Random matrix, singularities and open/close intersection numbers

E Brézin1,3 and S Hikami2,4

1 Laboratoire de Physique Théorique, École Normale Supérieure 24 rue Lhomond 75231, Paris Cedex 05, France
2 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan

E-mail: brezin@lpt.ens.fr and hikami@oist.jp

Received 8 February 2015, revised 11 September 2015
Accepted for publication 29 September 2015
Published 27 October 2015

Abstract

The \(s \)-point correlation function of a Gaussian Hermitian random matrix model, with an external source tuned to generate a multi-critical singularity, provides the intersection numbers of the moduli space for the \(p \)-th spin curves through a duality. For one marked point, the intersection numbers are expressed to all orders in the genus by Bessel functions. The matrix models for the Lie algebras of \(o(N) \) and \(sp(N) \) provide the intersection numbers of non-orientable surfaces. The Kontsevich–Penner model, and the higher \(p \)-th Airy matrix model with a logarithmic potential, are investigated for the open intersection numbers, which describe the topological invariants of non-orientable surfaces with boundaries. String equations for the open/closed Riemann surface are derived from the structure of the \(s \)-point correlation functions. The Gromov–Witten invariants of the \(CP^1 \) model are evaluated for one marked point as an application of the present method.

Keywords: matrix model, random matrix, algebraic geometry

1. Introduction

The intersection numbers of moduli space of a Riemann surface are topological invariants, which are closely related to universal singularities in random matrix models with an external source. By tuning appropriately the matrix source, multi-critical behaviors are obtained at the edge of the density of states \cite{1–3}. They are described by Airy and higher Airy kernels for the \(p \)-th degenerate singularity. The correlation functions for the \(p \)-th singularity turn out to be
generating functions for the intersection numbers of p-spin curves on Riemann surfaces [4–7]. In this article, we extend our previous work on the calculation of the intersection numbers of p spin curves. This technique relies on a duality [4, 6] which is specified in the next section.

Recently, the open intersection theory with boundaries has been investigated in [21–23]. The generating matrix model for these open intersection numbers is the Kontsevich–Penner model [26, 27], namely Kontsevich’s model with a logarithmic potential, studied before in [24, 25]. The Virasoro equations for this case provide a different structure from sKorteweg–de Vries (KdV) hierarchy, since the Riemann surface with boundaries is no longer orientable. The expansion of the logarithmic matrix model, like a ribbon graph expansion of the Kontsevich matrix model, provides the non-orientable surface. The situation is similar to that of non-orientable surfaces generated by the matrix models of $o(N)$ and $sp(N)$ Lie algebras [17]. We compute here the open intersection numbers, and the higher p-th spin curves, including such Lie algebras.

The composition of this article is the following. In section 2, several dualities exchanging the size of the random matrices in an external matrix with the number of points in correlation functions, are recalled. The definition of the intersection numbers is briefly recalled. In section 3, the intersection numbers for $p = 2, 3, 4, 5$, and $p = -1$ (Euler characteristics) and one marked point, are explicitly given in terms of Bessel functions. In section 4, the intersection numbers for the Lie algebras of $o(2N)$, $o(2N + 1)$, and $sp(N)$ are discussed. The Euler characteristics for those non-orientable surfaces follow. In section 5, the open intersection numbers are computed for one marked point from the Kontsevich–Penner model, and the non-orientable intersection numbers are discussed. In section 6, the intersection numbers for multiple marked points are evaluated and the relation to the Virasoro equations is examined. Section 7 is an application of the present method to the Gromov–Witten invariants of CP^1. Section 8 is devoted to discussion. In an appendix, we study the case of p-spin curves for open Riemann surfaces.

2. Dualities

• Gaussian unitary ensemble (GUE)

We have discussed in earlier publications [5, 6] the possibility of computing topological invariants relative to Riemann surfaces using a Gaussian ensemble of $N \times N$ Hermitian random matrices with appropriately tuned external matrix sources A. The method relies on two basic ingredients: i) a totally explicit formula for the K-point correlation functions for arbitrary given source matrix A, based on the Harish Chandra–Itzykson–Zuber integral over the unitary group [1], ii) a duality for the correlation functions of K characteristic polynomials $\left\{ \prod_{i=1}^{K} \det(\lambda_{\alpha_i} - M) \right\}_A$, with a probability distribution

$$P_{A}(M) = \frac{1}{Z_N} e^{-\frac{1}{2} tr M^{2} - tr MA}$$ \hspace{1cm} (2.1)$$

where M is an $N \times N$ Hermitian matrix and Z_N is a normalization constant of the probability measure (for $A = 0$). This duality exchanges the size N of the matrices with K, the number of points, i.e. the $N \times N$ Hermitian random matrices are replaced by $K \times K$ Gaussian random matrices; the $N \times N$ source matrix A is exchanged with the $K \times K$ source matrix A whose eigenvalues are λ_{α_i}; it reads (see e.g. [4, 28])
\[
\frac{1}{Z_N} \int d^{N^2}M \prod_{\alpha=1}^{K} \det(\lambda_\alpha - M) e^{-\frac{1}{2} tr(M + A)^2} \\
= (-i)^{NK} \frac{1}{Z_K} \int d^{K^2} B \prod_{i=1}^{N} \det(a_i \delta_{i,j} - B_{i,j}) e^{-\frac{1}{2} tr(B + iA)^2}
\]

(2.2)

where \(B\) is a \(K \times K\) Hermitian matrix and \(a_i\) is an eigenvalue of the source matrix \(A\). \(Z_k\) is a normalization constant of the GUE for a \(k \times k\) Hermitian matrix,

\[
Z_k = \int dB \exp\left(-\frac{1}{2} \text{tr} B^2\right).
\]

(2.3)

A similar form of this duality has been investigated \([8]\) in a slightly different ensemble. This duality is clearly well adapted to the large \(N\) limit since the rhs is an integral over matrices whose size is independent of \(N\). But we want to briefly summarize how else we have used it.

Tuning appropriately the eigenvalues of the source matrix \(A\), one can obtain the dual version the Airy matrix model which was introduced by Kontsevich \([9]\); it appears here as an edge singularity, reminiscent of the Tracy–Widom kernel \([10]\) which governs the vicinity of the edge of Wigner’s semi-circle. This is done by taking for the source matrix \(A\) the identity matrix and considering the large \(N\) scaling regime in which the \(\lambda_k\) are close to one, namely for \(N^{2/3}(\lambda_k - 1)\) finite, the rhs of (2.2) becomes the Airy matrix integral introduced by Kontsevich. In this regime one finds from (2.2)

\[
\frac{1}{Z_N} \int d^{N^2}M \prod_{\alpha=1}^{K} \det(\lambda_\alpha - M) e^{-\frac{1}{2} tr(M + A)^2} \\
= e^{\frac{N}{2} tr B^2} \int d^{K^2} B e^{\frac{N}{2} tr B^2 + iN \text{tr} B(\lambda - 1)}
\]

and the rhs after rescaling \(B \rightarrow BN^{-1/3}\), \((\lambda - 1) \rightarrow (\lambda - 1)N^{-2/3}\) reduces to a Kontsevich Airy integral;

\[
Z_{KT} = \int dB e^{\frac{1}{2} \text{tr} B^2} \lambda \text{tr} B^2
\]

(2.5)

In the rhs of (2.4) tuning the eigenvalue \(a_i\) of \(A\) one may generate the Airy matrix integral, whereas the lhs is still a Gaussian integral whose correlation functions are known explicitly. Indeed the one-point function with the probability weight (2.1) with an external source \(A\) is given by \([4]\)

\[
U(\sigma) = \langle \text{tr } e^{\sigma M} \rangle_A = \frac{1}{\sigma} \oint \frac{du}{2i\pi} e^{\sigma u} \prod_{i=1}^{N} \frac{u - a_i + \sigma}{u - a_i}
\]

(2.6)

in which the \(a_i\) are the eigenvalues of the source matrix \(A\). The contour encircles the poles. This formula is exact for any \(N\). For the \(s\)-point function \([4]\) the result is an integral over \(s\) complex variables \(u_1, \ldots, u_s\) with the average of the probability distribution of an external source \(A[1, 4]\),

\[
U(\sigma_1, \ldots, \sigma_s) = \langle \text{tr } e^{\sigma_1 M} \cdots \text{tr } e^{\sigma_s M} \rangle_A \\
= e^{\frac{1}{2} \sum_{i=1}^{s} \sigma_i^2} \oint \prod_{i=1}^{s} \frac{du_i}{2i\pi} \prod_{i=1}^{s} \sum_{\sigma_i \in \mathbb{C}} \det \frac{1}{u_i + \sigma_i - u_j} \prod_{i=1}^{s} \prod_{\alpha=1}^{N} \left(1 + \frac{\sigma_i}{u_i - a_\alpha}\right)
\]

(2.7)
where the contour encircles again around all poles $u = a_i$. Let us illustrate on the simplest example how one can use (2.4) and (2.7), for the one-point function. We take $\lambda_\alpha = \lambda$ for $\alpha = 1, \cdots, K$. Then we are dealing with

$$\langle \det(\lambda - M)^k \rangle_\lambda = \langle \det(1 - iB)^N \rangle_\lambda$$

(2.8)

where the average of the rhs is under the distribution of

$$P_\lambda = \frac{1}{Z_\lambda} e^{-\frac{1}{2} \int \frac{d^2u}{\pi} B^2 - tr B \lambda}$$

(2.9)

with the normalization of Z_λ, and we make use of ‘replicas’, i.e. of the identity

$$\lim_{K \to 0} \frac{1}{K} d\lambda \left[\det(\lambda - M)^k \right] = tr \left[\frac{1}{\lambda - M} \right]$$

(2.10)

Since λ is in the vicinity of the edge of Wigner’s semi-circle, the resolvent has to be computed in this regime, but knowing explicitly $U(\sigma)$, this is straightforward.

The intersection numbers of the moduli space of curves are defined as coefficients in the expansion of $t_n = tr \left[\frac{1}{\lambda^{N+1}} \right]$ for $Z_K(\lambda)$ [9]. The coefficients, the intersection numbers

$$\langle \tau_{n_1} \cdots \tau_{n_s} \rangle_s$$

(2.11)

are defined also as

$$\langle \tau_{n_1} \cdots \tau_{n_s} \rangle_s = \int_{\mathbb{C}^{n_s}} \psi_{i_1} \cdots \psi_{i_s}$$

where ψ_i is called the ψ class and is equal to $c_1(L_i)$ with c_1 as the first Chern class and L_i is the line bundle at marked point i.

We have shown before [6] that $U(\sigma_1, \cdots, \sigma_s) = \langle tr e^{\sigma M} \cdots tr e^{\sigma M} \rangle$ is the generating function of the intersection numbers, which is a Fourier transform of the density correlation functions,

$$U(\sigma_1, \cdots, \sigma_s) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d\lambda_1 \cdots d\lambda_s e^{\sum_{j=1}^{s} \lambda_j \left[\prod_{j=1}^{s} tr \delta(\lambda_j - M) \right]}$$

(2.12)

with $\sigma_j = \mu_j$, $j = 1, \cdots, s$. The index A means the average of the distribution $P_\lambda(M)$ in (2.1).

The proof that this correlation function $U(\sigma_1, \cdots, \sigma_s)$ is a generating function for the intersection numbers is given in [6]. The main point of this proof is that in the Kontsevich model (for the Airy matrix model), the moduli parameter is $tr \left[\frac{1}{\lambda^{N+1}} \right]$. This trace is inverted to the t_n parameter for the generating function of the intersection numbers [9]. This parameter $tr \left[\frac{1}{\lambda^{N+1}} \right]$ depends upon the eigenvalues λ_j of λ, but for the intersection numbers, it plays only the role of t_n, and the size of matrix λ is not important, i.e. we can use this size as one (λ is a number). The use of $U(\sigma_1, \cdots, \sigma_s) = \langle tr e^{\sigma M} \cdots tr e^{\sigma M} \rangle$ in the small σ expansion selects the numbers of traces, which corresponds to t_n. Indeed, we are able to put $\lambda_j = \lambda$ (as long as the different traces can be distinguished), which is the Fourier transform of the density correlation function in (2.12). As will be seen later, this correlation function $U(\sigma_1, \cdots, \sigma_s)$ is evaluated and the results give the intersection numbers correctly, which agrees with the results from other methods.

This function provides a polynomial expansion of σ_i. The degree of total σ_i is equal to

$$\sum_i \left(n_i + \frac{1}{2} \right),$$

and $\sum_i n_i = 3g - 3 + s$. This is similar to the evaluation of the intersection numbers by hyperbolic surfaces [30], by replacing the parked points by disks, whose perimeter lengths are l_i, \cdots, l_τ and the generating function of the intersection
numbers is a polynomial of \(l_i \) (\(i = 1, \ldots, s \)) and the total degree is \(6g - 6 + 2s \) [31]. We have shown earlier, using this strategy together with replicas, how to compute from there the intersection numbers of the moduli of curves on Riemann surfaces with one marked point [4]; the method clearly allowed for more marked points. Higher multi-critical singularities, characterized by an integer \(p \) may also be tuned from appropriately chosen external sources \(A \) [2, 3]. One may obtain thereby a generalized \(p \)-th Airy matrix model [6], taking \(A = \text{diag}(a_1, \ldots, a_i, \ldots, a_{p-1}, \ldots, a_{p-1}), \) with \((p - 1) \) distinct eigenvalues values, each of them being \((\frac{N}{p-1}) \) times degenerate. The conditions [2] are

\[
\sum_{\alpha=1}^{p-1} \frac{1}{a_{\alpha}^2} = p - 1, \quad \sum_{\alpha=1}^{p-1} a_{\alpha}^m = 0 \quad (m = 3, \ldots, p), \quad \sum_{\alpha=1}^{p-1} \frac{1}{a_{\alpha}^{p+1}} \neq 0 \quad (2.13)
\]

and we obtain the \(p \)-th degenerated Airy matrix model. The correlation functions are known in integral form

\[
U(\sigma_1, \ldots, \sigma_k) = \oint \frac{d\sigma_1}{2\pi i} \exp \left[-N \sum_{\alpha=1}^{p-1} \frac{1}{a_{\alpha}^2} \left(\sum_{i=1}^{k} \left(a_i + \frac{\sigma_1}{2N} \right)^{p+1} - \sum_{i=1}^{k} \left(a_i - \frac{\sigma_1}{2N} \right)^{p+1} \right) \right]
\]

\[
\times \prod_i \det \left(\frac{1}{u_i - u_j + \sigma_l} \right) \quad (2.14)
\]

The one point function, which corresponds to one marked point, becomes in the scaling limit

\[
U(\sigma) = \frac{1}{N^{\frac{1}{2}}} \int \frac{d\sigma}{2\pi} e^{-\frac{1}{N} \sum_{\alpha=1}^{p-1} \frac{1}{a_{\alpha}^2} \left(\left(\frac{a}{2N} \right)^{p+1} - \left(\frac{a}{2N} \right)^{p+1} \right) \left(\sigma \right)} \quad (2.15)
\]

with \(c = \frac{N}{p-1} \sum_{\alpha=1}^{p-1} \frac{1}{a_{\alpha}^2} \). The Airy matrix model corresponds to the \(p = 2 \) case. It is also possible to continue the model to negative values of \(p \). In particular the case \(p = -1 \) provides a generating function for the orbifold Euler characteristics of surfaces with \(n \) marked points, allowing us to recover through this method the classic results of [6, 11, 12].

• **Lie algebras of classical groups** The previous duality (2.2) extends to algebras of classical groups [17], such as antisymmetric real matrices for orthogonal Lie algebra \(o(2N) \).

\[
\left\{ \prod_{n=1}^{k} \det(\lambda_n \cdot I - X) \right\}_A = \left\{ \prod_{n=1}^{N} \det(a_i \cdot I - Y) \right\}_\Lambda \quad (2.16)
\]

where \(X \) is a \(2N \times 2N \) real antisymmetric matrix (\(X' = -X \)) and \(Y \) is a \(2k \times 2k \) real antisymmetric matrix; the eigenvalues of \(X \) and \(Y \) are thus purely imaginary. \(A \) is also a \(2N \times 2N \) antisymmetric matrix, and it couples to \(X \) as an external matrix source. The matrix \(\Lambda \) is \(2k \times 2k \) antisymmetric matrix, coupled to \(Y \). We assume, without loss of generality, that \(A \) and \(\Lambda \) have the canonical form:

\[
A = \begin{pmatrix}
0 & a_1 & 0 & 0 & \cdots \\
-a_1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & a_2 & 0 \\
0 & 0 & a_2 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\quad (2.17)
\]
\[A = a_1 v \oplus \cdots \oplus a_N v, \quad v = i \sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \] (2.18)

\(\Lambda \) is expressed also as

\[\Lambda = \lambda_1 v \oplus \cdots \oplus \lambda_k v. \] (2.19)

The characteristic polynomial \(\det(\lambda \cdot I - X) \) has \(2N \) roots, \((\pm i \lambda_1, \cdots, \pm i \lambda_n)\). The Gaussian averages in (2.16) are defined as

\[\langle \cdots \rangle_A = \frac{1}{Z_A} \int dX \cdots e^{\frac{1}{4} \text{tr} X^2 + \text{tr} X A} \]

\[\langle \cdots \rangle_A = \frac{1}{Z_A} \int dY \cdots e^{\frac{1}{4} \text{tr} Y^2 + \text{tr} Y A} \] (2.20)

in which \(X \) is a \(2N \times 2N \) real antisymmetric matrix, and \(Y \) is a \(2k \times 2k \) real antisymmetric matrix; the coefficients \(Z_A \) and \(Z_A \) are such that the expectation value of one is equal to one. The derivation relies on a representation of the characteristic polynomials in terms of integrals over Grassmann variables, as for the \(U(N) \) case, but it is more involved [17].

Here again the Harish Chandra formula leads to explicit formulæ for the correlation functions. The one-point function for instance is

\[U(s) = -\frac{1}{N s} \int \frac{dv}{2 \pi i} \prod_{i=1}^{N} \left(\frac{v^2 + a_i^2}{(v + \frac{i}{2})^2 + a_i^2} \right) \left(v + \frac{s}{2} e^{i \pi /4} \right)^2, \] (2.21)

and higher point functions are also known explicitly. Therefore one may repeat the same tuning plus duality strategy in this case, leading to the desired topological numbers for non-orientable surfaces generated by these antisymmetric matrix models.

Superduality

Consider

\[F_{P, Q}(\lambda_{\alpha} \cdots \mu_{\beta} \cdots) = \left\langle \prod_{\alpha=1}^{P} \text{det}(\lambda_{\alpha} - M) \prod_{\beta=1}^{Q} \text{det}(\mu_{\beta} - M) \right\rangle_A \] (2.22)

with

\[\langle \mathcal{O}(M) \rangle_A = \frac{1}{Z_A} \int dM \mathcal{O}(M) e^{-\frac{1}{2} \text{tr} M^2 + \text{tr} M A} \] (2.23)

where \(Z_A \) is a normalization constant. For instance the average resolvent is given by \(P = Q = 1 \), after taking derivative with respect to \(\lambda \) and setting \(\lambda = \mu \).

Let us recall the standard definitions for supermatrices: let

\[X = \begin{pmatrix} a & \alpha \\ \beta & b \end{pmatrix} \] (2.24)

in which the matrix elements of \(a \) and \(b \) are commuting numbers, those of \(\alpha \) and \(\beta \) anticommuting. Then the supertrace

\[\text{str} X = \text{tr} a - \text{tr} b \] (2.25)

ensures the cyclic invariance. The superdeterminant is given by
\[s \det X = \frac{\det a}{\det \left(b - \beta a^{-1}\alpha \right)} = \frac{\det \left(a - \alpha b^{-1}\beta \right)}{\det b} \] (2.26)

based on the integral

\[\int d\theta d\tilde{\theta} dx dx e^{S_X \Phi} = (s \det X)^{-1} \] (2.27)

where

\[\Phi = \left(\begin{array}{c} x \\ \theta \end{array} \right) \Pi = \left(\begin{array}{c} \tilde{x} \\ \tilde{\theta} \end{array} \right) \] (2.28)

The formulae are obtained either by integrating first the commuting variables, or the anticommuting variables first. We use the conventions

\[\bar{\theta}_1 \theta_2 = \tilde{\theta}_1 \tilde{\theta}_2 \] (2.29)

and

\[\bar{\theta} = \theta \] (2.30)

Finally the usual bosonic formula still holds here, namely

\[\text{str}(\log X) = \log(s \det X). \] (2.31)

We are now in a position to derive the duality formula for (2.22) which we first write in integral form as

\[F_{P,Q} \left(\lambda_{\alpha \cdots \mu_{\beta \cdots}} \right) = \int \prod_{\alpha=1}^{N} \prod_{\beta=1}^{P} P \prod_{\alpha=1}^{Q} Q \prod_{\alpha=1}^{Q} dx_{\alpha}^{a} dx_{\alpha}^{a} d\theta_{\alpha}^{a} d\tilde{\theta}_{\alpha}^{a} \left(e^{-\sum_{\alpha=1}^{P} \epsilon_{\lambda}(\lambda_{\alpha} - \lambda_{\mu}) + \sum_{\alpha=1}^{Q} \epsilon_{\mu}(\mu_{\beta} - \mu_{\lambda})} \right) \] (2.32)

or, introducing the \((Q + P) \times (Q + P)\) diagonal matrix \(\Lambda\) made of \(\mu_{\beta}, \beta = 1 \cdots Q\) and \(\lambda_{\alpha}, \alpha = 1 \cdots P\)

\[F_{P,Q} \left(\lambda_{\alpha \cdots \mu_{\beta \cdots}} \right) = \int \prod_{\alpha=1}^{N} dx_{\alpha}^{a} dx_{\alpha}^{a} d\theta_{\alpha}^{a} d\tilde{\theta}_{\alpha}^{a} \left(e^{-\Phi^{a} \Phi^{a} + \Phi^{b} \Phi^{b}} \right) \] (2.33)

Since

\[\langle e^{\pi X_M} \rangle_A = \epsilon_{2}^{n} \pi X^{2} + \text{tr} AX \] (2.34)

we have

\[X_{ba} = \Phi^{a} \cdot \Phi^{b} = \sum_{\alpha=1}^{P+Q} \Phi_{\alpha}^{a} \Phi_{\alpha}^{b}. \] (2.35)

Then

\[\text{tr}(AX) = \sum_{n=1}^{N} a_{n} \sum_{\alpha=1}^{P+Q} \Phi_{\alpha}^{a} \Phi_{\alpha}^{a} \] (2.36)

in which the \(a_{n}\) are the eigenvalues of \(A\),

\[\text{tr} \ X^{2} = \sum_{a,b=1,\alpha,\beta=1}^{P+Q} \Phi_{\alpha}^{a} \Phi_{\alpha}^{b} \Phi_{\beta}^{a} \Phi_{\beta}^{b}. \] (2.37)

Let us define the matrix \(\Gamma, (Q + P) \times (Q + P)\)
This matrix Γ_1 is Hermitian but Γ_3 is anti-Hermitian.

To express $\text{tr} X^2$ in terms of the matrix Γ some commutations are required and one obtains easily

$$\text{tr} X^2 = \sum_{\alpha, \beta} \text{tr}(\Gamma^2)$$

Therefore

$$\mathcal{F}_{P,Q}(\lambda_1, \ldots, \mu_P, \lambda_{P+1}, \ldots, \mu_{P+Q}) = \int \prod_{a=1}^{N} \mathcal{D}\theta_a \mathcal{D}\varphi_a e^{-\sum_{a=1}^{N} \varphi_a^2 + \sum_{a=1}^{P+Q} \frac{1}{2} \text{tr} \varphi_a^2 + \frac{1}{2} \text{tr} \Gamma^2}$$

The supersymmetric Hubbard–Stratonovich transformation reads

$$\int \mathcal{D}\theta e^{-\frac{1}{2} \Delta^2 + \Delta \Gamma} = e^{\frac{1}{2} \Delta^2 + \Delta \Gamma}$$

in which Δ is $(P + Q) \times (P + Q)$ and like Γ as far as hermiticity is concerned. Then

$$\mathcal{F}_{P,Q}(\lambda_1, \ldots, \mu_P, \lambda_{P+1}, \ldots, \mu_{P+Q}) = \int \mathcal{D}\theta \mathcal{D}\varphi e^{-\sum_{a=1}^{N} \varphi_a^2 + \sum_{a=1}^{P+Q} \frac{1}{2} \text{tr} \varphi_a^2 + \frac{1}{2} \text{tr} \Gamma^2}$$

One can integrate out on the x's and θ's. The quadratic form of the exponential is

$$-\bar{\varphi}^a \Delta \varphi^a + \sum_{n=1}^{N} \Delta_{\alpha, \beta} \bar{\varphi}^a \varphi_n^a = \frac{1}{2} \text{tr} \frac{1}{2} \Delta^2 + \Delta \Gamma$$

in which $F_3 = 0$ for $1 \leq \beta \leq P$ or $F_3 = 1$ for $(P + 1) \leq \beta \leq (P + Q)$. The integration then gives

$$\prod_{n=1}^{N} s \det^{-1} \left[(\Lambda_\alpha - a_n) \delta_{\alpha \beta} - \Delta_{\alpha \beta}(-1)^{F_3} \right]$$

Therefore we change $\Delta_{\alpha \beta}(-1)^{F_3} \rightarrow \bar{\Delta}_{\alpha \beta}$ and one verifies that

$$s \text{ tr } \Delta^2 = s \text{ tr } \bar{\Delta}^2.$$

Then one ends up with

$$\mathcal{F}_{P,Q}(\lambda_1 \ldots \lambda_P, \mu_1 \ldots \mu_Q) = \int \mathcal{D}\theta \mathcal{D}\varphi s \det^{-1} \left[(\Lambda_\alpha - a_n) \delta_{\alpha \beta} - \Delta_{\alpha \beta} \right]$$

where Λ is a $(P + Q)$ diagonal matrix of $\lambda_\alpha, \mu_\beta$ ($\alpha = 1, \ldots, P, \beta = 1, \ldots, Q$). This relates the ordinary matrix integral (2.22) to a super matrix integration (2.44). In this sense it is not a full duality although it can be used for the large N-limit or for a super-generalization of the Kontsevich model. However a full superduality has been derived by Desrosiers and Eynard for expectation values of ratios of super-determinants [18] and our identity appears as a simple limiting case.
β = 1, 4 orthogonal and symplectic ensembles
An extension of the GUE duality (2.2) to the three classical Gaussian ensembles GOE, GUE, GSE with respectively β = 1, 2, 4 has been derived by Desrosiers [19], but it exchanges β with 4/β. However, the lack of a Harish Chandra formula for integrating over the orthogonal or symplectic group does not allow one to compute explicitly the k-point functions and we cannot repeat the steps that we have followed for β = 2. However we have used supergroup methods to obtain the one and two-point functions [5, 20, 49].

3. GUE

M: complex Hermitian matrix
We now use the duality formula for computing the one-point function U(σ) for some symmetric spaces.

Let us first consider the Hermitian case:

From (2.44), we obtain

\[
F_{1,1}(λ, μ) = \left\{ \frac{\det(λ - M)}{\det(μ - M)} \right\}_λ = \delta_{λ, μ} + N(λ - μ) \frac{e^{-N(μ^2 - λ^2)}}{2π^2} \int_{-∞}^{∞} \int_{-∞}^{∞} dt du \prod_{j=1}^{N} \left(\frac{a_j - it}{a_j + u} \right) \frac{1}{u - it} \times e^{\frac{N}{2}a_j^2 - \frac{N}{2}u^2 - iNλ + Nuμ}
\]

This has been obtained in [20]. The density of states ρ(λ) is [20]

\[
ρ(λ) = - \lim_{μ→λ} \frac{1}{πN} \frac{∂}{∂μ} \text{Im} F_{1,1}(λ, μ) = \frac{1}{N} \int \frac{dt}{2πi} \oint \frac{du}{2πi} \prod_{j=1}^{N} \left(\frac{a_j - it}{a_j + u} \right) \frac{1}{u - it} e^{-\frac{N}{2}a_j^2 - \frac{N}{2}u^2 - iNλ + Nuμ} \]

By tuning the external source a_j as (2.13), and taking the Fourier transform of ρ(λ),

\[
U(σ) = \frac{1}{Nσ} \oint \frac{du}{2πi} e^{-\frac{σ}{π+1} \left[(\frac{u^2}{2})^{σ+1} - (\frac{u^2}{2})^{σ+1} \right]} \]

which is identical to the previous expression (2.15).

1. p = 2

The integral (3.3) becomes Gaussian (c = 1),

\[
U(σ) = \frac{1}{σ} \int e^{\frac{σ}{2} u^2} \frac{du}{2π} e^{-σu^2}
\]

\[
= \frac{1}{2πσ} \sqrt{\frac{π}{σ}} e^{-\frac{σ}{12}π^2}
\]

This may be expressed as a modified Bessel function \(K_\frac{1}{2}(z) \)

\[
K_\frac{1}{2}(z) = \sqrt{\frac{π}{2z}} e^{-z}
\]
and we have

\[U(\sigma) = \frac{1}{2\pi \sqrt{6}} K_{\frac{1}{3}} \left(\frac{\sigma^{3}}{12} \right) \]

(3.6)

The expression of the Bessel function appears in other cases of \(p = 3 \) and 4, as will be seen.

This explicit representation gives the intersection numbers for Riemann surfaces of genus \(g \),

\[\langle \tau_{m} \rangle_{g} = \frac{1}{(24)^{g} g!}, \quad (m = 3g - 2) \]

(3.7)

which has been obtained in [9, 33].

(2) \(p = 3 \)

Then

\[U(\sigma) = \frac{1}{\sigma} \int \frac{du}{2\pi i} e^{-\sigma u} - \frac{1}{4} \sigma^{u} \]

(3.8)

or changing \(u = v^{1/3} \),

\[U(\sigma) = \frac{1}{3\sigma} \int \frac{dv}{2\pi i} e^{-\sigma v} - \frac{1}{4} \sigma^{v} \]

(3.9)

The contour integral may be divided into two integrals on the real axis, above and below the cut:

\[U(\sigma) = U_{I}(\sigma) + U_{II}(\sigma) \]

\[U_{I}(\sigma) = \frac{1}{3\sigma i} \int_{0}^{\infty} \frac{dv}{2\pi} \left(e^{2\pi i v} \right) \frac{2}{3} e^{-\sigma v} - \frac{1}{4} \sigma^{v} (e^{2\pi i v})^{\frac{1}{3}} \]

\[U_{II}(\sigma) = - \frac{1}{3\sigma i} \int_{0}^{\infty} \frac{dv}{\pi} \left(e^{-2\pi i v} \right) \frac{2}{3} e^{-\sigma v} - \frac{1}{4} \sigma^{v} (e^{-2\pi i v})^{\frac{1}{3}} \]

(3.10)

\(U_{I} \) is the complex conjugate of \(U_{II} \), and \(U(\sigma) \) is real. The integer powers of \(\sigma \), i.e. \(\sigma^{n} \), cancel.

This corresponds to the spin \(j = 2 \), since \(\sigma^{n+1/3} = \sigma^{n+1} \). This cancellation means that there is no Ramond term in \(U(\sigma) \), and only Neveu–Schwarz types exist.

We have for \(p = 3 \)

\[U(\sigma) = \left(\frac{\sin \frac{\pi}{3}}{\pi} \right) \left[\frac{1}{3\sigma^{1/3}} \Gamma \left(\frac{1}{3} \right) \right] + \frac{1}{12} \sigma^{4/3} \Gamma \left(\frac{2}{3} \right) - \frac{1}{3^{1/3}} \sigma^{20/3} \Gamma \left(\frac{1}{3} \right) + \ldots \]

\[= \frac{1}{6\sqrt{3}} \left[J_{\frac{1}{3}} \left(\frac{1}{12\sqrt{3}} \sigma^{4} \right) + J_{\frac{2}{3}} \left(\frac{1}{12\sqrt{3}} \sigma^{4} \right) \right] \]

(3.11)

This may also be written as an Airy function \(\text{Ai}(z) \) [13, 14],

\[U(\sigma) = \frac{1}{3\sigma^{1/3}} \text{Ai} \left(-\frac{1}{4} \cdot 3^{1/3} \sigma^{4} \right) = \frac{1}{\sigma} \int_{-\infty}^{\infty} \frac{du}{2\pi i} e^{-\sigma u} - \frac{1}{4} \sigma^{u} = \frac{1}{\sigma} \int_{-\infty}^{\infty} \frac{du}{2\pi i} e^{u^3/2} - \frac{1}{4} \sigma^{u} \]

(3.12)

In deriving (3.11) we have made use of [14]

\[\int_{0}^{\infty} \cos \left(t^{3} - x t \right) dt = \frac{\pi}{3} \sqrt{3} \left[J_{1/3} \left(\frac{2x^{1/2}}{3^{1/2}} \right) + J_{-1/3} \left(\frac{2x^{1/2}}{3^{1/2}} \right) \right] \]

(3.13)

The Airy function \(\text{Ai}(z) \) was used for the case of two marked points for \(p = 3 \) in [7].
We obtain thus the explicit expression for the intersection numbers \([4]\),

\[
\langle \tau_{n,j} \rangle_g = \frac{1}{(12)^g g!} \Gamma \left(\frac{g+1}{3} \right) / \Gamma \left(\frac{2-g}{3} \right)
\]

(3.14)

with \(n = (8g - 5 - j)/3\). This condition comes from the general constraint for the intersection numbers of \(s\)-marked points of the moduli spaces of \(p\)-spin curves [33],

\[
(p + 1)(2g - 2 + s) = p \sum_{i=1}^{s} n_j + \sum_{i=1}^{s} j_i + s
\]

(3.15)

The result of (3.14) agrees with (3.36) for \(p = 3\). We have

\[
\langle \tau_{3,0} \rangle_{g=1} = \frac{1}{12}, \quad \langle \tau_{3,2} \rangle_{g=2} = 0,
\]

\[
\langle \tau_{6,1} \rangle_{g=3} = \frac{1}{51104}, \quad \langle \tau_{7,0} \rangle_{g=4} = \frac{1}{746496} \ldots
\]

(3.16)

(3) \(p = 4\)

\[
U(\sigma) = \frac{1}{4\pi} e^{-\sigma^2} \int_0^{2\pi i} e^{i \sigma \phi} d\phi = \frac{1}{4\pi} e^{-\sigma^2} \int_0^{2\pi} e^{i \sigma x} x^{-3/4} e^{-x - \frac{1}{2} \sigma^2 x^{1/2}} dx
\]

\[
= \frac{1}{4\pi} e^{-\sigma^2} \int_0^{2\pi} x^{-3/4} e^{-x + \frac{1}{2} \sigma^2 x^{1/2}} dx
\]

(3.17)

where the contour integral reduces to two integrals above and below the cut, as for the \(p = 3\) case. We thereby obtain for \(p = 4\),

\[
U(\sigma) = \frac{1}{4\pi} e^{-\sigma^2} \int_0^{2\pi} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\sigma^{5/2}}{2} \right)^n \Gamma \left(\frac{n}{2} + \frac{1}{4} \right)
\]

\[
= \frac{1}{4\pi} e^{-\sigma^2} \int_0^{2\pi} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\sigma^{5/2}}{2} \right)^n \Gamma \left(\frac{n}{2} + \frac{1}{4} \right) \frac{1}{32} \sigma^5 \left(\frac{1}{4} \right) + \ldots
\]

(3.18)

This one-point function is the generating function

\[
U(\sigma) = \frac{1}{4\pi} \sum_{n, j} \langle \tau_{n,j} \rangle_g \sigma^{n+j} e^{-4\sigma^2 \Gamma \left(\frac{n}{4} + \frac{1}{4} \right)}
\]

(3.19)

with \(n = \frac{1}{2}(10g - 6 - j)\). Therefore the intersection numbers for \(p = 4\) are

\[
\langle \tau_{1,0} \rangle_{g=1} = \frac{1}{8}, \quad \langle \tau_{3,2} \rangle_{g=2} = \frac{3}{2560}, \quad \langle \tau_{7,0} \rangle_{g=3} = \frac{3}{20480},
\]

\[
\langle \tau_{8,2} \rangle_{g=4} = \frac{77}{39321600}, \quad \langle \tau_{11,0} \rangle_{g=5} = \frac{19}{104857600} \ldots
\]

(3.20)

The exponent of the integrand (3.3) may be expressed as the Tchebycheff function \(T_n(x) = t^4 + 4t^2 + 2t^2\) with \(x = \frac{\sigma^5}{2}\). The Tchebycheff function \(T_n(x)\) is related to the Tchebycheff polynomial \(T_n(x)\) as [15, 16]

\[
T_n(t, x) = 2t^4 (-i)^n T_n \left(\frac{it}{\sqrt{x}} \right).
\]

(3.21)
From the formula of the Airy–Hardy integral $E_{in}(x)$ [15, 16],

$$E_{in}(x) = \int_0^\infty \exp\left[-T_n(t, x)\right]dt = \frac{2\sqrt[4]{x}}{n}K_n\left(2\sqrt[4]{x}\right)$$

we obtain a closed formula

$$U(\sigma) = \frac{1}{2\sqrt{8}}e^{\frac{3}{4}}\frac{1}{2\sin\left(\frac{\sigma}{4}\right)}\left[I_{n+\frac{1}{2}}\left(\frac{1}{32}\sigma^5\right) + I_{n+\frac{1}{2}}\left(\frac{1}{32}\sigma^5\right)\right]$$

(3.23)

Expanding the above expression of the modified Bessel function $I_\nu(z)$ for small σ, we have

$$U(\sigma) = \frac{1}{8} \sum_{m,n=0}^{\infty} \frac{1}{m!n!\Gamma\left(n + \frac{5}{4}\right)} \left(\frac{3}{160}\right)^m \left(\frac{1}{64}\right)^{2n-\frac{1}{4}} \sigma^{5n+10m-\frac{1}{4}}$$

$$+ \frac{1}{8} \sum_{m,n=0}^{\infty} \frac{1}{m!n!\Gamma\left(n + \frac{5}{4}\right)} \left(\frac{3}{160}\right)^m \left(\frac{1}{64}\right)^{2n+\frac{1}{4}} \sigma^{5n+10m+\frac{1}{4}}$$

$$= \frac{1}{8\pi} \left(\frac{3}{4}\right)\sigma^\frac{5}{4} + \frac{3}{640\pi} \Gamma\left(\frac{1}{4}\right)\sigma^\frac{15}{4} + \cdots$$

(3.24)

with $n = \frac{1}{2}(10g - 6 - j)$, which agrees with the previous results [6] and also it agrees with the results of Liu and Xu derived by the recursion formula from the Gelfand–Dikii equation [40]. We have obtained a closed analytical formula for the intersection numbers of p spin curves of one marked point in (3.23) for an arbitrary genus g by expressing it as a Bessel function.

(4) $p = 5$

We have,

$$U(\sigma) = \frac{1}{\sigma} \oint \frac{du}{2\pi i} \frac{1}{\sigma^3 \left(\sigma^4 - \frac{1}{5}\right)}$$

$$= \frac{1}{\sigma} \oint \frac{du}{2\pi i} e^{-\frac{1}{5}\sigma u^5} - \frac{1}{5}\sigma u$$

$$= \frac{1}{5\sigma^{\frac{6}{5}}} \oint \frac{dx}{2\pi i} e^{-\frac{4}{5}\sigma x^5} e^{-\frac{5}{6}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}} - \frac{1}{16}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}$$

(3.25)

By taking paths around a cut, similar to the $p = 3, 4$ cases, we have

$$U(\sigma) = \frac{1}{5\sigma^{\frac{6}{5}}} \oint_0^{\infty} \frac{dx}{2\pi i} e^{-\frac{4}{5}\sigma x^5} e^{-\frac{5}{6}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}} - \frac{1}{16}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}$$

$$- \frac{1}{5\sigma^{\frac{6}{5}}} \oint_0^{\infty} \frac{dx}{2\pi i} e^{-\frac{4}{5}\sigma x^5} e^{-\frac{5}{6}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}} + \frac{1}{16}\sigma^{\frac{12}{5}} x^{\frac{12}{5}}$$

$$= \frac{1}{5\sigma^{\frac{6}{5}}} \Gamma\left(\frac{1}{5}\right)\sigma^{\frac{5}{6}} + \frac{11\sin\left(\frac{\pi}{3}\right)}{720\pi} \Gamma\left(\frac{2}{5}\right)\sigma^{\frac{18}{5}}$$

$$+ \frac{1}{\pi} \sin\left(\frac{\pi}{3}\right) \frac{344}{207360}\Gamma\left(\frac{3}{5}\right)\sigma^{\frac{22}{5}} + \cdots$$

(3.26)
We obtain

\[
\langle \gamma_{0} \rangle_{g=1} = \frac{1}{6}, \quad \langle \gamma_{2} \rangle_{g=2} = \frac{11}{3600}, \quad \langle \gamma_{4} \rangle_{g=3} = 0,
\]

\[
\langle \gamma_{5} \rangle_{g=4} = \frac{341}{2592000}, \quad \langle \gamma_{10} \rangle_{g=5} = \frac{161}{77760000} \ldots
\]

(3.27)

which agrees with [6] and [37].

We use \(u = \sinh \theta \), and note that \(T_{5}(iu) = i \cosh 5 \theta \),

\[
U(\sigma) = \sqrt{\frac{2}{3}} \int_{0}^{\infty} d\theta \cosh \theta \exp \left[-2\sqrt{\frac{5}{16}} \cosh 5\theta + \frac{11\sqrt{2}}{16} \sigma^{6} \sinh \theta \right]
\]

(3.28)

with \(x = \frac{1}{3}(\frac{1}{2\sqrt{2}})^{5} \sigma^{5} \). By the change of \(\theta \to \frac{1}{2} \theta \), we have

\[
U(\sigma) = \frac{1}{5} \sqrt{\frac{2}{3}} \int_{0}^{\infty} d\theta e^{-2\sqrt{5} \cosh \theta} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{11\sqrt{2}}{16} \sigma^{6} \sinh \frac{\theta}{5} \right)^{n} \cosh \frac{\theta}{5}
\]

(3.29)

This integral is evaluated using the formula [14–16],

\[
\int_{0}^{\infty} d\theta e^{-\theta} \cos \theta \exp \left[-\frac{\pi}{\sin \nu \pi} I_{\nu}(z) \right]
\]

where \(I_{\nu}(z) \) is a modified Bessel function. The genus one \((g = 1)\) term of this series becomes

\[
U(\sigma) \sim \frac{1}{5} \sqrt{\frac{2}{3}} K_{\frac{1}{5}} \left(\frac{1}{2\sqrt{5}} \sigma^{6} \right) \sim \frac{1}{6} \sigma^{6} \Gamma \left(1 - \frac{1}{5} \right) + \ldots
\]

(3.31)

which gives \(\frac{1}{6} \) for the intersection numbers of the moduli space of \(p = 5 \) spin curves.

We obtain from the equation of (3.29), the intersection numbers \(\langle \gamma_{n,i} \rangle_{e} \), with the condition \(6(2g-1) = 5n + j + 1 \), for \(p = 5 \),

(5) general \(p \)

\[
U(\sigma) = \frac{1}{\sigma} \oint du \frac{e^{-u\sigma}}{2\pi i} \exp \left[-\frac{p(p-1)}{3!4} \sigma^{4} - \frac{p(p-1)(p-2)(p-3)}{5!4^{2}} \sigma^{6} - \ldots \right]
\]

(3.32)

By choosing an integral path around a cut,

\[
\begin{align*}
U(\sigma) = \text{Re} & \left\{ \frac{2\pi i}{p\sigma^{1}} e^{-\frac{1}{p}} \exp \left[-\frac{p(p-1)}{3!4} \sigma^{2} + \frac{2\pi i}{p} \sigma^{4} \left(\frac{1}{p} \right)^{1} + \frac{4}{5!4^{2}} \right] \\
& - \frac{p(p-1)(p-2)(p-3)}{5!4^{2}} \sigma^{4} e^{-\frac{3\pi i}{p}} \left(\frac{1}{p} \right)^{1} - \ldots \right\}
\end{align*}
\]

(3.33)
We have

\[
U(\sigma) = \frac{1}{\pi p^{1+\frac{1}{p}} \sin \frac{2\pi}{p}} \Gamma \left(\frac{1}{p} \right) + \frac{p - 1}{24 p^{1+\frac{1}{p}}} \sin \frac{2\pi}{p} \Gamma \left(1 - \frac{1}{p} \right) \\
- \frac{(p - 1)(p - 3)(2p + 1)}{2760 \pi} \sin \frac{6\pi}{p} \Gamma \left(1 - \frac{3}{p} \right) \\
- \frac{(p - 1)(p - 5)(1 + 2p)}{7! 4^{3} 3^{2} \pi} \sin \frac{10\pi}{p} \Gamma \left(1 - \frac{5}{p} \right) \\
+ \frac{(p - 1)(p - 7)(1 + 2p)}{9! 4^{4} 15} \sin \frac{14\pi}{p} \Gamma \left(1 - \frac{7}{p} \right) + \cdots
\]

(3.34)

The intersection numbers of the \(p \) spin curves are obtained with the condition \((p + 1)(2g - 1) = pn + j + 1\).

\[
U(\sigma) = \sum_{g} \left\{ (\tau_{\sigma}) \right\}_{g} p^{g-1} \sigma^{n+\frac{1+j}{p}} \Gamma \left(1 - \frac{1+j}{p} \right) \sin \frac{m}{p}
\]

(3.35)

with \(m = 2\pi + 4\pi(g - 1) \).

\[
\left\{ (\tau_{\sigma}) \right\}_{g=1} = \frac{p - 1}{24},
\]

\[
\left\{ (\tau_{\sigma}) \right\}_{g=2} = \frac{(p - 1)(p - 3)(1 + 2p)}{p 5! 4^{3} 3} \Gamma \left(1 - \frac{2}{p} \right) \Gamma \left(1 - \frac{1+j}{p} \right),
\]

\[
\left\{ (\tau_{\sigma}) \right\}_{g=3} = \frac{(p - 5)(p - 1)(1 + 2p)}{p^{2} 7! 4^{3} 3^{2}} \Gamma \left(1 - \frac{5}{p} \right) \Gamma \left(1 - \frac{1+j}{p} \right),
\]

\[
\left\{ (\tau_{\sigma}) \right\}_{g=4} = \frac{(p - 1)(p - 7)(1 + 2p)}{p^{3} 9! 4^{4} 15} \Gamma \left(1 - \frac{7}{p} \right) \Gamma \left(1 - \frac{1+j}{p} \right)
\]

(3.36)

This result is the same as [6], where the integral is restricted to a path from 0 to \(\infty \) without the \(\sin \frac{2\pi}{p} \) factor in \(U(\sigma) \).

\[p = -1 \]

This expression for arbitrary \(p \) in (3.36) allows the analytical continuation to negative values of \(p \). In the case \(p = -1 \), it correspond to Euler characteristics \(\chi(M_{g,1}) = \zeta(1 - 2g) \) [6]. For \(p = -1 \), the power of \(\sigma^{1+\frac{1}{p}} \) becomes zero, and the \(\sigma \) dependence disappears. Therefore, we need the introduction of \(c \), which is taken as \(N \) to specify the genus \(g \).
\[U(\sigma) = \frac{1}{N\sigma} \int \frac{du}{2\pi i} e^{-N \log \left(\frac{u}{\sigma} \right)} \]
\[= \frac{1}{N} \int \frac{du}{2\pi i} \left(\frac{u - \frac{1}{2}}{u + \frac{1}{2}} \right)^N \]
\[= \int_0^{\infty} dt \frac{1}{1 - e^{-t}} e^{-Nt} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_n}{2nN^{2n}} \] (3.37)

where we have used \(\frac{u - \frac{1}{2}}{u + \frac{1}{2}} = e^{-t} \), and a subsequent expansion is used. \(B_n \) is a Bernoulli number: \(B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = -\frac{1}{30}, B_4 = \frac{1}{42}, B_5 = \frac{1}{30} \).

This gives Euler characteristics (intersection number \(g \) for \(p = -1 \)),
\[\chi(\mathcal{M}_{k,1}) = \langle \tau \rangle_g = -\frac{1}{2g} B_g = \zeta(1 - 2g) \] (3.39)

where \(\zeta \) is the Riemann zeta function. When \(p \) is negative, we have to specify the meaning of spin \(j \). This index \(p \) is related to the level \(k \) of the Lie group \(su(2,1) \). This was studied by Witten [41] as a chiral ring (Landau–Ginzburg theory) of primary fields and their gravitational descendants with
\[p = k + 2 \] (4.0)

The present case corresponds to the singularity theory of \(A_{k-1} \). When \(p \) is negative, we have a non-compact Lorenzian group \(sl(2, R) / u(1) \), whose discrete spectrum is known to correspond to two series \(D^+_k \) and \(D^-_k \) [42]. The analytical continuation of \(p \rightarrow -p \) corresponds to \(D^-_k \), and the spin \(j \) takes a negative value. For instance, for \(p = -1 \), the Euler characteristics \(\chi(\mathcal{M}_{k,1}) \) are defined by the top Chern class only and \(n \), which is the power of the first Chern class, should be zero. Then we have only \(\langle \tau_{0,-1} \rangle_g \) in which \(j = -1 \).

Thus \(\langle \tau_{n,-1} \rangle_g \) is not surprising since the discrete spectrum with negative spin exists for \(SL(2, R) \).

(7) \(p = -2 \)

As noticed in [43], we have two expansions, weak coupling and strong coupling for \(p = -2 \), which correspond to the Gross–Witten model for the unitary group [32, 44]. There is a phase transition between these two phases. The weak coupling corresponds to small \(\sigma \) and strong coupling corresponds to large \(\sigma \). Therefore, the spin values \(j \) take negative values of \(D^-_k \) for weak coupling, and positive values for the strong coupling phase. The expansion of \(u(\sigma) \) is expressed by putting \(n = 0 \) as
\[u(\sigma) = \sum \alpha_j \sigma^{1+j} \] (3.42)

More details of the discrete spectrum of \(SL(2, R) \) are presented in the appendix. Before closing this section on the GUE, we write the one point function \(U(\sigma) \) as an angular integral, which is useful for the strong coupling expansion.
In the expression of \(U(\sigma) \) one puts \(\sin \theta = 1/\sqrt{1+u^2} \) and \(\cos \theta = u/\sqrt{1+u^2} \) in (3.3). Then with \(\sigma = it \), and \(u = \frac{1}{2}v \),

\[
U(\sigma) = \frac{1}{2} \int \frac{dv}{2\pi} \exp \left[-\frac{c}{p+1} \left\{ (v+i)^{p+1} - (v-i)^{p+1} \right\} \right]
\]

(3.43)

With \(v = \frac{\cos \theta}{\sin \theta} \), it becomes

\[
U(\sigma) = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{d\theta}{2\pi} \frac{1}{\sin \theta^2} \exp \left[-\frac{2ic}{p+1} \frac{\sin(p+1)\theta}{\sin \theta^{p+1}} \right]
\]

(3.44)

Note that the denominator of the exponent \((\sin \theta)^{p+1} \) becomes a numerator when \(p+1 \) is negative, and it provides a large \(\sigma \) expansion (strong coupling expansion for large \(t \) corresponding to a discrete spectrum of \(SL(2, R) \)). This large \(t = -i\sigma \) expansion becomes, for instance for \(p = -2 \),

\[
sU(\sigma) = -\frac{1}{2} \left[D - \left(\frac{c}{t} \right) + \left(\frac{c}{t} \right)^2 - \left(\frac{c}{t} \right)^3 + \left(\frac{c}{t} \right)^4 - \frac{7}{12} \left(\frac{c}{t} \right)^5 + \cdots \right]
\]

\[
= -\frac{1}{2} \sum_m C_m \left(\frac{c}{t} \right)^m
\]

(3.45)

with

\[
C_m = \frac{(2m-1)!}{m!} \frac{1}{\prod_{i=1}^{m-1} (-l^2)}
\]

(3.46)

\(D \) is a divergent term, which should be regularized. The above expression matches exactly a strong coupling expansion for the unitary (gauge) group, for a single trace result with \(N = 0 \) [43]. The unitary matrix model is

\[
Z = \int dU e^{U(C+C^\dagger)}
\]

(3.47)

where \(U \) is an \(N \times N \) unitary matrix, \(UU^\dagger = 1 \). \(C \) is an external complex matrix. The strong expansion is an expansion in powers of \(\text{tr}(C^mC) \). The coefficient of \(\text{tr}(C^mC) \), \(C_m \), is equal to

\[
C_1 = 1, \quad C_2 = -\frac{1}{N^2-1}, \quad C_3 = \frac{4}{(N^2-1)(N^2-4)},
\]

\[
C_4 = -\frac{30}{(N^2-1)(N^2-4)(N^2-9)}, \quad \cdots
\]

(3.48)

For obtaining the \(N \) dependence, we need the insertion of a logarithmic term in (3.3) as [43],

\[
U(\sigma) = \frac{1}{2} \int \frac{du}{2i\pi} \frac{4}{u^2-1} \left(\frac{u-1}{u+1} \right)^N
\]

(3.49)

4. Classical Lie algebras

\(X \in o(2N) \) Lie algebra
When the random matrix X varies over a classical Lie algebra, with a Gaussian distribution, the n-point correlation function in an external source is obtained again exactly, after use of the Harish Chandra formula [48]. We have discussed in earlier work such models with external source [17, 49].

Consider the Lie algebra of $o(N)$, namely real antisymmetric matrices. Since the Harish Chandra formula holds for this Lie algebra, we can obtain explicit expressions for the n-point correlation functions. Again one can derive a duality identity. In the present case, instead of the duality formula involving a supermatrix Q, it is convenient to use

$$
\left\langle \prod_{n=1}^{k} \det(\lambda_n \cdot I - X) \right\rangle_A = \left\langle \prod_{n=1}^{N} \det(a_n \cdot I - Y) \right\rangle_{\Lambda}
$$

where X is a $2N \times 2N$ real antisymmetric matrix ($X' = -X$) and Y is a $2k \times 2k$ real antisymmetric matrix; the eigenvalues of X and Y are thus purely imaginary. The matrix source A is also a $2N \times 2N$ antisymmetric matrix. The matrix Λ is a $2k \times 2k$ antisymmetric matrix, coupled to Y. We assume, without loss of generality, that A and Λ take the canonical form:

$$
A = a_1 v \oplus \cdots \oplus a_N v, \quad v = i\sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

Λ is expressed also as

$$
\Lambda = \lambda_1 v \oplus \cdots \oplus \lambda_k v.
$$

The definition of the averages is

$$
\langle \mathcal{O}(X) \rangle_A = \frac{1}{Z_A} \int dX \mathcal{O}(X) \exp\left(\frac{1}{2} \text{tr} X^2 + \text{tr} AX\right)
$$

$$
\langle \mathcal{O}(Y) \rangle_\Lambda = \frac{1}{Z_\Lambda} \int dY \mathcal{O}(Y) \exp\left(\frac{1}{2} \text{tr} Y^2 + \text{tr} \Lambda Y\right)
$$

By an appropriate tuning of the a_n's, and a corresponding rescaling of Y and Λ, one may generate similarly higher models of type p with the conditions (2.13),

$$
Z = \int dY e^{-\frac{1}{p+1} \text{tr} Y^{p+1} + \text{tr} \Lambda Y^p}
$$

where p is an odd integer.

The Harish Chandra integral for the integral over the $g \in SO(2N)$ group, and given real antisymmetric matrices Y and Λ, reads [48]

$$
\int_{SO(2N)} d\text{ge}^{w(g)}(g) g^{-1}/\Lambda = C \sum_{w \in W} \text{det}(w) \exp\left(2 \sum_{j=1}^{N} w(y_j) \lambda_j\right) \prod_{i < j < k \leq N} (y_j^2 - y_k^2) (\lambda_j^2 - \lambda_k^2)
$$

where $C = (2N - 1)! \prod_{j=1}^{2N-1} (2j - 1)!$, and w are elements of the Weyl group, which consists here of permutations followed by reflections ($y_i \rightarrow \pm y_i$; $i = 1, \cdots, N$) with an even number of sign changes.

For the one point function, we obtain when X is a $2N \times 2N$ real antisymmetric random matrix, from the above formula,
\[U(\sigma) = \frac{1}{2N} \left\langle \text{tr } e^{iX} \right\rangle_A \]
\[= \frac{1}{2N} \sum_{\gamma=1}^{N} \prod_{\alpha=1}^{N} \left(a_{\alpha} + \frac{\sigma}{2} \right)^2 - a_{\gamma}^2 \right\rangle e^{\sigma u_\gamma + \frac{\sigma^2}{4}} + (\sigma \rightarrow -\sigma) \]
\[= \frac{1}{N\sigma} \oint \frac{du}{2\pi i} \prod_{\gamma=1}^{N} \left(\frac{u + \frac{\sigma}{2}}{u - a_{\gamma}^2} \right) \frac{u}{u + \frac{\sigma}{4}} e^{\sigma u + \frac{\sigma^2}{4}} \] (4.8)
where the contour encircles the poles \(u = a_{\gamma} \). Or, shifting \(u \rightarrow u - \frac{\sigma}{4} \).
\[U(\sigma) = \frac{1}{N\sigma} \oint \frac{dv}{2\pi i} \prod_{\gamma=1}^{N} \left(\frac{u - \frac{\sigma}{2}}{u + a_{\gamma}^2} \right) \frac{u}{u - \frac{\sigma}{4}} e^{\sigma u} \] (4.9)
Tuning the external source to obtain the \(p \)-th degeneracy, one finds
\[U(\sigma) = \frac{1}{N\sigma} \oint \frac{du}{2\pi i} e^{-\frac{u}{p+1}\left(\left(\frac{\sigma}{2}\right)^{p+1} - \left(-\frac{\sigma}{2}\right)^{p+1}\right)} \left(1 - \frac{\sigma}{4u}\right) \] (4.10)
(1) \(p = 3 \)
There are two terms in (4.10); the first term \(U(\sigma)^{\text{OR}} \) is exactly one-half of \(U\left(\frac{\sigma}{2}\right) \) for the GUE (orientable Riemann surfaces). The second term is a new term, and we denote it as the non-orientable part \(U(\sigma)^{\text{NO}} \), since it is related to non-orientable surfaces with half-integer genus:
\[U(\sigma)^{\text{OR}} = \frac{1}{2} U\left(\frac{\sigma}{2}\right) \]
\[= \frac{1}{12\sqrt{3}} \left[J_{\frac{1}{2}} \left(\frac{1}{12\sqrt{3}} \left(\frac{\sigma}{2} \right)^4 \right) + J_{\frac{3}{2}} \left(\frac{1}{12\sqrt{3}} \left(\frac{\sigma}{2} \right)^4 \right) \right] \]
\[= \frac{1}{2 \cdot 3^{\frac{1}{2}} \left(\frac{\sigma}{2} \right)^3} \text{Ai} \left[- \frac{1}{4 \cdot 3^{\frac{1}{3}}} \left(\frac{\sigma}{2} \right)^{\frac{3}{2}} \right] \] (4.11)
For the non-orientable surfaces, from the condition,
\[(p+1)(2g-1) = pn + j + 1 \] (4.12)
we find that the genus \(g \) is always a half-integer \(\left(g = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \right) \), and \(U(\sigma)^{\text{NO}} \) has a series expansion in powers of \(\sigma^{n+\frac{p+1}{2p}} \). For \(p = 3 \), we have
\[U(\sigma)^{\text{NO}} = \frac{1}{4} \oint \frac{du}{2\pi i u} e^{-\frac{u}{4} - \frac{\sigma^2}{4u^2}} \]
\[= \frac{1}{12} \oint \frac{dx}{2\pi i x} e^{-x - \frac{2\sqrt{3}}{3^2 \cdot 3^{\frac{1}{3}}} \cdot x^{\frac{3}{2}}} \]
\[= \text{Re} \left\{ \frac{1}{12\pi} \int_0^{\infty} \frac{1}{x} e^{-\frac{1}{4} x^{\frac{3}{2}} \left(\left(\frac{\sigma}{2} \right)^{\frac{3}{2}} \right)} \right\} \] (4.13)
This function may be expanded as
\[
U(\sigma) = \text{Re} \left\{ \frac{1}{12\pi} \int_0^\infty \frac{dx}{x} e^{-x} \sum_{n=0}^\infty \frac{1}{n!} \left(-\frac{1}{4} e^{2\pi i} \left(\frac{\sigma}{2} \right)^{8/3} x^{1/3} \right)^n \right\}
\]
\[
= -\frac{1}{\pi} \frac{1}{48} \left(\frac{\sigma}{2} \right)^8 \frac{1}{2} \sum_{n=0}^\infty \frac{1}{n!} \left(\frac{2\pi i}{3} \right)^n \Gamma \left(\frac{1}{3} \right)
\]
\[
+ \frac{1}{\pi} \frac{1}{384} \left(\frac{\sigma}{2} \right)^{16} \frac{1}{3} \sum_{n=0}^\infty \frac{1}{n!} \left(\frac{4\pi i}{3} \right)^n \Gamma \left(\frac{2}{3} \right)
\]
\[
- \frac{1}{\pi} \frac{1}{12} \cdot 4^4 \left(\frac{\sigma}{2} \right)^8 \Gamma \left(\frac{4}{3} \right) \sin 2\pi
\]
\[
+ \frac{1}{\pi} \frac{1}{4!} \cdot 12 \cdot 4^4 \left(\frac{\sigma}{2} \right)^8 \Gamma \left(\frac{4}{3} \right) \sin \frac{8\pi}{3} \Gamma \left(\frac{4}{3} \right) = \ldots
\]
(4.14)

Using Airy functions, the \(p = 3 \) case is expressed as
\[
U(\sigma) = \frac{1}{2} \cdot 3^{1/3} \left(\frac{\sigma}{2} \right)^{4/3} \text{Ai}(x) - \frac{1}{4} \int_0^x dx' \text{Ai}'(x')
\]
(4.15)

with \(x = -\frac{1}{4} \cdot 3^{1/3} \left(\frac{\sigma}{2} \right)^{8/3} \).

The Airy function \(\text{Ai}(z) \) and the integral of the Airy function may be expanded as
\[
\text{Ai}(z) = \frac{\pi}{3^{2/3}} \sum_{n=0}^\infty \frac{1}{n! \Gamma \left(\frac{1}{3} \right)} \left(\frac{1}{3} \right)^n \frac{1}{n+\frac{2}{3}} z^{3n} - \frac{\pi}{3^{4/3}} \sum_{n=0}^\infty \frac{1}{n! \Gamma \left(\frac{1}{3} \right)} \left(\frac{1}{3} \right)^n \frac{1}{n+\frac{4}{3}} z^{3n+1}
\]
(4.16)

\[
\int_0^z \text{Ai}(t) dt = \frac{\pi}{3^{2/3} \Gamma \left(\frac{2}{3} \right)} z^{2} - \frac{\pi}{3^{4/3} \cdot 2 \Gamma \left(\frac{4}{3} \right)} z^{4} + \frac{\pi}{36 \cdot 3^{2/3} \Gamma \left(\frac{5}{3} \right)} z^{6} + \ldots
\]
(4.17)

Inserting these expansions, we have for \(p = 3 \), \(\text{Ai}(\frac{1}{3}) = \Gamma(\frac{1}{3}) \Gamma(\frac{2}{3}) \).

\[
U(\sigma) = \frac{\pi}{24 \Gamma \left(\frac{1}{3} \right)} \left(\frac{\sigma}{2} \right)^{4/3} - \frac{\pi}{108 \cdot 64 \Gamma \left(\frac{2}{3} \right)} \left(\frac{\sigma}{2} \right)^{20/3} + \ldots
\]
\[
+ \frac{\pi}{48 \Gamma \left(\frac{2}{3} \right)} \left(\frac{\sigma}{2} \right)^{8/3} + \frac{\pi}{384 \Gamma \left(\frac{1}{3} \right)} \left(\frac{\sigma}{2} \right)^{16/3} - \frac{\pi}{864 \cdot 4^4 \Gamma \left(\frac{5}{3} \right)} \left(\frac{\sigma}{2} \right)^{32/3} + \ldots
\]
(4.18)

\[
U(\sigma) = \sum_{k=1}^{19} \Gamma \left(1 - \frac{1}{3} \right) \left(\frac{\sigma}{2} \right)^{1+\frac{4}{3}} + \sum_{k=3}^{19} \Gamma \left(1 - \frac{2}{3} \right) 3^2 \left(\frac{\sigma}{2} \right)^{6+\frac{4}{3}} + \ldots
\]
\[
+ \sum_{k=3}^{19} \Gamma \left(1 - \frac{2}{3} \right) 3^2 \left(\frac{\sigma}{2} \right)^{6+\frac{4}{3}} + \sum_{k=3}^{19} \Gamma \left(1 - \frac{1}{3} \right) 3^4 \left(\frac{\sigma}{2} \right)^{16/3} + \ldots
\]
\[
+ \sum_{k=3}^{19} \Gamma \left(1 - \frac{2}{3} \right) 3^2 \left(\frac{\sigma}{2} \right)^{6+\frac{4}{3}} + \ldots
\]
(4.19)
We have for \(p = 3 \),
\[
U(\sigma)^{\text{NO}} = \frac{1}{12} y^2 \Gamma\left(1 - \frac{2}{3}\right) + \frac{1}{24} y^4 \Gamma\left(1 - \frac{1}{3}\right) + \frac{1}{864} y^8 \Gamma\left(1 - \frac{2}{3}\right) + \ldots \tag{4.20}
\]

We have obtained for \(p = 3 \) the explicit intersection numbers for non-orientable surfaces with one marked point. The intersection number \(\langle \tau_{2,1}^2 \rangle_{g=3/2} \) corresponds to a cross-capped torus. For \(g = 1/2 \) we are dealing with the topology of the projective plane but for this case, the intersection numbers \(\langle \tau_{0,1}^2 \rangle_{g=1/2} \) are present only beyond the two marked points level \([17]\). We have
\[
\langle \tau_{1,0} \rangle_{g=1} = \frac{1}{24}, \langle \tau_{2,1} \rangle_{g=1} = \frac{1}{864} \ldots \tag{4.21}
\]

(2) general \(p \)

Using the binomial expansion, one finds (\(y = 27 (\tau^2 + \frac{1}{\tau})^p = \frac{1}{27} (\tau^p + \frac{1}{\tau}^p) \))
\[
U(\sigma) = -\frac{1}{4ypN} \int d\tau \tau^{-6} e^{-\frac{1}{6}(1 - \frac{p(p - 1)}{6})y^2\tau^{\frac{p}{2}} + \ldots} \times \left[1 + y \tau^{\frac{p}{2}} \right] \tag{4.22}
\]

This is again the sum of two contributions, orientable (OR) and non-orientable (NO). The odd powers in \(y \) correspond to the orientable contribution, which is the same as for the unitary case; the even powers in \(y \) correspond to the non-orientable case:
\[
U(\sigma) = U(\sigma)^{\text{OR}} + U(\sigma)^{\text{NO}} \tag{4.23}
\]

\(U(\sigma)^{\text{OR}} \) is same as the GUE but the normalization of \(\sigma \) is replaced by \(\sigma/2 \).

The first term of the integration (4.22) in the series expansion by \(y \) is divergent, and it should be regularized. Except for this divergent term, we give the series expansion up to order \(y^8 \) (we have neglected the phase factor \(\sin \frac{m\pi}{p} \)).
\[
U(\sigma)^{\text{NO}} = \frac{y^2}{24} (p - 1) \Gamma\left(1 - \frac{2}{p}\right) + \frac{y^4}{6!} (p - 1)(p^2 - 5p + 1) \Gamma\left(1 - \frac{4}{p}\right) + \frac{y^6}{7!} (p - 1)(p - 3)(4p^3 - 23p^2 - 2p - 6) \Gamma\left(1 - \frac{6}{p}\right) + \frac{y^8}{7! 3^3 \cdot 10} (p - 1)(9p^6 - 121p^5 + 435p^4 - 317p^3 - 167p^2 - 471p - 43) \Gamma\left(1 - \frac{8}{p}\right) + O(y^{10}) \tag{4.24}
\]

From this genus expansion, one obtains the intersection numbers of the \(p \)-spin curves for non-orientable surfaces.

(3) \(p = -1 \)

We now perform the limit, \(p \to -1 \), which is related to the virtual Euler characteristics. When we put \(p = -1 \) in (4.24), the \(\Gamma \) function term becomes an integer for \(p = -1 \), and this
agrees with the intersection number of $\langle n_0 \rangle^g$, which gives a factor $\Gamma\left(1 - \frac{1}{p}\right) = \Gamma(2) = 1$ for spin zero. We obtain
\[
U(\sigma)^{NO} = -\frac{1}{24}(2y)^2 - \frac{7}{240}(2y)^4 - \frac{31}{504}(2y)^6 - \frac{127}{480}(2y)^8 + \cdots \tag{4.25}
\]
This series agrees precisely with the series expansion
\[
U(\sigma)^{NO} = -\sum_{k=0}^{\infty} \frac{1}{2k+1} \left(2^{2k+2} - \frac{1}{2}\right) B_k (2y)^{2k} \tag{4.26}
\]
where B_k is a Bernoulli number, a positive rational number. $B_1 = \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = \frac{1}{32},$ and $B_4 = \frac{1}{30}$. The coefficient of $(2y)^{2k}$ is the same as for the virtual Euler characteristics of the moduli space of real algebraic curves for genus g and one marked point, which was derived from the Penner model of the real symmetric matrix by Goulden et al.[47]. (We use for the half genuses in the list, $\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$ for a projective plane, Klein bottle, cross-capped torus, doubly cross-capped torus, \ldots, with the notation $\hat{g} = 1, \hat{g} = 2, \hat{g} = 3, \hat{g} = 4, \ldots$, respectively [46], and this is a reason for the appearance of the $(2y)^{2\hat{g}}$ factor in (4.25)).

Since we derived this from the antisymmetric $o(2N)$ Lie algebra, the coincidence between $o(2N)$ Lie algebra and the GOE for the virtual Euler characteristics [47] seems remarkable.
\[
\chi^{NO}(\overline{M}_{g,1}) = \frac{1}{2g} \left(1 - \frac{1}{2} - 2^{2g-2}\right) B_g. \tag{4.27}
\]
This result may be obtained analytically to all orders. We now derive this result from the integral form (4.10) replacing c by N. With $p = -1$, it becomes
\[
U(\sigma) = -\frac{1}{4N^2} \int du \left(\frac{u - \sigma}{u + \sigma}\right)^N \left(1 + \frac{\sigma}{u}\right) \tag{4.28}
\]
With the change of variable $u \rightarrow -\sigma u$,
\[
U(\sigma) = -\frac{1}{4N} \int du \left(\frac{u - 1}{u + 1}\right)^N \left(1 + \frac{1}{u}\right) \tag{4.29}
\]
We divide it into two parts, $U(\sigma)^{OR}$ and $U(\sigma)^{NO}$,
\[
U(\sigma)^{OR} = -\frac{1}{4N} \int du \left(\frac{u - 1}{u + 1}\right)^N \tag{4.30}
\]
\[
U(\sigma)^{NO} = -\frac{1}{4N} \int du \left(\frac{u - 1}{u + 1}\right)^N \frac{1}{u} \tag{4.31}
\]
We use the same change of variables as for the unitary case [4],
\[
\frac{u - 1}{u + 1} = e^{-y}, \quad u = \frac{1 + e^{-y}}{1 - e^{-y}}, \quad du = -2 \frac{e^{-y}}{(1 - e^{-y})^2} dy \tag{4.32}
\]
\[
U(\sigma)^{OR} = \frac{1}{2N} \int dy \frac{e^{-Ny} - e^{-y}}{(1 - e^{-y})^2} \tag{4.33}
\]
\[U(\sigma)^{NO} = \frac{1}{2N} \int dy \, e^{-\beta y} \frac{e^{-y}}{(1 - e^{-y})^2} \left(\frac{1 - e^{-y}}{1 + e^{-y}} \right) \]
\[= \frac{1}{4N} \int dy \, e^{-\beta y} \left[\frac{1}{1 - e^{-y}} - \frac{1}{1 + e^{-y}} \right] \] (4.34)

It is interesting to note that both Boson and Fermion distributions enter in the above integrand (4.34).

If we use the expansions,
\[\frac{1}{1 - e^{-y}} = \frac{1}{y} + \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}}{(2n)!} y^{2n-1} \]
\[\frac{1}{1 + e^{-y}} = \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2^{2n} - 1)}{(2n)!} B_{2n} y^{2n-1} \] (4.35)

then they become
\[U(\sigma)^{OR} = \frac{1}{2N} \int dy \, \frac{1}{y^2} e^{-\beta y} = \frac{1}{2} - \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}}{2n N^{2n}} \]
\[U(\sigma)^{NO} = \frac{1}{4N} \int dy \, e^{-\beta y} + \frac{1}{4} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}}{2n N^{2n+1}} \]
\[= \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2^{2n} - 1)}{2n} B_{2n} \frac{1}{N^{2n+1}} \]
\[= \frac{1}{4N} \int dy \, e^{-\beta y} + \frac{1}{4} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2 - 2^{2n}) B_{2n}}{2n} \frac{1}{N^{2n+1}} \] (4.36)

We now get from the above equation (replacing \(n \) by \(g \)),
\[\chi^{OR}(M_{g,1}) = -\frac{1}{2} \zeta(1 - 2g) = -\frac{1}{2} \frac{(-1)^g B_g}{2g}, \]
\[\chi^{NO}(M_{g,1}) = (-1)^{g-1} \frac{1}{2g} (2^{2g-2} - 2^{-1}) B_g \] (4.37)

For the \(s \)-marked point, the result obtained from the real symmetric matrix Penner model [47] is
\[\chi^{NO}(M_{g,l,s}) = (-1)^{g-1} \frac{1}{2g} \frac{(2g + s - 2)! (2^{2g-1} - 1)}{(2g)! s!} B_g \] (4.38)

This result can be obtained by applying equation (4.37) [7]. In this \(o(2N) \) model, we have the following condition, the same as for Riemann surfaces with spin \(j \) and \(s \)-marked points
\[(p + 1)(2g - 2 + s) = p \sum_{i=1}^{s} \eta_i + \sum_{i=1}^{s} \nu_i + s \] (4.39)

However, we have to assign the genus \(g \) also to half integers to represent non-orientable surfaces [17].

\(X \in o(2N + 1) \text{Lie algebra} \)
For $so(2N + 1)$ Lie algebra, the matrix X is

$$X = h_1 v \oplus h_2 v \oplus \cdots h_N v \oplus 0$$

(4.40)

The measure is $V(H)^2$,

$$V(H) = \prod_{1 \leq j < k \leq N} \left(h_j^2 - h_k^2 \right) ^{N \atop j=1}$$

(4.41)

The Harish Chandra formula is

$$I = \int_{SO(2N+1)} e^{tr(\phi \cdot \Phi)} \, d\phi = C_{G(N)} \sum_{w \in G(N)} (\det w) \exp \left(2 \sum_{j=1}^{N} w(a_j)b_j \right) \prod_{1 \leq j < k \leq N} \left(a_j^2 - a_k^2 \right) \prod_{j=1}^{N} a_j b_j$$

(4.42)

with $C_{G(n)} = \prod_{j=1}^{N} (2j - 1)! \prod_{j=2N - 1}^{4N - 1} j!$. Comparing with the $o(2N)$ case, this formula differs from (4.7) by the presence of the term $a_j b_j$ in the denominator. For the one point function, we have

$$U(\sigma) = \frac{1}{N} \sum_{a_1, \ldots, a_N} \int_{-\infty}^{\infty} \prod_{j=1}^{N} \left(\lambda_j^2 - \lambda_k^2 \right) \prod_{j=1}^{N} \lambda_k \prod_{i<j} \left(a_i^2 - a_j^2 \right) \prod_{j=1}^{N} a_j \right) \sum_{\lambda_i} \left(\sum_{\lambda_i} \lambda_i (\lambda_i + 2) \right) \exp \left(\frac{1}{2} \left(\sum_{\lambda_i} \lambda_i^2 - \sum_{\lambda_i} \lambda_i \right) \right) \prod_{j=1}^{N} a_j$$

(4.43)

This reduces to a contour integral, which collects poles at $u = a_i^2$.

$$U(\sigma) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \prod_{j=1}^{N} \left(\frac{v - a_j^2}{\sigma + 2v} \right) \prod_{j=1}^{N} \left(\frac{v + a_j^2}{\sigma + 2v} \right) \exp \left(\frac{1}{2} \left(\sum_{\lambda_i} \lambda_i^2 - \sum_{\lambda_i} \lambda_i \right) \right) \prod_{j=1}^{N} a_j$$

(4.44)

By tuning to the p-th degeneracy, we obtain

$$U(\sigma) = \frac{1}{\sigma} \int_{-\infty}^{\infty} \frac{du}{2\pi i} e^{-\frac{1}{\sigma + \pi i} \left((u + \frac{\sigma}{2})^{\pm 1} - (u - \frac{\sigma}{2})^{\pm 1} \right)} \left(1 + \frac{\sigma}{2u} \right)$$

(4.45)

This takes the same form as for the $o(2N)$ case.

The Harish Chandra formula for $Sp(N)$ reads [49]

$$I = \int_{Sp(N)} e^{tr(\Phi \cdot \psi)} \, d\psi = \sum_{w \in W} (\det w) e^{tr(\psi \cdot \Phi)} \Delta(a) \Delta(b)$$

(4.46)

$$= C \prod_{i<j} \left(\frac{2 \sinh(2a_i b_j)}{a_i^2 - a_j^2} \right) \prod_{i} \left(b_i^2 - b_j^2 \right) \prod_{j} b_j^2$$

(4.47)
For the one point function, with \(b_i = \lambda_i \), and \(a_i \) as eigenvalue of the external source matrix \(A \), we obtain

\[
U(\sigma) = \frac{1}{N} \sum_{\alpha=1}^{N} \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_i \prod_{1 \leq i < j \leq N} \left(\lambda_i^2 - \lambda_j^2 \right) \prod_{1 \leq k \leq N} \lambda_k \prod_{1 \leq i \leq N} a_i \prod_{1 \leq k \leq N} a_k e^{-\sum \lambda_i^2 + \sigma \lambda_i + 2 \sum a_i \lambda_i}
\]

\[
= \frac{1}{\sigma} \frac{du}{2\pi i} \sum_{j=1}^{N} \frac{\left(\sqrt{u} + \sigma \right)^2 - a_j^2}{u - a_j^2} \frac{1}{u - \left(\sqrt{u} + \sigma \right)^2} \left(1 + \frac{\sigma}{\sqrt{u}} \right) e^{\sigma^2 + 2\sigma u}
\]

\[
= \frac{2}{\sigma} \frac{dv}{2\pi i} \sum_{j=1}^{N} \frac{\left(v + \sigma/2 \right)^2 - a_j^2}{v^2 - a_j^2} \frac{v + \sigma}{\sigma + 2v} e^{\sigma^2 + 2\sigma v}
\]

\[
= \frac{1}{\sigma} \frac{dv}{2\pi i} \sum_{j=1}^{N} \frac{\left(v + \sigma/2 \right)^2 - a_j^2}{v^2 - a_j^2} \frac{1}{1 + \frac{\sigma}{2v}}
\]

(4.48)

where we have shifted \(v \rightarrow v - \frac{\sigma}{2} \) and \(a_i \rightarrow a_i/2 \). This expression becomes the same as for the \(o(2N) \) case, when we put \(v \rightarrow 2v \) up to a factor 2. Note that we do not need to consider the expansion \(\frac{\sigma}{2} \) as in the \(o(2N) \) case. The first term of the expression is same as for GUE. By tuning \(a_i \) to the \(p \)-th case, we have

\[
U(\sigma) = \frac{1}{\sigma} \int \frac{du}{2\pi i} e^{-1/(\sigma+1)(\frac{u}{\sigma}+1)\left(1 + \frac{\sigma}{2u} \right)}
\]

(4.49)

We write these two terms as \(U(\sigma) = U(\sigma)^{\Omega_R} + U(\sigma)^{\Omega_O} \). It is then obvious that we obtain the same intersection numbers and virtual Euler characteristics as in the \(o(2N) \) case.

5. Open intersection numbers

Kontsevich–Penner model

The Airy matrix model with an external source, the Kontsevich model for \(p = 2 \), gives the intersection numbers for closed Riemann surfaces, which satisfy a KdV hierarchy. These closed intersection numbers are obtained from (3.35) and (3.36) for one marked point. They are known for genus \(g \) and one marked point in a simple closed form,

\[
\left\{ \gamma_{g,2,0} \right\}_g = \frac{1}{(24)^g g!}
\]

(5.1)

When the Riemann surface has boundaries, open intersection numbers appear, which differ from those of the Kontsevich model. We have studied earlier the effect of an additional logarithmic potential in the Kontsevich model, the so called Kontsevich–Penner model \([24]\).

In our work this model came from a two matrix model, which originated itself from a time-dependent matrix model. The eigenvalues of the two matrices correspond for one to the edge of the distribution and for the other one to the bulk. Then we can use the duality identity for the two characteristic polynomials of the two matrices with external sources, and thereby recover the Kontsevich–Penner model. Therefore the presence in that model of the term \((\det M)^k = \exp[k \operatorname{tr} \log M] \) corresponds to the addition of a boundary (an open disc) in the
random surfaces described by the Kontsevich model. Recently open intersection numbers have been analyzed in \cite{21–23}. The generating matrix model for those open intersection numbers are given by a Kontsevich–Penner model \cite{26, 27}. This Kontsevich–Penner model has different Virasoro equations and different intersection numbers, which depend upon an additional parameter \(k\) which corresponds to the logarithmic term

\[
Z = \int \frac{dM}{\mathcal{Z}} e^{\frac{1}{L} \text{tr} M^3 + \text{tr} M A + k \text{ tr} \log M} \tag{5.2}
\]

For the open intersection numbers, considered by \cite{21}, \(k\) takes the value \(k = 1\) \cite{27}. The addition of the logarithmic potential yields new Virasoro equations and new intersection numbers which are related to the boundary insertions. The intersection numbers for the model (5.2) have been computed in \cite{24},

\[
\langle \tau_{n_1} \cdots \tau_{n_s} \rangle_{s = 1} = \frac{1 + 12k^2}{24}, \quad \frac{1}{2} \langle \tau_{n} \rangle_{s = 1} = k, \ldots \tag{5.3}
\]

The appearance of a half-integer index exhibits the non-orientable nature. The non-vanishing \(\langle \tau_{n} \cdots \tau_{m} \rangle_{s = 1}\) are restricted by the condition

\[
3(2g - 2 + s) = 2 \sum_{i=1}^{s} n_i + s \tag{5.4}
\]

When the parameter \(k\) vanishes, the intersection numbers reduce to the usual Kontsevich result, which satisfies a KdV hierarchy. When the cubic Airy matrix part is absent, and only the logarithmic potential is present (Penner model), as we have seen in the \(p = -1\) case in section 3, the model gives Euler characteristics \cite{6}. When \(k = 1\), it reduces to open intersection numbers. The meaning of the parameter \(k\) is found in the two matrix model \cite{6, 24}.

We now consider the \(k\)-dependence with one marked point. The one point intersection numbers of the Kontsevich–Penner model (5.2) are obtained from \(U(\sigma)\) \cite{24}

\[
U(\sigma) = \frac{1}{\sigma^{} \lambda} \int_0^{\infty} du \left(\frac{e^{-\frac{u}{\sigma}}}{\pi} \right) \left(\left(u + \frac{\sigma}{2} \right)^2 - \left(u - \frac{\sigma}{2} \right)^2 \right)^{\frac{1}{2}} e^{\frac{u}{\lambda}} + \frac{1}{k^2} \log \left(u + \frac{\sigma}{2} \right) - \frac{1}{k} \log \left(u - \frac{\sigma}{2} \right) \tag{5.5}
\]

with

\[
\sigma = \frac{1}{\lambda}, \quad t_n = \frac{1}{\lambda^{n+1}}, \quad \frac{\lambda^2}{2} \tag{5.6}
\]

This \(U(\sigma)\) correctly reduces to the intersection numbers of the Kontsevich model with one marked point when \(k = 0\),

\[
U(\sigma) = \frac{\pi}{\sqrt{c}} \sum_{g=0}^{\infty} \frac{(-c)^g}{g!} g! \tag{5.7}
\]

Including the factor \(\frac{1}{(cpr)!}, (p = 2)\), the intersection number reduces to

\[
\langle \tau_{g-2} \rangle_{g} = \frac{1}{(24)^g g!} \tag{5.8}
\]
For dealing with higher k's, we expand (5.5), after rescaling of u,

\[
U(\sigma) = \frac{1}{2\sigma^2} e^{-\frac{c}{\sigma^2}} \int \frac{du}{2\pi i} e^{-\frac{c}{\sigma^2} u^2} \left[1 + k \left(\frac{2}{u^3} + \frac{2}{3u^2} \sigma^2 + \frac{2}{5u} \sigma^4 + \cdots \right)
ight]
\]

\[
+ k^2 \left(\frac{2}{u^3} \sigma^3 + \frac{4}{3u^2} \sigma^6 + \cdots \right)
\]

\[
+ k^3 \left(\frac{8}{3u^3} \sigma^9 + \cdots \right) + k^4 \left(\frac{16}{4!u^3} \sigma^6 + \cdots \right) + O(k^5)
\]

(5.9)

The coefficients of the successive orders in k may be computed from

\[
k \frac{e^{-\frac{c}{\sigma^2}}}{\sigma^2} \int \frac{du}{2\pi i} e^{-\frac{c}{\sigma^2} u^2} \log \frac{u + \sigma^{3/2}}{u - \sigma^{3/2}}
\]

\[
= k \frac{1}{\sigma^2} \sqrt{\frac{\pi}{c}} e^{-\frac{c}{2\sigma^2}} \text{erf} \left(\frac{\sqrt{c}}{2\sigma^{3/2}} \right)
\]

(5.10)

with

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

(5.11)

where the integral is computed as the discontinuity across the cut between -1 and 1 in the u-plane. This integral becomes a contour integral around $u = 0$ by expanding the logarithm in powers of $\frac{1}{u}$ as

\[
\frac{k}{\sigma^{3/2}} e^{-\frac{c}{\sigma^2}} \int \frac{du}{2\pi i} e^{-\frac{c}{\sigma^2} u^2} \sum_{n=0}^{\infty} \frac{\sigma^{3(2n+1)}}{(2n + 1)u^{2n+1}}
\]

\[
= ke^{-\frac{c}{2\sigma^2}} \sum_{n=0}^{\infty} \frac{1}{n!u^{2n+1}} \left(-\frac{c\sigma^3}{4} \right)^n
\]

(5.12)

For odd powers of k, the integration over u is the same contour integral around $u = 0$ [24].

For even powers of k, we use the following integrals,

\[
\int_{-\infty}^{\infty} du e^{-\frac{c}{2u^2}} \frac{1}{u^{2n}} = (-1)^{n} \frac{2\sqrt{\pi}}{(2n - 1)!!} a^{2n-1}
\]

(5.13)

which may be obtained by integration over a. Putting $a = \frac{c}{4}$ we obtain

\[
\int e^{-\frac{c}{2u^2}} \frac{1}{u^2} du = -\sqrt{\pi}
\]

(5.14)

Thus we obtain, up to terms of order $k^2\sigma^3$,

\[
U(\sigma) = e^{-\frac{c}{2\sigma^2}} \int \frac{du}{2\pi i} e^{-\frac{c}{\sigma^2} u^2} \left[1 + 2k^2\sigma^3 \frac{1}{u^2} \right]
\]

\[
= \frac{1}{2\pi} \sqrt{\frac{\pi}{c}} e^{-\frac{c}{2\sigma^2}} \frac{1}{\sigma^2} \left(1 - ck^2\sigma^3 \right)
\]

(5.15)

Expanding the factor $e^{-\frac{c}{2\sigma^2}}$, we obtain the intersection number $\langle \gamma \rangle$ as

\[
\langle \gamma \rangle_{k=1} = \frac{1}{24} \left(1 + 12k^2 \right)
\]

(5.16)
For $\langle \tau_4 \rangle_{g=2}$ and $\langle \tau_5 \rangle_{g=3}$, we obtain with (5.13)

$$\langle \tau_4 \rangle_{g=2} = \frac{1}{1152} \left(1 + 56k^2 + 16k^4\right),$$

$$\langle \tau_5 \rangle_{g=3} = \frac{1}{2073600} \left(25 + 5508k^2 + 3120k^4 + 192k^6\right)$$ \hspace{1cm} (5.17)

The intersection numbers for fractional genus, $\langle \tau_5 \rangle_{g=\frac{1}{2}}$, ... are expressed as polynomials with odd powers of k and they are given by the residuals for the terms of order $s^3, s^5, ...$ in (5.9).

$$\left(\frac{\tau_5}{\tau_2}\right)_{g=\frac{1}{2}} = \frac{1}{12} (k + k^3)$$ \hspace{1cm} (5.18)

In [24], there is a misprint for this term of order $s^3\sqrt{s}$, which had been evaluated from the Virasoro equations. The above results agree with the Virasoro equations, which will be discussed below. In general, the intersection numbers with one marked point $\langle \tau_{g-\frac{1}{2}} \rangle_{s=1}$ are easily computed to all orders by using the formulae (5.12) and (5.13).

We have used the condition corresponding to $p = 2$ and one point, $s = 1, (p + 1)(2g - 1) = 2n + 1$ for $\langle \tau_n \rangle_{g}$. This condition $3(2g - 1) = 2n + 1$ implies $n = 3g - 2$ and if n is a half integer, then the genus g is also a half integer. Those half integer g appear for non-orientable surfaces, as discussed earlier with the random surfaces generated by antisymmetric matrices [17] in section 5, and they correspond to the topology of non orientable surfaces such as the projective plane \(g = \frac{1}{2}\), the Klein bottle \((g = 1)\), the cross-capped torus \((g = \frac{3}{2})\), etc [46].

The string equation for the Kontsevich–Penner model has been derived in [24, 27]; it reads

$$\frac{\partial F}{\partial t_0} = \sum_{n=0,1,2,\ldots} \left(n + \frac{1}{2}\right) t_{n+1} \frac{\partial F}{\partial t_n} + \sum_{n=0,1,2,\ldots} \left(n + \frac{1}{2}\right) t_{n+1} \frac{\partial F}{\partial t_n}$$

$$+ \frac{1}{4} t_0^2 \frac{k}{2} t_2 + \frac{k}{2} t_2$$ \hspace{1cm} (5.19)

The free energy F is divided into closed and open parts, F^c and F^o. Then, we have

$$\frac{\partial F^c}{\partial t_0} = \frac{1}{4} t_0^2 + \sum_{n=0,1,2,\ldots} \left(n + \frac{1}{2}\right) t_{n+1} \frac{\partial F}{\partial t_n},$$

$$\frac{\partial F^o}{\partial t_0} = -\frac{k}{2} t_2 + \sum_{n=0,1,2,\ldots} \left(n + \frac{1}{2}\right) t_{n+1} \frac{\partial F}{\partial t_n}$$ \hspace{1cm} (5.20)

The Virasoro equations for open intersection theory for genus zero have been discussed in [21, 22]. The open intersection numbers are defined analogously to the closed case as

$$\langle \tau_{g_1} \tau_{g_2} \cdots \tau_{g_n} \partial^k \rangle^a_g = \int_{\mathbb{R}^k} \psi_1^{g_1} \psi_2^{g_2} \cdots \psi_s^{g_n}$$ \hspace{1cm} (5.21)
The string equation for the open free energy is
\[\frac{\partial F^o}{\partial t_i^o} = \sum_{i=0}^{\infty} \tilde{t}_{i+1} \frac{\partial F^o}{\partial t_i^o} + \delta \] (5.22)
which is consistent with (5.20) (δ is proportional to k, and the difference is due to a different normalization of t_n^o). The string equation implies
\[\left\{ \tau_0 \prod \tau_{n} \delta_{k}^o \right\}^o_g = \sum_j \left(\tau_{n-1} \prod \tau_{n} \delta_{k}^o \right) \] (5.23)
We will consider the case of two marked points and derive this string equation in the next section.

Open p-th spin curves

The open intersection numbers for the p-th spin curves with boundaries are also given by the addition of a logarithmic potential to (3.3)
\[U(\sigma) = \frac{1}{\sigma} \oint \frac{du}{2\pi i} e^{-\frac{\sigma}{\pi+1}} \left[\left(\frac{u + \sigma}{\pi+1} \right)^{\pi+1} - \left(\frac{u - \sigma}{\pi+1} \right)^{\pi+1} \right] + k \log \left(\frac{u + \sigma}{\pi+1} \right) - k \log \left(\frac{u - \sigma}{\pi+1} \right) \] (5.24)
Expanding the exponent,
\[U(\sigma) = \frac{1}{\sigma} \oint \frac{du}{2\pi i} e^{-\sigma u^p} \times \exp \left[-\frac{p(p-1)}{3!4} \sigma^3 u^{p-2} - \frac{p(p-1)(p-2)(p-3)}{5!4^2} \sigma^5 u^{p-4} - \cdots \right] \\
\times \left[1 + k \left(\frac{1}{u} \sigma + \frac{1}{12u^2} \sigma^3 + \frac{1}{80u^5} \sigma^5 + \cdots \right) + \frac{1}{2} k^2 \left(\frac{1}{u^2} \sigma^2 + \frac{1}{6u^4} \sigma^4 + \cdots \right) \\
+ \frac{1}{3!} k^3 \left(\frac{1}{u^3} \sigma^3 + \cdots \right) + \frac{1}{4!} k^4 \left(\frac{1}{u^4} \sigma^4 + \cdots \right) + O(k^5) \right] \] (5.25)
By choosing an integration path around the cut, with $x = \sigma u^p$, the above equation becomes
\[U(\sigma) = \frac{1}{p\sigma^{p+1}/\pi^p} \int_0^\infty \frac{dx}{x^{p+1}} e^{-x} \times \exp \left[-\frac{p(p-1)}{3!4} \sigma^3 x^{p-2} - \frac{p(p-1)(p-2)(p-3)}{5!4^2} \sigma^5 x^{p-4} - \cdots \right] \\
\times \left[1 + k \left(\frac{1}{x} \sigma + \frac{1}{12x^2} \sigma^3 + \frac{1}{80x^5} \sigma^5 + \cdots \right) + \frac{1}{2} k^2 \left(\frac{1}{x^2} \sigma^2 + \frac{1}{6x^4} \sigma^4 + \cdots \right) \\
+ \frac{1}{3!} k^3 \left(\frac{1}{x^3} \sigma^3 + \cdots \right) + \frac{1}{4!} k^4 \left(\frac{1}{x^4} \sigma^4 + \cdots \right) + \cdots \right] \] (5.26)
The integration over x gives

$$U(p) = -\left(\frac{p-1}{24} + \frac{k^2}{2}\right) \frac{1}{\pi} \sigma^{1+\frac{i}{2}} \Gamma\left(1 - \frac{1}{p}\right) - \left(\frac{p-k}{24} + \frac{k^3}{12}\right) \frac{1}{\pi} \sigma^{2+\frac{i}{2}} \Gamma\left(1 - \frac{2}{p}\right)$$

$$- \frac{1}{144} \left[\frac{(p-1)(p-3)(1+2p)}{40} + (3p+1)k^2 + 2k^4\right]$$

$$\frac{1}{\pi} \sigma^{3+\frac{i}{2}} \Gamma\left(1 - \frac{3}{p}\right) + \ldots$$

(5.27)

This expansion provides the following open intersection numbers,

$$\langle \tau_{1} \rangle_{g=1} = \frac{p-1+12k^2}{24}$$

$$\langle \tau_{2} \rangle_{g=3/2} = \frac{1}{24} (pk + 2k^3)(p \neq 2), \quad \langle \tau_{5} \rangle_{g=5} = \frac{1}{12} (k + k^3)(p = 2)$$

$$\langle \tau_{m} \rangle_{g=2} = \frac{1}{p(12)^2} \left[(p-1)(p-3)(1+2p) \right]$$

$$\frac{1}{\Gamma\left(1 - \frac{3}{p}\right)}$$

(5.28)

where the condition $(p+1)(2g-1) = pn + j + 1$ determines n and j. For $p = 2$, $g = 2$, we have from the above expression,

$$\langle \tau_{4,0} \rangle_{g=2} = \frac{1}{(24)^2 2!} \left[1 + 56k^2 + 16k^4 \right]$$

(5.29)

which agrees with the result of (5.17). The higher order open intersection numbers of the p-th spin curves and one marked point are easily evaluated from the expansion of (5.26). The intersection numbers are related to $U(p)$ as in [6]

$$U(p) = \frac{1}{\pi} \sum \langle \tau_{m} \rangle_{g} \Gamma\left(1 - \frac{1+j}{p}\right)p^{\pi-1} \sigma^{(2g-1)(1+j)}$$

(5.30)

For $p = 2$, (Kontsevich–Penner model), we have

$$U(p) = \frac{1}{2\pi \sigma^{1+\frac{i}{2}}} \lim_{p \to 2} \int_{0}^{\infty} dxe^{-x} \frac{1}{1 - \frac{1}{\pi} \sigma^{1+\frac{i}{2}} \Gamma\left(1 - \frac{3}{p}\right)}$$

(5.31)

Additional computations of open intersection numbers for p-spin curves are listed in an appendix. In this appendix, we derive also the string equation for p spin curves in the presence of a logarithmic potential.

Open (2N) Lie algebra model

We now consider the non orientable intersection numbers provided by the $o(2N)$ model. It is natural to investigate the relation between the non-orientable intersection numbers given by the $o(2N)$ model and the open intersection numbers which we have just discussed. The open intersection numbers for the $o(2N)$ case with a logarithmic potential are also interesting since the model deviates from KdV and KP hierarchies.
For the $o(2N)$ case with a logarithmic potential, $U(\sigma)$ for the p-th higher Airy singularity becomes (4.10),

$$U(\sigma) = \frac{1}{N\sigma} \oint du \frac{e^{-u/4}}{2\pi i} \left(\left(u + \frac{\sigma}{2} \right)^{p+1} - \left(u - \frac{\sigma}{2} \right)^{p+1} \right) \log \left(\frac{u + \frac{\sigma}{2}}{u - \frac{\sigma}{2}} \right) \left(1 - \frac{\sigma}{4u} \right)$$

(5.32)

Since it resembles the unitary case, with the replacement $2s$ by σ, the expansion (5.26) can be used.

$$U(s) = \frac{1}{p^{s+1+1/\pi}} \int_0^\infty dxx^{-1}e^{-x\left(1 - \frac{1}{2} s^{1+1/\pi} x^{-1/\pi} \right)}$$

$$\times \exp \left[- \frac{p(p-1)s^{2+2/\pi}x^{1-2/\pi}}{3!4} - \frac{p(p-1)(p-2)(p-3)s^{4+4/\pi}x^{1-4/\pi}}{5!4^2} \right]$$

$$\left[1 + k \left(s^{1+1/\pi} x^{-1/\pi} + \frac{1}{12} s^{3+1/\pi} x^{-3/\pi} + \frac{1}{5} s^{5+1/\pi} x^{-5/\pi} + \cdots \right) \right]$$

$$+ \frac{k^2}{2} \left(s^{2+2/\pi} x^{-2/\pi} + \frac{1}{6} s^{4+4/\pi} x^{-4/\pi} + \cdots \right) + \frac{1}{3!} k^3 \left(s^{3+3/\pi} x^{-3/\pi} + \cdots \right)$$

$$+ \frac{1}{4!} k^4 \left(s^{4+4/\pi} x^{-4/\pi} + \cdots \right) + \cdots$$

(5.33)

The term $\left(-\frac{1}{2} s^{1+1/\pi} x^{-1/\pi} \right)$ gives an additional contribution to the open intersection numbers characterized by a parameter k as discussed in (5.28). This contribution reads

$$U(s) = U_0(s) + \Delta U(s)$$

$$\Delta U(s) = \frac{1}{\pi} \left[\frac{k}{2} s^{1+1/\pi} \Gamma \left(1 - \frac{1}{p} \right) + \frac{p-1}{48} s^{2+2/\pi} \Gamma \left(1 - \frac{2}{p} \right) \right]$$

$$+ \frac{1}{72} \left(k + 2k^2 \right) s^{3+3/\pi} \Gamma \left(1 - \frac{3}{p} \right) + \cdots$$

(5.34)

where $U_0(s)$ is the same as $U(\sigma)$ in (5.26). Thus the open intersection numbers for the $O(2N)$ case ($O(2N)$ p-th Airy matrix model with a logarithmic potential), together with $U_0(s)$, are given by

$$\langle r_{i,j} \rangle_{g=1} = \frac{p - 1 + 12k + 12k^2}{24}$$

$$\langle r_{i,j} \rangle_{g=3/2} = \frac{(p - 1) + 2pk + 6k^2 + 4k^3}{48}$$

$$\langle r_{i,j} \rangle_{g=2} = \frac{1}{p(12)^2} \left(\frac{(p - 1)(p - 3)(1 + 2p)}{40} + 2k - (1 + 3p)k^2 + 4k^3 - 2k^4 \right)$$

$$\times \frac{\Gamma \left(1 - \frac{1}{p} \right)}{\Gamma \left(1 - \frac{j+1}{p} \right)}$$

(5.35)
6. Multiple marked points and Virasoro equations

String equation

The Virasoro equations have been investigated for the Kontsevich–Penner model [24, 27]. The first Virasoro equation, or string equation, reads (5.19) and (5.23).

\[
\left\langle \tau_0 \prod_{i=1}^{s} \tau_i \right\rangle_g = \sum_{j=1}^{s} \left\langle \tau_{j-1} \prod_{i=j}^{s} \tau_i \right\rangle_g
\]

(6.1)

Since the intersection numbers for s-marked points are known explicitly from the integral formula for \(U(s_1, \ldots, s_s) \), it is interesting to derive the above string equation and the other Virasoro equations for the Kontsevich–Penner model from our formulation of the s-point correlation function \(U(s_1, \ldots, s_s) \).

2 marked points:

The two marked points correlation function \(U(s_1, s_2) \) is [6]

\[
U(s_1, s_2) = e^{-\frac{1}{\pi^2}(\sigma_1^2+\sigma_2^2)} \int_0^{\infty} \frac{du_1 du_2}{(2\pi i)^2} \exp \left\{ -\sigma_1 u_1^2 - \sigma_2 u_2^2 + k \log \left(\frac{u_1 + \frac{i}{2} \sigma_1}{u_1 - \frac{i}{2} \sigma_1} \right) + k \log \left(\frac{u_2 + \frac{i}{2} \sigma_2}{u_2 - \frac{i}{2} \sigma_2} \right) \right\} \frac{1}{(u_1 - u_2 + \frac{i}{2}(\sigma_1 + \sigma_2))(u_2 - u_1 + \frac{i}{2}(\sigma_1 + \sigma_2))}.
\]

(6.2)

Writing the denominators as principal parts integrals as in [50]

\[
\frac{1}{u_1 - u_2 + \frac{i}{2}(\sigma_1 + \sigma_2)} = -i \int_0^\infty d\alpha e^{i\alpha(u_1 - u_2 + \frac{i}{2}(\sigma_1 + \sigma_2))}
\]

(6.3)

we obtain

\[
U(s_1, s_2) = e^{-\frac{1}{\pi^2}(\sigma_1^2+\sigma_2^2)} \int_0^{\infty} \frac{du_1 du_2}{(2\pi i)^2} \int_0^{\infty} d\alpha d\beta \exp \left\{ -\sigma_1 u_1^2 - \sigma_2 u_2^2 + k \log \left(\frac{u_1 + \frac{i}{2} \sigma_1}{u_1 - \frac{i}{2} \sigma_1} \right) + k \log \left(\frac{u_2 + \frac{i}{2} \sigma_2}{u_2 - \frac{i}{2} \sigma_2} \right) + i(\alpha - \beta)(u_1 - u_2) + i(\alpha + \beta) \frac{1}{2}(\sigma_1 + \sigma_2) \right\}
\]

(6.4)

Replacing \(u_i \rightarrow \frac{1}{\sqrt{\sigma_i}} \) and \(\alpha \rightarrow \sqrt{\sigma_1 \sigma_2} \alpha \) and \(\beta \rightarrow \sqrt{\sigma_1 \sigma_2} \beta \), we obtain

\[
U(s_1, s_2) = \sqrt{\sigma_1 \sigma_2} e^{-\frac{1}{\pi^2}(\sigma_1^2+\sigma_2^2)} \int_0^{\infty} \frac{du_1 du_2}{(2\pi i)^2} \int_0^{\infty} d\alpha d\beta \exp \left\{ -\sigma_1 u_1^2 - \sigma_2 u_2^2 + i(\alpha - \beta)(\sqrt{\sigma_1} u_1 - \sqrt{\sigma_2} u_2) + i(\alpha + \beta)(\sqrt{\sigma_1} \sigma_2 (\sigma_1 + \sigma_2)) + k \log \left(\frac{u_1 + \frac{i}{2} \sigma_1^{1/2}}{u_1 - \frac{i}{2} \sigma_1^{1/2}} \right) + k \log \left(\frac{u_2 + \frac{i}{2} \sigma_2^{1/2}}{u_2 - \frac{i}{2} \sigma_2^{1/2}} \right) \right\}
\]

(6.5)
Keeping the term of order $\sqrt{\sigma_2}$ in the pre factor and setting σ_2 to 0 in the exponent, we obtain

$$U(\sigma_1, \sigma_2) = \left(\sqrt{\sigma_2} \oint \frac{du_2}{2\pi i} e^{-u_2^2} \frac{1}{u_2^2} \right) e^{-\frac{1}{12} \sigma_1} \oint \frac{du_1}{2\pi i} \exp \left[-\sigma_1 u_1^2 + k \log \left(\frac{u_1 + \frac{1}{2} \sigma_1}{u_1 - \frac{1}{2} \sigma_1} \right) \right]$$

(6.6)

Using the argument of (5.13) for the integration over u_2, we have for the one marked point open intersection number ng for the Kontsevich–Penner model,

$$\langle \tau_0 \tau_1 \rangle = \langle \tau_{n-1} \rangle$$

(6.7)

which gives the results of the string equation (6.1); for instance,

$$\langle \tau_0 \tau_1 \rangle_{g=1} = \langle \tau_1 \rangle_{g=1} = \frac{1 + 12k^2}{24}$$

(6.8)

In the appendix, we show that the string equation holds also for the p spin curves.

3 marked points:

The three point correlation function $U(\sigma_1, \sigma_2, \sigma_3)$ is given by

$$U(\sigma_1, \sigma_2, \sigma_3) = e^{-\frac{1}{12} \left(\sigma_1 + \sigma_2 + \sigma_3 \right)} \oint \prod_{i=1}^{3} \frac{du_i}{2\pi i} e^{-\sum_{i=1}^{3} \sigma_i u_i} \prod_{i=1}^{3} \left(\frac{u_i + \frac{1}{2} \sigma_i}{u_i - \frac{1}{2} \sigma_i} \right)^k \left[\frac{1}{u_1 - u_2 + \frac{1}{2} (\sigma_1 + \sigma_2)} \frac{1}{u_2 - u_3 + \frac{1}{2} (\sigma_2 + \sigma_3)} \frac{1}{u_3 - u_1 + \frac{1}{2} (\sigma_3 + \sigma_1)} \right]$$

(6.9)

The three denominators are replaced by integrals over α, β, γ as in (6.3). Changing the variables $u_i \rightarrow \frac{1}{\sqrt{\sigma_i}}$, $\alpha \rightarrow \sqrt{\sigma_1 \sigma_2} \alpha$, $\beta \rightarrow \sqrt{\sigma_2 \sigma_3} \beta$, $\gamma \rightarrow \sqrt{\sigma_3 \sigma_1} \gamma$, the above expression becomes

$$U(\sigma_1, \sigma_2, \sigma_3) = e^{-\frac{1}{12} \left(\sigma_1 + \sigma_2 + \sigma_3 \right)} \oint \frac{du_i}{2\pi i} e^{-\sum_{i=1}^{3} \sigma_i u_i} \prod_{i=1}^{3} \left(\frac{u_i + \frac{1}{2} \sigma_i}{u_i - \frac{1}{2} \sigma_i} \right)^k \times \int_{0}^{\infty} d\delta \int_{0}^{\delta} d\delta' e^{i \alpha \left(\sqrt{\sigma_1 - \sqrt{\sigma_2 \sigma_3}} \delta - \sqrt{\sigma_2 - \sqrt{\sigma_1 \sigma_3}} \delta' \right) + \frac{\sqrt{\sigma_3 \sigma_1}}{2} (\sigma_1 + \sigma_2) - \frac{\sqrt{\sigma_1 \sigma_3}}{2} (\sigma_2 + \sigma_3) - \frac{\sqrt{\sigma_2 \sigma_1}}{2} (\sigma_3 + \sigma_1)}$$

(6.10)
Keeping $\sqrt{\sigma_2}$, and setting the other σ_2 to zero, this expression becomes

$$\sqrt{\sigma_2} e^{-\frac{1}{2\pi i}(\sigma_1+\sigma_3)} \oint \frac{du_2 e^{-u_2}}{2\pi i} \int \frac{du_1 du_3}{(2\pi i)^2} \frac{e^{-u_1^2-u_2^2}}{u_2^2} \left(\frac{u_1+\sigma_1^{3/2}}{u_3-\sigma_1^{3/2}} \right)^k$$

Thus we find a string equation for three marked points of the Kontsevich–Penner model,

$$\langle \tau_0 \tau_{n_1} \tau_{n_2} \rangle_g = \langle \tau_{n_1-1} \tau_{n_2} \rangle_g + \langle \tau_{n_1} \tau_{n_2-1} \rangle_g.$$ \hspace{1cm} (6.12)

Repeating the same procedure, we have a string equation of s-marked points for the Kontsevich–Penner model,

$$\langle \tau_0 \prod_{i=1}^s \tau_{n_i} \rangle_g = \sum_{j=1}^s \langle \tau_{n_1-1} \prod_{i=1}^{s-j} \tau_{n_i} \rangle_g$$ \hspace{1cm} (6.13)

W-constraints equation

We consider next the terms of order σ_2 in the expression 2 marked points $U(\sigma_1, \sigma_2)$. The term σ_2 corresponds to $t_1 \sim \frac{1}{\chi}$. Such fractional indices correspond to W constraints [24], which appear in the p-th higher Airy matrix model. Such a fractional index appears also in the non-orientable Lie algebra $O(2N)$ as we have seen. Therefore, the terms $t_{n+\frac{1}{2}}$ are characteristic of open intersection numbers. Keeping the order σ_2 terms in (6.5), and setting the other σ_2 to zero,

$$U(\sigma_1, \sigma_2) = \sigma_2 \sqrt{\sigma_1} e^{-\frac{1}{2\pi i} \sigma_1} \int_0^\infty d\alpha d\beta \oint \frac{du_1 du_2}{(2\pi i)^2} \frac{e^{-u_1^2-u_2^2+k \log \left(\frac{u_1+\frac{1}{2} \sigma_1^{3/2}}{u_1-\frac{1}{2} \sigma_1^{3/2}} \right)}}{u_2^2} \left(\frac{u_1}{\sigma_1} \right)^3$$

W-constraints equation

$$W(\sigma_1, \sigma_2) = \sigma_2 \sqrt{\sigma_1} e^{-\frac{1}{2\pi i} \sigma_1} \int_0^\infty d\alpha d\beta \oint \frac{du_1 du_2}{(2\pi i)^2} \frac{e^{-u_1^2-u_2^2+k \log \left(\frac{u_1+\frac{1}{2} \sigma_1^{3/2}}{u_1-\frac{1}{2} \sigma_1^{3/2}} \right)}}{u_2^2} \left(\frac{u_1}{\sigma_1} \right)^3$$

Therefore, the terms $t_{n+\frac{1}{2}}$ are characteristic of open intersection numbers.

$$W(\sigma_1, \sigma_2) = 2\sigma_2 \sigma_1^2 R_3 R_0 k + \sigma_2 \sigma_1^2 k^2 R_3 R_1 + 2\sigma_2 \sigma_1^2 R_3 \left(-k R_0 + (k + 2) R_1 \right) + \cdots$$ \hspace{1cm} (6.14)
where we use the following contour integrals,

\[R_{2n} = \oint \frac{du}{2\pi i} \frac{1}{u^{2n}} e^{-u^2} = 1 - \left(\frac{1}{2} - n \right) \]

\[R_{2n+1} = \oint \frac{du}{2\pi i} \frac{1}{u^{2n+1}} e^{-u^2} = \lim_{p \to -2} \oint \frac{du}{2\pi i} \frac{1}{u^{2n+1}} e^{-u^2} = \lim_{p \to -2} \frac{2}{p} \Gamma \left(\frac{1 - 2n}{p} \right) \]

\[R_2 = -2R_0 = -2 \Gamma \left(\frac{1}{2} \right) \]

From this expression, we have

\[\left\{ \tau_{\frac{1}{2}} \bar{\tau}_{\frac{1}{2}} \right\}_{g=2} = k, \left\{ \tau_{\frac{1}{2}} \bar{\tau}_{\frac{1}{2}} \right\}_{g=1} = k^2, \left\{ \tau_{\frac{1}{2}} \bar{\tau}_{\frac{1}{2}} \right\}_{g=\frac{1}{2}} = \frac{1}{6} (3k + 4k^3) \] (6.16)

Dilaton equation

Next, we consider the dilaton equation, which involve \(\sigma^j_2 \), i.e. \(\tau_1 \) in the intersection numbers. The equation \(L_0 Z = 0 \) is a dilaton equation, which is derived by considering the terms of order \(\frac{1}{\lambda^2} \). For the dilaton equation, we have

\[\left\{ \tau_1 \prod_{i=1}^{g} \tau_{n_i} \right\}_{g} = (2g - 2 + s) \left\{ \prod_{i=1}^{g} \tau_{n_i} \right\}_{g} \] (6.17)

From the three point function \(U(\sigma_1, \sigma_2, \sigma_3) \), we obtain

\[\left\{ \tau_0 \tau_1 \right\}_{g=\frac{1}{2}} = \left\{ \tau_0 \tau_1 \right\}_{g=1} = k, \left\{ \tau_0 \tau_1 \right\}_{g=\frac{1}{2}} = 1, \left\{ \tau_0 \tau_1 \right\}_{g=0} = 1, \ldots \] (6.18)

which satisfies the dilaton equation of (6.17).

For \(\sigma^j_2 \) in \(U(\sigma_1, \sigma_2, \ldots, \sigma) \), scaling \(u_i \to \left(\frac{\lambda}{\lambda^2} \right)^{\frac{1}{2}} \), it is obvious that the logarithmic term for \(u_2 \) can be neglected, since it gives higher orders. Therefore, the dilaton equation does not show the effect of the logarithmic term and the equation is same as the dilaton equation without the logarithmic potential (there is no \(k \) in the equation) as (6.17), and thus we find that (6.17) holds.

In the appendix, we discuss the string equation, the divisor equation and the dilaton equation for \(p \) spin curves in the presence of the logarithmic potential.

Virasoro equations for the Kontsevich–Penner model

The Virasoro equations are expressed through operators \(L_n \), which act on the partition function \(Z = e^F \),

\[L_n Z = L_n e^F = 0 \] (6.19)

with \(n = -1, 0, 1, \ldots \); for \(n = -1 \) it gives the string equation and for \(n = 0 \) the dilaton equation. The free energy is a generating function for the intersection numbers with variables \(t_n = \text{tr} \left(\frac{1}{\lambda^2} \right)^{\frac{1}{2}} \). For the Kontsevich–Penner model, since there is logarithmic potential, we need to consider also half-integer values for \(n \) in \(t_2 \). We recall previous calculations [24] and summarize here a comparison with the calculation based on \(U(\sigma_1, \ldots, \sigma) \). The first Virasoro equation for the order \(\text{tr} \left(\frac{1}{\lambda^2} \right)^{\frac{1}{2}} \), which is the string equation, is given by
The free energy is a generating function of the intersection numbers as
\[
F = \sum_{a} \left(\prod_{n} \tau_{n}^{d_a} \right) \prod_{n} \frac{\partial^{d_n}}{\partial^{d_n} t_{n}}
\]
(6.21)
where
\[
\tilde{t}_{n} = \text{tr} \left(\frac{1}{2^{\frac{1}{2}}} \Lambda \right)^{n} \left(\frac{i}{2} \right)^{n}
\]
(6.22)
We have the relation
\[
t_{n} = \left(\frac{2^{\frac{1}{2}}}{3} \right)^{n} \tilde{t}_{n}
\]
(6.23)
In [24], the Virasoro equations up to third order (i.e. up to the dilaton equation) are obtained as
\[
\begin{align*}
- \frac{\partial}{\partial t_{0}} + \frac{1}{4} J^{(2)} - \frac{k}{2} t_{1} & = 0 \quad \text{(string equation)} \\
-2 \frac{\partial}{\partial t_{1}} - k t_{0} - \frac{1}{16} t_{3}^{2} - \frac{k^{2}}{4} t_{1}^{2} + \frac{1}{12} t_{4}^{2} + \frac{k}{4} J^{(2)} - \frac{1}{2} J^{(2)} & = 0 \\
-3 \frac{\partial}{\partial t_{1}} - k^{2} + k t_{0} & = 0 \quad \text{(dilaton equation)}
\end{align*}
\]
(6.24)
with
\[
J_{m}^{(1)} = \frac{\partial}{\partial x_{m}} - mx_{-m}, \quad (m = \ldots, -2, -1, 0, 1, 2, \ldots)
\]
\[
J_{m}^{(2)} = \sum_{i+j=m} J_{i}^{(1)} J_{j}^{(1)}
\]
\[
J_{m}^{(3)} = \sum_{i+j+k=m} \frac{\partial^{3}}{\partial x_{i} \partial x_{j} \partial x_{k}} + 2 \sum_{i+j+k=m} i x_{i} \frac{\partial}{\partial x_{j}} + \sum_{i+j+k=m} \left(i x_{i} \right) \left(j x_{j} \right)
\]
(6.25)
where \(\ldots \) means normal ordering, i.e. pulling the differential operator to the right. \(x_{n} = \frac{1}{n} \tilde{t}_{n} \). The solution of the Virasoro equations, which includes the string equation, gives [24]
\[
F = \frac{1}{12} t_{1}^{3} + \frac{1}{48} \left(1 + 12 k^{2} \right) t_{1} + \frac{1}{2} k t_{0} t_{1}
\]
(6.26)
\[+ \frac{1}{24} t_0^3 t_1 + \left(\frac{1}{192} + \frac{1}{16} k^2 \right) t_1^2 + k \frac{t_1 t_2}{2} + \frac{k}{24} \left(\frac{t_1}{2} \right)^3 + \frac{1}{96} (1 + 12k^2) t_0 t_2 \]
\[+ \frac{k^2}{4} t_1^2 t_2 + \frac{1}{4} k^2 t_1 t_2 + \frac{1}{6} (k + k^3) t_2 + \cdots \]

(6.27)

From this expression, the intersection numbers, which are defined as (6.21) are obtained by changing \(t_0, t_0 t_1 \) for small genus,

\[\langle \tau_0^3 \rangle_{k=0} = 1, \quad \langle \tau_1 \rangle_{k=1} = \frac{1 + 12k^2}{24}, \quad \langle \tau_0 \tau_1 \rangle_{g=1}^{k \frac{1}{2}} = k, \]
\[\langle \tau_0^3 \rangle_{k=0} = 1, \quad \langle \tau_1 \rangle_{g=1}^{k \frac{1}{2}} = \frac{1 + 12k^2}{24}, \quad \langle \tau_0 \tau_1 \rangle_{g=1}^{k \frac{1}{2}} = k, \]
\[\langle \tau_2 \rangle_{g=1}^{k \frac{1}{2}} = k, \quad \langle \tau_0 \tau_2 \rangle_{g=1}^{k \frac{1}{2}} = \frac{1 + 12k^2}{24}, \quad \langle \tau_0 \tau_2 \tau_3 \rangle_{g=1}^{k \frac{1}{2}} = k, \]
\[\langle \tau_1 \tau_2 \rangle_{g=1}^{k \frac{1}{2}} = k^2, \quad \langle \tau_1 \tau_2 \rangle_{g=1}^{k \frac{1}{2}} = \frac{1}{12} (k + k^3) \]

(6.28)

These intersection numbers satisfy the string equation, the W-constraints, and the dilaton equation. They provide identical values to those calculated from \(U (\sigma_1, \ldots, \sigma_g) \) for the Kontsevich–Penner model, as shown in the appendix.

7. Gromov–Witten invariants of \(CP^1 \) model

The Gromov–Witten invariants of the \(CP^1 \) model have been studied in [51–53]. Recently, the Gromov–Witten invariants have been evaluated at higher orders [54]. We apply the present method to the Gromov–Witten invariants of the \(CP^1 \) model, since it has a similar matrix model representation as the Kontsevich type of the external source [53].

The \(CP^1 \) matrix model is described as

\[Z = \int dB e^{(e^s + qe^{-s}) - \text{tr} BA} \]

(7.1)

where \(B \) is the Hermitian matrix and \(A \) is an external source matrix, which is a generalization of the Kontsevich Airy matrix model. We use the Gaussian random matrix model with an external source, and by tuning the external source \(A \), we obtain (7.1) as a generalized Kontsevich model by duality. Therefore, as before, we consider the Fourier transform of the density correlation functions. Particularly, we consider \(U (\sigma) \), which is

\[U (\sigma) = \frac{1}{\sigma} \oint \frac{du}{2\pi i} e^{e^u} \left(e^{u+\frac{1}{2} \sigma} - e^{u+\frac{1}{2} \sigma} + qe^{u+\frac{1}{2} \sigma} - qe^{-u-\frac{1}{2} \sigma} + u \right) \]
\[= \frac{1}{\sigma} \oint \frac{du}{2\pi i} e^{\left(2 \sinh \frac{u}{2} \right) \left(e^{u+\sigma} \right)^{q-1}} \]

(7.2)

By \(x = e^u \), we have

\[U (\sigma) = \frac{1}{\sigma} \oint \frac{dx}{2\pi i} e^{\left(2N \sinh \frac{x}{2N} \right) \left(e^{x} \right)^{q-1}} \]

(7.3)
where we inserted N to make clear the genus expansion. The residue calculation becomes

$$U(\sigma) = \sum_{d=0}^{\infty} \frac{1}{d!(d-1)!} \left(2N \sinh \frac{\sigma}{2N} \right)^{2d-1} (-q)^d$$

(7.4)

In the genus zero, $N \to \infty$, dropping the irrelevant factor of q, we have

$$U(\sigma) = \sum_{d=0}^{\infty} \frac{1}{(d + 1)!} \sigma^{2d} = \sum_{d=0}^{\infty} \langle \gamma_{2d} \rangle_{g=0} (d + 1) \sigma^{2d}$$

(7.5)

with

$$\langle \gamma_{2d} \rangle_{g=0} = \frac{1}{(d + 1)!^2}.$$

(7.6)

For the higher genus g, we expand $(2N \sinh \frac{\sigma}{2N})^{2d-1}$, and pick up the genus g terms from the order $\frac{1}{N^{2g}}$ terms.

$$\frac{1}{\sigma} \left(2N \sinh \frac{\sigma}{2N} \right)^{2d-1} = \sigma^{2g-2} + \frac{2d - 1}{24N^2} \sigma^{2g} + \frac{(2d - 1)(10d - 7)}{5760N^4} \sigma^{2g+2} + \cdots$$

(7.7)

With the shift of the power of σ, $2d + 2n \to 2d$, we obtain the Gromov–Witten invariants of genus g as

$$U(\sigma) = \sum_{d=0}^{\infty} \sum_{g=0}^{\infty} \langle \gamma_{2d} \rangle_{g} (d + 1 - g) \sigma^{2d}$$

(7.8)

with

$$\langle \gamma_{2d}(\omega) \rangle_{g=0} = \frac{1}{((d + 1)!)^2}$$

$$\langle \gamma_{2d}(\omega) \rangle_{g=1} = \frac{2d - 1}{24(d!)^2}$$

$$\langle \gamma_{2d}(\omega) \rangle_{g=2} = \frac{d^2(2d - 3)(10d - 17)}{2^7 \cdot 3^2 \cdot 5(d!)^2}$$

$$\langle \gamma_{2d}(\omega) \rangle_{g=3} = \frac{d^2(2d - 1)^2(2d - 5)(140d^2 - 784d + 1101)}{2^{10} \cdot 3^4 \cdot 5 \cdot 7(d!)^2}$$

$$\langle \gamma_{2d}(\omega) \rangle_{g=4} = \frac{d^2(2d - 1)^2(2d - 2)^2(2d - 7)(10d - 39)(140d^2 - 1092d + 2143)}{(d!)^2}$$

(7.9)

These numbers agree with the results of a recent evaluation by Norbury and Scott by a different method up to genus three [54]. It is straightforward to evaluate Gromov–Witten one...
point invariants in any order of genus from $U(\sigma)$. The notation $(\gamma_{2d}(\omega))_g$ is the same as $(\gamma_{2d})_g$ in (7.8), and ω is used for the two intersection types assigned by $(1, \omega)$ of the CP^1 model [51].

8. Discussion

In this article, we have considered the generalization of the Airy matrix model to a p-th singularity. This provides the intersection numbers of the moduli space of p-spin curves for orientable and non-orientable Riemann surfaces, with Lie algebras of $o(2N)$, $o(2N+1)$ and $sp(N)$. The Euler characteristics are easily evaluated by taking the $p \rightarrow -1$ limit. Our results are consistent with the two categories, orientable and non-orientable surfaces, since we have obtained two types of topological invariants (two different Euler characteristics) for Lie algebras. The expressions agree with the virtual Euler characteristics obtained earlier [47] for non-orientable surfaces. We have obtained explicit expressions to all orders in the genus for one marked point in the $p = 3$ and $p = 4$ cases given in terms of Bessel functions.

For the open intersection numbers, which are defined by the insertion of a disk on a closed Riemann surface as a boundary, we have used the Kontsevich–Penner model. We have derived the Virasoro equations, string equation and dilaton equations, for this Kontsevich–Penner model from explicit integral representations. The open intersection numbers are extended to p–spin curves, from a higher Airy matrix model with logarithmic potentials.

In our previous article [6], the Airy matrix model with a logarithmic potential was derived from the average of two characteristic polynomials in a two matrix model with an external source. The eigenvalues of the first matrix M_1 is on an edge of the distribution, and for the other matrix M_2 in the bulk. After integration over the matrix M_2, a model with a logarithmic potential is obtained for M_1. The coefficient of the logarithmic potential k corresponds to the power of $(\det M_1)^k$. This logarithmic potential provides the boundary for the open intersection theory.

The integral representation of the s point correlation function for a Gaussian matrix model with an external source provides a powerful tool for the evaluation of open/close intersection numbers and Gromov–Witten invariants. It would be interesting to extend the present analysis to more complicated cases, such as the Gromov–Witten theory of CP^{n-1}.

Acknowledgments

S H is thankful for the support of JSPS KAKENHI Grant Number 25400414.

Appendix: Virasoro equations of open intersection numbers for p spin curves

The open/closed intersection numbers of p-spin curves are evaluated from the expressions for the s-point correlation functions $U(\sigma_1, \ldots, \sigma_s)$. From (5.26), the one marked point intersection numbers $(\gamma_{n_1})_g$ are obtained as
\[\langle \tau_{0,0} \rangle = \frac{p - 1 + 12k^2}{24} \]

\[\langle \tau_{n,j} \rangle_2 = \frac{1}{24} \left(pk + 2k^2 \right) \frac{\Gamma \left(1 - \frac{3}{p} \right)}{\Gamma \left(1 - \frac{1 + j}{p} \right)} \]

\[\langle \tau_{n,j} \rangle_2 = \frac{1}{p(12)^2} \left\{ \frac{(p - 1)(p - 3)(1 + 2p) - (1 + 3p)k^2 - 2k^4}{40} \right\} \frac{\Gamma \left(1 - \frac{3}{p} \right)}{\Gamma \left(1 - \frac{1 + j}{p} \right)} \]

\[\langle \tau_{n,j} \rangle_2 = \frac{k}{5760} \left(18 - 25p + 30p^2 - 5p^3 \right) + \frac{k^3}{144} (p - 1) \frac{\Gamma \left(1 - \frac{3}{p} \right)}{\Gamma \left(1 - \frac{1 + j}{p} \right)} \]

\[\langle \tau_{n,j} \rangle_3 = \frac{1}{p^2} \left\{ \frac{1}{2903040} (p - 1)(p - 5)(1 + 2p)(8p^2 - 13p - 13) + \frac{1}{57600} (-10p^3 + 85p^2 + 90p + 19)k^2 + \frac{1}{2880} (5p + 3)k^4 + \frac{1}{3600} k^6 \right\} \times \frac{\Gamma \left(1 - \frac{3}{p} \right)}{\Gamma \left(1 - \frac{1 + j}{p} \right)} \]

(A.1)

where \(n \) and \(j \) are constrained by the condition,

\[(p + 1)(2g - 1) = pn + j + 1 \] (A.2)

i.e. the \(s = 1 \) case of the general condition,

\[(p + 1)(2g - 2 + s) = p \sum_{k=1}^{s} n_k + \sum_{k=1}^{s} j_k + s \] (A.3)

For \(\langle \tau_{s} \rangle_{g=\frac{1}{2}} \) of \(p = 2 \) is obtained from \(\lim_{p \to 2} \langle \tau_{s} \rangle_{g=\frac{1}{2}} \) since the right hand side of (A.2) is the same, and it becomes \(\frac{1}{27} (k + k^3) \).

For the 2 marked points, the intersection numbers of the \(p \) spin curves are derived from \(U(\sigma_1, \sigma_2) \).

\[U(\sigma_1, \sigma_2) = \int \frac{du_1 du_2}{(2\pi i)^2} e^{-\frac{1}{\beta} \sum_{i=1}^{2} \left(\frac{u_i + \frac{1}{2} \alpha}{\sigma_1} \right)^p + \left(\frac{u_i - \frac{1}{2} \alpha}{\sigma_1} \right)^p} \prod_{i=1}^{2} \left(\frac{u_i + \frac{1}{2} \sigma_1}{u_i - \frac{1}{2} \sigma_1} \right)^k \times \left(\frac{1}{u_1 - u_2 + \frac{1}{2} (\sigma_1 + \sigma_2)} \right) \left(\frac{1}{u_2 - u_1 + \frac{1}{2} (\sigma_1 + \sigma_2)} \right) \] (A.4)

String equation

Using \(x_i = \sigma_i u_i^2 \), and \(\alpha \to (\sigma_1 \sigma_2)^{\frac{1}{p}} \alpha, \beta \to (\sigma_1 \sigma_2)^{\frac{1}{p}} \beta \), taking the same process as (6.5), we obtain
\[U(\sigma_1, \sigma_2) = \left(\frac{\sigma_1 \sigma_2}{p^2} \right)^{\frac{1}{p}} \int_0^\infty \cdots \int_0^\infty dx_1 dx_2 d\alpha d\beta (x_1 x_2)^{\frac{1}{p}} e^{-x_1 - x_2} \]
\[\times e^{-\frac{p(p-1)}{2\pi} \sum_i \left(\frac{1}{\sigma_i + \frac{1}{2}} + \frac{1}{\sigma_i - \frac{1}{2}} \right)} \left((\sigma_1 x_1)^{\frac{1}{p}} - (\sigma_2 x_2)^{\frac{1}{p}} \right) (\sigma_1 + \sigma_2) \]
\[\times \prod_{i=1}^2 \left(\frac{1}{\lambda_i^p + \frac{1}{2} \sigma_i^p} - \frac{1}{\lambda_i^p - \frac{1}{2} \sigma_i^p} \right)^k \]
(A.5)

Taking the term of order $\sigma_2^\frac{1}{p}$ and neglecting higher order terms in σ_2, we have
\[U(\sigma_1, \sigma_2) = -\frac{\sigma_2^\frac{1}{p}}{\pi} \Gamma \left(1 - \frac{1}{p} \right) \cdot \int \frac{du_1}{2\pi i} e^{-\frac{1}{p} \left(u_1 + \frac{1}{2} \sigma_1 \right)^{p+1} - \left(u_1 - \frac{1}{2} \sigma_1 \right)^{p+1}} \left(u_1 + \frac{1}{2} \sigma_1 \right)^k \]
\[= -\frac{\sigma_2^\frac{1}{p}}{\pi} \Gamma \left(1 - \frac{1}{p} \right) \cdot \sigma_1 U(\sigma_1) \]
(A.6)

This equation is a string equation,
\[\langle \tau_{0,0} \tau_{n,j} \rangle_g = \langle \tau_{n-1,j} \rangle_g \]
(A.7)

A string equation for three marked points for p spin curves is an extension of (6.11). It is easily obtained from
\[U(\sigma_1, \sigma_2, \sigma_3) = \frac{\sigma_2^\frac{1}{p}}{\pi} \Gamma \left(1 - \frac{1}{p} \right) (\sigma_1 + \sigma_2) U(\sigma_1, \sigma_3) \]
(A.8)

which is the string equation,
\[\langle \tau_{0,0} \tau_{n_1,j_1} \tau_{n_2,j_2} \rangle_g = \langle \tau_{n-1,j_1} \tau_{n_2,j_2} \rangle_g + \langle \tau_{n_1,j_1} \tau_{n_2-1,j_2} \rangle_g \]
(A.9)

W constraint equation

We consider next the W constraint equation. Since there are spin $j = 0, 1, \ldots, p - 1$ indices for the intersection numbers of p spin curves, we have an equation which involves $\tau_{0,j}$. Taking next $\sigma_2^\frac{1}{p}$, and neglecting higher terms in σ_2 in (A.5), we obtain the intersection number with $\tau_{0,0}$.

The two point correlation function $U(\sigma_1, \sigma_2)$ is expressed as [7], by using the following representation.
\[\frac{1}{u_1 - u_2 + \frac{1}{2} (\sigma_1 + \sigma_2)} \frac{1}{u_1 - u_2 - \frac{1}{2} (\sigma_1 + \sigma_2)} \]
\[= \frac{1}{\sigma_1 + \sigma_2} \int_0^\infty d\alpha e^{-\alpha (u_1 - u_2) \sinh \left(\frac{\alpha}{2} (\sigma_1 + \sigma_2) \right)} \]
(A.10)

By $\alpha \to (\sigma_1 \sigma_2)^{\frac{1}{p}} \alpha$, $u_i = (x_i/\sigma_i)^{\frac{1}{p}}, \sinh \left(\frac{\alpha}{2} (\sigma_1 + \sigma_2) \right) \sim \frac{\alpha}{2} (\sigma_1 \sigma_2)^{\frac{1}{p}} (\sigma_1 + \sigma_2)$, we obtain $\sigma_1^\frac{1}{p}$ term as
\[U(\sigma_1, \sigma_2) = \frac{1}{p} \frac{1}{2} (\sigma_1 \sigma_2)^{\frac{1}{p}} \int dx_1 dx_2 \frac{1}{(\sigma_2 x_2)^{\frac{1}{p}}} e^{-x_1 x_2 + \ldots} \]
\[= \sigma_1^p \sigma_2 U(\sigma_2) \tag{A.11} \]
which is a string equation. For the \(\sigma_1^2 \) term, we expand \(e^{-(\sigma_1 x_2)^{\frac{1}{p}}} = 1 + (\sigma_1 x_2)^{\frac{1}{p}} \).
\[U(\sigma_1, \sigma_2) = \frac{1}{p} \sigma_1^{\frac{1}{p}} \Gamma \left(1 - \frac{2}{p} \right) \sigma_2^{-\frac{2}{p}} \int_0^\infty dx_2 x_2^{-\frac{2}{p}-1} \]
\[\times e^{-x_2 - \frac{p(p-1)}{24} \sigma_1^2 x_2^{1+\frac{2}{p}} + \ldots} \left(\frac{x_2^{\frac{1}{p}} + \frac{1}{\sigma_2^{1+\frac{2}{p}}}}{x_2^{\frac{1}{p}} - \frac{1}{\sigma_2^{1+\frac{2}{p}}} \right)^k \tag{A.12} \]

From above integral, we obtain the \(\sigma_1^4 \sigma_2^2 \) term as
\[U(\sigma_1, \sigma_2) \sim I_{0,1}^{(4,1)} \left[\Gamma \left(1 - \frac{2}{p} \right) \right]^2 \left\{ \left(1 - \frac{2}{p} \right) \frac{1}{2} \frac{p(p-1)^2}{(24)^2} \right. \]
\[\left. - \frac{(p-1)(p-2)(p-3)}{5!4^2} \right\} \tag{A.13} \]

Separating a factor \((1 - \frac{2}{p}) \), we obtain in the case \(k = 0 \),
\[\langle \tau_{0,1} \rangle_g = \langle \tau_{3,2} \rangle_g + \frac{1}{2p} \langle \tau_{1,0} \rangle_g \tag{A.14} \]
for general \(p \). Similarly we obtain for \(g = 3 \), when \(k = 0 \).
\[\langle \tau_{0,1} \rangle_g = \langle \tau_{3,2} \rangle_g + \frac{1}{p} \langle \tau_{1,0} \rangle_g = \langle \tau_{3,2} \rangle_g = 2 \]
\[\tag{A.15} \]

Dilaton equation

The dilaton equation for \(p \)-spin curves is
\[\langle \tau_{0,1} \prod_{k=1}^s \tau_{n_k} \rangle_g = (2g - 2 + s) \langle \prod_{k=1}^s \tau_{n_k} \rangle_g \tag{A.16} \]

We consider \(s = 1 \), the two point correlation function \(U(\sigma_1, \sigma_2) \). By the shift \(\alpha \to (\sigma_1 \sigma_2)^{\frac{1}{p}} \), \(x_i = \sigma_i u_i^{\frac{1}{p}} \), we have
\[U(\sigma_1, \sigma_2) = \frac{1}{\sigma_1 + \sigma_2} \int_0^\infty d\alpha \sinh \left(\frac{\alpha}{2} (\sigma_1 \sigma_2)^{\frac{1}{p}} (\sigma_1 + \sigma_2) \right) e^{\left[(\sigma_1 \sigma_2)^{\frac{1}{p}} - (\sigma_1 \sigma_2)^{\frac{1}{p}} \right] + \alpha \left(\sigma_1^{\frac{1}{p}} + \sigma_2^{\frac{1}{p}} \right) \]
\[\times \prod \left(x_i + \frac{1}{\sigma_i^{\frac{1}{p}}} \right)^k \left(x_i - \frac{1}{\sigma_i^{\frac{1}{p}}} \right)^k \tag{A.17} \]

For simplicity, we evaluate the \(p = 2 \) case. The term of order \(\sigma_1^3 \) comes from
\[\frac{1}{\sigma_1 + \sigma_2} \sinh \left(\frac{\alpha}{2} (\sigma_1 \sigma_2) (\sigma_1 + \sigma_2) \right) e^{\alpha (\sigma_1 \sigma_2)^{\frac{1}{2}}} \sim \frac{1}{4} \frac{3}{4} \frac{3}{4} \sigma_1^{\frac{3}{2}} \sigma_2^{\frac{3}{2}} x_2 + \frac{\alpha^3}{48} \sigma_1^{\frac{3}{2}} \sigma_2^{\frac{3}{2}} \]
\[\tag{A.18} \]
By the integrations of α and μ, we obtain the order of σ_1^2

$$U(\sigma_1, \sigma_2) \sim 2\sigma_1^3 \Gamma\left(1 - \frac{1}{2}\right) \left[\frac{1}{2} \int \frac{1}{\sigma_2^2} \frac{1}{2} \int dx_2 \frac{1}{2} e^{-x_2} \ldots + \frac{1}{12} \frac{1}{\sigma_2^2} \int dx_2 \frac{1}{2} e^{-x_2} \ldots \right]$$ \hspace{1cm} (A.19)

Noting the integral by parts for the first term, we have

$$U(\sigma_1, \sigma_2) = 2 \sigma_1^3 \Gamma\left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{6} \sigma_2^2\right) U(\sigma_2)$$ \hspace{1cm} (A.20)

Since we have

$$U(\sigma_2) = \sum_g \frac{1}{(12)^g g!} (-1)^g \sigma_2^{3g - \frac{3}{2}}$$ \hspace{1cm} (A.21)

we obtain the two terms of (A.20) as

$$U(\sigma_1, \sigma_2) = 2 \sigma_1^3 \Gamma\left(1 - \frac{1}{2}\right) \left(\sum_{g=1}^{\infty} \frac{(-1)^g}{(12)^g g!} \sigma_2^{3g - \frac{3}{2}} + \sum_{g=1}^{\infty} \frac{(-1)^g}{(12)^g g!} \sigma_2^{3g - \frac{3}{2}} \frac{1}{6} \sigma_2^2 \right)$$ \hspace{1cm} (A.22)

which provides the dilaton equation for $p = 2$.

$$\langle \gamma_{1,0} \tau_{n,j} \rangle_g = (2g - 1) \langle \tau_{n,j} \rangle_g$$ \hspace{1cm} (A.23)

We can check, for instance, the $g = 1$ case for $p = 2$ as

$$\langle \gamma_{1,0}^2 \rangle_g = \langle \gamma_{1,0} \rangle_g = \frac{1}{24} \left(1 + 12k^2\right)$$ \hspace{1cm} (A.24)

The above equation may be easily extended to $p > 2$ by the same process.

References

[1] Brézin E and Hikami S 1997 Extension of level spacing universality Phys. Rev. E 56 264
[2] Brézin E and Hikami S 1998 Universal singularity at the closure of a gap in a random matrix theory Phys. Rev. E 57 4140
[3] Brézin E and Hikami S 1998 Level spacing of random matrices in an external source Phys. Rev. E 58 7176
[4] Brézin E and Hikami S 2008 Intersection theory from duality and replica Commun. Math. Phys. 283 507
[5] Brézin E and Hikami S 2007 Intersection numbers of Riemann surfaces from Gaussian matrix models J. High Energy Phys. JHEP10(2007)096
[6] Brézin E and Hikami S 2009 Computing topological invariants with one and two-matrix models J. High Energy Phys. JHEP04(2009)110
[7] Brézin E and Hikami S 2013 The intersection numbers of the p-spin curves from random matrix theory J. High Energy Phys. JHEP02(2013)035
[8] Halasz M A and Verbaarschot J J M 1995 Effective Lagrangians and chiral random matrix theory Phys. Rev. D 52 2563
[9] Kontsevich M 1992 Intersection theory on the moduli space of curves and the matrix Airy function Commun. Math. Phys. 147 1–23
[10] Tracy C A and Widom H 1994 Level-spacing distributions and Airy kernel Commun. Math. Phys. 159 151
[11] Harer J and Zagier D 1986 The Euler characteristics of the moduli space of curves Invent. Math. 85 457
[12] Penner R C 1988 Perturbative series and the moduli space of Riemann surfaces J. Diff. Geometry 27 35
[13] Gradshtein I S and Ryzhik I M 2000 *Table of Integrals, Series and Products* (New York: Academic)

[14] Abramowizt M and Stegun I A (ed) 1972 *Handbook of Mathematical Functions* (New York: Dover) p 446

[15] Hardy G H 1910 On certain definite integrals considered by Airy and by Stokes *Quarterly J. XLI* 226–40 (G H Hardy collected papers, Vol IV (1969) 460–74)

[16] Watson G N 1922 *Theory of Bessel Functions* (Cambridge: Cambridge University Press) p 320

[17] Brézin E and Hikami S 2008 Intersection numbers from the antisymmetric Gaussian matrix model *J. High Energy Phys.* JHEP07(2008)050

[18] Desrosiers P and Eynard B 2010 Super-matrix models, loop equations, and duality *J. Math. Phys.* 51 123304

[19] Desrosiers P 2009 Duality in random matrix ensembles for all β *Nucl. Phys. B* 817 224

[20] Brézin E and Hikami S 2003 New correlation functions for random matrices and integrals over supergroups *J. Phys. A: Math. Gen.* 36 711

[21] Pandharipande R, Solomon J P and Tessler R J Intersection theory on moduli of desks, open KdV and Virasoro *Lett. Math. Phys.* 105 1427

[22] Buryak A 2015 Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary *Lett. Math. Phys.* 105 1427

[23] Buryak A 2015 Open intersection numbers and wave function of the KdV hierarchy *Moscow Math. J.* at press

[24] Brézin E and Hikami S 2012 On an Airy matrix matrix model with a logarithmic potential *J. Phys. A: Math. Theor.* 45 045203

[25] Mironov A, Morozov A and Semenoff G W 1996 Unitary matrix integrals in the framework of generalized Kontsevich model: 1. Brézin–Gross–Witten model *Int. J. Mod. Phys.* A11 5031

[26] Alexandrov A 2015 Open intersection numbers, matrix models and MKP hierarchy *J. High Energy Phys.* JHEP03(2015)042

[27] Alexandrov A 2015 Open intersection numbers, Kontsevich–Penner model and cut-and-join operators *J. High. Energy Phys.* JHEP28(2015)25

[28] Brézin E and Hikami S 2000 Characteristic polynomials of random matrices *Commun. Math. Phys.* 214 111

[29] Brézin E and Hikami S 2001 Characteristic polynomials of real symmetric random matrices *Commun. Math. Phys.* 223 363

[30] Mirzakhani M 2007 Weil-Petersson volumes and intersection theory on the moduli space of curves *J. Amer. Math. Soc.* 20 1

[31] Do N 2008 Intersection theory on moduli spaces of curves via hyperbolic geometry PhD Thesis University of Melbourne

[32] Brézin E and Gross D 1980 The external field problem in the large-N limit of QCD *Phys. Lett.* B 97 120

[33] Witten E 1993 Algebraic geometry associated with matrix models of two dimensional gravity *Topological Methods in Modern Mathematics* (Publish or Perish, INC) 235–69

[34] Gel’fand I M and Dikiĭ L A 1975 Asymptotic behavior of the resolvent of Strum-Liouville equations and the algebra of the Korteweg-De Vries equations *Russian Math. Surveys* 30 77

[35] Gel’fand I M and Dikiĭ L A 1976 Fractional powers of operators and hamiltonian systems *Funktsional’nyi Analiz i Ego Prilozheniya* 10 13

[36] Gel’fand I M and Dikiĭ L A 1977 The resolvent and Hamiltonian systems *Funktsional’nyi Analiz i Ego Prilozheniya* 11 11

[37] Liu K, Vakil R and Xu H 2014 Pseudo differential operators and Witten’s r-spin numbers *J. Reine Angew. Math.* at press (doi:10.1515/crelle-2014-0102)

[38] Zhou J 2013 Solution of W-constraints for r-spin intersection numbers arXiv:1305.6991

[39] Drinfeld V G and Sokolov V V 1984 Lie algebras and equations of Korteweg–de Vries type *Itogi Nauki i Tekhniki* 24 81–180

[40] Liu K and Xu H 2010 Descendent integrals and tautological rings of moduli spaces of curves *Geometry and Analysis (Adv. Lect. Math. (ALM))* vol 2 18 arXiv:0912.0584

[41] Witten E 1992 The N matrix model and gauged WZW models *Nucl. Phys.* B371 191

[42] Bargmann V 1947 Irreducible unitary representations of the Lorentz group *Ann. Math.* 48 568

[43] Brézin E and Hikami S 2010 Duality and replicas for a unitary matrix model *J. High Energy Phys.* JHEP07(2010)067
[44] Gross D J and Witten E 1980 Possible third order phase transition in the large-N lattice gauge theory Phys. Rev. D 21 446
[45] Fan H, Jarvis T and Ruan Y 2013 The Witten equation, mirror symmetry and quantum singularity theory Ann. Math. 178 1
[46] Jackson D and Visentin T I 2001 An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces (London/Boca Raton, FL: Chapman and Hall/CRC Press)
[47] Goulden I P, Harer J L and Jackson D M 2001 A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves Trans. Ameri. Math. Soc. 353 4405–27
[48] Chandra H 1956 Invariant differential operators on a semisimple lie algebra Proc. Nat. Acad. Sci. 42 252–3
[49] Brézin E, Hikami S and Larkin A I 1999 Level statistics inside the vortex of a superconductor and symplectic random matrix theory in an external source Phys. Rev. B 60 3589
[50] Brézin E and Hikami S 2007 Vertices from replica in a random matrix theory J. Phys. A: Math. Theor. 40 13545
[51] Eguchi T, Hori K and Yang S K 1995 Topological sigma models and large N matrix integral Int. J. Mod. Phys. A 10 4203
[52] Okounkov A and Pandharipande R 2006 Gromov–Witten theory, Hurwitz numbers, and completed cycles Ann. Math. (2) 163 517560
[53] Aganagic M, Dijkgraaf R, Klemm A, Marino M and Vafa C 2006 Topological strings and integrable hierarchies Commun. Math. Phys. 261 451
[54] Norbury P and Scott N 2014 Gromov–Witten invariants of P^1 and Eynard-Orantin invariants Geom. Topol. 18 186