Molecular taxonomy of *Dunaliella* (Chlorophyceae), with a special focus on *D. salina*: ITS2 sequences revisited with an extensive geographical sampling

Patrícia Assunção1*, Ruth Jaén-Molina2, Juli Caujapé-Castells2, Adelina de la Jara1, Laura Carmona1, Karen Freijanes1 and Héctor Mendoza1*

Abstract

We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish *Dunaliella salina* strains to investigate their phylogenetic position and taxonomic status within the genus *Dunaliella*. Our analyses show a great diversity within *D. salina* (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within *Dunaliella*, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French *D. salina* strains were very similar except for two of them: ITC5105 “Janubio” from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within *Dunaliella* was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall.

Keywords: Canary Islands, Compensatory Base Changes, *Dunaliella salina*, Internal Transcribed Spacer, Saltworks, Taxonomy

Background

The Internal Transcribed Spacer 2 (ITS2) of the nuclear rDNA cistron is one of the most frequently used regions for phylogenetic analysis in algae [1-3]. Although its application in deep taxonomic levels was initially limited to comparisons of genera within the same family owing to uncertainties in alignment at higher taxonomic levels, the analysis of its secondary structure has provided key solutions to this problem [4]. Thus, the use of an ITS2 secondary structure improves sequence alignments, resulting in a higher robustness and accuracy of phylogenetic reconstructions [5] and providing help to distinguish species [6]. Furthermore, an automatic approach to analysis is possible [7], as a pipeline consisting of the ITS2 Database (annotation/structure prediction), 4SALE (alignment), ProfDistS (inferring phylogenies) and the CBCAnalyzer (distinguishing species) have recently become available (http://its2.bioapps.biozentrum.uni-wuerzburg.de/?about).

In *Dunaliella* (Chlorophyceae), the use of ITS2 secondary structure for phylogenetic analysis has a long tradition [8-13]. The genus *Dunaliella* comprises twenty-eight recognized species separated in two subgenera, *Pascheria* (which contains the freshwater species), and *Dunaliella* (grouping the marine species); the latter is further subdivided into four sections: *Tertiolecta, Dunaliella, Viridis* and *Peirceinae* [11]. The species ascribed to these four sections occur in a wide range of marine habitats such as oceans, brine lakes, salt marshes, salt lagoons and salt water dishes near the sea [14], being *Dunaliella salina* Teodoresco (section...
Dunaliella) the most studied one. Dunaliella salina, is the most halotolerant eukaryotic photosynthetic organism known to date [14,15] since it shows a remarkable degree of adaptation to a variety of salt concentrations and it accumulates large amounts of carotenes under extremely stressful conditions such as high salinity, low nitrogen levels, and high solar radiation [14]. Nowadays, it is the best commercial source of natural β-carotene [14,16], and it also stands out as a source of glycerol [17].

One of the aspects of D. salina that have most intrigued researchers is the enormous variability within strains regarding its geographic, physiological, and morphological characteristics [18-24]. Recent phylogenetic analyses of ITS1+ITS2 combined with the analysis of the ITS2 secondary structure of D. salina strains have also revealed a high intraspecific variation [8-11,25].

The high genetic diversity detected in D. salina, its morphological plasticity, and the restricted geographical sampling used in all scientific publications to date have hindered taxonomic elucidation in this taxon. Our objectives are (1) to use the ITS2 sequences and secondary structure analysis in a thorough geographic and taxonomic representation of the genus Dunaliella and particularly D. salina (including new Spanish and French strains) to improve understanding of the complex phylogenetic structure in this taxon, (2) to study the relationship of the new strains with the Dunaliella sequences available at the ITS2 Database and/or at GenBank [26]; (3) to investigate if the Compensatory Base Changes (CBCs) analyses could elucidate the species concept in Dunaliella, and reveal potentially new species; and (4) to test if D. salina ITC5105 “Janubio” could be considered a new species.

Results
The ITS2 primary and secondary structure phylogenetic analysis of all the Dunaliella sequences available in the ITS2 Database plus the new sequences revealed great heterogeneity, although some of the clades were not statistically supported (Figure 1). No phylogenetic relationship is supported between the two Dunaliella freshwater species, since D. lateralis was positioned outside the Dunaliella subgenus, while D. acidophila was positioned within this subgenus.

The strains positioned in the tertiolecta-clade represent species that belong to different traditionally accepted sections: section Tertiolecta (D. tertiolecta, D. primolecta, D. quartodecta, D. polymorpha), section Viridis (D. bioculata, D. minuta), section Dunaliella (D. salina, D. parva), and section Pericei (D. persei). The majority of these strains had an exact ITS2 sequence (Figure 1). Most D. viridis strains sampled were positioned in a single clade; however, some strains (UTEX200, CCAP19/3) were positioned in a different clade together with D. pseudosalina CONC010 (pseudosalina-clade), but without statistical support.

The majority of the D. salina strains were distributed in two different clades (salina-clade-I and salina-clade II), positioned between the tertiolecta sub-clades, whereas two D. salina strains (CCAP19/30, CCAP19/18) were positioned together in a different clade. Only two of the new ITS2 D. salina sequences, ITC5119 (“salina-clade-I”) and D. salina ITC5105 “Janubio” (salina-clade II), had a unique ITS2 sequence profile (Figure 1). The CBC analysis of the ITS2 secondary structure showed that there is at least one CBC between “Janubio” and the other D. salina strains analyzed (see Additional file 1), except D. salina CCAP19/30 and CCAP19/18; however these two strains were phylogenetically distant to Janubio.

The taxonomic identification of the Dunaliella sp. strains (below the D. acidophila strain in Figure 1) was not possible because they did not match with any known Dunaliella species. Despite the phylogenetic tree indicates that this group may indeed represent a new species; the analysis of the CBC did not confirm these results (Additional file 1).

We observed a lack of CBCs in some strains when we compared species in different clades: viridis vs salina, viridis vs tertiolecta, salinas vs tertiolecta, salina vs salina, etc (Additional File 1). Also, the CBC analysis of the different species within the subgenus Dunaliella for the confirmation of the species boundaries was not conclusive in some cases (Additional file 1).

The phylogenetic results of the ITS2 sequences in this study, and previous confirmed identification of some Dunaliella strains (see Table 1), allow us to suggest the re-identification of some strains (Table 1).

Finally, the ITS2 data was not informative regarding the geographic origin of the D. salina strains.

Discussion
The ITS2 Database allows automatic large scale simultaneous analyses of both ITS2 sequences and their secondary structures. Potential pitfalls are in structures obtained by different algorithms; however the main difficulty of performing a phylogenetic analysis of the genus Dunaliella is the misinformation available at Culture Collections and GenBank regarding the identification of strains and sequences. The tracking of the true identification of each strain was only possible after consulting several publications where the authors concluded that they were misidentified and suggested their re-identification [9,10,27]. In this study, we have also suggested the re-identification of some strains based on our ITS2 data. To overcome all these unnecessary problems (and given that it is unlikely that all the Dunaliella strains could be
openly available), we suggest to establish a “type strain” for each Dunaliella taxon (including subspecies, forms or varieties). These basic data should be easily obtained from any official culture collection, thereby greatly facilitating comparison with new field isolates and avoiding misleading information and/or false conclusions.

Our ITS2 phylogenetic analysis of Dunaliella reveals several major groups, and positions the freshwater *D. lateralis* clearly outside Dunaliella, confirming that it no longer should be considered a member of this genus [10]. Nevertheless, the other freshwater species analyzed in this study (*D. acidophila*, CCAP19/35), maintained its position within the subgenus Dunaliella, and was not phylogenetically related to *D. lateralis*, as recently proposed [28]. Furthermore, the observation that different species belonging to several Sections (Tertiolecta, Viridis, Dunaliella and Peircei) share the exact same ITS2 sequence, make us believe that they correspond to a single species. These data agree with other authors [10,11,27,29], who suggested that the number of Dunaliella species may be much lower than it has been claimed till now. The possibility that the ITS2 gene is not able to discriminate between these species is highly unlikely; therefore, our observations support the suggestion that the morphological and physiological criteria available to discriminate Dunaliella species are either not very reliable [11], or are difficult to interpret.

In an attempt to clarify the species concept within *Dunaliella*, we searched for compensatory base changes (CBCs). Several case studies have revealed that the detection of a CBC in the ITS2 secondary structure between two organisms is correlated with sexual incompatibility [6,30,31], and these changes have been proposed as markers for distinguishing species [6,7,30,31]. In summary, these investigations conclude that while a CBC in a pair of sequences is positively correlated with species distinctness at a confidence level of 93%, the lack of a CBC in the ITS2 secondary structure does not necessarily indicate that two organisms belong to the same species [6]. The overall analysis of the CBC was
Table 1 Taxonomic classification, Culture Collection, Geographic Origin and GenBank accession numbers of the strains included in this study.

Former classification	New suggested classification [Reference] and comments	Culture Collection	Geographic Origin	Isolator [Date]	GenBank accession number	GenBank identifier
Subgenus Pascheria (Freshwater species)						
Dunaliella lateralis	Pascher & Jahoda	Nepal			AF313445	16596847
		Nepal			DQ377089	87047580
Dunaliella acidophila (Kalina) Massyuk		CCAP19/35	Freshwater; acidic sulphurous pool, Piscarelli, Naples, Italy	Albertano (1981)	HM060646	
Subgenus Dunaliella		CCAP19/68	Brackish; Oslo Fjord, Norway Foy (1928 or earlier)		HM243579*	
		CCAP19/68	Brackish; Oslo Fjord, Norway Foy (1928 or earlier)		AY572957	47933783
		CCAP19/27	English Channel, Plymouth, Devon, England Gross (1936)		EF737348	145587830
		CCAP19/27	English Channel, Plymouth, Devon, England Gross (1936)		AY654000	55979209
		Dtsi	Italy: Venezia		EF73730	145587823
		UTEX999	Norway: Oslofjord		AF313435	16596842
		CCMPI320	Salt flat. USA?		AF313433	16596841
		CCMPI302	Salt flat. USA?		DQ377096	87047587
		CCMPI364	Salt flat. USA?		DQ377097	87047588
		FHL			DUSJ6956	2627284
		DCCBC5			ASY86684	56578596
		SAG13.86	Norway: Oslofjord		EF73738	145587825
		ATCC30929	United Kingdom: Plymouth		EF73742	145587827
		DCCBC26			DQ224338	77955899
		Dunaliella quartolecta [this study]			DQ157054	77539932
		Dunaliella primolecta [this study]			DQ157054	77539932
		Dunaliella polyomorpha [this study]			DQ157053	77539931
		Dunaliella maritima [this study]			DQ157053	77539931
Section Dunaliella (Halophilic species. Optimum salinity > 6% NaCl. Accumulates carotenes)						
Dunaliella salina	Teodoresco	CCAP19/18	Hypersaline; Hypersaline brines, Hutt Lagoon, Western Australia	Kaether (1982)	AF546098	33333776
		CCAP19/18	Hypersaline; Hypersaline brines, Hutt Lagoon, Western Australia	Kaether (1982)	EF473746	145587829
		CCAP19/25	Point Colorado; Salinas, La Paz, Baja California, Mexico Loeblhich (1967)		HM140783	
		UTEX1644			AS313429	16596839
		CONC006	Salar de Atacama, Chile		AF313425	16596837
		CONC001	Laguna La Rinconada, Chile		AF314092	33333770
		CONC007	Salar de Atacama, Chile		AF314092	16596838
		DCCBC1	Lake Tyrell, Victoria, Australia Polle		AY549442	47499297
		DCCBC2	South Korea		AYS12973	46250926
		hd6	Israel Yucatan, Mexico		DQ116745	71482598

Assunção et al. Aquatic Biosystems 2012, 8:2
http://www.aquaticbiosystems.org/content/8/1/2

Page 4 of 11
Table 1: Taxonomic classification, Culture Collection, Geographic Origin and GenBank accession numbers of the strains included in this study. (Continued)

Strain Description	Geographic Origin	Accession Numbers
Dunaliella viridis [this study]	Tanggu, China	AF546096 33333774
AC144	AF546096 33333774	
184.80	AF546096 33333774	
OUC66	China (2005)	DQ116741 71482596
OUC38	China (2005)	DQ116740 71482595
OUC36	China (2005)	DQ116739 71482594
OUC21	China (2005)	DQ116738 71482593
9802	China (2007)	EF695405 151573027
Dunaliella tertiolecta [this study]	DS18S1 Mexico?	FJ360756 213958821
Dunaliella tertiolecta [this study]	DS18S2 Mexico?	FJ360757 213958822
Dunaliella tertiolecta [this study]	DS18S3 Mexico?	FJ360758 213958823
Dunaliella viridis [9, 10, 27]	CCAP 19/3 Brackish; dirty salt lake, Soviet Union	Mainx EF473744 145587828
Dunaliella viridis [9, 10, 27]	UTEX200 Brackish; dirty salt lake, Soviet Union	Mainx AF313423 165968363
MSI-1	GQ337903 254838316	
ITCS100	Vargas, Gran Canaria, Spain de la Jara & Mendoza (2005)	HM035353*
ITCS101	Punta, Gran Canaria, Spain de la Jara & Mendoza (2005)	HM035354*
ITCS102	Tenefé, Gran Canaria, Spain de la Jara & Mendoza (2005)	HM035355*
ITCS103	Rio, Lanzarote, Spain de la Jara & Mendoza (2005)	HM035356*
ITCS104	Guatiza, Lanzarote, Spain de la Jara & Mendoza (2005)	HM035357*
ITCS105	Janubio, Lanzarote, Spain de la Jara & Mendoza (2005)	HM035346*
ITCS106	Carmen (Majo), Fuerteventura, Spain Mendoza & Trujillano (2003)	HM035358*
ITCS107	Añana, Álava, Spain de la Jara & Mendoza (2005)	HM035359*
ITCS118	Île de Ré (01), France Carmona & Mendoza (2006)	HM035348*
ITCS122	Île de Ré (05), France Carmona & Mendoza (2006)	HM035347*
ITCS114	La Tapa, Cádiz, Spain de la Jara & Mendoza (2007)	HM035350*
ITCS119	Île de Ré (02), France Carmona & Mendoza (2006)	HM035349*
Table 1 Taxonomic classification, Culture Collection, Geographic Origin and GenBank accession numbers of the strains included in this study. (Continued)

Strain Description	CCAP or Collection Number	Geographic Location	Author(s)	Accession Number(s)
Dunaliella bardawil nomen nudum Ben-Amotz & Avron	ITCS003	Tenefe, Gran Canaria, Spain	Mendoza (1992)	HM035352*
Dunaliella bardawil nomen nudum Ben-Amotz & Avron	ITCS000	Marine; salt pond, near Bardawil lagoon, North Sinai, Israel	Ben-Amotz & Avron (1976)	HM035351*
Dunaliella salina [27], reinstated from SAG on April 1996	CCAP19/30	Marine; salt pond near Bardawil lagoon, North Sinai, Israel	Ben-Amotz & Avron (1976)	EU932917 205361369
Dunaliella salina [27]	ATCC30861	Marine; salt pond near Bardawil lagoon, North Sinai, Israel	Ben-Amotz & Avron (1976)	AF313431 16596840
Dunaliella salina [27], Dunaliella tertiolecta [this study]	UTEX2538	Marine; salt pond near Bardawil lagoon, North Sinai, Israel	Ben-Amotz & Avron (1976)	DQ377085 87047576
Dunaliella tertiolecta [this study]	SAG42.88	China?	DQ116744	71482599
Dunaliella viridis [9-11]	UTEX1983	Dead Sea	AF313441	16596845
Dunaliella tertiolecta [10,11], Dunaliella quartolecta [27]	CCAP19/9	Brackish; salt marsh, Northey Island, Essex, England	Butcher (1956)	AF313439 16596844
Dunaliella tertiolecta [10,11]	CCM362	Gold	AF313437	16596843
Dunaliella maritima [27], Dunaliella viridis [this study]	SAG19-1	Lacul Sarat, Romania	DQ377091	87047582
Dunaliella tertiolecta [this study]	SAG44.89	China?	DQ116746	71482959
Dunaliella pseudosalina Massyuk & Radchenko	CONC010	Salar de Atacama, Chile	AF313421	16596835
Section Viridis (Halophilic species. Optimum salinity > 6% NaCl. Cells always green. Do not accumulate carotenens. Cells radially symmetrical)				
Dunaliella minuta Lerche	CCAP19/5	Marine; sand and sea water, Roscoff, France	Jovett (1967)	HM035345*
Dunaliella bioculata Butcher	SAG23.86	Brackish; salt lake, Soviet Union	Mainx	AY582085 51035302
Dunaliella tertiolecta [this study]	CCAP19/4	Brackish; salt lake, Soviet Union	Mainx	HM035344*
Dunaliella tertiolecta [this study]	UTEX199	Brackish; salt lake, Soviet Union	Mainx	DQ157433 7607092
Dunaliella tertiolecta [this study]	UTEX199	Brackish; salt lake, Soviet Union	Mainx	DQ377086 87047577
Dunaliella viridis Massyuk	CONC002	Salar de Atacama, Chile	AF313419	16596834
Dunaliella percei Nicolai & Baas-Becking	CCAP19/2	Brackish; California, USA	Nicolai (1931)	HM035343*
Dunaliella tertiolecta [10,11]	UTEX2192	Brackish; California, USA	Nicolai (1931)	AF313443 16596846
Unknown Dunaliella Species				
Dunaliella tertiolecta [27]	CCAP19/23	Marine;	Pernick (1976)	HM035341*
Unknown Dunaliella Species				HM035342*
Dunaliella tertiolecta [this study]	CCMP367	Salt flat	DQ377087	87047578
Dunaliella tertiolecta [this study]	CCMP220	Salt flat	DQ377095	87047586
Dunaliella tertiolecta [this study]	CCMP1923	Salt flat	DQ377094	87047585
Dunaliella tertiolecta [this study]	CCMP1641	Salt flat	DQ377093	87047584
Table 1 Taxonomic classification, Culture Collection, Geographic Origin and GenBank accession numbers of the strains included in this study. (Continued)

Organism	Culture Collection	Geographic Origin	GenBank Accession Numbers
Dunaliella tertiolecta	SAG19.6	Salt flat	AYS82086 51035303
	FL1	USA: Utah, Bonneville Salt Flats	DQ377099 87047590
Dunaliella viridis	BSF1	USA: Utah, Bonneville Salt Flats	DQ377081 87047572
	BSF2	USA: Utah, Bonneville Salt Flats	DQ377082 87047573
Dunaliella viridis	BSF3	USA: Utah, Bonneville Salt Flats	DQ377083 87047574
Dunaliella salina	006	ABRIINW M1/1	AF033278 2645739
Dunaliella tertiolecta	hd10	ABRIINW M1/1	
Dunaliella viridis	ABRIINW M1/2	Iran?	EU927373 197290646
Dunaliella salina	ABRIINW U1/1	Iran?	FJ164063 205371718
Dunaliella viridis	ABRIINW U2/1	Iran?	FJ164064 205371719
SPMO112-3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377103 87047594	
SPMO201-3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377110 87047601	
SPMO128-2	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377105 87047596	
SPMO109-1	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377105 87047596	
SPMO112-4	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377104 87047595	
SPMO207-3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377115 87047606	
SPMO200-3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377107 87047598	
SPMO201-4	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377111 87047602	
SPMO201-5	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377112 87047603	
SPMO201-6	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377113 87047604	
SPMO112-1	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377101 87047592	
SPMO112-2	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377102 87047593	
SPMO300-4	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377118 87047609	
not able to elucidate completely the species boundaries within the different groups of *Dunaliella*, since in some cases it was observed that there was a lack of CBCs between known distinct species.

In the special case of *D. salina*, high variation levels have been reported for decades [19-24]. However, only Massjuk [18] translated geographical, physiological, and morphological variables into the recognition of two sub-species (*D. salina* sp. *salina* and *D. salina* sp. *sibirica* Massjuk and Radch.) and three forms (*D. salina* sp. *salina* f. *salina*, *D. salina* sp. *salina* f. *oblonga* Lerche, and *D. salina* sp. *salina* f. *magna* Lerche). Later on, ITS2 phylogenetic analyses suggested the existence of two distinct phylogenetic species within the taxonomic entity

Strain Code	Culture Collection	Geographic Origin	GenBank Accession Numbers
SPMO210-3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377116 87047607	
SPMO200-8	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377108 87047599	
SPMO601-1	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377121 87047612	
SPMO200-2	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377106 87047597	
SPMO201-2	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377109 87047600	
SPMO202-4	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377114 87047605	
SPMO300-5	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377119 87047610	
SPMO600-1	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377120 87047611	
SPMO BP3	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377122 87047613	
SPMO 980625-IE	Salt flat, USA: Oklahoma, Salt Plains National Wildlife Refuge	DQ377123 87047614	

Table 1 Taxonomic classification, Culture Collection, Geographic Origin and GenBank accession numbers of the strains included in this study. (Continued)

Asterisks indicate the strains sequenced in this study. Underlined strains correspond to identical isolates stored in different culture collections. Acronyms: Culture Collection of Algae and Protozoa, UK (CCAP); Sammlug von Algenkulturen, Germany (SAG); University of Texas Culture Collection of Algae, USA (UTEX); American Type Culture Collection, USA (ATCC); Dunaliella Culture Collection at Brooklyn College, USA (DCCBC); Provasoli-Guillard National Centre for the culture of Marine Phytoplankton, USA (CCMP); Universidad de Concepción, Chile (CONC); Banco Canario de Algas, Spain (BCA); Instituto Tecnológico de Canarias, Spain (ITC).
currently known as *D. salina* [10,11,32], indicating the possibility of cryptic speciation [10]. Our ITS2 phylogenetic analysis does confirm the existence of three different groups within *D. salina*; however, the CBC results did not resolve if these groups may correspond to distinct species, although several strains of each *D. salina* group shared one CBC with *D. salina* strains in other groups. On the other hand, the high morphological and physiological variability found within the Spanish *D. salina* strains under the same lab conditions [24] was not correlated with the phylogenetic observations of this study. This finding indicates that the phylogenetic closeness found with ITS sequences does not reflect common physiological or morphological attributes. Moreover, our data unequivocally suggest that *D. salina* is not monophyletic, at odds with previous hypotheses [10,11,32].

The other objective of this work was to elucidate if the physiological uniqueness found in “Janubio” [such as its unique fatty acid profile and accumulation of high levels of carotenes under low light flux density conditions; Mendoza et al.: A new strategy for carotenogenesis under conditions of cellular stress in Dunaliella (a Potential New Species), submitted] could be confirmed by the ITS2 data and the CBC analysis. However, although we observed that this strain has a unique ITS2 sequence profile, and had more than one CBC with the other phylogenetically related *D. salina*, our data do not allow us to conclude that this is a new species, and further studies must be performed to find out if the differences observed are just reflecting a high intra-specific variability. Finally, in agreement with previous studies [8,11,25], our ITS2 data failed to furnish evidence for isolation by distance among *D. salina* strains.

Conclusion

This work demonstrates that the taxonomy of *Dunaliella* should be revised. The great diversity observed within the ITS2 sequences of *D. salina* suggests that different biological groups may exist within this taxon; however, this was not confirmed with the CBC analysis. Likewise, although the Spanish *D. salina* strain ITC5105 “Janubio” was characterized by a unique ITS2 sequence, the hypothesis that it may be a new species could not be confirmed by the CBC analysis, requiring further morpho-physiological and genetic investigation. Overall, the use of CBCs to define species boundaries within *Dunaliella* was not conclusive in some of the cases assessed.

Methods

Strains, DNA extraction and ITS amplification

We sequenced the ITS2 region of 13 *D. salina* strains from Spanish and French saltworks, one strain obtained from the Culture Collection of Algae and Protozoa UK (CCAP), and one *D. salina* strain that has been maintained in the Instituto Tecnológico de Canarias (ITC henceforth) for several years (purchased from CCAP as *Dunaliella salina* 19/30). We also sequenced other *Dunaliella* species (*D. minuta* CCAP19/5, *D. tertiolecta* CCAP19/23 and CCAP19/6B, *D. bioculata* CCAP19/4) [Table 1]. The sequences of the other strains analyzed in this study were obtained from the ITS2 Database (http://its2.bioapps.biozentrum.uni-wuerzburg.de/?about). Detailed information about the strains used in this study can be found in Table 1.

DNA extraction was performed with a chelex-100 (Biorad, CA, USA) resin-based protocol [33]. For the DNA amplification of the ITS region, primers AB28 and TW81 in Goff et al. (1994) [34] were used. DNA amplification was carried out in a total volume of 25 μl with 1X IQ SYBR Green Supermix (Biorad, CA, USA) and 10 pM of each primer in a Smart Cycler thermocycler (Cepheid, CA, USA) as follows: 5 min at 94°C; 5 cycles of 1 min at 94°C, 2 min at 50°C and 1 min at 72°C; 30 cycles of 1 min at 94°C, 1 min at 62°C and 1 min at 72°C, with a final extension of 5 min at 72°C.

PCR products were first electrophoresed in a 1.5% agarose gel to assure that a single band of 500-600 bp was present, then purified using the Real Clean Spin kit (REAL, Durviz S.L.U., Valencia, Spain), and finally bi-directionally sequenced on an ABI PRISM 3730xl automatic sequencer (Applied Biosystems, CA, USA) at the DNA sequencing services of Macrogen (Korea).

Phylogenetic analyses

Sequences and their individual secondary structures were obtained from the ITS2 Database [35-37]. Newly obtained ITS2 sequences were annotated according to Keller et al. [38], and their secondary structures predicted by homology modeling [39]. The phylogenetic analysis followed the procedure outlined in Schulz and Wolf [7] in accordance with Keller et al. [5]. The software used for the ITS2 sequence-structure analysis can be obtained from http://its2.bioapps.biozentrum.uni-wuerzburg.de/?about. A global, multiple sequence-structure alignment was generated in 4SALE v1.5 [40,41]. The sequences and their individual secondary structures were synchronously aligned making use of an ITS2 sequence-structure specific scoring matrix [40], and the start and end of the alignment was manually adjusted. Based on primary and secondary structure information, phylogenetic relationships were reconstructed by Prof-DistS, through the use of an ITS2 specific, general time reversible substitution model [42,43]. Bootstrap support [44] was estimated on 100 pseudo-replicates. The resulting tree was visualized with TreeView [45].

To study the species boundaries within *Dunaliella* we followed the “distinguishing species” instructions [6]
based on compensatory base changes (CBCs) in the ITS2 secondary structure, and we used the CBCAnalyzer option implemented in 4SALE.

Additional material

Additional file 1: Compensatory Base Changes (CBC) analysis

Compensatory Base Changes (CBCs) between different groups and species within the Dunaliella taxon (Excel file).

Acknowledgements

This research was supported by BANGEN-"Banco Genético de la Macaronesia", MAC/1/C070 (INTERREG-IIIb). We thank the Cabildo of Gran Canaria for allowing us to collaborate with the Departamento de Biodiversidad Molecular at the Jardín Botánico Canario "Viera y Clavijo"-Unidad Asociada CSIC, and for continuous support to all its research lines. We would like to thank Matthias Wolf (University of Würzburg) for helping with the ITS2 sequence-structure analysis and to Frank Förster (University of Würzburg) for alignment adjustments.

Author details

1. Departamento de Biotecnología. División de Investigación y Desarrollo Tecnológico. Instituto Tecnológico de Canarias (ITC). Pozo Izquierdo, 35119 Sta. Lucía, Canary Islands, Spain.
2. Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico Canario "Viera y Clavijo"-Unidad Asociada CSIC, Apartado de correos 14 de Tafira Alta, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain.

Authors’ contributions

PA carried out the laboratory work, the phylogenetic analysis and wrote the manuscript. RJ-M and JC-C helped with the phylogenetic analysis and revised the manuscript. HM, AJ, LC and KF isolated the Dunaliella strains and revised the manuscript. HM conceived the study. All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 20 October 2011 Accepted: 30 January 2012 Published: 30 January 2012

References

1. Coleman AW, Suarez A, Goff LJ. Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta). Journal of phyology 1994, 30:80-90.

2. Coleman AW, Mai JC. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. Journal of Molecular Evolution 1997, 45:168-177.

3. Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 2007, 35:3322-3329.

4. Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 2003, 19:370-375.

5. Keller A, Förster F, Müller T, Dandekar T, Schultz J, Wolf M. Including RNA Secondary Structures improves Accuracy and Robustness in Reconstruction of Phylogenetic Trees. Biologica Direct 2010, 5:4.

6. Müller T, Philipp N, Dandekar T, Schultz J, Wolf M. Distinguishing species. RNA 2007, 13:1469-1472.

7. Schultz J, Wolf M. ITS2 Sequence-Structure Analysis in Phylogenetics: A How-to Manual for Molecular Systematics. Molecular Phylogenetics and Evolution 2008, 52:520-523.

8. Gómez PI, González MA. Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 2004, 233:149-162.

9. González MA, Gómez PI, Montoya R. Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. Journal of applied Phycology 1999, 10:573-580.

10. González MA, Coleman AW, Gómez PI, Montoya R. Phylogenetic relationship among strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. Journal of Phycology 2001, 37:604-611.

11. González MA, Gómez PI, Polle JW. Taxonomy and Phylogeny of the genus Dunaliella. In The Alga Dunaliella. Biodiversity, Physiology, Genomics and Biotechnology. Edited by: Ben-Amotz A, Polle JW, Subba Rao DV. Science Publishers, Enfield, NH, USA; 2009:15-44.

12. Buchheim MA, Kirkwood AE, Buchheim JA, Verghese B, Henley WJ. Hypersaline soil supports a diverse community of Dunaliella (Chlorophyceae). Journal of Phycolgy 2010, 46:1038-1047.

13. Buchheim MA, Keller A, Koetschen C, Förster F, Merget B, Wolf M. Internal Transcribed Spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards and automated reconstruction of the green algal tree of life. PLoS One 2011, 61:10.

14. Ben-Amotz A. Industrial production of microagal cell-mass and secondary products - major industrial species. In Handbook of Microalgal Cultures, Biotechnology and Applied Phycology. Edited by: Richmond A. Blackwell, UK; 2004:273-280.

15. Ben-Amotz A, Avron M. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology 1990, 8:121-126.

16. Borowitzka MA, Borowitzka LJ. Dunaliella. In Microbial Biotechnology. Edited by: Borowitzka MA, Borowitzka LJ. Cambridge: Cambridge University Press; 1988:27-88.

17. Ben-Amotz A. Glycerol production in the alga Dunaliella. In Biochemical and Photosynthetic aspects of energy production. Edited by: san Pietro A. Academic Press, New York, 1980:191-208.

18. Massjuk NP. Morphology, Taxonomy, Ecology and Geographic Distribution of the Genus Dunaliella Teod. and Prospects for Its Potential Utilization. Naukova Dumka, Kiev [original in Russian] 1973, 242.

19. Cifuentes AS, González MA, Conejeros M, Dellarossa V, Parra O. Growth and carotenogenesis in eight strains of Dunaliella salina Teodoresco from Chile. Journal of Applied Phycology 1993, 4:111-118.

20. Cifuentes AS, González MA, Parra O. The effect of salinity on the growth and carotenogenesis in two Chilean strains of Dunaliella salina Teodoresco. Biological Research 1996, 29:227-236.

21. Cifuentes AS, González MA, Parra O, Zúñiga M. Cultivo de cepas de Dunaliella salina (Teodoresco 1905) en diferentes medios bajo condiciones de laboratorio. Revista Chilena de Historia Natural 1996, 69:105-112.

22. Markovits A, Gianelli MP, Conejeros R, Erazo S. Strain selection for β-carotene production by Dunaliella. World Journal of Microbiology & Biotechnology 1993, 9:534-537.

23. Gómez PI, González MA, Becerra J. Quantity and quality of β-carotene produced by two strains of Dunaliella salina (Teodoresco 1905) from the North of Chile. Boletin de la Sociedad Chilena Quimica 1999, 44:463-468.

24. Mendoza H, de la Jara A, Freijanes K, Carmona L, Ramos AA, de Sousa Duarte V, Serafim Varela JC. Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology 2008, 11(4), DOI: 10.2225/vol11-issu4-fulltext-2 http://www.ejbiotechnology.info/content/vol11-issu4/full/2372.pdf.

25. Gómez PI, González MA. Genetic polymorphism in eight Chilean strains of the carotenogenic microalgae Dunaliella salina Teodoresco (Chlorophyta). Biological Research 2001, 34:23-30.

26. Benison DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Research 2011, 39:D32-37.

27. Borowitzka MA, Siva CJ. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology 2007, 19:567-590.

28. Assunção P, Jaen-Molina R, Caujapé-Castells J, de la Jara A, Carmona L, Freijanes K, Mendoza H. Phylogenetic position Dunaliella acidophila (Chlorophyceae) based on ITS and ribc. sequences. Journal of Applied Phycology 2009, 21(2)[http://www.salinesystems.org/content/1/1/2], doi: 10.1186/1746-1448-1-2.
30. Coleman AW: The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 2000, 151:1-9.

31. Coleman AW: In there a molecular key to the level of “Biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 2009, 50:197-203.

32. Polle JW, Struwe L, Jin E: Identification and characterization of a new strain of the unicellular green alga Dunaliella salina (Teod.) from Korea. Journal of Microbiology and Biotechnology 2008, 18:821-827.

33. Richlen ML, Barber PH: A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Molecular Ecology Notes 2005, 5:688-691.

34. Geoff LJ, Moon DA, Coleman AW: Molecular delineation of species and species relationships in the red algal agarophytes Gracilariosis and Gracilaria (Gracilariales). Journal of Phycolology 1994, 30:521-537.

35. Schultz J, Müller T, Achtziger M, Seibel PN, Dandekar T, Wolf M: The internal transcribed spacer 2 database-a web server for (not only) low level phylogenetic analyses. Nucleic Acids Research 2006, 34 Web Server: W704-707.

36. Selig C, Wolf M, Müller T, Dandekar T, Schultz J: The ITS2 Database II: homology modeling RNA structure for molecular systematics. Nucleic Acids Research 2008, 36:D377-382.

37. Koetschan C, Förster F, Koller A, Schleicher T, Rudersch B, Schwarz R, Müller T, Wolf M: The ITS2 Database - sequences and structures for phylogeny. Nucleic Acids Research 2010, 38:275-279.

38. Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M: 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 2009, 430:50-57.

39. Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T: Homology modelling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 2005, 11:1616-1623.

40. Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M: 4SALE - A tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 2006, 7:498.

41. Seibel PN, Müller T, Dandekar T, Wolf M: Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Research Notes 2008, 1:91.

42. Friedrich J, Dandekar T, Wolf M, Müller T: ProfDist: A tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics 2005, 21:2108-2109.

43. Wolf M, Rudersch B, Dandekar T, Müller T: ProfDistS: (Profile-) Distance based phylogeny on sequence-structure alignments. Bioinformatics 2008, 24:2401-2402.

44. Felsenstein J: Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39:783-791.

45. Page ROM: TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 1996, 12:357-358.