CASE REPORT

Posterior fossa progressive multifocal leukoencephalopathy: first presentation of an unknown autoimmune disease

Paulette Scholten,1 Peter Kralto,2 Bram Jacobs3

SUMMARY
We present a case of a 57-year-old man who presented with progressive cerebellar dysarthria and cerebellar ataxia. Additional investigations confirmed the diagnosis of progressive multifocal leukoencephalopathy (PML) in the posterior fossa. This is a demyelinating disease of the central nervous system, caused by an opportunistic infection with John Cunningham virus. PML has previously been considered a lethal condition, but because of careful monitoring of patients with HIV and of patients using immunosuppressives drugs it is discovered in earlier stages and prognosis can be improved. Our patient had no known immune-compromising state, but further work-up revealed that the PML was most likely the first presentation of a previous untreated autoimmune disorder: sarcoidosis.

BACKGROUND
Progressive multifocal leukoencephalopathy (PML) is a life-threatening demyelinating disease of the central nervous system (CNS) caused by a viral infection, usually encountered in immune-compromised patients.1 With this case, we illustrate that physicians should also be aware of PML in supposedly immune-competent patients.

CASE PRESENTATION
A 57-year-old man presented at a regional hospital with a 3-month history of gradually worsening of articulation and right-sided coordination problems. His medical history mentioned Raynaud phenomenon and transient muscle complaints with spontaneous normalised positive antinuclear antibodies (ANA) 15 years ago. Neurological examination revealed a cerebellar dysarthria and ataxia of his right arm and leg.

INVESTIGATIONS
MRI scanning of the brain showed non-specific white matter lesions in both cerebellar hemispheres, without contrast enhancement or diffusion restriction. Routine blood serum and cerebrospinal fluid (CSF) examinations were normal. ANA and extractable nuclear antigens (ENA) were increased; the antineutrophil cytoplasmic antibodies were negative. The patient clinically deteriorated during the following week and was referred to our university hospital for further work-up. Repeated CSF examination showed a mild mononuclear pleocytosis of 19 cells/mm³. Repeated brain MRI (figure 1) showed progressive white matter lesions (hyper-intense on fluid-attenuated inversion recovery (FLAIR) and T2-weighted images and hypointense on T1-weighted images) displaying subtle peripheral diffusion restriction. Serum serological tests for Lyme disease, syphilis and HIV were negative. Additional laboratory findings showed a low CD4 count (0.24×10⁹/L) and the angiotensin-converting enzyme (ACE) in serum was minimally increased (54 U/L). CSF cytology and PCR for cytomegalovirus, herpes zoster and herpes simplex virus 1 and 2 were negative. Paraneoplastic antibodies were also negative. Eventually, PCR for John Cunningham virus (JC virus) was positive in the CSF. Finally, a whole-body [¹⁸F]fluorodeoxyglucose positron emission tomography (PET)–CT showed symmetric mediastinal and hilar lymphadenopathy with increased tracer uptake, consistent with sarcoidosis.

DIFFERENTIAL DIAGNOSIS
Initial differential diagnostic thoughts were among others opportunistic viral infections, acute disseminated encephalomyelitis (ADEM) and neurosarcoidosis. But imaging findings were not fully consistent with both ADEM and neurosarcoidosis. Finally, the positive PCR for JC virus, combined with clinical and radiological features, made a clear diagnosis: PML. Further work-up made an underlying autoimmune disease plausible.

OUTCOME AND FOLLOW-UP
Our patient deteriorated fast suffering from progressive ataxia of both arms and legs, severe dysarthria, swallowing difficulties, behavioural changes and depression. He declined any further diagnostic work-up; therefore, histopathological evidence of a suspected underlying immune-suppressive disease is not available. Treatment with mirtazapine was started, unfortunately without any measurable clinical improvement. The patient died about 2 months after first presentation. We obtained no obduction.

DISCUSSION
PML is a demyelinating disease and a rare complication of an opportunistic JC virus infection; a polyomavirus that infects >50% of the world’s population.1 Clinical symptoms depend on the location of demyelination of the CNS. Most common locations are the frontal or parieto-occipital
Progressive multifocal leukoencephalopathy (PML) can be diagnosed with the triad of compatible clinical features, compatible imaging findings and positive cerebrospinal fluid PCR for John Cunningham virus; a brain biopsy is not necessary. Although relatively rare, PML can present in the posterior fossa structures. Consider PML in your differential diagnosis, even when there is no known immune-compromising state. When PML is diagnosed search for an underlying cause: typical causes (untreated HIV) or the use of immune-suppressive drugs or atypical causes (unknown or untreated inflammatory/autoimmune disease).

REFERENCES
1. Berger JR, Aksamit AJ, Clifford DB, et al. PML diagnostic criteria: consensus statement from the AAN Neuroinfectious disease section. Neurology 2013;80:1430–8.
2. Patel MA, Redkar NN, Balikar R, et al. Progressive multifocal leukoencephalopathy isolated to the posterior fossa. BMJ Case Rep 2013;2013: bcr2013008078.
3. Berger JR, Pall L, Lanska D, et al. Progressive multifocal leukoencephalopathy in patients with HIV infection. J Neurol 1998;4:59–68.
4. Safran IA, Radue EW, Eshraghi A, et al. Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. Eur J Neurol 2012;19:1060–9.
5. Jamilouir Y, Valeyre D, Lortholary O, et al. The spectrum of opportunistic diseases complicating sarcoidosis. Autoimmun Rev 2015;14:64–74.
6. Palazzo E, Yahia SA. Progressive multifocal leukoencephalopathy in autoimmune diseases. Joint Bone Spine 2012;79:351–5.
7. Maas RR, Muller-Hansma AH, Esselink RA, et al. Drug-associated progressive multifocal leukoencephalopathy: a clinical, radiological, and cerebrospinal fluid analysis of 326 cases. J Neurol 2016;263:2004–21.
8. McGuigan C, Cranner M, Guadagno J, et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry 2016;87:117–25.
9. Dong-Si T, Richman S, Wattjes MP, et al. Outcome and survival of asymptomatic PML in natalizumab-treated MS patients. Ann Clin Transl Neurol 2014;1:755–64.
10. Alstadhaug KB, Croughs T, HenrikSEN S, et al. Treatment of progressive multifocal leukoencephalopathy with interleukin 7. JAMA Neurol 2014;71:1030–5.
Unusual presentation of more common disease/injury

11 Davis MJ, Khan A, Royal W. Progressive multifocal leukoencephalopathy as the first manifestation of occult sarcoidosis: case report and review of the literature. *Neurologist* 2013;19:26–9.

12 De Raedt S, Lacor P, Michotte A, et al. Progressive multifocal leukoencephalopathy as first manifestation of sarcoidosis. *Clin Neurol Neurosurg* 2008;110:186–9.

13 Hohlfeld KS, Günthard HF, Zeitz J, et al. Progressive multi-focal leukoencephalopathy as a rare lethal complication in untreated sarcoidosis. *BMJ Case Rep* 2012;2012:bcr0320114036.