Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, ASME J. Fluids Eng., 132, p. 061403)

Patrick J. Roache
Visiting Professor (Melchor Chair),
Department of Aerospace and Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556
e-mail: hermosa@sdc.org

1 Introduction

A recent paper by Xing and Stern [1] provides additional performance data of interest on Verification of Calculations, but is misleading in some important respects. Five methods, all starting from Richardson Extrapolation, are compared: three are based on variants of my Grid Convergence Index method [2–6], and two are based on the authors’ work: the earlier “CF method” and the latest “FS method.”

(1) The method referred to as GCI2 is successful but its source is cited as a “private communication” from myself (their Ref. [16]). What they refer to as GCI3 is essentially the GCI method, as I have described and discussed and evaluated at length, Refs. [2–6]. This is the method that, as the authors say [1], “is widely used and recommended by ASME and AIAA” citing [6,7]. I shall refer to it herein as the “real GCI method” for reasons soon to be apparent. The equivalence is obscured because the authors [1] have written their Eq. (12) defining the method using their own ratio term CF, which obscures the simplicity of the original and makes it appear that the factor of safety varies continuously1 with observed order of convergence p_{Re}. See Fig. 3 of Ref. [1].

This is merely an artifact of Eq. (12) in which their factor of safety FS is defined in terms of an error estimate based on observed p_{Re} rather than on the p actually used. As a result, the “factor of safety” FS in Ref. [1] is not always the same concept as the “factor of safety” F_s in Refs. [2–6].

This leaves the question of what are the methods called “GCI” and “GCI2” by the authors. The answer is that I consider these to be misapplications of the GCI formulas, and therefore misrepresentations of the GCI method.

(2) For specificity, I will change notation and refer to the method of their Eq. (10) as GCI0, not as “GCI” since I claim it is not the real GCI method. This Eq. (10) is written in terms of an error estimate based on the “observed” [2–6] or “estimated” [1] order of convergence p_{Re}.

However, the authors correctly indicate in the text following that this is possible only if three grids have been used to calculate p_{Re}, in which case the recommended Factor of Safety $F_s = 1.25$.

If only two grids have been used, p_{Re} in Eq. (10) is replaced by a theoretical value p_b, e.g., $p_b = 2$ for a nominally second-order method and a more conservative value $F_s = 3$ is recommended [2–6]. This would indeed agree with my GCI method [2–6] in good applications. The trouble is that the authors have applied this regardless of the reasonableness of the estimated p_{Re}. This contrasts with my discussions of the GCI method in Ref. [2], where I claim that these applications are part of the real “GCI method” as contrasted with simplistic application of the formula.

Exactly what constitutes a reasonable value was not defined in my work [2–6] and I would not take issue with (say) a 5% difference between p_{Re} and p_b, e.g., using an observed $p_{Re} = 2.1$ for a nominally second-order method. (Although it should be obvious that the conservative approach would be to use the minimum of p_{Re} and p_b, I would not claim that this was a misapplication of the GCI method.) However, the authors [1] have applied the GCI0 formula using observed $p_{Re} > p_b$, which is imprudent and not recommended [2–6] no matter what the value of F_s. This point was conveyed to the authors of Ref. [1] in their Ref. [16], the private communication from myself. (I am glad to make this communication, cited here as Ref. [8], available to any interested party.)

Using the authors’ notation $P = p_{Re}/p_b$, the authors have claimed rational estimates of uncertainty from studies with P as high as 6.01 for the new ship hydrodynamics problem (see Table 7, second line). Since the numerical method used is nominally second order, this indicates an observed order $p_{Re} = 12.02$, the use of which would be ridiculous. Another instance is the third row entry in Table 6 [1] for the grid triplet (4.5, 6.6) showing $P = 9.08$. These are pretty strong hints that something is wrong. There is no sense in performing a grid convergence study and then ignoring the results. No excuses of the computing difficulties in industrial applications can justify an attempt to obtain a rational estimate of uncertainty from such meaningless corrupted studies. To so attempt is to give merit to meritless results. I can only describe this as a misapplication of the GCI formula, not as a poor result for the real GCI method.

(3) The second method considered in Ref. [1] is GCI1 based on Eq. (11). The appearance of the CF term in the equation serves to exchange the error estimate based on observed p_{Re} to one based on theoretical p_b for the condition $P > 1$, i.e., for $p_{Re} > p_b$. This is exactly what is recommended above, and is good conservative practice. However, the Eq. (11) uses $F_s = 1.25$ in either case. This does not make sense. The GCI1 method as described uses three grid solutions to evaluate an observed p_{Re}, but if this value is too large, the method reverts to using exactly the error estimator that would have been used for only two-grid studies but with the non-conservative value $F_s = 1.25$ instead of the recommended $F_s = 3$. Thus, the authors did use the correct factor of safety $F_s = 3$ as recommended [2–6] for 2 grid studies but they only used $F_s = 1.25$ for 3-grid studies in which the observed order of convergence p_{Re} was not at least approximately consistent with theory.

The authors then concluded from their tests that “These facts suggest that the use of the GCI1 method is closer to a 68% than a 95% confidence level.” This is a misleading statement since the conclusion follows from using $F_s = 1.25$ and applying it to a data set from [9] designed with “intentional choice of grid studies with oscillations in both exponent p and output quantity” [9] (Ref. 3). The point of such studies as Ref. [1] should not be to tune large F_s until 95% coverage is obtained no matter how bad the data set is. If such large F_s are required, this should be a flag alerting the investigator that the grids used are inadequate for the problem [3,10,11].

Therefore, the evaluation in Ref. [1] of the real GCI method (GCI2) is corrupted by confusion with two distorted methods. The authors’ evaluation also does not agree with my own evaluation from some of the same data, notably the wide-ranging study of Cadafalch et al. [12] (Ref. [33] of Ref. [1]) which I presented in

1In the original GCI method [2], F_s does depend on observed p_{Re} implicitly, in the sense that if p_{Re} is unreasonably one at least reverts to using p_b and $F_s = 3$ rather than blindly applying $F_s = 1.25$. The preferred approach would be to continue the grid convergence study with additional grids until reasonable values of p_{Re} were obtained. These rather obvious points have been made more explicit in Ref. [3] which was not available to the authors of Ref. [1].

2There is further unfortunate confusion caused by the authors’ choice of a descriptor for their method and their use of the symbol CF both for their “Factor of Safety” method and for the factors of safety used in all five methods, including the “factor of safety used in the Factor of Safety method.” Likewise for their symbol CF, which denotes both their Correction Factor method and the “correction factor” used in the Correction Factor method as well as in their defining equations for other methods (Eqs. (11) and (12)).

3Contributed by the Fluids Engineering Division of ASME for publication in the Journal of Fluids Engineering. Manuscript received October 19, 2010; final manuscript received July 28, 2011; published online October 24, 2011. Assoc. Editor: Dimitris Drivas.

4See also Ref. [3], p. 219. The study [9] also did not use $F_s = 3$, but this would improve the coverage only lightly for this poor data set [10].
Ref. [4] and to which I had alerted the authors by [8]. Cadafalch et al. used an original and reasonable variant of the real GCI in which a mesh-averaged \(p_{RE} \) was used for local uncertainty estimates. The literature survey in Ref. [1] omitted my evaluation [4] which itself covered \(\sim 200 \) cases. As I had pointed out in Ref. [8], my evaluation of these uncertainty calculations using the GCI with \(F_s \), for example, showed 92% coverage, or \(1.25 \) less than the ideal value, and \(p_{RE} = 1.2 \) for an expected first-order method.

(5) When the confusion over the identity of the real GCI is cleared up, the overall evaluation from Ref. [1] of the real GCI method (GCI1) is excellent. The reporting of the various subsets of data is too convoluted to repeat here completely (and the process is suspect in one aspect — see item (9) below). Briefly, for the largest subsets the real GCI method (GCI1) produces reliability of about 93% (in some subsets, 94% and higher) and the FS method produces about 96%.

The authors claim that only their latest “FS method provides a reliability larger than 95%.” The FS method certainly works, but I consider it virtually meaningless to distinguish between 93% coverage for the real GCI method (GCI1) versus 96% for the FS method when the target is roughly 95% [2–6]. Note, we are not talking about the solution itself, or even its error, but about uncertainty. It is well recognized that the target of 95%, while traditional and useful, is itself somewhat arbitrary. There is an implicit precision level evidenced by the usual lack of distinction between 95%, or 20:1 odds, or \(2-\sigma \) for a Gaussian distribution [4], and which are only approximately equivalent; this is true also for experimental uncertainties. Note also that greater coverage (say 99%) would not necessarily be considered more successful since the expanded coverage would be considered unnecessarily conservative, giving an unrealistically pessimistic estimate of uncertainty. So the real GCI method (GCI1) misses the target of roughly 95% by \(-2\%\), and the FS method misses it by \(+1\%\), for this dataset. Their large dataset used is a good one and is likely representative of problems of interest, but no one would be surprised if another dataset slightly changed the evaluations.

(6) In this regard, the 93% (and higher) coverage by the real GCI method (GCI1) represents a confirmation of the method (with a tolerance of \(-2\%) but the results for the authors’ FS method cannot strictly be considered a confirmation because their exercise is actually a calibration. (Here I distinguish confirmation versus calibration of an uncertainty estimator, analogous to the widely accepted distinction between validation and calibration of a model to experimental data [2,3,5].) In this study [1], the three free parameters (see Eq. (15)) of their FS method were tuned with the objective of attaining 95% coverage, so their claim of achieving \(>95\% \) coverage is somewhat circular. One would expect the tuned parameters to hold generally for other datasets, but strictly speaking their FS method could not be considered confirmed until it is applied successfully to another dataset not used in the calibration. By contrast, the real GCI method (GCI2), by now applied to probably \(O(1000) \) cases by many independent modelers, has been stable for over 12 years. It has one parameter \(F_s \) that takes on two possible values, depending on the thoroughness and results of the grid convergence study. \(F_s = 1.25 \) works well for thorough, well-behaved studies (meaning a minimum of thoroughness to allow calculation of 95% coverage), and \(F_s = 1.0 \) for adequate agreement with theory and/or adequately stable over multiple grid triplets, which evaluation is, of course, a judgment call. Presumably, if one tuned it to \(F_s = 1.27 \), or something equally pointless, the real GCI method also could achieve 96% coverage for the subject dataset, accomplished using only one tuned parameter instead of three as in the latest FS method.

(7) The latest FS method is an improvement over the authors’ previous CF method, in all its versions. Whether or not the performance is worth the additional tuned empirical parameters (three instead of one) is a matter of opinion. However, it is also true that the authors own results, when examined closely, provide cautionary evidence. In an earlier version of the method [17] (their Ref. [18]) there were problems with performance on the finer grids. (This was communicated to the authors in Ref. [8], their Ref. [16]; see also Ref. [3], p. 229.) The latest version [1] is improved in this regard but is still problematical in the same way, as discussed next.

Less obvious than the previously noted results for values of \(P = 6.01 \) and 0.08, but more problematical, is the result for the FS method on the ship hydrodynamics problem. (The finest grid admirably uses \(8.1 \times 10^6 \) points.) Uncertainty estimates for well-behaved problems should decrease monotonically as the grid is refined. The uncertainty estimates in Table 6 for the FS method for the three finest grid triplets are 7.62, 8.30, and 5.22, which are not monotonically decreasing. Again, something is wrong. All four other methods show monotonically convergence, e.g., the real GCI method (denoted GCI2 in the table) gives 4.98, 4.21, 2.10.

In Ref. [17], the authors had noted that the (then new version of the) CF method was “unfortunately invalid” for the finest grid triplet. The authors claimed this was “caused by the contamination of the iterative error on the fine grid.” This is possible, but (a) we do not know how the iterative error was estimated, (b) Eça and Hoekstra [20] have shown that common methods of estimating iteration error are grossly underpredictive, (c) most importantly, Why is this not a problem for the other methods? They all use the same data (i.e., results from the same computations). At the least, we must conclude that the new FS method is more sensitive to noise than the others. Eça [11] notes that the explanation is simple: the FS method determines the factor of safety from \(p_{RE} \) so it is directly affected by the noise in the data. It is intuitively appealing to algorithmically adjust \(F_s \) on the basis of “distance from the asymptotic range” as calculated by some measure, but any such uncertainty estimator will be prone to erratic nonmonotone behavior in the same “industrial applications” which motivate its use.

As Eça [11] notes, the noisy behavior is not necessarily due to distance from the asymptotic range but can be caused by other factors: lack of iterative convergence, accumulated computer round-off errors, use of block-generated grids or other grid generation methods that compromise strict geometric similarity in a grid sequence, switches embedded in turbulence models, etc. [2,3].

(8) The statement in Ref. [1] that my previous studies did not use statistical techniques apparently refers to my choice of not to use the Students t-test or other small sample correction to estimate statistical confidence. Instead, I had just reported straightforward “coverage” or counting of \(O(500) \) cases (incrementally accumulated over years) for which the GCI was conservative or not.
leading even for benign data is shown by the following synthetic example.

Consider a data set of 20 cases with the fine-grid solution variables of interest normalized to $S_1 = 1$. For convenience, say all normalized uncertainty estimates are $U\text{est}_{i} = 0.1$, i.e., an estimated 10% "error band." (This might have been estimated using the real GCI methodology for well-behaved cases, using $F_S = 1.25$ for an error estimate of 0.08.) Suppose the true values for the first 19 of 20 cases are given by $T_i = 1 + i/200$ or $T_i = 1.005, 1.01, 1.015, \ldots, 1.095$. Suppose $T(20) = 1.11$ so this case is not likely to be discarded as an outlier. It is seen that the GCI uncertainty estimate performs exactly as intended for this synthetic case, with the interval $[S_1 \pm U\text{est}_{i}] = [0.9, 1.1]$ capturing the first 19 of 20 cases for 95% coverage. However, the "actual F_S_A" ranges from 0.91 to 20, and the "average actual F_S_A" = 3.59, which would seem to suggest that the original method using $F_S = 1.25$ is much more conservative than intended. It is not; it had performed perfectly for this example. The actual errors are not weirdly distributed; they range from 0.005 to 0.11 with an average error of 0.053, not out of line with the 95% uncertainty estimate of 0.1. If one thinks that the ratio of the original F_S to the "actual average F_S_A" can be used to tune the F_S, one is in for a disappointment. The new F_S would be $1.25/3.59 = 0.348$, giving new $U\text{est}_{i} = 0.028$, producing coverage for the first 5/20 cases or just 25% coverage.

These benign synthetic examples demonstrate that the concept used in Ref. [1] of relying on the so-called "average actual factor of safety" as an indicator of quality is misguided.

(11) Finally, some of the confusion of the authors [1] in not identifying the GCI2 method as the real (original) GCI method [2–6] is understandable due to the fact that application of the method involves a judgment call as to what constitutes a reasonable value of observed p_{RE}. This makes it difficult for the authors to compare performance of different methods without being subject to unfair criticism. The judgment calls implicit in the earlier presentation of the GCI method in Ref. [2] have been made more explicit in Ref. [3] (which of course was not available to the authors of Ref. [1]) but the method is still not free of judgment calls. It would be preferable if all methods were defined in a recipe-like fashion with no room for judgment calls. However, there are other judgment issues possible in a grid convergence study, e.g., how many grid triplets are adequate to claim that p_{RE} is reasonably constant, whether or not to use a least-squares evaluation, which detailed least-squares version to use, etc. I do not expect that such judgment calls will be eliminated for poorly behaved convergence studies.

In their new V&V book, Oberkampf and Roy ([22], p. 326) have proposed a procedure that standardizes the judgment call at least for the question of what constitutes acceptable p_{RE}. Their procedure accepts 10% agreement between p_{RE} and p_{est}, using $p = p_{\text{est}}$ and $F_S = 1.25$ in the GCI formula. For disagreement $>10\%$, the procedure uses $F_S = 3$ and limits the p used in the GCI formula to $p = \min(\max(0.5, p_{RE}), p_{\text{est}})$. I consider this a reasonable recipe, although of course other cut-offs could be justified as well. The limits on 10% agreement and the lower limit on $p = 0.5$ (provided that $p_{\text{est}} > 0.5$) are obviously judgment calls but are reasonable and unambiguous, and therefore repeatable in a comparative study such as Ref. [1]. A more conservative (perhaps overly conservative) procedure would not set a lower limit on p other than $p > 0$ (allowing for difficult problems such as singularities as in Ref. [3], Sec. 5.10.4.1) and would use $p = \min(p_{RE}, p_{\text{est}})$ when these agree within 10% instead of p_{est}.

11See discussion in Ref. [3], Sec. 5.15 on "Evaluation of Uncertainty Estimators from Small Sample Studies."
These two prescriptive procedures would be additional candidates for evaluation by the authors of Ref. [1] using their extensive dataset.

Acknowledgment

The author gratefully acknowledges discussions with Professor Luis Eça, Dr. C. J. Freitas, Dr. R. W. Logan, Professor C. J. Roy, Maxwell Agnew and Aaron Donahue, and input from an anonymous reviewer.

References

[1] Xing, T., and Stern, F., 2010, “Factors of Safety for Richardson Extrapolation,” ASME J. Fluids Eng., 132(6), p. 061403.
[2] Roache, P. J., 1998, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, NM.
[3] Roache, P. J., 2009, Fundamentals of Verification and Validation, Hermosa Publishers, NM.
[4] Roache, P. J., 2003, “Conservatism of the GCI in Finite Volume Computations on Steady State Fluid Flow and Heat Transfer,” ASME J. Fluids Eng., 125(4), pp. 731–732.
[5] ASME Committee V&V 20, 2009, ANSI Standard V&V 20: ASME Guide on Verification and Validation in Computational Fluid Dynamics and Heat Transfer.
[6] Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H. W., and Raad, P. E., 2008, “Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications,” ASME J. Fluids Eng., 130(7), p. 078001.
[7] Cosner, R. R., Oberkampf, W. L., Rumsey, C. L., Rahaim, C. P., and Shih, T. I.-P., 2006, “AIAA Committee on Standards for Computational Fluid Dynamics: Status and Plans,” 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, AIAA Paper No. 2006-889.
[8] Roache, P. J., 2009, private communication to F. Stern and others.
[9] Logan, R. W., and Nitta, C. K., 2006, “Comparing 10 Methods for Solution Verification, and Linking to Model Validation,” AIAA J. Aero. Comput. Inf. Commun., 3(7), pp. 354–373.
[10] Logan, R., 2010, private communication to P. Roache.
[11] Eça, L., 2010, private communication to P. Roache.
[12] Cadafalch, J., Pérez-Segarra, C. D., Consul, R., and Oliva, A., 2002, “Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer,” ASME J. Fluids Eng., 124(1), pp. 11–21.
[13] Roache, P. J., 1993, “A Method for Uniform Reporting of Grid Refinement Studies,” Quantification of Uncertainty in Computational Fluid Dynamics, ASME FED, 158, pp. 109–120.
[14] Roache, P. J., 1993, Proceedings of the AIAA 11th Computational Fluid Dynamics Conference, Part 2, Orlando, Florida, 6-9 July 1993, pp. 1057–1058.
[15] Roache, P. J., 1994, “Perspective: A Method for Uniform Reporting of Grid Refinement Studies,” ASME J. Fluids Eng., 116(9), pp. 405–413.
[16] Eça, L., and Hoeckstra, M., 2000, “On the Application of Verification Procedures in Computational Fluid Dynamics,” 2nd MARNET Workshop, MARIN Maritime Research Institute, the Netherlands.
[17] Xing, T., and Stern, F., 2009, “Factors of Safety for Richardson Extrapolation for Industrial Applications,” IHII Report No. 469, Univ. of Iowa, Iowa City, IA.
[18] Roache, P. J., 2003, “Criticisms of the ‘Correction Factor’ Verification Method,” ASME J. Fluids Eng., 125(4), pp. 732–733.
[19] Roache, P. J., 2003, “Error Bars for CFD,” AIAA 41st Aerospace Sciences Meeting, January 2003, Reno, Nevada, AIAA Paper No. 2003-0408.
[20] Eça, L., and M. Hoeckstra, M., 2006, “On the Influence of the Iterative Error in the Numerical Uncertainty of Ship Viscous Flow Calculations,” Proc. 26th Symposium on Naval Hydrodynamics, Rome, Italy, 17–22 Sept.
[21] Freitas, C. J., 2009, personal communication, 13 May 2009.
[22] Oberkampf, W. L., and Roy, C. J., 2010, “Verification and Validation in Scientific Computing,” Cambridge University Press, Cambridge, UK.