Population pharmacokinetics of vancomycin in patients with external ventricular drain-associated ventriculitis

Kris Oliver Jalusic1,3 | Georg Hempel1 | Philip-Helge Arnemann2 | Christina Spiekermann2 | Tim-Gerald Kampmeier2 | Christian Ertmer2 | Silke Gastine1,4 | Michael Hessler2

1Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
2Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Muenster, Germany
3Institute of Epidemiology and Social Medicine, Faculty of Medicine, University of Muenster, Muenster, Germany
4Infection, Immunity & Inflammation Research & Teaching Department, GOS Institute of Child Health, University College London, London, UK

Correspondence
Kris Oliver Jalusic, MSc, University of Muenster, Institute of Epidemiology and Social Medicine, Albert-Schweitzer-Campus 1, Building D3 48149 Münster, Germany. Email: kris.jalusic@uni-muenster.de

Background: To determine the distribution of vancomycin into the cerebrospinal fluid (CSF) in patients with external ventricular drain (EVD)-associated ventriculitis, the pharmacokinetics of vancomycin were evaluated and covariate relationships explored.

Methods: For the population pharmacokinetic model patients were recruited in a neurocritical care unit at the University Hospital of Muenster in the period between January 2014 and June 2015. All patients had a clinical evidence of EVD-associated ventriculitis. Population pharmacokinetic analysis of vancomycin was performed using NONMEM.

Results: A total of 184 blood and 133 CSF samples were collected from 29 patients. The final population pharmacokinetic model is a three-compartment model with linear elimination. Creatinine clearance (ClCr) and CSF-lactate were detected as significant covariates, showing that the total vancomycin plasma clearance (Cl) depends on ClCr and furthermore the clearance (Cldif) between the central and CSF compartment correlates with CSF lactate concentration. Based on the final model, the following values were estimated by NONMEM: Cl = 5.15 L/h, Q (intercompartmental clearance) = 3.31 L/h, Cldif = 0.0031 L/h, Vcentral = 42.1 L, VCSF = 0.32 L and the value of Vperipheral was fixed to 86.2 L. With the developed pharmacokinetic model, area under the curve (AUC) values as well as CSF trough levels were simulated.

Conclusion: Based on our analysis, the dosing of vancomycin should be referred to the degree of inflammation (derived from the CSF lactate concentration) and renal function (derived from ClCr).

KEYWORDS
NONMEM, nosocomial ventriculitis, population pharmacokinetics, vancomycin
External ventricular drain (EVD)-associated bacterial ventriculitis is a frequent complication in patients with EVDs. EVDs are used in neurocritical care units for monitoring intracranial pressure, intrathecal drug administration or drainage of cerebrospinal fluid (CSF). Although EVDs are a routine procedure in neurocritical care and EVD-associated bacterial ventriculitis is a common complication, the optimal therapy for EVD-associated ventriculitis has not yet been clearly defined. Current treatment regimens include the (potentially harmful) intraventricular injection of antibiotics and/or their intravenous infusion, the latter of which may not always lead to optimal CSF drug levels.

Infection of the central nervous system, including ventriculitis and meningitis, is predominantly caused by Gram-positive pathogens. Due to the high incidence of penicillin-resistant Gram-positive bacteria, vancomycin is the standard empirical therapy for nosocomial bacterial infections of the central nervous system. Despite widespread use, vancomycin therapy is often suboptimally dosed due to pharmacokinetic variabilities in critically ill patients. For example, augmented renal clearance is common in neurosurgery patients, resulting in subtherapeutic vancomycin levels.

Vancomycin pharmacokinetics can be described using a two-compartment model. In the general population vancomycin has a steady-state volume of distribution of 0.4-1 L/kg and shows an initial half-life of 30 minutes. Protein binding of vancomycin in plasma is 50-55%. After 24 hours 75-80% of the drug is renally excreted unchanged from the body.

Vancomycin was detected in various tissues, with tissue concentration associated with high variability. The drug is distributed into the lung, the bone and muscle tissue, as well as fat and heart tissue. Distribution into the central nervous system, however, has been reported to occur only in pathological conditions or due to inflammatory processes that damage the blood-brain barrier or the blood-CSF barrier.

To date there is a lack of sufficient population pharmacokinetic models describing the distribution of vancomycin into the CSF in neurocritically ill patients with EVD-associated ventriculitis. This study assessed the CSF pharmacokinetics of vancomycin in neurocritically ill patients with EVD-associated ventriculitis to improve dosing recommendations.

2 | METHODS

2.1 | Ethics

The study was approved by the local ethics committee of the Medical Chamber Westphalia-Lippe and the University of Muenster, Germany (approval number 2014-211-f-S).
2.3 | Analytics

Concentration determination of vancomycin was performed using the enzyme-multiplied immunoassay technique (EMIT) method. The minimum quantifiable concentration of vancomycin was 1 mg/L. The precision (coefficient of variation) was between 1.6% and 5.8% and the accuracy (absolute deviation) between 0.032 and 0.414. When modelling in NONMEM, the M2 method was used for handling data below the limit of quantification so that values below the limit of quantification were excluded from the modelling.

2.4 | Pharmacokinetic analysis

Population pharmacokinetic analysis of vancomycin was performed using NONMEM (Version 7.3, Icon Development Solutions, Ellicott City, USA). The graphical evaluation was conducted using R in addition with the Xpose package (version 4.5.3). The program tool Perl-Speaks-NONMEM (Version 4.8.1.) was used to perform simulation-based evaluations, step-wise covariate modelling (SCM) and bootstrap analysis. For parameter estimations in NONMEM the parametric maximum likelihood method was used. The data were analysed using one-, two- and three-compartment models. In the pharmacokinetic analysis initially, a plasma concentration-based model was developed. Subsequently, the CSF compartment was integrated into the plasma concentration model. Finally, the covariate model was developed using SCM. The effect of covariates was assessed based on the influence on objective function value (OFV = −2 × log of likelihood, −2LL). A decrease of 3.84 points between two nested models regarding a change in one degree of freedom (level of significance 5%) in the OFV was considered as significant for forward inclusion into the full model. A difference of 6.63 points (level of significance 1%) in OFV between two nested models was considered significant to keep the covariate in the final model. The following covariates were tested: age, height, weight, sex, creatinine clearance, leukocytes, C-reactive protein, urea, protein (CSF), lactate (CSF), glucose (CSF), granulocytes (CSF), white cell count (CSF), erythrocytes (CSF) and CSF loss.

The final model was graphically evaluated by goodness-of-fit plots (GOFs) of observed and predicted concentrations of vancomycin as well as visual predictive checks (VPCs). The stability and validity of the model was tested by bootstrap analysis, including 1000 resampled estimations.

In this work median with the corresponding interquartile range (IQR) was used. Missing data were supplemented accordingly: the population median was used when data for a patient was completely missing. In the absence of the last value of the time-dependent covariate, the previous value was adopted (last value carried forward method). For data gaps in time-dependent covariates within the individual patient’s record, a median between the two adjacent values was determined.

2.5 | Simulations of new dosing regimen

Based on the developed population pharmacokinetic model, Monte-Carlo simulations were performed with different dosing regimens. In a post hoc estimation step, the area under the curve (AUC) was determined. For the simulations, simulation datasets with different vancomycin doses and a sample population were created. The results of the simulations were interpreted in the form of individual Bayesian forecasts.

3 | RESULTS

3.1 | Patients characteristics

A total of 29 patients suffering from EVD-associated ventriculitis were treated with intravenous vancomycin during the study period (Table 1). Detailed information of the underlying neurological disease (Supporting Information Table S1) of the patients and the detected pathogens (Supporting Information Table S2) are available in the Supporting Information digital content. A total of 184 blood and 133 CSF samples were collected. The median vancomycin concentration (n = 184) in plasma was 17.7 mg/L (IQR 13.00, 23.02). The median vancomycin concentration (n = 103) in CSF was 2.9 mg/L (IQR 1.76, 4.2). The number of samples obtained from each patient and times during the dosing interval is shown in Supporting Information Table S3. Figure 1 shows vancomycin concentrations in plasma and CSF over time for bolus application and continuous infusion. In both groups of patients, CSF-to-plasma ratios which were 0.13 (IQR 0.07; 0.414. When modelling in NONMEM, the M2 method was used for handling data below the limit of quantification so that values below the limit of quantification were excluded from the modelling.

TABLE 1 | Patients characteristics

Characteristic	Median	IQR
Demographic covariates		
Age (years)	52	44; 61
Height (cm)	170	168; 180
Weight (kg)	80	70; 85
Sex (male)	14	
Covariates in plasma		
Leukocytes (10⁹ cells/µL)	9.96	7.53; 13.8
ClCr (mL/min/1.73 m²)	152	109; 174
CRP (mg/dL)	2.6	1.1; 4.5
Urea (mg/dL)	13.5	11; 18
Covariates in CSF		
Protein (mg/L)	1.100	634; 1920
Glucose (mg/dL)	64.5	54; 73
Lactate (mmol/L)	3.3	2.8; 4
Granulocytes (cells/µL)	41	6.5; 120
White cell count (cells/µL)	99	54; 238.7
Erythrocytes (cells/µL)	1920	672; 4608

Abbreviations: ClCr, creatinine clearance; CRP, C-reactive protein; CSF, cerebrospinal fluid; IQR, interquartile range.
0.24) in patients with bolus therapy and 0.08 (0.05; 0.12) under continuous therapy correlated significantly with markers of cerebral inflammation.

3.2 | Population pharmacokinetic analysis

A three-compartment model (two plasma plus a CSF compartment) with first-order elimination best described the vancomycin pharmacokinetics. The model consisted of the central compartment, peripheral compartment and the CSF compartment. The clearance of vancomycin from the central into the CSF compartment is described via the influx clearance (Equation 1). Furthermore, the elimination of vancomycin from CSF is defined by the efflux clearance (Equation 2). Distribution between plasma and CSF was best described using C_{ldif}. An additional C_{bulk} parameter was used to define drainage into the venous system. C_{bulk} was fixed on the literature value of 25 mL/h.

$$C_{lin} = C_{ldif}$$

Equation 1 C_{lin} = influx clearance: clearance from the central into the CSF compartment, C_{ldif} = passive diffusion (value estimated by NONMEM)

$$C_{out} = C_{ldif} + C_{bulk}$$

Equation 2 C_{ldif} = efflux clearance: clearance from the CSF to the central compartment, C_{ldif} = passive diffusion (value estimated by NONMEM), C_{bulk} = bulk flow (fixed literature value)

Covariate evaluation detected a significant influence of creatinine clearance on total clearance (Equation 3) and an influence of the CSF lactate concentration on C_{ldif} (Equation 4). The median CSF lactate concentration in the patient population was 3.3 mmol/L (IQR:2.8; 4) equally distributed across 0.5 to 9 mmol/L.

$$TVCl = \theta_{TVCl} = \frac{Cl_{pop}}{C_{152}/C_{18}/C_{19}}$$

Equation 3 Relationship between the individual Cl (TVCl) and creatinine clearance (ClCr) described with a potency function. θ_{TVCl} population estimate of clearance; 152 median of ClCr in the population; θ_{ClCr} estimated value of covariate influence

$$TVC_{ldif} = \theta_{ldif} = e^{\theta_{lakt}}(\text{lactate value}−3.3)$$

Equation 4 Relationship between the individual C_{ldif} (TVC_{ldif}) and the lactate value described with an exponential function θ_{lakt} estimated value of lactate impact

FIGURE 1 Vancomycin concentrations in plasma and cerebrospinal fluid over time for bolus application and continuous infusion in the patient population. The broken lines show the target concentration of vancomycin.
The median creatinine clearance in the patient population was 152 mL/min (IQR 109; 174) distributed equally between 15 and 200 mL/min. In the final model, the volume of distribution in the peripheral compartment (V_3) was fixed to the previously estimated value of 86.2 L. The relative standard errors, reflecting the parameter precision, were less than 30% in the final model for the model parameters and less than 50% for the parameters of the stochastic model (Table 2). The parameter shrinkage was estimated with 6% and 19% for the IIV on Cl and Cl_{dif}, respectively.

The bootstrap analysis, which provides an insight into the stability of the model and the parameter precision of the estimated patient data, shows that the model is stable and the parameters are estimated with sufficient precision (Table 2). Figure 2a,c shows GOF plots for individual predictions. The figures show a uniform distribution of the individual predictions and the measured concentration around the bisecting line. Figure 2b,d shows GOF plots in which the population predictions are plotted against the observed vancomycin concentrations. A VPC was created for the dosing occasions. The observed median and percentiles are complement to the simulated confidence intervals, indicating a good predictive performance of the final model (Supporting Information Figure S1).

Parameter	Estimated value	Bootstrap
Cl (L/h)	5.15	5.12
V_1 (L)	41.13	41.13
V_2 (L)	0.32	0.33
V_3 (L)a	86.2	86.25
Q (L/h)	3.61	3.44
Cl_{dif} (L/h)	0.0031	0.0031
Prop. error (%) (plasma)	18.5	18.5
Add. error (mg/L) (plasma)	3.16	2.58
Add. error (mg/L) (CSF)	0.79	0.78
Cl_{C} on Cl	0.407	0.42
Lactate on Cl_{dif}	0.11	0.12
IIV Cl (%)	34.9	33.12
IIV Cl_{dif} (%)	65.4	63.66

Abbreviations: add. error, additive error; Cl, plasma clearance; Cl_{C}, creatinine clearance; Cl_{dif} clearance between the central and CSF compartment; IIV, interindividual variability; prop. error, proportional error; Q, intercompartmental clearance; V_1, volume of distribution in the central compartment; V_2, volume of distribution in the CSF compartment; V_3, volume of distribution in the peripheral compartment.

aFixed values
3.3 | Simulations

To depict the influence of the detected covariates creatinine clearance and CSF-lactate concentration, simulations of several dosing regimens were carried out in a sample population. The change of simulated AUC24 across creatinine values with CSF lactate fixed to the population median of 3.3 mmol/L is shown in Supporting Information Figure S2. Elevation of vancomycin CSF trough concentrations at steady state with increasing CSF lactate levels is shown in Supporting Information Figure S3.

The progression of the designated pharmacokinetic-pharmacodynamic (PK/PD) target for vancomycin AUC24:minimum inhibitory concentration (MIC) across common MIC values is shown in Figure 3.

4 | DISCUSSION

In the present study a linear three-compartment model describing pharmacokinetic parameters of vancomycin in plasma and CSF in neurocritically ill patients with EVD-associated ventriculitis was developed. To the best of our knowledge, we are the first to show a correlation between the CSF lactate level as a surrogate to inflammation processes and elevated vancomycin concentrations in the CSF, in addition to the well-known influence of creatinine clearance on vancomycin elimination. Furthermore, we assessed the efficacy of different doses via a PK/PD approach with Monte Carlo simulations.

The pharmacokinetic variability of vancomycin is a well-known issue that has been addressed by TDM of plasma trough concentrations in the past. It has long been known that the AUC:MIC ratio is the far better parameter to relate PK/PD, but measurements of AUC have been cumbersome.26 Vancomycin data for this study mainly consisted of trough levels collected for TDM, but also included information on the drug disposition into the CSF. Nevertheless, regarding vancomycin drug monitoring, Neely et al27 were able to show that by using nonlinear mixed effects modelling (NLME) approaches the AUC can be sufficiently calculated from individual priors or in our case empirical Bayesian estimates. It can further be used to adapt individual dosing or could even be used to calculate optimal sampling time points to derive the most informative individual model. Thus, NLME modelling was used to describe the pharmacokinetics in this neurocritically ill population with EVD and to determine the characteristics that explain interindividual variability throughout the population. Dosing regimens were simulated based on these results to further explore vancomycin exposition in this special population.

The observed data is best described by a linear three-compartment model: a peripheral and central compartment for the distribution in plasma and a further compartment for the CSF. The intercompartmental clearance of vancomycin from the central into the CSF compartment was described via an influx clearance. It is believed that this process occurs via passive transcellular diffusion (Clin). Elimination of vancomycin from CSF is defined by efflux clearance. The model assumes that vancomycin elimination from cerebrospinal fluid consists of passive transcellular diffusion (Cltrans) and excretion via drainage of the cerebrospinal fluid into the venous (bulk flow, Clbulk) system.22–24 In accordance with previous publications, describing the pharmacokinetics of vancomycin in plasma resulted in a two-compartment model.28–33

A correlation between the CSF lactate concentration and the exchange of vancomycin between cerebrospinal fluid and blood has not yet been published. The CSF lactate concentration correlates with the clearance between the central compartment and the CSF compartment. This correlation was described by an exponential model. The complex composition of the blood-cerebrospinal fluid barrier results in a barrier effect, with the blood-cerebrospinal fluid barrier being completely permeable only to water, oxygen and carbon dioxide. The penetration of drugs, for example vancomycin, is impeded,34,35 therefore vancomycin does not penetrate the blood-cerebrospinal fluid barrier in healthy patients easily,36,37 but does so in patients with infections of the central nervous system.38–41 As a

FIGURE 3 Simulated AUC24:MIC vs MIC. With 1000 mg vancomycin q8h, 1,350 mg q8h, 1500 mg vancomycin q8h, 4 g vancomycin continuous infusion (cont.), 3 g vancomycin cont., 2 g vancomycin cont. AUC, area under the curve; MIC, minimal inhibitory concentration
diagnostic parameter, CSF lactate concentration provides information on acute, bacterial or viral inflammation and thus acts as a surrogate parameter for ventriculitis and meningitis. The median CSF lactate concentration in the observed patient population was 3.3 mmol/L and is thus well above the reference range for healthy adults (1.1 mmol/L). The increased lactate concentration indicates inflammation in the patient population and thus the detectability of therapeutic vancomycin concentrations in the CSF.

Vancomycin exposure was simulated for different dosing regimens and is depicted as trough concentration at steady state across a range of CSF lactate levels in Supporting Information Figure S3. With the increase in CSF lactate concentrations, the vancomycin concentration in the CSF increases. Supporting Information Figure S3 also shows that administration of the dosing regimen 1350 mg/L every 8 hours achieved the therapeutic target (above 1 mg/L in the CSF) after 24 hours at a lactate level of 3.3 mmol/L, which was the population median in our observed population. Based on the simulations, the dosing recommendation for continuous infusion is 4 g/24 h of vancomycin.

Creatinine clearance significantly impacts the plasma clearance term and has been implemented via a power function. A correlation between creatinine clearance and total clearance has been previously reported in several publications. The recently suggested updated PK/PD target is in line with findings that targeting AUC:MIC ratios is more reliable than previously used target trough concentrations. It is suggested that an AUC_{24} of 400 mg/L/h should be the aim in empiric treatment. If the pathogen is known, vancomycin can either be de-escalated or adapted to achieve the target AUC_{24}:MIC ratio with regards to the pathogen. The simulations in Figure 3 show that by increasing creatinine clearance, the vancomycin concentration and therefore AUC_{24} decreases. Figure 3 depicts the change of this ratio in our simulated population across commonly detected MIC values. As this population included a broad distribution of creatinine clearance values, between 15 mL/min and 200 mL/min, percentiles of the simulated population are given, where the 50th percentile shows the population mean curve. The 5th and 95th percentiles, respectively, show patients with impaired and augmented renal clearance.

Publications reporting population pharmacokinetics (PopPK) modelling of vancomycin concentrations in the CSF are rare. Recently, Blassmann et al published a population pharmacokinetic model that assessed the disposition of vancomycin in EVD patients. Here, the nonparametric approach was used to fit the data, which does not make the assumption that pharmacokinetic parameter variability is restricted to a normal distribution around the population mean, but rather allows all parameters to be individually estimated across the nonparametric adaptive population grid. Li et al also used a parametric PopPK approach with a three-compartment model including one CSF compartment. The difference is the discovered covariate relationship, especially the link between CSF lactate concentrations and the vancomycin distribution into CSF, that was found in our model. A further difference between the structural model developed in this work and the model of Li et al is the elimination from the CSF compartment. In this work we defined the elimination of vancomycin with the bulk flow mechanism discussed above.

Comparing both previously published models, clearance is well in accordance with our estimate. The models differ in volumes of distribution, especially when it comes to the estimate of the CSF volume of distribution. CSF fluid is thought to be about 150 mL in a healthy adult. We estimated vancomycin to be distributed into the CSF in 320 mL, suggesting further distribution out of the fluid into other brain compartments. Li estimated this parameter to be 26 mL, whereas Blassmann suggests 828 L. A further difference to the published models is the study population. Patients analysed in this study were subarachnoid haemorrhage patients. In contrast, Li et al analysed postoperative patients. It is notable that subarachnoid haemorrhage patients commonly suffer from hydrocephalus and thus increased CSF volumes. On the other hand, up to 300 mL/d of excess CSF may be drained by the EVD.

Our simulations show how variable vancomycin pharmacokinetics are in this specific neurocritically ill population. Depending on the individual's renal function and the permeability of the blood-brain barrier, the disposition of the drug in plasma and CSF can be variable and should thus be monitored via TDM. The use of Bayesian forecasting through a pharmacometric tool can aid the clinician in dose finding and dose adaptation choices.

The results we are reporting were obtained through a retrospective study. Mostly trough samples were available, resulting in a higher uncertainty of the central volume of distribution estimate. Nevertheless, this setup allowed for the quantification of clearance and disposition of vancomycin into the CSF, which were of primary interest in this study. It is possible that not all patients with ventriculitis were identified within the database. In addition, despite a clinical standard operating procedure requiring daily CSF liquor and blood samples to be taken in patients with ventriculitis, daily data were not available in all cases. As a further limitation, vancomycin loss from urine and drained CSF were not measured. In our analysis 30 CSF values were below the quantification limit of 1 mg/L and were therefore excluded from the model. There were no data on vancomycin CSF concentration for three patients. In one of these three patients there was no data on CSF covariates.

5 | CONCLUSION

In this study a population pharmacokinetic model describing vancomycin in intensive care patients with diagnosed ventriculitis was developed and covariate relationships explored. With the developed pharmacokinetic PopPK model, AUC values as well as CSF trough concentrations were simulated across different dosing regimens. The results of this work lead to the conclusion that in order to ensure the optimal vancomycin concentration in the CSF, the dosing of vancomycin should be referred to the degree of inflammation (derived from the CSF lactate concentration) and the renal function (derived from Cl_{Cr}).
ACKNOWLEDGEMENTS
H.M. has received travel fees provided by Amomed Pharma GmbH and Astellas Pharma. K.T.G. received travel reimbursements and honoraria as a consultant from Fresenius Kabi Germany.

Open access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
H.M. has received travel fees provided by Amomed Pharma GmbH and Astellas Pharma. K.T.G. received travel reimbursements and honoraria as a consultant from Fresenius Kabi Germany. The remaining authors have disclosed that they do not have any conflicts of interest.

CONTRIBUTORS
K.O.J., G.H., C.E., S.G., and M.H. conceived the study. K.O.J. developed the PK model and wrote the original draft of the manuscript. S.G. designed the figures. K.O.J., G.H., C.E., S.G., and M.H. interpreted data, participated in drafting the article and revised it critically for important intellectual content. P.H.A., C.S., and T.G.K. conducted the database analysis and exported the data. All authors assisted in the review of the manuscript and approved the final version of the manuscript for submission. S.G. and M.H. jointly supervised this work. K.O.J. acts as corresponding author.

DATA AVAILABILITY STATEMENT
Data available on request from the authors. The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Kris Oliver Jalusic https://orcid.org/0000-0001-7715-089X

REFERENCES
1. Chatzi M, Karvouniaris M, Makris D, et al. Bundle of measures for external cerebral ventricular drainage-associated ventriculitis. Crit Care Med. 2014;42(1):66-73.
2. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES. Ventriculostomy-associated infections: a critical review of the literature. Neurosurgery. 2002;51:170-181, discussion 181-182
3. Humphreys H, Jenks P, Wilson J, et al. Surveillance of infection associated with external ventricular drains: proposed methodology and results from a pilot study. J Hosp Infect. 2017;95(2):154-160.
4. von Spreckelsen N, Jung N, Telentschak S, Hampl J, Goldbrunner R, Grau S. Current treatment concepts for iatrogenic ventriculitis: a nationwide survey in Germany. Acta Neurochir. 2018;160:505-508.
5. Tunkel AR, Hasbun R, Bhimraj A, et al. Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infecl Dis. 2017;64:e34-e65.
6. May CC, Arora S, Parli SE, Fraser JS, Bastin MT, Cook AM. Augmented renal clearance in patients with subarachnoid hemorrhage. Neurocrit Care. 2015;23(3):374-379.
7. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858-883.
8. Beach JE, Perrott J, Turgeon RD, Ensom MHH. Penetration of vancomycin into the cerebrospinal fluid: a systematic review. Clin Pharmacokinet. 2017;56(12):1479-1490.
9. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet. 1986;11(4):257-282.
10. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clinical Infectious Diseases. 2006;42(Suppl 1):S35-S39.
11. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-332.
12. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41.
13. Udy A, Roots R, Senthuran S, et al. Augmented creatinine clearance in traumatic brain injury. Anesth Analg. 2010;111(6):1505-1510.
14. Schobben F, van der Kleijn E. Drug determinations in body fluids by the enzyme multiplied immunoassay technique (EMIT®). Eur J Drug Metab Pharmacokinet. 1977;2:185-189.
15. Bergstrand M, Karlsson MO. Handling data below the limit of quantification in mixed effect models. AAPS J. 2009;11(2):371-380.
16. Beal SL, Sheiner LB. NONMEM users guide. 3rd ed. University of California Press. 1989. file:///C:/Users/User/Downloads/%20(1).pdf
17. Lindboom L, Pihlgren P, Jonsson EN, Jonsson N. PsN-toolkit - a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241-257.
18. Vozenel S, Maitre PO, Stanski DR. Evaluation of population (NONMEM) pharmacokinetic parameter estimates. J Pharmacokinet Biopharm. 1990;18(2):161-173.
19. Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15(9):1463-1468.
20. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38-52.
21. Brendel K, Dartois C, Comets E, et al. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet. 2007;46(3):221-234.
22. Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):957-970.
23. Segal MB. Extracellular and cerebrospinal fluids. J Inherit Metab Dis. 1993;16(4):617-638.
24. Skpior J, Thiery J-C. The choroid plexus-cerebrospinal fluid system: undervalued pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp. 2008;68(3):414-428.
25. Wright BLC, Lai JTF, Sinclair AJ. Cerebrospinal fluid and lumbar puncture: a practical review. J Neurol. 2012;259(8):1530-1545.
26. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C. Therapeutic monitoring of vancomycin: A revised consensus guideline and review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society and the Society of Infectious Diseases Pharmacists [https://www.ashp.org/-/media/assets/policy-guidelines/docs/draft-guidelines/draft-guidelines/ASHP-IDS-IDP-2017-vancomycin.pdf].
27. Neely MN, Kato L, Youn G, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):e02042-17.
28. Donadello K, Roberts JA, Cristallini S, et al. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Crit Care. 2014;18(6):632-642.
29. Llopis-Salvia P, Jiménez-Torres NV. Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther. 2006;31(5):447-454.
30. Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60(3):265-275.

31. Dolton M, Xu H, Cheong E, et al. Vancomycin pharmacokinetics in patients with severe burn injuries. Burns. 2010;36(4):469-476.

32. Sánchez JL, Domínguez AR, Lane JR, Anderson PO, Capparelli EV, Cornejo-Bravo JM. Population pharmacokinetics of vancomycin in adult and geriatric patients: comparison of eleven approaches. Int J Clin Pharm. 2010;48(8):525-533.

33. Yamamoto M, Kuzuya T, Baba H, Yamada K, Nabeshima T. Population pharmacokinetic analysis of vancomycin in patients with gram-positive infections and the influence of infectious disease type. J Clin Pharm Ther. 2009;34(4):473-483.

34. Rall DP. Drug Entry into Brain and Cerebrospinal Fluid. Concepts in Biochemical Pharmacology, Handbook of Experimental Pharmacology. 28. 1. Berlin, Heidelberg: Springer Berlin Heidelberg; Handbuch der experimentellen Pharmakologie/Handbook of Experimental Pharmacology, 28/1. 1971:240-248.

35. Siegel GJ, Agranoff BW, Albers RW, Price D. Basic neuroscience: Molecular, cellular and medical aspects. 6th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 1999. https://www.ncbi.nlm.nih.gov/books/NBK20385/.

36. Geraci JE, Heilman FR, Nichols DR, Wellman EW, Ross GT. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Antibiot Ann. 1956;90-106.

37. Leroux P, Howard MA, Richard Winn H. Vancomycin pharmacokinetics in hypothermic shunt prophylaxis and relationship to ventricular volume. Surg Neurol. 1990;34(6):366-372.

38. Plasculer B, Spiss H, Beer R, et al. Treatment of staphylococcal ventriculitis associated with external cerebrospinal fluid drains: a prospective randomized trial of intravenous compared with intraventricular vancomycin therapy. J Neurosurg. 2003;98(5):1040-1044.

39. Ricard J-D, Wolff M, Lacherade J-C, et al. Levels of vancomycin in cerebrospinal fluid of adult patients receiving adjunctive corticosteroids to treat pneumococcal meningitis: a prospective multicenter observational study. Clin Infect Dis. 2007;44(2):250-255.

40. Albanèse J, Leone M, Bruguerolle B, Ayem ML, Lacarelle B, Martin C. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother. 2000;44(5):1356-1358.

41. Viladrich PF, Gudiol F, Liñares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother. 1991;35(12):2467-2472.

42. Gerber J, Tumani H, Kolenda H, Nau R. Lumbar and ventricular CSF protein, leukocytes, and lactate in suspected bacterial CNS infections. Neurology. 1998;51(6):1710-1714.

43. Thomas L. Labor und Diagnose: Indikation und Bewertung von Laborbefunden für die medizinische Diagnostik. 8th ed. Frankfurt/Main: Th-Books Verl.-Ges; 2012.

44. Curtis GDW, Slack MPE, Tompkins DE. Cerebrospinal fluid lactate and the diagnosis of meningitis. J Infect. 1991;3:159-165.

45. Lannigan R, MacDonald MA, Marrie TJ, Haldane EV. Evaluation of cerebrospinal fluid lactic acid levels as an aid in differential diagnosis of bacterial and viral meningitis in adults. J Clin Microbiol. 1980;11(4):324-327.

46. de Gatta MD, Revilla N, Calvo MV, Domínguez-Gil A, Navarro AS. Pharmacokinetic/pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med. 2007;33:279-285.

47. Revilla N, Martín-Suárez A, Pérez MP, González FM, Fernández de Gatta MDM. Vancomycin dosing assessment in intensive care unit patients based on a population pharmacokinetic/pharmacodynamic simulation. Br J Clin Pharmacol. 2010;70(2):201-212.

48. Roberts JA, Taccone FS, Udy AA, Vincent J-L, Jacobs F, Lipman J. Vancomycin Dosing in Critically Ill Patients: Robust Methods for Improved Continuous-Infusion Regimens. Antimicrob Agents Chemother. 2011;55(6):2704-2709.

49. Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm. 2020;77:835-864.

50. Blasemann U, Hope W, Roehr AC, et al. CSF penetration of vancomycin in critical care patients with proven or suspected ventriculitis: a prospective observational study. J Antimicrob Chemother. 2019;74(4):991-996.

51. Li X, Wu Y, Sun S, et al. Population pharmacokinetics of vancomycin in postoperative neurosurgical patients. J Pharm Sci. 2015;104(11):3960-3967.

52. Li X, Wu Y, Sun S, Zhao Z, Wang Q. Population pharmacokinetics of vancomycin in postoperative neurosurgical patients and the application in dosing recommendation. J Pharm Sci. 2016;105(11):3425-3431.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Jalusic KO, Hempel G, Arnemann P-H, et al. Population pharmacokinetics of vancomycin in patients with external ventricular drain-associated ventriculitis. Br J Clin Pharmacol. 2021:87:2502–2510. https://doi.org/10.1111/bcp.14657