Separation of time-scales and reparametrization invariance for aging systems

Claudio Chamon, Malcolm P. Kennett, Horacio E. Castillo, and Leticia F. Cugliandolo

Department of Physics, Boston University, Boston, MA 02215
Laboratoire de Physique Théorique de l’Ecole Normale Supérieure, 75231 Paris Cedex 05, France
Laboratoire de Physique Théorique et Hautes Energies, Jussieu, 75252 Paris Cedex 05, France

We show that the generating functional describing the slow dynamics of spin glass systems is invariant under reparametrizations of the time. This result is general and applies for both infinite and short range models. It follows simply from the assumption that a separation between short time-scales and long time-scales exists in the system, and the constraints of causality and unitarity. Global time reparametrization invariance suggests that the low action excitations in a spin glass may be smoothly spatially varying time reparametrizations. These Goldstone modes may provide the basis for an analytic dynamical theory of short range spin glasses.

PACS: 75.10.Nr, 75.10.Jm, 75.10.Hk, 05.30.-d

Much progress has been made in recent years in understanding the non-equilibrium dynamics of glassy systems. Late after a quench to low temperatures, two distinct dynamic regimes develop [1,2]. At short time-differences the dynamics is similar to that in the disordered phase. The correlations depend only on time differences [time translation invariance (TTI)] and decay towards a non-vanishing Edwards-Anderson (EA) order parameter. The correlations and their associated responses are related by the fluctuation-dissipation theorem (FDT). At long time-differences, for a freely relaxing system, physical quantities relax very slowly and depend on the waiting time, so that correlations depend on two times rather than on time differences. The separation of time-scales exists also when a glassy system is gently driven, whether the full dynamics becomes stationary or not. In the slow regime, the FDT is replaced by an out-of-equilibrium fluctuation dissipation relation (oefdr) between each bulk response R and its associated bulk correlation C:

$$R(t_1,t_2) = \beta_{\text{eff}}[C(t_1,t_2)] \frac{\partial}{\partial t_2} C(t_1,t_2) ,$$

(1)

where $t_1 \geq t_2$, and $\beta_{\text{eff}}[C]$ is the inverse effective temperature measuring deviations from the FDT (e.g. [3]). These properties, observed in experiments and simulations [1], are embodied in the concepts of weak ergodicity breaking and weak long term memory [2,4,5]. This scenario has been demonstrated analytically for mean-field glassy models, such as the Sherrington-Kirkpatrick model [5]. However, for short-range models such as the Edwards-Anderson model [6], no analytic solution is known for either the statics or the dynamics. The work here presented uncovers a symmetry that strongly constrains the properties of such a dynamic solution.

The oefdr is consistent with the observation that the equations of motion of a large class of glassy models are invariant under time reparametrizations, $t \rightarrow h(t)$ in the slow regime [3,5,7–9]. In particular,

$$\dot{C}(t_1,t_2) = C(h(t_1), h(t_2)) ,$$

(2)

are related by the same oefdr as in Eq. (1). Equations (2) and (3) are particular cases of the general correlator Reparameterization Group (RpG) transformation

$$\tilde{R}(t_1,t_2) = \left(\frac{\partial h}{\partial t_2} \right) R(h(t_1), h(t_2)) ,$$

(3)

with Δ_G^G and Δ_R^G defined in Ref. [8] as, respectively, the advanced and retarded scaling dimensions of G under the reparametrization $t \rightarrow h(t)$ of $t_{1,2}$. In particular, $\Delta_G^{G,R} = 0$, $\Delta_R^{G,A} = 0$, and $\Delta_R^{G,R} = 1$ [see Eqs. (2) and (3)].

In this paper we show that: i) RpG invariance exists at the level of the generating functional for the long-time dynamics, and ii) it holds for short-range models and their local, and not only bulk, quantities. These are much stronger results than those of Refs. [3,5,7–9], which only applied to mean field models and were restricted to global quantities. Furthermore, the existence of a continuous symmetry in the action allows us to predict the presence of a Goldstone mode controlling the dynamics, which may be the basis for developing a systematic analytical theory of dynamical fluctuations in short range spin glasses.

In order to prove our result, we take three steps: i) we determine the long-time action by using the Renormalization Group (RG) in the time variables, assuming that there is a separation between short and long time scales, ii) we analyze the surviving terms in the action, showing that they are RpG invariant, and iii) we show that the measure in the functional integral is also RpG invariant.

For the sake of concreteness we discuss the general disordered spin model defined by

$$H = \sum_{ij} J_{ij} S_i S_j + H_{\text{loc}} ,$$

(5)

where H_{loc} contains arbitrary self-interactions that, for example, place soft or hard ($\pm S$) constraints on the
spins. Typically, the random couplings J_{ij} are Gaussian distributed according to $P(J_{ij}) \propto \exp(-J_{ij}^2/(2K_{ij}))$, with K_{ij} the connectivity matrix. In the EA model, $K_{ij} = J^2/\bar{z}$ if i, j are nearest neighbors or zero otherwise (z is the coordination of the lattice). We consider a quantum extension [8,10], with quantization rules imposed via a kinetic term, $\sum_{i=1}^{N} \vec{p}_i^2/(2M)$, where the momenta \vec{p}_i are canonically conjugate to the "coordinates" $S_i, [p_i, S_i] = -i\hbar$. The use of bosonic variables to represent the spins (e.g. quantum rotors, which lack Berry phases) simplifies the presentation considerably although the arguments below can be extended to other glassy systems such as the SU(N) Heisenberg model [11]. The system is linearly coupled to an equilibrated environment.

We study the dynamics with the Schwinger-Keldysh closed time-path formalism [8,10–14] in which the spin variables acquire another index labeling the two Keldysh branches, $S_i \to S^a_i, a = 0, 1$. We work in the rotated basis $\sigma^0_i = \bar{\sigma}_i = (S^0_i - S^1_i)/\sqrt{2}$ and $\sigma^1_i = \sigma_i = (S^0_i + S^1_i)/\sqrt{2}$. This notation renders the classical limit, $\hbar \to 0$, more transparent [10].

Once the disorder has been introduced, we introduce a local Hubbard-Stratonovich field $Q_i(t_1, t_2)$ [15]

$$Q_i = \begin{pmatrix} Q^{00}_{i} \\ Q^{01}_{i} \\ Q^{11}_{i} \\ Q^{10}_{i} \end{pmatrix} = \begin{pmatrix} Q^K_i \\ Q^R_i \\ Q^A_i \\ Q^D_i \end{pmatrix},$$

that decouples the four spin terms generated by the average over the J_{ij}. The choice of indices 0, 1 anticipates the result that we prove, namely invariance of the action under the transformation $Q^{ab}_{i}(t_1, t_2) \to Q^{ab}_{i}(t_1', t_2')$, with

$$Q^{ab}_{i}(t_1, t_2) = \left(\frac{\partial h}{\partial t_1} \right)^a \left(\frac{\partial h}{\partial t_2} \right)^b Q^{ab}_{i}(h(t_1), h(t_2)) \tag{7}$$

[cf. Eq. (4)]. This Ansatz for how the Q fields transform is motivated as follows. The Q^K component is a time-dependent local measure of freezing (analogous to the Edwards-Anderson order parameter for the static case) since it is related to the correlator at the same site but at two different times; hence the choice of vanishing dimensions $\Delta Q^K_{A,R} = 0$ for this slowly decaying quantity. The scaling dimensions for the retarded and advanced components Q^R,A are suggested by the FDT, once the dimensions of Q^K are fixed.

In the usual Keldysh approach, one keeps only the three non-vanishing components K, R, A, since Keldysh propagators are related to expectation values $\langle Q^K \rangle$, $\langle Q^R \rangle$ and $\langle Q^A \rangle$, while $\langle Q^D \rangle = 0$ [12,13]. Here we include the fourth component because we are also interested in the fluctuations of the Q_i. The generating functional reads

$$Z = \int [DQ] \exp(-S_K[Q] - S_{NL}[Q]), \tag{8}$$

$$S_K[Q] = \frac{1}{2} \sum_{ij} K_{ij}^{-1} \int dt_1 dt_2 \sum_{ab} Q^{ab}_{i}(t_1, t_2) Q^{ba}_{j}(t_2, t_1), \tag{9}$$

$$S_{NL}[Q] = -\ln \int [D\sigma_i] [D\sigma] \exp(iS[\sigma, \bar{\sigma}; Q] + iS_{\text{spin}}), \tag{10}$$

$$S[\sigma, \bar{\sigma}; Q] = \sum_{i,a,b} \int dt_1 dt_2 \sigma^{a}_{i}(t_1) Q^{b}_{i}(t_1, t_2) \sigma^{b}_{i}(t_2). \tag{11}$$

S_{spin} includes all the local spin dynamics, including the kinetic term, the self-interactions in H_{loc}, and the coupling to the bath. The overline is a shorthand notation such that $\sigma_1 = 0$ and $\bar{\sigma} = 0$. All integrals start at $\tau = 0$. In order to observe nonequilibrium glassy dynamics, we first take the thermodynamic limit, $N \to \infty$, consider times such that the upper limit in the time-integrals diverges subsequently [3], and use a weak coupling to the bath.

Upon integration over the spin variables $\sigma_i\bar{\sigma}_i$ in Eq. (9):

$$S_{NL}[Q] = \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{i_1, \ldots, i_n} \int dt_1 \ldots dt_{2n} G^{i_1 \ldots i_n}_{a_1 \ldots a_{2n}}(t_1 \ldots, t_{2n}) \times Q^{a_1}_{i_1}(t_1) \cdots Q^{a_{2n-1}}_{i_n}(t_{2n-1}) Q^{a_{2n}}_{i_n}(t_{2n}), \tag{10}$$

with $G^{i_1 \ldots i_n}_{a_1 \ldots a_{2n}}(t_1 \ldots, t_{2n}) \equiv \langle \sigma_i^{a_1}(t_1) \cdots \sigma_i^{a_{2n}}(t_{2n}) \rangle$. $\langle \cdot \rangle \bar{\sigma}$ denotes an average over the fields $\sigma, \bar{\sigma}$ with the weight $\exp(iS_{\text{spin}})$. The non-linear terms in Eq. (10) are generated because H_{loc} is non-quadratic. This expansion contains only connected terms in the sense that none of the powers of Q can be factored. Each Q serves as a source for a pair of σ_i's, hence the 2n-point correlations $G^{i_1 \ldots i_n}_{a_1 \ldots a_{2n}}$ are not necessarily connected in terms of individual σ_i's. In general, the contribution at any order in Q can be evaluated by rewriting the $G^{i_1 \ldots i_n}_{a_1 \ldots a_{2n}}$ into sums over products $\prod_{a=1}^{M} G^{i_1 \ldots i_{2n}}_{c_1 \ldots c_{2n}}$ of connected Green's functions $G^{i_1 \ldots i_{2n}}_{c_1 \ldots c_{2n}}$, with $m_1 + \cdots + m_M = n$. An example, to order Q^3, is shown in Fig. 1; notice that the three Q's form a connected bubble diagram, though at the same time it contains both a 2-point and a 4-point connected Green's function for the σ_i's. Later on we will use this example to illustrate some of the steps in our arguments.

FIG. 1. A cubic term contributing to $S_{NL}[Q]$. The dashed lines are σ_i's, which together with the shaded regions represent connected Green's functions for the σ_i's.
for a rescaling \(b > 1 \) (and \(\delta \ell = \ln b > 0 \)). The
couplings that flow in the RG are the coefficients
\(G_{a_1, \ldots, a_{2m}}^{i_1, \ldots, i_{2m}} (t_1, \ldots, t_{2m}) \) in Eq. (11). As usual, each RG
transformation involves two operations. The first is the
integration over the fast modes \(Q_{I_{\text{FAST}}} \), which we perform
by representing \(S_{I_{\text{sl}}} \) as a path integral over spin
variables \(\sigma^x \) [Eqs. (9) and (10)]. The second is rescaling
time \(t \to t/b \) to restore the cut-off to its original scale
\(\tau_0 = \Omega^{-1} \), accompanied by a rescaling of the \(Q \) fields,
performed on the expression in Eq. (11). Each of these
operations generates a change of order \(\delta \ell \) in the
action. The quadratic term in the action, \(\delta G_{I_{\text{sl}}} \), plays a role
analogous to the kinetic energy term in a usual RG calculation:
it does not mix fast and slow modes, and the
rescaling of fields is chosen so as to keep it invariant.

The integration over fast modes yields a non-local four
spin interaction similar to the one obtained by performing
the disorder average, but fundamentally different in
that it is short ranged in time. This extra spin-spin interaction
leads to a change in the 2n-point spin correlation functions,
\(\delta G^{(2n)} = \delta \ell [dG^{(2n)}/dt]_{\text{FAST}} \).

As mentioned above, each coefficient \(G^{(2n)} \) can be expressed as a sum of products of connected Green’s functions. Consider one of these connected Green’s functions, which plays the role of a coupling for the \(Q_i \). In the same way that in a usual RG calculation (in real space) nonlocal interactions flow into local interactions (i.e. the only
couplings that are left are those connecting fields at the
same point), in our case all couplings connecting different
times flow into couplings that only connect equal times
(i.e. other terms are irrelevant compared to these terms).
Using this property, the term in Fig. 1 reads:

\[
\int d\tau G_{c_{a_1, a_2}}^{i_1, i_2} (\tau, 0) \int d^3 \tau G_{c_{a_2, a_3, a_5}}^{i_1, i_2, i_3, i_5} (\tau', \tau'', \tau''', 0) \times \int dt_1 dt_2 Q_{c_{i_1}}^{a_1, a_2} (t_1, t_2) Q_{c_{i_2}}^{a_2, a_3} (t_2, t_2) Q_{c_{i_3}}^{a_3, a_4} (t_2, t_1) .
\]

Here and in the next equation, the \(\tau \) variables represent
time differences (time can be shifted because of TTT) and
their range of integration is extended to be \((-\infty, +\infty)\).
For a general term in the slow action, we obtain an
integral of a product of \(Q \) fields over time variables (one
time variable per connected spin Green’s function), with
prefactors given by the integrals of the connected spin
Green’s function over all possible time differences that
define the coupling constants:

\[
g_{c_{a_1, \ldots, a_{2m}}}^{i_1, \ldots, i_{2m}} = \int d^2 t \ G_{c_{a_1, \ldots, a_{2m}}}^{i_1, \ldots, i_{2m}} (\tau_1, \ldots, \tau_{2m-1}, 0)
= \lim_{\epsilon \to 0} \chi_{c_{a_1, \ldots, a_{2m}}}^{i_1, \ldots, i_{2m}} (\omega_1, \ldots, \omega_{2m-1}) .
\]

They correspond to physical zero-frequency (DC) general-
ized correlators \(\chi_{c_{a}}^{DC} \) of the spin variables.

Let us now turn to the effect of restoring the cut-off to
the original scale by rescaling the times, \(t \to t' = t/b =
t e^{-\delta \ell} \), and the fields, \(Q_{c_{a_1, a_2}}^{i_1, a_2} (t_1, t_2) \to Q_{c_{a_1, a_2}}^{i_1, a_2} (t_1', t_2') =
b^{a_1 + a_2} Q_{c_{a_1, a_2}}^{i_1, a_2} (t_1, t_2) \). It is easy to see that it satisfies
two conditions: it produces the same effect as an RRG
transformation with \(h(t) = bt \) [cf. Eq. (7)], and it leaves
the quadratic term \(S_K \) invariant. In the example:

\[
I_{ex} [Q] = \int dt_1 dt_2 Q_{c_{i_1}}^{a_1, a_2} (t_1, t_2) Q_{c_{i_2}}^{a_2, a_3} (t_2, t_2) Q_{c_{i_3}}^{a_3, a_4} (t_2, t_1)
= b^2 \int dt_1 dt_2 \ b^{-(a_1 + a_2)} b^{-(a_2 + a_3 + a_4 + a_5)}
\times Q_{c_{i_1}}^{a_1, a_2} (t_1', t_2') Q_{c_{i_2}}^{a_2, a_3} (t_2', t_2') Q_{c_{i_3}}^{a_3, a_4} (t_2', t_1')
= b^{-(a_1 + a_2)} b^{-(a_2 + a_3 + a_4 + a_5)} I_{ex} [Q'] .
\]

In a general term, for each time variable \(t_a \) there is a
coupling \(g_a \equiv g_{i_1, \ldots, i_{2m_a}}^{a_1, \ldots, a_{2m_a}} \), and also an exponent \(\Delta_a \equiv
a_1 + \cdots + a_{2m_a} \geq 0 \) originating from the rescaling of fields.
In the example \(\Delta_1 = a_1 + a_2 \) and \(\Delta_2 = a_2 + a_3 + a_4 + a_5 \).

Combining the contributions from both the integration of
fast modes and the rescaling, we obtain the following
flow equation for the coupling constant \(g_a \):

\[
\frac{dg_a}{dt} = (1 - \Delta_a) g_a + \frac{dg_a}{dt} |_{\text{FAST}} \quad (13)
\]

Terms with \(\Delta_a = 0 \) occur only when all the \(a \)’s are 0.
These terms would be naively relevant (according to their engineering dimensions), but in fact they vanish identically
due to the constraints of normalization and causality
for \(G_{c_{c}}^{(2n)} \) [12,13]:

\[
G_{c_{i_1, \ldots, i_{2m}}}^{a_1, \ldots, a_{2m}} (t_1, \ldots, t_{2m_a}) = \langle \hat{\sigma}_{i_1} (t_1) \cdots \hat{\sigma}_{i_{2m_a}} (t_{2m_a}) \rangle = 0 .
\]

There remain only terms which are either marginal (for
\(\Delta_a = 1 \)) or irrelevant (for \(\Delta_a \geq 2 \)) according to their engineering dimensions. Under the assumption of a separation
between short and long time scales, at some point in the
RG flow all of the fluctuations associated with short time scales will have been integrated over, (but the flow will not have yet reached a point were the long time scales are probed) and therefore any new integrations of fast modes produce no change in the coupling constants, i.e. the second term in the r.h.s. of Eq. (13) is zero. This
assumption is used in an analogous way in the solution
of mean field spin glass models [1 – 3]. Physically, the separation between short and long time scales correspond to a saturation of the generalized DC correlators for the spins \(\chi_{c_{a}}^{DC} \) defined in Eq. (12) to a finite value. Therefore, the existence of a separation of time scales implies that the engineering dimension actually determines the long

time behavior, and only marginal (\(\Delta_a = 1 \)) terms are left in the effective long-time action.

ii) RRG invariance of the effective long-time action. For a RRG transformation applied to a generic term in \(S_{I_{\text{sl}}} \), each integral over time gives rise to a factor
\((\partial h(t_a)/\partial t_a) \Delta_a \), and since only terms with \(\Delta_a = 1 \) are present, the derivative factor yields exactly the Jacobian necessary to make the term RRG invariant:
\[
\int \prod_\alpha dt_\alpha \cdots \to \int \prod_\alpha dt_\alpha \left(\frac{\partial h}{\partial t_\alpha} \right)^{\Delta_\alpha} \cdots \\
= \int \prod_\alpha dt_\alpha \left(\frac{\partial h}{\partial t_\alpha} \right)^{\Delta} \cdots = \int \prod_\alpha dh_\alpha .
\]

To illustrate this point, let us perform a RpG transformation on our example term:

\[
I_{\text{ex}}[Q] = \int dt_1 dt_2 \tilde{Q}^1_{t_1 t_2}(t_1, t_2) \tilde{Q}^2_{t_2 t_3}(t_2, t_3) \tilde{Q}^3_{t_3 t_1}(t_3, t_1)
\]

\[
= \int dt_1 dt_2 \left(\frac{\partial h(t_1)}{\partial t_1} \right)^{a_1 + a_6} \left(\frac{\partial h(t_2)}{\partial t_2} \right)^{a_2 + a_3 + a_4 + a_5} \times Q^1_{t_1 t_2}(h(t_1), h(t_2)) Q^2_{t_2 t_3}(h(t_2), h(t_3)) Q^3_{t_3 t_1}(h(t_3), h(t_1))
\]

\[
= \int dh_1 dh_2 Q^1_{h_1 h_2}(h_1, h_2) Q^2_{h_2 h_3}(h_2, h_3) Q^3_{h_3 h_1}(h_3, h_1)
\]

\[
= I_{\text{ex}}[Q] ;
\]

where we have used that \(a_1 + a_6 = \Delta_1 = 1\) and \(a_2 + a_3 + a_4 + a_5 = \Delta_2 = 1\). For the \(S_K\) term, the same argument applies with \(\Delta = 1\) replaced by \(a + \bar{a} = 1\) and \(b + \bar{b} = 1\). Therefore the long-time action is RpG invariant.

iii) RpG invariance of the measure - Under the RpG transformation of Eq. (7), the Jacobian for the functional integral over the \(Q\) fields is simply:

\[
\mathcal{J} \left[\frac{D\tilde{Q}}{DQ} \right] = \prod_x \prod_{t_1, t_2} \left| \frac{\partial h}{\partial t_2} \frac{\partial h}{\partial t_1} \right|^2 = e^{\int dt_1 dt_2 \ln \left| \frac{\partial h}{\partial t_1} \frac{\partial h}{\partial t_2} \right|^2}.
\]

The Jacobian depends on \(h(t)\), but not on the fields \(Q\), and therefore the generating functional is RpG invariant.

The RpG invariance implies that the action describing the long time slow dynamics of a spin-glass is basically a “geometric” random surface theory [16], with the \(Q\)’s themselves as the natural coordinates. The original two times parametrize the surface. Physical quantities, as the bulk integrated response \(\chi(t_1, t_2) = \int_{t_1}^{t_2} dt' (Q(t', t_2))\) and correlation \((Q^K)(t_1, t_2)\) have scaling dimension zero under \(t \to h(t)\) [5,8] as well as their local counterparts that are directly related to the \(Q_i\)’s. A possibly related gauge-like symmetry has also been noted in the replica approach [17].

The emergence of the RpG invariance may provide a novel, completely dynamical, angle to address the still poorly understood short-range spin-glass problem analytically. We have shown that the global reparametrization, \(t \to h(t)\), is a symmetry of the slow dynamical action. The particular scaling function \(h(t)\) selected by the system is determined by matching the fast and the slow dynamics. It depends on several details – the existence of external forcing, the nature of the microscopic interactions, etc. In other words, the fast modes which are absent in the slow dynamics act as symmetry breaking fields for the slow modes. The global RpG invariance of the slow physics suggests that the low energy physics of the glassy phase could be described by slowly spatially varying reparametrizations \(t \to h(x, t)\). Basically, we propose that there are Goldstone modes for the glassy action which can be written as slowly varying, spatially inhomogeneous time reparametrizations. Comparing with the \(O(N)\) non-linear sigma model [18], global time-reparametrizations are analogous to uniform spin rotations, while local \(t \to h(x, t)\) reparametrizations describe the spin waves (fluctuations on the uniform solution). Numerical tests in the 3D EA model are consistent with this conjecture [19].

This work was supported by NSF grants DMR-98-76208, INT-01-28922, and the A. P. Sloan Foundation (C.C.), by ACI France and CNRS-12931 (L.F.C.). C.C. thanks the LPTHE and M.P.K thanks Boston Univ. for their hospitality. L.F.C. is staff associate at ICTP.

[1] J. P. Bouchaud et al in Spin Glasses and Random Fields A. P. Young ed. (World Scientific, Singapore, 1998).
[2] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993); Phil. Mag. B 71, 501 (1995).
[3] L. F. Cugliandolo and J. Kurchan, Physica A 263, 242 (1999).
[4] J. P. Bouchaud, J. Phys. I (France) 2, 1705 (1992).
[5] L. F. Cugliandolo and J. Kurchan, J. Phys. A 27, 5749 (1994).
[6] S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
[7] S. Franz and M. Mézard, Physica A 210, 48 (1994).
[8] M. P. Kennett and C. Chamon, Phys. Rev. Lett. 86, 1622 (2001); M. P. Kennett, C. Chamon and J. Ye, Phys. Rev. B 64, 224408 (2001).
[9] H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981); V. S. Dotsenko, M. V. Feigel’man and L. B. Ioffe, Spin glasses and related problems, Soviet Scientific Reviews 15, (Harwood, 1990).
[10] L. F. Cugliandolo and G. Lozano, Phys. Rev. Lett. 80, 4979 (1998); Phys. Rev. B 59, 915 (1999).
[11] G. Biroli and O. Parcollet, Phys. Rev. B 65, 094414 (2002).
[12] U. Weiss, Quantum dissipative systems (World Scientific, 1999).
[13] K.-C. Chou et al. Phys. Rep. 118, 1 (1985).
[14] C. Chamon, A. W. W. Ludwig, and C. Nayak, Phys. Rev. B 60, 2239 (1999); A. Kamenev and A. Andreev, ibid. 60, 2218 (1999).
[15] H. Sompolinsky and A. Zippelius Phys. Rev. Lett. 50, 1297 (1983).
[16] A. M. Polyakov, Gauge Fields and Strings, (Harwood Academic Publishers, Chur, Switzerland, 1987).
[17] I. Kondor and C. De Dominicis, Europhys. Lett. 2, 617 (1986); T. Temesvári et al Eur. Phys. J. B 18, 493 (2000).
[18] E. Brézin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976).
[19] H. E. Castillo et al. Phys. Rev. Lett. 88, 237201 (2002).