Towards Elimination of Mother-To-Child Transmission of HIV in Rwanda: A Nested Case-Control Study of Risk Factors for Transmission

Eric Remera (ericremera@gmail.com)
Rwanda Biomedical Center

Placidie Mugwaneza
Rwanda Biomedical Center

Frederique Chammartin
Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel

Augustin Mulindabigwi
Rwanda Biomedical Center

Gentille Musengimana
Rwanda Biomedical Center

Jamie Forrest
School of Population and Public Health, University of British Columbia

Fabian Mwanyumba
United Nations International Children's Emergency Fund

Ng’oma Kondwani
United Nations International Children's Emergency Fund

Jeanine Condo
School of Public Health, College of Medicine & Health Sciences, University of Rwanda,

David Riedel
Institute of Human Virology, University of Maryland School of Medicine, Baltimore

Edward Mills
Department of Health Research Methods, Evidence, and Impact, McMaster University

Sabin Nsanzimana
Rwanda Biomedical Center

Heiner Bucher
Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel

Research Article
Abstract

Background: Mother-to-child HIV transmission (MTCT) has substantially declined since the scale-up of prevention programs around the world, including Rwanda. To achieve full elimination of MTCT, it is important to understand the risk factors associated with residual HIV transmission, defined as MTCT at the population-level that still occur despite universal access to PMTCT.

Methods: We performed a case control study of children born from mothers with HIV with known vital status at 18 months from birth who were followed in three national cohorts between October and December 2013, 2014, and 2015 in Rwanda. Children with HIV were matched in a ratio of 1:2 with HIV-uninfected children and a conditional logistic regression model was used to investigate risk factors for MTCT.

Results: In total, 84 children with HIV were identified and matched with 164 non-infected children. The median age of mothers from both groups was 29 years (interquartile range (IQR): 24-33). Of these mothers, 126 (51.4%) initiated antiretroviral therapy (ART) before their pregnancy on record. In a multivariable regression analysis, initiation of ART in the third trimester (Adjusted Odds Ratio [aOR]: 7.71; 95% Confidence Interval [95% CI]: 2.19-27.10) and during labor or post-partum (aOR: 9.42; 95% CI: 3.15-28.19), compared to initiation of ART before pregnancy increased the risk of MTCT. Similarly, offspring of single mothers (aOR: 4.81; 95% CI: 1.60-14.46), and absence of postpartum neonatal ART prophylaxis (aOR: 5.64; 95% CI: 1.81-17.53) were factors significantly associated with MTCT.

Conclusion: Late presentation for antenatal care and lack of postpartum infant prophylaxis are still the most important risk factors to explain MTCT in the era of universal access. Improved early attendance at antenatal care, early ART initiation, and enhancing the continuum of care especially for single mothers is crucial for MTCT elimination in Rwanda.

Background

In 2018, an estimated 1.7 million children (<15 years) were living with HIV globally and 160,000 were newly infected. The majority of new infections in children (88.1%) occur in sub-Saharan Africa by vertical transmission which accounts for over 90% of all HIV mother-to-child transmission (MTCT) worldwide. Since 2009, the Joint United Nations Program on HIV/AIDS (UNAIDS) first called for the virtual elimination MTCT, aiming to reduce vertical transmission to less than 5% among breastfeeding women and 2% or less among non-breastfeeding women. By October 2017, eleven countries were found to have eliminated MTCT in HIV; none of them is from sub-Saharan Africa.

Rwanda has made remarkable strides in increasing the coverage of health facilities providing prevention of mother-to-child transmission (PMTCT) services. In 2012, it became one of the first African countries to recommend the initiation of lifelong antiretroviral therapy (ART) in all pregnant women regardless of CD4 cell count (known as Option B+) by June 2019, 98% of health facilities were offering PMTCT services,
99% of pregnant women attended at least one antenatal care visit, and 96.9% of HIV-infected pregnant women received ART for PMTCT. As a consequence the health facility based MTCT rate has decreased to less than 2% since 20156,7.

Despite these impressive advances and outcomes, MTCT of HIV infection still occurs in Rwanda. Little is known about the characteristics of mothers whose children acquire HIV infection in the current era of widespread distribution of HIV services and ART. In this study, we investigate risk factors and characteristics of mothers living with HIV whose children did and did not acquire HIV infection.

Methods

Study design

Since 2013, the Rwanda Biomedical Centre (RBC) conducts three months’ cohort follow-up of children in PMTCT to monitor MTCT rates on an annual basis. We performed a case-control study that was nested into three consecutive cohorts of children born to mothers with HIV in Rwanda, where cases consist of vertically infected children and controls are non-infected children by 18 months of birth.

Study population and setting

The study population included children born to mothers with HIV between October to December 2013, 2014 and 2015 in health facilities that were providing PMTCT services.

At the end of 18 months’ follow-up, all children who tested HIV positive, either at 6 weeks, 9 months or 18 months of birth, were matched with HIV negative children at a ratio of 1:2 by year of birth and health facility to ensure balance between cases and controls. Controls were selected at random from the same facility. When matches within the same health facility were not possible, we considered a paired match from the geographically closest neighboring health facility.

Data source

Data on MTCT was collected in 67 out of 517 health facilities offering PMTCT services where we could identify children who were infected with HIV. In these 67 facilities, we selected the cases and controls and abstracted demographics and clinical and laboratory data of the mother from pregnancy to the end of breastfeeding, anonymized and keyed all data into the Open Data Kit, a free and open-source software for collecting, managing, and using data in resource-constrained.8 From health facility registers, we collected data on children’s HIV status at 18 month of birth, mothers’ age at delivery, companionship by male partner during antenatal care visit, HIV status of male partner, date of antiretroviral therapy initiation for the mother (before pregnancy, during first, second, third trimester of pregnancy, or during labor), mothers’ marital status (single, married, cohabitating, divorced/separated), mothers’ occupation (employed \textit{versus} not employed), mothers’ parity before the current pregnancy (first born, 1-2 children, 3 or more children), place of delivery (health facility \textit{versus} home), mode of delivery (vaginal delivery \textit{versus} caesarean...
section), retention to treatment during antenatal care and breastfeeding, and post-natal ART prophylaxis for newborns (yes/no). Retention to treatment was defined as missed drug pick up during three consecutive months from pregnancy to the end of breastfeeding period. Neonatal ART prophylaxis was defined according to national guidelines as receiving post-delivery ART prophylaxis until the end of six weeks of breastfeeding. Children's HIV status was defined as a positive or negative HIV test at 18 months of birth. The national HIV guideline recommends follow-up of all children born to mothers with HIV and mothers diagnosed with HIV during the breastfeeding period with HIV testing at 18 months at latest. The follow-up includes HIV DNA PCR test at 6 to 8 weeks and serological tests at 9 and 18 months. Once a serological test is positive, PCR testing is done for confirmation. The child is considered HIV infected if a positive PCR test result is confirmed at any time point, either 6 weeks, 9 months or 18 months after birth.

Statistical analysis

We provide descriptive statistics for characteristics of mothers having given birth to infected and uninfected children with confirmed HIV status at 18 months of birth. Variables that were statistically significant in the univariate analysis (p-value<0.05) were considered for the multivariate conditional logistic regression model after testing for collinearity. We report adjusted odds ratios with 95% confidence intervals. All analyses were conducted using Stata version 15.

Ethical considerations

This study was performed in accordance the declaration of Helsinki; the protocol was approved both by the Rwanda National Ethics Committee (reference number: 305/RNEC/2017), the National Institute of Statistics of Rwanda (reference number: 0667/2017/10/NISR) and the ministry of health granted approval to access to health facility data to the principal investigator (ER) for the purpose of the study. No participants were involved directly in the data collection therefore their consent was waived by the Rwanda National Ethics Committee. During data extraction, all personal identifiable information was removed to ensure confidentiality of study participants, and fully anonymous identification numbers were created.

Results

During the three study periods, mothers with HIV gave birth to 5,798 children. Of them, 5,308 (91.5%) were live births; 125 (2.2%) infants died after delivery with unknown HIV status, and 365 (6.3%) children were lost to follow-up at the end of 18 months of follow-up. We identified 84 children with HIV (cases) and confirmed HIV status at 18 months of birth, translating into a vertical transmission rate of 1.6%. For the purpose of this analysis, all children with HIV were considered as cases and matched with 164 controls (1:2 ratio) from 5,224 HIV negative children. Due to the limited availability of controls in four health facilities and their neighbourhood, four cases were matched with only one control, yielding 164 controls for 84 cases.
The median age of all mothers from both groups at the time of delivery was 29 years (IQR: 24-33), with 27 years (IQR: 22-32) in the case group's mothers and 29 years (IQR: 25-34) in the control group's mothers, respectively. Further, dissimilarities were observed between the cases and controls: Companionship by a male partner during any antenatal care was lower among mothers of cases (17, 20.2%) compared to mothers in the controls group (91, 55.5%). Likewise, 23 (27.4%) mothers of cases compared to 105 (64.0%) mothers in the control group started ART before the current pregnancy. A high proportion of mothers of the cases (42.9%) versus controls (5.5%) initiated ART during or after labour. In addition, 70 (83.3%) mothers of cases compared to 157 (96.7%) mothers of controls were adherent to treatment, and a lower proportion of cases (57.1%) received ART prophylaxis after birth compared to controls (93.9%) (Table 1).

In adjusted analyses, the odds of MTCT with initiation of ART in the third trimester and during labour or post-partum compared to ART initiation before pregnancy were 9.99 (95% CI 2.36-42.33) and 11.35 (95% CI 2.73-47.26), respectively. Children from single mothers with HIV were at increased risk of HIV infection (aOR 5.32; 95% CI 1.19-23.78) compared to non-single mothers. Consultation without companionship by male partner during antenatal care visits was also associated with increased risk for MTCT (aOR 3.64; 95% CI 1.21-10.94), and the odds of HIV infection for children who missed ART prophylaxis at birth was higher compared to those who did received it (aOR 5.82; 95% CI: 1.55-21.91) (Table 2).

Discussion

Rwanda has achieved a low level of facility-based MTCT with a rate of less than 2% for children whose mothers were followed in the PMTCT programme. As the country is on the last mile to reach the elimination of MTCT, we identified key factors that were associated with increased risk of MTCT of HIV using a case-control study from a representative cohort of mothers with HIV who had given birth to children in a three-month period of 2013, 2014, and 2015 when ART use was widely available in the country. These results showed that late ART initiation (in the third trimester of pregnancy and during labor or post-partum), being a single mother, lack of male involvement during antenatal care, and missing postpartum neonatal prophylaxis were all independently associated with the risk of MTCT of HIV. Although these findings are not novel risks for MTCT, they identify gaps that still remain in the Rwandan national HIV programme response.

Rwanda has reached a high level of ART coverage for pregnant women of 97% in 2019. The findings of this study show a high risk of MTCT for mothers who started ART in the third trimester of pregnancy and during labor or postpartum and those who were not retained in care during pregnancy or post-partum. Similar results were reported in studies conducted in Malawi, Zimbabwe. Even though antenatal care participation was high in this study, early ART uptake is crucial to prevent MTCT and should most preferably be initiated before pregnancy or in the first trimester of pregnancy at latest. With the current coverage of 97% in Rwanda, most pregnant women are most likely to be on ART and the rate of MTCT in Rwanda is expected if strategies are put in place to address loss to follow-up and to ensure HIV positive mothers and their exposed infants are retained within the continuum of care. Different studies revealed
that non-retention in care among pregnant women may be due to the fear of disclosure, stigma and insufficient social support11,14.

Rwanda has observed a high male accompaniment of above 85\% in antenatal care for both mothers with and without HIV15. Despite many efforts centered on increasing the male involvement in maternal and child health, results of this analysis showed that only 46\% of mothers with HIV attended ANC accompanied by their male partners, and there was a high risk of vertical HIV transmission for mothers who were not accompanied by their male partners in antenatal care. A study conducted in Kenya highlighted that HIV-infected women were less likely to disclose their status to partners than HIV-uninfected women16, while other studies suggest the role of male partner participation in antenatal care is critical to ensure infant survival and HIV infection among children born to HIV infected mothers17,18,19.

Our findings showed that missing infant postpartum prophylaxis increases the risk of MTCT. These results are comparable with findings from a cross sectional study at 6-10 weeks postpartum in HIV positive mothers in Rwanda who were on ART during pregnancy and breastfeeding to estimate the MTCT13 and similar results were also reported in retrospective studies conducted in Kenya, highlighting the risk of MTCT for infants missing the post-partum antiretroviral prophylaxis20,21. Further, in this survey young and single mothers who did not receive a full package of ART according to the Rwanda EMTCT protocol increased the risk of MTCT. Although we did not have information whether their pregnancies were intended or not, other studies conducted in sub-Saharan Africa have reported the high transmission rate among non-married mothers, particularly women who did not intend to become pregnant22,23.

Strengths and limitations

Our analysis has both strengths and limitations. This is the first case control study ever conducted at national scale in Rwanda using data from three cohorts from different years. However, given that the study was retrospective, we experienced some limitations: firstly, we could only work with available information recorded in the health registers and secondly, given that, the electronic medical record is not yet used across all the health facilities and services, all information from mothers who had been transferred from another health facility were not available. Lastly, HIV status at 18 months was not known in 8.5\% of children of the target population because they had died or who were lost to follow-up, introducing a potential selection bias that could not be avoided.

Conclusions

Findings from this study indicate a strong need to identify and treat reproductive age women with HIV as soon as possible and enrol them even before conception into antenatal care programs to ensure retention in care and administer prompt postpartum ART prophylaxis to children. Only these measures will allow Rwanda and other countries to achieve elimination of HIV transmission from mother to child. The continued decline of new infections of infants also would reduce the programmatic burden to give space for focused care of those most in need.
Abbreviations

HIV: Human Immunodeficiency Virus

MTCT: Mother to Child HIV Transmission

PMTCT: Prevention of Mother to Child HIV Transmission

EMTCT: Elimination of Mother to Child HIV Transmission

aOR: Adjusted Odds Ratio

CI: Confidence Interval

IQR: Interquartile range

ART: Antiretroviral therapy

RBC: Rwanda Biomedical Centre

UNAIDS: Joint United Nations Program on HIV/AIDS

PCR: Polymerase Chain Reaction

RNEC: Rwanda National Ethics Committee

Declarations

Ethics approval and consent to participate

This study was performed in accordance the declaration of Helsinki; the protocol was approved both by the Rwanda National Ethics Committee (reference number: 305/RNEC/2017), the National Institute of Statistics of Rwanda (reference number: 0667/2017/10/NISR) and the ministry of health granted approval to access to health facility data to the principal investigator (ER) for the purpose of the study. No participants were involved directly in the data collection therefore their consent was waived by the Rwanda National Ethics Committee. During data extraction, all personal identifiable information was removed to ensure confidentiality of study participants, and fully anonymous identification numbers were created.

Consent for publication

Not Applicable.

Availability of data and materials
Raw data used in article are available upon reasonable request in writing to the corresponding author (ericremera@gmail.com) and will be deposited in a public repository as soon as we gain permission.

Competing interests

The author declare that no competing interests exist.

Funding

The authors received no specific funding for this work

Authors' contributions

ER, AM, GM, PM, SN and FM contributed to study concept and design. ER, FC, NK and AS contributed to draft the manuscript. ER, PM, JF, JC, FM, KN, DR, and FM contributed to acquisition. All authors contributed to interpretation of data and critical revision of the manuscript for important intellectual content; ER and FC contributed to statistical analysis, and SN, EJM, HCB supervised the study. All authors have read and approved the last version submitted.

Acknowledgements

The authors acknowledge the support and contributions of the Rwandan Ministry of Health, Rwanda Biomedical Centre, Basel Institute for Clinical Epidemiology and Biostatistics Department of Clinical Research, University Hospital Basel-Switzerland, Unicef Rwanda and MTEK Sciences.

References

1. UNAIDS. Global HIV & AIDS statistics — 2019 fact sheet.
2. Ubesie, A. C. Pediatric HIV/AIDS in sub-Saharan Africa: emerging issues and way forward. *Afr. Health Sci.* 12, 297–304 (2012).
3. World Health Organization. *Towards the elimination of mother to child transmission of HIV*. https://apps.who.int/iris/bitstream/handle/10665/44638/9789241501910_eng.pdf?sequence=1 (2011).
4. World Health Organization. *Global guidance on criteria and processes for validation: elimination of mother-to-child transmission of HIV and syphilis, 2nd edition. Geneva*. https://www.who.int/reproductivehealth/congenital-syphilis/WHO-validation-EMTCT/en/ (2017).
5. Abimpaye, M. *et al.* The impact of “Option B” on HIV transmission from mother to child in Rwanda: An interrupted time series analysis. *PLOS ONE* 13, e0192910 (2018).
6. National Institute of Statistics of Rwanda (NISR) [Rwanda], Ministry of Health (Rwanda) & ICF International, Rockville, Maryland, USA: *Rwanda Demographic and Health Survey 2014-15*.
7. Rwanda Biomedical Centre. *National HIV and Viral Hepatitis Annual Report 2018-2019*. (2019).
8. Maduka, O., Akpan, G. & Maleghemi, S. Using Android and Open Data Kit Technology in Data Management for Research in Resource-Limited Settings in the Niger Delta Region of Nigeria: Cross-Sectional Household Survey. *JMIR MHealth UHealth*, 5, e171 (2017).

9. Ministry of Health (Rwanda). *National Guidelines for Prevention and Management of HIV and STIs*. (2016).

10. College Station, TX: StataCorp LLC. *StataCorp. 2017. Stata Statistical Software: Release 15*. (College Station, TX: StataCorp LLC.).

11. Tippett Barr, B. A. *et al.* National estimates and risk factors associated with early mother-to-child transmission of HIV after implementation of option B+: a cross-sectional analysis. *Lancet HIV*, e688–e695 (2018).

12. Dinh, T.-H. *et al.* Impact of Timing of Antiretroviral Treatment and Birth Weight on Mother-to-Child Human Immunodeficiency Virus Transmission: Findings From an 18-Month Prospective Cohort of a Nationally Representative Sample of Mother–Infant Pairs During the Transition From Option A to Option B+ in Zimbabwe. *Clin. Infect. Dis.*, 66, 576–585 (2018).

13. Mugwaneza, P. *et al.* Impact of maternal ART on mother-to-child transmission (MTCT) of HIV at six weeks postpartum in Rwanda. *BMC Public Health*, 18, 1248 (2018).

14. Knettel, B. A. *et al.* Retention in HIV Care During Pregnancy and the Postpartum Period in the Option B+ Era: Systematic Review and Meta-Analysis of Studies in Africa. *JAIDS J. Acquir. Immune Defic. Syndr.*, 77, 427–438 (2018).

15. Rwanda Biomedical Centre. *National HIV and Viral Hepatitis Annual report 2019-2020*. (2020).

16. Kinuthia, J. *et al.* Prevalence and correlates of non-disclosure of maternal HIV status to male partners: a national survey in Kenya. *BMC Public Health*, 18, 671 (2018).

17. Sifunda, S. *et al.* Impact of male partner involvement on mother-to-child transmission of HIV and HIV-free survival among HIV-exposed infants in rural South Africa: Results from a two phase randomised controlled trial. *PLOS ONE*, 14, e0217467 (2019).

18. Aluisio, A. R. *et al.* Male Partner Participation in Antenatal Clinic Services is Associated With Improved HIV-Free Survival Among Infants in Nairobi, Kenya: A Prospective Cohort Study. *JAIDS J. Acquir. Immune Defic. Syndr.*, 73, 169–176 (2016).

19. Oyugi, E. *et al.* Male partner involvement in efforts to eliminate mother-to-child transmission of HIV in Kisumu County, Western Kenya, 2015. *Pan Afr. Med. J.*, 28, (2017).

20. Ashiono, E. *et al.* Vertical HIV transmission in perinatally-exposed infants in South-Rift region of Kenya: a retrospective cross sectional study. *BMC Public Health*, 17, 207 (2017).

21. Nyandiko, W. M. *et al.* Outcomes of HIV-Exposed Children in Western Kenya: Efficacy of Prevention of Mother to Child Transmission in a Resource-Constrained Setting: *JAIDS J. Acquir. Immune Defic. Syndr.*, 54, 42–50 (2010).

22. Horwood, C., Butler, L. M., Haskins, L., Phakathi, S. & Rollins, N. HIV-Infected Adolescent Mothers and Their Infants: Low Coverage of HIV Services and High Risk of HIV Transmission in KwaZulu-Natal, South Africa. *PLoS ONE*, 8, e74568 (2013).
23. Woldesenbet, S. *et al.* Missed Opportunities along the Prevention of Mother-to-Child Transmission Services Cascade in South Africa: Uptake, Determinants, and Attributable Risk (the SAPMTCTE). *PLOS ONE* **10**, e0132425 (2015).

Tables

Table 1: Characteristics of HIV positive mothers by the child’s HIV status at 18 months’ post delivery
	HIV negative children (n=164)	HIV positive children (n=84)	All children (n=248)
	n (%)	n (%)	n (%)
Age group of mothers (years)			
below 24	39 (23.8%)	29 (34.5%)	68 (27.4%)
25-34	93 (56.7%)	40 (47.6%)	133 (53.6%)
above 35	32 (19.5%)	15 (17.9%)	47 (18.0%)
Mother's marital status			
single	25 (15.2%)	24 (28.6%)	49 (19.8%)
married	76 (46.3%)	19 (22.6%)	95 (38.3%)
cohabitating	46 (28.1%)	32 (38.1%)	78 (31.4%)
divorced/separated	17 (10.4%)	9 (10.7%)	26 (10.5%)
Accompaniment by partner during any antenatal care visit			
no	60 (36.6%)	42 (50.0%)	121 (48.8%)
yes	90 (54.8%)	16 (19.1%)	106 (42.7%)
not documented	14 (8.6%)	26 (30.9%)	19 (16.1%)
Parity before the current pregnancy			
no child	49 (29.9%)	43 (51.2%)	92 (37.1%)
1-2 children	89 (54.3%)	33 (39.3%)	122 (49.2%)
3+ children	26 (15.8%)	8 (9.5%)	34 (13.7%)
HIV status of the partner			
HIV positive	76 (46.3%)	26 (30%)	102 (41.1%)
HIV negative	39 (23.8%)	8 (9.5%)	47 (19%)
unknown	49 (29.9%)	50 (59.5%)	99 (39.9%)
ART initiation			
before pregnancy	105 (64.0%)	23 (27.4%)	128 (51.6%)
first or second trimester of pregnancy	40 (24.4%)	10 (11.9%)	50 (20.2%)
third trimester of pregnancy	10 (6.1%)	15 (17.8%)	25 (10.1%)
during or after labor	9 (5.5%)	36 (42.9%)	45 (18.2%)
---------------------	----------	------------	------------
Place of delivery			
home	8 (4.9%)	17 (20.2%)	25 (10.1%)
health facility	156 (95.1%)	67 (79.8%)	223 (89.9%)
Retained in care during pregnancy or breastfeeding period			
yes	157 (95.7%)	70 (83.3%)	227 (91.5%)
no	7 (4.3%)	14 (16.7%)	21 (8.5%)
Mode of delivery			
vaginal delivery	143 (89.4%)	65 (83.3%)	208 (87.4%)
caesarean section	17 (10.6%)	13 (16.7%)	30 (12.6%)
ART prophylaxis for the child at birth			
yes	154 (93.9%)	48 (57.1%)	202 (81.5%)
no	10 (6.1%)	36 (42.9%)	46 (18.6%)
Year of birth of child			
2013	64 (39.0%)	34 (40.5%)	98 (39.5%)
2014	46 (28.1%)	23 (27.4%)	69 (27.8%)
2015	54 (32.9%)	27 (32.1%)	81 (32.7%)

ART, antiretroviral therapy

Table 2: Factors associated with mother to child HIV transmission
	Bivariate analysis	Multivariate analysis		
	OR	95% CI	aOR	95% CI
Age group of mothers (years)				
below 24 (Ref)	1.00			
25-34	0.51	0.25-1.06		
above 35	0.59	0.23-1.58		
Marital status				
single	8.23	2.92-23.22	5.32	1.19-23.78
married (Ref)	1.00		1.00	
cohabitating	4.33	1.88-9.99	3.21	0.74-13.84
divorced/separated	2.53	0.89-7.19	0.91	0.17-4.87
Occupation				
employed (Ref)	1.00			
not employed	1.36	0.61-3.05		
Parity before the current pregnancy				
no child	2.75	1.46-5.15	1.69	0.55-5.13
1-2 children (Ref)	1.00		1.00	
3 and more	0.74	0.29-1.89	2.30	0.60-8.77
Consulted ANC with the male partner				
yes	1.00		1.00	
no	3.84	1.88-7.84	3.64	1.21-10.94
not documented	15.09	4.58-49.66	2.69	0.54-13.37
Initiation of ART				
before pregnancy	1.00		1.00	
first or second trimester of pregnancy	1.58	0.64-3.89	2.35	0.68-8.03
third trimester of pregnancy	7.27	2.40-22.04	9.99	2.36-42.33
during or after labor	16.43	6.16-43.75	11.35	2.73-47.26
Place of delivery

Place of delivery	Odds Ratio (95% CI)	
health facility	1.00	
home	4.43 (1.83-10.75)	1.19 (0.25-5.68)

ART prophylaxis for the child at birth

ART prophylaxis for the child at birth	Odds Ratio (95% CI)	
yes	1.00	
no	9.54 (4.23-21.51)	5.82 (1.55-21.91)

Retained in care during pregnancy or breastfeeding period

Retained in care during pregnancy or breastfeeding period	Odds Ratio (95% CI)	
yes	1.00	
no	4.17 (1.59-10.96)	3.05 (0.65-14.41)

Mode of delivery

Mode of delivery	Odds Ratio (95% CI)
vaginal delivery	1.00
caesarean section	1.64 (0.73-3.68)

*p-value <0.05, **p-value <0.001*