Mining of miRNAs from EST data in *Dendrobium nobile*

Debasish B. Krishnatrey, Pooja Moni Baruah, Bhaskar Dowarah, Kuntala Sarma Bordoloi, Heena Agarwal, Niraj Agarwala

Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014; Niraj Agarwala; Email ID: niraj_botany@gauhati.ac.in; Mobile: +91 8486027249; *Corresponding author*

E-mail contacts: Debasish B. Krishnatrey - debasishbk@gauhati.ac.in; Pooja Moni Baruah - pooja@gauhati.ac.in; Bhaskar Dowarah - philbdow@gmail.com; Kuntala Sarma Bordoloi - kuntalasb@gauhati.ac.in; Heena Agarwal - heenaagarwal371@gmail.com; Niraj Agarwala - niraj_botany@gauhati.ac.in

Received February 18, 2020; Revised March 10, 2020, Accepted March 14, 2020; Published March 31, 2020

DOI: 10.6026/97320630016245

Declaration on official E-mail:
The corresponding author declares that official e-mail is not available from their institution for all authors

Declaration on Publication Ethics:
The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:
Dendrobium nobile is an orchid species highly popular for its therapeutic properties and is often used as a medicinal herb. Documenting miRNA-target associations in *D. nobile* is an important step to facilitate functional genomics studies in this species. Therefore, it is of interest to identify miRNA sequences from EST data available in public databases using known techniques and tools. We report 14 potential miRNAs from three ESTs of *D. nobile*. They belong to 3 miRNA families (miR390, miR528 and miR414) linking to transcription factor regulation, signal transduction, DNA and protein binding, and various cellular processes covering 34 different metabolic networks in KEGG. These results help in the understanding of miRNA-miRNAs functional networks in *Dendrobium nobile*.

Keywords: Expressed Sequence Tags, miRNA, in silico, *Dendrobium nobile*
Background:

Dendrobium nobile is ornamentally and medicinally one of the most important species of flowering plants. It belongs to the Orchidaceae family, which is one of the largest families of the angiosperms and has been used as a first-rate herb in India and China since ancient times [1]. The pattern of flowering of the violet coloured flowers of D. nobile make them more fascinating and attractive [2]. The presence of various active compounds like Dendrobine, Moscatilin, Giantol, Nobiline and Dendrophenoil in the stems and leaves of D. nobile are known to be responsible for the greatly increased medicinal property of this plant [3, 4]. These compounds are known to have strong anti-mutagenic properties and are anti-carcinogenic against lung carcinoma, ovary adenocarcinoma and promyelocytic leukemia [5]. Moreover genetic diversity studies indicate that D. nobile from Northeast India has a comparatively higher rate of genetic diversity [6, 7]. The orchid, being prized for its immense commercial importance, is often subjected to unrestrained anthropogenic pressures, thereby threatening its natural population [8]. In addition to its health benefits and economic value, D. nobile is also a wonderful source of experimental material to expound gene expression and regulation because of its versatile characteristics; the availability of decent numbers of expressed sequence tags of this species also augmented this study.

MicroRNAs are a class of endogenous small, non-coding, single stranded RNAs that act as post-transcriptional regulators in eukaryotic organisms [9]. Each miRNA is capable of regulating the expression of many genes - either by translational repression or mRNA cleavage- allowing them to simultaneously regulate multiple cellular signalling and biosynthetic pathways [10]. Plant microRNAs play important roles in plant growth and development including leaf morphology and polarity, organ development, cell differentiation and proliferation, programmed cell death, signal transduction, stress responses, hormone signalling, floral organ identity and maturity, phase transition and reproduction [11-13]. For miRNAs to be reliably distinguishable from other RNAAs, Ambros et al. (2003) developed a set of criteria for miRNA identification and annotation and their guidelines for experimental verification [14]. However, those criteria for miRNA annotation have been revised by Axtell and Meyers (2018), which has been followed in this study [15]. The first miRNA to be discovered was lin-4, predicted to be of 22 nucleotides in length and found in the larval form of Caenorhabditis elegans [16]. It is responsible for regulation of the pathway that triggers the transitions of first larval stage cell division to the second [17]. In plants, RNA polymerase II is responsible to transcribe majority of primary miRNA transcripts (pri-miRNAs) from miRNA genes. Processing of pri-miRNAs to precursor miRNAs and further to mature miRNA-miRNA* duplex is brought about by the DCL1 (Dicer-like 1) enzyme [18]. The duplex is methylated by HUA ENHANCER 1 (HEN1) and transported to the cytoplasm by HASTY, after which the guide miRNA strand is then incorporated into ARGONAUTE (AGO) protein [19]. Once a suitable pairing event between a miRNA and target mRNA occurs, the RISC (RNA-induced silencing complex) then triggers almost complete inhibition of protein expression by either cleavage of mRNA targets or by inhibiting protein translation [20]. The repressiveness of miRNA is mainly based on the property of regulation of gene expression at the post-transcriptional level either by cleavage mediated mRNA degradation or inhibition of translation [21]. Discovery of genetic modulators in various plants has helped to comprehend their specific regulatory modules involved in complex biological processes. Understanding the biological functions of miRNAs, identification of miRNAs and their target genes is an important step in interpreting the roles of miRNAs in regulation of specific characters. Documentation of miRNAs and their targets have been very effective in a number of plants such as Arabidopsis, rice, maize, wheat, soybean, cotton and tea [22, 23].

Methods:

Reference set of miRNAs and Sequence data:

A total of 38,589 previously identified mature micro-RNAs from different plants were retrieved from the miRBase database (http://www.mirbase.org/) (release 22.1). These sequences were defined as the query sequence set and used for identifying miRNAs in D. nobile. Expressed Sequence Tags (ESTs). Publicly available 15,383 ESTs of the species were downloaded from National Centre for Biotechnology Information (NCBI) (ftp://ftp.ncbi.nlm.nih.gov/). Local database for BLAST was constructed for D. nobile ESTs by using the locally installed NCBI-Blast+ application (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/). Non-redundant protein sequences were used from the NR protein database of NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/).
Identification of putative miRNAs:
Sequence and structural homologies are used for computer based predications of miRNAs. Computational strategies provide less time consuming, valuable and efficient means for prediction and identification of miRNA genes and their targets (Figure 1). NCBI-BLAST+ program was used to screen the ESTs against the reference miRNAs obtained from miRBase by searching for homologous hits [24]. A maximum of two mismatches, threshold e-value of <0.001 and word-size value of 7 was set for the blast+ analysis. After removing redundany the ESTs with matched hits were subjected to Blastx analysis with NR protein database, and the non-protein coding sequences were retained for further analysis of RNA secondary structure using Zuker folding algorithm by Mfoldv3.5 (http://unafold.rna.albany.edu/?q=mfold/ RNA-Folding-Form) [25]. The following parameters were used in defining the sequences as miRNA homologs: (1) The sequence should fold into an appropriate stem-loop secondary structure. (2) The miRNA should be present in one arm of the hairpin structure. (3) The mature miRNA and its complementary miRNA* sequence should not have more than 5 mismatches. (4) The value of Minimal Folding free Energy Index (MFEI) of precursor miRNA structures should not be less than 0.5 and should have a high Minimal Folding free Energy (MFE) value. MFE is the negative equivalent of the ΔG value [26]. The MFEI value has been calculated by using the following formula proposed by Zhang et al. [27],

\[
\text{AMFE} = \left(\frac{\text{MFE} \times 100}{\text{Length of precursor}} \right) \\
\text{MFEI} = \frac{\text{AMFE}}{\text{(GC)}} \\
\text{MFEI} = \left(\frac{\text{MFE/length of the RNA sequence} \times 100}{\text{(GC)}} \right)
\]

Prediction of putative target genes:
A plant small RNA Target Analysis Server viz. psRNATarget was used for predicting the targets of the newly identified miRNA by using Schema V2 (2017 Release) with the maximum expectation value threshold as 3 and rest of the values set as default [28]. A maximum of two mismatches were allowed in the complementary region of target genes with the miRNAs, whereas mismatch inhibition was maintained at 10th and 11th nucleotide position along the aligned region. Target genes were identified against Arabidopsis thaliana transcript, TAIR V10 as genome or transcriptome sequences of D. nobile are not available in public domain.

Gene Ontology, KEGG pathway and Phylogenetic analysis:
Annotations of the target genes were carried out using a Blastx analysis with an e-value of 10^{-3} against the NCBI non-redundant protein database. Blast2go version 5.2 (https://www.blast2go.com/blast2go-pro/) was used for the gene ontology and KEGG (Kyoto Encylopaedia of Genes and Genomes) pathway analysis of the annotated target genes in order to assess the phenotypic traits which may get affected by expression of the identified miRNAs of D. nobile [29]. The phylogenetic trees were constructed using MEGA7 – a Windows OS based software. The precursor sequences of family members of the identified miRNAs, belonging to other plant species were downloaded from miRBase and collated with the D.nobile miRNA precursors. Multiple sequence alignment was carried out using MUSCLE algorithm and phylogenetic trees developed using the Maximum likelihood approach.

![Figure 2: Secondary hairpin structure of precursor sequences of three identified miRNA families.](image)

| Table 1: Identified putative miRNAs of D. nobile from ESTs |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Accession no. | miRNA | Mature miRNA sequence | FL* | (C+G)% | MFE | AMFE | MFEI |
| H0190899.1 | zma-miR828a-3p | TCGAAGGGGACATTGCAGGAG | 79 | 51.3 | 35.5 | 46.7 | 0.91 |
| H0191279.1 | zma-miR828b-3p | TCGAAGGGGATCTGAGGAGG | 79 | 51.3 | 35.5 | 46.7 | 0.91 |
| | zca-miR930 | AACGCTAGAGGAGATGAGG | 107 | 43 | 42.55 | 36.99 | 0.92 |
| | lun-miR930a | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 36.99 | 0.95 |
| | lun-miR930b | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 36.99 | 0.93 |
| | vi5-miR930b | AACGCTAGAGGAGATGAGG | 103 | 43.81 | 41.65 | 39.66 | 0.9 |
| | lun-miR930c | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 40.51 | 0.93 |
| | ypi-miR944c-5p | AACGCTAGAGGAGATGAGG | 105 | 43.81 | 41.65 | 39.66 | 0.9 |
| | lun-miR930d | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 40.51 | 0.93 |
| | gna-miR909e | AACGCTAGAGGAGATGAGG | 105 | 43.81 | 41.65 | 39.66 | 0.9 |
| | gna-miR909f | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 40.51 | 0.93 |
| | gna-miR909g | AACGCTAGAGGAGATGAGG | 106 | 43.4 | 42.95 | 40.51 | 0.93 |
| | atk-miR930 | TAAAGCTAGAGGAGATGAGG | 111 | 41.44 | 45.25 | 40.76 | 0.98 |
| H0194934.1 | ath-miR814 | GAGCATGATGATGATGATG | 169 | 47.90 | 47.8 | 28.28 | 0.59 |

*Precursor Length
Results:
miRNA identification and characterization:
From a total of 15,383 published ESTs of *D. nobile*, 306 of them showed homology with previously deposited miRNAs in miRBase 22.1. Following the criteria given by Axtell and Meyers (2018) for plant miRNA annotation, these were further filtered to retain only the miRNAs ≥ 19 nucleotides in length [15]. As a result only 249 miRNAs were taken from which further removal of redundancies in miRNAs and ESTs yielded 247 potential miRNA sequences. Blastx analysis of these ESTs against the NCBI non-redundant database resulted in identification of 89 sequences as non-coding sequences.

miRNA secondary structure:
The potential miRNAs were subjected to structural validation analysis in Mfold v3.5 for prediction of miRNA secondary structure. The miRNAs which showed valid stem-loop hairpin precursor, presence of complementary miRNA* sequence in the precursor with less than 6 mismatches, and an MFEI value greater than 0.5 were considered for further analysis of their target genes. Fourteen such conserved miRNAs were identified belonging to three miRNA families (Figure 2). miR528 is represented by two members, miR390 represented by 11 members and miR414 by one member. The ΔG values ranged from -47.8 to -35.5 kcal/mol. It is often considered that, lower the value of ΔG, higher is the thermodynamic stability of the miRNA precursor [30]. A lower value of ΔG corresponds to a higher MFEI value as MFE is equivalent to (-ΔG). miRNA characterization indicates that the precursor length of miRNAs varied between 79-169 bases and the mature miRNA length ranged from 19 to 21 nucleotides (Table 1).

Target gene prediction and annotation:
It has been demonstrated in several studies that most plant miRNAs bind to their target mRNA sequences with perfect or near-perfect sequence complementarity [31, 32]. This provides an effective approach for discovering probable miRNA targets by comparing and aligning miRNAs with mRNA sequences. In order to identify genes plausibly recognised by the potential miRNAs, psRNA Target - a web-based server was used for searching target genes against *A. thaliana* transcriptome acquired from TAIR10. A total of 138 genes were identified as target genes of 14 identified miRNAs, where 4 genes having unknown functions were discarded. Out of the 134 retained targets, only 3 genes exhibit translational repression by corresponding miRNAs whereas all the rest of the genes show cleavage mode of regulation (Table 2).
Table 2: Predicted target genes of *D. noblie* miRNAs.

miRNA Acc.	Target Acc.	Expect	Description	Inhibition
dno-miR390	AT3G17485.1	3	predicted protein	Cleavage
dno-miR390	AT5G0840.1	3	serine/threonine-protein kinase	Translation
dno-miR390.1	AT1G0500.1	3	synaptotagmin-5	
dno-miR390.1	AT1G79850.1	3	beta-amyrin synthase	
dno-miR390.1	AT2G41600.5	3	mitochondrial glycoprotein family	
dno-miR390.1	AT4G12980.1	3	cytochrome b6/f and DOMON domain-containing protein At4g12980	
dno-miR390.1	AT1G117000.1	3	epha min type-B receptor	
dno-miR390.1	AT3G39862.1	3	putative non-LTR retroelement reverse transcriptase	
dno-miR390b	AT4G48980.1	3	L-actylglutathione lyase / glyoxalase I family protein	
dno-miR308b-5p	AT5G28900.2	3	serine/threonine-protein kinase	
dno-miR308c-5p	AT1G47890.1	3	receptor-like protein 12	
dno-miR308e	AT5G05570.1	2.5	transducin family protein / WD-40 repeat family protein	
dno-miR308e	AT5G05570.2	2.5	transducin family protein / WD-40 repeat family protein	
dno-miR390e	AT3G11050.1	3	putative ferritin subunit precursor	
dno-miR398f	AT4G32820.1	3	Tetratricopeptide repeat (TPR)-like superfamily protein	
dno-miR398f	AT4G32820.2	3	Tetratricopeptide repeat (TPR)-like superfamily protein	
dno-miR414	AT1G74890.1	0.5	two-component response regulator ARR15-like	
dno-miR414	AT1G89902.1	1	F-box and Leucine Rich Repeat domains-containing protein	
dno-miR414	AT5G09202.1	1	PRP1_ARATHRecName: Full=PRP1; AliName: Full=MPR1	
dno-miR414	AT2G20370.1	1	serine-rich protein-like protein	
dno-miR414	AT2G23401.1	1	DNA heat shock N-terminal domain-containing protein	
dno-miR414	AT2G15345.1	1.5	GeoS-like zinc-binding alcohol dehydrogenase family protein	
dno-miR414	AT1G84970.1	1.5	translation initiation factor eIF-2A-28 subunit delta	
dno-miR414	AT3G37702.1	1.5	O-fucose/lartransferease family protein	
dno-miR414	AT1G78270.1	1.5	UDP-glycoconjugate transfersase 8A4	
dno-miR414	AT2G15345.1	1.5	Plant invertase/pectin methyltransferase inhibitor superfamily protein	
dno-miR414	AT2G15345.1	1.5	translation initiation factor eIF-2A-28 subunit delta	
dno-miR414	AT2G17525.1	1.5	pentatricopeptide repeat-containing protein At2g17525, mitochondrial	
dno-miR414	AT2G22001.1	1.5	elicitor peptide 6 precursor	
dno-miR414	AT2G30790.1	1.5	oxysterol-evolving enzyme 2-L, chloroplastic	
dno-miR414	AT2G39640.1	1.5	aldolase superfamily protein	
dno-miR414	AT2G39640.2	1.5	aldolase superfamily protein	
dno-miR414	AT3G13700.1	1.5	epi-6-deoxycochasterone 25-monoxygenase	
dno-miR414	AT3G17100.1	1.5	transcription factor bHLH47-like	
dno-miR414	AT2G27460.1	1.5	denticless protein homolog	
dno-miR414	AT4G27960.1	1.5	protein ABI1	
dno-miR414	AT4G16790.1	1.5	glycoprotein homolog	
dno-miR414	AT2G28501.1	2	SNARE associated Golgi protein family	
dno-miR414	AT1G28780.2	2	transcription factor MYB117	
dno-miR414	AT1G75180.2	2	Erythronate-4-phosphate dehydrogenase family protein	
dno-miR414	AT2G36320.1	2	zinc finger A20 and AN1 domain-containing stress-associated protein 6-like	
dno-miR414	AT1G39630.1	2	dihydrodiol/pyrolysin-residue acetyltransferase complex 2 of pyruvatedehydrogenase complex	
dno-miR414	AT2G21380.1	2	jacinin-related lectin 36	
dno-miR414	AT2G32300.1	2	G-type lectin 5-receptor-like serine/threonine-protein kinase SD2-5	
dno-miR414	AT2G37630.1	2	cyclin D1	
dno-miR414	AT4G39410.1	2	probable WRKY transcription factor 13	
dno-miR414	AT1G11720.2	2	alpha-galactosidase	
dno-miR414	AT1G05310.1	2.5	probable peristemonerase 8	
dno-miR414	AT1G34300.1	2.5	L-loop containing nucleoside triphosphate dehydrogenase superfamily protein	
dno-miR414	AT1G14920.1	2.5	DELLA protein GAI	
dno-miR414	AT1G35760.1	2.5	Aspartate dehydrogenase 2, chloroplastic	
dno-miR414	AT2G21326.1	2.5	Nuclear speckle RNA-binding protein B	
dno-miR414	AT1G28390.1	2.5	berberine bridge enzyme-like 4	
dno-miR414	AT2G28450.1	2.5	agamous-like MADS-box protein AGL29	
dno-miR414	AT1G48830.1	2.5	ethylene-responsive transcription factor ERF014	
dno-miR414	AT1G51840.1	2.5	exocyst complex component EXO70A1	
dno-miR414	AT1G32160.1	2.5	RNAse Z-like domain-containing protein	
dno-miR414	AT1G34160.1	2.5	nuclear transcription factor Y subunit A-5	
dno-miR414	AT1G69401.1	2.5	serine/threonine-protein kinase SNR2A	
dno-miR414	AT4G66901.1	2.5	Disease resistance protein (TR-NBS-LRR class) family	
dno-miR414	AT1G68720.1	2.5	RNA(adenine)(34i) deaminase, chloroplastic	
dno-miR414	AT1G68901.1	2.5	transcription factor TCP15-like	
dno-miR414	AT1G21220.1	2.5	UDP-glycosylglycopeptide/hydrolase	
dno-miR414	AT2G01330.1	2.5	MLK-like protein 328	
dno-miR414	AT2G01620.1	2.5	zinc transporter-like protein	
dno-miR414	AT2G08500.1	2.5	xylan/hemicellulose transferase	
dno-miR414	AT2G21330.1	2.5	SMAD/FH domain-containing protein	
dno-miR414	AT2G23500.1	2.5	cell division cycle-associated protein 7	
dno-miR414	AT3G25110.1	2.5	stromal cell-derived factor 2-like protein	
dno-miR414	AT2G28610.1	2.5	WUSCHEL-related homeobox 3	
dno-miR414	AT2G32310.1	2.5	CCT motif family protein	
dno-miR414	AT2G35110.2	2.5	protein NAP1 isoform X1	
GO and KEGG pathway analysis:
To further understand the regulatory functions of miRNAs, the target genes were subjected to Gene Ontology (level 2) and KEGG pathway enrichment analysis, using Blast2Go v5.2. The results suggested that *D. nobile* miRNAs were involved in regulation of 14 broadly defined biological processes and 3 basic molecular functions. The target genes were also found to be part of 9 different types of cellular components (Figure 3). Pathway enrichment analysis of target genes based on KEGG database demonstrated the participation of identified miRNAs in 34 different metabolism networks (Figure 4). These networks are involved in various important pathways such as purine metabolism, antibiotic synthesis, caffeine metabolism, pentose phosphate pathway and TCA cycle.

Phylogenetic Analysis:
Phylogenetic analysis was carried out to understand the relationship between the identified miRNAs in *D. nobile* with the other plant species available in miRNA database for same family identification (Figure 5).
No miRNAs have been reported for *D. nobile* in miRBase. Maximum likelihood method was used for carrying out three different phylogenetic analyses for three identified miRNA families and their representative members. miR390 is a conserved miRNA family and its members have reported in many important species including *Arabidopsis*, *Brassica* and rice, whereas miR528a and miR528b have been reported only in *Zea mays*. miR414 have been reported only in three species in miRBase viz. *A. thaliana, Oryza sativa* and *Physcomitrella patens*.

Discussion:
Identification and annotation of genetic modulators help in deciphering the critical roles played by such components in regulation of specific biological processes and their associated cellular properties. miRNA’s are considered as one such group of regulatory molecules which inhibit gene expression by cleavage
mediated target mRNA degradation or translational repression. Before this study, no comprehensive work was done on identification of putative miRNAs from Expressed Sequence tags of *D. nobile*. In this research we considered all the important criteria such as the MFEI values, mismatch inhibition and sequence length which have been used for miRNA identification in other angiospermic species. The MFEI values of the 14 identified miRNAs in our work were mostly in the range of 0.5 to 1.0, among which 13 of them have MFEI values even greater than 0.9. As compared to the miRNAs identified in some other plants from EST sequences [33-36], this is a comparatively higher range of MFEI values, and a higher value of MFEI indicates greater thermodynamic stability of the secondary structure of the miRNAs, and hence lesser chance of encountering false positives. The G+C% of most of the miRNAs was found to be in the range of 41-47%, however only the members of miR528 family presented a G+C% value greater than 50. Among the predicted targets 13% genes are sequence specific transcription factors, 33% genes with various catalytic functions and 54% genes act as sequence specific DNA-binding, metal ion binding or protein binding factors. In the gene ontology analysis, the two main categories represented among the biological processes are cellular processes and metabolic processes (18% and 16% genes respectively). 22% of the target proteins have been found to be part of the nucleus, 18% proteins are present in various cell organelles and 13% proteins act as integral part of the cell membrane.

Transcription factors (TFs) are the master regulators of gene expression patterns in eukaryotes, and are responsible for facilitation of growth and development in plants [37]. *dno*-miR414 identified in this study has been shown to target several transcription factors including those from MYB as well as TCP family of TFs. Members of MYB DNA-binding domain superfamily protein are involved in many important biochemical and physiological processes in plants [38]. Furthermore, previous studies have also reported that miR414 can target the MYB family transcription factors in *Allium cepa*, *Solanum tuberosum* and *Brachypodium distachyon* [39-41]. The plant-specific TCP (TEOSINTE BRANCHED 1, CYCLOIDEA, PCF 1 and 2) transcription factor family is involved in plant development throughout its vegetative phase, i.e. from seed germination until the formation of flowers and fruits [42]. Members of a few other families of transcription factors have also been found to be probable targets of *dno*-miR414, such as ERF, GATA and WRKY family of transcription factors. The ERF (Ethylene responsive) transcription factors are responsible for establishment of floral meristem and tissue repair processes [43]. GATA transcription factors (binding to GATA rich sequences) are the DNA motifs that have been mostly implicated in light-dependent gene regulation in plants [44], and the WRKY family of transcription factors has a significant role in regulation of abiotic stress responses in plants [45]. Our results also show that *dno*-miR414 and *dno*-miR528a may also target several genes which encode various F-box proteins. These proteins are characterized as components of the SCF ubiquitin-ligase complexes (Skp 1, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolyis [46]. Protein ubiquitination is considered as a critical post-translational modification process that is employed by eukaryotes in order to regulate various types of cellular processes [47]. Another important gene found to be targeted by *dno*-miR528 family is the co-chaperone that assists in protein folding mediated by HSP70 or HSP90 [48]. The KEGG pathway analysis also reveals involvement of miRNAs in regulation of genes associated with various significant metabolic pathways. Our findings have shown that ESTs can be a major source of functional information similar to previous reports of SSRS identified from ESTs [49].

Conclusion:
We report the mining of miRNAs from EST data in *Dendrobium nobile*. We describe 14 potential miRNAs from 3 ESTs of *D. nobile*. They belong to 3 miRNA families (miR390, miR528 and miR414) linking to transcription factor regulation, signal transduction, DNA and protein binding, and various cellular processes covering 34 different metabolic networks in KEGG. These results help in the understanding of miRNA-mRNAs functional networks in *D. nobile*.

List of Abbreviations:
DCL1 - Dicer-like-1; AGO - Argonaute; RISC - RNA-induced silencing complex; EST - Expressed Sequence Tags; MFEI - Minimal Folding free Energy Index; MFE - Minimal Folding free Energy; AMFE - Adjust Minimal Folding free Energy; KEGG - Kyoto Encyclopaedia of Genes and Genomes; TCA - Tri-Carboxylic Acid; TF - Transcription Factor; MYB - Myeloblastosis; TCP - Teosinte Branched 1, Cycloidea, Proliferating Cell Nuclear Antigen Factor 1 and 2; ERF - Ethylene Responsive Transcription Factors; SCF - Skp I, Cullin, and F-box

Declaration:
Ethics approval and consent to participate:
Not applicable

Consent for Publication:
Not applicable

Availability of data and material:
A total of 38,589 previously identified mature micro-RNAs from different plants were retrieved from the miRBase database (http://www.mirbase.org/) (release 22.1). These sequences were defined as the query sequence set and used for identifying miRNAs in *D. nobile* Expressed Sequence Tags (ESTs). Publicly available 15,383 ESTs of the species were downloaded from National Centre for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/). Non-redundant protein
sequences were used from the NR protein database of NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/).

Competing Interests:
The authors declare that they have no competing interests.

Funding:
This work was supported by the funds from DST-SERB funded ECR Award Project (ECR 710/2017) granted by Govt. of India. DST-INSPIRE and CSIR have also provided financial support in the form of fellowship grants.

Authors’ Contributions:
DBK carried out data analysis and prepared the manuscript, PMB carried out most of the primary steps involved in data analysis, BD, KSB and HA thoroughly revised the compiled draft and put valuable inputs while carrying out the research, NA supervised the research work, designed the methodology and finally approved the manuscript. All authors have read and approved the manuscript.

Acknowledgements:
We would like to acknowledge Gauhati University, Guwahati, Assam for the facilities and space provided to us for carrying out the research.

References:
[1] Ye Q et al. Phytochemistry. 2002 61:885. [PMID: 12453511].
[2] Martin KP and Madassery, J. Sci Hortic. 2006 108:95. [doi.org/10.1016/j.jsa.2005.10.006].
[3] Miyazawa M et al. J Agric Food Chem. 1997 45:2849. [doi.org/10.1021/jf9603902].
[4] Zhao W et al. J Nat Prod. 2001 64:1196. [doi.org/10.1021/np0102612].
[5] Lee YH et al. Planta Med. 1995 61:178. [PMID: 77753927].
[6] Hossain MM Fitoterapia. 2011 82:102. [PMID: 20851751].
[7] Bhattacharyya P et al. Meta Gene. 2014 2:489. [PMID: 25606433].
[8] Mohanty P et al. 3 Biotech 2013 3:235. [PMID: 23824372].
[9] Bartel DP, Cell 2004 116:281. [PMID: 14744438].
[10] Carthew RW and Sontheimer EJ, Cell 2009 136:642. [PMID: 19239886].
[11] Voinnet O, Cell 2009 136:669. [PMID: 19239888].
[12] Chen X, Annu Rev Cell Dev Biol. 2009 25:21. [PMID: 19575669].
[13] Sun G, Plant Mol Biol. 2012 80:17. [PMID: 21874378].
[14] Ambros V et al. RNA 2003 9:277. [PMID: 12952000].
[15] Axcell MJ and Meyers BC, Plant Cell 2018 30:272. [PMID: 29343505].
[16] Lee RC et al. Cell 1993 75:843. [PMID: 8252621].
[17] Lee RC and Ambros V, Science 2001 294:862. [PMID: 11679672].
[18] Kurihara Y and Watanabe Y, Proc. Natl. Acad. Sci. U.S.A. 2004 101:12753. [PMID: 15314213].
[19] Yu B et al. Science 2005 307:932. [PMID: 15705854].
[20] Fagard M et al. Proc. Natl. Acad. Sci. U.S.A. 2000 97:11650. [PMID: 11016954].
[21] Zeng Y et al. Proc. Natl. Acad. Sci. U.S.A. 2003 100:9779. [PMID: 12902540].
[22] Tang J and Chu C, Nat Plants 2017 3:17077. [PMID: 28665396].
[23] Jeyaraj A et al. BMC Plant Biol. 2017 17:212. [PMID: 29157210].
[24] Altschul SF et al. Nucleic Acids Res. 1997 25:3389. [PMID: 9254694].
[25] Zuker M, Nucleic Acids Res. 2003 31:3406. [PMID: 12824337].
[26] Zhang BH et al. Cell Mol. Life Sci. 2006 63:246. [PMID: 16395542].
[27] Zhang B et al. Plant J. Cell Mol. Biol. 2006 46:243. [PMID: 16623887].
[28] Dai X et al. Nucleic Acids Res. 2018;46:W49. [PMID: 29718424].
[29] Conesa A and Gotz S, Int J Plant Genomics 2008 2008:619832. [PMID: 18483572].
[30] Bonnet E et al. Bioinformatics 2004 20:2911. [PMID: 15217813].
[31] Wang X-J et al. Genome Biol. 2004 5:R65. [PMID: 15345049].
[32] Schwab R et al. Dev. Cell 2005 8:517. [PMID: 15809034].
[33] Zakeel MCM et al. Sci Horticult. 2019 252:55. [doi.org/10.1016/j.scienta.2019.02.012].
[34] Gupta H et al. Genom Data 2015 6:139. [PMID: 26697356].
[35] Patel M et al. Mol Biol. Rep. 2019 46:2979. [PMID: 31066002].
[36] Wang M et al. PLoS One 2012 7:e33696. [PMID: 22493671].
[37] Yanagisawa S, J. Plant Res. 1998 111: 363. [doi.org/10.1007/BF02507800].
[38] Du H et al. Biochemistry (Moscow). 2009 74:1. [PMID: 19232042].
[39] Baghban Kohnherouz B et al. Interdiscip Sci Comput Life Sci. 2018 10:771. [PMID: 28660536].
[40] Xie F et al. Gene 2011 473:8. [PMID: 20933063].
[41] Unver T and Budak H, Planta 2009 230:659. [PMID: 19585143].
[42] Danisman S, Front Plant Sci. 2016 7:1930. [PMID: 28066483].
[43] Heyman J et al. J Cell Sci. 2018 131. [PMID: 29242229].
[44] Reyes IC et al. Plant Physiol. 2004 134:1718. [PMID: 15084732].
[45] Pandey SP & Somssich IE, Plant Physiol. 2009 150:1648. [PMID: 19420325].
[46] Kiproes ET & Pagano M, Genome Biol. 2000 1. [PMID: 11178263].
[47] Dye BT & Schulman BA, Annu Rev Biophys Biomol Struct. 2007 36:131. [PMID: 17477837].
[48] Caplan AJ, Cell Stress Chaperones 2003 8:105. [PMID: 14627194].
[49] Lu JJ et al. Genet Mol Res. 2014 13:986. [PMID: 24634120].
Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
