BAR COMPLEXES AND FORMALITY OF PULL-BACKS

STEVEN LILLYWHITE

Abstract. We prove a result concerning formality of the pull-back of a fibration. Our approach is to use bar complexes in the category of commutative differential graded algebras.

1. Introduction

In this note, we show that the pull-back of a fibration by a formal map is formal. The fibration is required to be totally non-homologous to zero, and to be a formal map as well. We are here referring to the notion of formality in the setting of rational homotopy theory. This result extends a theorem of Vigué-Poirrier, [10], where it is proved that the fibre of such a fibration is a formal space. Our proof makes use of bar complexes, which, when we use a normalization due to Chen, become commutative differential graded algebras useful for rational homotopy theory. We conclude with an example which generalizes a result of Baum and Smith, [2].

2. Review of rational homotopy theory

In this section we briefly recall some notions from rational homotopy theory. References for this material are numerous and we mention [1], [3], [9].

We introduce the category of commutative differential graded algebras over a field k of characteristic zero. We assume that all algebras are concentrated in non-negative degrees, have a differential which raises degree by one, and are augmented. Furthermore, we shall assume that $H^0(A) \approx k$ for all algebras A. We denote this category by $kCDGA$ and refer to objects in it as $kCDGA$’s. A morphism of $kCDGA$’s which induces an isomorphism on cohomology is called a quasi-isomorphism. There is a notion of homotopy between maps of $kCDGA$’s which becomes an equivalence relation on the set of maps from A_1 to A_2, when the source, A_1, is of a special type called a KS complex, which is basically a free algebra whose differential respects an ordering on the generators.

Among the KS complexes in $kCDGA$ is an important class called minimal algebras, which are essentially characterized by being free with decomposable differential. For every $kCDGA A$, there exists a minimal $kCDGA \mathcal{M}$, and a quasi-isomorphism $\mathcal{M} \to A$.

1991 Mathematics Subject Classification. Primary: 57T30, 55P62. Secondary: 55T20.

Key words and phrases. Bar complexes, differential graded algebras, rational homotopy theory, formality.
Such a minimal algebra is called a minimal model of A. It is unique up to isomorphism, and furthermore, a map of algebras $f : A_1 \to A_2$ determines a map $f : \mathcal{M}(A_1) \to \mathcal{M}(A_2)$ which is unique up to homotopy. An algebra A is called formal if there are quasi-isomorphisms of kCDGA’s $A \leftarrow \mathcal{M}(A) \to H(A)$. This is equivalent to demanding that there be a sequence of kCDGA quasi-isomorphisms $A \leftarrow A_1 \leftarrow \cdots \leftarrow A_n \to H(A)$.

If X is a path-connected topological space, then there is a functor which associates to X a kCDGA $A(X)$, known as the Sullivan-de Rham algebra. For a large class of spaces, including simply-connected spaces of finite \mathbb{Q}-type (see definition below), the minimal model of $A(X)$ determines the rational homotopy of X, $\pi^*(X) \otimes \mathbb{Q}$. We say that a space X is formal if $A(X)$ is formal. Then for these formal spaces, their rational homotopy is determined by their cohomology algebras.

3. Bar complexes and Eilenberg-Moore theory

In this section we shall discuss the theory of Eilenberg and Moore concerning pullbacks of fibrations. For references, see [7], [8], or [5]. For the rest of the paper, we shall assume that all spaces are path-connected and of finite k-type (meaning that $H^n(X; k)$ is finite-dimensional for all $n \geq 1$). We shall also assume that all fibrations are Serre fibrations.

Let us suppose that we have a fibration $F \to E \xrightarrow{p} B$ and a map $f : X \to B$, so that we obtain a pull-back diagram:

$$
\begin{array}{c}
E_f \\
\downarrow \phi \\
X \\
\downarrow f \\
B
\end{array}
\quad \quad \quad \quad \quad (1)
$$

Then the maps f^* and p^* make $A^*(X)$ and $A^*(E)$ (differential graded) modules over $A^*(B)$. Let us assume that B is simply-connected. Then a theorem of Eilenberg and Moore asserts that there is an isomorphism

$$
\theta : Tor_{A^*(B)}(A^*(X), A^*(E)) \to H^*(E_f). \quad \quad \quad (2)
$$

We may use the bar resolution to obtain a resolution of, say, $A^*(X)$ by $A^*(B)$-modules. Since we are considering $A^*(-)$ to be the Sullivan-de Rham complex, we will be using Chen’s normalized bar resolution, see [4] or [6].

More specifically, the bar complex is

$$
B(A^*(X), A^*(B), A^*(E)) = \bigoplus_{i=0}^{\infty} A^*(X) \otimes_k (sA^*(B))^\otimes_i \otimes_k A^*(E) \quad \quad (3)
$$

where the tensor products are over the ground field k, and s denotes the suspension functor on graded vector spaces which lowers degree by one. Hence the degree of an element $(\alpha, \omega_1, \ldots, \omega_k, \beta)$ is: $\deg(\alpha) + \sum_{i=1}^{k}(\deg(\omega_i) - 1) + \deg(\beta)$, where $\alpha \in A^*(X)$, $\omega_i \in A^*(B)$,
and $\beta \in A^\bullet(E)$. Actually, the bar complex is bigraded. We introduce the bar degree, denoted $B(A^\bullet(X), A^\bullet(B), A^\bullet(E))$. The bar degree of an element $(\alpha, \omega_1, \ldots, \omega_k, \beta)$ is defined to be $-k$. The other grading is the normal tensor product grading, the degree of an element $(\alpha, \omega_1, \ldots, \omega_k, \beta)$ being $\deg(\alpha) + \sum_{i=1}^k \deg(\omega_i) + \deg(\beta)$.

There are two differentials of total degree $+1$:

$$d(\alpha, \omega_1, \ldots, \omega_k, \beta) = (d\alpha, \omega_1, \ldots, \omega_k, \beta)$$

$$+ \sum_{i=1}^k (-1)^{i-1+1}(\alpha, \omega_1, \ldots, \omega_{i-1}, d\omega_i, \omega_{i+1}, \ldots, \omega_k, \beta)$$

$$+ (-1)^{i\bar{k}}(\alpha, \omega_1, \ldots, \omega_{k}, d\beta)$$

$$-\delta(\alpha, \omega_1, \ldots, \omega_k, n) = (-1)^{\bar{\varepsilon}_0}(\alpha \omega_1, \omega_2, \ldots, \omega_k, \beta)$$

$$+ \sum_{i=1}^{k-1} (-1)^{i}(\alpha, \omega_1, \ldots, \omega_{i-1}, \omega_i \omega_{i+1}, \omega_{i+2}, \ldots, \omega_k, \beta)$$

$$+ (-1)^{i-1+1}(\alpha, \omega_1, \ldots, \omega_{k-1}, \omega_k \beta)$$

where $\varepsilon_i = \deg(\alpha + \deg(\omega_1 + \cdots + \deg(\omega_i) - i$. The differential δ has degree $+1$ with respect to the bar grading, while the differential d has degree $+1$ with respect to the tensor product grading. One may verify that $d\delta + \delta d = 0$, and we put $D \overset{\text{def}}{=} d + \delta$ to be the total differential. With the given bigrading, we get a double complex with the two differentials d and δ. If we filter the bar complex so that we take d-cohomology first in the associated spectral sequence, then we obtain the spectral sequence of Eilenberg and Moore.

Chen’s normalized version of this bar complex is the following. If $f \in A^0(B)$, let $S_i(f)$ be the operator on $B(A^\bullet(X), A^\bullet(B), A^\bullet(E))$ defined by

$$S_i(f)(\alpha, \omega_1, \ldots, \omega_k, \beta) = (\alpha, \omega_1, \ldots, \omega_{i-1}, f, \omega_i, \ldots, \omega_k, \beta)$$

for $1 \leq i \leq k+1$. Let W be the subspace of $B(A^\bullet(X), A^\bullet(B), A^\bullet(E))$ generated by the images of $S_i(f)$ and $DS_i(f) - S_i(f)D$. Then define

$$\bar{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \overset{\text{def}}{=} B(A^\bullet(X), A^\bullet(B), A^\bullet(E))/W.$$ (7)

Then W is closed under D and when $H^0(B) = k$ (B is connected), then W is acyclic so that $\bar{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E))$ is quasi-isomorphic to $B(A^\bullet(X), A^\bullet(B), A^\bullet(E))$. Notice that in the normalized bar complex, there are no elements of negative degree, and with our assumption that B is simply-connected, we are assured convergence of the associated Eilenberg-Moore spectral sequence. The map θ mentioned above is induced by the map

$$\theta : B(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \to A^\bullet(E_f)$$

(8)
which sends all tensor products to zero except for $A^\bullet(X) \otimes_k A^\bullet(E)$, where the map is:
\[\alpha \otimes \beta \mapsto \bar{\mu}^* \alpha \wedge \bar{\mu}^* \beta. \]
Note that $\theta(W) = 0$, so that we get an induced map
\[\theta : B(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \to A^\bullet(E_f). \] (9)
The bar complex computes Tor, and the theorem of Eilenberg and Moore states that this map θ is a quasi-isomorphism.

The normalized bar complex may also be augmented. The augmentation, ε, maps all elements of positive total degree to zero. The elements of degree zero have the form $\theta f, g \in \epsilon_0$ so that the pull-back diagram above preserves all base-points, then on the bar complex via the shuffle product.

To the bar complex, we also obtain a commutative differential graded algebra structure which preserves the order of the $a_i < j$'s as well as the order of the x_i's. That is, we demand that if $i < j$, then $\sigma(a_i) < \sigma(a_j)$ and $\sigma(b_i) < \sigma(b_j)$.

We obtain a product on $\bar{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E))$ by first taking the normal tensor product on the $A^\bullet(X) \otimes A^\bullet(E)$ factors, then taking the tensor product of this product with the shuffle product on the $A^\bullet(B)^{\otimes i}$ factors. As usual, we introduce a sign $(-1)^{|\alpha||\beta|}$ whenever α is moved past β. The actual formula for the product is the following. Let $a, x \in A^\bullet(X)$, $b_i, y_i \in A^\bullet(B)$, and $c, z \in A^\bullet(E)$.

\[(a, b_1, \ldots, b_k, c) \bullet (x, y_1, \ldots, y_l, z) = \sum_{\sigma} (-1)^{n + n_{\sigma}} (ax, \sigma(b_1, \ldots, b_k; y_1, \ldots, y_l), cz) \] (10)
where $n = |c||x| + |x|\{|b_1| + \ldots + |b_k| - k\} + |c|\{|y_1| + \ldots + |y_l| - l\}$, the sum is over all shuffles σ of the set (b_1, \ldots, b_k) with the set (y_1, \ldots, y_l), and
\[n_{\sigma} = \sum_{(i,j)}(|b_i| - 1)(|y_j| - 1) \]
where the sum is over all pairs (i,j) such that b_i is moved past y_j in the shuffle σ. One may check that this product is associative, graded commutative, and that the differential D is a derivation with respect to this product.

Lemma 3.1. The product defined above induces a product on Chen’s normalized bar complex.

Proof. We have that $\bar{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E)) = B(A^\bullet(X), A^\bullet(B), A^\bullet(E))/W$. We will show that W is an ideal. Now W is generated by the images of $S_i(f)$ and $DS_i(f) - S_i(f)D$. It is obvious that $\alpha \bullet S_i(f)\beta \in W$ for any α, β. Moreover, $\alpha \bullet (DS_i(f)\beta -$
\[S_i(f)D\beta = \alpha \cdot DS_i(f)\beta - \alpha \cdot S_i(f)D\beta. \] Now \(\alpha \cdot S_i(f)D\beta \in W \) as we just noted. Moreover, since \(D \) is a derivation, we have

\[D(\alpha \cdot S_i(f)\beta) = D\alpha \cdot S_i(f)\beta + (-1)^{[\alpha]} \alpha \cdot DS_i(f)\beta \quad (11) \]

Now, \(\alpha \cdot S_i(f)\beta \in W \), and \(W \) is closed under \(D \), so the left-hand side of (11) is in \(W \). Also, \(D\alpha \cdot S_i(f)\beta \in W \). Hence, \(\alpha \cdot DS_i(f)\beta \in W \) as well.

We have arrived at the following lemma.

Lemma 3.2. Assume that we have the pull-back diagram 1, where \(p \) is a fibration and \(B \) is simply connected. Then the normalized bar complex

\[\overline{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \]

is a \(kCDGA \). Moreover,

\[\theta : \overline{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \rightarrow A^\bullet(E_f) \]

is a quasi-isomorphism of \(kCDGA \)'s.

Remark 3.3. We note that Chen’s normalization is functorial. That is, if we have a commutative diagram of \(kCDGA \)’s

\[\begin{array}{ccc}
A_2 & \leftarrow & B_2 \\
\uparrow & & \uparrow \\
A_1 & \leftarrow & B_1
\end{array} \quad \begin{array}{c}
\longrightarrow \quad \longrightarrow \\
\uparrow & & \uparrow \\
C_2 & \rightarrow & C_1
\end{array} \quad (12) \]

then we get a map of \(kCDGA \)’s \(\overline{B}(A_1, B_1, C_1) \rightarrow \overline{B}(A_2, B_2, C_2) \).

The next lemma concerns quasi-isomorphisms of bar complexes. The main idea of the proof may be found in [10], Lemme 4.3.3, and so we omit the proof here.

Lemma 3.4. Suppose that \(A_1 \leftarrow B_1 \rightarrow C_1 \) and \(A_2 \leftarrow B_2 \rightarrow C_2 \) are two sequences of maps of \(kCDGA \)’s with \(H^1(B_1) = 0 = H^1(B_2) \). Suppose further that \(B_1 \) is a KS-complex, and that we have a homotopy commutative diagram of the form

\[\begin{array}{ccc}
A_2 & \leftarrow & B_2 \\
\uparrow & & \uparrow \\
A_1 & \leftarrow & B_1
\end{array} \quad \begin{array}{c}
\longrightarrow \quad \longrightarrow \\
\uparrow & & \uparrow \\
C_2 & \rightarrow & C_1
\end{array} \quad (13) \]

where the vertical arrows are all \(kCDGA \) quasi-isomorphisms. Then \(\overline{B}(A_1, B_1, C_1) \) is quasi-isomorphic to \(\overline{B}(A_2, B_2, C_2) \) in \(kCDGA \) (via a sequence of \(kCDGA \) quasi-isomorphisms).
4. Formality of pull-backs

We can use the normalized bar complex to extend a result of Vigué-Poirrier concerning formality of the fiber of a fibration, [10], Théorème 4.4.4. Our proof is also shorter and more direct than in [10], which deals with more general considerations.

Definition 4.1. Suppose that \(A \xleftarrow{f} B \xrightarrow{g} C \) are morphisms of \(k \)CDGA’s. Then we shall say that \(f \) and \(g \) are *compatibly formal* if there exists a homotopy commutative diagram

\[
\begin{array}{ccc}
A & \xleftarrow{f} & B \xrightarrow{g} C \\
\uparrow & & \uparrow & & \uparrow \\
\mathcal{M}(A) & \xleftarrow{f} & \mathcal{M}(B) \longrightarrow \mathcal{M}(C) \\
\downarrow & & \downarrow & & \downarrow \\
H(A) & \xleftarrow{f} & H(B) \xrightarrow{g} H(C)
\end{array}
\] (14)

where the middle row are minimal models for \(A, B, \) and \(C \), and the vertical arrows are quasi-isomorphisms. We shall say that maps, \(f, g \), of spaces \(X \xrightarrow{f} Y \xleftarrow{g} Z \) are *compatibly formal* if the the corresponding maps \(A(X) \xleftarrow{f} A(Y) \xrightarrow{g} A(Z) \) are compatibly formal.

Consider again the pull-back diagram 1 where \(p \) is a fibration with fiber \(F \), and \(B \) is simply-connected.

Theorem 4.2. Assume that \(p \) and \(f \) are compatibly formal maps, and suppose that the Serre spectral sequence for the fibration \(p \) degenerates at the \(E_2 \) term. Then the pull-back \(E_f \) is formal.

Proof. By 3.2 we have a quasi-isomorphism of \(k \)CDGA’s

\[
\theta : \bar{B}(A^\bullet(X), A^\bullet(B), A^\bullet(E)) \rightarrow A^\bullet(E_f)
\] (15)

By the assumption of compatible formality, we have a homotopy commutative diagram whose vertical arrows are quasi-isomorphisms

\[
\begin{array}{ccc}
A^\bullet(X) & \xleftarrow{f} & A^\bullet(B) \longrightarrow A^\bullet(E) \\
\uparrow & & \uparrow & & \uparrow \\
\mathcal{M}(X) & \xleftarrow{f} & \mathcal{M}(B) \longrightarrow \mathcal{M}(E) \\
\downarrow & & \downarrow & & \downarrow \\
H^\bullet(X) & \xleftarrow{f} & H^\bullet(B) \longrightarrow H^\bullet(E)
\end{array}
\] (16)
Then we obtain a sequence of kCDGA quasi-isomorphisms

$$\bar{B}(A^*(X), A^*(B), A^*(E)) \leftarrow \cdots \bar{B}(H^*(X), H^*(B), H^*(E))$$

by 3.4. Now the bar complex

$$\bar{B}(H^*(X), H^*(B), H^*(E))$$

has only a single differential, δ. Since we have assumed the Serre spectral sequence for the fibration p to degenerate at the E_2 term, it follows that $H^*(E)$ is a free $H^*(B)$-module. Thus if we grade according to the bar degree for δ, we find that

1. $H_+(\bar{B}(H^*(X), H^*(B), H^*(E))_*) = 0$
2. $H_0(\bar{B}(H^*(X), H^*(B), H^*(E))_*) \approx H_*(\bar{B}(H^*(X), H^*(B), H^*(E))_*)$

Hence the projection to cohomology

$$\bar{B}(H^*(X), H^*(B), H^*(E))_* \rightarrow \bar{B}(H^*(X), H^*(B), H^*(E))_0$$

$$\rightarrow H_*(\bar{B}(H^*(X), H^*(B), H^*(E))_*)$$

$$\approx H^*(E_f)$$

is a kCDGA quasi-isomorphism and E_f is consequently formal.

5. An Example

Suppose that B is a simply-connected space with the property that the cohomology of B is a free kCDGA. Then B is a formal space, and the cohomology, $H^*(B)$, is a minimal model for $A^*(B)$. Let $E \overset{p}{\rightarrow} B$ be a fibration with E a formal space, and let X be a formal space with a map to B, $f : X \rightarrow B$. Then it is easy to see that f and p are compatibly formal.

Let E_f be the pull-back of the fibration p by the map f, as in diagram 1. Then 3.2 and 3.4 imply that $H^*(E_f)$ and $\text{Tot}_{H^*(B)}(H^*(X), H^*(E))$ are isomorphic as algebras. This extends a result of Baum and Smith, [2], where this was proven by other means for X a compact globally symmetric space, and $E = BH$, $B = BG$, for G a compact, connected Lie group, and $H \subset G$ a closed, connected subgroup. Moreover, if the Serre spectral sequence for the fibration $E \overset{p}{\rightarrow} B$ degenerates at the E_2 term, then by 4.2, we have that E is a formal space.

References

1. C. Allday and V. Puppe, Cohomological methods in transformation groups, Cambridge University Press, 1993.
2. P. Baum and L. Smith, The real cohomology of differentiable fibre bundles, Comment. Math. Helv. 42 (1967), 171–179.
3. A.K. Bousfield and V.K.A.M. Gugenheim, On PL de Rham theory and rational homotopy type, no. 179, Memoirs of the American Mathematical Society, 1976.
4. K.T. Chen, Reduced bar constructions on de Rham complexes, Algebra, Topology, and Category Theory, pp. 19–32, Academic Press, New York, 1976.
5. S. Eilenberg and J.C. Moore, *Homology and fibrations I*, Comm. Math. Helv. 40 (1966), 199–236.
6. E. Getzler, J.D.S. Jones, and S. Petrack, *Differential forms on loop spaces and the cyclic bar complex*, Topology 30 (1991), 339–371.
7. J. McCleary, *User’s guide to spectral sequences*, Publish or Perish, 1985.
8. L. Smith, *Homological algebra and the Eilenberg-Moore spectral sequence*, T.A.M.S. 129 (1967), 58–93.
9. D. Tanre, *Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan*, Lecture Notes in Mathematics, vol. 1025, Springer, 1983.
10. M. Vigué-Poirrier, *Réalisation de morphismes donnés en cohomologie et suite spectrale d’Eilenberg-Moore*, T.A.M.S. 265 (1981), 447–484.

Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, M5S 3G3

E-mail address: sml@math.toronto.edu