Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

Dolores Linde*, Rebecca Pogni†, Marina Catellas‡§, Fátima Lucas‡, Victor Guallar¶, Maria Camilla Baratto†, Adalgisa Sinicropi†, Verónica Sáez-Jiménez*, Cristina Coscolín*, Antonio Romero*, Francisco Javier Medrano*, Francisco J. Ruiz-Dueñas*† and Angel T. Martínez*‡

*Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
†Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
‡Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
¶Anaxomics Biotech, Balmes 89, E-08008 Barcelona, Spain
§ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain

Abstract: A computational, spectroscopic and site-directed mutagenesis study of a new DyP family, subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat > 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.

Key words: catalytic protein radical, dye-decolorizing peroxidase, EPR spectroscopy, molecular docking, QM/MM, site-directed mutagenesis.

INTRODUCTION

DyP (dye-decolorizing peroxidases) (EC 1.11.1.19) represent a new family of haem peroxidases widespread in bacteria, archaea, fungi and other micro-organisms [1–4]. Among those of fungal origin, the enzymes from Bjerkandera adusta [5–7] and Auricularia auricula-judae [8–10] have been crystallized and biochemically characterized as representative DyPs from two phylogenetically different basidiomycetes (in orders Polyporales and Agaricales respectively). The structures of bacterial DyPs were simultaneously solved [11–15]. B. adusta DyP was largely characterized as a recombinant protein [16,17], whereas A. auricula-judae DyP was isolated from fungal cultures [18]. The latter enzyme has recently been overexpressed in Escherichia coli as inclusion bodies, and a refolding protocol was optimized yielding a recombinant DyP with basically the same properties as those of wild-type DyP [19].

Xenobiotic anthraquinone-type dyes are the best-known substrates for DyPs. Among wood-rotting basidiomycetes, DyP genes are significantly more frequent in the sequenced genomes of white-rot (ligninolytic) than brown-rot species [20]. This fact and their reported capability to degrade non-phenolic lignin model dimers, although with much lower efficiency than white-rot fungal LiPs (lignin peroxidases) [8], suggest a possible contribution of fungal DyPs to lignin biodegradation. Similarly, lignin-degrading capabilities have been claimed for bacterial DyPs [21,22].

Both lignin polymer and substituted anthraquinone dyes, such as RB19 (Reactive Blue 19) (Supplementary Figure S1A), cannot easily access the buried haem cofactor in DyPs and other haem peroxidases. As an alternative for oxidation of these bulky substrates, LRET (long-range electron transfer) from radical-forming aromatic residues at the DyP surface has been suggested [9,23]. Surface residues at the origin of LRET routes were first reported in Phanerochaete chrysosporium LiP [24] and Pleurotus eryngii VP (versatile peroxidase) [25], and later identified in the sequences of many putative LiPs and VPs from genomes of lignin-degrading white-rot basidiomycetes [20].

Abbreviations: ABTS, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); DMP, 2,6-dimethoxyphenol; DyP, dye-decolorizing peroxidase; hfcc, hyperfine coupling constant; LiP, lignin peroxidase; LRET, long-range electron transfer; MM, molecular mechanics; NBS, N-bromosuccinimide; PELE, Protein Energy Landscape Exploration; QM, quantum mechanics; RB5, Reactive Black 5; RB19, Reactive Blue 19; TMM, tetranitromethane; VA, veratryl alcohol; VP, versatile peroxidase; WT, wild-type.

1 These authors contributed equally to this work.
2 To whom correspondence should be addressed (email fjruiz@cib.csic.es and ATMartinez@cib.csic.es).

The co-ordinates and structure factors for Y147S, D168N, W377S, Y147S/W377S and Y147S/G169L/W377S mutant dye-decolorizing peroxidases from Auricularia auricula-judae have been deposited in the PDB under codes 4W7K, 4W7L, 4W7M, 4W7N and 4W7O respectively.
Computational analyses can help to explain these LRET processes, requiring, however, the combination of different levels of theory [26]. Long-timescale processes, such as substrate binding, can only be accomplished through MM (molecular mechanics) methods, whereas electron transfer requires QM (quantum mechanics)-based methods, such as QM/MM [27]. The combination of these techniques was shown to be a successful approach in the study of oxidation and electron-transfer processes in haem proteins [28].

In the present study, we expressed *A. auricula-judae* DyP in *E. coli*, solved the crystal structure of the recombinant enzyme and several site-directed variants, and used PELE (Protein Energy Landscape Exploration) [29] to describe the binding of its typical substrate RB19. Subsequent QM/MM analyses of binding sites indicate a preference for substrate oxidation at an exposed tryptophan residue, and identified the LRET pathway to haem. Simultaneously, a mixed tryptophanyl/tyrosyl radical was detected by EPR spectroscopy of the H₂O₂-activated WT (wild-type) DyP. A combined multifrequency EPR and computational approach, together with site-directed mutagenesis studies, enabled the identification of both protein radical contributions. Moreover, we associated a high-turnover site in DyP to the presence of a tryptophanyl radical, in agreement with the QM/MM predictions. In this way, a multidisciplinary evaluation of the role of protein radicals in DyP catalysis is provided.

MATERIALS AND METHODS

Chemicals

Among DyP substrates, RB19, DMP (2,6-dimethoxyphenol), RB5 (Reactive Black 5) and VA (veratryl alcohol) were from Sigma–Aldrich, and ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] was from Boehringer Mannheim (see Supplementary Figures S1A–S1E respectively and the Supplementary Methods for other chemicals).

DyP production, activation and purification

The DNA sequence coding mature DyP-I from *A. auricula-judae* (GenBank® accession number JQ650250) [18] was synthesized (ATG:biosynthetics), expressed in *E. coli*, activated *in vitro*, and purified as described in [19] (see the Supplementary Methods for details).

Site-directed mutagenesis and chemical modification of DyP

Simple DyP variants were produced by PCR using the pET23a-DyPI vector harbouring the mature protein-coding sequence of *A. auricula-judae* DyP as a template. For each mutation, direct and reverse primers were designed. For double (or triple) mutations, the mutated vector for the first (or second) mutation was used as template. The pET23a-DyPI plasmids containing the mutations were digested with endonuclease DpnI and transformed into *E. coli* DH5α cells for propagation.

Tryptophan and tyrosine residues in 3 μM WT DyP and the W377S variant were also chemically modified using up to 0.3 mM NBS (N-bromosuccinimide) and up to 40 mM TNM (tetranirotetramethane) (including 2.6% ethanol) respectively [30]. Chemically modified enzymes were used for estimation of residual activity on RB19 (180 μM), DMP (7.5 mM), RB5 (15 μM) and ABTS (1.25 mM) (see the Supplementary Methods for PCR primers and conditions, and details on chemical modification).

Crystallization, data collection and refinement

Crystallization of WT DyP and five site-directed variants was optimized by the sitting-drop vapour-diffusion method. Crystals of WT DyP were obtained in 32.5% PEG 4000, and those of all the variants were obtained in PEG 2000 MME (30–35%). X-ray diffraction intensities were collected at the SOLEIL (Gyf-sur-Yvette, France) and ALBA (Barcelona, Spain) synchrotrons. The structure of WT DyP and its variants were solved by molecular replacement (see the Supplementary Methods for details; collection, refinement and final statistics are in Supplementary Table S1). Some of the structures did not show electron density for the first two or three residues at the N-terminus, but the whole sequence could be solved for two of them (PDB codes 4W7K and 4W7L). In contrast, the C-terminal region showed good electron density for all of the structures.

Enzyme kinetics

steady-state kinetic constants were determined from absorbance increases during oxidation of DMP, ABTS and VA at pH 3 (pH 2.5 for VA) measured using a Thermo Spectronic UV–visible spectrophotometer. Absorbance decreases were followed for RB5 and RB19 oxidation (assayed at pH 3 and pH 3.5 respectively) using the same equipment. Eventual changes of enzyme molecular mass after turnover were investigated by MALDI–TOF (see the Supplementary Methods for details). Plotting and analysis of kinetic curves were carried out with SigmaPlot (version 11.0). Apparent affinity, turnover number and catalytic efficiency were estimated by non-linear least-squares fitting to the Michaelis–Menten model. The catalytic efficiency for VA was estimated by linear regression, since no saturation was attained. Calculation of two sets of kinetic constants was performed by adjusting to the Michaelis–Menten model the data from 0.2–10 μM RB19, 4–60 μM DMP, and 0.2–7 μM ABTS, separately from those of 50–270 μM RB19, 200–800 μM DMP and 30–5000 μM ABTS.

Computational analyses: PELE, MD and QM/MM calculations

The starting structure (based on 4W7J) was prepared at pH 3.5, the optimal pH for RB19 oxidation, by adjusting the protonation state of ionizable residues. Histidine residues were double-protonated, except for His-304 (δ-protonated) and His-115 (ε-protonated), and several aspartic acids (residues 8, 12, 84, 129, 189, 246 and 270) and glutamic acids (residues 158, 220, 225 and 432) were kept in their acidic form. The RB19 atomic charges were derived from QM calculations (see the Supplementary Methods for details of system preparation). Then, RB19 was placed manually in 20 initial random positions on the protein surface and the protein–ligand conformational space was explored with PELE [29]. Results shown are based on 160 independent 48-h PELE simulations. Enhanced local sampling on Trp-377 was obtained with a 5 ns MD simulation allowing us to investigate the effect of solvent and charge fluctuations on the oxidative tendency of Trp-377 and RB19. QM/MM calculations were performed with QSite 5.7 (Schrödinger). Trp-377 LRET pathway calculations were performed with the QM/MM e-pathway approach [32] with His-304–Arg-311, Leu-323–Ala-325, Leu-373–Gln-375 and Asp-395 in the quantum region.
RESULTS AND DISCUSSION

Molecular structure: general fold and exposed aromatic residues

The crystal structure of A. auricula-judae WT DyP expressed in E. coli was solved at 1.79 Å (1 Å = 0.1 nm) resolution (PDB 4W7J), together with those of the Y147S, D168N, W377S, Y147S/W377S and Y147S/G169L/W377S variants (PDB codes 4W7K, 4W7L, 4W7M, 4W7N and 4W7O) solved at 1.05–1.40 Å resolution (Supplementary Table S1). The recombinant DyP is similar (0.48 Å RMSD, 1776 atoms) to the enzyme isolated from a fungal culture (PDB 4AU9). Moreover, most of the variants show crystal structures largely superimposable with that of WT DyP, except for the mutated residues.

The DyP structure is formed by two domains, each of them including two large β-sheets and two or three helices, with the haem cofactor in the upper part of the lower domain (cartoon coloured from the N- to the C-terminus, with the haem shown as CPK (Corey–Pauling–Koltun) sticks). (B and C) Location of exposed Trp-105, Tyr-147, Trp-207, Tyr-285, Tyr-337 and Trp-377 (as CPK spheres) in two different orientations of the DyP molecule (cartoon with the haem shown as CPK sticks). From PDB code 4W7J.

EPR spectroscopy and parameter calculations

CW (continuous wave) X-band (9.8 GHz) and W-band (94.17 GHz) experiments were recorded on Bruker Elexys spectrometers E500 and E600 respectively (see the Supplementary Methods for details). DyP (0.1 μM) activation was carried out using an enzyme/H₂O₂ molar ratio of 1:10 in tartrate, pH 3. H₂O₂ addition was done directly in the EPR tube for the X-band measurements, and the reaction time before freezing was less than 10 s. For the W-band measurements, the H₂O₂ addition was done before filling the EPR tube resulting in a longer freezing time for the sample. Spectra simulations were performed by the Easyspin 4.5.5 package using the 'Pepper' function [33]. Preparatory force field calculations were performed before QM/MM estimation of EPR magnetic parameters. The QM/MM calculations were performed with the MOLCAS 7.4 package [34] coupled with a modified version of the MM package Tinker 4.2. EPR magnetic parameters - g-tensors, hfcc (hyperfine coupling constant) values and Mulliken spin densities - were computed via single-point calculations on the optimized structures using the ORCA2.9 package (F. Neese, University of Bonn, Bonn, Germany). Details of the protocols used to compute the EPR parameters are reported by Bernini et al. [36,37].
Interestingly, ligninolytic peroxidases have none or only a few tyrosine residues in their sequences, a fact that has been considered as a protection against oxidative inactivation [46]. One remarkable exception is the \textit{Trametopsis cervina} LiP that has a tyrosine residue involved in catalysis [41]. In the molecular models of other LiPs and VPs isolated from fungi or identified from genomes [20], an exposed tryptophan acts as the oxidation site for high-redox-potential aromatics, dyes and polymeric lignin via LRET [47].

\textbf{Computational simulations: substrate binding (PELE) and LRET pathways (QM/MM)}

To identify the possible substrate binding site(s) in \textit{A. auricularia-}

\textit{judae} DyP, we performed 160 PELE [29] non-biased simulations, where the typical DyP substrate RB19 was free to explore the structure of the recombinant enzyme. These simulations (Figure 2A) show that RB19 encounters several favourable docking positions on the protein surface, with local minima close to Trp-105, Tyr-147/Tyr-337, Trp-207, Tyr-285 and Trp-377 sites, as well as in the haem channel entrance. Among them, Tyr-147, Tyr337 and Trp-377 are solvent-exposed, but Trp-105 and Tyr-285 are buried into the protein (Supplementary Figure S3) making their interaction with the dye substrate more difficult. It is important to keep in mind that, whereas simulations were performed with only one substrate molecule (see Supplementary Movie S1 for an example of the exploration), under \textit{in vitro} reaction conditions (with a large excess of substrate) multiple local minima might be populated to different extents. To address computationally which minimum will oxidize the substrate, we used QM/MM studies.

First, we performed a simple QM/MM pairwise comparison between Trp-377 and the other residues identified in the protein exploration with PELE, by including only the two selected residues in the quantum region, subtracting one electron and computing the spin density. There is a clear preference for Trp-377 to be oxidized over Trp-105, Tyr-285 and Tyr-337 (Supplementary Table S2). A comparison of Trp-207 and Trp-377 suggests that both residues could be oxidized. However, electron coupling exponentially decays with donor–acceptor distance and we can therefore exclude Trp-207 due to its large distance from the haem iron (Supplementary Figure S3). To investigate further the oxidation of Trp-377 and Tyr-337 by compound I, we performed new calculations where, in addition to these two residues, the haem was modelled as compound I and included
Dye-decolorizing peroxidase catalytic radical

Figure 3 QM/MM electron spin distribution on Trp-377 and Tyr-337 and RB19 substrate

(A) Total spin density when including Trp-377, Tyr-337 and haem compound I in the quantum region (in the absence of RB19). (B and C) Total spin density when, in addition to RB19 and compound I, the quantum region includes Trp-377 or Tyr-337 respectively. From PDB code 4W7J after 5 ns MD (A) and selected snapshots from two energy minima showing RB19 near Trp-377 and Tyr-337, during PELE [29] diffusion in Figure 2 (B and C respectively).

in the quantum region (Figure 3A). The total spin density at Trp-377 shows its preferential oxidation by compound I, validating the previous pairwise analysis, although some density was also observed at Tyr-337.

As a final step, substrate oxidation was investigated in new calculations where we added to the quantum region RB19 at the best PELE position for each of the two residues. Figure 3(B) shows the total spin density for a structure including the dye, the surface Trp-377 and the haem cofactor. Spin density depends on the local electrostatic environment (it was previously found that Trp-377 oxidation was 40% improved in the presence of a neighbouring Cl− ion). In agreement with these results, the presence of anionic RB19 enhances Trp-377 oxidation. Similarly, we investigated the possibility of RB19 oxidation in the Tyr-337 site (Figure 3C), where spin density in the tyrosine and substrate are observed. Nevertheless, the most favourable residue for substrate oxidation on the protein surface is Trp-377 and so even though other surface residues may act as potential oxidizing sites, these would have a minor participation in catalysis.

Finally, using QM/MM methods, we were able to map the important residues along the LRET pathway from WT DyP Trp-377 to the haem (Figure 4). This pathway would include a first 3.0 Å electron transfer between the Trp-377 side chain and the Pro-310/Arg-309 backbone, and a second one (2.9 Å) between the Arg-309 and Arg-306 carbonyls, followed by the Arg-306 to His-304 backbone to reach the haem iron (at only 2.2 Å from the His-304 side chain). The path depicted by the QM/MM e-pathway approach [32] used in the present study is more precise than that previously predicted for the same residue using simpler geometric methods [23].

Catalytic protein radicals: EPR detection in WT DyP and mutated variants

The EPR spectrum of the WT DyP resting state (Figure 5A, top) shows a ferric species prevalently in its axial high spin state ($g_\| = 2.0$). After adding 10 eq. of H2O2, a strong decrease in the ferric signal, and appearance of an intense protein radical signal are evident (Figure 5A, bottom) (the electronic absorption spectra of WT DyP, and the EPR and electronic absorption spectra of the D168N and R332L variants are described in the Supplementary Results and Supplementary Figures S4 and S5 respectively). The yield of the radical observed in the spectrum of the H2O2-activated WT DyP is estimated as 0.58 spin/haem. Expansion of the EPR spectrum (Figure 5B) shows the contributions from two radicals with different g-tensor anisotropy [48–50], high-frequency EPR spectra were recorded. The narrow scan of the 94 GHz EPR spectrum of H2O2-activated WT DyP shows the contributions from two radicals with different g-tensor anisotropy (Figure 5C). For a tryptophanyl radical, 94 GHz EPR (3.3 T) still does not represent the high-field
The experimental g-tensor component, phenoxyl radical. This identification was obtained by taking into account the experimental g-tensor component, phenoxyl radical.

The proof for Trp-377 being involved in the mixed protein radical was provided by the W377S variant. In the high-resolution scan of its 9 GHz EPR spectrum (Figure 5D, top), the tryptophanyl contribution observed for WT DyP (Figure 5B) completely disappeared (the spectrum of the W377S/Y147S variant, not shown, being nearly superimposable). The W377S spectrum (Figure 5D, top) shows a single line with hyperfine resolution at g = 2.0046(2). Simulation of this spectrum at X-band (Figure 5D, bottom) confirmed that it corresponds to a tyrosine phenoxyl radical. This identification was obtained by taking into account the experimental g-tensor component, \(g_{xx} = 2.0075 \) from the high-field EPR spectrum, and the hf-constant data from the simulated 9 GHz EPR spectrum. The \(\beta \)-protons’ hfccs agree well with the computed constants for Tyr-337 (Supplementary Table S3). Therefore this residue would be responsible for the tyrosyl contribution observed in WT DyP, mixed with the main Trp-377 radical contribution.

It had been claimed that Tyr-337 was responsible for substrate oxidation by A. auricula-judae DyP based on spin trapping and TNM modification (see below) results [9]. Although their redox potential is affected by pH and residue environment [51], tyrosyl radicals are less reactive than tryptophanyl radicals, as shown for P. eryngii VP whose W164Y variant lost activity on RB5 and VA [42]. In the present study, we confirm that Tyr-337 forms a radical during \(\text{H}_2\text{O}_2 \) activation of A. auricula-judae DyP, but this radical represents a relatively minor contribution of the mixed tryptophanyl/tyrosyl radical signal detected (and Tyr-337 is not catalytically relevant, as discussed below) in agreement with QM/MM spin calculations. Formation of a protein radical was also suggested for Rhodococcus jostii DyP [14]. Tryptophanyl and tyrosyl radicals have been identified in different redox enzymes [41,47,52], and it has been suggested that both could be involved in substrate oxidation by DyPs [9,10]. In the present study, we have detected directly, for the first time, a protein radical in a DyP, whose tryptophanyl and tyrosyl contributions were identified by a combined EPR multifrequency and computational approach.

Catalytic properties after chemical modification and site-directed mutagenesis

First, the effect of pH on DyP activity was analysed (Supplementary Figure S6) and the optimal values (pH 3.5 for RB19, pH 2.5 for VA, and pH 3.0 for DMP, ABTS and RB5) were used in subsequent studies. Acidic pH optima were already reported for A. auricula-judae DyP [19], and are also typical of lignin-degrading peroxidases (LiP and VP) [46,53]. It is interesting that a delay period was not observed in oxidation reactions with WT DyP, and its W377S variant described below, which showed identical reaction traces and MALDI–TOF molecular masses with/without treatment with VA and \(\text{H}_2\text{O}_2 \) (Supplementary Figures S7A and S7B). This permits us to rule out in DyP an activation mechanism similar to that of T. cervina LiP, which enabled a tyrosine residue to oxidize high-redox-potential substrates after forming a reactive adduct with VA [54].

In a first approach for residue modification, A. auricula-judae DyP (3 \(\mu \)M) was treated with NBS, which oxidizes the tryptophan ring to oxindole [55], and TNM, which nitrates the phenolic ring of tyrosine [56]. Near 90% activity on the four substrates assayed was removed when NBS (up to 300 \(\mu \)M) was used (Figure 6A). This confirms that most DyP activity is associated with tryptophanyl residue(s), whereas less than 15% would be due to a different site(s). Similar TNM concentrations did not affect DyP activity, but a partial decrease was observed when a 200-fold higher concentration was used (Figure 6B, white symbols). This indicates that some tyrosine residue(s) contribute (directly or indirectly) to substrate oxidation by DyP, although to a lower extent than the tryptophan residue(s). Additional experiments analysed the effect of chemically modifying tyrosine residues on the very-low-activity W377S variant described below (Figure 6B, black symbols). Although activity decrease with some substrates (such as RB19) was observed, the activity with others (such as ABTS) was only slightly reduced, indicating that, in these cases, residues other than tyrosine residues (or maybe the haem cofactor) are involved.

An interesting initial observation, when analysing the kinetics of DyP oxidations, was the bimodal curves obtained for most substrates (Figure 7A, regions a and b). Similar sigmoidal kinetic curves were recently reported for DyP [19], and previously for P. eryngii VP [57]. Such curves enable calculation of two sets of constants (Table 1) and reveal the existence of, at least, two oxidation sites for the same substrate. The a and b sites in A. auricula-judae DyP are characterized by a high turnover \((k_{\text{cat}}) \) with low apparent affinity (as shown by the \(K_m \) values), and a low turnover with high apparent affinity respectively. The kinetic
constants obtained show that the *A. auricula-judae* DyP is very efficient at oxidizing RB19 and ABTS dyes. However, it has lower catalytic efficiencies on DMP and RB5, and extremely low activity on VA. Finally, no Mn$^{2+}$ oxidation activity was observed, as reported for bacterial DyPs [14, 15].

Then, the exposed aromatic residues identified in PELE and QM/MM simulations were substituted to verify their eventual involvement in catalysis (information on the effect of mutating haem pocket residues is provided in the Supplementary Results). Aromatic residues were changed to serine in the simple W377S, Y147S and Y337S variants (the latter with low refolding yield). The double variant combining the last two mutations could not be refolded, but Y147F/Y337F could be obtained. Since the haem-access channel was also identified as a possible RB19-binding site (Figure 2A), the G169L variant was also obtained, whose leucine side chain completely blocks the haem-access channel, as shown in the crystal structure of a variant including the G169L mutation, compared with the WT DyP (Supplementary Figures S2B and S2A respectively).

The two sets of constants for oxidation of RB19, DMP and ABTS, and a single set for RB5 and VA, by the above five variants are shown in Table 1. The Y285F variant was also analysed, but no significant modification of the RB19 constants was observed. As a main conclusion, Trp-377 appears responsible for the high-turnover catalytic site, since its substitution (W377S variant) completely prevented high-turnover oxidation of RB19 and DMP (and decreased over 40-fold the catalytic efficiency of high-turnover ABTS oxidation). In contrast, similar Tyr-337 and Tyr-147 variants (and the double Y147F/Y337F variant) only slightly affected substrate oxidation, and did not remove the high-turnover site.

The above results are illustrated in Figures 7(A)–7(C), where kinetic plots for RB19 oxidation by WT DyP, and several tryptophan (W377S) and tyrosine (Y147S, Y337S and Y147F/Y337F) variants are shown respectively. It is observed that the DyP low-turnover site (Figure 7A, region b), remaining after Trp-377 removal (Figure 7B), does not correspond to Tyr-147 or Tyr-337, since changing these residues does not significantly affect the enzyme kinetics (Figure 7C). However, the disappearance of the low-turnover site in the G169L variant (Figure 7D, inset) suggests that this site involves the haem-access channel (although a decrease of the maximal turnover was also observed). Similar results were obtained for ABTS oxidation (Table 1), but the situation could be more complicated for DMP, suggesting that a third, still unidentified, site participates in oxidation of phenols by *A. auricula-judae* DyP. Finally, none of the mutations caused noticeable changes in oxidation of VA, which was highly inefficient in all cases, although Trp-377 appears to be the main residue involved.

A global view of substrate oxidation sites in the *A. auricula-judae* and other basidiomycete DyPs

The enzyme kinetics reveal the existence of at least one high-turnover and one low-turnover oxidation site in *A. auricula-judae* DyP. Site-directed mutagenesis showed that high-turnover oxidation of RB19 and other substrates by DyP takes place at the same tryptophan residue (Trp-377), identified previously as forming a protein radical. This agrees with an 85–100% decrease in enzyme activity after modifying tryptophan residues with 0.2 mM NBS, and contrasts with the absence of a significant effect reported previously [9]. This discrepancy is probably due to the low NBS concentration used in the latter study. Modification of tyrosine residues with comparatively high TNM concentrations (40 mM) partially decreased (10–25%) the activity of DyP, as reported previously for the enzyme purified from a fungal culture [23]. However, this does not seem to be due to modification of Tyr-337 (or contiguous Tyr-147) since the enzyme activity was practically unaffected after site-directed mutagenesis of these two residues. A possibility suggested by favourable RB19 docking by PELE is low-turnover oxidation at the DyP haem channel. Interestingly, the *B. adusta* DyP has been crystallized with DMP occupying the entrance of a second channel near the haem propionates [7]. This channel does not exist in the *A. auricula-judae* DyP. Finally, none of the oxidations were efficiently catalysed by the low-turnover site in the G169L variant.

The two aromatic residues forming the mixed tryptophan/tyrosyl radical in the H$_2$O$_2$-activated DyP of *A. auricula-judae* (Trp-377 and Tyr-337) are not a peculiarity of this enzyme,
Figure 7 Kinetics for RB19 oxidation by WT DyP and different variants

(A) WT DyP biphasic kinetics enabling calculation of two sets of constants in the 0.2–10 μM (b) and 50–270 μM (a) ranges (inset with Lineweaver–Burk inverse representation for the high, a, and low, b, turnover sites). (B) Simple kinetics yielding a single set of constants (inset, inverse representation) for the W377S variant. (C) Results from Y147S (squares), Y337S (diamonds) and Y147F/Y337F (triangles) variants yielding kinetic curves superimposable with that of WT DyP (circles). (D) Simple kinetics yielding a single set of constants (inset, inverse representation) for the G169L variant. A substrate concentration logarithmic scale is used in the main plots.

Table 1 Steady-state kinetic constants of WT DyP and five site-directed variants

Substrate	WT DyP	W377S	Y147S	Y337S	Y147F/Y337F	G169L
RB19 (high turnover)	\(K_n\) 90 ± 10	95 ± 24	83 ± 3	130 ± 30	10 ± 3	
\(k_{cat}\) 224 ± 10	175 ± 24	240 ± 47	220 ± 47	106 ± 9		
\(k_{cat}/K_n\) 240 ± 180	1860 ± 300	2700 ± 400	1680 ± 170	12400 ± 3000		
RB19 (low turnover)	\(K_n\) 14.0 ± 2.0	3.9 ± 0.6	6.4 ± 0.8	7.4 ± 2.3	5.8 ± 0.8	
\(k_{cat}\) 3.2 ± 3.0	8.9 ± 0.6	26.0 ± 6.1	26.0 ± 1.9	18.0 ± 1.9		
\(k_{cat}/K_n\) 2230 ± 200	2240 ± 240	4070 ± 640	3370 ± 350	3200 ± 200		
DMP (high turnover)	\(K_n\) 703 ± 61	763 ± 70	2840 ± 300	4720 ± 460	353 ± 41	
\(k_{cat}\) 120 ± 3	0	71 ± 2	228 ± 18	216 ± 7		
\(k_{cat}/K_n\) 200 ± 18	0	93 ± 7	80 ± 1.1	46 ± 3		
DMP (low turnover)	\(K_n\) 6.0 ± 0.5	3560 ± 250	38.0 ± 0.4	3.1 ± 0.6	9.7 ± 0.1	
\(k_{cat}\) 8.0 ± 0.2	6.4 ± 0.1	15.0 ± 0.9	6.4 ± 0.3	3.9 ± 0.1		
\(k_{cat}/K_n\) 1530 ± 100	1.8 ± 0.1	397 ± 41	2730 ± 520	5000 ± 1000		
ABTS (high turnover)	\(K_n\) 1217 ± 7	2750 ± 470	366 ± 30	239 ± 29	173 ± 21	
\(k_{cat}\) 224 ± 3	171 ± 15	311 ± 13	288 ± 10	286 ± 7.2		
\(k_{cat}/K_n\) 1850 ± 94	62 ± 1	850 ± 80	1200 ± 70	1650 ± 180		
ABTS (low turnover)	\(K_n\) 3.1 ± 1.1	30.0 ± 0.5	20.0 ± 0.6	2.0 ± 0.2	17.0 ± 3.6	
\(k_{cat}\) 7.4 ± 1.4	14.0 ± 1.0	21.0 ± 4.0	2.3 ± 0.3	21.0 ± 6.0		
\(k_{cat}/K_n\) 2370 ± 420	472 ± 61	1010 ± 100	1100 ± 100	1260 ± 120		
RB5	\(K_n\) 15.6 ± 2.0	10.6 ± 1.0	15.9 ± 1.7	13.4 ± 1.7	39.0 ± 6.9	
\(k_{cat}\) 4.8 ± 0.2	0.70 ± 0.02	8.3 ± 0.6	5.2 ± 0.3	9.1 ± 2.6		
\(k_{cat}/K_n\) 310 ± 20	68 ± 4	525 ± 230	400 ± 29	233 ± 20		
VA	\(K_n\) NS	7360 ± 1270	NS	NS	NS	
\(k_{cat}\) 0.032 ± 0.003	0.101 ± 0.005	0.079 ± 0.011	0.095 ± 0.002	0.130 ± 0.006		
but they are significantly conserved among basidiomycete DyPs (Supplementary Figure S8). Among the 65 DyP sequences compared, 58 include a tryptophan residue homologous with Trp-377, and 48 include a tyrosine residue homologous with Tyr-337 (whereas the neighbour Tyr-147 is only conserved in 14 sequences). Therefore the presence of exposed aromatic residues able to form catalytic radicals appears as a common characteristic of basidiomycete, and probably other, DyPs. Although involvement of tyrosyl radicals in oxidation of bulky dyes by DyP has been compared recently with oxidation of recalcitrant aromatics by tryptophanyl radicals in ligninolytic classical peroxidases [4], the results of the present study suggest that tryptophanyl radicals are mainly responsible for substrate oxidation by these two phylogenetically unrelated peroxidase types.

AUTHOR CONTRIBUTION
Dolores Linde and Cristina Coscollola performed most of the experimental biochemical work. Rebecca Pogni, Verónica Sáez-Jiménez, Maria Camilla Baratto and Adalgisa Sinicropi contributed EPR experiments and parameter calculations, simulations and interpretations. Francisco Javier Medrano and Antonio Romero contributed EPR experiments and parameter calculations, simulations and interpretations. Rebecca Pogni, Verónica Sáez-Jiménez, Maria Camilla Baratto and Adalgisa Sinicropi contributed data integration and writing.

ACKNOWLEDGEMENTS
We thank the staff of the SOLEIL (Gyf-sur-Yvette, France) and ALBA (Barcelona, Spain) synchrotrons, and the CSC (Barcelona, Spain) computational facilities. The MALDI–TOF analyses were carried out at the CIB Proteomics facility, a member of the Spanish ProteoRed-ISCIII network.

FUNDING
This work was supported by the INDOXY [grant number KBBE-2013-7-613549] and PELE [grant number ERC-2009-Agd 25027] European Union projects, by projects of the Spanish Ministry of Economy and Competitiveness (MINECO) respectively. The INDOXY and PELE projects are partly funded by the CP-12-0015-SP/RED/2012 fund from the Spanish Ministry of Economy and Competitiveness (MINECO) respectively.

REFERENCES
1 Sugano, Y. (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol. Life Sci. 66, 1387–1403 CrossRef PubMed
2 Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C. and Lundell, T. (2010) New and classic families of secreted fungal peroxides. Appl. Microbiol. Biotechnol. 87, 681–697 CrossRef PubMed
3 Ruiz-Dueñas, F.J. and Martinez, A.T. (2010) Structural and functional features of peroxidases with a potential as industrial biocatalysts. In Biocatalysts Based on Heme Proteins. ACS Chem. Biol. 5, 508–519 CrossRef PubMed
4 Colpa, D.I., Fraaije, M.W. and van Bloois, E. (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J. Ind. Microbiol. Biotechnol. 41, 1–7 CrossRef PubMed
5 Kim, S.J. and Shoda, M. (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 65, 1029–1035 PubMed
6 Sugano, Y., Muramatsu, R., Ichiyanagi, A., Sato, T. and Shoda, M. (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. Asp167 replaces the distal histidine of classical peroxidases. J. Biol. Chem. 282, 36652–36658 CrossRef PubMed
7 Yoshida, T., Tsuge, H., Hisabori, T. and Sugano, Y. (2012) Crystal structures of dye-decolorizing peroxidases with ascorbic acid and 2,6-dimethylphenol. FEBs Lett. 586, 4351–4356 CrossRef PubMed
8 Liers, C., Pecyna, M.J., Kellner, H., Worrich, A., Zorn, H., Steffen, K.T., Hofrichter, M. and Ullrich, R. (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl. Microbiol. Biotechnol. 87, 5839–5849 CrossRef
9 Shrittmüller, E., Liers, C., Ullrich, R., Wachter, S., Hofrichter, M., Plattner, D.A. and Piontek, K. (2013) First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase: substrate interaction sites and long-range electron transfer. J. Biol. Chem. 288, 4095–4102 CrossRef PubMed
10 Liers, C., Aranda, E., Shrittmüller, E., Piontek, K., Plattner, D.A., Zorn, H., Ullrich, R. and Hofrichter, M. (2014) Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J. Mol. Catal. B Enzym. 103, 41–46 CrossRef
11 Zubieta, C., Joseph, R., Krishna, S.S., McMullan, D., Kapoor, M., Axelrod, H.L., Miller, M.D., Abudube, P., Acosta, C., Astakhova, T. et al. (2007) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, Tyra. Proteins 69, 234–245 CrossRef PubMed
12 Zubieta, C., Krishna, S.S., Kapoor, M., Kobial, P., McMullan, D., Axelrod, H.L., Miller, M.D., Abudube, P., Ambeng, E., Astakhova, T. et al. (2007) Crystal structures of two novel dye-decolorizing peroxidases reveal a β-barrel fold with a conserved heme-binding motif. Proteins 69, 223–233 CrossRef PubMed
13 Liu, X.H., Du, O., Wang, Z., Zhu, D.Y., Huang, Y., Li, N., Wei, T.D., Xu, S.J. and Gu, L.C. (2011) Crystal structure and biochemical features of ElekYcdB from Escherichia coli O157: A祂13 plays divergent roles in different enzyme-catalyzed processes. J. Biol. Chem. 286, 14922–14931 CrossRef PubMed
14 Roberts, J.N., Singh, R., Grigg, J.C., Murphy, M.E.P., Bugg, T. D. H. and Eltis, L.D. (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry 50, 5108–5119 CrossRef PubMed
15 Brown, M.E., Barros, T. and Chang, M.C.Y. (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem. Biol. 7, 2074–2081 CrossRef PubMed
16 Sugano, Y., Nakano, R., Sasaki, K. and Shoda, M. (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl. Environ. Microbiol. 66, 1754–1758 CrossRef PubMed
17 Sugano, Y., Ishii, Y. and Shoda, M. (2004) Role of H184 in a unique dye-decolorizing heme peroxidase DyP. Biochem. Res. Commun. 322, 126–132 CrossRef PubMed
18 Liers, C., Bobeth, C., Pecyna, M., Ullrich, R. and Hofrichter, M. (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl. Microbiol. Biotechnol. 85, 1669–1679 CrossRef PubMed
19 Linde, D., Coscollola, C., Liers, C., Hofrichter, M., Martinez, A.T. and Ruiz-Dueñas, F.J. (2014) Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr. Purif. 103, 28–37 CrossRef PubMed
20 Fleuraud, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Martin, M. T., Dillar, R., Spatola, J.W., Yeadon, J.S. et al. (2012) The Paleozic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 CrossRef PubMed
21 Ahmad, M., Roberts, J.N., Hardiman, E.M., Singh, R., Eltis, L.D. and Bugg, T. D. H. (2011) Identification of DyP8 from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50, 5096–5107 CrossRef PubMed
22 Brown, M.E. and Chang, M.C.Y. (2014) Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 CrossRef PubMed
23 Shrittmüller, E., Wachter, S., Liers, C., Hofrichter, M., Plattner, D.A. and Piontek, K. (2013) Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch. Biochem. Biophys. 537, 161–167 CrossRef PubMed
24 Doyle, W.A., Bledig, W., Veith, N.C., Piontek, K. and Smith, A.T. (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37, 15097–15106 CrossRef PubMed
25 Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Bassoli, R., Choinowski, T., Martinez, M.J., Piontek, K. and Martinez, A.T. (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J. Mol. Biol. 354, 386–402 CrossRef PubMed
26 Wallrapp, F., Voityuk, A.A. and Guallar, V. (2011) In-silico assessment of protein–protein electron transfer. A case study: cytochrome c peroxidase – cytochrome c. PLoS Comput. Biol. 9, e1002990 CrossRef PubMed
27 van der Kamp, M.W. and Mulholland, A.J. (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52, 2708–2728 CrossRef PubMed
28 Guilar, V. and Wallrapp, F.H. (2010) QM/MM methods: looking inside heme proteins. Biochim. Biophys. Acta. 1499, 1–11 CrossRef PubMed

29 Borrelli, K.W., Vitalis, A., Alcantara, R. and Guilar, V. (2005) PELE: Protein Energy Landscape Exploration: a novel Monte Carlo based technique. J. Chem. Theory Comput. 1, 1304–1311 CrossRef

30 Miki, Y., Ichinose, H. and Wariishi, H. (2011) Determination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques. Biotechnol. Lett. 33, 1423–1427 CrossRef PubMed

31 Reference deleted

32 Guilar, V. and Wallrapp, F.H. (2008) Mapping protein electron transfer pathways with QM/MM methods. J.R. Soc. Interface 5, S233–S239 CrossRef PubMed

33 Stoll, S. and Schweiger, A. (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 CrossRef PubMed

34 Aquilante, F., De Vico, L., Ferre, N., Ghigo, G., Malmarsh, P.A., Neogrady, P., Pedersen, T.B., Pitiak, M., Reihl, M., Roso, B.O. et al. (2010) Software news and update MOLCAS 7: the next generation. J. Comput. Chem. 31, 224–247 CrossRef PubMed

35 Reference deleted

36 Bernini, C., Pogni, R., Ruiz-Dueñas, F.J., Martínez, A.T., Basosi, R. and Sinicropi, A. (2011) EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164 variant computed at the QM/MM level. Phys. Chem. Chem. Phys. 13, 5078–5098 CrossRef PubMed

37 Bernini, C., Andruniow, T., Olivucci, M., Pogni, R., Basosi, R. and Sinicropi, A. (2013) Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin. J. Am. Chem. Soc. 135, 4822–4833 CrossRef PubMed

38 Goblirsch, B., Kurker, R.C., Streit, B.R., Wilmot, C.M. and Dubois, J.L. (2011) Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J. Mol. Biol. 408, 379–398 CrossRef PubMed

39 Hofbauer, S., Schafner, I., Furtmuller, P.G. and Obinger, C. (2014) Chlorite dismutases: a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnol. J. 9, 461–473 CrossRef PubMed

40 Wellinder, K.G. (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388–393 CrossRef

41 Miki, Y., Calvillo, F.R., Pogni, R., Giancanti, S., Ruiz-Dueñas, F.J., Martínez, M.J., Basosi, R., Romero, A. and Martinez, A.T. (2011) Crystallographic, kinetic, and spectroscopic study of the first ligninolytic peroxidase presenting a catalytic tyrosine. J. Biol. Chem. 286, 15525–15534 CrossRef PubMed

42 Ruiz-Dueñas, F.J., Pogni, R., Morales, M., Giancanti, S., Mate, M.J., Romero, A., Martinez, M.J., Basosi, R. and Martinez, A.T. (2009) Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both Compound I and Compound II and studies on W164Y, W164H and W164S variants. J. Biol. Chem. 284, 7986–7994 CrossRef PubMed

43 Smith, A.T., Doyle, W.A., Dorief, P. and Iavicci, A. (2009) Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc. Natl. Acad. Sci. U.S.A. 106, 16084–16089 CrossRef PubMed

44 Pogni, R., Baratto, M.C., Teutloft, C., Giancanti, S., Ruiz-Dueñas, F.J., Choinowski, T., Piontek, K., Martinez, A.T., Lendzian, F. and Basosi, R. (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multi-frequency EPR and DFT study. J. Biol. Chem. 281, 9517–9526 CrossRef PubMed

45 Pogni, R., Baratto, M.C., Giancanti, S., Teutloft, C., Verdín, J., Valderama, B., Lendzian, F., Lubitz, W., Vázquez-Dahall, R. and Basosi, R. (2005) Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44, 4267–4274 CrossRef PubMed

46 Martinez, A.T. (2002) Molecular biology and structure–function of lignin–degrading heme peroxidases. Enzyme Microb. Technol. 30, 425–444 CrossRef

47 Ruiz-Dueñas, F.J., Morales, M., Garcia, E., Miki, Y., Martinez, M.J. and Martinez, A.T. (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J. Exp. Bot. 60, 441–452 CrossRef PubMed

48 Jeschke, G. (2005) EPR techniques for studying radical enzymes. Biochim. Biophys. Acta 1787, 51–102 CrossRef PubMed

49 Bleifuss, G., Kollberg, M., Potzsch, S., Hofbauer, W., Bittl, R., Lubitz, W., Graslund, A., Lassmann, G. and Lendzian, F. (2001) Tryptophan and tyrosine radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. Biochemistry 40, 15362–15368 CrossRef PubMed

50 Svistunenko, D.A., Dunne, J., Fryer, M., Nicholls, P., Reeder, B.J., Wilson, M.T., Bigotti, M.G., Cutruzzola, F. and Cooper, C.E. (2002) Comparative study of tyrosine radicals in hemoglobin and myoglobin treated with hydrogen peroxide. Biochem. J. 383, 2845–2855 CrossRef PubMed

51 Warren, J.J., Winkler, J.R. and Gray, H.B. (2012) Redox properties of tyrosine and related molecules. FEBS Lett. 586, 596–602 CrossRef PubMed

52 Stubbe, J. and Der Donk, W.A. (1998) Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 CrossRef PubMed

53 Fernández-Fueyo, E., Ruiz-Dueñas, F.J. and Martínez, A.T. (2014) Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnol. Biofuels 7, 1 CrossRef PubMed

54 Miki, Y., Pogni, R., Acebes, S., Lucas, F., Fernández-Fueyo, E., Baratto, M.C., Fernández, M.I., de los Ríos, V., Ruiz-Dueñas, F.J., Sinicropi, A. et al. (2013) Formation of a tyrosine adduct involved in lignin degradation by Trametes versicolor lignin peroxidase: a novel peroxidase activation mechanism. Biochem. J. 452, 575–584 CrossRef PubMed

55 Spande, T.F., Green, N.M. and Wilkop, B. (1966) Reactivity toward N-bromosuccinimide of tryptophan in enzymes zymogens and inhibited enzymes. Biochemistry 5, 1926–1933 CrossRef PubMed

56 Sokolovskiy, M., Riordan, J.F. and Valece, B.L. (1966) Tetratinomethane: a reagent for nitration of tyrosyl residues in proteins. Biochemistry 5, 3582–3589 CrossRef PubMed

57 Morales, M., Mate, M.J., Romero, A., Martínez, M.J., Ortez and Ruiz-Dueñas, F.J. (2012) Two oxidation sites for low redox-potential substrates: a directed mutagenesis, kinetic and crystallographic study on Pleurotus eryngii versatile peroxidase. J. Biol. Chem. 287, 41053–41067 CrossRef PubMed