Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0

Anjar Wanto¹, Jaya Tata Hardinata¹

¹STIKOM Tunas Bangsa, Pematangsiantar, Medan – Indonesia
*anjarwanto@amiktunasbangsa.ac.id

Abstract. Indonesia is one of the developing countries that have serious problems with poverty. The still many poor people in Indonesia encourage the government to make and determine the right policies so that the problem of poverty can be overcome and not drag on. Therefore, the authors conducted this study to try to help the government conduct an analysis in predicting the level of development of the poor in Indonesia. The prediction method used is the Bayesian Regulation artificial neural network. This method is a development of the backpropagation method that is often used to predict data. The data used are data on poor people in Indonesia in 2012-2018, which are sourced from the Indonesian Central Bureau of Statistics. Based on this data a network architecture model will be formed and determined using the Bayesian Regulation method, including 10-5-10-2, 10-10-10-2, 10-10-15-2, 10-15-10-2, 10-15-15-2, 10-20-20-2, 10-25-25-2 and 10-30-30-2. From these 10 models after training and testing, the results show that the best architectural model is 10-25-25-2. The accuracy of the architectural models is 94.1% and 61.8% with MSE values of 0.00013571 and 0.00005189. The results of this study are the prediction of the poor for the next 5 years.

1. Introducing
Poverty is one of the fundamental global problems that need serious attention from the government, especially in developing countries[1]. Especially in the current 4.0 industrial revolution, not only middle and upper economic communities are invited to progress and prepare to follow that era. But the middle and lower classes of society must also be a concern, especially their welfare because Indonesia is one of the countries with a high poverty rate. If not noticed, the poor will be crushed by the industrial revolution 4.0. Moreover, poverty is one of the phenomenal and serious problems faced by almost all countries, including Indonesia. Economic growth that is not spread evenly in Indonesia's territory is one of the factors developing poverty. Broad poverty coverage also means there is no access to employment or education and does not get the proper respect as citizens. So that the impact of poverty directly or indirectly can affect people's thinking and behavior[2]. In some developing countries, poverty is a fairly complex problem even though some countries have succeeded in reducing poverty by implementing development in the fields of national production and income[3]. Therefore, one indicator in overcoming the problem of poverty is by increasing economic growth, where economic growth is a concept of economic development and national income[4], [5].

In recent decades, according to the Indonesian Central Bureau of Statistics, the number of poor people in Indonesia shows a gradual decline, but the uncertain economic climate in this country has the potential to re-grow the poverty rate. As in Semester 1 (March) in 2018 in the
province of East Java, there are ± 4 million 332 thousand poor people or the highest in Indonesia. Whereas in Semester 2 (September) in 2018, the number of poor people fell to ± 4 million 292 thousand poor people, or down by around 40 thousand residents[6].

Therefore, it is necessary to predict to get the estimation of the number of poor people in Indonesia for the following years, this is done so that the government has references and considerations in determining policies and in making the right steps to overcome this poverty. Measuring poverty is important to target efforts in places that most need help and evaluate the effectiveness of government programs. But in making predictions it is not easy, requires the right data, methods, and stages. One of the appropriate methods used is the Bayesian regulation method, this method is a development of the Backpropagation method that is able to predict data based on previous data so that the estimation results are obtained after learning and training based on data that has already occurred[7]–[10]. Many previous studies discussed the problem of poverty, including Predicting Poverty in a Region from Satellite Images using CNN (Convolutional Neural Network)[11]. Predict poverty and wealth using mobile metadata[3], to combine satellite imagery and machine learning to predict poverty[12].

2. Methodology
2.1. Research Methods
The research method used was Artificial Neural Networks with the Bayesian regulation backpropagation method. This method is able to make predictions based on past data. Bayesian Regularization (BR) is an artificial neural network training algorithm that improves weight and bias values based on Levenberg-Marquardt optimization. This algorithm minimizes the combination of squared errors and weights, then determines the correct combination to produce a good network[13]. This process is called Bayesian regularization. BR neural networks introduce network weights into objective training functions. The training objective function is denoted as follows[14].

\[
F(\omega) = \alpha E_W + \beta E_D
\]

\(E_W\) is the sum of squares of network weights and \(E_D\) number of squares of network errors. Value \(\alpha\) and \(\beta\) is a parameter of objective function.

2.2. Data Source
The dataset used in this study is a dataset of the Number of Poor Population in Indonesia based on the Province of 2012-2018, which is sourced from the website of the Indonesian Statistics Agency[6].

2.3. Research Flow
Broadly speaking, the flowchart of research in this study can be described as follows:

![Figure 1. Research Flow](image-url)
In Figure 1 it can be explained that the first thing to do is to collect datasets. The dataset used is data on the number of poor Indonesians. Next is the preprocessing stage and dividing the data into several parts, namely the data used for training and the data used for testing. Then determine the network architecture model that will be used for the training process and the testing process. Furthermore, the best chosen architectural models are used. After all, is done, predictions will be obtained based on the architectural model used.

2.4. Research Variable

The research variables used in this article are 2 parts, namely input variables, and output variables. There are 10 input variables, namely the number of poor people in semester 1 (March) and Semester 2 (September) based on the year from training and testing input data. While the output variable is 2, namely the number of poor people in semester 1 (March) and Semester 2 (September) who are the targets of training and testing input data. While the criteria used there are 34, namely data for each province in Indonesia starting from the Province of Aceh to Papua.

2.5. Normalization

The data is first divided into 2 parts, namely training data and test data. Data for 2012-2016 with 2017 as the target are used as training data, while data for 2013-2017 with the 2018 target are used as testing data. Then the data that has been divided into two is normalized using the equation (2)[15]–[18].

\[x' = \frac{0.8(x - a)}{b - a} + 0.1 \]

Explanation: \(x' \) is the result of normalization, \(x \) is data that will be normalized, \(a \) is the lowest data and \(b \) is the highest data from the dataset.

3. Results and Discussion

3.1. Results and Discussion

The following table 1 is the result of the normalization of training data used in each semester of 2012-2016 with 2017 as the target. Whereas Table 2 is the result of normalization of test data used in each semester of 2013-2017 with a target in 2018. This data is normalized using functions as written in the equation (2).

Data	Poor Population (Thousand Souls)	Target					
	2012	2016	2017				
	Mar	Sep	Mar	Sep	Mar	Sep	
1	0.34341	0.23829	...	0.23385	0.23273	0.23766	0.23091
2	0.32201	0.31746	...	0.32969	0.32915	0.32936	0.30928
3	0.16385	0.16277	...	0.15862	0.15940	0.15751	0.15679
4	0.17621	0.17593	...	0.18131	0.17913	0.18119	0.17831
5	0.14266	0.14261	...	0.14572	0.14588	0.14521	0.14395
6	0.36676	0.36439	...	0.37372	0.37298	0.27147	0.27145
7	0.14917	0.14898	...	0.15184	0.15137	0.15001	0.14774
8	0.29780	0.29231	...	0.28452	0.27981	0.27854	0.27097
9	0.11126	0.11108	...	0.11148	0.11121	0.11169	0.11302
10	0.12070	0.12070	...	0.11900	0.11880	0.11978	0.11302
11	0.15790	0.15786	...	0.16063	0.16087	0.16148	0.16202
12	0.80638	0.79753	...	0.76643	0.75756	0.75761	0.69545
13	0.88523	0.86725	...	0.81101	0.80894	0.80215	0.76220
14	0.18919	0.18868	...	0.17908	0.17712	0.17707	0.17357
15	0.90000	0.88328	...	0.84199	0.83178	0.82838	0.79498
16	0.30399	0.30227	...	0.20382	0.20377	0.20649	0.21041
Table 2. Normalization of test data

Data	Poor Population (Thousand Souls)	Target 2018					
	2013	2017	2018				
	Mar	Sep		Mar	Sep		
1	0.23822	0.24069		0.24347	0.23643	0.23802	0.23671
2	0.33017	0.32866		0.33903	0.31810	0.31784	0.31342
3	0.16699	0.16258		0.15993	0.15919	0.15872	0.15808
4	0.17716	0.18591		0.18461	0.18161	0.18228	0.18126
5	0.14376	0.14629		0.14711	0.14581	0.14631	0.14628
6	0.28256	0.28230		0.27870	0.27688	0.27564	0.27697
7	0.15382	0.15268		0.15212	0.14975	0.14962	0.14991
8	0.29122	0.28649		0.28607	0.28188	0.28037	0.27947
9	0.11138	0.11166		0.11218	0.11253	0.11254	0.11150
10	0.13082	0.13053		0.13061	0.12915	0.12903	0.12901
11	0.15823	0.16177		0.16407	0.16464	0.16315	0.16120
12	0.80649	0.80356		0.78534	0.72056	0.69448	0.68192
13	0.87815	0.87354		0.83175	0.79012	0.74075	0.73585
14	0.19046	0.18799		0.18032	0.17667	0.17565	0.17403
15	0.88445	0.90000		0.85909	0.82428	0.81233	0.80568
16	0.20790	0.21225		0.21098	0.21506	0.20874	0.20995
17	0.12672	0.13067		0.12962	0.12902	0.12824	0.12768
18	0.23660	0.23193		0.23051	0.22300	0.22125	0.22094
19	0.26335	0.26592		0.28920	0.28657	0.28779	0.28646
20	0.16067	0.16481		0.16370	0.16393	0.16364	0.16079
21	0.13252	0.12930		0.12288	0.12267	0.12351	0.12243
22	0.12888	0.13013		0.13188	0.13199	0.13108	0.13006
23	0.13912	0.14307		0.13630	0.13955	0.13599	0.13656
24	0.10000	0.10000		0.10813	0.10798	0.10828	0.10815
25	0.13032	0.13291		0.13270	0.13204	0.13178	0.13108
26	0.16666	0.16578		0.16870	0.16959	0.16909	0.16798
27	0.22950	0.24098		0.23368	0.23580	0.23032	0.23181
28	0.14960	0.15372		0.15454	0.15149	0.15049	0.14963
29	0.13166	0.13304		0.13377	0.13303	0.13264	0.13096
30	0.12532	0.12535		0.12462	0.12457	0.12495	0.12513
31	0.15291	0.15303		0.15270	0.15268	0.15263	0.15236
32	0.11372	0.11411		0.11257	0.11287	0.11339	0.11347
33	0.13687	0.13851		0.13755	0.13500	0.13526	0.13513
34	0.26727	0.27394		0.24759	0.24968	0.25087	0.25047

The table above shows the normalized data for the test set, with each row representing a data point from 2013 to 2018. The columns are organized as follows: Mar, Sep, and Sep for each year, followed by the normalized values for the corresponding target year.
3.2. Best Model Training and Testing

Of the 10 architectural models used in this study, the 10-25-25-2 architectural model is the best model.

Table 3. Model training data 10-25-25-2

No	Target	Output	Error	SSE
	Mar	Sep		
1	0,2377	0,2399	0,2349	0,2309
2	0,3294	0,3093	0,3279	0,3107
3	0,1575	0,1568	0,1568	0,1566
4	0,1812	0,1783	0,1820	0,1818
5	0,1452	0,1440	0,1454	0,1448
6	0,2715	0,2714	0,2723	0,2700
7	0,1500	0,1477	0,1499	0,1501
8	0,2785	0,2710	0,2801	0,2698
9	0,1117	0,1120	0,1128	0,1119
10	0,1198	0,1303	0,1195	0,1184
11	0,1615	0,1620	0,1610	0,1623
12	0,7576	0,6955	0,7577	0,6954
13	0,8021	0,7622	0,8019	0,7624
14	0,1771	0,1736	0,1779	0,1764
15	0,8284	0,7950	0,8286	0,7948
16	0,3065	0,2104	0,2101	0,2060
17	0,1284	0,1278	0,1391	0,1277
18	0,2252	0,2180	0,2252	0,2309
19	0,2815	0,2790	0,2828	0,2790
20	0,1611	0,1613	0,1604	0,1614
21	0,1220	0,1218	0,1230	0,1218
22	0,1306	0,1307	0,1397	0,1286
23	0,1347	0,1345	0,1343	0,1357
24	0,1078	0,1077	0,1083	0,1075
25	0,1314	0,1307	0,1319	0,1315
26	0,1659	0,1668	0,1644	0,1643
27	0,2283	0,2303	0,2296	0,2321
28	0,1523	0,1494	0,1510	0,1512
29	0,1324	0,1317	0,1316	0,1314
30	0,1236	0,1236	0,1240	0,1227
31	0,1506	0,1505	0,1510	0,1501
32	0,1121	0,1123	0,1138	0,1126
33	0,1360	0,1336	0,1352	0,1348
34	0,2416	0,2436	0,3240	0,2444

Table 4. Model testing data 10-25-25-2

Target	Output	Error	SSE	Results				
Mar	Sep							
0,2380	0,2367	0,2361	0,2332	0,0019	0,0045	0,00000370	0,00000333	1 0
0,3178	0,3124	0,3238	0,3044	-0,0080	0,0050	0,00000632	0,00000643	1 0
0,1587	0,1581	0,1579	0,1555	0,0038	0,0026	0,00000657	0,00000664	1 0
0,1823	0,1813	0,1815	0,1805	0,0088	0,0008	0,00000651	0,00000538	1 1
0,1463	0,1463	0,1460	0,1454	-0,0003	0,0009	0,00000010	0,00000077	1 1
0,2756	0,2770	0,2754	0,2666	0,0002	0,0104	0,00000206	0,00001076	1 0
0,1496	0,1499	0,1500	0,1486	-0,0004	0,0133	0,00000114	0,00000171	1 1
0,3004	0,2795	0,2791	0,3692	0,0013	0,0103	0,00000161	0,00001052	1 0
0,1125	0,1115	0,1133	0,1122	-0,0008	-0,0007	0,00000038	0,00000049	1 1
0,1216	0,1206	0,1208	0,1200	0,0008	0,0006	0,00000072	0,00000371	1 1
0,1613	0,1612	0,1625	0,1647	-0,0012	-0,0035	0,00000133	0,00000222	1 1
0,6945	0,6819	0,7454	0,6739	-0,0059	0,0080	0,00000593	0,00000083	1 0
3.3. Prediction results

In table 5 below, we will see a comparison of the 10 architectural models.

Table 5. Comparison of Architectural Models

No	Architectural Model	Time	MSE Mar	MSE Sep	Accuracy Mar	Accuracy Sep
1	10-5-10-2	00:04	0.00012437	0.00010828	79.4%	44.1%
2	10-10-10-2	00:04	0.00012720	0.00006593	67.6%	44.1%
3	10-10-15-2	00:04	0.00010894	0.00009123	79.4%	41.2%
4	10-10-20-2	00:06	0.00010166	0.00006463	88.2%	55.9%
5	10-15-10-2	00:08	0.00013210	0.00006715	67.6%	44.1%
6	10-15-15-2	00:08	0.00016414	0.00005717	91.2%	61.8%
7	10-15-20-2	00:12	0.00014373	0.00006799	67.6%	44.1%
8	10-20-20-2	00:19	0.00010998	0.00005980	85.3%	61.8%
9	10-25-25-2	00:52	0.00013571	0.00005189	94.1%	61.8%
10	10-30-30-2	01:46	0.00014419	0.00008901	76.5%	44.1%

Next, you will predict 10-25-25-2 using a formula that returns a value: $x_n = \frac{3.3.4.1}{a - \alpha}$.

Table 6. Poor Year Prediction Results for 2019-2023 (Thousand Souls)

No	2019	Sep	2020	Sep	2021	Sep	2022	Sep	2023	Sep	2024	Sep
1	777.8	767.6	708.5	686.3	388.9	553.3	472.8	429.7	410.9	368.9	381.8	431.1
2	1214.6	1179.2	1043.6	999.9	794.6	740.0	552.2	497.1	423.0	378.0	384.8	434.1
3	364.0	359.3	381.3	369.8	387.3	364.9	395.1	361.5	399.1	359.8	365.4	397.2
4	482.3	472.3	479.0	464.1	446.8	420.0	417.8	381.5	402.5	362.4	367.8	397.2
5	293.4	286.6	330.5	319.0	355.4	334.1	382.7	350.5	397.2	358.4	352.6	391.5
6	978.6	972.9	872.5	842.0	839.4	864.0	511.5	463.2	416.5	373.3	378.5	420.2
7	318.5	313.2	346.9	335.6	365.7	344.0	386.7	354.1	397.8	358.5	363.4	397.8
8	1015.5	1002.6	890.9	860.0	700.7	656.6	516.0	467.0	417.5	373.8	378.5	420.2
9	122.1	119.1	194.2	185.5	271.8	254.6	350.6	321.7	392.3	354.6	359.8	402.5
4. Conclusion

Bayesian backpropagation regulation algorithm can be used to predict the number of poor people in each province in Indonesia as one of the efforts to assist the government in reducing poverty in the future. Based on the 10 architectural models used in this study (10-5-10-2, 10-10-15-2, 10-15-10-2, 10-15-15-2, 10-15-20-2, 10-20-20-2, 10-25-25-2 and 10-30-30-2), obtained the best architectural model 10-25-25-2 with predictive accuracy of 94.1% and 61.8%. The training MSE for the prediction of Semester 1 is 0.00000095 and MSE is testing 0.00013571. Whereas the training MSE for the prediction of Semester 2 is 0.00000254 and MSE is testing 0.00005189.

References

[1] M. Krumer-Nevo, “Poverty-Aware Social Work: A Paradigm for Social Work Practice with People in Poverty,” British Journal of Social Work, vol. September, pp. 1–16, 2015.

[2] P. S. Dalton, S. Ghosal, and A. Mani, “Poverty and Aspirations Failure,” The Economic Journal, vol. 126, no. February, pp. 165–188, 2014.

[3] J. Blumenstock, G. Cadamuro, and R. On, “Predicting poverty and wealth from mobile phone metadata,” Journal Science, vol. 350, no. 6264, pp. 1073–1076, 2015.

[4] B. Joshua and E. Blumenstock, “Fighting poverty with data - Machine learning algorithms measure and target poverty,” Journal Science, vol. 353, no. 6301, pp. 753–754, 2016.

[5] R. Atalay, “The Education and the Human Capital to Get Rid of the Middle-income Trap and to Provide the Economic Development,” Procedia - Social and Behavioral
Sciences, vol. 174, pp. 969–976, 2015.

[6] BPS, “Jumlah Penduduk Miskin Menurut Provinsi, 2007-2018,” Badan Pusat Statistik (BPS) Indonesia, 2018. [Online]. Available: https://www.bps.go.id/dynamictable/2016/01/18/1119/jumlah-penduduk-miskin-menurut-provinsi-2007-2018.html.

[7] S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,” JOIN (Jurnal Online Informatika), vol. 3, no. 2, pp. 110–115, 2018.

[8] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 43–54, 2017.

[9] N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.

[10] S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” International Journal Of Information System & Technology, vol. 1, no. 1, pp. 34–42, 2017.

[11] R. N. Supervisors, “Predicting Poverty of a Region from Satellite Imagery using CNNs,” 2019.

[12] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, “Combining satellite imagery and machine learning to predict poverty,” Journal Science, vol. 353, no. 6301, pp. 790–794, 2016.

[13] X. Pan, B. Lee, and C. Zhang, “A Comparison of Neural Network Backpropagation Algorithms for Electricity Load Forecasting,” Intelligent Energy System (IWIES), pp. 22–27, 2013.

[14] Z. Yue, Z. Songzheng, and L. Tianshi, “Bayesian Regularization BP Neural Network Model for Predicting Oil-gas Drilling Cost,” in International Conference on Business Management and Electronic Information, 2011, pp. 483–487.

[15] A. Wanto, M. Zarlis, Sawauddin, and D. Hartana, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” Journal of Physics: Conference Series, vol. 930, no. 1, pp. 1–7, 2017.

[16] A. Wanto et al., “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” 2018, pp. 1–7.

[17] M. Fauzan et al., “Epoch Analysis and Accuracy 3 ANN Algorithm Using Consumer Price Index Data in Indonesia,” 2018, pp. 1–7.

[18] B. Febriadi, Z. Zamzami, Y. Yunefri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–9, 2018.