysis was used to detect SREBP-2^{af} association. 10% inputs used in the co-immunoprecipitation experiments are shown in Fig. 9, A and D.

SREBP-2^{af} was efficiently pulled down by Ppp2ca antibodies (Fig. 10B) but not the IgG antibody control. The Ppp2ca-SREBP-2^{af} interaction was detected at all time points and in control and lovastatin-treated samples (not shown). Identical results were obtained when SREBP-2 antibodies were used to pull down Ppp2ca (Fig. 10C). SREBP-2^{af} was also able to pull down the A subunit of PP2A, Ppp2r1a (not shown).
If Ppp2ca directly regulates nuclear SREBP-2af DNA binding, then it should associate with SREBP-2af in the nucleus. Nuclear SREBP-2af was efficiently co-immunoprecipitated in the absence or presence of lovastatin using Ppp2ca antibodies (Fig. 10E). SREBP-2af antibodies were able to pull down nuclear Ppp2ca (Fig. 10F).

Loss of PPP2A Alters the Phosphorylation State of SREBP-2af—The direct interaction between Ppp2ca and SREBP-2af suggests that PP2A may modulate SREBP-2af phosphorylation status, causing changes in DNA binding. If this is the case, then the phosphorylation status of SREBP-2af should be altered in cells lacking Ppp2ca. Phosphorylated proteins were immunoprecipitated using phospohpecific antibodies, and SREBP-2af phosphorylation was determined by Western analysis using anti-SREBP-2 antibodies.

For all experiments, 1) an equal level of SREBP-2af was used, 2) PPP2CAi knockdown efficiency was >90%, 3) IgG immunoprecipitation experiments were used to demonstrate specificity, and 4) the specificity of each phosphoantibody was validated using phosphospecific blockers.

In the absence of lovastatin, cells had a basal level of serine phosphorylation in the absence of lovastatin, which decreased 10-fold upon the addition of drug (Fig. 10A, Csi versus CsiLov). Threonine phosphorylation was absent in untreated cells but increased 3-fold in lovastatin-treated cells (Fig. 10B, Csi versus CsiLov).

In cells lacking Ppp2ca, the basal levels of SREBP-2af serine and threonine phosphorylation were increased in the absence of lovastatin (Fig. 11, A and B, PPP2CAiLov), whereas both serine (12-fold) and threonine (7-fold) phosphorylation increased in Ppp2ca-depleted drug-treated cells (Fig. 11, A and B, PPP2CAsi, −Lov versus PPP2CAsi + Lov). No tyrosine phosphorylation was seen under all conditions (Fig. 11C). Similar results were obtained when SREBP-2af antibodies were used and Western analysis was performed using phosphospecific antibodies (not shown). Thus, the loss of Ppp2ca activity resulted in changes in the phosphorylation status of SREBP-2af that correlate with a loss of DNA binding and reduced LDL uptake.

DISCUSSION

The data show that PP2A regulates SREBP-2 activity and LDL-C uptake. Depletion of Ppp2ca resulted in the loss of

4 M. Villasmil and J. T. Nickels, unpublished data.
It is interesting that PP2A may only regulate SREBP-2. Differential specificities in the promoters of many sterol-responsive genes exist, including the LDLR, HMGCR, and HMGS promoters (49). All display heterogeneity in their response to SREBP-1/SREBP-2 activity, by varying the number or sequence of various SREs or specific co-factor binding sites (50–54). The LDLR promoter responds to various signals based on the presence of multiple binding elements (55, 56), which includes the serum response, Sp1, repeat 3, Egr1, and C/EBPβ elements (56, 57). Thus, PP2A may have a specific role in regulating cholesterol homeostasis through specific regulation of LDLR expression and LDL-C uptake.

PP2A regulates several metabolic processes. For example, it targets the basic helix-loop-helix leucine zipper carbohydrate-binding protein transcription factor (ChREBP). ChREBP target genes include those activating glycolysis, lipogenesis, and glucogenesis pathways (58), which contribute to the onset of metabolic syndrome (59). Although PP2A does activate ChREBP, possibly increasing the severity of metabolic syndrome, it has also been demonstrated that loss of PP2A through FoxO transcription factor inhibition may contribute to the onset of metabolic syndrome (60). These results indicate that PP2A activity is fine tuned in response to changes in global metabolism because those individuals with metabolic syndrome present with multiple maladies, including glucose intolerance or full-blown diabetes, high blood cholesterol level, obesity, and hypertension.

The PP2A AC dimer may always be bound to SREBP-2. Differential regulation may arise from the binding and release of different B subunits. It is unlikely that a single heterotrimeric species regulates nuclear transport, DNA binding, and transcription. We have observed several B subunits accumulating in response to cholesterol depletion.5 It also makes sense that the expression of various B subunits be regulated through changes in cholesterol level. If multiple PP2A subpopulations are generated, depending on metabolic state, they can be turned on or off, depending on cholesterol level. A recent report showed that multiple PP2A subunits were regulated at the transcriptional, translational, and post-translational levels in myocytes (61).

Another possibility to explain phosphatase specificity is based on an emerging model suggesting that PP2A B subunits can act as “scaffolds” that enable AC dimer binding to a substrate under specific physiological conditions (62, 63). The B subunit is associated with a substrate alone and recruits the AC dimer at the appropriate time. The B56β subunit complexes with Akt in the absence of the AC dimer and then recruits it to AKT upon insulin signaling (63). In the yeast Saccharomyces cerevisiae, the PP2A B subunit, ScCdc55, possesses an activity that may be separate from its association with a PP2A holoenzyme (64–66). We have recently found that a single B subunit is associated with SREBP-2 in mouse liver independent of the AC dimer.6 The “scaffold” model is still highly speculative and awaits further validation.

Finally, PP2A binding altered the phosphorylation status of SREBP-2af. Although most phosphorylation events regulating

5 L. Rice and J. T. Nickels, unpublished data.
6 B. Joseph, D. Pandya, and J. Nickels, manuscript in preparation.
Regulation of LDL-C Uptake by PP2A

SREBP activity cause increased protein degradation or induce the transactivation activity of promoter-bound protein, some exceptions exist. Very recently, AMP kinase was found to phosphorylate nuclear SREBP-2af, causing a decrease in SREBP-2-dependent gene expression (48). Moreover, it was shown that PKA phosphorylation of SREBP-1a/SREBP-1c reduces DNA binding (42). Whether these sites are PP2A targets remains to be elucidated.

Acknowledgments—We thank Drs. Martin Adelson, Eli Mordechai, and Siu Lo and Christina Segro for discussions. We also thank Suhani Chintan Pandya and Sophia Wurst for patience during the completion of the work.

REFERENCES
1. Maxfield, F. R., and Tabas, I. (2005) Role of cholesterol and lipid and organization in disease. Nature 438, 612–621.
2. Sonnino, S., and Prinetti, A. (2013) Membrane domains and the “lipid raft” concept. Curr. Med. Chem. 20, 4–21.
3. Wood, W. G., Igbavboa, U., Müller, W. E., and Eckert, G. P. (2011) Cholesterol asymmetry in synaptic plasma membranes. J. Neurochem. 116, 684–689.
4. Elson, E. L., Fried, E., Dolbow, J. E., and Genin, G. M. (2010) Phase separation in biological membranes. Integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226.
5. Incardona, J. P., and Eaton, S. (2000) Cholesterol in Signal Transduction. Curr. Opin. Cell Biol. 12, 193–203.
6. Sato, K. (2008) Signal transduction of fertilization in frog eggs and anti-apoptotic mechanism in human cancer cells: common and specific functions of membrane microdomains. Open Biochem. J. 2, 49–59.
7. Breitling, R. (2007) Greased hedgehogs: new links between hedgehog signalling and residual risk reduction. J. Biol. Chem. 282, 233–241.
8. Ahmed M. H., and Byrne, C. D. (2008) Current treatment of non-alcoholic fatty liver disease. Diabetes Obes. Metab. 11, 188–195.
9. Stein O, Stein, Y. (2005) Lipid transfer proteins (LTP) and atherosclerosis. Trends Biochem. Sci. 33, 113–121.
10. Breitling, R. (2007) Greased hedgehogs: new links between hedgehog signalling and residual risk reduction. J. Biol. Chem. 282, 233–241.
11. Ahmed M. H., and Byrne, C. D. (2008) Current treatment of non-alcoholic fatty liver disease. Diabetes Obes. Metab. 11, 188–195.
12. Katz, S. (2008) Potential role of statins in the treatment of heart failure. Curr. Atheroscler. Rep. 10, 318–323.
13. Palmer, S. C., Craig, J. C., Navaneethan, S. D., Tonelli, M., Pellegrini, F., and Strippoli, G. F. (2012) Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 263–275.
14. Upadhyay, A., Earley, A., Lamont, J. L., Haynes, S., Wanner, C., and Balk, E. M. (2012) Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 251–262.
15. Jukema, J. W., Cannon, C. P., de Craen, A. J., Westendorp, R. G., and Trompet, S. (2012) The controversies of statin therapy: weighing the evidence. J. Am. Coll. Cardiol. 60, 875–881.
16. Tennenbaum, A., and Fisman, E. Z. (2012) Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction. Cardiovasc. Diabetol. 11, 125.
17. Colbert, J. D., and Stone, J. A. (2012) Statin use and the risk of incident diabetes mellitus: a review of the literature. Can. J. Cardiol. 28, 581–589.
18. Stein, E. A. (2013) Low-density lipoprotein cholesterol reduction by inhibition of PCSK9. Curr. Opin. Lipidol. 24, 510–517.
19. Wang, X., Briggs, M. R., Hua, X., Yokoyama, C., Goldstein, J. L., and Brown, M. S. (1993) Nuclear protein that binds sterol regulatory element. Cell 75, 519–532.
20. Hughey, B. B., and Stone, J. A. (2012) Statin use and the risk of incident diabetes mellitus: a systematic review and meta-analysis. J. Biol. Chem. 286, 14497–14504.
21. Saito, K. (2008) Signal transduction of fertilization in frog eggs and anti-apoptotic mechanism in human cancer cells: common and specific functions of membrane microdomains. Open Biochem. J. 2, 49–59.
22. Ahmed M. H., and Byrne, C. D. (2008) Current treatment of non-alcoholic fatty liver disease. Diabetes Obes. Metab. 11, 188–195.
23. Janssens, V., Longin, S., and Goris, J. (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail) Trends Biochem. Sci. 33, 113–121.
24. Hernández, M. L., Martínez, M. J., López de Heredia, M., and Ochoa, B. (1997) Protein phosphatase 1 and 2A inhibitors activate acyl-CoA cholesterol acyltransferase and cholesterol ester formation in isolated rat hepatocytes. Biochim. Biophys. Acta 1349, 233–241.
25. Jefcoate, C. R., Lee, J., Cherradi, N., Takemori, H., and Duan, H. (2011) cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol. Cell. Endocrinol. 336, 53–62.
26. Jones, P. M., Sayed, S. B., Persaud, S. J., Burns, C. J., Gyles, S., and Whitehouse, B. J. (2000) Cyclic AMP-induced expression of steroidalogenic acute regulatory protein is dependent upon phosphoprotein phosphatase activities. J. Mol. Endocrinol. 24, 233–239.
27. Wang, P. Y., Liu, P., Weng, J., Rentag, E., and Anderson, R. G. (2003) A cholesterol-regulated P22A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J. 22, 2658–2667.
28. Wang, P. Y., Weng, J., and Anderson, R. G. (2005) OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science 307, 1472–1476.
29. Holen, I., Gordon, P. B., and Seglen, P. O. (1993) Inhibition of hepatic autophagy by okadacin acid and other protein phosphatase inhibitors. Eur. J. Biochem. 215, 113–122.
30. Shen, L., Hillebrand, A., Wang, D. Q., and Liu, M. (2012) Isolation and primary culture of rat hepatic cells. J. Vis. Exp. 10.3791/3917.
31. Seglen, P. O. (1976) Preparation of isolated rat liver cells. Methods Cell Biol. 13, 29–83.
32. Matsu, M., Sakurai, F., Elbashir, S., Foster, D. J., Manoharan, M., and Corey, D. R. (2010) Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem. Biol. 17, 1344–1355.
33. Fretv, T., and De Maio, A. (2007) Increased expression of CD14 in macrophages after inhibition of the cholesterol biosynthetic pathway by lovastatin. Mol. Med. 13, 592–604.
34. Lee, J., and Stock, J. (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J. Biol. Chem. 268, 19192–19195.
35. Rawson, R. B., Zelenski, N. G., Nijhawan, D., Ye, J., Sakai, J., Hasan, M. T., Chang, T. Y., Brown, M. S., and Goldstein, J. L. (1997) Complementation cloning of S2P: a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57.
36. Pallai, R., Bhaskar, A., Sodi, V., and Rice, L. M. (2012) Ets1 and Elk1 transcription factors regulate cancerous inhibitor of protein phosphatase 2A expression in cervical and endometrial carcinoma cells. Transcription 3, 323–335.
37. Kurachi, S., Huo, J. S., Ameri, A., Zhang, K., Yoshizawa, A. C., and Kurachi, K. (2009) An age-related homeostasis mechanism is essential for spontaneous amelioration of hemophilia B Leyden. Proc. Natl. Acad. Sci. U.S.A. 106, 7921–7926.
38. Sundqvist, A., Bengoechea-Alonso, M. T., Ye, X., Lukiyanchuk, V., Jin, L., Harper, J. W., and Ericsson, J. (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factor.
Regulation of LDL-C Uptake by PP2A

factors by SCF(Fbw7).

39. Kotzka, J., Lehr, S., Roth, G., Avci, H., Knebel, B., and Muller-Wieland, D. (2004) Insulin-activated Erk-mitogen-activated protein kinases phosphorylate sterol regulatory element-binding protein-2 at serine residues 432 and 455 in vivo. J. Biol. Chem. 279, 22404–22411

40. Wong, R. H., and Sul, H. S. (2010) Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10, 684–691

41. Roth, G., Kotzka, J., Kremer, L., Lehr, S., Lohaus, C., Meyer, H. E., Krone, W., and Muller-Wieland, D. (2000) MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J. Biol. Chem. 275, 33302–33307

42. Lu, M., and Shyy, J. Y. (2006) Sterol regulatory element-binding protein-1 in response to DNA binding. Cell Cycle 5, 1708–1718

43. Yoon, Y. S., Seo, W. Y., Lee, M. W., Kim, S. T., and Koo, S. H. (2009) Regulation of LDL-C Uptake by PP2A: a transcriptional perspective. J. Biol. Chem. 284, 10446–10452

44. Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y., Gao, B., Wierzchicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A., and Zang, M. (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388

45. Goldstein, J. L., and Brown, M. S. (1990) Regulation of the mevalonate pathway. Nature 343, 425–430

46. Li, Y., Wei, H., Hsieh, T. C., and Pallas, D. C. (2008) Cdc55p-mediated E4orf4 growth inhibition in Saccharomyces cerevisiae is mediated only in part via the catalytic subunit of protein phosphatase 2A. J. Biol. Chem. 283, 3612–3623

47. Zhang, Z., Mui, M. Z., Chan, F., Roopchand, D. E., Marcellus, R. C., Blanchette, P., Li, S., Berghuis, A. M., and Branton, P. E. (2011) Genetic analysis of B55α/Cdc55 protein phosphatase 2A subunits: association with the adenosine E4orf4 protein. J. Virol. 85, 286–295

48. Magana, M. M., and Osborne, T. F. (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J. Biol. Chem. 271, 32689–32694

49. Nagoshi, E., and Yoneda, Y. (2001) Dimerization of sterol regulatory element-binding protein dimers. J. Biol. Chem. 276, 6747–6753

50. Khoo, M. C., Oliveira, F. M., and Cheng, L. (2013) Understanding the metabolic syndrome: a modeling perspective. IEEE Rev. Biomed. Eng. 6, 143–155

51. Sabrina, A. A., Hector, M., Colpaert, N., and Hahn, W. C. (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res. 70, 10474–10484

52. Li, Y., Wei, H., Hsieh, T. C., and Pallas, D. C. (2008) Cdc55p-mediated E4orf4 growth inhibition in Saccharomyces cerevisiae is mediated only in part via the catalytic subunit of protein phosphatase 2A. J. Biol. Chem. 283, 3612–3623

53. Magana, M. M., Koo, S. H., Towle, H. C., and Osborne, T. F. (2000) Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J. Biol. Chem. 275, 4726–4733

54. Bennett, M. K., Seo, Y. K., Datta, S., Shin, D. J., and Osborne, T. F. (2008) Selective binding of sterol regulatory element-binding protein isoforms and co-regulatory proteins to promoters for lipid metabolic genes in liver. J. Biol. Chem. 283, 15628–15637

55. Lloyd, D. B., and Thompson, J. F. (1995) Transcriptional modulators affect in vivo protein binding to the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase promoters. J. Biol. Chem. 270, 25812–25818

56. Pak, Y. K. (1996) Serum response element-like sequences of the human low density lipoprotein receptor promoter: possible regulation sites for sterol-independent transcriptional activation. Biochem. Mol. Biol. Int. 38, 31–36

57. Li, C., Kraemer, F. B., Ahlborn, T. E., and Liu, J. (1999) Induction of low density lipoprotein receptor (LDLR) transcription by oncostatin M is mediated by the extracellular signal-regulated kinase signaling pathway and the repeat 3 element of the LDLR promoter. J. Biol. Chem. 274, 6747–6753

58. Iizuka, K., and Horikawa, Y. (2008) ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr. J. 55, 617–624

59. Khoo, M. C., Oliveira, F. M., and Cheng, L. (2013) Understanding the metabolic syndrome: a modeling perspective. IEEE Rev. Biomed. Eng. 6, 143–155

60. Sabrina, A. A., Hector, M., Colpaert, N., and Hahn, W. C. (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res. 70, 10474–10484

61. Rodgers, J. T., Vogel, R. O., and Puigserver, P. (2011) Cdk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holocomplex on Akt. Mol. Cell 41, 471–479

62. Li, Y., Wei, H., Hsieh, T. C., and Pallas, D. C. (2008) Cdc55p-mediated E4orf4 growth inhibition in Saccharomyces cerevisiae is mediated only in part via the catalytic subunit of protein phosphatase 2A. J. Biol. Chem. 283, 3612–3623

63. Zhang, Z., Mui, M. Z., Chan, F., Roopchand, D. E., Marcellus, R. C., Blanchette, P., Li, S., Berghuis, A. M., and Branton, P. E. (2011) Genetic analysis of B55α/Cdc55 protein phosphatase 2A subunits: association with the adenosine E4orf4 protein. J. Virol. 85, 286–295

64. Mui, M. Z., Roopchand, D. E., Gentry, M. S., Hallberg, R. L., Vogel, J., and Branton, P. E. (2010) Adenosine protein E4orf4 induces premature APC-Cdc20 activation in Saccharomyces cerevisiae by a protein phosphatase 2A-dependent mechanism. J. Virol. 84, 4798–4809