Development and characterization of a new cell line derived from European eel *Anguilla anguilla* kidney

Bin Chen*, Zaiyu Zheng*, Jinxian Yang, Hongshu Chi, He Huang and Hui Gong‡

ABSTRACT

A new cell line derived from the kidney of European eel, *Anguilla anguilla*, has been established and characterized. This cell line, designated as EK (eel kidney), has been maintained in Leibovitz’s L-15 supplemented with 10% fetal bovine serum for over 24 months, and subcultured more than 60 times. This cell line consists predominantly of fibroblast-like cells, and can grow at 15–37°C under an optimum temperature of 26°C. The origin of this cell line was confirmed by polymerase chain reaction (PCR) amplification and 18s recombinant (r)RNA sequencing. The chromosome analysis of EK cells at passage 58 revealed an ananeuploid karyotype. The EK cells were successfully transfected with the Pegfp-N1 plasmid, suggesting its potential in genetic studies. The susceptibility test showed a significant cytopathic effect (CPE) in EK cells for *Rana grylio* virus, and the viral replication was evidenced with quantitative real-time PCR (qRT-PCR) assay. After poly (I:C) stimulation, the expression of the immune-related molecules including interferon regulatory factor-3 (irf3), interferon regulatory factor-7 (irf7) and cytochrome P450 (CYP450) were significantly upregulated in EK cells, while the expression of transforming growth factor (TGF-β) was downregulated. These results suggested the potential of EK cell line as a model in gene engineering, virus identification and environmental toxicology.

KEY WORDS: *Anguilla anguilla*, Kidney cell line, *Rana grylio* virus, Immune-related gene

INTRODUCTION

European eel *Anguilla anguilla* (L. 1758) was previously considered one of the most important aquaculture species in both Europe and China, but is now listed as endangered due to the threats of overfishing, diseases, obstacles, ocean current changes, polychlorinated biphenyl (PCB) pollution, etc. (de Boer et al., 1994; de Boer et al., 1995; Lakra et al., 2011). Dozens of viruses have been isolated using fish cell lines, and explorations in emerging fields such as immunological signaling, aquatic ologidynamics, genetic engineering and environmental monitoring have shown enormous prospects (Béjar et al., 2002; Bryson et al., 2006; Chen et al., 2005; Dong et al., 2008; Sahul-Hameed et al., 2006; Zhang et al., 2003).

To date, cell lines have been developed from only a few species of *Anguilidae* fishes, or in other words, the *Anguilidae* invertebrate is small (Bols et al., 2017). The first cell lines were developed from the Japanese eel, *Anguilla japonica* (Temminck and Schlegel 1846) (Chen and Kou, 1988; Kou et al., 1995). More recently two cell lines, PBLE and eelB, have been described from the American eel, *A. rostrata* (Lesueur 1817) (Bloch et al., 2016; Dewitte-Orr et al., 2006). However, few cell lines have been reported from the European eel *A. anguilla* (Linnaeus 1758). In 2007, we initially tried *in vitro* tissue and cell culture of multiple European eel organs (Zheng, 2008). In this study, we have developed and characterized a cell line derived from *A. anguilla* kidney, which proved to be susceptible to *Rana grylio* virus (RGV). The responses of this cell line to regular immune stimulations were also investigated.

RESULTS

Primary cell culture and subculture

After 24 h of inoculation, cells were migrated outwards from the tissue explants (Fig. 1A) and the first subculture was conducted on day 7. The subculture was performed at a split ratio of 1:2 every 36 h, and these cells were subcultured over 70 times to date. The eel kidney (EK) cell line was anchorage-dependent, predominantly made up of fibroblast-like cells (Fig. 1B) and was maintained in L-15 containing 10% fetal bovine serum (FBS) at 26°C. The EK cells recovered from liquid nitrogen storage at the 60th subculture – whose average viability was estimated to be 75%–85% – could reach confluency within 2 days.

The growth studies

The EK cells grew into a confluent monolayer at a temperature range between 15°C and 37°C, and at 10°C or 40°C several small colonies were formed. The maximum growth rate was observed at 30°C (Fig. 2) 2–6 days after inoculation, and the passage 63 EK cells presented the logarithmic phase with a population doubling time (PDT) of 50.27 h.

Chromosome analysis

Among the 100 metaphase EK cells counted at passage 58, the chromosome numbers ranged from 24 to 72 (Fig. 3A). Thirty-eight...
percent of samples presented normal diploid karyotype of 2n=38; of these, the metacentric, submetacentric and telocentric chromosomes were 6, 3 and 10 pairs, respectively (2n=6m+3sm+10t) (Fig. 3B); while the remaining 32% samples contained of 36 or 37 chromosomes. These results suggested that EK may be an aneuploid cell line.

Pegfp-N1 transfection
Green fluorescence signals could be observed in the EK cells at 24 h after transfection, and lasted for 4 days or longer (Fig. 4A, B). The transfection efficiency was estimated to be about 10%.

18s rRNA sequence analysis
The species of the EK cell line was confirmed by 18s rRNA gene analysis. An expected, PCR product of 1702 bp was obtained using 18s rRNA sequence (GenBank: FM946070.1).

Susceptibility test
Cytopathic effect was first observed at 24 h after infection, and was covered in over 75% of the monolayer at 48 h (Fig. 5B), while the monolayer in the controls stayed healthy (Fig. 5A). The qRT-PCR transfection efficiency was estimated to be about 10%.

Immune-related gene expression after poly (I: C) exposure
After poly (I: C) exposure, the expression of TGF-β transcripts reached a peak at 3 h with an increased ratio of 1.99-fold \((P<0.05) \), and then recovered to the initial level. The expressions of irf3 and irf7 were significantly upregulated at 6 h post stimulation \((P<0.05) \), and showed the maximum increase ratio of 14.18-fold and 7.06-fold at 24 h, respectively \((P<0.01) \). The expression of CYP450 was increased gradually and presented a significant difference at 12 h, while the peak was observed at 24 h with an increased ratio of 5.15-fold \((P<0.01) \) (Fig. 6).

The internal control gene β-actin showed no significant change.

DISCUSSION
EK is the first reported visceral cell line of *A. anguilla* (Fryer and Lannan, 1994; Lakra et al., 2011). As a European catadromous teleost (Schmidt, 1923), the artificial reproduction of *A. anguilla* is still an unresolved question to date, while the wild embryo or neonatal leptocephalus, or even the glass eels, are also extremely difficult to obtain (Huang and Chen, 1998). Establishment of new continuous cell lines should benefit the researches and protection of critically endangered (CR) animal.

Most of the fish cell cultures use mediums developed for mammalian cells, such as DMEM, Ham’s F-12, RPMI-1640, L-15, etc. As an amino acid-rich nutrient medium forming a CO₂-free system, L-15 has been used for successful application on fish cell lines and made CO₂ incubators unnecessary, which in turn significantly improved the stability and convenience of cell culture (Leibovitz, 1963, 1977). Due to this advantage, more than 80% of the cell lines established after 1994 used Leibovitz’s L-15 medium (Lakra et al., 2011). This experiment has proved that L-15 was suitable for European eel tissue and cell culture as well, and this conclusion has been also evidenced by another study on pectoral fin cells of *A. anguilla* (Mao et al., 2012) and the studies on *A. rostrata* cell lines (Bloch et al., 2016; Dewitte-Orr et al., 2006).

Fish cell culture has a convenient temperature range wider than mammalian cell culture, and the EK cells were accustomed to a wider temperature window ranging from 15–37°C. The maximum growth rate was observed at 30°C, but the EK cells under this temperature usually were overgrown in 48 h, and the confluent cell layer would be destructed by contraction and cell detachment in 60 h (Fig. S2). The flow cytometer records proved that suspension cells contributed to the total growth significantly at 30°C or higher temperatures. To meet the needs of regular physiological and pathological experiments, the optimal culture temperature of EK cells was designated 26°C, which was the same as for the *A. japonica* cell line EP-1 (Kou et al., 1995) and the *A. rostrata* cell line eelB (Bloch et al., 2016; Dewitte-Orr et al., 2006).
The karyotype analysis revealed that only 38% of the passage 63 EK cells possessed the modal diploid chromosome number of \(2n=38\) (Yang et al., 1999). The EK strain showed the property to form neoplasms in vitro, and its aneuploidy suggested the possibility of immortality (Chen et al., 2005). This may be further tested by telomerase activity analysis (Bryson et al., 2006).

Iridoviruses are common pathogens detected in *A. japonica* (Sorimachi and Egusa, 1987) and other aquaculture species in Fujian province (Yang, 2013). Compared with the former test using the EO cell line (Ge et al., 2012), in which only vesiculation was observed within 1 week, the infection course took much less time on EK cells. The susceptibility of the EK cell line has made it an efficient tool for studying the local viral diseases.

In recent years, cell lines have turned out to be viable tools for function analysis of fish innate immune genes (Poynter and DeWitte-Orr, 2015). Although the rapid responding kinetics of the expression of various immune factors to in vitro or in vivo inflammatory stimulation has been confirmed repeatedly in the teleosts (Haddad et al., 2008; Huang et al., 2014; Maehr et al., 2013; Sudhakumari et al., 2005), the mechanism of inflammation-induced immune modulation still remained ambiguous. The interferon regulatory factor (IRF) family members played critical roles in cellular differentiation of hematopoietic cells, and the regulation of gene expression in response to pathogen-derived danger signals to regulate cell cycle and apoptosis (Tamura et al., 2008). *Irf*3 was once reported to be upregulated in both peripheral blood leukocytes and in vivo after poly (I: C) stimulation in *A. Anguilla* (Huang et al., 2014), and this has been confirmed in this study in association with the changes of *irf7* levels. The CYP gene superfamily consists of a large number of genes encoding P450 enzymes involved in the detoxification of exogenous chemicals (e.g. drugs, chemical carcinogens, environmental pollutants) and the metabolism of various endogenous substrates (steroids, fatty acids, vitamins, prostanoids, etc.) (Uno et al., 2012). Since the 1980s, multiple forms of CYPs have been considered common biomarkers in assessing the contamination of the aquatic environment (Bugiak and Weber, 2009; Nilsen et al., 1998; Winston et al., 1988). In this study, the expression of CYP450 showed a significantly long-term upregulation after poly (I: C) induction, indicating the potential of EK cell line for toxicological and pharmacological analysis of aquatic pollutants.

In summary, a continuous cell line from *A. anguilla* kidney has been established and showed its potential impact for studying infectious viral diseases of Anguillidae fishes and for immune genetic, toxicological and pathological researches, benefitting the protection of *A. anguilla*.

MATERIALS AND METHODS

Primary cell culture and subculture

Healthy *A. anguilla* (elvers) with an average weight of 2 g from an eel farm in Changle, Fujian, China were kept in clean sea water at room temperature (25–28°C) during transportation. Before dissection, the fish were killed by anesthesia and then disinfected by 2% iodine tincture and 75% alcohol three times, respectively. The kidney tissue of the elvers was removed completely, washed five times with 0.01 mol l\(^{-1}\) PBS containing 200 IU ml\(^{-1}\) of penicillin and 200 μg ml\(^{-1}\) of streptomycin (Sangon) at 0°C, and then minced thoroughly into pieces (c. 1 mm\(^3\)). The tissue fragments were rinsed...
three times with PBS, then attached to the bottom of 25 cm² culture flasks
(Corning), and wetted with serum-free Leibovitz’ L-15 (Hyclone) at an
interval of 0.5 cm. The full culture medium included L-15 supplemented
with 15% FBS (Gibco) and antibiotics as mentioned above. Every single
flask was incubated upside-down at 20°C for 6–8 h first. Then 2 ml full
culture medium was dripped in before it was overturned to make the tissue
explants soaked and 1 ml additional culture medium was added every day
till the total volume reached 5 ml. All the flasks were then transferred to 26°C
and the culture medium was half-changed every 3 days.

When the radial outgrowths surrounded the tissue explants, the culture
was digested with 0.25% trypsin solution (Sigma-Aldrich) at 26°C. After
centrifugation at 1000 rpm for 3 min, the cells were collected and suspended
in 5 ml full culture medium, then inoculated into a new 12.5 cm² flask (BD
falcon) incubated at 26°C until a cell monolayer was formed.

Cell line development and storage
When a confluent cell monolayer was observed at 26°C, the cells were
washed and digested by 0.25% trypsin solution for 1 min, then inoculated to
new 25 cm² flasks with a split ratio of 1:2. From the sixth subculture, the
antibiotics were no longer additives, and the concentration of FBS was
reduced to 10% in the eighth subculture (Lannan, 1994). After 72 h growth
in vitro, the EK cells were transferred into L-15 medium containing 2% FBS and 0.5 μg ml⁻¹ Colchicine
(Sigma-Aldrich). After incubation for 5 h, the cells were collected with
centrifugation and treated with 5 ml of 0.3% KCl for 25 min. The cells were
prefixed for 5 min by dropping 1 ml of Carnoy’s fixative (methanol:acetic
acid=3:1, 0°C) into the suspension. After centrifugation at 1500 rpm for
5 min, the cell pellets were fixed with 2 ml Carnoy’s fixative for 10 min.
The fixed cells were centrifuged and re-suspended in 2 ml Carnoy’s fixative,

Growth studies
Passage 63 EK cells were inoculated to 25 cm² flasks (2×10⁵ cells per flask)
and incubated at 15°C, 20°C, 25°C, 30°C and 37°C, respectively. Three
flasks of cells from each group were harvested and counted by a flow
cytometer every day until day 9. The cell PDT was calculated using the
below formula (Davis, 2001):

\[T = \frac{t}{\log 2 (\log N_t - \log N_0)^{-1}} \]

(1)

Chromosome analysis
For chromosome analysis, EK cells at passage 58 were transferred into a
75 cm² culture flask and kept at 26°C for 36 h, and then transferred
into L-15 medium containing 2% FBS and 0.5 μg ml⁻¹ Colchicine
(Sigma-Aldrich). After incubation for 5 h, the cells were collected with
centrifugation and treated with 5 ml of 0.3% KCl for 25 min. The cells were
prefixed for 5 min by dropping 1 ml of Carnoy’s fixative (methanol:acetic
acid=3:1, 0°C) into the suspension. After centrifugation at 1500 rpm for
5 min, the cell pellets were fixed with 2 ml Carnoy’s fixative for 10 min.
The fixed cells were centrifuged and re-suspended in 2 ml Carnoy’s fixative,
The PCR amplification system was composed of a 50 μl reaction mix containing 5 μl of 10×Tag buffer (20 mM Mg2+ included), 4.0 μl of deoxyribonucleotide triphosphate (dNTP) mix (2.5 mM each), 2 μl of each primer, 2 μl of DNA templates, 0.5 μl ExTag (5 U μl−1, Takara), and ddH2O. The cycling conditions were as follows: 95°C for 3 min, then 30 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 35 s. The PCR products were collected and purified using 2% agarose gel and the TaqMan® Fast Virus 1-Step Master Mix kit (Thermo Fisher Scientific). The standard amplification reaction was performed under the following conditions: 95°C for 15 s, 60°C for 60 s, 95°C for 15 s. The dissociation curve determination conditions were as follows: 95°C for 15 s, 60°C for 60 s, 95°C for 15 s.

Susceptibility test

The susceptibility ofEK cells to RGV was investigated. Purified viral samples were prepared according to the previous study (Liu et al., 2012; Ge et al., 2014). The EK cells at passage 45 were inoculated into 25 cm² culture flasks and incubated at 26°C for 48 h, then washed with 0.01 mol l−1 PBS. 1 ml of virus suspension (dilution=10−1) was added to each flask respectively and removed after 2 h incubation. The infected cells were kept at 26°C in L-15 supplemented with 2% FBS, and observed for a cytopathic effect (CPE) daily under a Nikon ECLIPSE TE2000-S fluorescence microscope. Total DNA was extracted from the cells at 0, 6, 12, 24 and 48 h after infection with Gene JET Genomic DNA Purification Kit, and used as the templates for qRT-PCR. The virus copy number was measured with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and converted to the copy number. The plasmid sample was diluted to 109−1010 copies μl−1 for establishing the standard curve. The qRT-PCR was carried out with an Applied Biosystems® 7500 Real-Time PCR System (Thermo Fisher Scientific) using a SYBR® Green PremixEx Taq™ II kit (Takara). The standard amplification reaction was performed under the following conditions: 95°C for 30 s, followed by 40 cycles of 95°C for 50 s, 60°C for 34 s; and the dissociation curve determination conditions were as follows: 95°C for 15 s, 60°C for 60 s, 95°C for 15 s.

Immune-related gene expression after poly (I: C) exposure

To define the responses of this cell line to immune stimulations, the changes of the expression of interferon regulatory factor-7 (irf7, GenBank accession no. KF577784.1), interferon regulatory factor-3 (irf3, GenBank accession no. KF577783.1), transforming growth factor-β (TGF-β, GenBank accession no. AJ318934.1) and cytochrome P450 (CYP19A1, GenBank accession no. KF990052.1) in the EK cells caused by poly (I: C) induction were analyzed in 1% agarose gels containing 0.5 mg ml−1 ethidium bromide, and then incubated at 4°C overnight. The suspension was dropped on cold glass slides, which were tapped to scatter the samples equally. The slides were then air dried and stained with 10% Giemsa (pH 6.8) for 1 h. Under a Nikon Eclipse TE2000-S fluorescence microscope, 100 metaphase cells were photographed and analyzed (Levan et al., 1964).

Quantitative real-time PCR for RGV detection

The primers specific for RGV major capsid protein (MCP) gene amplification and qRT-PCR were synthesized by Shanghai Sangon Biological Engineering Technology & Services Co., Ltd (Table 1). The total genomic DNA of the positive control cells was isolated using Gene JET Genomic DNA Purification Kit (Thermo Fisher Scientific). The MCP gene 695 bp segment was amplified with a 50 μl PCR reaction mix containing 5.0 μl of 10×Tag buffer (20 mM Mg2+ included), 4.0 μl of deoxyribonucleotide triphosphate (dNTP) mix (2.5 mM each), 2 μl of each primer, 2 μl of DNA templates, 0.5 μl ExTag (5 U μl−1, Takara) and ddH2O. The cycling conditions were as follows: 95°C for 3 min, then 30 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 35 s. The PCR products were collected and purified using 2% agarose gel and the NanPrep Column DNA Gel Extraction Kit (Sangon). The MCP segment was ligated to the pMD19-T vector with a pMD-19T vector cloning kit (Takara), and expressed in E. coli DH5α strain. The concentration of the amplified plasmid was measured with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and converted to the copy number. The plasmid sample was diluted to 109−1010 copies μl−1 for establishing the standard curve. The qRT-PCR was carried out with an Applied Biosystems® 7500 Real-Time PCR System (Thermo Fisher Scientific) using a SYBR® PremixEx Taq™ II kit (Takara). The standard amplification reaction was performed under the following conditions: 95°C for 30 s, followed by 40 cycles of 95°C for 50 s, 60°C for 34 s; and the dissociation curve determination conditions were as follows: 95°C for 15 s, 60°C for 60 s, 95°C for 15 s.

Table 1. Sequences of qRT-PCR primers used in this study

Primer name	Forward sequence (5’-3’)	Reverse sequence (5’-3’)
Ranavirus-MCP	AGGCGGAGGCTAGTATGAG	TTTGTCAGGAGACCATCCC
MCP153F/215R	TCACCAAGCTGGCTCTCTCT	AAAATCTGGCCGCAGAAGGC
CYP450	CTGAGGAAGCCCGACCTACCCA	GGTGGGACCTTTCTCCAGAG
TGF-β	GACATGGCTCAGCACCCT	CGGGGTGTGTGACTTATAGAG
irf3	CCTCAAGAGGTCAGAACCAGA	GACCCAACAGAGAAGAAGAAG
irf7	CGAAGATGCTCTGCGCAGAGC	GAGGTAAGCAGCGTGGTGGT
β-Actin	CTCCTTACCTTTGAGCAGAAGTG	CCGCAAGAGGCGGCTGGAGAACA
were detected using qRT-PCR (Wang et al., 2014). Poly (I: C) (final concentration=10 μg ml⁻¹; Sigma-Aldrich) was added to the culture medium, and the cells were collected after 3, 6, 12 and 24 h incubation. The total RNA was extracted using a TRizol®Plus RNA Purification Kit (Invitrogen), and then reverse transcribed into first-strand cDNA as the template for qRT-PCR with SuperScript™ III First-Strand Synthesis Super Mix for qRT-PCR (Invitrogen). With the primers designed by Primer Premier 6.0 and Beacon designer 7.8 (Table 1), qRT-PCR was performed in the CFX384 Touch™ Real-Time PCR Detection System (Biorad) using the Power SYBR® Green PCR Master Mix reagent (Applied Biosystems). The conditions of reaction system were as follows: a 20 μl reaction mix containing 8.0 μl of ddH₂O, 10.0 μl of Power SYBR® Green PCR Master Mix, 0.5 μl of each primer and 1.0 μl of first-strand cDNA, while the cycling conditions were as follows: initial temperature at 95°C for 1 min, then 40 cycles at 95°C for 15 s, 63°C for 25 s. The 2⁻ΔΔCt method was used to arrive at the relative expression level.

Statistical analysis

Each experiment was repeated at least three times. The data are shown as mean±s.e.m., and the statistical significance was determined using one-way analysis of variance (Dunnett’s T3 test) (Davis, 2001). Statistical analysis was done using SPSS (www.ibm.com/analytics/).

Competing interests

The authors declare no competing or financial interests.

Author contributions

Conceptualization: B.C.; Methodology: Z.Z.; Software: Z.Z., J.Y.; Validation: B.C., Z.Z., H.C.; Resources: Z.Z., H.C., H.G.; Writing - original draft: B.C., Z.Z.; Writing - review & editing: Z.Z.; Supervision: J.Y., H.H., H.G.; Project administration: B.C., Z.Z., H.C., H.G.

Funding

This work was supported by the National Nature Science Foundation of China (31101933), Innovation Team Projects of Fujian Academy of Agricultural Science (CXTD2011-06) and Special Fund for Public Interest Scientific Institutions of Science and Technology Plan Projects of Fujian Province (2014R1019-8).

Supplementary information

Supplementary information available online at http://bio.biologists.org/lookup/doi/10.1242/bio.037507.supplemental

References

Baksi, S. M. and Frazier, J. M. (2008). Molecular and functional characterization of goldfish (Carassius auratus L.) transforming growth factor beta. Dev. Comp. Immunol. 32, 654-663.

Hendriks, A. J., Pieters, H. and de Boer, J. (2010). Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and mussel from eel and the rhine and meuse rivers. Environ. Toxicol. Chem. 17, 1885-1888.

Huang, D.-M. and Chen, S.-Q. (1997). Exploring on the life cycle and artificial breeding of eel (Anguilla). Prog. Biotechnol. 17, 3-12.

Huang, B., Huang, W.-S. and Nie, P. (2014). Clone and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production. Fish Shellfish Immunol. 37, 239-247.

Jakob, E., Neuhaus, H., Steinhagen, D., Luckhardt, B. and Hanel, R. (2009). Monitoring of Herpesvirus anguillae (HVA) infections in European eel, Anguilla anguilla (L.), in northern Germany. J. Fish Dis. 32, 557-561.

Knights, B. (2003). A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillids of eels, Anguilla anguilla (L.), in the Northern Hemisphere. Sci. Total Environ. 310, 237-244.

Kohlpoth, M., Rusche, B. and Nusse, M. (1999). Flow cytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial waste waters. Mutagenesis 14, 397-402.

Kou, Y., Wang, H.-W., Huang, C.-H., Hung, H.-W., Jang, Y.-S., Chou, C.-M. and Lo, C.-F. (1995). A cell line (EP-1 cell line) derived from Japanese eel elver (Anguilla japonica) persistently infected with Pleistophora anguillarum. Aquaculture 132, 161-173.

Lakra, W. S., Swaminathan, T. R. and Joy, K. P. (2011). Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol. Biochem. 37, 1-20.

Lannan, C. N. (1994). Fish cell culture: a protocol for quality control. J. Tissue Cult. Methods 16, 95-98.

Leibovitz, A. (1963). The growth and maintenance of tissue-culture cells in free gas exchange with the atmosphere. Am. J. Hyg. 78, 173-185.

Leibovitz, A. (1977). Preparation of medium L-15. Tca Manual. 3, 557-559.

Levan, A., Fredga, K. and Sandberg, A. A. (1963). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201-220.

Liu, X.-D., Yang, J.-X., Gong, H., Zhu, C.-H. and Lin, T.-L. (2012). Characterization of an iridovirus isolate from Rana catesbiana. Chin. J. Anim. Infect. Dis. 20, 16-21.

Maehe, T., Costa, M. M., González Vecino, J. L., Wadsworth, S., Martin, S. A., Wang, T. and Seconmes, C. J. (2013). Transforming growth factor-beta1: a second TGF-beta1 paralogue in the rainbow trout (Oncorhynchus mykiss) that has a lower constitutive expression but is more responsive to immune stimulation. Fish Shellfish Immunol. 34, 420-432.

Mao, N., Zheng, Z.-Y. and Lin, T.-L. (2012). The growth advantage of the pectoral fin cells of Anguilla Anguilla under different culture conditions. Fujian J. Agric. Sci. 27, 222-226.

Ni Shuilleabhaina, S., Mothersill, C., Sheehan, D., O’Brien, N. M., O’Halloran, J., Peitc, F. V., Kilemadec, M. and Davorena, M. (2006). Cellular responses in...
primary epidermal cultures from rainbow trout exposed to zinc chloride. *Ecotoxicol. Environ. Saf.* 65, 332-341.

Nilsen, B. M., Berg, K. and Goksøyr, A. (1998). Induction of cytochrome P450 1A (CYP1A) in fish. A biomarker for environmental pollution. *Methods Mol. Biol.* 107, 423-438.

Ott, T. (2004). Tissue culture of fish cell lines. In K. True (ed), *NWFHS Laboratory Procedures Manual*, 2.0 Edition, Chapter 10, pp. 1-16. Onalaska, WI: U.S. Fish and Wildlife Service.

Poynter, S. J. and DeWitte-Orr, S. J. (2015). Length-dependent innate antiviral effects of double-stranded RNA in the rainbow trout (*Oncorhynchus mykiss*) cell line, RTG-2. *Fish Shellfish Immunol.* 46, 423-438.

Sahul-Hameed, A. S., Parameswaran, V., Shukla, R., Bright-Singh, I. S., Thirunavukkarasu, A. R. and Bhonde, R. R. (2006). Establishment and characterization of India’s first marine fish cell line (SISK) from the kidney of sea bass (*Lates calcarifer*). *Aquaculture* 257, 92-103.