Outer-independent k-rainbow domination

Qiong Kang a,, Vladimir Samodivkin b,, Zheui Shao c,, Seyed Mahmoud Sheikholeslami d, and Marzieh Soroudi d

aSchool of Computer Science, Yangtze University, Jingzhou, People’s Republic of China; bDepartment of Mathematics, University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria; cInstitute of Computing Science and Technology, Guangzhou University, Guangzhou, People’s Republic of China; dDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

ABSTRACT
An outer-independent k-rainbow dominating function of a graph G is a function f from $V(G)$ to the set of all subsets of $\{1, 2, \ldots, k\}$ such that both the following hold: (i) $\bigcup_{v \in V(G)} f(v) = V(G)$ whenever vertex v is a vertex with $f(v) = \emptyset$, and (ii) the set of all vertices $v \in V(G)$ with $f(v) = \emptyset$ is independent. The outer-independent k-rainbow domination number of G is the invariant $\gamma^k_{oi}(G)$, which is the minimum sum (over all the vertices of G) of the cardinalities of the subsets assigned by an outer-independent k-rainbow dominating function. In this paper, we initiate the study of outer-independent k-rainbow domination. We first investigate the basic properties of the outer-independent k-rainbow domination and then we focus on the outer-independent 2-rainbow domination number and present sharp lower and upper bounds for it.

ARTICLE HISTORY
Received 2 June 2019
Revised 29 July 2019
Accepted 3 August 2019

KEYWORDS
k-rainbow dominating function; k-rainbow domination; outer-independent domination

1. Introduction
In general, we follow the notation and graph theory terminology in [1]. Specifically, let $G = (V(G), E(G))$ be a finite simple graph. For any vertex u in G, the open neighbourhood of u, written $N(u)$, is the set of vertices adjacent to u and the closed neighbourhood of u is the set $N[u] = N(u) \cup \{u\}$. The degree of a vertex $u \in V(G)$ is $\deg(v) = |N(v)|$. The minimum and maximum degrees of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A leaf is a vertex of degree one, and a support vertex is a vertex adjacent to a leaf. We denote the sets of all leaves and all support vertices of G by $L(G)$ and $S(G)$, respectively. For a vertex $v \in V(G)$, the set of leaf neighbours of v is denoted by $L(v)$. If $A \subseteq V(G)$, then $N(A)$ (respectively, $N[A]$) denotes the union of (closed) neighbourhoods of all vertices of A. (If the graph G under consideration is not clear we write $N_G(u)$, and so on.) We denote by P_n and C_n the path and cycle on n vertices, respectively. The distance between two vertices u and v in a connected graph G is the length of a shortest uv-path in G. The diameter of a graph G, denoted by $\text{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ and $D(v)$ denote the set of children and descendants of v, respectively and let $D[v] = D(v) \cup \{v\}$. Also, the depth of v, $\text{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_v. By $K_{p,q}$ we denote a complete bipartite graph with partite sets of cardinalities p and q. A star is a $K_{1,q}$ and a double star $DS_{q,p}$, where $q \geq p \geq 1$, is a tree containing exactly two non-leaf vertices which one is adjacent to p leaves and the other is adjacent to q leaves. By (X) we denote the induced subgraph of a graph G with vertex set $X \subseteq V(G)$.

A set $I \subseteq V(G)$ is independent if no two vertices in I are adjacent. The maximum cardinality of an independent set in G equals the independence number $\beta_0(G)$. A vertex cover of a graph G is a set of vertices that covers all the edges. The minimum cardinality of a vertex cover is denoted by $\alpha_0(G)$. The following theorem due to Gallai.

Theorem 1.1 ([2]): Let G be a graph. A subset I of $V(G)$ is independent if and only if $\text{V}(G) − I$ is a vertex cover of G. In particular, $\beta_0(G) = |V(G)| − \alpha_0(G)$.

A set $D \subseteq V(G)$ in G is called a dominating set if $N[D] = V(G)$. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in G. For many applications, it is not possible to use an arbitrary dominating set D of G. One possible form of restriction is based on imposing some conditions on the set $V(G) − D$. Here we concentrate on the property of being outer-independent, i.e. $V(G) − D$ is independent. Results on outer-independent domination parameters can be found e.g. in [3–7].

For a positive integer k we denote the set $\{1, 2, \ldots, k\}$ by $[k]$. The power set (that is, the set of all subsets) of $[k]$ is denoted by 2^k. Let G be a graph and let f be a function that assigns to each vertex a subset
of \([k]\); that is, \(f: V(G) \to 2^{|k|}\). The weight, \(\omega(f)\), of \(f\) is defined as \(\omega(f) = \sum_{v \in V(G)} |f(v)|\). The function \(f\) is called a \(k\)-rainbow dominating function (a \(kR\)-function) on \(G\) if for each vertex \(v \in V(G)\) with \(f(v) \neq \emptyset\) the condition \(\bigcup_{u \in N(v)} f(u) = \{1, \ldots, k\}\) is fulfilled. Given a graph \(G\), the minimum weight of a \(k\)-rainbow dominating function is called the \(k\)-rainbow domination number of \(G\), which we denote by \(\gamma^k_{\text{oir}}(G)\). The concept of rainbow domination was introduced in [8] and has been studied extensively [9–15].

Here we introduce and study a new variant of a \(k\)-rainbow dominating function. A \(k\)-rainbow dominating function \(f: V(G) \to 2^{|k|}\) is an outer-independent \(k\)-rainbow dominating function (an OI-RD-function) on \(G\) if the set \([v \in V(G) \mid f(v) = \emptyset]\) is independent. The outer-independent \(k\)-rainbow domination number \(\gamma^k_{\text{oir}}(G)\) is the minimum weight of an OI-RD-function on \(G\). An OI-RD-function of weight \(\gamma^k_{\text{oir}}(G)\) is called a \(\gamma^k_{\text{oir}}\)-function. Since any OI-RD-function is a KRD-function, we have
\[
\gamma^k_{\text{oir}}(G) \leq \gamma^k_{\text{oir}}(G).
\]

In this paper, we initiate the study of outer-independent \(k\)-rainbow domination. We first investigate the basic properties of the outer-independent \(k\)-rainbow domination and then we focus on the outer-independent \(2\)-rainbow domination number and present sharp lower and upper bounds for it.

2. Preliminary results

In this section, we present basic properties of outer-independent \(k\)-rainbow domination number \(\gamma^k_{\text{oir}}(G)\). We begin with three simple observations.

Observation 2.1: If \(G_1, G_2, \ldots, G_r\) are all components of a graph \(G\), then \(\gamma^k_{\text{oir}}(G) = \gamma^k_{\text{oir}}(G_1) + \gamma^k_{\text{oir}}(G_2) + \cdots + \gamma^k_{\text{oir}}(G_r)\).

Observation 2.2: For any graph \(G\) of order \(n\), \(\min\{n, k\} \leq \gamma^k_{\text{oir}}(G) \leq n\). In particular, \(\gamma^k_{\text{oir}}(G) = n\) whenever \(k \geq n\).

Observation 2.3: For any OI-RD-function \(f\) on a graph \(G\), the set \([v \in V(G) \mid f(v) = \emptyset]\) is a vertex cover of \(G\). Hence \(\alpha_0(G) + l(G) \leq \omega(f)\), where \(l(G)\) is the set of all isolated vertices of \(G\). In particular, \(\alpha_0(G) \leq \alpha_0(G) + l(G) \leq \gamma^k_{\text{oir}}(G)\).

Notice also that the outer-independent domination is the same as the outer-independent \(1\)-rainbow domination if we view an outer-independent dominating set \(D\) as an outer-independent \(1\)-rainbow dominating function \(f\) defined by \(f(v) = \{1\}\) when \(v \in D\) and \(f(v) = \emptyset\) otherwise. Therefore here we concentrate on the case when a graph \(G\) is connected and \(n - 1 \geq k \geq 2\).

Now we characterize all connected graphs of order \(n \geq k + 1\) attaining the lower bound in Observation 2.2.

Theorem 2.1: Let \(k \geq 2\) be a positive integer and let \(G\) be a connected graph of order \(n \geq k + 1\). Then \(\gamma^k_{\text{oir}}(G) = k\) if and only if \(G = H_G \cup \overline{K_{n-k}}\), where \(H_G\) is a graph of order \(h \leq k\).

Proof: First assume that \(G = H_G \cup \overline{K_{n-k}}\), where \(H_G\) is a graph of order \(h \leq k\). Define a function \(f: V(G) \to 2^{|k|}\) by \(f(x) = \emptyset\) for \(x \in V(H)\) and \(f(x) \neq \emptyset\) for \(x \in V(G)\) such that \(\bigcup_{x \in V(H)} f(x) = \{1, 2, \ldots, k\}\).\(\sum_{x \in V(G)} |f(x)| = k\). Obviously, \(f\) is an OI-RD-function on \(G\) with \(\omega(f) = k\). Therefore \(\gamma^k_{\text{oir}}(G) = k\).

Conversely, assume that \(\gamma^k_{\text{oir}}(G) = k\). Let \(f\) be a \(\gamma^k_{\text{oir}}\)-function on \(G\). Since \(n \geq k + 1\), there exists a vertex \(v\) with \(f(v) = \emptyset\). It follows that \(\bigcup_{x \in N(v)} f(x) = \{1, 2, \ldots, k\}\) and \(f(x) \neq \emptyset\) for all \(x \in N(v)\). Moreover, \(k = \gamma^k_{\text{oir}}(G) = \omega(f) = \sum_{x \in V(G)} |f(x)| \geq \sum_{x \in N(v)} |f(x)| = |\{1, 2, \ldots, k\}| = k\). Hence \(f(u) = \emptyset\) for all \(u \in V(G) \setminus N(v)\). Since \(v\) was chosen arbitrarily, \(G = (N(v)) \cup (V(G) \setminus N(v))\), where a graph \((V(G) \setminus N(v))\) has no edges.

Theorem 2.2: Let \(k \geq 2\) be a positive integer and let \(G\) be a connected graph of order \(n \geq k + 2\). Then \(\gamma^k_{\text{oir}}(G) = k + 1\) if and only if the following holds:

(i) there is no \(h\)-order graph \(H_G, h \leq k\), such that \(G = H_G \cup \overline{K_{n-k}}\).

(ii) there exist two nonempty disjoint vertex sets \(A, B\) such that: (i) \(|A| + |B| \leq k + 1\) and \(|B| \leq 2\), (ii) every vertex of \(V(G) - (A \cup B)\) is adjacent to every vertex of \(A \cup B\) except at most one vertex in \(B\), (iii) \(V(G) - (A \cup B)\) is independent, and (iv) for each \(x \in B, N(x) \subseteq A \cup B\) or \(A \subseteq N(x)\).

Proof: First assume that \(G\) satisfies (i) and (ii). It follows from Theorem 1.2 and (i) that \(\gamma^k_{\text{oir}}(G) \geq k + 1\). Now define the function \(f: V(G) \to 2^{|k|}\) by \(f(x) = \emptyset\) for \(x \in V(G) \setminus A \cup B, f(x) = \{k\}\) for \(x \in B, f(x) \neq \emptyset\) for \(x \in A\) such that \(\bigcup_{x \in A} f(x) = \{1, 2, \ldots, k\}\) and \(\sum_{x \in A} |f(x)| = k\) when \(|B| = 1\) and by \(f(x) = \emptyset\) for \(x \in V(G) - A \cup B, f(x) = \{k\}\) for \(x \in B, f(x) \neq \emptyset\) for \(x \in A\) such that \(\bigcup_{x \in A} f(x) = \{1, 2, \ldots, k-1\}\) and \(\sum_{x \in A} |f(x)| = k - 1\) when \(|B| = 2\). Obviously, \(f\) is an OI-RD- function of \(G\) with \(\omega(f) = k + 1\) and thus \(\gamma^k_{\text{oir}}(G) = k + 1\).

Conversely, assume that \(\gamma^k_{\text{oir}}(G) = k + 1\). It follows from Theorem 1.2 that \(G\) satisfies (i). Now we show that \(G\) satisfies (ii). Let \(f\) be a \(\gamma^k_{\text{oir}}\)-function on \(G\). Choose \(f\) so that \(D_f = \{u \in V(G) \mid f(u) \neq \emptyset\}\) is as small as possible. Since \(\omega(f) = k + 1\), there exists a colour, say \(k\), which appears exactly twice and each other colour appears exactly once. Hence there are two vertices, say \(z\) and \(w\), such that \(f(z) \cap f(w) = \{k\}\). Since \(n \geq k + 2\), there exists a vertex \(v\) with \(f(v) = \emptyset\) which implies that \(\bigcup_{x \in N(v)} f(x) = \{1, 2, \ldots, k\}\) and \(f(x) \neq \emptyset\) for each \(x \in N(v)\).

Now let \(A = D_f - \{x \in \{z, w\} \mid f(x) = \{k\}\}\) and \(B = \{z, w\} - A\). Since \(k \geq 2\), we have \(A \neq \emptyset\). On the other hand, if \(B = \emptyset\), then the function \(g\) defined by \(g(z) =...
\[f(z) - \{k\} \] and \(g(x) = f(x) \) otherwise, is an O\(k\)RD-function of \(G \) with weight less that \(\gamma^k_{oir}(G) \) which is a contradiction. Thus \(A \) and \(B \) are non-empty sets. Since \(f \) is an O\(k\)RD-function, the set \(V(G) - (A \cup B) \) is independent, that is \(G \) satisfies (iii).

It follows from \(\gamma^k_{oir}(G) = k + 1 \) that \(|A| + |B| \leq k + 1\) and so (i) holds. Since for each vertex \(u \in A \), \(f(u) \) has a colour which is not appeared in other vertices, every vertex in \(V(G) - (A \cup B) \) is adjacent to every vertex of \(A \). Also since the colour \(k \) appears exactly in \(f(z) \) and \(f(w) \), each vertex of \(V(G) - (A \cup B) \) must be adjacent to one of the vertices \(z \) and \(w \). Hence (ii) holds.

Finally, if for some \(w \in B \), \(N(w) \subseteq A \cup B \) and \(A \subseteq N(w) \), then the function \(g \) defined on \(G \) by \(g(w) = \emptyset \), \(g(a) = f(a) \cup \{k\} \) for some \(a \in A \) and \(g(x) = f(x) \) otherwise, is a \(\gamma^k_{oir}(G) \)-function which contradicts the choice of \(f \). Thus (iv) holds and the proof is complete.

Proposition 2.1: For any graph \(G \) of order \(n \), \(\alpha(G) + l(G) = \gamma^1_{oir}(G) \leq \gamma^2_{oir}(G) \leq \cdots \leq \gamma^k_{oir}(G) \leq n \). If \(G \) has no isolated vertices, then \(\alpha(G) = \gamma^1_{oir}(G) \).

Proof: Let \(f_{s+1} \) be a \(\gamma^{s+1}_{oir} \)-function on \(G \), \(1 \leq s \leq k - 1 \). Define the function \(h_s : V(G) \rightarrow 2^{|l(G)|} \) as follows: \(h_s(u) = f_{s+1}(u) \) when \(s + 1 \notin f_{s+1}(u), h_s(u) = \{1\} \) when \(f_{s+1}(u) = \{s + 1\} \) and \(h_s(u) = f_{s+1}(u) - \{s + 1\} \) otherwise. Clearly \(h_s \) is an O\(s\)RD-function and so \(\gamma^{s+1}_{oir}(G) \leq \omega(h_s) \leq \gamma^{s+1}_{oir}(G) \).

If \(C \) is a minimum vertex cover of \(G \), then the function \(g : V(G) \rightarrow \{\emptyset, \{1\}\} \) defined by \(g(v) = \{1\} \) when \(v \in C \cup l(G) \) and \(g(v) = \emptyset \) otherwise, is an O\(1\)RD-function on \(G \) with weight \(|C| + |l(G)| = \alpha(G) + |l(G)|\). The equality \(\gamma^s_{oir}(G) = \alpha(G) + |l(G)| \) now follows by Observation 2.3.

Finally, the right side inequality follows by Observation 2.2.

Proposition 2.2: For any graph \(G \), \(\gamma^k_{oir}(G) \leq k\alpha(G) + |l(G)| \). If \(\delta(G) \geq 1 \) then \(\gamma^k_{oir}(G) \leq k\alpha(G) \).

Proof: Let \(C \) be any minimum vertex cover set of \(G \) and define the function \(f : V(G) \rightarrow 2^{|l(G)|} \) by \(f(u) = \{k\} \) for \(u \in C \), \(f(u) = \{1\} \) when \(u \in l(G) \), and \(f(u) = \emptyset \) otherwise. Clearly \(f \) is an O\(k\)RD-function on \(G \) which immediately implies the required.

The bounds in Proposition 2.2 are attainable. Let \(G \) be a graph such that each vertex is either a leaf or a support vertex and let each support vertex of \(G \) is adjacent to at least \(k + 1 \) leaves. Then clearly \(S(G) \) is a minimum vertex cover set and the function \(f : V(G) \rightarrow 2^{|l(G)|} \) defined as \(f(u) = \{k\} \) when \(u \) is a support vertex and \(f(u) = \emptyset \) when \(u \) is a leaf, is an O\(k\)RD-function on \(G \) of minimum weight. Thus \(\gamma^k_{oir}(G) = k\alpha(G) \).

We will say that a graph \(G \) is a vertex cover outer independent \(k \)-rainbow graph, a V\(C\)O\(k\)-rainbow graph for short, if \(\gamma^k_{oir}(G) = k\alpha(G) \).

Proposition 2.3: A graph \(G \) with no isolated vertex, is V\(C\)O\(k\)-rainbow if and only if it has a \(\gamma^k_{oir} \)-function \(f \) such that for each vertex \(x \), either \(f(x) = \emptyset \) or \(f(x) = \{k\} \).

Proof: Assume that \(G \) is a V\(C\)O\(k\)-rainbow graph and let \(D \) be a minimum vertex cover set of \(G \). Then the function \(f : V(G) \rightarrow 2^{|l(G)|} \) defined by \(f(x) = \{k\} \) for \(x \in D \) and \(f(x) = \emptyset \) otherwise, is an O\(k\)RD-function on \(G \) which implies that \(k\alpha(G) = \gamma^k_{oir}(G) \leq \omega(f) = k|D| = k\alpha(G) \). Thus all inequalities in this chain must be equality and so \(\gamma^k_{oir}(G) = \omega(f) \), yielding \(f \) is a \(\gamma^k_{oir} \)-function satisfying that for each vertex \(x \) either \(f(x) = \emptyset \) or \(f(x) = \{k\} \).

Conversely, assume that there exists a \(\gamma^k_{oir} \)-function \(h \) such that for each vertex \(x \), either \(h(x) = \emptyset \) or \(h(x) = \{k\} \). Since the set \(A_h = \{v \in V(G) \mid h(v) = \emptyset\} \) is a vertex cover set of \(G \), we have \(k\alpha(G) \leq k|A_h| = \gamma^k_{oir}(G) \). By Proposition 2.2 we deduce that \(\gamma^k_{oir}(G) = k\alpha(G) \) and this implies that \(G \) is a V\(C\)O\(k\)-rainbow graph.

Proposition 2.4: Let \(H \) be an induced subgraph of a graph \(G \). Then \(\gamma^k_{oir}(G) \leq \gamma^k_{oir}(H) + |V(G)| - |V(H)| \).

Proof: Let \(f \) be a \(\gamma^k_{oir} \)-function on \(H \). Define an O\(k\)RD-function \(h \) on \(G \) as follows: \(h(x) = f(x) \) when \(x \in V(H) \) and \(h(x) = \{1\} \) otherwise. Since \(\omega(h) = \omega(f) + |V(G)| - |V(H)| \), we have the desired inequality.

Observation 2.4: Let \(f \) be an O\(k\)RD-function on a graph \(G \) and \(a_i = |\{v \in V(G) \mid i \notin f(v)\}| \) for each \(1 \leq i \leq k \). Then \(\omega(f) = a_1 + a_2 + \cdots + a_k \).

Theorem 2.3: Let \(G \) be a graph of order at least two and \(k' > k \). Then \(\gamma^k_{oir}(G) \leq \gamma^{k'}_{oir}(G) + (k' - k) \gamma^k_{oir}(G) \).

Proof: Let \(f \) be a \(\gamma^k_{oir} \)-function on \(G \), and \(a_i = |\{v \in V(G) \mid i \notin f(v)\}| \) for each \(1 \leq i \leq k \). Assume without loss of generality that \(a_1 \geq a_2 \geq \cdots \geq a_k \).

Define \(g : V(G) \rightarrow 2^{|l(G)|} \) by \(g(v) = f(v) \cup \{k + 1, \ldots, k'\} \) when \(k \in f(v) \) and \(g(v) = f(v) \) otherwise. Clearly \(g \) is an O\(k\)RD-function on \(G \). This fact and Observation 2.4 lead to
\[\gamma^k_{oir}(G) \leq \omega(g) = \gamma^k_{oir}(G) + (k' - k)a_k \]
\[\leq \gamma^k_{oir}(G) + (k' - k) \gamma^k_{oir}(G) / k \]

Corollary 2.1: Let \(k' > k \) be two positive integers and \(G \) a graph of order at least two. Then
\[\gamma^{k'}_{oir}(G) \leq k' \gamma^k_{oir}(G) / k \]

3. Outer-independent 2-rainbow domination number

In this section, we focus on outer-independent 2-rainbow domination. An O2RD-function \(f \) on a graph \(G \)
can be represented by the ordered 4-tuple $\langle V_0, V_1, V_2, V_{1,2} \rangle$ (or $\langle V'_0, V'_1, V'_2, V'_{1,2} \rangle$ to refer f) of $V(G)$, where $V'_0 = \{ v \in V(G) \mid f(v) = 0 \}$, $V_1 = \{ v \in V(G) \mid f(v) = 1 \}$, $V_2 = \{ v \in V(G) \mid f(v) = 2 \}$ and $V_{1,2} = \{ v \in V(G) \mid f(v) = 1,2 \}$. In this representation, its weight is $\omega(f) = |V_1| + |V_2| + 2|V_{1,2}|$.

By Theorem 2.1 we immediately obtain

Corollary 3.1: For any graph G of order $n \geq 2, 2 \leq \gamma^2_{oir}(G) \leq n$. Moreover $\gamma^2_{oir}(G) = 2$ if and only if G is K_2 or $G = K_{1,n-1}$ or $G = K_{2,n-2}$ or $G = K_2 \lor K_{n-2}$.

3.1. *Outer-independent 2-rainbow domination versus domination parameters*

A function $f : V(G) \to \{0, 1, 2\}$ is an outer-independent Roman dominating function (OIRD-function) on G if every vertex $u \in V$ for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$ and $|\{ v \mid f(v) = 0 \}|$ is an independent set. The outer-independent Roman domination number $\gamma_{oir}(G)$ is the minimum weight of an OIRD-function on G. Outer-independent Roman domination was introduced by Abdollahzadeh Ahangar et al. in [3]. Clearly, if $f = (V_0, V_1, V_2)$ is a $\gamma_{oir}(G)$-function, then the function $g = (V_0, V_1, 0, V_2)$ is an outer-independent 2-rainbow dominating function on a graph G and so

$$\gamma_{oir}(G) \geq \gamma^2_{oir}(G). \quad (2)$$

Abdollahzadeh Ahangar et al. proved the following bounds on $\gamma_{oir}(G)$.

Proposition 3.1 ([3]): If G is a connected triangle-free graph of order $n \geq 2$ and maximum degree Δ, then $\gamma_{oir}(G) \leq n - \Delta + 1$.

Proposition 3.2 ([3]): Let G be a connected graph of order n. If G has girth $g < \infty$, then $\gamma_{oir}(G) \leq n + \lceil \frac{n}{2} \rceil - g$.

Next results are immediate consequences of Propositions 3.1, 3.2 and inequality (2).

Corollary 3.2: If G is a connected triangle-free graph of order $n \geq 2$ and maximum degree Δ, then $\gamma^2_{oir}(G) \leq n - \Delta + 1$. This bound is sharp for all stars $K_{1,n-1}, n \geq 2$.

Corollary 3.3: Let G be a connected graph of order n. If G has girth $g < \infty$, then $\gamma^2_{oir}(G) \leq n + \lceil \frac{n}{2} \rceil - g$.

In the following, we provide an upper bound on $\gamma_{oir}(G)$ in terms of $\gamma^2_{oir}(G)$ for arbitrary graphs G.

Theorem 3.1: For any graph G, $\gamma_{oir}(G) \leq \frac{3}{2} \gamma^2_{oir}(G)$. This bound is sharp for the family \mathcal{F} of graphs illustrated in Figure 1.

![Figure 1. The graph \mathcal{F}.](image)

Proof: Let $f = (V_0, V_1, V_2, V_{1,2})$ be a $\gamma^2_{oir}(G)$-function and without loss of generality $|V_1| \geq |V_2|$. Then $g = (V_0, V_1, V_2 \cup V_{1,2})$ is an OIRD-function on G implying that

$$\gamma_{oir}(G) \leq \omega(g) = |V_1| + 2|V_2| + 2|V_{1,2}| = \omega(f) + |V_2| \leq \frac{3}{2} \gamma^2_{oir}(G).$$

The notion of outer-independent Italian domination in graphs was introduced in [16]. An outer-independent Italian dominating function (OI2D-function) on a graph G is a function $f : V(G) \to \{0, 1, 2\}$ such that every vertex $v \in V(G)$ with $f(v) = 0$ has at least two neighbours assigned 1 under f or one neighbour w with $f(w) = 2$ and the set of all vertices assigned 0 under f is independent. The weight of an OI2D-function is the value $\omega(f) = \sum_{v \in V(G)} f(u)$. The minimum weight of an OI2D-function on a graph G is called the outer-independent Italian domination number $\gamma_{oi2d}(G)$ of G. Clearly, if $f = (V_0, V_1, V_2, V_{1,2})$ is a $\gamma^2_{oir}(G)$-function, then the function $g = (V_0, V_1, V_2, V_{1,2})$ is an outer-independent Italian dominating function of G and so

$$\gamma^2_{oir}(G) \geq \gamma_{oi2d}(G). \quad (3)$$

In [16], the authors proved that $\gamma_{oi2d}(C_n) = \lceil \frac{n}{2} \rceil$ for $n \geq 3$ and $\gamma_{oi2d}(K_{p,q}) = q$ for $p \geq q \geq 2$. Using these we obtain the next results.

Proposition 3.3: For $n \geq 3$, $\gamma^2_{oir}(C_n) = \lceil \frac{n}{2} \rceil$.

Proof: By (3), we have $\gamma^2_{oir}(C_n) \geq \lceil \frac{n}{2} \rceil$. Let $C_n : v_1 \cdots v_{2n} v_1$ be a cycle and define $f : V(G) \to 2^{\{0,1,2\}}$ by $f(v_{i-1}) = \{1\}$, $f(v_{i+1}) = \{2\}$ for $i \geq 0$ and $f(v) = \emptyset$ otherwise. Clearly f is an OI2D-function of C_n and hence $\gamma^2_{oir}(C_n) \leq \lceil \frac{n}{2} \rceil$. Thus $\gamma^2_{oir}(C_n) = \lceil \frac{n}{2} \rceil$.

Proposition 3.4: For $p \geq q \geq 2$, $\gamma^2_{oir}(K_{p,q}) = q$.
Theorem 3.2: For any connected graph G of order $n \geq 2$ with minimum degree δ and maximum degree Δ,

$$\gamma_{oi}(G) \geq \lceil n\delta/(\delta + \Delta) \rceil.$$

Next result is an immediate consequence of Theorem 3.2 and inequality (3).

Corollary 3.4: For any connected graph G of order $n \geq 2$ with minimum degree δ and maximum degree Δ,

$$\gamma_{oi}^2(G) \geq \lceil n\delta/(\delta + \Delta) \rceil.$$

This bound is sharp for cycles.

Fan et al. [16] proved the following Nordhaus–Gaddum type result for outer-independent Italian domination number.

Theorem 3.3: For any graph G on n vertices,

$$n - 1 \leq \gamma_{oi}(G) + \gamma_{oi}(G').$$

As an immediate consequence we have:

Corollary 3.5: For any graph G on n vertices,

$$n - 1 \leq \gamma_{oi}^2(G) + \gamma_{oi}^2(G').$$

The upper bound is sharp for K_2 and the lower bound is sharp for a graph G obtained from K_{10} with vertex set $\{u_1, u_2\}$ by adding new vertices v_1, v_2, v_3, v_4, v_5 and joining v_i to u_j for $2 \leq j \leq 5$ and joining v_i to all vertices in K_{10}.

3.2. Trees

Here we present sharp upper and lower bounds on the outer-independent 2-rainbow domination number of trees. First we show that the outer-independent 2-rainbow domination number and the outer-independent Italian domination number of a tree are equal.

Theorem 3.4: For any tree T, $\gamma_{oi}(T) = \gamma_{oi}^2(T)$.

Proof: Consider a γ_{oi}-function $f = (V_0, V_1, V_2)$ on T and let U_1, U_2, \ldots, U_k be the components of the graph $(V_1 \cup V_2)$. Let T_f be the graph whose vertex set is $\{U_1, U_2, \ldots, U_k\}$ and two vertices U_i and U_j are adjacent if and only if there are vertices $u_i \in U_i$ and $u_j \in U_j$ and $u_i, u_j \in V_0$ such that $u_i u_j$ is a path in T. If $V_1 \neq \emptyset$, then we may assume that $V_1 \cap U_1 \neq \emptyset$. Define $g : V(G) \rightarrow \{2\}$ as follows: $g(x) = \{1, 2\}$ for $x \in V_2$, $g(x) = \emptyset$ for $x \in V_0$, $g(x) = \{1\}$ whenever $f(v) = 1$ and either $v \in V_1 \cap U_1$ or $v \in U_j$, where the distance U_1 and U_j in T_f is even, and $g(x) = \{2\}$ otherwise. Clearly g is an OI2RD-function on T with weight $\omega(f)$ and so $\gamma_{oi}^2(T) \leq \gamma_{oi}(T)$. The result now immediately follows from (3).

Using the results given in [16] and Theorem 3.4, we obtain the following results.

Proposition 3.5: For $n \geq 1$, $\gamma_{oi}^2(P_n) = \lceil \frac{n + 1}{2} \rceil$.

Proposition 3.6: For any tree T of order n, $\gamma_{oi}^2(G) \leq n - \Delta + 1$.

Theorem 3.5: For any tree T of order $n \geq 2$,

$$\gamma_{oi}^2(T) \geq \frac{n + 3 - \ell(T)}{2},$$

where $\ell(T)$ is the number of leaves of T. This bound is sharp for stars and paths.

As a consequence of Propositions 2.4 and 3.5 we obtain the following result.

Corollary 3.6: For any connected graph G of order n,

$$\gamma_{oi}^2(G) \leq n - \left\lceil \frac{\text{diam}(G) + 1}{2} \right\rceil.$$

In the sequel we will use the following observation.

Observation 3.1: Let G be a graph.

1. If u is a strong support vertex of G, then there is a $\gamma_{oi}^2(G)$-function f with $f(u) = \{1, 2\}$.
2. If $v_3 v_2 v_1$ is a path in G such that $\text{deg}_G(v_2) = 2$ and $\text{deg}_G(v_1) = 1$, then there is a $\gamma_{oi}^2(G)$-function f with $f(v_1) = \{1\}$, $f(v_2) = \emptyset$ and $f(v_3) = \emptyset$.

Proof: (1) is trivial. To prove (2), let g be a $\gamma_{oi}^2(G)$-function. If $g(v_2) = \emptyset$, then let $f = g$. Assume then that $g(v_2) \neq \emptyset$. If $|g(v_2)| = 1$, then since g is a $\gamma_{oi}^2(G)$-function, it follows that $|g(v_1)| = 1$. By the minimality of g, we have $g(v_3) = \emptyset$, for otherwise we may assume that $1 \in g(v_3)$ and then the function h defined by $h(v_2) = \emptyset$, $h(v_1) = \{2\}$ and $h(x) = g(x)$ otherwise, is an OI2RD-function of G with smaller weight than g, a contradiction. Hence we may assume that $g(v_2) = \emptyset$. But then the function $f : V(G) \rightarrow \{2\}$ defined by $f(v_3) = \{2\}$, $f(v_2) = \emptyset$, $f(v_1) = \{1\}$ and $f(x) = g(x)$ for all $x \in V(G) - \{v_1, v_2, v_3\}$ is a $\gamma_{oi}^2(G)$-function with desired property. If $|g(v_2)| = 2$, that is, $g(v_2) = \{1, 2\}$, then by the minimality we have $g(v_1) = g(v_3) = \emptyset$. Now the function f defined above is a $\gamma_{oi}^2(G)$-function with desired property.

Next we present an upper bound on outer-independent 2-rainbow domination number of a tree \(T \) in terms of the order and its number of support vertices. For any tree \(T \), let \(s(T) \) denote the number of its support vertices.

Theorem 3.6: If \(T \) is a tree of order at least 3, then

\[
\gamma^2_{\text{air}}(T) \leq \left\lfloor \frac{n(T) + s(T)}{2} \right\rfloor.
\]

This bound is sharp for all paths \(P_{2k} \) (\(k \geq 1 \)).

Proof: The proof is by induction on \(n(T) \). It is easy to verify that the statement is true for \(n(T) \leq 4 \). Hence, let \(n(T) \geq 5 \) and assume that every \(T' \) of order \(n(T') < n(T) \) with \(s(T') \) support vertices satisfies \(\gamma^2_{\text{air}}(T') \leq \left\lfloor \frac{n(T') + s(T')}{2} \right\rfloor \). Let \(T \) be a tree of order \(n(T) \). If \(T \) is a star, then \(\gamma^2_{\text{air}}(T) = 2 < \left\lfloor \frac{n(T)+1}{2} \right\rfloor \). Likewise, if \(T \) is a double star, then \(\gamma^2_{\text{air}}(T) = 3 \) or 4 and so \(\gamma^2_{\text{air}}(T) \leq \left\lfloor \frac{n(T)+2}{2} \right\rfloor \) with equality if and only if \(T \in \{DS_{1,2},DS_{2,2},DS_{2,3}\} \).

Henceforth, we assume that \(\text{diam}(T) \geq 4 \).

If \(T \) has a strong support vertex \(u \) with \(\ell(u) \geq 3 \), then let \(T' = T - w \) where \(w \in L(u) \). Clearly, there exists a \(\gamma^2_{\text{air}}(T') \)-function \(f \) such that \(f(u) = \{1,2\} \) and \(f \) can be extended to an O2IRD-function of \(T \) by assigning \(\varnothing \) to \(w \) and this implies that \(\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T') \). Now the result follows by using the induction on \(T' \) and the facts \(n(T') = n(T) - 1 \) and \(s(T') = s(T) \). Henceforth, we assume that every support vertex of \(T \) is adjacent to at most two leaves.

Let \(v_1,v_2,\ldots,v_k \) be a diametrical path in \(T \) such that \(\text{deg}_T(v_2) \) is as large as possible and root \(T \) at \(v_k \). We consider the following cases.

Case 1. \(\text{deg}_T(v_2) = 3 \). If \(\text{deg}_T(v_2) \geq 3 \), then any \(\gamma^2_{\text{air}}(T - v_2) \)-function can be extended to an O2IRD-function of \(T \) by assigning \(\{1,2\} \) to \(v_2 \) and \(\varnothing \) to the leaves adjacent to \(v_2 \) and so \(\gamma^2_{\text{air}}(T \setminus v_2) \leq \gamma^2_{\text{air}}(T - v_2) + 2 \). Using the induction on \(T \setminus v_2 \) and the facts \(n(T - v_2) = n(T) - 3 \) and \(s(T - v_2) = s(T) - 1 \), we obtain \(\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T \setminus v_2) + 2 \leq \floor{\frac{n(T) + s(T)}{2}} + 2 = \floor{\frac{n(T) + s(T)}{2}} + 2 \). Hence we assume that \(\text{deg}_T(v_2) = 2 \). If \(\text{diam}(T) = 4 \), then we have \(\gamma^2_{\text{air}}(T) = 4 \leq \floor{\frac{n(T) + s(T)}{2}} + 2 \). Let \(\text{diam}(T) \geq 5 \). We distinguish the followings.

Subcase 1.1. \(\text{deg}_T(v_4) \geq 3 \).

If \(v_4 \) is a support vertex, then any \(\gamma^2_{\text{air}}(T \setminus v_4) \)-function can be extended to an O2IRD-function of \(T \) by assigning \(\{1,2\} \) to \(v_2 \) and \(\varnothing \) to the leaves adjacent to \(v_2 \) and it follows from the induction hypothesis on \(T \setminus T_2 \) and the facts \(n(T - T_2) = n - 3 \) and \(s(T - T_2) = s(T) - 1 \) that

\[
\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T - v_2) + 2 \leq \floor{\frac{n(T) + s(T)}{2}} + 2 = \floor{\frac{n + s}{2}}.
\]

Assume next that \(v_4 \) is not a support vertex. We consider the following situations.

(i) \(v_4 \) has a child \(w_2 \) with depth one. Let \(T' = T - T_{w_2} \) and let \(f \) be a \(\gamma^2_{\text{air}}(T') \)-function such that \(f(v_2) = \{1,2\} \). Without loss of generality, we may assume that \(f(v_4) \) and that \(1 \in f(v_4) \). If \(\text{deg}_T(w_2) = 2 \), then the function \(f \) can be extended to an O2IRD-function of \(T \) by assigning \(\varnothing \) to \(w_2 \) and \(\varnothing \) to its leaf-neighbours, and using the induction hypothesis on \(T' \) and the facts \(n(T') = n(T) - 2 \) and \(s(T') = s(T) - 1 \) we obtain

\[
\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T') + 1 \leq \floor{\frac{n(T) + s(T)}{2}} + 1 < \floor{\frac{n + s}{2}}.
\]

If \(\text{deg}_T(w_2) = 3 \), then the function \(f \) can be extended to an O2IRD-function of \(T \) by assigning a \(\{1,2\} \) to \(w_2 \) and \(\varnothing \) to its leaf-neighbours, and using the induction hypothesis on \(T' \) and the facts \(n(T') = n(T) - 3 \) and \(s(T') = s(T) - 1 \) we obtain

\[
\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T') + 2 \leq \floor{\frac{n(T) + s(T)}{2}} + 2 = \floor{\frac{n + s}{2}}.
\]

(ii) \(v_4 \) has a child \(w_3 \) with depth two different from \(v_2 \). Suppose \(v_4w_3w_2v_1 \) be a path in \(T \) such that \(\text{deg}_T(w_1) = 1 \). First let \(\text{deg}_T(w_2) = 3 \). As in the first paragraph of Case 1, we may assume that \(\text{deg}_T(w_3) = 2 \). Let \(T' = T - T_3 \) and let \(f \) be a \(\gamma^2_{\text{air}}(T') \)-function such that \(f(w_2) = \{1,2\} \). Without loss of generality, we may assume that \(f(v_4) \geq 1 \). Then \(f \) can be extended to an O2IRD-function of \(T \) by assigning \(\{1,2\} \) to \(v_2 \) and \(\varnothing \) to \(v_3 \) and all leaves of \(v_2 \). Using the induction on \(T' \) and the facts \(n(T') = n(T) - 3 \) and \(s(T') = s(T) - 1 \) we obtain

\[
\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T') + 1 \leq \floor{\frac{n(T) + s(T)}{2}} + 2 \leq \floor{\frac{n(T) + s(T)}{2}}.
\]

Assume now that \(\text{deg}_T(w_2) = 2 \) and that all children of \(w_3 \) with depth 1 has degree 2. Let \(t_1 \) be the number of children of \(w_3 \) of depth 0 and \(t_2 \) be the number of children of \(w_3 \) with depth 1 and \(t \) be the number of children of \(w_3 \) with depth 1 and let \(t = 0 \) if \(t_1 = 0 \) and \(t = 1 \) if \(t_1 \geq 1 \). Suppose \(T' = T - W_3 \). Clearly, any \(\gamma^2_{\text{air}}(T') \)-function can be extended to an O2IRD-function of \(T \) by assigning \(\{1\} \) to all leaves at distance 2 from \(w_3 \) and \(\varnothing \) to all children of \(w_3 \) and \(\varnothing \) to all leaves of \(w_3 \) if \(t_1 \geq 1 \) and \(\{2\} \) to \(w_3 \) if \(t_1 \geq 0 \). Using the induction on \(T' \) and the facts \(n(T') = n(T) - 1 - 2t_2 - t_1 \) and \(s(T') = s(T) - t_2 - t \) we obtain

\[
\gamma^2_{\text{air}}(T) \leq \gamma^2_{\text{air}}(T') + t_2 + 1 + t \leq \floor{\frac{n(T) + s(T)}{2}} + t_2 + 1 + t.
\]
Subcase 1.2. deg_{Γ}(v_{4}) = 2.

If deg_{Γ}(v_{5}) ≥ 3, then any γ_{oir}^{2}(T - T_{v_{4}})-function can be extended to an OI2RD-function of T by assigning a {1, 2} to v_{2}, a {1} to v_{4} and an ∅ to other vertices in T_{v_{4}} and it follows from the induction hypothesis and the facts n(T - T_{v_{4}}) = n(T) - 5 and s(T - T_{v_{4}}) = s(T) - 1 that

\[
\gamma_{oir}^{2}(T) \leq \left\lfloor \frac{n(T) - s(T)}{2} \right\rfloor + \left\lfloor \frac{n(T) + s(T)}{2} \right\rfloor + 3,
\]

Assume that deg_{Γ}(v_{5}) = 2. Let T' = T - v_{2} and f be a γ_{oir}^{2}(T')-function. By Observation 3.1 (item (2)) we may suppose that f(v_{4}) = {1}. Then f can be extended to an OI2RD-function of T by assigning a {1, 2} to v_{2} and an ∅ to other vertices in T_{v_{2}} and it follows from the induction hypothesis and the facts n(T') = n(T) - 4 and s(T') = s(T) that γ_{oir}^{2}(T') ≤ γ_{oir}^{2}(T') + 2 ≤ \left\lfloor \frac{n(T) + s(T')}{2} \right\rfloor.

Case 2. deg_{Γ}(v_{2}) = 2.

By the choice of diametrical path, we deduce that every child of v_{2} with depth one has degree two. Consider the following subcases.

Subcase 2.1. deg_{Γ}(v_{5}) ≥ 3.

First suppose that v_{3} is a strong support vertex or adjacent to a support vertex except v_{2}. Let T' = T - {v_{1}, v_{2}} and f a γ_{oir}^{2}(T')-function. By Observation 3.1, we may assume without loss of generality that 1 ∈ f(v_{3}). Now f can be extended to an OI2RD-function of T by assigning a {2} to v_{1} and an ∅ to v_{2}. Now we deduce from the induction hypothesis on T' and the facts n(T') = n(T) - 2 and s(T') ≤ s(T) that

\[
\gamma_{oir}^{2}(T) \leq \gamma_{oir}^{2}(T') + 1 \leq \left\lfloor \frac{n(T') + s(T')}{2} \right\rfloor + 1 \leq \left\lfloor \frac{n + s}{2} \right\rfloor.
\]

Suppose next that v_{3} is a support vertex with deg_{Γ}(v_{3}) = 3. Let T' = T - v_{1} and f a γ_{oir}^{2}(T')-function. Since v_{3} is a strong support vertex we may assume that f(v_{3}) = {1, 2}. Now f can be extended to an OI2RD-function of T by assigning a {1} to v_{1}, and as above we have γ_{oir}^{2}(T) ≤ \left\lfloor \frac{n + 3}{2} \right\rfloor.

Subcase 2.2. deg_{Γ}(v_{5}) = 2.

First assume that deg_{Γ}(v_{4}) ≥ 3. Let T' = T - (v_{1}, v_{2}, v_{3}). Then any γ_{oir}^{2}(T')-function f can be extended to an OI2RD-function of T by assigning a {1} to v_{1}, a {2} to v_{3} and an ∅ to v_{2} and it follows from the induction hypothesis and the facts n(T') = n(T) - 3 and s(T') = s(T) - 1 that

\[
\gamma_{oir}^{2}(T) \leq \gamma_{oir}^{2}(T') + 2 \leq \left\lfloor \frac{n(T') + s(T')}{2} \right\rfloor + 2 = \left\lfloor \frac{n(T) + s(T)}{2} \right\rfloor.
\]

Assume next that deg_{Γ}(v_{4}) = 2. Let T' = T - {v_{1}, v_{2}} and f a γ_{oir}^{2}(T')-function. Observation 3.1 (item (2)), we may assume that 1 ∈ f(v_{4}). Now f can be extended to an OI2RD-function of T by assigning a {2} to v_{1} and an ∅ to v_{2}, and we deduce from the induction hypothesis and the facts n(T') = n(T) - 2 and s(T') = s(T) that γ_{oir}^{2}(T) ≤ γ_{oir}^{2}(T') + 1 ≤ \left\lfloor \frac{n + 2}{2} \right\rfloor and this completes the proof.

Next result in an immediate consequence of Theorems 3.4 and 3.6 since the number of support vertices of a tree on n ≥ 3 vertices is at most \(\lceil \frac{n}{2} \rceil \).

Corollary 3.7: For any tree T of order n ≥ 3, γ_{oir}(T) = γ_{oir}^{2}(T) ≤ \frac{3n}{4}.

A constructive instruction of trees attaining the bound given in Corollary 3.7 is given in [16].

We close this section by establishing a lower bound on the outer-independent 2-rainbow domination number of a tree in terms of the order and the total outer-independent domination number. Recall that a set S of vertices of a graph G is a total outer-independent dominating set if every vertex from V(G) has a neighbour in S and the complement of S is an independent set. The total outer-independent domination number γ_{oir}(G) of G is the smallest possible cardinality of any total outer-independent dominating set of G. The total outer-independent domination was introduced in [17, 18]. It was observed in [17] that

\[
γ_{oir}(P_{n}) = \begin{cases} 2 & \text{if } n = 2, \\ \lfloor 2n/3 \rfloor & \text{if } n ≥ 3. \\ \end{cases}
\]

Theorem 3.7: For any nontrivial tree T,

\[
γ_{oir}^{2}(T) ≥ γ_{oir}(T) - \frac{(n(T))}{6} + 1.
\]

Furthermore, this bound is sharp for paths P_{6k} (k ≥ 1).

Proof: The proof is by induction on the order n(T). If n(T) = 2 or n(T) = 3, then γ_{oir}^{2}(T) = γ_{oir}(T) = 2 and the bound is sharp. Let n(T) ≥ 4 and assume that for any tree T' of order n(T') < n(T), γ_{oir}^{2}(T') ≥ γ_{oir}(T') - \lceil n(T') \rceil + 1. Let T be a tree of order n(T) and f = (V_{0}, V_{1}, V_{2}, V_{1,2}) be a γ_{oir}^{2}(T)-function. Since for stars and double stars T we have γ_{oir}(T) = 2, so the statement holds. Hence, we assume that T has diameter at least 4. If V_{0} = ∅, then by the fact that \(\lceil \frac{n(T)}{6} \rceil ≥ 1 \) we have γ_{oir}^{2}(T) = n(T) ≥ γ_{oir}(T). Therefore we assume that V_{0} ≠ ∅. First suppose that T has a support vertex x which
is adjacent to two or more leaves. Let \(u, v \) be two leaves adjacent to \(x \) and \(T' \) be the tree obtained from \(T \) by removing \(u \). Obviously, \(y_{\text{oi2r}}(T) = y_{\text{oi2r}}(T') \). Also by Observation 3.1, we may assume that \(f(x) = \{1, 2\} \) and so all leaves adjacent to \(x \) belong to \(V_0 \). Hence, the function \(f' \) restricted to \(T' \), is an OI2RD-function on \(T' \) implying that \(y_{\text{oi2r}}(T) \geq y_{\text{oi2r}}(T') \). Applying the inductive hypothesis to \(T' \), we get \(y_{\text{oi2r}}(T) = y_{\text{oi2r}}(T') \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T')}{6} \right\rfloor + 1 = \left\lfloor \frac{n(T - x)}{6} \right\rfloor + 1 \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T)}{6} \right\rfloor + 1 \), as desired. Therefore, we may assume that every support vertex of \(T \) is adjacent to exactly one leaf. Suppose diam\((T) = k - 1 \), and let \(P = v_1, v_2, \ldots, v_k \) be a diametrical path of \(T \). Root \(T \) at \(v_k \). Thus, \(v_1 \) is a leaf of \(T \) and \(\text{deg}_T(v_2) = 2 \).

By item (2) of Observation 3.1, there is a \(y_{\text{oi2r}}(T) \) function \(g \) such that \(g(v_1) = \{1\} \), \(g(v_2) = \emptyset \) and \(2 \in g(v_3) \). Consider the following cases.

Case 1. \(\text{deg}_T(v_3) = 3 \).

Let \(T' = T - \{v_1, v_2\} \). Since \(v_3 \) is a support vertex or is adjacent to a support vertex of degree two in \(T' \), any \(y_{\text{oi2r}}(T') \)-set containing no leaf, contains \(v_3 \) and so it can be extended to an OITD-set of \(T \) by adding \(v_2 \) implying that \(y_{\text{oi2r}}(T) \leq y_{\text{oi2r}}(T') + 1 \). On the other hand, the function \(g \) restricted to \(T' \) is an OI2RD-function of \(T' \) of weight at most \(\omega(g) - 1 \) and we conclude from the induction hypothesis that

\[
y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}^2(T') + 1 \geq y_{\text{oi2r}}(T) - 1 + \left\lfloor \frac{n(T - v_2)}{6} \right\rfloor + 2 \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T)}{6} \right\rfloor + 1.
\]

Case 2. \(\text{deg}_T(v_3) = 2 \).

If \(|g(v_4)| \geq 1 \) or \(\bigcup_{v \in N(v_4) - \{v_3\}} g(v) = \{1, 2\} \), then let \(T' = T - T_v \). Clearly the function \(g \) restricted to \(T' \) is an OI2RD-function of \(T' \) of weight at most \(\omega(g) - 2 \) and so \(y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}^2(T') + 2 \). On the other hand, any \(y_{\text{oi2r}}(T) \)-set can be extended to an OITD-set of \(T \) by adding \(v_3, v_2 \) yielding \(y_{\text{oi2r}}(T) \leq y_{\text{oi2r}}(T') + 2 \). It follows from the induction hypothesis that

\[
y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}^2(T') + 2 \geq y_{\text{oi2r}}(T') - 3 - \left\lfloor \frac{n(T - 2)}{6} \right\rfloor + 3 \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T)}{6} \right\rfloor + 1.
\]

Assume that \(g(v_4) = \emptyset \) and that \(\bigcup_{v \in N(v_4) - \{v_3\}} g(v) \neq \{1, 2\} \). Since \(V_0 \) is independent and \(g(v_4) = \emptyset \), we may assume without loss of generality that \(g(x) = \{1\} \) for each \(x \in N(v_4) - \{v_3\} \). First let \(\text{deg}_T(v_4) \geq 3 \). Assume \(T' = T - \{v_1, v_2, v_3\} \) and let \(T_1 \) be the components of \(T - \{v_3, v_4, v_5, v_6\} \) containing \(v_4 \). Define \(h : V(T') \rightarrow \{2\} \) by \(h(x) = \{1, 2\} \setminus g(x) \) if \(x \in V(T_1) \) and \(g(x) = \{1\} \), and \(h(x) = g(x) \) otherwise. Clearly, \(h \) is a \(y_{\text{oi2r}}^2(T) \)-function and we are in above situation and so we have \(y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T)}{6} \right\rfloor + 1 \).

Now let \(\text{deg}_T(v_2) = 2 \). Assume that \(T' = T - \{v_1, v_2, v_3, v_4\} \). Then the function \(g \) restricted to \(T' \) is an OI2RD-function of \(T' \) implying that \(y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}^2(T') + 2 \). On the other hand, any \(y_{\text{oi2r}}(T) \)-set can be extended to an total outer-independent set of \(T \) by adding \(v_2, v_3, v_4 \), yielding \(y_{\text{oi2r}}(T) \leq y_{\text{oi2r}}(T') + 3 \). We deduce from the induction hypothesis on \(T' \) that

\[
y_{\text{oi2r}}^2(T) \geq y_{\text{oi2r}}^2(T') + 2 \geq y_{\text{oi2r}}(T') - \left\lfloor \frac{n(T')}{6} \right\rfloor + 1 + 2 \geq y_{\text{oi2r}}(T) - 3 - \left\lfloor \frac{n(T - 4)}{6} \right\rfloor + 3 \geq y_{\text{oi2r}}(T) - \left\lfloor \frac{n(T - 6)}{6} \right\rfloor + 1.
\]

This completes the proof. \(\blacksquare \)

We conclude this paper with an open problem.

Problem. Prove or disprove: for any non-trivial connected graph \(G \) of order \(n \), \(y_{\text{oi2r}}^2(G) \geq y_{\text{oi2r}}(G) - \left\lfloor \frac{n}{6} \right\rfloor + 1 \).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Natural Science Foundation of Guangdong Province under grant 2018A0303130115.

ORCID

Qiong Kang \(\text{http://orcid.org/0000-0001-8123-9184} \)
Vladimir Samodivkin \(\text{http://orcid.org/0000-0001-7934-5789} \)
Marzieh Soroudi \(\text{http://orcid.org/0000-0002-6677-6835} \)

References

[1] West DB. Introduction to graph theory. 2nd ed. Upper Saddle River: Prentice-Hall, Inc.; 2000.

[2] Gallai T. Uber extreme Punkt- und Kantenmengen. Ann Univ Sci Budapest Eotvos Sect Math. 1959;2:133–138.

[3] Ahangar HA, Chellali M, Samodivkin V. Outer independent Roman dominating functions in graphs. Int J Comput Math. 2017;94:2547–2557.

[4] Krzykowski M, Venkatakrishnan YB. Bipartite theory of graphs: outer-independent domination. Natl Acad Sci Lett. 2015;38:169–172.

[5] Krzykowski M. An upper bound on the 2-outer-independent domination number of a tree. C R Math. 2011;349:1123–1125.
[6] Li Z, Shao Z, Lang F, et al. Computational complexity of outer-independent total and total Roman domination numbers in trees. IEEE Access. 2018;6:35544–35550.

[7] Rad NJ, Krzywkowski M. 2-Outer-independent domination in graphs. Natl Acad Sci Lett. 2015;38:263–269.

[8] Brešar B, Henning MA, Rall DF. Rainbow domination in graphs. Taiwanese J Math. 2008;12:201–213.

[9] Amjadi J, Dehgardi N, Furuya M, et al. A sufficient condition for large rainbow domination number. Int J Comput Math Comput Syst Theory. 2017;2:53–65.

[10] Brešar B, Kraner Šumenjak T. On the 2-rainbow domination in graphs. Discrete Appl Math. 2007;155:2394–2400.

[11] Chang GJ, Wu J, Zhu X. Rainbow domination on trees. Discrete Appl Math. 2010;158:8–12.

[12] Chellali M, Haynes TW, Hedetniemi ST. Bounds on weak roman and 2-rainbow domination numbers. Discrete Appl Math. 2014;178:27–32.

[13] Meierling D, Sheikholeslami SM, Volkmann L. Nordhaus–Gaddum bounds on the k-rainbow domatic number of a graph. Appl Math Lett. 2011;24:1758–1761.

[14] Sheikholeslami SM, Volkmann L. The k-rainbow domatic number of a graph. Discuss Math Graph Theory. 2012;32:129–140.

[15] Xu G. 2-rainbow domination in generalized Petersen graphs P(n, 3). Discrete Appl Math. 2009;157:2570–2573.

[16] Fan W, Ye A, Miao F, et al. Outer-independent Italian domination in graphs. IEEE Access. 2019;7:22756–22762.

[17] Krzywkowski M. Total outer-independent domination in graphs. Manuscript.

[18] Krzywkowski M. A lower bound on the total outer-independent domination number of a tree. C R Math. 2011;349:7–9.