The complete chloroplast genome sequence of *Rhaponticum uniflorum*, the first of the genus *Rhaponticum*

Hua Bokin, Zhi-Qiang Zhou, Li-Qiang Wang, Meijiang, Guohua Gong, Chang Liu, and Chengxi Wei

ABSTRACT

Rhaponticum uniflorum is commonly used as a source for traditional medicines with the main effect of clearing heat. Here, we sequenced the complete chloroplast (cp) genome of *R. uniflorum* to develop molecular markers for taxonomic classification and species determination of *R. uniflorum*. It was 152,760 bp in size and had a typical circular structure, including a pair of inverted repeats with 25,205 bp, a large single-copy region with 83,687 bp, and a small single-copy region with 18,663 bp. The genome encodes 110 unique genes, including 80 protein-coding, four rRNA and 26 tRNA genes. Phylogenomic analysis shows that *R. uniflorum* is closely related to the *Saussurea*. The study is useful for phylogenetic and population genetic studies of *Rhaponticum* plants.
Figure 1. Molecular phylogenetic tree showing the position of *Rhaponticum uniflorum* in the family Asteraceae based on the complete chloroplast genomes among 29 species. The tree was constructed using maximum likelihood (ML) algorithm. Numerical value beside each node shows the bootstrap value obtained from 1000 replications. The branch lengths are scaled with a scale bar. The GenBank accession number for the corresponding sequences is shown to the right of the Latin name.

Ethics approval and consent to participate

The research, including the collection of plant materials, was carried out in accordance with guidelines provided by the authors’ institutions and national or international regulations.

Authors’ contributions

The article was designed and conceived by Chang Liu and Chengxi Wei; it was Liqiang Wang, HuBoqin, Qiang Zhou, Mei Jiang and Guohua Gong who got involved in the analysis and interpretation of the data; HuBoqin and Qiang Zhou drafted the article; Chang Liu revised it critically for intellectual content; All authors approved the final version to be published and agreed to be accountable for all aspects of the work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the [P. R. China Inner Mongolia Autonomous Region Major Science and Technology Project #1] under Grant [number 2019ZD004]; [P. R. China Inner Mongolia Minzu University Innovation Fund for Graduate Research #2] under Grant [number NMDS52118]; [CAMS Innovation Fund for Medical Sciences (CIFMS) #3] under Grant [number 2021-1-12M-022]; [National Science & Technology Fundamental Resources Investigation Program of China #4] under Grant [number 2018FY100705]; and [National Natural Science Foundation of China #5] under Grant [number 81872966]. Funders were not involved in...
the study design, data collection, and analysis, decision to publish, or manuscript preparation.

ORCID
Hu Boqin http://orcid.org/0000-0002-6905-1813
Qiang Zhou http://orcid.org/0000-0002-9977-2945
Chang Liu http://orcid.org/0000-0003-3879-7302

Data availability statement
The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession NO. MW683229. The associated BioProject, BioSample, and SRA number are PRJNA722731 and SAMN18790581, and SRR14270266 respectively.

References
Chen H, Wang C, Qi M, Ge L, Tian Z, Li J, Zhang M, Wang M, Huang L, Tang X. 2017. Anti-tumor effect of Rhaponticum uniflorum ethyl acetate extract by regulation of peroxiredoxin1 and epithelial-to-mesenchymal transition in oral cancer. Front Pharmacol. 8:870.

Committee NP. 2020. Pharmacopoeia of the People’s Republic of China (2020). Vol. 2. Beijing: Chemistry Industry Press; p. 387–388.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Doyle JJ. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

Jin AH, Hui-Xian XU, Liu WJ, Quan JS, Yin XZ. 2011. Studies on anti-tumor effect and mechanism of Rhaponticum uniflorum in H22-bearing mice. Chinese J Exp Tradit Med Form. 17(5):165–167.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47(W1):W65–W73.

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 20(1):348–355.

Zhu L, Lu Y, Chen D. 1991. Composition of essential oil from inflorescences of Rhaponticum uniflorum (L.) DC. Zhongguo Zhong Yao Za Zhi. 16(12):739–740, 762–763.