Supporting Information for

Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

Kata Tuza1*, László Jicsinszky1,2, Tamás Sohajda1, István Puskás1 and Éva Fenyvesi1

Address: 1CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary and 2Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, via P. Giuria 9, Turin, 10125, Italy

Email: Kata Tuza -\texttt{tuza@cyclolab.hu}

*Corresponding author

Additional NMR and HPLC data
Characterization of the ionic derivatives by NMR

All the NMR spectra including 1H, HSQC-DEPT (Heteronuclear Single Quantum Coherence - Distortionless Enhancement by Polarization Transfer) were recorded in D$_2$O on a Varian VXR-300 instrument at 300 MHz.

Scheme S1: General scheme of substituted maltooligomers for NMR assignment.
Table S1: Proton assignments of 1-\textit{O}-benzylated and (2-hydroxy)propylated maltooligosaccharides (chemical shifts are in ppm).

	1-OBn	1-OH				
	G6	G7	G8	G6	G7	G8
Benzyl, Aromatic	7.38-7.45, br m	7.42-7.47, br m	7.40-7.60, br m	-	-	-
Benzyl, CH\textsubscript{2}\textalpha	4.93, d (J 11 Hz)	4.93, d (J 12 Hz)	4.93, d (J 12 Hz)	-	-	-
Benzyl, CH\textsubscript{2}\textbeta	4.75, d (J 11 Hz)	4.76, d (J 12 Hz)	4.75, d (J 12 Hz)	-	-	-
(2-Hydroxy)prop-yl CH\textsubscript{2}	-	-	-	3.45-3.55, 3.63-68, 3.79-3.84, br	3.43-3.53, 3.61-3.66, 3.76-3.82, br	3.45-3.54, 3.62-3.66, 3.78-3.82, br
(2-Hydroxy)prop-yl CH	-	-	-	3.92-4.04, br	3.91-4.02, br	3.89-4.02, br
(2-Hydroxy)prop-yl CH\textsubscript{3}	-	-	-	1.14, 1.16, br	1.13, 1.15, br	1.13, 1.15, br
H\textsubscript{1}\textalpha	5.38, br	5.38, br	5.39, br	5.21, 5.52, br	5.20, 5.51, br	5.19, 5.50, br
H\textsubscript{1}\textbeta	4.52, d (J\textsubscript{1,2} 7.7 Hz)	4.54, d (J\textsubscript{1,2} 8 Hz)	4.53, d (J\textsubscript{1,2} 7.6 Hz)	4.63, d (J\textsubscript{1,2} 7.6 Hz)	4.62, d (J\textsubscript{1,2} 7.8 Hz)	4.62, d (J\textsubscript{1,2} 7.4 Hz)
H\textsubscript{2}\textalpha	3.55, br m	3.55, br m	3.55, br m	3.55-3.72, br, unsubst 3.69, br, subst	3.54-3.68, br, unsubst 3.67, br, subst	3.54-3.68, br, unsubst 3.67, br, subst
H\textsubscript{3}\textalpha	3.82, br m	3.84, br m	3.84, br m	3.76-3.87, br, unsubst 3.71-3.78, br, subst	3.75-3.85, br, unsubst 3.68-3.77, br, subst	3.74-3.86, br, unsubst 3.69-3.76, br, subst
H\textsubscript{4}\textalpha	3.64-3.76, br m	3.58-3.74, br m	3.57-3.75, br m	3.44, br	3.42, br	3.43, br
H\textsubscript{5}\textalpha	3.69-3.71, br m	3.68-3.74, br m	3.89-4.00, br m	4.03, br	4.01, br	4.01, br
H\textsubscript{6}\textalpha	3.73-3.94, br m	3.75-3.96, br m	3.70-3.95, br m	3.74-3.93, br, unsubst 3.78-3.82, br, subst	3.74-3.93, br, unsubst 3.78-3.82, br, subst	3.74-3.93, br, unsubst 3.78-3.82, br, subst
H\textsubscript{1}2-(n-1)	5.38, br d	5.38, br	5.39, br	5.39, 5.67, br	5.37, 5.65, br	5.37, 5.65, br
H\textsubscript{2}2-(n-1)	3.60-3.63, br m	3.57-3.67, br m	3.50-3.67, br m	3.55-3.72, br, unsubst 3.69, br, subst	3.54-3.68, br, unsubst 3.67, br,subst	3.54-3.68, br, unsubst 3.67, br, subst
	1-OBn		1-OH			
-------	-------	-------	-------			
	G6	G7	G8	G6	G7	G8
H₃² darm (n-1)	3.82, br m	3.84, br m	3.84, br m	3.76-3.87, br, unsubst	3.71-3.78, br, subst	3.74-3.86, br, unsubst
	3.64-3.76, br m	3.58-3.74, br m	3.57-3.75, br m	3.71-3.78, br, subst	3.68-3.77, br, subst	3.69-3.76, br, subst
H₄² darm (n-1)	3.92-3.97, br m	3.91-4.02, br m	3.62-3.73, br m	3.76-3.87, br, unsubst	3.71-3.78, br, subst	3.74-3.86, br, unsubst
	3.73-3.94, br m	3.75-3.96, br m	3.70-3.95, br m	3.74-3.93, br, unsubst	3.78-3.82, br, subst	3.74-3.93, br, unsubst
H₁ⁿ	5.38, br d	5.38, br	5.39, br	5.39, 5.67, br	5.37, 5.65, br	5.37, 5.65, br
H₂ⁿ	3.60-3.63, br m	3.57-3.67, br m	3.50-3.67, br m	3.55-3.72, br, unsubst	3.69, br, subst	3.54-3.68, br, unsubst
	3.82, br m	3.84, br m	3.84, br m	3.76-3.87, br, unsubst	3.71-3.78, br, subst	3.74-3.86, br, unsubst
H₃ⁿ	3.41, t (J₁, 2 9.1 Hz)	3.39, t (overlapped)	3.40, t (overlapped)	3.44, br	3.42, br	3.42, br
H₄ⁿ	3.33, t (J₁, 2 8.7 Hz)	3.35, t (overlapped)	3.33, t (overlapped)	3.27, br	3.25, br	3.25, br
H₆ⁿ	3.73-3.94, br m	3.75-3.96, br m	3.70-3.95, br m	3.74-3.93, br, unsubst	3.78-3.82, br, subst	3.74-3.93, br, unsubst
1,2-Propylene-glycol CH₂	-	-	-	3.80, br	3.81, br	
1,2-Propylene-glycol CH	-	-	-	3.83, br	3.84, br	
1,2-Propylene-glycol CH₃	-	-	-	1.13, 1.15, br	1.13, 1.15, br	
Table S2: Carbon assignments of 1-\(O\)-benzylated and (2-hydroxy)propylated maltooligosaccharides (chemical shifts are in ppm, based on DEPT-ed-HSQC experiments).

	1-OBn		1-OH			
	G6	G7	G8	G6	G7	G8
Benzyl, Aromatic	128.8, br	128.9	128.8, br	-	-	-
Benzyl, \(\text{CH}_\alpha\)	71.4, 71.7	71.6, 71.7	71.5, 71.7	-	-	-
Benzyl, \(\text{CH}_\beta\)	71.6	71.6	71.5, 71.7	-	-	-
(2-Hydroxy)prop-yl \(\text{CH}_2\)	-	-	-	76.1, 76.3, 76.4	76.1, 76.2, 76.4	76.1, 76.3
(2-Hydroxy)prop-yl \(\text{CH}\)	-	-	-	72.6, 73.1	73.1, 73.2	72.7, 73.1
(2-Hydroxy)prop-yl \(\text{CH}_3\)	-	-	-	18.2	18.2	18.2
\(\text{C}_1\)\(\alpha\)	99.8, br	99.7, br	99.6-99.7, br	91.8, 98.4	91.7, 98.3	91.9, 98.3
\(\text{C}_1\)\(\beta\)	101.2	101.2	101.2	95.6	95.7	95.8
\(\text{C}_2\)	74.7	74.7	74.6	71.5, 72.8, unsubst	71.5, 72.6, unsubst	71.4, 72.6, unsubst
\(\text{C}_3\)	71.3	71.3	71.3	70.9 unsubst 74.7, subst	70.8 unsubst 74.8, subst	70.7, 71.1 unsubst 74.7, subst
\(\text{C}_4\)	76.3-77.1, br	76.3-77.0, br	76.4-77.0, br	79.9	79.9	79.9
\(\text{C}_5\)	72.9	72.9	73.4	66.3	66.6	66.1
\(\text{C}_6\)	60.5-60.9, br	60.5-60.9, br	60.5-60.9, br	60.5, unsubst 69.3, subst	60.5, unsubst 69.2, subst	60.4, unsubst 69.3, subst
\(\text{C}_1^{2-\(n-1\)}\)	99.8	99.7	99.6-99.7, br	96.7, 99.6	96.7, 99.5	96.7, 99.6
\(\text{C}_2^{2-\(n-1\)}\)	71.6-71.7	71.6-71.7	71.6-71.7	71.5, 72.8, unsubst 77.4, subst	71.5, 72.6, unsubst 77.2, subst	71.4, 72.6, unsubst 76.9, subst
	1-OBn		1-OH			
------------------	-------	-------	-------	-------	-------	-------
	G6	G7	G8	G6	G7	G8
C3^2-(n-1)	71.3	71.3	71.3	70.9 unsubst 74.7, subst	70.8 unsubst 74.8, subst	70.7, 71.1 unsubst 74.7, subst
C4^2-(n-1)	76.3-77.1, br	76.3-77.0, br	76.4-77.0, br	79.9	79.9	79.9
C5^2-(n-1)	73.4	73.5	73.0, 73.6	66.3	66.6	66.1
C6^2-(n-1)	60.5-60.9, br	60.5-60.9, br	60.5-60.9, br	60.4, 60.6, unsubst 69.3, subst	60.5, unsubst 69.2, subst	60.4, unsubst 69.3, subst
C1^1	99.8	99.7	99.6-99.7, br	96.7, 99.6	96.7, 99.5	96.7, 99.6
C2^1	71.6-71.7	71.6-71.7	71.6-71.7	71.5, 72.8, unsubst 77.4, subst	71.5, 72.6, unsubst 77.2, subst	71.4, 72.6, unsubst 76.9, subst
C3^1	71.3	71.3	71.3	70.9 unsubst 74.7, subst	70.8 unsubst 74.8, subst	70.7, 71.1 unsubst 74.7, subst
C4^1	69.4	69.4	69.4	69.4	69.3	69.2
C5^1	73.1	73.1	73.1	69.4	69.3	69.2
C6^1	60.5-60.9, br	60.5-60.9, br	60.5-60.9, br	60.4, 60.6, unsubst 69.3, subst	60.5, unsubst 69.2, subst	60.4, unsubst 69.3, subst
1,2-Propylene-glycol CH2	-	-	-	-	64.5	65.6
1,2-Propylene-glycol CH	-	-	-	-	64.7	65.6
1,2-Propylene-glycol CH3	-	-	-	-	18.2	18.2
Figure S1: 300 MHz proton spectrum of 1-O-benzylmaltohexose.

Figure S2: DEPT-ed-HSQC spectrum of 1-O-benzylmaltohexose.
Figure S3: 300 MHz proton spectrum of 1-O-benzylmaltoheptaose.

Figure S4: DEPT-ed-HSQC spectrum of 1-O-benzylmaltoheptaose.
Figure S5: 300 MHz proton spectrum of 1-O-benzylmaltooctaose.

Figure S6: DEPT-ed-HSQC spectrum of 1-O-benzylmaltooctaose.
Figure S7: 300 MHz proton spectrum of (2-hydroxy)propylated maltohexaose.

Figure S8: DEPT-ed-HSQC spectrum of (2-hydroxy)propylated maltohexaose.
Figure S9: 300 MHz proton spectrum of (2-hydroxy)propylated maltoheptaose.

Figure S10: DEPT-ed-HSQC spectrum of (2-hydroxy)propylated maltoheptaose.
Figure S11: 300 MHz proton spectrum of (2-hydroxy)propylated maltooctaose.

Figure S12: DEPT-ed-HSQC spectrum of (2-hydroxy)propylated maltooctaose.
Characterization of the benzylated maltooligomers with HPLC

Agilent HPLC measuring system with Refractive Index Detector and/or DAD detector was used.
The used HPLC column was Inertsil HILIC, 150 × 4.6 mm, particle size 5 μm (GL Sciences Inc.)
The most appropriate mobile phase contained acetonitrile:water = 69:31.
The flow rate was 1.0 mL/min. The column temperature was set to 30 °C; the injection volume from the sample solution (concentration: 2 mg/mL mobile phase) was 100 μL.

Figure S13: HPLC chromatogram of 1-O-benzylmaltotriose and maltotriose using refractive index detector (a) and DAD detector (b).
Table S3: Area percentage of the peaks detected by HPLC.

sample	Composition (in area %)	Retention time of peak (min.)								
		2.6	2.9	3.3	3.6	4.1	4.6	5.1/5.3	5.9	6.6
Benzyl-Maltohexaose	0.6	1.9	3.3	**86.5**	1.9	2.0	3.9			
Benzyl-Maltoheptaose	0.2	1.0	3.2	7.5	**79.0**	2.5	2.7	3.8		
Benzyl-Maltooctaose	0.4	1.1	2.6	4.8	5.5	**75.6**	2.9	2.2	5.1	

Figure S14: HPLC chromatogram of HP-maltohexaose compared to maltohexaose and O-benzyl-maltohexaose.