Measuring proboscis length in Lepidoptera: a review

Flóra Vajna · János Kis · Viktor Szigeti

Received: 18 March 2020 / Revised: 12 October 2020 / Accepted: 28 October 2020 / Published online: 22 November 2020
© The Author(s) 2020

Abstract
Mouthpart morphologies relate to diet range. Differences among or within species may result in resource partitioning and speciation. In plant-pollinator interactions, mouthpart length has an important role in foraging efficiency, resource partitioning and pollination, hence measuring nectarivorous insect mouthparts’ morphological variation is important. Most adult lepidopterans feed on nectars and participate in pollination. Although a vast range of studies applied morphometric measurements on lepidopteran proboscis (tongue) length, general recommendations on methodologies are scarce. We review available proboscis length measurement methodologies for Lepidoptera. Focusing on how proboscides have been measured, how accurate the measurements were, and how were these constrained by sampling effort, we searched for research articles investigating lepidopteran proboscis length and extracted variables on the aims of measurements, preparation and measurement methodology, and descriptive statistics. Different methods were used both for preparation and measurements. Many of the 135 reviewed papers did not provide descriptions of the procedures applied. Research aims were different among studies. Forty-four percent of the studies measured dead specimens, 13% measured living specimens, and 43% were unclear. Fifteen percent of the studies used callipers, 9% rulers, 1% millimetre scales, 4% ocular micrometers, 4% drawings and 14% photographs; 55% were non-informative. We emphasise the importance to provide detailed descriptions on the methods applied. Providing guidelines for future sampling and measurements, we encourage fellow researchers planning measurements to take into account the effect of specimen preparation techniques on the results, define landmarks, consider resolution, accuracy, precision, choose an appropriate sample size and report details on methodology.

Keywords Butterfly · Morphology · Moth · Sampling design · Tongue length · Trait

Introduction
Animals’ mouthpart morphologies relate to their diet: variation in mouthpart shape and size across similarly feeding species determines which species exploits which part of a diet range if potential food is heterogeneous and mouthpart morphology associates with differences in exploitation efficiency. Morphological variance within foraging guilds may result in specialization and niche segregation (Freed et al. 1987; Conant 1988; Pratt 2005). Similarly, within-population variation results in differences in food exploitation and may also induce character displacement, and ultimately, speciation (Grant and Grant 2003, 2014). Evidence for these effects was found in a wide range of taxa (fishes: Sampaio et al. 2013; amphibians: Amanat Behbahani et al. 2014; lizards: Brecko et al. 2008; birds: Herrel et al. 2005). In insects, the mouthparts’ structural adaptation to diet is striking, e.g., when comparing blood- vs. nectar-feeding flies (Karolyi et al. 2014), or fruit-piercing moths vs. nectar-feeding Lepidoptera (Srivastava and Bogawat 1969; Ramkumar et al. 2010).

In insect pollinators, mouthpart length in conjunction with corolla length variation may impact the choice between flowers and influence feeding efficiency, resource partitioning, and pollination. Hence, to understand interactions between plants and their pollinators, investigating morphological variation in nectarivorous insect
mouthparts is essential (Inouye 1980; Harder 1985; John-
son 1986; Krenn et al. 2005; Borrell and Krenn 2006;
Pauw et al. 2009; Stang et al. 2009; Haverkamp et al.
2016; Szigeti et al. 2020). Kearns and Inouye (1993) sug-
gested that the most interesting measurable traits among
morphological characters in flower-visiting insects is
mouthpart length. On the one hand, nectarivores with
short mouthparts are excluded from deep flowers due to
size incompatibility. On the other hand, species with long
mouthparts may be excluded from shallow flowers, due to
high nectar viscosity, since viscous liquids require more
strength to imbibe through longer tubes (Johnson 1986;
Kim et al. 2011; Haverkamp et al. 2016). Nevertheless,
generally used methodology on how to measure mouthpart
length in pollinators is not available, especially for meas-
uring live specimens, and recommendations for reliable
measurements are still scarce (e.g., Harder 1982 for bees;
similarly, widely accepted methods for investigating ter-
restrial arthropod morphology were missing (Moretti et al.
2017)). In contrast, several papers include well-detailed
protocols that may be used as a sound basis of a general
methodology (see, e.g., Krenn et al. 2001; Bauder et al.
2014; Cariveau et al. 2016; Düster et al. 2018). Accord-
ing to Kearns and Inouye (1993), proboscis length meas-
urement seems to be relatively easy in insect pollinators.
In fact there are a variety of procedures available. These
require different amounts of research investment, likely
yielding different results.

Documenting and measuring different anatomical traits,
such as size and shape have been important parts of natural
history ever since its early students (see, e.g., Aristotle 2004;
Richardson et al. 1831). Behavioural biologists, ecologists
and taxonomists use a broad spectrum of morphological
methods, they investigate organisms from different perspec-
tives, thus morphometrics is not a coherent discipline (Daly
1985; Wipfler et al. 2016). The number of studies quantita-
tively investigating anatomical shapes is still increasing and
morphometric methods will probably remain important tech-
niques in the near future (Adams and Otárola-Castillo 2013;
Wipfler et al. 2016). Recently, a vast range of studies applied
morphometric methods, e.g., for classifying taxa (e.g., Peru-
zzi and Passalacqua 2008; Görföl et al. 2014; Csősz and
Fisher 2015); revealing morphological changes at different
circumstances (e.g., Langerhans et al. 2004; Kaliontzopou-
lou et al. 2010); looking for relationships between body size
and reproductive success (e.g., Berger et al. 2008; Réale
et al. 2009; De León et al. 2012); investigating tiny surface
structures for understanding functional mechanisms (Wipfler
et al. 2016; Xue et al. 2016); and developing new measure-
ments or analysis techniques (Adams and Otárola-Castillo
2013; Bánszegi et al. 2014; Csősz and Fisher 2015; Stec
et al. 2016). The range of devices and methods has been
rapidly increasing (Muñoz-Muñoz and Perpiñán 2010).

Data quality is a central concern for researchers (Gar-
amszegi et al. 2009), and is determined by the character-
istics of the measurements applied, including the practice
and experience of the person performing the measurements.
Although comprehensive norms and rules for precise meas-
urement in morphometrics exist (Walther and Moore 2005;
Muñoz-Muñoz and Perpiñán 2010; Van Hook et al. 2012;
Stec et al. 2016; Moretti et al. 2017), Ioannidis (2005) sug-
gests that a large part of the studies lack high measurement
accuracy. The quality of morphological data depends on
preparation and measurement techniques (Arnvist and Mårtensson 1998), and the followings are worth consider-
ing before taking measurements. First, different treatments
and techniques during specimen preparation likely yield dif-
f erent results, e.g., dried specimens lose their water content,
thus their flexibility, and may become contracted to some
degree compared to fresh individuals (Kearns and Inouye
1993; von Schiller and Solimini 2005; Muñoz-Muñoz and
Perpiñán 2010; Knapp 2012; Van Hook et al. 2012; Moretti
et al. 2017). Second, the morphological landmarks should
be undoubtedly homologous for all measured individuals
and/or species. Landmarks should be easily detectable and
measurable, and similar across studies, to acquire repeatable
measurements (Daly 1985; Kouchi et al. 1999; Zelditch et
al. 2004; Van Hook et al. 2012). However, accurate landmark
definition is challenging in many cases, e.g., when the mea-
sured structures are flexible (Yezerinac et al. 1992; Muñoz-
Muñoz and Perpiñán 2010; Moretti et al. 2017). Third, the
quality of the results depends on measurement resolution,
accuracy and precision (i.e., device quality and adequacy)
(Ulijaszek and Kerr 1999; Zelditch et al. 2004; Walther and
Moore 2005; Harris and Smith 2009; Wolak et al. 2012).
The potential error of the device and the skills of the meas-
uring person limit measurement repeatability (Kearns and
Inouye 1993; Zelditch et al. 2004; Blackwell et al. 2006;
Van Hook et al. 2012; García-Barros 2015). Furthermore, as
measurement error increases, the chance to fail to detect bio-
logically relevant differences among the investigated groups
is also increasing (Yezerinac et al. 1992). Fourth, the power
of analyses depends on sample size (Batterham and Atkin-
on 2005; Van Hook et al. 2012; Cardini et al. 2015; Moretti
et al. 2016). Researchers’ choice of sample size depends on
the aim of the study, the population variability in the target
variables, the effect size of interest and the confidence level
needed (Van Hook et al. 2012; Cardini et al. 2015; Moretti
et al. 2017). Sample size may be constrained by limited sam-
ping opportunities or the number of available specimens, as
well as by ethical issues. If researchers sample only a small
part of a population, the potential error of measurement will
increase considerably, even in case of random sampling, and
in field ecology, true random sampling is nearly impossible.
Fifth, if scientists are working with living organisms, they
should take into account ethical considerations (Farnsworth
and Rosovsky 1993; Costello et al. 2016; Fischer and Larson 2019). In small natural populations, removing specimens for measurements may alter population structure, thus collecting sufficient data to estimate population distribution using dead specimens may severely harm the population or is simply not feasible (Invertebrate Link (JCCBI) 2002). These not only constrain sample size but make some desired measurements to be avoided and the development of new measurement protocols mandatory (Moretti et al. 2017).

Our aim was to review and reveal the available proboscis length measurement methodologies for butterflies and moths (Lepidoptera). Glossatan Lepidoptera have long proboscides, specialised mouthparts evolved as an adaptation to imbibe floral nectar as a primary food resource at the adult stage in most species (Krenn 2000, 2010; Erhardt and Mevi-Schütz 2009; Bauder et al. 2011). Nectar consumption affects lifespan and fecundity (O’Brien et al. 2004; Cahenzli and Erhardt 2013), and butterflies may choose the most rewarding among the available nectar plant species. This may ultimately result in resource partitioning and evolution (Erhardt and Mevi-Schütz 2009; Thomas and Schultz 2016). Some species consume other resources, such as pollen, fruit and plant sap, mud and excrement, whereas several species do not feed as an imago (Erhardt and Mevi-Schütz 2009). Lepidopteran proboscides is an ideal study organ to address plant-pollinator morphological compatibilities, since its length may be highly variable within a single population (Szigeti et al. 2020) and is an important predictor of resource-use (Krenn 2000; Bauder et al. 2011). Here we present a methodological review on proboscis length measurements and we hope it can facilitate further mouthpart studies. Our focus is on how the authors performed measurements of lepidopteran proboscides, how accurate the measurements were, and how were these constrained by sampling effort. We also highlight challenges in measuring proboscis length, and we provide recommendations for future sampling, taking into account the five important points for appropriate measurements listed above.

Methods

Data sources

To review studies measuring proboscis length in Lepidoptera, we searched for research papers upon three groups of search terms: (1) “funct*”, “length”, “morpho*”, “size”; (2) “galea”, “mouthpart”, “mouth-part”, “proboscis”, “tongue”; and (3) “butterfly”, “lepidoptera”, “moth”. We used “and” operators between groups, “or” operator between keywords within groups and “*” denotes wild-cards. We used the databases ISI Web of Science and Scopus, accessed on 2020-06-04. We found 420 papers and we selected 114, those presenting their own measurements of the total length of lepidopteran proboscis. We found 6 further papers by browsing the Internet and 15 from other articles’ reference lists. We included only research articles, we did not use books, book sections, or theses. All-together, we used 135 research articles, 126 were in English, 5 German, 2 French, 1 Portuguese and 1 Spanish (see references of the reviewed studies: Reference list S1).

Extracted variables

We categorised the reviewed studies according to (I) the aim of the proboscis length measurement, (II) the method of specimen preparation, and (III) the method of proboscis length measurement (see raw data: Table S1).

If the title and the abstract were available in English, we counted the number of the important keywords (“galea”, “mouthpart”, “mouth-part”, “proboscis”, “tongue”) in both, then we calculated important keyword proportion: we divided keywords with the total number of the words in the title and the abstract. We used this proportion keywords variable as an estimate for the importance of proboscis length measurement in the given studies.

We extracted the following information from the articles for proboscis preparation methodology: (1) if live or dead specimens were measured; (2) treatment of live specimens (i.e., immobilization); the methods applied on dead specimens: (3) preservation; (4) preparation on dead specimens before fixation, mostly flexibilisation; and (5) fixation.

We extracted the following details for proboscis length measurement methodology: (1) the state of proboscis when measured (coiled vs. uncoiled); (2) landmarks used for measurements; (3) magnifying devices (e.g., stereomicroscope); (4) measurement devices (e.g., ruler, digital photograph) and (5) their resolution; (6) the techniques for reading measurements (e.g., naked eye, software); (7) and if the repeatability and/or accuracy of measurements were calculated. We also recorded if the authors had referred to other studies for the methods applied.

We extracted further numerical data: (1) the number of investigated species; (2) the number of all measured individuals; and (3) the year of publication. Furthermore, we assessed the descriptive statistics on proboscis length given in the articles (e.g., mean, standard deviation, range; in some of the articles different statistics were provided for different species and we included all types of these statistics, see Table S1).

In a few publications, the authors used multiple methods for measuring proboscis length, we present them all.
Data analysis

We present descriptive statistics of the extracted variables by providing median, minimum and maximum values, showing box-plots with individual data points and bar-plots. We analysed the following relationships between the variables characterising the measurements:

To investigate how the importance of proboscis length and the scrupulousness in presenting methodology are related, we correlated proportion keywords in the title and abstract to (1) the number of missing data (hereafter NA) in the description of the methodology in preparing specimens, (2) the number of NA-s in measurement descriptions, (3) resolution estimates for the devices, and (4) the number of measured individuals. We calculated Kendall’s rank correlation coefficients.

We tested if shorter proboscides were measured more likely in dead, rather than live specimens, because we hypothesised that smaller species are more difficult to measure alive, since fragility increases with decreasing size. We built a mixed effect model, where the response variable was proboscis length and the explanatory variable was measurement condition (dead or alive), and the random factor was the study (Zuur et al. 2009).

We analysed all data in the R 3.4.4 statistical environment (R Core Team 2018). We used the “lmerTest” 3.1-0 package (Kuznetsova et al. 2017) for the mixed effect model.

Results

We reviewed 135 studies on proboscis length measurements in Lepidoptera, published from 1924 to 2020 (see Reference list S1, Fig. S1). Proboscis length was provided only as supplementary descriptive data in 6 cases. The aim of the rest of the studies were to investigate body size relationships in 12, mouthpart morphology and functionality in 33, foraging behaviour strategies in 39, proboscis length and flower depth relationships in 41, pollination effectiveness in 57 and pollinator communities in 19 cases. Many studies (59) had several aims (see raw data: Table S1).

Authors investigated 1–117 (median: 5; Fig. 1) lepidopteran species per study. Proboscis length was measured on 4 (median; range: 1–537; Fig. 2) individuals per species. Altogether, data were published on 13,816 specimens of 977 species. Per-species proboscis length means varied between 0.35–280.0 (median: 16) mm, the range of standard deviations was 0.01–32.0 (median: 1.5) mm, and the CV% was between 0.08–122.6% (median: 6.1%). The number of measured species and the number of measured individuals were different for the different aims of the studies (Figs. 1 and 2).

Various methods were used for preparation and for measurements. Many papers fell short to provide a thorough description of the procedures applied, and the reasons why the given methods had been used were often unexplained. For example, 61 (43.3%) studies provided no information on proboscis preparation, 67 (47.5%) on proboscis measurements.

We reviewed 135 studies on proboscis length measurements in Lepidoptera, published from 1924 to 2020 (see Reference list S1, Fig. S1). Proboscis length was provided only as supplementary descriptive data in 6 cases. The aim of the rest of the studies were to investigate body size relationships in 12, mouthpart morphology and functionality in 33, foraging behaviour strategies in 39, proboscis length and flower depth relationships in 41, pollination effectiveness in 57 and pollinator communities in 19 cases. Many studies (59) had several aims (see raw data: Table S1).

Authors investigated 1–117 (median: 5; Fig. 1) lepidopteran species per study. Proboscis length was measured on 4 (median; range: 1–537; Fig. 2) individuals per species. Altogether, data were published on 13,816 specimens of 977 species. Per-species proboscis length means varied between 0.35–280.0 (median: 16) mm, the range of standard deviations was 0.01–32.0 (median: 1.5) mm, and the CV% was between 0.08–122.6% (median: 6.1%). The number of measured species and the number of measured individuals were different for the different aims of the studies (Figs. 1 and 2).

Various methods were used for preparation and for measurements. Many papers fell short to provide a thorough description of the procedures applied, and the reasons why the given methods had been used were often unexplained. For example, 61 (43.3%) studies provided no information on proboscis preparation, 67 (47.5%) on proboscis measurements.

![Fig. 1 Number of the measured species according to the aim of the study. Box-plots show medians, lower and upper quartiles, notches show 95% confidence intervals for medians, whiskers include the range of distribution without outliers. Grey × symbols represent publications, and are jittered on the horizontal axis for better visibility. Vertical axes are log10-scaled](image-url)
Proboscis preparation

Proboscis lengths were measured in live specimens in 18 (12.8%) studies. Although these specimens probably survived being measured, this was not stated. Sixty-two (44.0%) studies reported using dead specimens, including voucher specimens, and animals captured in their natural habitats or reared and then killed for the measurements. Sixty-one studies (43.3%) did not provide information on whether the specimens survived the measurements or not.

Live individuals were immobilised for measurements by one of the following methods: cooling, anaesthetising with CO₂ or ethyl acetate, stabilizing with styrofoam, fixing on glass slide, fixing on plastic board with clips, or covering with a meshed bag. In some cases, researchers did not use any interventions, or they did not state if live specimens were sedated. Dead specimens were either immediately measured after being killed or they were stored as dried or frozen or kept in ethanol (70% or 95%; see Table S1). Preparation of the dead specimens before fixation was mostly flexibilisation, e.g., soaking in 20–50% lactic acid, 5–10% KOH, diluted household cleaner, distilled water, or kept in a relaxing chamber (for further details, see Table S1). In some cases, the solutions were heated, in others, specimens were just soaked for a couple of days. In 30 (58.4%) publications the authors did not state using any kind of preparation on dead specimens. The prepared specimens would be mounted on microscope slides, stubs, sample holders, or spreading boards and embedded by different methods (polyvinyl-lactophenol, DPX mountan, Entellan, Canada balsam, Euparal, graphite adhesive tape, transparent tape, etc. see Table S1). We also found one study, where samples for measurements were frozen with liquid nitrogen.

Proboscis measurements

Proboscides were uncoiled in 51 (35.2%) of the measurements. In 3 cases proboscides were not uncoiled, and in further cases this information was not provided. Magnifying devices were stereo microscopes, light microscopes, scanning electron microscopes or 3D X-ray technology either or not combined with digital photography. Digital cameras by themselves were also used. Measurement devices were analogue and digital callipers, rulers, millimetre scales, ocular micrometers, drawings (drawing tubes and digitalising tablets) and photographs (Fig. 3). The techniques for reading measurements were the naked eye, digital interfaces, or software (Fig. 3; see details in Table S1). The applied image analysis software were Amira; AxioVision; Image Tool for Windows; ImageJ; Imaris; Microsoft PowerPoint; Olympus Soft Imaging Solution and Sigma Scan Scientific Measurement System. Only 6 publications referred to other publications for the applied measurement techniques.

Device resolutions ranged between 0.0001 and 1 mm, and most devices measured to the nearest millimetre. The best resolutions were measured from photographs with software. The best measured resolution was 0.5 mm for rulers, and 0.01 for callipers (Fig. 4). We did not find information on measurement accuracy and precision.
Fig. 3 Proportion devices or techniques used for measuring proboscis. Columns from left to right are hierarchically organised: e.g., the bars of measurement devices in the range along the y-axis for the magnifying device stereomicroscope represent measurement devices for stereomicroscopy, etc.

Fig. 4 Device resolutions used for proboscis measurements. Grey × symbols represent the articles.
Relationships between the variables characterising the measurements

The larger the proportion keywords was, including the title and abstract, the lower was the number of NA-s in preparation description (Kendall’s tau = – 0.25, P < 0.001, n = 129; Fig. 5) and in measurement description (tau = – 0.23, P < 0.001, n = 129; Fig. 5). Proportion keywords was not related to device resolution (tau = − 0.18, P = 0.100, n = 51; Fig. 5) or to the number of measured individuals per species (tau = 0.08, P = 0.301, n = 86).

We did not find differences in proboscis length between measurements performed on dead or live specimens (P = 0.716, n\textsubscript{dead} = 643, n\textsubscript{alive} = 362, i.e., species with shorter proboscides were not measured more likely as dead than as live specimens).

Discussion

The number of papers published including lepidopteran proboscis length measurements more than doubled in the last decade, compared to the preceding three decades (Fig. S1), showing an increased interest. We found various preparation and measurement techniques for quantifying proboscis length. Research aims were different among the reviewed studies, hence the diversity in methodology, e.g., different techniques are needed for studying the sensillas on proboscis by scanning electron microscope or feeding behaviour in the field.

About half of the reviewed studies did not provide information on measurement methodology. This impedes reproducibility and may raise the doubt if these studies were carefully designed with regard to proboscis length measurements and if they took into account the vast range of potential bias (see, e.g., potential problems in measuring body sizes other than proboscis in insects: von Schiller and Solimini 2005; Knapp 2012; Van Hook et al. 2012; García-Barros 2015). Authors provided more methodological information on proboscis length measurement, if information on proboscis length was important from their perspective (proportion keywords in the title and abstract, Fig. 5).

The reviewed studies applied different types of preparation techniques. Different techniques may shrink insect body parts in varying degrees (Kearns and Inouye 1993; von Schiller and Solimini 2005; Knapp 2012; Van Hook et al. 2012; Moretti et al. 2017). In contrast, Fox et al. (2015) suggested that the differences in preparation may not influence proboscis length, since it is mainly built of hard and resistant chitin. Although Fox et al.’s (2015) arguments are reasonable, we did not find studies with suitable data to test this hypothesis. Students measuring live specimens also face further challenges (Blackwell et al. 2006; Van Hook et al. 2012): handling live, fragile specimens and avoiding injuries is difficult. In contrast, anaesthesia, even for relatively short time periods may permanently alter insect behaviour (Kearns and Inouye 1993; Chuda-Mickiewicz et al. 2012). In a few studies even small species were successfully immobilised and carefully managed by cooling (Kunte 2007; Tiple et al. 2009; Bauder et al. 2013).

Well-defined landmarks are essential for accurate body size measurements (Kouchi et al. 1999; Van Hook et al. 2012), and defining them seems to be relatively easy in the case of lepidopteran proboscis, compared to, e.g., the expandable tongue of bees (Morse 1977; Harder 1982; Kearns and Inouye 1993). Only 16 (11.3%) of the reviewed
studies specified the landmarks to measure proboscis length. Length was defined as the distance from the anterior edge of the eye to the proboscis tip in most cases (e.g., Corbet 2000; Kunte 2007; Chupp et al. 2015). These landmarks are reasonable, because the proboscis base is not always visible from a lateral view, since it can be covered with the hairy labial palpus. Furthermore, when measuring proboscis from digital photographs, coiled and uncoiled states of the same proboscis should provide different values due to pixel organization, thus for relative estimates, only one of these methods can be used throughout a study.

A measurement is always a comparison between the measured object and a standard scaled device, and are investigated by persons. Photographs, drawing tubes, analogue or digital callipers, rulers or millimetre scales were applied to measure proboscis length. Contrary to Van Hook et al. (2012), who suggested that measuring butterflies’ forewings with different devices yield similar results, we suggest that the different methods and devices are likely different in resolution, accuracy and precision. Non-standardized devices may differ in bias, e.g., plastic rulers could be biased compared to each other, thus incurring random error (Kemper and Schwertfeger 2009; Van Hook et al. 2012). Although measuring from photographs provided the highest resolution, it does not affect accuracy or precision. If the scaling device was a general-purpose ruler or another non-standardized scale, measurement accuracy can be doubtful, although usable for relative estimates if only a single device had been used. A further problem could be optical distortion, especially with low-quality optics (Larson and Chandler 2010). Measurement duration may also be different across methods, e.g., if the speed of measurements increases bias (Daly 1985; Kemper and Schwertfeger 2009; Van Hook et al. 2012). We found that the reviewed studies often gave the resolution of the measurements, while precision, accuracy, and repeatabilities were rarely reported. Furthermore, 24.1% of the authors used callipers, rulers and millimetre scales, while these devices can measure only straight objects. Unless mounted on a slide, proboscis is not straight even if uncoiled, since it has a tendency to remain curved, resulting in an underestimate (see, e.g., Photo 3 of Ryckewaert et al. (2011)).

We found a large variance in sample sizes among and within studies. However, we did not find a relationship between proportion keywords and the number of measured individuals per species. Many authors measured a relatively small number of individuals, similarly to cases measuring other morphological traits in various taxa (Cardini et al. 2015). However, we found a few good examples, where sample sizes were carefully chosen (e.g., Krenn 1998; Kawahara et al. 2012; Haverkamp et al. 2016). The large variance in proboscis length within species (e.g., found by Szigeti et al. 2020) and the variance due to preparation and measurement techniques make choosing an appropriate sample size crucial if the aim of the study is to characterise population distribution. Sample size may be deliberately chosen low, to avoid the negative impact on natural populations by removing many individuals (Farnsworth and Rosovsky 1993; Costello et al. 2016; Fischer and Larson 2019). Researchers also have to trade-off sampling different variables, and it is a further constraint to achieve large sample sizes (Szigeti et al. 2016).

Although some studies reported means and standard deviations (see Table S1), descriptive data on proboscis length were not provided in many cases, similarly to the findings of Stang et al. (2009) and Amorim et al. (2014) for measurements other than proboscis. In several cases the type of the statistics, i.e., if a value was the mean or the median or a single value was not provided (Zenker et al. 2011; Meera Bai 2012). In a few cases, authors gave different types of descriptive statistics within a single table (Atachi et al. 1989; Singer and Cocucci 1997). In contrast, some publications provided detailed descriptive statistics: beside the mean and SD, some gave the range and the number of measured individuals (Grant and Grant 1983; Kramer et al. 2015). Entire datasets were published only in a few cases (Kislev et al. 1972; Johnson and Raguso 2015).

Here, we reviewed how lepidopteran proboscis length had been measured. We did not find detailed protocols for proboscis length measurement, but there are some publications with well described measurement methodology (see, e.g., Krenn et al. 2001; Bauder et al. 2014). There are a few guidelines to measure bee tongues (Harder 1982; Kearns and Inouye 1993), and these may also help students of Lepidoptera. Hereafter, we provide recommendations and a guideline (Table 1) based upon this review and our own field experience.

Recommendations

Primarily, we highlight the importance to provide detailed descriptions on the methods applied. We recommend providing the following information on measurement techniques: if measurements were performed on dead or live specimens; how they were handled, e.g., mounted for measurements; if alive, sedated or not; if dead, how the specimens were stored and proboscides relaxed; if measurements were taken on coiled or uncoiled proboscides; landmarks for measurements; the device used for magnifying the proboscis; measurement technique; how values were read, the software applied for measurements, including version number; and any other equipment used during the measurement procedure. Provide the following descriptive statistics for the measured values: the number of the measured species and individuals, including the number of males and females if determined; mean, SD, minimum and maximum. Access to entire datasets via public repositories is a good practice, since it makes research transparent and more credible.
Table 1 Guidelines for measurements of lepidopteran proboscis lengths

Recommendations	Recommended literature
General	Kearns and Inouye (1993), von Schiller and Solimini (2005), Walther and Moore (2005), Muñoz-Mañoz and Perpiñán (2010), Knapp (2012), Van Hook et al. (2012), García-Barros (2015), Stec et al. (2016), Moretti et al. (2017), Wong et al. (2019)
Provide detailed descriptions on the applied methods and report detailed descriptive statistics; whole datasets worth to be uploaded to a public data repository	
Report device resolution; reporting repeatabilities, especially for measurement techniques new or requiring personal practice is recommended; inter-rater repeatabilities are also important if different persons measure different specimens	
Handling live specimens	General: Kearns and Inouye (1993), Chuda-Mickiewicz et al. (2012), Cabrini et al. (2016), Poinapen et al. (2017), Lepidoptera proboscis: Bauder et al (2013), Bauder et al (2014), Lee et al (2017), Xiong et al. (2019)
Immobilization	Fragile species: cooling; anaesthetising with CO2, if altering behaviour is not an issue
	Robust species: probably do not need anaesthetisation
Stabilization	With styrofoam or with plastic tiles and clips
For ecological and behavioural studies and/or for ethical reasons, if possible, try to investigate the effect of handling on survival and follow the behaviour of some individuals for all the investigated species	Farnsworth and Rosovsky (1993), Invertebrate Link (JCCBI) (2002), Costello et al. (2016), Fischer and Larson (2019)
Preparation of dead specimens	General: Kearns and Inouye (1993), Millar et al. (2000), Schauff (2001), Lepidoptera proboscis: Peter et al. (2009)
Killing	Hand-capture; ethyl acetate
Storing	General: Kearns and Inouye (1993), Millar et al. (2000), Schauff (2001)
Traps: with ethanol or water with a few drops of washing up liquid	
70% or 95% ethanol	General: Millar et al. (2000), Schauff (2001), Lepidoptera proboscis: Molleman et al. (2005), Bauder et al. (2014)
Freezing	General: Millar et al. (2000), Schauff (2001), Lepidoptera proboscis: Kramer et al. (2015), Sakagami and Sugiura (2018)
Drying	General: Millar et al. (2000), Schauff (2001), Lepidoptera proboscis: Krenn et al. (2001)
Flexibilisation for measurement	General: Kearns and Inouye (1993), Schaff (2001), Depieri et al. (2010), Lepidoptera proboscis: Kislev et al. (1972), Krenn (1998), Ramkumar et al. (2010)
20–50% lactic acid; 5–10% KOH; distilled water; 7% EDTA	
Mounting or embedding the prepared specimens or proboscides	Microscope slides; SEM stubs with tape (depends on the applied devices); Canada balsam, Euparal; etc
Landmarks	Corbet (2000), Kunte (2007), Chupp et al. (2015)
From the anterior edge of the eye to the proboscis tip	
If survival is important for the study (e.g., investigating behaviour and/or endangered species), measurement could be achieved either by sedation (e.g., Moré et al. 2012; Bauder et al. 2013), with the risk of altering behaviour, or by mounting specimens on styrofoam or on plastic plates while measuring (e.g., Martins and Johnson 2007; Lehner et al. 2014), although this may be difficult in small, fragile species. In case of working with freshly collected dead specimens, measurements should be carried out as soon as possible to avoid potential shrinkage due to desiccation. Note that using the same preparation methods within a study still allows taking relative measurements, thus within-study comparisons (Kearns and Inouye 1993; Van Hook et al. 2012).

To safeguard these specimens in collections is beneficial, since they can be used for further studies (Nilsson and Rabakonandraina 1988).

We suggest to avoid measuring anything in science by millimetre-paper or a general-purpose ruler (Kemper and Schwerdtfeger 2009; Muñoz-Muñoz and Perpiñán 2010). We recommend avoiding straight scales, such as callipers or rulers for measuring proboscis with the naked eyes. Rather, shoot photo macrographs including a high resolution printed scale on each photograph, then measure proboscis length with a dedicated software. Accurate scales can be drawn with graphical software. Photography can be used both in the lab or outdoors (e.g., Bauder et al. 2013). High-resolution photographs have the advantage of zooming into the picture and adjusting contrast or colour to improve landmark identification. Photographs can be archived and later revisited (Kemper and Schwerdtfeger 2009). Pay attention to: (1) using a macro-lens with the smallest possible geometric distortion, (2) that proboscis and scale should be in the same distance from the lens and parallel with the lens’s plane (bubble levels insertable to camera hot shoes can be handy for levelling), (3) using well calibrated scales and (4) trying to standardize the measure of proboscis extension as much as possible.

Different preparation and measurement techniques may potentially yield different results. Resolution (i.e., the smallest readable unit), precision (i.e., the random error), accuracy (i.e., the systematic error) of the measuring device and the influence of the measuring person should be taken into account when planning the study, and these data should be provided. The amount of bias can be accumulated during the procedure of preparation and measurement. This may cause larger error than the investigated differences, i.e., the biological variation (Yezerinac et al. 1992; Arnqvist and Mårtensson 1998; Van Hook et al. 2012), thus biasing the conclusion of a study.
The size of measurement error is inversely related to the quality of the data, and measurement standardization is the most effective way to minimize these errors (Ulijaszek and Kerr 1999; Van Hook et al. 2012). We encourage researchers to develop standard preparation and measurement protocols. Repeatability tests are useful, especially for newly developed techniques as well as for checking the reliability within and among the persons conducting measurements. We also emphasise the importance of measurement calibration and the observers’ training to further enhance data reliability (Gordon and Bradtmiller 1992; Kouchi et al. 1999; Blackwell et al. 2006; Van Hook et al. 2012). We agree with Blackwell et al. (2006) to replicate measurements at least twice or thrice and use the mean of the replications to decrease random error, when necessary (Arnegård and Mårtensson 1998). Multiple shots on each specimen may also be useful to check measurement repeatabilities (Daly 1985; Kemper and Schwerdtfeger 2009; Muñoz-Muñoz and Perpiñán 2010).

We recommend choosing an appropriate sample size. Van Hook et al. (2012) suggested that a sample of 30 specimens is enough per population for measuring wing length in butterflies. Similar sample sizes were recommended for accurate estimates of mean body sizes in other taxa (Cardini and Elton 2007; Griffiths et al. 2016; Stec et al. 2016; Wong et al. 2019). Note that although no rule of thumb exist on the minimum sample size upon which the shape of a distribution can be estimated, 30 seems to be a safe minimum for this purpose. We are aware that in many, especially field studies, this sample size can simply be not achieved. In such cases, results should be interpreted with caution. We found considerable within-species variability in proboscis length in some of the studies and others suggest that intraspecific variation in arthropods’ traits may have a significant impact on the studied systems (Griffiths et al. 2016; Moretti et al. 2017; Wong et al. 2019; Szigeti et al. 2020). These imply that very low sample sizes are likely to bias distribution estimates severely, although the required sample size could be rather different among species, aims, the required confidence level, and may be different for different analyses (Batterham and Atkinson 2005). Since accurate results require an estimate on the appropriate sample size, we suggest conducting preliminary studies on the target species or on data from related taxa, when feasible. Optimizing sample size is not an easy task, and sample size often depends on the time spent in the field or the number of traps available, hence these could be considered when planning the sampling (Cardini et al. 2015). Finally, we suggest to take into account ethical and nature conservation issues when deciding on measurement methods or sample sizes (Costello et al. 2016; Fischer and Larson 2019).

Conclusion

The array of methods and devices have been increasing in insect morphometrics. New technologies, such as automated measurements with dedicated software from photographs (Bánszegi et al. 2014), 3D photographing (Olsen and Westneat 2015), microCT (Metscher 2009), probably will influence the development of morphological measurements. Several studies have already used and thoroughly presented new techniques for measuring proboscis length (Grant et al. 2012; Bauder et al. 2013; Lehnert et al. 2016). In contrast, many publications did not disclose the necessary details on measurement procedures, regardless to using or not modern techniques. Deficiencies in the methods and the results were also found in other types of ecological publications (Mortelliti et al. 2010; Szigeti et al. 2016). Insufficient description of methodology is an important problem, since it makes the given study doubtful, and its reproducibility impossible (Moretti et al. 2017). Furthermore, such publications are mostly inappropriate to be included in meta-analyses (Mortelliti et al. 2010; Szigeti et al. 2016; Amato and Petit 2017).

Hence, we emphasise that well-planed methodology and detailed descriptions of the applied methods are essential for accurate conclusions. We think that further methodological development to measure proboscis length is important and general protocols could enhance data quality, thus improving cross-study comparisons. Thoroughly planned studies comparing sampling methodologies and comparing their appropriateness and accuracy at different circumstances are still mandatory.

Acknowledgements We thank two anonymous referees for their detailed comments on the manuscript. We used free and free to use software (LibreOffice, Mendeley, R, RK Ward under Ubuntu).

Funding Open access funding provided by ELKH Centre for Ecological Research. FV received a PhD fellowship at the University of Veterinary Medicine. The project was supported by the grants of the University of Veterinary Medicine. Budapest: NKBB-2018/007819 & KEDHI06320. VS was funded by the National Research, Development and Innovation Office (FK 123813).

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adams DC, Otárola-Castillo E (2013) Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399. https://doi.org/10.1111/2041-210X.12035

Amanat MB, Nokhbafalohghah M, Esmaeili H (2014) Intraspecific variation in Pelophylax ridibunda (Rana ridibunda) in Southern Iran: life history and developmental patterns. Iran J Anim Biosyst 10:11–28

Amato B, Petit S (2017) A review of the methods for storing floral nectar in the field. Plant Biol 19:497–503. https://doi.org/10.1111/plb.12565

Amorim FW, Wyatt GE, Sazima M (2014) Low abundance of long-tongued hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil. Naturwissenschaften 101:893–905. https://doi.org/10.1007/s00442-014-1230-y

Aristotle D (2004) Περὶ ζῶν οὐγίαν (On the Parts of Animals) Translated and edited by IG Lennox. Clarendon Press, Oxford

Arnqvist G, Mårtensson T (1998) Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zool Acad Sci Hung 44:73–96

Atachi P, Desmids M, Durnez C (1989) Les papillons piqueurs (lépidoptères) qui occasionnent et caractéristiques morphologiques. FAO Plant Prot Bull 37:111–120

Bánszegi O, Kosztolányi A, Bakonyi G et al (2014) New method for automatic body length measurement of the collembolan, Folsonia candida Willem 1902 (Insecta: Collembola). PLoS ONE. https://doi.org/10.1371/journal.pone.0098230

Batterham AM, Atkinson G (2005) How big does my sample need to be? A primer on the murky world of sample size estimation. Phys Ther Sport 6:153–163. https://doi.org/10.1016/j.ptsp.2005.05.004

Bauder J, Handschuh N, Krenn HW (2011) The extremely long-tongued orchid bee proboscis length and its uses in ecology. PLoS ONE 6:1–13. https://doi.org/10.1371/journal.pone.0151482

Bauder JA-S, Warren AD, Krenn HW (2014) Evolution of extreme proboscis length in metalmark butterflies (Lepidoptera: Riodinidae). Biol J Linn Soc 110:291–304. https://doi.org/10.1111/bij.12134

Bauder J, Lieszkonig N, Krenn HW (2011) The extremely long-tongued neotropical butterfly Eurybia lycisca (Riodinidae): proboscis morphology and flower handling. Arthropod Struct Dev 40:122–127. https://doi.org/10.1016/j.asd.2010.11.002

Bauder J, Handschuh S, Metserch BD, Krenn HW (2013) Functional morphology of the feeding apparatus and evolution of proboscis length in metalmark butterflies (Lepidoptera: Riodinidae). Biol J Linn Soc 110:291–304. https://doi.org/10.1111/bij.12134

Bauder JA-S, Warren AD, Krenn HW (2014) Evolution of extreme proboscis lengths in neotropical Hesperidae (Lepidoptera). J Res Lepid 47:65–71

Berger D, Walters R, Gotthard K (2008) What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct Ecol 22:523–529. https://doi.org/10.1111/j.1365-2435.2008.01392.x

Blackwell G, Bassett S, Dickman C (2006) Measurement error associated with external measurements commonly used in small-mammal studies. J Mammal 87:216–223

Borrell BJ, Krenn HW (2006) Nectar feeding in long-proboscid insects. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, Boca Raton, pp 185–212

Brecko J, Huyghe K, Vanhooydonck B et al (2008) Functional and ecological relevance of intraspecific variation in body size and shape in the lizard Podarcis melisellensis (Lacertidae). Biol J Linn Soc 94:251–264. https://doi.org/10.1111/j.1095-8312.2008.00953.x

Cabrini I, Andrade CFS, da Costa FM, de Arruda EJ (2016) A simple method for immobilising small dipteran insects and its validation for Aedes aegypti. Entomol Exp Appl 160:96–100. https://doi.org/10.1111/eec.12457

Cahenfeld E, Erhardt A (2013) Nectar amino acids enhance reproduction in male butterflies. Oecologia 171:197–205. https://doi.org/10.1007/s00442-012-2395-8

Cardini A, Elton S (2007) Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology 126:121–134. https://doi.org/10.1007/s00435-007-0036-2

Cardini A, Seetah K, Barker G (2015) How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments. Zoomorphology 134:149–163. https://doi.org/10.1007/s00435-015-0253-z

Cariveau DP, Nayak GK, Bartomeus I et al (2016) The allometry of bee proboscis length and its uses in ecology. PLoS ONE 11:1–13. https://doi.org/10.1371/journal.pone.0151482

Chuda-Mickiewicz B, Czekonska K, Samborski J, Rostecki P (2012) Success rates for instrumental insemination of carbon dioxide and nitrogen anaesthetised honey bee (Apis mellifera) queens. J Apic Res 51:74–77. https://doi.org/10.3896/IBRA.1.51.1.09

Chupp AD, Battaglia LL, Schauber EM, Sipes SD (2015) Orchid-pollinator interactions and potential vulnerability to biological invasion. AoB Plants 7:1–9. https://doi.org/10.1093/aobpla/vp099

Conant S (1988) Geographic variation in the Laysan Finch (Telospyza cantans). Evol Ecol 2:270–282. https://doi.org/10.1007/BF02214287

Corbet SA (2000) Butterfly nectaring flowers: butterfly morphology and flower form. Entomol Exp Appl 96:289–298. https://doi.org/10.1046/j.1570-7458.2000.00708.x

Costello MJ, Beard KH, Corlett RT et al (2016) Field work ethics in biological research. Biol Conserv 203:268–271. https://doi.org/10.1016/j.biocon.2016.10.008

Csősz S, Fisher BL (2015) Diagnostic survey of Malagasy Nesomyrmex species-groups and revision of hafahafa group species via morphology based cluster delimitation protocol. Zooskeys 2015:19–59. https://doi.org/10.3897/zooskeys.526.6037

Daly H (1985) Insect morphometrics. Annu Rev Entomol 30:415–438. https://doi.org/10.1146/annurev.en.30.01.415

De León LF, Rolshausen G, Bermingham E et al (2012) Individual specialization and the seeds of adaptive radiation in Darwin’s finches. Evol Ecol Res 14:365–380

Depieri RA, Andrade CGTJ, Panizzi AR (2010) A new methodology for processing mouthparts of hemipterans (Hemiptera) for microscopic studies. Micron 41:169–171

Düster JV, Gruber MH, Karolýi F et al (2018) Drinking with a very long proboscis: Functional morphology of orchid bee mouthparts (Euglossini, Apidae, Hymenoptera). Arthropod Struct Dev 47:25–35. https://doi.org/10.1016/j.asd.2017.12.004

Elieceri KW, Berthold MR, Goldberg IG et al (2013) Biological imaging software tools. Nat Methods 9:697–710. https://doi.org/10.1038/nmeth.2084

Erhardt A, Mevi-Schütz J (2009) Adult food resources in butterflies. In: Settele J, Shreeve T, Konvička M, Van DH (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 9–16
Farnsworth EJ, Rosovsky J (1993) The ethics of ecological field experimentation. Conserv Biol 7:463–472. https://doi.org/10.1046/j.1523-1739.1993.7030463.x

Fischer B, Larson BMH (2019) Collecting insects to conserve them: a call for ethical caution. Insect Conserv Divers 12:173–182. https://doi.org/10.1111/icad.12344

Fox K, Anderson KM, Andres R et al (2015) Nectar robbery and thievery in the hawk moth (Lepidoptera: Sphingidae)-pollinated western prairie fringed orchid Platanthera praeclara. Ann Entomol Soc Am 108:1000–1013. https://doi.org/10.1093/aeasav093

Freed LA, Conant S, Fleischer RC (1987) Evolutionary ecology and radiation of Hawaiian Passerine birds. Trends Ecol Evol 2:196–203

Garamszegi LZ, Calhim S, Dochtermann N et al (2009) Changing phi-

Fox K, Anderson KM, Andres R et al (2015) Nectar robbery and thievery in the hawk moth (Lepidoptera: Sphingidae)-pollinated western prairie fringed orchid Platanthera praeclara. Ann Entomol Soc Am 108:1000–1013. https://doi.org/10.1093/aeasav093

García-Barros E (2015) Multivariate indices as estimates of dry body weight for comparative study of body size in Lepidoptera. Nota Lepidopterol 38:59–74. https://doi.org/10.3897/nl.38.8957

Gordon CC, Bradtmiller B (1992) Interobserver error in a large scale anthropometric survey. Am J Hum Biol 4:253–263. https://doi.org/10.1002/ajhb.1310040210

Görföl T, Csorba G, Eger JL et al (2014) Canines make the differ-

Harris EF, Smith RN (2009) Accounting for measurement error: a criti-

cal but often overlooked process. Arch Oral Biol 54:107–117. https://doi.org/10.1016/j.archoralbio.2004.08.010

Haverkamp A, Bing J, Badeke E et al (2016) Innate olfactory pref-

erences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 7:1–9. https://doi.

Herrnstein R. J. (1961). On the perception of probabilities. Psychological Review, 68, 188–205.

Herrel A, Podos J, Haber SK, Hendry AP (2005) Evolution of bite force in Darwin’s finches: a key role for head width. J Evol Biol 18:669–675. https://doi.org/10.1111/j.1420-9101.2004.00857.x

Inouye DWD (1980) The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 201:197–201. https://doi.org/10.1007/BF00346460

Invertebrate Link (JCCBI) (Joint Committee for the Conservation of British Invertebrates) (2002) A code of conduct for collecting insects and other invertebrates. Br J Entomol Nat Hist 15:1–6

Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2:e124. https://doi.org/10.1371/journal.pmed.0020124

Johnson RA (1986) Intraspecific resource partitioning in the bumble bees Bombus ternarius and B. pennsylvanicus. Ecology 67:133–138

Johnson SD, Raguso RA (2015) The long-tongued hawkmoth pollina-

Kalloz K, Carrete MA, Llorente GA (2010) Intraspecific ecomorphological variation: Linear and geometric morphometrics reveal habitat-related patterns within Podarcis bocagei wall lizards. J Evol Biol 23:1234–1244. https://doi.org/10.1111/j.1420-9101.2010.01984.x

Karnas C, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

Kawahara AY, Ortiz-Acevedo E, Marshall CJ (2012) External morphol-

ogy of adult Libythea celitis (Laihcharting [1782]) (Lepidoptera: Nymphalidae). Zool Sci 29:463–476. https://doi.org/10.2108/zsj.29.463

Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

Kemerer CJ, Schwertfeger A (2009) Comparing indirect methods of digit ratio (2D:4D) measurement. Am J Hum Biol 21:188–191. https://doi.org/10.1002/ajhb.20843

Kim W, Gilet T, Bush JWM (2011) Optimal concentrations in nectar feeding. Proc Natl Acad Sci USA 108:16618–16621. https://doi.org/10.1073/pnas.1011642108

Kislev ME, Kravitz Z, Lorch J (1972) A study of hawkmoth pollination by a palynological analysis of the proboscis. Isr J Bot 21:57–75

Knapp M (2012) Preservative fluid and storage conditions alter body mass estimation in a terrestrial insect. Entomol Exp Appl 143:185–190. https://doi.org/10.1111/j.1570-7458.2012.01247.x

Kornev KG, Salamanin AA, Adler PH, Beard CE (2017) Structural and physical determinants of the proboscis-sucking pump complex in the evolution of flower-feeding insects. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-06391-w

Kouchi M, Mochumaru M, Tsuzuki K, Yokoi T (1999) Interobserver errors in anthropometry. J Hum Ergol (Tokyo) 28:15–24

Kramer RR, Mutvane CP, Brothers A et al (2015) Allometry among structures of probosci of Vanessa cardui L. (Nymphalidae) and its relationship to fluid uptake. J Lepid Soc 69:183–191. https://doi.org/10.18473/lepi.69.i3.a5

Krenn HW (1998) Proboscis sensilla in Vanessa cardui (Nymphalidae, Lepidoptera): functional morphology and significance in flower-probing. Zoomorphology 118:23–30. https://doi.org/10.1007/s004350050053

Krenn HW (2000) Proboscis musculature in the butterfly Vanessa cardui (Nymphalidae, Lepidoptera): settling the proboscis recoiling controversy. Acta Zool 81:259–266. https://doi.org/10.1046/j.1420-9101.2004.00857.x

Krenn HW (2010) Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annu Rev Entomol 55:307–327. https://doi.org/10.1146/annurev-ento-112408-085338

Krenn HW, Zulka KP, Gatschegg T (2001) Proboscis morphology and food preferences in nymphalid butterflies (Lepidoptera: Nymphalidae). J Zool 254:17–26. https://doi.org/10.1017/s095238690000528

Krenn HW, Plant JD, Szuschich NU (2005) Mouthparts of flower-visiting insects. Arthropod Struct Dev 34:1–40. https://doi.org/10.1016/j.asd.2004.10.002
Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: Tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13

Langerhans RB, Layman CA, Shokrollahi AM, DeWitt TJ (2004) Predator-driven phenotypic diversification in Gambia-sia affinis. Evolution (N Y) 58:2305–2318. https://doi.org/10.1111/j.0014-3820.2004.tb01605.x

Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19:011006. https://doi.org/10.1117/12.204787

Lee SC, Kim JH, Lee SJ (2017) Adhesion and suction functions of the tip region of a nectar-drinking butterfly proboscis. J Bionic Eng 14:600–606. https://doi.org/10.1016/S1672-6529(16)60425-0

Lehnert MS, Mulvane CP, Brothers A (2014) Mouthpart separation does not impede butterfly feeding. Arthropod Struct Dev 43:97–102. https://doi.org/10.1016/j.asd.2013.12.005

Lehnert MS, Beard CE, Gerard PD et al (2016) Structure of the Lepidopteran proboscis in relation to feeding guild. J Morphol 277:167–182. https://doi.org/10.1002/jmor.20487

Martins DJ, Johnson SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Am J Bot 94:650–659. https://doi.org/10.3732/ajb.94.4.650

Meerabai G (2012) Visitation rate, effectiveness and efficiency of pollinators to Cadaba fruticosa (Linn) Druce. Bioscian 7:483–485

Metscher BD (2009) MicroCT for comparative morphology: simple non-mineralized animal tissues. BMC Physiol 9:1–14. https://doi.org/10.1186/1472-6793-9-11

Millar IM, Uys V.M., Urban R.P. (2000) Collecting and preserving insects and Arachnids: A manual for entomology and arachnology. ARC-Plant Protection Research Institute, Pretoria

Molleman F, Van Alphen ME, Brakefield PM, Zwaan BJ (2005) Prefragmentation gradients in the floral spurs. Am J Bot 92:699–708. https://doi.org/10.1093/aob/mcj008

Morse D (1977) Estimating proboscis length from wing length in butterly hawkmoths. Funct Ecol 21:982–987. https://doi.org/10.1111/j.1365-2435.2007.01299.x

Nilsen L, Rabakonandrarianana E (1988) Hawk-moth scale analysis and pollination specialization in the epiphytic Malagasy endemic Aenangis ellisia (Reichenb, fil.) Schltr. (Orchidaceae). Bot J Linn Soc 97:49–61. https://doi.org/10.1111/j.1095-8339.1988.tb01686.x

O’Brien DM, Boggs CL, Fogel ML (2004) Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation. Oikos 105:279–291. https://doi.org/10.1111/j.0030-1299.2004.13012.x

Olsen AM, Westneat MW (2015) StereoMorph: An R package for the collection of 3D landmarks and curves using a stereo camera set-up. Methods Ecol Evol 6:351–356. https://doi.org/10.1111/2041-210X.12326

Pauw A, Stoffberg J, Waterman RJ (2009) Flies and flowers in Darwin’s race. Evolution (N Y) 63:268–279. https://doi.org/10.1111/j.1558-5646.2008.00547.x

Pennenkamp F, Schtickzelle N (2013) Implementing image analysis in laboratory-based experimental systems for ecology and evolution: a hands-on guide. Methods Ecol Evol 4:483–492. https://doi.org/10.1111/2041-210X.12036

Peruzzi L, Plassalacqua NG (2008) Taxonomy of the Onosma echioides (L.) L. complex (Boraginaceae) based on morphometric analysis. Bot J Linn Soc 157:763–774. https://doi.org/10.1111/j.1095-8339.2008.00827.x

Peters CI, Coombs G, Huchzermeier CF et al (2009) Confirmation of hawkmoth pollination in Habenaria epipactidea: Leg placement of pollinia and crepuscular scent emission. South Afr J Bot 75:744–750. https://doi.org/10.1016/j.sajb.2009.08.007

Poinapen D, Konopka JK, Umoh JU et al (2017) Micro-CT imaging of live insects using carbon dioxide gas-induced hypoxia as anesthetic with minimal impact on certain subsequent life-history traits. BMC Zool 2:1–13. https://doi.org/10.1186/s40850-017-0018-x

Pratt HD (2005) The Hawaiian honeycreepers: Drepanidinae. OUP, Oxford

R Core Team (2018) R: A language and environment for statistical computing. https://www.r-project.org/

Ramkumar J, Swamiappan M, Raguraman S, Sadasakthi A (2010) Larval host specificity and pollinics morphology of fruit piercing moths. J Biopestic 3:428–431

Rélé D, Martin J, Coltman DW et al (2009) Male personality, life-history strategies and reproductive success in a promiscuous mammal. J Evol Biol 22:1599–1607. https://doi.org/10.1111/j.1420-9101.2009.01781.x

Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705

Richardson J, Swainson W, Kirby W (1831) Fauna Boreali-americana, or, the zoology of the northern parts of British America: the birds. J. Murray, London

Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:1–26. https://doi.org/10.1186/s12859-017-1342-x

Ryck Evaert P, Razanamaro O, Rasoamanana E et al (2011) Les Sphingidae, probables pollinisateurs des baobabs malgaches. Bois Forêts des Trop 65:55–68

Sakagami K, Sugisaki S (2018) A diverse assemblage of moths feeding on aphid honeydew. J Asia Pac Entomol 21:413–416. https://doi.org/10.1016/j.aspen.2018.01.019

Sampaio ALA, Pagotto JPA, Goulart E (2013) Relationships between morphology, diet and spatial distribution: testing the effects of intra and interspecific morphological variations on the patterns of resource use in two Neotropical Ciclioids. Neotrop Ichthyol 11:351–360. https://doi.org/10.1590/s1679-62252013005000001

Schaeff ME (2001) Collecting and preserving insects and mites: techniques and tools. Systematic Entomology Laboratory, USDA, National Museum of Natural History, NHB-168, Washington, DC 20560

Singer R, Cocucci AA (1997) Eye attached hemiollinaria in the hawk-moth and settling moth pollination of Habenaria (Orchidaceae): a study on functional morphology in 5 species from subtropical South America. Bot Acta 110:328–337

Srivastava RP, Bogawat JK (1969) Feeding mechanism of a fruit-sucking moth Othreis materna (Lepidoptera: Noctuidae). J Nat Hist 3:165–181. https://doi.org/10.1080/00222936900770171
Stang M, Klinkhamer PGLP, Waser NNM et al (2009) Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103:1459–1469. https://doi.org/10.1093/aob/mcp027
Stec D, Gasior P, Morek W et al (2016) Estimating optimal sample size for tardigrade morphometry. Zool J Linn Soc 178:776–784. https://doi.org/10.1111/zoj.12404
Stegi V, Kőrösi Á, Harnos A et al (2016) Measuring floral resource availability for insect pollinators in temperate grasslands - a review. Ecol Entomol 41:231–240. https://doi.org/10.1111/een.12298
Stegi V, Vajna F, Kőrösi Á, Kis J (2020) Are all butterflies equal? Population-wise proboscis length variation predicts flower choice in a butterfly. Anim Behav 163:135–143. https://doi.org/10.1016/j.anbehav.2020.03.008
Thomas RC, Schultz CB (2016) Resource selection in an endangered butterfly: females select native nectar species. J Wildl Manag 80:171–180. https://doi.org/10.1002/jwmg.987
Tiple A, Khurad A, Dennis R (2009) Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J Nat Hist 43:855–884
Ulijaszek SJ, Kerr DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82:165–177
Van Hook T, Williams EH, Brower LP et al (2012) A standardized protocol for ruler-based measurement of wing length in monarch butterflies, Danaus plexippus L. (Nymphalidae, Danainae). Trop Lepid Res 22:42–52
von Schiller D, Solimini AG (2005) Differential effects of preservation on the estimation of biomass of two common mayfly species. Arch Für Hydrobiol 164:325–334. https://doi.org/10.1007/s00227-003-0036-2
Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829. https://doi.org/10.1111/j.0906-7590.2005.04112.x
Wipfler B, Pohl H, Yavorskaya MI, Beutel RG (2016) A review of methods for analysing insect structures—the role of morphology in the age of phylogenomics. Curr Opin Insect Sci 18:60–68. https://doi.org/10.1016/j.cois.2016.09.004
Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guidelines for estimating repeatability. Methods Ecol Evol 3:129–137. https://doi.org/10.1111/j.2041-210X.2011.00125.x
Wong MKL, Guénard B, Lewis OT (2019) Trait-based ecology of terrestrial arthropods. Biol Rev 94:999–1022. https://doi.org/10.1111/brv.12488
Xiong YZ, Jia LB, Liu CQ, Huang SQ (2019) Effective pollinia transfer by settling moths’ legs in an orchid Habenaria aitchisonii. J Syst Evol 52:174–181. https://doi.org/10.1111/jse.12485
Xue S, Hu Y-Q, Hua B-Z (2016) Morphological comparison of proboscis sensilla between Plusiinae and Noctuinae (Lepidoptera: Noctuidae). Zool Anz 263:75–83. https://doi.org/10.1016/j.zooj.2016.05.002
Yezéréinac SM, Lougheed SC, Handford P et al (1992) Measurement error and morphometric studies: statistical power and observer experience. Syst Biol 41:471–482
Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Academic Press, Cambridge
Znker MM, Penz C, de Paris M, Specht A (2011) Proboscis morphology and its relationship to feeding habits in noctuid moths. J Insect Sci 11:1–10. https://doi.org/10.1673/031.011.0142
Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.