Introduction

Chronic obstructive pulmonary disease (COPD) is a common disorder and is currently the third leading cause of death worldwide. Chronic obstructive pulmonary disease is defined as an inflammatory disease caused mainly by exposure to tobacco and biomass fuel smoke apart from exposure to other noxious particles and gases. The predominant cells of inflammatory response are neutrophils, macrophages and CD8+ lymphocytes. Chronic inhalation of cigarette smoke can modulate both innate and adaptive immune responses. In more severe cases, adaptive response develops in the lungs and is linked with additional activation of IgG-producing B cells. About 20-40% of patients with tobacco smoke-associated COPD (TS-COPD) have eosinophils in induced sputum during acute exacerbations and during clinical stability. Inflammation is

Background. Chronic obstructive pulmonary disease (COPD) is an inflammatory disease with predominant involvement of neutrophils, macrophages and CD8+ lymphocytes. Eosinophilic airway inflammations are reported in stable state and during acute exacerbations of tobacco smoke-associated COPD (TS-COPD). Women exposed to biomass fuel smoke are known to have eosinophils in sputum. However, little is known about the sputum cellular inflammatory profile in biomass fuel smoke-associated COPD (BMS-COPD). We therefore aimed to compare the sputum cellular inflammatory profile in tobacco smoke- and biomass smoke-associated COPD.

Methods. The study was conducted in a tertiary care hospital in Goa, India. A total of 113 patients with stable COPD reporting to the outpatient pulmonary clinic were recruited. All participants were ≥ 40 years of age. Sputum induction studies were performed by the method of Pizzichini et al. after baseline subject characterization. Significant eosinophilia was defined as induced sputum eosinophils ≥ 3%.

Results. There were 85 TS-COPD and 28 BMS-COPD patients. The mean age [standard deviation (SD)] was 64.7 (7.8) and 63.0 years (8.3), p = 0.32 in TS and BMS-COPD, respectively. Eighteen subjects (21.1%) were female smokers. The smoking pack-year median (interquartile range (IQR)] was 36 (20, 58) and hour-years of biomass smoke exposure mean (SD) was 192.4 (61). The TS-COPD and BMS-COPD cases showed a post-bronchodilator forced expiratory volume in one second (FEV1%) mean (SD) of 57.9 (17.1), and 62.6 (19.4), p= 0.22, respectively. Both groups had similar symptoms and severity of disease. Induced sputum total cell count per gram of sputum x 10^6 mean (SD) was 3.05 (1.53) for TS-COPD, and 2.55(1.37) for BMS-COPD p=0.12. The neutrophils % mean (SD) was 86.4 (16.5) and 87.9 (10.2), p = 0.64; eosinophils % median (IQR) was 2.5 (1, 10) and 8 (2, 12.8), p = 0.07; lymphocytes % median (IQR) was 0 (0, 0.75) and 0 (0, 1) p = 0.13; macrophages % median (IQR) was 2.5 (0.75, 5.7) and 1 (0, 4.7) p = 0.13; and significant eosinophilia (eosinophils ≥3%) was 42 (49.4%) and 20 (71%), p=0.04, for TS-COPD and BMS-COPD, respectively.

Conclusions. For similar severity of disease and clinical symptoms, significant eosinophilic inflammation was observed in stable BMS-COPD, while both groups had similar neutrophilic inflammation.

Participant Consent. Obtained.

Ethics Approval. The study was approved by the Institutional Ethics Committee of the Goa Medical College, Goa, India.

Competing Interests. The authors declare no competing financial interests.

Keywords. biomass smoke, chronic obstructive pulmonary disease, COPD, eosinophils, inflammation, pathogenesis, small airway.

Received June 23, 2019. Accepted September 30, 2019.

J Health Pollution 24: (191209) 2019
© Pure Earth
the central feature of stable COPD, causing activation and recruitment of infiltrating inflammatory cells. Identification of the type of cellular inflammation in stable COPD, whether neutrophilic or eosinophilic, helps to explore better management strategies for COPD. Studies have shown that sputum eosinophilia predicts benefit from prednisone in smokers with COPD, short term response to inhaled corticosteroid, prevention of exacerbations of COPD and response to inhaled corticosteroids with long acting β₂ agonists.⁹⁻¹²

Cigarette smoke is the major risk factor for COPD in developed countries, while in developing countries (both low- and middle-income) biomass fuel smoke exposure is the main risk factor, especially in women. Three billion people worldwide are exposed to biomass smoke and 90% of the rural population use biomass fuel for cooking, heating and lighting.¹³ Recent quantitative computed tomography of thorax studies in COPD have shown that tobacco smoke-associated COPD (TS-COPD) is more emphysema predominant, while biomass smoke-associated COPD (BMS-COPD) has less emphysema, but similar levels of small airway inflammation.¹⁴-¹⁵ Women exposed to biomass fuel smoke have eosinophils in induced sputum, however the sputum cellular inflammatory profile in biomass smoke-associated COPD has been less extensively studied.¹⁶

The present study aimed to determine the induced sputum cellular inflammatory profile in patients with TS- and BMS-associated COPD. We hypothesized that BMS-COPD will have significant eosinophilia in induced sputum compared to TS-COPD.

Methods

This was a cross-sectional study conducted at the Chest Diseases Hospital of a tertiary care teaching center in Goa, India. The Chest Diseases Hospital is a free, walk-in center for patients suffering from pulmonary diseases. A total of 113 patients were enrolled with stable COPD reporting to the outpatient pulmonary clinic: 85 TS-COPD and 28 BMS-COPD cases. Significant biomass smoke exposure for women occurred while cooking. The tobacco smoke-associated COPD subjects did not report significant exposure to biomass fuel smoke as they did not personally partake in the cooking process. All subjects were ≥ 40 years of age. Chronic obstructive pulmonary disease was diagnosed by the Global Initiative for Chronic Obstructive Lung Disease guidelines with a post-bronchodilator forced expiratory volume in one second (FEV₁)forced vital capacity < 70% in a stable clinical state.¹⁷ We excluded patients with dual exposure to tobacco and biomass smoke, acute exacerbation of COPD within 4 weeks of enrollment, use of systemic steroids within the last 6 weeks of enrollment and any other respiratory disease, including asthma. The study was approved by the Institutional Ethics Committee of the Goa Medical College, and all participants gave written informed consent.

Spirometry was performed as per American Thoracic Society/European Respiratory Society guidelines.¹⁸ Respiratory symptoms and risk factors for COPD were evaluated using the Burden of Obstructive Lung Disease core and biomass questionnaire.¹⁹ Exposure to biomass smoke was reported in hour-years, which is the product of the average daily number of hours the patient spends cooking and the number of years cooking using biomass fuel. The cumulative exposure to tobacco smoke was quantified as pack-years.

Sputum induction and processing

Sputum was induced by the method described by Pizzichini et al.²⁰ The standard operating procedure was followed by trained personnel. If post bronchodilator FEV₁ was < 800 ml, the subject was nebulized with normal saline (0.9%) and if FEV₁ was > 800 ml then hypertonic saline in increasing concentration was used (3%, 4% and 5%). Nebulization was carried out with an ultrasonic nebulizer (Smart Care) with an output set to 0.6-0.8 ml/min. The subject inhaled the mist through the mouthpiece for 5 minutes with tidal breathing. The procedure was stopped when selected sputum weight was > 0.8 g. Post-saline inhalation spirometry was performed to assess the safety of the procedure. A patient was considered safe to discharge if FEV₁ was within 90% of baseline pre-bronchodilator FEV₁. Sputum was collected on ice and processed

Abbreviations

Abbreviation	Description
BMS	Biomass smoke
COPD	Chronic obstructive pulmonary disease
TS	Tobacco smoke
FEV₁	Forced expiratory volume in one second

![Abbreviations Table](image-url)
immediately at 4°C as per standard guidelines. The selected sputum was mixed with 0.1% dithiothreitol in the ratio 1:4, vortexed for 15 seconds and then rocked on a bench rocker for 15 minutes. To stop the effect of dithiothreitol, four times volume of Dulbecco phosphate buffer saline was added and filtered. Proportions of squamous cell, cell viability and total cell count were obtained using the trypan blue exclusion method. The cell pellet was re-suspended in Dulbecco phosphate buffer saline to 0.5x10^6 cells per ml and cytospun. Slides were stained for differential count and evaluated by an experienced pathologist blinded to patients’ clinical details.

Statistical analysis

Statistical analysis was performed using the Statistical Package for the Social Sciences program (SPSS) version 24 (IBM Corp, SPSS Inc, Chicago, IL). Normality of data was assessed using the Shapiro-Wilk test. Continuous variables are presented either as mean [standard deviation (SD)] or as median and interquartile range (IQR) when normality assumptions of the distribution were not satisfied. Categorical variables are presented as percentages. Independent Student’s t-test, chi-square test and Mann-Whitney U test were applied to study the differences between the two groups. A p value of < 0.05 was considered to be statistically significant.

Results

Of the 113 subjects, 85 were TS-COPD cases and 28 were BMS-COPD cases, with no significant age difference between the two groups, with a mean age of 64.7 (7.8) and 63.0 years (8.3), respectively; p = 0.32. A total of 18 (21.1%) were female smokers. Most of the participants came from different parts of Goa, had mostly rural backgrounds, came from low- and

| Table 1 — Baseline Characteristics of Chronic Obstructive Pulmonary Disease Patients |
|---------------------------------|----------------|----------------|--------|
| | TS-COPD | BMS-COPD | P |
| n | 85 | 28 | |
| Age mean (SD) | 64.7 (7.8) | 63.0 (8.3) | 0.32 |
| Males (n) | 67 | 0 | |
| Females (n) | 18 | 28 | |
| BMI mean (SD) | 19.1 (3.4) | 20.8 (4.2) | 0.03* |
| Cough (n (%)) | 20 (23.5) | 3 (10.7) | 0.14 |
| Phlegm (n (%)) | 42 (49.4) | 8 (28.5) | 0.05 |
| Wheeze (n (%)) | 61 (71.7) | 20 (71.4) | 0.97 |
| Smoking (pack-years) median (IQR)| 36 (20, 58) | 0 | |
| Biomass smoke exposure (hour-years) mean (SD) | 0 | 192.4 (61.0) | |
| FEV1 pre mean (SD) | 1.06 (0.41) | 0.805 (0.28) | 0.25 |
| FEV1 pre % mean (SD) | 50.7 (16.4) | 55.2 (18.8) | 0.23 |
| FEV1 post mean (SD) | 1.21 (0.44) | 0.91 (0.28) | 0.001 |
| FEV1 post % mean (SD) | 57.9 (17.1) | 62.6 (19.4) | 0.22 |
| FEV1/FVC post mean (SD) | 53.6 (9.19) | 56.25 (10.67) | 0.21 |
| Bronchodilator responsiveness (n (%)) | 30 (35.2) | 1 (3.5) | 0.001 |

Abbreviations: pre, pre bronchodilator; post, post bronchodilator; n, number; FVC, forced vital capacity; IQR, interquartile range, SD, standard deviation

* Statistically significant

Fernandes et al
middle-income groups and belonged to farming communities. Both groups had similar severity of disease; post bronchodilator FEV$_1$% was 57.9 (17.1) for TS-COPD cases, and 62.6 (19.4) for BMS-COPD cases (p = 0.22). Bronchodilator responsiveness was noted in 30 (35.2%) of TS-COPD cases, and one (3.5%) of the BMS-COPD cases, p=0.001. Significant eosinophilia (eosinophils ≥3%) 42 (49.4%), 20 (71%), p=0.04 was noted in TS-COPD and BMS-COPD cases, respectively. There was no difference in the Global Initiative for Chronic Obstructive Lung Disease severity of disease and significant eosinophilia; p= 0.09. All subjects provided adequate sputum samples. Baseline patient characteristics are presented in Table 1, while differential cell count in induced sputum is presented in Table 2.

Discussion

We have identified for the first time that patients with BMS-COPD have significant eosinophilia in induced sputum; 71% compared to 49.4% in TS-COPD. Significant eosinophilia is defined as induced sputum eosinophils ≥ 3%, which has clinical significance. Eosinophils are derived from the bone marrow under the influence of granulocyte monocyte colony stimulating factor, interleukin-3 and interleukin-5 and are released into circulation from where they lie in the gastrointestinal tract and thymus. The normal eosinophil count in induced sputum of a healthy non-smoker is <1.1%.21

Biomass smoke alters innate immune responses and the three main classes of cell receptors such as the Toll-like receptors, the scavenger receptors and the transient receptor channels, which have the ability to transduce signals initiated after biomass smoke exposure.22 After being exposed to dry dung smoke, rats showed increased levels of inflammatory cells in the perivascular, peribronchial and parenchymal region, as well as in the bronchoalveolar lavage fluid.23-24 A few studies showed increased pulmonary macrophages, neutrophils, eosinophils, lymphocytes, mast cells, interleukin-6, and tumor necrosis factor α in women exposed to biomass smoke compared to other fuels.25 Eosinophilic airway inflammation is seen in TS-COPD patients and a count of ≥ 3% is associated with good corticosteroid response in these patients.26-29 We observed significant eosinophilia in BMS-COPD cases. The role of eosinophils in the pathophysiology of TS-COPD is less understood, however there is similar pattern of expression of type 2 mediators in the airway of patients with COPD and asthma.30 Similarly, the role of eosinophils in BMS-COPD is less studied. Further research is necessary to understand eosinophilia in BMS-COPD.

The normal neutrophil count in a healthy non-smoker is 40-60%, and both groups showed high total neutrophil count even in a stable state. Neutrophilia and raised total cells per gram in sputum is an indicator of infection and is effectively managed with antibiotics. A study by Bafadhel et al. showed that sputum neutrophil percentage correlated with bacteria in patients with TS-COPD.31

Understanding immuno-pathophysiology of BMS-COPD will provide an informed basis for rational drug use in eosinophilic and neutrophilic inflammation. As biomass smoke-associated COPD has eosinophilic inflammation, response to inhaled corticosteroids may be

Table 2 — Differential Cell Count of Induced Sputum in Tobacco Smoke-Associated and Biomass Smoke-Associated—Chronic Obstructive Pulmonary Disease Patients

	TS-COPD	95% CI	BMS-COPD	95% CI	P
Total cells per gram of sputum x 106 mean (SD)	3.05 (1.53)	(2.7, 3.3)	2.55 (1.37)	(2.0, 3.0)	0.12*
Median (IQR)	2.64 (1.91, 3.82)	–	2.18 (1.67, 2.89)	–	
Neutrophils % mean (SD)	86.4 (16.5, 82.90)	–	87.9 (10.2, 84.91)	–	
Median (IQR)	91.0 (84.5, 96.1)	–	90.0 (81.7, 95.8)	–	
Eosinophils % median (IQR)	2.5 (1, 10)	–	8 (2,12.8)	–	0.07**
Mean (SD)	6.73 (9.9, 0.075)	(4.5, 8.8)	8.30 (7.34, 0.01)	(5.4, 11)	0.13**
Lymphocytes % median (IQR)	0.0 (0.0)	–	0.08 (1.88, 0.25)	(0.25, 1.7)	0.13**
Mean (SD)	1.34 (5.2, 0.75)	(0.2, 2.4)	0.98 (1.88, 0.75)	(0.25, 1.7)	0.13**
Macrophages % median (IQR)	2.5 (0.75, 5.7)	–	1 (0.47)	–	
Mean (SD)	5.47 (11.8, 2.9, 8.0)	(2.9, 8.0)	2.71 (3.48, 1.3, 4.0)	(1.3, 4.0)	0.04***
Eosinophils ≥3% n (%)	42 (49.4)	(36, 60)	20 (71)	(53, 89)	0.04***

Abbreviations: n, number; CI, confidence interval; IQR, interquartile range; SD, standard deviation + Students t test, ++ Mann Whitney U test, *** Chi Square test.
studied using randomized controlled trials. Currently, BMS-COPD and TS-COPD are similarly managed. In addition, as a large number of people living in low- and middle-income countries use biomass fuel and have COPD, identification of significant eosinophilia in such patients may be helpful in disease management.

The present study was limited due to a small sample size. Studies with adequate sample size would highlight the level of eosinophilia in induced sputum, and the role of the eosinophil and therapeutics of inhaled corticosteroids in BMS-COPD. In addition, all BMS-COPD subjects were female as cooking activities are specifically performed by women in India. However, it is unlikely that gender has an effect on the level of eosinophils in COPD, as eosinophil count was raised in both groups, but BMS-COPD showed significant eosinophilia of ≥ 3%.

Conclusions

Biomass smoke-related COPD is associated with significant eosinophilia in induced sputum. Further studies are needed to understand the pathophysiology for informed drug use and reduction of morbidity and mortality associated with this disease.

Acknowledgements

We would like to thank our patients for their participation in the present study. We are also thankful to Ms. Exilda Furtado for her unparalleled technical support. This study was funded as part of employment.

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).

References

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhalim A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Cousser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola ER, Ezati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Kärțiikyan G, Kassebaum N, Keren A, Khoo JR, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mahbeyjano J, MacIntyre MF, Malelling L, March L, Marks GB, Marks R, Matsurini A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naléi L, Narayan KM, Nasserri K, Norman P, O’Donnell M, Omer SB, Ortblad A, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osberg L, Ozgediz D, Pahari B, Pandian JD, Saunders M, Newbold P, Green RH, Venge P, Lomas DA, Barer MB, Johnston SL, Pavord ID, Brightling CE. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their disease. Eur Respir J. 2011 Sep 15 [cited 2019 Sep 30];378(9795):1015-26. Available from: https://doi.org/10.1183/09031936.000853-2017

2. Brusselle GG, Joos GE, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet [Internet]. 2011 Sep 10 [cited 2019 Sep 30];378(9795):1015-26. Available from: https://doi.org/10.1016/S0140-6736(11)60988-4 Subscription required to view.

3. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol [Internet]. 2008 Mar [cited 2019 Sep 30];8(3):183-92. Available from: https://doi.org/10.1038/nri2254 Subscription required to view.

4. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol [Internet]. 2002 May [cited 2019 Sep 30];2(3):272-7. Available from: https://doi.org/10.1038/nri803 Subscription required to view.

5. Saetta M, Di Stefano A, Maestrelli P, Turato G, Ruggieri MP, Boggeri A, Calcagni P, Mapp CE, Ciaccia A, Fabbri LM. Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med [Internet]. 1994 Dec [cited 2019 Sep 30];150(6 Pt 1):1646-52. Available from: https://doi.org/10.1164/ ajrccm.150.6.7592628 Subscription required to view.

6. Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, McCormick M, Haldar K, Kebadze T, Duvoix A, Lindblad K, Patel H, Rugman P, Dodson P, Jenkins M, Saunders M, Newbold P, Green RH, Venge P, Lomas DA, Barer MB, Johnston SL, Pavord ID, Brightling CE. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their disease. Eur Respir J [Internet]. 2011 Sep 15 [cited 2019 Sep 30];378(9795):1015-26. Available from: https://doi.org/10.1183/09031936.000853-2017

7. Singh D, Kolumb U, Brightling CE, Locatone N, Agusti A, Tal-Singer R. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J [Internet]. 2014 Dec [cited 2019 Sep 30];44(6):1697-700. Available from: https://doi.org/10.1183/09031936.00162414

8. Kim VL, Coombs NA, Staples KJ, Ostridge KK, Williams NP, Wootton SA, Devaster JM, Aris E, Clarke SC, Tuck AC, Bourne SC, Wilkinson TM. Impact and associations of eosinophilic inflammation in COPD: analysis of the AERIS cohort. Eur Respir J [Internet]. 2017 [cited 2019 Sep 30];50(4):Article 1700853 [12 p.]. Available from: https://doi.org/10.1183/13993003.00853-2017

9. Pizzichini E, Pizzichini MM, Gibson P, Parameswaran K, Gleich GJ, Berman L, Dolovich J, Hargrave FE. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med [Internet]. 1998 [cited 2019 Sep 30];158(5):1511-7. Available from:
10. Brightling CE, McKenna S, Hargadon B, Birring S, Green R, Siva R, Berry M, Parker D, Monteiro W, Pavord ID, Bradding P. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax [Internet]. 2005 Mar [cited 2019 Oct 1];60(3):193-8. Available from: https://doi.org/10.1136/thx.2004.032516

11. Wedzicha JA, Calverley PM, Seemungal TA, Hagan G, Ansari Z, Stockley RA. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med [Internet]. 2008 Jan 1 [cited 2019 Oct 1];177(1):19-26. Available from: https://doi.org/10.1164/rccm.200707-973OC

12. Siddiqui SH, Guasoni A, Vestbo J, Jones P, Agusti A, Paggiaro P, Wedzicha JA, Singh D. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am J Respir Crit Care Med [Internet]. 2015 Aug 15 [cited 2019 Oct 1];192(2):523-5. Available from: https://doi.org/10.1164/rccm.201502-0255LE

13. Savi S, Barnes PJ. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest [Internet]. 2010 Jul [cited 2019 Oct 1];138(1):I3-6. Available from: https://journal.chestnet.org/article/S0001-2332(10)63034-0/fulltext

14. Camp PG, Ramirez-Venegas A, Sansores RH, Alba LF, McDougall JE, Sin DD, Pare PD, Muller NL, Silva CI, Rojas CE, Coxson HO. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur Respir J [Internet]. 2014 Mar [cited 2019 Oct 1];43(3):725-34. Available from: https://doi.org/10.1183/09031936.0026114

15. Fernandes L, Gulati N, Fernandes Y, Mesquita AM, Sardeiass M, Lammers JJ, Mohamed Hoesein FA, Ten Hacken NH, van den Berge M, Galban CJ, Siddiqui S. Small airway imaging phenotypes in biomass- and tobacco smoke-exposed patients with COPD. ERJ Open Res [Internet]. 2017 Apr 12 [2019 Oct 1];3(2):Article 00124-2016

16. Dutta A, Roychoudhury S, Chowdhury S, Ray MR. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. Int J Hyg Environ Health [Internet]. 2013 Jun [cited 2019 Oct 1];216(3):301-8. Available from: https://doi.org/10.1016/j.ijheh.2012.05.005 Subscription required to view.

17. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med [Internet]. 2013 Feb 15 [cited 2019 Oct 1];187(4):347-65.

18. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, Maclntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Veghi G, Wanger J. Standardisation of spirometry. Eur Respir J [Internet]. 2005 Aug [cited 2019 Oct 1];26(2):319-38. Available from: https://doi.org/10.1111/j.1399-3003.2005.06480.x

19. Buist AS, Vollmer WM, Sullivan SD, Weiss KB, Lee TA, Menezes AM, Crapo RO, Jensen RL, Burney PG, The Burden of Obstructive Lung Disease Initiative (BOLD): rationale and design. COPD [Internet]. 2005 Jun [cited 2019 Oct 1];2(1):227-83. Available from: https://doi.org/10.1081/COPD-200046710 Subscription required to view.

20. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squiluce D, Gleich GJ, Dolovich J, Hargave FE. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med [Internet]. 1996 Aug [cited 2019 Oct 1];154(2 Pt 1):308-17. Available from: https://doi.org/10.1164/ajrccm.154.2.8756799 Subscription required to view.

21. Belda J, Leigh R, Parameswaran K, O’Byrne PM, Sears MR, Hargave FE. Induced sputum cell counts in asthma. Am J Respir Crit Care Med [Internet]. 2000 Feb [cited 2019 Oct 1];161(2):475-8. Available from: https://doi.org/10.1164/ajrccm.161.2.9903097

22. Olloquequi J, Silva OR. Biomass smoke as a risk factor for chronic obstructive pulmonary disease: effects on innate immunity. Innate Immun [Internet]. 2016 Jul [cited 2019 Oct 1];22(5):373-81. Available from: https://doi.org/10.11177/1753425916650272

23. Dogan OT, Elagoe S, Ozshahin SL, Epolturk K, Tuncer E, Akkurt I. Pulmonary toxicity of chronic exposure to tobacco and biomass smoke in rats. Clinics (Sao Paulo) [Internet]. 2011 [cited 2019 Oct 1];66(6):1081-7. Available from: http://dx.doi.org/10.1590/S1807-593220110006000027

24. Hu G, Zhou Y, Hong W, Tian J, Hu J, Peng G, Cui J, Li B, Ran P. Development and systematic oxidative stress of a rat model of chronic bronchitis and emphysema induced by biomass smoke. Exp Lung Res [Internet]. 2013 Aug [cited 2019 Oct 1];39(6):229-40. Available from: https://doi.org/10.3109/01902148.2013.797521 Subscription required to view.

25. Banerjee A, Mondal NK, Das D, Ray MR. Neutrophil inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning. Inflammation [Internet]. 2012 Apr [cited 2019 Oct 1];35(2):671-83. Available from: https://doi.org/10.1007/s10753-011-9360-2 Subscription required to view.

26. Demagala-Kulawik J, Maskey-Warzechowska M, Kraszewka I, Chazan R. The cellular composition and macrophage phenotype in induced sputum in smokers and ex-smokers with COPD. Chest [Internet]. 2003 Apr [cited 2019 Oct 1];123(4):1054-9. Available from: https://doi.org/10.1378/chest.123.4.1054 Subscription required to view.

27. Kobus U, Damera G, Pham TH, Southworth T, Mason S, Karur P, Newbold P, Singh D. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol [Internet]. 2017 Oct [cited 2019 Oct 1];140(4):1181-4.e7. Available from: https://doi.org/10.1016/j.jaci.2017.04.027

28. Brightling CE, Monteiro W, Ward R, Parker D, Morgan MD, Wardlaw AJ, Pavord ID. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet [Internet]. 2000 Oct 28 [cited 2019 Oct 1];356(9240):1480-5. Available from: https://doi.org/10.1016/S0140-6736(00)02872-5 Subscription required to view.

29. Leigh R, Pizzichini MM, Morris MM, Maltais F, Hargave FE, Pizzichini E. Stable COPD: predicting benefit from high-dose inhaled corticosteroid treatment. Eur Respir J [Internet]. 2006 May [cited 2019 Oct 1];27(5):964-71. Available from: https://doi.org/10.1183/09031936.06.0072105

30. Bafadhel M, McCormick M, Saha S, McKenna S, Shelley M, Hargadon B, Mistry V, Reid C, Parker D, Dodson P, Jenkins M, Lloyd A, Rugman P, Newbold P, Brightling CE. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration [Internet]. 2012 [cited 2019 Oct 1];83(1):36-44. Available from: https://doi.org/10.1159/000330667

31. Bafadhel M, Haldar K, Barker B, Patel H, Mistry V, Barer MR, Pavord ID, Brightling CE. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. Int J Chron Obstruct Pulmon Dis [Internet]. 2015 Jun 9 [cited 2019 Oct 1];10(1):1075-83. Available from: https://doi.org/10.2147/COPD.S80091

Fernandes et al

Journal of Health & Pollution Vol. 9, No. 24 – December 2019