Analysis on the Complete Mitochondrial Genome of Andraca theae (Lepidoptera: Bombycoidea)

Xing-Shi Gu,1,2 Li Ma,1,2 Xing Wang,1,2 and Guo-Hua Huang1,2,3

1College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (289260490@qq.com; lily.m1108@gmail.com; wangxing@hunau.edu.cn; ghhuang@hunau.edu.cn), 2Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China, and 3Corresponding author, e-mail: ghhuang@hunau.edu.cn

Received 14 June 2016; Accepted 3 September 2016

Abstract

The bombycid moth, Andraca theae (Matsumura) (Lepidoptera: Bombycoidea) is an important pest of tea in southeastern China. In the present study, the mitochondrial genome (mitogenome) of A. theae was amplified by polymerase chain reaction and sequenced. The complete mitogenome of A. theae, encoding 37 genes, was 15,737 bp in length (Genbank no. KX365419), and consisted of 13 protein-coding genes (PCGs), 2 tRNA genes, 2 ribosomal RNA genes and an adenine (A) + thymine (T)-rich region (AT-rich region). The gene order of A. theae mitogenome was typical for Lepidoptera mitogenomes. Except for cox1, which started with CGA, all other 12 PCGs started with ATN. Eleven of the 13 PCGs ended with TAA, expect for cox1 and cox2, which ended with a single T. The maximum likelihood method and the Bayesian method were used to analyze the phylogenetic relationship among 22 representative bombycoid species with a matrix consisting of the 13 PCGs of the mitogenomes of the 22 species. The topological structures of the two phylogenetic trees we constructed were almost identical, with the results indicating that the bombycid species, including A. theae, clustered into a single clade with a bootstrap value of 58% and a posterior probability of 0.98. The phylogenetic relationship among the Bombycoidea species analyzed was Lasiocampidae + (Bombycidae + (Saturniidae + Sphingidae)) which was supported by a high bootstrap value of 100% and a posterior probability of 1.00.

Key words: Andraca theae; Bombycoidea; mitochondrial genome; phylogeny

The moth species, Andraca theae (Matsumura), (Lepidoptera: Bombycoidea) is a serious pest of tea [Camellia sinensis (L.) Kuntze] (Theaceae: Theaceae) that is widely distributed throughout the tea-growing areas in southeastern China (Anhui, Hunan, Guangdong, Guizhou, and Taiwan Provinces) and Nepal (Wang et al. 2013). Tea, as mankind’s most commonly consumed drink, has become increasingly popular throughout the world. Of the many pests occurring on tea, most are rarely even reported, and little is known regarding any of the species genetic characteristics. In order to effectively manage A. theae in the field, additional basic information is needed on the species genetic features and phylogenetic position.

Lepidopteran mitochondrial DNA has characteristics typically found in the mitochondrial genome (mitogenome) of many other invertebrates, encoding 37 mitochondrial genes consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 ribosomal RNA (rRNA) genes and a noncoding region (AT-rich region) (Wolstenholme 1992, Lewis et al. 1995, Zhang et al. 1995, Inohira et al. 1997, Boore 1999). We were able to extract an extensive amount of information from the mitogenome of A. theae, including gene arrangement, base composition, genetic codon variation, and the secondary structures of tRNA and rRNA genes. This information could be used to understand the unique features of each individual. Mitogenome sequences are also widely used in population genetics, reconstruction of phylogenetic relationships, and evolutionary genomics and biology (Avise 1987, Ballard and Rand 2005, Cameron and Whiting 2008).

The family Bombycidae s. lat. is a relatively well-known lepidopteran taxon, belonging to the superfamily Bombycoidea. As currently defined, the family contains ≥ 40 genera and roughly 350 species (Lemaire and Minet 1999). Bombycid mitogenomes have rarely been studied. To date, only four species’ complete mitochondrial genome have been reported, Bombyx mandarina (Moore) (NC_003395), Bombyx buttoni Westwood (NC_026518), Bombyx mori (Linnaeus) (NC_002355), and Rondotia menciana Moore (NC_021962) (Yukushi et al. 2002, Peng et al. 2015, Kong and Yang. 2015).

In our study, the complete mitogenome of A. theae is sequenced and described for the first time and compared with other bombycid species. The phylogenetic arrangement of the bombycid species was analyzed based on mitochondrial data. The intent of this study
was to contribute to understanding the phylogenetic and evolutionary relationships among the Bombycoidea.

Materials and Methods

Sampling and DNA Extraction
Larvae of *A. theae* were collected from a tea plantation located in Panxian Town (Liupanshui City, Guizhou Province, China; 25° 49' N, 104° 38' E) in October 2015 and were provided by Hui-Zhu Wang. Species identification of the specimens was based on Wang et al. (2011, 2012, 2015). Genomic DNA was extracted from fresh larvae using a Wizard Genomic DNA Purification Kit (Promega, Beijing, China) according to the manufacturer’s instruction.

Polymerase Chain Reaction Amplification and Sequencing
Fourteen pairs of primers were used to amplify the entire mitogenome sequence of *A. theae*. The polymerase chain reaction (PCR) amplification was performed in a 25-μL reaction containing 0.2 μL of rTaq (TaKaRa Co., Dalian, China), 1-μL DNA template, 2.5-μL 10× rTaq buffer (Mg²⁺ free), 2.5 μL 25 mM MgCl₂, 2.0-μL dNTPs, and 0.5 μL in each primer. The PCR amplifications were performed under the following cycling parameters: 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 47–58 °C, and 1–2.5 min at 72 °C, with a subsequent 10-min final extension at 72 °C. PCR products were resolved by electrophoresis in a 1.0% agarose gel and were extracted using a DNA Gel Extraction Kit (Bioteke, Beijing, China). For the exact procedure used, see Ma et al. (2016).

Sequence Analysis
The fragments of *A. theae* mitogenome were assembled using the program Geneious version 8.1.2 (Kearse et al. 2012). When the sequencing of mitogenome was completed, it was annotated manually and automatically. The method described by Cameron and Whiting (2008) was used for the written annotation, and the online-program MITOS (Bert et al. 2013) was used to accomplish the automated annotation. The PCGs boundaries were confirmed by the ORF finder (http://www.ncbi.nlm.nih.gov/orf/). MEGA version 6.0 (Tamura et al. 2013) was used to determine the starting and termination codons of the PCGs. Identification of the tRNA genes was verified using the tRNAscan-SE program (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Eddy 1997) and the program MITOS. Unidentified tRNAs were compared with sequences from other species. The two rRNA subunits coding gene (*rrnL* and *rrnS*) were identified by a NCBI Internet BLAST search. The AT content and codon usage were calculated using Geneious version 8.1.2. SKF927042

Phylogenetic Analysis
The complete mitochondrial genomes of 21 bombycoid species were obtained from GenBank (Table 1) to help with determining the relationship among Bombycoidea taxa. Twenty-one bombycoid species plus *A. theae* were considered as ingroups, while the geometrids *Biston panterinaria* (Bremer & Grey) and *Phthionandra atrilineata* (Butler) were used as outgroups (Kong and Yang 2015). The nucleic acid region from all 13 PCGs were excluded the start and stop codons, concatenated as a matrix and aligned using the program Geneious version 8.1.2. Gblock 0.91b with default settings was used with conserved regions of the putative amino acids (Castresana 2000). For likelihood ratio tests, jModeltest 2.1.5 and Akaike Information Criterion (Ronquist and Huelsenbeck 2003) were used to determine the best-fitting model of each PCG. We then chose two analysis approaches to construct a phylogenetic tree, the maximum likelihood (ML) and Bayesian inference (BI) analyses. The ML method was conducted using the program raxmlGUI 1.5 (https://sourceforge.net/projects/raxmlgui/) (Silvestro and Michalak 2012), in which the analysis setting chosen was “ML + rapid bootstrap” and the “number of bootstrap replicates” was 1,000. The support values of the ML tree were evaluated via a bootstrap test with 100 iterations. The program MrBayes 3.1.2 (http://morphbank.Ebc.uu.Ec/mrbayes/) (Ronquist et al. 2012) was used to perform BI analysis.
(Darriba et al. 2012), with the MCMC analysis run for 1,000,000 generations and a burn-in series of 1,000.

Results

Genome Organization and Base Composition

The complete mitochondrial genome of *A. theae*, which was shown to be a closed-circular molecule of 15,737 bp in length, was deposited in GenBank (NCBI) with accession number KX365419. It encoded 37 genes, including 13 PCGs (*cox1-3, nad1-6, nad4l, atp6, atp8, and cyt b*), 22 tRNA genes, and 2 rRNA genes, and a putative AT-rich region (Table 2). Twenty-four genes were transcribed on the major strand (J-strand), with the remaining 13 genes transcribed on the minor strand (N-strand). The gene distribution in the mitochondrial genome was conserved as in other lepidopteran mitochondrial genomes (Fig. 1). We found that the mitochondrial genome of *A. theae* was loose, except in the AT-rich region. There were 509-bp intergenic nucleotides that were dispersed in 22 pairs of neighboring genes with their length varying from 1 to 80 bp. The longest spacer region was between trnQ and *nad2* (80 bp). The overlapping nucleotides existed in eight pairs of neighboring genes ranging from 1 to 29 bp, with the longest overlap region crossing trnF and *nad5* (29 bp).

The base compositions of the major strand of the *A. theae* mitogenome were as follows: A = 40.28%, T = 38.01%, C = 13.90% and G = 7.81%, with a total AT content is 78.29%, which was heavily biased toward A and T bases. AT- and GC-skews of the entire major strand of *A. theae* were calculated as: AT-skew = 0.029, GC-skew = −0.281.

Protein-Coding Genes

The mitogenome of *A. theae*, encoded 13 PCGs, with 3,731 amino acids in total. The major strand (J-strand) contained *nad2*, *cox1*, *cox2*, *atp8*, *atp6*, *cox3*, *nad3*, *nad6*, *cytb*, whereas the minor strand (N-strand) included *nad5*, *nad4l*, and *nad1*. Except *cox1*, which started with CGA, the other 12 PCGs started with ATN. The *nad2*, *cox2*, *atp8*, *atp6*, *cox3*, *nad3*, *nad6*, and *cytb* began with ATG. For the termination codon, 11 of the 13 PCGs ended with TAA, whereas *cox1* and *cox2* ended with a single

Table 2. Annotation and gene organization of the *A. theae* mitogenome

Gene	Position (bp)	Length (bp)	Direction	Intergenic nucleotides (intergenic nucleotides)	Anticodons	Start/stop codons	AT%
trnM	1–66	66	J	0	CAT	TAA	77.27
trnI	67–131	65	J	0	GAT	TAA	75.38
trnQ	129–197	69	N	−3	TTG	TAA	81.16
nad2	255–1,268	1,014	J	57	ATT/TAA	TAA	81.26
trnW	1,269–1,341	73	J	0	TCA	TAA	79.45
trnC	1,334–1,398	65	N	−8	GCA	TAA	80.00
trnY	1,408–1,473	66	N	9	GTA	TAA	74.24
coxI	1,486–3,019	1,534	J	12	CGA/T	TAA	68.38
trnL(UUR)	3,020–3,086	67	J	0	TAA	TAA	73.13
cox2	3,121–3,802	682	J	34	ATG/T	TAA	71.14
trnK	3,803–3,873	71	J	0	CIT	TAA	73.24
trnD	3,954–4,024	71	J	35	GTC	TAA	90.14
atp8	4,025–4,198	174	J	−7	ATG/TAA	TAA	80.80
atp6	4,192–4,869	678	J	−7	ATG/TAA	TAA	76.04
cox3	4,882–5,670	789	J	12	TCC	TAA	88.06
trnG	5,673–5,739	67	J	2	ATC/TAA	TAA	79.66
nad3	5,737–6,093	357	J	0	TGC	TAA	81.16
trnA	6,107–6,175	69	J	13	TGC	TAA	77.78
trnR	6,253–6,315	63	J	77	TGC	TAA	75.38
trnN	6,330–6,394	65	J	14	GTC	TAA	80.00
trnS(AGN)	6,398–6,462	65	J	3	TTC	TAA	91.30
trnE	6,464–6,532	69	J	1	GAA	TAA	86.76
trnF	6,535–6,602	68	N	2	GAA	TAA	86.76
nad5	6,574–8,340	1,767	N	−29	ATC/TAA	TAA	79.40
trnH	8,341–8,404	64	N	0	GTG	TAA	82.81
nad4	8,417–9,757	1,341	N	12	ATG/TAA	TAA	77.33
nad4l	9,808–10,098	291	N	50	ATG/TAA	TAA	81.44
trnT	10,103–10,166	64	J	−8	TGT	TAA	82.81
trnP	10,167–10,229	63	N	0	TGG	TAA	80.95
nad6	10,233–10,765	513	J	23	ATA/TAA	TAA	81.85
cyt b	10,769–11,920	1,152	J	3	ATG/TAA	TAA	74.08
trnS(UCN)	11,947–12,013	67	J	26	TGA	TAA	82.09
nad1	12,035–12,973	939	N	21	ATC/TAA	TAA	74.76
trnL(CUN)	12,975–13,043	69	N	1	TAG	TAA	81.16
rrsL	13,100–14,477	1,378	N	56	TAC	TAA	83.53
trnV	14,479–14,543	65	N	1	TAC	TAA	81.51
rrsS	14,544–15,322	779	N	0	TAC	TAA	83.31
AT rich region	15,323–15,737	415	–	0	TAC	TAA	91.81

Journal of Insect Science, 2016, Vol. 16, No. 1

The base compositions of the major strand of the *A. theae* mitogenome were as follows: A = 40.28%, T = 38.01%, C = 13.90% and G = 7.81%, with a total AT content is 78.29%, which was heavily biased toward A and T bases. AT- and GC-skews of the entire major strand of *A. theae* were calculated as: AT-skew = 0.029, GC-skew = −0.281.
T. Aside from the start and termination codons, the sequence of the concentrated 13 PCGs was 11,193 bp in length, the content of A + T was 75.92% and was much higher than G + C according to the summarized codon usage. The Relative Synonymous Codon Usage values in the PCGs of the A. theae mitogenome are shown in Table 3 and Figure 2.

Transfer RNA and Ribosomal RNA Genes
The A. theae mitochondrial genome included 22 tRNA genes ranging from 63 bp to 73 bp in size, displaying a high AT content of 80.97%. Among the 22 tRNA genes, 14 tRNAs were found in the J-strand and 8 tRNAs in the N-strand (Table 2; Fig. 1). The figure shows that all tRNAs, except trnS (AGN), trnR, trnH, and trnT, displayed the typical clover-leaf secondary structure. The trnS (AGN) lacked the dihydrouridine (DHU) arm and formed a simple loop. The secondary structures of the other three tRNA genes (trnR, trnH, and trnT) were atypical. The trnR was missing the DHU loop, whereas the TWC loop was absent in the trnH and trnT genes (Fig. 3).

The two rRNA genes, rrl and rrmS, were 1,378 bp and 779 bp in size, respectively, with an AT content of 83.53% and 83.31%. Both of the two rRNA genes were mapped on the N-strand. The rrl was located between trnl (CUN) and trnV, and the rrmS were situated in trnV and trnM.
Features in the AT-Rich Region

The AT-rich region of *A. theae* was 415 bp in length with a 91.8% AT content and was located between *rrnS* and *trnM* (Fig. 4). A conserved structure consisting of the motif “ATAGA,” which was followed by a 19-bp poly-T stretch, was observed in the downstream 18 bp of *rrnS*. The three microsatellites, “(TA)6,” “(TA)5,” and “(TA)8,” that were found in this region were located 159, 123, and 70 bp upstream of *trnM*, respectively. The poly-A stretch, which is located upstream of *trnM* in some lepidopteran species, was noted and was 15 bp in size.

Phylogenetic Relationships

The phylogenetic relationships within the Bomycoidea, reconstructed with the concatenated nucleotides sequences of 13 PCGs of 24 mitogenomes, are shown in Figures 5 and 6. The 22 bombycids, including the 21 bombycid species mitogenomes that were downloaded from Genbank plus *A. theae*, represent four families belonging to the Bomycoidea: Bombycidae, Lasiocampidae, Saturniidae, and Sphingidae. The two phylogenetic trees based on ML and BI analyses showed that the phylogenetic relationships in the Bombycoidea were Lasiocampidae + (Bombycidae + (Saturniidae + Sphingidae)), which was supported by a high bootstrap value of 100% and a posterior probability of 1.00. The bombycid species were *A. theae* + (*R. menciana* + (*B. huttoni* + (*B. mandarina* + *B. mori*))), which was supported as a monophyletic group by a bootstrap value of 58% and a posterior probability of 0.98.

Discussion

The order of the gene organizations of the *A. theae* complete mitogenome, *trnM-trnL-trnQ-nad2*, was identical to the other lepidopteran mitogenomes (Flook et al. 1995). The AT content of the *A. theae* mitogenome (78.29%) was the same as in other bombycid species.
Table 4). The AT skewness of *A. theae* mitogenome was 0.029, suggesting that the occurrence of A was more than T. We found that the AT skewness of *A. theae* was higher than in *Apatelopteryx phenax*, *Dendrolimus spectabilis*, *Samia cynthia cynthia*, and *Sphinx morio* (0.001–0.028) and lower than in *Attacus atlas*, *Bombyx buttonti*, *Bombyx mori*, and *Rondotia menciana* (0.039–0.072). However, 11 of the 22 bombycoid mitochondrial genomes were T-skewed (–0.005 to –0.045). The active selection on nucleotide
Fig. 4. Structure of the A + T-rich region of A. theae.

Fig. 5. ML phylogram constructed using 13 PCGs of mitogenomes with partitioned models. The scale bar indicates the number of substitutions per spot. The values indicated at each node specify the bootstrap percentage of 1,000 replicates.
composition may be related to overcoming background mutation pressures (Meiklejohn et al. 2007).

The AT content in the PCGs of *A. theae* was 75.92%, which was the lowest value in all the bombycoid species. Twelve of the 13 PCGs started with “ATN,” whereas *cox1* started with “CGA.” Having “CGA” as the starting codon may be a synapomorphic or diagnostic character in Lepidoptera (Kim et al. 2009). The incomplete stop codon of a single T was found in *A. theae* mitochondrial *cox1* and *cox2*. This is a common phenomenon of mitochondrial genes, where the incomplete stop codons can be completed (TAA) by the mRNA process of polyadenylation (Anderson et al. 1981, Liu et al. 2013, Yang et al. 2013).

The longest four noncoding regions were located between *trnQ*- *nad2* (57 bp), *trnK-trnD* (80 bp), *trnR-trnN* (77 bp), and *trnl* (CUN)- *rrnL* (56 bp). The intergenic spacer between *trnQ* and *nad2* showed limited sequence conservation among the studied lepidopteran species (Cameron and Whiting 2008). The spacer of *trnk-trnD* and *trnl* (CUN)- *rrnL* had demonstrated a high AT content, and included (TA)$_{10}$, (TA)$_9$, and (TTA)$_2$ microsatellite-like regions that were observed in the other lepidopteran mitogenomes (Cameron and Whiting 2008). There were only a few overlappings between mitochondrial genes of *A. theae*. The 7-bp overlapping nucleotides (ATGATAA) between *atp8* and *atp6*, which are a common feature in all lepidopteran mitogenomes, were observed in the mitochondrial genome of *A. theae*. The position of maximum overlapping was not conserved in other lepidopteran species, and the overlapping was situated between many different pairs of genes. The maximum overlapping of *A. theae* was located from *trnF* to *nad5*.

The AT-rich region is thought to be the site of gene replication and the initiation of genome transcription (Boore 1999, Taanman 1999). In the mitochondrial genome of lepidopteran species, the motif “ATAGA” followed by poly-T was a conserved position.
The motif was found in the AT-rich region of the *A. theae* mitogenome, and the poly-T was deemed the origin of the minor strand replication. The origin of the major strand was less conserved (Saito et al. 2005, Cameron and Whiting 2008).

The mitochondrial genome is widely used in phylogenetic analyses. After using the ML and BI methods in our study, the species of Bombycoidea were found to cluster into one clade. Although the ML method value found for the Bombycoidea in our study was low, similar topological structures of two separate analyses could clarified the monophyly of Bombycoidea. In the study by Minet, (1994), the family Bombycidae was divided into four subfamilies, the Apatelodinae, Phiditiinae, Prismostictinae, and Bombycinae, with the genus *Andraca* placed in the subfamily Primostictinae (Oberthueriinae) based on morphological characters. After incorporating molecular datasets into the phylogeny, however, the classification was drastically altered. According to Regier et al. (2008), the four former bombycid subfamilies were now separated into distinct families. The former Primostictinae were now divided into two clades, one containing the tribe Oberthueriini, where the genus *Andraca* was placed. This clade was shown with a high bootstrap value to cluster with the Mirinidae. This outcome was consistent with the findings of other previous studies where the families group as “Lasiocampidae + (Saturniidae + (Bombyciidae + Sphingidae))” (Timmermans et al. 2014). The explanation for the difference may be the result of incorporating the complete mitogenome. Significantly, the bootstrap value of the Bombycoidea clade and the Saturniidae + Sphingidae clade group at a low level at around 50%. That emphasizes that the relationships in the Bombycoidea remain unsettled and will need further attention in the future.

Acknowledgments

We are especially grateful to Hui-Zhu Wang (Liupanshui City, China) for collecting specimens in the field. Dr. C. L. Smith (University of Georgia) edited the English Language of the article. The study was supported by the National Natural Science Foundation of China (31100482, 31411140034).

References Cited

Anderson, S., A. T. Bankier, B. G. Barrell, M. H. L. Debruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A. J. H. Smith, R. Staden, and I. G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290: 457–465.

Avise, J. C. 1987. Intraspecific phylogeography: the mitochondrial DNA and its phylogenetic implications. Annu. Rev. Ecol. Syst. 18: 489–522.

Ballard, J. W. O., and D. M. Rand. 2005. The population biology of mitochondrial DNA and its phylogenetic implications. Annu. Rev. Ecol. Evol. Syst. 36: 621–642.

Bernt, M., A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsche, J. Putz, M. Middendorf, and P. Stadler. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. E. 69: 313–319.

Boore, J. L. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767–1780.
Wolstenholme, D. R. 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173–216.
Yang, X., D. Xue, and H. Han. 2013. The complete mitochondrial genome of *Biston panterinaria* (Lepidoptera: Geometridae), with phylogenetic utility of mitochondrial genome in the Lepidoptera. Gene. 515: 349–358.
Yukuhiro, K., H. Sezutsu, M. Itoh, K. Shimizu, and Y. Banno. 2002. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, *Bombyx mandarina*, and its close relative, the domesticated silkmoth, *Bombyx mori*. Mol. Biol. E. 19: 1385–1389.
Zhang, D. X., J. M. Szymura, and G. M. Hewitt. 1995. Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. E. 40: 382–391.
Zwick, A., J. C. Regier, C. Mitter, and M. P. Cummings. 2011. Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Syst. Entomol. 36: 31–43.