THE GLUEBALL AMONG THE LIGHT SCALAR MESONS

Wolfgang Ochs
Max-Planck-Institüt für Physik, Föhringer Ring 6, D-80805 München, Germany

Abstract

The lightest gluonic meson is expected with $J^{PC} = 0^{++}$, calculations in full QCD point towards a mass of around 1 GeV. The interpretation of the scalar meson spectrum is hindered as some states are rather broad. In a largely model-independent analysis of $\pi^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}$, $\pi^{0}\pi^{0}$ scattering in the region 600-1800 MeV a unique solution for the isoscalar S-wave is obtained. The resonances $f_{0}(980)$, $f_{0}(1500)$ and the broad $f_{0}(600)$ or "σ" are clearly identified whereas $f_{0}(1370)$ is not seen at the level $B(f_{0}(1370) \rightarrow \pi\pi) \gtrsim 10\%$. Arguments for the broad state to be a glueball are recalled. We see no contradiction with the reported large $B(\sigma \rightarrow \gamma\gamma)$ and propose some further experimental tests.

1 QCD predictions for the lightest glueball

The existence of gluonic mesons belongs to the early predictions of QCD and first scenarios have been developed back in 1975[1]. Today, quantitative results
are available from

1. Lattice QCD: In full QCD both glue and $q\bar{q}$ states couple to the flavour singlet 0^{++} states and first “unquenched” results for the lightest gluonic state point towards a mass of around 1 GeV $^{2)}$. This is a considerably lower mass value than what is obtained in the pure Yang Mills theory for gluons (quenched approximation) where the lightest glueball is found at masses around 1700 MeV (recent review $^{3)}$). Further studies concerning the dependence on lattice spacing and the quark mass appear important.

2. QCD sum rules: Results on the scalar glueball and various decays are obtained in $^{4)}$. The lightest gluonic state is found in the mass range (750-1000) MeV with a decay width of (300-1000) MeV into $\pi\pi$ and the width into $\gamma\gamma$ of (0.2-0.3) keV. Other analyses find similar or slightly higher masses (1250 ± 200) MeV for the lightest glueball $^{5)}$.

2 The scalar meson spectrum and its interpretation

In the search for glueballs one attempts to group the scalar mesons into flavour multiplets (either $q\bar{q}$ or tetraquarks) and to identify supernumerous states. The existence of such states could be a hint for glueballs either pure or mixed with $q\bar{q}$ isoscalars. In other experimental activities one looks for states which are enhanced in “gluon rich” processes and are suppressed in $\gamma\gamma$ processes.

The lightest isoscalar states listed in the particle data group $^{6)}$ are

$$f_0(600) (or \sigma), f_0(980), f_0(1370)(?), f_0(1500), f_0(1710), f_0(2080),$$

(1)

where the question mark behind $f_0(1370)$ will be explained below. There are different routes to group these states into multiplets together with a_0 and K^*_0 states.

In a popular approach the two lightest isoscalars in $^{1)}$ are combined with $\kappa(800)$ and $a_0(980)$ to form the lightest nonet, either of $q\bar{q}$ or of $qq - \bar{q}\bar{q}$ type. Then the next higher multiplet from $q\bar{q}$ would include $a_0(1450), K^*_0(1430)$; near these masses three isoscalars are found in the list $^{1)}$ at 1370, 1500 and 1710 MeV and this suggests to consider these three mesons as mixtures of the two members of the $q\bar{q}$ nonet and one glueball (for an early reference, see $^{2)}$).

A potential problem in this scheme for the glueball is the very existence of $f_0(1370)$, otherwise there is no supernumerous state in this mass range. Some problems with this state will be discussed below, see also the review $^{8)}$. The
low mass multiplet depends on the existence of κ which we consider as not beyond any doubt: its observed phase motion is rather weak and it is markedly different from the one of "σ", see below.

There are other approaches for the classification of the scalar mesons where $f_0(980)$ is the lightest $q\bar{q}$ scalar. In the scheme we prefer the lightest $q\bar{q}$ nonet contains $f_0(980)$, $f_0(1500)$ together with $a_0(1450)$, $K_0^*(1430)$. The supernumerous state $f_0(600)$, called previously $f_0(400-1200)$, corresponds to a very broad object which extends from $\pi\pi$ threshold up to about 2 GeV and is interpreted as largely gluonic. No separate $f_0(1370)$ is introduced, nor $\kappa(800)$. Our classification is consistent with various findings on production and decay processes including D, D_s, B and J/ψ decays.

Related schemes are the Bonn model with a similar mixing scheme for the isoscalars and the K-matrix model which finds a similar classification (but with $f_0(1370)$ included) and a broad glueball, centered at the higher masses around 1500 MeV.

3 Study of $\pi\pi$ scattering from 600 to 1800 MeV

3.1 Selection of the physical solution for $m_{\pi\pi} > 1000$ MeV

We are interested here in particular in the problem of $f_0(1370)$ and also in the behaviour of the broad "background" which is related to $f_0(600)$ or "σ", alias $f_0(400-1200)$ and describe the results from an ongoing analysis (see also 14).

Information on $\pi\pi$ scattering can be obtained from production experiments like $\pi p \rightarrow \pi\pi n$ by isolating the contribution of the one-pion-exchange process. In an unpolarised target experiment these amplitudes can be extracted by using dynamical assumptions, such as "spin and phase coherence", which have been tested by experiments with polarised target. At the level of the process $\pi\pi \rightarrow \pi\pi$ in different charge states one measures the distribution in scattering angle, $z = \cos \theta^*$, or their moments $\langle Y^L_M \rangle$, in a sequence of mass intervals. The $\pi\pi$ partial wave amplitudes S, P, D, F, \ldots can be obtained in each bin from the measured moments up to the overall phase and a discrete ambiguity (characterised by the "Barrelet Zeros"). The overall phase can be fixed by fitting a Breit Wigner amplitude for the leading resonances $\rho, f_2(1270)$ and $\rho_3(1690)$ to the experimental moments $\langle Y^2_0 \rangle$, $\langle Y^4_0 \rangle$ and $\langle Y^6_0 \rangle$ respectively.

Phase shift analyses of this type for $\pi^+\pi^-$ scattering have been performed...
by the CERN-Munich group: an analysis guided by a global resonance fit (CM-I\cite{15}) and a fully energy-independent analysis by CM-II\cite{17} and by Estabrooks and Martin\cite{16}; the latter two analyses found 4 different solutions above 1 GeV in mass. Up to 1400 MeV a unique solution has been found\cite{20} using results from polarised target and unitarity. Two solutions remain above 1400 MeV, classified according to Barrelet zeros in\cite{17} as $(−−)$ and $(+++)$. corresponding to sols. A,C in\cite{16}.

A new result has been added recently\cite{14} by the construction of the isoscalar S wave S_0 from the $\pi^+\pi^- \rightarrow \pi^0\pi^0$ data (GAMS collaboration\cite{19}) and the $I=2$ scattering data. This S_0 wave shows a qualitatively similar behaviour to S_0 obtained from $\pi^+\pi^- \rightarrow \pi^+\pi^-$ scattering above, namely a resonance circle in the complex plane (Argand diagram) related to $f_0(1500)$ above a slowly moving circular background amplitude. This has lead us to select the solution $(−−)$ as unique solution. We relate the differences in the two results to systematic errors introduced through the overall phase and the S_2 wave, but these are only slowly varying effects as function of mass.

3.2 Resonance fit to the isoscalar S wave

The resulting amplitude $S_0(−−)=(\nu^0_0\exp(2i\delta^0_0)-1)/2i$ is shown in Fig. 1 using the CM-II data after correction for the more recent $I=2$ amplitudes. The curves refer to a fit of the data (CM-II for $M_{\pi\pi}>1$ GeV, CM-I for $M_{\pi\pi}<1$ GeV) to an S-matrix in the space of 3 reaction channels ($\pi\pi,K\bar{K},4\pi$) as product of individual S-matrices for resonances $S_R=1+2iT_R$

$$S = S_{f_0(980)}S_{f_0(1500)}S_{\text{broad}}$$

$$T_R = \left[M_0^2 - M_{\pi\pi}^2 - i(\rho_1g_1^2 + \rho_2g_2^2 + \rho_3g_3^2)\right]^{-1} \times \rho_3^2\left(g_1g_2\right)\rho_3^2$$

where $\rho_i = 2k_i/\sqrt{s}$. As can be seen in Fig. 1 the fit including 3 resonances gives a reasonable description of the data. For $f_0(1500)$ the fit parameters $M_0 = 1510$ MeV, $\Gamma_{\text{tot}} = 88$ MeV, $B(f_0 \rightarrow \pi\pi) = 38\%$ are obtained in remarkable agreement to the PDG numbers, despite the different approaches involved.

3.3 Note on $f_0(600)$, $\kappa(800)$ and $f_0(1370)$

The broad object is also described by a resonance form with mass parameter $M_0 \sim 1100$ MeV and width $\Gamma \sim 1450$ MeV. The elastic width is about 85%
whereas the GAMS data suggest rather a smaller value around 70%. More details will be given elsewhere. This parametrisation is also shown at the lower rhs of Fig. 1. It describes about 3/4 of the full resonance circle. The Breit Wigner mass parameter M_0 denotes the mass where the amplitude is purely imaginary. It is different from the pole mass which is referred to as resonance mass. This mass value appears to be considerably lower and requires a more careful study of the line shape in the denominator of (3).

In any case, the data in Fig. 1 suggest there is evidence for a broad state in $\pi\pi$, centered around 1000 MeV along the physical region and what is called $f_0(600)$ or σ refers to the same state, there cannot be two states.
We also note here that the ππ scattering looks considerably different from elastic Kπ scattering in that the phase of the “background” found in the analysis of the LASS data moves more slowly staying below 90° always. The existence of κ would become evident if the phase passed through 90° in forming a circle as in case of σ.

We note that the data presented in Fig. 1 do not give any indication of the existence of f_0(1370) which would show up as a second circle in the Argand diagram with respective signals in η_0 and δ_0. In fact, none of the energy-independent bin by bin analyses of the CM or CKM data nor of the GAMS data gave such an indication. From our analysis we exclude an additional state with branching ratio B(f_0(1370) → ππ) ≳ 0.1 near 1370 MeV (this would correspond to a circle of diameter 0.1).

These results from the bin-by-bin analysis are in apparent conflict with two other analyses presented at this conference. In both studies CM-I moments as well as various other data sets from 3 body final states, have been fitted by model amplitudes with resonances in all relevant partial waves. The amplitude S_0 by Bugg shows f_0(1370) as an extra circle of diameter 0.25 whereas Sarantsev’s Argand diagram shows no extra circle but an effect in the phase movement. Obviously, these discrepancies need to be understood.

4 Glueball interpretation of the broad object f_0(600)

The following arguments are in favour of this state to be a glueball.

1. This state is produced in almost all “gluon rich” processes, including central production pp → p(ππ)p, pp → 3π, J/ψ → γππ(?), γKK, γ4π, ψ' → ψππ, Υ'' → Υππ and finally B → Kππ, B → KK related to b → sg. The high mass tail above 1 GeV is seen as “background” in J/ψ → γKK and in B decay channels where it leads to striking interference phenomena with f_0(1500). Hence, the mass and large width is in agreement with the QCD sum rule results and also with the first results from unquenched lattice QCD.

2. Within our classification scheme without κ and f_0(1370) the state f_0(600) is supernumerous.

3. The production in γγ.

Recently, the radiative width Γ(f_0(600) → γγ) = (4.1 ± 0.3) keV has been determined by Pennington from the process γγ → ππ. As this number is larger than expected for glueballs (see Sect.1), he concluded this state “unlikely
to be gluonic". Similar results on this width are obtained by \cite{25,26}. A resolution of this conflict has been suggested in a recent paper \cite{25}.

It is argued that the phenomenology of $\gamma\gamma \rightarrow \pi\pi$ at low energies is different from the one at high energies. At low energies, few 100 MeV above threshold, the photons couple to the charged pions and the Born term with one pion exchange dominates in $\gamma\gamma \rightarrow \pi^+\pi^-$, in addition there is a contribution from $\pi^+\pi^-$ rescattering. Explicit models with $\pi\pi$ scattering as input and with $f_0(600)$ pole, can explain the low energy processes \cite{27,28}, also calculations in χPT with non-resonant $\pi\pi$ scattering at low energies \cite{29}. In this case of the rescattering contribution, a resonance decaying into $\pi\pi$ would also decay into $\gamma\gamma$ irrespective of the constituent nature of the state.

At high energies, the photons do resolve the constituents of the produced resonances: for example, the radiative widths of tensor mesons f_2, f_2', a_2 in the region 1200-1500 MeV follow the expectations from a $q\bar{q}$ state.

In the model by Mennessier \cite{27} the low energy rescattering and the high energy "direct" component relating to the constituents are added; the unitarization keeps the validity of Watson’s theorem. A fit of the data at the lower energies $M_{\pi\pi} < 550$ MeV provides an estimate of the direct contribution from its deviation from the rescattering term. This yields $\Gamma(f_0(600) \rightarrow \gamma\gamma)|_{\text{direct}} \approx 0.3$ keV ($\pm 50\%$), alternatively, one can express this result as upper limit $\Gamma(f_0(600) \rightarrow \gamma\gamma)|_{\text{direct}} < 0.5$ keV (90\%CL). This result implies that there is no contradiction with a gluonic interpretation of $f_0(600)$.

Finally, we express some expectations for experiment which follow from this interpretation.

1. Because of its large width the state $f_0(600)$ overlaps with both physical regions. Whereas the low energy region is governed by hadronic rescattering there is the transition to high energies with a resolution of the constituents. Therefore we expect that for increasing mass $M_{\pi\pi} \gtrsim 1$ GeV the decay fraction $f_0(600) \rightarrow \gamma\gamma$ decreases strongly relative to $f_0(600) \rightarrow \pi\pi$ in consequence of the weak intrinsic coupling of the glueball to $\gamma\gamma$ by an order of magnitude.

2. In processes with virtual photons the $\pi\pi$ rescattering contribution should be suppressed with respect to the direct $q\bar{q}$ coupling contribution because of the pion formfactor. This could result in a relative suppression of $f_0(600)$ production at low $\pi\pi$ mass with respect to $f_0(980)$ if the latter state is dominantly $q\bar{q}$; this should hold for both space like ($\gamma V\gamma \rightarrow \pi\pi$) and time like photons.
(γν → ππγ).

In this way the study of the ππ S wave cross section in two-photon processes (or its upper limit obtained using the positivity of the density matrix) could provide new clues on the interpretation of the broad state f_0(600).

5 Acknowledgements

I would like to thank Gerard Mennessier, Stephan Narison and Peter Minkowski for discussions and the collaboration on subjects of this talk.

References

1. H. Fritzsch and P. Minkowski, Nuovo Cim. 30A, 393 (1975).
2. A. Hart, C. McNeile, C. Michael and J. Pickavance, Phys. Rev. D 74, 114504 (2006).
3. C. McNeile, arXiv:0710.0985 [hep-lat].
4. S. Narison and G. Veneziano, Int. J. Mod. Phys. A4, 2751 (1989); S. Narison, Nucl. Phys. B509, 312 (1998); Nucl. Phys. A675 (2000) 54c; Phys. Rev. D73 114024 (2006).
5. H. Forkel, Phys. Rev. D71, 054008 (2005); D64, 034015 (2001); E. Bagan and T.G. Steele, Phys. Lett. B243, 413 (1990).
6. W.M. Yao et al, J. Phys. G33, 1 (2006).
7. C. Amsler and F.E. Close, Phys. Lett. B353, 385 (1995).
8. E. Klempt and A. Zaitsev, arXiv:0708.4016 [hep-ph].
9. P. Minkowski and W. Ochs, Eur. Phys. J. C9, 283 (1999).
10. P. Minkowski and W. Ochs, Nucl. Phys. B (Proc. Suppl.) 121, 119 (2003), arXiv:hep-ph/0209223; ibid. p.123, arXiv:hep-ph/0209225.
11. P. Minkowski and W. Ochs, Eur. Phys. J. C39, 71 (2005); AIP Conf. Proc. 814, 52 (2006), arXiv:hep-ph/0511126.
12. E. Klempt, B.C. Metsch, C.R. Münz and H.R. Petry, Phys. Lett. B361, 160 (1995).
13. V.V. Anisovich et al, Phys. Lett. B389, 388 (1996); V.V. Anisovich and A.V. Sarantsev, Eur. Phys. J. A16, 229 (2003).

14. W. Ochs, arXiv: hep-ph/0609207, Nucl. Phys. B (Proc. suppl.), to appear.

15. B. Hyams et al., Nucl. Phys. B64 (1973) 4; W. Ochs, University Munich, thesis 1973.

16. P. Estabrooks and A.D. Martin, Nucl. Phys. B95, 322 (1975).

17. B. Hyams et al., Nucl. Phys. B100, 205 (1975); W. Manner, AIP Conf. Proc. 21, 22 (1974).

18. R. Kamiński, R. Lesniak and K. Rybicki, Z. Phys. C74, 79 (1997); Eur. Phys. J. direct C4, 4 (2002).

19. D. Alde et al., Eur. Phys. J. A3, 361 (1998).

20. R. Kamiński, J.R. Peláez and F.J. Ynduráin, arXiv:hep-ph/0603170.

21. D. Aston et al., Nucl. Phys. B296, 493 (1988).

22. D. Bugg, this conference and arXiv:0706.1341 [hep-ex].

23. A.V. Sarantsev, this conference.

24. M.R. Pennington, Phys. Rev. Lett. 97, 011601 (2006).

25. G. Mennessier, P. Minkowski, S. Narison and W. Ochs, arXiv:0707.4511 [hep-ph].

26. J.A. Oller, L. Roca and C. Schat, arXiv:0708.1658 [hep-ph].

27. G. Mennessier, Z. Phys. C16, 241 (1983).

28. R.L. Goble, R. Rosenfeld and J.L. Rosner, Phys. Rev. D39, 3264 (1989).

29. J.F. Donoghue, B.R. Holstein and Y.C. Lin, Phys. Rev. D37, 2423 (1988); S. Bellucci, J. Gasser and M.E. Saino, Nucl. Phys. B423, 80 (1994), Err. ibid B431, 413 (1994).

30. W. Ochs, Nuov. Cim. 12A, 724 (1972); G. Grayer et al, Nucl. Phys. B50, 29 (1972); S.U. Chung and T.L. Trueman, Phys. Rev. D11, 633 (1975).