Stretching the P–C Bond. Variations on Carbenes and Phosphanes
Dánial Buzsáki, Zsolt Kelemen,* and László Nyulási

ABSTRACT: The stability and the structure of adducts formed between four substituted phosphanes (PX₃, X:H, F, Cl, and NMe₂) and 11 different carbenes have been investigated by DFT calculations. In most cases, the structure of the adducts depends strongly on the stability of the carbene itself, exhibiting a linear correlation with the increasing dissociation energy of the adduct. Carbenes of low stability form phosphorus ylides (F), which can be described as phosphane → carbene adducts supported with some back-bonding. The most stable carbenes, which have high energy lone pair, do not form stable F-type structures but carbene → phosphane adducts (E-type structure), utilizing the low-lying lowest unoccupied molecular orbital (LUMO) of the phosphane (with electronegative substituents), benefiting also from the carbene–pnictogen interaction. Especially noteworthy is the case of PCl₃, which has an extremely low energy LUMO in its T-shaped form. Although this PCl₃ structure is a transition state of rather high energy, the large stabilization energy of the complex makes this carbene–phosphane adduct stable. Most interestingly, in case of carbenes with medium stability both F- and E-type structures could be optimized, giving rise to bond-stretch isomerism. Likewise, for phosphorus ylides (F), the stability of the adducts G formed from carbenes with hypervalent phosphorus (PX–phosphinidenes) is in a linear relationship with the stabilization of the carbene. Adducts of carbenes with hypervalent phosphorus (PX₅) are the most stable when X is electronegative, and the carbene is highly nucleophilic.

INTRODUCTION
Carbenes (Carb—this notation will be used throughout) are divalent carbon compounds, stabilized mainly by heteroelements like nitrogen or sulfur,¹⁻⁵ yielding N-heterocyclic carbenes (NHCs) or cyclic aminocarbenes (CAACs) just to mention the most widely applied ligands of transition metals.⁶⁻⁹ Moreover, as strong nucleophiles,¹⁰ these ligands can stabilize otherwise highly reactive molecules formed from p-block elements.¹¹,¹² Furthermore, they react with weak Lewis acids as silanes¹³⁻¹⁸ and phosphanes.¹⁸⁻⁴⁰ The NHC–silane adducts could apparently be described by dative bond formation,¹³⁻¹⁸,⁴¹,⁴² being stabilized by (i) electron-donating substituents (e.g. halogens) at silicon and (ii) by the increased nucleophilicity of the carbenes.⁴¹,⁴² The products from the reactions between different NHCs and phosphanes are more diverse (Figure 1: A–E), depending on the reaction conditions and the nature of the starting materials.¹³⁻¹⁹,²²,²₅⁻³₂,³₄⁻⁴⁰ The parent H-phosphanes did not react with imidazol-2-ylidene (1 R:Dipp)⁴³ however, imidazolidine-2-ylidene (2 R:Dipp)⁴² and CAAC (3)¹⁹ were activating the PH bond, yielding primary phosphanes A (X = alkyl or aryl, Y:H see Figure 1). Imidazol-2-ylidene flanked by ipr groups at the nitrogen atoms reacts with diphenylphosphane in a dehydrocoupling reaction, assumedly via the phosphane intermediate A.¹³ Various NHCs react with R₂PCl²⁸⁻²⁷ (R: aryl or alkyl) and often formed cationic species (B)²⁸,²⁹ with chloride counterion.

Figure 1. Recently synthesized carbene (Carb)–phosphane systems (A, B, C, D, E, F, G) (the apparent byproduct Cl₂ being sequestered by a third molecule of NHC). Imidazol-2-ylidene (R:Dipp)³³,³⁴ and R:Mes³⁵ formed adducts,³⁸⁻⁴⁰ which,
analogous to the silane case, were described with a single dative bond E ($X = \text{Cl}$) on the basis of the P–C distance.38–40,44–48 These structures exhibit a “see-saw” arrangement at phosphorus.38–40 Further interactions between carbenes and phosphanes have also been studied computationally,49,50 with specific emphasis on weak pnictogen interactions.51–53 According to these calculations, carbene–phosphane distances between 2.0 and 3.3 Å were reported for different stabilized singlet carbenes (including the NHC imidazol-ylidene and its oxygen analogue NOC) and various substituents at phosphorus. In case of the shortest (2.0–2.3 Å) distances, the energy of the interaction between carbene and phosphane approaches 15–20 kcal/mol.49,50 and phosphorus has a distorted trigonal bipyramidal arrangement (E' structure).

On the contrary, the bonding between a carbene R_2C: and a phosphane :PR$_3$ is traditionally described as an ylidic double P–C bond ($\lambda^3P\equiv C$ bond).54–72 While the charge separation ($P'^-\equiv C^-$ character) can clearly be seen in the photoelectron spectrum,73 the bond distance74 is matching that of the $\lambda^3P\equiv C$ bond.55–79

Furthermore, Bader analysis provides similar characteristics (density and ellipticity) at the bond critical point for the $\lambda^3P\equiv C$ and $\lambda^3P\equiv C$ bonds.80,81 Both the similarities and the differences can be understood, considering the presence of a hyperconjugative pseudo-π center (formed from the orbitals of the P-substituents) in case of the λ^3-derivative.80 In fact, this bonding model is equivalent to the model shown in Figure 2.

![Figure 2. Bonding description of the $\lambda^3P\equiv C$ and $\lambda^3P\equiv C$ double bonds. The nonperpendicular (with respect to the bond) p-orbital lobes symbolize a σ^* phosphorus-substituent orbital, which is involved in π-type back bonding.](image)

considering the donation of the phosphine lone pair to the empty orbital of the (singlet) carbene augmented by a back donation of the carbene lone pair to the σ^* orbitals at phosphorus (negative hyperconjugation).82 The highest occupied molecular orbital (HOMO) of $H_2C\equiv PH$ 2 (Figure 3 structure a) clearly shows the bond polarization (large contribution at carbon) but also the back donation toward phosphorus can easily be recognized.

In contrast, the HOMO of the $\lambda^3P\equiv C$ bond ($CH_2\equiv PH$) is nearly equally distributed between phosphorus and carbon (Figure 3 structure b), in accordance with the similarity between the $P\equiv C$ and $C\equiv C$ bonds.79,83

Accordingly, as an adduct between NHC and phosphane, the formation of an F-type structure, which is the $\lambda^3P\equiv C$ counterpart of G, can also be envisaged. Stable singlet carbenes form G-type adducts with phosphinidene (known examples are I–II,72,84–87,89,93–98,101–103 III–IV,90 V,91,92,104–106 as shown in Figure 4. The resulting inversely polarized105,106 phosphalkenes107–111 (note the HOMO in Figure 3 structure c),91,92,104–106 are of recent interest,84,86,87,89,94–98 as the phosphorus analogues91,92,104–106 of the deoxy-Breslow intermediate (Figure 5),112–116 which, as a strong nucleophile, has a key role in umpolung reactions.117–119 Moreover, the 31P NMR chemical shifts of these type of compounds were correlated with the π-polarizations of carbene–phosphorus bond as well.120

Recently, these kind of adducts were reviewed, and their applications were highlighted as well.121–123

Thus, the formation of any λ^3P containing F-type structure, where the NHC and the ylidic structure with opposing polarizing effects on the double bond (Figure 3), is clearly an interesting possibility; however, this type of adduct was not observed in the reactions between NHCs and phosphanes considered so far. This might be in accordance with the known destabilizing effect75 of the amino substituents on phosphorus ylides; nevertheless, some C-amino-phosphorus ylides could be synthesized.124,125

In view of the wide variation of the reaction products between phosphanes and different NHCs (Figure 1), the aim of the present computational study is the comprehensive investigation of the systems formed from the PX$_3$ ($X = H, F, Cl, NMe$_2$) moiety and carbenes 1–11, yielding compounds with different electronic structures (in particular A, E, and F in Figure 1). The carbenes selected for our investigation (depicted in Figure 6) include mainly synthesized structures with (i) different σ-donor properties and (ii) with different stabilization (resulting mainly from π-donor interactions, raising the energy of the carbene empty orbital and consequently the singlet–triplet gap). The extent of the stabilizing interaction can be measured by singlet–triplet gap but more conveniently with the energy (ΔE_{ISC}) of the isodesmic reaction 1,126

$$RR'C: +CH_4 \rightarrow RR'CH_2 + CH_4.$$ (1)

![Figure 3. HOMO of CH$_2\equiv PH$ (a), CH$_2\equiv PH$ (b), and NHC$\equiv PH$ (c). a has a methylene localized orbital, b exhibits an ethylene-like balanced π-system, while the HOMO of c is localized mainly at phosphorus. Back-bonding can be seen in case of a and also for c.](image)
The stabilization energies (ΔE_{ISO}) from reaction 1 for the targeted carbenes are given in Figure 6 and Table S1. In the present work, we investigate the relative stability of the possible isomers, in case of the different carbenes, and discuss comprehensively the effect of the formal increase of the phosphorus valency on the P−NHC bond of the G-type compounds.

RESULTS AND DISCUSSION

First, we discuss briefly the G-type carbene−phosphinidene adducts with carbenes 1−11. The P−C bond distance in these compounds (1.638−1.762 Å—see Table S2 of the Supporting Information) varies significantly, but it is in each case shorter than the P−C single bond (1.87 Å), allowing to conclude that G is a (polarized) double bonded structure. As it can be expected, the molecules with longer P−C distances generally exhibit smaller dissociation energies (see Table S2 in the Supporting Information). The strongest bond (high adduct stability) belongs to those carbenes which exhibit the smallest stabilization energies (ΔE_{ISO}) in reaction 1, as is evidenced by the linear correlation shown in Figure 7. It should be noted that for the most stabilized carbenes ($\Delta E_{ISO} > 90$ kcal/mol), the dissociation energy remains nearly unchanged showing a saturation effect, and accordingly, we have excluded these points from the correlation.

The stabilization energies (ΔE_{ISO}) from reaction 1 for the targeted carbenes are given in Figure 6 and Table S1. In the present work, we investigate the relative stability of the possible isomers, in case of the different carbenes, and discuss comprehensively the effect of the formal increase of the phosphorus valency on the P−NHC bond of the G-type compounds.

COMPUTATIONAL DETAILS

All calculations have been carried out with the Gaussian 09 program package. Full geometry optimization was performed for all molecules at the ω-B97XD/cc-pVTZ and M06-2X/cc-pVTZ levels and also at the B3LYP-D3/cc-pVTZ level for calculations on isodesmic reaction 1 and on G-type adducts, followed by calculation of harmonic vibrational frequencies at the same levels to establish the nature of the stationary points obtained, as characterized by only positive eigenvalues of the Hessian for minima. Gibbs free energies were obtained from the calculated harmonic frequencies at 298 K and atmospheric pressure. During the discussion, we use M06-2X/cc-pVTZ results, the slightly different data obtained at the other levels of the theory are given in the Supporting Information. The Multiwfn program was used for the determination of the bond critical points with the corresponding electron densities and ellipticities. For the visualization of the molecules and molecular orbitals, MOLDEN and IQmol programs were used.
Table 1. M06-2X/cc-pvTZ Dissociation Gibbs Free Energy (ΔG_{diss} in kcal/mol) and Distance between the P Moiety and the Carbene Unit (Å) of the Investigated Compounds with Different Substituents (X) at Phosphorusa

	X	H	E	E'	F	A	E	E'	F	B	E	E'	F	A	E	E'	F
1	ΔG_{diss}	-8.4	-27.7	-9.1	-2.6	1.973	1.876	1.897	2.633	0.05	1.865	2.285	1.941	1.919	1.713		
2	ΔG_{diss}	7.8	-15.6	-9.7	-2.5	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707			
3	ΔG_{diss}	12.9	-30.1	-20.8	-15.3	-5.9	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707		
4	ΔG_{diss}	12.9	-25.4	1.7	-30	-2.3	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707		
5	ΔG_{diss}	3.1	-42.8	-15.4	-9.9	-2.7	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707		
6	ΔG_{diss}	23.7	-51.6	-10.2	-20.0	-3.7	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707		
7	ΔG_{diss}	1.5	-33.9	0.0	0.0	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707			
8	ΔG_{diss}	7.2	-17.7	-8.0	-3.3	1.907	1.892	1.910	2.619	0.05	1.913	2.335	1.943	1.707			

aEndoergic dissociation energies (stable compounds) are given in bold letters. B3LYP/cc-pvdZ and ω-B97XD/cc-pvTZ data are compiled in Table S4 in the Supporting Information—all giving similar results. bThe optimized structure (−10.8 kcal/mol) has a 2.41 Å C–Cl distance, indicating the easy formation of a C-type structure (see also Figure S2 in the Supporting Information). cThe optimized structure has a 3.67 Å C–Cl distance, indicating the easy formation of a C-type structure (see also Figure S2 in the Supporting Information). dIt should be noted that the prochiral carbene 4 can form two stereoisomers with phosphanes; however, the stability of the two structures does not differ significantly.
can even complex two Lewis acids. Bader analysis on the P–C bond shows that at the bond critical point, electron densities are between 0.150 and 0.190 (single bond 0.148, double bond 0.187). The ellipticity values (0.407–0.550) indicate an asymmetric electron distribution characteristic for π-systems (see Table S3 in the Supporting Information).

In a noteworthy contrast with the above discussed carbene–phosphinidene adducts, the optimized structures of the adducts of carbenes (1–11) and phosphines PX3 (X = H, F, Cl, NMe2) exhibit high diversity, and the optimized structures can be classified as A, E, and F types on the basis of the atomic connectivity and the P–C distance. C-type structures from apparent reasons cannot be obtained in the gas phase optimization. However, in some cases, cationic like structures could be optimized, see footnotes a and b in Table 1. To characterize the different structures and their stability, we collected the P–C distances and the dissociation Gibbs free energies in Table 1 for the different carbene–phosphane adducts. Compounds with endoergic dissociation energies (stability against dissociation) are given in bold letters. Clearly, the most stable adducts throughout.

In case of the PH3 adducts, only A- and F-type structures were obtained, the A-type structure being always the more stable one. This is in accordance with the general understanding that in the condensed phase H-ylides of phosphorus (F) rearrange to their phosphate (A) counterparts via 1,2-H-shift with the exception of some notable kinetically hindered cases. In case of 1, 2, 7, and 8, no F-type structure could be optimized (neither at ω-B97XD/cc-pVTZ nor at M06-2X/cc-pVTZ see Tables 1 and S4), only very weakly bonded complexes with P–C distance over 3.2 Å could be obtained. Furthermore, among the F-type PH3 adducts, only the least stabilized carbenes (ΔEISO < 50 kcal/mol) are stable against dissociation (Figure 7). It is noteworthy that in case of 1 and 7, also the A-type phosphanes tend to dissociate; in accordance, no reaction product was obtained in the reaction of PH3 with an unsaturated imidazol-2-ylidine (flanked by bulky Dipp substituents). In contrast, the saturated analogue (the Dipp substituted analogue of 2) gave the insertion product, in agreement with its calculated stability against dissociation to PH3 + 2. Altogether, these results provide an indirect evidence on the reliability of our calculations.

For the PX3 (X: F, Cl, NMe2) series in case of the least stabilized methylene (9) and dichlorocarbene (10), once more only the A- and F-type structures could be optimized, and all of them turned out to be stable against dissociation. Similar to the PH3 adducts, A-type structures are more stable than F-type structures with the sole exception of F3P=CH2. For the most stabilized carbenes (ΔEISO larger than ca. 90 kcal/mol—Figure 6), no F-type structures could be optimized, while for carbenes with ΔEISO between 70 and 90 kcal/mol, the F-type structures obtained are unstable against dissociation (Table 1). The decreasing stability of the carbenes (ΔEISO) correlates with the increasing stability (in terms of Gibbs free energy) of the F-type adducts, as shown in Figure 7, exhibiting similar slope for all phosphorus compounds, including the above discussed G-type phosphinidene adducts. Depending on the phosphate substituent, the dissociation Gibbs free energy of the F-type adducts is by about 70–100 kcal/mol smaller than that in the G series. Amongst the F-type systems, Carb + P(NMe2)3 (black points in Figure 7) exhibits the highest, while Carb + PH3 (red points in Figure 7) exhibits the lowest stability. Similar linear correlation was also observed between ∆EISO of a series of carbenes and the stability of the corresponding Breslow intermediates, which can be described as a hydroxycarbene adduct of the given carbene. Also the dimerization Gibbs free energy of the carbene itself correlates with ∆EISO. Clearly, the raising energy of the carbene empty orbital (due to the stabilizing π-interactions) makes the donation from the lone pair of the attacking phosphane less effective. From this point of view, it is noteworthy that the above mentioned “saturation effect” in the stabilization of the G-type adducts for the carbenes with ∆EISO > 90 kcal/mol is in line with the fact that we were not able to optimize F-type structures for the same carbenes. This fact further corroborates the importance of the donation from the phosphorus lone pair in the F-type structures.

Contrary to the PH3 adducts in case of the PF3, PCl3, and P(NMe2)3 series, most carbenes (with the exception of the least stabilized 9 and 10) form single P–C bonded E-type structures. It is especially noteworthy that the PCl3 series, only most of the E-type adducts were reported experimentally, is the most stable against dissociation. The P–C distance (1.831–1.948 Å in Table 1) in these compounds falls basically in the single bond regime. The most stable adduct is formed with 7, but even in this case, the ~20 kcal/mol interaction Gibbs free energy (without BSSE correction) is far less than a usual P–C bond energy (ca. 63 kcal/mol). These structures exhibit a see-saw arrangement, in accordance with the reported X-ray structures, the chlorophosphane part having a T-shaped form. In this structure, the lone pair on the phosphorus is the HOMO, as shown on the example of the adduct formed between 4 and PCl3 in Figure 8a. It is noteworthy that the HOMO of the T-shaped PCl3 unit (Figure S3 in the Supporting Information) is similar to that of adduct 4, indicating that this feature is unperturbed upon complexation. The T-shaped PCl3 structure is known as a transition state for the inversion of the phosphorus pyramid, and the barrier of this inversion is 52.0 kcal/mol (55.8 kcal/mol in case of PF3). This type of molecular geometry was also observed in case of tetrafluorophosphine anion.

Thus, it is reasonable to consider that a T-shaped chlorophosphane (fluorophosphane) is able to be complexed by the carbene. Although, the planarization energy is quite large, the lowest unoccupied molecular orbital (LUMO) of the T shaped PCl3, which is basically of “p” type (Figure 9), is at ~4.27 eV(!), which is much lower than the LUMO energy of the pyramidal phosphane (~0.46 eV). The presence of this easily accessible empty orbital facilitates the complex formation between the strongly nucleophilic carbenes and the T-shaped PCl3, by formation of a dative bond. In case of PF3, the
corresponding orbital appears at somewhat higher energy (−2.87 eV in Table S5 of the Supporting Information), and accordingly, the dative bond is weaker, explaining the lower dissociation Gibbs free energies in the fluorophosphine complexes. Altogether, the energy gain upon formation of the new P–C (dative) bond of the E structure should cover the energy demand for the formation of the T-shaped PX3 structure. Because in the most strongly bound E-type structures (Table 1), the P–C distance falls in the usual single bond range, the usual bond strength (about 63 kcal/mol125) can be surmised. Because the energy requirement of the formation of the T-shaped structure is ca. 50 kcal/mol (see above), the calculated 10–20 kcal/mol binding Gibbs free energy of the E-type adducts (Table 1) is in reasonable accordance with the aforementioned considerations. The most stable adducts (Table 1) are indeed obtained with the most nucleophilic carbenes (4, 7, 8— their HOMO energies are listed in Figure 6). On the contrary, 6 and 9–11 exhibit the most negative HOMO energies, and accordingly, their complexes are unstable against dissociation. Clearly, the plot of Δe—the energy difference of the carbene lone pair and the LUMO of the T-shaped PX3 (X: F, Cl) fragment—against the adduct stabilization energy shows a common correlation (Figure 10), for the PF3 and PCl3 adducts. It is noteworthy that 3, 5, and 11 (all large bond angle carbenes—see Table S6 of the Supporting Information) are outliers, exhibiting smaller stability than expected on the basis of the HOMO–LUMO interaction energy of the fragments. Apparently, the steric requirement of these rings is larger than that of the smaller rings, reducing the stability of the adduct. Each PF3 compound has reduced stability with respect to the corresponding PCl3 counterpart, in accordance with the difference between the LUMO energies of the T-shaped PF3 and PCl3 structures (see Table S5 of the Supporting Information). It is also worthy to mention that the LUMOs of the T-shaped PH3 and P(NMe2)3 are at significantly higher energies (see Table S5 in the Supporting Information); thus it is understandable that these phosphines do not form stable “see-saw” adducts with the carbenes. Altogether, in contrast with the F-type structures, where the decisive stabilizing contribution comes from the donation of the phosphorus lone pair to the empty carbene orbital, which is available (having a low energy) only for the less stabilized carbenes, in case of the E-type structure, the donation from the carbene lone pair has the largest stabilizing contribution, in particular with those phosphines, where the T-shaped structure has a low energy LUMO. It is worth mentioning that the formation of the E-type structure can alternatively be explained starting from the highly stable G-type carbene–phosphinidene adduct. By forming a 3c–4e hypercoordinate, X–P–X bond with the involvement of the HOMO of G (Figure 3c) and two halogens, the see-saw structure with the T-shaped PX3 unit, and the residual HOMO − 1 in-plane phosphorus lone pair of G, which becomes then the HOMO (Figure 8a), can clearly be understood. Further type of complexes with somewhat extended P–C interatomic distance can also be optimized in case of X: Cl and F. These E′ structures (Figure 8b) not only exhibit extended P–C bond distances (2.041–3.025 Å with the stabilized carbenes: 1–8) compared to the E “see-saw” adduct, but they form a typical trigonal bipyramidal arrangement, with the carbene and one P–X bond aligned axially. The assembly is held together by the recently intensively discussed pnictogen interaction,146,147 which is interpreted as (i) the electrostatic attraction between the positively charged region (σ-hole) next to the phosphorus lone pair and negative charge at the carbene lone pair and (ii) the donation of the carbene lone pair to the σ* orbital of the axially aligned P–X bond (see on Figure 8b). The resulting structures were discussed in detail in case of the adducts between highly stabilized carbenes (as imidazol-2-ylidine) and PH2X (X: halogen). This interaction is weaker than in case of the T-shaped PX3, because the LUMO is at higher energy (in case of PCl3, as much as by 3.81 eV—see Figure 9). However, because the T-shaped transition state itself is by about 50 kcal/mol higher energy as was mentioned above, the E and E′ structures have comparable stability. While for the PCl3 series, E structures are more stable than E′ (Table 1) due to the highly stabilized LUMO of the T-shaped structure, the stability order is reversed for the PF3 series, where the LUMO of the T-shaped PF3 structure has higher energy (see Table S5 in the Supporting Information). Altogether, most of the E′ structures are unstable against dissociation. The P–C distances are varied over a wide range (2.041–3.025 Å in case of PCl3 adducts, as seen in Table 1) for the different carbenes. Similarly, a large variation was found in the P–C distances in the case of the adducts of a single carbene (e.g. imidazol-2-ylidine) and a series of phosphines (H2PX (X: F, Cl, Br, OH, NH25, CN, NC)). In that papers,
two types of adducts (nonplanar and coplanar) were
distinguished based on the alignment of the phosphate to
the carbene. In case of 1, 2, 5, 7, and 8 with PCl5, both
nonplanar and coplanar structures could be optimized;
however, the Gibbs free energy differences are within 2 kcal/
mol (more details in Supporting Information, Table S7). In
fact, it was shown that while dominantly the carbene is the
donor in these structures,49 also the phosphorus lone pair
contributes with some reverse donation effect. Accordingly,
we were not able to find correlation between the P−C distance
of the adducts and neither the HOMO nor the LUMO energy of
the carbenes (see Table S8 in the Supporting Information).
Nevertheless, the P−C distances of the PCl3 adducts are in an
inverse correlation with the PCl distances, and accordingly, the
formation of the strongest complexes facilitates the cleavage of
the PCl bond, in accordance with the formation of the
B- and D-type ion pair structures.

In case of carbenes, which are not “too much” stabilized
(ΔE_{iso} = 70–90 kcal/mol) and are also rather nucleophilic,
two or three different types of adducts could be optimized with
X: Cl and F. In case of 3, 5–6, and 11, these three structures are F, E, and E’, and in case of 4 and PF5 all the structures F, E, and E’ could be optimized. This is an interesting example of the rare and somewhat debated bond-stretch isomerism.128–155
To our best knowledge, this is the first case where three
distinct minima could be located from two reactants, without
breaking the other bonds of the interacting units. We were also
able to locate the transition states between the minima for the
PF3 adduct with carbene 4 (Figure 11). Because the reaction
barriers are not too high, it seems unlikely that all three
structures could be detected at room temperature.

As we mentioned above, the E-type structure can be derived
from G, by the formation of a 3c−4e bond with the phosphorus localized HOMO (Figure 3c). Accordingly, it is reasonable to consider that the remaining phosphorus lone pair at E (see Figure 8a) is able to form a further 3c−4e bond with
two halogens, yielding Carb → PX3 adducts. Indeed, we could
optimize stable adducts (I) between most carbenes (see footnote in Table 2) and PF5 or PCl5 (as an example, the PF5
adduct of 7 is shown in Figure 12). A few adducts of this type

![Figure 11. Bond-stretch isomers (E, E’, and F) and their connecting
transition structures for the adducts between PF3 and 4.](https://dx.doi.org/10.1021/acs.jpca.0c00641)

![Figure 12. The most stable I-type structure formed between carbene
7 and PF5.](https://dx.doi.org/10.1021/acs.jpca.0c00641)

| Table 2. Dissociation Gibbs Free Energy (ΔG_{diss}) of 1 in kcal/mol |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| X | | | | | | | | | | | |
| F | 31.4 | 30.2 | 14.4 | 33 | 24 | 10.2 | 41.1 | 31.5 | 6.1 | 14.4 | |
| d_{p-C} | 1.909 | 1.929 | 2.006 | 1.921 | 1.967 | 2.018 | 1.884 | 1.873 | 2.019 | 1.955 | |
| Cl | 17.6 | 15.5 | −8.1 | 18.7 | 5.8 | −12.5 | 35.1 | 32.4 | 2.1 | 11.0 | |
| d_{p-C} | 1.961 | 1.990 | 2.094 | 1.978 | 2.021 | 2.142 | 1.907 | 1.856 | 2.006 | 1.955 | |

aAdducts with carbene 9 are transition states of the $S_{a'}$-type inversion of PX3−CH2X (X: F, Cl) molecules.

CONCLUSIONS

The structure and the properties of the carbene–phosphene
adducts depend strongly on the interacting carbenes and
phosphenes, yielding in principle three different types of
structures. The stability of these adducts against dissociation is
HOMO of the PCI$_3$ structure; relative stability and P−C distance of the coplanarly and nonplanarly aligned E’ type adducts with PCI$_3$; orbital and electronic parameters of the investigated carbenes 1−8; The correlation of the dissociation Gibbs free energy of the Carb=PX$_{3}$/Carb=PX$_{3}$ (X: F, Cl) systems into carbene and (singlet) PX$_{3}$/PX$_{3}$ and the difference between T-shaped PX$_3$ LUMO energy/tetragonal pyramidal PX$_3$ LUMO energy and the singlet carbene HOMO energy; and energies and XYZ coordinates of the investigated adducts and structures for the isodesmic reaction calculations (PDF)

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.0c00641.

Various DFT levels of theory stabilization energies for the investigated carbenes in the isodesmic reaction; various DFT levels of theory dissociation energies and P−C bond lengths of the carbene−phosphinidene adducts; the electron densities, the ellipticity values, and the Mayer covalent bond indices of the P−C bond in the optimized carbene−phosphinidene type of structures; ab initio (DFT)/cc-pVTZ dissociation Gibbs free energy and distance between the P moiety and the carbene unit of the investigated compounds; LUMO energy of the T-shaped transition structure of PX$_3$ and its relative energy with respect to the pyramidal minimum; M06-2X/cc-pVTZ bond angle around the carbene center for the investigated carbenes; the lone pair orbitals of the G type phosphinidene adducts; the HOMO of the C type structures; the M06-2X/cc-pVTZ

AUTHOR INFORMATION

Corresponding Author

Zsolt Kelemen − Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; orcid.org/0000-0002-4787-9804; Email: kelemen.zsolt@mail.bme.hu

Authors

Dániel Buzsáki − Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

László Nyulászi − Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; MTA-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary; orcid.org/0000-0002-2207-8410

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.jpca.0c00641.

Funding

Financial support from NKFIH OTKA NN 113772 and the EU COST network CM 1302 “Smart Inorganic Polymers” is gratefully acknowledged. Z.K. is grateful for the general support of Hungarian Academy of Science under the Premium Postdoctoral Research Program 2019.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Gonzalez, S. D. N-Heterocyclic Carbenes: From Laboratory Curiosities To Efficient Synthetic Tools; Royal Society of Chemistry: Cambridge, U.K., 2011.

(2) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Stabile Cyclische Carbene Und Verwandte Spezies Jenen Der Diamino carbene. Angew. Chem. 2010, 122, 8992−9032.

(3) Droge, T.; Glorius, F. The Measure of All Rings-N-Heterocyclic Carbenes. Angew. Chem., Int. Ed. 2010, 49, 6940−6952.

(4) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. A Brief Survey of Our Contribution to Stable Carbene Chemistry. Organometallics 2011, 30, 5304−5313.

(5) Hopkinson, M. N.; Richter, C.; Scheller, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510, 485−496.

(6) Heinz Dötz, K. Metal Carbenes in Organic Synthesis; WILEY-VCH Verlag GmbH: Weinheim, 2004.

(7) Anderson, D. R.; Lavallo, V.; O’Leary, D. J.; Bertrand, G.; Grubbs, R. H. Synthesis and Reactivity of Olefin Metathesis Catalysts Bearing Cyclic [Alkyl](Amino)carbenes. Angew. Chem., Int. Ed. 2007, 46, 7262−7265.

(8) Crabtree, R. H. NH Ligands versus Cyclopentadienyls and Phosphines as Spectator Ligands in Organometallic Catalysis. J. Organomet. Chem. 2005, 690, 5451−5457.
(9) Diez-González, S.; Marion, N.; Nolan, S. P. N-Heterocyclic Carbene in Late Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612–3676.

(10) Kelemen, Z.; Hollóczki, O.; Oláh, J.; Nyulászi, L. Orazol-2-Ylidenes. A New Class of Stable Carbene? RSC Adv. 2013, 3, 7970–7973.

(11) Williams, C. E. Non-Transition Metal N-Heterocyclic Carbene Complexes. Organometallics. 2010, 36, 1–28.

(12) Kuhn, N.; Al-Sheikh, A. 2,3-Dihydroimidazol-2-Ylidenes and Their Main Group Element Chemistry. Coord. Chem. Rev. 2005, 249, 829–857.

(13) Kuhn, N.; Kratz, T.; Bläser, D.; Boese, R. Derivate des Imidazols. XIII. Carben-Komplexe des Siliciums und Zinn. Chem. Ber. 1995, 128, 245–250.

(14) Ghadhwal, R. S.; Sen, S. S.; Roesky, H. W.; Tavcar, G.; Merkel, S.; Stalle, D. Neutral Penta- And Hexacoordinate N-Heterocyclic Carbene Complexes Derived from SiX₄ (X = F, Br). Organometallics 2009, 28, 6374–6377.

(15) Bonnette, F.; Kato, T.; Destarac, M.; Mignani, G.; Cossio, F. P.; Bacciero, A. Encapsulated N-Heterocyclic Carbenes in Silicones without Reactivity Modification. Angew. Chem., Int. Ed. 2007, 46, 8632–8635.

(16) Singh, A. P.; Samuel, P. P.; Mondal, K. C.; Roesky, H. W.; Sidhu, N. S.; Dittrich, B. Lewis Base Stabilized Group 14 Metalynes. Organometallics 2013, 32, 354–357.

(17) Fuchter, M. J. N-Heterocyclic Carbene Mediated Activation of Tetravalent Silicon Compounds: A Critical Evaluation. Chem.—Eur. J. 2010, 16, 12286–12294.

(18) Böttcher, T.; Steinhauser, S.; Lewis-Alleyne, L. C.; Neumann, B.; Stammer, H.-G.; Basel, B. S.; Röschenthaler, G.-V.; Hoge, B. NH₃→SiCl₄: An Ambivalent Carbene-Transfer Reagent. Chem.—Eur. J. 2011, 21, 893–899.

(19) Frey, G. D.; Masuda, J. D.; Donnadieu, B.; Bertrand, G. Activation of Si-H, B-H, and P-H Bonds at a Single Nonmetal Center. Angew. Chem., Int. Ed. 2010, 49, 9444–9447.

(20) Ellis, B. D.; Adam Dyker, C.; Decken, A.; Macdonald, C. L. B. The Synthesis, Characterisation and Electronic Structure of N-Heterocyclic Carbene Adducts of Pt Cations. Chem. Commun. 2005, 1965–1967.

(21) Ellis, B. D.; Macdonald, C. L. B. Stable Compounds Containing Heavy Group 15 Elements in the +1 Oxidation State. Coord. Chem. Rev. 2007, 251, 936–973.

(22) Bispinghoff, M.; Tondreau, A. M.; Grützmacher, H.; Faradji, C. A.; Pringle, P. G. Carbene insertion into a P=H-Bond: parent phosphinedi-carbene adducts from PH₃ and bis(phosphindene) mercury complexes. Dalton Trans. 2016, 45, 5999–6003.

(23) Burford, N.; Rogagno, P. J. New Synthetic Opportunities Using Lewis Acidic Phosphines. J. Chem. Soc., Dalton Trans. 2002, 4307–4315.

(24) Schmidpeter, A.; Lochschmidt, S.; Willhalm, A. 2-Phosphaallyl Cations by Formal Insertion of P⁺ into the C≡C Double Bond. Angew. Chem., Int. Ed. Engl. 1983, 22, 545–546.

(25) Schwedt, K.; Holthausen, M. H.; Feldmann, K.-O.; Weigand, J. J. NHC-Mediated Synthesis of an Asymmetric, Cationic Phosphorane, a Phosphanide, and Coinage-Metal Phosphanido Complexes. Angew. Chem., Int. Ed. 2013, 52, 14204–14208.

(26) Gaillard, S.; Renaud, J.-L. When Phosphorus and NHAl(N-Heterocyclic Carbene) Meet Each Other. Dalton Trans. 2013, 42, 7255–7270.

(27) Canac, Y.; Maiakli, C.; Abdelhak, L.; Chauvin, R. Carbono-phosphines and their carbon → phosphorus → metal ternary complexes. New J. Chem. 2012, 36, 17–27.

(28) Kuhn, N.; Fahl, J.; Bläser, D.; Boese, R. Synthese Und Eigenschaften von [(Ph₂Carb)(P)AlCl₃] (Carb = 2,3-Dihydro-1,3-Diisopropyl-4,5dimethylimidazol-2-ylidene) – Ein Stabilier Carben-Komplex Des Dreiwertigen Phosphors [1]. Z. Anorg. Allg. Chem. 1999, 625, 729–734.

(29) Kuhn, N.; Henkel, G.; Göhner, M. [(Ph₂Carb)(P)MCI₃] (M = Pd, Pt; Carb = 2,3-Dihydro-1,3-Diisopropyl-4,5dimethylimidazol-2
Adducts as an Indicator of the Pi- Accepting Properties of Carbenes. Angew. Chem., Int. Ed. 2013, 52, 2939–2943.

(91) Arnold, P. L.; Pearson, S. Abnormal N-Heterocyclic Carbenes. Coord. Chem. Rev. 2007, 251, 596–609.

(92) Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHIC Ligands with Reduced Heteroatom Stabilization. Chem. Rev. 2009, 109, 3445–3478.

(93) Krachko, T.; Biepinghoff, M.; Tondreau, A. M.; Stein, D.; Baker, M.; Ehlers, A. W.; Slootweg, J. C.; Grützmacher, H. Facile Phenyolphosphinidene Transfer Reactions from Carbone-Phosphinidene Zinc Complexes. Angew. Chem., Int. Ed. 2017, 56, 7948–7951.

(94) Tondreau, A. M.; Benkö, Z.; Harmer, J. R.; Grützmacher, H. Chemical Science Transfer Reagent for the Synthesis of N-Heterocyclic Carbene Supported P₃ and P₃AS₃ Radicals. Chem. Sci. 2014, 5, 1545–1554.

(95) Hansen, K.; Szilvási, T.; Blom, B.; Inoue, S.; Epping, J.; Driess, M. A Fragile Zwitertitcom Phosphaalene as a Transfer Agent of the Elusive Parent Phosphinidene (PH). J. Am. Chem. Soc. 2013, 135, 11795–11798.

(96) Arduengo, A. J., III; Carmalt, C. J.; Glyburme, J. A. C.; Cowley, A. H.; Piaty, R. Nature of the bonding in a carbene-phosphinidene: a main group analogue of a Fischer carbene complex? Isolation and characterisation of a bis(borane) adduct. Chem. Commun. 1997, 981–982.

(97) Arduengo, A. J., III; Rasisa Dias, H. V. R.; Calabrese, J. C. A Carbene Center Dot Phosphinidene Adduct: “Phosphaalkene”. Chem. Lett. 1997, 26, 143–144.

(98) Arduengo, A. J., Calabrese, J. C.; Cowley, A. H.; Dias, H. V. R.; Goerlich, J. R.; Marshall, W. J.; Riegel, B. Carbone–Pnictinidene Adducts. Inorg. Chem. 1997, 36, 2151–2158.

(99) Adhikari, A. K.; Grell, T.; Löscke, P.; Hey-Hawkins, E. Formation of a Carbone-Phosphinidene Adduct by NHIC-Induced P-P Bond Cleavage in Sodium Tetramesitylphosphenediide. Eur. J. Inorg. Chem. 2016, 2016, 620–622.

(100) Pal, K.; Hemming, O. B.; Day, B. M.; Pugh, T.; Evans, D. J.; Layfield, R. A. Iron- and Cobalt-Catalyzed Synthesis of Carbone Phosphinidene. Angew. Chem., Int. Ed. 2016, 55, 1690–1693.

(101) Adhikari, A. K.; Grell, T.; Lönncke, P.; Hey-Hawkins, E. Formation of a Carbone-Phosphinidene Adduct by NHIC-Induced P-P Bond Cleavage in Sodium Tetramesitylphosphenediide. Eur. J. Inorg. Chem. 2016, 2016, 620–622.

(102) Pal, K.; Hemming, O. B.; Day, B. M.; Pugh, T.; Evans, D. J.; Layfield, R. A. Iron- and Cobalt-Catalyzed Synthesis of Carbone Phosphinidene. Angew. Chem. 2016, 128, 1722–1725.

(103) Doddi, A.; Bockfeld, D.; Nasr, A.; Bannenberg, T.; Jones, P. G.; Tamm, M. N-Heterocyclic Carbone-Phosphinidene Complexes of the Coinage Metals. Chem.-Eur. J. 2015, 21, 16178–16189.

(104) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Isolation of a C₅-Deprotonated Imidazolium, a Crystalline “Abnormal” N-Heterocyclic Carbene. Science 2009, 326, 556–559.

(105) Kelenmen, Z.; Streubel, B.; Nyulász, L. Zwitertitcom Carbone Adducts and Their Carbone Isomers. RSC Adv. 2015, 5, 41795–41802.

(106) Frison, G.; Sevin, A. Theoretical Study of the Bonding between Aminocarbene and Main Group Elements. J. Chem. Soc., Perkin Trans. 2 2002, 1692–1697.

(107) Fuchs, E. P. O.; Heydt, H.; Regitz, M.; Schoeller, W. W.; Busch, T. Phosphattrialufen - Phosphaalkenes with Inverse Electron Density. Tetrahedron Lett. 1989, 30, 5111–5114.

(108) Fuchs, E.; Breit, B.; Heydt, H.; Regitz, M.; Schoeller, W.; Busch, T.; Krüger, C.; Betz, P. Organophosphaoverbindungen, 511 Phosphattrialufen = Phosphaalkene Mit Inverser Elektronendichte(2). Chem. Ber. 1991, 124, 2843–2855.

(109) Chernega, A. N.; Ruban, A. V.; Romanenko, V. D.; Markovski, L. N.; Korkin, A. A.; Antipin, M. Y.; Struchkov, Y. T. Peculiarities of Pr-Pr Conjugation in Aminosubstituted Phosphaalkenes. Heteroc. Chem. 1991, 2, 229–241.
functionalities and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.
(130) Becker, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
(131) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
(132) Lu, T.; Chen, F. Multifm: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592.
(133) Schaftenaar, G.; Noordik, J. H. Molden: A Pre- and Post-Processing Program for Molecular and Electronic Structures. J. Comput.-Aided Mol. Des. 2000, 14, 123–134.
(134) Gilbert, A. T. IQmol Molecular Viewer. Available at: http://IQmol.Org (accessed October 2012).
(135) Olmsted, J.; Williams, G. M. Chemistry; WILEY-VCH Verlag GmbH: Weinheim, 2006.
(136) Biegler-König, F.; Schönbohm, J. AIM2000-a Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem. 2001, 22, 545–559.
(137) Kolodiazhnyi, O. I. Phosphorus Ylides; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 1999.
(138) Keck, H.; Kuchen, W.; Tommes, P.; Trelouw, J. K.; Wong, T. The Phosphorus Ylide CH2PiH Is Stable in the Gas Phase. Angew. Chem., Int. Ed. Engl. 1991, 31, 86–87.
(139) Ekici, S.; Gudat, D.; Nieger, M.; Nyulaszi, L.; Niecke, E. Kinetically Controlled Protonation of a Cyclic Phosphamethanide Complex to a PH-Phosphonium Ylide. Angew. Chem., Int. Ed. 2002, 41, 3367–3371.
(140) Ito, S.; Miyake, H.; Yoshifuji, M.; Höltzl, T.; Veszprémi, T. Synthesis of Phosphorus Ylides Bearing a P-H Bond from a Kinetically stabilized 1,3,6-Triphosphafulvene. Chem.—Eur. J. 2005, 11, 5960–5965.
(141) Hollóczki, O.; Kelemen, Z.; Nyulaszi, L. On the Organocatalytic Activity of N-Heterocyclic Carbene: Role of Sulfur in Thiamine. J. Org. Chem. 2012, 77, 6014–6022.
(142) Novosad, J. Phosphorus: Inorganic Chemistry in Encyclopedia of Inorganic Chemistry; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 1994; Vol. 6.
(143) Marynick, D. S. The Inversion Barriers of NF3, NCl3, PF3, and PCl3. A Theoretical Study. J. Chem. Phys. 1980, 73, 3939–3943.
(144) Dixon, D. A.; Arduengo, A. J.; Fukunaga, T. A New Inversion Process at Group V (Group 15) Elements. Edge Inversion Through a Planar T-Shaped Structure. J. Am. Chem. Soc. 1986, 108, 2461–2462.
(145) Christie, K. O.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobligen, G. J.; Wilson, W. W. Tetrafluorophosphite, PF4-. Anion. J. Am. Chem. Soc. 1994, 116, 2850–2858.
(146) Legon, A. C. Tetravalent pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at noncovalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 14884–14896.
(147) Mokrai, R.; Barrett, J.; Apperley, D. C.; Batsanov, A. S.; Benkö, Z.; Heff, D. Weak Pnictogen Bond with Bismuth: Experimental Evidence Based on Bi–P Through-Space Coupling. Chem.—Eur. J. 2019, 25, 4017–4024.
(148) Nyulaszi, L.; Veszprémi, T.; Bosco, A. D. S.; Verkade, J. Photoelectron Spectra and Structures of Proazaephosphinates. Inorg. Chem. 1996, 35, 6102–6107.
(149) Karpätä, T.; Veszprémi, T.; Thirupathi, N.; Liu, X.; Wang, Z.; Ellern, A.; Nyulaszi, L.; Verkade, J. G. Synthesis and Photoelectron Spectroscopic Studies of N(CH2CH2NMe)2P=E (E = O, S, NH, CH3). J. Am. Chem. Soc. 2006, 128, 1500–1512.
(150) Iqmol.Org (accessed October 2012).
(151) Stohrer, W. D.; Hoffmann, R. Bond-Stretch Isomerism and Polytopal Rearrangements in (CH)3N, (CH)3S, and (CH)3CO. J. Am. Chem. Soc. 1972, 94, 1661–1668.
(152) Stohrer, W. D.; Hoffmann, R. Electronic structure and reactivity of strained tricyclic hydrocarbons. J. Am. Chem. Soc. 1972, 94, 779–786.
(153) Rohmer, M.-M.; Bénard, M. Bond-Stretch Isomerism in Strained Inorganic Molecules and in Transition Metal Complexes: A Revival? Chem. Soc. Rev. 2001, 30, 340–354.
(154) Di Nicola, F. P.; Lanzè, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Is bond stretch isomerism in mononuclear transition metal complexes a real issue? The misleading case of the MoCIS/tetrahydroxypropyl reaction system. Dalton Trans. 2015, 44, 12653–12659.
(155) Gandon, V.; Bourg, J.-B.; Tham, F. S.; Schoeller, W. W.; Bertrand, G. The Existence of Two Short-Bond Isomers for bicyclo[1.0.0]Butane Derivatives Based on Boron and Phosphorus. Angew. Chem., Int. Ed. 2008, 47, 155–159.
(156) Arduengo, A. J., III; Davidson, F.; Krafczyk, R.; Marshall, W. J.; Schmutzler, R. Carbene Complexes of Pnicogen Pentafluorides and Boron Trifluoride. Monatsh. Chem. 2000, 131, 251–265.
(157) Tian, C.; Nie, W.; Borzov, M. V.; Su, P. High-Yield Thermolytic Conversion of Imidazolium Salts into Arduengo Carbene Adducts with BF3 and PF5. Organometallics 2012, 31, 1751–1760.
(158) Böttcher, T.; Shyshkov, O.; Bremer, M.; Basil, B. S.; Röschenthaler, G.-V. Carbene Complexes of Phosphorus(V) Fluorides by Oxidative Addition of 2,2-Difluoro(bis(Dialkylamines) to Phosphorus(III) Halides. Organometallics 2012, 31, 1278–1280.
(159) Pajkert, R.; Böttcher, T.; Ponomarenko, M.; Bremer, M.; Röschenthaler, G.-V. Synthesis and Characterization of Novel Carbene Complexes of Phosphorus(V) Fluorides with Potential Liquid-Crystalline Properties. Tetrahedron 2013, 69, 8943–8951.
(160) Böttcher, T.; Steinhauser, S.; Allefeld, N.; Hoge, B.; Neumann, B.; Stammler, H. G.; Basil, B. S.; Winter, M.; Mitzel, N. W.; Röschenthaler, G.-V. Carbene Complexes of Phosphorus: Fluorides Substituted with Perfluoroalkyl-Groups Synthesized by Oxidative Addition. Cleavage of the Complexes Reveals a New Synthetic Protocol for Ionic Liquids. Dalton Trans. 2014, 43, 2979–2987.
(161) Böttcher, T.; Basil, B. S.; Zhechkov, L.; Röschenthaler, G.-V. Phosphorus(V) Complexes with Acyclic Monoaminoacarbene Ligands via Oxidative Addition. Inorg. Chem. 2013, 52, 5651–5653.
(162) Vogt, M.; Wu, C.; Oliver, A. G.; Meyer, C. J.; Schneider, W. F.; Ashfeld, B. L. Site Specific Carboxylation of Abnormal Anionic N-Heterocyclic Dicarbenes with CO2. Chem. Commun. 2013, 49, 11527–11529.
(163) Kelemen, Z.; Péter-Szabó, B.; Székely, E.; Hollóczki, O.; Firáha, D. S.; Kirchner, B.; Nagy, J.; Nyulaszi, L. An Abnormal N-Heterocyclic Carbene-Carbon Dioxide Adduct from Imidazolidone Acetate Ionic Liquids: The Importance of Basicity. Chem.—Eur. J. 2014, 20, 13002–13008.