Growth, Forage Production, and Quality of *Medicago sativa* in the Northern Part of South Korea

Yowook Song, Sang-Hoon Lee, Hyung Soo Park, Jae Hoon Woo, Bo Ram Choi, Eun A Lim, Ki-Won Lee*

National Institute of Animal Science, RDA, Cheonan 31000, South Korea

*Corresponding author: kiwon@korea.kr

Received February 02, 2022; Revised March 04, 2022; Accepted March 11, 2022

Abstract A three-year study was conducted in the Pyeongchang area, South Korea, to evaluate the growth and productivity of 26 alfalfa varieties and to select those with superior feed values. We employed a randomized block design with three replications. HybriForce-2410 presented the highest dry matter yield (28.87 t/ha) among the cultivars and the highest three-year average fresh matter yield (118.78 t/ha). The three-year average dry matter yield of Alfalfa-short (26.55 t/ha) and Shockwave BR (26.21 t/ha) were also significantly (p<0.05) higher than that of the other cultivars. The acid detergent fiber content of HybriForce-2410 was the lowest, although not significantly different from that of the other cultivars. Burgaltai had the lowest neutral detergent fiber content, whereas A Er Gang Jin had the highest. The crude protein (CP) content ranged from 16.90% to 21.33% at mowing during early flowering; Burgaltai had the highest CP among the cultivars. Digestibility differed significantly among the cultivars compared with other feed value items. Although Burgaltai presented the best feed value, HybriForce-2410 showed the best results for both productivity and feed value.

Keywords: alfalfa, cultivar, feed value, forage, pasture

Cite This Article: Yowook Song, Sang-Hoon Lee, Hyung Soo Park, Jae Hoon Woo, Bo Ram Choi, Eun A Lim, and Ki-Won Lee, “Growth, Forage Production, and Quality of *Medicago sativa* in the Northern Part of South Korea.” *Journal of Food and Nutrition Research*, vol. 10, no. 3 (2022): 209-215. doi: 10.12691/jfnr-10-3-5.

1. **Introduction**

Alfalfa (*Medicago sativa* L.) is a perennial leguminous pasture grass with excellent annual productivity in cultivated areas and grasslands. [1] It is native to a mountainous region in Southwest Asia and is currently widely cultivated worldwide for grazing, hay, and silage. It is also commonly used to make powder feed because of its high nutrient content and good palatability for livestock. [2,3]

Additionally, alfalfa fixes nitrogen for plants and soil by fixing atmospheric nitrogen [4,5], which is advantageous for improving soil organic matter. [6] However, research on alfalfa is mainly conducted overseas; [7, 8] with only a few studies in South Korea because the domestic cultivation environment is not appropriate. Alfalfa is a temperate species that grows relatively poor under high-temperature conditions. It is highly adaptable to drought as a deep root crop, but its growth is hindered in the humid environments of South Korea, where the rainy season coincides with summer. Because alfalfa is highly sensitive to soil acidity, it requires soil adjustments when cultivated in acidic soils. Therefore, alfalfa tends to show poor growth and productivity in the soil environments of South Korea, which are mainly weakly acidic. To successfully grow alfalfa in such environments, more research is needed, and cultivars should be selected based on the results of long-term studies. Different alfalfa cultivars require different cultivation environments; thus, identifying alfalfa cultivars with excellent growth in South Korea will help produce high-quality forage in the country. However, cultivar development and distribution in South Korea has mainly focused on improving the productivity of crops such as Italian ryegrass, barley, and rye. [9-12] Although research on the physiology of alfalfa has only recently started in South Korea, [13,14] except for the study of Lee *et al.* [15] studies on the adaptability of different alfalfa varieties to different regions in South Korea are scarce. Therefore, this study aimed to identify the most adaptable cultivars in a domestic environment based on the evaluation of growth performance, productivity, and feed value of 26 imported alfalfa varieties in the Pyeongchang region.

2. **Materials and Methods**

This study was conducted over three years from the autumn of 2016 to the autumn of 2018; the first sowing date was September 9, 2016. A field test was conducted in the Pyeongchang campus of Seoul National University, located in Pyeongchang-gun, Gangwon-do, South Korea (37°32′40″ N, 128°26′33″ E, 550 m above sea level). We used the seeds of 10 alfalfa varieties from Canada (HybriForce-2410, 4030, 4020MF, Shockwave BR, Radar II Brand, Adrenaline, Algonquin, Meritbrand, Alfalfa-short term, and Certified organic), six from China (ShanBei,
XinJiangDaye, AoHan, GanNong No. 3, Zhong Mu No. 1, and LaoBo), eight from the USA (San De Li, WL319HQ, HuangHou, JinHuangHou, Xun Lu, A Er Gang Jin, Vernal, and NatsuwaKaba), one from France (42IQ), and one from Mongolia (Burgaltai). We employed a randomized complete block design with three replications. Fertilizers (N-P₂O₅-K₂O) were applied at a ratio of 80-200-70 kg/ha before sowing. Immediately after mowing, fertilisers were applied again as flexible side dressing depending on the cultivation environment; K₂O was applied at 50 kg/ha before winter. Weeding was performed manually when required, and mites and pests were controlled by insecticide application of indoxacarb, sulfoxaflor, and pyrethroid, according to the manufacturers’ instructions. The average monthly temperature and precipitation during the experimental period are shown in Figure 1.

![Figure 1](image-url)

Figure 1. Comparative mean temperature (°C) and total precipitation (mm) over the previous decade (2007–2018) and during the experimental period (2017, 2018, and 2019) in the study area in Pyeongchang-gun, Gangwon-do, South Korea
Plant height (cm) was measured at harvest as the highest point of the plant body from the ground. Plant length was also measured in cm. Damage caused by disease or insect attacks was expressed on a scale of 1-9 (1 indicates the most severe damage, and 9 the least) on the day of harvest. Alfalfa was harvested four times each year during the early stages of flowering. The fresh matter content and neutral detergent fiber (NDF) content were collected on the harvest day; acid detergent fiber (ADF) yield. A feed value was conducted to analyze samples multiplied by percent dry matter to calculate dry matter yield was converted to kg/ha, and 300–500 g samples were collected and oven-dried at 60 °C in a circulating blast dryer for more than 72 h. The fresh matter yield was determined using the formula described by Menke and Huss. [18] In vitro dry matter digestibility was analyzed according to Tilley and Terry [19] as modified by Moore and Mott. [20]

- RFV = Relative feed value = (DDM × DMI) / 1.29
- DDM = Digestible dry matter = 88.9 − (0.779 × % ADF)
- DMI = Dry matter intake = 120 / % NDF
- TDN = Total digestible nutrient = 88.9 − (0.79 × % ADF)
- DMI = Dry matter intake = 120 / % NDF
- RFV = Relative feed value = (DDM × DMI) / 1.29
- * RFV = Relative feed value = (DDM × DMI) / 1.29
- * DDM = Digestible dry matter = 88.9 − (0.779 × % ADF)
- * DMI = Dry matter intake = 120 / % NDF
- * TDN = Total digestible nutrient = 88.9 − (0.79 × % ADF)

Data are shown as mean ± standard error; all analyses were conducted using SPSS (version 12.0; SPSS Inc., Chicago, IL, USA). Significant differences were determined using Duncan’s multiple range test.

3. Results

The plant height and length of the different alfalfa cultivars are shown in Table 1. The average height of the 26 alfalfa varieties was 45.35 cm. The height of HuangHou (50.5 cm) was significantly higher (P < 0.05) than that of the other cultivars, and Adrenalin was the shortest (40.65 cm, P < 0.05), despite exhibiting a high growth rate. Consistent with a previous study [21], the average height of 392 F1 alfalfa hybrids was 52.30 ± 0.14 cm. The average length of the 26 cultivars was 70.88 cm, and Radar II Brand was significantly longer than the other cultivars at 77.28 cm (P < 0.05). Plant length was approximately 25 cm longer than plant height; furthermore, 19 of the 26 cultivars had a plant length of 70 cm or more.

The fresh matter and dry matter yields of the 26 alfalfa cultivars are shown in Table 2. The average fresh matter yield in the first year of evaluation (2016) was 88.83 t/ha. The fresh matter yield of alfalfa grown in the same area varied from 54.33 to 118.00 t/ha, depending on the cultivar. The yield of HybriForce-2410, Shockwave BR, Alfalfa-short, GanNong No. 3, WL319HQ, and Xun Lu was higher (P < 0.05) than that of the other cultivars.

Table 1. Growth Performance of 26 Cultivars of Alfalfa (Medicago sativa L.) Cultivated in Pyeongchang-Gun, Gangwon-Do, South Korea

Cultivar	Plant height (cm)	Plant length (cm)	Disease tolerance (1-9)
HybriForce-2410	43.56 ± 0.77	70.33 ± 1.29	1
4030	43.62 ± 0.79	72.08 ± 1.03	1
4020MF	45.58 ± 0.96	70.19 ± 1.01	1
Shockwave BR	45.89 ± 0.89	73.61 ± 1.09	1
Radar II Brand	43.88 ± 0.88	77.28 ± 1.06	1
Adrenalin	40.65 ± 0.84	74.28 ± 1.06	1
Algonquin	44.63 ± 0.76	71.06 ± 1.00	1
Meritbrand	42.05 ± 0.82	73.50 ± 1.06	1
Alfalfa-short term	42.97 ± 0.87	71.28 ± 1.00	1
Certified organic	41.86 ± 0.86	66.55 ± 1.05	1
ShanBei	44.67 ± 0.86	60.42 ± 1.06	1
XinJiangDaye	44.71 ± 0.89	69.50 ± 1.06	1
AolHan	44.43 ± 0.85	66.64 ± 1.06	1
GanNong No.3	48.78 ± 0.87	75.09 ± 1.06	1
Zhong Mu No.1	44.71 ± 0.86	72.31 ± 1.06	1
LaoBo	48.82 ± 0.88	74.11 ± 1.06	1
San De Li	46.51 ± 0.83	70.47 ± 1.00	1
42KQ	46.85 ± 0.86	74.95 ± 1.06	1
WL319HQ	46.35 ± 0.84	74.06 ± 1.06	1
HuangHou	50.50 ± 0.84	70.17 ± 1.00	1
JinHuangHou	48.71 ± 0.87	74.36 ± 1.06	1
Xun Lu	46.92 ± 0.86	75.33 ± 1.06	1
A Er Gang Jin	44.46 ± 0.86	68.97 ± 1.06	1
Burgaltai	47.47 ± 0.84	61.83 ± 1.06	1
Vernal	45.53 ± 0.85	63.78 ± 1.06	1
Natsuwakaba	44.89 ± 0.84	70.61 ± 1.06	1
SEM	1.17	1.33	-

Table 2. Effects of Alfalfa Cultivars on Disease Tolerance

Cultivar	Disease tolerance (1-9)
HybriForce-2410	1
4030	1
4020MF	1
Shockwave BR	1
Radar II Brand	2
Adrenalin	1
Algonquin	1
Meritbrand	1
Alfalfa-short term	1
Certified organic	1
ShanBei	1
XinJiangDaye	1
AolHan	1
GanNong No.3	1
Zhong Mu No.1	2
LaoBo	1
San De Li	1
42KQ	1
WL319HQ	1
HuangHou	1
JinHuangHou	1
Xun Lu	1
A Er Gang Jin	1
Burgaltai	1
Vernal	1
Natsuwakaba	1
SEM	1

Variables with different superscripts in the same rows are significantly different (P < 0.05).

Disease tolerance: a lower number indicates more severe disease. (-): not measured.
The average fresh matter yield in the second year (2017) was 83.23 t/ha. Burgaltai presented the most significant decrease in fresh matter yield in the second year relative to that in the first year, with a total decrease of 22.77 t/ha. In the second year, the fresh matter yield of HybriForce-2410, with the highest yield in the first year, was 111.57 t/ha, which was higher ($P < 0.05$) than that of the other cultivars, but it was approximately 6.43 t/ha lower than that in the first year.

The highest increase in fresh matter yield compared with that in the first year was recorded in 42IQ, with a total increase of 6.77 t/ha. In 2018, the average fresh matter yield was 77.61 t/ha; the fresh matter yield of HybriForce-2410 was higher ($P < 0.05$) than that of all other cultivars at 126.77 t/ha and Vernal had the lowest at 48.73 t/ha. HybriForce-2410 presented the highest fresh matter yield for three years ($P < 0.05$), with an average of 118.78 t/ha. The average fresh matter yield of WL319HQ and Shockwave BR was 104.95 and 104.00 t/ha over the three years, respectively, which is an excellent level of productivity in the Pyeongchang area.

The average dry matter yield of the 26 alfalfa cultivars grown in the Pyeongchang area in 2016 was 22.28 t/ha, ranging from 8.62 to 29.13 t/ha (Table 2). HybriForce-2410, WL319HQ, Xun Lu, and Shockwave BR were the best cultivars in terms of dry matter yield. GanNong No. 3 was superior to all other cultivars ($P < 0.05$).

Regarding the dry matter yield of the 26 alfalfa cultivars, Vernal presented the lowest yield (10.27 t/ha), whereas Alfalfa-short presented the highest yield (34.26 t/ha) ($P < 0.05$). The dry matter yield of Alfalfa-short was higher ($P < 0.05$) than that of the other cultivars in the second year, although it did not differ ($P > 0.05$) from that of HybriForce-2410, which had the highest dry matter yield in the first year. Additionally, 4030, GanNong No. 3, WL319HQ, and Xun Lu presented higher ($P < 0.05$) secondary dry matter yield than the other cultivars, and the values did not differ ($P < 0.05$) from that of Alfalfa-short. The average dry matter yield of the 26 cultivars in the third year was 20.64 t/ha, which was the lowest for the three years. Thus, some cultivars showed an increase in the fresh matter yield and dry matter yield over the three years, but the yield of most cultivars tended to decrease year-on-year.

The average dry matter yield of ShanBei for three years was 12.47 t/ha, which was lower ($P < 0.05$) than that of the other cultivars tested, except Vernal, which showed seed problems. The dry matter yield of HybriForce-2410 was higher ($P < 0.05$) than that of the other cultivars, with an average of 28.87 t/ha for three years. Alfalfa-short, Shockwave BR, WL319HQ, GanNong No. 3, and Algonquin showed excellent productivity when cultivated in the Pyeongchang area.

Cultivar	2016	2017	2018	2016	2017	2018
HybriForce-2410	118,000	111,567	126,767	29,134	26,437	31,054
4030	97,333	94,567	88,633	23,717	23,867	21,003
4020MF	97,667	91,733	85,267	25,107	22,878	20,253
Shockwave BR	106,333	90,333	92,167	27,016	23,086	22,798
Radar II Brand	94,333	84,400	75,067	24,862	21,871	19,949
AdrenalIn	98,667	84,067	79,867	24,638	21,019	20,527
Algonquin	102,000	89,900	85,600	27,901	23,038	23,282
Meritbrand	98,667	84,400	71,967	24,235	21,647	18,942
Alfalfa-short	101,000	84,800	73,967	25,193	24,264	20,196
Certified organic	79,000	68,533	57,800	18,981	16,842	14,890
ShanBei	54,333	44,100	43,067	14,364	11,332	11,731
XinJiangDaye	77,000	80,033	73,167	20,494	20,481	21,181
AoHan	80,000	74,933	64,800	19,922	17,997	17,341
GanNong No.3	101,333	95,467	92,467	25,239	23,864	25,867
Zhong Mu No.1	92,000	89,533	83,967	23,013	21,631	21,114
LaoBo	81,333	84,233	78,200	20,257	20,106	20,157
San De Li	85,000	82,533	80,060	21,850	20,660	22,271
42IQ	67,000	73,767	73,567	16,512	19,457	19,362
WL319HQ	103,000	104,133	107,733	25,468	25,080	25,787
HuangHou	87,333	81,933	82,567	21,690	19,551	19,652
JinHuangHou	96,000	92,033	94,800	22,658	22,277	23,266
Xun Lu	106,667	103,767	101,567	27,469	25,863	25,298
A Er Gang Jin	81,333	83,400	78,967	19,999	21,010	20,465
Burgaltai	76,667	53,900	59,867	18,715	12,446	15,627
Vernal	37,333	41,433	48,733	8,622	10,273	12,622
Natsuwakaba	90,333	94,233	92,033	22,181	23,309	22,106

* Variables with different superscripts in the same rows are significantly different ($P < 0.05$).
Cultivated in Pyeongchang-Gun, Gangwon-Do, South Korea

Cultivar

the lowest-ranked variety (ADF content was GanNong No. 3 (44.65%) and was thus significant difference relative to the ADF content of most was the best among all cultivars, but there was no differences among cultivars were relatively small. content ranged from 37.56% to 44.65%, and the differences among cultivars with different superscripts in the same rows are significantly difference from the average ADF, NDF, and CP content. The digestibility of alfalfa is related to the ageing of leaves and stems. When grown during the same period, varietal differences are considered to be caused by the differences in maturity and ability to adapt to the growing environment. The cultivar-specific TDN content tended to be the same as the ADF content, and HybriForce-2410 presented the best TDN at 59.23% (P <0.05). Among the 26 cultivars of alfalfa, the RFVs, calculated based on the ADF and NDF content, of HybriForce-2410 and Certified organic were the best (115.46 and 111.04, respectively); the average relative feed value was 105.38.

4. Discussion

The higher the alfalfa plants, the stronger their uprightness. Santos et al. [22] reported a strong relationship between height and productivity of alfalfa. Although alfalfa shows rather weak uprightness, it is a bunch-type pasture grass, with longer plants having higher productivity.

In a typical growing environment, alfalfa generates many tillers, as it is repeatedly mowed. Moreover, crop productivity has been shown to significantly decrease in the second year due to the fixation of atmospheric nitrogen in the soil, [23] with the establishment of nitrogen-fixing bacteria. However, considering the humid domestic climate in the cultivation area, alfalfa productivity may decrease depending on the year. For example, in 2017, precipitation occurred from June to September, and the temperature during these months, except July, was higher than that in 2016; this may also have accounted for the observed decrease in productivity in the second year.

The dry matter yield of eight alfalfa varieties grown in India was 12.87–16.36 t/ha. [24] Contrarily, Arashad et al. [25] reported a significant difference in dry matter productivity according to the level of fertilization, and the best yield was 5.33 ton/ha per mowing. The dry matter productivity of alfalfa varies with the cultivar, management, mowing time, and cultivation environment. Here, the dry matter yield was significantly higher than that reported in a previous study. This was likely due to sowing in the fall and mowing four times starting in early spring.

Although there have been studies on Vernal worldwide, [26] the reason for the poor performance observed here is most likely seedling vitality. In this study, various cultivars with no history of cultivation in South Korea were introduced, and Vernal did not initially grow well because year-on-year accumulated seeds were used. Consequently, the ability of the plant to become properly established in the soil was insufficient, and this might cause a decrease in productivity.

Here, side dressing (additional fertilization) was performed when cultivating alfalfa for three years, considering the cultivation environment immediately after mowing, and the productivity decreased because our field experiment was performed without supplemental seeding and renewal.

Stavarache et al. [27] showed that alfalfa differed in feed values depending on the growth stage. They reported that the NDF content of alfalfa tended to increase with a delay in mowing; when mowed in the early bud stage, the NDF content was 48.4%, which is consistent with our findings.

Table 3. Feed Values of 26 Cultivars of Alfalfa (Medicago sativa L.) Cultivated in Pyeongchang-Gun, Gangwon-Do, South Korea

Cultivar	ADF (%)	NDF (%)	CP (%)	IVDMD (%)
HybriForce-2410	37.56	48.05	19.64	71.93
4030	41.44	52.03	18.90	68.31
4020MF	41.31	52.21	17.78	65.46
Shock wave BR	39.66	49.31	18.29	67.97
Radar II Brand	40.02	51.16	17.80	68.72
Adrenalain	39.51	49.91	18.09	69.63
Algonquin	40.21	51.72	18.03	67.77
Meritbrand	40.15	51.23	17.53	67.98
Alfalfa-short	40.42	51.50	16.90	67.71
Certified organic	37.95	49.71	19.64	71.66
ShanBei	41.32	51.15	16.97	65.80
XinJiangDaye	40.57	51.12	17.58	66.25
AoHan	42.40	51.49	17.39	66.55
GanNong No.3	44.65	52.39	15.78	64.32
Zhong Mu No.1	43.29	51.21	17.56	66.11
LaBoo	41.14	49.39	18.12	70.75
San De Li	41.92	50.56	18.02	67.78
42KQ	39.92	48.79	17.80	67.32
WL319HQ	39.71	49.41	19.10	70.60
HuangHou	41.06	49.81	18.53	68.77
Jin Huang Hou	42.70	51.02	17.14	66.23
Xun Lu	40.50	49.16	18.93	70.14
A Er Gang Jin	42.04	53.33	17.03	66.24
Burgaltai	38.54	47.24	21.33	73.33
Vernal	39.44	51.64	17.88	67.88
Natsumakaba	39.00	50.85	18.85	69.64
SEM	1.61	1.47	0.47	0.73

Notes:
- Variables with different superscripts in the same rows are significantly different (P<0.05).
- ADF = acid detergent fibre; NDF = neutral detergent fibre; CP = crude protein; IVDMD = in vitro dry matter digestibility.

The results of the feed value analysis of the 26 alfalfa cultivars are presented in Table 3 and Table 4. The ADF content ranged from 37.56% to 44.65%, and the differences among cultivars were relatively small. HybriForce-2410, with the lowest ADF content of 37.56%, was the best among all cultivars, but there was no significant difference relative to the ADF content of most cultivars tested. Contrarily, the cultivar with the highest ADF content was GanNong No. 3 (44.65%) and was thus the lowest-ranked variety (P <0.05). The ADF content from the early bud stage to the early bloom stage, when alfalfa was harvested in this study, ranged from 41.7% to 50.85% respectively (Huang Hou showed the lowest (15.78% and 17.14%, with an average of 18.07%). Burgaltai presented the content in the 26 cultivars ranged from 16.90% to 21.33%, with 53.33% (of 47.24%, whereas A Er Gang Jin was the worst variety, 50.59%, and the best was Burgaltai, with the lowest value of 47.24%, whereas A Er Gang Jin was the worst variety, with 53.33% (P <0.05). The three-year average CP content in the 26 cultivars ranged from 16.90% to 21.33%, with an average of 18.07%. Burgaltai presented the highest value (21.33%), whereas GanNong No. 3 and Jin Huang Hou showed the lowest (15.78% and 17.14%, respectively) (P <0.05).

The average digestibility of the 26 cultivars here was 68.27%, which was significantly different from the average ADF, NDF, and CP content. The digestibility of alfalfa is related to the ageing of leaves and stems. When grown during the same period, varietal differences are

L. Menke, M. Jeon, Journal of Food and Nutrition Research.
Aponte et al. [28] reported that the CP content was 21.0%–22.6% in seeding alfalfa grown for four years at the North Dakota State University in the United States, and this was considerably higher than our values, except for the CP content of Burgaltai (21.33%). This indicates that the feed value of alfalfa cultivated in South Korea will likely not be limiting.

Table 4. Feed Values of 26 Cultivars of Alfalfa (Medicago sativa L.) Cultivated in Pyeongchang-Gun, Gangwon-Do, South Korea

Cultivar	DDM (%)	DMF (%)	RFV (%)	TDN (%)
HybriForce-2410	59.64a	2.50a	115.81a	59.23a
4030	56.62a	2.31a	101.45	56.16a
4020MF	56.72a	2.30a	101.15	56.26a
Shock wave BR	58.00a	2.43a	108.45	57.57a
Radar II Brand	57.72a	2.35a	103.71	57.28a
Adrenalin	58.12a	2.40a	109.57	57.68a
Algonquin	57.58a	2.32a	105.08	57.13a
Meritbrand	57.62a	2.34a	104.97	57.18a
Alfalfa-short	57.41a	2.33a	104.81	56.97a
Certified organic	59.34a	2.41a	111.95	58.92a
ShanBai	56.71a	2.35a	103.26	56.26a
XinjiangDaye	57.30a	2.35a	104.63	56.85a
AoHan	55.87a	2.33a	101.13	55.41a
GanNong No.3	54.12a	2.29a	96.57	53.62a
Zhong Mu No.1	55.18a	2.34a	100.35	54.70a
LaoBo	56.85a	2.43a	108.21	56.39a
San De Li	56.24a	2.37a	103.51	55.78a
421Q	57.80a	2.46a	110.52	57.57a
WL319HQ	57.97a	2.43a	110.45	57.53a
HuangHou	56.91a	2.41a	106.99	56.46a
Jin Huang Hou	55.64a	2.35a	101.53	55.17a
Xun Lu	57.35a	2.44a	108.84	56.91a
A Er Gang Jin	56.15a	2.25a	97.94	55.69a
Burgaltai	58.88a	2.54a	116.40	58.45a
Vernal	58.18a	2.32a	104.83	57.74a
Natsuwakaba	58.52a	2.36a	107.36	58.09a
SEM	1.53	0.07	5.08	1.27

† Variables with different superscripts in the same rows are significantly different (P < 0.05).
‡ Means are not significant.
DDM = digestible dry matter; DMF = dry matter intake; RFV = relative feed value; TDN = total digestible nutrient.

5. Conclusions

The productivity and feed values of HybriForce-2410 were superior to those of all other cultivars, demonstrating a greater ability to adapt to the domestic environment than the other cultivars evaluated in this study. The cultivation of alfalfa varieties with excellent adaptability to South Korean local environments will contribute to the production of domestic livestock products.

Acknowledgements

This study was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01592501) and the Postdoctoral Fellowship Program of the National Institute of Animal Science funded by RDA, Republic of Korea.

Conflict of Interests

The authors have no conflict of interests to declare.

List of Abbreviations

- acid detergent fiber (ADF), relative feed value (RFV), crude protein (CP), digestible dry matter (DDM), dry matter intake (DMI), neutral detergent fiber (NDF), total digestible nutrient (TDN)

References

[1] Akmal, M., Uzma, F., and Asim, M., “Crop growth in early spring and radiation use efficiency in alfalfa”, Pakistan Journal of Botany, 43, 635-641, 2011.
[2] Shahriari, M.H., Savaghebi-Firoozabadi, G., Azizi, M., Kalantari, F. and Minaee-Tehrani, D., “Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil”, Research Journal of Agriculture and Biological Sciences, 3, 46-51, 2007.
[3] Radović, J., Sokolović, D. and Marković, J.J.B.A.H., “Alfalfa—most important perennial forage legume in animal husbandry”, Biotechnology in Animal Husbandry, 25, 465-475, 2009.
[4] Baier, M.C., Barsch, A., Kuster, H. and Hohnjec, N., “Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome”, Plant Physiology, 145: 1600-1618, Dec 2007.
[5] Aranjuelo, I., Irigoyn, J.J., Nogués, S. and Sánchez-Díaz, M., “Elevated CO2 and water-availability effect on gas exchange and nodule development in N2-fixing alfalfa plants”, Environmental and Experimental Botany, 65: 18-26, 2009.
[6] Bourgeois, G., Savoie, P. and Girard, J.M., “Evaluation of an alfalfa growth simulation model under Québec conditions”, Agricultural Systems, 32: 1-12, 1990.
[7] Ibrahim, A.T.I.S., Celikbas, N., Ersin, C.A.N. and Yilmaz, S., “The effects of cutting intervals and seeding rates on forage yield and quality of alfalfa”, Turkish Journal of Field Crops, 24: 12-20, Jan 2019.
[8] Wang, Y., Liu, C., Cui, P. and Su, D., “Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation”, Agricultural Water Management, 245 (10608), 2021.
[9] Choi, G.J., Rim, Y.W., Kim, K.Y., Choi, S.H., Sung, B.R., Kim, W.H., Shin, D.E. and Lim, Y.C., “A cold-tolerant and high-yielding Italian ryegrass (Lolium multiflorum L) new variety “Hwasan 101””, Journal of the Korean Society of Grassland Science, 20: 1-6, 2000.
[10] Ju, J.I., H.D. Lee, G.Y. Seong, O.K. Han, T.H. Song, K.W. Lee and C.H. Kim, “Comparisons of growth, yield and feed quality at spring oying among five winter cereals for whole-crop silage use”, Journal of the Korean Society of Grassland Science, 30: 205-216, 2010.
[11] Seo, S., Kim, W.H., Kim, K.Y., Choi, G.J., Ji, H.C., Lee, S.H., Lee, K.W. and Kim, M.J., “Forage productivity and quality of domestic Italian ryegrass and barley varieties”, Journal of the Korean Society of Grassland and Forage Science, 31: 261-268, 2011.
[12] Choi, G.J., Choi, K.C., Hwang, T.Y., Lee, K.W., Kim, J.H., Kim, W.H., Lee, E.J., Sung, K.I. and Jung, J.S., “Effect of difference in cold-tolerance of variety on forage productivity of Italian ryegrass in middle regions of Korea”, Journal of the Korean Society of Grassland and Forage Science, 38: 210-216, 2018.
[13] Rahman, M.A., Alam, I., Kim, Y.G., Ahn, N.Y., Heo, S.H., Lee, D.G., Liu, G. and Lee, B.H., “Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative...
proteome approach”, *Plant Physiology and Biochemistry*, 89, 112-122, Apr 2015.

[14] Rahman, M., Parvin, M., Das, U., Ela, E.I., Lee, S.H., Lee, K.W. and Kabir, A.H., “Arbuscular mycorrhizal symbiosis mitigates iron (Fe)-deficiency retardation in alfalfa (*Medicago sativa* L.) through the enhancement of Fe accumulation and sulfur-assisted antioxidant defense”, *International journal of molecular sciences*, 21, 2219, Jun 2020.

[15] Lee, J.G., Chung, J.W., Kim, M.J., Kim, Y.G., Lim, Y.C., Na, G.J. and Jung, J.R., “Growth characteristics and productivities of alfalfa (*Medicago sativa* L.) varieties at the alpine areas”, *Journal of the Korean Society of Grassland Science*, 23, 65-70, 2003.

[16] Goring, H.K. and Van Soest, P.J, “Forage fiber analysis” Agronomic Handbook No. 379. ARS. USDA, Washington DC, 1970.

[17] Association of Official Analytical Chemists, *Official Methods of Analysis, 16th edition*, Association of Official Analytical Chemists, Arlington, 1995.

[18] Menke, K.H. and W. Huss, Tierernahrung und futtermittel-kunde. UTB Eugen Ulmer Verlag, Stuttgart (Germany), 1980, 38-41 (in German).

[19] Tilley, J.M.A. and Terry, D.R., “A two-stage technique for the in vitro digestion of forage crops”, *Grass and forage science*, 18, 104-111, Jun 1963.

[20] Moore, J.E. and G.O. Mott, *Procedure for the two-stage in vitro digestion of forage*, University of Florida Department of Animal Science, Gainesville, 1970.

[21] He, F., Long, R., Zhang, T., Zhang, F., Wang, Z., Yang, X., Jiang, X., Yang, C., Zhi, X., Li, M. and Yu, L., “Quantitative trait locus mapping of yield and plant height in autotetraploid alfalfa (*Medicago sativa* L.)”, *The Crop Journal*, 8, 812-818, Oct 2020.

[22] Santos, I.G.D., Cruz, C.D., Nascimento, M., Rosado, R.D.S. and Ferreira, R.D.P., “Direct indirect and simultaneous selection as strategies for alfalfa breeding on forage yield and nutritive value”, *Pesquisa Agropecuária Tropical*, 48, 178-189, Apr 2018.

[23] Elgharably, A. and Benes, S., “Alfalfa biomass yield and nitrogen fixation in response to applied mineral nitrogen under saline soil conditions”, *Journal of Soil Science and Plant Nutrition*, 21, 744-755, Mar 2021.

[24] Singh, D. and Gargm A.K., “Performance of public and private sector developed lucerne (*Medicago sativa* L.) varieties for forage yield and quality”. Range Management and Agroforestry 26, 225-228, 2015.

[25] Arshad, I., Ali, W., Khan, Z.A. and Bhayo, W.A., “Effect of nitrogen and phosphorus on the growth and yield of alfalfa (*Medicago sativa* L.) under agro-climatic conditions of Tando Adam”, *PSM Biological Research*, 1, 74-77, Sep 2016.

[26] Parsons, J.L. and Davis, R.R., “Forage production of Vernal alfalfa under differential cutting and phosphorus fertilization”, *Agronomy Journal*, 52, 441-443, Aug 1960.

[27] Stavarache, M., Samuil, C., Popovici, C.I., TARCĂU, D. and VÂNTU, V., “The productivity and quality of alfalfa (*Medicago sativa* L.) in Romanian forest steppe”, *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 43, 179-185, Jun 2015.

[28] Aponte, A., Samarappuli, D. and Berti, M.T., “Alfalfa-grass mixtures in comparison to grass and alfalfa monocultures”, *Agronomy Journal*, 3, 628-638, Mar 2019.

© The Author(s) 2022. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).