Colloquium: Spintronics in graphene and other two-dimensional materials

A. Avsar

Electrical Engineering Institute, Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland

H. Ochoa

Department of Physics, Columbia University, New York, New York 10027, USA

F. Guinea

Imdea Nanociencia, Faraday 9, 28049 Madrid, Spain.
School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain.

B. Özyilmaz

Department of Physics, 2 Science Drive 3, National University of Singapore, Singapore 117542, Singapore

B. J. van Wees

Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

I. J. Vera-Marun

School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

(Dated: January 14, 2020)

After the first unequivocal demonstration of spin transport in graphene (Tombros et al., 2007), surprisingly at room temperature, it was quickly realized that this novel material was relevant for both fundamental spintronics and future applications. Over the decade since, exciting results have made the field of graphene spintronics blossom, and a second generation of studies has extended to new two-dimensional (2D) compounds. This Colloquium reviews recent theoretical and experimental advances on electronic spin transport in graphene and related 2D materials, focusing on emergent phenomena in van der Waals heterostructures and the new perspectives provided by them. These phenomena include proximity-enabled spin-orbit effects, the coupling of electronic spin to light, electrical tunability, and 2D magnetism.

CONTENTS

I. Introduction 1

A. Initial spin transport experiments 2

B. Fundamentals of spin-orbit coupling in 2D crystals 4

II. State of the art in graphene spintronics 5

A. Spin-orbit coupling in graphene 5

1. hBN-Gr: Long-distance spin transport 6

2. Bilayer and few-layer graphene 7

3. The original Topological insulator 8

B. Corrugations and resonant impurities 8

C. Transition-metal dichalcogenides and graphene 9

D. Graphene/TMDC optospintronics 12

III. Current challenges and way forward 12

A. What is the dominant spin relaxation mechanism? 12

1. Intrinsic relaxation sources 13

2. Extrinsic sources: impurities 14

B. Advances in spin injection contacts 15

C. Alternative spin injection and detection techniques 16

D. Vertical junctions for spin memories 17

E. Electric-field effect in mono- and bilayer-graphene 17

F. Proximity-enabled graphene/TMDC novel devices 18

G. Spintronics with 2D semiconductors and 2D magnets 19

IV. Final remarks 20

Acknowledgments 20

References 21

I. INTRODUCTION

In 1988, A. Fert and P. Grunberg independently discovered that the resistance of ferromagnetic/non-magnetic (FM/NM) metallic multilayers depends on the relative orientation of the FM layers (Baibich et al., 1988; Binasch et al., 1989). This discovery, termed giant magnetoresistance (GMR), was soon utilized in the magnetic field sensors of hard disk drives (Tsang et al., 1998), constituting the first major application of spintronics within
modern electronics. The physics behind this achievement has formed the foundation of spin transport experiments and their evolution over the last three decades (Fert, 2008).

Spintronics aims to utilize the spin degree of freedom to complement or replace charge as the information carrier for high speed, low-power computing (Wolf et al., 2006). The drive for this use of spin-polarized transport started with the proposal of the Datta-Das spin field-effect transistor, which relies on the electrical manipulation of spin information during its propagation in a non-magnetic channel (Datta and Das, 1990). This was followed by other proposals of integrating magnetic semiconductors into spin-based diodes and transistors (Flatté and Vignale, 2001), and ultimately all-spin logic circuits with built-in memory (Behin-Aein et al., 2010). These proposals motivated major experimental advances, including the demonstration of spin injection, transport and detection in metals (Jedema et al., 2001) and semiconductors (Lou et al., 2007). The latter offers the prospect of harnessing the spin degree of freedom for quantum storage and computation (Awschalom et al., 2002; Flatté, 2007). Despite these initial successes, most of those earlier concepts have not been experimentally realized. The reason for this is that an ideal material platform capable of transporting spin information over long distances at room temperature was still lacking.

Since the discovery of graphene, the field of two-dimensional (2D) materials has become one of the most active areas of research in solid-state physics, mainly because of their prominent mechanical, optical, electrical and magnetic properties (Castro Neto et al., 2009; Novoselov, 2011). High electronic charge mobility, low spin orbit coupling strength, negligible hyperfine interaction and gate tunability, are part of the properties which have established graphene also as an emerging material for spintronics (Tombros et al., 2007). Graphene exhibits the longest spin relaxation length ever measured at room temperature (Drögeier et al., 2016; Ingla-Aynés et al., 2015). This property enables the transmission and manipulation of spin signals within complex multi-terminal device architectures (Gebeylehu et al., 2019; Kamalakar et al., 2015). Recently, the field has moved beyond graphene towards exploring the properties of other 2D crystals and their heterostructures, which serve as testbeds for inducing new emergent functionalities. The observation of long spin relaxation lengths (Drögeier et al., 2016) together with spin-charge conversion (Safeer et al., 2019) and spin manipulation (Avsar et al., 2017a) capabilities in van der Waals heterostructures make 2D crystals appealing material systems for the development of low-power spintronics devices. The latter include, among others, devices based on tunnel magnetoresistance (Kim et al., 2018), spin-transfer torque (Lin et al., 2013), and spin logic gates (Wen et al., 2016).

Given the increasing effort on the search for new spintronics phenomena in 2D materials, there is a present need for a review and critical discussion of recent experimental and theoretical progress within the field of 2D spintronics. We note there are relevant reviews on spin transport (Chappert et al., 2007; Meservey and Tedrow, 1994; Wolf et al., 2006; Žutić et al., 2004), graphene (Castro Neto et al., 2009; Das Sarma et al., 2011; Peres, 2010), and graphene spintronics (Garcia et al., 2018; Gurram et al., 2018; Han et al., 2012; Pesin and MacDonald, 2012; Roche et al., 2015; Roche and Valenzuela, 2014; Seneor et al., 2012; Shiraiishi, 2012; Žutić et al., 2019). Our aim in this review is to offer a broad and balanced coverage, starting with an introduction to fundamentals for those new to the fields of spintronics and graphene, while encompassing critical discussions that address recent advances and point to challenges and future directions in this vibrating field. While brief discussions on chemically modified graphene and alternative spin injection schemes will be also provided, this colloquium primarily focuses on electronic spin transport in pristine 2D materials and novel devices based on their heterostructures.

A. Initial spin transport experiments

At the heart of most spin transport phenomena is the creation of spin accumulation in a NM material. The latter can be electrically induced by applying a charge current to the NM via a FM contact. The injected spin information propagates throughout the NM as a spin current, which can be detected using a second FM contact. Such detection is possible as long as the separation between the injector and detector contacts is less than the characteristic length on which the non-equilibrium spin information relaxes. Within these conditions, the resistance of the device depends on the relative magnetization direction of the injector and detector contacts, which is detected as a resistance switch when their relative orientation changes from parallel to the antiparallel (Jedema et al., 2001; Johnson and Silsbee, 1985). Such a spin valve signal in FM/NM/FM structures is therefore utilized for the realization of spin injection, spin transport and spin detection. In this local architecture, the charge and spin currents are co-located within the same NM channel. The measured signal is therefore a combination of a spin-dependent resistance, representative of the spin transport, and a spin-independent resistance, purely associated to the charge transport. Since the ratio of the spin-dependent resistance to the spin-independent resistance is generally small, and charge-based phenomena can mimic the spin signal under study, this two-terminal measurement geometry is not ideal for probing spin-dependent transport.

Multi-terminal measurement geometries are thus favoured for the unambiguous study of spin-dependent transport (Fig. 1). One alternative is the three-terminal
FIG. 1 Measurement configurations and spin transport in graphene. (a) Four-terminal nonlocal (VN₅L), three-terminal Hanle (V₃T) and two-terminal local (V₂T) measurement geometries. Ferromagnetic (FM) contacts are used to inject and detect spins in a non-magnetic (NM) channel via a tunnel barrier (TB). The bottom cartoon illustrates a top-view of spin precession under an out-of-plane applied magnetic field (B). (b) Scanning electron micrograph of the first non-local graphene spin valve device. (c) Non-local spin valve signal in monolayer graphene. Vertical arrows represent the polarization direction of the contacts, lateral arrows represent the magnetic field sweep direction. (d) Corresponding Hanle spin precession signal, for parallel orientation of the contacts. Adapted from Tombros et al. (2007). Hanle geometry, where a single magnetic contact is used to create and detect spin accumulation. The latter is evidenced by the modulation of the contact resistance due to the spin precession effect of an applied magnetic field. This measurement configuration has advantages for probing spin lifetimes in highly-resistive channel materials or in materials with a short spin relaxation length, and has been utilized to detect spin injection in GaAs (Lou et al., 2006, 2007), Si (Dash et al., 2009) and Ge (Jeon et al., 2011). However, a disadvantage of this configuration is that the same contact is used to electrically inject and detect the spin information, which does not fully solve the issue of mixing charge and spin phenomena, as evidenced in measurements showing spin accumulations that are inconsistent with the theoretical expectations (Tran et al., 2009). Therefore, the ideal method is that of a four-terminal non-local geometry, see Fig. 1. This non-local geometry has been widely utilized to spatially separate the paths of the charge current and the detected spin current, providing the reliable measurement of spin-dependent transport. This method relies on the detection of pure spin current and has been first established for metallic spin valves (Jedema et al., 2001; Johnson and Silsbee, 1985) and later also applied to semiconductor-based devices (Lou et al., 2007).

Quantitative extraction of the parameters that control spin transport in a diffusive channel, namely the spin relaxation time τ_s and the spin diffusion coefficient D_s, can be achieved by measuring the dependence of the spin signal on the separation between injector and detector electrodes. The observed decay with increasing separation yields the spin relaxation length, $\lambda_s = \sqrt{D_s \tau_s}$, while D_s can be calculated from the resistivity via the Einstein relation (Jedema et al., 2001). Nevertheless, this requires the study of multiple devices with different separation and is sensitive to the reproducibility of other parameters, like the spin injection efficiency of the contacts, which also control the magnitude of the spin signal. Hanle spin precession is an alternative measurement based on studying the dependence of the spin signal on an applied magnetic field B perpendicular to the orientation of the injected spin (Jedema et al., 2002b). Here, a torque is exerted on the electron spin, which is forced to precess at the Larmor frequency, as sketched in Fig. 1(a). In a fully coherent 1D channel the spin precession would lead to an oscillatory response as a function of B. Nevertheless, in a diffusive 2D or 3D channel each electron spin follows a different path towards the detector, due to momentum scattering, with each one having a different transit time and therefore a different precession angle, causing dephasing in the net spin accumulation. Furthermore the spin accumulation relaxes back to its equilibrium value. The combined effect of spin dephasing and relaxation, controlled by D_s and τ_s, determine the response of the spin signal as a function of B, as shown in Fig. 1(d). This powerful technique removes...
the requirement to study multiple devices to extract spin parameters, as it relies on fitting the lineshape of the response only based on the two fundamental parameters controlling spin transport (Jedema et al., 2002a). Hanle spin precession is the golden standard for the unambiguous demonstration of spin transport using a four-terminal non-local geometry and it has been extensively applied to metallic (Jedema et al., 2002b), semiconducting (Lou et al., 2007) and graphene (Maassen et al., 2012; Popinciuc et al., 2009) spin channels.

Spin transport experiments in graphene have utilized the measurement techniques described above. The first report on spin transport demonstrated a hysteretic magneto-transport response with a 10% change in resistance by utilizing a two-terminal local geometry (Hill et al., 2006). Shortly after, Tombros et al. (2007) unequivocally demonstrated room-temperature spin transport with micrometer-long spin relaxation lengths in monolayer graphene, by employing a tunnel barrier for efficient spin injection and measuring in a four-terminal non-local geometry. This measurement configuration then became the standard method to characterize the distinct spin transport properties of graphene, as demonstrated by Cho et al. (2007) and Popinciuc et al. (2009) who modulated spin transport in graphene via the application of vertical electric fields. On the other hand, application of lateral electric fields also demonstrated to produce spin drift and therefore modulate spin injection efficiencies (Józsa et al., 2008, 2009b).

After the characterization of basic spin transport properties of graphene fabricated on standard Si/SiO$_2$ substrates, Józsa et al. (2009a) examined the dominant spin relaxation mechanism for the first time by studying the relation between momentum and spin relaxation times in monolayer graphene. A further discussion on spin relaxation is presented in Section III.A. Initial devices also demonstrated the capability to achieve robust spin polarization in mono and multi-layer graphene, by demonstrating a linear dependence of non-local voltage on injected current up to 10 mA (Muramoto et al., 2009; Shiraiishi et al., 2009). Such superior spin injection properties, in comparison with previous semiconductor-based devices, is a result of the transport properties of graphene and the suppression of any significant interface spin scattering, as later confirmed by the observation of identical spin transport parameters in graphene spin valve devices measured with either three and four-terminal techniques over a wide range of temperatures (Dankert et al., 2014b).

B. Fundamentals of spin-orbit coupling in 2D crystals

In the solid state electrons usually move much slower than light, with a speed $v \ll c$. However, relativistic corrections are not completely negligible, representing both a major limitation to spin transport and a source of opportunities for spin injection, manipulation and detection. The leading correction in v/c is provided by the Hamiltonian

$$\mathcal{H}_{SO} = \frac{1}{2m^2c^2} (\nabla V \times \mathbf{p}) \cdot \mathbf{s},$$

(1)

where m is the electron mass and \mathbf{p} and $\mathbf{s} = (s_x, s_y, s_z)$ represent the linear momentum and spin operators, respectively. In a solid, V is just the crystalline potential. As a first approximation, we can consider an atomic insulator, where electrons are bound to the nuclei of the constituents of the solid by a hydrogen-like potential of the form $V(r) \propto Z/r$, Z being the atomic number. Eq. (1) can be written as $\mathcal{H}_{SO} = \Delta_{SO} \mathbf{L} \cdot \mathbf{s}$, where $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is the angular momentum operator and $\Delta_{SO} \propto Z/r^3$. The averaged intra-atomic spin-orbit coupling (SOC) is dominated by electrons close to the nucleus, at distances of the order of the Bohr radius, $r \sim a_0 \propto Z^{-1}$, for which the nuclear field remains almost unscreened. Since the probability of finding an electron near the nucleus scales as $\sim Z^{-2}$ (Landau and Lifshitz, 1977), the intra-atomic SOC constant goes like $\Delta_{SO} \propto Z^2$: the heavier the atom, the larger the relativistic effect. In fact, the fast decay of the spin-orbit interaction with the distance to the nucleus justifies a tight-binding description. For the same reasons, relativistic corrections are smaller for bands built up from higher atomic orbitals. Such Z^2 dependence of SOC in elemental 2D materials has recently been demonstrated by Kurpas et al. (2019).

The spin quantum number reflects the way that the electronic wave function transforms under rotations. Hence, the point group of the lattice (the set of proper and improper rotations that leave invariant the crystal structure) has a strong influence on the relativistic corrections to the electronic bands. The basis of Bloch states around high-symmetry points of the Brillouin zone must be adapted to the irreducible representations of the so-called double group (Dresselhaus et al., 2008), consisting of the original symmetry operations plus the rotation by 2π along one of the principal axes of the crystal that defines the natural spin quantization. For 2D materials, this is usually the axis perpendicular to the plane of the crystal. The bands are described in terms of the direct product $\Gamma \times D_{1/2}$, where Γ labels the irreducible representation associated with the orbital part of the wave function, and $D_{1/2}$ is the spinor representation generated by Pauli matrices s_i. This group-theory approach can be simplified in practice. Typically, the strength of the spin-orbit interaction is much weaker than the energy separation between states labeled by different angular-momentum numbers. Therefore, the main orbital character of the bands does not change much, and the indices associated with the irreducible representations of the original point group are still good quantum numbers.

Improper rotations play a crucial role given the pseudovectorial nature of the spin operator. If the crystal
structure possesses a complete center of inversion, then the original two-fold degeneracy of the bands is preserved. Otherwise, the bands are spin-split except at time-reversal symmetric points. Nevertheless, a plane of inversion always protects the perpendicular projection of the spin close to high-symmetry points. Graphene is mirror symmetric, meaning that s_z is still a good quantum number in the low-energy limit even in the presence of relativistic interactions. Moreover, in non-centrosymmetric materials with mirror symmetry, like transition-metal dichalcogenides (TMDC), the large spin-splittings of the bands provide a strong protection of s_z against external perturbations.

Despite the small atomic number of carbon, the effect of relativistic interactions in the spectrum of its different allotropes is a subject of intensive research. The spin-orbit coupling in graphite was first analyzed in the pioneering works by Slonczewski (Slonczewski and Weiss, 1958) and Dresselhaus (Dresselhaus and Dresselhaus, 1965). In the next section we focus on single and few layer graphene allotropes and TMDCs, describing how SOC can be exploited in spintronic devices.

II. STATE OF THE ART IN GRAPHENE SPINTRONICS

A. Spin-orbit coupling in graphene

Graphene consists of a single layer of sp^2 hybridized carbon atoms (Castro Neto et al., 2009; Katsnelson, 2007). In-plane $p_{x,y}$ and s orbitals participate in the strong σ-bonds that keep carbon atoms covalently attached, forming a trigonal planar structure with a distance between atoms of $a = 1.42$ Å. The remaining electron occupying the p_z orbital is free to hop between neighboring sites, leading to the π bands responsible for the conductive properties. The low-energy π bands form Dirac cones at the two inequivalent corners of the hexagonal Brillouin zone. The effective Hamiltonian around these points, including relativistic corrections, reads

$$H = \hbar v_F (\tau_x \sigma_x k_x + \sigma_y k_y) + \Delta_{KM} \tau_z \sigma_z s_z + \Delta_{BR} (\tau_z \sigma_z s_y - \sigma_y s_z),$$

where $v_F \approx c/100$ is the Fermi velocity Dirac electrons and the operators $\sigma_{x,y,z}$ and $\tau_{x,y,z}$ are Pauli matrices acting on the sublattice and valley degrees of freedom of the wave function, respectively. The second term in Eq. (2) corresponds to the intrinsic spin-orbit coupling (Kane and Mele, 2005b). It is fully compatible with both hexagonal (C_{6v}, point group) and mirror symmetries of free-standing graphene. If this latter symmetry is broken, e.g., by the presence of a substrate, then a Bychkov-Rashba coupling is also generated. The spin-orbit couplings in confined geometries have been analyzed in Zarea and Sandler (2009), López-Sancho and Muñoz (2011), Lenz et al. (2013), and Santos et al. (2013).

![A graphical representation of the spin-orbit coupling in graphene](image)

FIG. 2 a) Spin-dependent effective hopping $t_{so} = \Delta_{KM}/3\sqrt{3}$ mediated by σ orbitals (in blue). The upper/lower sign applies to spin up/down electrons, with the hopping defined along the arrows in the right panel. b) Electronic spectrum of a zig-zag ribbon of 30 unit-cells width ($t_{so} = 0.1t$, where t represents the nearest-neighbor hopping). The inset shows a sketch of the sub-gap counter-propagating modes localized at the edges.

The minimal microscopic model that captures spin-orbit effects should include at least both π and σ orbitals. In this model, the intrinsic SOC arises from virtual transitions into σ states mediated by the intra-atomic spin-orbit interaction, as represented in Fig. 2. Second-order perturbation theory gives (Huertas-Hernando et al., 2006; Konschuh et al., 2010; Min et al., 2006)

$$\Delta_{KM} = \frac{\epsilon_s \Delta_{SO}^2}{18V_{sp\sigma}^2} \approx 1 \text{ meV},$$

where $V_{sp\sigma} \approx 4.2$ eV represents the hopping between $p_{x,y}$ and s orbitals, $\epsilon_s \approx -7.3$ eV is the energy of the latter measured with respect to the intrinsic Fermi level (Tományik and Louie, 1988) and the intra-atomic spin-orbit coupling for carbon is $\Delta_{SO} \approx 7.86$ meV. This second-order effect is exceeded by the contribution from the hybridization with higher-energy d orbitals (Slonczewski and Weiss, 1958), leading to $\Delta_{KM} \approx 12$ meV (Abdelouahid et al., 2010; Gmitra et al., 2009; Konschuh et al., 2010; Yao et al., 2007). Electron-electron interactions (Kane and Mele, 2005b) and the coupling with flexural optical phonons can also contribute to this coupling (Ochoa et al., 2012a). Recent electron-spin resonance measurements give $\Delta_{KM} \approx 21$ meV (Sichau et al., 2019).

The Bychkov-Rashba term in the second line of Eq. (2) removes the spin degeneracy of the bands and tends to
Min et al. (Huertas-Hernando et al., 2010) interaction, flipping the spin. Perturbation theory gives back to the produced trapped charge concentration and atomically flat with hexagonal boron nitride (hBN). Due to hBN’s relaxation times, suggested that resonant scattering by unintentional magnetic impurities is the limiting source for spin scattering in graphene, consistent with a recent theoretical proposal (Kochan et al., 2015). These studies suggest that adapting a full encapsulation process could allow approaching graphene’s intrinsic spin transport performance. Towards this, Drügeler et al. (2016) developed a bottom-up approach for fabricating polymer free spin valves, where hBN encapsulated graphene was transferred on top of pre-fabricated Co/MgO spin electrodes. They observed record spin relaxation times of 12 ns with spin relaxation lengths exceeding 30 μm, despite the presence of pin-holes in their MgO tunnel barriers, as shown in Fig. 4(c). These results also confirm the relevance of polymer residues on enhancing spin scattering events.

The first single layer graphene-based spin valves fabricated on a hBN substrate demonstrated 20 μm distance spin transport, due to improved spin diffusion coefficient and high electronic mobility, see Fig. 4(a) (Zomer et al., 2012). Surprisingly, spin relaxation times obtained in these devices exhibited comparable values to those obtained on conventional SiO₂ substrate. This observation was attributed to spin scattering due to fabrication-related residues, and motivated pursuing new studies including hBN encapsulation. Improved spin relaxation times up to 2 ns with spin relaxation lengths exceeding 12 μm were observed in partially encapsulated graphene (Guimarães et al., 2014). This device structure also allows studying the Rashba spin-orbit coupling and the resulting anisotropy of the spin relaxation time for spins pointing out-of-plane to spins pointing in-plane, and its modulation via perpendicular electric field, see Fig. 4(b).

A similar geometry was also employed for bilayer spin valve devices, leading to spin relaxation lengths of 24 μm (Ingla-Aynés et al., 2015). Avsar et al. (2016) performed a comparative study by discussing the effect of the substrate and polymer residues on spin transport, where the observation of similar spin transport characteristics in non-encapsulated graphene on SiO₂ and hBN substrates suggested that spin transport in these devices was not limited by contacts, substrate phonons or impurities.

On the other hand, observation of a five-fold enhancement in spin relaxation times upon encapsulation, and a non-monotonic carrier concentration dependence of spin relaxation times, suggested that resonant scattering by unintentional magnetic impurities is the limiting source for spin scattering in graphene, consistent with a recent theoretical proposal (Kochan et al., 2015). These studies suggest that adapting a full encapsulation process could allow approaching graphene’s intrinsic spin transport performance. Towards this, Drügeler et al. (2016) developed a bottom-up approach for fabricating polymer free spin valves, where hBN encapsulated graphene was transferred on top of pre-fabricated Co/MgO spin electrodes. They observed record spin relaxation times of 12 ns with spin relaxation lengths exceeding 30 μm, despite the presence of pin-holes in their MgO tunnel barriers, as shown in Fig. 4(c). These results also confirm the relevance of polymer residues on enhancing spin scattering events.

Close the intrinsic spin-orbit gap. As we mentioned before, it is naturally present when the mirror symmetry is broken while the planar C₆₀₈ symmetry is preserved. A handy example is the case of an electric field perpendicular to the graphene plane along an axis orthogonal to their crystal momenta.

FIG. 3 Low-energy bands of graphene around the corners of the Brillouin zone (all values in μeV): a) Δₜₐₜ = 0, b) Δₜₐₜ = 6, c) Δₜₐₜ = 12, and d) Δₜₐₜ = 18 (Δₜₐ₅ = 12 in all cases). Note that the Bychkov-Rashba coupling lifts the spin degeneracy of the bands. Blue and red colors represent opposite helicities (the approximated spin polarization of Bloch electrons lie within the graphene plane along an axis orthogonal to their crystal momenta).

1. hBN-Gr: Long-distance spin transport

As a result of the small intrinsic spin-orbit coupling it was expected that graphene would exhibit a long-distance spin transport. This is evident when combining graphene with hexagonal boron nitride (hBN). Due to hBN’s reduced trapped charge concentration and atomically flat surface compared to conventional SiO₂, hBN has been employed as an ideal substrate for boosting the electronic charge quality of graphene (Dean et al., 2010). Recently, hBN has been adapted in graphene spin valves as substrate (Zomer et al., 2012), encapsulating layer (Avsar et al., 2016; Guimarães et al., 2014; Gurram et al., 2016; Inglia-Aynés et al., 2015) and tunnel barrier (Kamalakar et al., 2014; Singh et al., 2016; Yamaguchi et al., 2013) to improve its spin transport properties and realize new device concepts.

a) Δₜₐ₅ = 0

\[Δₜₐ₅ = \frac{e\zeta \Delta SO}{3V_{\text{sp}}σ} \approx 0.1 \text{meV} \times ζ [\text{V/Å}] , \]

\[\Deltaₜₐ₅ \equiv \langle \delta r \rangle \text{[Å]} \]

\[\Deltaₜₐ₅ = \frac{e\zeta \Delta SO}{3V_{\text{sp}}σ} \approx 0.1 \text{meV} \times ζ [\text{V/Å}] , \]

\[\Deltaₜₐ₅ \equiv \langle \delta r \rangle \text{[Å]} \]
FIG. 4 High Quality Heterostructures for Spin Transport. (a) Hanle spin precession measurement for a distance between injector and detector of 18 µm. From Zomer et al. (2012). (b) Electric field dependence of the ratio in- and out-of-plane injected spins at fixed carrier concentrations. Inset shows the optical picture of a completed device. From Guimarães et al. (2014). (c) Back gate voltage dependence of spin relaxation length in an inverted graphene spin valve. Inset shows the device schematics. From Drögeler et al. (2016).

2. Bilayer and few-layer graphene

In bilayer graphene the unit cell contains 4 atoms. In the conventional Bernal stacking the low-energy bands are built up from \(p_z \) orbitals localized at opposite sublattices in different layers. The bands touch at the corners of the Brillouin zone, as in the case of graphene, but with an approximately quadratic dispersion instead (McCann and Fal’ko, 2006). This degeneracy is protected by the \(D_{3d} \) point group symmetry of the crystal but it can be removed by applying a perpendicular electric field (Castro et al., 2007). Since the bands are quadratic, we must consider spin-orbit couplings up to linear order in crystal momentum. Within the 2-bands effective model, the intrinsic terms compatible with the crystallographic symmetries read (van Gelderen and Smith, 2010; Guinea, 2010; Konschuh et al., 2012; McCann and Koshino, 2010)

\[
\mathcal{H}^{\text{bilg}}_{so} = \Delta_{KM}\sigma_z \tau_z s_z + \Delta_{BR}(k_x s_y - k_y s_x) \sigma_z. \quad (5)
\]

The first term is a Kane-Mele coupling, whereas the second adopts the form of the usual Bychkov-Rashba coupling in the 2D electron gas, \(k_x s_y - k_y s_x \), but with opposite sign for electrons residing at different layers/sublattices. Notice that this term does not remove the spin degeneracy since the unit cell possesses a complete center of inversion \((D_{3d} = D_3 \times i) \), where \(i \) is the inversion group. Another difference with respect to the case of single-layer graphene is that the Kane-Mele coupling is linear in the intra-atomic spin-orbit coupling due to the non-zero hybridization between \(\pi \) and \(\sigma \) orbitals localized at different layers. \textit{Ab initio} calculations give \(\Delta_{KM} = 12 \mu eV, \Delta_{BR} = 19 \mu eV \cdot nm \) (Konschuh et al., 2012). The low-energy bands of bilayer graphene are shown in Fig. 5.

FIG. 5 Low-energy bands of bilayer graphene. a) Parabolic dispersion of the low-energy bands around one of the inequivalent corners of the Brillouin zone. The bands localized at the carbon atoms sitting on top of each other appear at higher energies. b) The two parabolas overlap due to the trigonal warping of the bands. The low energy bands were obtained using realistic DFT extracted tight-binding parameters. c) The SOC terms \(\Delta_{KM} = 12 \mu eV \) and \(\Delta_{BR} = 19 \mu eV \cdot nm \) (Konschuh et al., 2012) lift the band crossings. Note that the bands remain spin degenerate due to inversion symmetry.

This symmetry-based analysis can be extended to graphene multilayers with an arbitrary number of layers \(N \) (Guinea et al., 2006; Mañes et al., 2007; Partoens and Peeters, 2006). The electronic properties of these systems depend both on \(N \) and the type of stacking. A Bernal stack with even \(N \) possesses \(D_{3d} \) symmetry. The low-energy bands can be seen as \(N/2 \) copies of the low energy model of bilayer graphene. When \(N \) is odd, however, the point group of the crystal is \(D_{3h} \). In the simplest description, an additional band with linear (Dirac) dispersion appears, but none of these degeneracies is protected by the crystallographic symmetries in this case. The low-
energy spectrum of rhombohedral stacks does not depend on the parity of the number of layers. There are only two bands that touch at corners of the Brillouin zone with dispersion $|k|^N$. These bands become surface states localized at the top and bottom layers in the limit $N \to \infty$. The remaining $2N - 2$ bands form Dirac crossings protected by D_{3d} symmetry. Within the lowest-energy bands of centrosymmetric stacks only a Kane-Mele coupling is allowed by symmetry at $k = 0$ (with the sublattice operators properly defined), whereas in the case of non-centrosymmetric stacks the spin-orbit coupling removes the spin degeneracy (McCann and Koshino, 2010). However, the spin polarization along the out-of-plane direction is still a good quantum number due to mirror symmetry (Castro Neto and Guinea, 2009). This quantum spin-Hall effect (QSHE) is unobservable in practice due to the narrowness of the topological gap. Nevertheless, it has been theorized that it could be stabilized by heavy adatom deposition (Weeks et al., 2011). Here, we note that such an adatom-induced topological gap has not been experimentally observed yet (Chandni et al., 2015; Jia et al., 2015; Santos et al., 2018; Wang et al., 2015b,c), since such dilute limit makes the realization of QSHE challenging (Milletari and Ferreira, 2016).

The low SOC strength of graphene is detrimental for the implementation of graphene into many spintronics applications requiring high SOC strength such as spin FETs etc (Datta and Das, 1990). Moreover, it also restricts the realization of theoretically predicted quantum spin Hall state at experimentally accessible temperatures (Kane and Mele, 2005b). All these stimulate the development of new methods for extrinsically enhancing SOC.

3. The original Topological insulator

Despite its weakness, the spin-orbit coupling in graphene has attracted a lot of attention in the recent years due to the connection with the field of topological insulators (Hasan and Kane, 2010; Qi and Zhang, 2011). The intrinsic or Kane-Mele term removes the degeneracy at the Dirac points, opening a gap in the spectrum. Moreover, the virtual processes mediated by high energy bands resemble the pattern of complex hoppings proposed by Haldane as a model for the quantum anomalous Hall effect (Haldane, 1988). In this case, the phase $\pm \pi/2$ accumulated by the wave function is opposite for spin up and down. In a finite geometry, chiral modes localized at the edges of the system appear within the bulk gap, as shown in the calculation of Fig. 2. Backscattering between counter-propagating modes with opposite spin polarization is forbidden by time-reversal symmetry (Kane and Mele, 2005a; Moore and Balents, 2007; Roy, 2009). This quantum spin-Hall effect (QSHE) is unobservable in practice due to the narrowness of the topological gap. Nevertheless, it has been theorized that it could be stabilized by heavy adatom deposition (Weeks et al., 2011). Here, we note that such an adatom-induced topological gap has not been experimentally observed yet (Chandni et al., 2015; Jia et al., 2015; Santos et al., 2018; Wang et al., 2015b,c), since such dilute limit makes the realization of QSHE challenging (Milletari and Ferreira, 2016).

The low SOC strength of graphene is detrimental for the implementation of graphene into many spintronics applications requiring high SOC strength such as spin FETs etc (Datta and Das, 1990). Moreover, it also restricts the realization of theoretically predicted quantum spin Hall state at experimentally accessible temperatures (Kane and Mele, 2005b). All these stimulate the development of new methods for extrinsically enhancing SOC.

B. Corrugations and resonant impurities

Corrugations naturally break the mirror symmetry of graphene, giving rise to new SOC terms. Microscopically, the origin of these new couplings is the change of relative orientation of the orbitals due to the extrinsic curvature (i.e., the bending) of the graphene sheet, which hybridizes the π and σ bands (otherwise, hopping between these orbitals would be precluded by mirror symmetry). In a low-energy continuum description, this extrinsic curvature is characterized by a second rank tensor, $F_{ij} \approx \partial_i \partial_j h$ with $i,j = x,y$, describing the embedding of the graphene sheet in ambient space, where the field $h(x,y)$ represents the out-of-plane displacement of carbon atoms at position (x,y). The mean curvature $H = \nabla^2 h$ generates a Bychkov-Rashba coupling of the form (Huertas-Hernando et al., 2006; Jeong et al., 2011; Ochoa et al., 2012a),

$$\mathcal{H}_{BR} = g_{BR} F_{ii} (\tau_z \sigma_x s_y - \sigma_y s_x).$$

The tensorial nature of F_{ij} allows for additional couplings, incorporating the effect of a preferential direction of bending (Ochoa et al., 2012a):

$$\mathcal{H}'_{BR} = g_1 \left[F_{xx} - F_{yy} \right] \tau_z \sigma_x s_y + 2 F_{xy} \tau_z s_x + g_2 \left[F_{xx} - F_{yy} \right] (\tau_z \sigma_x s_y + \sigma_y s_x) + 2 F_{xy} (\sigma_y s_y - \tau_z s_x).$$

From the previous tight-binding estimates we have (Jeong et al., 2011; Ochoa et al., 2012a)

$$g_{BR} = \frac{a e \Delta_{SO} (V_{ppx} + V_{ppy})}{12 V_{sp}^2} \approx 1.2 \text{ meV} \cdot \text{Å};$$

$$g_1 = \frac{a V_{ppx} \Delta_{SO}}{2 (V_{ppy} - V_{ppx})} \approx 1.5 \text{ meV} \cdot \text{Å}.$$

where V_{ppx} ≈ -2.2 eV and V_{ppy} ≈ 5.4 eV represent the hopping between p-orbitals at nearest neighbors. The second coupling in Eq. (7) only appears at second nearest neighbors, so it is usually neglected.

Since graphene is all surface, its environment sensitivity enables different ways of boosting its SOC including functionalization, adatom decoration and substrate engineering (Castro Neto and Guinea, 2009; Ferreira et al., 2014; Gmitra et al., 2013; Irmer et al., 2015; Ma et al., 2012; Pachoud et al., 2014; Soriano et al., 2015; Weeks et al., 2011). One of the first proposed strategies to enhance the SOC was the functionalization of graphene surface with hydrogen adatoms, which create a local out-of-plane, sp^2-like distortion of the surrounding bonds. This distortion hybridizes the σ states with the adjacent p_z orbitals, giving rise to an enhancement of the spin-orbit coupling (Castro Neto and Guinea, 2009),

$$\Delta \approx \tan \vartheta \sqrt{1 - 2 \tan^2 \vartheta \Delta_{SO}}.$$
where ϑ represents the angle of the distorted σ-bond with respect to the graphene plane (i.e., $\vartheta = 0$ for the flat configuration). In the case of a complete sp^3 hybridization ($\vartheta = 19.5^\circ$) we have an enhanced SOC up to $\Delta \approx 6$ meV. The symmetry is effectively reduced down to C_{3v}, so the specific couplings in the low-energy theory acquire different forms (Gmitra et al., 2013). Ab initio calculations give $\Delta_{BR} \approx 0.33$ meV for the Bychkov-Rashba coupling. Notice that in this situation the bottleneck is still the weak intra-atomic spin-orbit interaction in carbon.

Balakrishnan et al. (2013) experimentally reported a SOC enhancement of 2.5 meV in weakly hydrogenated graphene samples, see Fig. 6(a). Such enhancement caused the observation of spin Hall effect (SHE) at room temperature, with the spin-transport origin of the non-local signal confirmed by spin precession measurements. Similar results were also obtained in fluorinated graphene samples (Aysar et al., 2015). Nevertheless, other studies have reported large nonlocal signals in similarly hydrogenated devices but with an absence of any magnetic field dependence in spin precession measurements (Kaverzin and van Wees, 2015), or contradicting the expectation of a decrease in spin lifetime due to larger SOC (Wojtaszek et al., 2013). These latest results suggest that the effect is sample dependent and there can be additional mechanisms involved other than spin transport, as theoretically suggested for the case of disorder in graphene (Van Tuan et al., 2016). These conflicting interpretations for experiments in hydrogenated graphene call for further studies to ensure a thorough verification of the role of SOC and the presence of the SHE in this system, and to further identify any other concomitant effect leading to the non-local response observed.

The passivation of p_z orbital below the adatom creates a perfect vacancy (i.e., with no reconstruction altering the coordination of the lattice). Such a defect induces the formation of a quasi-localized state, manifested as a sharp resonance in the local density of states (Pereira et al., 2007; Wehling et al., 2010). The enhancement of the density of states at energies close to the Dirac point favors the formation of magnetic moments due to electron-electron interactions (Palacios et al., 2008; Yazyev, 2008), which can modify both charge and spin transport properties. Non-perturbative calculations beyond mean field show no signature of saturation of the susceptibility at low temperatures (Haase et al., 2011), suggesting a ferromagnetic coupling between the quasi-localized magnetic moment and the itinerant spins. Nevertheless, experiments have so far demonstrated a paramagnetic response (McCreary et al., 2012; Nair et al., 2012).

Another direction to enhance the weak SOC of graphene is the decoration of its surface with heavy metallic adatoms (Brey, 2015; Cyune et al., 2018b; Ferreira et al., 2014; Hu et al., 2012; Ma et al., 2012; Pauchou et al., 2014; Weeks et al., 2011). In this approach, graphene’s sp^2 bond property is preserved; the SOC is locally enhanced due to tunneling of electrons from graphene to adatoms and back. Marchenko et al. (2012) observed a giant spin orbit splitting of ≈ 0.1 eV in Au intercalated graphene samples. The photoelectron spectroscopy measurements revealed that hybridization with Au $5d$ states is the source of spin orbit splitting. Large spin orbit fields were also achieved in Pb intercalated graphene on Ir substrate (Calleja et al., 2015). Balakrishnan et al. (2014) reported spin Hall effect at room temperature in CVD grown graphene devices, attributed to unavoidable residual Cu adatom clusters, with a SOC of ≈ 20 meV. However there are experimental controversies over nonlocal measurements in adatom decorated samples as well. For example, other groups also reported large nonlocal signals in Au and Ir decorated samples, but they did not observe any magnetic field dependence (Wang et al., 2015b). Further work is therefore needed to address the possible role of valley currents or of variations in adatom cluster sizes.

C. Transition-metal dichalcogenides and graphene

The family of atomically thin 2D crystals goes beyond the allotropes of carbon and already includes materials like phosphorene (Xia et al., 2014), graphene C$_2$H$_2$ (Elias et al., 2009), or monolayers of hexagonal boron nitride (hBN) (Watanabe et al., 2004), among others (Geim and Grigorieva, 2013). Silicene (A. Fleurence et al., 2012; Vogt et al., 2012), a single layer of silicon atoms forming a sp^3-like honeycomb lattice, has attracted much attention due to its resemblance with graphene. The spin-orbit coupling within the π bands reduces to Eq. (5) as imposed by D_{3d} point-group symmetry. Interestingly, the Kane-Mele coupling is much larger than in graphene, $\Delta_{KM} \sim 1.5$ meV, due to its buckled structure. For the same reason, the band topology can be controlled by applying a perpendicular electric field (Drummond et al., 2012; Ezawa, 2012).

The most appealing materials regarding spintronics applications are probably monolayers of transition-metal dichalcogenides (TMD) (Wang et al., 2012).Bulk compounds are composed of X-M-X layers (X representing the chalcogen atoms, M the transition metal) stacked on top of each other and coupled by weak van der Waals forces. They show different polotypes which vary in stacking and atom coordination (Wang et al., 2012). Like graphite, these materials can be exfoliated down to a single layer (Gordon et al., 2002). Semiconducting materials include molybdenum disulfide (MoS$_2$), tungsten disulfide (WS$_2$), molybdenum diselenide (MoSe$_2$), or tungsten diselenide (WSe$_2$) (Mak et al., 2010).

The point group of the monolayer crystal is D_{3h}. The lattice consists in a triangular Bravais lattice with two X atoms and one M atom per unit cell. As in the case of graphene, the Fermi level lies around the two inequivalent
FIG. 6 Exploiting Spin-Orbit Coupling in Graphene. (a) Carrier concentration dependence of the nonlocal resistance in weakly hydrogenated and pristine graphene, shown as red and blue lines, respectively. The dotted gray line represents the calculated Ohmic contribution. The inset shows the dependence of the nonlocal resistance on the hydrogenation percentage. From Balakrishnan et al. (2013). (b) Back gate voltage (V_{BG}) dependence of the nonlocal resistance in graphene devices supported on WS$_2$. Spin precession and a sizeable signal are only detectable for $V_{BG} > 0$. From Avsar et al. (2014). (c) Magneto-transport measurements for graphene on WS$_2$ substrate, showing a weak anti-localization effect. From Wang et al. (2015d).

corners of the hexagonal Brillouin zone. However, the dispersion and orbital character of the conduction and valence bands are completely different. The large crystal fields associated with the different atomic species prevent accidental degeneracies, so the bands remain gapped with approximately quadratic dispersion (Ordejón and Guinea, 2013; Rostami et al., 2013). The spin-orbit interaction splits the spin degeneracy of the bands,

$$\mathcal{H}_{\text{tmd}} = \lambda_c \frac{1 + \sigma_z}{2} \tau_z s_z + \lambda_v \frac{1 - \sigma_z}{2} \tau_z s_z.$$ \hspace{1cm} (10)

The magnitudes of the splittings in conduction and valence bands are very different due to their distinct orbital character, dominated by d orbitals from the transition metal in both cases. A complete tight-binding model can be found in Roldán et al., 2014. Values extracted from ab initio calculations (Feng et al., 2012; Kormányos et al., 2013; Zhu et al., 2011) are summarized in Table I. Notice that the splitting of the bands has opposite sign at each valley, as imposed by time-reversal symmetry. This spin-valley coupling (Xiao et al., 2012) enables the optical control of valley populations (Mak et al., 2012; T. Cao et al., 2012; Zeng et al., 2012). As will be discussed in Section II.D, this property allows generation of spin polarized charge carriers, without the need for a ferromagnetic spin injector.

Graphene placed on top of a TMDC forms a very appealing heterostructure from the point of view of spintronics. The Dirac cone lies within the gap of the transition-metal dichalcogenide, so the low-energy π-bands preserve their identity while acquiring a remarkably large spin-orbit coupling by proximity with the heavy atoms in the second layer (Gmitra et al., 2016; Kaloni et al., 2014; Wang et al., 2016). The dispersion is well described by (Alsharari et al., 2016; Gmitra and

Material	λ (meV)
MoS$_2$ (conduction band)	3
MoS$_2$ (valence band)	140
WS$_2$ (valence band)	430
MoSe$_2$ (valence band)	180
WSe$_2$ (valence band)	460

TABLE I Band spin splittings in monolayers of transition-metal dichalcogenides. Values from (Feng et al., 2012; Kormányos et al., 2013; Zhu et al., 2011).

FIG. 7 Low-energy bands of graphene on MoS$_2$ (a) and WSe$_2$ (b) deduced from the Hamiltonian in Eq. (11). The values of the parameters correspond to (Gmitra et al., 2016): a) $\Delta_M = 0.52$, $\Delta_K = -0.025$, $\Delta_BR = 0.13$, $\lambda = -0.255$, and b) $\Delta_M = 0.54$, $\Delta_K = -0.03$, $\Delta_BR = 0.56$, $\lambda = -1.19$ (all the values in meVs). The arrows indicate the (approximate) spin polarization of the bands, opposite at different valleys.
where $F(z) = \log z + \Psi(1/2 + 1/z)$, $\Psi(x)$ is the digamma function, and $B_i \equiv h/(4e^2\ell^2)$. Here $\ell_{\text{sym}}(\text{asy})$ correspond to the spin diffusion lengths limited by mirror symmetric (asymmetric) spin-orbit terms, whereas ℓ_θ represents the phase coherence length limited by inelastic scattering (phonons or electron-electron interactions). While spin dephasing induced by mirror asymmetric terms (i.e., the Bychkov-Rashba coupling) should be manifested as a weak anti-localization effect at low temperatures and fields, the mirror symmetric terms (i.e., the spin-valley locking term λ) introduces an effective saturation of the decoherence times, leading to a suppression of the magneto-conductance at the lowest fields ($B < B_{\text{sym}}$). A similar crossover is expected in TMDC monolayers (Ochoa et al., 2014). In hybrid graphene-TMDC systems, a weak anti-localization behavior is systematically reported, as discussed previously, in a wide range of carrier concentrations (Wang et al., 2015d, 2016; Yang et al., 2017, 2016), suggesting a dominance of mirror asymmetric terms. Extracting the strength of the couplings requires the knowledge of the underlying spin-relaxation mechanism, which is the subject of Section III.A. Alternatively, for quantizing fields one can trace the effect of different SOC couplings in the sequence of Landau levels (Csyus et al., 2018a; Khoo and Levitov, 2018). Overall, the observation of similar results with different dichalcogenides indicates the robust and strong nature of proximity-induced SOC enhancement in graphene-TMDC heterostructures.

The possible topological phases created by proximity-induced SOC are largely enriched in graphene multilayers. In that case, the band topologies crucially depend on the (parity) number of layers and stacking order, and can be tuned by displacement field (Zaletel and Khoo, 2019). The fundamental observation is that layer-resolved spin-valley couplings enter as an effective Kane-Mele mass orbit coupling in sulfur vacancies in monolayer WS$_2$ has been recently confirmed by detailed scanning probe microscopy studies (Schuler et al., 2018).

The relative strength of the induced spin-orbit couplings can be extracted from magneto-transport experiments. Wang et al. (2015d) demonstrated pure interface-induced SOC enhancement by performing weak anti-localization measurements, see Fig. 6(c). The last two terms in Eq. (11) possess different symmetry with respect to mirror reflection, which provides different signatures in the quantum-interference correction to the conductivity. In the absence of inter-valley scattering, the magneto-conductance is given by (McCann and Fal’ko, 2012)

$$
\Delta G = - \frac{e^2}{2\pi\hbar} \left[F\left(\frac{B}{B_\theta}\right) - F\left(\frac{B}{B_\theta + 2B_{\text{asy}}}\right) - 2F\left(\frac{B}{B_\theta + B_{\text{sym}} + B_{\text{asy}}}\right)\right],
$$

where $F(z) = \log z + \Psi(1/2 + 1/z)$, $\Psi(x)$ is the digamma function, and $B_i \equiv h/(4e^2\ell^2)$. Here $\ell_{\text{sym}}(\text{asy})$ correspond to the spin diffusion lengths limited by mirror symmetric (asymmetric) spin-orbit terms, whereas ℓ_θ represents the phase coherence length limited by inelastic scattering (phonons or electron-electron interactions). While spin dephasing induced by mirror asymmetric terms (i.e., the Bychkov-Rashba coupling) should be manifested as a weak anti-localization effect at low temperatures and fields, the mirror symmetric terms (i.e., the spin-valley locking term λ) introduces an effective saturation of the decoherence times, leading to a suppression of the magneto-conductance at the lowest fields ($B < B_{\text{sym}}$). A similar crossover is expected in TMDC monolayers (Ochoa et al., 2014). In hybrid graphene-TMDC systems, a weak anti-localization behavior is systematically reported, as discussed previously, in a wide range of carrier concentrations (Wang et al., 2015d, 2016; Yang et al., 2017, 2016), suggesting a dominance of mirror asymmetric terms. Extracting the strength of the couplings requires the knowledge of the underlying spin-relaxation mechanism, which is the subject of Section III.A. Alternatively, for quantizing fields one can trace the effect of different SOC couplings in the sequence of Landau levels (Csyus et al., 2018a; Khoo and Levitov, 2018). Overall, the observation of similar results with different dichalcogenides indicates the robust and strong nature of proximity-induced SOC enhancement in graphene-TMDC heterostructures.

The possible topological phases created by proximity-induced SOC are largely enriched in graphene multilayers. In that case, the band topologies crucially depend on the (parity) number of layers and stacking order, and can be tuned by displacement field (Zaletel and Khoo, 2019). The fundamental observation is that layer-resolved spin-valley couplings enter as an effective Kane-Mele mass
in the low-energy chiral bands of rhombohedral stacks due to the equivalence between layer and sublattice projections. In bilayer graphene/TMDC heterostructures, recent electronic compressibility measurements have revealed a SOC-induced band inversion compatible with $\lambda = 1.7$ meV (Island et al., 2019), very close to theoretical estimations. In these devices, magnetotransport data suggests the existence of helical edge channels. Although backscattering (similarly to the monolayer case discussed above) is not forbidden by time-reversal symmetry, these states are expected to be more resilient against mirror asymmetric (Rashba-like) couplings thanks to interlayer coupling.

D. Graphene/TMDC optospintronics

Non-destructive optical spin injection into graphene has the potential to overcome limitations inherent to electrical spin injection methods whilst enabling new optospintronic functionalities. The weak optical absorption and weak intrinsic SOC strength of graphene prevents such a direct optical spin injection (Inglot et al., 2014). Silicon also poses a similar challenge towards spin injection, due to its low SOC strength. Combining Si with a direct band gap semiconductor has been proposed to overcome this challenge (Zutić et al., 2006). In this regard, Gmitra and Fabian (2015) proposed the use of proximity-induced SOC as a way to enable direct optical spin injection. Here, graphene is partially covered by a monolayer transition-metal dichalcogenide crystal, as shown in Fig. 8(a). Excitation with circularly polarized light on the TMDC-covered graphene area generates spin polarized charge carriers in the TMDC monolayer, as a result of spin-valley coupling and the valley-selective absorption. These carriers diffuse into the adjacent graphene layer, and are finally detected electrically using ferromagnetic contacts in a non-local geometry. This non-destructive optical spin injection schemes were recently experimentally realized independently by two groups. Luo et al. (2017) utilized monolayer MoS$_2$ to inject spin current into multilayer graphene at room temperature. They utilized Hanle spin precession measurements to confirm optical spin injection, spin transport and electrical detection, see Fig. 8(b). Avsar et al. (2017b), utilized monolayer WSe$_2$ to inject spin current into monolayer graphene, where the generated nonlocal spin signal was electrically detected by utilizing hBN as a tunnel barrier. The spin-coupled valley selective origin of the signal was confirmed by prudently studying the dependences of the nonlocal spin signal on modulations of the incident light intensity and polarization, see Fig. 8(c). In future experiments it will be relevant to determine the types of charge carriers diffusing into graphene, as well as experimentally demonstrating the optical detection of such generated spin signal, free from any contact-related spin scattering at FM/NM interfaces.

III. CURRENT CHALLENGES AND WAY FORWARD

A. What is the dominant spin relaxation mechanism?

The polarization of a spin current in a metal or semiconductor device decays during the propagation of the spin carriers. Defining a characteristic time of decay in a rigorous way is a difficult task, though. This is usually introduced within the framework of the Bloch-Torrey equations (Bloch, 1946; Torrey, 1956) describing the macroscopic dynamics of the spin density in the material. Related phenomenological models can be used to fit the experimental data and extract characteristic times of spin relaxation. However, a theoretical evaluation requires more sophisticated models for the microscopic spin dynamics. Once this is determined, a quantum kinetic equation for the spin-ensemble dynamics can be derived (Mishchenko et al., 2004). Microscopic expressions for the relaxation rates can be obtained in the limit of long wave-lengths, in which the variations of the density matrix are smooth on the scale of the characteristic length of the problem, e.g., the mean-free path ℓ in the diffusive regime (Burkov et al., 2004). This procedure is usually simplified by a semi-classical treatment based on the spin-Boltzmann equation. This approach has been applied to the study of spin relaxation in single-layer (Dugaev et al., 2011; Zhang and Wu, 2011, 2012a; Zhou and Wu, 2010) and bilayer (Diez and Burkard, 2012) graphene, and more recently in transition-metal dichalcogenides (Wang and Wu, 2014a,b).

Four main mechanisms of spin relaxation are usually discussed for metals and semiconductors (Zutić et al., 2004): the Elliot-Yafet (Elliot, 1954; Yafet, 1956), D’yakonov-Perel’ (D’yakonov, 2008; D’yakonov and Perel’, 1971), Bir-Aronov-Pikus (Bir et al., 1975), and hyperfine-interaction mechanisms (D’yakonov and Perel’, 1973). The last two are usually disregarded in the context of graphene. On the one hand, the natural abundance of carbon isotopes with nuclear magnetic moment is very low; also, the nuclear fields acting on the spin of itinerant electrons averages-out in the diffusive limit, so this contribution can be safely neglected in the experimental situations that we are going to discuss here (Wojtaszek et al., 2014). On the other hand, the Bir-Aronov-Pikus mechanism accounts for electron spin-flip processes mediated by the electron-hole exchange interaction, and therefore it is only relevant in heavily p-doped semiconductors.

The Elliot-Yafet (EY) mechanism takes into account the change in the spin polarization of a Bloch electron due to scattering off phonons or impurities. It is characterized by a linear relation between the spin and the quasimomentum relaxation times, $\tau_s = \alpha \tau_p$, where α can be
1. Intrinsic relaxation sources

As we discussed earlier, out-of-plane displacements enhance the strength of the spin-orbit coupling within the π-bands due to hybridizations with higher σ-states. Therefore, flexural phonons (the quanta of these vibrations) represent an unavoidable source of spin decoherence in clean, free-standing graphene. In fact, flexural phonons constitute the leading scattering mechanism in suspended samples at temperatures \(T \gtrsim 10 \text{ K} \), limiting the electron mobilities down to few m²/Vs (Castro et al., 2010). Their contribution to spin relaxation can be evaluated from the couplings in Eqs. (6)-(7), leading to (Fratini et al., 2013; Vicent et al., 2017)

\[
\frac{1}{\tau_s} = \frac{g^2 k_F}{2 \hbar^2 v_F} \frac{k_B T}{\kappa} \left(\frac{2 k_F}{q_c} \right)^{2\nu},
\]

where \(g^2 = g_{BR}^2 + g_{1/4}^2 + g_{2}^2 \) is the effective spin-phonon coupling. Here \(\nu = 0, 1 \) corresponds to the free-standing regime (\(q_c \ll 2k_F \), where \(k_F \) is the Fermi momentum of carriers and \(q_c \) represents an infrared cut-off of the harmonic phonon dispersion) and samples under tension, respectively. In the former case, the dispersion

interpreted as the spin-flip probability during a scattering event. This relation can be deduced by treating the spin-orbit interaction perturbatively and holds experimentally for most conventional metals (i.e., systems with well-defined Fermi surface). In doped graphene, the EY mechanism is dominated by inter-band transitions and the Elliot relation depends explicitly on the carrier concentration (Huertas-Hernando et al., 2009; Ochoa et al., 2012b),

\[
\frac{1}{\tau_s} \approx \left(\frac{\Delta}{\epsilon_F} \right)^2 \tau_p^{-1}.
\]

The term in parentheses must be interpreted as the effective Larmor frequency associated with a Bychkov-Rashba coupling generated by, e.g. the interaction with the substrate (Ertler et al., 2009). Realistic estimates lead to \(\tau_s \approx 1 \mu\text{s} \), again much longer than the relaxation times reported in Hanle precession. This discrepancy in several orders of magnitude along with the shortcomings of Eqs. (13)-(14) to reproduce the intricate behavior of \(\tau_s \) as a function of doping or temperature (particularly in the case of bilayer graphene) has provoked a tremendous activity in the recent years.
relation of flexural phonons is approximately quadratic, $\omega_q = \sqrt{\kappa/\rho} |q|^2$, where $\kappa \approx 1 \text{eV}$ (Kudin et al., 2001) is the bending rigidity. At momenta $|q| < q_c$, the dispersion relation is effectively linearized due to anharmonic effects (Zakharchenko et al., 2010) or applied tensions, altering the dependence on the Fermi wavevector $k_F = \sqrt{\pi n}$ when the strain exceeds $\bar{u} \approx 4 \pi n \kappa / K$, $K \approx 21 \text{eV} \cdot \text{Å}^{-2}$ being the two-dimensional bulk modulus (Lee et al., 2008). In free-standing graphene, the spin relaxations times are of the order of hundreds of nanoseconds at room temperature, rapidly decreasing when tension is applied. Note also that the spin-relaxation rate in Eq. (15) grows linearly with the temperature, in contrast to momentum scattering, dominated by two-phonon processes. This leads to a distinctive T^2-dependence in the mobilities of suspended samples (Castro et al., 2010), so the spin-relaxation times are expected to deviate from Eq. (13) in the clean limit.

In supported samples, graphene remains pinned to the substrate and the contribution from flexural phonons is strongly suppressed. Nevertheless, the interaction with the substrate enhances the spin-orbit coupling and induces spin relaxation (Ertler et al., 2009). On top of that, supported graphene sheets also present static corrugations with characteristic heights of $h \approx 0.3 \text{nm}$ (Locatelli et al., 2010), which in the simplest approximation creates a non-uniform Bychkov-Rashba coupling. In the diffusive limit, we end up with two different regimes of spin relaxation arising from the competition between the two relevant length scales in the problem, the mean free path, ℓ, and the lateral size of the ripples, L. In the scattering-dominated regime, $\ell \ll L$, spin decoherence is limited by the conventional motional narrowing. In between scattering events, the electron spin processes an angle δ, which can be estimated from the Larmor frequency Δ_{BR}/\hbar, where $\Delta_{BR} \approx g_{BR} \times h_0 / L^2$ is the average strength of the corrugation-induced spin-orbit coupling. After N collisions, and assuming that the process is Markovian, the precession angle is about $\delta(N) \sim \Delta_{BR}/\hbar \times \tau_p \times \sqrt{N}$. The spin-relaxation time may be defined as the time after which the precession angle is $\delta(N_s = \tau_s/\tau_p) \sim 1$, from which we deduce the DP relation in Eq. (14). On the contrary, if $\ell \gg L$ the randomization process is dominated by the spatial fluctuations in the strength of the spin-orbit coupling (Dugaev et al., 2011). Within a region of characteristic size L we have $\delta \sim L \Delta_{BR}/(\hbar v_F)$, and then after a time t we end up with $\delta(t) \sim \sqrt{tL/v_F} \times \Delta_{BR}/\hbar$. From the previous arguments we obtain $\tau_s \sim (\Delta_{BR}/\hbar)^2 \times L/v_F$ in that case. Typical ripples in graphene extend over $L = 10-50 \text{nm} \ll \ell$, so we expect the spin-relaxation times to be determined by geometrical parameters only and not by the scattering times. Diffusion-barrier-induced corrugations in epitaxial growth fronts are also characterized by a constant periodicity, systematically observed in chemical-vapor deposited (CVD) samples. Experimentally, however, corrugations do not seem to play an important role in spin transport (Avsar et al., 2011), manifesting basically the same features in CVD graphene as in exfoliated samples.

So far, neither of these mechanisms rely on the characteristic Dirac spectrum of low-energy graphene quasiparticles. Numerical studies suggest that the entangled dynamics of the spin and pseudo-spin degree of freedom (the latter associated with the projection of the wave function at different sublattices) leads to fast spin relaxation at energies close to the Dirac point (Tuan et al., 2014). This mechanism qualitatively explains the dependence of τ_s on the carrier concentrations, which cannot be attributed to the usual EY and DP relations, Eqs. (13) and (14). Experimental validation of the roles of spin and pseudospin degrees of freedom (Roche and Valenzuela, 2014) and of their relative contributions compared to other sources (e.g. extrinsic, see next section) is crucial to understand the nature of spin relaxation, which is one of the fundamental long-standing puzzles in the way to the full maturity of the field of graphene spintronics.

2. Extrinsinc sources: impurities

The observed small spin relaxation times in graphene could have an extrinsic origin. Kochan et al. (2014) proposed that local magnetic moments localised on resonant impurities behave as spin hot spots and cause high spin relaxation rates. Based on this mechanism, electrons tend to stay around the impurity (Huang et al., 2016) and spins flip is due to the exchange interaction with the magnetic moment on the impurity. Quantitative agreement with experiment on spin relaxation times was achieved even for very low concentration of local moments. It was also predicted that spin relaxation times in single and bilayer graphene have opposite dependences on carrier concentration (Kochan et al., 2015). This opposite dependence was experimentally verified by carrier concentration dependent spin transport measurements in hBN encapsulated graphene (Avsar et al., 2016). The latter work also probed a sharp increase of spin relaxation time in bilayer graphene at high carrier densities, which similarly could be explained with the resonant scattering theory. The source of resonant magnetic scatterers is hypothesized to be polymer residues from the device fabrication.

Moreover, Eq. (13) is not consistent with the approximately linear scaling between τ_s and the diffusion constant at different gate voltages observed in many experiments (Avsar et al., 2011; Han and Kawakami, 2011; Józsa et al., 2009a; Yang et al., 2011). The experiments by Jo et al. (2011) are a notable exception for which the relation in Eq. (13) seems to hold. The large spin-orbit coupling required to fit the data ($\Delta \approx 10 \text{meV}$, close to the intra-atomic coupling in carbon) suggests that co-
valently attached adatoms instead of charged impurities dominate spin transport in that case. A unifying theory is provided by Zhang and Wu (2012b), suggesting that both the EY and D’yakonov-Perel’ mechanisms cohabit in general, their relative strength being dictated by ambient conditions. Recently, Kochan and Fabian (2019) investigated spin relaxation in graphene in proximity to an s-wave superconductor in the presence of resonant impurities, which allows comparing the relaxation due to magnetic and spin-orbit impurities. This theoretical work is calling for experimental verification in systems such as superconductivity proximitized graphene (Žutić et al., 2019).

B. Advances in spin injection contacts

A tunnel barrier is a key element of graphene spin valve devices to alleviate the conductivity mismatch problem, which dictates that the spin injection efficiency decreases if the contact resistance is too low (Rashba, 2000). To achieve a spin dependent tunnel barrier, the pioneering work of Tombros et al. (2007) utilized an electron beam evaporator to grow ≈ 0.6 nm thick Al layer on graphene under high vacuum conditions, followed by its oxidation in a 100 mbar O_2 pressure. These initial devices and the follow up works using MgO barriers typically exhibit spin injection efficiencies of $\approx 5\%$ (Wang et al., 2008; Yang et al., 2011). On the other hand, Dlubak et al. (2012a, 2010), characterized sputter deposited Al_2O_3 and MgO layers. Sputter deposition is a standard method to grow barriers in tunnel magnetoresistance (TMR) structures, and resulted in nearly pinhole free ≈ 1 nm thick Al_2O_3 barrier on graphene. Nevertheless, this method destroyed the structural quality of graphene sheets, as evidenced by the observation of strong Raman peaks associated with defects (Dlubak et al., 2012a). Spin valves prepared with Al_2O_3 barriers grown by atomic layer deposition similarly achieved spin injection efficiencies of $\approx 5\%$ (Yamaguchi et al., 2012). Furthermore, Komatsu et al. (2014) oxidized thermally evaporated yttrium barriers in air, to form 1 nm thick yttrium-oxide tunnel barriers and achieving spin injection efficiency of 15%.

Although most spin injection barriers dominated by pinholes, e.g. using MgO or Al_2O_3, allowed spin injection and detection, the extracted short spin relaxation lengths were associated with contact induced spin scattering. Therefore a significant effort has been given to improve the quality of these barriers. In this regard, Han et al. (2010) achieved tunnel spin contacts with polarization up to 30%, by adding a thin Ti seed layer at the interface of MgO and graphene. Spin signals up to 130 Ω were observed, two orders of magnitude higher than the typical values achieved by using transparent contacts, see Fig. 9(a). Consequently, these devices exhibited improved spin relaxation times of up to 0.5 ns. Furthermore, Drögele et al. (2016) increased spin relaxation times up to 12 ns by utilizing MgO barriers evaporated on Cobalt electrodes, just before the mechanical transfer of a encapsulating graphene/hBN heterostructure. Curiously, contact resistance measurements and scanning force microscopy show the presence of pin-holes in the MgO barrier, Fig. 9(b).

2D crystals such as functionalized graphene or hBN are expected to act as ideal ultrathin tunnel barriers, without pinholes. Prior to spin transport measurements, the potential of hBN as a tunnel barrier was demonstrated by

FIG. 9 Advances in Spin Injection contacts. (a) Large nonlocal spin valve signal of single layer graphene measured at room temperature. Tunnel barrier is a TiO$_2$ seeded MgO layer. From Han et al. (2010). (b) Schematic illustration of the conductance force microscopy set-up together with the height and conductance mapping of one of the MgO/Co electrodes. The bright dots in the conductance scan represent the location of pinholes having conductance of 1 µS. From Drögele et al. (2016). (c) Tunneling characteristics of hBN barriers measured from several graphene spin valve devices. From Kamalakar et al. (2014).
Britnell et al. (2012). Their results showed that hBN layers fulfill all requirements for a most favorable tunnel barrier (Jönsson-Åkerman et al., 2000): 1) It has non-linear but symmetric I-V dependence, 2) such dependence is weakly sensitive to temperature, 3) the resistance of the barrier depends exponentially on thickness, see Fig. 9(c), and 4) it is pin-hole free. Reported spin valve devices so far have utilized monolayers of exfoliated or CVD-grown hBN, which have comparable resistance with the graphene channel itself (Fu et al., 2014; Gurram et al., 2016; Kamalakar et al., 2014; Yamaguchi et al., 2013). Therefore most of these devices are within the conductivity mismatch range and do not take full advantage of hBN as a tunnel barrier. As a different approach, Friedman et al. (2014, 2015) used chemically functionalized graphene as a tunnel barrier. From the nonlocal spin valve measurements, they achieved spin injection efficiencies up to 45% and 17% at low temperatures for fluorinated and hydrogenated graphene-based tunnel barriers, respectively. However calculated spin relaxation times in these devices are less than 0.2 ns and the created spin accumulation is very small or even absent at room temperature (Friedman et al., 2016). Recently, Gurram et al. (2017) have observed bias-induced enhanced spin injection and detection efficiencies up to 100% in tunnel junctions with bilayer hBN barriers. Similar results were obtained for trilayer hBN tunnel barriers (Leutensmeyer et al., 2018b). These results are not yet understood.

C. Alternative spin injection and detection techniques

Besides the use of electrical and optical means, ferromagnetic resonance spin pumping has also been utilized to inject spins into graphene. In this technique, a ferromagnet is placed in contact with graphene and the magnetization of the ferromagnet is driven into resonant precession by the use of an oscillating magnetic field. The angular momentum transfer from the precessing ferromagnet drives a spin current into graphene, while this spin transfer is observed as an enhanced damping of the ferromagnetic resonance. Different than the electrical spin injection method, this dynamical method does not require any tunnel barrier as it allows injection via transparent interfaces. (Patra et al., 2012) reported the first evidence of spin pumping into chemically grown graphene by demonstrating a remarkable broadening of the ferromagnetic resonance absorption peak in Py/graphene and Co/graphene films. The significant absorption of angular momentum suggested that SOC strength in proximitized CVD graphene is larger than for pristine graphene (Patra et al., 2012; Singh et al., 2013). Still, the exclusive use of ferromagnetic broadening to quantify spin injection was cautioned by the work of Berger et al. (2014), which demonstrated that cobalt grown on graphene has enhanced magnetic disorder and hence the observed broadening may have a contribution from the structural change of the ferromagnet. This uncertainty was addressed by the work of Tang et al. (2013), which unambiguously proved dynamical spin injection at room temperature by detecting the injected spin current via the inverse SHE (ISHE) in Pd electrodes. A similar approach was later shown using the ISHE of graphene itself (Oishima et al., 2014). Similar to ISHE, there are other methods for electrically probing spin transport in graphene. Detailed quantum interference measurements, combining weak localization and universal conductance fluctuations, probed decoherence in graphene (Lundeborg et al., 2013) and indicated that magnetic defects are the dominating source of spin scattering. This identification of an extrinsic source of spin relaxation in the form of magnetic defects is in agreement with later theoretical predictions (Kochar et al., 2015) and spin valve measurements (Avsar et al., 2016).

The unique electronic structure of graphene paves the way for unconventional ways to detect and create spin transport, even without using magnetic contacts. Under a large applied magnetic field, graphene devices in a Hall bar geometry exhibit a giant nonlocal resistance (Abanin et al., 2011b). This phenomenology, similar to that of the SHE, was attributed to the creation of spin-up electrons and spin-down holes due to Zeeman splitting near the charge neutrality point, without any role of SOC (Abanin et al., 2011a). A further work indicated that thermoelectric effects, i.e. the interaction between thermal and electronic transport, could have a contribution to this nonlocal signal as well (Renard et al., 2014). The insight that thermoelectric transport is interrelated with spin transport has developed in recent years into the active subfield of spin caloritronics (Bauer et al., 2012). This interrelation was demonstrated in graphene via the detection of spin currents without the use of magnetic contacts (Vera-Marun et al., 2012), where the spin-to-charge conversion mechanism relies on the energy-dependent transmission of graphene, the same principle as that of the thermoelectric Seebeck effect (Vera-Marun et al., 2011). Such a spin-to-charge conversion proved to be a general phenomenon, advantageous for detecting spin transport in mesoscopic systems (Rameshti and Moghaddam, 2015; Stano et al., 2012; Yang et al., 2014). More recently, the role of thermal gradients on the modulation of spin signals has also been demonstrated (Sierra et al., 2018). Graphene and related 2D materials are fundamentally interesting systems for the exploration of novel spin injection and detection approaches, in particular within the still young subfield of 2D spin caloritronics. Finally, one-dimensional ferromagnetic edge contacts to graphene have started to be explored for spin injection and detection (Guarocho et al., 2017; Karpiak et al., 2017; Xu et al., 2018a). In this regard, graphene in direct contact to a ferromagnet enables the study of an electrically-tunable magnetic proximity induced spin polarisation (Aishoff et al., 2017;
FIG. 10 Electric-Field Dependent Spin Transport in 2D-based Heterostructures. (a) The amplitude of the detected spin signal as a function of drift current, demonstrating spin drift. Inset shows the measurement geometry. From Ingla-Aynés et al. (2016). (b) Dependence of nonlocal spin signal in bilayer graphene on the local resistance at the Dirac point. The latter increases with the vertical electric field (from yellow to purple dot). At higher fields, the spin current is switched off by the gapped channel. Top inset shows spin valve measurements at zero (dark yellow line) and high (black line) displacement fields, demonstrating a spin switch effect. From Avsar et al. (2016). (c) Oblique Hanle measurements near the charge neutrality point in a bilayer graphene spin valve, for different angle β relative to the graphene plane. The magenta curve is a fit to the experimental data (blue points) and reveals an anisotropy of ~ 12 in the spin relaxation time. Away from the charge neutrality point, the anisotropy diminishes and the response becomes similar to the cyan dashed line. From Xu et al. (2018b).

Lazić et al., 2016), which is a promising functionality for future graphene-based spin logic devices (Dery et al., 2012).

D. Vertical junctions for spin memories

Several 2D crystals, including graphene, hBN and MoS$_2$, have been integrated into vertical GMR and TMR structures as non-magnetic barriers (Chen et al., 2013; Cobas et al., 2013, 2012; Dankert et al., 2014a; Godel et al., 2014; Iqbal et al., 2013; Li et al., 2014; Meng et al., 2013; Wang et al., 2015a). These structures are the most prominent class of spintronic devices, widely used as magnetic sensors. Other uses include graphene as a barrier for spin injection into semiconductors (Erve et al., 2012), to prevent oxidation of ferromagnetic electrodes (Dhubak et al., 2012b), or as a spin-conserving channel in a hot-electron transistor (Banerjee et al., 2010).

Interest towards the integration of 2D crystals in vertical structures was driven by the prediction that few-layer graphene could act as a perfect spin filter (Karpan et al., 2007, 2008; Yazyev and Pasquarello, 2009). Improved advancements on device fabrication have allowed to study the nature of magnetoresistance in graphene and hBN based vertical devices, evidencing the role of charge transfer and proximity effects. The latter include the spin-splitting induced in graphene due to proximity to the ferromagnetic electrodes (Asshoff et al., 2017), and to identify the role of individual resonant defect states in hBN to enhance TMR (Asshoff et al., 2018). All these approaches set the prospect of engineering vertical magnetoresistance in 2D-based junctions, which are the key elements within current memory architectures of magnetic random access memories (Parkin et al., 2003).

E. Electric-field effect in mono- and bilayer-graphene

As discussed previously, hBN has also been employed to develop device concepts which could pave the realization of new types of spin-based logic transistors. In a dual-gated device architecture utilizing hBN as a dielectric layer, Ingla-Aynés et al. (2016) controlled the propagation of spin current at room temperature using the drift of electron spins, as shown in Fig. 10(a). Here, the spin relaxation length of 7.7 μm, was demonstrated to be controlled from 0.6 μm up to 90 μm when a DC current of ± 90 μA was applied. Depending on the polarity of the DC current, directional control of spin transport was achieved. This spin drift effect demonstrated how longitudinal electric fields can guide and extend the propagation of spin current.

A similar dual-gated structure, this time using bilayer graphene, was also employed to study a different phenomenon: the role of perpendicular electric fields. Here a transport gap was induced in bilayer graphene by the application of a vertical electric field at low temperature, which allowed a purely electrostatic control of spin current propagation (Avsar et al., 2016). In an entirely opposite trend to the device resistance, the spin signal near the charge neutrality point was observed to rapidly decrease as the displacement field was increased, and eventually the signal becomes undetectable. This de-
FIG. 11 Proximity-enabled graphene/TMDC devices. (a) Nonlocal spin signal and conductivity for graphene/MoS$_2$ device, demonstrating a field-controlled spin absorption. From Yan et al. (2016). (b) Top schematic shows the spin precession cone under an oblique magnetic field, applied in a plane that contains the easy axis of the ferromagnetic electrodes and that is perpendicular to the substrate. Bottom schematic shows the spin precession with magnetic field applied in plane and perpendicular to the easy axis of ferromagnets. Here, the spin precesses on a plane perpendicular to the substrate. From Benítez et al. (2018). (c) Anisotropy measurements in a graphene/WS$_2$ spin valve device. Solid green dots represent the measurements taken at V_{BG} = -15V, with the green line a fit revealing an anisotropy of \sim 10. Open black dot shows data acquired in a reference graphene spin valve without WS$_2$, lacking any anisotropy. From Benítez et al. (2018). (d) Spin-to-charge conversion in a Hall bar detector within a graphene/MoS$_2$ heterostructure, at different temperatures. The inset shows the measurement configuration. From Safeer et al. (2019).

vice therefore served as an spin-transport analogy to the charge-based field-effect transistor, demonstrating a full electrostatic-gate control of spin current propagation, see Fig. 10(b). Furthermore, the unique spin-valley coupled band structure of bilayer graphene in such dual-gated device architecture enables the exciting possibility of modulating the spin-lifetime anisotropy. By performing Hanle spin precession measurements under obliquely oriented magnetic fields, Xu et al. (2018b) demonstrated that the ratio between out-of-plane (7.8 ns) and in-plane (0.64 ns) spin lifetimes is as large as \sim 12 near the charge neutrality point, as shown in Fig. 8(c). Such a large anisotropy is a result of an out-of-plane spin orbit field originated from the induced- band gap in bilayer graphene. When increasing the carrier concentration under a fixed vertical displacement field, both in-plane and out-of-plane spin lifetimes eventually become comparable and therefore the anisotropy disappears. These groundbreaking results, which offer a novel approach to manipulating spin information, were independently demonstrated by Leutenantsmeyer et al. (2018a) as well.

F. Proximity-enabled graphene/TMDC novel devices

The ability to control both the flow of spin information and the anisotropy of spin lifetime via an electrostatic gate in bilayer graphene relies on the presence of its band gap, which is only evident in experiments at low temperature. On the other hand, similar electrostatic control of spin information has been recently realized at room temperature, by exploring graphene/TMDC heterostructures. Electric field-controlled spin current in graphene/MoS$_2$ spin valve devices was first reported as a result of gate-tunable spin absorption into the adjacent MoS$_2$ layer (Dankert and Dash, 2017; Yan et al., 2016), see Fig. 9 (a). Later, two independent groups demonstrated that strong spin-valley coupling in WS$_2$ or MoS$_2$ results in a change of over one order of magnitude between the spin lifetimes for in-plane and out-of-plane spins (Benítez et al., 2018; Ghiasi et al., 2017), see Fig. 9 (b-c), in good agreement with earlier theoretical predictions (Cummings et al., 2017). These encouraging results in heterostructure systems enabled further theoretical investigations focusing on converting charge current into spin current, either using the Spin Hall effect (SHE) which can be induced via proximity in graphene (Garcia et al., 2017; Milletari et al., 2017) or the Rashba-Edelstein effect (REE) present at the graphene/TMDC interface (Offidani et al., 2017). The corresponding inverse effects (ISHE and IREE) are also possible, leading to reciprocal spin to charge conversion.

Towards this direction, Safeer et al. (2019) studied graphene/MoS$_2$ heterostructures and demonstrated the presence of a proximity-induced ISHE in graphene, with an additional spin to charge conversion mechanism that could be indistinguishably attributed to either a proximity-induced IREE in graphene or ISHE within the MoS$_2$ layer (Fig. 9(d)). Soon after, charge-to-spin conversion due to REE in a graphene/monolayer WS$_2$ heterostructure was demonstrated, also evidencing its carrier density and temperature dependences (Benítez et al.,
Spintronics in 2D Materials Beyond Graphene. (a) Spin transport in black phosphorus spin valves. Top panels show the device schematics and the optical image of a completed device, respectively. Bottom panels show spin valve and spin precession curves taken at 100 K, respectively. From Avsar et al. (2017a). (b) Polar magneto-optical measurement for CrI$_3$, showing hysteresis for ferromagnetic monolayer (1L) and trilayer (3L), and vanishing Kerr rotation for antiferromagnetic bilayer (2L). From Huang et al. (2017). (c) Upper panel represents the device geometry, where electrolyte gating technique was employed to induce an electric field. This tunes the density of states in magnetic Fe$_3$GeTe$_2$. Bottom panel shows the anomalous hall effect measurements as a function of temperature in a four-layers-thick Fe$_3$GeTe$_2$. From Deng et al., 2018)

Spintronics with 2D semiconductors and 2D magnets

Spintronics in 2D semiconductor materials such as black phosphorus (BP) and TMDCs can offer functionality that is not possible by using only graphene, for example gate controlled amplification/switching actions. Towards this, Avsar et al. (2017a) demonstrated all electrical spin injection, transport, manipulation and detection in ultrathin BP-based spin valves at room temperature. Based on four-terminal Hanle spin precession measurements, spin relaxation times up to 4.5 ns with spin relaxation lengths exceeding 6 µm were extracted, see Fig. 12(a). Temperature and gate voltage dependences for spin and momentum relaxation times were in good agreement with first-principles calculations, showing that Elliott-Yafet relaxation is dominant in BP (Kurpas et al., 2016; Li and Appelbaum, 2014). Further work is required to explore other spintronic properties, like directional spin transport in this anisotropic crystal.

Initial efforts to investigate magnetism in 2D materials mostly focused on proximity induced (Wang et al., 2015e) and defect induced (Yazyev and Helm, 2007) magnetism. Based on the Mermin-Wagner theorem (Mermin and Wagner, 1966), intrinsic ferromagnetic order is indeed not expected in 2D single layers. This was initially supported by the experimental results obtained from 2D Cr$_2$Ge$_2$Te$_6$ where magnetism is absent in its monolayer, at least down to the lowest studied temperatures (4.7 K) (Gong et al., 2017). In this material ferromagnetic order persists nonetheless down to bilayer, but the critical temperature significantly decreases from 68 K (bulk) to 30 K (bilayer), which can be explained by the thermal excitation of spin waves.

On the other hand, the Mermin-Wagner restriction can be lifted if a material displays strong SOC and magnetocrystalline anisotropy. As shown in Fig. 12(b), layer dependent magnetic ordering in CrI$_3$ was demonstrated down to monolayer thickness, with its spins constrained to lie vertical to the lattice plane as described by the Ising model (Huang et al., 2017). The layered structure of CrI$_3$ provides interesting opportunities: an odd number of layers results in long range ferromagnetic ordering, while an even number are antiferromagnetic. In the bilayer case, application of an external magnetic field above the coercive field makes the material ferromagnetic; all layers
are aligned to the same directions. By taking advantage of this polarization switch, giant tunneling magnetoresistance was demonstrated in vertically studied samples (Klein et al., 2018; Song et al., 2018; Wang et al., 2018). At constant voltage bias, such a magnetoresistance changes the current by nearly one million percent if thicker CrI$_3$ is employed (Kim et al., 2018). It was also demonstrated that the critical field required to switch from antiferromagnetism to ferromagnetism depends on the vertically applied electric field, see Fig. 12(c) (Huang et al., 2018; Jiang et al., 2018).

Demonstration of 2D magnetism in Cr$_2$Ge$_2$Te$_6$ and CrI$_3$ has pushed a rapid progress towards the discovery of new 2D magnetic materials, such as CrBr$_3$ (Ghazaryan et al., 2018), Fe$_3$GeTe$_2$ (Deng et al., 2018) and VSe$_2$ (Bonilla et al., 2018). Based on magneto-optical measurements, it was shown that VSe$_2$ shows ferromagnetic ordering persisting up to room temperature in its monolayer, in sharp contrast to its bulk counterpart, which is paramagnetic. Similarly, room temperature magnetic ordering was discovered in metallic Fe$_3$GeTe$_2$ crystals by employing the ionic gating technique. The use of room-temperature 2D magnets for potential spintronic applications is further enabled by their growth using molecular beam epitaxy techniques down to monolayer thickness, as demonstrated for MnSe$_2$ (O’Hara et al., 2018). Room temperature spintronic devices could integrate the spin transport properties of graphene with the memory of the 2D magnet, exploiting proximity-induced magnetization by the 2D magnet into graphene as demonstrated via the proximity anisotropic magnetoresistance effect in graphene/CrBr$_3$ heterostructures (Ghazaryan et al., 2018). Recent observation of defect-induced long-range magnetism in air-stable, metallic PtSe$_2$ (Avsar et al., 2019) and semiconducting MoTe$_2$ (Guguchia et al., 2018) expands the range of 2D magnets into materials that are intrinsically nonmagnetic and would otherwise be overlooked. The emerging mix of experimental techniques and new materials, and the resulting new effects like gate-tunable magnetism, creates exciting prospects for 2D-based voltage-controlled magnetoelectronics.

IV. FINAL REMARKS

Since the first demonstration of spin transport in graphene (Tombros et al., 2007) we have seen a remarkable progress in 2D-based spintronics, including graphene related materials, getting tantalisingly close towards practical applications. This includes, but is not limited to: a two orders of magnitude enhancement in graphene spin lifetime (Drögeler et al., 2016), high quality spin transport in large-scale graphene fabricated on conventional Si/SiO$_2$ (Avsar et al., 2011; Gebeleyhu et al., 2019; Kamalakar et al., 2015) and flexible polymer (Serrano et al., 2019) substrates, gate-induced spin manipulation in 2D semiconductors (Avsar et al., 2017a) and graphene/TMDC heterostructures (Dankert and Dash, 2017; Yan et al., 2016), proximity induced spin-to-charge conversion in graphene/TMDC heterostructures (Ghiasi et al., 2019; Li et al., 2019; Safeer et al., 2019), and the recent discovery of 2D magnets that can even remain magnetically ordered down to a few atoms thick at room temperature (Deng et al., 2018).

However, there are long-standing challenges that need to be addressed for exploiting the full potential of 2D spintronics applications. There is still room for improving spin lifetime and spin relaxation length by studying fully encapsulated, high mobility graphene spin valves. We believe there are two major breakthroughs expected when these devices reach the electronic quality of state of art charge-based devices. First, experimental results in such high-quality spintronic devices will guide the theory to convincingly identify the limiting spin relaxation mechanisms. Second, analogous to the demonstration of micrometer-scale ballistic charge transport at room temperature (Mayorov et al., 2011), the realization of ballistic spin transport at room temperature could open a whole new range of opportunities. The latter relates to both applications (e.g. enabled by spin pumping (Bercioux et al., 2012) or spin filtering (Valli et al., 2018) effects), and to developing a theoretical description to interpret the role of device geometry, spin precession, and transport in a regime beyond the diffusive approximation (Bercioux and Martino, 2010; Vila et al., 2019). Considering the field started only over a decade ago, and its current progress, the vision of low-power all-spin-logic devices based on 2D van der Waal heterostructures seems within the reach of the next decade.

ACKNOWLEDGMENTS

We thank A. Ferreira, D. Bercioux, E. Sherman, S. O. Valenzuela, A. G. Moghaddam, M. V. Kamalakar, I. Žutić, J. Fabian and S. Roche for valuable discussions. We acknowledge the financial support from the European Union’s Horizon 2020 research and innovation program under Grant Agreement Nos. 696656 and 785219 (Graphene Flagship Core 1 and 2). BJvW acknowledges the support by the Zernike Institute for Advanced Materials, and the NWO Spinoza prize awarded by the Netherlands Organisation for Scientific Research (NWO). B.Ö. acknowledges support by the National Research Foundation, Prime Minister’s Office, Singapore under its Investigator Award (Project No. NRF-NRFI2018-08) and its Medium Sized Centre Program. IJVM acknowledges the support of the Future and Emerging Technologies (FET) Programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant No. 618083 (CINTQC).
REFERENCES

A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura (2012), “Experimental evidence for epitaxial silicene on diboride thin films,” Phys. Rev. Lett. 108, 245501.

Abanin, D. A., D. V. Gorbachev, K. S. Novoselov, A. K. Geim, and L. S. Levitov (2011a), “Giant spin-hall effect induced by the zeeman interaction in graphene,” Phys. Rev. Lett. 107 (9), 096601.

Abanin, D. A., S. V. Morozov, L. A. Ponomarenko, R. V. Gorbachev, A. S. Mayorov, M. I. Katsnelson, K. Watanabe, T. Taniguchi, K. S. Novoselov, L. S. Levitov, and A. K. Geim (2011b), “Giant nonlocality near the dirac point in graphene,” Science 332 (6027), 328–330.

Abdelouahed, S., A. Ernst, J. V. Mazzinichenko, and I. Mertig (2010), “Spin-split electronic states in graphene: Effects due to lattice deformation, rashba effect, and adatom-by-adatom principles,” Phys. Rev. B 82, 125424.

Ahsarari, Abdulrahman M., Mahmoud M. Asmar, and Sergio E. Ulloa (2016), “Mass inversion in graphene by proximity to dichalcogenide monolayer,” Phys. Rev. B 94, 241106(R).

Asshoff, P. U., J. L. Sambricio, A. P. Rooney, S. Slizovskiy, A. Mishchenko, A. M. Rakowski, E. W. Hill, A. K. Geim, S. J. Haigh, V. I. Fal’ko, I. V. Vera-Marun, and I. V. Grigorieva (2017), “Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene,” 2D Mater. 4 (3), 031004.

Asshoff, Pablo U., Jose L. Sambricio, Sergey Slizovskiy, Aidan P. Rooney, Takashi Taniguchi, Kenji Watanabe, Sarah J. Haigh, Vladimir Fal’ko, Irina V. Grigorieva, and Ivan J. Vera-Marun (2018), “Magnetoresistance in Co-hBN-NiFe Tunnel Junctions Enhanced by Resonant Tunneling through Single Defects in Ultrathin hBN Barriers,” Nano Lett. 18 (11), 6954–6960.

Avsar, A., J. Y. Tan, T. Taychatanapat, J. Balakrishnan, Frank Volmer, Manu Jaiswal, Zheng Yi, Syed Rizwan Ali, Gernot Güntherodt, Byung Hee Hong, and Barbaros Özylımaız (2011), “Toward Wafer Scale Fabrication of Graphene Based Spin Valve Devices,” Nano Lett. 11 (6), 2363–2368.

Awshalom, D. D., D. Loss, and N. Samarth, Eds. (2002), Semiconductor Spintronics and Quantum Computation, NanoScience and Technology (Springer-Verlag, Berlin Heidelberg).

Baibich, M. N., J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas (1988), “Giant magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61 (21), 2472.

Balakrishnan, Jayakumar, Gvin Kok Wai Koon, Manu Jaiswal, A. H. Castro Neto, and Barbaros Özylımaız (2013), “Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene,” Nature Phys. 9 (5), 284–287.

Balakrishnan, Jayakumar, Gvin Kok Wai Koon, Ahmet Avsar, Yuda Ho, Jong Hak Lee, Manu Jaiswal, Seung-Jae Baeck, Jong-Hyun Ahn, Aires Ferreira, Miguel A. Cazallila, Antonio H. Castro Neto, and Barbaros Özylımaız (2014), “Giant spin Hall effect in graphene grown by chemical vapour deposition,” Nat. Commun. 5, 4748.

Banerjee, Tamalika, Wilfred G. van der Wiel, and Ron Jansen (2010), “Spin injection and perpendicular spin transport in graphite nanostructures,” Phys. Rev. B 81 (21), 214409.

Bauer, Gerrit E. W., Eiji Saitoh, and Bart J. van Wees (2012), “Spin caloritronics,” Nature Mater. 11 (5), 391–399.

Behin-Aein, Behhtash, Deepanjani Datta, Sayeef Salahuddin, and Supriyo Datta (2010), “Proposal for an all-spin logic device with built-in memory,” Nature Nanotechnology 5 (4), 266–270.

Benítez, L. Antonio, Juan F. Sierra, Williams Savero Torres, Aloís Arriighi, Frédéric Bonell, Marius V. Costache, and Sergio O. Valenzuela (2018), “Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature,” Nature Physics 14 (3), 303.

Benítez, L. Antonio, Williams Savero Torres, Juan F. Sierra, Matias Timmermans, Jose H. Garcia, Stephan Roche, Marius V. Costache, and Sergio O. Valenzuela (2019), “Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures,” arXiv:1908.07868 [cond-mat, physics:physics].

Bercioux, D., and A. De Martino (2010), “Spin-resolved scattering through spin-orbit nanostructures in graphene spin-resolved scattering through spin-orbit nanostructures in graphene,” Phys. Rev. B 81, 165410.

Bercioux, D., D. F. Urban, F. Romeo, and R. Citro (2012), “Rashba spin-orbit-interaction-based quantum pump in graphene,” Appl. Phys. Lett. 101, 122405.

Berger, A. J., W. Amamou, S. P. White, R. Adur, Y. Pu, R. K. Kawakami, and P. C. Hammel (2014), “Magnetization dynamics of cobalt grown on graphene,” J. Appl. Phys. 115 (17), 17C510.

Binasch, G. P., Grünberg, F. Saurenbach, and W. Zinn (1989), “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39 (7), 4828.

Bir, G. L., A. G. Aronov, and G. E. Pikus (1975), “Spin relaxation of electrons scattered by holes,” Zh. Eksp. Teor.
Fiz. 69, 1382.
Bloch, F (1946), “Nuclear induction,” Phys. Rev. 70, 460.
Bonilla, Manuel, Sadhu Kolekar, Yujing Ma, Horacio Coy Díaz, Vijaysankar Kalappattil, Raja Das, Tatiana Eggers, Humberto R. Gutierrez, Manh-Huong Phan, and Matthias Batzill (2018), “Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates,” Nature Nanotechnology 13 (4), 289–293.
Brey, Luis (2015), “Spin-orbit coupling in graphene induced by adatoms with outer-shell p orbitals,” Phys. Rev. B 92, 235444.
Britnell, Liam, Roman V. Gorbachev, Rashid Jalil, Brandon D. Belle, Fred Schedin, Mikhail I. Katsnelson, Laurence Eaves, Sergey V. Morozov, Alexander S. Mayorov, Nuno M. R. Peres, Antonio H. Castro Neto, Jon Leist, Andre K. Geim, Leonid A. Ponomarenko, and Kostya S. Novoselov (2012), “Electron Tunneling through Ultraslim Boron Nitride Crystalline Barriers,” Nano Lett. 12 (3), 1707–1710.
Burkov, A A, Alvaro S. Nunez, and A. H. MacDonald (2004), “Theory of spin-charge-coupled transport in a two-dimensional electron gas with rashba spin-orbit interactions,” Phys. Rev. B 70, 155308.
Calleja, Fabian, Héctor Ochoa, Manuela Garnica, Sara Barja, Juan Jesús Navarro, Andrés Black, Mikhail M. Otroko, Evgeni V. Chulkov, Andrés Arnaiz, Amadeo L. Vázquez de Parga, Francisco Guinea, and Rodolfo Miranda (2015), “Spatial variation of a giant spin-orbit effect induces electron confinement in graphene on pb islands,” Nat. Phys. 11, 43.
Castro, Eduardo V, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, Johan Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto (2007), “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802.
Castro, Eduardo V, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea (2010), “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105, 266601.
Castro Neto, A H, and F. Guinea (2009), “Impurity-induced spin-orbit coupling in graphene,” Phys. Rev. Lett. 103 (2), 026804.
Castro Neto, A H, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim (2009), “The electronic properties of graphene,” Rev. Mod. Phys. 81 (1), 109–162.
Chandni, U, Erik A. Henriksen, and J. P. Eisenstein (2015), “Transport in indium-decorated graphene,” Phys. Rev. B 91 (24), 245402.
Chappert, Claude, Albert Fert, and Frederic Nguyen Van Dau (2007), “The emergence of spin electronics in data storage,” Nature Mater. 6 (11), 813–823.
Chen, Jing-Jing, Jie Meng, Yang-Bo Zhou, Han-Chun Wu, Ya-Qing Bie, Zhi-Min Liao, and Da-Peng Yu (2013), “Layer-by-layer assembly of vertically conducting graphene devices,” Nature Commun. 4, 1921.
Cho, Sungjae, Yung-Fu Chen, and Michael S. Fuhrer (2007), “Gate-tunable graphene spin valve,” Appl. Phys. Lett. 91 (12), 123105.
Cobas, E. A. L. Friedman, O. M. J. van ’t Erve, J. T. Robinson, and B. T. Jonker (2013), “Graphene-based magnetic tunnel junctions,” IEEE Trans. Magn. 49 (7), 4343–4346.
Cobas, Enrique, Adam L. Friedman, Olaf M. J. van’t Erve, Jeremy T. Robinson, and Berend T. Jonker (2012), “Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions,” Nano Lett. 12 (6), 3000–3004.
Cummins, Aron W, Jose H. Garcia, Jaroslav Fabian, and Stephan Roche (2017), “Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects,” Phys. Rev. Lett. 119 (20), 206601.
Cysne, T P, J. H. Garcia, A. R. Rocha, and T. G. Rappoport (2018a), “Quantum hall effect in graphene with interface-induced spin-orbit coupling,” Phys. Rev. B 97, 085413.
Cysne, Tarik P, Aires Ferreira, and Tatiana G. Rappoport (2018b), “Crystal-field effects in graphene with interface-induced spin-orbit coupling,” Phys. Rev. B 98, 045407.
Dankert, André, and Saroj P. Dash (2017), “Electrical gate control of spin current in van der Waals heterostructures at room temperature,” Nature Commun. 8, 16093.
Dankert, André, Men Vinka Kamalakar, Abdul Wajid, R. S. Patel, and Saroj P. Dash (2014a), “Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers,” Nano Res. 8 (4), 1357–1364.
Dankert, André, Mutta Venkata Kamalakar, Johan Bergsten, and Saroj P. Dash (2014b), “Spin transport and precession in graphene measured by nonlocal and three-terminal methods,” Appl. Phys. Lett. 104 (19), 192403.
Das Sarma, S, Shafi Alidadi, E. H. Hwang, and Enrico Rossi (2011), “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83 (2), 407.
Dash, Saroj P, Sandeep Sharma, Ram S. Patel, Michel P. de Jong, and Ron Jansen (2009), “Electrical creation of spin polarization in silicon at room temperature,” Nature 462 (7272), 491–494.
Datta, Supriyo, and Biswajit Das (1990), “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56 (7), 665–667.
Dean, C R, A F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrey, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone (2010), “Boron nitride substrates for high-quality graphene electronics,” Nat Nano 5 (10), 722–726.
Deng, Yujun, Yijun Yu, Yichen Song, Jingzhe Zhang, Nai Zhou Wang, Zeyuan Sun, Yangfan Yi, Yi Zheng Wu, Shiwai Wu, Junyi Zhu, Jing Wang, Xian Hui Chen, and Yuanbo Zhang (2018), “Gate-tunable room-temperature ferromagnetism in two-dimensional Fe 3 GeTe 2,” Nature 563 (7429), 94.
Dery, H, H. Wu, B. Ciftcioglu, M. Huang, Y. Song, R. Kawakami, J. Shi, I. Krivorotov, I. Zutic, and L. J. Sham (2012), “ NANospintronics Based on Magnetologic Gates,” IEEE Transactions on Electron Devices 59 (1), 259–262.
Dietz, Mathias, and Guido Burkard (2012), “Bias-dependent d’yakonov-perel’ spin relaxation in bilayer graphene,” Phys. Rev. B 85, 195412.
Dlubak, B, M.-B. Martin, C. Deranlot, K. Bouzehouane, S. Fusil, R. Mattana, F. Petroff, A. Anane, P. Seneor, and A. Fert (2012a), “Homogeneous pinhole free 1 nm Al2O3 tunnel barriers on graphene,” Appl. Phys. Lett. 101 (20), 203104.
Dlubak, B. P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert (2010), “Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene?” Appl. Phys. Lett. 97 (9), 092502–092502–3.
Dlubak, Bruno, Marie-Blandine Martin, Robert S. Weatherup, Heejun Yang, Cyril Deranlot, Raoul Blume, Robert Schloegl, Albert Fert, Abdelmadjid Anane, Stephan Hofmann, Pierre Seneor, and John Robertson...
Dresselhaus, G., and M. S. Dresselhaus (1965), “Spin-orbit interaction in graphite,” Phys. Rev. 140, 401.
Dresselhaus, M. S., G. Dresselhaus, and A. Jorio (2008), Group Theory: Application to the Physics of Condensed Matter (Springer, New York).
Drögeler, Marc, Christopher Franzen, Frank Volmer, Tobias Pohlmann, Luca Banszerus, Maik Wolter, Kenji Watanabe, Takashi Taniguchi, Christoph Stampfer, and Bernd Beschoten (2016), “Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices,” Nano Lett. 16 (6), 3533–3539.
Dummond, N. D., V. Zolyomi, and V. I. Fal’ko (2012), “Electrically tunable band gap in silicene,” Phys. Rev. B 85, 075423.
Dugaev, V. K., E. Ya. Sherman, and J. Barnáš (2011), “Spin dephasing and pumping in graphene due to random spin-orbit interaction,” Phys. Rev. B 83, 085306.
D’yakonov, M. I. (2008), Spin Physics in Semiconductors (Springer, New York).
D’yakonov, M. I., and V. I. Perel’ (1971), “Spin relaxation of conduction electrons in noncentrosymmetric semiconductors,” Sov. Phys. Solid State 13, 3023.
D’yakonov, M. I., and V. I. Perel’ (1973), “Optical orientation in a system of electrons and lattice nuclei in semiconductors-theory,” Zh. Eksp. Teor. Fiz. 65, 362.
Elias, D. C., R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov (2009), “Control of graphene’s properties by reversible hydrogenation: Evidence for graphene,” Science 323, 610.
Elliot, R. J. (1954), “Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266.
Erler, Christian, Sergej Konschuh, Martin Gmitra, and Jaroslav Fabian (2009), “Electron spin relaxation in graphene: The role of the substrate,” Phys. Rev. B 80, 041405(R).
Erve, O. M. J. van ’t, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson, and B. T. Jonker (2012), “Low-resistance spin injection into silicon using graphene tunnel barriers,” Nature Nanotech. 7 (11), 737–742.
Ezawa, Motohiko (2012), “Valley-polarized metals and quantum anomalous hall effect in silicene,” Phys. Rev. Lett. 109, 055502.
Fabian, Jaroslav, Alex Matos-Abiague, Christian Ertert, Peter Stano, and Igor Zutic (2007), “Semiconductor spintronics,” Acta Physica Slovaca 57, 565.
Feng, Wanxiang, Yuguí Yao, Wenguang Zhu, Jinzhuan Zhou, Wang Yao, and Di Xiao (2012), “Intrinsic spin hall effect in monolayers of group-vi dichalcogenides: A first-principles study,” Phys. Rev. B 86, 165108.
Ferreira, Aires, Tatiana G. Rappoport, Miguel A. Cazalilla, and A. H. Castro Neto (2014), “Extrinsic spin hall effect induced by resonant skew scattering in graphene,” Phys. Rev. Lett. 112 (6), 066601.
Fert, Albert (2008), “Nobel Lecture: Origin, development, and future of spintronics,” Rev. Mod. Phys. 80 (4), 1517–1530.
Flatté, M. E. (2007), “Semiconductor Spintronics for Quantum Computation,” in Manipulating Quantum Coherence in Solid State Systems, NATO Science Series II: Mathematics, Physics and Chemistry No. 244, edited by Michael E. Flatté and I. Tifrea (Springer Netherlands, Dordrecht) pp. 1–52.
Flatté, M. E., and G. Vignale (2001), “Unipolar spin diodes and transistors,” Appl. Phys. Lett. 78 (9), 1273–1275.
Fratini, S. D., Gosálbez-Martínez, P. Merodio Cámara, and J. Fernández-Rossier (2013), “Anisotropic intrinsic spin relaxation in graphene due to flexural distortions,” Phys. Rev. B 88, 115426.
Friedman, Adam L., Olaf M. J. van ’t Erve, Jeremy T. Robinson, Keith E. Whittener Jr., and Berend T. Jonker (2016), “Homoepitaxial graphene tunnel barriers for spin transport,” AIP Advances 6 (5), 056301.
Friedman, Adam L., Olaf M. J. van ’t Erve, Connie H. Li, Jeremy T. Robinson, and Berend T. Jonker (2014), “Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport,” Nat. Commun. 5.
Friedman, Adam L., Olaf M. J. van ’t Erve, Jeremy T. Robinson, Keith E. Whittener, and Berend T. Jonker (2015), “Hydrogenated Graphene as a Homoepitaxial Tunnel Barrier for Spin and Charge Transport in Graphene,” ACS Nano 9 (7), 6747–6753.
Fu, Wangyang, Péter Makk, Romain Maurand, Matthias Bräuning, and Christian Schönberger (2014), “Largescale fabrication of BN tunnel barriers for graphene spintronics,” J. Appl. Phys. 116 (7), 074306.
García, Jose H., Aron W. Cummings, and Stephan Roche (2017), “Spin Hall Effect and Weak Antilocalization in Graphene/Transition Metal Dichalcogenide Heterostructures,” Nano Lett. 17 (8), 5078–5083.
García, Jose H., Marc Vila, Aron W. Cummings, and Stephan Roche (2018), “Spin transport in graphene/transition metal dichalcogenide heterostructures,” Chem. Soc. Rev. 47 (9), 3359–3379.
Gebelehu, Z. M., S. Parui, J. F. Sierra, M. Timmermans, M. J. Esplandiú, S. Brens, C. Huỳghêbaert, K. Garello, M. V. Costache, and S. O. Valenzuela (2019), “Spin communication over 30 µm long channels of chemical vapor deposited graphene on SiO2,” 2D Mater. 6 (3), 034003.
Geim, A. K., and I. V. Grigorieva (2013), “Van der waals heterostructures,” Nature (London) 499, 419.
von Gelderen, Ralph, and C. Morais Smith (2010), “Rashba and intrinsic spin-orbit interactions in biased bilayer graphene,” Phys. Rev. B 81, 125435.
Ghazaryan, D. M., T. Greenaway, Z. Wang, V. H. Guarcho-Moreira, I. J. Vera-Marun, J. Yin, Y. Liao, S. V. Morozov, O. Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers, A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov, and A. Misra (2018), “Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr 3,” Nature Electronics 1 (6), 344–349.
Ghiasi, Taliéh S., Josep Ingla-Aynés, Alexey A. Kaverzin, and Bart J. van Wees (2017), “Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures,” Nano Lett. 17 (12), 7528–7532.
Ghiasi, Taliéh S., Alexey A. Kaverzin, Patrick J. Blah, and Bart J. van Wees (2019), “Charge-to-Spin Conversion by the Rashba–Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature,” Nano Lett. 10.1021/acs.nanolett.9b01611.
Gmitra, M. S., Konschuh, C. Ertert, C. Ambrosch-Draxl, and J. Fabian (2009), “Band-structure topologies of graphene:
Spin-orbit coupling effects from first principles,” *Phys. Rev. B* **80**, 235431.

Gmitra, Martin, and Jaroslav Fabian (2015), “Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics,” *Phys. Rev. B* **92**(15), 155403.

Gmitra, Martin, and Jaroslav Fabian (2017), “Proximity effects in bilayer graphene on monolayer wSe 2: Field-effect spin valley locking, spin-orbit valve, and spin transistor,” *Phys. Rev. Lett.* **119**(14), 146401.

Gmitra, Martin, Denis Kochan, and Jaroslav Fabian (2013), “Spin-orbit coupling in hydrogenated graphene,” *Phys. Rev. Lett.* **110**(24), 246602.

Gmitra, Martin, Denis Kochan, Petra H’ogl, and Jaroslav Fabian (2015), “Graphene on transition-metal dichalcogenides,” *Phys. Rev. B* **93**, 155104.

Godel, F., M. Venkata Kamalakar, B. Doudin, Y. Henry, D. Halley, and J.-F. Dayen (2014), “Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions,” *Appl. Phys. Lett.* **105**(15), 152407.

Gong, Cheng, Lin Li, Zheng Li, Huiwen Ji, Alex Stern, Yang Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan Wang, Z. Q. Qiu, R. J. Cava, Steven G. Louie, Jing Xiu, and Xiang Zhang (2017), “Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals,” *Nature* **546**(7657), 265–269.

Gordon, R. A., D. Yang, E. D. Crozier, D. T. Jiang, and R. F. Frindt (2002), “Structures of exfoliated single layers of ws6, mos2, and mose2 in aqueous suspension,” *Phys. Rev. B* **65**, 125307.

Guarochico, Victor, Jose Sambricio, Irina Grigorieva, and Ivan Vera (2017), “Spintronics in high-quality graphene heterostructures via 1d contacts,” in *Bulletin of the American Physical Society*, Vol. Volume 62, Number 4 (American Physical Society, New Orleans, Louisiana) p. P42.00001.

Guoguchia, Z., A. Kerelsky, D. Edelberg, S. Banerjee, F. von Rohr, D. Scullion, M. Augustin, M. Scully, D. A. Rhodes, Z. Shermadini, H. Luetkens, A. Shengelaya, C. Baines, E. Morenzoni, A. Amato, J. C. Hone, R. Khasanov, S. J. L. Billinge, E. Santos, A. N. Pasupathy, and Y. J. Uemura (2018), “Magnetism in semiconducting molybdenum dichalcogenides,” *Science Advances* **4**(12), eaat3672.

Guimarães, M H D, P. J. Zomer, J. Ingla-Aynès, J. C. Brant, N. Tombros, and B. J. van Wees (2014), “Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field,” *Phys. Rev. Lett.* **113**(8), 086602.

Guinea, F. (2010), “Spin-orbit coupling in a graphene bilayer and in graphite,” *New J. Phys.* **12**, 083063.

Guinea, F., A. H. Castro Neto, and N. M. R. Peres (2006), “Electronic states and landau levels in graphene stacks,” *Phys. Rev. B* **73**, 245426.

Gurram, M. S. Omar, and B. J. van Wees (2017), “Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/BN heterostructures,” *Nature Commun.* **8**(1), 248.

Gurram, M. S. Omar, and B. J. van Wees (2018), “Electrical spin injection, transport, and detection in graphene-hexagonal boron nitride van der Waals heterostructures: progress and perspectives,” *2D Mater.* **5**(3), 032004.

Gurram, M., S. Omar, S. Zihlmann, P. Makk, C. Schönenerberger, and B. J. van Wees (2016), “Spin transport in fully hexagonal boron nitride encapsulated graphene,” *Phys. Rev. B* **93**(11), 115441.

Haase, P., S. Fuchs, T. Pruschke, H. Ochoa, and F. Guinea (2011), “Magnetic moments and kondo effect near vacancies and resonant scatterers in graphene,” *Phys. Rev. B* **83**, 214408(R).

Haldane, F. D. M. (1988), “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” *Phys. Rev. Lett.* **61**, 2015.

Han, Wei, and R. K. Kawakami (2011), “Spin relaxation in single-layer and bilayer graphene,” *Phys. Rev. Lett.* **107**(4), 047207.

Han, Wei, K. M. McCreary, K. Pi, W. H. Wang, Yan Li, H. Wen, J.R. Chen, and R.K. Kawakami (2012), “Spin transport and relaxation in graphene,” *J. Magn. Magn. Mater.* **324**(4), 369–381.

Han, Wei, K. Pi, K. M. McCreary, Yan Li, Jared J. I. Wong, A. G. Swartz, and R. K. Kawakami (2010), “Tunneling spin injection into single layer graphene,” *Phys. Rev. Lett.* **105**(16), 167202.

Hasan, M. Z., and C. L. Kane (2010), “Colloquium: Topological insulators,” *Rev. Mod. Phys.* **82**, 3045.

Hill, E. W., A. K. Geim, K. Novoselov, F. Schedin, and P. Blake (2006), “Graphene Spin Valve Devices,” *IEEE Trans. Magn.* **42**(10), 2694–2696.

Hoque, Amamul Md, Dmitrii Khokhriakov, Bogdan Karpia, and Saroj P. Dash (2019), “All-electrical creation and control of giant spin-galvanic effect in 1t-MoTe2/graphene heterostructures at room temperature,” arXiv:1908.09367 [cond-mat.mes-hall].

Hu, Jun, Jason Alicea, Ruqian Wu, and Marcel Franz (2012), “Giant Topological Insulator Gap in Graphene with $5d$ Adatoms,” *Phys. Rev. Lett.* **109**(26), 266801.

Huang, Bevin, Genevieve Clark, Dahlia R. Klein, David MacNeill, Efrén Navarro-Moratalla, Kyle L. Seyler, Nathan Wilson, Michael A. McGuire, David H. Cobden, Di Xiao, Wang Yao, Pablo Jarillo-Herrero, and Xiaodong Xu (2018), “Electrical control of 2d magnetism in bilayer CrI 3,” *Nature Nanotechnology* **13**(7), 544–548.

Huang, Bevin, Genevieve Clark, Efrén Navarro-Moratalla, Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong, Emma Schmidgall, Michael A. McGuire, David H. Cobden, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, and Xiaodong Xu (2017), “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” *Nature* **546**(7657), 270–273.

Huang, Chunli, Y. D. Chong, and Miguel A. Cazalilla (2016), “Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene,” *Phys. Rev. B* **94**(8), 085414.

Huertas-Hernando, D. F. Guinea, and A. Brataas (2006), “Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps,” *Phys. Rev. B* **74**, 155426.

Huertas-Hernando, D. F. Guinea, and Arne Brataas (2009), “Spin-orbit-mediated spin relaxation in graphene,” *Phys. Rev. Lett.* **103**, 146801.

Ingla-Aynès, J. M. H. D. Guimarães, R. J. Meijerink, P. J. Zomer, and B. J. van Wees (2015), “24 μm spin relaxation length in boron nitride encapsulated bilayer graphene,” *Phys. Rev. B* **92**(20), 201410.

Ingla-Aynès, Josep, Rick J. Meijerink, and Bart J. van Wees (2016), “Eighty-Eight Percent Directional Guiding of Spin Currents with 90 μm Relaxation Length in Bilayer...”
Graphene Using Carrier Drift,” Nano Lett. 16 (8), 4825–4830.
Inglot, M., V. K. Dugaev, E. Ya. Sherman, and J. Barnaś (2014), “Optical spin injection in graphene with Rashba spin-orbit interaction,” Phys. Rev. B 89 (15), 155411.
Iqbal, Muhammad Zahir, Muhammad Waqas Iqbal, Jae Hong Lee, Yong Seung Kim, Seung-Hyun Chun, and Jonghwa Eom (2013), “Spin valve effect of NiFe/graphene/NiFe junctions,” Nano Res. 6 (5), 373–380.
Irmer, Susanne, Tobias Frank, Sebastian Putz, Martin Gmitra, Denis Kochan, and Jaroslav Fabian (2015), “Spin–orbit coupling in fluorinated graphene,” Phys. Rev. B 91 (11), 115141.
Island, J. O, X. Cui, C. Lewandowski, J. Y. Kho, E. M. Spanton, H. Zhou, D. Rhodes, J. C. Hone, T. Taniguchi, K. Watanabe, L. S. Levitov, M. P. Zaletel, and A. F. Young (2019), “Spin–orbit-driven band inversion in bilayer graphene by the van der waals proximity effect,” Nature (London) 571, 85.
Jedema, F J, M. V. Costache, H. B. Heersche, J. A. Baselmans, and B. J. van Wees (2002a), “Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves,” Appl. Phys. Lett. 81, 5162.
Jedema, F J, A. T. Filip, and B. J. van Wees (2001), “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410 (6882), 345–348.
Jedema, F J, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees (2002b), “Electrical detection of spin precession in a metallic mesoscopic spin valve,” Nature 416 (6882), 713–716.
Jeon, Kun-Rok, Byoung-Chul Min, Il-Jae Shin, Chang-Yup Park, Hun-Sung Lee, Young-Hun Jo, and Sung-Chul Shin (2011), “Electrical spin accumulation with improved bias voltage dependence in a crystalline CoFe/MgO/Si system,” Appl. Phys. Lett. 98 (26), 262102–262102–3.
Jeong, Jae-Seung, Jeongkyu Shin, and Hyun-Woo Lee (2011), “Curvature-induced spin-orbit coupling and spin relaxation in a chemically clean single-layer graphene,” Phys. Rev. B 84, 195457.
Jia, Zhenzhao, Baoming Yan, Jingjing Niu, Qi Han, Rui Zhu, Dapeng Yu, and Xiaosong Wu (2015), “Transport study of graphene adsorbed with indium adatoms,” Phys. Rev. B 91 (8), 085411.
Jiang, Shengwei, Li-zhong Li, Zefang Wang, Kin Fai Mak, and Jie Shan (2018), “Controlling magnetism in 2d CrI 3 by electrostatic doping,” Nature Nanotechnology 13 (7), 549–553.
Jo, Sanghyun, Dong-Keun Ki, Dongchan Jeong, Hu-Jong Lee, and Stefan Kettemann (2011), “Spin relaxation properties in graphene due to its linear dispersion,” Phys. Rev. B 84 (7), 075453.
Johnson, Mark, and R. H. Silsbee (1985), “Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals,” Phys. Rev. Lett. 55 (17), 1790.
Jönsson-Åkerman, B J, R. Escudero, C. Leighton, S. Kim, Ivan K. Schuller, and D. A. Ralson (2000), “Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality,” Appl. Phys. Lett. 77 (12), 1870–1872.
Józsa, C., T. Maassen, M. Popinciuc, P. J. Zomer, A. Veligura, H. T. Jonkman, and B. J. van Wees (2009a), “Linear scaling between momentum and spin scattering in graphene,” Phys. Rev. B 80 (24), 241403(R).
“Spin relaxation mechanism in graphene: Resonant scattering by magnetic impurities,” Phys. Rev. Lett. 112 (11), 116602.

Kochan, Denis, Susanne Irmer, and Jaroslav Fabian (2017), “Model spin-orbit coupling hamiltonians for graphene systems,” Phys. Rev. B 95, 165415.

Kochan, Denis, Susanne Irmer, Martin Gmitra, and Jaroslav Fabian (2015), “Resonant Scattering by Magnetic Impurities as a Model for Spin Relaxation in Bilayer Graphene,” Phys. Rev. Lett. 115 (19), 196001.

Komatsu, Katsuyoshi, Shinya Kassai, Song-Lin Li, Shu Nakahara, Nobuhiko Mitoma, Mahito Yamamoto, and Kazuhito Tsukagoshi (2014), “Spin injection and detection in a graphene lateral spin valve using an yttrium-oxide tunneling barrier,” Appl. Phys. Express 7 (8), 085101.

Konschuh, S, M. Gmitra, and J. Fabian (2010), “Tight-binding theory of the spin-orbit coupling in graphene,” Phys. Rev. B 82, 245412.

Konschuh, S, M. Gmitra, D. Kochan, and J. Fabian (2012), “Theory of spin-orbit coupling in bilayer graphene,” Phys. Rev. B 85, 115423.

Kornymos, Andor, Viktor Zolyomi, Neil D. Drummond, Peter Raktya, Guido Burkard, and Vladimir I. Fal’ko (2013), “Monolayer mos2: Trigonal warping, the γ valley, and spin-orbit coupling effects,” Phys. Rev. B 88, 045416.

Kudin, Konstantin N, Gustavo E. Scuseria, and Boris I. Yakobson (2001), “C2F7 - c5f2 bn, and c nanoshell elasticity from ab initio computations,” Phys. Rev. B 64, 235406.

Kurpas, Marcin, Paulo E. Paria Junior, Martin Gmitra, and Jaroslav Fabian (2019), “Spin-orbit coupling in elemental two-dimensional materials,” Phys. Rev. B 100 (12), 125422.

Kurpas, Marcin, Martin Gmitra, and Jaroslav Fabian (2016), “Spin-orbit coupling and spin relaxation in phosphorene: Intrinsic versus extrinsic effects,” Phys. Rev. B 94 (15), 155423.

Landau, L D, and E. M. Lifshitz (1977), Quantum Mechanics, 3rd ed. (Pergamon Press, Oxford).

Lazić, Predrag, K. D. Belashchenko, and Igor Žutić (2016), “Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures,” Phys. Rev. B 93 (24), 241401.

Lee, Changgu, Xiaoding Wei, Jeffrey W. Kysar, and James Hone (2008), “Measurement of the elastic properties and intrinsic strength of monolayer graphite,” Science 321, 385.

Lenz, Lucia, D. F. Urban, and D. Bercioux (2013), “Rashba spin-orbit interaction in graphene armchair nanoribbons,” Eur. Phys. J. B 86, 502.

Leutenantsmeyer, Johannes Christian, Josep Ingla-Aynés, Jaroslav Fabian, and Bart J. van Wees (2018a), “Observation of Spin-Valley-Coupling-Induced Large Spin-Lifetime Anisotropy in Bilayer Graphene,” Phys. Rev. Lett. 121 (12), 127702.

Leutenantsmeyer, Johannes Christian, Josep Ingla-Aynés, Mallikarjuna Gurram, and Bart J. van Wees (2018b), “Efficient spin injection into graphene through trilayer hBN tunnel barriers,” J. Appl. Phys. 124 (19), 194301.

Li, Lijun, Jin Zhang, Gyuho Myeong, Wongil Shin, Hong Sik Lim, Boram Kim, Seungho Kim, Taechyoo Jin, Bumseo Kim, Changyoung Kim, Johannes Lischner, Aires Ferreira, and Sungjae Cho (2019), “Electrical Control of the Rashba-Edelstein Effect in a Graphene/2h-TaSe2 Van der Waals Heterostructure at Room Temperature,” arXiv:1906.10702 [cond-mat] ArXiv: 1906.10702.

Li, Pengke, and Ian Appelbaum (2014), “Electrons and holes in phosphorene,” Phys. Rev. B 90 (11), 115439.

Li, Wan, Lin Xue, H. D. Abrau, and D. C. Ralph (2014), “Magnetic tunnel junctions with single-layer-graphene tunnel barriers,” Phys. Rev. B 89 (18), 184418.

Lin, Chia-Ching, Ashish Verma Penumatcha, Yunfei Gao, Vinh Quang Diep, Joerg Appenzeller, and Zhihong Chen (2013), “Spin Transfer Torque in a Graphene Lateral Spin Valve Assisted by an External Magnetic Field,” Nano Lett. 13 (11), 5177–5181.

Locatelli, Andrea, Kevin R. Knox, Dean Cvetko, Teyfik Onur Menteş, Miguel Angel Niño, Shancai Wang, Mehmet B. Yilmaz, Philip Kim, Richard M. Osgood Jr., and Alberto Morgante (2010), “Corrugation in exfoliated graphene: An electron microscopy and diffraction study,” ACS Nano 4, 4879.

López-Sancho, M P, and M. C. Muñoz (2011), “Intrinsic spin-orbit interactions in flat and curved graphene nanoribbons,” Phys. Rev. B 83, 075406.

Lou, X, C. Adelmann, M. Furis, S. A. Crooker, C. J. Palmstrøm, and F. A. Crowell (2006), “Electrical detection of spin accumulation at a ferromagnet-semiconductor interface,” Phys. Rev. Lett. 96 (17), 176603.

Lou, Xiaohua, Christoph Adelmann, Scott A. Crooker, Eric S. Garlidi, Jianjie Zhang, K. S. Madhukar Reddy, Soren D. Flexner, Chris J. Palmstrom, and Paul A. Crowell (2007), “Electrical detection of spin transport in lateral ferromagnet-semiconductor devices,” Nature Phys. 3 (3), 197–202.

Lundeborg, M B, R. Yang, J. Renard, and J. A. Folk (2013), “Defect-mediated spin relaxation and dephasing in graphene,” Phys. Rev. Lett. 110 (15), 156601.

Luo, Yunqiu Kelly, Jinsong Xu, Tiancong Zhu, Guanzhong Wu, Elizabeth J. McCormick, Wenbo Zhan, Mahesh R. Neupane, and Roland K. Kawakami (2017), “Opto-Valleytronic Spin Injection in Monolayer MoS2/Few-Layer Graphene Hybrid Spin Valves,” Nano Lett. 17 (6), 3877–3883.

Ma, Dongwei, Zhongyao Li, and Zhongqin Yang (2012), “Strong spin–orbit splitting in graphene with adsorbed au atoms,” Carbon 50 (1), 297–305.

Maassen, T, I. J. Vera-Marun, M. H. D. Guimarães, and B. J. van Wees (2012), “Contact-induced spin relaxation in halle spin precession measurements,” Phys. Rev. B 86 (23), 235408.

Mak, K F, K. He, J. Sahn, and T. F. Heinz (2012), “Control of valley polarization in monolayer mos2 by optical helicity,” Nat. Nanotechnol. 7, 494.

Mak, Kin Fai, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz (2010), “Atomically thin mos2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805.

Mañes, J L, F. Guinea, and M. A. H. Vozmediano (2007), “Existence and topological stability of fermi points in multi-layered graphene,” Phys. Rev. B 75, 155424.

Marchenko, D. A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba, A. Rybkin, A. M. Shikin, and O. Rader (2012), “Giant rashba splitting in graphene due to hybridization with gold,” Nat Commun 3, 1232.

Mayorov, Alexander S, Roman V. Gorbachev, Sergey V. Morozov, Liam Britnell, Rashid Jalil, Leonid A. Ponomarenko, Peter Blake, Kostya S. Novoselov, Kenji Watanabe, Takashi Taniguchi, and A. K. Geim (2011), “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature,” Nano Lett. 11 (6), 2396–2399.
McCann, Edward, and Vladimir I. Fal’ko (2006), “Landau-level degeneracy and quantum hall effect in a graphite bilayer,” Phys. Rev. Lett. 96, 086805.
McCann, Edward, and Vladimir I. Fal’ko (2012), “$z \rightarrow -z$ symmetry of spin-orbit coupling and weak localization in graphene,” Phys. Rev. Lett. 108, 166606.
McCann, Edward, and Mikito Koshino (2010), “Spin-orbit coupling and broken spin degeneracy in multilayer graphene,” Phys. Rev. B 81, 241409(R).
McCreary, Kathleen M, Adrian G. Swartz, Wei Han, Jaroslav Fabian, and Roland K. Kawakami (2012), “Magnetic moment formation in graphene detected by scattering of pure spin currents,” Phys. Rev. Lett. 108 (18), 186604.
Meng, Jie, Jing-Jing Chen, Yuan Yan, Da-Peng Yu, and Zhi-Min Liao (2013), “Vertical graphene spin valve with Ohmic contacts,” Nanoscale 5 (19), 8894–8898.
Mermin, N D, and H. Wagner (1966), “Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models,” Phys. Rev. Lett. 17 (22), 1133–1136.
Meservey, R, and P. M. Tedrow (1994), “Spin-polarized electron tunneling,” Phys. Rep. 238 (4), 173–243.
Milletari, Mirco, and Aires Ferreira (2016), “Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene,” Phys. Rev. B 94 (20), 201402.
Milletari, Mirco, Manuel Offidani, Aires Ferreira, and Roberto Raimondi (2017), “Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems,” Phys. Rev. Lett. 119 (24), 246801.
Min, H. J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald (2006), “Intrinsic and rashba spin-orbit interactions in graphene sheets,” Phys. Rev. B 74, 165310.
Mishchenko, E G, A. V. Shytov, and B. I. Halperin (2004), “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602.
Moore, J. E, and L. Balents (2007), “Topological invariants of time-reversal-invariant bandstructures,” Phys. Rev. B 75, 121306(R).
Muramoto, Kazuya, Masashi Shiraishi,Nobuhiko Mitoma, Takuayki Nozaki, Teruya Shinjo, and Yoshishige Suzuki (2009), “Analysis of degradation in graphene-based spin valves,” Appl. Phys. Express 2 (12), 123004.
Nair, R R, M. Sepioni, I-Ling Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva (2012), “Spin-half paramagnetism in graphene induced by point defects,” Nat Phys 8 (3), 199–202.
Novoselov, K S (2011), “Nobel Lecture: Graphene: Materials of the Flatland,” Rev. Mod. Phys. 83 (3), 837–849.
Ochoa, H, A. H. Castro Neto, V. I. Fal’ko, and F. Guinea (2012a), “Spin-orbit coupling assisted by flexural phonons in graphene,” Phys. Rev. B 86, 245411.
Ochoa, H, A. H. Castro Neto, and F. Guinea (2012b), “Elliot-yafet mechanism in graphene,” Phys. Rev. Lett. 108, 206808.
Ochoa, Hector, Francesca Finocchiaro, Francisco Guinea, and Vladimir I. Fal’k (2014), “Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 90, 235429.
Offidani, Manuel, Mirco Milletari, Roberto Raimondi, and Aires Ferreira (2017), “Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides,” Phys. Rev. Lett. 119 (19), 196801.
O’Hara, Dante J, Tiongcong Zhu, Amanda H. Trout, Adam S. Ahmed, Yunqiu Kelly Luo, Choong Hee Lee, Mark R. Brenner, Siddharth Rajan, Jay A. Gupta, David W. McComb, and Roland K. Kawakami (2018), “Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selendine Films in the Monolayer Limit,” Nano Lett. 18 (5), 3125–3131.
Ohshima, Ryo, Atsushi Sakai, Yuichiro Ando, Teruya Shinjo, Kenji Kawahara, Hiroki Ago, and Masashi Shiraishi (2014), “Observation of spin-charge conversion in chemical-vapor-deposition-grown single-layer graphene,” Appl. Phys. Lett. 105 (16), 162410.
Ordejón, E, Cappelluti R, Roldán J A, Silva-Guillén P, and F. Guinea (2013), “‘Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer mos₂,” Phys. Rev. B 88, 075409.
Pachoud, Alexandre, Aires Ferreira, B. Özyilmaz, and A. H. Castro Neto (2014), “Scattering theory of spin-orbit active adatoms on graphene,” Phys. Rev. B 90 (3), 035444.
Palacios, J. J, J. Fernández-Rossier, and L. Brey (2008), “Vacancy-induced magnetism in graphene and graphene ribbons,” Phys. Rev. B 77, 195428.
Parkin, Stuart, Xin Jiang, Christian Kaiser, A. Panchula, K. Roche, and Mahesh Samant (2003), “Magnetically engineered spintronic sensors and memory,” Proc. IEEE 91 (5), 661–680.
Parlottes, B, and F. M. Peeters (2006), “From graphene to graphite: Electronic structure around the k point,” Phys. Rev. B 74, 075404.
Patra, A K, S. Singh, B. Barin, Y. Lee, J-H. Ahn, E. del Barco, E. R. Mucciolo, and B. Özyilmaz (2012), “Dynamic spin injection into chemical vapor deposited graphene,” Appl. Phys. Lett. 101 (16), 162407–162407-4.
Pereira, Vitor M, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto (2007), “Disorder induced localized states in graphene,” Phys. Rev. Lett. 96, 036801.
Peres, N M R (2010), “Colloquium: The transport properties of graphene: An introduction,” Rev. Mod. Phys. 82 (3), 2673.
Pesin, Dmytro, and Allan H. MacDonald (2012), “Spintronics and pseudospintronics in graphene and topological insulators,” Nature Mater. 11 (5), 409–416.
Popinciuc, M, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees (2009), “Electronic spin transport in graphene field-effect transistors,” Phys. Rev. B 80 (21), 214427.
Qi, X-L, and S.-C. Zhang (2011), “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057.
Qiao, Zhenhua, Wei Ren, Hua Chen, L. Bellaiche, Zhenyu Zhang, A. H. MacDonald, and Qian Niu (2014), “Quantum anomalous hall effect in graphene proximity coupled to an antiferromagnetic insulator,” Phys. Rev. Lett. 112, 116404.
Qiao, Zhenhua, Shengyuan A. Yang, Wanxiang Feng, Wang-Kong Tse, Jun Ding, Yuguang Yao, Jian Wang, and Qian Niu (2010), “Quantum anomalous hall effect in graphene from rashba and exchange effects,” Phys. Rev. B 82, 161414(R).
Rameshti, B Z, and A. G. Moghaddam (2015), “Spin-dependent seebeck effect and spin caloritronics in magnetic graphene,” Phys. Rev. B 91, 155407.
Rashba, E I (2000), “Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem,” Phys. Rev. B 62 (24), R16267.
Renard, Julien, Matthias Studer, and Joshua A. Folk...
Sichau, J., M., Prada, T., Anlauf, T. J., Lyon, B., Bosnjak, L., Tiemann, and R. H. Blick (2019), “Resonance microwave measurements of an intrinsic spin-orbit coupling gap in graphene: A possible indication of a topological state,” Phys. Rev. Lett. 122, 046403.

Sierra, Juan F., Ingmar Neumann, Jo Cuppens, Bart Raes, Marius V. Costache, and Sergio O. Valenzuela (2018), “Thermoelectric spin voltage in graphene,” Nature Nanotechnology 13 (2), 107–111.

Singh, S., A.K. Patra, B. Barin, E. del Barco, and B. Ozylilmaz (2013), “Spin pumping in Permalloy/Graphene and Permalloy/Graphite interfaces,” IEEE Trans. Magn. 49 (7), 3147–3150.

Singh, Simranjeet, Jyoti Katoch, Jinsong Xu, Chen Tan, Tiancong Zhu, Walid Amamou, James Hone, and Roland Kawakami (2016), “Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers,” Appl. Phys. Lett. 109 (12), 124111.

Słonczewski, J. C., and P. R. Weiss (1958), “Band structure of graphite,” Phys. Rev. 109, 272.

Song, Tiancheng, Xinghan Cai, Matisse Wei-Yuan Tu, Xiaouo Zhang, Bevin Huang, Nathan P. Wilson, Kyle L. Seyler, Lin Zhu, Tashiki Taniguchi, Kenji Watanabe, Michael A. McGuire, David H. Cobden, Di Xiao, Wang Yao, and Xiaodong Xu (2018), “Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures,” Science, eaar4851.

Soriano, David, Dinh Van Tuan, Simon M.-M. Dubois, Martin Gmitra, Aron W. Cummings, Denis Kochan, Frank Ortman, Jean-Christophe Charlier, Jaroslav Fabian, and Stephan Roche (2015), “Spin transport in hydrogenated graphene,” 2D Mater. 2 (2), 020020.

Stano, Peter, Jaroslav Fabian, and Philippe Jacquod (2012), “Nonlinear spin to charge conversion in mesoscopic structures,” Phys. Rev. B 85 (24), 214301.

Tan, T., Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng (2012), “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3, 887.

Tan, J. Y., A. Avaro, J. Balakrishnan, G. K. W. Koon, T. Taychatanapat, E. C. T. O’Farrell, K. Watanabe, T. Taniguchi, G. Eda, A. H. Castro Neto, and B. Özyilmaz (2014), “Electronic transport in graphene-based heterostructures,” Appl. Phys. Lett. 104 (18), 183504.

Tang, Zhenyao, Eiji Shikoh, Hiroki Ago, Kenji Kawahara, Yuichiro Ando, Teruya Shinjo, and Masashi Shiiraishi (2013), “Dynamically generated pure spin current in single-layer graphene,” Phys. Rev. B 87 (14), 144041.

Tománek, David, and Steven G. Louie (1988), “First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite,” Phys. Rev. B 37, 8327.

Tomброс, Nikolaos, Csaba Jozsa, Michaiata Popinciuc, Harry T. Jonkmann, and Bart J. van Wees (2007), “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature 448 (7153), 571–574.

Torrey, H. C. (1956), “Block equations with diffusion terms,” Phys. Rev. 104, 563.

Tran, M., H. Jaffres, C. Deranlot, J.-M. George, A. Fert, A. Miard, and A. Lemaitre (2009), “Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor,” Phys. Rev. Lett. 102 (3), 036601–4.

Tsang, C. H., R. E. Fontana, T. Lin, D. E. Heim, B. A. Gurney, and M. L. Williams (1998), “Design, fabrication, and performance of spin-valve read heads for magnetic recording applications,” IBM J. Res. Dev. 42 (1), 103–116.
Wang, Zhe, Dong-Keun Ki, Jun Yong Khoo, Diego Mauro, Helmuth Berger, Leonid S. Levitov, and Alberto F. Morpurgo (2016), “Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides,” Phys. Rev. X 6, 041020.

Wang, Zhiyong, Chi Tang, Raymond Sachs, Yafis Barlas, and Jing Shi (2015e), “Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect,” Phys. Rev. Lett. 114 (1), 016603.

Watanabe, K., T. Taniguchi, and H. Kanda (2004), “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater. 3, 404.

Weeks, Conan, Jun Hu, Jason Alicea, Marcel Franz, and Ruqian Wu (2011), “Engineering a robust quantum spin hall state in graphene via adatom deposition,” Phys. Rev. X 1 (2), 021001.

Wehling, T. O., S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson (2010), “Resonant scattering by realistic impurities in graphene,” Phys. Rev. Lett. 105, 056802.

Wen, Hua, Hanan Dery, Walid Amamou, Tiancong Zhu, Zhisheng Lin, Jing Shi, Igor Zutić, Ilya Krivorotov, L. J. Sham, and Roland K. Kawakami (2016), “Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature,” Phys. Rev. Applied 5 (4), 044003.

Wojtaszek, M. I. J., Vera-Marun, T., Maaßen, and B. J. van Wees (2013), “Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices,” Phys. Rev. B 87 (8), 081402.

Wojtaszek, M., I. J. Vera-Marun, E. Whiteway, M. Hilke, and B. J. van Wees (2014), “Absence of hyperfine effects in 13C-graphene spin-valve devices,” Phys. Rev. B 89 (3), 035417.

Wolf, S. A., A. Y. Chetelkova, and D. M. Treger (2006), “Spintronics - a retrospective and perspective,” IBM J. Res. Dev. 50 (1), 101–110.

Xia, Fengnian, Han Wang, and Yichen Jia (2014), “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nature Commun. 5, 4458.

Xiao, D., G.-B. Liu, W. Feng, X. Xu, and W. Yao (2012), “Coupled spin and valley physics in monolayers of mos2 and other group-vi dichalcogenides,” Phys. Rev. Lett. 108, 196802.

Xu, Jinsong, Simranjeet Singh, Jyoti Katoch, Guanzhong Wu, Tiancong Zhu, Igor Zutić, and Roland K. Kawakami (2018a), “Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts,” Nature Communications 9 (1), 2869.

Xu, Jinsong, Tiancong Zhu, Yунqiu Kelly Luo, Yuan-Ming Lu, and Roland K. Kawakami (2018b), “Strong and Tunable Spin-Lifetime Anisotropy in Dual-Gated Bilayer Graphene,” Phys. Rev. Lett. 121 (12), 127703.

Yafet, Y. (1963), Solid State Physics (Academic, New York).

Yamaguchi, Takehiro, Yoshihisa Inoue, Satoru Masubuchi, Sei Morikawa, Masahiro Onuki, Kenji Watanabe, Takashi Taniguchi, Rai Moriya, and Tomoki Machida (2013), “Electrical Spin Injection into Graphene through Monolayer Hexagonal Boron Nitride,” Appl. Phys. Express 6 (7), 073001.

Yamaguchi, Takehiro, Satoru Masubuchi, Kazuyuki Iguchi, Rai Moriya, and Tomoki Machida (2012), “Tunnel spin in-
jection into graphene using Al2O3 barrier grown by atomic layer deposition on functionalized graphene surface,” J. Magn. Magn. Mater. 324 (5), 849–852.

Yan, Wenjing, Oihana Txoperena, Roger Llopis, Hanan Dery, Luis E. Hueso, and Félix Casanova (2016), “A two-dimensional spin field-effect switch,” Nat. Commun. 7, 13372.

Yang, Bowen, Mark Lohmann, David Barroso, Ingrid Liao, Zhisheng Lin, Yahwa Yu, Wenjing Yan, Luis E. Hueso, and Félix Casanova (2016), “A two-dimensional spin field-effect switch,” Nat. Commun. 7, 13372.

Yang, Bowen, Min-Feng Tu, Jeongwoo Kim, Yong Wu, Hui Wang, Jason Alicea, Ruqian Wu, Marc Bockrath, and Jing Shi (2016), “Tunable spin–orbit coupling and symmetry-protected edge states in graphene/ws₂,” 2D Mater. 3, 031012.

Yang, T-Y, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Güntherodt, B. Beschoten, and B. Özyilmaz (2011), “Observation of long spin-relaxation times in bilayer graphene at room temperature,” Phys. Rev. Lett. 107 (4), 047206.

Zhu, Z Y, Y. C. Cheng, and U. Schwingenschlogl (2011), “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys. Rev. B 84, 153402.

Zomer, P J, M. H. D. Guimarães, N. Tombros, and B. J. van Wees (2012), “Long-distance spin transport in high-mobility graphene on hexagonal boron nitride,” Phys. Rev. B 86 (16), 161416.

Šutin, Igor, Jaroslav Fabian, and S. Das Sarma (2004), “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76 (2), 323–410.

Žutić, Igor, Alex Mats-Olyague, Benedikt Scharf, Hanan Dery, and Kirill Belashchenko (2019), “Proximitized materials,” Materials Today 22, 85–107.