Decreased swallowing function in the sarcopenic elderly, without clinical dysphagia: a case-control study

CURRENT STATUS: UNDER REVIEW

Yen-Chih Chen
National Taiwan University Hospital
ORCiD: https://orcid.org/0000-0003-0339-4749

Pei-Yun CHEN
National Taiwan University Hospital

Yu-Chen WANG
National Taiwan University Hospital

Tyng-Guey WANG
National Taiwan University Hospital
tgw@ntu.edu.tw Corresponding Author

Der-Sheng HAN
National Taiwan University Hospital Beihu Branch

DOI:
10.21203/rs.3.rs-19562/v1

SUBJECT AREAS
Geriatrics & Gerontology

KEYWORDS
swallow, sarcopenia, hyoid, tongue
Abstract

Background

Sarcopenia and dysphagia have both become pivotal issues due to the increased number of elderly people. However, it’s still in question that whether sarcopenia, defined by the reduced handgrip strength and/or reduced gait speed, would necessarily results in pathological effects on swallowing function. Studies that focus on the subclinical changes of swallowing function of the sarcopenic elderly are lacking. In this study, we aimed to evaluate the swallowing function of the sarcopenic elderly without dysphagia.

Methods

This was a case-control study and subjects were recruited from the community. 94 individuals aged 65 and older without dysphagia were divided into sarcopenia and non-sarcopenia group. Assessment of swallowing consisted of tongue pressure measurement, hyoid displacement and movement velocity measurement with submental ultrasonography, 100 ml water swallow test, and the 10-item Eating Assessment Tool (EAT-10).

Results

The average tongue pressure was 47.0 ± 13.7 kPa in sarcopenia group and 48.6 ± 11.5 kPa in non-sarcopenia group ($p = 0.55$). The average hyoid displacement during swallowing was 15.3 ± 4.4 mm in sarcopenia group and 13.0 ± 4.2 mm in non-sarcopenia group ($p < 0.05$). The average hyoid movement velocity during swallowing was 22.0 ± 9.1 mm/s in sarcopenia group and 17.4 ± 7.4 mm/s in non-sarcopenia group ($p < 0.05$). The time needed to consume 100 ml of water was 14.7 ± 10.5 seconds in sarcopenia group and 7.0 ± 3.9 seconds in non-sarcopenia group ($p < 0.05$). The average score of EAT-10 was 0.5 ± 0.6 in sarcopenia group and 0.1 ± 0.3 in non-sarcopenia group ($p < 0.05$).

Conclusions

Swallowing function was significantly diminished in elderly individuals with sarcopenia, before clinical symptoms became evident. However, tongue muscles seemed resistant to sarcopenia at an early stage. Compensative strategies, such as reduced swallowing speed and increased hyoid bone movement, were observed in the sarcopenic subjects.
Background
Skeletal muscle mass declines with advancing age, which may lead to decreased strength and functionality. In 1989, Irwin Rosenberg proposed the term 'sarcopenia' to describe this age-related decrease of muscle mass (1). Although a large number of research groups exist worldwide, and their definitions and diagnostic criteria for sarcopenia vary, it is generally agreed that sarcopenia should be defined through a combined approach of muscle mass and muscle quality (2, 3). According to the diagnostic criteria provided by Asian Working Group for Sarcopenia (AWGS), sarcopenia should be described as low muscle mass plus low muscle strength (reduced handgrip strength) and/or low physical performance (reduced gait speed) (3).

Histologically, the swallowing muscles are considered to be striated muscles, but their embryological characteristics are different from those of somatic muscles, which compose the skeletal muscles of the extremities (4). Furthermore, many suprathyroid, infrahyoid, pharyngeal and laryngeal muscles receive constant input stimulation from the respiratory center, and their activities are potentially synchronized with the contraction and relaxation of the diaphragm (5). Therefore, sarcopenia, defined by the reduced handgrip strength and/or reduced gait speed (3), does not necessarily result in pathological effects on swallowing function.

The prevalence of dysphagia due to sarcopenia is unknown (4). Recently, there has been an increase in studies showing sarcopenia might reduce not only body strength, but also the strength of muscles involved in swallowing, which could cause the decline of swallowing function (6-10). Most studies enrolled hospitalized and facility-dwelling patients (6-9). Further studies are required among various settings, especially the community setting. It may be beneficial to discover the characteristics useful for predicting the decline of swallowing function in the sarcopenic elderly without dysphagia, and provide appropriate interventions before dysphagia becomes evident.

Tongue muscle pressure has already been used frequently as a measure of swallowing muscle strength (9, 11-14). Hyoid movement is required for adequate opening of upper esophageal sphincter (UES) and is readily measured by submental ultrasonography (15, 16). 100-ml water swallowing test (WST) is a sensitive indicator for identifying patients at risk for swallowing dysfunction. The sensitivity
of swallowing speed in detecting swallowing dysfunction was 85.5%, and the specificity was 50% (17). The 10-item Eating Assessment Tool (EAT-10) is a self-administered, symptom-specific outcome instrument for dysphagia. It has displayed excellent internal consistency, test-retest reproducibility, and criterion-based validity (18). In this study, we use tongue pressure measurement, submental ultrasonography, 100-ml WST, and the EAT-10 to evaluate the swallowing function of the sarcopenic elderly without dysphagia.

Methods
A total of 94 community-dwelling older individuals (ages above 65) were enrolled in this study. They were all living independently and fully cooperative. All the participants preserved the ability to eat orally at the time of referral, and people who scored 3 points or higher on the 10-item Eating Assessment Tool (EAT-10) (18) were excluded. People with history of a neurological disorder including cerebrovascular diseases, Parkinson’s disease (PD), motor neuron disease, multiple sclerosis (MS), myopathy, or head-and-neck cancers were also excluded. Participants were assigned to sarcopenia or non-sarcopenia group (47 individuals in each) according to a definition used by the Asian Working Group for Sarcopenia (AWGS) (3). According to AWGS, sarcopenia should be described as low muscle mass plus low muscle strength and/or low physical performance.

Iowa Oral Performance Instrument (IOPI) was used to measure the maximal pressure generated by contact between the tongue and palate. The IOPI is a portable, handheld device that uses an air-filled pliable plastic tongue bulb connected via a clear plastic tube to measure peak pressure exerted on the tongue bulb. It is one of the most commonly used measurement techniques to objectively measure tongue strength and endurance in practice (12, 19), with good inter- and intra-rater reliability (14, 20). Submental ultrasonography was used to measure the hyoid movement during swallowing. The protocol was described in detail in previous works (15, 21). Each participant swallowed 3 mL of clear water. Hyoid bone movement during swallowing was recorded and later analyzed. Time interval from the onset of swallow-related hyoid motion to the first moment of maximal displacement in the forward movement trajectory was also measured. The speed of hyoid movement was calculated as the maximal hyoid bone displacement divided by the time interval. 100-
ml water swallowing test (WST) was performed as we asked the participants to drink a glass of 100 ml of water as quickly as possible. Participants who choked during swallowing were asked to stop drinking immediately regardless of whether they had finished the water. The protocol was elaborated in previous work (17). Swallowing speed, defined as the amount of drunken water divided by elapsed time on the stopwatch, was also calculated. The 10-item Eating Assessment Tool (EAT-10) was used to assess the swallowing function. The content was described in detail in Appendix A.

Statistical tests were conducted using IBM SPSS software (SPSS Statistics 20.0; SPSS Inc., Chicago, IL, USA). The sarcopenia group was compared with non-sarcopenia group using the Mann-Whitney U test. The level of significance was chosen as 0.05.

Results

Participant characteristics are shown in Table 1. Among the 94 subjects, the mean age was 75.1 ± 5.8 years, and 26 (27.7 %) were men. 47 of the 94 participants were in sarcopenia group. No significant difference in age or sex was found between the two groups.

Table 2 summarizes the swallowing factors of sarcopenia and non-sarcopenia groups. The 10-item Eating Assessment Tool score was significantly lower in non-sarcopenia group. Swallowing time obtained in the 100-ml water swallowing test was significantly longer in sarcopenia group. The hyoid bone displacement and velocity during swallowing were significantly greater in sarcopenia group. No significant difference was found in maximal tongue pressure between the two groups.

Table 1. Characteristics of the study population

	Sarcopenia group	non-Sarcopenia group
	(n = 47)	(n = 47)
Gender		
Male	13	13
Female	34	34
Age (years)	75.2 ± 6.3	75.1 ± 5.4
Mann-Whitney U test *p < 0.05

Table 2. Sarcopenia group and non-sarcopenia group outcomes

	Sarcopenia group	non-Sarcopenia group
	(n = 47)	(n = 47)
MTP (kPa)	47.0 ± 13.7	48.6 ± 11.5
HD (mm)	15.3 ± 4.4	13.0 ± 4.2*
HV (mm/s)	22.0 ± 9.1	17.4 ± 7.4*
EAT-10	0.5 ± 0.6	0.1 ± 0.3*
WST (second)	14.7 ± 10.5	7.0 ± 3.9*

MTP maximal pressure generated by contact between the tongue and palate, HD hyoid displacement during swallowing, HV hyoid velocity during swallowing, EAT-10 the 10-item Eating Assessment Tool score, WST swallowing time obtained in the 100-ml water swallowing test

Mann-Whitney U test *p < 0.05

Discussion
In the present study, we evaluated the swallowing function of the sarcopenic elderly without dysphagia. The average score of EAT-10 was significantly greater in sarcopenia group. This might be an evidence of the reduced swallowing function in sarcopenia group although all the participants still preserved the ability to eat orally at the time of referral, since higher scores on the EAT-10 indicate patients’ perception of more severe swallowing problems (18, 22). A previous study showed the EAT-10 score is associated with nutritional status and activities of daily living (ADL) in elderly individuals requiring long-term care (23). Also, serial administration of the EAT-10 has been shown efficacious in documenting initial symptom severity and in monitoring treatment efficacy (18, 24).

The time needed to consume 100 ml of water was significantly longer in sarcopenia group. This might
be another evidence of the reduced swallowing function in sarcopenia group. Nathadwarawala et al. first used objective swallowing speed to assess swallowing function and found that swallowing speed was significantly reduced in subjects with swallowing problems (25). Furthermore, a swallowing speed of below 10 ml/s was proposed as the cutoff point for defining swallowing dysfunction (26). This phenomenon probably reflects the compensated or adapted mechanics used by many individuals before an overt clinical problem develops (25, 27). Individuals with swallowing dysfunction may reduce the size of the swallowed bolus to reduce the risk of aspiration, thus slowing their swallowing speed (27).

The sarcopenia group represented greater hyoid bone displacement in swallow of 3 mL water. To our knowledge, our study is the first to investigate the relationship between hyoid bone movement and sarcopenia. There was only one case report about a patient with sarcopenic dysphagia. It showed that the maximum amounts of displacements and maximum moving velocities of the hyoid bone during swallowing were improved after rehabilitation (28). Previous research showed that in an older population with dysphagia, the hyoid bone elevated farther than normal for small bolus sizes, but the patients were unable to maintain this strategy in larger bolus swallows, and the distance of hyoid elevation diminished to normal or below normal levels (29). It is hypothesized that greater displacement reflects compensation for insufficient upper esophageal sphincter opening, and this compensation may break down with larger boluses in patients with dysphagia (29). If so, one implication of our finding would be the clinical application of restricted bolus volume in sarcopenic patients with or without dysphagia. In the meanwhile, strategies and therapies designed to improve the distance of hyoid elevation may be helpful (28).

Our results showed that there was no significant difference between the sarcopenia group and healthy counterpart regarding the tongue pressure. A study conducted in 2015 showed that decreased tongue pressure is associated with sarcopenia elderly (9). However, 42.3% of their subjects had dysphagia, and all their subjects were hospitalized when enrolled. Also, they only included very elderly (age 75 or older) subjects. Another study conducted in Japan showed that sarcopenia is one of the independent explanatory factors for decreased maximum tongue pressure (9). Their study also
enrolled hospitalized patients and some of them had dysphagia. Ours only enrolled community dwelling elderly without dysphagia. Histologically, the swallowing muscles are of different embryological origin from somatic muscles, and receive constant input stimulation from the respiratory center (5). Although the swallowing muscles are striated, their characteristics are different from those of skeletal muscles. Features common to sarcopenic appendicular muscle, i.e., a shift to slower myosin heavy chain isoforms, type II muscle fiber atrophy and neuromuscular junction dysmorphology, are absent or minimal in rat tongue muscles (30, 31). In particular, the styloglossus muscle has been shown to exhibit resistance against sarcopenia both molecularly and immunohistochemically (32). It was reported that normal and effortful swallow pressures do not decline with age (13) and by some measures tongue functional reserve is maintained with age (33). Those results suggested tongue muscles may be resistant to sarcopenia at an early stage, and that age-related decline in tongue motor performance may be non-myogenic in origin.

This study had a few limitations. First, we did not evaluate the muscle mass related to swallowing. Second, we were not able to stratify the sarcopenic patients according to their severity. Third, this study was carried out in a single region, and included only community-dwelling elderly without dysphagia within that location. A follow-up study including an expanded target area and sarcopenic patients with dysphagia is required in the future.

Conclusions
Swallowing function is significantly diminished in elderly individuals with sarcopenia, before clinical symptoms become evident. However, tongue muscles seem to be resistant to sarcopenia at an early stage. Compensative strategies, such as reduced swallowing speed and increased hyoid bone movement, were observed in our sarcopenic subjects.

Abbreviations
EAT-10: the 10-item Eating Assessment Tool; AWGS: Asian Working Group for Sarcopenia; WST: 100-ml water swallowing test.

Declarations
Ethics approval and consent to participate

This study was approved by the ethics committee of National Taiwan University Hospital. Written
informed consent was obtained from each participant.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

All authors declare that they have no competing interests.

Funding

This study was sponsored by the Taiwanese Society of Physical Medicine and Rehabilitation, and Ministry of Science and Technology (MOST). The sponsor had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions

Yen-Chih Chen participated in the data analysis and drafting the manuscript. Der-Sheng Han participated in the data collection. Pei-Yun Chen and Yu-Chen Wang participated in the statistical analysis. Thanks to Tyng-Guey Wang for revising the manuscript critically for important intellectual content.

Acknowledgements

Not applicable.

References

1. Rosenberg IH. Summary comments. Am J Clin Nutr. 1989;50:1231-3.

2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412-23.

3. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95-101.
4. Fujishima I, Fujiu-Kurachi M, Arai H, Hyodo M, Kagaya H, Maeda K, et al. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr Gerontol Int. 2019;19:91-7.

5. Grelot L, Barillot JC, Bianchi AL. Pharyngeal motoneurones: respiratory-related activity and responses to laryngeal afferents in the decerebrate cat. Exp Brain Res. 1989;78:336-44.

6. Shiozu H, Higashijima M, Koga T. Association of sarcopenia with swallowing problems, related to nutrition and activities of daily living of elderly individuals. J Phys Ther Sci. 2015;27:393-6.

7. Maeda K, Akagi J. Sarcopenia is an independent risk factor of dysphagia in hospitalized older people. Geriatr Gerontol Int. 2016;16:515-21.

8. Wakabayashi H, Takahashi R, Murakami T. The prevalence and prognosis of sarcopenic dysphagia in patients who require dysphagia rehabilitation. J Nutr Health Aging. 2019;23:84–8.

9. Maeda K, Akagi J. Decreased Tongue Pressure is Associated with Sarcopenia and Sarcopenic Dysphagia in the Elderly. Dysphagia. 2015;30:80-7.

10. Machida N, Tohara H, Hara K, Kumakura A, Wakasugi Y, Nakane A, et al. Effects of aging and sarcopenia on tongue pressure and jaw-opening force. Geriatr Gerontol Int. 2017;17:295-301.

11. Sakai K, Nakayama E, Tohara H, Maeda T, Sugimoto M, Takehisa T, et al. Tongue Strength is Associated with Grip Strength and Nutritional Status in Older Adult Inpatients of a Rehabilitation Hospital. Dysphagia. 2017;32:241-9.

12. Steele CM, Bailey GL, Molfenter SM, Yeates EM. Rationale for Strength and Skill Goals in Tongue Resistance Training: A Review. Perspect Swallowing Swallowing Disord. 2009;18:49–54.
13. Yeates E, Steele C, Pelletier C. Tongue Pressure and Submental Surface Electromyography Measures During Noneffortful and Effortful Saliva Swallows in Healthy Women. Am J Speech Lang Pathol 2010;19:274–81.

14. Youmans SR, Stierwalt JA. Measures of tongue function related to normal swallowing. Dysphagia. 2006;21:102–11.

15. Chen Y-C, Hsiao M-Y, Wang Y-C, Fu C-P, Wang T-G. Reliability of Ultrasonography in Evaluating Hyoid Bone Movement. J Med Ultrasound. 2017;25:90–5.

16. Ekberg O. The normal movements of the hyoid bone during swallow. Invest Radiol. 1986;21:408–10.

17. Wu M-C, Chang Y-C, Wang T-G, Lin L-C. Evaluating Swallowing Dysfunction Using a 100-ml Water Swallowing Test. Dysphagia. 2004;19:43–7.

18. Belafsky PC, Mouadeb DA, Rees CJ, Pryor JC, Postma GN, Allen J, et al. Validity and Reliability of the Eating Assessment Tool (EAT-10). Ann Otol Rhinol Laryngol. 2008;117:919–24.

19. Adams V, Mathisen B, Baines S, Lazarus C, Callister R. A Systematic Review and Meta-analysis of Measurements of Tongue and Hand Strength and Endurance Using the Iowa Oral Performance Instrument (IOPI). Dysphagia. 2013;28:350–69.

20. Youmans SR, Youmans GL, Stierwalt JA. Differences in tongue strength across age and gender: is there a diminished strength reserve? Dysphagia. 2009;24:57–65.

21. Chen Y-C, Hsiao M-Y, Chen P-Y, Wang T-G. Effects of Age on the Speed of Hyoid Bone Movement during Swallowing. Int J Gerontol. 2019;13:344–8.

22. Wilmskoetter J, Bonilha H, Hong I, Hazelwood RJ, Martin-Harris B, Velozo C. Construct validity of the Eating Assessment Tool (EAT-10). Disabil Rehabil. 2019;41:549–59.

23. Wakabayashi H, Matsushima M. Dysphagia assessed by the 10-item eating assessment tool is associated with nutritional status and activities of daily living in
elderly individuals requiring long-term care. J Nutr Health Aging. 2016;20:22-7.

24. Kaspar K, Ekberg O. Identifying vulnerable patients: role of the EAT-10 and the multidisciplinary team for early intervention and comprehensive dysphagia care. Nestle Nutr Inst Work Ser. 2012;72:19-31.

25. Nathadwarawala KM, McGroary A, Wiles CM. Swallowing in neurological outpatients: Use of a timed test. Dysphagia. 1994;9:120-9.

26. Nathadwarawala KM, Nicklin J, Wiles CM. A timed test of swallowing capacity for neurological patients. J Neurol Neurosurg Psychiatry. 1992;55:822-5.

27. Buchholz DW, Bosma JF, Donner MW. Adaptation, compensation, and decompensation of the pharyngeal swallow. Gastrointest Radiol. 1985;10:235-9.

28. Nakayama E, Tohara H, Sato M, Hino H, Sakai M, Nagashima Y, et al. Time course and recovery of the movements of hyoid bone and thyroid cartilage during swallowing in a patient with sarcopenic dysphagia: a case report. Am J Phys Med Rehabil. 2019.

29. Kendall KA, Leonard RJ. Hyoid Movement During Swallowing in Older Patients With Dysphagia. Arch Otolaryngol Neck Surg. 2001;127:1224-9.

30. Connor NP, Russell JA, Wang H, Jackson MA, Mann L, Kluender K. Effect of tongue exercise on protrusive force and muscle fiber area in aging rats. J Speech Lang Hear Res. 2009;52:732-44.

31. Hodges SH, Anderson AL, Connor NP. Remodeling of neuromuscular junctions in aged rat genioglossus muscle. Ann Otol Rhinol Laryngol. 2004;113:175-9.

32. Sokoloff AJ, Douglas M, Rahnert JA, Burkholder T, Easley KA, Luo Q. Absence of morphological and molecular correlates of sarcopenia in the macaque tongue muscle styloglossus. Exp Gerontol. 2016;84:40-8.

33. Steele CM. Optimal approaches for measuring tongue-pressure functional reserve. J Aging Res. 2013;2013:542909.
Appendix A
The EAT-10 was self-administered by participants as follow:

To what extent are the following scenarios problematic for you? Each item is scored from 0 to 4 according to the severity of the problem.

0 = No problem, 4 = Severe problem

1. My swallowing problem has caused me to lose weight.
2. My swallowing problem interferes with my ability to go out for meals.
3. Swallowing liquids takes extra effort.
4. Swallowing solids takes extra effort.
5. Swallowing pills takes extra effort.
6. Swallowing is painful.
7. The pleasure of eating is affected by my swallowing.
8. When I swallow food, it sticks in my throat.
9. I cough when I eat.
10. Swallowing is stressful.