Polymorphic variants conferring genetic risk to cervical lesions support GSTs as important associated loci

Sijuan Tian, MMed, Xiaofeng Yang, PhD, MD, Li Zhang, MMed, Juan Zhao, MMed, Meili Pei, MMed, Yang Yu, MMed, Ting Yang, MMed

Abstract
To analyze the association between glutathione S-transferases polymorphisms and the risk of cervical lesions.

Case-control studies focusing on the association between glutathione S-transferase polymorphisms and the risk of cervical lesions were collected from the PubMed, Web of Science, Cochrane Library, Embase, Medline, CNKI, VIP and Wanfang databases from inception to August 2018. Pooled odds ratios and 95% confidence intervals were employed to evaluate the strength of the association. Subgroup analysis and sensitivity analysis were used to test the potential discrepancy and robustness, respectively.

A total of 30 studies comprising 3961 patients and 4726 healthy controls satisfied the inclusion criteria. Of these, 6 studies contained information about GSTP1, 27 studies contained information about GSTM1, and 22 studies contained information about GSTT1. Our results supported that there was no statistical association between GSTP1 polymorphism and the risk of cervical lesions (odds ratio [OR] = 1.08, P = .40). The GSTM1 null variant showed increased susceptibility to cervical lesions (OR = 1.45, P < .001). Subgroup analysis revealed that the GSTM1 null variant caused cervical lesions among HPV infection cases (OR = 1.69, P = .02) and among the Chinese and Indian populations (OR = 2.24 and OR = 1.87, respectively, P < .001). The GSTT1 null variant increased the risk of cervical lesions in smokers (OR = 1.52, P = .03). The GSTT1 null genotype was also related to high-grade intraepithelial neoplasia (HSIL) and cervical cancer risk (OR = 1.30 and OR = 1.78, respectively, P < .05).

The GSTM1 null variant caused cervical lesions, especially among HPV infection cases and among the Chinese and Indian populations. The GSTT1 null variant increased the risk of cervical lesions in smokers and was also related to HSIL and cervical cancer risk.

Abbreviations: CI = confidence interval, CIN = cervical intraepithelial neoplasia, GST = Glutathione S-transferase, HDI = human development index, HPV = human papillomavirus, HSIL = high-grade squamous intraepithelial neoplasia, LSIL = low-grade squamous intraepithelial neoplasia (LSIL), OR = odds ratio.

Keywords: cervical lesions, GSTM1, GSTP1, GSTT1, polymorphisms

1. Introduction
Cervical cancer ranks fourth for both incidence and mortality rates in women, with an estimated 770,000 cases and 311,000 deaths in 2018 worldwide. In lower human development index (HDI) regions, it is the second most frequently diagnosed cancer and the second leading cause of cancer death.[1] In China, the results indicated that an estimated 98,900 new cases and 30,500 cancer deaths occurred in 2015.[2] Human papillomavirus (HPV) is considered a major factor in cervical cancer. Other co-factors are also important in cervix carcinogenesis, including immune suppression, cigarette smoking, parity, and oral contraceptive use.

Glutathione S-transferases (GSTs) are a family of phase II enzymes that are responsible for the metabolism of various xenobiotics and carcinogens by catalyzing the conjugation of glutathione to electrophilic compounds.[3] Studies have shown that genetic variations in GSTs affect human phase II detoxification enzymes, thereby altering their ability to detoxify various exogenous and endogenous active species.[4] Previous studies revealed that the GST genetic variants were related to the risk of several cancers, such as breast, lung, prostate, bladder, and nasopharyngeal cancer risk.[5] However, the results were controversial regarding whether GST polymorphisms would lead to the development of cervical lesions, so we conducted this meta-analysis about the relationship between GST genetic variants and cervical lesions risk.

2. Material and methods
2.1. Literature search strategy
We searched the Cochrane Library, Embase, Medline, PubMed, Web of Science, CNKI, Wanfang, and VIP databases by the
following search terms: Glutathione Transferase[Mesh] or GST*, glutathione S-transferase [p][Mesh] or GSTP1, glutathione S-transferase M1[Mesh] or GSTM1, glutathione S-transferase T1 [Mesh] or GSTT1, polymorphism*/variant*/mutation*/SNP, Uterine Cervical Neoplasm [Mesh]/cervix cancer/cervical cancer/cervical neoplasm*/cervical carcinoma*, and the combinations of these. In addition, we searched the reference lists of all identified articles manually to acquire more data.

2.2. Inclusion and exclusion criteria
Studies included needed to meet the following criteria: regarding on the association between GST gene polymorphisms (GSTP1/ GSTM1/GSTT1) and the risk to cervical lesions; human study subjects; case-control studies; available and sufficient genotype distribution data to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs); and diagnoses based on cervical biopsy pathology or cytology. Besides, if there were duplicate studies, the most complete one was reserved. Otherwise, the article was excluded if it did not satisfy the criteria above.

2.3. Data extraction and synthesis
Two investigators extracted relevant data from all the eligible studies independently. A third reviewer was invited to participate in the work when some disagreement occurred; consensus was ultimately reached by discussion. According to the 4th WHO Women’s Genital Tumor Classification Guidelines, we defined cervical lesions as cervical cancer, high-grade intraepithelial neoplasia (HSIL), and low-grade intraepithelial neoplasia (LSIL). LSIL was equivalent to cervical intraepithelial neoplasia (CIN) grade 1, and HSIL included most amount of CIN2 and all CIN3 cases. We gathered characteristics from all satisfied records: the first author, publication year, ethnicity, total numbers of cases and controls, source of controls, genotyping method.

2.4. Statistical analysis
Using the ORs and 95% CIs to assess the degree of association between GSTs polymorphic variants and cervix lesions. A Z-test revealed statistical significance when \(P < .05\). \(I^2\) and \(Q\) statistic were applied to detect heterogeneity among different studies. There was no heterogeneity if \(I^2 < 50\%\) and \(P > .1\) and a fixed effect model was used, otherwise we thought heterogeneity existed in the incorporated populations and a random effect model was used instead. Subsequently, we conducted a subgroup analysis according to HPV infection status, cigarette smoking, degree of cervical lesions, and ethnicity. Hardy-Weinberg equilibrium (HWE) was evaluated by chi-square test with \(P < .05\) indicating a deviation from HWE. Sensitivity analysis was employed to estimate stability of the meta-analysis results by deleting all the studies one by one. Additionally, a Begg funnel plot and an Egger test were used to evaluate publication bias. The statistical analyses were performed using RevMan 5.3 (Cochrane Collaboration) and STATA 12.0 (StatCorp., College Station, TX, USA) software.

3. Results

3.1. Characteristics of included studies
By searching the electronic databases systematically, we initially retrieved 300 articles. After excluding duplicate studies, 207 articles remained. Further reviewing of the titles and abstracts of the identified studies allowed the removal of 169 articles. Of those removed, 141 were clearly irrelevant to GST polymorphisms, 20 were review papers or meta-analyses, 8 records were deleted for other reasons. We downloaded the remaining 38 articles as full-text reports and reviewed them carefully. Four records were excluded for containing duplicate samples, and the data were not available in other 4 studies. Finally, 30 case-control studies containing 3961 cases and 4726 controls were included, among which 6 studies were about GSTP1, 27 articles were on GSTM1, and 22 studies focused on GSTT1 (Fig. 1). The characteristics of included studies were presented at Table 1.

3.2. Meta-analysis results
There were 6 studies on the GSTP1 variant that included 897 cases and 1387 healthy controls. The meta-analysis results did not show a statistical association between GSTP1 polymorphism and the risk of cervical lesions in the dominant genetic model (\(OR = 1.08, P = .40\)) (Fig. 2).

A total of 27 case-control studies were included in the meta-analysis of GSTM1 involving 3383 cases and 3652 controls. The results showed that the GSTM1 null allele was related to an increased risk of cervical lesions (\(OR = 1.45, P < .001\)) (Fig. 3). Great heterogeneity existed in the GSTM1 studies (\(I^2 = 63\%), thus, a random-effect model was employed. In addition, we conducted subgroup analysis based on HPV infection status, smoking status, degree of cervical lesions, ethnicity. The results presented in Table 2. The GSTM1 null variant was related to an increased risk of cervical lesions among HPV positive cases (\(OR = 1.69, P = .02\)) (Fig. 4), nonsmokers (\(OR = 1.73, P < .001\)), and Chinese and Indian populations (\(OR = 2.24\) and \(OR = 1.87\), respectively, \(P < .001\)), but was not related to the degree of cervical lesions (Table 2).

For the GSTT1 genotype, there were 2680 cases and 2971 controls incorporated in the study. The pooled OR suggested that the GSTT1 null genotype might not be related to cervical lesions (\(P = .06\)) (Fig. 5). Considering the heterogeneity, we performed a subgroup analysis stratified by HPV infection status, cigarette smoking, degree of cervical lesions, and ethnicity. The results revealed that the GSTT1 null variant increased cervical lesions in smokers (\(OR = 1.52, P = .03\)) and nonsmokers (\(OR = 1.78\), respectively, \(P < .05\)) but was not related to LSIL (Fig. 6). HPV infection status and ethnicity did not modify the association between GSTT1 polymorphism and cervical lesions (Table 3).

3.3. Detection for heterogeneity and sensitivity analysis
As presented in Tables 2 and 3, there was great heterogeneity among studies relating to GST genetic variants (\(I^2 > 50\%), \(P < .1\)). In consideration of this, we used a random effect model for the meta-analysis. Additionally, subgroup analysis stratified by HPV infection status, cigarette smoking, degree of cervical lesions, and ethnicity was performed to eliminate heterogeneity. Heterogeneity was clearly decreased in the ethnicity subgroup. This indicated that ethnicity might be a confounding factor and heterogeneity source, while the pooled ORs were substantially robust.
300 records identified through database searching

0 additional study identified through other sources

207 articles remaining after duplicates removed

169 articles excluded after scanning titles and abstracts:
- 141 records were irrelevant;
- 20 were review or meta-analysis;
- 8 records were for other reasons.

38 records for full-text reading

4 articles had duplicated study subject;
4 studies’ data were not available.

30 studies were further assessed

30 records included in qualitative synthesis

Figure 1. Flow diagram of searching procedure.

Study	Country	Number (case/control)	Source of controls	Genotyping method
Agorastos 2007	Greece	166/114	Hospital	PCR
Chagas 2017	Brazil	175/266	Hospital	TaqMan RT-PCR
Chen 1999	America	190/206	Population	PCR
Cseh 2011	Hungary	117/136	Hospital	PCR
de Carvalho 2008	Brazil	43/86	Hospital	PCR
Goodman 2001	America	131/180	Population	PCR
Hasan 2013	Pakistan	50/50	Population	PCR
Jee 2002	Korea	342/707	Hospital	PCR
Kim 2000	Korea	181/181	Population	PCR
Kiran 2010	Turkey	46/52	Hospital	PCR
Lee 2004	Korea	81/86	Hospital	PCR-RFLP
Ma 2009	China	43/45	Hospital	PCR-RFLP
Natphopsuk 2015	Thailand	198/198	Hospital	PCR
Nishino 2008	Japan	124/125	Population	PCR
Nwa 2005	Japan	131/320	Hospital	PCR
Nunobiki 2015	Japan	140/52	Hospital	PCR
Palma 2010	Italy	81/111	Population	PCR
Salinder 2017	India	150/150	Hospital	PCR-RFLP
Sethreetham-Ishida 2009	Thailand	90/94	Population	PCR
Sharma 2015	India	160/457	Hospital	PCR
Sharma 2004	India	142/96	Hospital	PCR
Sierra-Torres 2003	America	69/72	Population	PCR
Sierra-Torres 2006	Colombia	91/02	Population	PCR
Singh 2008	India	150/168	Population	PCR
Soobi 2006	India	103/103	Hospital	PCR
Song 2006	China	130/130	Hospital	PCR
Stotic 2014	Serbia	97/50	Population	PCR
Ueda 2010	Japan	298/158	Population	PCR
Wang 2018	China	116/116	Hospital	PCR
Zhou 2006	China	129/125	Hospital	PCR

PCR = polymerase chain reaction, RFLP = restriction fragment length polymorphism.
Sensitivity analysis was utilized to evaluate the stability of the meta-analysis by deleting all the studies one by one. The pooled ORs did not change significantly in any of the GST variants, indicating that the meta-analysis was robust and stable (Fig. 7).

3.4. Publication bias

To detect publication bias, Begg funnel plot and Egger test were performed. The results indicated that no significant evidence of publication bias for GSTP1, GSTM1, and GSTT1 variant was observed in our study ($P > .05$) (Fig. 8).

4. Discussion

Cervical cancer is an outcome of virus-induced carcinogenesis. HPV is the primary etiology of cervical carcinogenesis but all HPV infections do not result in cervical cancer. Tobacco use, immune system function, use of oral contraceptive, number of sexual partners all modify the outcome of cervix lesions.

GSTs play an important role in protecting cells from oxidative damage and in modulating the induction of other enzymes and proteins in response to DNA damage, therefore, they are

![Figure 2](image-url) Forest plots of the association between GSTP1 polymorphism and susceptibility of cervical lesions in dominant genetic model.

![Figure 3](image-url) Forest plots of the association between GSTM1 polymorphism and susceptibility of cervical lesions.
Table 2

Meta-analysis results of GSTM1 polymorphism.

GSTM1	OR (95% CI)	P value	I² (%)	P value	Effects model	
Overall	1.45[1.23, 1.71]	<.001	63	<.00001	R	
HPV subgroup	Overall	1.51[1.11, 2.05]	.009	40	.06	R
HPV positive	1.69[1.10, 2.61]	.02	32	.19	R	
HPV negative	1.37[0.87, 2.15]	.18	40	.07	R	
Smoking subgroup	Overall	1.56[1.27, 1.91]	<.0001	10	.35	R
Smoking	1.29[0.92, 1.66]	.14	0	.50	R	
Non-smoking	1.73[1.34, 2.22]	<.0001	17	.30	R	
Degree of lesions subgroup	Overall	1.27[1.07, 1.50]	.006	0	.66	F
Cervical cancer	1.30[0.87, 1.96]	.20	0	.77	F	
HSIL	1.24[0.97, 1.59]	.08	23	.26	F	
LSL	1.28[0.96, 1.71]	.09	0	.57	F	
Ethnicity subgroup	Overall	1.65[1.44, 1.88]	<.0001	64	.0009	F
China	2.24[1.70, 2.96]	<.0001	34	.21	F	
Japan	1.15[0.91, 1.44]	.24	48	.12	F	
India	1.87[1.52, 2.30]	<.0001	43	.14	F	

95% CI = 95% confidence interval, F = fixed-effect model, HSIL = high-grade intraepithelial neoplasia, LSL = low-grade intraepithelial neoplasia, OR = odds ratio, R = random-effect model.

### Study or Subgroup	Case Events	Case Total	Control Events	Control Total	Odd Ratio M-H	Odd Ratio Random	95% CI M-H	95% CI Random
3.2.1 HPV Positive

Study or Subgroup	Case Events	Case Total	Control Events	Control Total	Odd Ratio M-H	Odd Ratio Random	95% CI M-H	95% CI Random
Goodman 2001	52	95	8	17	5.8%	2.22 [0.76, 6.48]		
Lee 2004	17	25	14	34	5.7%	3.04 [1.03, 8.96]		
Ma 2009	24	35	6	8	3.1%	1.31 [0.26, 6.48]		
Nunoaki 2015	32	57	4	10	4.0%	1.92 [0.49, 7.55]		
Sharma 2015	58	95	35	91	11.3%	2.51 [1.39, 4.53]		
Sierra-Torres 2006	33	83	18	36	8.5%	0.66 [0.30, 1.45]		
Wang 2018	54	76	26	42	8.4%	1.51 [0.68, 3.35]		
Subtotal (95% CI)	466	238	46.8%	1.69 [1.10, 2.61]				
Total events	270	108						

Heterogeneity: Tau² = 0.10; Chi² = 8.76, df = 6 (P = 0.19); I² = 32%
Test for overall effect: Z = 2.39 (P = 0.02)

3.2.2 HPV Negative

Study or Subgroup	Case Events	Case Total	Control Events	Control Total	Odd Ratio M-H	Odd Ratio Random	95% CI M-H	95% CI Random
Goodman 2001	22	36	92	163	9.2%	1.21 [0.58, 2.54]		
Lee 2004	25	56	28	52	8.9%	0.69 [0.32, 1.48]		
Ma 2009	5	8	10	37	3.1%	4.50 [0.90, 22.39]		
Nunoaki 2015	42	83	24	42	9.0%	0.77 [0.36, 1.62]		
Sharma 2015	31	65	125	366	12.2%	1.76 [1.03, 2.99]		
Sierra-Torres 2006	3	8	20	56	3.3%	1.08 [0.23, 5.00]		
Wang 2018	15	40	12	74	7.4%	3.10 [1.27, 7.55]		
Subtotal (95% CI)	296	790	53.2%	1.37 [0.87, 2.15]				
Total events	143	311						

Heterogeneity: Tau² = 0.17; Chi² = 11.80, df = 6 (P = 0.07); I² = 49%
Test for overall effect: Z = 1.36 (P = 0.18)

Figure 4

Subgroup analysis of the association between GSTM1 polymorphism and cervical lesions stratified by HPV infection status. HPV = human papillomavirus.
GSTs catalyzed the conjugation of glutathione to electrophilic substrates, which resulted in the enhanced renal clearance and reduced carcinogenic load from the cell.\[38\] The \textit{GSTP1} G/A single nucleotide polymorphism caused valine (Val) to take the place of isoleucine (Ile) at codon 105, resulting in decreased enzymatic activity and low ability to metabolize certain xenobiotics and carcinogens.\[39\] Biochemical studies indicated that the \textit{GSTP1} AA genotype was 2 to 3 times less stable\[40\] and might be associated with the risk of gynecological cancer. However, our results supported that \textit{GSTP1} AA genetic variant was not associated with the risk of cervix lesions, which was consistent with Zhao\'s finding.\[38\] This might be attributed to an insufficient sample size.

With regard to the \textit{GSTM1} and \textit{GSTT1} genotypes, some studies indicated that the \textit{GSTM1} null or \textit{GSTT1} null variants contributed to cervical cancer susceptibility, while some studies showed that the 2 variants were not associated with cervical carcinogenesis. Our results supported that the \textit{GSTM1} null variant increased the risk of cervical lesions in smokers. The \textit{GSTT1} null genotype was also related to HISL and cervical cancer risk. The \textit{GSTM1} null variant increased susceptibility to cervical carcinogenesis. Subgroup analysis revealed that the \textit{GSTM1} null variant caused cervical lesions among HPV infection cases and among the Chinese and Indian populations. This implied that there were differences in ethnicity and environment. In addition, it elevated the risk of cervical lesions among women who were not smoking, which implied that the \textit{GSTM1} null genotype might be a risk factor independent of cigarette smoking.

A previous study demonstrated that the GST null genotype resulted in complete loss of the ability of the enzyme to bind genotoxic substrates. This led to decreased detoxification ability, a reduction in the metabolic rate of intracellular toxic substances, and increased malignant transformation of cells, which thereby promoted tumorigenesis.\[40\] Several studies on the relationship between GST polymorphisms and cervical cancer risk were conducted. Compared with those studies, our meta-analysis included additional qualified studies to evaluate the association and therefore obtained more persuasive conclusions. Additionally, the study included the association of \textit{GSTP1}, \textit{GSTM1}, and \textit{GSTT1} genetic variants on cervical lesion risk, while previous studies were based on only one or two of the three variants. Moreover, to eliminate the effects of co-factors, we performed subgroup analysis stratified by HPV infection status, cigarette smoking, degree of cervical lesion and ethnicity. Thus, our findings provide stronger evidence for the association between GST genetic variants and cervical lesions.

There are some limitations to our study. First, the small sample size was insufficient to support our results regarding the \textit{GSTP1} genetic variant. Second, the incidence of cervical cancer is highest in sub-Saharan Africa, Latin America, the Caribbean, and Melanesia, where people of African origin account for the majority of the population.\[1\] However, there were no statistics and studies of interest focused on women of African descent. This caused bias in the relationship, which is concerning. Additionally, although we considered the effect of age on our conclusions and attempted to perform a subgroup analysis, inconsistent age grouping of the included studies prevented us from conducting a subgroup analysis stratified by age. Last but not least, \textit{GSTP1}, \textit{GSTM1}, and \textit{GSTT1} all belonged to the glutathione S-transferase family, playing an important role in protecting cells from oxidative damage and in metabolizing...
2.4.1 Cervical cancer

Study or Subgroup	Case	Control	Odds Ratio	Odds Ratio			
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Palma 2010	8	25	8	25	1.90	[0.73, 4.98]	
Stosis 2010	12	32	12	32	0.90	[0.36, 2.24]	
Ueda 2010	58	83	58	83	2.26	[1.29, 3.97]	
Subtotal (95% CI)	140	319	140	319	1.78	[1.17, 2.72]	

Heterogeneity: $Ch^2 = 2.86$, df = 2 ($P = 0.24$); $I^2 = 30$
Test for overall effect: $Z = 2.67$ ($P = 0.008$)

2.4.2 HSIL

Study or Subgroup	Case	Control	Odds Ratio	Odds Ratio			
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Agorstinos 2007	39	97	39	97	0.81	[0.46, 1.42]	
Cseh 2011	47	117	47	117	1.94	[1.14, 3.30]	
Nunobiki 2015	25	41	25	41	1.69	[0.74, 3.87]	
Palma 2010	7	30	7	30	1.23	[0.47, 3.24]	
Sierra-Torres 2006	25	91	25	91	0.96	[0.50, 1.84]	
Stosis 2010	12	33	12	33	0.86	[0.35, 2.12]	
Ueda 2010	33	49	33	49	2.01	[1.03, 3.94]	
Subtotal (95% CI)	458	698	458	698	1.30	[1.01, 1.68]	

Total events: 188/253
Heterogeneity: $Ch^2 = 8.52$, df = 6 ($P = 0.20$); $I^2 = 30$
Test for overall effect: $Z = 2.01$ ($P = 0.04$)

2.4.3 LSIL

Study or Subgroup	Case	Control	Odds Ratio	Odds Ratio			
	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Agorstinos 2007	23	51	23	51	0.99	[0.50, 1.94]	
Nunobiki 2015	50	90	50	90	1.35	[0.68, 2.68]	
Palma 2010	8	26	8	26	1.80	[0.69, 4.67]	
Stosis 2010	14	32	14	32	1.17	[0.47, 2.87]	
Ueda 2010	76	167	76	167	0.81	[0.53, 1.26]	
Subtotal (95% CI)	366	470	366	470	1.03	[0.77, 1.37]	

Total events: 171/192
Heterogeneity: $Ch^2 = 3.11$, df = 4 ($P = 0.54$); $I^2 = 0$
Test for overall effect: $Z = 0.18$ ($P = 0.86$)

Total (95% CI) 964/1487 100.0% 1.26 [1.06, 1.50]
Total events 437 567
Heterogeneity: $Ch^2 = 18.90$, df = 14 ($P = 0.17$); $I^2 = 26$
Test for overall effect: $Z = 2.59$ ($P = 0.010$)
Test for subgroup differences: $Ch^2 = 4.54$, df = 2 ($P = 0.10$); $I^2 = 56$

Figure 6. Subgroup analysis of the association between GSTT1 polymorphism and cervical lesions stratified by degree of lesions.

Table 3
Meta-analysis results of GSTT1 polymorphism.

GSTT1	OR (95% CI)	P value	I^2 (%)	P value	Effects model	
Overall	1.21[0.99, 1.47]	.06	61	<.0001	R	
HPV subgroup	Overall	1.27[0.85, 1.90]	.24	56	.009	R
HPV positive	Overall	1.39[0.67, 2.89]	.37	67	.009	R
HPV negative	Overall	1.16[0.73, 1.86]	.53	46	.10	R
Smoking subgroup	Overall	1.05[0.76, 1.46]	.77	35	.11	R
Smoking	Overall	1.52[1.03, 2.23]	.03	0	.98	R
Non-smoking	Overall	0.76[0.46, 1.26]	.29	51	.07	R
Degree of lesion subgroup	Overall	1.26[1.06, 1.50]	.01	26	.17	F
Cervical cancer	Overall	1.78[1.17, 2.72]	.008	30	.24	F
HSIL	Overall	1.30[0.91, 1.86]	.04	30	.20	F
LSL	Overall	1.03[0.77, 1.37]	.86	0	.54	F
Ethnicity Subgroup	Overall	1.15[0.84, 1.56]	.38	66	.003	R
Japan	Overall	1.13[0.90, 1.42]	.28	0	.86	R
India	Overall	1.16[0.61, 2.22]	.66	82	.0001	R

95% CI = 95% confidence interval, F = fixed-effect model, HSIL = high-grade intraepithelial neoplasia, LSL = low-grade intraepithelial neoplasia, OR = odds ratio, R = random-effect model.
various carcinogens. As reported, the combination of the \textit{GSTM1} null, \textit{GSTT1} null, and \textit{GSTP1} AA genotypes was associated with an increased risk of gynecological cancer, while the \textit{GSTs} alone were not.[23] Therefore, gene–gene interactions are likely more appropriate to assess disease risk than individual genes. In our meta-analysis, there was no association study between gene–gene interactions and the risk of cervical lesions. Future studies containing more comprehensive information are needed to obtain more reliable conclusions.

\begin{figure}[h]
\begin{center}
\hspace{0.5cm}
\includegraphics[width=\textwidth]{sensitivity_analysis.png}
\end{center}
\caption{Sensitivity analysis of the association between \textit{GST} SNPs and risk of cervical lesions. (A) \textit{GSTP1}; (B) \textit{GSTM1}; (C) \textit{GSTT1}.}
\end{figure}
5. Conclusion

In general, the GSTP1 AA genotype was not associated with the risk of cervical lesions. The GSTM1 null variant caused cervix lesions, especially among HPV infection cases and among the Chinese and Indian populations. GSTT1 null variant increased the risk of cervical lesions in smokers and was also related to HISL and cervical cancer risk. Additional large, well-designed case-control studies are needed to authenticate these results.

Author contributions

Conceptualization: Sijuan Tian, Li Zhang, Ting Yang.
Data curation: Sijuan Tian, Xiaofeng Yang, Li Zhang, Juan Zhao, Meili Pei, Yang Yu, Ting Yang.
Formal analysis: Sijuan Tian, Xiaofeng Yang, Li Zhang, Juan Zhao, Yang Yu, Ting Yang.
Funding acquisition: Xiaofeng Yang, Juan Zhao, Ting Yang.
Investigation: Sijuan Tian, Xiaofeng Yang, Juan Zhao, Meili Pei, Yang Yu, Ting Yang.
Methodology: Sijuan Tian, Xiaofeng Yang, Juan Zhao, Meili Pei, Yang Yu, Ting Yang.
Project administration: Sijuan Tian, Xiaofeng Yang, Li Zhang, Ting Yang.
Resources: Ting Yang.
Software: Sijuan Tian, Ting Yang.
Supervision: Ting Yang.
Validation: Ting Yang.
Visualization: Sijuan Tian, Ting Yang.

Figure 8. Publication bias of GST polymorphisms. (A, B). GSTP1, Begg test, \(P = .452 \), Egger test, \(P = .448 \); (C, D). GSTM1, Begg test, \(P = .144 \), Egger test, \(P = .122 \); (E, F). GSTT1, Begg test, \(P = .778 \), Egger test, \(P = .502 \).
Writing – original draft: Sijuan Tian, Ting Yang.
Writing – review & editing: Sijuan Tian, Ting Yang.

References

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

[2] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66:115–32.

[3] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51–88.

[4] Hengstler JG, Arand M, Herrero ME, et al. Polymorphisms of N-acetyltransferases, glutathione s-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res 1998;154:47–85.

[5] Liu Y, Xu LZ. Meta-analysis of association between GSTM1 gene polymorphism and cervical cancer. Asian Pac J Trop Med 2012;5:480–4.

[6] Kuraman RJ, Carcangiu ML, Herrington CS, et al. WHO Classification of Tumours of Female Reproductive Organs. 4th ed. Lyon: IARC; 2014.

[7] Chang SS, Chang H, Hsu CC, et al. Synergic effect of oral contraceptives, GSTP1 polymorphisms, and high-risk HPV infection in development of cervical lesions. Genet Mol Res 2017;16: doi: 10.4238/gmr16039742.

[8] Chen C, Madeleine MM, Weiss NS, et al. Glutathione S-transferase M1 genotypes and the risk of squamous carcinoma of the cervix: a population-based case-control study. Am J Epidemiol 1999;150:568–72.

[9] Cosh J, Pázart E, Orosz Z, et al. Effect of glutathione s-transferase M1 and T1 allelic polymorphisms on HPV-induced cervical precancer formation. Anticancer Res 2011;31:3031–5.

[10] de Carvalho CR, da Silva ID, Pereira JS, et al. Polymorphisms of p53, GSTM1, GSTT1, and GSTP1 gene loci and susceptibility to cervical intraepithelial neoplasia in Greek women. Eur J Cancer Prev 2007;16:498–504.

[11] Chang SS, Chang H, Hsu CC, et al. Synergic effect of oral contraceptives, GSTP1 polymorphisms, and high-risk HPV infection in development of cervical lesions. Genet Mol Res 2017;16: doi: 10.4238/gmr16039742.

[12] Chen C, Madeleine MM, Weiss NS, et al. Glutathione S-transferase M1 genotypes and the risk of squamous carcinoma of the cervix: a population-based case-control study. Am J Epidemiol 1999;150:568–72.

[13] Hasan S, Hameed A, Saleem S, et al. The association of GSTM1 and GSTT1 polymorphisms with squamous cell carcinoma of cervix in Pakistan. Tumour Biol 2015;36:5195–5204.

[14] Jee SH, Lee JE, Kim S, et al. GSTP1 polymorphism, cigarette smoking and cervical cancer risk in Korean women. J Cancer Res Clin Oncol 2010;136:1101–9.

[15] Satinder K, Sobi RC, Pushpinder K. Impact of single nucleotide polymorphism in chemical metabolizing genes and exposure to wood smoke on risk of cervical cancer in North-Indian women. Exp Oncol 2017;39:69–74.

[16] Liu Y, Xu LZ. Meta-analysis of association between GSTM1 gene polymorphism and cervical cancer. Asian Pac J Trop Med 2012;5:480–4.

[17] Hasan S, Hameed A, Saleem S, et al. The association of GSTM1 and GSTT1, and HPV in uterine cervical adenocarcinoma. Eur J Gynaecol Oncol 2009;30:445–51.

[18] Li J, Li Y, Li S, et al. Impact of p53 C143, GSTM1, and GSTT1 polymorphisms on risk of uterine cervical cancer in northeast Thailand. Asian Pac J Cancer Prev 2015;16:1935–7.

[19] Xiaktiong K, Seneke M, Kodama S, et al. Cigarette smoking and glutathione S-transferase M1 polymorphism associated with risk for uterine cervical cancer. J Obstet Gynecol Res 2008;34:1001–4.

[20] Zhao E, Hu K, Zhao Y. Associations of the glutathione S-transferase GSTP1 polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol Oncol 2005;96:423–9.

[21] Chen C, Madeleine MM, Weiss NS, et al. Glutathione S-transferase M1 genotypes and the risk of squamous carcinoma of the cervix: a population-based case-control study. Am J Epidemiol 1999;150:568–72.

[22] Niwa Y, Hirose K, Nakanishi T, et al. Association of the NAD(P)H: quinone oxidoreductase C609T polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol Oncol 2005;96:423–9.

[23] Settheetham-Ishida W, Yuenyao P, Kularbkaew C, et al. Glutathione S-transferase (GSTM1 and GSTT1) polymorphisms in cervical cancer in Northeastern Thailand. Asian Pac J Cancer Prev 2009;10:365–8.

[24] Settheetham-Ishida W, Yuenyao P, Kularbkaew C, et al. Glutathione S-transferase (GSTM1 and GSTT1) polymorphisms in cervical cancer in Northeastern Thailand. Asian Pac J Cancer Prev 2009;10:365–8.

[25] Palma S, Novelli F, Padua L, et al. Interaction between glutathione-S-transferase polymorphisms, smoking habit, and HPV infection in cervical cancer risk. J Cancer Res Clin Oncol 2010;136:1101–9.

[26] Sharda A, Gupta S, Sudhani P, et al. Glutathione S-transferase M1 and T1 polymorphisms, cigarette smoking and HPV infection in precancerous and cancerous lesions of the uterine cervix. Asian Pac J Cancer Prev 2015;16:6429–38.

[27] Sharda A, Sharma JK, Murthy NS, et al. Polymorphisms at GSTM1 and GSTT1 gene loci and susceptibility to cervical cancer in Indian population. Neoplasma 2004;51:12–6.

[28] Sierra-Torres CH, Au WW, Arrastia CD, et al. Polymorphisms for chemical metabolizing genes and risk for cervical neoplasia. Environ Mol Mutagen 2003;41:69–76.

[29] Sierra-Torres CH, Arboleda-Moreno YY, Orejuela-Aristizabal L. Exposure to wood smoke, HPV infection, and genetic susceptibility for cervical neoplasia among women in Colombia. Environ Mol Mutagen 2006;47:553–61.

[30] Ueda M, Toji E, Sobi RC, et al. Interaction of passive smoking with GSTM1, GSTT1, and GSTP1 genotypes in the risk of cervical cancer in India. Cancer Genet Cytofgenet 2006;166:117–23.

[31] Gray SI, Grujic D, Arsenijevic S, et al. Glutathione S-transferase T1 and M1 polymorphisms and risk of uterine cervical lesions in women from central Serbia. Asian Pac J Cancer Prev 2014;15:3201–5.

[32] Ueda M, Toji E, Sobi RC, et al. Glutathione S-transferase T1 and M1 polymorphisms and risk of uterine cervical lesions in women from central Serbia. Asian Pac J Cancer Prev 2014;15:3201–5.

[33] Ueda M, Toji E, Sobi RC, et al. Glutathione S-transferase T1 and M1 polymorphisms and risk of uterine cervical lesions in women from central Serbia. Asian Pac J Cancer Prev 2014;15:3201–5.

[34] Ueda M, Toji E, Sobi RC, et al. Glutathione S-transferase T1 and M1 polymorphisms and risk of uterine cervical lesions in women from central Serbia. Asian Pac J Cancer Prev 2014;15:3201–5.

[35] Ueda M, Toji E, Sobi RC, et al. Glutathione S-transferase T1 and M1 polymorphisms and risk of uterine cervical lesions in women from central Serbia. Asian Pac J Cancer Prev 2014;15:3201–5.