Integrative Multi-omics Module Network Inference with Lemon-Tree

Eric Bonnet¹,²,³*, Laurence Calzone¹,²,³, Tom Michoel⁴*

¹ Institut Curie, Paris, France, ² INSERM U900, Paris, France, ³ Mines ParisTech, Fontainebleau, France, ⁴ Division of Genetics & Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom

* eric.bonnet@curie.fr (EB); tom.michoel@roslin.ed.ac.uk (TM)

Abstract

Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0.

Introduction

Recent years have witnessed a dramatic increase in new technologies for interrogating the activity levels of various cellular components on a genome-wide scale, including genomic, epigenomic, transcriptomic, and proteomic information [1]. It is generally acknowledged that integrating these heterogeneous datasets will provide more biological insights than performing separate analyses. For instance, in 2005, Garraway and colleagues combined SNP-based genetic maps and expression data to identify a novel transcription factor involved in melanoma progression [2]. More recently, international consortia such as The Cancer Genome Atlas (TCGA) or the International Cancer Genome Consortium (ICGC) have launched large-scale initiatives to characterize multiple types of cancer at different levels (genomic, transcriptomic, epigenomic, etc.) on several hundreds of samples. These integrative studies have already led to the identification of novel cancer genes [3, 4].

This is a PLOS Computational Biology Software Article
Among the many ways to approach the challenge of data integration, module network inference is a statistically well-grounded method which uses probabilistic graphical models to reconstruct modules of co-regulated genes (or other biomolecular entities) and their upstream regulatory programs and which has been proven useful in many biological case studies [5, 6]. The module network model was introduced as a method to infer regulatory networks from large-scale gene expression compendia [5] and has subsequently been extended to integrate eQTL data [7, 8], regulatory prior data [9], microRNA expression data [10], clinical data [11], copy number variation data [12] or protein interaction networks [13]. The original module network learning algorithm depended on a greedy heuristic, but subsequent work has extended this with alternative heuristics [14], Gibbs sampling [15] and ensemble methods [16]. Module network inference can be combined with gene-based network reconstruction methods [17, 18] and recently a method has been developed to reconstruct module networks across multiple species simultaneously [19]. This methodological and algorithmic work has complemented studies that were solely focused on applying module network methods to provide new biological and biomedical insights [20–27].

Although the success of the module network method is indisputable, the various methodological innovations have been made available in a bewildering array of tools, written in a variety of programming languages, and, when source code has been released, it has never been with an OSI compliant license (Table 1). Here we present Lemon-Tree, a ‘one-stop shop’ software suite for module network inference based on previously validated algorithms where a community of developers and users can implement, test and use various methods and techniques. We benchmarked Lemon-Tree using large-scale datasets of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree compares favorably with existing module network softwares and correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using pathway enrichment and survival analysis.

Table 1. Survey of module networks software tools, in chronological order by their first release date.

Software	Language	I/O	Source	Data	URL	Year
Genomica	Java	g	no	m	http://genomica.weizmann.ac.il	2003
Geronemo	Java	g	no	m, e	http://ai.stanford.edu/~koller/index.html	2006
Lemone	Java/Matlab	c	yes¹	m, mi	http://bioinformatics.psb.ugent.be/software/details/Lemone	2007
Limet	Matlab	c	yes²	m, e	http://homes.cs.washington.edu/~sunilee/limet	2009
CONEXIC	Java	c	no	m, c	http://www.c2b2.columbia.edu/dana.peerlab/html/conexic.html	2010
PMN	Unix binary	c	no	m, p	http://www.compbio.cs.huiji.ac.il/PMN	2010
ARBORETUM	C	c	yes²	m-s	http://pages.discovery.wisc.edu/~sroy/arboretum	2013
MERLIN	C	c	yes²	m	http://pages.discovery.wisc.edu/~sroy/merlin	2013
Lemon-Tree	Java	c	yes³	m, mi, e, c, any	http://lemon-tree.googlecode.com	2014

I/O: g, graphical user interface; c, command line. Supported data integration: m, mRNA; mi, microRNA; e, eQTL; c, CNV; p, protein interactions; m-s, mRNA multiple species; any, any combination of discrete or continuous data types measured on the same samples.

¹ Not OSI compliant.
² No license provided.
³ GPL license.

doi:10.1371/journal.pcbi.1003983.t001
Design and Implementation

Lemon-Tree is a platform-independent command-line tool written in Java which implements previously validated algorithms for model-based clustering [15] and module network inference [16]. The principal design difference between Lemon-Tree and other module network softwares (e.g. Genomica [5] or CONEXIC [12]) consists of the separation of module learning and regulator assignment. We have previously shown that running a two-way clustering algorithm until convergence, and thereafter identifying the regulatory programs that give rise to the inferred condition clusterings for each gene module results in higher module network model likelihoods and reduced computational cost compared to the traditional approach of iteratively updating gene modules and regulator assignments [14, 16]. Hence Lemon-Tree is run as a series of tasks, where each task represents a self-contained step in the module network learning and evaluation process and the output of one task forms the input of another (a work flow representation of the different steps is illustrated in Fig. 1):

Fig 1. Flow chart for integrative module network inference with Lemon-Tree. This figure shows the general workflow for a typical integrative module network inference with Lemon-Tree. Blue boxes indicate the pre-processing steps that are done using third-party software such as R or user-defined scripts. Green boxes indicate the core module network inference steps done with the Lemon-Tree software package. Typical post-processing tasks (orange boxes), such as GO enrichment calculations, can be performed with Lemon-Tree or other tools. The Lemon-Tree task names are indicated in red (see main text for more details).

doi:10.1371/journal.pcbi.1003983.g001
Task “ganesh” Run one or more instances of a model-based Gibbs sampler [15] to simultaneously infer co-expression modules and condition clusters within each module from a gene expression data matrix.

Task “tight_clusters” Build consensus modules of genes that systematically cluster together in an ensemble of multiple “ganesh” runs. Consensus modules are reconstructed by a novel spectral edge clustering algorithm which identifies densely connected sets of nodes in a weighted graph [28], with edge weight defined here as the frequency with which pairs of genes belong to the same cluster in individual “ganesh” runs. Details about the tight clustering algorithm are provided in S1 Text.

Task “regulators” Infer an ensemble of regulatory programs for a set of modules and compute a consensus regulator-to-module score. Regulatory programs take the form of a decision tree with the (expression level of) regulators at its internal nodes. The regulator score takes into account the number of trees a regulator is assigned to, with what score (posterior probability), and at which level of the tree [16]. An empirical distribution of scores of randomly assigned regulators is provided to assess significance. Regulator data need not come from the same data that was used for module construction but can be any continuous or discrete data type measured on the same samples. When multiple regulator types are considered, the “regulators” task is run once for each of them.

Task “experiments” For a fixed set of gene modules, cluster conditions separately for each module using a model-based Gibbs sampler [15] and store the resulting hierarchical condition trees in a structured XML file.

Task “split_reg” Assign regulators to a given range of one or more modules. This task allows parallelization of the “regulators” task and needs the output of the “experiments” task as an input.

Task “figures” Draw publication-ready visualizations for a set of modules in postscript format, consisting of a heatmap of genes in each module, organized according to a consensus clustering of the samples, plus heatmaps of its top-scoring regulators, separated according to the regulator type (cf. S1 Fig.).

Task “go_annotation” Calculate gene ontology enrichment for each module using the BiNGO [29] library.

While a typical run of Lemon-Tree will apply tasks “ganesh”, “tight_clusters” and “regulators” in successive order, the software is designed to be flexible. For instance, the “tight_clusters” task can be equally well applied to build consensus clusters from the output of multiple third-party clustering algorithms, regulators can be assigned to the output of any clustering algorithm, etc. To facilitate this interoperability with other tools, input/output is handled via plain text files with minimal specification, the only exception being the storage of the regulatory decision trees which uses an XML format. Tasks also permit customization by changing the value of various parameters. We have purposefully provided default values for all parameters, based on our experience accrued over many years of developing and applying the software to a great variety of datasets from multiple organisms, and avoided mentioning any parameter settings in the Tutorial such that first-time users are presented with a simple workflow. Detailed instructions on how to integrate or extend (parts of) Lemon-Tree and a complete overview of all parameters and their default values are provided on the project website (http://lemon-tree.googlecode.com/).

Results

Benchmark between Lemon-Tree and CONEXIC

We compared the performance of Lemon-Tree with CONEXIC (COpy Number and Expression In Cancer), a state-of-the-art module network algorithm designed to integrate matched
copy number (amplifications and deletions) and gene expression data from tumor samples [12]. The general framework is the same for the algorithms, with modules of co-expressed genes associated to a list of regulators assigned via a probabilistic score. However, the probabilistic techniques used to build the modules and to assign regulators are different. We ran the two programs on the same large-scale reference data set to evaluate these differences. We used Gene Ontology (GO) enrichment and a reference network of protein-protein interactions to compare the co-expressed modules and the regulatory programs.

We downloaded gene expression and copy number glioblastoma datasets from the TCGA data portal [3] and we built an expression data matrix of 250 samples and 9,367 genes. We limited the number of samples for this benchmark study in order to save computational time. For the candidate regulators, we selected the top 1,000 genes that were significantly amplified or deleted as input genes for both CONEXIC and Lemon-Tree. To run CONEXIC, we followed the instructions of the manual and more specifically used the recommended bootstrapping procedure to get robust results. For Lemon-Tree, we generated an ensemble of two-way clustering solutions that were assembled in one robust solution by node clustering. Then we assigned the regulators using the same input list as with CONEXIC. A global score was calculated for each regulator and for each module and we selected the top 1% regulators as the final list (see S1 Text). The total run-time for the two software programs on the benchmark dataset was quite similar, with a small advantage for Lemon-Tree (S5 Table).

To compare the Gene Ontology (GO) categories between Lemon-Tree and CONEXIC, we built a list of all common categories for a given p-value threshold and converted the corrected p-values to $-\log_{10}(p\text{-value})$ scores. We selected the highest score for each GO category and we counted the number of GO categories having a higher score for Lemon-Tree or CONEXIC, and calculated the sum of scores for each GO category and each software. The results shown in Fig. 2 indicate that Lemon-Tree clusters have a higher number of GO categories with lower p-values than CONEXIC (Fig. 2A), and that globally the p-values are lower for Lemon-Tree clusters (Fig. 2B). To benchmark the regulators’ assignment of each software, we used a scoring scheme developed by Jornsten et al. [30]. For a given interaction distance in a reference protein-protein interaction network, we calculated the relative enrichment of known interactions in the networks inferred by Lemon-Tree and CONEXIC with respect to known interactions in networks where

![Fig 2. Comparison between Lemon-Tree and CONEXIC.](https://example.com/figure2.png)
edges have been randomly re-assigned (see S1 Text). Fig. 2C shows the relative enrichments for interaction distances ranging from 1 (direct interaction) to 4. The Lemon-Tree inferred network is enriched for short or direct paths, a desired characteristic for well-estimated networks [30].

These results are consistent with a previous study conducted on bacteria and yeast data, where we showed a better performance in terms of enrichment in functional categories and known regulatory interactions of the algorithms underlying the Lemon-Tree software over Genomica (a software tool on which CONEXIC is based) [17]. Taken together, these results show that Lemon-Tree compares favorably with state-of-the-art module network inference algorithms.

Integrative analysis of TCGA glioblastoma expression and copy-number data

Lemon-Tree can be used to integrate various types of ‘omics’ data and generate new biological and biomedical insights. Here, we exemplify how to integrate copy-number and expression data for a large dataset of glioblastoma tumor samples and show that the results are enriched in known key players of canonical tumor pathways as well as novel candidates. Malignant gliomas are the most common subtype of primary brain tumors and are very aggressive, highly invasive and neurologically destructive. Glioblastoma multiforme (GBM) is the most malignant form of gliomas, and despite intense investigation of this disease in the past decades, most patients with GBM die within approximately 15 months of diagnosis [31]. Somatic copy-number alterations (SCNA) are extremely common in cancer and affect a larger fraction of the genome than any other types of somatic genetic alterations. They have critical roles in activating oncogenes and inactivating tumor suppressor genes, and their study has suggested novel potential therapeutic strategies [32, 33]. However, distinguishing the alterations that drive cancer development from the passenger SCNAs that are acquired over time during cancer progression is a critical challenge. Here we use the module network framework implemented in the Lemon-Tree software tool to build a module network relating genes located in regions that are significantly amplified or deleted to modules of co-expressed genes. In other words, the module network selects and prioritizes copy-number altered genes that might play a role (direct or indirect) for clusters of co-expressed genes, performing important biological functions in glioblastoma. The resulting module network is used to prioritize SCNA genes that are amplified or deleted, and to provide novel hypotheses regarding drivers of glioblastoma.

We downloaded data from the TCGA project portal [3] and we selected 484 glioblastoma tumor samples from different patients (representing 91% of the available samples). We selected 7,574 gene expression profiles and generated an ensemble of two-way clustering solutions that were assembled in one robust solution by node clustering, resulting in a set of 121 clusters composed of 5,423 genes (S1 Text and S1 Table). We assembled a list of genes amplified and deleted in glioblastoma tumors from the most recent GISTIC run of the Broad Institute TCGA Copy Number Portal on glioblastoma samples. GISTIC [34] is the standard software tool used for the detection of peak regions significantly amplified or deleted in a number of samples from copy-number profiles. We also included in the list a number of key genes amplified or deleted from previous studies [34–36]. The final list is composed of 353 amplified and 2,007 deleted genes (with all genes present on sex chromosomes excluded). We did not use extremely stringent statistical thresholds for the selection, to avoid the exclusion of potentially interesting candidates. From this list we built SCNA gene copy-number profiles using TCGA data and used those profiles as candidate regulators for the co-expressed gene clusters. We assigned regulators independently for amplified and deleted genes, and we selected the top 1% highest scoring regulators as the final list (a cutoff well above assignment of regulators expected by chance), with
92 amplified and 579 deleted selected genes (S1 Text; S2 and S3 Tables). The resulting glioblastoma module network is composed of 121 clusters of co-expressed genes, together with associated prioritized lists of high-scoring SCNA genes (associated to amplified and deleted regions).

More than 60% of the clusters have a significant Gene Ontology (GO) enrichment (corrected p-value < 0.05, Table 2 and S4 Table). Several of those enriched clusters can be related to the hallmarks of cancers, ten distinctive and complementary capabilities that have been defined as the fundamental biological capabilities acquired during tumor development [37, 38]. For instance, we have 11 clusters enriched for GO categories related to cell cycle processes and regulation (p-value < 0.05), with three of them having very strong enrichment (corrected p-values 4×10^{-18}, 6×10^{-24} and 9×10^{-71}, Table 2). The cell cycle is deregulated in most cancers and is at the heart of the “sustaining proliferative signaling” hallmark. Eight clusters are enriched for categories related to immune response, with two of them displaying strong enrichment (corrected p-values 6×10^{-33} and 6×10^{-45}, Table 2). Most tumor lesions contain immune cells present at various degrees of density. Intense recent research has shown that this immune response is linked to two phenomena. First, it is obviously an attempt by the immune system to eradicate the tumor, but secondly, there is now a large body of evidence showing that immune cells also have strong tumor-promoting effects, and both aspects are categorized as part of the

Group	Module number	Module nb of genes	Corrected p-value	GO category
Cell Cycle	1	85	9×10^{-71}	cell cycle phase
			2×10^{-67}	cell cycle process
			6×10^{-63}	mitotic cell cycle
	11	60	6×10^{-24}	cell cycle phase
			6×10^{-24}	mitotic cell cycle
	33	36	4×10^{-18}	cell cycle phase
			1×10^{-17}	mitotic cell cycle
Immune response	3	145	6×10^{-45}	immune response
			6×10^{-45}	immune system process
			1×10^{-26}	inflammatory response
			4×10^{-23}	innate immune response
	14	127	6×10^{-33}	response to type I interferon
			8×10^{-24}	innate immune response
	26	54	7×10^{-6}	defense response
			9×10^{-6}	immune response
	48	37	1×10^{-6}	immune system process
Vasculature	27	40	4×10^{-16}	vasculature development
			2×10^{-15}	blood vessel development
			7×10^{-13}	angiogenesis
	37	81	3×10^{-10}	extracellular matrix organization
			9×10^{-6}	blood vessel development
Chromatin modifications	70	12	9×10^{-24}	chromatin assembly
			8×10^{-24}	nucleosome assembly
			5×10^{-17}	chromatin organization

Selection of clusters of co-expressed genes from the glioblastoma module network highly enriched for GO categories related to cancer hallmarks. Enriched categories are grouped into broader functional groups. Only a subset of the GO categories are displayed in this table. The full list is available as S1 Table.

doi:10.1371/journal.pcbi.1003983.t002
hallmarks of cancer [38]. For instance, microglia are a type of glial cells that act as macrophages of the brain and the spinal cord and thus act as the main form of immune response in the central nervous system. They constitute the dominant form of glioma tumor infiltrating immune cells, and they might promote tumor growth by facilitating immunosuppression of the tumor microenvironment [39]. The development of blood vessels (angiogenesis) is another crucial hallmark of cancer, providing sustenance in oxygen and nutrients and a way to evacuate metabolic wastes and carbon dioxide [38]. Glioblastoma multiforme is characterized by a striking and dramatic induction of angiogenesis [31]. There are seven clusters enriched for GO categories related to angiogenesis and blood vessel development, with two of them having strong enrichment (corrected p-values 4×10^{-6} and 9×10^{-16}, Table 2). A recent large-scale integrative study of hundreds of glioblastoma samples has shown that chromatin modifications could potentially have high biological relevance for this type of tumor [40]. Interestingly, we have a cluster highly enriched in chromatin assembly and organization (corrected p-value 5×10^{-17} and 9×10^{-24}, Table 2). Taken together, these results show that the clusters of co-expressed genes in the module network are representative of the molecular functions and biological processes involved in tumor in general and more specifically in glioblastoma.

In the glioblastoma module network, we inferred a list of amplified and deleted SCNA genes linked to one or more clusters of co-expressed genes. Some of those SCNA genes are highly connected, representing potential master copy-number regulators for module activity. To identify and analyze those SCNA hub genes, we calculated for each high-scoring regulator the sum of the scores obtained in each module, and ranked them by decreasing score for amplified (Table 3) and deleted (Table 4) genes. Among these genes, we find many well-known oncogenes and tumor suppressors that are frequently amplified, deleted or mutated in glioblastoma. Those genes include \textit{EGFR}, \textit{PDGFRA}, \textit{FGFR3}, \textit{PIK3CA}, \textit{MDM4}, \textit{CDKN2A/B}, \textit{PTEN} and are all members of the core altered pathways in glioblastoma controlling key phenotypes such as proliferation, apoptosis and angiogenesis ([3,35,40,41]). Those genes and pathways are also frequently impaired in many other types of tumors [42–44]. In addition, we find in those lists of hub genes a number of interesting new candidates, both in amplified and deleted genes, that have not been associated with glioblastoma before. To better visualize the importance and role of both the well-known and novel SCNAs prioritized by Lemon-Tree, we represent those that are part of the three core pathways altered in glioblastoma as a network with edges representing activation or inhibition relationships, together with their levels of gene gains and losses in glioblastoma samples (Fig. 3).

Within the list of amplified gene hubs (Table 3), we find a number of genes that have been rarely or never associated before with glioblastoma. \textit{INSR} is a gene encoding for the insulin receptor, a transmembrane receptor activated by insulin and IGF factors, member of the tyrosine receptor kinase family, and playing a key role in glucose homeostasis. \textit{INSR} is selected as a high-scoring regulator in 15 modules and ranked in third position in the list of amplified gene hubs. It is found to be amplified as low-level gain or higher in 39% of the samples (Table 3). Beyond its well-known role in glucose homeostasis, \textit{INSR} stimulates cell proliferation (Fig. 3) and migration and is often aberrantly expressed in cancer cells [45]. Consequently, amplification of \textit{INSR} in glioblastoma may enhance proliferation. \textit{MYCN} encodes a transcription factor (N-myc) highly expressed in fetal brain and critical for normal brain development. It is also a well-known proto-oncogene, and amplification of N-myc is associated with poor outcome in neuroblastoma [46]. \textit{MYCN} is amplified as low-level gain or higher in 8% of the glioblastoma samples and is connected to 21 modules (Table 3). \textit{MYCN} is part of the RB signaling pathway, and is also strongly connected to the RTK / PI3K and p53 pathways (Fig. 3), with a direct influence on proliferation. For that reason, its amplification may also favor proliferation in glioblastoma. \textit{KRIT1} (also known as \textit{CCM1}) is a gene crucial for maintaining the integrity of the vasculature
and for normal angiogenesis. Loss of function of this gene is responsible for vascular malformations in the brain known as cerebral cavernous malformations [47, 48]. It is amplified as low-level gain or higher in 83% of the glioblastoma samples and it is listed in the top 10 hubs in our list (Table 3). The consequences of KRIT1 amplification are not completely clear, but we may hypothesize that it is required for proper angiogenesis development, which is a hallmark of glioblastoma [31], and that it may also help decrease apoptosis (Fig. 3).

In the list of putative deleted genes, PAOX (polyamine oxidase) is ranked first, with a connection to 54 modules and the highest sum of score values. This gene is classified as low-level gain or high-level amplification (according to GISTIC putative calls). It is classified as single loss (GISTIC call value of -1 or lower) in 89% of the samples. This is a very high value, comparable to the value obtained for the classical tumor suppressor CDKN2A (75%, Table 4). Amine oxidases are involved in the metabolism of polyamines, regulating their intracellular concentrations and elimination. The products of this metabolism (e.g. hydrogen peroxide) are cytotoxic and have been considered as a cause for apoptotic cell death. Amine oxidases are considered as biological regulators for cell growth and differentiation, and a primary involvement of amine oxidases in cancer growth inhibition and progression has been demonstrated [49]. Therefore, PAOX might have a tumor suppressor activity and its deletion in many glioblastoma samples could provide a selective advantage to glioblastoma tumor cells. Interestingly, amino acids metabolism is not part of the standard altered pathways in glioblastoma (explaining why we did not represent PAOX on Fig. 3), but targeting this pathway could lead to novel therapeutic.

Symbol	Pathway	Band	Nm	Sum score	% amp.	M-list	P-list
CHIC2	EGFR signalling	4q12	32	5884	19	x	x
EGFR	EGFR signalling	7p11.2	24	5184	87	x	x
INSR	EGFR signalling	19p13.2	15	3918	39	x	x
ASAP1	Membrane cytoskeleton interactions, cell motility	8q24.21	16	3119	11	x	x
MYCN	Regulation of transcription	2p24.3	21	3028	8	x	x
C1orf101		1q44	19	2980	17	x	x
RHOB	Rho protein signal transduction	2p24.1	19	2731	7	x	x
KRIT1	Small GTPase mediated signal transduction	7q21.2	11	2242	83	x	x
CCNE1	Regulation of cell cycle	19q12	14	1980	36	x	x
SDCCAG8		1q43	14	1973	17	x	x
ADCY8	Intracellular signal transduction	8q24.22	12	1949	11	x	x
PDGFRA	Cell proliferation, signal transduction	4q12	10	1874	18	x	x
DDX1	Regulation of translation	2p24.3	16	1763	8	x	x
MDM4	p53 regulation	1q32.1	9	1385	27	x	x
mir-4283-2		7q11.21	10	1374	80	x	x
PRDM2	Regulation of transcription	1p36.21	8	1323	15	x	x
FGFR3	Cell growth	4p16.3	5	1031	8	x	x
SCIMP	Immune response, signal transduction	17p13.2	8	1022	8	x	x
GSDMC	Epithelial cell proliferation and apoptosis	8q24.21	8	919	11	x	x
COL4A1	Angiogenesis	13q34	2	743	5	x	x
PIK3CA	Cell signalling, cell growth	3q26.3	7	743	17	x	x

List of the top 20 amplified genes ordered by decreasing sum of score values. Nm: number of modules in which the gene is selected as a high-scoring regulator. % amp.: percentage of samples in which the gene is classified as low-level gain or high-level amplification (according to GISTIC putative calls). M-list: presence in a list of genes frequently mutated in cancer, compiled from [42–44]. P-list: presence in a list of genes recurrently amplified or deleted in 11 cancer types [33].
KLLN encodes a nuclear transcription factor and shares a bidirectional promoter with PTEN. It is activated by p53 and is involved in S phase arrest and apoptosis [51]. Recent studies show that KLLN has a tumor suppressor effect and is associated with worse prognosis in prostate and breast carcinomas [52, 53]. Consequently, the loss of KLLN that is observed in 88% of the glioblastoma samples (Table 4) would help the development of tumor cells by decreasing apoptosis and favoring proliferation (Fig. 3).

To assess the biological relevance of the amplified and deleted gene hubs in the module network, we analyzed the prognosis value of the top gene hubs by survival analysis, using the clinical data available for TCGA samples (survival time and status of the patient). We constructed Kaplan-Meier estimates using GISTIC putative calls to define genes having single or deep copy loss (i.e. GISTIC call value ≥ 1) and genes having low-level gains or high-level amplifications.

Table 4. High-scoring deleted genes detected by Lemon-Tree.

Symbol	Pathway	Band	Nb modules	Sum score	% del.	M-list	P-list
PAOX	Polyamine homeostasis, apoptosis	10q26.3	54	7937	89	x	x
CDKN2A	Negative regulation of cell proliferation	9p21.3	31	4785	75	x	
mir-3201		22q13.32	21	3030	37	x	
mir-340		5q35.3	35	3030	10	x	
mir-604		10p11.23	49	2930	82	x	
mir-938		10p11.23	45	2921	82		
C9orf53		9p21.3	29	2897	75	x	
ATAD1		10q23.31	55	2433	88		
KIAA0125		14q32.33	30	2117	28	x	
mir-548q		10p13	35	2017	81		
OMG	Cell adhesion	17q11.2	21	1697	13	x	
EVI2B		17q11.2	19	1629	13	x	
KRTAP5-6		11p15.5	18	1564	21		
SRGAP1	Cell migration	12q14.2	20	1397	14		
KLLN	Cell cycle arrest, apoptosis	10q23.31	34	1374	88	x	
FLT4	Protein tyrosine kinase signalling	5q35.3	12	1022	10	x	
EFCAB4A	Metabolic process	11p15.5	33	964	23		
HBD	Cell adhesion	11p15.4	38	964	20		
DMTA2	Regulation of transcription	1p32.3	28	926	5		
TBC1D30		12q14.3	15	791	13		
ART5	Protein glycosylation	11p15.4	11	785	21	x	
FAM19A5		22q13.32	4	745	37	x	
EVI2A		17q11.2	17	709	13	x	
ARID2		12q12	5	681	14	x	
WDR37		10p14.3	21	614	81		
MOB2	Death receptor signaling	11p15.5	15	599	23		
PTEN	EGFR signalling, AKT pathway	10q23.31	19	593	89	x	x
MUC4	Cell matrix adhesion, transport	3q29	10	588	11		
ID11	Isoprenoids synthesis	10p15.13	23	569	81		
CSMD1		8p23.2	8	566	12	x	
CDK2N2	Negative regulation of cell proliferation	9p21.3	19	565	75	x	

List of top 30 deleted genes ordered by decreasing sum of score values. % del.: percentage of samples in which the gene is classified as single-copy loss or deep loss (according to GISTIC putative calls). Nm, M-list and P-list: see Table 3.

doi:10.1371/journal.pcbi.1003983.t004

treatments [50]. KLLN encodes a nuclear transcription factor and shares a bidirectional promoter with PTEN. It is activated by p53 and is involved in S phase arrest and apoptosis [51]. Recent studies show that KLLN has a tumor suppressor effect and is associated with worse prognosis in prostate and breast carcinomas [52, 53]. Consequently, the loss of KLLN that is observed in 88% of the glioblastoma samples (Table 4) would help the development of tumor cells by decreasing apoptosis and favoring proliferation (Fig. 3).

To assess the biological relevance of the amplified and deleted gene hubs in the module network, we analyzed the prognosis value of the top gene hubs by survival analysis, using the clinical data available for TCGA samples (survival time and status of the patient). We constructed Kaplan-Meier estimates using GISTIC putative calls to define genes having single or deep copy loss (i.e. GISTIC call value ≤ -1) and genes having low-level gains or high-level amplifications.
The differences between groups were formally tested and a total of 3 amplified genes and 18 deleted genes from the lists displayed in Tables 3 and 4 have significant p-values < 0.05 (Fig. 4 and S6 Table). Interestingly, among those genes we find the well-known glioblastoma oncogene EGFR and tumor suppressors CDKN2A and PTEN, but also novel candidates such as KRIT1 and PAOX described in the previous paragraph. Glioblastoma patients having copy-number alterations for those genes have a worse survival prognostic. This indicates the biological relevance of those genes that may be used as biomarkers.

Availability and Future Directions

The Lemon-Tree software is hosted at Google Code (http://lemon-tree.googlecode.com/). The source code, executables and documentation can be downloaded with no restrictions and no registration, and are released under the terms of the GNU General Public License (GPL) version 2.0. Developers and users can join the project by contacting the authors and there is a mailing list for discussions and news about module networks and the project. A step-by-step...
tutorial to learn how to install and use the software is available on the wiki section, together
with the corresponding data sets.

In the future, we intend to extend Lemon-Tree’s support for explicitly modelling causal relations
between regulator types and to incorporate complementary algorithms available in the literature
for integrating gene-based methods, physical interactions and cross-species data. Firstly, the cur-
rent version of Lemon-Tree is able to associate co-expression modules to multiple ‘regulator’ types
(e.g. expression regulators, structural DNA variants, phenotypic states, etc.) by assigning each of
those independently as regulators of a module. We will extend the software with Bayesian methods
to account for possible causal relations between regulator types, e.g. when the association between
a module and expression regulator can be partly explained by a structural DNA variant. Secondly,
a key long-term objective of the Lemon-Tree project is to provide a general open-source repository
for module network inference tools with a consistent user interface. As a first step, the current ver-
sion of Lemon-Tree implements algorithms previously developed by our group [14–17]. In the fu-
ture, we intend to extend it with complementary algorithms developed by other groups, including
algorithms to combine the strengths of module network methods with gene-based methods [18],
to incorporate physical protein-protein or protein-DNA interactions as a prior in the regulator as-
mignment procedure [13] or to infer module networks from multiple species simultaneously [19]. A
document detailing guidelines to implement new functions in the Lemon-Tree Java codebase is
available on the project wiki.

Supporting Information

S1 Table. Complete list of clusters and genes for the glioblastoma dataset.

(XLS)
S2 Table. Top regulators (1% cutoff level) for copy-number profiles (amplified genes). (XLS)

S3 Table. Top regulators (1% cutoff level) for copy-number profiles (deleted genes). (XLS)

S4 Table. GO enrichment for glioblastoma clusters (corrected p-value < 0.05). (XLS)

S5 Table. Running time comparison between Lemon-Tree and CONEXIC on the benchmark dataset. (XLS)

S6 Table. Survival curves p-values for amplified and deleted genes. (XLS)

S1 Fig. Example heatmap figure generated by Lemon-Tree showing co-expression module 18 in the glioblastoma dataset and copy-number profiles of amplified and deleted genes predicted to be causal regulators of module 18. (PDF)

S1 Text. Additional details about the tight clustering algorithm and data analyses performed. (PDF)

S1 Software. Copy of the Lemon-Tree source code, test dataset and software tutorial. (ZIP)

Author Contributions
Conceived and designed the experiments: EB TM. Performed the experiments: EB. Analyzed the data: EB LC. Contributed reagents/materials/analysis tools: EB LC TM. Wrote the paper: EB LC TM.

References
1. Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nature Reviews Genetics 11: 476–486. doi: 10.1038/nrg2795 PMID: 20531367
2. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, et al. (2005) Integrative genomic analyses identify mitf as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117–122. PMID: 16001072
3. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068. doi: 10.1038/nature07385 PMID: 18772890
4. Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, et al. (2010) International network of cancer genome projects. Nature 464: 993–998. doi: 10.1038/nature08987 PMID: 20393554
5. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34: 166–167. PMID: 12740579
6. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 308: 799–805.
7. Lee S, Pe’er D, Dudley A, Church G, Koller D (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA 103: 14062–14067. PMID: 16968785
8. Zhang W, Zhu J, Schadt EE, Liu JS (2010) A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Computational Biology 6: e1000642. doi: 10.1371/journal.pcbi.1000642 PMID: 20990830
9. Lee SI, Dudley AM, Drubin D, Silver PA, Krogan NJ, et al. (2009) Learning a prior on regulatory potential from eqtl data. PLoS Genetics 5: e1000358. doi: 10.1371/journal.pgen.1000358 PMID: 19180192

10. Bonnet E, Tatari M, Joshi A, Micheo T, Marchal K, et al. (2010) Module network inference from a cancer gene expression data set identifies microRNA regulated modules. PLoS One 5: e10162. doi: 10.1371/journal.pone.0010162 PMID: 20418949

11. Bonnet E, Micheo T, Van de Peer Y (2010) Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics 26: i683–i644.

12. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, et al. (2010) An integrated approach to uncover drivers of cancer. Cell 143: 1005–1017. doi: 10.1016/j.cell.2010.11.013 PMID: 21129771

13. Novershtern N, Regev A, Friedman N (2011) Physical module networks: an integrative approach for reconstructing transcription regulation. Bioinformatics 27: i177–i185. doi: 10.1093/bioinformatics/btr222 PMID: 21685068

14. Micheo T, Maere S, Bonnet E, Joshi A, Saeyes Y, et al. (2007) Validating module networks learning algorithms using simulated data. BMC Bioinformatics 8: S5. doi: 10.1186/1471-2105-8-S10-S5 PMID: 18269699

15. Joshi A, Van de Peer Y, Micheo T (2008) Analysis of a Gibbs sampler for model based clustering of gene expression data. Bioinformatics 24: 176–183. PMID: 18037994

16. Joshi A, De Smet R, Marchal K, Van de Peer Y, Micheo T (2009) Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 25: 490–496. doi: 10.1093/bioinformatics/btn355 PMID: 19136553

17. Michoel T, Maere S, Bonnet E, Joshi A, Saeys Y, et al. (2007) Validating module networks learning algorithms using simulated data. BMC Bioinformatics 8: S5. doi: 10.1186/1471-2105-8-S10-S5 PMID: 18269699

18. Joshi A, De Smet R, Marchal K, Van de Peer Y, Micheo T (2009) Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 25: 490–496. doi: 10.1093/bioinformatics/btn355 PMID: 19136553

19. Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, et al. (2013) Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Computational Biology 9. doi: 10.1371/journal.pcbi.1003252

20. Roy S, Wapinski I, Pfiffner J, French C, Socha A, et al. (2013) Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Research 23: 1039–1050. doi: 10.1101/gr.146233.112 PMID: 23640720

21. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, et al. (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotech 25: 675–680.

22. Zhu H, Yang H, Owen MR (2007) Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. Syst Synth Biol 1: 171–181. doi: 10.1007/s11693-008-9015-2 PMID: 19003442

23. Li J, Liu Z, Pan Y, Liu Q, Fu X, et al. (2007) Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain. Genome Biol 8: R244. PMID: 18021424

24. Novershtern N, Itzhaki Z, Manor O, Friedman N, Kaminski N (2008) A functional and regulatory map of asthma. Am J Respir Cell Mol Biol 38: 324–336. PMID: 17921359

25. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, et al. (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326: 257. doi: 10.1126/science.1179050 PMID: 19729616

26. Vermeirssen V, Joshi A, Micheo T, Bonnet E, Casneuf T, et al. (2009) Simulation regulatory network in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. Mol BioSyst 5: 1817–1830. doi: 10.1039/B908108a PMID: 19763340

27. Zhu M, Deng X, Joshi T, Xu D, Stacey G, et al. (2012) Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells. BMC Genomics 13: 437. doi: 10.1186/1471-2164-13-437 PMID: 22938179

28. Micheo T, Nachtergaele B (2012) Alignment and integration of complex networks by hypergraph-based spectral clustering. Physical Review E 86: 056111. PMID: 23214847

29. Maere S, Heymans K, Kuiper M (2005) BINGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449. PMID: 15972284

30. Jörnsten R, Abenius T, Kling T, Schmidt L, Johansson E, et al. (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology 7.
31. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, et al. (2001) Malignant glioma: genetics and biology of a grave matter. Genes & Development 15: 1311–1333. doi: 10.1016/j.envpol.2015.01.010 PMID: 25622337

32. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899–905. doi: 10.1038/nature08822 PMID: 20164920

33. Zack TI, Schumacher SE, Carter SL, Chenick AD, Saksena G, et al. (2013) Pan-cancer patterns of somatic copy number alteration. Nature Genetics 45: 1134–1140. doi: 10.1038/ng.2760 PMID: 24072396

34. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, et al. (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proceedings of the National Academy of Sciences 104: 20007–20012. PMID:18077431

35. Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812. doi:10.1126/science.1164382 PMID: 18772396

36. Beroukhim R, Hoadley KA, Purdom E, Wang V, Qi Y, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110. doi: 10.1016/j.ccr.2009.12.020 PMID:21376230

37. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience 17: 6–10. doi: 10.1016/j.jocn.2009.05.006 PMID:19926287

38. Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812. doi:10.1126/science.1164382 PMID: 18772396

39. Beroukhim R, Hoadley KA, Purdom E, Wang V, Qi Y, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17: 98–110. doi: 10.1016/j.ccr.2009.12.020 PMID:21376230

40. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience 17: 6–10. doi: 10.1016/j.jocn.2009.05.006 PMID:19926287

41. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews 30: 586–623. doi:10.1210/er.2008-0047 PMID: 19752219

42. Cheng JM, Hiemstra JL, Schneider SS, Naumova A, Cheung NKV, et al. (1993) Preferential amplification of the paternal allele of the n-myc gene in human neuroblastomas. Nature Genetics 4: 191–194. PMID: 18102299

43. Cho Yj, Liang P (2008) Killin is a p53-regulated nuclear inhibitor of DNA synthesis. Proceedings of the National Academy of Sciences 105: 5396–5401. doi:10.1073/pnas.0705410105 PMID: 18385383

44. Wang Y, RadhaKrishnan D, He X, Peehl DM, Eng C (2013) Transcription factor killin inhibits tumor growth by ar suppression, induces apoptosis by tp53/tp73 stimulation in prostate carcinomas, and
correlates with cellular differentiation. The Journal of Clinical Endocrinology & Metabolism 98: E586–E594. doi: 10.1016/j.jaut.2013.12.009 PMID: 25361544

53. Wang Y, He X, Yu Q, Eng C (2013) Androgen receptor-induced tumor suppressor, klln, inhibits breast cancer growth and transcriptionally activates p53/p73-mediated apoptosis in breast carcinomas. Human molecular genetics: ddt077.