Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results

Claudia Brandariz-Fontes1,2*, Miguel Camacho-Sanchez1*, Carles Vilà1, José Luis Vega-Pla3, Ciro Rico4 & Jennifer A. Leonard1

1Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain, 2Facultad de Medicina Veterinaria, Universidad de Panamá, Panama, 3Laboratorio de Investigación Aplicada, Cria Caballar de las Fuerzas Armadas, Córdoba, Spain, 4University of the South Pacific, School of Marine Studies, Faculty of Science, Technology & Environment, Laucala Campus, Suva, Fiji.

Library preparation protocols for high-throughput DNA sequencing (HTS) include amplification steps in which errors can build up. In order to have confidence in the sequencing data, it is important to understand the effects of different Taq polymerases and PCR amplification protocols on the DNA molecules sequenced. We compared thirteen enzymes in three different marker systems: simple, single copy nuclear gene and complex multi-gene family. We also tested a modified PCR protocol, which has been suggested to reduce errors associated with amplification steps. We find that enzyme choice has a large impact on the proportion of correct sequences recovered. The most complex marker systems yielded fewer correct reads, and the proportion of correct reads was greatly affected by the enzyme used. Modified cycling conditions did reduce the number of incorrect sequences obtained in some cases, but enzyme had a much greater impact on the number of correct reads. Thus, the coverage required for the safe identification of genotypes using one of the low quality enzymes could be seven times larger than with more efficient enzymes in a biallelic system with equal amplification of the two alleles. Consequently, enzyme selection for downstream HTS has important consequences, especially in complex genetic systems.

High throughput DNA sequencing (HTS) has dramatically reduced the cost per base sequenced1. HTS technologies, however, are fundamentally different from Sanger sequencing and face different problems. In HTS single molecules of DNA yield sequences, as opposed to a large pool of molecules in Sanger sequencing. This exposes errors that can occur during library preparation. For example, errors could result from the misincorporation of nucleotides during the amplification steps of library preparation. During amplification there can be partial synthesis of a DNA strand that can act as a primer in a downstream polymerase chain reaction (PCR) cycle and form a chimeric sequence if it amplifies a related allele. These sources of errors originating in PCR amplification are poorly characterized, but increasingly recognized as a problem2,3.

Recent technical advances in HTS yielding longer reads of 350 to 1000 base pairs (bp) and methodological advances such as the incorporation of index sequences allow multiple targeted loci from many individuals to be sequenced simultaneously4–6. Targeted loci could have different characteristics. The simplest systems, such as loci in the mitochondrial DNA, Y chromosome (in mammals) or W chromosome (in birds) loci, are expected to yield a single haplotype and are thus the easiest to determine the sequence of. Most single copy nuclear markers, which are potentially biallelic in diploid organisms, are more challenging to accurately genotype. Very complex systems, such as gene families in which many different alleles could be present in a single individual, can be very difficult to accurately characterize. PCR based errors have been shown to be a problem in the characterization of polygenic immune system loci in model organisms5,6. Accurately genotyping complex loci in non-model systems for which there is not a lot of comparative data to verify results can be even more challenging7–10.

One factor that could play an important role in identifying correct alleles and genotypes using HTS approaches is the enzyme used in the DNA amplification. In this study we tested the ability of thirteen different enzymes to yield the true sequence(s) via HTS in three genetic marker systems of different complexity. We also tested if modified PCR conditions could increase the yield of correct templates, as suggested in previous studies11–15. Understanding the frequency and potential sources of erroneous sequences is of prime importance for the design
of optimal protocols in HTS approaches to characterize genetic diversity in individuals and populations, and is even more critical in non-model systems.

Results

We tested the ability of 13 different enzymes to yield the true sequence(s) in three different marker sets of varying complexity (see Methods, Table 1 for abbreviations). The three sets we used were: Test 1, mitochondrial DNA from wolves, expected to yield a single sequence per individual; Test 2, MHC class II exon 2 (MHC II) in horses, a single copy nuclear gene with one or two alleles per individual; and Test 3, MHC class I exon 3 (MHC I) in horses, a multigene family which could yield several alleles per individual. Three different individuals were included in each test. A further two tests (Tests 2b and 3b) were designed to evaluate the ability of modified PCR cycling conditions to reduce amplification-associated errors. These tests were done only with the two more complex systems: MHC II for Test 2b and MHC I for Test 3b.

Error patterns and rates can vary between sequencing platforms\(^5\)\(^,\)\(^6\), and even independent runs in the same platform can have an effect on the genotypes\(^7\). Here we focus on the performance of different polymerase on a single platform in order to more reliably assess to what degree this is an important factor to take into account when designing experiments. We chose the Roche 454 Junior sequencing platform. This platform is appropriate for this experiment because it allows relatively long and variable read lengths, so the entire length of the three different PCR products could be sequenced simultaneously in single reads.

Six enzymes (Phusion, Gold, FastStart, Roche Taq, HotStar and Biotaq) worked across all tests, five of them (Velocity, OneTaq, Imax, KapHF and Pwo) worked inconsistently in different tests. We were not able to get Vent or DeepVent to amplify in any of the systems after 12–29 tries each for Tests 1–3. The sequencing run produced 102,484 reads, from which 63,942 passed size (full length) and quality filters (complete MID and primer sequences) and could be successfully assigned to the experimental units (Genetic system/Enzyme/PCR condition/Biological replica) yielding an average coverage of 566, although with a large variation (standard deviation, s. d. = 1900). The average coverage for the sequences used in Test 1 was 1004 (s. d. = 3225), 203 in Test 2 (s. d. = 194), 370 in Test 3 (s. d. = 484), 834 in Test 2b (s. d. = 2300) and 337 in Test 3b (s. d. = 546). Eleven of the 13 enzymes tested yielded a band of the expected size in SCIENTIFIC REPORTS.

PCR cycling conditions to reduce amplification-associated errors. (Tests 2b and 3b) were designed to evaluate the ability of modified different individuals were included in each test. A further two tests (Tests 2b and 3b) were designed to evaluate the ability of modified PCR cycling conditions to reduce amplification-associated errors.

The three sets we used were:

- Test 1, mitochondrial DNA from wolves, expected to yield a single sequence per individual;
- Test 2, MHC class II exon 2 (MHC II) in horses, a single copy nuclear gene with one or two alleles per individual; and
- Test 3, MHC class I exon 3 (MHC I) in horses, a multigene family which could yield several alleles per individual.

Three different individuals were included in each test. A further two tests (Tests 2b and 3b) were designed to evaluate the ability of modified PCR cycling conditions to reduce amplification-associated errors. These tests were done only with the two more complex systems: MHC II for Test 2b and MHC I for Test 3b.

Error patterns and rates can vary between sequencing platforms\(^5\)\(^,\)\(^6\), and even independent runs in the same platform can have an effect on the genotypes\(^7\). Here we focus on the performance of different polymerase on a single platform in order to more reliably assess to what degree this is an important factor to take into account when designing experiments. We chose the Roche 454 Junior sequencing platform. This platform is appropriate for this experiment because it allows relatively long and variable read lengths, so the entire length of the three different PCR products could be sequenced simultaneously in single reads.

Six enzymes (Phusion, Gold, FastStart, Roche Taq, HotStar and Biotaq) worked across all tests, five of them (Velocity, OneTaq, Imax, KapHF and Pwo) worked inconsistently in different tests. We were not able to get Vent or DeepVent to amplify in any of the systems after 12–29 tries each for Tests 1–3. The sequencing run produced 102,484 reads, from which 63,942 passed size (full length) and quality filters (complete MID and primer sequences) and could be successfully assigned to the experimental units (Genetic system/Enzyme/PCR condition/Biological replica) yielding an average coverage of 566, although with a large variation (standard deviation, s. d. = 1900). The average coverage for the sequences used in Test 1 was 1004 (s. d. = 3225), 203 in Test 2 (s. d. = 194), 370 in Test 3 (s. d. = 484), 834 in Test 2b (s. d. = 2300) and 337 in Test 3b (s. d. = 546). Eleven of the 13 enzymes tested yielded a band of the expected size in Test 1, eight in Test 2, eight in Test 3, six in Test 2b and six in Test 3b.

There was a significant effect of the enzyme on the quality of the sequences obtained (proportion of reads with a correct sequence) for all tests (p < 0.001 in all cases). In general, Biotaq produced the lowest proportion of correct reads across all tests whereas Phusion, Pwo and KapHF worked best (Supplementary File 1). For Test 1 (with only one allele expected per individual), all the enzymes that successfully amplified DNA (11 out of 13) yielded from 50–53% (OneTaq and Biotaq) to 88–92% (Phusion, Pwo and KapHF) correct reads (Figure 1). For Test 2, the proportion of correct reads was on average 23% lower than for Test 1. There was also more variation between the enzymes, with correct reads ranging from 2% (Biotaq) to 84% (Phusion) (Figure 1). For Test 3, the multigene family marker system, the recovery of correct sequences ranged from 17–20% (Biotaq, HotStar and Roche Taq) to 65–71% (Phusion and FastStart) (Figure 1).

For the system with up to 2 alleles, the modified PCR had no effect on the proportion of correct reads (p = 0.31, Test 2 vs Test 2b). For the complex system, the multigene family, the proportion of correct reads was significantly higher under the modified PCR conditions, by an average of 7.5% (p < 0.001, Test 3 vs Test 3b).

We used the proportion of correct sequences obtained with each enzyme from Tests 1, 2 and 2b to calculate the probability of obtaining three or more copies of the correct allele(s). We simulated this for a simple system, a haplotype (data from Test 1), and for a more complex system, a single locus with two alleles (combined data from Tests 2 & 2b). Unequal amplification of alleles in PCR reactions where more than one allele are amplified has been observed widely\(^8,\)\(^9\). For this reason we also simulated the number of reads needed to reach the same level of confidence when one allele in the two allele system amplified twice as well as the other. For the haplotype, between 7 (for Phusion, Pwo and KapHF) and 16 (Biotaq) reads were enough to have a 99.9% probability of obtaining 3 or more correct sequences (Table 1, Figure 2A). However, the number of reads required increased sharply as the gene system got more complex. For two alleles that amplify equally, between 42 (for Phusion) and 271 (Biotaq) reads were needed to have 99.9% confidence of getting three correct copies for each of the two alleles (Table 1, Figure 2B). In the case of unequal amplification, the coverage necessary increased to 87 for Phusion, and to 395 for Biotaq (Table 1, Figure 2C).

Discussion

The Taq polymerase enzyme used in the PCR steps of library preparation for HTS had a very important impact on the proportion of correct reads after sequencing. In the simplest case of a single allele being present, as in mitochondrial DNA or sex specific chromosome markers (Test 1), the majority of the reads (50–92%), depending on

Enzyme	Abbreviation	Test 1	Test 2 equal amplification	Test 2 unequal amplification
Phusion	Phusion	7	42	87
KAPA HiFi	KapHF	7	i.d.	i.d.
Pwo	Pwo	7	n.a.	n.a.
AmpliTaq Gold	Gold	9	48	88
i-MaxTM II DNA Polymerase (iNtRON Biotechnology)	iMax	11	57	99
Taq DNA Polymerase (Roche)	Roche Taq	11	120	185
Velocity DNA Polymerase (Bioline)	Velocity	12	n.a.	n.a.
HotStarTaq DNA Polymerase (Qiagen)	HotStar	14	97	152
FastStart® High Fidelity PCR System (Roche)	FastStart	14	45	86
Biotaq® (Bioline)	Biotaq	16	271	395
OneTaq® DNA Polymerase (New England Biolabs)	OneTaq	i.d.	n.a.	n.a.
Vent® DNA Polymerase (New England Biolabs)	Vent	n.a.	n.a.	n.a.
Deep Vent® DNA Polymerase (New England Biolabs)	DeepVent	n.a.	n.a.	n.a.
Methods

Samples. We used DNA samples from three gray wolves (*Canis lupus*) from which the 5' end of the mitochondrial control region had been Sanger sequenced in previous studies, and thus was known\(^{11,12}\). The loci had different GC content, from 44% to 66%, and the longest homopolymer was 5 bp (present in at least one allele of each locus). Three Retuertas breed domestic horses (*Equus caballus*) with known MHC genotypes (Brandariz-Fontes *et al.* in preparation) were selected for the nuclear loci tests. Each DNA sample was quantified using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA), and the concentration was adjusted to 10 or 30 ng/μl for subsequent PCR amplifications.

Taq polymerase. A range of 13 high fidelity, regular, economy and premium *Taq* polymerase enzymes were selected: Biotaq\(^{®}\) (Bioline, London, UK), FastStart\(^{®}\) High Fidelity PCR System (Roche, Mannheim, Germany), AmpliTaq Gold\(^{®}\) (Applied Biosystems, Warrington, UK), HotStarTaq\(^{®}\) DNA Polymerase (Qiagen, Hilden, Germany), Phusion\(^{®}\) High Fidelity DNA Polymerase (Finnzymes, Espoo, Finland), *Taq* DNA Polymerase (Roche, Meylan, France), i-Max\(^{TM}\) II DNA Polymerase (iNtRON Biotechnology, Seongnam, Korea), KAPA HiFi\(^{TM}\) (Kapa Biosystems, Boston, USA), One*Taq*\(^{®}\) DNA Polymerase (New England Biolabs, Hitchin, UK),

Figure 1 Proportion of correct reads for the three genetic systems (simple: a single allele per individual, squares; medium: two alleles, circles; and complex: multiple alleles, triangles) using standard PCR conditions (open) and modified PCR conditions to reduce chimera formation (gray). The size of the shape is indicative of the number of reads (see legend). All enzymes yielded at least 50% correct reads in the simplest system, mitochondrial DNA (Test 1; open squares). Some enzymes only worked for a given set of conditions (cycling conditions/genetic system). A group of enzymes consisting of Phusion, Gold and FastStart yielded a high proportion of correct reads consistently across all conditions. Others, such as Roche Taq, HotStar and Biotaq, yielded a low percent of correct reads for the more complex systems (MHC class I and MHC class II). Abbreviations as defined in Table 1.
Assessment of PCR protocols to reduce amplification errors. We repeated Tests 2 and 3 with modified cycling conditions in an attempt to reduce errors: Test 2b & 3b, respectively. The goal was to generate comparable data to evaluate the effect of the cycling conditions on the accuracy of the sequences (Test 2 vs 2b; Test 3 vs 3b). For the first and second PCRs the number of cycles was reduced to 25, the elongation time within cycles increased to 180 seconds and the final extension step was eliminated. Similar amplifications conditions have been suggested previously in the literature to reduce errors during amplification steps\(^{15,19,22}\). All the cycling reactions were performed on a DNA Engine Peltier Thermal Cycler. All reactions, including blank controls, were checked for amplification success on a 1.5% agarose gel and visualized with SYBR\(^\text{®}\)Safe (Invitrogen). All successful first PCR products were diluted and used as templates for the second-round PCRs. Second PCR products were cleaned using Agencourt AMPure \(x\)p system (Beckman Coulter, Brea, CA, USA).

Assessment of accuracy for different enzymes. Loci for Tests 1–3 were amplified in a two-step process following the universal tagged amplicon design proposed by Roche\(^{15,18}\). First, loci were amplified with locus-specific primers with an M13 tail, and then a Multiplex Identifier (MID) and the sequencing primer were added in a second-round PCR using the same enzyme as for the first PCR. For Test 1, the 5' end of the wolf mitochondrial control region was amplified with the primers Thr-L\(^\text{22}\) and ddiS\(^\text{51}\), which target a 168–172 bp fragment excluding primers (variation due to indels). For Test 2, a 257 bp fragment of MHC II in horse was amplified with primers PpLaA2U270 and Ppa2L542\(^\text{22}\). In the second PCR, we used the first PCR as a template with a 52 bp primer which included the M13, a sample-specific 10 bp MID, the 454 Sequencing System Primer sequence and a 4 bp primer key (Table 2).

All reactions were prepared in 10 \(\mu\)l using the standard PCR conditions following the manufacturer’s protocols that came with each enzyme for both PCR steps. These were 40 cycles of: 15 or 30 seconds at 94–98°C, 20, 30 or 90 seconds at 58°C, and 30, 60 or 90 seconds at 72°C; with a final extension at 72°C for 5, 7 or 10 minutes. All cycling was performed on a DNA Engine Peltier Thermal Cycler. All reactions, including blank controls, were checked for amplification success on a 1.5% agarose gel and visualized with SYBR\(^\text{®}\)Safe (Invitrogen). All successful first PCR products were diluted and used as templates for the second-round PCRs. Second PCR products were cleaned using Agencourt AMPure \(x\)p system (Beckman Coulter, Brea, CA, USA).

Data Analysis. Reads containing the complete target primers and barcodes were extracted from the multisfast output file and de-multiplexed on the basis of the barcode and loci specific primer sequences using \(\text{JMH}\text{C}\)^{11}. The different sequences were compared to the known haplotype or genotype to determine correct sequences in \(\text{Geneious v6.1.7}\) (Biомaeters, Auckland, NZ). These previously known sequences were the reference against which the sequences identified in \(\text{JMH}\text{C}\) were compared, and reads were considered to have the correct sequence when it was identical to the reference. The proportion of correct reads was calculated by dividing the number of reads with correct sequences by the total number of reads from a particular amplicon.

Statistical analysis

We evaluated the effect of enzymes on the proportion of correct reads with generalized linear mixed models (GLMM), using the function \text{function} from the \text{lme4} package\(^\text{14}\) in R (\text{R} Bates, D., \text{Maechler}, M. & \text{Bolker}, B. \text{Imet}: Linear mixed-effects models using \$\text{S}\$ classes. \text{R} package version 0.999999-0. (2012); \text{R Core Team R}: A language and environment for statistical computing. \text{R} Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013)) for each test separately. Only cases with more than 10 reads per individual test were included in the analysis. The \text{Taq} polymerase was included as a fixed effect and individual as a random effect. We also used a GLMM with enzyme function to evaluate the effect of the PCR protocol (standard/modified) on the proportion of correct reads for the medium and complex systems (Test 2 vs Test 2b; Test 3 vs Test 3b). PCR condition was added (shown in lower case). MID1s–96\(^\text{25}\) were used in both the forward and reverse primers.

Table 2 Primers used in first and second round reactions for all tests.

Test	Primer	Sequence 5’–3’
Test		
1	Thr-L	gtttcaccgtaacgcgaATCCTCCCGCCTGCTTAAACCC
2	ddiS\(^\text{51}\)	acacgcgtagtacgcgaCAATTTCCCGCCTGCTGTAACCC
3	PpLaA2U270	gtttcaccgtaacgcgaGGCTTCTGCATGCTGTCCTT
2	Ppa2L542\(^\text{22}\)	acacgcgtagtacgcgaACCTAATGCGACGCTACATGAAG
3	Be3\(^\text{44}\)	gtttcaccgtaacgcgaGCCTTCTGCATGCTGTCCTT
2	Test 3	acacgcgtagtacgcgaGCCTTCTGCATGCTGTCCTT
2	Test 3	acacgcgtagtacgcgaGCCTTCTGCATGCTGTCCTT
2	Test 3	acacgcgtagtacgcgaGCCTTCTGCATGCTGTCCTT

Figure 2 | Probability of obtaining 3 or more correct sequences for a given number of reads based on the proportion of correct reads observed for each enzyme and genetic system. (A). For the simplest genetic system, with only one allele per individual. (B). For a locus with two alleles that amplify equally well (3 or more correct sequences for each of the two alleles). (C). For a locus with two alleles where one amplifies twice as well as the other. Note that the scale on the X-axis in panel A is different from that in B and C.
 included as a fixed effect, and enzyme and individual as random effects. We tested the significance of the variables by comparing different models using ANOVAs.

We prepared a script in Python 2.7.4 to calculate the probability of obtaining a minimum of three reads with the correct sequences for the different Taq enzymes when varying the total number of reads for a single haplotype and for one locus with two alleles (the script is available in Supplementary file 2, online). These probabilities are based on the frequency of correct reads observed per enzyme in Test 1 for the case of the single haplotype, and Tests 2 & 2b combined for the case of one locus with two alleles. Simulations were run only on datasets with a given enzyme to be able to reliably identify the correct haplotype or alleles. Simulations were based on the frequency of correct reads observed per enzyme in Test 1 for the case of one locus with two alleles.

For this reason we also calculated the probability of obtaining three reads with the correct sequence for each allele when one amplifies half as well as the other.

1. Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).

2. Brodin, J. et al. PCR-induced transitions are the major source of error in cleaned ultra-deep pyrosequencing data. PLoS One 8, e70388 (2013).

3. Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–5 (2014).

4. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly polymorphic loci — Implications for population genomics. Mol. Ecol. Resour. 1, 1–15 (2013).

5. Babik, W., Taberlet, P., Ejsmond, M. J. & Radwan, J. New generation sequencers as a tool for genotyping of highly polymorphic multicopy MHC system. Mol. Ecol. Resour. 9, 713–9 (2009).

6. Babik, W. Methods for MHC genotyping in non-model vertebrates. Mol. Ecol. Resour. 10, 237–51 (2010).

7. Bernstein, L. & Landry, C. MHC studies in nonmodel vertebbrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363–377 (2003).

8. Sommer, S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16 (2005).

9. Thompson, J. R. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by “reconditioning PCR.” Nucleic Acids Res. 30, 2083–2088 (2002).

10. Kanagawa, T. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323 (2003).

11. Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V. & Polz, M. F. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71, 8966–9 (2005).

12. Lenz, T. L. & Becker, S. Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci — Implications for evolutionary analysis. Gene 427, 117–123 (2008).

13. Holcomb, C. L. et al. Next-generation sequencing can reveal in vitro-generated PCR crossover products: Some artifactual sequences correspond to HLA alleles in the IMGT/HLA database. Tissue Antigens 83, 32–40 (2014).

14. Bolotin, D. A. et al. Next generation sequencing for TCR repertoire profiling: Platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073–3083 (2012).

15. Lighten, J., van Oosterhout, C., Paterson, I. G., Mcmullan, M. & Bentzen, P. Ultra-deep Illumina sequencing accurately identifies MHC class IIB alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata). Mol. Ecol. Resour. 14, 753–767 (2014).

16. Polz, M. F. & Cavanaugh, C. M. Bias in Template-to-Product Ratios in Multitemplate PCR Bias in Template-to-Product Ratios in Multitemplate PCR. Appl. Environ. Microbiol. 64, 3724–3730 (1998).

17. Wagner, A. et al. Surveys of Gene Families Using Polymerase Chain Reaction: PCR Selection and PCR Drift. Syst. Biol. 43, 250–261 (1994).

20. Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 10, R32 (2009).

21. Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012).

22. Vila, C. et al. Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol. Ecol. 8, 2089–2103 (1999).

23. Kohlbühler, S., Nord, M., Wayne, R. K. & Leonard, J. A. Origin and status of the Great Lakes wolf. Mol. Ecol. 18, 2313–26 (2009).

24. Duigl, D., Simen, B. B. & Pochart, P. High-throughput sequencing of PCR products tagged with universal primers using 454 life sciences. Curr. Protoc. Mol. Biol. 96, 7.5.7.1–7.5.14. DOI:10.1002/0471142727.0300596 (2011).

25. Roche. Roche Technical Bulletin No. 005–2009. (2009).

26. Leonard, J. A. et al. Ancient DNA evidence for Old World origin of New World dogs. Science 298, 1613–6 (2002).

27. Albright-Fraser, D. G., Reid, R., Gerber, V. & Bailey, E. Polymorphism of DNA among equids. Immunogenetics 43, 315–317 (1996).

28. Aldridge, B. M. et al. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population. Immunogenetics 58, 203–15 (2006).

29. Meyerhans, A., Vartanian, J.-P. & Wain-Hobson, S. DNA recombination during PCR. Nucleic Acids Res. 18, 1687–1691 (1990).

30. Judo, M. S. B., Wedel, A. B. & Wilson, C. Stimulation and suppression of PCR-mediated recombination. Nucleic Acids Res. 26, 1819–1825 (1998).

31. Zylstra, P., Rothenfluh, H. S., Weißler, G. F., Blanden, R. V. & Steele, E. J. PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol. Cell Biol. 76, 395–405 (1998).

32. Lahr, D. J. G. & Katz, L. A. Reducing the impact of PCR mediated recombination in ocelluar evolution and environmental studies using a new-generation high-fidelity DNA polymerase. Biotechniques 47, 857–866 (2009).

33. Stuglik, M. T., Radwan, J. & Babik, W. jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol. Ecol. Resour. 11, 739–42 (2011).

Acknowledgments
The authors gratefully acknowledge Alejandro Gonzalez Voyager, Eloy Bervilla, Inés Sánchez and Manuela González for advice regarding statistical analysis. Logistical support was provided by Laboratorio de Ecologia Molecular, Estación Biológica de Doñana, CSIC (LEM-EBD). We thank the members of the Conservation and Evolutionary Genetics Group at EBD for constructive comments. C.B.-F. was supported by the University of Panama and Fundación Carolina.

Author contributions
J.A.L. conceived the experiment, C.B.-F. did the lab work under C.R. and J.A.L. supervision, M.C.-S. and C.V.A. did the statistics, J.A.L. wrote the manuscript with C.B.-F., M.C.-S. and C.V.A. All authors contributed preparation of the final draft, and approved it (J.A.L., C.B.-F., C.R.-S., C.V.A. and J.L.V.-P.). C.B.-F. and M.C.-S. contributed equally.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Brandonz-Fontes, C. et al. Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Sci. Rep. 5, 8056; DOI:10.1038/srep08056 (2015).