Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The family Felidae consists of at least 36 wild cat species. These felids are morphologically similar with rounded, flat faces, facial whiskers, large eyes, and large ears. They have the widest range of body sizes of all living carnivore families, weighing 1 kilogram (kg) to 300 kg. They occupy diverse habitats and are distributed naturally throughout the world except Antarctica and Australia, where they have been introduced by humans.

Felid taxonomy has been intensively studied and yet remains controversial. The number of genera recognized is variable. Although in the past four genera were lumped together, currently at least 12 genera are recognized based on several studies of morphology and genetics. Taxonomy and biostatistics for felids may be found in Table 47-1.

Wild felids are predators requiring large areas of habitat with suitable prey density. Human population growth has negatively impacted both these requirements, resulting in a decline in all felid species worldwide in range and number. Felidae are among the most threatened groups of mammals. Larger species are heavily persecuted because of the danger they pose to humans and livestock. Small cat species are also persecuted and are harvested for the fur trade. The International Union for the Conservation of Nature (IUCN) Red List designates 29 of 36 wild felid species as having a decreasing population trend. Nearly 50% of all felid species are listed in the top three threatened categories, and seven of these species are listed as Critically Endangered. The Iberian lynx, listed as Critically Endangered, fits into both categories and may become the first cat species to become extinct in modern times. A key characteristic that was used to separate the big cats (Pantherinae) from the small cats (Felinae) is the presence of an elastic ligament in the hyoid apparatus below the tongue, which was thought to allow the big cats to roar but not purr. Conversely, the bony hyoid of the small cats was thought to allow them to purr but not roar. More recent studies comparing the hyoid structure and vocal abilities dispute this correlation. It has been found that the main difference between the roaring, nonpurring cats and the others was the presence of long, fleshy, elastic vocal folds within the larynx.
TABLE 47-1
Taxonomy and Biostatistics

Category*	Native Region	Genus and Species	Common Name	Longevity (Years)	Adult Mass (kg)	Gestation (Days)	
LC	Europe, Africa, Asia	GENUS FELIS	F. silvestris	Wild cat	19	5.0–8.0	64–67
LC	North Africa to Indochina, Sri Lanka	F. chaus	Jungle cat	20	3.0–16	63–66	
NT	North Africa, Arabia, Asia	F. margarita	Sand cat	13.9	2.75	67	
VU	South Africa	F. nigripes	Black-footed cat	12	1.3–2.3	63–68	
NT	Iran to China	GENUS OTOCOLOBUS	O. manul	Pallas cat	16	2.5–4.5	66–75
LC	North America	GENUS LYNX	L. canadensis	Canada lynx	17	8.0–18.0	62–74
LC	Europe, Asia	L. lynx	Eurasian lynx	24	18.0–30.0	67–74	
CR	South Europe	L. pardinus	Iberian lynx	13	9.0–27.0	60	
LC	North America	GENUS CARACAL	C. caracal	Caracal	17	9.0–18.0	78–81
LC	Africa, Arabia, Asia	GENUS LEPTAILURUS	L. serval	Serval	23	7.0–18.0	66–77
VU	South Asia, Southeast Asia	GENUS PARDOFELIS	P. marmorata	Marbled cat	12	2.0–5.0	66–82
EN	Borneo	P. badia	Bornean bay cat	No data	3.0–4.0	70–75	
NT	Southeast Asia	GENUS PRIONAILURUS	P. bengalensis	Leopard cat	17	3.0–7.0	65–72
LC	South Asia, East Asia	GENUS LEOPARDUS	L. colocolo	Pampas cat	16	3.0–7.0	80–85
LC	North America, Central America, South America	L. pardalis	Ocelot	20	8.0–18.0	79–82	
NT	Central America, South America	L. wiedii	Margay	24	2.6–4.0	76–84	
VU	Central America, South America	L. tigrinus	Little spotted cat or oncilla	23	1.5–3.0	74–76	
NT	South America	L. Geoffroyi	Geoffroy’s cat	23	2.0–5.0	72–78	
VU	South America	L. guigna	Kodkod or guiña	14	2.0–2.5	72–78	
EN	South America	L. jacobita	Andean mountain cat	16.5	4.0	No data	
LC	North America, Central America, South America	GENUS PUMA	P. yagouaroundi	Jaguarundi	15	3.5–10	70–75
LC	North America, Central America, South America	P. concolor	Puma	24	29.0–100.0	90–96	
VU	Asia	GENUS NEDFELIS	N. diardi	Sunda clouded leopard	11	15.0–30.0	85–95
VU	Asia	N. nebulosa	Clouded leopard	20	15.0–23.0	85–93	
EN	Asia	GENUS PANTHERA	P. uncial	Snow leopard	21	25.0–75.0	90–103
EN	Asia	P. tigris	Tiger	26	65.0–306.0	93–112	
NT	Africa, Asia	P. pardus	Leopard	27	23.0–91.0	90–105	
NT	South America, Central America	P. onca	Jaguar	28	30.0–121.0	93–105	
VU	Africa, Asia	P. leo	Lion	27	120.0–250.0	100–120	
VU	Africa, Middle East	GENUS ACINONYX	A. jubatus	Cheetah	20	35.0–72.0	90–95

CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern.
of big cats that resonate to produce a roar. Smaller cats and cheetahs have simpler vocal folds that only allow purring.

Nondomestic felids appear to have an AB blood group system similar to that described in domestic cats. Cross-matching of donor and recipients using standard techniques is important before the administration of transfusions or blood products.

SPECIAL HOUSING REQUIREMENTS

Minimum husbandry guidelines for keeping small (weighing less than 10 kg) and large felids in captivity are available through the Association of Zoos and Aquariums (AZA, www.aza.org) and include recommendations on minimum size specifications, barrier height and width, temperature, humidity, lighting, ventilation, interindividual distances, and sanitation. Additional enclosure features recommended may vary by species and include a vertical component, elevated resting platforms, a heat source, shade, logs or wooden posts to sharpen claws, a visual barrier for cats to hide behind, a den or secure area, varied topography, water features for bathing and swimming, and a shift or secondary holding area to safely move animals from their primary enclosure for cleaning, feeding, or medical procedures. To reduce the incidence of osteoarthritis and pad ulceration, large felids should not be housed for long periods on concrete. Natural substrates or platforms with some flexibility that may be cleaned and disinfected should be provided.

Appropriate safety precautions must be designed into the enclosure and holding facilities to ensure employee and guest safety. These include, but are not limited to, using materials of sufficient strength, covering all openings with mesh or heavy glass, and ability to view all the cats within an enclosure from a safe position. Safety gates provide secondary containment if an animal escapes from the primary holding area. Flares, fire extinguishers, and sound generators may be placed throughout the work area to deter attacks. Keepers may be required to carry pepper spray and communication radios while working with large felids. Escape drills should be held routinely.

FEEDING

The diet of wild felids varies, depending on their sizes. The large cats such as lions and tigers prey on very large mammals, with only two to three species making up the bulk of their diet. Medium-sized felids such as the puma, the snow leopard, and the leopard eat smaller prey but a larger number of different species. The small felids such as the cheetah, leopards, lions, and tigers, may be trained to cooperate with veterinary procedures. Behaviors that are particularly helpful include shifting into transport crates, obtaining regular body weights, close visual inspection and oral examination, measurement of temperature, heart rate, and blood pressure, administration of injections or other medications, positioning for abdominal ultrasonography for pregnancy monitoring, and collecting blood or other biologic samples.

ANESTHESIA

A variety of drug combinations have been used safely to induce anesthesia in felids (Table 47-2). In general, smaller species require a higher dosage of anesthetics compared with larger species on the basis of kilogram of body weight, and free-living individuals may require higher dosages compared with their captive counterparts. The drug combinations most often used include a dissociative (ketamine or tiletamine), and an α2-agonist (xylazine, medetomidine, or dexmedetomidine), benzodiazepine (diazepam, zolazepam, or midazolam), opioid (butorphanol), or a combination of these. These drugs may be antagonized with yohimbine (0.04 to 0.3 milligram per kilogram [mg/kg], intramuscularly [IM] or intravenously [IV; slow]), atipamezole (0.1 to 0.45 mg/kg, IM), naltrexone (0.05–0.25 mg/kg, IM or IV), and flumazenil (0.01–0.02 mg/kg, IV or IM). Tiletamine and zolazepam (Telazol, Fort Dodge, Fort Dodge, IA) may be used safely in many felids but should be used with caution in tigers. Adverse reactions, including death and neurologic disease (seizures, ataxia), have been anecdotally reported; but controlled studies are lacking. Regurgitation or vomiting during induction or recovery may occur when α2-agonists are used. Food should be withheld from adult felids for 12 to 24 hours and water for several hours prior to anesthesia to decrease the chances of regurgitation and aspiration during induction and recovery. Species-specific protocols have been reported.

Anesthesia may be maintained with supplemental ketamine (IV or IM), propofol (IV), or inhalant anesthesia (sevoflurane, isoflurane, and aspiration during induction and recovery. Species-specific protocols have been reported.
TABLE 47-2

Generic Name	Dose (mg/kg)	Route	Antagonist	Comments
Ketamine	0.2–2.0	IV or IM	N/A	Not recommended if used alone, best for supplementation or maintenance of anesthesia
Ketamine Xylazine	3.0–10.0	IM	N/A	Yohimbin
Ketamine Medetomidine (or dexametomidine)	2.0–6.0	IM	N/A	Atipamezole
Ketamine Midazolam	0.5–10.0	IM	Flumazenil	Use in small felids or debilitated cats
Ketamine Medetomidine (or dexametomidine)	0.03–0.07 (0.015–0.035)	IM	N/A	Flumazenil may not be necessary
Ketamine Midazolam	3.0–5.0	IM	Flumazenil	Use in small felids or debilitated cats
Ketamine Butorphanol	0.1–0.4	IM	Naltrexone	Not recommended for healthy large felids
Tiletamine Zolazepam	1.6–4.2 or up to 11.0 in small felids (combined)	IM	N/A	Prolonged recovery; Use with caution in tigers; Can reduce dosage by adding ketamine or medetomidine
Medetomidine (or dexametomidine)	0.03–0.04 (0.015–0.02)	IM	Atipamezole	Spontaneous recoveries after 40–50 minutes; Supplements needed for procedures >30 minutes
Butorphanol	0.1–0.4	IM	Naltrexone	Flumazenil may not be necessary
Midazolam	0.1–0.3	IM	Flumazenil	Use in small felids or debilitated cats
Ketamine Medetomidine (or dexametomidine)	1.0–2.0	IM or IV	N/A	Ketamine may also be given intravenously soon after induction
Butorphanol	0.03–0.04 (0.015–0.02)	IM	Atipamezole	May get spontaneous arousal
Midazolam	0.1–0.3	IM	Naltrexone	Flumazenil may not be necessary

IV, Intravenously; IM, intramuscularly; N/A, not applicable; dosages for antagonists listed in text of chapter.

or halothane). Rapid administration or high doses of ketamine (IV) may induce seizures. Rapid administration of propofol (IV) may result in apnea. Supplemental oxygen is recommended when using injectable anesthetic agents. This may be delivered through the nares, via a face mask, or through endotracheal intubation. Endotracheal intubation is strongly recommended, especially for procedures lasting more than 30 minutes.

Additional anesthetic complications include hypoxia, hyperventilation, apnea, hypotension, hypertension, bradycardia, arrhythmias, seizures, hypothermia, hyperthermia, and cardiac arrest. Arousal may occur after 40 to 50 minutes when medetomidine is used as the primary anesthetic drug in combination with low doses of ketamine or with a combination of midazolam and butorphanol. This may occur with few premonitory signs, so the clinician must be prepared by having intravenous ketamine or propofol readily available or have an inhalant anesthetic available to maintain anesthesia. A recovery crate should be available in the same room where the procedure is performed if the animal has been removed from its enclosure. This greatly improves safety if there is spontaneous arousal of the animal or a rapid recovery is needed.

VENIPUNCTURE

Venipuncture sites are similar to those of domestic felids. Blood samples may be obtained from the medial and lateral saphenous, jugular, cephalic, or femoral veins. Lateral tail veins may be accessed in larger felids and are located at the 2 o’clock and 10 o’clock positions. This is a particularly useful site if the cat is confined in a squeeze cage. Reference ranges for hematologic and biochemical values for a variety of captive felid species are provided by the International Species Information System (ISIS): Physiologic values in captive wildlife (ISIS, 2002; Apple Valley, MN).

DISEASES

Felids are susceptible to many infectious and noninfectious diseases. Table 47-3 lists several felid species and the common diseases observed in captivity. Some conditions in captive animals may have a genetic predisposition or may be precipitated by chronic stress. Stress causes a reduced immune response that increases susceptibility to infectious diseases and may be associated with noninfectious diseases such as gastritis and AA-amyloidosis in cheetahs. Stress also has an adverse effect on reproduction and results in a higher tendency for self-mutilation or overgrooming. Treatment modalities for the diseases below may be extrapolated from domestic feline medicine.

Infectious Diseases

Felids are susceptible to the same infections carried by domestic cats. They are also susceptible to diseases transmitted by other animals, for example, viral diseases such as canine distemper, rabies, and avian influenza; bacterial infections that cause tularemia (caused by Francisella tularensis) or tuberculosis (caused by Mycobacterium bovis); and protozoal diseases such as toxoplasmosis (caused by Toxoplasma gondii). Many infections are zoonotic; therefore, good hygiene practices are essential when working with felids. It is also very important to limit exposure of captive felids to feral and domestic cats and dogs, free-living carnivores, bats, rodents, and other small mammals. The common viral diseases in felids are summarized in Table 47-4. Helicobacter gastritis may be a significant bacterial infection that results in regurgitation, vomiting, weight loss, and ill thrift. Although all felids may be affected, the clinical disease is most often observed in cheetahs. Management of this condition is well documented in the literature. Additional bacterial diseases include those caused by Mycoplasma spp. and Chlamydia psittaci, which are part of the feline respiratory disease complex, and...
enterocolitis caused by *Campylobacter* spp. *Salmonella* spp. may cause disease but is often passed in the feces of asymptomatic animals secondary to a raw food diet. All felids are susceptible to infections by dermatophytes, especially *Microsporum canis* and *M. gypseum*. Treatment with griseofulvin resulted in toxicity with *M. gypseum* infections by dermatophytes, especially *K. Terio, unpublished data.*

Black-footed cat — Renal amyloidosis, or both

Fishing cat — Transitional cell carcinoma

Clouded leopard — Neoplasia especially pheochromocytomas

Cheetah — Helicobacter gastritis, Herpesvirus dermatitis, Renal secondary amyloidosis, Glomerulosclerosis, Veno-occlusive disease

Snow leopard — Papillomavirus associated squamous cell carcinoma, Veno-occlusive disease

Fishing cat — Transitional cell carcinoma

Black-footed cat — Renal amyloidosis, gastrointestinal amyloidosis, or both

Pallas’ cat — Toxoplasmosis, Herpesvirus infection

K. Terio, unpublished data.

Noninfectious Diseases

Noninfectious diseases are often related to husbandry, diet, or breeding management. Obesity is a significant cause of morbidity in captive felids and may predispose to metabolic conditions such as diabetes mellitus. “Stargazing” has been associated with hypovitaminosis A in young lions. Common dental diseases include gingivitis, calculus accumulation, fractured canines, and fractured molars. Focal palantine erosions have been reported in 15 wild and captive species but is more prevalent in captive animals. Degenerative joint disease and spondylosis are common in geriatric felids, especially the larger species. Chronic renal failure is common in geriatric felids. Renal amyloidosis is particularly common in black-footed cats and cheetahs. Veno-occlusive disease is a slowly progressive liver disease, which results in the fibrosis of the hepatic sinusoids or veins and eventually occlusion of the vessels. It has been reported in cheetahs and snow leopards. Myelopathy has been diagnosed in cheetahs in Europe, and leukoencephalopathy has been diagnosed in cheetahs in North America. Pyometra has been reported in lions, tigers, and a leopard. Lions seem to be at an increased risk for developing pyometra compared with other species. Ovariohysterectomy may be warranted in nonbreeding female lions. The use of progestin-based contraceptives has been associated with endometrial hyperplasia and uterine and mammary adenocarcinoma. Nonsteroidal anti-inflammatory drugs (NSAIDs) should be used cautiously. Aspirin, acetaminophen, and ibuprofen may cause toxicity, and caution is advised when using other formulations such as carprofen, deracoxib, naproxen, etodolac, and indomethacin. Meloxicam has been used in nondomestic felids with no reported adverse effects.

REPRODUCTION

Felidae exhibit a high degree of variability in estrus cycle characteristics, including duration. All felids have induced ovulations, but some have spontaneous ovulations. The occurrence varies across species and between individuals within a species. It occurs frequently in clouded leopards, fishing cats, and margays but rarely in cheetahs, tigrinas, and ocelots. Pallas’ cats are very sensitive to photoperiod; tigers, clouded leopards, and snow leopards are moderately affected; and ocelots, tigrinas, margays, lions, leopards, and fishing cats are not influenced by photoperiod. Clouded leopards and Pallas’ cats exhibit seasonality in gonadal activity, but margays, cheetahs, and oncillas cycle year round. Suppressed ovarian activity and estrus occurs in cats housed in a group (e.g., cheetahs). All cats have a zonal placentaion.

Many felid species do not reproduce well in captivity. Assisted reproductive techniques such as artificial insemination are important for managing zoo species. This technique is challenged by the variable responses to ovulation induction therapies. Fecal cortisol may be measured and reflects the adrenal status and stress levels of animals managed under different husbandry conditions. These data improve the understanding of how social and environmental factors affect the well-being and reproductive fitness of animals. Contraception of felids is sometimes necessary to facilitate management needs or because of concerns over the health of the animals.
Disease	Etiology	Epizootiology	Signs	Diagnosis	Management
Feline panleukopenia virus (FPV)	Parvovirus	Highly contagious virus shed in all secretions and excretions	Can be subclinical Peracute cases referred to as fading kittens	Presumptive diagnosis based on panleukopenia	Virus is resistant to inactivation
		Shed in feces up to 6 weeks after recovery	Acute cases show fever, depression, anorexia, and dehydration	Confirm by demonstrating FPV antigen in feces	Can survive >1 year in a suitable environment
		Illness lasts 5–7 days	Vomiting and diarrhea may be present	Test kits for canine parvovirus antigen may detect FPV antigen during the acute phase	Virus is inactivated by 6% household bleach (sodium hypochlorite)
		Mortality is highest in cats <5 months of age			Vaccination using inactivated or killed virus recommended
					Late pregnancy booster with killed vaccine recommended for cheetahs
Feline rhinotracheitis or feline herpes virus (FHV)	Feline herpesvirus I	Highly contagious Virus shed in saliva and ocular and nasal secretions	Serous ocular discharge, conjunctivitis, blepharospasm, sneezing, and nasal discharge	Presumptive diagnosis based on clinical signs, especially in cheetahs⁴⁰ Swabs of conjunctiva, nasal, or oropharyngeal region for viral isolation (VI), polymerase chain reaction (PCR), or fluorescent antibody (FA) Immunohistochemical staining (IHC) or VI of tissues	Skin lesions may respond to cryotherapy Use of modified-live virus vaccines may induce the disease in nondomestic felids Only killed vaccines should be used Vaccination will not prevent infection but may decrease severity Cats may become chronic carriers with intermittent shedding of virus Virus viable in environment for 72 hours after a shedding animal has been removed
		Easily spread by fomites	Secondary bacterial infections may occur		
		High morbidity, low mortality	Keratitis may be seen, especially in kittens		
		Cheetahs and Pallas’ cats very susceptible	Ulcerative dermatitis is common in cheetahs		
		Often self-limiting and may resolve in 14–28 days	Kittens may develop acute severe infections that lead to blindness or pneumonia		
		Can have co-infections with calicivirus, Chlamyphilia psittaci, Mycoplasma spp., or both			
Feline calicivirus (FCV)	Calicivirus³⁹	Highly contagious Virus shed in saliva and ocular and nasal secretions	Sneezing, ocular and nasal discharge, and oral ulcers of the gingiva and tongue	Oropharyngeal and conjunctival swabs of lesions for VI or real time reverse transcriptase PCR (qRT-PCR) Affected tissues for VI, qRT-PCR, IHC, or FA	Use of modified-live virus vaccines may induce the disease in nondomestic felids Only killed vaccines should be used Vaccination will not prevent infection but may decrease severity Virus may survive up to 14 days on inanimate objects Recovered animals may shed virus for months to years
		Can also be spread by fomites	Can have pulmonary involvement		
		High morbidity, variable mortality	Secondary bacterial infections		
		Uncomplicated cases may resolve within 2 weeks			
		Can have co-infections with herpesvirus, Chlamyphilia psittaci, Mycoplasma spp., or both			
Disease Etiology	Epizootiology	Signs	Diagnosis	Management	
------------------	---------------	-------	-----------	------------	
Feline coronavirus (FCoV)	Highly contagious among cats in close contact	Shed in feces of healthy cats	Signs of FIP are fever, vomiting, diarrhea, and modified transudate effusions with high protein content.	Shedding is detected by PCR of feces (three samples a month apart recommended for domestic cats, 5 samples within 30 days for cheetahs)1)	
	Shedding frequency varies from rare, intermittent, or persistent (best documented in cheetahs)		Serologic tests do not differentiate between the two forms of the disease		
	Also reported in domestic cats, African lion, mountain lion, leopard, lynx, jaguar, European wildcat, sand cat, serval, caracal, and Pallas' cat		Titters >1:1600–3200 are suggestive of FIP	FIP is not considered directly transmissible from cat to cat but outbreaks with increased mortality from FIV do occur in groups of unrelated domestic cats in shelters and catteries	
	Transmitted by the fecal–oral route through direct contact or by fomites		False-positive titers may result in cats recently vaccinated (<4 months)	FIP is not considered directly transmissible from cat to cat but outbreaks with increased mortality from FIV do occur in groups of unrelated domestic cats in shelters and catteries	
	Signs of FeCV can last 2–5 days		Antibody testing is only useful as a screening tool to detect presence or absence of virus in a collection, recognize potential carriers or shedders when introducing new cats into an antibody-negative collection, and as an aid in the clinical diagnosis of FIP	FIP is not considered directly transmissible from cat to cat but outbreaks with increased mortality from FIV do occur in groups of unrelated domestic cats in shelters and catteries	
	The more severe FIP form is fatal		IHC on effusions or lesions is the current gold standard for FIP diagnosis		
	Most deaths in domestic cats 3–16 months of age, uncommon after 5 years		Cats that recover remain carriers		
	FeCV may be subclinical or may result in mild diarrhea that may be chronic		Prevention is by limiting exposure to infected cats and their feces		
	Signs of FIP are fever, vomiting, diarrhea, and modified transudate effusions with high protein content. Development of FIP depends on two host factors: virus mutation and low immunity		Most cats develop an immune response when exposed and recover		
Feline immunodeficiency virus (FIV)	Virus shed in saliva. Primary mode of transmission is bites	More prevalent in males	Presence of serum antibodies (Western blot or enzyme-linked immunosorbent assay [ELISA])	Routine testing recommended	
	Most infections reported in older captive animals	Most infections reported in older captive animals	Western blot available for domestic cats, cougars, and African lions and may be more sensitive than domestic cat FIV based ELISA	Segregate positive cats	
	Reported in free-living puma and bobcats	Reported in free-living puma and bobcats	Isolation of virus from blood cells and saliva	Infection is lifelong	
	Endemic in certain lion populations in eastern and southern Africa	Endemic in certain lion populations in eastern and southern Africa	PCR developed for lions	Routine testing recommended	
			Routine testing recommended		
Feline leukemia virus (FeLV)	Virus may be found in saliva, tears, urine, semen, vaginal fluids, and feces	Persistent contact with saliva or urine is the most common mode of transmission	Serologic antigen tests available include immunofluorescent antibody (IFA) or ELISA, false-positives and false-negatives occur	Routine testing recommended	
	Oronasal contact with saliva or urine is the most common mode of transmission	Vertical transmission possible	Confirmatory test with VI or real time PCR (qPCR) (blood, bone marrow, and tissues)	Segregate positive cats	
	Transmitted to nondomestic cats by contact with or ingestion of domestic feral cats	Persistently viremic cats develop fatal diseases	Virus is readily inactivated by detergents and disinfectants		
	Persistently viremic cats develop fatal diseases	Reported in cheetah, Iberian lynx, leopard cat, European wildcat, and cougar			
	Reported in cheetah, Iberian lynx, leopard cat, European wildcat, and cougar				

Continued
TABLE 47-4

Selected Viral Diseases of Felids—cont’d

Disease	Etiology	Signs	Diagnosis	Management	
Feline papillomavirus	Papillomavirus	Species and site-specific infections Reported in domestic cats, Asian lion, bobcats, Florida panther, clouded leopard, Canadian lynx, and snow leopards^{1,30}	Proliferative lesions in the skin or oral cavity Papillomas in snow leopards may undergo malignant transformation to squamous cell carcinoma	PCR of excised lesion developed for snow leopards Routine screening for skin and oral lesions Remove using surgical excision, laser surgery, or cryosurgery and prevent virus from contacting adjacent tissue Vaccine for snow leopards under development	
Canine distemper virus (CDV)	Morbillivirus	Highly contagious Aerosolization of respiratory exudate or contact with other body excretions and secretions Vaccine-induced disease using modified-live virus reported in other carnivores but not felids Not all felids develop disease Mortality reported in captive lions, tigers, leopards, and a jaguar and in free-living lions, lynx (Canadian and Iberian), and bobcats	Infectious may be subclinical or fatal. Respiratory, gastrointestinal, integumentary, and central nervous system signs Hyperkeratosis of foot pads and myoclonus	Immunofluorescence of conjunctival scrapings, oruffy coat smears Paired sera by viral neutralization or IFA test. ELISA may detect immunoglobulin G (IgG) and IgM. Antibodies in cerebrospinal fluid (CSF) may be more rewarding than serum Viral isolation, qRT-PCR, or IHC of tissues	Exclude potential reservoirs (domestic dogs, raccoons) Vaccinate susceptible felids using recombinant vaccine
Rabies virus	Lyssavirus	Bites of infected animals (carnivores or bats) Contact of saliva with mucous membranes or open wounds Aerosol in an enclosed environment Fatal disease within 2–7 days of illness	Salivation, abnormal behavior (agression) or neurologic signs (paresis, seizures)	Recommend euthanasia and shipment of head to a qualified laboratory for FA or VI Serology used to monitor response to vaccination	Reportable disease Zoonotic disease Vaccination recommended Limit exposure to wild carnivores and bats Lyssaviruses are not stable in the environment and are inactivated by common disinfectants
Avian influenza (AI)	Type A influenza virus, subtype H5N1, further classified as highly pathogenic (HPIA) or low pathogenic (LPAI) according to its virulence in poultry	Transmission occurs through the respiratory and oral routes Reported in domestic cats, tigers, leopards, and Asiatic golden cats Direct contact with affected birds or were fed raw poultry Cat-to-cat transmission has been documented	Fever, respiratory distress, severe pneumonia, rapid death Neurologic signs (circling, ataxia) may be observed Subclinical infections also occur	Oropharyngeal, nasal and/or rectal swabs or fecal samples for RT-PCR and/or VI Postmortem samples of lung and mediastinal lymph nodes for VI or RT-PCR	Reportable disease Zoonotic disease Each institution should have a highly pathogenic avian influenza (HPIA) preparedness protocol Do not feed poultry products to nondomestic felids especially in countries with known or potential outbreaks Virus is sensitive to standard disinfectants Virus may persist in cool aquatic environments (>100 days) or indefinitely if frozen
The AZA Wildlife Contraception Center (2012) makes the following recommendations for felid contraception:

1. Gonadotropin-releasing hormone (GnRH) agonists are considered the safest reversible contraceptives, but dosages and duration of efficacy are not well established for all species (caution has to be exercised in their use in lions because of prolonged response with questionable reversibility at certain doses). Side effects are generally similar to those associated with gonadectomy, especially the potential for weight gain.
 - Suprelorin (deslorelin) implants (female or male)
2. Ovariohysterectomy or ovariectomy (females) or castration (males) may be considered if permanent sterilization is an option.
3. In felids, progestin contraceptives are associated with progressive uterine growth that may result in infertility, infections, and sometimes uterine cancer; mammary tissue stimulation may result in cancer. If a progestin is used, treatment should only be short term and should be started before any signs of proestrus. Progestins should not be used in pregnant animals.

PREVENTIVE MEDICINE

Routine Health Examination

Routine, periodic, or opportunistic health examinations should be part of the preventive medicine protocol for felids. Many institutions perform examinations under anesthesia every 2 to 4 years, but this frequency is dependent on the individual animal’s age, life stage, health status and medical history, and species and the resources and philosophy of the holding institution. Animals that are trained as part of an operant conditioning program may be visually examined, have blood collected, and receive vaccinations without anesthesia or the need for remote delivery equipment. These examinations may be substituted for one under anesthesia in many cases if dental examination and prophylaxis and thorough palpation are deemed unnecessary. Routine health examination should include an assessment of body condition, body weight determination, complete physical examination, evaluation for ectoparasites (ticks, fleas, flies), blood collection for complete blood cell (CBC) count with manual differential and hemoparasite examination, serum biochemical panel, and serum for banking. Recommended serologic tests include those for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV). Additional tests that may be necessary based on species, geographic location, or potential for disease exposure include those for *Toxoplasma gondii*, feline coronavirus (FCoV), and canine heartworm (*Dirofilaria immitis*). Serologic tests to monitor response to vaccination may be useful for feline parvovirus (FPV), especially in cubs, and for feline panleukopenia virus (FPLV). Vaccination titers for feline herpesvirus (FHV) or feline calicivirus (FCV) are predictive of protection, except for highly susceptible species such as cheetahs. If a cheetah has a low or negative titer to FPV or FHV, more frequent vaccination should be considered. Urinalysis should be performed, if possible. Survey radiography and abdominal ultrasonography may be valuable if resources are available to establish reference information or to diagnose occult conditions. Fecal examination for parasites is recommended at this time if a regular program for parasite surveillance (once to twice yearly) is not already in place.

Vaccination

Vaccination protocols for carnivores have been recently reviewed.17 Vaccines recommended are divided into core vaccines (recommended for all felids) and noncore vaccines (optional, depending on the specific disease risk of the species and institution, not generally recommended). Vaccine-associated sarcomas have rarely been reported in nondomestic felids. Because of the lack of serologic studies and difficulty in performing challenge experiments on nondomestic felids, specific information on the length of protection from vaccination is lacking. Specific recommendations for vaccination frequency cannot be made, although most institutions vaccinate adults every 1 to 3 years using the core vaccines. Core vaccines include rabies (killed, e.g., Imrab 3, Merial); or recombinant canarypox-vectored, e.g., PureVax Rabies, Merial) and feline panleukopenia, calicivirus, herpesvirus (killed, e.g., Fel-O-Vax PCT Plus, Boehringer Ingelheim). Noncore vaccines that should be considered only in species at risk include canine distemper virus (CDV) (recombinant canarypox-vectored, PureVax Ferret Distemper, Merial) and FeLV (killed).

Preshipment Evaluation and Quarantine

Animals that are being shipped to a new institution should be evaluated using the procedures described earlier. The preshipment examination and test results allow the receiving institution to discuss disease risks associated with the acquisition in advance with animal managers. Results should be compared with the results of the quarantine examination at the receiving institution. Examination and testing during the quarantine period provides vital information following the stress of shipment and change in environment. Biologic samples should be stored for future testing or studies, as needed.

Quarantine should occur in an off-exhibit area away from other animals, especially other carnivores (collection and free-living). Dedicated tools and equipment and personal protective equipment (removable outer wear, gloves) should be used. If dedicated footwear is not an option, a footbath may be used. Quarantine period for all felid species is typically 30 days, but this may vary depending on the source of the cat or institutional practices.

REFERENCES

1. Bosman AM, Venter EH, Penzhorn BL: Occurrence of Babesia felis and Babesia leo in various wild felid species and domestic cats in Southern Africa, based on reverse line blot analysis. Vet Parasitol 144(1–2):33–38, 2007.
2. Brown JL, Graham LH, Wiebelnowski N, et al: Understanding the basic reproductive biology of wild felids by monitoring of faecal steroids. J Reprod Fertil Suppl 57:71–82, 2001.
3. Brown JL: Female reproductive cycles of wild feline felids. Anim Reprod Sci 124(3–4):155–162, 2011.
4. Cunningham M, Yahsles MJ: Primer on tick-borne diseases in exotic carnivores. In Miller RE, Fowler ME, editors: Fowler’s zoo and wild animal medicine current therapy, vol 7, St. Louis, MO, 2012, Saunders, pp 458–464.
5. Curro TG, Okeson D, Zimmerman D, et al: Xylazine-midazolam-ketamine versus medetomidine-midazolam-ketamine anesthesia in captive Siberian tigers (Panthera tigris altaica). J Zoo Wildl Med 35(3):320–327, 2004.
6. Daoust PY, McBurney SR, Godson DL, et al: Canine distemper virus-associated encephalitis in free-living lynx (Lynx canadensis) and bobcats (Lynx rufus) of eastern Canada. J Wildl Dis 45(3):611–624, 2009.
7. de Camps S, Dubey JP, Saville WJ: Seroepidemiology of Toxoplasma gondii in zoo animals in selected zoos in the midwestern United States. J Parasitol 94(3):648–653, 2008.
8. Deem SL, Heard DJ, LaRock R: Heartworm (Dirofilaria immitis) disease and glomerulonephritis in a black-footed cat (Felis nigripes). J Zoo and Wildl Med 29(2):199–202, 1998.
9. Deem SL, Spelman LH, Yates RA, et al: Canine distemper virus in wild carnivores: A review. J Zoo Wildl Med 31(4):441–451, 2000.
10. Fahiman A, Loveridge A, Wenham C, et al: Reversible anaesthesia of free-ranging lions (Panthera leo) in Zimbabwe. J S Afr Vet Assoc 76(4):187–192, 2005.
11. Gaffney PM, Kennedy M, Terio K, et al: Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding. J Zoo Wildl Med 43(4):776–786, 2012.
12. Garner MM, Lung NP, Cittino S, et al: Fatal cyt Luxembourg in a captive reared white tiger (Panthera tigris). Vet Pathol 33(1):82–86, 1996.
13. Harrison TM, Sikarskie J, Kruger J, et al: Systemic calicivirus epidemic in captive exotic felids. J Zoo Wildl Med 38(2):292–299, 2007.
14. Herrick JR, Campbell M, Levens G, et al: Intravaginal insemination and sperm cryopreservation in the black-footed cat (Felis nigripes) and sand cat (Felis margarita). Biol Reprod 82(3):552–562, 2010.
15. Joslin JO: Viral papilloma and squamous cell carcinomas in snow leopards (Uncia uncia). In Proceedings of the American Association of Zoo Veterinarians, New Orleans, LA, 2000, pp 157–159.

16. Keawcharoen J, Oraveerakul K, Kuiken T, et al: Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 10(12):2189–2191, 2004.

17. Lambertske N: Updated vaccination recommendations for carnivores. In Miller RE, Fowler ME, editors: Fowler's zoo and wild animal medicine current therapy, vol 7, St. Louis, MO, 2012, Saunders, pp 442–450.

18. Langan JN, Schumacher J, Pollock C, et al: Cardiopulmonary and anesthetic effects of medetomidine-ketamine-butorphanol and antagonism with atipamezole in servals (Felis serval). J Zoo Wildl Med 31(3):329–334, 2000.

19. Longley L: Aging in large felids. In Miller RE, Fowler ME, editors: Fowler's zoo and wild animal medicine current therapy, vol 7, St. Louis, MO, 2012, Saunders, pp 465–469.

20. Marcos RA, Adania CH, Teixeira RHF, et al: Molecular and serological detection of Babesia spp. in neotropical and exotic carnivores in Brazilian zoos. J Zoo Wildl Med 42(1):139–143, 2011.

21. McCay S, Ramsay E, Allender MC, et al: Pyometra in captive large felids: A review of eleven cases. J Zoo Wildl Med 40(1):147–151, 2009.

22. Meh ML, Simmler P, Cattori V, et al: Importance of canine distemper virus (CDV) infection in free-ranging Iberian lynxes (Lynx pardinus). Vet Microbiol 146(1–2):132–137, 2010.

23. Nowell K: Cats on the 2009 red list of threatened species. Cat News 51:31–33, 2009.

24. Penzhorn BL, Schoeman T, Jacobson LS: Feline babesiosis in South Africa: A review. Ann New York Acad Sci 1026:183–186, 2004.

25. Ramsay EC: Use of analgesics in exotic felids. In Miller RE, Fowler ME, editors: Zoo and wild animal medicine current therapy, vol 6, Philadelphia, PA, 2008, Saunders, pp 289–293.

26. Risi E, Agoulon A, Allaire F, et al: Antibody response to vaccines for rhinotracheitis, caliciviral disease, panleukopenia, feline leukemia, and rabies in tigers (Panthera tigris) and lions (Panthera leo). J Zoo Wildl Med 43(2):248–255, 2012.

27. Robert N: Neurologic disorders in cheetahs and snow leopards. In Miller RE, Fowler ME, editors: Zoo and wild animal medicine current therapy, vol 6, Philadelphia, PA, 2008, Saunders, pp 265–271.

28. Rockhill AP, Chinnadurai SK, Powell RA, et al: A comparison of two field chemical immobilization techniques for bobcats (Lynx rufus). J Zoo Wildl Med 42(4):580–585, 2011.

29. Stegmann GF, Jago M: Cardiopulmonary effects of medetomidine or midazolam in combination with ketamine or tiletamine/zolazepam for the immobilisation of captive cheetahs (Acinonyx jubatus). J S Afr Vet Assoc 77(4):205–209, 2006.

30. Sundberg JP, Van Ranst M, Montali R, et al: Feline papillomas and papillomaviruses. Vet Pathol 37(1):1–10, 2000.

31. Sunquist ME, Sunquist FC: Family Felidae (cats). In Wilson DE, Mittermeier RA, editors: Handbook of the mammals of the world, vol 1, Barcelona, Spain, 2009, Lynx Edicions, pp 54–168.

32. Swanson WF: Application of assisted reproduction for population management in felids: The potential and reality for conservation of small cats. Theriogenology 66(1):49–58, 2006.

33. Terio KA, Marker L, Munson L: Evidence for chronic stress in captive but not free-ranging cheetahs (Acinonyx jubatus) based on adrenal morphology and function. J Wildl Dis 40(2):259–266, 2004.

34. Terio KA, O’Brien T, Lamberski N, et al: Amyloidosis in black-footed cats (Felis nigripes). Vet Pathol 45(3):393–400, 2008.

35. Thiry E, Addie D, Belak S, et al: H5N1 avian influenza in cats. ABCD guidelines on prevention and management. J Feline Med Surg 11(7):615–618, 2009.

36. Wack RF: Felidae. In Miller RE, Fowler ME, editors: Zoo and wild animal medicine current therapy, vol 6, Philadelphia, PA, 2008, Saunders, pp 462–465.

37. Wither CJ, Robert N: Stargazing in lions. In Miller RE, Fowler ME, editors: Fowler's zoo and wild animal medicine current therapy, vol 5, St. Louis, MO, 2012, Saunders, pp 462–465.

38. Wobeser S, Buss P, Joubert J, et al: Evaluation of butorphanol, medetomidine and midazolam as a reversible narcotic combination in free-ranging African lions (Panthera leo). Vet Anaesth Analg 37(6):491–500, 2010.

39. Wobeser CJ, Robert N: Stargazing in lions. In Miller RE, Fowler ME, editors: Fowler's zoo and wild animal medicine current therapy, vol 7, St. Louis, MO, 2012, Saunders, pp 470–476.

40. Witte CL, Lambertske N, Rideout BR, et al: Development of a case definition for clinical feline herpesvirus infections in cheetahs (Acinonyx jubatus) housed in zoos. J Zoo Wildl Med 2013 (accepted).

41. Yabsley MJ, Murphy SM, Cunningham MW: Molecular detection and characterization of Cytauxzoon felis and a Babesia spp. in cougars from Florida. J Wild Dis 42(2):366–374, 2006.

42. Zordan M, Deem SL, Sanchez CR: Focal palatine erosion in captive and free-living cheetahs (Acinonyx jubatus) and other felid species. Zoo Biol 31(2):181–188, 2012.