In this paper we study the H^2 global regularity for solutions of the $p(x)$-Laplacian in two-dimensional convex domains with Dirichlet boundary conditions. Here $p : \Omega \to [p_1, \infty)$ with $p \in \text{Lip}(\Omega)$ and $p_1 > 1$.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^2 and let $p : \Omega \to (1, +\infty)$ be a measurable function. In this work, we study the H^2 global regularity of the weak solution of the following problem

\[
\begin{cases}
-\Delta_{p(x)}u = f & \text{in } \Omega, \\
u = g & \text{on } \partial \Omega,
\end{cases}
\]

where $\Delta_{p(x)}u = \text{div}(|\nabla u|^{p(x)-2} \nabla u)$ is the $p(x)$-Laplacian. The hypothesis over p, f and g will be specified later.

Note that, the $p(x)$-Laplacian extends the classical Laplacian ($p(x) \equiv 2$) and the p-Laplacian ($p(x) \equiv p$ with $1 < p < +\infty$).

This operator has been recently used in image processing and in the modeling of electrorheological fluids, see [3,5,24].

Motivated by the applications to image processing problems, in [8], the authors study two numerical methods to approximate solutions of the type of (1.1). In Theorem 7.2, the authors prove the convergence in $W^{1, p(\cdot)}(\Omega)$ of the conformal Galerkin finite element method. It is of our interest to study, in a future work, the rate of this convergence. In general, all the error bounds depend on the global regularity of the second derivatives of the solutions, see for example [6,22]. However, there appear to be no existing regularity results in the literature that can be applied here, since all the results have either a first order or local character.

The H^2 global regularity for solutions of the p-Laplacian is studied in [22]. There the authors prove the following: Let $1 < p \leq 2$, $g \in H^2(\Omega)$, $f \in L^q(\Omega)$ ($q > 2$) and u be the unique weak solution of (1.1). Then:

- If $\partial \Omega \in C^2$ then $u \in H^2(\Omega)$;
• If Ω is convex and $g = 0$ then $u \in H^2(\Omega)$;
• If Ω is convex with a polygonal boundary and $g \equiv 0$ then $u \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1)$.

Regarding the regularity of the weak solution of (1.1) when $f = 0$, in [1,7], the authors prove the $C^{1,\alpha}_{loc}$ regularity (in the scalar case and also in the vectorial case). Then, in the paper [15] the authors study the case where the functional has the so-called (p,q)-growth conditions. Following these ideas, in [17], the author proves that the solutions of (1.1) are in $C^{1,\alpha}(\overline{\Omega})$ for some $\alpha > 0$ if Ω is a bounded domain in $\mathbb{R}^N (N \geq 2)$ with $C^{1,\gamma}$ boundary, $p(x)$ is a H"{o}lder function, $f \in L^\infty(\Omega)$ and $g \in C^{1,\gamma}(\overline{\Omega})$; while in [4], the authors prove that the solutions are in $H^2_{loc}(\{x \in \Omega: p(x) \leq 2\})$ if $p(x)$ is uniformly Lipschitz (Lip(\Omega)) and $f \in W^{2,1,1}_{loc}(\Omega) \cap L^\infty(\Omega)$.

Our aim, it is to generalize the results of [22] in the case where $p(x)$ is a measurable function. To this end, we will need some hypothesis over the regularity of $p(x)$. Moreover, in all our result we can avoid the restriction $g = 0$, assuming some regularity of $g(x)$.

On the other hand, to prove our results, we can assume weaker conditions over the function f than the ones on [4]. Since, we only assume that $f \in L^{q(\cdot)}(\Omega)$, we do not have a priori that the solutions are in $C^{1,\alpha}(\Omega)$. Then we cannot use it to prove the H^2 global regularity. Nevertheless, we can prove that the solutions are in $C^{1,\alpha}(\overline{\Omega})$, after proving the H^2 global regularity.

The main results of this paper are:

Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^2 with C^2 boundary, $p \in \text{Lip}(\overline{\Omega})$ with $p(x) \geq p_1 > 1$, $g \in H^2(\Omega)$ and u be the weak solution of (1.1). If

\begin{align*}
\text{(F1)} & \quad f \in L^{q(\cdot)}(\Omega) \text{ with } q(x) \geq q_1 > 2 \text{ in the set } \{x \in \Omega: p(x) \leq 2\}; \\
\text{(F2)} & \quad f \equiv 0 \text{ in the set } \{x \in \Omega: p(x) > 2\},
\end{align*}

then $u \in H^2(\Omega)$.

Theorem 1.2. Let Ω be a bounded domain in \mathbb{R}^2 with convex boundary, $p \in \text{Lip}(\overline{\Omega})$ with $p(x) \geq p_1 > 1$, $g \in H^2(\Omega)$ and u be the weak solution of (1.1). If f satisfies (F1) and (F2) then $u \in H^2(\Omega)$.

Using the above theorem we can prove the following:

Corollary 1.3. Let Ω be a bounded convex domain in \mathbb{R}^2 with polygonal boundary, p and f as in the previous theorem, $g \in W^{2,q(\cdot)}(\Omega)$ and u be the weak solution of (1.1) then $u \in C^{1,\alpha}(\overline{\Omega})$ for some $0 < \alpha < 1$.

Observe that this result extends the one in [17] in the case where Ω is a polygonal domain in \mathbb{R}^2.

Organization of the paper. The rest of the paper is organized as follows. After a short Section 2 where we collect some preliminary results, in Section 3, we study the H^2-regularity for the non-degenerated problem. In Section 4 we prove Theorem 1.1. Then, in Section 5, we study the regularity of the solution u of (1.1) if Ω is convex. In Section 6, we make some comments on the dependence of the H^2-norm of u on p_1. Lastly, in Appendices A and B we give some results related to elliptic linear equation with bounded coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the spaces $L^{p(\cdot)}(\Omega)$ and $W^{1,p(\cdot)}(\Omega)$ and state some of their properties.

Let Ω be a bounded open set of \mathbb{R}^n and $p : \Omega \to [1, +\infty)$ be a measurable bounded function, called a variable exponent on Ω and denote $p_1 := \text{essinf } p(x)$ and $p_2 := \text{esssup } p(x)$.

We define the variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ to consist of all measurable functions $u : \Omega \to \mathbb{R}$ for which the modular

$$\varrho_{p(\cdot)}(u) := \int_\Omega |u(x)|^{p(x)} \, dx$$

is finite. We define the Luxemburg norm on this space by

$$\|u\|_{L^{p(\cdot)}(\Omega)} := \inf\{k > 0; \varrho_{p(\cdot)}(u/k) \leq 1\}.$$

This norm makes $L^{p(\cdot)}(\Omega)$ a Banach space.

For the proofs of the following theorems, we refer the reader to [12].
Theorem 2.1 (Hölder’s inequality). Let $p, q, s : \Omega \to [1, +\infty]$ be measurable functions such that
\[
\frac{1}{p(x)} + \frac{1}{q(x)} = \frac{1}{s(x)} \quad \text{in } \Omega.
\]
Then the inequality
\[
\|f g\|_{L^s(\Omega)} \leq 2 \|f\|_{L^p(\Omega)} \|g\|_{L^q(\Omega)}
\]
holds for all $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$.

Let $W^{1,p}(\Omega)$ denote the space of measurable functions u such that u and the distributional derivative ∇u are in $L^p(\Omega)$. The norm
\[
\|u\|_{W^{1,p}(\Omega)} := \|u\|_{L^p(\Omega)} + \|\nabla u\|_{L^p(\Omega)}
\]
makes $W^{1,p}(\Omega)$ a Banach space.

Theorem 2.2. Let $p'(x)$ be such that $1/p(x) + 1/p'(x) = 1$. Then $L^{p'}(\Omega)$ is the dual of $L^p(\Omega)$. Moreover, if $p_1 > 1$, $L^{p_1}(\Omega)$ and $W^{1,p_1}(\Omega)$ are reflexive.

We define the space $W_0^{1,p}(\Omega)$ as the closure of the $C_0^\infty(\Omega)$ in $W^{1,p}(\Omega)$. Then we have the following version of Poincaré’s inequity (see Theorem 3.10 in [21]).

Lemma 2.3 (Poincaré’s inequality). If $p : \Omega \to [1, +\infty)$ is continuous in $\overline{\Omega}$, there exists a constant C such that for every $u \in W_0^{1,p}(\Omega)$,
\[
\|u\|_{L^p(\Omega)} \leq C \|\nabla u\|_{L^p(\Omega)}.
\]

In order to have better properties of these spaces, we need more hypotheses on the regularity of $p(x)$.

We say that p is log-Hölder continuous in Ω if there exists a constant C_{\log} such that
\[
|p(x) - p(y)| \leq \frac{C_{\log}}{\log(1 + \frac{1}{|x-y|})} \quad \forall x, y \in \Omega.
\]

It was proved in [10, Theorem 3.7], that if one assumes that p is log-Hölder continuous then $C^\infty(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$ (see also [9,12,13,21,25]).

We now state the Sobolev embedding theorem (for the proofs see [12]). Let
\[
p^*(x) := \begin{cases} \frac{p(x)N}{N-p(x)} & \text{if } p(x) < N, \\ +\infty & \text{if } p(x) \geq N \end{cases}
\]
be the Sobolev critical exponent. Then we have the following:

Theorem 2.4. Let Ω be a Lipschitz domain. Let $p : \Omega \to [1, \infty)$ and p be log-Hölder continuous. Then the imbedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*(\Omega)}(\Omega)$ is continuous.

3. H^2-regularity for the non-degenerated problem for any dimension

In this section we assume that Ω is a bounded domain in \mathbb{R}^N, with $N \geq 2$.

We want to study higher regularity of the weak solution of the regularized equation,
\[
\begin{cases}
-\text{div}(\varepsilon + |\nabla u|^2)^{\frac{p-2}{2}} \nabla u = f & \text{in } \Omega, \\
u = g & \text{on } \partial \Omega,
\end{cases}
\]
where $0 < \varepsilon \leq 1$, and $f \in \text{Lip}(\Omega)$ and $g \in W^{1,p}(\Omega)$.

The existence of a weak solution of (3.2) holds by Theorem 13.3.3 in [12].

Remark 3.1. Given $\varepsilon \geq 0$, $p \in C^0(\overline{\Omega})$ for some $\alpha_0 > 0$, and $g \in L^\infty(\Omega)$ we have the following results:

(1) Since $f, g \in L^\infty(\Omega)$, by Theorem 4.1 in [18], we have that $u \in L^\infty(\Omega)$.

(2) By Theorem 1.1 in [17], $u \in C^{1,\alpha}(\Omega)$ for some α depending on p_1, p_2, $\|u\|_{L^\infty(\Omega)}$ and $\|f\|_{L^\infty(\Omega)}$. Moreover, given $\Omega_0 \subset \subset \Omega$, $\|u\|_{C^{1,\alpha}(\Omega_0)}$ depends on the same constants and $\text{dist}(\Omega_0, \partial \Omega)$.

Finally, by Theorem 1.2 in [17], if \(\partial \Omega \in C^{1, \gamma} \) and \(g \in C^{1, \gamma}(\partial \Omega) \) for some \(\gamma > 0 \) then \(u \in C^{1, \alpha}(\Omega) \), where \(\alpha \) and \(\|u\|_{C^{1, \alpha}(\Omega)} \) depend on \(p_1, p_2, N, \|u\|_{L^\infty(\Omega)}, \|p\|_{C^\gamma(\Omega)}, \alpha_0 \) and \(\gamma \).

We will first prove the \(H^2 \)-local regularity assuming only that \(p(x) \) is Lipschitz. Then, we will prove the global regularity under the stronger condition that \(\nabla p(x) \) is Hölder.

3.1. \(H^2 \)-local regularity

While we were finishing this paper, we found the work [4], where the authors give a different proof of the \(H^2 \)-local regularity of the solutions of \((3.2)\). Anyhow, we leave the proof for the completeness of this paper.

Theorem 3.2. Let \(p, f \in \text{Lip}(\Omega) \) with \(p_1 > 1 \) and \(u \) be a weak solution of \((3.2)\), then \(u \in H^2_{\text{loc}}(\Omega) \).

Proof. First, let us define for any function \(F \) and \(h > 0 \),
\[
\Delta^h F(x) = \frac{F(x + h) - F(x)}{h},
\]
where \(h = he_k \) and \(e_k \) is a vector of the canonical base of \(\mathbb{R}^N \).

Let \(\eta(x) = \xi(x)^2 \Delta^h u(x) \) where \(\xi \) is a regular function with compact support. Therefore, if we take \(v_e = (|u|^2 + \varepsilon)^{1/2} \) and \(\eta < \text{dist}(\text{supp}(\xi), \partial \Omega) \), we have
\[
\int_\Omega \left(v_e(x)^{p(x)-2} \nabla u(x), \nabla \eta(x) \right) dx = \int_\Omega f(x) \eta(x) dx,
\]
\[
\int_\Omega \left(v_e(x) + h \right)^{p(x)+h-2} \nabla u(x + h), \nabla \eta(x) \right) dx = \int_\Omega f(x + h) \eta(x) dx.
\]

Subtracting, using that \(\nabla \eta = 2\xi \nabla \xi \Delta^h u + \xi^2 \Delta^h (\nabla u) \) and dividing by \(h \) we obtain
\[
I = \int_\Omega \left(\Delta^h \left(v_e(x)^{p(x)-2} \nabla u \right), \Delta^h (\nabla u) \right) \xi^2 dx
= -2 \int_\Omega \left(\Delta^h \left(v_e(x)^{p(x)-2} \nabla u \right), \xi \nabla \xi \Delta^h u \right) dx + \int_\Omega \xi^2 \Delta^h f \Delta^h u dx
= 2 \int_\Omega \left(\int_0^1 \left(v_e(x + ht)^{p(x)+ht-2} \nabla u(x + ht) \right) dt \right) \frac{\partial}{\partial x_k} (\xi \nabla \xi \Delta^h u) dx
+ \int_\Omega \xi^2 \Delta^h f \Delta^h u dx
= II + III.
\]

Now, let us fix a ball \(B_R \) such that \(B_{3R} \subset \subset \Omega \) and take \(\xi \in C^\infty_0(\Omega) \) supported in \(B_{2R} \) such that \(0 \leq \xi \leq 1 \), \(\xi = 1 \) in \(B_R \), \(|

\nabla \xi | \leq 1/R \) and \(|D^2 \xi | \leq CR^{-2} \).

By Remark 3.1, there exists a constant \(C_1 > 0 \) such that \(|\nabla u| \leq C_1 \) in \(B_{3R} \), therefore we get
\[
II \leq 2 \int_{B_{3R}} \frac{C}{R} |\Delta^h u_{3R} | \xi dx + 2 \int_{B_{3R}} \frac{C}{R^2} |\Delta^h u | dx
\leq \frac{C}{R} \int_{B_{2R}} |\Delta^h (\nabla u) | \xi dx + CR^{N-2}.
\]

On the other hand, since \(f \) is Lipschitz we have that
\[
|f(x + h) - f(x)| \leq C_2 h
\]
for some constant \(C_2 > 0 \). This implies that
\[
III \leq C_2 R^N.
\]
Therefore, summing II and III, and using Young’s inequality, we have that for any $\delta > 0$

$$I \leq \delta \int_{B_{2R}} |\Delta^h(\nabla u)|^2 \xi^2 \, dx + C,$$

(3.3)

for some constant C depending on R and δ.

On the other hand observe that $I = I_1 + I_2$ where

$$I_1 = \frac{1}{h} \int_{B_{2R}} \left((v_\varepsilon(x+h)^{p(x+h)-2} \nabla u(x+h) - v_\varepsilon(x)^{p(x+h)-2} \nabla u(x)), \Delta^h(\nabla u) \right) \xi^2 \, dx,$$

and

$$I_2 = \frac{1}{h} \int_{B_{2R}} \left(v_\varepsilon(x)^{p(x+h)} - v_\varepsilon(x)^{p(x)} \right) \frac{\nabla u(x)}{v_\varepsilon(x)^2}, \Delta^h(\nabla u) \right) \xi^2 \, dx.$$

Using that $p(x)$ is Lipschitz and the fact that $|\nabla u(x)| \leq C_1$ we have that, for some b between $p(x+h)$ and $p(x)$,

$$\frac{1}{h} |v_\varepsilon(x)^{p(x+h)} - v_\varepsilon(x)^{p(x)}| = \left| v_\varepsilon(x)^b \log(v_\varepsilon(x)) \right| \frac{p(x+h) - p(x)}{h} \leq C,$$

for some constant $C > 0$ depending on $p_1, p_2, \varepsilon, C_1$ and the Lipschitz constant of $p(x)$.

Therefore, we have that

$$-I_2 \leq CC_1 \varepsilon^{-1} \int_{B_{2R}} |\Delta^h(\nabla u)|^2 \xi^2 \, dx.$$

By (3.3), the last inequality and using again Young’s inequality we have that, for any $\delta > 0$,

$$I_1 \leq \delta \int_{B_{2R}} |\Delta^h(\nabla u)|^2 \xi^2 \, dx + C,$$

(3.4)

for some constant $C > 0$ depending on $p_1, p_2, \varepsilon, C_1$ and the Lipschitz constant of $p(x)$.

To finish the proof, we have to find a lower bound for I_1. By the well-known inequality, we have that

$$\left((v_\varepsilon(x+h)^{p(x+h)-2} \nabla u(x+h) - v_\varepsilon(x)^{p(x+h)-2} \nabla u(x)), (\nabla u(x+h) - \nabla u(x)) \right) \geq C_\xi |\nabla u(x+h) - \nabla u(x)|^2,$$

where

$$C_\xi = \begin{cases} \varepsilon^{(p(x+h)-2)/2} & \text{if } p(x+h) \geq 2, \\ (p(x+h) - 1) \varepsilon^{(p(x+h)-2)/2} & \text{if } p(x+h) \leq 2. \end{cases}$$

Therefore, using that $p_1 > 1$, we arrive at

$$I_1 \geq \int_{B_{2R}} C h^{-2} |\nabla u(x+h) - \nabla u(x)|^2 \xi^2 \, dx = C \int_{B_{2R}} |\Delta^h(\nabla u(x))|^2 \xi^2 \, dx.$$

Finally combining the last inequality with (3.4) we have that

$$\int_{B_R} |\Delta^h(\nabla u(x))|^2 \, dx \leq C(N, p, f, \varepsilon).$$

This proves that $u \in H^2_{\text{loc}}(\Omega)$.

\square

3.2. H^2-global regularity

Now we want to prove that if $f \in \text{Lip}(\Omega)$ and $g \in C^{1,\beta}(\partial\Omega)$, the regularized equation (3.2) has a weak solution $u \in C^2(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$ for an $\alpha \in (0, 1)$. We already know, by Remark 3.1, that $u \in C^{1,\alpha}(\overline{\Omega})$. Then, we only need to prove that $u \in C^2(\Omega)$.

Lemma 3.3. Let Ω be a bounded domain in \mathbb{R}^N with $\partial\Omega \in C^{1,\gamma}$, $p \in C^{1,\beta}(\Omega) \cap C^{\alpha}(\overline{\Omega})$, $f \in \text{Lip}(\Omega)$ and $g \in C^{1,\beta}(\partial\Omega)$. Then, the Dirichlet Problem (3.2) has a solution $u \in C^2(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$.
Proof. Observe that by Theorem 3.2, we know that the solution is in $H^2_{\text{loc}}(\Omega)$. Then for any $\Omega' \subset \subset \Omega$ we can derive the equation and look at the solution of (3.2) as the solution of the following equation,

$$
\begin{aligned}
L_{\varepsilon}u &= a(x) \quad \text{in } \Omega', \\
u &= u \quad \text{on } \partial \Omega'.
\end{aligned}
$$

(3.5)

Here,

$$
L_{\varepsilon}u = a_{ij}^{\varepsilon}(x)u_{x_i x_j}
$$

with

$$
a_{ij}^{\varepsilon}(x) = \delta_{ij} + (p(x) - 2) \frac{u_{x_i} u_{x_j}}{v_2^2}, \quad v_2 = (\varepsilon + |\nabla u|^2)^{\frac{1}{2}} \quad \text{and}
$$

$$
a_{\varepsilon}(x) = \ln(v_2) \langle \nabla u, \nabla p \rangle + f v_2^{2-p}. \quad (3.6)
$$

The operator L_{ε} is uniformly elliptic in Ω, since for any $\xi \in \mathbb{R}^N$

$$\min\{ (p_1 - 1), 1 \} |\xi|^2 \leq a_{ij}^{\varepsilon} \xi_i \xi_j \leq \max\{ (p_2 - 1), 1 \} |\xi|^2. \quad (3.7)
$$

On the other hand, by Remark 3.1, $u \in C^{1,\alpha}(\overline{\Omega})$. Then, $a_{ij}^{\varepsilon} \in C^{\alpha}(\overline{\Omega})$, since $\varepsilon > 0$. Using that $f \in \text{Lip}(\Omega)$, we have that $a \in C^{\rho}(\Omega)$ where $\rho = \min(\alpha, \beta)$. If $\partial \Omega' \in C^2$, as u is the unique solution of (3.5), by Theorem 6.13 in [19], we have that $u \in C^{2,\rho}(\Omega')$. This ends the proof. \square

Remark 3.4. By the H^2 global estimate for linear elliptic equations with $L^\infty(\Omega)$ coefficients in two variables (see Lemma A.1 and (3.7)) we have that

$$
\|u\|_{H^2(\Omega)} \leq C\left(\|a\|_{L^2(\Omega)} + \|g\|_{H^2(\Omega)} \right)
$$

where u is the solution of (3.2) and C is a constant independent of ε.

4. Proof of Theorem 1.1

Before proving the theorem, we will need a global bound for the derivatives of the solutions of (3.2).

Lemma 4.1. Let $f \in L^{q'(1)}(\Omega)$ with $q'(x) \leq p^*(x)$, $g \in W^{1,p^*(1)}(\Omega)$, $\varepsilon > 0$ and u_{ε} be the weak solution of (3.2) then

$$
\|\nabla u_{\varepsilon}\|_{L^{q'(1)}(\Omega)} \leq C
$$

where C is a constant depending on $\|f\|_{L^{q'(1)}(\Omega)}, \|g\|_{W^{1,p^*(1)}(\Omega)}$ but not on ε.

Proof. Let

$$
J(v) := \int_\Omega \frac{1}{p(x)} (|\nabla v|^2 + \varepsilon)^{p(x)/2} \, dx.
$$

By the convexity of J and using (3.2) we have that

$$
J(u_{\varepsilon}) \leq J(g) - \int_\Omega (|\nabla u_{\varepsilon}|^2 + \varepsilon)^{(p-2)/2} \nabla u_{\varepsilon}(\nabla g - \nabla u_{\varepsilon}) \, dx
$$

$$
\leq C \left(1 + \int_\Omega f(u_{\varepsilon} - g) \, dx \right)
$$

$$
\leq C \left(1 + \|f\|_{L^{q'(1)}(\Omega)} \|u_{\varepsilon} - g\|_{L^{p^*(1)}(\Omega)} \right)
$$

$$
\leq C \left(1 + \|f\|_{L^{q'(1)}(\Omega)} \|\nabla u_{\varepsilon} - \nabla g\|_{L^{p^*(1)(\Omega)}} \right),
$$

where in the last inequality we are using that $W^{1,p^*(1)}(\Omega) \hookrightarrow L^{p^*(1)}(\Omega)$ continuously and Poincaré’s inequality.

Thus we have that there exists a constant independent of ε such that

$$
\int_\Omega |\nabla u_{\varepsilon}|^{p(x)} \, dx \leq C\left(1 + \|u_{\varepsilon}\|_{L^{p^*(1)}(\Omega)} \right),
$$
and using the properties of the $L^p(\Omega)$-norms this means that
$$\|\nabla u_\epsilon\|_{L^p(\Omega)}^m \leq C(1 + \|\nabla u_\epsilon\|_{L^p(\Omega)}),$$
for some $m > 1$. Therefore $\|\nabla u_\epsilon\|_{L^p(\Omega)}$ is bounded independent of ϵ. \(\square\)

To prove Theorem 1.1, we will use the results of Section 3. Therefore, we will first need to assume that $p \in C^{1,\beta}(\Omega) \cap C(\overline{\Omega})$.

Theorem 4.2. Let Ω be a bounded domain in \mathbb{R}^2 with C^2 boundary, $p \in C^{1,\beta}(\Omega) \cap C^{\alpha}(\overline{\Omega})$ with $p(x) \equiv p_1 > 1$, $g \in H^2(\Omega)$ and u be the weak solution of (1.1), if f satisfies (F1) and (F2) then $u \in H^2(\Omega)$.

Proof. Let $f_\epsilon \in \text{Lip}(\Omega)$ and $g_\epsilon \in C^{2,\alpha}(\overline{\Omega})$ such that
$$\begin{align*}
f_\epsilon \to f & \quad \text{strongly in } L^q(\Omega), \\
g_\epsilon \to g & \quad \text{strongly in } H^2(\Omega),
\end{align*}$$
as $\epsilon \to 0$. Observe that, since $f(x) = 0$ if $p(x) > 2$, we can take $f_\epsilon \equiv 0$ in $\{x \in \Omega: \ p(x) > 2\}$.

Now, let us consider the solution of (3.2) as the solution of
$$\begin{align*}
a_{11}^\epsilon(\cdot) \frac{\partial^2 u_\epsilon}{\partial x_1^2} + 2a_{12}^\epsilon(\cdot) \frac{\partial^2 u_\epsilon}{\partial x_1 \partial x_2} + a_{22}^\epsilon(\cdot) \frac{\partial^2 u_\epsilon}{\partial x_2^2} = a_\epsilon(\cdot) & \quad \text{in } \Omega, \\
u_\epsilon = g_\epsilon & \quad \text{on } \partial \Omega,
\end{align*}$$
where $a_{11}^\epsilon, a_{12}^\epsilon, a_{22}^\epsilon, a_\epsilon$ are defined as in Lemma 3.3, substituting f and g by f_ϵ and g_ϵ respectively. By Lemma 3.3 we know that $u_\epsilon \in C^{2}(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$.

First we will prove that $\{u_\epsilon\}_{\epsilon \in (0,1]}$ is bounded in $H^2(\Omega)$. By Remark 3.4, we have that
$$\|u_\epsilon\|_{H^2(\Omega)} \leq C(\|a_\epsilon(\cdot)\|_{L^2(\Omega)} + \|g_\epsilon\|_{H^2(\Omega)}) \leq C(\|\ln(v_\epsilon)\|_{L^2(\Omega)} + \|f_\epsilon\|_{L^2(\Omega)} + \|g_\epsilon\|_{H^2(\Omega)}).
$$
Taking $\Omega_1 = \{x \in \Omega: \ |\nabla u_\epsilon(x)| > 1\}$, using that $p(x)$ is Lipschitz and Hölder’s inequality, we have
$$\|\ln(v_\epsilon)\|_{L^2(\Omega)} \leq C(\|\ln^2(v_\epsilon)\|_{L^p(\Omega)}^{1/2} + \|v_\epsilon\|_{L^p(\Omega)}^{1/2} + \|u_\epsilon\|_{L^p(\Omega)} + 1).
$$
On the other hand, since $q(x) \geq q_1 = 0$, we have that $q(\cdot) \leq p^*(\cdot)$. Then, as $\|f_\epsilon\|_{L^p(\Omega)}$ and $\|g_\epsilon\|_{H^2(\Omega)}$ are bounded independent of ϵ, using Lemma 4.1 we conclude that $\|\nabla u_\epsilon\|_{L^p(\Omega)}$ is uniformly bounded.

Observe that, for all $s > 0$ there exists a constant $C > 0$ such that
$$\ln(v_\epsilon) \leq C v_\epsilon^{s/2} \leq C |\nabla u_\epsilon|^{s/2} \quad \text{in } \Omega_1,$$
thus
$$\|\ln^2(v_\epsilon)\|_{L^p(\Omega)} \leq C \|\nabla u_\epsilon\|_{L^p(\Omega)}^{1+s} \leq C \|\nabla u_\epsilon\|_{L^p(\Omega)}^{1+s} \leq C \|u_\epsilon\|_{H^2(\Omega)}^{1+s}.$$
In the last line, we are using that $2^* = \infty$, since $N = 2$.
Then, by the last inequality, (4.8) and (4.9), we get
$$\|u_\epsilon\|_{H^2(\Omega)} \leq C(\|u_\epsilon\|_{H^2(\Omega)}^{1+s} + \|f_\epsilon\|^2 \|v_\epsilon^{-p}\|_{L^2(\Omega)} + 1).
$$
(4.10)
Taking
$$A_1 = \{x \in \Omega: \ p(x) = 2\} \quad \text{and} \quad A_2 = \{x \in \Omega: \ p(x) < 2\}$$
and using that $f_\epsilon \equiv 0$ in $\{x \in \Omega: \ p(x) > 2\}$, we have that
$$\|f_\epsilon\|^2 \|v_\epsilon^{-p}\|_{L^2(\Omega)} \leq \|f_\epsilon\|_{L^2(A_1)}^2 + \|f_\epsilon\|^2 \|v_\epsilon^{-p}\|_{L^2(A_2)}.$$
Since $\|f_\epsilon\|_{L^2(A_1)}$ is bounded, to prove that $\{u_\epsilon\}_{\epsilon \in (0,1]}$ is bounded in $H^2(\Omega)$, we only have to find a bound of $\|f_\epsilon\|^2 \|v_\epsilon^{-p}\|_{L^2(A_2)}$.

Let us define in A_2 the function
\[
\tilde{q}(x) = \begin{cases}
\frac{1}{2p(x) - 3} + 1 & \text{if } \frac{1}{q(x)} + \frac{2}{3} < p(x) < 2, \\
\frac{q(x)}{2} + 1 & \text{if } p(x) < \frac{1}{q(x)} + \frac{3}{2}.
\end{cases}
\]

It is easy to see that $2 < \tilde{q}(x) \leq q(x)$ for any $x \in A_2$.

On the other hand, let us denote $\mu(x) = \frac{2q(x)}{q(x) - 2}$ and $\gamma(x) = \mu(x)(2 - p(x))$ then
\[
1 < 1 + \frac{2}{q_2} \leq \gamma(x) \leq \max \left\{ 2, 2 + \frac{8}{q_1 - 2} \right\} \quad \forall x \in A_2.
\]

Now, using Hölder's inequality with exponent $\tilde{q}(x)/2$, we have
\[
\left\| f_\epsilon v_\epsilon^{2-p} \right\|_{L^2(A_2)} \leq C \left\| f_\epsilon \right\|_{L^{\tilde{q}()}(A_2)} \left\| v_\epsilon^{2-p} \right\|_{L^{\mu()}(A_2)}.
\]

Then, if $\gamma(x) \leq 1$ we have $\left\| v_\epsilon^{2-p} \right\|_{L^{\mu()}(A_2)} \leq 1$ and since $\tilde{q}(x) \leq q(x)$ we get
\[
\left\| f_\epsilon v_\epsilon^{2-p} \right\|_{L^2(A_2)} \leq C.
\]

If $\gamma(x) > 1$, we have
\[
\left\| v_\epsilon^{2-p} \right\|_{L^{\mu()}(A_2)} \leq \left\| v_\epsilon \right\|_{L^{\gamma()}(A_2)}^{2-p} \leq C(1 + \left\| \nabla u_\epsilon \right\|_{L^{\gamma()}(A_2)}^{2-p}),
\]

where in the last inequality we are using that $\epsilon \leq 1$.

Since $2^* = \infty$ and $1 < \gamma(x) \leq \gamma(y) \leq 2 < \infty$, by the Sobolev embedding inequality, we have that
\[
\left\| \nabla u_\epsilon \right\|_{L^{2^*}(A_2)}^{2-p_1} \leq C \left\| u_\epsilon \right\|_{H^{2^*(2)}(A_2)}^{2-p_1} \leq C \left\| u_\epsilon \right\|_{H^2(\Omega)}^{2-p_1}.
\]

Combining this last inequality with inequalities (4.12), (4.11), (4.10) and the fact that $\tilde{q}(x) \leq q(x)$, we get
\[
\left\| u_\epsilon \right\|_{H^2(\Omega)} \leq C \left(\left\| u_\epsilon \right\|_{H^{2^*(2)}(A_2)}^{(1+s)/2} + \left\| u_\epsilon \right\|_{H^2(\Omega)}^{2-p_1} \right) + 1.
\]

Finally, we get that for any $0 < s < 1$ there exists a constant $C = C(p, q, f, s)$ such that
\[
\left\| u_\epsilon \right\|_{H^2(\Omega)} \leq C.
\]

Then, there exists a subsequence still denoted by $\{u_\epsilon\}_{\epsilon \in (0, 1)}$ and $u \in H^1(\Omega)$ such that
\[
u_\epsilon \rightarrow u \quad \text{strongly in } H^1(\Omega),
\]
\[
u_\epsilon \rightharpoonup u \quad \text{weakly in } H^2(\Omega).
\]

It is clear that u satisfies the boundary condition.

Lastly, by Proposition 3.2 in [2], there exists a constant $M > 0$ independent of ϵ such that
\[
\left| \left(\epsilon + |\nabla u_\epsilon|^2 \right)^{\frac{p(x)-2}{2}} \nabla u_\epsilon - \left(\epsilon + |\nabla u|^2 \right)^{\frac{p(x)-2}{2}} \nabla u \right| \leq M \left| \nabla (u_\epsilon - u) \right|^{p(x)-1}
\]

for all $x \in \Omega$. Then, passing to the limit in the weak formulation of (3.2) and using the above inequality, we have that
\[
\int_\Omega |\nabla u|^{p(x)-2} \nabla u \nabla \varphi \ dx = \int_\Omega f \varphi \ dx
\]

for any $\varphi \in C_0^\infty(\Omega)$. Therefore $u \in H^2(\Omega)$ and solves (1.1).

Now, we are able to prove the theorem.

Proof of Theorem 1.1. First, we consider the case $p \in C^1(\Omega)$. Let $p_\epsilon \in C_0^\infty(\Omega)$ such that $p_\epsilon \rightarrow p$ in $C^1(\Omega)$. Now, we define
\[
f_\epsilon(x) = \begin{cases}
f(x) & \text{if } p_\epsilon(x) \leq 2, \\
0 & \text{if } p_\epsilon(x) > 2.
\end{cases}
\]

Observe that $f_\epsilon \rightarrow f$ in $L^{q(\Omega)}(\Omega)$ as $\epsilon \rightarrow 0$.

Then, by Theorem 4.2, the solution \(u_\epsilon \) of (1.1) (with \(p_\epsilon \) and \(f_\epsilon \) instead of \(p \) and \(f \)) is bounded in \(H^2(\Omega) \) by a constant independent of \(\epsilon \). Therefore, there exists a subsequence still denoted \(\{u_\epsilon\}_{\epsilon \in (0,1]} \) and \(u \in H^2(\Omega) \) such that
\[
\begin{align*}
u_\epsilon &\rightharpoonup u \quad \text{in} \ H^1(\Omega), \\
u_\epsilon &\rightharpoonup u \quad \text{weakly in} \ H^2(\Omega).
\end{align*}
\] (4.15)

It remains to prove that \(u \) is a solution of (1.1). Let \(\varphi \in C_0^\infty(\Omega) \), then
\[
\int_\Omega f_\epsilon \varphi \mathrm{d}x = \int_\Omega |\nabla u_\epsilon|^{p_\epsilon(x)-2} \nabla u_\epsilon \nabla \varphi \mathrm{d}x \\
= \int_\Omega |\nabla u_\epsilon|^{p(x)-2} \nabla u_\epsilon \nabla \varphi \mathrm{d}x + \int_\Omega (|\nabla u_\epsilon|^{p_\epsilon(x)-2} - |\nabla u_\epsilon|^{p(x)-2}) \nabla u_\epsilon \nabla \varphi \mathrm{d}x. \tag{4.16}
\]

Therefore, using that \(H^2(\Omega) \rightharpoonup W^{1,p(\cdot)}(\Omega) \) compactly, we have that
\[
\int_\Omega |\nabla u_\epsilon|^{p(x)-2} \nabla u_\epsilon \nabla \varphi \mathrm{d}x \rightarrow \int_\Omega |\nabla u|^{p(x)-2} \nabla u \nabla \varphi \mathrm{d}x. \tag{4.17}
\]

On the other hand, we have
\[
|\nabla u_\epsilon(x)|^{p_\epsilon(x)-1} - |\nabla u_\epsilon(x)|^{p(x)-1} = |\nabla u_\epsilon(x)|^{b_\epsilon(x)} \log(|\nabla u_\epsilon(x)|) (p_\epsilon(x) - p(x)),
\]
where \(b_\epsilon(x) = p_\epsilon(x)\theta + (1 - \theta)p(x) - 1 \) for some \(0 < \theta < 1 \). Therefore, using that \(2^* = \infty \) and that \(p_\epsilon \rightarrow p \) uniformly, we obtain
\[
\int_\Omega (|\nabla u_\epsilon|^{p_\epsilon(x)-2} - |\nabla u_\epsilon|^{p(x)-2}) \nabla u_\epsilon \nabla \varphi \mathrm{d}x \rightarrow 0. \tag{4.18}
\]

Then, using that \(f_\epsilon \rightarrow f \) in \(L^0(\Omega) \), (4.16), (4.17) and (4.18), we conclude that \(u \) is a solution of (1.1).

Now, we consider the case \(p \in \text{Lip}(\Omega) \). By Lemmas B.1 and B.2 there exists \(p_\epsilon \in C^1(\Omega) \) such that \(|\Omega \setminus \Omega_0| < \epsilon \) where
\[
\Omega_0 = \{x \in \Omega: p_\epsilon(x) = p(x) \text{ and } \nabla p_\epsilon(x) = \nabla p(x)\}.
\]

We define \(f_\epsilon \) as in (4.14). Then, the solution \(u_\epsilon \) of (1.1) with \(p_\epsilon \) and \(f_\epsilon \) instead of \(p \) and \(f \) is bounded in \(H^2(\Omega) \) by a constant independent of \(\epsilon \). Therefore there exists a subsequence still denoted \(\{u_\epsilon\}_{\epsilon \in (0,1]} \) and \(u \in H^2(\Omega) \) satisfying (4.15).

Lastly, we prove that \(u \) is a solution of (1.1). Let \(\varphi \in C_0^\infty(\Omega) \). By Hölder’s inequality, since \(2^* = \infty \) and by (3) of Lemma B.2 we have
\[
\int_{\Omega \setminus \Omega_0} (|\nabla u_\epsilon|^{p_\epsilon(x)-2} - |\nabla u_\epsilon|^{p(x)-2}) \nabla u_\epsilon \nabla \varphi \mathrm{d}x \\
\leq C \left(\|\nabla u_\epsilon\|_{L^p(\Omega)} \|1\|_{L^p(\Omega)} + \|\nabla u_\epsilon\|_{L^p(\Omega)} \|1\|_{L^p(\Omega)} \right) \\
\leq C \|\nabla u_\epsilon\|_{H^2(\Omega)} \left(\|1\|_{L^p(\Omega)} \|1\|_{L^p(\Omega)} \right).
\]

Then, since \(\|u_\epsilon\|_{H^2(\Omega)} \) is bounded independent of \(\epsilon \) and \(|\Omega \setminus \Omega_0| < \epsilon \) we obtain that
\[
\int_{\Omega \setminus \Omega_0} (|\nabla u_\epsilon|^{p_\epsilon(x)-2} - |\nabla u_\epsilon|^{p(x)-2}) \nabla u_\epsilon \nabla \varphi \mathrm{d}x \rightarrow 0.
\]

Therefore, since (4.16), (4.17) again hold, using that \(f_\epsilon \rightarrow f \) in \(L^0(\Omega) \), and the above equation, we conclude that \(u \) is a solution of (1.1). \(\square \)

5. The convex case

Lastly, we want to prove that the solution is in \(H^2(\Omega) \) if we only assume that \(\partial \Omega \) is convex. We want to remark here that this result generalizes the one in Theorem 2.2 in [22] in two ways. In that paper the authors consider the case \(p = \text{constant} \) and \(g = 0 \). Instead, we are allowed to cover the case where \(g \) is any function in \(H^2(\Omega) \) and \(p(x) \in \text{Lip}(\Omega) \).

Remark 5.1. Let \(\Omega \) be a convex set and \(p : \Omega \rightarrow [1, \infty) \) be log-continuous in \(\Omega \). Then, there exists a sequence \(\{\Omega_m\}_{m \in \mathbb{N}} \) of convex subset of \(\Omega \) with \(C^2 \) boundary such that \(\Omega_m \subset \Omega_{m+1} \) for any \(m \in \mathbb{N} \) and \(|\Omega \setminus \Omega_m| \rightarrow 0 \).
(1) Then, there exists a constant \(C \) depending on \(p(x) \), \(|\Omega|\) such that
\[
\|v\|_{L^p(\Omega_m)} \leq C\|\nabla v\|_{L^p(\Omega_m)} \quad \forall v \in W^{1,p}(\Omega_m),
\]
for any \(m \in \mathbb{N} \). This follows by Theorem 3.3 in [21], using that \(\Omega_m \subset \Omega_{m+1} \) for any \(m \in \mathbb{N} \).

(2) The Lipschitz constants of \(\Omega_m \) (\(m \in \mathbb{N} \)) are uniformly bounded (see Remark 2.3 in [22]). Therefore, the extension operators
\[
E_{1,m} : W^{1,p}(\Omega_m) \to W^{1,p}(\Omega) \quad \text{and} \quad E_{2,m} : H^2(\Omega_m) \to H^2(\Omega)
\]
define as Theorem 4.2 in [11] satisfy that \(\|E_{1,m}\| \) and \(\|E_{2,m}\| \) are uniformly bounded.

(3) By (2) and Corollary 8.3.2 in [12], there exists a constant \(C \) independent of \(m \) such that
\[
\|v\|_{L^{p^*}(\Omega_m)} \leq C\|v\|_{W^{1,p}(\Omega_m)} \quad \forall v \in W^{1,p}(\Omega_m),
\]
for any \(m \in \mathbb{N} \).

We want to remark that all the constants of the above inequalities are independent of \(p_1 \) (see Section 6 for the applications).

Proof of Theorem 1.2. We begin taking \(\{\Omega_m\}_{m \in \mathbb{N}} \) as in Remark 5.1 and \(u_m \) the solution of
\[
\begin{cases}
-\Delta_p u_m = f & \text{in } \Omega_m, \\
u_m = g & \text{on } \partial \Omega_m.
\end{cases}
\]

By Theorem 1.1, \(u_m \in H^2(\Omega_m) \) for any \(m \in \mathbb{N} \). Moreover, \(u_m \) solves
\[
\begin{cases}
mu_m = \alpha_{ij}^m(x)u_{m,i}x_j = \alpha^m(x) & \text{in } \Omega_m, \\
u_m = g & \text{on } \partial \Omega_m,
\end{cases}
\]
with
\[
\alpha_{ij}^m(x) = \delta_{ij} + \left(p(x) - 2 \right) \frac{u_{m,i}x_j(x)}{|\nabla u_m(x)|^2},
\]
\[
\alpha^m(x) = \ln \left(|\nabla u_m(x)| \right) \left(|\nabla u_m(x), \nabla p(x)| + f(x) |\nabla u_m(x)| \right)^{2-p(x)}.
\]

Then \(v_m = u_m - g \) solves
\[
\begin{cases}
L^m v_m = -L^m g + \alpha^m(x) & \text{in } \Omega_m, \\
v_m = 0 & \text{on } \partial \Omega_m.
\end{cases}
\]

Thus, using that \(v_m \in H^2(\Omega_m) \cap H^1_0(\Omega_m) \) and since the coefficients \(\alpha_{ij}^m(x) \) are bounded independent of \(m \), we can argue as in Theorem 2.2 in [22] and obtain
\[
\|v_m\|_{H^2(\Omega_m)} \leq C\|L^m g - f |\nabla u_m|^{2-p(x)} + \ln(|\nabla u_m|) |\nabla u_m| \|_{L^2(\Omega_m)}
\leq C \left(\|\nabla u_m\|_{L^{2-p}(\Omega_m)} + \ln(|\nabla u_m|) \|\nabla u_m\|_{L^2(\Omega_m)} + 1 \right) \tag{5.19}
\]
where the constant \(C \) is independent of \(m \).

As in Lemma 4.1 we can prove, using Remark 5.1(1) and (3), that the norms \(\|\nabla u_m\|_{L^{p^*}(\Omega_m)} \) are uniformly bounded. Therefore, proceeding as in Theorem 4.2, we obtain
\[
\|\ln(|\nabla u_m|) |\nabla u_m| \|_{L^2(\Omega_m)} + \|f |\nabla u_m|^{2-p} \|_{L^2(\Omega_m)} \leq C \left(\|\nabla u_m\|_{L^{p(x)+1}^2(\Omega_{2,m})}^{(1+1)/(1+1)} + \|\nabla u_m\|_{L^{p^*}(\Omega_{2,m})}^{2-p} \right) + 1), \tag{5.20}
\]
with \(C \) independent of \(m \), where
\[
\Omega_{1,m} = \{x \in \Omega_m: |\nabla u_m(x)| > 1\} \quad \text{and} \quad A_{2,m} = \{x \in \Omega_m: p(x) < 2\}.
\]

Now, using Remark 5.1(3) and (2), we have that for any \(r > 1 \)
\[
\|v_m\|_{W^{1,r}(\Omega_m)} \leq \|E_{2,m}v_m\|_{W^{1,1}(\Omega)} \leq C \|E_{2,m}v_m\|_{H^2(\Omega)} \leq C \|v_m\|_{H^2(\Omega_m)} \tag{5.21}
\]
where \(C \) is independent of \(m \).
Therefore, using (5.19), (5.20) and (5.21), we get
\[
\|v_m\|_{H^2(\Omega_m)} \leq C \left(\|v_m\|_{H^2(\Omega_m)}^{(1+s)/2} + \|v_m\|_{H^2(\Omega_m)}^{-p_1} + \|g\|_{H^2(\Omega_m)}^{(1+s)/2} + \|g\|_{H^2(\Omega_m)}^{-p_1} + 1 \right)
\leq C \left(\|v_m\|_{H^2(\Omega_m)}^{(1+s)/2} + \|v_m\|_{H^2(\Omega_m)}^{-p_1} + 1 \right),
\]
where the constant C is independent of m. This proves that $\{\|v_m\|_{H^2(\Omega_m)}\}_{m \in N}$ is bounded.

Now we have, as in the proof of Theorem 2.2 in [22], that there exist a subsequence still denote $\{v_m\}_{m \in N}$ and a function $v \in H^2(\Omega) \cap H^1_0(\Omega)$ such that
\[
v_m \to v \quad \text{strongly in } H^1(\Omega')
\]
for any $\Omega' \subset \subset \Omega$. Then $u = v + g \in H^2(\Omega)$ and
\[
u_m \to u \quad \text{strongly in } H^1(\Omega')
\]
for any $\Omega' \subset \subset \Omega$. Thus, using (4.13), we have
\[
|\nabla u_m|^{p(x)-2} \nabla u_m \to |\nabla u|^{p(x)-2} \nabla u \quad \text{strongly in } L^{p(\cdot)}(\Omega')
\]
for any $\Omega' \subset \subset \Omega$.

On the other hand, for any $\varphi \in C^\infty_0(\Omega)$ there exists m_0 such that for all $m \geq m_0$
\[
\int_{\Omega_m} |\nabla u_m|^{p(x)-2} \nabla u_m \nabla \varphi \, dx = \int_{\Omega_m} f \varphi \, dx.
\]
Therefore, using (5.22) we have that u is a weak solution of (1.1). □

Proof of Corollary 1.3. By the previous theorem we have that $u \in H^2(\Omega)$, then we can derive Eq. (1.1) and obtain
\[
\begin{align*}
-\alpha_{ij}(x) u_{ij} &= \alpha(x) \quad \text{in } \Omega, \\
u &= g \quad \text{on } \partial \Omega,
\end{align*}
\]
where
\[
\alpha_{ij}(x) = \delta_{ij} + (p(x) - 2) \frac{u_i(x)u_j(x)}{|\nabla u(x)|^2},
\]
\[
\alpha(x) = \ln\left(|\nabla u(x)|\right) |\nabla u(x), \nabla p(x)| + f(x) |\nabla u(x)|^{2-p(x)}.
\]

Using that $f \in L^q(\Omega)$ with $q > q_1 > 2$ and following the lines in the proof of Theorem 4.2, we have that $\alpha(x) \in L^s(\Omega)$ with $s > 2$. Therefore, by Remark A.3, we have that $u \in C^{1,\alpha}(\Omega)$. □

6. Comments

In the image processing problem it is of interest the case where p_1 is close to 1. By this reason, we are also interested in the dependence of the H^2-norm on p_1.

If $N = 2$, $g \in H^2(\Omega)$ and u_ε is the solution of (3.2), we have by Lemma A.1, (3.6) and (3.7), that there exists a constant C independent of p_1 and ε such that
\[
\|u_\varepsilon\|_{H^2(\Omega)} \leq \frac{C}{(p_1 - 1)^s} \left(\|a_\varepsilon\|_{L^2(\Omega)} + \|g\|_{H^2(\Omega)} \right),
\]
where $\kappa = 1$ if Ω is convex and $\kappa = 2$ if $\partial \Omega \in C^2$. Therefore, using that the Poincaré inequality and the embedding $W^{1, p(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega)$ hold in the case $p_1 = 1$ and following the lines of Theorem 1.1 and Theorem 1.2 we have that
\[
\|u\|_{H^2(\Omega)} \leq \frac{C}{(p_1 - 1)^\kappa},
\]
where the constant C is independent of p_1.
Appendix A. Regularity results for elliptic linear equations with coefficients in L^∞

Let Ω be a bounded open subset of \mathbb{R}^2 and

$$M u = a_{ij}(x) u_{x_i x_j},$$

such that $a_{ij} = a_{ji}$ and for any $\xi \in \mathbb{R}^N$

$$\lambda |\xi|^2 \leq a_{ij}(x) \xi_i \xi_j \leq \Lambda |\xi|^2,$$

(A.1)

and

$$M_1 \leq a_{11}(x) + a_{22}(x) \leq M_2 \quad \text{in} \ \Omega$$

(A.2)

where λ, Λ, M_1 and M_2 are positive constant.

In the next lemma, we will give an H^2-bound for solutions of

$$\begin{cases}
M u = f & \text{in} \ \Omega, \\
u = g & \text{on} \ \partial \Omega,
\end{cases}$$

(A.3)

In fact, the following result is proved in Theorem 37, III in [23], but the dependence of the bounds on the ellipticity and the L^∞-norm of $(a_{ij}(x))$ are not explicit. Then, following the proof of the mentioned theorem we can prove

Lemma A.1. Let Ω be a bounded domain in \mathbb{R}^2, $f \in L^2(\Omega)$ and $g \in H^2(\Omega)$. Then, if u is a solution of (A.3) and $u \in H^2(\Omega)$ we have that

$$\|u\|_{H^2(\Omega)} \leq C \kappa \left(\|f\|_{L^2(\Omega)} + \|g\|_{H^2(\Omega)} \right),$$

where $\kappa = 1$ if Ω is convex and $\kappa = 2$ if $\partial \Omega \in C^2$ and C is a constant independent of λ.

Proof. In this proof, we denote $u_{ij} = u_{x_i x_j}$ for all $i, j = 1, 2$ and C is a constant independent of λ.

First, we consider the case $g \equiv 0$. Using (A.1), we have that

$$(a_{11}(x) + a_{22}(x)) (u_{12}^2 - u_{11} u_{22}) = \sum_{i,j,k=1}^2 a_{ij} u_{ik} u_{kj} - \Delta u \sum_{i,j=1}^2 a_{ij} u_{ij} \geq \lambda \sum_{i,k=1}^2 u_{ki}^2 - \Delta u f(x).$$

Then, using Young’s inequality, we get

$$\frac{\lambda}{2(a_{11}(x) + a_{22}(x))} \sum_{i,k=1}^2 u_{ki}^2 \leq \frac{4}{\lambda(a_{11}(x) + a_{22}(x))} f(x)^2 + u_{12}^2 - u_{11} u_{22},$$

and by (A.2), we have that

$$\sum_{i,k=1}^2 u_{ki}^2 \leq \frac{C}{\lambda^2} f(x)^2 + \frac{C}{\lambda} (u_{12}^2 - u_{11} u_{22}).$$

(A.4)

Now, using (37.4) and (37.6) in [23], we have that for any $u \in H^2(\Omega)$

$$\int_{\Omega} (u_{12}^2 - u_{11} u_{22}) \, dx = - \int_{\partial \Omega} \left(\frac{\partial u}{\partial \nu} \right)^2 \frac{H}{2} \, ds$$

(A.5)

where H is the curvature of $\partial \Omega$. If Ω is convex, then $H \geq 0$ and therefore, using (A.4) and (A.5), we have that

$$\|D^2 u\|_{L^2(\Omega)} \leq C \frac{\lambda}{\lambda} \|f\|_{L^2(\Omega)}.$$

(A.6)

In the general case, we can use the following inequality

$$\int_{\partial \Omega} \left(\frac{\partial u}{\partial \nu} \right)^2 \, ds \leq C \left(1 + \delta^{-1} \right) \int_{\Omega} |\nabla u|^2 \, dx + \delta \int_{\Omega} \sum_{i,k=1}^2 u_{ki}^2 \, dx$$

(A.7)

for any $\delta > 0$. See Eq. (37.6) of [23].
Then, by (A.4), (A.5), using that \(H \) is bounded and (A.7) (choosing \(\delta \) properly) we arrive at

\[
\int \sum_{k=1}^{2} u_{ik}^{2} \, dx \leq \frac{C}{\lambda^{2}} \left(\int \| f(x)^{2} \, dx + \int \| \nabla u \|^{2} \, dx \right). \tag{A.8}
\]

On the other hand, using that \(Lu = f \) in \(\Omega \), (A.1) and the Poincaré inequality, we have

\[
\| \nabla u \|_{L^{2}(\Omega)} \leq \frac{C}{\lambda} \| f \|_{L^{2}(\Omega)}. \tag{A.9}
\]

Therefore, by (A.8) and (A.9), we get

\[
\| D^{2}u \|_{L^{2}(\Omega)} \leq \frac{C}{\lambda^{2}} \| f \|_{L^{2}(\Omega)}.
\]

Thus, by the last inequality, (A.9) and (A.6) the lemma is proved in the case \(g = 0 \).

When \(g \) is any function in \(H^{2}(\Omega) \) the lemma follows taking \(v = u - g \). \(\Box \)

The following theorem is proved in Corollary 8.1.6 in [20].

Theorem A.2. Let \(\Omega \) be a convex polygonal domain in \(\mathbb{R}^{2} \), \(\mathcal{M} \) satisfying (A.1) and \(u \in H^{2}(\Omega) \cap H^{1}_{0}(\Omega) \) be a solution of (A.3) with \(g = 0 \) and \(f \in L^{p}(\Omega) \) with \(p > 2 \). Then \(\nabla u \in C^{\mu}(\partial \Omega) \) for some \(0 < \mu < 1 \).

Remark A.3. Observe that the above theorem holds also if we consider any \(g \in W^{2,p}(\Omega) \), since we can take \(v = u - g \) in (A.3) and use that \(W^{2,p}(\Omega) \hookrightarrow C^{1,1-2/p}(\partial \Omega) \).

Appendix B. Lipschitz functions

Using the linear extension operator defined in [14], we have the following lemma.

Lemma B.1. Let \(\Omega \) be a bounded open domain with Lipschitz boundary and \(f \in \text{Lip}(\partial \Omega) \). Then, there exists a function \(\overline{f} : \mathbb{R}^{N} \rightarrow \mathbb{R} \) such that \(\overline{f} \) is a Lipschitz function, \(\sup_{\mathbb{R}^{N}} \overline{f} = \inf_{\mathbb{R}^{N}} \overline{f} = \max_{\mathbb{R}^{N}} f \).

Lemma B.2. Let \(f : \mathbb{R}^{N} \rightarrow \mathbb{R} \) be a Lipschitz function. Then for each \(\varepsilon > 0 \), there exists a \(C^{1} \) function \(f_{\varepsilon} : \mathbb{R}^{N} \rightarrow \mathbb{R} \) such that

1. \(|x \in \mathbb{R}^{N} : f_{\varepsilon}(x) \neq f(x) \text{ or } Df_{\varepsilon}(x) \neq Df(x)| \leq \varepsilon. \)
2. There exists a constant \(C \) depending only on \(N \) such that

\[
\| Df_{\varepsilon} \|_{L^{\infty}(\mathbb{R}^{N})} \leq C \text{Lip}(f).
\]
3. If \(1 < f_{1} \leq f(x) \leq f_{2} \) in \(\mathbb{R}^{N} \), we have

\[
1 < f_{\varepsilon}(x) \leq f_{2} + CE^{\frac{1}{N}} \quad \text{in } \mathbb{R}^{N}
\]

with \(C \) a constant depending only on \(N \).

Proof. Items (1) and (2) follow by Theorem 1, p. 251 in [16].

To prove (3), let us define

\[
\Omega_{0} = \{ x \in \mathbb{R}^{N} : f_{\varepsilon}(x) = f(x) \text{ and } Df_{\varepsilon}(x) = Df(x) \}
\]

and let us suppose that there exists \(x \in \mathbb{R}^{N} \setminus \Omega_{0} \) such that \(f_{\varepsilon}(x) = f_{2} + \delta \) with \(\delta > 0 \). If \(x_{0} \in \Omega_{0} \), by (2), we have

\[
C \text{Lip}(f)|x - x_{0}| \geq f_{\varepsilon}(x) - f_{\varepsilon}(x_{0}) = f_{2} + \delta - f(x_{0}) \geq \delta.
\]

Then \(B_{\rho}(x) \subset \mathbb{R}^{N} \setminus \Omega_{0} \) where \(\rho = \delta(C \text{Lip}(f))^{-1} \) and using (1) we get \(\delta \leq C\varepsilon^{1/N} \), for some constant \(C \) independent of \(\varepsilon \). Analogously we can prove the other inequality. \(\Box \)
References

[1] Emilio Acerbi, Giuseppe Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2) (2001) 121–140.
[2] Jacques Baranger, Khalid Najib, Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math. 58 (1) (1990) 35–49.
[3] Erik M. Bollt, Rick Chartrand, Selim Esedoğlu, Pete Schultz, Kevin R. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math. 31 (1–3) (2009) 61–85.
[4] S. Challal, A. Lyaghfouri, Second order regularity for the $p(x)$-Laplace operator, Math. Nachr. 284 (10) (2011) 1270–1279.
[5] Yumnei Chen, Stacey Levine, Murali Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383–1406 (electronic).
[6] Ph. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 68, North-Holland, Amsterdam, 1978.
[7] A. Coscia, G. Mingione, Hölder continuity of the gradient of $p(x)$ harmonic mappings, C. R. Acad. Sci. Ser. I Math. 328 (1999) 363–368.
[8] Leandro M. Del Pezzo, Ariel L. Lombardi, Sandra Martínez, Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian, SIAM J. Numer. Anal. 50 (5) (2012) 2497–2521.
[9] L. Diening, Theoretical and numerical results for electrorheological fluids, PhD thesis, University of Freiburg, Germany, 2002.
[10] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(x)}$, Math. Inequal. Appl. 7 (2) (2004) 245–253.
[11] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(x)}$ and $W^{k,p(x)}$, Math. Nachr. 268 (2004) 31–43.
[12] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, New York, 2011.
[13] L. Diening, P. Hästö, A. Näkki, Open problems in variable exponent Lebesgue and Sobolev spaces, in: Function Spaces, Differential Operators and Nonlinear Analysis, Milový, Math. Inst. Acad. Sci. Czech Republic, Praha, 2005.
[14] David E. Edmunds, Jiří Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (3) (2000) 267–293.
[15] Luca Esposito, Francesco Leonetti, Giuseppe Mingione, Sharp regularity for functionals with (p, q) growth, J. Differential Equations 204 (1) (2004) 5–55.
[16] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.
[17] Xianling Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2) (2007) 397–417.
[18] Xianling Fan, Dun Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal., Ser. A: Theory Methods 36 (3) (1999) 295–318.
[19] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1983.
[20] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math., vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
[21] S. Samko, Denseness of $C_0^\infty (\mathbb{R}^n)$ in the generalized Sobolev spaces $W^{k,p(x)}(\mathbb{R}^n)$, in: Direct and Inverse Problems of Mathematical Physics, Newark, DE, 1997, in: Int. Soc. Anal. Appl. Comput., vol. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342.