A CONVOLUTION FORMULA FOR TUTTE POLYNOMIALS OF
ARITHMETIC MATROIDS AND OTHER COMBINATORIAL
STRUCTURES

SPENCER BACKMAN AND MATTHIAS LENZ

Abstract. In this note we generalize the convolution formula for the Tutte
polynomial of Kook–Reiner–Stanton and Etienne–Las Vergnas to a more gen-
eral setting that includes both arithmetic matroids and delta-matroids. As
corollaries, we obtain new proofs of two positivity results for pseudo-arithmetic
matroids and a combinatorial interpretation of the arithmetic Tutte polyno-
mal at infinitely many points in terms of arithmetic flows and colorings. We
also exhibit connections with a decomposition of Dahmen–Micchelli spaces and
lattice point counting in zonotopes.

1. Introduction

Matroids are combinatorial structures that capture and abstract the notion of
independence. They were introduced in the 1930s, and since then they have become
an important part of combinatorics and other areas of pure and applied mathemat-
ics. The Tutte polynomial is an important matroid invariant. Many invariants of
graphs and hyperplane arrangements can be obtained as specializations of the Tutte
polynomial [11]. Kook–Reiner–Stanton [24] and Etienne–Las Vergnas [23] found a
so-called convolution formula for the Tutte polynomial T_M of a matroid M:

$$T_M(x, y) = \sum_{A \subseteq M} T_{M/A}(0, y) T_{M/A}(x, 0).$$

In this note we will generalize this formula to the far more general setting of ranked
sets with multiplicities.

A ranked set with multiplicities is a finite set M, together with a rank function
$rk : 2^M \to \mathbb{Z}$ that satisfies $rk(\emptyset) = 0$ and a multiplicity function $m : 2^M \to R$, where
R denotes a commutative ring with 1.

This setting contains the following combinatorial structures as special cases:

- **Matroids**: if rk satisfies the rank axioms of a matroid, $R = \mathbb{Z}$, and $m \equiv 1$
 (e. g. [20]).
- **Pseudo-arithmetic matroids**: if (M, rk) is a matroid and $m : 2^M \to \mathbb{R}_{\geq 0}$
satisfies certain positivity conditions [10].
- **Quasi-arithmetic matroids**: if (M, rk) is a matroid and $m : 2^M \to \mathbb{Z}_{\geq 1}$
satisfies certain divisibility conditions [10].
- **Arithmetic matroids**: if (M, rk, m) is both a pseudo-arithmetic matroid and
 a quasi-arithmetic matroid [10] [16].

The second author was supported by a Swiss Government Excellence Scholarship for Foreign
Scholars and subsequently by a fellowship within the postdoc program of the German Academic
Exchange Service (DAAD).
• Integral polymatroids: if \(r \) is the submodular function that defines an integral polymatroid, \(R = \mathbb{Z} \) and \(m \equiv 1 \) (e.g. \cite{31} Chapter 44)

• Rank functions of delta-matroids and ribbon graphs: one can choose \(m \equiv 1 \) and \(\text{rk} = \rho \), the rank function of an even delta-matroid \((M, \mathcal{F}) \) in the sense of Chun–Moffatt–Noble–Rueckriemen \cite{13, 25}. Ribbon graphs \cite{8} define delta-matroids in a similar way as graphs define matroids \cite{9, 13}.

See Section \ref{sec:definitions} for definitions. Sometimes, we will write \(\text{rk}_M \) and \(m_M \) to denote the rank and multiplicity functions of \(M \) and we will occasionally write \(M \) instead of \((M, \text{rk}_M, m_M)\) to denote the ranked set with multiplicities.

We will show that the convolution formula of Kook–Reiner–Stanton and Etienne–Las Vergnas holds in a very general setting. The only thing we require is that restriction and contraction are defined in the usual way: let \(A \subseteq M \). The restriction \(M|_A \) is the ranked set with multiplicities \((A, \text{rk}_A, m|_A)\), where \(\text{rk}_A \) and \(m|_A \) denote the restrictions of \(\text{rk} \) and \(m \) to \(A \). The contraction \(M/A \) is the ranked set with multiplicities \((M \setminus A, \text{rk}_{M/A}, m_{M/A})\), where \(\text{rk}_{M/A}(B) := \text{rk}_M(B \cup A) - \text{rk}_M(A) \) and \(m_{M/A}(B) := m_M(B \cup A) \) for \(B \subseteq M \setminus A \).

To a ranked set with multiplicities, we associate the arithmetic Tutte function

\[
\mathcal{M}_M(x, y) = \sum_{A \subseteq M} m(A)(x-1)^{\text{rk}(M) - \text{rk}(A)}(y-1)^{|A| - \text{rk}(A)} \in R(x, y)
\]

and the Tutte function \(\Sigma_M(x, y) = \sum_{A \subseteq M} (x-1)^{\text{rk}(M) - \text{rk}(A)}(y-1)^{|A| - \text{rk}(A)} \in R(x, y) \). As usual, \(R(x, y) \) denotes the ring of rational functions in \(x \) and \(y \) with coefficients in \(R \). Note that \(\mathcal{M}_M(x + 1, y + 1) \) and \(\Sigma_M(x + 1, y + 1) \) are Laurent polynomials in \(R[x^{\pm 1}, y^{\pm 1}] \). If \(\text{rk}(A) \leq \text{rk}(M) \) and \(\text{rk}(A) \leq |A| \) for all \(A \subseteq M \), then both functions are polynomials in \(R[x, y] \).

If \(M \) is a matroid, \(\Sigma_M(x, y) \) is the usual Tutte polynomial. As far as we know, the Tutte Laurent polynomial \(\Sigma_M(x + 1, y + 1) \) of a polymatroid \(M \) has not been studied yet. However, other Tutte invariants of polymatroids have appeared in the literature \cite{12, 29}. If \(M \) is a (quasi/pseudo)-arithmetic matroid, \(\mathcal{M}_M(x, y) \) is the usual arithmetic Tutte polynomial \cite{10, 16, 28}. The arithmetic Tutte polynomial appears in many different contexts, e.g. in the study of the combinatorics and topology of toric arrangements, of cell complexes, the theory of vector partition functions, and Ehrhart theory of zonotopes \cite{2, 14, 26, 28, 33}.

If \(\text{rk} \) is the rank function of an even delta-matroid in the sense of Chun–Moffatt–Noble–Rueckriemen \cite{13, 25}, then \(\Sigma_M \) is the 2-variable Bollobás–Riordan polynomial of the delta-matroid (see \cite{13} or \cite{25} (42)). A special case is the 2-variable Bollobás–Riordan polynomial of a ribbon graph \cite{25} p. 22.

The following theorem is our main result.

Theorem 1. Let \((M, \text{rk}, m)\) be a ranked set with multiplicities (e.g. an arithmetic matroid). Let \(\mathcal{M}_M \) denote its arithmetic Tutte polynomial and let \(\Sigma_M \) denote its Tutte polynomial. Then

\[
\mathcal{M}_M(x, y) = \sum_{A \subseteq M} \mathcal{M}_{M|A}(0, y)\Sigma_{M/A}(x, 0)
\]

\[
= \sum_{A \subseteq M} \Sigma_{M|A}(0, y)\mathcal{M}_{M/A}(x, 0).
\]
In the case of even delta-matroids, our theorem specializes to a convolution formula for the 2-variable Bollobás–Riordan polynomial \([25 \text{ Theorem 16(2)}}\). Theorem \(1\) provides a new method to prove that the coefficients of the Tutte polynomial of a pseudo-arithmetic matroid are positive \((16 \text{ Theorem 5.1}}\) and \(10 \text{ Theorem 4.5))\).

Corollary 2. The coefficients of the Tutte polynomial of a pseudo-arithmetic matroid are positive integers.

Remark 3. Let \(M \) be an arithmetic matroid that is represented by a list of vectors \(X \) in some finitely generated abelian group. Let \(V(X) \) denote the set of vertices of the corresponding generalized toric arrangement (for definitions see \(28\)). If we set \(x = 1\), the second expression for \(M_M(x, y) \) in Theorem \(1\) is equivalent to \(28\) Lemma 6.1], which states that

\[
M_M(1, y) = \sum_{p \in V(X)} T_{M_p}(1, y).
\]

Here, \(M_p\) denotes the matroid represented by the sublist of \(X\) that consists of all elements that define a hypersurface that contains \(p\). This equivalence is explained in more detail in Section \(3\).

\(4\) is related to two decomposition formulas in the theory of splines and vector partition functions: the decomposition of the discrete space \(DM(X)\) into continuous \(D\)-spaces \(DM(X) = \bigoplus_{p \in V(X)} C_pD(X_p)\) by Dahmen and Micchelli \(18\) (see also \(19\) \text{ Theorem 49}}\) and \(20\) \text{(16.1)}) and dually, the decomposition of the periodic \(P\)-spaces by the second author \(20\). These decompositions could be a step towards a bijective proof of our result.

For two multiplicity functions \(m_1, m_2 : 2^M \rightarrow R\), we will consider their product \(m_1m_2\), defined by \((m_1m_2)(A) := m_1(A)m_2(A)\). The following generalization of our main theorem was suggested to us by Luca Moci. It can be proven in a similar way. A complete proof will appear in a future article.

Theorem 4. Let \((M, rk, m_1)\) and \((M, rk, m_2)\) be two ranked sets with multiplicity. Then \((M, rk, m_1m_2)\) is a ranked set with multiplicity and its arithmetic Tutte polynomial is given by the convolution formula

\[
M_{(M, rk, m_1m_2)}(x, y) = \sum_{A \subseteq M} M_{(M, rk, m_1)}(0, y)M_{(M, rk, m_2)}(A, 0).
\]

Theorem \(4\) implies a generalized version of the key lemma (Lemma 2) of \(21\).

Corollary 5. (Positivity of products of multiplicity functions). Let \((M, rk)\) be a matroid and let \(m_1, m_2 : 2^E \rightarrow R\) be two functions.

If both \(m_1\) and \(m_2\) satisfy the positivity axiom (cf. \(20\)), so does their product \(m_1m_2\).

Remark 6. Delucchi and Moci \(23\) remarked that Corollary \(5\) implies that if both \((E, rk, m_1)\) and \((E, rk, m_2)\) are arithmetic matroids, then \((E, rk, m_1m_2)\) is an arithmetic matroid as well. They used this to answer a question of Bajo–Burdick–Chmutov on cellular matroids of CW complexes \(2\).

Note that \((E, rk, m_1m_2)\) is not necessarily representable, even if both \((E, rk, m_1)\) are representable. As an example, consider the arithmetic matroid \((E, rk, m)\) represented by the list of vectors \(X = ((1, 0), (0, 1), (1, 1), (1, −1))\) and the arithmetic matroid \((E, rk, m^2)\). The underlying matroid is uniform in both cases. Suppose there is a list of vectors \(X'\) that represents \((E, rk, m^2)\). Since \(m^2\) is equal to one on five of the six bases, one can assume without loss of generality that two of the vectors in \(X'\) are \((1, 0)\) and \((0, 1)\). Then it follows that the other two are of the
form \((\pm 1, \pm 1)\). This implies that all bases have multiplicity one or two, which is a contraction. Questions of this type are discussed in more detail in \[27\].

Zonotopes. It is easy to see that the number of integer points in a polytope is equal to the sum of the number of integer points in the interior of all of its faces. In the case of zonotopes, this statement is equivalent to the specialization of Theorem 1 to \((x, y) = (2, 1)\).

Corollary 7. Let \(X = (x_1, \ldots, x_N) \subseteq \mathbb{Z}^d\) be a list of vectors and let \(Z(X) := \{\sum_{i=1}^N \lambda_i x_i : 0 \leq \lambda_i \leq 1\}\) be the zonotope defined by \(X\). Then

\[
|Z(X) \cap \mathbb{Z}^d| = |\mathfrak{M}(2, 1) - \sum_{A \subseteq X} |\mathfrak{M}_{M/A}(0, 1)\Sigma_{M/A}(2, 0)|
\]

where the last sum is over all faces of \(Z(X)\).

Barvinok and Pommersheim proved a geometric convolution-like formula for the number of integer points in a lattice zonotope. It would be interesting to find a connection with our convolution formula.

Theorem 8 ([3 Section 7]). Let \(X \subseteq \mathbb{Z}^d\) be a list of \(N\) vectors. Then

\[
|Z(X) \cap \mathbb{Z}^d| = \sum_P \text{vol}(P)\gamma(P, F),
\]

where the sum is over all faces \(F\) of the zonotope and \(\gamma(P, F)\) denotes the exterior angle of \(F\) at \(P\). The volume of a face is measured intrinsically with respect to the lattice.

More specifically, the \(k\)th coefficient of the Ehrhart polynomial \(E_X(q) = q^N|\mathfrak{M}_X(1 + \frac{1}{q}, 1)\) of the zonotope is equal to \(\sum_{F, \dim F = k} \text{vol}(F)\gamma(P, F)\).

Flows and colorings. In this subsection we will give a combinatorial interpretation of the evaluation of the arithmetic Tutte polynomial and a closely related polynomial, the modified Tutte–Krushkal–Renardy polynomial, at infinitely many integer values in terms of arithmetic flows and colorings. This works for arbitrary representable arithmetic matroids.

D’Adderio and Moci defined a class of “graphic arithmetic matroids” using graphs whose edges are labeled by positive integers \([17]\). One can define so-called arithmetic flows and arithmetic colorings on these graphs. These notions of flows and colorings were extended by Brändén and Moci to the setting where \(X\) is a finite list of elements from a finitely generated abelian group \([10]\). These arithmetic flows and colorings are related to our convolution formula in a similar way as classical flows and colorings are related to the classical convolution formula \([24]\ Theorem 2\). Arithmetic flows and colorings contain flows and colorings of CW complexes \([4, 5]\) as a special case, when the list of vectors is taken to be a boundary operator of CW complexes \([21]\ Lemma 4\).

We briefly review the setup of Brändén and Moci. Let \(G\) be a finitely generated abelian group. Let \(X\) be a finite list (or sequence) of elements of \(G\). We call \(\phi \in \text{Hom}(G, \mathbb{Z}_q)\) a proper arithmetic \(q\)-coloring if \(\phi(x) \neq 0\) for all \(x \in X\). We denote the number of proper arithmetic \(q\)-colorings of \(X\) by \(\chi_X(q)\).

A nowhere zero \(q\)-flow on \(X\) is a function \(\psi : X \to \mathbb{Z}_q \setminus \{0\}\) s.t. \(\sum_{x \in X} \psi(x)x = 0\) in \(G/qG\). We denote the number of such functions by \(\chi_X^\dagger(q)\).

For \(B \subseteq X\), let \(G_B\) denote the torsion subgroup of the quotient \(G/\langle\{x : x \in B\}\rangle\) and let \(m(B) := |G_B|\).
Let \(\text{lcm}(X) := \text{lcm}\{m(B) : B \subseteq X \text{ basis}\} \). We define the following two subsets of the set of positive integers:

\[
Z_M(X) := \{ q \in \mathbb{Z}_{>0} : \gcd(q, \text{lcm}(X)) = 1 \} \quad (9)
\]
and

\[
Z_A(X) := \{ q \in \mathbb{Z}_{>0} : qG_B = \{0\} \text{ for all bases } B \subseteq X \}. \quad (10)
\]

Given a list of vectors \(X \) with associated arithmetic matroid \((M, \text{rk}, m)\) we let \(M_X(x, y) \) denote the arithmetic Tutte polynomial \(M_{(M, \text{rk}, m)}(x, y) \). Furthermore, we let \(M_{X^2}(x, y) \) denote the arithmetic Tutte polynomial \(M_{(M, \text{rk}, m^2)}(x, y) \). We recall that by Corollary 5 (or by [21]), \((M, \text{rk}, m^2)\) is indeed an arithmetic matroid. The polynomial \(M_{X^2}(x, y) \) has a special significance for arithmetic matroids that arise from CW complexes. In this case, the modified \(j \)th Tutte–Krushkal–Renardy polynomial, that was introduced in [2], is equal to the arithmetic Tutte polynomial \(M_{X^2}(x, y) \), where \(X \) is the list of vectors obtained from the \(j \)th boundary operator [21 Section 4]. In this setting, the modified \(j \)th Tutte–Krushkal–Renardy polynomial can be recovered from Corollary 11 below.

Theorem 9 (Brändén–Moci, [10]). Let \(G \) and \(X \) be as above.

If \(q \in Z_A(X) \), then

\[
\chi_X(q) = (-1)^{\text{rk}(X)} q^{\text{rk}(G) - \text{rk}(X)} M_X(1 - q, 0) \quad (11)
\]

and

\[
\chi_X^*(q) = (-1)^{|X| - \text{rk}(X)} M_X(0, 1 - q). \quad (12)
\]

If \(q \in Z_M(X) \), then

\[
\chi_X(q) = (-1)^{\text{rk}(X)} q^{\text{rk}(G) - \text{rk}(X)} \Sigma_X(1 - q, 0) \quad (13)
\]

and

\[
\chi_X^*(q) = (-1)^{|X| - \text{rk}(X)} \Sigma_X(0, 1 - q). \quad (14)
\]

Example 10. Let \(X = \{(2, 0), (-1, 1), (1, 1)\} \). Then \(\text{lcm}(X) = 2 \), \(Z_M(X) = \{1, 3, 5, 7, \ldots\} \), and \(Z_A(X) = \{2, 4, 6, 8, \ldots\} \). The polynomials are \(\chi_X(q)|_{Z_A(X)} = q^2 - 4q + 4, \chi_X(q)|_{Z_M(X)} = q^2 - 3q + 2, \chi_X^*(q)|_{Z_A(X)} = 2q - 3, \) and \(\chi_X^*(q)|_{Z_M(X)} = q - 1 \). Hence there are two proper arithmetic 3-colorings \((1, 0)\) and \((2, 0)\) and two nowhere zero 3-flows \((1, 1, 2)\) and \((2, 2, 1)\).

Let \(A \subseteq X \). We denote the sublist of \(X \) that is indexed by \(A \) by \(X|A \) (restriction) and the projection of \(X|A \) to \(G/A := G/\{x : x \in A\} \) by \(X/A \) (contraction).

Corollary 11. Let \(G \) and \(X \) be as above and \(p, q \in Z_A(X) \). Then

\[
M_{X^2}(1 - p, 1 - q) = p^{\text{rk}(G) - \text{rk}(X)} (-1)^{\text{rk}(X)} \sum_{A \subseteq X} (-1)^{|A|} \chi_{X|A}^*(q) \chi_{X/A}(p). \quad (15)
\]

Corollary 12. Let \(G \) and \(X \) be as above, \(p \in Z_A(X) \) and \(q \in Z_M(X) \) then

\[
M_X(1 - p, 1 - q) = p^{\text{rk}(G) - \text{rk}(X)} (-1)^{\text{rk}(X)} \sum_{A \subseteq X} (-1)^{|A|} \chi_{X|A}^*(q) \chi_{X/A}(p). \quad (16)
\]

The same statement holds if we instead take \(p \in Z_M(X) \) and \(q \in Z_A(X) \).

Remark 13. Suppose that the list \(X \) in Corollary 12 is the quotient of a scaled unimodular list, i.e., it satisfies the following conditions:

1. There is a list \(X_0 = (x_1, \ldots, x_N) \subseteq \mathbb{Z}^d \) (for some \(d, N \in \mathbb{N} \)) and \(A_0 \subseteq X_0 \) s. t. \(X = X_0/A_0 \).
2. There is a sequence of integers \((b_1, \ldots, b_N)\) s. t. the scaled list \(X_0 := (\frac{1}{b_1}x_1, \ldots, \frac{1}{b_N}x_N) \) is integral and totally unimodular.

Let \(\tilde{A}_0 \) be the subset of \(\tilde{X}_0 \) that corresponds to \(A_0 \subseteq X_0 \) and let \(\tilde{X} := \tilde{X}_0/\tilde{A}_0 \). Then \(M_X(x, y) = \Sigma_X(x, y) \). Note that due to total unimodularity, \(\tilde{X} \) is contained in a free abelian group.

Therefore, we can interpret the arithmetic Tutte polynomial \(M_X \) in terms of classical flows and arithmetic colorings, or vice versa. More specifically, in the
previous corollary we can obtain
\[\mathcal{M}_X(1-p, 1-q) = p^{rk(G)-rk(E)}(-1)^{rk(E)} \sum_{A \subseteq E} (-1)^{|A|} \chi_{X_{\mid A}}(q) \chi_{X_{\mid A}}(p) \] (17)
for any \(p \in \mathbb{Z} \) and \(q \in \mathbb{Z}_A(X) \). For \(p \in \mathbb{Z}_A(X) \) and any \(q \in \mathbb{Z} \) we obtain
\[\mathcal{M}_X(1-p, 1-q) = p^{rk(G)-rk(E)}(-1)^{rk(E)} \sum_{A \subseteq E} (-1)^{|A|} \chi_{X_{\mid A}}(q) \chi_{X_{\mid A}}(p). \] (18)

Lists with these properties arise naturally when studying arithmetic matroids defined by labeled graphs [17]. In this case \(X \) is a list of vectors coming from a labeled graph and \(X \) is the totally unimodular list of vectors that represents the underlying graphic matroid. Arithmetic matroids that can be represented by a quotient of a scaled unimodular list are studied in more detail in [27]. They can be characterized as arithmetic matroids that are regular and strongly multiplicative.

2. Background

2.1. Matroids and polymatroids. Let \(M \) be a finite set and \(rk : M \to \mathbb{Z}_{\geq 0} \) be a function that satisfies the following axioms:

- \(rk(\emptyset) = 0 \),
- \(rk(A) \leq rk(B) \) for all \(A \subseteq B \subseteq M \), and
- \(rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B) \) for all \(A, B \subseteq M \).

Then the polytope
\[\left\{ x \in \mathbb{R}^M : 0 \leq \sum_{i \in S} x_i \leq \sum_{i \in S} \text{rk}(x_i) \text{ for all } S \subseteq M \right\} \] (19)
is called a discrete polymatroid and \(rk \) is its rank function [31 Chapter 44].

A matroid is a pair \((M, rk) \), where \(M \) denotes a finite set and the rank function \(rk : 2^M \to \mathbb{Z}_{\geq 0} \) satisfies the axioms of the rank function of a discrete polymatroid and in addition, \(rk(A \cup \{a\}) \leq rk(A) + 1 \) for all \(A \subseteq M \) and \(a \in M \). See [30] for more details. Let \(\mathbb{K} \) be a field. A matrix \(X \) with entries in \(\mathbb{K} \) defines a matroid in a canonical way: \(M \) is the set of columns of the matrix and the rank function is the rank function from linear algebra. A matroid that can be represented in such a way is called representable over \(\mathbb{K} \).

2.2. Arithmetic matroids.

Definition 14 (D’Adderio–Moci, Brändén–Moci [18, 19]). An arithmetic matroid is a triple \((M, rk, m) \), where \((M, rk) \) is a matroid and \(m : 2^M \to \mathbb{Z}_{\geq 1} \) is the multiplicity function that satisfies certain axioms:

(P) Let \(R \subseteq S \subseteq M \). The set \([R, S] := \{ A : R \subseteq A \subseteq S \} \) is called a molecule if \(S \) can be written as the disjoint union \(S = R \cup F_{RS} \cup T_{RS} \) and for each \(A \in [R, S] \), \(rk(A) = rk(R) + |A \cap F_{RS}| \) holds. For each molecule \([R, S] \subseteq M \), the following inequality holds
\[\rho(R, S) := (-1)^{|T_{RS}|} \sum_{A \in [R, S]} (-1)^{|S|-|A|} m(A) \geq 0. \] (20)

(A1) For all \(A \subseteq M \) and \(e \in M \): if \(rk(A \cup \{e\}) = rk(A) \), then \(m(A \cup \{e\})m(A) \). Otherwise \(m(A)m(A \cup \{e\}) \).

(A2) If \([R, S] \) is a molecule, then \(m(R)m(S) = m(R \cup F)m(R \cup T) \).

A pseudo-arithmetic matroid is a triple \((M, rk, m) \), where \((M, rk) \) is a matroid and \(m : 2^M \to \mathbb{R}_{\geq 0} \) satisfies (P). A quasi-arithmetic matroid is a triple \((M, rk, m) \), where \((M, rk) \) is a matroid and \(m : 2^M \to \mathbb{Z}_{\geq 1} \) satisfies (A1) and (A2).
The prototypical example of an arithmetic matroid is defined by a list of vectors X in \mathbb{Z}^d. In this case, for a sublist S of d vectors that form a basis, we have $m(S) = |\det(S)|$ and in general $m(S) = \left|\langle x \in S \rangle_{\mathbb{Z}} \cap \mathbb{Z}^d / \langle x \in S \rangle_{\mathbb{Z}}\right|$. As quotients of \mathbb{Z}^d are in general not free groups, the following definition will use a slightly more general setting.

Definition 15. Let $\mathcal{A} = (\mathcal{M}, \text{rk}, m)$ be an arithmetic matroid. Let G be a finitely generated abelian group and X a finite list of elements of G that is indexed by \mathcal{M}.

For $\mathcal{A} \subseteq \mathcal{M}$, let $G_{\mathcal{A}}$ denote the maximal subgroup of G s.t. $|G_{\mathcal{A}} / \langle \mathcal{A} \rangle|$ is finite.

X is called a representation of \mathcal{A} if the matroid defined by X is isomorphic to (\mathcal{M}, rk) and $m(\mathcal{A}) = |G_{\mathcal{A}} / \langle \mathcal{A} \rangle|$. The arithmetic matroid \mathcal{A} is called representable if it has a representation X.

Given a representation $X \subseteq \mathbb{Z}^d$ of an arithmetic matroid, it is easy to calculate its multiplicity function [15, p. 344]: let $A \subseteq X$, then

$$m(A) = \gcd\{m(B) : B \subseteq A \text{ and } |B| = \text{rk}(B) = \text{rk}(A)\}.$$ \hspace{1cm} (21)

If A is independent, then $m(A)$ is the greatest common divisor of all minors of size $|A|$ of the matrix A (cf. [33, Theorem 2.2]).

2.3. Arithmetic matroids defined by labeled graphs. A labeled graph is a graph $\mathcal{G} = (V, E)$ together with a map $\ell : E \to \mathbb{Z}_{\geq 1}$. The graph \mathcal{G} is allowed to have multiple edges, but no loops. The set of edges is partitioned into a set R of regular edges and a set D of dotted edges. Such a graph defines a graphic arithmetic matroid [17]. Its definition extends the usual construction of the matrix representation of a graphic matroid by the oriented incidence matrix: let $V = \{v_1, \ldots, v_n\}$. We fix an arbitrary orientation θ of E s.t. each edge $e \in E$ can be identified with an ordered pair (v_i, v_j). To each edge $e = (v_i, v_j)$, we associate the element $x_e \in \mathbb{Z}^n$ defined as the vector whose ith coordinate is $-\ell(e)$ and whose jth coordinate is $\ell(e)$. Then we define the list $X_R := \{x_e\}_{e \in R}$ and the group $G := \mathbb{Z}^n / \langle\langle x_e : e \in E \rangle\rangle$. We denote by $\mathcal{A}(\mathcal{G}, \ell)$ the arithmetic matroid represented by the projection of X_R to G. The multiplicity function can easily be calculated: for any $A \subseteq R$

$$m(A) = \gcd\left(\prod_{e \in T} \ell(e) : T \text{ maximal independent subset of } A \cup D\right)$$

holds.

2.4. Delta-matroids and the Bollobás–Riordan polynomial. A delta-matroid D is a pair (E, \mathcal{F}), where E denotes a finite set and $\emptyset \neq \mathcal{F} \subseteq 2^E$ satisfies the symmetric exchange axiom: for all $S, T \in \mathcal{F}$, if there is an element $u \in S \triangle T$, then there is an element $v \in S \triangle T$ such that $S \triangle \{u, v\} \in \mathcal{F}$. The elements of \mathcal{F} are called feasible sets. If the sets in \mathcal{F} all have the same cardinality, then (E, \mathcal{F}) satisfies the basis axioms of a matroid. Let $D = (E, \mathcal{F})$ be a delta-matroid and let \mathcal{F}_{max} and \mathcal{F}_{min} be the set of feasible sets of maximum and minimum cardinality, respectively. Define $D_{\text{max}} := (E, \mathcal{F}_{\text{max}})$ and $D_{\text{min}} := (E, \mathcal{F}_{\text{min}})$ to be the upper matroid and lower matroid for D, respectively [9]. Let rk_{max} and rk_{min} denote the corresponding rank functions. In [33], the following delta-matroid rank function was defined: $\rho(D) := \frac{1}{2}(\text{rk}_{\text{max}}(D) + \text{rk}_{\text{min}}(D))$, and $\rho(A) := \rho(D|A)$ for $A \subseteq E$. This can be used to define the (2-variable) Bollobás–Riordan polynomial

$$\hat{R}_D(x, y) := \sum_{A \subseteq E} (x - 1)^{\rho(E) - \rho(A)}(y - 1)^{\left|\langle x \in \mathcal{A} \rangle_{\mathbb{Z}} \cap \mathbb{Z}^d / \langle x \in \mathcal{A} \rangle_{\mathbb{Z}}\right| - \rho(A)).$$ \hspace{1cm} (22)

If D is a matroid, then ρ is its rank function. Note that the delta-matroid rank function ρ is different from Bouchet’s birank [9]. A delta-matroid is even if all feasible sets have the same parity. A ribbon graph defines an even delta-matroid if and only if it is orientable [13, Proposition 5.3].
3. Proofs

To prove Theorem 11 we adapt the proof of Kook–Reiner–Stanton [24] to our more general setting. We first define a convolution product and note some useful lemmas. Two ranked sets with multiplicity are isomorphic if there exists a bijection between the ground sets that preserves the rank and the multiplicity function. Let \(\mathbb{M} \) be the set of all isomorphism classes of ranked sets with multiplicity, and let \(K \) be a commutative ring with 1. For any functions \(f, g : \mathbb{M} \to K \), define the convolution \(f \circ g : \mathbb{M} \to K \) by

\[
(f \circ g)(M) = \sum_{A \subseteq M} f(M|A)g(M/A).
\]

Lemma 16. The convolution \(\circ \) is associative, with identity element \(\delta \), where

\[
\delta(M) := \begin{cases} 1 & \text{if } M = \emptyset \\ 0 & \text{otherwise} \end{cases}
\]

Note that there are infinitely many ranked sets with multiplicity on the empty set.

Proof of Lemma 16. It is easy to see that \(\delta \) is the identity element.

Let \(C, D \subseteq M \) and \(C \cap D = \emptyset \). As in the case of matroids, \((M/C)|_D = M|_{C \cup D}/C \), holds: let \(A \subseteq D \). Then by definition \(\text{rk}_{(M/C)|_D}(A) = \text{rk}_M(A \cup C) - \text{rk}_M(C) = \text{rk}_{M|_{C \cup D}/C}(A) \). For the multiplicity function by definition \(m_{(M/C)|_D}(A) = m_M(C \cup A) = m_{M|_{C \cup D}/C}(A) \).

Now let \(f, g, h : \mathbb{M} \to K \).

\[
((f \circ g) \circ h)(M) = \sum_{A \subseteq M} (f \circ g)(M|A)h(M/A)
\]

\[
= \sum_{A \subseteq M} \sum_{C \subseteq A} f(M|C)g(M|A/C)h(M/A)
\]

\[
= \sum_{C \subseteq A \subseteq M} f(M|C)g(M|A/C)h(M/A)
\]

Now let \(D := A \setminus C \). Hence \(A = C \cup D \) and we obtain

\[
\sum_{C, D \subseteq M \atop C \cap D = \emptyset} f(M|C)g(M|C \cup D/C)h(M/(C \cup D))
\]

\[
= \sum_{C \subseteq M} f(M|C) \sum_{D \subseteq M \setminus C} g((M/C)|_D)h((M/C)/D)
\]

\[
= \sum_{C \subseteq M} f(M|C)((g \circ h)(M/C))
\]

\[
= (f \circ (g \circ h))(M).
\]

Following Crapo [14], let \(\zeta(x, y)(M) := x^{\text{rk}(M)}y^{|M| - \text{rk}(M)} \), where \(K = R[x, y] \). The following simple lemma was proven for matroids in [24]. It is easy to verify that the same proof also works in our setting. Here, \(\text{rk}(\emptyset) = 0 \) is required.

Lemma 17. \(\zeta(x, y)^{-1} = \zeta(-x, -y) \).

Note that \(\zeta \) only depends on the matroid, but not on the multiplicity function \(m \). We will also need two weighted versions of \(\zeta \), namely

\[
\xi(x, y)(M) := m_M(M)x^{\text{rk}(M)}y^{|M| - \text{rk}(M)}
\]

and

\[
\xi^*(x, y)(M) := m_M(\emptyset)x^{\text{rk}(M)}y^{|M| - \text{rk}(M)}.
\]
If M is an arithmetic matroid, then $\xi^*(M) = m^*_M(M)x^{rk(M)}y^{rk(M^*)}$, since $rk(M^*) = |M| - rk(M)$ and the dual multiplicity is defined by $m^*(A) := m(M \setminus A)$.

The following well-known description of the Tutte polynomial generalizes to our setting.

Lemma 18.

$$\Sigma_M(x + 1, y + 1) = (\zeta(1, y) \circ \zeta(x, 1))(M) \quad (33)$$

Lemma 18 is actually a special case ($m \equiv 1$) of the next lemma.

Lemma 19.

$$M_M(x + 1, y + 1) = (\zeta(1, y) \circ \zeta(x, 1))(M) = (\zeta(1, y) \circ \xi^*(x, 1))(M) \quad (34)$$

Proof.

$$(\zeta(1, y) \circ \xi^*(x, 1))(M) = \sum_{A \subseteq M} m_M(A)y^{(M|A) - \alpha}x^{rk(M/A)} \quad (35)$$

$$= \sum_{A \subseteq M} m_M(A)x^{rk(M)}y^{\alpha} = M_M(x + 1, y + 1) \quad (36)$$

$$(\zeta(1, y) \circ \xi^*(x, 1))(M) = \sum_{A \subseteq M} y^{(M|A) - \alpha}m_{M/A}(\emptyset)x^{rk(M/A)} \quad (37)$$

$$= \sum_{A \subseteq M} m_M(A)x^{rk(M)}y^{\alpha} = M_M(x + 1, y + 1). \quad \square$$

Proof of Theorem 1

Lemma 19 implies

$$M_M(x + 1, 0) = (\zeta(1, 1 - 1) \circ \xi^*(x, 1))(M) \quad (38)$$

and

$$M_M(0, y + 1) = (\zeta(1, y) \circ \zeta(-1, 1))(M). \quad (39)$$

Using Lemma 17 and Lemma 18 we obtain

$$\sum_{A \subseteq M} M_{M/A}(0, y + 1) \Sigma_{M/A}(x + 1, 0) \quad (40)$$

$$= ((\zeta(1, y) \circ \zeta(-1, 1)) \circ (\zeta(1, 1 - 1) \circ \zeta(x, 1)))(M) \quad (41)$$

$$= (\zeta(1, y) \circ \zeta(-1, 1) \circ (\zeta(1, 1 - 1) \circ \zeta(x, 1)))(M) \quad (42)$$

$$= (\zeta(1, y) \circ \zeta(x, 1))(M) = M(x + 1, y + 1) \quad (43)$$

and

$$\sum_{A \subseteq M} \Sigma_{M/A}(0, y + 1)M_{M/A}(x + 1, 0) \quad (44)$$

$$= ((\zeta(1, y) \circ \zeta(-1, 1)) \circ (\zeta(1, 1 - 1) \circ \xi^*(x, 1)))(M) \quad (45)$$

$$= (\zeta(1, y) \circ \zeta(-1, 1) \circ (\zeta(1, 1 - 1) \circ \xi^*(x, 1)))(M) \quad (46)$$

$$= (\zeta(1, y) \circ \xi^*(x, 1))(M) = M(x + 1, y + 1). \quad \square$$

Proof of Corollary 2

Using Theorem 1 twice, we obtain

$$M_M(x, y) = \sum_{A \subseteq M} M_{M/A}(0, y)\Sigma_{M/A}(x, 0) \quad (47)$$

$$= \sum_{A \subseteq M} \Sigma_{M/A}(x, 0) \left(\sum_{B \subseteq A} \Sigma_{M/B}(0, y)M_{M/A/B}(0, 0) \right). \quad (48)$$
Hence it is sufficient to show that
\[
\mathfrak{M}_M(0,0) = \sum_{A \subseteq M} (-1)^{|k(M) - |A|} m(A) \geq 0
\]
for any pseudo-arithmetic matroid \(M \). This can be shown in various ways:

(i) induction.

(ii) It is well-known that \(2^M \) can be partitioned into molecules \([R,S]\) with \(\text{rk}(R) = |R| \) and \(\text{rk}(S) = \text{rk}(M) \) [10] Proposition 4.4, see also [6, 24]. For each such molecule \(\text{rk}(M) = |R| + |F_{RS}| = |S| - |T_{RS}| \) holds. Hence we obtain
\[
\mathfrak{M}_M(0,0) = \sum_{[R,S] \text{ molecule}} (-1)^{|T_{RS}|} \sum_{R \subseteq A \subseteq S} (-1)^{|S|-|A|} m(A) \geq 0.
\]

(iii) In the case of an arithmetic matroid that is represented by a list of vectors it follows from the interpretation of \(\mathfrak{M}(0, q) \) in [26]. □

Proof of Remark[5] We will now prove that if we set \(x = 1 \), the second expression for \(\mathfrak{M}_M(x, y) \) in Theorem 1 is equivalent to \([26\text{ Lemma 6.1}].

Using [28\text{ Lemma 6.1}] and the classical convolution formula we obtain
\[
\mathfrak{M}_M(1, y) = \sum_{p \in \mathcal{V}(X)} T_{M_p}(1, y)
\]
\[
= \sum_{p \in \mathcal{V}(X)} \sum_{A \subseteq M_p} T_{(M_p)_A}(0, y) T_{M_p/A}(1, 0)
\]
\[
= \sum_{A \subseteq M} T_{M|A}(0, y) \left(\sum_{p \in \mathcal{V}(M/A)} T_{M_p/A}(1, 0) \right)
\]
\[
= \sum_{A \subseteq M} T_{M|A}(0, y) \left(\sum_{p \in \mathcal{V}(M/A)} T_{(M/A)_p}(1, 0) \right)
\]
\[
= \sum_{A \subseteq M} T_{M|A}(0, y) \mathfrak{M}_{M/A}(1, 0).
\]

Recall that the vertices of the generalized real toric arrangement are contained in the generalized real toric arrangement \(\text{hom}(G, S^1) \), where \(G \) denotes a finitely generated abelian group. To verify the equality of [28] and [24], note that \(\{ p \in \mathcal{V}(X) \subseteq \text{hom}(G, S^1) : \ A \subseteq M_p \} = \{ p \in \mathcal{V}(X) : p(A) = \{1\} \} \mapsto \mathcal{V}(X/A) \subseteq \text{hom}(G/\langle A \rangle, S^1) \) and \(M_p/A = (M/A)_p \) since restriction and contraction commute. We have also used that since \(A \subseteq M_p, T_{M|A}(x, y) = T_{M_p/A}(x, y) \).

For the other direction, note that \(m(A) = \{ p \in \mathcal{V}(X) : A \subseteq X_p \} \) holds by [28\text{ Lemma 5.4}]. Hence
\[
\mathfrak{M}_X(1, 0) = \sum_{p \in \mathcal{V}(X)} \sum_{A \subseteq X_p} (-1)^{|A| - \text{rk}(A)} T_{X_p}(1, 0)
\]
\[
= \sum_{p \in \mathcal{V}(X)} \sum_{\text{rk}(A) = \text{rk}(X)} (-1)^{|A| - \text{rk}(A)} T_{X_p}(1, 0).
\]

Now [28\text{ Lemma 6.1}] follows using essentially the same calculation as above. □

Proof of Corollary[5] Let \([R, S]\) be a molecule. We need to show that \(\rho(R, S) \) is nonnegative for the multiplicity function \(m_1 m_2 \). Note that the positivity axiom is closed under minors: for deletions it is obvious and for contractions it follows from the fact that \([R, S]\) is a molecule in the contraction \(M/e \) if and only if \([R \cup \{e\}, S \cup \{e\}] \) is a molecule in \(M \).
It is known that \(\rho(R, S) \) is the constant coefficient of the arithmetic Tutte polynomial obtained by restricting to \(S \) and contracting the elements in \(R \). This was observed in the proof of [10] Lemma 4.5 using [10] Lemma 4.3\(^1\).

Hence by Theorem 3 and Corollary 2
\[
\rho(R, S) = M_{((M, \text{rk}(m_1 m_2)), S)}(0, 0) = \sum_{A \subseteq S \setminus R} M_{((M, \text{rk}(m_1 m_2)), S \setminus R), A}(0, 0) M_{((M, \text{rk}(m_1)), R \setminus A), A}(0, 0) \geq 0. \quad \square
\]

Proof of Corollary 5. It is known that \(|Z(X) \cap \mathbb{Z}^d| = M(2, 1)\) and \(|\text{relint} Z(X) \cap \mathbb{Z}^d| = M(0, 1)\) [13 32 33]. The second equality is Theorem 1. The third follows from the fact that \(\mathbb{Z}_{M \setminus A}(2, 0) = 0 \) if \(A \) is not a flat since in this case, \(M \setminus A \) contains a loop. Furthermore, the number of vertices of the zonotope is equal to the number of regions of the central hyperplane arrangement defined by \(X \) [7 Proposition 2.2.2]. This number equals \(\mathbb{Z}_{M}(2, 0)\) [34]. For a flat \(A \), there is a canonical bijection between the vertices of \(Z(X \setminus A) \) and the faces of \(Z(X) \) that correspond to \(A \). \(\square \)

Proof of Corollary 11.
\[
M_{X^*}(1 - p, 1 - q) = \sum_{A \subseteq X} M_{X|A, (0, 1 - q)M_{X/A}(1 - p, 0)} (58)
\]
\[
= \sum_{A \subseteq X} (-1)^{|A| - \text{rk}(A)} \chi_{X|A}(q)(1)^{\text{rk}(X/A)} p^{\text{rk}(G/A) - \text{rk}(X/A)} \chi_{X/A}(p) (59)
\]
\[
= p^{\text{rk}(G) - \text{rk}(X)} \sum_{A \subseteq X} (-1)^{|A| - \text{rk}(A) + \text{rk}(X/A)} \chi_{X|A}(q) \chi_{X/A}(p) (60)
\]
The first two steps use Theorems 3 and 2. The third uses \(\text{rk}(X/A) - \text{rk}(G/A) = \text{rk}(X) - \text{rk}(G) \). The last equality holds because \((-1)^{\text{rk}(X/A) - \text{rk}(A)} = (-1)^{\text{rk}(X)} \). \(\square \)

Proof of Corollary 12. This follows by the same argument as in the proof of Corollary 11 using Theorem 3 instead of Theorem 4 in the first step. \(\square \)

Acknowledgements. We would like to thank Petter Brändén, Emanuele Delucchi, Alex Fink, Emeric Gioan, Katharina Jochemko, Iain Moffat, and Michèle Vergne for helpful comments and interesting discussions. We express our gratitude to the organizers of the joint session of the *Incontro Italiano di Combinatoria Algebrica* and the *Séminaire Lotharingien de Combinatoire* 2015 in Bertinoro and the organizers of the *Borel Seminar on Matroids in Algebra, Representation Theory and Topology* 2016 in Les Diablerets for providing a hospitable working environment, where some of this work was carried out. The first author would like to thank the mathematics department of the *Université de Fribourg* for the hospitality during his visit in November 2015.

An extended abstract of this paper will appear in the proceedings of FPSAC 2017 (29th International Conference on Formal Power Series and Algebraic Combinatorics) [1].

\(^1\)Note that [10] Lemma 4.5 contains a small error: the factor \((y - 1) r(R)\) is missing on the right-hand side of the first equation.
References

1. Spencer Backman and Matthias Lenz, *A convolution formula for Tutte polynomials of arithmetic matroids and other combinatorial structures*, Proceedings of the 29th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), Séminaire Lotharingien Combinatoire, 2017, 12 pages, to appear.

2. Carlos Bajo, Bradley Burdick, and Sergei Chmutov, *On the Tutte-Krushkal-Renardy polynomial for cell complexes*, J. Comb. Theory Ser. A 123 (2014), 186–201.

3. Alexander Barvinok and James E. Pommersheim, *An algorithmic theory of lattice points in polyhedra*, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

4. Matthias Beck, Felix Breuer, Logan Godkin, and Jeremy L. Martin, *Enumerating colorings, tensions and flows in cell complexes*, J. Comb. Theory Ser. A 123 (2014), 1–26 (English).

5. Matthias Beck and Yvonne Kemper, *Flows on simplicial complexes*, Proceedings of 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (Nancy, France), DMTCS Proceedings, Assoc. Discrete Math. Theor. Comput. Sci., 2012, pp. 817–826.

6. Anders Björner, *The homology and shellability of matroids and geometric lattices*, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226–283.

7. Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, *Oriented matroids*, second ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1999.

8. Béla Bollobás and Oliver Riordan, *A polynomial of graphs on surfaces*, Math. Ann. 323 (2002), no. 1, 81–96 (English).
27. On powers of Plücker coordinates and representability of arithmetic matroids, 2017, arXiv:1703.10520
28. Luca Moci, A Tutte polynomial for toric arrangements, Trans. Amer. Math. Soc. 364 (2012), no. 2, 1067–1088.
29. James Oxley and Geoff Whittle, A characterization of Tutte invariants of 2-polymatroids, J. Combin. Theory Ser. B 59 (1993), no. 2, 210–244.
30. James G. Oxley, Matroid theory, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1992.
31. Alexander Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003, Matroids, trees, stable sets, Chapters 39–69.
32. Richard P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).
33. A zonotope associated with graphical degree sequences, Applied Geometry and Discrete Combinatorics, DIMACS Series in Discrete Mathematics 4 (1991), 555–570.
34. Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102.