PROPHYLACTIC EFFECT OF A PROBIOTIC INTERVENTION IN CHILDREN PRONE TO ACUTE UPPER RESPIRATORY TRACT INFECTIONS: A RANDOMIZED CONTROLLED TRIAL

1Marushko Y.V. https://orcid.org/0000-0001-8066-9369
2Hyshchak T.V. https://orcid.org/0000-0002-7920-7914
3Todyka Y.I.
1 Bogomolets National Medical University, Kyiv, Ukraine
2 Children’s clinical hospital No 5, Kyiv, Ukraine
iurii.marushko@gmail.com

Relevance. Upper respiratory tract infections (URTIs) are common in children and often progress with secondary complications such as otitis media, bronchitis, or pneumonia, especially in children with recurrent URTIs. Probiotics displayed immunomodulatory effects in children and adults, supporting immune functions to prevent winter diseases or common colds.

Objectives. We assessed the effectiveness of a 6-week prophylaxis with probiotics (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-71) for preventing primary infections and/or secondary complications in URTI-prone children.

Methods. URTI-prone children were randomly divided into the probiotics (3×10⁹ CFU/day; 6 weeks) or control arm (no preventive intervention). The number of URTIs, duration and related complications were monitored for 6 months. Resistance index, number of medical visits, and antibiotics prescriptions were also recorded.

Results. After 2 months, probiotics reduced the number of URTIs (-2.34±0.13 vs -0.24±0.14; P<0.0001) and duration in (-1.13 ±0.18 vs -0.18±0.18 days; P=0.0011), and the number of secondary complications (-53% vs -5.8%; RR 0.5313 95% CI [0.3534, 0.7986] P=0.0058). Probiotic lowered resistance index (P<0.0001), number of medical consultations with specialized physicians (P=0.0033) and antibiotics prescriptions (P<0.0001).

Conclusions. Overall, a 6-week prophylaxis with combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-71) in URTI-prone children exerted a significant and clinically important health benefit, decreasing the number and duration of URTI episodes and secondary complications and reducing the resistance index to a near-normal value. Furthermore, potential societal benefits of reducing health care use and inadequate antibiotic prescriptions in children favour the use of this probiotic product as a preventive strategy against URTIs and their consequences in frequently sick children.

This trial was retrospectively registered on ClinicalTrials.gov (NCT04525040).

Keywords: Prevention, Pediatrics, Ear-Nose-Throat Infections, Resistance Index, Probiotics

Relevance. Upper respiratory tract infections (URTIs), including common cold and other ear-nose-throat infections (ENTIs), are common in children worldwide [1]. The burden of these infections on parents, children and the healthcare system is considered high; they often lead to more severe health complications, especially in cases of recurrent respiratory tract infections [1, 2] which are estimated to occur in approximately 10-15% of children [3]. For example, acute URTIs increase the risk of lower respiratory infections (e.g. bronchitis, pneumonia), of bacterial infections in the middle ear and sinuses, and can act as a trigger of cyclic vomiting (acetonomic) syndrome [4-10]. Consequently, URTIs were associated with an increase in the number of inappropriate antibiotics prescriptions in children [11, 12]. Considering that URTI treatment relies mainly on symptoms alleviation, there is a need to improve preventive strategies against URTIs in order to decrease the occurrence of secondary infections, help limit antibiotics prescription in children, and reduce the collective costs associated with secondary and tertiary health care use for complications (i.e. hospitalized or surgeries).

Current preventive strategies against recurrent URTIs include improving hygiene and social distancing from sick individuals (i.e. sibling, parent, day-care), targeted vaccination and non-specific immunomodulation, the latter comprising, among others, the use of bacterial lysates, immune-promoting vitamins, probiotics, or herbal compounds [13-15]. Probiotics are defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host” [15]. Studies have associated recurrent respiratory infections with a loss of intestinal microbiota diversity [16]. Some probiotic formulations were shown to improve both the innate and adaptive immunity via local and systemic effects. Locally, probiotics can stimulate intestinal mucous secretion, compete with pathogens at the mucosal interface and ameliorate the intestinal barrier function by strengthening tight junctions which reduces intestinal permeability, thereby limiting the translocation of pathogens to the lamina propria and mesenteric lymph nodes. Systemically, probiotics have been shown to alter
the levels of circulating cytokines, regulate the balance between effector and regulatory T-cells and the Th1/Th2 immune responses [17, 18].

Over the past few years, several systematic reviews have concluded to the functional efficacy of probiotics at reducing the incidence and/or duration of acute respiratory infections in children [19-22]. Yet, available evidence from clinical trials was deemed of low to very low quality; more research is required to establish the effectiveness of specific probiotic formulations for the prevention of URTIs in children [19-22]. The high heterogeneity between studies was mainly attributed to the differences in the probiotic strains or formulations tested, their dosage as well as treatment and follow-up durations. Probiotic formula we used containing a combination of three bacterial strains, was shown to modulate immune responses in vitro and in vivo [23-27]. In clinical trials, the combined probiotic we use was previously reported to reduce the incidence of common winter diseases or ENTIs in frequently sick children who received the supplement for 3 to 9 months [23, 27]. Here, we report a functional clinical assessment of its preventive efficacy against URTIs and related complications in frequently sick children following a shorter 6-week preventive intervention course with a 6-month follow-up period.

Objectives. We assessed the effectiveness of a 6-week prophylaxis with probiotics (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-71) for preventing primary infections and/or secondary complications in URTI-prone children.

MATERIALS AND METHODS

Study Design. This randomized controlled trial was conducted in Ukraine between September 2016 and June 2017. Study conduct was in accordance with the Declaration of Helsinki and was approved by the ethics board of the Children’s Clinical Hospital No. 5 (Kyiv, Ukraine) under the reference number 4/12.09.2016. Before enrolment in the study, a parent or legal tutor signed an informed consent form. This study was registered retrospectively in ClinicalTrials.gov (NCT04525040).

This trial observed a before-after design including a retrospective analysis period (6 months before enrolment) and a prospective observation period of 6 months after probiotic prophylaxis. Enrolled children were randomly assigned, using the sealed envelope method, to the pragmatic control group who received no preventive medication, or the intervention group receiving one probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-71) sachet (3×109 CFU) daily for 6 weeks. The randomization list was computer-generated (http://www.randomization.com/) with a 3:2 ratio and block size of 5, with an estimated study population of 60. The clinical observation period started after the probiotic prophylaxis for the intervention arm, and after the baseline visit for the control arm. Children in both groups received standard symptomatic treatment for URTI or secondary complications as needed during the study, except for medications with immunomodulatory properties (e.g., bacterial lysate vaccines, viral vaccines, corticosteroids, immunosuppressants, etc.), which were not permitted.

All participants underwent a physical examination and interview at the beginning and end of the study, and a monthly medical examination with interview during the 6-month follow-up. Data on URTI progression and secondary complications (e.g., otitis media, adenoiditis, bronchitis, pneumonia, or cyclic vomiting syndrome) were collected if a child suffered through an URTI over the specified month. The study was open label, but assessors (i.e., physicians) were blinded.

Participants. Children recruited for this study had frequent URTIs and were under care at the Children’s Clinical Hospital №5 and outpatient clinic of family medicine general practice No. 1 in Svyatoshynskiy district, Kyiv. Inclusion criteria were as follows: aged between 3-10 years old, experiencing a high frequency of acute URTIs characterized by a resistance index above 0.33 (i.e., URTI episode occurring more often than once every 3 months) during the past year [28], and the absence of other medications or supplements with immunomodulatory properties in the treatment regimen. Children with chronic pathological conditions (e.g., diabetes, asthma, leukaemia, primary immunodeficiencies, HIV, hepatitis etc.) were excluded. The nomogram method was used for the calculation of sample size. A total of 60 children were anticipated based on a mean clinically significant difference of 0.37 in the resistance index, with a power of 0.80 and alpha of 0.05 [28, 29].

Prophylaxis. Probiotic is composed of Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071) totalling at least 3×109 CFU/dose, packaged in sachets also containing 750 mg of fruco-oligosaccharides (FOS)/sachet (Lallemand Health Solutions Inc.). Participants in the probiotic arm were instructed to take one sachet daily, with a meal for 6 weeks.

Outcomes. The primary outcome was the number and duration of URTI episodes and the incidence of complications (total cases) in the probiotics versus control groups over the 6-month periods (baseline and follow-up). Secondary outcomes were monthly incidence of URTIs during follow-up, resistance index (calculated as the number of URTI episodes divided by the number of months under medical care), individual complications diagnosed (number of cases), number of medical visits to specialist, and number of antibiotics prescriptions. Adverse events were surveyed at each monthly study visit during follow-up.
Statistical analyses. R version 4.1.0 was used to compare baseline characteristics using Fisher’s exact test (proportions) or unpaired Student’s t-test (mean±S.E.M.). Between-group comparisons of the change from baseline were analysed with the Wilcoxon rank sum test for paired, non-normally distributed data. R version 4.1.0 was used to calculate the relative risk ratios during follow-up and the score test based 95% confidence intervals.

RESULTS AND DISCUSSION

Flow of participants. Participants’ flow throughout the study is presented in Figure 1. Following medical charts pre-screening, the 56 participants assessed for eligibility were enrolled and randomized to the control arm (without preventive intervention, n=23) or the prophylaxis arm (Probiotics, n=33). One participant in the probiotics arm was withdrawn due to an adverse event deemed unrelated to the study supplement, hence 32 participants were analysed for the intervention arm. Among the 23 children enrolled in the comparator control group, 6 were found ineligible after study completion for having had less than one URTI every 3 months despite a similar total number of infections over the past year and similar nosological profiles at the baseline assessment. These children were excluded from the per-protocol (PP) data analysis (n=17) but were included in the intent-to-treat (ITT) data analysis (n=23), for which results are presented as supplemental figures where indicated.

Demographic characteristics of the study population. The demographic characteristics of the PP population are shown in Table 1. Overall, the study population was composed of 26 females and 23 males, with a similar proportion in each group (P>0.9999). The average age of the population was 6.04±0.3 years old, with a similar age group distribution (P=0.9819). All children were vaccinated according to the national vaccination schedule (measles, mumps, rubella, diphtheria, tetanus, poliomyelitis before age 6), with no vaccinations occurring in the 6 months before or after the start of the study. However, 3 children in the intervention group and 2 in the control group received vaccinations between 10-6 months before the start of the study.

In the PP population, both groups displayed a similar URTI-related medical history over the past year, typical of children with recurrent URTIs in terms of episodes number (8.7±0.24 vs 8.35±0.42) and duration...
(8.9±0.21 vs 8.65±0.31 days), number of complications (5.6±0.22 vs 5.53±0.33), and antibiotic courses (6.0±0.18 vs 5.76±0.23). Both groups harboured a similar 1-year resistance index (0.72±0.02 vs 0.70±0.04) well above the 0.33 cut-off value distinguishing frequently from occasionally sick children. In addition, the number of antibiotic courses prescribed to children was slightly higher than the number of complication cases in both groups, which is in accordance with existing data on unjustified antibiotic prescriptions in children with URTI [11, 12]. A similar nosological profile was observed in children of both groups at the baseline medical assessment, with characteristics typical of children with recurrent respiratory infections. No child displayed signs of an active URTI at time of enrolment. Tonsillar hypertrophy, friable throat, polylymphadenopathy (with swelling of the palate, anterior cervical and postural groups of lymph nodes observed most often) were diagnosed in a large proportion of the population (76-94%). Nearly half the population reported experiencing a high frequency of gastrointestinal symptoms such as diarrhoea, constipation, dyspepsia, or nausea/vomiting. Conversely, paratrophy, defined as superfluous body weight no more than 10-20% of the norm, occurred in approximately 12% of the children although not being considered characteristic of children with recurrent respiratory infections.

Average number and duration of URTI episodes and secondary complications over 6 months. The number and duration of URTI episodes per participant were significantly reduced during the follow-up period vs baseline in both the PP (Figure 2A and B) and ITT populations (Figure 3). As detailed in Table 2, the average number of URTI episodes was markedly decreased in the probiotics group during the follow-up phase compared to baseline (from 4.41±0.18 to 2.06±0.15) while remaining stable in the controls (from 4.00 ± 0.23 to 3.76±0.27, -2.13±0.21 vs -0.29±0.19; P<0.0001). The average duration of URTI episodes (days) was significantly decreased in the probiotics group compared to controls (-1.13±0.18 vs -0.18±0.18; P=0.0011).

The number and duration of complications per participant and resistance index during the follow-up period vs baseline were also significantly reduced between the probiotics and control groups for both the PP (Figure 2C and 2D) and ITT populations (Figure 4).

As detailed in Table 2, the average number of complications per child over 6 months decreased significantly in the probiotics arm from 4.41±0.18 before enrolment to 0.69±0.17 during the follow-up period, compared to a marginal decrease from 2.88±0.22 to 2.59±0.27 in the control group (-2.13±0.21 vs -0.29±0.19; P<0.0001).

Table 1

Demographic characteristics of participants

Population characteristics	Probiotic, n = 32	Control, n = 17	P value
Gender, male (%)	15 (46.9%)	8 (47.1%)	>0.9999 a
Age, mean ± SEM	6.0±0.38	6.12±0.59	0.9819 b
Age group distribution, n (%)			
3-6 years old	21 (65.6)	11 (64.7)	>0.9999 a
7-10 years old	11 (34.4)	6 (35.3)	>0.9999 a
URTI-related medical history over the past year, mean ± SEM			
Number of episodes	8.7±0.24	8.35±0.42	0.4394 b
Duration of episodes (days)	8.9±0.21	8.65±0.31	0.4979 b
Number of related complications	5.6±0.22	5.53±0.33	0.8568 b
Number of antibiotic courses	6.0±0.18	5.76±0.23	0.4256 b
Resistance index	0.72±0.02	0.70±0.04	0.6188 b
Medical assessment of symptoms, n (%)			
Tonsillar hypertrophy	25 (78.1)	13 (76.5)	>0.9999 a
Friable throat	30 (93.8)	15 (88.2)	0.6020 a
Polylymphadenopathy	27 (84.4)	13 (76.5)	0.7001 a
Gastrointestinal symptoms	16 (50.0)	8 (47.1)	>0.9999 a
Paratrophy	4 (12.5)	2 (11.8)	>0.9999 a

Note: a – Fisher’s exact test; b – unpaired t-test.
PROPHYLACTIC EFFECT OF A PROBIOTIC INTERVENTION IN CHILDREN PRONE TO ACUTE UPPER RESPIRATORY TRACT INFECTIONS: A RANDOMIZED CONTROLLED TRIAL

Fig. 2. Probiotic prophylaxis significantly reduced the number and duration of URTI episodes, the number of complication cases and resistance index.

Note: Violin plots showing the distribution of (A) the number and (B) duration (days) of URTI episodes, (C) the number of complications and (D) the resistance index, averaged over the 6-month follow-up period or 6-month retrospective baseline, among the probiotics (n=32) and control group (n=17) participants. The red lines denote the median, and the blue lines, quartiles. Stars denote the between-group statistical significance of the absolute change over baseline (Wilcoxon ranked sum test, see Table 2). ** – P=0.0011; *** – P<0.0001.

Fig. 3. Violin plots showing the distribution of (A) the number and (B) duration (days) of URTI episodes in the ITT population.

Note: Stars denote the between-group statistical significance of the absolute change over baseline (Wilcoxon ranked sum test, ** – P=0.007; *** – P<0.0001). Before-after plots showing the individual data for the number of URTIs in all participants of the ITT populations in probiotics (C) and control (D) arms.
Similarly, the average resistance index was significantly reduced in the follow-up period compared to baseline in the probiotics arm (from 0.73±0.03 to 0.34±0.03), while it remained similar in the control group, from 0.67±0.04 during the baseline period to 0.63±0.04 during follow-up (-0.39±0.02 vs -0.04±0.02; P<0.0001). Of note, while the 6-month baseline number of URTI episodes and resistance index remained similar in the control group, the average resistance index during follow-up in children who took the probiotic formulation decreased to a value near the cut-off of 0.33 separating occasionally ill from URTI-prone children. As detailed in Table 3, a reduction in the incidence of URTIs was observed during the 3rd month, peaked during the 4th month of follow-up (RR 0.3585 95% CI [0.1468, 0.8756]; P = 0.0072) and remained lower until the end of the follow-up period, except for month 5 where the reduction was important but not significant.

Profile of URTI-related complications. The nosological profiles of URTI-related complications (Table 4) were similar between groups, with the following diagnostics: otitis media, adenoiditis, bronchitis (simple and obstruc-
tive), pneumonia, and cyclic vomiting syndrome triggered by an URTI episode. The corresponding incidence of these complications at baseline was retrieved from medical charts for the 6 months preceding enrolment. For all secondary complications, a marked reduction in incidence compared to baseline was observed in children who received probiotic prophylaxis versus controls, for whom the number of complications remained comparable to baseline. The number of children with secondary complications was reduced in the probiotics group compared to controls (-53% vs -5.8%), reflecting a significant reduction in the overall risk of complications (RR 0.5313 95% CI [0.3534, 0.7986] P = 0.0058). Specifically, there was a significant reduction in the risk of bronchitis (RR 0.2125 95% CI [0.07823318, 0.5772007], P =0.0050) and adenoiditis (RR 0.2125 95% CI [0.07823318, 0.5772007], P = 0.0018) in the probiotics versus control arm. These secondary complications were the most frequently diagnosed in both groups, along with cyclic vomiting syndrome which was reduced in the probiotics group versus baseline although without a significant change in RR. For all complications except pneumonia, the reduced or unchanged incidence between group was mirrored in the ITT population (Figure 5).

For pneumonia, no cases were observed in the probiotics group during follow-up compared to 8 cases at baseline, which resulted in a significant RR reduction in the PP population (P = 0.0369) but not in the ITT population.

Number of consultations with a specialized physician and antibiotics prescriptions. Correspondingly with the reduction in the number of URTI episodes and complications (Table 2), there was a significant reduction in the need for medical consultations with specialized physicians during follow-up (Figure 6A) in the probiotics arm compared to controls (P=0.0033). The number of antibiotic courses (Figure 3B) was also significantly reduced in the probiotics group compared to controls (P<0.001). Similar results were observed in the ITT analysis (Figure 7).

Adverse events. The combined probiotic used in the study was well tolerated by most children (97%); one child in the probiotics arm was withdrawn from the study for repeated vomiting following the initiation of the intervention. Two attempts were made within a few days’ interval. Further analysis of the child’s medical data revealed that a similar reaction (vomiting) was sometimes observed following the intake of other medications. Therefore, the adverse event was deemed not specifically associated with the study supplement. No adverse events were observed for other children during the study.

This study shows that a 6-week prophylaxis with a combined probiotic was effective against URTIs and reduced the risk of secondary complications in URTI-prone children over 6 months after intake cessation, with the additional benefits of reducing the need for medical consultations and the number of prescribed antibiotics courses. URTI-prone children who received the probiotic formulation displayed a significantly reduced resistance index approaching the threshold value of occasionally ill children, which is clinically important. Systematic reviews have shown a reduction in URTI incidence and duration in children taking probiotics for periods ranging from 3 to 24 months [19, 20, 22]. However, in addition to variability in the duration of supplementation, a high level of heterogeneity among studies was also noticed in terms of population studied (i.e. age and health status), probiotic supplement used, dosage, and follow-up time. Notably, few studies have assessed the effect of a shorter preventive probiotic course on infections or included a probiotic supplement used, dosage, and follow-up time.

Table 3

Follow-up Month	Probiotics, n = 32	Control, n = 17	Relative Risk [95% CI]	P Value	Average reduction in risk, %
	Without URTI, n (%)	With URTI, n (%)	Without URTI, n (%)	With URTI, n (%)	
1	18 (56.3)	14 (43.8)	7 (41.2)	10 (58.8)	0.7320 [0.3840, 1.3954]
2	20 (62.5)	12 (37.5)	8 (47.1)	9 (52.9)	0.7529 [0.4253, 1.3329]
3	22 (68.8)	10 (31.3)	6 (35.3)	11 (64.7)	0.5134 [0.2589, 1.0181]
4	21 (65.6)	11(34.4)	4 (23.5)	13 (76.5)	0.3585 [0.1468, 0.8756]
5	23 (71.9)	9 (28.1)	7 (41.2)	10 (58.8)	0.5729 [0.3119, 1.0524]
6	22 (68.8)	10 (31.3)	5 (29.4)	12 (70.6)	0.4278 [0.1976, 0.9264]

For all secondary complications except pneumonia, the reduced or unchanged incidence between group was mirrored in the ITT population (Figure 5).

Relative Risk: A Randomized Controlled Trial

PROPHYLACTIC EFFECT OF A PROBIOTIC INTERVENTION IN CHILDREN PRONE TO ACUTE UPPER RESPIRATORY TRACT INFECTIONS: A RANDOMIZED CONTROLLED TRIAL

Follow-up Period

Month	Without URTI, n (%)	With URTI, n (%)
1	18 (56.3)	14 (43.8)
2	20 (62.5)	12 (37.5)
3	22 (68.8)	10 (31.3)
4	21 (65.6)	11(34.4)
5	23 (71.9)	9 (28.1)
6	22 (68.8)	10 (31.3)

Table 3

Monthly incidence of URTIs based on medical examinations of children during the follow-up period for the PP population

Follow-up Period

Follow-up Month	Probiotics, n = 32	Control, n = 17	Relative Risk [95% CI]	P Value	Average reduction in risk, %
	Without URTI, n (%)	With URTI, n (%)	Without URTI, n (%)	With URTI, n (%)	
1	18 (56.3)	14 (43.8)	7 (41.2)	10 (58.8)	0.7320 [0.3840, 1.3954]
2	20 (62.5)	12 (37.5)	8 (47.1)	9 (52.9)	0.7529 [0.4253, 1.3329]
3	22 (68.8)	10 (31.3)	6 (35.3)	11 (64.7)	0.5134 [0.2589, 1.0181]
4	21 (65.6)	11(34.4)	4 (23.5)	13 (76.5)	0.3585 [0.1468, 0.8756]
5	23 (71.9)	9 (28.1)	7 (41.2)	10 (58.8)	0.5729 [0.3119, 1.0524]
6	22 (68.8)	10 (31.3)	5 (29.4)	12 (70.6)	0.4278 [0.1976, 0.9264]

ISSN 2664-472X. e ISSN 2664-4738. Medical science of Ukraine / Медична наука України, 2021, Vol. 17, № 3

57
Fig. 5. Bar graphs showing the profiles of complications in the (A) PP and (B) ITT populations.

Note: Stars denote the statistical significance of the RR during follow-up (* – P < 0.05; ** – P < 0.01).

Table 4

Variable	Probiotics, n = 32	Control, n = 17	Relative Risk [95% CI]	P Value												
	#	n (%)	Follow-up	Δ	#	n (%)	Baseline	Follow-up	Δ	#	n (%)	Baseline	Follow-up	Δ	#	n (%)
Pneumonia	8	8/32 (25.0)	0	0/32 (0)	-8	4	4/31 (23.5)	3	3/17 (17.6)	-1	-1	0.0909 §	0.0000, 0.6447	0.0369		
Bronchitis	22	18/32 (56.2)	4	4/32 (12.5)	-18	14	10/17 (58.8)	12	9/17 (52.9)	-2	-1	0.2361	0.0851, 0.6550	0.0050		
Cyclic vomiting syndrome	23	14/32 (43.7)	10	7/32 (21.9)	-13	13	9/17 (52.9)	12	7/17 (41.2)	-1	-2	0.5313	0.2223, 1.2641	0.1929		
Adenoiditis	24	20/32 (62.5)	5	4/32 (12.5)	-19	12	9/17 (52.9)	12	10/17 (58.8)	0	+1	0.2125	0.0782, 0.5772	0.0018		
Otitis Media	13	12/32 (37.5)	3	3/32 (9.4)	-10	6	5/17 (29.4)	5	5/17 (29.4)	-1	0	0.3984	0.1006, 1.5783	0.2172		
Total	90	82/32 (100)	22	15/32 (46.8)	-68	49	16/17 (94.1)	44	15/17 (88.2)	-5	-1	0.3313	0.2534, 0.7986	0.0058		

Note: Δ – change from baseline (6-month Follow-up – 6-month retrospective Baseline); # – number of cases diagnosed; n – number of participants with at least one episode diagnosed. § – 0.5 was added to all numbers to correct for 0 count.
tion (5 billion CFU/d; 2 weeks) at the first appearance of respiratory infections in a member of the household. The duration of URTI episodes was reduced, but not the incidence of URTIs or secondary complications (otitis media, sinusitis, bronchitis, or pneumonia) between treated and control children [30]. Aside from the fact that the study population was composed of otherwise healthy children, this could suggest that administration after the assumed infection time upon exposure to the sick family member or the short supplementation period did not allow for a full preventive action.

In our study, the sustained effect in time observed after intake cessation could be explained by the timing of administration; childhood is a critical window for the immune system maturation. Indeed, this probiotic formulation strengthens the immune system and promotes host defence development on three fronts: counteracting opportunistic pathogens, maintaining the integrity of the intestinal barrier, and modulating cellular and systemic immunity [23-27, 31-33]. In rodents, probiotic formula we used in the study induced tight junction proteins expression and mucin production, which contributes to the maintenance of intestinal permeability [34-37]. Specifically, L. helveticus R0052 was shown to increase the amount of circulating IgM, which are produced in responses to infections, and IgG which constitute a secondary response [38]. In vitro, the mechanisms were assessed using intestinal epithelial cells challenged with Poly(I:C) which elicits a response mimicking an infection by RNA viruses. Synergy was observed between the strains with a marked attenuation of the Poly(I:C) immune response and reduction in pro-inflammatory Th1 cytokines [25, 26].

Importantly, the immunomodulatory effects of this formulation observed in vitro and in vivo are in accordance with those seen in clinical trials, supporting the efficacy of combined probiotic for the prevention of common winter diseases and respiratory infections in

Fig. 6. Significant reduction in the number of medical visits and antibiotics prescriptions in the probiotics arm.

Note: Bar graphs showing: A) the number of medical visits in each group over the 6 months of follow-up. (2-way ANOVA; overall, P=0.0033; Tukey's multiple comparisons test, adjusted P=0.0466), and B) the average number of antibiotic prescriptions over 6-months in each group at baseline and follow-up. (2-way ANOVA with Bonferroni's multiple comparison test, adjusted P < 0.0001).

Fig. 7. Bar graphs showing (A) the number of medical visits in the ITT population in each group over the 6 months of follow-up.

Note: (2-way ANOVA: overall, P=0.0010; Tukey's multiple comparisons test, adjusted P=0.0147), and (B) the average number of antibiotic prescriptions in the ITT population over 6-months in each group at baseline and follow-up. (2-way ANOVA with Bonferroni's multiple comparison test, adjusted P < 0.0001)
This study was supported by Lallemand Health Solutions Inc. The probiotic product was manufactured by Lallemand Health Solutions Inc, without the industry involvement in the study design, conduct, data analysis, and interpretation or decision to publish.

Conflict of Interest. This study was supported by Lallemand Health Solutions Inc, without the industry being involved in the study design, conduct, data analysis and interpretation or decision to publish.

Author contributions. YVM was responsible for study design, study conduct, data analysis, manuscript editing (final draft). TVH was responsible for data collection, data analysis, manuscript writing (first draft), manuscript editing (final draft). YIT was responsible for study conduct, randomization, data collection, data analysis, manuscript writing (first draft).

Funding. This study was funded by Lallemand Health Solutions Inc. The probiotic product was manufactured and provided by Lallemand Health Solutions Inc.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

Acknowledgements. We thank the physicians who took part in the examination of children: Marina Myka, Tatiana Iovitsa, Alexander Lisoverts. We also thank Annie Tremblay (Lallemand Health Solutions Inc.) for language editing and formatting of the final manuscript, and James Colee (independent statistical consultant) for statistical analyses.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.

CONCLUSIONS

This study confirms the safety and preventive effect of combined probiotic (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 and Bifidobacterium bifidum Rosell®-671) against URTIs in UR-TI-prone children. Considering the significant reduction in the average number and duration of URTI episodes, as well as reduction of average number of secondary complications and decreased the resistance index in UR-TI-prone children, the use of this probiotic formulation as a preventive strategy could be considered in paediatric medical practice. Furthermore, although no formal cost-benefit analyses were conducted, the non-negligible potential benefit of reducing health care use and inappropriate antibiotics prescriptions should also be confirmed in follow-up studies.
REFERENCES

1. Simoes EAF, Cherian T, Chow J, Shahid-Salles SA, Laxminarayan R, John TJ. Acute Respiratory Infections in Children. In: B.J. Jamison DT, Measham AR, et al. (Ed.), Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank. New York, Oxford University Press, 2006. View at: PubMed: https://www.ncbi.nlm.nih.gov/books/NBK11728/

2. Toivonen L, Karppinen S, Schuez-Havupalo L, Teros-Jaakkola T, Vuononvirta J, Mertsola J, He Q, Waris M, Peltola V. Burden of Recurrent Respiratory Tract Infections in Children: A Prospective Cohort Study. Pediatr Infect Dis J. 2016; 35(12): e362-e369. DOI: 10.1097/inf.0000000000001304 View at: Publisher Site: https://journals.lww.com/pidj/Abstract/2016/12000/Burden_of_Recurent_Respiratory_Tract_Infections.4.aspx PubMed: https://pubmed.ncbi.nlm.nih.gov/27455443/

3. Schaad UB. Prevention of paediatric respiratory tract infections: emphasis on the role of OM-85. European Respiratory Review. 2005; 14: 74-7. DOI:10.1183/09059180.05.0009506 View at: Publisher Site: https://err.ersjournals.com/content/14/95/74

4. Dehn Lunn A. Reducing inappropriate antibiotic prescribing in upper respiratory tract infection in a primary care setting in Kolkata, India. BMJ Open Quality. 2018; 7(4): e000217. DOI: 10.1136/bmjqoj-2017-000217 View at: Publisher Site: https://bmjopenquality.bmj.com/content/7/4/e000217 PubMed: https://pubmed.ncbi.nlm.nih.gov/30555928/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267302/

5. Marushko YV, Shef GG, Polkovnichenko LN, Moshkina TV. [Therapeutic approaches for acetone syndrome in children]. Child’s health. 2012; 1(36): 4-5. [in Russian] View at: Publisher Site: http://www.mif-ua.com/archive/article/47021 URL: http://childshealth.zaslavsky.com.ua/article/view/154153

6. O’Connor R, O’Doherty J, O’Regan A, Dunne C. Antibiotic use for acute respiratory tract infections (ARTI) in primary care: what factors affect prescribing and why is it important? A narrative review. Ir J Med Sci. 2018; 187(4): 969-86. DOI: 10.3399/bjgp18X694409 View at: Publisher Site: https://bjgp.org/content/68/667/e90 PubMed: https://pubmed.ncbi.nlm.nih.gov/29335323/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774968/

7. Messina F, Clavenna A, Cartabia M, Piovani D, Bortolotti A, Fortino I, Merlino L, Bonati M. Antibiotic prescription in the outpatient paediatric population attending emergency departments in Lombardy, Italy: a retrospective database review. BMJ Paediatrics Open. 2019; 3(1): e000546. DOI: 10.1136/bmjpo-2019-000546 View at: Publisher Site: https://bmjpaedsopen.bmj.com/content/3/1/e000546 PubMed: https://pubmed.ncbi.nlm.nih.gov/31909220/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937000/

8. Miao R, Wan C, Wang Z, Zhu Y, Zhao Y, Zhang L, Liu J, Qin J, Xia J, Yan H. Inappropriate antibiotic prescriptions among pediatric inpatients in different type hospitals. Medicine (Baltimore). 2020; 99(2): e18714. DOI:10.1097/md.00000000000018714 View at: Publisher Site: https://journals.lww.com/md-journal/fulltext/2020/01100/Inappropriate_antibiotic_prescriptions_among.73.aspx PubMed: https://pubmed.ncbi.nlm.nih.gov/31914082/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959949/

9. Shutova OV. [Acetonemic syndrome in children: diagnosis and management]. Modern pediatrics. 2018; 2: 114-23. [in Russian]. DOI:10.15574/SP.2018.90.114. View at: Publisher Site: https://med-expert.com.ua/journals/publishing-activity/sovremennaya-pediatriya/sovremennaya-pediatriya-sp-%E2%84%A284-%E2%84%A262-2018/ URL: https://med-expert.com.ua/journals/wp-content/uploads/2018/06/19.pdf

10. Stoieva TV, Titkova OV, Sytnik VV, Kartashova VO, Synenkov VV, Radiuk LP. [Correction of metabolic disorders in secondary acetonemic syndrome on the background of acute respiratory infection in children]. Child’s Health. 2018; 13(8): 736-42. [in Russian]. DOI: 10.22141/2224-0551.13.8.2018.154153. View at: Publisher Site: http://www.mif-ua.com/archive/article/47021 URL: http://childshealth.zaslavsky.com.ua/article/view/154153

11. Williams MR, Greene G, Naik G, Hughes K, Butler CC, Hay AD. Antibiotic prescribing quality for children in primary care: an observational study. British Journal of General Practice. 2018; 68(667): e90-e96. DOI: 10.3399/bjgp18X694409 View at: Publisher Site: https://bjgp.org/content/68/667/e90 PubMed: https://pubmed.ncbi.nlm.nih.gov/29335323/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774968/

12. Zoorob R, Sidani MA, Fremont RD, Kihlberg C. Antibiotic use for acute respiratory tract infections (ARTI) in primary care: what factors affect prescribing and why is it important? A narrative review. Ir J Med Sci. 2018; 187(4): 969-86. DOI: 10.1097/s11854-018-1774-5 View at: Publisher Site: https://link.springer.com/article/10.1007%2Fs11854-018-1774-5 PubMed: https://pubmed.ncbi.nlm.nih.gov/29532292/ PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209023/

13. Zoorob R, Sidani MA, Fremont RD, Kihlberg C. Antibiotic use in acute upper respiratory tract infections. Am Fam Physician. 2012; 86(9): 817-22. View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/
14. Feleszko W, Marengo R, Vieira AS, Ratajczak K, Mayorga Butron JL. Immunity-targeted approaches to the management of chronic and recurrent upper respiratory tract disorders in children. Clinical Otalaryngology. 2019; 44(4): 502-10. DOI: 10.1111/coa.13335.

15. Hill C, Guarner F, Reid G, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11(8): 506-14. DOI: 10.1038/nrgastro.2014.66.

16. Li L, Wang F, Liu Y, Gu F. Intestinal microbiota dysbiosis in children with recurrent respiratory tract infections. Microb Pathog. 2019; 136: 103709. DOI: 10.1016/j.micpath.2019.103709.

17. Azad MAK, Sarker M, Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed Res Int. 2018: 8063647. DOI: 10.1155/2018/8063647.

18. Luo A, Leach ST, Barres R, Hesson LB, Grimm MC, Simar D. The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Front Immunol. 2017; 8: 417. DOI: 10.3389/fimmu.2017.00417.

19. Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2015; (2): Cd006895. DOI: 10.1002/14651858.CD006895.pub3.

20. King S, Glanville J, Sanders ME, Fitzgerald A, Varley D. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. Br J Nutr. 2014; 112(1): 41-54. DOI: 10.1017/s0007114514000075.

21. Ozen M, Kocabas Sandal G, Dinleyici EC. Probiotics for the prevention of pediatric upper respiratory tract infections: a systematic review. Expert Opin Biol Ther. 2015; 15(1): 9-20. DOI: 10.1517/14712598.2015.980233.

22. Wang Y, Li X, Ge T, Xiao Y, Liao Y, Cui Y, Zhang Y, Ho W, Yu G, Zhang T. Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016; 95:e4509. DOI: 10.1097/md.0000000000004509.

23. Cazzola M, Pham-Thi N, Kerihuel JC, Durand H, Bobbott S. Efficacy of a synbiotic supplementation in the prevention of common winter diseases in children: a randomized, double-blind, placebo-controlled pilot study. Ther Adv Respir Dis. 2010; 4: 271-8. DOI: 10.1177/1753465810379010.

24. Cazzola M, Tompkins TA, Matera MG. Immunomodulatory impact of a symbiotic in T(h)1 and T(h)2 models of infection. Ther Adv Respir Dis. 2010; 4(5): 259-70. DOI: 10.1177/1753465810379009.

25. MacPherson C, Audy J, Mathieu O, Tompkins TA. Multistrain Probiotic Modulation of Intestinal Epithelial Cells’ Immune Response to a Double-Stranded RNA
PROPHYLACTIC EFFECT OF A PROBIOTIC INTERVENTION IN CHILDREN PRONE TO ACUTE UPPER RESPIRATORY TRACT INFECTIONS: A RANDOMIZED CONTROLLED TRIAL

Ligand, Poly(I-C). Appl Environ Microbiol. 2014; 80(5): 1692-700. DOI: 10.1128/aem.03411-13

View at: Publisher Site: https://journals.asm.org/doi/10.1128/AEM.03411-13
PubMed: https://pubmed.ncbi.nlm.nih.gov/24375132
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957618/

26. MacPherson CW, Shastrl P, Mathieu O, Tompkins TA, Burguière P. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiothic Combination. PLoS One. 2017; 12(1):e0169847. DOI:10.1371/journal.pone.0169847

View at: Publisher Site: https://journals.plos.org/plosole/article?id=10.1371/journal.pone.0169847
PubMed: https://pubmed.ncbi.nlm.nih.gov/28099447
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242491/

27. Stojković A, Simović A, Bogdanović Z, Banković D, Poskurica M. Clinical trial/experimental study (consort compliant): Optimal time period to achieve the effects on symbiotic-controlled wheezing and respiratory infections in young children. Srp Arh Celok Lek. 2016; 144(1-2): 38-45. DOI: 10.2298/sar1602038s.

View at: Publisher Site: http://www.doiserbia.nb.rs/Article.aspx?id=0370-81791602038s#.YT7F850zZPY
PubMed: https://pubmed.ncbi.nlm.nih.gov/27276856

28. Karpova EP, Zaplatnikov AL, Tulupov DA. [Immunophosphylaxis of infections of the upper respiratory tract in the frequently ill children]. Vestn Otorinolaryngol. 2015; 80: 80-84. [in Russian]. DOI: 10.17116/otorino201580580-84

View at: Publisher Site: www.mediasphera.ru/issues/vestnik-otorinolaryngologii/2015/5/
Publisher Site: https://www.mediasphera.ru/issues/vestnik-otorinolaryngologii/2015/5/030042-466820150517
URL: https://www.mediasphera.ru/issues/vestnik-otorinolaryngologii/2015/5/downloads/ru/030042-466820150517

29. Altman DG. Statistics and ethics in medical research. Misuse of statistics is unethical. Br Med J. 1980; 281(6249): 1182-4. DOI: 10.1136/bmj.281.6249.1182

View at: Publisher Site: https://www.bmj.com/content/281/6249/1182
PubMed: https://pubmed.ncbi.nlm.nih.gov/7427629
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1714517/

30. Gerasimov SV, Ivantsiv VA, Bobryk LM, Tsitsura OO, Dedyshin LP, Guta NV, Yandyo BV. Role of short-term use of L. acidophilus DDS-1 and B. lactis UABLA-12 in acute respiratory infections in children: a randomized controlled trial. Eur J Clin Nutr. 2016; 70(4): 463-9. DOI: 10.1038/ejcn.2015.171

View at: Publisher Site: https://www.nature.com/articles/ejcn2015171
PubMed: https://pubmed.ncbi.nlm.nih.gov/26463725/

31. De Andres J, Manzano S, Garcia C, Rodriguez JM, Espinosa-Martos I, Jimenez E. Modulatory effect of three probiotic strains on infants’ gut microbial composition and immunological parameters on a placebo-controlled, double-blind, randomised study. Benef Microbes. 2018; 9(4): 573-584. DOI: 10.3920/bm2017.0132

View at: Publisher Site: https://www.wageningenacademic.com/doi/10.3920/BM2017.0132
PubMed: https://pubmed.ncbi.nlm.nih.gov/29726280/

32. Manzano S, De Andres J, Castro I, Rodriguez JM, Jimenez E, Espinosa-Martos I. Safety and tolerance of three probiotic strains in healthy infants: a multi-centre randomized, double-blind, placebo-controlled trial. Benef Microbes. 2017; 8(4): 569-78. DOI: 10.3920/bm2017.0009

View at: Publisher Site: https://www.wageningenacademic.com/doi/10.3920/BM2017.0009
PubMed: https://pubmed.ncbi.nlm.nih.gov/28555502/

33. Pantovic F. Serum immunoglobulin levels in children with respiratory infections who used a symbiotic dietary supplement. PONS Medical Journal. 2013; 10(1): 7-11.

View at: URL: https://scindeks-clanci.ceon.rs/data/pdf/1820-2411/2013/1820-24111007P.pdf

34. Dykstra NS, Hyde L, Adawi D, Kulik D, Ahme S, Molin G, Jeppsson B, MacKenzie A, Mack DR. Pulse probiotic administration induces repeated small intestinal Muc3 expression in rats. Pediatr Res. 2011; 69(3): 206-11. DOI: 10.1203/PDR.0b013e28138096f0.

View at: Publisher Site: https://www.nature.com/articles/pr9201140
PubMed: https://pubmed.ncbi.nlm.nih.gov/21135754/

35. Godwin NS, Hyde L, Mack DR. Intestinal mucin gene modulation in vivo using orally administered probiotic bacteria: 212. Journal of Pediatric Gastroenterology and Nutrition. 2005; 41(4): 558-9. DOI: 10.1097/01. mpg.0000182068.89890.95

View at: Publisher Site: https://journals.lww.com/jpgn/fulltext/2005/10000/INTESTINAL_MUCIN_GENE_MODULATION_IN_VIVO_USING.235.aspx
Semanticscholar: https://www.semanticscholar.org/paper/INTESTINAL-MUCIN-GENE-MODULATION-IN-VIVO-USING.235.aspx

36. Ho NK, Hawley SP, Ossa JC, Mathieu O, Tompkins TA, Johnson-Henry KC, Sherman PM. Immune signal transduction in the intestinal epithelium: TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination. PLoS One. 2017; 12(1):e0169847.

View at: Publisher Site: https://journals.plos.org/plosole/article?id=10.1371/journal.pone.0169847
PubMed: https://pubmed.ncbi.nlm.nih.gov/28099447
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242491/

37. Kuugbee ED, Shang X, Gamallat Y, Bamba D, Awa...
дасеїд А, Суліман МА, Занг С, Малюк Ч, Чивала Г, Хінь Х, Шан Д. Структурна зміна в Микробіоті у результаті її розподілу. Ефективність використання активного коктейлю пребіотиків при захворюваннях стрибка в грудному терміні.

ISSN 2664-472X. е ISSN 2664-4738. Medical science of Ukraine / Медична наука України, 2021, Vol. 17, № 3

Marushko Y.V., Hyshchak T.V., Todyka Y.I.

39. Chen L, Ouyang L, Liao W, Zhang W. Mucous membrane immunity enhanced by taking Biostime probiotics. Chinese Journal of Microecology. 2007; 2: 137-41. DOI:10.1080/09540100220137682

Europe PMC: http://europepmc.org/article/AGR/IND23279609

Semantic scholar: https://www.semanticscholar.org/
URL: http://caod.oriprobe.com/articles/12048652/
journal/zgwstxzz/2007_2.html

38. Easo JG, Measham MJ, Munroe J, Green-Johnson JM. Immunostimulatory Actions of Lactobacilli: Mitogenic induction of antibody production and spleen cell proliferation by Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophil. Food and Agricultural Immunology. 2002; 14(1):73-83. DOI:10.1080/09540100220137682

View at: Publisher Site: https://www.tandfonline.com/doi/abs/10.1080/09540100220137682

41. Xiao L, Gong C, Ding Y, Ding G, Xu X, Deng C, Ze X, Malard P, Ben X. Probiotics maintain intestinal secretory immunoglobulin A levels in healthy formula-fed infants: a randomised, double-blind, placebo-controlled study. Benef Microbes. 2019;10(7): 729-39. DOI: 10.3920/BM2019.0025

View at: Publisher Site: https://www.wageningenacademic.com/doi/10.3920/BM2019.0025
PubMed: https://pubmed.ncbi.nlm.nih.gov/31965842/

Denny FW. Jr. The clinical impact of human respiratory virus infections. Am J Respir Crit Care Med. 1995; 152(4 Pt 2): S4-12. DOI: 10.1164/ajrccm/152.4_Pt_2.S4

View at: Publisher Site: https://www.atsjournals.org/doi/abs/10.1164/ajrccm/152.4_Pt_2.S4
PubMed: https://pubmed.ncbi.nlm.nih.gov/7551411/

Профілактичний ефект пребіотичного втручання у дітей, схильних до гострих інфекцій верхніх дихальних шляхів: рандомізоване керуване дослідження

1Марушко Ю.В., 2Гищак Т.В., 3Тодика Ю.І.

1 Національний медичний університет імені О.О. Богомольця, Київ, Україна
2 Дитяча клінічна лікарня № 5, Київ, Україна
3 iurii.marushko@gmail.com

Вступ. Інфекції верхніх дихальних шляхів (ІВДШ) поширені у дітей і часто прогресують із вторинними ускладненнями, такими як отит, бронхіт або пневмонія, особливо у дітей з рецидивуючими інфекціями. Пробіотики виявляли імуномодулюючий ефект у дітей та дорослих, підтримуючи імунні функції для профілактики зимових захворювань або застуди.

Ціль: оцінити ефективність 6-тигідної профілактики пробіотиками (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 та Bifidobacterium bifidum Rosell®-71) для запобігання первинним інфекціям та/або вторинним ускладненням у дітей, схильних до ІВДШ.

Матеріали та методи. Дітей, схильних до ІВДШ, випадковим чином поділили на групу, що приймала пробіотики (3×10⁹ CFU) і контрольну групу (без профілактичного втручання). Кількість ІВДШ, тривалість та пов’язані з ними ускладнення відстежували протягом 6 місяців. Також реєстрували індекс резистентності, кількість медичних відвідувань та вторинних ускладнень.

Результати. Через 2 місяці пробіотики зменшили кількість ІВДШ (-2,34±0,13 проти -0,24±0,14; Р<0,0001) та їх тривалість у (-1,13±0,18 проти -0,18±0,18 діня; Р=0,0011), а також кількість вторинних ускладнень (-53% проти -5,8%; RR 0,5313 95% ДІ [0,3534, 0,7986] P= 0,0058). Пробіотики зменшили індекс резистентності (P<0,0001), кількість медичних відвідувань та вторинних ускладнень.

Висновки. Загалом 6-тигідна профілактика з використанням комбінованих пробіотиків (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 та Bifidobacterium bifidum Rosell®-71) у дітей, схильних до ІВДШ, зменшила кількість та тривалість ІВДШ, зменшила кількість та
PROPHYLACTIC EFFECT OF A PROBIOTIC INTERVENTION IN CHILDREN PRONE TO ACUTE UPPER RESPIRATORY TRACT INFECTIONS: A RANDOMIZED CONTROLLED TRIAL

PROPHYLAKTISCHER EFFEKT PROBIOTISCHES VEMEISTERTWASSERLEHTEN BEI KINDER, SCHLONKEN ZU OSTERMENFECZIONEN VON HEBERRN LUXHALTEN PULLEN: RANDOMISIERTES KONTROLIERTES EISELLEHOREN

1Marushko Yu.V., 1Tishak T.V., 2Todika Yu.I.

1Национальный медицинский университет имени А.А. Богомольца, Киев, Украина
2Детская клиническая больница № 5, Киев, Украина

iuri.marushko@gmail.com

Aktual'nost'. Infektsii verhhxhkh dyxhal'nyxh pulej (IVDP) рас пространены u detej i частoe прогрессируют so вторич-nymi oсложнениями, takimi kak отит, bronkhit ili pnevmonija, osobennoe u detej s рецидивирующими инфекциями. Пробиоти-ки проявляли иммуномодулирующее действие u detej i взрослых, поддерживая иммунные функции для профилактики зимних заболеваний или простуды.

Цель: оценить эффективность 6-недельной профилактики пробиотиками (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 i Bifidobacterium bifidum Rosell®-71) для предотвращения первичных инфекций и / или вторичных осложнений у детей, ско-лонных к ИВДП.

Материалы и методы. Детей, склонных к ИВДП, случайным образом разделили на группу, принимающую пробиотики (3×109 КОЕ/день, 6 недель), и контрольную группу (без профилактического вмешательства). Количество ИВДП, продолжи-тельность и связанные с ними осложнения отслеживались в течение 6 месяцев. Также регистрировали индекс резистентности, количество медицинских посещений и назначения антибиотиков.

Результаты. Через 2 месяца пробиотики уменьшили количество ИВДП (-2,34±0,13 против -0,24±0,14; р<0,0001) и их про-должительность в (-1,13±0,18 против -0,18±0,18 дня; Р = 0,0011), а также количество вторичных осложнений (-53% против -5,8%; RR 0,5313 95% DИ [0,3534, 0,7986] Р=0,0058). Пробиотики уменьшили индекс резистентности (P<0,0001), количество медицинских консультаций у специалистов (P=0,0033) и назначения антибиотиков (P<0,0001).

Выводы. В общем 6-недельная профилактика с использованием комбинированных пробиотиков (Lactobacillus helveticus Rosell®-52, Bifidobacterium infantis Rosell®-33 и Bifidobacterium bifidum Rosell®-71) у детей, склонных к ИВДП, уменьшила количество и продолжительность эпизодов ИВДП и вторичных осложнений, а также снизила показатель резистентности до почти нормальных значений. Кроме того, потенциальная общественная польза от уменьшения использования медицинской помощи и неадекватного назначения антибиотиков у детей способствует использованию этого пробиотического продукта как профилактической стратегии против ИВДП и их последствий у часто болеющих детей.

Это исследование было зарегистрировано на ClinicalTrials.gov (NCT04525040).

Ключевые слова: профилактика, педиатрия, инфекции уха-горла, индекс резистентности, пробиотики.