Empirical Probabilities in Monadic Deductive Databases

Raymond T. Ng and V.S. Subrahmanian
Department of Computer Science
A. V. Williams Building
University of Maryland
College Park, Maryland 20742, U.S.A.

Abstract

We address the problem of supporting empirical probabilities in monadic logic databases. Though the semantics of multivalued logic programs has been studied extensively, the treatment of probabilities as results of statistical findings has not been studied in logic programming/deductive databases. We develop a model-theoretic characterization of logic databases that facilitates such a treatment. We present an algorithm for checking consistency of such databases and prove its total correctness. We develop a sound and complete query processing procedure for handling queries to such databases.

1 Introduction

During the past decade, there has been growing interest in reasoning with uncertainty in logic programming, deductive databases and expert systems. The semantics of logic programs based on uncertainty has been studied by van Emden [20], Blair and Subrahmanian [5], Dubois et al. [6], Kifer et. al. [11] and Fitting [8]. All these studies were based upon non-probabilistic modes of uncertainty. The first semantic characterizations of probabilistic logic programming were those of Ng and Subrahmanian [13, 14]. These characterizations were based on subjective probabilities using a Kripke-style possible-worlds semantics along the lines of the work by Nilsson [16].

While subjective probabilities view probabilities as degrees of belief, empirical probabilities represent objective, statistical truths about the world/population. Typically, empirical probabilities are obtained from samples of individuals in the population. These samples can then used to inductively infer probabilities about the entire population. For example, if 500 monk seals are physically caught (in some unbiased way), these 500 monk seals constitute the sample in question. Inductive reasoning allows us to draw conclusions about a specific monk seal that is not in the sample.

The main aim of this paper is to capture this kind of empirical reasoning within the framework of deductive databases. The knowledge about specific individuals in the sample is two-valued true/false knowledge. This knowledge is represented as a set of ordinary first order logic clauses called the context. The probabilities derived from the sample are expressed as conditional probability statements and constitute the empirical component of our knowledge. These probabilities may then be used to induce information about objects not in the context (sample), but in the population. As we are studying only individuals and their properties, rather than the relationships between individuals, these properties are represented using unary (or monadic) predicates.

The first contribution of this paper is the development of a formal model-theoretic basis for such databases. This task is complicated by the fact that Herbrand interpretations are not rich enough to capture the intuitions behind empirical probabilities (cf. Example 2). The second contribution is the development of sound and complete algorithms for determining the consistency of such databases. These algorithms are based on constraint satisfaction techniques, and hence, may be implemented using standard mixed integer linear programming algorithms. The third contribution is a procedure to answer queries to such databases. This procedure first tries to deduce a definite answer from the context, and if that is not possible, it tries to induce answers from the empirical component. This procedure is sound and complete.

2 Empirical Programs

Let L be a language generated by finitely many unary predicate symbols, but no function symbols. In this paper, we are interested in the properties of individuals. Hence, we regard a predicate symbol as a representation of a property that individuals in the domain of discourse may or may not have. Essentially,
\(\mathcal{L}\) allows us to express properties about individuals, even though it does not support properties or relations among a group of individuals.

Definition 1 A context \(C\) is a finite set of clauses of either one of the following two forms:

i) \(K_0 \leftarrow K_1 \land \ldots \land K_n\), where for all \(0 \leq i \leq n\), \(K_i\) is a ground literal, or

ii) \(L_0(X) \leftarrow L_1(X) \land \ldots \land L_n(X)\), where for all \(0 \leq i \leq n\), \(L_i \equiv A_i\) or \(L_i \equiv \neg A_i\) for some predicate symbol \(A_i\) in \(\mathcal{L}\).

A non-ground clause in a context is implicitly universally quantified at the front of the clause. In other words, the clause \(L_0(X) \leftarrow L_1(X) \land \ldots \land L_n(X)\) says that for all individuals \(X\), if \(X\) has properties \(L_1, \ldots, L_n\), then \(X\) also has the property \(L_0\). Under this interpretation, we disallow clauses such as \(A(X) \leftarrow B(Y)\) (for some variable symbol \(Y \in \mathcal{L}\)) and \(A(X) \leftarrow B(c)\) (for some constant \(c \in \mathcal{L}\)) from appearing in a context, as we find such clauses unintuitive for our purpose. An additional point worth mentioning is that all negations are interpreted classically. Hence, these are not treated in terms of the Closed World Assumption or other such non-monotonic rules of inference.

We now proceed to define empirical clauses. A feature of these clauses is that “complex properties” are embodied syntactically by the notion defined below.

Definition 2 A complex predicate symbol \(F\) is an arbitrary disjunction and/or conjunction of positive or negated predicate symbols in \(\mathcal{L}\).

As an example, if \(A, B\) and \(C\) are predicate symbols, then \(A, (A \lor B), ((A \land B) \lor C)\) and \((\neg A) \land B \land (\neg C))\) are some complex predicate symbols that can be generated from these three predicate symbols. Furthermore, given that \(X\) is a variable symbol in \(\mathcal{L}\), we use the notations \((F_1 \land F_2)(X)\) and \((F_1 \land F_2)(X)\) interchangeably, where \(F_1, F_2\) are two complex predicate symbols. Similarly, \((F_1 \lor F_2)(X)\) and \((F_1 \lor F_2)(X)\) are the same. Complex predicate symbols may be viewed as propositional formulas with the predicate symbols of \(\mathcal{L}\) being considered as propositions rather than as unary predicates.

Definition 3 1) An empirical clause is of the form:
\[
[c_1, c_2\] \ F(X) \leftarrow F_1(X) \land \ldots \land F_n(X)
\]
where \(F, F_1, \ldots, F_n\) are complex predicate symbols, \(X\) is a variable, and \(c_1, c_2\) are real numbers in \([0,1]\) such that \(c_1 \leq c_2\) and \([c_1, c_2]\) is equal to neither \([1,1]\) nor \([0,0]\).

2) An empirical program \(P = (C,E)\) consists of a context \(C\) and a finite set \(E\) of empirical clauses.

The intended meaning of an empirical clause is: “given that an arbitrary individual \(X\) has (complex) properties \(F_1, \ldots, F_n\), the conditional probability of \(X\) having property \(F\) falls within the range \([c_1, c_2]\).” From an empirical point of view, it states that: “amongst all individuals that have properties \(F_1, \ldots, F_n\), between \(c_1\%\) to \(c_2\%\) of them have property \(F\).” Note that an empirical clause is not meant to include an implicit universal quantifier on \(X\). In other words, it is not a statement about a universally quantified variable \(X\); rather, it is a statement about a “generic” individual \(X\) in the domain of discourse.

In classical logic, the clause \(A(X) \leftarrow (B(X) \lor C(X))\) can be represented by the two clauses: \(A(X) \leftarrow B(X)\) and \(A(X) \leftarrow C(X)\). Similarly, \(A(X) \land B(X) \land (\neg C(X))\) is equivalent to the conjunction of the clauses \(A(X) \leftarrow C(X)\) and \(B(X) \leftarrow C(X)\). One may wonder whether such an equivalence is true for empirical clauses; if so, complex predicate symbols can be dispensed with. In [15], we show that this is not always possible, and thus, the presence of complex predicate symbols makes empirical clauses more expressive than those without complex symbols.

Example 1 Consider the empirical program \((C,E)\) where \(E\) consists of the following clauses:

\[
\begin{align*}
[0.0, 0.1] \ Grey(X) & \leftarrow Royal.elephant(X) \\
[0.9, 0.95] \ Grey(X) & \leftarrow Elephant(X) \\
[0.1, 0.2] \ Elephant(X) & \leftarrow Grey(X)
\end{align*}
\]

The first clause states that at most 10\% of “Royal.elephants” are “Grey.” The last two clauses describe the relative percentages of “Elephants” and “Grey” individuals. In particular, they state that between 90\% and 95\% of all “Elephants” are “Grey,” whereas only between 10\% and 20\% of “Grey” individuals are “Elephants.” Finally, let the context \(C\) consist of the following clauses:

\[
\begin{align*}
Elephant(X) & \leftarrow Royal.elephant(X) \\
Grey(X) & \leftarrow \neg White(X) \\
Royal.elephant(clyde) & \leftarrow \\
Elephant(jill) & \leftarrow
\end{align*}
\]

The second clause states that for this particular context, every individual is either “Grey” or “White.”

3 Model Theoretic Semantics

3.1 Interpretations and Models

For our language \(\mathcal{L}\), the notion of an interpretation is almost identical to the usual one for first-order languages – except for two differences. The first one is that interpretations \(I\) are assumed to map different constant symbols in \(\mathcal{L}\) to distinct elements in the domain of \(I\). The second difference is that the domain of \(I\) is assumed to be finite. There are two reasons for this assumption. The first one is that empirical programs are intended to reflect findings from statistical samples which are always finite. The other reason,
which is more technical, will be apparent in a later definition on satisfaction (cf. Definition 4).

In conventional logic programming, it suffices to use Herbrand interpretations. However, the following example shows that when dealing with empirical probabilities, using only Herbrand interpretations and universes may not make sense at all.

Example 2 Consider the following empirical program:

\[
C : \quad \text{Monk} \cdot \text{seal}(\text{joe}) \leftarrow \\
E : \quad [0.4, 0.45] \text{Female}(X) \leftarrow \text{Monk} \cdot \text{seal}(X)
\]

The empirical clause states that between 40% and 45% of all "Monk\cdot\text{seal}" are "Females." The context part consists only of the single fact that joe is a "Monk\cdot\text{seal}." But note that the Herbrand universe is the singleton \{\text{joe}\}. Since there is only 1 member in this set, what then is the meaning of "Monk\cdot\text{seal} interpretations. However, the following examples may not make sense at all.

As the above example shows, considering Herbrand interpretations alone may fail to capture the empirical nature of probabilistic reasoning. Hence, in order to discuss arbitrary domains, we also consider non-Herbrand interpretations. We will define shortly when an interpretation satisfies an empirical program. In the sequel, given a predicate symbol A and an interpretation I with domain D, we use the notation \(A_I\) to denote the set \(\{d \in D \mid \phi_A(d) = \text{true}\}\), where I maps the predicate symbol A to the mapping \(\phi_A\). We extend this notation to complex predicate symbols: \((F_1 \land F_2)_I\) to mean \((F_1)_I \cap (F_2)_I\), and \((F_1 \lor F_2)_I\) to mean \((F_1)_I \cup (F_2)_I\), where \(F_1, F_2\) are two complex predicate symbols. We also use the notation \(||F_1 \land \ldots \land F_n||_I\) to denote the cardinality of the set \(F_1 \land \ldots \land F_n\).

Intuitively, \(||F_1 \land \ldots \land F_n||_I\) denotes "the number of individuals in the domain of I that have properties \(F_1, \ldots, F_n\)." Before we define the notion of satisfaction, recall that an empirical program consists of a context \(C\) and a set \(E\) of empirical clauses. Given the nature of \(C\), we say that \(I\) satisfies \(C\) if \(I\) satisfies every clause in \(C\) in the usual sense, for first-order languages. Thus, we only need to define the condition for \(I\) to satisfy the set \(E\) of empirical clauses.

Definition 4 Let \((C, E)\) be an empirical program and \(I\) be an interpretation.

1) We say that \(I\) satisfies the empirical clause \([c_1, c_2] F(X) \leftarrow F_1(X) \land \ldots \land F_n(X)\) iff:
 i) \(||F_1 \land \ldots \land F_n||_I = 0, or
 ii) whenever \(||F_1 \land \ldots \land F_n||_I > 0, c_1 \leq \frac{||F_1 \land \ldots \land F_n||_I}{||F_1 \land \ldots \land F_n||_I} \leq c_2\).

2) We say that \(I\) satisfies \(E\) if \(I\) satisfies every empirical clause in \(E\). Finally, \(I\) satisfies the empirical program \((C, E)\) iff \(I\) satisfies both \(C\) and \(E\).

Example 3 Consider the empirical program in Example 2. Let \(I\) be the interpretation defined as follows. Firstly, the domain of \(I\) is the set \(\{d_1, \ldots, d_20\}\), for some individuals \(d_1, \ldots, d_20\). Secondly, \(\phi_{\text{Monk}\cdot\text{seal}}(d_1) = \text{true}\) for all \(1 \leq i \leq 10\), and \(\phi_{\text{Female}}(d_i) = \text{false}\) for all \(11 \leq i \leq 20\). Finally, \(\phi_{\text{Female}}(d_5)\) is either true or false. With only these two interpretations, it is unclear how they can "satisfy" the first clause in an empirical sense.

Recall that the intuitive meaning of an empirical clause \([c_1, c_2] F(X) \leftarrow F_1(X) \land \ldots \land F_n(X)\) is: "given that an arbitrary individual \(X\) has (complex) properties \(F_1, \ldots, F_n\), the conditional probability that \(X\) also has property \(F\) falls within the range \([c_1, c_2]\)." According to probability theory, the statement can be represented as: \(c_1 \leq \text{Prob}(F|F_1 \land \ldots \land F_n) = \frac{\text{Prob}(\text{F} \land F_1 \land \ldots \land F_n)}{\text{Prob}(F_1 \land \ldots \land F_n)} \leq c_2\), where \(F, F_1, \ldots, F_n\) now represent the appropriate events and assuming that \(\text{Prob}(F_1 \land \ldots \land F_n) \neq 0\). Furthermore, when probabilities are interpreted empirically over statistical samples, we have the following:

\[
\frac{\text{Prob}(\text{F} \land F_1 \land \ldots \land F_n)}{\text{Prob}(F_1 \land \ldots \land F_n)} = \frac{\text{Num}(\text{F} \land F_1 \land \ldots \land F_n)}{\text{Num}(F_1 \land \ldots \land F_n)},
\]

where \(\text{Num}(S)\) denotes the cardinality of the set \(S\). This is the intuition behind Definition 4 for an interpretation to satisfy an empirical clause.

Finally, recall that an interpretation \(I\) for \(C\) has a finite domain. A technical reason for this restriction is that then the ratio \(\frac{\text{Num}(F_1 \land \ldots \land F_n)}{\text{Num}(F_1 \land \ldots \land F_n)}\) is always well-defined and is between 0 and 1, whenever \(||F_1 \land \ldots \land F_n||_I > 0\).

3.2 Consistency of Empirical Programs with Empty Contexts

Let \(\{A_1, \ldots, A_k\}\) be the set of all predicate symbols in \(C\). Furthermore, suppose that all possible subsets of \(\{A_1, \ldots, A_k\}\) are enumerated in an arbitrary, but fixed way: \(P_1, \ldots, P_{2^k}\). For all \(1 \leq i \leq 2^k\), let \(v_i\) be an integer variable that intuitively denotes the number of individuals in an underlying domain that have the complex property: \(\Lambda_{AEP}, A \Lambda_{AEP}, \neg A\). It is easy to see that the \(P_i\)'s divide the set of all individuals into \(2^k\) partitions. Thus, given the \(v_i\)'s, the number of individuals that have an arbitrary property \(F\) can also be determined. This amounts to checking whether for all \(1 \leq i \leq 2^k\), \(F\) is true in each \(P_i\) — in the classical 2-valued Herbrand sense. We often abuse notation by regarding \(F\) as a proposition and write \(P_i \models F\) whenever \(F\) is true in \(P_i\). Then the
number of individuals having property \(F \) is the sum
of the number of individuals in each \(\mathcal{P}_i \) satis-
fying \(F \), i.e. \[\sum_{p_i \models F; i = 1, \ldots, n} v_i. \]
Throughout this paper, to simplify our notation, we often write the term
\(\left(\sum_{p_i \models F; i = 1, \ldots, n} v_i \right) \) as \(\left(\sum_{p_i \models F} v_i \right) \).

Example 4 Consider the empirical clause
\[[0.4, 0.45] \text{Female}(X) \rightarrow \text{Monk...seal}(X) \]
again. The two predicate symbols give rise to the following four partitions:

\(\text{Monk...seal} \)	\(\text{Female} \)	partition	number
1	1	\(\mathcal{P}_1 \)	\(v_1 \)
1	0	\(\mathcal{P}_2 \)	\(v_2 \)
0	1	\(\mathcal{P}_3 \)	\(v_3 \)
0	0	\(\mathcal{P}_4 \)	\(v_4 \)

The first partition corresponds to individuals hav­
ing the properties “Monk...seal” and “Female,” and
so on. Now, since the property “Monk...seal” is
true in the classical 2-valued Herbrand sense in
\(\mathcal{P}_1 \equiv \{ \text{Monk...seal, Female} \} \) and \(\mathcal{P}_2 \equiv \{ \text{Monk...seal} \} \),
the number of individuals having the property
“Monk...seal” is given by \((v_1 + v_2) \).

Definition 5 Let \(E \) be a set of empirical clauses.
1) Let \(\mathcal{C}_I \equiv \{ c_1, c_2 \} \)
\(F(X) \rightarrow F_1(X) \wedge \ldots \vee F_n(X) \)
be an empirical clause. The constraint version of \(\mathcal{C}_I \),
denoted by \(con(\mathcal{C}_I) \), is the constraint:
\[c_1 \ast \left(\sum_{p_i \models F_1 \wedge \ldots \vee F_n} v_i \right) \leq \left(\sum_{p_i \models F_1 \wedge \ldots \vee F_n} v_i \right) \leq c_2 \ast \left(\sum_{p_i \models F_1 \wedge \ldots \vee F_n} v_i \right) \]
2) Let \(con(E) \) denote the set \(\{con(C)|C \in E\} \cup \{\sum_{i=1}^{2^k} v_i \geq 1\} \).

The reason why we study \(con(E) \) is that we intend to
check the consistency of \(E \) based on the constraints in
\(con(E) \). More specifically, if \(I \) is a model of \(E \), and
if \(n_i \) denotes the number of individuals in the domain of
\(I \) corresponding to \(\mathcal{P}_i \) for all \(1 \leq i \leq 2^k \),
then the assignment \(v_i = n_i \) for all \(1 \leq i \leq 2^k \) represents a
solution to the constraints in \(con(E) \). Furthermore,
the constraint \(\sum_{i=1}^{2^k} v_i \geq 1 \) in \(con(E) \) guarantees that
if \(I \) is model of \(E \), the domain of \(I \) must be non-empty.
While the details of this discussion will be formalized shortly,
first consider the following example.

Example 5 Let \(E \) consist of the single clause
\[[0.4, 0.45] \text{Female}(X) \rightarrow \text{Monk...seal}(X) \]
Then according to Example 4, \(con(E) \) consists of the following two constraints:
\[0.4 \ast (v_1 + v_2) \leq v_1 \leq 0.45 \ast (v_1 + v_2) \]
\[v_1 + v_2 + v_3 + v_4 \geq 1 \]

One integer solution to this set of constraints is \(v_1 = 4, v_2 = 5, v_3 = 0, v_4 = 10 \). Thus, for instance, the
interpretation considered in Example 3 satisfies these
constraints.

Definition 6 Let \(I \) be an interpretation. Let \(S_I \) be
defined as follows: for all \(1 \leq i \leq 2^k \), \(S_I(\mathcal{P}_i) = \|
\bigwedge_{\mathcal{A} \in \mathcal{A}_P} A \wedge \mathcal{A}_P, \neg A \|_I \).

Intuitively, \(S_I \) specifies the number of individuals within each partition \(\mathcal{P}_i \) of the domain of \(I \).

Theorem 1 Let \(I \) be an interpretation and \(E \) be a
set of empirical clauses. \(I \) is a model of \(E \) iff \(S_I \) is a
solution of \(con(E) \).

The above theorem suggests a practical way to check
the consistency of a set \(E \) of empirical clauses. This
amounts to checking whether \(con(E) \) has an integer
solution. As all the constraints are linear \(^1\), checking
whether \(con(E) \) has a solution can be carried out by an
integer linear programming algorithm. One advantage of
viewing consistency checking as constraint satisfaction
is that implementations of such algorithms are
widely available, such as the LINDO package running
on the IBM/PC.

3.3 Consistency of Empirical Programs

Given an empirical program \(\langle C, E \rangle \), recall from
Definition 4 that an interpretation \(I \) is a model of the pro-
gram iff \(I \) satisfies all \(C \) and \(E \). **Theorem 1** above
suggests a way to check the consistency of the \(E \) part
of the program. Moreover, there are certainly many ways
to check the consistency of the \(C \) part, such as using
the implementation described in [4]. Obviously, the
problem is that the consistency of \(C \) and \(E \), when
considered separately, does not guarantee the joint consis-
tency of \(\langle C, E \rangle \). One straightforward solution to this
problem is to find a model for the \(C \) part and then test
for satisfaction of the \(E \) part using **Theorem 1**. How-
ever, if \(\langle C, E \rangle \) is jointly inconsistent, this strategy may
not terminate, as \(C \) may have infinitely many models.
In the following, we present a terminating procedure
that decides the consistency of an empirical program.

Algorithm 1 Let the input be an empirical program
\(\langle C, E \rangle \).

1. Partition the clauses in \(C \) into two sets \(C_1, C_2 \)
such that \(C_1 \) consists of all non-ground clauses in
\(C \) (i.e. \(C_1 = \{ CI| CI \equiv L_0(X) \rightarrow L_1(X) \wedge \ldots \wedge L_n(X) \text{ is a clause in } C \} \)), and \(C_2 = C - C_1 \).

2. By **Definition 1**, every clause in \(C_2 \) is ground.
Find all Herbrand models of \(C_2 \) using techniques
such as the one described in [4].

\(^1\)Strictly speaking, our constraints are fractional con-
traints. However, for most applications, these fractional
constraints can be easily translated to linear constraints.
See [19] for a general treatment on a translation from frac-
tional to linear constraints.
3. If no such Herbrand model can be found, declare that the program is inconsistent and halt.

4. Otherwise, let \(\{M_1, \ldots, M_u\} \) be the set of Herbrand models of \(C_2 \) computed in Step 2. Set \(j \) to 1.

5. If \(j > u \), declare that the empirical program is inconsistent and halt.

6. Initialize the set \(T \) to \(\text{con}(E) \).

7. For each clause \(C_l \equiv L_0(X) \leftarrow L_1(X) \wedge \ldots \wedge L_n(X) \) in \(C_1 \), add the constraint:
 \[
 \left(\sum_{P_i \in L_0} v_i \geq n_A \right) \text{ to } T.
 \]

8. For each predicate symbol \(A \) appearing in \(C_2 \), do the following:
 - Compute the number \(n_A \) which is the cardinality of the set \(\{A(c) \mid A(c) \in M_j \text{ for some constant symbol } c\} \). Then add the constraint:
 \[
 \left(\sum_{P_i \in A} v_i \geq n_A \right) \text{ to } T.
 \]
 - Similarly, compute the number \(\bar{n}_A \) which is the cardinality of the set \(\{-A(c) \mid A(c) \notin M_j \text{ for some constant symbol } c\} \). Then add the constraint:
 \[
 \left(\sum_{P_i \equiv -A} v_i \geq \bar{n}_A \right) \text{ to } T.
 \]

9. Determine whether the constraints in \(T \) have a solution. If they do, declare that the program is consistent and halt.

10. Otherwise, increment \(j \) and go to Step 5.

In Step 1 of Algorithm 1, the context \(C \) is partitioned into two sets: \(C_1 \) consisting of all non-ground clauses and \(C_2 \) consisting of all ground clauses in \(C \). As the number of clauses in \(C_2 \) is finite and all clauses are ground, the computation in Step 2 always terminates with a finite set of Herbrand models. If this set is empty, then \((C, E) \) is inconsistent. Otherwise, for each Herbrand model \(M_j \) computed, Step 8 adds constraints of the forms \(\left(\sum_{P_i \in A} v_i \geq n_A \right) \) and \(\left(\sum_{P_i \equiv -A} v_i \geq \bar{n}_A \right) \) to \(T \) for each predicate symbol \(A \). This is to guarantee that subsequently an interpretation that corresponds to a solution of the constraints in \(T \), will be able to make all ground atoms \(A(c) \) true iff \(A(c) \in M_j \).

Finally, for Step 9, any standard mixed integer linear programming algorithm can be used to determine whether the constraints in \(T \) have a solution. This step is also guaranteed to halt. Hence, Algorithm 1 always terminates.

Theorem 2 Algorithm 1 is sound and complete in determining consistency of empirical programs, i.e. \((C, E) \) is consistent if and only if Algorithm 1 declares that it is consistent.

Example 6 Consider the empirical program:

\[
C: \quad \text{Monk} \leftarrow \neg \text{Female} \\
E: \quad [0.4, 0.45] \text{Female}(X) \leftarrow \text{Monk}(X)
\]

The following constraints are tested for satisfiability by Algorithm 1:

\[
\begin{align*}
v_1 + v_2 & \geq 1 \\
v_2 + v_4 & \geq 1 \\
0.4 \cdot (v_1 + v_2) & \leq v_1 \leq 0.45 \cdot (v_1 + v_2) \\
v_1 + v_2 + v_3 + v_4 & \geq 1
\end{align*}
\]

It is easy to verify that these constraints are satisfiable. For instance, one solution is: \(v_1 = 4 \), \(v_2 = 6 \) and \(v_3, v_4 \) equal to any non-negative integers. Thus, this program is consistent; for instance, the interpretation given in Example 3 is a model.

The above example highlights the major difference between the current framework for empirical probabilities and the earlier formalisms we proposed for subjective probabilities [13, 14]. In those formalisms, a clause corresponding in appearance to an empirical clause applies to every individual in the Herbrand domain. Thus, the subjective probability of \(\text{Female}(joe) \) is simultaneously 0 due to \(\neg \text{Female}(joe) \), and between 0.4 and 0.45 due to the clause in \(E \). This gives rise to an inconsistency. Thus, this program is inconsistent in the formalisms in [13, 14].

4 Query Processing for Consistent Empirical Programs

4.1 Outline for Query Answering

A query to an empirical program is of the form: \(Q \equiv F(d) \) which intuitively asks for the conditional probability of constant \(d \) having (complex) property \(F \), given that the program is true. As a preview, we first outline below a two-step procedure that can be used to answer this query; the procedure will be formalized in Section 4.3.

In the first step, the query answering procedure poses the query against the context \(C \). If the context can deduce the truth or falsity of the query, then the procedure returns the answer 1 or 0 respectively, and the processing for the query is completed. Otherwise, the procedure moves to the second stage.

When no definite answer to the query can be deduced, the procedure then tries to induce the conditional probability by consulting the empirical clauses in \(E \). More specifically, given the properties possessed by \(d \), the procedure poses the query \(F(X) \) to the empirical clauses. As we argued before, the set \(X \) here should not be taken as a quantifier; rather, it represents a generic random individual in the domain.

Example 7 Consider the program discussed in Example 1. Suppose the query is \(Q_1 \equiv \text{Elephant}(clyde) \).
Then, using the first and third clauses, it is easy to see that, given the context, the conditional probability of Elephant(clyde) is 1. Now consider the query $Q_2 \equiv \text{Greg(clyde)}$. No definite answer for Q_2 can be deduced from the context. Thus, the query $\text{Greg}(X)$ is posed to the empirical clauses. The first two empirical clauses may be used to induce information about clyde because clyde is known, from the context, to be both an "Elephant" and a "Royal elephant." □

The query Q_2 in the above example underlines a major issue involved in such inductive answering – the choice of answers when more than one inductive answer is possible. The approach we take to resolve such conflicts is the one customarily used in statistical inferences – choose the one with the most specific reference class. In the following, before we formalize our query answering procedure, we first discuss how empirical programs can be compiled to facilitate the choice of reference classes and the corresponding empirical clauses.

4.2 Unfolding and Chaining of Empirical Programs

The unfolding procedure below computes the set of implications that are needed in query answering to determine the preferences of clauses.

Algorithm 2 Let C be the context of an empirical program.

1. Set S to be the set of all complex predicate symbols in L. Set C' to be the set of all non-ground clauses in C, i.e. $C' = \{L_0 \leftarrow L_1 \land \ldots \land L_n \mid L_0(X) \leftarrow L_1(X) \land \ldots \land L_n(X) \text{ is a clause in } C\}$.

2. Construct $\text{impl}(C) = \{F_1(X) \leftarrow F_2(X) \mid F_1, F_2 \in S \text{ and } \lnot(F_1 \lor \lnot F_2)\} \cup C'$ is unsatisfiable. □

Recall that there are only finitely many predicate symbols in L. Thus, in [15], we show that the set S described in Algorithm 2 must be finite. Hence, the algorithm always terminates, yielding a finite set $\text{impl}(C)$.

Algorithm 2 is not the only optimization that can be carried out in compiling a program. Another one is chaining that can be computed by the following algorithm. The purpose of chaining clauses is to ensure that our query answering procedure (cf. Algorithm 4 below) is complete (cf. Theorem 4). In the sequel, the symbols F_1, F_2, F_3 and F_4 are assumed to be distinct complex predicate symbols.

Algorithm 3 Let $EP = (C, E)$ be an empirical program.

1. Use Algorithm 2 to compute the set $\text{impl}(C)$.

2. Set T_0 to E, and i to 1.

3. Construct the set $S_1 = \{[c_1, 1] F_1(X) \leftarrow F_2(X) \mid F_1(X) \leftarrow F_2(X) \text{ is a clause in } \text{impl}(C)\}$ and $[c_1, c_2] F_2(X) \leftarrow F_3(X) \text{ is a clause in } T_{i-1}\}$.

4. Construct the set $S_2 = \{1 - c_1, 1 - c_1] F_1(X) \leftarrow F_2(X) \mid [c_1, c_2] \lnot F_1(X) \leftarrow F_2(X) \text{ is a clause in } T_{i-1}\}$.

5. Construct the set $S_3 = \{\max\{0, c_1 + d_1 - 1\}, \min\{c_2, d_2\}] (F_1 \lor F_2)(X) \leftarrow F_3(X) \mid F_1 \neq F_2$ and $[c_1, c_2] F_1(X) \leftarrow F_3(X)$ and $[d_1, d_2] F_2(X) \leftarrow F_3(X)$ are clauses in $T_{i-1}\}$. S_4.

6. Construct the set $S_4 = \{\max\{c_1, d_1\}, \min\{1, c_2 + d_2\}] (F_1 \land F_2)(X) \leftarrow F_3(X) \mid F_1 \neq F_2$ and $[1, c_2] F_1(X) \leftarrow F_3(X)$ and $[d_1, d_2] F_2(X) \leftarrow F_3(X)$ are clauses in $T_{i-1}\}$. S_5.

7. Construct the set $S_5 = \{0, \min\{1, c_2 + d_2\}] (F_1 \land F_2)(X) \leftarrow F_3(X) \lor F_4(X) \mid F_1 \neq F_4, F_2 \neq F_4, F_2 \neq F_3$ and $[c_1, c_2] F_1(X) \leftarrow F_2(X)$ and $[d_1, d_2] F_2(X) \leftarrow F_3(X)$ are clauses in $T_{i-1}\}$. S_6.

8. Set $T_i = T_{i-1} \cup S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5$. If T_i is the same as T_{i-1}, then set $\text{comp}(EP) = \langle \text{impl}(C), T_i \rangle$ and halt.

9. Otherwise, increment i and go to Step 3. □

Note that it is possible to have clauses of the form $F_1(X) \leftarrow F_2(X)$ and $F_2(X) \leftarrow F_1(X)$ in $\text{impl}(C)$ simultaneously. It is also possible to have empirical clauses $[c_1, c_2] F_1(X) \leftarrow F_2(X)$ and $[d_1, d_2] F_2(X) \leftarrow F_1(X)$ in E. Checking $T_i = T_{i-1}$ in Step 8 of Algorithm 3 is to prohibit cyclic chaining of clauses. In other words, the algorithm continues to the next iteration only if at least one new empirical clause is added in the current iteration. Since the number of predicate symbols in L is finite, there can only be a finite number of empirical clauses of the forms generated above. Thus, the above algorithm terminates after a finite number of iterations, yielding a finite program $\text{comp}(EP)$. Theorem 3 below shows that chaining does not change the meaning of an empirical program.

Theorem 3 Let $EP = (C, E)$ be an empirical program. Then EP and $\text{comp}(EP)$ are logically equivalent. □

4.3 A Procedure for Query Answering

Recall from Section 4.1 that inductive answering involves choosing the most specific reference class. However, in general, as reference classes may only follow a partial order in specificity, there may not be a unique most specific reference class; rather, there may only be several maximally specific reference classes. The following definition deals with this situation.
Definition 7 Let C be a context and $impl(C)$ be computed as shown above. Furthermore, let S be a set of complex predicate symbols $\{F_1, \ldots, F_n\}$. A subset T of S is a maximally preferred cluster in S based on $impl(C)$ if:

1. for any two elements $F_1, F_j \in T$, $F_1(X) \leftarrow F_j(X) \in impl(C)$ and vice versa, for some variable symbol X, and
2. for all $F_i \in (S - T)$, $F_i(X) \leftarrow F_j(X) \notin impl(C)$, where $F_j \in T$.

Basically, if two formulas F_1, F_j are in the same cluster, then the context C entails the formula $F_1(X) \leftarrow F_j(X)$, i.e. as far as the context C is concerned, the formulas F_1 and F_j are essentially equivalent. Intuitively, a maximally preferred cluster corresponds to a maximally specific reference class. This is formalized by Condition (ii) of the definition above.

Algorithm 4 Let the inputs be a query $F(d)$ and the compiled version $comp(EP) = \langle C, E \rangle$ of an empirical program.

1. If $F(d)$ is a logical consequence of C, return 1 as the probability, and halt.
2. If $\neg F(d)$ is a logical consequence of C, return 0 as the probability, and halt.
3. (Inductive answering begins.) Otherwise, construct the set $S = \{ [c_1, c_2] F(X) \leftarrow F_1(X) \in E | F_1(d) \text{ is a logical consequence of } C \} \cup \{ C | C \equiv [c_1, c_2] F(X) \leftarrow E \}$. Intuitively, S contains all the applicable empirical clauses that either have a null body or require properties possessed by the individual d. If S is empty, halt.
4. Otherwise, construct the set $S_1 = \{ F_1 | [c_1, c_2] F(X) \leftarrow F_1(X) \in S \}$. (For clauses in S that have a null body, true is added to S_1.)
5. Compute the set of maximally preferred clusters in S_1 based on $impl(C)$. Let this set be $\{T_1, \ldots, T_m\}$.
6. For each T_i, $1 \leq i \leq m$, do the following. Let $T_i = \{ F_1, \ldots, F_u \}$ for some F_1, \ldots, F_u. Return the range $\bigcap_{j=1}^u \{ [c_1, c_2] F(X) \leftarrow F_j(X) \} \text{ as the probability range based on } F_1, \ldots, F_u$, where the clauses $[c_1', c_2'] F(X) \leftarrow F_j(X)$ for all $1 \leq j \leq u$ are all in S.

Note that Steps 1, 2 and 3 of Algorithm 4 involve checking to see whether a ground atom of the form $F(d)$ is true or false in all the models of the given context C. Such testing can be implemented by a standard unsatisfiability checker, such as one based on resolution, or a mixed integer linear programming algorithm such as the one in [4].

Example 8 Suppose the query $\neg White(clyde)$ is posed against the program considered in Example 1. It is easy to see that there are models of the context C in which $\neg White(clyde)$ is true as well as models of C in which $\neg White(clyde)$ is false. Thus, inductive answering in Step 3 of Algorithm 4 is needed. Since it is obvious that both $Royal,elephant(clyde)$ and $Elephant(clyde)$ are true in all models of C, the two clauses below (which are generated when the program is compiled by Algorithm 3) are added to the set S in Step 3:

$[0, 0.1] \neg White(X) \leftarrow Royal,elephant (X)$
$[0, 0.95] \neg White(X) \leftarrow Elephant(X)$

The set S_1 constructed in Step 4 of Algorithm 4 is $\{ Elephant, Royal,elephant \}$. Since the clause $Elephant(X) \leftarrow Royal,elephant(X)$ is in C, it is obvious that both $Royal,elephant(clyde)$ and $Elephant(clyde)$ are true in all models of C, respectively. Hence, the answer of the query is the range $[0, 0.1)$, and the range $[0, 0.95]$ based on $Elephant$ is not returned as an answer.

Given a compiled empirical program $comp(EP)$ and a query $F(d)$, we use the notation $proof(EP, F, d)$ to denote the set of all ranges $\langle C, E \rangle$ obtained by applying Algorithm 4 to $comp(EP)$ and $F(d)$. We also use the notation $consq(EP, F, d)$ to denote the set of all ranges satisfied by all the models of EP for the query $F(d)$.

Theorem 4 Let $EP = \langle C, E \rangle$ be an empirical program and $F(d)$ be a query. Then Algorithm 4 is sound and complete, i.e. $proof(EP, F, d) = consq(EP, F, d)$.

5 Related Work

Our framework was inspired, in part, by Bacchus’ framework that extends full first order logic with empirical probability statements. He develops a sound and complete proof procedure for consistent theories, but does not provide a consistency check mechanism. We provide explicit mechanisms for determining the consistency of empirical programs. These mechanisms are based upon mixed integer linear programming techniques and hence, may be implemented on top of standard integer programming packages. They are guaranteed to terminate. Both Bacchus [2] and our framework use the concept of inductive answering. Furthermore, we provide compilation techniques that facilitate processing of queries that require inductive (and deductive) answering.

The integration of logic and probability theory has been the subject of numerous studies [7, 10, 16, 18]. Fagin, Halpern and Meggido [7] have proposed a
model-theoretic basis for reasoning about systems of linear inequalities of probabilities. Their proposal is based on the possible-world approach, and hence is different from the empirical approach considered here. Kavvadias and Papadimitriou [10] have studied the consistency of probabilistic logic programs using linear programming. However, their study is based on Nilsson's possible worlds semantics, i.e. the linear programs specify constraints on the probability distributions over the set of possible worlds (which is identical to the set of Herbrand interpretations). On the other hand, the linear programs in our framework specify constraints over the domain of an interpretation, which may or may not be an Herbrand interpretation.

6 Conclusions

In this paper, we develop a model-theoretic foundation for logic programming that supports empirical probabilities and allows inductive probabilistic reasoning to be performed. To capture the intuitions behind empirical probabilities, our model theory also considers non-Herbrand interpretations. Furthermore, we develop a totally correct algorithm for verifying the consistency of monadic deductive databases. This algorithm can be implemented using mixed integer linear programming algorithms. Finally, for dealing with queries to such databases, we develop a sound and complete procedure that uses deductive and inductive answering. We also devise compilation techniques to facilitate this procedure.

Acknowledgements

This research was partially sponsored by the National Science Foundation under Grant IRI-91-09755.

References

[1] S. Amager, D. Dubois and H. Prade. (1991) Constraint Propagation with Imprecise Conditional Probabilities, Proc. 1991 International Conference on Uncertainty in AI, pp 26–34.
[2] F. Bacchus. (1990) Representing and Reasoning with Probabilistic Knowledge, MIT Press.
[3] J.F. Baldwin. (1987) Evidential Support Logic Programming, J. of Fuzzy Sets and Systems, 24, pps 1–26.
[4] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. (1992) Implementing Deductive Databases by Linear Programming, to appear in Symposium on Principles of Database Systems.
[5] H. A. Blair and V.S. Subrahmanian. (1987) Paraconsistent Logic Programming, Theoretical Computer Science, 68, pp 35-54.
[6] D. Dubois, H. Prade and J. Lang. (1991) Towards Possibilistic Logic Programming, Proc. 1991 Intl. Conf. on Logic Programming, ed. K. Furukawa, pps 581–595, MIT Press.
[7] R. Fagin, J. Y. Halpern and N. Megiddo. (1989) A Logic for Reasoning About Probabilities, to appear in: Information and Computation.
[8] M. C. Fitting. (1988) Bilattices and the Semantics of Logic Programming, to appear in: Journal of Logic Programming.
[9] H. Geffner (1989) Default Reasoning: Causal and Conditional Theories, Technical Report 137, Cognitive Systems Laboratory, University of California, Los Angeles.
[10] D. Kavvadias and C. H. Papadimitriou. (1990) A Linear Programming Approach to Reasoning About Probabilities, Annals of Mathematics and Artificial Intelligence, 1, pps 189-205.
[11] M. Kifer and V. S. Subrahmanian. (1991) Theory of Generalized Annotated Logic Programming and its Applications, Journal of Logic Programming, 12, 4, pp. 335–368.
[12] H. E. Kyburg, Jr. (1974) The Logical Foundations of Statistical Inference, D. Reidel.
[13] R.T. Ng and V.S. Subrahmanian. (1989) Probabilistic Logic Programming, to appear in: Information and Computation. Preliminary version in: Proc. 5th International Symposium on Methodologies for Intelligent Systems, pp 9-16.
[14] R.T. Ng and V.S. Subrahmanian. (1991) Stable Semantics for Probabilistic Deductive Databases, to appear in: Information and Computation (1993). Preliminary versions in: Proc. 1991 International Conference on Uncertainty in AI, pp 249–256.
[15] R.T. Ng and V.S. Subrahmanian. (1992) Empirical Probabilities in Monadic Deductive Databases, Technical Report, University of Maryland, College Park.
[16] N. Nilsson. (1986) Probabilistic Logic, AI Journal 28, pp 71–87.
[17] G. Paass. (1988) Probabilistic Logic, Non-Standard Logics for Automated Reasoning, Academic Press, London, pp 213–252.
[18] J. Pearl. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann.
[19] S. Schaible and T. Ibaraki. Fractional Programming, European Journal of Ibaraki. Fractional Programming, European Journal of Operations Research, 12, pp. 325–338.
[20] M.H. van Emden. (1986) Quantitative Deduction and its Fixpoint Theory, Journal of Logic Programming, 4, 1, pp 37-53.