Y chromosome of the inbred mouse KK/Ta strain is associated with reduced body size in Y-consomic strains

Jun-ichi Suto

Abstract

Background: We have established 17 Y chromosome consomic (Y-consomic) mouse strains in an inbred DH/Sgn strain. In this study, based on investigations in four different genetic backgrounds, we proved that the Y chromosome of the inbred mouse KK/Ta strain is associated with reduced body size.

Findings: In the DH-Chr Y+/+ background, Y chromosome substitution significantly decreased the body weight in DH-Chr YKK+/+ and DH-Chr YSJL+/+ strains, and the DH-Chr YKK+/+ strain was the lightest among the 17 Y-consomic strains. In the DH-Chr Y-Dh+/+ background (Dh+/+ mice have skeletal malformations and are usually lighter than +/+ mice), although Y chromosome substitution did not significantly alter the body weight, the DH-Chr YKK-Dh+/+ strain was the lightest among the 17 Y-consomic-Dh+/+ strains. In the (B6.Cg-Ay×DH-Chr Y) F1+/+ background, Y chromosome substitution significantly decreased the body weight and length in the (B6.Cg-Ay×DH-Chr YKK) F1 Ay/+/ hybrids. In the (B6.Cg-Ay×DH-Chr Y) F1 Ay/+/ background (Ay causes obesity and promotes linear growth), Y chromosome substitution significantly decreased body weight and length in the (B6.Cg-Ay×DH-Chr YKK) F1 Ay/+/ hybrids.

Conclusion: A body-size-reducing effect of the Y chromosome of the KK/Ta mouse strain was observed irrespective of genetic background. The effect was observed in the presence of Dh and Ay, the autosomal dominant mutations, both of which are known to have substantial effects on body size. These results suggest that there are Y-linked genes that control the body size in mice.

Keywords: Ay allele, Body length, Body weight, Body size, Consomic mice, Dh, Y chromosome

Findings

Background

We have established 17 Y chromosome consomic (hereafter Y-consomic) mouse strains in an inbred DH/Sgn (hereafter DH) strain. There was a wide spectrum of variation in body weight and testis weight among the Y-consomic mouse strains [1,2]. Thus, it was expected that there were Y-linked genes associated with body weight and testis weight among the Y-consomic mouse strains [1,2]. Thus, it was expected that there were Y-linked genes associated with body weight and testis weight among the Y-consomic mouse strains [1,2]. However, we have not yet identified SNPs and gene polymorphisms that were associated with testis weight variation when the trait was evaluated as a quantitative trait [2]. Although we have not yet identified SNPs and gene polymorphisms associated with body weight, we noted that the DH-Chr YKK strain was lighter than other Y-consomic strains [1]. Therefore, we further investigated the effect of the Y chromosome by incorporating additional mice in this study. Based on the investigation in four different genetic backgrounds, we proved that the Y chromosome of the inbred mouse KK/Ta strain is associated with reduced body weight and length.

First, we analyzed Y-consomic strains in the DH strain background. Because DH includes both +/+ and Dh/+ genotypes at the dominant hemimelia (Dh) locus on chromosome 1, each Y-consomic strain includes both +/+ and Dh/+ mice. Some skeletal elements are lost in Dh/+ mice; therefore, Dh/+ mice are usually lighter than +/+ littersmates (see Methods for details). We next analyzed Y-consomic strains with the Dh mutation. We further investigated the Y-consomic strains in combination with Ay, the obesity mutation. The Ay allele at the agouti locus on chromosome 2 is known to cause obesity and promote linear growth in mice (see Methods for details). When the
males of each Y-consomic strain were crossed with females of the B6.Cg-A^Y strain, the F1 generation consisted of A^Y (yellow, A'^+/+) and non-A^Y (agouti, +/+) mice. We analyzed the F1+/+ and F1-A^Y hybrids. This analysis allowed us to evaluate the effect of the Y chromosome in obese (F1 A^Y) animals as well as in addition to non-obese (F1 non-A^Y) animals in the same genetic background. Thus, we investigated the effect of the Y chromosome in the presence of autosomal dominant mutations, both of which substantially affected body size.

Methods

Mice

The following Y-consomic strains were used in this study: DH-Chr Y^A^ (Y chromosome from A/J strain), DH-Chr Y^AKR^ (AKR/J), DH-Chr Y^Balb^ (Balb/c), DH-Chr Y^C3H^ (C3H/HeJ), DH-Chr Y^CAST^ (CAST/EiJ), DH-Chr Y^CBA^ (CBA/N), DH-Chr Y^CF1^ (CF1/Sgn), DH-Chr Y^DBA^ (DBA/2J), DH-Chr Y^DdD^ (Ddd/Sgn), DH-Chr Y^Dh^ (identical to DH), DH-Chr Y^Kk^ (Kk/Ta), DH-Chr Y^Krf^ (Krf/J), DH-Chr Y^RR^ (RR/Sgn), DH-Chr Y^S1K^ (S1K/), DH-Chr Y^Ss^ (Ss/Sgn), and DH-Chr Y^Swr^ (Swr/J). B6.Cg-A^Y^ strain was purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and maintained at the National Institute of Agrobiological Sciences (NIAS, Tsukuba, Japan). Each Y-consomic strain included Dh/+ and +/+ mice with respect to the genotype at the Dh locus. Dh causes visceral and skeletal malformations of various degrees of severity [3,4]. Visceral abnormalities include a small stomach, short intestine, hydropic kidneys, and congenital absence of the spleen. Skeletal malformations appear in the trunk caudally from the thorax, particularly in the hindlimbs. The abnormalities induced by Dh are expressed more severely in Dh/Dh than in Dh/+ animals. Because Dh/Dh mice die shortly after birth owing to their visceral abnormalities, only heterozygous Dh/+ mice were available for this study. The skeletal malformations in Dh/+ mice are worth mentioning. In Dh/+ mice, the number of lumbar vertebrae is reduced to five, as opposed to six in +/+ mice. Loss of the hallux (i.e., presence of only four digits) is commonly observed in Dh/+ mice. However, triphalangy of the hallux (i.e., presence of five digits with an extra phalange on the hallux) is also commonly observed. Polydactylly is sometimes observed and is associated with an additional phalange on the hallux (the number of metatarsal bones do not exceed five even in the case of polydactylly). Although the fibula is rarely affected, various lengths of the distal part of the tibia are frequently lost. Thus, Dh is associated essentially with reduction of skeletal elements. Dh/+ mice were distinguished from +/+ mice by the presence of hindlimb malformation, and the Dh/+ genotype was confirmed by the absence of the spleen on laparotomy. The Y-consomic strains in a DH background are hereafter designated as DH-Chr Y-+/+ and DH-Chr Y-Dh/+ for convenience.

We also investigated (♀ B6.Cg-A^Y^ × ♂ DH-Chr Y-+/+) F1 hybrids. The A^Y^ allele at the agouti locus causes obesity and promotes linear growth in mice [5]. In normal mice, the agouti gene is expressed only in the skin [67], and it regulates pigmentation by serving as an inverse agonist of the melanocortin 1 receptor (MC1R) [8,9]. However, in A^Y^ mice, the A^Y^ allele is associated with a large deletion, causing agouti gene expression to be aberrantly controlled by the unrelated Raly gene promoter and leading to its ectopic overexpression [7,10-12]. As a result, A^Y^ mice have a yellow coat color and develop maturity-onset obesity. The yellow coat makes it possible to visually distinguish A^Y^ mice from non-A^Y^ mice. Obesity in A^Y^ mice is believed to be a consequence of the agouti proteins serving as a constitutive antagonist of the melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) by mimicking the action of the agouti-related protein [13-15]. Thus, A^Y^ mice are heavier and longer than their non-A^Y^ littermates. Importantly, mice homozygous for the A^Y^ allele are embryonic lethal; therefore, living A^Y^ mice are invariably heterozygotes. The F1 Y-consomic mice were designated as F1-+/+ and F1-A^Y^/. Strain designations and numbers of mice used in this study are summarized in Table 1.

All mice were maintained in a specific-pathogen-free facility with a regular light cycle (12 h light and 12 h dark) and controlled temperature (23 ± 1°C) and humidity (50%). Food and water were freely available throughout the experimental period. DH-Chr Y-+/+ and DH-Chr Y-Dh/+ strains were fed a CE-2 (CLEA Japan Inc., Tokyo) and F1-+/+ and F1-A^Y^/+ hybrids were fed a CRF-1 (Oriental Yeast Co. Ltd., Tokyo). We are uncertain whether or not the difference in the lot of diet might have any impacts on body weights and/or body sizes of mice. All animal experiments were performed in accordance with guidelines approved by the Institutional Animal Care and Use Committee of NIAS.

Phenotyping

At the age of 80 days for DH-Chr Y-+/+ and DH-Chr Y- Dh/+ strains and at the age of 16 weeks for F1-+/+ and F1- A^Y^/+ hybrids, the mice were weighed on an electronic balance to the nearest 0.01 g after 4 h fasting. For F1-+/+ and F1- A^Y^/+ hybrids, the anal–nasal length and tail length of each mouse were measured to the nearest 0.01 mm with digital calipers. Body length was defined as the anal–nasal length.

Statistics

Normality of distribution of the trait data for each Y-consomic strain was tested by the Shapiro–WilK test.
If the trait values did not follow a normal distribution, they were normalized using the Box-Cox transformation. Statistical comparison of two groups was performed by the Student's t-test. Effects of Y chromosome substitution were assessed using Dunnett's multiple-comparison tests with the background DH strain as a reference. P <0.05 was considered statistically significant.

Results

Figure 1 shows the distributions of body weight in 472 DH-Chr Y-+/+ (A) and 366 DH-Chr Y-Dh+/+ (B) strains. As expected, average body weight was significantly higher in +/+ strains (mean ± SE, 28.48 ± 0.10 g) than in Dh+/+ strains (25.29 ± 0.12 g). Body weight showed bell-shaped distribution curves in both mice. Strictly, the distribution of body weight in DH-Chr Y-Dh+/+ strains followed a normal distribution but that of DH-Chr Y-+/+ strains did not. Therefore, Box-Cox transformation was applied to the DH-Chr Y-+/+ strains before subsequent analyses. Figure 2 shows the effect of the Y chromosome substitution on body weight in DH-Chr Y-+/+ and DH-Chr Y-Dh+/+ strains. In the DH-Chr Y-+/+ background, Y chromosome substitution significantly decreased body weight in DH-Chr YSJL-+/+ and DH-Chr YKK-+/+ strains. The DH-Chr YKK-+/+ strain was the lightest among the DH-Chr Y-+/+ strains. In the DH-Chr Y-Dh+/+ background, although Y chromosome substitution did not significantly alter the body weight, the DH-Chr YKK-Dh+/+ strain was the lightest among the strains. The difference between DH-Chr YDh and DH-Chr YC3H strains was not statistically significant in both +/+ and Dh+/+ backgrounds.

Table 1 Genetic backgrounds and numbers of mice in the Y-consomic strains used in this study

Y-donor strain	DH-Chr Y-+/+	DH-Chr Y-Dh+/+	(♀B6.Cg-A^YX♂DH-Chr Y^{DH})/F₁-+/+	(♀B6.Cg-A^YX♂DH-Chr Y^{C3H})/F₁-+/+
A/J (A)^a	27	22	18	12
AKR/J (AKR)	37	34	5	13
C57BL/6J (B6)	32	24	17	18
BALB/c (BALB)	24	30	7	13
C3HHeJ (C3H)	40	24	8	15
CAST/Ei (CAST)	26	21	12	12
CBA/N (CBA)	21	16	13	10
CF1/Sgn (CF1)	21	27	12	10
DBA/2J (DBA)	24	15	11	13
DDD/Sgn (DDD)	41	25	16 (15)^b	13
DH/Sgn (DH)	19	40	9	10
KK/Ta (KK)	24	12	16	12
RF/J (RF)	32	16	8	10
RR/Sgn (RR)	26	12	13	11
SJL/SJL (SJL)	29	23	16	17
SS/Sgn (SS)	22	5	18	17
SWR/SWR (SWR)	27	20	10	12
Total	472	366	209 (208)^a	218

^aAbbreviation is shown in parentheses. ^bWe failed to determine the body length of one (♀B6.Cg-A^YX♂DH-Chr Y^{DDD})/F₁-+/+ mouse.
The distribution of body length in F1-+/+ hybrids followed a normal distribution but that of F1-A/y+/+ hybrids did not. Therefore, Box-Cox transformation was applied to the F1-A/y+/+ hybrids before subsequent analyses. Figure 6 shows the effect of the Y chromosome substitution on body length in F1-+/+ and F1-A/y+/+ hybrids. In the F1-+/+ and F1-A/y+/+ backgrounds, Y chromosome substitution significantly decreased body length in the (B6.Cg-A/y × DH-Chr YKK)F1-+/+ and (B6.Cg-A/y × DH-Chr YKK)F1-A/y+/+ hybrids, respectively.

Figure 1 The distribution of body weight in DH-Chr Y+/- (A) and DH-Chr Y-Dh/- (B) strains.

Figure 2 The effect of Y chromosome substitution on body weight in DH-Chr Y+/- (left column) and DH-Chr Y-Dh/- (right column) strains. The difference between DH-Chr Y+/- strain and others were analyzed in both +/+ and Dh/- backgrounds and only the difference between DH-Chr Y+/-/+ and DH-Chr Y-K/-/+ strains and between DH-Chr Y+/-/+ and DH-Chr Y-K/-/+ strains was statistically significant. DH-Chr Y+/- strains are sorted in descending order from the top to the bottom.
Although average body length of the (B6.Cg-Ay × DH-Chr YC3H) F1 hybrids was the greatest in +/+ background, the difference between (B6.Cg-Ay × DH-Chr YDH) F1+/+ and (B6.Cg-Ay × DH-Chr YC3H) F1+/+ hybrids was not statistically significant.

Discussion

Body size is probably determined by multiple genes under the influence of non-genetic factors such as nutritional condition. To identify Y-linked gene polymorphisms associated with body size, it is essential to unify autosomal
Figure 5 The distribution of body length in $F_1{+/+}$ (A) and $F_1{A^y/+}$ (B) hybrids.

Figure 6 The effect of Y chromosome substitution on body length in $F_1{+/+}$ (left column) and $F_1{A^y/+}$ (right column) hybrids. The difference between (B6.Cg-Ayx DH-Chr Y23H) F_1 hybrids and others were analyzed and only the difference between (B6.Cg-Ayx DH-Chr Y23H) F_1 and (B6.Cg-Ayx DH-Chr Y23K) F_1 hybrids was statistically significant in both $+/+$ and $A^y/+$. $F_1{+/+}$ hybrids are sorted in descending order from the top to the bottom.
effects and to minimize non-genetic environmental influences. Thus, Y-conosomal mouse strains are desirable and essential tools for investigating the effect of the Y chromosome on body size. There are several reports on the association of the Y chromosome with adult male height in humans, but the results are still contradictory [16,17].

It is a fact that many reports on body size have been obtained in human studies [18]. For example, the presence of gene associated with short stature in the pseudoautosomal region has been suggested in human [19,20]. The gene SHOX (short stature homeobox) is not pseudoautosomal but autosomal. Therefore, the effect of the Y chromosome on body size observed in this study should not be attributed to Shox. Thus, it was suggested that there are other genes on the Y chromosome that influence body size in mice. We have genotyped Y-linked SNPs and other gene polymorphisms in these Y-conosomal strains [2]. However, none of them showed polymorphisms specific to the KK/Ta strain clearly excluding these gene polymorphisms as candidates.

As a next step, it is crucial to determine at what age the body size of DH-Chr YKK strain becomes smaller than that of the other Y-conosomal strains. Analysis of growth curves will be useful for this purpose. Because the difference was apparent at 80 days at the latest, the effect of the Y chromosome is expected to manifest earlier. The effect may already be apparent during the fetal period because the effect of Y chromosome on fetal growth rate has been hypothesized [23]. Comparison of birth weights will be critical to test this hypothesis.

Conclusion

A body-size-reducing effect of the Y chromosome of the KK/Ta mouse strain was observed irrespective of genetic background. The effect was observed in the presence of Dh and Ay, the autosomal dominant mutations, both of which are known to have substantial effect on body size. These results suggest that there are Y-linked genes that control body size in mice.

Competing interests

The author declares that he has no competing interests.

Author’s contribution

JS designed the research, carried out experiments for data collection, analyzed the data, and wrote the manuscript.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 15500305 and 19500373).}

References

1. Suto J: Genetic dissection of testis weight in a mouse strain having an extremely large testis: major testis weight determinants are autosomal rather than Y-linked on the basis of comprehensive analyses in Y-chromosomic consomic strains. Proc Jpn Acad Ser B 2008, 84:393–406.

2. Suto J: Genetic dissection of testis weight in mice: quantitative trait locus analysis using F2 intercrosses between strains with extremely testis weights, and association study using Y-conosomal strains. Mamm Genome 2011, 22:548–560.

3. Searle AG: The genetics and morphology of two ‘luxoid’ mutants in the house mouse. Genet Res Camb 1961, 5:171–197.

4. Suto J, Wakeyama T, Imamura K, Goto S, Fukuta K: Skeletal malformations caused by the Dh (Dominant hemimelia) gene in mice. Exp Anim 1996, 45:95–98.

5. Heston WE, Vlahakis G: Influence of the Ay gene on mammary- gland tumors, hepatomas, and normal growth in mice. J Natl Cancer Inst 1961, 26:909–938.

6. Bultman SJ, Michaud EJ, Woychik RP: Molecular characterization of the mouse agouti locus. Cell 1992, 71:1195–1204.

7. Miller MW, Duhl DM, Wieling H, Cordes SP, Ollmann MM, Winkes BM, Bash GS: Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 1993, 7:454–467.

8. Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Rosell-Rehul L, Baack E, Mountjoy KG, Cone RD: Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993, 68:827–834.

9. Lu D, Willard D, Patel IR, Kadwell S, Overtan L, Kost T, Luther M, Chen W, Woychik RP, Wilkinson WD, Cone RD: Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994, 371:799–802.

10. Duhl DM, Wieling H, Miller KA, Wolff GL, Bash GS: Neomorphic agouti mutations in obese yellow mice. Nat Genet 1994, 8:59–65.

11. Michaud EJ, Bultman SJ, Stubbs LJ, Woychik RP: The embryonic lethality of homozygous lethal yellow mice (Ay/Ay) is associated with the disruption of a novel RNA-binding protein. Genes Dev 1993, 7:1203–1213.

12. Michaud EJ, Bultman SJ, Stubbs LJ, Woychik RP: A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc Natl Acad Sci USA 1994, 91:2562–2566.

13. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Kaufman SS, Rosenblum CI, Miller MW, Duhl DM, Vrieling H, Cordes SP, Ollmann MM, Winkes BM, Barsh GS: Inactivation of the mouse melanocortin receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000, 26:97–102.

14. Huizak D, Lynca CA, Fathild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campbell LA, Burn P, Lee F: Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997, 88:131–141.

15. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Bash GS: Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278:135–138.

16. Ellis JA, Stebbing B, Harrap SB: Significant population variation in adult male height associated with the Y chromosome and the aromatase gene. J Clin Endocrinol Metab 2001, 86:4147–4150.

17. Weidorn MN, Turner M, Knight B, Clark P, Hattersley AT, Frayling TM: Variants in the aromatase gene and on the Y-chromosome are not associated with adult height or insulin resistance in a UK population. Clin Endocrinol 2003, 59:175–179.

18. Online Mendelian Inheritance in Man. [http://www.ncbi.nlm.nih.gov/omim].

19. Ogata T, Matsuo N: Comparison of adult height between patients with XX and XY gonadal dysgenesis: support for a Y specific growth gene(s). J Med Genet 1992, 29:539–541.

20. Ogata T, Matsuo N: The Y specific growth gene(s): how does it promote stature? J Med Genet 1997, 34:323–325.

21. Ellison JW, Wardak Z, Young MF, Robey PG, Webster M, Chong W: PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum Mol Genet 1997, 6:1341–1347.
22. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K, Binder G, Kirsch S, Winkelmann M, Nordiek G, Heinrich U, Breuning MH, Ranke MB, Rosenthal A, Ogata T, Rappold GA. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. *Nat Genet* 1997, 16:54–63.

23. Ounsted C, Ounsted M: Effect of Y chromosome on fetal growth-rate. *Lancet* 1970, 2:857–858.

doi:10.1186/1756-0500-6-64

Cite this article as: Suto: Y chromosome of the inbred mouse KK/Ta strain is associated with reduced body size in Y-consomic strains. *BMC Research Notes* 2013 6:64.