Effects of income and residential area on survival of patients with head and neck cancers following radiotherapy: Working age individuals in Taiwan

Yu Cheng Lai, Pei Ling Tang, Chi Hsiang Chu, Tsu Jen Kuo

1 Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
2 Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
3 Department of Occupational Therapy, Shu Zen junior College of Medicine and Management, Kaohsiung, Taiwan
4 Research Center of Medical Informatics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
5 Department of Nursing, Meiho Unervisity, Pingtung, Taiwan
6 College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan
7 Department of Clinical Trial Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
8 Department of Dental Technology, Shu-Zen junior College of Medicine and Management, Kaohsiung, Taiwan
9 Department of Stomatolgy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

Corresponding Author: Tsu Jen Kuo
Email address: tjkuo@vghks.gov.tw

Objectives: 5-year survival rate of head and neck cancer (HNC) after radiotherapy (RT) varies widely from 35% to 89%. Many studies have addressed the effect of socioeconomic status and urban dwelling on survival of HNC, but a limited number of studies have focused on the survival rate of HNC patients after RT. Materials and methods: During the period of 2000–2013, 40985 working age individuals (20< age < 65 years) with HNC patients treated with RT were included in this study from a registry of patients with catastrophic illnesses maintained by the Taiwan National Health Insurance Research Database (NHIRD). Results: The cumulative survival rate of HNC following RT in Taiwan was 53.2% (mean follow-up period, 3.75 ± 3.31 years). The combined effects of income and geographic effect on cumulative survival rates were as follows: high income group > medium income group > low income group and northern > central > southern > eastern Taiwan. Patients with moderate income levels had a 36.9% higher risk of mortality as compared with patients with high income levels (hazard ratio (HR) = 1.369; p < 0.001). Patients with low income levels had a 51.4% greater risk of mortality than patients with high income levels (HR = 1.514, p < 0.001). Conclusion: In Taiwan, income and residential area significantly affected the survival rate of HNC patients receiving RT. The highest income level group had the best survival rate, regardless of the geographic area. The difference in survival between the low and high income groups was still pronounced in more deprived areas.
Effects of income and residential area on survival of patients with head and neck cancers following radiotherapy: Working age individuals in Taiwan.

Yu Cheng Lai* 1, 2, 3, Pei Ling Tang 4, 5, 6, Chi Hsiang Chu* 7, Tsu Jen Kuo Corresp. 2, 8, 9

1 Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
2 Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
3 Department of Occupational Therapy, Shu Zen junior College of Medicine and Management, Kaohsiung, Taiwan
4 Research Center of Medical Informatics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
5 Department of Nursing, Meiho University, Pingtung, Taiwan
6 College of Nursing, Kaohsiung Medical University, Kaohsiung, Taiwan
7 Department of Clinical Trial Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
8 Department of Dental Technology, Shu-Zen junior College of Medicine and Management, Kaohsiung, Taiwan
9 Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

*These authors contributed equally to this work.

Corresponding Author: Tsu Jen Kuo
Email address: tckuo@vghks.gov.tw
Department of Stomatology, Kaohsiung Veterans General Hospital, Taiwan
386 Ta-Chung 1st Rd., Kaohsiung, Taiwan 81362
Tel.: +886 7 3468214
Email address: tckuo@vghks.gov.tw
INTRODUCTION

Globally, approximately 670,000 new diagnoses of head and neck cancer (HNC) and 350,000 HNC-related deaths are reported every year (Ray-Chaudhuri et al., 2013). HNC is the sixth most common cancer in Taiwan and the fourth most common among Taiwanese men (Chang et al., 2017a). Radiotherapy (RT) can effectively alleviate HNC (Chu et al., 2016; Reeve et al., 2013; Wu et al., 2016); however, adherence to RT is difficult for patients with severe toxicity associated with RT (Thomas et al., 2017), such as mucositis, taste disturbance, xerostomia, opportunistic infection, trismus, radiation caries, osteonecrosis of the jaw, and progressive periodontal destruction (Cabrera et al., 2013; Kuo et al., 2016c). These comorbidities impair chewing, swallowing, and speaking function.

The post-RT 5-year survival rate of HNC patients varies widely—from 35% to 89% (Hutcheson et al., 2014; Iyer et al., 2015; Langius et al., 2013; Lassig et al., 2012); however, this large variation may result from differences in study designs and inclusion criteria. Many factors affect the survival of HNC patients after RT, including age (Chang et al., 2013; Unal et al., 2015), sex (Olsen et al., 2015; Osazuwa-Peters et al., 2016), race (Osazuwa-Peters et al., 2016), personal habits (e.g., smoking status, alcohol consumption, betel nut chewing) (Chang et al., 2017a), primary tumor site, tumor–node–metastasis stage (Kreppel et al., 2016), human papillomavirus status (Chu et al., 2016), therapy type (Selzer et al., 2015), nutritional status (Chang et al., 2017a), psychiatric disorders (Unal et al., 2015), urbanization (Chang et al., 2013), education (Kjaer et al., 2013), individual and neighborhood socioeconomic status (SES), and geographical area (Chang et al., 2013; Chu et al., 2016; Kjaer et al., 2013; Wu et al., 2016).

Many studies have found that a lower SES is associated with a lower survival rate among HNC patients (Choi et al., 2016; Chu et al., 2016; Olsen et al., 2015; Osazuwa-Peters et al., 2016; Wu et al., 2016). Other studies have revealed that neighborhood SES, geographical area, area-level
socioeconomic position (SEP), and urban dwelling, all influence HNC patient survival (Chu et al., 2011; Hagedoorn et al., 2016; Kuo et al., 2016a; Wong et al., 2017). In general, lower neighborhood SES and rural residence are associated with lower survival rate among HNC patients. However, few studies have focused on post-RT survival rate (Kuo et al., 2016a).

Prediction of post-RT survival is fundamental for treatment planning by oral reconstruction dentists. Therefore, this study investigated the effects of SES (determined by income) and residential area on post-RT survival among working-age patients with HNC in Taiwan.

MATERIALS & METHODS

Data source and study cohort

Taiwan’s National Health Insurance (NHI) program was established in 1995. With 23 million enrollees, it currently covers more than 99% of the Taiwan population. The data from Taiwan’s NHI Research Database (NHIRD) are generally reliable and accurate (Chang et al., 2017b). We identified 66,626 patients with HNC who received RT during 2000–2013 from the registry of patients with catastrophic illnesses in the NHIRD. Of them, those with a prior history of cancer (n = 3131), incomplete data (n = 43), RT procedure codes 36012B or 36011B < 100 times in 75 days (since RT commenced; n = 13,809), age ≥ 65 years (n = 8,492), and age ≤ 20 years (n = 166) were excluded (Kuo et al., 2016c). Finally, 40,985 patients who received RT for HNC were included. The study was approved by Kaohsiung Veterans General Hospital (VGHKS15-EM10-02).

Applicable International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes specific to HNC were adopted, namely malignant neoplasms of the lip (ICD-9-CM 140), tongue (ICD-9-CM 141), major salivary glands (ICD-9-CM 142), gums (ICD-9-CM 143), mouth (ICD-9-CM 144), other and unspecified parts of the mouth (ICD-9-CM 145),
oropharynx (ICD-9-CM 146), nasopharynx (ICD-9-CM 147), hypopharynx (ICD-9-CM 148), other and ill-defined sites within the lip (ICD-9-CM 149), and larynx (ICD-9-CM 161). In addition, RT procedure codes (36012B or 36011B), specific for Taiwan, were included.

Survival analysis

The start point for survival analysis was the index day, defined as the first day of RT, not the first day of diagnosis establishment. The endpoint of survival analysis was the day of death. For patients who survived until the end of the observation period, December 31, 2013 was considered the endpoint.

Income and geographical area

The NHI premium depends on the income of the patients. Thus, although the NHIRD does not record patients’ education level, it records their income. We used this to represent the income factor in our design. We categorized monthly income as follows: low, ≤US$547 (≤NT$17,500); moderate, US$547–781 (NT$17,500–NT$25,000); and high, ≥US$781 (≥NT$25,001; the US$–NT$ conversion is based on an average conversion rate of NT$32 to US$1 for 2015–2016). The geographical area was classified as Northern, Central, Southern, and Eastern (including the offshore island group) Taiwan (Figure 1) (Hung et al., 2015).

Other variables

Other variables included the date of RT administration (before or after January 1, 2009), tumor origin [oral (ICD-9-CM 140–145) or non-oral (ICD-9-CM 146-149,161)] (Kuo et al., 2016b), use in combination with conventional chemotherapy (cisplatin or 5-fluorouracil; yes or no), mandibulectomy or maxillectomy (yes or no), and excision of HNC malignant tumor within 3
months from the index day (yes or no). In patients with HNC of oral origin, the malignant neoplasm sites were the lips, tongue, major salivary glands, gums, mouth floor, and other unspecified parts of the mouth, whereas they were the oropharynx, nasopharynx, hypopharynx, unspecified pharynx, and larynx in patients with HNC of non-oral origin (Kuo et al., 2016b).

Volumetric-modulated arc therapy (VMAT) was introduced in 2009 in Taiwan; the cutoff point in this study was also 2009.

Statistical analyses

All statistical analyses were performed on SPSS (version 20; SPSS Inc., Chicago, IL, USA). The Pearson chi-square test was used for analyzing categorical variables (sex, geographic region of residence, tumor origin, surgery, chemotherapy, and timing of RT), whereas one-way analysis of variance was employed for the continuous variable (age). The chi-square test of homogeneity was used for comparing survival rates until the end of the observation period between income levels and geographical areas. The Z-test with Bonferroni adjustment was used for post hoc comparisons between groups. The Kaplan–Meier method was used for survival analysis with variables limited to income levels and geographical areas only, whereas differences in the survival curves were identified using the log-rank test. A Cox regression model was adjusted for baseline covariates.

RESULTS

Demographic data and clinical characteristics

In total, 40,985 working-age HNC patients treated with RT (mean age, 49.23 ± 8.66 years; age range, 20.01–64.99 years) were included, and the overall survival rate was 53.2% (mean follow-up period, 3.75 ± 3.31 years; Table 1) until December 31, 2013 (end of the observation period). The age range of the study cohort was limited to 20–65 years because the mandatory retirement
age by law in Taiwan is 65 years. Low- and high-income HNC patients had a higher and lower proportion of tumors with oral origin, respectively (Table 1). As shown in Figure 2, the effects of income and geographical area on the cumulative survival rates were in the following orders: high > moderate > low and Northern > Central > Southern > Eastern, respectively. Figure 3A, 3B, and 3C depicts Kaplan–Meier plots for overall survival, survival curves according to different geographical areas, and survival curves according to income levels, respectively. Figure 4 illustrates a Kaplan–Meier plot of survival of patients with HNC undergoing RT based on geographical area and income. Median survival in years was longest and shortest among patients residing in Northern and Eastern Taiwan, respectively (Northern > Central > Southern > Eastern; Table 2). Median survival was longer in the high-income group than it was in the low- and moderate-income groups. Significant differences were noted in the survival curves according to the geographical area (Table 3).

Univariate survival analysis

As shown in Table 2 and Figure 2, among the adult HNC patients (20 < aged < 65 years) residing in different geographical areas, survival was longer among the high-income group than among the low-income group (p < 0.05).

Cox proportional hazard model

Results of the multivariate Cox proportional hazard model for the mortality of HNC patients receiving RT showed that residential area, income, sex, tumor origin, year of RT administration (before or after 2009), use of tumor excision surgery, and use of combined chemotherapy were associated with survival (Table 4).

Being male was most significantly associated with reduced post-RT survival of HNC patients
[hazard ratio (HR) = 2.049, 95% confidence interval (CI) = 1.943–2.162, \(p < 0.001 \)]. This was followed by oral origin (HR = 1.660, 95% CI = 1.609–1.712); lower income level (HR = 1.514, 95% CI = 1.458–1.572); conventional chemotherapy (HR = 1.504, 95% CI = 1.452–1.558); residential area in Eastern Taiwan (HR = 1.454, 95% CI = 1.362–1.552); timing of RT, mandibulectomy, or maxillectomy (HR = 1.215, 95% CI = 1.137–1.299); and no tumor excision surgery (HR = 1.181, 95% CI = 1.120–1.246; all \(p < 0.001 \); Table 4).

Patients with moderate income had a 36.9% higher risk of mortality than did those with high income (HR = 1.369; 95% CI = 1.320–1.420, \(p < 0.001 \)). Patients with low income had a 51.4% greater risk of mortality than did those with high income (HR = 1.514, 95% CI = 1.458–1.572, \(p < 0.001 \)). Patients residing in Central Taiwan had a 12.8% greater risk of mortality than did those residing in Northern Taiwan (HR = 1.128, 95% CI = 1.087–1.171, \(p < 0.001 \)). Patients residing in Southern Taiwan had a 40.2% greater risk of mortality than did those residing in Northern Taiwan (HR = 1.402, 95% CI = 1.355–1.451, \(p < 0.001 \)). Patients residing in Eastern Taiwan had a 45.4% greater risk of mortality than did those residing in Northern Taiwan (HR = 1.454, 95% CI = 1.362–1.552, \(p < 0.001 \)).

Men had a 104.9% greater risk of mortality than did women (HR = 2.049, 95% CI = 1.943–2.162, \(p < 0.001 \)). Tumor with oral origins were associated with a 66.0% greater risk of mortality (HR = 1.660, 95% CI =1.609–1.712, \(p < 0.001 \)) than were tumors with non-oral origins. The use of combined chemotherapy was associated with a 50.4% greater risk of mortality (HR = 1.504, 95% CI = 1.452–1.558, \(p < 0.001 \)) than was the use of no chemotherapy.

DISCUSSION

According to the Surveillance, Epidemiology, and End Results database, the average diagnosis age of laryngeal, oral cavity, and pharyngeal cancer is 62 years. Alvarenga Lde et al. (2008)
demonstrated that the average diagnosis age for HNC is 62 years in Brazil. However, we noted that the average diagnosis age of HNC in Taiwan is 51.84 years (Kuo et al., 2016c)—much lower than that reported previously.

Individuals from the working-age group (20–65 years) provide the main source of family income and care; thus, any serious illness such as HNC can have a negative impact on their family, society, and country. The incidence of HNC is high in Taiwan. Most HNC patients are men (91.3%) and aged 40–60 years (56.0%) (Hsu et al., 2017; Hwang et al., 2015). Taiwan has the highest oral cancer incidence worldwide. Among younger and male patients, oral and oropharyngeal cancers are more prevalent than hypopharyngeal and laryngeal cancers (Hsu et al., 2017). We focused on the survival of HNC patients who received a complete course of RT. Therefore, patients who received RT at a total dosage < 60 Gy in 75 days were excluded according to our previous protocol (Kuo et al., 2016c). Schwam et al. (2015) reported that the 3-year survival rate of HNC patients after adjuvant radiotherapy was 62.8%—higher than the survival rate of HNC patients who received a complete course of RT in the present study.

In general, HNC patients with lower incomes have lower survival rates than those with higher incomes (Gupta et al., 2018; Subramanian & Chen, 2013). Here, HNC patients with high income residing in Northern Taiwan had the highest overall survival rate, whereas those with low income residing in Eastern Taiwan had the lowest overall survival rate (Figure 2). Income had a significant effect on the survival of HNC treated with RT, with the best survival rate being associated with the highest income, regardless of the area of residence. Both income and geographical area have been separately linked to the survival rate of HNC patients treated with RT (Chu et al., 2016; Olsen et al., 2015). According to data published by the Taiwan government, life expectancy, concentration of medical facilities, and accessibility to medical resources are best in Northern Taiwan, followed by Central, Southern, and Eastern Taiwan (Kuo
et al., 2016a). Because of worse transport infrastructure and a low density of medical resources, Eastern Taiwan is a medically deprived area. In the present study, regardless of residential area, income was significantly associated with median survival years and curves (Tables 2, Figure 4). Although the overall survival rate of patients residing in Eastern Taiwan was lower than that in other regions, the survival rate of the highest income group in Eastern Taiwan was even greater than that of the highest income group in Southern Taiwan (Figure 2). However, no significant difference in the overall survival rate was noted among patients with the highest income in Eastern, Central, and Southern Taiwan (Figure 2), probably because patients with higher income have a greater ability to cross regions and access better medical treatment and facilities (Yi-Chen & Chin-Hung, 2010). Our results also demonstrated that a higher income was associated with a higher survival rate in each regional area, and the differences in the survival curves and median survival years between the medium- and low-income groups were smaller than the differences between the high- and low-income groups or between the high- and moderate-income groups (Figure 4, Table 2). We analyzed the interaction effect between income level and residential area, income, and surgery on post-RT mortality. Some interactions were discovered, and the trend was comparable to the original model—a more deprived residential area and lower income were associated with higher post-RT mortality. Interaction effects between income level and surgical treatment were also noted. Among patients without tumor excision surgery, lower income was associated with higher mortality HR. However, in the high-income group, tumor excision surgery did not affect the post-RT mortality rate.

Hagedoorn et al. (2016) reported that among men aged 40–64 years with HNC in Belgium, survival was significantly lower for men with a low SEP and living in deprived areas. The differences in survival between the low- and high-SEP groups appeared less pronounced in more deprived municipalities (Hagedoorn et al., 2016). The main difference between our study and the
study by Hagedoorn et al. (2016) is that we included both working-age men and women with HNC treated with RT. The difference in post-RT survival between low- and high-income groups was higher in more deprived areas in Taiwan, such as Eastern Taiwan.

Men exhibited 104.9% greater HNC-associated mortality than did women. Many studies have confirmed that survival is poorer among men with HNC than among women with HNC (Choi et al., 2016; Chu et al., 2016; Olsen et al., 2015; Osazuwa-Peters et al., 2016), which is consistent with the results of the present study. However, we discovered a much higher HR in men than that reported previously, which may have resulted from the following reasons: (1) women are more likely than men to seek medical care and comply with treatment regimens (Osazuwa-Peters et al., 2016), and (2) men are more likely to chew betel nut, which increases the risk of oral squamous cell carcinoma, an aggressive form of HNC (Tung et al., 2013; Yang & Lin, 2017). Approximately 10% of Taiwan’s population habitually chews betel nut (~2 million people) (Ko et al., 1992). This percentage is higher in Southern and Eastern Taiwan, particularly among men (men: 16.5%; women: 2.9%), those of lower SES, habitual smokers, alcoholics, and aborigines (Chen et al., 2017; Chi-Pang et al., 2009).

We noted that patients treated with either cisplatin or 5-fluorouracil chemotherapy had 50.4% greater risk of mortality than did who were not treated with chemotherapy. Cisplatin and 5-fluorouracil constitute standard chemotherapy for recurrent or metastatic squamous cell carcinoma of head and neck (SCCHN) (Tahara et al., 2014). Because more than 90% of HNCs in Taiwan are squamous cell carcinoma, we selected cisplatin and 5-fluorouracil as the chemotherapeutic variables. We assumed that most HNC patients received cisplatin and 5-fluorouracil to treat recurrent or metastatic SCCHN. Therefore, patients treated with chemotherapy had lower survival rate.

Intensity-modulated RT (IMRT) and VMAT provide superior target coverage, greater
efficiency, fewer complications, shorter therapy duration, and less influence on the quality of life than do conventional RT and three-dimensional conformal RT (Duarte et al., 2014; Lin et al., 2014; Tribius & Bergelt, 2011). IMRT and VMAT have rapidly replaced conventional RT and three-dimensional conformal RT since 2009 in Taiwan (Bedford & Warrington, 2009; OuYang et al., 2016; Zhang et al., 2015). Therefore, the cutoff point in the present study was 2009.

Limitations

Given that RT and CT for HNC are mostly outpatient treatments in Taiwan, the presence of dependents of working-age caregivers, such as children or parents, may have worsened treatment compliance. Although patients from deprived areas, such as Eastern Taiwan, often travel to other regions to receive medical services, the NHIRD only tracks the region of insurance application, which may be a patient’s location of employment, rather than region of residence. Furthermore, the tumor–node–metastasis stage, nutritional status, education level, behaviors and habits, race, and faith of patients are unavailable in the NHIRD. The RT protocol type (conventional RT, three-dimensional conformal radiation therapy, IMRT, or VMAT), either palliative or curative, also affects the survival rate of HNC patients (Marta et al., 2014). We focused on the survival of HNC patients who received a complete RT course; however, the RT protocol was the NHIRD. Newer RT techniques, such as IMRT and VMAT, may not be simultaneously introduced in all four geographical areas of Taiwan. In a relatively deprived area such as Eastern Taiwan, the introduction of such techniques may well be delayed. This uncontrolled bias might confound the higher mortality discovered in Eastern Taiwan. Several studies have shown that being human papillomavirus positive is associated with better survival in patients with oropharyngeal squamous cell cancer (D'Souza et al., 2016; Young et al., 2015). These variables were not controlled or analyzed in the present study.
CONCLUSION

Income and residential area significantly affected the survival rate of HNC patients receiving RT in Taiwan. The highest income group had the best survival rate, regardless of geographical area. The negative predictive factors for survival in HNC patients included being male, tumor with oral origin, RT initiation before 2009, no tumor excision surgery, use of chemotherapy, and use of mandibulectomy or maxillectomy.

REFERENCE

Alvarenga Lde M, Ruiz MT, Pavarino-Bertelli EC, Ruback MJ, Maniglia JV, and Goloni-Bertollo M. 2008. Epidemiologic evaluation of head and neck patients in a university hospital of Northwestern Sao Paulo State. Braz J Otorhinolaryngol 74:68-73.

Bedford JL, and Warrington AP. 2009. Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys 73:537-545. 10.1016/j.ijrobp.2008.08.055

Cabrera AR, Yoo DS, and Brizel DM. 2013. Contemporary radiotherapy in head and neck cancer: balancing chance for cure with risk for complication. Surg Oncol Clin N Am 22:579-598. 10.1016/j.soc.2013.02.001

Chang CC, Lee WT, Lee YC, Huang CC, Ou CY, Lin YH, Huang JS, Wong TY, Chen KC, Hsiao JR, Lu YC, Tsai ST, Lai YH, Wu YH, Hsueh WT, Yen CJ, Wu SY, Chang JY, Fang SY, Wu JL, Lin CL, Weng YL, Yang HP, Chen YS, and Chang JS. 2017a. Investigating the association between diet and risk of head and neck cancer in Taiwan. Oncotarget 8:98865-98875. 10.18632/oncotarget.22010

Chang CT, Liu SP, Muo CH, Tsai CH, and Huang YF. 2017b. Dental Prophylaxis and Osteoradionecrosis: A Population-Based Study. J Dent Res 96:531-538. 10.1177/0022034516687282

Chang TS, Chang CM, Hsu TW, Lin YS, Lai NS, Su YC, Huang KY, Lin HL, and Lee CC. 2013. The combined effect of individual and neighborhood socioeconomic status on nasopharyngeal cancer survival. PLoS One 8:e73889. 10.1371/journal.pone.0073889

Chen PH, Mahmood Q, Mariottini GL, Chiang TA, and Lee KW. 2017. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. Biomed Res Int 2017:3904098. 10.1155/2017/3904098
Chi-Pang W, Chiu-Wen C, Ting-Yuan C, and Min-Kuang T. 2009. Trends in Betel Quid Chewing Behavior in Taiwan-exploring the Relationship between Betel Quid Chewing and Smoking. *Taiwan Journal of Public Health* 28:407-419. 10.6288/TJPH2009-28-05-06

Choi SH, Terrell JE, Fowler KE, McLean SA, Ghanem T, Wolf GT, Bradford CR, Taylor J, and Duffy SA. 2016. Socioeconomic and Other Demographic Disparities Predicting Survival among Head and Neck Cancer Patients. *PLoS One* 11:e0149886. 10.1371/journal.pone.0149886

Chu KP, Habbous S, Kuang Q, Boyd K, Mirshams M, Liu FF, Espin-Garcia O, Xu W, Goldstein D, Waldron J, O'Sullivan B, Huang SH, and Liu G. 2016. Socioeconomic status, human papillomavirus, and overall survival in head and neck squamous cell carcinomas in Toronto, Canada. *Cancer Epidemiol* 40:102-112. 10.1016/j.canep.2015.11.010

Chu KP, Shema S, Wu S, Gomez SL, Chang ET, and Le QT. 2011. Head and neck cancer-specific survival based on socioeconomic status in Asians and Pacific Islanders. *Cancer* 117:1935-1945. 10.1002/cncr.25723

D’Souza G, Anantharaman D, Gheit T, Abedi-Ardekani B, Beachler DC, Conway DI, Olshan AF, Wunsch-Filho V, Toporov TN, Ahrens W, Wisniewski K, Merletti F, Boccia S, Tajara EH, Zevallos JP, Levi JE, Weissler MC, Wright S, Scelo G, Mazul AL, Tommasino M, and Brennan P. 2016. Effect of HPV on head and neck cancer patient survival, by region and tumor site: A comparison of 1362 cases across three continents. *Oral Oncol* 62:20-27. 10.1016/j.oraloncology.2016.09.005

Duarte VM, Liu YF, Rafizadeh S, Tajima T, Nabili V, and Wang MB. 2014. Comparison of dental health of patients with head and neck cancer receiving IMRT vs conventional radiation. *Otolaryngol Head Neck Surg* 150:81-86. 10.1177/0194599813509586

Gupta A, Sonis ST, Schneider EB, and Villa A. 2018. Impact of the insurance type of head and neck cancer patients on their hospitalization utilization patterns. *Cancer* 124:760-768. 10.1002/cncr.31095

Hagedoorn P, Vandenheede H, Vanthomme K, Willaert D, and Gadeyne S. 2016. A cohort study into head and neck cancer mortality in Belgium (2001-11): Are individual socioeconomic differences conditional on area deprivation? *Oral Oncol* 61:76-82. 10.1016/j.oraloncology.2016.08.014

Hsu W-L, Yu KJ, Chiang C-J, Chen T-C, and Wang C-P. 2017. Head and Neck Cancer Incidence Trends in Taiwan, 1980 ~ 2014. *International Journal of Head and Neck Science* 1:180-190. 10.6696/ijhns.2017.0103.05

Hung GY, Horng JL, Yen HJ, Lee CY, and Lee YS. 2015. Geographic Variation in Cancer Incidence among Children and Adolescents in Taiwan (1995-2009). *PLoS One* 10:e0133051. 10.1371/journal.pone.0133051

Hutcheson KA, Lewin JS, Holsinger FC, Steinhaus G, Lisec A, Barringer DA, Lin HY, Villalobos S,
Garden AS, Papadimitrakopoulou V, and Kies MS. 2014. Long-term functional and survival outcomes after induction chemotherapy and risk-based definitive therapy for locally advanced squamous cell carcinoma of the head and neck. *Head Neck* 36:474-480. 10.1002/hed.23330

Hwang TZ, Hsiao JR, Tsai CR, and Chang JS. 2015. Incidence trends of human papillomavirus-related head and neck cancer in Taiwan, 1995-2009. *Int J Cancer* 137:395-408. 10.1002/ijc.29330

Iyer NG, Tan DS, Tan VK, Wang W, Hwang J, Tan NC, Sivanandan R, Tan HK, Lim WT, Ang MK, Wee J, Soo KC, and Tan EH. 2015. Randomized trial comparing surgery and adjuvant radiotherapy versus concurrent chemoradiotherapy in patients with advanced, nonmetastatic squamous cell carcinoma of the head and neck: 10-year update and subset analysis. *Cancer* 121:1599-1607. 10.1002/cncr.29251

Kjaer T, Boje CR, Olsen MH, Overgaard J, Johansen J, Ibfelt E, Steding-Jessen M, Johansen C, and Dalton SO. 2013. Affiliation to the work market after curative treatment of head-and-neck cancer: a population-based study from the DAHANCA database. *Acta Oncol* 52:430-439. 10.3109/0284186x.2012.746469

Ko YC, Chiang TA, Chang SJ, and Hsieh SF. 1992. Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. *J Oral Pathol Med* 21:261-264.

Kreppel M, Nazarli P, Grandoch A, Safi AF, Zirk M, Nickenig HJ, Scheer M, Rothamel D, Hellmich M, and Zoller JE. 2016. Clinical and histopathological staging in oral squamous cell carcinoma - Comparison of the prognostic significance. *Oral Oncol* 60:68-73. 10.1016/j.oraloncology.2016.07.004

Kuo TJ, Chu CH, Tang PL, and Lai YC. 2016a. Effects of geographic area and socioeconomic status in Taiwan on survival rates of head and neck cancer patients after radiotherapy. *Oral Oncol* 62:136-138. 10.1016/j.joraloncology.2016.10.015

Kuo TJ, Ko WT, Chang YC, Lai YC, and Huang WC. 2016b. Risk of osteoradionecrosis in head and neck cancers: Comparison between oral and non-oral cancers. *Oral Oncol* 59:e10-e11. 10.1016/j.joraloncology.2016.05.018

Kuo TJ, Leung CM, Chang HS, Wu CN, Chen WL, Chen GJ, Lai YC, and Huang WC. 2016c. Jaw osteoradionecrosis and dental extraction after head and neck radiotherapy: A nationwide population-based retrospective study in Taiwan. *Oral Oncol* 56:71-77. 10.1016/j.joraloncology.2016.03.005

Langius JA, Bakker S, Rietveld DH, Kruizenga HM, Langendijk JA, Weijjs PJ, and Leemans CR. 2013. Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. *Br J Cancer* 109:1093-1099. 10.1038/bjc.2013.458
Lassig AA, Joseph AM, Lindgren BR, Fernandes P, Cooper S, Schotzko C, Khariwala S, Reynolds M, and Yueh B. 2012. The effect of treating institution on outcomes in head and neck cancer. *Otolaryngol Head Neck Surg* 147:1083-1092. 10.1177/0194599812457324

Lin CY, Huang WY, Jen YM, Chen CM, Su YF, Chao HL, and Lin CS. 2014. Dosimetric and efficiency comparison of high-dose radiotherapy for esophageal cancer: volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy. *Dis Esophagus* 27:585-590. 10.1111/dote.12144

Marta GN, Silva V, de Andrade Carvalho H, de Arruda FF, Hanna SA, Gadia R, da Silva JL, Correa SF, Vita Abreu CE, and Riera R. 2014. Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. *Radiother Oncol* 110:9-15. 10.1016/j.radonc.2013.11.010

Olsen MH, Boje CR, Kjaer TK, Steding-Jessen M, Johansen C, Overgaard J, and Dalton SO. 2015. Socioeconomic position and stage at diagnosis of head and neck cancer - a nationwide study from DAHANCA. *Acta Oncol* 54:759-766. 10.3109/0284186X.2014.998279

Osazuwa-Peters N, Massa ST, Christopher KM, Walker RJ, and Varvares MA. 2016. Race and sex disparities in long-term survival of oral and oropharyngeal cancer in the United States. *J Cancer Res Clin Oncol* 142:521-528. 10.1007/s00432-015-2061-8

Ray-Chaudhuri A, Shah K, and Porter RJ. 2013. The oral management of patients who have received radiotherapy to the head and neck region. *Br Dent J* 214:387-393. 10.1038/sj.bdj.2013.380

Reeve BB, Cai J, Zhang H, Choi J, Weissler MC, Cella D, and Olshan AF. 2013. Health-related quality of life differences between African Americans and non-Hispanic whites with head and neck cancer. *Head Neck* 35:1255-1264. 10.1002/hed.23115

Schwam ZG, Husain Z, and Judson BL. 2015. Refusal of postoperative radiotherapy and its association with survival in head and neck cancer. *Radiother Oncol* 117:343-350. 10.1016/j.radonc.2015.10.013

Selzer E, Grah A, Heiduschka G, Kornek G, and Thurnher D. 2015. Primary radiotherapy or postoperative radiotherapy in patients with head and neck cancer: Comparative analysis of inflammation-based prognostic scoring systems. *Strahlenther Onkol* 191:486-494. 10.1007/s00066-014-0803-1

Subramanian S, and Chen A. 2013. Treatment patterns and survival among low-income medicaid patients with head and neck cancer. *JAMA Otolaryngol Head Neck Surg*
411 139:489-495. 10.1001/jamaoto.2013.2549
Tahara M, Onozawa Y, Fujii H, Monden N, Yana I, Otani S, and Hasegawa Y. 2014. Feasibility of
cisplatin/5-fluorouracil and panitumumab in Japanese patients with squamous cell
carcinoma of the head and neck. Jpn J Clin Oncol 44:661-669. 10.1093/jjco/hyu063
415 Thomas K, Martin T, Gao A, Ahn C, Wilhelm H, and Schwartz DL. 2017. Interruptions of Head
and Neck Radiotherapy Across Insured and Indigent Patient Populations. J Oncol Pract
13:e319-e328. 10.1200/JOP.2016.017863
10.1093/jjco/hyu063
Tribius S, and Bergelt C. 2011. Intensity-modulated radiotherapy versus conventional and 3D
conformal radiotherapy in patients with head and neck cancer: is there a worthwhile
quality of life gain? Cancer Treat Rev 37:511-519. 10.1016/j.ctrv.2011.01.004
421 Tung CL, Lin ST, Chou HC, Chen YW, Lin HC, Tung CL, Huang KJ, Chen YJ, Lee YR, and Chan HL.
2013. Proteomics-based identification of plasma biomarkers in oral squamous cell
carcinoma. J Pharm Biomed Anal 75:7-17. 10.1016/j.jpba.2012.11.017
424 Unal D, Eroglu C, Ozsoy SD, Besirli A, Orhan O, and Kaplan B. 2015. Effect on long-term survival
of psychiatric disorder, inflammation, malnutrition, and radiotherapy-related toxicity in
patients with locally advanced head and neck cancer. J buon 20:886-893.
427 Wong TH, Skanthakumar T, Nadkarni N, Nguyen HV, and Iyer NG. 2017. Survival of patients with
head and neck squamous cell carcinoma by housing subsidy in a tiered public housing
system. Cancer 123:1998-2005. 10.1002/cncr.30557
430 Wu CC, Chang CM, Hsu TW, Lee CH, Chen JH, Huang CY, and Lee CC. 2016. The effect of
individual and neighborhood socioeconomic status on esophageal cancer survival in
working-age patients in Taiwan. Medicine (Baltimore) 95:e4140.
10.1097/MD.0000000000004140
434 Yang TY, and Lin HR. 2017. Taking actions to quit chewing betel nuts and starting a new life: taxi
drivers' successful experiences of quitting betel nut chewing. J Clin Nurs 26:1031-1041.
10.1111/jocn.13599
437 Yi-Chen H, and Chin-Hung L. 2010. Exploring the Relationship between Medical Resources and
Health Status: An Empirical Study of Crude and Accidental Death Rates in 23 Counties in
Taiwan. Taiwan Journal of Public Health 29:347-359. 10.6288/TJPH2010-29-04-08
440 Young D, Xiao CC, Murphy B, Moore M, Fakhry C, and Day TA. 2015. Increase in head and neck
cancer in younger patients due to human papillomavirus (HPV). Oral Oncol 51:727-730.
10.1016/j.oraloncology.2015.03.015
443 Zhang MX, Li J, Shen GP, Zou X, Xu JJ, Jiang R, You R, Hua YJ, Sun Y, Ma J, Hong MH, and Chen
MY. 2015. Intensity-modulated radiotherapy prolongs the survival of patients with
nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy:
A 10-year experience with a large cohort and long follow-up. Eur J Cancer 51:2587-2595.
Figure 1

Definition of residential area in Taiwan

Red is designated for the northern area, green for the central, yellow for the southern, and blue for the eastern and offshore islands.
Figure 2

Description and comparisons of post-radiotherapy survival of head and neck cancer between geographic areas and income levels.

(A) Comparisons between low, medium and high income level in four geographic areas. (B) Comparisons between northern, central, southern and eastern areas in three income levels.
The table and graphs illustrate survival rates across different geographic regions and income levels.

Table: Survival Rates

Geographic region	Low income Survival (%)	Medium income Survival (%)	High income Survival (%)
Northern	54.2%	55.9%	65.3%
Central	47.6%	50.5%	58.4%
Southern	44.2%	47.6%	56.2%
Eastern	38.7%	40.8%	57.0%
All	48.6%	50.8%	61.2%

A. **Survival rate**

- *p < 0.05

B. **Survival rate**

- # p > 0.05
Figure 3

Kaplan–Meier survival curve of HNC patients post radiotherapy.

(A) Kaplan–Meier survival curve of HNC patients post radiotherapy (N=40985). (B) Kaplan–Meier survival curves of HNC patients post radiotherapy for different residential area. (C) Kaplan–Meier survival curves of HNC patients post radiotherapy for different income level.
Figure 4

Kaplan–Meier survival curves in different residential area.

(A) Northern area of Taiwan. (B) Central area of Taiwan. (C) Southern area of Taiwan. (D) Eastern area of Taiwan.
Table 1 (on next page)

Baseline characteristics
Variables	Low $(n=12481)$	Medium $(n=16168)$	High $(n=12336)$	Total $(n=40985)$	p-value
Mean age, yrs $(\pm SD)$	48.45 (± 9.01)	49.89 (± 8.46)	49.17 (± 8.50)	49.23 (± 8.66)	<0.001
Residential area Cases (%)					
Northern	4810 (38.5%)	5151 (31.9%)	6093 (49.4%)	16054	<0.001
Central	2952 (23.7%)	4767 (29.5%)	2451 (19.8%)	10170	
Southern	4112 (32.9%)	5443 (33.6%)	3327 (27.0%)	12882	
Eastern	607 (4.9%)	807 (5.0%)	465 (3.8%)	1879	
Sex					0.997
Male (%)	M: 87.35%	M: 87.29%	M: 87.37%	M: 87.33%	
Female (%)	F: 12.65%	F: 12.71%	F: 12.63%	F: 12.67%	
With Tumor surgery (Around 3 months of index day)	9.1%	9.3%	7.8%	8.8%	<0.001
With mandibulectomy or maxillectomy surgery (in 3 months before index day)	5.02%	5.40%	3.74%	4.78%	<0.001
Timing of receiving R/T Before 2009 (%)	55.04%	57.42%	57.50%	56.72%	<0.001
Origin : Oral cavity (%)	44.85%	45.58%	36.74%	42.70%	<0.001
Combine chemotherapy (%)	77.2%	75.3%	76.6%	76.3%	0.01
Table 2 (on next page)

Median survival years
Residential area	Income level	Cases	Median	SD	95% CI
Northern	Low	4810	6.360	.341	5.691-7.029
	Medium	5151	7.070	.324	6.435-7.705
	High	6093	11.610	.436	10.756-12.464
Central	Low	2952	4.450	.311	3.841-5.509
	Medium	4767	5.120	.239	4.652-5.588
	High	2451	9.140	.576	8.011-10.269
Southern	Low	4112	3.070	.160	2.757-3.383
	Medium	5443	3.950	.168	3.621-4.279
	High	3227	7.080	.379	6.336-7.824
Eastern	Low	607	2.300	.354	1.607-2.993
	Medium	807	3.080	.297	2.498-3.662
	High	465	7.690	.906	5.914-9.466
Total case		40985	6.030	.101	5.831-6.229
Table 3 (on next page)

Pair comparison of survival curve.
Residential area	Income	Low	Medium	High			
		Chi-square	p value	Chi-square	p value	Chi-square	p value
Log Rank (Mantel-Cox)							
Northern	Low	5.123	.024	202.379	<0.01		
	Medium	5.123	.024	146.615	<0.01		
	High	202.379	<0.01	146.615	<0.01		
Central	Low	5.779	.016	84.647	<0.01		
	Medium	5.779	.016	63.549	<0.01		
	High	84.647	<0.01	63.549	<0.01		
Southern	Low	20.904	<0.01	174.397	<0.01		
	Medium	20.904	<0.01	95.323	<0.01		
	High	174.397	<0.01	95.323	<0.01		
Eastern	Low	4.380	.036	54.975	<0.01		
	Medium	4.380	.036	36.183	<0.01		
	High	54.975	<0.01	36.183	<0.01		
Table 4 (on next page)

Multivariate Cox proportional hazards model
Category	Adjusted Hazard ratio	95% CI	P
Random effect of income			
High	1.369	1.320-1.420	<0.001
Medium	1.514	1.458-1.572	<0.001
Low			
Residential area			
Northern	1.128	1.087-1.171	<0.001
Central	1.402	1.355-1.451	<0.001
Southern	1.454	1.362-1.552	<0.001
Eastern			
Random effect of gender			
Female	2.049	1.943-2.162	<0.001
Male			
Random effect of tumor origin			
Origin:Non-oral	1.660	1.609-1.712	<0.001
Origin:Oral			
Random effect of tumor excision surgery			
with surgery	1.181	1.120-1.246	<0.001
without surgery			
Random effect of receiving R/T timing			
After 2009	1.219	1.180-1.259	<0.001
Before 2009			
Random effect of mandibullectomy or maxillectomy surgery			
With	1.215	1.137-1.299	<0.001
Without			
Random effect of chemotherapy			
Without chemotherapy	1.504	1.452-1.558	<0.001
With chemotherapy			