Mathematical simulation of the number of fires in Russian Federation on the kind of object

I A Kaibitchev¹, A M Tararykin¹, A V Kalach² and M Yu Porkhachev¹

¹Ural Institute of State Fire-Prevention Service of the Ministry of Emergency, 22 Mira, Ekaterinburg, Russia.
²Voronezh Institute of Russian Federal Penitentiary Service, 1a Irkutskaya, Voronezh, Russia

E-mail: AVKalach@gmail.com

Abstract. An attempt was undertaken to find the kind of the functional dependence between the number of fires in the Russian Federation and the kind of an object. Model of Verhulst was employed in the process of regression analysis previously used in biology for description of the process of the animals’ population growth. Modification of Verhulst model assuming variable rate of growth was found to allow approximation of the studied dependence with 100% accuracy.

1. Introduction

Now there are no studies concerning mathematical simulation of the available data on the dependence of the number of fires in Russian Federation on the kind of a protection object [1-3].

Available data concerning the number of fires in a dependence on the kind of the object are arranged according to the order of disposition of the objects’ types (table 1), that provides a curve similar to that one describing population growth of the animals in biology.

In this situation, we used rank variable X to define the kind of the object. It takes discrete integral values within the range of 1 to 20. This variable numerically coincides with the number of the object’s kind in the list (table 1).

For the years from 2014 to 2017 similar situation can be observed [3].

Let us consider the possibility of applying the law of the biological population growth for the approximation of the dependence of the number of fires on the objects’ kind.

Table 1. Number of the fires in Russia by the kinds of the objects.

X	Object of the fire	2014	2015	2016	2017	2018
1	All other buildings, constructions and public buildings	151	141	144	115	97
2	Public health buildings and institutions of social services for population	192	171	153	164	211
3	Buildings, constructions and premises for cultural and entertainment activities and for religious rites	266	262	247	233	272
4. Buildings of training and educational purpose
5. Buildings for temporary residence of the people
6. Buildings and constructions for agricultural purpose
7. All other objects of the fire
8. Erected (reconstructed) buildings (constructions)
9. Constructions, plants for industrial purpose
10. Office building
11. Buildings, residences for support Manning of the population
12. Wearable stuff (on the man)
13. Warehouses and constructions
14. Separately arranged structure (site hut, trailer, shed, service utility, booth and so on)
15. Buildings, constructions and premises in the mercantile business
16. Production buildings
17. Unexploited building (construction)
18. Place of the outdoor storage of the substances, materials, place of the lands and other open territories
19. Vehicles
20. Housing stock buildings and outhouses

2. Results and discussion
The number of the individuals $P(t)$ in the population is described by Verhulst function [6-8]:

$$P(t) = \frac{K P_0 G}{K + P_0 (G - 1)} \times G = \exp (rt)$$ \hfill (1)

where P_0 – is the initial number of the population, K is a capacity of the environment (maximum possible number of the population), r is a rate of reproduction.

If one uses approximation for the number of the fires the meaning of the constants in equation (1) changes. Let P_0 is a minimal number of the fires. Assume that $P_0 = 1$. If it is adopted that $P_0 = 0$, then all the other values of $P(t) = 0$, and this does not happen. Next, K is the maximum value of the fires.

One can expect that K is equal or greater from the maximum values from the really happened ones (table 1). Parameter r is the rate of changes in the number of fires. Parameters K and r will be determined by the choice.

According to their meanings these parameters should be integer ones. As a result of the choice for the number of fires the following approximation should be employed

$$Y_m = \frac{K P_0 G}{K + P_0 (G - 1)}, G = \exp (rX)$$ \hfill (2)

Optimal values for the parameters K and r were found with the use of the feature “Search of a solution in Microsoft Excel program. They should provide minimum of the mean value of the squared error. The error is understood as a value of $e = Y_m - Y$, where Y_m - is a model value while Y is a real value.
For the year of 2018 minimum was found at the following values of parameters $K = 93384$ and $r = 0.4115$, $P_0 = 21$. The mean value of the error was of 1455, while the man value of the squared error is 187353650 (table 2).

Table 2. Verhulst model for the year of 2018.

X	Y	Ym	e	e^2
1	97	32	-65	4266
2	211	48	-163	26631
3	272	72	-200	39949
4	276	109	-167	27955
5	277	164	-113	12748
6	522	247	-275	75402
7	703	373	-330	109000
8	765	562	-203	41408
9	777	845	68	4592
10	799	1269	470	220866
11	988	1902	914	835015
12	1233	2840	1607	2583978
13	1402	4221	2819	7947308
14	1772	6227	4455	19843684
15	2632	9088	6456	41678631
16	2813	13067	10254	105141874
17	3122	18408	15286	233647781
18	3385	25245	21860	477857155
19	16410	33488	17078	291648528
20	93383	42734	-50649	2565326219
mean		1455		187353650

Pearson coefficient of the linear correlation between the model and real values is equal to $R = 0.7550$. The square of this value gives the value of the determination coefficient $R^2 = 0.57$.

![Figure 1. Comparison of the actual values (Y) with the results of Verhulst model (Ym) for 2018 year.](image)
It means that Verhulst model can explain 57.00% of the actual values.

Comparison of the plots for the actual and simulated number of the fires in Russia demonstrated that Verhulst model does not provide quite reliable description of the situation (figure 1).

Results for the years of 2014 - 2017 are quite similar and they differ only by the values of constants K, P₀, r (table 3).

Note that Verhulst model provides not so great value for the determination coefficient. It is within the range of 57.00 – 59.49%. Therefore, Verhulst model seems to be inappropriate for the approximation of the number of fires in Russia over the kinds of the objects.

Table 3. Constants in Verhulst model.

Year	K	P₀	r	R
2014	103580	22	0.414961	59.32
2015	100499	20	0.41812	59.49
2016	96815	23	0.408695	58.25
2017	93002	18	0.419802	58.50

Let us try an approximation.

\[Y_\text{r} = \frac{KP_0 G}{K + P_0 (G - 1)}, G = \exp(r_1 X_i) \] \hspace{1cm} (3)

For the every discrete value of Xᵢ (in the range of 1 to 20) there exists its own value of the growth rate rᵢ (table 4).

Table 4. Rate of growth for different kind of the objects.

X	2014	2015	2016	2017	2018
1	1.927484	1.954233	1.83557	1.855604	1.531003
2	1.084048	1.073718	0.948144	1.105533	1.154686
3	0.831604	0.858341	0.79207	0.854327	0.854657
4	0.585074	0.66921	0.561602	0.620597	0.644653
5	0.452528	0.503994	0.466108	0.509124	0.516448
6	0.556598	0.553854	0.537141	0.579786	0.536421
7	0.587365	0.525371	0.499831	0.525849	0.502595
8	0.475209	0.487291	0.446524	0.461355	0.450419
9	0.416632	0.423441	0.414864	0.419827	0.402116
10	0.36972	0.382661	0.366132	0.372407	0.364721
11	0.355751	0.359866	0.3575	0.363194	0.351052
12	0.365708	0.374326	0.356205	0.362791	0.340479
13	0.320227	0.322452	0.313508	0.337556	0.32431
14	0.314458	0.325038	0.309996	0.326333	0.318162
15	0.334326	0.336892	0.322189	0.335688	0.323956
16	0.311122	0.313526	0.299431	0.317013	0.30799
17	0.286418	0.303633	0.292243	0.308123	0.296205
18	0.283716	0.297997	0.286478	0.295953	0.284405
19	0.378659	0.377879	0.366021	0.373319	0.360745
20	1.000247	1.001993	0.956611	0.999509	0.99221

An absolutely precise reproducing of the actual values (table 5) occurs at the values of constants K, P₀, (table 6) and the rates of rᵢ.
Table 5. Verhulst model with a variable growth rate for the period of 2018.

X	Y	Ym
1	97	97
2	211	211
3	272	272
4	276	276
5	277	277
6	522	522
7	703	703
8	765	765
9	777	777
10	799	799
11	988	988
12	1233	1233
13	1402	1402
14	1772	1772
15	2632	2632
16	2813	2813
17	3122	3122
18	3385	3385
19	16410	16410
20	93384	93383

In this case an error of the model is equal to zero.

Table 6. Constants in Verhulst model with a variable rate of growth.

K	P0	
2014	103580	22
2015	100499	20
2016	96815	23
2017	93002	18
2018	93384	21

3. Conclusions
It means that absolutely precise description of dependence for the number of fires in Russian Federation on the object’s kind is provided by Verhulst model with a variable rate of growth,
Thus, representations concerning the population growth used in biology proved to be productive ones when searching for the approximation of the dependence for the number of fires in Russian Federation on the kind of an object.

References
[1] Gordienko D M 2019 Fires and Fire Safety in 2018: Statistical Collection (Moscow) p 125
[2] Kalach A V et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 421 062026
[3] Information systems, registers, databases and data banks Retrieved from: http://vniipo.ru/institut/informatsionnye-sistemy-reestry-bazy-i-banki-danny/
[4] Brushlinsky N N, Ahrens M, Sokolov S V and Wagner P 2015 World Fire Statistics Report of Center of Fire Statistics of CTIF (Moscow) 20(63)
[5] Brushlinsky N N, Ahrens M, Sokolov S V and Wagner P 2016 World Fire Statistics Report of Center of Fire Statistics of CTIF (Moscow) 21(60)
[6] Nisbet R, Elder J and Miner G 2009 *Handbook of Statistical Analysis and Data Mining Applications* (London: Academic Press) p 864

[7] Alderson D L et al 2015 *Risk Analysis* **35**(4) 562-86

[8] Brandenburg M et al 2014 Quantitative models for sustainable supply chain management: Developments and directions *European Journal of Operational Research* **233**(2) 299-312