MODULAR REPRESENTATIONS AND INDICATORS FOR BISMASH PRODUCTS

ANDREA JEDWAB AND SUSAN MONTGOMERY

Abstract. We introduce Brauer characters for representations of the bismash products of groups in characteristic \(p > 0, p \neq 2 \) and study their properties analogous to the classical case of finite groups. We then use our results to extend to bismash products a theorem of Thompson on lifting Frobenius-Schur indicators from characteristic \(p \) to characteristic 0.

1. Introduction

In this paper we study the representations of bismash products \(H_k = k^G \# kF \), coming from a factorizable group of the form \(Q = FG \) over an algebraically closed field \(k \) of characteristic \(p > 0, p \neq 2 \). Our general approach is to reduce the problem to a corresponding Hopf algebra in characteristic 0.

In the first part of the paper, we extend many of the classical facts about Brauer characters of groups in char \(p > 0 \) to the case of our bismash products; our Brauer characters are defined on a special subset of \(H \) of non-nilpotent elements, using the classical Brauer characters of certain stabilizer subgroups \(F_x \) of the group \(F \). In particular we relate the decomposition matrix of a character for the bismash product in char 0 with respect to our new Brauer characters, to the ordinary decomposition matrices for the group algebras of the \(F_x \) with respect to their Brauer characters. As a consequence we are able to extend a theorem of Brauer saying that the determinant of the Cartan matrix for the above decomposition is a power of \(p \) (Theorem 4.14).

These results about Brauer characters may be useful for other work on modular representations. We remark that the only other work on lifting from characteristic \(p \) to characteristic 0 of which we are aware is that of [EG], and they work only in the semisimple case.

In the second part, we first extend known facts on Witt kernels for \(G \)-invariant forms to the case of a Hopf algebra \(H \), as well as some facts about \(G \)-lattices. We then use these results and Brauer characters to extend a theorem of J. Thompson [Th] on Frobenius-Schur indicators for representations of finite groups to the case of bismash product Hopf algebras. In particular we show that if \(H_\mathbb{C} = \mathbb{C}^G \# \mathbb{C}F \) is a bismash product over \(\mathbb{C} \) and \(H_k = k^G \# kF \) is the corresponding bismash product over an algebraically closed field \(k \) of characteristic \(p > 0 \), and if \(H_\mathbb{C} \) is totally orthogonal (that is, all Frobenius-Schur indicators are +1), then the same is true for \(H_k \) (Corollary 6.6).

The first author was supported by NSF grant DMS 0701291 and the second author by DMS 1001547.
This paper is organized as follows. Section 2 reviews known facts about bismash products and their representations, and Section 3 summarizes some basic facts about Brauer characters for representations of finite groups. In Section 4 we prove our main results about Brauer characters for the case of bismash products.

In Section 5 we extend the facts we will need on Witt kernels and lattices, and in Section 6 we combine all these results to prove our extension of Thompson’s theorem. Finally in Section 7 we give some applications and raise some questions.

Throughout the setting of C*-algebras, in which case $E = \mathbb{C}$, and in general by Takeuchi [Ta], constructed from what he called a matched pair of groups. These Hopf algebras can also be constructed from a factorizable group, and that is the approach we use here. Throughout, we assume that F and G are finite groups.

Definition 2.1. A group Q is called *factorizable* into subgroups $F, G \subset Q$ if $FG = Q$ and $F \cap G = 1$; equivalently, every element $q \in Q$ may be written uniquely as a product $q = ax$ with $a \in F$ and $x \in G$.

A factorizable group gives rise to actions of each subgroup on the other. That is, we have

$$\triangleright : G \times F \to F \quad \text{and} \quad \triangleleft : G \times F \to G,$$

where for all $x \in G, a \in F$, the images $x \triangleright a \in F$ and $x \triangleleft a \in G$ are the (necessarily unique) elements of F and G such that $xa = (x \triangleright a)(x \triangleleft a)$.

Although these actions \triangleright and \triangleleft of F and G on each other are not group automorphisms, they induce actions of F and G as automorphisms of the dual algebras E^G and E^F. Let $\{p_x \mid x \in G\}$ be the basis of E^G dual to the basis G of EG and let $\{p_a \mid a \in F\}$ be the basis of E^F dual to the basis F of EF. Then the induced actions are given by

$$a \cdot p_x := p_{x \triangleleft a^{-1}} \quad \text{and} \quad x \cdot p_a := p_{x \triangleright a},$$

for all $a \in F, x \in G$. We let F_x denote the stabilizer in F of x under the action \triangleleft.

The *bismash product* Hopf algebra $H_\mathcal{E} := E^G \# E^F$ associated to $Q = FG$ uses the actions above. As a vector space, $H_\mathcal{E} = E^G \otimes E^F$, with E-basis $\{p_x \# a \mid x \in G, a \in F\}$. The algebra structure is the usual smash product, given by

$$\quad (p_x \# a)(p_y \# b) = p_x(a \cdot p_y)\# ab = p_xp_{y\triangleleft a^{-1}} \# ab = \delta_{y, x \triangleleft a}p_x \# ab.$$

The coalgebra structure may be obtained by dualizing the algebra structure of $H_\mathcal{E}$, although we will only need here that $H_\mathcal{E}$ has counit $\epsilon(p_x \# a) = \delta_{x, 1}$. Finally the antipode of H is given by $S(p_x \# a) = p_{(x \triangleleft a)^{-1}} \# (x \triangleright a)^{-1}$. One may check that $S^2 = id$.

2. Extensions arising from factorizable groups and their representations

The Hopf algebras we consider here were first described by G. Kac [Ka] in the
For other facts about bismash products, including the alternate approach of matched pairs of groups, see [Ma2], [Ma3]. We will consider the explicit example of a factorization of the symmetric group in Section 7.

Observe that for any field E, a distinguished basis of H_E over E is the set

$$B := \{ p_y^#a \mid y \in G, a \in F \},$$

and that B has the property that if $b,b' \in B$, then $bb' \in B \cup \{0\}$. In particular, if $w = p_y^#a$, then (2.3) implies that for all $k \geq 2$,

$$w^k = \begin{cases} p_y^#a^k & \text{if } a \in F_y \\ 0 & \text{if } a \notin F_y. \end{cases}$$

Thus if $a \in F_y$ and has order m, the minimum polynomial of $p_y^#a$ is

$$f(Z) = Z^{m+1} - Z,$$

and so the characteristic roots of $p_y^#a$ are $\{0\} \cup \{m^{th} \text{ roots of 1}\}$.

Lemma 2.6. (1) B is closed under the antipode S.

(2) The set $B' := \{ p_y^#a \in B \mid a \in F_y \}$ is also closed under S.

(3) If $w = p_y^#a \in B'$, then $S(w) = p_{y^{-1}}^#ya^{-1}y^{-1}$.

Proof. (1) is clear from the formula for S above. For (2), formula (2.5) shows that B' is exactly the set of non-nilpotent elements of B, so it is also closed under S.

For (3), $w \in B'$ implies that $a \in F_y$, and thus $y \triangleleft a = y$. Then

$$ya = (y \triangleright a)(y \triangleleft a) = (y \triangleright a)y$$

and so $y \triangleright a = yay^{-1}$. Substituting in the formula for S, we see $S(w) = p_{y^{-1}}^#ya^{-1}y^{-1}$. \qed

We review the description of the simple modules over a bismash product.

Proposition 2.7. Let $H = E^G \#EF$ be a bismash product, as above, where now E is algebraically closed. For the action \triangleleft of F on G, fix one element x in each F-orbit O of G, and let F_x be its stabilizer in F, as above. Let $V = V_x$ be a simple left F_x-module and let $\hat{V}_x = EF \otimes_{EF_x} V_x$ denote the induced EF-module.

\hat{V}_x becomes an H-module in the following way: for any $y \in G$, $a,b \in F$, and $v \in V_x$,

$$(p_y^#a)[b \otimes v] = \delta_{y^{-1}(ab),x} (ab \otimes v).$$

Then \hat{V}_x is a simple H-module under this action, and every simple H-module arises in this way.

Proof. In the case of characteristic 0, this was first proved for the Drinfel’d double $D(G)$ of a finite group G over \mathbb{C} by [DPR] and [M]. The case of characteristic $p > 0$ was done by [?].

For bismash products, extending the results for $D(G)$, the characteristic 0 case was done in [KMM, Lemma 2.2 and Theorem 3.3]. The case of characteristic $p > 0$ follows by extending the arguments of [?] for $D(G)$; see also [MoW]. \qed
Remark 2.8. The arguments for Proposition 2.7 also show that if we begin with an indecomposable module V_x of F_x, then \hat{V}_x is an indecomposable module for H_2, and all indecomposable H_2-modules arise in this way. This fact is discussed in [W2] after Proposition 4.4; it could also be obtained from [?] using the methods of Theorem 2.2 and Corollary 2.3 in that paper.

Now fix an irreducible H_2-module $\hat{V} = \hat{V}_x = \mathbb{E}F \otimes_{\mathbb{E}F_x} V_x$ as in Proposition 2.7. To compute the values of the character for \hat{V}, we use a formula from [JM]; it is a simpler version of [N2, Proposition 5.5] and is similar to the formula in [KMM, p 898]:

Lemma 2.9. [JM, Lemma 4.5] Fix a set T_x of representatives for the right cosets of F_x in F. Let χ_x be the character of V_x. Then the character $\hat{\chi}_x$ of \hat{V}_x may be computed as follows:

$$\hat{\chi}_x(p_y#a) = \sum_{t \in T_x \text{ and } t^{-1}at \in F_x} \delta_{y, at} \chi_x(t^{-1}at),$$

for any $y \in G$, $a \in F$.

Next we review some known facts about Frobenius-Schur indicators for representations of Hopf algebras. For a representation V of H, recall that a bilinear form $\langle -, - \rangle : V \otimes_{\mathbb{E}} V \to \mathbb{E}$ is H-invariant if for all $h \in H$ and $v, w \in V$,

$$\sum \langle h_1 \cdot v, h_2 \cdot w \rangle = \varepsilon(h) 1_{\mathbb{E}}.$$

It follows that the antipode is the adjoint of the form; that is, for all $h, l \in H$, $v, w \in V$,

$$\langle S(h) \cdot v, l \cdot w \rangle = \langle h \cdot v, S(l) \cdot w \rangle = \langle h \cdot v, S(l) \cdot w \rangle,$$

using that $S^2 = id$.

Theorem 2.10. [GM] Let H be a finite-dimensional Hopf algebra over \mathbb{E} such that $S^2 = id$ and \mathbb{E} splits H. Let V be an irreducible representation of H. Then V has a well-defined Frobenius-Schur indicator $\nu(V) \in \{0, 1, -1\}$. Moreover

1. $\nu(V) \neq 0 \iff V^* \cong V.$
2. $\nu(V) = +1$ (respectively -1) \iff V admits a non-degenerate H-invariant symmetric (resp, skew-symmetric) bilinear form.

If in addition H is semisimple and cosemisimple, then in fact $\nu(V)$ can be computed by the formula $\nu(V) = \chi(A_1A_2)$, where χ is the character belonging to V and A is a normalized integral of H [LM]. This formula does not work in general, but still Theorem 2.10 applies to any bismash product since as noted above, it is always true that $S^2 = id$. Sometimes the indicator is called the type of V.

We remark that, unlike the case for groups, $\nu(V) = +1$ does not imply that the character χ_V is real-valued, even when $\mathbb{E} = \mathbb{C}$. However it is still true that if $V^* \cong V$, then $\chi^* = \chi$, that is, $\chi \circ S = \chi$.

Finally we fix the following notation:

Definition 2.11. [CR, p 402]. A p-modular system $(\mathbb{K}, R, \mathfrak{k})$ consists of a discrete valuation ring R with quotient field \mathbb{K}, maximal ideal $\mathfrak{p} = \pi R$ containing the rational prime p, and residue class field $\mathfrak{k} = R/\mathfrak{p}$ of characteristic p.

We will mainly be interested in the following special case, as in [Th] with a slight change in notation.

Example 2.12. Let $H\mathbb{Q}$ be a Hopf algebra over \mathbb{Q} and let \mathbb{L} be an algebraic number field which is a splitting field for $H\mathbb{Q}$. Let \mathcal{P} be a prime ideal of the ring of integers of \mathbb{L} containing the rational prime $p \neq 2$, let R be the completion of the ring of \mathcal{P}-integers of \mathbb{L}, \mathbb{K} be the field of fractions of R, π be a generator for the maximal ideal \mathfrak{p} of R, and $\mathbb{k} = R/\pi R$.

Then $(\mathbb{K}, R, \mathbb{k})$ is a p-modular system.

3. Brauer characters for G

In this section we review the definition of Brauer characters for a finite group [CR], [Nv] and summarize some of the classical results.

We fix the following notation, for a given finite group G. Let $|G|$ denote the order of G, and let $|G|_p$ denote the largest power of p in $|G|$; thus $|G| = |G|_p m$ where $p \nmid m$.

Since \mathbb{K} splits G, it contains a primitive mth root of 1, say ω, which in fact is in R. Under the natural map $f: R \rightarrow \mathbb{k}$, $\omega = f(\omega)$ is a primitive mth root of 1 in \mathbb{k}.

Let $G_{p'}$ denote the set of p-regular elements of G, that is elements of G whose order is prime to p. Thus for each $x \in G_{p'}$, all of the eigenvalues of x on any (left) $\mathbb{k}G$-module W are mth roots of 1, and hence may be expressed as a power of $\bar{\omega}$. Denote the eigenvalues of x by $\{\bar{\omega}^{i_1}, \ldots, \bar{\omega}^{i_t}\}$.

Definition 3.1. For each (left) $\mathbb{k}G$-module W, the \mathbb{K}-valued function $\phi: G_{p'} \rightarrow \mathbb{K}$ defined for each $x \in G_{p'}$ by

$$
\phi(x) = \omega^{i_1} + \cdots + \omega^{i_t} = \sum_{j=1}^{t} f^{-1}(\bar{\omega}^{i_j}).
$$

is called the Brauer character of G afforded by W.

Remark 3.2. Note that ϕ is a class function on the conjugacy classes of p-regular elements of G. ϕ can be extended to $\phi^\#: \text{a class function on all of } G$, by defining $\phi^\#(x) = 0$ for any x in the complement of $G_{p'}$. It follows that $\phi^\#$ is a \mathbb{K}-linear combination of the ordinary irreducible characters χ_i of $\mathbb{K}G$ [CR, p 423]. Thus ϕ is a \mathbb{K}-linear combination of the $\chi_i|_{G_{p'}}$.

We record some facts about Brauer characters of groups. See [CR, 17.5], [I, Chapter 15].

Proposition 3.3.

1. λ takes values in R and $\lambda(x) = Tr(x, V)$, all $x \in G_{p'}$.
2. Let $W_0 \supset W_1 \supset 0$ be $\mathbb{k}G$-modules, let ϕ be the Brauer character afforded by W_0/W_1, ϕ_1 the Brauer character afforded by W_1 and ϕ_0 the Brauer character of W_0. Then $\phi_0 = \phi + \phi_1$.
3. Let V be a $\mathbb{K}G$-module with \mathbb{K}-character χ. Then for each RG-lattice M in V, the restriction $\chi|_{G_{p'}}$ is the Brauer character of the $\mathbb{k}G$-module $\overline{M} := M/\mathfrak{p}M$.

We fix the following notation, as in [CR]:

1. $Irr(G) = \{\chi_1, \ldots, \chi_n\}$ denotes the irreducible characters of $\mathbb{K}G$;
(2) \(\text{Irr}_k(G) = \{\psi_1, \ldots, \psi_d\} \) denotes the irreducible characters of \(kG \);
(3) \(\text{IBr}(G) = \{\phi_1, \ldots, \phi_d\} \) denotes the Brauer characters corresponding to \(\{\psi_1, \ldots, \psi_d\} \).

By [CR, 16.7 and 16.20], there exists a homomorphism of abelian groups

\[
d : G_0(\mathbb{K}G) \rightarrow G_0(kG),
\]

called the decomposition map, such that for any class \([V] \) in \(G_0(\mathbb{K}G) \), \(d([V]) = [\mathcal{M}] \in G_0(\mathbb{K}G) \), where \(\mathcal{M} \) is any \(RG \)-lattice in \(V \) and \(\mathcal{M} := M/\mathcal{P}M \).

Using Proposition 3.3(3), it follows that for any \(\chi \), there are integers \(d_{ij} \) such that

\[
\chi|_{G_{p'}} = \sum_j d_{ij} \phi_j.
\]

The multiplicities \(d_{ij} = d(\chi|_{G_{p'}}, \phi_j) \) are called decomposition numbers, and the matrix \(D = [d_{ij}] \) is called the decomposition matrix. The matrix \(C = D^T D \) is called the Cartan matrix.

From [CR], 17.12 - 17.15, the set \(Bch(\mathbb{K}G) \) of virtual Brauer characters, that is \(\mathbb{Z} \)-linear combinations of Brauer characters of \(kG \)-modules, is a ring under addition and multiplication of functions, and \(Bch(\mathbb{K}G) \cong G_0(\mathbb{K}G) \). Using that \(G_0(\mathbb{K}G) \cong ch(\mathbb{K}G) \), the ring of virtual characters of \(\mathbb{K}G \), it follows that the decomposition map \(d \) induces a map

\[
d' : ch(\mathbb{K}G) \rightarrow Bch(\mathbb{K}G),
\]

where \(d' \) is the restriction map \(\psi \rightarrow \psi|_{G_{p'}} \).

Consequently Equation (3.5) implies that if \(\chi \) is the character for \(V \) and \(\chi|_{G_{p'}} = \sum_j \alpha_j \phi_j \), where \(\phi_j \) is the Brauer character of the simple \(kG \)-module \(W_j \), and \(d([V]) = [\mathcal{M}] \in G_0(kG) \), then

\[
[M] = \sum_j \alpha_j [W_j].
\]

We will need the following theorem in our more general situation:

Theorem 3.6. (Brauer) [CR, 18.25][I, Ex (15.3)] \(\det(C) \) is a power of \(p \).

We will also need the analog of the following:

Theorem 3.7. [CR, (17.9)] The irreducible Brauer characters \(\text{IBr}(G) \) form a \(\mathbb{K} \)-basis of the space of \(\mathbb{K} \)-valued class functions of \(G_{p'} \).

One consequence of this theorem is:

Corollary 3.8. Let \(E \) be a splitting field for \(G \) of char \(p > 0 \). Then the number of simple \(EG \)-modules is equal to the number of \(p \)-regular conjugacy classes of \(G \).

A crucial ingredient of the proof of the theorem is the following elementary lemma.

Lemma 3.9. Let \(\rho : G \rightarrow GL_n(k) \) be a matrix representation of \(G \) over \(k \). For any \(x \in G \), we may write \(x = us \), where \(u \) is a \(p \)-element of \(G \) and \(s \) is a \(p' \)-element. Then \(x \) and \(s \) have the same eigenvalues, counting multiplicities.

The lemma follows since \(su = us \), and all eigenvalues of \(u \) will equal 1.
4. Brauer characters for H_k

In this section we define Brauer characters for our bismash products and show that they have properties analogous to those for finite groups discussed in Section 3.

Assume that $\mathbb{L}, \mathbb{K}, \pi, R$ and k are as Example 2.12, with $k = R/\pi R$.

Fix an irreducible H_k-module V_L whose indicator is non-zero. Since L is a splitting field for H_Q, so is K, and thus

$$V := V_L \otimes_L K$$

is an irreducible H_K-module. Moreover the bilinear form on V_L extends to a bilinear form on V, and thus there is a non-singular H_K-invariant bilinear form $\langle \cdot, \cdot \rangle$ on V, with values in K, which is symmetric or skew-symmetric by 2.10.

Recall the basis B of H_K from Section 2.

Definition 4.1. Let $V = V_L \otimes_L K$ be as above. Then an RB-lattice in V is a finitely generated RB-submodule L of V such that $KL = V$.

From now on we also assume that \mathbb{L} denotes an algebraic number field which is a splitting field for $H_Q = \mathbb{Q}^G \# \mathbb{Q}F$. Then k is a splitting field for H_k.

Let $\hat{W} = \hat{W}_x$ be a simple H_k module, as in Proposition 2.7. That is, for a given F-orbit O of G and fixed $x \in O = O_x$, with F_x the stabilizer of x in F and $W = W_x$ a simple kF_x-module, $\hat{W} = kF \otimes_{kF_x} W$. Recall \hat{W} becomes an H-module via

$$(p_y \# a)[b \otimes w] = \delta_y \cdot (ab)_x[ab \otimes w],$$

for any $y \in G$, $a, b \in F$, and $w \in W$.

As in Lemma 2.9, fix a set T_x of representatives of the right cosets of F_x in F.

Lemma 4.2. Consider the action of $p_y \# a$ on $\hat{W} = \hat{W}_x$ as above.

1. If $(p_y \# a)\hat{W} \neq 0$, then there exists $t \in T_x$ and $w \in W$ such that

$$(p_y \# a)[t \otimes w] = \delta_y \cdot (at)_x[at \otimes w] \neq 0.$$

Thus $y = x \prec (at)^{-1} \in O_x$.

2. If $p_y \# a$ has non-zero eigenvalues on \hat{W}_x, then $a \in F_y$ and $x = y \prec t$, where t is as in (1).

3. For t as in (1) and (2), $t^{-1}at \in F_x$ and so $at \otimes w = t \otimes (t^{-1}at)w$.

Proof. (1) By the formula for the action of $p_y \# a$ on \hat{W}, there exists $b \in F$ and $w \in W$ such that $(p_y \# a)[b \otimes w] = \delta_y \cdot (ab)_x[ab \otimes w] \neq 0$. Thus $y = x \prec (ab)^{-1} \in O_x$. Now for some $t \in T_x$, $b \in tF_x$. It is easy to see that t satisfies the same properties as b.

2. If $p_y \# a$ has non-zero eigenvalues on \hat{W}, then $(p_y \# a)^2 \neq 0$, and so $a \in F_y$ by (2.5). Now using (1), $x = y \prec (at) = (y \prec a) \prec t = y \prec t$.

3. Since $y = x \prec t^{-1}$ and $a \in F_y$, it follows that $t^{-1}at \in F_x$. Thus we can write $at \otimes w = t \otimes (t^{-1}at)w$. \qed

We next prove an analog of Lemma 3.9, although in our case the two factors do not necessarily commute in H_k.

Lemma 4.3. Consider $\rho : H_k \rightarrow \text{End}_k(\hat{W}) \cong M_n(k)$. For $a \in F$ write $a = su$, with s the p-regular part and u the p-part of a. Then $\rho(p_y \# a)$ and $\rho(p_y \# s)$ have the same eigenvalues, counting multiplicities.
Lemma 2.6(3), \(S \) the formula in Lemma 2.9. That is, if \(W \) then \(\hat{W} \) do commute: suppose \(b \otimes w \) is such that \((p_y \# a) \cdot [b \otimes w] \neq 0 \). By Lemma 4.2, \(y \triangleleft b = x \) and \(a \in F_y \). Thus \(s \in F_y \) since \(s \) is a power of \(a \). Then

\[
(p_y \# s)(1 \# u) \cdot [b \otimes w] = (p_y \# a) \cdot [b \otimes w] = ab \otimes v
\]

and

\[
(1 \# u)(p_y \# s) \cdot [b \otimes w] = \delta_{y \triangleleft sb,x}(1 \# u) \cdot [sb \otimes w] = (1 \# u) \cdot [sb \otimes w] = usb \otimes w = ab \otimes w.
\]

Since the eigenvalues of \(1 \# u \) are all 1, the eigenvalues of \(p_y \# a \) are the same as those of \(p_y \# s \).

The lemma shows that to find the character of some \(p_y \# a \), it suffices to look at the character of \(p_y \# s \), where \(s \) is the \(p' \)-part of \(a \). Moreover, by Lemma 4.2, the character of \(p_y \# a \) will be non-zero only if \(a \in F_y \).

Thus, as a replacement for the \(p' \)-elements of the group in the classical case, we consider the subset of the basis \(\mathcal{B} \) defined in (2.4) of those elements which are non-nilpotent element and have group element in \(F_{p'} \). That is, we define

\[
(4.4) \quad \mathcal{B}_{p'} := \{ p_y \# a \in \mathcal{B} \mid a \in F_{p'} \} = \{ p_y \# a \in \mathcal{B} \mid a \in F_y \cap F_{p'} \},
\]

where \(F_{p'} \) is the set of \(p \)-regular elements in \(F \). By Lemma 2.6, \(\mathcal{B}_{p'} \) is also closed under the antipode \(S \), since if \(a \in F_{p'} \) and \(w = p_y \# a \) is non-nilpotent, then by Lemma 2.6(3), \(S(w) = p_{y^{-1}} \cdot sa^{-1}y^{-1} \). Since \(ya^{-1}y^{-1} \) has the same order as \(a \), \(S(w) \) is also in \(\mathcal{B}_{p'} \).

The above remarks motivate our definition of Brauer characters for \(H_k \), by using the formula in Lemma 2.9. That is, if \(W = W_x \) is a simple \(kF_x \)-module with character \(\psi \), then the character of the simple \(H_k \)-module \(W \) is given by

\[
(4.5) \quad \hat{\psi}(p_y \# a) = \sum_{t \in T_x \text{ and } t^{-1}\mathfrak{t} \in F_x} \delta_{y \triangleleft t,x} \psi(t^{-1}a).
\]

Definition 4.6. Let \(W = W_x \) be a simple \(kF_x \)-module with character \(\psi \), and let \(\phi \) be the classical Brauer character of \(W \) constructed from \(\psi \). Then the **Brauer character** of \(\hat{W} \) is the function

\[
\hat{\phi} : \mathcal{B}_{p'} \to \mathbb{K}
\]

defined on any \(p_y \# a \in \mathcal{B}_{p'} \) by

\[
\hat{\phi}(p_y \# a) = \sum_{t \in T_x \text{ and } t^{-1}\mathfrak{t} \in F_x} \delta_{y \triangleleft t,x} \phi(t^{-1}a).
\]

Remark 4.7. If \(\hat{\phi} \) is a Brauer character, then also \(\hat{\phi}^* = \hat{\phi} \circ S \) is a Brauer character: namely if \(\hat{\phi} \) is the Brauer character for \(\hat{\psi} \), then \(\hat{\phi}^* \) is the Brauer character of \(\hat{\psi}^* \), using the fact that \(\mathcal{B}_{p'} \) is stable under \(S \).
We fix the following notation, as for groups:

1. \(\text{Irr}(H_K) = \{ \hat{\chi}_1, \ldots, \hat{\chi}_n \} \) denotes the irreducible characters of \(H_K \);
2. \(\text{Irr}_K(H_k) = \{ \hat{\psi}_1, \ldots, \hat{\psi}_d \} \) denotes the irreducible characters of \(H_k \);
3. \(\text{IBr}(H_k) = \{ \hat{\phi}_1, \ldots, \hat{\phi}_d \} \) denotes the Brauer characters corresponding to \(\{ \hat{\psi}_1, \ldots, \hat{\psi}_d \} \).

As for groups, the elements of \(\text{IBr}(H_k) \) are called irreducible Brauer characters.

4. \(\text{Bch}(H_k) \) denotes the ring of virtual Brauer characters of \(H_k \), that is, the \(\mathbb{Z} \)-linear span of the irreducible Brauer characters.

Lemma 4.8. \(\hat{\phi}_j \) is a \(\mathbb{K} \)-linear combination of the \(\hat{\chi}_i|_{B_{\nu'}} \). Consequently if all \(\hat{\chi}_i \) are self-dual, then all \(\hat{\phi}_j \) are also self-dual, and so are all \(\hat{\psi}_j \).

Proof. By Remark 3.2 applied to \(F_x \), the Brauer character \(\hat{\phi}_j \) may be written as \(\hat{\phi}_j = \sum_i \alpha_i \hat{\chi}_i|_{B_{\nu'}} \), for \(\alpha_i \in \mathbb{K} \). Lifting this equation through induction up to \(F_{\nu'} \) (and so to \(B_{\nu'} \)) as in Lemma 2.9, we obtain the first statement in the lemma.

Now if all \(\hat{\chi}_i \) are self-dual, then the same property holds for the \(\hat{\phi}_j \) since they are linear combinations of the \(\hat{\chi}_i|_{B_{\nu'}} \). Fix one of the \(\hat{\psi}_j \) and its Brauer character \(\hat{\phi}_j \). Since \(\hat{\phi}_j^* = \hat{\phi}_j \circ S \) and \(\hat{\psi}_j^* = \hat{\psi}_j \circ S \), using the formula for \(S \) as well as (4.5) and the formula in 4.6, we see that \(\hat{\phi}_j^* = \hat{\phi}_j \) if and only if \(\hat{\psi}_j^* = \hat{\psi}_j \). \(\square \)

We may follow exactly the proof of Proposition 3.3, that is [CR, 17.5, (2) - (4)], to show the following:

Proposition 4.9. (1) \(\hat{\phi} \) takes values in \(R \) and \(\hat{\phi}(p_y \# a) = Tr(p_y \# a, \hat{W}) \), for \(a \in F_{\nu'} \).
(2) Given \(H_k \)-modules \(\hat{W}_0 \supset \hat{W}_1 \supset 0 \), let \(\hat{\phi} \) be the Brauer character afforded by \(\hat{W}_0 / \hat{W}_1 \), \(\hat{\phi}_1 \) the Brauer character afforded by \(\hat{W}_1 \), and \(\hat{\phi}_0 \) the Brauer character of \(\hat{W}_0 \). Then \(\hat{\phi}_0 = \hat{\phi} + \hat{\phi}_1 \).
(3) Let \(V \) be a \(\mathbb{K}B \)-module with \(\mathbb{K} \)-character \(\chi \). Then for each \(RB \)-lattice \(M \) in \(V \), the restriction \(\chi|_{RB_{\nu'}} \) is the Brauer character of the \(H_k \)-module \(\overline{M} := M/pM \).

Similarly, one may follow the first part of the proof of Theorem 3.7 [CR, 17.9], replacing Lemma 3.9 with Lemma 4.3, to show

Theorem 4.10. The irreducible Brauer characters \(\text{IBr}(H_k) \) are \(\mathbb{K} \)-linearly independent.

We may also extend the decomposition map \(d \) in Section 3 to obtain a homomorphism of abelian groups

\[
(4.11) \quad \hat{d} : G_0(H_K) \to G_0(H_k),
\]

called the decomposition map, such that for any class \([\hat{V}] \) in \(G_0(H_K) \), \(\hat{d}([\hat{V}]) = [\overline{M}] \in G_0(H_k) \), where \(M \) is any \(RB \)-lattice in \(\hat{V} \) and \(\overline{M} := M/pM \).

Again using the facts about groups, the set \(\text{Bch}(H_k) \) of virtual Brauer characters, that is \(\mathbb{Z} \)-linear combinations of Brauer characters of \(kG \)-modules, is a ring under addition and multiplication of functions, and \(\text{Bch}(H_k) \cong G_0(H_k) \). Using that
\(G_0(\mathbb{K}G) \cong \text{ch}(\mathbb{K}G) \), the ring of virtual characters of \(H_{\mathbb{K}} \), it follows that the decomposition map \(\hat{d} \) induces a map

\[
\hat{d}^\prime : \text{ch}(H_{\mathbb{K}}) \to B\text{ch}(H_{\mathbb{K}}),
\]

where \(\hat{d}^\prime \) is the restriction map \(\hat{\psi} \to \hat{\psi}|_{B_{\rho'}} \).

Consequently, Equation (3.5) implies that if \(\hat{\chi} \) is the character for \(\hat{V} \) and \(\hat{\chi}|_{B_{\rho'}} = \sum_j \alpha_j \hat{\phi}_j \), where \(\hat{\phi}_j \) is the Brauer character of the simple \(H_{\mathbb{K}} \)-module \(\hat{W}_j \), and \(\hat{d}(\hat{V}) = [M] \in G_0(H_{\mathbb{K}}) \), then

\[
(4.11) [M] = \sum_j \alpha_j [W_j].
\]

From now on we wish to distinguish the characters (over \(\mathbb{k} \) or \(\mathbb{K} \)) which arise from stabilizers of elements in different \(F \)-orbits of \(G \). Assume that there are exactly \(s \) distinct orbits of \(F \) on \(G \) and that we fix \(x_q \in O_q \), the \(q \)th orbit. Thus for a fixed \(x = x_q \in G \) with stabilizer \(F_x = F_{x_q} \), we will write \(\chi_{i,x} \) for an irreducible character of \(kF_x \), and \(\hat{\chi}_{i,x} \) for its induction up to \(\mathbb{K}F_x \), which becomes an irreducible character of \(H_{\mathbb{K}} \).

Similarly, \(\psi_{j,x} \) denotes an irreducible character of \(kF_x \), and \(\hat{\psi}_{j,x} \) its induction up to \(\mathbb{K}F_x \), which becomes an irreducible character of \(H_{\mathbb{K}} \). Also \(\phi_{j,x} \) denotes the Brauer character corresponding to \(\psi_{j,x} \), and \(\hat{\phi}_{j,x} \) the Brauer character corresponding to \(\hat{\psi}_{j,x} \).

Lemma 4.12. Let \(\phi_x \) be a virtual Brauer character of \(kF_x \) and assume that \(\phi_x = \sum_j z_{j,x} \phi_{j,x} \), where as above the \(\phi_{j,x} \) are the Brauer characters of \(kF_x \).

Then \(\hat{\phi}_x = \sum_j z_{j,x} \hat{\phi}_{j,x} \).

The lemma follows from Definition 4.6 of a Brauer character \(\hat{\phi} \) for \(H_{\mathbb{K}} \) in terms of a Brauer character \(\phi \) for \(kF_x \). Moreover, Lemma 2.9 becomes

\[
\hat{\chi}_{i,x}(p_y \# a) = \sum_{t \in T_x \text{ and } t^{-1} at \in F_x} \delta_{y \triangleleft t,x} \chi_{i,x}(t^{-1} at).
\]

Applying Equation (3.5) to \(F_x \), there are integers \(d_{ij,x} \) such that

\[
\chi_{i,x}|(F_x)_{\rho'} = \sum_j d_{ij,x} \phi_{j,x},
\]

where the \(\phi_{j,x} \) are in \(IBr(kF_x) \).

Lifting the \(\chi_{i,x} \) to \(\hat{\chi}_{i,x} \) on \(B_{\rho'} \), we see that

\[
\hat{\chi}_{i,x}|_{B_{\rho'}} = \sum_j d_{ij,x} \hat{\phi}_{j,x}.
\]

That is, the decomposition numbers for the \(\hat{\chi}_{i,x}|_{B_{\rho'}} \) with respect to the \(\hat{\phi}_{j,x} \) are the same as the decomposition numbers for the \(\chi_{i,x}|(F_x)_{\rho'} \) with respect to the \(\phi_{j,x} \) for the group \(F_x \). Thus the decomposition matrix \(\hat{D}_x = [d_{ij,x}] \) for the \(\hat{\chi}_{i,x}|_{B_{\rho'}} \) with respect to the \(\hat{\phi}_{j,x} \) is the same as the decomposition matrix \(D_x \) for the \(\chi_{i,x}|(F_x)_{\rho'} \) with respect to the \(\phi_{j,x} \).
The above discussion proves

Proposition 4.13. As above, assume that there are exactly \(s \) distinct orbits \(\mathcal{O} \) of \(F \) on \(G \) and choose \(x_q \in \mathcal{O}_q \), for \(q = 1, \ldots, s \). Then

1. \(\hat{D}_{x_q} = D_{x_q} \)

2. The decomposition matrix for the \(\hat{\chi}_{i|B\rho} \) with respect to \(\hat{\phi}_j \) is the block matrix

\[
\hat{D} = \begin{bmatrix}
\hat{D}_{x_1} & 0 & \cdots & 0 \\
0 & \hat{D}_{x_2} & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \hat{D}_{x_s}
\end{bmatrix}
\]

where \(\hat{D}_{x_q} \) is the decomposition matrix of \(\hat{\chi}_{i,x_q|B\rho} \) with respect to \(\hat{\phi}_{j,x_q} \).

As for groups, \(\hat{C} = \hat{D}^t \hat{D} \) is called the Cartan matrix. We are now able to extend the theorem of Brauer we need (3.6).

Theorem 4.14. \(\text{Det}(\hat{C}) \) is a power of \(p \).

Proof. First, \(\hat{C} \) is also a block matrix, with blocks \(\hat{C}_{x_q} = (\hat{D}_{x_q})^t \hat{D}_{x_q} \). By Brauer’s theorem applied to each group \(F_{x_q} \), we know that \(\text{Det}(\hat{C}_{x_q}) \) is a power of \(p \). Thus \(\text{Det}(\hat{C}) \) is a power of \(p \). \(\square \)

5. Invariant Forms: Witt kernels and Lattices

A first step in the direction of extending Thompson’s theorem concerns the Witt kernel of a module with a bilinear form as in Theorem 2.10. We will show that, for an arbitrary field \(\mathbb{E} \), the notion of Witt kernel of an \(\mathbb{E}G \)-module extends to \(H_\mathbb{E} \)-modules. One can then follow the argument in [Th].

Let \(V \) be a finitely-generated \(H_\mathbb{E} \)-module which is equipped with a non-degenerate \(H_\mathbb{E} \)-invariant bilinear form \(\langle -, - \rangle : V \otimes_\mathbb{E} V \to \mathbb{E} \), which is either symmetric or skew symmetric. For example, if \(\mathbb{E} \) is algebraically closed, then any irreducible self-dual \(H_\mathbb{E} \)-module has such a form by Theorem 2.10. For any submodule \(U \) of \(V \),

\[
U^\perp = \{ v \in V \mid \langle v, U \rangle = 0 \}.
\]

Since the form is \(H \)-invariant and \(S \) is the adjoint of the form, for all \(u \in U^\perp \),

\[
\langle h \cdot v, U \rangle = \langle v, S(h) \cdot U \rangle = \langle v, U \rangle = 0.
\]

Thus \(U^\perp \) is also a submodule of \(V \). Note also that \(U^{\perp \perp} = U \) since \(V \) is finite-dimensional over \(\mathbb{E} \). Let

\[
\mathcal{M} = \mathcal{M}_V = \{ V_0 \mid V_0 \text{ is an } H_\mathbb{E} \text{-submodule of } V \text{ and } \langle V_0, V_0 \rangle = 0 \},
\]

that is, \(V_0 \subsetneq V_0^\perp \).

Obviously, \(\{ 0 \} \in \mathcal{M} \), and \(\mathcal{M} \) is partially ordered by inclusion. If \(V_0 \in \mathcal{M} \), then \(V_0^\perp / V_0 \) inherits a non-degenerate form given by

\[
\langle v_0 + V_0, v_0' + V_0 \rangle_{V_0^\perp / V_0} := \langle v_0, v_0' \rangle, \quad v_0, v_0' \in V_0.
\]
If \(V_1 \) is a maximal element of \(\mathcal{M} \), it is not difficult to see that \(\frac{V_1^\perp}{V_1} \) is a completely reducible \(H_E \)-module, and the restriction of \((,)_{V_1^\perp/V_1} \) to any \(H_E \)-submodule of \(\frac{V_1^\perp}{V_1} \) is non-degenerate.

Definition 5.1. Let \(V_1 \) be a maximal element of \(\mathcal{M} \). Then the **Witt kernel** of \(V \) is
\[V' := \frac{V_1^\perp}{V_1}. \]

It is not clear from this definition that the Witt kernel is independent of the choice of the maximal element of \(\mathcal{M} \). However, we have

Lemma 5.2. If \(V_1, V_2 \) are maximal elements of \(\mathcal{M} \), then there is an \(H_\mathbb{k} \)-isomorphism
\[\Phi : \frac{V_1^\perp}{V_1} \to \frac{V_2^\perp}{V_2}, \]

such that
\[(v_1, v'_1)v_{V_1^\perp/V_1} = (\Phi(v_1), \Phi(v'_1))v_{V_2^\perp/V_2}, \text{ for all } v_1, v'_1 \in V_1^\perp/V_1. \]

The proof follows exactly the proof of [Th, Lemma 2.1] for group algebras.

We next extend the facts shown in [Th] about \(\mathbb{G} \)-lattices to the case of lattices for bismash products. Our proofs follow [Th] very closely.

Assume that \(\mathbb{L}, \mathbb{K}, \pi, \mathbb{R} \) and \(\mathbb{k} \) are as at the end of Section 2, with \(\mathbb{k} = \mathbb{R}/\pi\mathbb{R}. \)

Fix an irreducible \(H_\mathbb{L} \)-module \(V_\mathbb{L} \) whose indicator is non-zero. Since \(\mathbb{L} \) is a splitting field for \(H_\mathbb{Q} \), so is \(\mathbb{K} \), and thus
\[V := V_\mathbb{L} \otimes_\mathbb{L} \mathbb{K} \]
is an irreducible \(H_\mathbb{K} \)-module. Moreover the bilinear form on \(V_\mathbb{L} \) extends to a bilinear form on \(V \), and thus there is a non-singular \(H_\mathbb{K} \)-invariant bilinear form \(\langle , \rangle \) on \(V \), with values in \(\mathbb{K} \), which is symmetric or skew-symmetric by 2.10.

Recall the basis \(\mathcal{B} \) of \(H_\mathbb{K} \) from Section 2.

Definition 5.3. Let \(V = V_\mathbb{L} \otimes_\mathbb{L} \mathbb{K} \) as above. Then an **\(\mathbb{R}\mathbb{B} \)-lattice** in \(V \) is a finitely generated \(\mathbb{R}\mathbb{B} \)-submodule \(L \) of \(V \) such that \(\mathbb{K}L = V. \)

Let \(\mathcal{L} = \mathcal{L}_V \) be the family of \(\mathbb{R}\mathbb{B} \)-sublattices of \(V \). If \(L \in \mathcal{L} \), then \(L^* \) denotes the **dual lattice** defined by
\[L^* = \{ l \in V | \langle L, l \rangle \subseteq R \}. \]

Since \(R \) is Noetherian, \(L^* \) is also an \(\mathbb{R}\mathbb{B} \)-lattice by [CR, 4.24]. In particular \(L^* \) is also finitely-generated. We also let
\[\mathcal{L}_I = \mathcal{L}_{V,I} = \{ \mathbb{R}\mathbb{B} \text{-lattices } L \in \mathcal{L}_V | \langle L, L \rangle \subseteq R \} \]
denote the set of integral lattices. If \(L \) is any element of \(\mathcal{L} \), there is an integer \(n \) such that \(\pi^n L \in \mathcal{L}_I \). Obviously, \(\mathcal{L}_I \) is partially ordered by inclusion and if \(L_1, L_2 \in \mathcal{L}_I \) with \(L_1 \subseteq L_2 \), then \(L_2 \subseteq L_1^* \). Thus any chain of sublattices starting with \(L_1 \) is contained in \(L_1^* \), which is a Noetherian \(\mathbb{R}\mathbb{B} \)-module, and so the chain must stop. Thus every element of \(\mathcal{L}_I \) is contained in a maximal element of \(\mathcal{L}_I \).

In the following discussion, \(L \) denotes a **fixed** maximal element of \(\mathcal{L}_I \).

Lemma 5.4. (1) \(\pi L^* \subseteq L. \)

(2) Let \(M = L^*/L. \) There is a non-singular \(\mathbb{R}\mathbb{B} \)-invariant form \(\langle , \rangle_M \) on \(M \), with values in \(\mathbb{k} \), defined as follows: if \(m_1, m_2 \in M, m_i = x_i + L \) then \(\langle m_1, m_2 \rangle_M := \text{image in } \mathbb{k} \text{ of } \pi \langle x_1, x_2 \rangle. \)
Proof. (1) Let h be the smallest integer ≥ 0 such that $\pi^hL^* \subseteq L$. If $h \leq 1$, then (1) holds. So suppose $h \geq 2$.

Let $L_1 = L + \pi^{h-1}L^*$. Then $L_1 \in \mathcal{L}$. Moreover, if $u_1, u_2 \in L_1$, say $u_i = l_i + \pi^{h-1}l_i^*$, $l_i \in L, l_i^* \in L^*$, then

$$\langle u_1, u_2 \rangle = \langle l_1, l_2 \rangle + \pi^{h-1}(\langle l_1^*, l_2^* \rangle + \langle l_2^*, l_1^* \rangle) + \pi^{h-2}\langle \pi^h l_i^*, l_2^* \rangle \in R$$

by definition of L^* and of h. Thus, $L_1 \in \mathcal{L}_I$. Since $L \subseteq L_1$, this violates the maximality of L. So (1) holds.

(2) If $l_1^*, l_2^* \in L^*$, then $\pi l_1^* \in L$, so $\langle \pi l_1^*, l_2^* \rangle \in R$. Since $\langle L, L^* \rangle$ and $\langle L^*, L \rangle$ are contained in R, and since π is a generator for the maximal ideal of R, it follows that $\langle \cdot, \cdot \rangle_M$ is well defined. To see that this form is non singular, suppose $l^* \in L^*$ and $\langle l^*, L^* \rangle = 0$. Then $l^* \in L^{**} = L$, so $l^* + L = 0$ in M. This proves (2).

Lemma 5.5. \{l \in L \mid \langle l, L \rangle \subseteq \pi R\} = \pi L^*.

Proof. By Lemma 5.4(1), $\pi L^* \subseteq L$. By definition of L^*, $\pi L^* \subseteq \{l \in L \mid \langle l, L \rangle \subseteq \pi R\}$. Thus it suffices to show that if $l \in L$ and $\langle l, L \rangle \subseteq \pi R$, then $l \in \pi L^*$. This is clear, since $\langle 1/\pi l, L \rangle \subseteq R$, so that by the definition of L^*, we have $1/\pi l \in L^*$.

6. Indicators and Brauer characters

In this section we combine our work in the previous sections to prove the analog of a theorem of Thompson.

Theorem 6.1. Thompson [Th] Let k be an algebraically closed field of odd characteristic, let G be a finite group, and let W be an irreducible kG-module. If W has non-zero Frobenius-Schur indicator, then W is a composition factor (of odd multiplicity) in the reduction mod p of an irreducible kG-module with the same indicator as W.

By reduction mod p, we mean to use the p-modular system (k, R, k) as described in Example 2.12, and then the induced decomposition map as in (4.11).

We first prove the analog of [Th, Lemma 3.3]. Recall the notation in Section 4:

V_L is a fixed irreducible H_L-module which is self-dual and thus $V = V_L \otimes_L k$ is an irreducible self-dual H_k-module, with character χ. V has a non-degenerate H_k-invariant bilinear form $\langle \cdot, \cdot \rangle$ with values in k, which is symmetric or skew-symmetric by Theorem 2.10.

As in Section 5, \mathcal{L} is the family of RB-sublattices of V and \mathcal{L}_I is the subset of integral lattices. Let L denote a fixed maximal element of \mathcal{L}_I with dual lattice L^*. Consider the following H_k-modules: let $X = L^*/\pi L^*, Y = L/\pi L^*, Z = L^*/L$. Note that Y is a submodule of X. Then there is an exact sequence of H_k-modules

$$0 \to Y \to X \to Z \to 0.$$
Proposition 6.2. Let V, L, X, Y, and Z be as above. Suppose that P is an irreducible H_k-module with Brauer character $\hat{\phi}$, such that

1. $\hat{\phi}^* = \hat{\phi}$;
2. $d(\hat{\chi}|_{B_P}, \hat{\phi})$ is odd.

Let Y', Z' be the Witt kernels of Y, Z respectively. Then the multiplicity of P in $Y' \oplus Z'$ is odd. Consequently P has the same type as V.

Proof. We let $M = L^*$; then $X = L^*/\pi L^* = M/pM$. By Proposition 4.9, the restriction $\chi|_{RB_P}$ is the Brauer character of the H_k-module $M := M/pM$.

By hypothesis, the multiplicity of $\hat{\phi}$ in $\hat{\chi}|_{B_P}$ is odd, and thus using the decomposition map, the multiplicity of P in $X = M$ is odd. Thus the multiplicity of P in $Y \oplus Z$ is odd. Since $\hat{\phi} \circ S = \hat{\phi}$, it follows from the definition of Brauer characters that also $\hat{\psi} \circ S = \hat{\psi}$ on P, and so $P \cong P^*$ as H_k-modules.

As in Section 5, let Y_1 be an H_k-submodule of Y which is maximal subject to $\langle Y_1, Y_1 \rangle_Y = 0$. Then the multiplicity of P in Y_1 equals the multiplicity of P in Y_1^\perp (since $Y_1^* \cong Y_1^\perp$ and $P^* = P$), and so the parity of the multiplicity of P in Y equals the parity of the multiplicity of P in the Witt kernel $Y' = Y_1^\perp/Y_1$.

The same argument applies to Z, and thus the multiplicity of P in $Y' \oplus Z'$ is odd. For the second part, by Section 5 we know that Y'' is completely reducible, and thus if P appears in Y'', the non-degenerate bilinear form on Y'' restricts to a non-degenerate form on P. By uniqueness, this form must agree with the given form on P, and thus P and Y'' have the same type.

Similarly, if P appears in Z', then P and V have the same type. But since P appears an odd number of times in $Y' \oplus Z'$, it must appear in either Y' or Z'.

Theorem 6.3. Let \hat{P} be a self-dual simple H_k-module, and let $\hat{\phi}$ be its Brauer character. Then there is an irreducible \mathbb{K}-character $\hat{\chi}$ of $H_{\mathbb{K}}$ such that

1. $\hat{\chi}^* = \hat{\chi}$, and
2. $d(\hat{\chi}|_{B_{\mathbb{K}}}, \hat{\phi})$ is odd.

Moreover if $\hat{\chi}$ is any irreducible \mathbb{K}-character of $H_{\mathbb{K}}$ satisfying (1) and (2), then $\nu(\hat{\chi}) = \nu(\hat{P})$.

To prove the theorem, it will suffice to show that $\hat{\chi}$ exists, since the equality $\nu(\hat{\chi}) = \nu(\hat{P})$ follows from Proposition 6.2.

We follow the outline of Thompson’s argument, although we must look at the RF_x-blocks separately. We know that for some $x = x_q$, \hat{P} is induced from a simple kF_x-module P. Let B_x be the block of RF_x containing the Brauer character ϕ of P, let $\{\chi_1, \ldots, \chi_m\}$ be all of the irreducible \mathbb{K}-characters in B_x, and let $\{\phi_1, \ldots, \phi_n\}$ be all of the irreducible Brauer characters in B_x.

Let D_x be the decomposition matrix of the χ_i with respect to the ϕ_j, and $C_x = D_x^tD_x$ the Cartan matrix. From Brauer’s theorem 3.6, $Det(C_x)$ is a power of p and so is odd since p is odd.

Lifting this set-up to $H_{\mathbb{K}}$, \hat{B}_x is the block of RB containing the Brauer character $\hat{\phi}$ of \hat{P}, $\{\hat{\chi}_1, \ldots, \hat{\chi}_m\}$ are all the irreducible \mathbb{K}-characters in \hat{B}_x, and $\{\hat{\phi}_1, \ldots, \hat{\phi}_n\}$ are all of the irreducible Brauer characters in \hat{B}_x.
Choose notation so that \(n = 2n_1 + n_2 \), where \(\{ \hat{\phi}_1, \hat{\phi}_2 \}, \{ \hat{\phi}_3, \hat{\phi}_4 \}, \ldots, \{ \hat{\phi}_{2n_1-1}, \hat{\phi}_{2n_1} \} \), are pairs of non self-dual characters, that is, \((\hat{\phi}_{2i-1})^* = \hat{\phi}_{2i} \), and \(\hat{\phi}_{2n_1+1}, \ldots, \hat{\phi}_n \) are self-dual. By hypothesis, \(n_2 \neq 0 \) since \(\hat{\phi} \) is one of the \(\hat{\phi}_i \).

Write \(C_x \) in block form as \(C_x = \begin{bmatrix} C_0 & C_2 \\ C_2^t & C_1 \end{bmatrix} \), where \(C_0 \) is \(2n_1 \times 2n_1 \) and \(C_1 \) is \(n_2 \times n_2 \).

The Theorem will now follow from the next two lemmas:

Lemma 6.4. \(\text{Det}(C_1) \) is odd.

Proof. For \(i = 1, 2, \ldots, n \), let \(P_i \) be the projective indecomposable \(kF \)-module whose socle has Brauer character \(\phi_i \), and let \(\Phi_i \) be the Brauer character of \(P_i \). Then \(c_{ij} = (\Phi_i, \Phi_j) \).

Let \(\sigma = (1, 2)(3, 4) \cdots (2n_1 - 1, 2n_1) \in S_n^* \); also let \(\sigma \) denote the corresponding permutation matrix. Let \(\tilde{S}_n \) be the set of all permutations in \(S_n \) which do not fix \(\{ 2n_1 + 1, \ldots, n \} \). Since \(\tilde{S}_n \) is the complement in \(S_n \) of the centralizer of \(\sigma \), it follows that \(\sigma^{-1} \tilde{S}_n \sigma = \tilde{S}_n \), and \(\sigma \) has no fixed points on \(\tilde{S}_n \).

Looking at the matrix \(C_x \), it follows that \(\sigma^{-1}C_x \sigma = C_x \) since \((\hat{\phi}_i)^* = \hat{\phi}_{i+1} \) for \(i = 1, 3, \ldots, 2n_1 - 1 \) and \((\hat{\phi}_i)^* = \hat{\phi}_i \) for \(i = 2n_1 + 1, \ldots, n \). Then

\[
\text{Det}(C_x) = \text{Det}(C_0)\text{Det}(C_1) + \sum_{\tau \in \tilde{S}_n} \text{sgn}(\tau)c_{1\tau(1)}c_{2\tau(2)} \cdots c_{n\tau(n)}.
\]

Moreover \(c_{ij} = c_{\sigma(i)\sigma(j)} \), again since \(\sigma^{-1}C_x \sigma = C_x \). Choose \(\tau \in \tilde{S}_n \) and set \(\tau' = \sigma \tau \sigma \). Then \(\tau' \neq \tau \), and it follows that

\[
\prod_{i=1}^{n} c_{\tau(i)} = \prod_{i=1}^{n} c_{\tau'(i)}.
\]

Thus \(\text{Det}(C_x) \equiv \text{Det}(C_0)\text{Det}(C_1) \pmod{2} \). This proves the Lemma. \(\square \)

Lemma 6.5. For each \(j = 2n_1 + 1, \ldots, n \), there exists \(i \in \{ 1, 2, \ldots, m \} \) such that \(\hat{\chi}_i^* = \hat{\phi}_i \) and the decomposition number \(d_{ij} = d(\hat{\chi}_i|_{B_j}, \hat{\phi}_j) \) is odd.

Proof. Let \(m = 2m_1 + m_2 \), where the notation is chosen so that \(\{ \hat{\chi}_1, \hat{\chi}_2 \}, \{ \hat{\chi}_3, \hat{\chi}_4 \}, \ldots, \{ \hat{\chi}_{2m_1-1}, \hat{\chi}_{2m_1} \} \), are pairs of non self-dual characters, that is, \((\hat{\chi}_{2i-1})^* = \hat{\chi}_{2i} \), and \(\hat{\chi}_{2m_1+1}, \ldots, \hat{\chi}_m \) are self-dual.

Suppose \(d_{ij} \equiv 0 \pmod{2} \), for all \(i = 2m_1+1, \ldots, m \). Then for each \(k \in \{ 1, 2, \ldots, n \} \), we have

\[
c_{jk} = \sum_{i=1}^{m} d_{ij}d_{ik} \equiv \sum_{i=1}^{2m_1} d_{ij}d_{ik}.
\]

On the other hand, \(\phi_j^* = \phi_j \) and if \(k \in \{ 2n_1 + 1, \ldots, n \} \) then \(\phi_k^* = \phi_k \) and so

\[
d_{ij} = d_{i+1,k}, \quad d_{ik} = d_{i+1,k}, \quad i = 1, 3, \ldots, 2m_1 - 1,
\]

hence \(c_{jk} \equiv 0 \pmod{2} \), for all such \(k \). This means that some row of \(C_1 \) consists of even entries. This violates the previous lemma. \(\square \)
As in [GM, Theorem 4.4], we have the following consequence:

Corollary 6.6. Consider the bismash products as above.

1. If all irreducible H_C-modules have indicator +1, the same is true for all irreducible H_k-modules.
2. If all irreducible H_C-modules have indicator 0 or 1, the same is true for all irreducible H_k-modules.
3. If all irreducible H_C-modules are self dual, the same is true for all irreducible H_k-modules.

Proof. (3) This follows by Lemma 4.8.

Now consider (2). By Theorem 6.3 there are no irreducible kG-modules V with $\nu(V) = -1$. So (2) follows immediately.

Now (1) follows by (2) and (3).

□

7. Applications to the symmetric group

In this section we apply the results of Section 6 to bismash products constructed from some specific groups.

Let S_n be the symmetric group of degree n, consider $S_{n-1} \subset S_n$ by letting any $\sigma \in S_{n-1}$ fix n, and let $C_n = \langle z \rangle$, the cyclic subgroup of S_n generated by the n-cycle $z = (1, 2, \ldots, n)$. Then $S_n = S_{n-1}C_n = C_nS_{n-1}$ shows that $Q = S_n$ is factorizable. Thus we may construct the bismash product $H_n, E := E C_n \# E S_{n-1}$. It was shown in [JM] that if E is algebraically closed of characteristic 0, then H_n is totally orthogonal; that is, every irreducible module has indicator +1.

Corollary 7.1. Let k be algebraically closed of characteristic $p > 0$ and let $H_{n,k} := kC_n \# kS_{n-1}$. Then $H_{n,k}$ is totally orthogonal.

Proof. Apply Corollary 6.6 to the characteristic 0 result of [JM] mentioned above. □

Remark 7.2. In [GM] it is proved that $D(G)$ is totally orthogonal for any finite real reflection group G over any algebraically closed field. Corollary 6.6 shows that this result in characteristic $p > 0$ follows from the case of characteristic 0, which is somewhat easier to prove. When $G = S_n$, the characteristic 0 case was shown in [KMM].

We close with a question.

Question 7.3. It would be interesting to know if our results could be extended to bicrossed products. However to extend our proof one would need a theory of Brauer characters for twisted group algebras (that is, for projective representations) which includes a version of Brauer’s theorem on the Cartan matrix.

Acknowledgement: The authors would like to thank I. M. Isaacs, S. Witherspoon, and especially R. M. Guralnick, for helpful comments.
References

[CR] C. Curtis and I. Reiner, Methods of Representation Theory Vol I, Wiley-Interscience, New York, 1981.

[DPR] R. Dijkgraaf, V. Pasquier, P. Roche, QuasiHopf algebras, group cohomology and orbifold models, Nucl. Phys. B Proc. Suppl. 18B (1990), 60 - 72.

[EG] P. Etingof and S. Gelaki, On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Internat. Math. Res. Notices 16 (1998), 851864.

[GM] R. Guralnick and S. Montgomery, Frobenius-Schur Indicators for subgroups and the Drinfel’d double of Weyl groups, AMS Transactions 361 (2009), 3611–3632.

[I] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1976.

[JL] G. James and M. Liebeck, Representations and characters of groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.

[JM] A. Jedwab and S. Montgomery, Representations of some Hopf algebras associated to the symmetric group Sn, Algebras and Representation Theory 12 (2009), 1-17.

[Ka] G. I. Kac, Group extensions which are ring groups (Russian), Mat. Sbornik N. S. 76 (118), 473-496 (1978). English translation in Mathematics of the USSR-Sbornik, 451-474 (1958)

[KMM] Y. Kashina, G. Mason and S. Montgomery, Computing the Frobenius-Schur indicator for abelian extensions of Hopf algebras, J. Algebra 251 (2002), 888–913.

[KSZ1] Y. Kashina, Y. Sommerhäuser, and Y. Zhu, Self-dual modules of semisimple Hopf algebras, J. Algebra 257 (2002), 88–96.

[LM] V. Linchenko and S. Montgomery, A Frobenius-Schur theorem for Hopf algebras, Algebras and Representation Theory, 3 (2000), 347–355.

[M] G. Mason, The quantum double of a finite group and its role in conformal field theory, Groups ’93 Galway/St. Andrews, Vol. 2, 405–417, London Math. Soc. Lecture Note Ser., 212, Cambridge Univ. Press, Cambridge, 1995.

[Ma1] A. Masuoka, Calculations of some groups of Hopf algebra extensions, J. Algebra 191 (1997), 568–588.

[Ma2] A. Masuoka, Extensions of Hopf algebras, Trabajos de Matemática 41/99, FaMAF, Universidad Nacional de Córdoba, Argentina, 1999.

[Ma3] A. Masuoka, Hopf algebra extensions and cohomology, New directions in Hopf algebras, Mathematical Sciences Research Institutes Publications, Vol. 3, Cambridge University Press, Cambridge, 2002, pp. 167–209.

[Mo] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Lectures, Vol. 82, AMS, Providence, RI, 1993.

[MoW] S. Montgomery and S. Witherspoon, Irreducible representations of crossed products, J. Pure Appl. Algebra 129 (1998), 315–326.

[N1] S. Natale, On group-theoretical Hopf algebras and exact factorizations of finite groups, J. Algebra 270 (2003), 199-211.

[N2] S. Natale, Frobenius-Schur indicators for a class of fusion categories, Pacific J. Math 221 (2005), 363–377.

[Nv] G. Navarro, Characters and Blocks of Finite Groups, LMS Lecture Note Series 250, Cambridge University Press, Cambridge, 1998.

[S] T. A. Springer, A construction of representations of Weyl groups, Inventiones Math 44 (1978), 279-293.

[Ta] M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. in Algebra 9 (1981), 84–882.

[Th] J. G. Thompson, Some finite groups which appear as GalL/K, where K ⊆ Q(μn). Group theory, Beijing 1984, 210230, Lecture Notes in Math., 1185, Springer, Berlin, 1986.

[W1] S. Witherspoon, The representation ring of the quantum double of a finite group, J. Algebra 179 (1996), 305–329.
[W2] S. Witherspoon, Products in Hochschild cohomology and Grothendieck rings of group crossed products, *Advances in Math* 185 (2004), 136–158.

University of Southern California, Los Angeles, CA 90089-1113
E-mail address: jedwab@usc.edu

University of Southern California, Los Angeles, CA 90089-1113
E-mail address: smontgom@math.usc.edu