common lesions, and encephalopathy resulting in mental retardation.

Late-emerging or late-onset features of congenital rubella arise in infancy or childhood. These include interstitial pneumonia, sensorineural deafness, endocrine abnormalities such as diabetes mellitus and thyroid dysfunction, and progressive pan-encephalitis\(^1\). A chronic rash has also been reported as a manifestation of late-onset disease, although there have been only three reports of this.\(^2,7\)

In the three reports the onset of the rash was between 2-7 months in infants with other permanent features of congenital rubella. The eruption is described as a persistent erythematous rash, in one case this was reticulate with papular areas affecting face and extremities\(^6\); another nodulo-papular affecting the extremities\(^7\) and in the third mucosal affecting the face and limbs\(^7\). Atrophic changes at the site of the resolving rash as in our case has not been previously described. The exact duration of the rash is not stated, although all three reports say it was persistent. Histology of the rash in two cases\(^6,7\) showed a chronic inflammatory infiltrate in the reticular dermis that was periappendageal and perivascular as in our patient.

Other cutaneous manifestations of congenital rubella may be divided into those seen in the neonatal period and those of infancy. In the immediate neonatal period the commonest feature is the 'blueberry muffin' spots which occur in up to 50% of affected infants.\(^4\) These appear within the first 48 hours and are discrete red/blue infiltrated macules which occur mainly on the head, neck and trunk and fade over a period of weeks.

Histology of the lesions shows foci of extramedullary haemopoiesis in the dermis\(^6\). Although thrombocytopenia occurs in up to 85% of affected neonates, true petechiae and purpura are not common.\(^4\) There has been one report of five infants with congenital rubella syndrome who had discrete deep dimples over certain bony prominences, most commonly the patellae, which became less prominent as the patient grew\(^10\). Cutaneous manifestations occurring after the neonatal period include seborrhea, cutis marmorata, patchy hyperpigmentation\(^11\) and the chronic rash as described above.

A patient with congenital rubella syndrome who presented with a persistent rash and deafness is described. A chronic rash is a recognized late-onset manifestation of congenital rubella, although there have been only three previous descriptions of the rash. In addition our patient had the unusual feature of residual atrophic areas at the site of the rash which has not been previously reported.

References

1 Gregg NM. Congenital cataract following German measles in the mother. Trans Ophthalmol Soc Austr 1941;3:35-45
2 Miller E, Waight PA, Vurdie JO, Jones G, Tookey PA, Peckham CS. Rubella surveillance to December 1992: second joint report from PHLS and National Congenital Rubella Surveillance Programme. Can Dermatol Rev 1993;3:R35-R40
3 Cooper LZ. The history and medical consequences of rubella. Rev Infect Dis 1985;7(suppl 1):S9-S10
4 Hansahaw JB, Dudgeon JA, Marshall WC. Rubella. In: Viral Diseases of the Fetus and Newborn, 2nd edn. USA: WB Saunders Co., 1986:13-91
5 Castrow FP, De Beukelaer M. Congenital Rubella Syndrome: unusual cutaneous manifestations. Arch Derm 1968;98:260-2
6 Hanisian AS, Hashimoto K. Paramyxovirus-like inclusions in rubella syndrome. J Pediatr 1972;81:231-7
7 Marshall WC, Trompeter RS, Risdon RA. Chronic rashes in congenital rubella: isolation of virus from skin. Lancet 1975;ii:1349
8 Storer JS, Hawk RJ. Neonatal skin and skin disorders. In: Schachner LA, Hansen RC, eds. Pediatric Dermatology, Vol 1. Churchill Livingstone, 1988:267-310
9 Brough AJ, Jones D, Page RH, Minakami I. Dermal erythropoiesis in neonatal infants. Pediatrics 1967;40:627-35
10 Hammond K. Skin dimples and rubella. Pediatrics 1967; 39:291-2
11 Desmond MM, Wilson GS, Mennick JL, Singer DB, Zion TE, Rudolph AJ, et al. Congenital rubella encephalitis. J Pediatr 1967;71:311-31

(Accepted 12 July 1993)

Hutchinson-Gilford syndrome

G I Stables MBCh W N Morley RD FRCP
Department of Dermatology, Royal Hospital for Sick Children, Glasgow G3 8SJ, Scotland, UK

Keywords: progeria; premature ageing syndrome; hyaluronic acid

Introduction

Hutchinson-Gilford syndrome (HGS), otherwise known as progeria, is an extremely rare, genetic disease characterized by growth retardation and accelerated degenerative changes of the cutaneous, musculoskeletal and cardiovascular systems. The cause is unknown and there is no effective treatment. Investigation of patients with HGS will hopefully lead to a complete understanding of its pathogenesis with resulting therapeutic possibilities and, as an interesting by-product, may allow insight into the normal ageing process.

Case report

We report the case of an 18-month-old girl, born at term, the first child of unrelated parents. She was small for gestational age. At the age of 6 months she was noted to have a dysmorphic facies, alopecia and sclerodermatous changes on her lower legs. She was found to be below the third centile for weight and head circumference. At the age of 12 months the following features in addition to the above were seen: bird-like facies, prominent eyes, micrognathia, diffuse alopecia of scalp hair, eyebrows and eyelashes, prominent scalp veins (Figure 1) and loss of subcutaneous and muscular tissue most marked on the lower limbs.

Routine haematology, biochemistry and chromosomal analysis was normal. There was no evidence of excess urinary hyaluronic acid on electrophoresis. Radiological examination revealed hypoplastic clavicles and early coxa valga.

Correspondence to: G I Stables

Figure 1. The striking facies of Hutchinson-Gilford syndrome
Table 1. Clinical features of progeria

Always present	Usually present
Plucked bird appearance	Sclerodermatosus skin
Scalp alopecia	Generalized alopecia
Prominent scalp veins	Eyebrow/eyelash alopecia
Prominent eyes	Protruding ears
Micrognathia	Absent ear lobes
Delayed abnormal dentition	Glyphic nasal tip
Pear-shaped thorax	Thin lips
Short clavicles	Circumoral cyanosis
Coxa valga	Patent anterior fontanelle
Thin limbs	High-pitched voice
Prominent joints	Dystrophic nails
Short stature	Diffuse osteoporosis
Weight decreased for height	
Incomplete sexual maturation	
Decreased subcutaneous fat	
Normal intelligence and personality	
Resorption of distal phalanges	
Hyaluronuria	
Low amino acid concentration in blood	

These combined features enable the clinical diagnosis of the HGS to be made.

Discussion

The first case of progeria was described in 1886 by Johnathan Hutchinson, the second case reported by Hastings Gilford in 1904. There have to date been over 80 cases reported. It was Gilford who suggested the name progeria from the Greek word geron meaning old age. The incidence of HGS has been estimated at one in 8 million births. The disease is more common in males than females (1.5:1) and in Caucasians rather than Black Americans (97:3). Genetic studies suggest that a sporadic autosomal dominant mutation of the fertilising sperm or ovum is the most likely mode of inheritance.

The initial presentation is normally due to complaints of cutaneous abnormalities, primarily alopecia, and failure to thrive. The clinical features can be divided into those that are always present and those that are usually present (Table 1), and generally develop by the age of 2 years. Skeletal abnormalities of skull, thorax, long bones and phalanges produce a number of radiological findings which help support the clinical diagnosis.

Laboratory investigations have revealed a number of metabolic, endocrine, lipid and immunological abnormalities, none of which appear universal. Of greater interest has been the finding of an increased urinary excretion of hyaluronic acid. Hyaluronic acid has been shown to be involved in angiogenesis, morphogenesis, repair and the general integrity of the extracellular matrix and may account for the phenotype of HGS since the pathological features point toward a defect of connective tissue. In normal subjects, in the second decade of life, hyaluronic acid constitutes approximately 1% of glycosaminoglycans, whereas in the fifth to seventh decades of life, hyaluronic acid constitutes around 6% of glycosaminoglycans, suggesting an association with the normal ageing process. Problems with specimen collection and assay method used could easily explain the lack of increased urinary hyaluronic acid found in our case.

The diagnosis of HGS relies on the combination of the clinical features as there is no diagnostic test. HGS should be easily differentiated from other progeroid syndromes such as Werner's syndrome, acrogeria, Rothmund-Thomson syndrome and Cockayne's syndrome.

The average life expectancy is 13 years, with a range of 7 to 27 years. Over 80% of deaths are due to myocardial infarction or congestive cardiac failure, secondary to generalized atherosclerosis, which develops in all patients from as early as 5 years of age.

The expectation of a shortened life-span in our patient has enormous psychological and social implications.

References

1. Hutchinson J. Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages in a boy whose mother had been almost totally bald from alopecia areata from the age of six. Medicochir Trans 1886;69:473-7
2. Gilford H. Progeria: a form of senility. Practitioner 1904; 73:188-217
3. DeBusk FL. The Hutchinson-Gilford progeria syndrome. J Pediatr 1972;90:697-724
4. Badame AJ. Progeria. Arch Dermatol 1989;125:540-4
5. Sweeney KJ, Weiss AS. Hyaluronic Acid in Progeria and the aged phenotype. Gerontology 1992;38:139-52
6. Brown WT. Progeria: a human-disease model of accelerated aging. Am J Clin Nutr 1992;55:1229-45

(Accepted 21 July 1993)