Disclosures. Shruti K. Gohil, MD, MPH, Medline (Other Financial or Material Support, Co-Investigator in studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Molnlycke (Other Financial or Material Support, Co-Investigator in studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products); Stryker (Sage) (Other Financial or Material Support, Co-Investigator in studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products).

Edward Septimus, MD, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products); Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products); Kenneth Sands, MD, MPH, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products); Julia Moody, MS, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product); Eunice J. Blanchard, MSN RN, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product).

Methods. Between October-December 2020, we conducted a voluntary, anonymous, IRB-approved survey of UNC Medical Center HCP regarding their views on personal protective equipment (PPE) and hospital policies designed to prevent COVID acquisition. We distributed a questionnaire (REDCap) to clinical and non-clinical hospital staff. Of the 694 HCP who responded to the survey, we found HCP were largely (68%) satisfied that the organization was taking all the necessary measures to protect them from COVID-19. A significantly greater proportion (14% more) of HCP (81.7% compared to 67.6%; 95% CI of difference 9.4-18.5%; P < 0.0001) agreed that all PPE was available to them compared to those who were confident that the organization was taking necessary steps for protection, highlighting that safety is more than simply availability of supplies. More than 90% felt that daily screening of patients/visitors and patient/visitor mask requirements were important for protecting them from acquiring COVID in the workplace and that wearing a mask themselves was a key intervention for protecting others. Fewer HCP (72-80%), although still a majority, perceived that eye protection and daily symptom screening for HCP were beneficial. Symptom screening for patients/visitors was perceived by 19% more HCP (90.9% compared to 72.2%; 95% CI of difference 15-23%) to be beneficial than symptom screening of HCP (P < 0.0001).

Conclusion. Although infection prevention strategies were implemented based on evidence and in alignment with CDC recommendations, it is important to acknowledge that the perception and acceptance of these recommendations varied among our HCP. Compliance can only be optimized with key interventions when we seek to understand the perceptions of our staff.

Disclosures. David J. Weber, MD, MPH, PDI (Consultant)

428. Assessing the Confidence, Knowledge and Preferences of Hospital Staff with Regards to Personal Protective Equipment (PPE) Practices During the COVID-19 Pandemic

Rachel Brown, MSHS; Sharon Markman, MHA; Amanda Brown, MS, MLS(ASCP), CIC; Rukhshan Mian, MS; Vineet Arora, MD, MA; Craig Umscheid, MD, MS; UChicago Medicine, Chicago, Illinois

Session: P-19. COVID-19 Infection Prevention

Background. Effective use of personal protective equipment (PPE) by hospital staff is critical to prevent transmission of COVID-19. This study examines hospital staff confidence in and knowledge of effective PPE use, and their preferences for learning about PPE practices.

Methods. Three isolation precautions signs were created for use in the care of those with or under investigation for COVID-19 infection: first, a special respiratory precautions sign designed by infection control; and next, two signs outlining proper donning and doffing practices – one created internally with the support of health literacy, and another developed with a design firm (IDEO) using principles of human-centered design (Figure 1). All signs were used for ≥10 weeks prior to distribution of a questionnaire (REDCap) to clinical and non-clinical hospital staff. Those who had not worked on hospital units during the pandemic (after March 15, 2020) were excluded. The 38-item survey was sent by supervisors over email between July 14-31, 2020, and examined demographics, confidence in and knowledge of PPE best practices, and preferences for each precaution sign with regards to trustworthiness, ease of following, informative content, and clarity of image/layout. Responses were reported using descriptive statistics. A non-parametric test of trends compared staff preferences across signs. Logistic regression examined the association between answering all knowledge-based questions correctly and staff role and confidence in PPE practices (Stata).
Results. Of the 531 respondents, 461 were eligible for inclusion. The majority were female, white, and not high risk for COVID-19 (Table 1). Most were confident about PPE use, correctly answered questions examining knowledge of PPE best practices, and found PPE signage helpful (Table 2). Staff preferred the professionally designed signage for informative content (p<0.01) and clear imagery/layout (p=0.01) (Table 3). Confidence in PPE practices and physician or nurse roles were associated with answering all knowledge-based questions correctly (p<0.001 and p=0.04, respectively).

Table 1. Descriptive Characteristics of Survey Respondents

Variable	Value	N (%)
Role	Trip	180 (34.7)
	Nurse	191 (41.4)
	Other	110 (23.9)
Gender	Female	302 (70.6)
	Male	104 (22.6)
Prefer not to answer		26 (5.6)
Race	White	259 (56.2)
	Asian	44 (9.5)
	Black	41 (9.0)
	More than one race selected	32 (6.9)
	Prefer not to answer	85 (18.4)
Age in years	18-34	156 (34.3)
	35-44	148 (31.5)
	45-65+	143 (31.0)
Provide care to:	COVID-19 cohort unit patients	171 (36.7)
	No COVID-19 or PUI patients	51 (11.1)
	COVID-18 or PUI, but no cohort unit patients	333 (72.2)
Work on following units	Adult medical surgical	215 (49.4)
	Adult intensive care	173 (36.3)
	Adult emergency department	80 (17.4)
	Pediatric medical surgical	63 (14.1)
	Pediatric intensive care	78 (16.9)
	Pediatric emergency department	61 (13.4)
	Family birth center	57 (12.6)
	Operating rooms	56 (12.1)
High risk for COVID-19	No	305 (64.2)
	Yes	127 (27.5)
Prefer not to answer/Blank	29 (6.3)	
Tested positive for COVID-19	No	431 (93.5)
	Yes	8 (1.7)
Prefer not to answer/Other		1 (0.2)

Abbreviations: APP, advanced practice provider; COVID-19, coronavirus disease; PUI, person under investigation.

Table 2. Survey Items Assessing Confidence, Knowledge and Learning

Variable	Value	N (%)
Confident about PPE use	Extremely	100 (23.6)
	Somewhat	206 (47.8)
	Neutral	25 (5.6)
	Not confident	37 (8.5)
	Extremely not confident	7 (1.6)
Proper steps for donning PPE prior to room entry	Correct	395 (77.0)
	Incorrect	81 (17.5)
	Do not know	23 (4.4)
Where to doff when leaving room	Correct	396 (84.4)
	Incorrect	55 (11.9)
	Do not know	25 (5.3)
If remove N95 from over nose and mouth, I can reuse	Correct	365 (75.0)
	Incorrect	84 (16.3)
	Do not know	52 (10.3)
Selecting mask to safely enter room of COVID-19 PUI	Correct	445 (95.5)
undergoing aerosol generating procedure	Incorrect	6 (1.3)
Using signage to facilitate use of PPE	Always	173 (37.5)
	Initially, not currently	96 (21.3)
	Often	96 (21.3)
	Only when COVID-19 precautions present	88 (18.4)
	Only when a COVID-19 cohort unit exists	7 (1.5)
Following is most helpful to understand COVID-19 related PPE practices	Signage	353 (76.6)
	Email	214 (46.4)
	Huddles	130 (28.2)
	Observers	96 (20.8)
	Videos	95 (20.8)
	Town halls	57 (12.4)
	Other	36 (7.8)

Abbreviations: COVID-19, coronavirus disease; PPE, personal protective equipment; PUI, person under investigation.
430. Strategies for Prevention of COVID-19 Transmission in Hospitals

Wooyoung Jang, n/a; Bongyoung Kim, MD, PhD; Eun Suk Kim, MD, PhD; Kyung-Ho Song, MD, PhD; Song Mi Moon, M.D., PhD; Myung Jin Lee, MD, MSc; Ji Young Park, MD, PhD; Ji Yeon Kim, M.D. n/a; Myoung Jin Shin; Kurt Stevenson, MD, MPH; Hong Bin Kim, M.D., PhD; Hanyang University College of Medicine, Seongdong gu, Seoul-tukpyolssi, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Seoul, Seoul-tukpyolssi, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Seoul, Seoul-tukpyolssi, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Inje University Sanggye-Paik Hospital, Seoul, Korea, Seoul, Seoul-tukpyolssi, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, Kyonggi-do, Republic of Korea; Seongnam Citizens Medical Center, Seongnam-si, Kyonggi-do, Republic of Korea; 7. Seoul National University Bundang Hospital; Sungnam, Kyonggi-do, Republic of Korea; 8. The Ohio State University College of Medicine and College of Public Health, Columbus, Ohio

Session: P-19. COVID-19 Infection Prevention

Background. The COVID-19 pandemic required hospitals to care for influxes of patients in cohort locations during critical shortages of personal protective equipment (PPE). Safety zones can be used to protect healthcare workers caring for patients with infectious pathogens. During the COVID-19 pandemic, our hospital developed a Warm Zone model (WZM) to streamline the care of patients with COVID. We established specific areas in our COVID cohort units where staff were permitted to bridge between rooms without donning gowns, but still donning gloves and performing hand hygiene between patients. We recognized that a WZM could inadvertently increase risk of nosocomial transmission of pathogens if gowns acted as fomites. For this reason, patients with COVID were cohorted were included in surveillance. The timeframe for this analysis was July 1, 2020 - September 30, 2021.

Methods. Two intensive care units and 3 wards where COVID positive patients were cohorted were included in surveillance. The timeframe for this analysis was July 1, 2020 - September 30, 2021.

Results. During the study period, there were no COVID-19 infections in hospitals that were cohorted. The HO CDI and MRSA bloodstream infections were not increased in cohort units. There was no evidence to suggest that the HO CDI and MRSA bloodstream infections were associated with COVID-19 patients. The HO CDI and MRSA bloodstream infections were not increased in cohort units. There was no evidence to suggest that the HO CDI and MRSA bloodstream infections were associated with COVID-19 patients.

Conclusion. In conclusion, our study suggests that the use of a WZM to streamline patient care in COVID cohort areas without evidence of causing nosocomial infections via patient-to-patient transmission.