Granulocytic sarcoma of epidural mass with acute myeloid leukemia

Garima Singh, Ashutosh Kumar, Mili Jain, Rashmi Kushawa, Arun A. Kumar, Durg Pratap Singh

ABSTRACT

Extramedullary manifestations of acute leukemia include a wide variety of clinically presentation that often pose difficulty in diagnosis and treatment of myeloid sarcoma. We present a case of a five-year-old boy with initial complaints of radicular pain of both lower limbs and urinary retention. On MRI, compression by epidural mass was identified, which was shown to be an extramedullary myeloid sarcoma diagnosed on the basis of Auer rods containing blasts in peripheral blood smear and bone marrow. Diagnosis was confirmed with flow cytometry and induction chemotherapy was started. Initial neurological presentation of paraplegia due to chloroma is extremely rare in myeloid leukemia with very few case reports published earlier.
Granulocytic sarcoma of epidural mass with acute myeloid leukemia

Garima Singh, Ashutosh Kumar, Mili Jain, Rashmi Kushawa, Arun A. Kumar, Durg Pratap Singh

ABSTRACT

Extradural manifestations of acute leukemia include a wide variety of clinically presentation that often pose difficulty in diagnosis and treatment of myeloid sarcoma. We present a case of a five-year-old boy with initial complaints of radicular pain of both lower limbs and urinary retention. On MRI, compression by epidural mass was identified, which was shown to be an extradural myeloid sarcoma diagnosed on the basis of Auer rods containing blasts in peripheral blood smear and bone marrow. Diagnosis was confirmed with flow cytometry and induction chemotherapy was started. Initial neurological presentation of paraplegia due to chloroma is extremely rare in myeloid leukemia with very few case reports published earlier.

Keywords: Extramedullary, Flow cytometry, Myeloid, Sarcoma

INTRODUCTION

Myeloid sarcoma, also termed extradural acute myeloid leukemia, extradural myeloid tumor, and granulocytic sarcoma have also been referred to as chloroma secondary to their characteristic green color created by the presence of myeloperoxidase [1]. It is a rare manifestation that is characterized by the occurrence of one or more tumor myeloid masses occurring at an extradural site with effacing the architecture of tissue. Chloroma are most frequently seen in acute myeloid leukemia (AML) and few cases in myelodysplasia and other myeloproliferative disorders. Myeloid sarcoma present with wide clinical manifestation, granulocytic sarcoma should be considered in the differential diagnosis of an epidural mass along-with other diagnosis. Granulocytic sarcoma virtually can occur in any organ or tissue, most common sites being skin (called leukemia cutis) and bones. Other sites are lymph nodes, mediastinum, epidural sites, small intestine, ovary/testis and brain. Treatment for chloroma consists of systemic chemotherapy for the underlying leukemia, and the lesions frequently respond well. If the lesion is refractory...
to systemic chemotherapy, then surgical debridement or radiation therapy may be considered. Here we present a case of five-year-old boy with initial presenting symptom of paraplegia due to granulocytic sarcoma which is extremely rare.

CASE REPORT

A five-year-old boy presented with initial complaints of radicular pain and progressive weakness of both the lower limbs of two months duration followed by difficulty in passing stools and urine for the last one week. There was no history of trauma, significant weight loss, or contact with tuberculosis. On examination, he had pallor; vitals were normal. No lymphadenopathy or hepatosplenomegaly was present. Higher mental function status and cranial nerve examinations were normal. Upper limbs power was normal while in lower limbs, muscle tone was decreased and grade 1/5 power was seen in both the lower limbs. Sensations were intact in both lower limbs. Initial routine blood investigations were done outside and showed hemoglobin 5.7 g/dl, total count 14,800 cells/mm³, polymorphs 45%, lymphocytes 50%, eosinophil 2% and monocyte 3%. The RBCs mean cell volume (MCV) and mean cell hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were reduced as well as platelets count were reduced. Magnetic resonance imaging (MRI) scan showed an ill-defined contrast enhancing lesion in posterior epidural space extending from D2–D10 level, displacing the cord anteriorly with signal intensity alternation and cord compression from D2–D10 level causing compressive neuropathy (Figure 1). Then, peripheral smear was done again in our laboratory which showed (Figure 2) mild reduced of MCV of RBCs. White blood cell count was normal and showed predominantly blast cells with high nuclear cytoplasmic ratio, moderate cytoplasm, hyperchromatic nuclei with multiple nucleoli. Platelet count was decreased. Bone marrow (Figure 3) examination was ordered following the presence of blast cells in peripheral smear and it showed that the marrow elements were completely replaced with blast cells having high nuclear cytoplasmic ratio, moderate amount of eosinophilic cytoplasm, and hyperchromatic nuclei with multiple nucleoli. Focal Auer rods and few maturing cells of the myeloid series were present. The marrow picture was corresponding to acute myeloid leukemia M2. Considering the possibility of granulocytic sarcoma as the cause of paraplegia in acute myeloid leukemia, the patient was started on induction chemotherapy.

DISCUSSION

Myeloid sarcoma (chloroma, granulocytic sarcoma, extramedullary myeloid tumor), may be defined as extramedullary solid tumor mass of immature myeloid cells or monoblast cell which disrupt the architecture of the tissue associate with or without bone marrow involvement [2]. Myeloid sarcoma can be primary, which is very rare and secondary when it is associated with acute myeloid leukemia approximately 3–10%, but rarely it can also associated with myelodysplasia and myeloproliferative disorder.
Myeloid sarcoma can occur in any age group but predominantly 35–50 years of age, as well as it can occur at any site but most common site skin, periosteum, bone, lymph node, soft tissues, beside this numerous other sites has also been reported [3].

Myeloid sarcoma has wide differential diagnosis because of various sites of presentation, along with wide variation of age and symptom presentation. Most common differential diagnosis include round cell tumor such as lymphoblastic lymphoma, medulloblastoma, rhabdomyosarcoma, Ewing/PNET along with other differential such as undifferentiated epithelial cell tumor [4].

Myeloid sarcoma diagnosis requires various diagnostic tools beside morphology in peripheral blood smear, such as special cytochemistry, specific marker for immunophenotyping, and cytogenetic, all play important role in diagnosis of myeloid sarcoma.

On the basis of cytomorphology, myeloid sarcoma classified as blast (which included myeloblasts with little evidence of promyelocyte) immature (shows an intermediate degree of differentiation contains principally myeloblasts and promyelocytes; eosinophil myelocytes are usually present) and mature myeloid cells (primarily consists of promyelocytes and later stages of maturation with abundant eosinophil myelocytes). Blast variant of myeloid sarcoma has differential diagnosis with lymphoblastic lymphoma, carcinoma, melanoma while immature and mature variant of myeloid sarcoma with Hodgkin lymphoma, extramedullary hematopoiesis and infections.

Cytochemistry test include myeloperoxidase, naphthol AS-D chloroacetate esterase and non-specific esterase reaction but their role in diagnosis has been replaced by immunophenotyping methods by flow cytometry. Immunophenotyping panel for diagnosis of myeloid sarcoma includes myeloperoxidase, lysozyme, CD68(KP-1 and PGM-1), CD34 and CD117,CD 43, CD 3, CD 20 are very useful in differentiation for myeloid sarcoma from B cell and T cell lymphoma [5].

Rarely myeloid cell differentiated into erythroid and megakaryocyte line which can be differentiated by marker for megakaryocyte CD41, CD61 and for erythroid series glycophorin A, hemoglobin A.

Cytogenetic nowadays play an important role in the diagnosis of myeloid sarcoma. However, no specific cytogenetic has been still discovered for myeloid sarcoma. Cytogenetic usually done on blood or bone marrow samples by fluorescence in situ hybridization (FISH). Most commonly cytogenetic abnormality noted in myeloid sarcoma are translocation t(8; 21), inversion of chromosome 16 (Inv 16) along with few rare cytogenetic abnormality are monosomy 7 or 5 and trisomy 8 [6].

Myeloid sarcoma either primary or secondary both possess common treatment regimen conventional AML-type chemotherapeutic protocols. The role of other therapy (radiotherapy, hematopoietic stem transplantation, and targeted therapy) method has not been well established. If local symptoms such as compromise of the spinal cord due to myeloma are present, surgery is considered.

Myeloid sarcoma is rare entity hence it has conflict regarding its prognosis. There has been no variation in prognosis of myeloid sarcoma either as isolated or associated with acute myeloid leukemia reported.

CONCLUSION

This article is yet another classic example showing that myeloid sarcoma can have varied clinical presentations, based primarily on the site of involvement. Early suspicion of the diagnosis, peripheral blood smear, bone marrow and appropriate investigations can aid in early diagnosis of myeloid sarcoma with timely initiation of chemotherapy for the patient.

Author Contributions

Garima Singh – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Ashutosh Kumar – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Mili Jain – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Final approval of the version to be published

Rashmi Kushawa – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Final approval of the version to be published

Arun A. Kumar – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Final approval of the version to be published
interpretation of data, Final approval of the version to be published
Durg Pratap Singh – Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2017 Garima Singh et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES
1. Roth MJ, Medeiros LJ, Elenitoba-Johnson K, Kuchnio M, Jaffe ES, Stetler-Stevenson M. Extramedullary myeloid cell tumors. An immunohistochemical study of 29 cases using routinely fixed and processed paraffin-embedded tissue sections. Arch Pathol Lab Med 1995 Sep;119(9):790–8.
2. Campidelli C, Agostinelli C, Stitson R, Pileri SA. Myeloid sarcoma: Extramedullary manifestation of myeloid disorders. Am J Clin Pathol 2009 Sep;132(3):426–37.
3. Neiman RS, Barcos M, Berard C, et al. Granulocytic sarcoma: A clinicopathologic study of 61 biopsied cases. Cancer 1981 Sep 15;48(6):1426–37.
4. Feng X, Ying J, Yin CC, et al. The diagnosis and differential diagnosis of granulocytic sarcoma. Chin Ger J Clin Oncol 2008;7(10):603–7.
5. Quintanilla-Martínez L, Zukerberg LR, Ferry JA, Harris NL. Extramedullary tumors of lymphoid or myeloid blasts. The role of immunohistology in diagnosis and classification. Am J Clin Pathol 1995 Oct;104(4):431–43.
6. Pileri SA, Ascani S, Cox MC, et al. Myeloid sarcoma: Clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia 2007 Feb;21(2):340–50.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.*

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.*

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

* Terms and condition apply. Please see Edorium Journals website for more information.