The forces on individual electrons in an unscreened nondegenerate electron fluid, due to electron density fluctuations, have been calculated using Monte Carlo simulations and determined experimentally over a broad range of the plasma parameter Γ. The experimental results are obtained from the magnetoconductivity $\sigma(B)$ measured for electrons on liquid helium below 1 K for $B \leq 8$ T. The magnitude and density dependence of $\sigma(B)$ are explained by the many-electron theory of magnetotransport. The internal electric fields found from the experiments are in excellent agreement with the simulations.

Electrons above the surface of superfluid helium often form a two-dimensional (2D) normal fluid: for characteristic electron densities $n \sim 10^{12}$ m$^{-2}$ the interelectron distance $\sim n^{-1/2}$ exceeds the de Broglie wavelength, and the system is nondegenerate; at the same time, the ratio of the characteristic Coulomb energy of electron-electron interaction to the kinetic energy, the plasma parameter $\Gamma = e^2(\pi n)^{1/2}/4\pi\epsilon_0 kT$ is large, and therefore there is short-range order in the electron system. For $\Gamma > 127$ (low T) electrons form a 2D crystal. Mean-field effects such as long-wavelength plasma oscillations are well understood for a normal 2D electron liquid but much less is known about the detailed behavior of
individual electrons. An experimental probe is required while, on the theoretical side, the problem is complicated by the absence of “good” quasiparticles.

In this Letter, we present data from Monte Carlo simulations and experimental measurements of an important but unexplored characteristic of a 2D electron fluid, the internal electric field E_f that drives an electron as a result of its interaction with other electrons. Unlike the long-wavelength fluctuational fields known in plasma physics [5], the field E_f, although also of fluctuational origin, determines the force driving an individual particle, and is not described by the theory [5]. The force on a particle is an important dynamical characteristic of a system. In “conventional” fluids with short-range interatomic interaction, the forces have been a subject of extensive research [6]. The mean square force remains finite in a fluid (though the mean square displacement diverges), but it would be expected to display singular behavior at the liquid-crystal transition.

A special significance of the field E_f for a nondegenerate 2D electron system stems from the fact that, over a broad range of parameters, it strongly affects magnetotransport. In the single-particle approximation the electron energy spectrum in a magnetic field B perpendicular to the electron layer consists of discrete Landau levels, separation $\hbar \omega_c (\omega_c = eB/m$ is the cyclotron frequency). The centers of the cyclotron orbits move only because of the random potential of the scatterers. Therefore scattering is always strong, and the pattern of transport is very different from the standard Drude picture which applies for weak coupling at $B = 0$ and in which scattering events are short and well separated in time.

The field E_f causes the centers of the cyclotron orbits to drift at a velocity E_f/B, and may “restore” the weak coupling picture. This effect was first discussed and investigated [7] for transport in the quantum limit $\hbar \omega_c/kT \gg 1$. It was shown later [8, 9] that the field E_f also dramatically affects the magnetoconductivity $\sigma(B)$ in classically strong magnetic fields, $\mu B \gg 1$, $\hbar \omega_c/kT < 1$ (μ is the zero-field electron mobility), for vapor-atom scattering above 1 K. In particular, it restores the Drude-type behavior of $\sigma(B)$ for comparatively small B which has been known experimentally since [10]. Cyclotron resonance measurements [11]
have also demonstrated the importance of Coulomb interactions in this system. Several other mechanisms have been proposed to explain previous measurements of $\sigma(B)$ at higher B. \[2\]

Our new measurements of $\sigma(B)$ have been done below 1 K, in the ripplon scattering regime. In this range the mobility μ is extremely high ($\lessapprox 2000 \text{ m}^2/\text{Vs}$), enabling \textit{quantitative} characterization of \mathbf{E}_t as a function of density and temperature.

We consider the distribution of \mathbf{E}_t for a classical normal liquid; the results also apply for quantizing magnetic fields provided the motion of the centers of the cyclotron orbits is semiclassical. Since fluctuations in the system are thermal, and the field is due to electron-electron interaction, the scale for \mathbf{E}_t is given by the characteristic field E_0:

$$\langle \mathbf{E}_t^2 \rangle = F(\Gamma)E_0^2, \quad E_0 = \left(kTn^{3/2}/4\pi \epsilon_0 \right)^{1/2}. \quad (1)$$

The scaled dimensionless mean square field $F(\Gamma)$ can be easily found for large Γ (low T) in the 2D crystal phase \[13\]. Here, the force on an electron $e\mathbf{E}_t$ arises because of the displacement of electrons from their lattice sites \mathbf{R}_n. In the harmonic approximation the force is linear in the displacements and has a Gaussian distribution. The function F incorporates contributions from both transverse and longitudinal modes of the crystal, and $F(\Gamma) \approx 8.91$, independent of Γ.

In the opposite limit of a nearly ideal plasma, $\Gamma \ll 1$, the major contribution to the force on an electron comes from pair collisions, which gives $F(\Gamma) \approx 2\pi^{3/2}/\Gamma$.

In the most interesting range of the electron liquid and the melting transition, the function $F(\Gamma)$ was obtained from Monte Carlo simulations. We used the Metropolis algorithm and the Ewald summation technique as in \[2\](a), with periodic boundary conditions. The field on an electron was evaluated as the gradient of the potential in which the electron was moving.

The results for \mathbf{E}_t for the number of particles $N = 196, 324$ are very close to each other. In the range $\Gamma > 30$ the probability density distribution ρ of the field components E_x, E_y is close to Gaussian. The functions $F(\Gamma)$ and ρ are plotted in Fig. 1. The scaling function
$F(\Gamma)$ decreases nearly monotonically with increasing Γ. However, remarkably, its variation is very small in the range $\Gamma \gtrsim 10$, although the structure of the system changes dramatically, from a crystal to a liquid with a correlation length of twice the mean electronic separation. The function $F(\Gamma)$ has a smeared singularity at the melting point. Detailed discussion will be given elsewhere [14].

The magnetoconductivity of 2D electrons above superfluid helium was measured using 4 mm diameter Corbino disk electrodes (see Fig. 2) 100 μm beneath the electrons [3]. Free electrons were held over the central drive electrode A, a ring electrode E, and receiving electrodes B1, B2 and B3 surrounded by a planar guard G. An ac voltage V_0 (typically 10 mV) at a frequency up to 10 kHz was applied to electrode A and the ac currents I to the electrodes B measured. For a perfect conductor the phase of the capacitively coupled current I is $\pi/2$ with respect to V_0. The phase shift $\phi(B)$ away from $\pi/2$ was measured for perpendicular magnetic fields $B \leq 8$ T for electron densities $0.5 \times 10^{12} \lesssim n \lesssim 2 \times 10^{12} \text{ m}^{-2}$ at temperatures $0.6 \lesssim T \lesssim 0.9$ K in the fluid phase. The phase shift $\phi(B)$ is proportional to $\sigma^{-1}(B)$ for $\phi \lesssim 0.3$ rad, while for larger phase shifts the theoretical response function was used. The density n was determined from the -ve dc bias voltage on electrode E required to cut off the current between electrodes A and B.

Figs. 2 and 3 show the measured magnetoconductivity for several densities and temperatures. In low fields, $B < 0.5$ T, the data accurately follow the simple Drude-like result, even for values of μB as large as 500:

$$\sigma(B) = \frac{\sigma(0)}{1 + (\mu B)^2}, \quad \frac{n e}{\mu \sigma(B)} \approx B^2 \text{ for } \mu B \gg 1. \quad (2)$$

The electron mobility was determined from the B^2 dependence of $\sigma^{-1}(B)$, as a function of density and temperature, and is in excellent agreement with previous $B = 0$ measurements by Mehrotra et al. [15]. The measured mobilities from 0.6 to 0.9 K are close to the theoretical values for a classical strongly correlated electron liquid [14], with scattering by both ripplons and 4He vapor atoms taken into account [14]. The mobility is slightly density-dependent, primarily because the electric field that presses electrons against the
helium surface increases with \(n \), and therefore so does the electron-ripplon coupling. The data is plotted as \(ne/\mu \sigma(B) \) vs. \(B \) (Fig. 2) or \(B^2 \) (Fig. 3) using the experimental values of \(\mu \) for each \(n \) and \(T \). For \(B < 0.5 \) T the data lie on the universal line, \(ne/\mu \sigma(B) = B^2 \) (line a in Figs. 2 and 3).

At this point we should stress that the simple-minded Drude model (2) effectively applies because of the internal electric fields \cite{8,14}. To understand the effect qualitatively, we notice that the many-electron system transfers its momentum to short-range scatterers via individual electron-scatterer collisions. In a certain range of the parameters, all that an electron “knows” about other electrons during a collision is the field \(\mathbf{E}_f \), and this field is time-independent if the collision is short enough. Then the Einstein relation for the conductivity applies:

\[
\sigma(B) = ne^2L^2\tau^{-1}(B)/kT,
\]

where \(L \equiv L(B) \) is the diffusion length and \(\tau^{-1}(B) \) is the relaxation rate. For \(\mu B \gg 1 \) the diffusion length is given by the mean radius \(\bar{R} \) of the cyclotron orbit, \(L^2 = \bar{R}^2/2 = (h/2eB)(2\bar{n} + 1) \), with \(\bar{n} = 1/[\exp(h\omega_c/kT) - 1] \).

It is the relaxation rate in (3) that is primarily affected by internal electric fields. For \(kT \gg eE_f\chi_T > h\omega_c \) (\(\chi_T = h/(2mkT)^{1/2} \)) the field \(\mathbf{E}_f \) smears out the Landau levels and thus eliminates the effects of their discreteness. Therefore \(\tau^{-1}(B) = \tau^{-1}(0) \), and the \(B \)-dependence of \(\sigma \) is given by that of \(L^2 = mkT/e^2B^2 \propto B^{-2} \), i.e. the many-electron theory gives \(en/\mu \sigma \) independent of \(n \) as observed, cf. the solid line a in Figs. 2 and 3. In contrast, in the single-electron picture the relaxation rate is increased by the density of states enhancement factor \(\omega_c \tau(B) \), since the states in the energy strip \(h\omega_c \) are “compressed” down to the Landau level collision width \(h\tau^{-1}(B) \). The total magnetoconductivity from the self-consistent Born approximation (SCBA) for ripplon \cite{16} and gas-atom scattering \cite{17} and their self-consistent combination \(\sigma_s = (\sigma_{rs}^2 + \sigma_{gs}^2)^{1/2} \) is plotted (line b) in Fig. 2 for \(n = 0.55 \times 10^{12}\text{m}^{-2} \) and \(T = 0.7 \) K. At 2 Tesla, the SCBA overestimates \(\sigma(B) \) by an order of magnitude.
A distinctive feature of the classical $\sigma(B)$ is saturation with increasing B. This arises because an electron in crossed \mathbf{E}_f and \mathbf{B} fields moves along a spiral with a step $\sim 2\pi E_f/B\omega_c$. The number of times it encounters a short range scatterer in the classically strong field B is then $N_{\text{enc}} \sim \lambda_T B\omega_c/2\pi E_f$ (λ_T is the uncertainty in the position of an electron). For $N_{\text{enc}} > 1$ one would expect the scattering rate, and thus $\sigma(B)$, to increase by a factor $\sim N_{\text{enc}} \propto B^2$, and we find (cf. Eq.(2))

$$\frac{ne}{\mu \sigma(B)} \approx \pi B_0^2, \quad B_0^2 = \left(\frac{2m^3kT}{e^2\hbar^2}\right)^{1/2} \langle \mathbf{E}_f^2 \rangle^{1/2}. \quad (4)$$

The saturation of $ne/\mu \sigma(B)$ is clearly seen in Figs. 2 and 3 for $B > 1.0$ T. The limiting value of $ne/\mu \sigma(B)$ increases with density (Fig. 2) and temperature (Fig. 3) and is directly proportional to the rms internal electric field, from Eq.(4). It is this which enables the internal field to be determined experimentally.

For $B \gtrsim 1$ T quantum effects become substantial. For $\hbar \omega_c \gg kT$ the diffusion length $L \approx (\hbar/2eB)^{1/2}$, and also $N_{\text{enc}} \sim (\hbar/eB)^{1/2} B\omega_c/2\pi E_f$, so that $ne/\mu \sigma(B) \propto B^{-1/2}$ decreases with increasing B. For higher $B \gtrsim 5$ T (depending on n and T) the duration of a collision $\tau_{\text{col}} \approx \tau(B)$ and this theory no longer applies.

Eq.(4) is written \[8\] for short-range scatterers (such as helium vapor atoms). In the case of scattering by ripplons, an extra factor arises which is numerically close to 1 for the experimental conditions here. Calculations of the magnetoconductivity for gas-atom and ripplon scattering were made using the full semiclassical many-electron theory in the range $\hbar \omega_c \gtrsim kT \ [14]$, with values of $\langle \mathbf{E}_f^2 \rangle$ taken from Fig. 1. The results for the total many-electron magnetoconductivity $\sigma_m = \sigma_{\text{rm}} + \sigma_{\text{gm}}$ are shown in Fig. 2 (lines c, d and e, increasing n) and Fig. 3 (lines b, c, d and e, increasing T), and show satisfactory agreement with the experiments for $\tau_{\text{col}} \ll \tau(B)$ (the extrapolation of the theoretical curves to the range $\tau_{\text{col}} \sim \tau(B)$ is shown dashed).

Conversely, the measured $\sigma^{-1}(B)$ at $B = 2$ T was used to obtain experimental values of the internal electric fields. This value of B is within the range of the applicability of the theory ($kT > eE_f(h/eB)^{1/2}$; $\hbar \omega_c > kT$) and is also far from the Drude region and the
region where collisional level broadening affects the scattering. The experimental values of \(\langle E_t^2 \rangle^{1/2} \) vs. \(E_0\) are shown in Fig. 4 (we renormalized \(E_0\) in Eq.(1) to allow for the dielectric constant of liquid helium). The points come from over 40 combinations of density and temperature between 0.6 and 0.9 K where the conductivity varies by more than an order of magnitude; no adjustable parameters have been used, and so the spread of the points may be considered to be within reasonable limits. Within the errors the measured field is \(\propto E_0\), with a constant of proportionality \(\nu = 3.11 \pm 0.10\). This can be compared with \(F^{1/2} = 3.07 \pm 0.03\) from the Monte Carlo simulations for the range \(20 < \Gamma < 70\) covered by the experiments. A slight decrease of \(\nu\) with decreasing \(T\) seen in Fig. 4 lies within the errors.

In conclusion, we have both computed and measured the internal electric fields in a nondegenerate 2D electron fluid, and the results are in excellent agreement. We show that, over a broad range of parameters, the magnitude and density dependence of the magnetoconductivity \(\sigma(B)\) of electrons on helium are determined by many-electron effects and can be understood qualitatively in terms of electron diffusion controlled by a fluctuational internal electric field.

We thank R. van der Heijden, P. Sommerfeld and O.Tress for useful discussions; the EPSRC (UK) for a Research Grant and for a Studentship (for PJR); the EU for support under contract CHRXCT 930374; A.K. Betts, F. Greenough and J. Taylor for technical assistance; D. Murphy, A. Jury, and the staff of the Southampton University Microelectronics Center and the lithography unit of the Rutherford Appleton Laboratory.
Bibliography

[*] Now at: Department of Physics, MIT, Cambridge, MA 02139.

[1] *Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids*, ed. by A.F.G. Wyatt and H.J. Lauter (Plenum, New York 1991); *2D Electron Systems on Helium and Other Substrates*, ed. by E. Andrei (Kluwer, New York 1995); for an introductory review see W.F. Vinen and A.J. Dahm, Physics Today 40, 43 (1987).

[2] (a) R.C. Gann, S. Chakravarti, and G.V. Chester, Phys. Rev. B, 20, 326 (1979); (b) J.P. Hansen, D. Levesque, and J.J. Weiss, Phys. Rev. Lett. 43, 979 (1979).

[3] C.C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979); D.S. Fisher, B.I. Halperin, and P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979); K. Shirahama and K. Kono, Phys. Rev. Lett. 74, 781 (1995).

[4] C.C. Grimes and G. Adams, Phys. Rev. Lett. 36, 145 (1976); D.B. Mast, A.J. Dahm, and A.L. Fetter, Phys. Rev. Lett. 54, 1706 (1985); D.C. Glattli, E. Andrei, G. Deville, G. Pointrenaud, and F.I.B. Williams, Phys. Rev. Lett. 54, 1710 (1985); P.J.M. Peeters, M.J. Lea, A.M.L. Janssen, A.O. Stone, W.P.N.M. Jacobs, P. Fozooni, and R.W. van der Heijden, Phys. Rev. Lett. 67, 2199 (1991).

[5] N.A. Krall and A.W. Trivelpiece, *Principles of Plasma Physics* (McGraw-Hill, New York 1973).

[6] C.A. Croxton, *Liquid State Physics — a Statistical Mechanical Introduction* (Cambridge University Press, Cambridge 1974).

[7] M.I. Dykman and L.S. Khazan, JETP 50, 747 (1979); M.I. Dykman, Sov. J. Low Temp. Phys. 6, 268 (1980); J. Frost, P. Fozooni, M.J. Lea, and M.I. Dykman, Europhys. Lett. 16, 575 (1991).

[8] M.I. Dykman, M.J. Lea, P. Fozooni, and J. Frost, Phys. Rev. Lett. 70, 3975 (1993); M.J. Lea and M.I. Dykman, Phil. Mag. B69 1059, (1994).
[9] M. J. Lea, P. Fozooni, P. J. Richardson and A. Blackburn, Phys. Rev. Lett. 73, 1142 (1994).

[10] Y. Iye, J. Low Temp. Phys. 40, 441 (1980)

[11] S. Edel'man, Sov. Phys. JETP 50, 338 (1979); L. Wilen and R. Giannetta, Phys. Rev. Letts 60, 231 (1988).

[12] Yu. Z. Kovdrya, V. A. Nikolayenko, O. I. Kirichek, S. S. Sokolov, and V. N. Grigor'ev, J. Low Temp. Phys. 91, 371 (1993); J. Neuenschwander, W. Joss, and P. Wyder, Helv. Phys. Acta 65, 325 (1992); Physica B 194-196, 1231 (1994).

[13] M. I. Dykman, J. Phys. C 15, 7397 (1982).

[14] M. I. Dykman, C. Fang-Yen, and M. J. Lea, to be published.

[15] R. Mehrotra, C. J. Guo, Y. Z. Ruan, D. B. Mast and A. J. Dahm, Phys. Rev. B 29, 5239 (1984).

[16] M. Saitoh, J. Phys. Soc. Japan 42, 201 (1977); Solid State Commun. 52, 63 (1984); V. A. Buntar', Yu. Z. Kovdrya, V. N. Grigoriev, Yu. P. Monarkha and S. S. Sokolov, Sov. J. Low Temp. Phys 13, 451 (1987).

[17] T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982); R. W. van der Heijden, M. C. M. van de Sanden, J. H. G. Surewaard, A. Th. A. M. de Waele, H. M. Gijsman and F. M. Peeters, Europhys. Lett. 6, 75 (1988); P. J. M. Peters, P. Scheuzger, M. J. Lea, Yu. P. Monarkha, P. K. H. Sommerfeld, and R. W. van der Heijden, Phys. Rev. B 50, 11570 (1994).
Figure Captions

Fig. 1. The scaled mean square field $F(\Gamma)$ from Monte Carlo calculations. The asymptotic value of F for a harmonic Wigner crystal is shown dashed. Inset: the field component distribution.

Fig. 2. $ne/\mu\sigma(B)$ versus B for $n = 0.55 (\circ)$, 0.88 (\triangledown) and 1.89 (\square) $\times 10^{12}$ m$^{-2}$ at 0.7 K. The mobility $\mu = 985, 830$ and 520 ± 20 m2/Vs, respectively. Solid lines a (low B) and c – e (high B) show many-electron calculations. Inset: Corbino electrode geometry.

Fig. 3. $ne/\mu\sigma(B)$ versus B^2 for $T = 0.6 (\circ)$, 0.7 (\square), 0.8 (\triangledown) and 0.9 K(\circ). The mobility $\mu = 755, 620, 430$ and 250 ± 15 m2/Vs, respectively. Lines a (low B) and b – e (high B) show many-electron calculations.

Fig. 4. Values of the internal field $\langle E_f^2 \rangle^{1/2}$ versus E_0 at 0.6 (\circ), 0.7 (\square), 0.8 (\triangledown) and 0.9 K(\circ). Solid line shows the best linear fit with $\langle E_f^2 \rangle^{1/2} = 3.11E_0$.
