Identities on the k-ary Lyndon words related to a family of zeta functions
Irem Kucukoglu1,a and Yilmaz Simsek1,b
aikucukoglu@akdeniz.edu.tr
bysimsek@akdeniz.edu.tr
1Department of Mathematics, Faculty of Science University of Akdeniz
TR-07058 Antalya, Turkey

Abstract

The main aim of this paper is to investigate and introduce relations between the numbers of k-ary Lyndon words and unified zeta-type functions which was defined by Ozden et al.\[15, p. 2785, Definition 3\]. Finally, we give some identities on generating functions for the numbers of k-ary Lyndon words and some special numbers and polynomials such as the Apostol-Bernoulli numbers and polynomials, Frobenius-Euler numbers, Euler numbers and Bernoulli numbers.

2010 Mathematics Subject Classification: 03D40, 05A05, 05A15, 11A25, 11B68, 11B83, 11F22, 11S40, 11M99, 68R15, 94B40.

Keywords: Lyndon words, Generating functions, Special numbers, Special polynomials, Arithmetical functions, Hurwitz-Lerch zeta functions, Apostol-Bernoulli numbers and polynomials, Frobenius-Euler numbers, Euler numbers, Bernoulli numbers.

1 Introduction

Throughout this paper, we consider the number of k-ary Lyndon words of length n, $L_k(n)$ as follows [4]:

$$L_k(n) = \frac{1}{n} \sum_{d|n} \mu(n/d) k^d,$$

where the arithmetic function μ is the Möbius function defined as follows [2]:

$$\mu(1) = 1; \quad \mu(n) = (-1)^k \quad \text{if } a_1 = a_2 = \ldots = a_k = 1,$$

that is, if n is the product of k distinct primes,

$$\mu(n) = 0 \quad \text{if } n \text{ is the product of non distinct primes}.$$

In [12], Lyndon words are studied as standard lexicographic sequences. According to [3, p. 36], a k-ary necklace is an equivalence class of k-ary strings under rotation. As a representative of such an equivalence class which is taken the smallest in the lexicographical order. A period n necklace representative with n digits is called a Lyndon word.
In addition to counting \(k \)-ary Lyndon words of length \(n \), Equation (1) is well known as Witt’s formula which is used to count the number of monic irreducible polynomials of degree \(n \) over Galois field (cf. [3]) and As we mentioned previously in [10], it is know that there are really interesting connections between this formula and dimension formula for the homogeneous subspaces of the free Lie algebra (cf. [3], [8], [18]) and the rank of the free abelian quotient (cf. [29], [12]). Furthermore, it is also called necklace polynomial (cf. [13]). For further information about \(L_k(n) \) and table including numerical values of \(L_k(n) \), the reader can consult [10], its references and also the references cited in each of these earlier works.

In [10], the authors gave the following explicit formula for the numbers of \(L_k(p) \) for \(p \) is a prime number, \(m \in \mathbb{N} \):

\[
L_k(p^m) = \frac{k^{p^{m-1}} \left(k^{p^{m-1}(p-1)} - 1\right)}{p^m}.
\]

In [10], the authors defined ordinary generating functions for the numbers of \(k \)-ary Lyndon words of prime length \(p \), \(L_k(p) \) for prime \(p \), as follows:

Let \(p \) is a prime number and \(m = 1 \) in the special case of Equation (2)

\[
f_L(t, p) = \sum_{k=1}^{\infty} L_k(p) t^k = \frac{1}{p} \sum_{k=2}^{\infty} (k^p - k) t^k,
\]

(\text{cf. [10]}). However, we modify (3) as follows:

\[
f_{L_y}(t, p) = \sum_{k=0}^{\infty} L_k(p) t^k.
\]

2 Relation between \(f_{L_y}(t, p) \) and a family of zeta functions

In this section, our aim is to give some identities on the generating functions for the numbers of \(k \)-ary Lyndon words of length prime related a family of zeta-type function, the Apostol-Bernoulli numbers and polynomials, Frobenius-Euler numbers and Euler numbers.

The Apostol-Bernoulli numbers, \(B_k(z) \) are defined by means of the following generating functions:

\[
\frac{t}{ze^t - 1} = \sum_{k=0}^{\infty} \frac{B_k(z)}{k!} t^k,
\]

(\text{cf. [7]}). The Apostol Benoulli polynomials, \(B_k(x, z) \) are also defined by means of the following generating functions:

\[
\frac{te^{zt}}{ze^t - 1} = \sum_{k=0}^{\infty} \frac{B_k(x, z)}{k!} t^k,
\]
where \(|t| < 2\pi\) when \(z = 1\) and \(|t| < |\log z|\) when \(z \neq 1\) and \(z \in \mathbb{C}\). From this generating function, one can easily see that

\[
B_m (x, z) = \sum_{j=0}^{m} \binom{m}{j} x^{m-j} B_j (z),
\]

and

\[
B_m (0, z) = B_m (z).
\]

By using the above generating function, several of Apostol Bernoulli numbers and polynomials are given as follows, respectively (cf. [1]):

\[
\begin{align*}
B_0 (z) &= 0, \\
B_1 (z) &= \frac{1}{z-1}, \\
B_2 (z) &= -\frac{2z}{(z-1)^2}, \\
B_3 (z) &= \frac{3(z+1)}{(z-1)^3}, \\
B_4 (z) &= -\frac{4z(z^2 + 4z + 1)}{(z-1)^4}, \\
B_5 (z) &= \frac{5z(z^3 + 11z^2 + 11z + 1)}{(z-1)^5}, \\
B_6 (z) &= -\frac{6z(z^4 + 26z^3 + 66z^2 + 26z + 1)}{(z-1)^6},
\end{align*}
\]

and

\[
\begin{align*}
B_0 (z, x) &= 0, \\
B_1 (z, x) &= \frac{1}{z-1}, \\
B_2 (z, x) &= \frac{x}{z-1} - \frac{2z}{(z-1)^2}, \\
B_3 (z, x) &= \frac{9z(z-1)}{(z-1)^3}x^2 - \frac{6z}{(z-1)^2}x + \frac{3z(z-1)}{(z-1)^3},
\end{align*}
\]

(cf. [1], [2], [13], [15], [22], [26], [27], [28]).

In the above numerical computation of the Apostol-Bernoulli numbers, we observe that all of these numbers are rational functions of parameter \(z\). \(z = 1\) is a pole of these functions.

The following generating function of the unification of the Bernoulli, Euler and Genocchi polynomials, \(\gamma_{n,\beta} (x; k, a, b)\), which was recently defined by Ozden [14] for \(k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}\) (\(\mathbb{N} := \{1, 2, 3, \ldots\}\); \(a, b \in \mathbb{R}^+\); \(\beta \in \mathbb{C}\):

\[
\frac{2^{1-k} e^{tx}}{\beta^k e^t - a^k} = \sum_{n=0}^{\infty} \gamma_{n,\beta} (x; k, a, b) \frac{t^n}{n!},
\]

(4)
where \(|t + b \log \left(\frac{a}{b} \right)| < 2\pi; \ x \in \mathbb{R}\) and note that
\[
\mathcal{Y}_{n, \beta} (k, a, b) = \mathcal{Y}_{n, \beta} (0; k, a, b) = \mathcal{Y}_{n, \beta} (1; k, a, b).
\]

The following equation of the unified zeta-type functions \(\zeta_\beta (s, x; k, a, b)\), which was recently defined by Ozden et al.\[15\] p. 2785, Definition 3:
\[
\zeta_\beta (s, x; k, a, b) = \left(-\frac{1}{2} \right)^{k-1} \sum_{n=0}^{\infty} \frac{\beta^{bn}}{a^{b(n+1)} (n + x)^s}.
\] (5)

where \(\beta, s \in \mathbb{C}\) with \(\Re (s) < 1\) and \(|\beta| < 1\) and observe that if \(x = 1\), then
\[
\zeta_\beta (s; k, a, b) = \zeta_\beta (1; k, a, b) = \left(-\frac{1}{2} \right)^{k-1} \sum_{n=1}^{\infty} \frac{\beta^{b(n-1)}}{a^{b(n+1)} n^s}.
\]

Ozden et al.\[15\] p. 2789, Theorem 7] also proved the following relation for \(n \in \mathbb{N}\) and \(k \in \mathbb{N}_0\):
\[
\zeta_\beta (1-n: x; a, b) = (-1)^{k} \frac{(n-1)!}{(n + k - 1)!} \mathcal{Y}_{n+k-1, \beta} (x; k, a, b).\] (6)

Remark 1 Setting \(s \to -m, \ \beta \to t, \ x = 0, \ k = a = b = 1\ in \ (5), we have
\[
\zeta_\beta (-m; 0, 1, 1) = \sum_{n=0}^{\infty} n^m
\] (7)

and also setting \(1-n \to -m, \ \beta \to t, \ x = 0, \ k = a = b = 1\ in \ (6), we get
\[
\zeta_t (-m; 0, 1) = \frac{\mathcal{Y}_{1+m, t} (0; 1, 1)}{1+m}
\] (8)

It is well-know that \(\mathcal{Y}_{n, \beta} (x; 1, 1, 1)\ reduce to the Apostol-Bernoulli polynomials, \(B_n (x, \beta)\) and Apostol-Bernoulli numbers \(B_n (\beta)\), respectively. Thus
\[
\mathcal{Y}_{n, \beta} (0; 1, 1, 1) = B_n (0, \beta) = B_n (\beta).
\] (9)

Hurwitz-Lerch zeta function \(\Phi (z, s, a)\) is defined by (cf.\[28\ p. 121 et seq.], \[28\ p. 194 et seq.]):
\[
\Phi (z, s, a) = \sum_{n=0}^{\infty} \frac{z^n}{(n + a)^s},
\]
where \(a \in \mathbb{C} \setminus \mathbb{Z}_0^\ast; \ s \in \mathbb{C}\) when \(|z| < 1; \ \Re (s) > 1\ when \ |z| = 1. \ One can also easily see that a relation between \(\zeta_\beta (s, x; k, a, b)\) and \(\Phi (z, s, a)\) is given by
\[
\zeta_\beta (s; k, a, b) = \left(-\frac{1}{2} \right)^{k-1} \frac{a^b}{a^{b(n+1)} n^s} \Phi \left(\frac{\beta^{b}}{a^{b}}, s, x \right)
\]
Hurwitz–Lerch zeta function is related to not only Riemann zeta function and the Hurwitz zeta function (see, for details, [28, Chapter 2], see also [27, [22]):

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \Phi(1, s, 1),
\]

and

\[
\zeta(s, a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s} = \Phi(1, s, a).
\]

Remark 2 Let \(n \geq 1 \). Then in [9], [23] and [24], one can see that

\[
E_{n}(z) = \frac{n}{z-1} H_{n-1} \left(\frac{1}{z} \right), \tag{10}
\]

where \(H_{n}(z) \) denotes the Frobenius-Euler numbers which are defined by means of the following generating function:

\[
\frac{1 - z}{e^{t} - z} = \sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n}}{n!}.
\]

for \(z = -1 \), we have \(H_{n}(-1) = E_{n} \) which is defined by

\[
\frac{2}{e^{t} + 1} = \sum_{n=0}^{\infty} E_{n}(z) \frac{t^{n}}{n!},
\]

(cf. [7]-[28]; and the references cited therein).

Now, by combining Equation (7) with Equation (8) and Equation (9), we obtain the following explicit formula of generating functions for the numbers of \(k \)-ary Lyndon words in terms of the Apostol-Bernoulli numbers:

Theorem 3 Let \(p \) is a prime number. Then

\[
f_{L_{k}}(t, p) = \frac{B_{2}(t)}{2p} - \frac{B_{p+1}(t)}{p(p+1)}
\]

where \(B_{p+1}(z) \) denotes the Apostol-Bernoulli numbers.

Remark 4 If we substitute \(p = 2 \) into Theorem 3, we arrive at

\[
f_{L_{k}}(t, 3) = \frac{t^{2}}{(1-t)^{3}}
\]

which was given in [10, p. 3].
Remark 5 Observe that degree of polynomial in the numerator of \(f_{L_y}(t, 2) \) is lower than its the denominator. Also, when \(p = 3 \) into Theorem 3 we also arrive at

\[f_{L_y}(t, 3) = \frac{2t^2}{(t-1)^4}. \]

By combining Theorem 3 with Equation (10), we give the following Remark:

Theorem 6 Let \(p \) is a prime number. Then

\[f_{L_y}(t, p) = \frac{t \left(\mathcal{H}_1 \left(\frac{1}{t} \right) - \mathcal{H}_p \left(\frac{1}{t} \right) \right)}{p} \] \hspace{1cm} (11)

where \(\mathcal{H}_p \left(\frac{1}{t} \right) \) denotes the Frobenius-Euler number.

Since \(\mathcal{H}_n (-1) = E_n \), then Equation (11) is reduced to the following Corollary:

Corollary 7

\[f_{L_y}(-1, p) = \frac{E_p - E_1}{p} \]

where \(E_n \) denotes Euler numbers.

3 Further identities related to Bernoulli numbers

In this section, we give some identities on the numbers of \(k \)-ary Lyndon words related to the Apostol-Bernoulli numbers. Now, we recall definition the Bernoulli polynomials \(B_n (x) \) which are defined by means of the following generating function:

\[\frac{te^{tx}}{e^t - 1} = \sum_{n=0}^{\infty} B_n (x) \frac{t^n}{n!}, \]

where \(|t| < 2\pi \) and also

\[B_n = B_n (0) \]

which denotes the Bernoulli numbers (cf. [7]-[28]; and the references cited therein).

The sum of the powers of integers is related to the Bernoulli numbers and polynomials:

\[\sum_{k=0}^{m} k^n = \frac{B_{n+1} (m+1) - B_{n+1}}{n+1} \] \hspace{1cm} (12)

(cf. [5], [28], [29]; see also the references cited in each of these earlier works).

After applying mobius inversion formula to Equation (3), we have

\[k^n = \sum_{d|n} dL_k (d). \] \hspace{1cm} (13)
Hence, summing Equation (13) over all $0 \leq k \leq m$ and combining with Equation (12), we obtain the following Theorem:

Theorem 8 Let $n \geq 1$. Then

$$\sum_{d|n} \frac{m}{k=0} L_k(d) = \frac{B_{n+1}(m+1) - B_{n+1}}{n+1},$$

where $B_{n+1}(m)$ denotes Bernoulli polynomials.

Acknowledgments. The present investigation was supported by Scientific Research Project Administration of Akdeniz University.

References

[1] T. M. Apostol, On the Lerch zeta function, *Pacific Journal of Mathematics* 1 (1951), pp. 161-167.

[2] T. M. Apostol, *Introduction to Analytic Number Theory*, Narosa Publishing, Springer Verlag, New Delhi, Chennai, Mumbai, 1998.

[3] H.L. Buchanan, A. Knopfmacher, M.E. Mays, On the cyclotomic identity and related product expansions, *Australas. J. Combin.* 8 (1993), pp. 233-245.

[4] T. W. Cusick and P. Stanica, *Cryptographic Boolean Functions and Applications*, London: Academic Press, Elsevier, 2009.

[5] G. B. Djordjevic and G. V. Milovanovic, Special classes of polynomials, University of Nis, Faculty of Technology Leskovac, 2014.

[6] S. Hu, M.-S. Kim, Two closed forms for the Apostol-Bernoulli polynomials, [arXiv:1509.04190](https://arxiv.org/abs/1509.04190).

[7] L. C. Jang and H. K. Pak, Non-archimedean integration associated with q-Bernoulli numbers, *Proc. Jangjeon Math. Soc.* 5(2) (2002), pp. 125-129.

[8] S.-J. Kang, M.-H. Kim. 1996. Free Lie algebras, generalized Witt formula, and the denominator identity. *J. Algebra* 183 (1996), no. 2, pp. 560-594.

[9] T. Kim, S.-H. Rim, Y. Simsek, and D Kim, On the analogs of Bernoulli and Euler numbers, related identities and zeta and l-functions, *J. Korean Math. Soc.* 45(2) (2008), pp. 435-453.

[10] I. Kucukoglu, Y. Simsek, On k-ary Lyndon Words And Their Generating Functions, to appear in *AIP Conf. Proc. of ICNAAM* (2016).
[11] Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308 (2005), pp. 290-302.

[12] R. Lyndon, On Burnside problem I, Trans. American Math. Soc. 77 (1954), pp. 202-215.

[13] N. Metropolis, G.-C. Rota, Witt Vectors and the Algebra of Necklaces, Adv. in Math. 50 (1983), pp. 95-125.

[14] H. Ozden, Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, Amer. Inst. Phys. Conf. Proc. 1281 (2010), 1125-1128.

[15] H. Ozden, Y. Simsek, H.M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl. 60 (2010), pp. 2779-2787.

[16] H. Ozden, Y. Simsek, Unified presentation of p-adic L-functions associated with unification of the special numbers, Acta Math. Hungar. 144 (2) (2014), pp. 515-529.

[17] H. Ozden, Y. Simsek, Modification And Unification Of The Apostol-Type Numbers And Polynomials And Their Applications, Appl. Math. Comput. 235 (2014), pp. 338-351.

[18] V.M. Petrogradsky, Witt’s formula for restricted Lie algebras, Adv. Appl. Math. 30 (2003), pp. 219-227.

[19] Y. Simsek, T. Kim, D.W. Park, Y.S. Ro, L.C. Jang, S. Rim, An Explicit Formula For The Multiple Frobenius-Euler Numbers And Polynomials, JP J. Algebra Number Theory Appl. (2004), no.3, pp. 519-529.

[20] Y. Simsek, q-Analogue of the twisted l-Series and q-Twisted Euler Numbers, J. Number Theory 100(2) (2005), pp. 267-278.

[21] Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius–Euler numbers, Adv. Stud. Contemp. Math. 15 (2007), no. 2, pp. 187-194.

[22] Y. Simsek and H. M. Srivastava, A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers, Appl. Math. Comput. 216 (2010), pp. 2976-2987.

[23] Y. Simsek, Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory A. 2013, 2013:87.

[24] Y. Simsek, Apostol type Dahee numbers and Polynomials, to appear in Adv. Stud. Contemp. Math. 26(3) (2016).
[25] H. M. Srivastava and H. L. Manocha, *A Treatise on Generating Functions*, Ellis Horwood Limited Publisher, Chichester, 1984.

[26] H. M. Srivastava, J. Choi, *Series Associated with the Zeta and Related Functions*, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

[27] H. M. Srivastava, H. Ozden, I. N. Cangul and Y. Simsek, A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions, *Appl. Math. Comput.* 219 (2012), pp. 3903-3913.

[28] H. M. Srivastava, J. Choi, *Zeta and q-Zeta Functions and Associated Series and Integrals*, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

[29] E. Witt, Treue Darstellung Liescher Ringe, *J. Reine Angew. Math.* 177 (1937), pp.152-160.