Certain class of higher-dimensional simplicial complexes and universal C*-algebras

Saleh Omran

Abstract
In this article we introduce a universal C*-algebra associated to certain simplicial flag complexes. We denote it by $C^\sim_\Gamma^n$, it is a subalgebra of the noncommutative n-sphere which introduced by J.Cuntz. We present a technical lemma to determine the quotient of the skeleton filtration of a general universal C*-algebra associated to a simplicial flag complex. We examine the K-theory of this algebra. Moreover we prove that any such algebra divided by the ideal I_2 is commutative.

2000 AMS: 19 K 46

Keywords: Simplicial complexes; K-theory of C*-algebras; Universal C*-algebras

Introduction
In this section, we give a survey of some basic definitions and properties of the universal C*-algebra associated to a certain flag complex which we will use in the sequel. Such algebras in general was introduced first by Cuntz (2002) and studied by Omran (2005, 2013).

Definition 1. A simplicial complex Σ consists of a set of vertices V_Σ and a set of non-empty subsets of V_Σ, the simplexes in Σ, such that:

- If $s \in V_\Sigma$, then $\{s\} \in \Sigma$.
- If $F \subseteq \Sigma$ and $\emptyset \neq E \subseteq F$ then $E \in \Sigma$.

A simplicial complex Σ is called flag or full, if it is determined by its 1-simplexes in the sense that $\{s_0, \ldots, s_n\} \in \Sigma \iff \{s_i, s_j\} \in \Sigma$ for all $0 \leq i < j \leq n$.

Σ is called locally finite if every vertex of Σ is contained in only finitely many simplexes of Σ, and finite-dimensional (of dimension $\leq n$) if it contains no simplexes with more than $n + 1$-vertices. For a simplicial complex Σ one can define the topological space $|\Sigma|$ associated to this complex. It is called the “geometric realization” of the complex and can be defined as the space of maps $f : V_\Sigma \to [0,1]$ such that $\sum_{s \in V_\Sigma} f(s) = 1$ and $f(s_0) \cdots f(s_t) = 0$ whenever $\{s_0, \ldots, s_t\} \notin \Sigma$. If Σ is locally finite, then $|\Sigma|$ is locally compact.

Let Σ be a locally finite flag simplicial complex. Denote by V_Σ the set of its vertices. Define C_Σ as the universal C*-algebra with positive generators $h_s, s \in V$, satisfying the relations

$$h_{s_0}h_{s_1} \cdots h_{s_n} = 0 \text{ whenever } \{s_0, s_1, \ldots, s_n\} \notin V_\Sigma,$$

$$\sum_{s \in V_\Sigma} h_s^2 = h_s^2 \quad \forall t \in V_\Sigma.$$

Here the sum is finite, because Σ is locally finite. C_{Σ}^{ab} is the abelian version of the universal C*-algebra above, i.e. satisfying in addition $h_s^2 = h_s$ for all $s, t \in V_\Sigma$. Denote by I_k the ideal in C_Σ generated by products containing at least $n+1$ different generators. The filtration (of I_k) of C_Σ is called the skeleton filtration.

Let

$$\Delta := \left\{ (s_0, \ldots, s_n) \in \mathbb{R}^{n+1} \mid 0 \leq s_i \leq 1, \sum_{i=1}^{n} s_i = 1 \right\}$$

be the standard n-simplex. Denote by C_Δ the associated universal C*-algebra with generators $h_s, s \in \{s_0, \ldots, s_n\}$, such that $h_i^2 \geq 0$ and $\sum_i h_i = 1$. Denote by I_Δ the ideal in C_Δ generated by products of generators containing all the $h_s, \; s = 0, \ldots, n$. For each k, denote by I_k the ideal in C_Δ generated by all products of generators h_s containing at least $k+1$ pairwise different generators. We also denote by I_k^{ab} the image of I_k in C_Δ^{ab}. The algebra C_Δ and their
K-Theory was studied in details in (Omran and Gouda 2012). For any vertex \(t \) in \(\Delta \) there is a natural evaluation map \(\mathcal{C}_\Delta \rightarrow \mathbb{C} \) mapping the generators \(h_t \) to 1 and all the other generators to 0. The following propositions are due to Cuntz (2002).

Proposition 1. (i) The evaluation map \(\mathcal{C}_\Delta \rightarrow \mathbb{C} \) defined above induces an isomorphism in K-theory. (ii) The surjective map \(\mathcal{I}_\Delta \rightarrow \mathcal{I}^b_\Delta \) induces an isomorphism in K-theory, where \(\mathcal{I}^b_\Delta \) is the abelianization of \(\mathcal{I}_\Delta \).

We can observe that \(I_k \) is the kernel of the evaluation map which define above so we can conclude that \(I_k \) is closed.

Remark 1. Let \(\Delta \) and \(\mathcal{I}_\Delta \subset \mathcal{C}_\Delta \) as above. Then \(K_n(\mathcal{I}_\Delta) \cong K_n(\mathbb{C}) \), \(*, = 0, 1 \), if the dimension \(n \) of \(\Delta \) is even and \(K_n(\mathcal{I}_\Delta) \cong K_n(\mathbb{C}(0,1)) \), \(*, = 0, 1 \), if the dimension \(n \) of \(\Delta \) is odd.

Proposition 2. Let \(\Sigma \) be a locally finite simplicial complex. Then \(\mathcal{C}^b_{\Sigma} \) is isomorphic to \(\mathcal{C}_0(|\Sigma|) \), the algebra of continuous functions vanishing at infinity on the geometric realization \(|\Sigma| \) of \(\Sigma \).

Universal \(\mathcal{C}^* \)-algebras associated to certain complexes

Universal \(\mathcal{C}^* \)-algebras is a \(\mathcal{C}^* \)-algebras generated by generators and relations. Many \(\mathcal{C}^* \)-algebras can be constructed in the form of universal \(\mathcal{C}^* \)-algebras an important example for universal \(\mathcal{C}^* \)-algebras is Cuntz algebras \(O_n \) the existence of this algebras and their K-theory was introduced by Cuntz (1981, 1984) more examples of universal \(\mathcal{C}^* \)-algebras can be found in (Cuntz 1993; Davidson 1996).

In the following, we introduce a general technical lemma to compute the quotient of the skeleton filtration for a general algebra associated to simplicial complex.

For a subset \(W \subset V_{\Sigma} \), let \(\Gamma \subset \Sigma \) be the subcomplex generated by \(W \) and let \(\mathcal{I}_{\Gamma} \) be the ideal in \(\mathcal{C}_\Gamma \) generated by products containing all generators of \(\mathcal{C}_\Gamma \).

Lemma 1. Let \(\mathcal{C}_{\Sigma} \) and \(\mathcal{C}_\Gamma \) as above, then we have

\[
I_k/I_{k+1} \cong \bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{I}_\Gamma
\]

Proof. \(\mathcal{C}_{\Sigma}/I_{k+1} \) is generated by the images \(\hat{h}_i, i \in V_{\Sigma} \) of the generators in the quotient.

Given a subset \(W \subset V_{\Sigma} \) with \(|W| = k + 1 \), let

\[
\mathcal{C}_\Gamma = \mathcal{C}^*([\hat{h}_i|i \in W]) \subset \mathcal{C}_{\Sigma}/I_{k+1}.
\]

Let \(\mathcal{I}_{\Gamma} \) denote the ideal in \(\mathcal{C}_\Gamma \) generated by products containing all generators \(\hat{h}_i, i \in \Gamma \), and let \(\mathcal{B}_\Gamma \) denote its closure. If \(W \neq W' \), then \(\mathcal{B}_\Gamma \mathcal{B}_{\Gamma'} = 0 \), because the product of any two elements in \(\mathcal{B}_\Gamma \) and \(\mathcal{B}_{\Gamma'} \) contains products of more than \(k + 1 \)-different generators, which are equal to zero in the algebra \(\mathcal{C}_{\Sigma}/I_{k+1} \).

It is clear that \(\mathcal{B}_\Gamma \subset I_k/I_{k+1} \) so that

\[
\bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{B}_\Gamma \subset I_k/I_{k+1}.
\]

Conversely, let \(x \in I_k/I_{k+1} \). Then there is a sequence \((x_n) \) converging to \(x \), such that each \(x_n \) is a sum of monomials \(m_i \) in \(h_i \) containing at least \(k+1 \)-different generators. Then \(m_i \in \mathcal{B}_\Gamma \) for some \(W \) and

\[
x_n = \sum m_i \in \bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{B}_\Gamma.
\]

The space \(\bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{B}_\Gamma \) is closed, because it is a direct sum of closed ideals. It follows that

\[
I_k/I_{k+1} = \bigoplus_{W \subset V_{\Sigma}, |W| = k+1} \mathcal{B}_\Gamma.
\]

Let now

\[
\pi_{\mathcal{W}} : \mathcal{C}_{\Sigma} \rightarrow \mathcal{C}_\Gamma
\]

be the canonical evaluation map defined by

\[
\pi_{\mathcal{W}}(h_i) = \begin{cases} h'_i & \text{if } i \notin W, \\ 0 & \text{if } i \in W,
\end{cases}
\]

where \(h'_i \) denotes the generator in \(\mathcal{C}_\Gamma \) corresponding to the index \(i \) in \(W \), in other words

\[
\mathcal{C}_\Gamma = \mathcal{C}^*([h'_i|i \in W])
\]

We prove that \(\pi_{\mathcal{W}}(I_{k+1}) = 0 \). Since polynomials of the form

\[
\sum \ldots h_{i_0} \ldots h_{i_j} \ldots h_{i_{k+1}} \ldots, \ i_0, \ldots, i_j, \ldots, i_{k+1} \ldots \in V_{\Sigma}
\]

are dense in \(I_{k+1} \), it is enough to show that \(\pi_{\mathcal{W}}(x) = 0 \) for each such polynomial \(x \). We have

\[
\pi_{\mathcal{W}}(x) = \sum \ldots \hat{h}_{i_0} \ldots \hat{h}_{i_j} \ldots \hat{h}'_{i_{k+1}} \ldots = 0,
\]

since there is at least one \(i_j \) which is not in \(W \). For this index \(\pi_{\mathcal{W}}(h_{i_j}) = 0 \). Thus \(\pi_{\mathcal{W}}(x) = 0 \). Therefore \(\pi_{\mathcal{W}} \) descends to a homomorphism

\[
\pi_{\mathcal{W}} : \mathcal{C}_{\Sigma}/I_{k+1} \rightarrow \mathcal{C}_\Gamma
\]

Now we show that \(\pi_{\mathcal{W}} \) is surjective as follows: Since \(\pi_{\mathcal{W}}(I_{k+1}) = 0 \), we have Ker \(\pi_{\mathcal{W}} \supset I_{k+1} \). It follows that the following diagram

\[
\mathcal{C}_{\Sigma} \rightarrow \mathcal{C}_\Gamma
\]

commutes and \(\pi_{\mathcal{W}}(\hat{h}_i) := \pi_{\mathcal{W}}(h_i) = h'_i, i \in W \) is well defined. This shows that \(\pi_{\mathcal{W}}(\mathcal{C}_{\Sigma}) \) is a closed subalgebra in

http://www.springerplus.com/content/3/1/258
and isomorphic to \(\pi_W(C_{\Sigma}/I_{k+1}) \). We have \(\pi_W(B_{\Gamma}) = I_{\Gamma} \). It is clear that \(\text{Ker} \pi_W \) is the ideal generated by \(h_i \) for \(i \) not in \(W \) and therefore \(\text{Ker} \pi_W \) is generated by \(h_i \) for \(i \) not in \(W \). This comes at once from the definitions of \(\pi_W(h_i) \) and \(\pi_W(h_i) \) above and the fact that both are equal. We conclude that \(B_{\Gamma} \cap \text{Ker} \pi_W = 0 \). This again implies that \(B_{\Gamma} ^2 \cap \text{Ker} \pi_W = 0 \). Moreover the following diagram is commutative:

\[
\begin{array}{ccc}
C_{\Sigma} & \longrightarrow & C_{\Gamma} \\
\cup & & \cup \\
B_{\Gamma} & \longrightarrow & I_{\Gamma} \\
\downarrow & & \uparrow \\
B_{\Gamma}/\text{Ker} \pi_W & & \\
\end{array}
\]

So, \(\pi_W(B_{\Gamma}) \) is dense and closed in \(I_{\Gamma} \). Therefore \(\pi_W : B_{\Gamma} \longrightarrow I_{\Gamma} \) is injective and surjective.

As a consequence of the above lemma we have the following.

Proposition 3. Let \(\mathcal{C}_\Delta \) and \(I_k \) defined as above. Then we have an isomorphism

\[
I_k/I_{k+1} \cong \bigoplus_{\Delta} I_\Delta,
\]

where the sum is taken over all \(k \)-simplexes \(\Delta \) in \(\Sigma \).

Proof. As in the proof of lemma 1 above with \(\Sigma = \Delta \), we find that:

\[
I_k/I_{k+1} = \bigoplus_{\Delta} I_\Delta.
\]

In the following we study the \(C^* \)-algebras \(C_{\Gamma^n} \) associated to simplicial flag complexes \(\Gamma \) of a specific simple type. These simplicial complexes is a subcomplex of the “non-commutative spheres” in the sense of Cuntz work (Cuntz 2002). We determine the \(K \)-theory of \(C_{\Gamma^n} \) and also the \(K \)-theory of its skeleton filtration. The \(K \)-theory of \(C^* \)-algebras is a powerful tool for classifying \(C^* \)-algebras up to their Projections and unitaries , more details about \(K \)-theory of \(C^* \)-algebras found in the references (Blackadar 1986; Murphy 1990; Rørdam et al. 2000; Wegge-Olsen 1993).

We denote by \(\Gamma^n \) the simplicial complex with \(n + 2 \) vertices, given in the form

\[
V_{\Gamma^n} = \{0^+, 0^-, 1, \ldots, n\},
\]

and

\[
\Gamma^n = \{ \gamma \subset V_{\Gamma^n} | \{0^+, 0^-\} \nsubseteq \gamma \}.
\]

Let

\[
C_{\Gamma^n} = C^*(h_0^-, h_0^+, h_1, h_2, \ldots, h_n | h_0^-, h_0^+) = 0, h_j \geq 0, \sum_i h_i = 1, \forall i
\]

be the universal \(C^* \)- algebra associated to \(\Gamma^n \). The existence of such algebras is due to Cuntz (2002). It is clear that for any element \(h_i \in C_{\Gamma^n} \), we have \(\|h_i\| \leq 1 \).

Denote by \(\mathcal{I} \) the natural ideal in \(C_{\Gamma^n} \) generated by products of generators containing all \(h_i, i \in V_{\Gamma^n} \). Then we have the skeleton filtration

\[
C_{\Gamma^n} = I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_{n+1} := \mathcal{I}
\]

The aim of this section is to prove that the \(K \)-theory of the ideals \(\mathcal{I} \) in the algebras \(C_{\Gamma^n} \) is equal to zero. We have the following

Lemma 2. Let \(C_{\Gamma^n} \) be as above. Then \(C_{\Gamma^n} \) is homotopy equivalent to \(\mathbb{C} \).

Proof. Let \(\beta : \mathbb{C} \longrightarrow C_{\Gamma^n} \) be the natural homomorphism which sends 1 to 1\(C_{\Gamma^n} \). For a fixed \(i \in V_{\Gamma^n} \) such that \(i \neq 0^-, 0^+ \), define the homomorphism

\[
\alpha : C_{\Gamma^n} \longrightarrow \mathbb{C}
\]

by \(\alpha(h_i) = 1 \) and \(\alpha(h_j) = 0 \) for any \(j \neq i \). Notice that \(\alpha \circ \beta = \text{id}_\mathbb{C} \). Now define \(\varphi_2 : C_{\Gamma^n} \longrightarrow C_{\Gamma^n} \), \(h_i \longmapsto h_i + (1 - t)(\sum_{j \neq i} h_j), h_i \longmapsto t(h_j), j \in V_{\Gamma^n} \setminus \{i\} \). The elements \(\varphi_2(h_j), j \in V_{\Gamma^n} \), satisfy the same relations as the elements \(h_j \) in \(C_{\Gamma^n} \):

(i) \(\varphi_2(h_j) \geq 0 \)

(ii) \(\varphi_2 \left(\sum_j h_j \right) = \varphi_2(h_i) + \sum_{j \neq i} \varphi_2(h_j) = h_i + (1 - t) \left(\sum_{j \neq i} h_j \right) + t \left(\sum_{j \neq i} h_j \right) = h_i + \sum_{j \neq i} h_j \) for fixed \(i \)

(iii) \(\varphi_2(h_0^-) = t^2(h_0^- - h_0^+) = 0. \)

We note that \(\varphi_1 = \text{id}_{C_{\Gamma^n}} \) and \(\varphi_0 = \beta \circ \alpha \).

This implies that

\[
\varphi_0 = \beta \circ \alpha \sim \text{id}_{C_{\Gamma^n}}.
\]

This means that \(C_{\Gamma^n} \) is homotopy equivalent to \(\mathbb{C} \).

From the above lemma , we have \(K_*(C_{\Gamma^n}) = K_*(\mathbb{C}) \), for \(* = 0, 1 \).
Now we describe the subquotients of the skeleton filtration in \(C\Gamma^n \).

Proposition 4. In the C* -algebra \(C\Gamma^n \) one has

\[
I_k/I_{k+1} \cong \bigoplus_{\Delta} T_{\Delta}, \quad \bigoplus_{\gamma} T_{\gamma},
\]

where the sum is taken over all subcomplexes \(\Delta \) of \(\Gamma^n \) which are isomorphic to the standard k-simplex \(\Delta \) and over all subcomplexes \(\gamma \) of \(\Gamma^n \) which contain both vertices \(0^+ \) and \(0^- \) and the second sum is taken over every subcomplex \(\gamma \) which contains both vertices \(0^+ \) and \(0^- \) whose number of vertices is \(k + 1 \).

Proof. We use Lemma 1 above. For every \(W \subset V_{\Gamma^n} \) with \(|W| = k + 1 \), we have two cases. Either \(\{0^+, 0^-\} \) is a subset of \(W \), then \(\Gamma \) is a \(k \)-simplex, or \(\{0^+, 0^-\} \) is a subset of \(W \), then \(\Gamma \) is a subcomplex in \(\Gamma^n \) isomorphic to \(\gamma \). This proves our proposition.

Lemma 3. For the complex \(\Gamma^n \) with \(n + 2 \) vertices, \(C\Gamma^n/I_1 \) is commutative and isomorphic to \(\mathbb{C}^{n+2} \).

Proof. Let \(h_i \) denote the image of a generator \(h_i \) for \(C\Gamma^n \). One has the following relations:

\[
\sum_i h_i = 1, \quad h_i h_j = 0, \quad i \neq j.
\]

For every \(\hat{h}_i \) in \(C\Gamma^n/I_1 \) we have

\[
\hat{h}_i = \hat{h}_i \left(\sum_i \hat{h}_i \right) = \hat{h}_i^2.
\]

Hence \(C\Gamma^n/I_1 \) is generated by \(n + 2 \) different orthogonal projections and therefore \(C\Gamma^n/I_1 \cong \mathbb{C}^{n+2} \).

Lemma 4. \(I_1/I_2 \) in \(C\Gamma^n \) is isomorphic to \(I_1^{ab}/I_2^{ab} \) in \(C\Gamma^n \).

Proof. From the proposition 4 above, one has

\[
I_1/I_2 \cong \bigoplus_{\Delta^1} T_{\Delta^1},
\]

where \(\Delta^1 \) is 1-simplex, and

\[
I_1^{ab}/I_2^{ab} \cong \bigoplus_{\Delta^1} T_{\Delta^1}^{ab}.
\]

Since \(T_{\Delta^1} \subset C_{\Delta^1} \) is commutative because the generators of \(C_{\Delta^1} \) commute (since \(h_{\Delta^1} = 1 - h_{0^+} \)). We get

\[
T_{\Delta^1} \cong T_{\Delta^1}^{ab} \cong C_0(0, 1).
\]

Lemma 5. In \(C\Gamma^n \), we have \(K_0(I_1/I_2) = 0 \) and \(K_1(I_1/I_2) = \mathbb{Z}/(2n) \).

Proof. By applying above lemma, and proposition 4, we have

\[
I_1/I_2 \cong \bigoplus_{\Delta^1} T_{\Delta^1}.
\]

The sum contains \(\binom{n}{k} + 2n \) 1-simplexes, \(\Delta^1 \cong C_0(0, 1) \).

where \(K_0(C_0(0, 1)) = 0 \) and \(K_1(C_0(0, 1)) = \mathbb{Z} \).

Lemma 6. \(C\Gamma^n/I_2 \) is a commutative C* -algebra.

Proof. Consider the extension

\[
0 \rightarrow I_1/I_2 \rightarrow C\Gamma^n/I_2 \rightarrow C\Gamma^n/I_1 \rightarrow 0
\]

and the analogous extension for the abelianized algebras.

The extensions above induce the following commutative diagram:

\[
\begin{array}{ccc}
0 & \rightarrow & I_1/I_2 \\
\downarrow & & \downarrow \\
I_1^{ab}/I_2^{ab} & \rightarrow & C\Gamma^n/I_1 \\
\downarrow & & \downarrow \\
I_1^{ab}/I_2^{ab} & \rightarrow & C\Gamma^n/I_2 \\
\end{array}
\]

We have from 3 isomorphisms \(C\Gamma^n/I_1 \cong C_{\Gamma^n}^{ab}/I_1^{ab} \cong \mathbb{C}^{n+2} \) and from 4 that \(I_1/I_2 \cong I_2^{ab}/I_2^{ab} \), so

\[
C\Gamma^n/I_2 \cong \mathbb{C}_{\Gamma^n}^{ab}/I_2^{ab}.
\]

Lemma 7. C* -algebra \(C\Gamma_1 \) is commutative and \(K_*(I_2) = 0 \), \(* = 0, 1 \) where \(I_2 \) is an ideal in \(C\Gamma_1 \) defined as in the above.

Proof. \(C\Gamma_1 \) is generated by three positive generators, \(h_0, h_0^+, h_1 \). Consider the product of two generators, say \(h_1 h_0^+ \). We have that \(1, h_0, h_1, h_0^+, h_1 \) commute with \(h_0^- \), therefore also \(h_1 = 1 - h_0^+ - h_0^- \).

By a similar computation we can show that \(h_0^+ \) and \(h_1 \) commute. This implies that \(C\Gamma_1 \) is commutative. Therefore \(I_2 = 0 \) in \(C\Gamma_1 \). Then, at once \(K_*(I_2) = 0 \).

Competing interests
The author declare that he has no competing interests.

Received: 20 December 2013 Accepted: 17 March 2014
Published: 21 May 2014

References
- Blackadar B (1986) K-theory for operator algebras. MSRI Publ. 5, Cambridge University Press
- Cuntz J (1981) K-theory for certain C* -algebras. Ann Math 113:181–197
- Cuntz J (1984) K-theory and C* -algebras. Proc. Conf. on K-theory (Bielefeld,1982). Springer Lecture Notes in Math. 1046:55–79
- Cuntz J (1993) A survey of some aspects of noncommutative geometry. Jahresber D Dt Math-Verein 95:60–84
- Cuntz J (2002) Non-commutative simplicial complexes and Baum-Connes-conjecture. GAFA, Geom Func Anal 12: 307–329
- Davidson KR (1996) C* -algebras by example. Fields Institute monographs, Amer. Math. Soc, Providence
- Murphy GJ (1990) C* -algebras and operator theory. Academic Press
- Omran S (2005) C* -algebras associated with higher-dimensional noncommutative simplicial complexes and their K-theory. Dissertation, Münster: Univ. Münster-Germany
Omran S (2013) C∗-algebras associated noncommutative circle and their K-theory. Aust J Math Anal Appl 10(1): 1–8. Article 8
Omran S, Gouda GhY (2012) On the K-theory of C∗-algebras associated with \(n\)-Simplexes. Int J Math Anal 6(17): 847–855
Rørdam M, Larsen F, Laustsen N (2000) An introduction to K-theory for C∗-algebras. London Mathematical Society Student Text 49, Cambridge University Press
Wegge-Olsen NE (1993) K-theory and C∗-algebras. Oxford University Press, New York

doi:10.1186/2193-1801-3-258
Cite this article as: Omran: Certain class of higher-dimensional simplicial complexes and universal C∗-algebras. SpringerPlus 2014 3:258.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at http://springeropen.com