Spin nematics next to spin singlets

Yuto Yokoyama and Chisa Hotta1

1Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan

(Dated: May 22, 2018)

We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor a spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that inter-dimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves include the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first order transition.

PACS numbers: 73.43.Nq, 75.10.Pq, 75.50.Ee, 75.40.Cx

Introduction.— Challenges in modern magnetism have been to clarify the role of the intrinsic quantum effect in exotic phases of matter. Spin-1/2 liquids12 that do not break any symmetry are characterized by the long range entanglement of their wave functions. Some phases break the symmetry quantum mechanically by forming the smallest entangled unit; a valence bond crystal is the long range order of a spin-1/2 singlet breaking translational symmetry13 and spin nematics is the SU(2)-symmetry-broken order of the quadrupole moment based on spin-1 pairs14. The latter phase is our focus, and is established in a spin-1 bilinear-biquadratic Hamiltonian on square5,14 and triangular lattices6–10. They appear whenever the biquadratic interaction $(S_i \cdot S_j)^2$, overwhelms the bilinear (Heisenberg) term where S_i is the spin-1 operator. In fact, to entangle a pair of spin-1, one needs to exchange $(S_i^z, S_j^z) = (+1, -1)$ with $(-1, +1)$ by the biquadratic term, such that the spin-1/2 singlets are formed by a Heisenberg exchange, flipping $(+1/2, -1/2)$ to $(-1/2, +1/2)$. Unfortunately, the spin-1 biquadratic interaction is usually much weaker than the bilinear term which makes the nematic phase as elusive as spin liquids.

Moreover, spin-1 is not the basic magnetic unit in condensed matter, since it appears only as a triplet pair of spin-1/2’s of localized electrons. When the spin-1 is broken into pieces of 1/2, higher order exchanges among spin-1/2’s are required to realize the spin nematics. The simplest one is the four-body ring exchange interaction. When this interaction is applied to the polarized spin-1/2 magnets in a strong magnetic field or near the ferromagnetically ordered phases, a nematic order indeed appears12,13, providing a good reference for a solid 3He14,17. There, the ring exchange was ascribed a role to enhance quantum fluctuation among competing magnetic orders14,15. Besides, this interaction generates a gapped spin liquid in a spin-1/2 triangular lattice antiferromagnet16,21. The magnitude of ring exchange is enhanced near the Mott transition22 which may explain the origin of the spin liquid triangular lattice Mott insulator23 possibly realized in the organic κ-ET$_2$Cu$_2$(CN)$_3$24. The ring exchange further supports the anomalous thermal magnon Hall transport in a kagome ferromagnet25. Despite such rich physics relevant to the ring exchange, a clear-cut and systematic understanding of its role is still lacking.

This Rapid Communication shows how the ring exchange serves to yield a variety of quantum phases. We consider spin-1/2 antiferromagnetically coupled dimers forming a triangular lattice. When the ring exchange interactions are transformed into a bosonic language, they simultaneously play different roles: chemical potential, hoppings, and repulsive/attractive interactions. Particularly, the one called twisted ring exchange flips the S_i pairs upside down, and contributes to the bilinear-biquadratic interactions. We obtain a rich phase diagram in the bulk limit that hosts Bose Einstein condens...
FIG. 2. (color online) Phase diagram of Eq. (1) on the plane of K_R and K_T, with $J = 1$, $J'' = 0$ and $J = 2K_R$. The triangle and cross symbols indicate the first and second order transitions, respectively, obtained by analysis of exact diagonalization with $N = 12$ (24 spins). Solid lines are the analytical phase boundaries. By increasing J' and J'', the nematic phase is stabilized toward smaller K_R and K_T (see Supplemental Material).

FIG. 3. (color online) (a) Density of triplets, $\langle n_t \rangle$ as a function of K_R. In BEC, $\langle n_t \rangle$ changes gradually. A nematic triangle and kagome have exactly $\langle n_t \rangle = 1$ and $3/4$, respectively. (b) Exact diagonalization energy per site E/N of Eq. (1) as a function of triplet density, n_t, at $K_T = 0.05, 0.45$ and $K_R = 0 \sim 0.5$. (Upper panel) BEC phase with no anomaly. (Lower panel) Dips at $n_t = 0.3/4, 1$ indicate the three other stable phases in Fig. 2, and the first order transitions between them. (c) Structural factor of $\langle Q_i \cdot Q_j \rangle$ at the K and M-points on the Brillouin zone boundary, together with the ones for $\langle S_i \cdot S_j \rangle$, characterizing 120° magnetic ordering (AFM). (d) Tower of states in the nematic triangular $\langle K_R = 0.1, K_T = 0.45 \rangle$ and BEC-AFM ($K_R = 0.5, K_T = 0$) phases.

sate (BEC) of $SU(2)$ bosons and nematic orders of triangular and kagome geometries.

Model and Phase Diagram. — Each lattice site consists of a pair of quantum spin-1/2 coupled by the antiferromagnetic Heisenberg interaction, J, as shown in Fig. 1(a). When we consider only $J(=1)$, the ground state is an exact product state of singlets with energy $E_0 = -NJ/4$. By introducing the inter-dimer interactions, our Hamiltonian is given as,

$$
\mathcal{H} = \sum_{i=1}^{N} JS_{i1} \cdot S_{i2} + \sum_{(i,j), \gamma=1,2} (J'S_{i\gamma} \cdot S_{j\gamma} + J''S_{i\gamma} \cdot S_{j\prime\gamma}) + \sum_{C} K_C \left(P_4 + P_4^{-1} \right) - \frac{9}{5} \sum_{(i\gamma,j\gamma) \in C} S_{i\gamma} \cdot S_{j\gamma} \quad (1)
$$

where S_{i1}, S_{i2} are the spin-1/2 operators forming the i-th dimer, J' and J'' are the Heisenberg (bilinear) exchanges, and K_C denotes the four-body exchange (see Fig. 1(b)). Along the two different closed loops $C = R$ and T, the four spins permute both clockwise (P_4) and anticlockwise (P_4^{-1}), which we call the ring exchange (R) and twisted ring exchange (T) e.g. as shown in Fig. 1(c). The last two-body term appears when deriving the four-body interactions by the perturbation from the Hubbard model at half-filling [27,29].

Due to the ring exchange terms, a variety of phases emerges as shown in Fig. 2 when K_T is small. K_R drives the system to the BEC of triplets. At larger K_T, the nematic phases become dominant. Here, we stress that all the $S_i^z = 1, 0, -1$ component of triplets equivalently join this BEC, which is thus different from a magnon BEC (carrying a net magnetic moment) that typically appears in spin singlet systems by the magnetic field [19,33]. The spin nematics in a quantum spin-1/2 system known so far is based on a bound state of magnons created by the frustration effect, in a strong magnetic field or near the fully polarized ferromagnetic phase [13,14,15]. Our spin nematics does not require such frustration, and the overall feature of the phase diagram applies to square, honeycomb, and ladder systems as well [50].

Bosonic representation. — To understand the nature of the phase diagram, it is convenient to transform the basis in units of dimers rather than of spin-1/2 [37,38]. Each dimer hosts either a singlet ($S_i = S_{i1} + S_{i2} = 0$) or one of the triplets ($S_i = 1, S_i^t = 1, 0, -1$). Therefore, by regarding the singlet product state as a vacuum, we introduce a bosonic operator, $b_{i\alpha}^\dagger / b_{i\alpha}$ with $\alpha = 1, 0, -1$, which creates/annihilates a triplet with $S_i^{z} = 1, 0, -1$ on
an i-th dimer. Equation (1) is exactly transformed to $\mathcal{H} = \mathcal{H}_{tV} + \mathcal{H}_{\text{mag}} + \mathcal{H}_{\text{pair}}$ with

$$
\mathcal{H}_{tV} = \sum_{(i,j)\alpha} \left(t(b_{i\alpha}^\dagger b_{j\alpha} + b_{j\alpha}^\dagger b_{i\alpha}) + \nu_n n_j \right) - \sum_{i=1}^{N} \mu n_i
$$

$$
\mathcal{H}_{\text{mag}} = \sum_{(i,j)} \left(J (S_i^1 \cdot S_j^1) + B (S_i^1 \cdot S_j^2)^2 \right) n_i n_j
$$

$$
\mathcal{H}_{\text{pair}} = \sum_{(i,j)} P (b_{i1}^\dagger b_{j-1,1} + b_{i-1,1} b_{j,1} - b_{i1} b_{j,0} + b_{i0} b_{j1}) + \text{H.c., (2)}
$$

where $n_i = 0$ or 1 is the number of bosons under a hard core condition, and S_i is the spin-1 operator on site-i when it is occupied by a triplet, and fulfills $S_i^+ = b_{i1}^\dagger b_{i0} + b_{i0}^\dagger b_{i-1,1} - b_{i1} b_{i-1,1}$, $S_i^- = b_{i1}^\dagger b_{i0} + b_{i0}^\dagger b_{i-1,1}$, and $S_i^z = b_{i1}^\dagger b_{i1} - b_{i1} b_{i1}$. The magnetic interactions, J and B, will be discussed shortly. The parameters are given as,

$$
\mu = -J + \left(\frac{96}{5} K_R - \frac{24}{5} K_T \right) \nu_{\alpha} (3)
$$

$$
t = \frac{1}{2} (J' - J'' + K_R) \nu_{\alpha} (4)
$$

$$
V = 4 (K_R - K_T) \nu_{\alpha} (5)
$$

$$
P = \frac{1}{2} (J' - J'') - K_R \nu_{\alpha} (6)
$$

In the present Rapid Communication, we take $J' = 2K_R$ and $J'' = 0$, in order to keep $P = 0$, which allows for the exact evaluation of the phase boundaries, and the number of triplets is conserved. The role of $P \neq 0$ is mainly to enhance B and stabilize the nematic order (see Supplemental Material), while the physics itself is not influenced qualitatively.

As the chemical potential, μ, gets lower with K_R, the bosons are doped to the vacuum (singlet). Meanwhile, there arises an interaction between doped bosons. Figure 3(a) shows how the occupation of the triplet density, $n_t \equiv \sum_i n_i / N$, develops, where n_i is the value that gives the minimum of total energy E among all different n_t-sectors in Fig 3(b). At $K_R > K_T$, the kinetic energy gain due to t favors dopping the bosons, but the repulsive interaction $V > 0$ does not, thus $\langle n_t \rangle$ increases gradually due to their competition. Contrarily at $K_R < K_T$, the attractive $V < 0$ helps μ to dope triplets and there occurs a first order transition from the $\langle n_t \rangle = 0$ to the $\langle n_t \rangle = 1$ phase, which is also visible in the dip of energies at $n_t = 0$ and 1 in Fig 3(b). Once all the sites are occupied by triplets, their spin-1’s interact via \mathcal{H}_{mag}, which takes a well known form called the bilinear-biquadratic interaction, with $B = 2K_R$ and $J = (-K_R + 4K_T) / 5 + (J' + J'') / 2$. In a triangular lattice, the spin-1 bilinear-biquadratic Hamiltonian is known to host a nematic long range order when $B > J$ and the equivalent condition, $K_T > 3K_R/2$, is actually fulfilled in our nematic triangular phase.

Spin nematic order. — The quadrupolar moment is the order parameter of the spin nematics and is described by a symmetric and traceless rank-2 tensor, $Q_{ij}^{\alpha\beta} = S_i^\alpha S_j^\beta + S_j^\alpha S_i^\beta – 2S^\alpha S^\beta / N$. We examined its two point correlation whose structural factor takes a peak at the K- and M-points at the Brillouin zone boundary, which are plotted as functions of K_R in Fig 3(c). A dominant peak at the K-point is consistent with the previously reported antiferro-quadrupolar ordering (AFQ) on the triangular lattice. The peak of the spin-spin correlation function at the K-point, characterizing the 120° antiferromagnetic (AFM) ordering is suppressed in these regions.

To further confirm the existence of nematic long range order, we show the energy spectrum at $K_T = 0.5$ and $K_R = 0.1$ in Fig 3(d). There actually appears a tower of low-lying energy levels well separated from the other excitations, and the symmetries of the quasidegenerate joint states (QDJS) belonging to different spin sectors follow those already known for the SU(2)-symmetry-broken spin nematics on a triangular lattice.

Twisted ring exchange. — We need to understand why the biquadratic B in \mathcal{H}_{mag} (Eq. 2) originates from the twisted ring exchange, K_T, and not from K_R. The spin-1 biquadratic term exchanges the up and down spin-1 pairs, changing S_i^z by ±2, while the Heisenberg (bilinear) term flips S_i^z only by the ±1. Figure 4(d) shows that when K_R is operated to the four spin-1/2’s on a plaquette, they move cyclically, and transform the dimer spin $(S_i^z, S_j^z) = (+1, -1)$ to $(0, 0)$. Whereas, if the path is twisted, K_T can move the two spin 1/2’s on one dimer to the other dimer at once, and flip the dimer spin $(+1, -1)$ to $(-1, +1)$, contributing to the biquadratic term.

The magnitude of K_T had been considered as small in a quantum spin system, as it originates from the fourth order perturbation in a Mott insulator. According to our evaluation, the on-site Coulomb interaction U against the inter-dimer transfer integral, t_{ij}, should be
$U/t_{ij} \lesssim 7$ in order to have $K_C/J \gtrsim 0.1$, which is not too unrealistic. It is also shown that in the vicinity of the Mott transition, $U/t \sim 8$, the ring exchanges can be as large as J'/J. We further mention that $P \neq 0$ works as an effective biquadratic term, thus a larger $J' - J''$ will stabilize the nematic phase than the one found in Fig. 3 (see Supplemental Material).

Instabilities.— The phase boundaries of Fig. 2 can be determined half-analytically by examining the energetics of the hard core bosonic model, H_{AV}, in the bulk limit. The phase diagram of H_{AV} for $t > 0$ is shown in Fig. 3(a). Similar to the case of $t < 0$ studied in the context of cold atoms, the $1/3$- and $2/3$-filled crystal phases appear at large V/t, and the supersolid phases in between. The other parts are divided into the vacuum, bosonic BEC, and a solid, and their boundaries are exactly determined. The onset of the BEC from the vacuum is given by the kinetic energy gain of a single boson, $\mu = -3t/2$. The first order transition line between the vacuum and the solid takes place at $\mu = 3V$, as the attractive interaction favors all the triplets to be doped at once by maximally gaining the energy $3V < 0$. Finally, the instability of the solid against the BEC is evaluated by the energy of a doped hole, $-3t - 6V$.

The shaded region in Fig. 4 covers the parameter range of Fig. 2. The onset of BEC mapped to our model is, $K_{AV} > K_T$ in good agreement with the one from the exact diagonalization. In regions with higher boson densities, the bosons interact magnetically, thus we need to take account of the effect of H_{mag} terms on the energy of hard core bosons. For this purpose, we introduce an effective interaction including the corrections from the magnetic terms, $V_{\text{eff}} = V + \langle J(S_i \cdot S_j) + B(S_i \cdot S_j)^2 \rangle$, and evaluate its value by separately analyzing the spin-1 bilinear-biquadratic Heisenberg model. Originally, the upper left-half of the phase diagram, $K_T > K_R$ was the region with an attractive interaction $V < 0$. However, this correction pushes the phase boundary upward, and the repulsive $V_{\text{eff}} > 0$ region starts just below the triangular nematic phase. The boundary between the singlet and the nematic triangle is given by $\mu = 3V_{\text{eff}}$.

Nematic kagome phase.— There is another phase in the middle of the diagram with $\langle n_t \rangle = 3/4$, characterized by the peak of the AFQ order at three M-points (see Fig. 3(c),(d)). The spatial structure of this quadrupole order expected is a kagome geometry that is realized by regularly depleting one quarter of the lattice sites of the triangular lattice. However, in a pure hard core bosonic model, there is no reason to favor such a kagome structure which is indeed absent in Fig. 3. We thus reexamine the energy of the original Hamiltonian for all different n_t sectors in Fig. 3(b); there is a dip in the energy at $\langle n_t \rangle = 3/4$, which competes with $\langle n_t \rangle = 1$ when $K_T > 0.340$. This is in sharp contrast to the smooth n_t dependence of E in the BEC region. The competition between the three discrete fillings gives the first order transitions. The energy dip at $\langle n_t \rangle = 3/4$ comes solely from the magnetic interaction, $\langle H_{\text{mag}} \rangle$, and not from $\langle H_{\text{AV}} \rangle$ (Supplemental Material Fig. S2), to be more precise, by the contribution from $B(S_i \cdot S_j) = B/2(\langle Q_i \cdot Q_j \rangle - \langle S_i \cdot S_j \rangle) + \text{const}$. This also suggests that the bosons remain BEC. We calculate the bond energy of the biquadratic Hamiltonian on a kagome lattice, and find that it is lower by $dE_{\text{mag}} \sim 0.05$ compared to the same Hamiltonian on the triangular lattice. Thus, the phase boundary in Fig. 2 is finally corrected to, $\mu = 3t + dE_{\text{mag}} + 6V_{\text{eff}}$, showing excellent agreement with the ones obtained by the exact diagonalization.

Remarks.— The mechanism to generate a variety of phases in the spin-1/2 dimer model by the ring exchange interactions is fully fixed, by the exact transformation to a hard core bosonic language. We would like to stress the following points: The prototypes of emergent BEC’s in spin systems were to dope magnons to a spin singlet state by the magnetic field, whereas, here, the ring exchange interaction serves as a fictitious field that does not break the SU(2) symmetry, and dopes the SU(2) bosons, not the magnons carrying magnetization. Once the bosons are doped, the bilinear-biquadratic interaction induced by a four-spin-exchange along the twisted path works to stabilize the nematic orders. The spin nematics basically requires an exchange of spin-1 bosons, thus was observed in the spin-1/2 system in a strong magnetic field (spin polarized state) or in the vicinity of frustrated magnetism, where the frustration played a key role to enhance the quantum fluctuation. Our spin singlet state is a trivial product state in the contour extreme limit of such a complication, thus one may find it rather counterintuitive to have a nematic phase next to it.

The spin-1 hard core bosonic model can also be regarded as a strong coupling limit of the spinor boson systems studied in cold atoms. There, the bosons are softly exclusive on each site due to the on-site interaction, U and the second order perturbation from the $U/t \to \infty$ limit gives a biquadratic interaction between spin-1 bosons, and the nematic Mott insulating phase appears. A situation similar to man-made optical lattices is naturally realized in our quantum spin-1/2 model representing crystalline solids, as such a dimer system is actually quite ubiquitous in transition metals such as BaCuSi$_2$O$_6$, Ba$_2$CoSi$_2$O$_6$Cl$_2$, and Ba$_3$MRu$_2$O$_9$. In Ba$_3$MRu$_2$O$_9$, a nonmagnetic phase is actually found next to the singlet phase, and the relevance with our findings remains an issue to be clarified.

ACKNOWLEDGMENTS

We thank Karlo Penc, Frédéric Mila, Shunji Tsuchiya, Ichiro Terasaki, and Katsuhiro Tanaka for discussions. This work is supported by JSPS KAKENHI Grant Numbers (No. JP17K05533, No.JP17K05497, and No.JP17H02916).
There is another term $K_{K'}$, comparable to K_t and K_T as shown in Ref.22, but plays an equivalent role with K_t, thus is abbreviated in the present paper.

K. Tanaka, Y. Yokoyama, C. Hotta, J. Phys. Soc. Jpn. 87, 023702 (2018).

M. Takahashi, J. Phys. C. 10, 1289 (1977).

C. J. Calzado and J. P. Malrieu, Phys. Rev. B 69, 094435 (2004).

T. Giamarchi, A. M. Tsvelik, Phys. Rev. B 59, 11398 (1999).

T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000).

Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Gudel, K. Kramer, H. Mutka, A. Wildes, K. Habicht, P. Vorderwisch, Nature 423, 62 (2003).

M. Rice, Science 298 (2002) 760.

A. V. Chubukov, Phys. Rev. B 43, 3337 (1991).

T. Hikihara and S. Yamamoto, J. Phys. Soc. Jpn. 77, 014709 (2008).

Y. Yokoyama and C. Hotta, unpublished.

S. Sachrev, R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).

J.-D. Picon, A. F. Albuquerque, K. P. Schmidt, N. Laflorencie, M. Troyer, F. Mila, Phys. Rev. B 78, 184418 (2008).

P. W. Anderson, Phys. Rev. B 20, 694 (1952).

B. Bernu, P. Lecheminant, C. Lhuillier, L. Pierre, Phys. Rev. B 50, 10048 (1994).

K. Penc, A. Läuchli, Introduction to Frustrated Magnetism, Chap.13, Springer, (2011).

X.-F. Zhang, R. Dillenschneider, Y. Yu, S. Eggert, Phys. Rev. B 84, 174515 (2011).

See the Supplementary Material. The accuracy of the phase diagram of the hard core bosonic model at $t < 0$ is provided therein.

S. Wessel, M. Troyer, Phys. Rev. Lett. 95, 127205 (2005).

D. Heidarian, K. Damle, Phys. Rev. Lett. 95, 127206 (2005).

R.G. Melko, A. Paramekanti, A.A. Burkov, A. Vishwanath, D.N. Sheng, L. Balents, Phys. Rev. Lett. 95, 127207 (2005).

A. A. Burkov, L. Balents, Phys. Rev. B 72, 134502 (2005).

The dip is not the finite size effect or the artifact of choosing particular cluster shape. Details are provided in the Supplemental Material.

T. Kimura, Sh. Tsuchiya and S. Kurihara, Phys. Rev. Lett. 94, 110403 (2005).

L. de F. de Parny, H. Yang, F. Mila, Phys. Rev. Lett. 113, 200402 (2014).

L. de F. de Parny, F. Hebert, V. G. Rousseau, G. G. Batrouni, Phys. Rev. B 88, 104509 (2013).

S. E. Sebastian, N. Harrison, C. D. Batista, L. Balicas, M. Jaime, P. A. Sharma, N. Kawashima, I. R. Fisher, Nature, 441, 617 (2006).

H. Tanaka, N. Kurita, M. Okada, E. Kunihiro, Y. Shirata, K. Fujii, H. Uekusa, A. Matsuo, K. Kindo, H. Nojiri, J. Phys. Soc. Jpn. 83, 103701 (2014).

I. Terasaki, T. Igaraishi, T. Nagai, K. Tanabe, H. Taniguchi, T. Matsushita, N. Wada, A. Takata, T. Kida, M. Hagiwara, K. Kobayashi, H. Sagayama, R. Kumai, H. Nakao, Y. Murakami J. Phys. Soc. Jpn. 86 (2017), 033702.