Apolipoprotein A-II Influences Apolipoprotein E-Linked Cardiovascular Disease Risk in Women with High Levels of HDL Cholesterol and C-Reactive Protein

James P. Corsetti1*, Stephan J. L. Bakker2, Charles E. Sparks3, Robin P. F. Dullaart3

1 Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America, 2 Department of Nephrology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands, 3 Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands

Abstract

Background: In a previous report by our group, high levels of apolipoprotein E (apoE) were demonstrated to be associated with risk of incident cardiovascular disease in women with high levels of C-reactive protein (CRP) in the setting of both low (designated as HR1 subjects) and high (designated as HR2 subjects) levels of high-density lipoprotein cholesterol (HDL-C). To assess whether apolipoprotein A-II (apoA-II) plays a role in apoE-associated risk in the two female groups.

Methodology/Principal: Outcome event mapping, a graphical data exploratory tool; Cox proportional hazards multivariable regression; and curve-fitting modeling were used to examine apoA-II influence on apoE-associated risk focusing on HDL particles with apolipoprotein A-I (apoA-I) without apoA-II (LpA-I) and HDL particles with both apoA-I and apoA-II (LpA-I:A-II). Results of outcome mappings as a function of apoE levels and the ratio of apoA-II to apoA-I revealed within each of the two populations, a high-risk subgroup characterized in each situation by high levels of apoE and additionally: in HR1, by a low value of the apoA-II/apoA-I ratio; and in HR2, by a moderate value of the apoA-II/apoA-I ratio. Furthermore, derived estimates of LpA-I and LpA-I:A-II levels revealed for high-risk versus remaining subjects: in HR1, higher levels of LpA-I and lower levels of LpA-I:A-II; and in HR2 the reverse, lower levels of LpA-I and higher levels of LpA-I:A-II. Results of multivariable risk modeling as a function of LpA-I and LpA-I:A-II (dichotomized as highest quartile versus combined three lower quartiles) revealed association of risk only for high levels of LpA-I:A-II in the HR2 subgroup (hazard ratio 5.31, 95% CI 1.12–25.17, p = 0.036). Furthermore, high LpA-I:A-II levels interacted with high apoE levels in establishing subgroup risk.

Conclusions/Significance: We conclude that apoA-II plays a significant role in apoE-associated risk of incident CVD in women with high levels of HDL-C and CRP.

Introduction

There is growing interest in the notion that functional properties of high-density lipoprotein (HDL) [1–3] are important factors contributing to protection against cardiovascular disease (CVD) risk in addition to HDL quantity. However, evidence is also accumulating to suggest that HDL anti-atherogenic properties may be degraded in the setting of inflammation and oxidative stress; and moreover, that such conditions may actually result in dysfunctional transformation of HDL, from anti-atherogenic to pro-atherogenic [4–8]. To investigate this notion in human populations, we have been studying incident and recurrent CVD risk in individuals with concurrently high levels of C-reactive protein (CRP), reflective of inflammatory status, and HDL cholesterol (HDL-C). Subjects with high HDL-C levels were chosen for study instead of subjects with low HDL-C levels to avoid potential confounding of results given the well-known association of low HDL-C with risk on its own. Also in regard to the choice of high HDL-C levels, it should be noted that CVD risk associations have been reported in multiple previous studies [9–20]. Using this approach we have identified increased risk of incident [21–23] as well as recurrent [24,25] CVD risk in populations with concurrently high levels of HDL-C and CRP.

As anti-atherogenic properties of HDL are thought to derive from multiple HDL particle constituents including [7] apolipoproteins (apoA-I, apoA-II, and apoE), enzymes (paraoxonase-1, lecithin-cholesterol acyltransferase (LCAT), and glutathione peroxidase), and lipid transfer proteins (cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP)), we recently studied and reported findings focusing on apoE in this context. Results demonstrated risk of incident CVD in association with high apoE levels in women with concurrently high levels of HDL-C and CRP [23]. In the current work, we sought to extend these studies in the same population by investigating a potential
relationship in the context of risk between apoE and apoA-II, another major constituent of HDL.

ApoA-II [26–30] occurs in plasma as a dimer of two 77-amino acid chains linked by a disulfide bridge; and after apoA-I, it is the second major protein component of HDL accounting for approximately 20% of HDL total protein. In terms of lipoprotein physiology, the role of apoA-II has not been fully characterized; however, it is thought to play an important role in triglyceride metabolism both from animal and human studies [26,27,30]. In this regard, recent findings attribute to apoA-II, inhibitory effects on lipoprotein lipase-mediated hydrolysis of triglyceride-rich particles [31,32]; however, additional associations of apoA-II have been reported for a variety of protein factors including hepatic lipase (HL), lipoprotein lipase (LPL), endothelial lipase, CETP, PLTP, and LCAT [26,27,33]. For apoA-II and atherosclerotic risk, the situation is again not fully characterized as apoA-II has been associated with both increased and decreased risk [33–35].

To extend our previous findings of high apoE-associated risk in women with concurrently high levels of HDL-C and CRP [23] in terms of a potential relationship with apoA-I and apoA-II, we developed a modeling approach utilizing observed levels of HDL-C, apoA-I, and apoA-II levels for the estimation of concentrations of the two major HDL particle subclasses [26,27], LpA-I (containing apoA-I but not apoA-II) and LpA-I:A-II (containing apoA-I and apoA-II). With resultant estimated values for LpA-I and LpA-I:A-II particle concentrations, multivariable risk models were constructed. Results demonstrated risk association for high levels of LpA-I:A-II. Additionally, there was interaction of LpA-I:A-II with apoE in establishment of risk.

Materials and Methods

Ethics Statement

The PREVEND (Prevention[of Renal and Vascular Endstage Disease] study was approved by the Medical Ethics Committee of the University of Groningen, the Netherlands; written informed consent was obtained from all subjects. Detailed descriptions of definitions and data acquisition techniques were reported previously [21–23,36–38].

Study Populations

The study population was drawn from PREVEND (http://www.prevend.org/) [36], a prospective longitudinal study of albuminuria in predicting cardiovascular disease [37] and renal disease [38]. All inhabitants of the city of Groningen, the Netherlands (28–75 years of age, N = 85,421) were sampled by
questionnaire for demographic and cardiovascular morbidity data for the period, 1997–1998 and they were requested to supply an early morning urine specimen. Response rate was 47.8%. Study subjects included all those with urinary albumin concentrations ≥ 10 mg/L and a group of randomly selected subjects with urinary albumin < 10 mg/L. Insulin-using diabetics and pregnant women were excluded. This gave 6592 study subjects that were equally divided by gender (median age - 40 years). Cardiovascular outcome events included cardiovascular mortality and any of the following at hospitalization: non-fatal MI (36.9%), ischemic heart disease (26.4%), percutaneous transluminal coronary angioplasty (19.2%), coronary artery bypass grafting (12.5%), and fatal MI (5.0%). Mortality data were from the municipal register. Cause of death was obtained by linking death certificate number to primary cause of death (Dutch Central Bureau of Statistics). Cardiovascular hospitalization morbidity data were from PRISMANT (Dutch national registry of hospital discharge diagnoses). Follow-up time was date of initially requested urine collection in 1997 to date of either first CVD event or study termination (31 December 2005) if no CVD event.

The six study groups of the current work consisted of subcohorts of female and male subjects previously identified [21–23] using outcome event mapping, a graphical exploratory data analysis tool [25,39]. Subgroups were characterized as follows: female (N = 679) and male (N = 764) high-risk subgroups having concurrently low levels of HDL-C and high levels of CRP (henceforth designated HR1), female (N = 508) and male (N = 374) high-risk subgroups having concurrently high levels of HDL-C and high levels of CRP (henceforth designated HR2), and female (N = 2232) and male (N = 1813) lower-risk background subgroups of remaining subjects (henceforth designated BG). All-cause mortality rates (%) and respective % of these due to CVD for the subgroups were as follows: females, BG - 2.0%/11.1%, HR1 - 3.8%/15.2%, and HR2 - 2.8%/14.3%; and males, BG - 2.9%/13.2%, HR1 - 3.8%/27.6%, and HR2 - 10.4%/28.2%. Fractions of mortalities due to CVD did not differ among the female subgroups (p = 0.86) nor among the male subgroups (p = 0.15).

Previous results of univariate modeling in the context of risk associations with apoE levels demonstrated apoE as a predictor of risk in both the low HDL-C/high CRP subgroup and high HDL-C/high CRP subgroups but only in women [23]. Initial study exclusions for PREVEND included insulin-using diabetics and pregnancy. For the current study, further exclusions were for diabetes mellitus, renal disease, previous CVD, incomplete laboratory results, and CRP levels ≥10 mg/L (to avoid confounding by inter-current illness). Median follow-up time was 7.6 years. Metabolic syndrome was assessed according to ATP III criteria.

Blood Biomarkers

Biomarker analyses were performed on serum and plasma samples prepared from venous blood from subjects fasted overnight and after fifteen minutes of rest. Levels of total cholesterol, HDL-C, triglycerides, apoA1, apoB, glucose, and high sensitivity CRP were determined as described previously [21,40]. Immunonephelometry (BNII, Dade Behring, Marburg,
Germany) was used for apoE and apoA-II determinations. LDL-C levels were estimated using the Friedewald equation.

Estimation of LpA-I and LpA-I:A-II Concentrations from Observed HDL-C, apoA-I, and apoA-II Concentrations

LpA-I and LpA-I:A-II particle concentrations were estimated in four steps: 1. expressing LpA-I and LpA-I:A-II concentrations as functions of apoA-I, apoA-II, and the average number of apoA-I and apoA-II molecules per particle; 2. expressing HDL-C as a function of apoA-I, apoA-II, and the average number of apoA-I and apoA-II molecules per particle such that multiple linear regression analysis results in coefficients of the apoA-I and apoA-II terms that provide a basis for estimation of the average number of apoA-I and apoA-II molecules per particle; 3. numerical analysis for the determination of the average number of apoA-I and apoA-II molecules per LpA-I and LpA-I:A-II particles; and 4. estimation of LpA-I and LpA-I:A-II levels from observed values of apoA-I and apoA-II concentrations and the estimated values of the average number of apoA-I and apoA-II molecules per LpA-I and LpA-I:A-II particles as per step 1.

1. Expressions for LpA-I and LpA-I:A-II particle concentrations.

Concentrations of HDL particles containing apoA-I without apoA-II (LpA-I) and HDL particles containing apoA-I with apoA-II (LpA-I:A-II) were estimated by first assuming that the sum of apoA-I concentrations associated with each type of HDL particle should equal the measured apoA-I concentration as follows:

\[\text{apoA-I} \sim N \times \text{LpA-I} + n \times \text{LpA-I:A-II} \tag{1} \]

where N is the average number of apoA-I molecules per LpA-I particle and n is the average number of apoA-I molecules per LpA-I:A-II particle; and second, that the apoA-II concentration should reflect the LpA-I:A-II concentration as follows:

\[\text{apoA-II} \sim m \times \text{LpA-I:A-II} \tag{2} \]

where m is the average number of apoA-II molecules per LpA-I:A-II particle. An expression for LpA-I:A-II particle concentration was directly derived from equation (2) to give:

\[\text{LpA-I:A-II} = \frac{1}{m} \times \text{apoA-II} \tag{3} \]

while an expression for LpA-I was obtained by substituting the value of LpA-I:A-II from equation (3) into equation (1) to give:

\[\text{LpA-I} = \frac{1}{N} \times \text{apoA-I} - \frac{n}{N \times m} \times \text{apoA-II} \tag{4} \]

This results in expressions for LpA-I and LpA-I:A-II involving measured apoA-I and apoA-II levels and three unknown parameters (N, n, and m).

2. Estimation of HDL-C levels as a function of apoA-I and apoA-II levels.

To estimate HDL particle concentration (HDL), a mass balance equation was formulated in terms of LpA-I and LpA-I:A-II particle concentrations as follows:
HDL = LpA-I + LpA-I : A-II

(5)

where each term represents the respective particle concentrations and the assumption is that HDL exists totally either as LpA-I or LpA-I:A-II. Substitution of the values of LpA-I from equation (4) and LpA-I:A-II from equation (3) into equation (5) gives:

HDL = (1/N) * apoA-I + (1/m) * (1 − (n/N)) * apoA-II

(6)

However, HDL particle concentration was not measured in the study, but rather HDL-C. To re-express equation (6) in terms of HDL-C, note that:

HDL = k * HDL-C

(7)

where k is a linear proportionality constant relating the two. Substituting the value of HDL from equation (7) into equation (6) and solving for HDL-C gives:

HDL-C = (1/(N * k)) * apoA-I + (1/(m * k)) * (1 − (n/N)) * apoA-II

(8)

The expressions for the coefficients of apoA-I and apoA-II of equation (8) involve only constants thus enabling equation (8) to be re-expressed as:

HDL-C = k1 * apoA-I + k2 * apoA-II

(9)

where k1 and k2 are constants defined as follow:

k1 = (1/k * N)

(10)

k2 = (1/(k * m)) * (1 − (n/N))

(11)

3. Estimation of average number of apoA-I and apoA-II molecules per LpA-I and LpA-I:A-II particle. Dividing k2 from equation (11) by k1 from equation (10) results in an expression for the ratio of k2/k1. This ratio is a function of N, n, and m but not k as follows:

k2/k1 = (N/m) * (1 − (n/N))

(12)

Observed HDL-C, apoA-I, and apoA-II concentrations were used with equation (9) and least-squares curve-fitting routines to generate best-fit values for the parameters, k1 and k2, and subsequently for the k2/k1 ratio (observed). In order to derive
values for \(N \), \(n \), and \(M \) consistent with this observed ratio, a grid search was undertaken evaluating the \(k_2/k_1 \) ratio (predicted) resulting from judiciously chosen combinations of the three variables. Following recent work reporting that human \(\text{LpA-I} \) contains from three to seven \(\text{apoA-I} \) molecules per particle [41], \(N \) in the grid search was allowed to vary from 2 to 8 in 0.1 increments. For \(n \) and \(m \), values were allowed to range from 1 to 8 in 0.1 increments. This procedure resulted in the sampling of 307,301 combinations. Estimates of \(N \), \(n \), and \(m \) were generated as mean values of the three variables for those combinations of variables that resulted in estimates of the \(k_2/k_1 \) ratio that were within 1% of the observed value (the percentage of combinations resulting from judiciously chosen combinations of the three variables). A grid search was allowed to vary from 2 to 8 in 0.1 increments. For \(n \) and \(m \), values were allowed to range from 1 to 8 in 0.1 increments. This procedure resulted in the sampling of 307,301 combinations. Estimates of \(N \), \(n \), and \(m \) were generated as mean values of the three variables for those combinations of variables that resulted in estimates of the \(k_2/k_1 \) ratio that were within 1% of the observed value (the percentage of combinations meeting the criterion ranged from 0.24% to 0.47% of the 307,301 sampled combinations).

4. \text{LpA-I} and \text{LpA-I:A-II} concentrations. Resulting values of \(N \), \(n \), and \(M \) together with observed values of \(\text{apoA-I} \) and \(\text{apoA-II} \) levels were used with equations (4) and (3) to estimate values for \(\text{LpA-I} \) and \(\text{LpA-I:A-II} \) concentrations.

Statistical Analyses

Statistica 10.0 (StatSoft, Inc., Tulsa, OK) was used for statistical, numerical, and graphical analyses. For continuous variables, differences between groups were assessed using Mann-Whitney U test; for categorical variables, differences between distributions were assessed using chi square test. Kaplan-Meier and Cox proportional hazards multivariable regression analyses were used to follow outcomes over time. Multivariable models were adjusted based on significance (\(p<0.10 \)) in Cox univariate analysis for clinical covariates (age, BMI, hypertension, metabolic syndrome, ethanol use, and smoking), and blood biomarkers (HDL-C, CRP, \(\text{apoA-I} \), \(\text{apoA-II} \), cholesterol, LDL-C, triglycerides, \(\text{apoB} \), and \(\text{apoE} \)). Continuous risk variables were treated as binary variables (dichotomized as highest quartile versus combined lowest three quartiles). Modeling of relationships was performed using least-squares curve-fitting routines. Significance testing of all final models was at the \(p<0.05 \) level.

Outcome event mapping [25,39], a graphical exploratory data analysis tool, was used to identify high-risk subgroups as a function of \(\text{apoE} \) levels and the \(\text{apoA-II}/\text{apoA-I} \) ratio. Briefly, a 3-dimensional scatter plot was generated with CVD outcome on the \(z \)-axis (coded 0 for no outcome and 1 for outcome) as a function of two rank-transformed (to more evenly distribute patients over the bivariate risk domain) risk parameters (\(x \)-axis, \(\text{apoE} \) levels; \(y \)-axis, \(\text{apoA-II}/\text{apoA-I} \) ratio). A smoothing algorithm is then applied which results in a surface (outcome event map) where height above the bivariate \(x-y \) plane approximates the outcome rate. Regions of high risk are manifested as peaks while regions of low risk are manifested as valleys. Subjects contained within peaks in the mappings comprise high-risk subgroups.

Results

A flow Diagram to Clarify the Design of the Study is given in Figure 1.

\(\text{ApoA-II}/\text{apoA-I} \) ratio and \(\text{apoE} \)-associated risk in the total study population of women and men.

| Table 2. Clinical and laboratory characterization (mean±SD) and comparisons between base subjects and peak subjects in the female high HDL-C/high CRP high-risk subgroup (HR2). |
|----------------|----------------|----------------|----------------|----------------|
| Parameter | Total Population (N=508) | Base (N=426) | Peak (N=82) | p-value |
| Clinical | | | | |
| CVD Outcomes % (N) | 2.95(15) | 1.64(7) | 9.76(8) | <0.0001 |
| Age (Years) | 48.5±12.9 | 47.0±12.7 | 56.5±10.9 | <0.0001 |
| BMI (kg/m²) | 27.0±4.8 | 26.8±4.9 | 27.6±4.2 | 0.055 |
| Hypertension (%)| 45.3 | 42.0 | 62.2 | 0.0008 |
| Metabolic Syndrome (%) | 12.3 | 10.4 | 22.5 | 0.0026 |
| Alcohol Use (%) | 17.0 | 16.0 | 22.2 | 0.17 |
| Smoking Status (%) | | | | 0.11 |
| Never | 31.9 | 32.4 | 29.3 | |
| Former | 34.1 | 35.5 | 26.8 | |
| Current | 34.1 | 32.2 | 43.9 | |
| Biomarkers | | | | |
| HDL-C (mmol/L) | 1.55±0.21 | 1.56±0.21 | 1.54±0.21 | 0.48 |
| CRP (mg/L) | 5.05±2.01 | 5.02±2.00 | 5.22±2.09 | 0.46 |
| apoE (g/L) | 0.0377±0.0133 | 0.0343±0.0114 | 0.0529±0.0102 | <0.0001 |
| \(\text{apoA-I} \) (g/L) | 1.59±0.25 | 1.58±0.26 | 1.61±0.21 | 0.26 |
| \(\text{apoA-II} \) (g/L) | 0.375±0.072 | 0.374±0.076 | 0.378±0.052 | 0.47 |
| \(\text{apoA-II}/\text{apoA-I} \) (Wt ratio) | 0.237±0.034 | 0.238±0.037 | 0.234±0.013 | 0.68 |
| HDL-C/\(\text{apoA-I} \) (mmol/g) | 0.997±0.186 | 1.00±0.197 | 0.961±0.111 | 0.097 |
| Cholesterol (mmol/L) | 5.67±1.17 | 5.52±1.10 | 6.43±1.19 | <0.0001 |
| LDL-C (mmol/L) | 3.53±1.09 | 3.41±1.04 | 4.17±1.15 | <0.0001 |
| Triglycerides (mmol/L) | 1.27±0.55 | 1.22±0.49 | 1.58±0.72 | <0.0001 |
| \(\text{apoB} \) (g/L) | 1.01±0.27 | 0.98±0.26 | 1.15±0.28 | <0.0001 |

DOI:10.1371/journal.pone.0039110.t002
Preliminary to investigating potential connections of apoE-associated risk in conjunction with apoA-I and apoA-II in HDL particles in previously identified female and male high-risk subgroups, we first studied the total study population in this regard. An outcome event map was generated for subjects of the total study population as a function of the apoA-II/apoA-I ratio and apoE level (Figure 2). The mapping shows a modest risk peak at higher levels of the apoA-II/apoA-I ratio and high levels of apoE. Cox proportional hazards regression was performed for peak versus base subjects with adjustments for clinical covariates and biomarkers demonstrating univariate significance level, \(p < 0.1 \). Results of multivariable Cox regression demonstrated non-significance \(p = 0.17 \) for peak versus base subjects in a model adjusted for gender, age, BMI, hypertension, metabolic syndrome, smoking, and levels of apoA-I, apoA-II, apoB, apoE, total cholesterol, CRP, HDL-C, and triglycerides.

ApoA-II/apoA-I ratio and apoE-associated Risk in Subgroups

Extending investigations to previously identified high-risk subgroups in women and men of potential connections of apoE-associated risk in conjunction with apoA-I and apoA-II in HDL particles, outcome event maps in women (Figure 3) and men (Figure 4) were generated showing estimated CVD risk as a function of apoE levels and the apoA-II/apoA-I ratio for the lower-risk background subgroups (BG), the high-risk low HDL-C/high CRP subgroups (HR1), and the high-risk high HDL-C/high CRP subgroups (HR2). The plots demonstrated a well-defined single high-risk peak occurring only for HR1 women (Figure 3B, at low levels of the apoA-II/apoA-I ratio and at high levels apoE levels) and for HR2 women (Figure 3C, at an intermediate but narrow range of values for the apoA-II/apoA-I ratio and at high apoE levels). In view of the lack of focused risk associations of apoE and the apoA-II/apoA-I ratio in all three of the male and the background subgroup in women, further analyses in these subgroups were not pursued.

For the female HR1 and HR2 subgroups, higher-risk subjects were taken to be those subjects contained in the peaks of the outcome event mappings. Peak boundaries were taken to be at a base level of risk at a value of 5.3% corresponding to the onset of peaks. Figures 3B and 3C show iso-contour lines of risk at this level. On this basis, subjects contained within the high-risk peak in subsequent analyses were designated as "peak" and remaining subjects as "base". Table 1 (HR1) and Table 2 (HR2) present clinical and biomarker characterization along with statistical comparison between respective base and peak subjects. For the female HR1 subgroup (Table 1), results demonstrated for peak in comparison to base subjects older age; higher BMI; more hypertension and metabolic syndrome; higher levels of apoE, apoA-I, apoA-II, total cholesterol, LDL-C, triglycerides, and apoB; and lower apoA-II/apoA-I and HDL-C/apoA-I ratios. For the female HR2 subgroup (Table 2), results demonstrated for peak in comparison to base subjects older age, more hypertension and metabolic syndrome, and higher levels of apoE, total cholesterol, LDL-C, triglycerides, andapoB. Levels of HDL-C, apoA-I, apoA-

Table 3. Best-fit parameters resulting from modeling of HDL-C levels as a function of apoA-I and apoA-II levels and comparison of resultant predicted values of mean HDL-C levels with observed values of mean HDL-C levels in the female low HDL-C/high CRP subgroup (HR1) and the female high HDL-C/high CRP subgroup (HR2).

	Base Subjects	Peak Subjects
HR1		
\(k_1 \)	0.0222	0.0177
\(k_2 \)	0.0045	0.0126
\(k_2/k_1 \)	0.2002	0.7089
Predicted mean HDL-C (mmol/L)	1.06	1.07
Observed mean HDL-C (mmol/L)	1.07	1.08
Difference (%)	−0.93	−0.93
HR2		
\(k_1 \)	0.0257	0.0203
\(k_2 \)	0.0060	0.0187
\(k_2/k_1 \)	0.2331	0.9207
Predicted mean HDL-C (mmol/L)	1.53	1.53
Observed mean HDL-C (mmol/L)	1.56	1.54
Difference (%)	−1.92	−0.65

Figure 5. Kaplan-Meier plots for base subjects (heavy solid line) and peak subjects (light solid line) for: A. the low female HDL-C/high CRP subgroup (HR1) \(p < 0.0001 \), log-rank); and B. the female high HDL-C/high CRP subgroup (HR2) \(p < 0.0001 \), log-rank).

doi:10.1371/journal.pone.0039110.g005
II, and apoA-II/apo-A-I ratio were not different between peak and base subjects. With regard to the apoA-II/apo-A-I ratio, although mean values were not different between peak and base, the SD of the ratio for peak subjects was approximated one third the value for base subjects suggestive of a narrow range in the ratio characterizing apoE-associated risk.

To confirm the high-risk nature of peak versus base subjects, survival analysis was performed. Preliminary analyses revealed follow-up times among the BG, HR1, and HR2 subgroups to be comparable (p = 0.079, Kruskal-Wallis) as well as between base and peak subjects of HR1 and HR2 (p = 0.31 and p = 0.69, respectively, Mann-Whitney-U). Results of subsequent Kaplan-Meier analysis demonstrated for the female HR1 subgroup significant difference between the curves (Figure 5A, p < 0.0001, log-rank) and likewise for the female HR2 subgroup (Figure 5B, p < 0.0001, log-rank). In addition, Cox proportional hazards regression was performed for peak versus base subjects with adjustments for age, BMI, hypertension, metabolic syndrome, HDL-C, cholesterol, triglycerides, and apoE. Results continued to reveal significantly higher risk for peak subjects for both the HR1 subgroup (hazard ratio 2.44, 95% CI 1.07–5.55, p = 0.034) and the HR2 subgroup (hazard ratio 8.35, 95% CI 2.21–31.46, p = 0.0017). Following the finding of univariate significance only for LpA-I:A-II, levels were incorporated along with observed apoA-I and apoA-II concentrations into equations (4) and (3) to generate estimates of LpA-I and LpA-I:A-II concentrations for base and peak subjects in the female HR1 and HR2 subgroups (Table 4).

Table 4. Estimates of apoA-I molecules/LpA-I particle (N), apoA-I molecules/LpA-I:A-II particle (n), and apoA-II molecules/LpA-I:A-II particle (m); and estimates of LpA-I and LpA-I:A-II particle concentrations in base and peak subjects in the female HR1 and HR2 subgroups.

Estimated molecules/particle	Base Subjects	Peak Subjects	p-value
HR1			
ApoA-I molecules/LpA-I particle (N)	5.07±1.73	6.14±1.33	<0.0001
ApoA-I molecules/LpA-I:A-II particle (n)	4.18±1.76	2.86±1.34	<0.0001
ApoA-II molecules/LpA-I:A-II particle (m)	4.44±2.14	4.62±1.84	0.027
Estimated particle concentrations			
LpA-I (µM)	5.05±1.00	5.88±0.84	<0.0001
LpA-I:A-II (µM)	4.31±0.77	3.93±0.54	<0.0001
HR2			
ApoA-I molecules/LpA-I particle (N)	5.15±1.68	6.30±1.35	<0.0001
ApoA-I molecules/LpA-I:A-II particle (n)	3.93±1.70	2.70±1.34	<0.0001
ApoA-II molecules/LpA-I:A-II particle (m)	5.22±1.75	3.91±1.68	<0.0001

Estimates of LpA-I and LpA-I:A-II concentrations were developed as described in the Materials and Methods section. That is; values of N, n, and m resulting from grid searches based upon comparison of predicted values of the k2/k1 ratio as a function of N, n, and m combinations with the observed value of the k2/k1 ratio were incorporated along with observed apoA-I and apoA-II concentrations into equations (4) and (3) to generate estimates of LpA-I and LpA-I:A-II concentrations for base and peak subjects in the female HR1 and HR2 subgroups (Table 4). For the HR1 subgroup, peak subjects versus base subjects had per LpA-I particle higher numbers of apoA-I molecules and per LpA-I:A-II particle lower numbers of apoA-I molecules and similar numbers of apoA-II molecules. For the HR2 subgroup, peak subjects versus base subjects had per LpA-I particle higher numbers of apoA-I molecules (similar to the HR1 subgroup) and per LpA-I:A-II particle lower numbers of apoA-I molecules (similar to the HR1 subgroup); however, for LpA-I:A-II particles there were fewer apoA-II molecules per particle in contrast to results for the HR1 subgroup. For the HR1 subgroup, peak versus base subjects demonstrated higher levels of LpA-I particles and lower levels of LpA-I:A-II particles. For the HR2 subgroup results were reversed; peak versus base subjects showed lower levels of LpA-I particles and higher levels of LpA-I:A-II particles.

LpA-I and LpA-I:A-II Concentrations

HDL-C concentration was modelled in terms of apoA-I and apoA-II levels as detailed in the Materials and Methods section resulting in the generation of best-fit values for the model parameters, k1 and k2. Analyses were performed separately for base and peak subjects with results given for the female HR1 and HR2 subgroups in Table 3. Predicted values of mean HDL-C levels agreed closely with corresponding observed values.
Table 5. Biomarker dichotomization cut-points (Q4 versus Q1+Q2+Q3) and univariate results of Cox proportional hazards regression for LpA-I and LpA-I:A-II particle concentrations as predictors of risk as well as corresponding values for biomarker and clinical covariates in the female high HDL-C/high CRP (HR2) high-risk subgroup.

Parameter	Dichotomization Cut-Off Level	Univariate HR (95% CI)	p
LpA-I	8.25 (μM)	0.17 (0.02–1.71)	0.13
LpA-I:A-II*	5.10 (μM)	8.35 (2.21–31.46)	0.002
Biomarkers			
HDL-C	1.68 (mM)	0.46 (0.10–2.05)	0.31
CRP	6.42 (mg/L)	1.54 (0.53–4.50)	0.43
apoE*	0.0447 (g/L)	8.30 (2.20–31.28)	0.002
apoA-I	1.76 (g/L)	0.78 (0.22–2.75)	0.70
apoA-II	0.41 (g/L)	0.77 (0.22–2.72)	0.68
Cholesterol*	6.40 (mM)	4.55 (1.62–12.78)	0.004
LDL-C*	4.21 (mM)	2.61 (0.95–7.20)	0.064
Triglycerides*	1.53 (mM)	4.89 (1.74-13.75)	0.003
apoB*	1.18 (g/L)	3.46 (1.25–9.53)	0.017
Clinical Covariates			
Age (Years)*	1.08 (1.03–1.13)	0.001	
BMI (kg/m²)*	1.10 (1.01–1.20)	0.022	
Hypertension*	4.85 (1.37–17.18)	0.014	
Metabolic Syndrome	1.13 (0.26–5.01)	0.87	
Alcohol Use	1.22 (0.34–4.32)	0.76	
Smoking Status	1.32 (0.70–2.51)	0.39	

*Univariate significance at the p<0.10 level.
Adjustments to multivariable Cox models were made for biomarkers and clinical covariates demonstrating p<0.1 level of significance in Cox univariate analyses.

doi:10.1371/journal.pone.0039110.t005

and clinical covariates. Table 5 gives dichotomization cut-points as well as Cox univariate results for biomarkers and clinical covariates. Models adjusted for significant biomarker and clinical covariates (age, BMI, hypertension, cholesterol, LDL-C, triglycerides, apoB and apoE) as a function of LpA-I:A-II levels revealed continued significance of LpA-I:A-II levels (hazard ratio 5.31, 95% CI 1.12–25.17, p = 0.036) as a predictor of risk in the HR2 subgroup.

Relationship of apoA-II and apoE in the Establishment of Risk in HR2 Females

To investigate the relationship of apoA-II to apoE-associated risk in HR2, Kaplan-Meier analysis was performed as a function of the four combinations of dichotomized levels of LpA-I:A-II and apoE (Figure 6). The curve for subjects with high levels of both LpA-I:A-II and apoE is notable in demonstrating greater risk than any of the other three combinations (log-rank, p<0.0001; high LpA-I:A-II/high apoE subjects compared to combined remaining three lower-risk groups).

Discussion

We previously reported identification of two subgroups of healthy women at high-risk for incident CVD, one with low HDL-

C and high CRP levels and the other with high HDL-C and high CRP levels [21–23]. We believe the high CRP in each case to be indicative of an underlying potentiating relationship between inflammation and HDL particles in the establishment of risk. A major finding of the current work was that high levels of HDL particles with both apoA-I and apoA-II (LpA-I:A-II) associated with incident CVD risk in the high-risk group of women with high levels of HDL-C and CRP as determined by multivariable models adjusted for relevant clinical covariates and blood markers. In the same high-risk group, apoA-II levels were found not to be associated with risk which was suggestive that apoA-II associated risk derived not from the absolute amount of apoA-II but rather from the number of particles of apoA-II-carrying HDL. An additional important finding of the current study was that LpA-I:A-II associated risk was found to interact positively with the increased risk previously demonstrated for high levels of apoE in these women [23]. Regarding HDL particles with apoA-I but not apoA-II (LpA-I), there was no association of risk with LpA-I in the high HDL-C/high CRP women. Also, it should be noted that for women with low levels of HDL-C and high levels of CRP, neither LpA-LA-II nor LpA-I associated with risk.

As stated above, we found risk in the female high HDL-C/high CRP subgroup associated with high levels of LpA-I:A-II particles but not with apoA-II levels. Regarding CVD risk and apoA-II in general, the situation is not clear in that although it is generally thought that there is an inverse relationship of risk with apoA-II levels, other studies indicate that apoA-II may be pro-atherogenic [33,34]. Our lack of demonstrating apoA-II risk may thus be a reflection of sensitivity of potential apoA-II associated risk to salient features of specific populations. Regarding LpA-I:A-II and risk, there are few human studies directly assessing potential associations. One of particular relevance to the current study was an investigation of LpA-I and LpA-I:A-II regarding atherosclerotic lesions in hyperalphalipoproteinemic subjects. Results indicated less cardioprotective effects for higher LpA-I:A-II levels [42]. Additionally, a report from the Framingham Offspring Study in an investigation involving participants with and without coronary heart disease revealed slightly but significantly higher levels of LpA-I:A-II in cases versus HDL-C-matched controls [43]. On the other hand, earlier studies revealed for LpA-I:A-II levels in individuals with coronary artery disease as compared to controls, in one case lower levels [44] and in another case no difference [45].

With regard to apoA-II and lipoprotein metabolism, there have been substantial efforts directed at elucidation of possible links. Reported actions of apoA-II involve: primarily inhibitory effects on remodeling of HDL through modulation of activities of lipid transfer proteins (CETP, PLTP), enzymes (LCAT, LPL, HL, endothelial lipase), and receptors (SR-B1, cubulin, heat shock protein); efflux of cholesterol and phospholipids; and triglyceride metabolism [26,27,30–33]. Recent work potentially relevant to findings of the current study involved an investigation in human subjects of apoA-II metabolism in the setting of raised levels of apoA-II (LpA-I), there was no association of risk with LpA-I in the high HDL-C/high CRP women. Also, it should be noted that for women with low levels of HDL-C and high levels of CRP, neither LpA-LA-II nor LpA-I associated with risk.
drolase (PAF-AH), that are thought to play a leading role in anti-
oxidant functionality of HDL [46]. However, another study
reported for human apoA-II enriched HDL, impaired protection
against oxidative modification of apoB-containing lipoproteins
and displacement of PON1 by apoA-II. This was thought to explain
why PON1 is found mostly on LpA-I particles and why, at least in
part, apoA-II-rich HDL demonstrated lack of anti-atherogenic
properties [47]. It should also be noted that studies in mice
involving apoA-II-enriched HDL have demonstrated pro-inflam-
atory transformation of HDL [48,49]. In addition to these
findings, a recent study reports novel apoA-II associated pro-
inflammatory activity in the suppression of lipopolysaccharide
(LPS) inhibition by LPS binding proteins [50]. The finding in the
current study of LpA-I:A-II associated risk would thus be
consistent with pro-inflammatory and pro-atherogenic character-
istics of apoA-II as noted above.

Results of the current study indicated positive interaction of
LpA-I:A-II with apoE in terms of CVD risk in the female high
HDL-C/high CRP subgroup (HR2). In this regard it may be
notable that apoA-II and apoE are known to form a heterodimeric
complex that overall accounts for approximately 30% of plasma
apoE in normolipidemic subjects; and furthermore, it has been
reported that the complex on HDL demonstrates reduced binding
affinity for the LDL receptor [51,52]. Thus, it is tempting to
speculate that the conditions of high-risk in the HR2 subgroup
(high LpA-I:A-II and apoE levels) could result, in part, through
formation of the apoE/apoA-II complex subsequently resulting in
reduced uptake of HDL-C via the LDL receptor-mediated uptake
pathway for apoE-rich HDL [53]. This could increase HDL
residence time in the circulation which could foster dysfunctional
transformation of HDL in the inflammatory setting indicated by
the high CRP defining the subgroup.

Limitations in the current study involved a number of issues.
Because the central aim of the study was to examine potential risk
in the female high HDL-C/high CRP subgroup as related to
apoA-II levels, and as preliminary studies revealed no evidence of
such risk not only for apoA-II but additionally for apoA-I; we
sought instead to extend our studies to LpA-I and LpA-I:A-II
particles. This necessitated an approach involving several
assumptions for the estimation of these parameters. The first of
these was that LpA-I and LpA-I:A-II constitute the major
subclasses of HDL. This appears justified in that although HDL
particles containing apoA-II without apoA-I have been reported
[54], they appear to comprise a small fraction of HDL, and in
general, they are not detected in the circulation [55]. Another
concern is that apoA-II is known to be present in VLDL [31];
however, this occurs in the setting of low plasma HDL-C levels
which was clearly not the case in the present study of the high
HDL-C subgroup. The second assumption was that HDL particle
concentration was in direct proportion to measured HDL-C.
Although it is known that LpA-I and LpA-I:A-II particles are
heterogeneous within each subclass with regard to size and density
and consequently cholesterol content; on average, the assumption
of direct proportionality seems reasonable. This notion is
supported by results of previous studies demonstrating statistically
significant linear correlation of HDL particle concentration with
HDL-C levels [56–58]. The third assumption was that the search
for the number of apoA-I and apoA-II molecules per particle
based upon goodness of fit to observed values of the k2/k1 ratio
would provide valid estimates. In this regard, our estimates
compared well with experimentally determined values from other
studies. The value of N (number A-I molecules/LpA-I particle) in
the current study ranged from 5.1 to 6.3 as compared to 3.0 to 7.0
over the total size range of HDL particles as reported in a recent
study [41]. Additionally, the ratio of number of A-I molecules to
number of A-II molecules in LpA-I:A-II particles in the current
study ranged from 0.62 to 0.94 comparing well with reported
values for human HDL of 1.00 [59,60], 1.20 [61], 1.30 [62], 1.56
[63], and 1.89 [64]. In addition to these points, there were other
limitations to the study including no direct data provided relating
to the primacy of high levels of HDL-C, CRP, apoE, and LpA-I:A-II as related to dysfunctional transformation of HDL in the establishment of risk. These issues should be addressed in future studies by assessment of multiple facets of HDL functionality as well as physico-chemical characterization of HDL to elucidate the nature of potential dysfunctional transformation in such populations.

In summary, we have studied a potential role for apoA-II in the risk of incident CVD risk in a previously identified subgroup of healthy women defined by high levels of HDL-C and CRP [21,22] and for whom apoE was previously shown to be a risk factor [23]. Results of the current study demonstrated that high levels of apoA-II containing HDL particles (LpA-I:A-II) also associated with incident CVD risk using multivariable modeling adjusted for relevant clinical and biochemical covariates. In addition, LpA-I:A-II and apoE were found to interact positively in the establishment of risk. Regarding other related factors, it should be noted that neither HDL-C, nor HDL particles without apoA-II (LpA-I), nor apoA-I, nor apoA-II levels associated with risk in the subgroup. LpA-I:A-II associated risk in the absence of apoA-II associated risk was suggestive that the number of LpA-I:A-II particles and not the quantity of apoA-II was important in the establishment of such risk. We conclude that apoA-II and apoE, major apolipoprotein constituents of HDL, are important in the ongoing characterization of the nature of HDL particles with regard to pathophysiological mechanisms responsible for high CVD risk in populations with concurrently high levels of HDL-C and CRP.

Acknowledgments

The contributions of S.J.I., Bakker and R.P.F. Dullaart were made on behalf of the PREVEND study group. We are indebted to all PREVEND collaborators.

Author Contributions

Conceived and designed the experiments: JPC CES RPFD. Performed the experiments: JPC SJLB. Analyzed the data: JPC CES RPFD. Contributed reagents/materials/analysis tools: JPC SJLB. Wrote the paper: JPC CES RPFD.

References

1. Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP (2008) Multiple actions of high-density lipoprotein. Curr Opin Cardiol 23: 370–378.
2. deGoma EM, deGoma RL, Rader DJ (2006) Beyond high-density lipoprotein cholesterol levels. J Am Coll Cardiol 51: 2199–2211.
3. Svirdov D, Mukhantseva N, Remaley AT, Chin-Dusting J, Nestel P (2008) Athero-protectivity of high density lipoprotein: how much versus how good. J Atheroscler Thromb 15: 52–62.
4. Raghir S, Farmer JA (2010) Dysfunctional high-density lipoprotein and atherosclerosis. Curr Atheroscler Rep 12: 343–348.
5. Shao B, Oda M, Oram JF, Heinecke JW (2010) Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem Res Toxicol 23: 447–454.
6. Ansell BJ, Fonarow GC, Fogelman AM (2007) The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol 18: 427–434.
7. Kominah A, Chapman MJ (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacological Reviews 58: 342–374.
8. Onat A, Hergene G (2011) Low-grade inflammation, and dysfunction of high-density lipoprotein and its apolipoproteins as a major driver of cardiovascular risk. Metabolism Clinical and Experimental 60: 499–512.
9. De Backer G, de Bacquer D, Kornitzer M (1998) Epidemiological aspects of high density lipoprotein cholesterol. Atherosclerosis Suppl: S1–S6.
10. Jappesen J, Hein HO, Suardicapi F, Gynelberg F (1996) Triglyceride concentration and ischemic heart disease. Circulation 97: 1029–1036.
11. von Eckardt A, Schulte H, Assmann G (1999) Increased risk of myocardial infarction in men with both hypertriglyceridemia and elevated HDL cholesterol. Circulation 99: 1925.
12. Birnir V, Simon JO, Feng J, Blumenthal RS, Newby K, et al. (2006) Correlates of high HDL cholesterol among women with coronary heart disease. Am Heart J 153: 288–296.
13. Shimoni N, Kaplan M, Keidar S (2003) Cardiovascular diseases in patients with high levels of plasma high density lipoprotein association with increased plasma oxidative state. Israel Med Association J 5: 702–705.
14. Agerholm-Larsen B, Nordreestgaard BG, Steffenes R, Jensen G, Tybjærg-Hansen A (2000) Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesterol concentration gene. Circulation 101: 1907–1912.
15. Gnasso A, Motti C, Trice C, Di Gennaro I, Pujia A, et al. (2002) The ARG allele in position 192 of PON1 is associated with carotid atherosclerosis in subjects with elevated HDLs. Atherosclerosis 164: 289–295.
16. deLemos AS, Wolfe ML, Long CJ, Swappapathanan R, Rader DJ (2002) Identification of genetic variants in endothelial lipase in persons with elevated High-Density Lipoprotein cholesterol. Circulation 106: 1321–1326.
17. Ma K, Cliniengroul M, Otvos JD, Ballantyne CM, Marian AJ, et al. (2003) Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. PNAS 100: 2748–2753.
18. Broedl UC, Jin W, Rader DJ (2004) Endothelial lipase: a modulator of lipoprotein metabolism upregulated by inflammation. Trends Cardiovasc Med 14: 202–206.
19. Grundy SM, Vega GL, Otvos JD, Rainwater DL, Cohen JC (1999) Hepatic lipase activity influences high density lipoprotein subclass distribution in normotriglyceridemic men: genetic and pharmacological evidence. J Lipid Res 40: 229–254.
ApoA-II Influence on apoE Coronary Risk in Women

36. Pinto-Sieruma SJ, Janssen WMT, Hillegé HL, Navis G, De Zeeuw D, et al. (2008) Urinary albumin excretion is associated with renal functional abnormalities in a non-diabetic population. J Am Soc Nephrol 11: 1882–1888.

37. Lambers Heerspink HJ, Brantuma AH, de Zeeuw D, Bakker SJ, de Jong PE, et al. (2008) Albuminuria assessed from first-morning-void urine samples versus 24 hour urine collections as a predictor of cardiovascular morbidity and mortality. Am J Epidemiol 168: 897–905.

38. Verhave JD, Gansevoort RT, Hillegé HL, Bakker SJ, De Zeeuw D, et al. (2004) An elevated urinary albumin excretion predicts de novo development of renal function impairment in the general population. Kidney Int 66: S18–S21.

39. Corsetti JP, Zareba W, Moss AJ, Sparks CE (2005) Serum glucose and triglyceride determine high-risk subgroups in non-diabetic postinfarction patients. Atherosclerosis 183: 293–300.

40. Borggreve SE, Hillegé HL, Wolffenbuttel BHR, de Jong PE, Zuurman MW, et al. (2006) An increased coronary risk is paradoxically associated with common cholesteryl ester transfer protein gene variations that relate to higher high-density lipoprotein cholesterol: a population-based study. J Clin Endocrinol Metab 91: 3382–3388.

41. Huang R, Gangani SD, Jerome WG, Kontush A, Chapman MJ, et al. (2011) Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol 18: 416–423.

42. Sich D, Saidi Y, Giral P, Lagrost L, Dalongeville J, et al. (1998) Characterization of two HDL subfractions and LpA-I, LpA-I:A-II distribution profiles and clinical characteristics of hyperalphalipoproteinemic subjects without cholesteryl ester transfer protein deficiency. Atherosclerosis 138: 351–360.

43. Asztalos BF, Demissie S, Cupples LA, Collins D, Cox CE, et al. (2006) LpA-I, LpA-I:A-II HDL and CHD-risk: The Framingham Offspring Study and the Veterans Affairs HDL Intervention Trial. Atherosclerosis 183: 59–67.

44. Syvanne M, Kahri J, Virtanen KS, Taskinen MR (1995) HDL containing apolipoprotein A-II enriches displaces paraoxonase form HDL and impairs its anti-oxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ Res 95: 789–797.

45. Durbin DM, Jonas A (1997) The effect of apolipoprotein A-I on the structure and function of apolipoprotein A-I in a homogeneous reconstituted high density lipoprotein particle. J Biol Chem 272: 31333–31339.

46. Ameh RF (1998) Isolation and identification of HDL particles of low molecular weight. J Lipid Res 31: 1771–1780.

47. Harchaoui KE, Arsenault BJ, Fransen R, Despres JP, Hovingh GK, et al. (2009) High-density lipoprotein particle size and concentration and coronary risk. Ann Intern Med 150: 84–93.

48. Mora S, Otros JD, Rifai N, Rosenson RS, Buring JE, et al. (2009) Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 119: 931–939.

49. Kazlauskaite R, Powell LH, Mandapakala C, Curcio JF, Avery EF, et al. (2010) Vitamin D is associated with atheroprotective high-density lipoprotein profile in postmenopausal women. J Clin Lipidol 4: 113–119.

50. Leroy A, Tsoulil KLH, Fruchart JC, Jonas A (1995) Structural properties of high density lipoprotein subclasses homogeneous in protein composition and size. J Biol Chem 268: 4798–4803.

51. Ameh RF, Shepherd J, Packard CJ (1983) Subpopulations of apolipoprotein A-I in human high-density lipoproteins their metabolic properties and response to drug therapy. Biochem et Biophys Acta 731: 175–180.

52. Norfeldt PI, Olsson SO, Fager G (1981) Isolation and partial characterization of the lipoprotein families A and A-I from high-density lipoproteins of human plasma. Eur J Biochem 118: 25–30.

53. Bekaert ED, Alaupovic P, Knight-Gibson C, Norum RA, Laux MJ, et al. (1992) Characterization of two HDL subfractions and LpA-I, LpA-I:A-II distribution profiles and clinical characteristics of hyperalphalipoproteinemic subjects without cholesteryl ester transfer protein deficiency. Atherosclerosis 138: 351–360.

54. Atmeh RF (1990) Isolation and identification of HDL particles of low molecular weight. Atherosclerosis 80: 65–70.

55. Atmeh RF, Shepherd J, Packard CJ (1983) Subpopulations of apolipoprotein A-I in human high-density lipoproteins their metabolic properties and response to drug therapy. Biochem et Biophys Acta 731: 175–180.

56. Norfeldt PI, Olsson SO, Fager G (1981) Isolation and partial characterization of the lipoprotein families A and A-I from high-density lipoproteins of human plasma. Eur J Biochem 118: 1–8.

57. Otta H, Hattori S, Nishiyama S (1988) Studies on the lipid and apolipoprotein composition of two species of apoA-I-containing lipoproteins in normolipidemic males and females. J Lipid Res 29: 721–728.

58. Cheung MC, Albers JJ (1984) Characterization of lipoprotein particles isolated by immunoaffinity chromatography. J Biol Chem 259: 12201–12209.

59. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240: 622–630.