MASTERRING THE LEARNING CURVE SIGNIFICANTLY REDUCES OPERATIVE TIME FOR LAPAROSCOPIC TREATMENT OF COMPLICATED APPENDICITIS

Andrej Nikolovski1, Aleksandar Otljanski2, Rexhep Selmani2, Svetozar Antovic2, Nikola Jankulovski2

1 University Surgery Clinic “Sv. Naum Ohridski”, Skopje, Republic of North Macedonia
2 University Clinic for Digestive Surgery, Ss Cyril and Methodius University in Skopje, Faculty of Medicine, Skopje, Republic of North Macedonia

Abstract

Laparoscopic appendectomy is the preferred operative method for acute appendicitis treatment. In terms of complicated appendicitis it can be effective in hands of an experienced laparoscopist that overwhelmed the learning curve for the method. Aim: This retrospective study examines whether the operative time for laparoscopic appendectomy for complicated appendicitis is shortened after mastering the learning curve. Material and methods: A total number of 196 patients were operated for the diagnosis of acute appendicitis, of whom 77 were diagnosed with complicated appendicitis. They were subsequently divided in two groups (laparoscopic and open). Operative time in both groups was measured and the conversion and postoperative complications were noted. Results: Conversion rate was 2.3%. Operative time was shorter in the laparoscopic group (67.4 ± 22.9 minutes vs. 77.9 ± 17.9 minutes; p = 0.033). Overall postoperative morbidity was 25.97% with wound infection present only in the open group (p = 0.018). Intraabdominal abscess occurred in one patient from the laparoscopic group (0.38%). Length of hospital stay was shorter in the laparoscopic group (4.3 ± 2.2 vs. 5.7 ± 2.1; p = 0.0052).

Keywords
complicated appendicitis, laparoscopic appendectomy, operative time, learning curve

Competing interests
The author have declared no competing interests

References

Citation: Nikolovski A, Otljanski A, Selmani R, Antovic S, Jankulovski N. Mastering the learning curve significantly reduces operative time for laparoscopic treatment of complicated appendicitis. Arch Pub Health 2021; 13(2) 1-5. doi.org/10.3889/aph.2021.6000

Received: 2-Jun-2021; Revised: 27-jun-2021; Accepted: 2-Aug-2021; Published: 30-Aug-2021

Copyright: 2021 Nikolovski A, Otljanski A, Selmani R, Antovic S, Jankulovski N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Competing Interests: The author have declared no competing interests

Competing Interests: The author have declared no competing interests
Introduction

Laparoscopic appendectomy is the current proposed treatment for all grades of complicated appendicitis (CA). It is well-established that laparoscopic appendectomy (LA) has advantages over the open appendectomy (OA) in terms of shorter operative time, low rate of operative conversions, acceptable rate of postoperative complications and shortened length of hospital stay\(^2\);\(^3\);\(^4\);\(^5\).

The aim of this study was to examine whether the operative time of the laparoscopic appendectomy in the treatment of CA after mastering the learning curve for the technique was significantly shortened.

Material and methods

Patients

Our retrospective tertiary single center study analyzed patients operated for complicated appendicitis in terms of intraoperative adverse effects, operative time, conversion rate and length of hospital stay. Patients operated for acute appendicitis (AA) in the period of May 2019 – February 2021 were included.

Methods

A standard three-port laparoscopic appendectomy was used for the LA, and Mc Burney muscle-splitting technique for the OA. Operative time for both procedures was measured from incision to the last skin suture at the end of surgery. One surgeon performed the laparoscopic procedure with experience with more than 50 laparoscopic appendectomies and the other two surgeons (with more than 100 open procedures performed) used the open method.

The grades of complicated appendicitis noted intraoperatively were divided into 4 categories:

- Gangrenous appendicitis;
- Perforated appendicitis;
- Periappendicular abscess and
- Secondary diffuse peritonitis.

SPSS for Windows v. 23.0 software was used. Kolmogorov-Smirnov test was used for normality check. The Student and Mann-Whitney tests were used for numerical data and Chi-square test for quantitative variables.

Results

A total number of 196 patients were operated for the diagnosis of acute appendicitis. One hundred and nineteen (60.7%) had simple appendicitis and 77 (39.3%) patients were diagnosed intraoperatively with some grade of complicated appendicitis and only those were subsided for further statistical analysis. Fifty-two of them were males and the rest 25 were females (Table 1).

	Simple	Complicated
Male (%)	62 (52.1%)	52 (67.5%)
Female (%)	57 (47.9%)	25 (32.5%)
Total	119	77

Table 1. Age of subjects (months) / Age (in months) at cochlear implantation
Patients with complicated appendicitis were subdivided into two groups (laparoscopic – A, open - O). Forty-four were operated laparoscopically and the rest 33 with OA. The most common intraoperative finding in the Group A was perforated appendicitis (18 patients), followed by peritonitis (12), gangrene (8) and abscess (6). In the open group, appendicular perforation was also the most common finding (16 patients) (p = 0.81) (Table 2).

Table 2. Demographic and surgical data

	Group A	Group O	p
Sex			
Male (%)	31 (70.45)	21 (63.64)	0.53
Female (%)	13 (29.55)	12 (36.36)	
Age			
(mean ± SD)	39.4 ± 16.2	41.6 ± 16.3	0.56
ASA (%)			
1	25 (56.82)	14 (42.42)	0.36
2	12 (27.27)	14 (42.42)	
3	7 (15.91)	5 (15.15)	
Intraoperative finding (%)			
Gangrene	8 (18.18)	6 (18.18)	0.81
Perforation	18 (40.91)	16 (48.48)	
Abscess	6 (13.64)	5 (15.15)	
Peritonitis	12 (27.27)	6 (18.18)	
Operative time (mean ± SD)	67.4 ± 22.9 min.	77.9 ± 17.9 min.	0.033
Length of stay (mean ± SD)	4.3 ± 2.2 days	5.7 ± 2.1 days	0.0052

SD – standard deviation, min. - minutes

The overall range for operative time was 24 – 112 minutes in both groups. The laparoscopic procedures were shorter (67.4 ± 22.9 minutes) than the open ones (77.9 ± 17.9 minutes), which presented with significance (p = 0.033) (Table 2).

In one patient, converted appendectomy was performed (2.3%) due to a significant inflammatory process.

Length of hospital stay was shorter in the laparoscopic group (4.3 ± 2.2 vs. 5.7 ± 2.1, p= 0.0052).

Discussion

More than 90% of the cases with acute appendicitis are treated with appendectomy. Continuous growth in laparoscopy use is reported from 43.4% in 2007 up to 75% in 2011. Since 2001 when the first series of complicated appendicitis treated laparoscopically was reported, the success of the method was reported in another publication from 2006.

One of the factors with direct impact on the postoperative complications rate is the operative time over 90 minutes. Prolonged surgery is expected in terms of any grade of complicated appendicitis due to additional adhesiolysis, partial omental resection, irrigation and suction of the abdominal cavity and the need for additional position changes of the operating ta-
Jeon reported the following factors for prolonged operative time: age over 65 years, body mass index over 25, elevated serum C-reactive protein values, comorbidities and computerized tomography finding in favor of appendicular abscess.

Regardless of the intraoperative finding, the surgeons’ skills are also an important factor that influences on the operative time. Mastering the learning curve for laparoscopic appendectomy reduces it2,4.

The European Association for Endoscopic Surgeons (E. A. E. S.) Consensus Development Conferences on laparoscopic cholecystectomy, appendectomy, and hernia repair recommends performance of at least 20 laparoscopic appendectomies for gaining accreditation9. On the other hand, Kim’s analysis on the surgical residency reported 30 procedures needed for mastering the learning curve10.

Different series report differences in the operative time for the examined groups. Li, Biondi, Wang and Takami presented shorter operative time for the open appendectomy procedure11-14, contrary to Park and Yau that proved significantly shorter operative time in the laparoscopic groups15,16.

Our study was conducted on the basis of more than 50 laparoscopic appendectomies performed by the principal investigator, which resulted in a statistically shorter operative time in the laparoscopic group.

Conclusion

Current recommendations and statements on the laparoscopic treatment for complicated appendicitis demand availability of an experienced laparoscopic team in order to provide safe and successful laparoscopic appendectomy on basis of complicated appendicitis. This will result in a positive postoperative outcome in terms of low conversion rate, short operative time and acceptable rate of postoperative morbidity.

References

1. Di Saverio S, Podda M, De Simone B. et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J Emerg Surg 2020;15: 27
2. Yu MC, Feng YJ, Wang W, Fan W, Cheng HT, Xu J. Is laparoscopic appendectomy feasible for complicated appendicitis? A systematic review and meta-analysis. Int J Surg 2017; 40:187–197
3. Masoomi H, Nguyen NT, Dolich MO, et al. Laparoscopic appendectomy trends and outcomes in the United States: data from the Nationwide Inpatient Sample (NIS), 2004–2011. Am Surg 2014;80: 1074-7
4. Horvath P, Lange J, Bachmann R, Strueller F, Königsrainer A, Zdichavsky M. Comparison of clinical outcome of laparoscopic versus open appendectomy for complicated appendicitis. Surg Endosc 2017; 31(1):199–205
5. Athanasiou C, Lockwood S, Markides GA. Systematic review and meta-analysis of laparoscopic versus open appendicectomy in adults with complicated appendicitis: an update of the literature. World J Surg 2017; 41(12):3083–99
6. Panagiotopoulou IG, Parashar D, Lin R, Antonowicz S, Wells AD, Bajwa FM, Krijgsman B. The diagnostic value of white cell count, C-reactive protein and bilirubin in acute
appendicitis and its complications. Ann R Coll Surg Engl 2013; 95(3):215-21

7. Patel SV, Nanji S, Brogly SB, Lajkosz K, Groome PA, Merchant S. High complication rate among patients undergoing appendectomy in Ontario: a population-based retrospective cohort study. Can J Surg 2018;61(6):412-417

8. Jeon BG, Kim HJ, Jung KH, Kim SW, Park JS, Kim KH, Kim ID, Lee SJ. Prolonged operative time in laparoscopic appendectomy: Predictive factors and outcomes. Int J Surg. 2016;36(Pt A):225-232.

9. Neugebauer E, Troidl H, Kum CK, Eypasch E, Miserez M, Paul A. The E.A.E.S. Consensus Development Conferences on laparoscopic cholecystectomy, appendectomy, and hernia repair. Consensus statements—September 1994. The Educational Committee of the European Association for Endoscopic Surgery. Surg Endosc. 1995;9(5):550-63

10. Kim SY, Hong SG, Roh HR, Park SB, Kim YH, Chae GB. Learning curve for a laparoscopic appendectomy by a surgical trainee. J Korean Soc Coloproctol 2010;26(5):324-328

11. Li X, Zhang J, Sang L, Zhang W, Chu Z, Li X, Liu Y. Laparoscopic versus conventional appendectomy—a meta-analysis of randomized controlled trials. BMC Gastroenterol 2010; 10:129

12. Biondi A, Di Stefano C, Ferrara F, Bellia A, Vacante M, Piazza L. Laparoscopic versus open appendectomy: a retrospective cohort study assessing outcomes and cost-effectiveness. World J Emerg Surg 2016;11(1):44

13. Wang D, Dong T, Shao Y, Gu T, Xu Y, Jiang Y. Laparoscopy versus open appendectomy for elderly patients, a meta-analysis and systematic review. BMC Surg 2019;19(1):54

14. Takami T, Yamaguchi T, Yoshitake H, et al. A clinical comparison of laparoscopic versus open appendectomy for the treatment of complicated appendicitis: historical cohort study. Eur J Trauma Emerg Surg 2020;46(4):847-851

15. Park JB, Sul JY. Laparoscopic appendectomy: a safe primary procedure for complicated appendicitis. J Korean Surg Soc 2007; 72:51–56

16. Yau KK, Siu WT, Tang CN, Yang GP, Li MK. Laparoscopic versus open appendectomy for complicated appendicitis. J Am Coll Surg 2007; 205:60–65