The conserved upstream region of IscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae

Shaunak Khandekar1*, Abhishek Srivastava1,2, Daniel Pletzer1, Antje Stahl1 and Matthias S Ullrich1

Abstract

Background: Pseudomonas syringae pv. glycinea PG4180 is an opportunistic plant pathogen which causes bacterial blight of soybean plants. It produces the exopolysaccharide levan by the enzyme levansucrase. Levansucrase has three gene copies in PG4180, two of which, lscB and lscC, are expressed while the third, lscA, is cryptic. Previously, nucleotide sequence alignments of lscB/C variants in various P. syringae showed that a ~450-bp phage-associated promoter element (PAPE) including the first 48 nucleotides of the ORF is absent in lscA.

Results: Herein, we tested whether this upstream region is responsible for the expression of IscB/C and IscA. Initially, the transcriptional start site for IscB/C was determined. A fusion of the PAPE with the ORF of lscA (lscBUpA) was generated and introduced to a levan-negative mutant of PG4180. Additionally, fusions comprising of the non-coding part of the upstream region of IscB with lscA (lscBUpA) or the upstream region of lscA with IscB (lscAUpB) were generated. Transformants harboring the lscBUpA or lscBUpA fusion, respectively, showed levan formation while the transformant carrying lscAUpB did not. qRT-PCR and Western blot analyses showed that lscBUpA had an expression similar to IscB while lscAUpB had a lower expression. Accuracy of protein fusions was confirmed by MALDI-TOF peptide fingerprinting.

Conclusions: Our data suggested that the upstream sequence of IscB is essential for expression of levansucrase while the N-terminus of LscB mediates an enhanced expression. In contrast, the upstream region of IscA does not lead to expression of IscB. We propose that IscA might be an ancestral levansucrase variant upstream of which the PAPE got inserted by potentially phage-mediated transposition events leading to expression of levansucrase in P. syringae.

Keywords: Pseudomonas syringae, Levansucrase, Expression, Exopolysaccharides, Levan, Evolution

Background

Pseudomonas syringae comprises a large and well-studied group of plant-pathogenic bacteria [1]. They infect a broad range of host plants and are subvided into more than 50 different pathogenic variants called pathovars [2]. P. syringae possesses a number of well-studied virulence and pathogenicity factors such as the Type III effector trafficking system, various phytotoxins, different mechanisms suppressing the plant defense, or synthesis of exopolysaccharides [3-5]. Exopolysaccharides play a variety of roles in virulence and pathogenicity not only in Pseudomonas but also in other biofilm-producing organisms [6,7]. The two major exopolysaccharides produced by P. syringae pv. glycinea are alginate and levan [7]. Levan is a β-(2,6) polyfructan with extensive branching through β-(1,2) linkages, while alginate is a copolymer of O-acetylated β-(1,4)-linked D-mannuronic acid and its C-5 epimer, L-guluronic acid [7-10].

P. syringae pv. glycinea PG4180 causes bacterial blight of soybean plants. Like some other Pseudomonas species, this organism utilizes sucrose as a carbon source with the help of the enzyme levansucrase (EC 2.4.1.10, Lsc), in the process releasing glucose and forming the exopolysaccharide levan. PG4180 produces no alginate due to a native frameshift mutation in the algT gene and hence, the exopolysaccharide matrix of this strain is mainly composed of levan [11]. Additionally to several draft genome sequences [12-18], the complete genome sequences of three P. syringae pathovars are available, namely pv. tomato DC3000 [19], pv. phaseolicola 1448A [20] and pv. syringae B728a...
[21]. These strains serve as excellent model organisms to study plant-microbe interactions. Like in some other *P. syringae* pathovars, the PG4180 genome contains three copies of the *lsc* gene, of which two – *lscA* and *lscC* – are chromosomally encoded while *lscB* is plasmid-encoded. Of the three copies, only *lscB* and *lscC* have been shown to be expressed while no expression was observed for *lscA* under the tested growth conditions since a mutant, PG4180.M6, lacking *lscB* and *lscC* but containing *lscA* was levan-negative [10]. Interestingly, the ORF coding for LscA is fully functional since this gene from pv. glycinea, and its homologues from pv. phaseolicola and pv. tomato, could be expressed from recombinant promoters in *Escherichia coli* [9,22]. Even though LscB is predominantly extra-cellular and LscC is predominantly retained in the periplasm, the two enzymes are 98% identical at the amino acid level [23]. There are only five amino acid residues different, four of which are conserved changes. Since the enzymes are highly similar in their structure as well as function, all experiments in this study were done using *lscB* only.

As reported by Srivastava *et al.* [24], nucleotide sequence comparison of the *lscA* variants with those of *lscB/C* variants of *P. syringae* pathovars showed that the first 48-bp of the N-terminus of the ORF *lscB/C* were absent in *lscA*. In silico removal of this N-terminal region increased the identity from 87.5% to 93% at the amino acid residue sequence level between LscA and B/C variants. The comparison also showed that a ~450-bp upstream region, which is highly conserved in all *lscB/C* variant loci, is missing upstream of *lscA*. This region spanning from ~450-bp to +48-bp with respect to the translational start site of *lscB/C* was predicted to be a pro-phage borne DNA based on sequence similarities and hence was termed phage-associated promoter element (PAPE) [24].

P. syringae is the only Lsc-synthesizing organism having multiple gene copies coding for this enzyme. The rationale for the occurrence of multiple *lsc* gene copies, some of which carry upstream PAPEs, remained obscure and prompted the current study, during which the transcriptional start site of *lscB/C* was determined to be -339 bp upstream to the translational start codon. Subsequently, the PAPE with or without the N-terminal coding sequence was fused to *lscA*. Additionally, the upstream region of *lscA* was fused with the coding sequence of *lscB* while *lscB* and *lscA* with their native upstream sequences served as controls. All fusion constructs were expressed in the levan-negative mutant PG4180.M6 [10], and tested for their levan formation ability by zymographic detection followed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) analysis as well as by Western blotting. Furthermore, the expression of the fusions at the mRNA level was checked by qRT-PCR analysis. In addition, a PCR approach with cDNA was undertaken to show that the expression of *lscA* is also cryptic in other *P. syringae* pathovars.

Results

Determination of the transcriptional start site of *lscB*

The coding regions and upstream sequences of *lscB/C* are highly identical to each other (98.1% DNA identity for the coding sequences and 97.5% DNA identity for the 500-bp upstream sequences). As shown by Srivastava *et al.*, a deletion construct ending at position ~332-bp with respect to the *lscB* translational start codon does not lead to levan formation in levan negative mutant PG4180.M6 while the construct ending ~440-bp leads to levan formation in the same mutant [24]. Consequently, primer extension experiments using total RNA from PG4180 cells and a set of reverse oligonucleotide primers were used to determine the transcriptional start site (TSS) of the *lscB* gene. Resolving the extension products on a polyacrylamide gel resulted in a clear signal at nucleotide position ~339-bp upstream of the translational start codon of *lscB* (Figure 1). The experiments were repeated for *lscC* giving identical results (Data not shown).

Qualitative analysis of *lsc* fusion proteins

The fusion constructs were introduced to the levan-negative mutant PG4180.M6 and were first analyzed...
for their levan forming ability on sucrose supplemented mannitol-glutamate agar plates. Both, the PG4180.M6 mutant complemented with lscB_{UpNA} and lscB_{UpA}, showed levan formation indistinguishable from that of the PG4180. M6 mutant complemented with lscB (Figure 2). In contrast, PG4180.M6 complemented with lscA_{UpB} was levan negative, same as PG4180.M6 transformed with lscA, thus, suggesting that the upstream region of lscB mediates expression of downstream located genes while that of lscA does not.

Characterization of lsc fusion proteins
To verify the molecular sizes of Lsc encoded by the individual fusion constructs, a Western blot analysis using Lsc-specific antibodies was performed (Figure 3a). Under denaturing conditions, it was interesting to observe that LscB_{UpNA} migrated at an intermediate rate i.e. faster than LscB but slower than LscB_{UpA}. The signal for LscB_{UpA} was weaker than those representing LscB or LscB_{UpNA} suggesting that the N-terminus of LscB might contribute to the expression level or stability of Lsc. In contrast, protein samples of PG4180.M6 transformed with LscA or LscA_{UpB} did not show any signal specific for Lsc at all thus confirming that lack of levan formation was due to lack of the corresponding protein.

To check for the enzymatic function of Lscs encoded by the individual fusion constructs, zymographic detection was done with non-denatured total protein samples of transformed mutants (Figure 3b). The above reported levan forming ability of transformants M6(lscB), M6(lscB_{UpNA}) and M6(lscB_{UpA}) could be attributed to the enzymatic functioning of proteins or fusion proteins. As expected, native protein samples derived from M6(lscA) or M6 (lscA_{UpB}) did not exhibit any in-gel levan production (Figure 3b). An interesting observation was the altered electrophoretic mobility of the enzymatically active proteins. The LscB_{UpNA} migrated slower as compared to LscB even though the predicted molecular masses of both proteins were almost identical (~47.6 kDa) suggesting possible differences in the respective protein charges. In accordance with the Western blot results, LscB_{UpA} seemed to be less expressed than LscB or LscB_{UpNA} suggesting an important role of the N-terminus for transcriptional or translational processes.

MALDI-TOF analysis
The altered electrophoretic migration rate of LscB_{UpNA} as compared to LscB during the native gel protein separation suggested that the two proteins were indeed different although their predicted protein sizes were almost identical. To demonstrate that LscB_{UpNA} produced a unique and novel enzyme and to show that the other two transformants indeed also produced the intended Lsc proteins, we subjected the levan-forming fusion proteins to MALDI-TOF analysis. The peptides recovered in the MALDI-TOF analysis are shown in Figure 4. The recovered peptides gave rise to an overall good coverage in the protein sequences (Table 1). Some of the peptides recovered were unique to each protein (Figure 4, underlined). E.g., peptides SFVQEVYDGYIPAM from LscB_{UpNA} and SFVQEEYDYGYPAM from LscB were located at the same position, namely 413–427, in the respective amino acid sequences.
of these proteins but had different masses, 1,782 Da as compared to 1,812 Da, indicating they were from different proteins. Similar differences were observed for the other peptide sequences shown in the Figure 4 indicating that the fusion constructs indeed led to the synthesis of novel fusion proteins or of the proteins intended despite the presence of similar upstream regions.

Analysis of lscA fusion protein expression by qRT-PCR

The difference in the amount of levan produced by LscBUpA as compared to LscBUpNA and LscB in the zymogram prompted us to check if this correlated at the RNA level. Samples were grown in HSC medium at 18°C and harvested at OD600 of 0.5 since lsc transcription is maximum at this optical density [23]. The total RNA was extracted from the cells and the expression of lscB and lscAUpB was checked by lscB-specific primers while that of lscA, lscBUpNA and lscBUpA was checked by lscA-specific primers. The results showed that, considering the standard deviation obtained for the samples, the lscBUpNA had expression levels similar to lscB (Figure 5) further supporting the results of the Western blot and zymogram. On the other hand lscBUpA had only 60% expression as compared to lscB. As was the trend seen in the Western blot and zymogram, lscA and lscAUpB had no expression. This indicated that even though the upstream region of lscB is sufficient to promote the expression of lsc, the expression level is enhanced by the presence 48-bp N-terminus of lscB.

Analysis of native gene expression of lscA in P. syringae pathovars

Lack of expression of lscA had been shown before in P. syringae pv. glycinea PG4180 [10]. However, this has not been experimentally proven for other P. syringae pathovars. Consequently, possible expression patterns of lscA variants were also analyzed in the three P. syringae pathovars pv. phaseolicola 1448A, pv. syringae B728a and pv. tomato DC3000 using cDNA synthesis and PCR. No amplicon was detected in any of the four strains as shown in Figure 6 indicating that none of the lscA variants are expressed. The specificity of the primers was demonstrated by amplifying the lscA genes from corresponding genomic

Table 1 Proteins identified by MALDI-TOF analysis

NCBI accession number/gi	Protein description	Predicted molecular mass (Da)	Significant hit	MASCOT score	Peptides matched	Sequence coverage (%)
13936820	LscB	47,603	LscB	101	10	31
3914944	LscB_{UpNA}	47,621	LscA	110	12	33
416026576	LscB_{UpA}	45,844	LscA	110	8	19

Figure 4 Amino acid sequence alignment of LscB_{UpNA}, LscB and LscB_{UpA}. Fragments in bold indicate peptides recovered from MALDI-TOF analysis. The underlined fragments indicate recovered peptides which are unique to that protein.
DNA, all of which gave amplicons of the expected sizes. The accuracy of reverse transcription was checked by amplifying a cDNA of a PG4180.M6 transformant carrying a recombinant lscA gene under the control of Plac, where lscA is known to be expressed [10]. Successful cDNA synthesis of total mRNA was also demonstrated by PCR amplifying the cDNA derived from the mRNA of the hexR gene, a hexose metabolism regulator [25]. Gene hexR gave an amplicon of expected size (Figure 6) indicating correct cDNA synthesis.

Discussion

Genomic co-existence of three highly conserved genes coding for levansucrase is a feature unique to the plant pathogen P. syringae despite the fact that numerous other bacterial species harbor just a single copy of this gene in their genomes. Artificial expression of lscA from P. syringae under the control of Plac had been shown previously [10]. The same study also showed that lscA could not be expressed under its own promoter. Major differences between lscA and the natively expressed genes lscB and lscC are not found in the coding sequences but in their upstream DNA regions. The upstream regions of lscB and lscC represent a possible PAPE [24]. We previously hypothesized that this PAPE might harbor regulatory sites required for expression of levansucrase and general sugar metabolism in P. syringae. Herein, the PAPE of lscB was fused to the coding sequence of lscA and thus proven for its transcriptional activity in P. syringae.

The nucleotide sequence of the predicted PAPE consists of two parts, the upstream region of lscB and the first 48-bp coding for the N-terminus of LscB. lscBUpNA shows similar levels of expression as lscB while lscBUpA, which does not contain the first 48 bp of lscB ORF, has lower expression. lscA and lscAUpB were not seen to be expressed. lscA, lscBUpA, and lscBUpA were detected using lscA primers while the rest using lscB primers. The data represent the mean relative expression of 3 replicates ± standard deviations. Data were normalized to the highest expression value of lscB, which was set to 100%.

![Figure 5](image-url) **Figure 5** Quantitative expression of different lsc genes and constructs in dependence of lscB. lscBUpNA shows similar levels of expression as lscB while lscBUpA, which does not contain the first 48 bp of lscB ORF, has lower expression. lscA and lscAUpB were not seen to be expressed.

![Figure 6](image-url) **Figure 6** Expression of lscA in different P. syringae pathovars.

The bacterial cells were harvested at OD600 of 0.5 and 2.0. Total RNA was extracted as described in the Materials and Methods followed by generation of cDNA. PCR amplification of lscA fragment on the total cDNA using strain-specific primers showed no amplicon (lscA panel) indicating no expression of lscA. Quality of the primers was checked by performing PCR amplification using genomic DNA (gDNA) as template. Amplification using an unrelated gene hexR (hexR) and artificially expressed lscA by Plac [M6(pRA3.1)] signified correct reverse transcription.
as compared to LscB under denaturing conditions could potentially be attributed to the apparent mass shift for two proteins with nearly identical molecular masses as described earlier [26]. Interestingly, the migration of LscB_{UpNA} was significantly slower than that of LscB under native conditions. This finding might demonstrate that modest changes in the protein's surface charge might result in significant alterations of electrophoretic mobility [22,27,28].

Although the different migration rates of the proteins or fusion proteins under native or denaturing conditions suggested that the synthesized proteins were indeed different from each other, a MALDI-TOF analysis of each of the proteins was conducted using protein samples from zymograms. The produced levan surrounding the proteins did not seem to impact mass spectrometric analysis. The MASCOT score for each of the identified proteins was above the significance threshold of 100. The sample from the PG4180.M6_(lscB) sample gave LscB from <i>P. syringae</i> pv. phaseolicola 1448A as the first significant match which was in line with the high homology of the respective genes in the close relatives pv. glycinea and pv. phaseolicola [24]. The sample from PG4180.M6_(lscB_{UpA}) which should synthesize only LscA gave the first significant match as LscA from <i>P. syringae</i> pv. glycinea race 4 strain. This proved that the <i>lscB</i>_{UpA} fusion actually synthesized an active LscA and confirmed earlier findings that artificial LscBUpNA was significantly slower than that of LscB described earlier [26]. Interestingly, the migration of potentially be attributed to the apparent mass shift for as compared to LscB under denaturing conditions could serve hexose metabolism regulator protein HexR, was correctly. An independent gene, DNA as template, proved that the primers were binding successfully. In this study, we have potentially solved the previously unexplainable phenomenon that <i>P. syringae</i> is the only organism possessing multiple levansucrase-encoding genes. We demonstrated the importance of the upstream region as well as the N-terminus of lscA expression. With careful controls, herein we also demonstrated that lscA is not expressed in other <i>P. syringae</i> pathovars.

Conclusions
The differential expression of levansucrases in <i>P. syringae</i> was long known, but not tested. In this study, we have potentially solved the previously unexplainable phenomenon that <i>P. syringae</i> is the only organism possessing multiple levansucrase-encoding genes. We demonstrated the importance of the upstream region as well as the N-terminus of lscB/C required for the expression of Lsc in <i>P. syringae</i>. The upstream region of lscA does not seem to promote lsc expression. With careful controls, herein we also demonstrated that lscA is not expressed in other <i>P. syringae</i> pathovars.

Methods
Bacterial strains, plasmids and growth conditions
Bacterial strains, plasmids and oligonucleotides used in this study are listed in Tables 2 and 3. Each strain was grown on Lysogeny Broth (LB) medium at 37°C. <i>P. syringae</i> cultures were grown in HSC medium (0.8 mM MgSO₄·7H₂O, 30 mM KH₂PO₄, 16 mM K₂HPO₄, 2 mM KNO₃, 20 μM FeCl₃, 19 mM NH₄Cl, 100 mM glucose) at 18°C. Bacterial
growth in liquid media was monitored by measuring the optical density at 600 nm (OD_{600}) and harvested for (i) protein sampling at an OD_{600} of 2.0 or (ii) RNA extraction and cDNA synthesis at an OD_{600} of 0.5 and 2.0. Antimicrobials were added to the media at the following concentrations (μg ml^{-1}): ampicillin 50; tetracycline 25, and chloramphenicol 25.

Molecular genetic techniques
Plasmid isolation, restriction enzyme digests, agarose and polyacrylamide gel electrophoreses, electroporation, PCR, and other routine molecular methods were performed using standard protocols [31]. Nested deletion analysis of the upstream region of \textit{lscB} in plasmid pRB7.2 [10] was conducted using the Erase-a-Base kit (Promega, Madison, USA). For analysis of the \textit{lsc} upstream regions, PCR was used to generate products covering the respective regions (Table 3). PCR products of the \textit{lsc} upstream regions were cloned in vectors pBBR1MCS or pBBR1MCS-3 [36].

Determination of transcriptional start site
Bacteria were incubated in HSC medium at 18°C to an OD_{600} of 0.5 and harvested by mixing 15 ml of the culture with an equal volume of chilled killing buffer (20 mM Tris–HCl [pH 7.5], 20 mM NaN_3). This mixture was centrifuged at 4°C for 15 min at 3,220 × g. Total RNA was isolated from the cell pellets by acid phenol/ chloroform extraction as described previously [37]. For primer extension analysis, 4 pmol of 32P-labeled primer pe.BC.PG ~ 150 bp (Table 3) were annealed with 10 μg of total RNA and reverse transcription was performed with M-MLV Reverse Transcriptase (Invitrogen, Karlsruhe, Germany). Nucleotide sequencing using 5 μg of plasmid pLB7.2 (Table 2) and primer pe.BC.PG ~ 150 bp was done with the Sequenase Version 2.0 DNA Sequencing Kit (USB, Cleveland, USA) according to the manufacturer’s recommendation. The extension product and sequencing reaction were resolved on a 6% polyacrylamide sequencing gel. Signal detection was performed using a FLA-3000 phosphorimager (Raytest, Straubenhardt, Germany) according to the manufacturer’s recommendations.

Generation of fusion constructs
All genes or DNA fragments were obtained by PCR amplification unless otherwise stated. All restriction enzymes used were obtained from Thermo Fisher Scientific Biosciences (St. Leon Rot, Germany). The nucleotide sequencing was done by Eurofins MWG Operon (Ebersberg, Germany).

Table 2 Bacterial strains and plasmids used in this study

Strain	Description	Reference or source	
\textit{Pseudomonas syringae}	pv. glycinea PG4180	Wild type, levan+	R. Mitchell
	pv. phaseolicola 1448A	Wild type, levan+	[33]
	pv. syringae B728a	Wild type, levan+	[34]
	pv. tomato DC3000	Wild type, levan+	D. Cuppels

\begin{table}
\begin{tabular}{ll}
\textit{Pseudomonas syringae} pv. glycinea PG4180 & \\
PG4180.M6 & \text{Sp', Gm',} \textit{lscB} \textit{lscC} mutant of PG4180, levan- \[10\] \\
PG4180.M6(pRA3.1) & \text{Sp', Gm', Tc',} \textit{lscB} \textit{lscC} mutant of PG4180, containing \textit{lscA} under control of \textit{P}_{\text{lac}} on 3.1-kb \text{PstI} fragment in pRK415 \[10\] \\
\textit{Escherichia coli} & \\
DH5a & supE44 \text{DiaC169} (F80 lacZDM15) \text{hsdR17 recA1 endA1 gmr96 thi-1 relA1} [31] \\
Plasmids & \\
pRK2013 & \text{Km', helper plasmid} [35] \\
pLB7.2 & Ap', contains \textit{lscB} on 7.2-kb EcoRV insert \[10\] \\
pBBR1MCS & \text{Cm', broad-host-range cloning vector} [36] \\
pBBR1MCS-3 & \text{Tc', broad-host-range cloning vector} [36] \\
pBBR3-500-lscB & \text{Tc',} \textit{lscB} \text{gene with} \sim500\text{-bp upstream sequence in pBBR1MCS-3} [24] \\
pBBR3(lscA) & \text{Tc',} \textit{lscA} \text{gene containing insert from pRA3.1 in pBBR1MCS-3 not under control of} \textit{P}_{\text{lac}} \text{This study} \\
pBBR3(lscB\text{,}lscA) & \text{Tc', fusion of} \sim18\text{-bp upstream region of} \textit{lscB} \text{(including first} 48\text{-bp of coding region) and} \textit{lscA} \text{(including start codon and downstream region) in pBBR1MCS-3} \text{This study} \\
pBBR3(lscB,\text{?A}) & \text{Tc', fusion construct of} \sim470\text{-bp upstream region of} \textit{lscB} \text{(without} N\text{-terminus) and} \textit{lscA} \text{(including start codon and downstream in pBBR1MCS-3} \text{This study} \\
pBBR3(lscB,\text{?B}) & \text{Tc', fusion of} \sim550\text{-bp upstream region of} \textit{lscA} \text{and} \textit{lscB} \text{(including start codon and downstream region) in pBBR1MCS-3} \text{This study} \\
\end{tabular}
\end{table}

Ap, Ampicillin; Cm, Chloramphenicol; Gm, Gentamycin; Km, Kanamycin; Sp, Spectinomycin; Tc, Tetracycline; ', resistant.
Generation of lscB_UpNA and lscB_UpA: The sequences of the 518-bp PAPE and the 470-bp lscB upstream region without the 48-bp coding sequence, respectively, were ligated to the N-terminus of the 1,704-bp PCR-amplified ORF lscB and subsequently ligated into pBluescript-SK(-). The constructs were cloned into pBBR1MCS using restriction enzymes BamHI and HindIII to keep the same opposite orientation with respect to P_Iac as in case of pBBR1MCS.

Immunological and enzymatic detection of Lsc
Total proteins from PG4180.M6 and PG4180.M6 transformants harboring the lsc fusion constructs were obtained as described previously [23]. For immunological detection of the Lsc enzyme, total proteins were separated by 10% SDS-PAGE and Western blot experiments were performed with total protein fractions using polyclonal antibodies raised against purified Lsc as reported earlier [10]. Zymographic detection of Lsc was done as described previously by separating the total proteins by 10% native-PAGE and incubating the gels in 5% sucrose solution [10]. Bacterial cells grown on mannitol-glutamate agar plates with 1.5% agar and 5% sucrose were used for the qualitative visualization of Lsc activity, which led to levan formation in form of a mucoid, dome-shaped colony morphology.

MALDI-TOF mass spectrometric analysis
Total proteins were separated using 10% native-PAGE and incubated in 5% sucrose solution overnight [10]. As soon as in-gel levan formation became apparent, the corresponding bands were cut out from the gel and subjected to an in-gel proteolytic cleavage using modified porcine trypsin (Promega, Madison, WI) as adapted from
previous reports [38-40]. Trypsin digestion was carried out for 12–16 h at 37°C, and peptide samples were directly used for MALDI-TOF MS exposure using an Autoflex II TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with a 337 nm nitrogen laser and operated with FlexControl 3.0 software. The matrix used was 1 mg ml⁻¹ of a-cyano-4-hydroxycinnamic acid (HCCA; Bruker Daltonics) dissolved in acetone and mixed with two volumes of ethanol. Peptide samples were acidified with 0.5% TFA in a ratio of 1:1 (v/v) and mixed with the HCCA solution in a ratio of 1:1 (v/v). Samples of 0.5 μL were spotted and air-dried on MTB AnchorChip targets with an anchor diameter of 600 μm (Bruker Daltonics). Spots were twice rinsed with 2 μL of 10 mM monobasic ammonium phosphate solution for ~5 s, dried, and exposed to MALDI-TOF MS in positive-ion reflection mode with the laser offset set to 67% +/− 15% and an acquisition range of 800–4,000 Da. A signal-to-noise ratio of 6 was applied for peak identification using the Mascot search engine [41] from Biotools software 3.1. Mass lists were compared with NCBI databases and the Mascot score probability set for p <0.05. Peptide sequence analyses were done using the ExPASy bioinformatics resource portal [42].

Analysis of lsc gene expression by quantitative Reverse Transcriptase polymerase chain reaction (qRT-PCR)

Total RNA was isolated by acid phenol/chloroform extraction as described previously [11]. The yield and the purity of RNA were determined by measuring absorption at 260 nm. Total mRNA samples were treated with TURBO DNA-free (Applied Biosystems, Darmstadt, Germany) to remove remaining traces of genomic DNA as described by the manufacturer’s recommendation. SYBR-green based qRT-PCR was performed with 5 ng RNA template and 100 μM primer with QuantitTect SYBR Green one-step RT-PCR Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The thermocycler program comprised an initial step of 95°C for 15 min followed by 40 cycles of 95°C for 30 s, 58°C for 30 s, 72°C for 30 s. Reactions were performed with biological triplicates in a Mastercycler ep realplex2 real-time PCR system (Eppendorf, Hamburg, Germany) as described by the manufacturer using their universal program. Reactions with no addition of reverse transcriptase served as negative control and proved the absence of DNA contamination. Specificity of amplification was assessed by analyzing the melting curve of the amplification product. Primers to amplify lscB were used for constructs lscB and lscA1UpB while primers to amplify lscA were used for constructs lscA, lscBUpNA and lscBUpA. All the results were normalized to amplification of the cDNA of gyrA (PSPPH3667) as described previously [43].

Analysis of lscA gene expression by Reverse-Transcriptase polymerase chain reaction (RT-PCR)

Template-specific primers were designed for the respective lscA variants of P. syringae pv. glycinea PG4180, pv. phaseolicola 1448A, pv. syringae B728a, and pv. tomato DC3000. Bacterial cells were grown in HSC medium and harvested at an OD600 of 0.5 as well as 2.0. RNA was extracted by acid phenol/chloroform extraction method [11]. An RT-PCR was performed on total mRNA using RevertAid First Strand cDNA Synthesis Kit (Fermentas) as recommended by the manufacturer. The strain-specific lscA primers were used to check for presence of an lscA mRNA by PCR using cDNA as template. Regular PCR with the same primer-pairs and genomic DNA as template were used as controls. The thermocycler program was as follows: 1 cycle of 95°C for 90 s; 25 cycles of 95°C for 15 s, 66°C for 15 s, 72°C for 30 s; 1 cycle of 72°C for 5 min. The results were analyzed by 1% agarose gel electrophoresis.

Bioinformatics analyses

Vector NTI Advance 10.1.1 (Life Technologies, California, USA) was used for the nucleotide, amino acid sequence alignments, as well as for generating genetic maps. BLAST-N and BLAST-P programs were used for online sequence analyses [44]. The website www.pseudomonas.com was consulted for the determination of P. syringae gene orthologs and paralogs [45].

Abbreviations

Lsc: Levansucrase; MALDI-TOF: Matrix-assisted laser desorption/ionization-time of flight; PAPE: Phage-associated promoter element; PG4180: Pseudomonas syringae pv. glycinea PG4180.

Competing interests

All authors of the study (SK, ASr, DP, ASi and MU) declare that there are no competing interests (whether political, personal, religious, ideological, academic, intellectual or commercial) or any other activities influencing the work.

Authors’ contributions

SK generated the fusion constructs, performed the levan formation, Western blot, zymogram, RT-PCR and qRT-PCR assays; ASi determined the transcriptional start site; DP generated and analysed a fusion construct; ASi conducted the MALDI-TOF data acquisition and analysis; MU coordinated the study; SK and MU prepared and revised the manuscript draft. All authors contributed to the preparation and approval of the final manuscript.

Authors’ information

SK – Department of Molecular Microbiology, Molecular Life Sciences Research Center, Jacobs University Bremen, Germany; ASr - Current Address: Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; DP – Department of Biochemical Engineering, Molecular Life Sciences Research Center, Jacobs University Bremen, Germany; ASi – Department of Molecular Microbiology, Molecular Life Sciences Research Center, Jacobs University Bremen, Germany; MU – Department of Molecular Microbiology, Molecular Life Sciences Research Center, Jacobs University Bremen, Germany.

Acknowledgements

We thank Helge Weingart for his helpful comments and Ramesh Mavathur for his help with Sanger sequencing. This study was supported by the Deutsche Forschungsgemeinschaft (UL-169/5-1).
6. Denny TP: Involvement of bacterial polysaccharides in plant

72. Khandekar et al. BMC Microbiology 2014, 14:79

http://www.biomedcentral.com/1471-2180/14/79

Page 10 of 11

Author details
1 Molecular Life Sciences Research Center, Jacobs University Bremen, Campus
Ring 1, Bremen 28759, Germany. 2 Current Address: Department of
Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland
Fisheries, Alte Fischerhuette 2, Stechlin 16775, Germany.

Received: 22 January 2014 Accepted: 19 March 2014 Published: 27 March 2014

References

1. Mansfield J, Genin S, Magori S, Citovsky V, Sniryanum M, Ronald P, Dow M,
Verder V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD: Top
plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol
2012, 13:614–629.

2. Young J, Saddler G, Takikawa Y: Bacterial blight of soybean: regulation
of a pathogen gene determining host cultivar specificity. Science 1989,
245:1374–1377.

3. Denny TP: Involvement of bacterial polysaccharides in plant
pathogenesis. Annu Rev Phytopathol 1995, 33:173–197.

4. Osnar SF, Fett WF, Fishman ML: Exopolysaccharides of the phytopathogen
Pseudomonas syringae pv. glycinea. J Bacteriol 1986, 166:666–71.

5. Gross M, Rudolph K: Studies on the extracellular polysaccharides (EPS)
produced in vitro by Pseudomonas phaseolicola. Cell Mol Life Sci 2010, 7:290–301.

6. Huyhn T, Dahlbeck D, Staskawicz B: Bacterial blight of soybean: regulation
of a pathogen gene determining host cultivar specificity. Science 1989,
245:1374–1377.

7. Denny TP: Involvement of bacterial polysaccharides in plant
pathogenesis. Annu Rev Phytopathol 1995, 33:173–197.

8. Orman SF, Fett WF, Fishman ML: Exopolysaccharides of the phytopathogen
Pseudomonas syringae pv. glycinea. J Bacteriol 1986, 166:666–71.

9. Gross M, Rudolph K: Studies on the extracellular polysaccharides (EPS)
produced in vitro by Pseudomonas phaseolicola. Cell Mol Life Sci 2010, 7:290–301.

10. Huyhn T, Dahlbeck D, Staskawicz B: Bacterial blight of soybean: regulation
of a pathogen gene determining host cultivar specificity. Science 1989,
245:1374–1377.

11. Denny TP: Involvement of bacterial polysaccharides in plant
pathogenesis. Annu Rev Phytopathol 1995, 33:173–197.

12. Orman SF, Fett WF, Fishman ML: Exopolysaccharides of the phytopathogen
Pseudomonas syringae pv. glycinea. J Bacteriol 1986, 166:666–71.

13. Gross M, Rudolph K: Studies on the extracellular polysaccharides (EPS)
produced in vitro by Pseudomonas phaseolicola. Cell Mol Life Sci 2010, 7:290–301.

14. Huyhn T, Dahlbeck D, Staskawicz B: Bacterial blight of soybean: regulation
of a pathogen gene determining host cultivar specificity. Science 1989,
245:1374–1377.
vector pBBR1MCS, carrying different antibiotic-resistance cassettes.

Gene 1995, 166:175–176.

37. Schenk A, Weingart H, Ullrich MS: Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 2008, 9:227–235.

38. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006, 1:2856–2860.

39. Speicher KD, Kolbas O, Harper S, Speicher DW: Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech. JBT 2000, 11:74–86.

40. Granvogl B, Ploescher M, Eschacker LA: Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 2007, 389:991–1002.

41. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20:3551–3567.

42. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Giardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H: ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 2012, 40:W597–W603.

43. Vencato M, Tian F, Alfaro JR, Buell CR, Cantinrou SR, DeClerck GA, Gutman DS, Stavrinides J, Ioanard V, Lindenberg M: Bioinformatic-enabled identification of the HrPl regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact 2006, 19:1193–1206.

44. Mount DW: Using the Basic Local Alignment Search Tool (BLAST). In Bioinformatics: Sequence and Genome Analysis. 2nd edition. Cold Spring Harbor Protoc 2007, pdb.top17.

45. Winsor GL, Lam DWK, Flemming L, Lo R, Whiteside MD, Yu NY, Hancock REW, Brinkman FSL: Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 2011, 39:D596–D600.

Cite this article as: Khandekar et al: The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae. BMC Microbiology 2014 14:79.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit