X-Ray Observations of the Galactic Center with Suzaku

K. Koyama*, Y. Hyodo, T. Inui, M. Nobukawa and H. Mori

Department of Physics, Graduate School of Science, Kyoto University

Received 30 May 2005, accepted 11 Nov 2005
Published online later

Key words Galactic Center, X-ray, FeKα lines

We report on the diffuse X-ray emissions from the Galactic center (GCDX) observed with the X-ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibrations and extremely low background of the XIS provide many new facts on the GCDX. These are (1) the origin of the 6.7/7.0 keV lines is collisional excitation in hot plasma, (2) new SNR and super-bubble candidates are found, (3) most of the 6.4 keV line is fluorescence by X-rays, and (4) time variability of the 6.4 keV line is found from the Sgr B2 complex.

1 Introduction

The iron K-shell complex in the Galactic center diffuse X-rays (GCDX) is composed of four lines at 6.4, 6.7, 7.0 and 7.1 keV (Koyama et al. 1986). These are Kα lines of neutral (FeI), He-like (FeXXV) and H-like (FeXXVI) iron, and Kβ line of neutral iron (FeI). The origin of these iron lines or the origin of the GCDX has been a big problem. In order to solve the problem, high quality data of the iron K-shell lines are essentially important. Using the X-ray Imaging Spectrometer (XIS) (Koyama et al. 2007a) on board Suzaku (Mitsuda et al. 2007), we have obtained accurate X-ray spectra in the hard X-ray band including these key lines. This paper reports on the line analysis and discussion on these observational data.

2 Observations and Data Reduction

The Galactic center regions were observed with the XIS (Koyama et al. 2007a) on board the Suzaku satellite (Mitsuda et al. 2007). The observations are composed of several mosaic positions, each of ~100 ks exposure. We have made comprehensive energy calibrations on the whole imaging region of the CCDs on the XIS (for details, see Koyama et al. 2007d). The reliability of the energy scale is demonstrated in table 1. The Kα lines of SXVI, FeXXVI and MnI (the calibration line) have simple structure compared to that of the Kα complex of FeXXV, and hence are reliably determined independent of emission mechanisms. As are given in table 1, the observed line energies of Kα of SXVI and FeXXVI are within a few eV from the predicted energies of these lines. Also MnI Kα is determined within a few eV from the laboratory (predicted) energy. We therefore conclude that the energy scale is reliable within 5 eV in the 6–7 keV energy band.

Table 1: The observed and laboratory energies
H-like atom

SXVI Kα
FeXXVI Kα
MnI Kα

3 Origin of the 6.7 keV and 7.0 keV Lines

The X-ray spectrum from the GC region exhibits many emission lines. The most prominent line in the low energy band is Kα of SXV at 2.45 keV. In the high energy band, strong line-complex near at 6–7 keV is notable. These are Kα lines of FeI, FeXXV and FeXXVI, and Kβ of FeI at the energies of 6.4, 6.7, 7.0 and 7.1 keV, respectively.

What is the origin of the 6.7 keV (Kα of FeXXV) line? Is this due to collisional excitation (CE) or charge exchange (CX)? These two processes (CE and CX) produce different line ratio of the resonance and forbidden lines in the fine structure of the Kα line complex of FeXXV, and hence the center energy of the 6.7 keV line is slightly different with each other. The laboratory experiments found that CX gives the center energy at 6666 eV, while CE is 6680–6685 eV (Wargelin et al. 2005). We made a very accurate spectrum of the GCDX in the hard energy band up to ≥10 keV (figure 1). The observed line energy in the GCDX (figure 1) is determined to be 6680 ± 1 eV (systematic error is ±5 eV), very close to CE of 6680–6685 eV and significantly higher than that predicted by CX (6666 eV).

We detected narrow FeXXVI Kα (Lyα) line at 7.0 keV. If the 7.0 keV line is due to CX, strong bump should appear at the Lyman series limit around 9–10 keV (the Lyman series...
Fig. 2 The 2.45 keV (S\text{XVK}\alpha) band image overlaid on the 10 GHz band contour (light gray solid lines; Sofue 1988). The new X-ray SNR candidate G 359.79–0.26 is located at the center of the radio shell. A large ring-like structure is shown by the green-dashed annulus (adopted from Mori et al. 2007).

transition of n \geq 8 \rightarrow n \approx 1). The very low background of the XIS around 7–12 keV, the energy band above the iron K\alpha complex, enable us to check the structure of the Lyman series limit. We see no bump at 9–10 keV in figure 1, which excludes CX origin. Thus the origin of the 6.7 and 7.0 keV line is likely to be a CE process, or the X-rays are due to a high temperature plasma.

We then discuss the plasma structure. Ionization temperature (T_i) is determined by the ratio of K\alpha lines from He-like and H-like atoms, while the electron temperature (T_e) is determined by the ratio of K\alpha and K\beta lines from the same atom in the same ionization state. Since the Fe\text{XXVI}K\alpha and Fe\text{XXV}K\beta lines are near the iron K-edge, the fluxes are strongly coupled to the depth of the K-edge. The depth of the K-edge structure can be precisely constrained by the very low background data at 7–12 keV. Figure 1 demonstrates that these line fluxes are determined very accurately due to the accurate and the low background flux level above the 7 keV band.

The derived temperatures from the observed line flux ratios are given in table 2. We note that electron temperature has been usually determined from the continuum shape assuming a thermal bremsstrahlung model. This method, however, may have large errors if the continuum is contaminated by a non-thermal emission. Our new method to determine the electron temperature by the ratio of K\alpha and K\beta lines from the same atom in the same ionization state, is free from any contribution of a non-thermal component.

Since the energy centroid of the Fe\text{XXV}K\alpha moves with the ionization temperature due to the contamination of the satellite lines, we can also determine the temperature from the observed center energy. The result is also given in table 2. We see that all the results are consistent with the plasma of \sim 6.5 keV temperature in collisional ionization equilibrium (CIE).

Table 2 The plasma temperatures determined from the line flux ratios and the energy centroid of the 6.7 keV line

Ionization Temperature (keV)	Electron Temperature (keV)
Fe\text{XXVI}K\alpha/Fe\text{XXV}K\alpha	6.5^{+0.2}_{-0.1}
Fe\text{XXVI}K\beta/Fe\text{XXV}K\beta	5.1^{+1.0}_{-1.0}
Ni\text{XXVII}K\alpha/Ni\text{XXVII}K\alpha	9.3^{+2.5}_{-2.5}
Centroid of Fe\text{XXV}K\alpha	2.5 – 6.5

Fig. 1 The energy spectrum of the GCDX in the high energy band (adopted from Koyama et al. 2007d). Four intense lines at 6–7 keV are K\alpha of Fe, Fe\text{XXV} and Fe\text{XXVI}, and K\beta of Fe, while weak lines at around 7–9 keV are K\alpha of Ni and Ni\text{XXVII}, and K\beta of Fe\text{XXV}.

Since the He-like K\alpha lines are prominent in high temperature plasmas such as SNRs, we searched for SNR candidates using the Fe\text{XXV}K\alpha (6.7 keV) and S\text{XV}K\alpha (2.45 keV) lines. In the 6.7 keV band, we found two bright spots, Sgr A East (Koyama et al. 2007c) and G 0.61+0.01 (Koyama et al. 2007b). The temperatures of these SNRs (3–4 keV) are higher than any other young SNRs, probably due to extreme environmental conditions in the GC regions.

In the 2.45 keV band, we also found several bright spots, which may also be young SNRs of moderate temperature (~1 keV). All the SNR candidates have absorptions of (0.4–1) \times 10^{22} cm\(^{-2}\). These values are the same as the interstellar absorption toward the GC region, hence these SNR candidates are located near at the GC region.

4 Discovery of New SNRs

Since the He-like K\alpha lines are prominent in high temperature plasmas such as SNRs, we searched for SNR candidates using the Fe\text{XXV}K\alpha (6.7 keV) and S\text{XV}K\alpha (2.45 keV) lines. In the 6.7 keV band, we found two bright spots, Sgr A East (Koyama et al. 2007c) and G 0.61+0.01 (Koyama et al. 2007b). The temperatures of these SNRs (3–4 keV) are higher than any other young SNRs, probably due to extreme environmental conditions in the GC regions.

In the 2.45 keV band, we also found several bright spots, which may also be young SNRs of moderate temperature (~1 keV). All the SNR candidates have absorptions of (0.4–1) \times 10^{22} cm\(^{-2}\). These values are the same as the interstellar absorption toward the GC region, hence these SNR candidates are located near at the GC region.
We show a bright spot at \((l, b) = (359^\circ.79, -0^\circ.26)\) (G 359.79–0.26: Mori et al. 2007) in figure 2. G 359.79–0.26 is a strong candidate of SNR, because it is also associated with a radio ring structure (Sofue 1988). The X-ray spectrum of G 359.79–0.26 is given in figure 3. It is fitted with a thermal plasma model of \(\sim 1\)-keV temperature.

In addition to the SNR candidates, we discovered large ring/arc structures. In figure 2, we see a large ring with a 10 arcmin radius with the center at \((l, b) = (359^\circ.81, -0^\circ.14)\). G 359.79–0.26 is a part of this large ring. The real size of the ring is about 20-pc radius at the Galactic center distance of 8 kpc. Therefore this ring would be a super-bubble. Another super-bubble candidate is a faint arc in the positive Galactic latitude emerging from Sgr C \((l = 359^\circ.45)\) to the positive Galactic latitude into the Galactic center with a radius of 30 arcmin. To confirm this faint structure, however, deep exposure observations are required.

5 The 6.4 keV Clumps

Figure 4 is the 6.4 keV line map. We see many clumps. The spectra from these clumps exhibit not only a strong 6.4 keV line but also a 7.1 keV line, which are K\(\alpha\) and K\(\beta\) line from a neutral or low ionization Fe atoms. The flux ratio is about 0.1, consistent with fluorescence from a neutral Fe (FeI).

What is the origin of the 6.4 keV clumps? Is this due to inner shell ionization by electrons or X-rays? In table 3, we list the equivalent width \((EW)\) of the 6.4 keV line and absorption depth \((N_\text{H})\) for the inner shell ionization by electrons and X-rays. From the spectrum analysis, we found that most of the 6.4 keV clumps have large \(EW\) in the range of 1–2 keV, which are consistent with the fluorescence by X-ray irradiations (see table 3). The K-edge absorptions \((N_\text{H})\) are in the range of \((2–10)\times10^{23}\) cm\(^{-2}\), which are larger than the interstellar absorption to the GC. The large \(N_\text{H}\) is also consistent with the fluorescence by X-rays (see table 3). We, therefore conclude that most of the 6.4 keV clumps, if not all, are produced by X-ray irradiations.

6 Time Variability of the Sgr B2 complex

A concrete fact to favor the X-ray irradiation origin would be time variability of the 6.4 keV line. In order to examine the 6.4 keV line flux, we made the surface brightness map of the iron lines in the ASCA (1994) and Suzaku (2005) observations (Koyama et al. 2007e, Inui et al. 2007). Since the energy resolution of ASCA was not good enough to separate the 6.4 keV line from the 6.7 keV line, we made images in the 6–7 keV band subtracting the continuum flux (figure 5). We see clear decrease of the surface brightness from the ASCA to the Suzaku observations.

In order to see the flux change of the 6.4 keV line quantitatively, we made the X-ray spectra of the ASCA (1994), Chandra (2000), XMM-Newton (2004) and Suzaku (2005) observations near the Sgr B2 cloud. The spectra exhibit three pronounced peaks which represent FeK\(\alpha\) (6.4 keV) and FeK\(\beta\) (6.7 keV) lines.

Parameter	Electrons	X-ray
\(EW\) (keV)	0.3–0.6	1–2
\(N_\text{H}\) (cm\(^{-2}\))	\(10^{21}\)	\(10^{21}\)
Fe XXV Kα (6.7 keV) lines, and the composite of Fe XXVI Kα (7.0 keV) and Fe Kβ (7.1 keV) lines.

Since the Suzaku spectrum has the best statistics with accurate line energy (Koyama et al. 2007d), we fit the Suzaku spectrum with a model of a power-law plus four Gaussian lines, fixing the energy gap between Fe Kα (6400 eV) and Fe Kβ (7058 eV) to the theoretical value (+658 eV) (Kaastra and Meve 1993). The line flux ratio of Fe XXVI Kα/Fe XXV Kα is fixed to be 0.3. This ratio is slightly smaller than that found in the GCDX (Koyama et al. 2007d), because our selected region includes a SNR candidate G 0.61 +0.01, a strong 6.7 keV source (Koyama et al. 2007b).

Then we fit the spectra of the other satellites, fixing the power-law index, N_H, the line center energies, and the flux ratio between the Fe Kα and Fe Kβ lines to those of the Suzaku best-fit parameters. The best-fit fluxes of the 6.4 keV and 6.7 keV lines from all the satellites are given in figure 6 as a function of observed years.

From figure 6, we see that the 6.7 keV line is almost constant. This is very reasonable because the 6.7 keV line is due to the largely extended GCDX. In other words, no time variability of the 6.7 keV line flux confirms the reliability of the cross-calibration in the line flux of each satellite. Based on this reliable cross-calibration, we firmly conclude that the 6.4 keV line flux has been significantly variable, the fluxes in the XMM-Suzaku period is 2/3 of that in the ASCA-Chandra era.

The linear size across the Sgr B2 complex is about 40 light-years, but the brightest part (Sgr B2) is \sim10 light-years. The time scale of the 6.4 keV flux change is also \sim10 years, comparable to the light-crossing time of the cloud. Any charged particle (with a finite mass) cannot move as fast as the speed of light, and hence cannot produce such a rapid and large scale variability.

A unique scenario to explain the spectral features and the fast time variability of the 6.4 keV lines is that the Sgr B2 cloud absorbs variable X-rays above the 7.1 keV edge energies and simultaneously re-emits the fluorescent 6.4 keV lines. Where is the bright variable X-ray source? Is this a transient source located near the Sgr B2 complex? This putative transient source must be brighter than 10^{37} ergs s$^{-1}$ for more than 10 years with the flux variability of a factor 1.5, which is very unlikely.

The most probable source to exhibit the bright and relatively long-lived X-rays is a massive black hole Sgr A*. About 300 years ago, the X-ray from Sgr A* was 10^6 times brighter than the present value, and decayed to about 2/3 after \sim10 years. The X-rays hit the Sgr B2 cloud after \sim300 years travel. The cloud re-emits the 6.4 keV photons. Like a time delayed-echo, the X-ray is now just arriving at the Earth, when Sgr A* becomes quiet.

Acknowledgements

We would like to thank H. Nakajima, H. Uchiyama, and Y. Takikawa for their efforts in the Galactic center data analysis. This work is supported by the Grant-in-Aid for the 21st Century COE “Center for Diversity and Universality in Physics” from Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

Inui, T. et al. 2007, *Publ. Astron. Soc. Japan*, (in preparation)
Kaastra, J. S., & Mewe, R. 1993, *Astronomy and Astrophysics*, 97, 443
Koyama, K. et al. 1989, *Nature*, 339, 603
Koyama, K. et al. 1996, *Publ. Astron. Soc. Japan*, 48, 249
Koyama, K. et al. 2007a, *Publ. Astron. Soc. Japan*, 59, S23
Koyama, K. et al. 2007b, *Publ. Astron. Soc. Japan*, 59, S221
Koyama, K. et al. 2007c, *Publ. Astron. Soc. Japan*, 59, S237
Koyama, K. et al. 2007d, *Publ. Astron. Soc. Japan*, 59, S245
Koyama, K. et al. 2007e, *Publ. Astron. Soc. Japan*, 59, (in press)
Mitsuda, K. et al. 2007, *Publ. Astron. Soc. Japan*, 59, S1
Mori, H. et al. 2007, *Publ. Astron. Soc. Japan*, 59, submitted
Muno, M. P. et al. 2003, *Astronomical J* 589, 225
Sofue, Y. 1988, *Comments on Astrophysics*, 13, 19
Wargelin, B. J. et al. 2005, *Astronomical J*, 634, 687

Fig. 4 The 6.4 keV (Fe Kα) map. The grid is the Galactic coordinate with the spacing of 0.2 degree.