Effect of Inhalation Anesthetics on Tumor Metastasis

Yixin Jing, MM¹, Yiguo Zhang, MM¹, Rui Pan, MM¹, Ke Ding, MM¹, Rong Chen, MD¹,², and Qingtao Meng, MD¹,²

Abstract

Many factors affect the prognosis of patients undergoing tumor surgery, and anesthesia is one of the potential influencing factors. In general anesthesia, inhalation anesthesia is widely used in the clinic because of its strong curative effect and high controllability. However, the effect of inhalation anesthetics on the tumor is still controversial. More and more research has proved that inhalation anesthetics can intervene in local recurrence and distant metastasis of tumor by acting on tumor biological behavior, immune response, and gene regulation. In this paper, we reviewed the research progress of diverse inhalation anesthetics promoting or inhibiting cancer in the critical events of tumor recurrence and metastasis, and compared the effects of inhalation anesthetics on patients’ prognosis in clinical studies, to provide theoretical reference for anesthesia management of patients undergoing tumor surgery.

Keywords

anesthesia, inhalation anesthetics, tumor, metastasis, surgery

Abbreviations

COX2, cyclooxygenase 2; circRELN, circRNA reelin; circRNA, circular RNA; CTCs, circulating tumor cells; des, desflurane; hal, halothane; HIF, hypoxia-inducible factor; HNSCC, head and neck squamous cell carcinoma cell; iso, isoflurane; LFA-1, leukocyte function-associated antigen-1; LLC, Lewis lung carcinoma; miRNA, MicroRNA; MMPs, matrix metalloproteinase; N₂O, nitrous oxide; PDGF, platelet-derived growth factor; sev, sevoflurane; TAM, tumor-associated macrophages; TME, tumor microenvironment; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor; xen, xenon

Introduction

Cancer, the world’s second leading cause of death, kills about 10 million people a year. Due to the growth and aging of the population, as well as an increasing prevalence of risk factors such as smoking, overweight and environmental pollution, the incidence of cancer is increasing. Based on GLOBOCAN estimates, about 19.3 million new cancer cases in 2020 worldwide, Female breast cancer has surpassed lung cancer as the most common cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach (5.6%) cancers. In addition, the global cancer burden is projected to reach 28.4 million cases by 2040, a 47% rise from 2020.¹ Cancer has become a significant challenge threatening human health, so it is of great practical significance to improve the prognosis and survival rate of patients.

Surgery remains the primary and preferred treatment for most solid tumors, with 60% of cancer patients receiving surgical treatment.² However, metastatic disease is still common despite more sophisticated surgical techniques and advances in adjuvant therapy such as radiotherapy, chemotherapy, and immunotherapy. The mechanism of tumor metastasis after surgery is complicated, in addition to factors such as tumor pathological staging and degree of differentiation, etc, physiological reactions such as increased circulating catecholamine levels, inflammation, wound healing, immunity, and platelet activation caused by

¹ Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
² Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China

Corresponding Author:
Qingtao Meng, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
Email: mengqtao2018@126.com
surgery can also affect the local recurrence and distant metastasis of tumors and directly affect the prognosis of the patient.3–5 Anesthesia, as an essential part of the surgery, can directly or indirectly affect postoperative metastasis and recurrence of the tumor by participating in the above process.6 Inhalation anesthetics can be used for induction and maintenance of general anesthesia, including sevoflurane, isoflurane, desflurane, halothane, enflurane, nitrous oxide, and xenon. They mainly enter the human body from the respiratory tract and exert anesthetic effects in the form of volatile gases.7 In addition, inhalation anesthetics can prevent ischemia-reperfusion injury while anesthetizing, and provide patients with a certain degree of protection of the heart, brain, and kidneys.8

Recent studies have shown that inhalation anesthesia can modulate gene and protein expression in tumor cells in a unique and time-dependent manner,9 and inhalation anesthetics expose patients to a higher risk of cancer metastasis by impairing the immune system and inflammatory response.10 However, the regulation of anticancer signals by inhalation anesthetics is also receiving increasing attention.11 There is still controversy about whether inhalation anesthesia affects tumor progression. Therefore, this paper reviews the mechanisms of inhalation anesthetics promoting or inhibiting cancer at each key node of tumor metastasis (Figure 1, Table 1). In addition, it also compares the effects of inhalation anesthesia with local anesthesia or propofol-dependent intravenous anesthesia on common tumors in clinical studies in recent years (Table 2).

Tumor Metastasis and Colonization

In 1889, Stephen Paget proposed the “Seed-soil” theory for the organ specificity of tumor metastasis, which holds that the organ specificity of tumor metastasis is not accidental, it mainly depends on the specific affinity of cancer cells (“Seeds”) to the organ microenvironment (“Soil”),116 and the theory is still applicable today. More and more studies show that tumor metastasis occurs through a series of successive rate-limiting steps. At present, metastasis and implantation of tumor can be summarized as the following significant stages117–119:

(i) The proliferation of primary cancer cells and the formation of new blood vessels.
(ii) Tumor cells invade the basement membrane and enter the vasculature.
(iii) Tumor cells circulate in the form of a single cell or cell cluster.
(iv) Stagnating in the distant capillary.
(v) Extravasation into the target organ parenchyma to form colonization.

Tumor invasion and metastasis is an initiative, nonrandom, multistep process, with relatively specific patterns and rules, and many substances participate in the above process, which involves oncogenes, tumor suppressor genes, proteolytic enzymes, and many cytokines and regulatory factors. In the early stages of metastasis and implantation, the tumor microenvironment (TME) composed of tumor cells, extracellular matrix, and mesenchymal tissue is critical. Among them, fibrocytes and immune cells like tumor-associated macrophages or mast cells can provide a robust supportive environment for tumor proliferation, angiogenesis, and degradation of extracellular matrix by secreting a variety of substances, mainly including matrix metalloproteinase (MMPs), cyclooxygenase 2 (COX2), vascular endothelial growth factor (VEGF), tumor

![Figure 1](image_url). The role of volatile anesthetics in promoting or inhibiting cancer at each key node of tumor metastasis. Inhalation anesthetics can interfere with tumor metastasis by acting on tumor cell proliferation and apoptosis, angiogenesis, matrix invasion, platelet function, immune response, and gene expression. The red dashed boxes represent the promotion and the blue solid boxes represent the inhibition.
Table 1. Preclinical In Vitro and In Vivo Studies of Inhalation Anesthetics and Cancer.

Anesthetics	Cancer types	Dosage	Outcomes*	Mechanisms	Ref.
Sevoflurane	Gliomas (U251, U87)	5%	(-) inhibit cell proliferation, invasion and trigger apoptosis	JGF-1/PI3K/AKT	12
	Gliomas (U87MG, U373MG) HNSCC (CAL-27, FaDu)	1.0%, 2.5%, 5% 2% 4%	(-) inhibit viability, proliferation and invasion (-) inhibit proliferation, invasion and migration	Ca²⁺-dependent CaMKII/JNK cascade p-Akt↓, HIF-1α↑	13
	Ovarian cancer (OVCAR3, SKOV3)	1.7%, 3.4%, 5.1% for 6 h	(-) inhibit proliferation and promote apoptosis in a dose-dependent manner	JNK and p38 MAPK signaling pathway	14
	Lung cancer (H446, H1975)	1.7%, 3.4%, 5.1%	(-) inhibit proliferation, invasion and enhance apoptosis	PCAT6↓, miR-326†, Wnt5a/β-catenin↓	15
	Colon carcinoma (Caco-2)	3.0% for 2, 4, or 6 h	(-) inhibit proliferation and enhance apoptosis (−) enhance the apoptosis (+) promote proliferation, migration and decrease apoptosis	Not stated	16
	Colon carcinoma (Caco-2)	3.0%	(-) inhibit proliferation, migration and invasion	Histone deacetylase 6	17
	Cervical cancer (Caski, HeLa)	1%, 2%, or 3% for 2 or 4 h	(+) enhance proliferation, migration and invasion	Not stated	18
	Lewis lung carcinoma	in vivo : 2.0% for 1 h 3 times per week until death in vitro : 2.0% for 1 h per day for 3 days	(+) promote proliferation in vitro (N) but no effect in vivo	Not stated	19
	Breast cancer (MCF7, MDA-MB-436)	2% for 6 h, 4% for 24 h	(+) clinically relevant doses promote survival in vitro but no effect on proliferation, migration or TRPV1 expression (-) extreme doses decrease survival	TRPV1 Ca²⁺ channel	20
	Glioma stem cell	2%, 4%, 6% for 2, 4, 6 h	(+) not affect cell viability but promote proliferation	PI3K/Akt↑, HIF↑, VEGF↑	21
	Lung cancer (A549)	1.5%, 2.5%, or 3.5% for 4 h	(-) inhibit invasiveness induced by hypoxia.	p38 MAPK↓, HIF-1α↓, XIAP↓, survivin ↓	22
	Tongue squamous cell carcinoma (SCC-4)	4.1% for 1, 4, 8, 12, 24, or 72 h	(-) not alter the proliferation but inhibit migration in the hypoxic microenvironment	The DNA methylation of promoter region of VEGF↑, VEGF↑, MMP-9↑	23
	Neutrophil cell and Mouse colon cancer (MC-38GFP)	2.2% for 45 min	(-) reduce the migration of neutrophils and the invasiveness of tumor cells across the extracellular matrix	Not stated	24
	Glioblastoma (U87MG)	2.5%	(-) not affect viability but inhibit migration	MMP-2↓	25
	Ovarian cancer (OVCAR3, SKOV3)	1.7%, 3.4%, or 5.1% for 6 h	(-) inhibit proliferation, invasion and promote apoptosis in a dose-dependent manner (-) inhibit migration and invasion	JNK and p38 MAPK Signaling Pathway↓, MMP-2↓, MMP-9↓, miR-146b-5p↑, MMP-16↓	26
	Glioma (U87-MG, U251)	1.7%, 3.4%, or 5.1% for 6 h	(-) inhibit proliferation, invasion and promote apoptosis in a dose-dependent manner (-) inhibit migration and invasion	Not stated	27
	Lung cancer (A549)	2.5% sevo flurane, 10 μmol/L DDP for 4 h	(-) inhibit invasion and growth with the co-treatment of 2 drugs	XIAP↑, Survivin↑, MMP-2↓, MMP-9↓	28
	Lung cancer (A549) and Platelets in lung cancer surgery patients	1 MAC for 4 h	(-) suppress invasion in vitro	Platelets activity	29
	Nonsmall-cell lung cancer (NCI-H23)	12.5, 25, 50, 100, and 200 μM for 6 h	(+) inhibit NK cell-mediated immunosurveillance and promote tumor cell metastatic potential	Not stated	30

(continued)
Anesthetics	Cancer types	Dosage	Outcomes^a	Mechanisms	Ref.
Human NK cell (NK92-MI) and tumor cell (K562)	Breast cancer	3%	(+) attenuate NK cell-mediated cytotoxicity	LFA-1↓	32
		Co-cultured the serum of breast cancer surgery patients with primary NK cells	(+) attenuate NK cell-mediated cytotoxicity	CD16↓, IL-10↓, IL-1β↓	33
Lung metastasis of breast cancer in mice		3h	(+) promote the initiation of the lung microenvironment of metastatic tumors	IL-6/JAK/STAT3↑, the accumulation of CD11b+ cells into lung↑	Not stated
	Murine skin melanoma (the subcutaneous injection of B16-F10 cells)	In vitro: 2% for 2.5 h In vivo: 3%-4% for 1 h (single), 3%-4% for 1 h weekly for 2 weeks (double)	(+) exposure of melanoma cells to sevoflurane before implantation aggravated tumor growth	(−) both a single and double anesthesia with sevoflurane improve the immunosuppression of the tumor microenvironment by reducing TAMs significantly	34
		In vitro: 2% for 2.5 h In vivo: 3%-4% for 1 h (single), 3%-4% for 1 h weekly for 2 weeks (double)	(+) exposure of melanoma cells to sevoflurane before implantation aggravated tumor growth	(−) both a single and double anesthesia with sevoflurane improve the immunosuppression of the tumor microenvironment by reducing TAMs significantly	34
		In vitro: 2% for 2.5 h In vivo: 3%-4% for 1 h (single), 3%-4% for 1 h weekly for 2 weeks (double)	(+) exposure of melanoma cells to sevoflurane before implantation aggravated tumor growth	(−) both a single and double anesthesia with sevoflurane improve the immunosuppression of the tumor microenvironment by reducing TAMs significantly	34
		In vitro: 2% for 2.5 h In vivo: 3%-4% for 1 h (single), 3%-4% for 1 h weekly for 2 weeks (double)	(+) exposure of melanoma cells to sevoflurane before implantation aggravated tumor growth	(−) both a single and double anesthesia with sevoflurane improve the immunosuppression of the tumor microenvironment by reducing TAMs significantly	34
Gordon SKL, 2020		In vitro: 2% for 2.5 h In vivo: 3%-4% for 1 h (single), 3%-4% for 1 h weekly for 2 weeks (double)	(+) exposure of melanoma cells to sevoflurane before implantation aggravated tumor growth	(−) both a single and double anesthesia with sevoflurane improve the immunosuppression of the tumor microenvironment by reducing TAMs significantly	34
Liver cancer (HCCLM3, Huh7, 293T)		1.7%, 3.4%, or 5.1% for 6 h	(−) inhibit proliferation, invasion and migration	miR-25-3p↓, PTEN/Akt/GSK-3β/β-catenin↓	35
Liver cancer (HepG2, SMMC-7721, MHCC97, Huh7)	Breasts cancer	4% for 24 h	(−) inhibit cell viability, migration and invasion	miR-29a↑, Dnmt3a↑, PTEN/Pi3K/akt↑	36
Papillary thyroid cancer (TPC-1 and IHH-4)		1.25%, 2.5%, and 5% for 12 h or 24 h	(−) inhibit migration, invasion and enhance cell apoptosis	miR-155↑, BAX↑, Bcl-2↑, MMP-2↑, MMP-9↓	37
Colorectal cancer (HCT116, SW480)		1.7%, 3.4%, or 5.1% for 12, 24, 48, or 72 h	(−) inhibit cell viability, migration and invasion	miR-34a↑, ADAM10↑	38
Colorectal cancer (HCT116, SW480)		1%, 2%, or 4% for 6 h	(−) inhibit the migration and invasion	miR-203↑, Robo1<ERK1>MMP-9↓	39
Colorectal cancer (HCT116, SW620, SW480)		1.7%, 3.4%, or 5.1% for	(−) inhibit proliferation, migration and invasion, and induce apoptosis	circ-P4KA↓, miR-331-3p↓, LASP1↓	40
Colorectal cancer (HCT116, SW620)		1.7%, 3.4%, or 5.1% for 30 min	(−) inhibit proliferation, migration and invasion, and induce apoptosis	Hsa_circ_0002311, miR-622↑	41
Colorectal cancer (HCT116, SW480)		4% for 6 h	(−) inhibit migration, invasion and induce apoptosis	miR-637↑, WNT1↓	42
Breast cancer		2% for 6 h	(−) inhibit proliferation	miR-203↑	43
Gastric cancer (AGS, BGC-823)		3.4% for 6 h	(−) attenuate proliferation and migration	miR-27a↑, FoxO1↑	44
Lung cancer (A549)		3% for 30 min	(−) promote apoptosis	miR-34a↑	45
Laryngeal squamous (Hep-2, Tu177)		4 mM	(−) induce apoptosis, reduce metastasis and affect EMT	miR-34a↑, TGFβ2↑	46
Glioma (U251)		1.7%, 3.4%, or 5.1% for 6 h	(−) inhibit proliferation, migration and invasion	miR-21↑, miR-146a↑, miR-221↑, miR-223↑, miR-34a↑, miR-155↑, miR-26a↑/FOXO1↑	47
Glioma (U251, U87)		4.1% for 4 h	(−) inhibit proliferation, migration and invasion	miR-34a-5p↑, MMP-2↑	48
Glioma (U251, LN229)		1.2%, 2.4%, or 4.8% for 6 h	(−) inhibit proliferation, migration and invasion	miR-210↑, HIF-1α↑	49
Glioma (H4)		3.6% for 2 h	(−) inhibit proliferation, migration and invasion	miR-210↑, HIF-1α↑	50
Glioma (U251, U87)		3.4 for 6 h	(−) inhibit proliferation, migration and apoptosis	miR-144-3p↑, YAP1↑	51
Neuroblastoma (KN-SH, SK-N-AS)		1%, 2%, or 4% for 6 h	(−) inhibit proliferation, migration and apoptosis	miR-144-3p↑, YAP1↑	52

(continued)
Anesthetics	Cancer types	Dosage	Outcomes	Mechanisms	Ref.
Isoflurane	Colorectal cancer (SW620, HCT116)	3.6% for 2 h	(+) increase proliferation and migration	miR-138↓ or miR-210 ↓HIF-1α↑	60
		40 μM for 2 h	(-) decrease proliferation, invasion, migration and increase apoptosis	miR-216↓ Caspase3↑ Bax↑ Bel-2↓	61
	Hepatic carcinoma (cell from patients with hepatic carcinoma)	2 mg/mL for 12 h	(-) reduce apoptotic resistance and inhibit migration and invasion	caspase-3↑ caspase-8↑ Bel-2↓ PI3K/ AKT-induced NF-κB signaling pathway↓	62
	Human H4 neuroglioma (naive H4, H4-APP)	2% for 6 h	(-) increase apoptosis	caspase-3↑ BACE↑ γ-secretase↑Aβ↑	63
	HNSCC (Tca8113, HSC2)	2% for 3 or 6 h	(-) increase proliferation and decrease apoptosis	Not stated	64
	Squamous cervical cancer (SiHa, Caski)	1%, 2%, or 3% for 2 h	(+) enhance the proliferation	†Histone deacetylase 6 through mTOR-dependent pathways	65
	Bladder cancer (T24, BIU-87)	0.5%, 1%, or 2% for 2 h	(+) promote proliferation, invasion, migration, and reduce apoptosis	†HIF-1α-β-catenin/Notch1 pathways	66
	Glioblastoma (U251)	1.2% for 6 h	(+) increase proliferation, migration, and reduction apoptosis	Not stated	67
	Colon cancer (HCT116, HT29)	0.6%, 1.2%, or 2.4% for 30 min	(+) not affect apoptosis but may enhance anticancer drug resistance.	Regulation of Cav-1 expression	68
	Ovarian cancer (SK-OV3)	2% for 2 h	(+) promote tumor angiogenesis and aggressiveness	IGF-1↑, IGF-1R↑ VEGF↑, angiopoietin-1↑ MMP-2↑ MMP-9↑ PI3K/Akt↑ HIF-1α↑, HIF-2α↑ and VEGF↑	69
	Renal cell carcinoma (RCC4)	0.5%-2% for 2 h	(+) increase proliferation, cytoskeletal rearrangement, and migration of cells across different components of the extracellular matrix	Not affect HIF activity	70
	Bladder cancer (T24, BIU-87)	0.5%, 1%, or 2% for 2 h	(+) promote proliferation, invasion, migration and reduce apoptosis	†HIF-1α-β-catenin/Notch1 pathways	66
	Prostate cancer (PC3)	0.5%-2% for 2 h	(+) increase proliferation, migration and development of chemoresistance	PBK/Akt/mTOR↑, HIF-1α↑, VEGF↑	71
	Renal cell carcinoma (RCC4-VHL, RCC4-EV)	2% for 2 h	(N) not affect HIF activity	Not affect HIF-1α and HIF-2α expression and Not stated	72
Anesthetics	Cancer types	Dosage	Outcomes^a	Mechanisms	Ref.
---------------------	---	-------------------------	---	--	------
Human NK cell (NK92-MI) and tumor cell (K562)	In vitro: 1%-1.5% In vivo: 1%-1.5% for 2 h	(+) attenuate NK cell-mediated cytotoxicity	the expression of genes associated with cancer hallmarks	LFA-1↓	73
Murine melanoma (the subcutaneous injection of B16F1 cells)	2%	(N) in vitro anesthetic exposure does not affect tumor growth (+) in vivo anesthetic exposure, male mice with the perfect immune function increased tumor growth compared to female mice	Not stated	miR-21↑/AKT↑	74
Ovarian cancer (SKOV3, TOV21G)	2% for 1 or 2 h	(+) promote the metabolic transformation of ovarian cancer cells, leading to aggravated malignant transformation	Not stated	Not stated	75
Halothane Colon carcinoma (Caco-2), human larynx carcinoma (HEp-2), poorly differentiated cells from lymph node metastasis of colon carcinoma (SW-620)	1.5% for 2, 4, or 6 h	(--) inhibit proliferation and increase apoptosis	Not stated	Not stated	76
Lung cancer (A549)	3 mM for 20 min to 4 h	(--) induce DNA and cell injury	Inhibit FAK, led to a reduction of paxillin phosphorylation and subsequent disorganization of adhesive structures	Not stated	77
Lung cancer (A549)	1.5, 2.1 mM for 2 h	(--) suppress mitotic activity and induce DNA damage with disturbances of nuclear and nucleolar structures	Not stated	Not stated	78
Lung cancer (A549)	3 mM for 2 h	(--) induce anoikis through inhibiting cell adhesion	Not stated	Not stated	79
Fischer 344 rats (injected IV with MADB106 cells)	2%-3% for 1 h	(+) increase lung metastases	Vitamin B12↓, methionine synthase↓	Not stated	80
Desflurane Colon cancer (SW480)	6.12% for 3, 6 h	(N) only causes slight changes in cell cycle distribution and apoptosis in vitro	Not stated	Not stated	81
Ovarian cancer (SKOV-3)	10.3% for 2 h	(+) promote the degradation of basement membrane and the tumor metastasis	Not stated	Not stated	82
Neutrophil cell and Mouse colon cancer (MC-38GFP)	6.0% for 45 min	(--) reduce the migration of neutrophils and the invasiveness of tumor cells across the extracellular matrix	Not stated	Not stated	83
Glioma (H4)	10.3% for 2 h	(--) inhibit proliferation and migration	miR-138↑, HIF-1α↓, MMP-9↓	Not stated	84
Ovarian cancer (SKOV3)	10.3% for 2 h	(+) increase proliferation and migration	miR-335↑, HIF-1α↑, MMP-9↓	Not stated	85
Colorectal Cancer (DLD-1, HT29, SW480)	10.3%	(+) induce epithelial-mesenchymal transition, migration and invasion	miR-34a↓/LOXL3↑	Not stated	86
N₂O human chronic myelogenous leukemia (K562), human acute lymphoblastic leukemia (CCRF-CEM), human histiocytic lymphoma (U937), mouse lymphoma (BWS1473), mouse lymphocytic leukemia (L1210)	50%	(--) inhibit proliferation and promote apoptosis in a variety of cell lines	Vitamin B12↓	Not stated	87
Xenon breast cancer (MDA-MB-231, MCF-7)	70% for 1, 3, or 5 h	(--) inhibit migration	The angiogenic cytokine RANTES/CCL5↓	Not stated	88

^a"(+)", pro-tumor; "(−)", anti-tumor; "(N)", no effect.
Cancer types	Groups	Inhalation anesthetic dosage	Study types	Outcomes	Ref.
Breast cancer	Sevoflurane versus propofol	Not stated	Retrospective	Propofol is better in survival advantage	84
	Sevoflurane, sevoflurane plus i.v. lidocaine, propofol, propofol plus i.v. lidocaine	1-1.5 MAC keep BIS index 45-55	RCT	Lidocaine is better in reducing recurrence	85
	Propofol-ketorolac group versus sevoflurane-fentanyl group	Keep BIS index 40-60	RCT	Propofol-ketorolac group is better in protecting immune function	86
	Sevoflurane versus propofol	Keep BIS index 40-60	RCT	No difference in circulating tumor cell counts	87
	Propofol-paravertebral versus inhalational agent-opioid anesthesia	Not stated	RCT	Propofol-paravertebral is better in attenuating the postoperative increase in the neutrophil-lymphocyte ratio	88
	Sevoflurane versus propofol	1%-2%	Retrospective	No difference in the risk of recurrence after 1 year	89
	Inhalational versus intravenous anesthesia	1%-2%	Retrospective	No difference in the incidence of recurrent breast cancer	90
	Regional anesthesia-analgesia (paravertebral blocks and propofol) versus general anesthesia (sevoflurane) and opioid analgesia	1.1 MAC h	RCT	No difference in recurrence and persistent incisional pain	91
	Inhalational versus intravenous anesthesia	Not stated	Retrospective	No difference in the long-term prognosis	92
	Sevoflurane versus propofol	Keep BIS index 40-60	RCT	No difference in NK cells, cytotoxic T lymphocyte counts and apoptosis rate	93
	Desflurane versus propofol	8%-12%	Retrospective	No difference in prognosis and survival	94
	Sevoflurane versus propofol	Keep BIS index 40-60	RCT	No difference in immune cells change	95
Colorectal cancer	Inhalational versus intravenous anesthesia	Not stated	Retrospective	No difference in recurrence	96
	Inhalation versus intravenous anesthesia	Not stated	Retrospective	Inhalation anesthesia was associated with an increased risk of recurrence	97
	Sevoflurane versus propofol	1.3 MAC h	Prospective	Propofol is better in inhibiting the crucial carcinoma-related pathway	98
	Sevoflurane versus propofol	Keep BIS index 40-60	RCT	No difference in expression profiles of immune cells	99
Colon cancer	Desflurane versus propofol	8%-12%	Retrospective	Propofol is better in survival	100
Digestive cancer	Inhalational versus intravenous anesthesia	Not stated	Retrospective	No difference in overall and recurrence-free survival	101
Gastric cancer	Inhalation versus intravenous anesthesia	Not stated	Retrospective	No difference in the 1-year overall or cancer-related mortality	102
Gastric, lung, liver, colon, and breast cancer	Inhalational versus intravenous anesthesia	Not stated	Retrospective	No difference in 5-year overall survival	103
Hepatocellular carcinoma	Desflurane versus propofol	4%-10%	Retrospective	Propofol is better in survival	104
Intrahepatic cholangiocarcinoma	Desflurane versus propofol	4%-10%	Retrospective	Propofol is better in survival	105
Hepatocellular carcinoma with portal vein tumor thrombus	Desflurane versus propofol	4%-10%	Retrospective	Intravenous anesthesia is better for the overall survival (OS) and recurrence-free survival (RFS)	106
Pancreatic cancer	Desflurane versus propofol	4%-10%	Retrospective	Propofol is better in improving survival	107
Bladder cancer	Not stated	RCT			108

(continued)
necrosis factor (TNF), hypoxia-inducible factor (HIF), platelet-derived growth factor (PDGF), and so on. After tumor cells enter the circulation, circulating tumor cells (CTCs) will exist in the form of single cells or cell clusters, which can avoid damage such as blood shear force, oxidative stress, immune surveillance, and other damages through the mechanical barrier formed by platelets. Tumor cells arriving at new target organs are vulnerable to immune surveillance mediated primarily by T cells and natural killer (NK) cells. Only a fraction of CTCs can survive and then infiltrate the target organ for colonization. Among the above, gene regulation plays a complex and extensive role. Thus, tumor metastasis involves multistep, multistage, and multifactor changes. In laboratory studies, inhalation anesthetics may have different effects on these key metastatic events (Figure 1).

Inhalation Anesthesia and Cell Proliferation and Apoptosis

It is well known that the most prominent feature of tumors is abnormal cell proliferation accompanied by a decrease in apoptosis. Apoptosis is a kind of programmed cell death, mainly through the external pathway mediated by CD95/Fas receptor or TNF receptor and the internal pathway mediated by mitochondria. It plays a vital role in regulating the metastasis efficiency of tumor cells in 3 key steps: cell detachment from the primary environment, circulation, and transplantation after extravasation. In recent years, more and more studies showed that inhalation anesthesia may play a role in tumor cell proliferation and apoptosis.

Sevoflurane

Some studies have found that sevoflurane is associated with the growth and apoptosis of tumor cells. In gliomas, sevoflurane inhibits the proliferation, invasion, and migration of cancer cells and promotes their apoptosis, which is regulated by the IGF-1-PI3K/Akt signaling pathway or Ca²⁺-dependent CaMII/JNK cascade reaction. Consistent with the previous studies, sevoflurane can inhibit the proliferation, invasion, and migration of head and neck squamous cell carcinoma (HNSCC) cells by activating HIF-1α signaling pathway. Similarly, sevoflurane inhibits ovarian cancer cell proliferation in vitro and in vivo and promotes ovarian cancer cell apoptosis in a dose-dependent manner. In addition, sevoflurane can promote apoptosis in other types of lung cancer and colon cancer. However, after sevoflurane treatment of cervical cancer cells, it was found that cell proliferation and migration increased significantly, and cell apoptosis decreased. Similarly, sevoflurane exerted a stimulative effect on the proliferation and migration of ovarian cancer cells. This contradictory experimental result may be related to different tumor types. In addition, different experimental conditions also affect the role of sevoflurane. According to a study involving in vivo and in vitro, sevoflurane in vitro can promote Lewis lung
carcinoma (LLC) cell proliferation, but it may not affect the proliferation of LLC cells in vivo. Similarly, different sevoflurane treatment concentrations also affected tumor metastasis progression, Deng et al. exposed breast cancer cells to the clinically relevant concentration of sevoflurane, and found that the survival rate of breast cancer cells increased, but exposure to the extreme concentrations and durations paradoxically decreases the survival.

Isoflurane

Isoflurane has been shown to induce normal cell apoptosis via the mitochondrial apoptosis pathway. In a colorectal cancer study, isoflurane treatment can suppress tumor malignant potential by accelerating cell apoptosis. Hu et al. isolated liver cancer cells from liver cancer patients and treated them with isoflurane. They found that isoflurane reduced apoptotic resistance by activating caspase-3 and caspase-8 and inhibiting Bel-2, and through downregulation of PI3K/AKT-induced NF-kB signaling pathways significantly inhibited migration and invasion. In addition, isoflurane can increase apoptosis in human H4 neuroglioma cells. Nevertheless, a large number of studies have shown the opposite result. Isoflurane treatment of HNSCC cells may increase the degree of malignancy by increasing cell proliferation and inhibiting apoptosis. In addition, isoflurane can also upregulate histone deacetylase 6 through mTOR-dependent pathways to enhance the proliferation of squamous cervical cancer cells. Isoflurane was also observed to promote proliferation, invasion, and migration of bladder cancer cells in a concentration-dependent manner and to reduce apoptosis. Moreover, it is reported that after treatment of glioblastoma stem cells with isoflurane at a clinically relevant concentration (1.2%) and incubation time (6 h), the proliferation of cancer cells increases, and apoptosis is less, the further studies have found that isoflurane enhances the ability of cancer cells to migrate in vitro and the migration distance in vivo was increased. In an in vitro study, clinical doses of halothane were found to exert cytotoxic effects on tumor cells in a time-dependent manner, and halothane had the most substantial inhibitory effect on tumor cell growth compared with sevoflurane and isoflurane. This may be related to the bromine-containing chemical structure of halothane molecules. Another significant result of this study was that the halothane treatment of human colon cancer (Caco-2), human laryngeal cancer (Hep-2), colon cancer lymph node metastasis poorly differentiated cells (SW-620) cell lines all have varying degrees of apoptosis. Similarly, a study showed that after exposure to halothane in vitro, the survival rate of lung cancer A549 cells was significantly reduced, accompanied by DNA damage and apoptosis. In addition, it has been demonstrated that halothane can inhibit the expression of tumor cell membrane adhesion molecules, causing tumor cells deprived of adhesion ability to undergo a kind of detachment-induced apoptosis, called anoikis. These laboratory data support the pro-apoptotic effect of halothane in a variety of cancers.

Other Inhalation Anesthetics

At clinically relevant doses, desflurane treatment of colon cancer cells does not or only causes slight changes in cell cycle distribution and apoptosis. For nitrous oxide, in vitro studies, have shown that nitrous oxide rapidly inhibits methionine synthase by depleting vitamin B12, thus inhibiting proliferation and promoting apoptosis in a variety of cell lines. Furthermore, an in vitro study confirmed that xenon inhibits the migration of breast cancer cells. In short, there are relatively few studies on the effects of desflurane, nitrous oxide, and xenon on tumor cell proliferation and apoptosis, and further experiments are still needed to verify their mechanism of action.

Inhalation Anesthesia and Tumor Angiogenesis

Tumor angiogenesis plays a vital role in tumor metastasis. When tumor cells are genetically changed, or related inflammation and immune cells are recruited, the expression of angiogenic factors increases, including VEGF, PDGF, COX-2, and transforming growth factor-α (TGF-α), chemokines, etc. Under the induction of the above factors, endothelial cells proliferate and assemble into tubular structures, or form vessel-like structures through a process denoted as vascular mimicry. The formation of new tumor blood vessels provides an essential pathway for the growth of primary and metastatic tumors to transport nutrients and remove metabolic waste. On the other hand, it also provides an important pathway for tumors to leave the primary site and enter the bloodstream, extensively involved in tumor cell growth, metastasis, and colonization process. Some studies have suggested that tumor angiogenesis may be affected by inhalation anesthesia.

Halothane

In an in vitro study, clinical doses of halothane were found to exert cytotoxic effects on tumor cells in a time-dependent manner, and halothane had the most substantial inhibitory effect on tumor cell growth compared with sevoflurane and isoflurane. This may be related to the bromine-containing chemical structure of halothane molecules. Another significant result of this study was that the halothane treatment of human colon cancer (Caco-2), human laryngeal cancer (Hep-2), colon cancer lymph node metastasis poorly differentiated cells (SW-620) cell lines all have varying degrees of apoptosis. Similarly, a study showed that after exposure to halothane in vitro, the survival rate of lung cancer A549 cells was significantly reduced, accompanied by DNA damage and apoptosis. In addition, it has been demonstrated that halothane can inhibit the expression of tumor cell membrane adhesion molecules, causing tumor cells deprived of adhesion ability to undergo a kind of detachment-induced apoptosis, called anoikis. These laboratory data support the pro-apoptotic effect of halothane in a variety of cancers.

Sevoflurane

HIF-1 is a major transcription factor in response to hypoxia and regulates the production of VEGF. Previous studies have shown that sevoflurane can induce the expression of HIF-1α and VEGF in a concentration and time-dependent manner after treating glioma stem cells in vitro, thereby promoting tumor progression. In which the PI3K/Akt signaling pathway may play an important role. However, under hypoxia, sevoflurane treatment will down-regulate HIF-1α expression in lung adenocarcinoma A549 cells and inhibit the invasiveness of tumor cells induced by hypoxia. In addition, sevoflurane also has been shown to prevent invasion by reducing
hypoxia-induced VEGF levels, which is independent of the HIF-1α pathway.25 These studies show that sevoflurane can promote tumor angiogenesis in vitro, but in hypoxic conditions, sevoflurane can inhibit hypoxia-induced angiogenesis.

Isoflurane

An experiment noted that isoflurane treatment increases the expression of VEGF and angiopoietin-1 in ovarian cancer cells, promoting tumor angiogenesis, and increasing aggressiveness.69 Consistently, isoflurane increased the expression of HIF-1α, HIF-2α, and VEGF in human renal carcinoma cells in a timeand concentration-dependent manner, which was associated with poor prognosis.70 In addition, the increase of HIF-1 and malignant potential after isoflurane treatment was also observed in bladder cancer41 and prostate cancer.71 The above-mentioned studies show the adverse effects of isoflurane on tumors in vitro to varying degrees, but a recent study has put forward a different point of view. Sumi et al. used a type of RCC4-EV cell derived from human renal cell carcinoma, which lacks VHL (a tumor suppressor that targets the degradation of HIF), even under normoxic conditions HIF-1 and HIF-2 activated. They found isoflurane treatment did not upregulate HIF-1α and HIF-2α expression in RCC4-EV cells under 20% O2 conditions, and further studies confirmed that isoflurane also did not affect the expression of genes associated with cancer hallmarks.72 Therefore, the inhibitory effect of isoflurane on tumor angiogenesis still needs to be verified in different tumor types.

Other Inhalation Anesthetics

Xenon, a relatively ideal anesthetic gas, has been shown to play a protective role in renal ischemia-reperfusion by inducing the expression of HIF-1α and its downstream VEGF.134 Similarly, xenon inhibits migration and reduces the secretion of the angiogenic cytokine RANTES/CCL5 compared to sevoflurane in breast cancer.83 At the same time, other anesthetic gases, such as nitrous oxide, desflurane, and halothane, are rarely studied in tumor angiogenesis, and still need further exploration and discovery.

Inhalation Anesthesia and Matrix Invasion

The tight connection between the extracellular matrix (ECM), basement membrane and vascular system is a barrier that tumor cell metastasis must overcome. During the local invasion stage of the tumor cells, zinc-dependent MMPs play an essential role in ECM degradation. MMPs are the main enzymes that degrade ECM in the human body, and they can decompose almost all the basic structural components of ECM except polysaccharides, thereby promoting tumor cell infiltration and metastasis. On the other hand, it can also participate in tumor growth and angiogenesis by regulating TGF-β, EGFR, VEGF, and other substances.135,136 Among them, gelatinases MMP-2 and MMP-9 are the most widely studied matrix metalloprotein10 has been shown to be highly expressed in many types of cancer, such as bladder cancer,137 breast cancer,138 prostate cancer,139 and colorectal cancer,140 even can be used as a potential biomarker for cancer.141 Other types of MMP-1, MMP-3, and MMP-11 are also involved in tumor progression.142

Sevoflurane

One study revealed that in colon cancer, 2.2% sevoflurane pretreatment inhibited IL-8-induced MMP-9 expression, further alleviating extracellular matrix degradation and subsequent cell invasion.26 Similarly, in glioblastoma sevoflurane has been shown to inhibit MMP-2 activity and tumor cell migration.27 In addition, in studies on ovarian cancer, sevoflurane can inhibit the expression of MMP-2 and MMP-9, and inhibit the invasion of cells, the mechanism of which is related to the JNK and P38 MAPK signaling pathway.15 In an in vitro study, sevoflurane treatment reduced MMP-16 expression, thereby inhibiting glioma cell migration and invasion.28 In addition to acting alone, sevoflurane can act synergistically with chemotherapy drugs. Studies have confirmed that sevoflurane and cisplatin (DDP) can have a stronger inhibitory effect on tumor cell growth and invasion. The synergy of the two drugs will lead to a significant down-regulation of XIAP, Survivin, MMP-2, and MMP-9, and the synergistic effect of invasion inhibition may be closely related to the down-regulation of MMP-2 and MMP-9.29 Therefore, sevoflurane inhibits matrix degradation and increases sensitivity to chemotherapeutic agents in some tumors.

Desflurane

One study conducted the effect of volatile anesthetics on the expression of metastasis gene in human ovarian cancer SKOV-3 cells, it was found that the expression of MMP-11 mRNA was significantly increased after pretreatment with desflurane, indicating that desflurane is possible to promote the degradation of basement membrane and the tumor metastasis.80 The opposite effect was observed in colon cancer cells. Pretreatment with desflurane decreased MMP-9 release and inhibited tumor cell migration.26 These differences may be related to tumor cell types, desflurane concentration and treatment time, gene and protein expression, and the specific mechanisms, which need to be further explored.

Inhalation Anesthesia and Platelets

Platelets are a crucial factor in protecting the safety of tumor cells in circulation. Platelets can form complexes with tumor cells through adhesion molecules such as integrin or platelet p-selectin on the membrane to help cancer cells escape from the immune surveillance and high shear force damage caused by blood flow, and accelerate the adhesion of tumor cells to the endothelium.143 Furthermore, platelets, as a vital source of TGF-β, enhance tumor epithelial-mesenchymal transition and involve in tumor growth, proliferation, and angiogenesis.144,145 Camerer et al. demonstrated that lung metastasis in mice is closely associated with changes in platelet count and function.
This study used an NF-E2-deficient mouse model with few circulating platelets, followed by tail vein injection of B16-F10 melanoma cells to measure lung metastasis by counting tumor cells, and the final results found that the median tumor count, tumor burden, and maximum surface tumor number in NF-E2−/− mice were lower than in the control group.146 Thus, the interaction between platelets and tumor cells is the precondition of successful blood metastasis. However, there is still a lack of tumor-related research on the effect of inhalation anesthesia on platelets.

Sevoflurane

Sevoflurane, rather than isoflurane, has been found to reduce the invasiveness of lung cancer cells in vitro by inhibiting platelet activity.30 The mechanism by which sevoflurane inhibits platelet activation remains unclear, and some studies suggest that it may be at least partly by adjusting the platelet p-select expression, and decreased expression of platelet p-selectin results in decreased binding of tumor cells to platelets, thereby inhibiting tumor cell metastasis.147 Moreover, sevoflurane can also impair platelet activation by inhibiting cyclooxygenase activity or thromboxane A2.148,149 However, in a nonneoplastic in vitro study, sevoflurane has been found to enhance the expression of platelet p-selectin and enhance its binding to lymphocytes, neutrophils, and monocytes.150 This has also been verified in vivo studies. The inhalation of low-dose sevoflurane in humans can inhibit the aggregation of platelets and granulocytes induced by agonists.151

Other Inhalation Anesthetics

At present, there are relatively few studies on the ability of other inhaled anesthetics to interfere with tumor metastasis through platelets. Therefore, we have reviewed a large number of nontumor studies on the effects of inhaled anesthetics on platelet activity. In an in vitro study, clinically relevant concentrations of xenon did not affect the expression of platelet p-selectin.152 Nitrous oxide promotes platelet aggregation, which can be reversed by the addition of halogenated anesthetics halothane or isoflurane.153 Further studies have shown that halothane,154–156 isoflurane,157–159 and desflurane154 have antiplatelet activity, which may inhibit tumor metastasis to some extent. Paradoxically, under different experimental conditions, these inhaled anesthetics have no effect on platelets or even the opposite effect.161 Therefore, there is still much work to be done on the effects of inhalation anesthesia on platelet function in tumor research.

Inhalation Anesthesia and Immune Response

The interaction between tumor cells and immunity is a research hotspot in the process of tumor metastasis. The primary tumor microenvironment is induced by tumor cells to form a relatively immunosuppressed environment, cancer cells that leave this survival zone are vulnerable to immune cells and molecule-mediated immune surveillance and therefore are attacked in circulation or metastatic organs. In this process, only a few tumor cells survive to form metastases.162–164 Thus, the influence of inhalation anesthesia on the immune response is significant to the prognosis of tumor patients.

Sevoflurane

There is a growing body of evidence that anesthesia can cause dysfunction of NK cells and helper and cytotoxic T cells, resulting in increased immunosuppression and metastasis.165 In an in vitro study, sevoflurane inhibited NK cytotoxicity and increased migration in nonsmall cell lung cancer.31 Another study reported that in vivo experiments on mice, repeated exposure to sevoflurane inhalation anesthesia resulted in a decrease in the absolute numbers of peripheral white blood cell and lymphocyte counts.166 In addition, the mechanism of sevoflurane attenuating NK cell-mediated cytotoxicity may be related to the inhibition of adhesion molecule leukocyte function-associated antigen-1 (LFA-1).32 Similarly, Buckley et al. co-cultured the serum of breast cancer patients who received sevoflurane-opioid (GA) anesthesia with primary NK cells and found that the serum of the GA group reduced the NK cell activation receptor CD16, IL-10, and IL-1β level.33 The immunosuppressive effect of sevoflurane has also been verified in clinical studies. In the randomized controlled trial of patients undergoing laparoscopic radical hysterectomy for cervical cancer, it was found that the immune indexes of the sevoflurane group were all lower than the basic level. CD3+ cell count, CD4+ cell count, NK cell count, and CD4+/CD8+ ratio in the sevoflurane group were significantly lower than those in the propofol group.111 Consistently, in breast cancer surgery patients, sevoflurane anesthesia combined with fentanyl postoperative analgesia can adversely affect the immune function of the patient by reducing the toxicity of NK cells.86 In addition, recent studies have shown that IL-6 plays a key role in the process of sevoflurane in promoting lung metastasis of breast cancer. Specifically, sevoflurane can increase the level of IL-6 in serum and further activate STAT3 and the infiltration of CD11b+ myeloid cells into the lung and promotes the initiation of the lung microenvironment of metastatic tumors.34 Paradoxically, sevoflurane may play a beneficial role by improving the immunosuppression of the tumor microenvironment. Tumor-associated macrophages (TAM), as the “undercover” of immune cells, can promote tumor growth and survival, angiogenesis, and immunosuppression. Szlwietrznia et al. found that treatment with sevoflurane can significantly reduce TAM and play a beneficial effect in the mouse melanoma model.35

Isoflurane

Isoflurane has been shown to induce apoptosis of human T lymphocytes in a dose-dependent manner,126 and the inhibitory effect of isoflurane on NK cells has also been observed in tumor cells.32 Gender differences should also be taken into account when studying the effects of inhalation anesthesia on immune function. Meier et al. demonstrated in a male and female mouse melanoma model that the tumor growth rate of male mice with perfect immune function will increase after
exposure to isoflurane, but it has no effect in females with perfect immune function.73 Thus, isoflurane affects melanoma growth in mice in a sex-specific, immune-dependent manner.

Other Inhalation Anesthetics

In other types of inhalation anesthetics, desflurane maintained IL-2/IL-4 and CD4+/CD8+ T cell ratios, while there was no significant change in the number of NK cells in the desflurane anesthetized group compared with the propofol anesthetized group.167 In rats, halothane anesthesia resulted in decreased NK cell activity and increased lung retention of tumor cells.76 Also, nitrous oxide exhibited some degree of immunosuppressive activity in vitro.168 In addition, xenon anesthesia had no significant difference in white blood cell function compared with sevoflurane anesthesia in nontumor surgical studies, but xenon anesthesia can result in fewer lymphocytes.166 However, the effect of these inhaled anesthetics on the immunity of tumor patients is limited and further investigation research is needed.

Inhalation Anesthesia and Gene Expression

MicroRNA (miRNA) are small noncoding RNA that participate in negative posttranscriptional regulation of gene expression mainly through translation inhibition, mRNA cleavage, and mRNA decay induced by miRNA-guided rapid deadenylation.170 Dysregulated miRNAs can act as tumor suppressor genes or oncogenes to regulate tumor growth, invasion, angiogenesis, and immune evasion.171,172 In addition, miRNA can be regulated by circular RNA (circRNA), which are novel endogenous noncoding RNA with characteristics of conservation, abundance, and tissue specificity.173 Research shows that circRNA is closely related to the progression of many types of cancer. Because circRNA molecules are rich in miRNA binding sites, they can act as miRNA “sponges,” competitively inhibit the binding of miRNAs to their mRNA targets, and increase the level of target genes.174,175 Recent many studies have found that inhalation anesthesia can regulate miRNA or circRNA expression in cancer.

Sevoflurane

miR-25-3p is a well-known oncogenic miRNA. Sevoflurane can inhibit the proliferation and invasion of liver cancer cells by down-regulating the expression of miR-25-3p and regulating the PTEN/Akt/GSK-3β/β-catenin signaling pathway.36 In addition, a study found that sevoflurane can restore the down-regulated miR-29a in liver cancer tissues and cells, resulting in down-regulating the expression of Dnm3a to play an anti-tumor effect.57 In other types of cancer, sevoflurane can inhibit papillary thyroid carcinoma cells activity in a dose-dependent manner, primarily by down-regulating cytosolic miR-155 to enhance cell apoptosis, and inhibit migration and invasion.38 In colorectal cancer, sevoflurane can inhibit cancer cell progression by upregulating miR-34a,39 miR-203,40 miR-331-3p,41 miR-622,42 or miR-637.43 Sevoflurane also inhibits breast cancer cell proliferation by upregulating miR-203.44 Similarly, sevoflurane also attenuates the proliferation and migration of gastric cancer by upregulating miR-34a and inhibiting TGFβ expression.45 In lung cancer, sevoflurane also can promote apoptosis by interfering with miRNA expression that regulates apoptosis.46 Also, sevoflurane promotes the apoptosis of laryngeal squamous cell carcinoma in-vitro and inhibits its malignant progression via miR-26a/FOXO1 axis.47 In a large number of glioma studies, sevoflurane has shown anti-tumor effects through multiple miRNA pathways. For example, increasing the expression of miR-637,48 miR-124-3p,49 miR-34a-5p,50 miR-146b-5p,51 miR-210,51 miR-27b,52 or miR-144-3p53 to regulate its corresponding downstream molecules and inhibit the migration and invasion of glioma cells. In addition to directly acting on miRNA, sevoflurane can play a regulatory role by acting on upstream circRNA. He et al. confirmed that circ-HMGCS1 was downregulated by sevoflurane treatment and knockdown of circ-HMGCS1 suppressed SGPP1 expression via sponging miR-34a-5p, which ultimately inhibited the progression of colon cancer.54 Moreover, a study has confirmed that sevoflurane can block glioma progression by increasing circRNA reelin (circRELN) expression, and circRELN played a role in glioma partly by regulating the miR-1290/RORA network.55 Similarly, other circRNA-miRNA axes are involved in sevoflurane-mediated glioma inhibition. For example, has_circ_0012129/miR-761/TGFβ2,56 circ_0002755/miR-628-5p/MAGT1,57 circ_0002015/miR-1200/NCR3LG1,58 circ_0079593/miR-633/ROCK1,59 and so on. However, contrary to the above anti-tumor results, sevoflurane has been observed to enhance the malignancy of ovarian cancer cells by inhibiting the expression of miR-138 or miR-210.60 Overall, sevoflurane exerts some anticancer effects by modulating circRNA or downstream miRNA in most tumor types.

Isoflurane and Desflurane

A study has shown that isoflurane can promote glucose metabolism and inhibit mitochondrial oxidative phosphorylation by upregulation of miR-21 in ovarian cancer cells, suggesting that isoflurane treatment can promote the metabolic transformation of ovarian cancer cells, leading to aggravated malignant transformation.74 In addition, desflurane can respectively inhibit HIF1-α and MMP-9 expression through miR-138 and miR-335, thereby exerting anti-neuroglioma effects.51 However, in ovarian cancer, desflurane exposure enhances cell proliferation and migration of ovarian cancer cells through down-regulation of miR-138.60 Similarly, desflurane anesthesia confers colorectal cancer cells metastatic capacity through deregulation of miR-34a/LOXL3.81

Inhalation Anesthesia and the Prognosis of Cancer Surgery Patients

Many studies have revealed the influence of anesthesia on the prognosis of cancer patients, and this article summarizes the clinical
studies related to the influence of inhalation anesthesia on the prognosis of cancer patients in the recent 5 years (Table 2). Some of these studies have shown that inhalation anesthesia does not affect the prognosis of cancer patients after surgery. In certain types of surgery, such as digestive cancer, breast cancer, high-grade glioma, colorectal cancer, colon cancer, oral cancer, and gastric cancer, there was no significant difference between inhalation anesthetics and propofol in tumor patients immunity, circulating tumor cells, or survival outcomes. Consistent with these results, after anesthesia with desflurane or isoflurane in glioblastoma, the survival rate after surgery is similar, and the addition of propofol is not associated with longer survival. However, there may be differences between the various inhalation anesthetics. For example, xenon anesthesia in renal cell carcinoma surgery showed no significant effect on early renal function but less adverse events compared to isoflurane. Similarly, in lung cancer, sevoflurane can inhibit tumor cell invasion by inhibiting platelet activation compared with isoflurane.

Nevertheless, some studies have put forward the opposite view that inhalation anesthesia may be related to poor clinical prognosis. In colorectal cancer, a retrospective study showed that exposure to inhalation anesthetics is associated with an increased risk of recurrence. Another retrospective study also confirmed that in patients undergoing gynecologic cancer, sevoflurane anesthesia is associated with worse overall, cancer-specific, and recurrence-free survival. Thus, some studies recommend intravenous anesthesia and local anesthesia alone or in combination with tumor anesthesia. In a retrospective study of HCC patients, it was found that compared with desflurane anesthesia, Propofol anesthesia is associated with longer survival, with significantly reduced distant metastasis and local recurrence. Similarly, clinical studies of other types of tumors have confirmed the adverse effects of inhalation anesthesia on the prognosis of tumors, and propofol anesthesia is more recommended. In addition, in a clinical randomized controlled study on breast cancer surgery, inhalation anesthesia did not show an excellent anticancer effect, and lidocaine may reduce recurrence. Similarly, in some types of tumor surgery, the combined use of intravenous anesthesia and local anesthesia techniques will show better results than inhalation anesthesia.

Therefore, the above series of studies indicate that inhalation anesthesia has no significant effect on the prognosis or leads to poor survival results in most types of tumors. However, a large part of this evidence is retrospective studies and may be biased, and future prospective multicenter studies are needed to determine the impact of inhaled anesthesia on the prognosis of cancer patients.

Conclusion

Inhalation anesthesia can trigger different molecules and pathways to act on the whole process of tumor metastasis and play an interference role in tumor progression. Sevoflurane, as one of the commonly used inhalation anesthetics in clinical practice, has been widely studied in tumor metastasis, but its role in tumor biological behavior and gene regulation is still uncertain. In addition, sevoflurane has been shown to have significant immunosuppressive and cancer-promoting properties in most studies and reviews. However, a study has shown that sevoflurane can improve the immunosuppression of the tumor microenvironment by reducing TAMs. In some tumor types, isoflurane can promote the occurrence and development of some tumors and lead to malignant progressions through different mechanisms, such as regulating the activity of cancer cells, promoting tumor angiogenesis, inhibiting immune function, and regulating oncogenic gene expression. Besides, there are a few studies on halothane, desflurane, nitrous oxide, and xenon, but it is worth noting that xenon inhibited tumor angiogenesis and invasion in a laboratory study, and further clinical studies showed that xenon has a good effect in reducing adverse events in patients with kidney cancer surgery. Although it is expensive and has not been widely used in the clinic, the role of xenon in anticancer is worthy of further study. In summary, the effects of inhalation anesthetics on tumor metastasis remain uncertain and contradictory, which may be mainly due to the specificity of tumor types and cell lines, the lack of simulation of complex tumor growth environments, and differences in inhaled anesthetics types, treatment concentration and time.

In recent years, with the rapid development of genetic testing technology and bioinformatics technology, noncoding RNAs have been extensively studied to explain the effects of inhalation anesthesia on tumor metastasis at the gene level as much as possible, but there are still many deficiencies. First, platelet activity has been widely recognized as a key factor interfering with tumor cell survival, but the effect of inhalation anesthesia on platelets in tumor patients has been largely unstudied. Second, most of the current studies rely on a single tumor type, and the findings cannot be applied to most tumor types due to the variability among different tumors. Third, the current study does not comprehensively cover all types of inhalation anesthetics, inhalation anesthetic concentrations, and methods of use. At last, current studies mainly rely on in vitro studies between specific cancer cells and related molecules, pathways, immune cells, platelets, and other factors under the treatment of inhalation anesthesia, which lacks the simulation of the complex overall environment of tumors. These research results still need to be further verified in vivo and in the clinical environment. In the future, it is necessary to improve in vivo experiments of inhaled anesthetics involving more tumor types, types, and concentrations, and complete large-sample multicenter prospective clinical studies. At the same time, the synergistic influence of inhalation anesthesia with perioperative anti-inflammatory and analgesic factors, blood transfusion, vasoactive drugs, and other factors should be considered in tumor metastasis, to provide personalized anesthesia programs for patients undergoing tumor surgery.

Ethics Statement

This article does not contain any studies with human participants or animals.
Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Qingtao Meng https://orcid.org/0000-0002-1936-3050

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660.

2. Fisher B. Biological research in the evolution of cancer surgery: a personal perspective. Cancer Res. 2008;68(24):10007-10020. doi:10.1158/0008-5472.Can-08-0186.

3. Hiller JG, Perry NJ, Poulakiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15(4):205-218. doi:10.1038/nrclinonc.2017.194.

4. Onuma AE, Zhang H, Gil L, Huang H, Tsung A. Surgical stress promotes tumor progression: a focus on the impact of the immune signaling via regulating IncRNA PCAT6/miR-326 axis. Open Life Sci. 2020;15:159-172. doi:10.1515/biol-2020-0017.

11. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Mol Cell Biol. 2018;19(2):99-1002. doi:10.1038/s41598-017.3306.

15. Kang K, Wang Y. Sevoflurane inhibits proliferation and invasion of human ovarian cancer cells by regulating JNK and p38 MAPK signaling pathway. Drug Des Devel Ther. 2019;13:4451-4460. doi:10.2147/dddt.S223581.

16. Su G, Yan Z, Deng M. Sevoflurane inhibits proliferation, invasion, but enhances apoptosis of lung cancer cells by Wnt/b-catenin signaling via regulating IncRNA PCAT6/miR-326 axis. Open Life Sci. 2020;15:159-172. doi:10.1515/biol-2020-0017.

17. Kvolik S, Glavas-Obrovac L, Bares V, Karner I. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci. 2005;77(19):2369-2383. doi:10.1016/j.lfs.2004.12.052.

18. Kvolik S, Dobrosevic B, Marzic S, Pricic L, Glavas-Obrovac L. Different apoptosis ratios and gene expressions in two human cell lines after sevoflurane anaesthesia. Acta Anaesthesiol Scand. 2009;53(11):1192-1199. doi:10.1111/j.1399-6576.2009.02036.x.

19. Xue F, Xu Y, Song Y, Zhang W, Li R, Zhu X. The effects of sevoflurane on the progression and cisplatinum sensitivity of cervical cancer cells. Drug Des Devel Ther. 2019;13:3919-3928. doi:10.2147/dddt.S219788.

27. Hurmath FK, Mittal M, Ramaswamy P, Umamaheswara Rao GS, Dalavakodihalli Nanjaiha N. Sevoflurane and thiopental preconditioning attenuates the migration and activity of MMP-2 in
28. Zhang L, Wang J, Fu Z, et al. Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. *Artif Cells Nanomed Biotechnol.* 2019;47(1):3306-3314. doi:10.1080/21691401.2019.1648282

29. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. *Blood.* 2004;104(2):397-401. doi:10.1182/blood-2004-02-0434

30. Kurosawa S, Kato M. Anesthetics, immune cells, and immune responses. *J Anesth.* 2008;22(3):263-277. doi:10.1007/s00540-008-0626-2

31. Elena G, Amerio N, Ferrero P, et al. Effects of repetitive sevoflurane anaesthesia on immune response, select biochemical parameters and organ parameters in mice. *Lab Anim.* 2003;37(3):193-203. doi:10.1258/002367703766453038

32. Tazawa K, Koutsogiannaki S, Chamberlain M, Yuki K. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. *Toxicol Lett.* 2017;266:23-31. doi:10.1016/j.toxlet.2016.12.007

33. Cho JS, Lee MH, Kim SI, et al. The effects of perioperative anesthesia and analgesia on immune function in patients undergoing breast cancer resection: A prospective randomized study. *Int J Med Sci.* 2017;14(10):970-976. doi:10.7150/ijms.20064

34. Li R, Huang Y, Lin J. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mice. *Nat Commun.* 2020;11(1):642. doi:10.1038/s41467-019-14065-6

35. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. *Nat Rev Genet.* 2019;20(11):675-691. doi:10.1038/s41588-019-0158-7

36. Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/akt/GSK-3β/β-catenin signaling pathway by downregulating miR-25-3p. *Int J Mol Med.* 2020;46(1):97-106. doi:10.3892/ijmm.2020.4577

37. Song G, Tian L, Cheng Y, et al. Antitumor activity of sevoflurane in HCC cell line is mediated by miR-29a-induced suppression of Dnmt3a. *J Cell Biochem.* 2019;120(10):18152-18161. doi:10.1002/jcb.29212

38. Li Y, Zeng QG, Qiu JL, Pang T, Wang H, Zhang XX. Sevoflurane inhibits the progression of PTC by downregulating miR-155. *Eur Rev Med Pharmacol Sci.* 2019;23(15):6579-6587. doi:10.26355/eurrev_201908_18544

39. Sun SQ, Ren LJ, Liu J, Wang P, Shan SM. Sevoflurane inhibits migration and invasion of colorectal cancer cells by regulating microRNA-34a/ADAM10 axis. *Neoplasma.* 2019;66(6):887-895. doi:10.4149/neoplasma_2018_181213N962

40. Fan L, Wu Y, Wang J, He J, Han X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. *Eur J Pharmacol.* 2019;850:43-52. doi:10.1016/j.ejphar.2019.01.025

41. Sun S, Wang P, Ren L, Wang H, Zhan Y, Shan S. Sevoflurane suppresses colon cancer cell malignancy by regulating circ-P4KA. *Onco Targets Ther.* 2021;14:3319-3333. doi:10.2147/ott.S295552

42. Wang J, Li S, Zhang G, Han H. Sevoflurane inhibits malignant progression of colorectal cancer via hsa_circ_0000231-mediated miR-622. *J Biol Res (Thessalon).* 2021;28(1):14. doi:10.1186/s40709-021-00145-6

43. Hu N, Duan JA, Yu Y, Li D, Chen J, Yan H. Sevoflurane inhibits the migration, invasion and induces apoptosis by regulating the expression of WNT1 via miR-637 in colorectal cancer. *Anticancer Drugs.* 2021;32(5):537-547. doi:10.1097/cad.00000000000010161

44. Liu Y, Yang L, Guo X, et al. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells. *Mol Med Rep.* 2018;18(1):455-460. doi:10.3892/mmr.2018.8949

45. Chen H, Zhu XM, Luo ZL, Hu YJ, Cai XC, Gu QH. Sevoflurane induction alleviates the progression of gastric cancer by upregulating the miR-34a/TGFβ2 axis. *Eur Rev Med Pharmacol Sci.* 2020;24(22):11883-11890. doi:10.26355/eurrev_202011_23846

46. Wang L, Wang T, Gu JQ, Su HB. Volatile anesthetic sevoflurane suppresses lung cancer cells and miRNA interference in lung cancer cells. *Onco Targets Ther.* 2018;11:5689-5693. doi:10.2147/ott.S171672

47. Liu D, Wan L, Gong H, Chen S, Kong Y, Xiao B. Sevoflurane promotes the apoptosis of laryngeal squamous cell carcinoma in-vitro and inhibits its malignant progression via miR-26a/FOXO1 axis. *Bioengineered.* 2021;12(1):6364-6376. doi:10.1080/21655979.2021.1962684

48. Yi W, Li D, Guo Y, Zhang Y, Huang B, Li X. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. *Int J Mol Med.* 2016;38(6):1857-1863. doi:10.3892/ijmm.2016.2797

49. Gao C, Shen J, Meng ZX, He XF. Sevoflurane inhibits glioma cells proliferation and metastasis through microRNA-124-3p/ROCK1 axis. *Pathol Oncol Res.* 2020;26(2):947-954. doi:10.1007/s12253-019-00597-1

50. Zhao H, Xing F, Yuan J, Li Z, Zhang W. Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis. *Life Sci.* 2020;256:117897. doi:10.1016/j.lfs.2020.117897

51. Ishikawa M, Iwasaki M, Zhao H, et al. Inhalational anesthetics inhibit neuroglioma cell proliferation and migration via miR-138, -210 and -335. *Int J Mol Sci.* 2021;22(9):4355. doi:10.3390/ijms22094355

52. Zhan X, Lei C, Yang L. Sevoflurane inhibits cell proliferation and migration of glioma by targeting the miR-27b/VEGF axis. *Mol Med Rep.* 2021;23(6):408. doi:10.3892/mmr.2021.12047

53. Yang L, He K, Yao S, Zhang Y, Shen J. Sevoflurane inhibits neuroblastoma cell proliferation and invasion and induces apoptosis by miR-144-3p/YAP1 axis. *Basic Clin Pharmacol Toxicol.* 2021;129(4):297-307. doi:10.1111/bcpt.13629

54. He J, Zhao H, Liu X, et al. Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome-mediated circ-HMGCS1 via the miR-34a-5p/SGPP1 axis. *Oncol Rep.* 2020;44(6):2429-2442. doi:10.3892/or.2020.7783
55. Kang X, Li H, Zhang Z. Sevoflurane blocks glioma malignant development by upregulating circRNLN through circRNLN-mediated miR-1290/RORA axis. *BMC Anesthesiol.* 2021;21(1):213. doi:10.1186/s12871-021-01427-1

56. Xu W, Xue R, Xia R, et al. Sevoflurane impedes the progression of glioma through modulating the circular RNA has_circ_0012129/miR-761/TGF2 axis. *Eur Rev Med Pharmacol Sci.* 2020;24(10):5534-5548. doi:10.26355/eurrev_202005_21339

57. Li H, Xia T, Guan Y, Yu Y. Sevoflurane regulates glioma progression by circ_0002755/miR-628-5p/MAGT1 axis. *Cancer Manag Res.* 2020;12:5085-5098. doi:10.2147/cmar.S242135

58. Zhao Z, Gao B, Zong X, Gao R. Sevoflurane impedes glioma progression via regulating circ_0000215/miR-1200/NCR3LG1 axis. *Metab Brain Dis.* 2021;36(7):2003-2014. doi:10.1007/s11011-021-00817-1

59. Zhang W, Sheng B, Chen S, et al. Sevoflurane enhances proliferation, metastatic potential of cervical cancer cells via the histone deacetylase 6 modulation in vitro. *Anesthesiology.* 2020;132(6):1469-1481. doi:10.1097/ALN.0000000000001312

60. Wei H, Liang G, Yang H, et al. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. *Anesthesiology.* 2008;108(2):251-260. doi:10.1097/01.anes.0000299435.59242.0e.

61. Cai Z, Luo H, Huang Z. Isoflurane suppresses proliferation, migration, and invasion and facilitates apoptosis in colorectal cancer cells through targeting miR-216. *Front Med (Lusanne).* 2021;8:658926. doi:10.3389/fmed.2021.658926

62. Hu J, Hu J, Jiao H, Li Q. Anesthetic effects of isoflurane and the molecular mechanism underlying isoflurane-inhibited aggressiveness of hepatic carcinoma. *Mol Med Rep.* 2018;18(1):184-192. doi:10.3892/mmr.2018.8945

63. Xie Z, Dong Y, Maeda U, et al. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. *J Neurosci.* 2007;27(6):1247-1254. doi:10.1523/jneurosci.5320-06.2007

64. Jun R, Gui-he Z, Xing-xing S, Hui Z, Li-xian X. Isoflurane enhances malignancy of head and neck squamous cell carcinoma cell lines: a preliminary study in vitro. *Oral Oncol.* 2011;47(5):329-333. doi:10.1016/j.oraloncology.2011.03.002

65. Zhang W, Xue F, Xie S, Chen C, Li Z, Zhu X. Isoflurane promotes proliferation of squamous cervical cancer cells through mTOR-histone deacetylase 6 pathway. *Mol Cell Biochem.* 2021;476(1):45-55. doi:10.1007/s11010-020-03884-7

66. Lu N, Piao MH, Feng CS, Yuan Y. Isoflurane promotes epithelial-to-mesenchymal transition and metastasis of bladder cancer cells through HIF-1α-p-b-catenin/Notch1 pathways. *Life Sci.* 2020;258:118154. doi:10.1016/j.lfs.2020.118154

67. Zhu M, Li M, Zhou Y, et al. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. *Br J Anaesth.* 2016;116(6):870-877. doi:10.1093/bja/aew124

68. Lu Y, Wang J, Yan J, et al. Sevoflurane attenuate hypoxia-induced VEGF level in tongue squamous cell carcinoma cell by upregulating the DNA methylation states of the promoter region. *Biomed Pharmacother.* 2015;71:139-145. doi:10.1016/j.biopha.2015.02.032

69. Luo X, Zhao H, Hennah L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. *Br J Anaesth.* 2015;114(5):831-839. doi:10.1093/bja/aeu408

70. Benzonana L, Perry NJ, Watts HR, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. *Anesthesiology.* 2013;119(3):593-605. doi:10.1097/ALN.0b013e31829e47fd

71. Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. *Br J Cancer.* 2014;111(7):1338-1349. doi:10.1038/bjc.2014.426

72. Sztwiertnia I, Schenz J, Bomans K, et al. Sevoflurane depletes macrophages from the melanoma microenvironment. *PLoS One.* 2020;15(5):e0233789. doi:10.1371/journal.pone.0233789

73. Cheng S, Cheng J. Sevoflurane suppresses glioma tumorigenesis via regulating circ_0079593/miR-633/ROCK1 axis. *Brain Res.* 2021;1767:147543. doi:10.1016/j.brainres.2021.147543

74. Kawaraguchi Y, Horikawa YT, Murphy AN, et al. Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via cavelinos. *Anesthesiology.* 2011;115(3):499-508. doi:10.1097/ALN.0b013e3182276d42

75. Topouzova-Hristova T, Daza P, Garcia-Herdugo G, Stephanova E. Volatile anesthetic halothane causes DNA damage in A549 lung cells. *Toxicol In Vitro.* 2006;20(5):585-593. doi:10.1016/j.tiv.2005.10.004

76. Stephanova E, Topouzova-Hristova T, Hazarosova R, Moskova V. Halothane-induced alterations in cellular structure and proliferation of A549 cells. *Tissue Cell.* 2008;40(6):397-404. doi:10.1016/j.tice.2008.04.001

77. Woo JH, Baik HJ, Kim CH, et al. Effect of propofol and desflurane on immune cell populations in breast cancer patients: a randomized trial. *J Korean Med Sci.* 2015;30(10):1503-1508. doi:10.3346/jkms.2015.30.10.1503

78. Valtcheva-Sarker R, Stephanova E, Hristova K, Altankov G, Momchilova A, Pankov R. Halothane affects focal adhesion proteins in the A 549 cells. *Mol Cell Biochem.* 2007;295(1-2):59-64. doi:10.1007/s11010-006-9272-x

79. Liang H, Wang HB, Liu HZ, Wen XJ, Zhou QL, Yang CX. The effects of combined treatment with sevoflurane and cisplatin on growth and invasion of human adenocarcinoma cell line A549. *Biomed Pharmacother.* 2013;67(6):503-509. doi:10.1016/j.biopha.2013.03.005

80. Guo NL, Zhang JX, Wu JP, Xu YH. Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochondrial oxidative phosphorylation in ovarian cancer cells. *Biosci Rep.* 2017;37(6):BSR20170818. doi:10.1042/bss20170818

81. Bundschener AC, Ullrich V, Malsy M, et al. Effects of volatile anesthetics on proliferation and viability of SW480 colon cancer cells in vitro. *Anticancer Res.* 2019;39(11):6049-6055. doi:10.21873/anticanceres.13811

82. Walker PR, Smith B, Carson C, et al. Induction of apoptosis in neoplastic cells by depletion of vitamin B12. *Cell Death Differ.* 1997;4(3):233-241. doi:10.1038/sj.cdd.4400225
Buschmann D, Brandes F, Lindemann A, et al. Propofol and sevoflurane differentially impact microRNAs in circulating extracellular vesicles during colorectal cancer resection: a pilot study. *Anesthesiology*. 2020;132(1):107-120. doi:10.1097/aln.0000000000002986

84. Wu ZF, Lee MS, Wong CS, et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. *Anesthesiology*. 2018;129(5):932-941. doi:10.1097/aln.0000000000002357

85. Liu S, Gu X, Zhu L, et al. Effects of propofol and sevoflurane on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer. *Medicine (Baltimore)*. 2016;95(49):e5479. doi:10.1097/md.0000000000005479

86. Makito K, Matsui H, Fushimi K, Yasunaga H. Effects of propofol and sevoflurane intravenous general anesthesia on VEGF and TGF-β in patients receiving radical resection of lung cancer. *Medicine (Baltimore)*. 2019;98(47):e18088. doi:10.1097/md.00000000000018088

87. Hovagimian F, Braun J, Z...effects of immune cells after propofol or sevoflurane anesthesia for colorectal cancer surgery: a prospective double-blind randomized trial. *Anesthesiology*. 2022;136(3):448-458. doi:10.1097/0000000000004119

88. Hovagimian F, Braun J, Z’Graggen B R, et al. Anesthesia and circulating tumor cells in primary breast cancer patients: a randomized controlled trial. *Anesthesiology*. 2020;133(3):548-558. doi:10.1097/00000000000043409

89. Shiono S, Shibata SC, Kabata D, Shintani A, Ikeda T, Fujino Y. Comparison of 1-year recurrence-free survival between sevoflurane and propofol use for general anesthesia management in primary breast cancer surgery. *J Anesth*. 2020;34(5):694-701. doi:10.1007/s00540-020-02806-7

90. Lee YJ, Oh CS, Choi JM, Park S, Kim SH. Mu-opioid receptor polymorphisms and breast cancer recurrence in adult Korean women undergoing breast cancer surgery: a retrospective study. *Int J Med Sci*. 2020;17(18):2941-2946. doi:10.7150/ijms.49297

91. Sessler DI, Lei P, Huang Y, et al. Recurrence of breast cancer after regional or general anesthesia: a randomised controlled trial. *Lancet*. 2019;394(10211):1807-1815. doi:10.1016/s0140-6736(19)32313-x

92. Yoo S, Lee HB, Han W, et al. Total intravenous anesthesia versus inhalation anesthesia for breast cancer surgery: a retrospective cohort study. *Anesthesiology*. 2019;130(1):31-40. doi:10.1097/0000000000002491

93. Lim JA, Oh CS, Yoon TG, et al. The effect of propofol and sevoflurane on cancer cell, natural killer cell, and cytotoxic T lymphocyte function in patients undergoing breast cancer surgery: an in vitro analysis. *BMC Cancer*. 2018;18(1):159. doi:10.1186/s12885-018-4064-8

94. Huang YH, Lee MS, Lou YS, et al. Propofol-based total intravenous anesthesia did not improve survival compared to desflurane anesthesia in breast cancer surgery. *PLoS One*. 2019;14(11):e0224728. doi:10.1371/journal.pone.0224728

95. Dong J, Zeng M, Ji N, et al. Impact of anesthesia on long-term outcomes in patients with supratentorial high-grade glioma undergoing tumor resection: a retrospective cohort study. *J Neurosurg Anesthesiol*. 2020;32(3):227-233. doi:10.1097/ana.0000000000000588

96. Stevanovic A, Schaefer P, Coburn M, et al. Renal function following xenon anesthesia for partial nephrectomy—an explorative analysis of a randomized controlled study. *PLoS One*. 2017;12(7):e0181022. doi:10.1371/journal.pone.0181022

97. Lai HC, Lee MS, Liu YT, et al. Propofol-based intravenous anesthesia is associated with better survival than desflurane anesthesia in pancreatic cancer surgery. *PLoS One*. 2020;15(5):e0233598. doi:10.1371/journal.pone.0233598

98. Crane V, Hasselager RP, Fransgaard T, Gögenur I. Anaesthetic technique and outcomes after colorectal cancer surgery. *Dan Med J*. 2020;67(4):A04190255.

99. Enlund M, Berglund A, Ahlstrand R, et al. Survival after primary breast cancer surgery following propofol or sevoflurane general anesthesia—a retrospective, multicenter, database analysis of 6305 Swedish patients. *Acta Anaesthesiol Scand*. 2020;64(8):1048-1054. doi:10.1111/aas.13644

100. Ren J, Wang X, Wei G, Meng Y. Exposure to desflurane anesthesia confers colorectal cancer cells metastatic capacity through deregulation of miR-34a/LOXL3. *Eur J Cancer Prev*. 2021;30(2):143-153. doi:10.1097/cej.0000000000000608

101. Miao L, Lv X, Huang C, Li P, Sun Y, Jiang H. Long-term oncological outcomes after oral cancer surgery using propofol-based total intravenous anesthesia versus sevoflurane-based inhalation anesthesia: a retrospective cohort study. *PLoS One*. 2022;17(5):e0268473. doi:10.1371/journal.pone.0268473

102. Oh CS, Park HJ, Piao L, et al. Expression profiles of immune cells after propofol or sevoflurane anesthesia for colorectal cancer surgery: a prospective double-blind randomized trial. *Anesthesiology*. 2022;136(3):448-458. doi:10.1097/0000000000004119

103. Takeyama E, Miyo M, Matsumoto H, et al. Long-term survival differences between sevoflurane and propofol use in general anesthesia for gynecologic cancer surgery. *J Anesth*. 2021;35(4):495-504. doi:10.1007/s00540-021-02941-9

104. Lai HC, Lee MS, Lin C, et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anaesthesia in hepatectomy for hepatocellular carcinoma: a retrospective cohort study. *Br J Anaesth*. 2019;123(2):151-160. doi:10.1096/j.bja.2019.04.057

105. Lai HC, Lee MS, Lin KT, et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in intrahepatic cholangiocarcinoma surgery. *Medicine (Baltimore)*. 2019;98(51):e18472. doi:10.1097/md.000000000000018472

106. Meng XY, Zhang XP, Sun Z, Wang HQ, Yu WF. Distant survival for patients undergoing surgery using volatile versus IV anesthesia for hepatocellular carcinoma with portal vein tumor thrombus: a retrospective study. *BMC Anesthesiol*. 2022;22(1):2946. doi:10.1186/s12871-020-01111-w

107. Galoş EV, Tat TF, Popa R, et al. Neutrophil extracellular trapping and angiogenesis biomarkers after intravenous or inhalation anaesthesia with or without intravenous lidocaine for breast cancer surgery: a prospective, randomised trial. *Br J Anaesth*. 2020;125(5):712-721. doi:10.1016/j.bja.2020.05.003
108. Oh TK, Kim HH, Jeon YT. Retrospective analysis of 1-year mortality after gastric cancer surgery: total intravenous anesthesia versus volatile anesthesia. *Acta Anaesthesiol Scand*. 2019;63(9):1169-1177. doi:10.1111/aas.13414

109. Oh CS, Lee J, Yoon TG, et al. Effect of equipotent doses of propofol versus sevoflurane anesthesia on regulatory T cells after cancer surgery. *Anesthesiology*. 2018;129(5):921-931. doi:10.1097/ALN.0000000000002382

110. Buckley A, McQuaid S, Johnson P, Buggy DJ. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. *Br J Anaesth*. 2014;113(Suppl 1):i56-i62. doi:10.1093/bja/aeu200

111. Hong B, Lee S, Kim Y, et al. Anesthetics and long-term survival after cancer surgery—total intravenous versus volatile anesthesia: a retrospective study. *BMC Anesthesiol*. 2019;19(1):233. doi:10.1186/s12871-019-0914-4

112. Wang J, Cheng CS, Lu Y, Sun S, Huang S. Volatile anesthetics regulate anti-cancer relevant signaling. *Front Oncol*. 2021;11:610514. doi:10.3389/fonc.2021.610514

113. Paget S. The distribution of secondary growths in cancer of the breast. 1889.

114. Guerrero Orriach JL, Raigon Ponferrada A, Malo Manso A, et al. Anesthesia in combination with propofol increases disease-free survival in bladder cancer patients who undergo radical tumor cystectomy as compared to inhalational anesthetics and opiate-based analgesia. *Oncology*. 2020;98(3):161-167. doi:10.1159/000504807

115. Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligocolonogenic precursors of breast cancer metastasis. *Cell*. 2014;158(5):1110-1122. doi:10.1016/j.cell.2014.07.013

116. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. *Crit Rev Biochem Mol Biol*. 2000;35(2):71-103. doi:10.1080/10409230091169186

117. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. *Prog Mol Biol Transl Sci*. 2017;147:1-73. doi:10.1016/bs.pmbts.2017.02.005

118. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. *Cell*. 2010;141(1):52-67. doi:10.1016/j.cell.2010.03.015

119. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. *Science*. 2011;331(6024):1559-1564. doi:10.1126/science.1203543.

120. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. *Nature*. 2016;529(7586):298-306. doi:10.1038/nature17038.

121. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. *Cancer Res*. 2019;79(18):4557-4566. doi:10.1158/0008-5472.CAN-18-3962

122. Anderson NM, Simon MC. The tumor microenvironment. *Curr Biol*. 2020;30(16):R921-R925. doi:10.1016/j.cub.2020.06.081

123. Denton AE, Roberts EW, Fearon DT. Stromal cells in the tumor microenvironment. *Adv Exp Med Biol*. 2018;1060:99-114. doi:10.1007/978-3-319-78127-3_6

124. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. *J Hematol Oncol*. 2018;11(1):125. doi:10.1186/s13045-018-0669-2

125. Deng X, Vipani M, Liang G, Gouda D, Wang B, Wei H. Sevoflurane modulates breast cancer cell survival via modulation of intracellular calcium homeostasis. *BMC Anesthesiol*. 2020;20(1):253. doi:10.1186/s12871-020-01139-y

126. Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. *Anesthesiology*. 2005;102(6):1147-1157. doi:10.1097/00000542-200506000-00014

127. Ash SA, Valchev GI, Looney M, et al. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane. *Br J Anaeth*. 2014;113(Suppl 1):i14-i21. doi:10.1093/bja/aeu191

128. Sakurai T, Kudo M. Signaling pathways governing tumor angiogenesis. *Oncology*. 2011;81(Suppl 1):24-29. doi:10.1159/000333256

129. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. *Cell Mol Life Sci*. 2020;77(19):1745-1770. doi:10.1007/s00018-019-03351-7

130. Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. *Cell Immunol*. 2020;353:104119. doi:10.1016/j.cellimm.2020.104119

131. Jiang X, Wang J, Deng X, et al. The role of microenvironment in tumor angiogenesis. *J Exp Clin Cancer Res*. 2020;39(1):204. doi:10.1186/s13046-020-01709-5

132. Ash SA, Valchev GI, Looney M, et al. Cancerous phenotypes associated with hypoxia-inducible factors are not influenced by the volatile anesthetic isofluurane in renal cell carcinoma. *PLoS One*. 2019;14(4):e0215072. doi:10.1371/journal.pone.0215072

133. Ma D, Lim T, Xu J, et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1 alpha activation. *J Am Soc Nephrol*. 2009;20(4):713-720. doi:10.1681/asn.2008070712

134. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. *Prog Mol Biol Transl Sci*. 2017;147:1-73. doi:10.1016/bs.pmbts.2017.02.005

135. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. *Cell*. 2010;141(1):52-67. doi:10.1016/j.cell.2010.03.015

136. Foulad H, Salem H, Ellakwa DE, Abdel-Hamid M. MMP-2 and MMP-9 levels as biomarkers for tumor expression in breast cancer patients in Egypt. *J Biochem Mol Toxicol*. 2019;33(4):e22275. doi:10.1002/jbt.22275

137. Alrehaili AA, Gharib AF, Karam RA, Alhakami RA, El Sawy WH, Abd Elrahman TM. Clinical significance of plasma MMP-2 and MMP-9 levels as biomarkers for tumor expression in breast cancer patients in Egypt. *Med Biol Rep*. 2020;47(2):1153-1160. doi:10.1007/s11033-019-05216-5

138. Karmakar D, Maity J, Mondal P, et al. E2F5 promotes prostate cancer cell migration and invasion through regulation of TFPI2, MMP-2 and MMP-9. *Carcinogenesis*. 2020;41(12):1767-1780. doi:10.1093/carcin/bgaa043.
140. Langers AM, Verspugt HW, Hawinkels LJ, et al. MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients. Br J Cancer. 2012;106(9):1495-1498. doi:10.1038/bjc.2012.80

141. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors (Basel). 2018;18(10):3249. doi:10.3390/s18103249

142. Iwasaki M, Zhao H, Jaffer T, et al. Volatile anesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016;7(18):26042-26056. doi:10.18632/oncotarget.8304

143. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352-3357. doi:10.1073/pnas.061615908

144. Labelle M, Begum S, Hynes RO. Direct signaling between platelet-cancer interplay: molecular mechanisms and new therapeutic avenues. Front Oncol. 2021;11:665534. doi:10.3389/fonc.2021.665534

145. Liang H, Yang CX, Zhang B, Zhao ZL, Zhong YJ, Wen XJ. Sevoflurane attenuates platelets activation of patients undergoing lung cancer surgery and suppresses platelets-induced invasion of lung cancer cells. J Clin Anesth. 2016;35:304-312. doi:10.1016/j.jclinane.2016.08.008

146. Huang GS, Li CY, Hsu PC, Tsai CS, Lin TC, Wong CS. Sevoflurane anesthesia attenuates adenosine diphosphate-induced P-selectin expression and platelet-leukocyte conjugate formation. Anesth Analg. 2004;99(4):1121-1126, table of contents. doi:10.1213/01.ane.0000130620.79832.23

147. Hirakata H, Nakamura K, Sai S, et al. Platelet aggregation is impaired during anesthesia with sevoflurane but not with isoflurane. Can J Anaesth. 1997;44(11):1157-1161. doi:10.1007/bf03013337

148. Hirakata H, Ushikubi F, Toda H, et al. Sevoflurane inhibits human platelet aggregation and thromboxane A2 formation, possibly by suppression of cyclooxygenase activity. Anesthesiology. 1996;85(6):1447-1453. doi:10.1097/00000542-199612000-00027

149. Horn NA, de Rossi L, Robitzsch T, Hecker KE, Hutschenreuter G, Rossaint R. The effects of sevoflurane and desflurane in vitro on platelet-leukocyte adhesion in whole blood. Anesthesia. 2003;58(4):312-319. doi:10.1046/j.1365-2044.2003.03076.x

150. Wacker J, Lucchini E, Jammicki M, et al. Delayed inhibition of agonist-induced granulocyte-platelet aggregation after low-dose sevoflurane inhalation in humans. Anesth Analg. 2008;106(6):1749-1758. doi:10.1213/ane.0b013e318172f9e9

151. de Rossi LW, Horn NA, Baumert JH, Gutensohn K, Hutschenreuter G, Rossaint R. Xenon does not affect human platelet function in vitro. Anesth Analg. 2001;93(3):635-640. doi:10.1097/00000539-200109000-00020

152. Nygard E, Naesh O, Hindberg I, Valentin N. Effect of nitrous oxide and volatile anesthetics on platelet function in man. Acta Anaesthesiol Scand. 1994;38(1):40-42. doi:10.1111/j.1399-6576.1994.tb03834.x

153. Berlet T, Krah A, Börner U, Gathof BS. Desflurane inhibits platelet function in vitro similar to halothane. Eur J Anaesthesiol. 2003;20(11):878-883. doi:10.1017/s0265021503001418

154. Dalsgaard-Nielsen J, Gormsen J. Effects of halothane on platelet function. Thromb Haemost. 1980;44(3):143-145.

155. de Rossi LW, Horn NA, Hecker KE, Robitzsch T, Hutschenreuter G, Rossaint R. Effect of halothane and isoflurane on binding of ADP- and TRAP-6-activated platelets to leukocytes in whole blood. Anesthesiology. 2002;96(1):117-124. doi:10.1097/00000542-200201000-00024

156. Yuki K, Bu W, Shimaoka M, Eckenhoff R. Volatile anesthetics, not intravenous anesthetic propofol bind to and attenuate the activation of platelet receptor integrin IIb/IIIa. PLoS One. 2013;8(4):e60415. doi:10.1371/journal.pone.0060415

157. Fauss BG, Meadows JC, Bruni CY, Qureshi GD. The in vitro and in vivo effects of isoflurane and nitrous oxide on platelet aggregation. Anesth Analg. 1986;65(11):1170-1174.

158. Harr JN, Moore EE, Stringham J, et al. Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition. Surgery. 2012;152(2):270-276. doi:10.1016/j.surg.2012.05.002

159. Türkan H, Beyan C, Karabiyik L, Gümmer D, Kaptan K. The effects of desflurane on human platelet aggregation in vitro. Int J Hematol. 2004;80(1):91-93. doi:10.1533/ijh.97.e0309

160. Fröhlich D, Rothe G, Schmitz G, Hansen E. Volatile anesthetics induce changes in the expression of P-selectin and glycoprotein Ib on the surface of platelets in vitro. Eur J Anaesthesiol. 1998;15(6):641-648. doi:10.1002/0000000363-199811000-00004

161. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155-167. doi:10.1038/nrclinonc.2016.144

162. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2018;15(6):315-330. doi:10.1038/nri.2018.15

163. Meier A, Gross ET, Schilling JM, et al. Isoflurane impacts murine melanoma growth in a sex-specific, immune-dependent manner: a brief report. Anesth Analg. 2018;126(6):1910-1913. doi:10.1213/ane.0000000000002902

164. Melamed R, Bar-Yosef S, Shalek Y, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by NK cells. Cancer Biol Ther. 2003;2(10):649-656. doi:10.4161/cbt.2.10.1141

165. Schneemilch CE, Hachenberg T, Ansorge S, Ittenson A, Bank U. The effects of different anesthetic agents on immune cell function in vitro. Eur J Anaesthesiol. 2005;22(8):616-623. doi:10.1017/s0265021505001031
169. Fahlenkamp AV, Coburn M, Rossaint R, Stoppe C, Haase H. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial. *Br J Anaesth.* 2014;112(2):272-280. doi:10.1093/bja/aet330

170. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as onco-genes and tumor suppressors. *Dev Biol.* 2007;302(1):1-12. doi:10.1016/j.ydbio.2006.08.028

171. Lee YS, Dutta A. MicroRNAs in cancer. *Annu Rev Pathol.* 2009;4:199-227. doi:10.1146/annurev.pathol.4.110807.092222.

172. Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. *Crit Rev Oncol Hematol.* 2016;98:12-23. doi:10.1016/j.critrevonc.2015.10.003

173. Meng S, Zhou H, Feng Z, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. *Mol Cancer.* 2017;16(1):94. doi:10.1186/s12943-017-0663-2

174. Tian Y, Xing Y, Zhang Z, Peng R, Zhang L, Sun Y. Bioinformatics analysis of key genes and circRNA-miRNA-mRNA regulatory network in gastric cancer. *Biomed Res Int.* 2020;2020:2862701. doi:10.1155/2020/2862701

175. Ní Eochagáin, A, Burns D, Riedel B, Sessler DI, Buggy DJ. The effect of anaesthetic technique during primary breast cancer surgery on neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and return to intended oncological therapy. *Anaesthesia.* 2018;73(5):603-611. doi:10.1111/anae.14207