Incidence of viral infection detected by PCR and real-time PCR in childhood community-acquired pneumonia: A meta-analysis

MIN WANG,1 FENG CAI,1 XIAODONG WU,2 TING WU,1 XIN SU1,† AND YI SHI1,†

1Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, and 2Department of Respiration, Changhai Hospital, Second Military Medical University, Shanghai, China

ABSTRACT

Several studies examining the incidence of viral infection in childhood community-acquired pneumonia (CAP) utilizing polymerase chain reaction (PCR) or real-time PCR methods have been reported. We systematically searched Pubmed and Embase for studies reporting the incidence of respiratory viral infection in childhood CAP. The pooled incidences of viral infection were calculated with a random-effects model. Sources of heterogeneity were explored by subgroup analysis and a univariate metaregression analysis. We included 21 eligible reports in our study. We found significant heterogeneity on the incidence of viral infection in childhood CAP. The random effects pooled incidence was 57.4% (95% confidence interval (CI): 50.8–64.1). The pooled incidence of mixed infection was 29.3% (95%CI: 23.0–35.6) with considerable heterogeneity. The pooled incidence of mixed infection was 29.3% (95%CI: 23.0–35.6). Rhinovirus, respiratory syncytial virus (RSV) and bocavirus were found to be the three most common viruses in childhood CAP. We also demonstrated that respiratory viruses were detected in 76.1% of patients aged ≤1 year, 63.1% of patients aged 2–5 years and 27.9% of patients aged ≥6 years. We conclude that respiratory viruses are widely detected in paediatric patients with CAP by PCR or real-time PCR methods. More than half of viral infections are probably concurrent with bacterial infections. Rhinovirus, RSV and bocavirus are the three most frequent viruses identified in childhood CAP; the incidence of viral infection decreased with age.

Key words: child, community-acquired pneumonia, incidence, meta-analysis, respiratory virus.

INTRODUCTION

Childhood community-acquired pneumonia (CAP) as a common and serious health-care problem is responsible for one fifth of children’s deaths according to the estimates of the World Health Organization.1,2 Despite the development of antimicrobial agents and vaccines, the morbidity and mortality caused by childhood pneumonia remains substantial in both developing and developed countries.3,4

The establishment of the aetiological agents is essential for treatment decisions especially when the first-line antibiotics are ineffective. The contributions of bacterial agents to childhood CAP have been widely investigated. The burden of disease caused by respiratory viruses has probably been underestimated due to the poor sensitivity and specificity of conventional diagnostic methods for respiratory viruses.5 However, recent advances in the molecular diagnostic techniques have improved the identification of respiratory viruses.6 Several studies examining the incidence of viral infection in childhood CAP with polymerase chain reaction (PCR) or real-time PCR methods have been reported. However, systematic review and meta-analysis of those studies are lacking to establish the incidence of viral infection in childhood CAP.

We performed a meta-analysis to determine the incidence of viral infection detected by PCR or real-time PCR methods in paediatric patients with CAP and to report the incidence of different respiratory virus.

METHODS

Search strategy and study selection

We searched Pubmed and Embase for citations published before 31 August 2014 with free-word, keyword and MeSH retrieval as follows: ‘community-acquired pneumonia’, ‘virus’, ‘pediatric’, ‘children’, ‘childhood’, ‘PCR’, and ‘polymerase chain reaction’, ‘real-time PCR’. Two authors independently screened titles and abstracts and retrieved the full text of any that appeared relevant. For inclusion, studies had to meet the following criteria: being a cross-sectional, case–control or cohort study; participants being ≤19 years.
old; either reporting viral incidence or providing raw data to enable their calculation; detecting respiratory viruses with PCR or real-time PCR methods; and full text available in English or Chinese literature. We excluded studies in adults or those using conventional methods for viral detection. We also excluded studies that evaluated the incidence of one specific respiratory virus.

Data extraction and classification

All included studies were quality independently assessed by two authors using quality criteria (Supplementary Table S1) based on the standard principles from Strengthening the Reporting of Observational studies in Epidemiology. For each study, one author extracted the information as follows: author name, country, year of publication, participants (number and mean age), specimens, viral detection methods and outcomes (the number of overall viral infection, the number of viral infection mixed with other pathogens and the number of individual viral infection); a second author checked for accuracy.

Statistical analysis

We used DerSimonian–Laird random-effects meta-analysis to calculate the pooled incidence of viral infection (with 95% confidence intervals (CI)) because of anticipated heterogeneity across studies. We tested for heterogeneity across the studies with Cochran Q (heterogeneity χ^2) and I^2 statistic (30–60% for moderate heterogeneity; 50–90% for substantial heterogeneity; 75–100% for considerable heterogeneity). We performed subgroup analysis in order to reduce the heterogeneity across studies and conduct further analysis. We also explored potential sources of heterogeneity by applying a univariate metaregression analysis examining: geographical region, specimen, the number of virus detected and detection methods. We assessed publication bias in our meta-analyses with the Egger tests and Begg–Mazumdar tests. We performed all analyses in Stata 12.1 (StataCorp, College Station, TX, USA) with the commands metan (for random-effects meta-analysis) and metareg (for metaregression).

RESULTS

Our searches returned a total of 337 records, out of which 46 were excluded as duplicates. After assessing all citations by titles and abstracts, we reviewed 55 papers in full. After exclusion of ineligible reports, 21 studies reporting on 10 196 participants ($n = 10196$) published between April 2000 and August 2014 were included in our analysis (Fig. 1). Quality scores were reported in Table 1.

Of these 21 reports, eight studies enrolled participants aged ≤5 years, and the other 13 studies enrolled participants aged ≤19 years. Twelve were carried out in Europe, five in Asia and four in other regions (one in the USA, one in Mozambique, one in Brazil and one in Israel). Eleven studies detected respiratory viruses solely based on PCR or real-time PCR, while the other 10 studies applied PCR or real-time PCR techniques combined with conventional methods for virus detection.

Overall incidence of respiratory viral infection in childhood CAP ranged from 18.7% to 91.0%
Study	Year of publication	Country	Patients	Specimens	Methods	Number of viruses detected	Quality score†
Cantais et al.	2014	France	<16 years	Induced sputum	Real-time PCR	15	6
Wiemken et al.	2013	USA	<18 years	Nasopharyngeal swabs	PCR	12	5
Esposito et al.	2013	Italy	<14 years	Respiratory secretion samples	Real-time PCR	17	9
Okada et al.	2012	Japan	<15 years	Nasopharyngeal swabs	Real-time PCR	11	8
Honkinen et al.	2012	Finland	<15 years	Induced sputum samples	Fluoroimmunoassay, real-time PCR	18	7
Ding et al.	2012	China	<5 years	Nasopharyngeal aspirates	Real-time PCR	12	6
Garcia-Garcia et al.	2012	Spain	<14 years	Nasopharyngeal aspirates	PCR	16	7
De Schutter et al.	2011	Belgium	<14 years	BALF	PCR	10	5
O’Callaghan-Gordo et al.	2011	Mozambique	<5 years	Nasopharyngeal aspirate	PCR	12	7
Wolf et al.	2010	Israel	<5 years	Nasopharyngeal wash specimens	DFA, PCR	8	5
Mathisen et al.	2009	Norway	<3 years	Nasopharyngeal aspirate	PCR	7	6
Lahti et al.	2009	Finland	6 months to 15 years	Nasopharyngeal aspirate and induced sputum	Fluoroimmunoassay, real-time PCR	11	6
Cevey-Macherel et al.	2009	Switzerland	2 months to 5 years	Serum, nasopharyngeal aspirates	Serology, DFA, real-time PCR	13	7
Samransamruajkit et al.	2008	Thailand	1 month to 15 years	Nasopharyngeal samples	Real-time PCR	7	6
Nascimento-Carvalho et al.	2008	Brazil	<5 years	Serum, nasopharyngeal aspirates	Serology, DFA, PCR	8	5
Hamano-Hasegawa et al.	2008	Japan	<18 years	Nasopharyngeal samples	Real-time PCR	13	7
Cilla et al.	2008	Spain	<3 years	Nasopharyngeal samples	Culture, PCR	14	6
Nakayama et al.	2007	Japan	<5 years	Serum, nasopharyngeal samples	Serology, PCR	11	7
Tsolia et al.	2004	Greece	<14 years	Nasopharyngeal wash samples	PCR	10	7
Laundy et al.	2003	UK	<5 years	Nasopharyngeal aspirate	PCR, IFA	8	6
Juven et al.	2000	Finland	<14 years	Nasopharyngeal sample	Culture, IFA, PCR	12	6

† Maximum score = 9.

BALF, bronchial alveolar lavage fluid; DFA, direct immunofluorescence assay; IFA, indirect immunofluorescence assay; PCR, polymerase chain reaction.
heterogeneity was considerable ($\chi^2 = 781.4$, $P < 0.0001; I^2 = 97.9\%$). The random effects pooled incidence was 57.4% (95% CI: 50.8–64.1). Due to the significant heterogeneity, pooled incidence of viral infection was calculated stratified by participants (≤5 years old or ≤19 years old, as illustrated in Fig. 2) or by geographical region where each study was carried out (Europe, Asia and other regions) as shown in Table 2. The pooled incidence of overall respiratory viral infection was 56.6% (95% CI: 48.1–65.1, $P = 96.8\%$) in participants ≤5 years old and 57.9% (95% CI: 48.1–67.7, $P = 98.1\%$) in participants ≤19 years old. In the subgroup analysis according to geographical region, the pooled incidence in Europe was similar to that in Asia (59.1%, 95% CI: 47.8–70.3, $P = 98.2\%$; 58.0%, 95% CI: 47.1–68.8). However, considerable heterogeneity persisted in subgroup analysis. In individual variable metaregression analysis, high number of virus for detection was related to high incidence of viral detection (Table 3).

Among the 21 reports, 11 studies provided raw data to estimate incidence of viral infections mixed with other pathogens ($n = 4169$). The random effects pooled incidence of mixed infection was 29.3% (95% CI: 22.4–36.2, $P = 96.1\%$). Similarly as above, subgroup analysis was carried out (Fig. 2); heterogeneity was considerable ($\chi^2 = 230.3$, $P < 0.0001; I^2 = 96.1\%$).
according to participants (≤5 years old or ≤19 years old) or the regions. The pooled incidence of mixed infections was 32.8% (95% CI: 13.8–51.7, \(I^2 = 91.8\% \)) in patients ≤5 years old, 29.4% (95% CI: 21.8–35.2, \(I^2 = 96.4\% \)) in patients ≤19 years old. Results of subgroup analysis according to regions were demonstrated in Table 2, along with considerable heterogeneity.

We further estimated individual incidence of common respiratory virus. As shown in Figure 3 and Table 4, the pooled incidence of childhood CAP associated with rhinovirus was highest (18.9%, 95% CI: 14.3–23.4, \(I = 95.8\% \)), followed by respiratory syncytial virus (RSV) (17.5%, 95% CI: 13.3–21.6, \(I = 97.1\% \)) and bocavirus (12.7%, 95% CI: 8.5–16.9, \(I = 95.8\% \)). The incidence of virus detected was higher in studies when real-time PCR was used for virus detection compared with other detection methods (Table 3).

Several studies provided incidence of viral infection in patients stratified by age: ≤1 year, 2–5 years, or ≥6

Table 3

Specimen	Region	The number of virus detected	Viral detection methods
Incidence of respiratory viral infection in childhood CAP	0.139	−0.028 to 0.307	0.098
	−0.082	−0.177 to 0.013	0.087
	0.034	0.013 to 0.054	0.003
	0.003	−0.091 to 0.096	0.953

Specimen	Region	The number of virus detected	Viral detection methods
Incidence of respiratory viral infection mixed with other pathogens in childhood CAP	0.064	−0.141 to 0.269	0.503
	−0.109	−0.219 to 0.001	0.052
	0.033	−0.001 to 0.068	0.049
	0.113	0.032 to 0.194	0.011

CAP, community-acquired pneumonia; CI, confidence interval.

Figure 3

The pooled incidence of viral infection mixed with other pathogens in childhood community-acquired pneumonia (CAP).
years old. The pooled incidence of viral infection was 76.1% (95% CI: 62.8–89.4, $I^2 = 95.1\%$) in patients aged ≤ 1 year, 63.1% (95% CI: 50.2–75.9, $I^2 = 94.1\%$) in patients aged 2–5 years and 27.9% (95% CI: 4.3–51.5, $I^2 = 96.3\%$) in patients aged ≥ 6 years old. Our study indicated that the incidence of RSV-positive CAP in children varied with age as shown in Figure 4. The pooled incidence of RSV-positive CAP was 35.5% (95% CI: 22.0–49.0, $I^2 = 90.2\%$) in patients aged ≤ 1 year, 24.8% (95% CI: 14.3–35.3, $I^2 = 92.6\%$) in patients aged 2–6 years and 4.8% (95% CI: 0.0–11.3, $I^2 = 86.6\%$) in patients aged ≥ 6 years old. The incidence of rhinovirus infections was similar in the three age groups.

We estimated publication bias with Egger tests and Begg–Mazumdar tests. However, no publication bias was identified (Supplementary Fig. S1).

DISCUSSION

Our systematic review and meta-analysis included 21 previously published reports investigating the incidence of viral infection in childhood CAP. Our main findings are that respiratory viruses could be detected in approximately 55% paediatric patients with CAP, with more than half characterized as mixed infection.

Rhinovirus, RSV and bocavirus were the most frequently detected pathogens in childhood CAP. The incidence of viral infection varied with age and in particular was higher in patients aged ≤ 1 year old than that in patients aged ≥ 6 years old. The findings elucidate the contributions of respiratory virus in causing childhood CAP.

Rhinovirus, RSV and bocavirus were the three most common viruses associated with childhood CAP, while influenza virus, rhinovirus and coronavirus are the leading viruses in adult patients with CAP. Contrary to RSV, which has been clearly defined as an important cause of childhood CAP, rhinoviruses and bocavirus were uncommon findings using conventional methods such as culture, antigen detection or serology. However, with the advent of PCR techniques, rhinoviruses and bocavirus have been detected increasingly in childhood CAP. Our findings emphasize the importance of these viruses which are involved in the pathogenesis of childhood CAP and underline the need to address this clinical problem. Up to now, experience with antivirals for CAP caused by these viruses is scarce. Only few case reports and some treatment studies in immunosuppressed patients investigated the efficiency of ribavirin, which is a broad antiviral agent in treatment for bronchiolitis and pneumonia caused by RSV infection. More safe and efficient vaccines and agents are needed to be developed in order to prevent and manage these viral infections.

As demonstrated in our study, mixed infection by viruses and other pathogens account for more than half of overall viral infection. Interaction of virus and bacteria in the pathogenesis of pneumonia has been partially explored. One hypothesis is that viral infections are followed by secondary bacterial infection. Viral infections disrupt mucosal barriers in the respiratory tracts, which makes hosts susceptible to bacterial infection. Mixed infections may induce more severe clinical diseases than individual bacterial or viral infections alone. One study reported that co-infection of influenza virus and *Staphylococcus aureus* can lead to severe fatal pneumonia in children.

Our heterogeneity analysis generated two key findings. Firstly, the incidence of overall virus infection is reported to be higher in the studies that detect many virus species than the studies which detect fewer
species. The yield virus detection is associated with the species viruses identified. Secondly, for mixed infection, real-time PCR achieve higher yield rate compared with other diagnostic methods. This result highlights the importance to develop standards for identifying respiratory virus in clinical practice.

Our study has several limitations. First of all, only reports in English/Chinese literature were included in our study, which led to the loss of raw data from reports in other languages. Furthermore, many studies indicated that some respiratory viruses present a strong seasonal pattern like influenza viruses. However, those data were not included for the meta-analysis. Moreover, we did not correlate clinical severity of pneumonia with causative viral pathogens due to the lack of original data.

In conclusion, our results suggest that more attention should be paid to the respiratory viruses as a cause or contributing factor of childhood CAP. Further studies are required to establish a standard method for specimen collection and identification of respiratory viruses.

REFERENCES

1 Bryce J, Boschi-Pinto C, Shibuya K, Black RE. WHO estimates of the causes of death in children. Lancet 2005; 365: 1147–52.

2 Williams BG, Gouws E, Boschi-Pinto C, Bryce J, Dye C. Estimates of world-wide distribution of child deaths from acute respiratory infections. Lancet Infect. Dis. 2002; 2: 25–32.

3 Yorita KL, Holman RC, Seijar JJ, Steiner CA, Schonberger LB. Infectious disease hospitalizations among infants in the United States. Pediatrics 2008; 121: 244–52.

4 McIntosh K. Community-acquired pneumonia in children. N. Engl. J. Med. 2002; 346: 429–37.

5 Weinberg GA, Erdman DD, Edwards KM, Hall CB, Walker FJ, Griffin MR, Schwartz B. Superiority of reverse-transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J. Infect. Dis. 2004; 189: 706–10.

6 Symrnis MW, Whitey DM, Thomas M, Mackay IM, Williamson J, Siebert DJ, Nissen MD, Sloots TP. A sensitive, specific, and cost-effective multiplex reverse transcriptase-PCR assay for the detection of seven common respiratory viruses in respiratory samples. J. Mol. Diagn. 2004; 6: 125–31.

7 von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370: 1453–7.

8 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control. Clin. Trials 1986; 7: 177–88.

9 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21: 1539–58.

10 Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002; 21: 1559–73.

11 Wiemken T, Peyrani P, Bryant K, Kelley RR, Summersgill J, Arnold F, Carrico R, McKinney WP, Jonsson C, Carrico K et al. Incidence of respiratory viruses in patients with community-acquired pneumonia admitted to the intensive care unit: results from the Severe Influenza Pneumonia Surveillance (SIPS) project. Eur J. Clin. Microbiol. Infect. Dis. 2013; 32: 705–10.

12 Esposito S, Daleno C, Prunotto G, Scala A, Tagliabue C, Borzani I, Fossali E, Pelucchi C, Principi N. Impact of viral infections in children with community-acquired pneumonia: results of a study of 17 respiratory viruses. Influenza Other Respir Viruses 2013; 7: 18–26.

13 Okada T, Morozumi M, Sakata H, Takayanagi R, Ishiwada N, Sato Y, Oishi T, Tajima T, Haruta T, Kawamura N et al. A practical approach estimating etiologic agents using real-time PCR in pediatric inpatients with community-acquired pneumonia. J. Infect. Chemother. 2012; 18: 832–40.

14 Honkinen M, Lahti E, Osterback R, Ruuskanen O, Waris M. Viruses and bacteria in sputum samples of children with community-acquired pneumonia. Clin. Microbiol. Infect. 2012; 18: 300–7.

15 Garcia-Marcia ML, Calvo C, Pozo F, Villadangos PA, Perez-Brena P, Casas I. Spectrum of respiratory viruses in children with community-acquired pneumonia. Pediatr. Infect. Dis. J. 2012; 31: 808–13.

16 Ding XF, Zhang B, Zhong LL, Xiao NG, Zhou QH, Duan ZJ, Xie ZP, Gao HC. [Viral etiology and risk factors for severe community-acquired pneumonia in children]. Zhongguo Dang Dai Er Ke Za Zhi 2012; 14: 449–53.

17 O’Callaghan-Gordo C, Bassat Q, Morais L, Diez-Padresa N, Machevo S, Nhampossa T, Nhalungo D, Sanz S, Quinto L, Alonso PL et al. Etiology and epidemiology of viral pneumonia among hospitalized children in rural Mozambique: a malaria endemic area with high prevalence of human immunodeficiency virus. Pediatr. Infect. Dis. J. 2011; 30: 39–44.

18 De Schutter I, De Wachter E, Crockaert F, Verhaegen J, Soetens O, Pierard D, Malfroot A. Microbiology of bronchoalveolar lavage fluid in children with acute nonresolving or recurrent community-acquired pneumonia: identification of nontypeable Haemophilus influenzae as a major pathogen. Clin. Infect. Dis. 2011; 52: 1437–44.

19 Wolf DG, Greenberg D, Shenmer-Avni Y, Givon-Lavi N, Bar-Ziv I, Dagan R. Association of human metapneumovirus with radiologically diagnosed community-acquired alveolar pneumonia in young children. J. Pediatr. 2010; 156: 115–20.

20 Mathisen M, Strand TA, Sharma BN, Chandry RK, Valentinier-Branth P, Basnet S, Adhikari RK, Hvidsten D, Shrestha PS, Sommerfelt H. RNA viruses in community-acquired child pneumonia in semi-urban Nepal; a cross-sectional study. BMC Med. 2009; 7: 35.

21 Lahti E, PeltoLA, Vairis M, Virkki R, Rakantakoko-Jalava K, Jalava J, Ferola E, Ruuskanen O. Induced sputum in the diagnosis of childhood community-acquired pneumonia. Thorax 2008; 64: 252–7.

22 Cevey-Macherel M, Galetto-Lacour A, Gervaux A, Siegert CA, Bille J, Bescher-Ninet B, Kaiser L, Krahenbuhl JD, Gehri M. Etiology of community-acquired pneumonia in hospitalized children based on WHO clinical guidelines. Eur. J. Pediatr. 2009; 168: 1429–36.

23 Samransmruanjkit R, Hiranrat T, Chieochansin T, Sritippayawan S, Deerjanowang J, Prapphal N, Poovorawan Y. Prevalence, clinical presentations and complications among hospitalized children with influenza pneumonia. Jpn. J. Infect. Dis. 2008; 61: 446–9.

24 Nascimento-Carvalho CM, Ribeiro CT, Cardoso MR, Barral A, Araujo-Neto CA, Oliveira JR, Sobral LS, Vriato D, Souza AL, Saukkorpi A et al. The role of respiratory viral infections among children hospitalized for community-acquired pneumonia in a developing country. Pediatr. Infect. Dis. J. 2008; 27: 939–41.

25 Hamano-Hasegawa K, Morozumi M, Nakayama E, Chiba N, Muryayama SY, Takayanagi R, Iwata S, Sunakawa K, Ubukata K. Comprehensive detection of causative pathogens using real-time PCR to diagnose pediatric community-acquired pneumonia. J. Infect. Chemother. 2008; 14: 424–32.

26 Cilla G, Onate E, Perez-Yarza EG, Montes M, Vicente D, Perez-Trallero E. Viruses in community-acquired pneumonia in children aged less than 3 years old: high rate of viral coinfection. J. Med. Virol. 2008; 80: 1843–9.

27 Nakayama E, Hasegawa K, Morozumi M, Kobayashi R, Chiba N, Iitsuka T, Tajima T, Sunakawa K, Ubukata K. Rapid optimization of antimicrobial chemotherapy given to pediatric patients with
community-acquired pneumonia using PCR techniques with serology and standard culture. *J. Infect. Chemother.* 2007; 13: 305–13.

28 Tsolia MN, Psarras S, Bossios A, Audi H, Paldanios M, Gourgrotis D, Kallergi K, Kafetzis DA, Constantopoulos A, Papadopoulos NG. Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. *Clin. Infect. Dis.* 2004; 39: 681–6.

29 Laundy M, Ajayi-Obie E, Hawrami K, Aitken C, Breuer J, Booy R. Influenza A community-acquired pneumonia in East London infants and young children. *Pediatr. Infect. Dis. J.* 2003; 22: S223–7.

30 Juven T, Mertsol J, Waris M, Leinonen M, Meurman O, Roivainen M, Eskola J, Saikku P, Ruuskanen O. Etiology of community-acquired pneumonia in 254 hospitalized children. *Pediatr. Infect. Dis. J.* 2000; 19: 293–8.

31 Cantais A, Mory O, Pillet S, Verhoeven PO, Bonneau J, Patural H, Pozzetto B. Epidemiology and microbiological investigations of community-acquired pneumonia in children admitted at the emergency department of a university hospital. *J. Clin. Virol.* 2014; 60: 402–7.

32 Cesario TC. Viruses associated with pneumonia in adults. *Clin. Infect. Dis.* 2012; 55: 107–13.

33 Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. *Lancet* 2011; 377: 1264–75.

34 Hayden FG. Rhinovirus and the lower respiratory tract. *Rev. Med. Virol.* 2004; 14: 17–31.

35 Fry AM, Lu X, Chittaganpitch M, Peret T, Fischer J, Dowell SF, Anderson L, Erdman D, Olson S. Human bocavirus: a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand. *J. Infect. Dis.* 2007; 195: 1038–45.

36 Hopkins P, McNeil K, Kermeen F, Musk M, McQueen E, Mackay I, Sloots T, Nissen M. Human metapneumovirus in lung transplant recipients and comparison to respiratory syncytial virus. *Am. J. Respir. Crit. Care Med.* 2008; 178: 876–81.

37 Empey KM, Peebles RS Jr, Kolls JK. Pharmacologic advances in the treatment and prevention of respiratory syncytial virus. *Clin. Infect. Dis.* 2010; 50: 1258–67.

38 Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochinardar S, Nguyen TK, Nguyen TH, Tran TH et al. Avian influenza A (H5N1) infection in humans. *N. Engl. J. Med.* 2005; 353: 1374–85.

39 Bautista E, Chotpitayasunondth G, Gao Z, Harper SA, Shaw M, Uyeki TM, Zaki SR, Hayden FG, Hui DS, Kettner JD et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. *N. Engl. J. Med.* 2010; 362: 1708–19.

40 Reed C, Kallen AJ, Patton M, Arnold KE, Farley MM, Hageman J, Finelli L. Infection with community-onset *Staphylococcus aureus* and influenza virus in hospitalized children. *Pediatr. Infect. Dis. J.* 2009; 28: 572–6.

41 Finelli L, Fiore A, Dhara R, Brammer L, Shay DK, Kamimoto L, Fry A, Hageman J, Gorwitz R, Bresee J et al. Influenza-associated pediatric mortality in the United States: increase of *Staphylococcus aureus* coinfection. *Pediatrics* 2008; 122: 805–11.

Supplementary Information

Additional Supplementary Information can be accessed via the html version of this article at the publisher’s web-site:

Supplementary Figure S1 Estimation of publication bias with Egger tests.

Supplementary Table S1 Quality assessment.