Type II diabetes (T2D) is a pandemic characterized by pathological circulating inflammatory markers, high-glucose levels and oxidative stress. The hematological system is especially vulnerable to these aberrant circulating molecules, and erythrocytes (RBCs) show aberrant rheology properties, owing to the direct contact with these molecules. Pathological levels of circulating inflammatory markers in T2D therefore have a direct effect on the molecular and cellular structure of RBCs. Previous research has suggested that antioxidants may reduce oxidative stress that results from the pathological inflammatory markers. Particularly, polyphenol antioxidants like oligomeric proanthocyanidins (OPCs) may act as a hydroxyl mopping agent, and may have a positive effect on the deformability and membrane protein structure of RBCs from T2D. In this paper, we look at the effect of one such agent, *Pinus massoniana* bark extract (standardized to 95% oligomeric proanthocyanidins), on the RBC membrane structures and RBC shape changes of T2D, after laboratory exposure at physiological levels. Our methods of choice were atomic force microscopy and scanning electron microscopy to study RBC elasticity and ultrastructure. Results showed that in our hands, this OPC could change both the eryptotic nature of the RBCs, as viewed with scanning electron microscopy, as well as the elasticity. We found a significant difference in variation between the elasticity measurement values between the RBCs before and after OPC exposure (P-value < 0.0001). In conclusion, the data from both these techniques therefore suggest that OPC usage might contribute to the improvement of RBC functioning.
Structural alterations, owing to the systemic inflammatory profile in T2D, are known to affect the RBC membrane lipids, as well as band 3 and spectrin, which in turn cause RBC structural shape changes.36,37 For an in-depth review of the RBC membrane structure, see reference Pretorius et al.38 As oxidative stress is known to have a role in the progression of T2D2,23,39,40 and biophysical shape changes of RBCs,36,41 the question that now arises is whether there is a polyphenol antioxidant that may act as a hydroxyl mopping agent, and may have a positive effect on the deformability and membrane protein structure of RBCs from T2D that can be added to the diet. A group of (polyphenolic) antioxidants found in pine bark extract and grape seed extract that may have an effect, is the oligomeric proanthocyanidins (OPCs). Various preliminary clinical trials have been conducted investigating the effect of OPCs in several indications and clinical contexts including asthma, CVD and diabetes.42–47

It has been shown that OPCs increase erythrocyte membrane fluidity \textit{in vitro}, potentially due to inducing modification of the lipid bilayer and lipid–protein interactions as shown by Sivonova and co-workers in 2004.42 In an \textit{in vitro} study, OPCs (0.07 mg ml−1) resulted in 50% inhibition of the formation of erythrocytes with elevated density (increased adherence to neutrophils, platelets and vascular endothelial cells) from patients with sickle cell anemia.48 OPCs have also been shown to have anti-inflammatory effects. It has been demonstrated to inhibited cyclooxygenase-1 and -2 activity49 and reducing the production of interleukin-1beta and its associated mRNA \textit{in vitro}, as well as the expression of IL-2.50 Activation of two major transcription factors heavily involved in interleukin-1beta gene expression, nuclear factor kappa-B and activator protein-1, have also been shown to be reduced.

In the current study, we therefore investigated the effect of the addition of physiological levels of OPCs (\textit{Pinus massoniana} bark extract standardized to 95% oligomeric proanthocyanidins), on the RBC membrane structures and RBC shape changes of T2D. Shape changes or patho-morphological changes are closely associated with RBC properties including area deformability, such as membrane elasticity changes due to membrane biochemical changes as discussed previously, and directly translate as biophysical indicators. In this study, atomic force microscopy (AFM) was used to evaluate membrane elasticity, whereas scanning electron microscopy (SEM) was used to evaluate physical changes. Although a randomized control trial is obviously the most useful way to establish the effect of any molecule (dietary or otherwise) it is of great importance to fi

Sample preparation for AFM
Whole blood samples were centrifuged at 145 g for 30 s. The supernatant consisting of plasma, platelets and leukocytes, was discarded. The remaining RBCs were prepared for AFM by fixing in 4% formaldehyde made up in phosphate-buffered saline for 30 min, at room temperature (22 °C) followed by dehydration. RBCs were suspended in undiluted (161.39 g mol−1) hexamethyldisilazane onto a glass cover slip by placing a drop and spreading the fluid by tilting the cover slip sideways, ensuring an even distribution of cells. The cover slips were then dried and stored until AFM analysis.

AFM imaging and measurement
The cells were characterized with a commercial AFM system (Dimension Icon with ScanAsyst, Bruker, Santa Barbara, CA, USA) using the PeakForce QNM\textregisteredQuantitative Nanoindentation Property Mapping imaging mode. This method is similar to the standard tapping mode of scanning probe microscopy, where the probe and the sample are brought together intermittently. See Bester and co-workers 2013,53 for a comprehensive discussion of the AFM methods used in this paper. This mode operates by controlling the maximum force applied by the probe to the sample50 and allows that at every pixel a rapid force–distance curve is generated. The cantilever’s deflection sensitivity and spring constant is calibrated before measurements, therefore the curve can be analyzed quantitatively to obtain a series of specific property maps of the sample. The retract curve can then be used to calculate the slope of the curve (which is called the modulus) and the minimum of the curve (otherwise known as adhesion images). The deformation can therefore be calculated and this is the variation between the zero and maximum force. Following this, the area between the approach and retract curve can then be used to calculate energy dissipation.53,55,58 The stiffness of an elastic material can be measured using Young’s modulus.36,57,58 Young’s modulus is the stress divided by the corresponding strain, with greater values indicating increased stiffness or decreased deformability. As each force curve’s data, can also be stored individually, and quantitative measurements of the Young’s modulus can be generated by fitting the slope of any force–distance curve of the image to an appropriate model (in this instance; the Derjaguin–Muller–Toporov Model.59

Silicon Nitride probes (TAP525 – MPP 13120–10, Bruker, USA) were employed in all AFM measurements and these probes were specified to have a nominal force constant of 200 N m−1, a resonant frequency between 430 and 516 kHz (measured by the manufacturer), and a nominal tip radius of 15 nm. Ten cells per participant were analyzed by selecting a distance curve of the image to an appropriate model (in this instance; the Derjaguin–Muller–Toporov Model.59}
in the data set. We only used force curves with a coefficient of determination of 0.85 and above for modulus measurements.

Atomic force microscopy
To have statistical power of 95% to detect a statistically significant treatment effect at a 1% significance level, a sample of 35 T2D patients is required, whereas 47 patients are needed for statistical power of 99% (see Rosner60 for details on sample size calculations in before–after studies). A sample of 60 T2D patients was recruited and AFM data (RBC membrane elasticity measurements) were available for 56 of these individuals. The elasticity measurement distributions were analyzed for each patient. Owing to the asymmetry of these distributions, it was decided to calculate for each patient the median elasticity measurement value from the corresponding naive T2D blood sample. The same was done for each patient for the T2D blood sample exposed to OPCs. Thus, we obtained 56 matched (paired) median values to be utilized as reference values in the various graphical and statistical analyses done. These analyses included the drawing of histograms and box and whisker diagrams, testing for normality, testing for a difference in the medians between the naive T2D blood samples and T2D blood samples exposed to OPCs and testing for a difference in the variation (spread) between these two groups of blood samples.

Statistical analyses were done using SAS/STAT and SAS/IML software, Version 9.4 of the SAS System for Windows (SAS Institute, Cary, NC, USA). The histograms and box and whisker diagrams were drawn with Wolfram Mathematica, Version 10.4 (Wolfram Research, Champaign, IL, USA).

Scanning electron microscopy
The SEM experiment was conducted by comparing the naive T2D blood samples with T2D blood samples exposed to OPCs. Whole blood samples from the 20 healthy individuals were also collected, scanned and analyzed as a control group. After the blood was collected, 10 μl of whole blood with 5 μl of thrombin (to create an extensive fibrin network) were placed directly on a glass cover slip, fixed, dehydrated, dried, mounted and coated with carbon according to previously described methods.4,61 A Zeiss ULTRA Plus FEG-SEM with InLens capabilities was used and micrographs were taken at 1 kV.

RESULTS
The demographic data for the group of 60 patients with T2D is summarized in Table 1. The information collected included glucose measured at the time of sample collection, HbA1c values as well as chronic medication typically administered to T2D patients. Table 1 shows that, although almost all T2D participants (97%) are taking hypoglycaemic medication, the samples group still represents a poorly controlled diabetic population. Besides medication for glucose control, the T2D group also includes individuals on medication for dyslipidaemia and hypertension, whereas some are taking anticoagulants. The control group of 20 healthy individuals was selected to be age and gender matched to the T2D group.

An important consideration for this study was the possible interactions of OPCs with the currently used medications that typical poorly controlled diabetes patients may be taking (see

| Table 1. Summary of patient demographic data and medication |
|---|-----------------------|
| % Distributions | Individuals with diabetes |
| Number of female patients (%) | 34 (57%) |
| Number of male patients (%) | 26 (43%) |
| Total no of patients | 60 |
| Average age ± s.d. | 56.7 ± 9.9 |
| Average HbA1c (%) ± s.d. | 9.0 ± 2.2 |
| Average glucose level (mmol l⁻¹) ± s.d. | 10.1 ± 5.1 |
| Number of patients taking anticholesterol medication (%) | 40 (67%) |
| Number of patients taking hypoglycaemic medication (%) | 58 (97%) |
| Number of patients taking anticoagulants medication (%) | 31 (52%) |
| Number of patients taking antihypertensive medication (%) | 44 (73%) |

Figure 1. Type II diabetes, symptoms indicative of systemic inflammation, typical medication for the comorbidities and solution for disease tracking based on an individualized, precision medicine approach.
Figure 1). Table 2 shows possible interactions of OPCs with typically prescribed chronic medication.

Descriptive statistics for the naive T2D group and the T2D group treated with OPCs are summarized in Table 3, whereas Figures 2 and 3 illustrate paired histograms and box and whisker diagrams for the two diabetes groups. It is clear from these diagrams that both groups are positively skewed and hence non-normal. The non-normality was confirmed with various tests for normality, including the Anderson–Darling62 and Shapiro–Wilk tests63 (see Table 3). Figure 4 shows a box and whisker diagram for the control group of 20 healthy individuals.

Owing to the non-normality of the data, non-parametric hypothesis tests were utilized to compare the elasticity measurement values between the two groups of blood samples. First, with the Wilcoxon matched pairs test 64 no statistically significant difference in the median elasticity measurement values between the naive T2D blood samples and T2D blood samples exposed to OPCs was found (P-value = 0.3083). This is also evident from the box and whisker diagrams in Figure 3. However, these box and whisker diagrams do suggest that the variation in elasticity

Table 2. Medication typically administered to diabetes type II patients and possible interactions with OPCs

Medication	Selected references
Glucose control	
Effect on blood glucose levels in general	No evidence of interaction
Antihyperglycemic drug dimethylbiguanide (metformin/glucophage)	No evidence of interaction
Actraphane (mixture of fast-acting insulin and long-acting insulin)	No evidence of interaction
Actrapid (human soluble insulin)	No evidence of interaction
Humulin (70% human insulin isophane suspension and 30% human insulin injection (rDNA origin))	No evidence of interaction
Protophane (intermediate-acting insulin)	No evidence of interaction
Hypertension control	
Effect on blood pressure in general	Had no effect on blood pressure or heart rate46,56 In patients with mild blood pressure, blood pressure was normalized and thromboxane levels lowered47,56
Coversyl (active ingredient is perindopril arginine which is a angiotensin-converting enzyme inhibitor)	No evidence of interaction
Amlodipine (calcium channel blockers)	Reduced the dosage of the calcium channel blocker nifedipine significantly; plasma levels of endothelin-1 were reduced and concentrations of prostacyclin were elevated47,57
Carvedilol (beta and alpha adrenoceptor blocker with antioxidant activity)	No evidence of interaction
Adalat (nifedipine) calcium channel blocker)	No evidence of interaction
Anti-clotting medication	
Aspirin (acetylsalicylic acid)	An inhibitory effect on platelet aggregation similar to aspirin44,47,55,56,58 Does not affect INR (bleeding tendency) in patients taking aspirin46
Cholesterol medication	
Effect on blood lipid levels in general	Decreases LDL-cholesterol, increases HDL-cholesterol levels, no significant change in total cholesterol or triglycerides46,59 No statistically significant improvement in total cholesterol or LDL levels compared with placebo44,60
Simvastatin	No evidence of interaction
Lipitor	No evidence of interaction

Table 3. Descriptive statistics and normality tests for the group of participants with type II diabetes (naive T2D) and for the same group of participants treated with OPCs (T2D+OPCs)

	Naive T2D	T2D group treated with OPCs
Descriptive statistics		
Sample size	56	56
Mean	30197.76	32730.20
s.d.	17693.60	21559.00
Median	26622.00	29326.25
75 percentile	36202.50	46812.00
25 percentile	16952.00	15545.80
Interquartile range	19250.50	31266.20
Maximum	106986.50	103698.00
Minimum	8093.00	4499.00
Range	98893.00	99199.00
P-values for normality tests		
Anderson–Darling	0.0001	0.0270
Shapiro–Wilk	>0.0001	0.0047

Abbreviations: OPCs; oligomeric proanthocyanidins; T2D, type II diabetes.
measurement values for the T2D group treated with OPCs is larger than the variation in elasticity measurement values for the naive T2D group. Using the modification of Wilcoxon65 of the Morgan–Pitman test,66,67 a significant difference in variation between the elasticity measurement values of the two groups of blood samples was found (P-value < 0.0001).

Scanning electron microscopy SEM followed the same trends as the AFM results, and it seems as if the OPC changes the RBC membrane to be comparable to that of a typical healthy RBC membrane (see Figure 5). A healthy RBC membrane shows a smooth undulating structure, where RBCs from T2D are known to be eryptotic, with a membrane that is much rougher.4,61

Eryptosis is programmed RBC cell death, similar to that of apoptosis, and is found in (all) inflammatory conditions. For comprehensive reviews on this process, see Pretorius et al.38 With the addition of the OPC, the eryptotic RBC structure is reversed, and the membrane roughness are slightly improved, compared with that of a typical healthy RBC.

DISCUSSION
In a healthy RBC, the neutral phosphatidylcholine and sphingomyelin are mostly found on the outside, and the charged phosphatidylyserine, phosphatidylinositol and phosphatidylethanolamine, are found mostly on the inner membrane leaflet.36,41 In most inflammatory conditions, RBCs have been noted to show eryptosis (similar to apoptosis, but called eryptosis owing to the absence of mitochondria and nuclei); for extensive reviews on eryptosis see various publications.38,68–73 During eryptosis, a membrane phosphatidlyserine-flip occurs, and phosphatidylyserine is then present on the outside leaflet of the RBC membranes.74–79 Ultimately, eryptosis results in an inflammatory RBC presence in the circulation. Eryptotic RBCs are known to themselves produce membrane microparticles and these microparticles in itself are inflammatory.80 In all inflammatory conditions, RBCs demonstrate enhanced eryptosis and a pathological membrane structure with a changed elasticity. This was previously also demonstrated in T2D.27,81 The pathological nature T2D RBCs, together with the general hypercoagulability seen in the condition,82 fundamentally influences the inflammatory profiles of the patients. Eryptosis is
also seen in conditions like anemia.83 Previously, it was also shown that pathological RBC structure, with an accompanying changed viscosity and hypercoagulability of whole blood and plasma, are found in conditions like Alzheimer’s and Parkinson’s disease,84–86 hyperferritinemia and haemochromatosis.57

Procyanidins and proanthocyanidins have been shown to have antioxidant and anti-inflammatory properties.88,89 Preliminary clinical trials have been conducted in a number of indications and clinical contexts, including asthma, CVD and diabetes.90–92 Sivonová \textit{et al.}92 studied the \textit{in vitro} effect of polyphenol rich plant extract, trademarked as Pycnogenol, on RBC membrane fluidity. They found that the extract significantly increased the membrane fluidity especially at the membrane surface as compared with untreated RBCs. They also found that the extract had protective effect against lipid peroxidation, generation of thiobarbituric acid reactive products and oxidative hemolysis induced by H\textsubscript{2}O\textsubscript{2}. They stated that, even though the exact mechanisms are unknown, it is thought that pycnogenol can reduce the lipid peroxidation and oxidative hemolysis either by reducing free radicals or by chelating metal ions, or by both. They concluded that the extract possibly modifies membrane-dependent processes not only by its chemical action, but also by interacting directly with cell membranes and/or penetrating the membrane and therefore inducing modification of the lipid bilayer and lipid–protein interactions.42

In the current study, the protective antioxidant effect of OPCs on the local mechanical properties of the erythrocyte membrane was evaluated, and therefore the membrane elasticity of erythrocytes of patients with T2D, using AFM techniques. The Wilcoxon matched pairs test64 showed no statistically significant difference in the median elasticity measurement values between the T2D sample group and the same group exposed to OPCs (P-value = 0.3083). From this data it can be interpreted that the OPCs had no effect, or at least not a measurable effect, on the local mechanical properties of the erythrocyte membrane by means of AFM, and therefore the membrane elasticity of erythrocytes.

Using the modification of Wilcoxon65 of the Morgan–Pitman test,66,67 a significant difference in variation between the elasticity measurement values of the two groups was found (P-value < 0.0001). Oxidative stress has been associated with premature erythrocyte aging93 and therefore be assumed that in T2D more erythrocytes would be expected to measure as aged, lesser deformable erythrocytes92 as seen in this study and to have smaller Young’s modulus values and a smaller variance in membrane elasticity as seen by the AFM data (refer to Figure 3). The results showed that at least some of the samples were positively affected in the treated T2D group. It can therefore be presumed that the protective antioxidant effect of OPCs on the local mechanical properties of the erythrocyte membrane, and therefore the membrane elasticity of patients with T2D as measured by AFM, has an improving effect in comparison with the untreated T2D group.

These results are comparable to the findings of Pretorius (2015) where the authors investigated the effect of iron chelators defereroxamine or deferasirox on T2D erythrocytes by means of SEM and AFM. They found that treatment with either defereroxamine or deferasirox improved the Young’s modulus values towards normal values. This indicates a possible improvement in the elasticity of the cells.4 However, when they compared the elasticity measurements individually after treatment, a more complex picture emerges owing to the substantial variation in the two groups.5 Similar variation was found in this study. In this study we found that a detailed analysis showed that the effect of the iron chelators on membrane elasticity was patient-specific.4

This is further supported after closer inspection, at $\times 150~000$ magnification (refer to Figure 5), the erythrocyte membranes are visible. The T2D membrane ultrastructure appears much more rough and textured than that of healthy erythrocytes, possibly due to membrane phospholipid scrambling, associated with oxidative stress.86 The OPCs-treated sample shows a visibly smoother surface of the erythrocyte membranes, as compared with the untreated T2D erythrocytes.

It is also important to note that AFM is generally considered to be an informative technique that is frequently used in erythrocyte structural studies using Young’s modulus to measure membrane stiffness and elasticity.6,57,58 However, in this study relatively complex statistical methodology was needed to statistically compare treated and untreated T2D groups. The technique was also found to be a timeous technique when a larger samples group is being studied. In addition, it is considered to be a complicated method to implement as a patient-orientated approach.36

CONCLUSION

In conclusion, the protective antioxidant properties of OPCs improved membrane elasticity as shown by a significant difference (P-value < 0.0001) in variation between the elasticity measurement values of the two groups T2D treated and untreated) when using the modification of Wilcoxon65 of the Morgan–Pitman test.66,67 Using SEM analysis these findings are further supported by the visibly smoother membrane surface viewed at $\times 150~000$ magnification. The data from AFM showed that this is possibly due to an improvement towards a more normal variance of elasticity, and possibly contributing to the improvement of biophysical shape changes as seen in SEM analyses.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank the National Research Foundation (NRF) of South Africa (91548: Competitive Program) and the Medical Research Council of South Africa (MRC) (Self-Initiated Research Program: A0X331 for supporting this collaboration.

REFERENCES

1. Alzahrani SH, Ajan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res 2010; 7: 260–273.
2. Klop B, Elite JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013; 5: 1218–1240.
3. Lorber D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2014; 7: 169–183.
4. Pretorius E, Bester J, Vermeulen N, Alummoott I, Soma P, Buys Av et al. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol 2015; 14: 30.
5. Meusel L-AC, Kansal NS, Tchistiakova E, Yuen W, MacIntosh BJ, Greenwood CE et al. A systematic review of type 2 diabetes mellitus and hypertension in imaging studies of cognitive aging: time to establish new norms. Front Aging Neurosci 2014; 6: 148.
6. Vazzana N, Ranalli P, Cucurullo C, Davi G. Diabetes mellitus and thrombosis. Thromb Res 2012; 129: 371–377.
7. Soma P, Pretorius E. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14: 96.
8. Ruiz-Canela M, Bes-Rastrollo M, Martinez-González MA. The role of dietary inflammatory index in cardiovascular disease, metabolic syndrome and mortality. Int J Mol Sci 2016; 17: E1265.
9. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115–126.
25 Wong WT, Tian XY, Huang Y. Endothelial dysfunction in diabetes and hyperten-

sion. *Ann Med* 2013; 45: 643–650.

11 Gregor MF, Hotamisligil GS. Inflammation, obesity, and metabolic disease. *J Intern Med* 2013; 273: 39–57.

12 Koldboe A, Preiss HJ, Vester CP, Diederik VM, Almgren P, Bjorntorp P, et al. The effect of a high fat diet on endothelial function and markers of inflammation in healthy men. *Eur J Clin Nutr* 2013; 67: 687–694.

13 Kitada M, Zhang Z, Allen D, Hillhouse S, Njoku A, Arshad S, et al. The role of circulating adipokines in the development of endothelial dysfunction in patients with type 2 diabetes. *J Diabetes Investig* 2013; 4: 201–207.

14 Kim KS, Kim Y, Kim J, Na-Goong IS, Kim ES. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. *J Diabetes Investig* 2013; 4: 201–207.

15 Kolar P, Tomankova K, Malohlava J, Zapletalova J, Vujtek M, Safarova K, et al. High ferritin levels have major implications for the development of cardiovascular disease in type 2 diabetes. *Clin Sci (Lond)* 2013; 125: 201–209.

16 Goldberg RB. Cytokine and cytokine-like in-

flammatory markers and therapeutic approaches. *J Am Coll Cardiol* 2013; 62: 667–676.

17 Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Effects of endogenous regulators of endothelial NO synthase on nitric oxide homeostasis and blood serum lipopro-

teins during experimental diabetes mellitus. *Bull Exp Biol Med* 2013; 156: 205–208.

18 Schneider MR, Ott C, Schmidt S, Kistner l, Friedrich S, Schmieder RE. Poor glycemic control is related to increased nitric oxide activity within the renal circulation of patients with type 2 diabetes. *Diabetes Care* 2013; 36: 4071–4075.

19 Cohen RA, Tong X. Vascular oxidative stress: the common link in hypertension and diabetic vascular disease. *J Cardiovasc Pharmacol* 2010; 55: 308–316.

20 Kassan M, Choi SK, Galan M, Bishop A, Umezawa K, Trebak M et al. Enhanced NF-kappaB activity impairs vascular function through PARP-1, -5-1, and COX-2-dependent mechanisms in type 2 diabetes. *Diabetes* 2013; 62: 2078–2087.

21 Wong WT, Tian XY, Huang Y. Endothelial dysfunction in diabetes and hyperten-

sion: cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanooids. *J Cardiovasc Pharmacol* 2013; 61: 204–214.

22 Rudock ME, Liu Y, Ziegler JT, Allen SG, Lehtinen A, Freedman BI. The thromboxane A2 receptor antagonist S18886 prevents enhanced inflammatory markers and endothelial dys-

function in type 2 diabetes. *Diabetes Care* 2013; 36: 166–175.

23 Campoli AM, Tousoulis D, Biasolios A, Latsios G, Papageorgiou N, Stefanadis C. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. *Curr Pharm Des* 2013; 17: 4147–4158.

24 Zuccollo A, Shi C, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, Zang M et al. The thrombomodulin A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. *Circulation* 2005; 112: 3001–3008.

25 Winocour PD, Platelet, vascular disease, and diabetes mellitus. *Can J Physiol Pharmacol* 1994; 72: 295–306.

26 Andolfi-Urso R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. *Haematologica* 2016; 101: 1284–1294.

27 Pretorius E, Olumuyiwa-Akeredolu O, Mbotev S, Bester J. Erythrocytes and their role as health indicator: Using structure in a patient-oriented precision medicine approach. *Blood Rev* 2016; 4: 263–274.

28 van Meer G. Dynamic transbilayer lipid asymmetry. *Cold Spring Harb Perspect Biol* 2011; 3: a004671.

29 Prerotius E, du Plooy J, Bestor J. A comprehensive review on erythropoiesis. *Cell Physiol Biochem* 2016; 39: 1977–2000.

30 Rees MD, Kennett EC, Whitehead JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. *Free Radic Biol Med* 2008; 44: 1973–2001.

31 Goldberg RB. Cytokine and cytokine-like in-

flammatory markers and therapeutic approaches. *J Am Coll Cardiol* 2013; 62: 667–676.

32 Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, et al. Effects of photodynamic treatment on the morphological and mechanical properties of the HeLa cell line. *Nat Methods* 2013; 10: 213–217.

33 Zuccollo A, Shi C, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, Zang M et al. The thrombomodulin A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. *Circulation* 2005; 112: 3001–3008.

34 Winocour PD, Platelet, vascular disease, and diabetes mellitus. *Can J Physiol Pharmacol* 1994; 72: 295–306.

35 Andolfi-Urso R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. *Haematologica* 2016; 101: 1284–1294.

36 Pretorius E, Olumuyiwa-Akeredolu O, Mbotev S, Bester J. Erythrocytes and their role as health indicator: Using structure in a patient-oriented precision medicine approach. *Blood Rev* 2016; 4: 263–274.

37 van Meer G. Dynamic transbilayer lipid asymmetry. *Cold Spring Harb Perspect Biol* 2011; 3: a004671.
