Charged impurity scattering limited low temperature resistivity of low density silicon inversion layers

S. Das Sarma and E. Hwang

Department of physics, University of Maryland, College Park, Maryland 20742-4111

(October 23, 2018)

We calculate within the Boltzmann equation approach the charged impurity scattering limited low temperature electronic resistivity of low density n-type inversion layers in Si MOSFET structures. We find a rather sharp quantum to classical crossover in the transport behavior in the 0–5K temperature range, with low density, low temperature mobility showing a strikingly strong non-monotonic temperature dependence, which may qualitatively explain the recently observed anomalously strong temperature dependent resistivity in low-density, high-mobility MOSFETs.

PACS Number : 73.40.-c, 73.40.Qv, 73.50.Bk, 71.30.+h

Several recent publications on low temperature resistivity measurements in various low density two dimensional (2D) systems report the observation of an anomalously strong temperature dependence as a function of carrier density, which has been interpreted as evidence for a zero temperature two dimensional metal-insulator transition (2D M-I-T), which is considered to be forbidden in two dimensions (at least for a non-interacting 2D system) by the one parameter scaling theory of localization. A number of theoretical papers have appeared in the literature providing many possible resolutions of this seemingly unanticipated (but apparently ubiquitous) phenomenon. In this Letter we propose a possible theoretical explanation for (at least a part of) the observed phenomena. Our explanation is quantitative, microscopic, and physically motivated. Although our theory is quite general and generic (and thus applicable to all the systems exhibiting the so-called 2D M-I-T), we specifically consider here the electron inversion layer in Si MOSFETs, which is both the original system in which the 2D M-I-T was first reported and is also the most exhaustively experimentally studied system in this context. It is important to emphasize that, in contrast to much of the existing theoretical work on the subject, our theory does not address the existence (or not) of a zero temperature 2D M-I-T, but specifically addresses the issue of quantitatively understanding the strikingly unusual finite temperature experimental results on the effective “metallic” side of the transition.

We first summarize the key experimental features of the 2D M-I-T phenomenon (focusing on Si MOSFETs), emphasizing the specific aspects addressed in our theory. Experimentally one finds a “critical density” \(n_c \) separating an effective “metallic” behavior (for density \(n_s > n_c \)) from an effective “insulating” behavior \(n_s < n_c \). We concentrate entirely on the effective “metallic” behavior in this Letter since a 2D metal is “unusual” according to the conventional theory and a 2D insulator is not. The experimental insulating behavior (for \(n_s < n_c \)) is quite conventional for a strongly localized semiconductor and can be understood using standard transport models. The effective “metallic” behavior is characterized by a strong drop in the temperature dependent resistivity, \(\rho(T) \), at low temperatures (0.1K \(\leq T \leq 1 – 3K \)) and at low densities (\(n_s \geq n_c \)). This novel and dramatically strong temperature dependence of \(\rho(T) \), where \(\rho(T) \) may drop by a factor of 2–10 at low electron densities as temperature decreases from 2K to 100 mK, is one of the most significant experimental observations we qualitatively explain in this Letter. In addition the experimental resistivity, \(\rho(T, n_s) \), as a function of temperature and electron density shows an approximate “scaling” behavior \(\rho(T, n_s) \approx \rho(T/T_0) \) with \(T_0 = T_0(n_s) \) indicating consistency with quantum criticality. Our theoretical results show the same “scaling” behavior with our calculated \(T_0(n_s) \) having very similar density dependence as the experimental observation. There are interesting aspects of the magnetic field and the electric field dependence of the observed resistivity, which we do not address here, concentrating entirely on the behavior of \(\rho(T, n_s) \) in the \(n_s \geq n_c \) “metallic” regime. It is this “anomalous metallic” behavior (in the sense of a very strong metallic temperature dependence of the resistivity in a narrow density range above \(n_c \)) which has created the recent interest in the 2D M-I-T phenomena since in general, the temperature dependent resistivity of a metal should saturate as it enters the low temperature Bloch-Grüneisen regime without manifesting any strong temperature dependence.

Our theory, which provides good qualitative agreement with the existing experimental data on the metallic \(n_s > n_c \) side of the transition, is based on two essential assumptions: (1) transport is dominated by charged impurity scattering centers (with a density of \(N_i \) per unit area) which are randomly distributed at the interface; (2) the M-I-T at \(n_s = n_c \) is characterized by a “freeze-out” of free carriers due to impurity binding — the free carrier density responsible for “metallic” transport is thus
interfacial impurity charge centers is given by

calculating the Coulomb interaction and the RPA dielectric function in Eq. (2) we take into account subband quantization effects in the inversion layer through the lowest subband variational wavefunction. We note that there are two independent sources of temperature dependence in our calculated resistivity — one source is the energy averaging defined in Eq. (1) and the other is the explicit temperature dependence of the finite temperature dielectric function \(\varepsilon(q) \) which produces a direct temperature dependence through screening in Eq. (2). At very high temperatures, when \(T \gg T_F \) with

where \(f \) is the Fermi distribution function, \(f(E) = \{1 + \exp[(E - \mu)/k_B T]\}^{-1} \) with \(\mu(T, n) \) as the finite temperature chemical potential of the free carrier system determined self-consistently. The energy dependent scattering time \(\tau(E) \) for our model of randomly distributed interfacial impurity charge centers is given by

with \(q = |k - k'|, \theta \equiv \theta_{kk'} \) is the scattering angle between \(k \) and \(k' \), \(E = \epsilon_k = \hbar^2 k^2/2m, \epsilon_{k'} = \hbar^2 k'^2/2m, v(q) \) is the 2D Coulomb interaction between an electron and an impurity, and \(\varepsilon(q) \equiv \varepsilon(q; \mu, T) \) is the 2D finite temperature static RPA dielectric (screening) function. In

\((n_s - n_e) \) for \(n_s > n_e \), and on the insulating side, \(n_s < n_e \), the free carrier density (at \(T = 0 \)) is by definition zero. Some justifications for these assumptions have been provided in ref. although our current model transcends the specific scenario envisioned in ref. and is more general. In contrast to ref., we do not specify any particular mechanism for the carrier freeze-out and accept it as an experimental fact. We note that we could extend our model and go beyond the above two assumptions, for example, by making the effective free carrier density \(n = (n_s - n_e) \theta(n_s - n_e) + n_a(T) \), where \(n_a(T) \) is a thermally activated contribution to the carrier density (this relaxes the second assumption), and/or by introducing additional scattering mechanisms such as the short-range surface roughness scattering (this relaxes the first assumption). These extensions beyond our two essential approximations will undoubtedly produce better quantitative agreement between our theory and experiment (at the price of having unknown adjustable parameters). We, however, refrain from such a generalized theory, because we believe that the minimal theory, constrained by our two stringent assumptions and thus allowing for only one unknown parameter (the charged impurity density \(N_i \)) which sets the overall scale of resistivity in the system, already catches much of the essential physics in the problem. We use the finite temperature Drude-Boltzmann theory to calculate the ohmic resistivity of the inversion layer electrons taking only into account long range Coulombic scattering by the random static charged impurity centers with the electron-impurity Coulomb interaction being screened by the 2D electron gas in the random phase approximation (RPA). The resistivity is given by

\[\rho = \sigma^{-1}, \text{ where the conductivity } \sigma = ne^2 < \tau > /m \text{ with } m \text{ as the carrier effective mass, and } < \tau > \text{ is the energy averaged finite temperature scattering time:} \]

\[< \tau > = \frac{\int dEE \tau(E) \left(-\frac{\partial f}{\partial E} \right)}{\int dEE \left(-\frac{\partial f}{\partial E} \right)}, \tag{1} \]

\[\frac{1}{\tau(E)} = \frac{2\pi N_i}{\hbar} \int \frac{d^2 k'}{(2\pi)^2} \left| \frac{\nu(q)}{\varepsilon(q)} \right|^2 \left(1 - \cos \theta \right) \delta(\epsilon_k - \epsilon_{k'}), \tag{2} \]

\[\text{where } f(E) \text{ is the Fermi distribution function, } f(E) = \{1 + \exp[(E - \mu)/k_B T]^{-1} \text{ with } \mu(T, n) \text{ as the finite temperature chemical potential of the free carrier system determined self-consistently. The energy dependent scattering time } \tau(E) \text{ for our model of randomly distributed interfacial impurity charge centers is given by} \]

\[\text{with } q = |k - k'|, \theta \equiv \theta_{kk'} \text{ is the scattering angle between } k \text{ and } k', E = \epsilon_k = \hbar^2 k^2/2m, \epsilon_{k'} = \hbar^2 k'^2/2m, v(q) \text{ is the 2D Coulomb interaction between an electron and an impurity, and } \varepsilon(q) \equiv \varepsilon(q; \mu, T) \text{ is the 2D finite temperature static RPA dielectric (screening) function. In calculating the Coulomb interaction and the RPA dielectric function in Eq. (2) we take into account subband quantization effects in the inversion layer through the lowest subband variational wavefunction. We note that there are two independent sources of temperature dependence in our calculated resistivity — one source is the energy averaging defined in Eq. (1) and the other is the explicit temperature dependence of the finite temperature dielectric function } \varepsilon(q) \text{ which produces a direct temperature dependence through screening in Eq. (2). At very high temperatures, when } T \gg T_F \text{ with } T_F \equiv (T(0) - B(T/T_F)^2, \text{ for } T \ll T_F. \text{ For Si inversion layer, however, this low temperature negative temperature dependence is overwhelmed by the temperature dependence of the screening function in Eq. (2) which dominates } 2k_F \text{ scattering — this phenomenon arises from the specific form of the 2D screening function which is a constant up to } q = 2k_F, \text{ and has a cusp at } 2k_F \text{ at } T = 0. \text{ This strong temperature dependence arising from the low temperature screening function produces a linear rise in the low temperature } (T \ll T_F) \text{ resistivity with increasing temperature according to Eq. (2): } \rho(T) \sim \rho(T = 0) + C(T/T_F) \text{, for } T \ll T_F. \text{ This linear temperature dependence is, however, cut off at very low temperatures due to the rounding of the sharp corner in the 2D screening function by impurity scattering effects} \text{ — at very low temperature } T \ll T_D \text{ where } T_D (= \Gamma/\pi k_B \text{ with } \Gamma \text{ as the collisional broadening) is the collisional broadening induced Dingle temperature, the explicit temperature dependence of } \varepsilon(q, T) \text{ is suppressed. At the densities and temperatures of interest in the 2D M-I-T phenomena all of these distinct physical effects are operational, and the actual behavior of } \rho(T, n) \text{ could be quite complicated because the four different asymptotic mechanisms discussed above compete with each other as the system crosses over from a non-degenerate classical } (T > T_F) \text{ to a strongly screened degenerate quantum } (T \ll T_F) \text{ regime. We note that in general the temperature dependence is non-monotonic (particularly at lower densities where the energy averaging effects are significant), as has been experimentally observed, because the temperature dependence of Eq. (1) by itself produces a negative temperature coefficient whereas screening through Eq. (2) produces a positive temperature coefficient.}

\[\text{In Fig. 1 we show our numerically calculated resistivity for the Si-15 sample of ref. We show calculated } \rho(T) \text{ as a function of } T \text{ in Fig. 1 for several values of } n_s > n_e. \text{ We use several different Dingle temperatures to incorporate the impurity scattering induced...} \]
FIG. 1. The calculated resistivity $\rho(T)$ for the Si-15 sample of ref. [1]. We use (a) the fixed Dingle temperature, $T_D = 0K$ (dashed lines) and $T_D = 0.5K$ (solid lines), for various electron densities, $n_e = 8.9, 9.2, 10.2, 12.4 \times 10^{10} cm^{-2}$ (from top to bottom), and the experimental data points are taken from ref. [1]; (b) the density dependent Dingle temperature for various densities, $n_e = 8.0 \times 10^{10} cm^{-2}$, $n_i = 0.25 \times 10^8 cm^{-2}$ (from top to bottom).

Collisional broadening corrections in the screening function, including the pure RPA ($T_D = 0$) case which completely neglects collisional broadening effects on screening. In Fig. 1(b) we show the calculated Si-15 results where the Dingle temperature varies as a function of electron density. For each density the appropriate T_D (going into the screening calculation) is determined from the resistivity for that particular density. In Fig. 1(b) the temperature dependence of $\rho(T)$ at low temperatures is strongest at intermediate densities somewhat away from n_c whereas in Fig. 1(a) the temperature dependence of $\rho(T)$ becomes stronger as one approaches n_c, and is the strongest at the lowest density. This arises from the competition in screening among T, T_F, and T_D — at the lowest densities the temperature dependence is moderated by having relatively high values of T_D whereas at high densities the temperature dependence is suppressed by the large value of T_F, implying that the strongest temperature dependence of $\rho(T)$ occurs at intermediate densities where neither T_D nor T_F is too high. Putting $T_D = 0$ leads to stronger temperature dependence because the temperature dependence of screening is not cut off at low temperatures as it is in the $T < T_D < T_F$ regime for the $T_D \neq 0$ results.

The impurity density N_i has been fixed by demanding agreement between experiment and theory at high temperatures ($T = 5K$) and the highest densities. The impurity density N_i thus sets the scale of the overall resistivity ($\rho \propto N_i$), and does not affect the calculated T and n_s dependence of $\rho(T, n_s)$. It is important to emphasize that N_i values needed in our calculation to obtain quantitative agreement with experiment are in the reasonable range of $N_i \sim 10^{10} cm^{-2}$, which is known to be the typical effective random charged impurity scattering center density in high mobility Si MOSFETs. Since n_i is the only “free” parameter of our theory, it is significant that we obtain a reasonable value for N_i in order to achieve agreement between theory and experiment. We emphasize that our theory is valid even if the metallic $(n_s > n_c)$ system is actually weakly localized as long as the effective localization length is larger than the system size or the phase coherence length. In general, our calculated resistivity is higher (by 25 ~ 40%) than the experimental values at low densities $(n_s \geq n_c)$, i.e., our theory predicts a somewhat stronger n_s dependence of ρ than that observed experimentally. This discrepancy can be corrected by adding an activated carrier density $n_a(T)$ to our effective carrier density $n = (n_s - n_c) + n_a$, which produces the strongest effect at the lowest densities (and essentially no effect at higher densities), and would reduce $\rho(T)$ at lower densities. One can also use a variable impurity density $N_i(n_s)$ which varies with the gate voltage (following the spirit of ref. [8]), and is lower at lower values of n_s, again producing quantitative agreement between theory and experiment. Given the overall excellent qualitative agreement between our results and the experimental data of ref. [3], we think that these refinements of our model are not particularly essential or meaningful.

We show the experimental data points for Si-15 taken from ref. [3] in Fig. 1(a) to give an idea about the level of agreement between our calculation and the experimental results. We do not attach particularly great significance to the quantitative agreement achieved in Fig. 1(a) because of the various approximations in our theory. We do emphasize, however, that our calculations catch all the essential qualitative features of the low temperature experimental data [5, 8]. We obtain the observed non-monotonicity in $\rho(T)$ at low densities and also the strong drop in $\rho(T)$ at low densities in the $0.1 \sim 2K$ temperature range. Consistent with the experimental observations our calculated low density $\rho(T)$ could drop by an order of magnitude for $1 \sim 2K$ change in the temperature. Our high density results show weak monotonic increasing $\rho(T)$ with increasing T similar to experimental observations [7, 8]. We have carried out calculations for all the reported Si samples (as well as GaAs samples) in the literature [5, 8], and our level of qualitative agreement with experiment in uniformly good (typically as good as it is in Fig. 1) for all the existing experiments. For lower mobility samples, our calculated temperature dependence is
we conclude that our theoretical scaling behavior of the resistivity and also with several other experimental [14] findings on the metallic side: (1) strong temperature dependence at low and intermediate densities (\(n_s \geq n_c\)), shows an approximately (within 25%) linear density dependence, (2) non-monotonicity in the observed temperature dependence, particularly at lower temperatures, is somewhat stronger than our calculated results may very well be the manifestation of quantum fluctuation or interaction effects neglected in our theory. While a quantitative theory including disorder and interaction effects is extremely difficult, we speculate that our Boltzmann theory (in particular the quantum-classical crossover which leads to the strong temperature dependence) is sufficiently robust so that our qualitative conclusions will remain unaffected.

Before concluding we point out the approximations made in our calculations. We have assumed uncritically that the Drude-Boltzmann transport theory, which is extensively and successfully employed [9] in the device simulation of Si MOSFET’s, applies to the problem being studied. Our main justification for applying the standard transport theory to the current problem is our belief that such a “zeroth order”, “one-parameter” \((N_1\) being the only parameter in our model) theory must be applied to the problem and compared with the experimental data before one can discuss more speculative (and calculation-ally difficult) approaches [8]. The fact that such a zeroth order theory already obtains good qualitative agreement with the experimental results indicates that charged impurity scattering, carrier binding and freeze-out, temperature and density dependence of 2D screening, and classical to quantum crossover (in the \(T = 0 - 5K\) range) are playing significant roles in the experiments and cannot be neglected in any theoretical analysis of the “2D M-I-T” phenomenon. Our other approximations of using the RPA screening (we actually incorporate a 2D Hubbard local field correction [13] in our screening, which has no qualitative effect on our results) and the Dingle temperature approximation to incorporate collisional broadening effects on screening are quite reasonable (at least qualitatively) within our model and approximation scheme, and may be systematically improved (with a great deal of work) if future experiments warrant such a quantitative improvement of the theory. It is important to emphasize that quantum corrections, including localization effects, are left out of our semi-classical Drude-Boltzmann theory. In providing some justification we mention that the effective dimensionless parameter \(k_F l\) (where \(l\) is the transport mean free path) is typically 2 or larger in our results (at \(T = 0\), which we believe to be the appropriate limit to consider), and therefore a Boltzmann theory may have reasonable validity. We estimate weak localization effects to be substantially weaker than the temperature dependence shown in Fig. 1 in the experimental temperature range \((T > 50mK)\) in refs. [13]. The fact that the observed temperature dependence, particularly at lower temperatures, is somewhat stronger than our calculated results may very well be the manifestation of quantum fluctuation or interaction effects neglected in our theory. An important approximation of our theory (consistent with the Drude-Boltzmann approach) is the neglect of inelastic electron-electron interaction, which may well be significant in the low density 2D systems of experimental relevance. For example, it is possible that the insulating system \((n_s < n_c)\) is an electron glass (arising from the competition/frustration between interaction and disorder). While a quantitative theory including disorder and interaction effects is extremely difficult, we speculate that our Boltzmann theory (in particular the quantum-classical crossover which leads to the strong temperature dependence) is sufficiently robust so that our qualitative conclusions will remain unaffected.

We conclude by emphasizing the specific salient features of the qualitative agreement between our theory and experimental data on the metallic side: (1) strong temperature dependence at low and intermediate densities \((n_s \geq n_c)\); (2) non-monotonicity in \(\rho(T)\), arising from quantum-classical crossover, at low values of \(n_s \geq n_c\) where \(\rho(T)\) increases weakly with decreasing \(T\) at higher temperatures and decreases strongly with \(T\) at lower temperatures; (3) scaling of \(\rho(T, n_s) \sim \rho(T/T_0)\) with the theoretical \(T_0(n_s)\) agreeing with the experimental results; (4) our calculated zero temperature conductivity, \(\sigma(T = 0, n_s) = 1/\rho(T \to 0, n_s)\), shows an approximately (within 25%) linear density dependence, \(\sigma(T = 0) \propto n = (n_s - n_c)\), which is consistent with the \(T \to 0\) extrapolation of the experimental [13] resistivity and also with several other experimental [14] findings [this dependence, \(\sigma(T = 0) \propto (n_s - n_c)\), also supports

![Diagram](image-url)

FIG. 2. The calculated scaling behavior of the resistivity from Fig. 1(b). Inset shows density dependence of the scaling parameter \(T_0\).
our basic freeze-out or binding model; (5) for increasing disorder (i.e., for lower mobility samples) we predict an increasing n_c and weaker temperature dependence, as observed experimentally.

This work is supported by the U.S.-ARO and the U.S.-ONR.

[1] S. V. Kravchenko et al., Phys. Rev. B 50, 8039 (1994).
[2] S. V. Kravchenko et al., Phys. Rev. B 51, 7038 (1995).
[3] S. V. Kravchenko et al., Phys. Rev. Lett 77, 4938 (1996); D. Simonian et al., ibid 79, 2304 (1997); V. M. Pudalov, JETP Lett. 65, 932 (1997); D. Popovic et al., Phys. Rev. Lett. 79, 1543 (1997).
[4] P. T. Coleridge et al., Phys. Rev. B 56, R 12764(1997); J. Lam et al., ibid 56, R 12741 (1997); S. J. Papadakis and M. Shayegan, ibid 57, R 15068 (1998); Y. Hanein et al., Phys. Rev. Lett. 80, 1288 (1998); M. Y. Simmons et al., ibid 80, 1292 (1998).
[5] E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).
[6] V. M. Pudalov, JETP Lett. 66, 175 (1997); V. Dobrosavljević et al., Phys. Rev. Lett. 79, 455 (1997); C. Castellani et al., Phys. Rev. B 57, 9381 (1998); S. He and X. C. Xie, Phys. Rev. Lett. 80, 3324 (1998); D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 58, 8214 (1998); Q. Si and C. M. Varma, Phys. Rev. Lett. 81, 1951 (1998).
[7] T. M. Klapwijk and S. Das Sarma, cond-mat/9810349.
[8] B. Altshuler and D. Maslov, Phys. Rev. Lett. 82, 145 (1999).
[9] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
[10] S. Das Sarma, Phys. Rev. B 33, 5401 (1986).
[11] F. Stern, Phys. Rev. Lett. 44, 1469 (1980); F. Stern and S. Das Sarma, Solid State Electron. 28, 158 (1985).
[12] S. Das Sarma, Phys. Rev. Lett. 50, 211 (1983).
[13] M. Jonson, J. Phys. C9, 3055 (1976).
[14] V. T. Dolgopolov et al., Phys. Rev. B 55, R 7339 (1997); Y. Hanein et al., ibid, 58, R 7520 (1998). See also S. Das Sarma and E. H. Hwang, cond-mat/9901117.