Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years

Shuai Zhang1,2, Zhoufei Yu3, Yue Wang4, Xun Gong5,6,7, Ann Holbourn8, Fengming Chang9, Heng Liu1, Xuhua Cheng1 & Tiegang Li9,10

The role of the tropical Pacific Ocean and its linkages to the southern hemisphere during the last deglacial warming remain highly controversial. Here we explore the evolution of Pacific horizontal and vertical thermal gradients over the past 30 kyr by compiling 340 sea surface and 7 subsurface temperature records, as well as one new ocean heat content record. Our records reveal that La Niña-like conditions dominated during the deglaciation as a result of the more intense warming in the western Pacific warm pool. Both the subsurface temperature and ocean heat content in the warm pool rose earlier than the sea surface temperature, and in phase with South Pacific subsurface temperature and orbital precession, implying that heat exchange between the tropical upper water column and the extratropical Southern Ocean facilitated faster warming in the western Pacific. Our study underscores the key role of the thermal coupling between the warm pool and the Southern Ocean and its relevance for future global warming.

The last deglacial warming has been typically attributed to the retreat of icebergs over the northern high latitudes due to the increasing summer insolation1. However, it was also demonstrated that sea surface temperature (SST) changes in the southern hemisphere and Indo-Pacific warm pool (IPWP) preceded northern hemisphere and global ice volume variations2–5, and that the southern hemisphere itself could induce global warming directly through its response to orbital forcing2,4. Furthermore, the ocean-atmospheric teleconnections between the tropical Pacific and Southern Ocean have a profound impact on global climate6,7. However, the role of the IPWP, the world’s greatest heat engine8, and its thermal linkages with the southern high latitudes during the last deglaciation are still ambiguous.

The El Niño-Southern Oscillation (ENSO) affects the heat distribution in the equatorial Pacific and is a major force behind the teleconnections influencing global climate8. This inherently unstable ocean–atmospheric oscillation between positive (El Niño) and negative (La Niña) phases exhibits a periodicity of 2 to 8 years9. As a result, changes in the zonal equatorial temperature gradient across the Pacific have been used as a proxy for ENSO-like variations10,11. However, the ENSO evolution since the last glacial epoch is controversial owing to divergent SST changes in the equatorial Pacific under...
heterogeneous hydrological conditions. The last glacial maximum (LGM) SST cooling in the IPWP has a range of 2–5 °C based on geochemical proxies\cite{22,23,24}, while cooling in the eastern equatorial Pacific (EEP) cold tongue varies between 0.3 and 3.5 °C\cite{14,15}. Some previous ENSO investigations included cores that were distant from the central western Pacific warm pool (WPWP)\cite{16,17}, or in areas close to shore that were impacted by coastal upwelling, fresh water runoff and coastal currents\cite{18,19}. Other ENSO investigations were based on the meridional SST gradient between the EEP cold tongue and the northeastern Pacific warm pool, which is under debate as an indication of ENSO or seasonality assessment\cite{20,21}. These discrepancies ultimately result in opposing assertions about the prevalence of La Niña-like\cite{10,13,16,17,19,20} or El Niño-like conditions\cite{8,10,11,12,13,14,15,16,17,18,19,20,21} in the last glacial period.

In this study, we integrated 340 published SST data sets (planktonic foraminiferal Mg/Ca and U\textsubscript{137} alkene index) spanning the last 30 kyr from the tropical and subtropical Pacific Ocean and eastern Indian Ocean (Fig. 1) to gain a comprehensive spatial and temporal overview of thermal variability: (1) We quantified the variations in the boundaries of the WPWP, the warmest region within the IPWP, by analyzing the temporal SST distribution in the WPWP. (2) We monitored ENSO-like transitions since the last glacial period by comparing SST anomaly (SSTA) stacks between the warm pool core area and the EEP. (3) We spatially elucidated the thermal linkage of the tropical Pacific to the Southern Ocean and their respective role during deglacial warming, by combining a new ocean heat content (OH C) record (based on Mg/Ca ratio of five planktonic foraminiferal species from core KX22-4 in the WPWP, Supplementary Material) and seven published subsurface temperature (subT) records in the Pacific (Fig. 1).

Results and discussion

ENSO-like variations of the IPWP thermal state since 30 ka

The ENSO-like variations depicted by the ΔSST between the WPWP and EEP since the last glacial period are shown in Fig. 2d. The glacial zonal ΔSST was considerably smaller (0.67 ± 0.24 °C) than the modern annual mean ΔSST (Fig. 2d), suggesting a more El Niño-like state during the last glacial. This is also supported by transient simulation (TRACE) results, which display 0.82 ± 0.27 °C less glacial cooling in the EEP than in the WPWP, in contrast to the early Holocene (5–10 ka) (Supplementary Fig. 2)\cite{22}. This asymmetric cooling may be linked to the inhibited upwelling of subsurface waters in the cold tongue region, ascribed to the deeper thermocline in the EEP and reduced Walker circulation\cite{22,23}. With a 2.41 ± 0.63 °C cooling during the glacial (Supplementary Table 1), the WPWP migrated slightly toward the equator\cite{21} (Fig. 3a, c) and its latitudinal extent was reduced by about 4° compared to the Holocene (Fig. 3d and Supplementary Figs. 3, 4). Meanwhile, its west boundary shrank markedly eastward to ~150°E (Fig. 3d and Supplementary Figs. 3, 4). A prevailing weaker and eastward tropical Pacific Walker circulation\cite{21} in the glacial consequently contributed to a reduced northward heat transfer through the weakened Kuroshio Current\cite{21} and the cooling of Indonesian seas by the weakened Indonesian Throughflow\cite{24}.

In contrast, the meridional extent of the WPWP in the early Holocene approximated from 19°N to 14°S (Fig. 3a, c), consistent with the present 28 °C isotherm (Fig. 1), and its west boundary in the early Holocene was at ~120°E (Fig. 3b, d). As evidenced by the precipitation records from lacustrine sediments\cite{25,26} and modeling studies\cite{27,28}, a gradually increased frequency of El Niño-like events occurred over the last Holocene (Fig. 2c, d). The attenuated Walker circulation caused a decline in tropical heat export from the IPWP via the Indonesian Throughflow to the Leeuwin Current offshore western Australia from the mid to late Holocene\cite{29}. Besides, this period was characterized by a reduction in thermocline nutrients and CO\textsubscript{2} leakage in the EEP\cite{30,31}. Because El Niño-like conditions during the Holocene were not as pronounced as during the last glacial, this relatively mild El Niño-like tendency would have also contributed to CO\textsubscript{2} release into the atmosphere.

During the deglaciation, more intense warming in the WPWP than in the EEP resulted in a larger zonal ΔSST contrast and a more La Niña-like state (Fig. 2d, e and Supplementary Fig. 5). Results of the WPWP spatial development from TRACE reveal that the WPWP first reached 28 °C at ~14 ka (Supplementary Fig. 6) during the Bølling-Allerød Warm interval\cite{32}, and then remained above 28 °C since ~12 ka (Supplementary Fig. 6) following the Younger Dryas cold event, in phase with the precession minimum (Fig. 2d). Meanwhile, the extent of the WPWP began to expand substantially at ~12 ka when La Niña-like conditions peaked, the WPWP OHC also reach highest values (Fig. 2b, d and Fig. 3d). This thermal expansion was in line with a record from the East China Sea which showed that warm water diatom species increased since 12 ka\cite{33}.

The more intense deglacial warming in the WPWP may be attributed to the presence of a barrier layer, a feature well-recognized in
ENSO activity36,39 favors the development of the barrier layer and contributed to the buildup of surface heat. To explore this further, we examined the Mg/Ca-SST and residual seawater δ18O (δ18Osw) data of Globigerinoides ruber and Trilobatus sacculifer from core KG22-4 in the east part of the warm pool (Supplementary Fig. 7). The SST contrast between these two species somewhat decreased in the deglaciation (1°C) but remained about 0.5°C, which means that T. sacculifer inhabits the mixed layer as G. ruber. While the δ18Osw contrast between them drastically rose due to increased δ18Osw of T. sacculifer, which implies that T. sacculifer resides in waters that are much saltier than G. ruber, probably within the barrier layer that contributed to the prevalence of La Niña-like conditions37,38,39.

Deglacial coupling between the IPWP and Southern Ocean

Both atmospheric and oceanic processes are involved in the teleconnections between the tropical Pacific and Southern Ocean44,45. Data reanalysis and modeling experiments show that the Southern Ocean heat uptake alters the meridional circulation and is accompanied by anomalous easterlies, resulting in a zonally asymmetric La Niña-like pattern of SST change through atmospheric processes42,46,47. In this study, we focus on the oceanic tunnel between the IPWP and the Southern Ocean. The Southern Hemisphere supplies up to 70% of the water masses in the equatorial undercurrent32 and serves as an external thermal source to discharge/recharge the tropical ocean35. According to observations and simulations, the shallow meridional overturning circulation/subtropical overturning cells connect the extratropical and tropical oceans. These processes include the subduction of subtropical water, equatorward geostrophic flow in the thermocline to the equatorial Pacific either through its interior or western boundary pathway, and upwelling at the equator46,48,49 (Fig. 4g). Subduction of South Pacific waters includes Subtropical Mode Water, Subantarctic Mode Water and Antarctic Intermediate Water31,52. Subantarctic Mode Water and Antarctic Intermediate Water formed in the Southern Ocean are transported northward into the adjacent subtropical gyres53.

Around 75% of the heat absorbed by the ocean over the historical period has come from the Southern Ocean, north of the Antarctic Circumpolar Current54,55, and heat is preferentially stored where surface waters are subducted to the north56. Modern heat gained by the Southern Ocean south of 30°S57 is carried through the subpolar-subtropical gyre toward the equator and plays an important role in ventilating the equatorial thermocline, on which ENSO variability heavily depends46,50,59,60. The overturning circulation causes the eastern edge of the warm pool to move westward during La Niña events. This alters the thermocline structure and surface stratification, which in turn causes the thick barrier layer to move back and forth along the equator and is thought to have an impact on ENSO evolution57. When more heat entered the ocean with increased insolation57 as shown by the raised planetary radiative imbalance in the late last glacial epoch (Fig. 2a), a weaker Atlantic Meridional Overturning Circulation in a colder climate period would cause greater heat to accumulate in the Southern Ocean by impeding heat transfer into the boreal high latitudes58. As the excessive heat in the southern hemisphere was transported equatorward into the interior of the ocean by subduction59, subT of the eastern part of the WPWP rose earlier than the SST at ~22 ka (Fig. 4d). This is consistent with a previous study, which showed that subT warming began about 4000 years before the deglacial pCO2 and SST rise in the IPWP51. An earlier increase in WPWP subT and a decrease in the vertical temperature gradient also occurred in the south Pacific (Fig. 4e, f), in contrast to the delayed subT warming and the increase in the vertical temperature gradient in the East China Sea and eastern Indian Ocean regions (Fig. 4a, b). This earlier increase probably supports a thermocline linkage between the WPWP and Southern Ocean during the deglaciation. Furthermore, the temperatures of the EEP cold tongue, which is fed by the equatorial undercurrent from the western Pacific, also rose earlier51,55 (Fig. 4c). Evidences from Δ°C also indicated a

现代观测和模型65,36。边界层形式的水面上升和在基底混合层的温度变化在WPWP由于其强烈的对流作用进一步影响了水温。它可以有效地限制冷暖流之间的水流动态和热对流之间的混合层，从而减少了向大气表面的空气流48,32-39。因此，边界层沿赤道太平洋与ENSO活动密切相连39。在早更新世期间，强烈的对流作用在南太平洋引起了冷舌温度梯度的下降。
Southern Ocean source for the waters in the EEP and even eastern North Pacific (23.5°N) via the equatorial undercurrent during the deglaciation. The results of TRACE showed that the upper water column of the WPWP absorbed heat from the south and lower waters, and released mainly to the north (Supplementary Fig. 8) in the deglacial warming, and the SST gradient between the equatorial and south Pacific reduced (Fig. 2d).

A continuous subduction of the extratropical warm anomaly to the WPWP thermocline is hypothesized to affect ENSO-like transitions since 360 ka, paced by orbital precession. The results of earlier modeling simulations have shown that orbital precession exerts a major impact on ENSO-like processes through the strength of ocean upwelling and the thermocline tilt to the surface (Fig. 2d). When the precessional parameter decreased in the deglaciation (Fig. 2d), the overturning circulation that mainly formed in winter by intense vertical mixing was warmed due to the rising insolation in austral winter (Fig. 2e), and this warmer signal was further transferred to the western Pacific. Preceding thermocline anomalies in the western and central deep tropical Pacific contribute to the recharge phase of ENSO, and modern observations also indicate that the change in the WPWP OHC is tightly related to ENSO activity. During the deglaciation, rise in WPWP subT, OHC, as well as ENSO-like variations were quite correlated with the decrease in the precession parameter (Fig. 2b, d and Fig. 4d).

We argue that the rapid warming in the subsurface layer and reduced vertical temperature gradient in the WPWP also favored the intense deglacial SST increase and a La Niña-like mode. The intense SST rise in the WPWP increased the meridional and zonal temperature gradients (Fig. 2g, h) and reinvigorated heat transport to the high latitudes. Ekman transport converged surface warm waters to the subtropics, lowering the SST between the WPWP and the East China Sea (Fig. 2f). The recharge of the equatorial warm pool supplied the Indonesian Throughflow and the Equatorial Undercurrent, thereby feeding the downstream surface waters of the cold tongue in the eastern Pacific. The enhanced Walker circulation, in turn, facilitated the buildup of warm water westward by intensifying the equatorial easterly winds. Under the La Niña-like state with more heat gathered in the WPWP, the Pacific thermocline tilted and the shoaling of thermocline in the EEP, currently the largest source of CO2, facilitated the outgassing of CO2 (Fig. 2e), further accelerating the global warming.

In this study, we compiled 340 SST and 7 subT published records from the Pacific and eastern Indian Ocean, as well as a new OHC record from the WPWP, to elucidate the thermal evolution of the IPWP region and its coupling the Southern Ocean during the last deglaciation. The zonal SST gradient in the tropical Pacific Ocean was reduced and El Niño-like conditions dominated in the last glacial, as the WPWP...
Fig. 4 | Hypothesized spatial heat transfer process in the Pacific during the last deglaciation. a–f Variations of sea surface temperature (SST), subsurface temperature (subT) and their vertical gradient since 30 ka along the path of the Kuroshio Current (KC) in the East China Sea (ECS)17,86, along the path of the Indonesian Throughflow (mirror the variation in the eastern Indian Ocean: EIO)63, in the eastern equatorial Pacific (EEP)64, in the east part of western Pacific warm pool (EWP), in the southwest Pacific (SWP)87–89 and south-central Pacific (SCP), respectively, as shown on the map. g The bold sea surface temperature, subsurface temperature and their temperature difference (ΔT) lines are polynomial fitting results for the raw data (gray), the P value of the polynomial fitting for ΔT is 0.0003 for East China Sea and <0.0001 for all the other regions. The inverted triangles indicate 14C-dated points. The black downward arrows mark the start of subsurface temperature warming. g TRACE modeled temperature anomaly in the deglaciation relative to glacial period (15 minus 20 ka). The red dashed arrows in the upper panel indicate surface heat transfer from the western Pacific warm pool. The sun marked warming in the south Pacific subduction area. Two vertical sections marked by dotted lines are shown in the lower panel, a hypothesized oceanic tunnel of heat transfer (red arrow) between the Southern Ocean and equatorial Pacific is sketched out.
contrasted towards the equator and the east. During the deglaciation, La Niña-like conditions prevailed as a result of the intense warming in the WPWP, which may have related to the development of the barrier layer within the mixed layer, favoring heat build up at the sea surface. Both the subT and OHC in the warm pool rose earlier than the SST, and in phase with South Pacific subTs and orbital precession, implying that heat exchange between the tropical upper water column and the extratropical Southern Ocean enhanced WPWP warming paced by the precession. The WPWP began to substantially expand when La Niña-like conditions peaked at ~12 ka, and the enhanced zonal and meridional thermal gradients further facilitated global warming. Our results underscore the pivotal role of the thermal coupling between the WPWP and the Southern Ocean during the last deglacial warming and its relevance for future global warming.

Methods

Compilation of regional SST and SSTA stacks

We integrated 340 published SST records spanning the last 30,000 years from 302 stations in the Pacific and eastern Indian Oceans to reconstruct temporal and spatial distribution and ENSO-like variability since the last glacial. The data set is comprised of 189 planktonic foraminiferal calcite Mg/Ca records on G. ruber and of 152 U^137 records (Fig. 1). Moreover, 7 published subT records based on Mg/Ca measurements of planktonic foraminiferal thermocline species and one new OHC record (Supplementary material) from core KX22-4 (Fig. 1) were incorporated to spatially investigate vertical thermal distribution and to explore the key process involved in global warming during deglaciation.

We directly applied the original SST data considering that the authors have supplied the optimal local SST estimations (Supplementary Data). All of the age models are either radiocarbon-dated or calibrated to the LR04 reference curve^{81}. In this study, we specifically focused on the contrast between two key time intervals, i.e., the early Holocene (5–10 ka) and last glacial period (17–29 ka). We considered the last glacial period rather than the LGM (19–23 ka) because the timing of the lowest glacial SST was not consistent in the published records, and the averaged SST for the LGM and last glacial did not differ significantly (0.10 °C, Supplementary Fig. 10). Additionally, in view of the fact that different approaches such as cleaning methods between laboratories, estimations of the dissolution effect would bring offsets to Mg/Ca-based SST reconstructions, we estimated SSTA relative to the mean value of the core top 1 kyr for each downcore SST data.

Cluster analysis was applied to classify the 169 sites in the western Pacific and eastern Indian Ocean areas into four regions (Fig. 1 and Supplementary Fig. 1): the South China Sea, eastern Indian Ocean, west and east part of the WPWP, which is beneficial to explore the spatial thermal transfer between regions. Cluster analysis was performed on SST data (Mg/Ca and U^137) covering both the early Holocene and last glacial periods using software Past 4.08 with Ward’s method^{82}. Longitude and latitude were taken as references for cluster analysis. Zonal and meridional heat transfer was evaluated by calculating SST differences between regions.

We used STATNARY 1.2 (https://www.marum.de/Prof-Dr-michael-schulz/Michael-Schulze-Software.html) to calculate SST/SSTA stacks for all sites within each region with a sliding rectangular window of 1 kyr width (Fig. 2e, and Supplementary Figs. 5c, 12 and 13a, c), which could estimate the time-dependent mean of an unevenly spaced time series directly without the requirement of interpolation. We calculated the SST difference between regions after the data was linearly interpolated to 1 kyr time interval (Fig. 2d, g–i, Supplementary Figs. 5a, b, 7a, 9, and 11b).

Investigation of WPWP evolution and ENSO mode

We used temporal variations in SST distribution based on 160 SST records from a meridional region (35°N–35°S, 110°E–130°E) and 95 SST records from a zonal region (10°N–10°S, 90°E–180°E) to estimate meridional/zonal shifts of the WPWP during the last 30 kyr. To investigate variations of the WPWP boundaries, data from all sites were linearly interpolated to 1 kyr time interval, orthogonal polynomial fitting (OPF) was applied to data of every 1 kyr SST distribution. We defined the range of the WPWP by the warmest 1 °C based on Mg/Ca-SST trend line through time (Fig. 3), because a uniform criterion is invalid for both glacial and interglacial periods. Then, the positions of the WPWP boundaries and SST maximum could be recognized.

We used SST/SSTA data from sites within the central WPWP (117°E–161°E, 5°S–5°N, modern 29 °C isotherm) to explore the ENSO evolution. The SST variability within the 29 °C isotherm is consistent with that within the 28 °C isotherm but with an offset of 0.45 °C (Supplementary Fig. 11). Then we compared these data with published SST/SSTA data from the cold tongue of EEP (Fig. 1 and Supplementary Table I), which are commonly used to characterize ENSO variations^{83–85}, as the large SST anomalies in the cold tongue of EEP are correlated strongly with the Niño-3 index^{86}.

Data availability

The data generated in this study have also been deposited in the Pangaea repository (https://doi.pangaea.de/10.1594/PANGAEA.947087). Source data are provided with this paper.

Code availability

Codes for TRACE are publicly available at https://www.earthsystemgrid.org/project/trace.html.

References

1. Milankovitch, M. Canon of insolation and the ice-age problem. R. Serb. Acad. Spec. Publ. 133, 1–633 (1941).
2. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci. 1, 787–792 (2008).
3. Bauska, T. K., Marcott, S. A. & Brook, E. J. Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14, 91–96 (2021).
4. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).
5. Visser, K., Thuell, R. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152–155 (2003).
6. Denton, G. H. et al. The Zealandia switch: Ice age climate shifts viewed from southern hemisphere moraines. Quat. Sci. Rev. 257, 106771 (2021).
7. Canepa, M. & Clement, A. C. Mechanisms of Global Climate Change at Millennial Timescales (eds Clark, P. U., Webb, R. S., & Keigwin, L. D.) 373–383 (American Geophysical Union, 1999).
8. Canepa, M. A. Climate change: A role for the tropical Pacific. Science 282, 59–61 (1998).
9. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).
10. Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719–1724 (2000).
11. Sadekov, A. Y. et al. Palaeoclimatic reconstructions reveal a strong link between El Niño-Southern Oscillation and tropical Pacific mean state. Nat. Commun. 4, 2692 (2013).
12. Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern oscillation during the Late Glacial Maximum. Science 347, 255–258 (2015).
13. Bolliet, T. et al. Mindanao dome variability over the last 160 kyr: Episodic glacial cooling of the west Pacific warm pool. Paleocenography 26, PA1208 (2011).
14. Koutavas, A. & Lynch-Stieglitz, J. Glacial-interglacial dynamics of the eastern equatorial Pacific cold tongue–Intertropical Convergence Zone system reconstructed from oxygen isotope records. Paleoceanography 18, 1089 (2003).

15. Lea, D. W. et al. Paleoclimate history of Galápagos surface waters over the last 135,000 yr. Quat. Sci. Rev. 25, 1152–1167 (2006).

16. Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M. Jr. & Sachs, J. P. El Niño–like pattern in ice age tropical Pacific sea surface temperature. Science 297, 226–230 (2002).

17. Jia, Q. et al. Thermocline dynamics in the northwestern tropical Pacific over the past 700 kyr. Quat. Sci. Rev. 244, 106465 (2020).

18. Saraswat, R. Global equatorial sea-surface temperatures over the last 150,000 years: An update from foraminiferal elemental analysis. Curr. Sci. 100, 1201–1206 (2011).

19. Zhang, P. et al. Variability in Indonesian Throughflow upper hydrology in response to precession-induced tropical climate processes over the past 120 kyr. J. Geophys. Res.: Oceans 126, e2020JC017014 (2021).

20. Rincón-Martínez, D. et al. More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the intertropical convergence zone in the eastern tropical Pacific. Paleoceanography 25, PA2210 (2010).

21. Koutavas, A. & Joanides, S. El Niño–Southern oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).

22. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

23. Ford, H. L., McChesney, C. L., Hertzberg, J. E. & McManus, J. F. A deep eastern equatorial Pacific thermocline during the Last Glacial Maximum. Geophys. Res. Lett. 45, 11806–11816 (2018).

24. Trend-Staid, M. & Prell, W. L. Sea surface temperature at the Last Glacial Maximum: A reconstruction using the modern analog technique. Paleoceanography 17, 1065 (2002).

25. Tian, Z. & Jiang, D. Weakening and eastward shift of the tropical Pacific Walker circulation during the Last Glacial Maximum. Boreas 49, 200–210 (2020).

26. Zou, J. et al. Sedimentary mercury and antimony revealed oraital-scale dynamics of the Kuroshio current. Quat. Sci. Rev. 265, 107051 (2021).

27. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

28. Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannon, M. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27, 1166–1180 (2008).

29. Clement, A. C., Seager, R. & Cane, M. A. Suppression of El Niño during the Mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15, 731–737 (2000).

30. Tian, Z., Li, T. & Jiang, D. Strengthening and westward shift of the tropical Pacific Walker circulation during the Mid-Holocene: PMIP simulation results. J. Clim. 31, 2283–2298 (2018).

31. Perner, K. et al. Heat export from the tropics drives mid to late Holocene paleoceanographic changes offshore southern Australia. Quat. Sci. Rev. 180, 96–110 (2018).

32. Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

33. Loubre, P., Richaud, M. & Mireles, S. Variability in tropical thermocline nutrient chemistry on the glacial/interglacial timescale. Deep Sea Res. Part II: Topical Stud. Oceanogr. 54, 747–761 (2007).

34. Shirotta, K. et al. Changes in surface water masses in the northern East China Sea since the Last Glacial Maximum based on diatom assemblages. Prog. Earth Planet. Sci. 8, 66 (2021).

35. Gao, S., Qu, T. & Nie, X. Mixed layer salinity budget in the tropical Pacific ocean estimated by a global GCM. J. Geophys. Res.: Oceans 119, 8255–8270 (2014).

36. Qu, T., Song, Y. T. & Maes, C. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. J. Geophys. Res.: Oceans 119, 15–29 (2014).

37. Maes, C., Picaut, J. & Belamari, S. Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys. Res. Lett. 29, 2206 (2002).

38. Maes, C., Picaut, J. & Belamari, S. Importance of the salinity barrier layer for the buildup of El Niño. J. Clim. 18, 104–118 (2005).

39. Vialard, J. & Delecluse, P. An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr. 28, 1071–1088 (1998).

40. Zheng, F., Zhang, R.-H. & Zhu, J. Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: a diagnostic analysis from Argo. Adv. Atmos. Sci. 31, 532–542 (2014).

41. Ballabrera-Poy, J., Murtugudde, R. & Busalacchi, A. J. On the potential impact of sea surface salinity observations on ENSO predictions. J. Geophys. Res.: Oceans 107, SRF 8-1–SRF 8-11 (2002).

42. Hwang, Y.-T., Xie, S.-P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

43. Lukas, R. & Lindstrom, E. The mixed layer of the western equatorial Pacific ocean. J. Geophys. Res.: Oceans 96, 3343–3357 (1991).

44. Su, J. et al. Role of the atmospheric and oceanic circulation in the tropical Pacific SST changes. J. Clim. 21, 2019–2034 (2008).

45. Kang, S. M. et al. Walker circulation response to extratropical radiative forcing. Sci. Adv. 6, eabd3021 (2020).

46. Shu, J.-R., Talley, L. D., Xie, S.-P., Peng, Q. & Liu, W. Ocean warming and accelerating Southern Ocean zonal flow. Nat. Clim. Change 11, 1090–1097 (2021).
58. Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

59. Ganachaud, A. et al. The southwest Pacific ocean circulation and climate experiment (SPICE). J. Geophys. Res.: Oceans 119, 7660–7686 (2014).

60. Zhang, R.-H., Rothstein, L. M. & Busalacchi, A. J. Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391, 879–883 (1998).

61. Gebbie, G. Combining modern and paleoceanographic perspectives on ocean heat uptake. Annu. Rev. Mar. Sci. 13, 255–281 (2021).

62. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39 (2018).

63. Dang, H. et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene. Sci. Adv. 6, eabc0402 (2020).

64. Pena, L. D., Cacho, I., Ferretti, P. & Hall, M. A. El Niño–Southern Oscillation–like variability during glacial terminations and interlateral teleconnections. Paleocenography 23, PA3101 (2008).

65. Fiedler, P. C. & Talley, L. D. Hydrography of the eastern tropical Pacific: A review. Prog. Oceanogr. 69, 143–180 (2006).

66. Basak, C., Martinville, E. E., Horikawa, K. & Marchitto, T. M. Southern Ocean source of “C-depleted carbon in the North Pacific Ocean during the last deglaciation. Nat. Geosci. 3, 770–773 (2010).

67. Umling, N. E. & Thunell, R. C. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific. Nat. Commun. 8, 14203 (2017).

68. de la Fuente, M., Skinner, L., Calvo, E., Pelejero, C. & Cacho, I. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nat. Commun. 6, 7420 (2015).

69. Zhang, S. et al. Precession cycles of the El Niño/Southern Oscillation–like system controlled by Pacific upper-ocean stratification. Commun. Earth Environ. 2, 239 (2021).

70. Lu, Z., Liu, Z., Chen, G. & Guan, J. Prominent precession band variance in ENSO intensity over the last 300,000 years. Geophys. Res. Lett. 46, 9786–9795 (2019).

71. Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).

72. Tsubouchi, T., Suga, T. & Hanawa, K. Three types of south Pacific subtropical mode waters: Their relation to the large-scale circulation of the south Pacific subtropical gyre and their temporal variability. J. Phys. Oceanogr. 37, 2478–2490 (2007).

73. Li, X., Hu, Z.-Z., Huang, B. & Jin, F.-F. Oceanic meridional transports and their roles in warm water volume variability and ENSO in the tropical Pacific. Clim. Dyn. 59, 245–261 (2022).

74. Cheng, L. et al. Evolution of ocean heat content related to ENSO. J. Clim. 32, 3529–3556 (2019).

75. Yang, H., Lu, J., Wang, Q., Shi, X. & Lohmann, G. Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Clim. Dyn. 58, 3513–3526 (2022).

76. Fine, R. A., Lucás, R., Bingham, F. M., Warner, M. J. & Gammon, R. H. The western equatorial Pacific: A water mass crossroads. J. Geophys. Res.: Oceans 99, 25063–25080 (1994).

77. Clement, A. C., Seager, R. & Murtugudde, R. Why are there tropical warm pools? J. Clim. 18, 5294–5311 (2005).

78. Feely, R. A., Wanninkhof, R., Takahashi, T. & Tans, P. Influence of El Niño on the equatorial Pacific carbon to atmospheric CO2 accumulation. Nature 398, 597–601 (1999).

79. Takahashi, T. et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. Part II: Topical Stud. Oceanogr. 49, 1601–1622 (2002).

80. Bova, S. C. et al. Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. Paleocenography 30, 1407–1424 (2015).

81. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic 3δ18O records. Paleocenography 20, PA1003 (2005).

82. Hammer, Ø., Harper, D. & Ryan, P. PAST: paleontological statistics software package for education and data analysis. Paleaeontol. electron. 4, 1–9 (2001).

83. Schlitzer, R. Ocean Data View 4, http://odv.awi.de (2015).

84. Locarnini, R. et al. World ocean atlas 2018, volume 1: Temperature. NOAA Atlas NESDIS 81, 52 (2018).

85. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

86. Ujié, Y., Asahi, H., Sagawa, T. & Bassinot, F. Evolution of the north Pacific subtropical gyre during the past 190 kyr through the interaction of the Kuroshio current with the surface and intermediate waters. Paleocenography 31, 1498–1513 (2016).

87. Regoli, F. et al. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleocenography 30, 439–455 (2015).

88. Schmitt, A. et al. Single foraminifera Mg/Ca analyses of past glacial-interglacial temperatures derived from G. ruber sensu stricto and sensu lato morphotypes. Chem. Geol. 510, 510–520 (2019).

89. Tapia, R., Nürnberg, D., Ronge, T. & Tiedemann, R. Disparities in glacial advection of Southern Ocean intermediate water to the south Pacific gyre. Earth Planet. Sci. Lett. 410, 152–164 (2015).

Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant Nos. 41830539-T.L., 41906058-Z.Y., 42076051-F.C., 41976047-Y.W., and 41876002-X.C.) and Special funds of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. 2022QNLMS02023-1-T.L.). The authors also gratefully acknowledge the valuable advice from J.Z. and X.W., and appreciate the laboratory assistance of Z.X., H.W., Y.D., F.Q., J.Z., as well as the crews and shipboard scientific parties of cruise KX08-973 and cruise NORC2019-09.

Author contributions
S.Z., Z.Y., and T.L. designed the study and wrote the manuscript. S.Z. and H.L. contributed to the data analysis and interpretation. Y.W., X.G., A.H., X.C., F.C., and T.L. provided critical comments and revisions.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33206-y.

Correspondence and requests for materials should be addressed to Zhoufei Yu or Tiegang Li.

Peer review information Nature Communications thanks Natalie Umling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
