A completeness result for a realisability semantics for an intersection type system
Fairouz Kamareddine, Karim Nour

▶ To cite this version:
Fairouz Kamareddine, Karim Nour. A completeness result for a realisability semantics for an intersection type system. Annals of Pure and Applied Logic, 2007, 146, pp.180-198. hal-00380177

HAL Id: hal-00380177
https://hal.science/hal-00380177
Submitted on 4 May 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A completeness result for a realisability semantics for an intersection type system

Fairouz Kamareddine∗ and Karim Nour†

May 4, 2009

Abstract

In this paper we consider a type system with a universal type ω where any term (whether open or closed, β-normalising or not) has type ω. We provide this type system with a realisability semantics where an atomic type is interpreted as the set of λ-terms saturated by a certain relation. The variation of the saturation relation gives a number of interpretations to each type. We show the soundness and completeness of our semantics and that for different notions of saturation (based on weak head reduction and normal β-reduction) we obtain the same interpretation for types. Since the presence of ω prevents typability and realisability from coinciding and creates extra difficulties in characterizing the interpretation of a type, we define a class U^+ of the so-called positive types (where ω can only occur at specific positions). We show that if a term inhabits a positive type, then this term is β-normalisable and reduces to a closed term. In other words, positive types can be used to represent abstract data types. The completeness theorem for U^+ becomes interesting indeed since it establishes a perfect equivalence between typable terms and terms that inhabit a type. In other words, typability and realisability coincide on U^+. We give a number of examples to explain the intuition behind the definition of U^+ and to show that this class cannot be extended while keeping its desired properties.

1 Introduction

The ground work for intersection types and related notions was developed in the seventies [5, 6, 18] and have since proved to be a valuable tool in the theoretical studies and applications of the lambda calculus. Intersection types incorporate type polymorphism in a finitary way (where the usage of types is listed rather than quantified over). Since the late seventies, numerous intersection type systems have been developed or used for a multitude of purposes (the list is huge; for a very brief list we simply refer the reader to the recent articles [1, 4] and the references there, for a longer list we refer the reader to the bibliography of intersection types and related systems available (while that URL address is active) at http://www.macs.hw.ac.uk/~jbw/itrs/bibliography.html). In this paper, we are interested in the interpretation of an intersection type. We study this interpretation in the context of the so-called realisability semantics.

The idea of realisability semantics is to associate to each type a set of terms which realise this type. Under this semantics, an atomic type is interpreted as the set of...
\(\lambda \)-terms saturated by a certain relation. Then, arrow and intersection types receive their intuitive interpretation of functional space and set intersection. For example, a term which realises the type \(\mathbb{N} \rightarrow \mathbb{N} \) is a function from \(\mathbb{N} \) to \(\mathbb{N} \). Realisability semantics has been a powerful method for establishing the strong normalisation of type systems à la Tait and Girard. The realisability of a type system enables one to also show the soundness of the system in the sense that the interpretation of a type contains all the terms that have this type. Soundness has been an important method for characterising the algorithmic behaviour of typed terms through their types as has been illuminative in the work of Krivine.

It is also interesting to find the class of types for which the converse of soundness holds. I.e., to find the types \(\mathcal{A} \) for which the realisability interpretation contains exactly (in a certain sense) the terms typable by \(\mathcal{A} \). This property is called completeness and has not yet been studied for every type system.

In addition to the questions of soundness and completeness for a realisability semantics, one is interested in the additional three questions:

1. Can different interpretations of a type given by different saturation relations be compared?

2. For a particular saturation relation, what are the types uniquely realised by the \(\lambda \)-terms which are typable by these types?

3. Is there a class of types for which typability and realisability coincide?

In this paper we establish the soundness and completeness as well as give answers to questions 1, 2 and 3 for a strict non linear intersection type system with a universal type. We show that for different notions of saturation (based on weak head reduction and normal \(\beta \)-reduction) we obtain the same interpretation for types answering question 1 partially. Questions 2 and 3 are affected by the presence of \(\omega \) which prevents typability and realisability from coinciding and creates extra difficulties in characterizing the interpretation of a type. We define a class \(\mathcal{U}^+ \) of the so-called positive types (where \(\omega \) can only occur at specific positions). We show that if a term inhabits a positive type, then this term is \(\beta \)-normalisable and reduces to a closed term. In other words, positive types can be used to represent abstract data types. This result answers question 2 and depends on the full power of soundness. The completeness theorem for \(\mathcal{U}^+ \) becomes interesting indeed since it establishes a perfect equivalence between typable terms and terms that inhabit a type. In other words, typability and realisability coincide on \(\mathcal{U}^+ \) answering question 3. We give a number of examples to explain the intuition behind the definition of \(\mathcal{U}^+ \) and to show that this class cannot be extended while keeping its desired properties.

Hindley [12, 13, 14] was the first to study the completeness of a simple type system and he showed that all the types of that system have the completeness property. Then, he generalised his completeness proof for an intersection type system [14]. Using his completeness theorem for the realisability semantics based on the sets of \(\lambda \)-terms saturated by \(\beta \eta \)-equivalence, Hindley has shown that simple types have property 2 above. However, his completeness theorem for intersection types does not allow him to establish property 2 for the intersection type system. Moreover, Hindley’s completeness theorems were established with the sets of \(\lambda \)-terms saturated by \(\beta \eta \)-equivalence, and hence they don’t permit a comparison between the different possible interpretations. In our method, saturation is not by \(\beta \eta \)-equivalence. Rather, it is by the weaker requirement of weak head normal forms. Hence, all of Hindley’s saturated models are also saturated in our framework and moreover, there are saturated models based on weak head normal form which cannot be models in Hindley’s framework.

[16] has established completeness for a class of types in Girard’s system F (also independently discovered by Reynolds as the second order typed \(\lambda \)-calculus) known
as the strictly positive types. \([9, 10]\) generalised the result of \([16]\) for the larger class which includes all the positive types and also for second order functional arithmetic. \([7]\) established recently by a different method using Kripke models, the completeness for the simply typed \(\lambda\)-calculus. Finally \([17]\) introduced a realizability semantics for the simply typed \(\lambda\mu\)-calculus and proved a completeness result.

The paper is structured as follows: In section 2, we introduce the intersection type system that will be studied in this paper. In section 3 we study both the subject reduction and subject expansion properties for \(\beta\). In section 4 we establish the soundness and completeness of the realizability semantics based on two notions of saturated sets (one using weak head reduction and the other using \(\beta\)-reduction). In section 5 we show that the meaning of a type does not depend on the chosen notion of saturation (based on either weak head reduction or \(\beta\)-reduction). We also define a subset of types which we show to satisfy the (weak) normalisation property and for which typability and realizability coincide.

2 The typing system

A number of intersection type systems have been given in the literature (for a very brief list see \([1, 4]\) and the references there; for a longer list (and while that URL address is active) see \[http://www.macs.hw.ac.uk/~jbw/itrs/bibliography.html\]). In this paper we introduce an intersection type system due to J.B. Wells and inspired by his work with Sébastien Carlier on expansion \([4]\). We follow \([4]\) and write the type judgements \(\Gamma \vdash M : U\) as \(M : \langle \Gamma \vdash U \rangle\). There are many reasons why this latter notation is to be prefered over the former (see \([4]\)). In particular, this typing notation allowed J.B. Wells in \([20]\) to give a very simple yet general definition of principal typings.

Before presenting the type system, we give a number of its characteristics:

- The type system is **relevant**: this means that the type environments contain all and only the necessary assumptions as is shown in lemma \(\Box\).
- The type system is **strict** and **non-linear**: Following the terminology of \([19]\) (who advocated the use of of linear systems of intersection types only with strict intersection types), types are strict if \(\omega\) and \(\cap\) do not occur immediately to the right of arrows. Our type system is non-linear since \(\cap\) is idempotent. We guarantee strictness by using two sets of types \(T\) and \(U\) such that \(T \subset U\) and \(T\) is only formed by either basic types or using the arrow constructor (without permitting \(\omega\) and \(\cap\) to occur immediately to the right of arrows). This means that one does not need to state laws relating \(A \rightarrow (B_1 \cap B_2)\) to \((A \rightarrow B_1) \cap (A \rightarrow B_2)\), yet one can still establish a number of type inclusion properties as is shown in lemma \(\Box\).

Definition 1

1. Let \(V\) be a denumerably infinite set of variables. The set of terms \(M\), of the \(\lambda\)-calculus is defined as usual by the following grammar:

\[
M ::= V \mid (\lambda V.M) \mid (M.M)
\]

We let \(x, y, z, \text{etc.}\) range over \(V\) and \(M, N, P, Q, M_1, M_2, \ldots\) range over \(M\). We assume the usual definition of subterms and the usual convention for parenthesis and omit these when no confusion arises. In particular, we write \(M N_1 \ldots N_n\) instead of \((\ldots(M N_1) N_2 \ldots N_{n-1}) N_n\).

We take terms modulo \(\alpha\)-conversion and use the Barendregt convention (BC) where the names of bound variables differ from the free ones. When two terms \(M\) and \(N\) are equal (modulo \(\alpha\)), we write \(M = N\). We write \(\text{FV}(M)\) for the set of the free variables of term \(M\).
2. We define as usual the substitution $M[x := N]$ of the term N for all free occurrences of x in the term M and similarly, $M[(x_i := N_i)]$, the simultaneous substitution of N_i for all free occurrences of x_i in M for $1 \leq i \leq n$.

3. We assume the usual definition of compatibility.

- The weak head reduction β on M is defined by: $M \beta N$ if $M = (\lambda x.P)Q_1 \ldots Q_n$ and $N = P[x := Q]Q_1 \ldots Q_n$ where $n \geq 0$.
- The reduction relation \triangleright_β on M is defined as the least compatible relation closed under the rule: $(\lambda x.M)N \triangleright_\beta M[x := N]$.
- For $r \in \{f, \beta\}$, \trianglerightstar_r denotes the reflexive transitive closure of \triangleright_r.
- \trianglerightstar_β denotes the equivalence relation induced by \trianglerightstar_β.

The next theorem is standard and is needed for the rest of the paper.

Theorem 2

1. Let $\trianglerightstar_r N$. If $M \trianglerightstar_\beta N$, then $FV(N) \subseteq FV(M)$.

2. If $M \trianglerightstar_\beta N$, then, for all $P \in M$, $MP \trianglerightstar_\gamma NP$.

3. If $M \trianglerightstar_\beta M_1$ and $M \trianglerightstar_\beta M_2$, then there is M' such that $M_1 \trianglerightstar_\beta M'$ and $M_2 \trianglerightstar_\beta M'$.

4. $M_1 \trianglerightstar_\beta M_2$ if there is a term M such that $M_1 \trianglerightstar_\beta M$ and $M_2 \trianglerightstar_\beta M$.

5. Let $n \geq 1$ and assume $x_i \notin FV(M)$ for every $1 \leq i \leq n$. If $Mx_1 \ldots x_n \trianglerightstar_\beta x_j N_1 \ldots N_m$ for some $1 \leq k \leq n$ and $m \geq 0$, then for some $k \geq j$ and $s \leq m$, $M \trianglerightstar_\beta \lambda x_1 \ldots \lambda x_k.x_j M_1 \ldots M_s$ where $s + n = k + m$, $M_i \trianglerightstar_\beta N_i$ for every $1 \leq i \leq s$ and $N_{s+i} \trianglerightstar_\beta x_{k+i}$ for every $1 \leq i \leq n - k$.

6. If $M x$ is weakly β-normalising and $x \notin FV(M)$, then M is also weakly β-normalising.

Proof

See [3] for more detail. Here, we sketch the proofs. [1] (resp. [3]) is by induction on $M \trianglerightstar_\beta N$ (resp. $M \trianglerightstar_\beta N$), [3] is the Church-Rosser, [3] if) is by definition of \trianglerightstar_β whereas only if) is by induction on $M \trianglerightstar_\beta M_2$ using [3].

[1] is as follows: Since $Mx_1 \ldots x_n \trianglerightstar_\beta x_j N_1 \ldots N_m$, then by page 23 of [1], $Mx_1 \ldots x_n$ is solvable and hence, M is also solvable and its head reduction terminates.

Therefore, $M \trianglerightstar_\beta \lambda x_1 \ldots \lambda x_k.z M_1 \ldots M_s$ for $s, k \geq 0$. Since $x_j N_1 \ldots N_m \trianglerightstar_\beta (\lambda x_k.z M_1 \ldots M_s)x_1 \ldots x_n$ then $k \leq n$, $x_j N_1 \ldots N_m \trianglerightstar_\beta z M_1 \ldots M_s x_{k+1} \ldots x_n$. Hence, $z = x_j, s \leq m, j \leq k$ (since $x_j \notin FV(M)$), $m = s + (n - (k + 1)) + 1 = s + n - k, M_i \trianglerightstar_\beta N_i$ for every $1 \leq i \leq s$ and $N_{s+i} \trianglerightstar_\beta x_{k+i}$ for every $1 \leq i \leq n - k$.

[3] is by cases:

- If $M x \trianglerightstar_\beta M' x$ where M' is where M' is in β-normal form and $M \trianglerightstar_\beta M'$ then M' is in β-normal form and M is β-normalising.

- If $M x \trianglerightstar_\beta (\lambda y.N) x \trianglerightstar_\beta N[y := x] \trianglerightstar_\beta P$ where P is in β-normal form and $M \trianglerightstar_\beta \lambda y.N$ then by [3], $x \notin FV(N)$ and so, $M \trianglerightstar_\beta \lambda y.N = \lambda x.N[y := x] \trianglerightstar_\beta \lambda x.P$. Since $\lambda x.P$ is in β-normal form, M is β-normalising.

□
Definition 3

1. Let A be a denumerably infinite set of atomic types. The types are defined by the following grammars:

$$T ::= A \mid U \rightarrow T$$

$$U ::= \omega \mid U \cap U \mid T$$

We let $a, b, c, a_1, a_2, \ldots$ range over A, T, T_1, T_2, T', \ldots range over T and U, V, W, U_1, V_1, U', \ldots range over U.

We quotient types by taking \cap to be commutative (i.e. $U_1 \cap U_2 = U_2 \cap U_1$), associative (i.e. $U_1 \cap (U_2 \cap U_3) = (U_1 \cap U_2) \cap U_3$), idempotent (i.e. $U \cap U = U$) and to have ω as neutral (i.e. $\omega \cap U = U$).

We denote $U_n \cap U_{n+1} \ldots \cap U_m$ by $\cap_{i=n}^{m} U_i$ (when $n \leq m$).

2. A type environment is a set $\{x_i : U_i / 1 \leq i \leq n, n \geq 0, \text{ and } \forall 1 \leq i \leq n, x_i \in V, U_i \in U \text{ and } \forall 1 \leq i, j \leq n, \text{ if } i \neq j \text{ then } x_i \neq x_j\}$. We denote such environment (call it Γ) by $x_1 : U_1, \ldots, x_n : U_n$ or simply by $(x_i : U_i)_n$ and define $\text{dom}(\Gamma) = \{x_i / 1 \leq i \leq n\}$. We use $\Gamma, \Delta, \Gamma_1, \ldots$ to range over environments and write () for the empty environment.

If M is a term and $\text{FV}(M) = \{x_1, \ldots, x_n\}$, we denote $\text{env}^M = (x_i : \omega)_n$.

If $\Gamma = (x_i : U_i)_n, x \notin \text{dom}(\Gamma)$ and $U \in U$, we denote $\Gamma, x : U$ the type environment $x_1 : U_1, \ldots, x_n : U_n, x : U$.

Let $\Gamma_1 = (x_i : U_i)_n, (y_j : V_j)_m$ and $\Gamma_2 = (x_i : U'_i)_n, (z_k : W_k)_l$. We denote $\Gamma_1 \cap \Gamma_2$ the type environment $(x_i : U_i \cap U'_i)_n, (y_j : V_j)_m, (z_k : W_k)_l$. Note that $\text{dom}(\Gamma_1 \cap \Gamma_2) = \text{dom}(\Gamma_1) \cup \text{dom}(\Gamma_2)$ and that \cap is commutative, associative and idempotent on environments.

3. The typing rules are the following:

$$\frac{\text{ax}}{x : (x : T \vdash T)}$$

$$\frac{M : (env^M \vdash \omega)}{\omega}$$

$$\frac{\lambda x.M : (\Gamma \vdash U \rightarrow T)}{M : (\Gamma, x : U \vdash T)} \quad \rightarrow_i$$

$$\frac{M : (\Gamma \vdash T) \quad x \notin \text{dom}(\Gamma)}{\lambda x.M : (\Gamma \vdash \omega \rightarrow T)} \quad \rightarrow_i$$

$$\frac{M_1 : (\Gamma_1 \vdash U \rightarrow T) \quad M_2 : (\Gamma_2 \vdash U)}{M_1 M_2 : (\Gamma_1 \cap \Gamma_2 \vdash T)} \quad \rightarrow_c$$

$$\frac{M : (\Gamma \vdash U_1) \quad M : (\Gamma \vdash U_2)}{M : (\Gamma \vdash U_1 \cap U_2)} \quad \cap_i$$

$$\frac{M : (\Gamma \vdash U) \quad (\Gamma \vdash U) \sqsubseteq (\Gamma' \vdash U')}{M : (\Gamma \vdash U')} \quad \sqsubseteq$$

In the last clause, the binary relation \sqsubseteq is defined by the following rules:

$$\frac{\Phi \sqsubseteq \Phi}{\text{ref}}$$

5
Throughout, we use $\Phi, \Phi', \Phi_1, \ldots$ to denote $U \in \mathbb{U}$, or environments Γ or typings $(\Gamma \vdash U)$. Note that when $\Phi \sqsubseteq \Phi'$, then Φ and Φ' belong to the same set (either \mathbb{U} or environments or typings).

The next lemma gives the shape of a type in \mathbb{U}.

Lemma 4

1. If $U \in \mathbb{U}$, then $U = \omega$ or $U = \bigcap_{i=1}^{n} T_i$ where $n \geq 1$ and $\forall 1 \leq i \leq n, T_i \in \mathbb{T}$.
2. $U \sqsubseteq \omega$.
3. If $\omega \sqsubseteq U$, then $U = \omega$.

Proof

1. By induction on $U \in \mathbb{U}$.
2. By rule \sqcap_e, $U = \omega \sqcap U \sqsubseteq \omega$.
3. By induction on the derivation $\omega \sqsubseteq U$.

The next lemma studies the relation \sqsubseteq on \mathbb{U}.

Lemma 5 Let $V \neq \omega$.

1. If $U \sqsubseteq V$, then $U = \bigcap_{i=1}^{k} T_j$, $V = \bigcap_{i=1}^{p} T'_i$ where $p, k \geq 1$, $\forall 1 \leq j \leq k$, $1 \leq i \leq p$, $T_j, T'_i \in \mathbb{T}$, and $\forall 1 \leq i \leq p$, $\exists 1 \leq j \leq k$ such that $T_j \sqsubseteq T'_i$.
2. If $U \subseteq V' \sqcap a$, then $U = U' \sqcap a$ and $U' \subseteq V'$.
3. Let $p, k \geq 1$. If $\bigcap_{j=1}^{k}(U_j \rightarrow T_j) \subseteq \bigcap_{i=1}^{p}(U'_i \rightarrow T'_i)$, then $\forall 1 \leq i \leq p$, $\exists 1 \leq j \leq k$ such that $U'_i \subseteq U_j$ and $T'_i \sqsubseteq T_j$.
4. If $U \rightarrow T \sqsubseteq V$, then $V = \bigcap_{i=1}^{p}(U_i \rightarrow T_i)$ where $p \geq 1$ and $\forall 1 \leq i \leq p$, $U_i \subseteq U$ and $T \sqsubseteq T_i$.
5. If $\bigcap_{j=1}^{k}(U_j \rightarrow T_j) \subseteq V$ where $k \geq 1$, then $V = \bigcap_{i=1}^{p}(U'_i \rightarrow T'_i)$ where $p \geq 1$ and $\forall 1 \leq i \leq p$, $\exists 1 \leq j \leq k$ such that $U'_i \subseteq U_j$ and $T'_i \sqsubseteq T_j$.

Proof
1. By induction on the derivation $U \subseteq V$ using lemma 3.

2. By induction on $U \subseteq V' \cap a$.

3. By induction on $\Gamma \vdash \Gamma'$, $U \subseteq V'$ and $x \notin dom(\Gamma)$, then $\Gamma, x : U \subseteq \Gamma', x : U'$.

4. If $\Gamma \subseteq \Gamma'$, $U \subseteq U'$ and for every $1 \leq i \leq n$, $U_i \subseteq U'_i$.

5. If $\Gamma \subseteq \Gamma'$ and $\Delta \subseteq \Delta'$, then $\Gamma \cap \Delta \subseteq \Gamma' \cap \Delta'$.

Proof

1. By induction on the derivation $\Gamma \subseteq \Gamma'$.

2. First show, by induction on the derivation $\Gamma \subseteq \Gamma'$ (using 1), that if $\Gamma \subseteq \Gamma'$, $V \subseteq U$ and $y \notin dom(\Gamma)$ then $\Gamma, y : V \subseteq \Gamma', y : V$.

3. Only if) By 1, $\Gamma = (x_i : U_i)_n$ and $\Gamma' = (x_i : U'_i)_n$. The proof is by induction on the derivation $(x_i : U_i)_n \subseteq (x_i : U'_i)_n$. If By induction on n using 4.

4. Let $FV(M) = \{x_1, \ldots, x_n\}$ and $\Gamma = (x_i : U_i)_n$. By definition, $env^M = (x_i, \omega)_n$. Hence, by lemma 2 and 3, $\Gamma \subseteq env^M$.

5. Let $FV(M) = \{x_1, \ldots, x_n\}$. By definition, $env^M = (x_i, \omega)_n$. By 3, $\Gamma = (x_i : U_i)_n$ and $\forall 1 \leq i \leq n\omega \subseteq U_i$. Hence by lemma 2, $\forall 1 \leq i \leq n, \omega = U_i$.

6. Only if) By induction on the derivation $\langle \Gamma \vdash U \rangle \subseteq \langle \Gamma' \vdash U' \rangle$. If By $\subseteq 0$.

This is a corollary of 3.

The next lemma studies the relation \subseteq on environments and typings.

Lemma 6

1. If $\Gamma \subseteq \Gamma'$, then $dom(\Gamma') = dom(\Gamma)$.

2. If $\Gamma \subseteq \Gamma'$, $U \subseteq \Gamma'$ and $x \notin dom(\Gamma)$, then $\Gamma, x : U \subseteq \Gamma', x : U'$.

3. $\Gamma \subseteq \Gamma'$ iff $\Gamma = (x_1 : U_1)_n$, $\Gamma' = (x_1 : U'_1)_n$ and for every $1 \leq i \leq n$, $U_i \subseteq U'_i$.

4. If $dom(\Gamma) = FV(M)$, then $\Gamma \subseteq env^M$.

5. If $env^M \subseteq \Gamma$, then $\Gamma = env^M$.

6. $\langle \Gamma \vdash U \rangle \subseteq \langle \Gamma' \vdash U' \rangle$ iff $\Gamma' \subseteq \Gamma$ and $U \subseteq U'$.

7. $\Gamma \subseteq \Gamma'$ and $\Delta \subseteq \Delta'$, then $\Gamma \cap \Delta \subseteq \Gamma' \cap \Delta'$.
The next lemma shows that we do not allow weakening in our type system.

Lemma 7 1. If \(M : (\Gamma \vdash U) \), then \(\text{dom}(\Gamma) = \text{FV}(M) \).

2. For every \(\Gamma \) and \(M \) such that \(\text{dom}(\Gamma) = \text{FV}(M) \), we have \(M : (\Gamma \vdash \omega) \).

Proof

1. By induction on the derivation \(M : (\Gamma \vdash U) \).

2. By \(\omega \), \(M : \langle \text{env}^M \vdash \omega \rangle \). By lemma 6.4, \(\Gamma \subseteq \text{env}^M \). Hence, by \(\subseteq \) and \(\subseteq_0 \), \(M : (\Gamma \vdash \omega) \).

\(\square \)

Finally, it may come as a surprise that the rule ax uses types in \(\mathbb{T} \) instead of \(\mathbb{U} \) and that in the rule \(\cap_1 \) we take the same environment. The lemma below shows that this is not restrictive.

Lemma 8 1. The rule \[
\frac{M : (\Gamma_1 \vdash U_1) \quad M : (\Gamma_2 \vdash U_2)}{M : (\Gamma_1 \cap \Gamma_2 \vdash U_1 \cap U_2)}
\] \(\cap_1^\prime \) is derivable.

2. The rule \[
\frac{x : ((x : U) \vdash U)}{ax^x} \]
\(ax^x \) is derivable.

Proof

1. Let \(M : (\Gamma_1 \vdash U_1) \) and \(M : (\Gamma_2 \vdash U_2) \). By lemma 6, \(\text{dom}(\Gamma_1) = \text{dom}(\Gamma_2) = \text{FV}(M) \). Let \(\Gamma_1 = (x_i : V'_i)_n \) and \(\Gamma_2 = (x_i : V'_i)_n \). Hence, \(\Gamma_1 \cap \Gamma_2 = (x_i : V_i \cap V'_i)_n \). By \(V_i \cap V'_i \subseteq V_i \) and \(V_i \cap V'_i \subseteq V'_i \) for all \(1 \leq i \leq n \).

Hence, by lemma 6.4, \(\Gamma_1 \cap \Gamma_2 \subseteq \Gamma_1 \) and \(\Gamma_1 \cap \Gamma_2 \subseteq \Gamma_2 \), and, by rules \(\subseteq \) and \(\subseteq_0 \), \(M : (\Gamma_1 \cap \Gamma_2, U_1) \) and \(M : (\Gamma_1 \cap \Gamma_2, U_2) \). Finally, by rule \(\cap_1 \), \(M : (\Gamma_1 \cap \Gamma_2, U_1 \cap U_2) \).

2. By lemma 6.4:

- Either \(U = \omega \), then, by rule \(\omega \), we have \(x : ((x : \omega) \vdash \omega) \).

- Or \(U = \cap_{i=1}^k T_i \), where \(\forall 1 \leq i \leq k, T_i \in \mathbb{T} \), then, by rule \(ax \), \(x : ((x : T_i) \vdash T_i) \) and, by \(k - 1 \) applications of rule \(\cap_1^\prime \), \(x : ((x : U) \vdash U) \).

\(\square \)

3 Subject reduction and expansion properties

In this section we establish the subject reduction and subject expansion properties for \(\beta \).

3.1 Subject reduction for \(\beta \)

We start with a form of the generation lemma.

Lemma 9 (Generation) 1. If \(x : (\Gamma \vdash U) \), then \(\Gamma = (x : V) \) and \(V \subseteq U \).

2. If \(M x : (\Gamma, x : U \vdash V) \) and \(x \notin \text{FV}(M) \), then \(V = \omega \) or \(V = \cap_{i=1}^k T_i \) where \(k \geq 1 \) and \(\forall 1 \leq i \leq k, M : (\Gamma \vdash U \rightarrow T_i) \).

3. If \(\lambda x. M : (\Gamma \vdash U) \) and \(x \in \text{FV}(M) \), then \(U = \omega \) or \(U = \cap_{i=1}^k (V_i \rightarrow T_i) \) where \(k \geq 1 \) and \(\forall 1 \leq i \leq k, M : (\Gamma, x : V_i \vdash T_i) \).

4. If \(\lambda x. M : (\Gamma \vdash U) \) and \(x \notin \text{FV}(M) \), then \(U = \omega \) or \(U = \cap_{i=1}^k (V_i \rightarrow T_i) \) where \(k \geq 1 \) and \(\forall 1 \leq i \leq k, M : (\Gamma \vdash T_i) \).
Proof. By induction on the derivation \(x : (\Gamma \vdash U) \). We have four cases:

- If \(x : ((x : T) \vdash T) \), nothing to prove.

- If \(x : ((x : \omega) \vdash \omega) \), nothing to prove.

- Let \(x : (\Gamma \vdash U_1) \), \(x : (\Gamma \vdash U_2) \). By IH, \(\Gamma = (x : V) \), \(V \subseteq U_1 \) and \(V \subseteq U_2 \), then, by rule \(\cap \), \(V \subseteq U_1 \cap U_2 \).

- Let \(x : (\Gamma' \vdash U') \), \(\Gamma' \subseteq (\Gamma \vdash U) \). By lemma \(\ref{lem:merge} \), \(\Gamma \subseteq \Gamma' \) and \(U' \subseteq U \) and, by IH, \(\Gamma' = (x : V') \) and \(V' \subseteq U' \). Then, by lemma \(\ref{lem:merge} \), \(\Gamma = (x : V) \), \(V \subseteq V' \) and, by rule \(tr \), \(V \subseteq U \).

By induction on the derivation \(M \vdash (\Gamma, x : U \vdash V) \). We have four cases:

- If \(M \vdash (\Gamma, x : U \vdash V) \), nothing to prove.

- Let \(M : (\Gamma \vdash U \rightarrow T) \), \(x : (x : V) \vdash U \). Since \(U \rightarrow T \subseteq V \rightarrow T \), we have \(M : (\Gamma \vdash V \rightarrow T) \).

- Let \(M \vdash (\Gamma, x : U \cup U_1) \), \(M \vdash (\Gamma, x : U \cup U_2) \). By IH, we have four cases:

 - If \(U_1 = U_2 = \omega \), then \(U_1 \cap U_2 = \omega \).
 - If \(U_1 = \omega \), \(U_2 = \bigcap_{i=1}^k T_i \), \(k \geq 1 \) and \(\forall 1 \leq i \leq k \), \(M : (\Gamma \vdash U \rightarrow T_i) \), then \(U_1 \cap U_2 = U_2 \) (\(\omega \) is a neutral element).
 - If \(U_2 = \omega \), \(U_1 = \bigcap_{i=1}^k T_i \), \(k \geq 1 \) and \(\forall 1 \leq i \leq k \), \(M : (\Gamma \vdash U \rightarrow T_i) \), then \(U_1 \cap U_2 = U_1 \) (\(\omega \) is a neutral element).
 - If \(U_1 = \bigcap_{i=1}^k T_i \) and \(U_2 = \bigcap_{i=1}^{k+1} T_{k+1} \), (hence \(U_1 \cap U_2 = \bigcap_{i=1}^{k+1} T_i \)), \(k, l \geq 1 \) and \(\forall 1 \leq i \leq k + l \), \(M : (\Gamma \vdash U \rightarrow T_i) \).

- Let \(M \vdash (\Gamma', x : U' \vdash V') \), \(\Gamma' \subseteq (\Gamma \vdash U \vdash V) \). By lemma \(\ref{lem:merge} \), \(\Gamma \subseteq \Gamma' \), \(U \subseteq U' \) and \(V \subseteq V' \). By IH, we have two cases:

 - If \(V' = \omega \), then, by lemma \(\ref{lem:merge} \), \(V = \omega \).
 - If \(V' = \bigcap_{i=1}^k T_i \), \(k \geq 1 \) and \(\forall 1 \leq i \leq k \), \(M : (\Gamma \vdash U \rightarrow T_i) \). By lemma \(\ref{lem:merge} \), \(V = \omega \) (nothing to prove) or \(V = \bigcap_{i=1}^p T_i \) where \(p \geq 1 \) and \(\forall 1 \leq i \leq p \), \(\exists 1 \leq j_i \leq k \) such that \(T_{j_i} \subseteq T_i \). Since, by lemma \(\ref{lem:merge} \), \((\Gamma' \vdash U' \rightarrow T_j) \subseteq (\Gamma \vdash U \rightarrow T_i) \) for any \(1 \leq i \leq p \), then \(\forall 1 \leq i \leq p \), \(M : (\Gamma \vdash U \rightarrow T_i) \).

By induction on the derivation \(\lambda x. M : (\Gamma \vdash U) \). We have four cases:

- If \(\lambda x. M : (\ env m : \omega \vdash \omega) \), nothing to prove.

- If \(M : (\Gamma, x : U \vdash T) \), \(\lambda x. M : (\Gamma \vdash U \rightarrow T) \).

- Let \(\lambda x. M : (\Gamma \vdash U_1) \), \(\lambda x. M : (\Gamma \vdash U_2) \). By IH, we have four cases:

 - If \(U_1 = U_2 = \omega \), then \(U_1 \cap U_2 = \omega \).
Let M be a term in the calculus.

- If $U_1 = \omega$, $U_2 = \bigcap_{i=1}^{k+1} (V_i \rightarrow T_i)$ where $k \geq 1$ and $\forall 1 \leq i \leq k$, $M : (\Gamma, x : V_i \rightarrow T_i)$, then $U_1 \cap U_2 = U_2$ (\omega is a neutral element).

- If $U_2 = \omega$, $U_1 = \bigcap_{i=1}^{k+1} (V_i \rightarrow T_i)$ where $k \geq 1$ and $\forall 1 \leq i \leq k$, $M : (\Gamma, x : V_i \rightarrow T_i)$, then $U_1 \cap U_2 = U_1$ (\omega is a neutral element).

- If $U_1 = \bigcap_{i=1}^{k+1} (V_i \rightarrow T_i)$, $U_2 = \bigcap_{i=k+1}^{k+l} (V_i \rightarrow T_i)$ (hence $U_1 \cap U_2 = \bigcap_{i=1}^{k} (V_i \rightarrow T_i)$) where $k, l \geq 1$, $\forall 1 \leq i \leq k + l$, $M : (\Gamma, x : V_i \rightarrow T_i)$, we are done.

Let $\lambda x. M : (\Gamma \vdash U) \quad (\Gamma \vdash U) \subseteq (\Gamma' \vdash U')$. By lemma 3.8, $\Gamma' \subseteq \Gamma$ and $U \subseteq U'$.

By IH, we have two cases:

- If $U = \omega$, then, by lemma 3.8, $U' = \omega$.

- Assume $U = \bigcap_{i=1}^{p} (V_i' \rightarrow T_i')$, where $p \geq 1$ and $M : (\Gamma, x : V_i \rightarrow T_i)$ for all $1 \leq i \leq k$. By lemma 3.8:
 * Either $U' = \omega$, and hence nothing to prove.
 * Or, by lemma 3.8, $U' = \bigcap_{i=k}^{p} (V_i' \rightarrow T_i')$, where $p \geq 1$ and $\forall 1 \leq i \leq p$, $\exists 1 \leq j_i \leq k$ such that $V_i' \subseteq V_{j_i}$ and $T_{j_i} \subseteq T_i$. Let $1 \leq i \leq p$. Since, by lemma 3.8, $M : (\Gamma, x : V_{j_i} \rightarrow T_{j_i}) \subseteq (\Gamma', x : V_i' \rightarrow T_i')$, then $M : (\Gamma', x : V_i' \rightarrow T_i')$.

\[\square \]

Now, we establish the substitution lemma.

Lemma 10 (Substitution) If $M : (\Gamma, x : U \vdash V)$ and $N : (\Delta \vdash U)$, then $M[x := N] : (\Gamma \cap \Delta \vdash V)$.

Proof By induction on the derivation $M : (\Gamma, x : U \vdash V)$.

- If $x : ((x : T) \vdash T)$ and $N : (\Delta \vdash T)$, then $N = x[x := N] : (\Delta \vdash T)$.

- If $M : (\{ x_i : \omega, x : \omega \} \downarrow, \Delta \vdash \omega)$ where $\text{FV}(M) = \{ x_1, \ldots, x_n, x \}$ and if $N : (\Delta \vdash \omega)$, then since $\text{FV}(M[x := N]) = \{ x_1, \ldots, x_n \} \cup \text{FV}(N)$, we have by \omega, $M[x := N] : (\{ x_i : \omega, x : \omega \} \cap \text{env}^N \vdash \omega)$. By lemmas 3.8 and 3.9, $\Delta \subseteq \text{env}^N \omega$ and by lemma 3.8, $M[x := N] = (\{ x_i : \omega, x : \omega \} \setminus \Delta \subseteq (x_i : \omega_n) \cap \text{env}^N \omega)$. Hence, by \omega, $M[x := N] = (\{ x_i : \omega_n \} \cap \Delta \vdash \omega)$.

- Let $\lambda y. M : (\Gamma, x : U, y : U' \vdash T)$. By IH, $M[x := N] : (\Gamma \cap \Delta \vdash U' \vdash T)$. By rule \rightarrow_i, $(\lambda y. M)[x := N] = \lambda y. M[x := N] : (\Gamma \cap \Delta \vdash U' \vdash T)$.

- Let $M : (\Gamma, x : U \vdash T) \quad y \notin \text{dom}(\Gamma) \cup \{ x \}$. By IH, $M[x := N] : (\Gamma \cap \Delta \vdash T)$. By rule \rightarrow_i, $(\lambda y. M)[x := N] = \lambda y. M[x := N] : (\Gamma \cap \Delta \vdash \omega \rightarrow T)$.

- Let $M_1 : (\Gamma_1, x : U_1 \vdash V) \quad M_2 : (\Gamma_2, x : U_2 \vdash V) \quad M_1 \cap M_2 : (\Gamma_1 \cap \Gamma_2, x : U_1 \cap U_2 \vdash T)$ where $x \in \text{FV}(M_1) \cap \text{FV}(M_2)$ and $N : (\Delta \vdash U_1 \cap U_2)$. By rules \cap_1 and \subseteq, $N : (\Delta \vdash U_1)$ and $N : (\Delta \vdash U_2)$. Now use IH and rule \rightarrow_e.

The cases $x \in \text{FV}(M_1) \setminus \text{FV}(M_2)$ or $x \in \text{FV}(M_2) \setminus \text{FV}(M_1)$ are easy.

- If $M : (\Gamma, x : U \vdash U_1) \quad M : (\Gamma, x : U \vdash U_2) \quad M = (\Gamma, x : U \vdash U_1 \cap U_2)$ use IH and \cap_1.

10
Theorem 13
Let \(M : (\Gamma', x : U' \vdash V') \) (by lemma 3).

By lemma 3, \(\text{dom}(\Gamma) = \text{dom}(\Gamma') \), \(\Gamma \subseteq \Gamma' \), \(U \subseteq U' \) and \(V' \subseteq V \). Hence by \(\subseteq \), \(N : (\Delta \vdash U') \) and, by IH, \(M[x := N] : (\Gamma' \cap \Delta \vdash V') \). It is easy to show \(\Gamma \cap \Delta \subseteq \Gamma' \cap \Delta \). Hence, \((\Gamma' \cap \Delta \vdash V') \subseteq (\Gamma \cap \Delta \vdash V) \) and by \(\subseteq \), \(M[x := N] : (\Gamma \cap \Delta \vdash V) \).

\[\square \]

Since our system does not allow weakening, we need the next definition (and the related lemma below it) since when a term is reduced, it may lose some of its free variables and hence will need to be typed in a smaller environment.

Definition 11 If \(\Gamma \) is a type environment and \(\mathcal{U} \subseteq \text{dom}(\Gamma) \), then we write \(\Gamma |_{\mathcal{U}} \) for the restriction of \(\Gamma \) on the variables of \(\mathcal{U} \). If \(\mathcal{U} = \text{FV}(M) \) for a term \(M \), we write \(\Gamma |_{\mathcal{U}} \) instead of \(\Gamma |_{\text{FV}(M)} \).

Lemma 12
1. If \(\text{FV}(N) \subseteq \text{FV}(M) \), then \(\text{env}^M |_{N} = \text{env}^N \).
2. If \(\text{FV}(M) \subseteq \text{dom}(\Gamma_1) \) and \(\text{FV}(N) \subseteq \text{dom}(\Gamma_2) \), then
\[
(\Gamma_1 \cap \Gamma_2) |_{\text{MN}} \subseteq \Gamma_1 \cap \Gamma_2.
\]

Proof Easy. First, note that \(\text{dom}((\Gamma_1 \cap \Gamma_2) |_{\text{MN}}) = \text{FV}(M) \cap \text{FV}(N) = \text{dom}(\Gamma_1 |_{\text{MN}}) \cup \text{dom}(\Gamma_2 |_{\text{MN}}) \). Now, we show by cases that if \(x : U_1 \in (\Gamma_1 \cap \Gamma_2) |_{\text{MN}} \) and \(x : U_2 \in (\Gamma_1 \cap \Gamma_2) |_{\text{MN}} \) then \(U_1 \subseteq U_2 \):

- If \(x \in \text{FV}(M) \cap \text{FV}(N) \) then \(x : U_1' \in \Gamma_1, x : U_2' \in \Gamma_2 \) and \(U_1 = U_1' \cap U_2' = U_2 \).
- If \(x \notin \text{dom}(\Gamma_1) \) then \(x : U_2 \in \Gamma_2 \) and \(U_1 = U_2 \).
- If \(x \notin \text{dom}(\Gamma_1) \) then \(x : U_2 \in \Gamma_2 \) and \(U_1 = U_2 \).

\[\square \]

Now we give the basic block in the subject reduction for \(\beta \).

Theorem 13 If \(M : (\Gamma \vdash U) \) and \(M \triangleright_{\beta} N \), then \(N : (\Gamma |_{\text{FV}(U)} \vdash U) \).

Proof By induction on the derivation \(M : (\Gamma \vdash U) \). Rule \(\omega \) follows by theorem 2 and lemma 3. Rules \(\rightarrow_{\text{typ}}, \rightarrow_{\beta} \cap \) and \(\subseteq \) are by IH. We do \(\rightarrow_{\text{typ}} \)

\[
\begin{align*}
M_1 : (\Gamma_1 \vdash U & \rightarrow T) \quad Q : (\Gamma_2 \vdash U) \\
M_1 \triangleright_{\beta} Q & : (\Gamma_1 \cap \Gamma_2 \vdash T).
\end{align*}
\]

- If \(M = M_1 Q \triangleright_{\beta} PQ = N \) where \(M_1 \triangleright_{\beta} P \) then by IH, \(P : (\Gamma_1 \vdash p \rightarrow U \rightarrow T) \). By \(\rightarrow_{\text{typ}} \), \(P \triangleright_{\beta} (\Gamma_1 \vdash p \cap \Gamma_2 \vdash T) \). By lemma 3, \((\Gamma_1 \cap \Gamma_2) \vdash p \subseteq (\Gamma_1 \vdash p) \cap \Gamma_2 \).

- The case \(M = M_1 Q \triangleright_{\beta} M_1 P = N \) where \(Q \triangleright_{\beta} P \) is similar to the above.

- Assume \(M_1 = \lambda x. P \) and \(M_1 = M_2 = (\lambda x. M_2 \triangleright_{\beta} P[x := M_2] = N \). Since \(\lambda x. P : (\Gamma_1 \vdash U \rightarrow T) \), we have two cases:

 - If \(x \in \text{FV}(P) \), then, by lemma 3, \(P : (\Gamma_1, x : U \vdash T) \). By lemma 3, \(P[x := M_2] : (\Gamma_1 \cap \Gamma_2 \vdash T) \). Moreover, \(\text{FV}(M_1 M_2) = \text{FV}(N) = \text{dom}(\Gamma_1 \cap \Gamma_2) \). Hence, \((\Gamma_1 \cap \Gamma_2) |_{\text{MN}} \subseteq (\Gamma_1 \cap \Gamma_2) \cap \Gamma_1 \cap \Gamma_2 \).

\[\square \]

11
Corollary 14 (Subject reduction for \(\beta \))

If \(M : (\Gamma \vdash U) \) and \(M \triangleright^*_\beta N \), then \(N : (\Gamma \vdash U) \).

Proof

By induction on the length of the derivation \(M \triangleright^*_\beta N \) using theorem 3.

Remark 15

Note that using lemmas 3 and 4, we can also prove the subject reduction property for \(\eta \)-reduction.

3.2 Subject expansion for \(\beta \)

Subject reduction for \(\beta \) was shown using generation, substitution and environment restriction. Subject expansion for \(\beta \) needs something like the converse of the substitution lemma and environment enlargement.

The next lemma can be seen as the converse of the substitution lemma.

Lemma 16

If \(M[x := N] : (\Gamma \vdash U) \), \(x \in FV(M) \) and \(x \notin FV(N) \), then \(\exists V \) type and \(\exists \Gamma_1, \Gamma_2 \) type environments such that:

- \(M : (\Gamma_1, x : V \vdash U) \)
- \(N : (\Gamma_2 \vdash V) \)
- \(\Gamma \subseteq \Gamma_1 \cap \Gamma_2 \)

Proof

By induction on the derivation \(M[x := N] : (\Gamma \vdash U) \).

If \(M = x \), then \(x : (x : U \vdash U), \ N : (\Gamma \vdash U) \) and \(\Gamma = \Gamma \cap (\) \). Then we can assume that \(M \neq x \).

- The last typing rule can not be ax.

Let \(M[x := N] : (\Gamma, y : W \vdash T) \) where \(y \notin FV(N) \).

By IH, \(\exists V \) type and \(\exists \Gamma_1, \Gamma_2 \) type environments such that \(M : (\Gamma_1, x : V \vdash T), N : (\Gamma_2 \vdash V) \) and \(\Gamma, y : W \subseteq \Gamma_1 \cap \Gamma_2 \). Since \(y \in FV(M) \) and \(y \notin FV(N) \), by lemma 4, \(\Gamma_1 = \Delta_1, y : W' \) and \(W \subseteq W' \). Hence \(M : (\Delta_1, y : W', x : V \vdash T) \).

By rule \(\gamma_M \), \(\lambda y.M : (\Delta_1, x : V \vdash W' \rightarrow T) \) and since \(W' \rightarrow T \subseteq W \subseteq W \), then by rule \(\gamma \), \(\lambda y.M : (\Delta_1, x : V \vdash W \rightarrow T) \). Finally by lemma 4, \(\Gamma \subseteq \Delta_1 \cap \Delta_2 \).

Let \(M[x := N] : (\Gamma \vdash T) \) \(y \notin \text{dom}(\Gamma) \).

By IH, \(\exists V \) type and \(\exists \Gamma_1, \Gamma_2 \) type environments such that \(M : (\Gamma_1, x : V \vdash T), N : (\Gamma_2 \vdash V) \) and \(\Gamma \subseteq \Gamma_1 \cap \Gamma_2 \). Since \(y \neq x \), \(\lambda y.M : (\Gamma_1, x : V \vdash W \rightarrow T) \).

Let \(M_1[x := N] : (\Gamma_1 \vdash W \rightarrow T) \) \(M_2[x := N] : (\Gamma_2 \vdash W) \)

where \(M = M_1M_2 \) and \(x \in FV(M_1) \cap FV(M_2) \).

By IH, \(\exists V_1, V_2 \) types and \(\exists \Delta_1, \Delta_2 : \forall_1, \forall_2 \) type environments such that \(M_1 : (\Delta_1, x : V_1 \vdash W') \) \(M_2 : (\forall_1, x : V_2 \vdash W'') \), \(N : (\Delta_2 \vdash V_1) \), \(N : (\forall_2 \vdash V_2) \), \(\Gamma_1 \subseteq \Delta_1 \cap \Delta_2 \) and \(\Gamma_2 \subseteq \forall_1 \cap \forall_2 \). Then, by rules \(\forall \) and \(\rightarrow e \), \(M_1M_2 : (\Delta_1 \cap \forall_1, x : V_1 \cap V_2 \vdash T) \) and \(N : (\Delta_2 \cap \forall_2 \vdash V_1 \cap V_2) \). Finally, by lemma 4, \(\Gamma_1 \cap \Gamma_2 \subseteq (\Delta_1 \cap \Delta_2) \cap (\forall_1 \cap \forall_2) \).

The cases \(x \in FV(M_1) \setminus FV(M_2) \) or \(x \in FV(M_2) \setminus FV(M_1) \) are easy.

Let \(M[x := N] : (\Gamma \vdash U_1) \) \(M[x := N] : (\Gamma \vdash U_2) \)

where \(M = M[x := N] \).

By IH, \(\exists V_1, V_2 \) types and \(\exists \Gamma_1, \Gamma_2 : \Delta_1, \Delta_2 \) type environments such that \(M : (\Gamma_1, x : V_1 \vdash U_1) \), \(M : (\Delta_1, x : V_2 \vdash U_2) \), \(N : (\Gamma_2 \vdash V_1) \), \(N : (\Delta_2 \vdash V_2) \), \(\Gamma \subseteq \Gamma_1 \cap \Gamma_2 \) and \(\Delta \subseteq \Delta_1 \cap \Delta_2 \). Then, by rule \(\gamma' \), \(M : (\Gamma_1 \cap \Delta_1, x : V_1 \cap V_2 \vdash U_1 \cap U_2) \) and \(N : (\Gamma_2 \cap \Delta_2 \vdash V_1 \cap V_2) \). Finally, by lemma 4, \(\Gamma \subseteq (\Gamma_1 \cap \Gamma_2) \cap (\Delta_1 \cap \Delta_2) \).
• Let $M[x:=N] : \langle \Gamma' \vdash U' \rangle \subseteq \langle \Gamma \vdash U \rangle$.

By lemma 3, $\Gamma \subseteq \Gamma'$ and $U' \subseteq U$. By IH, $\exists V$ type and $\exists \Gamma'_1, \Gamma'_2$ type environments such that $M : (\Gamma'_1, x : V \vdash U')$, $N : (\Gamma'_2 \vdash V)$ and $\Gamma' \subseteq \Gamma_1 \cap \Gamma_2$.

Then by rules \subseteq_0, \subseteq and tr, $M : (\Gamma_1, x : V \vdash U)$ and $\Gamma' \subseteq \Gamma_1 \cap \Gamma_2$.

\[]

Since more free variables might appear in the β-expansion of a term, the next definition gives a possible enlargement of an environment.

Definition 17 Let $m \geq n$, $\Gamma = (x_1 : U_1)_{n}$ and $\mathcal{U} = \{x_1, ..., x_m\}$. We write $\Gamma^{\uparrow m}$ for $x_1 : U_1, ..., x_n : U_n, x_{n+1} : \omega, ..., x_m : \omega$. If $dom(\Gamma) \subseteq FV(M)$, we write $\Gamma^{\uparrow M}$ instead of $\Gamma^{\uparrow FV(M)}$.

The next lemma is basic for the proof of subject expansion for β.

Lemma 18 If $M[x := N] : \langle \Gamma \vdash U \rangle$, $x \not\in FV(N)$ and $\mathcal{U} = FV((\lambda x. M)N)$, then $(\lambda x. M)N : \langle \Gamma^{\uparrow U} \rangle$.

Proof We have three cases:

• If $U = \omega$: By lemma 3, we have $(\lambda x. M)N : \langle \Gamma^{\uparrow U} \rangle$.

• If $U \in \mathbb{T}$: We have two cases:

 - If $x \in FV(M)$, then by lemma 3, $\exists V$ type and $\exists \Gamma_1, \Gamma_2$ type environments such that $M : (\Gamma_1, x : V \vdash U')$, $N : (\Gamma_2 \vdash V)$ and $\Gamma \subseteq \Gamma_1 \cap \Gamma_2$.

 Hence, by rules \rightarrow_i and \rightarrow_{e}, $\lambda x. M : \langle \Gamma_1 \vdash V \rightarrow U \rangle$ and $(\lambda x. M)N : \langle \Gamma_1 \cap \Gamma_2 \vdash U \rangle$. Since $FV((\lambda x. M)N) = FV(M[x := N])$, then $\Gamma^{\uparrow U} = \Gamma$, and, by rule \subseteq, $(\lambda x. M)N : \langle \Gamma^{\uparrow U} \rangle$.

 - If $x \not\in FV(M)$, then $M : \langle \Gamma \vdash U \rangle$ and, by rule \rightarrow_i', $\lambda y. M : \langle \Gamma \vdash \omega \rightarrow U \rangle$.

 By rule $\omega, N : (\text{env}^N \vdash \omega)$, then, by rule \rightarrow_e, $(\lambda x. M)N : \langle \Gamma \cap \text{env}^N \vdash U \rangle$.

 Since $FV((\lambda x. M)N) = FV(M[x := N]) \cup FV(N)$, then $\Gamma^{\uparrow U} = \Gamma \cap \text{env}^N$.

• If $U = \cap_{i=1}^k T_i$ where $1 \leq i \leq k$, $T_i \in \mathbb{T}$: By rule \subseteq, we have $\forall 1 \leq i \leq k$, $M[x := N] : \langle \Gamma \vdash T_i \rangle$, then, by the previous case, $\forall 1 \leq i \leq k$, $(\lambda x. M)N : \langle \Gamma^{\uparrow U} \rangle$, then, by $k - 1$ applications of rule \cap_i, $(\lambda x. M)N : \langle \Gamma^{\uparrow U} \rangle$.

\[]

Next, we give the main block for the proof of subject expansion for β.

Theorem 19 If $N : \langle \Gamma \vdash U \rangle$ and $M \triangleright_{\beta} N$, then $M : \langle \Gamma^{\uparrow U} \rangle$.

Proof By induction on the derivation $N : \langle \Gamma \vdash U \rangle$.

• If $x : \langle \{x : T \vdash T\} \rangle$ and $M \triangleright_{\beta} x$, then $M = (\lambda y. M_1)M_2$ where $y \not\in FV(M_2)$ and $x = M_1[y := M_2]$. By lemma 3, $M : \langle (x : T) \vdash M \rangle$.

• If $N : \langle (\text{env}^N \vdash \omega) \rangle$ and $M \triangleright_{\beta} N$, then since by theorem 3, $FV(N) \subseteq FV(M)$, $(\text{env}^N)^M = \text{env}^M$. By ω, $M : \langle \text{env}^M \vdash \omega \rangle$. Hence, $M : \langle (\text{env}^N)^M \vdash \omega \rangle$.

• If $N : \langle \Gamma, x : U \vdash T \rangle_{\lambda x. N}$ and $M \triangleright_{\beta} \lambda x. N$, then we have two cases:

 - If $M = \lambda x. M'$ where $M' \triangleright_{\beta} N$, then by IH, $M' : \langle (\Gamma, x : U) \vdash M' \rangle$. Since by theorem 3 and lemma 3, $x \in FV(N) \subseteq FV(M')$, then we have $\langle (\Gamma, x : U) \vdash M' \rangle_{FV(M') \setminus \{x\}} \subseteq \langle \Gamma \vdash U \rangle$ and $\Gamma^{\uparrow \lambda x. M'}$. Hence, $M' : \langle \Gamma^{\uparrow \lambda x. M'}, x : U \vdash T \rangle$ and finally, by \rightarrow_i, $\lambda x. M' : \langle \Gamma^{\uparrow \lambda x. M'} \vdash U \rightarrow T \rangle$.

13
– If $M = (\lambda y.M_1)M_2$ where $y \notin \text{FV}(M_2)$ and $\lambda x.N = M_1[y := M_2]$, then, by lemma 13 since $y \notin \text{FV}(M_2)$ and $M_1[y := M_2] : (\Gamma \vdash U \rightarrow T)$, we have $(\lambda y.M_1)M_2 : (\Gamma \vdash (\lambda y.M_1)M_2 \vdash U \rightarrow T)$.

- If $N : (\Gamma \vdash T)$ and $x \notin \text{dom}(\Gamma)$ and $M \triangleright_{\beta} N$ then similar to the above case.

- If $N_1 : (\Gamma_1 \vdash U \rightarrow T)$ and $N_2 : (\Gamma_2 \vdash U)$ and $M \triangleright_{\beta} N_1N_2$, we have three cases:

 - $M = N_1N_2$ where $M_1 \triangleright_{\beta} N_1$. By IH, $M_1 : (\Gamma_1 \vdash M_1 \vdash U \rightarrow T)$. It is easy to show that $(\Gamma_1 \cap \Gamma_2)M_1 \cap \Gamma_2$. Now use \rightarrow_e.

 - $M = N_1M_2$ where $M_2 \triangleright_{\beta} N_2$. Similar to the above case.

 - $M = (\lambda x.M_1)M_2$ where $x \notin \text{FV}(M_2)$ and $N_1N_2 = M_1[x := M_2]$. By lemma 18 $(\lambda x.M_1)M_2 : (\Gamma_1 \cap \Gamma_2)\vdash M_1M_2 \vdash T$.

- If $N : (\Gamma \vdash U_1) / \Gamma \vdash U_2$ and $M \triangleright_{\beta} N$ then use IH.

- Let $N : (\Gamma \vdash U) \subseteq (\Gamma' \vdash U')$ and $M \triangleright_{\beta} N$. By lemma 18 $\Gamma' \subseteq \Gamma$ and $U \subseteq U'$. It is easy to show that $\Gamma'\vdash M \subseteq \Gamma'\vdash U'$ and hence by lemma 18 $\langle \Gamma'\vdash U \subseteq \Gamma'\vdash U' \rangle$. By IH, $M : (\Gamma \vdash U)$. Hence, by $\subseteq ()$, we have $M : (\Gamma'\vdash \Gamma$).

\[
\Box
\]

Corollary 20 (Subject expansion for β)

\text{If } N : (\Gamma \vdash U) \text{ and } M \triangleright_{\beta} N, \text{ then } M : (\Gamma \vdash \Gamma \vdash U').

\textbf{Proof}
By induction on the length of the derivation $M \triangleright_{\beta} N$ using theorem 19 and the fact that if $\text{FV}(P) \subseteq \text{FV}(Q)$, then $(\Gamma \vdash P) \vdash Q = \Gamma \vdash Q$.

\[
\Box
\]

4 The realisability semantics, its soundness and completeness

In this section we give a realisability semantics for our type system and establish both the soundness and completeness of this semantics.

We start with the definition of the function space and saturated sets.

\textbf{Definition 21}
Let $X, Y \subseteq M$.

1. We use $\mathcal{P}(X)$ to denote the powerset of X, i.e. $\{Y \mid Y \subseteq X\}$.

2. We define $X \leadsto Y = \{M \in M \mid M N \in Y \text{ for all } N \in X\}$.

3. Let $r \in \{f, \beta\}$. We say that X is r-saturated if whenever $M \triangleright_{\gamma} N$ and $N \in X$, then $M \in X$.

\textbf{Lemma 22}
Let $r \in \{f, \beta\}$.

1. If X is β-saturated, then X is r-saturated.

2. If X, Y are r-saturated sets, then $X \cap Y$ is r-saturated.

3. If Y is r-saturated, then, for every set $X \subseteq M$, $X \leadsto Y$ is r-saturated.

\textbf{Proof}
1. Note that $\triangleright_{\gamma} \subseteq \triangleright_{\gamma}$ is easy. 2. Let $N \in X \leadsto Y, M \triangleright_{\gamma} N$ and $P \in X$. Then, by theorem 19 $M P \triangleright_{\gamma} N P$ and $N P \in Y$. Since Y is r-saturated, then $M P \in Y$. Thus, $M \in X \leadsto Y$.

\[
\Box
\]
We interpret basic types as saturated sets. The interpretation of complex types is built up from smaller types in the obvious way.

Definition 23 Let $r \in \{f, \beta\}$.

1. An r-interpretation $I: A \rightarrow P(M)$ is a function such that:
 \[\forall a \in A, I(a) \text{ is } r\text{-saturated.} \]

2. An r-interpretation I can be extended to U as follows:
 \[I(\omega) = M \quad I(U_1 \cap U_2) = I(U_1) \cap I(U_2) \quad I(U \rightarrow T) = I(U) \rightarrow I(T) \]

Lemma 24 If I is a β-interpretation then I is an f-interpretation.

Proof Use lemma 22. □

The next lemma shows that the interpretation of any type (basic or complex) is saturated, that the interpretation function respects the relation ⊑ and that we can in some sense expand the terms in the interpretation.

Lemma 25 Let $r \in \{f, \beta\}$ and let I be an r-interpretation.

1. For any $U \in \mathbb{U}$, we have $I(U)$ is r-saturated.

2. If $U \subseteq V$, then $I(U) \subseteq I(V)$.

3. Let $n \geq 0$ and $\forall 1 \leq i \neq j \leq n, x_i \neq x_j$. If $\forall N_i \in I(U_i) (1 \leq i \leq n)$, $M[i := N_i] \in I(U)$, then $\lambda x_1 \ldots \lambda x_n. M \in I(U_1 \rightarrow (U_2 \rightarrow (\ldots \rightarrow (U_n \rightarrow U))))$.

Proof By induction on U using lemma 23.

We now show the soundness of our semantics.

Theorem 26 (Soundness) Let $r \in \{f, \beta\}$. If $M : \langle x_i : U_i \rangle \vdash U$, I is an r-interpretation and $\forall 1 \leq i \leq n, N_i \in I(U_i)$, then $M[i := N_i] \in I(U)$.

Proof By induction on the derivation $M : \langle x_i : U_i \rangle \vdash U$.

* Let $\lambda x : \langle x : T \rangle : T$.
 If $N \in I(T)$ then $x[x := N] = N \in I(T)$.

* Let $M : \langle env_\omega^M \rangle \omega$ where $env_\omega^M = (x_i : \omega)_n$.
 We have $M[i := N_i] \in M = I(\omega)$.

* Let $P : \langle (x_i : U_i)^n, x : U \rightarrow T \rangle$.
 \[\lambda x. P : \langle (x_i : U_i)^n \rightarrow U \rightarrow T \rangle. \]
 If $I(U) = \emptyset$ then $\lambda x. P[i := N_i] \in I(U) \rightarrow I(T) = M$.
 If $I(U) \neq \emptyset$ then let $N \in I(U)$. By IH, $P[i := N_i, x := N] \in I(T)$. By lemma 23, $I(T)$ is r-saturated. Moreover, $\langle \lambda x. P[i := N_i] \rangle N \gg P[i := N_i, x := N]$. Hence, $\langle \lambda x. P[i := N_i] \rangle N \in I(T)$ and $\langle \lambda x. P[i := N_i] \rangle \in I(U) \rightarrow I(T)$.

* Let $P : \langle (x_i : U_i)^n \rightarrow T \rangle$.
 By IH, $P[i := N_i] \in I(T)$. By lemma 23, $I(T)$ is r-saturated. Moreover, $\langle \lambda x. P[i := N_i] \rangle N \gg P[i := N_i]$. Hence $\langle \lambda x. P[i := N_i] \rangle N \in I(T)$ and $\langle \lambda x. P[i := N_i] \rangle \in I(\omega) \rightarrow I(T)$. □
Let $M_1 : (\Gamma_1 \vdash U \rightarrow T) \cdot M_2 : (\Gamma_2 \vdash U)$ where $\Gamma_1 = (x_i : U_i)_m, (y_j : V_j)_n$.

Let $M_3 : (\Gamma_3 \vdash U \rightarrow T)$ where $\Gamma_3 = (x_i : U_i)_m, (z_k : W_k)_n$.

Let $\Gamma = \Gamma_1 \cap \Gamma_2$ and $\Gamma = \Gamma_1 \cap \Gamma_3$.

Let $\forall 1 \leq i \leq m, P_i \in I(U_i \cap U')$, $\forall 1 \leq j \leq m, Q_j \in I(V_j)$ and $\forall 1 \leq k \leq n, R_k \in I(W_k)$.

By IH, $M_1[(x_i := P_i)_m, (y_j := Q_j)_n, (z_k := R_k)_n] \in I(U) \rightarrow I(U)$ and $M_2[(x_i := P_i)_m, (y_j := Q_j)_n, (z_k := R_k)_n] \in I(U)$.

By IH, $M_3[(x_i := P_i)_m, (y_j := Q_j)_n, (z_k := R_k)_n] \in I(V_1)$ and $M_3[(x_i := P_i)_m, (y_j := Q_j)_n, (z_k := R_k)_n] \in I(V_2)$. Hence, $M[(x_i := N_i)_n] \in I(V_1 \cap V_2)$.

By lemma \square and \square, $\Phi = (x_i : U_i)_n \rightarrow U'$, $\forall 1 \leq i \leq n$, $U_i \subseteq U'$ and $U' \subseteq U$. By lemma \square, $N_i \in I(U_i)$, then, by IH, $M[(x_i := N_i)_n] \in I(U')$ and, by lemma \square, $M[(x_i := N_i)_n] \in I(U)$.

Roughly speaking, completeness of the semantics amounts to saying that if M is in the meaning of type U (i.e., M is in $I(U)$ for any interpretation I) then M has type U. In order to show completeness, we define a special interpretation function \mathbb{I} through the typing relation \vdash in such a way that, if $M \in I(U)$ then M can be shown to have type U. This is done in the next definition and lemma.

Definition 27

1. For every $U \in \mathbb{U}$, let an infinite subset \mathcal{V}_U of \mathcal{V} such that:
 - If $U \neq V$, then $\mathcal{V}_U \cap \mathcal{V}_V = \emptyset$.
 - $\bigcup_{U \in \mathbb{U}} \mathcal{V}_U = \mathcal{V}$.

2. We denote $\mathbb{G} = \{ (x : U) / U \text{ is a type and } x \in \mathcal{V}_U \}$. Note that since \mathbb{G} is infinite, \mathbb{G} is not a type environment.

3. Let $M \in \mathcal{M}$ and $u \in \mathbb{U}$. We write $M : (\mathbb{G} \vdash U)$ if there is a type environment $\Gamma \subset \mathbb{G}$ such that $M : (\Gamma \vdash U)$.

4. Let $\mathbb{I} : \mathcal{A} \rightarrow \mathcal{P}(\mathcal{M})$ be the function defined by:

 $\forall a \in \mathcal{A}$, $\mathbb{I}(a) = \{ M \in \mathcal{M} / M : (\mathbb{G} \vdash a) \}$.

Remark 28

Note that in Definition \square, we have associated to each $U \in \mathbb{U}$, an infinite set of variables \mathcal{V}_U in such a way that no variable is used in two different types, and each variable of \mathcal{V} is associated to a type. Obviously, as long as these conditions are satisfied, we have the liberty of dividing the set \mathcal{V} as we wish. We will practice this liberty in the proof of theorem \square.

Lemma 29

1. If $\Gamma, \Gamma' \subset \mathbb{G}$ and $\text{dom}(\Gamma) = \text{dom}(\Gamma')$, then $\Gamma = \Gamma'$.

2. If $\Gamma, \Gamma' \subset \mathbb{G}$, then $\Gamma \cap \Gamma' = \Gamma \cup \Gamma' \subset \mathbb{G}$.

3. \mathbb{I} is a β-interpretation. I.e., $\forall a \in \mathcal{A}$, $\mathbb{I}(a)$ is β-saturated.

4. If $U \in \mathbb{U}$, then $\mathbb{I}(U) \neq \emptyset$ and $\mathbb{I}(U) = \{ M \in \mathcal{M} / M : (\mathbb{G} \vdash U) \}$.

Proof

Let $(x : U) \in \Gamma$ and $(x : U') \in \Gamma'$. Hence, $x \in \mathcal{V}_U$ and $x \in \mathcal{V}_{U'}$ and so, $U = U'$ (otherwise, $\mathcal{V}_U \cap \mathcal{V}_{U'} = \emptyset$).
Let \(\Gamma = (x_i : U_i)_n, (y_j : V_j)_m \) and \(\Gamma' = (x_i : U'_i)_n, (z_k : W_k)_l \) where \(y_j \neq z_k \) for all \(1 \leq j \leq m \) and \(1 \leq k \leq l \). Since \((x_i : U_i)_n \subseteq G \) and \((x_i : U'_i)_n \subseteq G \), by \(U_i = U'_i \) for all \(1 \leq i \leq n \). Hence, \(\Gamma \cap \Gamma' = \Gamma \cup \Gamma' \subseteq G \).

Let \(a \in A, M \in M, M \supseteq \bar{N} N \in \{I(a)\}. \) Then \(N : (\Gamma \vdash a) \) where \(\Gamma \subseteq G \). Let \(\Gamma \vdash FV(M) \setminus dom(\Gamma) = \{x_1, \ldots, x_n\} \) and \(\forall 1 \leq i \leq n \), take \(U_i \) such that \(x_i \in U_i \subseteq G \). Then \(\Delta = \Gamma, (x_i : U_i)_n \subseteq G \) and \(\Gamma \upharpoonright M = \Gamma, (x_i : \omega)_n \). By corollary \(20, M : (\Gamma \upharpoonright M \vdash a) \) and, by lemma \(22, \Delta \subseteq \Gamma \upharpoonright M \). Hence, by rule \(\subseteq, M : (\Delta \vdash a) \). Thus, \(M \in I(a) \). Hence \(I(a) \) is \(\beta \)-saturated and so, \(I \) is a \(\beta \)-interpretation. Finally, by lemma \(26, I \) is an \(f \)-interpretation.

The proof of \(I(U) \neq \emptyset \) is as follows: let \(x \in \mathcal{U}_U \neq \emptyset \). Then, \(x : (x : U) \vdash U \). Then \(x \in I(U) \).

Now we do the second part by induction on \(U \).

\(- U = a: By \ definition \ of \ \emptyset, \)

\(- U = \omega: By \ definition, \ I(\omega) = M. \) So, \(\{M \in M / M : (G \vdash \omega)\} \subseteq I(\omega) \).

Conversely, let \(M \in I(\omega) \) where \(FV(M) = \{x_1, \ldots, x_n\} \). We have \(M : (x_i : \omega) \subseteq G \). Then \(\Delta = \Gamma, (x_i : U_i)_n \subseteq G \) and \(\Gamma \upharpoonright M = \Gamma, (x_i : \omega)_n \). By lemma \(22, \Delta \subseteq \Gamma \upharpoonright M \). Hence \(M : (\Gamma \vdash \omega) \).

Thus, \(I(\omega) \subseteq \{M \in M / M : (G \vdash \omega)\} \).

We deduce \(I(\omega) = \{M \in M / M : (G \vdash \omega)\} \).

\(- U = U_1 \cap U_2: By \ IH, I(U_1 \cap U_2) = I(U_1) \cap I(U_2) = \{M \in M / M : (G \vdash U_1) \cap \{M \in M / M : (G \vdash U_2)\} \} \).

\(* If \ M : (G \vdash U_1) \) and \(M : (G \vdash U_2) \), then \(M : (\Gamma_1 \vdash U_1) \) and \(M : (\Gamma_2 \vdash U_2) \) where \(\Gamma_1, \Gamma_2 \subseteq G \). By lemma \(22, \Gamma \vdash FV(M) \). By lemma \(24, M : (\Gamma_1 \cap \Gamma_2 \vdash U_1 \cap U_2) \). Since \(\Gamma_1, \Gamma_2 \subseteq G \), then, by \(\emptyset, \Gamma_1 = \Gamma_1 \cap \Gamma_2 = \Gamma_1 \cap \Gamma_2 = \Gamma_1 \subseteq G \). Thus \(M : (G \vdash U_1 \cap U_2) \).

\(* If \ M : (G \vdash U_1 \cap U_2) \), then \(M : (\Gamma \vdash U_1 \cap U_2) \) where \(\Gamma \subseteq G \).

By \(\subseteq, M : (\Gamma \vdash U_1) \) and \(M : (\Gamma \vdash U_2) \), then \(M : (G \vdash U_1) \) and \(M : (G \vdash U_2) \).

We deduce \(I(U_1 \cap U_2) = \{M \in M / M : (G \vdash U_1 \cap U_2)\} \).

\(- U = V \rightarrow T: By \ IH, I(V) = \{M \in M / M : (G \vdash V)\} \) and \(I(T) = \{M \in M / M : (G \vdash T)\} \).

\(* Let \ M \in I(V) \) and \(x \in \mathcal{V}_V \) such that \(x \notin FV(M) \). By rule \(ax' \) (see lemma \(24), x : (x : V) \vdash V \). Since \((x : V) \subseteq G \), then \(x : (G \vdash V) \). By \(IH, x \in I(V) \). Hence \(Mx \in I(T) \) and so \(Mx : (\Gamma \vdash V) \) where \(\Gamma \subseteq G \). Since \(x \notin FV(M) \), then \(\Gamma = \Delta, x : V \) and \(\Delta \subseteq G \). By lemma \(26, \emptyset \) we deduce that \(M : (\Delta \vdash V \rightarrow T) \).

\(* Let \ M, N \in M \) such that \(M : (G \vdash V \rightarrow T) \) and \(N : (G \vdash V) \). We have \(M : (\Gamma_1 \vdash V \rightarrow T) \) and \(N : (\Gamma_2 \vdash V) \) where \(\Gamma_1, \Gamma_2 \subseteq G \). Thus \(MN : (\Gamma_1 \cap \Gamma_2 \vdash T) \). Since, by lemma \(29, \emptyset \Gamma_1 \cap \Gamma_2 \subseteq G \). Therefore \(MN : (G \vdash T) \).

We deduce \(I(V \rightarrow T) = \{M \in M / M : (G \vdash V \rightarrow T)\} \).

\(
\square
\)

Now, the \(I \) of definition \(27 \) will be used to show the completeness of the semantics.

Theorem 30 (Completeness) Let \(r \in \{f, \beta\} \). Let \(U_1, \ldots, U_n, U \in \mathcal{U} \) and \(M \in \mathcal{M} \) such that \(FV(M) = \{x_1, \ldots, x_n\} \). If \(\forall r \)-interpretation \(\mathcal{I} \) and \(\forall N_i \in \mathcal{I}(U_i) (1 \leq i \leq n) M[x_i := N_i]^r \in \mathcal{I}(U), \) then \(M : (x_i : U_i)_n \vdash U \).
Proof We distinguish three cases:

- If $U = \omega$, then $M : \langle (x_i : \omega) \rangle_i \vdash \omega$. Thus, by lemma 12.2, $M : \langle (x_i : U_i) \rangle_i \vdash \omega$.

- If $U \in T$, then, let $V = U_1 \rightarrow (U_2 \rightarrow \ldots \rightarrow (U_n \rightarrow U))$. By hypothesis and lemma 23.8, $\forall r$-interpretation I, $\lambda x_1 \ldots x_n. M \in I(V)$. Hence, $\lambda x_1 \ldots x_n. M \in \llbracket(V)\rrbracket$ where \llbracket is the interpretation of definition 23.4. By lemma 23.9 $\forall r$-interpretation I, $\lambda x_1 \ldots x_n. M : (\Gamma \vdash V)$ where $\Gamma \subseteq \mathbb{G}$ and, since $\lambda x_1 \ldots x_n. M$ is closed, $\Gamma = \emptyset$. By rule ax', $\forall 1 \leq i \leq n$, $x_i : \langle x_i : U_i \vdash U_i \rangle_i$, by n applications of \rightarrow_r we deduce $(\lambda x_1 \ldots x_n. M) x_1 \ldots x_n : \langle (x_i : U_i) \rangle_i \vdash U)$. Since $(\lambda x_1 \ldots x_n. M) x_1 \ldots x_n \triangleright^* \beta M$, then by corollary 23.4, $M : \langle (x_i : U_i) \rangle_i \vdash U$.

- If $U = \bigcap_{i=1}^{m} T_j$, then, by hypothesis, $\forall r$-interpretation I, $\forall N_i \in I(U_i)$ ($1 \leq i \leq n$), and $\forall 1 \leq j \leq m$, $M[(x_i := N_i)] \in I(T_j)$. By the previous case, $\forall 1 \leq j \leq m$, $M : \langle (x_i : U_i) \rangle_i \vdash T_j$. By $m - 1$ applications of \cap_i we deduce $M : \langle (x_i : U_i) \rangle_i \vdash U)$. □

5 The meaning of types

Obviously the meaning of a type U should be based on the intersection of all the interpretations of U. However, since we have been using two different kinds of interpretations (β- and f-interpretations), we give two definitions for the meaning of a type. We will show that these two definitions are equivalent.

Definition 31 Let $r \in \{f, \beta\}$. We define the meaning $[U]_r$ of $U \in U$ by:

$$[U]_r = \bigcap_{r\text{-interpretation } I} I(U)$$

The next theorem shows that the meaning $[U]$ of U is the set of terms typable by U in a special environment and that $[U]$ is stable by β-reduction and β-expansion.

Theorem 32 Let $r \in \{f, \beta\}$ and $U \in T$.

1. $[U]_r = \{ M \in \mathcal{M} / M : \langle \text{env}^M_\omega \vdash U \} \}$.

2. $[U]_r$ is stable by β-reduction. I.e., if $M \in [U]_r$ and $M \triangleright^* \beta N$, then $N \in [U]_r$.

3. $[U]_r$ is stable by β-expansion. I.e., if $M \in [U]_r$, $N \triangleright^* \beta M$, then $N \in [U]_r$.

4. $[U]_r = \{ M \in \mathcal{M} / M \triangleright^* \beta N$ and $N : \langle \text{env}^N_\omega \vdash U \} \}$.

Proof

1. Let $M \in \mathcal{M}$ such that $M : \langle \text{env}^M_\omega \vdash U \}$. Let I be an r-interpretation and take $FV(M) = \text{dom}(\text{env}^M_\omega) = \{ x_1, x_2, \ldots, x_n \}$. By theorem 23.4, since $\forall 1 \leq i \leq n$, $x_i \in I(\omega) = \mathcal{M}$, then $M = M[(x := x_i)] \in I(U)$. Hence, $M \in [U]_r$.

Conversely, let $M \in [U]_r$. Take the interpretation I given in Definition 23.4 such that (recall remark 23.8) $FV(M) \subseteq V_\omega$. Since $M \in I(U)$ then $M : (\Gamma \vdash U)$ where $\Gamma \subseteq \mathbb{G}$. But $FV(M) \subseteq V_\omega$ and by lemma 23.4, $FV(M) = \text{dom}(\Gamma)$. Hence $\Gamma = \text{env}^M_\omega$.

We conclude that $[U]_r = \{ M \in \mathcal{M} / M : \langle \text{env}^M_\omega \vdash U \} \}$.

2. Let $M \in [U]_r$ such that $M \triangleright^* \beta N$. By 1. $M : \langle \text{env}^M_\omega \vdash U \}$. By subject reduction for β corollary 23.4, $N : \langle \text{env}^N_\omega \vdash U \}$. Since by theorem 23.4, $FV(N) \subseteq FV(M)$ then $\langle \text{env}^M_\omega \} \vdash N \Rightarrow \text{env}^N_\omega = \text{env}^M_\omega$. Thus by 1. $N \in [U]_r$. □
Let $M \in [U]_r$ such that $N \triangleright^*_\beta M$. By subject expansion for β corollary 33, $N : (env^M_N \vdash_U)$. Since by theorem 32, $FV(M) \subseteq FV(N)$ then $(env^M_N) \vdash^N = env^W_{\beta}$. Thus by \square, $N \in [U]_r$.

By \square, $[U]_r \subseteq \{M \in \mathcal{M} / M \triangleright^*_\beta N$ and $N : (env^M_N \vdash_U)\}$. Conversely, let $M \triangleright^*_\beta N$ and $N : (env^M_N \vdash_U)$. By \square, $N \in [U]_r$, Hence, by \square, $M \in [U]_r$.

\square

Corollary 33 Let $U \in \mathcal{U}$. We have that $[U]_f = [U]_{\beta}$.

Proof By theorem 32. $[U]_f = [U]_{\beta} = \{M \in \mathcal{M} / M \triangleright^*_\beta \}$. Hence, we write $[U]$ instead of either $[U]_f$ or $[U]_{\beta}$.

Remark 34 The reader may ask here why we introduced the two notions of saturation if the meaning of a type does not depend on whether this meaning was made using β-interpretations or f-interpretations. The answer to this question is that up to here, we could equally use β-interpretations or f-interpretations. However, to establish further results related to the meaning of types, especially for those types whose meaning consists of terms that reduce to closed terms, then we need β-saturation. For this reason, in the rest of paper, we only consider β-saturation.

Let us now reflect further on the meaning of types as given in definition 31. The next lemma gives three examples.

Lemma 35 Let $a \in \mathcal{A}$, $U = \omega \rightarrow (a \rightarrow a)$, $V = a \rightarrow (\omega \rightarrow a)$ and $W = (\omega \rightarrow a) \rightarrow a$. We have:

1. $[U] = \{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.\lambda y.y \}$. Note that $\lambda x.\lambda y.y : (\langle \rangle \vdash_U)$.
2. $[V] = \{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.\lambda y.x \}$. Note that $\lambda x.\lambda y.x : (\langle \rangle \vdash_V)$.
3. $[W] = \{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.xP$ where $P \in \mathcal{M}\}$. Note that $\lambda x.xP : (env^{\lambda x.xP}_{\beta} \vdash_W)$.

Proof

1. It is easy to show that $\lambda x.\lambda y.y : (\langle \rangle \vdash_U)$. Note that $env^{\lambda x.\lambda y.y}_{\beta} = \langle \rangle$.

Hence, $\{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.\lambda y.y \} = \{M \in \mathcal{M} / M \triangleright^*_\beta (\langle \rangle \vdash_U)\} \subseteq [U]$ by theorem 32.

Conversely, let $M \in [U]$ and $y \notin FV(M)$. Take the β-interpretation I such that $I(a) = X = \{M \in \mathcal{M} / M \triangleright^*_\beta \}$. Since $M \in [U]$ then $M \in I(U) = \mathcal{M} \leadsto (I(a) \leadsto I(a)) = \mathcal{M} \leadsto (X \leadsto X)$. Let $x \neq y$ such that $x \notin FV(M)$. Since $x \in \mathcal{M}$ and $y \in X$, then $Mxy \in X$, $Mxy \triangleright^*_\beta y$ and by theorem 33, $M \triangleright^*_\beta \lambda x.\lambda y.y$.

2. It is easy to show that $\lambda x.\lambda y.x : (\langle \rangle \vdash_V)$. Let I be a β-interpretation. By theorem 25, $\lambda x.\lambda y.x \in I(V)$. By lemma 25, $I(V)$ is β-saturated. Hence, $\{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.\lambda y.x \} \subseteq I(V)$. Thus, $\{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.\lambda y.x \} \subseteq [V]$.

Conversely, let $M \in [V]$ and $x \notin FV(M)$. Take the β-interpretation I such that $I(a) = X = \{M \in \mathcal{M} / M \triangleright^*_\beta x \}$. Since $M \in [V]$ then $M \in I(V) = I(a) \leadsto (M \leadsto I(a)) = \mathcal{M} \leadsto (X \leadsto X)$. Let $y \neq x$ such that $y \notin FV(M)$. We have $x \in X$ and $y \in \mathcal{M}$, then $Mxy \in X$ and $Mxy \triangleright^*_\beta x$. Thus, by theorem 33, $M \triangleright^*_\beta \lambda x.\lambda y.x$.

3. Let $P \in \mathcal{M}$. Using lemma 24, we can show that $\lambda x.xP : (env^{\lambda x.xP}_\omega \vdash_W)$ (irrespective of whether $x \in FV(P)$ or not). Now, $\{M \in \mathcal{M} \triangleright^*_\beta \lambda x.xP\} = \{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.xP \} = \{M \in \mathcal{M} / M \triangleright^*_\beta \lambda x.xP \} \subseteq [W]$ by theorem 33.
Conversely, let $M \in [W]$ and $x \not\in FV(M)$. Take the β-interpretation \mathcal{I} such that $I(a) = \mathcal{X} = \{ M \in \mathcal{M} | M \updownarrow_\beta x P \text{ where } P \in \mathcal{M} \}$. Then $M \in I(W) = (M \rightarrow \mathcal{X}) \rightarrow \mathcal{X}$. Since $x \in \mathcal{M} \rightarrow \mathcal{X}$, then $M x \in \mathcal{X}$ and $M x \updownarrow_\beta x P$ where $P \in \mathcal{M}$. Thus, by theorem 36, $M \updownarrow_\beta \lambda x Q$ where $Q \in \mathcal{M}$.

The meanings of the types U and V (of lemma 35) contain only terms which are reduced to closed terms. Due to the position of ω in W, the meaning of W does not solely contain terms which are reduced to closed terms. In U and V, ω has a negative occurrence, but in W, ω has a positive one. We will generalize this result.

Definition 36

1. We define two subsets U^+ and U^- of U as follows:
 - $\forall a \in A$, $a \in U^+$ and $a \in U^-$.
 - $\omega \in U^-$.
 - If $U \in U^+$, then $U \cap V \in U^+$.
 - If $U, V \in U^-$, then $U \cap V \in U^-$.
 - If $U \in U^-$ and $T \in U^+$, then $U \rightarrow T \in U^+$.
 - If $U \in U^+$ and $T \in U^-$, then $U \rightarrow T \in U^-$.

2. Let $S \subseteq V$ where $S \neq \emptyset$.

 (a) We say that a term M is S-almost closed if $M \updownarrow_\beta N$ and $FV(N) \subseteq S$. We denote M^S the set of S-almost closed terms.

 (b) We define the function $\mathcal{I}_S : A \rightarrow \mathcal{P}(M)$ by: $\forall a \in A$, $\mathcal{I}_S(a) = M^S$.

The next lemma shows that \mathcal{I}_S is a β-interpretation and relates $\mathcal{I}_S(U)$ and M^S according to whether $U \in U^+$ or $U \in U^-$.

Lemma 37 Let $S \subseteq V$ where $S \neq \emptyset$.

1. \mathcal{I}_S is a β-interpretation. i.e., $\forall a \in A$, $\mathcal{I}_S(a)$ is β-saturated. Hence, we extend \mathcal{I}_S to U as in Definition 36.

2. If $U \in U^+$, then $\mathcal{I}_S(U) \subseteq M^S$.

3. If $U \in U^-$, then $M^S \subseteq \mathcal{I}_S(U)$.

Proof Easy since $\mathcal{I}_S(a) = M^S$ which is β-saturated (use theorem 36). We show 2 and 3 by simultaneous induction on U.

2. Let $U \in U^+$ and $M \in \mathcal{I}_S(U)$.
 - If $U = a$, the result comes by definition of \mathcal{I}_S.
 - If $U = U_1 \cap U_2$ and $U_1 \in U^+$, then $M \in \mathcal{I}_S(U_1)$ and, by IH, $M \in M^S$.
 - If $U = \mathcal{X}$, then $x \in S$. We have $x \in M^S$, then, by IH, $x \in \mathcal{I}_S(V)$ and $Mx \in \mathcal{I}_S(T)$. By IH, $Mx \in M^S$, then $Mx \updownarrow_\beta N$ and $FV(N) \subseteq S$. We examine the reduction $Mx \updownarrow_\beta N$.
 * If $M \updownarrow_\beta P$ and $N = Px$, then $FV(P) \subseteq FV(N) \subseteq S$.
 * If $M \updownarrow_\beta \lambda y.Q$ and $Q[y := x] \updownarrow_\beta N$, then $M \updownarrow_\beta \lambda y.Q \Rightarrow \lambda x.Q[y := x] \updownarrow_\beta \lambda x.N$ and $FV(\lambda x.N) \subseteq FV(N) \subseteq S$.
 Then $M \updownarrow_\beta M'$ and $FV(M') \subseteq S$. Thus $M \in M^S$.

3. Let $U \in U^-$ and $M \in M^S$.

20
will establish a weak normalisation result for positive types.

Remark 39
Note that neither strong nor weak normalisation holds in general for typable terms. For example, \(\lambda y.y \) \(((\lambda x.xx)\lambda x.xx) \) : \(\{() \vdash \omega \} \) , As another example, take \(\lambda y.y((\lambda x.xx)(\lambda x.xx)) \) : \(\{() \vdash (\omega \rightarrow a) \rightarrow a \} \) by lemma 36.

We cannot even establish a strong normalisation result for positive types. For example, \(\lambda y.\lambda x.x((\lambda x.xx)(\lambda x.xx)) \) : \(\{() \vdash a \rightarrow a \} \). In what follows however, we will establish a weak normalisation result for positive types.

Definition 40
We define the function \(\mathcal{I} : A \rightarrow \mathcal{P}(M) \) by: \(\forall a \in A, \mathcal{I}(a) = N \) where \(N \) is the set of \(\beta \)-normalising terms.

Lemma 41
1. \(\mathcal{I} \) is a \(\beta \)-interpretation. I.e., \(\forall a \in A, \mathcal{I}(a) = N \) is \(\beta \)-saturated.

Hence, we extend \(\mathcal{I} \) to \(U \) as in Definition 39.4.

2. If \(U \in \mathbb{U}^{+} \), then \(\mathcal{I}(U) \subseteq N \).

3. Let \(N' = \{xM_1 \ldots M_n \in M/x \in \mathcal{V} \text{ and } M_1 \ldots M_n \in N \} \). Note, \(N' \subseteq N \). If \(U \in \mathbb{U}^{-} \), then \(N' \subseteq \mathcal{I}(U) \).

Proof
1. is obvious. We show 2 and 3 by simultaneous induction on \(U \).

2. Let \(U \in \mathbb{U}^{+} \) and \(M \in \mathcal{I}(U) \). The next corollary shows that if \(U \in \mathbb{U}^{+} \) then \([U] \) contains only elements which \(\beta \)-reduce to closed terms and \([U] \) is the set of all terms that \(\beta \)-reduce to closed terms typable by \(U \). Note that in the proof of 4 below, we need \(\beta \)-saturation and that this is the reason why we adopted exclusively \(\beta \)-saturation since remark 34.

Corollary 38
Let \(U \in \mathbb{U}^{+} \).

1. If \(M \in [U] \), then \(M \triangleright_{\beta} N \) and \(N \) is closed.

2. \([U] = \{M \in M / M \triangleright_{\beta} N \text{ and } N : \langle() \vdash U \rangle \} \).

Proof
1. Let \(S \subseteq \mathcal{V} \text{ such that } S \neq \emptyset \text{ and } S \cap \text{FV}(M) = \emptyset \). Since \(M \in [U] \), then \(M \in \mathcal{I}(U) \), and, by lemma 36, \(M \triangleright_{\beta} N \) and \(\text{FV}(N) \subseteq S \). But, by theorem 36, \(\text{FV}(N) \subseteq \text{FV}(M) \), then \(\text{FV}(N) = \emptyset \).

2. Let \(M \in [U] \). By lemma 36, \(M : \langle\Gamma \vdash U \rangle \). By 1, \(M \triangleright_{\beta} N \) and \(N \) is closed. Hence by subject reduction for \(\beta \) corollary 4. \(N : \langle\Gamma |_{N^{+}} \vdash U \rangle \). Since \(N \) is closed \(N : \langle() \vdash U \rangle \).

Conversely, let \(M \) such that \(M \triangleright_{\beta} N \) and \(N : \langle() \vdash U \rangle \), and take a \(\beta \)-interpretation \(\mathcal{I} \). By theorem 4, \(N \in \mathcal{I}(U) \) and, since \(\mathcal{I}(U) \) is \(\beta \)-saturated, \(M \in \mathcal{I}(U) \). Then \(M \in \bigcap_{\beta-interpretation} \mathcal{I}(U) \) and so, \(M \in [U] \).
– If \(U = a \), the result comes by definition of \(I \).

– If \(U = U_1 \cap U_2 \) and \(U_1 \in \mathbb{U}^+ \), then \(M \in I(U_1) \) and, by IH, \(M \in N \).

– If \(U = V \to T \), \(V \in \mathbb{U}^- \) and \(T \in \mathbb{U}^+ \), then let \(x \in V \subseteq N' \) such that \(x \not\in \text{FV}(M) \). By IH, \(x \in I(V) \) and \(Mx \in I(T) \). By IH, \(Mx \in N \).

Hence, by theorem \ref{theo:cor}, \(M \in N \).

\[\square \]

3. Let \(U \in \mathbb{U}^- \) and \(M \in N' \).

– If \(U = a \), the result comes by definition of \(I \).

– If \(U = \omega \), then \(M \in I(U) = M \).

– If \(U = U_1 \cap U_2 \) and \(U_1, U_2 \in \mathbb{U}^- \), then, by IH, \(M \in I(U_1) \) and \(M \in I(U_2) \), then \(M \in I(U_1 \cap U_2) \).

– If \(U = V \to T \), \(V \in \mathbb{U}^+ \) and \(T \in \mathbb{U}^- \), then let \(P \in I(V) \). We have \(M = xM_1 \ldots M_n \) where \(M_i \in N \) for \(1 \leq i \leq n \). By IH, \(P \in N \). Hence, \(MP \in N' \) and by IH, \(MP \in I(T) \). Thus \(M \in I(V \to T) \).

\[\square \]

The next corollary shows that if \(U \in \mathbb{U}^+ \) then \([U]\) contains only elements which are normalisable.

Corollary 42 Let \(U \in \mathbb{U}^+ \).

1. If \(M \in [U] \), then \(M \) is normalisable.

2. If \(M : (\langle () \vdash U \rangle) \) then \(M \) is normalisable.

3. \([U] = \{ M \in M / M \triangleright \beta N, N \text{ is in normal form and } N : (\langle () \vdash U \rangle) \} \).

Proof

1. By lemma \ref{lem:inc}, \(M \in [U] \subseteq I(U) \subseteq N \).

2. By Theorem \ref{theo:cor}, \(M \in I(U) \). By lemma \ref{lem:inc}, \(M \in N \).

3. Let \(M \in [U] \). By Corollary \ref{cor:inc}, \(M \triangleright \beta P \) and \(P : (\langle () \vdash U \rangle) \). Since by \ref{lem:inc} \(M \) is normalisable then by Church-Rosser \(P \) is normalising. Let \(N \) be the normal form of \(P \). By Subject reduction corollary \ref{cor:sub}, \(N : (\langle () \vdash U \rangle) \).

The inverse inclusion is obvious by corollary \ref{cor:inc}.

\[\square \]

Remark 43 It should be noted that positive types are not exclusively the types which satisfy the properties proved about them (e.g., corollary \ref{cor:inc}). For example, let us take the non-positive type \(U' = (\omega \to b) \to (a \to a) \) where \(a \) and \(b \) are different. We can show that \([U']\) only contains terms which reduce to the closed term \(\lambda x.\lambda y.y \) (and that \(\lambda x.\lambda y.y : (\langle () \vdash U' \rangle) \)). Hence, \(U' \) is a type which is not positive, yet for which corollary \ref{cor:inc} holds. Note that, since \(a \) and \(b \) are different, then \(\omega \to b \) cannot be used in type derivations.

6 Conclusion

In this article, we considered an elegant intersection type system for which we established basic properties which include the subject reduction and expansion properties for \(\beta \). We gave this system a realizability semantics and we showed its soundness and completeness using a method comparable to (yet more detailed than) Hindley’s completeness semantics for an earlier intersection type system. The basic difference

22
between both proofs is that Hindley’s notion of saturation is based on equivalence classes whereas ours is based on a weaker requirement of weak head normal forms. Hence, all of Hindley’s saturated models are also saturated in our framework yet on the other hand, there are saturated models based on weak head normal form which cannot be models in Hindley’s framework. This means that our method provides a larger set of possible models and this leaves the choice open for better models or counter-models for particular applications. We have even proved that for different notions of saturation (based on weak head reduction and normal β-reduction) we obtain the same interpretation for types. Another difference between our approach and that of Hindley is that he constructs his models modulo the convertibility relation, whereas we establish that the interpretation of types is stable by both β-reduction and β-expansion.

Furthermore, we reflected on the meaning of types, especially on the so-called abstract data types where typability and realizability coincide. The presence of ω in intersection type systems prevents typability and realizability from coinciding as one sees for example in $\lambda x.xP$ (where P may contain free variable and may not be normalisable) whose type is $(\omega \to a) \to a$. We found a set of types U^+ for which we showed that typability and realizability coincide. We have also shown that this set satisfies the weak normalisation property.

Acknowledgements

We are grateful for the comments received from M. Dezani, J.R. Hindley, V. Rahli, J.B. Wells and the anonymous referee.

References

[1] F. Alessi, F. Barbanera and M. Dezani-Ciancaglini, Intersection types and lambda models. Theoretical Computer Science 355, pp. 108-126, 2006.

[2] H.P. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignement. Journal of Symbolic Logic, vol 48, num 4, 1983.

[3] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics. North-Holland, 1985.

[4] S. Carlier and J.B. Wells, Expansion: The Crucial Mechanism for Type Inference with Intersection Types: A Survey and Explanation. Under consideration for publication in the Journal of Functional Programming.

[5] M. Coppo and M. Dezani-Ciancaglini, A new type-assignment for the λ terms. Archiv für mathematische logik 19, pp. 139-156, 1978.

[6] M. Coppo and M. Dezani-Ciancaglini, An extension of the basic functionality for the λ-calculus. Notre Dame journal of formal logic 21(4), pp. 685-693. 1980.

[7] T. Coquand, Completeness theorems and lambda-calculus. TLCA05, LNCS 3461, pp. 1-9, 2005.

[8] R. David, Normalization without reducibility. Annals of Pure and Applied Logic 107, pp. 121-130, 2001.

[9] S. Farkh and K. Nour, Un résultat de complétude pour les types pour-tout-positifs du système F. Comptes rendus de l’Académie des Sciences, Paris, 326, S’erie I, pp. 275-279, 1998.
[10] S. Farkh and K. Nour, *Résultats de complétude pour des classes de types du système AF2*. Theoretical Informatics and Applications, vol 31, num 6, pp. 513-537, 1998.

[11] J.R. Hindley, *The simple semantics for Coppo-Dezani-Sallé types*. In International symposium on programming (Turin, 1982). Lecture Notes and Computer Science, vol 137, Springer, Berlin, pp. 212-226.

[12] J.R. Hindley, *The completeness theorem for typing λ-terms*. Theoretical computer science, vol 22, pp. 1-17, 1983.

[13] J.R. Hindley, *Curry’s types are complete with respect to F-semantics too*. Theoretical computer science, vol 22, pp. 127-133, 1983.

[14] J.R. Hindley, *Basic Simple Type Theory*. Cambridge University Press.

[15] J.L. Krivine, *Lambda Calcul : types et modèles*, Masson, Paris, 1990.

[16] R. Labib-Sami, *Typer avec (ou sans) types auxilières*. Manuscript.

[17] K. Nour and K. Saber, *A completeness result for the simply typed λμ-calculus*. Submitted.

[18] Patrick Sallé. *Une extension de la théorie des types en lambda-calcul*. In G. Ausiello and Corrado Böhm, editors, Fifth International Conference on Automata, Languages and Programming, volume 62 of Lecture Notes in Computer Science, pp. 398-410. Springer, July 1978.

[19] S. van Bakel. *Principal type schemes for the strict type assignment system*. Journal of Logic Computation 3(6), pp. 643-670, December 1993.

[20] J. B. Wells. *The essence of principal typings*. In Proc. 29th Int’l Coll. Automata, Languages, and Programming, volume 2380 of LNCS, pp. 913-925. Springer-Verlag, 2002.