Anti-Viral Activity of Indian Plants

B. N. Dhawan

Abstract Plants continue to be a major source for new chemical entities to develop novel therapeutic agents. Large number of plants has been shown to be active in vitro against a variety of human pathogenic viruses or their near congeners. In several cases the active compounds have been isolated and characterized. Very few of them, however, have been investigated in detail in vivo or taken to the clinic. Pure compounds like andrographolide, curcumin and glycyrrhizic acid as well as extracts of *Azadirachta indica* have shown activity against several viruses and should be investigated further for their therapeutic potential. An analysis of available data from several hundred species indicates that antiviral activity is more likely to be found in plants belonging to certain families. It is necessary to screen more plants of these families which are available in India to obtain further leads.

Keywords Antiviral activity · Indian plants · Herpes simplex · Viral hepatitis · Human immunodeficiency virus · Respiratory viruses · Interferon inducers

Introduction

Natural products have been, and continue to be, a major source of new chemical entities (NCE) for development of better therapeutic agents against infective and non-infective disorders. The bio-molecules are more stable, clinically more specific and available from renewable source [1]. Plants of Indian origin have provided several novel leads in the past [2] and are likely to yield more NCE in future also.

The contribution of natural products to anti-viral chemotherapy, however, has been more modest. Several factors have contributed to this scenario. Viral infections like the common cold are self limited and require only symptomatic treatment. Public health measures like vector control have succeeded in controlling vector transmitted infections. Similarly, development of effective vaccines has played a major role in eliminating diseases like small pox, near eradication of poliomyelitis and treatment of rabies. A major reason for limited input from Indian plants has been the non-availability of strict containment facility needed for such work at most institutions in the country. A large number of plants found in India have, therefore been investigated and found active in Japan, South Korea, US, etc. Data on all such plants also has been included in the present review along with analysis of data generated within the country. Plants active in viruses closely related to human virus [e.g. feline Human Immunodeficiency Virus (HIV) or duck hepatitis] have also been included. Maximum plants have been screened against Ranikhet disease (RNA) virus (RDV) and vaccinia (DNA virus) followed by herpes, HIV and hepatitis. The data in following sections has been arranged in the same order.

Most of the studies have used in vitro test systems and crude extracts of various parts of the plants. Pure compounds have been tested in some cases and in vivo procedures have been used in very few cases. In limited number of cases clinical studies also have been done. In several cases the name of the plant or family has been changed now. The name given in the original publication has been retained in the present review to avoid confusion but the names of family have been revised.
Ranikhet Disease and Vaccinia Viruses

CSIR Central Drug Research Institute Lucknow (CDRI) has been the pioneer institute to undertake large scale screening of Indian plants for anti-microbial and other biological activities using about 80 in vitro and in vivo tests. The program has used 50% ethanolic extracts of botanically authenticated plant samples. The extracts have been screened in vitro against one RNA virus (Ranikhet disease virus) and one DNA virus (vaccinia virus). Some samples have also been screened against encephalomyocarditis (EMCV), Japanese Encephalitis B (JE) and Semliki Forest (SFV) viruses. Extracts showing high degree of antiviral activity were fractionated according to a standardized protocol to localize activity in one or more fractions. The results of testing 3,789 samples from 3,482 plants belonging to 233 families have been reported in a series of publications [3–14]. In addition, 967 of these plants were also tested for interferon-like activity against RD and vaccinia viruses [15]. A mid-term review of the work has also been published [16]. Antiviral activity was observed in 242 samples belonging to 96 families. The results have been summarized in Table 1. The plants have been listed under the appropriate families which have been arranged alphabetically. It also indicates plants where activity has been confirmed further in fractions or those exhibiting anticancer activity also.

Some of the active plants have been followed up at CDRI for isolation and characterization of the active constituents. The antiviral activity of (+) odorinol isolated from Aglaia roxburghiana has been reported by Joshi et al. [17]. Subsequently two new triterpinoids also have been isolated and characterized [18]. Lupeol has been identified as the active moiety of hexane fraction of Vicia indica. It was effective against EMCV, RDV and SFV. Lupeol isolated from same fraction was active against RDV only [19]. Furomolligin isolated from Rubia cardifolia was active against EMCV [20].

The interferon like activity of five plants (Acacia auriculiformis, Cassia fistula, Olex polyama, Senecio tenuifolius and Zingiber capitatum) has been investigated further. The classical fractionation failed to localize activity in a particular fraction. The activity could be localized in each case in non-dialyzable fraction. It was destroyed on treating the fraction with trypsin. These results suggest the presence of an interferon-like or interferon inducing substance in the non-dialyzable fraction [15].

CDRI has also tested plants used as hepato-protective agents in traditional systems of Indian medicine for their anti-hepatitis B virus surface antigen (HBsAg) activity in serum of patients or carriers. Promising results were obtained with Phyllanthus amarus [21] and Picrorhiza

Table 1: Plants showing anti-viral activity in CDRI’s biological screening program

No.	Family & plant	Part	Activity	References
1.	Adhatoda vasica	Rt	R	[3]
2.	Barleria cuspidata	Pl	R, r	[7, 15]
3.	Nilgiriantus ciliatus	Px	V	[12]
4.	Strobilanthes wightianus	Px	R, r	[7, 15]
5.	Cotinus coggyria	Px	R	[3]
6.	Pistacia integerrima	Sb	R	[3]
7.	Rhus parviflora	Px	V, v, C	[5, 15]
8.	Rhus succedanea	Lf	R, r	[3, 15]
9.	Rhus succedanea	Px	R	[12]
10.	Miliusa macrocarpa	Px	R	[12]
11.	Pimpinella diversifolia	Pl	R	[3]
12.	Ichnarpinus frutescens	Pl	R	[3]
13.	Ilex wightiana	Px	V	[12]
14.	Hedera colchica	Px	R	[5]
15.	Schefflera rostrata	Lf, In	R	[12]
16.	Schefflera wallichiana	St	R	[12]
17.	Hemidesmus indicus	Pl	R, r	[3, 15]
18.	Polystichum biaristatum	Pla	R	[12]
19.	Artemisia parviflora	Pl	V	[6]
20.	Cnicus wallichii	Pl	R	[3]
21.	Conyza visicidula	Pl	V	[5]
22.	Eclipta alba	Pl	R	[3]
23.	Lagascea molis	Pl	r, V	[6, 15]
24.	Laggera pirodanta	Pl	R	[5]
25.	Saussurea obtallata	Fl	R	[11]
26.	Siegesbeckia orientalis	Pl	R, r	[3, 15]
27.	Senecio tenuifolius	Pl	R, r, v, C	[8, 15]
28.	Tagetes erecta	Pl	R	[4]
29.	Tagetes minuta	Pl	R, r	[4, 15]
30.	Vernonnia cinerea	Pl	R	[3]
31.	Vittadinia auralis	Pl	V	[4]
32.	Berberis lyceum	Rt	R	[3]
33.	Alnus nepalensis	Px	R	[12]
34.	Alnus nitida	Sb	R, V	[6]
Table 1 continued

No.	Family & plant	Part	Activity	References
55.	*Heterophragma adenophyllum*	Px	V	[5]
56.	*Stereospermum suaveolens*	Rt	R, r, C	[3, 15]
37.	*Bixa orellana*	Fr	V	[12]
38.	*Salmalia malabarica*	Fl	R, r	[3, 15]
39.	*Descarainia sophia*	Pl	R	[10]
40.	*Caesalpinia bondacella*	Rt	V	[3]
41.	*Cassia auriculata*	Px	R, r	[3, 15]
42.	*Cassia auriculata*	Rt	V, v	[3, 15]
43.	*Cassia fistula*	Pb	R, V	[3, 15]
44.	*Cassia fistula*	Pb	R, V	[3]
45.	*Cassia tora*	Pl	R	[3]
46.	*Caesalpinia sepiaria*	Rt	R, V	[4]
47.	*Hardwickia binata*	Pl	R, r, v	[5, 15]
48.	*Tamarindus indica*	Fl	R	[3]
49.	*Capparis multiflora*	Px	R	[12]
50.	*Capparis longispina*	Px	R	[3]
51.	*Lonicera leschenaultii*	Pxa	R	[11]
52.	*Euonymus angulatus*	Pxa	R	[13]
53.	*Salacia roxburghii*	Px	R, r	[6, 15]
54.	*Terminalia chebula*	Fr	R	[3]
55.	*Terminalia chebula*	Lf	R	[11]
56.	*Terminalia chebula*	Sw	R, r	[11, 15]
57.	*Terminalia paniculata*	Pxa	R, C	[12]
58.	*Connarus wightii*	Px	R	[6]
59.	*Cuscuta reflexa*	Px	R, r	[4, 15]
60.	*Cucumis callosus*	Px	R, V	[12]
61.	*Cupressus torulosa*	Px	R, r	[7]
62.	*Carex obscura*	Pl	R	[10]
63.	*Cyperus niveus*	Pl	R, r	[3, 15]
64.	*Cyperus pangorei*	Pxa	V	[12]
65.	*Dillenia pentagyna*	Sb	R	[14]
66.	*Shorea robusta*	Px	R	[10]

Table 1 continued

No.	Family & plant	Part	Activity	References
67.	*Diospyros chloroxylon*	Px	R	[6]
68.	*Diospyros marmorata*	Pxa	R	[13]
69.	*Diospyros peregrina*	Sb	R, r	[3, 15]
70.	*Maba nigrescens*	Px	R, r, V, v	[6, 15]
71.	*Hipppophae salicifolia*	Sb	R	[11]
72.	*Elaeocarpus tectorius*	Lf	R, V	[11]
73.	*Elaeocarpus glandulosus*	Px	R, C	[12]
74.	*Agapetes odonalocera*	Tu	R	[12]
75.	*Rhododendron arboreum*	Pxa	R	[14]
76.	*Aporosa villosula*	Px	R	[13]
77.	*Baccaurea ramiiflora*	Fr	S	[14]
78.	*Bridelia retusa*	Sb	R, r, C	[5, 15]
79.	*Bridelia squamosa*	Px	R	[6]
80.	*Euphorbia prolifer*	Pl	R, C	[3]
81.	*Euphorbia royleana*	St	R	[3]
82.	*Glochidion hohenackerii*	Px	R	[3]
83.	*Glochidion subsessile*	Px	R	[12]
84.	*Glochidion zeylanicum*	Px	R	[12]
85.	*Jatropha glandulifera*	Px	R, r	[10, 15]
86.	*Kerangelia reticulata*	Px	R	[3]
87.	*Kerangelia tanarius*	Px	R, V	[12]
88.	*Mallotus resinus*	Px	R, V	[12]
89.	*Margaritaria indica*	Px	V	[12]
90.	*Ricinus communis*	Lf	V	[3]
91.	*Emblica officinalis*	Fr	R	[3]
92.	*Crotolaria semperflorens*	Px	R	[11]
93.	*Dunbaria ferruginea*	Pxa	R	[12]
94.	*Indigofera pulchella*	Rt	V	[3]
95.	*Indigofera cassioides*	Pxa	R	[12]
96.	*Mundulea sericea*	Px	R, r	[6, 15]
97.	*Ougeinia oojeinensis*	Sb	R	[3]
98.	*Phaseolus trilobus*	Pl	V	[5]
99.	*Sesbania procumbens*	Px	R	[14]
100.	*Sesbania sesban*	Px	R	[6]
101.	*Sophora glauca*	Px	R	[7]
102.	*Urania lagopoides*	Pl	R, r	[4, 15]
103.	*Wisteria chinensis*	Px	R	[12]
104.	*Castanea sativa*	Sb	R	[3]
105.	*Castanopsis indica*	Sb	R, r, C	[7, 15]
106.	*Fagus sylvatica*	Px	r, V	[5, 15]
107.	*Lithocarpus dealbatus*	Sb	R	[11]
108.	*Lithocarpus dealbatus*	Fr	R	[11]
No.	Family & plant Part	Activity	References	
-----	---------------------	----------	------------	
109.	Lithocarpus dealbatus Lf, Tw	R	[11]	
110.	Quercus himalayana Px	V	[11]	
111.	Quercus lamellosa Sb	R, r, V, v	[3, 15]	
112.	Quercus lanceafolia Sb	R, r, V, v	[3, 15]	
113.	Quercus pachyphylla Sb	R	[3]	
114.	Quercus thomsonii Px*	R	[12]	
115.	Gentianaceae			
116.	Canscora diffusa Pl	R	[4]	
117.	Guttiferae			
118.	Garcinia talbotii Pl	r, V	[5, 15]	
119.	Hippocrateaceae			
120.	Loeseneriella arnottiana Px*	R	[13]	
121.	Juglandaceae			
122.	Juglans regia Lf	V	[6]	
123.	Lamiaceae			
124.	Leonurus sibiricus Pl	V	[5]	
125.	Leucas prostrata Pl*	V	[12]	
126.	Rabdosia coetsa Px	R	[11]	
127.	Teucrium quadrifarium Pl	r, V	[6, 15]	
128.	Teucrium royleanum Pl	R	[10]	
129.	Juglans regia Lf	V	[6]	
130.	Dendrophthoe falcata Pxa	V	[15]	
131.	Euphorbiaceae			
132.	Ficus hirta Px*	R	[14]	
133.	Gentianaceae			
134.	Canscora diffusa Pl	R	[4]	
135.	Cinnamomum iners Px	R, r	[6, 15]	
136.	Lindera pulcherrima Px	R	[9]	
137.	Litsea coriacea Px	R	[13]	
138.	Cinnamomum iners Px	R, r	[6, 15]	
139.	Amoora wallichi St	R, r, V, v	[3, 15]	
140.	Cinnamomum iners Px	R, r, v	[15]	
141.	Pomaraea mirabilis Sb	R	[3]	
142.	Plantaginaceae			
143.	Abarema angulata Px	R	[13]	
144.	Acacia auriculiformis Px, Sb	r, v	[15]	
145.	Acacia catechu St	R	[3]	
146.	Acacia radiana Px	R	[11]	
147.	Albizzia procera Px	r, V, C	[5, 15]	
148.	Mimosa pudica Pl	r, V	[4, 15]	
149.	Moraceae			
150.	Ficus religiosa Sb	R, r	[3, 15]	
151.	Moringaceae			
152.	Myristicaceae			
153.	Myristicaeae			
154.	Myrtaceae			
155.	Myrtaceae			
156.	Eugenia codyensis Px*	R	[12]	
157.	Eugenia mangifolia Px	R	[11]	
158.	Eugenia thwaitesii Px*	R	[12]	
159.	Syzygium densiflorum Px	R	[11]	
160.	Syzygium kurzii Px*	S	[14]	
161.	Syzygium occidentalis Px	R	[12]	
162.	Syzygium samarangense Px	R, V	[12]	
163.	Syzygium tetragonum Px	R	[11]	
164.	Ochnaceae			
165.	Oleaceae			
166.	Olea polygama Px	r, v	[17]	
167.	Nyctanthes arbore-tristis Fr	E	[14]	
168.	Ximenia americana Px	R	[6]	
169.	Ochnaceae			
170.	Jasminum officinale Sb	R	[4, 15]	
171.	Achyranthes aspera St	R, r, v	[3, 15]	
172.	Annonaceae			
173.	Annona reticulata Sb	R, r, v	[15]	
174.	Passiflora mollissima Px	R	[11]	
175.	Passiflora mollissima Px	R	[11]	
176.	Plumbaginaceae			
177.	Vogelia indica Pl	R	[4]	
Table 1 continued

No.	Family & plant	Part	Activity	References
176	Poaceae			
177	Cynodon dactylon	Px⁵	V	[3]
178	Hordeum vulgare	Sd	R, r	[3, 15]
179	Imperata cylindrica	Px	R, r	[5, 15]
180	Isachne kunthiana	Pl	R	[12]
181	Saccharum species	Lf	R	[11]
182	Poaceae			
183	Hordeum vulgare	Sd	R, r	[3, 15]
184	Isachne kunthiana	Pl	R	[12]
185	Imperata cylindrica	Px	R, r	[5, 15]
186	Isachne kunthiana	Pl	R	[12]
187	Imperata cylindrica	Px	R, r	[5, 15]
188	Isachne kunthiana	Pl	R	[12]
189	Imperata cylindrica	Px	R, r	[5, 15]
190	Isachne kunthiana	Pl	R	[12]
191	Imperata cylindrica	Px	R	[5, 15]
192	Isachne kunthiana	Pl	R	[12]
193	Imperata cylindrica	Px	R, r	[5, 15]
194	Isachne kunthiana	Pl	R	[12]
195	Imperata cylindrica	Px	R, r	[5, 15]
196	Isachne kunthiana	Pl	R	[12]
197	Imperata cylindrica	Px	R, r	[5, 15]
198	Isachne kunthiana	Pl	R	[12]
199	Imperata cylindrica	Px	R, r	[5, 15]
200	Isachne kunthiana	Pl	R	[12]

Table 1 continued

No.	Family & plant	Part	Activity	References
201	?family & plant			
202	?family & plant			
203	?family & plant			
204	?family & plant			
205	?family & plant			
206	?family & plant			
207	?family & plant			
208	?family & plant			
209	?family & plant			
210	?family & plant			

Proc. Natl. Acad. Sci. Sect B. Biol. Sci. (January–March 2012) 82(1):209–224 213

© Springer
Activity against herpes virus has been reported in 49 Indian plants. These have been listed in Table 2. The activity is distributed widely and the plants belong to 34 families. Most of them have been reported active against herpes-1 virus though a few are active against both herpes-1 and 2. In 12 cases the strain used has not been mentioned. Only four publications have reported in vivo activity. Pure isolated compounds have been tested in 26 cases. Two of the compounds glycyrrhizin and lupeol are active against other human viruses also and this has been indicated at appropriate places in this review. Unfortunately none of them appear to have been followed up further. The results have been published in 43 papers and only 9 of them are from Indian laboratories. Table 2 includes only those plants from foreign publications which are found in India.

Human Immunodeficiency Virus

Large number of papers has been published in recent years reporting anti-HIV activity in numerous natural products, partly because of the large screening program of US National Cancer Institute. Activity has been reported only in 38 Indian plants in 32 papers. These have been shown in Table 3 and belong to 28 families. Data on 41 materials has been reported and 24 of them are pure compounds. Most investigators (26) have studied the activity on HIV-1 and in 10 cases the strain has not been mentioned. HIV-2 has been included in two studies only. Two of the reported plants have been found active against feline immunodeficiency virus (FIV), a close congener of HIV. Most of the publications in this case also are from foreign laboratories and there are only seven Indian publications. There have been claims of usefulness of Ayurvedic and Siddha formulations in treatment of AIDS but no reliable clinical data is available either with these formulations or with the plants listed in Table 3. Data with Curcuma longa has not been included in this table because curcumin isolated from this plant and its several semi-synthetic and synthetic analogues have been tested. The data has been included in concluding remarks.

Hepatitis Viruses

Large number of medicinal plants has been used for treatment of hepatic disorders in most traditional system of medicine. The parameters generally followed were clearance of jaundice and return of liver function tests to normalcy. Clearance of viraemia in infective hepatitis, the commonest hepatic disorder, became an important parameter after the demonstration of carrier stage and possible induction of malignancy in such persons. One of the earliest demonstrations of viral clearance was provided by the pioneering studies of Thyagarajan et al. [106] with Phyllanthus amarus. This led to screening of large number of plants for activity against the virus. The availability of the duck model for in vivo studies materially facilitated these studies. Protective effect has been reported with 17 Indian plants belonging to 14 families. These have been listed in Table 4. Most of the plants have been tested against hepatitis B virus by several in vitro procedures. The active compound has been isolated and characterised in nine of these plants.

Several hepatoprotective plants have been tested for anti-hepatitis B virus surface antigen (HBsAg) activity in vitro using serum from patients or asymptomatic carriers harbouring the infection. Neutralizing activity has been reported with extract of Phyllanthus amarus [21]. A purified standardized extract (Picroliv) and a pure compound catalpol isolated from Picrorhiza kurroa were also found active while andrographolide (active constituent of Andrographis paniculata) and silymarin were inactive [22].

Clinical studies have been undertaken with some of the active plants in patients of infective hepatitis. As already reported above [23] efficacy of Picroliv has been demonstrated in Phase III multicentric trials. Beneficial effects have been reported with Phyllanthus amarus and glycyrrhizin also. These and other studies have been reviewed by Handa in a comprehensive publication [114] on hepatoprotective activity of Indian medicinal plants.

Respiratory Viruses

Interest in respiratory virus has increased following the recent epidemics of SARS and H1N1 infection. Activity has
Plant	Family	Product	Strain	References
1. *Adansonia digitata*	Bombaceae	Ext	HSV	[27]
2. *Aglai odorata*	Meliaceae	Ext	1^a	[28]
3. *Aloe vera*	Liliaceae	Ext	2	[29]
4. *Andrographis paniculata*	Acanthaceae	Diterpenes	1	[30]
5. *Atlantia sp.*	Rutaceae	Pyrophorbide	2	[31]
6. *Azadirachta indica*	Meliaceae	Ext	1	[32]
7. *Barleria lupulina*	Acanthaceae	Iridoid glycoside	1	[33]
8. *Bauhinia racemosa*	Caesalpiniaceae	Ext	HSV	[34]
9. *Bauhinia variegata*	Asteraceae	Ext	1,2	[35]
10. *Bidens pilosa*	Asteraceae	Ext	1,2	[36]
11. *Cedrus libani*	Pinaceae	Ext, oil	1	[37]
12. *Cissus quadrangularis*	Vitaceae	Ext	1,2	[38]
13. *Conyza aegyptica*	Asteraceae	Ext	HSV	[27]
14. *Cyperus rotundus*	Cyperaceae	Ext	1	[39]
15. *Euphorbia peplus*	Euphorbiaceae	Diterpene esters	2	[40]
16. *Glycyrrhiza glabra*	Fabaceae	Glycyrrhizin	HSV	[41]
17. *Heliotropium marifolium*	Boraginaceae	Alkaloid	HSV	[42]
18. *Holoptelea integrifolia*	Ulmaceae	Ext	HSV	[43]
19. *Houttuynia cordata*	Saraiaceae	Ext	1,2	[36]
	Pure compounds	1		
20. *Hypericum hookerianum*	Hyperaceae	Ext	1	[45]
21. *Hypericum myosorens*	Hyperaceae	Ext	1	[45]
22. *Lippia alba*	Verbenaceae	Ext	1	[46]
23. *Melia azaderach*	Meliaceae	Ext	2^a	[47]
	Meliacine	1		
24. *Mentha piperata*	Lamiaceae	Essential oil	1,2	[49]
25. *Momordia charantia*	Cucurbitaceae	Ext	1	[50]
26. *Moringa oleifera*	Moringaceae	Ext	1^a	[28]
27. *Myrica rubra*	Myricaceae	Pure compounds	2	[51]
28. *Neerium indicum*	Apocynaceae	Ext	HSV	[43]
29. *Pandanus amaryllifolius*	Pandanaceae	Pandanin	1	[52]
30. *Peganum harmala*	Rutaceae	Ext	1	[53]
31. *Phyllanthus emblica*	Euphorbiaceae	Pure compounds	HSV	[54]
32. *Phyllanthus urinaria*	Pure compounds	1,2		[55]
33. *Pinus massoniana*	Pinaceae	Ext	HSV	[56]
34. *Plantago major*	Plantaginaceae	Ext	HSV	[56]
35. *Portulaca oleracea*	Portulacaceae	Polysaccharides	2	[57]
36. *Salvia officinalis*	Lamiaceae	Ext	1,2	[58]
37. *Santalum album*	Santalaceae	Oil	1,2	[59]
38. *Scinata hatei*	Liagoneaceae	Polysaccharides	HSV	[60]
39. *Scoparia dulcis*	Scrophulariaceae	Scopadulcic acid	1	[61]
40. *Solanum torvum*	Solanaceae	Torvanol A	1	[62]
	Torvoside H	1		
41. *Sorghum bicolor*	Poaceae	Peptide	1	[63]
42. *Strobilanthes cusia*	Acanthaceae	Lupeol	1	[64]
43. *Swertia chirata*	Gentianaceae	Ext	1	[65]
44. *Syzygium aromaticum*	Myrtaceae	Eugenin	1	[66]
45. *Syzygium jambos*	Myrtaceae	Ext	1	[67]
been reported in 18 Indian plants belonging to 16 families. Pure compounds isolated from plants have been tested in nine cases. Activity has been reported against five respiratory viruses. Activity against influenza has been observed in seven samples and against H1N1 in four cases. One sample was active against SARS. The data about active plants has been summarized in Table 5.

Pox Viruses

Interest in this group of viruses has continued because of continued occurrence of chicken-pox and measles infection. Only 14 plants have been reported active against a variety of pox viruses. These plants belong to 13 families. Glycyrrhizin from *Glycyrrhiza glabra* is the only pure compound reported active. Extract from *Hibiscus sabdariffa* is the only product showing activity against measles. Most of the extracts have been found active against fowl pox. Details of activity have been shown in Table 6.

Other Viruses

Activity in several Indian plants has also been reported against a variety of other viruses causing human infection or their close congeners. Table 7 shows such plants belonging to 24 families. In 10 cases pure compounds isolated from plants have been found active. The list includes 12 viruses. The preparations showing activity against chikungunya, Japanese encephalitis and rotavirus are of particular interest due to wide occurrence of these infections in the country and need to be investigated on a priority basis.

Concluding Remarks

The broad based biological screening program of CDRI had included tests for several other activities also with the same standardized protocol. An analysis of the results has shown that each particular activity was preferentially observed in certain families. The top 11 families for anti-viral activity and three other major activities have been arranged in rank order in Table 8. It will be observed that rank order is different for different activities even though some families exhibit more than one type of activity. The top 11 families in each case contain 35–45% of the plants for the concerned activity. The 11 families identified for anti-viral activity contain about 41% of the 242 active plants from 96 families. About 27% plants reported active against other viruses and included in Tables 2, 3, 4, 5, 6 and 7 also belong to these 11 families. It should be useful to screen other plants of these families to obtain more active plants. It will be evident from data in Tables 1 and 8 that many plants and families have both anti-viral and anticancer properties. It may be mentioned also that several smaller countries like Egypt [39], Nepal [43], Sudan [54] and Togo [27] have undertaken systematic evaluation of their flora for anti-viral activity following the lead given by CDRI.

It is evident from the data reviewed above that little effort has been made to study the marine flora around the vast Indian coast line for antiviral compounds. Several Indian mangrove plants (*Ceriops decandra*, *Excocaria agallocha* and three species of *Rhizophora* i.e. *lamarckii*, *mucoranata* and *spiculata*) have been reported to exhibit potent anti-HIV activity [142] highlighting the need of further exploration of this valuable resource.

Most of the data reported in this review is from in vitro studies and the leads do not appear to have been followed up. This is partly because of lack of suitable animal models for several infections and partly due to lack of the requirement containment facility in majority of Indian institutions. It is suggested that multi-pronged strategy should be adopted to utilise these leads. There are certain viral infections like Japanese encephalitis, chikungunya or rotavirus which are major national concern. Only few leads are available against them and these need to be followed.
A number of pure compounds have demonstrated activity against several viral infections. These are compounds of varying chemical complexity ranging from simple compounds like curcumin to complicated structures like iridoids glycosides. Adequate attention has not been paid to use them as basic templates to optimise the activity

Plant	Family	Product	Strain	References	
1. Acacia nilotica	Mimosaceae	Ext	HIV	[70]	
2. Acacia tortilis		Ext	1	[71]	
3. Ailanthus allisima	Simaroubaceae	Ocotillone	1	[72]	
4. Alpinia galanga	Zingiberaceae	Ext	1	[73]	
5. Anisomeles indica	Lamiaceae	Ovatodiolide	HIV	[74]	
6. Artemisia carausioli	Asteraceae	Coumaryl spermines	1	[75]	
7. Camellia japonica	Theaceae	Camelliatannin H	1	[76]	
8. Cardioperum helicabum	Sapindaceae	Ext	1,2	[77]	
9. Chrysanthemum morifolium	Asterae	Flavonoids	1	[78]	
10. Cinnamomum cassia	Lauraceae	Ext	1,2	[77]	
11. Desmos sp.	Annonaceae	Flavonoids	HIV	[79]	
12. Ficus glomerata	Moraceae	Ext	1	[80]	
13. Glycyrrhiza glabra	Fabaceae	Glycyrrhizin	1	[41]	
14. Harrisonia perforata	Simaroubaceae	Ext	1	[80]	
15. Hyssopus officinalis	Lamiaceae	Ext	1	[81]	
16. Illicium verum	Illiciaceae	Illicinone-A	HIV	[82]	
17. Justicia replans	Acanthaceae	Ext	HIV	[83]	
18. Lippia javanica	Verbenaceae	Piperitenone	1	[84]	
19. Mimusops elengi	Sapotaceae	Minusopic acid	HIV	[85]	
20. Momordia charantia	Cucurbitaceae	Lectin	1	[86]	
			Protein MRK 29	1	[87]
21. Morinda citrifolia	Rubiaceae	Ext	1	[88]	
22. Nelumbo nucifera	Nymphaceae	Cocalaurine	HIV	[89]	
		Nucliferine	HIV		
23. Pedilanthus sp.	Euphorbiaceae	Pedilotanin	1	[90]	
24. Pericampylus glaucus	Menispermaceae	Periguauains	1	[91]	
25. Phaseolus vulgaris	Fabaceae	Lectin	1	[86]	
26. Polyalthea suberosa	Annonaceae	Furans	HIV	[92]	
27. Polygonon viscousum	Polygonaceae	Quercitin	1	[93]	
28. Ricinus communis	Euphorbiaceae	Lectins	1	[86]	
29. Rhus sinensis	Anacardiacae	Benzofuranones	1	[94]	
		Rhuscholide A	HIV	[95]	
30. Sambucus nigra	Caprifoliaceae	Ext	HIV(f)	[96]	
31. Schisandra rubriflora	Schisandraceae	Rubrifloxeine	1	[97]	
32. Scoparia dulcis	Scrophulariaceae	Ext	1	[98]	
33. Sida sp.	Malvaceae	Ext	HIV	[99]	
34. Sophora flavescens	Fabaceae	Ext	1	[76]	
35. Terminalia chebula	Combretaceae	Galloyl glucose	1	[100]	
36. Urtica dioica	Urticaceae	Ext	FIV	[96]	
37. Ximenia americana	Oleaceae	Ext	1	[101]	
38. Zingiber officinale	Zingiberaceae	Ext	1	[73]	

Ext crude extract in different solvents; HIV strain not specified; 1, 2 HIV I or II strain; FIV feline immunodeficiency virus (has many common features with HIV) [96]
Table 4 Indian plants active against hepatitis virus in vitro

Plant Family	Product	Strain	References
1. Agrimonia eupatoria	Rosaceae	Ext B	[102]
2. Alpinea galanga	Zingiberaceae	Ext C	[73]
3. Bupleurum sp	Apiaceae	Saikosaponins B	[103]
4. Glycyrrhiza glabra	Fabaceae	Glycyrrhizin B, C	[41]
5. Hypericum perforatum	Hypericaceae	Hypericin C	[104]
6. Oenanthe javanica	Apiaceae	Phenolics B	[105]
7. Pericampylus glaucus	Menispermaceae	Periglaucines B	[91]
8. Phyllanthus amarus	Euphorbiaceae	Ext B	[21, 106]
9. Phyllanthus urinaria		Ext B	[107]
10. Picrorhiza kurroa	Scrophulariaceae	Picroliv B	[22]
11. Potentilla anserina	Rosaceae	Triterpine saponins B, E	[108]
12. Ranunculus sceleratus	Ranunculaceae	Apigenins B	[109]
13. Rubia cardifolia	Rubiaceae	Naphthoquinones B	[110]
14. Saussurea lappa	Asteraceae	Ext B	[111]
15. Terminalia chebula	Combretaceae	Ext B	[112]
16. Wrightia tinctoria	Apocynaceae	Ext C	[113]
17. Zingiber officinalis	Zingiberaceae	Ext C	[73]

*Ext crude extract in different solvents; B, C, E the strain of virus used

Table 5 Indian plants active in vitro against respiratory viruses

Plant Family	Product	Virus	References		
1. Alpinia officinarum	Zingiberaceae	Diaryl heptanoids	H1N1	[115]	
2. Andrographis paniculata	Acanthaceae	Andrographolide	Influenza	H1N1	[116]
3. Avicennia marina	Aveccinniaceae	Ext	Newcastle	[117]	
4. Barleria prionitis	Acanthaceae	Iridoids	Resp. Syn.	[118]	
5. Bergenia ligulata	Saxifragaceae	Ext	Influenza	[43]	
6. Caesalpinea sappan	Cesalpineaceae	Sappan chalcones	Influenza	[119]	
7. Curcuma longa	Zingiberaceae	Curcumin	Newcastle	[120]	
8. Ephedra sinica	Ephedraceae	Catechin	H1N1	[121]	
9. Gardenia sp	Rubiaceae	Ext	Influenza	[122]	
10. Glycyrrhiza glabra	Fabaceae	Glycyrrhizin	Influenza	[41]	
11. Hottunynia cordata	Piperaceae	Ext	SARS	[123]	
12. Neerium indicum	Apocynaceae	Ext	Influenza	[43]	
13. Nigelia sativa	Ranunculaceae	Ext	Newcastle	[117]	
14. Pandanus amaryllifolius	Pandanaceae	Pandanin	H1N1	[52]	
15. Phyllanthus amarus	Euphorbiaceae	Ext	Newcastle	[120]	
16. Punica granatum	Puniaceae	Ext	Influenza	[124]	
17. Wickstroemia indica	Thymelaceae	Daphnoretin	Resp. Syn.	[125]	
18. Zizyphus spira-christi	Rhamnaceae	Ext	Newcastle	[117]	

*Ext crude extract in different solvents

a Tested in vivo

b Respiratory synticial virus
c Main source of catechin is Acacia catechu [126]
d Tested in vitro and in vivo
in synthetic or semi-synthetic derivatives. Successful use of this strategy has been made in the case of andrographolide [143] and curcumin [136], for example.

Activity has also been reported in certain compounds which have undergone extensive clinical evaluation in non-viral diseases. Their available safety and dosage regimen data would help in initiating clinical evaluation in viral infection where in vitro or in vivo activity data is available. Andrographolide is a potent hepatoprotective agent [114] besides being active against herpes [30], influenza and H1N1 infections [116]. Dehydroandrographolide succinic acid monoester is active against HIV [143]. Another clinically authenticated hepatoprotective agent Picroliv [23] is also active against several viral infections including hepatitis B [24–26]. Curcumin has received the maximum attention after its activity against HIV [143]. Its boron complexes; semi-synthetic reduced curcumin, allyl curcumin and tocopheryl-curcumin and synthetic analogues dicafferoyl methane and rosemarinic acid are highly active against HIV in a variety of in vitro protocols. Curcumin is active against herpes simplex 2 in a mouse model and Human papilloma and Epstein Barr viruses in vitro. These activities have been reviewed recently by Krishnaswamy [136]. Its in vitro activity against Friends leukaemia [25], Newcastle and Poliomyelitis viruses [120] has also been reported. Fiore et al. [41] in a recent review have provided reference for activity of glycyrrhizin and its analogues against herpes, hepatitis (including clinical trial), influenza, respiratory syncytial, SARS and vesicular stomatitis viruses. Other investigators have found it active against Japanese encephalitis [137], poliomyelitis [138], vaccinia and varicella [130]. It perhaps has the widest spectrum of antiviral activity among the natural products so far investigated. Adequate clinical evaluation is necessary to assess its role in treatment of viral disorders.

Azadirachta indica also is a promising plant, even though most of the studies have used its extract. It has a variety of compounds and also has a long history of use in traditional medicine in many countries of the world. The viruses against which the extracts or some of the isolated compounds have shown activity include chikungunya, fowl pox, measles, vaccinia [128], buffalopox [127], Coxsackie [134] and herpes [32]. Detailed studies against some of these viruses, specially herpes and chikungunya are strongly warranted. In conclusion it may be stated that the rich and valuable resource of Indian plants needs to be more extensively exploited to provide new drugs for the treatment of viral disorders.

Plant Family	Product	Virus	References
Acacia nilotica	Ext	Fowl pox	[117]
Aristolochia bracteolate	Ext	Fowl pox	[117]
Avicennia marina	Ext	Buffalo pox	[127]
Azadirachta indica	Ext	buffalo pox Fowl pox	[128]
Bauhinia variegata	Ext	Vaccinia	[35]
Cissus quadrangularis	Ext	Fowl pox	[117]
Eugenia jambolana	Ext	Buffalo pox	[129]
Glycyrrhiza glabra	Glycyrrhizin	Vaccinia	[41]
Hibiscus sabdariffa	Ext	Measles	[131]
Ipomea carnea	Ext	Fowl pox	[117]
Maerua oblongifolia	Ext	Fowl pox	[117]
Ocimum sanctum	Ext	Vaccinia	[3]
Prosopis chilensis	Ext	Fowl pox	[117]
Trebulus terrestris	Ext	Fowl pox	[117]
Trigonella foenum graecum	Ext	Fowl pox	[117]

Ext: crude extract in different solvents.
Table 7 Indian plants active in vitro against other human viruses

Plant Family	Product	Virus	References
1. Adansonia digitata	Ext	Polio	[27]
2. Aegle marmelos	Ext	Coxsackie	[132]
3. Alpinia galanga	Ext	Cytomegalus	[73]
4. Artocarpus integrifolia	Ext	Rotavirus	[133]
5. Azadirachta indica	Ext	Chikungunya	[128]
6. Baccaurea ramiflora	Ext	Semiliki\(^a\)	[14]
7. Bauhinia variegata	Ext	Ves Stomatitis\(^b\)	[35]
8. Berberis aristata	Berberine	Friends Leu\(^c\)	[25]
9. Camellia sinensis	Triterpinoids	Epstein Barr	[135]
10. Conyza aegyptica	Ext	Polio	[27]
11. Curcuma longa	Curcumin	Epstein Barr	[136]
12. Glycyrrhiza glabra	Glycyrrhizin	JE\(^e\)	[137]
13. Heliotropium marifolium	Alkaloids	Coxsackie	[42]
14. Hernandia ovigera	Lignans	Epstein Barr	[139]
15. Kalanchoe pinnata	Bryophyllin A	Epstein Barr	[140]
16. Lippa alba	Ext	Polio	[64]
17. Mallotus philippensis	Triterpinoids	Epstein Barr	[141]
18. Momordica charantia	Ext	Sindbis	[50]
19. Myristica fragrans	Ext	Rotavirus	[134]
20. Nyctanthes arbor-tristis	Ext	EMCV\(^f\)	[14]
21. Paedaria scandens	Paederoside	Epstein Barr	[26]
22. Phyllanthus amarus	Ext	Polio	[120]
23. Picrorrhiza kurroa	Ext	Epstein Barr	[26]
24. Plumbago zeylanica	Ext	Picroliv	[24]
25. Scilla hyacinthine	Ext	Coxsackie	[46]
26. Spondias lutea	Ext	Semiliki	[14]
27. Syzigium jambos	Ext	Ves Stomatitis	[67]
28. Turpinea pomifera	Ext	JE	[14]
29. Zingiber officinale	Ext	Cytomegalus	[73]

Ext crude extract in different solvents

\(^a\) Semiliki Forest virus

\(^b\) Vesicular stomatitis

\(^c\) Friends leukemia

\(^d\) Human papilloma virus

\(^e\) Japanese encephalitis

\(^f\) Encephalomyocarditis virus
Table 8 Top 11 families for selected pharmacological activities in CDRI plants

Anti-viral	Anti-cancer	CNS active	Hypoglycemic
No. of active plants	No. in top 11 families	No. of active plants	
239	228	639	156
98	41.0	58	44.2

% in top 11 families

Rank order of top 11 families
Lauraceae
No. 1
239
158

References

1. Dhawan BN (2005) Biodiversity as a source of new chemical entities. In: Tandon P, Sharma M, Swaroop R (eds) Biodiversity status and prospects. Narosa Publishing House, New Delhi, pp 25–34
2. Mukherjee PK, Rai S, Kumar V, Hylands PJ, Hider RC (2007) Plants of Indian origin in drug discovery. Expert Opin Drug Discov 2:637–653
3. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C (1968) Screening of Indian plants for biological activity. Part I. Indian J Exp Biol 6:232–247
4. Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN (1969) Screening of Indian plants for biological activity. Part II. Indian J Exp Biol 7:250–262
5. Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Gupta B, Srimal RC (1971) Screening of Indian plants for biological activity. Part III. Indian J Exp Biol 9:91–102
6. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS (1973) Screening of Indian plants for biological activity. Part IV. Indian J Exp Biol 11:43–54
7. Dhar ML, Dhawan BN, Prasad CR, Rastogi RP, Singh KK, Tandon JS (1974) Screening of Indian plants for biological activity. Part V. Indian J Exp Biol 12:512–523
8. Dhawan BN, Patnaik GK, Rastogi RP, Singh KK, Tandon JS (1977) Screening of Indian plants for biological activity. Part VI. Indian J Exp Biol 15:208–219
9. Dhawan BN, Dubey MP, Mehrotra BN, Rastogi RP, Tandon JS (1980) Screening of Indian plants for biological activity. Part IX. Indian J Exp Biol 18:594–606
10. Aswal BS, Bhakuni DS, Goel AK, Kar K, Mehrotra BN, Mukherjee KC (1984) Screening of Indian plants for biological activity. Part X. Indian J Exp Biol 22:312–332
11. Aswal BS, Bhakuni DS, Goel AK, Kar K, Mehrotra BN (1986) Screening of Indian plants for biological activity. Part XII. Indian J Exp Biol 24:48–68
12. Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Patnaik GK, Prakash V (1988) Screening of Indian plants for biological activity. Part XIII. Indian J Exp Biol 26:883–904
13. Bhakuni DS, Goel AK, Goel AK, Jain S, Mehrotra BN, Srimal RC (1990) Screening of Indian plants for biological activity. Part XIV. Indian J Exp Biol 28:619–697
14. Aswal BS, Goel AK, Kulshreshtha DK, Mehrotra BN, Patnaik GK (1996) Screening of Indian plants for biological activity. Part XV. Indian J Exp Biol 34:444–467
15. Babbar OP, Joshi MN, Madan AR (1982) Evaluation of plants for antitropical activity. Indian J Med Res 76(5):54–65
16. Rastogi RP, Dhawan BN (1990) Anticancer and antitropical activities in Indian medicinal plants: a review. Drug Dev Res 19:1–12
17. Joshi MN, Chowdhary BL, Vishnoi SP, Shobh A, Kapil RS (1987) Antitropical activity of (+)-odoral. Planta Med 53:254–255
18. Vishnoi SP, Shobh A, Kapil RS (1988) New cycloartenol derivatives from Aglaia roxburghiana. Planta Med 54:40–41
19. Chowdhary BL, Hussaini FA, Shobh A (1990) Antitropical constituents from Vicoa indica. Int J Crude Drug Res 28:121–124
20. Rastogi SN, Kulshreshtha DK (eds) (2001) Fifty years of research and development 1951–2001. Vol. 2 Drug development. Central Drug Research Institute, Lucknow, p 320
21. Mehrotra R, Rawat S, Kulshreshtha DK, Goyal P, Patnaik GK, Dhawan BN (1991) In vitro effect of Phyllanthus amarus on hepatitis B virus. Indian J Med Res 93:71–74
22. Mehrotra R, Rawat S, Kulshreshtha DK, Patnaik GK, Dhawan BN (1990) In vitro studies on the effect of certain natural products against hepatitis B virus. Indian J Med Res 92:133–138
23. CSIR-CDRI Newslett (2011) 3:2
24. Dhawan BN (1995) Picroliv—a new hepatoprotective agent from an Indian medicinal plant, Picrorrhiza kurroa. Med Chem Res 5:595–605
25. Harikumar KB, Kuttan G, Kuttan R (2008) Inhibition of progression of erythroleukemia induced by Friend’s virus in BALB-C mice by natural products—berberine, curcumin and picroliv. J Exp Ther Oncol 7:275–284
26. Kapadia GJ, Sharma SC, Tokuda H, Nishio H, Veda S (1996) Inhibitory effect of iridoids on Epstein-Barr virus activation by a short term assay for antitumor promoters. Cancer Lett 102:223–226
27. Ananil K, Hudson JB, de Souza L, Akpaganal K, Tower GHN, Arnason JT, Gbeassor M (2000) Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharm Biol 38:40–45
28. Lipipun V, Kurokawa M, Suttisri R, Taweechotipatr P, Prakash V, Aloe vera in infection in vitro and in vivo. Antiviral Res 60:175–180
29. Kritikara K, Suksamram S, Wongkrajang K, Suksamram A, Cúcarrera A, 2003 Iridoid glycosides from flowers of Andrographis paniculata in health and its major diterpinoid constituent andrographolide. J Health Sci 54:370–381
30. Prakash V (1988) Screening of Indian plants for biological activity. Part XV. Indian J Exp Biol 28:102–107
31. Prakash V, Arora RC, Malhotra MR, Srirama K (2003) Efficacy of Thai medicinal plant extracts against herpes simplex type 2, an in vivo model. Phytomed Res 10:524–527
32. Azadirachta indica bark extract against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 60:175–180
33. Zandi K, Zadeh MA, Sartavi K, Rastian Z (2007) Antiviral activity of Aloe vera against herpes simplex virus type 2, an in vitro study. Afr J Biotechnol 6:170–1773
34. Arakamajom K, Nemoto N (2008) Pharmacological aspects of Andrographis paniculata on health and its major diterpinoid constituent andrographolide. J Health Sci 54:370–381
35. Pavitra PS, Sreevidya N, Verma RS (2009) A review of chemistry and biological activity of genus Altanita (Rutaceae). J Med Aromat Plant Sci 31:63–72
36. Tewari V, Darmani NA, Yue BY, Shvyda D (2010) In vitro antiviral activity of neem (Azadirachta indica) bark extract against herpes simplex type-1 infection. Phytother Res 24:1132–1140
37. Suksamaram S, Mongkrajang K, Kritikara K, Suksamaram A (2003) Iridoid glycosides from flowers of Barleria lupulina. Planta Med 69:877–879
34. Jain R, Nagpal S, Jain S, Jain SC (2004) Chemical and biological evaluation of Bauhinia species. J Med Aromat Plant Sci 26:48–50
35. Parmar KA, Prajapati SN (2009) HPTLC-aided phytochemical finger printing analysis as a tool for evaluation and antiviral activity using Hela cell cultures of Bauhinia variegata plant. Asian J Exp Chem 4:74–77
36. Chiang C-C, Chang J-S, Chen C-C, Ng L-T, Lin C-C (2003) Anti-herpes simplex virus activity of Bidens pilosa and Hot-tynia cordata. Am J Chin Med 31:355–362
37. Loizzo MR, Saab A, Tundis R, Stalli G, Lamponti H, Menchini F, Gambiari R, Cintai J, Doern HW (2008) Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex type 1 (HSV-1) of Cedrus libani A. rich. Phytomedicine 15:79–83
38. Balasubramanian P, Jayalakshmi K, Vidhya N, Prasad R, Kha-leefatullah S, Kathiravan G, Rajagopal K, Sureban SM (2010) Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae). J Basic Clin Pharm 1:37–40
39. Soltan MM, Zaki AK (2009) Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol 126:102–107
40. Hohmann J, Redei D, Mathe I, Molnar J, Musi I, Evanics F, Dombi G (2000) Diterpene polyesters with antiviral activity from Euphorbia peplus and Euphorbia serrulata. Phytomedicine 7(S II):85
41. Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, Bielenberg J (2008) Antiviral effects of Glycerrhiza species. Phytother Res 22:141–148
42. Singh B, Sharma PA (2007) Antineoplastic and antiviral activities of pyrrolizidine alkaloids from Heliotropium marciolium Koen. CC Retz. Proc Natl Acad Sci India Sect B 71B:197–205
43. Rajbhandari M, Wegner U, Julich M, Schopke T, Mentel R (2001) Screening of Nepalese plants for antiviral activity. J Ethnopharmacol 76:251–255
44. Chou SC, Su CR, Ku YC, Wu TS (2009) The constituents and their bioactivities of Hottyayia cordata. Chem Pharm Bull 57:1227–1230
45. Vijayan P, Ragh C, Ashok G, Dhanraj SA, Suresh B (2004) Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 120:24–29
46. Gebre-Mariam T, Neubert R, Schmidt PC, Wutzler P, Schimdtke M (2006) Antiviral activities of some Ethiopian medicinal plants from Ethiopian medicinal plants used for the treatment of dermatological disorders. J Ethnopharmacol 104:182–187
47. Petera E, Cotoce CE (2009) Therapeutic effect of meliacine, an antiviral derived rom Melia azaderach L in mice genetil herpes infection. Phytother Res 23:1771–1777
48. Alche LE, Banquero AA, Sanjuan NA, Coto CE (2002) An antiviral principle present in a purified fraction from Melia azaderach L leaf aqueous extract restrains herpes simplex virus type I propagation. Phytother Res 16:348–352
49. Schumacher A, Reichling J, Schnitzler P (2003) Virucidal effect of eugenin as an anti-herpes virus compound from Melia azaderach L. Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in vitro and molecular approach. J Ethnopharmacol 76:374–378
50. Verma H, Patil PR, Kolhapure RM, Gopakrishna V (2008) Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in vitro and molecular approach. J Ethnopharmacol 110:555–558
51. Linn CC, Cheng HY, Fang BJ (2003) Anti-herpes virus type 2 activity of herbal medicines from Taiwan. Pharm Biol 41:259–262
52. Ooi LSM, Sun SSM, Ooi VEC (2004) Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaeaceae). Int J Biochem Cell Biol 36:1440–1446
53. Rasham II, Aday MH, Khazraji ALT (1989) In vitro antiviral activity of the aqueous extract from the seeds of Peganum harmala. Fitoterapia 60:365–367
54. Xiang Y, Rei Y, Qb C, Lai Z, Xiong S, Zhang Y, Yang C, Wang D, Liu Q, Kitazato K, Wang Y (2011) In vitro anti herpes simplex activity of 1,2,4,6-tetra-O-galloyl-beta-glucose from Phyllanthus emblica (Euphorbiaceae). Phytother Res 25:975–982
55. Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC (2007) The in vitro activity of geranium and 1,3,4,6-tetra-O-galloyl-beta-glucose isolated from Phyllanthus urinaria against herpes simplex virus type I and type II infection. J Ethnopharmacol 110:555–558
56. Bangia R, Yada SC, Mathi JW, Yadav ML, Prakash R, Jindal L, Chhibber S, Khanna R, Mohan C, Singh A, Gupta V, Verma D, Gupta R, Yadav S, Verma A, Daga A, Chatrath R, Singh A, Singh R, Mitra P, Singla A, Shukla D, Shukla R (2010) In vitro antiviral activity of Cissus quadrangularis L. against herpes simplex virus-1 and -2. J Ethnopharmacol 126:102–107
57. Ding CX, Hayashi K, Lee JB, Hayashi T (2010) Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem Pharm Bull 58:507–510
58. Schnitzler P, Nolkeps M, Stintzing FC, Reichling J (2008) Comparative in-vitro study on the antithetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine 15:62–70
59. Benencia F, Cooreges MC (1999) Antiviral activity of sandal wood oil against herpes simplex viruses-1 and -2. Phytotherapy 6:119–123
60. Mandal P, Pujot CA, Carlucci MJ, Chapatpadhyeya K, Damonte EB, Ray B (2008) Anti-herpetic activity of a sulfated xyloolivosmann from Scinia haitae, Phytochemistry 31:2193–2199
61. Riel MA, Kyle DE, Milhous WK (2002) Efficacy of scopoladec acid A against Plasmadosium falciparum in vitro. J Nat Prod 65:614–615
62. Arthan D, Svasti J, Kiltakopo P, Pittayakhonchewu D, Tartcharoen M, Thebtarosan Y (2002) Antiviral isolofavonoidal sulfate and steroidal glycosides from the fruits of Solanum torvum, Phytochemistry 59:459–463
63. Filho IC, Cortez DAG, Uedo-Nakamura T, Nakamura CV, Filho BPD (2008) Antiviral activity and mode of action of a peptide isolated from Sorgnham bicolor. Phytotherapy 15:202–208
64. Andriggihetti-Frohner CR, Sincero TCM, de Silva AC, Savila LA, Gaido GM, Betega JMR, Mancini M, De Almeida MTR, Barbosa RA, Faries MR (2005) Antiviral evaluation of plants from Brazilian Atlantic tropical forest. Fitoterapia 76:374–378
65. Verma H, Patil PR, Kolhapure RM, Gopakrishna V (2008) Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in vitro and molecular approach. J Ethnopharmacol 26:322–326
66. Kurokawa K, Hozumi T, Basnet P, Nakano M, Kadota S, Namba T, Kawana T, Shiraki K (1998) Purification and characterisation of eugenin as an anti-herpes virus compound from Geum japonicum and Syzygium aromaticum. J Pharmacol Exp Ther 284:728–735
67. Abad MJ, Bermejo P, Villar A, Sanchez Palominos S, Carracis I (1997) Antiviral activity of medicinal plant extracts. Phytother Res 11:198–202
68. Alvarez AL, Habtemariam S, Juan-Badaturique M, Jackson C, Parro F (2011) In vitro anti HSV-1 and HSV-2 activity of Taracutum vulgare and isolated compounds. An approach to their mechanism of action. Phytother Res 25:203–296
69. Kambizia L, Gooseb BM, Taylorc MB, Afolayana AJ (2007) Koen. cc Retz. Proc Natl Acad Sci India Sect B 71B:197–205
70. Khan TA, Tatke PA, Gabhe SY, Mahajan K, Tawde S, Kothari S, Deshmukh RA (2007) Screening of methanol and water
extracts of *Acacia nilotica* for in vitro anti-HIV activity. J Res Educ Indian Med 13:47–53

71. Maregesi S, Mlert SV, Panrecoque C, Haddad MHF, Hermans N, Wright CW, Villetinck Aj, Alpers S, Pieters L (2010) Screening of Tanzanian plants against *Plasmodium falciparum* and human immunodeficiency virus. Planta Med 76:195–201

72. Chang YS, Moon YH, Woo ER (2003) Virus-cell fusion inhibitory compounds from *Allantus altissima* Swingle. Korean J Pharmacogn 34:28–32

73. Sookkongwaree K, Keitmann M, Roengsumran S, Petsom A, Danielson UH (2006) Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from *Kaempferia parviflora*. Die Pharmazie 61:717–721.

74. Alam MS, Quader MA, Rashid MA (2000) HIV-inhibitory diterpene from *Anisomeles indicus*. Fitoterapia 71:574–576

75. Ma CM, Nakamura N, Hattori M (2001) Inhibitory effect on HIV-protease of *trip-coumaroyl-spermide* from *Artemisia caradifolia* and related amides. Chem Pharm Bull 49:915–917

76. Park JC, Hur JM, Park JG, Hatano T, Yoshida T, Miyashiro H, Min BS, Hattori M (2002) Inhibitory effect of Korean medicinal plants and camelliatannin H from *Camellia japonica* on human immunodeficiency virus type 1 p24. Phytother Res 16:422–426

77. Premnathan, R. Rajendran S, Ramathan T, Kallieeswaran K, Nakakuma H, Yamamoto M (2000) A survey of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian J Med Res 112:73–77

78. Lee IS, Kim HJ, Lee YS (2003) A new anti-HIV flavonoid glucuronide from *Chrysanthemeum morifolium*. Planta Med 69:859–861

79. Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-aids agents. 54.

80. Bunluepuech K, Tewtrakul S (2009) Anti-HIV integrase activity of *Morinda citrifolia* in vivo inhibitory compounds from *Thai bitter gourd*. Planta Med 67:572–575

81. Dutta BK, Datta SK, Khan TH, Kundu JR, Rashid MA, Nahar L, Sarker SD (2004) Anticholinergic, cytotoxic and anti-HIV1 activities of sesquiterpenes and a flavonoid glycoside from the aperial parts of *Polygonum viscosum*. Pharm Biol 42:18–23

82. Wang RR, Gu Q, Wang YH, Zhang XM, Yang LM, Zhou J, Chen JH, Zheng YT (2008) Anti-HIV-1 activity of compounds isolated from medicinal plant *Rhus chinensis*. J Ethnopharmacol 117:249–256

83. Gu Q, Wang RR, Zhang XM, Wang YH, Zheng YT, Zhou T, Chen JH (2007) A new benzofuranone and anti-HIV constituents from the stem of *Rhus chinensis*. Planta Med 73:279–282

84. Marganelli REU, Zaccaro L, Tomei PE (2005) Antiviral activity in vitro of *Urtica dioica*, *Parthenia diffusa* M. et K. and *Sambucus nigra* L. J Ethnopharmacol 98:323–327

85. Xiao WL, Li X, Wang RR, Yang LM, Li LM, Huang SX, Zheng YT, Li RT, Sun HD (2007) Triterpenoids from *Schisandra rubriflora*. J Nat Prod 70:1056–1059

86. Porika M, Ailemi M, Kokkiradu VR, Umate P, Rao AV, Devarakonda RK, Ahagani S (2009) In vitro HIV type-1 reverse transcriptase inhibitory activity from leaf extracts of *Scoparia dulcis* L. J Herbs Spices Med Plant 15:241–247

87. Khare M, Srivastava MK, Singh AK (2002) Chemistry and pharmacology of genus Sida (Malvaceae)—a review. J Med Aromat Sci 24:430–440

88. Ahn MJ, Kim CY, Lee J, Kim J, Kim SH, Lee CK, Lee BB, Shin CH, Huh H, Kim L (2002) Inhibition of HIV-1 integrase by galloyl glucose from *Terminalia chebula* and flavonol glycoside gallates from *Euphorbia pekinensis*. Planta Med 68:457–459

89. Assres KF, Bucar F, Kartnig T, Witvrouw M, Pannecoque C, De Clercq E (2001) Antiviral activity against human immunodeficiency virus (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother Res 15:62–69

90. Kown DH, Kwon HY, Kim JH, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS, Choi YK (2005) Inhibition of hepatitis-B virus by aqueous extract of *Agrimonia eupatoria* L. Phytother Res 19:355–358

91. Likhitwitayuwit K, Sritulanak B, Bencharak K, Lipipun V, Tobia A (2001) Pharmacokinetics, safety and antiviral effects of *hypericin*, a derivative of St. John’s wort plant, in patients with chronic hepatitis-C virus infection. Antimicrob Agents Chemother 45:517–524

92. Han YQ, Huang ZM, Yang XB, Liu HZ, Wu GK (2008) In vivo and in vitro anti-hepatitis B virus activity of total phenolics from *Oenanthe javanica*. J Ethnopharmacol 118:148–153

93. Thayagarajan SP, Subramanian S, Thirumalasundari T, Venkateswaran PS, Blumberg BS (1988) Effect of *Phyllanthus amarus* on chronic carriers of hepatitis B virus. Lancet 2:764–766

94. Wang RR, Gu Q, Wang YH, Zhang XM, Yang LM, Zhou J, Chen JH, Zheng YT (2008) Anti-HIV-1 activity of compounds isolated from medicinal plant *Rhus chinensis*. J Ethnopharmacol 117:249–256

95. Gu Q, Wang RR, Zhang XM, Wang YH, Zheng YT, Zhou T, Chen JH (2007) A new benzofuranone and anti-HIV constituents from the stem of *Rhus chinensis*. Planta Med 73:279–282

96. Marganelli REU, Zaccaro L, Tomei PE (2005) Antiviral activity in vitro of *Urtica dioica*, *Parthenia diffusa* M. et K. and *Sambucus nigra* L. J Ethnopharmacol 98:323–327

97. Xiao WL, Li X, Wang RR, Yang LM, Li LM, Huang SX, Zheng YT, Li RT, Sun HD (2007) Triterpenoids from *Schisandra rubriflora*. J Nat Prod 70:1056–1059

98. Porika M, Ailemi M, Kokkiradu VR, Umate P, Rao AV, Devarakonda RK, Ahagani S (2009) In vitro HIV type-1 reverse transcriptase inhibitory activity from leaf extracts of *Scoparia dulcis* L. J Herbs Spices Med Plant 15:241–247

99. Khare M, Srivastava MK, Singh AK (2002) Chemistry and pharmacology of genus Sida (Malvaceae)—a review. J Med Aromat Sci 24:430–440

100. Ahn MJ, Kim CY, Lee JS, Kim J, Kim SH, Lee CK, Lee BB, Shin CH, Huh H, Kim L (2002) Inhibition of HIV-1 integrase by galloyl glucose from *Terminalia chebula* and flavonol glycoside gallates from *Euphorbia pekinensis*. Planta Med 68:457–459

101. Asres KF, Bucar F, Kartnig T, Witvrouw M, Pannecoque C, De Clercq E (2001) Antiviral activity against human immunodeficiency virus (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother Res 15:62–69

102. Kown DH, Kwon HY, Kim JH, Chang EJ, Kim MB, Yoon SK, Song EY, Yoon DY, Lee YH, Choi IS, Choi YK (2005) Inhibition of hepatitis-B virus by aqueous extract of *Agrimonia eupatoria* L. Phytother Res 19:355–358

103. Likhitwitayuwit K, Sritulanak B, Bencharak K, Lipipun V, Tobia A (2001) Pharmacokinetics, safety and antiviral effects of *hypericin*, a derivative of St. John’s wort plant, in patients with chronic hepatitis-C virus infection. Antimicrob Agents Chemother 45:517–524

104. Han YQ, Huang ZM, Yang XB, Liu HZ, Wu GK (2008) In vivo and in vitro anti-hepatitis B virus activity of total phenolics from *Oenanthe javanica*. J Ethnopharmacol 118:148–153

105. Thayagarajan SP, Subramanian S, Thirumalasundari T, Venkateswaran PS, Blumberg BS (1988) Effect of *Phyllanthus amarus* on chronic carriers of hepatitis B virus. Lancet 2:764–766

 Springer
107. Wang M, Cheng H, Li Y, Meng L, Zhao G, Mai K (1995) Herbs of the genus *Phyllanthus* in the treatment of chronic hepatitis B: observations with three preparations from different geographic sites. J Lab Clin Med 126:350–352

108. Zhao YL, Cai GM, Hong X, Shan LM, Xiao XH (2008) Antiheliotitis-B virus activities of triterpenoid saponin compounds from *Potentilla anserine* L. Phytomedicine 15:253–258

109. Li H, Zhou CX, Pan Y, Gao X, Wu X, Bai H, Zhou L, Chen Z, Zhang S, Shi S, Luo J, Xu J, Chen L, Zheng X, Zhao Y (2005) Evaluation of antiviral activity of compounds isolated from *Ranunculus seiboldi* and *Ranunculus sceleratus*. Planta Med 71:1128–1130

110. Li-Kang H, Ming-Jaw D, Hua-Chien C, Sheau-Farn Y, Jau-Zhong H (1995) Active compounds from *Saussurea lappa* Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res 27:99–109

111. Sathyanarayanan S, Selvam P, Jose A, George RM, Revikumar KG, Neys J (2009) Preliminary phytochemical screening and study of antiviral activity and cytotoxicity of *Wrightia tinctoria*. Int J Chem Sci 7:1–5

112. Mohamed IET, El Nur EBES, Abdelrahman MEN (2010) The antibacterial, antiviral activities and photochemical screening of some Sudanese medicinal plants. EurAsian J Biosci 4:8–16

113. Chen JX, Yue JX, Wen-Cai Y, Bing-Hu F, Ya-Hong L, Shao-Hua Y, Yu P, Yu-Quang W (2009) Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull 32:1385–1391

114. Papadopoulos G, Kostopoulou V, Kalogianni M (2003) Antiviral activities of *Rhus coriaria* L. Int J Antimicrob Agents 21:363–369

115. Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Nagai K, Noma H, Terasawa K, Ochiai H, Handa SS (ed) (2008) Perspectives of Indian medicinal plants in the genus *Phyllanthus*. New Delhi, pp 242–249

116. Vidal A, Fallarero A, Penas BR, Medina ME, Gra B, Rivera F, Gutierrez Y, Vuorela PM (2003) Studies on the toxicity of *Punica granatum* L. (Punicaceae) whole fruit extracts. J Ethnopharmacol 89:295–300

117. Ho W-S, Xue J-Y, Sun YC, Li YL (2010) Antiviral activity of dehydroandrographolide isolated from *Wikstroemia indica*. Phytother Res 24:657–661

118. Tandon N (ed) (2011) Quality standards of Indian medicinal plants, vol 9. Indian Council of Medical Research, New Delhi, p 5

119. Sewalt R, van der Meer JWM, Dietzsch J, Kyes KM, de Groot RMM, van der Meer P (2010) Antiviral activity of *Eugenia jambolana* plant extract on buffalo pox virus: conventional and qPCR methods. Int J Trop Med 2:3–9

120. Pompeii R, Pari A, Flore O, Marcialis MA, Lodde RO (1980) Antiviral activity of crude glycyrrhizic acid. Experientia 36:304–305

121. Tandon N (ed) (2011) Quality standards of Indian medicinal plants, vol 9. Indian Council of Medical Research, New Delhi, pp 242–249

122. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

123. Lai AL, Shu SH, Quin HL, Lee SMY, Wang YT, Du GH (2009) In vitro anti-influenza viral activities of constituents from *Cacispinia sappan*. Planta Med 75:337–339

124. Harikumar KB, Kuttan R (2006) Antiviral activity of *Phyllanthus amarus* and curcumin. Amla Res Bull 26:198–205

125. Hua-Chien C, Cen-Kung C, Shou-Dong L, Ju-Chun W, Sheau-Farn Y, Jau-Zhong H (1995) Active compounds from *Saussurea lappa* Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res 27:99–109

126. Mohamed IET, El Nur EBES, Abdelrahman MEN (2010) The antibacterial, antiviral activities and photochemical screening of some Sudanese medicinal plants. EurAsian J Biosci 4:8–16

127. Mohamed IET, El Nur EBES, Abdelrahman MEN (2010) The antibacterial, antiviral activities and photochemical screening of some Sudanese medicinal plants. EurAsian J Biosci 4:8–16

128. Dhawan BN, Patnaik GK (1993) Pharmacological studies for the therapeutic potential. In: Randhawa NS, Parmar BS (eds) Neem research and development. Society of Pesticide Science, India, New Delhi, pp 242–249

129. Bhanuprakash V, Hosamani M, Balamurugan V, Singh RK, Swarup D (2007) In vitro antiviral activity of *Eugenia jambolana* plant extract on buffalo pox virus: conventional and qPCR methods. Int J Trop Med 2:3–9

130. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

131. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

132. Badam L (1997) In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid on Japanese encephalitis virus. J Commun Dis 29:91–98

133. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

134. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

135. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

136. Badam L, Bedekar SS, Joshi SP (1999) ‘In-vitro’ antiviral activity of neem (*Azadirachta indica* A. Juss.) leaf extract against group B Coxsackie viruses. J Commun Dis 31:79–90

137. Badam L (1989) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

138. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

139. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

140. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

141. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

142. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

143. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297

144. Badam L (1994) In vitro studies on the effect of glycyrrhizin and its derivatives against influenza virus in vivo and in vitro. Int J Trop Med 61:1295–1297