COHEN-MACaulay approximation
in fibred categories

Runar Ile

Abstract. We extend the Auslander-Buchweitz axioms and prove Cohen-Macaulay approximation results for fibred categories. Then we show that these axioms apply for the fibred category of pairs consisting of a finite type flat family of Cohen-Macaulay rings and modules. In particular such a pair admits an approximation with a flat family of maximal Cohen-Macaulay modules and a hull with a flat family of modules with finite injective dimension. The existence of minimal approximations and hulls in the local, flat case implies extension of upper semi-continuous invariants. As an example of MCM approximation we define a relative version of Auslander’s fundamental module.

In the second part we study the induced maps of deformation functors and deduce properties like injectivity, isomorphism and smoothness under general, mainly cohomological conditions on the module. We also provide deformation theory for pairs (algebra, module), e.g. a cohomology for such pairs, a long exact sequence linking this cohomology to the André-Quillen cohomology of the algebra and the Ext cohomology of the module, Kodaira-Spencer classes and maps including a secondary Kodaira-Spencer class, and existence of a versal family for pairs with isolated singularity.

Contents

1. Introduction 2
2. Preliminaries 5
3. Categories fibred in additive categories 8
4. Cohen-Macaulay approximation in fibred categories 11
5. Cohen-Macaulay approximation of flat families 15
6. Minimal approximations and semi-continuity of invariants 20
7. The fundamental module of a Cohen-Macaulay map 23
8. Maps of deformation functors induced by Cohen-Macaulay approximation 26
9. Deforming hulls of finite injective dimension 29
10. Existence of versal elements 33
11. Deforming maximal Cohen-Macaulay approximations of Cohen-Macaulay modules 36
12. The Kodaira-Spencer map of Cohen-Macaulay approximations 39
References 43

2010 Mathematics Subject Classification. Primary 13C14, 14B12; Secondary 13D02, 18D30.

Key words and phrases. Maximal Cohen-Macaulay module, Cohen-Macaulay map, algebraic ring, versal deformation, André-Quillen cohomology, Artin’s Approximation Theorem, Kodaira-Spencer map.

Acknowledgement. An essential part of this work was done during a visit to Institut Mittag-Leffler for which the author is most grateful.

1
1. Introduction

Let A be a Cohen-Macaulay ring of finite Krull dimension with a canonical module ω_A. Let MCM_A and FID_A denote the categories of maximal Cohen-Macaulay modules and of finite modules with finite injective dimension, respectively. M. Auslander and R.-O. Buchweitz proved in [6] that for any finite A-module N there exists short exact sequences

\[(1.0.1) \quad 0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to N \to L' \to M' \to 0\]

with M and M' in MCM_A and L and L' in FID_A. The maps $M \to N$ and $N \to L'$ in (1.0.1) are called a maximal Cohen-Macaulay approximation and a hull of finite injective dimension, respectively, of the module N. The association $N \mapsto X$ for X equal to M, M', L, L' define maps (functors) of corresponding stable categories. In this article we study the continuous properties of these maps.

Linear representations provided by (sheaves) of modules and the associated homological algebra plays an important role in algebra and algebraic geometry, e.g. as a means for classification by providing invariants. Finite complexes have particular properties as seen in the Buchsbaum-Eisenbud acyclicity criterion and the intersection theorems of Peskine, Szpiro and Roberts. However, for a non-regular local ring A, the standard homological invariants are given by the (generally) infinite minimal A-free resolutions, of which very little is known. To stay within finite complexes one can enlarge or change the category of resolving objects and Cohen-Macaulay approximation is a structured way of doing this.

Let D_A denote the subcategory $\text{Add}\{\omega_A\}$ of modules D isomorphic to direct summands of the ω_A^r, $r > 0$. A part of the approximation result says that all the modules in FID_A have finite resolutions by objects in D_A. In particular the MCM approximation in (1.0.1) can be extended to a finite resolution

\[(1.0.2) \quad 0 \to D^{-n} \to D^{-n+1} \to \ldots \to D^{-1} \to M \to N \to 0\]

with the D^i in D_A. In the case A is Gorenstein, D_A equals the category of finite projective modules P_A. This generalises: By a result of R. Y. Sharp [40] the functor $\text{Hom}_A(\omega_A, \cdot)$ gives an exact equivalence $\text{D}_A \simeq \text{P}_A$, hence a finite projective resolution is associated to N. In the case A is local, the approximations and the complex can be chosen to be minimal and unique (with $D^i \cong \omega_A^{d_i}$) and in particular the d^i are invariants of N.

The developments since Auslander and Buchweitz’ fundamental work [6] has included studies of invariants defined by Cohen-Macaulay approximation; [15, 8, 24] among several, ‘injectivity’ and ‘surjectivity’ properties of the approximation maps; [30, 44, 31], and characterisations of quasi-homogeneous isolated singularities; cf. [26, 34], all exclusively in the Gorenstein case. Noteworthy is [41] where A.-M. Simon and J. R. Strooker related some of these invariants with Hochster’s Canonical Element Conjecture and the Monomial Conjecture. In particular these conjectures are equivalent to the vanishing of the δ-invariant of certain cyclic modules over all Gorenstein rings. S. P. Dutta applied the existence of a FID hull to prove a relationship between two of the Serre conjectures on intersection numbers: Failure of vanishing implies failure of higher non-negativity in the Gorenstein case under certain conditions, see [16].

Buchweitz’ unpublished manuscript [12], an important precursor to [6], contains homological ideas which have become important in subsequent developments (e.g. [33]). Auslander and I. Reiten elaborated in [9] on [6], mainly with a view towards artin algebras, instigating several generalisations and analogies to Cohen-Macaulay approximation.
However, the ‘relative’ and continuous aspects have received surprisingly little attention. In [23] M. Hashimoto gave several new examples of Cohen-Macaulay approximation. Perhaps closest to our results is [23, IV 1.4.12] where an affine algebraic group G acts on a positively graded Cohen-Macaulay ring T which is flat over a regular base ring R. Hashimoto considers graded maximal Cohen-Macaulay T-modules (which automatically are R-flat) and graded modules locally of finite injective dimension (not R-flat in general), all with G-action. His result (with trivial group) is hence different from our Theorem 5.1. We also note some explicit 1-parameter families of indecomposable finite length modules N_t (for many Gorenstein rings) such that the minimal MCM approximation M_t is without free summands, see [43].

A central part of the classification problem is to prove the existence of objects with certain properties and to estimate ‘how many’ such objects there are. A natural question is thus whether there is Cohen-Macaulay approximation for flat families of modules. In Theorem 5.1 we give a positive answer to this question. For a Cohen-Macaulay (CM) map $h : S \to T$ (flat!) and an S-flat and finite T-module N there are short exact sequences of S-flat and finite T-modules

\[(1.0.3) \quad 0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to N \to L' \to M' \to 0\]

such that the fibres of these sequences give ‘absolute’ approximations and hulls as in the two sequences (1.0.1). Note that T in general is not a Cohen-Macaulay ring although the fibres of h are. We consider a category mod^d of pairs $\xi = (h : S \to T, N)$ and subcategories MCM, FID and D. They are fibred over the category CM of CM maps ($\xi \mapsto h$) and also fibred over the base category of noetherian rings ($\xi \mapsto S$). The approximation and the hull (1.0.3) induces functors of certain quotient categories fibred in additive categories over CM

\[(1.0.4) \quad \text{mod}^d/D \to \text{MCM}/D \quad \text{and} \quad \text{mod}^d/D \to \text{FID}/D\]

with analogous properties to the absolute case. If $h : S \to T$ is a local CM map, there is an analogous approximation result with minimal choices of the two sequences in (1.0.3), see Corollary 6.3.

A major consequence of these results is that any (numerical and additive) upper semi-continuous invariant of MCM or FID modules by the minimal approximations and hulls induces upper semi-continuous invariants for all finite modules, see Theorem 6.5. Examples of such invariants are given by the ω_A-ranks in the minimal representing complex $D^+(N)$ which is an (infinite) extension to the right of the D_A-complex in (1.0.2).

Auslander’s fundamental module E_A for a normal 2-dimensional singularity $\text{Spec} A$ is given by the CM approximation of the maximal ideal;

\[(1.0.5) \quad 0 \to \omega_A \to E_A \to m_A \to 0\]

which in a certain sense generates all almost split sequences for A, see [7]. As a general example of flat Cohen-Macaulay approximation we define the fundamental module for any finite type CM map of pure relative dimension ≥ 2, see Corollary 7.3 and more generally a ‘fundamental’ functor of projective modules in Proposition 7.2.

An attractive feature of Auslander and Buchweitz’ theory is its axiomatic formulation with several applications besides the classical case described in the first paragraph, e.g. coherent rings with a cotilting module, the graded case, approximation with modules of Gorenstein dimension 0, and coherent sheaves on a projectively embedded Cohen-Macaulay scheme. See [6] and [23] for more examples. We formulate a relative Cohen-Macaulay approximation theory axiomatically in terms of categories $D \subseteq X \subseteq A$ fibred in abelian and additive subcategories over a base
category C. In addition to the Auslander-Buchweitz axioms (AB1-4) for the fibre categories we formulate two axioms (BC1-2) regarding base change properties of the fibred categories. AB1-2 and BC1-2 imply the existence of an approximation and a hull which are preserved by any base change, see Theorem 1.3. If AB3 holds too, we get functoriality and adjointness properties in suitable stable categories fibred in additive categories, see Theorem 1.5. In the case described above C = CM, A is the category mod of pairs \((h : S \to T, \mathcal{N})\) where \(\mathcal{N}\) is a finite \(T\)-module (no \(S\)-flatness) and \(X = \text{MCM}\). Presently we consider only this example (and local variants of it), but there are several other natural applications of the relative theory.

In the second half of the article we proceed to study properties of continuous families of MCM approximations and FID hulls by homological methods. As a consequence of the existence of minimal approximations and hulls of local flat families there are induced natural maps of deformation functors of pairs of algebra and module:

\[
\text{Def}_{(A,N)} \to \text{Def}_{(A,X)} \quad \text{for} \quad X = M, M', L \text{ and } L',
\]

and there are corresponding maps \(\text{Def}_{N}^A \to \text{Def}_{X}^A\) of deformation functors of the modules where \(A\) only deforms trivially. Rather weak grade conditions on \(N\) imply the injectivity of these maps for \(X = L'\) (or \(L\)). If there in addition exists a versal family in \(\text{Def}_{(A,N)}\) (or \(\text{Def}_{N}^A\)) then the maps are isomorphisms for the appropriate category of henselian rings, see Theorem 0.4 and Corollary 0.5. As a consequence each CM algebraic \(k\)-algebra \(A\) with \(A/m_A \cong k\) and \(\dim A \geq 2\) has a finite \(A\)-module \(Q^0\) of finite projective dimension with a universal deformation in \(\text{Def}_{N}^A\), see Corollary 0.4. Proposition 0.8 says that if \(A\) is Gorenstein and \(\dim A - \text{depth } N = 1\) then \(\text{Def}_{(A,N)} \to \text{Def}_{(A,M)}\) is smooth.

Consider a quotient ring \(B = A/I\) defined by a regular sequence \(I = (f_1, \ldots, f_n)\) and an MCM \(B\)-module \(N\). Then \(N\) is also an \(A\)-module with an MCM approximation \(M \to N\). If \(N\) has a lifting to \(A/I^2\), then the composition of natural maps \(\text{Def}_{N}^B \to \text{Def}_{N}^A \to \text{Def}_{M}^A\) is injective, see Theorem 1.1.1. It turns out that the lifting condition is equivalent to the splitting of \(B \otimes_A M \to N\). This generalises [8, 4.5] and might have a certain independent interest.

The second part of the article also contains some general deformation theory of a pair \((h : S \to T, \mathcal{N})\) of an algebra and a \(T\)-module. We define the graded algebra \(\Gamma := T \oplus \mathcal{N}\) and consider the graded André-Quillen cohomology \(\partial H^*(S, \Gamma)\) which govern the obstruction theory of the pair. In the case the graded \(\Gamma\)-module \(J\) is concentrated in degree 0 and 1 there is a natural long-exact sequence which in the case \(J = \Gamma\) (with \(\partial H^*(S, \Gamma) = \partial H^*(S, \Gamma, J)\)) gives the suggestive

\[
0 \to \text{End}_T(N) \to \partial \text{Der}_S(\Gamma) \to \text{Der}_S(T) \to \text{Ext}^1_T(N, N) \to \partial H^1(S, \Gamma) \to H^1(S, T) \to \text{Ext}^2_T(N, N) \to \partial H^2(S, \Gamma) \to H^2(S, T) \to \ldots
\]

It relates the cohomology of the pair with the cohomology groups governing the obstruction theory of the algebra \(T\) and of the module \(\mathcal{N}\). The sequence is used in the proof of the existence of a versal element in \(\text{Def}_{(A,N)}\) where Spec \(A\) is an isolated equidimensional singularity and \(N\) is locally free on the smooth locus, see Theorem 1.1. It is also used to define and study the Kodaira-Spencer class \(\kappa(\Gamma/S/\mathcal{O})\) in \(\partial H^1(S, \Gamma, \Omega_{S/\mathcal{O}} \otimes \Gamma)\) (where \(\mathcal{O} \to S\) is another ring homomorphism) which maps to the ungraded Kodaira-Spencer class \(\kappa(T/S/\mathcal{O})\). In the case the latter is zero we define a ‘secondary’ Kodaira-Spencer class \(\kappa(\sigma, \mathcal{N})\) in \(\text{Ext}^1_T(N, \Omega_{S/\mathcal{O}} \otimes \mathcal{N})\) which depends on a choice of an \(S\)-algebra splitting \(\sigma\). This enables us to define ‘global’ Kodaira-Spencer maps

\[
g^T : \text{Der}_\mathcal{O}(S) \to \partial H^1(S, \Gamma) \quad \text{and} \quad g^{(\sigma, \mathcal{N})} : \text{Der}_\mathcal{O}(S) \to \text{Ext}^1_T(\mathcal{N}, \mathcal{N}).
\]
We also describe how classes and maps are related to the Atiyah class at\(_{\mathcal{O}}(\mathcal{N})\) in \(\text{Ext}^1(N,\Omega_{\mathcal{O}}^1\otimes N)\). These results might have a certain independent interest. The arguments are general and can be formulated in the setting of L. Illusie’s [23].

Injectivity of the corresponding local Kodaira-Spencer maps gives a criterion for a global flat family to be non-trivial. The Kodaira-Spencer maps commute with Cohen-Macaulay approximation and this is applied to show that injectivity of the Kodaira-Spencer map is preserved by Cohen-Macaulay approximation under certain ‘global’ conditions akin to the local ones in Theorem 9.4 and 11.1.

To make the text more reader friendly we have included some background material, e.g. on Cohen-Macaulay approximation and Kodaira-Spencer maps, and some of the central technical tools such as a general ‘cohomology and base change’ result and some language of fibred categories. Many results have analogous parts with similar arguments and the policy has been to give a fairly detailed proof of one case and leave the other cases to the reader.

2. Preliminaries

All rings are commutative. If \(A\) is a ring, \(\text{Mod}_A\) denotes the category of \(A\)-modules and \(\text{mod}_A\) denotes the full subcategory of finite \(A\)-modules. If \(A\) is local then \(\mathfrak{m}_A\) denotes the maximal ideal. Subcategories are usually full and essential.

2.1. Categorical Cohen-Macaulay approximation. We briefly recall some of the main features of Cohen-Macaulay approximation as introduced by Auslander and Buchweitz in [6]. In this section let \(A\) be an abelian category and \(D \subseteq X \subseteq A\) additive subcategories. Let \(X\) denote the subcategory of \(A\) of objects \(N\) which have finite resolutions \(0 \to M_n \to \ldots \to M_0 \to N \to 0\) with the \(M_i\) in \(X\). If \(n\) is the smallest such number, then \(X\)-res.dim \(N = n\). Let \(X\)-inj.dim \(N\) be the minimal \(n\) (possibly \(\infty\)) such that \(\text{Ext}^i_A(M,N) = 0\) for all \(i > n\) and all \(M\) in \(X\). Let \(X^+\) denote the subcategory of objects \(L\) in \(A\) with \(X\)-inj.dim \(L = 0\); the right complement of \(X\). The left complement \(X^\perp\) is defined analogously.

Let \(N\) be an object in \(A\). An \(X\)-approximation and a \(\check{D}\)-hull of \(N\) are exact sequences as in \([1.1.1]\) with \(L, L'\) in \(\check{D}\) and \(M, M'\) in \(X\).

In general any \(f : M \to N\) in \(A\) is called a right \(X\)-approximation of \(N\) if \(M\) is in \(X\) and any \(f' : M' \to N\) with \(M'\) in \(X\) factorises through \(f\). Dually, \(g : N \to L\) is called a left \(X\)-approximation of \(N\) if \(L\) is in \(X\) and any \(g' : N \to L'\) with \(L'\) in \(X\) factorises through \(g\).

Consider the following conditions on the triple of categories \((A, X, D)\).

\begin{enumerate}
 \item \((\text{AB1})\) \(X\) is exact in \(A\) (\(X\) is closed under direct summands and extensions).
 \item \((\text{AB2})\) \(X\) is a cogenerator for \(X\), i.e. for each object \(M\) in \(X\) there is an object \(D\) in \(D\) and a short exact sequence \(M \to D \to M'\) with \(M'\) in \(X\).
 \item \((\text{AB3})\) \(X\) is \(X\)-injective, i.e. \(D \subseteq X^+\).
 \item \((\text{AB4})\) \(X\)-epimorphisms in \(X\) are admissible (i.e. their kernels are contained in \(X\)).
\end{enumerate}

If \(\text{AB1}\) and \(\text{AB2}\), there exist \(X\)-approximations and \(\check{D}\)-hulls for all objects in \(X\) \([6, 1.1]\). Assume \(\text{AB1-3}\). Then any \(X\)-approximation is a right \(X\)-approximation and any \(\check{D}\)-hull is a left \(\check{D}\)-approximation. An \(X\)-approximation determines a \(\check{D}\)-hull and vice versa through the following diagram of short exact sequences; the upper horizontal and right vertical being an \(X\)-approximation and a \(\check{D}\)-hull of \(N, D\) is in
D. The boxed square is (co)cartesian (see [31, 1.4]):

\[
\begin{array}{ccc}
L & \to & M \\
\downarrow & & \downarrow \Box' \\
L' & \to & M'
\end{array}
\]

Moreover, the category \(\mathcal{D} \) is determined by \(X \subset A \). Indeed \(\mathcal{D} = X \cap X^\perp \). By [31, 3.9] monomorphisms in \(\mathcal{D} \) are admissible and \(\mathcal{D} = X \cap X^\perp \). Also \(X = \mathcal{D} \cap X = \mathcal{D} \cap X \).

If \(X/\mathcal{D} \) denotes the quotient category, the \(X \)-approximation induces a right adjoint to the inclusion functor \(X/\mathcal{D} \subset X/\mathcal{D} \) and the \(\hat{D} \)-hull induces a left adjoint to the inclusion functor \(\hat{D}/\mathcal{D} \subset X/\mathcal{D} \), see [31, 2.8].

A morphism \(f : M \to N \) in \(A \) is called right minimal if for any \(g : M \to M \) with \(fg = f \) it follows that \(g \) is an automorphism. Dually, \(f \) is called left minimal if for any \(h : N \to N \) with \(hf = f \) it follows that \(h \) is an automorphism. Note that if \(f : M \to N \) and \(f : M' \to N \) both are right minimal then there exists an isomorphism \(g : M \to M' \) with \(f = f'g \), and similarly for left minimal morphisms.

We will simply call an \(X \)-approximation (a \(D \)-hull) for minimal if it is right (left) minimal.

Example 2.1. Suppose \(A \) is a Cohen-Macaulay ring which possesses a canonical module \(\omega_A \) in the sense that any localisation in a maximal ideal gives a maximal Cohen-Macaulay module of finite injective dimension and Cohen-Macaulay type 1, cf. [11, 3.3.16]. Let \(\text{MCM}_A \) denote the category of maximal Cohen-Macaulay (MCM) \(A \)-modules and put \(D_A := \text{Add}(\omega_A) \). Then the triple \((A,X,D) = (\text{mod}_A, \text{MCM}_A, D_A)\) satisfies properties AB1-4, cf. [23, I 4.10.11] and \(X = \text{mod}_A \). If \(A \) in addition is a local ring, then the \(\text{MCM}_A \)-approximation and the \(D_A \)-hull can be chosen to be minimal, cf. [11, Sec. 3].

Let \(\text{FID}_A \) denote the subcategory of finite \(A \)-modules \(E \) which have locally finite injective dimension, i.e. \(\text{inj.dim}_{A_p} E_p < \infty \) for all \(p \in \text{Spec } A \). The approximation result implies that \(\text{FID}_A = \hat{D}_A \). Let \(L \) be in \(\hat{D}_A \). By induction on \(D_A\)-res.dim \(L \) \(L \) is in \(\text{FID}_A \). Conversely let \(E \) be in \(\text{FID}_A \). If \(L \to M \to E \) is an \(\text{MCM}_A \)-approximation of \(E \) then \(M \) also has locally finite injective dimension. Let \(M^\vee \) denote \(\text{Hom}_A(M, \omega_A) \) and choose a surjection \(A^{\oplus n} \to M^\vee \). Both \(M^\vee \) and the kernel \(M_1 \) are MCM. Applying \(\text{Hom}_A(-, \omega_A) \) gives (by duality theory) the short exact sequence \(M \to \omega_A^{\oplus n} \to M^\vee \). But \(i \) splits since \(\text{Ext}_A^1(M_1, M) = 0 \) by [11, 3.3.3] and so \(M \) is in \(D_A \) and \(E \) is in \(\hat{D}_A \).

2.2. The representing complex. Consider an abelian category \(A \) and additive subcategories \(D \subset X \subset A \). A \(DX\)-resolution of an object \(N \) in \(A \) is a finite resolution \(C^* \to N \) with \(C^i \in D \) for \(i < 0 \) and \(C^0 \in X \). If \(L := \text{coker}(d^{-2} : C^{-2} \to C^{-1}) \), then the short exact sequence \(L \to C^0 \to N \) is an \(X \)-approximation.

A \(\hat{D} \)-coresolution of \(N \) is a coresolution \(N \to +C^*(N) \) such that \(+C^0 \in \hat{D} \), \(+C^i \in D \) and \(\ker d^i \in X \) for \(i > 0 \). If \(M' := \ker d^1 \) then the short exact sequence \(N \to +C^0 \to M' \) is a \(D \)-hull. Given AB1 and AB2, each \(N \) in \(X \) has a \(DX \)-resolution and a \(\hat{D} \)-coresolution. Finally, a bounded below \(D \)-complex \(D^*(N) : \ldots \to D^{-1} \to D^0 \to D^1 \to \ldots \) with \(\ker d^i \in X \) for all \(i \geq 0 \) and its only non-trivial cohomology in degree zero with \(H^i(D^*) \cong N \) is called a \(D \)-complex representing \(N \).

A representing complex splits into (and is reconstructed from) a \(DX \)-resolution given by \(\ldots \to D^{-1} \to \ker d^0 \to H^0(D^*) = N \) and a \(\hat{D} \)-coresolution \(N \to \text{coker } d^{-1} \to D^1 \to \ldots \) where \(N \to \text{coker } d^{-1} \) is induced by \(\text{ker } d^0 \to D^0 \).
Lemma 2.2. Assume \(\text{Ext}_{1}^{1}(X, \hat{D}) = 0 \). Suppose \(f : N_{1} \to N_{2} \) is in \(X \). Assume \(F^{*}(N_{i}) \) exists for \(i = 1, 2 \) where \(F^{*}(N_{i}) \) denotes one of the complexes \(-C^{*}(N_{i})\), \(+C^{*}(N_{i})\) or \(D^{*}(N_{i}) \). Then \(f \) can be extended to an arrow of chain complexes \(f^{*} : F^{*}(N_{1}) \to F^{*}(N_{2}) \) which is uniquely defined up to homotopy.

Assume AB1-3 for the triple of categories \((A, X, D)\). Then \(N \mapsto -C^{*}(N) \), \(N \mapsto +C^{*}(N) \) and \(N \mapsto D^{*}(N) \) induce functors to the homotopy categories of chain complexes as follows:

\[
\begin{align*}
- C^{*} : \hat{X} &\to K^{0}(X), \\
+ C^{*} : \hat{X} &\to K^{+}(\hat{D}), \\
D^{*} : \hat{X}/D &\to K^{+}(D).
\end{align*}
\]

Proof. The proof for \(-C^{*}(N)\) and \(+C^{*}(N)\) follows standard lines for constructing chain maps and homotopies. The assumption \(\text{Ext}_{1}^{A}(X, \hat{D}) = 0 \) is used every time a lifting or extension of an arrow is required.

Let \((D_{1}^{i}, d_{1}^{i}) = D^{*}(N_{i})\) and let \(M_{i} = \ker d_{1}^{i} \) and \(L_{i} = \text{im} d_{1}^{i} \). Then there are short exact sequences \(L_{i} \to M_{i} \to N_{i} \) which by assumption are \(X \)-approximations. Since \(\text{Ext}_{1}^{A}(M_{1}, L_{2}) = 0 \), the arrow \(N_{1} \to N_{2} \) extends to the \(X \)-approximation and further on to the negative part of the complexes. If \(M_{i}' = \ker d_{1}^{i} \) then the \(M_{i}' \) are in \(X \) by assumption and there are short exact sequences \(M_{i} \to D_{1}^{i} \to M_{i}' \). There is an extension of \(M_{1} \to D_{1}^{1} \to D_{1}^{2} \) and an induced arrow \(M_{1}' \to M_{2}' \) which again extends and so on to a chain map \(f^{*} : D_{1}^{1} \to D_{2}^{2} \).

Let \(g' : D_{1}^{1} \to D_{2}^{2} \) be a chain map, put \(g = H^{0}(g') \), \(s = f - g \) and \(s^{*} = f^{*} - g^{*} \). Suppose \(s \) factors through \(D \) in \(D \); \(s = a b \) with \(a : D \to N_{2} \). Since \(\text{Ext}_{1}^{A}(D, L_{2}) = 0 \) there exist a lifting \(\bar{a} : D \to M_{2} \) of \(a \). Put \(h_{N} = \bar{a} b \) and continue similarly to construct a homotopy \(h \) for the extended negative part:

\[
\begin{array}{cccccccc}
\cdots & D_{1}^{1} & \longrightarrow & D_{1}^{1} & \longrightarrow & M_{1} & \longrightarrow & N_{1} & \longrightarrow & 0 \\
\downarrow h^{-1} & \downarrow s & \downarrow h_{M} & \downarrow \varepsilon^{(-)} & \downarrow h_{N} & \downarrow s & \downarrow & \\
\cdots & D_{2}^{2} & \longrightarrow & D_{2}^{2} & \longrightarrow & M_{2} & \longrightarrow & N_{2} & \longrightarrow & 0
\end{array}
\]

In particular \(h_{M} : M_{1} \to D_{2}^{-1} \) can be extended to an \(h^{0} : D_{1}^{0} \to D_{2}^{-1} \) with \(s^{-1} = h^{0} d_{1}^{1} + D_{2}^{-2} h^{-1} \). The construction of the \(h^{i} \) for \(i > 0 \) is standard.

Lemma 2.3. Assume AB1-3 for the triple of categories \((A, X, D)\). Given an exact sequence \(\varepsilon : 0 \to N_{1} \to N_{2} \to N_{3} \to 0 \) with objects in \(X \). Then there are exact sequences of complexes where \(\varepsilon \) equals the cohomology:

1. \(0 \to -C^{*}(N_{1}) \to -C^{*}(N_{2}) \to -C^{*}(N_{3}) \to 0 \)
2. \(0 \to +C^{*}(N_{1}) \to +C^{*}(N_{2}) \to +C^{*}(N_{3}) \to 0 \)
3. \(0 \to D^{*}(N_{1}) \to D^{*}(N_{2}) \to D^{*}(N_{3}) \to 0 \) (termwise split exact)

Proof. Choose \(X \)-approximations \(L_{i} \to M_{i} \to N_{i} \) for \(i = 1, 3 \). There is an \(3 \times 3 \) commutative diagram of 6 short exact sequences which extends the “horseshoe” diagram, cf. [23 1.12.11]. One obtains an \(X \)-approximation of \(N_{2} \) and short exact sequences \(m : M_{1} \to M_{2} \to M_{3} \) and \(L_{1} \to L_{2} \to L_{3} \) in \(X \) and \(D \) respectively since both categories are closed by extensions (by AB1 and [3 3.8]). If \(D'_{1} \to L_{2} \) are finite \(D \)-resolutions then since \(\text{Ext}_{1}^{A}(D_{3}^{-1}, L_{1}) = 0 \) there is a lifting \(\eta_{3} : D_{3}^{-1} \to L_{2} \) of \(\eta_{3} \) which combined with \(\eta_{1} \) gives \(\eta_{2} : D_{3}^{-1} \prod D_{3}^{-1} \to L_{2} \). The kernels of the resulting arrows between short exact sequences give a short exact sequence of objects in \(D(S) \). The argument is repeated. Splicing with \(m \) in degree zero the short exact sequence of \(-C^{*}\)-resolutions in (i) is obtained.

Choose short exact sequences \(M_{i} \to D_{1}^{i} \to M_{i}' \) for \(i = 1, 3 \) as in AB2. Since \(\text{Ext}_{1}^{A}(M_{3}, D_{1}^{1}) = 0 \) there is an extension to an arrow of short exact sequences from \(m \) to \(D_{1}^{1} \to D_{2}^{1} \to D_{2}^{1} \) with \(D_{2}^{1} = D_{1}^{1} \prod D_{1}^{1} \) and \(M_{2}':= \text{coker}(M_{2} \to D_{2}^{1}) \in X \) by AB1. Repeated application of this argument gives a short exact sequence of...
D-coresolutions and splicing with the sequences in (i) gives (iii). Pushout of \(M_1 \to D_1^0 \to M'_1 \) along \(M_i \to N_i \) gives a short exact sequence of D-hulls and splicing with \(D_1^1 \to D_1^2 \to \ldots \) gives (ii).

\[\square \]

2.3. Base change. The main tool for reducing properties to the fibres in a flat family will be the base change theorem. We follow the quite elementary and general approach of A. Ogus and G. Bergman [37].

Definition 2.4. Let \(h : S \to T \) be a ring homomorphism, \(I \) an \(S \)-module, \(N \) a \(T \)-module. For each \(u \in I \) there is a natural \(T \)-linear map \(\varphi(u) : N \to N \otimes_S I; \ n \mapsto n \otimes u \). Let \(F \) be an \(S \)-linear functor of some additive subcategory of \(\text{Mod}_S \) to \(\text{Mod}_T \). Then the exchange map \(e_I \) for \(F \) is defined as the \(T \)-linear map \(e_I : F(S) \otimes_S I \to F(I) \) given by \(\xi \otimes u \mapsto \varphi(u) \xi \). Let \(\mathbf{m} \cdot \text{Spec} T \) denote the set of closed points in \(\text{Spec} T \).

Proposition 2.5. Let \(h : S \to T \) be a ring homomorphism with \(S \) noetherian. Suppose \(\{F^q : \text{mod}_S \to \text{mod}_T\}_{q \geq 0} \) is an \(h \)-linear cohomological \(\delta \)-functor.

(i) If the exchange map \(e_{S/n}^q : F^q(S) \otimes_S S/n \to F^q(S/n) \) is surjective for all \(n \) in \(Z = \text{im} \{ \mathbf{m} \cdot \text{Spec} T \to \text{Spec} S \} \), then \(e_I^q : F^q(S) \otimes_S I \to F^q(I) \) is an isomorphism for all \(I \) in \(\text{mod}_S \).

(ii) If \(e_{S/n}^{q+1} \) is surjective for all \(n \) in \(Z \), then \(e_I^q \) is an isomorphism for all \(I \) in \(\text{mod}_S \) if and only if \(F^q(I) \) is \(S \)-flat.

Note that if the \(F^q \) in addition extend to functors of all \(S \)-modules \(F^q : \text{Mod}_S \to \text{Mod}_T \) which commute with direct limits, then the conclusions are valid for all \(I \) in \(\text{Mod}_S \).

Example 2.6. Suppose \(S \) and \(T \) are noetherian. Let \(K^* : K^0 \to K^1 \to \ldots \) be a complex of \(S \)-flat and finite \(T \)-modules. Define \(F^q : \text{mod}_S \to \text{mod}_T \) by \(F^q(I) = H^q(K^* \otimes_S I) \). Then \(\{F^q\}_{q \geq 0} \) is an \(h \)-linear cohomological \(\delta \)-functor which extends to all \(S \)-modules and commutes with direct limits.

Example 2.7. Suppose \(S \) and \(T \) are noetherian. Let \(M \) and \(N \) be finite \(T \)-modules with \(N \) \(S \)-flat. Then the functors \(F^q : \text{mod}_S \to \text{mod}_T \) defined by \(F^q(I) = \text{Ext}_T^q(M, N \otimes_S I) \) for \(q \geq 0 \) give an \(h \)-linear cohomological \(\delta \)-functor which extends to all \(S \)-modules and commutes with direct limits.

Let \(S \to T \) and \(S \to S' \) be ring homomorphisms, \(M \) a \(T \)-module, \(T' = T \otimes SS' \) and \(N' \) a \(T' \)-module. Then there is a change of rings spectral sequence

\[(2.7.1) \quad E_2^{pq} = \text{Ext}_T^q((\text{Tor}_T^p(M, S'), N')), \text{ Ext}_T^{p+q}(M, N') \Rightarrow E_2^{p+q}(M, N') \]

which, in addition to the isomorphism \(\text{Hom}_T((M \otimes SS'), N') \cong \text{Hom}_T(M, N') \), gives edge maps \(\text{Ext}_T^q(M \otimes SS', N') \to \text{Ext}_T^q(M, N') \) for \(q > 0 \) which are isomorphisms too if \(M \) (or \(S' \)) is \(S \)-flat. If \(I' \) is an \(S' \)-module we can compose the exchange map \(e_{I'}^q \) (regarding \(I' \) as \(S \)-module) with the inverse of this edge map for \(N' = N \otimes SS' \) and obtain a map \(e_{I'}^q \) of \(T' \)-modules

\[(2.7.2) \quad e_{I'}^q : \text{Ext}_T^q(M, N) \otimes SS' \to \text{Ext}_T^q(M \otimes SS', N \otimes SS'). \]

Remark 2.8. This is the base change map (in the affine case) considered by A. Altman and S. Kleiman, their conditions are slightly different, see [11, 1.9].

We will use the following geometric notation. Suppose \(h : S \to T \) is a ring homomorphism, \(M \) is a \(T \)-module and \(s \) is a point in \(\text{Spec} S \) with residue field \(k(s) \). Then \(M_s \) denotes the fibre \(M \otimes_S k(s) \) of \(M \) at \(s \) with its natural \(T_s = T \otimes_S k(s) \)-module structure. Now Proposition 2.5 implies the following:
Corollary 2.9. Suppose \(S \to T \) and \(S \to S' \) are homomorphisms of noetherian rings, \(M \) and \(N \) are finite \(T \)-modules, \(Z = \text{im}(\text{m-Spec} T \to \text{Spec} S) \) and \(q \) is an integer. Assume that \(M \) (if \(q > 0 \)) and \(N \) are \(S \)-flat.

(i) If \(\text{Ext}_{T_2}^{q+1}(M_s, N_s) = 0 \) for all \(s \in Z \), then \(c_T^q \), in (2.7.2) is an isomorphism for all \(S' \)-modules \(P \).

(ii) If in addition \(\text{Ext}_{T_2}^{q-1}(M_s, N_s) = 0 \) for all \(s \in Z \), then \(\text{Ext}_T^q(M, N) \) is \(S \)-flat.

3. Categories fibred in additive categories

We will phrase our results in the language of fibred categories\(^1\) We therefore briefly recall some of the basic notions, taken mainly from A. Vistoli's article in [18]. Then we define quotients of categories fibred in additive categories.

Consider a category \(C \). Given a category over \(C \), i.e., a functor \(p : F \to C \). To an object \(T \) in \(C \), let \(F(T) \); the fiber of \(F \) over \(T \), denote the subcategory of arrows \(\varphi \) in \(F \) such that \(p(\varphi) = \text{id}_T \). An arrow \(\varphi_1 : \xi \to \xi_1 \) in \(F \) is cocartesian if for any arrow \(\varphi_2 : \xi \to \xi_2 \) in \(F \) and any arrow \(f_{21} : p(\xi_1) \to p(\xi_2) \) in \(C \) with \(f_{21}p(\varphi_1) = p(\varphi_2) \) there exists a unique arrow \(\varphi_{21} : \xi_1 \to \xi_2 \) with \(p(\varphi_{21}) = f_{21} \) and \(\varphi_{21}\varphi_1 = \varphi_2 \). If for any arrow \(f : T \to T' \) in \(C \) and any object \(\xi \) in \(F \) with \(p(\xi) = T \) there exists a cocartesian arrow \(\varphi : \xi \to \xi' \) for some \(\xi' \) with \(p(\varphi) = f \), then \(F \) (or rather \(p : F \to C \)) is a fibred category. Moreover, \(\xi' \) will be called a base change of \(\xi \) by \(f \). If \(\xi'' \) is another base change of \(\xi \) by \(f \) then \(\xi' \) and \(\xi'' \) are isomorphic over \(T' \) by a unique isomorphism. We shall also say that a property \(P \) of objects in the fibres of \(F \) is preserved by base change if \(P(\xi) \) implies \(P(\xi') \) for any base change \(\xi' \) of \(\xi \). A morphism of fibred categories is a functor \(F : F_1 \to F_2 \) with \(p_2F = p_1 \) such that \(\varphi \) cocartesian implies \(F(\varphi) \) cocartesian. If \(F \) is an inclusion is a category fibred in groupoids (often abbreviated to groupoid) if all fibres \(F(T) \) are groupoids. Then all arrows in \(F \) are cocartesian. If all fibres \(F(T) \) only contain identities, then \(F \) is called a fibred category fibred in sets.

Lemma 3.1. Given functors \(F : F \to G \) and \(q : G \to C \) and suppose \(q \) is fibred in sets. Then \(F \) is fibred (in groupoids/sets) if and only if \(qF \) is fibred (in groupoids/sets).

If \(T \) is an object in a category \(C \) let \(C/T \) denote the comma category of arrows to \(T \). Then the forgetful functor \(C/T \to C \) is fibred in sets. If \(p : F \to C \) is fibred (in groupoids/sets), \(\xi \) is an object in \(F \) and \(T = p(\xi) \), then there is a natural functor \(p_\xi : F/\xi \to C/T \). The composition \(F/\xi \to F \to C \) is clearly fibred (in groupoids/sets) and hence \(F/\xi \to C/T \) is fibred (in groupoids/sets) by Lemma 3.1. If \(p : F \to C \) is a functor and \(C' \) is a subcategory of \(C \) we can define the restriction \(p' : F_{/C'} \to C' \) of \(F \) to \(C' \) by picking for \(F_{/C'} \) the objects and morphisms in \(F \) that \(p \) takes into \(C' \). It follows that \(F_{/C'} \) is fibred (in groupoids/sets) if \(F \) is.

The composition of two cocartesian arrows is cocartesian and isomorphisms are cocartesian. Hence the subcategory \(F_{/C} \) of cocartesian arrows in a fibred category \(F \) over \(C \) is fibred in groupoids. If \(F \) is fibred in groupoids there is an associated category fibred in sets \(F \to C \) defined by identifying all isomorphic objects in all fibres \(F(T) \) and identifying arrows accordingly. If \(F \) is fibred in sets one defines a functor \(F : C \to \text{Sets} \) by \(F(T) := F(T) \) and \(F(f) : F(T) \to F(T') \) is defined by \(F(f)(\xi) := \varphi_{\xi,f} \) where \(\varphi_{\xi,f} : \xi \to \eta_{\xi,f} \) is the (in this case) unique cocartesian lifting.

\(^1\)We have chosen to work with rings instead of (affine) schemes. Our definition of a fibred category \(p : F \to C \) reflects this choice and is equivalent to the functor of opposite categories \(p^{\text{op}} : F^{\text{op}} \to C^{\text{op}} \) being a fibred category as defined in [18]. M. Artin called \(p \) a cofibred category in [3], but this seems not to be common usage.
of \(f \). From a functor \(G : C \rightarrow \text{Sets} \) one defines a category fibred in sets, and these two operations are inverse up to natural equivalences.

Definition 3.2. An additive (abelian) category \(F \) over \(C \) is a functor \(p : F \rightarrow C \) such that:

(i) The fibre \(F(T) \) is an additive (abelian) category for all objects \(T \) in \(C \).

(ii) For all objects \(\xi_1 \) and \(\xi_2 \) in \(F \) and arrows \(f : p(\xi_1) \rightarrow p(\xi_2) \) in \(C \),

\[
\text{Hom}_f(\xi_1, \xi_2) := \{ \varphi \in \text{Hom}_p(\xi_1, \xi_2) \mid p(\varphi) = f \}
\]

is an abelian group, and composition of arrows

\[
\text{Hom}_{f_1}(\xi_2, \xi_3) \times \text{Hom}_{f_2}(\xi_1, \xi_2) \rightarrow \text{Hom}_{f_3}(\xi_1, \xi_3)
\]

is bilinear.

A morphism \(F : F_1 \rightarrow F_2 \) of additive (abelian) categories over \(C \) is a linear functor \(F \) over \(C \), i.e. which gives linear maps of \(\text{Hom} \)-groups. If in addition \(F \) is an inclusion of categories then \(F_1 \) is an additive (abelian) subcategory of \(F_2 \) over \(C \). A category \(F \) over \(C \) is fibred in additive (abelian) categories, abbreviated by \(\text{FAd} \) (\(\text{FAb} \)), if \(F \) is both fibred and additive (abelian) over \(C \). Morphisms should be linear and preserve cocartesian arrows. A \(\text{FAd} \) subcategory is a morphism of \(\text{FAd} \)s which is equivalent if \(F \) and \(\text{Hom} \) is an inclusion of categories. For \(i = 1, 2 \) let \(A_i \) be a \(\text{FAb} \) over \(C \) and \(X_i \subseteq A_i \), a \(\text{FAd} \) subcategory such that the fibre categories \(X_i(T) \) are exact. Then a morphism of \(\text{FAd} \)s \(F : X_1 \rightarrow X_2 \) is exact if \(F \) preserves short exact sequences for all the fibre categories.

Note that in a \(\text{FAd} \) finite (co)products in the fibres are preserved by base change. Given a \(\text{FAd} \) subcategory \(D \subseteq F \). Two arrows \(\varphi_1 \) and \(\varphi_2 \) in \(F \) are \(D \)-equivalent if \(p(\varphi_1) = p(\varphi_2) \) and \(\varphi_1 - \varphi_2 \) factors through an object in \(D \). Write \(\varphi_1 \sim \varphi_2 \). Define the quotient category \(F/D \) over \(C \) to have the same objects as \(F \) and \(\text{Hom}_{F/D}(\xi_1, \xi_2) := \text{Hom}_F(\xi_1, \xi_2)/\sim \). The natural map to \(C \) makes \(F/D \) an additive category over \(C \) and the natural functor \(F \rightarrow F/D \) is linear over \(C \).

Lemma 3.3. If \(\varphi_1 : \xi \rightarrow \xi_1 \) is cocartesian in \(F \) and \(\varphi : \xi_1 \rightarrow \xi_2 \) is any arrow such that \(\varphi \varphi_1 \sim 0 \) then \(\varphi \sim 0 \).

Proof. Suppose \(\varphi \varphi_1 - \beta \alpha \) with \(\alpha : \xi \rightarrow \delta \) and with \(\delta \) in \(D \). If \(p(\beta) : T' \rightarrow T_2 \) then since \(D \) is a fibred subcategory there exists an arrow \(\delta \rightarrow \delta_2 \) which is cocartesian in \(F \) and with \(p(\delta_2) = p(\xi_2) = T_2 \). Replacing \(\delta \) with \(\delta_2 \) we assume \(p(\delta) = T_2 \). Since \(\varphi_1 \) is cocartesian there exists a unique arrow \(\tau : \xi_1 \rightarrow \delta \) with \(\delta \varphi_1 = \alpha \). Since \(\varphi_1 \) is cocartesian uniqueness implies that \(\beta \tau = \varphi \).

Lemma 3.4. Given a \(\text{FAd} \) subcategory \(D \subseteq F \) over \(C \), then the quotient category \(F/D \) is \(\text{FAd} \) over \(C \) and the quotient morphism \(F \rightarrow F/D \) is a morphism of \(\text{FAd} \)s.

Proof. We first show that if \(\varphi_1 : \xi \rightarrow \xi_1 \) is cocartesian in \(F \) then its image \([\varphi_1]\) in \(F/D \) is cocartesian. Given \(\varphi_2 : \xi \rightarrow \xi_2 \) and \(\theta : \xi_1 \rightarrow \xi_2 \) with \(\theta \varphi_1 = \varphi_2 \). Suppose \(\theta' : \xi_1 \rightarrow \xi_2 \) with \(p(\theta') = p(\theta) \) satisfies \(\theta' \varphi_1 \sim \varphi_2 \). If \(\varphi = \theta' - \theta \) then \(\varphi \varphi_1 \sim 0 \) so by Lemma 3.3 \(\varphi \sim 0 \). Now we show that \([\theta] \) is independent of the representations of the other maps. Let \(\varphi'_1 : \xi \rightarrow \xi_1 \) with \(\varphi'_1 \sim \varphi_1 \) and suppose (as we may) that \(\theta' \) satisfies \(\theta' \varphi'_1 = \varphi'_2 \) with \(p(\theta') = p(\theta) \). Again let \(\varphi = \theta' - \theta \). Then \(0 \sim \varphi'_2 - \varphi_2 = \theta' \varphi'_1 - \theta \varphi_1 = \theta' (\varphi'_1 - \varphi_1) + \varphi \varphi_1 \sim \varphi \varphi_1 \). By Lemma 3.3 \(\varphi \sim 0 \). Given \(f : T \rightarrow T_1 \) and \(\xi \) in \(F/D \) with \(p(\xi) = T \) there exists a cocartesian \(\varphi_1 : \xi \rightarrow \xi_1 \) in \(F \) with \(p(\varphi_1) = f \) and by what we have done \([\varphi_1]\) is cocartesian in \(F/D \).

Note that there are in general more cocartesian arrows in \(F/D \) than those in the image of cocartesian arrows in \(F \). The following lemma characterises the cocartesian arrows in the quotient category:
Lemma 3.5. If \(\rho \) and \(\theta \) are composable arrows in \(F \) with \(\rho \) cocartesian and \(\theta \) inducing an isomorphism in \(F/D \), then \([\theta \rho] \) is cocartesian in \(F/D \). Conversely, suppose \([\varphi] : \xi_1 \to \xi_2 \) is cocartesian in \(F/D \) over \(f : T_1 \to T_2 \). Then for any base change \(\rho : \xi_1 \to \xi_3 \) of \(\xi_1 \) over \(f \) in \(F \), the induced arrow \(\varphi^# : \xi_1^# \to \xi_2^# \) gives an isomorphism in \(F/D(T_2) \).

Proof. If \(\rho : \xi_1 \to \xi_2 \) is cocartesian and \([\theta] : \xi_2 \to \xi_3 \) is an isomorphism, let \(\varphi = \theta \rho \). If \(\tau : \xi_1 \to \xi_4 \) and there is a map \(f : T_3 \to T_4 \) such that \(p(\tau) = f(p(\theta))(p(\rho)) \), then there is a unique arrow \(\mu : \xi_2 \to \xi_4 \) above \(f(\rho) \tau \) with \(\mu \rho = \tau \). This gives the arrow \([\mu] [\theta]^{-1} : \xi_3 \to \xi_4 \). If \(\mu_i : \xi_3 \to \xi_4 \) for \(i = 1, 2 \) are two arrows with \([\mu_i][\varphi] = [\tau] \), then \([\mu_1][\theta] = [\mu_2][\theta] \) since \(\rho \) is cocartesian in \(F/D \) by Lemma 3.4. Since \([\theta] \) is an isomorphism, \([\mu_1] = [\mu_2] \).

Conversely, since \([\varphi] \) is cocartesian there is a unique arrow \([\psi] : \xi_2 \to \xi_1^# \) in \(F/D(T_2) \) with \([\psi \varphi] = [\rho] \). By Lemma 3.5 \([\rho] \) is cocartesian. It follows that \([\varphi^#] = [\psi]^{-1} \).

4. Cohen-Macaulay approximation in fibred categories

Given a category \(C \) and a category \(A \) fibred in abelian categories over \(C \). Base change by an \(f : T \to T' \) in \(C \) applied to the objects in a complex \(\ldots \to N_d \to N_{d-1} \to \ldots \) in \(A(T) \) can by Lemma 3.5 be uniquely extended to a complex and yield a commutative diagram where the vertical arrows are the cocartesian base change arrows:

\[
\begin{array}{cccc}
\cdots & N_{d+1} & \longrightarrow & N_d & \longrightarrow & N_{d-1} & \longrightarrow & \cdots \\
\downarrow & & & \downarrow & & & \downarrow & \\
\cdots & N_{d+1}^\# & \longrightarrow & N_d^\# & \longrightarrow & N_{d-1}^\# & \longrightarrow & \cdots \\
\end{array}
\]

Similarly base change of a commutative diagram \(\Delta \) in \(A(T) \) gives a commutative diagram \(\Delta^\# \) and the base change arrows give an arrow of diagrams \(\Delta \to \Delta^\# \).

Let \(X \subseteq A \) be a FAd subcategory. Consider the following two conditions on the pair \((A, X)\) and an object \(T \) in \(C \).

(BC1) If \(\alpha : A_1 \to A_2 \) is an epimorphism in \(A(T) \) and \(f : T \to T' \) is an arrow in \(C \) then any base change of \(\alpha \) by \(f \) is an epimorphism in \(A(T') \).

(BC2) Let \(\xi : 0 \to A \to B \to M \to 0 \) be an exact sequence in \(A(T) \) with \(M \) in \(X(T) \) and \(f : T \to T' \) is an arrow in \(C \). Then any base change of \(\xi \) by \(f \) is an exact sequence in \(A(T') \).

The first condition would be satisfied if base change had a right adjoint. The second condition mimics flatness for all objects in \(X(T) \).

The following is an elementary, but essential technical consequence of BC1.

Lemma 4.1. Let \(A \) be a category fibred in abelian categories over \(C \) which satisfies BC1 for \(T \) in \(C \). Let \(c : \ldots \to L_n \to L_{n-1} \to \ldots \) be an acyclic complex in \(A(T) \) which remains exact after a base change \(\ldots \to L_n^\# \to L_{n-1}^\# \to \ldots \) of \(c \) by \(f : T \to T' \). Then base change of \(K_n := \ker(d_{n-1} : L_{n-1} \to L_{n-2}) \) by \(f \) is isomorphic to \(\ker d_{n-1}^\# \) for all \(n \).

Proof. Let \(Q_n = \ker d_{n-1}^\# \). Since the composition \(K_n^\# \to L_{n-1}^\# \to L_{n-2}^\# \) by Lemma 3.5 is zero (as \(K_n \to K_n^\# \) is cocartesian), there is a factorisation \(\rho : K_n^\# \to Q_n \) of \(K_n^\# \to L_{n-1}^\# \). On the other hand the composition \(L_{n+1}^\# \to L_n^\# \to K_n^\# \) is zero too, hence there is an arrow from \(\ker d_{n+1}^\# \cong Q_n \) to \(K_n^\# \) which is a section of \(\rho \). By assumption \(L_n^\# \to K_n^\# \) is an epimorphism. It follows that \(Q_n \cong K_n^\# \). \(\Box \)
Definition 4.2. Given FAd subcategories $D \subseteq X \subseteq A$. Let $X^B(T)$ denote the additive subcategory of $A(T)$ with objects N which have a finite X-resolution $M_* \to N$ which is preserved as resolution by any base change. Let $X^B \subseteq A$ denote the resulting FAd subcategory. Let $D^B(T)$ denote the additive subcategory of $A(T)$ with objects L which have a $D(T)$-resolution $D_* \to L$ which is preserved as resolution by any base change. Let $D^B \subseteq A$ denote the resulting FAd subcategory.

The reasoning in the beginning of this section combined with Lemma 2.2 gives the following.

Lemma 4.3. Let $\eta: \ldots \to E_n \to E_{n-1} \to \ldots$ and $\lambda: \ldots \to F_n \to F_{n-1} \to \ldots$ be complexes in $A(T)$ and $\eta^\#$ and $\lambda^\#$ the complexes resulting from base change over $f: T \to T'$. If η is homotopic to λ then $\eta^\#$ is homotopic to $\lambda^\#$.

In particular; if $N \in A(T)$ has one DX-resolution ($\hat{D}D$-coresolution) which is preserved by base change then all DX-resolutions ($\hat{D}D$-coresolutions) are preserved by base change.

Theorem 4.4. Let A be a category fibred in abelian categories over C and let $D \subseteq X \subseteq A$ be inclusion morphisms of categories fibred in additive categories. Fix an object T in C. Assume BC1-2 for (A,X) and T, and AB1-2 for the triple of categories $(A(T),X(T),D(T))$. Then any object N in $X^B(T)$ admits an $X(T)$-approximation and a $\hat{D}(T)$-hull;

$$0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to N \to L' \to M' \to 0$$

with M and M' in $X(T)$ and L and L' in $\hat{D}(T)$, which are preserved by any base change.

Proof. The proof is a variation of the original proof of [6, 1.1]. For every N in $X^B(T)$ let $r(N)$ denote the minimal length of an $X(T)$-resolution $M_* \to N$ which is preserved by base change. The proof is by induction on $r(N)$. If $r(N) = 0$ then N is in X and so is its own X-approximation, while AB2 provides a short exact sequence $N \to D \to M'$ which is a $D(T)$-hull with D in $D(T) \subseteq D^B(T)$. The approximation is trivially preserved by base change, the hull because of BC2. Assume $r = r(N) > 0$ and let $0 \to M_r \to \ldots \to M_0 \to N$ be an $X(T)$-resolution of minimal length preserved by base change. Then $N_1 = \ker(M_0 \to N)$ is in $X^B(T)$ by Lemma 4.1 and $r(N_1) = r - 1$. By induction there is a $\hat{D}(T)$-hull $N_1 \to L \to M'_1$ with L in \hat{D} which is preserved by base change. Pushout of $e: N_1 \to M_0 \to N$ along $N_1 \to L$ gives an $X(T)$-approximation $L \to M \to N$ by AB1. In the commutative diagram obtained by a base change;

\[(4.4.1)\]

$$
\begin{array}{ccc}
N_1^\# & \to & M_0^\# \\
\downarrow & & \downarrow \\
L^\# & \to & N^\# \\
\downarrow & & \downarrow \\
(M'_1)^\# & \to & (M'_1)^\#
\end{array}
$$

the upper row (by Lemma 4.1) and the columns (by BC2) are short exact sequences. It follows that the middle row is a short exact sequence.

By AB2 there is a short exact sequence $M \to D \to M'$ with D in $D(T)$ and M' in $X(T)$. Pushout of $M \to D \to M'$ along $M \to N$ gives a short exact sequence $h: N \to L' \to M'$. Since the induced sequence $L \to D \to L'$ is short exact, L' is contained in $\hat{D}(T)$. Applying a base change we obtain the following commutative
In each fibre most of these statements are true by the arguments in the Proof. \(\psi\) extension of that the middle row is a short exact sequence and hence that \(L'\) is contained in \(D^\#\).

Sequences as in Theorem 4.4 preserved by any base change will be called an \(X\)-approximation and a \(\hat{D}^\#\)-hull of \(N\) respectively.

Lemma 3.3 makes the following definition reasonable. Three categories fibred in additive categories (FAdj) \(A_i, \ i = 1, 2, 3\), an inclusion of FAdj \(A_1 \subseteq A_2\), and a morphism of FAdj \(F : A_2 \to A_3\) equivalent to the quotient morphism \(A_2 \to A_2/A_1\) is called a short exact sequence of categories fibred in additive categories and is denoted by \(0 \to A_1 \to A_2 \to A_3 \to 0\).

Theorem 4.5. Let \(A\) be a category fibred in abelian categories over \(C\) and let \(D \subseteq X \subseteq A\) be inclusion morphisms of categories fibred in additive categories. Assume BC1-2 for the pair \((A,X)\) and AB1-3 for the triple of categories \((A(T), X(T), D(T))\), for all objects \(T\) in \(C\). Then:

(i) The \(X\)-approximation induces a morphism of categories fibred in additive categories \(j^\#: \hat{X}\#/D \to X/D\) which is a right adjoint to the full and faithful inclusion morphism \(j_1 : X/D \to X#/D\).

(ii) The \(\hat{D}^\#\)-hull induces a morphism of categories fibred in additive categories \(i^\#: \hat{X}\#/D \to \hat{D}^\#/D\) which is a left adjoint to the full and faithful inclusion morphism \(i_1 : D^\#/D \to X#/D\).

(iii) Together these maps give the following commutative diagram of short exact sequences of categories fibred in additive categories:

\[
\begin{array}{cccccc}
0 & \to & \hat{D}^\#/D & \xrightarrow{i^\#} & \hat{X}^#/D & \xrightarrow{j^\#} & X/D & \to & 0 \\
\text{id} & & \downarrow \quad \text{id} & & 0 \\
0 & \leftarrow & \hat{D}^\#/D & \xleftarrow{i^\#} & \hat{X}^#/D & \xleftarrow{j^\#} & X/D & \leftarrow & 0
\end{array}
\]

Proof. In each fibre most of these statements are true by the arguments in the proof of [6, 2.8] since we have Theorem 3.3. The general cases are reduced to fibre cases by applying base change. First we have to establish the functors. Note that the quotient categories involved are FAdj over \(C\) by Lemma 3.3. Let \(p : A \to C\) denote the fibration. For each \(N_i\) in \(\hat{X}\) put \(T_i = p(N_i)\) and choose a \(\hat{D}^\#\)-hull \(\iota_i : N_i \to L_i \to M_i\) which exists by Theorem 4.3 and such that \(\iota_i = \text{id}\) if \(N_i\) is in \(\hat{D}^\#\). For each arrow \(\psi : N_1 \to N_2\) choose an arrow \(\lambda_{21} : L_1 \to L_2\) commuting with \(\psi\). This arrow is obtained as a composition of a base change \(L_1 \to L_1^\#\) over \(p(\psi) : T_1 \to T_2\) with an extension \(L_1^\# \to L_2\) of \(N_1^\# \to L_2\) obtained since \(\text{Ext}^1_{\Lambda(T_2)}(M_1^\#, L_2) = 0\) by [6, 2.5]. If compositeable it follows from [6, 2.8] that \(\lambda_{32}\Lambda_{21} \sim \lambda_{31}\).

There is a unique arrow \(\varphi : N_1^\# \to N_2\) induced by \(\psi\). If \(\lambda_{21}^\# : L_1 \to L_2\) is an extension of \(\psi^\#: N_1^\# \to N_2\) with \(p(\psi^\#) = p(\psi)\) such that \(\delta_1 := \psi - \psi^\#\) is equivalent to 0, we have by Lemma 3.3 that \(\delta : N_1^\# \to N_2 \to N_2\) induced from \(\delta_1\) by base change factors through an object \(D\) in \(D(T_2)\). It follows that \(\delta\) factors through \(N_1^\# \to L_1^\#.\)
Let τ denote the composition $L_1^# \to N_2 \to L_2$ (so $\tau \sim 0$). Let η be a base change over $p(\psi)$ of the difference of the two extensions; $\eta = (\lambda_{21} - \lambda_{21})^\#$. One calculates that $(\eta - \tau)^\# = 0$, hence $\eta - \tau$ is induced by an arrow $M_1^\# \to L_2$ which lifts to an arrow $M_1^\# \to D^0$ where $D^0 \to L_2$ is a finite D-resolution of L_2 (since $\text{Ext}_1^a(T)(M_1^\#, D(T_2)) = 0$). Hence $\eta - \tau \sim 0$, so $\eta \sim 0$ and $\lambda_{21} \sim \lambda_{21}$. We have shown that $i^*: \hat{X}/D \to \hat{D}/D$ is a well defined functor. To show that i^* preserves cocartesian arrows we apply Lemma 3.3. If $[\varphi]: N_1 \to N_2$ is cocartesian in $\hat{X}^\# / D$ then the induced map $[\varphi]: N_1^\# \to N_2$ is an isomorphism and by [B 2.8] so is any extension $L_1^\# \to L_2$ of $[\varphi]$. Composed with the base change $L_1 \to L_1^\#$ we get a cocartesian arrow in \hat{D}^D / D by Lemma 3.3.

A similar argument gives that the morphism $j^1: \hat{X}^\# / D \to X / D$ induced by (choices of) X-approximation also is well defined as a map of fibred categories.

To prove adjointness for the pair (j_1, j^1) consider the chosen X-approximation $L \to M \xrightarrow{p} N$ of N in $X(T)$. Given $\varphi_1: M_1 \to N$ with M_1 in $X(T_1)$ and $f = p(\varphi_1)$. Let $\varphi: M_1^\# \to N$ be induced by a base change of M_1 by f. Since $\text{Ext}_1^a(T)(M_1^\#, L) = 0$, φ can be lifted to an arrow $\hat{\psi}: M_1^\# \to M$.

Proving ψ with the base change $M_1 \to M_1^\#$ gives a lifting of φ_1 which shows surjectivity of the adjointness map $[\varphi \circ -]$. To prove injectivity consider for $i = 2$ arrows $\psi_1: M_1 \to M$ in X with $p\psi_2 = p\psi_3$. Since $p(\pi) = id$ we have $p(\psi_2) = p(\psi_3) = f$ and we can define $\psi_1 = \psi_2 - \psi_3$ with $\pi\psi_1 \sim 0$. Base change by f induces a $\psi: M_1^\# \to M$ from ψ_1. Lemma 3.3 gives $\pi\psi \sim 0$. The argument in [B 2.8] implies that ψ and hence ψ_1 factors through an object in $D(T)$. Analogous arguing gives the adjointness of the pair (i^*, i_*).

The commutativity of the diagram in (iii) follows by definition. For $i^*j_1 = 0 = j_1^*i_*$ see [B 2.8]. We prove exactness in the upper row. Given $\varphi: N_1 \to N_2$ in $\hat{X}^\#$ with $f = p(\varphi): T_1 \to T_2$ such that $j^1[\varphi] = 0$. If $\pi_i: M_1 \to N_i$ are the chosen X-approximations, $j^1[\varphi]$ is represented by a lifting $\hat{\psi}: M_1 \to M_2$ and the assumption is that ψ factors through an object D. We claim that φ factors through an object in \hat{D}^D. By base change it's sufficient to prove the special case $f = id_{T_2}$. If M is any object in $X(T)$ we have that the composition $\text{Ext}_1^a(T)(M, N_1) \cong \text{Ext}_1^a(T)(M, M_1) \xrightarrow{\psi} \text{Ext}_1^a(T)(M, M_2) \cong \text{Ext}_1^a(T)(M, N_2)$ is φ^* which hence equals 0. If $c: N_1 \to L_1' \to M_1'$ is a \hat{D}^D-hull of N_1, the connecting takes φ to $\bar{\varphi}, c \in \text{Ext}_1^a(T)(M_1', N_2)$, i.e. to 0, and so there exists a $\delta: L_1' \to N_2$ which induces φ. Exactness in the lower row is analogous. □

Proposition 4.6. Let A be a category fibred in abelian categories over C and let $D \subseteq X \subseteq A$ be inclusion morphisms of categories fibred in additive categories. Fix an object T in C. Assume BC1-2 for (A, X) and T, and AB1-3 for the triple of categories $(A(T), X(T), D(T))$. Then:

(i) $\hat{X}^D(T) = \hat{X}^\#(T) \cap X(T)^\perp$ and $D(T) = X(T) \cap \hat{D}^\#(T)$.

(ii) $\hat{X}^\#(T)$ and $\hat{D}^\#(T)$ are closed under extensions.

(iii) Exact sequences $\cdots \to N_n \xrightarrow{d_n} N_{n-1} \to \cdots$ with objects N_i and kernels $\text{ker} \; d_i$ in $\hat{X}^\#(T)$ remain exact after base change.

If in addition AB4, then:

(iv) Epimorphisms in $\hat{X}^\#(T)$ are admissible.

(v) Add $\hat{X}^\#(T) = \hat{X}^D(T)$ and Add $\hat{D}^\#(T) = \hat{D}^D(T)$.

Proof. For (i) the proofs of [B 3.6-7] works with the β-s too by Theorem 4.4. By (i) it's sufficient to prove (ii) for $\hat{X}^\#(T)$. Let $\varphi: N_1 \to N_2 \to N_3$ be a short exact sequence in $\hat{X}(T)$. If N_1 and N_3 are in $\hat{X}^\#(T)$, Theorem 4.4 and Lemma
4.3 implies that $-C^*(N_1)$ and $-C^*(N_2)$ in Lemma 4.3 are preserved as resolutions by base change. Together with BC2 this implies that base change of the short exact sequence of resolutions in Lemma 2.3 (i) gives a short exact sequence of DX-resolutions. For (iii) the long exact sequence is broken into short exact sequences ξ_i with objects in $X^0(T)$. By Lemma 4.1 it is sufficient to prove the claim for short exact sequences. By Lemma 2.3 the short exact sequence of DX-resolutions in Lemma 2.3 (i) is preserved by base change. It follows that the short exact sequences ξ_i remain exact after base change.

For (iv); if N_2 and N_3 in e are in $X^0(T)$ then N_1 is in $X(T)$ by AB4, see [6, 3.4]. The argument proceeds as for extensions.

By (i) it’s sufficient to prove (v) for X^0. If $N_1 \bigcup N_2$ is an object in $X^0(T)$, then N_i is in $X(T)$ for $i = 1, 2$ by [6, 3.4]. By Lemma 4.3 $-C^*(N_1) \bigcup -C^*(N_2)$ is preserved by base change as resolution of $N_1 \bigcup N_2$. It follows that the resolution $-C^*(N_i)$ is preserved by base change for $i = 1, 2$.

Corollary 4.7. Assume BC1-2 and AB1-3 as in Proposition 4.6. If N is in $X^0(T)$ then any DX-resolution $-C^*(N) \rightarrow N$ and any $D\hat{D}$-coresolution $N \rightarrow +C^*(N)$ as in Section 2.2 is preserved by base change.

Proof. By Theorem 4.4 there exist a DX-resolution and a $D\hat{D}$-coresolution in X^0. The result follows from Proposition 4.6 (iii) and Lemma 4.3.

Definition 4.8. Let A be a category fibred in abelian categories over C and let $D \subseteq A$ be an inclusion morphism of a category fibred in additive categories. For T in C let $D^0(T)$ denote the full subcategory of $A(T)$ of objects K with a finite coresolution $K \rightarrow L^*$ with objects L^i in $D^0(T)$ for $i \geq 0$.

Lemma 4.9. With these notions we have:

(i) Epimorphisms in $D^0(T)$ are admissible if and only if $D^0(T) = \hat{D}^0(T)$.

Assume BC1-2 and AB1-4 for $(A(T), X(T), D(T))$. Then:

(ii) $\hat{D}^0(T) = \hat{D}(T) \cap \hat{D}^0(T)$.

(iii) Epimorphisms in $\hat{D}^0(T)$ are admissible if epimorphisms in $\hat{D}(T)$ are admissible.

Proof. (i) is trivially true. In (ii) $\hat{D}^0(T) \subseteq \hat{D}(T) \cap \hat{D}^0(T)$ is obvious. For the other inclusion, suppose K is an object in $\hat{D}(T) \cap \hat{D}^0(T) \setminus \hat{D}^0(T)$ with a $\hat{D}^0(T)$-coresolution $K \rightarrow L^*$ of length $n > 0$. Since monomorphisms are admissible in $\hat{D}(T) = X(T) \cap X(T)^+$, all $K^i = \ker(L^i \rightarrow L^{i+1})$ are contained in $\hat{D}(T)$, and we can assume $n = 1$. But then K has to be in $X^0 \cap \hat{D} = \hat{D}^0(T)$ by Proposition 4.6. Since (i) is true “without the fl” by [6, 4.1], (iii) follows immediately from (i) and (ii).

5. Cohen-Macaulay approximation of flat families

We define fibred categories of Cohen-Macaulay maps with flat modules and show that they allow Cohen-Macaulay approximation in the finite type case and the local, algebraic case.

5.1. The finite type case. Let $h : S \rightarrow T$ be a ring homomorphism of noetherian rings. We say that h is a Cohen-Macaulay (CM) map if it is of finite type, faithfully flat and all fibres are Cohen-Macaulay (cf. [13, 6.8.1]). In particular h is equidimensional ([20, 15.4.1]). B. Conrad has defined the dualising module ω_h for any CM h, see [13, Sec. 3.5]. Suppose h has pure relative dimension n. For some $N \geq n$ there is a surjective S-algebra map $P \rightarrow T$ where $P = S[t_1, \ldots, t_N]$. Let $\omega_{P/S} := \wedge^N \Omega_{P/S}$. Then there is an isomorphism $\omega_h \cong \Ext^N_P(T, \omega_{P/S})$ which is
natural in the factorisation $S \to P \to T$, see [13, 3.5.3-6]. By (local) duality theory
and Corollary [2.3], ω_h is S-flat (or see [13, Cor. 3.5.2]). If S is a field, we have that
ω_h is a canonical module of T as in Example [2.1], cf. [11, 3.3.7 and 16].

Let \CM be the category with objects the \CM maps and morphisms $(g, f) : h_1 \to h_2$ pairs of ring homomorphisms $g : S_1 \to S_2$ and $f : T_1 \to T_2$ such that $h_2g = fh_1$
and such that the induced map $f \otimes 1 : T_1 \otimes S_2 \to T_2$ is an isomorphism:

$$
\begin{array}{ccc}
T_1 & \to & T_2 \\
\uparrow_{h_1} & & \downarrow_{h_2} \\
S_1 & \to & S_2
\end{array}
$$

Let \mathbb{R} denote the category of noetherian rings. The forgetful functor $p : \CM \to \mathbb{R}$;
$(g, f) \mapsto g$, makes \CM fibred in groupoids over \mathbb{R}. The essential part is that \CM
should allow base change, i.e. given $g : S_1 \to S_2$ and $h_1 : S_1 \to T_1$ as above there
should exist a T_2, an $h_2 : S_2 \to T_2$ and an f such that (g, f) is a morphism $h_1 \to h_2$
in \CM. This follows from [20, 15.4.3].

Let mod be the category of pairs $(h : S \to T, N)$ with h in \CM and N a finite
T-module. A morphism $(h_1, N_1) \to (h_2, N_2)$ is a morphism $(g, f) : h_1 \to h_2$ in \CM
and a f-linear map $\alpha : N_1 \to N_2$. Then α is cocartesian with respect to the forgetful
functor $F : \text{mod} \to \CM$ if $1 \otimes \alpha : T_2 \otimes N_1 \to N_2$ is an isomorphism. It follows that
mod is fibred in abelian categories over \CM. Adding the property that N is S-flat
gives the full subcategory $\text{mod}^\mathbb{R}$. Moreover, let MCM be the full subcategory of
$\text{mod}^\mathbb{R}$ where the fibre $N_s = N \otimes_{S} k(s)$ is a maximal Cohen-Macaulay T_s-module
for all $s \in \text{Spec} S$. The inclusions $\text{MCM} \subseteq \text{mod}^\mathbb{R} \subseteq \text{mod}$ are inclusion morphisms of
categories fibred in additive categories (FAds) over \CM. For MCM this follows from
[20, 15.4.3]. If h is a \CM map let mod_h, MCM_h, . . . denote the fibre categories of
mod, MCM, . . . over h. An object in MCM_h is called an (h-) family of maximal
Cohen-Macaulay modules (or shorter; an \CM h-module).

Given a morphism $h_1 \to h_2$ in \CM. By [13, Thm. 3.6.1] there is a natural
isomorphism with base change $T_2 \otimes \omega_{h_1} \cong \omega_{h_2}$ which is compatible with localisation
of T_1 and is functorial with respect to composition $h_1 \to h_2 \to h_3$. It follows that
$h \mapsto (h, \omega_h)$ defines a morphism $\omega : \CM \to \text{MCM}$ of fibred categories over \mathbb{R} which
is a section of the forgetful $F : \text{MCM} \to \CM$. Let D be the full subcategory of MCM
over \CM with the objects (h, D) where D is an object in $\text{Add}(\omega_h)$. The inclusion
$D \subseteq \text{MCM}$ is an inclusion of FAds over \CM.

If U denotes any of these FAds over \CM, let U denote the quotient (‘stable’) category U/D. With this notation we have the following.

Theorem 5.1. The pair (mod, MCM) over \CM satisfies BC1-2 and the triple of
fibre categories $(\text{mod}_h, \text{MCM}_h, D_h)$ satisfies AB1-4 for all objects h in \CM. Moreover:

(i) The fibred categories $\overline{\text{MCM}}^\mathbb{R}$ and $\overline{D}^\mathbb{R}$ equals $\text{mod}^\mathbb{R}$ and $\overline{D} \cap \text{mod}^\mathbb{R}$ respectively.

(ii) For any object (h, N) in $\text{mod}^\mathbb{R}$, N admits an MCM-approximation and a
\overline{D}-hull which in particular are preserved by any base change.

(iii) The MCM-approximation induces a morphism of categories fibred in additive
categories $j^* : \text{mod}^\mathbb{R} \to \text{MCM}$ which is a right adjoint to the full and
faithful inclusion morphism $j : \text{MCM} \to \text{mod}^\mathbb{R}$.

(iv) The \overline{D}-hull induces a morphism of categories fibred in additive categories
$i^* : \text{mod}^\mathbb{R} \to \overline{D}$ which is a left adjoint to the full and faithful inclusion
morphism $i_* : \overline{D} \to \text{mod}^\mathbb{R}$.
(v) Together these maps give the following commutative diagram of short exact sequences of categories fibred in additive categories:

\[
\begin{array}{cccccc}
0 & \rightarrow & \hat{\mathcal{D}}^n & \rightarrow \mod^n & \rightarrow & \mathcal{MCM} & \rightarrow 0 \\
& id & \downarrow & & id & \downarrow & id \\
0 & \rightarrow & \hat{\mathcal{D}}^n & \rightarrow \mod^n & \rightarrow & \mathcal{MCM} & \rightarrow 0
\end{array}
\]

Proof. Since base change is given by the tensor product BC1 and BC2 follows. In particular, a short exact sequence \(e : N_1 \rightarrow N_2 \rightarrow N_3 \) in \(\mod^h \) with \(N_3 \) and either \(N_1 \) or \(N_2 \) in \(\mathcal{MCM}_h \) gives short exact sequences of MCMs after base change to each fibre \(T_s \), i.e. AB1 and AB4.

For AB2, suppose \(M \) is in \(\mathcal{MCM}_h \). Then \(M^\vee = \text{Hom}_T(M, \omega) \) is in \(\mathcal{MCM}_h \) too by Corollary 2.9. Since \(M^\vee \) is finite there is a short exact sequence \(M^\vee \leftarrow T^\vee \leftarrow M_1 \). By AB1 \(M_1 \) is in \(\mathcal{MCM}_h \). Applying \(\text{Hom}_T(_, \omega_h) \) gives the desired short exact sequence since Corollary 2.9 implies that \(\text{Ext}^1_T(M^\vee, \omega_h) = 0 \) and that the natural map \(M \rightarrow M^\vee \) is an isomorphism. AB3 also follows from Corollary 2.9.

Any \(N \) in \(\mod^h \) has by definition a finite \(\mathcal{MCM} \)-resolution (say of length \(n \)) preserved by base change. Since objects in \(\mathcal{MCM} \) are \(S \)-flat it follows by induction on \(n \) that \(\text{Tor}_n^\mathcal{D}(N, k(s)) = 0 \) for all \(s \in \text{Spec}S \). Hence \(N \) is \(S \)-flat. Conversely, if \(N \) is in \(\mod^h \) it follows that a sufficiently high syzygy of \(N \) is in \(\mathcal{MCM}_h \), i.e. \(N \) is in \(\mathcal{MCM}^h \). With Proposition 4.4 this gives \(\hat{\mathcal{D}}^h = \mathcal{MCM}^h \cap \mod^h \). By induction on the length of the resolution \(\hat{\mathcal{D}}_h \subseteq \mathcal{MCM}^h \) and so \(\mod^h \cap \hat{\mathcal{D}}_h \subseteq \hat{\mathcal{D}}^h \). The opposite inclusion is clear by the first part of (i). Now (ii)-(v) follows directly from Theorem 4.5.

Corollary 5.2. Let \(h : S \rightarrow T \) be an object in \(\mathcal{CM} \). Then:

(i) \(\mathcal{D}_h = \mathcal{MCM}^h \cap \mathcal{MCM}_h \) and \(\hat{\mathcal{D}}^h = \mathcal{MCM}^h \cap \mod^h \)

(ii) The kernel of a surjective map in \(\mathcal{D}^h \) is contained in \(\hat{\mathcal{D}}^h \).

Proof. (ii): Note that if \(N_1 \rightarrow N_2 \rightarrow N_3 \) is a short exact sequence with \(N_2 \) and \(N_3 \) in \(\mathcal{D}^h \), in particular \(S \)-flat, then \(N_1 \) has to be \(S \)-flat too. To show that \(N_1 \) is in \(\hat{\mathcal{D}}_h \) we use the criterion in [6, 4.6] to show that \(\mathcal{D}_h = \hat{\mathcal{D}}_h \): Suppose that \(M \) is in \(\mathcal{MCM}_h \). Assume that \(M \) satisfies \(\mathcal{MCM}_h^- \) inj.dim \(M = n < \infty \) which by [6, 4.3] is equivalent to the existence of a coresolution of \(M \) of length \(n \) in \(\mathcal{D}_h \). The fibre at any \(s \in \text{Spec}S \) gives a \(\mathcal{D}_T^- \)-coresolution of the \(\mathcal{MCM} \) module \(M_s \). Since \(\hat{\mathcal{D}}_T = \hat{\mathcal{D}}_T^- (\mathcal{M}, 6.3) \) it follows by [6, 4.6] that \(M_s \) is contained in \(\mathcal{D}_T^- \). Since \(\mathcal{D}_T^- = \mathcal{MCM}^- \cap \mathcal{MCM}^h \) by [6, 3.7] it follows from Corollary 2.9 that \(\mathcal{MCM}_h^- \) inj.dim \(M = 0 \) and so \(M \) is in \(\mathcal{MCM}_h^- \cap \mathcal{MCM}_h^h \). But by Theorem 5.1 we can invoke [6, 3.7] again which gives \(\mathcal{MCM}_h \cap \mathcal{MCM}_h^h = \mathcal{D}_h \) so \(M \) is in \(\mathcal{D}_h \). By [6, 4.6(d)] \(\hat{\mathcal{D}}_h = \mathcal{D}_h \) follows and \(N_1 \) is in \(\hat{\mathcal{D}}_h \).

Let \(\mathcal{P} \) denote the fibred subcategory of \(\mathcal{CM} \) over \(\mathcal{CM} \) of pairs \((h, P) \) with \(h : S \rightarrow T \) in \(\mathcal{CM} \) and \(P \) a finite projective \(T \)-module. Let \(\hat{\mathcal{P}}^h \) denote the full subcategory of \(\mod^h \) of pairs \((h, Q) \) such that \(Q \) has a finite projective dimension. The inclusions of categories fibred in additive categories \(\mathcal{P} \subseteq \hat{\mathcal{P}}^h \subseteq \mod^h \) are closed under extensions over \(\mathcal{CM} \).

Lemma 5.3. There is an exact equivalence \(\hat{\mathcal{D}}^h \simeq \hat{\mathcal{P}}^h \) of categories fibred in additive categories defined by the functor \((h, L) \mapsto (h, \text{Hom}_T(\omega_h, L)) \) with a quasi-inverse \((h, Q) \mapsto (h, Q \otimes_T \omega_h) \). It induces an equivalence of fibred quotient categories \(\hat{\mathcal{D}}^h / \mathcal{D} \simeq \hat{\mathcal{P}}^h / \mathcal{P} \).
Proof. By base change we reduce the case where the equivalence is well known, cf. [23, I 4.10.16]. The functor \(\text{Hom}_- (\omega_-, -) \) takes a map \(\varphi : L_1 \to L_2 \) over \(h_1 \to h_2 \) to the map \(\text{Hom}_{T_1} (\omega_{h_1}, L_1) \to \text{Hom}_{T_2} (\omega_{h_2}, L_2) ; \alpha \mapsto (\varphi \alpha)^g \), the unique map which pulls back to \(\varphi \alpha \) by the cartesian map \(\omega_{h_1} \to \omega_{h_2} \). It is a well defined functor since the dualising module is functorial. If \(L \) is in \(D_h^b \) then \(\text{Ext}^_T (\omega, L_i) = 0 \) for all \(i \neq 0 \) and \(s \in \text{Spec} S \). By Corollary \ref{corollary:flat-cty} the functor is exact and \(\text{Hom}_T (\omega, L) \) is \(S \)-flat. In particular \(\text{End}_T (\omega_h) \cong T \). If \(D \) is in \(D_h \) then \(\text{Hom}_T (\omega_h, D) \) is projective as a direct summand of a free module. If \(D^* \to L \) is a finite \(D_h \)-resolution of \(L \), then \(\text{Hom}_T (\omega_h, D^*) \) gives a projective resolution of \(\text{Hom}_T (\omega_h, L) \) since \(D_h^b \subseteq \text{MCM}_h^b \) (Corollary \ref{corollary:projective}). The natural map \(\text{ev}_T : \text{Hom}_T (\omega_h, L) \otimes \omega_h \to L \) commutes with base change to the fibres where it is an isomorphism ([11, 9.6.5]) and Nakayama’s lemma and \(S \)-flatness implies that \(\text{ev} \) is an isomorphism too. Let \(P^* \to Q \) be a \(P \)-resolution of \(Q \) in \(\mathcal{P}_h^b \) of length \(n \). Define covariant functors \(G^i : \text{mod}_S \to \text{mod}_T \) by \(G^i (V) := H^{-n} (P^* \otimes_T \omega_h \otimes_S V) \). Since \(P^* \otimes_T \omega_h \) is \(S \)-flat, \(\{G^i\} \) defines a cohomological \(\delta \)-functor. Since \(P^* \otimes k (s) \) gives a resolution of \(Q \otimes k (s) \) for all \(s \in \text{Spec} S \), \([11, 9.6.5]\) and Proposition \ref{proposition:flat-cty} implies that \(G^n (S) = Q \otimes \omega_h \) is \(S \)-flat and \(P^* \otimes_T \omega_h \to Q \otimes_T \omega_h \) is a \(D \)-resolution. Moreover, the natural map \(Q \to \text{Hom}_T (\omega_h, Q \otimes \omega_h) \) is an isomorphism by Nakayama’s lemma again.

Example 5.4. Assume \(A \) is a Cohen-Macaulay ring with a canonical module \(\omega_A \). Given \(L_i \in D_A \) and put \(Q_i = \text{Hom}_A (\omega_A, L_i) \) for \(i = 1, 2 \). If \(I \) is an injective resolution of \(L_2 \) and \(P \) is a projective resolution of \(Q_1 \) then both spectral sequences of \(\text{Hom}_A (P, \text{Hom}_A (\omega_A, I)) \) collapse at page 2 (use [23, I 4.10.19]) to give canonical isomorphisms

\[
\text{Ext}_A^i (L_1, L_2) \cong \text{Ext}_A^i (Q_1, Q_2)
\]

Remark 5.5. In his unpublished manuscript Buchweitz gave a construction of Cohen-Macaulay approximation for finite \(A \)-modules if \(A \) is a not necessarily commutative Gorenstein ring, see [12]. The MCM-approximation and the \(D^0 \)-hull in Theorem \ref{theorem:d-hull} can be given essentially by the same construction. Let \(N \) be a finite \(T \)-module which is \(S \)-flat where \(h : S \to T \) is a finite type Cohen-Macaulay map. Let \(P = P (N) \to N \) be a projective resolution of \(N \) (i.e. by finite projective \(T \)-modules). Then \(P^o \cong \text{Hom}_T (P, \omega_h) \) is a bounded below complex with bounded cohomology because \(\text{Ext}^i_T (N, \omega_h) = 0 \) for \(i \) greater than the relative dimension \(d \) of \(h \) by Corollary \ref{corollary:finite-dim} (inj. \(\dim_T \omega_h = \dim T_s \leq d \)). Then we can choose a projective resolution \(f : P (P^o) \to P^o \) which is bounded above. Let \(C = C(f) \) be the mapping cone of \(f \). The modules in \(C \) are direct sums of projective modules and modules in \(D_h \) and the (co)kernels in the acyclic \(C \) are modules in MCM. By Corollary \ref{corollary:finite-dim} it follows that \(C^o \) is acyclic too. There is a composition of natural maps \(P \cong P^{o^o} \to P (P^o)^o := G \) which hence is a quasi-isomorphism. But then \(G \) is just the representing complex of \(N \) and the MCM-approximation and the \(D \)-hull is obtained as in Section 2.2. In the the case of coherent rings with a cotilting module (a concept introduced by Y. Miyashita, see [35, p. 142]) J.-i. Miyachi implicitly gave the same construction in [35, 3.2].

Suppose \(h \) has pure relative dimension and \(N_s \) is a non-zero Cohen-Macaulay \(T_s \)-module with \(n = \dim T_s - \dim N_s \) constant for all \(s \in \text{Spec} S \); i.e. \(N \) is a family of Cohen-Macaulay modules of codepth \(n \). Put \(N^o := \text{Ext}_T^0 (N, \omega_h) \). Then \(P^o = P (N^o)^o \) is quasi-isomorphic to \(H^0 (P^o) = N^o \) by duality theory and Corollary \ref{corollary:finite-dim}. So if \((F, d) \to N^o \) is a projective resolution of \(N^o \), the representing complex is given as \(G = F^o \). If \(\text{Syz}_i^T N^o \) denotes the \(i^{th} \) syzygy module in \(d \) and \(d^o_i \) denotes \(\text{Hom}_T (d_i, \omega_h) \) then the commutative diagram \ref{diagram:exact} with short exact sequences is
given as

\[
\begin{array}{c}
\text{im}(d_n^i) \quad \text{Hom}_T(Syz_n^T N^\vee, \omega_h) \quad N^\vee \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{im}(d_n^i) \quad \text{Hom}_T(F_n, \omega_h) \quad \text{coker}(d_n^i) \\
\downarrow \quad \downarrow \\
\text{Hom}_T(Syz_{n+1}^T N^\vee, \omega_h) \quad \text{Hom}_T(Syz_{n+1}^T N^\vee, \omega_h)
\end{array}
\]

with the MCM$_h$-approximation and \tilde{D}_h-hull of N given by the upper horizontal and right vertical sequence, respectively, since $N^\vee \cong N$ by duality theory and Corollary 5.2. Let C denote the mapping cone of a comparison map $P(N) \to G$. The homology of the truncated short exact sequence of complexes $G \to C \to P(N)[-1]$ gives the MCM$_h$-approximation $\text{coker} d_{i+2}^T \to \text{coker} d_{i+2}^T \to \text{Syz}_i^T N$ for $i \geq 0$ (with $i = 0$ being the upper horizontal sequence in the diagram). In the absolute case (with N Cohen-Macaulay) this latter construction of the MCM approximation of $\text{Syz}_i N$ was given by J. Herzog and A. Martsinkovsky in [26, 1.1].

5.2. Local cases. We formulate local variants of the approximation theorem.

Fix a field k. Let H denote the category of local, henselian, noetherian rings S with residue field $S/m_S \cong k$ and with local ring homomorphisms. A map $h : S \to T$ in H is algebraic (or T is an algebraic S-algebra) if there is a finite type S-algebra \tilde{T} and a maximal ideal m in \tilde{T} with $\tilde{T}/m \cong k$ such that h is given by henselisation of \tilde{T} in m. Fix an algebraic k-algebra A which is supposed to be Cohen-Macaulay. Objects in the category hCM are algebraic and flat S-algebras T with $T \otimes_S A \cong A$.

A morphism $h_1 \to h_2$ is a pair of commuting maps $f : T_1 \to T_2$ and $g : S_1 \to S_2$ in H as for the finite type case, giving a cocartesian square. Fibre sum exists in H and is given by the henselisation of the tensor product $T = T_1 \otimes_{S_1} S_2$ in the maximal ideal $m_{T_1} T + m_{S_2} T$. We denote it by $T_1 \otimes_{S_1} S_2$. It has the same closed fibre as $S_1 \to T_1$ and it follows that the obvious functor $hCM \to H$ is fibred in groupoids.

The objects in hCM will be called henselian Cohen-Macaulay (hCM) maps.

If $\tilde{h} : \tilde{S} \to \tilde{T}$ is a CM map and t, k-point in $\text{Spec} T$ with image s in $\text{Spec} \tilde{S}$ then we get a map of the local rings $S = \tilde{S}^h \to \tilde{T}^h = T$ for the étale topology at t and s given by henselisation. This is a hCM map. Conversely, every hCM map is obtained this way which follows from [21] 18.6.6 and 18.6.10 and [20] 15.4.3 and 12.1.1. We will call an $h : S \to T$ in CM which induces $h : S \to T$ in hCM a (finite type) representative of h. The dualising module ω_S induces an S-flat finite T-module ω_T, called the dualising module for h. Two representatives of h factor through a common étale neighbourhood contained in CM and since the dualising module is functorial for CM the dualising module ω_T is functorial too.

Let mod denote the category of pairs $(h : S \to T, N)$ with h in hCM and N a finite T-module. Morphisms are defined as for the finite type case and the forgetful functor $\text{mod} \to hCM$ makes mod fibred in abelian categories over hCM. Let mod^H denote the full subcategory of pairs (h, N) in mod with N S-flat and let MCM denote the full subcategory of mod^H where the closed fibre $N \otimes_S k$ is a maximal Cohen-Macaulay A-module. Let D denote the full subcategory of MCM of objects (h, D) with D in $\text{Add} \{\omega_T\}$. All three are FAd subcategories of mod over hCM. Any finite T-module N has finite presentation hence it is induced from a finite module over a representative of T. If \mathcal{N} is contained in one of the subcategories the representative can be assumed to belong to the corresponding finite type subcategory (loc. cit.). Similarly all maps in the various fibred categories over H are induced from maps in the corresponding fibred categories over R.

CM APPROXIMATION IN FIBRED CATEGORIES 19
Let \(L \) (resp. \(C \)) denote the category of (complete) local, noetherian rings with residue field \(k \) and local ring homomorphisms. Let \(\text{ICM} \) (resp. \(\text{cCM} \)) denote the category of local Cohen-Macaulay (resp. complete Cohen-Macaulay) maps defined analogously as above with completion of (essentially of finite type) replacing algebraic. Similar arguing as above makes \(\text{ICM} \) (resp. \(\text{cCM} \)) fibred in groupoids over \(L \) (resp. \(C \)). The definitions of the module categories apply in the local and the complete case too and we use the same notation in all three cases. Again objects and maps are induced from the finite type case.

Either arguing with representatives or applying the proofs for Theorem 5.1 and Corollary 5.2 (with only minor adjustments) we obtain the following.

Corollary 5.6. Let \(xCM \) denote either \(hCM \), \(ICM \) or \(cCM \). The pair \(\langle \text{mod} \rangle \langle MCM \rangle \) of fibred categories over \(xCM \) satisfies BC1-2 and the triple of fibre categories \(\langle \text{mod}_h \rangle \langle MCM_h \rangle \langle D_h \rangle \) satisfies AB1-4 for all objects \(h \) in \(xCM \).

Moreover, the statements (i-iv) in Theorem 5.1 and (i-ii) in Corollary 5.2 are valid over \(xCM \) too.

6. Minimal approximations and semi-continuity of invariants

We show that the Cohen-Macaulay approximation and the \(\hat{\omega} \)-hull in Corollary 5.6 can be chosen to be minimal. Upper semi-continuous invariants on \(\text{MCM}_A \) or \(\text{FID}_A \) extends to upper semi-continuous invariants on \(\text{mod}_A \). An example is given by the \(\omega_A \)-ranks in the representing D-complex.

Lemma 6.1. Let \(S \to T \) be a homomorphism of noetherian rings and \(a \) an ideal in \(S \) such that \(I = aT \) is contained in the Jacobson radical of \(T \). Let \(M \) and \(N \) be finite \(T \)-modules. Let \(T_n = T/I^n+1 \), \(M_n = T_n \otimes M \) and \(N_n = T_n \otimes N \). Suppose there exists a tower of surjections \(\{ \varphi_n : M_n \to N_n \} \). Fix any non-negative integer \(n_0. \) Then there exists a \(T \)-linear surjection \(\psi : M \to N \) such that \(T_{n_0} \otimes \psi = \varphi_{n_0}. \) If the \(\varphi_n \) are isomorphisms and \(N \) is \(S \)-flat then \(\psi \) is an isomorphism.

Proof. Let \(\hat{T} = \lim T_n, \hat{M} = \lim M_n \) and \(\hat{N} = \lim N_n. \) We have

\[
\lim T_n, M_n, N_n \leq \text{Hom}_{T_n}(M_n, N_n) \cong \text{Hom}_T(\hat{M}, \hat{N}) \cong \hat{T} \otimes \text{Hom}_T(M, N).
\]

Hence \(\lim r^{(i)} = \Sigma r^{(i)} \otimes \beta^{(i)} \) with \(r^{(i)} \in \hat{T} \) and \(\beta^{(i)} \in \text{Hom}_T(M, N). \) Let \(r^{(i)} \) be the image of \(r^{(i)} \) under \(T \to T_{n_0} \) and choose liftings \(t^{(i)} \) in \(T \) of \(r^{(i)} \). Put \(\psi = \Sigma t^{(i)} \otimes \beta^{(i)} \). Then \(T_{n_0} \otimes \psi = \varphi_{n_0}. \) Since \(T_{n_0} \otimes \text{coker} \psi = \text{coker} \varphi_{n_0} = 0 \), Nakayama’s lemma implies \(\text{coker} \psi = 0. \) Since \(T_{n_0} \otimes T N \) equals \(N \otimes S/S^{n_0+1} \), \(S \)-flatness of \(N \) implies \(T_{n_0} \otimes \ker \psi = \ker \varphi_{n_0} \) and if \(\ker \varphi_{n_0} = 0 \) then Nakayama’s lemma implies \(\ker \psi = 0. \)

Proposition 6.2. Let \(xCM \) denote either \(hCM \), \(ICM \) or \(cCM \), let \(h : S \to T \) be an object in \(xCM \) and let \(\xi : \mathcal{L} \to \mathcal{M} \) be an \(MCM_h \)-approximation of \(\mathcal{N}. \) Then the following statements are equivalent:

(i) The sequence \(\xi \) is a right minimal \(MCM_h \)-approximation.

(ii) There are no surjections \(\mathcal{M} \to \omega_h \) which induces a surjection \(\mathcal{L} \to \omega_h. \)

(iii) There are no common \(\omega_h \)-summand in \(\mathcal{L} \to \mathcal{M}. \)

(iv) The closed fibre \(\xi \otimes S k \) is a right minimal \(MCM_A \)-approximation.

(v) The completion \((\xi \otimes S k)^\vee \) of the closed fibre is a right minimal \(MCM_A \)-approximation.

The analogous statements (i’)-(v’) for a \(\hat{D}_h \)-hull \(\xi' : \mathcal{N} \to \mathcal{L}' \to \mathcal{M}' \) are equivalent. In particular:

(i’) The sequence \(\xi' \) is a left minimal \(\hat{D}_h \)-hull.

(ii’) There are no surjections \(\mathcal{M}' \to \omega_h \) which induces a surjection \(\mathcal{L}' \to \omega_h. \)
Suppose there is a surjection \(M \to \omega_h \) such that the composition \(L \to \omega_h \) is surjective too. Then the kernels of these maps give a new \(\text{MCM} \)-approximation of \(N \) by Corollary 5.4. Since a surjection \(L \to \omega_h \) has to split by Corollary 5.4 \(\omega_h \) is a common summand in \(L \to M \) and \(\pi \) cannot be right minimal.

Let the closed fibre \(\xi \otimes \xi \) of the sequence \(\xi \) be denoted by \(L \to M \xrightarrow{p} N. \) Assume there is a non-surjective endomorphism \(\theta : M \to M \) with \(\pi \theta = \pi. \) Then \(\theta_0 = \theta \otimes \xi \) gives a non-surjective endomorphism of \(M \) with \(p \theta_0 = p. \) It follows that the completion \(\hat{L} \to M \to \hat{N} \) is not a right minimal Cohen-Macaulay approximation of \(N. \) By [23, 1.12.8] there is a common \(\omega_A \)-summand in \(\hat{L} \to M. \) Let \(\varphi : M \to \omega_A \) denote the projection. By Lemma 6.1 there exists a surjection \(\psi : M \to \omega_A. \) The induced map \(L \to \omega_A \) is surjective too. The map \(\psi \) lifts to a surjection \(M \to \omega_h \) (with \(L \to \omega_h \) surjective) since the canonical map \(\text{Hom}_T(M, \omega_h) \to \text{Hom}_A(M, \omega_A) \) is surjective by Corollary 2.3. The \(\hat{D} \)-case is analogous.

Corollary 6.3. Let xCM denote either hCM, lCM or cCM. For any object \((h, N)\) in the fibred category \(\text{mod} \hat{D} \overline{\text{xCM}} \) over xCM, \(N \) admits a right minimal MCM-approximation and a left minimal \(\hat{D} \)-hull which remain minimal after base change and which in particular are unique up to non-canonical isomorphism.

Proof. The existence of a right minimal \(\xi \) follows immediately from criterion (iii) in Proposition 6.2. Moreover \(\xi \) is right minimal if and only if the closed fibre \(\xi \otimes \xi \) is right minimal. Since any base change \(\xi_1 \) of \(\xi \) has the same closed fibre as \(\xi, \xi_1 \) is right minimal if \(\xi \) is.

Remark 6.4. In [24, 2.3] M. Hashimoto and A. Shida gave essentially the analog of Proposition 6.2 in the absolute case of a Zariski local Cohen-Macaulay ring with a canonical module. They attributed the complete case to Y. Yoshino. Note Miyachi’s proof in the cotilting semi-perfect case, see [35, 3.4] (cf. [23, 1.12.8]). In [41, 3.1] A.-M. Simon and J. R. Strooker give a short independent proof. The proof of Proposition 6.2 also works in the Zariski local case in full generality and is different from these (but depends on the complete case).

Since minimal choices of \(\text{MCM}_A \)-approximations and \(\hat{D}_A \)-hulls exist and are unique up to isomorphism any invariant defined for MCM modules or for FID modules is extended to all finite \(A \)-modules. Upper semi-continuity of the invariants is also extended as we explain now. First some notation.

Let \(h : S \to T \) be ring homomorphism and \(N \) a finite \(T \)-module. If \(t \in \text{Spec} T \) has image \(s \in \text{Spec} S, \) let \(N_p, \) denote the localisation of \(N \) at the prime ideal \(t, \) let \(h_p : S_p \to T_p, \) denote the ring homomorphism obtained by localising, and put \(N(t) = N_p \otimes_{S_p} \mathbb{k}(s) \) which is a \(T(t) \)-module; indeed \(N(t) \cong T(t) \otimes_{T_p} N_p. \) If \(h \) is a finite type Cohen-Macaulay map, \(h_p, \) is in lCM.

Suppose \(\mu \) is an invariant on \(\text{MCM}_A \) where \(A \) is a Cohen-Macaulay local ring with canonical module. Let \(\text{MCM}_A \) denote the induced invariant on \(\text{mod} A \) defined by \(\text{MCM}_A(N) = \mu(M) \) where \(L \to M \to N \) is the minimal Cohen-Macaulay approximation of \(N. \) Similarly \(\text{FID}_A(N) = \mu(L) \) for an invariant \(\mu \) defined on \(\text{FID}_A. \) Use the minimal hull \(N \to L' \to M' \) to define \(\text{FID}_A^\ell \) and \(\text{MCM}_A^\ell. \)

The following theorem is a major application of what we have done so far.

Theorem 6.5. Let \(\mu \) be an additive non-negative numerical invariant defined for maximal Cohen-Macaulay modules or for finite modules of finite injective dimension on a Cohen-Macaulay local ring with canonical module. Assume \(\mu \) is upper semi-continuous for finite type flat families \((h : S \to T, M)\) in MCM (or in \(D \). Then the induced invariants \(\text{MCM}_A^\ell \) and \(\text{MCM}_A^\ell \) are upper semi-continuous in finite type flat families \((h, N)\) in \(\text{mod}^\ell \).
Proof. Given \((h : S \to T, N)\) in \(\text{mod}^\mathfrak{d}\) and \(t \in \text{Spec} T\). By Corollary 6.3 there exists open affines \(U = \text{Spec} S_1 \subseteq \text{Spec} S, V = \text{Spec} T_1 \subseteq \text{Spec} T\) with \(t \in V, h_1 : S_1 \to T_1\) induced from \(h\), and a \(\text{MCM}_h\)-approximation \(\xi : L \to M \to N|_V\) such that the localisation \(\xi_p\) is minimal. By Corollary 6.3 \((t)\) is minimal too. Put \(n = \mu(M(t))\). Since \(\mu\) is upper semi-continuous there is an open \(V_n \subseteq V\) containing \(t\) such that \(\mu(M(t')) \leq n\) for all \(t' \in V_n\). If \(L \to M \to N(t')\) is the minimal \(\text{MCM}\) approximation of \(N(t')\), \(M\) is a direct summand of \(M(t')\) by Proposition 6.2 and hence \(\mu(\text{Mod}(N(t'))) = \mu(M) \leq \mu(M(t')) \leq n\). □

Example 6.6. The Betti numbers \(\beta_i(M) = \dim \text{Tor}_i^M(N, A/\mathfrak{m}_A)\) are well known upper semi-continuous invariants of finite modules over local rings. By Theorem 6.5 the induced invariants \(\text{MCM}\beta_i, \text{MCM}\beta_i^\prime, \text{FID} \beta_i\) and \(\text{FID} \beta_i^\prime\) are upper semi-continuous too.

We now consider some invariants defined in terms of Cohen-Macaulay approximation. If \(h : S \to T\) is in one of the categories of local Cohen-Macaulay maps, a map \(\partial : D \to D'\) of objects in \(\mathcal{D}_h\) is said to be \emph{minimal} if \(k \otimes T \partial = 0\). Any module \(D\) in \(\mathcal{D}_h\) is isomorphic to some \(\omega_h^{\otimes n}\) and \(\text{End}_{\mathcal{T}}(\omega_h) \cong T\). Hence if \(\partial\) is not minimal then there is a surjection \(D' \to \omega_h\) inducing a surjection \(D \to \omega_h\). By Corollary 6.4 the \(\omega_h\) splits off from \(D\). Hence any \(\mathcal{D}_h\)-complex is homotopy equivalent to one with all differentials being minimal, which is called a minimal \(\mathcal{D}\)-complex.

For any module \(N\) in \(\text{mod}^\mathfrak{d}_h\) over \(\mathcal{X}\) we choose a minimal \(\text{MCM}\)-approximation \(\mathcal{L} \to \mathcal{M} \to \mathcal{N}\) and a minimal \(\mathcal{D}\)-hull \(\mathcal{N} \to \mathcal{L}' \to \mathcal{M}'\) which exist by Corollary 6.3. Spliced with a minimal \(\mathcal{D}\)-resolution of \(\mathcal{L}\) and a minimal \(\mathcal{D}\)-coresolution of \(\mathcal{M}'\) we obtain complexes \(\sim \mathcal{C}^*(\mathcal{N}), \sim \mathcal{C}^*(\mathcal{N}')\) and \(\mathcal{D}^*(\mathcal{N})\), as defined in Section 2.2 where no differential has any \(\omega_h\)-summand. We call such choices of these complexes for minimal. They are unique.

Lemma 6.7. Suppose \(h\) is in \(\text{hCM}, \text{lCM}\) or \(\text{cCM}\) and \((h, N)\) is in \(\text{mod}^\mathfrak{d}_h\). Then minimal choices of \(\sim \mathcal{C}^*(\mathcal{N}), \sim \mathcal{C}^*(\mathcal{N}')\) and \(\mathcal{D}^*(\mathcal{N})\) exist and are unique up to non-canonical isomorphisms.

Proof. Minimal choices \(\sim \mathcal{C}_1^*\) and \(\sim \mathcal{C}_2^*\) of coresolutions for \(\mathcal{N}\) are by Lemma 2.2 homotopic through chain maps \(\alpha\) and \(\beta\) starting with an isomorphism \(\mathcal{L}_1^* \cong \mathcal{L}_2^*\). If \(\rho_i\) are homotopies with \(\beta \alpha - \text{id} = \partial \rho_i + \rho_i \partial\) and \(\alpha \beta - \text{id} = \partial \rho_i + \rho_i \partial\) then tensoring down by \(k \otimes T\) makes the right hand side of these identities equal to zero by the minimality of the complexes. Hence \(\beta \alpha\) and \(\alpha \beta\) are surjective endomorphisms, i.e. isomorphisms. The same argument applies to \(\sim \mathcal{C}_1^*\) and \(\mathcal{D}_1^*\).

For each module \(N\) in \(\text{mod}^\mathfrak{d}_h\) we fix a minimal \(\mathcal{D}\)-complex \((\mathcal{D}^*(\mathcal{N}), \partial^i)\) representing \(N\). Let \(\mathcal{L}' = \text{coker} \partial^{-1}\) and \(\mathcal{M} = \ker \partial^0\). Put \(\text{Syz}_i^h \mathcal{L}' := \text{coker} \partial^{-i-1} : D^{-i-1} \to D^{-i}\) for \(i \geq 0\) and \(\text{Syz}_i^h \mathcal{M} := \ker \partial^i : D^i \to D^{i+1}\) for \(i \geq 0\). For any finite \(T\)-module \(N\) let the \(\omega_h\)-rank of \(N\), denoted \(\omega_h\)-rk\((N)\), be the largest number \(n\) with \(\omega_h^{\otimes n} \otimes N \cong N\) for some \(T\)-module \(N'\). Since \(\text{End}_T(\omega_h) \cong T\) is a local ring, this is a well behaved invariant, cf. [11, Sec. 1.1].

Definition 6.8. Suppose \(h\) is in \(\text{hCM}, \text{lCM}\) or \(\text{cCM}\) and \(N\) is in \(\text{mod}^\mathfrak{d}_h\). Define the numbers:

(i) \(d_i^h(N) := \omega_h\)-rk\((D^i(\mathcal{N}))\) for all \(i\)
(ii) \(\nu_i^h(N) := \omega_h\)-rk\((\text{Syz}_i^h \mathcal{L}')\) for \(i \geq 0\)
(iii) \(\gamma_T(N) := \omega_h\)-rk\((\mathcal{M})\)

The definition gives well defined invariants of \(\mathcal{N}\) by Lemma 6.7. In particular we see that \(\nu_i^h(N)\) equals \(\omega_h\)-rk\((\mathcal{L}')\). We also notice that \(\omega_h\)-rk\((\text{Syz}_i^h \mathcal{M}) = 0\) for all \(i > 0\) by Proposition 6.2.

The same notation is used for the absolute counterparts of these invariants.
Lemma 6.10. With notation as above\((7.1.1)\)
\[\theta \text{ sequence} \]
\[L \text{ where} \]
of finite projective dimension over \(x_{CM} \)
One has that \(\gamma_1 \) isomorphisms \(\text{Ext}^i_A(k, N) \to H^i_m(N) \)
and in the case \(\nu \) has a canonical module they showed in [H 2.6 and 3.10] that
\[\nu^A_0(N) = \dim_k \text{im}\{\text{Ext}^i_A(k, N) \to H^i_m(N)\} \]
and in the case \(\nu \) is a module where they showed in [H 2.6 and 3.10] that
\[\nu^A_0(N) = \nu^A_i(A(N)) \text{ and } \nu^A_i(N) = \nu^A_i(A^{-i}(L')) \text{ for } i \geq 0 \]
where \(L' \) is the minimal \(D_A \)-hull of \(N \). The Canonical Element Conjecture and the Monomial Conjecture are equivalent to \(\nu^A_i(b) \neq 0 \) (or equivalently \(\gamma_1(A/b) = 0 \)) for certain ideals \(b \) in any Gorenstein local ring \(A \), see [H 6.4 and 6.6].

Let \(P \) and \(\hat{P}^n \) denote the FAd of finite projective modules, respectively modules of finite projective dimension over \(x_{CM} \) defined as for the finite type case.

Lemma 6.10. With notation as above:

(i) The functor \(F = \text{Hom}_{-}(\omega_-, -) \) gives exact equivalences of categories fibred in additive categories \(D \simeq P \) and \(D^f \simeq \hat{P}^n \) over \(x_{CM} \).

(ii) In particular \(d^{-i}(N) = \beta_i(\text{Hom}_T(\omega_L, L')) \) for all \(i \geq 0 \).

(iii) \(\text{Hom}_T(D^{>0}(N), \omega_h) \) gives a minimal free resolution of \(\text{Hom}_T(M, \omega_h) \).

In particular \(d_i(N) = \beta_i(\text{Hom}_T(M, \omega_h)) \) for all \(i \geq 0 \).

Proof. (i) and (ii) are the local variants of Lemma 5.5. Breaking \(M \to D^{>0}(N) \) into short exact sequences, (iii) follows from Corollary 5.6. \(\square \)

Corollary 6.11. Let \(h : S \to T \) be a finite type Cohen-Macaulay map and suppose \(N \) is a \(T \)-module in \(\text{mod}_{A}^n \). Then \(d^i(N(t)) \) are upper semi-continuous functions in \(t \in \text{Spec} T \) for all \(i \).

Proof. This follows from Theorem 6.9 and Lemma 6.10. \(\square \)

Remark 6.12. The invariants \(\nu_0 \) and \(\gamma \) are not semi-continuous either way, see Example 7.1. Moreover, let \(L \) be in \(\mathcal{D}_h \) with \(L = L \otimes_{S} k \). If \(\rho_0 : \omega_A \to L \) is a direct summand, then \(\rho_0 \) lifts to a map \(\rho : \omega_h \to L \), but no lifting of \(\rho_0 \) has to split, even if \(A \) is a regular ring.

Remark 6.13. One can also define functions of the base. E.g. if \(\varphi : \text{Spec} T \to \text{Spec} S \) denotes the map induced from \(h \) and \(\mu(N(t)) \) is an upper semi-continuous function of \(t \in \text{Spec} T \), then \(\varphi_* \mu(N) \) defined by
\[\varphi_* \mu(N)(s) = \sup_{t \in \varphi^{-1}(s)} \mu(N(t)) \]
is an upper semi-continuous function in \(s \in \text{Spec} S \) since \(\varphi \) is an open map.

7. The Fundamental Module of a Cohen-Macaulay Map

Example 7.1. Let \((A, \mathfrak{m}_A, k) \) be a Cohen-Macaulay local ring with canonical module \(\omega_A \). Let \((G_*, d_*) \to k \) be a minimal \(A \)-free resolution of \(k \) and put \(\text{Syz}_k^1 = \text{Syz}_k^2 = \text{coker} d_{i+1} \). Suppose \(\dim A = d \geq 2 \). There are connecting isomorphisms \(\text{Ext}_A^1(\text{Syz}_{A-1}, \omega_A) \cong \text{Ext}_A^2(\text{Syz}_{A-2}, \omega_A) \cong \ldots \cong \text{Ext}_A^d(k, \omega_A) \) which is isomorphic to \(k \) by duality theory. To \(1 \in k \) there is hence a non-split short exact sequence
\[(7.1.1) \]
\[\theta : 0 \to \omega_A \to E_A \overset{\pi}{\to} \text{Syz}_{A-1}^1 k \to 0 \]
with E_A uniquely defined up to non-canonical isomorphism. We call E_A for the fundamental module of A. We claim that E_A is a maximal Cohen-Macaulay module which implies that (7.1.1) is the minimal MCM approximation of $\text{Syz}_{d-1}^A k$. If we apply $\text{Hom}_A(-, \omega_A)$ to (7.1.1) we obtain the exact sequence

$$0 \rightarrow \text{Hom}_A(\text{Syz}^A_{d-1} k, \omega_A) \rightarrow \text{Hom}_A(E_A, \omega_A) \rightarrow \text{End}_A(\omega_A) \rightarrow 0$$

(7.1.2)

We have $\partial(\text{id}) = \theta$ so ∂ is surjective and $\text{Ext}_A^1(E_A, \omega_A) = 0$. By duality theory (e.g. [11, 3.5.11]) this excludes the possibility depth $E_A = d - 1$ and we conclude that E_A is a maximal Cohen-Macaulay module. If N is a Cohen-Macaulay module of codimension c we denote $\text{Ext}_A^c(N, \omega_A)$ by N^\vee. Since $\text{End}_A(\omega_A) \cong A$ we get from (7.1.2) a short exact sequence:

$$0 \rightarrow \text{Hom}_A(\text{Syz}^A_{d-1} k, \omega_A) \rightarrow E_A^\vee \rightarrow \mathfrak{m}_A \rightarrow 0$$

(7.1.3)

Since $\text{Ext}_A^i(k, \omega_A) = 0$ for $i \neq d$, $0 \rightarrow G^i_0 \rightarrow \ldots \rightarrow \text{Hom}_A(\text{Syz}^A_{d-1} k, \omega_A) \rightarrow 0$ is a ω_A-resolution and so (7.1.3) gives the minimal MCM approximation of the maximal ideal. Auslander introduced the fundamental module in the case $d = 2$, see [7].

We can make a relative version of the fundamental module in much the same way. Let $\Delta : \text{CM} \rightarrow \text{CM}$ be the morphism of fibred categories over R defined by taking the CM map $h : S \rightarrow T$ to the composition $h^{(2)}$ of h with $t = 1 \otimes \text{id}_T : T \rightarrow T \otimes S T$ and taking a morphism $(g, f) : h_1 \rightarrow h_2$ to the composition of two cotermas squares $(g, f^{(2)})$ as follows:

$$(7.1.4) \quad \begin{array}{c}
S_1 \xrightarrow{h_1} T_1 \\
S_2 \xrightarrow{h_2} T_2
\end{array} \xrightarrow{f} \begin{array}{c}
S_1 \xrightarrow{h_1} T_1 \\
S_2 \xrightarrow{h_2} T_2
\end{array} \to \begin{array}{c}
T_1 \otimes S_1 T_1 \\
T_2 \otimes S_2 T_2
\end{array}$$

There is also a functor $\Delta : \text{CM} \rightarrow \text{CM}$ defined by mapping (g, f) to the rightmost cotermas square $(f, f^{(2)})$, but it doesn’t commute with the forgetful functor $\text{CM} \rightarrow R$. Let dCM denote the full subcategory of CM maps of pure relative dimension d. Then dCM is a fibred subcategory of CM over R and Δ and Δ restricts to a morphism $(\Delta) : \text{dCM} \rightarrow \text{dCM}$ over R and a functor $\Delta : \text{dCM} \rightarrow \text{dCM}$. Let $h : S \rightarrow T$ be a finite type CM map of pure relative dimension $d \geq 2$. Consider P in P_h (see Lemma [5,3]) as a $T^{\otimes 2}$-module by pullback along the multiplication map $\mu : T^{\otimes 2} \rightarrow T$. By Corollary [4, 1] $E = \text{Ext}^d_{T^{\otimes 2}}(P, \omega_1)$ is flat and finite as T-module, i.e. T-projective. Let P^* denote $\text{Hom}_T(P, T)$. By Corollary [2, 7]

$$\text{End}_T(E) \cong \text{Ext}^d_{T^{\otimes 2}}(P, \omega_1) \otimes E^* \cong \text{Ext}^d_{T^{\otimes 2}}(P, \omega_1 \otimes E^*) .$$

(7.1.5)

Combined with the connecting isomorphisms the identity in $\text{End}_T(E)$ corresponds to a canonical extension of $T^{\otimes 2}$-modules:

$$0 \rightarrow \omega_1 \otimes T \text{Ext}^d_{T^{\otimes 2}}(P, \omega_1)^* \rightarrow E_h(P) \rightarrow \text{Syz}^{d^{\otimes 2}}_{d-1} P \rightarrow 0 .$$

(7.1.6)

Let dP and dMCM denote the restriction of P and MCM to fibred categories over dCM.

Proposition 7.2. Let $d \geq 2$. The association $(h, P) \mapsto E_h(P)$ in (7.1.6) induces

(i) a functor $E : \text{dP} \rightarrow \text{dMCM}/\text{dP}$ which preserves cotermas maps and lifts the functor $\Delta : \text{dCM} \rightarrow \text{dCM}$, and

(ii) a morphism $(\Delta) : \text{dP} \rightarrow \text{dMCM}/\text{dP}$ of fibred categories over R which lifts

$(\Delta) : \text{dCM} \rightarrow \text{dCM}$.

Proof. As an extension of T-flat modules, $E_h(P)$ is T-flat. Applying $\text{Hom}_{T^{\otimes 2}}(-, \omega_i)$ to \eqref{eq:7.1.0} with $E = \text{Ext}^d_{T^{\otimes 2}}(P, \omega_i)$ and $\text{Syz}_{d-1} = \text{Syz}_{d-1}^{T^{\otimes 2}}P$ gives an exact sequence

\begin{equation}
0 \to \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}, \omega_i) \to \text{Hom}_{T^{\otimes 2}}(E_h(P), \omega_i) \to \text{End}_{T^{\otimes 2}}(\omega_i) \otimes T E \xrightarrow{\partial} \text{Ext}^1_{T^{\otimes 2}}(E_h(P), \omega_i) \to 0.
\end{equation}

by Corollary \ref{cor:2.9} and duality theory. In particular there is a canonical isomorphism $\text{Hom}_{T^{\otimes 2}}(\omega_i \otimes T E^*, \omega_i) \cong \text{End}_{T^{\otimes 2}}(\omega_i) \otimes T E$. We have that $\text{End}_{T^{\otimes 2}}(\omega_i)$ is canonically isomorphic to $T^{\otimes 2}$ and $\partial(t \otimes \xi) = \mu(t)\text{Syz}_{d-1}^{T^{\otimes 2}}(\xi) \in \text{Ext}^1_{T^{\otimes 2}}(\text{Syz}_{d-1}, \omega_i)$ where $\text{Syz}_{d-1}^{T^{\otimes 2}}$ is the composition of the connecting isomorphisms. So ∂ is surjective and $\text{Ext}^1_{T^{\otimes 2}}(E_h(P), \omega_i) = 0$ by Corollary \ref{cor:2.9}. It follows that all fibres of $E_h(P)$ are MCM modules and so $E_h(P)$ is in MCM_e and \eqref{eq:7.1.0} is an MCM_e-approximation of $\text{Syz}_{d-1}^{T^{\otimes 2}}P$. Let I_h denote the kernel of $\mu : T^{\otimes 2} \to T$ and $(-)^\vee = \text{Hom}_{T^{\otimes 2}}(-, \omega_i)$. From \eqref{eq:7.2.2} we get another MCM_e-approximation

\begin{equation}
0 \to \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}^{T^{\otimes 2}}P, \omega_i) \to E_h(P)^\vee \to I_h \otimes T \text{Ext}^d_{T^{\otimes 2}}(P, \omega_i) \to 0.
\end{equation}

Dualising \eqref{eq:7.2.2} induces \eqref{eq:7.1.3} since $E_h(P) \cong E_h(P)^{\vee \vee}$ and $\text{Hom}_{T^{\otimes 2}}(I_h, \omega_i) \cong \omega_i$. By Theorem \ref{thm:5.1} the image of $E_h(P)^\vee$ in $\text{MCM}_{/D_0}$ is functorial in the $T^{\otimes 2}$-module $I_h \otimes E$ which again is contravariantly functorial in P. Since $(-)^\vee$ induces an equivalence

\begin{equation}
\vee : \text{MCM}_{/P} \xrightarrow{\cong} \text{MCM}^{op}_{/D_0} \xrightarrow{\vee} : \text{MCM}^{op}_{/P} \xrightarrow{\cong} \text{MCM}_{/D_0} \xrightarrow{\vee} : \text{MCM}_{/P} \xrightarrow{\cong} \text{MCM}^{op}_{/D_0} \xrightarrow{\vee} : \text{MCM}_{/P} \xrightarrow{\cong}
\end{equation}

we conclude that $E_h(P)$ is functorial in MCM/P by our functorial choice of extension. This gives (i) and (ii). \hfill \qed

Corollary 7.3. For any Cohen-Macaulay map $h : S \to T$ of pure relative dimension $d \geq 2$ there is a finite $T^{\otimes 2}$-module $E_h = E_h(T)$ which is faithfully flat along $i : T \to T^{\otimes 2}$ with all fibres being maximal Cohen-Macaulay modules. The association $h \mapsto E_h$ defines a functor $\mathbf{dCM} \to \mathbf{dMCM}^{/D_0}$ lifting $\Delta : \mathbf{dCM} \to \mathbf{dCM}$. In particular E_h gives MCM_e-approximations

\begin{equation}
0 \to \omega_i \to E_h \to \text{Syz}_{d-1}^{T^{\otimes 2}}T \to 0 \quad \text{and}
\end{equation}

\begin{equation}
0 \to \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}^{T^{\otimes 2}}T, \omega_i) \to E_h^\vee \to I_h \to 0
\end{equation}

where I_h is the kernel of the multiplication map $T^{\otimes 2} \to T$.

Proof. This follows from Proposition \ref{prop:7.2} and \eqref{eq:7.2.2} once we have proved the natural isomorphism $\text{Ext}^d_{T^{\otimes 2}}(T, \omega_i) \cong T$. Choose a surjection of S-algebras $P \to T$ with $P = S[t_1, \ldots, t_N]$. Recall that ω_i can be given as $\text{Ext}^N_{P \otimes T}(T^{\otimes 2}, \omega_{P \otimes T/T})$ where $\omega_{P \otimes T/T} = \wedge^N \Omega_{P \otimes T/T}$. There is a change of rings spectral sequence

\begin{equation}
\text{Ext}^p_q(T, \text{Ext}^P_{P \otimes T}(T^{\otimes 2}, \omega_{P \otimes T/T})) \Rightarrow \text{Ext}^{p+q}_{P \otimes T}(T, \omega_{P \otimes T/T})
\end{equation}

which by Corollary \ref{cor:2.9} and duality theory collapses to the canonical isomorphism

\begin{equation}
\text{Ext}^d_{T^{\otimes 2}}(T, \text{Ext}^N_{P \otimes T}(T^{\otimes 2}, \omega_{P \otimes T/T})) \cong \text{Ext}^N_{P \otimes T}(T, \omega_{P \otimes T/T}).
\end{equation}

By [13, 3.5.6] $\text{Ext}^N_{P \otimes T}(T, \omega_{P \otimes T/T})$ is canonically isomorphic to $\omega_{t/T} = T$ as $T^{\otimes 2}$-module. \hfill \qed

We will call the module E_h given in Corollary 7.3 for the fundamental module of the Cohen-Macaulay map h.

Example 7.4. Let k be an algebraically closed field and A a finite type k-algebra which is Cohen-Macaulay of pure dimension 2. Then the fundamental module $E = E_h^0$ of $h : k \to A$ is the maximal Cohen-Macaulay approximation of $I = \ker(A^{\otimes 2} \to A)$ in \mod^1;

\[(7.4.1) \quad 0 \to \omega_h \otimes A \to E \to I \to 0\]

where $e = 1 \otimes \id : A \to A^{\otimes 2}$ and $\omega_h \cong \omega_A$. Let t in Spec $A^{\otimes 2}$ be a k-point, and $t_i \in \Spec A$ be the image of t by the ith projection. Let A_i denote A localised at t_i. Let m_i be the maximal ideal in A_i. Localising gives a local Cohen-Macaulay map $t_p : A_2 \to (A^{\otimes 2})_p$, and a module E_p, in MCM_{A_2}. Let $E(t)$ denote base change of E_p to $k(t_2)$. If $t_1 = t_2$ then $I(t) \cong p_1$ and $E(t)$ equals the fundamental module E_{A_1} of $(7.4.1)$. If $t_1 = t_2$ is singular, then $\omega \cdot \text{rk}(E(t)) = 0$ while if $t_1 = t_2$ is regular then $E(t) \cong A_i^{\otimes 2}$. If $t_1 \neq t_2$ then $I(t) \cong A_2 \cong E_{A_1}$ and $E(t) \cong A_i^{\otimes 2}$. This shows that $\gamma(I(t))$ is not upper semi-continuous as the d^2-invariants are.

In particular, if A equals $k[x,y,z]/(x^{n+1} - yz)$ with a 2-dimensional rational double point at $m_0 = (x,y,z)$, similar considerations give the following table of invariants (note that $\nu_1 = d^{-1}$):

$i : A \to A^{\otimes 2}$	γ	ν_1	d^2	ν_0	$I(t)$
$t_1 = t_2$ = 0 singular point	0	1	4	1	$m_0 A_{m_0}$
$t_1 = t_2$ non-singular point	2	1	2	0	$m_1 A_1$
$t_1 \neq t_2$	1	0	1	1	A_i

8. Maps of deformation functors induced by Cohen-Macaulay approximation

We extend the Cohen-Macaulay approximation over henselian local rings to deformations and obtain maps between the associated deformation functors. We also introduce the appropriate André-Quillen cohomology and links the various cohomologies in a fundamental long-exact sequence.

Fix an object $\xi = (h : S \to T, N)$ in \mod^1 over H. A deformation of ξ is a cocartesian morphism $\alpha_1 : \xi_1 \to \xi$ in \mod^1. A map of deformations $\alpha_1 \to \alpha_2$ is a cocartesian morphism $\varphi : \xi_1 \to \xi_2$ in \mod^1 such that $\alpha_2 \varphi = \alpha_1$. Deformations and maps of deformations are objects and arrows in the comma category $\text{Def}_\xi := \mod^1_{\text{cocomp}}/\xi$ which is fibred in groupoids over the comma category H/S, see Lemma 8.3.1 and the proceeding comments. Let the deformation functor $\text{Def}_\xi : H/S \to \text{Sets}$ be the functor corresponding to the associated groupoid of sets Def_ξ. The comma category $\text{Def}_h := \text{hCM}/h$ of deformations of $h : S \to T$ is also fibred in groupoids over H/S and we have an obvious factorisation $\text{Def}_\xi \to \text{hCM}/h \to H/S$ which makes Def_ξ fibred in groupoids over hCM/h. To ease readability (and by abuse of notation) we put $\text{Def}_{(T,\mathcal{N})}(S_1) = \text{Def}_\xi(S_1 \to S)$ and $\text{Def}_T(S_1) = \text{Def}_h(S_1 \to S)$. We also write a deformation of (T,\mathcal{N}) meaning a deformation of ξ and likewise in similar situations.

For each object $\xi_i = (h_i, \mathcal{N}_i)$ in \mod^1 over H we choose a minimal MCM-approximation $\pi_i : L_i \to \mathcal{M}_i$ and a minimal \mathcal{D}-hull $\iota_i : \mathcal{N}_i' \to L_i' \to \mathcal{M}_i'$ which exist by Corollary 5.6 and Corollary 6.3. For each deformation $\alpha_i : \xi_i \to \xi_0$ we choose extensions to commutative diagrams of deformations

\begin{align*}
\begin{array}{ccc}
L_i & \rightarrow & \mathcal{M}_i \\
\downarrow \pi_i & & \downarrow \mathcal{N}_i' \rightarrow \mathcal{M}_i' \\
\downarrow \mu_i & & \downarrow \mathcal{N}_0' \rightarrow \mathcal{M}_0' \\
L_0 & \rightarrow & \mathcal{M}_0 \\
\end{array}
\end{align*}

and

\begin{align*}
\begin{array}{ccc}
\mathcal{N}_0 & \rightarrow & \mathcal{M}_0 \\
\downarrow \nu_i & & \downarrow \mathcal{N}_0' \rightarrow \mathcal{M}_0' \\
\downarrow \lambda_i & & \downarrow \mathcal{N}_i' \rightarrow \mathcal{M}_i' \\
\end{array}
\end{align*}
as follows: By Corollary 6.3 a base change of π_i by $h_i \to h_0$ gives a minimal MCM$_h$-approximation $M_i^\# \to N_i^\# \cong N_0$. By minimality it is isomorphic to π_0. Choose an isomorphism. Let μ_i be the composition $M_i \to M_i^\# \cong M_0$. It is cocartesian. Do similarly for the \hat{M}.

Lemma 8.2 implies that there are well defined maps of categories fibre d in groupoids.

The diagrams in (8.0.2) will be called an MCM-approximation (denoted π_*) respectively a D^h-hull (denoted ι_*) of ν_i (this terminology can be justified).

Definition 8.1. There are four maps of deformation functors

$$\sigma_X : \text{Def}_{(h_0,N_0)} \to \text{Def}_{(h_0,x)} : H/S_0 \to \text{Sets}$$

where X can be M_0, L_0, L_0' and M_0' given by $[(h_i \to h_0, \nu_i)] \mapsto [(h_i \to h_0, x)]$ for x equal to $\mu_1, \lambda_1, \lambda_1'$ and μ'_1 in (8.0.2) respectively.

The following lemma implies that these maps are well defined and independent of choices.

Lemma 8.2. Given two deformations $\nu_{ij} : N_{ij} \to N_{0j}$ ($j = 1, 2$) in mod^h over $h_{ij} \to h_0$ in hCM and MCM-approximations π_{ij} (respectively D^h-hulls ι_{ij}) of ν_{ij}.

Suppose we have a map of short exact sequences $\pi_{0j} \to \pi_{02}$ (respectively $\iota_{0j} \to \iota_{02}$) and a map $\alpha : N_{1j} \to N_{12}$ lifting $N_{01} \to N_{02}$, i.e. such that the following two diagrams of solid arrows are commutative:

Then there exist maps $\gamma : M_{1j} \to M_{12}$ and $\gamma' : L_{1j} \to L_{12}'$ such that the induced left (respectively right) diagram commutes. If α is cocartesian, so are γ and γ'.

Proof. Consider the MCM-approximation case. By applying base changes to the front diagram, we can reduce the problem to the case $h_{11} \to h_0$ is equal to $h_{12} \to h_0$. Then, by Corollary 5.3 there is a lifting $\gamma_1 : M_{11} \to M_{12}$ of α. We would like to adjust γ_1 so that it lifts β too. We have that $\mu_2 \gamma_1 - \mu_2 \beta$ factors through L_2 by a map $\iota_2 : M_2 \to L_2$ which induces a unique map $\gamma_0 : M_{01} \to L_0$ since μ_2 is cocartesian. If $D_0 \to L_2$ is a finite D-resolution, then base change gives a finite D-resolution $D_0^\# \to L_2$ and γ_0 lifts to a $\gamma_0 : M_{01} \to D_0^\#$ by Corollary 5.3. By Corollary 5.3 there is a $\sigma : M_{11} \to D_0$ lifting σ_0 and subtracting the induced map $M_{11} \to M_{12}$ from π_1 gives our desired γ. If α is an isomorphism so is γ by minimality of the approximations π_{ij}. The argument for the D^h-case is similar. □

Remark 8.3. There are maps of fibred categories inducing the maps σ_X in Definition 8.1. Two maps $\alpha, \beta : (h_1, N_1) \to (h_2, N_2)$ in $\text{Def}_{(h_0,N_0)}$ are stably equivalent if $h_1 = h_2$ and $\alpha - \beta$ factors through an object in D. Let $\text{Def}_{(h_0,N_0)}$ denote the resulting quotient category which is fibred over hCM/h_0 and over H/S_0. Then Lemma 8.3 implies there are well defined maps of categories fibred in groupoids $\sigma_X : \text{Def}_{(h_0,N_0)} \to \text{Def}_{(h_0,X)}$ for X equal to M_0, L_0, L_0' and M_0'. The associated map of functors is σ_X. Note that $\text{Def}_{(h_0,N_0)}$ is different from $\text{mod}^h_{\text{loc}}/(h_0,N_0)$. Stably isomorphic modules will in general have different deformation functors. E.g. let $N = A \oplus \omega_A$. If A is not Gorenstein, then one can have $\text{Ext}^1_A(N,N) \neq 0$. But in the stable category N is isomorphic to A which is infinitesimally rigid.
We have the following reformulation. To \((h : S \to T, N)\) in \(\text{mod}_h^l\) consider \(\Gamma = T \otimes \mathbb{N}\) as a graded \(\mathcal{S}\)-algebra with \(T\) in degree 0 and \(\mathcal{N}\) in degree 1. A deformation of graded algebras \(T_1 \to \Gamma\) over \(S_1 \to S\) in \(\mathcal{H}/S\) is equivalent to a deformation \((T_1, X_1)\) of \((T, \mathcal{N})\). More generally, given a homogeneous morphism of \(\mathbb{Z}\)-graded rings \(S \to T\) and a graded \(T\)-module \(M\), there are André-Quillen cohomology groups of graded algebras \(\alpha \mathcal{H}^i(S, T, M) = \mathcal{H}^i \text{Hom}^\mathcal{gr}_T(L^\mathcal{gr}_{T/S}, M)\). Here \(L^\mathcal{gr}_{T/S}\) is the graded cotangent complex defined as \(\Omega_{P/S} \otimes \mathcal{P}\) where \(P = \mathcal{P}_S(T)\) is a graded simplicial degree-wise free \(\mathcal{S}\)-algebra-resolution of \(T\) and \(\Omega_{P/S}\) denotes the Kähler differentials, see [28, IV] for more details (in a more general situation). See also [32].

Lemma 8.6. If \(h : S \to T\) and \(p : S_1 \to S\) are graded ring homomorphisms with \(p\) being surjective, then a lifting of \(h\) (‘of \(T\)’) along \(p\) (‘to \(S_1\)’) is a commutative diagram of graded ring homomorphisms

\[
\begin{array}{ccc}
T & \xrightarrow{q} & T_1 \\
\downarrow{\scriptstyle h} & & \downarrow{\scriptstyle p} \\
S & \xrightarrow{p} & S_1
\end{array}
\]

with \(q \otimes S : T_1 \otimes S, S \cong T\) and \(\text{Tor}^1_{S_1}(T_1, S) = 0\).

Two liftings \(T_1\) and \(T_2\) of \(T\) to \(S_1\) are equivalent if there is a graded \(S_1\)-algebra isomorphism \(T_1 \cong T_2\) commuting with \(q\) and \(q'\). There is an obstruction theory for liftings of graded algebras in terms of graded André-Quillen cohomology groups.

Proposition 8.4 ([28, 32]). Given graded ring homomorphisms \(S \to T\) and \(p : S_1 \to S\) with \(p\) surjective and \(p^2 = 0\) for \(I = \ker p\).

(i) There exists an element \(\text{ob}(p, T) \in \alpha \mathcal{H}^2(S, T, T \otimes I)\) which is natural in \(p\) such that \(\text{ob}(p, T) = 0\) if and only if there exists a lifting of \(T\) to \(S_1\).

(ii) If \(\text{ob}(p, T) = 0\) then the set of equivalence classes of liftings of \(T\) to \(S_1\) is a torsor for \(\alpha \mathcal{H}^1(S, T, T \otimes I)\) which is natural in \(p\).

The element \(\text{ob}(p, T)\) is called the obstruction class of \((p, T)\). If the rings and modules are concentrated in degree 0 this equals the ungraded case and the cohomology groups equals the ungraded André-Quillen cohomology \(\mathcal{H}^i(S, T, T \otimes I)\).

Proposition 8.5. Suppose \(T\) is an (ungraded) \(\mathcal{S}\)-algebra and \(N\) is a \(T\)-module. Let \(\Gamma = T \otimes \mathbb{N}\) be the graded \(\mathcal{S}\)-algebra with \(T\) in degree 0 and \(N\) in degree 1 and let \(J\) be a graded \(\Gamma\)-module with graded components \(J = J_0 \oplus J_1\) of degree 0 and 1. Then there is a natural long-exact sequence:

\[
0 \to \text{Hom}_T(N, J_1) \to \alpha \text{Der}_S(\Gamma, J) \to \text{Der}_S(T, J_0) \to \alpha \text{Der}_S(T, J_0) \to \ldots
\]

\[
\text{Ext}_1^T(N, J_1) \to \alpha \mathcal{H}^1(S, T, J) \to \mathcal{H}^1(S, T, J_0) \to \text{Ext}_1^S(T, J_1) \to \ldots
\]

Proof. To the graded ring homomorphisms \(S \to T \to \Gamma\) there is a distinguished triangle of transitivity

\[
\begin{align*}
L^\mathcal{gr}_{T/S} & : L^\mathcal{gr}_{T/S} \otimes_T \Gamma \to L^\mathcal{gr}_{T/S} \to L^\mathcal{gr}_{T/S} \otimes_T \Gamma[1] \\
\end{align*}
\]

in the graded derived category of \(\Gamma\), see [28 IV 2.3.4]. The (standard) simplicial resolution \(P_T(\Gamma)\) equals \(T\) in degree 0, the (standard) \(T\)-free resolution \(F_T(N)\) of the \(T\)-module \(N\) in degree 1, and higher degree terms, see [28 IV 1.3.2.1]. It follows that \(\text{Hom}^\mathcal{gr}_T(L^\mathcal{gr}_{T/S}, J) = \text{Hom}_T(F_T(N), J_1)\). Since \(L^\mathcal{gr}_{T/S} = L_{T/S}\) is concentrated in degree 0, \(\text{Hom}^\mathcal{gr}_T(L^\mathcal{gr}_{T/S} \otimes_T \Gamma, J) = \text{Hom}_T(L_{T/S}, J_0)\). \(\square\)

Lemma 8.6. Let \(h : S \to T\) be a finite type Cohen-Macaulay map and let \(\mathcal{N}\) be a \(T\)-module in \(\text{mod}_h^l\). Let \(\mathcal{L} \to \mathcal{M} \xrightarrow{\pi} \mathcal{N}\) and \(\mathcal{N} \Rightarrow \mathcal{L}' \to \mathcal{M}'\) be an MCM_\mathcal{N}-approximation and a \(\mathcal{D}_h^l\)-hull of \(\mathcal{N}\). Let \(X_i\) denote \(\mathcal{N}, \mathcal{M}\) and \(\mathcal{L}'\) for \(i = 0, 1, 2\).
respectively, and put \(\Gamma_i = T \oplus X_i \). Let \(I \) be any \(S \)-module. Then there are natural maps of short exact sequences of complexes (see \ref{S5.1})

\[
\text{Hom}_{T_0}^{gr}(L_{T_0/T/S}^{gr}(\Gamma_0 \otimes I), \sigma^+ \text{Hom}_{T_1}^{gr}(L_{T_1/T/S}^{gr}(\Gamma_0 \otimes I)) \xrightarrow{\pi} \text{Hom}_{T_0}^{gr}(L_{T_0/T/S}^{gr}(\Gamma_0 \otimes I), \sigma^+ \text{Hom}_{T_1}^{gr}(L_{T_1/T/S}^{gr}(\Gamma_0 \otimes I))
\]

and

\[
\text{Hom}_{T_0}^{gr}(L_{T_0/T/S}^{gr}(\Gamma_0 \otimes I), \sigma^+ \text{Hom}_{T_1}^{gr}(L_{T_1/T/S}^{gr}(\Gamma_0 \otimes I)).
\]

The induced maps of graded André-Quillen cohomology

\[
0^h(\pi_0) : 0^h(S, \Gamma_0, \Gamma_0 \otimes I) \to 0^h(S, \Gamma_1, \Gamma_0 \otimes I) \quad \text{and}
\]

\[
0^h(\pi^+): 0^h(S, \Gamma_2, \Gamma_0 \otimes I) \to 0^h(S, \Gamma_0, \Gamma_0 \otimes I)
\]

are isomorphisms for \(n > 0 \) and surjections for \(n = 0 \).

Proof. There is a natural map \(L_{T_0/T/S}^{gr}(\Gamma_0 \otimes I) \to L_{T_0/T/S}^{gr}(\Gamma_0 \otimes I) \) induced by the graded \(T \)-algebra map \(\Gamma_1 \to \Gamma_0 \). This gives \(\pi^+ \). Covariance along \(\Gamma_1 \otimes I \to \Gamma_0 \otimes I \) gives \(\pi_0 \). In each (cohomological) degree the rightmost terms are naturally identified with \(\text{Hom}_{T_0}(L_{T_0/T/S}, \otimes I) \) as in the proof of Proposition \ref{S5}. By Theorem \ref{S4} and Corollary \ref{S6}, one has \(\text{Ext}_{T_0}^{gr}(\mathcal{M}, \mathcal{L} \otimes I) = 0 \) for \(n > 0 \) and the \(0^h(\pi_0) \)-statement follows. The other case is similar. \(\square \)

By Lemma \ref{S6} and Theorem \ref{S1}, we get induced natural maps for \(n > 0 \)

\[
\sigma^n(I) : 0^h(S, \Gamma_0, \Gamma_0 \otimes S I) \to 0^h(S, \Gamma_j, \Gamma_j \otimes S I) \text{ for } j = 1, 2 \quad \text{and}
\]

\[
\tau^n(I) : \text{Ext}_{T_0}^{gr}(X_0, \Gamma_0, \Gamma_0 \otimes S I) \to \text{Ext}_{T_0}^{gr}(X_j, \Gamma_j \otimes S I) \text{ for } j = 1, 2.
\]

Example 8.7. By elementary diagram chase Lemma \ref{S6} gives the following:

(i) If \(\pi^+ : \text{Ext}_{T_0}^{gr}(\mathcal{N}, \mathcal{N} \otimes I) \to \text{Ext}_{T_0}^{gr}(\mathcal{M}, \mathcal{N} \otimes I) \) is an isomorphism for \(n = 1 \) and injective for \(n = 2 \) then \(\sigma_1(I) \) is an isomorphism and \(\sigma_2(I) \) is injective.

(ii) If \(\tau_* : \text{Ext}_{T_0}^{gr}(\mathcal{N}, \mathcal{N} \otimes I) \to \text{Ext}_{T_0}^{gr}(\mathcal{N}, \mathcal{N} \otimes I) \) is an isomorphism for \(n = 1 \) and injective for \(n = 2 \) then \(\sigma_1(I) \) is an isomorphism and \(\sigma_2(I) \) is injective.

9. DEFORMING HULLS OF FINITE INJECTIVE DIMENSION

In order to use Artin’s Approximation Theorem \ref{S5} as extended by D. Popescu \ref{S5} we fix an excellent ring \(O \) (see \ref{S8.2}). We consider the category of local henselian \(O \)-algebras in \(H \), denoted \(\mathfrak{O}H \). Fibred categories \(\text{hCM} \) and \(\text{mod}^{\mathfrak{O}H} \) over \(\mathfrak{O}H \) and \(\text{Def}_{T_0} \) and \(\text{Def}_{T_1} \) over \(\mathfrak{O}H/S \) are defined essentially as in Section \ref{S5}. Our previous constructions and results are valid in this context as well. In particular deformation functors \(\text{Def}_{T_0}(T, N) : \mathfrak{O}H/S \to \text{Sets} \) are defined and the \(\text{MCM} \)-approximation and \(\hat{D}^{H} \)-hull induce maps of deformation functors as in Definition \ref{S8.1}.

Definition 9.1. Given a lifting diagram of ungraded ring homomorphisms as in \ref{S5.1} and a \(T \)-module \(N \). Then a lifting of \(N \) to \(T_1 \) is a \(T_1 \)-module \(N_1 \) with \(\text{Tor}_{2}^{T_1}(N_1, S) = 0 \) and a map \(N_1 \to N \) inducing an isomorphism \(N_1 \otimes S \cong N \). Two liftings \(N_1 \) and \(N'_1 \) of \(N \) to \(T_1 \) are equivalent if there is an isomorphism of \(T_1 \)-modules \(N_1 \cong N'_1 \) commuting with the maps to \(N \).

There is an obstruction theory for liftings of modules in terms of Ext-groups.

Proposition 9.2 (\ref{S5} IV 3.1.5). Given (ungraded) ring homomorphisms as in \ref{S5.1} with \(I^2 = 0 \) and a \(T \)-module \(N \).

(i) There exists an element \(\text{ob}(q, N) \in \text{Ext}_{T_0}^{2}(N, N \otimes I) \) which is natural in \(q \) such that \(\text{ob}(q, N) = 0 \) if and only if there exists a lifting of \(N \) to \(T_1 \).

(ii) If \(\text{ob}(q, N) = 0 \) then the set of equivalence classes of liftings of \(N \) to \(T_1 \) is a torsor for \(\text{Ext}_{T_0}^{2}(N, N \otimes I) \) which is natural in \(q \).
The element $\text{ob}(q, N)$ is called the obstruction class of (q, N).

Definition 9.3. Let $\mathcal{O}A/k$ denote the subcategory of artin rings in $\mathcal{O}H/k$. Let F and G be set-valued functors on $\mathcal{O}H/k$ (or $\mathcal{O}A/k$) with $\#F(k) = 1 = \#G(k)$. A map $\varphi : F \to G$ is smooth (formally smooth) if the natural map of sets $F_k : F(S) \to F(S_0) \times_{G(S_0)} G(S)$ is surjective for all surjections $p : S \to S_0$ in $\mathcal{O}H/k$ (in $\mathcal{O}A/k$). An element $\nu \in F(R)$ is versal if the induced map $\text{Hom}_{\mathcal{O}H/k}(R, -) \to F$ is smooth and R is algebraic as \mathcal{O}-algebra. If the map is bijective then ν is universal. An element $\nu \in F(R)$ (or a formal element, i.e. a tower $\{\nu_n\} \in \lim F(R/m_R^{n+1})$) is formally versal if the induced map $\text{Hom}_{\mathcal{O}H/k}(R, -) \to F$ of functors restricted to $\mathcal{O}A/k$ is formally smooth. See [3].

Theorem 9.4. Let k be a field and let A be a Cohen-Macaulay local algebraic k-algebra. Let N be a finite A-module. Fix a minimal MCM_A-approximation $L \to M \to N$ and a minimal \mathcal{D}_A-hull $N \to L' \to M'$. Consider the map $\sigma_L : \text{Def}(A, N) \to \text{Def}(A, L')$ of functors $\mathcal{O}H/k \to \text{Sets}$ as in Definition [3].

(i) If grade $N \geq 1$ then σ_L is injective.

(ii) If grade $N \geq 2$ then σ_L restricted to $\mathcal{O}A/k$ is an isomorphism.

(iii) If grade $N \geq 2$ and $\text{Def}(A, N)$ has a versal element then σ_L is an isomorphism.

The analogous statements hold for $\sigma_L : \text{Def}(A, N) \to \text{Def}(A, L)$ if the grade conditions are strengthened by one.

Proof. (i): Given S in $\mathcal{O}H/k$ and deformations $(h : S \to T, \mathcal{N})$ of (A, N) to S for $i = 1, 2$. Assume that the images (h_i, \mathcal{L}_i) under σ_{L_i} are isomorphic to $(h : S \to T, \mathcal{L}')$. Pullback along the isomorphisms of h with h induce for all these modules deformations over h. We show that the \mathcal{N} are isomorphic as deformations over h which implies that σ_L is injective. Let $S_n = S/m_S^{n+1}$, $T_n = T \otimes S_n$ etc.. We construct a tower of isomorphisms $\{\varphi_n : \mathcal{N}_n \cong \mathcal{N}_n\}$ and conclude by Lemma [3] that the deformations are isomorphic. The case $n = 0$ is trivial. Given φ_n and use it to identify the \mathcal{N}_n and denote them by \mathcal{N}_n. Let $I = \ker(S_{n+1} \to S_n)$. By Proposition [7.2] there exists an element ξ in $\text{Ext}_{T_n}^1(N_n, \mathcal{N}_n \otimes I)$ giving the “difference” of the two deformations of N_n. But $\mathcal{N}_n \otimes I \cong N \otimes I$ and by the edge map isomorphism of [2.7.4] we get $\text{Ext}_{T_n}^1(N_n, \mathcal{N}_n \otimes I) \cong \text{Ext}_{L_n}^1(N_n) \otimes I$ for all i. If $i > 0$ then $\text{Ext}_{\mathcal{L}_{n+1}}^1(L', N') \cong \text{Ext}_{\mathcal{L}_{n+1}}^1(N, L')$ and $\text{Ext}_{\mathcal{L}_{n+1}}^i(N, N) \to \text{Ext}_{\mathcal{L}_{n+1}}^i(N, L')$ is injective if grade $N \geq i$ and an isomorphism if grade $N \geq i + 1$. The obtained injective map $p : \text{Ext}_{\mathcal{L}_{n+1}}^i(N, N) \otimes I \to \text{Ext}_{\mathcal{L}_{n+1}}^i(L', L') \otimes I$ induces a map of the torsor actions in Proposition [9.2] on the liftings of \mathcal{N}_n and of \mathcal{L}_n to T_{n+1}. Since the $\mathcal{D}_{h_{n+1}}$-hulls of the \mathcal{N}_{n+1} are isomorphic as deformations, p maps ξ to 0 and so $\xi = 0$ and by Proposition [9.2] the \mathcal{N}_{n+1} are isomorphic by an isomorphism φ_{n+1} compatible with φ_n.

(ii): By (i) we only need to prove surjectivity. Let $(h : S \to T, \mathcal{L}')$ be a deformation of (A, L') to S. We proceed by induction on the length of S. Suppose $\sigma_L(T_n, N_n) = (T_n, \mathcal{L}_n')$. We find that $\text{ob}(T_{n+1} \to T_n, N_n)$ in Proposition [9.2] maps to $\text{ob}(T_{n+1} \to T_n, \mathcal{L}_n')$ under $\text{Ext}_{T_n}^1(N_n, N_n \otimes I) \to \text{Ext}_{T_n}^1(L_n', L_n' \otimes I)$ which by the assumption is injective. By assumption there is a lifting $(T_{n+1}, \mathcal{L}_{n+1})$ to S_{n+1} so $\text{ob}(T_{n+1} \to T_n, \mathcal{L}_n') = 0$. Hence there exists a lifting \mathcal{N}_{n+1} of N_n to T_{n+1}. If $\sigma_L(\mathcal{N}_{n+1}) = \mathcal{L}_{n+1}'$ the difference of \mathcal{L}_n' and \mathcal{L}_n' is given by Proposition [9.2] a $\xi \in \text{Ext}_{\mathcal{L}_{n+1}}^1(\mathcal{L}_n', \mathcal{L}_n' \otimes I)$. By assumption $\text{Ext}_{\mathcal{L}_{n+1}}^1(\mathcal{L}_n', \mathcal{L}_n' \otimes I)$ is isomorphic to $\text{Ext}_{\mathcal{L}_{n+1}}^1(\mathcal{N}_{n+1}, \mathcal{N}_{n+1} \otimes I)$. The corresponding element in the latter perturbs \mathcal{N}_{n+1} to a lifting \mathcal{L}_{n+1}' of \mathcal{N}_{n+1} with $\sigma_L(\mathcal{N}_{n+1}) = \mathcal{L}_{n+1}'$.

(iii): Any S in $\mathcal{O}H/k$ is a direct limit of a filtering system of algebraic \mathcal{O}-algebras in $\mathcal{O}H/k$. Since $\text{Def}(A, L')$ is locally of finite presentation A is algebraic and L'
has finite presentation) it is sufficient to prove surjectivity of σ_L. For S algebraic. Since O is excellent, so is S by [19, 7.8.3] and [21, 18.7.6]. We proceed as in (ii) and construct a tower of deformations $\{N_n\}$. If $(\sigma T, \sigma N) \in \text{Def}_{(A,N)}(R)$ is a versal element, there is a corresponding tower of maps $\{f_n : R \to S_n\}$ such that $(\sigma T, \sigma N)$ induces $\{f_n, N_n\}$. We obtain the algebra map $f : R \to S$ which induces a deformation $(\sigma T, \sigma N)$ of (A,N) to S. We have $\lim_{\chi}^*T_n \cong \lim_{\chi}^*T_n$ and hence also the completion in the maximal ideals gives $^*\hat{T} \cong \hat{T}$. By [5, 2.6], [38, 1.3] and [39] there is an isomorphism $^*T \cong T \otimes_S \hat{S}$ of deformations of A whereby *T is identified with $T \otimes_S \hat{S}$. The tower of isomorphisms $\{\sigma(N_n) \cong L_n\}$ implies by Lemma [6.1] that there is an isomorphism of deformations $(\sigma T, \sigma(N)) \cong (\sigma T, \sigma(L))$ where $^*L = ^*T \otimes T L^\prime$. To apply Artin’s Approximation Theorem we define a functor of S-algebras $F : \mathcal{S} / H/k \to \text{Sets}$ as follows. If \hat{S} is in $\mathcal{S} / H/k$ let T denote $T \otimes_S \hat{S}$ and let L^\prime denote $T \otimes T L^\prime$. Then $F(S)$ is defined as equivalence classes of pairs of maps of T-modules $\xi = (\nu : N \to N, \xi : N \to L^\prime)$ such that $(\hat{S} \to N)$ is a deformation of (A,N) to S. A map $S \to \hat{S}$ gives a map of pairs by base change. Two pairs, ξ and ξ, are equivalent if there is an isomorphism of deformations $N \cong L^\prime$ commuting with the i. We show that F is locally of finite presentation. Suppose $\hat{S} = \lim_{\chi} S$ for a filtered injective system of algebras in $\mathcal{S} / H/k$. Put $T = T \otimes_S S$. Then $\lim_{\chi}^*T \cong \hat{T}$ by [19, 7.8.3] and [21, 18.6.14]. Having $\xi \in F(S)$ as above. Since N has finite presentation and since the maps \hat{v} and \hat{i} can be represented on the finite presentations, there is a finite T-module N and T-linear maps $\nu : N \to N$ and $\nu : N \to L^\prime = T \otimes T L^\prime$ inducing ξ by base change. We may also assume that N is T-flat. Hence $\lim_{\chi} F(S) \to F(S)$ is surjective, and injectivity is similar. Let ξ denote the element in $F(S)$ given by $N \to N$ and the \hat{D}-hull $N \to L^\prime$. By Artin’s Approximation Theorem [5, 1.12], [38, 1.3], [39] there exist a $\xi = (\nu : N \to N, \xi : N \to L^\prime)$ with $\xi = \xi$. In particular $\nu : N_0 \to L_0$ is injective and by applying Proposition [2.2] as in Example [2.4] ν is injective and coker ξ is T-flat. It follows that ν is the \hat{D}-hull of N and hence σ_L is injective. The L-case is analogous.

Consider the groupoid of finite type Cohen-Macaulay maps over noetherian rings $CM \to R$ in Section 5.1. Let \mathcal{O} be any noetherian ring. By abuse of notation let $CM \to \mathcal{O}R$ denote the category fibred in groupoids obtained by restriction to the category of noetherian \mathcal{O}-algebras $\mathcal{O}R$. If $\mathcal{O} \to T^\circ$ is a Cohen-Macaulay map then there is a section $\xi : \mathcal{O}R \to CM$ defined by $s : S \mapsto (S \to T^\circ \otimes S)$ and we obtain a fibred subcategory T° fibred in sets over $\mathcal{O}R$. We restrict mod, $\mathcal{O}M$ and \mathcal{D} to T° and obtain categories fibred in abelian and additive categories over T° respectively. These restricted fibred categories satisfy the axioms AB1-4 and BC1-2 and we obtain restricted versions of Theorem 5.1 and Corollary 5.2.

For the local version, fix a field k and a Cohen-Macaulay local algebraic k-algebra A. Let $\mathcal{O} \to T^\circ$ be obtained by henselisation of a finite type Cohen-Macaulay map $\mathcal{O} \to T^\circ$ where \mathcal{O} is assumed to be an excellent ring. In particular \mathcal{O} and T° are excellent rings ([19, 7.8.3], [21, 18.7.6]). Assume $T^\circ / \mathcal{M}_{T^\circ} \cong k$ and $T^\circ \otimes \mathcal{O}k \cong A$. As above there is a section $\mathcal{O}H \to hCM$, T° is the fibred subcategory and we consider deformations in $\text{mod}^\text{fl}_{T^\circ}$ of an object $\xi = (S \to T^\circ \otimes S, N)$ and obtain the fibred category of deformations $\text{Def}^\text{fl}_{T^\circ} := (\text{mod}^\text{fl}_{T^\circ})_{\text{coca}} / \xi$ over $\mathcal{O}H / S$. The deformation functor $\text{Def}^\text{fl}_{T^\circ} : \mathcal{O}H / S \to \text{Sets}$ is defined by the associated groupoid of sets $\text{Def}^\text{fl}_{T^\circ}$. A special case is given by $\mathcal{O} = k$ and $T^\circ = A$.

Corollary 9.5. With these assumptions in addition to those in Theorem 9.4 consider $\sigma_L : \text{Def}^\text{fl}_{T^\circ} \to \text{Def}^\text{fl}_{T^\circ}$.

(i) If grade $N \geq 1$ then σ_L is injective.

(ii) If grade $N \geq 2$ then σ_L restricted to $\mathcal{O}A / k$ is an isomorphism.
Proposition 9.6. With general assumptions as in σ, the analogous statements also hold for the deformation functors.

Proof. This is not a formal consequence of Theorem 9.4, but the proof is similar. \square

Proposition 9.6. With general assumptions as in Theorem 9.4

(i) If $Q' = \text{Hom}_A(\omega_A, L')$ and $Q = \text{Hom}_A(\omega_A, L)$ then Q' and Q have finite projective dimension and $\text{Def}_{(A,L)} \cong \text{Def}_{(A,Q')}$ and $\text{Def}_{(A,L)} \cong \text{Def}_{(A,Q)}$.

(ii) There are natural maps $s: \text{Def}_{(A,M)} \longrightarrow \text{Def}_{(A,M')}$ and $t: \text{Def}_{(A,L')} \longrightarrow \text{Def}_{(A,L)}$

commuting with the maps $\sigma_X: \text{Def}_{(A,X)} \to \text{Def}_{(A,X')}$. Assume A is a Gorenstein ring then s is an isomorphism.

The analogous statements also hold for the deformation functors $\text{Def}_{(A,M)}^{T_r}$.

Proof. Lemma 6.10 implies (i). For any M in MCM_h let M' denote $\text{Hom}_T(M, \omega_h)$. There is a short exact sequence $M \to \omega_A^{\oplus n} \to M'$ giving the short exact sequence $M' \to A^{\oplus n} \to (M')^\vee$. The map s is the composition $\text{Def}_{(A,M)} \cong \text{Def}_{(A,M')} \to \text{Def}_{(A,M')} \cong \text{Def}_{(A,M')}$, the middle map obtained by taking the syzygy of the deformation. If A is a Gorenstein ring then $\omega_A \cong A$ and there is an inverse $\text{Def}_{(A,M')} \to \text{Def}_{(A,M)}$ given by the syzygy map.

Fix a minimal short-exact sequence $L \to \omega_A^{\oplus r} \to L'$. For a deformation $\lambda': L' \to L'$ there is a lifting of μ to a map $\tilde{\mu}: \omega_A^{\oplus r} \to L'$. If L denotes the kernel of $\tilde{\mu}$ there is a cocartesian map $\lambda: L \to L$ commuting with $\omega_h^{\oplus r} \to \omega_A^{\oplus r}$. By Lemma 8.2 $\lambda' \mapsto \lambda$ gives a well-defined map of deformation functors $t: \text{Def}_{(A,L')} \to \text{Def}_{(A,L)}$.

There is a commutative diagram of deformations corresponding to (2.10.8), with $\omega_h^{\oplus r} \to \omega_A^{\oplus r}$ in the D-place, which gives the stated commutativity of maps of deformation functors. \square

Corollary 9.7. Let A be an Cohen-Macaulay local algebraic k-algebra with residue field k. Suppose $\dim A \geq 2$. Then there exists finite A-modules L' and Q' with $\text{injdim} L' = \text{dim} A = p\dim Q'$ and universal deformations $L' \in \text{Def}^A_{(A,M)}(A)$ and $Q' \in \text{Def}^A_{(A,M)}(A)$.

Proof. Let $h = 1 \otimes_A k: A \to A \otimes_A k = T$ and $N = A$ be the cyclic T-module defined through the multiplication map. Then $T \otimes_A k \cong A$ and $N \otimes_A k \cong k$ and this gives a deformation $N \to k$ of the residue field of A which is universal. If L' is the minimal D_A-hull of the residue field k then $L' = \sigma_L(N) \in \text{Def}^A_{(A,M)}(A)$ is universal by Corollary 9.5. If $Q' = \text{Hom}_A(\omega_A, L')$ then $\text{Hom}_T(\omega_T, L') \in \text{Def}^A_{(A,M)}(A)$ is universal by Proposition 9.6. \square

The following result extends A. Ishii’s [29, 3.2] somewhat, but the proof is essentially the same.

Proposition 9.8. Let k be a field and let A be a Gorenstein local algebraic k-algebra. Suppose $L \to M \to N$ is the minimal Cohen-Macaulay approximation of a finite A-module N. If depth $N = \dim A - 1$ then $\sigma_M: \text{Def}_{(A,N)} \longrightarrow \text{Def}_{(A,M)}$ and $\sigma_M^A: \text{Def}^A_{(A,N)} \longrightarrow \text{Def}^A_{(A,M)}$ are smooth.

Proof. By assumption $L \cong A^{pr}$. Assume (h_1, M_1) in $\text{Def}_{(A,M)}(S_1)$ maps to (h, M) along the surjection $S_1 \to S$. Assume σ_M maps (h', N) in $\text{Def}_{(A,N)}(S)$ to (h, M). We can assume that $h' = h$ and that the minimal MCM_h-approximation of N is $L \overset{\sim}{\to} M \to N$ where $L \cong T^{pr}$. Let $L_1 = T_1^{pr}$ and choose a lifting $\rho_1: L_1 \to M_1$...
of ρ. Put $N_1 := \text{coker} \rho_1$ with its natural map to N. Then N_1 is S_1-flat and $\sigma_M(h_1, N_1) = (h_1, M_1)$.

\[\text{Remark 9.9.} \] If $\dim A \geq 1$ and an MCM A-module M has a rank, $r = \text{rk} M$, then there is a short exact sequence $A^r \to M \to N$ with N a codimension one Cohen-Macaulay module, cf. [11 I.4.3]. Hence in the case A is a Gorenstein domain all MCM modules admits MCM$_A$-approximations by CM modules in codimension one and Proposition 9.8 applies. However, it’s not always possible to continue this reduction: If A is a normal Gorenstein complete local ring any MCM A-module M is the MCM$_A$-approximation of a codimension 2 Cohen-Macaulay module up to stable isomorphism if and only if A is a unique factorisation domain, see [43, 31].

If A is a normal domain there is also a short exact sequence $A^{r-1} \to M \to I$ where I is an ideal of grade one or two, see [10, VII 4 Thm. 6]. Again Proposition 9.8 applies in the Gorenstein case. Let U denote the regular locus in $X = \text{Spec} A$. If $T = A \otimes k S$ for S in $k H/k$ there is a natural section $A \to T$. Let U_T denote $U \times X \text{Spec} T$. Consider the subfunctor Def$^{A,\wedge}_M \subseteq \text{Def}^A_M$ of deformations M with trivial induced deformation $\wedge^{r-1} M_{U_T}$, cf. [29]. Assume $\dim A = 2$. Since $I := H^0(U, I)$ is a reflexive module, one gets a non-trivial quotient functor Quot$^I_{U_T} \to \text{Def}^A_M$. The map is also smooth in the Gorenstein case by the argument in Proposition 9.8 (contained in [29, 3.2]). In particular, if E_A is the fundamental module and $A/m_A \cong k$ then $\text{Hom}_A(A, -) \cong \text{Quot}^A_{m_A \subseteq A} \cong \text{Def}^A_{E_A/m_A}$ gives a mini-versal family for $\text{Def}^A_{E_A}$ by the MCM approximation in [7.4.1], see [29, 3.4]. Any m_A-primary ideal would give a similar result.

Example 9.10. Assume $A/m_A \cong k$ and let M denote the minimal MCM approximation of k. It’s given as $M \cong \text{Hom}_A(\text{Syz}_A^d(k^\wedge), \omega_A)$ where $d = \dim A$, cf. Remark 5.5. One has $k^\wedge = \text{Ext}_A^1(k, \omega_A) \cong k$. We apply $\text{Hom}_A(\omega_A)$ to the short exact sequence $\text{Syz}_A^d(m_A) \to A^d \to m_A$. Assume $\dim A = 2$. Since $\text{Ext}_A^1(m_A, \omega_A) \cong k$ we obtain the MCM approximation of k:

\[0 \to \omega_A \to k \to 0 \]

In particular $\text{rk}(M) = \beta_1 - 1$ and $\mu(M) = t(A) \cdot \beta_1 + 1$ where $t(A)$ is the Cohen-Macaulay type of A. In the case $A = A(m) = k[w^m, u^{m-1}, \ldots, v^m]_h$, the vertex of the cone over the rational normal curve of degree m, which has the indecomposable MCM modules $M_i = (w^i, u^i, \ldots, v^i)$ for $i = 0, \ldots, m-1$, one finds that $M = M_{m-1}$. We have

\[\dim_k \text{Def}_M^A(k[\varepsilon]) = \dim_k \text{Ext}_A^1(M, M) = (m - 1) \cdot m^2 \]

while $\dim_k \text{Def}_M^A(k[\varepsilon]) = m + 1$. Even in the Gorenstein case $(m = 2)$ the tangent map isn’t surjective and so Proposition 9.8 cannot in general be extended to depth $N = \dim A - 2$. For a detailed description of the strata defined by Ishii in [22] of the reduced versal deformation space of M, see [22]. Applying $\text{Hom}_A(k, -)$ to $m_A \to A \to k$ gives an exact sequence

\[0 \to \text{Ext}_A^1(k, k) \to \text{Def}_M(m_A, M) \to k^\wedge(k) \to 0 \]

since $\text{Ext}_A^1(m_A, m_A) \cong \text{Ext}_A^2(k, m_A)$ and $\dim A = 2$. In the case $A = A(m), N = m_A$, the fundamental module E_A gives the MCM approximation and $E_A \cong M^2_{m-1}$ with $\dim_k \text{Def}_E^A(k[\varepsilon]) = 4(m - 1)$. The conclusion in Proposition 9.8 cannot hold in the non-Gorenstein case $m > 2$.

\[\text{CM APPROXIMATION IN FIBRED CATEGORIES} \]

33
10. Existence of versal elements

Let k be a field, A an algebraic k-algebra with $A/m_A \cong k$ and N a finite A-module. Without any Cohen-Macaulay condition on A we define a deformation $(h : S \to T, N)$ of the pair (A, N) to an S in \mathcal{H}/k as before and obtain the deformation functor $\text{Def}_{(A, N)} : \mathcal{H}/k \to \text{Sets}$ as equivalence classes of deformations of pairs.

We say that A is an isolated singularity over k if there is a finite type k-algebra A^ft with a maximal ideal m_0 such that the henselisation $(A^\text{ft})_{m_0}$ is isomorphic to A and which is smooth over k at all points in $\text{Spec} A^\text{ft} \setminus \{m_0\}$. We say that the pair (A, N) is an isolated singularity over k if A is an isolated singularity over k and if N_p is a free A_p-module for all prime ideals $p \neq m_A$. The following result is a consequence of a result of R. Elkik and an argument of H. von Essen.

Theorem 10.1. Let (A, N) be an isolated singularity over the field k with A equidimensional. Then $\text{Def}_{(A, N)} : \mathcal{H}/k \to \text{Sets}$ has a versal element.

Proof. We apply [3, 3.2] (cf. [14]) to show the existence of a formally versal element for $\text{Def}_{(A, N)}$. By the finiteness conditions it follows that $\text{Def}_{(A, N)}$ is locally of finite presentation. The condition (S1) holds in general by Proposition 8.4 and Proposition 8.5. Let $(h : S \to T, N)$ be a deformation to S and I a finite S-module. If we can show that $\text{Ext}^1_{\mathcal{H}}(N, N \otimes I)$ and $H^1(S, T, N \otimes I)$ are finite S-modules, then condition (S2) holds by Proposition 8.3 and Proposition 8.5.

Let $h^0 : S \to T^0$ be a finite type representative of $h : S \to T$. In particular $(T^0)_{m_0} \cong T$ for a maximal ideal m with $k(m) \cong k$. Put $h^0 = h^0 \otimes_S k : k \to A^\text{ft}$. We may assume that h^0 is smooth in the complement of $m_0 = mA^\text{ft}$. The non-smooth locus $V(J)$ of h^0 is defined by an ideal $J \subseteq T^0$ such that the image J_0 of J in A^ft is m_0-primary. Put $T_N^0 = T^0/J^N$. Since A^ft/J_0^N has finite length, T_N^0 is finite over S. By [28, III 3.1.2] $H^i(S, T^0, T^0 \otimes I)$ has support in $V(J)$ for $i > 0$ and hence is finite over S. André-Quillen homology commutes with direct limits and the cotangent complex is trivial for étale extensions. By [2, II 21] we get $H^i(T^0, T, N \otimes I) \cong \text{Hom}_T(H_i(T^0, T, T, N \otimes I) = 0$ for all i. From the transitivity sequence it follows that $H^i(S, T, T \otimes I) \cong H^i(S, T^0, T^0 \otimes I) \otimes_{T^0} T$ for all i. Put $T_N = T^0 \otimes_{T^0} T$. By [21, 18.5.10] T_N^0 is henselian. It follows that T_N is a quotient of T_N^0 and hence $H^1(S, T, N \otimes I)$ is finite as S-module. Similarly (but easier) it follows that $\text{Ext}^1_{\mathcal{H}}(N, N \otimes I)$ is finite as S-module.

For effectivity, let N^ft be a finite A^ft-module representing N such that N^ft is locally free at the smooth points. There is a deformation functor $\text{Def}_{(A^\text{ft}, N^\text{ft})} : \mathcal{H}/k \to \text{Sets}$ of base change maps of pairs $(S \to T^0, N^\text{ft}) \to (k \to A^\text{ft}, N^\text{ft})$ where T^0 is a flat S-algebra of finite type and N^ft is an S-flat finite A^ft-module. Base change is given by the standard tensor product. Similarly there is a deformation $A^\text{ft} : \mathcal{H}/k \to \text{Sets}$. Restricted to A/k $\text{Def}_{(A^\text{ft}, N^\text{ft})}$ satisfies (S1) and (S2). Let $\{(T^0_n, N^\text{ft}_n)\} \in \lim \text{Def}_{(A^\text{ft}, N^\text{ft})}(S_n)$ be a formally versal formal element (where $S_n = S/m_n^{e+1}$). Put $S = \lim S_n$. By [17, Théorème 7, p. 595] (cf. [3, II 5.1]) there exists an element $S \to T^0$ in $\text{Def}_{A^\text{ft}}(S)$ which induces $\{T^0_n\}$. Let T^* be the henselisation of T^0 in the maximal ideal $m = (T^0 \to A)^{-1}(m_A)$. Then $S \to T^*$ is a deformation of A. Let T^* be the completion of T^0 at the ideal $n = m_ST^0$ and let $N^* = \lim N^\text{ft}_n$. Then N^* is an S-flat finite A^ft-module. Let $J^* \subseteq T^*$ denote the ideal $I(\varphi)$ where φ is a minimal presentation of N^*. Then J^* defines the locus $V(J^*)$ where N^* is not locally free. Let $J = \ker(T^0 \to T^*/J^*)$. Since T^*/J^* is finite as $S = \tilde{S}$-module, $T^*/J^* \cong T^*/J^*$. The proof of [22, 2.3] works in this situation too (there is a typo in line 5: it should be a direct sum, not a tensor product) and shows that the completion of T^* in the ideal $a = J \cap m_ST^0$ equals T^*. Since N^* is locally free on the complement of
The isomorphism is extended to an isomorphism of the pairs \(\psi, \theta \). In particular, \(\mathcal{N} \) is \(S \)-flat.

We claim that the henselisation map \(\text{Def} \) is formally smooth. It follows that the element \((T', \mathcal{N}') \) in \(\text{Def}(\mathcal{A}, \mathcal{N}) \) is formally versal. For the claim, put \(T^n = \mathcal{A}^n \otimes \mathcal{N}^n \) and \(\mathcal{T} = \mathcal{A} \otimes \mathcal{N} \) and let \(\pi: S_1 \to S_0 = S_1/I \) be a small surjection in \(\mathcal{A}/k \). The obstruction \(\text{ob}(\pi, I_0^n) \in \mathfrak{H}^2(k, I^n, \mathcal{T}^n) \otimes \mathfrak{C} \) for lifting a deformation \(\mathcal{T}^n \) along \(\pi \) maps to the corresponding obstruction \(\text{ob}(\pi, I_0^n) \in \mathfrak{H}^2(k, \mathcal{G}, \mathcal{G}) \). The isomorphisms \(\mathfrak{H}(S, T, T') \cong \mathfrak{H}(S, T^n, T^n) \otimes \mathfrak{T} \) for all \(i \) implies isomorphisms \(\mathfrak{H}(k, \mathcal{T}, \mathcal{T}) \cong \mathfrak{H}(k, \mathcal{G}, \mathcal{G}) \) for \(i = 1, 2 \) as in the beginning of the proof. Smoothness follows by the standard obstruction argument. By \([3] 3.2\) there is an algebraic \(k \)-algebra \(R \) and a formally versal element \((T, \mathcal{N}) \) in \(\text{Def}(\mathcal{A}_R)(R) \).

Finally we apply \([3] 3.3\) to conclude that the formally versal element \((T, \mathcal{N}) \) is versal. We already have (S1) and (S2). To check \([3] 3.3(iii)\], let \(S \) be algebraic in \(\mathcal{H}/k \). We put \(\mathfrak{S} = \varprojlim \mathfrak{S}_n \) where \(\mathfrak{S}_n = \mathfrak{S}/I^{n+1}_n \). Let \(\xi = (T', \mathcal{N}', \mathcal{N}) \) for \(i = 1, 2 \) be two elements in \(\text{Def}(\mathcal{A}_R)(\mathfrak{S}^n) \) and \(\{ \theta_n : \xi_n \cong \xi'_{n+1} \} \) be a tower of isomorphisms between the \(S_n \)-truncations. There are finite type representatives \(\xi_i = (T_i', \mathcal{N}_i, \mathcal{N}) \) of the \(\xi \). By the cohomology argument above one obtains by induction a tower of isomorphisms \(\{ \theta_n : \xi_n \cong \xi'_{n+1} \} \) inducing \(\{ \theta_n \} \). Since \(\varprojlim \mathfrak{S}/I^{n+1}_n \mathfrak{S} \cong \mathfrak{S}^n \) where \(\mathfrak{S} \) is the completion of \(\mathfrak{S} \) in the maximal ideal, we can apply \([17] \text{Lemme p. 600}\) to conclude that the henselisations of the \(T_i^\prime \) in \(T_i^\prime \mathfrak{I} \) are isomorphic by an isomorphism lifting \(\theta_0 : 1^2T_0 \cong 2T_0 \). Further henselisation in the maximal ideals gives an isomorphism \(1^2T_i \cong 2T_i \). By Lemma \([11] 6.3\) the isomorphism is extended to an isomorphism of the pairs \(\psi : \xi \cong \xi' \) which lifts \(\theta_0 \). By \([12] 1.3\) condition \([3] 3.3(ii)\) is unnecessary and we conclude that \((T, \mathcal{N}) \) is versal.

Remark 10.2. Let \(A \) be an Cohen-Macaulay local algebraic \(k \)-algebra and \(\mathcal{N} \) a finite \(A \)-module. We say that \(\mathcal{N} \) has an isolated singularity if \(\mathfrak{N}_p \) is a free \(A_p \)-module for all prime ideals \(p \neq \mathfrak{m}_A \). In that case a similar, but easier argument gives that \(\text{Def}^A \) has a versal element. This is the result \([14] 2.4\) of von Essen, but for a slightly different fibred category of deformations where henselisation is taken along the closed fibre. However it implies the result in our case, essentially by henselisation at \(\mathfrak{m}_0 \). Corollaries \([10] 10.3\) and \([10] 10.4\) have obvious analogs for \(\text{Def}^A \) in this case.

Corollary 10.3. Suppose \(A \) is an isolated Cohen-Macaulay singularity over the field \(k \) and \(\mathcal{N} \) is a finite length \(A \)-module. Let \(L \to M \to N \to L' \to M' \) be the minimal \(\text{MCM}_A \)-approximation and \(\text{MCM}_A \)-hull of \(N \) respectively. Then:

(i) \(\text{Def}(\mathcal{A}_N) \) has a versal element.
(ii) If \(\dim A \geq 2 \) and \(Q' \) denotes \(\text{Hom}_A(\omega_A, L') \) then \(\text{Def}(\mathcal{A}_N) \cong \text{Def}(\mathcal{A}_L') \cong \text{Def}(\mathcal{A}_Q') \).
(iii) If \(\dim A \geq 3 \) and \(Q \) denotes \(\text{Hom}_A(\omega_A, L) \) then \(\text{Def}(\mathcal{A}_N) \cong \text{Def}(\mathcal{A}_L) \cong \text{Def}(\mathcal{A}_Q) \).

Proof. This is Theorem \([11] 10.1\), Theorem \([13] 3.4\) and Proposition \([16] 0.6\).

Corollary 10.4. Suppose \(A \) is a local algebraic \(k \)-algebra which is a Gorenstein normal domain with \(\dim A = 2 \) and \(N \) is a finite torsion-free \(A \)-module with an isolated singularity. Let \(L \to M \to N \to \text{MCM}_A \)-approximation of \(N \). Assume \(k \) is perfect. Then \(\text{Def}(\mathcal{A}_N) \) and \(\text{Def}(\mathcal{A}_M) \) both have versal elements and the map \(\text{Def}(\mathcal{A}_N) \to \text{Def}(\mathcal{A}_M) \) is smooth.
11. Deforming maximal Cohen-Macaulay approximations of Cohen-Macaulay modules

Let $h : S \to T$ be a homomorphism of noetherian rings and \mathcal{N} an S-flat finite T-module. If $t \in \text{Spec} T$ with image $s \in \text{Spec} S$ recall that \mathcal{N}_p is the localisation of \mathcal{N} at the prime ideal t and $\mathcal{N}(t) = \mathcal{N}_p \otimes_{S_p} k(s)$. An (h, \mathcal{N})-sequence (or just an h-sequence if $\mathcal{N} = T$ and an h-regular element if $n = 1$) is a sequence $J = (f_1, \ldots, f_n)$ in T such that the image J in $T(t)$ is a weak $\mathcal{N}(t)$-sequence for all closed t and such that $JN \neq N$. Applying the Koszul complex $K(J, N)$ as in Example 10.5 one sees that an (h, \mathcal{N})-sequence is the same as a transversally \mathcal{N}-regular sequence relative to S as defined in [21] 19.2.1. In particular; J is an (h, \mathcal{N})-sequence if and only if J is an \mathcal{N}-sequence and N/JN is S-flat.

Theorem 11.1. Let $q : O \to T^o$ denote the henselisation of a finite type Cohen-Macaulay map with $T^o/\mathfrak{m}_{T^o} = k$ and $T^o \otimes_O k = A$. Suppose $J = (f_1, \ldots, f_n)$ is a q-sequence. Put $T^o = T^o/J$, $B = T^o \otimes_O k$ and let \bar{J} be the image of J in A. Let N be a maximal Cohen-Macaulay B-module and $L \to M \to N$ the minimal MCM$_A$-approximation of N. If $\text{ob} (A/J^2 \to B, N) = 0$, then the composition of maps

$$\text{Def}_{T^o} N \longrightarrow \text{Def}_{T^o} M \longrightarrow \text{Def}_{T^o} M$$

of functors from $\text{Spec} H/k$ to Sets is injective.

The existence of a splitting $B \to A/J^2$ implies that $\text{ob} (A/J^2, N) = 0$ for all B-modules N since $A/J^2 \otimes_B N$ gives a lifting of N to A/J^2.

Let C be a category. Then $\text{Arr} C$ denotes the category with objects being arrows in C and arrows being commutative diagrams of arrows in C. An endo-functor F on C induces an endo-functor $\text{Arr} F$ on $\text{Arr} C$. Let B be a local noetherian ring and P_B the additive subcategory of projective modules in mod_B. Let $\text{Hom}_B (N, M)$ denote the homomorphisms from N to M in the quotient category $\text{mod}_B = \text{mod}_B/P_B$ i.e. B-homomorphisms modulo the ones factoring through an object in P_B. For each N in mod_B we fix a minimal B-free resolution and use it to define the syzygy modules of N. Then the association $N \mapsto \text{Syz}_i^B N$ induces an endo-functor on mod_B for each i, considered by A. Heller [22]. Define $\text{Ext}_B^i (N, M)$ as $\text{Hom}_B (\text{Syz}_i^B N, M)$ which turns out to be isomorphic to $\text{Ext}_B^i (N, M)$ for all $i > 0$.

Lemma 11.2. Let A be a local noetherian ring and $I = (f_1, \ldots, f_n)$ a regular sequence. Put $B = A/I$ and suppose N, N_1 and N_2 are finite B-modules. Let M_i denote $B \otimes \text{Syz}_n^A N_i$.

1. There is an inclusion $u_N : N \to M_N$ of B-modules with $M_N \cong B \otimes \text{Syz}_n^A N$ which induces a functor $u : \text{mod}_B \to \text{Arr} \text{mod}_B$.
2. The functor u commutes with the B-syzygy functor:

$$\text{Arr} \text{Syz}_i^B (u_N) = u_{\text{Syz}_i^n N}$$
(iii) The endo-functor $B \otimes \text{Syz}_n^A(-)$ induces a natural map $\text{Ext}_n^1(N_1, N_2) \to \text{Ext}_n^1(M_1, M_2)$ which makes the following diagram commutative:

\[
\begin{array}{ccc}
\text{Ext}_n^1(N_1, N_2) & \to & \text{Ext}_n^1(M_1, M_2) \\
\downarrow_{(u_{N_2})} & & \downarrow_{(u_{M_2})} \\
\text{Ext}_n^1(N_1, M_2) & \to & \text{Ext}_n^1(N_1, M_1)
\end{array}
\]

(iv) The inclusion $u_N : N \hookrightarrow B \otimes \text{Syz}_n^A N$ splits \iff $\text{ob}(A/J^2 \to B, N) = 0$.

Remark 11.3. Lemma [11.2] (iv) strengthens [8, 3.6] (in the commutative case).

Proof. (i): Suppose $F_* \to N$ is a minimal A-free resolution of N. Tensoring the short exact sequence $\text{Syz}_n^A N \xrightarrow{\partial_n} F_{n-1} \to \text{Syz}_{n-1}^A N$ with B gives the exact sequence

\[
0 \to \text{Tor}_1^A(B, \text{Syz}_{n-1}^A N) \to B \otimes \text{Syz}_n^A N \to F_{n-1} \to B \otimes \text{Syz}_{n-1}^A N \to 0.
\]

We have $\text{Tor}_1^A(B, \text{Syz}_{n-1}^A N) \cong \text{Tor}_1^A(B, N) \cong N$. Let u_N be the inclusion $N \cong \text{ker}(B \otimes A)$, then $N \to u_N$ gives a functor of quotient categories.

(ii): Let $p : Q \to N$ be the minimal B-free cover and $p_* \to \text{Syz}_B^N$ the minimal A-free resolution of the B-syzygy $\text{ker}(p)$. Then there is an A-free resolution $H_* \to Q$ which is an extension of F_* by p_*. Since $\text{Syz}_B^A B \cong A$, tensoring the short exact sequence of resolutions by B we obtain the commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \to & \text{Syz}_B^N & \to & Q & \to & N & \to & 0 \\
\downarrow_{u_N} & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{Syz}_n^A(B \otimes \text{Syz}_B N) & \to & B \otimes Q & \to & B \otimes \text{Syz}_n^A N & \to & 0
\end{array}
\]

which proves the claim.

(iii): By (ii) it is enough to prove this for $i = 0$. The case $i = 0$ follows from the functoriality in (i).

(iv, \Leftarrow): For the case $n = 1$ see the proof of [8, 3.2]. Assume $n \geq 2$. We follow the proof of [8, 3.6] closely. Let $A_1 = A/(f_1)$. Then $F_*^{(1)} = A_1 \otimes F_*^{(1)}[1]$ gives a minimal A_1-free resolution of $A_1 \otimes \text{Syz}_n^A N$. We have $\text{ob}(A/J^2 \to B, N) = 0 \Rightarrow \text{ob}(A/(f_1)^2 \to A_1, N) = 0$ and hence N is a direct summand of $A_1 \otimes \text{Syz}_n^A N$. Let $G_* \to N$ be a minimal A_1-free resolution of N. Then G_* is a direct summand of $F_*^{(1)}$ and hence $\text{Syz}_{n_1}^{A_1} N$ is a direct summand of $A_1 \otimes \text{Syz}_n^A N = A_1 \otimes \text{Syz}_{n_1}^{A_1} N$. Tensoring this situation with B gives a commutative diagram:

\[
\begin{array}{cccccccc}
N & \to & A \otimes \text{Syz}_n^A N & \xrightarrow{\partial_n} & F_{n-1} & \cdots & F_0 & \to & N \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
N & \xrightarrow{u_1} & A \otimes \text{Syz}_{n_1}^{A_1} N & \xrightarrow{\partial_{n_1}} & G_{n-2} & \cdots & G_0 & \to & N
\end{array}
\]

Since $\text{ob}(A/J^2 \to B, N) = 0 \Rightarrow \text{ob}(A/(f_2, \ldots, f_n)^2 \to B, N) = 0$ the map u_1 splits by induction on n. So u splits. The other direction follows from [8, 3.6]. □

Proposition 11.4. Let $h : S \to T$ be a local Cohen-Macaulay map, $J = (f_1, \ldots, f_n)$ an h-sequence, $\tilde{h} : S \to T = T/J$ the local Cohen-Macaulay map induced from h, and (h, N) an object in MCM_h. Let $\xi : \mathcal{L} \to \mathcal{M} \xrightarrow{\sim} N$ be the minimal MCM_h-approximation of N. Then tensoring ξ by T gives a 4-term exact sequence

\[
0 \to \mathcal{N} \otimes J^2 \to \mathcal{L} \to \mathcal{M} \xrightarrow{\xi} N \to 0
\]

which represents the obstruction class $\text{ob}(T/J^2 \to T, N) \in \text{Ext}_T^2(N, \mathcal{N} \otimes J^2)$.

Moreover, $\text{ob}(T/J^2 \to T, N) = 0 \iff \text{ob}(T/J^2 \to T, N^\circ) = 0 \iff \pi$ splits where $N^\circ = \text{Ext}_T^1(N, \omega_h)$.
Proof. By Proposition 2.5, $\text{Tor}^i_T(T, M) = H_i(K(f) \otimes M) = 0$ for $i > 0$. There is a map from the defining short exact sequence $\text{Syz}^T N \rightarrow F_0 \rightarrow N$ to ξ lifting id_N. Tensoring with T gives a map of 4-term exact sequences with outer terms canonically identified. Hence they represent the same element $\text{ob}(T/J^2 \rightarrow T, N)$ in $\text{Ext}^2_T(N, N \otimes J/J^2)$.

By the argument in Remark 5.5 we can assume that ξ is given as $\text{im}(d_{\text{ext}}^n) \rightarrow (\text{Syz}^T_N N^+) \rightarrow N$ where (F_n, d_n) is a minimal T-free resolution of N^+. By Lemma 11.2, $\text{ob}(T/J^2 \rightarrow T, N^+) = 0$ if and only if $u : N^+ \rightarrow T \otimes \text{Syz}^T_T N^+$ splits. But applying $\text{Hom}_T(-, \omega_h)$ to u gives $\overline{\pi}$ since $N \cong \text{Ext}^1_T(N^+, \omega_h) \cong \text{Hom}_T(N^+, \omega_h)$.

Remark 11.5. In the absolute Gorenstein case with $n = 1$ this is given in [8, 4.5].

Proof of Theorem 11.1. Given S in \mathcal{O}/k and let $h : S \rightarrow T$ and $\overline{h} : S \rightarrow T = T/JT$ be the induced hCM maps. Let \mathcal{N} be deformations of N to h for $i = 1, 2$ and assume that the minimal MCM_A-approximation modules \mathcal{M} of \mathcal{N} are isomorphic as deformations of M. We proceed as in the proof of Theorem 11.1 (i) with $S_n = S/m_S^{i+1}$, $\mathcal{N}_n = \mathcal{N} \otimes_S S_n$ etc., construct a tower of isomorphisms $\{\varphi_n : \mathcal{N} \cong \mathcal{N}_n\}$, and conclude by Lemma 11.5 that \mathcal{N} and \mathcal{N}' are isomorphic as deformations of N.

For the induction step we use that the map of torsor actions along $\text{Def}_{\mathcal{N}_n}(S_{n+1}) \rightarrow \text{Def}_{\mathcal{N}_n}(S_{n+1})$ is induced by a natural map $\pi : \text{Ext}^1_{I_B}(N, N) \rightarrow \text{Ext}^1_{I_A}(M, M)$ which is injective. The map π is given as follows.

Let $\pi : M \rightarrow N$ denote the MCM_A-approximation and $\overline{\pi} : \overline{M} \rightarrow \overline{N}$ be the B-quotient. Then $\overline{\pi}$ splits by Proposition 11.1. Hence $\overline{\pi}^* : \text{Ext}^1_{I_B}(N, N) \rightarrow \text{Ext}^1_{I_A}(M, N)$ splits. Since J is an A-regular sequence, $\text{Ext}^1_{I_B}(M, N) \cong \text{Ext}^1_{I_A}(M, N)$.

Since $\text{Ext}^1_{I_A}(M, L) = 0$ for all $i > 0$, $\pi_* : \text{Ext}^1_{I_A}(M, M) \cong \text{Ext}^1_{I_B}(M, N)$. Summarised:

\[
\begin{align*}
\text{Ext}^1_{I_A}(M, N) &\cong \text{Ext}^1_{I_A}(M, M) \\
&\rightarrow \text{Ext}^1_{I_B}(N, N) \rightarrow \text{Ext}^1_{I_B}(M, N)
\end{align*}
\]

The technique used to prove Theorem 11.1 also gives the following result.

Theorem 11.6. Let \mathcal{O} and T^n be henselian and noetherian local rings and $q : \mathcal{O} \rightarrow T^n$ a local and flat ring homomorphism with $T^n/m_{T^n} = k$ and $T^n \otimes \mathcal{O} k = A$. Suppose $J = (f_1, \ldots, f_n)$ is a q-sequence. Put $T^n = T^n/J$, $B = T^n \otimes \mathcal{O} k$ and let J be the image of J in A. Let N be a finite B-module and let M denote the syzygy module $\text{Syz}_n^A N$.

If $\text{ob}(A/J^2 \rightarrow B, N) = 0$ then the natural map $s : \text{Def}_{\mathcal{N}}^T \rightarrow \text{Def}_{\mathcal{M}}^T$ is injective.

Proof. We proceed as in the proof of Theorem 11.1. Given deformations \mathcal{N} of N to h for $i = 1, 2$. They map to $\mathcal{M} := \text{Syz}_n^A(N)$ which we suppose are isomorphic as deformations of M to h. Then the natural syzygy map $s_1 : \text{Ext}^1_{I_B}(N, N) \rightarrow \text{Ext}^1_{I_A}(M, M)$ induces the map of torsor actions along s of the infinitesimal extensions. The composition of s^1 with $\text{Ext}^1_{I_A}(M, M) \rightarrow \text{Ext}^1_{I_A}(M, M) \cong \text{Ext}^1_{I_B}(M, M)$ commutes with the horizontal map in Lemma 11.2 (iii). But Lemma 11.2 (iv) implies that $(s_1)_*$ is injective, hence s^1 is injective too. Proceeding by induction on m_{S}^{n+1}-truncations of the deformations we construct a tower of isomorphisms and conclude by Lemma 6.1.

Remark 11.7. Theorem 11.6 resembles [27, Thm. 1]. However Theorem 11.6 makes a sounder statement in a more general setting and has a more transparent proof. Indeed, the various similar results in [27] can be changed and proved accordingly.
12. The Kodaira-Spencer map of Cohen-Macaulay approximations

A modular family of objects is roughly speaking a family where the isomorphism class of the fibre changes non-trivially. The Kodaira-Spencer map makes this idea precise. We consider the Kodaira-Spencer classes and maps for families of pairs (algebra, module) and by invoking the long-exact transitivity sequence we relate them to the corresponding notions for the algebra and the module. Then we show that Cohen-Macaulay approximation of modular families under certain “global” conditions akin to those in Theorem 9.4 and 11.1 produce new modular families.

The following is a graded version of [28 II 2.1.5.7].

Definition 12.1. Let \(\mathcal{O} \rightarrow S\) and \(S \rightarrow \Gamma\) be graded ring homomorphisms with \(\mathcal{O}\) and \(S\) concentrated in degree 0. The map \(L^r_{\mathcal{O}/S} \rightarrow L_{\mathcal{O}/S} \otimes S/\Gamma[1]\) in the corresponding distinguished transitivity triangle of (graded) cotangent complexes (see (8.5.1)) is called the **Kodaira-Spencer class** of \(\mathcal{O} \rightarrow S \rightarrow \Gamma\).

Composing the Kodaira-Spencer class with the natural augmentation map

\[
L_{\mathcal{O} \otimes S} \Gamma[1] \rightarrow \Omega_{\mathcal{O} \otimes S} \Gamma[1]
\]

induces an element \(\kappa(\Gamma/S/\mathcal{O}) \in \Omega^1(\mathcal{S}, \Gamma, \Omega_{\mathcal{O} \otimes S} \otimes S/\Gamma)\), the cohomological Kodaira-Spencer class, which is also given as follows. Let \(\mathcal{P} = P_{\mathcal{O}/S}\) denote \(S \otimes S/I^2\) where \(I\) is the kernel of the multiplication map \(S \otimes S \rightarrow S\). There are two ring homomorphisms \(j_1\) and \(j_2\) from \(S\) to \(\mathcal{P}\) defined by \(j_1: s \mapsto s \otimes 1\) and \(j_2: s \mapsto 1 \otimes s\). Let \(d_{\mathcal{S}/\mathcal{O}}\) denote the universal derivation (induced by \(j_2 - j_1\)). The principal parts of \(\Gamma\) is \(\mathcal{P} \otimes S\Gamma\) (with the \(j_2\) tensor product), which gives an \(S\)-algebra extension (via \(j_1\)) representing the Kodaira-Spencer class:

\[
(12.1.1) \quad \kappa(\Gamma/S/\mathcal{O}) : 0 \rightarrow \Omega_{\mathcal{O} \otimes S} \Gamma \rightarrow \mathcal{P}_{\mathcal{O} \otimes S} \Gamma \rightarrow \Gamma \rightarrow 0
\]

see [28 III 1.2.6]. Since \(\mathcal{P} \otimes S\Gamma\) has a natural \(\mathcal{P}\)-algebra structure, (12.1.1) is also a (graded) algebra lifting of \(\Gamma\) along \(\mathcal{P} \rightarrow S\) as in Proposition 8.3. The \(j_1\)-extension \(\Gamma \otimes S\mathcal{P} \rightarrow \Gamma\) is a trivial lifting (split by \(id_{\mathcal{P}} \otimes 1\)) and the difference \(\delta: \mathcal{P} \otimes S/1\mathcal{P} \rightarrow \mathcal{P}_{\mathcal{O} \otimes S} \Gamma\) given by Proposition 8.3 (ii) equals \(\kappa(\Gamma/S/\mathcal{O})\), see [28 III 2.1.5]. Moreover, the difference \(1\mathcal{P} \otimes id_{\mathcal{P}} - id_{\mathcal{P}} \otimes 1\mathcal{P}\) induces \(d_{\mathcal{S}/\mathcal{O}}\otimes 1\mathcal{T}\) (in degree 0) which is mapped to \(\kappa(\Gamma/S/\mathcal{O})\) by the connecting homomorphism

\[
(12.1.2) \quad \delta : \text{Der}_{\mathcal{O}}(\mathcal{S}, \Omega_{\mathcal{O} \otimes S} T) \rightarrow \Omega^1(\mathcal{S}, \Gamma, \Omega_{\mathcal{O} \otimes S} \otimes S/\Gamma)
\]

in the long-exact transitivity sequence, see [28 III 1.2.6.5 and 1.2.7].

In the special case of \(\Gamma = T \otimes \mathcal{N}\), \(\mathcal{N}\) a \(T\)-module and \(S = T\), the transitivity sequence of \(\mathcal{O} \rightarrow T \rightarrow \Gamma\) is given in Proposition 8.5. The Kodaira-Spencer class equals \(\partial(d_{\mathcal{O}/\mathcal{T}}) \in \text{Ext}^1_{\mathcal{T}}(\mathcal{N}, \Omega_{\mathcal{T}/\mathcal{O} \otimes \mathcal{T} \mathcal{N}})\) and is called the (cohomological) Atiyah class and is denoted by \(\alpha_{\mathcal{O}/\mathcal{T}}(\mathcal{N})\), cf. [28 IV 2.3.6-7]. The class is represented by the short exact sequence

\[
(12.1.3) \quad \alpha_{\mathcal{O}/\mathcal{T}}(\mathcal{N}) : 0 \rightarrow \Omega_{\mathcal{T}/\mathcal{O} \otimes \mathcal{T} \mathcal{N}} \rightarrow \mathcal{P}_{\mathcal{T}/\mathcal{O} \otimes \mathcal{T} \mathcal{N}} \rightarrow \mathcal{N} \rightarrow 0.
\]

The **Kodaira-Spencer map** of \(\mathcal{O} \rightarrow S \rightarrow \Gamma\)

\[
\gamma^\Gamma : \text{Der}_{\mathcal{O}}(\mathcal{S}) \rightarrow \Omega^1(\mathcal{S}, \Gamma, \Gamma)
\]

is defined by \(D \mapsto f_D^\Gamma \kappa(\Gamma/S/\mathcal{O})\) where \(f_D : \Omega_{\mathcal{O}/\mathcal{S}} \rightarrow S\) corresponds to \(D\). Pushout of \(12.1.1\) by \(f_D^\otimes \otimes id_{\Gamma}\) gives the corresponding algebra lifting of \(\Gamma\) along \(S[\varepsilon] \rightarrow S\) given by \(\gamma^\Gamma(D)\).

Proposition 12.2. Let \(\Gamma\) denote the graded \(S\)-algebra \(T \otimes \mathcal{N}\) where \(\mathcal{O} \rightarrow S\) and \(S \rightarrow T\) are (ungraded) ring homomorphisms and \(\mathcal{N}\) is a \(T\)-module. Consider the
transitivity sequence of $S \to T \overset{\iota}{\to} \Gamma$ in Proposition 8.5.

\[\cdots \to \text{Der}_S(T, \Omega_{S/\mathcal{O}} \otimes_S T) \xrightarrow{\partial} \text{Ext}^1_T(N, \Omega_{S/\mathcal{O}} \otimes_S T) \xrightarrow{\partial} H^1(S, T, \Omega_{S/\mathcal{O}} \otimes_S T) \xrightarrow{\partial} \cdots \]

(i) The map ι^* takes the Kodaira-Spencer class $\kappa(\Gamma/\mathcal{O})$ to $\kappa(T/\mathcal{O})$.

(ii) Assume $\kappa(T/\mathcal{O}) = 0$ and choose an S-algebra splitting $\sigma : T \to \mathcal{P}_{\mathcal{O}} \otimes_S T$.

Then there is a class $\kappa(\sigma, \mathcal{N}) = \kappa(T/S, \sigma, \mathcal{N}) \in \text{Ext}^1_T(N, \Omega_{S/\mathcal{O}} \otimes_S \mathcal{N})$ which maps to $\kappa(T/\mathcal{O})$ by u.

(iii) Let $D(\sigma) \in \text{Der}_\mathcal{O}(T, \Omega_{S/\mathcal{O}} \otimes_S T)$ be the derivation corresponding to the splitting σ and for each $D_1 \in \text{Der}_\mathcal{O}(S)$ let $X_\sigma(D_1)$ denote $f^D_1(D(\sigma)) \in \text{Der}_\mathcal{O}(T)$.

Then

\[f^D_1 \kappa(\sigma, \mathcal{N}) = f^*_1 X_\sigma(D_1) \text{ at } T/\mathcal{O}(\mathcal{N}) \text{ in } \text{Ext}^1_T(N, \mathcal{N}) \]

Proof. The degree zero part of (12.1.1) gives the image $i^* \kappa(\Gamma/\mathcal{O})$ represented by the algebra extension

\[\kappa(T/\mathcal{O}): 0 \to \Omega_{S/\mathcal{O}} \otimes S \to \mathcal{P}_{\mathcal{O}} \otimes S \to T \to 0. \]

The degree one part is the short exact sequence of $\mathcal{P} \otimes_S T$-modules

\[\mathcal{O} \to \Omega_{S/\mathcal{O}} \otimes S \to \mathcal{P}_{\mathcal{O}} \otimes S \to N \to 0. \]

The splitting σ makes \mathcal{O} to a short exact sequence of T-modules which defines $\kappa(T/S, \sigma, \mathcal{N})$.

For (iii) we have $X_\sigma(D_1) = f^*_1 X_\sigma(D_1) \text{ at } T/\mathcal{O}$ and the result follows from the commutative diagram

\[(12.2.3) \]

We call $\kappa(\sigma, \mathcal{N})$ for the Kodaira-Spencer class of $(T/S, \sigma, \mathcal{N})$. Define the Kodaira-Spencer map of $(T/S, \sigma, \mathcal{N})$

\[(12.2.4) \]

by $g^{(\sigma, \mathcal{N})}(D) := (f^D \otimes \text{id})_* \kappa(\sigma, \mathcal{N})$.

In the case $T = S \otimes \mathcal{O} \to \mathcal{P}_{S/\mathcal{O}} \otimes \mathcal{O} \to T$ we always choose the S-algebra splitting $S \otimes \mathcal{O} \to \mathcal{P}_{S/\mathcal{O}} \otimes \mathcal{O} \to T$.

In particular $\kappa(T/S) = 0$ and we get a canonical Kodaira-Spencer class $\kappa(\mathcal{N})$ and a corresponding Kodaira-Spencer map $g^\mathcal{N}$.

Remark 12.3. There is no reason to believe that $\kappa(\sigma, \mathcal{N})$ maps to $\text{at}_{T/\mathcal{O}}(\mathcal{N})$ in diagram (12.2.3) for any choice of σ. While there is a canonical map of short exact sequences (of \mathcal{O}-modules)

\[\kappa(\sigma, \mathcal{N}) : 0 \to \Omega_{S/\mathcal{O}} \otimes S \mathcal{N} \to \mathcal{P}_{S/\mathcal{O}} \otimes S \mathcal{N} \to \mathcal{N} \to 0 \]

\[\text{at}_{T/\mathcal{O}}(\mathcal{N}) : 0 \to \Omega_{T/\mathcal{O}} \otimes T \mathcal{N} \to \mathcal{P}_{T/\mathcal{O}} \otimes T \mathcal{N} \to \mathcal{N} \to 0 \]
Example 12.4. Another special case is given by the base change of \(h : S \to T \) itself to \(h \otimes T : T \to T \otimes S T = T^{\otimes 2} \) and a \(T \)-flat \(T^{\otimes 2} \)-module \(N \), cf. Section 7. Then \(\kappa(T^{\otimes 2}/T/S,N) \in \text{Ext}^1_{T\otimes S T}(N,\Omega_{T\otimes S T} \otimes N) \) equals \(\kappa_1(N) \) to \(a_{T\otimes S T}(N) \). The multiplication map \(\mu_{T^{\otimes 2}/T} : \mathcal{P}_{T^{\otimes 2}/T} \to T^{\otimes 2} \) equals \(\text{id}_T \otimes \mu_{T/S} : T \otimes S \mathcal{P}_{T/S} \to T^{\otimes 2} \). It follows that \(a_{T^{\otimes 2}/T}(N) \) maps to \(a_{T/S}(N) \) in \(\text{Ext}^1(N,\Omega_{T/S} \otimes N) \) by the natural map. If \(N = T \) then \(a_{T/S}(T) = 0 \), but in general \(a_{T^{\otimes 2}/T}(T) \neq 0 \).

Example 12.5. The transitivity sequence of \(O \to T \to \Gamma \) and \(J = J_0 \ominus J_1 \) in Proposition 8.5

\[
0 \to \text{Hom}_T(N_1,J_1) \to a\text{Der}_O(\Gamma,J) \xrightarrow{\nu} \text{Der}_O(T,J_0) \to \text{Ext}^1_T(N_1,J_1) \to \ldots
\]

suggests the following characterisation. An element \(D \in a\text{Der}_O(\Gamma,J) \) is given by its degree 0 restriction \(D := \nu^*(D) \in \text{Der}_O(T,J_0) \) and its degree 1 restriction \(\nabla_D := D_{\nabla} \in \text{Hom}_O(N_1,J_1) \) should satisfy the following Leibniz rule: For all \(t \in T \) and \(n \in N \)

\[
\nabla_D(tn) = t\nabla_D(n) + D(t)n.
\]

With notation as in Proposition 12.2 recall that \(\kappa(\Gamma/S/O) = \partial(d_{S/O} \otimes 1_T) \) in the transitivity sequence of \(O \to S \to \Gamma \):

\[
0 \to \text{Der}_S(\Gamma,\Omega_{S/O} \otimes \Gamma) \to \text{Der}_O(\Gamma,\Omega_{S/O} \otimes \Gamma) \to \text{Der}_S(\Gamma,\Omega_{S/O} \otimes T) \oplus \text{Hom}_T(S,\Gamma) \rightarrow 0
\]

12.5.2

Hence \(\kappa(\Gamma/S/O) = 0 \) if and only if there exists a \(D \in \text{Der}_O(T,\Omega_{S/O} \otimes T) \) which restricts to \(d_{S/O} \otimes 1_T \) and a \(\nabla_D \in \text{Hom}_O(N_1,\Omega_{S/O} \otimes N) \) satisfying 12.5.2. As a well known special case (\(S = T \) we get \(a_{T/O}(N) = 0 \) if and only if there exists a \(\nabla \in \text{Hom}_O(N_1,\Omega_{T/O} \otimes N) \) satisfying 12.5.2 with \(D = d_{T/O} \in \text{Der}_O(T,\Omega_{T/O}) \) (i.e. \(\nabla \) is a connection), or equivalently, a graded derivation \(D \in a\text{Der}_O(\Gamma,\Omega_{T/O} \otimes T) \) restricting to \(d_{T/O} \). Note that 12.5.3 with \(J = \Omega_{T/O} \otimes T \Gamma \) equals 12.5.3 in this case.

Recall the maps of cohomology groups \(\sigma^1_j(I) \) and \(\tau_j(I) \) in 8.6.1 and 8.6.2.

Proposition 12.6. In addition to the assumptions in Lemma 8.6 suppose \(O \to S \) is a ring homomorphism. For \(j = 1,2 \) the following holds:

(i) The map \(\sigma^1_j(\Omega/S/O) \) takes \(\kappa(\Gamma_0/S/O) \) to \(\kappa(\Gamma_j/S/O) \) and the Kodaira-Spencer maps \(g^\Gamma : \text{Der}_O(S) \to \text{H}^1(S,\Gamma,1) \) commute with \(\sigma^1_j \), i.e. \(\sigma^1_j g^\Gamma = g^\Gamma \).

(ii) Assume \(\kappa(T/S/O) = 0 \) and choose an S-algebra splitting \(\sigma : T \to \mathcal{P} \otimes S T \).

Then \(\tau^1_j(\Omega/S/O) \) maps \(\kappa(\sigma,N) \) to \(\kappa(\sigma,X_j) \) and the Kodaira-Spencer maps \(g^{\sigma,X_j} : \text{Der}_O(S) \to \text{Ext}^1(X,1) \) commute with \(\tau^1 \), i.e. \(\tau^1 g^{\sigma,X_j} = g^{\sigma,X_j} \).

Proof. (i) Put \(\kappa_j = \kappa(\Gamma_j/S/O) \), \(\Omega = \Omega_{S/O} \) and let \(\Gamma(i) : \Gamma_0 \to \Gamma_2 \) denote the graded ring homomorphism induced from \(i \). Then \(\Gamma(i) \) induces a map of short exact sequences \(\kappa_0 \to \kappa_2 \), hence a map of short exact sequences \(\Gamma(i)^* \kappa_0 \to \Gamma(i)^* \kappa_2 \), i.e. \(\sigma_2(\kappa) = (\Gamma(i)^*)^{-1} \Gamma(i)^* \kappa_2 \). The maps \(\sigma_2(\kappa) \) and \(\sigma_2(S) \) commute with the covariant action of \(\text{Der}_O(S) \), hence the second assertion follows from the first. The arguments for the cases \(j = 1 \) and (ii) are similar.\(\square \)

There are corresponding \textit{local} Kodaira-Spencer maps given as follows. Let \(t \in \text{Spec} T \) map to \(s \in \text{Spec} S \) and consider the localisations \(S_{p_i} \to T_{p_i} \) and \(S_{p_j} \to \Gamma_{p_i} \).
and the induced map $\mathcal{O} \to S_{p_0}$. The localisation map $\alpha^H(S, \Gamma, \Omega_{S'/\mathcal{O}} \otimes \Omega) \to \alpha^H(S_{p_0}, \Gamma_{p_0}, \Omega_{S_{p_0}/\mathcal{O}} \otimes \Omega_{S_{p_0}} \Gamma(t))$ maps $\alpha^H(S, \Gamma, \Omega_{S'/\mathcal{O}} \otimes \Omega)$ to $\alpha^H(S_{p_0}, \Gamma_{p_0}, \Omega_{S_{p_0}/\mathcal{O}} \otimes \Omega_{S_{p_0}} \Gamma(t))$. Let $\tilde{\kappa}(\Gamma_{p_0}/\mathcal{O})$ denote the image in $\alpha^H(S_{p_0}, \Gamma_{p_0}, \Omega_{S_{p_0}/\mathcal{O}} \otimes \Omega_{S_{p_0}} \Gamma(t))$ by the map induced from $\Gamma_{p_0} \to \Gamma_{p_0}$. Assume that $\tilde{\kappa}$ is S_{p_0}-flat. Then the natural base change map

$$\alpha^H(k(s), \Gamma(t), \Omega_{S_{p_0}/\mathcal{O}} \otimes \Omega_{S_{p_0}} \Gamma(t)) \to \alpha^H(S_{p_0}, \Gamma_{p_0}, \Omega_{S_{p_0}/\mathcal{O}} \otimes \Omega_{S_{p_0}} \Gamma(t))$$

is an isomorphism, see [25, II 2.2]. With this identification we define $g^T(t)(D) := (f^D \otimes \text{id}_{\Gamma(t)}) \circ \tilde{\kappa}(\Gamma_{p_0}/\mathcal{O})$ for any D in $\text{Der}_{\mathcal{O}}(S_{p_0}, k(s))$ and obtain local Kodaira-Spencer maps at t of Γ, and (similarly) of T, respectively:

$$(12.6.2) \quad g^T(t) : \text{Der}_{\mathcal{O}}(S_{p_0}, k(s)) \to \alpha^H(k(s), \Gamma(t), \Gamma(t))$$

$$(12.6.3) \quad g^T(t) : \text{Der}_{\mathcal{O}}(S_{p_0}, k(s)) \to H^1(k(s), T(t), T(t))$$

commuting with the natural map $\alpha^H(k(s), \Gamma(t), \Gamma(t)) \to H^1(k(s), T(t), T(t))$ in Proposition S. Then we define the local Kodaira-Spencer map of $(T_{p_0}/\mathcal{O}, \sigma, N_{p_0})$ by $g(\sigma, N_{p_0}) : (f^D \otimes \text{id}) \circ \tilde{\kappa}(\sigma, N_{p_0})$.

Similarly, the class $g^T(t)(D)$ is represented by a lifting of graded algebras $\Gamma' \to \Gamma(t)$ along $k(s)[\varepsilon] \to k(s)$. If the lifting of $g^T(t)(D) : T' \to T(t)$ splits, a choice of splitting makes the short exact sequence $\tilde{\alpha}(t)(D) : \varepsilon N(t) \to N' \to N(t)$ T-linear and defines $\tilde{\alpha}(t)(D)$ as an extension in the subspace $\text{Ext}^1_{T(t)}(N(t), N(t))$ of $\text{Ext}^1_{T'(t)}(N(t), N(t))$.

We assume that \mathcal{O} is an algebraically closed field k for the rest of this section.

Definition 12.7. Let $h : S \to T$ be a local flat map of noetherian k-algebras and \mathcal{N} an S-flat T-module. Put $\Gamma = T \otimes \mathcal{N}$, $A = T \otimes_k \mathcal{K}$, $\mathcal{N} = \mathcal{N} \otimes_k k$ and $\Gamma(0) = \Gamma \otimes_k k = A \otimes_k N$. We say that (h, \mathcal{N}) is locally modular if the local Kodaira-Spencer map $g^T(0) : \text{Der}_k(S, k) \to \alpha^H(k(0), \Gamma(0))$ is injective. If in addition $T = S \otimes_k A$ then \mathcal{N} is locally modular if $g^T(0) : \text{Der}_k(S, k) \to \text{Ext}^1_k(N, N)$ is injective.

If $h^R : S \to T$ is a faithfully flat finite type map of noetherian k-algebras with a k-point $t \in \text{Spec} T$ mapping to $s \in \text{Spec} S$ and \mathcal{N} is an S-flat finite T-module, we say that (h^R, \mathcal{N}) is modular at t if the henselisation of (h^R, \mathcal{N}) at t is locally modular. If A is a finite type k-algebra and $T = S \otimes_k A$, then \mathcal{N} is modular at t as T-module if its henselisation at t is locally modular. Let $\nabla(h, \mathcal{N}) \left(\nabla_T(\mathcal{N})\right)$ if $T = S \otimes_k A$ denote the set of k-points $t \in \text{Supp} \mathcal{N}$ where (h, \mathcal{N}) (respectively \mathcal{N} as T-module) is modular.

Corollary 12.8. Let $h : S \to T$ be a finite type Cohen-Macaulay map of k-algebras and let \mathcal{N} be in mod^R_k. Suppose there is an h-regular element contained in $\Ann_T \mathcal{N}$. Let $\nabla : \mathcal{N} \to \mathcal{L} ' \to M'$ be a D^R_k-hull for \mathcal{N}. Then

$$\nabla(h, \mathcal{N}) = \nabla(h, \mathcal{L}') \quad \text{and} \quad \nabla_T(\mathcal{N}) = \nabla_T(\mathcal{L}') \quad \text{if} \quad T = S \otimes_k A.$$
Example 12.9. Let A be a CM finite type k-algebra and domain of dimension ≥ 2. Let $h : A \to T = A^{\otimes 2}$ be the base change by $S = A$ and $N = A$ be the A-flat T-module defined by the multiplication map $T \to A$. Let $\Delta \subseteq \text{Spec } T$ denote the closed points on the diagonal and let t be a closed point in $\text{Spec } T$ mapping to s in $\text{Spec } A$. If $t \notin \Delta$ then $N(t) = 0$. If $t \in \Delta$ then $T(t) \cong A_p$ and $N(t) \cong k(s)$. The local Kodaira-Spencer class $\kappa(N(t)) \in \text{Ext}_h^1(k(s), \Omega_{A_p/k \otimes k}(s))$ is represented by

\begin{align}
0 & \longrightarrow \Omega_{A_m/k \otimes k}(s) \longrightarrow k(s) \otimes \mathcal{P}_{A_m/k} \longrightarrow k(s) \longrightarrow 0 \\
& \quad \uparrow \quad \uparrow \quad \uparrow \\
0 & \longrightarrow m/m^2 \longrightarrow A/m^2 \longrightarrow k(s) \longrightarrow 0
\end{align}

(12.9.1)

(with $m = p_s$) where $\delta(x) = d_{A_m/k}(x) \otimes 1$ and χ is induced by $1 \otimes j_2$ (note that if $x, y \in m$ then $1 \otimes j_2(xy) = 1 \otimes ([j_2(x) - j_1(x)][j_2(y) - j_1(y)]) \in k(s) \otimes T^2$). The local Kodaira-Spencer map $\varphi^N(t)$ is given by the pushout

\begin{align}
\varphi & \in \text{Hom}_{k(s)}(m/m^2, k(s)) \longrightarrow \text{Ext}_h^1(k(s), k(s)) \ni \varphi \cdot \kappa(N(t))
\end{align}

(12.9.2)

which is an isomorphism. By Corollary 12.10 we have $\nabla_T(N) = \nabla_T(L') = \Delta$. Put $Q' = \text{Hom}_T(\omega_T, L')$. By Proposition 12.3 also the local Kodaira-Spencer map $q^{Q'}(t)$ is injective for $t \in \Delta$. Hence $\nabla_T(Q') = \Delta$. Note that $L'(t)$ and $Q'(t)$ are rigid for $t \notin \Delta$.

Corollary 12.10. Suppose $T = S \otimes_k A$ for a finite type Cohen-Macaulay k-algebra A. Let $J = (f_1, \ldots, f_n)$ be an A-sequence, put $B = A/J$ and let $h : S \to T = S \otimes_k B$ be the induced Cohen-Macaulay map. Suppose N is in $\text{MCM}_B \subseteq \text{mod}_B^0$ and let $L \to M \to N$ be an MCM_B-approximation of N. Assume $\text{ob}(T/(JT)^2) \to T, N) = 0$. Then

$\nabla_T(N) = \nabla_T(M) \cap \text{Supp } T$.

Proof. By Proposition 9.2 there is a lifting $N_1 \to N$ of N to $T_1 = T/(JT)^2$. It induces liftings $N_1(t) \to N(t)$ for all k-points $t = (s, m)$ in $\text{Supp } T$. The inclusion $\bar{\tau} : \text{Ext}_B^1(N(t), N(t)) \to \text{Ext}_B^1(M(t), M(t))$ in 11.3 commutes with the local Kodaira-Spencer maps. Proceed as in the proof of Corollary 12.8.

References

[1] Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–122. MR 555258 (81f:14025a)

[2] Michel André, Homologie des algèbres commutatives, Springer-Verlag, Berlin, 1974, Die Grundlehren der mathematischen Wissenschaften, Band 206. MR 0355220 (50 #4707)

[3] M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189. MR 0399094 (53 #2945)

[4] ____, Lectures on deformations of singularities, Lectures on mathematics and physics, vol. 54, Tata Inst. of Fund. Res., Bombay, 1976, (notes by C. S. Seshadri and A. Tannenbaum).

[5] Michael Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58.

[6] M. Auslander and R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximation, Mem. Soc. Math. Fr. (N.S.) 38 (1989), 5–37.

[7] Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), 511–531.
[8] Maurice Auslander, Songqing Ding, and Oyvind Solberg, *Liftings and weak liftings of modules*, J. Algebra 156 (1993), no. 2, 273–317. MR MR1216471 (94d:16007)
[9] Maurice Auslander and Idun Reiten, *Applications of contravariantly finite subcategories*, Adv. Math. 86 (1991), no. 1, 111–152. MR 1097029 (92e:16009)
[10] Nicolas Bourbaki, *Commutative algebra. Chapters 1–7*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation. MR 1727221 (2001g:13001)
[11] Winfried Bruns and Jürgen Herzog, *Cohen-Macaulay rings*, second ed., Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998.
[12] Ragnar-Olaf Buchweitz, *Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings*, 155 pages (unpublished), 1986.
[13] Brian Conrad, *Grothendieck duality and base change*, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR MR1804902 (2002d:14025)
[14] Brian Conrad and A. J. de Jong, *Approximation of versal deformations*, J. Algebra 255 (2002), no. 2, 489–515. MR MR1935511 (2004a:14003)
[15] Trond Stølen Gustavsen and Runar Ile, *The versal deformation space of a reflexive module on a rational cone*, J. Algebra 279 (2004), no. 2, 613–637. MR MR2078932 (2005j:14011)
[37] Arthur Ogus and George Bergman, Nakayama’s lemma for half-exact functors, Proc. Amer. Math. Soc. 31 (1972), 67–74. MR MR0302633 (46 #1777)

[38] Dorin Popescu, General Néron desingularization and approximation, Nagoya Math. J. 104 (1986), 85–115. MR MR868439 (88a:14007)

[39] ________, Letter to the editor: “General Néron desingularization and approximation” [Nagoya Math. J. 104 (1986), 85–115; MR0868439 (88a:14007)], Nagoya Math. J. 118 (1990), 45–53. MR MR1060701 (91e:14003)

[40] Rodney Y. Sharp, The construction of a module of finite projective dimension from a finitely generated module of finite injective dimension, Comment. Math. Helv. 50 (1975), 15–26. MR 0369344 (51 #5577)

[41] Anne-Marie Simon and Jan R. Strooker, Reduced Bass numbers, Auslander’s δ-invariant and certain homological conjectures, J. Reine Angew. Math. 551 (2002), 173–218. MR MR1932178 (2003j:13018)

[42] Hartwig von Essen, Nonflat deformations of modules and isolated singularities, Math. Ann. 287 (1990), no. 3, 413–427. MR MR1060684 (91j:14007)

[43] Yuji Yoshino, Modules with null delta invariants, Comm. Algebra 27 (1999), no. 8, 3781–3799. MR MR1700169 (2000e:13017)

[44] Yuji Yoshino and Satoru Isogawa, Linkage of Cohen-Macaulay modules over a Gorenstein ring, J. Pure Appl. Algebra 149 (2000), 305–318.

Department of Mathematics, University of Bergen, 5008 Bergen, NORWAY
E-mail address: runar.ile@math.uib.no
COHEN-MACAULAY APPROXIMATION
IN FIBRED CATEGORIES

RUNAR ILE

Abstract. We extend the Auslander-Buchweitz axioms and prove Cohen-Macaulay approximation results for fibred categories. We show that these axioms apply for the fibred category of pairs consisting of a finite type flat family of Cohen-Macaulay rings and modules. In particular such a pair admits an approximation with a flat family of maximal Cohen-Macaulay modules and a hull with a flat family of modules with finite injective dimension. The existence of minimal approximations and hulls in the local, flat case implies extension of upper semi-continuous invariants. As an example of MCM approximation we define a relative version of Auslander’s fundamental module.

In the second part we study the induced maps of deformation functors and deduce properties like smoothness and injectivity under general, mainly cohomological conditions on the module. We also provide deformation theory for pairs (algebra, module), e.g. a cohomology for such pairs, a long exact sequence linking this cohomology to the André-Quillen cohomology of the algebra and the Ext cohomology of the module, Kodaira-Spencer classes and maps including a secondary Kodaira-Spencer class, and existence of a versal family for pairs with isolated singularity.

Contents

1. Introduction 2
2. Preliminaries 5
3. Categories fibred in additive categories 9
4. Cohen-Macaulay approximation in fibred categories 11
5. Cohen-Macaulay approximation of flat families 15
6. Minimal approximations and semi-continuity of invariants 20
7. The fundamental module of a Cohen-Macaulay map 23
8. Deformation functors and cohomology 26
9. Maps of deformation functors induced by Cohen-Macaulay approximation 30
10. Existence of versal elements 35
11. Deforming maximal Cohen-Macaulay approximations of Cohen-Macaulay modules 38
12. The Kodaira-Spencer map of Cohen-Macaulay approximations 41
References 45

2010 Mathematics Subject Classification. Primary 13C60, 14B12; Secondary 13D02, 18D30.

Key words and phrases. Cohen-Macaulay map, quotient category, algebraic ring, versal deformation, André-Quillen cohomology, Artin’s Approximation Theorem, Kodaira-Spencer class.

Acknowledgement. An essential part of this work was done during a visit to Institut Mittag-Leffler for which the author is most grateful.
1. Introduction

Axiomatic Cohen-Macaulay approximation was introduced by M. Auslander and R.-O. Buchweitz in [7]. We define this theory in terms of fibred categories and obtain approximation results for various classes of flat families of modules.

Let A be a Cohen-Macaulay ring of finite Krull dimension with a canonical module ω_A. Let MCM_A and FID_A denote the categories of maximal Cohen-Macaulay modules and of finite modules with finite injective dimension, respectively. M. Auslander and R.-O. Buchweitz proved in [7] that for any finite A-module N there exists short exact sequences

\[(1.0.1) \quad 0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to N \to L' \to M' \to 0\]

with M and M' in MCM_A and L and L' in FID_A. The maps $M \to N$ and $N \to L'$ in (1.0.1) are called a maximal Cohen-Macaulay approximation and a hull of finite injective dimension, respectively, of the module N. The association $N \mapsto X$ for X equal to M, M', L and L' define functors of corresponding stable categories. In this article we study the continuous properties of these functors.

Linear representations provided by (sheaves) of modules and the associated homological algebra plays an important role in algebra and algebraic geometry, e.g. as a means for classification by providing invariants. Finite complexes have particular properties as seen in the Buchsbaum-Eisenbud acyclicity criterion and the intersection theorems of Peskine, Szpiro and Roberts. However, for a non-regular local ring A, the standard homological invariants are given by the (generally) infinite minimal A-free resolutions, of which very little is known. To stay within finite complexes one can enlarge or change the category of resolving objects and Cohen-Macaulay approximation is a structured way of doing this.

Let D_A denote the subcategory $\text{Add}(\omega_A)$ of modules D isomorphic to direct summands of $\omega^{\oplus r}_A$. A part of the approximation result says that all the modules in FID_A have finite resolutions by objects in D_A. In particular the MCM approximation in (1.0.1) can be extended to a finite resolution

\[(1.0.2) \quad 0 \to D^{-n} \to D^{-n+1} \to \ldots \to D^{-1} \to M \to N \to 0\]

with the D^i in D_A. In the case A is Gorenstein, D_A equals the category of finite projective modules P_A. This generalises: By a result of R. Y. Sharp [42] the functor $\text{Hom}_A(\omega_A, -)$ gives an exact equivalence $D_A \simeq \text{P}_A$, hence a finite projective resolution is associated to N. In the case A is local, the approximations and the complex can be chosen to be minimal and unique (with $D^1 \simeq \omega^{\oplus d}_A$) and in particular the d^i are invariants of N.

The developments since Auslander and Buchweitz’ fundamental work [7] has included studies of invariants defined by Cohen-Macaulay approximation; [14, 15, 25] among several, ‘injectivity’ and ‘surjectivity’ properties of the approximation maps; [32, 46, 53], and characterisations of quasi-homogeneous isolated singularities; cf. [27, 36], all exclusively in the Gorenstein case. Noteworthy is [43] where A.-M. Simon and J. R. Strooker related some of these invariants with Hochster’s Canonical Element Conjecture and the Monomial Conjecture. In particular these conjectures are equivalent to the vanishing of the δ-invariant of certain cyclic modules over all Gorenstein rings. S. P. Dutta applied the existence of a FID hull to prove a relationship between two of the Serre conjectures on intersection numbers: Failure of vanishing implies failure of higher non-negativity in the Gorenstein case under certain conditions, see [15].

Buchweitz’ unpublished manuscript [11], a precursor to [7], contains homological ideas which have influenced subsequent developments (e.g. [35]). Auslander and I.
Reiten elaborated in [9] on [7], mainly with a view towards artin algebras, instigating several generalisations and analogies to Cohen-Macaulay approximation.

However, the ‘relative’ and continuous aspects have received surprisingly little attention. M. Hashimoto has given several new examples of Cohen-Macaulay approximation [24]. In [24, IV 1.4.12] an affine algebraic group G acts on a positively graded Cohen-Macaulay ring T which is flat over a regular base ring R. Hashimoto considers graded maximal Cohen-Macaulay T-modules (which automatically are R-flat) and graded modules locally of finite injective dimension (not R-flat in general), all with G-action. His result (with trivial group) is hence different from our Theorem 5.1. We also note some explicit 1-parameter families of indecomposable finite length modules N_t (for many Gorenstein rings) such that the minimal MCM approximation module M_t is without free summands, see [45].

A central part of the classification problem is to prove the existence of objects with certain properties and to estimate ‘how many’ such objects there are. A natural question is thus whether there is Cohen-Macaulay approximation for flat families of modules. In Theorem 5.1 we give a positive answer to this question.

For a Cohen-Macaulay (CM) map $h : S \rightarrow T$ and an S-flat and finite T-module N there are short exact sequences of S-flat and finite T-modules
\begin{equation}
0 \rightarrow \mathcal{L} \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow 0 \quad \text{and} \quad 0 \rightarrow \mathcal{N} \rightarrow \mathcal{L}' \rightarrow \mathcal{M}' \rightarrow 0
\end{equation}
such that the fibres of these sequences give ‘absolute’ approximations and hulls as in the two sequences (1.0.1). Note that T in general is not a Cohen-Macaulay ring although the fibres of h are. We consider a category mod^S of pairs $\xi = (h : S \rightarrow T, N)$ and subcategories MCM, FID and D. They are fibred over the category CM of CM maps and also fibred over the base category of noetherian rings. The approximation and the hull (1.0.3) induces functors of certain quotient categories fibred in additive categories over CM
\begin{equation}
\text{mod}^S/D \rightarrow \text{MCM}/D \quad \text{and} \quad \text{mod}^S/D \rightarrow \text{FID}/D
\end{equation}
with analogous properties to the absolute case. If $h : S \rightarrow T$ is a local CM map, there is an approximation result with minimal (and hence unique) choices of the two sequences in (1.0.3), see Corollary 5.7 and 6.3.

A major consequence of these results is that any numerical and additive upper semi-continuous invariant of MCM or FID modules by the minimal approximations and hulls induces upper semi-continuous invariants for all finite modules, see Theorem 6.5. Examples of such invariants are given by the ω_A-ranks in the minimal representing complex $D^*(N)$ which is an (infinite) extension to the right of the D_A-complex in (1.0.2).

Auslander’s fundamental module E_A for a normal 2-dimensional singularity $\text{Spec } A$ is given by the MCM approximation of the maximal ideal;
\begin{equation}
0 \rightarrow \omega_A \rightarrow E_A \rightarrow m_A \rightarrow 0
\end{equation}
which in a certain sense generates all almost split sequences for A, see [6]. As a general example of flat Cohen-Macaulay approximation we define the fundamental module for any finite type CM map of pure relative dimension ≥ 2, see Corollary 7.3, and more generally a ‘fundamental’ functor of projective modules in Proposition 7.2.

An attractive feature of Auslander and Buchweitz’ theory is its axiomatic formulation with several applications besides the classical case described in the first paragraph, e.g. coherent rings with a cotilting module, the graded case, approximation with modules of Gorenstein dimension 0, and coherent sheaves on a projectively embedded Cohen-Macaulay scheme. See 7 and 24 for more examples. We formulate a relative Cohen-Macaulay approximation theory axiomatically in terms of
categories $D \subseteq X \subseteq A$ fibred in abelian and additive subcategories over a base category C. In addition to the Auslander-Buchweitz axioms (AB1-4) for the fibre categories we formulate two axioms (BC1-2) regarding base change properties of the fibred categories. AB1-2 and BC1-2 imply the existence of an approximation and a hull which are preserved by any base change, see Theorem 4.1. If AB3 holds too, we get functoriality and adjointness properties in suitable stable categories fibred in additive categories, see Theorem 4.3. In the case described above $C = CM$, A is the category mod of pairs $(h : S \rightarrow T, \mathcal{N})$ where \mathcal{N} is a finite T-module (no S-flatness) and $X = \text{MCM}$. Another application of this theory is given in [29].

In the second half of the article we proceed to study properties of continuous families of MCM approximations and FID hulls by homological methods. As a consequence of the existence of minimal approximations and hulls of local flat families of MCM approximations and FID hulls by homological methods. As a consequence each CM algebraic k-algebra A with a universal A/I-module is formally smooth. Or if Spec A defined by a regular sequence \mathcal{I} and $\dim A \geq 2$ has a finite A-module Q' of finite projective dimension with a universal deformation in $\text{Def}_{Q'}(A)$, see Corollary 9.8. There are analogous general results for $X = M$, see Theorem 9.4 and Corollary 9.6 with applications in Corollary 9.3 and 10.5. E.g. if there is a closed subscheme Z in Spec A containing the singular locus and with complement U such that $N_U = 0$ and depth$_Z N \geq 2$ then $\sigma_M : \text{Def}_{(A,N)} \rightarrow \text{Def}_{(A,M)}$ is formally smooth. Or if Spec A is a 2-dimensional normal Gorenstein singularity and N is torsion-free then the map σ_M is smooth. In this case both functors have versal elements by Theorem 10.2.

Consider a quotient ring $B = A/I$ defined by a regular sequence $I = (f_1, \ldots, f_n)$ and an MCM B-module N. Then N is also an A-module with an MCM approximation $M \rightarrow N$. If N has a lifting to A/I^2, then the composition of natural maps $\text{Def}_{B/I} \rightarrow \text{Def}_{A/I} \rightarrow \text{Def}_{M}$ is injective, see Theorem 11.1. It turns out that the lifting condition is equivalent to the splitting of $B \otimes_A M \rightarrow N$ (this generalises [3, 4.3]).

The second part of the article also contains some general deformation theory of a pair $(h : S \rightarrow T, \mathcal{N})$ of an algebra and a T-module. We define the graded algebra $\Gamma := T \oplus \mathcal{N}$ and consider the graded André-Quillen cohomology $\alpha H^*(S, \Gamma, J)$ which govern the obstruction theory of the pair. In the case the graded T-module J is concentrated in degree 0 and 1 there is by Proposition 5.8 a natural long-exact sequence which in the case $J = \Gamma$ (with $\alpha H^*(S, \Gamma) = \alpha H^*(S, \Gamma, J)$) gives the suggestive

$$0 \rightarrow \text{End}_T(\mathcal{N}) \rightarrow \alpha \text{Der}_S(\Gamma) \rightarrow \text{Der}_S(T) \rightarrow \text{Ext}_T^1(\mathcal{N}, \mathcal{N}) \rightarrow \alpha \text{H}^1(S, \Gamma) \rightarrow \cdots \tag{1.0.7}$$

It relates the cohomology of the pair with the cohomology groups governing the obstruction theory of the algebra T and of the module \mathcal{N}. The sequence is used in the proof of the existence of a versal element in $\text{Def}_{(A,N)}$ where Spec A is an isolated equidimensional singularity and N is locally free on the smooth locus, see Theorem 10.2. It is also used to define and study the Kodaira-Spencer class $\kappa(T/S/A)$ in $\alpha \text{H}^1(S, \Gamma, \Omega_{S/A} \otimes \Gamma)$ (where $A \rightarrow S$ is another ring homomorphism) which maps to the ungraded Kodaira-Spencer class $\kappa(T/S/A)$. In the case the latter is zero...
we define a ‘secondary’ Kodaira-Spencer class \(\kappa(\sigma, \mathcal{N})\) in \(\text{Ext}^1_T(\mathcal{N}, \Omega_{S/A} \otimes \mathcal{N})\) which depends on a choice of an \(S\)-algebra splitting \(\sigma\). This enables us to define ‘global’ Kodaira-Spencer maps

\[
(1.0.8) \quad g^T : \text{Der}_A(S) \to \mathfrak{h}^2(S, \Gamma, \Gamma) \quad \text{and} \quad g^{(\sigma, \mathcal{N})} : \text{Der}_A(S) \to \text{Ext}^1_T(\mathcal{N}, \mathcal{N}).
\]

We also describe how classes and maps are related to the Atiyah class at \(f\)-modules and \(X\) and \(X^1\). Assume AB1-3. Then any \(X\)-approximation and \(\hat{X}\)-approximation determines a \(\hat{X}\)-approximation and \(\hat{X}\)-hull is a left \(\hat{X}\)-approximation. An \(\hat{X}\)-approximation is a right \(X\)-approximation and any \(\hat{X}\)-hull is a left \(X\)-approximation. An \(X\)-approximation determines a \(\hat{X}\)-hull and vice versa through the following diagram of short exact sequences; the upper horizontal and right vertical being an \(X\)-approximation and a \(\hat{X}\)-hull of \(N\), \(D\) is in

2. Preliminaries

All rings are commutative. If \(A\) is a ring, \(\text{Mod}_A\) denotes the category of \(A\)-modules and \(\text{mod}_A\) denotes the full subcategory of finite \(A\)-modules. If \(A\) is local then \(\mathfrak{m}_A\) denotes the maximal ideal. Subcategories are usually full and essential.

2.1. Axiomatic Cohen-Macaulay approximation. We briefly recall some of the main features of Cohen-Macaulay approximation as introduced by Auslander and Buchweitz in [7]. In this section let \(A\) be an abelian category and \(D \subseteq X \subseteq A\) additive subcategories. Let \(\hat{X}\) denote the subcategory of \(A\) of objects \(N\) which have finite resolutions \(0 \to M_n \to \ldots \to M_0 \to N \to 0\) with the \(M_i\) in \(X\). If \(n\) is the smallest such number, then \(X\)-res.\,dim \(N = n\). Let \(X\)-inj.\,dim \(N\) be the minimal \(n\) (possibly \(\infty\)) such that \(\text{Ext}^i_A(M, N) = 0\) for all \(i > n\) and all \(M\) in \(X\). Let \(X^+\) denote the subcategory of objects \(L\) in \(A\) with \(X\)-inj.\,dim \(L = 0\); the right complement of \(X\). The left complement \(\hat{X}\) is defined analogously.

Let \(N\) be an object in \(A\). An \(X\)-approximation and a \(\hat{D}\)-hull of \(N\) are exact sequences as in (1.1.1) with \(L, L'\) in \(D\) and \(M, M'\) in \(X\).

In general any \(f : M \to N\) in \(A\) is called a right \(X\)-approximation of \(N\) if \(M\) is in \(X\) and any \(f' : M' \to N\) with \(M'\) in \(X\) factorises through \(f\). Dually, \(g : N \to L\) is called a left \(X\)-approximation of \(N\) if \(L\) is in \(X\) and any \(g' : N \to L'\) with \(L'\) in \(X\) factorises through \(g\).

Consider the following conditions on the triple of categories \((A, X, D)\).

\begin{itemize}
 \item [(AB1)] \(X\) is exact in \(A\) (\(X\) is closed under direct summands and extensions).
 \item [(AB2)] \(D\) is a cogenerator for \(X\), i.e. for each object \(M\) in \(X\) there is an object \(D\) in \(D\) and a short exact sequence \(M \to D \to M'\) with \(M'\) in \(X\).
 \item [(AB3)] \(D\) is \(X\)-injective, i.e. \(D \subseteq X^+\).
 \item [(AB4)] A-epimorphisms in \(X\) are admissible (i.e. their kernels are contained in \(X\)).
\end{itemize}

If AB1 and AB2, there exist \(X\)-approximations and \(\hat{D}\)-hulls for all objects in \(X\) [1.1]. Assume AB1-3. Then any \(X\)-approximation is a right \(X\)-approximation and any \(\hat{D}\)-hull is a left \(\hat{D}\)-approximation. An \(X\)-approximation determines a \(\hat{D}\)-hull and vice versa through the following diagram of short exact sequences; the upper horizontal and right vertical being an \(X\)-approximation and a \(\hat{D}\)-hull of \(N\), \(D\) is in
D. The boxed square is (co)cartesian (see [71, 1.4]):

\[
\begin{array}{c}
L \\
\downarrow \downarrow \\
\downarrow \downarrow \\
M' \\
\end{array}
\]

Moreover, the category \(D \) is determined by \(X \subseteq A \). Indeed \(D = X \cap X^\perp \). By [7] 3.9 monomorphisms in \(\hat{D} \) are admissible and \(\hat{D} = X \cap X^\perp \). Also \(X = \hat{D} \cap X = \hat{D} \cap X \).

If \(X/D \) denotes the quotient category, the \(X \)-approximation induces a right adjoint to the inclusion functor \(X/D \subseteq X/\hat{D} \) and the \(\hat{D} \)-hull induces a left adjoint to the inclusion functor \(\hat{D}/D \subseteq X/\hat{D} \), see [7, 2.8].

A morphism \(f : M \to N \) in \(A \) is called right minimal if for any \(g : M \to M \) with \(fg = f \) it follows that \(g \) is an automorphism. Dually, \(f \) is called left minimal if for any \(h : N \to N \) with \(hf = f \) it follows that \(h \) is an automorphism. Note that if \(f : M \to N \) and \(f : M' \to N \) both are right minimal then there exists an isomorphism \(g : M \to M' \) with \(f = f'g \), and similarly for left minimal morphisms.

We will simply call an \(X \)-approximation (a \(\hat{D} \)-hull) for minimal if it is right (left) minimal.

Example 2.1. Suppose \(A \) is a Cohen-Macaulay ring which possesses a canonical module \(\omega \) in the sense that any localisation in a maximal ideal gives a maximal Cohen-Macaulay module of finite injective dimension and Cohen-Macaulay type 1, cf. [10, 3.3.16]. Let \(\text{MCM}_A \) denote the category of maximal Cohen-Macaulay (MCM) \(A \)-modules and put \(\hat{D}_A := \text{Add}(\omega_A) \). Then the triple \((A,X,D) = (\text{mod}_A, \text{MCM}_A, \hat{D}_A) \) satisfies properties AB1-4, cf. [24 I 4.10.11] and \(X = \text{mod}_A \). If \(A \) in addition is a local ring, then the \(\text{MCM}_A \)-approximation and the \(\hat{D}_A \)-hull can be chosen to be minimal, cf. [43, Sec. 3] or Corollary [43].

Let \(\text{FID}_A \) denote the subcategory of finite \(A \)-modules \(E \) which have locally finite injective dimension, i.e. inj.dim\(_A\) \(E_p < \infty \) for all \(p \in \text{Spec} \ A \). The approximation result implies that \(\text{FID}_A \subseteq \hat{D}_A \). Let \(L \) be in \(\hat{D}_A \). By induction on \(\hat{D}_A \)-res.dim \(L \) \(L \) is in \(\text{FID}_A \). Conversely let \(E \) be in \(\text{FID}_A \). If \(L : M \to E \) is an MCM\(_A\)-approximation of \(E \) then \(M \) also has locally finite injective dimension. Let \(M^\gamma \) denote \(\text{Hom}_A(M,\omega_A) \) and choose a surjection \(A^{\oplus n} \to M^\gamma \). Both \(M^\gamma \) and the kernel \(M_1 \) are MCM. Applying \(\text{Hom}_A(\cdot,\omega_A) \) gives (by duality theory) the short exact sequence \(M \to \omega_A^{\oplus n} \to M^\gamma \). But \(i \) splits since \(\text{Ext}_A^1(M_1,M) = 0 \) by [11 3.3.3] and so \(M \) is in \(D_A \) and \(E \) is in \(\hat{D}_A \).

2.2. **The representing complex.** Consider an abelian category \(A \) and additive subcategories \(D \subseteq X \subseteq A \). A DX-resolution of an object \(N \) in \(A \) is a finite resolution \(-C^* \to N \) with \(-C^i \in D \) for \(i < 0 \) and \(-C^0 \in X \). If \(L := \text{coker}(d^-2) : -C^2 \to -C^1 \), then the short exact sequence \(L \to -C^0 \to N \) is an X-approximation. A \(\hat{D} \)-coresolution of \(N \) is a coresolution \(N \to +C^*(N) \) such that \(+C^0 \in \hat{D} \), \(+C^i \in D \) and \(\text{ker} d^i \subseteq X \) for \(i > 0 \). If \(M' := \text{ker} d^1 \) then the short exact sequence \(N \to +C^1 \to M' \) is a \(\hat{D} \)-hull. Given AB1 and AB2, each \(N \) in \(X \) has a DX-resolution and a \(\hat{D} \)-coresolution. Finally, a bounded below D-complex \(D^*(N) : \ldots \to D^{-1} \to D^0 \to D^1 \to \ldots \) with \(\text{ker} d^i \subseteq X \) for all \(i > 0 \) and its only non-trivial cohomology in degree zero with \(H^0(D^*) \cong N \) is called a D-complex representing \(N \). A representing complex splits into (and is (re)constructed from) a DX-resolution given by \(\ldots \to D^{-1} \to \text{ker} d^0 \to H^0(D^*) = N \) and a \(\hat{D} \)-coresolution \(N \to \text{coker} d^{-1} \to D^1 \to \ldots \) where \(N \to \text{coker} d^{-1} \) is induced by \(\text{ker} d^0 \to D^0 \).
Lemma 2.2. Assume $\text{Ext}^1_p(X, \hat{D}) = 0$. Suppose $f : N_1 \to N_2$ is in \hat{X}. Assume $F^*(N_i)$ exists for $i = 1, 2$ where $F^*(N_i)$ denotes one of the complexes $\ominus C^*(N_i)$, $\oplus C^*(N_i)$ or $D^*(N_i)$. Then f can be extended to an arrow of chain complexes $f^* : F^*(N_1) \to F^*(N_2)$ which is uniquely defined up to homotopy.

Assume AB1-3 for the triple of categories (A, X, D). Then $N \mapsto -C^*(N)$, $N \mapsto +C^*(N)$ and $N \mapsto D^*(N)$ induce functors to the homotopy categories of chain complexes as follows:

$$-C^* : \hat{X} \to \text{K}^0(X) \quad +C^* : \hat{X} \to \text{K}^+(\hat{D}) \quad D^* : \hat{X}/D \to \text{K}^+(D)$$

Proof. The proof for $-C^*(N)$ and $+C^*(N)$ follows standard lines for constructing chain maps and homotopies. The assumption $\text{Ext}_A(X, \hat{D}) = 0$ is used every time a lifting or extension of an arrow is required.

Let $(D^*_i, d^*_i) = D^*(N_i)$ and let $M_i = \ker d^0_i$ and $L_i = \im d^1_i$. Then there are short exact sequences $L_i \to M_i \to N_i$ which by assumption are X-approximations.

Since $\text{Ext}^1_p(M_1, L_2) = 0$, the arrow $N_1 \to N_2$ extends to the X-approximation and further on to the negative part of the complexes. If $M_i = \ker d^1_i$ then the M_i are in X by assumption and there are short exact sequences $M_i \to D^0_i \to M'_i$. There is an extension of $M_i \to D^0_i$ to $D^1_i \to D^2_i$ and an induced arrow $M'_i \to M''_i$ which again extends and so on to a chain map $f^* : D^*_1 \to D^*_2$.

Let $g' : D^*_1 \to D^*_2$ be a chain map, put $g = H^0(g^*)$, $s = f-g$ and $s^* = f^* - g^*$. Suppose s factors through D in \hat{D}; $s = ab$ with $a : D \to N_2$. Since $\text{Ext}^1_p(D, L_2) = 0$ there exist a lifting $a : D \to M_2$ of a. Put $h_N = \bar{a}b$ and continue similarly to construct a homotopy h for the extended negative part:

$$\cdots \cdots \quad \downarrow h^{-1} \quad \downarrow s \downarrow h_M \downarrow h_N \downarrow s \quad \downarrow h^1 \downarrow 0 \quad \downarrow h^2 \downarrow 0$$

In particular $h_M : M_1 \to D^1_2$ can be extended to an $h^0 : D^1_2 \to D^2_2$ with $s^{-1} = h^0 d^1_2 + d^2_2 h^{-1}$. The construction of the h^i for $i > 0$ is standard. \square

Lemma 2.3. Assume AB1-3 for the triple of categories (A, X, D). Given an exact sequence $\varepsilon : 0 \to N_1 \to N_2 \to N_3 \to 0$ with objects in \hat{X}. Then there are exact sequences of complexes where ε equals the cohomology:

$$\begin{array}{ll}
(i) & 0 \to -C^*(N_1) \to -C^*(N_2) \to -C^*(N_3) \to 0 \\
(ii) & 0 \to +C^*(N_1) \to +C^*(N_2) \to +C^*(N_3) \to 0 \\
(iii) & 0 \to D^*(N_1) \to D^*(N_2) \to D^*(N_3) \to 0 \text{ (termwise split exact)}
\end{array}$$

Proof. Choose X-approximations $L_i \to M_i \to N_i$ for $i = 1, 3$. There is an 3×3 commutative diagram of 6 short exact sequences which extends the “horseshoe” diagram, cf. [24 1.12.11]. One obtains an X-approximation of N_2 and short exact sequences $m : M_1 \to M_2 \to M_3$ and $L_1 \to L_2 \to L_3$ in X and \hat{D} respectively since both categories are closed by extensions (by AB1 and [7 3.8]). If $D^*_1[1] \to D^*_2$ are finite D-resolutions then since $\text{Ext}^1_p(D^*_3, L_1) = 0$ there is a lifting $h_3 : D^*_3 \to L_2$ of η_3 which combined with η_1 gives $\eta_2 : D^*_2 \to L_2$. The kernels of the resulting arrows between short exact sequences give a short exact sequence of objects in $\hat{D}(S)$. The argument is repeated. Splicing with m in degree zero the short exact sequence of $-C^*$-resolutions in (i) is obtained.

Choose short exact sequences $M_i \to D^0_i \to M'_i$ for $i = 1, 3$ as in AB2. Since $\text{Ext}^1_p(M_3, D^*_2) = 0$ there is an extension to an arrow of short exact sequences from m to $D^0_1 \to D^0_2 \to D^0_3$ with $D^0_2 = D^0_1 \bigcup D^0_3$ and $M'_2 := \text{coker}(M_2 \to D^0_2) \in X$ by AB1. Repeated application of this argument gives a short exact sequence of
D-coresolutions and splicing with the sequences in (i) gives (iii). Pushout of $M_i \to D_i^0 \to M_i'$ along $M_i \to N_i$ gives a short exact sequence of D-hulls and splicing with $D_i^1 \to D_i^2 \to \ldots$ gives (ii). \qed

2.3. Base change. The main tool for reducing properties to the fibres in a flat family will be the base change theorem. We follow the quite elementary and general approach of A. Ogus and G. Bergman [39].

Definition 2.4. Let $h : S \to T$ be a ring homomorphism and I an S-module. Let F be an S-linear functor of some additive subcategory of Mod_S to Mod_T. Then the exchange map ξ for F is defined as the T-linear map $\xi : F(S)\otimes_S I \to F(I)$ given by $\xi \otimes u \mapsto F(u)(\xi)$ where we consider u as the multiplication map $u : S \to I$. Let $\text{Spec}T$ denote the set of closed points in $\text{Spec} T$.

Proposition 2.5. Let $h : S \to T$ be a ring homomorphism with S noetherian. Suppose $\{F^q : \text{mod}_S \to \text{mod}_T\}_{q \geq 0}$ is an h-linear cohomological δ-functor. Suppose $\{F^q : \text{mod}_S \to \text{mod}_T\}_{q \geq 0}$ is an h-linear cohomological δ-functor.

(i) If the exchange map $\xi(S) : F^q(S)\otimes_S I \to F^q(I)$ is surjective for all n in $Z = \text{im}\{\text{m-Spec}T \to \text{Spec} S\}$, then $\xi(S) : F^q(S)\otimes_S I \to F^q(I)$ is an isomorphism for all I in mod_S.

(ii) If $\xi(S)$ is surjective for all n in Z, then ξ^{-1} is an isomorphism for all I in mod_S if and only if $F^q(S)$ is S-flat.

Note that if the F^q in addition extend to functors of all S-modules $F^q : \text{mod}_S \to \text{mod}_T$ which commute with direct limits, then the conclusions are valid for all I in mod_S.

Example 2.6. Suppose S and T are noetherian. Let $K^* : K^0 \to K^1 \to \ldots$ be a complex of S-flat and finite T-modules. Define $F^q : \text{mod}_S \to \text{mod}_T$ by $F^q(I) = H^q(K^*\otimes_S I)$. Then $\{F^q\}_{q \geq 0}$ is an h-linear cohomological δ-functor which extends to all S-modules and commutes with direct limits.

Example 2.7. Suppose S and T are noetherian. Let M and N be finite T-modules with N S-flat. Then the functors $F^q : \text{mod}_S \to \text{mod}_T$ defined by $F^q(I) = \text{Ext}^q_T(M,N\otimes_SI)$ for $q \geq 0$ give an h-linear cohomological δ-functor which extends to all S-modules and commutes with direct limits.

Let $S \to T$ and $S \to S'$ be ring homomorphisms, M a T-module, $T' = T\otimes_SS'$ and N' a T'-module. Then there is a change of rings spectral sequence

\begin{equation}
\text{Ext}^p_T(M,N') \Rightarrow \text{Ext}^p_{T'}(M,N')
\end{equation}

which, in addition to the isomorphism $\text{Hom}_{T'}(M\otimes_SS',N') \cong \text{Hom}_{T'}(M,N')$, gives edge maps $\text{Ext}^q_T(M\otimes_SS',N') \to \text{Ext}^q_{T'}(M,N')$ for $q > 0$ which are isomorphisms too if M (or S') is S-flat. If I' is an S'-module we can compose the exchange map $\xi_{I'}$ (regarding I' as S'-module) with the inverse of this edge map for $N' = N\otimes_SI'$ and obtain a map $\xi_{I'}$ of T'-modules

\begin{equation}
\xi_{I'} : \text{Ext}^q_{T'}(M,N')\otimes_SI' \to \text{Ext}^q_{T'}(M\otimes_SS',N\otimes_SI').
\end{equation}

Remark 2.8. This is the base change map (in the affine case) considered by A. Altman and S. Kleiman, their conditions are slightly different, see [11, 1.9].

We will use the following geometric notation. Suppose $h : S \to T$ is a ring homomorphism, M is a T-module and s is a point in $\text{Spec} S$ with residue field $k(s)$. Then M_s denotes the fibre $M\otimes_Sk(s)$ of M at s with its natural $T_s = T\otimes_Sk(s)$-module structure. Now Proposition 2.3 implies the following:

Corollary 2.9. Suppose $S \to T$ and $S \to S'$ are homomorphisms of noetherian rings, M and N are finite T-modules, $Z = \text{im}\{\text{m-Spec}T \to \text{Spec} S\}$ and q is an integer. Assume that M (if $q > 0$) and N are S-flat.
(i) If $\text{Ext}_T^{s+1}(M_s, N_s) = 0$ for all s in Z, then c_{sT} in \eqref{eq:property} is an isomorphism for all S'-modules I'.
(ii) If in addition $\text{Ext}_T^{s-1}(M_s, N_s) = 0$ for all s in Z, then $\text{Ext}_T^s(M, N)$ is S-flat.

3. Categories fibred in additive categories

We will phrase our results in the language of fibred categories\footnote{We have chosen to work with rings instead of (affine) schemes. Our definition of a fibred category $p : F \to C$ reflects this choice and is equivalent to the functor of opposite categories $p^{op} : F^{op} \to C^{op}$ being a fibred category as defined in \cite{17}.}. We therefore briefly recall some of the basic notions, taken mainly from A. Vistoli's article in \cite{17}. Then we define quotients of categories fibred in additive categories.

Consider a category C. Given a category over C, i.e. a functor $p : F \to C$. To an object T in C, let $F(T)$; the fiber of F over T, denote the subcategory of arrows φ in F such that $p(\varphi) = \text{id}_T$. An arrow $\varphi_1 : \xi \to \xi_1$ in F is cocartesian if for any arrow $\varphi_2 : \xi \to \xi_2$ in F and any arrow $f_{21} : p(\xi_1) \to p(\xi_2)$ in C with $f_{21}p(\varphi_1) = p(\varphi_2)$ there exists a unique arrow $\varphi_{21} : \xi_1 \to \xi_2$ with $p(\varphi_{21}) = f_{21}$ and $\varphi_{21}\varphi_1 = \varphi_2$. If for any arrow $f : T \to T'$ in C and any object ξ in F with $p(\xi) = T$ there exists a cocartesian arrow $\varphi : \xi \to \xi'$ for some ξ' with $p(\varphi) = f$, then F (or rather $p : F \to C$) is a fibred category. Moreover, ξ' will be called a base change of ξ by f. If ξ'' is another base change of ξ by f then ξ' and ξ'' are isomorphic over T' by a unique isomorphism. We shall also say that a property P of objects in the fibres of F is preserved by base change if $P(\xi)$ implies $P(\xi')$ for any base change ξ' of ξ. A morphism of fibred categories is a functor $F : F_1 \to F_2$ with $p_2F = p_1$ such that φ cocartesian implies $F(\varphi)$ cocartesian. If F in addition is an inclusion of categories, F_1 is a fibred subcategory of F_2. A category with all arrows being isomorphisms is a groupoid. A fibred category F over C is called a category fibred in groupoids (often abbreviated to groupoid) if all fibres $F(T)$ are groupoids. Then all arrows in F are cocartesian. If all fibres $F(T)$ only contain identities, then F is called a category fibred in sets.

Lemma 3.1. Given functors $F : F \to G$ and $q : G \to C$ and suppose q is fibred in sets. Then F is fibred (in groupoids/sets) if and only if qF is fibred (in groupoids/sets).

If T is an object in a category C let C/T denote the comma category of arrows to T. Then the forgetful functor $C/T \to C$ is fibred in sets. If $p : F \to C$ is fibred (in groupoids/sets), ξ is an object in F and $T = p(\xi)$, then there is a natural functor $p\xi : F/\xi \to C/T$. The composition $F/\xi \to C$ is clearly fibred (in groupoids/sets) and hence $F/\xi \to C/T$ is fibred (in groupoids/sets) by Lemma 3.1. If $p : F \to C$ is a functor and C' is a subcategory of C we can define the restriction $p' : F_{|C'} \to C'$ of p to C' by picking for $F_{|C'}$ the objects and morphisms in F that p takes into C'. It follows that $F_{|C'}$ is fibred (in groupoids/sets) if F is.

The composition of two cocartesian arrows is cocartesian and isomorphisms are cocartesian. Hence the subcategory F_{coca} of cocartesian arrows in a fibred category F over C is fibred in groupoids. If F is fibred in groupoids there is an associated category fibred in sets $F \to C$ defined by identifying all isomorphic objects in all fibres $F(T)$ and identifying arrows accordingly. If F is fibred in sets one defines a functor $F : C \to \text{Sets}$ by $F(T) := F(T)$ and $F(f) : F(T) \to F(T')$ is defined by $F(f)(\xi) := \eta_{\varphi f}$ where $\varphi_{\varphi f} : \xi \to \eta_{\varphi f}$ is the (in this case) unique cocartesian lifting of f. From a functor $G : C \to \text{Sets}$ one defines a category fibred in sets, and these two operations are inverse up to natural equivalences.

Definition 3.2. An additive (abelian) category F over C is a functor $p : F \to C$ such that:
(i) The fibre $F(T)$ is an additive (abelian) category for all objects T in C.
(ii) For all objects ξ_1 and ξ_2 in F and arrows $f : p(\xi_1) \to p(\xi_2)$ in C,
$$\text{Hom}_F(\xi_1, \xi_2) := \{ \varphi \in \text{Hom}_F(\xi_1, \xi_2) \mid p(\varphi) = f \}$$
is an abelian group, and composition of arrows
$$\text{Hom}_{f_2}(\xi_2, \xi_3) \times \text{Hom}_{f_1}(\xi_1, \xi_2) \to \text{Hom}_{f_2}(\xi_1, \xi_3)$$
is bilinear.

A morphism $F : F_1 \to F_2$ of additive (abelian) categories over C is a linear functor F over C, i.e. which gives linear maps of Hom-groups. If in addition F is an inclusion of categories then F_1 is an additive (abelian) subcategory of F_2 over C. A category F over C is fibred in additive (abelian) categories, abbreviated by FAd (FAb), if F is both fibred and additive (abelian) over C. Morphisms should be linear and preserve cocartesian arrows. A FAd subcategory is a morphism of FAd subcategories which is F isomorphism in $\text{FAd}(F_A)$.

Lemma 3.4. Suppose $F : F_1 \to F_2$ is a fibred subcategory of FAd over C, i.e. which gives linear maps of Hom-groups. If in addition F is an inclusion of categories then F_1 is an additive (abelian) subcategory of F_2 over C. A category F over C is fibred in additive (abelian) categories, abbreviated by FAd (FAb), if F is both fibred and additive (abelian) over C. Morphisms should be linear and preserve cocartesian arrows. A FAd subcategory is a morphism of FAd subcategories which is F isomorphism in $\text{FAd}(F_A)$.

Lemma 3.5. If $F : F_1 \to F_2$ is a fibred subcategory of FAd over C, then the morphism F is a fibred subcategory of F_1 and of F_2.

Proof. Let $\varphi : \xi_1 \to \xi_2$ be any arrow such that $\varphi_{\xi_1} \sim 0$ then $\varphi \sim 0$.

Proof. Suppose $\varphi\varphi_1 = \beta\alpha$ with $\alpha : \xi \to \delta$ and with δ in D. If $p(\beta) : T' \to T_2$ then since D is a fibred subcategory there exists an arrow $\delta \to \delta_2$ which is cocartesian in F and with $p(\delta_2) = p(\xi_2) = T_2$. Replacing δ with δ_2 we assume $\beta = T_2$. Since $\varphi\xi_1$ is cocartesian there exists a unique arrow $\tau : \xi_1 \to \delta$ with $\tau\varphi_1 = \alpha$. Since $\varphi\xi_1$ is cocartesian uniqueness implies that $\beta\tau = \varphi$.

Lemma 3.6. Given a fibred subcategory $D \subseteq F$ over C, then the quotient category F/D is a fibred subcategory of F_1 and of F_2.

Proof. We first show that $\varphi_1 : \xi \to \xi_1$ is cocartesian in F then its image $[\varphi_1]$ in F/D is cocartesian. Given $\varphi_2 : \xi \to \xi_2$ and $\theta : \xi_1 \to \xi_2$ with $\theta\varphi_1 = \varphi_2$. Suppose $\theta' : \xi_1 \to \xi_2$ with $p(\theta') = p(\theta)$ satisfies $\theta'\varphi_1 \sim \varphi_2$. If $\varphi = \theta' - \theta$ then $\varphi\varphi_1 \sim 0$ so by Lemma 3.3 $\varphi \sim 0$. Now we show that $[\theta]$ is independent of the representations of the other maps. Let $\varphi'_1 : \xi \to \xi_1$ with $\varphi'_1 \sim \varphi_1$ and suppose (as we may) that θ' satisfies $\theta'\varphi'_1 = \varphi'_2$ with $p(\theta') = p(\theta)$. Again let $\varphi = \theta' - \theta$. Then $0 \sim \varphi'_2 - \varphi_2 = \theta'(\varphi'_1 - \theta\varphi_1) = \theta'(\varphi'_1 - \varphi_1) + \varphi\varphi_1 \sim \varphi\varphi_1$. By Lemma 3.3 $\varphi \sim 0$. Given $f : T \to T_1$ and ξ in F/D with $p(\xi) = T$ there exists a cocartesian $\varphi_1 : \xi \to \xi_1$ in F with $p(\varphi_1) = f$ and by what we have done $[\varphi_1]$ is cocartesian in F/D.

Note that there are in general more cocartesian arrows in F/D than those in the image of cocartesian arrows in F. The following lemma characterises the cocartesian arrows in the quotient category:

Lemma 3.7. If ρ and θ are composable arrows in F with ρ cocartesian and θ inducing an isomorphism in F/D, then $[\theta\rho]$ is cocartesian in F/D. Conversely, suppose $[\varphi] : \xi_1 \to \xi_2$ is cocartesian in F/D over $f : T_1 \to T_2$. Then for any base change $\rho : \xi_1 \to \xi_1^\#$ of ξ_1 over f in F, the induced arrow $\varphi_0 : \xi_1^\# \to \xi_2^\#$ gives an isomorphism in $F/D(T_2)$.
The first condition would be satisfied if base change had a right adjoint. The second condition states that if \(\theta : \xi_1 \to \xi_2 \) is isomorphic, let \(\varphi = \theta \rho \).

If \(\tau : \xi_1 \to \xi_4, p(\xi_4) = T \), and there is a map \(f : T_3 \to T_4 \) with \(p(\tau) = f(p(\theta)p(\rho)) \), then there is a unique arrow \(\mu : \xi_2 \to \xi_4 \) above \(f(p(\theta)) \) with \(\mu \rho = \tau \). This gives the arrow \([\mu][\theta]^{-1} : \xi_2 \to \xi_4 \). If \(\mu_i : \xi_3 \to \xi_4 \) for \(i = 1, 2 \) are two arrows with \([\mu_i][\varphi] = [\tau] \), then \([\mu_1][\theta] = [\mu_2][\theta] \) since \([\rho] \) is cocartesian in \(F/D \) by Lemma 3.3.

Since \([\theta] \) is an isomorphism, \([\mu_1] = [\mu_2] \).

Conversely, since \([\varphi] \) is cocartesian there is a unique arrow \([\psi] : \xi_2 \to \xi_3^\# \) in \(F/D(T) \) with \([\psi\varphi] = [\rho] \). By Lemma 3.3, \([\rho] \) is cocartesian. It follows that \([\varphi^\#] = [\psi]^{-1} \).

4. COHEN-MACAULAY APPROXIMATION IN FIBRED CATEGORIES

Given a category \(C \) and a category \(A \) fibred in abelian categories over \(C \). Base change by an \(f : T \to T' \) in \(C \) applied to the objects in a complex \(\ldots \to N_d \to N_{d-1} \to \ldots \) in \(A(T) \) can by Lemma 3.3 be uniquely extended to a complex and yield a commutative diagram where the vertical arrows are the cocartesian base change arrows:

\[
\begin{array}{ccc}
\cdots & N_{d+1} & N_d & N_{d-1} & \cdots \\
\downarrow & \downarrow & \downarrow & \downarrow & \\
\cdots & N_{d+1} & N_d & N_{d-1} & \cdots
\end{array}
\]

Similarly base change of a commutative diagram \(\Delta \) in \(A(T) \) gives a commutative diagram \(\Delta^\# \) and the base change arrows give an arrow of diagrams \(\Delta \to \Delta^\# \).

Let \(X \subseteq A \) be an FAd subcategory. Consider the following two conditions on the pair \((A, X) \) and an object \(T \) in \(C \).

(BC1) If \(\alpha : A_1 \to A_2 \) is an epimorphism in \(A(T) \) and \(f : T \to T' \) is an arrow in \(C \) then any base change of \(\alpha \) by \(f \) is an epimorphism in \(A(T') \).

(BC2) Let \(\xi : 0 \to A \to B \to M \to 0 \) be an exact sequence in \(A(T) \) with \(M \) in \(X(T) \) and \(f : T \to T' \) is an arrow in \(C \). Then any base change of \(\xi \) by \(f \) is an exact sequence in \(A(T') \).

The first condition would be satisfied if base change had a right adjoint. The second condition mimics flatness for all objects in \(X(T) \).

The following is an elementary, but essential technical consequence of BC1.

Lemma 4.1. Let \(A \) be a category fibred in abelian categories over \(C \) which satisfies BC1 for \(T \) in \(C \). Let \(c : \ldots \to L_n \to L_{n-1} \to \ldots \) be an acyclic complex in \(A(T) \) which remains exact after a base change \(\ldots \to L_n^\# \to L_{n-1}^\# \to \ldots \) of \(c \) by \(f : T \to T' \). Then base change of \(K_n := \ker\{d_{n-1} : L_{n-1} \to L_{n-2}\} \) by \(f \) is isomorphic to \(\ker d_{n-1}^\# \) for all \(n \).

Proof. Let \(Q_n = \ker d_n^\# \). Since the composition \(K_n^\# \to L_{n-1}^\# \to L_{n-2}^\# \) by Lemma 3.3 is zero (as \(K_n \to K_n^\# \) is cocartesian), there is a factorisation \(\rho : K_n^\# \to Q_n \) of \(K_n^\# \to L_{n-1}^\#. \) On the other hand the composition \(L_{n+1}^\# \to L_n^\# \to K_n^\# \) is zero too, hence there is an arrow from \(\coker d_{n+1}^\# \cong Q_n \) to \(K_n^\# \) which is a section of \(\rho \). By assumption \(L_n^\# \to K_n^\# \) is an epimorphism. It follows that \(Q_n \cong K_n^\# \).

Definition 4.2. Given FAd subcategories \(D \subseteq X \subseteq A \). Let \(X^D(T) \) denote the additive subcategory of \(A(T) \) with objects \(N \) which have a finite \(X \)-resolution \(M_* \to N \) which is preserved as resolution by any base change. Let \(X^D \subseteq A \) denote the resulting FAd subcategory. Let \(D^X(T) \) denote the additive subcategory of \(A(T) \) with objects \(L \) which have a \(D(T) \)-resolution \(D^* \to L \) which is preserved as resolution by any base change. Let \(D^X \subseteq A \) denote the resulting FAd subcategory.
The reasoning in the beginning of this section combined with Lemma 2.2 gives the following.

Lemma 4.3. Let \(\eta : \ldots \to E_0 \to E_{n-1} \to \ldots \) and \(\lambda : \ldots \to F_0 \to F_{n-1} \to \ldots \) be complexes in \(\mathcal{A}(T) \) and \(\eta^\# \) and \(\lambda^\# \) the complexes resulting from base change over \(f : T \to T' \). If \(\eta \) is homotopic to \(\lambda \) then \(\eta^\# \) is homotopic to \(\lambda^\# \).

In particular; if \(N \) in \(\mathcal{A}(T) \) has one \(\mathcal{D}(T) \)-resolution (\(\mathcal{D}(T) \)-coresolution) which is preserved by base change then all \(\mathcal{D}(T) \)-resolutions (\(\mathcal{D}(T) \)-coresolutions) are preserved by base change.

Theorem 4.4. Let \(\mathcal{A} \) be a category fibred in abelian categories over \(\mathcal{C} \) and let \(\mathcal{D} \subseteq \mathcal{X} \subseteq \mathcal{A} \) be inclusion morphisms of categories fibred in additive categories. Fix an object \(T \) in \(\mathcal{C} \). Assume BC1-2 for \((\mathcal{A}, \mathcal{X})\) and \(T \), and AB1-2 for the triple of categories \((\mathcal{A}(T), \mathcal{X}(T), \mathcal{D}(T))\). Then any object \(N \) in \(\mathcal{X}(T) \) admits an \(\mathcal{X}(T) \)-approximation and a \(\mathcal{D}(T) \)-hull;

\[
0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to N \to L' \to M' \to 0
\]

with \(M \) and \(M' \) in \(\mathcal{X}(T) \) and \(L \) and \(L' \) in \(\mathcal{D}(T) \), which are preserved by any base change.

Proof. The proof is a variation of the original proof of [7, 1.1]. For every \(N \) in \(\mathcal{X}(T) \) let \(r(N) \) denote the minimal length of an \(\mathcal{X}(T) \)-resolution \(M \to N \) which is preserved by base change. The proof is by induction on \(r(N) \). If \(r(N) = 0 \) then \(N \) is in \(\mathcal{X} \) and so is its own \(\mathcal{X} \)-approximation, while \(AB2 \) provides a short exact sequence \(N \to D \to M' \) which is a \(\mathcal{D}(T) \)-hull with \(D \) in \(\mathcal{D}(T) \subseteq \mathcal{D}(T) \). The approximation is trivially preserved by base change, the hull because of BC2. Assume \(r = r(N) > 0 \) and let \(0 \to M_0 \to M_1 \to \ldots \to M \to N \) an \(\mathcal{X}(T) \)-resolution of minimal length preserved by base change. Then \(N_1 = \ker(M_0 \to N) \) is in \(\mathcal{X}(T) \) by Lemma 4.1 and \(r(N_1) = r - 1 \). By induction there is a \(\mathcal{D}(T) \)-hull \(N_1 \to L \to M' \) with \(L \) in \(\mathcal{D}(T) \) which is preserved by base change. Pushout of \(e : N_1 \to M_0 \to N \) along \(N_1 \to L \) gives an \(\mathcal{X}(T) \)-approximation \(L \to M \to N \) by AB1. In the commutative diagram obtained by a base change;

\[
\begin{array}{c}
N_1^\# \\
\downarrow \\
M^\# \\
\downarrow \\
N^\#
\end{array}
\quad \begin{array}{c}
(M'_{1})^\# \\
\downarrow \\
(M'_{1})^\#
\end{array}
\]

the upper row (by Lemma 4.1) and the columns (by BC2) are short exact sequences. It follows that the middle row is a short exact sequence.

By AB2 there is a short exact sequence \(M \to D \to M' \) with \(D \) in \(\mathcal{D}(T) \) and \(M' \) in \(\mathcal{X}(T) \). Pushout of \(M \to D \to M' \) along \(M \to N \) gives a short exact sequence \(h : N \to L' \to M' \). Since the induced sequence \(L \to D \to L' \) is short exact, \(L' \) is contained in \(\mathcal{D}(T) \). Applying a base change we obtain the following commutative diagram:

\[
\begin{array}{c}
L^\# \\
\downarrow \\
M^\# \\
\downarrow \\
N^\#
\end{array}
\quad \begin{array}{c}
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
(M')^\#
\end{array}
\quad \begin{array}{c}
(M')^\# \\
\downarrow \\
(M')^#
\end{array}
\]
The upper row and (by BC2) the two columns are short exact sequences. It follows that the middle row is a short exact sequence and hence that L' is contained in D^\oplus.

 Sequences as in Theorem 4.4 preserved by any base change will be called an X-approximation and a D^\oplus-hull of N respectively.

Lemma 4.4 makes the following definition reasonable. Three categories fibred in additive categories (FAds) A_i, $i = 1, 2, 3$, an inclusion of FAds $A_1 \subseteq A_2$, and a morphism of FAds $F : A_2 \to A_3$ equivalent to the quotient morphism $A_2 \to A_2/A_1$ is called a short exact sequence of categories fibred in additive categories and is denoted by $0 \to A_1 \to A_2 \to A_3 \to 0$.

Theorem 4.5. Let A be a category fibred in abelian categories over C and let $D \subseteq X \subseteq A$ be inclusion morphisms of categories fibred in additive categories. Assume BCI-2 for the pair (A, X) and AB1-3 for the triple of categories $(A(T), X(T), D(T))$, for all objects T in C. Then:

(i) The X-approximation induces a morphism of categories fibred in additive categories $j^! : X^\oplus / D \to X / D$ which is a right adjoint to the full and faithful inclusion morphism $j : X / D \to X^\oplus / D$.

(ii) The D^\oplus-hull induces a morphism of categories fibred in additive categories $i^* : X^\oplus / D \to D^\oplus / D$ which is a left adjoint to the full and faithful inclusion morphism $i : D^\oplus / D \to X^\oplus / D$.

(iii) Together these maps give the following commutative diagram of short exact sequences of categories fibred in additive categories:

$$
\begin{array}{ccc}
0 & \longrightarrow & \hat{D}^\oplus / D \\
\downarrow & & \downarrow \text{id} \\
\hat{X}^\oplus / D & \xrightarrow{i^*} & X / D & \xrightarrow{j^!} & X^\oplus / D & \longrightarrow & 0
\end{array}
$$

Proof. In each fibre most of these statements are true by the arguments in the proof of [7, 2.8] since we have Theorem 4.4. The general cases are reduced to fibre cases by applying base change. First we have to establish the functors. Note that the quotient categories involved are FAds over C by Lemma 3.3. Let $p : A \to C$ denote the fibration. For each N_i in X^\oplus put $T_i = p(N_i)$ and choose a D^\oplus-hull $i_i : N_i \to L_i \to M_i$ which exists by Theorem 3.3 and such that $i_i = \text{id}$ if N_i is in D^\oplus. For each arrow $\psi : N_1 \to N_2$ choose an arrow $\lambda_{21} : L_1 \to L_2$ commuting with ψ. This arrow is obtained as a composition of a base change $L_1 \to L_1''$ over $p(\psi) : T_1 \to T_2$ with an extension $L_1'' \to L_2$ of $N_i'' \to L_2$ obtained since Ext$^{2}_{A(T_2)}(M_i'', L_2) = 0$ by [7, 2.5]. If composable it follows from [7, 2.8] that $\lambda_{32} \lambda_{21} \sim \lambda_{33}$.

There is a unique arrow $\varphi : N_1'' \to N_2$ induced by ψ. If $\lambda_{21} : L_1 \to L_2$ is an extension of $\psi' : N_1 \to N_2$ with $p(\psi') = p(\psi)$ such that $\delta_1 := \psi - \psi'$ is equivalent to 0, we have by Lemma 3.3 that $\delta : N_1'' \to N_2$ induced from δ_1 by base change factors through an object D in $D(T_2)$. It follows that δ factors through $N_1'' \to L_1''$. Let τ denote the composition $L_1'' \to N_2 \to L_2$ (so $\tau \sim 0$). Let η be a base change over $p(\psi)$ of the difference of the two extensions: $\eta = (\lambda_{21} - \lambda_{21}'')$. One calculates that $(\eta - \tau)k_1'' = 0$, hence $\eta - \tau$ is induced by an arrow $M_1'' \to L_2$ which lifts to an arrow $M_1'' \to D^\oplus$ where $D^\oplus \to L_2$ is a finite D-resolution of L_2 (since Ext$^{2}_{A(T_2)}(M_1'', \hat{D}^\oplus(T_2)) = 0$). Hence $\eta - \tau \sim 0$, so $\eta \sim 0$ and $\lambda_{21} \sim \lambda_{21}'$. We have shown that $i^* : X^\oplus / D \to D^\oplus / D$ is a well defined functor. To show that i^* preserves cocartesian arrows we apply Lemma 3.5. If $[\psi] : N_1 \to N_2$ is cocartesian in X^\oplus / D
then the induced map \([\varphi] : N_1^\# \to N_2\) is an isomorphism and by \([7, 2.8]\) so is any extension \(L_1^\# \to L_2\) of \([\varphi]\). Composed with the base change \(L_1 \to L_1^\#\) we get a cocartesian arrow in \(\mathbb{D}^\text{B} / D\) by Lemma 3.3.

A similar argument gives that the morphism \(j^! : \mathbb{X}^\text{B} / D \to X / D\) induced by (choices of) \(X\)-approximation also is well defined as a map of fibred categories.

To prove adjointness for the pair \((j_!, j^!)\) consider the chosen \(X\)-approximation \(L \to M \overset{\varphi}{\to} N\) of \(N\) in \(\mathbb{X}^\text{B}(T)\). Given \(L_1 : M_1 \to N\) with \(M_1\) in \(X(T_1)\) and \(f = p(\varphi_1)\). Let \(\varphi : M_1^\# \to N\) be induced by a base change of \(M_1\) by \(f\). Since \(\text{Ext}_{\mathbb{A}^1(T)}^1(M_1^\#, L) = 0\), \(\varphi\) can be lifted to an arrow \(\psi : M_1^\# \to M\). Composing \(\psi\) with the base change \(M_1 \to M_1^\#\) gives a lifting of \(\varphi_1\) which shows surjectivity of the adjointness map \([\varpi \circ \cdot]\). To prove injectivity consider for \(i = 2, 3\) arrows \(\psi_i : M_i \to M\) in \(X\) with \(\pi \psi_2 = \pi \psi_3\). Since \(p(\pi) = \text{id}\) we have \(p(\psi_2) = p(\psi_3) = f\) and we can define \(\psi_1 = \psi_2 - \psi_3\) with \(\pi \psi_1 \sim 0\). Base change by \(f\) induces an \(\psi : M_1^\# \to M\) from \(\psi_1\). Lemma 3.3 gives \(\pi \psi \sim 0\). The argument in \([7, 2.8]\) implies that \(\psi\) and hence \(\psi_1\) factors through an object in \(D(T)\). Analogous arguing gives the adjointness of the pair \((i^*, i_*)\).

The commutativity of the diagram in (iii) follows by definition. For \(i^* j_i = 0 = j_i^! i_*\) see \([7, 2.8]\). We prove exactness in the upper row. Given \(\varphi : N_1 \to N_2\) in \(\mathbb{X}^\#\) with \(f = p(\varphi) : T_1 \to T_2\) such that \(j_i^! [\varphi] = 0\). If \(\pi_i : M_i \to N_i\) are the chosen \(X\)-approximations, \(j_i^! [\varphi]\) is represented by a lifting \(\psi : M_1 \to M_2\) and the assumption is that \(\varphi\) factors through an object \(D\) of \(D\). We claim that \(\varphi\) factors through an object in \(\mathbb{D}^\text{B}\). By base change it’s sufficient to prove the special case \(f = \text{id}_{T_2}\). If \(M\) is any object in \(X(T)\) we have that the composition \(\text{Ext}_{\mathbb{A}^1(T)}^1(M, N_1) \cong \text{Ext}_{\mathbb{A}^1(T)}^1(M, M_1) \overset{\varphi_1}{\to} \text{Ext}_{\mathbb{A}^1(T)}^1(M, M_2) \cong \text{Ext}_{\mathbb{A}^1(T)}^1(M, N_2)\) is \(\varphi\), which hence equals 0. If \(e : N_1 \to L_1 \to M_1^\#\) is a \(\mathbb{D}^\text{B}\)-hull of \(N_1\), the connecting takes \(\varphi\) to \(\varphi, e \in \text{Ext}_{\mathbb{A}^1(T)}^1(M_1^\#, N_2)\), i.e. to 0, and so there exists a \(\delta : L_1 \to N_2\) which induces \(\varphi\). Exactness in the lower row is analogous.

\[\text{Proposition 4.6.}\] Let \(A\) be a category fibred in abelian categories over \(C\) and let \(D \subseteq X \subseteq A\) be inclusion morphisms of categories fibred in additive categories. Fix an object \(T\) in \(C\). Assume BC1-2 for \((A, X)\) and \(T\), and AB1-3 for the triple of categories \((A(T), X(T), D(T))\). Then:

(i) \(\mathbb{D}^\text{B}(T) = \mathbb{X}^\text{B}(T) \cap X(T)^\perp\) and \(D(T) = X(T) \cap \mathbb{D}^\text{B}(T)\).

(ii) \(\mathbb{X}^\text{B}(T)\) and \(\mathbb{D}^\text{B}(T)\) are closed under extensions.

(iii) Exact sequences \(\ldots \to N_n d_n \to N_{n-1} \to \ldots\) with objects \(N_i\) and kernels \(\ker d_i\) in \(\mathbb{X}^\text{B}(T)\) remain exact after base change.

If in addition AB4, then:

(iv) Epimorphisms in \(\mathbb{X}^\text{B}(T)\) are admissible.

(v) Add \(\mathbb{X}^\text{B}(T) = \mathbb{X}^\text{B}(T)\) and Add \(\mathbb{D}^\text{B}(T) = \mathbb{D}^\text{B}(T)\).

\[\text{Proof.}\] For (i) the proofs of \([7, 3.6-7]\) works with the same 2-s by Theorem 1.4. By (i) it’s sufficient to prove (ii) for \(\mathbb{X}^\text{B}(T)\). Let \(e : N_1 \to N_2 \to N_3\) be a short exact sequence in \(X(T)\). If \(N_1\) and \(N_3\) are in \(\mathbb{X}^\text{B}(T)\), Theorem 4.4 and Lemma 4.3 implies that \(\neg C^*(N_1)\) and \(\neg C^*(N_3)\) in Lemma 5.3 are preserved as resolutions by base change. Together with BC2 this implies that base change of the short exact sequence of resolutions in Lemma 2.3 (i) gives a short exact sequence of \(\mathbb{X}\)-resolutions. For (iii) the long exact sequence is broken into short exact sequences \(\xi_i\) with objects in \(\mathbb{X}^\text{B}(T)\). By Lemma 3.3 it is sufficient to prove the claim for short exact sequences. By Lemma 2.3 the short exact sequence of \(\mathbb{X}\)-resolutions in
Lemma 2.3(i) is preserved by base change. It follows that the short exact sequences \(\xi_i \) remain exact after base change.

For (iv): if \(N_2 \) and \(N_3 \) in \(e \) are in \(\hat{X}^\beta(T) \) then \(N_1 \) is in \(\hat{X}(T) \) by AB4, see [7, 3.5]. The argument proceeds as for extensions.

By (i) it’s sufficient to prove (v) for \(X^\beta \). If \(N_1 \supseteq N_2 \) is an object in \(\hat{X}^\beta(T) \), then \(N_i \) is in \(\hat{X}(T) \) for \(i = 1, 2 \) by [7, 3.4]. By Lemma 4.3 \(-C^*(N_1) \supseteq -C^*(N_2) \) is preserved by base change as resolution of \(N_1 \supseteq N_2 \). It follows that the resolution \(-C^*(N_i)\) is preserved by base change for \(i = 1, 2 \).

Corollary 4.7. Assume BC1-2 and AB1-3 as in Proposition 4.6. If \(N \) is in \(\hat{X}^\beta(T) \) then any DX-resolution \(-C^*(N) \rightarrow N \) and any \(\hat{DD} \)-coresolution \(N \rightarrow +C^*(N) \) as in Section 2.2 is preserved by base change.

Proof. By Theorem 4.3 there exist a DX-resolution and a \(\hat{DD} \)-coresolution in \(X^\beta \).

The result follows from Proposition 4.6 (iii) and Lemma 4.3.

Definition 4.8. Let \(A \) be a category fibred in abelian categories over \(C \) and let \(D \subseteq A \) be an inclusion morphism of a category fibred in additive categories. For \(T \in C \) let \(\hat{D}^\beta(T) \) denote the full subcategory of \(A(T) \) of objects \(K \) with a finite \(\hat{D}^\beta \)-resolution \(K \rightarrow L^* \) with objects \(L_i \) in \(\hat{D}^\beta(T) \) for \(i \geq 0 \).

Lemma 4.9. With these notions we have:

(i) Epimorphisms in \(\hat{D}^\beta(T) \) are admissible if and only if \(\hat{D}^\beta(T) = \hat{D}^\beta(T) \).

Assume BC1-2 and AB1-4 for \((A(T), X(T), D(T)) \). Then:

(ii) \(\hat{D}^\beta(T) = D(T) \cap \hat{D}^\beta(T) \).

(iii) Epimorphisms in \(\hat{D}^\beta(T) \) are admissible if epimorphisms in \(D(T) \) are admissible.

Proof. (i) is trivially true. In (ii) \(\hat{D}^\beta(T) \subseteq D(T) \cap \hat{D}^\beta(T) \) is obvious. For the other inclusion, suppose \(K \) is an object in \(D(T) \cap \hat{D}^\beta(T) \) with a \(\hat{D}^\beta \)-resolution \(K \rightarrow L^* \) of length \(n > 0 \). Since monomorphisms are admissible in \(\hat{D}^\beta = X(T) \cap X(T)^\perp \), all \(K_i' = \ker(L^i \rightarrow L^{i+1}) \) are contained in \(\hat{D}(T) \), and we can assume \(n = 1 \). But then \(K \) has to be in \(X^\beta \cap D = \hat{D}^\beta(T) \) by Proposition 4.3.

Since (i) is true “without the \(\hat{D} \)” by [7, 4.1], (iii) follows immediately from (i) and (ii).

5. Cohen-Macaulay approximation of flat families

We define fibred categories of Cohen-Macaulay maps with flat modules and show that they allow Cohen-Macaulay approximation in the finite type case and the local, algebraic case.

5.1. The finite type case. Let \(h : S \rightarrow T \) be a ring homomorphism of noetherian rings. We say that \(h \) is a Cohen-Macaulay (CM) map if it is of finite type, faithfully flat and all fibres are Cohen-Macaulay (cf. [19, 6.8.1]). In particular \(h \) is equidimensional ([20, 15.4.1]). B. Conrad has defined the dualising module \(\omega_h \) for any CM \(h \), see [12, Sec. 3.5]. Suppose \(h \) has pure relative dimension \(n \). For some \(N \geq n \) there is a surjective \(S \)-algebra map \(P \rightarrow T \) where \(P = S[t_1, \ldots, t_N] \). Let \(\omega_{P/S} := \Lambda^N \Omega_{P/S} \). Then there is an isomorphism \(\omega_h \cong \text{Ext}^{N-n}_P(T, \omega_{P/S}) \) which is natural in the factorisation \(S \rightarrow P \rightarrow T \), see [12, 3.5.3-6]. By (local) duality theory and Corollary 2.9 \(\omega_h \) is \(S \)-flat (or see [12, Cor. 3.5.2]). If \(S \) is a field, we have that \(\omega_h \) is a canonical module of \(T \) as in Example 2.1, cf. [10, 3.3.7 and 16].

Let \(\text{CM} \) be the category with objects the CM maps and morphisms \((g, f) : h_1 \rightarrow h_2 \) pairs of ring homomorphisms \(g : S_1 \rightarrow S_2 \) and \(f : T_1 \rightarrow T_2 \) such that \(h_2 g = f h_1 \).
and such that the induced map \(f \otimes 1 : T_1 \otimes S_2 \to T_2 \) is an isomorphism:

\[
\begin{array}{c}
T_1 \xrightarrow{f} T_2 \\
\downarrow h_1 \quad \quad \downarrow h_2 \\
T_1 \otimes S_2 \xrightarrow{\cong} T_2 \otimes S_2
\end{array}
\]

Let \(NR \) denote the category of noetherian rings. The forgetful functor \(p : CM \to NR; (g, f) \mapsto g \), makes \(CM \) fibred in groupoids over \(NR \). The essential part is that \(CM \) should allow base change, i.e. given \(g : S_1 \to S_2 \) and \(h_1 : S_1 \to T_1 \) as above there should exist a \(T_2 \), an \(h_2 : S_2 \to T_2 \) and an \(f \) such that \((g, f) \) is a morphism \(h_1 \to h_2 \) in \(CM \). This follows from [20, 15.4.3].

Let \(\text{mod} \) be the category of pairs \((h : S \to T, N)\) with \(h \) in \(CM \) and \(N \) a finite \(T \)-module. A morphism \((h_1, N_1) \to (h_2, N_2)\) is a morphism \((g, f) : h_1 \to h_2\) in \(CM \) and a \(f \)-linear map \(\alpha : N_1 \to N_2 \). Then \(\alpha \) is cocartesian with respect to the forgetful functor \(F : \text{mod} \to CM \). It follows that \(\text{mod} \) is fibred in abelian categories over \(CM \). Adding the property that \(N \) is \(S \)-flat gives the full subcategory \(\text{mod}^B \). Moreover, let \(\text{MCM} \) be the full subcategory of \(\text{mod}^B \) where the fibre \(N_s = N \otimes_{sk(s)} \) is a maximal Cohen-Macaulay \(T_s \)-module for all \(s \in \text{Spec} S \). The inclusions \(\text{MCM} \subseteq \text{mod}^B \subseteq \text{mod} \) are inclusion morphisms of categories fibred in additive categories (\(\text{FAds} \)) over \(CM \). For \(\text{MCM} \) this follows from [20, 15.4.3]. If \(h \) is a \(CM \) map let \(\text{mod}_h, \text{MCM}_h, . . . \) denote the fibre categories of \(\text{mod}, \text{MCM}, . . . \) over \(h \). An object in \(\text{MCM}_h \) is called an \((h-)\)family of maximal Cohen-Macaulay modules.

Given a morphism \(h_1 \to h_2 \) in \(CM \). By [12, Thm. 3.6.1] there is a natural isomorphism with base change \(T_2 \otimes \omega_{h_1} \cong \omega_{h_2} \) which is compatible with localisation of\(T_1 \) and is functorial with respect to composition \(h_1 \to h_2 \to h_3 \). It follows that \(h \mapsto (h, \omega_h) \) defines a morphism \(\omega : CM \to \text{MCM} \) of fibred categories over \(NR \) which is a section of the forgetful \(F : \text{MCM} \to CM \). Let \(D \) be the full subcategory of \(\text{MCM} \) over \(CM \) with the objects \((h, D)\) where \(D \) is an object in \(\text{Add}(\omega_h) \). The inclusion \(D \subseteq \text{MCM} \) is an inclusion of \(\text{FAds} \) over \(CM \).

If \(U \) denotes any of these \(\text{FAds} \) over \(CM \), let \(U \) denote the quotient (‘stable’) category \(U/D \). With this notation we have the following.

Theorem 5.1. The pair \((\text{mod}, \text{MCM})\) over \(CM \) satisfies BC1-2 and the triple of fibre categories \((\text{mod}_h, \text{MCM}_h, D_h)\) satisfies AB1-4 for all objects \(h \) in \(CM \). Moreover:

(i) The fibred categories \(\text{MCM}_h^B \) and \(\hat{D}_h^B \) equals \(\text{mod}_h^B \) and \(\hat{D} \cap \text{mod}_h^B \) respectively.

(ii) For any object \((h, N)\) in \(\text{mod}_h^B \), \(N \) admits an \(\text{MCM} \)-approximation and a \(\hat{D}_h^B \)-hull which in particular are preserved by any base change.

(iii) The \(\text{MCM} \)-approximation induces a morphism of categories fibred in additive categories \(j^* : \text{mod}_h^B \to \text{MCM} \) which is a right adjoint to the full and faithful inclusion morphism \(j^! : \text{MCM} \to \text{mod}_h^B \).

(iv) The \(\hat{D}_h^B \)-hull induces a morphism of categories fibred in additive categories \(i^* : \text{mod}_h^B \to \hat{D}_h^B \) which is a left adjoint to the full and faithful inclusion morphism \(i^! : \hat{D}_h^B \to \text{mod}_h^B \).

(v) Together these maps give the following commutative diagram of short exact sequences of categories fibred in additive categories:

\[
\begin{array}{cccccc}
0 & \rightarrow & \hat{D}_h^B & \rightarrow & \text{mod}_h^B & \rightarrow & \text{MCM} & \rightarrow & 0 \\
\downarrow \text{id} & & \downarrow i^* & & \downarrow j^* & & \downarrow \text{id} \\
0 & \rightarrow & \hat{D}_h^B & \rightarrow & \text{mod}_h^B & \rightarrow & \text{MCM} & \rightarrow & 0
\end{array}
\]
Proof. Since base change is given by the tensor product BC1 and BC2 follows. In particular, a short exact sequence $e : N_1 \to N_2 \to N_3$ in mod_h with N_3 and either N_1 or N_2 in MCM_h gives short exact sequences of MCMs after base change to each fibre T_s, i.e. AB1 and AB4.

For AB2, suppose M is in MCM_h. Then $M^\vee = \text{Hom}_\mathcal{V}(M, \omega)$ is in MCM_h too by Corollary 5.2. Since M^\vee is finite there is a short exact sequence $M^\vee \leftarrow T' \leftarrow M_1$. By AB1 M_1 is in MCM_h. Applying $\text{Hom}_\mathcal{V}(\cdot, \omega_h)$ gives the desired short exact sequence since Corollary 2.9 implies that $\text{Ext}_2^T(M^\vee, \omega_h) = 0$ and that the natural map $M \to M^\vee$ is an isomorphism. AB3 also follows from Corollary 2.9.

Any N in MCM^n_h has by definition a finite MCM-resolution (say of length n) preserved by base change. Since objects in MCM are S-flat it follows by induction on n that $\text{Tor}^T_h(N, k(s)) = 0$ for all $s \in \text{Spec} \mathcal{S}$. Hence N is S-flat. Conversely, if N is in mod_h^n, it follows that a sufficiently high syzygy of N is in MCM_h, i.e. N is in $\tilde{\text{MCM}}^n_h$. With Proposition 4.5 this gives $\tilde{\text{D}}^n_h = \text{mod}_h^n \cap \text{MCM}^n_h$. By induction on the length of the resolution $\tilde{D}_h \subseteq \text{MCM}^n_h$ and so $\text{mod}_h^n \cap \tilde{D}_h \subseteq \tilde{D}_h$. The opposite inclusion is clear by the first part of (i). Now (ii)-(v) follows directly from Theorem 4.5.

Corollary 5.2. Let $h : S \to T$ be an object in CM. Then:

(i) $D_h = \text{MCM}^1_h \cap \text{MCM}_h$ and $\tilde{D}_h = \text{MCM}^1_h \cap \text{mod}_h$

(ii) The kernel of a surjective map in \tilde{D}_h is contained in \tilde{D}_h.

Proof. (ii): Note that if $N_1 \to N_2 \to N_3$ is a short exact sequence with N_2 and N_3 in \tilde{D}_h, in particular S-flat, then N_1 has to be S-flat too. To show that N_1 is in \tilde{D}_h we use the criterion in [7, 4.6] to show that $D_h = \tilde{D}_h$. Suppose that M is in MCM_h. Assume that M satisfies MCM_h-inj.dim $M = n < \infty$ which by [7, 4.3] is equivalent to the existence of a coresolution of M of length n in D_h. The fibre at any $s \in \text{Spec} \mathcal{S}$ gives a \mathcal{D}_T-coresolution of the MCM T_s-module M_s. Since $\mathcal{D}_T_h = \mathcal{D}_T$ ([7, 6.3]) it follows by [7, 4.6] that M_s is contained in \mathcal{D}_T. Since $\mathcal{D}_T = \text{MCM}_T \cap \text{MCM}^1_T$ by [7, 3.7] it follows from Corollary 2.9 that MCM_h-inj.dim $M = 0$ and so M is in $\text{MCM}_h \cap \text{MCM}^1_h$. But by Theorem 5.1 we can invoke [7, 3.7] again which gives $\text{MCM}_h \cap \text{MCM}^1_h = D_h$ so M is in D_h. By [7, 4.6(d)] $\tilde{D}_h = D_h$ follows and N_1 is in \tilde{D}_h.

Remark 5.3. Let A be any noetherian ring. By abuse of notation let $\text{CM} \to \text{AR}$ denote the category fibred in groupoids obtained by restriction to the category of noetherian A-algebras AR. Fix a Cohen-Macaulay map $A \to T^o$. There is a section $s : \text{AR} \to \text{CM}$ defined by $s : S \mapsto (S \to T^o \otimes S)$. Let T^o denote the resulting fibred subcategory of CM. We restrict mod, MCM and D to T^o and obtain categories fibred in abelian and additive categories over T^o respectively. These restricted fibred categories satisfy the axioms AB1-4 and BC1-2 and we obtain restricted versions of Theorem 5.1 and Corollary 5.2.

Let P denote the fibred subcategory of MCM over CM of pairs (h, P) with $h : S \to T$ in CM and P a finite projective T-module. Let \tilde{P}^h denote the full subcategory of mod^h of pairs (h, Q) such that Q has a finite projective dimension. The inclusions of categories fibred in additive categories $P \subseteq \tilde{P}^h \subseteq \text{mod}^h$ are closed under extensions over CM.

Lemma 5.4. There is an exact equivalence $\tilde{D}_h \simeq \tilde{P}^h$ of categories fibred in additive categories defined by the functor $(h, L) \mapsto (h, \text{Hom}_T(\omega_h, L))$ with a quasi-inverse $(h, Q) \mapsto (h, Q \otimes_T \omega_h)$. It induces an equivalence of fibred quotient categories $\tilde{D}_h/D \simeq \tilde{P}^h/P$.
Proof. By base change we reduce to the case where the equivalence is well known, cf. [24, I 4.10.16]. The functor $\text{Hom}_*(\varphi, _)$ takes a map $\varphi : L_1 \to L_2$ over $h_1 \to h_2$ to the map $\text{Hom}_{T_\varphi}(\omega_{h_1}, L_1) \to \text{Hom}_{T_\varphi}(\omega_{h_2}, L_2)$; $\alpha \mapsto (\varphi_\alpha)\#$, the unique map which pulls back to φ_α by the cocartesian map $\omega_{h_1} \to \omega_{h_2}$. It is a well defined functor since the dualising module is functorial. If L is in D^b_0 then $\text{Ext}^i_{T_\varphi}(\omega_{f\varphi}, L_s) = 0$ for all $i \neq 0$ and $s \in \text{Spec } S$. By Corollary 2.9 the functor is exact and $\text{Hom}_{T_\varphi}(\omega_h, L)$ is S-flat. In particular $\text{End}_{T_\varphi}(\omega_h) \cong T$. If D is in D_0 then $\text{Hom}_{T}(\omega_h, D)$ is projective as a direct summand of a free module. If $D^* \to L$ is a finite D_0-resolution of L, then $\text{Hom}_{T}(\omega_h, D^*)$ gives a projective resolution of $\text{Hom}_{T}(\omega_h, L)$ since $D^b_0 \subseteq \text{MCM}_k^T$ (Corollary 5.2). The natural map $\text{ev} : \text{Hom}_{T}(\omega_h, L) \otimes \omega_h \to L$ commutes with base change to the fibres where it is an isomorphism ([10, 9.6.5]) and Nakayama’s lemma and S-flatness implies that ev is an isomorphism too. Let $P^* \to Q$ be a P-resolution of Q in D^b_0 of length n. Define covariant functors $G^i : \text{mod } S \to \text{mod } T$ by $G^i(V) := H^{-n}(P^* \otimes T_{\omega h} \otimes S V)$. Since $P^* \otimes T_{\omega h}$ is S-flat, $\{G^i\}$ defines a cohomological δ-functor. Since $P^* \otimes k(s)$ gives a resolution of $Q \otimes S k(s)$ for all $s \in \text{Spec } S$, [10, 9.6.5] and Proposition 2.5 implies that $G^n(S) = Q \otimes \omega h$ is S-flat and $P^* \otimes T_{\omega h} \to Q \otimes T_{\omega h}$ is a D-resolution. Moreover, the natural map $Q \to \text{Hom}_{T}(\omega_h, Q \otimes \omega h)$ is an isomorphism by Nakayama’s lemma again. □

Example 5.5. Assume A is a Cohen-Macaulay ring with a canonical module ω_A. Given $L_i \in D_A$ and put $Q_i = \text{Hom}_A(\omega_A, L_i)$ for $i = 1, 2$. If I is an injective resolution of L_2 and P is a projective resolution of Q_1 then both spectral sequences of $\text{Hom}_A(P, \text{Hom}_A(\omega_A, I))$ collapse at page 2 (use [24, I 4.10.19]) to give canonical isomorphisms

\[
\text{Ext}^*_A(L_1, L_2) \cong \text{Ext}^*_A(Q_1, Q_2)
\]

Remark 5.6. In his unpublished manuscript Buchweitz gave a construction of Cohen-Macaulay approximation for finite A-modules if A is a not necessarily commutative Gorenstein ring, see [11]. The MCM-approximation and the D^0-hull in Theorem 5.1 can be given essentially by the same construction. Let N be a finite T-module which is S-flat where $h : S \to T$ is a finite type Cohen-Macaulay map. Let $P = P(N) \to N$ be a projective resolution of N (i.e. by finite projective T-modules). Then $P^\vee = \text{Hom}_{T}(P, \omega_h)$ is a bounded below complex with bounded cohomology because $\text{Ext}^i_{T}(N, \omega_{h}) = 0$ for i greater than the relative dimension d of h by Corollary 2.4 (inj.dim $\tau_{\omega h} = \dim T_h \leq d$). Then we can choose a projective resolution $f : P(P^\vee) \to P^\vee$ of P^\vee which is bounded above. Let $C = C(f)$ be the mapping cone of f. The modules in C are direct sums of projective modules and modules in D_h and the (co)kernels in the acyclic C are modules in MCM_h. By Corollary 2.4 it follows that C^\vee is acyclic too. There is a composition of natural maps $P \cong P^\vee \to P(P^\vee)^\vee := G$ which hence is a quasi-isomorphism. But then G is just the representing complex of N and the MCM-approximation and the D-hull is obtained as in Section 2.2. In the the case of coherent rings with a cotilting module (a concept introduced by Y. Miyashita, see [35, p. 142]) J.-i. Miyachi implicitly gave the same construction in [37, 3.2].

Suppose h has pure relative dimension and N_h is a non-zero Cohen-Macaulay T_h-module with $n = \dim T_h - \dim N_h$ constant for all $s \in \text{Spec } S$, i.e. N is a family of Cohen-Macaulay T_s-modules of codepth n. Put $N^\vee := \text{Ext}^0_T(N, \omega_h)$. Then $P^\vee = P(N^\vee)$ is quasi-isomorphic to $H^0(P^\vee) = N^\vee$ by duality theory and Corollary 2.9. So if $(f, d) \to N^\vee$ is a projective resolution of N^\vee, the representing complex is given as $G = F^\vee$. If $\text{Syz}^i N^\vee$ denotes the ith syzygy module im d_i and d_i^\vee denotes $\text{Hom}_{T}(d_i, \omega_h)$ then the commutative diagram 2.0.9 with short exact sequences is
given as

\[
\begin{array}{c}
\text{im}(d'^{+}_n) \rightarrow \text{Hom}_T(\text{Syz}^T_n N^V, \omega_h) \rightarrow N^{VV} \\
\text{im}(d'^{+}_n) \rightarrow \text{Hom}_T(F_n, \omega_h) \rightarrow \text{coker}(d'^{+}_n) \\
\text{Hom}_T(\text{Syz}^T_{n+1} N^V, \omega_h) \rightarrow \text{Hom}_T(\text{Syz}^T_{n+1} N^V, \omega_h)
\end{array}
\]

with the MCM$_h$-approximation and \overline{D}_h-hull of N given by the upper horizontal and right vertical sequence, respectively, since N^{VV} is N by duality theory and Corollary [21]. Let C denote the mapping cone of a comparison map $P(N) \rightarrow G$. The homology of the truncated short exact sequence of complexes $G \rightarrow C \rightarrow P(N)[-1]$ gives the MCM$_h$-approximation $\text{coker} d'^{+}_{i+2} \rightarrow \text{coker} d'^{+}_{i+2} \rightarrow \text{Syz}^T_i N$ for $i \geq 0$ (with $i = 0$ being the upper horizontal sequence in the diagram). In the absolute case (with N Cohen-Macaulay) this latter construction of the MCM approximation of $\text{Syz}_i N$ was given by J. Herzog and A. Matsinkovsky in [27].

5.2. Local cases. We formulate local variants of the approximation theorem.

Fix a field k. Let H denote the category of noetherian, henselian, local rings S with residue field $S/\mathfrak{m}_S \cong k$ and with local ring homomorphisms. A map $h : S \rightarrow T$ in H is algebraic (or T is an algebraic S-algebra) if there is a finite type S-algebra \breve{T} and a maximal ideal \mathfrak{m} in \breve{T} with $\breve{T}/\mathfrak{m} \cong k$ such that h is given by henselisation of \breve{T} in \mathfrak{m}. Fix an algebraic k-algebra A which is supposed to be Cohen-Macaulay. Objects in the category hCM are algebraic and flat S-algebras T with $T \otimes S k \cong A$.

A morphism $h_1 \rightarrow h_2$ is a pair of commuting maps $f : T_1 \rightarrow T_2$ and $g : S_1 \rightarrow S_2$ in H as for the finite type case, giving a cocartesian square. Base change exists for the forgetful functor hCM $\rightarrow H$ and is given by the henselisation of the tensor product $T = T_1 \otimes S_1 S_2$ in the maximal ideal $\mathfrak{m}_T T + \mathfrak{m}_{S_2} T$. We denote it by $h_1 \otimes S_1 S_2$. It follows that hCM $\rightarrow H$ is fibred in groupoids. The objects in hCM will be called henselian Cohen-Macaulay (hCM) maps.

If $h : \breve{S} \rightarrow \breve{T}$ is a finite type CM map and t a k-point in Spec \breve{T} with image s in Spec \breve{S} then localisation for the étale topology at t and s gives a hCM map $h : S \cong \breve{S}^h \rightarrow \breve{T}^h = T$. Conversely, every hCM map is obtained this way which follows from [21] 18.6.6 and 18.6.10 and [20] 15.4.3 and 12.1.1. We will call such an h a (finite type) representative of h. The dualising module ω_h induces an S-flat finite T-module ω_h called the dualising module for h. Two representations of h factor through a common étale neighbourhood contained in CM and since the dualising module is functorial for CM the dualising module ω_h is functorial too.

Let mod denote the category of pairs $(h : S \rightarrow T, N)$ with h in hCM and N a finite T-module. Morphisms are defined as for the finite type case and the forgetful functor mod \rightarrow hCM makes mod fibred in abelian categories over hCM. Let modh denote the full subcategory of objects (h, N) in mod with N S-flat and let MCM denote the full subcategory of objects (h, N) in modh where the closed fibre $N \otimes S k$ is a maximal Cohen-Macaulay A-module. Let D denote the full subcategory of MCM of objects (h, D) with D in Add(ω_h). All three are FAd subcategories of mod over hCM. Any finite T-module N has finite presentation hence it is induced from a finite module over a representative of T. If N is contained in one of the subcategories the representative can be assumed to belong to the corresponding finite type subcategory (loc. cit.). Similarly all maps in these fibred categories over H are induced from maps in the corresponding fibred categories of finite type objects.
Let \(L \) (or \(C \)) denote the category of noetherian, (complete) local rings with residue field \(k \) and local ring homomorphisms. Let \(\text{ICM} \) (or \(\text{cICM} \)) denote the category of local Cohen-Macaulay (lcM) maps (respectively complete Cohen-Macaulay or cCM maps) defined analogously as above with (completion of) essentially of finite type replacing algebraic. Similar arguing as above makes \(\text{ICM} \) (or \(\text{cICM} \)) fibred in groupoids over \(L \) (or \(C \)). The definitions of the module categories apply in the local and the complete case too and we use the same notation in all three cases. Again objects and maps are induced from the finite type case.

Either arguing with representatives or applying the proofs for Theorem 5.1 and Corollary 5.2 (with only minor adjustments) we obtain the following.

Corollary 5.7. Let \(\text{xCM} \) denote either \(\text{hCM} \), \(\text{ICM} \) or \(\text{cCM} \). The pair (mod \(\text{MCM} \)) of fibred categories over \(\text{xCM} \) satisfies BC1-2 and the triple of fibre categories (mod \(h \), \(\text{MCM}_h \), \(\text{D}_h \)) satisfies AB1-4 for all objects \(h \) in \(\text{xCM} \).

Moreover, the statements (i-\(\nu \)) in Theorem 5.1 and (i-ii) in Corollary 5.2 are valid over \(\text{xCM} \) too.

6. Minimal approximations and semi-continuity of invariants

We show that the Cohen-Macaulay approximation and the \(\hat{T} \)-hull in Corollary 5.7 can be chosen to be minimal. Upper semi-continuous invariants on \(\text{MCM}_A \) or \(\text{FID}_A \) extends to upper semi-continuous invariants on mod \(A \). An example is given by the \(\omega_A \)-ranks in the representing \(\hat{D} \)-complex.

Lemma 6.1. Let \(S \to T \) be a homomorphism of noetherian rings and \(a \) an ideal in \(S \) such that \(I = aT \) is contained in the Jacobson radical of \(T \). Let \(M \) and \(N \) be finite \(T \)-modules. Let \(T_n = T/I^{n+1} \), \(M_n = T_n \otimes M \) and \(N_n = T_n \otimes N \). Suppose there exists a tower of surjections \(\{ \varphi_n : M_n \to N_n \} \). Fix any non-negative integer \(n_0 \). Then there exists a \(T \)-linear surjection \(\psi : M \to N \) such that \(T_{n_0} \otimes \psi = \varphi_{n_0} \). If the \(\varphi_n \) are isomorphisms and \(N \) is \(S \)-flat then \(\psi \) is an isomorphism.

Proof. Let \(\hat{M} = \lim \lim T_n, M = \lim M_n \) and \(\hat{N} = \lim N_n \). We have

\[
\lim \lim \text{Hom}_{T_n}(M_n, N_n) \cong \text{Hom}_T(M, \hat{N}) \cong \hat{M} \otimes \text{Hom}_T(M, N).
\]

Hence \(\lim \lim \varphi_n = \Sigma \beta(i) \otimes \beta(j) \) with \(r(i) \in \hat{T} \) and \(\beta(j) \in \text{Hom}_T(M, N) \). Let \(r_{n_0} \) be the image of \(r(i) \) under \(\hat{T} \to T_{n_0} \) and choose liftings \(t(j) \) in \(T \) of \(r(i) \). Put \(\psi = \Sigma \beta(i) t(j) \). Then \(T_{n_0} \otimes \psi = \varphi_{n_0} \). Since \(T_{n_0} \otimes \text{coker} \psi = \text{coker} \varphi_{n_0} = 0 \), Nakayama’s lemma implies \(\text{coker} \psi = 0 \). Since \(T_{n_0} \otimes T \) is flat over \(S \), implies \(T_{n_0} \otimes \text{ker} \psi = \text{ker} \varphi_{n_0} \) and if \(\text{ker} \varphi_{n_0} = 0 \) then Nakayama’s lemma implies \(\text{ker} \psi = 0 \). \(\square \)

Proposition 6.2. Let \(\text{xCM} \) denote either \(\text{hCM} \), \(\text{ICM} \) or \(\text{cCM} \), let \(h : S \to T \) be an object in \(\text{xCM} \) and let \(\xi : L \to M \overset{\sim}{\to} N \) be an \(\text{MCM}_h \)-approximation of \(N \). Then the following statements are equivalent.

(i) The sequence \(\xi \) is a right minimal \(\text{MCM}_h \)-approximation.

(ii) There are no surjections \(M \to \omega_h \) which induces a surjection \(L \to \omega_h \).

(iii) There are no common \(\omega_h \)-summand in \(L \to M \).

(iv) The closed fibre \(\xi \otimes S k \) is a right minimal \(\text{MCM}_A \)-approximation.

(v) The completion (\(\xi \otimes S k \)) of the closed fibre is a right minimal \(\text{MCM}_A \)-approximation.

The analogous statements (i’)-(v’) for a \(\hat{D}_h \)-hull \(\xi' : N \to L' \to M' \) are equivalent. In particular:

(i’) The sequence \(\xi' \) is a left minimal \(\hat{D}_h \)-hull.

(ii’ There are no surjections \(M' \to \omega_h \) which induces a surjection \(L' \to \omega_h \).
Proof. Suppose there is a surjection \(M \to \omega_h \) such that the composition \(L \to \omega_h \) is surjective too. Then the kernels of these maps give a new MCM-approximation of \(N \) by Corollary \ref{6.7}. Since a surjection \(L \to \omega_h \) has to split by Corollary \ref{6.7}, \(\omega_h \) is a common summand in \(L \to M \) and \(\pi \) cannot be right minimal.

Let the closed fibre \(\xi \otimes S_k \) of the sequence \(\xi \) be denoted by \(L \to M \xrightarrow{\pi} N \). Assume there is a non-surjective endomorphism \(\theta : M \to M \) with \(\pi \theta = \pi \). Then \(\theta_0 = \theta \otimes S_k \) gives a non-surjective endomorphism of \(M \) with \(\rho \theta_0 = \rho \). It follows that the completion \(\hat{L} \to \hat{M} \to \hat{N} \) is not a right minimal Cohen-Macaulay approximation of \(\hat{N} \). By \cite{Miyachi} 1.12.8 there is a common \(\omega_{\hat{A}} \)-summand in \(\hat{L} \to \hat{M} \). Let \(\varphi : M \to \omega_{\hat{A}} \) denote the projection. By Lemma \ref{6.1} there exists a surjection \(\psi : M \to \omega_A \). The induced map \(L \to \omega_A \) is surjective too. The map \(\psi \) lifts to a surjection \(M \to \omega_h \) (with \(L \to \omega_h \) surjective) since the canonical map \(\Hom_T(M, \omega_h) \to \Hom_A(M, \omega_A) \) is surjective by Corollary \ref{2.3}. The \(\hat{D}^b \)-case is analogous. \(\square \)

Corollary 6.3. Let \(xCM \) denote either hCM, lCM or cCM. For any object \((h, N)\) in the fibred category \(\text{mod}^\text{\hat{D}} \) over \(xCM \), \(N \) admits a right minimal MCM-approximation and a left minimal \(\hat{D}^b \)-hull which remain minimal after base change and which in particular are unique up to non-canoncal isomorphism.

Proof. The existence of a right minimal \(\xi \) folows immediately from criterion (iii) in Proposition \ref{6.2}. Moreover \(\xi \) is right minimal if and only if the closed fibre \(\xi \otimes S_k \) is right minimal. Since any base change \(\xi_1 \) of \(\xi \) has the same closed fibre as \(\xi \), \(\xi_1 \) is right minimal if \(\xi \) is. \(\square \)

Remark 6.4. In \cite{Hashimoto} 2.3 M. Hashimoto and A. Shida gave essentially the analog of Proposition \ref{6.2} in the absolute case of a Cohen-Macaulay Zariski local ring with a canonical module. They attributed the complete case to Y. Yoshino. Note Miyachi’s proof in the cotilting semi-perfect case, see \cite{Miyachi} 3.4 (cf. \cite{Miyachi} 1.12.8).

In \cite{Simon} 3.1 A.-M. Simon and J. R. Strooker give a short independent proof. The proof of Proposition \ref{6.2} also works in the Zariski local case in full generality and is different from these (but depends on the complete case).

Since minimal choices of MCM\(_A\)-approximations and \(\hat{D}_A \)-hulls exist and are unique up to isomorphism any invariant defined for MCM modules or for FID modules is extended to all finite \(A \)-modules. Upper semi-continuity of the invariants is also extended as we explain now. First some notation.

Let \(h : S \to T \) be ring homomorphism and \(N \) a finite \(T \)-module. If \(t \in \text{Spec} \, T \) has image \(s \in \text{Spec} \, S \), let \(N_p \) denote the localisation of \(N \) at the prime ideal \(t \), let \(h_p : S_p \to T_p \) denote the ring homomorphism obtained by localising, and put \(N(t) = N_p \otimes_S k(s) \) which is a \(T(t) \)-module; indeed \(N(t) \cong T(t) \otimes_{T_p} N_p \). If \(h \) is a finite type Cohen-Macaulay map, \(h_p \) is in ICM.

Suppose \(\mu \) is an invariant on \(\text{MCM}^A \) where \(A \) is a Cohen-Macaulay local ring with canonical module. Let \(_{\text{MCM}}^A \mu \) denote the induced invariant on \(\text{mod}^A \) defined by \(_{\text{MCM}}^A \mu(N) = \mu(M) \) where \(L \to M \to N \) is the minimal Cohen-Macaulay approximation of \(N \). Similarly \(_{\text{FID}}^A \mu(N) = \mu(L) \) for an invariant \(\mu \) defined on FID\(_A\). Use the minimal hull \(N \to L' \to M' \) to define \(_{\text{FID}}^A \mu' \) and \(_{\text{MCM}}^A \mu' \).

The following theorem is a major application of what we have done so far.

Theorem 6.5. Let \(\mu \) be an additive non-negative numerical invariant defined for maximal Cohen-Macaulay modules or for finite modules of finite injective dimension on a Cohen-Macaulay local ring with canonical module. Assume \(\mu \) is upper semi-continuous for finite type flat families \((h : S \to T, M)\) in MCM (or in \(D \)). Then the induced invariants \(_{\text{MCM}}^A \mu \) and \(_{\text{MCM}}^A \mu' \) (or \(_{\text{FID}}^A \mu \) and \(_{\text{FID}}^A \mu' \)) are upper semi-continuous in finite type flat families \((h, N)\) in \(\text{mod}^A \).
Proof. Given \((h : S \to T, N)\) in \(\text{mod}^\mathfrak{m}\) and \(t \in \text{Spec} T\). By Corollary 6.3 there exists open affines \(U = \text{Spec} S_t \subseteq \text{Spec} S, V = \text{Spec} T_t \subseteq \text{Spec} T\) with \(t \in V, h_1 : S_t \to T_t\) induced from \(h\), and a \(\text{MCM}_{h_1}\)-approximation \(\xi : \mathcal{L} \to \mathcal{M} \to \mathcal{N}\) such that the localisation \(\xi_p\) is minimal. By Corollary 6.3 \((t)\) is minimal too. Put \(n = \mu(\mathcal{M}(t))\). Since \(\mu\) is upper semi-continuous there is an open \(V_n \subseteq V\) containing \(t\) such that \(\mu(\mathcal{M}(t')) \leq n\) for all \(t' \in V_n\). If \(L \to \mathcal{M} \to \mathcal{N}\) is the minimal \(\text{MCM}\) approximation of \(\mathcal{N}(t')\), \(\mathcal{M}\) is a direct summand of \(\mathcal{M}(t')\) by Proposition 6.2 and hence \(\text{MCM}_\mu(\mathcal{N}(t')) = \mu(\mathcal{M}(t')) \leq n\).

Example 6.6. The Betti numbers \(\beta_i(M) = \dim \text{Tor}^J_i(M, A/mA)\) are well known upper semi-continuous invariants of finite modules over local rings. By Theorem 6.5 the induced invariants \(\text{MCM}\beta_1, \text{MCM}\beta'_1, \text{FID}\beta_1\) and \(\text{FID}\beta'_1\) are upper semi-continuous too.

We now consider some invariants defined in terms of Cohen-Macaulay approximation. If \(h : S \to T\) is in one of the categories of local Cohen-Macaulay maps, a map \(\partial : D \to D'\) of objects in \(D_k\) is said to be minimal if \(k \otimes T \partial = 0\). Any module \(D\) in \(D_k\) is isomorphic to some \(\omega^n_k\) and \(\text{End}_T(\omega_k) \cong T\). Hence if \(\partial\) is not minimal then there is a surjection \(D' \to \omega_k\) inducing a surjection \(D \to \omega_k\). By Corollary 6.7 the \(\omega_k\) splits off from \(\partial\). Hence any \(D_k\)-complex is homotopy equivalent to one with all differentials being minimal, which is called a minimal \(D\)-complex.

For any module \(\mathcal{N}\) in \(\text{mod}^\mathfrak{m}\) over \(\text{XCM}\) we choose a minimal \(\text{MCM}\)-approximation \(\mathcal{L} \to \mathcal{M} \to \mathcal{N}\) and a minimal \(D^\mathfrak{m}\)-hull \(\mathcal{L} \to \mathcal{L}' \to \mathcal{M}'\) which exist by Corollary 6.3. Spliced with a minimal \(D\)-resolution of \(\mathcal{L}\) and a minimal \(D\)-coresolution of \(\mathcal{M}'\) we obtain complexes \(\mathcal{L}^*\mathcal{N}, \mathcal{L}'\mathcal{N}\) and \(\mathcal{D}^*\mathcal{N}\), as defined in Section 2.2, where no differential has any \(\omega_k\)-summand. We call such choices of these complexes for minimal. They are unique:

Lemma 6.7. Suppose \(h\) is in \(h\mathcal{C}\mathcal{M}, \mathcal{L}CM\) or \(c\mathcal{C}\mathcal{M}\) and \((h, \mathcal{N})\) is in \(\text{mod}^\mathfrak{m}\). Then minimal choices of \(\mathcal{L}^*\mathcal{N}, \mathcal{L}'\mathcal{N}\) and \(\mathcal{D}^*\mathcal{N}\) exist and are unique up to non-canonical isomorphisms.

Proof. Minimal choices \(+C_1^*, +C_2^*\) of coresolutions for \(\mathcal{N}\) are by Lemma 2.2 homotopic through chain maps \(\alpha, \beta\) starting with an isomorphism \(L_1^* \cong L_2^*\). If \(\rho_i\) are homotopies with \(\beta \rho - \alpha = \partial \rho + \rho \partial\) and \(\alpha \beta - \partial = \partial \rho + \rho \partial\) then tensoring down by \(k \otimes T\) makes the right hand side of these identities equal to zero by the minimality of the complexes. Hence \(\beta \rho\) and \(\alpha \beta\) are surjective endomorphisms, i.e. isomorphisms. The same argument applies to \(\mathcal{L}^*\mathcal{N}\) and \(\mathcal{D}^*\mathcal{N}\).

For each module \(\mathcal{N}\) in \(\text{mod}^\mathfrak{m}\) we fix a minimal \(D\)-complex \((\mathcal{D}^*\mathcal{N}), \partial^*\) representing \(\mathcal{N}\). Let \(\mathcal{L}' = \ker \partial^{-1}\) and \(\mathcal{M} = \ker \partial^0\). Put \(\text{Syz}_{\omega_k}^\mathcal{L}' := \ker\{\partial^0 : D^i \to D^{i+1}\}\). For any finite \(T\)-module \(\mathcal{N}\) let the \(\omega_k\)-rank of \(\mathcal{N}\), denoted \(\omega_k\)-rk(\(\mathcal{N}\)), be the largest number \(n\) with \(\omega^n_k \otimes \mathcal{N} \cong \mathcal{N}\) for some \(T\)-module \(\mathcal{N}'\). Since \(\text{End}_T(\omega_k) \cong T\) is a local ring, this is a well behaved invariant, cf. [43, Sec. 1.1].

Definition 6.8. Suppose \(h\) is in \(h\mathcal{C}\mathcal{M}, \mathcal{L}CM\) or \(c\mathcal{C}\mathcal{M}\) and \(\mathcal{N}\) is in \(\text{mod}^\mathfrak{m}\). Define the numbers:

\begin{enumerate}
\item \(d_i^\mathcal{N}(\mathcal{N}) := \omega_k\)-rk(Di(\(\mathcal{N}\))) for all \(i\)
\item \(\nu_i^\mathcal{N}(\mathcal{N}) := \omega_k\)-rk(Syziωk(\(\mathcal{L}'\))) for all \(i \geq 0\)
\item \(\gamma_{\mathcal{N}}(\mathcal{N}) := \omega_k\)-rk(\(\mathcal{M}\))
\end{enumerate}

The definition gives well defined invariants of \(\mathcal{N}\) by Lemma 6.7. In particular we see that \(\nu_i^\mathcal{N}(\mathcal{N})\) equals \(\omega_k\)-rk(\(\mathcal{L}'\)). We also notice that \(\omega_k\)-rk(Syziωk(\(\mathcal{M}\))) = 0\) for all \(i > 0\) by Proposition 6.2.

The same notation is used for the absolute counterparts of these invariants.
Lemma 6.10. With notation as above
\[(7.1.1) \]
\[\theta \] sequence \[L \] where of finite projective dimension over \[\gamma \]
One has that isomorphisms \[\Ext^1_S \] isomorphic to \[k \] \[\gamma \] \[A \] and in the case \[(6.9.2) \] \[\nu \] \[b \] for certain ideals \[\nu \] \[A \] and \[\nu \] \[\beta \] \[A \].

Corollary 6.11. □

Example 7.4. Moreover, let \[(6.12) \]

This follows from Theorem 6.5 and Lemma 6.10.

Proof. □

Remark 6.13. One can also define functions of the base. E.g. if \[\nu : \Spec T \to \Spec S \]
denotes the map induced from \(h \) and \(\mu(N(t)) \) is an upper semi-continuous function of \(t \in \Spec T \), then \(\nu : \mu(N) \) defined by
\[(6.13.1) \]
\[\varphi_*(\mu(N))(s) = \sup_{t \in \varphi^{-1}(s)} \mu(N(t)) \]
is an upper semi-continuous function in \(s \in \Spec S \) since \(\varphi \) is an open map.

7. The fundamental module of a Cohen-Macaulay map

Example 7.1. Let \((A, \mathfrak{m}, k)\) be a Cohen-Macaulay local ring with canonical module \(\omega_A \). Let \((G_*, d_*) \to k\) be a minimal \(A \)-free resolution of \(k \) and put \(\text{Sy}_d = \text{Sy}_d^A k = \text{coker} \ d_{d+1} \). Suppose \(\dim A = d \geq 2 \). There are connecting isomorphisms \[\Ext^1_A(\text{Sy}_d^A, \omega_A) \cong \Ext^2_A(\text{Sy}_{d-2}^A, \omega_A) \cong \ldots \cong \Ext^d_A(k, \omega_A) \] which is isomorphic to \(k \) by duality theory. To \(1 \in k \) there is hence a non-split short exact sequence
\[(7.1.1) \]
\[\theta : 0 \to \omega_A \to E_A \to \pi \to \text{Sy}_d^A k \to 0 \]
with E_A uniquely defined up to non-canonical isomorphism. We call E_A for the fundamental module of A. We claim that E_A is a maximal Cohen-Macaulay module which implies that (7.1.1) is the minimal MCM approximation of $\text{Syz}_{d-1}^A k$. If we apply $\text{Hom}_A(-(\omega_A))$ to (7.1.1) we obtain the exact sequence

$$0 \to \text{Hom}_A(\text{Syz}_{d-1}^A k, \omega_A) \to \text{Hom}_A(E_A, \omega_A) \to \text{End}_A(\omega_A)^\partial \to$$

(7.1.2)
$$\text{Ext}_1^A(\text{Syz}_{d-1}^A k, \omega_A) \to \text{Ext}_1^A(E_A, \omega_A) \to 0$$

We have $\partial(id) = \theta$ so ∂ is surjective and $\text{Ext}_1^A(E_A, \omega_A) = 0$. By duality theory (e.g. [10], 3.5.11) this excludes the possibility depth $E_A = d - 1$ and we conclude that E_A is a maximal Cohen-Macaulay module. If N is a Cohen-Macaulay module of codimension c we denote $\text{Ext}_1^A(N, \omega_A)$ by N'. Since $\text{End}_A(\omega_A) \cong A$ we get from (7.1.2) a short exact sequence:

$$0 \to \text{Hom}_A(\text{Syz}_{d-1}^A k, \omega_A) \to E_A' \to m_A \to 0$$

(7.1.3)

Since $\text{Ext}_1^i(k, \omega_A) = 0$ for $i \neq d$, $0 \to G_0' \to \ldots G_{d-2}' \to \text{Hom}_A(\text{Syz}_{d-1}^A k, \omega_A) \to 0$ is a finite ω_A-resolution and so (7.1.3) gives the minimal MCM approximation of the maximal ideal. Auslander introduced the fundamental module in the case $d = 2$, see [6].

We can make a relative version of the fundamental module in much the same way. Let $(2)\Delta : \text{CM} \to \text{CM}$ be the morphism of fibred categories over NR defined by taking the CM map $h : S \to T$ to the composition $h^{(2)}$ of h with $i = 1 \otimes \text{id}_T : T \to T \otimes S T$ and taking a morphism $(g, f) : h_1 \to h_2$ to the composition of two cocartesian squares $(g, f^{(2)})$ as follows:

$$\begin{array}{cccc}
S_1 & \xrightarrow{h_1} & T_1 & \\
\downarrow g & & \downarrow f & \\
S_2 & \xrightarrow{h_2} & T_2 & \\
& & \downarrow f^{(2)} & \\
& & T_1 \otimes S_1 T_1 & \\
\end{array}$$

There is also a functor $\Delta : \text{CM} \to \text{CM}$ defined by mapping (g, f) to the rightmost cocartesian square $(f, f^{(2)})$, but it doesn’t commute with the forgetful functor $\text{CM} \to \text{NR}$. Let dCM denote the full subcategory of CM maps of pure relative dimension d. Then dCM is a fibred subcategory of CM over NR and $(2)\Delta$ and Δ restricts to a morphism $(2)\Delta : \text{dCM} \to \text{dCM}$ over NR and a functor $\Delta : \text{dCM} \to \text{dCM}$.

Let $h : S \to T$ be a finite type CM map of pure relative dimension $d \geq 2$. Consider P in P_h (see Lemma 5.4) as a $T^{\otimes 2}$-module by pullback along the multiplication map $\mu : T^{\otimes 2} \to T$. By Corollary 2.9 $E = \text{Ext}_{T^{\otimes 2}}^d(P, \omega_i)$ is flat and finite as T-module, i.e. T-projective. Let P^* denote $\text{Hom}_T(P, T)$. By Corollary 2.9

$$\text{End}_T(E) \cong \text{Ext}_{T^{\otimes 2}}^d(P, \omega_i) \otimes E^* \cong \text{Ext}_{T^{\otimes 2}}^d(P, \omega_i) \otimes E^*.$$

(7.1.5)
Combined with the connecting isomorphisms the identity in $\text{End}_T(E)$ corresponds to a canonical extension of $T^{\otimes 2}$-modules:

$$0 \to \omega_i \otimes T \text{Ext}_{T^{\otimes 2}}^d(P, \omega_i)^* \to E_h(P) \to \text{Syz}_{d-1}^{T^{\otimes 2}} P \to 0. $$

Let dP and $d\text{MCM}$ denote the restriction of P and MCM to fibred categories over $d\text{CM}$.

Proposition 7.2. Let $d \geq 2$. The association $(h, P) \mapsto E_h(P)$ in (7.1.6) induces

(i) a functor $E : dP \to d\text{MCM}/dP$ which preserves cocartesian maps and lifts the functor $\Delta : d\text{CM} \to d\text{CM}$, and

(ii) a morphism $(2)E : dP \to 2d\text{MCM}/2dP$ of fibred categories over NR which lifts $(2)\Delta : d\text{CM} \to 2d\text{CM}$.
Proof. As an extension of T-flat modules, $E_h(P)$ is T-flat. Applying $\text{Hom}_{T^{\otimes 2}}(-, \omega_i)$ to (7.1.6) with $E = \text{Ext}^d_{T^{\otimes 2}}(P, \omega_i)$ and $\text{Syz}_{d-1} = \text{Syz}^{T^{\otimes 2}}_{d-1}P$ gives an exact sequence

$$0 \to \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}, \omega_i) \to \text{Hom}_{T^{\otimes 2}}(E_h(P), \omega_i) \to \text{Hom}_{T^{\otimes 2}}(\omega_i \otimes T E \otimes E \rightarrow \text{Ext}_{T^{\otimes 2}}^1(\text{Syz}_{d-1}, \omega_i) \to \text{Ext}_{T^{\otimes 2}}^1(E_h(P), \omega_i) \to 0$$

by Corollary 2.9 and duality theory. In particular there is a canonical isomorphism $\text{Hom}_{T^{\otimes 2}}(\omega_i \otimes T E^*, \omega_i) \cong \text{End}_{T^{\otimes 2}}(\omega_i) \otimes T E$. We have that $\text{End}_{T^{\otimes 2}}(\omega_i)$ is canonically isomorphic to $T^{\otimes 2}$ and $\delta(t \otimes \xi) = \mu(t)\text{Syz}^{T^{\otimes 2}}_{d-1}(\xi) \in \text{Ext}_{T^{\otimes 2}}^1(\text{Syz}_{d-1}, \omega_i)$ where $\text{Syz}^{T^{\otimes 2}}_{d-1}$ is the composition of the connecting isomorphisms. So δ is surjective and $\text{Ext}_{T^{\otimes 2}}^1(E_h(P), \omega_i) = 0$ by Corollary 2.9. It follows that all fibres of $E_h(P)$ are MCM modules and so $E_h(P)$ is in MCM_T and (7.1.6) is an MCM$_T$-approximation of $\text{Syz}_{d-1}^{T^{\otimes 2}}P$. Let I_h denote the kernel of $\mu : T^{\otimes 2} \rightarrow T$ and $(-)\check{\mu} = \text{Hom}_{T^{\otimes 2}}(-, \omega_i)$. From (7.2.1) we get another MCM$_T$-approximation

$$0 \to \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}^{T^{\otimes 2}}P, \omega_i) \rightarrow E_h(P) \check{\mu} \rightarrow I_h \otimes T \text{Ext}_{T^{\otimes 2}}^1(P, \omega_i) \rightarrow 0.$$ Dualising (7.2.2) induces (7.1.6) since $E_h(P) \cong E_h(P) \check{\mu}$ and $\text{Hom}_{T^{\otimes 2}}(I_h, \omega_i) \cong \omega_i$. By Theorem 5.1 the image of $E_h(P)\check{\mu}$ in MCM_T/D_t is functorial in the $T^{\otimes 2}$-module $I_h \otimes E$ which again is contravariantly functorial in P. Since $(-)\check{\mu}$ induces an equivalence

$$\check{\mu} : \text{MCM}_T/P_i \xrightarrow{\cong} \text{MCM}_T^{op}/D_t^{op} : \check{\mu}$$

we conclude that $E_h(P)$ is functorial in MCM_T/P by our functorial choice of extension. This gives (i) and (ii). \hfill \Box

Corollary 7.3. For any Cohen-Macaulay map $h : S \rightarrow T$ of pure relative dimension $d \geq 2$ there is a finite $T^{\otimes 2}$-module $E_h = E_h(T)$ which is faithfully flat along $\iota : T \rightarrow T^{\otimes 2}$ with all fibres being maximal Cohen-Macaulay modules. The association $h \mapsto E_h$ defines a functor $d\text{CM} \rightarrow d\text{MCM}_T/dP$ lifting $\Delta : d\text{CM} \rightarrow d\text{CM}$. In particular E_h gives MCM$_T$-approximations

$$0 \to \omega_i \rightarrow E_h \rightarrow \text{Syz}_{d-1}^{T^{\otimes 2}}T \rightarrow 0$$ and

$$0 \rightarrow \text{Hom}_{T^{\otimes 2}}(\text{Syz}_{d-1}^{T^{\otimes 2}}T, \omega_i) \rightarrow E_h \check{\mu} \rightarrow I_h \rightarrow 0$$

where I_h is the kernel of the multiplication map $T^{\otimes 2} \rightarrow T$.

Proof. This follows from Proposition 7.2 and 7.2.2 once we have proved the natural isomorphism $\text{Ext}_{T^{\otimes 2}}^d(T, \omega_i) \cong T$. Choose a surjection of S-algebras $P \rightarrow T$ with $P = S[t_1, \ldots, t_N]$. Recall that ω_i can be given as $\text{Ext}^d_{P \otimes T}(T^{\otimes 2}, \omega_{P \otimes T/T})$ where $\omega_{P \otimes T/T} = \Lambda^N \Omega_{P \otimes T/T}$. There is a change of rings spectral sequence

$$\text{Ext}^p_{P \otimes T}(T, \text{Ext}^q_{P \otimes T(T^{\otimes 2}, \omega_{P \otimes T/T})) \Rightarrow \text{Ext}^{p+q}_{P \otimes T}(T, \omega_{P \otimes T/T})$$

which by Corollary 2.9 and duality theory collapses to the canonical isomorphism

$$\text{Ext}^d_{P \otimes T}(T, \text{Ext}^{N-d}_{P \otimes T}(T^{\otimes 2}, \omega_{P \otimes T/T})) \cong \text{Ext}^N_{P \otimes T}(T, \omega_{P \otimes T/T}).$$

By [12, 3.5.6] $\text{Ext}^N_{P \otimes T}(T, \omega_{P \otimes T/T})$ is canonically isomorphic to $\omega_{T/T} = T$ as $T^{\otimes 2}$-module. \hfill \Box

We call the module E_h given in Corollary 7.3 for the fundamental module of the Cohen-Macaulay map h.

Example 7.4. Let k be an algebraically closed field and A a finite type k-algebra which is Cohen-Macaulay of pure dimension 2. Then the fundamental module $E = E_h$ of $h : k \to A$ is the maximal Cohen-Macaulay approximation of $I = \ker(A \otimes \mathbb{Q} \to A)$ in $\mathfrak{mod}_A^\mathbb{Z}$;

\[(7.4.1) \quad 0 \to \omega_h \otimes A \to E \to I \to 0\]

where $\iota = 1 \otimes \text{id} : A \to A \otimes \mathbb{Q}$ and $\omega_h \cong \omega_A$. Let t in Spec $A \otimes \mathbb{Q}$ be a k-point, and $t_i \in \text{Spec } A$ be the image of t by the i^{th} projection. Let A_t denote A localised at t_i. Let m_t be the maximal ideal in A_t. Localising gives a local Cohen-Macaulay map $t_p : A_2 \to (A \otimes \mathbb{Q})_p$, and a module E_p, in MCM_{A_t}. Let $E(t)$ denote base change of E_p, to $k(t_2)$. If $t_1 = t_2$ then $I(t) \cong \mathfrak{p}_1$ and $E(t)$ equals the fundamental module E_{A_t} of \[(7.1.1)\]. If $t_1 = t_2$ is singular, then $\omega \cdot \text{rk}(E(t)) = 0$ while if $t_1 \neq t_2$ is regular then $E(t) \cong A_{t_2}$. If $t_1 \neq t_2$ then $I(t) \cong A_{t_1} \cong E_{A_t}$ and $E(t) \cong A_{t_2}$. This shows that $\gamma(I)(t)$ is not upper semi-continuous as the d^0-invariants are.

In particular, if A equals $k[x, y, z]/(x^{n+1}-yz)$ with a 2-dimensional rational double point at $m_0 = (x, y, z)$, similar considerations give the following table of invariants (note that $\nu_1 = d^1$):

t	γ	ν_1	d^0	ν_0	$I(t)$
$t_1 = t_2 = 0$ singular point	0	1	4	1	m_0, A_{m_0}
$t_1 = t_2$ non-singular point	2	1	2	0	m_1, A_1
$t_1 \neq t_2$	1	0	1	1	A_1

8. Deformation functors and cohomology

We extend the Cohen-Macaulay approximation over henselian local rings to deformations and obtain maps between the associated deformation functors. We also introduce the appropriate André-Quillen cohomology and links the various cohomologies in a fundamental long-exact sequence.

Fix an object $\xi = (h : S \to T, N)$ in \mathfrak{mod}^I over H. A \textit{deformation} of ξ is a cocartesian morphism $\alpha_1 : \xi_1 \to \xi$ in \mathfrak{mod}^I. A \textit{map of deformations} $\alpha_1 \to \alpha_2$ is a cocartesian morphism $\varphi : \xi_1 \to \xi_2$ in \mathfrak{mod}^I such that $\alpha_2 \varphi = \alpha_1$. Deformations and maps of deformations are objects and arrows in the comma category $\text{Def}_\xi := \mathfrak{mod}^I_{\text{coeq}}/\xi$ which is fibred in groupoids over the comma category H/S, see Lemma \[5.3.1\] and the proceeding comments. Let the \textit{deformation functor} $\text{Def}_\xi : H/S \to \text{Sets}$ be the functor corresponding to the associated groupoid of sets Def_ξ. The comma category $\text{Def}_h := \text{hCM}/h$ of deformations of $h : S \to T$ is also fibred in groupoids over H/S and we have an obvious factorisation $\text{Def}_\xi \to \text{hCM}/h \to H/S$ which makes Def_h fibred in groupoids over hCM/h. To ease readability (and by abuse of notation) we put $\text{Def}_{(T, N)}(S_1) = \text{Def}_\xi(S_1 \to S)$ and $\text{Def}_\xi(S_1) = \text{Def}_{h}(S_1 \to S)$. We also write a \textit{deformation of (T, N)} meaning a deformation of ξ and likewise in similar situations.

For each object $\xi_i = (h_i, N_i)$ in \mathfrak{mod}^I over H we choose a minimal MCM-approximation $\pi_i : L_i \to M_i \xrightarrow{\pi_i} N_i$ and a minimal \mathfrak{D}^I-hull $\iota_i : N_i \xrightarrow{\iota_i} L_i$ to M_i which exist by Corollary \[5.7\] and Corollary \[6.3\]. For each deformation $\alpha_i : \xi_i \to \xi_0$ we choose extensions to commutative diagrams of deformations

\[(8.0.2) \quad \begin{array}{ccc}
\mathcal{L}_i & \overset{\lambda_i}{\longrightarrow} & M_i \\
L_0 & \overset{\mu_i}{\longrightarrow} & N_i \\
\end{array} \quad \text{and} \quad \begin{array}{ccc}
N_i & \overset{\nu_i}{\longrightarrow} & M'_i \\
N_0 & \overset{\nu'_i}{\longrightarrow} & M'_0 \\
\end{array}
\]
as follows: By Corollary 8.3 a base change of \(\pi_i \) by \(h_i \to h_0 \) gives a minimal MCM\(_{h_0}\)-approximation \(M_i^\# \to N_i^\# \overset{\sim}{\to} N_0 \). By minimality it is isomorphic to \(\pi_0 \). Choose an isomorphism. Let \(\mu_i \) be the composition \(M_i \to M_i^\# \overset{\sim}{\to} M_0 \). It is cocartesian. Do similarly for the \(\hat{\pi} \)

The following lemma implies that these maps are well defined and independent of choices.

Definition 8.1. There are four maps

\[\sigma_X : \text{Def}_{(h_0,N_0)} \to \text{Def}_{(h_0,x)} \text{ of functors } H/S_0 \to \text{Sets} \]

where \(X \) can be \(M_0, L_0, L_0^0 \) and \(M_0' \) given by \([h_i \to h_0, \nu_i] \mapsto [(h_i \to h_0, x)]\) for \(x \) equal to \(\mu_i, \lambda_i, \lambda_i' \) and \(\mu_i' \) in (8.0.2) respectively.

The following lemma implies that these maps are well defined and independent of choices.

Lemma 8.2. Given two deformations \(\nu_{ij} : N_{ij} \to N_{0j} (j = 1, 2) \text{ in } \text{mod}\^b \text{ over } h_{ij} \to h_0 \text{ in hCM and MCM-approximations } \pi_{ij} \text{ (respectively } \text{D}^b\text{-hulls } \nu_{ij}) \text{ respectively}. Suppose we have a map of short exact sequences \(\pi_{01} \to \pi_{02} \text{ (respectively } \nu_{01} \to \nu_{02}) \text{ and a map } \alpha : N_{i1} \to N_{i2} \text{ lifting } N_{01} \to N_{02}, \text{i.e. such that the following two diagrams of solid arrows are commutative:} \]

\[
\begin{array}{ccc}
L_{i2} & \xrightarrow{\mu_{i2}} & M_{i2} \\
\downarrow{\pi_{i2}} & \alpha & \downarrow{\nu_{i2}} \\
L_{i1} & \xrightarrow{\lambda_{i1}} & M_{i1} \\
\downarrow{\pi_{i1}} & \beta & \downarrow{\nu_{i1}} \\
L_{01} & \xrightarrow{\mu_{01}} & M_{01} \\
\end{array}
\quad \quad \quad \quad \quad \quad
\begin{array}{ccc}
N_{i2} & \xrightarrow{\nu_{i2}} & M_{i2} \\
\downarrow{\lambda_{i2}} & \mu_{i2} & \downarrow{\nu_{i2}} \\
N_{i1} & \xrightarrow{\lambda_{i1}} & M_{i1} \\
\downarrow{\lambda_{i1}} \downarrow{\nu_{i1}} & \beta & \downarrow{\nu_{i1}} \\
N_{01} & \xrightarrow{\mu_{01}} & M_{01} \\
\end{array}
\]

Then there exist maps \(\gamma : M_{i1} \to M_{i2} \) and \(\gamma' : L_{i1} \to L_{i2} \) such that the induced left (respectively right) diagram commutes. If \(\alpha \) is cocartesian, so are \(\gamma \) and \(\gamma' \).

Proof. Consider the MCM-approximation case. By applying base changes to the front diagram, we can reduce the problem to the case \(h_{i1} \to h_0 \) is \text{mod}\^b over \(h_{i2} \to h_0 \).

Then, by Corollary 5.7 there is a lifting \(\gamma_1 : M_{i1} \to M_{i2} \) of \(\alpha \). We would like to adjust \(\gamma_1 \) so that it lifts \(\beta \) too. We have that \(\mu_2 \gamma_1 - \beta \mu_1 \) factors through \(L_{02} \) by a map \(\tau_1 : M_{i1} \to L_{02} \) which induces a unique map \(\tau_0 : M_{01} \to L_{02} \) since \(\mu_1 \) is cocartesian. If \(D_\text{a} \to L_{i2} \) is a finite D-resolution, then base change gives a finite D-resolution \(D_\text{a} \to L_{02} \) and \(\tau_0 \) lifts to a \(\sigma_0 : M_{01} \to D_0^\# \) by Corollary 5.7.

By Corollary 8.3 there is a \(\sigma : M_{i1} \to D_0 \) lifting \(\sigma_0 \) and subtracting the induced map \(M_{i1} \to M_{i2} \) from \(\gamma_1 \) gives our desired \(\gamma \). If \(\alpha \) is an isomorphism so is \(\gamma \) by minimality of the approximations \(\pi_{ij} \).

The argument for the \(\text{D}^b \)-case is similar. \(\square \)

Remark 8.3. There are maps of fibred categories inducing the maps \(\sigma_X \) in Definition 8.1. Two maps \(\sigma, \beta : (h_1,N_1) \to (h_2,N_2) \) in \(\text{Def}_{(h_0,N_0)} \) are stably equivalent if \(h_1 = h_2 \) and \(\sigma - \beta \) factors through an object in \(D \). Let \(\text{Def}_{(h_0,N_0)} \) denote the resulting quotient category which is fibred over hCM/\(h_0 \) and over \(H/S_0 \). Then Lemma 8.2 implies that there are well defined maps of categories fibred in groupoids \(\sigma_X : \text{Def}_{(h_0,N_0)} \to \text{Def}_{(h_0,X)} \) for \(X \) equal to \(M_0, L_0, L_0^0 \) and \(M_0' \). The associated map of functors is \(\sigma_X \). Note that \(\text{Def}_{(h_0,N_0)} \) is different from \(\text{mod}\^b_{h_0}(h_0,N_0) \).

Stably isomorphic modules will in general have different deformation functors. E.g. let \(N = A \oplus \omega_A \). If \(A \) is not Gorenstein, then one can have \(\text{Ext}^1(A,N,N) \neq 0 \). But in the stable category \(N \) is isomorphic to \(A \) which is infinitesimally rigid.
We have the following reformulation. To \((h : S \to T, N) \) in \(\text{mod}^T \) consider \(\Gamma = T \otimes N \) as a graded \(S \)-algebra with \(T \) in degree 0 and \(N \) in degree 1. A deformation of graded algebras \(T_1 \to \Gamma \) over \(S_1 \to S \) in \(\mathbb{H}/S \) is equivalent to a deformation \((T_1, N_1) \) of \((T, N) \). More generally, given a homogeneous morphism of \(\mathbb{Z} \)-graded rings \(S \to T \) and a graded \(T \)-module \(M \), there are André-Quillen cohomology groups of graded algebras \(\partial \mathbb{H}^i(S, T, M) = \mathbb{H}^i \operatorname{Hom}_T(S \otimes \Omega_T, M) \). Here \(\Omega_T \) is the graded cotangent complex defined as \(\Omega_P \otimes_P T \) where \(P = P_S(T) \) is a graded simplicial degree-wise free \(S \)-algebra resolution of \(T \) and \(\Omega_P \) denotes the Kähler differentials, see [30, IV] for more details (in a more general situation). See also [33].

Definition 8.4. Given graded ring homomorphisms \(h : S \to T \) and \(p : S_1 \to S \). Assume \(p \) is surjective. A lifting of \(h \) (of \(T \)) along \(p \) (to \(S_1 \)) is a commutative diagram of graded ring homomorphisms

\[
\begin{array}{ccc}
T & \xrightarrow{q} & T_1 \\
\downarrow{h} & & \downarrow{h_1} \\
S & \xrightarrow{p} & S_1
\end{array}
\]

with \(q \otimes S : T_1 \otimes S \cong T \) and \(\operatorname{Tor}_{T_1}^1(T_1, S) = 0 \).

Two liftings \(T_1 \) and \(T'_1 \) of \(T \) to \(S_1 \) are equivalent if there is a graded \(S_1 \)-algebra isomorphism \(T_1 \cong T'_1 \) commuting with \(q \) and \(q' \).

There is an obstruction theory for liftings of graded algebras in terms of graded André-Quillen cohomology groups.

Proposition 8.5 ([30, 34]). Given graded ring homomorphisms \(S \to T \) and \(p : S_1 \to S \) with \(p \) surjective and \(I^2 = 0 \) for \(I = \ker p \).

(i) There exists an element \(\operatorname{ob}(p, T) \in \partial \mathbb{H}^2(S, T, T \otimes I) \) which is natural in \(p \) such that \(\operatorname{ob}(p, T) = 0 \) if and only if there exists a lifting of \(T \) to \(S_1 \).

(ii) If \(\operatorname{ob}(p, T) = 0 \) then the set of equivalence classes of liftings of \(T \) to \(S_1 \) is a torsor for \(\partial \mathbb{H}^1(S, T, T \otimes I) \) which is natural in \(p \).

The element \(\operatorname{ob}(p, T) \) is called the obstruction class of \((p, T) \). If the rings and modules are concentrated in degree 0 this equals the ungraded case and the cohomology groups equals the ungraded André-Quillen cohomology \(\mathbb{H}^i(S, T, T \otimes I) \).

Definition 8.6. Given a lifting diagram of ungraded ring homomorphisms as in Definition [33] and a \(T \)-module \(N \). Then a lifting of \(N \) to \(T_1 \) is a \(T_1 \)-module \(N_1 \) with \(\operatorname{Tor}_{T_1}^1(N_1, S) = 0 \) and a map \(N_1 \to N \) inducing an isomorphism \(N_1 \otimes S \cong N \).

Two liftings \(N_1 \) and \(N'_1 \) of \(N \) to \(T_1 \) are equivalent if there is an isomorphism of \(T_1 \)-modules \(N_1 \cong N'_1 \) commuting with the maps to \(N \).

There is also an obstruction theory for liftings of modules in terms of \(\text{Ext} \) groups.

Proposition 8.7 ([30, IV 3.1.5]). Given (ungraded) ring homomorphisms as in Definition [33] with \(I^2 = 0 \) and a \(T \)-module \(N \).

(i) There exists an element \(\operatorname{ob}(q, N) \in \text{Ext}_{T_1}^1(N, N \otimes I) \) which is natural in \(q \) such that \(\operatorname{ob}(q, N) = 0 \) if and only if there exists a lifting of \(N \) to \(T_1 \).

(ii) If \(\operatorname{ob}(q, N) = 0 \) then the set of equivalence classes of liftings of \(N \) to \(T_1 \) is a torsor for \(\text{Ext}_{T_1}^1(N, N \otimes I) \) which is natural in \(q \).

The element \(\operatorname{ob}(q, N) \) is called the obstruction class of \((q, N) \). The following long-exact sequence connects these three cohomologies.

Proposition 8.8. Suppose \(T \) is an (ungraded) \(S \)-algebra and \(N \) is a \(T \)-module. Let \(\Gamma = T \otimes N \) be the graded \(S \)-algebra with \(T \) in degree 0 and \(N \) in degree 1 and
let J be a graded $Γ$-module with graded components $J = J_0 ⊕ J_1$ of degree 0 and 1. Then there is a natural long-exact sequence:

$$0 \to \text{Hom}_T(N, J_1) \to 0 \text{Der}_S(Γ, J) \to \text{Der}_S(T, J_0) \to \text{Ext}^1_T(N, J_1) \to \ldots$$

Proof. To the graded ring homomorphisms $S \to T \to Γ$ there is a distinguished triangle of transitivity

$$(8.8.1) \quad L^{gr}_{T/T/S} : L^{gr}_{T/S} ⊗_T Γ \to L^{gr}_{T/S} \to L^{gr}_{T/S} \otimes T[Γ][1]$$

in the graded derived category of $Γ$, see [30] IV 2.3.4. The (standard) simplicial resolution $P_T(Γ)$ equals $Γ$ in degree 0, the (standard) T-free resolution $F_T(N)$ of the T-module N in degree 1, and higher degree terms, see [30] IV 1.3.2.1. It follows that $\text{Hom}^{gr}_{T}(L^{gr}_{T/T/S}, J) = \text{Hom}_{T}(F_{T}(N), J_1)$. Since $L^{gr}_{T/S} = L^{gr}_{T/S}$ is concentrated in degree 0, $\text{Hom}^{gr}_{T}(L^{gr}_{T/S} ⊗_T Γ, J) = \text{Hom}_{T}(L^{gr}_{T/S}, J_0).$ □

Lemma 8.9. Let $h : S \to T$ be a finite type Cohen-Macaulay map and let N be a T-module in mod_h^h. Let $L \to M \to N \to L' \to M' \to N'$ be an MCM_h-approximation and a D^b_h-ball of N. Let X_i denote N, M and L' for $i = 0, 1, 2$ respectively, and put $Γ_i = T \otimes X_i$. Let I be any S-module. Then there are natural maps of short exact sequences of complexes (see [8.3.1])

$$\text{Hom}^{gr}_{I_0}(L^{gr}_{Γ_i/T/S}, Γ_0 ⊗ I) \xrightarrow{π} \text{Hom}^{gr}_{Γ_i}(L^{gr}_{Γ_i/T/S}, Γ_0 ⊗ I) \xrightarrow{π} \text{Hom}^{gr}_{Γ_i}(L^{gr}_{Γ_i/T/S}, Γ_i ⊗ I)$$

and

$$\text{Hom}^{gr}_{I_0}(L^{gr}_{Γ_i/T/S}, Γ_0 ⊗ I) \xrightarrow{π'} \text{Hom}^{gr}_{Γ_i}(L^{gr}_{Γ_i/T/S}, Γ_2 ⊗ I) \xrightarrow{π'} \text{Hom}^{gr}_{Γ_i}(L^{gr}_{Γ_i/T/S}, Γ_1 ⊗ I).$$

The induced maps of graded André-Quillen cohomology

$$0^0H^n(π_*) : 0^0H^n(S, Γ_1, Γ_1 ⊗ I) \to 0^0H^n(S, Γ_0, Γ_0 ⊗ I) \quad \text{and} \quad 0^0H^n(π^*) : 0^0H^n(S, Γ_2, Γ_2 ⊗ I) \to 0^0H^n(S, Γ_0, Γ_2 ⊗ I)$$

are isomorphisms for $n > 0$ and surjections for $n = 0$.

Proof. There is a natural map $L^{gr}_{Γ_i/T/S} ⊗_I Γ_0 \to L^{gr}_{Γ_i/T/S}$ of short exact sequences of complexes (cf. [30] II 2.1.16]) induced by the graded T-algebra map $Γ_1 \to Γ_0$. This gives $π^*$. Covariance along $Γ_1 ⊗ I → Γ_0 ⊗ I$ gives $π_*$. In each (cohomological) degree the rightmost terms are naturally identified with $\text{Hom}_{T}(L^{gr}_{T/S}, T ⊗ I)$ as in the proof of Proposition 8.8. By Theorem 5.1 and Corollary 2.9 one has $\text{Ext}^{gr}_{T}(M, L ⊗ I) = 0$ for $n > 0$ and the $0^0H^n(π_*)$-statement follows. The other case is similar. □

By Lemma 8.9 (and Theorem 5.1) we get induced natural maps for $n > 0$

$$(8.9.1) \quad σ^n_j(I) : 0^0H^n(S, Γ_0, Γ_0 ⊗ S I) \to 0^0H^n(S, Γ_j, Γ_j ⊗ S I) \text{ for } j = 1, 2 \quad \text{and}$$

$$(8.9.2) \quad τ^n_j(I) : \text{Ext}_T^{gr}(X_0, X_0 ⊗ S I) \to \text{Ext}_T^{gr}(X_j, X_j ⊗ S I) \text{ for } j = 1, 2.$$
9. Maps of deformation functors induced by Cohen-Macaulay approximation

In order to use Artin’s Approximation Theorem \[^3\] as extended by D. Popescu \[^10\] \[^11\] we fix an excellent ring \(A\) (see \[^19\] 7.8.2). We consider the category of henselian local \(A\)-algebras in \(H\), denoted \(\mathcal{A}_H\). Fibred categories \(\mathcal{H}\) and \(\text{def}^\beta\) over \(\mathcal{A}_H\) and \(\text{Def}_k\) and \(\text{Def}_\ell\) over \(\mathcal{A}_H/S\) are defined essentially as in Section \[^8\]. Our previous constructions and results are valid in this context as well. In particular deformation functors \(\text{Def}_{(T,N)} : \mathcal{A}_H/S \to \text{Sets}\) are defined and the MCM-approximation and \(\hat{\mathcal{D}}^0\)-hull induce maps of deformation functors as in Definition \[^8\].

Definition 9.1. Let \(\mathcal{A}_A/k\) denote the subcategory of artin rings in \(\mathcal{A}_H/k\). Let \(F\) and \(G\) be set-valued functors on \(\mathcal{A}_H/k\) (or \(\mathcal{A}_A/k\)) with \(\#F(k) = 1 = \#G(k)\). A map \(\varphi : F \to G\) is smooth (formally smooth) if the natural map of sets \(f_{\varphi} : F(S) \to F(S_0) \times_{G(S_0)} G(S)\) is surjective for all surjections \(\pi : S \to S_0\) in \(\mathcal{A}_H/k\) (in \(\mathcal{A}_A/k\)). An element \(\nu \in F(R)\) is versal if the induced map \(\text{Hom}_{\mathcal{A}_H/k}(R, -) \to F\) is smooth and \(R\) is algebraic as \(\mathcal{A}\)-algebra. If the map is bijective then \(\nu\) is universal. An element \(\nu \in F(R)\) (or a formal element, i.e. a tower \(\{\nu_n\} \in \lim F(R/m_R^{n+1})\)) is formally versal if the induced map \(\text{Hom}_{\mathcal{A}_H/k}(R, -) \to F\) of functors restricted to \(\mathcal{A}_A/k\) is formally smooth. See \[^4\].

Theorem 9.2. Let \(k\) be a field, \(A\) a Cohen-Macaulay local algebraic \(k\)-algebra and \(N\) a finite \(A\)-module. Let \(N \to L' \to M'\) be the minimal \(D_A\)-hull and \(L \to M \to N\) the minimal MCM\(_A\)-approximation of \(N\). Consider the map

\[
\sigma_{L'} : \text{Def}_{(A,N)} \longrightarrow \text{Def}_{(A, L')}\]

of functors \(\mathcal{A}_H/k \longrightarrow \text{Sets}\) as in Definition \[^8\].

(i) If \(\text{Hom}_{\mathcal{A}_A}(N,M') = 0\) then \(\sigma_{L'}\) is injective.
(ii) If \(\text{Ext}_{\mathcal{A}_A}^1(N,M') = 0\) then \(\sigma_{L'}\) is formally smooth.
(iii) If \(\text{Ext}_{\mathcal{A}_A}^1(N,M') = 0\) and \(\text{Def}_{(A,N)}\) has a versal element then \(\sigma_{L'}\) is smooth.

The analogous statements hold for \(\sigma_L : \text{Def}_{(A,N)} \to \text{Def}_{(A,L)}\) with \(\text{Ext}_{\mathcal{A}_A}^1(N,M) = 0\) in (i) and \(\text{Ext}_{\mathcal{A}_A}^2(N,M) = 0\) in (ii) and (iii).

Example 9.3. Note that grade \(N \geq 1\) implies condition (i) and grade \(N \geq 2\) implies both condition (i) and (ii).

Proof. (i): Given \(S\) in \(\mathcal{A}_H/k\) and deformations \((h : S \to T, \mathcal{N})\) of \((A,N)\) to \(S\) for \(i = 1, 2\). Assume that the images \((h, \mathcal{L}')\) under \(\sigma_{L'}\) are isomorphic to \((h : S \to T, \mathcal{L}')\). Pullback of all these modules along the isomorphisms of \(h\) with \(h\) induce deformations over \(h\). We show that the \(\mathcal{N}\) are isomorphic as deformations over \(h\) which implies that \(\sigma_{L'}\) is injective. Let \(S_n = S/m_{S}^{n+1}\), \(T_n = T \otimes S_n\) etc.. We construct a tower of isomorphisms \(\{\varphi_n : S_n \cong S_n\} \text{ and conclude by Lemma} \[^6\] that the deformations are isomorphic. The case \(n = 0\) is trivial. Given \(\varphi_n\) and use it to identify the \(\mathcal{N}_n\) and denote them by \(N_n\). Let \(I = \ker\{S_{n+1} \to S_n\}\). By Proposition \[^8\] there exists an element \(\theta\) in \(\text{Ext}_{\mathcal{T}_A}^1(N_n, N_n \otimes I)\) giving the “difference” of the two deformations of \(N_n\). But \(N_n \otimes I \cong N_n \otimes I\) and by the edge map isomorphism of \[^2\] \[^4\] we get \(\text{Ext}_{\mathcal{T}_A}^1(N_n, N_n \otimes I) \cong \text{Ext}_{\mathcal{T}_A}^1(N, N) \otimes I\) for all \(i\). If \(i > 0\) then \(\text{Ext}_{\mathcal{T}_A}^1(L', L') \cong \text{Ext}_{\mathcal{T}_A}^1(N, L')\) and \(\text{Ext}_{\mathcal{T}_A}^1(N, N) \to \text{Ext}_{\mathcal{T}_A}^1(N, L')\) is injective by assumption. The obtained injective map \(p : \text{Ext}_{\mathcal{T}_A}^1(N, N) \otimes I \to \text{Ext}_{\mathcal{T}_A}^1(L', L') \otimes I\) induces a map of the torsor actions in Proposition \[^5\] on the liftings of \(N_n\) and of \(L_n\) to \(T_{n+1}\). Since the \(\mathcal{D}_{n+1}^\Omega\)-hulls of the \(\mathcal{N}_n\) are isomorphic as deformations, \(p\) maps \(\theta\) to 0 and so \(\theta = 0\). By Proposition \[^8\] the \(\mathcal{N}_{n+1}\) are isomorphic by an isomorphism \(\varphi_{n+1}\) compatible with \(\varphi_n\).
(ii): Let $S \to \hat{S}$ in \mathcal{A}/k be surjective with kernel I, $\xi = (h : S \to T, L')$ a deformation of (A, L') to S and let $\hat{\xi} = (\hat{h} : \hat{S} \to \hat{T}, \hat{L}')$ denote the base change of ξ to \hat{S}. Suppose there is a deformation $(h^{(1)} : \hat{S} \to T^{(1)}, \hat{N})$ of (A, N) which $\sigma_{L'}$ maps to $\hat{\xi}$. As above we can assume that $h^{(1)} = \hat{h}$. By induction on the length of S we can assume that $I \cdot h_S = 0$. We find that $\text{ob}(T \to \hat{T}, \hat{N})$ in Proposition 6.7 maps to $\text{ob}(T \to T, L')$ under $\text{Ext}^1_{\mathcal{A}}(N, \hat{N}) \to \text{Ext}^1_{\mathcal{A}}(L', \hat{L}') \otimes I$ which by the assumption is injective. Since L' lifts L' to T we have $\text{ob}(T \to \hat{T}, \hat{L}') = 0$. By Proposition 6.7 there exists a lifting \hat{N} of N to T. If $\sigma_{L'}(\hat{N}) = \hat{L}'$ the difference of \hat{L}' and L' gives by Proposition 6.7 a $\theta \in \text{Ext}^1_{\mathcal{A}}(L', \hat{L}') \otimes I$. By assumption $\text{Ext}^1_{\mathcal{A}}(N, \hat{N}) \otimes I$ maps surjectively to $\text{Ext}^1_{\mathcal{A}}(L', \hat{L}') \otimes I$ and a lifting of θ perturbs \hat{N} to a lifting \hat{N} of N with $\sigma_{L'}(N) = L'$.

(iii): Let $S \to \hat{S}$ in \mathcal{A}/k be surjective with kernel J, $\xi = (h : S \to T, L')$ a deformation of (A, L') to S and let $\hat{\xi} = (\hat{h} : \hat{S} \to \hat{T}, \hat{L}')$ denote the base change of ξ to \hat{S}. Suppose there is a deformation $(h^{(1)} : \hat{S} \to T^{(1)}, \hat{N})$ of (A, N) which $\sigma_{L'}$ maps to $\hat{\xi}$. Again we can assume that $h^{(1)} = \hat{h}$. We will find a deformation N lifting \hat{N} such that $\sigma_{L'}(h, N) = (h, L')$.

Any S in \mathcal{A}/k is a direct limit of a filtering system of algebraic A-algebras in \mathcal{A}/k. Since $\text{Def}_{\mathcal{A}}(A, L')$ is locally of finite presentation (A is algebraic and L' has finite presentation) it is sufficient to prove the lifting property for S algebraic. Since A is excellent, so is S by [19, 7.8.3] and [21, 18.7.6].

Put $S_n = S/m_S^nJ$, $L'_n = L' \otimes_S S_n$, $T_n = T \otimes_S S_n$ and so on. We proceed by induction on n to construct a tower $\{N_n\}$ of deformations of \hat{N} inducing $\{L'_n\}$. Each step is done as in (ii). If $\{T, N\} \in \text{Def}_{\mathcal{A}}(A, N)(R)$ is a versal element, there is a corresponding tower of maps $\{f_n : R \to S_n\}$ such that $\{\sigma_{L'}(\nu^{(1)}), \sigma_{L'}(\nu^{(2)})\}$ implies by Lemma 6.1 that there is an isomorphism of deformations $\sigma_{L'}(N_n) \cong L'_n$ above $\sigma_{L'}(N) \cong L'$.

To apply Artin’s Approximation Theorem we define a functor of S-algebras $F : \mathcal{S}_{H} \to \text{Sets}$ as follows. If \hat{S} is in \mathcal{S}_H let \hat{T} denote $\hat{T} \otimes_S \hat{S}$ and let \hat{L}' denote $\hat{T} \otimes_T L'$. Then $F(\hat{S})$ is defined as equivalence classes of pairs of maps of finite \hat{T}-modules $\tilde{\xi} = (\tilde{v} : \hat{N} \to \hat{N}', \tilde{t} : \hat{N} \to \hat{L}')$ such that \hat{N} is \hat{S}-flat. A map $\hat{S} \to \hat{S}'$ gives a map of pairs by base change. Two pairs, $1^{\tilde{\xi}}$ and $2^{\tilde{\xi}}$, are equivalent if there is an isomorphism $1^{\hat{N}} \cong 2^{\hat{N}}$ commuting with the $1^{\tilde{t}}$ and the $2^{\tilde{t}}$. We show that F is locally of finite presentation. Suppose $\hat{S} = \lim_{\to} S$ for a filtered injective system of algebras in \mathcal{S}_H. Put $1^T = T \otimes_S$. Then $\lim_{\to} 1^T \cong T$ by [19, 7.8.3] and [21, 18.6.14].

Given $\tilde{\xi} \in F(\hat{S})$ as above. Since \hat{N} has finite presentation and since the maps \tilde{t} and \tilde{v} can be represented on the finite presentations, there is a finite 1^T-module $\tilde{\nu}$ and 1^T-linear maps $\tilde{\nu} : \tilde{N} \to \hat{N}$ and $1^t : \tilde{N} \to \hat{L}' = \hat{T} \otimes_T L'$ inducing $\tilde{\xi}$ by base change. We may also assume that $\tilde{\nu}$ is \hat{S}-flat. Hence $\lim_{\to} F(S) \to F(\hat{S})$ is surjective and injectivity is similar. Let ξ denote the element in $F(S)$ given by $\tilde{\nu} : \tilde{N} \to \hat{N}$ and the \hat{D}-hull $\nu' : \tilde{N} \to \hat{N}'$. By Artin’s Approximation Theorem [3, 1.12], [40, 1.3], [11] there exists a $\xi = (\nu : N \to \hat{N}, \xi : N \to L')$ in $F(S)$ with $\xi_1 = \xi_1$. In particular $N \to \hat{N}$ is a deformation. Since $\nu_0 : N_0 \to L'_0$ equals the injective $N \to L'$, Proposition 2.5 implies that ξ is injective and coker ξ is S-flat. It follows that ξ is the \hat{D}-hull of N, i.e. $\sigma_{L'}(N) = L'$. The L-case is analogous.
Corollary 9.6. This is not a formal consequence of Theorem 9.2, but the proof is similar.

Proof. The proof is analogous to the proof of Theorem 9.2. □

Consider the map

\[\sigma_M : \text{Def}_{(A,N)} \to \text{Def}_{(A,M)} \]

as in Definition 8.1.

(i) If \(\text{Hom}_A(L,N) = 0 \) then \(\sigma_M \) is injective.

(ii) If \(\text{Ext}_A^1(L,N) = 0 \) then \(\sigma_M \) is formally smooth.

(iii) If \(\text{Ext}_A^1(L,N) = 0 \) and \(\text{Def}_{(A,N)} \) has a versal element then \(\sigma_M \) is smooth.

The analogous statements hold for \(\sigma_{M'} : \text{Def}_{(A,N)} \to \text{Def}_{(A,M')} \) with \(\text{Ext}_A^1(L',N) = 0 \) in (i) and \(\text{Ext}_A^1(L',N) = 0 \) in (ii) and (iii).

Proof. This is not a formal consequence of Theorem 9.2, but the proof is similar. □

Corollary 9.5. With general assumptions as in Theorem 9.2 consider the map

\[\sigma_{L'} : \text{Def}_{N}^{T^o} \to \text{Def}_{L'}^{T^o} \]

of functors \(\lambda H/k \to \text{Sets} \).

(i) If \(\text{Hom}_A(N,M') = 0 \) then \(\sigma_{L'} \) is injective.

(ii) If \(\text{Ext}_A^1(N,M') = 0 \) then \(\sigma_{L'} \) is formally smooth.

(iii) If \(\text{Ext}_A^1(N,M') = 0 \) and \(\text{Def}_A^N \) has a versal element then \(\sigma_{L'} \) is smooth.

The analogous statements hold for \(\sigma_L : \text{Def}_{N}^{T^o} \to \text{Def}_{L}^{T^o} \) with \(\text{Ext}_A^1(N,M) = 0 \) in (i) and \(\text{Ext}_A^1(N,M) = 0 \) in (ii) and (iii).

Proof. This is not a formal consequence of Theorem 9.2 but the proof is similar. □

Corollary 9.6. With general assumptions as in Theorem 9.2 consider the map

\[\sigma_M : \text{Def}_{N}^{T^o} \to \text{Def}_{M}^{T^o} \]

of functors \(\lambda H/k \to \text{Sets} \).

(i) If \(\text{Hom}_A(L,N) = 0 \) then \(\sigma_M \) is injective.

(ii) If \(\text{Ext}_A^1(L,N) = 0 \) then \(\sigma_M \) is formally smooth.

(iii) If \(\text{Ext}_A^1(L,N) = 0 \) and \(\text{Def}_A^N \) has a versal element then \(\sigma_M \) is smooth.

The analogous statements hold for \(\sigma_{M'} : \text{Def}_{N}^{T^o} \to \text{Def}_{M'}^{T^o} \) with \(\text{Ext}_A^1(L',N) = 0 \) in (i) and \(\text{Ext}_A^1(L',N) = 0 \) in (ii) and (iii).

Proposition 9.7. With general assumptions as in Theorem 9.2

(i) If \(Q' = \text{Hom}_A(\omega_A, L') \) and \(Q = \text{Hom}_A(\omega_A, L) \) then \(Q' \) and \(Q \) have finite projective dimension and \(\text{Def}_{(A,L')} \cong \text{Def}_{(A,Q')} \) and \(\text{Def}_{(A,L)} \cong \text{Def}_{(A,Q)} \).

(ii) There are natural maps

\[s : \text{Def}_{(A,M)} \to \text{Def}_{(A,M')} \quad \text{and} \quad t : \text{Def}_{(A,L')} \to \text{Def}_{(A,L)} \]

commuting with the maps \(\sigma_X : \text{Def}_{(A,N)} \to \text{Def}_{(A,X)} \) for \(X \) equal to \(M \) and \(M' \), and to \(L' \) and \(L \), respectively. If \(A \) is a Gorenstein ring, then \(s \) is an isomorphism.

The analogous statements also hold for the deformation functors \(\text{Def}_{X_N}^{T^o} \).
Proof. Lemma 6.10 implies (i). There is a short exact sequence $M \to \omega^n_A \to M'$ such that the last map is without a common ω_A-summand, corresponding (through dualisation) to a short exact sequence $M^\vee \leftrightarrow A^\oplus_n \leftrightarrow (M')^\vee$ where n is minimal. The map s is the composition $\text{Def}_{(A,M)} \cong \text{Def}_{(A,M')} \to \text{Def}_{(A,M')} \cong \text{Def}_{(A,M)}$ where the middle map is obtained by taking the syzygy of the deformation. If A is a Gorenstein ring then ω_A is the composition $\text{Def}_{(A,M)} \to \text{Def}_{(A,M)}$ given by the syzygy map.

Note that the pushout of $M \to \omega^n_A$ with $M \to N$ gives $N \to L'$. Consider the induced short-exact sequence $L \to \omega^n_A \to L'$. For a deformation $\lambda : \mathcal{L} \to L'$ there is a lifting of μ to a map $\tilde{\mu} : \omega^n_A \to \mathcal{L}'$. If \mathcal{L} denotes the kernel of $\tilde{\mu}$ then there is a cocartesian map $\lambda : \mathcal{L} \to L$ commuting with $\omega^n_A \to \omega^n_A$. By Lemma 6.10 $\lambda' \to \lambda$ gives a well defined map of deformation functors $t : \text{Def}_{(A,L')} \to \text{Def}_{(A,L)}$.

Given a deformation (h,N) in $\text{Def}_{(A,N)}$, let $\mathcal{L} \to \mathcal{M} \to N$ and $N' \to \mathcal{L}' \to \mathcal{M}'$ be the minimal sequences in Definition 5.1 There is a commutative diagram of deformations with (co)cartesian square

\[
\begin{array}{cccc}
\mathcal{L} & \to & \mathcal{M} & \to & N \\
\mathcal{L} & \to & \omega^n_A & \to & \mathcal{L}' \\
\mathcal{M}' & \to & \mathcal{M}'
\end{array}
\]

where $\omega^n_A \to \mathcal{L}'$ is given as above. The stated commutativity of maps of deformation functors follows.

Corollary 9.8. Let A be an Cohen-Macaulay local algebraic k-algebra with residue field k. Suppose $\dim A \geq 2$. Then there exists finite A-modules L' and Q' with inj.$\dim L' = \dim A = \text{pd} Q'$ and universal deformations $L' \in \text{Def}_L^T(A)$ and $Q' \in \text{Def}_Q^T(A)$.

Proof. Let $h = 1 \otimes \text{id} : A \to A \otimes_A A = T$ and $N = A$ be the cyclic T-module defined through the multiplication map. Then $T \otimes_A A \cong A$ and $N \otimes_A k \cong k$ and this gives a deformation $N' \to k$ of the residue field of A which is universal. If L' is the minimal D_A-hull of the residue field k then $L' = \sigma_L(A) \in \text{Def}_L^T(A)$ is universal by Corollary 9.6. If $Q' = \text{Hom}_A(\omega_A, L')$ then $\text{Hom}_T(\omega_T, L') \in \text{Def}_Q^T(A)$ is universal by Proposition 9.7.

Corollary 9.9. With general assumptions as in Theorem 9.2 put $X = \text{Spec} A$. Let Z be a closed subscheme such that the complement U is contained in the regular locus. Assume $\tilde{N}|_U$ is locally free, depth$_U N \geq 2$ and $H^2_Z(\text{Hom}_A(L,N)) = 0$. Then $\sigma_M : \text{Def}_{(A,N)} \to \text{Def}_{(A,M)}$ and $\sigma^+_M : \text{Def}_M^+ \to \text{Def}_M^+$ are formally smooth.

Proof. We show that $\text{Ext}^1_A(L,N) = 0$ and apply Theorem 9.3 and Corollary 9.6. By Théorème 1.6 in [22 Exposé VI] there is a cohomological spectral sequence

\[
E_2^{p,q} = \text{Ext}^q_A(L, H^p_Z(N)) \Rightarrow \text{Ext}^{p+q}_Z(X;L,N).
\]

Since $H^i_Z(N) = 0$ for $i = 0,1$ the restriction map $\text{Ext}^1_A(L,N) \to \text{Ext}^1_U(X;L,N)$ in the long exact sequence is injective. Since U is contained in the regular locus, $\tilde{M}|_U$ and hence $\tilde{L}|_U$ are locally free. It follows that $\text{Ext}^1_U(X;L,N)$ is isomorphic to $\text{Ext}^1_{\tilde{M}}(\tilde{L}|_U, \tilde{N}|_U) \cong H^1(U, \text{Hom}_{\mathcal{O}_X}(L,N)) \cong H^2_Z(\text{Hom}_A(L,N))$ which is zero by assumption.
Example 9.10. The condition $H^2_Z(\text{Hom}_A(L, N)) = 0$ is implied by $\tilde{N}|_U = 0$ or $\text{depth}_Z(\text{Hom}_A(L, N)) \geq 3$.

The following result extends A. Ishii’s [31, 3.2] to deformations of the pair.

Proposition 9.11. Let k be a field and let A be a Gorenstein local algebraic k-algebra. Suppose $L \rightarrow M \rightarrow N$ is the minimal Cohen-Macaulay approximation of a finite A-module N. If $\text{depth} N = \dim A - 1$ then

$$\sigma_M : \text{Def}_{(A, N)} \rightarrow \text{Def}_{(A, M)} \quad \text{and} \quad \sigma_M^F : \text{Def}^F_N \rightarrow \text{Def}^F_M$$

are smooth.

Proof. By assumption $L \cong A^{\oplus r}$. Assume (h_1, M_1) in $\text{Def}_{(A, M)}(S_1)$ maps to (h, M) along the surjection $S_1 \rightarrow S$. Assume σ_M maps (h', N) in $\text{Def}_{(A, N)}(S)$ to (h, M). We can assume that $h' = h$ and that the minimal MCM$_A$-approximation of N is $\mathcal{L} \cong T^{\oplus r}$. Let $\mathcal{L}_1 = T^{\oplus r}$ and choose a lifting $\rho_1 : \mathcal{L}_1 \rightarrow \mathcal{M}_1$ of ρ. Put $N_1 := \text{coker} \rho_1$ with its natural map to \mathcal{N}. Then N_1 is S_1-flat ($\rho_1 \otimes S = \rho$) and $\sigma_M(h_1, N_1) = (h_1, M_1)$. \hfill \Box

Remark 9.12. If $\dim A \geq 1$ and an MCM A-module M has a rank, $r = \text{rk} M$, then there is a short exact sequence $A^r \rightarrow M \rightarrow N$ with N a codimension one Cohen-Macaulay module, cf. [40, 1.4.3]. Hence in the case A is a Gorenstein domain all MCM modules admit MCM$_A$-approximations by CM modules in codimension one and Proposition 9.11 applies. However, it’s not always possible to continue this reduction: If A is a normal Gorenstein complete local ring any MCM A-module M is the MCM$_A$-approximation of a codimension 2 Cohen-Macaulay module up to stable isomorphism if and only if A is a unique factorisation domain, see [43, 3].

Let A be a Gorenstein normal domain of dimension 2 and $A^{r-1} \rightarrow M \rightarrow I$ the minimal MCM approximation of a torsion-free rank 1 module I. Let U denote the regular locus in $X = \text{Spec} A$. If $T = A \otimes_k S$ for S in kH/k there is a natural section $A \rightarrow T$. Let U_T denote $U \times_X \text{Spec} T$. Consider the subfunctor Def^A_{M, U_T} of deformations M with trivial induced deformation $\wedge^r M|_{U_T}$. Note that $\mathbb{H}^0(U, \wedge^r M)$ is isomorphic to the MCM module $I := \mathbb{H}^0(U, I)$. It follows from Proposition 9.11 that the resulting map from the quotient functor $\text{Quot}_{I \subset I} \rightarrow \text{Def}^A_{M, U_T}$ is also smooth, cf. [31, 3.2]. In particular, if E_A is the fundamental module and $A/m_A \cong k$ then $\text{Hom}_{A/H/k}(A, -) \cong \text{Quot}^A_{A/m_A \subset A} \cong \text{Def}^A_{A/m_A}$ gives a versal family for $\text{Def}^A_{E_A}$ by the MCM approximation in Corollary 7.3 see [31, 3.4].

Example 9.13. Assume $A/m_A \cong k$ and let M denote the minimal MCM approximation of k. It’s given as $M \cong \text{Hom}_A(\text{Syz}_A^d(k^\vee), \omega_A)$ where $d = \dim A$, cf. Remark 5.6. One has $k^\vee = \text{Ext}^d_A(k, \omega_A) \cong k$. We apply $\text{Hom}_A(-, \omega_A)$ to the short exact sequence $\text{Syz}_A^d(m_A) \rightarrow A^{\oplus \beta_1} \xrightarrow{(\widetilde{\phi})} m_A$. Assume $\dim A = 2$. Since $\text{Ext}^1_A(m_A, \omega_A) \cong k$ we obtain the MCM approximation of k:

$$0 \rightarrow \omega_A \xrightarrow{(\widetilde{\phi})} \omega_A^{\oplus \beta_1} \rightarrow M \rightarrow 0$$

In particular $\text{rk}(M) = \beta_1 - 1$ and $\mu(M) = t(A) \cdot \beta + 1$ where $t(A)$ is the Cohen-Macaulay type of A. In the case $A = A(m) = k[u^m, u^{m-1}v, \ldots, v^m]$, the vertex of the cone over the rational normal curve of degree m, which has the indecomposable MCM modules $M_i = (u^i, u^{i-1}v, \ldots, v^i)$ for $i = 0, \ldots, m-1$, one finds that $M = M_{m-1}$. We have

$$\dim_k \text{Def}^A_{E_A}(k[\varepsilon]) = \dim_k \text{Ext}^1_A(M, M) = (m - 1) \cdot m^2$$

while $\dim_k \text{Def}^A_{E_A}(k[\varepsilon]) = m + 1$. Even in the Gorenstein case ($m = 2$) the tangent map isn’t surjective and so Proposition 9.11 cannot be extended to $\text{depth} N = \dim A - 2$. For a detailed description of the strata defined by Ishii in
The henselisation of T.

Lemma 10.1. Suppose in addition that h is fundamental module of degree 1. Let \(A \) be a finite type homomorphism of noetherian rings. Let \(I = \mathfrak{m} \) be the graded S-algebra with a finite T^fr-module N in degree 1 and let $I = \mathfrak{m}^2$ be a graded T^fr-module with \mathfrak{m} in degree i. Let T denote the henselisation of T^fr in a maximal ideal \mathfrak{m} and put $\Gamma = T \otimes T^\text{fr}$.

(a) There are natural isomorphisms of graded André-Quillen cohomology

$$0 \to \text{Ext}^1_{A}(k, \mathfrak{m}) \to \text{Def}^1_{\mathfrak{m}}(k[\varepsilon]) \to k^{t(A)} \to \text{Ext}^2_{A}(k, \mathfrak{m})$$

since $\text{Ext}^1_{A}(\mathfrak{m}, A) \cong \text{Def}^1_{\mathfrak{m}}(k[\varepsilon])$ and $\dim A = 2$. In the case $A = A(m)$ the fundamental module E_A is isomorphic to M_{m-1}^2 with $\dim_k \text{Def}^1_{\mathfrak{m}}(k[\varepsilon]) = 4(m - 1)$. The conclusion in Proposition 9.11 cannot hold in the non-Gorenstein case $m > 2$.

10. Existence of versal elements

We prove existence of a versal element for a pair (algebra, module) with isolated singularity. The following lemma is used in the proof.

Lemma 10.1. Let $h^\text{fr} : S \to T^\text{fr}$ be a finite type homomorphism of noetherian rings. Let $I = \mathfrak{m} \otimes N$ be the graded S-algebra with a finite T^fr-module N in degree 1 and let $I = \mathfrak{m}^2$ be a graded T^fr-module with \mathfrak{m} in degree i. Let T denote the henselisation of T^fr in a maximal ideal \mathfrak{m} and put $\Gamma = T \otimes T^\text{fr}$.

(a) There are natural isomorphisms of graded André-Quillen cohomology

$$0 \to \text{H}^0(S, I, T \otimes I) \to \text{H}^0(S, \mathfrak{m} \otimes I) \otimes T \to \text{H}^0(S, \mathfrak{m} \otimes I)$$

Suppose in addition that h^fr is flat, I is finite as T^fr-module, S is local henselian and $S/\mathfrak{m}_S \cong T^\text{fr}/\mathfrak{m} \cong k$. Let $k \to A^\text{fr}$ denote the central fibre of h^fr. Put $\mathfrak{m}_0 = \mathfrak{m} A^\text{fr}$ and $N_0 = N \otimes \mathfrak{m}_0$. Assume $V = \text{Spec} A^\text{fr} \setminus \{ \mathfrak{m}_0 \}$ is smooth over k and N_0 restricted to V is locally free.

(b) For all $i > 0$ the graded André-Quillen cohomology $\text{H}^i(S, I, T \otimes I)$ is finite as S-module and there is a natural $T^\text{fr}_\mathfrak{m}$-isomorphism

$$\text{H}^i(S, I, T \otimes I) \cong \text{H}^i(S, \mathfrak{m} \otimes I) \otimes T \otimes T^\text{fr}_\mathfrak{m}$$

Proof. (a) Note that there are natural maps $\text{H}^0(S, I, T \otimes I) \to \text{H}^0(S, \mathfrak{m} \otimes I)$ and $\text{H}^0(S, \mathfrak{m} \otimes I) \otimes T = \text{H}^0(S, \mathfrak{m} \otimes I)$.

Moreover $T^\text{fr} \to T$ is flat and T^fr is of finite type over the noetherian S and we obtain

(10.1.1) $\text{H}^i(\mathfrak{m}, T, T \otimes I) \cong \text{Hom}_{T\mathfrak{m}}(\mathfrak{m}, T, T, T \otimes I) = 0$ for all i.

From the transitivity sequence $\text{H}^i(S, T, T \otimes I) \cong \text{H}^i(S, T, T \otimes I)$ for all i. Moreover $T^\text{fr} \to T$ is flat and T^fr is of finite type over the noetherian S and we obtain

(10.1.2) $\text{H}^i(S, T, T \otimes I) \otimes T = \text{H}^i(S, T, T \otimes I) \cong \text{H}^i(S, T, T \otimes I)$

for all i.

(10.1.3) $\text{Ext}^i_{T^\text{fr}}(\mathfrak{m}, T \otimes I) \cong \text{Ext}^i_{T^\text{fr}}(N, T \otimes I) \cong \text{Ext}^i_{T^\text{fr}}(T \otimes N, T \otimes I)$.

(b) The non-smooth locus of h^fr is closed, i.e. defined by an ideal $J \subseteq T^\text{fr}$. Smooth is equivalent to flat with smooth fibres [21 17.5.1]. Hence $J_0 = J A^\text{fr}$ defines the non-smooth locus of $k \to A^\text{fr}$ and J_0 is \mathfrak{m}_0-primary. Put $T^\text{fr} = T^\text{fr}/J$. Since A^fr/J_0 has finite length, $S \to T^\text{fr}$ is quasi-finite at \mathfrak{m} [13 Err 20] by Chevalley’s upper semi-continuity theorem [20 13.1.3] and openness of $\text{Spec} T^\text{fr} \to \text{Spec} S$ [19 2.4.6]. Since S is henselian it follows that there is a ring T' such that T^fr is isomorphic to $T^\text{fr}_\mathfrak{m} \otimes T'$ where $T^\text{fr}_\mathfrak{m}$ is finite as S-module [21 18.5.11]. Hence there is a Zariski neighborhood U of \mathfrak{m} in $\text{Spec} T^\text{fr}$ such that non-smooth locus $U \cap V(J)$ is finite over
S and the support of \(H^i = H^i(S, T^\mathfrak{m}, I) \) in \(U \) is contained in \(U \cap V(J) \) for all \(i > 0 \) by [30] III 3.1.2. Since \(H^\mathfrak{m}_m = H^i \) restricted to \(U \), it follows that \(H^\mathfrak{m}_m \) is finite as \(S \)-module. With the isomorphism in (a) we get
\[
(10.1.4) \quad H^i(S, T, T \otimes \mathcal{O}_1) \cong H^i(S, T^\mathfrak{m}, \mathcal{O}_I)_{\mathfrak{m}} \otimes_{\mathcal{O}_I} T \cong H^i(S, T^\mathfrak{m}, \mathcal{O}_I). \]

The locus where \(N \) isn’t locally free is closed, i.e. defined by an ideal \(J' \subseteq T^\mathfrak{m} \). Locally free is equivalent to flat and locally free fibres. Hence \(J_0' = J' A^\mathfrak{m} \) defines the singular locus of \(N_0 \) and \(J_0' \) is \(\mathfrak{m}_0 \)-primary. As for the André-Quillen cohomology we get a Zariski neighborhood \(U' \) of \(\mathfrak{m} \) such that \(E' = \text{Ext}^i_{T^\mathfrak{m}}(N, 1, I') \) restricted to \(U' \) equals \(E'_{\mathfrak{m}} \) and is finite as \(S \)-module for all \(i > 0 \). With (a) we get
\[
(10.1.5) \quad \text{Ext}^i_{T^\mathfrak{m}}(T \otimes N, T \otimes 1) \cong \text{Ext}^i_{T^\mathfrak{m}}(N, 1, I' \otimes T) \cong \text{Ext}^i_{T^\mathfrak{m}}(N, 1, I'). \]

We conclude by the long-exact sequence in Proposition 8.8. □

Let \(k \) be a field, \(A \) an algebraic \(k \)-algebra with \(A/\mathfrak{m}_A \cong k \) and \(N \) a finite \(A \)-module. Without any Cohen-Macaulay condition on \(A \) we define a deformation (\(h : S \to T, N \)) of the pair \((A, N)\) to an \(S \) in \(\mathcal{H}/k \) as before and obtain the deformation functor \(\text{Def}_{(A, N)} : \mathcal{H}/k \to \text{Sets} \) as equivalence classes of deformations of pairs.

We say that \(A \) is an isolated singularity over \(k \) if \(A \) is a finite \(k \)-algebra with \(A^\mathfrak{m} \) with a maximal ideal \(\mathfrak{m} \) such that the henselisation \((A^\mathfrak{m})_{\mathfrak{m}} \) is isomorphic to \(A \) and which is smooth over \(k \) at all points in \(\text{Spec} A^\mathfrak{m} \setminus \{\mathfrak{m}_0\} \). We say that the pair \((A, N)\) is an isolated singularity over \(k \) if \(A \) is an isolated singularity over \(k \) and if \(N_0 \) is a free \(A_0 \)-module for all prime ideals \(p \neq \mathfrak{m}_A \).

The following theorem is a consequence of results of R. Elkik and an argument of H. von Essen.

Theorem 10.2. Let \((A, N)\) be an isolated singularity over the field \(k \) with \(A \) equidimensional. Then \(\text{Def}_{(A, N)} : \mathcal{H}/k \to \text{Sets} \) has a versal element.

Proof. We apply [3] 3.2] with the extension to arbitrary excellent coefficients given by [13] 1.5 to show the existence of a formally versal element for \(\text{Def}_{(A, N)} \). By the finiteness conditions it follows that \(\text{Def}_{(A, N)} \) is locally of finite presentation. The condition (S1) holds in general by Proposition 8.5. Let \((h : S \to T, N)\) be a deformation to \(S \). Let \((T^\mathfrak{m}, \mathfrak{m})\) be a \(S \)-flat finite type representative for \(\text{Def}_{(A, N)} \) so (possibly after inverting some element in \(\mathfrak{m} \)) we may assume that \(N^\mathfrak{m} \) is locally free away from \(\mathfrak{m}_0 \). Let \(I \) be a finite \(S \)-module. By Lemma [10] 9.1, \(H^i(S, I, I \otimes S I) \) with \(I = T \otimes N \) is a finite \(S \)-module, so by Proposition 8.5 condition (S2) holds.

For effectivity, there is a deformation functor \(\text{Def}_{(A_n, N_n)} : \mathcal{H}/k \to \text{Sets} \) of base change maps of pairs \((S \to T^\mathfrak{m}, N^\mathfrak{m}) \to (k \to A^\mathfrak{m}, N^\mathfrak{m}) \) where \(T^\mathfrak{m} \) is a flat \(S \)-algebra of finite type and \(N^\mathfrak{m} \) is an \(S \)-flat finite \(T^\mathfrak{m} \)-module. Base change is given by the standard tensor product. Similarly there is a \(\text{Def}_{A/k} \). Restricted to \(\mathcal{H}/k \) \(\text{Def}_{(A_n, N_n)} \) satisfies (S1) and (S2). Hence there exists a formally versal formal element \(\{T^\mathfrak{m}_n, N^\mathfrak{m}_n\} \) in \(\lim \text{Def}_{(A_n, N_n)}(S_n) \) where \(S_n = S / \mathfrak{m}_S^{n+1} \) for some \(S = \hat{S} \) in \(\mathcal{H}/k \). By [10] Théorème 7, p. 595] (cf. [5] II 5.1]) there exists an element \(S \to T^\mathfrak{m} \) in \(\text{Def}_{(A_n, S)}(S) \) which induces \(\{T^\mathfrak{m}_n\} \). Let \(T' \) be the henselisation of \(T^\mathfrak{m} \) in the maximal ideal \(\mathfrak{m} = (T^\mathfrak{m} \to A)^{-1}(\mathfrak{m}_A) \). Then \(S \to T' \) is a deformation of \(A \). Let \(T^* \) be the completion of \(T' \) at the ideal \(\mathfrak{n} = \mathfrak{m}_A T' \) and let \(N^* = \lim N_n \). Then \(N^* \) is an \(S \)-flat finite \(T^* \)-module. Let \(J^* \subseteq T^* \) denote the ideal \(I(\varphi) \) where \(\varphi \) is a minimal presentation of \(N^* \). Then \(J^* \) defines the locus \(V(J^*) \) where \(N^* \) is not locally free.
Let $J = \ker(T' \rightarrow T^*/J^*)$. Since T^*/J^* is finite as S-module, $T'/J \cong T^*/J^*$. The proof of [44, 2.3] works in this situation too (there is a typo in line 5: it should be a direct sum, not a tensor product) and shows that the completion of T' in the ideal $a = J \cap m_S T'$ equals T'. Since N' is locally free on the complement of $V(aT')$, the conditions in [16] Théorème 3 hold. From this result we obtain a finite T'-module \mathcal{N}' inducing \mathcal{N}. In particular \mathcal{N} is S-flat.

We claim that the henselisation map $\text{Def}_{(A^n, N^n)} \rightarrow \text{Def}_{(A, N)}$ is formally smooth. It follows that the element (T', \mathcal{N}) in $\text{Def}_{(A, N)}(S)$ is formally versal. For the claim, put $T'^\mathfrak{ft} = A^\mathfrak{ft} \oplus \mathcal{N}^{\mathfrak{ft}}$ and $\Gamma = A \oplus N$ and let $\pi : S_1 \rightarrow S_0 = S/I$ be a small surjection in $A\Lambda/k$. The obstruction $ob(\pi, I_0^\mathfrak{ft}) \in \mathfrak{O}_1^2(k, I^{\mathfrak{ft}}, I^{\mathfrak{ft}}) \otimes_k I$ for lifting a deformation $I_0^\mathfrak{ft}$ of $\Gamma^{\mathfrak{ft}}$ along π maps to the corresponding obstruction $ob(\pi, I_0^\mathfrak{ft}) \in \mathfrak{O}_1^2(k, I, \Gamma) \otimes_k I$. The isomorphisms $\mathbb{H}(S, T, T) \cong \mathbb{H}(S, T^{\mathfrak{ft}}, T^{\mathfrak{ft}}) \otimes_{T^{\mathfrak{ft}}} T$ for all i implies isomorphisms $\mathbb{H}(k, I^{\mathfrak{ft}}, I^{\mathfrak{ft}}) \cong \mathbb{H}(k, I, \Gamma)$ for $i = 1, 2$ as in the beginning of the proof. Smoothness follows by the standard obstruction argument. By [44, 3.2] there is an algebraic k-algebra R and a formally versal element (T, N) in $\text{Def}_{(A, N)}(R)$.

Finally we apply [4, 3.3] (for general excellent coefficients) to conclude that the formally versal element (T, N) is versal. We already have (S1) and (S2). To check [4, 3.3(iii)], let S be algebraic in $A\Lambda/k$, I an ideal in S and put $S^* = \varprojlim S_n$ where $S_n = S/I^{n+1}$. Let $T' = (T, N)$ for $i = 1, 2$ be two elements in $\text{Def}_{(A, N)}(S^*)$ and $\{\theta_n : 1^n_n \cong 2^n_n\}$ be a tower of isomorphisms between the S_n-truncations. There are finite type representatives $T'^\mathfrak{ft} = (T^{\mathfrak{ft}}, 1^n_n)$ of the T_i. By the cohomology argument above one obtains by induction a tower of isomorphisms $\{\theta_n : 1^n_n \cong 2^n_n\}$ inducing $\{\theta_n\}$. Since $\varprojlim \bar{S}/I^{n+1}\bar{S} \cong S^*$ where \bar{S} is the completion of S in the maximal ideal, we can apply [16] Lemme p. 600 to conclude that the henselisations of the $i^{\mathfrak{ft}}$ in $i^{\mathfrak{ft}}I$ are isomorphic by an isomorphism lifting $\theta_0 : 1^{T_0} \cong 2^{T_0}$. Further henselisation in the maximal ideals gives an isomorphism of deformations $i^T \cong T$. By Lemma 6.1 the isomorphism is extended to an isomorphism of the pairs $\psi : 1^T \cong 2^T$ which lifts θ_0. By [44, 1.3] condition [4, 3.3(ii)] is unnecessary and we conclude that (T, N) is versal.

\textbf{Remark 10.3.} Let A be an Cohen-Macaulay local algebraic k-algebra and N a finite A-module. We say that N has an isolated singularity if N_p is a free A_p-module for all prime ideals $p \neq \mathfrak{m}_A$. In that case a similar, but easier argument gives that $\text{Def}_{\mathcal{N}}$ has a versal element. This is the result [44, 2.4] of von Essen, but for a slightly different fibred category of deformations where henselisation is taken along the closed fibre. However it implies the result in our case, essentially by henselisation at \mathfrak{m}_0. Corollary 10.4 and 10.5 have obvious analogs for $\text{Def}_{\mathcal{N}}^T$ in this case.

\textbf{Corollary 10.4.} Suppose A is an isolated Cohen-Macaulay singularity over the field k and N is a finite length A-module. Let $L \rightarrow M$ and $N \rightarrow L'$ M' be the minimal MCM_A-approximation and D_A-hull of N respectively. Then:

(i) $\text{Def}_{(A, N)}$ has a versal element.

(ii) If $\dim A \geq 2$ and Q' denotes $\text{Hom}_A(\omega_A, L')$ then

\[\text{Def}_{(A, N)} \cong \text{Def}_{(A, L')} \cong \text{Def}_{(A, Q')}. \]

(iii) If $\dim A \geq 3$ and Q denotes $\text{Hom}_A(\omega_A, L)$ then

\[\text{Def}_{(A, N)} \cong \text{Def}_{(A, L)} \cong \text{Def}_{(A, Q)}. \]

\textbf{Proof.} This is Theorem 10.2, Theorem 9.2 and Proposition 9.7. \qed
Corollary 10.5. Suppose A is a local algebraic k-algebra which is a Gorenstein normal domain with $\dim A = 2$ and N is a finite torsion-free A-module. Let $L \to M \to N$ be the minimal MCM-A-approximation of N. Assume k is perfect. Then $\text{Def}_{(A,N)}$ and $\text{Def}_{(A,M)}$ both have versal elements and the map $\sigma_M : \text{Def}_{(A,N)} \to \text{Def}_{(A,M)}$ is smooth.

Proof. Since A is a domain N torsion-free implies that N is a first syzygy. It follows that N_p is a MCM-A_p-module for all primes $p \neq \mathfrak{m}_A$ and since A is 2-dimensional and normal N_p is free. As k is perfect it follows from [19] 6.7.7 and 6.8.6 that (A,N) and (A,M) are isolated singularities and hence Theorem 10.2 applies. Since depth $N \geq 1$, L is projective and by Theorem 9.4 (iii) σ_M is smooth.

11. Deforming maximal Cohen-Macaulay approximations of Cohen-Macaulay modules

Let $h : S \to T$ be a homomorphism of local noetherian rings. An h-sequence (or just an h-regular element if $n = 1$) is a sequence $J = (f_1, \ldots, f_n)$ in T such that the image J in $A = T \otimes_S S/m_S$ is an A-sequence. Applying the Koszul complex $K(J)$ as in Example 2.6 one sees that an h-sequence is a transversally T-regular sequence relative to S as defined in [21] 19.2.1. In particular; J is an h-sequence if and only if J is a T-sequence and T/J is S-flat.

Theorem 11.1. Let $q : A \to T^o$ denote the henselisation of a finite type Cohen-Macaulay map with $T^o/\mathfrak{m}_{T^o} = k$ and $T^o \otimes_T k = A$. Suppose $J = (f_1, \ldots, f_n)$ is a q-sequence. Put $T^o = T^o/J$, $B = T^o \otimes_T k$ and let J be the image of J in A.

Let N be a maximal Cohen-Macaulay B-module and $L \to M \to N$ the minimal MCM-A-approximation of N. If $\text{ob}(A/J^2 \to B, N) = 0$, then the composition of maps

$$\text{Def}_{T^o}^N \longrightarrow \text{Def}_T^N \longrightarrow \text{Def}_M^N$$

of functors from $A/H/k$ to Sets is injective.

Example 11.2. The existence of a splitting $B \to A/J^2$ implies that $\text{ob}(A/J^2, N) = 0$ for all B-modules N since $A/J^2 \otimes_B N$ gives a lifting of N to A/J^2.

Let C be a category. Then $\text{Arr} C$ denotes the category with objects being arrows in C and arrows being commutative diagrams of arrows in C. An endo-functor F on C induces an endo-functor $\text{Arr} F$ on $\text{Arr} C$. Let B be a noetherian local ring and P_B the additive subcategory of projective modules in mod_B. Let $\text{Hom}_B(N,M)$ denote the homomorphisms from N to M in the quotient category $\text{mod}_B = \text{mod}_B/\text{P}_B$ i.e. B-homomorphisms modulo the ones factoring through an object in P_B. For each N in mod_B we fix a minimal B-free resolution and use it to define the syzygy modules of N. Then the association $N \mapsto \text{Syz}_i^B N$ induces an endo-functor on mod_B for each i, considered by A. Heller [20]. Define $\text{Ext}_B^i(N,M)$ as $\text{Hom}_B(\text{Syz}_i^B N, M)$ which turns out to be isomorphic to $\text{Ext}_B^i(N, M)$ for all $i > 0$.

Lemma 11.3. Let A be a noetherian local ring and $I = (f_1, \ldots, f_n)$ a regular sequence. Put $B = A/I$ and suppose N, N_1 and N_2 are finite B-modules. Let M_i denote $B \otimes \text{Syz}_i^A N$.

(i) There is an inclusion $u_N : N \to M_N$ of B-modules with $M_N \cong B \otimes \text{Syz}_i^A N$ which induces a functor $u : \text{mod}_B \to \text{Arr} \text{mod}_B$.

(ii) The functor u commutes with the B-syzygy functor:

$$\text{Arr} \text{Syz}_i^B (u_N) = u_{\text{Syz}_i^B N}$$
(iii) The endo-functor $B \otimes \text{Syz}_n^A(-)$ induces a natural map $\text{Ext}_n^1(N_1, N_2) \to \text{Ext}_n^1(M_1, M_2)$ which makes the following diagram commutative:

$$\begin{array}{ccc}
\text{Ext}_n^1(N_1, N_2) & \xrightarrow{(u_N)} & \text{Ext}_n^1(M_1, M_2) \\
\text{Ext}_n^1(N_1, M_2) & \xrightarrow{(u_N)_*} & \text{Ext}_n^1(M_1, M_2) \\
\end{array}$$

(iv) The inclusion $u_N : N \to B \otimes \text{Syz}_n^A N$ splits $\iff ob(A/J^2 \to B, N) = 0$.

Remark 11.4. Lemma\[\text{[11.3]}\](iv) strengthens \[\text{[3.6]}\] (in the commutative case).

Proof. (i): Suppose $F_* \to N$ is a minimal A-free resolution of N. Tensoring the short exact sequence $\text{Syz}_n^A N \xrightarrow{f} F_{n-1} \to \text{Syz}_{n-1}^A N$ with B gives the exact sequence

$$(11.4.1) \quad 0 \to \text{Tor}_1^A(B, \text{Syz}_{n-1}^A N) \to B \otimes \text{Syz}_n^A N \to F_{n-1} \to B \otimes \text{Syz}_{n-1}^A N \to 0.$$

We have $\text{Tor}_1^A(B, \text{Syz}_{n-1}^A N) \cong \text{Tor}_1^A(B, N) \cong N$. Let u_N be the inclusion $N \cong \text{ker}(B \otimes A)f \to B \otimes \text{Syz}_n^A N$. Then $N \to u_N$ gives a functor of quotient categories.

(ii): Let $p : Q \to N$ be the minimal B-free cover and $P_* \to \text{Syz}_n^B N$ the minimal A-free resolution of the B-syzygy $\text{ker}(p)$. Then there is an A-free resolution $H_* \to Q$ which is an extension of $F_* \to P_*$. Since $\text{Syz}_n^A B \cong A$, tensoring the short exact sequence of resolutions by B we obtain the commutative diagram with exact rows:

$$\begin{array}{cccc}
0 & \to & \text{Syz}_n^B N & \to & Q & \to & N & \to 0 \vspace{0.1cm} \\
& & u_{\text{Syz}_n^B} & & u_N & & & \\
0 & \to & B \otimes \text{Syz}_n^A (\text{Syz}_n^B N) & \to & B \otimes Q & \to & B \otimes \text{Syz}_n^A N & \to 0 \\
\end{array}$$

which proves the claim.

(iii): By (ii) it is enough to prove this for $i = 0$. The case $i = 0$ follows from the functoriality in (i).

(iv, \Leftarrow): For the case $n = 1$ see the proof of \[\text{[3.2]}\]. Assume $n \geq 2$. We follow the proof of \[\text{[3.6]}\] closely. Let $A_1 = A/(f_1)$. Then $F_{n-1}^{(1)} = A_1 \otimes F_{n-1}[1]$ gives a minimal A_1-free resolution of $A_1 \otimes \text{Syz}_n^A N$. We have $ob(A/J^2 \to B, N) = 0 \Rightarrow ob(A/(f_1)^2 \to A_1, N) = 0$ and hence N is a direct summand of $A_1 \otimes \text{Syz}_n^A N$. Let $G_* \to N$ be a minimal A_1-free resolution of N. Then $G_* \otimes A_1$ is a direct summand of $F_{n-1}^{(1)}$ and hence $\text{Syz}_{n-1}^A N$ is a direct summand of $\text{Syz}_{n-1}^A (A_1 \otimes \text{Syz}_n^A N) = A_1 \otimes \text{Syz}_n^A N$. Tensoring this situation with B gives a commutative diagram:

$$\begin{array}{cccc}
N & u_1 & B \otimes \text{Syz}_n^A N & \xrightarrow{j_1} \tilde{F}_{n-1} & \cdots & \tilde{F}_1 & \tilde{F}_0 & N \\
N & u_1 & B \otimes \text{Syz}_{n-1}^A N & \xrightarrow{j_1} G_{n-2} & \cdots & G_0 & N \\
\end{array}$$

Since $ob(A/J^2 \to B, N) = 0 \Rightarrow ob(A_1/(f_2, \ldots, f_n)^2 \to B, N) = 0$ the map u_1 splits by induction on n. So u splits. The other direction follows from \[\text{[3.6]}\].

Proposition 11.5. Let $h : S \to T$ be a local Cohen-Macaulay map, $J = (f_1, \ldots, f_n)$ an h-sequence, $\bar{h} : S \to T = T/J$ the local Cohen-Macaulay map induced from h, and (\bar{h}, N) an object in MCM_h. Let $\xi : L \to M \xrightarrow{\pi} N$ be the minimal MCM_h-approximation of N. Then tensoring ξ by \bar{T} gives a 4-term exact sequence

$$0 \to N \otimes J^2 \to L \to M \xrightarrow{\pi} N \to 0$$

which represents the obstruction class $ob(T/J^2 \to \bar{T}, N) \in \text{Ext}_T^2(N, N \otimes J^2)$. Moreover, $ob(T/J^2 \to \bar{T}, N) = 0 \iff ob(T/J^2 \to \bar{T}, N^\vee) = 0 \iff \pi$ splits where $N^\vee = \text{Ext}_T^1(N, \omega_\bar{T})$.

\[\square\]
Proof. By Proposition 2.5 $\text{Tor}_i^T(T, \mathcal{M}) = H_i(K(f) \otimes \mathcal{M}) = 0$ for $i > 0$. There is a map from the defining short exact sequence $\text{Syz}^T N \to F_0 \to N$ to ξ lifting id_N. Tensoring with T gives a map of 4-term exact sequences with outer terms canonically identified. Hence they represent the same element $\text{ob}(T/J^2 \to T, N)$ in $\text{Ext}_{T(J)}^1(N, N \otimes J/J^2)$.

By the argument in Remark 6.6 we can assume that ξ is given as im$(d_e^\nu) \to (\text{Syz}^N_0 N^\nu)^\nu \to N^\nu$ where (F_e, d_e) is a minimal T-free resolution of N^ν. By Lemma 11.3 $\text{ob}(T/J^2 \to T, N^\nu) = 0$ if and only if $u : N^\nu \to T \otimes \text{Syz}^N_0 N^\nu$ splits. But applying $\text{Hom}_T(-, \omega_h)$ to u gives π since $N \cong \text{Ext}_T^1(N^\nu, \omega_h) \cong \text{Hom}_T(N^\nu, \omega_h)$.

Remark 11.6. In the absolute Gorenstein case with $n = 1$ this is given in [8, 4.5].

Proof of Theorem 11.1. Given S in A/h and let $h : S \to T$ and $\tilde{h} : S \to T = T/JT$ be the induced hCM maps. Let \mathcal{N} be deformations of N to \tilde{h} for $i = 1, 2$ and assume that the minimal MCM_N-approximation modules of \mathcal{N} are isomorphic as deformations of M. We proceed as in the proof of Theorem 11.2 (i) with $S_n = S/m_S^{n+1}$, $N_n = N \otimes S_n$ etc., construct a tower of isomorphisms $\{\varphi_n : \mathcal{N} \cong N\}_n$, and conclude by Lemma 6.1 that \mathcal{N} and \mathcal{N} are isomorphic as deformations of N. For the induction step we use that the map of torsor actions along $\text{Def}_{T_n}(S_n) \to \text{Def}_{T_n}(S_n)$ is induced by a natural map $p : \text{Ext}_B^1(N, N) \to \text{Ext}_A^1(M, M)$ which is injective. The map p is given as follows.

Let $\pi : M \to N$ denote the MCM_A-approximation and $\pi : M \to N$ be the B-quotient. Then π splits by Proposition 11.6. Hence $\pi^* : \text{Ext}_B^1(N, N) \to \text{Ext}_A^1(M, N)$ splits. Since J is an M-regular sequence, $\text{Ext}_B^1(M, N) \cong \text{Ext}_A^1(M, N)$. Since $\text{Ext}_A^1(M, L) = 0$ for all $i > 0$, $\pi_* : \text{Ext}_A^1(M, M) \cong \text{Ext}_A^1(M, N)$. Summarised:

\begin{equation}
\begin{aligned}
\text{Ext}_A^1(M, N) & \xrightarrow{\sim} \text{Ext}_A^1(M, M) \\
& \Downarrow \pi^* \Downarrow \pi_* \\
\text{Ext}_B^1(N, N) & \cong \text{Ext}_B^1(M, N)
\end{aligned}
\end{equation}

The technique used to prove Theorem 11.1 also gives the following result.

Theorem 11.7. Let A and T^o be henselian and noetherian local rings and $q : A \to T^o$ a local and flat ring homomorphism with $T^o/m_{T^o} = k$ and $T^o \otimes_A k = A$. Suppose $J = (f_1, \ldots, f_m)$ is a q-sequence. Put $T^o = T^o/J$, $B = T^o \otimes_A k$ and let J be the image of J in A. Let N be a finite B-module and let M denote the syzygy module $\text{Syz}^A_i N$.

If $\text{ob}(A/J^2 \to B, N) = 0$ then the natural map $s : \text{Def}_N^2 \to \text{Def}_M^2$ is injective.

Proof. We proceed as in the proof of Theorem 11.2 and 11.1. Given deformations of N to \tilde{h} for $i = 1, 2$. They map to $\mathcal{N} := \text{Syz}_s(N)$ which we suppose are isomorphic as deformations of M to h. Then the natural syzygy map $s : \text{Ext}_B^1(N, N) \to \text{Ext}_A^1(M, M)$ induces the map of torsor actions along s of the infinitesimal extensions. The composition of s^1 with $\text{Ext}_A^1(M, M) \to \text{Ext}_A^1(M, M) \cong \text{Ext}_B^1(M, M)$ commutes with the horizontal map in Lemma 11.3 (iii). But Lemma 11.3 (iv) implies that $(u_n)_n$ is injective, hence s^1 is injective too. Proceeding by induction on $m_{S^n}^{n+1}$-truncations of the deformations we construct a tower of isomorphisms and conclude by Lemma 6.1.

Remark 11.8. Theorem 11.7 resembles [28, Thm. 1]. However Theorem 11.7 makes a sounder statement in a more general setting and has a more transparent proof. Indeed, the various similar results in [28] can be changed and proved accordingly.
12. The Kodaira-Spencer map of Cohen-Macaulay approximations

A modular family of objects is roughly speaking a family where the isomorphism class of the fibre changes non-trivially. The Kodaira-Spencer map makes this idea precise. We consider the Kodaira-Spencer classes and maps for families of pairs (algebra, module) and by invoking the long-exact transitivity sequence we relate them to the corresponding notions for the algebra and the module. Then we show that Cohen-Macaulay approximation of modular families under conditions as in Theorem 9.2, 9.4 and 11.1 produce new modular families.

The following is a graded version of [30, II 2.1.5.7].

Definition 12.1. Let $A \to S$ and $S \to \Gamma$ be graded ring homomorphisms with A and S concentrated in degree 0. The map $L^p_{S/A} \to L_{S/A} \otimes_S \Gamma$ in the corresponding distinguished transitivity triangle of (graded) cotangent complexes (see (8.8.1)) is called the Kodaira-Spencer class of the fibre changes non-trivially. The Kodaira-Spencer map makes this idea precise. We consider the Kodaira-Spencer classes and maps for families of pairs (algebra, module) and by invoking the long-exact transitivity sequence we relate them to the corresponding notions for the algebra and the module. Then we show that Cohen-Macaulay approximation of modular families under conditions as in Theorem 9.2, 9.4 and 11.1 produce new modular families.

The following is a graded version of [30, II 2.1.5.7].

Definition 12.1. Let $A \to S$ and $S \to \Gamma$ be graded ring homomorphisms with A and S concentrated in degree 0. The map $L^p_{S/A} \to L_{S/A} \otimes_S \Gamma$ in the corresponding distinguished transitivity triangle of (graded) cotangent complexes (see (8.8.1)) is called the Kodaira-Spencer class of $A \to S \to \Gamma$.

Composing the Kodaira-Spencer class with the natural augmentation map

$$L_{S/A} \otimes S \Gamma \to \Omega_{S/A} \otimes S \Gamma$$

induces an element $\kappa(\Gamma/S/A) \in \Omega^1(S, \Gamma) \otimes \Omega_{S/A} \otimes S \Gamma$, the cohomological Kodaira-Spencer class, which is also given as follows. Let $\mathcal{P} = \mathcal{P}_{S/A}$ denote $S \otimes S/I^2$ where I is the kernel of the multiplication map $S \otimes S \to S$. There are two ring homomorphisms j_1 and j_2 from S to \mathcal{P} defined by $j_1 : s \mapsto s \otimes 1$ and $j_2 : s \mapsto 1 \otimes s$. Let $d_{S/A}$ denote the universal derivation (induced by $j_2 - j_1$). The principal parts of Γ is $\mathcal{P} \otimes S \Gamma$ (with the j_2 tensor product), which gives an S-algebra extension (via j_1) representing the Kodaira-Spencer class.

$$\kappa(\Gamma/S/A) : 0 \to \Omega_{S/A} \otimes S \Gamma \to \mathcal{P}_{S/A} \otimes S \Gamma \to \Gamma \to 0 \quad (12.1.1)$$

see [30, III 1.2.6]. Since $\mathcal{P} \otimes S \Gamma$ has a natural \mathcal{P}-algebra structure, (12.1.1) is also a (graded) algebra lifting of Γ along $\mathcal{P} \to S$ as in Proposition 8.3. The j_1-extension $\Gamma \otimes S \mathcal{P} \to \Gamma$ is a trivial lifting (split by $\text{id}_\mathcal{P} \otimes 1_\mathcal{P}$) and the difference in $\Omega^1(S, \Gamma) \otimes \Omega_{S/A} \otimes S \Gamma$ given by Proposition 8.3(ii) equals $\kappa(\Gamma/S/A)$, see [30, III 2.1.5]. Moreover, the difference $1_\mathcal{P} \otimes \text{id}_\mathcal{P} - \text{id}_\mathcal{P} \otimes 1_\mathcal{P}$ induces $d_{S/A} \otimes 1_\mathcal{P}$ (in degree 0) which is mapped to $\kappa(\Gamma/S/A)$ by the connecting homomorphism

$$\partial : \text{Der}_A(S, \Omega_{S/A} \otimes S \mathcal{P}) \to \partial \Omega^1(S, \Gamma) \otimes \Omega_{S/A} \otimes S \Gamma$$

(12.1.2)

in the long-exact transitivity sequence, see [30, III 1.2.6.5 and 1.2.7].

In the special case of $\Gamma = T \otimes N$, N a T-module and $S = T$, the transitivity sequence of $A \to T \to \Gamma$ is given in Proposition 8.3. The Kodaira-Spencer class equals $\partial(d_{T/A}) \in \text{Ext}_T(N, \Omega_{T/A} \otimes T \mathcal{N})$ and is called the (cohomological) Atiyah class and is denoted by $\text{at}_{T/A}(N)$, cf., [30, IV 2.3.6-7]. The class is represented by the short exact sequence

$$\text{at}_{T/A}(N) : 0 \to \Omega_{T/A} \otimes T \mathcal{N} \to \mathcal{P}_{T/A} \otimes T \mathcal{N} \to \mathcal{N} \to 0 \quad (12.1.3)$$

The Kodaira-Spencer map of $A \to S \to \Gamma$

$$g^\Gamma : \text{Der}_A(S) \to \partial \Omega^1(S, \Gamma)$$

is defined by $D \mapsto f^D \kappa(\Gamma/S/A)$ where $f^D : \Omega_{S/A} \to S$ corresponds to D. Pushout of (12.1.1) by $f^D \otimes \text{id}_\Gamma$ gives the corresponding algebra lifting of Γ along $S[\epsilon] \to S$ given by $g^\Gamma(D)$.

Proposition 12.2. Let Γ denote the graded S-algebra $T \otimes N$ where $A \to S$ and $S \to T$ are (ungraded) ring homomorphisms and N is a T-module. Consider the
transitivity sequence of $S \to T \xrightarrow{j} \Gamma$ in Proposition 8.8.

\[\ldots \to \text{Der}_S(T, \Omega_{S/A} \otimes_S T) \xrightarrow{\partial} \text{Ext}^1_T(N, \Omega_{S/A} \otimes_S N) \xrightarrow{w} \text{H}^1(S, \Gamma, \Omega_{S/A} \otimes_S \Gamma) \xrightarrow{\partial} \ldots \]

(i) The map i^* takes the Kodaira-Spencer class $\kappa(\Gamma/S/A)$ to $\kappa(T/S/A)$.

(ii) Assume $\kappa(T/S/A) = 0$ and choose an S-algebra splitting $\sigma : T \to \mathcal{P} \otimes_S T$. Then there is a class $\kappa(\sigma, N) = \kappa(T/S/A, \sigma, N) \in \text{Ext}^1_T(N, \Omega_{S/A} \otimes_S N)$, natural in the argument, which maps to $\kappa(\Gamma/S/A)$ by u.

(iii) Let $D(\sigma) \in \text{Der}_A(T, \Omega_{S/A} \otimes_S T)$ be the derivation corresponding to the splitting σ and for each $D_1 \in \text{Der}_A(S)$ let $X_\sigma(D_1)$ denote $f^{D_1}D(\sigma) \in \text{Der}_A(T)$. Then

\[f^{D_1}_*\kappa(\sigma, N) = f^{X_\sigma(D_1)}_* \text{at}_{T/A}(N) \text{ in } \text{Ext}^1_T(N, N). \]

Proof. The degree zero part of (12.1.1) gives the image $i^*\kappa(\Gamma/S/A)$ represented by the algebra extension

\[\kappa(T/S/A) : 0 \to \Omega_{S/A} \otimes_S T \to \mathcal{P}_{S/A} \otimes_S T \to T \to 0. \]

The degree one part is the short exact sequence of $\mathcal{P} \otimes_S T$-modules

\[\tilde{\kappa} = \tilde{\kappa}(T/S/A, N) : 0 \to \Omega_{S/A} \otimes S N \to \mathcal{P}_{S/A} \otimes_S N \to N \to 0. \]

The splitting σ makes $\tilde{\sigma}$ to a short exact sequence of T-modules which defines $\kappa(T/S/A, \sigma, N)$.

For (iii) we have $X_\sigma(D_1) = f^{X_\sigma(D_1)}_* d_{T/A}$ and the result follows from the commutative diagram

\[(12.2.3) \]

where the two outer vertical maps are pointed.

We call $\kappa(\sigma, N)$ for the Kodaira-Spencer class of $(T/S/A, \sigma, N)$. Define the Kodaira-Spencer map of $(T/S/A, \sigma, N)$

\[g^{(\sigma, N)} : \text{Der}_A(S) \to \text{Ext}^1_T(N, N) \]

by $g^{(\sigma, N)}(D) := (f^D \otimes \text{id})_* \kappa(\sigma, N)$.

In the case $T = S \otimes_AT^o$ we always choose the S-algebra splitting $S \otimes_AT^o \to \mathcal{P}_{S/A} \otimes S \otimes_AT^o \cong \mathcal{P}_{S/A} \otimes T^o$ given by $s \otimes t \mapsto j_1(s) \otimes t$. In particular $\kappa(T/S/A) = 0$ and we get a canonical Kodaira-Spencer class $\kappa(N)$ and a corresponding Kodaira-Spencer map g^N.

Remark 12.3. There is no reason to believe that $\kappa(\sigma, N)$ maps to $\text{at}_{T/A}(N)$ in diagram (12.2.3) for any choice of σ. While there is a canonical map of short exact sequences of S-modules

\[\kappa(\sigma, N) :
\begin{array}{ccccccc}
0 & \to & \Omega_{S/A} \otimes S N & \to & \mathcal{P}_{S/A} \otimes S N & \to & N & \to 0 \\
& & \downarrow & & \downarrow \tau & & \\
& & 0 & & \mathcal{P}_{T/A} \otimes T N & & 0 \\
\end{array} \]

at $T/A(N)$:

\[
\begin{array}{ccccccc}
0 & \to & \Omega_{T/A} \otimes T N & \to & \mathcal{P}_{T/A} \otimes T N & \to & N & \to 0 \\
& & \downarrow & & \downarrow & & \\
& & 0 & & 0 & & \\
\end{array} \]
\(\tau\) is in general not \(T\)-linear. However, in the case \(S \to T\) is smooth then \(\Omega S/A \otimes T \to \Omega_{T/A} \to \Omega_{T/S}\) is split exact. There is a non-canonical lifting of the universal derivation in \(\text{Der}_A(T, \Omega_{T/A})\) to \(\text{Der}_A(T, \Omega S/A \otimes T)\) and the corresponding choice of splitting \(\sigma\) makes \(\tau\) \(T\)-linear and so (or by (12.2.3)) \(\kappa(\sigma, N)\) maps to \(at_{T/A}(N)\).

Example 12.4. Another special case is given by the base change of \(h : S \to T\) with itself to \(h \otimes T : T \to T \otimes_S T = T^{\otimes 2}\) and a \(T\)-flat \(T^{\otimes 2}\)-module \(N\), cf. Section 7. Then \(\kappa(T^{\otimes 2}/T, S, N)\) in \(\text{Ext}_T^1(\kappa, \Omega_{T^{\otimes 2}/T} \otimes N)\) equals \(at_{T^{\otimes 2}/T}(N)\). The multiplication map \(\mu_{T^{\otimes 2}/T} : P_{T^{\otimes 2}/T} \to T^{\otimes 2}\) equals \(\text{id}_T \otimes \mu_{T/S} : T \otimes_S P_{T/S} \to T^{\otimes 2}\). It follows that \(at_{T^{\otimes 2}/T}(N)\) maps to \(at_{T/S}(N)\) in \(\text{Ext}_T^1(N, \Omega_{T/S} \otimes N)\) by the natural map. If \(N = T\) then \(at_{T/S}(T) = 0\), but in general \(at_{T^{\otimes 2}/T}(T) \neq 0\).

Example 12.5. The transitivity sequence of \(A \to T \xrightarrow{\iota} \Gamma\) and \(J = 0\) the \(\Gamma\)-maps satisfied (12.5.3) in (12.5.2) suggests the following characterisation. An element \(\mathcal{D} \in \text{Der}_A(\Gamma, J)\) is given by its degree 0 restriction \(D := \iota^*(\mathcal{D}) \in \text{Der}_A(T, J_0)\) and its degree 1 restriction \(\nabla_D := \nabla_{\mathcal{D}} = \partial_{\mathcal{D}} \in \text{Hom}_A(N, J_1)\) which should follow the following Leibniz rule: For all \(t \in T\) and \(n \in N\)

\[(12.5.2) \quad \nabla_D(tn) = t\nabla_D(n) + D(t)n.
\]

With notation as in Proposition (12.2) recall that \(\kappa(\Gamma/S/A) = \partial(dS/A \otimes 1)\) in the transitivity sequence of \(A \to S \to \Gamma\):

\[(12.5.3) \quad 0 \to \text{Der}_S(\Gamma, \Omega S/A \otimes \Gamma) \to \text{Der}_A(\Gamma, \Omega S/A \otimes \Gamma) \to \text{Der}_A(S, \Omega S/A \otimes T) \xrightarrow{\partial} \text{Der}_A(S, \Omega S/A \otimes T) = 0.
\]

Hence \(\kappa(\Gamma/S/A) = 0\) if and only if there exists a \(D \in \text{Der}_A(T, \Omega S/A \otimes T)\) which restricts to \(dS/A \otimes 1\) and a \(\nabla_D \in \text{Hom}_A(N, S/\Lambda \otimes N)\) satisfying (12.5.2). As a well known special case \((S = T)\) we get \(at_{T/A}(N) = 0\) if and only if there exists a \(\nabla \in \text{Hom}_A(N, N \otimes T)\) satisfying (12.5.2) with \(D = dT/A \in \text{Der}_A(T, \Omega T/A)\) (i.e. \(\nabla\) is a connection), or equivalently, a graded derivation \(\mathcal{D} \in \text{Der}_A(\Gamma, \Omega T/A \otimes T)\) restricting to \(dT/A\). Note that (12.5.3) with \(J = \Omega T/A \otimes T\) equals (12.5.2) in this case.

Recall the maps of cohomology groups \(\sigma_j^1(I)\) and \(\tau_j^1(I)\) in (8.9.4) and (8.9.2).

Proposition 12.6. In addition to the assumptions in Lemma 8.9 suppose \(A \to S\) is a ring homomorphism. For \(j = 1, 2\) the following holds:

(i) The maps \(\sigma_j^1(\Omega S/A)\) takes \(\kappa(\Gamma_0/S/A)\) to \(\kappa(\Gamma_j/S/A)\) and the Kodaira-Spencer maps \(g^\Gamma : \text{Der}_A(S) \to \text{H}^1(S, \Gamma_1)\) commute with \(\sigma_j^1\), i.e. \(g^\Gamma \circ g^{\Gamma_0} = g^{\Gamma_j}\).

(ii) Assume \(\kappa(T/S/A) = 0\) and choose an \(S\)-algebra splitting \(\sigma : T \to \mathcal{O} \otimes T\).

Then \(\tau_j^1(\Omega S/A)\) maps \(\kappa(\sigma, N)\) to \(\text{Kod}(\sigma, X_1)\) and the Kodaira-Spencer maps \(g^{\sigma, X_1} : \text{Der}_A(S) \to \text{Ext}_T^1(X_1, X_1)\) commute with \(\tau_j^1\), i.e. \(g^{\sigma, X_1} \circ g^{\sigma, N} = g^{\sigma, X_1}\).

Proof. (i): Put \(\kappa_j = \kappa(\Gamma_j/S/A)\), \(\Omega = \Omega S/A\) and let \(\Gamma(i) : \Gamma_0 \to \Gamma_2\) denote the graded ring homomorphism induced from \(\iota\). Then \(\Gamma(i)\) induces a map of short exact sequences \(\kappa_0 \to \kappa_2\), hence a map of short exact sequences \(\Gamma(i)_* \kappa_0 \to \Gamma(i)_* \kappa_2\), i.e. \(\sigma_2(\Omega) = (\Gamma(i)^*)_* \kappa_0 = \kappa_2\). The maps \(\sigma_2(\Omega)\) and \(\sigma_2(S)\) commute with the covariant action of \(\text{Der}_A(S)\), hence the second assertion follows from the first. The arguments for the cases \(j = 1\) and (ii) are similar.

There are corresponding local Kodaira-Spencer maps given as follows. Let \(t \in \text{Spec} T\) map to \(s \in \text{Spec} S\) and consider the localisations \(S_p \to T_p\) and \(S_p \to \Gamma_p\),
and the induced map $A \to S_{p_s}$. The localisation map $0H^1(S, \Gamma, \Omega_{S_{p_s}/A} \otimes T, \Gamma)$ maps $\kappa(\Gamma/S/A)$ to $\kappa(\Gamma_{p_s}/S_{p_s}/A)$. Let $\tilde{\kappa}(\Gamma_{p_s}/S_{p_s}/A)$ denote the image in $0H^1(S_{p_s}, \Gamma_{p_s}, \Omega_{S_{p_s}/A} \otimes T, \Gamma(t))$ by the map induced from $\Gamma_{p_s} \to \Gamma_{p_s} \otimes T, k(s) = \Gamma(t)$. Assume that Γ_{p_s} is S_{p_s}-flat. Then the natural base change map

$$(12.6.1) \quad 0H^1(S_{p_s}, \Gamma(t), \Omega_{S_{p_s}/A} \otimes T, \Gamma(t)) \to 0H^1(S_{p_s}, \Gamma_{p_s}, \Omega_{S_{p_s}/A} \otimes T, \Gamma(t))$$

is an isomorphism, see [30 II 2.2]. With this identification we define $g^T(t)(D) := (fD \otimes \text{id}_{\Omega(t)}) \tilde{\kappa}(\Gamma_{p_s}/S_{p_s}/A)$ for any D in $\text{Der}_A(S_{p_s}, k(s))$ and obtain local Kodaira-Spencer maps at t of Γ, and (similarly) of T, respectively:

$$(12.6.2) \quad g^T(t) : \text{Der}_A(S_{p_s}, k(s)) \to 0H^1(k(s), T(t), T(t))$$

and

$$(12.6.3) \quad g^T(t) : \text{Der}_A(S_{p_s}, k(s)) \to 0H^1(k(s), T(t), T(t))$$

commuting with the natural map $0H^1(k(s), \Gamma(t), \Gamma(t)) \to 0H^1(k(s), T(t), T(t))$ in Proposition 5.8. Note that if A is an algebraically closed field then $\text{Der}_A(S_{p_s}, k(s))$ is canonically isomorphic to the Zariski tangent space at any closed point $s \in \text{Spec} S$.

Let \mathcal{P} and \mathcal{Q} denote $\mathcal{P}_{S_{p_s}/A}$ and $\Omega_{S_{p_s}/A}$ respectively. Assume $\Gamma = T \otimes \mathcal{N}$. As in the global case we get a graded algebra extension representing $\tilde{\kappa}(\Gamma_{p_s}/S_{p_s}/A)$ which in degree 1 is a short exact sequence $\tilde{\alpha}(t) : \Omega_{\mathcal{N}(t)} \to k(s) \otimes \mathcal{P} \otimes \mathcal{N}_{p_s} \to N(t)$. If $\tilde{\kappa}(\Gamma_{p_s}/S_{p_s}/A) = 0$ we choose an A-algebra splitting $\tilde{\sigma} : T(t) \to k(s) \otimes \mathcal{P} \otimes \Gamma_{p_s}$, and the local Kodaira-Spencer class $\tilde{\kappa}(\sigma, N_{p_s})$ in $\text{Ext}_{\Gamma(t)}^1(\mathcal{N}(t), \Omega \otimes N(t))$, is represented by the obtained short exact sequence of $(T(t))$-modules. Then we define the local Kodaira-Spencer map of $(\Gamma_{p_s}/S_{p_s}/A, \sigma, N_{p_s})$

$$(12.6.4) \quad g^{(\sigma, N)}(t) : \text{Der}_A(S_{p_s}, k(s)) \to \text{Ext}_{\Gamma(t)}^1(\mathcal{N}(t), \mathcal{N}(t))$$

by $g^{(\sigma, N)}(t)(D) := (fD \otimes \text{id}) \tilde{\kappa}(\sigma, N_{p_s})$.

Similarly, the class $g^T(t)(D)$ is represented by a lifting of graded algebras $T_{\sigma} \to \Gamma(t)$ along $k(s)[\varepsilon] \to k(s)$. If the lifting $g^T(t)(D) : T_{\sigma} \to T(t)$ splits, a choice of splitting makes the short exact sequence $\tilde{\alpha}(t)(D) : \varepsilon \mathcal{N}(t) \to N_{\Gamma(t)} \to \mathcal{N}(t)$ T-linear and defines $\tilde{\alpha}(t)(D)$ as an extension in the subspace $\text{Ext}_{\Gamma(t)}^1(\mathcal{N}(t), \mathcal{N}(t))$ of $\text{Ext}_{\mathcal{N}(t)}^1(\mathcal{N}(t), \mathcal{N}(t))$.

We assume that A is an algebraically closed field k for the rest of this section.

Definition 12.7. Let $h : S \to T$ be a local flat map of noetherian k-algebras and \mathcal{N} an S-flat T-module. Put $\Gamma = T \otimes \mathcal{N}$, $A = T \otimes S/k$, $N = N \otimes sk$ and $\Gamma(0) = \Gamma \otimes sk = T \otimes \mathcal{N}$, \mathcal{N}. We say that (h, \mathcal{N}) is locally modular if the local Kodaira-Spencer map $g^T(0) : \text{Der}_{k}(S,k) \to 0H^1(k, \Gamma(0), \Gamma(0))$ is injective. If in addition $T = S \otimes k A$ then \mathcal{N} is locally modular if $g^N(0) : \text{Der}_{k}(S,k) \to \text{Ext}_{A}^1(\mathcal{N}, \mathcal{N})$ is injective.

Let $h^N : S \to T$ be a faithfully flat finite type map of noetherian k-algebras with a k-point $t \in \text{Spec} T$ mapping to $s \in \text{Spec} S$ and \mathcal{N} an S-flat finite T-module. We say that (h^N, \mathcal{N}) is modular at t if the henselisation of (h^T, \mathcal{N}) at t is locally modular. If A is a finite type k-algebra and $T = S \otimes_\mathcal{N} A$, then \mathcal{N} is modular at t as T-module if its henselisation at t is locally modular. Let $\nabla(h, \mathcal{N}) (\nabla_T(\mathcal{N})$ if $T = S \otimes_\mathcal{N} A)$ denote the set of k-points $t \in \text{Supp}\mathcal{N}$ where (h, \mathcal{N}) (respectively \mathcal{N} as T-module) is modular.

Corollary 12.8. Let $h : S \to T$ be a finite type Cohen-Macaulay map of k-algebras and let \mathcal{N} be in mod_{h}^A. Let $\mathcal{N} \to \mathcal{L}^t \to \mathcal{M}$ and $\mathcal{L} \to \mathcal{M} \to \mathcal{N}^t$ be a D_{h}^B-hull and a MCMh-approximation for \mathcal{N} respectively.

(i) Suppose $\text{Hom}_{\Gamma(t)}(\mathcal{N}(t), \mathcal{M}(t)) = 0$ for all $t \in \text{m-Spec} T$ (e.g. there is an h-regular element contained in $\text{Ann}_{\Gamma}(\mathcal{N})$). Then

$$\nabla(h, \mathcal{N}) = \nabla(h, \mathcal{L}) \quad \text{and} \quad \nabla_T(\mathcal{N}) = \nabla_T(\mathcal{L}) \quad \text{if} \quad T = S \otimes_\mathcal{N} A.$$
(ii) Suppose $\text{Hom}_{T(t)}(\mathcal{L}(t), \mathcal{N}(t)) = 0$ for all $t \in m \cdot \text{Spec} \, T$. Then
\[\nabla(h, \mathcal{N}) = \nabla(h, \mathcal{M}) \quad \text{and} \quad \nabla_T(\mathcal{N}) = \nabla_T(\mathcal{M}) \quad \text{if} \quad T = S \otimes_k A. \]

Proof. (i) Let t be a k-point in $\text{Spec} \, T$. By Theorem 5.1, $\iota(t)$ is a $\mathfrak{D}_{T(t)}$-hull for $\mathcal{N}(t)$ and by Proposition 6.2, $\iota(t)$ is minimal if and only if ι_p is minimal. In particular, the minimal hull of \mathcal{N}_p is a direct summand of \mathcal{L}'_p. We therefore assume that ι_p and hence $\iota(t)$ is minimal.

By the condition, the map τ'_2 in (8.9.2) is injective. It implies that the map $\sigma'_2 : \mathcal{O}_1(k(s), \Gamma_0(t), \Gamma_0(t)) \to \mathcal{O}_1(k(s), \Gamma_2(t), \Gamma_2(t))$ in (8.9.1) is injective and Proposition 12.6 gives the statement. (ii) is similar. \hfill \Box

Example 12.9. Let A be a CM finite type k-algebra and domain of dimension ≥ 2. Let $h : A \to T = A^{\otimes 2}$ be the base change by $S = A$ and $\mathcal{N} \to A$ be the A-flat T-module defined by the multiplication map $T \to A$. Let $\Delta \subseteq \text{Spec} \, T$ denote the closed points on the diagonal and let t be a closed point in $\text{Spec} \, T$ mapping to s in $\text{Spec} \, A$. If $t \notin \Delta$ then $\mathcal{N}(t) = 0$. If $t \in \Delta$ then $T(t) \cong A_p$, and $\mathcal{N}(t) \cong k(s)$. The local Kodaira-Spencer class $\hat{\kappa}(\mathcal{N}(t)) \in \text{Ext}^1_{A_p}(k(s), \Omega_{A_p/k} \otimes k(s))$ is represented by

$$
\begin{array}{cccccc}
0 & \to & \Omega_{A_p/k} \otimes k(s) & \to & k(s) \otimes \mathcal{P}_{A_p/k} & \to & 0 \\
\vline & \downarrow & \vline & \downarrow & \vline & & \\
0 & \to & \frac{m}{\text{m}^2} & \to & A_{/\text{m}^2} & \to & k(s) \to 0
\end{array}
$$

(with $m = p_s$) where $\delta(x) = d_{A_p/k}(x) \otimes 1$ and χ is induced by $1 \otimes j_2$ (note that if $x, y \in m$ then $1 \otimes j_2(xy) = 1 \otimes ([j_2(x) - j_1(x)][j_2(y) - j_1(y)]) \in k(s) \otimes I^2$). The local Kodaira-Spencer map $g^\mathcal{N}(t)$ is given by the pushout

$$
\varphi \in \text{Hom}_{k(s)}(\frac{m}{\text{m}^2}, k(s)) \to \text{Ext}^1_{A_p}(k(s), k(s)) \ni \varphi \cdot \hat{\kappa}(\mathcal{N}(t))
$$

which is an isomorphism. By Corollary 12.8 we have $\nabla_T(\mathcal{N}) = \nabla_T(\mathcal{L}') = \Delta$. Put $\mathcal{Q}' = \text{Hom}_T(\omega_h, \mathcal{L}')$. By Proposition 9.7, also the local Kodaira-Spencer map $g^\mathcal{Q}'(t)$ is injective for $t \in \Delta$. Hence $\nabla_T(Q') = \Delta$. Note that $\mathcal{L}'(t)$ and $Q'(t)$ are rigid for $t \notin \Delta$.

Corollary 12.10. Suppose A is a finite type Cohen-Macaulay k-algebra and S a noetherian k-algebra and put $h : S \to T = S \otimes_k A$. Let $J = (f_1, \ldots, f_n)$ be an A-sequence, put $B = A/J$ and let $h : S \to T = S \otimes_k B$ be the induced Cohen-Macaulay map. Suppose \mathcal{N} is in $\text{MCM}_k \subseteq \text{mod}^0_B$ and let $\mathcal{L} \to \mathcal{M} \to \mathcal{N}$ be an MCM_k-approximation of \mathcal{N}. Assume $\text{ob}(T/(J^2)) \to T$, \mathcal{N} is 0. Then

$$
\nabla_T(\mathcal{N}) = \nabla_T(\mathcal{M}) \cap \text{Supp} \, T.
$$

Proof. By Proposition 8.7 there is a lifting $\mathcal{N}_1 \to \mathcal{N}$ of \mathcal{N} to $T_1 = T/(J^2)$. It induces liftings $\mathcal{N}_1(t) \to \mathcal{N}(t)$ for all k-points t in $\text{Supp} \, T$. The inclusion $\tau : \text{Ext}^1_{T_1(t)}(\mathcal{N}(t), \mathcal{N}(t)) \to \text{Ext}^1_{T(t)}(\mathcal{M}(t), \mathcal{M}(t))$ in (11.6.1) commutes with the local Kodaira-Spencer maps. Proceed as in the proof of Corollary 12.8. \hfill \Box

References

[1] Allen B. Altman and Steven L. Kleiman, *Compactifying the Picard scheme*, Adv. in Math. 35 (1980), no. 1, 50–112. MR 0555258 (81f:14025a) 14J25

[2] Michel André, *Homologie des algèbres commutatives*, Springer-Verlag, Berlin, 1974. Die Grundbegriffe der Mathematik, Band 206. MR 0354220 (50 #4707) 18H50

[3] M. Artin, *Algebraic approximation of structures over complete local rings*, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 23–58. MR 0268488 (42 #3087) 13H10 13H15

[4] Allen B. Altman and Steven L. Kleiman, *Versal deformations and algebraic stacks*, Invent. Math. 27 (1974), 165–189. MR 0689909 (53 #2945) 14L10 14S20
[5] Maurice Auslander, Lectures on deformations of singularities, Lectures on mathematics and physics, vol. 54, Tata Inst. of Fund. Res., Bombay, 1976, (notes by C. S. Seshadri and A. Tannenbaum).

[6] Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 861307 (87e:16010) 23

[7] Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) (1989), no. 38, 5–37, Colloque en l'honneur de Pierre Samuel (Orsay, 1987). MR 1044344 (91h:13010) 23

[8] Maurice Auslander, Songqing Ding, and Øyvind Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273–317. MR MR1216471 (94d:16007) 23

[9] Maurice Auslander and Idun Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152. MR 1097029 (92e:16009) 23

[10] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, second ed., Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1998. 23

[11] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 155 pages (unpublished), 1986. 23

[12] Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR MR1804902 (2002d:14025) 23

[13] Brian Conrad and A. J. de Jong, Approximation of versal deformations, J. Algebra 255 (2002), no. 2, 489–515. MR MR1935511 (2004a:14003) 23

[14] Songqing Ding, Cohen-Macaulay approximation and multiplicity, J. Algebra 153 (1992), no. 2, 271–288. MR MR1198202 (94c:13024) 23

[15] S. P. Dutta, On negativity of higher Euler characteristics, Amer. J. Math. 126 (2004), no. 6, 1341–1354. MR 2102398 (2005i:13035) 23

[16] Renée Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (1974). MR MR0345966 (49 #10692) 23

[17] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005, Grothendieck’s FGA explained. MR MR2222646 (2007f:14001) 23

[18] Alexander Grothendieck, SGA 2, With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original, Société Mathématique de France, Paris, 2005. MR 2171939 (2006f:14004) 23

[19] Alexander Grothendieck, SGA 3, With a preface and edited by Yves Laszlo, Revised reprint of the 1971 French original, Société Mathématique de France, Paris, 2005. MR 2171939 (2006f:14004) 23

[20] Alexander Grothendieck, SGA 4, With a preface and edited by Yves Laszlo, Revised reprint of the 1971 French original, Société Mathématique de France, Paris, 2005. MR 2171939 (2006f:14004) 23

[21] Trond Stålen Gustavsen and Runar Ile, The versal deformation space of a reflexive module on a rational cone, J. Algebra 279 (2004), no. 2, 613–637. MR MR2078932 (2005j:14001) 23

[22] Mitsuyasu Hashimoto, Auslander-Buchweitz approximations of equivariant modules, London Mathematical Society Lecture Note Series, vol. 282, Cambridge University Press, Cambridge, 2000. 23

[23] Mitsuyasu Hashimoto and Akira Shida, Some remarks on index and generalized Loewy length of a Gorenstein local ring, J. Algebra 187 (1996), no. 1, 150–162. MR MR1425563 (97m:13045) 23

[24] Alex Heller, The loop-space functor in homological algebra, Trans. Amer. Math. Soc. 96 (1960), 382–394. MR 0116045 (22 #6840) 23

[25] Jürgen Herzog and Alex Martsinovsky, Cohen-Macaulay modules with applications to quasihomogeneous complete intersections with isolated singularities, Comment. Math. Helv. 68 (1993), no. 3, 365–384. MR MR1236760 (94i:14006) 23

[26] Runar Ile, Deforming syzygies of liftable modules and generalized Knörrer functors, Collect. Math. 58 (2007), no. 3, 255–277. MR 2378668 (2008k:14006) 23

[27] Runar Ile, Stably reflexive modules and a lemma of Knudsen, 2011, arXiv:1110.3909 23

[28] Luc Illusie, Complexe cotangent et déformations. I, Springer-Verlag, Berlin, 1971, Lecture Notes in Mathematics, Vol. 239. MR MR0491680 (58 #10886a) 23

[29] Akira Ishii, Versal deformation of reflexive modules over rational double points, Math. Ann. 317 (2000), no. 2, 239–262. MR MR1764236 (2001i:14005) 23
32] Kiriko Kato, Cohen-Macaulay approximations from the viewpoint of triangulated categories, Comm. Algebra 27 (1999), no. 3, 1103–1126. MR MR1669120 (2000f:13021)

33] Jan O. Kleppe, Deformations of graded algebras, Math. Scand. 45 (1979), no. 2, 205–231. MR 580600 (82j:13017)

34] Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128–1162. MR MR2157133 (2006e:18019)

35] Alex Martinovsky, Cohen-Macaulay modules and approximations, Infinite length modules (Bielefeld, 1998), Trends Math., Birkhäuser, Basel, 2000, pp. 167–192. MR MR1789215 (2001i:13011)

36] Yoichi Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146. MR 852914 (87m:16055)

37] Rodney Y. Sharp, The construction of a module of finite projective dimension from a finitely generated module of finite injective dimension, Comment. Math. Helv. 50 (1975), 15–26. MR 0369344 (51 #5577)

38] Hartwig von Essen, Nonflat deformations of modules and isolated singularities, Math. Ann. 287 (1990), no. 3, 413–427. MR MR1060684 (91j:14007)

39] Yuji Yoshino and Satoru Isogawa, Linkage of Cohen-Macaulay modules over a Gorenstein ring, J. Pure Appl. Algebra 149 (2000), no. 3, 305–318. MR 1762777 (2001f:13018)