Dysfunction of the Ca\textsubscript{v}2.1 calcium channel in cerebellar ataxias
Sanjeev Rajakulendran, Stephanie Schorge, Dimitri M Kullmann and Michael G Hanna*

Address: MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
* Corresponding author: Michael G Hanna (mhanna@ion.ucl.ac.uk)
F1000 Biology Reports 2010, 2:4 (doi:10.3410/B2-4)

Abstract
Mutations in the \textit{CACNA1A} gene are associated with episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). \textit{CACNA1A} encodes the \(\alpha\)
subunit of the P/Q-type calcium channel or Ca\textsubscript{v}2.1, which is highly enriched in the cerebellum. It is one of the main channels linked to synaptic transmission throughout the human central nervous system. Here, we compare recent advances in the understanding of the genetic changes that underlie EA2 and SCA6 and what these new findings suggest about the mechanism of the disease.

Introduction and context
The Ca\textsubscript{v}2.1 calcium channel belongs to the superfamily of voltage-gated calcium channels. Its other designation, P/Q-type channel, refers to the cell types from which its constituent currents were originally isolated; the 'P' stands for Purkinje and 'Q' for granule cells of the cerebellum. The \(\alpha\) subunit (Figure 1), encoded by \textit{CACNA1A}, is associated with \(\beta\) and \(\alpha_2\delta\) auxiliary subunits that are thought to help in trafficking and anchoring the principal subunit to the cell membrane and also modulate the biophysical properties of the channel [1]. \textit{CACNA1A} undergoes extensive alternative splicing resulting in Ca\textsubscript{v}2.1 channels with different properties [2-5]. These splice variants are differentially expressed throughout the central nervous system (CNS) and serve to adjust the biophysical parameters of the channel to its role in the various cell types.

The \textit{CACNA1A} gene maps to chromosome 19p13 [6]. It is widely expressed throughout the CNS; however, in keeping with its original identification, this gene is expressed at a particularly high level in Purkinje and granule cells of the cerebellum. In much of the CNS, Ca\textsubscript{v}2.1 channels are highly expressed pre-synaptically [7], where they couple calcium influx to vesicular exocytosis in fast neurotransmission. However, in Purkinje cells, Ca\textsubscript{v}2.1 channels serve an additional post-synaptic role in coordinating AMPA (\(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor activation with voltage-dependent calcium influx [8].

\textit{Ca\textsubscript{v}2.1} and ataxia
Dominant mutations in \textit{CACNA1A} underlie at least three allelic diseases (Table 1). A large number of different point mutations (both nonsense and missense) have been shown to cause episodic ataxia type 2 (EA2), an acetazolamide-responsive disorder characterised by paroxysmal attacks of midline cerebellar disturbance manifesting as ataxia, imbalance, vomiting, oscillopsia, and interictal nystagmus [9-15]. Attacks last from hours to days, and triggers include stress and intercurrent infection. Several other EA syndromes have been described (reviewed in [16]); mutations in \textit{KCNA1} – the gene that encodes the K\textsubscript{V}1.1 potassium channel – underlie EA1, which is characterised by brief attacks of ataxia (lasting minutes) with interictal myokymia [17-20]. Interestingly, mutations in \textit{CACNB4}, the gene that encodes one of the accessory \(\beta\)-subunits of Ca\textsubscript{v}2.1, also cause a form of EA [21].

EA2 mutations that result in premature stop codons are likely to generate a non-functional truncated peptide or trigger nonsense-mediated mRNA decay. Functional
characterisation of missense mutations in CACNA1A has demonstrated that mutations associated with EA2 result in a loss of Ca\textsubscript{v}2.1 channel function [22,23]. In addition, mutant subunits may disrupt the membrane trafficking of wild-type channels [24].

In contrast to EA2, spinocerebellar ataxia type 6 (SCA6) is a ‘pure’ progressive cerebellar syndrome that results, not from point mutations, but from an abnormal polyglutamine expansion in the channel’s carboxy-terminal domain, which is present in only certain splice isoforms of the CACNA1A mRNA [25]. Although changes in channel kinetics have been observed [26,27], the pathogenic mechanism of SCA6 is poorly understood.

Recent advances

Direct sequencing of CACNA1A in a number of patients with clinical EA2 often fails to identify causative point mutations. However, the last year has witnessed a further step forward in understanding the genetic basis of EA2. Veneziano and colleagues [28] identified new 5‘ and 3‘ regions in the CACNA1A gene, including a gene promoter region and a new final exon 48, both of which harboured mutations in patients with EA. Furthermore, the mutation spectrum has expanded with the findings of large deletions and duplications in CACNA1A in affected individuals. Previously, nonsense and missense mutations accounted for most cases of EA2. Recently, methods such as MLPA (multiplex ligation-dependent probe amplification) and QMPSF (quantitative multiplex polymerase chain reaction of short fluorescent fragments) have demonstrated large-scale CACNA1A gene rearrangements in patients with EA2 [29,30]. This finding is particularly important for those patients with clinical EA2 in whom sequencing of CACNA1A fails to identify a point mutation.

EA2 is an autosomal dominant disease, and because large deletions in CACNA1A are not likely to produce functional transcripts, it is likely that reduced channel density in the cerebellar circuit (possibly in Purkinje cells, where these channels have been shown to play a central role) is sufficient to cause episodes of ataxia. Moreover, the recent observation that nonsense mutations located within a well-known alternatively spliced exon (exon 37A) [31] can cause EA2 hints at a significant role of Ca\textsubscript{v}2.1 channels containing exon 37A in the cerebellum and underpins the importance of calcium channel splicing in disease causation.

While increasing evidence points to a loss of robust Ca\textsubscript{v}2.1 expression in the cerebellum and haploinsufficiency as the underlying mechanism of EA2, calcium channel

Table 1. Mutations in CACNA1A underlie three allelic disorders: EA2, FHM and SCA6

Disease	Core clinical features	Additional features	Inheritance	Mutations	Functional consequences
Episodic ataxia type 2 (EA2)	Attacks of ataxia, vomiting, vertigo, oscillopsia lasting hours to days, and interictal nystagmus	Epilepsy, migraine, and progressive cerebellar syndrome	Autosomal dominant	Nonsense and missense mutations, small deletions and insertions, and large deletions	Loss of function
Familial hemiplegic migraine type 1 (FHM1)	Rare subtype of MA: attacks of hemiparesis and hemisensory disturbance lasting hours to days	Confusion, encephalopathy, ataxia, coma, and seizures	Autosomal dominant	Missense mutations	Gain of function
Spinocerebellar ataxia type 6 (SCA6)	Late-onset progressive cerebellar ataxia		Autosomal dominant	CAG expansion in C-terminus	Alteration of Ca\textsubscript{v}2.1 channel kinetics; polyglutamine cytotoxicity?

The clinical and genetic features of each disorder are described. The effect of mutations on Ca\textsubscript{v}2.1 channel function is stated. MA, migraine with aura.
dysfunction may not be at the root of SCA6. In support of this view, the expanded CAG repeat in the SCA6 knock-in mouse does not appear to affect CaV2.1 function [32], indicating that the polyglutamine repeat itself may have a cytotoxic effect on the cell. It has recently been suggested that cerebellar dysfunction in a related polyglutamine repeat SCA (SCA2) may arise from aberrant activation of type 1 inositol 1,4,5-trisphosphate receptors (ITPRs) in Purkinje cells by the glutamate tracts themselves [33]. If activation of the ITPRs is the mechanism of polyglutamine repeat SCAs, then SCA6 may be a result of the relative abundance of P/Q channels in Purkinje cells, rather than specific properties of the channels themselves.

Future directions
Despite advances in the genetic basis of EA2, many questions remain unanswered. From a mechanistic point of view, the paroxysmal nature of the neurological symptoms arising from mutations in CACNA1A remains a mystery. In addition, the physiological basis of how attacks are precipitated by stress or indeed relieved by acetazolamide still evades explanation. Answers to some of these questions may await the development of neuronal expression systems. This will allow the study of how genetic variation in the calcium channel gene affects the biophysical properties of CaV2.1 in its physiological environment, especially with respect to synaptic transmission and dendritic depolarisation. A recent insight into this approach came from Heeroma and colleagues [34], who demonstrated that Kv1.1 mutations in EA1 exerted differential effects on excitation (rheobase) and synaptic transmission when expressed in neurons.

Although the polyglutamine tract in SCA6 is considered to confer a toxic gain of function, the exact role of the alternative long- and short-splice variants of CACNA1A in Purkinje cells need to be defined. This may lead to a better understanding of how the expanded CAG repeat in SCA6 results in disease. An additional conundrum is why many spontaneous mutations in CACNA1A in mice result in a 3 Hz spike and wave epilepsy [35,36], whereas in humans, although a few mutations have been shown to co-segregate with EA2 and seizures [37,38], most deletions and truncations in the gene are associated with pure EA2 rather than absence epilepsy. Mutations of this gene appear to give two distinct phenotypes in humans and rodents. Understanding how these phenotypes are associated with different roles of CaV2.1 channels in human and rodent tissues may be an important step in untangling the molecular pathogenesis of seizures and ataxia.

Abbreviations
CNS, central nervous system; EA, episodic ataxia; EA2, episodic ataxia type 2; ITPR, inositol 1,4,5-trisphosphate receptor; P/Q, Purkinje/granule; SCA, spinocerebellar ataxia; SCA6, spinocerebellar ataxia type 6.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors thank the Wellcome Trust, Medical Research Council (G0601943) and Action Research for financial support.

References
1. Catterall WA: Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000, 16:521-55.
2. Kongsamut S, Lipscombe D, Tsiens RW: The N-type Ca channel in frog sympathetic neurons and its role in alpha-adrenergic modulation of transmitter release. Ann N Y Acad Sci 1989, 560:312-33.
3. Bourinet E, Soong TW, Sutton K, Slayers M, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP: Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 1999, 2:407-15.
4. Tsunemi T, Saegusa H, Ishikawa K, Nagayama S, Murakoshi T, Mizusawa H, Tanabe T: Novel Cav2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J Biol Chem 2002, 277:2114-21.
5. Soong TW, DeMaria CD, Alvanis RS, Zweifel LS, Liang MC, Pittman S, Agnew WS, Yue DT: Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J Neurosci 2002, 22:1042-52.
6. Diriong S, Lory P, Williams MA, Ellis SB, Harpold MM, Tavaux S: Chromosomal localization of the human genes for alpha 1A, alpha 1B, and alpha 1E voltage-dependent Ca2+ channel subunits. Genomics 1995, 30:605-9.
7. Westenbroek RE, Sakurai T, Elliott EM, Bell JW, Starr TV, Snutch TP, Catterall WA: Immunoneurochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 1995, 15:5403-18.
8. Higley MJ, Sabatini BL: Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 2000, 9:902-13.
9. Jen JC, Baloh RW: Genetics of episodic ataxia. Adv Neurol 2002, 89:459-61.
10. Jen J, Kim GW, Baloh RW: Clinical spectrum of episodic ataxia type 2. Neurology 2004, 62:17-22.
11. Baloh RW, Yue Q, Furman JM, Nelson SF: Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 1997, 41:8-16.
12. Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW; CINCH investigators: Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007, 130:2484-93.
13. Ophoff RA, Terwindt GM, Vergouwen MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerin JE, Mohrenweiser HW, Bulman DE, Ferrarri M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrarri MD, Frants RR: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87:543-52.
14. Denier C, Ducros A, Vahey K, Joutel A, Thierry P, Ritz A, Castelnovo G, Deonna T, Gérard P, Devoize JL, Gayou A, Perrotty B, Soisson T, Autret A, Warter JM, Vighetto A, Van Bogaert P, Alamowitch S, Roulet E, Tournier-Lasserve E: High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999, 52:1816-21.
27. Restituto S, Thompson RM, Eilet J, Raile RS, Riedl M, Charnet P, Gomez CM: The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 2000, 20:6394-403.

28. Veneziano L, Mantuano E, Mantuano F, Bernardi P, Tarantino P, Boccone L, Hisana FM, Carrera P, Jodice C, Frontali M: Newly characterised 5' and 3' regions of CACNA1A gene harbour mutations associated with familial hemiplegic migraine and episodic ataxia. J Neurol Sci 2009, 276:31-7.

29. Riant F, Mourtada R, Saugier-Veber P, Tournier-Lasserve E: Large CACNA1A deletion in a family with episodic ataxia type 2. Arch Neurol 2008, 65:817-20.

30. Labrum RW, Rajakulendran S, Graves TD, Unson LH, Bevan R, Sweeney M, Hammons SR, Tubriddy N, Britton T, Carr LJ, Ostergaard JR, Kennedy CR, Al-Memar A, Kullmann DM, Schorge S, Temple K, Davis MB, Hanna MG: Large-scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J Med Genet 2009, 46:786-91.

31. Graves TD, Imbrici P, Kors EE, Terwindt GM, Unson LH, Frants RR, Haan J, Ferrari MD, Goadsby P, Hanna MG, van den Maagdenberg AM, Kullmann DM: Premature stop codons in a facilitating EF-hand splice variant of CaV2.1 cause episodic ataxia type 2. Neurabol Dis 2008, 32:10-5.

32. Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasi S, Watanabe M, Gomez CM, Mizusawa H, Tsien RW, Zoghbi HY: Spino cerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 2008, 105:11997-92.

Page 4 of 4

http://F1000.com/Reports/B/2/4

"F1000 Biology Reports 2010, 2:4"

(page number not for citation purposes)