The effects of IL-2 concentration and adding manner on proliferation and function of CIKs

Yali Liu¹,², Jicheng Li², Liangtao Zhao², Jiarui Zhu², Hongxia Wang³, Yingying Wang³, Yong Zhang¹*, Tao Liu²*

¹ College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730030, Gansu, China
² Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
³ Lanzhou University, Lanzhou 730030, Gansu, China

*Correspondence: zhychy@163.com; liit@lzu.edu.cn

¹Yali Liu and Jicheng Li contributed equally to this work.

Abstract

Background: Cytokine-induced killer cells (CIKs) adoptive cell transfer (ACT) is a common malignant tumor treatment method. Interleukin-2 (IL-2) is one of essential cytokines for CIKs culture. In most studies, only the effect of IL-2 concentration on function of CIKs was studied, but the difference between multifarious adding manner of IL-2 was not explored.

Methods: This study established a novel sequential adding manner of IL-2. Different concentration
of IL-2 was added in different CIKs induction phase. Then, proliferation ability of CIKs was
evaluated using cell proliferation curves, immune phenotype was analyzed by flow cytometry
(FCM), IFN-γ secretion ability and cytotoxicity were detected by ELISA Kit and CCK-8 Kit
respectively. Multiple comparison tests were conducted between each group to compare function of
CIKs in 12 experimental groups.

Results: As the IL-2 concentration increased, the number of CIKs continued to increase in each
group, but its function was not positively related with its number: CD3+ CD56+ subpopulation ratio,
INF-γ secretion ability and cytotoxicity presented irregular changes. During quiescent phase and
logarithmic growth phase, adding 300 and 1000 U/mL IL-2 respectively could obtain amounts of
powerful CIKs (CD3+ CD56+ subpopulation ratio: 40.9%, INF-γ secretion ability: 542pg/mL,
cytotoxicity: 40:1, 74.22).

Conclusions: Different concentration of IL-2 had a greater influence on biological function of CIKs
in different growth phase, it was better to add IL-2 sequentially in quiescent phase and exponential
growth phase of CIKs.

Key Words: cytokine-induced killer cells, interleukin-2, adoptive cell transfer, adoptive cell transfer
Over 10,000 Chinese people were diagnosed with cancer averagely per day or around 7.5 people a minute in China in 2015 [1], malignant tumor has become one of the major diseases that takes seriously risks to Chinese health. Adoptive cell transfer (ACT) is a novel cancer treatment approach, which can stimulate or enhance a patient’s immune function to kill cancer cell. Cytokine-induced killer cells (CIKs) is one of the most important ACT, it is a group of heterogeneous cells which obtained by co-culturing human peripheral blood mononuclear cells (PBMCs) with various cytokines (such as OKT3, IL-2, IFN-γ, etc.) in vitro. It is referred to as NK cell-like T lymphocytes, and CD3+ CD56+ subpopulation is its effector cell. In recent years, CIKs ACT has been widely used in various cancers and bring an inspiring clinical effect [2-7] because its strong antitumor activity and in MHC unrestricted manner [7]. As is well-known, clinical effect was directly affected by the number and function of immune cells.

Interleukin 2 (IL-2) is one of immune system signaling molecule, and initially named T cell growth factor (TCGF) [8, 9]. IL-2 plays an important role in promoting T cell proliferation and
function [10], also it was essential cytokines for CIKs growth. IL-2R on the surface of activated NK
cells and T cells is the receptor of IL-2, formed by up to three subunits (α, β, and γ). The high-affinity interaction of IL-2 and IL-2R promote the activation of cell main signaling pathways and play a vital role in promoting the proliferation and function of NK cells [10-12]. Therefore, concentration and adding manner of IL-2 directly affect the quality of CIKs, and then affect its clinical efficacy. At present, in the cultivation of CIKs, IL-2 concentration and adding manner had no uniform standard. In this study, we performed a novel sequential addition: to add IL-2 with different concentration in different CIKs growth phase (quiescent phase and exponential growth phase). There are two primary aims: (1) to explore relationship between concentration, adding manner of IL-2 and CIKs function; (2) to establish a new culture system in order to obtain CIKs with the best proliferation capacity, activity and cytotoxicity.

Methods and methods

CIKs induction

CIKs ACT was approved by the Institutional Review Board of Lanzhou University Second Hospital. Informed consent was obtained from each patient. PBMCs were obtained by Ficoll-Hypaque density
centrifugation. Cells were resuspended at $1 \times 10^6$ CFU/mL in X-VIVO-20 media (LONZA) with 1000U/mL interferon-γ (IFN-γ, Peprotech) for the first 24 h. On day 1, 50ng/mL anti-CD3 monoclonal antibody (OKT3, Peprotech), 100U/mL interleukin-1α (IL-1α, Peprotech) and IL-2 (Peprotech) were added to the medium. Cells were cultured in 5% CO₂ at 37°C, and fresh medium and IL-2 were added every two days. The concentration of IL-2 was 300, 500 and 1000U/mL in first week; and 300, 500, 1000, 3000 and 6000U/mL in second week respectively. CIKs were harvested at day 16.

**Proliferation of CIKs**

Cell morphology was observed regularly, and the survival rate of CIKs was calculated by trypan-blue exclusion. Then, cell proliferation curves were drawn based on cell counting (proliferation fold = number of cells after proliferation / number of cells before proliferation).

**Immune phenotype of CIKs**

CIKs at day 16 from each group were harvested ($1 \times 10^6$ CFU/mL, 100μL) and incubated for 30 min at 4 °C with anti-CD3-fluorescein isothiocyanate (FITC) and anti-CD56-Phycoerythrin (PE) (BD Bioscience). After washing twice, the immune phenotype of CIKs was characterized using flow
cytometry (FCM, BD FACSCalibur), and data analysis was performed with FlowJo V10.

**IFN-γ secretion ability of CIKs**

The expression levels of INF-γ were determined by ELISA (Proteintech): CIKs at day 16 from each group were harvested (1×10^6 CFU/mL). 100μL of sample was added into each well coated with antibody, and the plate was incubated at 37°C for 120 min; by washing 4 times, 100μL of detection antibody-biotinylated was added into each well, then the plate was incubated at 37°C for 60 min; after washing, streptavidin-HRP solution (100μL per well) was added followed by incubation for 30 mins; washing again, TMB substrate was added, and plates was sited in dark room for 15 mins; stop solution was added and optical density (OD) value was detected at 450 nm.

**Cytotoxicity of CIKs**

Cytotoxicity assay was performed by CCK-8 Kit (Yeasen Biotechnology). CIKs from each group were collected at different concentration and used as effector cells. Gastric cancer cells (MKN45) at exponential growth phase were used as target cells. The target cells were reacted with effector cells at an effector-target ratio (E:T) of 10:1, 20:1, 40:1, 80:1, 160:1. All samples were added to a 96-well plate and cultured in 5% CO₂ at 37°C. After 24h, 20μL CCK-8 solution was added in each well and
continued to be cultured for 4h. Then, OD value of each well was detected at 450nm. Cytotoxicity of CIKs was calculated using the formula: cytotoxicity = \[1 - \frac{(\text{OD experimental group} - \text{OD effector group})}{\text{OD control group}}\] \times 100%.

Statistic analysis

Statistical analysis was performed with GraphPad Prism 7.00. Proliferation curve data were analyzed by linear regression. Cytokine assay date used one-way ANOVAs. Cytotoxicity analysis was used two-way ANOVAs. Multiple comparisons test was carried out by dunnett’s multiple comparisons test. \(P<0.05\) was considered as significant difference; \(P<0.01\) was considered as high significant difference; \(P>0.05\) was considered to be not a significant difference [2].

Result

Proliferation of CIKs

The viability of CIKs in each group was greater than 95%. In all groups, proliferation ability of CIKs enhanced with the concentration of IL-2 increased; high concentration IL-2 groups showed a better growth tendency, and its proliferation fold could reach 157.54 in day16 (Fig.1, Table 1).

Immune phenotype of CIKs
The results of FCM analysis showed that group A3 had the highest CD3+CD56+ subpopulation ratio (40.9%); and in multiple comparisons test, there was a high significantly difference between group A3 and other groups ($P<0.01$). Group A2 and A4 showed a higher ratio (30-40%); group A1, A5, B2 and B3 had middle ratio (20-30%); group B4, C3 and C4 had lower ratio (15-20%); group B5 and C5 had the lowest ratio (12.5, 10%) (Fig.2).

**IFN-γ secretion ability of CIKs**

The result of IFN-γ secretion ability showed in Fig.3: (1) group A3 had the highest IFN-γ production (542 pg/mL); (2) multiple comparison test showed that no significant difference was found between group A3 and A2, B2, B3 ($P>0.05$), and high significant difference between group A3 and the others ($P<0.01$).

**Cytotoxicity of CIKs**

In each group (Fig. 4), the lowest cytotoxicity appeared at E:T=10:1; after that, cytotoxicity increased as E:T raised, and it reached the highest at 40:1, but gradually decreased at 80:1 and 160:1.

Then multiple comparison test was performed between the best E:T (40:1) and the others (10:1, 20:1, 80:1, 160:1) to compare the cytotoxicity of CIKs: (1) in all groups, the cytotoxicity of E:T = 40:1
was obviously better than 10:1 and 20:1 ($P<0.01$); (2) E:T = 40:1 showed a better cytotoxicity than 80:1 in group A3 and C4 ($P<0.05$), and it was more better in group C3 ($P<0.01$); also this superiority was not obvious in other groups ($P>0.05$); (3) the cytotoxicity of 40:1 was obviously better than 160:1 in group A4, B3 and B4 ($P<0.05$), this superiority was not significant in group B2 ($P>0.05$), and was very significant in other groups ($P<0.01$).

On the other hand, with a constant E:T (Fig. 5), group A3 showed a better cytotoxicity, then we compared group A3 with the others: (1) when E:T=10:1, there was a high significant difference between A3 and other groups ($P<0.01$); (2) at 20:1, no difference was found between group A3 and A1, A2, but high significant difference with the others ($P<0.01$); (3) at 40:1 and 80:1, no significant difference was found between the group A3 and A2, and high significant differences with the others ($P<0.01$); (4) at 160:1, no significant difference was found between group A3 and A1, A2, A4, however high significant differences with the others ($P<0.01$).

**Discussion**

IL-2 is a multicellular cytokine with multi-directional function, by interacting with its receptor IL-2R, it can promote cell proliferation and enhance cell activity. To date, there is no uniform
standard on concentration of IL-2 in CIKs culture. Li Y [13] and Meng Wang [14] respectively used 80ng/mL and 300 U/mL IL-2 to cultivate CIKs. The concentration of IL-2 in Niu L’s [15] experiment was 400 U/mL, and the DC-CIKs ACT yielded good results in pancreatic cancer treatment. In other studies, its concentration was 500 or 1000 U/mL [16, 17]. Of course, recently, a large and growing body of studies has investigated effects of different concentration of IL-2 on CIKs. VitoloD [18] considered the concentration greater than 500 U/mL is beneficial to expansion of NK cells in vitro. Research by Xiong D [19] showed that when IL-2 concentration was less than 1000U/mL, there was no correlation between IL-2 and killing activity of NK cells; and high-concentration IL-2 (≥1000 U/mL) could further activate the killing activity of purified NK cells in vitro. Yet, some researchers [20] found 500U/mL was best. Other study [21] obtained the strongest proliferation ability of CIKs, when IL-2 was 1000U/mL. According to Zoll B [22], the appropriate IL-2 concentration in CIKs culture was 67-500U/mL. Nevertheless, other researchers hold a opposite view, they thought that different concentrations of IL-2 have a little effect on cytotoxicity of CIKs [23]. It is worth mentioning that although extensive researches have been carried out on this question, no study was found which adjusted IL-2 concentration according to
different growth phase of CIKs in domestic and foreign research.

In this study, we added IL-2 sequentially during CIKs culture, our research demonstrated that:

(1) IL-2 concentration was proportional to CIKs proliferation capacity, however, these CIKs did not have a powerful cytotoxicity; instead, its INF-γ secretion ability and cytotoxicity would decrease when IL-2 was over a certain concentration; (2) in quiescent phase of CIKs, low-concentration IL-2 (300U/mL) could enhance its CD3 + CD56 + subpopulation ratio, INF-γ secretion ability and cytotoxicity; (3) in exponential growth phase, low-concentration IL-2 (300, 500U/mL) had no advantages, also overdose (3000, 6000U/mL) was not suitable for CIKs growth; (4) with a consistent IL-2 concentration of CIKs in quiescent phase, CD3+ CD56+ subpopulation ratio and INF-γ secretion ability were reduced when IL-2 concentration of exponential growth phase was greater than 3000U/mL; CD3 + CD56 + subpopulation ratio, INF-γ secretion ability and cytotoxicity were lowest when IL-2 concentration of exponential growth phase was 6000 U/mL.

In short, our study indicated that CIKs need different dose IL-2 in different phase. Why did these phenomena occur? The first, the first week is quiescent phase of CIKs, cells are mostly at rest, T cell surface is not activated, it does not express or weakly express IL-2R. In quiescent phase,
multiple cytokines (OKT3, TNFα) are added to induce the expression of IL-2R, but this process takes time, so there is not enough IL-2R during this phase. At this time, the affinity between IL-2Rβ, IL-2Rγ expressed by NK cells and IL-2 was lower, which means that IL-2 has a weak effect on T cells and NK cells. In a word, more IL-2 is not always better in quiescent phase of CIKs, vast amounts of IL-2 may cause cell intolerance, we recommend stimulating CIKs with low-concentration IL-2 (300U/mL), and increasing IL-2 concentration after NK and T cells are fully activated. Second, the second week is exponential growth phase of CIKs, CD69, CD25, CD71 are up-regulated after T cells undergo early, middle, and late activation, then CD25 and IL-2Rβ, IL-2Rγ chain together constitute a high affinity IL-2R [24-26]. Meanwhile, after being fully activated, NK cells also express the high affinity receptor IL-2Ra. Another reason is more IL-2 can induce target cells to increase IL-2R expression. That is to say, in exponential growth phase, the affinity between IL-2 and IL-2R could theoretically increase with the increase of IL-2 concentration, nevertheless, our study demonstrated that middle-concentration IL-2 (1000U/mL) showed a better experimental results than high-concentration (3000, 6000U/mL), the reason may be because excess IL-2 would induce enrichment of Treg cells [27, 28].
In this study, we established a sequential adding manner of IL-2 in CIKs culture (quiescent phase: 300U/mL, exponential growth phase: 1000U/mL), which can effectively promote proliferation ability, increase CD3+CD56+ subpopulation ratio, enhance INF-γ secretion ability and cytotoxicity of CIKs. This sequential method can not only meet the basic needs of CIKs growth, but also can adjusting IL-2 concentration according to IL-2R expression of T cells in different phase, thereby reducing the experimental cost. It is beneficial to guide clinical treatment of CIKs ACT for malignant tumors.

Abbreviations

ACT: Adoptive cell transfer; CIKs: Cytokine-induced killer cells; FCM: Flow cytometry; IFN-γ: Interferon-γ; IL-2: Interleukin-2; OD: Optical density.

Acknowledgements

The authors would like to thank the members of Cuiying Biomedical Research Center for providing their platforms.

Author contributions

YL, YZ and TL contributed to the study conception and design. Material preparation, data collection and analysis were
performed by YLL and JLL. LZZ, JRZ, HXW and YYW prepared all the figures and tables. The first draft of the manuscript was written by YLL. All authors read and approved the final manuscript.

Funding

This study was funded by Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (grant number CY2019-QN13) and Cuiying Scientific Training Program for Undergraduates of Lanzhou University Second Hospital (grant number CYXZ-43).

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Consent for publication

This is not applicable for this study.

Ethics approval and consent to participate

The methodology for this study was approved by the Human Research Ethics committee of Lanzhou University Second Hospital (Ethics approval number: 2017A-044). Informed consent was obtained from all individual participants included in the study.

Competing interests
The authors declare that they have no competing interests.

Author details

1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730030, Gansu, China. 2 Lanzhou University
Second Hospital, Lanzhou 730030, Gansu, China. 3 Lanzhou University, Lanzhou 730030, Gansu, China

References

1 Chen W, Zheng R, Zhang S, Zeng H, Zuo T, Xia C, Yang Z, He J. Cancer incidence and mortality in China in 2013: an analysis based on urbanization level. Chinese Journal of Cancer Research. 2017; 29(1):1-10. http://dx.doi.org/10.21147/j.issn.1000-9604.2017.01.01.

2 Liu Y L, Yang L X, Zhang F, Tang B S, Zhao L T, Zhu J R, Jin Q Y, Wang R X, Li Y M. The clinical effect and safety of DC/CIK immunotherapy for pancreatic cancer: A systematic review and meta-analysis. Cytotherapy. 2019; 00: 1-17. https://doi.org/10.1016/j.jcyt.2019.07.006.

3 Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015; 348(6230):62–68. https://doi.org/10.1126/science.aaa4967.

4 Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016; 13(5):273–290. https://doi.org/10.1038/nrclinonc.2016.25.

5 Pan QZ, Liu Q, Zhou YQ, Zhao JJ, Wang QJ, Li YQ, Tang Y, Gu JM, He J, Chen SP, Weng DS, Xia JC. CIK cell cytotoxicity is a predictive biomarker for CIK cell immunotherapy in postoperative patients with hepatocellular carcinoma. Cancer Immunology, Immunotherapy. 2020; 14. https://doi.org/10.1007/s00262-020-02486-y.

6 Li N, Tian YW, Xu Y, Meng DD, Gao L, Shen WJ, Liu ZL, Xu ZQ. Combined Treatment with Autologous CIK Cells, Radiotherapy and Chemotherapy in Advanced Cervical Cancer. Pathol Oncol Res. 2019; 25(2):691-696. https://doi.org/10.1007/s12253-018-0541-2.

7 Bremm M, Pfeffermann LM, Cappel C, Katzki V, Erben S, Betz S, Quaiser A, Merker M, Bonig H, Schmidt M, Klingebiel T, Bader P, Huencke S, Rettinger E. Improving Clinical Manufacturing of IL-15 Activated Cytokine-Induced Killer (CIK) Cells. Front Immunol. 2019; 10:1218. https://doi.org/10.3389/fimmu.2019.01218.
262
8. Mier JW, Gallo RC. Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proc Natl Acad Sci U S A. 1980; 77(10):6134-8. https://doi.org/10.1073/pnas.77.10.6134.

9. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976; 193(4257):1007-8. https://doi.org/10.1126/science.181845.

10. Orozco Valencia A, Camargo Knirsch M, Suavinho Ferro E, Antonio Stephano M. Interleukin-2 as immunotherapeutic in the autoimmune diseases. Int Immunopharmacol. 2020; 81:106296. https://doi.org/10.1016/j.intimp.2020.106296.

11. S.L. Gaffen. Signaling domains of the interleukin 2 receptor. Cytokine. 2001; 14(2):63-77. https://doi.org/10.1006/cyto.2001.0862.

12. Ai S Z. Effect and Mechanism of Interleukin 21 on Cytokine Induced Killer against Leukemic K562 Cells. Dissertation, 2017. Lanzhou University.

13. Li Y, Schmidt-Wolf IJG, Wu YF, Huang SL, Wei J, Fang J, Huang K, Zhou DH. Optimized protocols for generation of cord blood-derived cytokine-induced killer/natural killer cells. Anticancer Research. 2010; 30(9):3493-9.

14. Wang M, Shi S B, Qi J L, Tang X Y, Tian J. S-1 plus CIK as second-line treatment for advanced pancreatic cancer. Medical Oncology. 2013; 30(4):747. https://doi.org/10.1007/s12032-013-0747-9.

15. Niu L, Chen J, He L, Liao M, Yuan Y, Zeng J, Li J, Zuo J, Xu K. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic pancreatic cancer. Pancreas. 2013; 42(7):1143-9. https://doi.org/10.1097/MPA.0b013e3182965d6e.

16. Wei C, Wang W, Pang W, Meng M, Jiang L, Xue S, Xie Y, Li R, Hou Z. The CIK cells stimulated with combination of IL-2 and IL-15 provide an improved cytotoxic capacity against human lung adenocarcinoma. Tumor Biology. 2014; 35(3):1997-2007. https://doi.org/10.1007/s13277-013-1265-2.

17. Yin X, Xu X, Zhao Y, Wang Z J, Wang H Y, Hu Z B. Comparison of Several Optimization Schemes for the Induction and Expansion of Antibody-Mediated High Efficiency CIK (AM-HE-CIK) In Vitro. Journal of Experimental Hematology. 2016; 1:191-196. https://doi.org/10.7534/j.issn.1009-2137.2016.01.036.

18. Vitolo D, Vujanovic NL, Rabinovich H, Schlesinger M, Herberman RB, Whiteside TL. Rapid IL-2-induced adherence of human natural killer cells. Expression of mRNA for cytokines and IL-2 receptors in adherent NK cells. Journal of Immunology. 1993; 151(4):1926-37.

19. Xiong D, Yang Z G, Li Q H, Wu Z C, L J T. Method for Expansion In Vitro of CD3-CD56+CD16+ NK Cells Highly Purified from Human Peripheral Blood. Journal of experimental hematology. 2010; 18(5):1310-5.

20. Carlen S, Gilljam M, Chambers B J, Aschan J, Gaven H, Ljunggren H-G, Christensson B, Dilber M S. A new method for
in vitro, expansion of cytotoxic human CD3−CD56+, natural killer cells. 2010. Human Immunology 62(10):1092-1098.
https://doi.org/10.1016/S0198-8859(01)00313-5.

21 Xu L, Q, Li J H, Ni X W, Wu M J, Sun Y Y, Wu J H. Optimization of cytokine-induced killer cell differentiation in vitro. Chin J Blood Transfusio. 2015; 28(8):1030-3. https://doi.org/10.13303/j.jcbt.issn.1004-549x.2015.08.073.

22 Zoll B, Lé tourneau S, i RH, Golkar L, Schmidt-Wolf IG. Modulation of cell surface markers on NK-like T lymphocytes by using IL-2, IL-7 or IL-12 in vitro stimulation. Cytokine. 2000; 12(9):1385-90.
https://doi.org/10.1006/cyto.2000.0733.

23 Dai H, Shen L Q, Zhuang Z X, Zhou I Y, Qu M Y. Influence of Different Cultivate Conditions on Cytokine-induced Killer Cells Expansion and Anti-tum or Features in vitro. JOURNAL OF SOOCHOW UNIVERSITY MEDICAL SCIENCE EDITION. 2011; 31(2):247-249.

24 Golkar L, Ding XZ, Ujiki MB, Salabat MR, Kelly DL, Scholtens D, Fought AJ, Bentrem DJ, Talamonti MS, Bell RH, Adrian TE. Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1.[J]. Journal of Surgical Research. 2007; 138(2):163. https://doi.org/10.1016/j.jss.2006.05.037.

25 Lé tourneau SI, Krieg C, Pantaleo G, Boyman O. IL-2-and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. Journal of Allergy & Clinical Immunology. 2009; 123(4):758-62.
https://doi.org/10.1016/j.jaci.2009.02.011.

26 Chistiakov D A, Voronova N V, Chistiakov P A. The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies. Immunology Letters. 2008; 118(1):1-5. https://doi.org/10.1016/j.imlet.2008.03.002.

27 Wang C, Wei S J. Research progress of CD4+ CD25+ Treg cells and tumor immunity. The Practical Journal of Cancer. 2014; 9:1196-9. https://doi.org/10.3969/j.issn.1001-5930.2014.09.051.

28 Cesana GC, DeRaffele G, Cohen S, Moroziewicz D, Mitcham J, Stoutenburg J, Cheung K, Hesdorffer C, Kim-Schulze S, Kaufman HL. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology. 2006; 24(7):1169-77. https://doi.org/10.1200/JCO.2005.03.6830.

Legends of Figures and Tables

1. Table1 IL-2 concentration and CIKs numbers of 12 experimental groups

2. Fig.1 The proliferation curves of CIKs in different experiment groups

17
3. Fig. 2 The result of flow cytometry of CD3+CD56+ cell in CIKs on day 16

4. Fig. 3 IFN-γ secretion ability of CIKs in different experiment groups

5. Fig. 4 The cytotoxicity of CIKs in different groups

6. Fig. 5 The cytotoxicity of CIKs at different effector-target ratio

Tables and Figures

| Group | Dose of IL-2 (U/mL) | Cell numbers in different time point (×10^6/ml, X±S) |
|-------|--------------------|-----------------------------------------------------|
|       | quiescent phase | exponential growth phase | day 4 | day 7 | day 10 | day 13 | day 16 |
| A1    | 300              | 300                   | 3.40±0.01 | 8.63±0.36 | 66.30±1.67 | 125.77±1.98 | 302.11±2.92 |
| A2    | 300              | 500                   | 3.40±0.02 | 9.15±0.67 | 70.52±1.38 | 128.74±2.60 | 325.07±3.84 |
| A3    | 300              | 1000                  | 3.42±0.02 | 11.68±1.26 | 72.50±2.26 | 150.88±1.50 | 384.37±2.05 |
| A4    | 300              | 3000                  | 3.50±0.02 | 12.58±0.87 | 80.67±1.13 | 158.10±2.09 | 390.70±1.29 |
| A5    | 300              | 6000                  | 3.48±0.02 | 13.65±0.89 | 85.13±2.97 | 164.59±2.22 | 402.66±3.30 |
| B2    | 500              | 500                   | 3.52±0.01 | 12.59±0.76 | 92.68±2.07 | 185.82±1.35 | 415.31±2.28 |
| B3    | 500              | 1000                  | 3.49±0.02 | 14.72±0.02 | 100.28±2.74 | 191.14±2.14 | 434.49±2.19 |
| B4    | 500              | 3000                  | 3.53±0.02 | 17.43±0.48 | 104.94±3.77 | 183.14±2.13 | 443.03±1.41 |
| B5    | 500              | 6000                  | 3.49±0.03 | 18.44±0.48 | 118.60±1.51 | 208.99±2.41 | 450.20±1.66 |
| C3    | 1000             | 1000                  | 3.52±0.03 | 16.75±0.85 | 113.67±3.40 | 205.11±2.07 | 449.73±1.79 |
| C4    | 1000             | 3000                  | 3.53±0.03 | 20.37±1.14 | 124.78±1.37 | 212.18±1.59 | 464.64±2.57 |
| C5    | 1000             | 6000                  | 3.54±0.01 | 23.39±0.45 | 116.22±1.73 | 220.58±2.02 | 472.63±1.55 |
Fig. 1 The proliferation curves of CIKs in different experiment groups

Fig. 2 The result of flow cytometry of CD3+CD56+ cell in CIKs on day 16
Fig. 3 IFN-γ secretion ability of CIKs in different experiment groups

*: $P<0.05$ was considered as significant difference; **: $P<0.01$ was considered as high significant difference; ns: $P>0.05$ was considered to be not a significant difference; V: Dunnett's multiple comparisons test was performed between group A3 and other groups.

Fig. 4 The cytotoxicity of CIKs in different groups
Fig. 5 The cytotoxicity of CIKs at different effector-target ratio

*: $P<0.05$ was considered as significant difference; **: $P<0.01$ was considered as high significant difference; ns: $P>0.05$ was considered to be not a significant difference; ▼: Dunnett's multiple comparisons test was performed between group A3 and other groups.