Distribution of fishing boats and its oceanography characteristic in the eastern Indian Ocean off Sumatera

A F Syah¹*, M Daud¹ and M A Partadisastra²

¹University of Trunojoyo Madura, Jl. Raya Telang PO BOX 2 Kamal, Bangkalan, Madura, East Java, Indonesia
²Ministry of Maritime Affairs and Fisheries Indonesia, Jl. Medan Merdeka Timur No. 16 – Central Jakarta, Indonesia
*Corresponding author: fachrudin@trunojoyo.ac.id

Abstract. Understanding fishing boats locations and its oceanographic feature were significantly important. The objectives of this study were to characterize the dissemination of fishing boats and evaluate the characteristic of oceanographic conditions on the fishing boats in the eastern Indian Ocean of Sumatera (EIOS). The data of fishing boats derived vessel monitoring system (VMS) and visible infrared imaging radiometer suite (VIIRS) boat detection (VBD) data were provided by Ministry of Maritime Affairs (MMA). Satellite-based oceanographic data of chlorophyll-a concentration (chl-a), sea-surface temperature (SST), and salinity were obtained from NOAA national centers for environmental information website. The results showed the number of fishing vessel that operated during east monsoon was higher than others monsoon. The results also showed that the spatial dispersion of VBD data was wider than VMS data. Most of the fishing boats appeared in position of 95°E – 100°E and 2.30°S – 2.30°N. In addition, most of fishing boats detected in oceanographic condition for SST of 29 – 31 °C, chl-a of 0.1 – 0.3 mg/m³, salinity of 32 – 33 psu.

1. Introduction
The high level of fishing-vessel operation in the Indian Ocean has forced the government to control the distribution of vessels in order to support protection, safety and sustainability efforts in the fisheries sector. In addition, boat surveillance may also minimize illegal, unreported and unregulated (IUU) fishing practices, which could have negative effects, such as tension between fishermen and a reduction in state revenues and reduction in the availability of marine and fisheries resources [1]. One of the regions in the Indian Ocean that has a strategic fisheries area with significant maritime activity is Fish Management Area no. 572.

Currently, boat surveillance in Indonesian seas is carried out by boat patrols and the use of tracking devices such as the Vessel Monitoring System (VMS). The VMS was used to track the movement of vessels and provide information on the location, speed and direction of the vessel to the port [2, 3]. In addition, visible infrared imaging radiometer suite (viirs) boat detection (VBD) can be used to detect fishing boats. Many studies have employed VBD data to detect fishing vessels such as [4-7]. Integrating VDB data with VMS data, it would be possible to decide vessels that do not have or lost a VMS signal.

On the other hand, productivity and distribution of fish are affected by changes in environmental conditions due to variability in temperature, tides, salinity, wind patterns, thermocline depth and sea surface height [8, 9, 10]. Water temperatures have a major effect on fish growth, movement and mobility, migration and distribution. Changes in water temperatures below optimum temperatures cause
a decrease in movement and feeding activities and inhibit the spawning process [11]. Salinity may have an effect on the quality of seawater and species and the biota. Fish prefers to choose areas with salinity that was compatible with the osmotic pressure of the body. Chlorophyll-a concentration (chl-a) defines the availability of food for fish. Chl-a developed as a response to low water temperatures as an impact of the upwelling process. [12] reported that SST and chl-a were the most significant variables affecting CPUE sardine. The objectives of this study were to investigate the distribution of fishing boats and its oceanography characteristic.

2. Methods

2.1. Study area
The research was performed in the EIOS, ranging between 6°N – 9°S and 91°E – 106°E (Figure 1). This region is recognized as one of the fishing areas for tuna. EIOS is part of the fisheries management area of the Republic of Indonesia called WPP RI 572.

![Figure 1. Map of study area in the eastern Indian Ocean off Sumatera.](image)

2.2. Satellite-based data
We used data from VBD, VMS and satellite-derived oceanographic data. The VBD data was downloaded from National Oceanic and Atmospheric Administration (NOAA) website (https://www.ngdc.noaa.gov/eog/viirs/map_selector/). The VMS data was provided by Ministry of Maritime Affairs and Fisheries Indonesia (http://integrasi.djpt.kkp.go.id). Level 3 monthly data for SST and chl-a were obtained from oceancolor website (https://oceancolor.gsfc.nasa.gov/cgi/l3). Level 3 monthly for salinity was obtained from copernicus marine service website (www.cmems.co.id).

The dissemination of fishing boats data in csv format extracted from VIIRS DNB. The data was analyzed on the basis of the algorithm developed by [4]. Based on the light intensity, the types of fishing boats were classified as high quality flag (QF1) detection. The speed and fishing gear type of boats were employed as a gauge to decide the fishing boats from VMS. The boats speed less 3 knots was recognized operating fishing works while boats speed more than 3 knots were consider not to be operating fishing works. Spatial mapping and analysis of the dissemination of fishing boats and oceanographic data were carried out using the Geographic Information System (GIS) software.

The spatial dissemination of fishing boats has been studied using spatial indicators, namely (1) spatial dispersion and (2) directional dispersion. The spatial dispersion of fishing boats was measured using a "standard distance tool" reflecting the degree to which the behavior of the space fishing boats is spatially dispersed around the central pattern. The greater the value of the circle size, the more scattered the fishing activity, or vice versa. In addition, directional dispersion was measured using the "standard
deviation ellipses tool" which represents the direction of the coordinate distribution of boats in the x and y directions.

\[SD = \sqrt{\frac{\sum_{i=1}^{n}(x_i-X)^2}{n}} + \sqrt{\frac{\sum_{i=1}^{n}(y_i-Y)^2}{n}} \]

(1)

\[SD_x = \sqrt{\frac{\sum_{i=1}^{n}(x_i-X)^2}{n}} \quad SD_y = \sqrt{\frac{\sum_{i=1}^{n}(y_i-Y)^2}{n}} \]

(2)

where \(SD \) is spatial dispersion, \(SD_x \) is directional dispersion of x axis and \(SD_y \) is directional dispersion of y axis.

3. Result and Discussion

3.1. Number and distribution of fishing boats

The number of fishing boats extracted from VBD and VMS fluctuated in the EIOS (Figure 2). The fluctuation is thought to be due to the absence of signal from the VMS or because of cloud cover or bad weather so that it could not detect the light fishing from VBD. The fluctuated In general, the number of fishing boats collected from VMS was higher than the VBD. A total of 19451 VMS and 17710 VBD data were obtained from January 2017 – December 2018. In addition, the number of fishing boats extracted from VMS during west season and transitional was more than east season. The findings were consistent with those of [13] who demonstrated that the angling vessel was working during the southeast monsoon more than during the northeast monsoon. They also showed that the high predicted probability area of tuna occurred in west and transitional season.

Figure 3 showed the spatial dispersion (circle) and direction of dispersion (ellipse) of VBD and VMS. In general, circle and an elliptical of VBD and VMS has identical impression in 4 different season. However, the spatial dispersion and direction of dispersion of VBD was slightly more south and bigger than the dispersion and VMS’s direction of dispersion. This condition was indicated that the fishing boats extracted from VMS slightly concentrated in the north part of study compared with VBD. The intersection area between the VMS and VBD data was in position of 96 °E – 101 °E and 2.30 °N – 2.30 °S.

Table 1 showed the seasonal values of measures for the geographical dissemination of fishery vessels i. e. center X, center Y, directional dispersion, spatial dispersion and directional trends. The distribution centre of light fishing (VBD) in west season is at 100.0256 °E and 1.2956 °S, while in the east season is 100.6425°E and 1.8468°S. Spatial dispersion of it in the west season is 535.8600 km longer than in the east monsoon which is 496.9104 km, demonstrated that the dissemination of fishing boats in the west season is bigger than in the east season. Furthermore, the distribution center of fishing boats (VMS)
in west season is at 98.2268 °E and 0.2142 °S, while in the east season is 97.6535°E and 0.4307°N. Spatial dispersion of it in the west season is 348.1624 km slightly longer than in the east season which is 339.4899 km, expressed that the dissemination of fishing boats in the west season is slightly wider than in the east monsoon.

![Figure 3](image-url)

Figure 3. Spatial dispersion (circle) and direction of dispersion (ellipse) of fishing boats in the study area during the (a) west season, (b) transitional 1 for VBD and VMS, (c) east season and (d) transitional 2 for VBD and VMS.

Table 1. Values of angling vessels seasonally distributed geographically.

Seasonal	Center X (°)	Center Y (°)	Directional Dispersion x (km)	Directional Dispersion y (km)	Spatial Direction (km)	Directional Trends (°)
VBD						
West	100.0256	-1.2956	741.6118	155.8968	535.8600	136.7681
Transitional I	101.1282	-2.5974	774.8447	181.6738	562.7564	135.9344
East	100.6425	-1.8468	686.5885	149.7870	496.9104	136.7662
Transitional II	101.2188	-2.5098	853.9536	146.6213	612.6723	134.1847
VMS						
West	98.2268	-0.2142	470.5909	144.8393	348.1624	139.6882
Transitional I	97.7612	0.0369	474.1630	145.7944	350.7753	142.7657
East	97.6535	0.4307	456.4788	148.7747	339.4899	142.8897
Transitional II	97.6925	0.5316	378.9123	126.7085	282.5151	138.3180
Figure 4 showed the oceanographic condition on the fishing boats. The figure showed that most of the fishing boats located in chl-α value of 0.1 – 0.2 mg/m³. [14] reported that most Yellowfin tuna (Thunnus albacares) in water around West Sumatera caught in chl-α value of 0.15 mg/m³ – 0.17 mg/m³. The Indian Ocean is one of the region most impacted by the El Niño events. Intense El Niño events in this area have a direct impact on primary production and may cause anomaly high chl-α [15]. Therefore, an environment with high concentrations of chlorophyll, such as upwelling areas with convergence zones for plankton aggregation, is likely to attract larger predators, such as tuna [16]. Such chl-α can result in increased catches during the El Niño case [17-20].

In this study, most of fishing boats detected in SST value of 29 – 31 °C. [21] stated that the highest CPUEs of Skipjack tuna are characterized by SST value of 28.5°C – 30°C. Temperatures were believed to have an influence on fish growth, behavior and mobility, migration and dissemination. Furthermore, salinity was another important abiotic factor that affects the physiology of fish and affects the ability of fish to survive in different environments. Salinity has a significant effect on the physiology (osmotic pressure) of marine animals, including tuna. [22] noted that the dissemination of Bigeye tuna is affected
by numerous oceanographic factors, including salinity. In addition, [23] estimated that the majority of Bigeye tuna distributed in the salinity value of 34 psu and high salinity will postpone the movement of Bigeye tuna. This study showed most of fishing boats appeared in salinity value of 32 – 33 psu.

4. Conclusion
Most of the fishing boats from VMS and VBD located in area of 95 °E – 100 °E and 2.30 °N – 2.30 °S. The fishing boats, both those originating from VBD and VMS, were appeared more frequently in chl-a value of 0.1 – 0.3 mg/m³, SST value of 29 – 31 °C and salinity value of 32 – 33 psu.

Acknowledgments
We would thanks to Ministry of Maritime Affairs and Fisheries Indonesia for the VMS data, National Oceanic and Atmospheric Administration for VBD data, oceancolor website for SST and chl-a and copernicus marine service website for salinity data.

References
[1] Suniada K I 2018 Validating the distribution of traditional fishing vessels using remote sensing data and GPS tracker Journal of Marine and Aquatic Sciences 4 14–21
[2] Hartono B D 2007 Analysis of the Vessel Monitoring System (VMS) model in the supervision of fishing vessels in Indonesia Dissertation (Bogor: Institut Pertanian Bogor)
[3] Saputra H, Budi K A A, Istardi D and Wiranto S S 2016 Use of Automatic Identification System (AIS) data to determine vessel movements (case study on boat traffic in the Singapore strait and Batam waters) Jurnal Integrasi 8 139–143.
[4] Elvidge C D, Zhizhin M, Baugh K 2004 VIIRS low light imaging data Remote Sensing 7 3020-3036.
[5] Nurholis, Gaol J L and Syah A F 2020 Light Fishing Fleets Monitoring by GIS-Based Spatiotemporal Analysis in West Sumatera Waters Pertanika Journal 28 327 – 351.
[6] Gaol J L, Syah, A F, Arhatin R E, Natih N M N, Nurholis and Kusumaningrum E E 2019 Distribution of fishing vessels derived Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor and Vessel Monitoring System (VMS) in the Java Sea IOP Conf. Series: Earth and Environmental Science 429.
[7] Syah A F, Setyowati N and Susilo E 2019 Preliminary findings on distribution of Bali Sardinella (Sardinella lemuru) in relation to oceanographic conditions during southeast monsoon in Bali Strait using remotely sensed data Journal of marine science 1 25-30.
[8] Southward A J, Boalch G T and Maddock L 1988 Fluctuations in the herring and pilchard fisheries of Devon and Cornwall linked to change in climate since the 16th century J. Mar. Biol. Assoc. U.K. 68 423–445.
[9] Alheit J and Hagen E 1997 Long-term climate forcing of European herring and sardine populations Fisheries Oceanography 6 130–139.
[10] Lumban-Gaal J, Leben R R, Vignudelli S, Mahapatra K, Okada Y, Nababan B, Mei-Ling M, Amri K, Arhatin R E, and Syahdan M 2015 Variability of satellite-derived sea surface height anomaly, and its relationboat with Bigeye tuna (Thunnus obesus) catch in the Eastern Indian Ocean European Journal of Remote Sensing 48 465-477
[11] Tadjudjah M 2005 Analisis daerah penangkapan ikan madidiang Thesis (Bogor: Institut Pertanian Bogor)
[12] Suniada K I and Susilo E 2017 Linkages of oceanographic conditions to pelagic fisheries in the Bali Strait Jurnal Penelitian Perikanan Indonesia 23 275-286
[13] Syah A F, Gaol J L and Nurholis 2020 Response of oceanographic condition to the distribution of Skipjack tuna (Katsuwonus pelamis) IOP Conf. Series: Earth and Environmental Science (on progress)
[14] Siregar E S Y, Siregar V P, and Agus S B 2018 Fishing ground analysis of yellowfin tuna thunnus albacares in West Sumatera waters based on gam model Jurnal Ilmu dan Teknologi Kelautan
[15] Murtugudde R G, Signorini S R, Christian J R, Busalacchi A J, McClain C R and Picaut J 1999 Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–1998 Journal of Geophysical Research 104 18351–18366.

[16] Lehodey P, Bertignac M, Hampton J, Lewis A and Picaut J 1997 El Niño southern oscillation and tuna in the western Pacific Nature 389 715–718.

[17] Polovina J J Howell E Kobayashi D R and Seki M P 2001 The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources Progress in oceanography 49 469–483.

[18] Lehodey P, Chai F and Hampton J 2003 Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model Fisheries Oceanography 12 483–494.

[19] Polovina J J, Balazs G H, Howell E A, Parker D M, Seki M P and Dutton P H 2004 Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean Fisheries Oceanography 13 36–51.

[20] Miller K A 2007 Climate variability and tropical tuna: management challenges for highly migratory fish stocks Marine Policy 31 56–70.

[21] Zainuddin M, Nelwan A, Farhum S A, Najamuddin, Hajar M A I, Kurnia M and Sudirman 2013 Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the bone bay-flores sea using remotely sensed oceanographic data International Journal of Geoscience 4 259-266

[22] Faizah R dan B I Prisantoso 2010 Biologi reproduksi tuna mata besar (Thunnus obesus) yang tertangkap di Samudera Hindia Tesis Bawal 3 129-137

[23] Novianto D and Susilo E 2016 Role of sub surface temperature, salinity and chlorophyll to albacore tuna abundance in Indian Ocean Indonesian Fisheries Research Journal 22 17–26.