Foliar Spray of Salicylic and Gibberllic Acid on Productivity of Crops: A Review

A. Sathishkumar¹, N. Sakthivel², E. Subramanian³, P. Rajesh¹

ABSTRACT

Plant growth regulators are chemical substances and when applied in small amounts, they bring rapid changes in the phenotypes of the plant and also the plant growth, right from seed germination to senescence either by enhancing or by stimulating the natural growth regulatory system. Plant growth substances are known to enhance the source-sink relationship and stimulate the translocation of photo-assimilates thereby helping in effective flower formation, fruit and seed development and ultimately enhance the productivity of crops. An attempt is made to review the some of the important growth substances like salicylic acid and gibberellic acid on growth and productivity of the crops.

Key words: Crops, Plant growth regulators, Photo-assimilates, Productivity, Translocation.

Plant growth regulators are chemical substances and when applied in small amounts, they bring rapid changes in the phenotypes of the plant and also the plant growth, right from seed germination to senescence either by enhancing or by stimulating the natural growth regulatory system (Kaur et al., 2015). Plant growth substances are known to enhance the source-sink relationship and stimulate the translocation of photo-assimilates, thereby, helping in effective flower formation, fruit and seed development and ultimately enhance the productivity of crops (Bai et al., 2016, 2017). An attempt is made to review the some of the important growth substances like salicylic acid and gibberellic acid on growth and productivity of the crops. In recent years, plant growth regulators are being employed increasingly to overcome physiological constraints leading to enhanced production in several crops (Malik et al., 1990). Gibberelins are probably one of the growth regulators that have a significant effect on flowering (Takahashi et al., 1991). These plant growth regulating substances have been found to improve the flowering of the crop, physiological efficiencies including disease resistance and play an inevitable role in raising productivity of crops (Dhashora and Jain, 1994; Kumar et al., 2015). Growth regulators can improve the physiological efficiency including photosynthetic ability and can enhance effective partitioning of accumulates from source and sink in the field crops (Solaimalai et al., 2001). Sritharan et al. (2005) observed in grain legumes that the application of plant growth regulators (PGRs) and nutrients decrease the leaf senescence by retaining more leaf nitrogen and chlorophyll. Plant hormones affect plant growth in multifarious ways affecting a number of physiological or biochemical processes in plants subjected to biotic and abiotic stresses and salicylic acid is one such plant growth regulators, which participate in the regulation of a number of physiological events taking place in the plant (Ashraf et al., 2010).

Importance of salicylic acid

Salicylic acid is ortho-hydroxybenzoic acid and is a secondary metabolite acting as analogues of growth regulating substances. It helps in protection of nucleic acids and prevention of protein degradation. The SA is also known to induce many genes coding for pathogenesis-related proteins in response to biotic and abiotic stresses (Yalpani et al., 1994). Foliar application of SA increased the indole acetic acid (IAA) content in broad bean leaves (Liu Xin et al., 2000). Foliar application of SA exerted a significant effect on plant growth metabolism when applied at physiological concentration, and thus acted as one of the plant growth regulating substances (Kalarani et al., 2002). Salicylic acid plays diverse physiological roles in plants which include plant growth, thermogenesis, flower induction, nutrient uptake, ethylene biosynthesis, stomatal movements, photosynthesis and enzyme activities (Hayat and Ahmed, 2007). Salicylic acid is an endogenous growth regulator of phenolic nature, which participates in the regulation of physiological processes in plants such as growth, photosynthesis, nitrate metabolism, ethylene production, heat production and flowering (Hayat et al., 2010).

Effect of salicylic acid on growth parameters

Sujatha (2001) reported that foliar application of salicylic
acid (100 ppm) on greengram at 75 DAS increased the plant height (50.4 cm), root length (16.9 cm), number of leaves (18.4) and leaf area index (1.30). Kalpana (2001) revealed that foliar spray of salicylic acid 100 ppm and 2% DAP increased the leaf area index and crop growth rate of soybean. Bekheta and Iman (2009) observed that foliar application of salicylic acid on corn and beans increased the plant height due to higher photosynthetic rate. Jayalakshmi et al. (2010) reported that foliar spray of salicylic acid at 100 mg L\(^{-1}\) increased the plant height and dry weight of groundnut. Ali et al. (2013) revealed that foliar application of salicylic acid on mungbean significantly increased the plant height and number of branches plant\(^{-1}\). Maduraimuthu and Desikan (2013) stated that foliar application of salicylic acid and NAA on sweet sorghum significantly increased the plant height.

Effect of salicylic acid on yield and yield parameters

Salicylic acid spray increased the grain number of cheena millet (Panicum miliaceum) (Datta and Nanda, 1985). Jeyakumar et al. (2008) reported that application of salicylic acid (125 ppm) on black gram increased the seed yield (855 kg ha\(^{-1}\)). Ahmad et al. (2009) stated that foliar application of salicylic acid at 100 ppm on sunflower significantly increased the number of achenes head\(^{-1}\) (1164.67), achene yield (2857 kg ha\(^{-1}\)), biological yield (11412 kg ha\(^{-1}\)) and harvest index (25.18%). Jayalakshmi et al. (2010) reported that foliar spray of salicylic acid at 100 mg L\(^{-1}\) increased the grain yield of groundnut. Ali et al. (2013) revealed that foliar application of salicylic acid on mungbean significantly increased the number of pods plant\(^{-1}\), number of seeds pod\(^{-1}\), 1000 seed weight, seed weight plant\(^{-1}\) and seed yield ha\(^{-1}\). Finger millet treated with salicylic acid under in vitro condition results in early flowering on 50 day itself and in control, the flowering starts only after 60 days. Also the treated plant has more number of flowers and fruit set when compared to control (Manikandan and Sathiyabama, 2014). Nooreddini and Sharafzadeh (2014) reported that foliar application of salicylic acid before flowering on maize increased significantly increased the ear length, number of ear row, number of kernel row\(^{-1}\), 1000 kernel weight (g) and kernel yield (g plant\(^{-1}\)).

Effect of salicylic acid on nutrient uptake and economics

Umadevi (1998) reported that application of salicylic acid increased the leaf nitrogen and phosphorous contents in sesame. Application of brassinosteroid and salicylic acid increased the uptake of potassium in sesame reported by Umadevi (1998) and in greengram by Sujatha (2001). Gunes et al. (2007) at Turkey demonstrated that exogenously applied salicylic acid increased the plant growth in maize significantly both in saline and non-saline conditions. This may be related to its inhibiting effect on Cl\(^{-}\) and Na\(^{+}\) and improving the uptake of N, Mg, Fe, Mn and Cu due to its effect on lipid peroxidation. Foliar application of salicylic acid (100 ppm) improved the B:C ratio in greengram (Sujatha, 2001). Kuttimani and Velayutham (2011) revealed that foliar application of 2% DAP + 100 ppm salicylic acid twice showed the higher B:C ratio of summer greengram.

Importance of gibberellic acid

Gibberellins (GAs) have been known as growth promoters that mediate many responses in plants from seed germination to senescence. It also controls root development in the prevention or promotion of root elongation, flowering and fruit development (Yamaguchi and Kamiya, 2000). Fridborg et al. (2001) reported that exogenous application of GA\(_3\) can suppress the activity of 'short internode' and ‘GA insensitive’ genes and hence leads to elongation growth of shoots. Gibberellic acid is one of the most important growth promoting substances used in agriculture since long ago (Naeem et al., 2001). Gibberellins (GAs) are generally involved in growth and development. They regulate seed germination, leaf expansion, stem elongation and flowering (Magome et al., 2004). GA\(_3\) has been reported to increase the cell wall extensibility leading to elongation growth (Rahman et al., 2004).

Effect of gibberellic acid on growth parameters

Iqbal et al. (2001) reported that application of 20 mg L\(^{-1}\) GA\(_3\) at flower initiation stage on chickpea increased the plant height, fresh and dry weight of shoot. Hoque and Haque (2002) reported that mungbean applied with foliar application of GA\(_3\) at 200 ppm recorded higher relative growth rate, while 100 ppm recorded higher leaf area index, total dry matter, crop growth rate and net assimilation rate. Bora and Sarma (2006) revealed that foliar spray of GA\(_3\) increased the shoot length, number of branches plant\(^{-1}\) and number of flowers plant\(^{-1}\) in pea. Emongor (2007) reported that exogenous application of GA\(_3\) after emergence at 30, 60 and 90 mg L\(^{-1}\) significantly increased the plant height, leaf area, number of leaves plant\(^{-1}\) and dry matter accumulation in cowpea. Naghashzadeh et al. (2009) inferred that foliar application of GA\(_3\) had a significant effect on plant height in maize. Azizikh et al. (2012) stated that foliar application of GA\(_3\) (125 ppm) increased the number of lateral branches plant\(^{-1}\) in soybean. Vahid Ghodrat et al. (2013) reported that foliar spray of gibberellic acid on maize significantly increased the crop growth rate and net assimilation rate.

Effect of gibberellic acid on yield parameters

Bora and Sarma (2006) reported that foliar application of GA\(_3\) on pea increased the number of pods plant\(^{-1}\) and seed index. Emongor (2007) reported that exogenous application of GA\(_3\) after emergence at 30, 60 and 90 mg L\(^{-1}\) significantly increased the pod length, pod number plant\(^{-1}\), seed number pod\(^{-1}\), 100 seed weight, seed yield and harvest index of cowpea. Naghashzadeh et al. (2009) inferred that foliar application of GA\(_3\) has a significant effect on grain yield and 1000 seed weight of maize. Azizikh et al. (2012) stated that foliar application of GA\(_3\) (125 ppm) increased the number of pods plant\(^{-1}\) (101.5), number of seeds pod\(^{-1}\) (2.65), 1000 seed weight (172.6 g), economic yield (4.24 t ha\(^{-1}\)), biological yield (47.62 t ha\(^{-1}\)) and harvest index (48.05%) of soybean.
Yakubu et al. (2013) revealed that foliar spray of gibberellic acid on groundnut at 100 mg L⁻¹ increased the pod yield, while 200 mg L⁻¹ increased the haulm yield of groundnut in both wet and dry conditions.

Effect of gibberellic acid on nutrient uptake and economics

Khan et al. (2002) revealed that the increase in nitrogen uptake following GA₃ application was due to increase in shoot growth, which requires more utilization of soil nitrogen and also GA₃ increased the nitrogen use efficiency due to enhancement of vegetative growth and pods.

Al-Rumah et al. (2003) reported that foliar application of GA₃ increased the mineral nutrient levels of cowpea roots and shoots. Khan et al. (2007) stated that foliar application of GA₃ increased the uptake of nitrogen. Ashwini (2005) reported that foliar application of GA₃ (20 ppm) increased the B:C ratio in French bean (*P. vulgaris*) due to higher productivity.

CONCLUSION

It is concluded that foliar application of plant growth regulators helps in bringing rapid changes in the phenotypes of the plants and also improves growth and translocation of nutrients to economic parts and ultimately leads to enhanced productivity of the crops.

REFERENCES

Ali, E.A. and Adel. M.M. (2013). Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil. Asian Journal of Crop Science. 1: 340.

Al-Rumah, M.M., Rushdy, S.S. and Warsy, A.S. (2003). Effect of cadmium stress in the presence and absence of gibberellic acid on mineral nutrition of cowpea (*Vigna unguiculata* L.) during ontogenesis. Agricultural Sciences. 15: 141-151.

Ashraf, M.N., Akram, A., Arteca, R.N. and Foolad, M.R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences. 29:162-190.

Ashwini, G.M. (2005). Effect of organics, nutrients and plant growth regulators on physiology and yield in French bean (*Phaseolus vulgaris* L.). M.Sc. (Ag.) Thesis. University of agricultural sciences, Dharwad.

AziziKh, Moradii J., Heidari, S., Khalili, A. and Feizian, M. (2012). Effect of different concentrations of gibberellic acid on seed yield and yield components of soybean genotypes in summer intercropping. International Journal of Agricultural Sciences. 4: 291-301.

Bai, B., Suri, V.K., Kumar, A. and Choudhary, A.K. (2016). Influence of *Glomus–Rhizobium* symbiosis on productivity, root morphology and soil fertility in garden pea in Himalayan acid Alfisol. Communications in Soil Science and Plant Analysis. 6: 787-798.

Bai, B., Suri, V.K., Kumar, A. and Choudhary, A.K. (2017). Tripartite symbiosis of *Pisum–Glomus–Rhizobium* lead to enhanced productivity, nitrogen and phosphorus economy, quality and biofortification in garden pea in a Himalayan acid Alfisol. Journal of Plant Nutrition. 4: 600-613.

Bekheta, M.A. and Iman, M.T. (2009). Physiological response of mungbean (*Vigna radiata*) plants to some bioregulators. Journal of Applied Botany and Food Quality. 83: 76-84.

Bora, R.K. and Sarma, C.M. (2006). Effect of gibberellic acid and cycoecil on growth, yield and protein content of pea. Asian Journal of Plant Sciences. 2: 324-330.

Dashora, C.D. and Jain, P.M. (1994). Influence of growth regulators and phosphorus on growth and yield of soybean. Madras Agricultural Journal. 81: 235-237.

Datta, K.S. and Nanda, K.K. (1985). Effect of some phenolic compounds and gibberellic acid on growth and development of Cheena Millet (*Panicum miliaceum*). Indian Journal of Plant Physiology. 28: 298-302.

Emongor, V. (2007). Gibberellic acid (GA₃) influence on vegetative growth, nodulation and yield of cowpea (*Vigna unguiculata* L.). Walp. Journal of Agronomy. 4: 509-517.

Fridborg, I., Sandra, K., Robertson, M. and Sundberg, E. (2001). The Arabidopsis protein SHI represses Gibberellin response in Arabidopsis and Barley. Plant Physiology. 127: 937-948.

Gunes, Y., Inal, A., Alpasalan, M., Eraslan F., Bagci E.G. and Cicek, G.N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (*Zea mays* L.) grown under salinity. Journal of Plant Physiology. 6: 728-36.

Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany. 68: 14-25.

Hayat, S. and Ahmed, A. (2007). Salicylic acid: A plant hormone. Springer, Dordrecht, The Netherland, pp. 1-14.

Hoque, M. and Haque, S. (2002). Effects of gibberellic acid (GA₃) on physiological contributing characters of mungbean (*Vigna radiata* L.) Pakistan Journal of Biological Sciences. 4: 401-403.

Iqbal, H.F., Tahir, A., Khalid, M.N., Haq. and Ahmad, A.N. (2001). Response of chickpea (*Cicer aritinum* L.) growth towards the foliar application of gibberellic acid at different growth stages. Pakistan Journal of Biological Sciences. 4: 433-434.

Jalalakshmi, P., Suvarnalatha Devi, P., Prasanna, N.D., Revathi, G. and Shaheen, S.K. (2010). Morphological and physiological changes of groundnut plants by foliar application with salicylic acid. Intern. Quarterly. Journal of Life Sciences. 2: 193-195.

Jeyakumar, P., Velu, G., Rajendran, C., Amutha, R., Savery, M.A.J.R. and Chidambaram, S. (2008). Varied responses of blackgram (*Vigna mungo*) to certain foliar applied chemicals and biofortification in garden pea in a Himalayan acid Alfisol. Journal of Plant Nutrition. 4: 600-613.
Foliar Spray of Salicylic and Gibberllic Acid on Productivity of Crops: A Review

Khan, N.A., Mir, R., Khan, M., Javid, S. and Samiullah. (2002). Effects of gibberellic acid spray on nitrogen yield efficiency of mustard grown with different nitrogen levels. Plant Growth Regulators. 38: 243–247.

Khan, N.A., Singh, S., Nazar, R. and Lone, P.M. (2007). The source-sink relationship in mustard. Asian Australian Journal of Plant Science and Biotechnology. 1: 10–18.

Kumar, A., Choudhary, A.K. and Suri, V.K. (2015). Influence of AM–fungi and applied phosphorus on growth indices, production efficiency, phosphorus–use efficiency and fruit–succulence in okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system in an acid Alfisol. Indian Journal of Agricultural Sciences. 8: 1030-1037.

Kuttimani, R. and Velayutham, A. (2011). Foliar application of nutrients and growth regulators on yield and economics of greengram. Madras Agricultural Journal. 4-6: 141-143.

Liu Xin, Li Yan. and Zhang Shuqiu. (2000). Effect of salicyclic acid on growth and content of IAA and IBA of broad bean seedlings. Plant Physiology. 2:50-52.

Maduraimuthu Djanaguiraman and Desikan Ramesh. (2013). Increasing millable cane yield of sweet sorghum through altered nitrogen, population level and plant growth regulators spray. ESci Journal of Crop Production. 02: 08-18.

Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y. and Odadoi, K. (2004). Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellins biosynthesis because of over expression of a putative AP2 transcription factor. Plant Journal. 37: 720-729.

Malik, M.N.A., Chaudhry, F.I. and Makhdum, M.I. (1990). Effect of pix on yield and growth of cotton (Gossypium hirsutum L.). Sarhad Journal of Agriculture. 1: 67-70.

Manikandan Appu and Sathiyabama Muthukrishnan. (2014). Foliar application of salicylic acid stimulates flowering and induce defense related proteins in finger millet plants. Universal Journal of Plant Sciences.1: 14-18.

Naeem, N., Ishfaq, M., Khan, P. and Mohammad, N. (2001). Effect of gibberellic acid on growth and yield of tomato cv. Roma. Online Journal of Biological Sciences. 6: 448-460.

Naghashzadeh, M., Rafiee, M. and Khorgamy, A. (2009). Evaluation of effects of gibberellic acid on maize (Zea mays L.) in different planting dates. Plant Ecophysiology. 3: 159-162.

Noureddini, M. and Sharafzadeh, S.H. (2014). Impact of foliar application of salicylic acid on growth, yield and yield components of maize plants. International Journal of Biology, Pharmacy and Allied Sciences. 5: 686-693.

Rahman, Md. S., Islam, Md. N., Tahir, A. and Karim, M.A. (2004). Influence of GA$_3$ and MH and their time of spray on morphology, yield contributing characters and yield of soybean. Asian Journal of Plant Sciences. 3: 602-609.

Solaimalai, A., Sivakumar, C., Anbumani, S., Suresh T. and Arulchelvan, K. (2001). Role of plant growth regulators in rice production - A Review. Agricultural Reviews. 22: 33-40.

Sujatha, K. B. (2001). Effect of foliar spray of chemicals and bioregulators on growth and yield of greengram (Vigna radiata L.). M.Sc. (Ag.) Thesis. Tamil Nadu Agric. Univ., Coimbatore.

Umadevi, T.K. (1998). Studies on physiological basis of partitioning and its regulation for maximizing yield in sesame (Sesamum indicum L.). M.Sc. (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore.

Vahid Ghodrat, Mohammad Javad Rousta and Abbas Karampour. (2013). Growth analysis of corn (Zea mays L.) as influenced by indole-butyric acid and gibberellic acid. Journal of Basic and Applied Scientific Research. 2: 180-185.

Yakubu, H., Izge, A.U., Hussaini, M.A., Jibrin, J.M., Bello, O.G. and Isyaku., M.S. (2013). Varietal response and gibberellic acid concentrations on yield and yield traits of groundnut (Arachis hypogaea L.) under wet and dry conditions. Academia Journal of Agricultural Research. 1: 001-008.

Yalpani, N., Enyedi, A.J., Leon, J. and Raskin, I. (1994). Ultra violet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta. 193: 372-376.

Yamaguchi, S. and Kamiya, Y. (2000). Gibberellins biosynthesis: Its regulation by endogenous and environmental gibberellins. Plant and Cell Physiology. 41: 251-257.