Comparative Study of Physical and Bacteriological Analysis of Borehole Water in Kogi State

Azeez Anyila
Department of Chemistry Kogi State College of Education, Ankpa.

Abstract

Water is an essential part of human existence. It is universally utilized for various purposes ranging from drinking to other domestic purposes. The need for access to water has been a significant challenge for governments all over the world. In Nigeria, there is a growing concern about the water shortage in various communities across the country. In a bid to overcome water scarcity, the government provides boreholes in many places. However, the inadequacy of functional public boreholes has led to the proliferation of private boreholes across the country, which the quality is doubtful. The purpose of the present study was to compare the physical and bacteriological compositions of the public and private boreholes in Kogi state, Nigeria. A total of ten water samples were collected from different public and private boreholes in three locations in the state. Standard procedures were followed in analyzing the samples. The analysis revealed the presence of salmonella spp, Escherichia coli, pseudomonas aeruginosa in the private boreholes.

Introduction:

Water is a universal solvent, which consists of hydrogen and oxygen atoms and plays a critical role in all known geological and biological processes (Bistri & Reinaud, 2015; Conti Nibali et al., 2020; Dhakane et al., 2014; Dirican, 2014; Hussain et al., 2020; Knight et al., 2019; Perlman, 2018; Pohorille & Pratt, 2012; Reichardt & Timm, 2020; Shen et al., 2021). It is a chemical substance with two hydrogen atoms and one oxygen atom in each of its molecules(Saxena et al., 2020). hence the molecular formula is H₂O.(Viscopedia, 2016). It is formed by the direct reaction of hydrogen with oxygen. Water is colorless, odorless, and tasteless liquid in its pure form(Saxena et al., 2020). It is an inorganic substance in all three of its states, including liquid, gas, and solid(Senthil Kumar & Yaashikaa, 2019).

Water is essential for metabolism, substrate transport across membranes, cellular homeostasis, temperature regulation, and circulatory function (Armstrong & Johnson, 2018). It is considered an essential element for the survival of all living beings(Garrido, 2020). According to D'Odorico et al. (2020), every critical environmental function and human needs critically depend on water. This assertion points to the crucial importance of water to human survival. However, many people do not have access to clean and safe drinking water, and many die of waterborne bacterial infections(Cabral, 2010). Water dominates most of the space on our planet, covering about 71% of the earth's total surface area(Kumar & Yaashikaa, 2019). It is found mainly in oceans and other large water bodies. Water on earth moves continually through a cycle of evaporation, transpiration, precipitation, and runoff, usually reaching the sea(Bhat & Tariq, 2014; Lewis, 2020).
Clean and fresh drinking water is essential for humans and other life forms (Hodgson, 2019; Rashmi Reddy et al., 2010; Rogers, 2008; Swaroop et al., 2010). Access to safe water is crucial in determining the environmental sustainability, public health, and economic prosperity of any nation (Wee & Aris, 2019). However, lack of access to safe drinking water remains a concern in many developing countries, mainly rural areas. (Schäfer et al., 2014). For instance, (Erhuanga et al., 2021) noted that most households in Nigeria lack access to safe drinking water. And Nigeria’s hygienic and healthy water situation is not very promising (Kankara & Bazza, 2016). Extensive literature has emphasized the inadequate availability of safe drinking water in Nigeria (see Adeneye et al., 2016; Akpor & Muchie, 2011; Horne et al., 2019; Igbinosia & Osemwengie, 2016; Ogbonna et al., 2020; Raji et al., 2010; Sridhar et al., 2020; Yachim et al., 2020). Thus, suggesting the need for sustainable, safe water intervention to mitigate the adverse effects of contaminated water. Perhaps, the importance of developing effective water supply services is universally recognized as a basis for improving the population's overall health (Badejo et al., 2015). The present study is aimed to analyze the physical and bacteriological compositions of borehole water between dry and rainy seasons.

The quality of drinking water has attracted significant attention worldwide because of implied public health impacts (Barakat et al., 2018; Damo & Icka, 2013; Elsayed Gabr et al., 2021; Ibrahim, 2019; Li & Wu, 2019; Maleki et al., 2018; Nurtazin et al., 2020; Thapa et al., 2019; Thoidingjam et al., 2020). The water quality index (WQI) is a valuable and unique rating to depict the overall water quality status that is helpful for the selection of appropriate treatment techniques to meet the concerned issues (Badejo et al., 2015; Tyagi et al., 2020). Underground borehole water is a common source of water supply for most households in Nigeria. The lack of pipe-borne water has prompted many people to resort to digging boreholes across the country. Although boreholes provide access to abundant water, there is a growing concern about the quality of water from boreholes (Foka et al., 2018; Ibe & Okpleny, 2008; Nnaji et al., 2019; Olalekan et al., 2015). However, findings from studies on the contamination of borehole water in Nigeria have been contradictory (Adogo et al., 2016; Gyang et al., 2017; Ibo et al., 2020; Oguntoke et al., 2009; Simon-Oke et al., 2020). There is a growing concern about the proliferation of private boreholes across the country. Perhaps, insinuations suggest that public dug boreholes are safer relating to water quality than private boreholes (Okon, 2013). The primary purpose of the present study is to compare the physical and bacteriological compositions of public and private boreholes water sources in Kogi State, Nigeria.

Materials and Methods:
Collection of Samples
Water samples were collected from ten different boreholes dug by the public (state or federal government) and the private (individuals, missionaries, NGO, organizations) in Ankpa, Ajaokuta, and Lokoja in Kogi state. The samples were collected using well-sterilized containers. The collected samples were sent to the laboratory immediately. The materials for the study were adequately cleaned and sterilized in a hot air oven, and the media was aseptically prepared according to the manufacturer's instructions.

Method of Analysis
Analysis of the water samples was carried out by physical analysis and bacteriological analysis. The physical examination included the determination of the water turbidity. The physicochemical parameters comprising the water temperature, pH, and electrical conductivity were assessed using the standard procedure (APHA 2012) described. The mercury-in-glass bulb thermometer was used to measure water temperature (°C). Also, the Hanna Instrument meter (Model H19813-6) previously calibrated with buffer solutions was adopted to assess the pH, while conductivity was ascertained with a conductivity meter calibrated with potassium chloride solution. The bacteriological analysis was conducted using the procedure described in the manual of clinical microbiology (Jorgensen & Pfaller, 2015).

Results:
The boreholes were identified by alphabets, with A-E representing the private boreholes while F-J signifies the public boreholes. Thus, table 1 shows that there were no changes in the color and odor of the samples. Still, there were changes in the samples’ pH, turbidity, and conductivity on the private borehole waters (A, B, C, D, E), while there are no changes on the public borehole (F, G, H, I, J). Table 2 shows the total plate count of coliform on the nutrient agar, MacConkey agar, and Eosin methylene blue agar at 37°C in 24 hours. Table 3 shows that there was acid and base on the private borehole samples (A, B, C, D, and E) while there was not acid or gas on the public borehole water sample (F, G, H, I, and J). Table 4 shows the presence of acid and gas on the private borehole water sample (A, B, C, D, and E) when mixed with 10 ml double strength, 5 ml single strength, and 1 ml single strength. At
the same time, there was no acid or gas on the public borehole water samples (F, G, H, I, J) when mixed with 10ml double strength, 5ml single strength, and 1ml single. Table 5 shows the growth on the private borehole waters (A, B, C, D, and E), which is positive, while there was no growth on the public borehole water (F, G, H, I & J) water which is negative. Table 6 shows that there was bacteria growth on the private borehole water (A, B, C, D, and E), which is positive, while there was no growth at all on the public borehole water (F, G, H, I and J) which is negative.

Table 1: Table showing the physical analysis.

Parameter	Public Borehole	Private Borehole								
	A	B	C	D	E	F	G	H	I	J
Turbidity (NTU)	+	+	+	+	-	-	-	-	-	-
Odor (TCU)	-	-	-	-	-	-	-	-	-	-
Conductivity P/cm	4.5×10^2	4.0×10^2	3.7×10^2	2.8×10^2	3.4×10^2	3.4×10^2	2.8×10^2	3.4×10^2	4.5×10^2	4.0×10^2
Ph	5.7	6.0	6.2	6.1	6.0	6.5	6.5	6.6	6.6	6.5

Key:
- = Negative,
+ = positive

Table 2: Bacteriological Analysis Total plate count of vital coliform at 370C in 24hours for pathogenic organisms in public and private boreholes. (CFU/ml).

Samples of water	Nutrient agar	MacConkey agar	EMB Agar
A	20	36	45
B	40	50	55
C	10	30	46
D	20	20	25
E	10	40	30
F	0	0	0
G	0	0	0
H	0	0	0
I	0	0	0
J	0	0	0

Keys
A = private
B = private
C = private
D = private
E = private
F = public
G = public
H = public
I = public
J = public

Table 3: Most probable number count for water sample (public and private boreholes).

Water Sample	Double strength	Single strength	Single strength	Sample Count	MPN
	10ml 5ml 1ml				
A	3 3 3	3	3	>1100	
B	3 3 3	3	3	>1100	
C	3 3 3	3	3	>1100	
D	3 3 3	3	3	>1100	
E	3 3 3	3	3	>1100	
F	0 0 0	0	0	< 3	
G	0 0 0	0	0	< 3	
H	0 0 0	0	0	< 3	
I	0 0 0	0	0	< 3	
J	0 0 0	0	0	< 3	

Keys
A = private B = private
C = private D = private
E = private F = public
G = public H = public
I = public J = public

Table 4: Presumptive Test.
Samples number	10ml double strength	5ml single strength	1ml single strength
A	AG	AG	AG
B	AG	AG	AG
C	AG	AG	AG
D	AG	AG	AG
E	AG	AG	AG
F	-	-	-
G	-	-	-
H	-	-	-
I	-	-	-
J	-	-	-

Keys
A = private B = private
C = private D = private
E = private F = public
G = public H = public
I = public J = public
AG = Acid and Gas
- = Negative

Table 5: Confirmatory Test Table.
Samples number	10ml double strength	5ml single strength	1ml single strength
A	+	+	+
B	+	+	+
C	+	+	+
D	+	+	+
E	+	+	+
F	-	-	-
G	-	-	-
H	-	-	-
I	-	-	-
J	-	-	-

Keys
A = private B = private
C = private D = private
E = private F = public
G = public H = public
I = public J = public
+ = Positive
- = Negative

Table 6: Completed Test.
Samples number	10ml double strength	5ml single strength	1ml single strength
A	+	+	+
B	+	+	+
C	+	+	+
D	+	+	+
E	+	+	+
Discussion:-

The study was conducted to compare the physical and bacteriological compositions of the public and private borehole water sources in Kogi state. The specific objective of the research was to examine the difference between the public and private boreholes based on their physical and bacteriological constituents. From table 4 above, the coliform confirmed on the individual sample had more than five total coliforms per 100ml in private borehole water. When water contains coliform bacteria in levels greater than one per 100ml of water, they may also contain pathogens that cause acute intestinal illness. While generally considered a discomfort to the health, these infections may be fatal to infants, older adults, and those who are sick. Still, in table 4, there was no coliform on the public borehole water, thereby making it free from contaminants.

More so, the presence of salmonella spp, Escherichia coli, pseudomonas aeruginosa was detected at a high level in the private borehole water, as shown in table 7. This indicates that the privately owned boreholes are most polluted with coliform bacteria. The presence of these bacteria signifies that the water is not suitable for human consumption. This finding corroborates the study (Okon, 2013) which found the high composition of coliform bacteria in privately dug boreholes. The complete absence of organisms in the public borehole water samples might be attributed to the fact that some forms of treatment are usually applied to the supply by the government. The variation in the physical and bacteriological composition of the boreholes examined could be attributed to the poor depth of the private borehole and lack of supervision of the drilling process of private boreholes.
Conclusion:
The study aimed to compare public and private borehole water in Kogi state, Nigeria. The analysis performed on the collected water samples from the boreholes established the presence of micro-organisms in the private borehole water sources. In all, the experiment indicates that water from the private boreholes examined is not safe for human consumption and could pose a danger to human health. The study recommends robust examination and treatment of private boreholes in Kogi state.

References:
1. Adeneye, A. K., Musa, A. Z., Oyedeji, K. S., Oladele, D., Ochoga, M., Akinsinde, K. A., Niemogha, M. T., Nwaokorie, F. O., Bamidele, T. A., Brai, B. I., Omonigbehin, E. A., Bamidele, M., Fesobi, T. W., Smith, S. I., & Ujah, I. A. O. (2016). Risk factors associated with a cholera outbreak in Bauchi and Gombe states in North-East Nigeria. Journal of Public Health and Epidemiology, 8(11).
2. Adogo, L., Ajiji, M., Anyanwu, N., & Ajide, B. (2016). Bacteriological and Physico-chemical Analysis of Borehole Water in Auta Balefi Community, Nasarawa State, Nigeria. British Microbiology Research Journal, 11(4). https://doi.org/10.9734/bmrj/2016/22360
3. Akpor, O. B., & Muchie, M. (2011). Challenges in meeting the MDGs: The Nigerian drinking water supply and distribution sector. Journal of Environmental Science and Technology, 4(5). https://doi.org/10.3923/jest.2011.480.489
4. APHA, AWWA, WEF. (2012). Standard Methods for Examination of Water and Wastewater. Washington: American Public Health Association.
5. Armstrong, L. E., & Johnson, E. C. (2018). Water intake, water balance, and the elusive daily water requirement. In Nutrients (Vol. 10, Issue 12). https://doi.org/10.3390/nu10121928
6. Badejo, A. A., Ndambuki, J. M., Kupolati, W. K., Adekunle, A. A., Taiwo, S. A., & Omole, D. O. (2015). Appraisal of access to safe drinking water in southwest Nigeria. African Journal of Science, Technology, Innovation, and Development, 7(6). https://doi.org/10.1080/20421338.2015.1096669
7. Barakat, A., Meddah, R., Afdali, M., & Touhami, F. (2018). Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Physics and Chemistry of the Earth, 104. https://doi.org/10.1016/j.pce.2018.01.006
8. Bhat, T. A., & Tariq Ahmad Bhat. (2014). An Analysis of Demand and Supply of Water in India. Journal of Environment and Earth Science, 4(11).
9. Bistri, O., & Reinaud, O. (2015). Supramolecular control of transition metal complexes in water by a hydrophobic cavity: A bio-inspired strategy. In Organic and Biomolecular Chemistry (Vol. 13, Issue 10). https://doi.org/10.1039/c4ob02511c
10. Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. In International Journal of Environmental Research and Public Health (Vol. 7, Issue 10). https://doi.org/10.3390/ijerph7103657
11. Conti Nibali, V., Pezzotti, S., Sebastiani, F., Galiberti, D. R., Schaawab, G., Heyden, M., Gaigeot, M. P., & Havenith, M. (2020). Wrapping up Hydrophobic Hydration: Locality Matters. Journal of Physical Chemistry Letters, 11(12). https://doi.org/10.1021/acs.jpclett.0c00846
12. D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., & Rulli, M. C. (2020). The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America, 117(36). https://doi.org/10.1073/pnas.2005835117
13. Damo, R., & Icka, P. (2013). Evaluation of water quality index for drinking water. Polish Journal of Environmental Studies, 22(4).
14. Dhakane, V. D., Gholap, S. S., Deshmukh, U. P., Chavan, H. V., & Bandgar, B. P. (2014). An efficient and green method for the synthesis of [1,3] oxazine derivatives catalyzed by thiamine hydrochloride (VB1) in water. Comptes Rendus Chimie, 17(5). https://doi.org/10.1016/j.crci.2013.06.002
15. Dirican, S. (2014). Assessment of Water Quality Using Physico-chemical Parameters of Çamlıgöz Dam Lake in Sivas, Turkey. Ecologia, 5(1). https://doi.org/10.3923/ecologia.2015.1.7
16. Elsayed Gabr, M., Soussa, H., & Fattouh, E. (2021). Groundwater quality evaluation for drinking and irrigation uses in Dayrout city Upper Egypt. Ain Shams Engineering Journal, 12(1). https://doi.org/10.1016/j.asej.2020.05.010
17. Erhuanga, E., Banda, M. M., Kiakubu, D., Kashim, I. B., Ogunjobi, B., Jurji, Z., Ayoola, I., & Soboyejo, W. (2021). Potential of ceramic and bios, and water filters as low-cost point-of-use water treatment options for household use in Nigeria. Journal of Water Sanitation and Hygiene for Development, 11(1). https://doi.org/10.2166/washdev.2020.096
17. Foka, F. E. T., Yah, C. S., & Bissong, M. E. A. (2018). Physico-chemical properties and microbiological quality of borehole water in four crowded areas of Benin city, Nigeria, during rainfalls. Shiraz E Medical Journal, 19(11). https://doi.org/10.5812/semj.68911
18. Garrido, B. B. (2020). The human right to water and sanitation. Revista Brasileira de Políticas Publicas, 10(3). https://doi.org/10.5102/RBPP.V10I3.7271
19. Gyang, P. R., Uzoigwe, N. R., & Ahmed. (2017). Evaluation of Local Drinking Water Sources to Determine Their Possible Contamination with Parasite in Lafia Local Government Area Nasarawa State, Nigeria. European Journal of Basic and Applied Sciences, 4(1).
20. Hodgeson, J. (2019). Clean Water Crisis Facts and Information. National Geographic.
21. Horn, C., Onyema, G., Onyema, A., & El-Hayek, K. (2019). The importance of integrating minimally invasive surgery in developing nations. Surgical Endoscopy, 33.
22. Hussain, S., Nazir, K., Amjad, M., Kanwal, F., Khan, U., & Riaz, M. (2020). Role of Heavy Metals and Anthropogenic Activities in Water Contamination. Scientific Inquiry and Review, 4(2). https://doi.org/10.32350/sir/2020/42985
23. Ibe, S. N., & Okpelenye, J. I. (2008). Bacteriological analysis of borehole water in Uli, Nigeria. African Journal of Applied Zoology and Environmental Biology, 7(1). https://doi.org/10.4314/ajazeb.v7i1.41158
24. Ibo, E. M., Umeh, O. R., Uba, B. O., & Egwuatu, P. I. (2020). Bacteriological assessment of some borehole water samples in Mile 50, Abakaliki, Ebonyi State, Nigeria. Archives of Agriculture and Environmental Science, 5(2). https://doi.org/10.26832/24566632.2020.0502015
25. Ibrahim, M. N. (2019). Assessing groundwater quality for drinking purpose in Jordan: Application of water quality index. Journal of Ecological Engineering, 20(3). https://doi.org/10.12911/22998993/99740
26. Igbinsosa, I. H., & Osemwengie, O. V. (2016). On-site assessment of environmental and sanitary qualities of Rainwater Harvesting System (RWH) in a rural community in Benin City, Nigeria. Journal of Applied Sciences and Environmental Management, 20(2). https://doi.org/10.4314/jasem.v20i2.12
27. Jorgensen, J. H., & Pfaller, M. A. (2015). Introduction to the 11th Edition of the Manual of Clinical Microbiology. In Manual of Clinical Microbiology. https://doi.org/10.1128/9781555817381.ch1
28. Kankara, A. I., & Bazza, L. M. (2016). Examining Groundwater Pollution in Central Katsina City, Nigeria. J. of Hydraulic Engineering, 2(1). https://doi.org/10.17265/2332-8215/2016.01.003
29. Knight, A. W., Kalugin, N. G., Coker, E., & Ilgen, A. G. (2019). Water properties under nano-scale confinement. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-44651-z
30. Lewis, G. (2020). The hydrological cycle. In Instructor's Manual to Chris Park's The Environment. https://doi.org/10.4324/9780203023877-17
31. Li, P., & Wu, J. (2019). Drinking-water quality and public health. Exposure and Health, 11(2). https://doi.org/10.1007/s12403-019-00299-8
32. Maleki, A., kamareh, B., Rezaee, R., Jafari, A., Zandsalami, Y., Bahmani, P., Ghahramani, E., & Karami, M. A. (2018). Data on physicochemical quality of drinking water in the rural area in Divandarreh county, Kurdistan, Iran. Data in Brief, 19. https://doi.org/10.1016/j.dib.2018.06.058
33. Nnaji, J. C., Igwe, O. U., Onyedim, K. M., & Okafor, P. (2019). Radioisotope and Metal Concentrations in Borehole Water Samples of Umuahia and Umudike, Nigeria. Journal of Applied Sciences and Environmental Management, 23(7). https://doi.org/10.4314/jasem.v23i7.32
34. Nurtazin, S., Pueppke, S., Ospan, T., Mukhitdinov, A., & Elebessov, T. (2020). Quality of drinking water in the Balkhash district of Kazakhstan's Almaty region. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020392
35. Ogbonna, P. C., Ukpai, N. P., Obasi, K. O., & Umezuruike, S. O. (2020). Appraising the Physico-chemical Characteristics and Heavy Metals in Pond Water at Quarry Site in Ngwogwo, Ebonyi State, Nigeria. Nigerian Journal of Environmental Sciences and Technology, 4(2). https://doi.org/10.36263/njest.2020.02.0203
36. Oguntoke, O., Aboderin, O. J., & Bankole, A. M. (2009). Association of waterborne diseases morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzania Journal of Health Research, 11(4). https://doi.org/10.4314/jhr.v11i4.50174
37. Okon, B. B. (2013). Comparative Analysis of Public and Private Borehole Water Supply Sources in Uruan Local Government Area of the Akwa Ibom State University of Uyo. International Journal of Applied Science and Technology, 3(1).
38. Olalekan, A., Abubakar, B., & Abdul Mumini, K. (2015). Physico-chemical characteristics of borehole water quality in Gassol Taraba State, Nigeria. African Journal of Environmental Science and Technology, 9(2). https://doi.org/10.5897/ajest2014.1794
39. Perlman, H. (2018). Water, the universal solvent. The USGS Water Science School.
39. Pohorille, A., & Pratt, L. R. (2012). Is Water the Universal Solvent for Life? Origins of Life and Evolution of Biospheres, 42(5). https://doi.org/10.1007/s11084-012-9301-6
40. Raji, M., Ibrahim, Y., & Ehinmidu, J. (2010). Physico-chemical characteristics and Heavy metal levels in Drinking Water sources in Sokoto metropolis in North-western Nigeria. Journal of Applied Sciences and Environmental Management, 14(3). https://doi.org/10.4314/jasem.v14i3.61473
41. Rashmi Reddy, P., Satya Swaroop, G., & Karthik Ravi Teja, M. (2010). Mathematical analysis for a constant household monitor of water contamination. 4th WSEAS International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, WWAI '10.
42. Reichardt, K., & Timm, L. C. (2020). Water, the Universal Solvent for Life. In Soil, Plant, and Atmosphere. https://doi.org/10.1007/978-3-030-19322-5_2
43. Rogers, P. (2008). Freshwater Crisis. Scientific American.
44. Saxena, S., Ramakrishnan, S., Soni, D., Meena, K. K., & Arora, S. (2020). Water quality monitoring of residential area affected by solid waste landfill site in Jaipur city. Test Engineering and Management, 82(March).
45. Schäfer, A. I., Hughes, G., & Richards, B. S. (2014). Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries? In Renewable and Sustainable Energy Reviews (Vol. 40). https://doi.org/10.1016/j.rser.2014.07.164
46. Senthil Kumar, P., & Yaashikaa, P. R. (2019). Introduction—Water. In Water in Textiles and Fashion. https://doi.org/10.1016/b978-0-08-102633-5.00001-4
47. Shen, T., Zhou, S., Ruan, J., Chen, X., Liu, X., Ge, X., & Qian, C. (2021). Recent advances on micellar catalysis in water. In Advances in Colloid and Interface Science (Vol. 287). https://doi.org/10.1016/j.cis.2020.102299
48. Simon-Oke, I. A., Afolabi, O. J., & Obimakinde, E. T. (2020). Parasitic contamination of water sources in Akure, Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 81(1). https://doi.org/10.1186/s41936-020-00187-7
49. Sridhar, M. K. C., Okareh, O. T., & Mustapha, M. (2020). Assessment of Knowledge, Attitudes, and Practices on Water, Sanitation, and Hygiene in Some Selected LGAs in Kaduna State, Northwestern Nigeria. Journal of Environmental and Public Health, 2020. https://doi.org/10.1155/2020/6532512
50. Swaroop, G. S., Reddy, P. R., & Teja, M. K. R. (2010). Hygieia-domestic online monitor of water pollution. 2010 IEEE International Conference on Electro/Information Technology, EIT2010. https://doi.org/10.1109/EIT.2010.5612132
51. Thapa, K., Shrestha, S. M., Rawal, D. S., & Pant, B. R. (2019). Quality of drinking water in Kathmandu valley, Nepal. Sustainable Water Resources Management, 5(4). https://doi.org/10.1007/s40899-019-00354-x
52. Thoidingjam, G., Kumar, C., Behra, P., Bose, K. J. C., & Mukherjee, G. (2020). An investigation on the quality of commercially packaged drinking water available in Punjab in terms of bacterial existence. Annals of Tropical Medicine and Public Health, 23(15). https://doi.org/10.36295/ASRO.2020.231525
53. Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water Quality Assessment in Terms of Water Quality Index. American Journal of Water Resources, 1(3). https://doi.org/10.12691/ajwr-1-3-3
54. Viscopedia. (2016). Water – viscosity table and viscosity chart. In Viscopedia.
55. Wee, S. Y., & Aris, A. Z. (2019). Occurrence and public-perceived risk of endocrine-disrupting compounds in drinking water. In npj Clean Water (Vol. 2, Issue 1). https://doi.org/10.1038/s41545-018-0029-3
56. Yachim, D. F., Innocent, O. A., Okojokwu, O. J., & Papi, D. Y. (2020). Ascertaining the Bacteriological Quality of Water Drawn from Cast and Non-cast Wells in Zaria, Nigeria. International Journal of Pathogen Research. https://doi.org/10.9734/iijpr/2020/v4i130104.