Pathological changes and description of Procamallanus (Spirocamallanus) spiralis Baylis from the freshwater fish, Parachanna obscura Gunther

Bamidele Akinsanya1*, Adesola Hassan A2, Aina Adeogun3

1Department of Zoology, University of Lagos, Lagos, Nigeria
2Department of Zoology, University of Ibadan, Ibadan, Nigeria

ARTICLE INFO

Received 17 Jul 2016
Received in revised form 6 Aug, 2nd revised form 14 Aug, 3rd revised form 30 Aug 2016
Accepted 4 Sep 2016
Available online 8 Sep 2016

Keywords:
Parachanna
Procamallanus
Spirocamallanus
Histopathology
Papillae

ABSTRACT

Objective: To report the morphological details of the two species of Procamallanus with scanning electron microscopy.
Methods: To gain insights into the phenology of Procamallanus spp., scanning electron microscopy descriptions of male and female parasites along with attendant histopathological consequences to the hosts species were undertaken. The two species were obtained from the intestines of the freshwater fish, Parachanna obscura. Parasites were fixed in 2.5% glutaraldehyde and postfixed in osmium tetroxide, sputter-coated and examined with the electron microscope.
Results: Nominal parasitic species of Procamallanus could be distinguished with spiral thickenings in front of the buccal capsule. The male specimens of the parasite (n = 213) were recorded in a prevalence of 12.7% while the female specimens (n = 68) were recorded in a prevalence of 20.5%. An overall prevalence of 14.6% was obtained in the fish species. The two Procamallanus species differed from the described species of the genus Procamallanus (Spirocamallanus) with having the posterior end not ventrally bent, tail not short but elongate and straight bending slightly with no spikes, inner depression at the posterior region, excretory pore near the posterior end, wider cephalic region with an inner sieve-like compartment, longitudinal cephalic papillae, papillae of external circles distinctly larger and lateral cuticular extensions. These male and female species of Procamallanus exhibited novel morphometrics descriptions in the number of preanal and postanal papillae and different body and shape relationship. The histopathological changes seen in the host included hyperplasia of intestinal villi, mucosal hypercellularity of lamina propria and calcification of intestinal mucosa.
Conclusions: This is the first scanning electron microscopy description of Procamallanus spp. in Nigeria describing the morphological details of the two species of Procamallanus.

1. Introduction

During a survey of parasites of the freshwater fish, Parachanna obscura (P. obscura), in tropical Africa, two species of the nematode genus Procamallanus were recovered from the intestines comprising genus Procamallanus Baylis 1923 and the subgenus Spirocamallanus. Chabaud[1] and Petter[2] considered Spirocamallanus as a separate genus while Rodrigues et al.[3] also supported the subgeneric status of Spirocamallanus within the genus Procamallanus to accommodate species with spiral thickenings in the buccal capsule. Apparently, there are some confusions regarding the taxonomic status and validity of the group. Hoffman[4] reported that parasites of the genus Procamallanus (order Spirurida, family camallanidae) are intestinal parasites of freshwater fishes and occasionally of Amphibians. Yeh[5] and Bashirullah[6] argued that Spirocamallanus Olsen 1952 should be retained as the generic epithet, while Rigby and Rigby[7] elevated all subgenera into full generic rank.

Moravec, Thatcher[8] and Gibbons[9] recognized Procamallanus Baylis, 1923, Spirocamallanus Olsen, 1952, Spirocamallanoides[10], Punctocamallanus[11] and Denticamallanus as subgenera of Procamallanus. Among these subgenera, only representatives of Procamallanus and Spirocamallanus have been reported from freshwater fishes of Africa[12]. It is reported that the type specimen of Procamallanus laeviconchus (Wedl, 1862) is the only African species in which the life cycle has been studied and the first stage
Bilal and Abdullah [14] reported that approximately 34 species of *Procamallanus* have been reported from different fishes in the world and that 24 species have been recorded from South and Central America [10] with nine species recorded from Bangladesh [15].

In Nigeria, parasitic fauna of freshwater fishes has been studied by numerous researchers [16-21], Thatcher [22] reported that parasitic nematodes cause considerable economic loss in commercial fisheries because their presence makes fish unmarketable. The aim of this paper is to report the morphological details of the two species of *Procamallanus* with scanning electron microscopy (SEM), which is the first description of the parasites from Nigeria freshwater bodies. The morphological details of freshwater parasites are therefore very important for comparison with the original description.

2. Materials and methods

2.1. Description of the study area

The Lekki lagoon is a part of an intricate system of waterways made up of lagoons and creeks that are found along the coast of South-western Nigeria from the Dahomey boarder to the Niger Delta stretching over a distance of about 200 km. It is fed by the rivers Oshun and Saga discharging into north-western parts of the lagoon while coconut palms, *Cocos nucifera*, are widespread in the surrounding villages. The rich fish fauna of the lagoon includes *Heterotis niloticus*, *Gymnarchus niloticus*, *Clarias gariepinus*, *Malapterurus electricus*, *Symodontis clarias*, *Chrysichthys nigrodigitatus*, *P. obscura*, *Mormyrus rume*, *Calabarius calamoichthys*, *Tilapia zillii*, *Tilapia galilaeus*, *Hemichromis fasciatus* and *Sarotherodon melanotheron*. Lekki lagoon experiences both dry and rainy seasons typically of the southern part of Nigeria. The vegetation around the lagoon is characterized by shrubs and *Raphia sudanica* and oil palms, *Elais guinensis*. Floating grasses occur on the periphery of the lagoon while coconut palms, *Cocos nucifera*, are widespread in the surrounding villages. The rich fish fauna of the lagoon includes *Heterotis niloticus*, *Gymnarchus niloticus*, *Clarias gariepinus*, *Malapterurus electricus*, *Symodontis clarias*, *Chrysichthys nigrodigitatus*, *P. obscura*, *Mormyrus rume*, *Calabarius calamoichthys*, *Tilapia zillii*, *Tilapia galilaeus*, *Hemichromis fasciatus* and *Sarotherodon melanotheron*.

2.2. Collection and examination of specimens

A total of 281 specimens (males, *n* = 213) and (females, *n* = 68) were collected from the guts of *P. obscura* and subjected to parasitologic investigation. The nematode parasites were observed by their wriggling movement in the intestines of the fish hosts. The parasitic organisms were carefully removed, counted and fixed in 2.5% glutaldehyde solution in 0.1 mol/L phosphate. Some of the recovered helminthes were also fixed in 70.0% alcohol and sent to Natural History Museum of London, United Kingdom, for their identification to species level.

2.3. SEM

For SEM investigation, after fixing in 2.5% glutaldehyde, the nematode were later rinsed in the same buffer solution 3 times at 15 min interval to remove debris and to hold pH (7.4%) steady during the fixation process. Post fixation was done in 1.0% osmium tetroxide for 2 h. The samples were later dehydrated through a graded ethanol series. After dehydration, the parasites were dried to the critical point in liquid CO2 and then were brought above critical point (31.1 °C and 1073 Psi) to become a dense vapour phase. The samples were later sputter-coated and examined with SEM at the Department of Biological Sciences, Central Michigan University, USA.

2.4. Histopathological analysis

For histopathological analysis, infected tissues of the fish host were fixed in Bouins fluids for 7 h. They were later preserved in 10% phosphate buffered formalin and embedded in paraffin wax, blocked, sectioned and stained with haematoxylin and eosin. The stained tissues were washed in tap water and the over-stained ones were destained in 1% acid alcohol. The tissues were mounted using distyrene plasticizer xylene mountant, which replaced xylene balsam, dried and examined under the microscope.

3. Results

The SEM photomicrographs of the female species of *Procamallanus* were shown in Figures 2 and 3.
external cephalic papillae with an irregular outer surface. There were 6 cephalic alae, 2 on top of the cuticle and 4 on the lateral side (Figures 2A and 2B).

The posterior end of the *Procamallanus* sp. had a short tail (Figure 3F) with 13 lateral alae and papillae (Figure 3E). There were 4 compressed cuticular alae before the conical tail. The tail length was 47.6 µm with a diameter of 10.5 µm. The vulva was postequatorial with a length of 13.6 µm and width of 6.7 µm (Figure 2D). The width of the body was 309.3 µm, with papillae of the exhibiting dimensions of 28.1 µm by 21.5 µm. Cuticle smoothed with streaks of demarcated lines, with lateral papillae of different and shapes sizes, some oval while others were irregular. Deirid was very small, 2.0 µm length and 1.6 µm width. Some of the papillae were large with 10 lengths from 21–28 µm and width of 11–25 µm. The papillae had an average length of 7 µm and width of 102 µm. The spiral ridges of buccal capsule did not reach anterior to the end of the capsule. The length of phasmid was 7.3 µm and its breadth was 12.0 µm. There was no cuticular body extensions as found in the male species (Figure 4F).

3.1. Description of the male species

The second putative *Procamallanus* species was a male and was also recovered from the intestines of *P. obscura*. The SEM revealed new morphological data different from the first *Procamallanus* sp. examined (Figures 4A–D). The cephalic region was spindle shape with the length of 83.2 µm and width of 122.1 µm. There were four external cephalic papillae and compressed alae. Mouth circular was measured 27.9 µm by 8.2 µm. Amphid presented and was close to the external cephalic papillae and spiral thickening surrounding the mouth. The posterior region was rounded with a short pointed tail, 61.3 µm in length and 31.2 µm in width while the posterior region diameter was 191.3 µm. There was a depression on both sides of the lateral region of the posterior end (Figure 4B). Three longitudinal caudal alae were present near the lateral inward depression with length of 4.9 to 10.7 µm and width from 4.9 to 7.4 µm. These three longitudinal caudal alae were adjacent to one another. Phasmid was found on the right lateral side at the caudal region. The middle cuticular body was measured 252.9 µm. The male organ located at the lateral region had dimensions of 60.6 µm by 29.0 µm. Another circular compressed ala was located very close to the male reproductive organ. There was lateral cuticular extension on the body which terminated very close to the caudal region. This lateral cuticular extension of the body was absent in the female species. All the details of this male species were shown in Figure 4.

3.2. Histopathological changes in the fish host

The histopathological changes observed as a result of the parasitic infections of *Procamallanus* spp. revealed different pathological lesions (Figure 5). The tissue sections revealed thickening of the tunica muscularis with a localized area containing section of an intraluminal nematode with minimal inflammation. There was also thickening of the mucosa with sloughing of epithelial cells into the lumen with a moderate goblet cell hyperplasia. There was hypercellularity of the mucosa, severe mucosal necrosis and lymphocytic infiltrations of the lamina propria and mucosa thickened.
wall with presence of inflammatory exudates within the lumen.

Figure 4. SEM of Procamallanus sp.
A: Caudal region showing the tail; B: Apical view of the caudal region showing the caudal alae and papillae; C: Sublateral view of the cephalic region showing external papillae; D: Apical view of the cephalic region; E: Male reproductive organ; F: Cuticular body extension.

Figure 5. Section through the intestine of Parachanna argus showing different pathological conditions.
A: Normal section; B: Intramural nematode with surrounding inflammatory cells; C: Necrosis of surface epithelium with accumulation of necrotic debris in lumen; D: Severe mucosal necrosis with accumulation of necrotic debris in lumen.

4. Discussion

The SEM study of the two species of Procamallanus (Spirocamallanus) was undertaken. Both male and female Procamallanus species were recovered from the intestine of the fish hosts. The two species in this report were based on the descriptions provided by Ali[24] and nominally belonged to the subgenus Aspiculus due to the lack of spicules. The subgenera Aspiculus, Monospiculus, Isospiculus and Procamallanus were created by Ali[24] who synonymized the group based on morphological characters. Due to the advances in SEM technology, there are previously unreported taxonomically important morphological features in these two species of the genus Procamallanus. In the first female described for the species, a prominent longitudinal erect papillae at the cephalic region on top of the cuticle has never been reported in any species of Procamallanus.

In an effort to reconcile the group, Moravec et al.[25] redescribed Procamallanus (Spirocamallanus) fulvidraconis and reported two spicules and a gubernaculum with unequal arms in the species. There were no spicules in these species examined and the longitudinal erect papillae at the cephalic region was never reported[8,25,26]. Moreover, Moravec et al.[26] who reported only female species and suggested extremely rare occurrence of male species or absence of males due to parthenogenesis in the genus Procamallanus together with Bashirullah and Williams[27]. In this study, however, male and female species of the genus were recovered. Moravec et al.[26] noted that camallanid nematodes from New Caledonian had 22 spiral ridges in the buccal capsule which differed from our study. This reported Nigerian species of the genus Procamallanus is, however, with only 7 inner spiral ridges of buccal capsule. Higher taxonomical grouping in the family Camallanidae is entirely based on gross differences in buccal capsule morphology. The cephalic regions of these species differ from the already described species with ridges in between the four papillae of the external circle which are distinctly larger than the already described species on the morphology of Procamallanus annulatus and P. monotaxis reported lack of spiral ridges in the inner surface of capsules[25,27-31]. This is in agreement with Procamallanus species in this report without spiral ridges in the buccal capsule but 7 spiral ridges observed in the first female species. Moravec et al.[25] also reported 10–12 spiral ridges in the male species of Procamallanus (Spirocamallanus) anguillae in Thailand. The buccal cavity of these Procamallanus is also wider and broader. The preanal papillae observed in these species are 4 which is in contrast to the studies of several authors[26-28,30]. The tail length is also longer (47.6 µm) together with the length and width of the excretory pore. The two species of Procamallanus described in this paper conform to Procamallanus aspiculus for lack of spicules described by Agarwal[32] from an Indian siluroid fish which was again described by Khera[33]. The species was first described by Baylis[34] with the creation of Procamallanus laeviconchus while he also described Procamallanus spiralis from a single specimen from the siluroid fish, Heterobranchus anguillaris. This paper present the first SEM description of the genus Procamallanus in Nigeria. The histopathological effect of the nematode in the intestine of the fish host revealed some pathological changes such as goblet cell hyperplasia, hypercellularity of the mucosa and lymphocytic infiltration of the lamina propria. This is also in agreement with the study of Noor El-Din et al.[35] which also reported goblet cell hyperplasia cellular infiltration and penetration of the parasite to the submucosal layer of the fish host, Clarias gariepinus by Procamallanus laeviconchus. Costa and Camargo[36] reported that the infection by Procamallanus limits the potential capacity of nutrients absorption by the fish host, Bivibranchia velox. Bamidele[16] also reported some histopathological changes on some fish hosts of Lekki Lagoon, Lagos, Nigeria such as necrosis, lymphocytic infiltration,
sloughing of cells into the lumen and goblet cell hyperplasia. In Nigeria, this is the first report of Procamallanus aspiculus from P. obscura. This report on pathological alterations of the nematode, Procamallanus, and the occurrence of male and female species of the genus in Lekki Lagoon is an indication that there should be control measures in the water body so as to increase the marketability values of the fishes.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Chabaud AG. Keys to genera of the order Spirurida. Part 1 Camallanoida, Dracunculoidea, Gnathostomatoidea, Physalopteroidea, Rictularioidea and Thelazioidea. In: Anderson RC, Chabaud AG, Willmott S, editors, CHI keys to the nematode parasites of vertebrates. London: Commonwealth Agricultural Bureaux, Farnham Royal; 1975, p. 27.

[2] Petter AJ. Essai de classification de la Sousfamille des Procamalla ninae (Nematodes Camallanidae). Bulletin du Museum National d’Histoire Naturelle 1979; 1: 219-39.

[3] Rodrigus HDD, Pinto RM, Noronha D. Key to the species of Brazilian Procamallanus with general considerations (Nematoda, Camallonoida). Mem Inst Oswaldo Cruz 1991; 86(1): 107-13.

[4] Hoffman GL. Parasites of North American freshwater fishes. 2nd ed. New York: Cornell University Press; 1998, p. 539.

[5] Yeh LS. On a reconstruction of the genus Camallanus Railliet and Henry, 1915. J Helminthol 1960; 34: 117-24.

[6] Bashirullah AKM. Two new species of Spirocamallanus Olsen 1952. Am Midland Nat 1973; 90: 221-4.

[7] Rigby MC, Rigby E. Order Camallanida: superfamilies Anguillulicoidea and Camallanoida. In: Schmidt-Rhaesa A, editor. Handbook of zoology – Gastrotricha, Cycloneuralia and Gnathifera. Vol. 2: Nematoda. Berlin/ Boston: Walter De Gruyter GmbH; 2014, p. 637-59.

[8] Moravec F, Thacher VE. Procamallanus (Denticamallanus subgen. n.) dentatus n. sp. (Nematoda: Camallanidae) from the Characid fish, Bryconops albimargoides, in the Brazilian Amazon. Parasite 1997; 4: 239-43.

[9] Gibbons LM. Keys to the nematode parasites of vertebrates. Supplementary volume. Wallingford: CAB International; 2010, p. 416.

[10] Moravec F, Sey O. Nematodes of freshwater fishes from North Vietnam. Part 1, Camallanoida and Habronematoidea. Vestn Cesk Spol Zool 1988; 52: 128-48.

[11] Moravec F, Scholz T. Observations on some nematodes parasitic in freshwater fishes in Laos. Folia Parasitol (Praha) 1991; 38: 163-78.

[12] Akinsanya B, Othman OA. Helminth parasites of Clarias gariepinus (Clariidae) in Lekki Lagoon, Lagos, Nigeria. Rev Biol Trop 2006; 54(1): 93-9.

[13] Moravec F. The development of Procamallanus laeviceps (Weid, 1862) (Nematoda: Camallanidae). Acta Societatis Zoologicae Bohemoslovacae 1975; 39: 23-38.

[14] Bilal SJ, Abdullah SMA. Procamallanus siluri (Nematoda: Procamallidae): first record in Iraq from Silurus glanis from Greater Zab River, Kurdistan Region. [Online] Available from: http://www.iasj.net/iasj?func=fulltext&aid=29711 [Accessed on 25th May, 2016]

[15] Arthur JR, Ahmed ATA. Checklist of the parasites of fishes of Bangladesh. Rome: Food and Agriculture Organization of the United Nations; 2002; p. 81.

[16] Akinsanya B. Histopathological study on the parasitised visceral organs of some fishes of Lekki Lagoon, Lagos, Nigeria. Life Sci J 2007; 4(3): 70-6.

[17] Akinsanya B, Hassan AA. Adeogun AO. Gastrointestinal helminth parasites of the fish Symodonis claris (Siluriformes: Mochokidae) from Lekki Lagoon, Lagos, Nigeria. Rev Biol Trop 2008; 56(4): 2021-6.

[18] Okaka CE. A survey into helminth parasites of fishes of Asa river and its dam at Ikorin, Nigeria. J Exp Appl Biol 1991; 3: 120-8.

[19] Olofinoye LK. Parasitofauna in some freshwater fish species in Ekiti State, Nigeria. Pak J Nat 2006; 4(4): 359-62.

[20] Aderounmu EA, Adeniyi F. Cestodes in fish from a pond at Ile-Ife, Nigeria. Afr J Trop Hydrobiol Fish 1972; 2(2): 151-6.

[21] Awharitoma AO, Okaka CE. Observations on the Cichlid fishes in Ikpoba River and their parasitic infections. Niger J Parasitol 1999; 20: 129-37.

[22] Thacher V. Amazon fish parasites. Sofia: Pensoft; 2006, p. 508.

[23] Ikusemiju, K. The Hydrobiology and fishes of Lekki Lagoon Nigeria. Nig J Nat Sci 1991; 3(1-2): 135-46.

[24] Ali SM. On two new species of Procamallanus Baylis, 1923 from India, with a key to the species. J Helminthol 1960; 32: 129-38.

[25] Moravec F, Taraschewski H, Anantaphruti MT, Maipanich W, Laoprasert Anderson RC, Chabaud AG, Willmott S, editors, CIH keys to the nematode parasites of vertebrates. Berlin: Walter De Gruyter GmbH; 2014, p. 637-59.

[26] Moravec F, Justine JL, Rigby MC. Some camallanid nematodes from marine perciform fishes off New Caledonia. Folia Parasitol (Praha) 2006; 53: 223-39.

[27] Bashirullah AKM, Williams EH. Five new species of the genus Spirocamallanus Olsen, 1952 (Camallanidae, Nematoda) from marine fishes. J Helminthol 1980; 54: 247-52.

[28] Moravec F, Nie P, Wang G. Some nematodes of fishes from central china, with the redescription of Procamallanus (Spirocamallanus) fulvidraconis (Camallanidae). Folia Parasitol (Praha) 2003; 50: 220-30.

[29] Lakshmi IR. Description of a new species of Procamallanus Baylis, 1923 (Nematoda: Camallanidae) from the freshwater fish, Pangasius pangasius. Rev Ibero-Latinoam Parasitol 2010; 69(2): 199-203.

[30] Moravec F, Justine JL. New data on the morphology of Procamallanus (Procamallanus) annulatus and Procamallanus (Spirocamallanus) monotaxis (Nematoda: Camallanidae) from marine fishes off New Caledonia. Helminthologia 2011; 48: 41-50.

[31] Noble ER. A new camallanid nematode from Hawaii. Pac Sci 1966; 20: 360-6.

[32] Agarwal M. A new nematode Procamallanus mehri n. sp. from a local silurid fish-Willagoria attu. Allahabad Univ Stud 1930; 6: 59-64.

[33] Khera S. On some species of Procamallanus Baylis, 1923 from India. Ann Ecol Nac Cienc Biol Mexico 1955; 8: 243-52.

[34] Baylis HA. Report on a collection of parasitic nematodes mainly from Egypt. Part I. Ascaridae and Heterakidae. Parasitology 1923; 15: 1-13.

[35] Noor El-Din SNE, Khalil AI, El-Sheekh HE, Radwan NA. Histopathological effect of the spirouid nematode Procamallanus laeviceps in the stomach and intestine of Nile cat fish Clarias gariepinus. Egypt J Exp Biol (Zool.) 2009; 5: 109-13.

[36] Costa CHA, Camargo M. Procamallanus (Spirocamallanus) sp. (Camallanidae), an endoparasita of the Trato digestive de Bivibrianchia velox (Eignemann and Meyers, 1927). E.B. fowleri (Steinhardner, 1908), No settor do Medio Rio Xingu, Para, Brasil. UAKARI 2009; 5(1): 97-103.