Comparative study of generalized couette flow of couple stress fluid using optimal homotopy asymptotic method and new iterative method

Muhammad Farooq¹, Alamgeer Khan¹, Rashid Nawaz¹, Saeed Islam¹, Muhammad Ayaz¹ & Yu-Ming Chu²,³*

In this research work, we have studied the steady generalized Couette flow of couple stress fluid between two parallel plates considering the non-isothermal effects. The governing equations that are, continuity, momentum and energy equations are reduced to ordinary differential equations. The Optimal Homotopy Asymptotic Method (OHAM) and New Iterative Method (NIM) are used to solve this coupled system of differential equations. Using the said methods, we have obtained expressions for velocity profile, temperature distribution, volume flux, average velocity and shear stress. The results of OHAM and NIM are compared numerically as well as graphically and a tremendous agreement is attained.

List of symbols

\(W \) Velocity vector
\(\Theta \) Dimensional temperature
\(c_p \) Specific heat
\(\rho \) Constant density
\(\Theta_0 \) Lower plate temperature
\(L \) Gradient of \(W \)
\(V \) Dimensional velocity
\(p \) Dynamic pressure
\(\mu_0 \) Reference viscosity
\(D \) Material derivative
\(\mu \) Dimensional coefficient of viscosity
\(f \) Body force
\(V \) Reference velocity
\(\theta^* \) Dimensionless temperature
\(\tau \) Cauchy stress tensor
\(\kappa \) Thermal conductivity
\(\Theta_1 \) Upper plate temperature
\(\eta \) Couple stress parameter
\(\nu^* \) Dimensionless velocity
\(I \) Unit tensor
\(A_1 \) First Rivlin–Ericksen tensor
\(\tau \) Cauchy stress tensor
\(\mu^* \) Dimensionless coefficient of viscosity
\(B \) Dimensionless parameter

¹Department of Mathematics, Abdul Wali Khan University, Garden Campus, Mardan, KP, Pakistan. ²Department of Mathematics, Huzhou University, Huzhou 313000, China. ³Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changasha, University of Science and Technology, Changasha 410114, China. *email: chuyuming2005@126.com
In the last few decades, non-Newtonian fluids attained more importance for scientists and researchers due to the wide range of applications in numerous industrial and engineering processes. Stokes has proposed the theory of couple stress fluids in fluid mechanics, which appealed scientists and researchers. In classical theory, the couple stress fluid theory is the generalization of the viscous Newtonian fluids. The concept of couple stresses arises because of the methodology, that how the fluid medium is modelled for the mechanical interactions. This theory effectively described the flow behaviour of fluids consisting of a substructure such as liquid crystals, animal blood and lubricants with polymer additives.

Among the several models, which described the Non-Newtonian behaviour established by certain fluids, the couple stress fluid attained surprising attention. The couple stress fluid denotes those fluids which consist of rigid and randomly oriented particles suspended in a viscous medium. The stress tensor is not symmetric in those fluids, thus in the classical Newtonian theory, exact flow behaviour cannot be estimated. The remarkable characteristic of the couple stress fluid model is that, it outcomes in the form of differential equations which are similar to the Navier–Stokes equations. The said model has been extensively used because of its relative mathematical simplicity as related to other models established for the fluid under consideration. The study of heat transfer flow is very important in various engineering applications, for example, radial diffusers; drag reduction, the design of thrust bearing, transpiration cooling, and thermal recovery of oil. The heat transfer has a key role in handling and processing of non-Newtonian mixtures. Researchers have explored different problems of couple stress fluids flow past axisymmetric bodies. Due to the nonlinear behaviour of the governing equations of the flow of couple stress fluid and having higher order than Navier–Stokes equations, it is very difficult to find the exact solution.

In literature, different techniques have been applied to explore flow problems. The key tools to find the solutions of flow problems are numerical methods, perturbation methods, iterative methods and homotopy based methods. Each approach has its own pro and cons. Discretization is used to convert the differential equations into algebraic equations which affect the accurateness. These methods required a lot of computational work and time. When strong non-linearity occurs in problems the numerical methods do not provide us more accurate results. Perturbation methods have some limitations as well, such as small parameter assumption and strong nonlinearity. Iterative methods are sensitive to initial condition and the accuracy of these methods improves as the number of iterations increases. The well-known iterative methods for solutions of differential equations are New perturbation iteration method, optimal iteration method and an iteration procedure with application to Van der Pol oscillator, which is a powerful tool used to determine the periodic solutions of non-linear equations etc.

Optimal homotopy asymptotic method (OHAM) for the solutions of differential equations is one of power homotopy based techniques. This technique was introduced by Marinca et al. for the solution of differential equations. This method does not require discretization like other numerical methods which is time consuming and is valid in the absence of small or large parameter, unlike other perturbation methods. The method is also free from an initial guess, unlike the iterative methods. Furthermore, the convergence of the method is controlled by more flexible function called the auxiliary function. One of the drawback of OHAM is that the values of auxiliary convergence control parameters in OHAM are calculated using method of least squares which become more time consuming in case of high nonlinear problems. An alternate way is to use colocation method, but in the later case one would compromise on the accuracy. This technique has been employed in different problems. Researchers transformed the highly nonlinear partial differential equations (PDEs) prescribed by heat flux situations into structure ordinary differential equations (ODEs) with proper constraints and after that explored using (OHAM). Authors investigated a third grade non-Newtonian blood in numerical techniques which affect the accuracy.

In 2006 Daftardar-Gejji and Jafari have proposed a new method known as the new iterative method (NIM) for solutions of linear as well as non-linear equations. The proposed method handles linear and nonlinear equations in an easy and straightforward way. NIM does not require the need for calculation of tedious Adomian polynomials in nonlinear terms like ADM, the need for determination of a Lagrange multiplier in its algorithm like VIM, and the need for discretization like numerical methods. The method is also free from small parameter assumption unlike regular perturbation method. As NIM is an iterative method so it requires an initial condition to start which is its main disadvantage. Afterwards, the method was extended by many researchers for different problems including algebraic equations, evolution equations, ordinary and partial differential equations and system of non-linear dynamical equations. Authors investigated linear as well as nonlinear fractional diffusion-wave equations on finite domains with Dirichlet boundary conditions using a new iterative method, linear and non-linear fractional diffusion-wave equations have been explored using New Iterative Method. Authors explored a fractional version of logistic equation using new iterative method. In authors have been used a new iterative method to present, sufficiency conditions for convergence of decomposition method. The new iterative method has been employed to solve the nth-order linear and nonlinear integro-differential equations. Authors proposed an efficient modification of new iterative method for the solution of linear and nonlinear Klein Gordon equations. The Newell-Whitehead-Segel equation has been investigated using NIM. Authors have suggested a iterative methods for solving nonlinear equations involving only first derivative of the function. A family of iterative methods for solving the system of nonlinear equations has been presented. Authors have suggested and analyzed some unique recurrence relations which generate different classes of iterative techniques for investigating nonlinear problems using the coupled system of equations. In the nonlinear Baranayi and Roberts model has been investigated using NIM. As compared to other analytical techniques, NIM provides solutions with rapid convergence.
In this research work, we have explored the steady generalized plane Couette flow of couple stress fluid between two parallel plates under the influence of non-isothermal effects. OHAM and NIM are employed to solve the coupled system of differential equations.

This paper consists of six sections. “Introduction” section is devoted to a brief introduction. “Basic governing equations and problem formulation” section consists of basic governing equations and problem formulation. “Description of the methods” section consists of basic ideas of the methods and in “Solution of the problem” section solutions of the problem are given. “Results and discussion” section consists of results and discussions and conclusion of the paper is given in the last section.

Basic governing equations and problem formulation

Basic governing equations. The basic equations in62–67 of momentum, conservation of mass and energy for an incompressible fluid are as under,

\[\nabla \cdot \mathbf{W} = 0, \]

\[\rho \dot{\mathbf{W}} = \nabla \cdot \tau - \eta \nabla^4 \mathbf{W} + \rho f, \]

\[\rho c_p \cdot \Theta = \kappa \nabla^2 \Theta + \tau L, \]

where \(\mathbf{W} \) is the velocity vector, the temperature is denoted by \(\Theta \), \(f \) is the body force per unit mass, \(\rho \) is the constant density, the thermal conductivity is denoted as \(\kappa \), \(c_p \) is the specific heat, the Cauchy stress tensor is represented by \(\tau \), the gradient of \(\mathbf{W} \) is represented by \(L \), the couple stress parameter is denoted by \(\eta \) and the material derivative is denoted by \(\frac{D}{Dt} \) and defined as under

\[\frac{D}{Dt}(\cdot) = \left(\frac{\partial}{\partial t} + \mathbf{W} \cdot \nabla \right) (\cdot). \]

The Cauchy stress tensor is denoted and defined as

\[\tau = -p I + \mu A_1, \]

where dynamic pressure is represented by \(p \), \(I \) is the unit tensor, the coefficient of viscosity is denoted by \(\mu \) and \(A_1 \) is the first Rivlin-Ericksen tensor, defined as

\[A_1 = L + L^t. \]

where \(L^t \) is the transpose of \(L \).

Problem formulation. Consider a steady flow of an incompressible couple stress fluid between two infinite parallel plates, separated by distance \(2d \), as shown in Fig. 1. Suppose the upper plate is moving with constant velocity \(\mathbf{W} \), where the temperature of the lower plate is \(\Theta_0 \) and the upper plate is \(\Theta_1 \). Both plates are located in the orthogonal coordinates system \((x, y) \), at \(y = -d \) and \(y = d \), the motion of the fluid is in the \(x \) – axis and the \(y \) – axis is perpendicular to the plates. The pressure gradient is zero, \(\mu \) is taken to be a function of \(\Theta(y) \), velocity and temperature fields are considered as under

\[\mathbf{W} = \mathbf{W}(v, 0, 0), \ v = v(y) \ \text{and} \ \Theta = \Theta(y). \]

Equation (1) is identically satisfied, if body force is ignored, Eqs. (2)–(3), becomes

\[\mu \frac{d^2 v}{dy^2} + \frac{d \mu}{dy} \frac{dv}{dy} - \eta \frac{d^4 v}{dy^4} + A = 0, \]
\[
\frac{d^2 \Theta}{dy^2} + \frac{\mu}{\kappa} \left(\frac{dv}{dy} \right)^2 - \frac{\eta}{\kappa} \left(\frac{d^2 v}{dy^2} \right)^2 = 0. \tag{9}
\]

where \(A = \frac{dp}{dx} \), the pressure gradient, is a negative constant.

The boundary conditions for Eqs. (8)–(9), are
\[
\nu(-d) = 0, \quad \nu(d) = V, \tag{10}
\]
\[
\nu''(-d) = 0, \quad \nu''(d) = 0, \tag{11}
\]
\[
\Theta(-d) = \Theta_0, \quad \Theta(d) = \Theta_1. \tag{12}
\]

Equations (10) represent no-slip boundary conditions. Equations (11) show that couple stresses are zero at the plates. Inclusive, the dimensionless parameters are:
\[
\nu^* = \frac{\nu}{V}, \quad y^* = \frac{y}{d}, \quad \Theta^* = \frac{\Theta - \Theta_0}{\Theta_1 - \Theta_0}, \quad \mu^* = \frac{\mu}{\mu_0},
\]
\[
B = d \sqrt{\frac{\mu_0}{\eta}}, \quad \lambda = \frac{\mu_0 V^2}{\kappa (\Theta_1 - \Theta_0)}, \quad A^* = \frac{Ad^4}{V \eta}.
\]

Hence Eqs. (8)–(9) with boundary conditions (10)–(12) and ignoring the asterisks can be written as,
\[
\frac{d^4 v}{dy^4} - B^2 \mu \frac{d^2 v}{dy^2} - B^2 \mu \frac{dv}{dy} + A = 0, \tag{13}
\]
\[
\frac{d^2 \Theta}{dy^2} + \frac{\lambda \mu}{B^2} \left(\frac{dv}{dy} \right)^2 + \frac{\lambda}{B^2} \left(\frac{d^2 v}{dy^2} \right)^2 = 0, \tag{14}
\]
\[
\nu(-1) = 0, \quad \nu(1) = 1, \quad \nu''(-1) = 0, \quad \nu''(1) = 0, \tag{15}
\]
\[
\Theta(-1) = 0, \quad \Theta(1) = 1. \tag{16}
\]

The dimensionless form of the Reynolds viscosity\(^{68–72}\) is as follows
\[
\mu = \exp \left(-M \Theta \right). \tag{17}
\]

Let us suppose \(M = \varepsilon m \), where \(\varepsilon \) is a small parameter. Using Taylor series expansion of Eq. (17) we have
\[
\mu = 1 - \varepsilon \Theta, \quad \frac{d\mu}{dy} \equiv -\varepsilon m \frac{d\Theta}{dy}. \tag{18}
\]

Description of the methods

Basic notion of OHAM. The overview of Optimal Homotopy Asymptotic Method (OHAM) is given in this sub-section let us consider the differential equation
\[
L(W(x)) + f(x) + N(W(x)) = 0, \quad B \left(W, \frac{dW}{dx} \right) = 0. \tag{19}
\]

Here the linear operator is denoted by \(L \), \(f(x) \) is known function, \(W(x) \) is the unknown function, \(N(W(x)) \) is a non-linear operator and boundary operator is represented by \(B \).

Applying OHAM we obtained\(^{30}\)
\[
(1 - r)[L(W(x), r) + f(x)] = H(r)[L(W(x), r) + f(x)] + N(W(x), r)), \quad B \left(W(x, r), \frac{dW(x, r)}{dx} \right) = 0. \tag{20}
\]
where the embedding parameter is represented by \(r \in [0, 1], [0, 1], \) the auxiliary function \(H(r) \) such that for \(r \neq 0 \), is non-zero and for \(r = 0 \) i.e. \(H(0) = 0 \), obviously when \(r = 0 \) and \(r = 1 \) it gives
\[
W(x, 0) = W_0(x), \quad W(x, 1) = W(x). \tag{21}
\]
The solution \(\mathbf{W}(x, r) \) varies from \(\mathbf{W}_0(x) \), to \(\mathbf{W}(x) \), as \(r \) varies from 0 to 1, we obtained \(\mathbf{W}_0(x) \) by substituting \(r = 0 \) in Eq. (19)

\[
L(\mathbf{W}_0(x)) + f(x) = 0, \quad B\left(\mathbf{W}_0 \frac{d\mathbf{W}_0}{dx}\right) = 0. \tag{22}
\]

Auxiliary function \(H(r) \) can be written as

\[
H(r) = r c_1 + r^2 c_2 + r^3 c_3 + \ldots. \tag{23}
\]

Here \(c_1, c_2, c_3, \ldots \) are constants to be calculated, Eq. (20) can be written in the form

\[
\mathbf{W}(x, r, c_i) = \mathbf{W}_0(x) + \sum_{j \geq 1} \mathbf{W}_j(x, c_i) r^j, \quad i = 1, 2, \ldots \tag{24}
\]

Substituting Eq. (24) in Eq. (20) and comparing similar powers of \(r \) we have the following system

\[
L(\mathbf{W}_1(x)) = c_1 N_0(\mathbf{W}_0(x)), \quad B\left(\mathbf{W}_1 \frac{d\mathbf{W}_1}{dx}\right) = 0, \tag{25}
\]

\[
L(\mathbf{W}_j(x) - \mathbf{W}_{j-1}(x)) = c_j N_0(\mathbf{W}_0(x)) + \sum_{k=1}^{j-1} c_k L(\mathbf{W}_{j-k}(x))
+ N_{j-k}(\mathbf{W}_0(x), \mathbf{W}_1(x), \ldots, \mathbf{W}_{j-1}(x)), \quad B\left(\mathbf{W}_j \frac{d\mathbf{W}_j}{dx}\right) = 0, \quad j = 1, 2, \ldots \tag{26}
\]

In Eq. (26) the term \(N_m(\mathbf{W}_0(x), \mathbf{W}_1(x), \ldots, \mathbf{W}_m(x)) \) is the coefficient of \(r^m \) in the expansion of

\[
N(\mathbf{W}(x, r, c_k)) = N_0(\mathbf{W}_0(x)) + \sum_{j \geq 1} N_j(\mathbf{W}_0(x), \mathbf{W}_1(x), \ldots, \mathbf{W}_j(x)) r^j, \quad k = 1, 2, \ldots \tag{27}
\]

Equation (22), Eqs. (25) and (26) can easily be computed for \(\mathbf{W}_j(x), j \geq 0 \), the solution of Eq. (24) i.e., the convergence is exclusively depending on the constants \(c_1, c_2, c_3, \ldots \). If at \(r = 1 \) it is convergent, then from Eq. (24) we have

\[
\mathbf{W}(x, c_k) = \mathbf{W}_0(x) + \sum_{j \geq 1} \mathbf{W}_j(x, c_k). \tag{28}
\]

In general, the solution of Eq. (19) is approximated by

\[
\mathbf{W}^n(x, c_k) = \mathbf{W}_0(x) + \sum_{j=1}^{n} \mathbf{W}_j(x, c_k), \quad k = 1, 2, \ldots, n. \tag{29}
\]

After substituting Eq. (29) in Eq. (19) we obtained the residual

\[
R(x, c_k) = L(\mathbf{W}^n(x, c_k)) + f(x) + N(\mathbf{W}^n(x, c_k)), \quad k = 1, 2, \ldots, n. \tag{30}
\]

When \(R(x, c_k) = 0 \) i.e., the residual is zero, we obtained the exact solution \(\mathbf{W}^n(x, c_k) \), but, if \(R(x, c_k) \neq 0 \), that is, the residual is not zero then we can minimize as under

\[
J(c_i) = \int_{a}^{b} R^2(x, c_i) dx. \tag{31}
\]

where \(a \) and \(b \) are constants, depending upon the under considering the problem, where \(c_1, c_2, c_3, \ldots \) are unknown constants can be calculated from the conditions

\[
\frac{\partial J}{\partial c_i} = 0, \quad l = 1, 2, \ldots, n. \tag{32}
\]

Once we acquire the values of these constants, we get the approximate solution from Eq. (29). Besides the method proposed in this paper, there are other methods, sharing the same idea of optimization 73,74.

Basic notion of NIM. The New Iterative Method (NIM) is enlightened in this sub-section; let us consider the differential equation

\[
\mathbf{W}(x) = L(\mathbf{W}(x)) + f(x) + N(\mathbf{W}(x)). \tag{33}
\]
where the linear operator is denoted by L, $f(x)$ is known function, $W(x)$ is the unknown function, $N(W(x))$ is the nonlinear operator. Suppose that the solution of the New Iterative Method of Eq. (33) is of the form

$$W(x) = \sum_{i=0}^{\infty} W_i.$$ \hspace{1cm} (34)

As L is a linear operator, therefore

$$L \left(\sum_{i=0}^{\infty} W_i \right) = \sum_{i=0}^{\infty} L(W_i).$$ \hspace{1cm} (35)

The non-linear operator is given by

$$N \left(\sum_{i=0}^{\infty} W_i \right) = N(W_0) + \sum_{i=1}^{\infty} \left\{ N \left(\sum_{j=0}^{i} W_j \right) - N \left(\sum_{j=0}^{i-1} W_j \right) \right\} = \sum_{i=0}^{\infty} E_i.$$ \hspace{1cm} (36)

where $E_0 = N(W_0)$ and

$$E_i = \left\{ N \left(\sum_{j=0}^{i} W_j \right) - N \left(\sum_{j=0}^{i-1} W_j \right) \right\}.$$ \hspace{1cm} (37)

Substituting Eqs. (34), (35) and (36) in Eq. (33) we obtained

$$\sum_{i=0}^{\infty} W_i = f(x) + \sum_{j=0}^{\infty} L(W_j) + \sum_{i=0}^{\infty} E_i.$$ \hspace{1cm} (38)

Solution of the problem

OHAM's solutions of velocity profile (W_0) and temperature distributions (Θ_0) up to second-order are as follows.

Zero order velocity problem

$$w_0'''(y) + A = 0,$$

$$w_0(-1) = 0, w_0(1) = 1, w_0''(-1) = 0, w_0''(1) = 0$$

Zero order velocity solution

$$w_0 = \frac{1}{24} (11.99 + 12 y + 0.012 y^2 - 0.002 y^3).$$

First order velocity problem

$$-A - A c_1 - B^2 Mc_1 w_0'(y) \Theta_0'(y) + B^2 c_1 w_0''(y) - B^2 Mc_1 w_0''(y) - (1 + c_1) w_0'''(y) + w_1'''(y) = 0,$$

$$w_1(-1) = 0, w_1(1) = 0, w_1''(-1) = 0, w_1''(1) = 0$$

First order velocity solution

$$w_1 = (0.0162738 - 2.21762 \times 10^{-7} y - 0.0200319 y^2 + 3.3564 \times 10^{-7} y^3 + 0.00403785 y^4 - 1.25865 \times 10^{-7} y^5 - 0.000279679 y^6 + 1.19871 \times 10^{-8} y^7) / 10080$$

Second order velocity problem

$$-A c_2 - B^2 Mc_2 w_0'(y) \Theta_0'(y) - B^2 Mc_1 w_1'(y) \Theta_0'(y) - B^2 Mc_1 w_0''(y) \Theta_1'(y) + B^2 Mc_2 w_0''(y) - B^2 Mc_2 w_0''(y) \Theta_0 - B^2 Mc_1 w_0''(y) \Theta_1 + B^2 Mc_1 w_1''(y) - B^2 Mc_1 w_1''(y) \Theta_0 - c_2 w_0'''(y) + w_2'''(y) = 0,$$

$$w_2(-1) = 0, w_2(1) = 0, w_2''(-1) = 0, w_2''(1) = 0$$

Second order velocity solution
\[w_2 = \frac{1}{130767436800} \left(-626.679 + 4.76938y + 773.507y^2
ight) \\
- 6.81482y^3 - 159.704y^4 + 2.04642y^5 + 13.5229y^6 \\
- 0.00104308y^7 - 0.647452y^8 + 0.0000600888y^9 \\
+ 2.29052 \times 10^{-8}y^{10} + 1.29442 \times 10^{-9}y^{11} - 1.63414 \times 10^{-9}y^{12} \\
- 5.84644 \times 10^{-16}y^{13} - 5.92683 \times 10^{-13}y^{14} + 2.76606 \times 10^{-17}y^{15}. \]

OHAM’s solutions of velocity profile \((W_0)\) up to second order are as under:

\[
W_0 = w_0 + w_1 + w_2 \\
= \frac{1}{24} \left(11.99 + 12y + 0.012y^2 - 0.002y^3 \right) + \frac{-0.00027967y^6 + 1.198 \times 10^{-7}y^7 - 1}{10080} \\
(-626.67876360 + 4.76938223y + 773.5069375y^2 \\
- 6.81481904y^3 - 159.7035486y^4 + 2.04641978y^5 + 13.52287073y^6 \\
- 0.00104307y^7 - 0.64745228y^8 + 0.00006008y^9 + 2.290 \times 10^{-8}y^{10} \\
+ 1.294 \times 10^{-8}y^{11} - 1.634 \times 10^{-9}y^{12} - 5.846 \times 10^{-16}y^{13} - 5.93 \times 10^{-13}y^{14} \\
+ 2.76605961 \times 10^{-17}y^{15}).
\]

First order temperature problem

\[
\begin{align*}
\Theta_0''(y) &= 0, \\
\Theta_0(-1) &= 0, \quad \Theta_0(1) = 1.
\end{align*}
\]

Zero order temperature solution:

\[
\Theta_0 = \frac{1 + y}{2}
\]

First order temperature problem

\[
\begin{align*}
- \lambda c_1 (w_0'(y))^2 + \lambda c_1 \Theta_0(w_0'(y))^2 &- \frac{\dot{\lambda} c_1 (w_0''(y))^2}{B^2} - (1 + c_1)\Theta_0''(y) + \Theta_0'(y) = 0, \\
\Theta_1(-1) &= 0, \quad \Theta_1(1) = 0.
\end{align*}
\]

First order temperature solution

\[
\begin{align*}
\Theta_1 &= \frac{0.000551146 (2.26526 + 0.00266089y - 2.2655y^2 - 0.00296284y^3 \\
&+ 0.000300572y^4 + 0.000301946y^5 - 0.000060061y^6 - 2.15692 \times 10^{-11}y^7 \\
&- 3.59459 \times 10^{-8}y^8 + 2.097 \times 10^{-12}y^9)}{130767436800}.
\end{align*}
\]

Second order temperature problem

\[
\begin{align*}
- \lambda c_2 (w_0'(y))^2 + \lambda \Theta_0 M c_2 (w_0'(y))^2 + \lambda \Theta_1 M c_1 (w_0'(y))^2 &- 2\lambda c_1 w_0''(y)w_1'(y) + 2\lambda M \Theta_0 c_1 w_0(y)w_1'(y) \\
- \frac{\dot{\lambda} c_2 (w_0''(y))^2}{B^2} &- \frac{2\lambda c_1 (w_0''(y))^2 (w_1''(y))^2}{B^2} - c_2 \Theta_0''(y) - (1 + c_1)\Theta_1''(y) + \Theta_2'(y) = 0, \\
\Theta_2(-1) &= 0, \quad \Theta_2(1) = 0.
\end{align*}
\]

Second order temperature solution
\[\Theta_2 = 1.24954 \times 10^{-12} (1.42663 \times 10^6 - 3004.76 y - 1.42586 \times 10^6 y^2 + 3422.68 y^3 - 1005.75 y^4 - 449.576 y^5 + 260.975 y^6 + 31.6642 y^7 - 23.5745 y^8 + 0.00109017 y^9 - 0.00985318 y^{10} + 1.12425 \times 10^{-6} y^{11} + 3.42057 \times 10^{-10} y^{12} + 1.92831 \times 10^{-10} y^{13} - 2.41186 \times 10^{-11} y^{14} - 1.1938 \times 10^{-17} y^{15} - 1.09947 \times 10^{-14} y^{16} + 5.65947 \times 10^{-19} y^{17}). \]

\[\Theta_O = \Theta_0 + \Theta_1 + \Theta_2. \]

\[\Theta_0 = \frac{1 + y}{2} + 0.00055114 (2.26525631 + 0.00266089 y - 2.26549684 y^2) - 0.00296283 y^3 + 0.00030057 y^4 + 0.0000000000000000000000000000000000012431 \times 10^{-11} y^7 - 3.59 \times 10^{-8} y^8 + 2.097 \times 10^{-12} y^9 + 1.24953 \times 10^{-12} y^{10} - 1005.752309 y^{11} - 449.57572 y^{12} + 260.975092 y^{13} + 31.6641830 y^{14} - 23.574042 y^{15} + 0.00109017 y^{16} - 0.00985318 y^{17} + 0.000000012431 \times 10^{-11} y^{12} + 1.9 \times 10^{-10} y^{13} - 2.412 \times 10^{-11} y^{14} - 1.19 \times 10^{-17} y^{15} - 1.09 \times 10^{-14} y^{16} + 5.66 \times 10^{-19} y^{17}). \]

NIM solutions of velocity profile (\(W_N \)) and temperature distributions (\(\Theta_N \)) up to second-order are as under. Zero order NIM velocity problem

\[w_0'''(y) + A = 0, \]

\[w_0(-1) = 0, w_0(1) = 1, w_0''(-1) = 0, w_0''(1) = 0 \]

Zero order velocity solution

\[w_0 = \frac{1}{24} (11.99 + 12y + 0.012y^2 - 0.0020.1y^4). \]

First order velocity problem

\[B^2 \left(\int \int \int (1 - M\Theta_0) D[w_0, \{y, 2\}]dxdydy + \int \int \int D[(1 - M\Theta_0), y] D[w_0, y]dxdydy \right), \]

First order velocity solution

\[w_1 = 0.01 (4.16667 \times 10^{-6} (9.99925 y^4 - 0.00015 y^5 - 0.666617 y^6 + 0.0000214286 y^7) + 1.4881 \times 10^{-8} y^4 (-105 + 0.002 y (-21 + y^2))). \]

Second order velocity problem

\[B^2 \left(\int \int \int (1 - M(\Theta_0 + \Theta_1)) D[w_0 + w_1, \{y, 2\}]dxdydy + \int \int \int D[(1 - M(\Theta_0 + \Theta_1)), y] D[w_0 + w_1, y]dxdydy \right) - B^2 \left(\int \int \int (1 - M\Theta_0) D[w_0, \{y, 2\}]dxdydy + \int \int \int D[(1 - M\Theta_0, y] D[w_0, y]dxdydy \right), \]

Second order velocity solution
\[
\begin{array}{|c|c|c|c|c|}
\hline
y & \text{OHAM } W_0 & \text{Residual OHAM } W_0 & \text{NIM } W_0 & \text{Residual NIM } W_0 \\
\hline
-1 & 8.89043 \times 10^{-14} & 1.12842 \times 10^{-12} & 3.73359 \times 10^{-7} & -3.4207 \times 10^{-12} \\
-0.9 & 0.0499339 & 3.1777 \times 10^{-12} & 0.0499339 & -2.25611 \times 10^{-12} \\
-0.8 & 0.0998697 & 4.14403 \times 10^{-12} & 0.0998694 & -1.4.1 \times 10^{-11} \\
-0.7 & 0.149809 & 4.2532 \times 10^{-12} & 0.149808 & -8.23091 \times 10^{-12} \\
-0.6 & 0.199753 & 3.74221 \times 10^{-12} & 0.199753 & -4.39301 \times 10^{-12} \\
-0.5 & 0.249704 & 2.8442 \times 10^{-12} & 0.249703 & -2.07242 \times 10^{-12} \\
-0.4 & 0.299663 & 1.7756 \times 10^{-12} & 0.299661 & -8.15201 \times 10^{-13} \\
-0.3 & 0.349629 & 7.24556 \times 10^{-13} & 0.349628 & -2.33837 \times 10^{-12} \\
-0.2 & 0.399605 & -1.55901 \times 10^{-13} & 0.399603 & -3.89675 \times 10^{-14} \\
-0.1 & 0.44959 & -7.5891 \times 10^{-13} & 0.449588 & -8.79559 \times 10^{-16} \\
0 & 0.499585 & -1.02476 \times 10^{-12} & 0.499583 & 0 \\
0.1 & 0.54959 & -9.45877 \times 10^{-13} & 0.549588 & -7.13598 \times 10^{-15} \\
0.2 & 0.599605 & -5.67415 \times 10^{-13} & 0.599603 & -8.9145 \times 10^{-14} \\
0.3 & 0.649629 & 1.3748 \times 10^{-14} & 0.649628 & -4.07271 \times 10^{-13} \\
0.4 & 0.699663 & 6.52013 \times 10^{-13} & 0.699661 & -1.21544 \times 10^{-12} \\
0.5 & 0.749704 & 1.15806 \times 10^{-12} & 0.749703 & -2.85394 \times 10^{-12} \\
0.6 & 0.799753 & 1.30586 \times 10^{-12} & 0.799753 & -5.74305 \times 10^{-12} \\
0.7 & 0.849809 & 8.41645 \times 10^{-13} & 0.849808 & -1.0374 \times 10^{-12} \\
0.8 & 0.89987 & -5.05091 \times 10^{-13} & 0.89987 & -1.72977 \times 10^{-13} \\
0.9 & 0.949934 & -3.0086 \times 10^{-12} & 0.949934 & -2.7112 \times 10^{-11} \\
1 & 1 & -6.93191 \times 10^{-12} & 1 & -4.04468 \times 10^{-11} \\
\hline
\end{array}
\]

Table 1. For \(A = 0.002, B = 0.1, M = 0.00015 \) and \(\lambda = 0.01 \).

\[
W_2 = 0.01 (4.30153 \times 10^{-14} - 3.63234 \times 10^{-7} y^4 + 21806.4 y^3 + 47.9844 y^6 \\
+ 687.205 y^7 - 2.58808 y^8 + 0.207826 y^9 - 1.41786 \times 10^{-6} y^{10} + 0.000156297 y^{11} \\
- 0.000019272 y^{12} + 2.82084 \times 10^{-8} y^{13} - 1.24505 \times 10^{-8} y^{14} + 5.41557 \times 10^{-13} y^{15} \\
- 2.11168 \times 10^{-12} y^{16} + 1.86727 \times 10^{-16} y^{17} - 4.12176 \times 10^{-21} y^{18} + 1.40573 \times 10^{-12} \\
(2.96384 \times 10^{-7} y^4 - 444.609 y^5 - 1.96638 \times 10^5 y^6 + 62.9985 y^7 - 352.891 y^8 \\
+ 0.0263995 y^9 - 0.0000183922 y^{10} + 2.21701 \times 10^{-8} y^{11} - 2.94627 \times 10^{-7} y^{12} \\
+ 8.63341 \times 10^{-10} y^{13} - 2.10313 \times 10^{-10} y^{14} + 9.09717 \times 10^{-15} y^{15} - 4.03859 \times 10^{-14} y^{16} \\
+ 3.65481 \times 10^{-18} y^{17} - 8.4084 \times 10^{-23} y^{18}) \right) - 0.01 (4.16667 \times 10^{-6} (9.99925 y^9 \\
- 0.00015 y^8 - 0.666671 y^9 + 0.0000214286 y^{10}) + 1.4881 \times 10^{-8} y^4 (-105 + 0.002 y (-21 + y^2))).
\]

\[
W_N = w_0 + w_1 + w_2.
\]

\[
W_N = \frac{1}{24} \left(11.99 + 12y + 0.012y^2 - 0.002y^4 + 0.010(4.3015 \times 10^{-14} - 3.63242 \times 10^7 y^4 \\
+ 21806.37819359 y^5 + 47.984384444 y^6 + 687.20471612 y^7 - 2.588075639 y^8 \\
+ 0.20782637 y^9 - 0.0000141785 y^{10} + 0.00015629 y^{11} - 0.0000192717 y^{12} \\
+ 2.820839 \times 10^{-8} y^{13} - 1.245 \times 10^{-8} y^{14} + 5.41556 \times 10^{-13} y^{15} - 2.112 \times 10^{-12} y^{16} \\
+ 1.86727 \times 10^{-16} y^{17} - 4.12 \times 10^{-21} y^{18} + 1.405728 \times 10^{-12} (2.9638395 \times 10^7 y^4 \\
- 444.609285 y^5 - 1.966344.494066 y^6 + 62.99847199 y^7 - 352.89062504 y^8 \\
+ 0.02639953 y^9 - 0.0000183922 y^{10} + 0.00002222 y^{11} - 2.94627 \times 10^{-7} y^{12} \\
+ 8.63341 \times 10^{-10} y^{13} - 2.103 \times 10^{-10} y^{14} + 9.0972 \times 10^{-15} y^{15} - 4.038 \times 10^{-14} y^{16} \\
+ 3.655 \times 10^{-18} y^{17} - 8.41 \times 10^{-23} y^{18}) \right).
\]

Zero order temperature problem:

\[
\Theta''_0(y) = 0,
\]

\[
\Theta_0(-1) = 0, \quad \Theta_0(1) = 1,
\]

Zero order temperature solution:
Table 2. For $A = 0.002$, $B = 0.1$, $M = 0.00015$ and $\lambda = 0.01$.

y	$\text{OHAM } \Theta_O$	$\text{Residual } \Theta_O$	$\text{NIM } \Theta_N$	$\text{Residual } \Theta_N$
−1	3.23023×10^{-14}	-6.12875×10^{-11}	-0.0012488	-6.80704×10^{-12}
−0.9	0.0502373	-6.04614×10^{-11}	0.0489884	-3.15643×10^{-12}
−0.8	0.10045	-5.75964×10^{-11}	0.0992006	-1.19945×10^{-12}
−0.7	0.150637	-5.29869×10^{-11}	0.149388	-2.83398×10^{-13}
−0.6	0.2008	-4.70084×10^{-11}	0.19955	5.29563×10^{-14}
−0.5	0.250937	-4.00936×10^{-11}	0.249688	1.12833×10^{-15}
−0.4	0.30105	-3.27016×10^{-11}	0.2989	7.56639×10^{-14}
−0.3	0.351137	-2.52864×10^{-11}	0.349888	3.0352×10^{-14}
0	0.4012	-1.82654×10^{-11}	0.39995	1.12833×10^{-13}
0.1	0.451238	-1.19926×10^{-11}	0.449987	1.72171×10^{-16}
0.2	0.50125	-6.73623×10^{-12}	0.5	0
0.3	0.551238	-2.66372×10^{-12}	0.549987	1.57036×10^{-15}
0.4	0.601201	1.65194×10^{-13}	0.649887	9.98993×10^{-14}
0.5	0.651138	1.79791×10^{-12}	0.749887	3.0928×10^{-14}
0.6	0.701051	2.37925×10^{-12}	0.849887	7.25391×10^{-15}
0.7	0.750938	2.1346×10^{-11}	0.899887	1.45156×10^{-12}
0.8	0.800801	2.09047×10^{-11}	0.949887	2.09047×10^{-11}
0.9	0.850638	2.37925×10^{-12}	0.999887	8.44775×10^{-12}

Table 3. For $\lambda = 0.4$, $M = 0.0002$, $B = 0.3$ and $A = 0.4$.

y	$\text{OHAM } W_O$	$\text{NIM } W_N$	$\text{Difference } OHAM$	$\text{Difference } NIM$
−1	1.81941×10^{-17}	0.000701923	3.52094×10^{-18}	0.104916
−0.9596	0.0150044	0.0154161	0.0004117	0.0270457
−0.7576	0.0908655	0.0900099	0.0008556	0.160743
−0.5556	0.170038	0.168218	0.00182	0.290752
−0.3535	0.25465	0.252164	0.002486	0.414929
−0.1515	0.346058	0.343204	0.003085	0.421123
0.1515	0.497558	0.494704	0.002854	0.685768
0.3535	0.60815	0.605664	0.002486	0.775439
0.5556	0.725638	0.723818	0.00182	0.859262
0.7576	0.848466	0.84761	0.000856	0.925329
0.9596	0.974604	0.975016	0.000412	0.988222
1	1	1.0007	1	0.870976

Table 4. For $\lambda = 0.1$, $M = 0.0015$, $B = 0.4$ and $A = 0.3$.

y	$\text{OHAM } W_O$	$\text{NIM } W_N$	$\text{Difference } OHAM$	$\text{Difference } NIM$
−1	-9.49867×10^{-18}	0.000935499	1.00273×10^{-18}	0.0156358
−0.8586	0.0575326	0.0572135	0.0003191	0.0745209
−0.6566	0.14116	0.139391	0.001769	0.180352
−0.4545	0.228075	0.225251	0.002824	0.285345
−0.2525	0.319477	0.315985	0.003492	0.389179
−0.0505	0.416218	0.412441	0.003777	0.491696
0.0505	0.466718	0.462941	0.003777	0.542407
0.2525	0.571977	0.568485	0.003492	0.642664
0.4545	0.682575	0.679751	0.002824	0.741324
0.6566	0.79776	0.795991	0.001769	0.838446
0.8586	0.916133	0.915813	0.00032	0.933991
1	1	1.00094	1	0.979836
Table 5. For $\lambda = 0.5$, $M = 0.0009$, $B = 0.3$ and $A = 0.3$.

y	OHAM W_O	NIM W_N	Difference	OHAM Θ_O	NIM Θ_N	Difference
-1	-9.52025×10^{-18}	0.000525569	-0.000525566	-1.52918×10^{-18}	-0.0982724	0.0982724
-0.9192	0.0326247	0.032275	0.0001003	0.05384095	-0.0448806	0.0987301
-0.7172	0.115117	0.114315	0.000802	0.185915	0.0860338	0.0998812
-0.5152	0.200446	0.198966	0.00148	0.313313	0.212163	0.10115
-0.3131	0.290121	0.288188	0.001933	0.434406	0.331775	0.102649
-0.1111	0.38504	0.382874	0.002166	0.547382	0.442927	0.104455
0.1111	0.49614	0.493974	0.002166	0.660854	0.553993	0.106861
0.3131	0.603221	0.601288	0.001933	0.753552	0.644098	0.109454
0.5152	0.715646	0.714166	0.00148	0.836464	0.724035	0.112429
0.7172	0.832317	0.831515	0.000802	0.910224	0.794475	0.115749
0.9192	0.951825	0.951925	1×10^{-4}	0.975846	0.856495	0.119351
1	1	1.00053	0.00053	1	0.879149	0.120851

Table 6. For $\lambda = 0.2$, $M = 0.001$, $B = 0.9$ and $A = 0.2$.

y	OHAM W_O	NIM W_N	Difference	OHAM Θ_O	NIM Θ_N	Difference
-1	8.2188×10^{-18}	0.00322804	0.00322804	1.5425×10^{-18}	-0.0230161	0.0230161
-0.8182	0.0815681	0.0804385	0.0011296	0.0987602	0.0751311	0.023629
-0.6162	0.173241	0.168495	0.004746	0.206869	0.182716	0.024153
-0.4141	0.266937	0.259711	0.007226	0.313261	0.28869	0.024571
-0.0101	0.363209	0.354523	0.008686	0.417743	0.392802	0.024941
-0.2121	0.462484	0.453288	0.009196	0.520266	0.494947	0.025319
0.0101	0.472584	0.463388	0.009196	0.530407	0.505047	0.02536
0.2121	0.575309	0.566623	0.008686	0.630651	0.604839	0.025812
0.4141	0.681037	0.67381	0.007227	0.728712	0.702322	0.02639
0.6162	0.78944	0.784695	0.004745	0.824541	0.797395	0.027146
0.8182	0.899768	0.896638	0.00113	0.917969	0.889835	0.028134
1	1	1.00053	0.00053	1	0.970739	0.029261

Figure 2. Velocity profile for $M = 0.0002$, $B = 0.3$ and $\lambda = 3$ using OHAM.
Figure 3. Velocity profile for \(M = 0.0002, B = 0.3 \) and \(\lambda = 3 \) using NIM.

Figure 4. Velocity profile for \(A = -1, M = 0.0015 \) and \(\lambda = 2 \) using OHAM.

Figure 5. Velocity profile for \(A = -1, M = 0.0015 \) and \(\lambda = 2 \) using NIM.
Figure 6. Temperature distribution for $M = 1, B = 3$ and $\lambda = 1$ using OHAM.

Figure 7. Temperature distribution for $M = 1, B = 3$ and $\lambda = 1$ using NIM.

Figure 8. Temperature distribution for $A = 0.002, B = 0.01$ and $M = 0.002$ using OHAM.
Figure 9. Temperature distribution for $A = 0.002$, $B = 0.01$ and $M = 0.002$ using NIM.

Figure 10. Volume flux of generalized plane Couette flow for $M = 0.0005$, $\lambda = 1$ using OHAM.

Figure 11. Volume flux of generalized plane Couette flow for $M = 0.0005$, $\lambda = 1$ using NIM.
First order temperature problem

\[\Theta_0 = \frac{(1 + y)}{2} \]

First order temperature solution

\[-\lambda \left(\int \int (1 - M\Theta_0)(D[w_0, y])^2 dydy + \frac{1}{B^2} \int \int (D[w_0, {y, 2}])^2 dydy \right) \]

Second order temperature problem

\[-\lambda \left(\int \int (1 - M(\Theta_0 + \Theta_1))(D[w_0 + w_1, y])^2 dydy + \frac{1}{B^2} \int \int (D[w_0 + w_1, {y, 2}])^2 dydy \right) \]

\[- \left(-\lambda \left(\int \int (1 - M\Theta_0)(D[w_0, y])^2 dydy + \frac{1}{B^2} \int \int (D[w_0, {y, 2}])^2 dydy \right) \right) \]

Second order temperature solution
\[\Theta_2 = 0.01 \left(3.3333 \times 10^{-6} y^2 \left(15 - 5 y^2 + y^4 \right) + 1/72 \left(8.99932 y^2 + 0.0117741 y^3 \right) + 5.54955 \times 10^{-6} y^4 - 0.00119991 y^5 - 1.53988 \times 10^{-6} y^6 + 8.57143 \times 10^{-11} y^7 + 1.42846 \times 10^{-7} y^8 - 8.3333 \times 10^{-12} y^9 \right) - 0.01 \left(4.411032 \times 10^{-16} -3.0499 \times 10^{-14} y^2 - 3.9785 \times 10^{-6} y^4 - 1.97028 \times 10^{-6} y^4 + 4.03502 \times 10^{-10} y^5 + 5.17882 \times 10^{-6} y^6 + 9.65402 \times 10^{-6} y^7 + 276.71 y^9 - 2989.48 y^{10} + 0.340553 y^{11} \right) - 0.512215 y^{12} + 0.000146477 y^{13} - 7.29727 \times 10^{-6} y^{14} + 3.7686 \times 10^{-8} y^{15} - 8.87289 \times 10^{-9} y^{16} + 6.62125 \times 10^{-12} y^{17} - 3.7137 \times 10^{-12} y^{18} + 3.50981 \times 10^{-16} y^{19} - 5.29186 \times 10^{-16} y^{20} + 7.58125 \times 10^{-20} y^{21} - 3.62766 \times 10^{-24} y^{22} + 5.79681 \times 10^{-29} y^{23} + 1.25261 \times 10^{-6} y^2 \left(9.3555 \times 10^{-8} y^4 - 4.95 \times 10^{-7} y^5 \right) - 20059.92 y^2 - 0.00036 y^3 - 0.899933 y^4 \left(0.000042 y^5 \right) - 4 \times 10^{-6} \left(9979200 - 3.30977 \times 10^{-6} y^2 + 0.49896 y^3 \right) + 657536. y^4 + 0.283932 y^5 + 590.986 y^6 - 0.0274659 y^7 + 0.153977 y^8 - 0.000015189 y^9 + 3.78 \times 10^{-10} y^{10} \right) \].

NIM’s temperature solution up to second order as under

\[\Theta_N = \Theta_0 + \Theta_1 + \Theta_2. \]

\[\Theta_N = \frac{1 + y}{2} + 0.01 \left(0.000003 y^2 \left(15 - 5 y^2 + y^4 \right) + \frac{1}{72} \left(8.99932499999 y^2 + 0.0117741 y^3 \right) + 0.00000554955 y^4 - 0.00001027 y^5 + 8.57142857 \times 10^{-11} y^7 + 1.42846428 \times 10^{-7} y^8 - 8.3333 \times 10^{-12} y^9 \right) + 0.01 \left(-0.0000033333 y^2 \left(15 - 5 y^2 + y^4 \right) + \frac{1}{72} \left(-8.99932499999 y^2 - 0.0117741 y^3 + 0.00000554955 y^4 + 0.00001027 y^5 + 8.57142857 \times 10^{-11} y^7 - 1.42846428 \times 10^{-7} y^8 + 8.3333 \times 10^{-12} y^9 \right) \right) \]

\[\Theta_N = -0.01 \left(-4.110317 \times 10^{-16} -3.040 \times 10^{-14} y^2 - 3.97850437 \times 10^{-11} y^3 - 1.970276 \times 10^{-8} y^4 + 4.035019 \times 10^{-10} y^5 + 5.17882 \times 10^{-6} y^6 + 9654017.1191 y^7 - 4766951.2632218 y^8 + 276.71033281 y^9 - 2989.4806939058 y^{10} + 0.3405532095 y^{11} - 0.512214714563 y^{12} + 0.0001464765 y^{13} - 0.000007297266 y^{14} + 3.7686 \times 10^{-8} y^{15} - 8.8728907 \times 10^{-9} y^{16} + 6.62125 \times 10^{-12} y^{17} - 3.713703 \times 10^{-12} y^{18} + 3.50981 \times 10^{-16} y^{19} - 5.29186 \times 10^{-16} y^{20} + 7.58125 \times 10^{-20} y^{21} - 3.627664 \times 10^{-24} y^{22} + 5.79681 \times 10^{-29} y^{23} + 0.0000125260 y^2 \left(9.3555 \times 10^{-8} y^4 - 4.950000 \times 10^{-7} y^5 \right) - 0.00036 y^3 - 0.89993250 y^4 - 0.000042 y^5 + 0.000004 \left(9979200 - 3.309769.2474 y^2 - 0.49896 y^3 + 657536.56116252935 y^4 + 0.28393208 y^5 + 590.985895055 y^6 - 0.0274659 y^7 + 0.153976895322 y^8 - 0.00001512 y^9 + 3.78 \times 10^{-10} y^{10} \right) \].

\[Q = \int_{-1}^{1} W dy. \] (43)

Volume flux. The volume flux \(Q \) in the non-dimensional form as is under

\[Q_O = 1. - \frac{4A}{15} + 0.107937 AB^2 - 0.043645 AB^4 - 0.06666718 B^2 M - 0.05396867 AB^2 M + 0.0269263B^4 M + 0.043645244AB^4 M - 0.01346315B^4 M^2 - 0.0114808AB^4 M^2 - 0.00396381AB^2 M^2 - 0.010242AB^2 M^2 - 0.001031M^2 AB^2 M^2 + 0.001182B^2 M^2 + 0.0051212AB^2 M^2 + 0.002A^2 B^2 M^2 + 0.00051551A^2 B^2 M^2. \] (44)
Figures 2, 3, 4 and 5 demonstrate the velocity profile and temperature distributions of both methods for different parameters, which are close to each other, the velocity of the fluid increases as the fluid moves from stationary profile, temperature distributions and their residual of both methods respectively. Tables 3, 4, 5 and 6 illustrated 7.

Chen, C. I., Chen, C. K. & Yang, Y. T. Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given parameters, which are closed to each other, the velocity of the fluid increases as the fluid move from stationary profile, temperature distributions and their residual of both methods respectively. Tables 3, 4, 5 and 6 illustrated

7. Chen, C. I., Chen, C. K. & Y. T. Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given parameters. Int. J. Nonlinear Mech. 37(6), 1011–1015 (2002).

2. Fetecau, C. & Fetecau, C. The Rayleigh–Stokes problem for heated second grade fluids. Int. J. Nonlinear Mech. 37(6), 1011–1015 (2002).

3. Tan, W. C. & Xu, M. Y. The impulsive motion of flat plate in a generalized second grade fluid. ZAMM J. Appl. Math. Mech. 80(1), 3–9 (2000).

4. Harris, J. Rheology and Non-Newtonian Flow (Longman Publishing Group, London, 1977).

5. Rajagopal, K. R. A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Nonlinear Mech. 17(5–6), 369–373 (1982).

6. Erdogan, E. Steady pipe flow of a fluid of fourth grade. ZAMM J. Appl. Math. Mech. 61(9), 466–469 (1981).

7. Chen, C. I., Chen, C. K. & Yang, Y. T. Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions. Int. J. Eng. Sci. 43(3–4), 203–209 (2004).

References

Average velocity. The average velocity of the couple stress is represented and defined as

\[
\bar{W} = \frac{Q}{d}.
\]

(46)

The non-dimensional form of Eq. (46) coincides with the flow rate given in Eqs. (44) and (45).

Shear stress. The dimensionless shear stress is symbolized and defined as follows

\[
\tau_\theta = -\mu \frac{D[W, y]}{y}, y = 1.
\]

(47)

In this paper, only tables and graphs are given for shear stress of both methods, because these equations are very lengthy in this case, the minus sign \(\tau_\theta\) is due to the upper plate facing the negative direction of the coordinate system. Here \(Q_O\) and \(Q_N\), are the volume fluxes obtained using OHAM and NIM respectively.

Results and discussion

In the present work, we have investigated the variation of the velocity profile and temperature distribution on different parameters such as \(A\), \(B\), \(M\) and \(\lambda\). Tables 1 and 2 shows solutions of OHAM and NIM for velocity profile, temperature distributions and their residual of both methods respectively. Tables 3, 4, 5 and 6 illustrated the differences in velocity profile and temperature distributions using different parameters for both methods. Figures 2, 3, 4 and 5 demonstrates the velocity profile and temperature distributions of both methods for different parameters, which are closed to each other, the velocity of the fluid increases as the fluid move from stationary plate towards moving plate also the temperature of the fluid increases when moves from stationary plate to the moving plate. In Figs. 6 and 7 the effect of the parameter \(A\) on the temperature is shown of both methods, there is an inverse relation between parameter \(A\) and temperature distribution. Figures 8 and 9 are plotted to see the effect of the parameter \(B\) on the temperature distribution, attained by two reliable techniques, OHAM and NIM, respectively. \(B\) is actually a non-dimensional quantity termed as the Brinkman number and is usually denoted by \(B\). As can be seen in Fig. 8, the increase in \(B\) increases the temperature of the fluid due to viscous heating of the fluid. Figure 9 also depicts the direct relationship between the temperature distribution and the dimensionless parameter \(B\). This implies that more and more heat is generated from the viscous heating of the fluid over the heat transfer from the heated wall to the fluid as shown in these two graph. The comparison of volume flux of both methods using different parameters are shown in Figs. 10 and 11, which are in good agreement, also in Figs. 12 and 13 we have observed the behaviour of shear stress \(\tau_\theta\) in the generalized plane Couette flow by changing the values of the parameter \(B\). The shear stress \(\tau_\theta\) is inversely related as clear from these figures.

Conclusion

In this paper, the generalized plane Couette flow of couple stress fluids between two parallel plates has been investigated using OHAM and NIM. Employing the said methods the strongly nonlinear and coupled system of differential equations are explored for velocity, temperature distributions, average velocity, volumetric flow rate and shear stress on the plates. The results obtained by these methods are in the form of infinite power series. The results of OHAM and NIM are compared numerically as well as graphically and a tremendous agreement is attained. The usefulness of these methods is clear from this research work.

Received: 29 August 2020; Accepted: 25 January 2021
Published online: 10 February 2021

References

1. Fetecau, C. & Fetecau, C. The Rayleigh–Stokes problem for heated second grade fluids. Int. J. Nonlinear Mech. 37(6), 1011–1015 (2002).
2. Fetecau, C. & Fetecau, C. Decay of a potential vortex in an Oldroyd-B fluid. Int. J. Eng. Sci. 43(3–4), 340–351 (2005).
3. Tan, W. C. & Xu, M. Y. The impulsive motion of flat plate in a generalized second grade fluid. Mech. Res. Commun. 29(1), 3–9 (2002).
4. Harris, J. Rheology and Non-Newtonian Flow (Longman Publishing Group, London, 1977).
5. Rajagopal, K. R. A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Nonlinear Mech. 17(5–6), 369–373 (1982).
6. Erdogan, E. Steady pipe flow of a fluid of fourth grade. ZAMM J. Appl. Math. Mech. 61(9), 466–469 (1981).
7. Chen, C. I., Chen, C. K. & Yang, Y. T. Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions. Heat Mass Transf. 40(3–4), 203–209 (2004).
8. Tan, W. & Masmouda, T. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. *Int. J. Nonlinear Mech.* 40(4), 515–522 (2005).
9. Stokes, V. K. Couple stresses in fluids. *Phys. Fluids* 9(9), 1709–1715 (1966).
10. Devakar, M. & Iyengar, T. K. V. Run up flow of a couple stress fluid between parallel plates. *Nonlinear Anal. Model. Control* 15(1), 29–37 (2010).
11. Stokes, V. K., 1984. Theories of fluids with microstructure: an introduction.
12. Ariman, T. M. A. N. D., Turk, M. A. & Sylvester, N. D. Microcontinuum fluid mechanics—a review. *Int. J. Eng. Sci.* 11(8), 905–930 (1973).
13. Hayat, T., Elahi, R. & Mahomed, F. M. Exact solutions for Couette and Poiseuille flows for fourth grade fluids. *Acta Mech.* 188(1–2), 69–78 (2007).
14. Siddiqui, A. M., Ahmed, M., Islam, S. & Ghori, Q. K. Homotopy analysis of Couette and Poiseuille flows for fourth grade fluids. *Acta Mech.* 180(1–4), 117–132 (2005).
15. Hayat, T., Khan, M. & Ayub, M. On the explicit analytic solutions of an Oldroyd 6-constant fluid. *Int. J. Eng. Sci.* 42(2), 123–135 (2004).
16. Erdogan, M. E. On the Flow of a Non-Newtonian Fluid past a Porous Flat Plate. *ZAMM J. Appl. Math. Mech.* 55(2), 99–103 (1975).
17. Asghar, S., Mohyuddin, M. R. & Hayat, T. Unsteady flow of a third-grade fluid in the case of suction. *Math. Comput. Model.* 38(1–2), 201–208 (2003).
18. Rajagopal, K. R. & Na, T. Y. On Stokes’ problem for a non-Newtonian fluid. *Acta Mech.* 48(3), 233–239 (1983).
19. Tsai, C. Y., Novack, M., & Roffe, G. Rheological and Heat Transfer Characteristics of Flowing Coal-Water Mixtures (No. DOE/MC/23255–2763) (General Applied Science Labs., Inc., Ronkonkoma, NY, USA, 1988).
20. Chinyoka, T. & Makinde, O. D. Computational dynamics of unsteady flow of a variable viscosity reactive fluid in a porous pipe. *Mech. Res. Commun.* 37(3), 347–353 (2010).
21. Makinde, O. D. Thermal criticality in viscous reactive flows through channels with a sliding wall: an exploitation of the Hermite-Pade approximation method. *Math. Comput. Model.* 47(3–4), 312–317 (2008).
22. Rao, S. L. and Iyengar, T. K. V., 1985. Analytical and computational studies in couple stress fluid flows.
23. Srinivasacharya, D., 1995.
24. Aksoy, Y. & Pakdemirli, M. New perturbation–iteration solutions for Bratu-type equations.
25. Marinca, V. & Herişanu, N. Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. *J. Sound Vib.* 329(9), 1450–1459 (2010).
26. Babcock, F., Khan, W. A. & Ismail, A. I. M. Analytical solution for radiation effects on heat transfer in Blasius flow. *Int. J. Eng. Sci.* 2(2), 63–72 (2013).
27. Babcock, F., Khan, W. A., Ismail, M. & Irani, A. Series solution for steady heat transfer in a heat-generating fin with convection and radiation 2013 (Math, Probl. Eng., 2013).
28. Abdou, M. A. & Elgarayhi, A. On the homotopy asymptotic method of quantum zakharov-kuznetsov equation in ion acoustic waves. *Walailak J. Sci. Technol. (WJST)* 13(5), 365–373 (2016).
29. Nawaz, R., Ullah, H., Islam, S. & Idrees, M. Application of optimal homotopy asymptotic method to Burger equations. *J. Appl. Math.* (2013).
30. Nawaz, R., Islam, S., Shah, I. A., Idrees, M. & Ullah, H. Optimal homotopy asymptotic method to nonlinear damped generalized regularized long-wave equation 2013 (Math, Probl. Eng., 2013).
31. Ullah, H., Islam, S., Idrees, M. & Fiza, M. The optimal homotopy asymptotic method with application to modified Kawahara equation. *J. Assoc. Arab Univ. Basic Appl. Sci.* 18, 82–88 (2015).
32. Ullah, H., Islam, S., Idrees, M., & Fiza, M. Solution of the difference–differential equation by optimal homotopy asymptotic method. *Int. Appl. Mech.* 55(4), 99–103 (1975).
33. Ullah, H., Islam, S., Idrees, M., & Awan, M. Solution of the difference-differential equation by optimal homotopy asymptotic method. *Results Phys.* 9, 955–960 (2018).
34. Sheikholeslami, M., Hatami, M. & Ghanji, D. D. Micropolar fluid flow and heat transfer in a permeable channel using analytical method. *J. Mol. Liq.* 2013 (Math, Probl. Eng., 2013).
35. Ghasemi, S. E., Hatami, M., & Ghanji, D. D. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods. *Physica E Low Dimens. Nanostruct.* 70, 146–156 (2015).
36. Sheikholeslami, M., Hatami, M. & Ghanji, D. D. Micropolar fluid flow and heat transfer in a permeable channel using analytical method. *J. Mol. Liq.* 194, 30–36 (2014).
37. Nano, S. A., Nadeem, S. & Awan, M. Time-Dependent second-Order viscoelastic fluid flow on rotating cone with heat generation and chemical reac. *J. Aerosp. Eng.* 26(2), 567–576 (2014).
38. Nawaz, R., Ullah, H., Islam, S. & Fiza, M. Formulation and application of optimal homotopy asymptotic method to coupled Drinfel’d-Sokolov Equations 2013 (Math, Probl. Eng., 2013).
39. Ghasemi, S. E., Hatami, M., & Ghanji, D. D. Analytical thermal analysis of air-heating solar collectors. *J. Mech. Sci. Technol.* 27(11), 3525–3530 (2013).
40. Daftardar-Gejji, V. & Jafari, H. An iterative method for solving nonlinear functional equations. *Abstr. Appl. Anal.* 9, 515–522 (2005).
51. Daftardar-Gejji, V. & Bhalekar, S. Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. *Comput. Math. Appl.* 59(5), 1801–1809 (2010).
52. Daftardar-Gejji, V. & Bhalekar, S. Solving fractional differential-wave equations using a new iterative method. *Fract. Calc. Appl. Anal.* 11(2), 193–202 (2008).
53. Bhalekar, S., & Daftardar-Gejji, V. Solving fractional-order logistic equation using a new iterative method. *Int. J. Differ. Equ.* (2012). https://doi.org/10.1155/2012/975829.
54. Bhalekar, S. & Daftardar-Gejji, V. Convergence of the new iterative method *Int. J. Differ. Equ.* https://doi.org/10.1155/2011/989065 (2011).
55. Hemeda, A.A., 2012. New iterative method: application to nth-order integro-differential equations. In *International Mathematical Forum* (Vol. 7, No. 47, pp. 2317–2332).
56. Yaseen, M. & Samraiz, M. A modified new iterative method for solving linear and nonlinear Klein-Gordon Equations. *Appl. Math. Sci.* 6, 2979–2987 (2012).
57. Patade, J. & Bhalekar, S. Approximate analytical solutions of Newell-Whitehead-Segel equation using a new iterative method. *World J. Model. Simul.* 11(2), 94–103 (2015).
58. Noor, K. I. & Noor, M. A. Iterative methods with fourth-order convergence for nonlinear equations. *Appl. Math. Comput.* 189(1), 221–227 (2007).
59. Noor, M. A., Waseem, M. & Noor, K. I. New iterative technique for solving a system of nonlinear equations. *Appl. Math. Comput.* 271, 446–466 (2015).
60. Shah, F. A. & Noor, M. A. Higher order iterative schemes for nonlinear equations using decomposition technique. *Appl. Math. Comput.* 266, 414–423 (2015).
61. Ghorai, M. B., Usman, M. & Mohyad-Din, S. T. Numerical studies for solving a predictive microbial growth model using a new iterative method. *Int. J. Mod. Biol. Med.* 5(1), 33–39 (2014).
62. Siddiqui, A. M., Ahmed, M. & Ghorai, Q. K. Couette and Poiseuille flows for non-Newtonian fluids. *Int. J. Nonlinear Sci. Numer. Simul.* 7(1), 15–26 (2006).
63. Siddiqui, A. M., Zeb, A., Ghorai, Q. K. & Benharbit, A. M. Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates. *Chaos Solitons Fractals* 36(1), 182–192 (2008).
64. Islam, S. & Zhou, C. Y. Exact solutions for two dimensional flows of couple stress fluids. *Z. Angew. Math. Physik* 58(6), 1035–1048 (2007).
65. Islam, S., Ali, I., Ran, X. J., Shah, A. & Siddiqui, A. M. Effects of couple stresses on Couette and Poiseuille flow. *Int. J. Nonlinear Sci. Numer. Simul.* 10(1), 99–112 (2009).
66. El-Dabe, N. T. & El-Mohandas, S. M. Effect of couple stresses on pulsatile hydromagnetic Poiseuille flow. *Fluid Dyn. Res.* 15(5), 313 (1995).
67. Eldabe, N. T. M., Hassan, A. A. & Mohamed, M. A. Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. *Z. Naturforschung A* 58(4), 204–210 (2003).
68. Aksoy, Y. & Pakdemirli, M. Approximate analytical solutions for flow of a third-grade fluid through a parallel-plate channel filled with a porous medium. *Transp. Porous Med.* 83(2), 375–395 (2010).
69. Massoudi, M. & Christie, J. Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe. *Int. J. Nonlinear Mech.* 30(5), 687–699 (1995).
70. Chinoyoka, T. & Makinde, O. D. Analysis of transient Generalized Couette flow of a reactive variable viscosity third-grade liquid with asymmetric convective cooling. *Math. Comput. Model.* 54(1–2), 160–174 (2011).
71. Reynolds, O. IV. On the theory of lubrication and its application to Mr. Beauchamp tower's experiments, including an experimental determination of the viscosity of olive oil. *Philos. Trans. R. Soc. Lond.* 177, 157–234 (1886).
72. Sree, A. Z. & Rajagopal, K. R. Flow of a non-Newtonian fluid between heated parallel plates. *Int. J. Nonlinear Mech.* 20(2), 91–101 (1985).
73. Ghanì, F. et al. Application of modified optimal homotopy perturbation method to higher order boundary value problems in a finite domain. *Hacettepe J. Math. Stat.* 45(4), 1049–1060 (2016).
74. Herisanu, N., Marinca, V., Madescu, G. & Dragan, F. Dynamic response of a permanent magnet synchronous generator to a wind gust. *Energies* 12(5), 915 (2019).
75. Papanastasiou, T., Georgiou, G. & Alexandrou, A. N. *Viscous Fluid Flow* (CRC Press, Boca Raton, 1999).

Author contributions
All authors contributed equally.

Funding
The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.-M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
