Ultra-stable near-infrared Tm$^{3+}$-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity

Wen Liu*, Runze Chen* and Sailing He*†‡

*State Key Laboratory of Modern Optical Instrumentations
Centre for Optical and Electromagnetic Research
Zhejiang University, Hangzhou 310058, P. R. China
†School of Electrical Engineering
Royal Institute of Technology
Stockholm SE-100 44, Sweden
‡sailing@kth.se

Received 16 December 2018
Accepted 23 March 2019
Published 9 May 2019

Two-photon luminescence with near-infrared (NIR) excitation of upconversion nanoparticles (NPs) is of great importance in biological imaging due to deep penetration in high-scattering tissues, low auto-luminescence and good sectioning ability. Unfortunately, common two-photon luminescence is in visible band with an extremely high excitation power density, which limits its application. Here, we synthesized NaYF$_4$:Yb/Tm@NaYF$_4$ upconversion NPs with strong two-photon NIR emission and a low excitation power density. Furthermore, NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for the first time. In addition, it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging. The vessels with two-photon luminescence were clear even under an excitation power density as low as 25 mW/cm2. Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast. Because of cheaper instruments and safer power density, the NIR two-photon luminescence of NaYF$_4$:Yb/Tm@NaYF$_4$ upconversion NPs could promote wider application of two-photon technology. The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation. Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.

Keywords: Ultra-stable upconversion nanoparticles; two-photon luminescence; in vivo brain angiography; low excitation power density.
1. Introduction

Recently, nanoparticle-assisted optical bio-imaging has attracted enormous attention in the field of biological photonics.1–3 The most notable nanoparticles (NPs) are those with NIR absorption or emission due to the outstanding tissue penetration abilities, the minimal photon-damage and the lower auto-luminescence of near-infrared (NIR) light compared with visible light.4–6 Over the last two decades, NPs with large two-photon absorption in the NIR region have been successfully developed, and two-photon luminescence has become an effective strategy to utilize the NIR excitation.7–9 Due to the excellent NIR excitation and special nonlinear optical properties, two-photon luminescence is naturally endowed with several advantages, for example, deeper penetration in high-scattering tissues, lower auto-luminescence, higher spatial resolution and better sectioning ability.10,11 Until now, the most common two-photon probes are dye-doped NPs.12 Although dye-doped two-photon NPs are endowed with high biocompatibility, their limits are also obvious. In the process of two-photon absorption, the intermediate excited state of the dye is a `virtual' state with a very short lifetime. Dye-doped two-photon NPs require a very high excitation photon flux in a very short period of time, which only the femtosecond laser can provide. High prices and the maintenance complexity of the femtosecond laser system limits the widespread use of two-photon luminescence. As the high excitation power density requires a highly focused excitation beam, the excitation mechanism of the dye limits its imaging model to the spot scanning imaging.13 Besides, two-photon luminescence of dye-doped NPs is mostly located in the visible range. Therefore, upconversion NPs with two-photon NIR emission would be a better choice.

In the case of upconversion NPs, the intermediate excited state of Re3+ is a real state with a long lifetime, which only requires very moderate excitation conditions. In this case, a cheap and portable continuous wave diode laser can offer enough photons to trigger the two-photon luminescence.13,14 The much lower power density of the excitation beam would further reduce photo damage and auto-luminescence in tissues. Furthermore, the imaging method could be broadened to the nonscanning wide-field imaging system. The system is much simpler and the acquisition time is shorter. Apart from this, the two-photon NIR emission of Tm3+ lies within the so-called biological window ‘700–900 nm’, which results in less scattering and deeper tissue penetration.15 Therefore, the unique nonlinear optical properties with NIR excitation and NIR emission make Tm3+-doped upconversion NPs ideal probes for bio-imaging. Unfortunately, current in vivo imaging work based on upconversion NPs were mostly imaging for liver, which could not fully demonstrate the penetration and sectioning ability of upconversion NPs.9,15 These imaging work were limited by the traditional coating method of upconversion NPs. In these works, poly acrylic acid (PAA) or polyethylene glycol (PEG) was chosen as the only coating polymer. The poor chemical stability could be speculated from sharp fading of vessels in several angiography work and fast aggregation in the liver in most imaging work.16,17 Indeed, the chemical stability of upconversion NPs in aqueous solutions with various pH is very essential, since (1) so far there is no report on the pH stability of polymer-coated upconversion NPs; (2) the pH values of biological reactions vary in a large range. Furthermore, a high chemical stability is helpful to the long in vivo circulation time.

In this study, NaYF₄:Yb/Tm@NaYF₄ upconversion NPs with strong two-photon NIR luminescence were synthesized and further functionalized via a modified multilayer coating method.18 The method has been used in coating gold nanorods and quantum dots before and stable NPs were obtained.19,20 Here, we applied a modified method to coat NaYF₄:Yb/Tm@NaYF₄ upconversion NPs and confirmed the chemical stability of as-obtained NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs in aqueous solutions with various pH. The ultra-stable hydrophilic upconversion NPs were then applied in the whole-body imaging with the excitation power density as low as 25 mW/cm². Furthermore, the vessels were still clear after 6 h which demonstrated the long in vivo circulation time. Due to the strong NIR luminescence and high chemical stability of upconversion NPs, brain angiography was carried out. Vivid visualizations of vessels and capillaries were obtained with low background noise and high contrast.
2. Experimental Section

2.1. Materials
Y(CH₃CO₂)₃·6H₂O (99.9%), Yb(CH₃CO₂)₃·6H₂O (99.9%), Tm(CH₃CO₂)₃·6H₂O (99.9%), oleic acid (OA, 90%), 1-octadecene (ODE, 90%), NH₄F (98%), NaOH (98%), Pluronic F-127 (F127), tetraethyl orthosilicate (TEOS), IGEPAL CO-520 and trimethoxy (octadecyl) silane (OTMS) were purchased from Sigma-Aldrich. Chloroform, tetrahydrofuran (THF), N-butyl alcohol, cyclohexane, ammonia, buffered saline (PBS) and ethanol were bought from Sinopharm Chemical Reagent Co. Ltd. Deionized (DI) water was used in all experiments.

2.2. Characterization
The dynamic light scattering (DLS) was carried out to obtain the average size and size distribution of the NPs at room temperature on the Zetasizer Nano ZS-90 (Malvern) at a fixed angle of 90°. The transmission electron (TEM) images of the NPs were taken with a 80 kV voltage in bright-field mode on the JEM-1200EX (JEOL, Japan). Two-photon NIR emission spectra was measured by a home-built luminescence measuring system. In the system, a focused 980 nm continuous wave (CW) laser was chosen as the excitation beam and a spectrometer (PG2000, Ideaoptics) was chosen as the luminescence collecting instrument.

2.3. Synthesis of NaYF₄:Yb/Tm@NaYF₄ NPs
The upconversion NPs were synthesized by a co-precipitation method.²¹ Briefly, 0.4 mmol lanthanide triacetate composed of 69.5% Y(CH₃CO₂)₃, 30%Yb(CH₃CO₂)₃, 0.5% Tm(CH₃CO₂)₃ were dissolved in 2 mL DI water and mixed with 3 mL OA, 7 mL ODE in a three-necked flask. The mixture was heated to 150°C and kept for 90 min to form a clear yellow solution. After the reaction system was cooled down to room temperature, the solution was heated to 50°C, 5 mL methanol containing 1 mmol NaOH and 1.6 mmol NH₄F was added and the system was kept at 50°C for another 30 min. Then the solution was heated to 100°C to remove the methanol and further heated to 280°C under the protection of N₂. After 90 min, the reaction was cooled down naturally and 6 mL ethanol was added. The mixture was centrifuged at 10,000 rpm for 10 min to collect the Nps. Finally, NaYF₄:Yb/Tm NPs were washed twice with ethanol and dispersed in cyclohexane.

The inert shell of NaYF₄ was grown by the same method. NaYF₄:Yb/Tm NPs in cyclohexane were added into the mixture of Y(CH₃CO₂)₃ and OA, and the solution was kept at 80°C to evaporate the cyclohexane before the reaction. The remaining reaction steps were the same as before. Finally, NaYF₄:Yb/Tm@NaYF₄ NPs were dispersed in 4 mL cyclohexane.

2.4. Synthesis of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs
NaYF₄:Yb/Tm@NaYF₄ upconversion NPs were caught in silica via a common reverse microemulsion coating method. In detail, 400 µL NaYF₄:Yb/Tm@NaYF₄ NPs were added into the mixture of 1 mL IGEPAL CO-520 and 8 mL cyclohexane under vigorous stirring. Then, 80 µL aqueous solution of ammonia (29.4%) and 45 µL TEOS were added into the dispersion in turn, and the reaction was kept stirring at room temperature. After 24 h, 3 mL N-butyl alcohol was added into the mixture to precipitate NaYF₄:Yb/Tm@NaYF₄@SiO₂ NPs. The mixture was centrifuged at 13,000 rpm for 8 min. Then, NPs were washed twice with ethanol and dissolved in 5 mL ethanol for the next step. 55 µL ammonia solution (29.4%) and 500 µL OTMS in chloroform solution were added into the dispersion under vigorous stirring. After 24 h, the mixture were centrifuged at 13,000 rpm for 8 min to collect NPs and washed twice with ethanol. NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS NPs were dispersed in 400 µL THF, and mixed with 30 mg F127. Then, the dispersion in THF was added into 1 mL DI water dropwise under mild stirring. The mixture was kept at room temperature for 24 h to evaporate THF contents. Finally, NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs were washed twice with DI water and dispersed in 800 µL DI water for future use.

2.5. Chemical stability of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs
The stability of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs in an aqueous dispersion for 10 min to collect the Nps. Finally, NaYF₄:Yb/Tm NPs were washed twice with ethanol and dispersed in cyclohexane.

The inert shell of NaYF₄ was grown by the same method. NaYF₄:Yb/Tm NPs in cyclohexane were added into the mixture of Y(CH₃CO₂)₃ and OA, and the solution was kept at 80°C to evaporate the cyclohexane before the reaction. The remaining reaction steps were the same as before. Finally, NaYF₄:Yb/Tm@NaYF₄ NPs were dispersed in 4 mL cyclohexane.
was characterized by comparing the luminescence intensities at certain time intervals. Incubated with serum and various aqueous solutions with pH $= 1-13$ at 37°C, the luminescence images of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs were taken under the same conditions after 0.5 h, 24 h and 9 days. The pH of aqueous solutions was adjusted by adding HCl or NaOH.

2.6.

Toxicity study of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs

All animal experiments were conducted in accordance with the rules of the Zhejiang University Animal Study Committee for the care and use of laboratory animals in research.

Histology analysis and blood assay were carried out to evaluate the *in vivo* toxicity of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs. All twelve mice were divided randomly into four groups. Group A was intravenously injected with 200 µL PBS (1×) as control while Groups B, C and D were injected with 200 µL NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs (10 mg/mL in PBS 1×). Group B was sacrificed to check acute reactions after 24 h, Group C was sacrificed after seven days, while Group A and D were sacrificed to check the long-time reactions after 31 days. For the blood parameters assay, bloods were collected from the ophthalmic arteriae. The blood routine examination, hepatic and renal function analyses were conducted respectively. For histology analysis, major organs (brain, heart, liver, spleen, lung, and kidney) were fixed in 4% paraformaldehyde and embedded in paraffin. The section slices were then stained with haematoxylin and eosin (H&E) and imaged on an optical microscope with a 10× or 40× objective lens.

2.7.

Pharmacokinetic property of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs

The *ex vivo* luminescence images of major organs were taken to check the pharmacokinetic property of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs. Three mice were intravenously injected with NPs (10 mg/mL in PBS 1×), while the control mouse was injected with PBS (1×). The experimental mice was sacrificed immediately, 3 days and 31 days post-injection and the major organ was harvested. The *ex vivo* luminescence images were then conducted on a home-made whole-body imaging system under the excitation of 980 nm laser.

2.8. **In vivo whole-body imaging**

An eight-week-old female nude mouse was injected with 200 µL NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs (10 mg/mL in PBS 1×) for *in vivo* whole-body imaging. The mouse was imaged on a home-made system under the side excitation of 980 nm laser beam. The luminescence signals were filtered by a 750 nm long-pass filter and a 900 nm short-pass filter. Two-photon luminescence images were vertically taken by EMCCD (iXon _Ultra_ 888, Andor).

2.9. **In vivo wide-field microscopy imaging**

Before imaging, an eight-week-old female mouse underwent a skull-removal surgery and the wound was sealed with a glass flakelet. The mouse was then injected with 200 µL NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs (10 mg/mL in PBS 1×) and fixed on a mice holder after anaesthesia. The mouse was imaged on an upright optical microscope with the 980 nm laser beam focused on the mouse brain. The two-photon luminescence signals were collected with the same lens and filtered by a 750 nm long-pass filter and a 900 nm short-pass filter. Two-photon luminescence images were taken by EMCCD (iXon _Ultra_ 888, Andor).

3. Results and Discussion

3.1. **Preparation and characterization of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs**

NaYF$_4$:Yb/Tm NPs were synthesized by a well-established co-precipitation method and the NaYF$_4$ shell was developed to protect NaYF$_4$: Tm from the surroundings and further increase the upconversion luminescence intensity. The Uv-Vis absorption
spectra of NaYF₄:Yb/Tm@NaYF₄ NPs in cyclohexane was measured and the absorption peak was located at 976 nm as shown in Fig. S1. So, the 980 nm laser was highly efficient to excite these NPs. As shown in Fig. S2, the simulation results illustrate that 980 nm laser beam has much better penetration and focusing capability than 450 nm (a commonly used visible laser) laser beam in biological tissues. As shown in Fig. 1, NaYF₄:Yb/Tm@NaYF₄ NPs in cyclohexane presented the sharp NIR emission at 800 nm and low visible emission at 650 nm. Besides, the luminescent intensity of core NPs was 27.3% while that of core–shell NPs was 100% according to luminescent spectrum (left inset) and the luminescence intensity of NaYF₄: Yb/Tm@NaYF₄ core–shell NPs were about 4 times higher than NaYF₄:Yb/Tm core NPs according to luminescent images in the right inset. This phenomenon was coherent with the previous work.²⁶,²⁷ Theoretically, the upconversion luminescence of NPs could be enhanced with a NaYF₄ shell because the additional passivating shell could reduce nonradiative decay losses.

![Graph showing luminescent intensity vs. wavelength](image)

Fig. 1. The luminescent spectrum of NaYF₄:Yb/Tm NPs, NaYF₄:Yb/Tm@NaYF₄ NPs and NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs under the excitation of the 980 nm laser. The left inset shows the normalized intensity of the NIR luminescence and the right inset shows the luminescent images of NaYF₄:Yb/Tm NPs and NaYF₄:Yb/Tm@NaYF₄ NPs.

![DLS results and TEM images](image)

Fig. 2. (a)–(e) The DLS results (number-weighted) of NaYF₄:Yb/Tm NPs, NaYF₄:Yb/Tm@NaYF₄ NPs, NaYF₄:Yb/Tm@NaYF₄@SiO₂ NPs, NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS NPs, and NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs respectively. (f)–(h) The TEM images of NaYF₄:Yb/Tm NPs (×1.2 × 10⁵ magnification), NaYF₄:Yb/Tm@NaYF₄ NPs and NaYF₄: Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs (×1.5 × 10⁵ magnification). (i) The size distribution and the solubility in water of the respective NPs.
of the surface luminescence. Furthermore, according to the dynamic light scattering (DLS) measurements, NaYF₄:Yb/Tm NPs had an average hydrodynamic diameter (number-weighted) of 37 ± 0.8 nm and NaYF₄:Yb/Tm@NaYF₄ NPs were 52.8 ± 12.6 nm as shown in Figs. 2(a), 2(b) and 2(i). The TEM images of NaYF₄:Yb/Tm NPs and NaYF₄:Yb/Tm@NaYF₄ NPs were shown in Figs. 2(f) and 2(g).

To convert the hydrophobic NaYF₄:Yb/Tm@NaYF₄ NPs into hydrophilic probes with good biological compatibility, we adopted a modified multilayer coating method to form NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ upconversion NPs as illustrated in Scheme 1. The method was first proposed to coat gold NPs and further applied in quantum dots to serve high chemical stability and biosafety. Here, we introduced the excellent coating method to upconversion NPs for the first time, to increase the biological compatibility and in vivo stability. The hydrophobic NaYF₄:Yb/Tm@NaYF₄ upconversion NPs in cyclohexane were turned into hydrophilic with SiO₂ shell by the common reverse microemulsion method. The hydrophilic NaYF₄:Yb/Tm@NaYF₄@SiO₂ NPs were converted into hydrophobic again with the fabrication of OTMS. The hydrophilic NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS NPs were further combined with F₁₂₇, an FDA-proved amphiphilic polymer, to disperse evenly in water. Here, F₁₂₇ was used to replace the expensive polyethylene glycol (PEG) in the origin method as the last layer. During the process of coating, the changes of DLS results, TEM images and the solubility in water was recorded to verify the successful coating of each layer as shown in Fig. 2(i). The diameters enlarged layer by layer which directly demonstrated the successful coating of SiO₂, OTMS and F₁₂₇. Besides, the coating results could be indirectly judged from the solubility in water. The hydrophobic NaYF₄:Yb/Tm@NaYF₄ turned into hydrophilic NaYF₄:Yb/Tm@NaYF₄@SiO₂, and became hydrophobic (white aggregation once touched water) again with the layer of OTMS. The final NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ dispersed well in water which verify the successful coating. In addition, there wasn’t any obvious difference in TEM images between NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ and NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ because OTMS and F₁₂₇ was a kind of polymer presenting quite poor contrast compared with the metal core. Furthermore, the normalized NIR luminescence intensity of well-coated NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ NPs was 16.9% while NaYF₄:Yb/Tm@NaYF₄ NPs was 100% as shown in Fig. 1 (left inset).

3.2. The chemical stability and photo-stability of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ NPs

The chemical stability of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F₁₂₇ NPs was characterized by comparing the luminescence intensities of upconversion NPs in an aqueous dispersion with different pH at certain intervals. As shown in Fig S2, there were none obvious intensity changes with naked eyes between the images with different pH and different time. Thus, we calculated the
luminescence intensity of each image by subtracting that of pure water under the same conditions. As shown in Fig. 3, taking the intensity of dispersions with pH $= 7$ at 0.5 h as 100%, the changes with time and different pH were less than 30%. Considering the inevitable errors during the imaging and calculating process, the results indicated that NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs were endowed with high chemical stability which was significant for biological imaging, especially for applications involving long-term study.

To demonstrate the photo-stability of NPs, NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs in water were excited continuously for 3 h under the irradiation of a 980 nm laser (fixed at 500 mW). The luminescent spectra were measured at certain time intervals and the areas of the NIR emission were calculated to compare. The normalized results were presented in Fig. 4 by taking the value at 0 min as 100%. It was obvious that the luminescence of NPs were kept stable during the three hours’ irradiation. The outstanding stability against photobleaching of upconversion NPs shown here was very important for the long time observation in bioimaging.

3.3. In vivo toxicity of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs

To evaluate the in vivo toxicity of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs, we carried out the histology analysis and blood parameters assay. As shown in Fig. 5, microscopic images of major organs (heart, liver, spleen, lung, kidney and brain) were taken with a 10× and 40× objective lens. Compared with PBS (1×), the mice injected with NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs presented none obvious inflammation or abnormality after 24 h, 7 days and 31 days. For the blood routine examination results, as shown in Fig. S4, there were no obvious signs of infection, allergic or toxic reactions found. For the hepatic function analyses, as shown in Fig. S5, there was no obvious difference in alkaline phosphatase, alanine transaminase, aspartate transaminase, and gamma-glutamyl transferase between the experimental group and the control group. For the renal function analyses, as shown in Fig. S5, the markers of creatinine, uric acid, and blood urea nitrogen were within the normal range. Thus, NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs were proved to be biocompatible. The high biocompatibility was beneficial to future imaging work.

3.4. Pharmacokinetic property of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs

To demonstrate the pharmacokinetic property of NaYF$_4$:Yb/Tm@NaYF$_4$@SiO$_2$@OTMS@F127 NPs, we carried out the ex vivo macroscopy of major organs. As shown in Fig. S6(a), strong signals were
observed in the lung immediately post injection as the NPs distributed mostly in the blood. After 3 days, as shown in Fig. S6(b), the signals decreased as a whole. As signals of the lung decreased a lot, signals of the liver and spleen relatively increased due to the metabolism. After 31 days, as shown in Fig. S6(c), the whole signals reached a quite low level, which demonstrated the good metabolism property of the NPs.

3.5. In vivo whole-body imaging

To verify the potential application of NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs in biological imaging, a nude mouse was injected intravenously with 200 μL NPs (10 mg/mL in PBS 1×) and imaged on our home-made system under the excitation of the 980 nm laser. As shown in Fig. 5(a), the mouse was excited evenly by the expanded 980 nm laser and the two-photon NIR luminescence signals were collected vertically by the EMCCD. Thanks to the special nonlinear optical properties of upconversion NPs, the vessels were clearly distinguishable under the power density as low as 25 mW/cm², as shown in Fig. S7(a). In addition, the in vivo stability was also demonstrated. Three images were taken immediately, 2 h and 6 h post-injection, respectively, under the same conditions with the power density 44 mW/cm². As shown in Figs. 5(b) and S7(b)–S7(d), vessels were very clear after 2 h and still recognizable after 6 h as signals in the liver increased. In our work, the prolonged in vivo circulation time shows the potential for long-time bio-imaging research.

3.6. In vivo wide-field microscopy imaging

As NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs could be stable in vessels for hours, it was possible to apply the bright NIR NPs in brain angiography. As shown in Fig. 6(a), the imaging system was reconstructed based on a commercial upright microscopy. The excitation laser beam was introduced and focused on the brain of the mouse (100 mW/cm²), and luminescence signals were collected from above. As shown in Fig. 6(b), the visualization of the brain blood vessels was achieved.
via a 5× lens and the imaging depth reached 1 mm. Due to the unique upconversion process and low scattering of NIR light, capillaries were very clear. The luminescence intensity distribution across a selected vessel was calculated and the diameter of the vessel was 16.4 μm, as shown in Fig. 6(c). In addition, the sectioning ability was also shown in Fig. S8. The vessels across the images disappeared and vessels in the corner became clear as the depth increased. In general, the well-defined vascular border in Figs. 6 and S8 was attributed to the strong two-photon luminescence and low scattering of NIR light. Thus, NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 upconversion NPs were demonstrated to be an excellent probe with high contrast in deep tissue.

4. Conclusions

In summary, NaYF₄:Yb/Tm@NaYF₄ upconversion NPs with strong two-photon NIR emission have been synthesized and functionalized via a modified multilayer coating method. The obtained NaYF₄:Yb/Tm@NaYF₄@SiO₂@OTMS@F127 NPs were quite stable in aqueous solutions with pH = 1–13 and the PBS solution. Due to the extraordinary chemical stability and biocompatibility, the as-prepared upconversion NPs in PBS were applied in the long-time whole-body imaging of the nude mouse. The stable in vivo circulation time was as long as 6 h and the excitation power density was as low as 25 mW/cm². The upconversion NPs have further been applied in brain angiography. Vivid visualizations of capillaries and big vessels have been demonstrated with low background noise and high contrast. Our work should have a great potential in deep imaging and imaging-guided treatment in the future.

Acknowledgments

This work is partially supported by National Key Research and Development Program of China (Grant No. 2018YFC1407503), the Fundamental
Research Funds for the Central Universities (2018FZA5001), and The National Natural Science Foundation of China (Grant No. 11621101).

References

1. P. N. Prasad, Introduction to Biophotonics, Wiley-Interscience (2004).
2. Y. F. Kong, J. Chen, F. Gao, R. Brydson, B. Johnson, G. Heath, Y. Zhang, L. Wu, D. J. Zhou, “Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging,” Nanoscale 5, 1009–1017 (2013).
3. P. F. Rong, P. Huang, Z. G. Liu, J. Lin, A. Jin, Y. Ma, G. Niu, L. Yu, W. B. Zeng, W. Wang, X. Y. Chen, “Protein-based photothermal theranostics for imaging-guided cancer therapy,” Nanoscale 7, 16330–16336 (2015).
4. J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, “High-order non-linear optical effects in organic luminogens with aggregation–induced emission,” Adv. Mater. 27, 2323–2339 (2015).
5. X. Wu, X. X. He, K. M. Wang, C. Xie, B. Zhou, Z. H. Qing, “Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo,” Nanoscale 2, 2244–2249 (2010).
6. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
7. Q. Liu, B. D. Guo, Z. Y. Rao, B. H. Zhang, J. R. Gong, “Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging,” Nano Lett. 13, 2436–2441 (2013).
8. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7, 941–945 (2007).
9. N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramirez-Hernandez, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarraz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Sole, M. Bettinelli, D. Jaque, A. Speghini, “NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ Nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” Adv. Funct. Mater. 28, 1703451 (2018).
10. F. Helmchen, W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth. 2, 932–940 (2005).
11. B. G. Wang, K. Konig, K. J. Halbhuber, “Two-photon microscopy of deep intravital tissues and its merits in clinical research,” J. Microsc-Oxford 238, 1–20 (2010).
12. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
13. Y. I. Park, K. T. Lee, Y. D. Suh, T. Hyeon, “Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multimodal in vivo imaging,” Chem. Soc. Rev. 44, 1302–1317 (2015).
14. M. Pollnau, D. R. Gamelin, S. R. Lathi, H. U. Gudel, M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
15. J.-W. Shen, J. Wang, D. Kong, X.-P. Yan, “Sub-20 nm sandwich-structured NaGdF4:Yb/Tm@NaLuF4: Yb/Tm@NaYF4 nanocrystals for in vivo upconversion luminescence/computed tomography imaging,” RSC Adv. 4, 5088 (2014).
16. Z. Deng, X. Li, Z. Xue, M. Jiang, Y. Li, S. Zeng, H. Liu, “A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1500 nm,” Nanoscale 10, 9393–9400 (2018).
17. W. You, D. Tu, W. Zheng, X. Shang, X. Song, S. Zhou, Y. Liu, R. Li, X. Chen, “Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications,” Nanoscale 10, 11477–11484 (2018).
18. F. Wang, X. Liu, “Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130, 5642–5643 (2008).
19. Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, “Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy,” Angewandte Chemie 52, 1148–1151 (2013).
20. A. Zeibibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li, J. Qian, “Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging,” Adv. Funct. Mater. 28, 1703451 (2018).
21. F. Wang, R. Deng, X. Liu, “Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes,” Nat. Protocols 9, 1634–1644 (2014).
22. X. Ge, L. Dong, L. Sun, Z. Song, R. Wei, L. Shi, H. Chen, “New nanoplateforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging,” Nanoscale 7, 7206–7215 (2015).
23. S. Wang, W. Xi, F. Cai, X. Zhao, Z. Xu, J. Qian, S. He, “Three-photon luminescence of gold nanorods

52.11.211.149 on 10/03/19. Re-use and distribution is strictly not permitted, except for Open Access articles.
Ultra-stable near-infrared Tm^{3+}-doped upconversion nanoparticles

and its applications for high contrast tissue and deep

in vivo brain imaging,” *Theranostics* 5, 251–266 (2015).

24. W. Liu, Y. Wang, X. Han, P. Lu, L. Zhu, C. Sun,

J. Qian, S. He, “Fluorescence resonance energy

transfer (FRET) based nanoparticles composed

of AIE luminogens and NIR dyes with enhanced

three-photon near-infrared emission for in vivo

brain angiography,” *Nanoscale* 10, 10025–10032 (2018).

25. Q. Li, Z. Wang, Y. Chen, G. Zhang, “Elemental bio-

imaging of PEGylated NaYF$_4$:Yb/Tm/Gd upcon-

version nanoparticles in mice by laser ablation

inductively coupled plasma mass spectrometry to

study toxic side effects on the spleen, liver and

kidneys,” *Metallomics Integr. Biometal Sci.* 9, 1150–

1156 (2017).

26. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E.

Messing, L. R. Wallenberg, S. Andersson-Engels,

“High-resolution fluorescence diffuse optical to-

mography developed with nonlinear upconverting

nanoparticles,” *ACS Nano* 6, 4788–4795 (2012).

27. H. Liu, C. T. Xu, D. Lindgren, H. Xie, D. Thomas,

C. Gundlach, S. Andersson-Engels, “Balancing

power density based quantum yield characterization

of upconverting nanoparticles for arbitrary excitation

intensities,” *Nanoscale* 5, 4770–4775 (2013).

28. J. Zhou, Z. Liu, F. Y. Li, “Upconversion nanophos-

phors for small-animal imaging,” *Chem. Soc. Rev.* 41, 1323–1349 (2012).

29. X. Q. Ge, L. Dong, L. N. Sun, Z. M. Song, R. Y.

Wei, L. Y. Shi, H. G. Chen, “New nanoplatforms

based on UCNPs linking with polyhedral oligomeric

silsesquioxane (POSS) for multimodal bioimaging,”

Nanoscale 7, 7206–7215 (2015).