Dynamical systems with a parallel tensor

Jacopo Garofali

June 2018

Abstract

We classify those rational maps \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) for which there exists a contravariant tensor \(q \) which is parallel, i.e. such that \(f^* q \sim q \), by proving that such maps preserve a parabolic orbifold.

1 Introduction

A holomorphic dynamical system on the Riemann sphere \(\mathbb{P}^1 \) is the data of a rational map \(f : \mathbb{P}^1 \to \mathbb{P}^1 \). From the viewpoint of Dynamics, the principal object of interest is the study of the space of orbits \(\mathbb{P}^1/f \) under the equivalence relation generated by \(f \), namely \(z \sim w \) if and only if there exist nonnegative integers \(n \) and \(m \) such that \(f^n(z) = f^m(w) \).

As one can imagine, this problem is not easily solved since the quotient space \(\mathbb{P}^1/f \) does not exist in general, at least not in a classic sense. The fact that the dynamical system is not given by the action of a group, unless the degree of the map \(f \) is 1, is one of the main obstacles in the matter.

However we can always consider the simplicial object, \(\mathbb{P}^\bullet f \), associated to the dynamical system which in degrees 0 and 1 is given by,

\[
\mathbb{P}^1 \equiv \coprod_{n \in \mathbb{N}} \Gamma_{f^n} := \coprod_{n \in \mathbb{N}} \{(x, f^n(x)) : x \in \mathbb{P}^1\}
\]

and we can identify sheaves on \(\mathbb{P}^1/f \) with a simplicial sheaf on \(\mathbb{P}^\bullet f \) in the sense of \cite{2} 5.I.6. Consequently to give a sheaf on \(\mathbb{P}^\bullet f \) is equivalent to giving a sheaf \(\mathcal{F} \) on \(\mathbb{P}^1 \) together with a map of sheaves,

\[
A_f : f^* \mathcal{F} \to \mathcal{F}
\]

One question that arises naturally in the study of dynamical systems is whether we are able to define “objects” that are invariant for the dynamics (i.e. global sections of a simplicial sheaf) and if possible, understand their nature.

Specifically given a simplicial sheaf \(\mathcal{F} \) as above on \(\mathbb{P}^\bullet f \), a global section is, by definition, an element \(q \in H^0(\mathbb{P}^1, \mathcal{F}) \) which is invariant for the action of \(f \), i.e.

\[
A_f(f^*q) = q,
\]
and we write $q \in H^0(\mathbb{P}^1/f, \mathcal{F})$ as a shorthand for $H^0(\mathbb{P}^1, \mathcal{F})$.

The main purpose of our work is to investigate the existence of k-th differentials on \mathbb{P}^1 which, after twisting by a locally constant simplicial line bundle, are invariant for the dynamical system generated by f, and, to classify them. We have been introduced to this problem while we were studying the work of Adam L. Epstein [4]. In his extension of *Infinitesimal Thurston rigidity* he shows that a rational map $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d > 1$, for which there exists a meromorphic quadratic differential q with $f^*_q = dq$ is a “Lattès map” [4]. This led us to ask for which maps $f : \mathbb{P}^1 \to \mathbb{P}^1$ does there exist a non-zero meromorphic global section q of $\Omega^k_{\mathbb{P}^1}$ and a constant $\lambda \in \mathbb{C}^*$ such that:

$$f^*_q = \lambda q$$

wherein we employ the standard convention, [2], of identifying A_f of a differential with its image.

To interpret (1) in the simplicial language of [2], observe that we have a simplicial local system L_λ given by way of the action on the trivial sheaf,

$$A_f(f^*1) := \lambda$$

and we define $\Omega^k_{\mathbb{P}^1}(\lambda) := \Omega^k_{\mathbb{P}^1} \otimes \mathcal{O}_{\lambda^{-1}}$, so that a meromorphic differential satisfies (1) if and only if,

$$q \in H^0(\mathbb{P}^1/f, \Omega^k_{\mathbb{P}^1}(\lambda)).$$

In any case, whether in the simplicial language or the more elementary (1) our main theorem is:

Theorem. All the rational maps $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d > 1$ for which there exists a nonzero holomorphic section $q \in H^0(\mathbb{P}^1/f, \Omega^k_{\mathbb{P}^1}(\lambda))$ are (modulo at worst an element of $PGL_2(\mathbb{C})$ of order 2 or 3) equivalent to the action of an endomorphism of elliptic curves, and thus the action of f comes from the action of a group of automorphisms of \mathbb{C}.

They are all listed in Table 1.

Acknowledgements We owe profound thanks to Michael McQuillan for his unflagging patience in guiding us throughout this work.

2 A simple case

The space $Rat(d)$ of all rational maps $f : \mathbb{P}^1 \to \mathbb{P}^1$ with $deg(f) = d$, is never a group unless $d = 1$, i.e. the group of automorphisms of the complex projective line $PGL_2(\mathbb{C})$.

The subgroup generated by $f \in PGL_2(\mathbb{C})$ is clearly isomorphic to \mathbb{Z}, and it acts on \mathbb{P}^1 through
Recall the Jordan decomposition of 2×2 matrices, to wit:

Revision 2.1. Any $f \in PGL_2(\mathbb{C})$ is conjugated by an element of $PGL_2(\mathbb{C})$ to one of the following:

1) $f(z) = z + \beta$, $\beta \in \mathbb{G}_a$ (if and only if f has only one fixed point);

2) $f(z) = \alpha z$, $\alpha \in \mathbb{G}_m$ (if and only if f has two distinct fixed points).

We want to characterize all meromorphic global sections q of Ω\(\otimes_k \mathbb{P}^1\) satisfying $f^*q = \lambda q$. Since f is an automorphism, for any $x \in \mathbb{P}^1$ we have $ord_x(q) = ord_{f(x)}(q)$, hence for any $k \in \mathbb{Z}$ the sets $S_k = \{x \in \mathbb{P}^1 : ord_x(q) = k\}$ are completely invariant for the dynamics, i.e. $f^{-1}(S_k) = S_k$.

From [24] we deduce easily that in Case 1) the only finite set which is completely invariant for f is the fixed point ∞. We conclude that ∞ is the unique pole of q, hence $q(z) = const \cdot dz^k$. In Case 2) q may have both poles and zeroes. If they are contained in $\{0, \infty\}$ then $q(z) = const \cdot z^a (dz/z)^k$, and the coefficient a is determined by $ord_0(q)$. Suppose that for some $k \in \mathbb{Z}$ we have

$$S_k \neq \emptyset, \text{ and } S_k \not\subset \{0, \infty\}$$

(2)

Since for any $x \in S_k$ we have $\alpha^n x = x$ for some $n > 1$, there exists some minimal n such that $f^n = id$. It follows that α is a primitive n-th root of unity, and as $f^*q = \lambda q$ we see easily that $\lambda = \alpha^j$ for some $j < n$.

Note that the action of $f : \mathbb{G}_m \to \mathbb{G}_m$ is a free action, so the quotient map $p : \mathbb{G}_m \to \mathbb{G}_m/f$ is canonically a μ_n-torsor.

Define

$$Q(z) = z^j \left(\frac{dz}{z}\right)^k.$$ (3)

and note that $Q \in H^0(\mathbb{G}_m, \mathbb{G}_m^{\otimes k})$.

Moreover $f^*Q = \lambda Q$, i.e. $Q \in H^0(\mathbb{G}_m/f, \mathbb{G}_m^{\otimes k} \otimes L_{\lambda}^{-1})$ where L_{λ} denotes the sheaf on \mathbb{G}_m/f given by the action on the trivial sheaf $A_f(f^*1) = \lambda$.

Thus “multiplication by Q” yields an f-invariant isomorphism of sheaves on \mathbb{G}_m

$$\mathcal{O} \isom \mathbb{G}_m^{\otimes k} \otimes L_{\lambda}^{-1}$$

We deduce the following.

Fact 2.2. Let f satisfy condition (2), then a meromorphic global section $q \in H^0(\mathbb{G}_m/f, \mathbb{G}_m^{\otimes k} \otimes L_{\lambda}^{-1})$, i.e. a meromorphic k-th differential q with $f^*q = \lambda q$, is necessarily of the form $q(z) = g(z^n)Q(z)$, where g is a meromorphic function and Q is given by (3).
3 Dynamical systems on the Riemann sphere with a parallel tensor

In the holomorphic category, a non-unit endomorphism of \mathbb{P}^1 is a rational map $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree $d > 1$. We denote by $\Omega_{\mathbb{P}^1}$ the sheaf of holomorphic differential forms on \mathbb{P}^1, given by the canonical action $dz \to f'(z)dz$, and by $\Omega_{\mathbb{P}^1}^k$ its k-th tensor power.

Let us suppose from now on that f verifies the following Assumption:

Assumption 3.1. There exists $k \in \mathbb{N}^*$ and a global meromorphic section of $\Omega_{\mathbb{P}^1}^k$, which we will denote by q, such that $f^*q = \lambda q$, for some $\lambda \in \mathbb{C}^*$. Let 'z' be a local coordinate around a point $x \in \mathbb{P}^1$, we can write q in the form $q(z)dz^k$, where $q(z)$ is a meromorphic function of z. For any $y \in f^{-1}(x)$, let 's' be the local coordinate around y such that the map f in this coordinates takes the form $s \mapsto s^n$, where $n := \deg_y(f)$. Within this notation we have $f^*q = q(s^n)(ns^{n-1}ds)^k$ and it follows easily that

\[\text{ord}_y(f^*q) = \deg_y(f)(\text{ord}_x(q) + k) - k \]

Now Assumption 3.1 clearly implies that $\text{ord}_y(f^*q) = \text{ord}_y(q)$, so we obtain

\[\forall x \in \mathbb{P}^1, \quad \text{ord}_x(q) = \deg_x(f)(\text{ord}_f(x) + k) - k \]

3.1 Considerations on zeroes and poles

In this section we are going to show that (5) constrains the number of zeroes and poles of q.

Lemma 3.2. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d > 1$ which satisfies Assumption 3.1. Then q has no zeroes, that is the set $Z := \{x \in \mathbb{P}^1 : \text{ord}_x(q) > 0\}$ is the empty set.

Proof. Let us define the divisor $Z := \sum_{x \in Z} \text{ord}_x(q)x$ on \mathbb{P}^1, supported on the zeroes of q. Note that the statement of our Lemma is equivalent to

\[\deg(Z) = 0 \]

We claim that Z is a backward invariant set for the dynamics, i.e. $f^{-1}(Z) \subset Z$. Given a zero $x \in Z$ of q with $\text{ord}_x(q) = e > 0$, we see from (4) that for any $y \in f^{-1}(x)$, setting $n := \deg_y(f)$, we have $\text{ord}_y(q) = ne + k(n-1) > 0$, i.e. $y \in Z$. Observe now that, from the definition of f^*Z, we have

\[\text{ord}_y(f^*q) = \text{ord}_y(f^*Z) + k(n-1) \geq \text{ord}_y(f^*Z) \]

4
Thus summing (7) over all $y \in f^{-1}(Z)$, we obtain
\[
\sum_{y \in f^{-1}(Z)} \text{ord}_y(f^*q) \geq \sum_{y \in f^{-1}(Z)} \text{ord}_y(f^*Z) = \text{deg}(f^*Z) \tag{8}
\]

The left hand side of (8) is obviously less than or equal to
\[
\sum_{y \in Z} \text{ord}_y(f^*q) = \sum_{y \in Z} \text{ord}_y(q) = \text{deg}(Z)
\]
since we are summing nonnegative numbers over a smaller set.
Finally we obtain $\text{deg}(Z) \geq \text{deg}(f^*Z) = d \cdot \text{deg}(Z)$, which implies (6) as we assumed $d > 1$.

Lemma 3.3. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d > 1$, which satisfies **Assumption 3.1.**
If $x \in \mathbb{P}^1$ is a pole of q, then
\[
-k \leq \text{ord}_x(q) \leq -\frac{k}{2} \tag{9}
\]

Proof. We first prove the left inequality which is equivalent to
\[
\{ x \in \mathbb{P}^1 : \text{ord}_x(q) < -k \} = \emptyset \tag{10}
\]
In order to show this let us consider the following divisor on \mathbb{P}^1 supported on $P_k = \{ x \in \mathbb{P}^1 : \text{ord}_x(q) \leq -k \}$
\[
P_k := \sum_{x \in P_k} (-\text{ord}_x(q) - k) x
\]
We claim that $\text{deg}(P_k) = 0$ from which (10) follows immediately.
Note that equation (4) implies that P_k is a backward invariant set. Moreover we have $-\text{ord}_y(q) - k = \text{deg}_y(f)(-\text{ord}_x(q) - k) = \text{ord}_y(f^*P_k)$, so that,
\[
\text{deg}(P_k) = \sum_{x \in P_k} (-\text{ord}_x(q) - k) \geq \sum_{y \in f^{-1}(P_k)} (-\text{ord}_y(q) - k) = \sum_{y \in f^{-1}(P_k)} \text{ord}_y(f^*P_k) = \text{deg}(f^*P_k) = d \cdot \text{deg}(P_k)
\]

Thus just as $\text{deg}(P_m) \geq 0$ and we assumed $d > 1$, it follows that $\text{deg}(P_k) = 0$.

Let us prove now the right hand side of (9), i.e.
\[
\{ x \in \mathbb{P}^1 : -\frac{k}{2} < \text{ord}_x(q) < 0 \} = \emptyset \tag{11}
\]

Let $x \in \mathbb{P}^1$ be a pole of q of order $m := -\text{ord}_x(q) \neq k$ and let $y \in f^{-1}(x)$. Note that from (10) we have $m < k$ and also, from 3.1.2 that $\text{ord}_y(q) \leq 0$.
Consequently, from (10) we obtain
\[
\text{ord}_y(f) \leq \frac{k}{k-m} \tag{12}
\]

5
Now, as \(\frac{k}{k-m} < 2 \), \(\forall \ 0 < m < \frac{k}{2} \), we deduce that \(\deg_y(f) = 1 \). Thus we see again from (5) that the set of poles of \(q \) of order \(m \), with \(0 < m < \frac{k}{2} \), is backward invariant.

For any such integer \(m \) let us consider the divisor on \(\mathbb{P}^1 \) given by

\[
P_m := \sum_{x: \text{ord}_x(q) = -m} m x
\]

It follows from the considerations above that \(f^*P_m \subset P_m \), and therefore \(\deg(f^*P_m) \leq \deg(P_m) \). From \(\deg(f^*P_m) = d \deg(P_m) \) and \(d > 1 \), we deduce that \(\deg(P_m) = 0 \), which implies (11).

\[\square \]

3.2 Main Lemma: the dynamical system preserves a parabolic orbifold

In this section we discuss the main consequence of Assumption 3.1, i.e. the existence of an orbifold or eventually an orbifold with boundary that is preserved by \(f \). We refer to [8] and to [3] for a formal definition of an orbifold. Observe that under our hypothesis, given any ramification point \(x \in \text{Ram}_f \), its image \(f(x) \) is a pole of \(q \), since Lemma 3.2 and (5) imply that \(\text{ord}_{f(x)}(q) < \text{ord}_x(q) \leq 0 \), i.e. the order is decreasing.

Thus a map \(f \) satisfying Assumption 3.1 must necessarily be a post-critically finite map, i.e. the post-critical set of \(f \), \(\mathcal{P}_f = \bigcup_{n>0} f^n(\text{Ram}_f) \) is finite.

Definition 3.4. Let \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) be a rational map of degree \(d > 1 \). We say that \(f \) preserves an orbifold, or also that \(f \) lifts to a map of orbifolds, if there exists a function \(\nu : \mathbb{P}^1 \to \mathbb{N}^* \cup \{\infty\} \) satisfying the following conditions:

1) \(\nu(x) = 1 \) if \(x \notin P_f \)
2) \(\forall x \in \mathbb{P}^1, \ \nu(x) \text{ divides } \nu(y) \deg_y(f) \) whenever \(y \in f^{-1}(x) \) \hspace{1cm} (13)

We shall denote by \(\nu_f \) the smallest among all functions \(\nu \) satisfying condition (13). Also, we denote by \(\mathcal{O} = (\mathbb{P}^1, \nu_f) \) the orbifold preserved by \(f \) and we shall refer to it, for brevity’s sake, through the string \((\nu_f(x))_{x \in P_f} \).

By definition if \(\nu_f \) takes the value \(\infty \) we will say that \(\mathcal{O} \) is an orbifold with boundary, which we will denote by \((\mathcal{O}, D) \) i.e. \(D \subset \mathcal{O} \) is the set of singular points of weight \(\infty \). We can associate to \(\mathcal{O} \) its Euler characteristic

\[
\chi(\mathcal{O}) = 2 - \sum_{x \in P_f} \left(1 - \frac{1}{\nu_f(x)} \right)
\]

which is well defined and extended in the obvious sense if \(\nu_f \) takes value \(\infty \). We shall call an orbifold \(\mathcal{O} \) **hyperbolic** if \(\chi(\mathcal{O}) < 0 \), **parabolic** if \(\chi(\mathcal{O}) = 0 \) and **elliptic** otherwise. We enunciate here the main result of our work:
Lemma 3.5. Let \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) be a rational map of degree \(d > 1 \) which satisfies Assumption \(3.4 \). Then \(f \) preserves one of the following parabolic orbifolds (resp. orbifold with boundary):

(i) \((\infty, \infty)\)
(ii) \((2, 2, \infty)\)
(iii) \((2, 2, 2)\)
(iv) \((3, 3, 3)\)
(v) \((2, 4, 4)\)
(vi) \((2, 3, 6)\)

Proof. It is a fact that, for \(q \) a meromorphic global section of the sheaf \(\Omega_{\mathbb{P}^1}^{\otimes k} \), we have

\[
\sum_{x \in \mathbb{P}^1} \operatorname{ord}_x(q) = \deg(\Omega_{\mathbb{P}^1}^{\otimes k}) = -2k
\] (14)

We shall call \(n_i \) the number of poles of \(q \) of order \(i \geq 0 \), i.e. \(n_i = \#\{x \in \mathbb{P}^1 : \operatorname{ord}_x(q) = -i\} \). Recall that in Lemma 3.2 and 3.3 we proved that \(n_i = 0 \forall i < \frac{k}{2} \), hence setting \(\alpha_i = \frac{i}{k} \), equation (14) becomes:

\[
\sum_{i=i_0}^{k} n_i \alpha_i = 2
\] (15)

where \(i_0 = \left\lceil \frac{k}{2} \right\rceil \) is the smallest integer greater than \(\frac{k}{2} \).

In the first pace we discuss the only two solutions of (15) with \(n_k \neq 0 \). One is \(n_k = 2 \), which implies \(n_i = 0 \forall i \neq k \), while the other, which may occur only if \(k \) is even, is \(n_k = 1 \) and \(n_i = 2 \). We proved in 3.3 that the set of poles of \(q \) of order \(k \) is a complete invariant set for the dynamics, hence in the first case if we define

\[
\nu_f(x) = \begin{cases}
\infty, & \text{if } \operatorname{ord}_x(q) = k; \\
1, & \text{otherwise.}
\end{cases}
\]

it is clear that \(\nu_f \) satisfies condition (13), i.e. \(f \) preserves an orbifold with boundary of type (i).

If the second case occurs, let \(\infty \) be the pole of \(q \) of order \(k \), which is a fixed point of \(f \) and let \(P = \{p_1, p_2\} \) be the other poles of \(q \), necessarily of order \(\frac{k}{2} \).

Recall from (12) that given a pole \(x \) of \(q \) with \(\operatorname{ord}_x(q) = -n \) and given any \(y \in f^{-1}(x) \), we have

\[
\deg_y(f) \leq \frac{1}{1 - \alpha_n}
\] (16)
Thus for any $y \in f^{-1}(p_i)$, $i = 1, 2$ we have $\text{deg}_y(f) \leq 2$. From (5) we see that if $\text{deg}_y(f) = 1$ then $y \in P$, and if $\text{deg}_y(f) = 2$ then $\text{ord}_y(q) = 0$. We define

$$\nu_f(x) = \begin{cases} 2, & \text{if } x \in P; \\ \infty, & \text{if } x = \infty; \\ 1, & \text{otherwise.} \end{cases} \quad (17)$$

It follows from the discussion above that ν_f satisfies condition (13), so f preserves an orbifold with boundary of type (ii).

Our aim is now to show that any solution of (15) with $n = 1$ or 2, meaning that respectively, $y \in P$, and we have $\nu_f(x) = 1$ for all x in \mathbb{C}. From (16) we have $\text{ord}_y(q) = 0$. Hence ν_f satisfies condition (13), i.e. f preserves the orbifold (iii).

Suppose now that in equation (15) we have $n = 3$ for some i, then necessarily $\frac{1}{2} < \alpha_i \leq \frac{3}{2}$. Note that the latter inequalities cannot be strict, since otherwise there would exist an index $j \neq i$ such that $n_j \neq 0$ and consequently $0 < n_j \alpha_j = 2 - 3\alpha_i < \frac{1}{2}$ which is impossible. Therefore $n_i = 3$ for some i if and only if $\alpha_i = \frac{2}{3}$ (note that it makes sense only if $k \equiv 0 \pmod{3}$). In this case let $P = \{p_1, p_2, p_3, p_4\}$ be the set of poles of g, each pole having order $\frac{1}{2}$ and let us define

$$\nu_f(x) = \begin{cases} 2, & \text{if } x \in P; \\ 1, & \text{otherwise.} \end{cases} \quad (18)$$

As we have seen before, for any $y \in f^{-1}(P)$ the only possibilities for $\text{deg}_y(f)$ are 1 or 2, meaning that respectively, $y \in P$ or $\text{ord}_y(q) = 0$. Hence ν_f satisfies condition (13), i.e. f preserves the orbifold (iii).

Suppose now that in equation (15) we have $n_i = 3$ for some i, then necessarily $\frac{1}{2} < \alpha_i \leq \frac{3}{2}$. Note that the latter inequalities cannot be strict, since otherwise there would exist an index $j \neq i$ such that $n_j \neq 0$ and consequently $0 < n_j \alpha_j = 2 - 3\alpha_i < \frac{1}{2}$ which is impossible. Therefore $n_i = 3$ for some i if and only if $\alpha_i = \frac{2}{3}$ (note that it makes sense only if $k \equiv 0 \pmod{3}$). In this case let $P = \{p_1, p_2, p_3\}$ be the set of poles of g, each of order $\frac{1}{2}$ and let us define

$$\nu_f(x) = \begin{cases} 3, & \text{if } x \in P; \\ 1, & \text{otherwise.} \end{cases} \quad (19)$$

It follows from (16) that for any $y \in f^{-1}(P)$, $\text{deg}_y(f) = 3$, but $\text{deg}_y(f) = 2$ implies $\text{ord}_y(q) = -\frac{k}{3}$ which is impossible, hence the only possibilities for the local degree of f at y are 1 or 3, implying that respectively, $y \in P$ or $\text{ord}_y(q) = 0$. We conclude that ν_f satisfies condition (13), i.e. f preserves an orbifold of type (iv).

Suppose now that $n_i = 2$ for some $i \neq k, \frac{k}{2}$, then we have necessarily $\frac{1}{2} < \alpha_i \leq \frac{3}{2}$. In fact, note that if $n_i = 2$ then there is only another nonzero n_j solving (16), hence $n_j \alpha_j = 2(1 - \alpha_i)$ and consequently, if $\alpha_i > \frac{1}{2}$, we should have $n_j \alpha_j < \frac{1}{2}$ which is impossible. Note that $\alpha_i \neq \frac{2}{3}$, otherwise we would have $n_i = 3$.

We claim that there are no solutions of (15) with $n_i = 2$ and $\frac{1}{2} < \alpha_i < \frac{3}{2}$.

In fact, in this case (15) implies that g has exactly three poles, two of which having order $\alpha_i k$ and one having order $\alpha_j k = 2(1 - \alpha_i)k$. However from (16) we deduce that $\text{deg}_y(f) \leq 3$ for any y in the fiber of the poles of order $\alpha_i k$. Clearly $\text{deg}_y(f)$ cannot be equal to 2 or 3, otherwise we would have, respectively, $-\text{ord}_y(q)/k = 2\alpha_i - 1 < \frac{1}{2}$ or $-\text{ord}_y(q)/k = 3\alpha_i - 2 < \frac{1}{2}$, which is impossible. Therefore we obtain $\text{deg}_y(f) = 1$, from which we deduce that the image of
the ramification of \(f \) consists of the other pole of \(q \) (recall that \(f \) maps any ramification point to a pole of \(q \)). The following simple computation shows that the image of the ramification of a rational map of degree \(d > 1 \) cannot consist of one point. Let \(p \) be this point and suppose that \(f^{-1}(p) = e_1x_1 + \cdots + e_rx_r + y_1 + \cdots + y_s \), with \(e_1 + \cdots + e_r + s = d \). By the Riemann-Hurwitz formula, the ramification of a rational map of degree \(d \) has order \(2d - 2 \), hence we obtain
\[2d - 2 = (e_1 - 1) + \cdots + (e_r - 1) = d - (r + s), \]
which is absurd since \(d > 1 \). Therefore we conclude that \(n_i = 2 \) for some \(i \neq k, \frac{2}{3} \) if and only if \(\alpha = \frac{3}{2} \) (note that it makes sense only if \(k \equiv 0 \pmod{4} \)).

In this case let \(P = \{ p_1, p_2 \} \) be the set poles of \(q \) of order \(\frac{2}{3}k \) and let \(p \) be the other pole of \(q \) necessarily of order \(\frac{1}{2} \). It is natural to define
\[
\nu_f(x) = \begin{cases}
2, & \text{if } x = p; \\
4, & \text{if } x \in P; \\
1, & \text{otherwise.}
\end{cases}
\]

We already know that \(\nu_f \) satisfies condition (13) for \(x = p \), so we are left to show it holds also for \(x \in P \). In view of (3), given any \(y \in f^{-1}(P) \), the possible values for \(\deg_y(f) \) are 1, 2 or 4, meaning that \(\nu_f(y) \) is, respectively, equal to 4, 2, 1. Thus we have \(\nu_f(y)\deg_y(f) = 4 \) in each case, so we conclude that \(f \) preserves an orbifold of type \((v)\).

Finally we suppose that \(n_i \leq 1 \), \(\forall i \). It is clear that in this case we must have \(\#\{ i : n_i \neq 0 \} = 3 \), so we can rewrite equation (15) in the form \(\alpha + \beta + \gamma = 2 \), with \(\alpha, \beta, \gamma \in \mathbb{Q} \) satisfying \(\frac{1}{2} \leq \alpha < \beta < \gamma < 1 \). We claim that this equation has only one solution, which is \(\alpha = \frac{2}{3}, \beta = \frac{3}{4}, \gamma = \frac{5}{6} \) (note that it makes sense only if \(k \equiv 0 \pmod{6} \)). Suppose that \(\alpha \neq \frac{2}{3} \) and observe that \(\alpha < \frac{2}{3} \). Thus, from (10), we deduce that for any \(y \) in the fiber of the pole of order \(\alpha k \) we have \(\deg_y(f) < 3 \). Nevertheless, \(\deg_y(f) \) cannot be 2, since otherwise we should have \(-\ord_y(q)/k < \frac{1}{2} \), which is impossible. We conclude that the fiber of this pole must consist of exactly \(d \) non-ramified different points, say \(\{ y_1, \ldots, y_d \} \), and for each of these points we should have \(\ord_{y_i}(q) = -\alpha k \), but this leads to an absurd, since there is only one pole of such order. We have reduced our equation to \(\beta + \gamma = \frac{3}{2} \), with \(\frac{1}{2} < \beta < \gamma < 1 \), but now the same argument used for \(\alpha \) shows that this is possible if and only if \(\beta = \frac{2}{3} \), since otherwise the pole of order \(\beta k \) would not be a branched point, which leads us to an absurd. Calling \(p_1, p_2, p_3 \) the poles of \(q \) of order, respectively, \(\alpha k, \beta k, \gamma k \), we define
\[
\nu_f(x) = \begin{cases}
2, & \text{if } x = p_1; \\
3, & \text{if } x = p_2; \\
6, & \text{if } x = p_3; \\
1, & \text{otherwise.}
\end{cases}
\]

We already know that \(\nu_f \) satisfies condition (13) for \(x = p_1, p_2 \), so we need only to show that it holds also for \(p_3 \). For any \(y \in f^{-1}(p_3) \) the possible values for \(D = \deg_y(f) \) are \(1, 2, 3, 6 \) since from equation (16) we have \(-\ord_y(q)/k = \cdots \)
1 - \frac{2}{5}, and this can only be equal to 0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}. It follows that \(\nu_f(y) \text{deg}_y(f) = 6 \)
in each case, so \(\nu_f \) satisfies condition (iii), i.e. \(f \) preserves an orbifold of type (vi).

Remark 3.6. We have shown that every solution of (15) with \(\alpha_i \neq 1 \) is such that \(\alpha_i = \left(1 - \frac{1}{n}\right) \) for some \(n = 2, 3, 4 \) or 6, i.e. \(q \) may only have poles of order \(k \) or \((1 - \frac{1}{n}) k \).

In the latter case, observe that we can write equation (15) as

\[
\sum_{i \in I} \left(1 - \frac{1}{e_i}\right) = 2
\]

where \(e_i \) are not necessarily distinct integers.

Moreover observe that we have defined in each case

\[
\nu_f(x) = n \text{ whenever } \text{ord}_x(q) = - \left(1 - \frac{1}{n}\right)k
\]

for any \(n = 1, 2, 3, 4, 6, \) in such a way that

\[
\sum_{x \in \mathbb{P}^1} \left(1 - \frac{1}{\nu_f(x)}\right) = 2
\]

We conclude that the orbifolds (iii)-(vi) of Lemma 3.5 are also all the possible parabolic orbifolds on \(\mathbb{P}^1 \).

4 Maps preserving a parabolic orbifold

In this chapter we will discuss the main consequences of Lemma 3.5. We have a rational map \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) that has an invariant orbifold \(O \), i.e. there exists a map \(\tilde{f} : O \to O \) such that the following diagram commutes

\[
\begin{array}{ccc}
O & \xrightarrow{\tilde{f}} & O \\
\downarrow p & & \downarrow p \\
\mathbb{P}^1 & \xrightarrow{f} & \mathbb{P}^1
\end{array}
\]

(here \(p \) denotes the natural projection map), with \(\chi(O) = 0 \).

We will show that \(O \) is the quotient of an elliptic curve \(E \) by the action of a (finite) group \(G \) of automorphisms of \(E \) and that \(f \) lifts to a morphism of
G-torsors $F : E \to E$, such that the following diagram commutes:

$$
\begin{array}{ccc}
E & \xrightarrow{F} & E \\
\downarrow{\pi} & & \downarrow{\pi} \\
\mathcal{O} & \xrightarrow{\tilde{f}} & \mathcal{O} \\
\downarrow{p} & & \downarrow{p} \\
p^1 & \xrightarrow{f} & p^1
\end{array}
$$

(24)

4.1 Construction of a torsor associated to a torsion line bundle

We begin recalling some general facts concerning line bundles over an orbifold \mathcal{O}. We say that $\pi : L \to \mathcal{O}$ is a torsion line bundle of order n if $L^{\otimes n}$ is trivial, i.e. if there exists an isomorphism of line bundles on \mathcal{O}

$$
L^{\otimes n} \xrightarrow{\sim} \mathcal{O} \times \mathbb{C}
$$

(25)

where p_1 denotes the projection on the first factor.

It is well known that a torsion line bundle over a compact manifold X defines a μ_n-torsor over X, which is unique up to an almost unique isomorphism, i.e. rather than being unique, the isomorphisms between any two such torsors form a principal homogeneous space under μ_n. We are going to prove that this property still holds if X is an orbifold whose underlying space is \mathbb{P}^1.

Let us consider an orbifold \mathcal{O} modelled on \mathbb{P}^1 whose set of singular points is $\{x_1, \ldots, x_r\} \subset \mathbb{P}^1$, each x_i having finite weight n_i. This means that the monodromy group of each x_i is the group of n_i-th roots of unity μ_{n_i} and arbitrarily small (non-space like) neighborhood U_i of x_i in \mathcal{O} are described as follows: we can choose a disk Δ_i centered at the origin such that U_i is the classifying champ, $[\Delta/\mu_{n_i}]$, [5 2.4.2], for the action $\Delta_i \cong \Delta_i \times \mu_{n_i}$ of μ_{n_i} by rotations on Δ_i.

Let us recall that a line bundle L on \mathcal{O} can be described on $U_i = [\Delta_i/\mu_{n_i}] \ni x_i$ as follows: we have that $L|_{\Delta_i}$ is the trivial bundle, with action determined by a representation $\rho_i : \mu_{n_i} \to \mathbb{C}^\times$. Note that $L^{\otimes n_i}|_{U_i}$ is the trivial bundle on U_i since such a representation has order dividing n_i.

If we set $Z = \bigsqcup_i p^{-1}(x_i)$ and $U = \mathcal{O} \setminus Z$, then L is completely determined by the triple

$$(L|_Z, L|_U, \phi)$$

(26)

where we have $L|_Z = \bigsqcup_i (\rho_i : \mu_{n_i} \to \mathbb{C}^\times)$ and $\phi = \bigsqcup_i \phi_i$, each $\phi_i : L|_{U_i \setminus \{x_i\}} \to L|_U$ being the gluing map of the bundle L.
We have that \(L \) is torsion of order \(n \) if and only if \(L^\otimes n \) defines a line bundle on \(\mathbb{P}^1 \) of degree 0, since the following sequence
\[
0 \longrightarrow Pic(\mathbb{P}^1) \longrightarrow Pic(\mathcal{O}) \longrightarrow \prod_i (\rho_i : \mu_{n_i} \to \mathbb{C}^*) \tag{27}
\]
is exact. Indeed if each representation \(\rho_i \) is trivial, then \(L|_{U_i} \) is trivial so the maps \(\phi \) are just gluing with the trivial line bundle on the moduli of \(U_i \), i.e. the naive quotient of the \(\mu_{n_i} \) action, identified with open subset of \(\mathbb{P}^1 \), and so the kernel is a line bundle on \(\mathbb{P}^1 \). We know, however, that \(deg : Pic(\mathbb{P}^1) \cong \mathbb{Z} \) is an isomorphism, so if \(deg(L) = 0 \) and the order of each representation \(\rho_i \) divides \(n \), then from (26) and (27) it follows that \(L \) is torsion of order dividing \(n \).

Lemma 4.1. Let \(\pi : L \to \mathcal{O} \) be a \(n \)-torsion line bundle over an orbifold \(\mathcal{O} \) whose underlying space is compact, then associated to \(L \) there is a unique, up to isomorphism, \(\mu_n \) torsor \(E \subset L \xrightarrow{\sim} \mathcal{O} \). Better still the singular points of \(E \) lie over those of \(\mathcal{O} \), and if the underlying space of \(\mathcal{O} \) is \(\mathbb{P}^1 \) with \(y \) a singular point of \(E \) lying, in the above notation (26), over \(x_i \) then the local monodromy of \(E \) at \(y \) is the kernel of \(\rho_i \).

Proof. From the exact sequence of sheaves on \(\mathcal{O} \)
\[
0 \to \mu_n \to \mathbb{C}_m \xrightarrow{\cong} \mathbb{C}_m \to 0 \tag{28}
\]
the long exact sequence in co-homology, since the underlying space is compact, reads
\[
0 \to \mu_n \to \mathbb{C}^* \xrightarrow{\cong} \mathbb{C}^* \to H^1(\mathcal{O}, \mu_n) \to Pic(\mathcal{O}) \xrightarrow{\cong} Pic(\mathcal{O}) \tag{29}
\]
so, isomorphism classes of \(\mu_n \) torsors are exactly \(n \)-torsion line bundles. In order to compute the singular points of \(E \), we recall how to construct the torsor starting from the bundle.

In the first pace, given a vector bundle \(p : E \to \mathcal{O} \) we can form the tensor power of \(E \), \(p' : E^\otimes n \to \mathcal{O} \) and we have a canonical map of bundles
\[
\begin{array}{ccc}
E & \xrightarrow{F_n} & E^\otimes n \\
\downarrow p & & \downarrow p' \\
\mathcal{O} & \quad & \mathcal{O}
\end{array} \tag{30}
\]
where the map \(F_n \) sends an element \(e \in E \) to its tensor power \(e^\otimes n \in E^\otimes n \). Therefore if \(L \) is a torsion line bundle of order \(n \) we have the following commutative diagram:
\[
\begin{array}{ccc}
L & \xrightarrow{F_n} & \mathcal{O} \times \mathbb{C} \\
\downarrow \pi & & \downarrow p_1 \\
\mathcal{O} & \quad & \mathcal{O}
\end{array} \tag{31}
\]
and for any \(\lambda \in \mathbb{C}^* \) our \(\mu_n \) torsor is isomorphic to \(E = F_n^{-1}(\mathcal{O} \times \lambda) \).
To compute the monodromy at \(y \to x_i \) should \(\mathcal{O} \) have underlying space \(\mathbb{P}^1 \), observe that around \(x_i \), (31) corresponds to the map of groupoids,

\[
(x, n(v)) := (x, v^n) \quad \Delta \times \mathbb{C} \overset{\text{trivial action}}{\longrightarrow} \Delta \times \Gamma_i \times \mathbb{C}
\]

\[
(x, v) \quad \Delta \times \mathbb{C} \overset{\text{diagonal action}}{\longrightarrow} \Delta \times \Gamma_i \times \mathbb{C}
\]

in which the diagonal action is \((x, v) \to (x^\gamma, \rho_i(\gamma)v)\).

Hence we see that \(F_{-1}(\Delta \times \lambda) \) is isomorphic to the \(\mu_n \) torsor \(\Delta \times n^{-1}(\lambda) \) with the stabilizer \(\Gamma_i \) of \(x_i \) acting diagonally, i.e. \((x, l) \to (x^\gamma, \rho_i(\gamma)l)\), where \(x \in \Delta \) and \(l \in n^{-1}(\lambda) \).

We have that \(x \in \text{Stab}(x \times l) \iff x = x^\gamma = x \) and \(\rho_p(\gamma)l = l \), which gives \(x \in \Gamma_i \) and \(\gamma \in \ker(\rho_p) \).

4.2 Holomorphic differentials on a parabolic orbifold

In this section we show how the construction of Lemma 4.1 applies to the line bundle \(\Omega_{\mathcal{O}} \) of holomorphic differential forms over a parabolic orbifold.

Around a non-space like point \(x_i \), in the above notation (26), we have that \(\Omega_{\mathcal{O}} \mid U_i \) is the \(\mu_n \) module \(O \mid \Delta_i dz \), where \(O \mid \Delta_i \) denotes the sheaf of holomorphic functions on the disk, with action given by

\[
f(z)dz \to f(\theta z)\theta dz, \quad \theta \in \mu_n_i
\]

Around a boundary point of \(\mathcal{O} \), i.e. a singular point with weight \(\infty \), there is no orbifold structure, but still morally, if not mathematically, the monodromy group of such a point is isomorphic to \(\mathbb{Z} \).

We will denote by \((\mathcal{O}, D) \) an orbifold \(\mathcal{O} \) with boundary \(D \), i.e. \(D \subset \mathcal{O} \) is the set of singular points of weight \(\infty \), and by \(\Omega_{\mathcal{O}}(\log D) \) the sheaf of holomorphic differential forms on \(\mathcal{O} \) with logarithmic poles on the boundary \(D \) (see [1]). Moreover we will use the notation \(f : (\mathcal{O}_1, D_1) \to (\mathcal{O}_2, D_2) \) for a map between orbifolds with boundary, meaning as usually that \(f^{-1}D_2 \subseteq D_1 \).

Lemma 4.2. Let \(\mathcal{O} = (\mathbb{P}^1, \nu_f) \) (resp. \(\mathcal{O}, D = (\mathbb{P}^1, \nu_f) \)) be a parabolic orbifold (resp. orbifold with boundary) invariant for \(f \) as in Lemma 4.1, and let \(q \) the meromorphic section of \(\Omega_{\mathcal{O}}^{\otimes k} \) such that \(f^*q / q \). We have:

1. \(\Omega_{\mathcal{O}} \) (resp. \(\Omega_{\mathcal{O}}(\log D) \)) is a torsion line bundle of order \(n := \text{lcm}\{\nu_f(x) : x \notin D\} \).

2. If we denote by \(p : \mathcal{O} \to \mathbb{P}^1 \) the natural projection, then \(\tilde{q} := p^*q \in H^0(\Omega_{\mathcal{O}}^{\otimes k}) \) (resp. \(H^0(\Omega_{\mathcal{O}}(\log D)^{\otimes k}) \))

Proof. 1) From the definition of \(n \) all the local representations (27) have order that divides \(n \), so we need only to show that \(\text{deg}(\Omega_{\mathcal{O}}) = 0 \) (resp. \(\text{deg}(\Omega_{\mathcal{O}}(\log D)) = 0 \), but this follows from the fact that \(\text{deg}(\Omega_{\mathcal{O}}) = -\chi(\mathcal{O}) \) (resp. \(\text{deg}(\Omega_{\mathcal{O}}(\log D)) = \chi(\mathcal{O}) \))
−χ(\mathcal{O}, D)).

2) Let us consider a weighted point \(x \in \mathcal{O} \) of order \(n \). The projection map \(p : \mathcal{O} \to \mathbb{P}^1 \) in the orbifold coordinate 's' around \(x \) takes the form \(s \to s^n \).

We have seen in 3.6 that \(p(x) \) is a pole of \(q \) of order \((1 - \frac{1}{n}) k\), so we have that

\[
\tilde{q}(z) = p^* \left(\text{const} \cdot z^k \left(\frac{dz}{z} \right)^k \right) = \text{const} \cdot ds^k
\]

Thus \(\tilde{q} = p^* q \) is a holomorphic section of \(\Omega^{\otimes k} \) (resp. \(\Omega_{\mathcal{O}}(\log D)^{\otimes k} \)) satisfying \(\tilde{f}^*(\tilde{q}) / \tilde{q} \).

\[\text{Lemma 4.3.}\]

Let \(\mathcal{O} = (\mathbb{P}^1, \nu_f) \) (resp. \((\mathcal{O}, D) = (\mathbb{P}^1, \nu_f) \)) be an orbifold (resp. orbifold with boundary) invariant for \(f \) as in Lemma 3.3. There exists an elliptic curve \(E \) (resp. the multiplicative group \(\mathbb{G}_m \)) which is a \(\mu_n \)-torsor over \(\mathcal{O} \) (resp. \(\mathcal{O} \setminus D \)) where \(n \) is the order of torsion of \(\Omega_{\mathcal{O}} \) (resp. \(\Omega_{\mathcal{O}}(\log D) \)). Moreover \(E \) (resp. the multiplicative group \(\mathbb{G}_m \) viewed as the manifold \((\mathbb{P}^1, 0 + \infty) \) with boundary) is invariant for \(f \), i.e. there exists a morphism of torsors \(F : E \to E \) (resp. \(F : (\mathbb{P}^1, 0 + \infty) \to (\mathbb{P}^1, 0 + \infty) \)) such that the following diagram commutes:

\[
\begin{array}{ccc}
(X, \partial) & \xrightarrow{F} & (X, \partial) \\
\pi \downarrow & & \pi \downarrow \\
(O, D) & \xrightarrow{f} & (O, D)
\end{array}
\]

where \((X, \partial) = (E, \emptyset) \) (resp. \((X, \partial) = (\mathbb{P}^1, 0 + \infty) \)).

\[\text{Proof.}\]

We have seen in 4.2 that if \(n = \text{lcm}\{n_1, \ldots, n_r\} \), then \(\Omega_{\mathcal{O}} \) (resp. \(\Omega_{\mathcal{O}}(\log D) \)) is a torsion line bundle of order \(n \) and we know from Lemma 4.1 that it defines a unique \(\mu_n \)-torsor. On the other hand, the representation defining \(\Omega_{\mathcal{O}} \) (resp. \(\Omega_{\mathcal{O}}(\log D) \)) in a neighborhood of each \(x_i \) is given by the action of \(\mu_{n_i} \) on differential forms which is a faithful representation so by the second part of 4.1 it follows that \(E := E \) is a Riemann surface (resp. Riemann surface with boundary) with Euler characteristic 0 i.e. \(E \) is an elliptic curve if \(\mathcal{O} \) is compact, resp. \(\mathbb{G}_m \) identified with \((\mathbb{P}^1, 0 + \infty) \) should the boundary be non-empty.

It remains to show that this implies the existence of a map of torsors \(F : E \to E \), resp. with boundary, which makes the diagram (33) commute. This follows from the fact that the isomorphism \(f^* \Omega_{\mathcal{O}} \cong \Omega_{\mathcal{O}} \) (resp. \(f^* \Omega_{\mathcal{O}}(\log D) \cong \Omega_{\mathcal{O}}(\log D) \)) affords an isomorphism of \(\mu_n \)-torsors \(f^* E \cong E \), resp. with boundary.

To see this, from (29) we have a commutative diagram with exact rows:

\[
\begin{array}{cccc}
0 & \to & H^1(\mathcal{O}, \mu_n) & \to & H^1(\mathcal{O}, \mathbb{G}_m) \\
\downarrow f^* & & \downarrow f^* & & \downarrow f^* \\
0 & \to & H^1(\mathcal{O}, \mu_n) & \to & H^1(\mathcal{O}, \mathbb{G}_m)
\end{array}
\]
Thus just as $[\Omega \Omega] \ (\text{resp. } [\Omega \Omega (\log D)]) \in H^1(\mathcal{O}, \mathbb{G}_m)$ is fixed by f^*, so is $[E] \in H^1(\mathcal{O}, \mu_n)$, hence we have an isomorphism of μ_n-torsors $E \sim f^* E$. Consequently we obtain the following commutative diagram,

$$
\begin{array}{ccc}
E & \sim & f^* E \\
\downarrow & & \downarrow \\
\mathcal{O} & \sim & \mathcal{O}
\end{array}
$$

and hence by composition we obtain a μ_n-equivariant map $F : E \to E$.

\[\square\]

Corollary 4.4. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d > 1$ which satisfies **Assumption 3.1**. Then f preserves a parabolic orbifold (resp. a parabolic orbifold with boundary) which can be realized as a quotient of \mathbb{C} (resp. of $\mathbb{C} \cup \{\infty\}$) by the action of a discrete subgroup of $\text{Aut}(\mathbb{C})$.

The following table illustrates all the possibilities:

Orbifold \mathcal{O} preserved by f	$\Gamma \subset \text{Aut}(\mathbb{C})$ defining \mathcal{O}
(∞, ∞)	\mathbb{Z}, acting by translations
$(2, 2, \infty)$	$< \mathbb{Z}, z \mapsto -z >$
$(2, 2, 2)$	$< \mathbb{Z} \oplus \mathbb{Z} \tau, z \mapsto -z >; \ \tau \text{ s.t. } \Im(\tau) > 0$
$(3, 3, 3)$	$< \mathbb{Z} [\zeta], z \mapsto \zeta z >; \ \zeta \text{ s.t. } \zeta^2 + \zeta + 1 = 0$
$(2, 4, 4)$	$< \mathbb{Z} [i], z \mapsto iz >, i \text{ s.t. } i^2 + 1 = 0$
$(2, 3, 6)$	$< \mathbb{Z} [\zeta], z \mapsto -\zeta z >, \ \zeta \text{ as above}$

\[\text{Proof.}\] We have seen that there exists a covering map $\pi : E \to \mathcal{O}$ which can be viewed as the quotient map $E \to [E/\mu_n]$, for $n = 2, 3, 4, 6$, (resp. we have an isomorphism $\pi : \mathbb{C}^* \to \mathcal{O} \setminus \text{D}$ in the case (∞, ∞), or a double cover $\pi : \mathbb{C}^* \to \mathcal{O} \setminus \text{D}$ in the case $(2, 2, \infty)$). Consequently we have $\mu_n \hookrightarrow \text{Aut}(E)$. Every such automorphism can be lifted to a linear map ‘$z \mapsto \alpha z$’ on \mathbb{C}, the universal covering space of E, which must satisfy $\alpha \Lambda = \Lambda$, where Λ is the lattice defining E. When $\alpha \in \mu_n$ a simple computation shows that $\Lambda = \mathbb{Z} [\mu_n]$ for $n = 3, 4, 6$. In the case $n = 2$ the condition above is empty, hence Λ is generic.

\[\text{Remark 4.5.}\] The orbifolds listed in Corollary 4.4 are the only one which can be realized as quotients of an elliptic curve E for the action of a group of automorphisms of E. In fact it is well known that the group of automorphisms of an elliptic curve E is a finite cyclic group G of order 2, 4 or 6 (see [7]).

Consider the following exact sequence of algebraic groups:

$$
0 \longrightarrow \text{Aut}^0(E) \longrightarrow \text{Aut}(E) \longrightarrow G \longrightarrow 0
$$
where $\text{Aut}^0(E)$ is the connected component of the identity in $\text{Aut}(E)$. We have that $E \xrightarrow{} \text{Aut}^0(E)$, where we identify E with the subgroup of translations of $\text{Aut}(E)$.

Consider the action of G on the elliptic curve, with quotient map $f : E \to E/G$. It is a fact that the naive quotient E/G is isomorphic to \mathbb{P}^1, as the map f is necessarily ramified and the Riemann-Hurwitz formula gives $\chi(E/G) > 0$.

It follows that $\#\text{Ram}_f = 2\#G$, so if the fiber of each $p \in E/G$ consists of n_p distinct elements, each of order $e_p = \#\text{Stab}_G(p)$, we can write Riemann-Hurwitz as follows (note that we have $n_p e_p = \#G$),

$$\sum_{p \in \mathbb{P}^1} \left(1 - \frac{1}{e_p}\right) = 2 \quad (34)$$

As discussed in 3.6, the only integer solutions of (34) are given by $(iii) - (vi)$ of Lemma 3.5. Thus we conclude that E/G can be endowed with the structure of a parabolic orbifold i.e. an orbifold of type $(iii) - (vi)$.

4.3 Conclusions

We conclude this chapter formulating at first a structural theorem for the maps f with a parallel tensor q and finally discussing the invariant nature of q.

Theorem 4.6. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d > 1$ which satisfies Assumption 3.4. Then, up to conjugation with an element of $\text{PGL}_2(\mathbb{C})$, f is induced by one of the automorphisms of \mathbb{C} contained in Table 1, i.e. f is obtained as quotient of such automorphisms under the action of a discrete group of automorphisms of the complex plane.

Orbifold \mathcal{O} preserved by f	Automorphism of \mathbb{C} inducing f		
(∞, ∞)	$z \mapsto nz; n \in \mathbb{Z}$ s.t. $	n	> 1$
$(2, 2, \infty)$	$z \mapsto nz + \beta; n$ as above, $\beta = 0, \frac{1}{2}$		
$(2, 2, 2)$	$z \mapsto \alpha z + \beta; \alpha$ an integer in an imaginary quadratic field, $\beta \in \mathbb{E}[2]$		
$(3, 3, 3)$	$z \mapsto \alpha z + \beta; \alpha \in \mathbb{Z}[\zeta], \beta = 0, \frac{1}{2}(\zeta + 1), \frac{1}{2}i\sqrt{3}$		
$(2, 4, 4)$	$z \mapsto \alpha z + \beta; \alpha \in \mathbb{Z}[i], \beta = 0, \frac{1}{2}(i + 1)$		
$(2, 3, 6)$	$z \mapsto \alpha z; \alpha \in \mathbb{Z}[\zeta]$		

Table 1: Dynamical systems admitting a parallel tensor

Proof. This classification is originally due to the work of A. Douady and J. H. Hubbard [3].

From 4.4 we know that f preserves one of the orbifolds listed above, which is isomorphic to the quotient space $[E/\mu_n]$, for $n = 2, 3, 4, 6$. Moreover, as we have seen in 4.3, f lifts to a map $F : E \to E$ which commutes with the action of μ_n.

16
It is well known, [7], that F is the composition of a translation with an endomorphism of E, so, as we have $\text{End}(\mathbb{C}/\mathbb{Z}[\mu_n]) \cong \mathbb{Z}[\mu_n]$, all endomorphisms are allowed since they commute with the action of μ_n. However, the translation by any $Q \in E$ commutes with the action if and only if Q is fixed by μ_n. Consequently the only translations allowed are the solutions of

$$\theta z \equiv z \pmod{\mathbb{Z}[\theta]}$$

where θ is a primitive n-th root of unity. Table 1 contains the solutions of (35) lying in the fundamental domain of the elliptic curve. For $n = 2$ they consist of the subgroup $E[2]$ of 2-torsion, while there are only two non-zero fixed points for $n = 4$ and there are no fixed points different from zero for $n = 6$, since the order of the stabilizer at each point is given by its weight as a singular point in the orbifold structure.

Note that, modulo composition with a translation, f lifts to an automorphism of the complex plane of the form $z \mapsto \alpha z$. Recall that when $\alpha \notin \mathbb{Z}$ we say that the elliptic curve E has complex multiplication and if multiplication by a complex α, (which must be an integer in some imaginary quadratic field, as $\alpha \Lambda \subset \Lambda$, see [3]) is allowed in E, then the complex structure of E is completely determined, i.e. we have $\Lambda \otimes \mathbb{Z} \mathbb{Q} = \mathbb{Q}[[\alpha]]$.

Observe that we can compute explicitly the degree of f in each case. In fact, from (33) we deduce that $d = \text{deg}(f) = \text{deg}(F)$ and we know that, given $m \in \mathbb{Z}$, the “multiplication by m” $[m] : E \to E$, has degree $|m|$ if $E \cong \mathbb{C}^*$, while it has degree m^2 in the other cases, since it is equal to $\#(\Lambda[\frac{1}{m}] / \Lambda)$. If E has complex multiplication $[\alpha] : z \mapsto \alpha z$, then as $\text{deg}([\alpha] \circ [\alpha]) = |\alpha|^2$, we obtain $\text{deg}([\alpha]) = |\alpha|^2$ (see also [3]).

Remarks 4.7.

- Note that in each case we have written the maps $f : \mathbb{P}^1 \to \mathbb{P}^1$ in the form $f = A \circ e$, where $A \in \text{PGL}_2(\mathbb{C})$ corresponds to the translation by a fixed point on E and e is a rational map with the same degree of f, corresponding to the endomorphism $z \mapsto \alpha z$ on E. Observe that the automorphism A acts by permuting the poles of q.
 A simple computation shows that A has order 2 or 3. In fact if $E = \mathbb{C}/\mathbb{Z}[i]$ such a translation permutes the two fixed points of $z \mapsto iz$, hence the corresponding map on \mathbb{P}^1 has the form $z \mapsto 1/z$. If $E = \mathbb{C}/\mathbb{Z}[\zeta]$, the three fixed points are permuted cyclically by the translation, hence the corresponding map on \mathbb{P}^1 has the form $z \mapsto \zeta z$.

- Cases (1) and (2) of Table 1 are the most explicit:
 In case (1) they are the maps $z \mapsto z^n$, since the exponential function is the universal covering map of \mathbb{C}^*.
 In case (2) they are (up to sign) the Tchebycheff polynomials $P_n(z)$ defined by $P_n(cosz) = cos(nz)$, since the cosine function is the universal covering map of \mathbb{C}^* which commutes with $z \mapsto -z$.

17
Note that in each case we have shown that (modulo multiplication by an element of $\text{PGL}_2(\mathbb{C})$) the action of f on \mathbb{P}^1, which a priori is given by a semigroup, is globally equivalent to the action of some discrete group G on \mathbb{C}, given by an extension of \mathbb{Z} by Λ

\[0 \longrightarrow \Lambda \longrightarrow G \longrightarrow \mathbb{Z} \longrightarrow 0 \]

i.e. G is the semidirect product $\mathbb{Z} \rtimes \Lambda$, with the obvious action.

We have seen in [4.2] that $\tilde{q} = p^*q$ is a holomorphic section of $\Omega^k_\mathcal{O}$, hence $\pi^*\tilde{q}$ is a constant multiple of dz^k. It follows that the eigenvalue λ such that $f^*q = \lambda q$ can be computed explicitly. Referring to Table 1, in the first two cases we have simply $|\lambda| = \deg(f)^k = d^k$ since the lifted map is multiplication by m on \mathbb{C}^*, which has degree $|m|$, and clearly $|m|^k dz^k = m^k dz^k$. Finally, in the other cases, we have $d = |\alpha|^2$ from which we deduce $|\lambda| = d^{k/2}$.

References

[1] P. Deligne, *Equations Differentielles a Points Singuliers Reguliers (Lecture Notes in Mathematics)* (French Edition), Springer, 1970.

[2] P. Deligne, *Théorie de Hodge. III*, Inst. Hautes Études Sci. Publ. Math., (1974), pp. 5–77.

[3] A. Douady and J. H. Hubbard, *A proof of Thurston’s topological characterization of rational functions*, Acta Math., 171 (1993), pp. 263–297.

[4] A. Epstein, *Infinitesimal Thurston Rigidity and the Fatou-Shishikura Inequality*, ArXiv Mathematics e-prints, (1999).

[5] G. Laumon, *Champs algébriques*, Springer, 1999.

[6] J. W. Milnor, *On Lattès Maps*, ArXiv Mathematics e-prints, (2004).

[7] J. H. Silverman, *The Arithmetic of Elliptic Curves: v. 106 (Graduate Texts in Mathematics)*, Springer, 1994.

[8] W. P. Thurston, *Three-dimensional geometry and topology. Vol. 1*, vol. 35 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.