PURE MATHEMATICS | RESEARCH ARTICLE

Boundedness on Orlicz space of Toeplitz type operators related to multiplier operator and mean oscillation

Ouyang Difei*

Abstract: In this paper, the boundedness for certain Toeplitz type operator related to the multiplier operator from Lebesgue space to Orlicz space is obtained.

Subjects: Science; Advanced Mathematics; Pure Mathematics

Keywords: Toeplitz type operator; multiplier operator; BMO space; Orlicz space

MR Subject classifications: 42B20; 42B25

1. Introduction and preliminaries

Let \(b \) be a locally integrable function on \(\mathbb{R}^n \) and \(T \) be an integral operator. For a suitable function \(f \), the commutator generated by \(b \) and \(T \) is defined by \([b,T]f = bT(f) - T(bf) \). It is well known that an important role of commutators is to characterize function spaces, which is originated by Coifman, Rochberg, and Weiss (1976). They characterized \(BMO \) space via the \(L^p \) boundedness of the commutator for singular integral operator. Since then, similar results of other operators have also been obtained (see Chanillo, 1982; Janson, 1978, Paluszynski, 1995). Now, with the development of singular integral operators (see Garcia-Cuerva & Rubio de Francia, 1985; Stein, 1993), their commutators have been well studied. In Coifman et al. (1976), Wang and Liu (2009a, 2009b), the authors proved that the commutators generated by the singular integral operators and \(BMO \) functions are bounded on \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \). Chanillo (1982) proved a similar result when singular integral operators are replaced by the fractional integral operators. Janson (1978) proved the boundedness for the commutators generated by the singular integral operators and \(BMO \) functions from Lebesgue spaces to Orlicz spaces. Lu and Mo (2009), some multiplier operators are introduced and the boundedness for the operators are obtained (see Kurtz & Wheeden, 1979; Muckenhoupt, Wheeden, & Young, 1987; Wang & Liu, 2009a, 2009b; You, 1988; Zhang & Chen, 2005, 2006). Krantz and Li (2001), Lu and Mo (2009), some Toeplitz type operators related to the singular integral operators are introduced, and the boundedness for the operators generated by \(BMO \) and Lipschitz functions are obtained. Motivated by these, in this paper, we will prove the boundedness properties of the Toeplitz type operator associated to the multiplier operator from Lebesgue space to Orlicz space.

*Corresponding author: Ouyang Difei, College of Mathematics, Changsha University of Science and Technology, Changsha 410077, Hunan, P.R. China
E-mail: ouyangdifei1965@163.com

© 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
First, let us introduce some notations. Throughout this paper, \(Q \) will denote a cube of \(\mathbb{R}^n \) with sides parallel to the axes. For any locally integrable function \(f \), the sharp function of \(f \) is defined by

\[
f^s(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y) - f_Q| \, dy
\]

where, and in what follows, \(f_Q = |Q|^{-1} \int_Q f(x) \, dx \). It is well-known that (see Garcia-Cuerva & Rubio de Francia, 1985)

\[
f^s(x) \approx \sup_{Q \ni x} \inf_{c \in \mathbb{C}} \frac{1}{|Q|} \int_Q |f(y) - c| \, dy
\]

Let \(M \) be the Hardy–Littlewood maximal operator defined by

\[
M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy
\]

We write that \(M_p f = (M(f^p))^{1/p} \) for \(0 < p < \infty \). For \(1 \leq r \leq \infty \) and \(0 < \eta < n \), let

\[
M_{n, \eta}(f)(x) = \sup_{Q \ni x} \left(\frac{1}{|Q|^{1-n/\eta}} \int_Q |f(y)|^r \, dy \right)^{1/r}
\]

We say that \(f \) belongs to \(BMO(\mathbb{R}^n) \) if \(f^s \) belongs to \(L^\infty(\mathbb{R}^n) \) and \(||f||_{BMO} = ||f^s||_\infty \). More generally, let \(\rho \) be a non-decreasing positive function on \([0, +\infty)\) and define \(BMO_\rho(\mathbb{R}^n) \) as the space of all functions \(f \) such that

\[
\frac{1}{|Q(x, r)|} \int_{Q(x, r)} |f(y) - f_Q| \, dy \leq C \rho(r)
\]

For \(\rho > 0 \), the Lipschitz space \(Lip_\rho(\mathbb{R}^n) \) is the space of functions \(f \) such that

\[
||f||_{Lip_\rho} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\rho} < \infty
\]

For \(f \), \(m_t \) denotes the distribution function of \(f \), that is \(m_t(t) = |\{ x \in \mathbb{R}^n : |f(x)| < t \}|.

Let \(\rho \) be a non-decreasing convex function on \([0, +\infty)\) with \(\rho(0) = 0 \). \(\rho^{-1} \) denotes the inverse function of \(\rho \). The Orlicz space \(L_\rho(\mathbb{R}^n) \) is defined by the set of functions \(f \) such that \(\int_{\mathbb{R}^n} \rho(|f(x)|) \, dx < \infty \) for some \(\lambda > 0 \). The norm is given by

\[
||f||_{L_\rho} = \inf_{\lambda > 0} \left(1 + \int_{\mathbb{R}^n} \rho(\lambda |f(x)|) \, dx \right)
\]

2. Results

In this paper, we will study the multilinear operator as following (see Kurtz & Wheeden, 1979).

A bounded measurable function \(k \) defined on \(\mathbb{R}^n \setminus \{0\} \) is called a multiplier. The multiplier operator \(T \) associated with \(k \) is defined by

\[
T(f)(x) = k(x) \hat{f}(x), \text{ for } f \in S(\mathbb{R}^n)
\]

where \(\hat{f} \) denotes the Fourier transform of \(f \) and \(S(\mathbb{R}^n) \) is the Schwartz test function class. Now, we recall the definition of the class \(M(s, l) \). Denote by \(|x| \sim t \) the fact that the value of \(x \) lies in the annulus \(\{ x \in \mathbb{R}^n : ct < |x| < Ct \} \), where \(0 < c < C < \infty \) are values specified in each instance.

Definition 1 Let \(l \geq 0 \) be a real number and \(1 \leq s \leq 2 \). we say that the multiplier \(k \) satisfies the condition \(M(s, l) \), if

\[
\left(\int_{|\xi| > R} |D^l k(\xi)|^s d\xi \right)^{\frac{1}{s}} < CR^{n/2 - |l|}
\]
for all $R > 0$ and multi-indices α with $|\alpha| \leq l$, when l is a positive integer, and, in addition, if
\[
\left(\int_{|x| = R} |D^\alpha k(x) - D^\alpha k(x - z)|^2 dx \right)^{1/2} \leq C \left(\frac{|z|}{R} \right)^{\gamma} R^{\frac{\gamma}{2} - |\alpha|}
\]
for all $|z| < R/2$ and all multi-indices α with $|\alpha| = |l|$, the integer part of l, i.e. $|l|$ is the greatest integer less than or equal to l, and $l = |l| + \gamma$ when l is not an integer.

Denote $D(R^n) = \{ \phi \in S(R^n); \text{supp}(\phi) \text{ is compact} \}$ and $\hat{D}(R^n) = \{ \phi \in S(R^n); \hat{\phi} \in D(R^n) \}$ and $\hat{\phi}$ vanishes in a neighbourhood of the origin. The following boundedness property of I on $L^p(R^n)$ is proved by Strömberg and Torkinsky (see Kurtz & Wheeden, 1979).

Definition 2 For a real number $\bar{l} \geq 0$ and $1 \leq \bar{s} < \infty$, we say that K verifies the condition $M(\bar{s}, \bar{l})$, and write $K \in M(\bar{s}, \bar{l})$, if
\[
\left(\int_{|x| = R} |D^\alpha K(x)|^\bar{s} dx \right)^{1/\bar{s}} \leq CR^{\bar{n} - n - |\alpha|}, \quad R > 0
\]
for all multi-indices $|\alpha| \leq \bar{l}$ and, in addition, if
\[
\left(\int_{|x| = R} |D^\alpha K(x) - D^\alpha K(x - z)|^\bar{s} dx \right)^{1/\bar{s}} \leq C \left(\frac{|z|}{R} \right)^{\gamma} R^{\frac{\gamma}{2} - n - |\alpha|}, \quad \text{if } 0 < \gamma < 1
\]
\[
\left(\int_{|x| = R} |D^\alpha K(x) - D^\alpha K(x - z)|^\bar{s} dx \right)^{1/\bar{s}} \leq C \left(\frac{|z|}{R} \right) \left(\log \frac{R}{|z|} \right) R^{\frac{\gamma}{2} - n - |\alpha|}, \quad \text{if } \gamma = 1
\]
for all $|z| > \frac{R}{2}, R < 0$, and all multi-indices $\bar{\alpha}$ with $|\bar{\alpha}| = u$, where u denotes the largest integer strictly less than l with $l = u + v$.

Lemma 1 (see Kurtz & Wheeden, 1979) Let $k \in M(s, l), 1 \leq s \leq 2$, and $l > \frac{n}{s}$. Then the associated mapping T, defined a priori for $f \in D_0(R^n)$; $T(f)(x) = (f * K)(x)$, extends to a bounded mapping from $L^p(R^n)$ into itself for $1 < p < \infty$ and $K(x) = k(x)$.

Lemma 2 (see Kurtz & Wheeden, 1979) Suppose $k \in M(s, l), 1 \leq s \leq 2$. Given $1 \leq \bar{s} < \infty$, let $r \geq 1$ be such that $\frac{1}{\bar{s}} = \max \{ \frac{1}{s}, 1 - \frac{1}{r} \}$. Then $K \in M(\bar{s}, \bar{l})$, where $\bar{l} = l - \frac{n}{r}$.

Lemma 3 (see Kurtz & Wheeden, 1979) Let $1 \leq s < \infty$, suppose that k is a positive real number with $l > n/r, 1/r = \max \{ 1/s, 1 - 1/\bar{s} \}$, and $k \in M(s, l)$. Then there is a positive constant α, such that
\[
\left(\int_{Q_1} |K(x - z) - K(x_0 - z)|^\bar{s} dz \right)^{1/\bar{s}} \leq C 2^{-k^2} (2^k h_1^{-1})^{-n/\bar{s}}
\]

Now we can define the Toeplitz type operator associated to the multiplier operator as following.

Definition 3 Let b be a locally integrable function on R^n and T be the multiplier operator. By Lemma 1, $T(f)(x) = (K * f)(x)$ for $K(x) = k(x)$. The Toeplitz type operator associated to T is defined by
\[
T^b = \sum_{k=1}^m T^{k,1} M^b T^{k,2}
\]
where $T^{k,1}$ are T or \mathbb{I} (the identity operator), $T^{k,2}$ are the bounded linear operators on $L^p(R^n)$ for $1 < p < \infty$ and $k = 1, \ldots, m, M^b(f) = bf$.

Page 3 of 9
Note that the commutator $[b,T](f) = bT(f) - T(bf)$ is a particular operator of the Toeplitz type operator T^b. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see Janson, 1978; Janson & Peetre, 1988; Krantz & Li, 2001; Paluszynski, 1995; Pérez & Pradolini, 2001; Pérez & Trujillo-Gonzalez, 2002). The main purpose of this paper is to prove the boundedness properties for the Toeplitz type operator T^b from Lebesgue spaces to Orlicz spaces.

We shall prove the following results in Section 4.

Theorem 1 Let T be the multiplier operator as Definition 3. Suppose that $Q = Q(x_0, d)$ is a cube with supp $f \subset (2Q)^c$ and $x, \bar{x} \in Q$.

1. If $b \in \text{BMO}(\mathbb{R}^n)$, then
 \[
 |T^{(b-b_0)}_{(Q_0)}(f)(x) - T^{(b_0)}_{(Q_0)}(f)(x_0)| \leq C||b||_{\text{BMO}} \sum_{k=1}^{m} M_k(T^{2}(f))(\bar{x}) \text{ for any } r > 1;
 \]

2. If $0 < \beta \leq 1$ and $b \in \text{Lip}_p(\mathbb{R}^n)$, then
 \[
 |T^{(b-b_0)}_{(Q_0)}(f)(x) - T^{(b_0)}_{(Q_0)}(f)(x_0)| \leq C||b||_{L_p} \sum_{k=1}^{m} M_k(T^{2}(f))(\bar{x}) \text{ for any } r > 1.
 \]

Theorem 2 Let $0 < \beta = 1, 1 < p < n/\beta$ and φ, ψ be two non-decreasing positive functions on $[0, + \infty)$ with $(\psi^{-1})^{-1}(t) = t^{1/p} \varphi(t^{-1/p})$. Suppose that ψ is convex, $\psi(0) = 0, \psi(2t) \leq C\psi(t)$. Let T be the multiplier operator as Definition 3. If $T^{1}(g) = 0$ for any $g \in L^p(\mathbb{R}^n)(1 < u < \infty)$, then T^b is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if $b \in \text{BMO}(\mathbb{R}^n)$.

Corollary 1 Let $0 < \beta = 1, 1 < p < n/\beta$ and T be the multiplier operator as Definition 3. If $T^{1}(g) = 0$ for any $g \in L^p(\mathbb{R}^n)(1 < u < \infty)$, then T^b is bounded on $L^p(\mathbb{R}^n)$ if $b \in \text{BMO}(\mathbb{R}^n)$.

Corollary 2 Let $1 < p < s < \infty$ and T be the multiplier operator as Definition 3. If $T^{1}(g) = 0$ for any $g \in L^p(\mathbb{R}^n)(1 < u < \infty)$, then T^b is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if $b \in \text{BMO}(\mathbb{R}^n)$.

3. Some lemma

We need the following preliminary lemmas.

Lemma 4 (see Kurtz & Wheeden, 1979) Let T be the multiplier operator as Definition 3. Then T is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$.

Lemma 5 (see Garcia-Cuerva & Rubio de Francia, 1985) Let $0 < p < \infty$. Then, for any smooth function f for which the left-hand side is finite,
\[
\int_{\mathbb{R}^n} M(f)(x)^p \, dx \leq C \int_{\mathbb{R}^n} f^p(x) \, dx
\]

Lemma 6 (see Chanillo, 1982) Suppose that $0 < \eta < \eta_1, 1 \leq r < p < n/\eta$ and $1/s = 1/p - \eta/n$. Then $||M_{\eta_1, (r)}(f)||_{\ell^s} \leq C ||f||_{\ell^s}$.

Lemma 7 (see Janson, 1978) Let p be a non-decreasing positive function on $[0, + \infty)$ and η be an infinitely differentiable function on \mathbb{R}^n with compact support such that $\int_{\mathbb{R}^n} \eta(x) \, dx = 1$. Denote that $b_1(x) = \int_{\mathbb{R}^n} b(x-ty) \eta(y) \, dy$. Then $||b - b_1||_{\text{BMO}} \leq C\rho(t)||b||_{\text{BMO}}$.

Note the above text is a natural text representation of the given document.
Lemma 8 (see Janson, 1978) Let $0 < \beta < 1$ or $\beta = 1$ and ρ be a non-decreasing positive function on $[0, +\infty)$. Then $\|b_1\|_{L^p_{\text{loc}}} \leq C_t \rho(t)\|b\|_{\text{BMO}}$.

Lemma 9 (see Janson, 1978) Suppose $1 \leq p_2 < p_1 < \infty$, ρ is a non-increasing function on R^n, B is a linear operator such that $m_B(f(t^{1/p_1}\rho(t))) \leq C t^{-1}\|f\|_{L^p} \leq 1$ and $m_B(f(t^{1/p_2}\rho(t))) \leq C t^{-1}\|f\|_{L^p} \leq 1$. Then $\int_0^\infty m_B(f(t^{1/p_1}\rho(t)))dt \leq C\|f\|_{L^p} \leq (p/p_1)^{1/p}$.

4. Proofs of Theorems

Now we are in position to prove our results.

Proof of Theorem 1 For $\text{supp } f \subset (2Q)^c$ and $x, \bar{x} \in Q$, note that $|x - y| \sim |x_0 - y|$ for $x \in Q$ and $y \in R^n \setminus 2Q$. We have

$$|T^{b-b_0,x_{0\Omega}}(f)(x) - T^{b-b_0,x_{0\Omega}}(f)(x_0)| \leq \sum_{k=1}^m |T^{k+1}M^{b-b_0,x_{0\Omega}}T^{k-2}(f)(x) - T^{k+1}M^{b-b_0,x_{0\Omega}}T^{k-2}(f)(x_0)|$$

For $1 \leq s, t < \infty$ with $1/r + 1/s + 1/t = 1$, we have

$$|T^{k+1}M^{b-b_0,x_{0\Omega}}T^{k+2}(f)(x) - T^{k+1}M^{b-b_0,x_{0\Omega}}T^{k+2}(f)(x_0)| \leq C\|b\|_{\text{BMO}}M_s(T^{k+2}(f))(\bar{x})$$

Thus

$$|T^{b-b_0,x_{0\Omega}}(f)(x) - T^{b-b_0,x_{0\Omega}}(f)(x_0)| \leq C\|b\|_{\text{BMO}}M_{s}(T^{k+2}(f))(\bar{x})$$
(II) Note that, for \(b \in Lip_{\mathcal{R}}(R^n) \),

\[
|b(x) - b_Q| \leq \frac{1}{|Q|} \int_Q |b|_{Lip} |x - y|^\delta dy \leq C |b|_{Lip} (|x - x_0| + d)^\delta
\]

similar to the proof of (I), we obtain, for \(1/r + 1/r' = 1 \),

\[
|T^{k_1} \mathcal{M}^{b - b_Q \chi_{x_0}} T^{k_2} (f)(x) - T^{k_1} \mathcal{M}^{b - b_Q \chi_{x_0}} T^{k_2} (f)(x_0)|
\]

\[
\leq \sum_{j=1}^{\infty} \int_{Q} |b(y) - b_Q| |K(x - y) - K(x_0 - y)| |T_2^k (f)(y)| dy
\]

\[
\leq C |b|_{Lip} \sum_{j=1}^{\infty} 2^j |Q|^{1/\delta} \left(\int_{2^j x_0 < x_0 < 2^{j+1} x_0} |K(x,y) - K(x_0,y)|^\delta dy \right)^{1/r'}
\]

\[
\times \left(\int_{2^j Q} |T_2^k (f)(y)| dy \right)^{1/r}
\]

\[
\leq C |b|_{Lip} \sum_{j=1}^{\infty} 2^{j+1} |Q|^{1/\delta} \left(\int_{2^j x_0 < x_0 < 2^{j+1} x_0} |T_2^k (f)(y)| dy \right)^{1/r}
\]

\[
\leq C |b|_{Lip} \sum_{j=1}^{\infty} M_{\delta / \delta} (T_2^k (f))(\bar{x})
\]

thus

\[
|T^{b - b_Q \chi_{x_0}} (f)(x) - T^{b - b_Q \chi_{x_0}} (f)(x_0)|
\]

\[
\leq \sum_{k=1}^{m} |T^{k_1} \mathcal{M}^{b - b_Q \chi_{x_0}} T^{k_2} (f)(x) - T^{k_1} \mathcal{M}^{b - b_Q \chi_{x_0}} T^{k_2} (f)(x_0)|
\]

\[
\leq C |b|_{Lip} \sum_{k=1}^{m} M_{\delta / \delta} (T_2^k (f))(\bar{x})
\]

These complete the proof.

Proof of Theorem 2 Without loss of generality, we may assume \(T^{k_1} \) are \(T(k = 1, \ldots, m) \). We prove the theorem in several steps. First, we prove, if \(b \in BMO(R^n) \),

\[
(T^b (f))^n \leq C |b|_{BMO} \sum_{k=1}^{m} M_k (T_2^k (f))
\] (1)

for any \(1 < r < \infty \).

Fix a cube \(Q = Q(x_0, d) \) and \(\bar{x} \in Q \). By \(T^1 (g) = 0 \), we have \(T^b (f) = T^{b - b_1} (f) \), thus

\[
T^b (f) = T^{b - b_0} (f) = T^{b - b_1 \chi_{x_0}} (f) + T^{b - b_2 \chi_{x_0}} (f) = I_1 (x) + I_2 (x)
\]

and

\[
\frac{1}{|Q|} \int_Q |T^b (f)(x) - I_2 (x_0)| dx \leq \frac{1}{|Q|} \int_Q |I_1 (x)| dx + \frac{1}{|Q|} \int_Q |I_2 (x) - I_2 (x_0)| dx = I_1 + I_2
\]

For \(I_1 \), choose \(1 < s < r \), by Hölder’s inequality and the boundedness of \(T \) (see Lemma 4), we obtain
\[
\frac{1}{|Q|} \int_Q |T^{k,1}M^{b-b_0}(\xi_0)T^{k,2}(f)(x)| \, dx \\
\leq \left(\frac{1}{|Q|} \int_{Q'} |T^{k,1}M^{b-b_0}(\xi_0)T^{k,2}(f)(x)|^s \, dx \right)^{1/s} \\
\leq C|Q|^{-1/s} \left(\int_{Q'} |M^{b-b_0}(\xi_0)T^{k,2}(f)(x)|^s \, dx \right)^{1/s} \\
\leq C|Q|^{-1/s} \left(\int_{Q'} |T^{k,2}(f)(x)|^r \, dx \right)^{1/r} \left(\int_{Q'} |b(x) - b_0|^{s/r-s} \, dx \right)^{(r-s)/rs} \\
\leq C||b||_{\text{BMO}} \left(\frac{1}{|Q|} \int_{Q'} |T^{k,2}(f)(x)|^r \, dx \right)^{1/r} \\
\leq C||b||_{\text{BMO}} M_{r}(T^{k,2}(f))(\bar{x})
\]

thus
\[
I_1 \leq \sum_{k=1}^{m} \frac{1}{|Q|} \int_Q |T^{k,1}M^{b-b_0}(\xi_0)T^{k,2}(f)(x)| \, dx \\
\leq C||b||_{\text{BMO}} \sum_{k=1}^{m} M_{r}(T^{k,2}(f))(\bar{x})
\]

For \(I_2\), by using Theorem 1,
\[
I_2 \leq C||b||_{\text{BMO}} \sum_{k=1}^{m} M_{r}(T^{k,2}(f))(\bar{x})
\]

We now put these estimates together and take the supremum over all \(Q\) such that \(\bar{x} \in Q\), we obtain
\[
(T^{b}(f))^{\#}(\bar{x}) \leq C||b||_{\text{BMO}} \sum_{k=1}^{m} M_{r}(T^{k,2}(f))(\bar{x})
\]

Thus, taking \(r\) such that \(1 < r < p\), we obtain, by Lemma 5,
\[
||T^{b}(f)||_{L^r} \leq ||M(T^{b}(f))||_{L^r} \leq C||(T^{b}(f))^{\#}||_{L^r} \\
\leq C||b||_{\text{BMO}} \sum_{k=1}^{m} ||M_{r}(T^{k,2}(f))||_{L^r} \\
\leq C||b||_{\text{BMO}} \sum_{k=1}^{m} ||T^{k,2}(f)||_{L^r} \\
\leq C||b||_{\text{BMO}} ||f||_{L^r}
\]

(2)

Secondly, we prove that, if \(b \in \text{Lip}_p(R^n)\),
\[
(T^{b}(f))^{\#} \leq C||b||_{\text{Lip}_p} \sum_{k=1}^{m} M_{p,\alpha}(T^{k,2}(f))
\]

(3)

for any \(r\) with \(1 < r < n/\beta\). In fact, similar to the proof of (1) and by Theorem 1, we obtain
Thus, (3) holds. We take $1 < r < p < n/\beta$, $1/q = 1/p - \beta/n$ and obtain, by Lemma 6,

$$
\|[T^b(f)]\|_{L^r} \leq \|[M(T^b(f))]\|_{L^r} \leq C [\|(T^b(f))^{1/p}\|_{L^r}]
$$

$$
\leq C \|b\|_{Lip} \sum_{k=1}^{m} \|M_{\beta,p}(T^{k,2}(f))\|_{L^r}
$$

$$
\leq C \|b\|_{Lip} \|f\|_{L^r}
$$

(4)

Now we verify that T^b satisfies the conditions of Lemma 9. In fact, for any $1 < p < n/\beta$, $1/q = 1/p - \beta/n (i = 1, 2)$ and $\|f\|_{L^p} \leq 1$, note that $T^b(f)(x) = T^{b,1}(f)(x) + T^{b,2}(f)(x)$, $b - b_q \in BMO(R^n)$ and $b_q \in Lip_{\beta,p}(R^n)$ by (2) and Lemma 7, we obtain

$$
\|[T^{b,1}(f)]\|_{L^r} \leq C \|b - b_q\|_{BMO} \|f\|_{L^p}
$$

$$
\leq C \|b - b_q\|_{BMO} \leq C \|b\|_{BMO, \varphi(s)}
$$

and by (4) and Lemma 8, we obtain

$$
\|[T^b(f)]\|_{L^r} \leq C \|b\|_{Lip} \|f\|_{L^p} \leq C S^{-\beta} \varphi(s) \|b\|_{BMO, \varphi(s)}
$$

Thus, for $s = t^{-1/n}$ and $i = 1, 2$,

$$
m_{T^b(f)}(\varphi^{-1}(t)) \leq m_{t^{1/p, \varphi(t^{-1/n})}}(t^{1/p, \varphi(t^{-1/n})})
$$

$$
\leq m_{T^{b,1}(f)}(t^{1/p, \varphi(t^{-1/n})}/2) + m_{T^{b,2}(f)}(t^{1/p, \varphi(t^{-1/n})}/2)
$$

$$
\leq C \left[\left(\frac{\varphi(s)}{t} \right)^{\beta} + \left(\frac{S^{-\beta} \varphi(s)}{t} \right)^{\beta} \right] \leq C t^{-1}
$$

Taking $1 < p_2 < p_1 < n/\beta$ and by Lemma 9, we obtain, for $\|f\|_{L^r} \leq (p/p_2)^{1/p}$,
\[
\int_{\mathbb{R}^n} |T^b(f)(x)| \, dx = \int_0^\infty m_{T^b,f}(\psi^{-1}(t)) \, dt \leq C
\]

then, \(||T^b(f)||_{L^\infty} \leq C\).

This completes the proof of the theorem.

Acknowledgements
The author would like to express her gratitude to the referees for their valuable comments and suggestions.

Funding
This paper is supported by the Scientific Research Fund of Hunan Province Land and Resources Departments (No. 2013-28).

Author details
Ouyang Difei1
E-mail: ouyangdifei1965@163.com
1 College of Mathematics, Changsha University of Science and Technology, Changsha 410077, Hunan, P.R. China.

Citation information
Cite this article as: Boundedness on Orlicz space of Toeplitz type operators related to multiplier operator and mean oscillation, Ouyang Difei, Cogent Mathematics (2015), 2: 1004229.

References
Chanillo, S. (1982). A note on commutators. Indiana University Mathematics Journal, 31, 7–16.
Coifman, R., Rochberg, R., & Weiss, G. (1976). Factorization theorems for Hardy spaces in several variables. Annals of Mathematics, 103, 611–635.
Garcia-Cuervo, J., & Rubio de Francia, J. L. (1985). Weighted norm inequalities and related topics. Mathematics studies (Vol. 116). North-Holland: Amsterdam.
Janson, S. (1978). Mean oscillation and commutators of singular integral operators. Arkiv för Matematik, 16, 263–270.
Janson, S., & Peetre, J. (1988). Paracommutators boundedness and Schatten–von Neumann properties. Transactions of the American Mathematical Society, 305, 467–504.
Krantz, S., & Li, S. (2001). Boundedness and compactness of integral operators on spaces of homogeneous type and applications. Journal of Mathematical Analysis and Applications, 258, 629–641.
Kurtz, D. S., & Wheeden, R. L. (1979). Results on weighted norm inequalities for multiplies. Transactions of the American Mathematical Society, 255, 343–362.
Lu, S. Z., & Mo, H. X. (2009). Toeplitz type operators on Lebesgue spaces. Acta Mathematica Scientia, 29, 140–150.
Muckenhoupt, B., Wheeden, R. L., & Young, W. S. (1987). Sufficient conditions for \(L^p\) multipliers with general weights. Transactions of the American Mathematical Society, 300, 463–502.
Paluszynski, M. (1995). Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal, 44, 1–17.
Pérez, C., & Pradolini, G. (2001). Sharp weighted endpoint estimates for commutators of singular integral operators. Michigan Mathematical Journal, 49, 23–37.
Pérez, C., & Trujillo-Gonzalez, R. (2002). Sharp weighted estimates for multilinear commutators. Journal London Mathematical Society, 65, 672–692.
Stein, E. M. (1993). Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals. Princeton, NJ: Princeton University Press.
Wang, K. W., & Liu, L. Z. (2009a). Boundedness for multilinear commutator of multiplier operator on Hardy spaces. Scientia Series A: Mathematical Science, 29, 1387–1396.
Wang, K. W., & Liu, L. Z. (2009b). Sharp inequality for commutators of singular integral operators. Acta Mathematica Sinica, 49, 629–641.
You, Z. (1979). Results of commutators obtained norm inequalities. Advanced in Mathematics, 17, 79–84 (in Chinese).
Zhang, P., & Chen, J. C. (2005). Acta Mathematica Sinica, 21, 765–772.
Zhang, P., & Chen, J. C. (2006). Boundedness properties for commutators of multiplies. Acta Mathematica Sinica (Chinese Series), 49, 1387–1396.