The object of research is the technological process of burning pellets in boilers. Using solid fuel boilers on pellets for heat production, they are trying to reduce dependence on hydrocarbon energy resources. Often such boilers are installed for autonomous heating of schools and other communal facilities. One of the most problematic areas is the analysis of the environmental impact when using pellets as a fuel for municipal boiler houses in urban areas. Boilers operating on solid fuels are characterized by a larger range of pollutants, as well as large values of concentrations emitted through the chimney. In the course of the research, instrumental measurement tools were used, which made it possible to obtain the value of the concentrations of pollutants in the emissions from the chimneys of boilers. In particular, the average maximum concentrations of the main pollutants were: nitrogen dioxide – 271.78 mg/m³, carbon emissions – 1933.44 mg/m³, sulfur dioxin – 13.37 mg/m³, suspended solids, undifferentiated in composition (dust, ash) – 93.2 mg/m³. Using the data of instrumental measurements according to the method of calculating the concentrations of harmful substances in the atmospheric air, a map of the dispersion of emissions was created. Surface concentration fields were plotted on the scatter map, which makes it possible to compare the obtained values with hygienic normative atmospheric air. This makes it possible to determine the distance where the highest value of pollutants from the emission source is recorded. By combining instrumental measurement methods and calculation methods, the volumes and nomenclature of emissions were determined. This made it possible to determine the amount of pollutants per unit mass of burned pellets in the boiler. Using the conducted studies and theoretical calculations for various types of fuel in the production of heat, this will allow assessing their impact on air pollution and reducing the risk of harm to human health.

Keywords: pellet combustion, emission concentration, gas analyzer, scattering zone, measurement of pollutant emissions.

1. Introduction

In the early 70s of the last century, the German inventor Rudolf Gunerman, who moved to the United States in 1949, patented his invention of pellets, which literally means «granules» in English. So, to the traditional fuel sources: firewood, coal, peat, oil refining and gas products, which have long been known to mankind and existed as minerals, a fundamentally new artificially created fuel source was added – pellets made from waste wood, agriculture. The energy content of 1 kg of wood pellets corresponds to approximately 0.5 liters of diesel fuel.

In the early nineties of the last century, first in the northern countries: Canada, Sweden, and Finland, then in the European countries of middle latitudes: the Czech Republic, Slovakia, Poland, Germany, and then the Asian countries began the industrial production of pellets. As a raw material for pellets, wood waste was used, as well as agricultural products: husks, corn roots, straw, willow bushes, grass, etc.

The main advantages of pellets are:
- lower ash content compared to wood and coal;
- made from natural raw materials;
- high density provides more heat production;
- convenience and hygiene in use [1, 2].

Pellets are used in gas generating and solid fuel boilers. The rapid growth in the consumption of pellets is especially noticeable in the last 10–15 years, when oil and gas prices have risen sharply and environmental requirements for fuel-burning equipment have significantly increased. In Ukraine, the production and use of pellets has been actively developing in the last 5–8 years. Pellet boilers have become actively used as a replacement for expensive natural gas, for example, in communal boiler houses equipped with autonomous heating systems, especially often in:
- school institutions;
- kindergartens;
- residential ACOAB (association of co-owners of an apartment building);
- budgetary institutions;
- shops;
- post offices in the countryside, etc.

In the works of researchers, considerable attention is paid to the technology of pellet production, types of raw materials for the production of pellets, methods of growing,
transporing, and storing biomass [3–5]. At the same time, the
direct impact of the operation of boilers using pel-
lets on the environment, the analysis of emissions, their
distribution, especially in dense urban areas, buildings of
different heights, are not fully carried out and without
the use of modern measuring instruments. Therefore, it is
important to study the effect of pollutant emissions from
the operation of boilers using pellets on air pollution.
Thus, the technological process of burning pellets in
boilers was chosen as the object of research.
The aim of research is to determine the volume of emis-
sions and the range of pollutants in the technological process
of using a typical pellet boiler for a school institution with
a communal boiler capacity of up to 500 kW.

2. Research methodology
To study the emissions of pollutants from boilers using
pellets as fuel, a standard design of an autonomous boiler
house was taken for most schools, ACOAB, budgetary institu-
tions, shops, etc. using two solid fuel boilers with a capacity
of up to 100 kW each. The above combination of two solid
fuel boilers is typical and common throughout the country.
The initial data for research are as follows:
For heat supply during the heating period, two boilers are
installed in the boiler room of a typical municipal institution:
– 1st boiler unit of the ALTEP DUO UNI PLUS type
<KT-2E-N> (Ukraine) with a capacity of 95 kW. Emission
source No. 1, the main fuel is pellets (fuel pellets);
– 2nd boiler unit of the ALTEP DUO UNI PLUS boiler
type <KT-2E-N> (Ukraine) with a capacity of 95 kW. Emission
source No. 2, the main fuel is pellets (fuel pellets).
Boilers operate during the heating season (7 months).
Operating time is 5040 hours/year.
There are no primary measures to reduce pollutant
emissions. Exhaust gas cleaning is not provided. Emissions of
pollutants are formed as a result of the processes of
combustion of the specified fuel in boiler units. Emissions of
pollutants depend only on the combustion process, which
is due to the design of the boilers.
Tables 1, 2 show the technical data on boilers, raw
materials, time and mode of operation.
Instrumental measurements of sources of emissions from
boiler units were carried out using highly sensitive measuring
instruments: gas analyzers, meters of velocity, temperature
and volumetric flow rates of gas and dust flows according
to DSTU 8725:2017, DSTU 8726:2017, DSTU 8812:2018
and DSTU 8826:2019 [6–9]. Table 3 shows the technical
characteristics of a portable highly sensitive gas analyzer of
the OKSI-5M type (Ukraine).

Devices of the OKSI series are designed for environmen-
tal and thermal measurements of the volume concentration
of oxygen \(O_2\), \(CO\), \(NO\), \(NO_2\) and \(SO_2\) in flue gases and
air, flue gas temperature (\(T\)). The device has the ability
to store up to 250 measurement results. Communication
with a computer is carried out via RS 232. Gas analyzers
are portable automatic microprocessor devices of continuous
operation and are produced for the needs of the national
economy. Scope of gas analyzers: maintenance, environmental
control, repair and debugging of fuel-burning equipment [10].
The instrumental values of the measurements (averaged
over 90 days of boiler operation in winter) according to
the approved measurement methods, pollutant values and
other parameters (temperature, pressure, flow rate) of the
gas and dust flow in emissions from boiler units when
using pellets are given in Table 4.

### Table 1

| Main raw material | Total consumption of raw materials per year for two boilers |
|-------------------|----------------------------------------------------------|
| Fuel pellets from coniferous wood species | 80.68 tons |

### Table 2

| Technological equipment | Name | Productivity | Time balance for the year, h/year |
|-------------------------|------|--------------|----------------------------------|
| Solid fuel boiler No. 1 | ALTEP DUO UNI PLUS <KT-2E-N> | 95 kW | 5040 |
| Solid fuel boiler No. 2 | ALTEP DUO UNI PLUS <KT-2E-N> | 95 kW | 5040 |

### Table 3

| Specifications of the OKSI-5M gas analyzer |
|------------------------------------------|
| Measured value | Measuring range | Measuring range interval | Limit of permissible errors |
|----------------|-----------------|--------------------------|---------------------------|
| \(O_2\) | 0–21 \% | - | ±0.2 \% | - |
| \(CO\) | 0–5000 mln\(^{-1}\) | 0–200 mln\(^{-1}\) | ±10 mln\(^{-1}\) | - |
| \(NO\) | 0–2000 mln\(^{-1}\) | 0–200 mln\(^{-1}\) | ±20 mln\(^{-1}\) | ±5 \% |
| \(NO_2\) | 0–300 mln\(^{-1}\) | - | ±10 mln\(^{-1}\) | - |
| \(SO_2\) | 0–5000 mln\(^{-1}\) | 0–200 mln\(^{-1}\) | ±10 mln\(^{-1}\) | - |
| Gas tempera-
ture \(T\) | 0–1000 °C | 100–1000 °C | ±1 °C | ±0.5 °C |
| Gas pres-
sure \(P\) | -1000–7000 Pa | scale – 1 Pa | - | 0.5 \% (rel) |
| Notes | The time for the gas analyzer to enter the operating mode is not more than 60 s |

### Table 4

| Concentrations of sources of formation of pollutants and parameters of gas and dust flow of boiler units |
|---------------------------------------------------------------|
| Emission sources No. | Source of pollutant formation | Source of pollutant formation, m\(^3\)/s | Temperature, °C | Pollutant | Pollutant concentration value mg/m\(^3\) |
|---------------------|-----------------------------|----------------------------------|-----------------|----------------------------------------|
| 1                   | Pipe, solid fuel boiler ALTEP DUO UNI PLUS <KT-2E-N> | 0.043 | 125 | Code | Name | Max | Min |
|                     | 301 | Nitrogen dioxide | 271.79 | 285.34 |
|                     | 337 | Carbon monoxide | 1844.55 | 1795.65 |
|                     | 330 | Sulphur dioxide | 13.37 | 11.68 |
|                     | 2902 | Suspended hard parts, undifferentiated in composition | 90.59 | 82.47 |
| 2                   | Pipe, solid fuel boiler ALTEP DUO UNI PLUS <KT-2E-N> | 0.0450 | 165 | 301 | Nitrogen dioxide | 285.5 | 249.71 |
|                     | 337 | Carbon monoxide | 1935.44 | 1765.73 |
|                     | 330 | Sulphur dioxide | 13.11 | 10.16 |
|                     | 2902 | Suspended hard parts, undifferentiated in composition | 93.2 | 75.14 |
In column 7, 8 of Table 4 for sources of formation No. 1, 2, the concentration of pollutants is given, reduced to normal conditions – 6 % oxygen (solid fuel).

3. Research results and discussion

Autonomous boiler room is equipped with pellet boilers ALTEP DUO UNI PLUS «KT-2E-N» and ALTEP DUO UNI PLUS «KT-2E-N». The consumption of pellets is 40.34 tons per year per boiler. Each boiler is equipped with a separate chimney with parameters \( H = 10.9 \text{ m}, D = 0.178 \text{ m} \). Boiler operation time – 5040 h/year. Emissions of pollutants into the atmosphere during the combustion of fossil fuels is carried out according to \([11]\).

The gross emission of the \( j \)-th pollutant \( E_j \) entering the atmosphere with the flue gases of the power plant over the time interval \( P \) is determined by the formula:

\[
E_j = \sum_{i} E_j = 10^{-6} \sum_{i} k_i B_i(Q_i' \gamma_i), \tag{1}
\]

where \( E_j \) – the gross emission of the \( j \)-th pollutant during the combustion of the \( i \)-th fuel over a period of time \( P, \text{ t} \); \( k_i \) – the emission index of the \( j \)-th pollutant for the \( i \)-th fuel, \text{ g/GJ} \); \( B_i \) – the consumption of the \( i \)-th fuel over the time interval \( P, \text{ t} \); \( (Q_i' \gamma_i) \) – the lower working calorific value of the \( i \)-th fuel, \text{ MJ/kg}.

The mass elemental composition (%) of wood pellets is filled in accordance with the protocol for laboratory testing of pellets (Table 5).

The specific emission index determined on the basis of measurements of pollutant concentrations (reduced to the standard oxygen content \( O_2 = 6 \%) \) is given in Table 6.

The specific emission indicators

| Fuel | C\text{r}, % | H\text{r}, % | S\text{r}, % | O\text{r}, % | N\text{r}, % | A\text{r}, % | W\text{r}, % | Q\text{r}i, MJ/kg |
|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|
| Pellets | 46.81 | 5.6 | 0.01 | 38.83 | 0.55 | 0.9 | 7.3 | 17.6 |

Table 5

Elemental composition of pellets

| Boiler No. 1 | Boiler No. 2 |
|--------------|--------------|

Nitrogen oxide emission factor, g/GJ

\[
C_{O_2, i}^\text{in} = 271.78 \text{ mg/m}^3 = \frac{271.78 \cdot 4.429}{17.6} \left(1 - \frac{2}{100}\right) = 67.02
\]

\[
C_{O_2, i}^\text{out} = 266.5 \text{ mg/m}^3 = \frac{266.5 \cdot 4.429}{17.6} \left(1 - \frac{2}{100}\right) = 65.72
\]

Carbon monoxide emission factor, g/GJ

\[
C_{CO, i}^\text{in} = 1844.55 \text{ mg/m}^3 = \frac{1844.55 \cdot 4.47}{17.6} \left(1 - \frac{2}{100}\right) = 454.89
\]

\[
C_{CO, i}^\text{out} = 1935.44 \text{ mg/m}^3 = \frac{1935.44 \cdot 4.47}{17.6} \left(1 - \frac{2}{100}\right) = 454.89
\]

Sulfur dioxide emission factor, g/GJ

\[
C_{SO_2, i}^\text{in} = 13.37 \text{ mg/m}^3 = \frac{13.37 \cdot 4.47}{17.6} \left(1 - \frac{2}{100}\right) = 3.33
\]

\[
C_{SO_2, i}^\text{out} = 13.11 \text{ mg/m}^3 = \frac{13.11 \cdot 4.47}{17.6} \left(1 - \frac{2}{100}\right) = 3.23
\]

Emission factor of suspended particulate matter; undifferentiated by composition, g/GJ

\[
C_{SP, i}^\text{in} = 90.59 \text{ mg/m}^3 = \frac{90.59 \cdot 4.47}{17.6} \left(1 - \frac{2}{100}\right) = 22.34
\]

\[
C_{SP, i}^\text{out} = 93.2 \text{ mg/m}^3 = \frac{93.2 \cdot 4.47}{12.3} \left(1 - \frac{2}{100}\right) = 32.89
\]
Table 7

| Boiler No. 1 ALTEP DUO UNI PLUS «KТ-2Е-N» | Boiler No. 2 ALTEP DUO UNI PLUS «KТ-2Е-N» |
|-------------------------------------------|-------------------------------------------|
| Nitrogen oxides (in terms of nitrogen dioxide [NO+NO2]), t/year | Nitrogen oxides (in terms of nitrogen dioxide [NO+NO2]), t/year |
| $E_{NO_2} = 10^{-6} \times 67.02 \times 40.34 \times 17.6 = 0.047583$ | $E_{NO_2} = 10^{-6} \times 65.72 \times 40.34 \times 17.6 = 0.04666$ |

| Carbon monoxide, t/year | Carbon monoxide, t/year |
|-------------------------|-------------------------|
| $E_{CO} = 10^{-6} \times 45.489 \times 40.34 \times 17.6 = 0.322965$ | $E_{CO} = 10^{-6} \times 47.731 \times 40.34 \times 17.6 = 0.338882$ |

| Sulfur dioxide (dioxide and trioxide) in terms of sulfur dioxide, t/year | Sulfur dioxide (dioxide and trioxide) in terms of sulfur dioxide, t/year |
|-------------------------------------------|-------------------------------------------|
| $E_{SO_2} = 10^{-6} \times 3.3 \times 40.34 \times 17.6 = 0.002343$ | $E_{SO_2} = 10^{-6} \times 3.23 \times 40.34 \times 17.6 = 0.002293$ |

| Solid suspended particles, undifferentiated in composition, t/year | Solid suspended particles, undifferentiated in composition, t/year |
|-------------------------------------------|-------------------------------------------|
| $E_{C} = 10^{-6} \times 31.97 \times 40.34 \times 17.6 = 0.015861$ | $E_{C} = 10^{-6} \times 32.99 \times 40.34 \times 17.6 = 0.016315$ |

| Methane, t/year | Methane, t/year |
|----------------|----------------|
| $E_{CH_4} = 10^{-6} \times 5 \times 40.34 \times 17.6 = 0.00355$ | $E_{CH_4} = 10^{-6} \times 5 \times 40.34 \times 17.6 = 0.00355$ |

| Carbon dioxide, t/year | Carbon dioxide, t/year |
|------------------------|------------------------|
| $E_{CO_2} = 10^{-6} \times 97.521 \times 40.34 \times 17.6 = 69.23835$ | $E_{CO_2} = 10^{-6} \times 97.521 \times 40.34 \times 17.6 = 69.23835$ |

| Dinitrogen oxide, t/year | Dinitrogen oxide, t/year |
|-------------------------|-------------------------|
| $E_{N_2O} = 10^{-6} \times 4 \times 40.34 \times 17.6 = 0.00284$ | $E_{N_2O} = 10^{-6} \times 4 \times 40.34 \times 17.6 = 0.00284$ |

| Non-methane volatile organic compounds (NMVOCs), t/year | Non-methane volatile organic compounds (NMVOCs), t/year |
|---------------------------------------------------------|---------------------------------------------------------|
| $E_{NMVOC} = 10^{-6} \times 45 \times 40.34 \times 17.6 = 0.031949$ | $E_{NMVOC} = 10^{-6} \times 45 \times 40.34 \times 17.6 = 0.031949$ |

Table 7 shows the data on the amount of pollutant emissions per ton of burned pellets.

Table 8

| Pollutant | mg/m³ | g/s | t/year |
|-----------|-------|-----|--------|
| Nitrogen oxides (nitrogen oxide and dioxin) in terms of nitrogen dioxide | 264.59 | 0.047583 | 0.047583 |
| Carbon oxides | 1844.55 | 0.322965 | 0.322965 |
| Sulfur dioxide (dioxide and trioxide) in terms of sulfur dioxide | 13.37 | 0.002343 | 0.002343 |
| Suspended solids, undifferentiated in composition | 90.59 | 0.015861 | 0.015861 |
| Methane | – | – | 0.00355 |
| Carbon dioxide | – | – | 69.23835 |
| Nitrogen (1) oxide (N₂O) | – | – | 0.00284 |
| Non-methane volatile organic compounds (NMVOCs) | – | – | 0.031949 |

Table 9

| Characteristics of raw materials | Pollutant | Total actual emission, t | Specific emission per unit of fuel used, t |
|---------------------------------|-----------|--------------------------|------------------------------------------|
| Name | Quantity, t | Nitrogen dioxide | 0.094243 | 0.001168 |
| | | Carbon monoxide | 0.661847 | 0.008203 |
| | | Sulphur dioxide | 0.004636 | 0.0000575 |
| | | Suspended solids, undifferentiated in composition | 0.032176 | 0.000399 |
| | | Methane | 0.0071 | 0.0000880 |
| | | Carbon dioxide | 138.4767 | 1.71637 |
| | | Nitrogen (1) oxide (N₂O) | 0.00568 | 0.0000704 |
| | | Non-methane volatile organic compounds (NMVOCs) | 0.063898 | 0.000792 |

Using the software package «EOL+», which implements the «Method of calculating the concentrations in the atmospheric air of harmful substances contained in the emissions of enterprises. OND-86», which regulates the calculation of scattering and the determination of surface concentrations [12]. The resulting concentration fields make it possible to estimate the levels of impact on atmospheric air pollution. The calculation was carried out at background concentrations, and for all substances a value of 0.4 MPC was taken.

Fig. 1 shows the dispersion zones of pollutants, the values are presented in fractions of MPC (maximum allowable concentration) for better comparison with standard MPC values.
The results of the calculation of pollutants emitted by boilers in the surface layer of the atmosphere at a distance of 50–70 m from the emission source showed the maximum concentrations:

- nitrogen dioxide – 0.049 MPC;
- sulfur dioxide – 0.002 MPC;
- carbon monoxide – 0.042 MPC;
- suspended solid particles, undifferentiated in composition – 0.012 MPC.

The research results have shown that the use of pellets in solid fuel boilers with a total capacity of up to 500 kW is safe and does not lead to excessive air pollution. Pollutant concentrations do not exceed 1 MPC. In reality, in fractions of MPC, gaseous harmful components: nitrogen dioxide, sulfur dioxide, carbon monoxide do not exceed 0.05 MPC, and do not exceed 0.012 for solid suspended particles (dust). The operation of the boiler house does not lead to excessive air pollution, and does not exceed the established MPC standards. The highest value of pollutants is recorded at a distance of 50–70 m from the emission source. For other types of fuel, these results will differ from those obtained. It should also be noted that the height of the chimney and dangerous wind speed affect the scattering zone. The above studies were performed under the following conditions and limitations of the results obtained:

1. The studies were carried out in the autumn-winter period (November-February) at ambient temperatures from −15 °C to +5 °C, average humidity 63 %.
2. The results obtained are given exclusively for fuel pellets from softwood, as they are quite common.
3. The power of boiler units was limited to 100 kW as the most common for utilities.

### 4. Conclusions

In the course of the study, the average concentrations of the main pollutants from a solid fuel boiler operating on calves were obtained: nitrogen dioxide – 271.78 mg/m³, carbon fragmentation – 1935.44 mg/m³, sulfur dioxide – 13.37 mg/m³, suspended solids, parts undifferentiated in composition (dust, ash) – 93.2 mg/m³. Based on the measurements of concentrations and calculation methods, the volumes and nomenclature of emissions, including those per unit mass of burned pellets, were determined. Using a mathematical dispersion model, a dispersion map of emissions generated during the combustion of pellets in boilers was created, according to the results of which the concentrations of pollutants do not exceed 1 MPC.

### Conflict of interests

The authors declare that there is no conflict of interest regarding this study, including financial, personal nature, authorship or other nature that could affect the research and its results presented in this article.

### References

1. Arzol, N., Gomez, A., Rimcon, S. (2014). Experimental study of the mechanical and thermal behavior of pellets produced from oil palm biomass blends. Global NEST Journal, 16 (1), 179–187. doi: http://doi.org/10.30955/gnj.001229
2. Kaliyan, N., Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101 (3), 1082–1090. doi: http://doi.org/10.1016/j.biortech.2009.08.064
3. Zотова, Е. В., Сафонов, А. О., Платонов, А. Д. (2014). Анализ некоторых особенностей формирования компонентов технологий производства древесных пеллет. Лесотехнический журнал, 5 (13), 127–132.
4. Halysh, N. A. (2017). Spetsyfika vyrobnytstva derevnykh pelet ta yii vplyv na formuvannia strategii rozvytku pidpryiemstva. Visnyk Ternopilskoho natsionalnoho ekonomichnoho universytetu, 4 (86), 96–104.
5. Halysh, N. A. (2018). Wood pellets production in the viseg-rad group: the change ofenterprise’s leading paradigm in the sustainable development context. Eastern europe: economy, business and management, 2 (3). Available at: http://www.easterneurope-ehn.in.ua/journal/13_2018/13.pdf
6. DSTU 8725:2017. Yakist povitria. Vykhody statyomernykh zhisel. Metody vyznannia shchokotnosti ta ob’emnoho vytryny hazopogoynkh potokiv (2017). Available at: http://www.kbv.biz.ua/GOST/ DSTY_ALL/DSTU/dstu_8725-2017.pdf
7. DSTU 8726:2017. Yakist povitria. Vykhody statyomernykh zhisel. Metody vyznannia shchokotnosti ta ob’emnoho vytryny hazopogoynkh potokiv (2017). Available at: http://online.budstandart.com.ua/catalog/doc-page.html?id_doc=71894
10. Prymiskyi, V. P., Ivasenko, V. M. (2012). Stantsii kontroliu atmosfery: stan ta perspektyvy rozvytku. Metrolohiia ta pry-
lady, 1, 43–49.

11. Pokaznyky emisiy zakhudlitsiukhych rechovyn v atmosferne povitria. Vol. 1–3. (2008). Donetsk: IATs V AT «UkrNTEK», 466.

12. Prymiskyi, V. P., Ivasenko, V. M., Kornienko, D. H. (2014). Adaptation features and emission standards execution control in the industry. Eastern-European Journal of Enterprise Technologies, 3 (1 (69), 8–15. Available at: http://journals.uran.ua/ eejet/article/view/24973

Vitaliy Ivasenko, PhD, Assistant, Department of Information and Measurement Technologies, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, e-mail: ivasenko-vitaliy@ukr.net, ORCID: https://orcid.org/0000-0001-8318-7437

Igor Primisky, General Director, Ltd «Autoekoprylad», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0001-5157-4870

Corresponding author