Full Length Research Paper

Phytochemical Profiling of the Hexane fraction of *Crassocephalum crepidioides* Benth S. Moore leaves by GC-MS

Opeyemi O. Ayodele¹, Funmilayo D. Onajobi¹ and Omolaja R. Osoniyi¹,²

¹Department of Biochemistry, College of Health and Medical Sciences, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilishan, Nigeria.
²Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria.

Received 22 August 2019; Accepted 14 February 2020

Crassocephalum crepidioides is an edible plant which is also used in the ethnomedical treatment of stomach ulcer, indigestion, wounds, boils and burns in Africa and some other parts of the world. This study aims at identifying and characterizing the bioactive compounds present in *C. crepidioides* hexane fraction which may be responsible for the ethnomedical uses and reported activities of the plant. The crude extract from the powdered leaves of *C. crepidioides* was obtained with 70% methanol, followed by solvent partitioning with hexane to give the hexane fraction which was subjected to phytochemical profiling using gas chromatography-mass spectrometry (GC-MS). Spectrum interpretation was obtained from the library search of the database of National Institute of Standards and Technology (NIST), while biological activities of compounds identified were predicted based on Dr. Duke's Phytochemical and Ethnobotanical Databases. The results revealed the presence of several bioactive compounds with various biological activities including Hexadecanoic methyl ester and α-Linolenic acid with reported hypocholesterolemic properties; Benzofuranone and Benzofuran with anticancer and antiviral activities; phenolic compounds and flavonoids with reported antioxidant, anti-inflammatory and antifungal activities among others. The study showed that *C. crepidioides* contains compounds with important biological activities which provide scientific support for some medicinal uses of the plant.

Key words: Phytochemicals, *Crassocephalum crepidioides*, gas chromatography-mass spectrometry (GC-MS), ethnomedical.

INTRODUCTION

Medicinal plants have been found to be rich sources of secondary metabolites with important biological activities. Many of the active substances found in plants are secondary metabolites called phytochemicals, including phenols, flavonoids, alkaloids, steroidal esters, glycosides, tannins and terpenoids. These bioactive compounds are relevant sources of novel therapeutic agents. Therefore, phytochemical analysis of plants has become increasingly important procedure in phyto medicine and drug discovery. Furthermore,

Corresponding author. E-mail: opeige@yahoo.com. Tel: +234 806 6200 610.

Author(s) agree that this article remain permanently open access under the terms of the [Creative Commons Attribution License 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
identification and knowledge of the chemical constituents of plants are vital for scientific explanation and rationalization of their ethnomedicinal uses.

Crassocephalum crepidioides (Benth.) S. Moore (Henderson, 1973; Lemmens, 2003), commonly called fireweed ragleaf, is an annual edible plant that is widespread in tropical and sub-tropical regions (Rajesh, 2011). It is an erect, sparingly branched herb about 40-100 cm tall. The stem is rather stout, soft, ribbed and apical with short thick hairs (Kostermans et al., 1987), the leaves are lamina elliptic to ovate in outline, and the seeds consist of floating balls of many silky white hairs that can be wind dispersed.

The plant is recognized as a highly invasive weed which have become distributed eastward out of Africa into East Indies, India, East Asia and Philippines (Kiew, 2009; Randall, 2012). It is eaten by humans in many countries of Africa, where the succulent leaves and stems are used as vegetables in soup and stews (Burkill, 1985; Sakpere et al., 2013). The various local names of the plant include: *Ebolo* by Yoruba Southwest, Nigeria (Adams, 1963); *mikpafit* byEfik, Akwa Ibom; and *obuinenawa* by Edo people, South- south, Nigeria (Omotayo et al., 2015); *gboro* in Benin republic (Adjatin et al., 2013); *ye tong hao* by the Chinese, Eyukula by the Portuguese, and *benibanaborogiku* by the Japanese (Tomimori et al., 2012). *C. crepidioides* is traditionally used in the treatment of wounds, boils, burns, indigestion, stomach ulcer, nose bleeding, fever, inflammation and edema (Aijbesin, 2012; Aniya et al., 2005; Oyelakin and Ayodele, 2013; Chaitanya et al., 2013; Sakpere et al., 2013).

Scientific investigations have shown *C. crepidioides* to be a useful source of protein in both human and animal diet (Dairo and Adanlawo, 2007). The plant has also been reported to be a good source of vitamins and minerals (Smith and Eyzaguirre, 2007), therefore making it a good source of nutraceuticals in prevention and management of diseases (Adjatin et al., 2013).

Further review of Ethnopharmacological reports on *C. crepidioides* showed that the plant possesses anti-helminth, antibacterial, anti-inflammatory, anti-diabetic, and acetyl cholinesterase inhibitory properties (Bahar et al., 2017; Bogning et al., 2016; Chaitanya et al., 2013; Joshi, 2014; Owokomoto et al., 2012; Tomimori et al., 2012). The antioxidant, cytoprotective (Odukoya et al., 2007; Wijaya et al., 2011), cancer chemoprotective and anti-tumor activities (Chia-chung et al., 2007; Chaitanya et al., 2013) of the plant have also been demonstrated. The *in vitro* anticoagulant activity of the plant leaf methanol extract and fractions was recently reported (Ayodele et al., 2019). Therefore, with such great medicinal value being suggested, a detailed analysis to identify and characterize the phytochemical compounds in the plant is very much needed. However, few reports are available on the bioactive compounds present in the plant. Reports on preliminary phytochemical screening of *C. crepidioides* methanol extract have revealed the presence of alkaloids, glycosides, tannins, flavonoids, phenols, saponins and ascorbic acid (Arawande, 2013; Bahar et al., 2017). The essential oils of *C. crepidioides* from south western Nigeria and western Ghats region of India were found to mainly consist of α-caryophyllene, thymol, α-farnesene, β-cubebene and 4-cyclohexybutyramidie, thus concluding that *C. crepidioides* may be a natural source of thymol, with established the antimicrobial activity (Owokomoto et al., 2012; Rajesh, 2011).

Over the years, gas chromatography-mass spectrometry (GC-MS) has become an established technique for secondary metabolite profiling in plants. Therefore, the present study aims at identifying and characterizing the volatile bioactive compounds present in *C. crepidioides* hexane fraction which may be responsible for some of the reported activities, using Gas Chromatography- Mass Spectrometry analysis.

MATERIALS AND METHODS

Plant collection and preparation

C. crepidioides was obtained from farms in Ilisan-remo, Ogun State, South Western Nigeria, and identified at the IFE herbarium, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria where a voucher specimen with the voucher specimen registration No: IFE 17634, was deposited. The plant leaves were oven-dried at 40°C and ground into powder using an electric blender and stored in the refrigerator at 4°C until use.

The crude methanol extract was obtained by soaking the powdered leaves in 70% methanol (1:8, w/v) for 48 h at room temperature accompanied by intermittent shaking (Handa et al., 2008). This was followed by sequential filtering through a fine muslin cloth and Whatman No 1 filter paper. The crude extract was then evaporated under reduced pressure at 40°C using a rotary evaporator, and further dried to completion in a hot air-oven at 40°C. The dried methanol extract was reconstituted in distilled water, (2:1, w/v) and subjected to solvent partitioning ratio in 1:1 (v/v) with Hexane (Otsuka, 2006).

GC-MS analysis

Phytochemical characterization of the plant hexane fraction was carried out by Gas Chromatography-Mass Spectrometry (GC-MS) using Agilent® 19091J-413; 3324.57048 with HP-5MS capillary column (30 m length × 0.25 µm diameter × 0.25 µm film thickness). The carrier gas was helium at constant flow rate of 1.573 ml/min and average velocity of 45.933 cm/s at a pressure of 2.84psi. The initial oven temperature was 60°C held for 1 min, then increased at 4°C/min to 110°C for 3 min, and then at 8°C/min to 260°C for 5 min. The temperature was further increased at 10°C/min to 300°C and held isothermally for 12 min. The sample was reconstituted in hexane (5% w/v), and 1 µl was injected in the splitless mode.

Identification of compounds

The total chromatogram was auto integrated by ChemStation and spectrum interpretation was done using the database of National Institute Standard and Technology (NIST). The spectrum of the
unknown components was compared with the spectrum of the known components stored in the NIST library. The systemic names, molecular formulae and structures of the identified components were obtained. The biological activities of compounds were largely predicted on the basis of Duke’s Phytochemical and Ethnobotanical Databases (Duke, 2013, 2016).

RESULTS

GC-MS analysis of the hexane fraction of C. crepidioides leaves led to tentative identification of the components as shown in Table 1, while the chromatogram is shown in Figure 1. The results revealed 64 bioactive compounds, including n-hexadecanoic acid and its methyl ester (S/N 49 and 50) which are known to possess hypocholesterolemic properties; coumarin-related compound Benzofuranone (coumarin-3-one; S/N 22) which has anti-inflammatory and anticancer activities; α-Linolenic acid (9,12,15-Octadecatrienoic acid; S/N 55) which possesses antiaggregant, anti-hypertensive, immunostimulant, anti-leukotriene, and cancer-preventive activities among others. Phenol (S/N 15) and Phenolic compounds including Eugenol (S/N 16) with anticoagulant and antiaggregant activities, Vanillin (S/N 24), Citronellol (S/N 28), Orcinol (S/N 42), Thumbergol (S/N 48) and Catechol (S/N 62) which possess antifungal, antiseptic, antibacterial, keratolytic and insecticidal activities; Thujone (S/N 14) with antiplatelet activity; Flavonoids and other compounds with anti-inflammatory, antioxidant, antiviral, anesthetic, anti-psychotic, antinociceptive and antimicrobial properties were tentatively identified. Compounds that can be used as food flavour enhancer, in cosmetics and 1,9-octadecadiene (S/N 27) with no reported activity were identified. Most of the activities associated with the identified compounds were obtained from Duke’s phytochemical and Ethnobotanical databases (Duke, 2013, 2016) unless otherwise stated in the Table 1 and Figure 1.

DISCUSSION

Medicinal plants have become vital to major populations of the world for treatment and management of diseases. Identification and isolation of phytochemical constituents of plant and testing them for biological activities will provide a great insight to the nature of these components, their pharmacological action and potency. The GC-MS characterization of the hexane fraction of C. crepidioides leaf indicated the presence of several bioactive compounds with various biological activities. These include n-Hexadecanoic acid, Hexadecanoic methyl ester (palmitic acid) and α-Linolenic acid (ALA) with reported hypocholesterolemic and other lipid-lowering properties. Salisu et al. (2019) similarly reported high quality match palmitic, oleic and linoleic acids as major components out of eight compounds identified from GC-MS analysis of n-hexane extract of C. crepidioides leaf. However, this present study identified 64 compounds of phytochemical importance in C. crepidioides leaf hexane fraction obtained from the methanol (crude) extract.

Compounds with antioxidant properties identified include Benzene acetaldehyde, Erythritol, Phyto1, N-hydroxyamine, Aromadendrene oxide and Hydroquinone. These buttress the report of Bahar et al. (2016) on in vitro antioxidant activity of C. crepidioides in which preliminary phytochemical screening of the plant methanol extract indicated the presence of alkaloids and flavonoids. Bioactive compounds identified with anti-inflammatory properties include Indole, phyto1, phenol, Ledol and Benzofuran. These tentatively identified compounds may be responsible for the plant local use in the treatment of stomach ulcer, swollen lips and edema. Karmakar et al. (2018) reported the presence of phenolic compounds, among others, implicated in anti-inflammatory activity of C. crepidioides methanol extract.

Identification of Benzofuranone, Benzofuran, Semicarbazone, 2-benzothiozolamine, and Glutaric acid with anticancer, and antiviral activities may corroborate the cancer chemopreventive and antitumor action of C. crepidioides essential oils reported by Thakur et al. (2018) and Tomimori et al. (2012). Eugenol, other phenolic compounds and flavonoids commonly possessing antimicrobial, antifungal activities were also tentatively identified. Bahar et al. (2017) and Arawande et al. (2013) reported that preliminary qualitative phytochemical screening of the methanol extract of C. crepidioides revealed the presence of alkaloids, glycosides, tannins, flavonoids, phenolic compounds, saponins and ascorbic acid; while Owokomo et al. (2012) reported α-caryophyllene and β-cubebene as the most abundant constituents identified from GC-MS analysis of the leaf essential oils of C. crepidioides.

The reported activities of the phenols and flavonoids identified in the plant may be the rationale for its local use in treatment of wounds and boils. Alpha-linolenic acid has been reported to act as an antiaggregant, Eugenol was reported as an antiaggregant agent in Cinnamomum cassia (Kim et al., 2010), while thujone and flavonoids have also been reported to inhibit platelet aggregation (Formica and Regelson, 1995; Cordier and Steekamp, 2011). Ayodele et al. (2019) similarly reported Thujone, Eugenol, α-linolenic acid, and coumarin-related compounds; Benzofuran, Benzofuranone and Benzene acetaldehyde as possible antiaggregant agents in C. crepidioides leaf methanol extract and fractions.

The heterogenous compounds identified from the present study may therefore be responsible for the ethnomedicinal uses of the plant. Thus, the GC-MS phytochemical characterization of C. crepidioides has revealed the presence of various bioactive compounds with different chemical structures which can be utilized in
Table 1. GC – MS Identified Phytochemical components of the Hexane fraction of C. crepidioides leaf extract.

S/N	Retention time (mins)	Name of compound (Library ID)	Molecular formula	Molecular weight (g/mol)	Peak area (%)	Reported biological activity
1	3.586	Butyrolactone	C₄H₆O₂	86.09	0.98	Antimicrobial. Central nervous system depressant (CNS) and hypnotic. Anaesthetic.
2	5.449	Benzene acetaldehyde	C₆H₈O	120.15	1.11	Antioxidant Antibacterial, Anaesthetic.
3	5.568	1-methyl, 2-Pyrolidinone	C₃H₅NO	99.13	2.69	Surfactant, Antifungal Antioxidant, Antibacterial
4	6.161	Erythritol	C₄H₈O₄	122.12	1.01	Anticancer, Anticonvulsant (Hosseinzadeh et al., 2017).
5	6.678	di-Threitol	C₂H₁₀O₄	122.12	0.50	Osmoprotectant Antioxidant Insecticidal (Scanga et al., 2018)
6	7.046	Glycin	C₂H₃O₃	92.09	0.61	Antifungal, Antiparasitic.
7	7.188	Phenylethyl Alcohol	C₆H₁₀O	122.16	2.00	Antibacterial
8	9.319	Phthalic acid	C₄H₄O₂(COOH)₂	166.14	0.84	Pesticidal
9	10.286	Benzofurane	C₆H₈O	118.10	1.43	Antidepressant, Anticancer, antiviral, antifungal, antioxidant, anti-psychotic, anti-inflammatory. (Asif, 2016)
10	12.215	Indole	C₆H₇N	117.15	0.76	Anti-inflammatory, Anti-tumor, Antimicrobial, Antineoplastic.
11	12.761	N-hydroxylamine	C₆H₈NO₂	33.03	0.49	Antioxidant
12	12.910	Glutaric acid	C₅H₈O₄	132.12	1.72	Virucidal (Khurst et al., 1984)
13	13.497	Mequinol	C₇H₁₂O₂	124.14	0.46	Anti-inflammatory, Antimicrobial
14	13.640	Thujone	C₁₀H₁₆O	152.23	0.56	Antibacterial, Antifungal, Antinociceptive, Insecticidal, Anthelmintic Antioxidant (Duke, 2013), Antiplatelet (Cordier and Steekamp, 2011).
15	13.640	Phytol	C₃H₈O	128.17	0.56	Anti-inflammatory, Antioxidant, Antinociceptive (Santos et al., 2013)
16	14.055	Phenol	C₆H₈O	94.11	0.41	Antibacterial, Antioxidant, Antimicrobial
17	14.180	Eugenol	C₁₀H₁₆O₂	164.20	4.43	Anti-inflammatory, Antiseptic (Bendre et al., 2016), Anticoagulant, Antigreggant (Kim e. al., 2010).
18	15.569	1,7-Nonadiene,4,8-dimethyl-	C₁₀H₁₆O	152.28	2.76	Anti-inflammatory, Anti-cancer,
19	17.249	Isocyclocitral	C₁₀H₁₆O	304.50	1.40	Deodorant
20	18.406	2,4 Dimethylanisole	C₈H₁₂O₂	136.19	0.56	Food flavoring agent
21	18.821	2,4,6-Trimehtyl-2-(4-methyl-pent-3-enyl) 2H-pyran	C₁₃H₂₂O	206.32	0.83	Fragrance in cosmetics
22	19.273	2-Tridecanone	C₁₀H₂₀O	198.35	2.44	Food flavoring agent
23	19.795	Benzofuranone	C₆H₈O	134.13	2.99	Antioxidant, Anticancer
24	21.205	Dodecanoic acid	C₁₀H₂₀O₂	200.32	1.41	Antifungal, Antibacterial, Antiviral, Soap and cosmetics production
25	21.385	Vanillin/ Propyl ester	C₆H₁₀O₃	152.15	1.47	Antifungal, antimicrobial, flavour (Fitzgerald et al., 2005)
26	21.692	3-Cyclohexen-1-carboxaldehyde	C₁₀H₁₀O	110.15	0.73	Allergenic
27	21.712	Butyrophenone	C₁₀H₁₂O	148.20	1.06	Antiemetics
28	22.151	1,9 octadecadiene	C₁₈H₃₄	250.46	0.78	Not stated
---	---	---	---	---	---	
28	22.276	Citronellol	C_{10}H_{15}O	156.27	0.60	antibacterial, antidepressant, antiseptic, antispasmodic, anti-inflammatory, deodorant, diaphoretic, diuretic, febrifuge, fungicidal, insect repellant, anthelmintic
29	22.501	Aromadendrene oxide Longipinocarveol	C_{10}H_{16}O	220.35	1.89	Antioxidant activity
30	22.626	N-acetyl-d-Serine	C_{10}H_{14}NO_{2}	147.13	0.70	Antifungal, nutrient additive
31	22.851	2-Aminoresorcinol	C_{8}H_{6}NO	125.13	2.28	Intestinal-alpha-glucosidase inhibitor.
32	22.958	Alpha-Guaiene	C_{10}H_{8}	204.35	0.92	Antimicrobial, insecticidal
33	23.086	Caryophyllene	C_{10}H_{14}O	204.36	0.68	Aldose-reductase inhibitor, Allergenic, Analgesic, Anti-asthmatic.
34	23.178	3-Buten-2-one, 4-hydroxy trimethyl-7-oxabicyclo-heptyl-	C_{11}H_{12}O_{3}	224.30	1.84	Antioxidant
35	23.427	1-Acetyl-3methylurea	C_{11}H_{12}NO_{2}	116.12	0.64	Antioxidant and antimicrobial
36	23.718	Ledol/Cedevanoxide	C_{12}H_{16}O	222.36	0.71	anti-inflammatory and analgesic activities
37	23.961	2-Benzothiazolamine	C_{12}H_{14}N_{2}S	224.30	1.86	Antitumor
38	24.145	2,5-octadiene-tetramethyl-	C_{12}H_{16}	166.30	0.99	Natural antioxidant, antihyperuricemic and anti-inflammatory
39	24.329	Spiro[2.3]hexan-4-one, 5,5-dichloro	C_{12}H_{18}O_{2}	193.07	0.48	Antimicrobial
40	24.531	Cyclodecanone	C_{12}H_{16}O	154.25	0.98	Antifungal
41	24.644	Semicarbazone	C_{12}H_{14}N_{2}O	141.17	0.58	Antiviral, anticancer
42	24.816	Orcinol	C_{7}H_{6}O_{2}	124.13	3.14	antifungal, antimicrobial, and keratolytic (Vanderpas, 2003).
43	25.154	2-(1-Hydroxycyclohexyl)-furan	C_{11}H_{14}O_{2}	166.22	0.90	Antimicrobial
44	25.386	Paradine	C_{12}H_{16}NO	151.21	0.58	Analgesic Stimulates the sympathetic nervous system
45	25.540	Alloaromadendrene oxide	C_{12}H_{16}O	220.35	0.49	Antioxidant, anticancer
46	25.677	1,1,4,7-Tetramethyldecahydro-1H-cycloprop[a]jazulene-4,7-diol	C_{13}H_{21}NO	238.37	2.42	Antioxidant, cosmetic fragrance
47	25.884	2-Acetylbenzonic acid	C_{11}H_{16}O_{2}	164.16	0.74	Hair dye, Pharmaceutical intermediate
48	26.241	Thumbergol	C_{12}H_{16}O	290.48	0.41	Antifungal
49	26.704	Hexadecanoic acid, methyl ester	C_{12}H_{26}O_{2}	270.45	1.48	Antioxidant, Hypocholesterolemic, Nematicide,Pesticide, Antiaromatoprogen, Flavor, Hemolytic, 5-alpha reductaseinhibitor
50	27.250	n-Hexadecanoic acid	C_{12}H_{26}O_{2}	256.42	1.19	Antioxidant, anti-inflammation Hypocholesterolemic, Nematicide Pesticide, Flavour, Hemolytic, 5-alpha reductase inhibitor
51	27.635	Metanephrine	C_{10}H_{17}NO_{3}	197.23	0.72	Metabolite
52	27.997	Methoxamine	C_{11}H_{15}NO_{3}	211.26	0.63	α1-adrenergic receptor agonist, Sympathomimetic agent
53	28.816	7,10,13-Hexadecatrienionic acid, methyl ester	C_{12}H_{26}O_{3}	264.40	5.74	Antibacterial, antifungal
54	28.965	2-furanmethanol, tetrahydro-acetate	C_{12}H_{24}O_{2}	144.17	2.91	Anticancer
55	29.404	9,12,15-Octadecatrienionic acid (α-linolenic acid)	C_{14}H_{26}O_{2}	278.40	4.52	Anti-Inflammatory, Hypolipidemic, Antiaggregant, Anti-leukotriene, Antiprostatic, Immunostimulant, Vasodilator, 5-alpha reductase inhibitor
56	29.511	Ethyl 9,12-hexadecadionate	C_{12}H_{23}O_{2}	280.40	0.56	Antibacterial
57	30.449	Bicyclo heptane, 7,7-dimethyl 1-2-methylene	C_{11}H_{16}	136.23	0.47	Cellulose Biosynthesis Inhibitors
58	31.286	Doconexent/ Methyl parinarate	C_{12}H_{24}O_{2}	328.49	0.81	anti-inflammatory
59	31.648	9-Octadecenamide	C_{12}H_{25}NO	281.48	0.90	Antioxidants; food preservatives; food coloring agents; flavoring agents; anti-infective agents; excipients
60	33.031	Tocainide	C_{12}H_{16}N_{2}O	192.26	0.13	Antiarrhythmic agent
Table 1. Contd.

No	MW	Compound	Molecular Formula	Retention Time	Viscosity	Activity
61	132.24	Hydroquinone	C₆H₄(OH)₂	110.11	0.60	Antioxidant (Vanderpas, 2003)
62	100.91	Catechol	C₆H₄O₂	110.11	0.24	Antibacterial, Antifungal
63	111.106	Glucopyranuronamide	C₆H₄NO₂	193.15	0.11	Antimicrobial
64	16.38	Phentylephrine/Adrenaline	C₉H₁₃NO₂	167.21	0.06	Decongestant, hemorrhoidal, Vasoconstriction

Main Activity Sources: Duke (2013, 2016).

Figure 1. Chromatogram of GC-MS Phytochemical Characterization of *C. crepidioides* leaf Hexane fraction.
in vivo studies, ultimately leading to the discovery and development of new natural therapeutic agents and novel drugs.

Conclusion
This study revealed that *C. crepidioides* contains several bioactive compounds with various biological activities. The compounds identified from the GC-MS analysis of the hexane fraction of *C. crepidioides* provided clear justification for the plant medicinal use and ethnopharmacological activities. However, isolation of individual phytochemical constituents and further in vivo studies to validate their biological activities are required for novel drug development.

CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT
The authors appreciate CTX-ION Analytics Ltd., Lagos, Nigeria for the use of GC-MS facility.

REFERENCES
Adams CD (1963). Compositae. In: Hepper, F. N. (Editor). Flora of West Tropical Africa 2. London, United Kingdom. Crown Agents for Oversea Governments and Administrations 2(2):225-297.
Adjatin A, Dansi A, Badoussi E, Loko YL, Dansi M, Gbaguidi F, Sanni A (2013). Phytochemical screening and toxicity studies of *Crassocephalum rubens* (Juss. ex Jacq.) S. Moore and *Crassocephalum crepidioides* (Benth.) S. Moore consumed as vegetable in Benin. Journal of Chemical and Pharmaceutical Research 5(6):160-167.
Abebeset BB, Kassa T, Moaza A, Qasim M, Tesfay Y, Eshete Y, Kassa A, Habte M, Huether G, Ruddle M, Policelli G (2012). Ethnobotanical survey of plants used for skin diseases and related ailments in Akwa Ibom State, Nigeria. Ethnobotany Research & Applications 10:463-522.
Aniya Y, Koyama T, Miyagi C, Miyahira M, Inomata C, Kinosita S, Ichiba T (2005). Free radical scavenging and hepatoprotective actions of the medicinal herb, *Crassocephalum crepidioides* from the Okinawa Islands. Biological and Pharmaceutical Bulletin 28(1):19-23.
Arawande JO, Komolafe EA, Imokhuede B. (2013). Nutritional related bioflavonoids. *Journa
des-related ailments in Akwa Ibom State, Nigeria. Ethnobotany Research & Applications 10:463-522.*

Bendre RS, Raput JD, Bagul SD, Karandikar PS (2016). Outlooks on medicinal properties of eugenol and its synthetic derivatives. Natural Products and Chemical Research 4(212):2. doi:10.4172/2329-6836.1000212.
Bognin ZC, Olounlade PA, Alowanou GG, Nguemo EL, Dongmo AB, Azzebaze AGB, Hounzangbe-Adote S (2016). In vitro anthelmintic activity of aqueous extract of *Crassocephalum crepidioides* (Benth.) S. Moore on *Haemonchus contortus*. Journal of Experimental and Integrative Medicine 6(1):31-37. DOI: 10.5455/ejim.061215.or.144
Burkili HM (1985). The useful Plants of West tropical Africa. Britain, White Friars Press Limited 2:534.
Chaitanya MVLN, Dhanabal SP, Rajendran I, Rajan S (2013). Pharmacodynamic and ethnomedical uses of weed species in nilgiris, Tamilnadu State, India: A review. African Journal of Agricultural Research 8(27):3505-3527.
Chi-chung H, Yi-Ping C, Jyh-Hong W, Chi-Chang, H Sheng YW, Ning-Sun Y, Lie-Fen S (2007). A Galactolipid possesses Novel Cancer Chemo Preventive Effects by Suppressing Inflammatory Mediators and Mouse B16 Melanoma. Cancer Research 67(14):6907-6915.
Cordier W, Steenkamp V (2011). Herbal remedies affecting coagulation: A review. Pharmaceutical Biology 50(4):443-52. DOI: 10.3109/13880209.2011.611145.
Dairo FAS, Adanalwo IG (2019). Evaluation of *Ayodele OO, Onajobi FD, Osoniyi O* (2019). *Asif M* (2016). Mini Review on Important Biological Properties of *Arawande JO, Komolafe EA, Imokhuede B.* (2013). Nutritional Related Bioflavonoids. *Journa
des-related ailments in Akwa Ibom State, Nigeria. Ethnobotany Research & Applications 10:463-522.*

Extract of Aerial Part of *Crassocephalum crepidioides* (Asteraceae) Benth S Moore. Tropical Journal of Pharmaceutical Research 15(3):481-488.
Duke JA (2013). Dr. Duke’s Phytochemical and Ethnobotanical Databases. USA: Agricultural Research Service, AGRIS.
Duke JA (2016). ”Dr. Duke’s Phytochemical and Ethnobotanical Databases” (Data set). Ag Data commons. doi:10.15482/USDA.ADC/1239279. https://phytochem.nal.usda.gov/dataset/dr-dukes-phytochemical-and-ethnobotanical-databases.
Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2005). Structure-Function Analysis of the Vanillin Molecule and Its Antifungal Properties. Journal of Agriculture and Food Chemistry 53(5):1769-1775.
Formica JV, Regelson W (1995). Review of Biology of Quercetin and Related Bioflavonoids. Food and Chemical Toxicology 33:1061-1080.
Handa SS, Kanhuaa SPS, Longo G, Rakesh DD (2008). Antimicrobial Agents and Chemistry of Medicinal and Aromatic Plants, (1st ed.), no. 66. Italy: United Nations Industrial Development Organization and the International Centre for Science and High Technology.
Hepperson RJF (1973). *Crassocephalum crepidioides* (Benth.) S. Moore in Australia: in invasive species compendium. Proceedings of the Royal society of Queensland 84(4):55-60.
Hosseinzadeh Z, Ramazani A, Hosseinzadeh K, Razzaghi-Aasl N, Gouranlou F (2017). An Overview on Chemistry and Biological Importance of Pyrrolidine. Current Organic Synthesis 15(2):166-178.
Joshi RK (2014). Study on Essential oil composition of the roots of *Crassocephalum crepidioides* (benth.) S. Moore. Journal of Chilean Chemical Society 59(1): 2363-2365. http://dx.doi.org/10.4067/S0717-9707/2014000100025.
Karmakar S, Goyary D, Dhrueva JK, Johirul I, Chattopadhyay P, Raju PS (2018). Anti-inflammatory, immunomodulatory and antigenotoxic potential of *Crassocephalum crepidioides* (Benth.) S. Moore methanolic Extract”. *EC Pharmacology and Toxicology* 64:296-315.
Khart MF, Francher MJ, McKinlay MA, Lennert SD (1984). Virucidal activity of glutaric acid and evidence for dual mechanism action. Antimicrobial agents and chemotherapy. 26(6):924-927.
Kiew R (2009). Additions to the weed flora of Peninsular Malaysia [edited by Soerjani, M. Tjitrosoepomo, G.]. Jakarta, Indonesia, Balai Pustaka.
24-565.

Lemmens RHMJ (2003). Crassocephalum crepidioides (Benth.) S. Moore. In: Lemmens RHMJ & Bunyaphathsara N. (Editors). Plant Resources of South-East Asia No 12(3). Medicinal and poisonous plants 3. Backhuys Publishers, Leiden, Netherlands pp. 140-141.

Odukoya OA, Inya-Agha SA, Segun FA, Sofidiya MO, Ilori OO (2007). Antioxidant Activity of Selected Nigerian Green Leafy Vegetables. American Journal of Food Technology 2(3):169-175.

Omotayo MA, Avungbeto O, Sokefun OO, Eleyowo OO (2015). Antibacterial activity of Crassocephalum crepidioides (fireweed) and Chromolaena odorata (siam weed) hot aqueous leaf extract. International Journal of Pharmacy and Biological Sciences (e-ISSN: 2230-7605) 5(2):114-122.

Otsuka H (2006). Purification by solvent extraction using partition coefficient. In: Sarker SD, Latif Z, Gray AI, editors. Natural Products Isolation. Methods in Biotechnology. Vol. 20. Humana Press Inc., Totowa, NJ. pp. 269-273.

Owokotomo IA, Ekundayo O, Oladosu IA, Aboaba SA (2012). Analysis of the Essential Oils of Leaves and Stems of Crassocephalum crepidioides growing in South Western Nigeria. International Journal of Chemistry 4(2):34-37. http://dx.doi.org/10.5539/ijc.v4n2p34

Oyelakin AS, Ayodele MS (2013). Morphotaxonomic evaluation of the relationship between four species of Crassocephalum (Moench.) S. Moore (Asteraceae) in southwestern Nigeria. Scientific Research and Essays 8(33):1629-1636.

Rajesh KJ (2011). Terpene composition of Crassocephalum crepidioides from Western Ghats region of India. International Journal of Natural Products Research 1(2):19-22.

Randall RP (2012). A Global Compendium of Weeds. Perth, Australia. Department of Agriculture and Food Western Australia, 1124 p.

Sakpere AMA, Adegoke O, Folasade AT (2013). Flowering, Post-pollination Development and Propagation of Ebolo (Crassocephalum crepidioides (Benth.) S. Moore) in Ile-Ife, Nigeria. Journal of Science and Technology 33(2):37-49.

Salisu TF, Okpuzor JE, Jaja SI (2019). Identification, characterization and quantification of chemical compounds in selected edible wild leafy vegetables. Ife Journal of Science 21(1):215-227. https://dx.doi.org/10.4314/ija.v21i1.19.

Santos C, Salvadori MS, Mota VG, Costa LM, Cardoso de Almeida A, Lopes de Oliveira GA, Costa JP, de Sousa DP, Mendes de Freitas R, Nóbrega de Almeida R (2013). Antinociceptive and antioxidant activities of phytol in vivo and in vitro Models. Neuroscience Journal 948452:1-9. http://dx.doi.org/10.1155/2013/948452.

Scanga SE, Hasanspahic B, Zvornicanin E, Samardzic Koca J, Rahme AK, Shinn-Thomas JH (2018). Erythritol, at insecticidal doses, has harmful effects on two common agricultural crop plants. PLoS ONE 13(4). https://doi.org/10.1371/journal.pone.0192749.

Smith Fl, Eyzaguirre P (2007). Africa Leafy vegetables: Their Role in the World Health Organization Global Fruit and Vegetable initiative. Africa Journal of Food Agriculture and Nutrition 7(3).

Thakur S, Koundal R, Kumar D, Maurya AK, Padwad YS, Lal B, Agnihotri VK (2018). Volatile composition and cytotoxic activity of aerial parts of Crassocephalum crepidioides growing in Western Himalaya, india. Indian Journal of Pharmaceutical Sciences 81(1):167-172.

Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N (2012). Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides. BMC Complementary and Alternative Medicine 12(1):78.

Vanderpas J (2003). Goitrogens and Antithyroid compounds; In Encyclopedia of Food Sciences and Nutrition (Second Edition).

Wijaya S, Nee TK, Jin KT, Din WM, Wiart C (2011). Antioxidant, Anti-Inflammatory, Cytotoxicity and Cytoprotection Activities of Crassocephalum crepidioides (Benth.) S. Moore. Extracts and Its Phytochemical Composition. European Journal of Scientific Research 67(1):157-165.