Serum zinc level: a prognostic marker for severe pneumonia in children

I. Abhiram, Suresh Panchanathan*, Rajaguru Ganesan, Antony Jenifer

ABSTRACT

Background: Pneumonia is one of the leading causes of under 5 mortality among children in developing countries. Zinc deficiency is postulated as cause of severe pneumonia, but evidences shows conflicting results on whether serum zinc levels predicts the severity of pneumonia. So prospective study was undertaken to study the relationship between serum zinc levels and severity of pneumonia in children with community acquired pneumonia.

Methods: Fifty cases of pneumonia (group 1) and 50 cases of severe pneumonia (group 2) according to WHO classification were enrolled into the study. Demography, anthropometry and immunization status were recorded. A single zinc measurement was performed for all the patients within 24 hours of admission. The severity, clinical course including recovery to discharge was compared between two groups with respect to their serum zinc levels.

Results: Mean (±SD) age group of the study population was 22 months±16.05 and 21.88 months±15.97 months in boys and girls respectively. Pneumonia was high in girls (59%) and children between 2 to <12 months had higher (36%) infection rate. Mean zinc level in pneumonia and severe pneumonia group were 68.69µg/dl±28.77 and 68.08µg/dl±27.55 respectively. There was no difference in the nutritional status (weight for height and height for age) of the study group. Serum Zn level was low in 56 % and 52% of pneumonia and severe pneumonia group respectively. Comparison of serum zinc levels between the ARTI groups did not achieve statistical significance (p=0.430). However, the duration of recovery is earlier than 1 week in pneumonia cases when compared to severe pneumonia patients (p<0.001, OR 1.375).

Conclusions: Normal zinc levels was associated with early recovery in simple pneumonia patient, so study of serum zinc levels in severe pneumonia patients has prognostic value.

Keywords: Children, Pneumonia, Zinc

INTRODUCTION

Acute respiratory tract infection (ARTI) is the leading cause of under-five mortality in children. Zinc affects multiple aspects of the immune system, from the barrier of the skin to gene regulation within lymphocytes. Macrophage function is adversely affected by zinc deficiency. Zinc plays an important role in development of acquired immunity, production of immunoglobulin G, intracellular killing, cytokine production and phagocytosis, thereby regulating defense mechanism in children with acute infection. Role of zinc in diarrhea and pneumonia are well documented by studies. Prophylactic zinc therapy reduces the infection rate in children with pneumonia. Studies show that zinc supplementation reduces the incidence of acute lower respiratory tract infection by 45%. Prevalence of zinc therapy is high in developing countries and in India ranges from 44% to 72%. Since regular supplementation and fortification of foods with zinc is not practiced in
developing countries, placing our children at risk of infection with pneumonia.

Still there is an existing debate and lack of data regarding effect of low zinc levels in pneumonia, so this study was undertaken to find association between zinc level and severity of pneumonia in children.

METHODS

The study was conducted in a tertiary care hospital from October 2016 to December 2017 after approval from the institute ethics committee.

Inclusion criteria

• After obtaining parental consent, children of age >2 months to 59 months clinically diagnosed as pneumonia according to WHO revised guidelines were included in the study.

Exclusion criteria

• Children with acute diarrhoea, chronic medication, severe acute malnutrition, on zinc supplementation were excluded from the study.
• Severe pneumonia children requiring invasive ventilation were excluded from the study so as to remove the confounding factor affecting the time to discharge.

They were divided into two groups namely pneumonia (50 cases) and severe pneumonia (50 cases). Data regarding age, sex, anthropometry (height, weight, weight for age, height for age, and weight for height) and immunization status was recorded. All children were clinically examined by the treating physician and treatment ordered by them was abstracted. These children were confirmed radiologically with chest radiograph, the gold standard test for diagnosis of pneumonia. Complete diagnostic work up such as complete blood count, C-reactive protein, renal function test and blood culture was done. Other investigations were performed on individualized case basis. Severe pneumonia cases with respiratory insufficiency were admitted to PICU. In all cases record of the treatment given and outcome of the disease was also maintained.

Statistical analysis

Data were analysed using SPSS Version 21 (IBM Corp). Descriptive data were presented using Percentages or by using mean and standard deviation as the case may be. Chi square test was used to test the association of severity of pneumonia with factors like zinc level, anthropometric indicators, etc. Binary logistic regression was used to calculate the causal association (Odds ratio) of various factors with severity of pneumonia. P value of <0.05 was considered as significant association.

RESULTS

Mean (±SD) age group of the study population was 22 months±16.05 and 21.88 months±15.97 months in boys and girls respectively (Table 1).

Table 1: Mean distribution of age group (in months) according to gender.

Gender	Age group	Mean	SD
Boys	22	16.05	
Girls	21.88	15.97	

Mean zinc level in pneumonia and severe pneumonia group were 68.69µg/dl±28.77 and 68.08µg/dl±27.55 respectively (Table 2).

Table 2: Gender and severity of pneumonia wise distribution of mean serum zinc levels.

Category	Serum zinc level	Mean	SD
Gender			
Boys		67.77	27.51
Girls		68.69	28.77
Severity of pneumonia			
Pneumonia		68.69	28.77
Severe pneumonia		68.08	27.55

A total of 100 cases (50 cases of pneumonia and 50 cases of severe pneumonia) were taken into study, among them 41 male and 59 female children had acute respiratory tract infection. Children between ages 2 months to <12 months had higher percentage (36%) of infection as shown in Table 3.

Table 3: Age and sex wise distribution of children with pneumonia.

Age group	Male n (%)	Female n (%)	Total
2 months to <12 months	16 (44.4)	20 (55.6)	36
12 months to <24 months	8 (33.3)	16 (66.7)	24
24 months to <36 months	5 (27.7)	13 (72.3)	18
36 months to <48 months	5 (55.5)	4 (44.5)	9
48 months to <60 months	7 (53.8)	6 (46.2)	13
Total n (%)			100
Moderate acute malnutrition (weight for height between <2SD to >3SD) was seen in 44% of pneumonia and 40% of severe pneumonia group respectively. Moderate stunting was seen in 6% and 28% of pneumonia and severe pneumonia group respectively. Stunting (P=0.965) and wasting (P=0.064) was not statistically significant between the 2 groups as shown in Table 4.

Children with <3SD are not taken into study in view of severe acute malnutrition/severe stunting.

Table 4: Nutritional status of pneumonia cases.

Nutritional status	Pneumonia severity	p value	
	Pneumonia n (%)	Severe pneumonia n (%)	
Weight for height			
Normal	28 (56)	30 (60)	0.064
<2SD to >3SD	22 (44)	20 (40)	
Height for age			
Normal	47 (94)	36 (72)	0.965
<2SD to >3SD	3 (6)	14 (28)	

Table 5: Comparison of serum zinc levels in children with pneumonia vs severe pneumonia.

Zinc level	Pneumonia severity	Severe pneumonia	p value
	Low n (%)	High n (%)	
Low	26 (52)	28 (56)	0.430
Normal	24 (48)	22 (44)	

Nearly majority (96%) pneumonia group recovered within 1 week and recovery was prolonged >1 week in 60% of severe pneumonia group. Comparison of zinc levels with recovery/ discharge showed that severe pneumonia group had prolonged stay (>1 week) in hospital and it was statistically significant (p<0.001, OR 1.375).

Table 6: Comparison of zinc level vs recovery in children with pneumonia severity.

Pneumonia severity	Zinc level	Recovery	OR	p value		
	Normal n (%)	Low n (%)	<1-week n (%)	>1-week n (%)		
Pneumonia	24 (48)	26 (52)	48 (96)	2 (4)	0.090	0.410
Severe pneumonia	22 (44)	28 (56)	20 (40)	30 (60)	1.375	<0.001

However, serum zinc levels did not affect the recovery or time to discharge in pneumonia group as shown Table 6.

DISCUSSION

Zinc is an important trace element necessary for growth, wound healing, oxidative stress response and immunological function. Zinc deficiency results in altered cytokine secretions due to loss of T and B cell maturation. Present study was conducted to find the correlation between severity of pneumonia and zinc levels. At baseline serum Zn levels were low in 56% of the ARTI cases which shows declining trend in the prevalence of deficiency as compared to study done by Dhingra et al in preschool children where zinc deficiency was high as 73.3%.10

Majority of the ARTI cases (36%) were less than 12 months of age which is similar to study by kumar et al.11 However pneumonia was high (59%) in girls in present study in contrast to finding recorded by other studies.12-14 Difference in the serum zinc levels was not statistically significant in both pneumonia and severe pneumonia group in present study because of the relatively well nourished children were taken into study, which is similar to study done by Pedraza et al found no significant association between zinc deficiency and anthropometric indices.15

In present study there is no substantial association between gender, anthropometry, and severity of pneumonia with regards to low zinc levels. A cross sectional study done by Arica et al showed children between age group 0-24 months were susceptible to pneumonia when serum zinc level was low, which is contrast to present study where both groups zinc deficiency was equally distributed, and they were not significant statistically between the groups.16 This shows nutritional status was relatively well between both the groups in present study.

Although in developing countries there will be substantial prevalence of zinc deficiency, present study children were not preselected on the basis of nutrition status. Recovery rate was prolonged in severe pneumonia cases for >1 week, this could be due to reduction in pre-B and pre-T cells leading to reduced lymphocytes due to zinc deficiency and also due to critically ill nature of disease which could have resulted in prolonged ventilation,
oxygen requirement and time taken to recover from inflammatory cascade.

There was no positive co-relation between low zinc levels and recovery/discharge rate in pneumonia group which is similar to study done by Shakur et al showed negative correlation between severity of pneumonia and low zinc levels.17

Study done by Mahanlabis et al showed that recovery rates from very ill status and from fever in zinc-treated boys were 2.6 times (P=0.004) and 3 times (P=0.003) than those in non-zinc-treated children with pneumonia.18 Zinc supplementation resulted in a lower incidence of pneumonia than placebo (absolute risk reduction 2.5%, 95% confidence interval 0.4% to 4.6%) in a study done by Bhandari et al.19

Small sample size, clinical improvement before and after zinc supplement during acute phase, exclusion of severe pneumonia cases in ventilators are the limitations of present study.

CONCLUSION

Mean duration of hospital stay was prolonged in severe pneumonia cases with low zinc levels, thus serum low zinc levels prolong recovery rate which can be used as a prognostic marker in children with pneumonia.

ACKNOWLEDGEMENTS

Authors duly acknowledge Dr. Ambujavalli for his support and encouragement to conduct this study. Authors are thankful to Dr. Vijay Pandian for reviewing this article.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Saleh NY, Fotoh WMMAE. Low serum zinc level: The relationship with severe pneumonia and survival in critically ill children. Int J Clin Pract. 2018;72:13211.
2. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68:447-63.
3. Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016 04;12:CD005978.
4. Sazawal S, Black RE, Julla S, Mazumdar S, Sinha A, Bhan MK. Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind, controlled trial. Pediatr. 1998;102:1-5.
5. Fataki MR, Kisenge RR, Sudfeld CR, Aboud S, Okuma J, Mehta S, et al. Effect of zinc supplementation on duration of hospitalization in Tanzanian children presenting with acute pneumonia. J Trop Pediatr. 2014;60:104-11.
6. Bhutta ZA, Black RE, Brown KH, Gardner JM, Gore S, Hidayat A, et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J Pediatr. 1999;135:689-97.
7. Kawade R. Zinc status and its association with the health of adolescents: a review of studies in India. Glob Health Action. 2012;5:7353.
8. Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. Executive Summary [Internet]. World Health Organization; 2014 Available from: https://www.ncbi.nlm.nih.gov/books/NBK264164/.
9. Heidemann SM, Holubkov R, Meert KL, Dean JM, Berger J, Bell M, et al. Baseline serum concentrations of zinc, selenium, and prolactin in critically ill children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2013;14:202-6.
10. Dhingra U, Hiremath G, Menon VP, Dhingra P, Sarkar A, Sazawal S. Zinc deficiency: descriptive epidemiology and morbidity among preschool children in peri-urban population in Delhi, India. J Health Popul Nutr. 2009;27:632-9.
11. Kumar S, Awasthi S, Jain A, Srivastava RC. Blood zinc levels in children hospitalized with severe pneumonia: a case control study. Indian Pediatr. 2004;41:486-91.
12. Basnet S, Shrestha PS, Sharma A, Mathisen M, Prasai R, Bhandari N, et al. A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young children. Pediatr. 2012;129:701-8.
13. Srinivasan MG, Ndeez G, Mboijana CK, Kiguli S, Bimenya GS, Nankabirwa V, et al. Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: a randomized double blind placebo-controlled trial. BMC Med. 2012;8:10-4.
14. Jagnoor J, Suraweera W, Keay L, Ivers RQ, Thakur J, Jha P, et al. Unintentional injury mortality in India, 2005: nationally representative mortality survey of 1.1 million homes. BMC Public Health. 2012;12:487.
15. Pedraza DF, Rocha ACD, Sousa CP da C. Growth and micronutrient deficiencies: profile of children attended at the day care center for the government of Paraiba, Brazil. Cienc Saude Coletiva. 2013;18:3379-90.
16. Arca S, Arca V, Dag H, Kaya A, Hatipoglu S, Fenercioglu A, et al. Serum zinc levels in children of 0-24 months diagnosed with pneumonia admitted to our clinic. Int J Clin Exp Med. 2011;4:227-33.
17. Shakur MS, Malek MA, Bano N, Islam K. Zinc status in well nourished Bangladeshi children
suffering from acute lower respiratory infection. Indian Pediatr. 2004;41:478-81.

18. Mahalanabis D, Lahiri M, Paul D, Gupta S, Gupta A, Wahed MA, et al. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am J Clin Nutr. 2004;79:430-6.

19. Bhandari N, Bahl R, Taneja S, Strand T, Mølbak K, Ulvik RJ, et al. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum. BMJ. 2002;324:1358.

Cite this article as: Abhiram I, Panchanathan S, Ganesan R, Jenifer A. Serum zinc level: a prognostic marker for severe pneumonia in children. Int J Contemp Pediatr 2019;6:406-10.