High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations

Astrid A. Out · Ivonne J. H. M. van Minderhout · Nienke van der Stoep · Lysette S. R. van Bommel · Irma Kluijt · Cora Aalfs · Marsha Voorendt · Rolf H. A. M. Vossen · Maartje Nielsen · Hans F. A. Vasen · Hans Morreau · Peter Devilee · Carli M. J. Tops · Frederik J. Hes

Published online: 21 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6 % for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6 %) of the patients and pathogenic mosaic variants in 2 (1 %). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7 % of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

Keywords APC · High-resolution melting · Mosaicism · Polyposis · Colorectal cancer · Molecular diagnostics

Introduction Familial adenomatous polyposis (FAP) is a hereditary tumor syndrome predisposing to early-onset colorectal cancer (CRC), accounting for 1 % of CRC cases. Classic FAP patients develop well over a hundred of colorectal...
polyps starting from early adolescence, leading to CRC approximately a decade later. Attenuated FAP (AFAP) patients develop 10–100 polyps at an older age at onset in their forties [1, 2]. Most FAP and AFAP patients carry dominantly inherited pathogenic germline variants in the *APC* gene (MIM: 175100) or recessive germline variants in the *MUTYH* gene (MIM: 604933). Pathogenic *APC* or *MUTYH* variants can also cause extracolonic features, like duodenal and gastric adenomas and cancer, desmoid tumors, osteomas and benign skin tumors (Gardner syndrome).

The detection rate of pathogenic *APC* variants, including large structural variation, is approximately 70–80 % in classic FAP patients and 10–30 % in AFAP patients [3–6]. The *MUTYH* associated polyposis (MAP) phenotype generally resembles AFAP. Bi-allelic pathogenic *MUTYH* variants are found in a quarter of polyposis patients negative for pathogenic *APC* variants [7]. In 20–30 % of adenomatous polyposis patients, no pathogenic variant in *APC* or *MUTYH* is identifiable, especially in patients with low polyp counts [7, 8]. A few polyposy patients have been linked to other genes, such as *SMAD4*, *BMPRIA*, *POLE* and *POLD1* [8, 9]. Pathogenic variants in unexplored genes may underlie the remaining genetically unexplained polyposis patients. However, two considerations warrant further examination of the *APC* gene, with its paramount role in the mechanism of polyposis and somatic defects in almost all adenomatous polyps.

First, in the past 20 years, a variety of methods have been applied to identify pathogenic germline *APC* variants, including direct sequencing and indirect methods like the protein truncation test (PTT), denaturing high performance liquid chromatography (dHPLC) and denaturing gradient gel electrophoresis (DGGE), southern blot and multiplex ligation-dependent probe amplification (MLPA). The detection rate of pathogenic variants is partly determined by the sensitivity of these methods and to which extend the length of the *APC* gene was tested [10, 11]. Second, mosaic pathogenic *APC* variants are particularly difficult to detect and probably an underestimated cause of polyposis coli. Of all detected constitutive pathogenic *APC* variants, 15–25 % occur de novo and 1–4 % are mosaics [12, 13].

In this study a reanalysis of the entire coding region of *APC* was performed in a group of 171 patients with ≥10 colorectal polyps, without previously detectable pathogenic *APC* or *MUTYH* variants. *APC* scanning had been performed before by various methods with different levels of sensitivity and completeness [12]. To identify possible previously missed heterozygous and mosaic variants, we used one uniform technique: high-resolution melting (HRM) analysis, which is known to be able to reliably detect heterozygous variants and lower allelic fractions [14, 15]. Also, scanning in polyp DNA of two patients was performed, as a proof of principle, to identify possible mosaic variants.

Materials and methods

Patient samples

The study group consisted of 171 index patients, referred for *APC* and/or *MUTYH* gene testing at the Laboratory for Diagnostic Genome Analysis (LDGA) in Leiden, The Netherlands, between 1995 and 2007, without detectable pathogenic variants by analysis as earlier described [12]. Of the 244 consecutively referred patients 171 were included, diagnosed with ≥10 colorectal polyps of adenomatous or predominantly adenomatous histology. The excluded 73 patients had insufficient DNA quality (3), insufficient clinical data (13) or <10 polyps (57). Informed consent was obtained for DNA testing according to protocols approved by local ethics review board. Clinical data was obtained from patient records at the LDGA (Table 1).

DNA was extracted from blood leukocytes according to standard protocols. Tissue DNA was analyzed if applicable and available for part of the patients. For HRM validation in total 117 DNA samples with unique heterozygous variants and for each amplicon 10 wild-type samples available at the LDGA were used. Additionally homozygous, heterozygous and wild-type controls of eight common SNPs were tested.

PCR, primers and unlabeled probes

The *APC* gene is located at 5q22.2, spans 163,719 bp, contains 15 coding exons with an open reading frame of 8,532 bp and encodes 2,843 amino acids (OMIM: 611731, Genbank: NG_008481.4, NM_000038.5, http://www.ncbi.nlm.nih.gov/nuccore). Primers were designed with Lightscanner Primer Design Software (Idaho Technology, Salt Lake City, UT) and comprised M13 sequencing tails. Additionally homozygous, heterozygous and wild-type controls of eight common SNPs were tested.

Five amplicons, covering 15 coding exons, containing a total of 22 exons (5, 11, 13, 15.18, 15.22, 15.23, 15.24 and 15.27), complement to the wild-type strand, with a length of ~30 bp, melting temperature of <70 °C and GC content between 40 and 45 % [16, 17] (online resource Supp. Table S1).

The 10 μl PCR mix contained 20 ng of template DNA, 1× Lightscanner Mastermix (including LC Green Plus dye, Idaho Technology), 2.5 pmol of each primer and distilled water. In our hands results with Lightscanner Mastermix were better compared to separately mixed ingredients (data not shown). Template DNA concentrations were measured
by a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). Asymmetric PCRs with unla-
beled probes were performed with a 1:5 ratio, with 1 pmol of
forward primer, 5 pmol of reverse primer and 5 pmol of the
unlabeled probe. Optimal primer annealing temperatures
were established by temperature gradient PCR and HRM.
Amplicons were redesigned if they showed more than two
melting domains [17] (online resource Supp. Fig. S1).

HRM data analysis

Melting of PCR products was performed on a 96 wells
Lightscanner instrument, with Lightscanner software version
2.0 (Idaho Technology). Temperature ranges of 70–98 and
55–98 °C were used for amplicon scanning and unlabeled
probe genotyping, respectively, with increments of 0.1 °C/s.
Melting curve data analysis was performed as described [16,
17]. The software’s sensitivity level was set to ≥3.0. Raw
melting curves were normalized at 100 and 0 % fluorescence
intensity. They were also temperature shifted, at 5 or 95 %
fluence intensity, to correct for slight temperature dif-
ferences across the plate. Melting analysis was performed
twice per PCR plate to rule out melting artifacts.

Variant scanning and sequencing

PCR and HRM were performed in 96 well plates, including
positive controls per amplicon in each plate, with allelic
fractions of 50, 13 and 6 %. PCR and HRM were repeated
if the first experiment showed an aberrant melting curve.
Sequencing was performed if the repeated experiment
showed an aberrant melting curve, except for those that
were induced by a SNP under a specific probe. The overall
portion of succeeded tests, including HRM and sequencing
per amplicon, for the 171 patients × 61 amplicons was
99 %. Direct sequencing was performed as described,
directly after HRM, on the same reaction mix and analyzed
by Seqscape software version 2.5 [12, 17]. Sequences were
carefully observed for detection of low peaks. Pyrose-
quencing was performed as described, to confirm low-level
mosaic variants [12]. Detected variants were searched in
literature and the UMD and LOVD public databases (www.
lovd.nl/apc, www.umd.be/apc, [19–22]). New variants
were analyzed in silico for possible pathogenicity by Ala-
mut version 2.3 (Interactive Biosoftware, Rouen, France).

Results

HRM variant scanning in patients with multiple polyps

Pathogenic heterozygous variants

In the 171 scanned patients, HRM analysis and subsequent
sequencing detected eight different heterozygous patho-
genic variants occurring in ten patients (6 %). Four of the

Table 1 Patient characteristics

Clinical characteristics	Mean (range)	n	Pathogenic APC variant
Gender			
Male	96		
Female	75		
Age diagnosis polyps	50 (14–73)		
Polyp number			
10–29	53 (20–69)	56	1
30–99	55 (30–73)	45	1
>100	43 (33–70)	14	2
‘Multiple/Polyps/Ten’s/Polyposis’	46 (14–67)	56	6 + 2 mosaics
CRC			
Yes	63		1 + 1 mosaic
No	108		9 + 1 mosaic
Family history 1st and 2nd degree			
Polyps (with or without CRC)	60	6	
Parents	21	3	
Sibs	47	5	
Grandparents	1		
Offspring	2		
CRC, no polyps	36		3 + 1 mosaic
No polyps and CRC	62		2 + 1 mosaic
Unknown	13		
pathogenic variants were novel and four were previously reported in the literature. Three novel pathogenic variants were frameshifting variants and one was a duplication at the splice donor site of intron 14, (c.1958 + 1_1958 + 2dup, patient 7). In silico analysis by Alamut predicted an in frame skip of exon 14, which was confirmed by reverse transcriptase PCR (data not shown). In nine out of the ten patients with a pathogenic variant, it had been missed by previous diagnostic testing methods, respectively PTT at the 5’ part of exon 15, DGGE in exons 9, 14 and 15 or single-strand conformational polymorphism (SSCP) in exons 9 and 11. One pathogenic variant was located in a region of the gene not tested in that particular patient before (Table 2, online resource Supp. Table S2).

VUS and polymorphisms

Sixteen different rare variants of unknown significance (VUS) were found in 17 of the 171 scanned patients, of which five were novel, including one silent variant, two missense variants, one in frame deletion and one in frame duplication. No effects on splicing or other in silico clues for pathogenicity were predicted by Alamut. All of these VUS were found in patients without a pathogenic variant, except one (online resource Supp. Table S2). The in-frame deletion c.5501_5506del, p.Val1834_Arg1835del was found in a patient with 100 colorectal polyps (patient 15). Segregation of the variant with the disease in this family suggests that causal relevance of this VUS as a high-

Table 2 Pathogenic variants and two VUS detected and corresponding clinical data in the 171 patientsa, b

Amplicon	Variant DNA (allelic %)	Variant protein	No.	Sex	No of polyps (age in years)	CRC, other (age in years)	Family historyc
Pathogenic							
6	c.679del	p.Asps222Thrfs*66	1	F	>100 (43)	–	P
9.3	c.1180C>T	p.Gln394*	2	M	Polyposis (48)	–	–
9.3	c.1248C>A	p.Tyr416*	5	F	Polyposis (27)	Papillary thyroid carcinoma (19)	P
11	c.1548 + 1G>A	p.spl	6	M	Polyposis (48)	CRC (48)	No
14.2	c.1958 + 1_1958 + 2dup	p.spl	7	M	Polyposis (56)	Gastric cancer	P
15.1	c.1972_1975del	p.Glu558Thrfs*11	8	F	Multiple (41)	–	Unknown
15.1	c.2003del	p.His668Profs*2	9	M	10 s (32)	–	P, C
15.2	c.2222dup	p.Asn741Lysfs*15	10	M	>100 (16)	–	C
Mosaic							
15.3	c.2269C>T (~ 5 %)	p.Gln757*	11	M	Countless adenomas (36)	Duodenal adenomas (37)	No
15.17	c.4393_4394dup (~ 15 %)	p.Ser1465Argfs*9	12	M	Multiple (44)	CRC (50), Gastric and duodenal polyps	No
Polytissue only							
15.14	c.4057G>T	p.Glu1353*	13	V	32 (17); only in rectosigmoid	–	No
Polytissue only (outside study group)b							
15.19/20	c.4666dup	p.Thr1556Asnfs*3	14	M	>100 (26)	–	Unknown
15.24	c.5501_5506del	p.Val1834_Arg1835del	15	M	100	–	P, C
15.29/30	c.6363_6365dup	p.Ala2122dup	16	F	>13 (58)	–	C

a Pathogenic variants and a selection of two VUS are shown (an in-frame deletion and an in-frame insertion). The other VUS and SNPs (common and rare missense and silent variants) are shown in online resource Supp. Table S2. cDNA nomenclature is according to NCBI Reference sequence NM_000038.5

b Of two patients DNA isolated from polyps was available for HRM of APC. Patient 13 was part of the study group of 171 patients referred between 1995 and 2007 and patient 14 was referred after this interval in 2008

c Family history in 1st and 2nd degree relatives. Only polyps or CRC are given. P: polyps, C: CRC

d The c.5501_5506del variant was present in the son (not affected at age 40 years) and the sister (CRC and polyps) of the index patient. The son of the sister (multiple polyps at age 40 years) did not carry the VUS

e For patient 16 no family members were tested
A penetrant pathogenic variant is unlikely (see Table 2). The in-frame duplication c.6363_6365dup, p.Ala2122dup was found in a patient with >13 polyps (patient 16), for whom no further family members were available for segregation analysis (Table 2, online resource Supp. Table S2). One known VUS was the Ashkenazim low risk variant c.3920T>A, p.Ile1307Lys, detected in one patient, of which the allele frequency in the scanned group of 171 patients was similar to Caucasian dbSNP populations (online resource Supp. Table S2) [23].

Pathogenic mosaic variants

In two patients (1%) pathogenic mosaic variants were detected in leukocyte derived DNA (patients 11 and 12). Patient 11 carried the pathogenic variant c.2269C>T, p.Gln757*, which was confirmed by pyrosequencing, and had an allelic fraction of 5%. The allelic fraction in a saliva sample was also estimated at 5% and in one tested colorectal adenoma it was enriched to 20–50%. Patient 12 carried c.4393_4394dup, p.Ser1465Argfs*9 at an estimated allelic fraction of ~15%. In a duodenal adenoma the allelic fraction was ~25% and in normal duodenal mucosa ~40%. The two pathogenic mosaic variants were missed in leukocyte derived DNA by previous diagnostic testing by DGGE and PTT and by PTT and sequencing, respectively (Table 2; Fig. 1, online resource Supp. Table S2).

Pilot scanning study to detect mosaic variants in polyp derived DNA in two patients

The HRM set-up was tested on polyp-derived DNA of two apparently sporadic polyposis patients of whom tumor tissue was available (patients 13 and 14), and in whom no pathogenic APC variants in leukocyte-derived DNA were detected by HRM. Patient 13 was part of the study group. She had 32 adenomas limited to the rectosigmoid, diagnosed at the age of 17 years, without family history. In the DNA of three polyps the c.4057G>T, p.Glu1353* variant was found with an allelic fraction of 20–50%. The variant was not detectable by HRM analysis and direct sequencing in cultured skin fibroblasts, buccal mucosa and urine. Patient 14 was referred for diagnostic APC testing after the time interval of the study group. He had >100 polyps diagnosed at the age of 26 years, without family history. The majority of polyps had adenomatous and a minority hyperplastic histology. In the DNA of one adenomatous and one hyperplastic polyp the c.4666dup, p.Thr1556Asnfs*3 variant was found, both with an estimated allelic fraction of ~30% (Table 2; Fig. 2, online resource Supp. Table S2).

HRM validation

Heterozygous variants

Amplicons were tested for sensitivity of the detection of heterozygous variants using the available positive control samples. Of the 117 tested samples with unique heterozygous variants in 50 of the 61 amplicons, 116 were detectable (online resource Supp. Fig. S2). The variant c.423-17dup, a duplication of a T in a T>A13-stretch in intron 3, was not detectable by HRM. This region has been described as problematic before [24]. Ten wild-type samples were tested per amplicon in duplicate, among which no false positives were seen.

Low allelic fractions

The 116 samples with detectable heterozygous variants were serially diluted to allelic fractions of 25, 13 and 6% in a wild-type background. All 116 variants were detectable down to at least 13% and 105 (90%) down to at least 6%. For 72 variants the dilutions were continued down to 3 and 2% and 28 and 6 variants were detectable, respectively. The eleven variants not detectable below 13% were eight 1-bp deletions or insertions, two base-pair neutral changes (A>T and T>A) and one A>G change (online resource Supp. Table S3). Of six variants tested in multiple overlapping amplicons, three showed different detection limits (6 vs. 25% for one, and 3 vs. 6% for two variants). Four variants were better detectable with temperature shift set at level 95% instead of the default 5% (online resource Supp. Fig. S2 and S3).

Common SNPs and unlabeled probes

Eight amplicons contained a common SNP, with a MAF >10%, for which unlabeled probes were designed to facilitate specific detection of SNP genotypes. Control samples were available with heterozygous, homozygous and wild-type genotypes of the eight SNPs, which were all detected correctly by the probes. The HRM analysis of the amplicon (expert scanning) could not distinguish homozygous minor from wild-type genotypes for four SNPs (amplicons 15.18, 15.22, 15.24 and 15.27). Of four variants serial dilutions were tested by probe genotyping, which were detectable down to allelic fractions of 6% (15.18) or 13% (15.22, 15.23, 15.24) (online resource Supp. Table S2 and Fig. S4).

Multiple variants per amplicon

The presence of one heterozygous variant in an amplicon causes heteroduplexes during HRM, altering the melting
The effect of an additional second variant in the same amplicon on the melting curve may be less well visible [25]. During our validation, melting curves from six double heterozygous control samples, with a common SNP and additionally a rare variant, showed melting curves well distinguishable from single heterozygotes and wild-types in amplicons 13.1, 13.2, 15.18 and 15.27. Two double heterozygotes were also tested in serial dilutions of the rare variants, in exon 13 and amplicon 15.18. The rare variants were distinguishable down to 6–25 % (online resource Supp. Fig. S4 and S5).

Fig. 1 Pathogenic mosaic variants in leukocyte and tissue DNA from patients 11 and 12. a Patient 11, HRM: a minimally aberrant curve in amplicon 15.3 in repeated experiments. Blood and saliva show a comparable allelic fraction. HRM of polyp DNA failed (data not shown). b Patient 11, direct sequencing: reverse sequence with a c.2269C>T mosaic variant, a very small T-peak in blood and saliva (≈5 % allelic fraction), not visible in wild-type, and enriched in one polyp (≈20–50 % allelic fraction). Different PCR reactions showed a different result in the polyp, possibly due to preferential amplification. c Patient 11, pyrosequencing: reverse complement sequence with a very small A-peak, not visible in wild-type, calculated at an allelic fraction of 5 %. d Patient 12, HRM: a slightly aberrant curve in amplicon 15.17 in repeated experiments. As comparison curves of two control samples with heterozygous variants at the same location are shown. HRM showed enrichment in a duodenal polyp and in normal duodenal mucosa. e Patient 12, direct sequencing: forward sequence with a c.4393_4394dup mosaic variant, with an allelic fraction of ≈15 %. Enrichment was visible in normal duodenal mucosa (≈40 %) and the duodenal polyp (≈25 %) [Color figure can be viewed in the online issue, which is available at http://link.springer.com/]

Discussion

Re-analysis of APC in leukocyte DNA by HRM in eligible patients previously tested negative for pathogenic variants by other methods, yielded pathogenic variants in 12 out of 171 (7%) patients, of whom two appeared to be present as mosaicism. Additionally, in each of two patients with apparently sporadic polyposis, without a variant in leukocyte DNA, a mosaic pathogenic variant was detected in polyp tissue DNA only. The detection of these pathogenic variants facilitates genetic counseling and family testing.
The previously used pre-screening techniques SSCP, DGGE and PTT have detected most APC variants in the past, including mosaics. However, these methods have been shown to be incapable of detecting all of the variants present, explaining our results [12, 13, 25–29].

Our minimal detectable allelic fraction by HRM was 2–6 % for 91 % of variants, and 13 % for those remaining. HRM has been shown to detect allelic fractions of between 1 and 13 %, significantly better than the 10–25 % reported for Sanger sequencing [14, 26, 30–34]. Sensitivity has been reported to be optimal for small amplicons of around 100 bp. Our amplicon size was 120–400 bp, in order to span the large APC gene with a limited amplicon number [14, 35, 36]. Currently, many diagnostic laboratories are using Sanger sequencing without pre-screening for diagnostic gene testing, since it has become cheaper and easier to perform, also for APC [1, 20, 37]. Sanger sequencing would have detected the 10 heterozygous variants. However, the mosaics in patients 11 and 12 (5 and 15 % allelic fraction) were missed by standard sequencing analysis. They were only visible for us after carefully scrutinizing the sequence trace, with the current knowledge of an aberrant melting curve suggestive for a mosaic variant. The two mosaics with the lowest allelic fraction (5–6 %) from Hes et al. [12] were also not detectable by Sanger sequencing, but only by DGGE. Because of its superior sensitivity to detect mosaic variants, HRM is a method to consider using for scanning genes with high occurrence of mosaic variants, like APC. However, next generation sequencing (NGS) methods may ultimately be the method of choice for mosaic detection in laboratories for which this is feasible. The advantage of NGS is a limit of detection of ≤1 % and immediate identification of the variant [38–40]. Possible disadvantages of NGS in comparison to HRM are the complexity of the method, the expertise needed and purchase costs of the apparatus. HRM is relatively fast,

Fig. 2 Pathogenic mosaic variants in tissue DNA, but not in leukocyte DNA from patients 13 and 14. a Patient 13, HRM: an aberrant curve from polyp DNA in amplicon 15.14 in repeated experiments. b Patient 13, direct sequencing: forward sequence from DNA samples isolated from three different polyps showing a c.4057G>T variant with an allelic fraction estimated at ~20–50 % in the sequence trace. This variant was not detectable in blood by sequencing (b) and HRM (data not shown). c Patient 14, HRM: an aberrant curve in overlapping amplicons 15.19 and 15.20 in repeated experiments, from DNA samples isolated from two different polyps, with different histology, adenomatous and hyperplastic. d Patient 14, direct sequencing: forward sequence showing a c.4666dup variant in both polyps, with an estimated allelic fraction of ~30 %. This variant was not detectable in blood, by sequencing (d) and HRM (data not shown) [Color figure can be viewed in the online issue, which is available at http://link.springer.com/]

© Springer
inexpensive and technically less complicated compared to NGS. HRM is also more flexible, with separate analyses per amplicon, while with NGS large amounts of amplicons are pooled together. With HRM it is easier to repeat failed experiments. For a low limit of detection for mosaicism, NGS needs sufficient sequencing depth, making it more expensive. However, the costs for NGS are reducing, and it will probably be more cost-effective (soon and for many laboratories/countries) to optimize an NGS approach instead of HRM.

HRM is a sensitive, inexpensive and convenient diagnostic method, when its limitations are taken into account [25, 41]. It can be readily applied in almost every standard diagnostic laboratory. Known limitations of HRM, like limited sensitivity for particular variant types, such as homozygous and base-pair neutral variants, variants located in nucleotide stretches and multiple variants per amplicon, were also shown in our study [17, 25]. Variants in known nucleotide stretches, like the T\(^{\text{A}}\)A\(^{13}\)-stretch in intron 3, can be detected by using an unlabeled probe covering the stretch (data not shown). No adaptations were made for homozygous variant detection, as they are considered as embryonically lethal in APC [42].

Sensitivity of HRM, and also sequencing, for mosaic variants can be improved by Cold-PCR, down to allelic fractions of 0.1–1 % [43]. Cold-PCR might be challenging to optimize for large scale gene scanning [44]. Cold-PCR applications have mostly been described for pathogenic variant hotspot regions and one for multiplex PCR of the coding region of TP53 [43, 45]. APC pathogenic hotspot variants and common C\(\Rightarrow\)T transitions might be good candidate locations to start with [12]. Other methods suitable for mosaic detection are ultra-sensitive allele specific methods and deep next generation sequencing [12, 39, 46–50].

Clinical implications of the detection of APC mosaicism have been described before [12, 13, 51]. Depending on the timing of occurrence and distribution during embryonic development, a mosaic variant can be present in blood, affected tissue and/or germ cells. The distribution and level of the mosaic variant can indicate its heritability, phenotype and detectability. If a mosaic variant is present in the germ cells, offspring has up to 50 % risk for inheriting the disease. The severity of the phenotype of a heterozygous germ line pathogenic APC variant is dependent on its position in the gene. Part of described mosaic patients have milder phenotypes compared to heterozygous carriers of similar variants [12, 13]. Our four detected mosaic variants were located at positions related to a severe phenotype, if heterozygous. Patients 11 and 12, with a mosaic variant in both blood and polyps, had a relatively late age of onset, but both had extracolonic features. Patients 13 and 14 had a severe phenotype. However the polyps of patient 13 were limited to the rectosigmoid. None of our four mosaic variants were CGA to TGA transitions, which were previously described to be a significant portion of mosaic variants [12, 13].

Blood leukocyte DNA is most commonly used for testing for pathogenic germ line variants [12, 51, 52]. To demonstrate the value of testing affected tumor tissue for the detection mosaics, and the possibilities of HRM, two cases of whom we had polytissue available were analyzed as ‘proof of principle’ (patients 13 and 14). Both patients showed a pathogenic APC variant recurrent in multiple polyps, without detectable pathogenic variant in blood. Both patients had a clear polyposis phenotype and early age of onset, without detectable pathogenic germ line variants in the APC gene or MUTYH gene. Patient 13 had polyps limited to the rectosigmoid, suggestive of mosaicism. Patient 14 had a typical FAP phenotype, for which the chance of detection of pathogenic APC or MUTYH germ line variants is expected to be very high. Finding the same pathogenic variant recurrent in multiple polyps in each of the two patients (100 % detection ratio of somatic mosaicism), should in this case be seen as a coincidental finding. One comparable mosaic patient was earlier described, with a pathogenic variant present in five analyzed adenomas and not detectable in blood [12]. It is mandatory to build larger series of patients without pathogenic germ line variants in the polyposis genes and collect their polyp material for somatic APC variant analysis [12, 13, 51]. For distinguishing between mosaicism in a substantial part of the colon and an isolated somatic variant limited to one tumor, analysis of multiple polyps and/or surrounding normal tissue is necessary.

A significant group of patients with multiple colorectal polyps remains genetically unexplained after extensive testing for pathogenic APC and MUTYH variants [8, 20]. Yet undetected APC (mosaic) variants will probably explain a small minority of cases. Other screening approaches, like next generation sequencing (NGS), for searching genetic, epigenetic or multifactorial aberrations inside or outside APC need to be explored [53]. Recently, pathogenic variants in the POLE and POLD1 gene were found to explain a small portion of polyposis cases [9].

In conclusion, rescreening of APC by a uniform sensitive detection method like the described HRM method detects heterozygous and mosaic variants previously missed by different conventional methods in group of genetically unexplained patients with multiple colorectal polyps. In addition, scanning APC in DNA isolated from multiple independent polyps of two patients successfully detected mosaic pathogenic APC variants present in affected tissue, but undetectable in blood. By using HRM and by screening of tumor DNA, we have genetically explained a further small portion of unexplained polyposis patients from our cohort.
Acknowledgments We thank all involved clinicians and patients. We thank Bert Bakker for providing financial support for the department of Clinical genetics and participating in useful discussions. We also thank Martijn Breuning for the critical discussions. We thank Chantal van Paridon, Bente Jorritsma and Elsa Bik for helping with the setup of the study and their technical assistance. We thank Ronelle Snowdowne, Rianne Schaap and Ryan Louiszoon for technical assistance and Marieke de Graaff for assistance with data collection. We thank Freek Blanken for assistance with pyrosequencing and Stefan Aretz for sending a control sample. This study was financially supported by a grant from the Van de Kamp fund and by the Laboratory of Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4:22
2. Friedl W, Caspari R, Sengteller M, Uhlhaas S, Lamberti C, Jungk M, Kadmon M, Wolf M, Fahnenstich J, Gebert J, Moslein G, Mangold E, Propping P (2001) Can APC mutation analysis contribute to therapeutic decisions in familial adenomatous polyposis? Experience from 680 FAP families. Gut 48(4):515–521
3. Sieber OM, Lamh et al. (2005) Familial adenomatous polyposis: a challenge for geneticists, pathologists and gastroenterologists. Clin Genet 81(1):38–46. doi:10.1111/j.1399-0004.2011.01676.x
4. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Salguero I, Sharma A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylanse E, Sawyer RJ, Kerr DJ, Clark S, Grimes J, Kearsley SE, Thomas HJ, McVean G, Houlston RS, Tomlinson I (2013) Germ-line mutations affecting the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136–144. doi:10.1038/ng.2503
5. Jones AC, Sampson JR, Cheadle JP (2001) Low level mosaicism detectable by DHPLC but not by direct sequencing. Hum Mutat 17(3):233–234
6. Nielsen M, Bik EC, Konvalinka D, Wijnen JT, Bakker E, Vanh HF, Breuning MH, Tops CM (2008) Somatic APC mosaicism: an underestimated cause of polyposis coli. Gut 57(1):71–76
7. Aretz S, Stienes D, Friedrichs N, Stemmler S, Uhlhaas S, Rahner N, Propping P, Friedl W (2007) Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP). Hum Mutat 28(10):985–992
8. Carillo S, Henry L, Lippert E, Girodon H, Guiraud I, Richard C, Dubois GF, Cleyrat C, Jourdan E, Krivolovics R, Hermouet S, Lavabre-Bertrand T (2011) Nested high-resolution melting curve analysis a highly sensitive, reliable, and simple method for detection of JAK2 exon 12 mutations—clinical relevance in the monitoring of polycythemia. J Mol Diagn 13(3):263–270
9. Vossen RH, Aten E, Roos A, den Dunnen JT (2009) High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat 30(6):860–866
10. Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2(1):59–66. doi:10.1038/nprot.2007.10
11. van der Steop N, van Paridon CD, Janssens T, Krenkova P, Stumbergova A, Macek M, Matthijs G, Bakker E (2009) Diagnostic guidelines for high-resolution melting curve (HRM) analysis: an interlaboratory validation of BRCA1 mutation scanning using the 96-well LightScanner. Hum Mutat 30(6):899–909
12. Almomani R, van der Steop N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
13. Fokkema IF, Taschner PE, Schaaafsma GC, Celli J, Laros JF, van der Stoep N, Bakker E, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438
14. Lagarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, D'Ancien D, Dubruille D, Denis A, Tenu C, Kegeles S, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
15. Fokkema IF, Taschner PE, Schaaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438
16. Lagoarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
17. Fokkema IF, Taschner PE, Schaaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438
18. Lagoarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
19. Fokkema IF, Taschner PE, Schaaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438
20. Lagoarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
21. Fokkema IF, Taschner PE, Schaaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438
22. Lagoarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
23. Lagoarde A, Boué E, Ferrari A, Nozuchi T, Qi J, Briaux A, Mouton R, Veuillaud P, Gaillarde F, Zibell P, Berada A, Chabrier F, Moreau D, Besnard D, Moulinier F, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjar IB (2009) Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 19(6):383–390
adenomatous polyposis. Analysis of patients included. Rev Esp Enferm Dig 102(11):653–657.

23. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311.

24. Palmirotta R, De Marchis ML, Ludovici G, Leone B, Valente MG, Alessandroni J, Spila A, Della-Morte D, Guadagni F (2012) An AT-rich region in the APC gene may cause misinterpretation of familial adenomatous polyposis molecular screening. Hum Mutat 33(5):895–898. doi: 10.1002/humu.22043.

25. Tindall EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM (2011) Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res 19(2):143–152. doi: 10.1093/dnares/dsr047.

26. Out AA, van Minderhout JJ, Goeman JJ, Ariyurek Y, Ossowski S, Schneeberger K, Weigel D, van GM, Taschner PE, Tops CM, Breuning MH, van Ommen GJ, den Dunnen JT, Devilee P, Hess PJ (2009) Deep sequencing to reveal new variants in pooled DNA samples. Hum Mutat 30(12):1703–1712.

27. Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum Mutat 2(5):338–346. doi: 10.1002/1098-1004(1997)7:3005–1300503.

28. Hestekin CN, Barron AE (2006) The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis 27(19):3805–3815. doi: 10.1002/elps.200600421.

29. van der Luijt RB, Khan PM, Vasen HF, Tops CM, van Leeuwen-MG, Alessandroni J, Spila A, Della-Morte D, Guadagni F (2012) Detection of APC germ line mosaicism in patients with de novo familial adenomatous polyposis: a plea for the protein truncation test. J Med Genet 48(8):526–529. doi: 10.1136/jmg.2011.094974.

30. Carbonell P, Turpin MC, Torres-Moreno D, Molina-Martinez I, Garcia-Solano J, Perez-Guillen M, Conesa-Zamora P (2011) Comparison of allelic discrimination by dHPLC, HRM, and TaqMan in the detection of BRAF mutation V600E. J Mol Diagn 13(5):467–473. doi: 10.1016/j.jmoldx.2011.03.009.

31. Yang J, Qian J, Lin J, Yang XF, Qian W, Yao DM, Wang CZ, Chen XX, Xiao GF, Ma YJ (2013) Development of a high-resolution melting analysis for the detection of the SF3B1 mutations. Genet Test Mol Biomarkers 17(3):342–347. doi: 10.1089/gtmb.2012.0364.

32. Harle A, Busser B, Rouyer M, Harter V, Genin P, Leroux A, Merlin JL (2013) Comparison of COBAS 4800 KRAS, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch 462(3):329–335. doi: 10.1007/s00428-013-1380-x.

33. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Edwards JR, Sanford LN, Wittwer CT (2010) High-resolution melting analysis for the detection of the SF3B1 mutations are associated with predisposition to breast and ovarian cancer. Nature 493(7432):406–410. doi: 10.1038/nature11725.

34. Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A (2006) High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 6:295. doi: 10.1186/1471-2407-6-295

35. Hege D, Ferber M, Mao R, Samowitz W, Ganguly A (2014) ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med 16(1):101–116. doi: 10.1038/gim.2013.166.

36. Izawa K, Hijkata A, Tanaka N, Kawai T, Saito MK, Goldbach-Mansky R, Akentijevich I, Yamas T, Nakahata T, Heike T, Nishikomori R, Ohara O (2012) Detection of base substitution-type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res 19(2):143–152. doi: 10.1093/dnares/dsr047.
50. Pagnamenta AT, Lise S, Harrison V, Stewart H, Jayawant S, Quaghebeur G, Deng AT, Murphy VE, Sadighi AE, Rimmer A, Mathieson I, Knight SJ, Kini U, Taylor JC, Keays DA (2012) Exome sequencing can detect pathogenic mosaic mutations present at low allele frequencies. J Hum Genet 57(1):70–72. doi:10.1038/jhg.2011.128

51. Tuohy TM, Burt RW (2008) Somatic mosaicism: a cause for unexplained cases of FAP? Gut 57(1):10–12

52. Schwab AL, Tuohy TM, Condie M, Neklason DW, Burt RW (2008) Gonadal mosaicism and familial adenomatous polyposis. Fam Cancer 7(2):173–177

53. Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, Gulden C, Kupfer SS, Swisher EM, Bennett RL, Novetsky AP, Jarvik GP, Olopade OL, Goodfellow PJ, King MC, Tait JF, Walsh T (2012) ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn 14(4):357–366. doi:10.1016/j.jmoldx.2012.03.002