An anteroposterior Dorsal gradient in the Drosophila embryo

Audrey M. Huang, Jannette Rush,1 and Michael Levine2

Department of Molecular and Cell Biology, Division of Genetics, University of California, Berkeley, California 94720 USA

Dorsoventral (DV) patterning of the Drosophila embryo is initiated by a broad Dorsal (Dl) nuclear gradient, which is regulated by a conserved signaling pathway that includes the Toll receptor and Pelle kinase. We investigate the consequences of expressing a constitutively activated form of the Toll receptor, Toll10b, in anterior regions of the early embryo using the bicoid 3′ UTR. Localized Toll10b products result in the formation of an ectopic, anteroposterior (AP) Dl nuclear gradient along the length of the embryo. The analysis of both authentic dorsal target genes and defined synthetic promoters suggests that the ectopic gradient is sufficient to generate the full repertoire of DV patterning responses along the AP axis of the embryo. For example, mesoderm determinants are activated in the anterior third of the embryo, whereas neurogenic genes are expressed in central regions. These results raise the possibility that Toll signaling components diffuse in the plasma membrane or syncytial cytoplasm of the early embryo. This study also provides evidence that neurogenic repressors may be important for the establishment of the sharp mesoderm/neuroectoderm boundary in the early embryo.

[Key Words: Dorsoventral patterning; Drosophila embryo; Toll receptor; AP dorsal gradient; gradient thresholds]

Received May 2, 1997; revised version accepted June 19, 1997.

The Dorsal (Dl) nuclear gradient is established by a highly conserved signaling pathway that is related to the mammalian IL-1 pathway (for review, see Steward and Govind 1993; Wasserman 1993; Belvin and Anderson 1996). A variety of studies suggest that the Toll receptor is activated in ventral regions by a localized source of processed Spätzle (Spz) ligand (Morisato and Anderson 1994; Schneider et al. 1994). The activation of Toll leads to the induction of the Pelle kinase (Shelton and Wasserman 1993) and ultimately to the phosphorylation and degradation of the cactus inhibitor (Bergmann et al. 1996; Reach et al. 1996), thereby permitting translocation of Dl from the cytoplasm to the nucleus (Roth et al. 1996). Thresholds of both authentic dorsal target genes and defined synthetic promoters suggest that the ectopic gradient is sufficient to generate the full repertoire of DV patterning responses along the AP axis of the embryo. For example, mesoderm determinants are activated in the anterior third of the embryo, whereas neurogenic genes are expressed in central regions. These results raise the possibility that Toll signaling components diffuse in the plasma membrane or syncytial cytoplasm of the early embryo. This study also provides evidence that neurogenic repressors may be important for the establishment of the sharp mesoderm/neuroectoderm boundary in the early embryo.

The Dl gradient specifies five distinct thresholds of gene activity (summarized in Fig. 1). Threshold I is defined by peak levels of Dl in the ventral-most regions of early embryos. Folded gastrulation (fog) may be an example of a type I target gene because it is expressed only in a subdomain of the ventral mesoderm (Costa et al. 1994). Threshold II is exemplified by snail, which is activated by peak and high levels of the Dl gradient throughout the presumptive mesoderm (Ip et al. 1992a). The lateral limits of the snail expression pattern establish the boundary between the presumptive mesoderm and neuroectoderm (Alberga et al. 1991; Kosman et al. 1991; Leptin 1991). Threshold III is established by intermediate levels of the Dl gradient in the ventral-most regions of the neurogenic ectoderm, which correspond to the presumptive mesectoderm. Several type III target genes have been identified, including single minded (sim) and the m7 and m8 genes of the Enhancer of split (E(spl)) complex (Kasai et al. 1992; Martin-Bermudo et al. 1995). Threshold IV is represented by the rhomboid (rho) gene, which is expressed in the ventral half of the lateral neuroectoderm (Bier et al. 1990; Ip et al. 1992b). Finally, threshold V is defined by the lowest levels of the Dl gradient, which regulate short gastrulation (sog) (Francois et al. 1994; Holley et al. 1995), and zerknullt (zen) (Jiang et al. 1993). sog is activated by the lowest levels of the Dl gradient present at the junction between the presumptive dorsal ectoderm and neuroectoderm (Fig. 1). These same low levels of Dl are also sufficient to repress genes such as decapentaplegic (dpp) and zen (Huang et
Figure 1. Summary of gradient thresholds. Previous studies have identified at least five distinct thresholds of gene activity in response to the Dl nuclear gradient (e.g., Jiang and Levine 1993; Rusch and Levine 1996). The type I target gene fog is activated only in response to peak levels of the Dl gradient (Costa et al. 1994), so that expression is restricted to a subdomain of the presumptive mesoderm. The PE enhancer from the twist promoter region exhibits a similar pattern of expression (Jiang et al. 1991; Pan et al. 1991; Thisse et al. 1991). This enhancer contains a cluster of low-affinity Dl binding sites (open circles), which restrict expression to the ventral-most regions of early embryos. The type II target gene snail contains a series of low-affinity Dl-binding sites, as well as binding sites for the bHLH activator, Twist (Ip et al. 1992b). The DI and Twist proteins appear to make synergistic contact with the basal transcription complex, so that snail is activated throughout the presumptive mesoderm in response to both peak and high levels of the Dl gradient (Szymanski and Levine 1995). The ventral midline arises from the mesendoderm, which is derived from the ventral-most regions of the neuroectoderm. Mesoderm differentiation is controlled by the bHLH–PAS gene, sim (for review, see Crews et al. 1992). Some of the genes of the E(spl) complex also exhibit early expression in the presumptive mesoderm (Martin-Bermudo et al. 1995). A synthetic enhancer containing high-affinity Dl-binding sites (solid circles) and twist binding sites exhibits expression in this region (Gray and Levine 1996a). The type IV target gene fog is expressed in lateral stripes that encompass the ventral half of the presumptive neuroectoderm (Bier et al. 1990). These stripes are regulated by a 300-bp enhancer (NEE) that contains high-affinity Dl-binding sites (solid circles), Twist-binding sites, and “generic” E-box sequences that appear to bind ubiquitously distributed bHLH activators (Daughterless Dl) and scute (T4) that are present in the unfertilized egg (Ip et al. 1992b; Gonzalez-Crespo 1993). The fifth and final threshold response is defined by the lowest levels of the Dl gradient. The zen target gene is repressed by high and low levels of the gradient, so that expression is restricted to the presumptive dorsal ectoderm. Previous studies have shown that the zen promoter region contains high-affinity Dl-binding sites and closely linked “corepressor” sites (Lehming et al. 1994; Cal et al. 1996). Efficient occupancy of the Dl sites appears to depend on strong, cooperative DNA-binding interactions between Dl and the corepressors. The same low levels of Dl that repress zen also activate sog: the sog promoter region has not been characterized (Francois et al. 1994; Holley et al. 1995). The sim, E(spl), rho, and sog expression patterns are restricted to the neurogenic ectoderm and excluded from the ventral mesoderm by Snail, which encodes a zinc finger repressor (e.g., Ip et al. 1992b).

Recent studies suggest that similar principles might apply to extracellular gradients of the Dpp and Wingless (Wg) ligands in the wing imaginal disk (Lecuit et al. 1996; Nellen et al. 1996; Zecca et al. 1996; Neumann and Cohen 1997), although the analysis of threshold responses in these gradient systems is complicated by the occurrence of numerous rounds of cell proliferation before the detection of target gene activity (Lecuit et al. 1996). In contrast, the syncytial blastoderm provides a simple “readout” system as there is only a 30-min lag between the formation of the DI gradient and the transcription of target genes.

In this study we describe the consequences of creating an ectopic Dl gradient along the anteroposterior (AP) axis of the early embryo. The constitutively activated Toll receptor was expressed in anterior regions of transgenic embryos using the Bicoid (Bcd) 3′-untranslated region (UTR) localization sequence (Macdonald and Struhl 1988). The ensuing ectopic DI gradient mediates a dramatic transformation of the AP pattern into a series of dorsoventral (DV) patterning thresholds along the length...
of the embryo. All five thresholds of gene activity are established along the AP axis, even though the slope of the ectopic Dl gradient is distinct from the endogenous gradient. These results demonstrate that a robust DV patterning response can be obtained in the absence of Spz and other potential polarizing factors in the perivitelline fluid (Stein and Nüsslein-Volhard 1992; Roth 1993; Morisato and Anderson 1994). We propose that the detailed slope of the Dl gradient might involve the diffusion of Spz–Toll complexes in the plasma membrane, or the diffusion of Toll target proteins in the cytoplasm. Such diffusion might be particularly important for differential patterns of gene expression in the lateral neuroectoderm, where there are three distinct thresholds of gene activity over a distance of just ~10–12 cell diameters.

Results

The dominant Toll10b mutation is caused by a single amino acid substitution at residue 781 (C781Y), which is located on the external surface near the transmembrane spanning domain (Schneider et al. 1991). A Toll10b cDNA was inserted into a P-element transformation vector that contains either the Hsp83 or \textit{bcd} promoter, and the \textit{bcd} 3′ UTR (see diagram above Fig. 2A), which localizes maternal transcripts to the anterior pole of oocytes and embryos (Macdonald and Struhl 1988; Ephrussi and Lehmann 1992; Rusch and Levine 1997).

Ectopic activation of the Toll signaling pathway

Embryos derived from transgenic females were hybridized with a digoxigenin-labeled Toll antisense RNA probe (Fig. 2A). Ectopic Toll transcripts are detected at the anterior pole, along with ubiquitously distributed endogenous RNAs (Fig. 2, cf. A with B). Toll10b RNAs can be distinguished from the endogenous RNAs because the former are localized within the apical cytoplasm by the \textit{bcd} 3′ UTR (arrow, Fig. 2A; Gertulla et al. 1988; Davis and Ish-Horowicz 1991). Despite the apparently tight localization of Toll10b transcripts, transgenic embryos exhibit a broad DV patterning response along the length of the AP axis (see below).

Immunolocalization assays were done to visualize the distribution of the Toll10b protein in transgenic embryos. The endogenous protein is present at low levels, and weak staining can be detected throughout the plasma membrane of early embryos (data not shown; Hashimoto et al. 1991). Toll10b products are first visualized in early cleavage embryos, before nuclear cycle 8, in anterior regions that correspond to sites of RNA accumulation (Fig. 3A). By the onset of nuclear cleavage cycle 14 there is a rather broad distribution of Toll10b protein (Fig. 3B,C), with peak levels present in the anterior-most regions.

The subcellular localization of the Toll10b protein is distinct from the endogenous, wild-type protein. Toll10b accumulates in dense rings that are detected at or near the cell surface (Fig. 3D). Such punctate accumulations are not observed for the wild-type protein (data not shown). Perhaps these rings represent sites of active Toll signaling, either attributable to the aggregation of the receptor at the cell surface or the endocytosis of active receptor. Toll10b rings are more pronounced in dorsal regions of the embryo. In ventral regions, activation of the endogenous receptor by Spz might somehow inhibit Toll10b aggregation.

Ectopic expression of Toll10b results in the formation of an anteroposterior Dorsal gradient

Figure 2. Localized Toll10b transcripts lead to the formation of an AP Dl gradient. Embryos were derived from heterozygous females carrying one copy of the Toll10b P-element transposon shown above panel A. The embryos are oriented with anterior to the left and dorsal up. (A) Nuclear cleavage cycle-14 embryo undergoing the initial phases of cellularization. The embryo was hybridized with a digoxigenin-labeled Toll antisense RNA probe and stained with an anti-digoxigenin antibody. Endogenous Toll transcripts are distributed throughout the basal cytoplasm (Gertulla et al. 1988), whereas the transgenic Toll10b transcripts are mainly restricted to the apical cytoplasm in anterior regions. (B) Same as A, except that the embryo lacks the Toll10b transgene. Endogenous Toll transcripts are detected throughout the basal cytoplasm. (C) Dorsolateral view of a nuclear cleavage cycle-13 embryo stained with anti-Dl antibodies and visualized by indirect immunofluorescence. Intense nuclear staining is detected in anterodorsal regions, which corresponds to sites of peak Toll10b mRNA accumulation in early embryos. Staining is restricted primarily to nuclei in anterior regions, and is partitioned between nuclei and cytoplasm in central regions. Dl protein is restricted to the cytoplasm in posterior regions. The endogenous DV Dl nuclear gradient cannot be seen in this orientation.
Figure 3. Distribution of the Toll10b protein. Transgenic embryos are oriented with dorsal up and anterior to the left. Embryos were incubated with an anti-Toll antibody and visualized by histochemical staining with horseradish peroxidase. (A) Nuclear cleavage cycle-8 embryo. Toll10b proteins are restricted to the anterior pole. The diffuse, general background staining is probably attributable to the endogenous Toll protein. (B) Cleavage cycle-13 embryo. Staining is no longer restricted to the anterior pole, but extends to more posterior regions. Higher levels of Toll10b are detected in dorsal vs. ventral regions. This DV asymmetry is also observed for the Toll10b RNAs (see Fig. 2A), and is probably attributable to the bcd 3′ UTR. (C,D) Higher magnification views of the embryo shown in B. Toll10b proteins appear to aggregate in rings at or near the cell surface. This type of punctate staining is not observed for the normal, endogenous protein.

Multiple DV thresholds along the AP axis

Toll10b transgenic embryos were hybridized with a number of different RNA probes to examine the impact of the AP Dl gradient on development (Fig. 4). The type II target gene, snail, is activated in the ventral mesoderm (Fig. 4A; Ip et al. 1992a) but is also expressed in the anterior third of transgenic embryos (Fig. 4D). The type V target gene sog is expressed in broad lateral stripes (Fig. 4B) and in the central two-thirds of transgenic embryos (Fig. 4E; Francois et al. 1994; Holley et al. 1995). Both the ectopic and endogenous sog patterns are excluded from anterior regions by Snail, which functions as a transcriptional repressor of type III, IV, and V genes (Gray et al. 1994; Gray and Levine 1996b). Another type V gene, zen (see Fig. 1 for summary), is repressed by the AP and DV Dl gradients in the same regions that activate sog (Fig. 4C,F). Staining at the anterior pole results from a Dl–Torso interaction, whereby the Torso (Tor) receptor tyrosine kinase (RTK) masks the ability of Dl to function as a transcriptional repressor (Rusch and Levine 1994).

Additional expression assays were conducted in mutant embryos lacking the endogenous Toll pathway and DV dorsal nuclear gradient. This was achieved by crossing the Toll10b P-element transposon into a strain carrying a null mutation in gastrulation defective (gd), one of the putative serine proteases required for the processing of the Spz ligand (Konrad et al. 1988). Such embryos lack an intrinsic DV polarity, so that the expression of Dl target genes depends solely on the ectopic AP Dl gradient generated by the localized Toll10b mRNA. Embryos derived from transgenic females were hybridized with a mixture of snail and zen probes (Fig. 4G). Staining is restricted to anterior and posterior regions that correspond to sites of ectopic snail and zen expression, respectively.

sog is expressed broadly in central regions of these embryos (Fig. 4H). A similar pattern is observed for rho, which is a type IV target gene (Fig. 4I). The posterior limit of the pattern does not extend as far as sog (Fig. 4H), as the two genes exhibit differential threshold responses to diminishing amounts of the Dl gradient (see Fig. 1 for summary). Both patterns are excluded from the anterior third of the embryo by the ectopic Snail repressor. These results suggest that the localized Toll10b receptor can specify multiple DV patterning responses in the absence of processed Spz ligand.

Analysis of synthetic promoters

Further evidence that the AP Dl gradient specifies the full complement of DV thresholds was obtained by analyzing derivatives of a 260-bp enhancer (PE) from the promoter region of the type II target gene, twist (Jiang et al. 1991; Pan et al. 1991; Thisse et al. 1991). The PE is activated only by peak levels of the Dl gradient, similar to the pattern observed for the type I target gene, fog (see Fig. 1). A PE–lacZ fusion gene is activated in the anterior fourth of transgenic embryos (Fig. 5A). Two tandem copies of a slightly modified version of this fusion gene
Patterning thresholds, including the type III that the AP Dl gradient can direct the full repertory of the analysis of endogenous target genes (Fig. 4), indicate half of the embryo (Fig. 5C). These results, together with 1993) so that staining includes nearly the entire anterior intermediate levels of the Dl gradient (Jiang and Levine (2xPEe-Et) is activated by both high and modified form of 2xPEe that contains Twist protein expression in the anterior third of the embryo (Fig. 5B). A expression in ventral and lateral regions. The Tor RTK pathway blocks the ability of Dl to function as a repressor at the poles (Rusch and Levine 1994). (D) snail expression pattern in an embryo derived from a transgenic female. Ectopic staining is observed in the anterior third of the embryo. Because the Toll10b transgene is expressed in a wild-type strain, the normal, endogenous staining pattern is also observed in the ventral mesoderm. (E) sog expression pattern. Ectopic staining is detected in a broad domain in central regions of the embryo. The endogenous lateral stripes are also observed. Both the ectopic and endogenous staining patterns are excluded from the anterior third of the embryo by the Snail repressor (see A). (F) zen expression pattern. Staining is detected at the anterior and posterior poles, and in a dorsal patch in the presumptive abdomen. The latter site of expression corresponds to the only region that lacks both the endogenous and ectopic dorsal nuclear gradients (Fig. 2C; data not shown). Staining at the poles coincides with regions where the Dl repressor is masked by the Tor RTK pathway. (G) Embryo derived from a female carrying a copy of the Toll10b transgene and homozygous for a null mutation in gd. This latter mutation abolishes the activity of the endogenous Toll signaling pathway (Konrad et al. 1988) so that Dl target genes are regulated solely by the ectopic AP dorsal gradient. The embryo was stained with a mixture of snail and zen hybridization probes. Staining in the anterior third of the embryo corresponds to sites of snail expression, whereas posterior staining corresponds to zen. (H) Same as G except that the embryo was stained with a sog hybridization probe. A broad band of expression is detected in central regions of the embryo, extending from -70%-20% egg length. The anterior border is probably specified by the Snail repressor, whereas the posterior border may be formed by limiting amounts of the AP Dl nuclear gradient. (I) Same as G and H except that the embryo was stained with a rho hybridization probe. The staining pattern is narrower than the sog pattern (H) because sog is activated by lower threshold levels of the Dl gradient (see Fig. 1 for summary).

(2xPEe), which contains nucleotide substitutions in the Dl operator sites that increase their binding affinities (Jiang and Levine 1993), mediate lacZ reporter gene expression in the anterior third of the embryo (Fig. 5B). A modified form of 2xPEe that contains Twist protein binding sites (2xPEe-Et) is activated by both high and intermediate levels of the Dl gradient (Jiang and Levine 1993) so that staining includes nearly the entire anterior half of the embryo (Fig. 5C). These results, together with the analysis of endogenous target genes (Fig. 4), indicate that the AP Dl gradient can direct the full repertoire of patterning thresholds, including the type III sim pattern (data not shown).

PE-lacZ fusion genes are not expressed at the anterior poles of either wild-type or transgenic embryos (e.g., Fig. 5A–C). There are at least two possible explanations for this observation. First, previous studies have shown that the Tor RTK pathway influences Dl activity at both embryonic poles (Rusch and Levine 1994). This Dl–Tor interaction somehow masks the ability of Dl to function as a transcriptional repressor. It is conceivable that Tor also attenuates Dl-mediated activation. Alternatively, it is possible that the PE regulatory sequence contains repressor sites for tor target genes, such as Tailless, which represses gene expression at the poles (Pignoni et al. 1990).

The endogenous snail and twist expression patterns exhibit abnormal gaps in the ventral mesoderm (data not shown). About half of these embryos display a similar gap in the endogenous snail pattern (Fig. 5D). The simplest explanation for the gap is that one or more neurogenic repressors are activated in lateral regions of wild-type embryos and help sharpen the type II snail pattern (see Fig. 4A). The ectopic AP Dl gradient might activate these putative repressors in central regions of transgenic.
embryos, and create the observed gap in the endogenous snail pattern.

Additional evidence for neurogenic snail repressors stems from the analysis of transgenic lines that express the bcd–Toll10b transgene. The bcd promoter mediates relatively weak expression of Toll10b, and consequently, the resulting AP D1 gradient is distinct from that generated by the Hsp83 promoter (Fig. 6; data not shown). Despite this variation, there is always a gap in the endogenous snail expression pattern just posterior to the ectopic staining (Fig. 6A,B). These results are consistent with the notion that low levels of the AP D1 gradient activate a repressor which helps refine the sharp snail border.

Subdivision of embryonic tissues

The misregulation of D1 target genes along the AP axis results in the formation of ectopic DV tissues. For example, the expression of type II target genes in anterior regions results in the invagination of ectopic mesoderm (Fig. 5G). The rho expression pattern suggests that the ectopic neurogenic ectoderm is subdivided into multiple cell types. Rho is activated initially in broad lateral stripes that encompass 8–10 cells (arrow, Fig. 5E). During gastrulation, these stripes are refined progressively to the ventral-most regions of the neurogenic ectoderm, which includes the presumptive mesectoderm (arrow, Fig. 5F). It has been suggested that this refinement is a manifestation of the subdivision of the neurogenic ectoderm into ventral and lateral cell types (Rusch and Levine 1996). A similar refinement of the ectopic rho pattern is observed in mutant embryos lacking the endogenous DV gradient (Fig. 5H,I). Initially, rho is activated in a broad central domain (Fig. 5H), but is refined into a sharp stripe by the
A genic ectoderm.
A neuroectoderm boundary and the subdivision of the neu-
A might be important for the sharpening of the mesoderm–
A. The ectopic band of staining is observed in
A presumptive mesoderm at the anterior pole.

Figure 6. Differential AP Dl gradients. Toll10b transgenic em-
A byros are oriented with anterior to the left and dorsal up. (A)
A expression pattern in a transgenic embryo carrying the
A–Toll10b transgene. Ectopic staining is restricted to the an-
A pole because the transgene expresses only low levels of the
A receptor. There is a gap in the endogenous snail pattern just posterior to the ectopic site of expression. (B) Same
A as A except that the embryo was stained to reveal the sog ex-
A expression pattern. An ectopic band of staining is observed in
A, just behind the ectopic snail pattern (cf. with
A). The ectopic sog band is somewhat broader than the ectopic
A presumptive mesoderm at the anterior pole.

Discussion

We have shown that a constitutively activated Toll re-
A can specify multiple “French flag” transcription thresholds across the AP axis of early embryos. These
A extend previous evidence that the early embryo is
A “naïve” with respect to DV patterning, and
A cell fate is dictated by the intranuclear concentration of the
A regulatory protein (e.g., Anderson et al. 1992b).

It has been proposed that the normal, DV Dl nuclear
A is established by the differential activation of the Toll
A in ventral and ventrolateral regions by an extracellular Spz
A in the perivitelline fluid (Stein and Nüsslein-Volhard
A; Roth
A; Morisato
A; Schneider et al. 1994). However, we
A have shown that a full DV patterning response can be
A obtained in the absence of Spz, thereby raising the pos-
A that diffusion of Toll-signaling components in the
A membrane or cytoplasm might contribute to this process (summarized in Fig. 7). It is possible that
A complexes formed in ventral regions diffuse
A within the plasma membrane and assist in the nuclear
A transport of low levels of Dl protein in lateral regions. A
A alternative is that cytoplasmic targets of the
A complex, such as the Pelle kinase (Shelton and Wasserman 1993), can diffuse after being recruited to
A surface in ventral regions. Therefore, the final Dl
A nuclear gradient might depend on the diffusion of Toll-
A components in all three cellular compartments—the perivitelline fluid, plasma membrane, and
A.

The demonstration that Toll10b can reconstruct mul-
A DV patterning responses does not reject current
A regarding an extracellular Spz gradient in the
A. Cytoplasmic injection experiments suggest that the normal Dl
A is not formed in the absence of an extracellular patterning asymmetry in the
A fluid (Roth 1993). Specifically, a steep Dl
A is observed when Toll+ cytoplasm is injected

Figure 7. Formation of the Dl nuclear gradient. The gradient
A might depend on diffusion in all three cellular compartments. It
A been proposed previously that the Toll receptor is differen-
A by an extracellular Spz gradient (indicated by the
A diamond and arrows) in the perivitelline fluid (Stein and
A; Morisato & Anderson 1994; Schneider et al. 1994). The present study raises the possibility that Spz–
A (red Y and arrows) complexes formed in ventral regions
A diffuse into ventrolateral regions within the plasma
A (indicated by the two parallel black arcs). Finally,
A activation of the Toll receptor might induce the recruitment of the
A to the ventral surface. The activated kinase
A (green oval and arrows) might diffuse into lateral regions within
A.
within a narrow stripe along the dorsal surface of Tolll embryos. This gradient appears to be much steeper than the endogenous DV gradient present in wild-type embryos. The Roth study is somewhat constrained by the number of Dl target genes that were monitored and by potential alterations in the timing of DV signaling events. Nonetheless, it provides substantial evidence that diffusion in the plasma membrane or cytoplasm could not be the sole basis for the establishment of the Dl gradient. A prudent interpretation of the current study is that limited diffusion in these cellular compartments might contribute to the overall slope of the gradient, particularly in the presumptive neurogenic ectoderm where only a small fraction of the Dl protein is liberated from the cytoplasm.

Cell fate is dictated by the number of fully activated receptors

The full range of DV patterning thresholds was obtained with a single, constitutively activated form of the Toll receptor. Low levels of Tolll result in the activation of type III, IV, and V target genes and the specification of neuroectoderm. In contrast, high levels of the receptor lead to the activation of type I and II target genes and the initiation of mesoderm differentiation. A general implication of these studies is that Spz and other putative long-range signaling molecules specify multiple cell types through the stochastic, all-or-none activation of their receptors.

Recent studies suggest that members of the transforming growth factor β (TGF-β) superfamily, such as Dpp and activin, can function as long-range morphogen gradients to specify multiple cell types in the Drosophila wing imaginal disk (Lecuit et al. 1996; Nellen et al. 1996; Singer et al. 1997) and Xenopus mesoderm (Gurdon et al. 1994; Jones et al. 1996). High concentrations of Dpp activate the expression of spalt, whereas low levels trigger the expression of optomotor-blind (omb) in the wing disk. Similarly, high concentrations of activin induce the expression of goosecoid and low levels activate X-Bra in Xenopus animal caps (Gurdon et al. 1994; Jones et al. 1996). These differential responses might solely depend on the number of fully activated activin receptors (thick veins, saxophone, and punt in Drosophila). Cells located near the source of secreted Dpp at the AP compartment boundary of the wing disk are exposed to high concentrations of ligand and contain a sufficient number of fully activated receptors to induce spalt expression. In contrast, cells located farther from the source might contain just a few fully activated receptors, and therefore express omb (Nellen et al. 1996).

The findings presented in this study suggest that a fully activated Toll receptor can specify multiple cell fates. However, we cannot exclude other models for the activation of Toll or other receptors in response to ligand gradients in the context of normal development.

Neurogenic repressors

The borders of the snail expression pattern are quite sharp (e.g., Fig. 4A) and help define the boundary between the presumptive mesoderm and neuroectoderm (Alberga et al. 1991; Leptin 1991; Kosman et al. 1991). It has been proposed that this sharp, on/off expression pattern is established through the “multiplication” of the Dl and Twist gradients (Ip et al. 1992a). The crude Dl gradient directs the expression of a steeper Twist pattern (Jiang et al. 1991; Pan et al. 1991; Thissé et al. 1991) and then the two transcriptional activators function synergistically to trigger a sharp on/off snail pattern. Previous studies have failed to identify a role for putative repressors in this process. However, sharp stripes of segmentation gene expression depend on both activator synergy and spatially localized repressors (e.g., Arnosti et al. 1996). In the case of eve, the Bcd gradient activates hunchback, and the two proteins work synergistically to activate stripe 2 in the anterior half of the embryo. Bcd also coordinates the expression of the giant and Krüppel repressors, which define the anterior and posterior borders of the stripe, respectively.

The present study provides the first evidence that one or more repressors might be required for the establishment of the snail border (see Fig. 5D), although the identities of these repressors are uncertain. It is conceivable that members of the E(spl) complex encode putative snail repressors because previous studies have shown that the m7 and m8 genes are expressed in the lateral neuroectoderm of early embryos (Martin-Bermudo et al. 1995; data not shown). E(spl) proteins are related to Hairy and have been shown to function as repressors in lateral inhibition and neurogenesis (Paroush et al. 1994; Dawson et al. 1995; Fisher et al. 1996).

Gradients and thresholds

The slope of the ectopic AP Dl gradient appears to be distinct from the endogenous DV Dl gradient. For example, the ectopic snail expression pattern, a measure of high levels of Dl, can encompass more than twice the number of cells as the endogenous pattern (e.g., Fig. 4D). Nonetheless, all five DV patterning thresholds are obtained with the ectopic AP Dl gradient. Therefore, each cell in the embryo autonomously interprets the intranuclear concentration of the Dl protein. Neighboring cells may not be specified by interpreting relative changes in the concentrations of Dl protein.

Despite pronounced changes in the slope of the ectopic AP Dl gradient, the ratio of presumptive mesoderm (snail expression) and neurogenic ectoderm (sog expression) remains relatively constant (Fig. 6). Previous embryo injection assays suggest that there are no long-range, nonautonomous DV patterning responses directed by the Dl gradient (Roth 1993). For example, a localized source of the Dl gradient does not appear to inhibit a second nearby source of Dl from specifying mesoderm. However, we have shown that the ectopic AP Dl gradient can alter the endogenous pattern (e.g., Fig. 5D). Perhaps transcriptional repressors encoded by different DI target genes ensure a relatively constant ratio of presumptive mesoderm and neurogenic ectoderm. As dis-
cussed earlier, neurogenic repressors might help specify the mesoderm/neuroectoderm boundary. We suggest that one or more type V target genes, which are repressed by the DI gradient and exhibit a zen-like expression pattern, help establish the boundary between neurogenic ectoderm and dorsal ectoderm.

Materials and methods

Plasmid constructions

The Toll10b-coding sequence was inserted into two different expression vectors, one containing the Hsp83 promoter region (Rusch and Levine 1997), and the other containing the bcd promoter (Sauer et al. 1996). A 3.5-kb NsiI-XbaI Toll10b cDNA from plasmid pGEM2-Toll10b (Norris and Manely 1992) was inserted into each of these expression vectors. In addition, a 900-bp SacI-XbaI fragment containing the bcd 3' UTR was also inserted into these vectors, to localize Toll10b RNAs to the anterior pole of transgenic embryos (Macdonald and Struhl 1988). The Hsp83 promoter directs strong maternal expression during oogenesis (Xiao and Lis 1989), whereas the bcd promoter mediates weaker expression.

The Toll10b expression plasmids were inserted into a derivative of the pCaSpeR P-element transformation vector, and transgenic ectoderm and dorsal ectoderm.

Antibody stainings

The ectopic AP DI nuclear gradient (Fig. 2C) was visualized through immunofluorescence. Embryos were collected from transgenic females, and incubated with a 1:2000 dilution of a rat serum obtained after immunization with a full-length bacterial DI protein (see Rushlow et al. 1989). The embryos were subsequently incubated with a 1:200 dilution of a goat anti-rat IgG solution purchased from Jackson laboratories. Incubations and washes were done exactly as described previously (Rusch and Levine 1997).

Toll proteins were detected with a rabbit anti-Toll antibody that was kindly provided by Dr. Steve Wasserman (University of Texas, Southwestern, Dallas). The antiserum was prepared after immunization with a Toll–GST fusion protein that includes amino acid residues 1539–2953 of Toll. The protein was visualized by staining transgenic embryos with biotin-conjugated anti-rabbit antibodies and horseradish peroxidase, exactly as described in the Vectastain directions (Vector Labs).

In situ hybridizations were done with digoxigenin-labeled antisense RNA probes and histochemical staining using alkaline phosphatase (Tautz and Pfeifle 1989; Jiang et al. 1991). The Zen, Rho, and Snail hybridization probes have been described previously (Kosman et al. 1991; Rusch and Levine 1994). Synthetic twist–IacZ fusion genes (Fig. 5A–C) were visualized using a digoxigenin-labeled IacZ antisense RNA probe (Jiang et al. 1991). The tin and sog probes have been described by Azpiazu and Frasch (1993) and Francois et al. (1994), respectively.

Genetic crosses

The ectopic AP DI gradient was examined in the absence of the endogenous DV gradient by misexpressing the Toll10b transgene in embryos homozygous for a null mutation in gastrulation defective (Konrad et al. 1988). Male flies carrying the Toll10b P-element transposon [P[Toll10b]] were crossed to gl7/FM3 females and embryos from gl7/gld7 [P[Toll10b]] females were collected for analysis by in situ hybridization.

Acknowledgments

We thank Gerry Rubin, Steve Wasserman, and Lily Mirzis for critically reading the manuscript. We also thank Jim Manley for the Toll10b cDNA. This work was funded by a grant from the National Institutes of Heath (GM46638).

The publication costs of this article were defrayed in part by page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

References

Alberga, A., J.L. Boulay, E. Kempe, C. Dennenfield, and M. Haenlin. 1991. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Development 111: 983–992.

Anderson, K.V., L. Bokla, and C. Nüsslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: The induction of polarity by the Toll gene product. Cell 42: 791–798.

Arnott, D. N., S. Barolo, M. Levine, and S. Small. 1996. The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development 122: 205–214.

Azpiazu, N. and M. Frasch. 1993. tinman and bagpipe: Two homeobox genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes & Dev. 7: 1325–1340.

Belvin, M.P. and K.V. Anderson. 1996. A conserved signaling pathway: The Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12: 393–416.

Bergmann, A., D. Stein, R. Geisler, H. Hagenmaier, D. Schmid, N. Fernandez, B. Schnell, and C. Nüsslein-Volhard. 1996. A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech. Dev. 60: 109–123.

Bier, E., L.Y. Jan, and Y.N. Jan. 1990. Rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes & Dev. 4: 190–203.

Bodmer, R. 1994. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729.

Cai, H.N., D.N. Arnott, and M. Levine. 1996. Long-range repression in the Drosophila embryo. Proc. Natl. Acad. Sci. 93: 9309–9314.

Costa, M., E.T. Wilson, and E. Wieschaus. 1994. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76: 1075–1089.

Crews, S., R. Franks, S. Hu, B. Matthews, and J. Nambu. 1992. Drosophila single-minded gene and the molecular genetics of CNS midline. J. Exp. Zool. 261: 234–244.

Davis, I. and D. Ish-Horowicz. 1991. Apical localization of pair-rule transcripts requires 3' sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell 67: 927–940.

Dawson, S.R., D.L. Turner, H. Weintraub, and S.M. Parkhurst. 1995. Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repres-
Huang, J.D., D.H. Schwyter, J.M. Shirokawa, and A.J. Courey. 1992. Induction of germ cell formation by oskar. Nature 358:387–392.

Erdelyi, M. and J. Szabadi. 1989. Isolation and characterization of dominant female sterile mutations of Drosophila melanogaster. I. Mutations on the third chromosome. Genetics 122:111–127.

Fisher, A.L., S. Ohsako, and M. Caudy. 1996. The WRPR motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein–protein interaction domain. Mol. Cell. Biol. 16:2670–2677.

Francois, V., M. Solloway, J.W. O’Neill, J. Emery, and E. Bier. 1994. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes & Dev. 8:2602–2616.

Frasch, M. T. Hoye, C. Rushlow, H. Doyle, and M. Levine. 1987. Characterization and localization of the even-skipped protein of Drosophila. EMBO J. 6:749–759.

Gerttula, S., Y. Jin, and K.V. Anderson. 1988. Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal-ventral pattern formation. Genetics 119:123–133.

Gonzalez-Crespo, S. and M. Levine. 1993. Interactions between dorsal and helix-loop-helix proteins initiate the differentiation of the embryonic mesoderm and neuroectoderm in Drosophila. Genes & Dev. 7:1707–1713.

Gray, S., P. Szymanski, and M. Levine. 1994. Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes & Dev. 8:1829–1838.

Gray, S. and M. Levine. 1996a. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes & Dev. 10:700–710.

———. 1996b. Transcriptional repression in development. Curr. Opin. Cell Biol. 8:359–364.

Gurdon, J.B., P. Harger, A. Mitchel, and P. Lemaire. 1994. Activin signalling and response to a morphogen gradient. Nature 371:487–492.

Hashimoto, C., S. Gerttula, and K.V. Anderson. 1991. Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: Importance of transmembrane signaling for dorsal-ventral pattern formation. Development 111:1021–1028.

Holley, S.A., P.D. Jackson, Y. Sasai, E.M. De Robertis, F.M. Hoffman, and E.L. Ferguson. 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature 376:249–253.

Huang, J.D., D.H. Schwytzer, J.M. Shirokawa, and A.J. Courey. 1993. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes & Dev. 7:694–704.

Ip, Y.T., R.E. Park, D. Kosman, K. Yazdanbakhsh, and M. Levine. 1992a. Dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes & Dev. 6:1518–1530.

Ip, Y.T., R.E. Park, D. Kosman, E. Bier, and M. Levine. 1992b. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes & Dev. 6:1728–1739.

Jiang, J. and M. Levine. 1993. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72:741–752.

Jiang, J., D. Kosman, Y.T. Ip, and M. Levine. 1991. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes & Dev. 5:1881–1891.

Jiang, J., H. Cai, Q. Zhou, and M. Levine. 1993. Conversion of a dorsal-dependent silencer into an enhancer: Evidence for dorsal corepressors. EMBO J. 12:3201–3209.

Jones, C.M., N. Armes, and J.C. Smith. 1996. Signalling by TGF-beta family members: Short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol. 6:1468–1475.

Kasai, Y., J.R. Nambu, P.M. Lieberman, and S.T. Crews. 1992. Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. Proc. Natl. Acad. Sci. 89:3414–3418.

Konrad, K.D., T.J. Goralski, and A.P. Mahowald. 1988. Developmental genetics of the gastrulation defective locus in Drosophila melanogaster. Dev. Biol. 127:133–142.

Kosman, D., Y.T. Ip, M. Levine, and K. Arora. 1991. Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science 254:118–122.

Lecuit, T., W.J. Brook, M. Ng, M. Calleja, H. Sun, and S.M. Cohen. 1996. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381:387–393.

Lehming, N., D. Thanos, J.M. Brickman, J. Ma, T. Maniatis, and S.M. Konrad. 1988. Developmental control of the even-skipped gene. EMBO J. 7:1829–1838.

Martin-Bermudo, M.D., A. Carmena, and F. Jimenez. 1995. Neurogenic genes control gene expression at the transcriptional level in early neurogenesis and in mesectoderm specification. Development 122:219–224.

Morisato, D. and K.V. Anderson. 1994. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76:677–688.

Nellen, D., R. Burke, G. Struhl, and K. Basler. 1996. Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368.

Neumann, C.J. and S.M. Cohen. 1997. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124:871–880.

Norriss, J.L. and J.L. Manley. 1992. Selective nuclear transport of the Drosophila morphogen dorsal can be established by a signaling pathway involving the transmembrane protein Toll and protein kinase A. Genes & Dev. 6:1654–1667.

Pan, D.J., J.D. Huang, and A.J. Courey. 1991. Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes & Dev. 5:1892–1901.

Parosh, Z., R.L. Finley, T. Kidd, S.M. Wainwright, P.W. Ingram, R. Brent, and D. Ish-Horowicz. 1994. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79:805–815.

Pignoni, F., R.M. Baldarelli, E. Steingrimsson, R.J. Diaz, A. Papatian, J.R. Merriam, and J.A. Lengyel. 1990. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62:151–163.

Reach, M., R.L. Galindo, P. Towb, J.L. Allen, M. Karin, and S.A. Wasserman. 1996. A gradient of cactus protein degradation establishes dorsal-ventral polarity in the Drosophila embryo. Dev. Biol. 180:353–364.
Roth, S. 1993. Mechanisms of dorsal-ventral axis determination in Drosophila embryos revealed by cytoplasmic transplantsations. Development 117: 1385–1396.

Roth, S., D. Stein, and C. Nüsslein-Volhard. 1989. A gradient of nuclear localization of the dorsal protein determines dorsal-ventral pattern in the Drosophila embryo. Cell 59: 1189–1202.

Rusch, J. and M. Levine. 1994. Regulation of the dorsal morphogen by the Toll and torso signaling pathways: A receptor tyrosine kinase selectively masks transcriptional repression. Genes & Dev. 8: 1247–1257.

———. 1996. Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr. Opin. Genet. Dev. 6: 416–423.

———. 1997. Regulation of a dpp target gene in the Drosophila embryo. Development 124: 303–311.

Rushlow, C.A., K. Han, J.L. Manley, and M. Levine. 1989. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59: 1165–1177.

Sauer, F., D.A. Wasserman, G.M. Rubin, and R. Tjian. 1996. TAF(II)s mediate activation of transcription in the Drosophila embryo. Cell 87: 1271–1284.

Schneider, D.S., K.L. Hudson, T.-Y. Lin, and K.V. Anderson. 1991. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes & Dev. 5: 797–807.

Schneider, D.S., Y. Jin, D. Morisato, and K.V. Anderson. 1994. A processed form of spatzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development 120: 1243–1250.

Shelton, C.A. and S.A. Wasserman. 1993. pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72: 515–525.

Singer, M.A., A. Penton, V. Twombly, F.M. Hoffman, and W.M. Gelbart. 1997. Signaling through both type I DPP receptors is required for anterior-posterior patterning of the entire Drosophila wing. Development 124: 79–89.

Stein, D. and C. Nüsslein-Volhard. 1992. Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68: 429–440.

Steward, R. 1989. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59: 1179–1188.

Steward, R. and S. Govind. 1993. Dorsal-ventral polarity in the Drosophila embryo. Curr. Opin. Gen. Dev. 3: 556–561.

Szymanski, P. and M. Levine. 1995. Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J. 14: 2229–2238.

Tautz, D. and C. Pfaffe. 1989. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85.

Thissle, C., F. Perrin-Schmitt, C. Stoetzel, and B. Thissle. 1991. Sequence-specific transactivation of the Drosophil a twist gene by the dorsal gene product. Cell 65: 1191–1201.

Wasserman, S.A. 1993. A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NF-kappa B. Mol. Biol. Cell 4: 767–771.

Wolpert, L. 1996. One hundred years of positional information. Trends Genet. 12: 359–364.

Xiao, H. and J.T. Lis. 1989. Heat shock and developmental regulation of the Drosophila melanogaster hsp83 gene. Mol. Cell. Biol. 9: 1746–1753.

Zecca, M., K. Basier, and G. Struhl. 1996. Direct and long-range action of a wingless morphogen gradient. Cell 87: 833–844.
An anteroposterior Dorsal gradient in the *Drosophila* embryo

Audrey M. Huang, Jannette Rusch and Michael Levine

Genes Dev. 1997, 11:
Access the most recent version at doi:10.1101/gad.11.15.1963

References
This article cites 70 articles, 33 of which can be accessed free at:
http://genesdev.cshlp.org/content/11/15/1963.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.