Encrypted Antimicrobial Peptides from Plant Proteins

M. H. S. Ramada1,2,7, G. D. Brand3, F. Y. Abrão4, M. Oliveira4, J. L. Cardozo Filho1,5, R. Galbieri5, K. P. Gramacho6, M. V. Prates1 & C. Bloch Jr.1

Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.

In Greek Philosophy but also under the historical knowledge accumulated in Physics, Aristotle introduced the concept of first cause or prime mover, meaning the first of all substances or the commencement of everything that exists in nature. Assuming that complex and superior beings are not logically supposed to be the unique cause (origin, explanation) of themselves, under the framework proposed by the thinker, things in the universe should be caused by previous and original ones. Therefore, these causes exist in succession, as a chain of events distending regressively.

The paradigmatic cosmological theory of the Big Bang, initially suggested in Georges Lemaître’s pivotal work, “Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques” and his subsequent Primeval-Atom hypothesis, strengthened by the recent advances in genome sequencing; or the present models of development and differentiation of stem cells, seem to share the same archetypical structure as proposed by the Aristotelian framework. It means that all these theories and models conceive a fundamental starting point of its own substance that during a certain period of time moves towards an increasing structural and functional complexity until the inevitable finitude. By analogy, the complete genome of any living form could also be considered as the primordial starting point in a chain of events. It means that a linearly organized genetic material undergoes metabolic processing yielding structures with forms and functions that, in many ways, as a direct function of time and environmental conditions, appear to be different or substantially apart from its origin. Considering a broader and interspecific scenario, the actual differences in shapes, sizes and behavior our senses perceive in all living creatures, may also be seen as successful products of the internal possibilities (potentialities) of the prime genetic material exposed to a number of evolutionary factors in the time line.

In our previous work, inspired by this theoretical reasoning, protein sequences were perceived as the prime source from where antimicrobial peptides (AMPs) could be located in one or more regions of the complete polypeptide chain of some mature and expressed proteins. In strict tandem with Aristotle’s thought, the primary
styles of certain proteins were assumed to be the **material cause** of our system, i.e. the raw material (**potenti-
ality**) from which antimicrobial peptides (**activity**) could be physically attained in the same manner that in the
cytoplasm newly translated precursor polypeptides (pre-pro-proteins) from correspondent mRNAs are enzy-
matically processed into mature proteins and/or peptides. The practical differences of our approach rest on what
Aristotle's analytical method defined as **formal, final and efficient causes**. In short, an in-house made computer
program, called Kamal, generates interactive routines of **in silico** processing of protein sequences oriented by
specific physicochemical parameters capable of identifying putative antimicrobial peptide fragments inside larger
polypeptide chains. These physicochemical parameters, e.g. net charge, average hydrophobicity, and hydropho-
bic moment, were originally derived from native AMPs described in the literature and used as archetypal param-
eters to define antimicrobial activity, or in Aristotelian terms, the **formal cause**. Protein fragments with matching
physicochemical properties to the above-described antimicrobial archetype were filtered, chemically synthesized,
and tested accordingly to evaluate their microbicidal function (**final cause**). Evidences of "encrypted" protein
fragments showing dissimilar biological activities to their original parent-molecules have been available for some
time. However, to our best knowledge, a systematic hypothesis-driven initiative to produce analytical means
able to rationally decipher unseen bioactive potentialities inside protein primary structures into biologically rel-
evant functional actualities in the form of microbicidal molecules or "intragenic" antimicrobial peptides (IAPs)
was first demonstrated by our group.

Our methodology relies in two reinforcing steps: the filtering of genomes/protein collections using Kamal,
and a classification tool to identify the IAPs that induce comparable disturbances in model phospholipid mem-
branes. The physicochemical properties of peptide subgroups associated with potent antimicrobial activity are
fed back to Kamal and used for successive rounds of peptide filtering/evaluation. In fact, our system mimics an
evolutionary process, with the generation of diversity followed by the selection of the fittest. The present work
reports a substantial quantitative and qualitative improvement of our methodology on bioactive peptide screening
by showing a new generation of IAPs with antibacterial and antifungal activities obtained from various protein
sequences belonging to different plants. The biological activities of two frog skin antimicrobial peptides,
DS01 from *Phyllomedusa oreades* and Ascaphin-8 from *Ascaphus truei*, are also evaluated as references of native
AMPs. Our work demonstrates that intragenic antimicrobial peptides can be as active as known AMPs, with
similar selectivity and breadth of antimicrobial spectrum. Furthermore, it provides additional evidence that
organisms expressing intragenic peptides could be a feasible alternative to transgenic technology using conven-
tional AMPs in the constant need for novel agents for the control of pathogens.

Results

Plants genomes as sources of IAPs. Publicly available protein collections from *Theobroma cacao*,
Arabidopsis thaliana, *Citrus sinensis* and *Gossypium raimondii* were submitted to the software Kamal
v1.0 alpha for the filtering of putative IAPs encrypted within proteins. Kamal uses calculated physicochemical properties
derived from protein primary structure as descriptors of peptide activity, as previously demonstrated by our
group. Nine filters were sequentially applied to plant genomes to uncover putative IAPs, as described in Table 1.
Kamal generates a list of protein fragments with higher probability of antimicrobial activity, which should be
curated by the user aided by auxiliary tools available online. By extensive user examination of the putative IAPs
generated by Kamal, twenty-one peptides were selected for solid phase peptide synthesis (Table 2). Tc02, Tc06 and
Tc08 have their helical wheel projections and their physicochemical properties depicted in Fig. 1 as an illustration.
The distribution of amino acid residues in these IAPs in theoretical helical segments emulates the characteristic
amphiphilic character of AMPs. Furthermore, to investigate the physicochemical properties of putative IAPs
prospected from the *T. cacao* genome in relation to randomly selected peptides, quantile plots were generated.
Tc02, Tc06 and Tc08 have a net charge, isoelectric point and an aggregation tendency (Na4+SS) higher than the 3rd
quartile of a sample of ten thousand peptides from 16 to 22 amino acid residues prospected randomly from the
same *T. cacao* protein collection. Moreover, average hydrophobicity and hydrophobic moment are in the third
quartile of the reference set (Fig. 1). These three peptides are representative of the putative IAPs derived from
plant genomes selected for solid phase peptide synthesis (Supplementary Material 01, Table S1 and Figure S1).
Therefore, putative IAPs selected for synthesis tend to be more cationic, more hydrophobic, and more prone to
aggregation than the average *T. cacao* random protein fragment of the same number of residues.

Physicochemical Parameters	Window Range
Peptide size	16–22 aa
Residue filter	C and P*
Net Charge	+1 up to +5
Molecular Mass (Da)	1400 to 4000
Hydrophobicity Tm scale	-0.485 up to +0.516
Hydrophobic Moment Tm scale	+0.516 up to +1.267
Aggregation	-10 up to +55
Isoelectric Point	9 up to 13
Windowed Hydrophobicity	Max 1 up to 3 Min -2 up to -0.5

Table 1. User-defined physicochemical properties used for the search of IAPs. *Exclude peptides with cysteine
(C) or proline (P) residues.
The interaction of IAPs with model membranes. The secondary structure of synthetic IAPs was investigated in buffer and after the addition of dimyristophosphatidic acid (DMPC) and 2:1 dimyristophosphatidic acid: DMPC (DMPC:DMPG) large unilamellar vesicles (LUVs) at 50-fold molar excess. In buffer, most peptides presented far Ultraviolet-Circular Dichroism (UV-CD) spectra compatible with random coil structures (Table 3). Nevertheless, some were already structured as α-helices or β-sheets even before the addition of vesicles. Peptides Tc02 and Gr02 are structured as stable α-helical segments in buffer, and membrane addition accentuated their helical content (Fig. 2). IAPs, such as At02, Gr01 and Tc08, transitioned from random coil structures in buffer to α-helical segments upon membrane interaction, similarly to the classical AMP DS0116,17,18,21 (Fig. 2). Other molecules presented Far-UV CD spectra compatible with β-sheets and were considered separately. The helical percentages of the 21 IAPs evaluated herein in buffer and following the addition of LUVs are depicted in Table 3. This data corroborates our previous results that IAPs behaves as most membrane-active peptides. **Protein not available on NCBInr database. ***Protein not available on NCBInr database. This protein was obtained from a list of oxidative-stress from cocoagendb.cirad.fr.

Table 2. Peptide IDs, source proteins, scanned organisms, peptide sequences and number of residues of the current generation of IAPs. *Carboxyamidated peptides. **Protein not available on NCBInr database.

- **Peptide ID** | **Source protein** | **Organism(s)** | **Peptide Sequence (**)** | **N.z.**
- Tc01 | Embryo defective 1381 isoform 2 | Theobroma cacao | VALRLAKEVYIKVQQGW | 16
- Tc02 | ARM repeat superfamily protein, putative isoform 1 | Theobroma cacao | GIKLYLILYLLRKYANLHR | 20
- Tc03 | Tc05_g014340 (12–32)** | Theobroma cacao | IKLRLNVKYLFRIDVIKEDIL | 21
- Tc04 | Purple acid phosphatase 3 | Theobroma cacao | RYLKDVESALRESVANVKIVG | 22
- Tc05 | Gamma interferon responsive lysosomal thiold reductase family protein, putative | Theobroma cacao | IVNLHLVLFDKGLNSINVLR | 20
- Tc06 | Cytochrome P450, family 87, subfamily A, polypeptide 2 | Theobroma cacao | GSLHFMKMYKLNMYVLTF | 19
- Tc07 | Laccase 17 | Theobroma cacao | LIKVYNHQYNTLHWHGIR | 20
- Tc08 | Uncharacterized protein TCM_026695 | Theobroma cacao | LHRYVKIVAILRGLGSKYDTH | 22
- Tc09 | NB-ARC domain-containing disease resistance protein, putative | Theobroma cacao | GIYVLKDLESEKLRLYKIVIG | 20
- Tc10 | NB-ARC domain-containing disease resistance protein, putative | Theobroma cacao | GLLFKELQKLRIYQFIFGK | 19
- Tc11 | LRR and NB-ARC domains-containing disease resistance protein, putative isoform 1 | Theobroma cacao | LLDKLKRTLISIEAVLI | 17
- At01 | Cytochrome P450, family 87, subfamily A, polypeptide 2 | Arabidopsis thaliana | GSLHGFMYKYLKMVLETFL | 19
- At02 | SIP121-0-PQ4 (45-60)*** | Arabidopsis thaliana | KVLSKVHTLKLAVL | 16
- At03 | YELLOW STRIPE like | Arabidopsis thaliana | GALKSQVRALGKFSF | 18
- At04 | YELLOW STRIPE like | Arabidopsis thaliana | GLYNFKVLGTRTVGLGYQTQ | 20
- Cs01 | PREDICTED: cytochrome P450 87A3 | Citrus sinensis | GSLHGFMYRKLNMVLNF | 19
- Zm01 | PREDICTED: cytochrome P450 87A3-like | Zea mays | GSLHGFMYKLKTLRLY | 19
- Cs02 | photosystem II CP47 chlorophyll apoprotein (chloroplast) | Citrus sinensis | FFGHWHGARTLFRDVA | 18
- Cs03 | hypothetical protein CJ57_1g015590mg | Citrus sinensis | FFNYVIKNGMAGRISK | 18
- Gr01 | PREDICTED: uncharacterized protein LOC105765114 | Gossypium raimondii | GFKLGRKLVKVKFW | 16
- Gr02 | hypothetical protein B456_004G254100 | Gossypium raimondii | ANRLLEAYKMLKLFIGNLR | 19

IAPs are potent and broad antimicrobial agents with low hemolytic activities. The antimicrobial activity of the 21 putative IAPs versus Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi were evaluated. A panel of plant and human pathogenic microorganisms were assayed. Sixteen IAPs, or approximately 76% of the synthesized IAPs, showed inhibitory activity at concentrations up to 256 µM against at least one of the evaluated microorganisms (Tables 4 and 5). Five of them, Tc02, Tc08, At02, Gr01 and Gr02 were as potent as DS011618 and Asc-8,25, with a similar amplitude of spectrum of activity. Moreover, some specificity towards particular groups of microorganisms were observed. Tc02 inhibited the growth of yeasts and filamentous fungi more...
efficiently than Gram-positive and -negative bacteria, while Tc08 presented an opposite pattern of activity. The same is true for At04, which showed almost negligible activity to most microorganisms, except for *Staphylococcus aureus*. Tc06, At01, Cs01 and Zm01 were also as potent as AMPs in inhibiting the growth of yeasts. Other peptides, such as At02, Gr01 and Gr02, inhibited the growth of microorganisms without regard to specific membrane structures or phospholipid compositions.

The microbicidal activities of these IAPs were also evaluated by standard dilution assays and are presented as Supplementary Material (Supplementary Material 02, Tables S2 and S3). Inhibitory and microbicidal concentrations were very similar for the most active peptides, except for Tc06, At01, Cs01 and Zm01, which presented non-detectable microbicide concentrations to various microorganisms, while they inhibited their growth at concentrations lower than 32 µM, indicating a microbistatic activity rather than microbicidal.

The sixteen synthetic IAPs that displayed antimicrobial activity were tested for their cytotoxicity using human erythrocytes as model. Although the IAPs described herein were filtered to hinder the growth of plant pathogens (Table 1), erythrocyte lysis is used as a standard to evaluate peptide selectivity. IAPs induced erythrocyte lysis at variable concentrations similar to the AMPs Asc-8 and DS01 (Table 6 and Supplementary Material 03, Table S4). While Asc-8 is a known hemolytic molecule, DS01 did not induce significant alterations in red or white blood cells at the tested concentrations up to 45 µM. IAPs induced 50% hemolysis at intermediate concentrations to these two AMPs. Tc02, Gr01 and Gr02, three of the peptides with highest antimicrobial activities, induced 50% hemolysis at 64 µM, a concentration approximately 32 times higher than that required for fungicidal activity, or 12 times higher than that necessary for antibacterial activity.

IAPs from T. cacao inhibit the germination of Moniliophthora perniciosa basidiospores.

The eleven IAPs filtered from the *T. cacao* genome were evaluated for their potential to inhibit the germination of *M. perniciosa* basidiospores, the causal agent of witches’ broom disease. Five IAPs and the amphibian peptides DS01 and Asc-8 inhibited the germination of 1 × 10⁶ basidiospores after 4 hours of incubation in the evaluated...
concentrations, ranging from 256–0.5 µM (Fig. 4). No basidiospores germination were detected even with incubation for longer time periods (24 h and 48 h, Supplementary Material 04, Figure S2). Tc02, a fragment of the ARM repeat superfamily protein, putative isoform 1 from *T. cacao*, inhibited at least 95% basidiospore germination.

Table 3. Helical percentages of IAPs with or without LUVs. *β*-sheet structure.

Peptide ID	%Hel buffer	%Hel 2:1 DMPC/DMPG	%Hel DMPC
Tc01	5.0	64.8	4.5
Tc02	60.4	77.0	65.6
Tc03	*	50.7	36.8
Tc04	14.3	36.3	15.8
Tc05	8.3	68.8	34.9
Tc06	29.4	34.9	31.5
Tc07	23.5	19.9	17.1
Tc08	9.0	62.1	40.4
Tc09	12.3	0.0	19.3
Tc10	20.3	49.6	5.1
Tc11	45.8	56.7	57.0
At01	32.4	28.4	26.4
At02	13.3	79.8	32.6
At03	0.0	30.8	0.0
At04	*	*	*
Cs01	26.3	27.5	37.8
Zm01	31.0	65.5	42.2
Cs02	4.3	52.9	24.7
Cs03	*	*	*
Gr01	0.9	315.0	57.7
Gr02	56.7	64.2	50.5
Asc-8	2.7	88.5	74.2
DS01	23.2	72.4	59.4

Table 4. Antimicrobial activity of IAPs against yeasts and filamentous fungi. *Standard deviation equals 0 is not displayed in the table. N/A – No antimicrobial activity observed. Peptides Tc01, Tc04, Tc07, Tc09 and Tc11 did not show antimicrobial activity against any of the tested microorganisms.*

Peptides	Minimum inhibitory concentration (µM ± SD)							
Candida albicans	Cryptococcus neoformans	Fusarium solani	Fusarium oxysporum	Fusarium oxysporum f.sp. vaeinfectum	Ramularia areola	Rhizoctonia solani	Trichoderma asperellum	
Tc02	1.0	1.0	1.0	2.0	0.83 ± 0.29	0.83 ± 0.29	1.0	1.0
Tc03	N/A							
Tc05	128.0	128.0	N/A	N/A	N/A	N/A	N/A	N/A
Tc06	4.0	10.67 ± 4.61	32.0	16.0	16.0	4.0	N/A	6.67 ± 2.31
Tc07	4.0	8.0	32.0	32.0	2.0	4.0	16.0	16.0
Tc08	64.0	64.0	N/A	N/A	N/A	64.0	N/A	N/A
Tc09	16.0 ± 0.0	16.0 ± 0.0	32.0 ± 0.0	16.0 ± 0.0	8.0 ± 0.0	4.0 ± 0.0	16.0 ± 0.0	16.0 ± 0.0
Tc10	128.0 ± 0.0	64.0 ± 0.0	N/A	256.0 ± 0.0	64.0 ± 0.0	16.0 ± 0.0	N/A	128.0 ± 0.0
At01	N/A	64.0	N/A	N/A	N/A	N/A	N/A	N/A
At02	0.0	30.8	0.0	30.8	0.0	32.0	32.0	32.0
Cs01	26.3	27.5	37.8	37.8	37.8	37.8	37.8	37.8
Zm01	31.0	65.5	42.2	42.2	42.2	42.2	42.2	42.2
Cs02	4.3	52.9	24.7	24.7	24.7	24.7	24.7	24.7
Cs03	N/A							
Gr01	0.9	315.0	57.7	57.7	57.7	57.7	57.7	57.7
Gr02	56.7	64.2	50.5	50.5	50.5	50.5	50.5	50.5
Asc-8	2.7	88.5	74.2	74.2	74.2	74.2	74.2	74.2
DS01	23.2	72.4	59.4	59.4	59.4	59.4	59.4	59.4

Fluconazole | Amphotericin B | | | | | | | |
| 1.63 | 1.63 | N/A | N/A | 26.12 | N/A | N/A | N/A | N/A | N/A |
Table 5. Antimicrobial activity of IAPs against Gram–positive and –negative bacteria. *Standard deviation equals 0 is not displayed in the table. N/A – No antimicrobial activity observed. Peptides Tc01, Tc04, Tc07, Tc09 and Tc11 did not show antimicrobial activity against any of the tested microorganisms.

Table 5. Antimicrobial activity of IAPs against Gram–positive and –negative bacteria. *Standard deviation equals 0 is not displayed in the table. N/A – No antimicrobial activity observed. Peptides Tc01, Tc04, Tc07, Tc09 and Tc11 did not show antimicrobial activity against any of the tested microorganisms.

Peptides	Minimum inhibitory concentration (µM ± SD)
Tc02	10.67 ± 4.61 16.0
Tc03	64.0 N/A
Tc05	N/A N/A
Tc06	32.0 26.67 ± 9.24
Tc08	2.0 4.0
Tc10	26.67 ± 9.24 128.0
At01	64.0 ± 0.0 32.0 ± 0.0
At02	2.0 ± 0.0 5.33 ± 2.31
At03	16.0 ± 0.0
At04	N/A N/A
Cs01	32.0 32.0
Cs02	8.0 N/A
Cs03	128.0 N/A
Gr01	0.5 3.33 ± 1.15
Gr02	4.0 32.0
Asc-8	2.0 4.0
Ds01	1.0 2.0
Ampicilin	10.77 N/A
Gentamicin	0.52 0.13

(I_{50}) of M. persicis basidiospores at 16µM. Tc06 and Tc10 also inhibited significantly the growth of fungal spores, with an I_{50} of 64µM (Table 7).

IAPs from G. raimondii inhibit areolate mildew development on cotton leaves. IAPs were also able to inhibit the cotton pathogen *Ramularia areola* growth *in vitro* (Table 4). The IAPs Gr01 and Gr02, prospected from *G. raimondii* proteins, along with other peptides such as Tc06, At03 and Cs02, originally prospected for other plants but found with 100% identity in the cotton genome, were evaluated for their potential to inhibit disease development on cotton leaves infected with *R. areola* spores. Disease severity was evaluated in a scale from 1 (no symptoms) to 5 (over 50% of leaf area showing disease symptoms) (Fig. 5a). IAPs and 2 × 10^6 spores were incubated for 20 minutes and this solution was applied in plant leaves. Gr01 and Tc06 showed significant results (p < 0.05, One-way ANOVA) on the control of areolate mildew down to 16 and 32 µM, respectively (Fig. 5b). Moreover, IAPs showed similar qualitative results to the commercial fungicide used as control. The number of spores collected from the leaves was also significantly decreased in the presence of the IAPs (Supplementary Material 05, Figure S3). Surprisingly, Gr02 did not show a significant reduction in areolate mildew severity and spores concentration. This demonstrates that *in vitro* biological activities might not be observed *in vivo*, and novel assays are necessary to accurately address these results.

Discussion

We are persuaded that mature proteins represent a feasible and copious source from where smaller bioactive polypeptide chains may be earned, particularly antimicrobials. In the present report, we confirm our previous findings by demonstrating additional proofs of this concept exploring plant protein sequences as sources of their derived peptide primary structures and, evaluating their respective biological activities against varied pathogens. The IAPs searched in plant genomes described herein have equivalent potency, selectivity, and display a similar activity spectrum towards microorganisms as AMPs from various sources. Moreover, these IAPs fold into α-helical segments upon membrane interaction producing a range of membrane disturbances, in the same manner as mature antimicrobial peptides from frog skin secretions (Figs 2 and 3). The disturbances introduced by the IAPs in model membranes, as depicted in Fig. 3, are typical of molecules that are localized at the polar/nonpolar interface of the phospholipid bilayer, with a tendency to disturb the acyl interior of membranes, similar to DS01 and other AMPs in the literature. Furthermore, membrane disturbance is directly associated with the peptide helicity, and the same is observed for the IAPs (Fig. 2). Our data demonstrates that classical antimicrobial peptides, selected for their membrane disruptive potential by millions of years of evolution, can be mimicked in several aspects by internal protein segments with comparable physicochemical properties, but with no identifiable adaptive pressure for such activity when encrypted in parent proteins. Once identified and characterized, these IAPs can be used to confer resistance to a variety of pathogens, by transforming plants with fragments of their own genetic material, providing an alternative to the transgenic technology. This was demonstrated by our
group, where soybean IAPs were able to decrease symptoms of Asian rust (Phakopsora pachyrhizi) on soybean leaves in vitro and in vivo.

To the best of our knowledge, this is the first time that molecules with significant antimicrobial activity are obtained from T. cacao and G. raimondii. The IAPs Tc02, Tc06 and Tc10 inhibited the germination of M. perniciosa basidiospores and can be considered promising agents against other T. cacao pathogens, such as Phytophthora spp. and Moniliophthora roreri. Despite the encouraging results, cocoa transformation is challenging due to its long growth period to yield its first fruits. Micro-Tom tomatoes transformation represents an alternative to evaluate the intragenic approach in the control of M. perniciosa infection. For cotton plants, the inhibition of areolate mildew symptoms (Fig. 5b1 and b2) and the decrease in spore concentration (Supplementary Material 05, Figure S3) with comparable results to a commercial fungicide indicates that peptides Gr01 and Tc06 are suitable candidates for cotton plant transformation.

The evidences we have encountered so far by applying our methodology, alongside most of the native bioactive peptide data available in the literature, compel us to infer that other sources of proteins in animals, algae and microorganisms should yield similar results to the ones we have evaluated here. Putative IAPs can be prospected from both clade-specific proteins or from evolutionarily conserved homologous genes that span different taxa. The latter seems to be the case of the IAPs Tc06 and Cs02. Tc06 is derived from cytochrome P450 family 87, found with 100% identity in many eudicots and with more than 75% identity in some monocots such as Oryza sativa and Zea mays (Table 2), while the IAP Cs02 is a fragment of the photosystem II CP47 chlorophyll apoprotein, found identically in Bacteria and Eukarya kingdoms (Supplementary Material 06, Figure S4). However, at the present phase of our investigations it appears that more important than a most needed systematic search for novel bioactive peptides in other protein sources that would reinforce our findings, some fundamental questions seem to emerge from the current scenario that deserve to be addressed with higher priority: 1. Are these facts pointing out to a general phenomenon? 2. If so, what would be the biological and physiological implications of that? 3. Could protein degradation (into bioactive peptides) be considered an overlooked step of specific protein post-processing and/or function in nature and not only an earlier stage of proteolysis destined to supply amino acids to various metabolic pathways? 4. What would be the implications of this concept in biotechnology, agriculture and human health?

From our perspective, these questions have no easy answers. Each one of them appears to open such a wide range of theoretical and experimental research possibilities that, at present, are beyond our best work force and probably lifetime effort.

It is our understanding that although the empirical results on microbicidal activities presented here constitute a robust and assorted set of material evidences on which our prime hypothesis is anchored, they seem to represent just the tip of a much larger aspect of the reality that need to be investigated rigorously not only for different types of antimicrobial properties and modes of action, but also for other important biological functions such as analgesic, anti-inflammatory, hypotensive, for example. In fact, our group recently identified encrypted opioid peptides on dehydrin protein family from Coffea spp., showing similar results to Leu-Enkephalin. We also...
identified a conserved Met-Enkephalin in a F-box protein from *T. cacao* (NCBI E0Y06230.1 – Residues Lys 176 to Lys 184) with similar cleavage sites for serine proteases as found on human pro-enkephalins (unpublished data). Such results highlight how abundant encrypted peptides can be, suggest another facet to genome plasticity and therefore offer new extrinsic principles to biodiversity42–44. Mechanistic features and physicochemical studies on the antimicrobial peptides evaluated in this work are available as a second part of the current paper, entitled “Towards an experimental classification system for membrane active peptides”.

Material and Methods

IAPs search criteria and peptide synthesis. The predicted proteins from *Theobroma cacao* were downloaded from Cacao Genome Database (www.cacaogenomedb.org) on October 2013. *Arabidopsis thaliana*, *Gossypium raimondii* and *Citrus sinensis* genomes were downloaded from the Phytozone portal (https://
phytozome.jgi.doe.gov) on February, July and August 2014, respectively. All genomes were searched for putative IAPs. IAPs were searched through a set of defined physicochemical parameters using Kamal alpha v.1.0 software. Physicochemical descriptors were updated from our previous report and are listed in Table 1. A total of 21 peptides were chemically synthesized using Fmoc/t-butyl strategy. Peptide chain elongation was performed on Rink Amide resin, yielding C-terminal amidated peptides. Two known AMPs from frog skin secretions, Dermaseptin DS01 and Asc-8, were also synthesized. Helical wheel plots were created using an Internet Tool (http://lbqp.unb.br/NetWheels).

Mass spectrometry analyses. All crude synthetic peptides were analyzed by mass spectrometry to confirm peptide mass and amino acid sequence. Experiments were carried out in an UltraflexXTreme MALDI-TOF/TOF (Bruker Daltonics), controlled by FlexControl 3.0 software (Bruker Daltonics) using α-cyano-4-hydroxycinnamic acid matrix (Fluka) for ionization. Peptides monoisotopic mass were obtained in reflector mode over a range of 700–3500 m/z with external calibration using Peptide Calibration Standard II (Bruker Daltonics). Peptide MS/MS spectra were obtained by means of LIFT fragmentation after analyzing the obtained MS spectra and selection of precursor ions for fragmentation. The software FlexAnalysis 3.0 (Bruker Daltonics) was used for mass spectrometry data analysis. Peptide primary structures were inferred by means of manual interpretation of fragmentation spectra.

HPLC purification and peptide quantification. Reverse phase HPLC (RP-HPLC) of the synthetic peptides were performed in two different scales: analytical and preparative, both using C-18 columns, Grace Vydac 218TP54 and Grace Vydac 218TP1022, respectively. Ultrapure H₂O + 0.1% (v/v) TFA (J.T. Baker) and acetonitrile (J.T. Baker) + 0.1% (v/v) TFA (J.T. Baker) were used as solvent A and B, respectively. The chromatography method was set as a 50 minutes protocol composed of three steps: 1- 0–5 min: 5% (v/v) solvent B; 2-5–45 min: gradient of solvent B up to 95% (v/v); 3- 45–50 min: 95% (v/v) of solvent B. Fractions were manually collected and analyzed by mass spectrometry to confirm the elution time of each synthetic peptide. Peptides were then purified in a preparative scale using the same parameters described above. Fractions of interest were collected and analyzed by mass spectrometry to confirm purity. Purified synthetic peptides containing Trp or, at least, three Tyr residues were quantified using calculated molar absorption coefficients. The remaining peptides were quantified using the UV absorbance of the peptide bond according to the literature.

Large unilamellar vesicles (LUVs) preparation. DMPC and 2:1 DMPC:DMPG (w/w) were dissolved in chloroform and methanol (3:1 v/v) at 10 mg/mL, dried using a rotary evaporator and left 3 hours under high vacuum in a freeze dryer. Phospholipids were then dissolved in 20 mM Sodium phosphate – NaOH, 150 mM NaCl, pH 7.4 and hand-shaken until the formation of a cloudy solution, which was passed 19 times through a 100 nm polycarbonate membrane at 30 °C for the formation of large unilamellar vesicles (LUVs) using a mini-extruder (Avanti Polar Lipids). Phospholipid concentration was estimated according to the ammonium ferrothiocyanate method.

Differential scanning calorimetry (DSC). Thermograms were obtained using a VP-DSC (GE Healthcare) at a temperature range from 10 to 40 °C at a scanning rate of 0.5 °C/min. Blank thermograms using buffer alone and 0.5 mM DMPC or 2:1 (w/w) DMPC:DMPG LUVs in buffer were acquired as reference. Peptides were added

Peptides	Hemolytic activity of human red blood cells (%)
Tc02	64µM
Tc03	>128µM
Tc05	>128µM
Tc06	>128µM
Tc08	>128µM
Tc10	>128µM
At01	>128µM
At02	>128µM
At03	>128µM
At04	>128µM
Cs01	>128µM
Zm01	>128µM
Cs02	>128µM
Cs03	>128µM
Gr01	64µM
Gr02	64µM
Asc-8	16µM
Ds01	>128µM

Table 6. Hemolytic activity. **IAP concentration that at least 50% of red blood cells remain intact.
to fresh samples of 0.5 mM LUVs at a concentration of 20 μM (0.04 mol/mol peptide/phospholipids) at room temperature, immediately followed by DSC data acquisition. Each sample was subjected to various thermal scans until there were no distinguishable changes in the thermal profile of the main phase transition ($P'_β \rightarrow L_α$) of phospholipids between scans. Data was concentration normalized, baseline subtracted (linear connect), and fitted to a non two-state transition with two peaks determined by the user applying the MicroCal Origin software v7.0. Re-scans for selected cases were acquired using fresh peptide and LUVs solutions to check the reproducibility of the data.

Circular Dichroism (CD). Experiments were conducted on a Jasco-J815 spectropolarimeter (Jasco International Co.). Spectra were acquired at room temperature from 200 to 260 nm as an average of 4 readings.
using a 0.1 cm path length cell, data pitch of 0.2 nm and a response time of 0.5 s. Data Scans of buffer and 2 mM DMPC and 2:1 DMPC:DMPG LUVs solutions were acquired and subtracted from each peptide data. Peptides were scanned at a concentration of 40 μM in buffer and then 50 fold excess of DMPC and 2:1 DMPC:DMPG LUVs were added, resulting in a molar ratio of 0.02 peptide/phospholipid. The spectra were converted to mean residue ellipticity and readings at [θ]222 nm were used to estimate helix percentages.

Evaluation of antimicrobial activity of IAPs. The susceptibility test of microorganisms was performed to evaluate the inhibitory activity of the IAPs. Protocols M7-A10, M27-A3 and M38-A2 from Clinical & Laboratory Standards Institute (CLSI) were used for bacteria, yeasts and filamentous fungi tests, respectively. Briefly, different concentration of IAPs (256-0.5 μM) were tested against 16 microorganisms, in a final volume of 100 μL. Media conditions, final cell concentration and incubation conditions are presented in Supplementary Material 07, Table S5. Three biological repetitions, with 2 technical replicates each, were performed for each test, on polystyrene flat-bottom 96 wells microplates. The minimum inhibitory concentration (MIC) was defined as the concentration that no cells/hyphae were detected when visualized by optical microscopy.

The microbicidal activity of the IAPS was also evaluated. After the growing period showed on Supplementary Material 07 for each organism, 10 μL of the minimum inhibitory concentration and raising concentrations up to 256 μM were transferred to agar plates, and incubated at the same conditions (Table 2). YPD agar and
Mueller-Hinton agar were used for fungi/yeasts and bacteria, respectively. Meanwhile, susceptibility microplates were incubated again to evaluate if there would be any growing after a longer period. For both approaches, the minimal killing concentration (MKC) was defined as the concentration that no growth was observed after incubation. Three biological replicates were performed for each test.

Evaluation of cytotoxicity of IAPS. The cytotoxicity of the selected IAPS was performed using human red blood cells in strict accordance with relevant guidelines and regulations (Ethical committee – UnB # 1.939.989). Different concentrations of IAPS (128 µM–0.5 µM) were incubated with a final concentration of 2.5 × 10^5 red blood cells.mL^-1. Briefly, 100 µL of red blood cells was incubated with 100 µL of different concentrations of each IAP, prepared in PBS, for 30 minutes at 37°C, with constant shaking at 120 rpm. PBS and Triton X-100 0.1% (v/v) were used as negative and positive controls, respectively. After incubation, the solution was centrifuged at 900 × g for five minutes followed by transferring 50 µL of the supernatant to flat-bottom polystyrene 96-well microplates containing 50 µL of PBS. Microplate reading was performed at a BioTek Multireader, using a wavelength of 540 nm. All tests were performed in 3 biological replicates, composed of 3 biological repetitions each. The obtained data was subtracted by the negative control and relative to the positive control, defined as 100% lysis.

Inhibition of M. perniciosa basidiospore germination by T. cacao IAPS. The antimicrobial potential of T. cacao IAPS for inhibiting M. perniciosa basidiospores was evaluated. Briefly, 1 × 10^4 basidiospores.mL^-1 were incubated for one hour with different concentrations of T. cacao IAPS (256–0.5 µM), at 24°C, in a final volume of 100 µL. Autoclaved dH2O was used as a control. After incubation, 3 droplets of 10 µL each were placed in a slide coated with agar (1.2% w/v). Slides were incubated for 4, 24 and 48 hours at 24°C. Slides were visualized using a DMRXA light microscope (Leica). Approximately 150–200 basidiospores per droplet from each time point were counted and compared to the control condition, which was defined as 100% germination. All experiments were performed in biological triplicates, with 3 technical repetitions each.

IAP areolate mildew inhibition on cotton leaves. Different concentration of IAPS Tc06 (128–4 µM) and Gr01 (32–1 µM) were mixed with Ramularia areola spore solution (final concentration 2 × 10^4 spores.mL^-1) for 20 minutes prior to application on both surfaces of cotton leaves (cultivar IMA5675 B2RF). R. areola spores was also mixed with the commercial fungicide PrioriXtra (Syngenta®) (1,5 mL.L^-1) as negative control for disease development, and with water, as positive control.

Experimental groups were composed of 13 pots, with two plants each. From each plant, two leaves from sixty one days old cotton plants were selected for treatment. Sixteen days after application, disease severity and number of spores per leaf per experimental group were evaluated. For severity analysis, a score from 1 (no symptoms) to 5 (symptoms over 50% of foliar area) was attributed for each leaf. The final score for each treatment was an average from the four leaves from each pot. Spore counting was performed using a Neubauer chamber. Briefly, four leaves from each pot were scraped and counted, yielding a final spore count per pot. Data and statistical analysis were performed using Excel, GraphPad Prism and Past softwares.

References

1. Lemaître, G. A Univers homogène de masse constante et de rayon croissant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. la Société Sci. Bruxelles 47, 49–59 (1927).
2. Lemaître, G. The Beginning of the World from the Point of View of Quantum Theory. Nature 127, 706–706 (1931).
3. Kragh, H. S. & Lambert, D. The Context of Discovery: Lemaître and the Origin of the Primeval-Atom Universe. Ann. Sci. 64, 445–470 (2007).
4. Theobald, D. L. A formal test of the theory of universal common ancestry. Nature 465, 219–222 (2010).
5. David, B., Derrick, J. R. & Weissman, I. L. Hematopoietic Stem Cells: The Paradigmatic Tissue-Specific Stem Cell. Am. J. Pathol. 169, 338–346 (2006).
6. Fu, N., Lindeman, G. J. & Visvader, J. E. Theobald, D. L. Estratégias para prospecção e predição de peptídeos bioativos. 217p. (2007).
7. Brand, G. D. The ascaphins: A family of antimicrobial peptides from Stenodon nudus. Int. J. Mol. Sci. 15, 4451–4470 (2014).
8. Brand, G. D. et al. Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides. PLoS One 7, e45848 (2012).
9. Mesel, H. & Bockelmann, W. Bioactive peptides encrypted in milk proteins: Proteolytic activation and thrombo-functional properties. Antione van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 76, 207–215 (1999).
10. Dores, R. M., Lecaudé, S., Bauer, D. & Danielson, P. B. Analyzing the evolution of the opioid/orphanin gene family. Mass Spectrom. Rev. 21, 220–243 (2002).
11. Dziuba, B. & Dziuba, M. New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci. 15, 14531–14545 (2014).
12. Saikia, K., Sravani, Y. D., Ramakrishnan, V. & Chaudhary, N. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB. Sci. Rep. 7, 42994 (2017).
13. Kumar, R., Jangir, P. K., Das, J., Taneja, B. & Sharma, R. Genome Analysis of Ascaphus truei TE8 Reveals Repertoire of Antimicrobial Peptides and Adaptation Strategies for Growth on Human Skin. Sci. Rep. 7, 10447 (2017).
14. Bloch, C. Jr., Silva, L. P. & Magalhães, B. S. Peptides and polypeptides identification comprises detection of potential functions DNA fragments, for genetic engineering in organisms. Patent Number(s): BR200506317-A; Derwent Primary Accession Number: 2007-799053 (67); International Patent Classification: C12N-015/09; C12Q-001/68; G01N-033/68; G01N-037/00 (2007).
15. Brand, G. D. Estratégias para prospecção e predição de peptídeos bioativos. 217p. (2007).
16. Brand, G. D. et al. Dermaseptins from Phyllumedusa oreades and Phyllomedusa distincta: Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J. Biol. Chem. 277, 49332–49340 (2002).
17. Conlon, J. M., Sonnevend, A., Davidson, C., David Smith, D. & Nielsen, P. F. The ascaphins: A family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem. Biophys. Res. Commun. 320, 170–175 (2003).
18. Ponti, D., Mangoni, M. L., Mignogna, G., Simmaco, M. & Barra, D. An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem. J. 370, 121–7 (2003).
19. Rivero, M. et al. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol. 157, 334–343 (2012).
20. Wang, G., Li, X. & Wang, Z. AP2D: The updated antimicrobial peptide database and its application in peptide design. *Nucleic Acids Res.* 37, 933–937 (2009).

21. Bjellqvist, B. et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. *Electrophoresis* 14, 1023–1031 (1993).

22. Conchillo-Sole, O. et al. AGRGESCAN: a server for the prediction and evaluation of 'hot spots' of aggregation in polypeptides. *BMC Bioinformatics* 8, 65 (2007).

23. Zhao, G. & London, E. An amino acid 'transmembrane tendency' scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationships to biological hydrophobicity. *Protein Sci.* 15, 1987–2001 (2006).

24. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. *Nature* 299, 371–374 (1982).

25. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

26. Deganello, J., Leal, G. A., Rossi, M. L., Peres, L. E. P. & Figueira, A. Interaction of *Moniliophthora perniciosa* with micro-tomato: A model system to investigate the 'broom disease' of *Theobroma cacao*. *Plant Pathol.* 63, 1231–1263 (2014).

27. Zhao, G. & London, E. A simple UV spectrophotometric method for the determination of protein. *Anal. Biochem.* 176, 2787–2800 (2007).

28. Galbieri, R. et al. *Ramularia areola* sporulation potential in Brazilian cotton. *Summa Phytopathol.* 41, 233–235 (2015).

29. Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. *Pharmacol. Rev.* 55, 27–55 (2003).

30. Bennett, P. M. Genome Plasticity. *Science* 306, 1251–1263 (2004).

31. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

32. Wang, G., Li, X. & Wang, Z. AP2D3: The antimicrobial peptide database as a tool for research and education. *Nucleic Acids Res.* 44, D1087–D1093 (2016).

33. Chen, Y. et al. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. *Antimicrob. Agents Chemother.* 51, 1398–1406 (2007).

34. Kirschenbaum, D. M. Molar absorptivity and A1cm1% values for proteins at selected wavelengths of the ultraviolet and visible region. *Anal. Biochem.* 118, 1–22 (1981).

35. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

36. Waddell, W. A simple UV spectrophotometric method for the determination of protein. *Anal. Biochem.* 176, 2787–2800 (2007).

37. Kropinski, A. M. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

38. Zhao, G. & London, E. An amino acid 'transmembrane tendency' scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationships to biological hydrophobicity. *Protein Sci.* 15, 1987–2001 (2006).

39. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. *Nature* 299, 371–374 (1982).

40. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

41. Deganello, J., Leal, G. A., Rossi, M. L., Peres, L. E. P. & Figueira, A. Interaction of *Moniliophthora perniciosa* with micro-tomato: A model system to investigate the 'broom disease' of *Theobroma cacao*. *Plant Pathol.* 63, 1231–1263 (2014).

42. Vanhoye, D., Bruston, F., Nicolas, P. & Amiche, M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. *Eur. J. Biochem.* 270, 2068–2081 (2003).

43. Evans, H. C. Cacao Diseases—The Trilogy Revisited. *Pathophysiology* 97, 1640–1643 (2007).

44. Argout, X. et al. The genome of *Theobroma cacao*. *Nat. Genet.* 43, 101–108 (2011).

45. Deganello, J., Leal, G. A., Rossi, M. L., Peres, L. E. P. & Figueira, A. Interaction of *Moniliophthora perniciosa* biotypes with micro-tomato: A model system to investigate the 'broom disease' of *Theobroma cacao*. *Plant Pathol.* 63, 1231–1263 (2014).

46. Waddell, W. A simple UV spectrophotometric method for the determination of protein. *Anal. Biochem.* 176, 2787–2800 (2007).

47. Kropinski, A. M. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

48. Zhao, G. & London, E. An amino acid 'transmembrane tendency' scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationships to biological hydrophobicity. *Protein Sci.* 15, 1987–2001 (2006).

49. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

50. Kropinski, A. M. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

51. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. *Nature* 299, 371–374 (1982).

52. McElhaney, R. N. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

53. Kropinski, A. M. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. *Chem. Phys. Lipids* 30, 229–259 (1982).

54. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydrophobic character of a protein. *J. Mol. Biol.* 157, 105–132 (1982).

55. De Coninck, B. et al. Mining the genome of *Arabidopsis thaliana* as a basis for the identification of novel bioactive peptides involved in oxidative stress tolerance. *J. Exp. Bot.* 64, 5297–5307 (2013).

Acknowledgements

The authors wish to express their gratitude to Dr. Eliseu R. Alves and Mr Álvaro Salles for their support throughout this project and are also grateful to EMBRAPA, CEPLAC, IMA-MT, FINEP (Rede de Cacao do Renorbio, Vassoura-de-bruxa) and CNPq (Bilateral Project Brazil-Belgium) for providing the infrastructure and indispensable funding.

Author Contributions

Intragenic antimicrobial peptides identification was performed by M.H.S.R., G.D.B. and C.B.Jr. Synthesis and analytical steps were performed by M.H.S.R. and M.V.P. Antimicrobial and haemolytic activities were designed and performed by M.H.S.R., F.Y.A., M.O and K.P.G. Peptide-membrane interactions were performed by M.H.S.R. *R. areola* infection tests were designed and performed by J.L.C.F. and R.G. The manuscript was written by M.H.S.R., G.D.B. and C.B.Jr. All authors have read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-13685-6.
Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017