An Internet-Based Program to Improve Self-Management in Adolescents with Type 1 Diabetes

Shelagh A. Mulvaney, PhD¹, ², Russell L. Rothman, MD, MPP³, Kenneth A. Wallston, PhD¹, Cindy Lybarger, CDE, APRN¹, ², and Mary S. Dietrich, PhD¹, ⁴

¹ School of Nursing, Vanderbilt University Medical Center, Nashville, TN, USA
² Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
³ Center for Health Services Research, Vanderbilt University Medical Center, Nashville, TN, USA
⁴ Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA

Corresponding Author:
Shelagh A. Mulvaney, PhD
Email: shelagh.mulvaney@vanderbilt.edu

Clinical trial reg. no. NCT00848705; (www.clinicaltrials.gov)

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 9 October 2009 and accepted 13 December 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To report results from YourWay, an Internet-based self-management intervention for adolescents with type 1 diabetes.

Research Design and Methods: A total of 72 adolescents with type 1 diabetes, ages 13-17, were randomized to a usual-care-plus-Internet support or a usual-care group. The intervention was designed to enhance problem-solving barriers to self-management. A1C was obtained from medical records, and problem-solving and self-management were obtained via adolescent report.

Results: Group differences were not statistically significant using intent to treat analyses. Using as-treated analyses, adolescents in the treatment condition showed statistically significant improvement in self-management ($d = 0.64$; $P = .02$) and important improvements in problem-solving ($d = 0.30$; $P = .23$), and A1C ($d = -0.28$; $P = .27$). Mean A1C for the intervention group remained constant (-0.01%) while the control group increased (0.33%).

Conclusion: This brief trial suggests that self-management support delivered through a secure website may improve self-management and offset typical decreases in adolescent glycemic control.
Young people with type 1 diabetes typically experience a decline in glycemic control (A1C) through adolescence. (1, 2) Risk factors associated with increasing A1C include hormonal changes and barriers to self-management such as competing demands, inadequate planning and communication, peers and social situations, and negative emotions. (3-5) Problem-solving and coping with diabetes barriers are skills that have been positively related to diabetes outcomes and are recommended as part of diabetes education. (6, 7) Previous studies have not used the Internet as a modality to teach problem-solving with this population. We present the results of a small, randomized trial examining YourWay, an Internet-based program to improve adolescent problem-solving, self-management skills, and glycemic control. We hypothesized that problem-solving and self-management skills would improve for the intervention group.

RESEARCH DESIGN AND METHODS
Adolescents with type 1 diabetes were randomly assigned to receive usual care or usual care plus Internet-based problem-solving self-management support. Eligible participants within the Vanderbilt Eskind Pediatric Diabetes Clinic were 13-17 years, had Internet access, diagnosed with type 1 diabetes for at least six months, spoke English, and had no disabilities that precluded understanding website content.

Between July-November 2008, participants were block randomized at 2:1 to the intervention group in sets of six. Condition was revealed by the research assistant opening a sealed envelope, generated by the PI. The study was approved by the Vanderbilt Institutional Review Board, and parental consent and adolescent assent were obtained at study initiation.

Intervention: Intervention components were designed based on learning, social-cognitive, and self-determination theories. (8, 9) A multidisciplinary team of diabetes professionals and young patients wrote and edited website content. During 11 weeks, six multimedia stories depicted psychosocial barriers to self-management (e.g., time pressure, competing demands, embarrassment), and approaches to coping and problem solving. Participants were prompted twice to complete problem-solving cycles for personal barriers to self-management. Other activities included (1) a personalized homepage, (2) multimedia presentations on the steps of problem solving and how to use the website, (3) social networking via a peer forum, (4) social comparison of their responses compared to other adolescents, (5) help from a problem-solving expert and (6) weekly emails that encouraged participation. Participants had no interactions with diabetes clinicians or parents through the YourWay website.

Measures: A1C corresponding to baseline visit and the most recent A1C after the intervention period were collected from medical records. Behavioral measures were administered at baseline and 12 weeks. Adherence was assessed using the Diabetes Behavior Rating Scale (DBRS). (10) Problem solving was measured by the Diabetes Problem Solving Behaviors scale, a novel 27-item self-report scale that assesses frequencies of problem solving behaviors associated with diabetes self-management. Internal consistency of this
scale was adequate within this study (Cronbach’s $\alpha = 0.89$).

Intervention participants reported their perceptions of the stories after viewing each (responses 1=worst to 5=best). A semi-structured telephone interview with intervention participants assessed technical barriers, satisfaction, and the extent of parent interactions with the adolescent.

Statistical analysis: Intention to treat (ITT) analysis included all randomized subjects with available data at baseline and end-of-study. A conservative version of Cohen’s d repeated-measures effect size, using the largest of the two group standard deviations, was used to compute the differences in change over time between the intervention and control groups. The test of the interaction effect of group assignment on each outcome using a standard 2 (intervention, control) X 2 (time of assessment) mixed design analysis of variance was used for the assessment of statistical significance. SPSS Version 17 was used for analyses.

RESULTS

No statistically significant differences between the groups existed at baseline (Table 1A, online appendix which is available at http://care.diabetesjournals.org) with the exception of A1C which was higher for the intervention group ($P = .02$). No statistically significant group differences in change over time were found using ITT analyses.

When data were analyzed using an as-treated approach, the same patterns were seen for average group characteristics at baseline, however problem-solving improved by 0.30 standard deviations for the intervention group ($d = 0.30, P = .23, 95\% CI 0.14-0.49$). Self-management adherence improved compared to the control group ($d = 0.64, P = .02, 95\% CI 0.53-0.79$). The intervention group A1C remained constant but showed improvement relative to the control condition which showed worsening values ($d = -0.28, P = 0.27, 95\% CI 0.25-0.67$) (Table 1). Although lower than the intervention group at post-study, the change between the first and second A1C measurements for the control group was $+0.33\%$, and for the intervention group was -0.01%.

Intervention process variables: Most participants (63%) viewed all stories at least once (Mean 5.2, SD 2.0, Median 6), and 76% completed both problem-solving cycles (Mean 1.5, SD 0.7, Median 2). The stories were rated as highly relevant (Mean 4.7 out of 5.0, SD 0.5) and realistic (Mean, 4.4 SD 0.5). Thirty-five subjects (73%) could be reached for an interview after the study period. Most participants (63%) gave the intervention an overall grade of “A” and the remainder (37%) gave it a “B.” Adolescents reported that parent interactions related to the website included talking to them about the website (81%), viewing the website with them (58%); and/or helping with problem solving (42%).

CONCLUSIONS

Previous research has indicated a general trend of increasing A1C during adolescence. A brief Internet-based self-management intervention was rated highly by participants and was effective at improving problem-solving, self-management, and appeared to offset the typical adolescent increase in A1C. To our knowledge, this is the first trial of an Internet program to improve problem-solving in type 1 diabetes adolescents, and the first intervention in this area that does not require additional clinician effort. The study is limited by a brief intervention
period, small sample, and a lack of randomization on A1C values. The range of effect sizes observed within this short-term study (0.28 – 0.64) is consistent with other, typically longer-duration, problem-solving and coping intervention studies using a face-to-face modality(12-15) and suggests that an Internet based intervention is a feasible and accessible means of improving diabetes care. Further research is necessary to establish efficacy with a larger randomized trial, integrate parents and clinicians, fully validate the problem solving measure, and identify issues in sustainability.

ACKNOWLEDGEMENTS
This study was supported by a grant from the National Institutes of Health DK070026 to Dr. Mulvaney (Trial Registration: clinicaltrials.gov identifier: NCT00848705). The authors have no conflicts of interest to report. We are indebted to Hashrocket, LLC, and Anderson Design, LLC, for programming and design expertise, and Cara Baughman, Eric Pittel, Courtney Fahnhorst, and Alison Hartog who helped conduct the study, and create the multimedia stories.
REFERENCES

1. Urbach SL, LaFranchi S, Lambert L, Lapidus JA, Daneman D, Becker TM. Predictors of glucose control in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 2005 Jun;6(2):69-74.

2. Mortensen HB, Hougaard P. Comparison of metabolic control in a cross-sectional study of 2873 children and adolescents with IDDM from 18 countries. The Hvidore study group on childhood diabetes. Diabetes Care 1997 May;20(5):714-720.

3. Goran M, Gower B. Longitudinal study on pubertal insulin resistance. Diabetes 2001;50(11):2444-2450.

4. Helgeson VS, Siminerio L, Escobar O, Becker D. Predictors of metabolic control among adolescents with diabetes: A 4-year longitudinal study. J Pediatr Psychol 2009 Apr;34(3):254-270.

5. Greening L, Stoppelbein L, Konishi C, Jordan SS, Moll G. Child routines and youths' adherence to treatment for type 1 diabetes. J Pediatr Psychol 2007 May;32(4):437-447.

6. Funnell MM, Brown TL, Childs BP, Haas LB, Hosey GM, Jensen B, Maryniuk M, Peyrot M, Piette JD, Reader D, Siminerio LM, Weinger K, Weiss MA. National standards for diabetes self-management education. Diabetes Care 2008 Jan;31(suppl 1):S97-S104.

7. Wysocki T, Iannotti R, Weissberg-Benchell J, Laffel L, Hood K, Anderson B, Chen R, for the Family Management of Childhood Diabetes Steering Committee. Diabetes problem solving by youths with type 1 diabetes and their caregivers: Measurement, validation, and longitudinal associations with glycemic control. J Pediatr Psychol 2008 Sep;33(8):875-884.

8. Bandura A. Self-efficacy: The exercise of control. 6th edition. New York, NY: Macmillan; 2003.

9. Ryan R, Deci E. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol 2000 Jan;55(1):68-78.

10. Iannotti RJ, Nansel TR, Schneider S, Haynie DL, Simons-Morton B, Sobel DO, Zeitzoff L, Plotnick LP, Clark L. Assessing regimen adherence of adolescents with type 1 diabetes. Diabetes Care 2006 Oct;29(10):2263-2267.

11. Cohen J. Quantitative methods in psychology: A power primer. Psychol Bull 1992;112(1):155-159.

12. Hampson SE, Skinner TC, Hart J, Storey L, Gage H, Foxcroft D, Kimber A, Craddock S, McEvilly EA. Behavioral interventions for adolescents with type 1 diabetes: How effective are they? Diabetes Care 2000 Sep;23(9):1416-1422.

13. Grey M, Boland EA, Davidson M, Li J, Tamborlane WV. Coping skills training for youth with diabetes mellitus has long-lasting effects on metabolic control and quality of life. J Pediatr 2000 Jul;137(1):107-113.

14. Fisher EB, Thorpe CT, DeVellis BME, DeVellis RF. Healthy coping, negative emotions, and diabetes management: A systematic review and appraisal. Diabetes Educ 2007 Nov-Dec;33(6):1080-1103.
Cook S, Herold K, Edidin D, Briars R. Increasing problem solving in adolescents with type 1 diabetes: The choices diabetes program. Diabetes Educ 2002 Jan-Feb;28(1):115-124.

Table 1 – As treated effect sizes, means, and significance for relative group change in A1C, problem-solving, and self-management

	Control (N=18) Mean (SD)	Intervention (N=34) Mean (SD)	Effect Size (p value)		
	Baseline	Post	Baseline	Post	
Problem-Solving	3.4 (0.6)	3.3 (0.7)	3.5 (0.5)	3.6 (0.5)	0.30 (.23)
Self-Management	3.7 (0.4)	3.7 (0.5)	3.7 (0.4)	3.9 (0.4)	0.64 (.02)
HbA1c	8.2 (1.2)	8.5 (1.3)	9.1 (1.9)	9.1 (1.8)	-0.28 (.27)