A Review of Cardiogenic Shock in Acute Myocardial Infarction

L. Khalid and S.H. Dhakam*

Department of Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, Pakistan

Abstract: Cardiogenic shock continues to be the most common cause of death in patients hospitalized with acute myocardial infarction. It has also been frequently associated with ST-segment elevation myocardial infarction (STEMI) and patients with co-morbidities. Cardiogenic shock presents with low systolic blood pressure and clinical signs of hypoperfusion. Rapid diagnosis and supportive therapy in the form of medications, airway support and intra-aortic balloon counterpulsation is required. Initial stabilization can be followed by reperfusion by fibrinolytic therapy, emergent percutaneous intervention (PCI) or coronary artery bypass grafting (CABG). The latter two have been found to decrease mortality in the long term. Research is being carried out on the role of inflammatory mediators in the clinical manifestation of cardiogenic shock. Mechanical support devices also show promise in the future.

Key Words: Cardiogenic shock, fibrinolytic therapy, percutaneous coronary intervention, myocardial infarction, intra-aortic balloon counterpulsation, coronary artery bypass grafting.

INTRODUCTION

Cardiogenic shock is the most common cause of death in patients with acute myocardial infarction (AMI) [1-9] and has a frequency of around 7-10% [1, 2, 10]. It continues to cause significant mortality despite advances in pharmacological, mechanical and reperfusion endeavors.

DEFINITION

Cardiogenic shock is defined as a systolic blood pressure of less than 90 mmHg for at least 30 minutes, which is secondary to myocardial dysfunction. It is associated with clinical signs of hypoperfusion, which include decreased urine output, altered mental status and peripheral vasoconstriction. It is usually unresponsive to fluids, an important differentiating quality from other types of shock. However, it frequently responds to inotropes. The cardiac index (CI) and the pulmonary capillary wedge pressure (PCWP) are usually less than 2.2 l/min/m² and greater than 15 mmHg respectively [11].

INCIDENCE

The incidence within the community over a 23-year period (1975-1997) was found to be 7.1% [6]. In the, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Arteries (GUSTO-I) trial [7], the incidence of cardiogenic shock was likewise 7.2%, and consistent with other studies [12-14]. However, it is difficult to assess the actual number, as a certain proportion of patients die before reaching the hospital and cannot be categorized as having cardiogenic shock [2, 12, 14]. Over the years, there has been little decrease in the time to present to the hospital [15].

A larger number of patients develop shock after reaching the hospital. This highlights an important fact that medical contact may have been established before shock development and opens the door to its possible prevention. In the GUSTO trial, 11% of patients had shock on presentation while 89% of patients subsequently developed shock [7]. Similarly in the SHould we emergently revascularise Occluded Coronaries for cardiogenic shock? (SHOCK) trial registry, more than half the patients developed shock within a day of presenting to the hospital [4]. Early shock, defined as occurring in less than 24 hours, was found in 74.1% of patients in a recent study [16]. In addition, it has been observed that there is a slight increase in the number of deaths among patients who present with early shock [17].

Despite emerging innovative treatments, in-hospital mortality in patients with cardiogenic shock continues to be as high as 70-80% [1, 2]. Other studies have quoted mortality rates of around 50% to 80% [4]. A study carried out at a tertiary care hospital in Pakistan had an in-hospital mortality rate of 55% [18]. In another study, the overall in-hospital mortality was high (63%) but was found to reduce (P=0.004) over time from 1992 to 1997. This was partially attributed to the greater use of revascularization procedures, which are known to improve outcomes [19].

Cardiogenic shock seems to occur with a greater frequency amongst patients with ST-segment elevation myocardial infarction (STEMI). It was observed that shock developed in 7.5% of patients with STEMI [2, 7] and in 2.5% of patients with non-ST-segment elevation myocardial infarction (NSTEMI) [20]. In another study, 4.2% of patients with STEMI and 2.5% of patients with NSTEMI had cardiogenic shock. A significant delay precedes shock development in patients with NSTEMI [21]. The underlying reason may be the rapid cell necrosis that takes place in STEMI contrasting with a slower cell loss in NSTEMI. Thus, the highest creatine kinase (CK) level is found in STEMI as compared to NSTEMI [20].

Diabetics are twice as likely to develop cardiogenic shock as non-diabetics with AMI. However, the prognosis of cardiogenic shock is similar in both groups of patients [22].

ETIOLOGY

Left ventricular dysfunction (LVD) is the most frequent cause of cardiogenic shock [23]. In a recent trial, it was high-
lighted that LVD was the main etiology [4, 24], occurring in 74.5% of patients. This was followed by acute mitral regurgitation (8.3%), ventricular septal rupture (4.6%), isolated right ventricular shock (3.4%), tamponade or cardiac rupture (1.7%), and other causes (8%) (Table 1).

Table 1. Causes of Cardiogenic Shock

Infarction
Left ventricular dysfunction
Acute mitral regurgitation
Ventricular septal rupture
Right ventricular shock
Cardiac Tamponade
Cardiac Rupture

Infarctions were located anteriorly in most of the patients (55%) in the SHOCK trial registry [4, 24]. While 46% of the infarctions were inferior, 21% were posterior, and 50% were in multiple locations. Other studies have found similar results [25]. Around 60% of patients had triple vessel disease while left main disease was encountered in 20% [26]. The left anterior descending artery (LAD) was found to be the most frequently involved artery unrelated to the time of shock onset [17]. Thus, severe arterial disease precedes shock development.

The median time from the onset of infarction to shock development was 5.6 hours [4]. In the SHOCK trial registry it was found to be 6.2 hr [16]. Certain characteristics (Table 2) such as, being elderly, diabetic or having anterior infarction predispose patients with myocardial infarction to develop shock [1, 27-29]. Some other factors include presence of previous infarction, peripheral vascular disease, cerebrovascular disease, reduced ejection fractions and larger infarctions [27-28]. Age was most strongly associated with shock. In another study, age, systolic blood pressure, heart rate and Killip class at presentation contributed to more than 85% of the predictive data for increased risk of shock [30]. Clinicians should be more vigilant in such cases and monitor these patients more frequently and aggressively.

Table 2. Predisposing Factors for Cardiogenic Shock

Factor
Age
Systolic blood pressure
Heart rate
Killip class
Diabetes
Anterior infarction
Previous infarction
Peripheral vascular disease
Reduced ejection fraction
Large infarctions
Cardiac power

Cardiac power was predicated to be the strongest independent hemodynamic factor associated with mortality in patients admitted to hospitals with cardiogenic shock. It was also observed that older age and females had reduced cardiac power [31].

PATHOPHYSIOLOGY

Ischemia due to decreased coronary perfusion leads to muscle hypoxia and necrosis which compromises myocardial contractility. This leads to decreased cardiac output and a subsequent drop in the arterial blood pressure. Simultaneously, the body’s sympathetic system responds to the reduced blood pressure by increasing vasoconstriction. The hormonal system is also activated leading to salt and water retention. This has a detrimental role, as the coronary perfusion is further compromised. A vicious cycle is thus created and it leads to decreased perfusion at the tissue level. Lactic acidosis and hypoxia eventually sets in, which further compromise the myocardial contractility until the arterial blood pressure is not maintained to a level needed to sustain life.

MANAGEMENT

Assessment

Cardiogenic shock is an emergency and it needs rapid diagnosis and institution of therapy. Improved long-term outcomes require immediate diagnosis and management and if needed, transfer to a tertiary care hospital [32].

History will usually reveal symptoms of a preceding AMI. A diagnosis of cardiogenic shock is made when myocardial dysfunction is observed in the absence of other causes such as hemorrhage, sepsis, pulmonary embolism, tamponade, aortic dissection, and preexisting valvular disease [32]. On a physical exam (Table 3), the patient may be cyanotic with cold extremities and pulses are usually rapid and faint. If LVD is the etiology, then jugular venous distention (JVD) and rales in the lung field due to pulmonary congestion are observed. If right ventricular failure is the underlying cause then JVD and kussmaul’s sign is present and pulmonary rales are not found. Other findings include distant heart sounds and the presence of third and fourth heart sounds. Mitral regurgitation or a VSD can lead to a new systolic murmur. Arrhythmias are a frequent occurrence and need immediate attention.

Table 3. Clinical Signs of Cardiogenic Shock

Sign
Cyanosis
Rapid and/or faint pulses
Jugular venous distention
Cold extremities
Pulmonary rales
Distant heart sounds
Third and fourth heart sounds
Decreased urine output
Altered mental status

SBP=Systolic blood pressure
64% of patients in the SHOCK trial registry, presented with hypotension and signs of hypoperfusion such as tachycardia, altered sensorium, decreased urine output and cool extremities. These patients also had signs of pulmonary congestion [33]. A smaller proportion of patients (28%) experienced shock with no pulmonary congestion, which is also known as the silent lung syndrome. However, clinicians should be wary and refrain from incorrectly associating absence of pulmonary congestion with decreased risk [33]. Thus, signs of hypoperfusion alone are mortality indicators regardless of the presence or absence of pulmonary congestion [33]. Similarly, the GUSTO-I study observed increased mortality at 30 days if oliguria, cold extremities or altered sensorium were found to be present [34]. Another study also ascertained oliguria and cold extremities as independent and strong mortality predictors [20]. Thus, the initial clinical assessment of a patient is important in determining the future prognosis.

Diagnosis

Tools that facilitate diagnosis (Table 4) include an electrocardiogram (ECG), cardiac enzymes, chest X ray, arterial blood gases (ABG), electrolytes, complete blood count (CBC) and/or a coagulation profile [35]. Invasive hemodynamic monitoring may be required but is not a necessity. Bedside echocardiography plays a vital role in assessing the possible contributing causes [36, 37]. It can be used to quickly rule out or diagnose mitral regurgitation, ventricular septal or free wall tear, tamponade or a pericardial effusion so that emergent intervention can be instituted.

Table 4. Diagnostic Evaluation of Cardiogenic Shock

CBC	Electrolytes	Cardiac enzymes	Coagulation profile	ABG	CXR	ECG	Echocardiogram	Right heart catheterization
CBC=Complete blood count	ABG=arterial blood gases	CXR=chest x-ray	ECG=electrocardiogram					

There is controversial evidence regarding right heart catheterization. One study claimed improved outcomes [38] by using this invasive procedure while increased mortality was observed in a different study [39].

TREATMENT

Initial Stabilization

Aspirin and heparin constitute the first line of treatment. Fluids may need to be given in order to rule out hypovolemic shock. These need to be instituted with continuous monitoring of clinical signs, such as urine output, blood pressure and heart rate. In right ventricular failure, fluid support is required and nitrates and morphine should be avoided, as they tend to increase hypotension. Oxygen should be given through a face mask or if the need arises, airway should be secured and mechanical ventilation started. Arrhythmias are a frequent occurrence and sustained tachyarrhythmias need to be converted electrically so as to avoid further compromise of the cardiac output. Bradyarrhythmias may require atropine or temporary pacing [35].

Morphine reduces sympathetic stimulation and should be given for pain relief. It also decreases the preload and decompresses the left ventricle [35]. Nitroglycerine, a venuilator, has limited use in cardiogenic shock. It is important to maintain the mean arterial blood pressure above 90 mmHg. For this purpose, inotropes and vasopressors like dopamine and catecholamines may be required. Dopamine, an inotrope and a vasopressor, is preferred initially. Another alternative is dobutamine but its use may produce vasodilation and lead to hypotension [32]. In some situations, a combination of dopamine and dobutamine are more beneficial than the use of either agent alone [40]. Persistently low systolic blood pressures with values such as 70 mmHg require addition of more drugs such as norepinephrine. Pressor agents should be used carefully as they increase the heart rate and may trigger arrhythmias. Diuretics are added if pulmonary congestion is present to help in increasing the oxygenation [32]. Electrolyte imbalances and metabolic acidosis need immediate treatment. Nitrates, b-blockers, and angiotensin-converting enzyme inhibitors help to improve outcomes after myocardial infarction [41]. However, beta-blockers can deteriorate the condition and are generally avoided in shock.

SUPPORTIVE MEASURES

Intra-Aortic Balloon Pump (IABP)

Intra-aortic balloon pump (IABP) is required for stabilizing patients before reperfusion therapies. It increases coronary blood flow during diastole and decreases the afterload by lowering the systemic vascular resistance during systole. However, if there is severe coronary stenosis, there is little improvement in coronary perfusion [42]. The GUSTO-I trial [43], observed a decreased mortality rate at 30 days in patients treated with IABP (46%) as compared to those who did not receive this treatment (60%, P = 0.11). Similarly, in the SHOCK trial, patients who received treatment with IABP had reduced rates of mortality (50%) within hospital, versus those who did not have IABP placement (72%, P<0.0001) [44]. It was used in both the arms of the study: medical management and revascularisation.

The American College of Cardiology/American Heart Association (ACC/AHA) STEMI guidelines [45] give a class I recommendation for use of IABP when cardiogenic shock cannot be managed on medications alone. This allows stabilization for angiography and revascularization procedures.

Thus, in hospitals where emergent revascularization is not available, it is more appropriate to proceed with fibrinolytic therapy and IABP while arrangements are made for percutaneous transluminal coronary angioplasty (PTCA) or coronary artery bypass graft (CABG). This might be a more realistic approach in many developing countries like Pakistan.
where there may be unavailability of immediate revascularization facilities in hospitals.

Reperfusion Strategies

Fibrinolytic Therapy

Fibrinolytic therapy, when used in patients with AMI without shock, decreases shock onset [7, 46-49]. This is a vital fact, as it is known that shock development occurs after six hours of presentation to the hospital [4, 7, 13, 24]. These six hours are crucial for institution of treatment and can play a role in the prevention of cardiogenic shock.

In some trials, outcomes have been found to be similar with the use of streptokinase versus placebo and between streptokinase and tissue plasminogen activator [7, 12, 13]. However, in the SHOCK registry, patients receiving fibrinolytic therapy had lower mortality rates (54%) in the hospital versus those who did not receive fibrinolytic therapy (64%, $P=0.005$) [44]. But confounding factors may have been involved.

The outcome of treatment with fibrinolitics is associated with the degree of reperfusion [50, 51] but in patients with cardiogenic shock it is reduced [25, 51, 52] due to decreased coronary perfusion. In conclusion, the use of fibrinolitics does not increase survival in patients with an ongoing cardiogenic shock.

Hospitals lacking revascularization capabilities may pursue IABP and fibrinolytic therapy while making arrangements to transfer to hospitals with revascularisation capabilities [44].

Percutaneous Coronary Intervention

In the GUSTO-1 trial, a reduced mortality rate (43%) was observed at 30 days with successful PTCA as compared to those without PTCA (61%) as a mode of treatment [21]. The Swiss Multicenter Trial of Angioplasty Shock (SMASH) trial [53, 54] also showed decreased mortality rates in patients treated invasively rather than medically. However, it did not reach statistical significance. The SHOCK trial [5] also compared emergent revascularization versus immediate medical stabilization. The latter involved use of fibrinolytic therapy, inotropic and vasopressor agents. IABP was used quite frequently (86%) in patients. The revascularization arm was further dichotomized: 64% of patients underwent PCI and 36% had coronary artery bypass surgery. However, the mortality rates in the two groups of revascularization and medical treatment were not found to be statistically significant at 30 days (46.7% vs. 56.0%, respectively, $P = 0.11$), but by 6-months there was some divergence and significantly increased survival rates were observed in patients treated with revascularization (50.3% vs. 63.1%, $P=0.027$). Thus long-term benefits emerged subsequently and a significant mortality reduction was observed at 6 months consistent with 13 lives saved per 100 patients treated [5]. Diabetics have similar improved outcomes as non-diabetics, if revascularization is used, as observed in both the SHOCK Trial Registry and the SHOCK trial [55]. Furthermore, after one year, survival was 46.7% for patients in the revascularisation group compared with 33.6% in the medically treated group ($P<0.03$) [56]. Thus, significant long-term mortality benefits are observed with emergent revascularisation. Consistent with the above data, mortality due to cardiogenic shock in AMI has been found to be lower in hospitals with catheterization facilities than in hospitals without such facilities [57].

Analysis of the subgroup constituting patients less than 75 years, underscores a marked interaction between patient age and treatment outcome. A decrease in mortality by 15% at 30 days is observed in patients less than 75 years of age treated by revascularisation. At 6 months, the reduction in mortality was found to be 20%. However, in patients 75 years and above an increase in mortality by 22% was observed when patients were treated with revascularization rather than initial medical stabilization [5].

The outcome of PTCA is important in determining the survival of patients. The degree of reperfusion in the infarct related artery is associated with outcomes [58]. In the recent SHOCK trial, it was observed that the 30-day mortality rate was reduced with successful angioplasty (38%) as compared to patients with unsuccessful angioplasty (79%) [5]. However, reperfusion is lower in patients with cardiogenic shock [59, 60]. Patients with shock have comparatively less successful reperfusion rates (54% to 100%) with PTCA in the infarct-causing artery, than in patients without shock [61-71].

There are some indications that stents are an important ancillary part of cardiogenic shock management. [72]. In the Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy (PURSUIT) trial, use of eptifibatide had no consequence on the development of shock, in patients with non-ST elevation acute coronary syndromes, but a mortality reduction from 73.5% to 58.5% ($P=0.03$) was seen [73]. Lack of stent and glycoprotein IIb/IIIa usage has been observed as predictors of mortality in a recent study. Six predictors of mortality in patients presenting with shock included age, female gender, creatinine levels, total blockage of the left anterior descending artery (LAD), absence of stent use, absence of glycoprotein IIb/IIIa inhibitor use, during PCI. These were all found to be statistically significant. A second analysis carried out with variables identified at the time of initial presentation found gender, age, renal insufficiency, and total occlusion of the left anterior descending coronary artery to be significant [74].

Thus, in conclusion, the current American College of Cardiology/American Heart Association (ACC/AHA) guidelines recommend (class I) early revascularisation strategy for patients < 75 years of age with cardiogenic shock [75]. It is also recommended that patients especially less than 75 years of age should be promptly transferred to tertiary care hospitals where revascularization can be performed [56].

Surgical Intervention

Patients in cardiogenic shock undergoing emergent coronary artery bypass surgery have mortality rates of around 25% to 60% [76]. In the SHOCK trial, 36% of the patients randomized to revascularization in that study were treated surgically [5]. Such patients were more likely to have left main disease, 3-vessel disease and diabetes than those treated with PCI. However, similar survival rates were observed in the two groups: 55.6% in the PCI group compared with
57.4% in the CABG group at 30 days (P=0.86). Likewise after one year, the rates were 51.9% (PCI) versus 46.8% (CABG), respectively, (P=0.71). [77].

Some retrospective studies quote improved outcomes when CABG is used as an emergency procedure for AMI and cardiogenic shock [78-81]. In patients with left main or triple-vessel disease, stabilization by IABP and immediate activation of the surgery team should be sought, as CABG may be the more desired procedure in such patients to establish complete revascularization [5].

Patients presenting with additional mechanical complications such as acute mitral regurgitation due to papillary muscle rupture or LV free wall or septal rupture need surgery for survival, however, the outcome in such patients is much worse [35]. Ventricular septal rupture has a high in-hospital mortality of around 87% as observed in the SHOCK registry. Patients undergoing surgery for ventricular septal rupture have a survival rate of 19% [82].

Diagnosis of shock heralds a high mortality rate of around 50%, regardless of the benefits of early PCI or CABG. Around 50% of these deaths occur in the first 2 days [23, 83].

Other Mechanical Supports

IABP is useful in providing mechanical support during shock. It has been observed that cardiac index can indicate if potential benefit can be derived from IABP. The use of IABP has better outcomes when used in patients with a cardiac index higher than 1.2 L/min/m² and a systemic vascular resistance less than 2100 dynes/sec/cm⁻⁵. However, if the cardiac index is lower than 1.2 L/min/m², outcome is poor even if IABP is used. In such cases other support devices may be required [84].

Extracorporeal life support (ECLS) has been utilized in cases of severe cardiac or pulmonary failure [85]. Percutaneous cardiopulmonary bypass can also provide support and can be performed at the bedside through the femoral artery and vein [86]. These two devices however, do not help in unloading the left ventricle.

Biventricular assist devices, can serve as a bridge to cardiac transplantation. This has been found to have a success rate of around 59% [87]. Experimental percutaneous LV assist devices help to unload the left ventricle [88] and present another option.

New Pharmacological Agents

During the development of cardiogenic shock, the body may launch a systemic inflammatory response, which has led to investigations on inflammatory mediators. Chemical agents are being investigated for their contribution in cardiogenic shock. Nitric oxide production has also been thought to play a role in the development of cardiogenic shock and some studies indicate that inhibition of nitric oxide production may improve outcomes [89-91].

Thus, support systems in the form of mechanical devices and medications will have an increasing role in the future as part of our management strategies.

CONCLUSION

Cardiogenic shock due to AMI continues to be the main cause of death in these patients. Immediate diagnosis and management is required. There are two strategies in treating cardiogenic shock: medical versus invasive. If institutions lack revascularization facilities, fibrinolytic therapy and IABP should be used while provisions are made for invasive treatment. However, current guidelines favor an invasive approach. Prognosis is established by the outcome of revascularization regardless of the procedure used, such as PCI or surgery [92]. Newer devices are being developed for mechanical support. Inhibitors of nitric oxide have also shown favorable outcomes. These newer therapies may help in decreasing the significant mortality of cardiogenic shock in the future.

REFERENCES

[1] Kilkkip T 3rd, Kimball JT. Treatment of myocardial infarction in a coronary care unit. A two-year experience with 250 patients. Am J Cardiol 1967; 20: 457-64.
[2] Goldberg RJ, Gore JM, Alpert JS, et al. Cardiogenic shock after acute myocardial infarction. Incidence and mortality from a community-wide perspective, 1975 to 1988. N Engl J Med 1991; 325: 1117-22.
[3] Bates ER, Mosucci M. Post-myocardial infarction cardiogenic shock. In: Brown DL, Ed. Cardiac Intensive Care. Philadelphia, Pa: Saunders, 1998; 215-27.
[4] Hochman JS, Boland J, Sleeper LA, et al. Current spectrum of cardiogenic shock and effect of early revascularisation on mortality. Results of an international registry. SHOCK registry investigators. Circulation 1995; 91: 873-81.
[5] Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med 1999; 341: 625-34.
[6] Goldberg RJ, Samad NA, Yarzebski J, Gurwitz J, Bigelow C, Gore JM. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 1999; 340: 1162-8.
[7] Holmes DR Jr, Bates ER, Kleiman NS, et al. Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. J Am Coll Cardiol 1995; 26: 668-74.
[8] Becker RC, Gore JM, Lambrew C, et al. A composite view of cardiac rupture in the united states national registry of myocardial infarction. J Am Coll Cardiol 1996; 27: 1211-6.
[9] Menon V, Hochman JS. Management of cardiogenic shock complicating acute myocardial infarction. Heart 2002; 88: 531-7.
[10] Braunwald EB. Hemodynamic disturbances in acute myocardial infarction. In: Braunwald EB, editor. Heart disease. Philadelphia: W. B. Saunders, 1997; 1233-45.
[11] Forrester JS, Diamond G, Chatterjee K, Swan HJ. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med 1976; 295: 1404-13.
[12] Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1986; 1: 397-402.
[13] In-hospital mortality and clinical course of 20,891 patients with acute myocardial infarction randomized between alteplase and streptokinase with or without heparin. The Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO-I) Investigators. N Engl J Med 1996; 334: 1117-22.
[14] ISIS-3: a randomized comparison of streptokinase vs. tissue plasminogen activator vs. anistreplase and of aspirin plus heparin vs. anistreplase and streptokinase with or without heparin. The International SHOCK Investigators. The Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO-I) Trial Investigators. Lancet 1990; 336: 71-5.
[15] Rogers WJ, Canto JG, Lambrew CT, et al. Temporal trends in the treatment of over 1.5 million patients with myocardial infarction in...
the US from 1990 through 1999. The national registry of myocardial infarction 1, 2 and 3. J Am Coll Cardiol 2000; 36: 2056-63.

Hochman JS, Bailer CE, Draviz V. Cardiogenic shock complicating AMI etiologies, management and outcome-overall findings of the SHOCK trial registry. Circulation 1998; 98(Suppl 1): 1-778.

Webb JG, Sleeper LA, Bailer CE, et al. Implications of the timing of onset of cardiogenic shock after acute myocardial infarction: a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1084-90.

Tipoo FA, Quraishi AR, Najaf SM, et al. Outcome of cardiogenic shock complicating acute myocardial infarction. J Coll Physicians Surg Pak 2004; 14: 69.

Camendran L, Abboud R, Sleeper LA, et al. Trends in cardiogenic shock: result from the SHOCK study. Should we currently revascularize Oeccluded Coronaries for cardiogenic shock? Eur Heart J 2001; 22: 472-8.

Jacobs AK, French JK, Col J, et al. Cardiogenic shock with non-ST-segment elevation myocardial infarction: a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1091-96.

Hochman JS Jr, Bailer PB, Hochman JS, et al. Cardiogenic shock complicating acute myocardial infarction: etiologies, management and outcome-a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1063-70.

Hochman J. Cardiogenic shock. Annual Scientific Sessions, American Heart Association. Dallas, TX; 1998.

Bengston JR, Kaplan AJ, Pfeifer KS, et al. Prognosis in cardiogenic shock after acute myocardial infarction in the interventional era. J Am Coll Cardiol 1992; 20: 1482-9.

Sanborn TA, Sleeper LA, Webb JG, et al. Correlates of one-year survival in patients with cardiogenic shock complicating acute myocardial infarction: angiographic findings from the SHOCK trial. J Am Coll Cardiol 2003; 42: 1373-9.

Hands ME, Rutherford JD, Muller JE, et al. The in-hospital development of cardiogenic shock after myocardial infarction: incidence, predictors of occurrence, outcome and prognostic factors. The MILIS Study Group. J Am Coll Cardiol 1989; 14: 40-6.

De Leor J, Goldbourt U, Reicher-Reiss H, Kaptinsky E, Behar S. Cardiogenic shock complicating acute myocardial infarction in patients without heart failure on admission: incidence, risk factors, and outcome. SPRINT Study Group. Am J Med 1993; 94: 265-73.

Scheitl S, Ascheim R, Killip T3rd. Shock after acute myocardial infarction. A clinical and hemodynamic profile. Am J Cardiol 1970; 26: 556-64.

Hasdai D, Califf RM, Thompson TD, et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol 2000; 35: 136-43.

Fincke R, Bailer CE, Lowrie AM, et al. SHOCK investigators. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 2004; 44: 340-8.

Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic Shock. Ann Intern Med 1999; 131: 47-59.

Menon V, White H, LeJemtel T, Webb JG, Sleeper LA, Hochman JS. The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1071-6.

Hasdai D, Holmes DR Jr, Califf RM, et al. Cardiogenic shock complicating acute myocardial infarction: predictors of death. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries (GUSTO) Investigators. Am Heart J 1999; 138: 21-31.

Duvernoy CS, Bates ER. Management of cardiogenic shock attributable to acute myocardial infarction in the reperfusion era. J Intensive Care Med 2005; 20: 188-98.

Nishimura RA, Tajik AJ, Shub C, Miller FA Jr, Istrup DM, Harrison CE. Role of two-dimensional echocardiography in the prediction of in-hospital complications after acute myocardial infarction. J Am Coll Cardiol 1984; 4: 1008-7.

Picard MH, Davidoff R, Sleeper L, et al. Echocardiographic predictors of survival and response to early revascularization in cardiogenic shock. Circulation 2003; 107: 279-84.

Hochman JS Jr, Califf RM, Van de Werf F, et al. Difference in countries use of resources and clinical outcome for patients with cardiogenic shock after myocardial infarction: results from the GUSTO trial. Lancet 1997; 349: 75-8.

Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT investigators. JAMA 1996; 276: 889-97.

Richard C, Ricome JL, Ramaillo A, Bontinque G, Auzeppy P. Combined hemodynamic effects of dopamine and dobutamine in cardiogenic shock. Circulation 1983; 67: 620-6.

Gunnar RM, Bourdillon PD, Dixon DW, et al. ACC/AHA guidelines for the early management of patients with acute myocardial infarction. A report of the American college of cardiology/American Heart Association Task Force on Assessment of diagnostic and therapeutic cardiovascular procedures (subcommittee to develop guidelines for the early management of patients with acute myocardial infarction). Circulation 1990; 82: 664-707.

Kern MJ, Aguirre F, Bach R, Donohue T, Siegel S. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation 1993; 87: 590-11.

Anderson RD, Ohman EM, Holmes DR Jr, et al. Use of intra-aortic balloon counterpulsation in patients presenting with cardiogenic shock: observations from the GUSTO-I Study. Global utilization of streptokinase and tpa for occluded coronary arteries. J Am Coll Cardiol 1997; 30: 708-15.

Sanborn TA, Sleeper LA, Bates ER, et al. Impact of thrombolysis, intra-aortic balloon pump counterpulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1123-1129.

Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction-executive summary: a report of the ACC/AHA Task Force on practice guidelines (writing committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Circulation 2004; 110: 682-292.

Wilcox RG, von der Lippe G, Olsson CG, et al. Trial of tissue plasminogen activator for mortality reduction in acute myocardial infarction. Anglo-Scandinavian study of early thrombolyis (ASSET). Lancet 1988; 2: 525-30.

Long-term effects of intravenous anistreplase in acute myocardial infarction: final report of the AIMS study. AIMS trial study group. Lancet 1990; 335: 427-31.

Randomized trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction. ISIS-2 (Second International Study of Infarct Survival) Collaborative group. Lancet 1988; 2: 349-60.

Fincke R, Bailer CE, Lowrie AM, et al. SHOCK investigators. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 2003; 42: 1373-9.

The effectiveness of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after acute myocardial infarction. The GUSTO angiographic investigators. N Engl J Med 1993; 329: 1615-22.

Kennedy JW, Gensini GG, T multimodality, Maynard C. Acute myocardial infarction treated with intracoronary streptokinase: a report of the society for cardiac angiography. Am J Cardiol 1985; 55: 871-7.

Berger PB, Holmes DR Jr, Stebbins AL, Bates ER, Califf RM, Topol EJ. Impact of an aggressive invasive catheterization and revascularization strategy on mortality in patients with cardiogenic shock in the global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries (GUSTO-I) trial. An observational study. Circulation 1997; 96: 122-7.

Urban P, Stauffer JC, Bleed D, et al. A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) multicenter trial of angioplasty for shock-(SMASH). Eur Heart J 1999; 20: 1030-8.
[55] Schindler DM, Palmeri ST, Antonelli TA, et al. Diabetes mellitus in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK trial registry. J Am Coll Cardiol 2000; 36: 1097-103.

[56] Hochman JS, Sleeper LA, White HD, et al. SHOCK investigators. Should we emergently revascularize occluded coronary arteries for cardiogenic shock. One-year survival following early revascularization for cardiogenic shock. JAMA 2001; 285: 190-2.

[57] Barbash IM, Behar S, Battler A, et al. Management and outcome of cardiogenic shock complicating acute myocardial infarction in hospitals with and without on-site catheterization facilities. Heart 2001; 86: 145-9.

[58] Hochman JS, Gersh BJ. Acute myocardial infarction: complications. In: Topol EJ, ed. Textbook of cardiovascular medicine. Philadelphia: Lippincott-Raven. 1998; 437-80.

[59] Grines CL, Browne KE, Marzo J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The primary angioplasty in myocardial infarction study group. N Engl J Med 1993; 326: 673-9.

[60] A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. The global use of strategies to open occluded coronary arteries in acute coronary syndromes (GUSTO IIb) angioplasty substudy investigators. N Engl J Med 1997; 336: 1621-8.

[61] O’Neill W, Erbel R, Laufner N, Walton J, Bates E, Topol E. Coronary angioplasty therapy of cardiogenic shock complicating acute myocardial infarction. Circulation 1985; 72: 309.

[62] Lee L, Bates ER, Pitt B, Walton JA, Laufner N, O’Neill WW. Percutaneous transluminal coronary angioplasty improves survival in acute myocardial infarction complicated by cardiogenic shock. Circulation 1988; 78: 1345-51.

[63] Landin RJ, Rothbaum DA, Linnemeier TJ, Ball MW. Hospital mortality of patients undergoing emergency angioplasty for acute myocardial infarction: relationship of mortality to cardiogenic shock and successful angioplasty. Circulation 1988; 78: 119.

[64] Gerna E, Repetto S, Boscarini M, Ghezzi I, Binaghi G. Emergency coronary angioplasty in patients with severe left ventricular dysfunction or cardiogenic shock after acute myocardial infarction. Eur Heart J 1989; 10: 958-66.

[65] Kaplan AJ, Bengston JR, Aronson LG, et al. Reperfusion improves survival in patients with cardiogenic shock after myocardial infarction. J Am Coll Cardiol 1990; 15: 155A.

[66] Lee L, Erbel R, Brown TM, Laufner N, Meyer J, O’Neill WW. Multicenter registry of angioplasty therapy of cardiogenic shock: initial and long-term survival. J Am Coll Cardiol 1991; 17: 599-603.

[67] Gacioch GM, Ellis SG, Lee E, et al. Cardiogenic shock complicating acute myocardial infarction: the use of coronary angioplasty and the integration of the new support devices into patient management. J Am Coll Cardiol 1992; 19: 647-53.

[68] Moosvi AR, Khaja F, Villanueva L, Gheorghiade M, Douthat L, Goldstein S. Early revascularization improves survival in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 1992; 19: 907-14.

[69] Laney PL, Dell’Italia LJ, Brooks SR, et al. Follow-up exercise function in patients presenting with cardiogenic shock and acute transmural myocardial infarction. J Am Coll Cardiol 1993; 21: 77A.

[70] Elchaimoff H, Simpfordorfer C, Franco I, Raymond RE, Casale PN, Whitlow PL. Early and 1-year survival rates in acute myocardial infarction complicated by cardiogenic shock: a retrospective study comparing coronary angioplasty with medical treatment. Am Heart J 1995; 130: 459-64.

[71] Antoniucci D, Valenti R, Santoro GM, et al. Systematic direct angioplasty therapy and stent-supported direct angioplasty therapy for cardiogenic shock complicating acute myocardial infarction: in-hospital and long-term survival. J Am Coll Cardiol 1998; 31: 294-300.

[72] Webb JG, Careg RG, Hilton JD, et al. Usefulness of coronary stenting for cardiogenic shock. Am J Cardiol 1997; 79: 81-4.

[73] Hasdai D, Harrington RA, Hochman JS, et al. Platelet glycoprotein IIb/IIIa blockade and outcome of cardiogenic shock complicating acute coronary syndromes without persistent ST-segment elevation. J Am Coll Cardiol 2000; 36: 685-92.

[74] Klein LW, Shaw RE, Krone RJ, et al. American College of Cardiology National Cardiovascular Data Registry. Mortality after emergent percutaneous coronary intervention in cardiogenic shock secondary to acute myocardial infarction and usefulness of a mortality prediction model. Am J Cardiol 2005; 96: 35-41.

[75] Ryan TJ, Antman EM, Brooks NH, et al. 1999 update: ACC/AHA guidelines for the management of patients with acute myocardial infarction: executive summary and recommendations of the American College of Cardiology/American Heart Association Task Force on practice guidelines. (Committee on management of acute myocardial infarction). Circulation 1999; 100: 1016-30.

[76] DiSesa V, Patel M, Hollenberg SM. Coronary artery bypass grafting for cardiogenic shock. In: Hollenberg SM, Bates ER, eds. Cardiogenic shock. Armonk, NY: Futura. 2002: 103-17.

[77] White HD, Assmann SF, Sunborn TA, et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the should we emergently revascularize occluded coronaries for cardiogenic shock (SHOCK) trial. Circulation 2005; 112: 1992-2001.

[78] Subramanian VA, Roberts AJ, Zema MJ, et al. Cardiogenic shock following acute myocardial infarction: late functional results after emergency cardiac surgery. NY State J Med 1980; 80: 947-52.

[79] Dunkman WB, Leinbach RC, Buckley MJ, et al. Clinical and hemodynamic results of intraaortic balloon pumping and surgery for cardiogenic shock. Circulation 1972; 46: 465-77.

[80] Laks H, Rosenkranz E, Buckberg GD. Surgical treatment of cardiogenic shock after myocardial infarction. Circulation 1986; 74: III11-6.

[81] Bardet J, Masquet C, Kahn JC, et al. Clinical and hemodynamic results of intra-aortic balloon counterpulsation and surgery for cardiogenic shock. Am Heart J 1977; 93: 280-8.

[82] Menon V, Webb JG, Hills LD, et al. Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: a report from the SHOCK trial registry. Should we emergently revascularize occluded coronaries in cardiogenic shock? J Am Coll Cardiol 2000; 36: 1110-6.

[83] Dixon SR, Alkafri H, Chami A. Clinical predictors of in-hospital death in patients with cardiogenic shock selected to undergo early revascularization. J Am Coll Cardiol 2002; 39: 808-1.

[84] Norman JC, Cooley DA, Igo SR, et al. Prognostic indices for survival during postcardiomyotomy intra-aortic balloon pumping. Methods of scoring and classification, with implications for left ventricular assist device utilization. J Thorac Cardiovasc Surg 1977; 74: 709-20.

[85] Dietert RH, Roloff DM, Custer JR, Younger JG, Hirsch RB. Extracorporeal life support: the University of Michigan experience. JAMA 2000; 283: 904-8.

[86] Vogel RA, Shawl F, Tommaso C, et al. Initial report of the National registry of elective cardiopulmonary bypass supported coronary angioplasty. J Am Coll Cardiol 1990; 15: 23-9.

[87] Magliato KE, Kleihi T, Soukiasian HJ, et al. Biventricular support in patients with profound cardiogenic shock: a single center experience. ASAIO J 2003; 49: 475-9.

[88] Thielle H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation 2001; 104: 2917-22.

[89] Depre C, Vanoverschelde JL, Goudemand JT, Motelli J, Hue L. Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation 1995; 92: 1911-8.

[90] Cotter G, Kaluski E, Blatt A, et al. L-NMMA (a nitric oxide synthase inhibitor) is effective in the treatment of cardiogenic shock. Circulation 2000; 101: 1358-61.

[91] Cotter G, Kaluski E, Mido O, et al. LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J 2003; 24: 1287-95.

[92] Ashby DT, Stone GW, Moses JW. Cardiogenic shock in acute myocardial infarction. Catheter Cardiovasc Interv 2003; 59: 34-43.