No modularity at ventral level in the horse skull

Pere M. Parés-Casanova

Department of Animal Science, ETSEA, University of Lleida, Lleida, Spain

Correspondence
Pere M. Parés-Casanova, Department of Animal Science, ETSEA, University of Lleida, Av. Rovira Roure 191, 25198 Lleida (Catalonia, Spain).
Email: peremiquelp@ca.udl.cat

Abstract
Morphological integration and modularity are concepts that refer to the covariation level between the components of a structure. Morphological modules are independent subsets of highly correlated traits. The horse skull has been studied as a whole functional structure for decades, but the integrative approach towards quantitative examination of modules is scarce. We report here the first evaluation of cranial modularity in the horse at basal level. For this, we studied the modularity hypothesis for splanchnocranium and basicranium modules in the horse, two phenotypic regions under local influence by soft-tissue–hard-tissue interfaces. Using geometric morphometrics to capture the shape and location, we examined both modules in a sample of 23 dry skulls belonging to Pyrenean Horse Breed using 57 two-dimensional cranial landmarks. Modules were compared through partial least squares analyses and Escoufier (RV) coefficient. We tested whether the integration (measured by Escoufier RV coefficient) of splanchnocranium and basicranium strength modules and their covariation pattern (as analysed by partial least squares analysis) subordinate and express similar integration results. A clear modularity was observed. The lack of disproportions in the skulls of domestic horse breeds (compared to dog and cat breeds, for instance) might be an expression of the lack of single modules to evolve. On the other side, integration might have a positive impact on survival as long as the selection pressure is along the trajectory of integrated variation.

KEYWORDS
allometry, geometric morphometrics, morphological integration, 'Cavall Pirinenc Català'

1 | INTRODUCTION
Skull is integrated functionally as a whole, but its morphological integration is not uniform throughout. It is composed of multiple parts that are more or less distinct from each other on the basis of genetics, development or function (Curth et al., 2017). This coordination into subunits has long been known as morphological integration (Püschel, 2014). Integration and modularity concern the degree of covariation between parts of a structure (Klingenberg, 2009). Modules are developmentally distinct regions (Klingenberg, 2009). For example, some authors have suggested the rostrum and the braincase as two different modules of the dog cranium, as they are units whose parts are strongly integrated internally but are weakly integrated between them (Drake & Klingenberg, 2010) (Curth et al., 2017), although the modules of the skull can never be fully independent from one another (Curth et al., 2017). On the other hand, skull modules can constrain or promote the potential of the skull to evolve into new shapes probably in the course of horse evolution in general.

The skull base represents a central and complex bone structure of the skull and forms the floor of the cranial cavity on which the brain lies (Barone, 1999). The skull base undergoes an elaborate sequence of development stages and represents a key player in
skull development. Geometric morphometrics (GM) offers the possibility to study morphological integration and modularity (Curth et al., 2017). GM can determine whether a structure is a single integrated unit or consists of several distinct modules and evaluate hypotheses about their boundaries. The goal of this study was to assess whether basal splanchnocranium and basicranium, two spatially contiguous skull parts under local influence by soft-tissue–hard-tissue interfaces, conform to a single integrated unit or consist of two distinct modules, by means of GM techniques. A modular structure like this could allow those single modules to vary more independently without any negative consequences for other parts of the skull (Curth et al., 2017).

This exploratory study used GM to assess if two complex bony structures of the equine ventral skull—splanchnocranium and basicranium—grow homogeneously or at different rates. Our hypothesis was that there would be an ontogenic difference between those bones, with palate having more skull variability than the sphenoid, as this latter contains important neurocranial structures, such as cranial nerves.

2 | MATERIALS AND METHODS

2.1 | Sample

A sample of 23 complete dry skulls belonging to “Cavall Pirinenc Català” (Pyrenean Horse Breed) were sampled from the osteologic collection held in the Department of Animal Science at the University of Lleida. Animals had at least eruption of their first upper molar. We selected only specimens from different localities (both males and females) with at least M1 fully erupted dentition. The heads were aged by clinical molar examination using standard guidelines.

2.2 | Imaging

Image captures were performed with a Nikon® D70 digital camera (image resolution of 2,240 × 1,488 pixels) equipped with a Nikon DX® 18–105 mm telephoto lens and JPG file format was used. The camera was levelled horizontally. In order to reduce distortion artefacts due to parallax, the specimens were positioned at the centre of the field of view, and the horizontal position of skulls was checked visually prior to the taking of the photographs. The frontal bones touched the horizontal supporting surface. Scale was given for each photograph by placing a 10 mm scaled ruler.

2.3 | Geometric morphometrics

Pictures were transported to TPSUtil v. 1.70 (Rohlf, 2015). The digitization process was followed utilizing TPSDig2 v. 1.40 (Rohlf, 2015). On each skull photograph, we identified and digitized a total of 57 points (subset of 3 mid-sagittal, 7 paired landmarks (discrete homologous points), a dense set of semilandmarks points on an outline determined by extrinsic criteria), 10 per side on the choanae and 10 semilandmarks per side on the foramen lacerum (Figure 1). The semilandmarks were important for quantifying shape in those areas that lack clear definable points. Digitalization was bi-replicated to reduce the measurement error. The semilandmarks were ulteriorly slid using bending energy with TPSUtil v. 1.70 (Rohlf, 2015). A generalized full Procrustes fit was performed on two-dimensional landmark coordinates to extract shape information. Size was computed as centroid size (CS), ‘the square root of the sum of squared distances from each landmark to the specimen’s centroid’ (Adams et al., 2013). A consensus (mean) configuration was obtained. No information contained in the original landmark configurations is lost at this step except the one about CS, which can be analysed independently, and translation and rotation, which have no biological mean.

The hypotheses of landmark partitioning of the basal skull in two modules—the splanchnocranium and the basicranium—were considered. These two modules will be handled as a ‘black box’, since no functional nor developmental or genetic factors, but merely an anatomical differentiation, have been considered.

2.4 | Allometry

The effect of allometry was verified using the multivariate regression of shape (Procrustes coordinates) on size (log_{10}-transformed CS), which was treated here as a proxy for general size.

2.5 | Study of modules

Inferences about the boundaries of modules from the patterns of covariance were made by partitioning the symmetric components into
two subsets (splanchnocranium and basicranium) and comparing the
degree of covariation between them (250 rounds) (Figure 1). Two-
block partial least squares analysis of regression residuals allowed
to explore patterns of covariation between two sets of variables
(Rohlf & Corti, 2000). Figure 2 shows hypothesized partitions. For
both data sets, the landmark configurations from both sides were in-
cluded in a generalized Procrustes fit (with appropriate reflections).
The averages of the configurations of each individual were used to
compute the among-individual covariation matrices.

The Escoufier (RV) coefficient was calculated as a measure of
integration strength (Klingenberg, 2009). It represents a multivari-
ate generalization of the squared Pearson correlation coefficient
(Adams, 2016). Hypotheses concerning the boundaries of cranial
modules were tested by comparing these RV coefficients. The pro-
portion of partitions for which the RV coefficient is less than or equal
to the RV value for the partition of interest was interpreted as the
analogue of a p-value.

Because the strength of covariation between different regions of
a structure is the criterion for assessing integration and modularity in
morphometric data, a measure for quantifying covariation between
sets of landmarks is of critical importance. RV coefficient is a scal-
lar measure of the strength of association between the coordinates
of two sets of landmarks and presents a new generalization of this
measure for multiple sets of landmarks (Klingenberg, 2009). When
the RV coefficient values are higher, the covariance of two blocks is
stronger (Romaniuk, 2018). Boundaries between modules were evalu-
ated by partitioning the configuration in different ways and compar-
ing the RV coefficients between subsets of landmarks. If the division
of the traits into subsets coincides with the boundary between mod-
ules, the covariation between the subsets results from the few or
weak interactions between traits belonging to different modules and
accordingly, the degree of correlation between the subsets will be rel-
atively low (Romaniuk, 2018). Finally, a partial least squares analyses
(PLS) was performed which ascertain the main trajectories of covaria-
tion between two sets of landmarks and order them according to the
amount of total covariation they explain (Bookstein, 1991).

For all statistical analyses, we used MorphoJ software v. 1.07a
(Klingenberg 2011), available on web site www.morphometrics.org,
and PAST software v. 2.17c (Hammer et al., 2001), with α = 0.05.

FIGURE 2 Modularity test results. The hypothesized
partition: splanchnocranium and basicranium; different colour
presents different modules

3 | RESULTS

Measurement error using Procrustes ANOVA showed that its ef-
effect on shape amounted to a mere 2.7%, clearly below fluctuating
symmetry (9.7%), so being therefore negligible. The variation among
individuals was higher (40.1%) than that induced by the digitizing
procedure. These results suggest that the data are indicative of real
biological differences.

The relationship between modules shape and size is quite
clear. The multivariate regression of the Procrustes coordinates
on log10-transformed CS showed that allometry is statistically
significant (10,000 random permutations). Log10-transformed
splanchnocranium CS accounted for 6.17% (p = .0221) of the total
shape, and for basicranium, it accounted a 16.25% (p < .0001)
of shape change explained by size. Since there was a significant
allometric effect of size on shape, for PLS analysis we used the
residual component of the regression of shape on CS, making it
possible to compare shapes with minimum interference from dif-
fering size.

The analysis of symmetric regression scores between splanch-
ocranium and basicranium showed that the pairwise correlation of
PLS scores between their symmetric components was statistically
significant (r = .611; p = .0195). PLS analysis of symmetry component
of covariation revealed a RV = 0.180 (p = .0193; 10,000 randomiza-
tion rounds). Although the overall strength of association between
blocks was weak, the correlation was high, and the hypothesis of
no covariation was rejected, meaning that the specific shape in one
module covaries with its specific shape in the other. PLS1 possessed
60.0% of total covariation score, indicating that it represented the
main covariance of two blocks. Figure 3 presents plots distributed
around the diagonal line of the PLS1 scores coordinates. The shape
variance of basicranium appeared to be more conservative than
splanchnocranium.

4 | DISCUSSION

The main objective of this research was to test whether splanch-
ocranium and basicranium are integrated or independent from each
other, being the integration—the degree to which both are structur-
ally and developmentally connected—to be significant.

It has been advocated that a high integration of modules leads
to decreased diversity in the superordinate structure because non-
integrated modules may vary more freely when variations have no
negative impact on others, although some authors disagree (Curth
et al., 2017). The observed integration of splanchnocranium and ba-
sicranium in the horse skull in this study would show a low skull plas-
ticity and thus would hinder the formation of new shapes, at least
in basal parts, so not allowing for ‘flexibility’. In fact, in horses, the
morphological changes induced by the process of domestication are
less pronounced than in other species, such as dogs or pigs (Heck
et al., 2018). The lack of disproportions in the skulls of domestic
horse breeds (compared to dog and cat breeds, for instance) might be this expression of independent modules to change.

CONFLICT OF INTEREST
All authors declare there are no potential competing interests.

DATA AVAILABILITY STATEMENT
The contents of all supporting data are the sole responsibility of the authors. The data sets generated and analysed during the current study are available from the corresponding author upon reasonable request.

ORCID
Pere M. Parés-Casanova https://orcid.org/0000-0003-1440-6418

REFERENCES
Adams, D. C. (2016). Evaluating modularity in morphometric data: Challenges with the RV coefficient and a new test measure. Methods in Ecology and Evolution, 7(5), 565–572. https://doi.org/10.1111/2041-210X.12511
Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix, 24(1), 7–14. https://doi.org/10.4404/hystrix-24.1-6283
Barone, R. (1999). Anatomie Comparée des mammifères domestiques. Tome 1. Ostéologie (5th ed.). Vigot Frères.
Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. In Morphometric tools for landmark data: Geometry and biology. Cambridge University Press. https://doi.org/10.1002/bimj.4710350416
Curth, S., Fischer, M. S., & Kupczik, K. (2017). Patterns of integration in the canine skull: An inside view into the relationship of the skull modules of domestic dogs and wolves. Zoology, 125, 1–9. https://doi.org/10.1016/j.zool.2017.06.002
Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175(3), 289–301. https://doi.org/10.1086/650372
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST v. 2.17c. Palaeontologia Electronica, 4(1), 1–229.
Heck, L., Wilson, L. A. B., Evin, A., Stange, M., & Sánchez-Villagra, M. R. (2018). Shape variation and modularity of skull and teeth in domesticated horses and wild equids. Frontiers in Zoology, 15(1), 1–17. https://doi.org/10.1186/s12983-018-0258-9
Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution and Development, 11(4), 405–421. https://doi.org/10.1111/j.1525-142X.2009.00347.x
Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
Püschel, T. (2014). Modularidad e Integración Morfológica en Cráneos Humanos: Un Enfoque Morfométrico Geométrico. International Journal of Morphology, 32(1), 299–304. https://doi.org/10.4067/S0717-95022014000100048
Rohlf, F. J. (2015). The tps series of software. Hystrix, 26(1), 9–12. https://doi.org/10.4404/hystrix-26.1.11264
Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49(4), 740–753. https://doi.org/10.1080/106351500750049806
Romaníuk, A. (2018). Functional and phylogenetic aspect in modularity of palearctic mustelids (Carnivora, Mustelidae) mandible. Vestnik Zoologii, 52(2), 165–176. https://doi.org/10.2478/vzoo-2018-0018

How to cite this article: Parés-Casanova, P. M. (2021). No modularity at ventral level in the horse skull. Anatomia, Histologia, Embryologia, 00, 1–4. https://doi.org/10.1111/ahe.12728