Cosmological tests with the joint lightcurve analysis

F. Melia\(^1\)(a), J.-J. Wei\(^2\)(b), R. S. Maior\(^3\)(c) and X.-F. Wu\(^4\)(d)

\(^1\)Departments of Physics and Astronomy, and The Applied Math Program, The University of Arizona Tucson, AZ 85721, USA
\(^2\)Purple Mountain Observatory, Chinese Academy of Sciences - Nanjing 210008, China
\(^3\)Departments of Mathematics and Physics, and The Statistics Program, The University of Arizona Tucson, AZ 85721, USA
\(^4\)Purple Mountain Observatory - Nanjing 210008, China

received 13 March 2018; accepted in final form 12 September 2018
published online 5 October 2018

PACS 98.80.Es – Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc.)
PACS 97.60.Bw – Supernovae
PACS 98.80.Bp – Origin and formation of the Universe

Abstract – We examine whether a comparison between \(\omega_{CDM} \) and \(R_h = ct \) using merged Type-Ia SN catalogs produces results consistent with those based on a single homogeneous sample. Using the Betoule et al. (Astron. Astrophys., 568 (2014) 22). Joint Lightcurve Analysis (JLA) of a combined sample of 613 events from SNLS and SDSS-II, we estimate the parameters of the two models and compare them. We find that the improved statistics can alter the model selection in some cases, but not others. In addition, based on the model fits, we find that there appears to be a lingering systematic offset of \(\sim 0.04 - 0.08 \) mag between the SNLS and SDSS-II sources, in spite of the cross-calibration in the JLA. Treating \(\omega_{CDM} \), \(\Lambda_{CDM} \) and \(R_h = ct \) as separate models, we find in an unbiased pairwise statistical comparison that the Bayes Information Criterion (BIC) favors the \(R_h = ct \) Universe with a likelihood of 82.8\% vs. 17.2\% for \(\omega_{CDM} \), but the ratio of likelihoods is reversed (16.2\% vs. 83.8\%) when \(\omega_{de} = -1 \) (i.e., \(\Lambda_{CDM} \)) and strongly reversed (1.0\% vs. 99.0\%) if in addition \(k = 0 \) (i.e., flat \(\Lambda_{CDM} \)). We point out, however, that the value of \(k \) is a measure of the net energy (kinetic plus gravitational) in the Universe and is not constrained theoretically, though some models of inflation would drive \(k \to 0 \) due to an expansion-enforced dilution. Since we here consider only the basic \(\Lambda_{CDM} \) model, the value of \(k \) needs to be measured and, therefore, the pre-assumption of flatness introduces a significant bias into the BIC.

Copyright © EPLA, 2018

Introduction. – A study of the Type-Ia SN Hubble diagram has allowed us to measure the expansion history of the Universe [1–3]. But as successful as this program has been, it relies on the use of integrated quantities that are not independent of the assumed dynamics. The use of SN measurements in conducting unbiased, comparative studies of alternative expansion histories is therefore intricate, because at least three “nuisance” parameters characterizing the standard candle must be optimized simultaneously with any cosmological model’s free parameters [4,5].

It has therefore been useful to seek additional methods of probing the cosmic spacetime, including the analysis of cosmic chronometers [6], gamma-ray bursts [7], high-z quasars [8], the cosmic microwave background [9], and Baryon Acoustic Oscillations (BAO) [10]. However, the results of these studies differ from the Type-Ia SN perception that either \(\omega_{CDM} \) (with dynamical dark energy) or \(\Lambda_{CDM} \) (with a cosmological constant) is the optimal cosmological model. Instead, they tend to favor another Friedmann-Robertson-Walker (FRW) cosmology known as the \(R_h = ct \) Universe [11–14]. For example, the most recent application of the Alcock–Paczynski test to model-independent BAO data [10,15] has favored \(R_h = ct \) over \(\omega_{CDM} \) at better than a 99.34% confidence level [15].

It is therefore desirable to compare \(\omega_{CDM} \), \(\Lambda_{CDM} \) and \(R_h = ct \) directly, using the SN measurements themselves. In our previous paper [16], we carried out such a comparative analysis based on a single, homogeneous Type-Ia SN sample—the Supernova Legacy Survey (SNLS; ref. [17]).
It is well known now that merging different subsamples, each with its own set of possibly unknown systematic, can introduce inconsistencies that reduce the power of Type-Ia SNe for model comparisons. Various techniques have been employed to address this problem, including the introduction of an intrinsic dispersion for each subsample, constrained by the requirement that the χ^2_{dof} of the fit be equal to one in each case [4,18] (see also the general discussion in ref. [19]). It is questionable whether this approach provides a statistically fair selection between different models. In our previous analysis using a single large compilation, rather than a merger of unrelated subsamples, the results were quite clear: In a pairwise comparison, the Bayes Information Criterion (BIC) favors $R_h = ct$ over ΛCDM with a likelihood of $\approx 90\%$ vs. only $\approx 10\%$ for the standard model. The ratio of likelihoods is even greater when comparing $R_h = ct$ with w/ΛCDM.

Recent progress was made using merged samples [19] by introducing a new cross-calibration of the Sloan Digital Sky Survey (SDSS-II; $0.05 < z < 0.4$) [20] and SNLS (0.2 < z < 1) [17] samples. In this letter, we repeat our one-on-one comparison of w/ΛCDM and ΛCDM with $R_h = ct$, though this time using the joint analysis of these SDSS-II and SNLS subsamples [19] with 613 SNe Ia. We examine whether the outcome of such a study using merged samples is consistent with that based solely on a single (though relatively large) compilation.

The combined supernova sample. – The Union2.1 catalog [4], which currently includes 580 SN detections [21,22], is a merger of subsamples, each with its own set of systematic and intrinsic uncertainties, commonly subsumed into an unknown intrinsic dispersion σ_{int}. Note, however, that some systematic uncertainties may relate to the Hubble diagram as a whole, in which case they do not contribute to σ_{int}. For this letter, we do not have sufficient information to separate the two. For this reason, and the fact that the cross-calibration in the JLA allowed ref. [19] to find a a single sample-wide dispersion in place of individual σ_{int}s, we shall also adopt their approach here. In other circumstances, however, where a cross-calibration is not available [16,23,24], it is questionable whether model parameters can be estimated by minimizing an overall χ^2 (while constraining the χ^2_{dof} of each subsample to equal unity), since the unknown σ_{int}s should be estimated simultaneously with all other parameters [24]. As an alternative, the method of maximum likelihood estimation (MLE) has been shown to yield superior results [16,23,24], though when multiple σ_{int}s are used, the analysis becomes computationally challenging. We shall see that, even though we shall adopt the single sample-wide dispersion of ref. [19], MLE is still required because the probabilities depend on nuisance parameters that need to be optimized with the fits (see discussion following eq. (6) below).

Some catalogs available for this work are large and well suited to the analysis we carry out in this letter. For example, about half of the Type-Ia SNe in Union2.1 came from the SNLS [17]. Since the same instruments and reduction techniques were employed for all 252 of these (0.15 < z < 1.1) events, a single σ_{int} is sufficient to characterize the unknown intrinsic scatter.

In this letter, we optimize the cosmological fits using the Joint Lightcurve Analysis (JLA) [19], a true recalibration of all the data in SNLS and SDSS-II, based on the use of tertiary standard stars observed by both experiments as a reference, a common point-spread function, and the same procedural steps, yielding a photometric accuracy approaching ≈ 5 mmag (see the discussion below of a possible relic offset between them). The merged sample has a consistent calibration and systematics.

Two features of the JLA catalog need to be addressed, however. First, the complete catalog contains not only the SNLS and SDSS-II events used in the cross-calibration, but also an additional low-z ($z < 0.1$) sample, and the HST SNe at high redshift ($z \approx 1$). Neither of these two groupings was involved in the cross-calibration, so the problem of disparate systematics and intrinsic differences remains for them. The low-z events were calibrated against secondary photometric standards [25], but one must allow for measurement uncertainties in the reference F-subdwarf BD +17 4708 system used there. The calibration of the HST SNe was based on the Riess et al. [26] interpretation. Consistently with our goal of avoiding unknown systematics and calibration uncertainties as much as possible, we shall not include these two (small) subsamples in our analysis because their calibration was handled differently from that of SNLS and SDSS-II.

Second, ref. [19] managed to avoid some of the problems associated with the introduction of intrinsic dispersions, σ_{int}, but could not completely eliminate them. However, instead of treating them as “nuisance” parameters to be estimated during the analysis itself (as was done previously), they attempted to find a model-independent dispersion as a function of redshift, by partitioning the SNe into different redshift intervals and using the distribution of observed magnitudes to guess an overall dispersion in each bin. In their assessment, the various dispersions “measured” in this way are consistent with a single, constant value $\sigma_{\text{coh}} = 0.106 \pm 0.006$ (labeled in this fashion to distinguish it from the older σ_{int}’s). This is the sample-wide “intrinsic” dispersion we shall also use for the JLA in this letter, consistently with the approach of ref. [19].

The distance modulus of a given supernova is inferred from a fit of its spectral evolution using one of several lightcurve models. For this step, two methods are commonly used, SALT2 and SALT2 [27]. Reference [19] computed the (observed) distance modulus of each Type-Ia SN using SALT2, and since we are closely following their approach, we shall also use this lightcurve fitter in our analysis. An argument in favour of this choice for the JLA is that SALT2 is data-driven, and does not introduce any significant bias between low- and high-redshift distances [28], which is essential when dealing with a large sample that spans the redshift range we have here. SALT2...
includes the following components: i) the apparent magnitude, \(m_B\), of the SN at maximum light; ii) the “shape”, \(X_1\), of its lightcurve; and iii) its deviation, \(C\), from the mean Type-Ia SN \(B-V\) color. The formula for the distance modulus is \(\mu_B \equiv m_B + \alpha \cdot X_1 - \beta \cdot C - M_B\), where \(M_B\) is the absolute B-band magnitude of a Type-Ia SN with \(X_1 = 0\) and \(C = 0\). An allowance may also be made for the assumed host galaxy mass [4,29], introduced as an adjustment \(\Delta M_{\text{host}}\) to \(M_B\) for SNe in host galaxies with a mass > \(10^{10} M_\odot\) [19].

“Nuisance” parameters used in computing each distance modulus, such as \(\alpha\), \(\beta\), \(M_B\) (and \(\Delta M_{\text{host}}\) if present), must be fitted simultaneously with parameters characterizing the cosmology itself. Many previously reported model comparisons have not uniformly recalibrated the data for each cosmology being tested. For example, in ref. [5] we adopted the lightcurve parameters optimized for \(\Lambda\)CDM and used them for all the models being tested. But this simplifying assumption can vitiate the outcome of model selection. One goal of this letter is to relax this restriction and re-optimize the nuisance parameters separately for each model. When this procedure is followed, past experience has shown that the cosmology preferred by the Type-Ia SN data is not always \(\omega\)CDM or \(\Lambda\)CDM [16].

Model comparisons. – For each SN, the theoretical distance modulus \(\mu_{\text{th}}\) is calculated from the measured redshift \(z\) by the definition \(\mu_{\text{th}}(z) \equiv 5 \log[D_L(z)/10\text{ pc}],\) where \(D_L(z)\) is the model-dependent luminosity distance, \(\omega\)CDM and \(\Lambda\)CDM assume specific constituents in the density, expressed as \(\rho = \rho_r + \rho_m + \rho_{\text{de}},\) where \(\rho_r\), \(\rho_m\) and \(\rho_{\text{de}}\) are, respectively, the energy densities of radiation, (luminous and dark) matter, and dark energy. These densities are often represented in terms of today’s critical density, \(\rho_c \equiv 3c^2 H_0^2/8\pi G,\) as \(\Omega_m \equiv \rho_m/\rho_c, \Omega_r \equiv \rho_r/\rho_c,\) and \(\Omega_{\text{de}} \equiv \rho_{\text{de}}/\rho_c.\) \(H_0\) is the Hubble constant, and the other symbols have their usual meanings. In \(R_h = ct,\) on the other hand, whatever constituents are present in \(\rho\) beyond matter and radiation, the principal constraint is the zero active mass condition [11–14], which corresponds to a total equation of state \(p = -\rho/3.\)

\(\omega\)CDM has a dark energy with an equation of state \(p_{\text{de}} = w_{\text{de}} \rho_{\text{de}}\) and \(w_{\text{de}} \neq -1.\) Its luminosity distance is given by the expression

\[
D_L^{\omega\text{CDM}}(z) = \frac{c}{H_0} \left(1 + z_{\text{hel}}\right) \sinh \left\{ \frac{c}{H_0} \sqrt{\Omega_k} \right\} \int_0^z \frac{dz}{\sqrt{\Omega_m(1+z)^3 + \Omega_k(1+z)^2 + \Omega_{\text{de}}(1+z)^{3(1+w_{\text{de}})}}},
\]

where \(z\) and \(z_{\text{hel}}\) are the CMB rest frame and heliocentric redshifts of the SN, and \(\Omega_k = 1 - \Omega_m - \Omega_{\text{de}}\) represents the spatial curvature of the Universe —appearing as a term proportional to \(k\) in the Friedmann equation. In addition, \(\sinh\) is sinh when \(\Omega_k > 0\) and sinh when \(\Omega_k < 0.\) For a flat Universe with \(\Omega_k = 0,\) the right-hand side of this expression simplifies to the form \((1 + z_{\text{hel}})c/H_0\) times the integral (though without the \(\Omega_k\) term).

Depending on the application, the standard model may contain as many as ten parameters, though only three of these are critical for supernova work. One may adjust \(\Omega_m, k\) (or equivalently \(\Omega_{\text{de}}\)), and \(w_{\text{de}}.\) It is well known that \(H_0\) is degenerate with \(M_B\) when constructing a SN Hubble diagram, so it is not free if \(M_B\) is one of the optimized variables [4].

If dark energy is assumed to be a cosmological constant, with \(w_{\text{de}} = -1,\) the standard model becomes \(\Lambda\)CDM. The principal parameters in this model are \(\Omega_m\) and the spatial curvature constant \(k\). One often sees flatness (i.e., \(k = 0\)) assumed on the basis of other kinds of observation, but there are good reasons to avoid this if possible. Unlike the distinction between \(w_{\text{de}} \neq -1,\) which represents dynamical dark energy, and \(w_{\text{de}} = -1,\) which represents a cosmological constant, there is no theoretical basis to distinguish \(k = 0\) and \(k \neq 0,\) though some models of inflation would have driven \(k \rightarrow 0\) via an expansion-enforced dilution of the Universe’s net energy (kinetic plus gravitational). But since we are here considering only a basic \(\Lambda\)CDM model, the value of \(k\) is an initial condition, not a fundamental constraint, and must be measured from the observations, as is routinely done, e.g., with anisotropies in the cosmic microwave background. When one uses parameters optimized in previous studies, however, one is obliged to use other parameters optimized in correspondence with these values, which would actually yield less favorable fits to the SN data. In other words, when comparing models, it is not fair statistically to adopt a previously optimized value of \(k,\) while ignoring other parameters that are then re-optimized with SN data. The two models we have at our disposal for unbiased SN work are therefore \(\omega\)CDM, with three free parameters: \(\Omega_m, \Omega_{\text{de}},\) and \(w_{\text{de}},\) and \(\Lambda\)CDM with \(\Omega_m\) and \(\Omega_{\text{de}} \equiv \rho_{\Lambda}/\rho_c.\) But to demonstrate how critical this issue of pre-optimized parameters can be, we shall also show the result of model comparisons using flat \(\Lambda\)CDM. As we shall see, the JLA sample is so large now that even one change in the handling of the parameters in the standard model can greatly alter the outcome of the analysis.

The luminosity distance in \(R_h = ct\) is given by the simpler expression

\[
D_L^{R_h=ct}(z) = \frac{c}{H_0} \left(1 + z_{\text{hel}}\right) \ln (1 + z).
\]

Since \(H_0\) is degenerate with \(M_B,\) the \(R_h = ct\) Universe has no parameters to adjust when we construct its SN Hubble diagram. Further discussion on observational differences between \(\omega\)CDM and \(R_h = ct\) appears in refs. [5–7,11,12,30]. For a pedagogical treatment, see also ref. [31].

The cosmological parameters, along with the model-specific nuisance parameters, are estimated using an approach first described in refs. [23,24], and more fully developed by us in ref. [16]. It is based on the joint likelihood function to be maximized for all these parameters, or
as a multiplicative factor that modifies an assumed flat Bayesian prior. This function is

\[L = \exp\left[-\frac{1}{2} (\hat{\mu}_B - \mu_{th})^T C^{-1} (\hat{\mu}_B - \mu_{th}) \right], \]

(3)

where \(\hat{\mu}_B (\mu_{th}) \) is the observed (theoretical) distance modulus vector with \(n \) components, \(n \) being the number of SNe, and \(C \) is the full \(n \times n \) covariance matrix (including both statistical and systematic errors), defined by

\[C = D_{\text{stat}} + C_{\text{stat}} + C_{\text{sys}}. \]

(4)

In this, \(D_{\text{stat}} \) is the diagonal part of the statistical uncertainty, given by

\[(D_{\text{stat}})_{ii} = \sigma_{m,i}^2 + \alpha^2 \sigma_{X,i}^2 + \beta^2 \sigma_{C,i}^2, \]

\[+ \, C_{mb,i} \, \sigma_{X,i} + \sigma_{\text{pec},i}^2 + \sigma_{\text{lens},i}^2 + \sigma_{\text{coh}}^2, \]

(5)

where \(\sigma_{m,i}, \sigma_{X,i}, \) and \(\sigma_{C,i} \) are the standard errors of the peak magnitude and lightcurve parameters of the \(i \)-th SN. The term \(C_{mb,i} \) \(\sigma_{X,i} \) \(C \) derives from the covariances among \(m_{B,i}, X_i, \) and itself depends quadratically on the nuisance parameters \(\alpha, \beta \). The dispersion \(\sigma_{\text{pec},i} \) accounts for the uncertainty in cosmological redshift due to peculiar velocities, and \(\sigma_{\text{lens},i} \) accounts for the variation of magnitudes caused by gravitational lensing. We follow ref. [19] in using \(\sigma_z = 150 \, \text{km s}^{-1} \), as well as \(\sigma_{\text{lens},i} = 0.055 \times z_i \), as suggested in ref. [32]. The statistical and systematic covariance matrices, \(C_{\text{stat}} \) and \(C_{\text{sys}} \), are generally not diagonal [33], and for the JLA are given by

\[C_{\text{stat}} + C_{\text{sys}} = V_b + \alpha^2 V_a + \beta^2 V_b + 2\alpha V_{ba} - 2\beta V_{ab} - 2\alpha V_{ab}, \]

(6)

where \(V_a, V_a, V_b, V_{ba}, V_{ab}, \) and \(V_{dd} \) are available from ref. [19] at http://supernovae.in2p3.fr. From the resulting model-specific likelihood function \(L \), which can also be viewed as a Bayesian posterior, we determine the best-fit values for the parameters by maximizing over the joint parameter space. In this just-described estimation, we take into account the extensive analysis carried out in refs. [19,33], concerning systematic errors.

Each distance modulus \(\mu_{B,i} \) depends on \(\alpha, \beta, M_B \), and \(\Delta M_{\text{host}} \). As stated, we maximize the likelihood \(L \) over all nuisance parameters. Kim [24] notes that such a “full MLE” is better founded statistically, since it treats on the same level all cosmological and all nuisance parameters, the uncertainties in which can affect each other, including those of the intrinsic dispersion(s), if these are themselves not known a priori. (This will not be the case here, since \(\sigma_{\text{coh}} \) is fixed at 0.106. However, we do not expect the lack of individual optimization of \(\sigma_{\text{coh}} \) for each model to significantly affect our results [34].) We emphasize, however, that even though \(\sigma_{\text{coh}} \) is fixed in this approximation, the Gaussian normalization in our likelihood analysis is still not a constant. It depends on the value of \(\alpha, \beta, M_B \), and \(\Delta M_{\text{host}} \) (see eq. (5)). Thus, maximizing the likelihood function \(L \) is not exactly equivalent to minimizing the \(\chi^2 \) statistic, i.e.,

\[\chi^2 = (\mu_B - \mu_{th})^T C^{-1} (\mu_B - \mu_{th}). \]

In addition to computing the best-fit parameter values from the likelihood function \(L \) by MLE, we treat \(L \) in a Bayesian fashion as an unnormalized probability density function (PDF) on the joint parameter space, and employ Markov-chain Monte Carlo (MCMC) techniques to generate a large random sample of points from this space, distributed according to the PDF. The standard error for each estimated parameter is then obtained as an empirical standard deviation of this sample.

Because \(wCDM, \Lambda CDM \) and \(R_0 = ct \) have different numbers of free parameters, comparing their likelihoods of being the “correct” model requires the use of a model selection criterion. Since the samples we are dealing with here are very large, the most appropriate tool to use [6] is the Bayes information criterion, which approximates the computation of the (logarithm of the) “Bayes factor” for deciding between models [35,36]. The BIC is defined for each model being fit by

\[\exp(-BIC/2) \equiv n^{-p/2} L^*, \]

(7)

where \(L^* \) is the maximized likelihood, \(n \) (=613 here) the data set size, and \(p \) the count of free parameters in the model. If \(BIC_\alpha \) comes from model \(\alpha \), the unnormalized likelihood of model \(\alpha \) being correct is the “Bayes weight” \(\exp(-BIC_\alpha/2) \). Thus, model \(\alpha \) (\(\alpha = 1, 2 \)) has likelihood

\[P(\alpha) = \frac{\exp(-BIC_\alpha/2)}{\exp(-BIC_1/2) + \exp(-BIC_2/2)}, \]

(8)

of being the correct choice. This has a Bayesian interpretation: \(\exp(-BIC_\alpha/2) \) is a large-sample \((n \to \infty) \) approximation to an integral over the parameter space of model \(\alpha \), of its likelihood function \(L \). In the limit, the standard error of each parameter shrinks like \(n^{-1/2} \), and the integral of \(L \) equals up to a constant factor the \(n^{-p/2} L^* \) of eq. (7).

By convention, the magnitude of the difference \(\Delta \equiv BIC_2 - BIC_1 \) provides a numerical assessment of the evidence that model 1 is favoured over model 2. The rule of thumb is that if \(\Delta \lesssim 2 \), the evidence is weak; if \(\Delta \approx 3 \) or 4, it is mildly strong, and if \(\Delta \gtrsim 5 \), it is quite strong.

Hubble diagram. Several of the SNLS and SDSS-II supernovae fall outside the range of validity established for the lightcurve fitter, SALT2, and must therefore be removed [19]. The pruned catalogs include 239 events from SNLS and 374 from SDSS-II, for a total of 613 events.

The best-fit parameters for \(wCDM, \Lambda CDM \) and \(R_0 = ct \), obtained by MLE, are provided in tables 1 and 2, along with a standard error for each of them (estimated by MCMC)\(^1\). The first comparison we make is an extension to

\(^1\)A chain of 10\(^5\) points in the parameter space distributed according to the likelihood function was generated from the Metropolis-Hastings algorithm with a uniform prior. In each case, the distributions of the estimated parameters, with a confidence interval for each, followed from a statistical analysis.
Table 1: Optimized parameters for different cosmological models.

Model	Ω_m	Ω_{de}	w_{de}	χ^2_{dof}	BIC	
$R_0 = ct$	$-1.0(\text{fixed})$	$-1.0(\text{fixed})$	$1.0(\text{fixed})$	1.04 (609 dof)	-514.57	
wCDM	-0.250 ± 0.152	0.480 ± 0.202	$1.0 - \Omega_m$	$-1(\text{fixed})$	1.01 (607 dof)	-517.86
ΛCDM	0.533 ± 0.045	$1.0 - \Omega_m$	$-1(\text{fixed})$	1.01 (608 dof)	-523.70	

Table 2: Optimized parameters for different cosmological models (cont.).

Model	Ω_m	Ω_{de}	w_{de}	χ^2_{dof}	BIC
$R_0 = ct$	0.368 ± 0.120	0.806 ± 0.310	-0.912 ± 0.446	0.94 (234 dof)	-177.65
wCDM	0.453 ± 0.130	0.869 ± 0.336	$-1(\text{fixed})$	0.97 (232 dof)	-173.61
ΛCDM	0.360 ± 0.051	$1.0 - \Omega_m$	$-1(\text{fixed})$	0.97 (233 dof)	-178.20

Cosmological tests with the joint lightcurve analysis

our previous work based solely on the SNLS [16]. The principal motivation in this letter has been to examine whether the outcome of that analysis is supported by a similar comparative study involving a much bigger, merged sample. The corresponding results for the combined JLA sample are summarized in lines 1, 2 and 3 of tables 1 and 2 for $R_0 = ct$, wCDM and ΛCDM. As indicated earlier, we also compare these models with flat ΛCDM (line 4) to demonstrate the impact of adopting a pre-optimized parameter value (for k). The optimization for $R_0 = ct$, wCDM and ΛCDM is based purely on the SN observations.

On the basis of the JLA, the BIC favors $R_0 = ct$ over wCDM, with a likelihood of 82.8% vs. 77.2%. With $\Delta = 3.14$, the evidence in favour of $R_0 = ct$ is mildly strong. However, both SNLS and the combined JLA sample are so big that the BIC (see eq. (7)) is sensitive to the number of free parameters. For example, with one fewer parameter than wCDM, ΛCDM is somewhat favoured over $R_0 = ct$ with $\Delta = 3.29$, and strongly favoured over wCDM with $\Delta = 6.43$. The sensitivity of this outcome to the various assumptions is further demonstrated by the sample selection. Notice, for example, that the SNLS on its own yields very different likelihoods. In this case, even a comparison between $R_0 = ct$ and flat ΛCDM shows that the likelihoods are about even, i.e., 43.2% vs. 56.8%. The statistically fairer comparison between $R_0 = ct$ and wCDM and ΛCDM shows that the evidence in favour of the former is mildly — or even very — strong in both cases.

Yet in every case, the χ^2_{dof} values for the best-fit models are hardly distinguishable. It is clear that model selection using Type-Ia SNe is therefore heavily influenced by the number of free parameters in the models. And given this sensitivity, it is necessary to avoid biasing the results by assigning pre-optimized values to the variables that are not theoretically constrained (such as k in this case).

The corresponding Hubble diagrams for the best-fit wCDM (line 2) and $R_0 = ct$ (line 1) models are shown in figs. 1 and 2, respectively, together with their residuals. A close inspection of the data in these plots shows that, though very similar, they are not identical, highlighting the importance of estimating the nuisance parameters individually for each different model. It is also quite evident from a comparison of the best-fit curves in these plots that both models fit the data extremely well; the χ^2_{dof} values attest to this, and demonstrate a comparably high-quality fit in each case. We also show in figs. 3 and 4 the corresponding one- and two-dimensional projections of the posterior probability distributions for the free parameters in wCDM and $R_0 = ct$, generated by MCMC.

Discussion and conclusions. — In this letter, we have used the MLE method (with Bayesian extensions). In our previous study of the SNLS sample [16], we also employed MLE, but in addition, contrasted the outcome with that of the more conventional procedure of optimizing σ_{int} [4,18] by requiring that χ^2_{dof} equals unity. When using a single, homogeneous sample, these two approaches give essentially the same result, because (as we have seen) the χ^2_{dof} of the optimized fit is almost always close to 1. There is less justification [19] for using the latter approach when several
subsamples are merged into a single compilation. Thus, even though the use of MLE with a full covariance matrix is computationally difficult, it should be the method of choice for any model selection involving non-nested models and a blend of diverse subsamples.

The outcome of our analysis using the combined SNLS and SDSS-II sample is in agreement with that of our earlier study based solely on the SNLS for some cases, but not others. The $R_h = ct$ universe is consistently favoured over $wCDM$, but the likelihoods are reversed when comparing $R_h = ct$ with $wCDM$. If we introduce a previously optimized value for k, the outcome is strongly reversed.

But this is problematic for several reasons. First, one might expect that if a model is correct, it should fit either the SNLS, with ≈250 events distributed in redshift $0 < z < 1$, or the combined JLA sample with three times as many SNe spread over a similar redshift range, comparably well, at least qualitatively. The quality of the fit improves as the sample size increases, but one would not expect the model selection to change from one sample to the other because, in both cases, the SNe are distributed across the region (near $z \approx 0.6$) where the transition from deceleration to acceleration is thought to have occurred.

Perhaps an indication of why there may be differences between the analysis of SNLS on its own, vs. the merged SNLS and SDSS-II sample, is provided by the tendency of binned residuals in both figs. 1 and 2 to be slightly lower at $z < 0.35$ than those at $z > 0.35$. The average difference is about 0.04 magnitudes for $wCDM$ and about 0.08 magnitudes for $R_h = ct$. On the other hand, for the 4 highest redshift bins, we find an average residual magnitude of 0.139 for $R_h = ct$ and a slightly worse 0.143 for $wCDM$. Since these residuals do not exhibit any monotonic trend, the implication seems to be that there exists a systematic offset across $z \sim 0.35$. One possible origin for this behavior could be that the calibration of the SNLS and SDSS-II sources is not completely self-consistent after all, and since the SDSS-II events occurred at $0.05 < z < 0.4$, while the SNLS events were recorded at $0.2 < z < 1$, this may simply be due to the impact of an unresolved measurement offset in their magnitude. Notice, for example, that the implied magnitude offset is comparable to the measured...
sample-wide “intrinsic” dispersion $\sigma_{\text{coh}} = 0.106 \pm 0.006$ (see above). The offset may be slightly smaller for ΛCDM due to the additional free parameter that allows greater flexibility in shaping the best-fit curve. In both cases, however, the key point is that the offset appears to be independent of the redshift above and below the crossover at $z \approx 0.35$.

Some other studies, e.g., ref. [38], have reached different conclusions from those presented here. As we have discussed extensively in this paper, although the statistical analysis of Type-Ia SNe may be improved with the merger of disparate subsamples, each subsample comes with its own set of systematic and intrinsic uncertainties. Reference [38] carried out the model selection using its own set of systematic and intrinsic uncertainties. The offset between the two samples of R_0 is comparable to the Union2.1 and JLA samples, following the conventions used by ref. [38] to compute the BIC are incorrect because the σ_{int}’s themselves are not known a priori. The information criteria must be calculated in terms of the likelihood function [16], not χ^2. Finally, since ref. [38] used several previously optimized parameter values, those results are not unbiased like the outcomes shown in lines 1–3 of tables 1 and 2.

Comparing our results using the SNLS on its own and the merged SNLS and SDSS-II sample shows that the model selection using these Type-Ia SNe is still somewhat ambiguous. Our analysis has shown that the cross-calibration in the JLA may be imperfect, with a residual offset between the two samples of ~0.08 mag, comparable to the sample-wide dispersion $\sigma_{\text{coh}} \sim 0.106$ mag inferred in ref. [19]. Such an offset tends to favour models with a larger number of free parameters, with a greater flexibility in adjusting the shape of their luminosity distance to fit the data. This may explain why $R_0 = ct$ is favoured over wCDM, but not always over ΛCDM.

An important goal of future work with Type-Ia SNe should be to improve the consistent cross-calibration of independent datasets, along the lines initiated by ref. [19], though with even greater precision. If $R_0 = ct$ were to eventually become the cosmology favoured by the Type-Ia SN data, such an outcome would be relevant to the growing tension between the predictions of an inflationary cosmology and the Planck measurements. The Universe did not require an early period of inflated expansion to avoid the horizon problem in $R_0 = ct$ [30], so the $R_0 = ct$ explanation for the uniformity of the physical conditions across the Universe may be more realistic than the currently held belief of an inflated expansion.

We thank the National Basic Research Program (“973” Program) of China (grants 2014CB845800 and 2013CB834900), the National Natural Science Foundation of China (grant Nos. 11322328 and 11373068), the One-Hundred-Talents Program, the Youth Innovation Promotion Association (201231), the Strategic Priority Research Program “The Emergence of Cosmological Structures” (grant No. XDB09000000) of the Chinese Academy of Sciences, and the Natural Science Foundation of Jiangsu Province (grant No. BK20161096).

REFERENCES

[1] Perlmutter et al., Nature, 391 (1998) 51.
[2] Riess A. G. et al., Astron. J., 116 (1998) 1009.
[3] Schmidt B. P., et al., Astrophys. J., 507 (1998) 46.
[4] Suzuki N. et al., Astrophys. J., 746 (2012) 85.
[5] Melia F., Astron. J., 144 (2012) 110.
[6] Melia F. and Maijer R. S., Mon. Not. R. Astron. Soc., 432 (2013) 2669.
[7] Wei J.-J., Wu X. and Melia F., Astrophys. J., 772 (2013) 43.
[8] Melia F., Astrophys. J., 764 (2013) 72.
[9] Melia F., Astron. Astrophys., 561 (2014) A80.
[10] Delubac T. et al., Astron. Astrophys., 574 (2014) A59.
[11] Melia F., Mon. Not. R. Astron. Soc., 382 (2007) 1917.
[12] Melia F. et al., Mon. Not. R. Astron. Soc., 419 (2012) 2579.
[13] Melia F., Front. Phys., 11 (2016) 119801.
[14] Melia F., Front. Phys., 12 (2017) 129802.
[15] Melia F. et al., Int. J. Mod. Phys. D, 27 (2017) 1750055.
[16] Wei J. et al., Astron. J., 149 (2015) 102.
[17] Guy J. et al., Astron. Astrophys., 523 (2010) A7.
[18] Amanullah R. et al., Astron. Astrophys., 716 (2010) 712.
[19] Betoule M. et al., Astron. Astrophys., 568 (2014) 22.
[20] Sako M. et al., Publ. Astron. Soc. Pac., 130 (2018) 064002.
[21] Kuznetsova N. et al., Astrophys. J., 673 (2008) 981.
[22] Riess A. G. et al., Astrophys. J., 730 (2011) 119.
[23] D’Agostini G., arXiv:physics/0511182 (2005).
[24] Kim A. G., Publ. Astron. Soc. Pac., 123 (2011) 230.
[25] Landolt A. U. and Uomoto A. K., Astron. J., 133 (2007) 768.
[26] Riess A. G. et al., Astrophys. J., 659 (2007) 98.
[27] Conley A. et al., Astrophys. J., 681 (2008) 482.
[28] Mosher J. et al., Astrophys. J., 793 (2014) 16.
[29] Lampeitl H. et al., Astrophys. J., 722 (2010) 566.
[30] Melia F., Astron. Astrophys., 553 (2013) A76.
[31] Melia F., Aust. Phys., 49 (2012) 83.
[32] Jönsson J. et al., Mon. Not. R. Astron. Soc., 405 (2010) 535.
[33] Conley A. et al., Astrophys. J. Suppl. Ser., 192 (2011) 1.
[34] Rubin D. et al., Astrophys. J., 813 (2015) 137.
[35] Schwarz G., Ann. Stat., 6 (1978) 461.
[36] Kass R. E. et al., J. Am. Stat. Assoc., 90 (1995) 773.
[37] Foreman-Mackey D. et al., Publ. Astron. Soc. Pac., 125 (2013) 306.
[38] Shafer D. L., Phys. Rev. D, 91 (2015) 103516.