WFS1 common and low frequency variants and T2D

Detailed investigation of the role of common and low frequency WFS1 variants in type 2 diabetes risk

Running title: WFS1 common and low frequency variants and T2D

Katherine A. Fawcett,1 Eleanor Wheeler,1 Andrew P. Morris2, Sally L. Ricketts,3 Göran Hallmans,4 Olov Rolandsson,5 Allan Daly,1 Jon Wasson,6 Alan Permutt,7 Andrew T. Hattersley,8 Benjamin Glaser,9 Paul W. Franks,10,11 Mark I. McCarthy,12-14 Nicholas J. Wareham,15 Manjinder S. Sandhu,3,15 Inês Barroso1

From the 1Metabolic Disease Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK; the 2Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, the 3Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK, the 4Department of Public Health & Clinical Medicine, Section for Nutritional Research, Umeå University Hospital, Sweden; the 5Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University Hospital, Sweden; the 6Washington University School of Medicine, Department of Medicine, Metabolism, Diabetes and Lipid Research Division, Campus Box 8127, 660 South Euclid Avenue, Saint Louis, MO 63110-1010, USA; the 7Washington University School of Medicine, Department of Internal Medicine, Metabolism, Diabetes and Lipid Research Division, Campus Box 8127, 660 South Euclid Avenue, Saint Louis, MO 63110-1010, USA; the 8Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter EX1 2LU, UK; the 9Endocrine and Metabolism Service, The Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; the 10Genetic Epidemiology & Clinical Research Group, Department of Public Health & Clinical Medicine, Section for Medicine, Umeå University Hospital, Sweden; the 11Department of Public Health & Clinical Medicine, Section for Nutritional Research, Umeå University Hospital, Sweden; the 12OCDEM, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ; the 13Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ; and the 14Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN; the 15MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, UK.

Corresponding author:
Inês Barroso,
Email: ib1@sanger.ac.uk

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org

Submitted 22 June 2009 and accepted 10 December 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Objective: *WFS1* (Wolfram Syndrome 1) SNPs are associated with risk of type 2 diabetes (T2D). Here, we aimed to refine this association, and investigate the role of low frequency *WFS1* variants in T2D risk.

Research design and methods: For fine-mapping, we sequenced *WFS1* exons, splice junctions and conserved non-coding sequences in 24 T2D cases and 68 controls, selected tagging SNPs, and genotyped these in 959 UK T2D cases and 1386 controls. The same genomic regions were sequenced in 1235 T2D cases and 1668 controls to compare the frequency of rarer variants between cases and controls.

Results: Of 31 tagging SNPs, the strongest associated was the previously untested 3’ UTR rs1046320 (*P*=0.008); OR=0.84, *P*=6.59 x 10^{-7} on further replication in 3753 cases and 4198 controls. High correlation between rs1046320 and the original strongest SNP (rs10010131) (*r^2*=0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (MAF<0.01) non-synonymous variants between T2D cases and controls (*P*=0.79). Two intermediate frequency (MAF 0.01-0.05) non-synonymous changes also showed no statistical association with T2D.

Conclusion: We identified six highly correlated SNPs that show strong and comparable associations with risk of T2D association but further refinement of these associations will require large sample sizes (>100,000), or studies in ethnically diverse populations. Low frequency variants in *WFS1* are unlikely to have a large impact on T2D risk in white UK populations, highlighting the complexities of undertaking association studies with low frequency variants identified by re-sequencing.
The post-genome-wide association study (GWAS) era presents several challenges. These include fine-mapping association signals to genes and/or variants within the genomic regions of interest, assessing the impact of low frequency variants (not tagged in previous association studies) on diseases/traits, and understanding the functional mechanisms behind genetic associations.

WFS1 encodes wolframin (*WFS1*) encodes wolframin (1; 2), an endoplasmic reticulum (ER) membrane protein with a role in ER calcium homeostasis (3-5) and in the ER stress response (6; 7). Loss-of-function mutations in *WFS1* cause Wolfram syndrome (MIM 222300), which includes young onset non-autoimmune insulin-dependent diabetes mellitus (8). Common SNPs at *WFS1* have recently been shown to be reproducibly associated with type 2 diabetes (T2D) risk in white European populations (9-11). However, the strongest associated SNP, rs10010131, is intronic and is not associated with *WFS1* expression in HapMap lymphoblastoid cell lines (12), suggesting that it is tagging a causal variant(s).

Given the impact of rare and common *WFS1* variants on Mendelian and common forms of diabetes respectively, *WFS1* is an excellent candidate gene in which to look for low frequency variants with intermediate effects on diabetes risk. Furthermore, anecdotal evidence suggests increased T2D susceptibility in obligate carriers of Wolfram Syndrome mutations (13).

We aimed to refine the association between *WFS1* common variants and T2D by sequencing exons, splice junctions and conserved intragenic and upstream non-coding regions in a subset of cases (N=24) and controls (N=68) from the Cambridgeshire case-control study. We used these data to selecting tagging SNPs to capture common (MAF>0.05) and non-synonymous variants, and genotyped these tagging SNPs in two UK case-control studies (total 959 cases and 1386 controls). Replication studies were conducted in four additional studies, two UK, one Swedish and one Ashkenazi (total 3753 cases and 4198 controls). We also aimed to test for the presence of independent T2D association signals from low frequency (MAF<0.05) putative functional *WFS1* variants by sequencing 1235 cases and 1668 controls from two UK case-control studies.

RESEARCH DESIGN AND METHODS

Study cohorts: Cambridgeshire (14) (552 T2D cases, 552 controls), EPIC-Norfolk(15) (417 cases, 834 controls), ADDITION/Ely (16; 17) (926 cases, 1497 controls), and Exeter (18-20) (601 cases, 610 controls) studies comprise white UK participants. The Ashkenazi study comprises 930 T2D cases and 461 controls of Ashkenazi Jewish origin (21). The Västerbotten study comprises predominantly northern Swedish whites (1296 T2D cases and 1,412 controls) (11). The Online Appendix describes the cohorts in detail.

PCR and sequencing: PCR was performed on genomic DNA from Cambridgeshire case-control participants, or whole-genome amplified DNA from ADDITION and Ely study participants. Fourteen primer pairs (sequences and cycling conditions available on request), designed using Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi), were required to amplify the eight *WFS1* exons, including splice junctions, UTR, and selected conserved regions. Coverage is shown in Online Appendix Figure 1 which is available at http://diabetes.diabetesjournals.org. PCR and bi-directional sequencing were performed using standard conditions and following manufacturers’ protocols (Online Appendix Methods). Sequencing reactions were run on ABI3730 capillary machines (Applied
Biosystems) and analysed using an automatic SNP caller, ExoTrace (Leonard, Wellcome Trust Sanger Institute, unpublished). The results of SNP calling were displayed and low frequency variants manually reviewed in a specific implementation of GAP4 (Staden Sequence Analysis Package software). All regions produced usable sequence for >90% of samples.

Tagging SNP selection: Details are provided in the Online Appendix Results and Online Appendix Figure 2. Linkage disequilibrium (LD) was calculated using Haploview v4.0 (http://www.broad.mit.edu/mpg/haploview), and pairwise tagging SNPs were selected by Tagger using $r^2 \geq 0.8$, force including non-synonymous variants.

Genotyping: Tagging SNPs were genotyped using the Sequenom iPLEX platform whereas rs1046320 and rs7691824 were genotyped using Taqman® MGB chemistry (Applied Biosystems, Foster City, CA) according to the manufacturers’ instructions (conditions and primers available on request).

Quality control: Variants were excluded if they departed from Hardy-Weinberg equilibrium (HWE) (P<0.001), had low call rates (N<85%) and/or discrepancy in call rate between cases and controls (P<0.001) (details provided in the Online Appendix).

Real-time PCR: The relative expression of rs1046320 alleles was assessed using total RNA from 10 HapMap lymphoblastoid cell lines (12 heterozygous for rs1046320 (6 CEU, 2 YRI, and 2 CHN) and a TaqMan® RNA-to-CT™ 2-Step Kit according to the manufacturer’s instructions (primers and probes available on request). Genomic DNA was used as a control.

Statistical analysis: Statistical analyses were conducted in StataSE 9. Logistic regression was used to assess the contribution of individual SNPs under a log additive model (1 df) to risk of T2D using study as a categorical covariate. Log likelihood ratio tests were used to assess whether associated SNPs independently contributed to risk of T2D by comparing the log likelihood of a nested model (2 df) containing an associated SNP and study, with that of the full model (3 df) also containing the test SNP. The difference in prevalence of T2D in carriers vs non-carriers of rare variants was analysed using Fisher’s exact. Power was calculated using the Power and Sample Size Program (22) and Quanto v1.1.1 (http://hydra.usc.edu/gxe). Fixed effects meta-analyses were performed using the metan command, combining summary estimates (log odds ratios and lower and upper confidence intervals for each study), weighted using the inverse-variance method. An EM algorithm was used to estimate haplotype frequencies and GENE BPM was used to cluster haplotypes by allelic make-up and risk of T2D to obtain a Bayes’ factor in favour of association (23).

RESULTS

WFS1 tagging SNPs are associated with T2D: Of 31 tagging SNPs, 24 passed quality control and captured 81% of the common (MAF>0.05) and/or non-synonymous WFS1 variants in the Cambridgeshire case-control samples and 98% of the common WFS1 region variants in HapMap CEU trios.

Eight SNPs were nominally associated with T2D risk ($P<0.05$) in a pooled analysis of Cambridgeshire and EPIC-Norfolk studies (Table 1). The linkage disequilibrium between these eight SNPs (Online Appendix Table 1) and the consistency of their effect size suggests that they are linked to similar extents with the real causal allele(s). However, we were unable to demonstrate that any of the associated SNPs were contributing to T2D risk independently of the other seven (Online Appendix Table 2).

Replication of the rs1046320 association: In our data, the strongest association with T2D risk (rs1046320, $P=0.008$) mapped within a putative functional region (3’UTR). We therefore genotyped it in four further case-
control studies, Exeter, Ashkenazi, ADDITION/Ely, and Västerbotten studies (3753 cases, 4198 controls), to improve the accuracy of the effect size estimate and compare it with rs10010131, the strongest SNP from the original study (10; 11). In meta-analyses, rs1046320 and rs10010131 demonstrated similar magnitudes of association with T2D risk (OR=0.856 (0.804-0.912), \(P=1.25 \times 10^{-6}\) and OR=0.854 (0.800-0.912), \(P=2.58 \times 10^{-6}\) respectively) (Figure 2). The high correlation between these SNPs in our samples (\(r^2=0.92\)) suggests >100,000 samples would be required to have 80% power to distinguish between their effects with a significance level \(P<10^{-3}\) (Online Appendix Figure 4).

In an assessment of the possible function of rs1046320, we found no difference in allele-specific expression in lymphoblastoid cell lines from 10 heterozygous HapMap individuals (data not shown).

Haplotype analysis: To test whether haplotypes tag the causal variant(s) better than individual SNPs, we estimated the frequency of haplotypes across twenty genotyped SNPs (excluding three variants with MAF<0.01) in Cambridgeshire and EPIC-Norfolk samples. We found nine haplotypes with MAF>0.01 (Online Appendix Table 3) that fell into two clusters according to allelic make-up and T2D risk (Online Appendix Figure 3). One cluster contains haplotypes that are protective against type 2 diabetes relative to the most common haplotype. There are six SNPs (including rs10010131 and rs1046320) which partition the two clusters entirely and, due to high LD between them, are each sufficient to separate the clusters. When the analysis was repeated with haplotypes made up of each SNP in turn, we found the evidence in favour of association was stronger for single SNPs than for the haplotypes. For the overall haplotype analysis, the estimated log10 Bayes’ factor (BF) was 0.64, whereas for the single SNPs, the strongest log10 BF was 1.07 for rs1046320. This suggests that haplotypes made up of SNPs in this study do not tag the causal variant(s) any better than any of the individual SNPs. However, this does not preclude the possibility of independent causal variants in the region that we cannot tag with our SNPs (either pair-wise or through the use of haplotypes).

Imputation of non-tagging SNPs: To increase coverage in the region we imputed missing genotypes at 89 66 additional loci (Online Appendix Methods) (Figure 1). In this analysis, rs1046320 remained the most strongly associated SNP in Cambridgeshire and EPIC-Norfolk studies, except for the imputed intronic rs7691824. However, genotyping of rs7691824 in Cambridgeshire and EPIC studies showed that there were no carriers amongst our samples.

Deep sequencing summary: Sequencing of exons, splice junctions and conserved non-coding regions in 1235 T2D cases and 1668 controls from the Cambridgeshire and ADDITION/Ely studies revealed 290 variants (Online Appendix Table 3). Of 250 rare (MAF<0.01) changes, 94% were novel demonstrating the value of deep resequencing for identifying rare changes.

Analysis of variants with MAF<0.01: Given our sample size, our study is underpowered to detect effects of each rare variant tested individually. For example, 76 of the 82 rare, non-synonymous variants have MAF<0.001, for which we have only 25% power to detect OR~3. To improve power, we collapsed 82 rare (MAF<0.01) variants together by comparing the prevalence of T2D in carriers versus non-carriers. We collapsed only non-synonymous variants in the first instance, as their relative paucity at higher MAFs in the population suggest they are enriched for functional changes under negative selective pressure (Online Appendix Figure 5). However, there was no significant increase in risk of T2D in carriers compared to non-
carriers (OR=1.04 (0.79-1.37), Fisher’s exact P=0.79) (Table 2). Adding rare variants in conserved non-coding sequences and TARGETSCAN (http://www.targetscan.org)-predicted miRNA seed sequences to the rare non-synonymous changes made no material difference (P=0.67) (Table 2).

A comparative study of synonymous variants (MAF<0.01), assumed to be functionally neutral, yielded similar results (Table 2). Further exploratory analyses, including examination of mutation load, PANTHER scores, and combined analysis of rare and intermediate frequency variants, also did not yield significant results (Online Appendix Results and Online Appendix Table 6).

Predicting variants with deleterious effects on protein function: To avoid diluting effects of rare (MAF<0.01) non-synonymous variants on disease risk by pooling them with neutral non-synonymous changes, we restricted analysis to non-synonymous changes most likely to impact protein function. Variants were selected based on three criteria: previous biochemical evidence that the variant causes loss of Wolframin function, previous genetic evidence for involvement in Wolfram Syndrome, and predicted deleterious functional effects by three programs: SIFT (http://blocks.fhcrc.org/sift/SIFT.html), PolyPhen (http://genetics.bwh.harvard.edu/pph/), and PANTHER (http://www.pantherdb.org/tools/csnpScoreForm.jsp). Using these criteria we inferred 23 functionally important mutations (Online Appendix Table 45), but carriers were at comparable T2D-risk to non-carriers (OR=0.99 (0.65-1.48), P>0.99) (Table 2).

Analysis of variants with MAF 0.01-0.1: Two nonsynonymous SNPs, V871M and R456H, had MAFs of 0.013 and 0.042 respectively. In single SNP analyses of pooled Cambridgeshire, and ADDITION/Ely studies neither were associated with T2D (P=0.13 and P=0.25 respectively).

DISCUSSION
We performed a comprehensive fine-mapping and low frequency variant analysis for WFS1, a locus associated with T2D risk (9-11). Using a sequencing, SNP tagging and genotyping approach we identified a number of putative causal variants for T2D association. However, due to strong LD between the SNPs within the candidate interval we were unable to distinguish between their effects on disease risk. None of the associated SNPs have obvious functional properties and real-time PCR revealed no difference in allele-specific expression of rs1046320 (the strongest associated in this study) in lymphoblastoid cell lines, suggesting this SNP is unlikely to affect mRNA stability or processing in this tissue. However, we cannot rule out rs1046320-associated expression changes in other tissues.

Deep re-sequencing of WFS1 exons, splice junctions and conserved non-coding sequences in 1235 T2D cases and 1668 controls revealed no statistically significant differences in the cumulative frequency of rare (MAF<0.01) non-synonymous variants (P=0.79). Given that approximately 8% of study participants carried at least one rare non-synonymous change, we had >80% power to detect OR>1.43 at P<0.05. This study was therefore well powered to detect previously reported effect sizes for rare variants on complex traits (the average being OR=3.74) (24). Restricting the analysis to those variants most likely to be functional reduced the frequency of the exposure (carrier status) to ~4%, but retained >80% power to detect OR>1.65. Still, there were no statistical differences between cases and controls (P>0.99) suggesting rare variants in WFS1 do not have a large impact (OR>2) on T2D risk. It is worth noting that our analyses
assumed all rare variants have the same direction of effect. Our power to detect significant effects on T2D will have been reduced if the variants were a mixture of protective and susceptibility alleles. Finally, our study had >80% power to detect moderate effect sizes of intermediate frequency SNPs V871M and R456H on risk of T2D (OR>1.93 and 1.45 respectively), though neither were statistically associated with T2D (P=0.13 and P=0.25). Selecting cases enriched for early onset/family history of the disease might have increased our power to find rarer variants of slightly higher penetrance that might segregate in the family. However, this kind of analysis was not feasible in our study, as we have no DNA from family members.

Our attempts to refine the WFS1 association signal demonstrate that while high LD is useful for minimising the amount of genotyping required to discover a genetic association, it can compromise attempts to refine the association signal further. Studying populations with different and/or weaker patterns of LD may help refine signals. For example, the LD block spanning the WFS1 gene is more fragmented in HapMap samples of African descent, and correlation between SNPs is generally weaker (r^2=0.204 between SNPs rs10010131 and rs1046320 in YRI HapMap samples compared to r^2>0.92 in CEU samples). In this setting, studies with ~10,000 samples (compared with >100,000) would be well powered to distinguish their effects (Online Appendix Figure 34), assuming that this locus is associated with T2D in this population. An alternative strategy is to test SNPs within the candidate region for association with proximal traits, which may provide greater power to distinguish between SNP effects (25).

Limitations of our fine-mapping study design are that we were underpowered to detect associations with SNPs at MAF<0.05 and we limited sequencing to regions most likely to harbour functional variation. Though we were able to impute 66 additional known SNPs in the region (most common and in high LD (r^2>0.8) with directly genotyped SNPs), seven had MAF<0.05 and were not well correlated (r^2<0.8) with genotyped SNPs. As illustrated by follow-up genotyping of the imputed SNP (rs7691824), monomorphic in our samples, imputation of rare variants is less accurate. This could potentially lead to false negative results if rare variants of poorer imputation quality have larger effect sizes than more common SNPs.

In conclusion, we have undertaken the most comprehensive fine-mapping and rare variant analysis in a T2D gene to date. We identified six SNPs that have comparable associations with T2D, ranging from OR=0.85 to 0.87. We also show that low frequency variants in putative functional regions of WFS1 are not associated with diabetes risk in our UK populations. Future whole exome/genome resequencing studies should consider that functionality of rare variants is difficult to predict and that pooling variants and candidate genes together for purposes of analysis might diminish power to detect true risk alleles.

ACKNOWLEDGEMENTS
We are grateful for the technical support of the Wellcome Trust Sanger Institute high-throughput sequencing facility, and informatics team (Team Leader, Sarah Hunt). Also, thanks to Jason Cooper at the JDRF/WT Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, for calculating power to distinguish correlated SNPs and providing Online Appendix Figure 4. IB acknowledges funding from WT grant 077016/Z/05/Z and EU contract LSHM-CT-2006-037197. Work on the Umeå cohorts was supported in part by grants from Novo Nordisk (to PWF), the Swedish Heart-Lund Foundation (to PWF) and the Heart Foundation of Northern Sweden (to PWF).
We thank Åsa Agren, Kerstin Enquist and other staff of the Umeå Medical Biobank for their cooperation and expertise in sample retrieval and data organisation. The Ashkenazi Jewish cohort was ascertained by the Israel Diabetes Research Group, with support from the Russell Berrie Foundation, D-Cure, Diabetes Care in Israel and an unrestricted research grant from Novo-Nordisk, Denmark. SLR is funded by the British Heart Foundation.
REFERENCES
1. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA: A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143-148, 1998
2. Strom TM, Hortnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz KD, Meitinger T: Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021-2028, 1998
3. Osman AA, Saito M, Makepeace C, Permutt MA, Schlesinger P, Mueckler M: Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem 278:52755-52762, 2003
4. Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10:477-484, 2001
5. Takei D, Ishihara H, Yamaguchi S, Yamada T, Tamura A, Katagiri H, Maruyama Y, Oka Y: WFS1 protein modulates the free Ca(2+) concentration in the endoplasmic reticulum. FEBS Lett 580:5635-5640, 2006
6. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, Urano F: WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280:39609-39615, 2005
7. Ueda K, Kawano J, Takeda K, Yujiri T, Tanabe K, Anno T, Akiyama M, Nozaki J, Yoshinaga T, Koizumi A, Shinoda K, Oka Y, Tanizawa Y: Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic beta-cells via transcriptional activation. Eur J Endocrinol 153:167-176, 2005
8. Wolfram DJ WH: Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clin. Proc. 13:715-718, 1938
9. Minton JA, Hattersley AT, Owen K, McCarthy MI, Walker M, Latif F, Barrett T, Frayling TM: Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U.K. populations. Diabetes 51:1287-1290, 2002
10. Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A, Lango H, Frayling TM, Neumann RJ, Sherva R, Blech I, Pharoah PD, Palmer CN, Kimber C, Tavendale R, Morris AD, McCarthy MI, Walker M, Hitman G, Glaser B, Permutt MA, Hattersley AT, Wareham NJ, Barroso I: Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39:951-953, 2007
11. Franks PW, Rolandsson O, Debenham SL, Fawcett KA, Payne F, Dina C, Froguel P, Mohlke KL, Willer C, Olsson T, Wareham NJ, Hallmans G, Barroso I, Sandhu MS: Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 51:458-463, 2008
12. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavare S, Deloukas P, Dermitzakis ET: Genome-wide associations of gene expression variation in humans. PLoS Genet 1:e78, 2005
13. Fraser FC, Gunn T: Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome? J Med Genet 14:190-193, 1977
14. Rathmann W, Haastert B, Icks A, Giani G, Hennings S, Mitchell J, Curran S, Wareham NJ: Low faecal elastase 1 concentrations in type 2 diabetes mellitus. *Scand J Gastroenterol* 36:1056-1061, 2001
15. Harding AH, Day NE, Khaw KT, Bingham S, Luben R, Welsh A, Wareham NJ: Dietary fat and the risk of clinical type 2 diabetes: the European prospective investigation of Cancer-Norfolk study. *Am J Epidemiol* 159:73-82, 2004
16. Lauritzen T, Griffin S, Borch-Johnsen K, Wareham NJ, Wolffenbuttel BH, Rutten G: The ADDITION study: proposed trial of the cost-effectiveness of an intensive multifactorial intervention on morbidity and mortality among people with Type 2 diabetes detected by screening. *Int J Obes Relat Metab Disord* 24 Suppl 3:S6-11, 2000
17. Wareham NJ, Hennings SJ, Byrne CD, Hales CN, Prentice AM, Day NE: A quantitative analysis of the relationship between habitual energy expenditure, fitness and the metabolic cardiovascular syndrome. *Br J Nutr* 80:235-241, 1998
18. Frayling TM, Walker M, McCarthy MI, Evans JC, Allen LI, Lynn S, Ayres S, Millauer B, Turner C, Turner RC, Sampson MJ, Hitman GA, Ellard S, Hattersley AT: Parent-offspring trios: a resource to facilitate the identification of type 2 diabetes genes. *Diabetes* 48:2475-2479, 1999
19. Knight B, Shields BM, Hattersley AT: The Exeter Family Study of Childhood Health (EFSOCH): study protocol and methodology. *Paediatr Perinat Epidemiol* 20:172-179, 2006
20. Owen K, Hattersley AT: Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. *Best Pract Res Clin Endocrinol Metab* 15:309-323, 2001
21. Permutt MA, Wasson JC, Suarez BK, Lin J, Thomas J, Meyer J, Lewitzky S, Rennich JS, Parker A, DuPrat L, Maruti S, Chayen S, Glaser B: A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population. *Diabetes* 50:681-685, 2001
22. Dupont WD, Plummer WD, Jr.: Power and sample size calculations. A review and computer program. *Control Clin Trials* 11:116-128, 1990
23. Morris AP: Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes. *Genet Epidemiol* 29:91-107, 2005
24. Bodmer W, Bonilla C: Common and rare variants in multifactorial susceptibility to common diseases. *Nat Genet* 40:695-701, 2008
25. Plagnol V, Smyth DJ, Todd JA, Clayton DG: Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. *Biostatistics* 10:327-334, 2009
Table 1 Association of *WFS1* tagging SNPs with T2D risk in a pooled analysis of Cambridgeshire and EPIC case-control studies

SNP	Nucleotide change (major	minor)	Protein consequence	MAF	Odds ratio (95% CIs)	P odds ratio*
rs13107806	C	T	Conserved upstream	0.427	0.90 (0.79 - 1.02)	0.11
rs10937714	T	C	Intron 1	0.212	0.93 (0.79 - 1.09)	0.35
rs4689391	A	G	Intron 2	0.423	0.90 (0.79 - 1.03)	0.11
rs752854	T	C	Intron 2	0.344	0.87 (0.76 - 1.00)	0.05
WFS1_3	C	G	Intron 3	0.051	0.89 (0.66 - 1.21)	0.46
rs4688989	C	T	Intron 3	0.402	0.86 (0.75 - 0.98)	0.03
rs5018648	G	C	Intron 4	0.412	0.85 (0.74 - 0.97)	0.01
rs10010131	G	A	Intron 4	0.398	0.87 (0.76 - 0.98)	0.02
WFS1_K193Q	A	C	K193Q	0.004	1.00 (0.36 - 2.81)	>0.99
rs13101355	C	T	Intron 5	0.4	0.85 (0.75 - 0.97)	0.02
rs7672995	G	C	R228R	0.316	0.84 (0.73 - 0.97)	0.02
rs6446482	G	C	Intron 6	0.405	0.87 (0.77 - 0.99)	0.03
rs12511742	G	T	Intron 6	0.072	0.93 (0.72 - 1.20)	0.58
rs3821943	T	C	Intron 7	0.457	0.91 (0.81 - 1.03)	0.15
rs1801212	A	G	I333V	0.28	0.90 (0.78 - 1.03)	0.14
rs35031397	C	G	L432V	0.004	1.10 (0.39 - 3.09)	0.86
rs1801208	G	A	R456H	0.046	1.25 (0.92 - 1.69)	0.15
WFS1_A559T	G	A	A559T	0.005	0.66 (0.25 - 1.75)	0.40
rs2230719	C	T	A575A	0.076	0.92 (0.72 - 1.18)	0.51
rs734312	A	G	H611R	0.455	0.93 (0.82 - 1.05)	0.25
rs1802453	G	A	3"UTR	0.089	0.93 (0.74 - 1.17)	0.54
rs1046320	A	G	3"UTR	0.419	0.83 (0.72 - 0.95)	0.008
rs1046322	G	A	3"UTR	0.119	1.01 (0.82 - 1.23)	0.95

* = the outcome of a logistic regression analysis. This list excludes tagging SNP WFS1_S855P as the minor allele was only present in 1 case and 1 control and therefore could not be analysed. Bold text indicates significant P-values. Bold text highlights the strongest statistically associated SNP from the original study cohorts described in Sandhu et al. and the strongest statistically associated SNP in Cambridgeshire and EPIC case-control fine-mapping studies (rs1046320).
Table 2 Number of cases and controls carrying non-synonymous, synonymous, or inferred functional mutations with MAF<0.01 vs wild-type

Types of variation (MAF<0.01)	Cases	Controls	Total	P-value
Non-synonymous				
Non-carriers	1128	1529	2657	0.79
Carriers	107	139	246	
Total	1235	1668	2903	
Non-synonymous and variants in predicted miRNA sites and conserved non-coding sequence*				
Non-carriers	1125	1527	2652	0.67
Carriers	110	141	251	
Total	1235	1668	2903	
Synonymous (MAF<0.01)				
Non-carriers	1173	1596	2769	0.37
Carriers	62	72	134	
Total	1235	1668	2903	
Inferred mutations** (MAF<0.01)				>0.99
Non-carriers	1189	1605	2794	
Carriers	46	63	109	
Total	1235	1668	2903	

* Rare variants in predicted miRNA sites are in red italics in Online Appendix Table 4 and variants in conserved non-coding sequence are in blue italics in Online Appendix Table 4.
** Non-synonymous variants with MAF<0.01 and predicted functional based on previous biochemical evidence that the variant causes loss of Wolframin function, previous genetic evidence for involvement in Wolfram Syndrome, and predicted deleterious functional effects by web-based programs SIFT, PolyPhen and PANTHER

Figure 1 The statistical strength of the association of WFS1 tagging (diamonds) and imputed (circles) SNPs in the context of estimated recombination rates (blue line) and pairwise correlation between rs10010131 and surrounding markers. Red represents $r^2 > 0.85$, orange represents $0.5 < r^2 < 0.85$, yellow represents $0.2 < r^2 < 0.5$, and white represents $r^2 < 0.2$.

Figure 2 Meta-analysis of rs1046320 in UK, Ashkenazi, ADDITION/Ely and Västerbotten case-control studies. The overall OR=0.856 (0.804-0.912), $P=1.25 \times 10^{-6}$. Summary statistics from previously published work (11) show that rs10010131 has a comparable overall OR = 0.854 (0.800-0.912), $P = 2.58 \times 10^{-6}$ in the same populations.
Figure 1

![WFS1 region graph]

Figure 2

Study	ES (95% CI)	Weight
Cambridgeshire	0.83 (0.69, 1.01)	10.86
EPIC-Norfolk	0.83 (0.68, 1.01)	10.07
Exeter	0.81 (0.68, 0.97)	12.49
Ashkenazi	0.80 (0.67, 0.96)	12.19
ADDITION/Ely	0.85 (0.75, 0.96)	25.87
Västerbotten	0.93 (0.83, 1.05)	28.52
Overall (I-squared = 0.0%, p = 0.695)	0.86 (0.80, 0.91)	100.00