ABSTRACT

BACKGROUND Previous research identifies three to six smoking classes over the life course. This study expands on earlier work about the impact of getting arrested in early adulthood on individuals’ smoking classes, by including additional, more serious measures of justice system involvement (JSI), specifically criminal conviction and incarceration. Family processes were examined as secondary outcomes.

METHOD Data from seventeen waves (1997-2015) of the National Longitudinal Survey of Youth were analyzed via group-based trajectory modeling (GBTM), multinomial logistic regression, and latent transition analyses (LTA). Smoking behavior through age 36 is examined. Marital status, parenthood, juvenile smoking, juvenile arrest, and prior crime victimization experiences were also included in the models.

RESULTS Seven smoking classes were revealed: two low- or non-smoking classes; two decreasing classes; and three “problem” smoking (e.g., increasing, or chronic) classes. All JSI types increased the likelihood of being in a smoking class rather than a non-smoking class. Arrest and conviction had larger odds ratios than the most severe form of JSI—incarceration—with respect to respondents’ likelihood of being in an increasing or chronic smoking class. Juvenile smoking was the most robust predictor of smoking in adulthood.

CONCLUSION Involvement with the justice system in all forms remains a negative health factor that increases smoking. While not typically a goal of criminal justice officials, attention should be paid to this unintended consequence of involvement with the justice system—increased smoking—given smoking’s connection to serious illnesses such as cancer. As juvenile smoking is a strong risk factor for adult smoking, smoking prevention and cessation programs should start with youth; and be part of the offerings to individuals ensnared in the justice system at all levels.

KEYWORDS: Smoking classes, arrest, conviction, incarceration, transitions, life course

Introduction

Three to six different smoking classes have been identified through prior developmental and life course research. These classes can broadly be described as never-smokers or non-smokers, chronic or addicted smokers, and individuals who smoked for a period of time before trying to quit their cigarette use, either with or without success. Over the course of their lives, individuals differ in terms of when they start smoking, as well as whether they increase, fluctuate, decrease, or successfully quit cigarette use. Additionally, key events—such as a health scare, a victimization experience, or involvement with the criminal justice system—may cause an individual to transition from one smoking pathway to another.

This article builds on prior work and considers the impact of justice system involvement (JSI) in emerging adulthood, and family processes (marriage, parenthood) on individuals’ smoking classes and transitions. Of particular interest is how JSI impacts change—for better (smoking decreases) or worse (smoking increases)—in individuals’ smoking. Increasing smokers would include individuals that try and fail to quit smoking, as well as individuals whose smoking continues to climb over the years. Decreasing smokers would demonstrate a decline, either gradual or sharp, in their cigarette smoking.

Literature Review

Theoretical Reasons why JSI Could Increase, or Decrease, Individuals’ Smoking

Prior research holds that involvement with the JSI can increase, decrease, or have no effect on substance use including cigarettes. Plausible explanations for why involvement with the justice system—from arrest to criminal conviction, to incarceration—might shift an individual’s smoking patterns, for worse (more smoking) or for better (less smoking), include labeling theory, as well as the notion of the “teachable moment”. First, the criminological labeling theory posits that individuals caught up in the justice system through arrest or more serious levels of JSI incur a label (e.g., “felon” or “criminal”) that will adversely affect them in the future in areas such as the inability to secure gainful employment. Depending on the extent of the involvement with the justice system, an arrested and subsequently convicted individual may find themselves under the supervision of the Department of Corrections (e.g., probation, incarceration in a facility). This would lump them in with other individuals with a similar label, further solidifying the label and associated stigma. The individual may internalize their label and begin to see themselves as a bad or
worthless person. Smoking can be a way to cope with negative emotions stemming (e.g., stress) from such situations. The labeled person may also be exposed to more individuals who smoke (and possibly use other substances), thus reinforcing the behavior. For instance, Lopes, Krohn, Lizotte et al. have examined the consequences of criminal sanctioning in earlier life on later adulthood outcomes, finding that arrest in early life was related to substance use, unemployment, and poverty.

Secondly, an alternative notion is that going through the justice system can provide a “teachable moment”, bringing about positive change for an individual, such as decreasing their smoking levels. Prior research has found support for the impact of surgery, a cancer diagnosis, hospital treatment for illness and HIV treatment as “teachable moments” to reduce individuals’ smoking.

Emerging Adulthood & Smoking

Most individuals start smoking during adolescence. It is plausible that in time, smoking among younger people (e.g., teenagers) may shift with the 2019 passage of the Tobacco 21 law, which raised the minimum age for purchasing tobacco products from 18 to 21 years. Beginning around 18 years of age, emerging adulthood may be a period of increased risk for starting cigarette smoking. At age 18, young people can legally buy cigarettes and may be living on their own, away from parental supervision. Increases and fluctuations in smoking have been recorded during this time. Yet changes in smoking behaviors among emerging and middle-aged adults have been under-examined.

There are also major life transitions occurring in emerging adulthood, such as getting married and/or becoming a parent, during a time when higher order reasoning is still in development. For women, moving out of her parents’ home, marriage and parenthood have been linked to decreased smoking as well as substance use. Prior research has found that marriage improves men’s behavior and life outcomes. To that end, the author expects that individuals who marry and/or have children—important family-related variables—will have a greater probability of shifting to less smoking.

The Present Study

The current paper is a continuation of an earlier study wherein arrest was the only JSI indicator. The present study expands on the earlier work by including additional, more serious measures of JSI, specifically criminal conviction and incarceration. Additionally, the longitudinal period is extended through age 36. Thirty six years of age was chosen because it was the oldest age longitudinally for which data were available, for which the sample size was not too small so as to render the models unstable. The following hypothesis was tested:

H1. Justice system involvement in emerging adulthood will be related to increased smoking during subsequent years.

The size of the transition to a higher smoking class will be greater, the more severe the type of JSI. That is, incarceration will be associated with greater transitions to more smoking than either arrest or conviction. Conviction will be associated with greater transitions to more smoking than arrest. It is also hypothesized that the JSI variables will remain significant even with the inclusion of other predictors (e.g., family process variables) in the models.

Methods

Seventeen waves of data from the National Longitudinal Survey of Youth (NLSY97) were analyzed. The NLSY97 is a nationally representative sample of individuals 12 to 18 years old when they were first interviewed in 1997. By the final survey wave—in which questions about smoking behavior were asked, subjects ranged in age from 30 to 36 years of age. Respondents (n = 8984) have been interviewed annually since 1997, and the retention rate is over 80 percent since the start of the study. Approval from the author’s institutional review board (IRB) was sought prior to conducting any analyses. An exemption was approved since the NLSY97 data are de-identified and publicly available through the Bureau of Labor Statistics website.

Variables

Dependent variable: Smoking class. Respondents were asked in every survey wave, from 1997 through 2011, and then in 2013 and 2015, whether they had smoked since the date of their last interview (DLI). (Note: In 1997, the first year of the survey, they were asked the initial question, “Have you ever smoked a cigarette?” A question about smoking since DLI was not asked in either 2012 or 2014.) As subjects ranged in age from 12 to 18 in 1997 (and had a similar seven-year spread in ages in subsequent survey waves), the variable was recoded to reflect “Any smoking at __ years old”. The dependent variable pertained to the years after emerging adulthood JSI; that is, from 22 years old through 36 years old. Hence, 15 new variables were created, which were subsequently used to create the dependent variable, smoking class. The data were then restructured from wide to long format, and the syntax was run in Stata statistical software to determine the right number of classes. A visual representation of the smoking classes (Figure 1) was created using the code “trajplot” in Stata.

The BIC scores for each possible configuration of smoking classes were recorded and compared in Excel (see Appendix A), for the different possibilities (e.g., 3-group linear, quadratic, cubic; 4-group linear, quadratic, cubic). The 7-group quadratic model, discussed shortly in the results section, was found to have the lowest BIC scores, with all significant parameter estimates.

Main Independent Variables: JSI in Emerging Adulthood

In every survey wave, respondents were asked about whether they had been arrested, convicted, or incarcerated since the date...
of the last interview. Since the time period of interest was emerging adulthood, defined as ages 18 to 21, the three JSI variables from survey waves 1997 to 2006 were recoded to reflect, for example, arrest at 18, arrest at 19, arrest at 20, and arrest at 21. (The same recoding was performed separately for conviction and incarceration.) 1997 through 2006 were the survey waves that contained individuals ages 18, 19, 20, and 21. Ultimately the recoded-by-age JSI variables were additionally recoded into the three dichotomous independent variables: arrested_18to21 (yes/no), convicted_18to21 (yes/no), and incarcerated_18to21 (yes/no).

Key family process variables: Marital status and parenthood. In the raw NLSY97 data, a “collapsed marital status as of survey date” variable is included for 1997 through 2011, and then in 2013 and 2017. The response options are: 0/never married, 1/married, 2/separated, 3/divorced, and 4/widowed. Additionally during the same survey waves, respondents were asked about the number of children they had, both living at home and not living in the respondent’s household. These series of variables were recoded from “by survey year” to “by respondent age”, with age 22 as the “start” age (i.e., the first age after emerging adulthood). Both sets of variables were then recoded into fixed effects variables, to embody “marital status from 22 through 36 years old”; and “number of children from 22 through 36 years of age”.

Juvenile smoking, juvenile arrest. Juvenile smoking was included in the models, as smoking in adolescence has been shown to be related to adult smoking. Any smoking from ages 12 through 17 was created as a dichotomous variable (yes/no), using the same recoding process as described for the dependent variable. That is, responses to the question about any smoking since the date of the last interview, from survey wave 1997 through 2002, were recoded as smoking by age rather than smoking by year. The survey waves of 1997 through 2002 were the years that included respondents whose ages ranged from 12 through 17. Juvenile arrest from ages 12 to 17 was also included, created as a dichotomous variable using the same processes as described for juvenile smoking.

Trauma experience. A question about having been a victim of a crime in the past 5 years (yes/no) was asked in 2002 and again in 2007, as part of the NLSY97 series of health questions. Both variables were included in the models, as they present potential alternative causes of stress or other emotions that could contribute to increases in smoking.

Demographic covariates. Five demographic variables were included in the analyses: gender (male, female); race/ethnicity; poverty ratio in 1997; degree earned by 21 (ranging from none to Bachelor’s degree); and employment status by 21 (employed, not employed, not in labor force, in armed services).

Model Building & Analyses
To determine the effect of JSI and other variables on smoking classes, several analyses were performed. First, to determine the number of smoking classes, group-based trajectory modeling (GBTM) was conducted in Stata version 16. Group-based trajectory modeling has been used by others studying behavior over the life course. As Stata does not have its own trajectory analysis function, the author used open-source code from Dr. Andrew Wheeler’s website to install a plug-in (net
install traj). First, the best-fitting model47 (i.e., most parsimonious) was determined by comparing Bayesian Information Criteria scores across the different combinations of numbers of classes.48 In addition to the BIC scores, the author considered which models did vs did not have significant parameter estimates. (See Appendix A). Ultimately, it was determined that the 7-class quadratic model was the best (i.e., lowest BIC scores and significant parameter estimates).

Once the optimal number of smoking classes was determined, multinomial logistic regression was performed. This is the appropriate modeling for nominal dependent variables resulting from GBTM.48 In performing the GBTM, Stata creates a new variable, traj group, which was used as the smoking class dependent variable in the multinomial logistic regressions. Class 2 (non-smoking) was set as the reference category for the regressions.

To test the hypothesis assertion that more severe forms of JSI would be associated with more smoking, two analytic approaches were used. First, in addition to comparing the odds ratios for the JSI variables (arrest, conviction, incarceration) in the multinomial logistic regressions to their respective baselines (class 2), the odds ratios for the different JSI types were compared to each other by dividing the Exp (B) of the more severe JSI type by the Exp (B) of the less severe JSI type. In other words, the odds ratio for conviction was divided by the odds ratio for arrest; and the odds ratio for incarceration is divided by the odds ratio for conviction, and separately divided by the odds ratio for arrest. This was done for each of the “problem” smoking classes (to be discussed).

Additionally, latent transition analyses49,50 (LTA) were conducted of a dichotomous (yes/no) recoded version of the smoking variable at each age, to assess whether JSI type was related to transitions to a smoking class, in keeping with labeling theory (or conversely, related to a transition to a non-smoking class, in keeping with the notion of JSI serving as a teachable moment). Latent transition analyses is a semi-parametric finite mixture model used with large sample-size longitudinal data; and useful for analyzing changes in multiple categorical variables over time.51 Latent transition analyses can be considered a longitudinal extension of latent class analysis, with a time variable included. The LTA approach has been used in public health research, such as in determining the likelihood of smokers’ transitioning to a different smoking52 or substance use53 status. Individuals are assigned to a latent class (also called state or status) at Time 1 using the latent status membership probabilities at Time 1. An assumption of LTA is that people can change their class membership over time. Thus, the goal of LTA is to assess the probability of an individual transitioning from one state, or class, to another as they move forward in time.

While predictors of latent status membership can be included in LTA,53 incorporating other covariates in the LTA models proved to be unwieldy in terms of interpreting the output. The author thus chose to include additional variables in the models via multinomial logistic regression. As it is not possible to perform LTA in Stata, LTA was performed using the software Latent Gold54,55 version 6.0, available from the company Statistical Innovations4. The NLSY97 data were restructured to long format prior to running all the analyses, and weights for all years, available from the BLS website5, were applied. The author checked for multicollinearity and skew in the variables; neither presented a problem.

Results

The Smoking Classes

In keeping with prior research on smoking pathways over the life course, the GBTM analyses produced 7 classes of smokers (see Figure 1). The 7-group quadratic model had the best fit (i.e., lowest BIC scores as well as significant parameter estimates; see Appendix A for Stata syntax, parameter estimates, comparative BIC scores). The seven classes of smoking can be described as the non-smokers and low/occasional smokers (classes 2 and 7, respectively; the classes in green in Figure 1); the decreasing smokers (class 1/immature later-quit smokers and class 3/gradual decreasing smokers/eventual quitters; the classes in light gray in Figure 1); and the problem smokers, seen in Figure 1 in dark gray. Problem smokers consist of three classes: the increasing smokers (class 5); the chronic smokers (class 6); and the unsuccessfully trying to quit chronic smokers (class 4). Smoking class traj group is a nominal variable, and as such the number assigned to each class does not correspond with any particular order. In the subsequent multinomial logistic regression modeling, class 2/ non-smoking was used as the reference category.

Preliminary Analyses

To facilitate preliminary crosstab (Table 1) and correlation (Table 2) analyses, the smoking class dependent variable was recoded from a nominal to an ordinal variable, with low values indicating less severe smoking and higher values indicating more severe smoking. (Note: The ordinal form of the dependent variable was only used in the crosstab and correlation analyses. The nominal form of the dependent variable was used in the subsequent multinomial logistic regression modeling, as is the convention in this type of longitudinal analyses.) As seen above in Table 1, of the types of JSI, arrest had the highest percentage of respondents indicating “yes”. This makes sense, as some individuals that get arrested may have their charges subsequently dropped, or their case may be diverted out of the justice system (i.e., they are never convicted or incarcerated). Correlation analyses was also performed, again using the ordinal form of the smoking class variable, to gauge the strength of the association between smoking class, JSI, and the other predictors. The results are shown in above in Table 2. All the JSI variables were positively and significantly, if modestly, related to smoking. Marital status and having children were...
both negatively and significantly, but very weakly, related to smoking. Marital status cannot be neatly interpreted due to the nature of it being a fixed effect variable created for the respondents’ multiple ages over the years. One interpretation might be that moving further through the marital status stages (e.g., from non-married to married, to separated, to divorced) is correlated with lower smoking. It is also possible that a related third factor—aging—explains the marital status-smoking relationship, in that as individuals age, they often move through the different stages of life partnership. As individuals age, they also often develop new health problems and concerns, and to that end may have more incentive to try and quit, or reduce, their smoking.

Gender was weakly and negatively related to smoking, suggesting that males may smoke more than females. (For the gender value, males were coded as 1 and females were coded as 2). Education was modestly, negative, and significantly related to smoking, suggesting that earning a higher degree is correlated with lower smoking class membership. The strongest correlation was for juvenile smoking (r = .44), which was positively, significantly and moderately related to increasing smoking levels in adulthood.

Hypothesis Testing: JSI in emerging adulthood will be related to increased smoking during subsequent years; and the more severe the JSI type, the greater the smoking

The table below shows the multinomial logistic regression models for smoking class regressed on the three types of JSI, family process, juvenile behavior, and trauma experience predictors, and the demographic variables. The models were first run just including the JSI and family process variables (not shown in table format); and then run a second time adding in the additional predictors (seen below in Table 3). This two-step process was conducted to see how the odds ratios changed from the reduced model to the full regression models. Because the complete results for all 7 smoking classes, for the three different JSI types, are visually complicated, Table 3 only shows the models for smoking classes 4, 5, and 6—the “problem”
Table 3. Multinomial logistic regression, association between JSI and problem smoking classes.*

SMOKING CLASS	ARRESTED	CONVICTED	INCARCERATED									
	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)			
	STD. ERROR	EXP(B)	LOWER	UPPER	STD. ERROR	EXP(B)	LOWER	UPPER	STD. ERROR	EXP(B)	LOWER	UPPER
Interceptor (4)	0.004	0.004	3.026**	3.255	3.281	0.003	1.914**	1.901	1.927			
Arrested	0.002	2.904**	2.894	2.914	0.002	3.268**	3.255	3.281	0.003	1.914**	1.901	1.927
Marital status	0.001	0.965**	0.964	0.967	0.001	0.951**	0.949	0.953	0.001	0.932**	0.931	0.934
Children	0.001	0.946**	0.945	0.947	0.001	0.947**	0.946	0.948	0.001	0.940**	0.939	0.941
Juvenile arrest	0.002	1.536**	1.531	1.541	0.002	1.525**	1.520	1.530	0.002	1.683**	1.677	1.689
Juvenile smoking	0.002	7.125**	7.102	7.147	0.002	7.376**	7.353	7.400	0.002	7.434**	7.411	7.458
Crime victim, 2002	0.002	1.235**	1.229	1.241	0.002	1.305**	1.299	1.311	0.002	1.360**	1.354	1.367
Crime victim, 2007	0.003	2.455**	2.442	2.469	0.003	2.422**	2.409	2.436	0.003	2.372**	2.359	2.385
Gender	0.002	0.785**	0.782	0.787	0.002	0.746**	0.744	0.748	0.001	0.674**	0.672	0.676
Race/ethnicity	0.001	0.972**	0.971	0.974	0.001	0.964**	0.963	0.965	0.001	0.977**	0.976	0.978
Education	0.001	0.645**	0.644	0.646	0.001	0.629**	0.628	0.630	0.001	0.615**	0.614	0.616
Poverty	0.000	1.000**	1.000	1.000	0.000	1.000**	1.000	1.000	0.000	1.000**	1.000	1.000
Employed	0.001	1.113**	1.111	1.114	0.001	1.12**	1.119	1.122	0.001	1.109**	1.108	1.111
Increasing (5)												
Interceptor	0.004	0.004	2.586**	2.576	2.600	0.003	2.846**	2.826	2.865			
Arrested	0.002	2.837**	2.826	2.848	0.002	2.586**	2.576	2.600	0.003	2.846**	2.826	2.865
Marital status	0.001	1.122**	1.120	1.124	0.001	1.098**	1.096	1.100	0.001	1.091**	1.089	1.093
Children	0.001	0.967**	0.966	0.968	0.001	0.967**	0.966	0.968	0.001	0.962**	0.961	0.963
Juvenile arrest	0.002	1.837**	1.830	1.844	0.002	1.877**	1.870	1.884	0.002	1.967**	1.960	1.974
Juvenile smoking	0.002	2.862**	2.853	2.872	0.002	2.974**	2.964	2.983	0.002	2.976**	2.966	2.986
Crime victim, 2002	0.003	0.853**	0.848	0.858	0.003	0.908**	0.903	0.914	0.003	0.910**	0.905	0.915

(Continued)
Table 3. (Continued)

SMOKING CLASS	ARRESTED	CONVICTED	INCARCERATED									
	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)			
Crime victim, 2007	.003	3.103**	3.087	3.120	.003	3.031**	3.015	3.047	.003	3.007**	2.991	3.022
Gender	.002	.958**	.955	.961	.002	.888**	.885	.891	.002	.859**	.856	.862
Race/ethnicity	.001	.989**	.988	.991	.001	.982**	.981	.983	.001	.992**	.990	.993
Education	.001	.732**	.730	.733	.001	.711**	.709	.712	.001	.709**	.708	.710
Poverty	.000	1.000**	1.000	1.000	.000	1.000**	1.000	1.000	.000	1.000**	1.000	1.000
Employed	.001	1.176**	1.174	1.178	.001	1.179**	1.177	1.181	.001	1.159**	1.157	1.161
Chronic (6)	Intercept	.002	.171	.173	.002	.177	.175	.179	.002	.180	.178	.182
Arrested	.001	2.691**	2.684	2.697	.001	2.827**	2.818	2.835	.003	1.919**	1.910	1.929
Marital status	.001	.965**	.964	.966	.001	.950**	.949	.951	.001	.934**	.933	.935
Children	.000	.925**	.925	.926	.000	.926**	.925	.927	.000	.920**	.920	.921
Juvenile arrest	.001	1.371**	1.368	1.374	.001	1.372**	1.368	1.375	.001	1.486**	1.483	1.489
Juvenile smoking	.001	9.316**	9.298	9.333	.001	9.635**	9.617	9.652	.001	9.700**	9.682	9.718
Crime victim, 2002	.002	1.112**	1.109	1.116	.002	1.168**	1.165	1.172	.002	1.207**	1.203	1.211
Crime victim, 2007	.002	2.256**	2.248	2.264	.002	2.223**	2.215	2.231	.002	2.179**	2.171	2.187
Gender	.001	.874**	.872	.875	.001	.828**	.826	.829	.001	.765**	.764	.767
Race/ethnicity	.000	1.163**	1.162	1.164	.000	1.156**	1.155	1.157	.000	1.168**	1.168	1.170
Education	.001	.562**	.562	.563	.001	.548**	.547	.549	.001	.539**	.538	.539
Poverty	.000	1.000**	1.000	1.000	.000	1.000**	1.000	1.000	.000	1.000**	1.000	1.000
Employed	.001	.974**	.973	.975	.001	.982**	.981	.983	.001	.972**	.971	.973

**P < .001.

To reduce the complexity of the multinomial logistic regression results presented, Table 3 presents the results of the “problem” smoking classes only (i.e., classes 4, 5, & 6). For the complete results for all 7 smoking classes, refer to Appendix B.
Table 4. Comparing regressions’ odds ratios to each other.

Smoking Class	ARREST Exp(B)	CONVICTION Exp(B)	INCARCERATION Exp(B)
Class 4/unable to quit smokers	2.904	3.268	1.914
Dividing more severe JSI by less severe JSI	1.125	.586	.659
Class 5/increasing smokers	2.837	2.588	2.846
Dividing more severe JSI by less severe JSI	.912	1.099	1.003
Class 6/chronic smokers	2.691	2.827	1.919
Dividing more severe JSI by less severe JSI	1.051	.679	.713

smoking classes. (The longer tables showing the complete models for all smoking classes, for the three different types of JSI, are shown in Appendix B.)

As seen in Table 3, all three types of JSI significantly predicted increased odds of being in a smoking class other than the reference class (class 2/non-smoking). The size of the odds ratios decreased from the JSI and family predictors model (not shown in table format) to the full model. However, arrest, conviction and incarceration in emerging adulthood all remained significant and increased the likelihood of respondents being in a smoking class, as opposed to the non-smoking class. Of the different types of JSI, arrest and conviction had generally larger odds ratios than the most severe type of JSI, incarceration, with respect to respondents' likelihood of being in the “problem smoking” classes (i.e., classes 4, 5 and 6)—counter to the predictions of the hypothesis. In the full models, arrest in emerging adulthood increased the odds of individuals being in class 4/unsuccessfully trying to quit smokers by 2.904; increased the odds of being in class 5/increasing smokers by 2.837; and increased the odds of being in class 6/chronic smokers by 2.691. Having been convicted in emerging adulthood increased the odds of individuals being in classes 4, 5 or 6 by 3.268, 2.588 and 2.827, respectively. By contrast, having been incarcerated increased the odds of being in classes 4, 5, or 6 by 1.914, 2.846, and 1.919, respectively. The confidence intervals for the Exp (B) statistics do not overlap for the arrest, conviction, and incarceration models. (The one exception to this is for class 5 smokers in the arrest and incarceration models.) This suggests that the difference in the JSI-type odds ratio sizes is generally statistically significant.

Across all types of JSI, both family variables—marital status and having children—generally reduced the odds slightly of being in one of the smoking classes as opposed to class 2/non-smoking, with a few exceptions, as expected. Both marital status and having children reduced the odds of being in the most problematic smoking class, class 6/chronic smoking. The inclusion of additional covariates in the models did not greatly change the odds ratios of either family variable. Female gender was related to a decreased likelihood of being in a smoking class, as opposed to being in class 2/non-smoking. In other words, women were less likely to smoke than were men.

The consistently largest predictor of being in a “problem” smoking class rather than class 2/non-smoking was juvenile smoking. Odds ratios for juvenile smoking ranged from a low of 2.862 (arrest model, odds of being in class 5/increasing smokers) to a high of 9.700 (incarceration model, odds of being in class 6/chronic smokers). In all three JSI models, juvenile smoking increased the likelihood of individuals being in class 6/chronic smokers (as opposed to being in class 2/non-smoking) by over 800%. Additionally, having been a crime victim in 2007—when respondents would have been between 22 and 28 years of age—was consistently related to an increased odds of individuals being in a problem smoking class (classes 4, 5 or 6) rather than in class 2/non-smoking. Odds ratios for crime victimization reported in 2007 ranged from a low of 2.179 (incarceration model, odds of being in class 6/chronic smokers) to a high of 3.103 (arrest model, odds of being in class 5/increasing smokers).

As for the other covariates—race/ethnicity, education, poverty, and employment—education had the largest odds ratios regardless of JSI type. Increased education level at age 21 decreased the likelihood of an individual being in a smoking class (e.g., classes 4, 5, and 6), and increased the odds of the respondent being in class 2/non-smoking.

In addition to comparing the odds ratios for the JSI variables in Table 3 to their respective baselines (i.e., Exp [B] for arrest, conviction and incarceration in class 2), fully testing the hypothesis requires comparing the odds ratios to each other. This is shown above in Table 4. The table displays the original odds ratios seen in the multinomial logistic regressions for each JSI type for the problem smoking classes (classes 4, 5 and 6). Additionally, below each original odds ratio is the statistic resulting from dividing the odds ratio for the more severe JSI type by the odds ratio for the less severe JSI type.

The results seen in Table 4 show that counter to the predictions of the hypothesis, more severe forms of JSI are not always related to more problematic smoking. Holding other factors in the model constant, the odds of individuals who had been
convicted being in class 4 (unable to quit smokers) are 1.125 than if they had only been arrested. Another way to interpret this is that individuals that were convicted in early adulthood are 12% more likely to be in class 4 than if they had only been arrested. However, individuals who were incarcerated were 41% less likely to be in class 4 than if they had either been just convicted; and 34% less likely than if they had just been arrested. In terms of being in class 5 (increasing smokers), holding other factors constant, previously incarcerated individuals were slightly more likely to be in class 5 than if they had just been arrested or convicted. Previously incarcerated individuals were nearly 10% more likely to be in class 5 than if they had been previously convicted. The pattern seen for class 6 (chronic smokers) by JSI type is similar to the pattern seen for class 4 (unable to quit smokers). Previously convicted individuals were 5% more likely to be chronic smokers than if they had only been arrested. However, previously incarcerated individuals were less likely to be chronic smokers than if they had been only previously arrested (29% less likely) or only previously convicted (32% less likely).

It is worth noting that arrest and conviction are prerequisite experiences to being incarcerated. In other words, an individual would not end up behind bars without having been first arrested, and then convicted of a criminal offense. There may be individuals who were arrested-only (e.g., their charge may have been dismissed), as well as arrested-and-convicted-only but not ultimately incarcerated (e.g., the individual received a community sentence such as probation, and did not end up in jail or prison). Viewed this way, Table 4 suggests that incarceration is not necessarily worse for individuals in terms of ultimately being in a “problem smoking” class—counter to expectation. The experience of simply getting arrested—the initial point of entry into the justice system—seems to have an adverse impact on individuals in terms of their subsequent smoking behaviors.

Additional Testing of the Hypothesis: Assessing Transitions in Smoking Based on JSI via LTA

To further assess the impact of JSI on smoking, LTA was performed. The smoking variables used in the LTA were the dichotomous forms of the dependent variable, rather than the smoking class variable used in the multinomial logistic regression, as this facilitates interpretation of the output. As seen in Table 5, among those arrested during emerging adulthood, 27.72% are in state 1/non-smoking; and 72.28% are in state 2/smoking. (The Latent Gold software uses the terminology of “state” rather than “class” in conducting LTA). This is different from the non-arrested individuals, who are slightly more likely to be in state 1/non-smoking (61.31%) than state 2/smoking (38.69%). Similar percentages of formerly-convicted and formerly-incarcerated individuals are in state 2.

Transitions probabilities for any smoking at age __ (yes or no) were then examined age by age, for ages 22 through 36 (see Table 6). The differences in transition probabilities over time are significant (see bottom of Table 6).

As seen in Table 6, JSI-involved individuals were more likely to transition from non-smoking to smoking (i.e., to move from state 1/non-smoking to state 2/smoking; see the bolded percentages). Taking age 25 as an example, 5.84% of formerly arrested individuals were likely to transition from non-smoking to smoking in the prior year (age 24) to smoking at age 25, compared to only 1.94% of non-formerly arrested individuals. The effects become more pronounced as the type of JSI becomes more severe. 7.15% of formerly convicted individuals were likely to transition from non-smoking to smoking from ages 24 to 25, compared to only 2.08% of non-incarcerated individuals. 13.41% of formerly incarcerated individuals were likely to transition from non-smoking to smoking from ages 24 to 25, compared to only 2.14% of non-formerly incarcerated individuals. The results are similar at other ages, and suggest support for labeling theory or other factors (e.g., the stress of having past JSI).

As for JSI serving as a teachable moment that contributes to reduced smoking, the results in Table 6 do not support this. Looking again at age 25 for the state 2/smoking-to-state 1/non-smoking transitions, comparable (or lesser) percentages of previously-JSI involved individuals transitioned from smoking to non-smoking, as compared to non-JSI involved individuals. At age 25, for example, 5.23% of arrested individuals transitioned from smoking during the prior year to non-smoking at age 25, compared to 6.29% of non-arrested individuals. Similarly, 4.89% of convicted individuals at age 25 transitioned from smoking to non-smoking, compared to 6.15% of non-convicted individuals. 6.04% of incarcerated individuals transitioned from smoking to non-smoking, compared to 5.97% of non-incarcerated individuals. Involvement with the justice system did not lead to improvements in smoking behavior, as compared with individuals that were not justice system-involved in emerging adulthood.

Table 5. Transitions in smoking state based on JSI.
JSI in emerging adulthood

State 1/non-smoking
no (0)
yes (1)
Table 6. Smoking transitions at each age by JSI in emerging adulthood.

JSI INVOLVEMENT	INDEX1_ANYSMOKING	STATE	ARRESTED AT 18-21 YRS OLD	CONVICTED AT 18-21 YRS OLD	INCARCERATED AT 18-21 YRS OLD			
			1/NON-SMOKING	2/SMOKING	1/NON-SMOKING	2/SMOKING	1/NON-SMOKING	2/SMOKING
no (0)	Y3a_anysmoke22	1	.9887	.0113	.9898	.0102	.9912	.0088
no (0)	Y3a_anysmoke22	2	.0539	.9461	.053	.947	.0511	.9489
yes (1)	Y3a_anysmoke22	1	.9654	.0346	.9641	.0359	.9413	.0587
yes (1)	Y3a_anysmoke22	2	.0447	.9553	.042	.958	.0516	.9484
no (0)	Y3a_anysmoke23	1	.98	.02	.9784	.0216	.9773	.0227
no (0)	Y3a_anysmoke23	2	.0409	.9591	.0392	.9608	.0386	.9614
yes (1)	Y3a_anysmoke23	1	.94	.06	.9259	.0741	.8588	.1412
yes (1)	Y3a_anysmoke23	2	.0339	.9661	.031	.969	.0391	.9609
no (0)	Y3a_anysmoke24	1	.9798	.0202	.9789	.0211	.9779	.0221
no (0)	Y3a_anysmoke24	2	.0598	.9402	.0587	.9413	.0559	.9441
yes (1)	Y3a_anysmoke24	1	.9394	.0606	.9275	.0725	.8623	.1377
yes (1)	Y3a_anysmoke24	2	.0497	.9503	.0466	.9534	.0566	.9434
no (0)	Y3a_anysmoke25	1	.9806	.0194	.9792	.0208	.9786	.0214
no (0)	Y3a_anysmoke25	2	.0629	.9371	.0615	.9385	.0597	.9403
yes (1)	Y3a_anysmoke25	1	.9416	.0584	.9285	.0715	.8659	.1341
yes (1)	Y3a_anysmoke25	2	.0523	.9477	.0489	.9511	.0604	.9396
no (0)	Y3a_anysmoke26	1	.9886	.0114	.9881	.0119	.9879	.0121
no (0)	Y3a_anysmoke26	2	.0706	.9294	.0691	.9309	.0668	.9332
yes (1)	Y3a_anysmoke26	1	.9651	.0349	.9581	.0419	.9206	.0794
yes (1)	Y3a_anysmoke26	2	.0588	.9412	.055	.945	.0676	.9324
no (0)	Y3a_anysmoke27	1	.9885	.0115	.9882	.0118	.9877	.0123
no (0)	Y3a_anysmoke27	2	.0623	.9377	.0608	.9392	.0585	.9415
yes (1)	Y3a_anysmoke27	1	.9648	.0352	.9584	.0416	.9188	.0812
yes (1)	Y3a_anysmoke27	2	.0518	.9482	.0483	.9517	.0591	.9409
no (0)	Y3a_anysmoke28_new	1	.9925	.0075	.9919	.0061	.9916	.0084
no (0)	Y3a_anysmoke28_new	2	.0955	.9045	.0936	.9064	.0906	.9094
yes (1)	Y3a_anysmoke28_new	1	.9767	.0233	.9711	.0289	.9436	.0564
yes (1)	Y3a_anysmoke28_new	2	.0798	.9202	.0749	.9251	.0915	.9085
no (0)	Y3a_anysmoke29_new	1	.9887	.0113	.9885	.0115	.9882	.0118
no (0)	Y3a_anysmoke29_new	2	.0979	.9021	.0959	.9041	.0931	.9069
yes (1)	Y3a_anysmoke29_new	1	.9655	.0345	.9595	.0405	.9221	.0779
yes (1)	Y3a_anysmoke29_new	2	.0819	.9181	.0768	.9232	.0941	.9059
no (0)	Y3a_anysmoke30_new	1	.9905	.0095	.9898	.0102	.9901	.0099
no (0)	Y3a_anysmoke30_new	2	.0955	.9045	.0928	.9072	.0899	.9101

(Continued)
Discussion

This study is a continuation of a previous study that examined the impact of emerging adulthood arrest on smoking transitions through age 30. The present article improves on the prior work by operationalizing JSI beyond just arrest to include more serious levels of involvement (criminal conviction and incarceration). It also examined classes and transitions in smoking over a longer time period (i.e., through age 36). This study also considered the additional impact of two key family processes—marital status and parenthood—on smoking transitions for JSI-involved vs non-involved individuals. Socio-demographic variables (i.e., race/ethnicity, employment, poverty, and education) were also included in the models.

All types of JSI increased the likelihood of being in a smoking class rather than being in the non-smoking reference class. This is reflected in both the multinomial logistic regression and the LTA. The JSI indicators remained significant even with other predictors included in the regression models.
It did not necessarily bear out, as was hypothesized, that the more serious forms of JSI were related to more “problem smoking” classes. Rather than incarceration being notably more detrimental for individuals in terms of contributing to future problem smoking, arrest—the start of any JSI process—is seen to adversely contribute to individuals’ future smoking pathways. Conviction, the next step in the JSI process, sometimes had a more adverse impact on individuals’ smoking behavior than arrest did; and other times not. As for why incarceration was not more damaging to individuals in terms of creating longer-term, addictive-type smoking, it may be due to cigarettes being harder to acquire in a correctional facility that has a smoke-free policy, for example. By contrast, individuals that are only arrested, or arrested and convicted but sentenced to some type of community corrections such as probation, may find themselves living at home but forced to regularly visit a probation office, for example. This experience of “doing time on the outside” could function like an ongoing reminder of their JSI status, and contribute to a smoking habit (e.g., using cigarettes as a way to cope with the stress and/or bad feelings stemming from having a “criminal” label).

More serious forms of JSI were related to larger effects on transitions from non-smoking to smoking, as observed in the LTA models. Of the different types of JSI in the multinomial logistic regression models, arrest and conviction had generally larger odds ratios than the most severe form of JSI, incarceration, particularly with respect to respondents’ likelihood of being in the “problem smoking” classes (i.e., classes 4, 5, and 6). In the LTA models, JSI-involved individuals were more likely to transition from non-smoking to smoking, than from smoking to non-smoking. The LTA results provided more support for labeling theory than the idea of JSI as a teachable moment leading to less smoking.

Across all types of JSI, both family variables—marital status and having children—generally reduced the odds slightly of being in one of the smoking classes—including the most serious smoking class, class 6/chronic smoking—as opposed to class 2/non-smoking. Juvenile smoking was by far the most robust predictor of smoking in adulthood, in keeping with prior research that most people who start smoking begin in the robust predictor of smoking in adulthood, in keeping with their JSI status, and contribute to a smoking habit (e.g., using cigarettes as a way to cope with the stress and/or bad feelings stemming from having a “criminal” label).

The results also present an opportunity to address disparities in JSI and smoking as relate to socio-demographic factors. While race, education, poverty and employment all significantly predicted smoking as opposed to non-smoking, education had a notable impact on reduced smoking regardless of JSI type. This finding suggests that increased educational opportunities may help offset some of the negative consequences (e.g., stigma) that can follow an individual in the years following their involvement with the justice system and contribute to their smoking. While criminal justice professionals typically view educational opportunities for JSI individuals as a positive thing, education is generally seen as contributing to future employment and less recidivism. The ability to earn a degree is not usually framed in the context of reducing JSI individuals’ smoking or improving their health. Educational opportunities may help lessen the detrimental impact of other factors such as poverty, thereby reducing disparities in individuals’ post-JSI smoking. This is an area for future inquiry.

All studies have limitations, and this present effort is no exception. The NLSY97 data are based on self-report and thus subject to response bias (e.g., social desirability, recall) That said, self-reported substance use is generally found to have acceptable levels of validity and reliability. An advantage of self-report data is that subjects’ behavior is less likely to be underestimated than when using official sources of data. Additionally for the NLSY97, so as to minimize social desirability bias, reports of sensitive behaviors were obtained via audio computer-assisted self-interviewing.

The investigator initially performed the GBTM analyses without the weights applied. This resulted in a cleaner image than the one featured in Figure 1 (i.e., fewer smoking classes). However, as the multinomial logistic regression and LTA needed to be run with the weights on, for the sake of consistency the GBTM was redone with weighting.

Limitations aside, the present study contributes to the literature on how involvement with the criminal justice system impacts subsequent smoking behavior over the life course. A value of this study is that it is interdisciplinary in nature, drawing on both public health and criminal justice research. While smoking behavior is not typically considered within the purview of policing, court, and correctional officials, attention should be paid to this unintended consequence of JSI: more smoking, which contributes to increased risk for smoking-related illnesses (e.g., cancer), and worse health generally. Smoking prevention and cessation programs should be part of the offerings to individuals caught up in the justice system at varying levels, along with other types of programming such as employment assistance, recidivism prevention and substance abuse cessation more broadly.

The policy implications are also the importance of targeting juvenile smoking, including but not limited to youth who get arrested, convicted and incarcerated. Involvement with the justice system, in all its manifestations, is a negative health factor that increases smoking. Reducing JSI individuals’ smoking should be among the areas of concern for the justice system, in addition to the standard goal of reduced recidivism.

Acknowledgements
The author acknowledges and thanks Mr. Jordan Riddell of the University of Texas at Dallas, and Dr Jay Magidson of Statistical Innovations, for their respective assistance with the various analyses.

ORCID iD
Connie Hassett-Walker https://orcid.org/0000-0002-7518-8840
REFERENCES

1. Mathur C, Stigler MH, Erickson DJ, Perry CL, Forster JL. Transitions in smoking behavior during emerging adulthood: A longitudinal analysis of the effect of home smoking bans. *Am J Public Health*. 2014;104:715-720.

2. Costello DM, Darker LC, Jones BL, Rose JS. Trajectories of smoking from adolescence to early adulthood and their psychosocial risk factors. *Health Psychol*. 2008;27:811-818.

3. Tucker JS, Ellickson PL, Orlando M, Martino SD, Klein DJ. Substance use trajectories from early adolescence to emerging adulthood: A comparison of smoking, binge drinking, and marijuana use. *J Drug Issues*. 2005;35:307-332.

4. Elder DS. Time, human agency, and social change: Perspectives on the life course. *Soc Psychol Q*. 1994;57:4-15.

5. Hassett-Walker C, Shadden M. Examining arrest and cigarette smoking in emerging adulthood. *Tob. Ind. Health*. 2009;24:209-215.

6. Spohn C, Holloran D. The effect of imprisonment on recidivism rates of felony offenders: A focus on drug offenders. *Criminology*. 2002;40(2):329-358.

7. Smith DA, Gartin PR. Specifying specific deterrence: The influence of arrest on future criminal activity. *Am Soc Rev*. 1989;54:94-105.

8. Murray C, Cox LA. *Beyond Prohibition: Juvenile Corrections and the Chronic Juvenile Offender*. Beverly Hills, CA: Sage Publications; 1979.

9. Huizinga E, Espirito R. Delinquent Behavior of Youth in the Juvenile Justice System: Before, During, and After Different Court Dispositions. Pittsburgh, PA: National Juvenile Court Judges Association; 1999. Unpublished report prepared for the National Center for Juvenile Justice.

10. Gottfredson DM. Effects of Judge's Sentencing Decisions on Criminal Careers. *J Youth Adolescence*. 1999;28:147-161.

11. Tannenbaum F. *Crime and the Community*. New York, NY: Columbia University Press; 1938.

12. Bernburg J, Krohn MD. Labeling, life chances, and adult crime: The direct and indirect effects of official intervention in adolescence on crime in early adulthood. *Criminology*. 2003;41:1287-1318.

13. Kohylchek MC, Brame R, Bushway SD. Enduring risk; Old criminal records and new actions of convicted violent offenders. *Crime Delinq*. 2007;53:64-83.

14. Chiricos T, Barrick K, Bales W, Bontrager S. The labeling of convicted felons on life chances and crime during emerging adulthood. *JAMA*. 2007;298:54-154.

15. Lepel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. *J Neurosci*. 2011;31:10937-10947.

16. McDermott L, Dobson A, Owen N. From partying to parenthood: young women's perceptions of cigarette smoking across life transitions. *Health Educ Res*. 2009;24:21-429.

17. McDermott L, Dobson A, Owen N. Occasional tobacco use among young adult women: A longitudinal analysis of smoking transitions. *Tobacco Control*. 2007;16:248-254.

18. Murphy S, Arroyo K. Women as judicious consumers of drug markets. In: Clarke R, ed. *Crime prevention studies*, vol 11. Monsey, New York: Criminal Justice Press; 2000:101-120.

19. Sampson RJ, Laub JH, Wimer C. Does marriage reduce crime? A counterfactual approach to within-individual causal effects. *Criminology*. 2006;44:465-508.

20. Allen AM, Scheuermann T3, Nollen N, Hatsuikami D, Ahlqwala JS. Gender differences in smoking behavior and dependence motives among daily and non-daily smokers. *Tobacco T. Res*. 2016;18:1404-1413.

21. Smith PH, Bessette AJ, Weinberger AH, Sheffer CE, McCa K. Sex/gender differences in smoking cessation: A review. *Prev Med*. 2016;92:135-140.

22. Riggs NR, Chou CP, Li C, Peata MA. Adolescent to emerging adulthood smoking trajectories: When do smoking trajectories diverge, and do they predict early adulthood nicotine dependence? *Nicotine T. Tob Res*. 2007;9(11):1147-1154.

23. Crane CA, Hawes SW, Weinberger AH. Intimate partner violence victimization and cigarette smoking: a meta-analytic review. *Trauma, Violence & Abuse*. 2013;14(4):305-315.

24. Evans SZ, Simons G, Simons RL. Factors that influence trajectories of delinquency throughout adolescence. *J Youth Adolescence*. 2014;45:156-171.

25. Nagin DS, Piquero AR. Using the group-based trajectory model to study crime over the life course. *J Criminol Justice Educ*. 2010;2(1):105-116.

26. Smith PH, Bessette AJ, Weinberger AH, Sheffer CE, McCa K. Sex/gender differences in smoking cessation: A review. *Prev Med*. 2016;92:135-140.

27. Faraher D, Yoshi V, Anglin MD. Addiction careers and criminal specialization. *Crime Delinq*. 2001;47(2):196-220.

28. Gillet N, Morin AJ, Reeve J. Stability, change, and implications of students' motivation profiles: A latent transition analysis. *Contemporary Educ Psychol*. 2017;51:223-239.

29. Kam C, Morin AJ, Meyer JP, Topolnytsky L. Are commitment profiles stable and predictable? A latent transition analysis. *J Management*. 2016;42(6):1462-1490.

30. Lore H, Nguefa J, Page MG, et al. Trajectory modelling techniques useful of epidemiological research: a comparative narrative review of approaches. *Clinical Epidemiol*. 2020;12:1050-1222.

31. Bray BC, Smith RA, Piper ME, Roberts LJ, Baker TB. Transitions in smokers' social networks after quick attempts: A latent transition analysis. *Tobacco T. Res*. 2016;18(12):2241-2251.

32. Lanza ST, Patrick MF, Maggs JL. Latent transition analysis: Benefits of a latent variable approach to modeling transitions in substance use. *J Drug Issues*. 2010;40(3):93-110.

33. Vermunt J, Magidson J. Latent GOLD 4.0 User's Guide. Belmont, MA: Statistical Innovations Inc.; 2008.

34. de Haas MC, Scheepers CE, Harms LWJ, Kroesen M. Travel pattern transitions: applying latent transition analysis within the mobility biographies framework. *Transportation Research Part A: Policy and Practice*. 2018;107:140-151.

35. Farrington DP, Loebner R, Stouthamer-Loebner M, Van Kammen WB, Schmidt L. Self-reported delinquency and a combined delinquency seriousness scale...
Tobacco Use Insights

based on boys, mothers, and teachers: Concurrent and predictive validity for African Americans and Caucasians. Criminology. 1996;34(4):493-517.

57. Piquero AR, Macintosh R, Hickman M. The validity of a self-reported delinquency scale: comparisons across gender, age, race, and place of residence. Social Methods Res. 2002;30(4):492-529.

58. Huizinga D, Elliott DS. Reassessing the reliability and validity of self-report delinquency measures. J Quant Criminol. 1986;2(4):293-327.

59. Chaiken JM, Chaiken MR. Drugs and predatory crime. In: Tonry M, Wilson JQ, eds. Drugs and Crime, of Crime and Justice; A Review of Research. Chicago: University of Chicago Press; 1990, 13:203-239.

Appendix A: Smoking trajectory Stata syntax, 7-group quadratic model

Stata Syntax

traj, model (logit) var(Y3a_anysmoke22 Y3a_anysmoke23 Y3a_anysmoke24 Y3a_anysmoke25 Y3a_anysmoke26 Y3a_anysmoke27 Y3a_anysmoke28_new Y3a_anysmoke29_new Y3a_anysmoke30_new Y3a_anysmoke31_new Y3a_anysmoke32_new Y3a_anysmoke33 Y3a_anysmoke34 Y3a_anysmoke35 Y3a_anysmoke36) indep (t_1-t_15) order (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) trajplot, xtitle("Age in young adulthood") ytitle("Any Smoking")

Maximum Likelihood Estimates
Model: Logistic (logit)

GROUP	PARAMETER	STANDARD ESTIMATE	T FOR H0: ERROR	PARAMETER=0	PROB >	T[
-------	--------------------	-------------------	-----------------	-------------	--------	-----	
1	Intercept	1.75072	0.9615	18.209	.0000		
	Linear	-.15644	0.05580	-2.803	.0051		
	Quadratic	-.08955	0.00812	-11.023	.0000		
2	Intercept	-2.99061	0.04577	-65.338	.0000		
	Linear	-.55896	0.02020	-27.675	.0000		
	Quadratic	.04005	0.00144	27.826	.0000		
3	Intercept	.96800	0.10286	9.411	.0000		
	Linear	.52023	0.05359	9.708	.0000		
	Quadratic	-.07579	0.00528	-14.353	.0000		
4	Intercept	2.73582	0.09853	27.676	.0000		
	Linear	.75356	0.03715	-20.282	.0000		
	Quadratic	.05091	0.00306	16.622	.0000		
5	Intercept	-2.94027	0.13439	-21.878	.0000		
	Linear	1.00608	0.03951	25.461	.0000		
	Quadratic	-.05117	0.00260	-19.687	.0000		
6	Intercept	2.50960	0.04654	53.924	.0000		
	Linear	.30469	0.01642	18.551	.0000		
	Quadratic	-.02628	0.00112	-23.418	.0000		
7	Intercept	-1.45012	0.07144	-20.298	.0000		
	Linear	.09303	0.02143	4.341	.0000		
	Quadratic	-.00380	0.00147	-2.592	.0095		

Group membership

GROUP	(%)
1	5.50629
2	47.77569
3	5.66225
4	6.30753
5	4.21938
6	21.45354
7	9.07533

BIC = −368448.67 (N = 977 280) BIC = −368421.19 (N = 127 635) AIC = −368289.47 ll = −368 262.47 Entropy = .750
Comparative BIC Scores.

ANY SMOKING	LARGE N	SMALL N	LARGE N	SMALL N	LARGE N	SMALL N
	Linear	Quadratic	Cubic			
# of groups	3	380 971	379 043	379 032	378 837	378 823
	4	378 526	373 244	373 229	372 555	372 535
	5	372 861	370 815	370 796	370 064	370 040
	6	369 935	369 321	369 298	parameters n.s.	parameters n.s.
	7	369 611	368 448	368 421	parameters n.s.	parameters n.s.

Color coding key: Green, bold = lowest BIC scores; Yellow = low BIC scores, significant parameter estimates; Yellow, struck-through score = low BIC scores, insignificant parameter estimates.

Appendix B: Complete Multinomial Logistic Regression Models, Smoking Classes 1-7

Table B1. Multinomial logistic regression, association between arrest and smoking class (complete).

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	UPPER BOUND	
immature later-quitting smokers (1)	Intercept	.004				
	Arrested	.002	1.782**	1.775	1.789	
	Marital status	.001	1.059**	1.057	1.061	
	Children	.001	.943**	.942	.944	
	Juvenile arrest	.002	1.463**	1.457	1.468	
	Juvenile smoking	.002	4.827**	4.812	4.842	
	Crime victim, 2002	.004	.344**	.341	.347	
	Crime victim, 2007	.004	1.406**	1.396	1.416	
	Gender	.002	.704**	.702	.706	
	Race/ethnicity	.001	1.023**	1.022	1.024	
	Education	.001	.821**	.819	.822	
	Poverty	.000	1.000**	1.000	1.000	
	Employed	.001	1.109**	1.107	1.111	
gradual decreasing smokers eventual quitters (3)	Intercept	.004				
	Arrested	.002	3.061**	3.051	3.072	
	Marital status	.001	1.069**	1.068	1.071	
	Children	.001	.989**	.988	.990	
	Juvenile arrest	.002	.808**	.805	.811	
	Juvenile smoking	.002	10.782**	10.746	10.818	
	Crime victim, 2002	.003	.942**	.937	.947	
	Crime victim, 2007	.003	3.455**	3.437	3.472	
	Gender	.002	.797**	.795	.800	
	Race/ethnicity	.001	1.158**	1.156	1.159	
	Education	.001	.611**	.610	.612	
	Poverty	.000	1.000**	1.000	1.000	
	Employed	.001	1.095**	1.093	1.097	(Continued)
Table B1. (Continued)

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	UPPER BOUND
unsuccessfully trying to quit smokers (4)					
Intercept	.004				
Arrested	.002	2.904**	2.894	2.914	
Marital status	.001	.965**	.964	.967	
Children	.001	.946**	.945	.947	
Juvenile arrest	.002	1.536**	1.531	1.541	
Juvenile smoking	.002	7.125**	7.102	7.147	
Crime victim, 2002	.002	1.235**	1.229	1.241	
Crime victim, 2007	.003	2.455**	2.442	2.469	
Gender	.002	.785**	.782	.787	
Race/ethnicity	.001	.972**	.971	.974	
Education	.001	.645**	.644	.646	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	1.113**	1.111	1.114	
increasing smokers (5)					
Intercept	.004				
Arrested	.002	2.837**	2.826	2.848	
Marital status	.001	1.122**	1.120	1.124	
Children	.001	.967**	.966	.968	
Juvenile arrest	.002	1.837**	1.830	1.844	
Juvenile smoking	.002	2.862**	2.853	2.872	
Crime victim, 2002	.003	.853**	.848	.858	
Crime victim, 2007	.003	3.103**	3.087	3.120	
Gender	.002	.958**	.955	.961	
Race/ethnicity	.001	.989**	.988	.991	
Education	.001	.732**	.730	.733	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	1.176**	1.174	1.178	
chronic smokers (6)					
Intercept	.002				
Arrested	.001	2.691**	2.684	2.697	
Marital status	.001	.965**	.964	.966	
Children	.000	.925**	.925	.926	
Juvenile arrest	.001	1.371**	1.368	1.374	
Juvenile smoking	.001	9.316**	9.298	9.333	
Crime victim, 2002	.002	1.112**	1.109	1.116	
Crime victim, 2007	.002	2.256**	2.248	2.264	
Gender	.001	.874**	.872	.875	
Race/ethnicity	.000	1.163**	1.162	1.164	
Education	.001	.562**	.562	.563	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	.974**	.973	.975	

(Continued)
Table B2. Multinomial logistic regression, association between conviction and smoking class (complete).

SMOKING CLASS	STD. ERROR	EXP(B)	LOWER BOUND	UPPER BOUND	
consistent, occasional smokers (7)	Intercept	.004			
	Arrested	.002	1.664**	1.658	1.671
	Marital status	.001	.973**	.972	.975
	Children	.001	.927**	.926	.928
	Juvenile arrest	.002	.758**	.755	.761
	Juvenile smoking	.001	3.540**	3.530	3.550
	Crime victim, 2002	.003	1.078**	1.073	1.084
	Crime victim, 2007	.004	.865**	.859	.871
	Gender	.001	.748**	.746	.750
	Race/ethnicity	.001	.956**	.955	.957
	Education	.001	.855**	.853	.856
	Poverty	.000	.999**	.999	.999
	Employed	.001	1.078**	1.076	1.079

**P <= .001.

Table B1. (Continued)

SMOKING CLASS	STD. ERROR	EXP(B)	LOWER BOUND	STD. ERROR	
immature later-quitting smokers (1)	Intercept	.004			
	Convicted	.002	1.795**	1.786	1.804
	Marital status	.001	1.049**	1.047	1.050
	Children	.001	.945**	.944	.946
	Juvenile arrest	.002	1.475**	1.469	1.480
	Juvenile smoking	.002	4.893**	4.878	4.908
	Crime victim, 2002	.004	.352**	.349	.355
	Crime victim, 2007	.004	1.370**	1.361	1.380
	Gender	.002	.685**	.683	.687
	Race/ethnicity	.001	1.018**	1.016	1.019
	Education	.001	.813**	.812	.815
	Poverty	.000	1.000**	1.000	1.000
	Employed	.001	1.109**	1.107	1.110

(Continued)
Table B2. (Continued)

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	STD. ERROR
Children	.001	.991**	.990	.992	
Juvenile arrest	.002	.796**	.793	.799	
Juvenile smoking	.002	11.170**	11.133	11.208	
Crime victim, 2002	.003	.975**	.970	.980	
Crime victim, 2007	.003	3.421**	3.404	3.438	
Juvenile arrest	.002	.796**	.764	.769	
Race/ethnicity	.001	1.150**	1.148	1.151	
Education	.001	.597**	.596	.598	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	1.105**	1.103	1.107	

Unsuccessfully trying to quit smokers (4)

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	STD. ERROR
Intercept	.004				
Convicted	.002	3.268**	3.255	3.281	
Marital status	.001	.951**	.949	.953	
Children	.001	.947**	.946	.948	
Juvenile arrest	.002	1.525**	1.520	1.530	
Juvenile smoking	.002	7.376**	7.353	7.400	
Crime victim, 2002	.002	1.305**	1.299	1.311	
Crime victim, 2007	.003	2.422**	2.409	2.436	
Gender	.002	.746**	.744	.748	
Race/ethnicity	.001	.964**	.963	.965	
Education	.001	.629**	.628	.630	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	1.120**	1.119	1.122	

Increasing smokers (5)

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	STD. ERROR
Intercept	.004				
Convicted	.002	2.588**	2.576	2.600	
Marital status	.001	1.098**	1.096	1.100	
Children	.001	.967**	.966	.968	
Juvenile arrest	.002	1.877**	1.870	1.884	
Juvenile smoking	.002	2.974**	2.964	2.983	
Crime victim, 2002	.003	.908**	.903	.914	
Crime victim, 2007	.003	3.031**	3.015	3.047	
Gender	.002	.888**	.885	.891	
Race/ethnicity	.001	.982**	.981	.983	
Education	.001	.711**	.709	.712	
Poverty	.000	1.000**	1.000	1.000	
Employed	.001	1.179**	1.177	1.181	
Table B2. (Continued)

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	
			LOWER bound	STD. ERROR
chronic smokers (6)				
Intercept	.002			
Convicted	.001	2.827**	2.618	2.835
Marital status	.001	.950**	.949	.951
Children	.000	.926**	.925	.927
Juvenile arrest	.001	1.372**	1.368	1.375
Juvenile smoking	.001	9.635**	9.617	9.652
Crime victim, 2002	.002	1.168**	1.165	1.172
Crime victim, 2007	.002	2.223**	2.215	2.231
Gender	.001	.826**	.826	.829
Race/ethnicity	.000	1.156**	1.155	1.157
Education	.001	.548**	.547	.549
Poverty	.000	1.000**	1.000	1.000
Employed	.001	.982**	.981	.983
consistent, occasional smokers (7)				
Intercept	.003			
Convicted	.002	1.816**	1.807	1.824
Marital status	.001	.967**	.965	.968
Children	.001	.929**	.928	.930
Juvenile arrest	.002	.758**	.755	.761
Juvenile smoking	.001	3.580**	3.570	3.590
Crime victim, 2002	.003	1.091**	1.085	1.096
Crime victim, 2007	.004	.853**	.847	.859
Gender	.001	.735**	.733	.737
Race/ethnicity	.001	.951**	.950	.952
Education	.001	.851**	.849	.852
Poverty	.000	.999**	.999	.999
Employed	.001	1.077**	1.076	1.079

**P \leq .001

Table B3. Multinomial logistic regression, association between incarceration and smoking class (complete).

SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	
			LOWER bound	STD. ERROR
Immature later-quitting smokers (1)				
Intercept	.004			
Incarcerated	.005	1.092**	1.082	1.102
Marital status	.001	1.040**	1.038	1.041
Children	.001	.942**	.941	.943

(Continued)
SMOKING CLASS	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	LOWER BOUND	STD. ERROR
Juvenile arrest	.002	1.556**	1.550 1.561		
Juvenile smoking	.002	4.928**	4.913 4.944		
Crime victim, 2002	.004	.364**	.361 .368		
Crime victim, 2007	.004	1.357**	1.348 1.367		
Gender	.002	.652**	.650 .654		
Race/ethnicity	.001	1.021**	1.020 1.022		
Education	.001	.802**	.800 .803		
Poverty	.000	1.000**	1.000 1.000		
Employed	.001	1.108**	1.106 1.109		
gradual decreasing smokers, eventual quitters (3)					
Intercept	.004				
Incarcerated	.003	2.575**	2.558 2.592		
Marital status	.001	1.034**	1.032 1.035		
Children	.001	.984**	.983 .985		
Juvenile arrest	.002	.878**	.874 .881		
Juvenile smoking	.002	11.301**	11.263 11.338		
Crime victim, 2002	.003	1.014**	1.009 1.019		
Crime victim, 2007	.003	3.357**	3.340 3.374		
Gender	.001	.697**	.695 .699		
Race/ethnicity	.001	1.167**	1.165 1.168		
Education	.001	.584**	.583 .585		
Poverty	.000	1.000**	1.000 1.000		
Employed	.001	1.087**	1.085 1.089		
unsuccessfully trying to quit smokers (4)					
Intercept	.004				
Incarcerated	.003	1.914**	1.901 1.927		
Marital status	.001	.932**	.931 .934		
Children	.001	.940**	.939 .941		
Juvenile arrest	.002	1.683**	1.677 1.689		
Juvenile smoking	.002	7.434**	7.411 7.458		
Crime victim, 2002	.002	1.360**	1.354 1.367		
Crime victim, 2007	.003	2.372**	2.359 2.385		
Gender	.001	.674**	.672 .676		
Race/ethnicity	.001	.977**	.976 .978		
Education	.001	.615**	.614 .616		
Poverty	.000	1.000**	1.000 1.000		
Employed	.001	1.109**	1.108 1.111		

(Continued)
Table B3. (Continued)

SMOKING CLASS	Intercept	STD. ERROR	EXP(B)	95% CONFIDENCE INTERVAL FOR EXP(B)	
				LOWER BOUND	STD. ERROR
increasing smokers (5)					
Intercept	.004	.004	2.846**	2.826	2.865
Incarcerated	.003	.003	1.091**	1.089	1.093
Marital status	.001	.001	.962**	.961	.963
Children	.001	.001	1.967**	1.960	1.974
Juvenile arrest	.002	.002	2.976**	2.966	2.986
Juvenile smoking	.002	.002	.910**	.905	.915
Crime victim, 2002	.003	.003	3.007**	2.991	3.022
Crime victim, 2007	.003	.003	.859**	.856	.862
Gender	.002	.002	.992**	.990	.993
Race/ethnicity	.001	.001	.709**	.708	.710
Education	.001	.001	1.000**	1.000	1.000
Poverty	.000	.000	1.159**	1.157	1.161
Employed	.001	.001	1.159**	1.157	1.161
chronic smokers (6)					
Intercept	.002	.002	1.919**	1.910	1.929
Incarcerated	.003	.003	.934**	.933	.935
Marital status	.001	.001	.920**	.920	.921
Children	.000	.000	1.486**	1.483	1.489
Juvenile arrest	.001	.001	9.700**	9.682	9.718
Juvenile smoking	.001	.001	1.207**	1.203	1.211
Crime victim, 2002	.002	.002	2.179**	2.171	2.187
Crime victim, 2007	.002	.002	.765**	.764	.767
Gender	.001	.001	1.169**	1.168	1.170
Race/ethnicity	.000	.000	.539**	.538	.539
Education	.001	.001	1.000**	1.000	1.000
Poverty	.000	.000	.972**	.971	.973
Employed	.001	.001	.972**	.971	.973
consistent, occasional smokers (7)					
Intercept	.003	.003	1.872**	1.859	1.885
Incarcerated	.004	.004	.961**	.960	.963
Marital status	.001	.001	.926**	.925	.927
Children	.002	.002	.782**	.779	.785
Juvenile arrest	.001	.001	3.587**	3.577	3.597
Juvenile smoking	.001	.001	1.103**	1.098	1.109
Crime victim, 2002	.003	.003	.848**	.842	.854
Crime victim, 2007	.004	.004	.718**	.716	.720
Gender	.001	.001	.954**	.953	.955
Race/ethnicity	.001	.001	.848**	.847	.849
Education	.000	.000	.999**	.999	.999
Poverty	.001	.001	1.070**	1.069	1.072
Employed	.001	.001	1.070**	1.069	1.072

**P = .001.