ABSTRACT. We study polyharmonic \((k\)-harmonic) maps between Riemannian manifolds with finite \(j\)-energies \((j = 1, \ldots, 2k - 2)\). We show that if the domain is complete and the target is the Euclidean space, then such a map is harmonic.

1. Introduction

This paper is an extension of our previous work ([24]) to polyharmonic maps. Harmonic maps play a central role in geometry; they are critical points of the energy functional\(E(\varphi) = \frac{1}{2} \int_M |d\varphi|^2 v_g\) for smooth maps \(\varphi\) of \((M, g)\) into \((N, h)\). The Euler-Lagrange equations are given by the vanishing of the tension filed \(\tau(\varphi)\). In 1983, J. Eells and L. Lemaire [6] extended the notion of harmonic map to polyharmonic map, which are, by definition, critical points of the \(k\)-energy \((k \geq 2)\)

\[
E_k(\varphi) = \frac{1}{2} \int_M |(d + \delta)^k \varphi|^2 v_g. \tag{1.1}
\]

After G.Y. Jiang [15] studied the first and second variation formulas of \(E_2\) \((k = 2)\), extensive studies in this area have been done (for instance, see [2], [4], [18], [19], [21], [25], [27], [12], [13], [14], etc.). Notice that harmonic maps are always polyharmonic by definition.

For harmonic maps, it is well known that:

If a domain manifold \((M, g)\) is complete and has non-negative Ricci curvature, and the sectional curvature of a target manifold \((N, h)\) is non-positive, then every energy finite harmonic map is a constant map (cf. [28]).

In our previous paper, we showed that...
Theorem 1.1. ([24]) Let \((M, g)\) be a complete Riemannian manifold, and the curvature of \((N, h)\) is non-positive. Then,

1. every biharmonic map \(\varphi : (M, g) \to (N, h)\) with finite energy and finite bienergy must be harmonic.
2. In the case \(\text{Vol}(M, g) = \infty\), every biharmonic map \(\varphi : (M, g) \to (N, h)\) with finite bienergy is harmonic.

Now, in this paper, we want to extend it to \(k\)-harmonic maps \((k \geq 2)\). Indeed, we will show

Theorem 1.2. (Theorems 2.4 and 3.1) Let \((M, g)\) be a complete Riemannian manifold, and \((N, h)\), the \(n\)-dimensional Euclidean space. Then,

1. every \(k\)-harmonic map \(\varphi : (M, g) \to (N, h)\) \((k \geq 2)\) with finite \(j\)-energies for all \(j = 1, 2, \cdots, 2k - 2\), must be harmonic.
2. In the case of \(\text{Vol}(M, g) = \infty\), every \(k\)-harmonic map \(\varphi : (M, g) \to (N, h)\) with finite \(j\)-energy for all \(j = 2, 4, \cdots, 2k - 2\), is harmonic.

Theorem 1.2 gives an affirmative answer to the generalized B.Y. Chen’s conjecture (cf. [4]) on \(k\)-harmonic maps \((k \geq 2)\) under the \(L^2\)-conditions.

Acknowledgement. We express our gratitude to Dr. Shun Maeta who gave valuable comments in the first draft.

2. Preliminaries and statement of main theorem

In this section, we prepare materials for the first variational formula for the biharmonic maps. Let us recall the definition of a harmonic map \(\varphi : (M, g) \to (N, h)\), of a compact Riemannian manifold \((M, g)\) into another Riemannian manifold \((N, h)\), which is an extremal of the energy functional defined by

\[
E(\varphi) = \int_M e(\varphi) \, v_g,
\]

where \(e(\varphi) := \frac{1}{2} |d\varphi|^2\) is called the energy density of \(\varphi\). That is, for any variation \(\{\varphi_t\}\) of \(\varphi\) with \(\varphi_0 = \varphi\),

\[
\left. \frac{d}{dt} \right|_{t=0} E(\varphi_t) = -\int_M h(\tau(\varphi), V) v_g = 0,
\]

where \(V \in \Gamma(\varphi^{-1}TN)\) is a variation vector field along \(\varphi\) which is given by \(V(x) = \frac{d}{dt}|_{t=0} \varphi_t(x) \in T_{\varphi(x)}N, (x \in M)\), and the tension field is given
POLYHARMONIC MAPS INTO THE EUCLIDEAN SPACE

by $\tau(\varphi) = \sum_{i=1}^{m} B(\varphi)(e_i, e_i) \in \Gamma(\varphi^{-1}TN)$, where $\{e_i\}_{i=1}^{m}$ is a locally defined frame field on (M, g), and $B(\varphi)$ is the second fundamental form of φ defined by

$$B(\varphi)(X, Y) = (\tilde{\nabla}d\varphi)(X, Y) = (\tilde{\nabla}_X d\varphi)(Y) = \nabla_X d\varphi(Y) - d\varphi(\nabla_X Y), \quad (2.2)$$

for all vector fields $X, Y \in \mathfrak{X}(M)$. Here, ∇, and ∇^N, are the Levi-Civita connections of (M, g), (N, h), respectively, and $\tilde{\nabla}$, and $\tilde{\nabla}^N$ are the induced ones on $\varphi^{-1}TN$, and $T^*M \otimes \varphi^{-1}TN$, respectively. By (2.1), φ is harmonic if and only if $\tau(\varphi) = 0$.

The second variation formula is given as follows. Assume that φ is harmonic. Then,

$$\left. \frac{d^2}{dt^2} \right|_{t=0} E(\varphi_t) = \int_M h(J(V), V) v_g, \quad (2.3)$$

where J is an elliptic differential operator, called the Jacobi operator acting on $\Gamma(\varphi^{-1}TN)$ given by

$$J(V) = \overline{\Delta} V - \mathcal{R}(V), \quad (2.4)$$

where $\overline{\Delta} V = \tilde{\nabla}^T \nabla V = -\sum_{i=1}^{m}\{\nabla_{e_i} \nabla_{e_i} V - \nabla_{\nabla_{e_i} e_i} V\}$ is the rough Laplacian and \mathcal{R} is a linear operator on $\Gamma(\varphi^{-1}TN)$ given by $\mathcal{R}(V) = \sum_{i=1}^{m} R^N(V, d\varphi(e_i)) d\varphi(e_i)$, and R^N is the curvature tensor of (N, h) given by $R^N(U, V) = \nabla^N_U \nabla^N_V - \nabla^N_V \nabla^N_U - \nabla^N_{[U, V]}$ for $U, V \in \mathfrak{X}(N)$.

J. Eells and L. Lemaire [6] proposed polyharmonic (k-harmonic) maps and Jiang [15] studied the first and second variation formulas for biharmonic maps. Let us consider the bienergy functional defined by

$$E_2(\varphi) = \frac{1}{2} \int_M |\tau(\varphi)|^2 v_g, \quad (2.5)$$

where $|V|^2 = h(V, V)$, $V \in \Gamma(\varphi^{-1}TN)$. The first variation formula of the bienergy functional is given by

$$\left. \frac{d}{dt} \right|_{t=0} E_2(\varphi_t) = -\int_M h(\tau_2(\varphi), V) v_g. \quad (2.6)$$

Here,

$$\tau_2(\varphi) := J(\tau(\varphi)) = \overline{\Delta}(\tau(\varphi)) - \mathcal{R}(\tau(\varphi)), \quad (2.7)$$

which is called the bitension field of φ, and J is given in (2.4).

A smooth map φ of (M, g) into (N, h) is said to be biharmonic if $\tau_2(\varphi) = 0$.
Now let us recall the definition of the k-energy $E_k(\varphi)\ (k \geq 2)$:

Definition 2.1. The k-energy $E_k(\varphi)\ (k \geq 2)$ is defined formally ([7]) by

$$E_k(\varphi) := \frac{1}{2} \int_M |(d + \delta)^k \varphi|^2 v_g$$

for every smooth map $\varphi \in C^\infty(M, N)$. Then, it is given ([12], p. 270, Lemma 40) by the following formula:

$$E_k(\varphi) = \begin{cases}
\frac{1}{2} \int_M |W_{\varphi}^\ell|^2 v_g & \text{(if k is even, say 2ℓ)}, \\
\frac{1}{2} \int_M |\nabla W_{\varphi}^\ell|^2 v_g & \text{(if k is odd, say $2\ell + 1$)}.
\end{cases} \quad (2.9)$$

Here, W_{φ}^ℓ is given as, by definition,

$$W_{\varphi}^\ell := \overline{\Delta} \cdots \overline{\Delta} \tau(\varphi) \in \Gamma(\varphi^{-1}TN). \quad (2.10)$$

For $k = 1$, that is, $\ell = 0$, we define $W_{\varphi}^0 = \varphi$, also.

Then, the definition and the first variation formula for the k-energy E_k are given as follows:

Definition 2.2. (k-harmonic map) For each $k = 2, 3, \cdots$, and a smooth map $\varphi : (M, g) \rightarrow (N, h)$, is k-harmonic if

$$\frac{d}{dt} \bigg|_{t=0} E_k(\varphi_t) = 0 \quad (2.11)$$

for every smooth variation $\varphi_t : M \rightarrow N \ (-\epsilon < t < \epsilon)$ with $\varphi_0 = \varphi$.

Then, we have ([12], p.269, Theorem 39)

Theorem 2.3. (The first variation formula of the k-energy) Assume that $(N, h) = (\mathbb{R}^n, h_{\mathbb{R}^n})$ is the n-dimensional Euclidean space. For every $k = 2, 3, \cdots$, it holds that

$$\frac{d}{dt} \bigg|_{t=0} E_k(\varphi_t) = -\int_M \langle \tau_k(\varphi), V \rangle v_g, \quad (2.12)$$

where V is a variation vector field given by $V(x) = \frac{d}{dt} \bigg|_{t=0} \varphi_t(x) \in T_{\varphi(x)}N \ (x \in M)$. The k-tension field $\tau_k(\varphi)$ is given by

$$\tau_k(\varphi) = J(W_{\varphi}^{k-1}) = \overline{\Delta}(W_{\varphi}^{k-1}), \quad (2.13)$$
where \(W_k^{-1} = \sum_{k-2}^{k} \tau(\varphi) \in \Gamma(\varphi^{-1}TN) \).

Thus, \(\varphi : (M, g) \to (N, h) \) is \(k \)-harmonic if and only if \(\sum_{k-2}^{k} \tau(\varphi) = 0 \) which is equivalent to \(W_k^{-1} = 0 \).

The formula (143) of the \(k \)-tension field \(\tau_k(\varphi) \) in Theorem 39 (p.269, [12]) is true only for the case that the target space \((N, h) = (\mathbb{R}^n, h_{\mathbb{R}^n})\).

Here, we denote by \(\nabla W^\ell = \nabla \varphi = d\varphi \) for \(\ell = 0 \), and \(k = 2\ell + 1 = 1 \),

\[
E_1(\varphi) = \frac{1}{2} \int_M |d\varphi|^2 v_g.
\]

Then, we can state our main theorem.

Theorem 2.4. (Main theorem) Assume that the domain manifold \((M, g)\) is a complete Riemannian manifold, and the target space \((N, h)\) is the \(n \)-dimensional Euclidean space. Let \(\varphi : (M, g) \to (N, h) \) be a \(k \)-harmonic map \((k \geq 2)\). Assume that

1. \(E_j(\varphi) < \infty \) for all \(j = 2, 4, \cdots, 2k - 2 \), and
2. either
 \[
 E_j(\varphi) < \infty \text{ for all } j = 1, 3, \cdots, 2k - 3, \text{ or }
 \]
 \[
 \text{Vol}(M, g) = \infty.
 \]

Then, \(\varphi : (M, g) \to (N, h) \) is harmonic.

In the case of the \(n \)-dimensional Euclidean space \((N, h) = (\mathbb{R}^n, h_{\mathbb{R}^n})\), Theorem 2.4 and the following Theorem 3.1 are natural extensions of our previous theorem in [24] which is:

Theorem 2.5. Assume that \((M, g)\) is complete and the sectional curvature of \((N, h)\) is non-positive.

1. Every biharmonic map \(\varphi : (M, g) \to (N, h) \) with finite energy \(E(\varphi) < \infty \) and finite bienergy \(E_2(\varphi) < \infty \), is harmonic.
2. In the case \(\text{Vol}(M, g) = \infty \), every biharmonic map \(\varphi : (M, g) \to (N, h) \) with finite bienergy \(E_2(\varphi) < \infty \), is harmonic.

3. **The iteration proposition.**

By virtue of (2.9), we have to notice the the energy conditions in (1) and (2) of Theorem 2.4:
Indeed, the condition which $E_j(\varphi) < \infty$ for all $j = 2, 4, \cdots, 2k - 2$ in (1) of Theorem 2.4 is equivalent to that
\[
\int_M |W^j_\varphi|^2 v_g < \infty \quad (j = 1, 2, \cdots, k - 1),
\] (3.1)
and the condition which $E_j(\varphi) < \infty$ for all $j = 1, 3, \cdots, 2k - 3$ in (2) of Theorem 2.4 is equivalent to that
\[
\int_M |\nabla W^j_\varphi|^2 v_g < \infty \quad (j = 0, 1, \cdots, k - 2).
\] (3.2)
Therefore, to show Theorem 2.4, we only have to prove the following theorem:

Theorem 3.1. Assume that the domain manifold (M, g) is a complete Riemannian manifold, and the target space (N, h) is the n-dimensional Euclidean space. Let $\varphi : (M, g) \rightarrow (N, h)$ be a k-harmonic map.
Assume that
\[
\begin{aligned}
(1) & \quad \int_M |W^j_\varphi|^2 v_g < \infty \text{ for all } j = 1, 2, \cdots, k - 1, \text{ and } \\
(2) & \quad \text{either } \int_M |\nabla W^j_\varphi|^2 v_g < \infty \text{ for all } j = 0, 1, \cdots, k - 2, \text{ or } \\
& \quad \text{Vol}(M, g) = \infty.
\end{aligned}
\] Then, $\varphi : (M, g) \rightarrow (N, h)$ is harmonic.

To prove Theorem 3.1 whose proof will be given in the next section, we need the following iteration proposition:

Proposition 3.2. (the iteration method) Let (M, g) be a complete Riemannian manifold, and (N, h), an arbitrary Riemannian manifold. Let $\varphi : (M, g) \rightarrow (N, h)$ be an arbitrary C^∞ map satisfying that for some $j \geq 2$,
\[
W^j_\varphi = 0. \tag{3.3}
\]
If we assume the following two conditions:
\[
\begin{cases}
(1) & \quad \int_M |W^{j-1}_\varphi|^2 v_g < \infty, \text{ and } \\
(2) & \quad \text{either } \int_M |\nabla W^{j-2}_\varphi|^2 v_g < \infty \text{ or } \text{Vol}(M, g) = \infty,
\end{cases} \tag{3.4}
\]
then, we have
\[
W^{j-1}_\varphi = 0. \tag{3.5}
\]
Remark 3.3. Under the assumptions (3.2), if we have \(W_k^\phi = 0 \) for some \(k \geq 2 \), then we have automatically, \(W_1^\phi = \tau(\phi) = 0 \), i.e., \(\phi \) is harmonic.

In this section, we give a proof of Proposition 3.2 which consists of four steps.

(The first step) For a fixed point \(x_0 \in M \), and for every \(0 < r < \infty \), we first take a cut-off \(C^\infty \) function \(\eta \) on \(M \) (for instance, see [16]) satisfying that

\[
\begin{cases}
0 \leq \eta(x) \leq 1 \quad (x \in M), \\
\eta(x) = 1 \quad (x \in B_r(x_0)), \\
\eta(x) = 0 \quad (x \notin B_{2r}(x_0)), \\
|\nabla \eta| \leq \frac{2}{r} \quad (x \in M).
\end{cases}
\]

(The second step) Notice that (3.3) is equivalent to that

\[
\Delta W_{j-1}^\phi = 0
\]

because of \(W_j^\phi = \Delta W_{j-1}^\phi \).

Then, we have

\[
0 = \int_M \langle \eta^2 W_{j-1}^\phi, \Delta W_{j-1}^\phi \rangle v_g \\
= \int_M \sum_{i=1}^m \langle \nabla e_i (\eta^2 W_{j-1}^\phi), \nabla e_i W_{j-1}^\phi \rangle v_g \\
= \int_M \eta^2 \sum_{i=1}^m |\nabla e_i W_{j-1}^\phi|^2 v_g + 2 \int_M \sum_{i=1}^m \eta e_i(\eta) \langle W_{j-1}^\phi, \nabla e_i W_{j-1}^\phi \rangle v_g.
\]

By moving the second term in the last equality of (3.8) to the left hand side, we have

\[
\int_M \eta^2 \sum_{i=1}^m |\nabla e_i W_{j-1}^\phi|^2 = -2 \int_M \sum_{i=1}^m \langle \eta \nabla e_i W_{j-1}^\phi, e_i(\eta) W_{j-1}^\phi \rangle v_g = -2 \int_M \sum_{i=1}^m \langle S_i, T_i \rangle v_g,
\]

where we put \(S_i := \eta \nabla e_i W_{j-1}^\phi \), and \(T_i := e_i(\eta) W_{j-1}^\phi \) \((i = 1 \ldots, m)\).

Now let recall the following inequality:

\[
\pm 2 \langle S_i, T_i \rangle \leq \epsilon |S_i|^2 + \frac{1}{\epsilon} |T_i|^2
\]
for all positive $\epsilon > 0$ because of the inequality $0 \leq |\sqrt{\epsilon} S_i \pm \frac{1}{\sqrt{\epsilon}} T_i|^2$. Therefore, for (3.10), we obtain

$$-2 \int_M \sum_{i=1}^m \langle S_i, T_i \rangle v_g \leq \epsilon \int_M \sum_{i=1}^m |S_i|^2 v_g + \frac{1}{\epsilon} \int_M \sum_{i=1}^m |T_i|^2 v_g. \tag{3.11}$$

If we put $\epsilon = \frac{1}{2}$, we obtain, by (3.9) and (3.11),

$$\int_M \eta^2 \sum_{i=1}^m |\nabla e_i W^j - 1\phi|^2 v_g \leq \frac{1}{2} \int_M \sum_{i=1}^m \eta^2 |\nabla e_i W^j - 1\phi|^2 v_g$$

$$+ 2 \int_M \sum_{i=1}^m e_i(\eta)^2 |W^j - 1\phi|^2 v_g. \tag{3.12}$$

Thus, by (3.12) and (3.6), we obtain

$$\int_M \eta^2 \sum_{i=1}^m |\nabla e_i W^j - 1\phi|^2 v_g \leq 4 \int_M |\nabla \eta|^2 |W^j - 1\phi|^2 v_g$$

$$\leq \frac{16}{\tau^2} \int_M |W^j - 1\phi|^2 v_g. \tag{3.13}$$

(The third step) By definition of η in the first step, (3.13) turns out that

$$\int_{B_r(x_0)} |\nabla W^j - 1\phi|^2 v_g \leq \frac{16}{\tau^2} \int_M |W^j - 1\phi|^2 v_g. \tag{3.14}$$

Here, recall our assumption that (M, g) is complete and non-compact, and (1) $\int_M |W^j - 1\phi|^2 v_g < \infty$. When we tend $r \rightarrow \infty$, the right hand side of (3.12) goes to zero, and the left hand side of (3.12) goes to $\int_M |\nabla W^j - 1\phi|^2 v_g$. Thus, we obtain

$$0 \leq \int_M |\nabla W^j - 1\phi|^2 v_g \leq 0,$$

which implies that

$$\nabla W^j - 1\phi = 0 \tag{3.15}$$

everywhere on M.

(The fourth step) (a) In the case that $\int_M |\nabla W^j - 2\phi|^2 v_g < \infty$, let us define a smooth 1-form α on M by

$$\alpha(X) := \langle W^j - 1\phi, \nabla X W^j - 2\phi \rangle \quad (X \in \mathfrak{X}(M)). \tag{3.16}$$

Then, we have:

$$\text{div}(\alpha) = -|W^j - 1\phi|^2. \tag{3.17}$$
Because we have
\[
\text{div}(\alpha) = \sum_{i=1}^{m}(\nabla_{e_i}\alpha)(e_i)
\]
\[
= \sum_{i=1}^{m}\left\{e_i(\alpha(e_i)) - \alpha(\nabla_{e_i}e_i)\right\}
\]
\[
= \sum_{i=1}^{m}\left\{e_i\left(\langle W_{\varphi}^{j-1}, \nabla_{e_i}W_{\varphi}^{j-2}\rangle\right) - \langle W_{\varphi}^{j-1}, \nabla_{\nabla_{e_i}e_i}W_{\varphi}^{j-2}\rangle\right\}
\]
\[
= \sum_{i=1}^{m}\left\{\langle \nabla_{e_i}W_{\varphi}^{j-1}, \nabla_{e_i}W_{\varphi}^{j-2}\rangle + \langle W_{\varphi}^{j-1}, \nabla_{e_i}e_iW_{\varphi}^{j-2}\rangle
\]
\[
- \langle W_{\varphi}^{j-1}, \nabla_{\nabla_{e_i}e_i}W_{\varphi}^{j-2}\rangle\right\}
\]
\[
= \langle W_{\varphi}^{j-1}, -\overline{\Delta}W_{\varphi}^{j-2}\rangle \quad \text{(because of (3.15) and definition of } \overline{\Delta})
\]
\[
= -|W_{\varphi}^{j-1}|^2, \quad (3.18)
\]
which is (3.17).

Furthermore, we have
\[
\int_{M} |\alpha| v_g < \infty. \quad (3.19)
\]

Because we have, by definition of \(\alpha\) in (3.16),
\[
\int_{M} |\alpha| v_g = \int_{M} |\langle W_{\varphi}^{j-1}, \nabla W_{\varphi}^{j-2}\rangle| v_g
\]
\[
\leq \left(\int_{M} |W_{\varphi}^{j-1}|^2 v_g \right)^{\frac{1}{2}} \left(\int_{M} |\nabla W_{\varphi}^{j-2}|^2 v_g \right)^{\frac{1}{2}}
\]
\[
< \infty \quad (3.20)
\]
because of our assumptions \(\int_{M} |W_{\varphi}^{j-1}|^2 v_g < \infty\) and \(\int_{M} |\nabla W_{\varphi}^{j-2}|^2 v_g < \infty\). Thus, we can apply Gaffney’s theorem to this \(\alpha\) (cf. [10], and Theorem 4.1 in Appendix in [24]). We obtain
\[
0 = \int_{M} \text{div}(\alpha) v_g = -\int_{M} |W_{\varphi}^{j-1}|^2 v_g, \quad (3.21)
\]
which implies that \(W_{\varphi}^{j-1} = 0\).

(b) In the case that \(\text{Vol}(M, g) = \infty\), we first notice that \(|W_{\varphi}^{j-1}|^2\) is constant on \(M\), say \(C_0\). Because for every \(X \in \mathfrak{X}(M)\), we have
\[
X |W_{\varphi}^{j-1}|^2 = 2 \langle \nabla_X W_{\varphi}^{j-1}, W_{\varphi}^{j-1}\rangle = 0 \quad (3.22)
\]
due to (3.15). Then, due to the assumption (1) of Proposition 3.2, and the above, we obtain

$$\infty > \int_M |W^j_\varphi - 1|^2 v_g = C_0 \int_M v_g = C_0 \text{Vol}(M, g).$$

(3.23)

By our assumption that \(\text{Vol}(M, g) = \infty\), (3.23) implies that \(C_0 = 0\). We obtain \(W^j_\varphi - 1 \equiv 0\). We obtain Proposition 3.2.

Proof of Theorem 3.1. We apply Proposition 3.2 to our map \(\varphi : (M, g) \to (N, h)\), then the iteration procedure works well since \(\varphi\) is \(k\)-harmonic, i.e., \(W^k_\varphi = 0\). Then, we have \(W^{k-1}_\varphi = 0\), and then we have \(W^{k-2}_\varphi = 0\), etc. Finally, we obtain \(\tau(\varphi) = W^1_\varphi = 0\). Thus, \(\varphi : (M, g) \to (N, h)\) is harmonic. We obtain Theorem 3.1.

References

[1] P. Baird and J. Eells, A conservation law for harmonic maps, Lecture Notes in Math., Springer, 894 (1981), 1–25.
[2] P. Baird, A. Fardoun and S. Ouakkas, Liouville-type theorems for biharmonic maps between Riemannian manifolds, Adv. Calc. Var., 3 (2010), 49–68.
[3] P. Baird and J. Wood, Harmonic Morphisms Between Riemannian Manifolds, Oxford Science Publication, 2003, Oxford.
[4] R. Caddeo, S. Montaldo, P. Piu, On biharmonic maps, Contemp. Math., 288 (2001), 286–290.
[5] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17 (1991), 169–188.
[6] J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1–68.
[7] J. Eells, L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc, 1983.
[8] J. Eells, L. Lemaire, Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385–524.
[9] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109–160.
[10] M.P. Gaffney A special Stokes’ theorem for complete Riemannian manifold, Ann. Math., 60 (1954), 140–145.
[11] S. Gudmundsson, The Bibliography of Harmonic Morphisms, http://matematik.lu.se/ matematiklu/personal/sigma/harmonic/bibliography.html
[12] T. Ichiyama, J. Inoguchi, H. Urakawa, Biharmonic maps and bi-Yang-Mills fields, Note di Matematica, 28, (2009), 233–275.
[13] T. Ichiyama, J. Inoguchi, H. Urakawa, Classifications and isolation phenomena of biharmonic maps and bi-Yang-Mills fields, Note di Matematica, 30, (2010), 15–48.
[14] S. Ishihara, S. Ishikawa, Notes on relatively harmonic immersions, Hokkaido Math. J., 4 (1975), 234–246.
[15] G.Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese Ann. Math., 7A (1986), 388–402; Note di Matematica, 28 (2009), 209–232.
[16] A. Kasue, Riemannian Geometry, in Japanese, Baihu-kan, Tokyo, 2001.
[17] T. Lamm, Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var., 22 (2005), 421–445.
[18] E. Loubeau, C. Oniciuc, The index of biharmonic maps in spheres, Compositio Math., 141 (2005), 729–745.
[19] E. Loubeau and C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, Trans. Amer. Math. Soc., 359 (2007), 5239–5256.
[20] E. Loubeau and Y-L. Ou, Biharmonic maps and morphisms from conformal mappings, Tohoku Math. J., 62 (2010), 55–73.
[21] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22.
[22] N. Nakauchi and H. Urakawa, Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40 (2011), 125–131.
[23] N. Nakauchi and H. Urakawa, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results in Math., 63 (2013), 467–474.
[24] N. Nakauchi, H. Urakawa and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, to appear in Geometriae Dedicata, 2013.
[25] C. Oniciuc, On the second variation formula for biharmonic maps to a sphere, Publ. Math. Debrecen., 67 (2005), 285–303.
[26] Ye-Lin Ou and Liang Tang, The generalized Chen’s conjecture on biharmonic submanifolds is false, arXiv: 1006.1838v1.
[27] T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen, 67 (2005), 285–303.
[28] R. Schoen and S.T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), 333–341.
[29] S.T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670.
[30] Z-P Wang and Y-L Ou, Biharmonic Riemannian submersions from 3-manifolds, Math. Z., 269 (2011), 917–925.

Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, 753-8512, Japan
E-mail address: nakauchi@yamaguchi-u.ac.jp

Division of Mathematics, Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Sendai, 980-8579, Japan
Current address: Institute for International Education, Tohoku University, Kawauchi 41, Sendai 980-8576, Japan
E-mail address: urakawa@math.is.tohoku.ac.jp