Maximal subsets free of arithmetic progressions in arbitrary sets *

Semchankau Aliaksei

October 12, 2020

Abstract

We consider the problem of determining the maximum cardinality of a subset containing no arithmetic progressions of length \(k \) in a given set of size \(n \). It is proved that it is sufficient, in a certain sense, to consider the interval \([1, \ldots, n]\). The study continues the work of Komlós, Sulyok, and Szemerédi.

1 Introduction

Let us consider an arbitrary set \(B \subseteq \mathbb{Z} \) and integer \(k \geq 3 \). We define the value \(f_k(B) \) to be the cardinality of maximal subset of \(B \), which does not contain nontrivial arithmetical progression of length \(k \) (we say arithmetical progression is trivial if all of its elements are equal). Let us consider the function

\[
\phi_k(n) := \min_{|B|=n} f_k(B).
\]

Now we introduce the function \(g_k(n) := f_k([1, 2, \ldots, n]) \). Let \(\rho_k(n) := g_k(n)/n \) be a density of maximal set free of arithmetical progressions of length \(k \) in segment \([1, \ldots, n]\). We know following estimates for \(\rho_k(n) \):

\[
\frac{1}{c_k \sqrt{\ln n}} \ll \rho_k(n) \ll \frac{1}{(\ln \ln n)^{s_k}},
\]

where \(c_k, s_k \) are positive constants, depending only on \(k \). Lower bound belongs to Behrend [Beh46], and upper bound belongs to Gowers [Gow01]. Historical retrospective on special case \(k = 3 \) can be found in works [Shk06], [Blo12].

At first sight it seems natural to expect the equality \(\phi_k(n) = g_k(n) \) to hold, although it turns out to be false already for \(n = 5, k = 3 \): \(g_3(5) = f_3([1, 2, 3, 4, 5]) = 4 > 3 = f_3(\{1, 2, 3, 4, 7\}) = \phi_3(5) \). However, intuition still predicts that \(\phi_k(n) \) does not differ much from \(g_k(n) \). In this direction it was proved by Komlós, Sulyok, and Szemerédi [KSS75] that following inequality holds:

\[
\phi_3(n) > (1/2^{15} + o(1))g_3(n), n \to \infty.
\]

*This work is supported by the Russian Science Foundation under grant 14-11-00433.
In O’Bryant’s work [OBr13] it is stated, without proof, that constant $1/2^{15}$ might be improved to $1/34$.
In here we demonstrate the following:

Theorem 1. For any integer $k \geq 3$ there exists such sequence $n_1 < n_2 < \ldots$ of natural numbers such that for any element n in it following inequality holds:

$$\phi_k(n) > (1/4 + o(1))g_k(n).$$

Furthermore, the sequence $n_1 < n_2 < \ldots$ is rather dense in the sense that any segment of the form $[n, ne^{(ln(n))^{1/2+o(1)}}]$ contains at least one element of this sequence.

As we see this result improves bound from [KSS75] for a subsequence of \mathbb{N}. We obtain constant $1/4$ since we ‘compress’ given set of numbers modulo a prime number twice and keep roughly half of the elements each time. Our method differs from the one presented at [KSS75] by fewer amount of operations (consists of 2 ‘compressions’), and therefore by saving more elements of the initial set.

For natural n we denote by $[n]$ the segment $[1, \ldots, n]$.

2 Compressing Lemmas

Let us consider some set of integers $X = \{x_1, x_2, \ldots, x_n\}$. We call set $Y = \{y_1, y_2, \ldots, y_n\}$ a **compression** of set X, if for any triples $(i, j, k) \in [n]^3$ equality $x_i - 2x_j + x_k = 0$ implies $y_i - 2y_j + y_k = 0$ (notice that we do not imply any order of x_i and y_i). This definition is closely related to Freiman homomorphism, see [TV06].

Now we state a hypothesis, which we prove only in special case, which however would suffice for us.

Hypothesis 1. For any $\epsilon > 0$ there is such subpolynomial function $h(n) = h_\epsilon(n)$, such that for any integer set X of size n there exists such $Y \subseteq X, |Y| \leq \epsilon n$, for which $X \setminus Y$ might be compressed into subset of segment $[nh(n)]$.

We prove it for all $\epsilon \in (3/4, 1)$. For the sake of transparency, we break the proof into several lemmas. Since we are only interested in behaviour of $h(n)$ for large n, we would only consider a case when n is large enough.

Lemma 2.1 (on compression into an interval of exponential length). Any set of size n might be compressed into a subset of the segment $[4n^{46n/2}]$.

Proof. Having set X we want to build $Y \subseteq [4n^{46n/2}]$ such that Y is a compression of X.

We assign to X a following matrix A. Let us enumerate all nontrivial arithmetical progressions of length 3 in X:

$$(i_1, j_1, k_1), (i_2, j_2, k_2), \ldots, (i_p, j_p, k_p),$$

where p is the total amount of progressions. Clearly, for any triple (i_s, j_s, k_s) equality

$$x_{i_s} - 2x_{j_s} + x_{k_s} = 0$$

holds. We set A to be a matrix of size $p \times n$. At sth row of A we put 1 at i_sth and k_sth column, and -2 at j_sth column. Other entries are occupied with zeros.
For example, set $X = \{1, 2, 3, 4, 5\}$ would be assigned with the following matrix:

$$A = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 1 & 0 & -2 & 0 & 1 \end{pmatrix}$$

It is clear from the definition of matrix A that

$$A \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

Furthermore, Y is a compression of X if and only if

$$A \begin{pmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

Let us consider an arbitrary set X of size n and its assigned matrix A: $Ax = 0$, where $x = (x_1, \cdots, x_n)^T$. We would demonstrate the existence of such $y = (y_1, ..., y_n)$ such that its coordinates are distinct natural numbers not exceeding $4n^{4/3}$, satisfying $Ay = 0$.

Let us solve the equation $Ax = 0$. We choose maximal amount of linearly independent rows and put them to new matrix A'. Certainly, $A'x = 0 \iff Ax = 0$.

We denote size of A' by $m \times n$, $m < n$ (clearly A and A' are degenerate, since sum of elements in each row equals 0). Let us distinguish independent (basis) variables from dependent ones. Clearly, there are exactly m dependent variables among x_1, x_2, \ldots, x_n. Let us swap coordinates in $x = (x_1, \ldots, x_n)$ and rows in A' in such a way such that first coordinates of x are dependent, and last coordinates are independent. Via the Gauss elimination method we reduce the system to the following form:

$$A''x = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

(order of x_1, x_2, \ldots might have changed after elimination). By Gauss elimination property there exists such nonsingular square matrix M for which $A'' = MA'$. Notice that this equality would still hold if we keep only first m columns of A'' and A'. Therefore, if E and D' are corresponding square matrices, then equality $E = MD'$ (E is the identity matrix) holds. Clearly, $M = (D')^{-1}$. It is known that

$$M = (D')^{-1} = \begin{pmatrix} \frac{\text{det}(D'_{1,1})}{\text{det}(D')} & \frac{\text{det}(D'_{1,m})}{\text{det}(D')} \\ \cdots & \cdots \\ \frac{\text{det}(D'_{m,1})}{\text{det}(D')} & \frac{\text{det}(D'_{m,m})}{\text{det}(D')} \end{pmatrix}.$$
where $D_{i,j}'$ are adjoint matrices. Thus, $\| \det D' \times M \|_{\infty}$ does not exceed the absolute value of determinant of matrix consisting of elements $1,-2,0$, (with at most two -1 and at most one 2 in each row), which we can bound by $(\sqrt{1^2 + 1^2 + (-2)^2})^m = 6^{m/2}$ by Hadamard inequality.

Since A' also consists of elements $-2,1,0$, equality $A'' = MA'$ implies that all elements of $\det D'A''$ are integers with absolute values not exceeding $2m6^{m/2} \leq 2n6^{n/2}$.

Now we turn to construction of desired $y = (y_1,...,y_m)$, satisfying all the conditions above. Let us consider equation $A''x = 0$ and denote its first m elements by $w_1,...,w_m$, and remaining by $z_1,...,z_t$, $m + t = n$. We have:

$$A''x = 0 \iff \begin{pmatrix} 1 & 0 & 0 & \cdots & w_1 \\ 0 & 1 & 0 & \cdots & w_m \\ 0 & 0 & 1 & \cdots & z_1 \\ & & & \cdots & \vdots \\ & & & & z_t \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$

or

$$w_1 + a_{1,1}z_1 + a_{1,2}z_2 + \cdots + a_{1,t}z_t = 0,$$

$$\vdots$$

$$w_m + a_{m,1}z_1 + a_{m,2}z_2 + \cdots + a_{m,t}z_t = 0.$$

We know that any $a_{i,j}$ becomes integer when multiplied by $\det D'$ not exceeding $2n6^{n/2}$ by absolute value. From here we obtain that for any w_i there exists such $\alpha_{i,1}, \alpha_{i,2},...,\alpha_{i,t}$ (negative correspondent elements of A'', multiplied by $\det D'$), such that

$$w_i = \frac{\alpha_{i,1}z_1 + \cdots + \alpha_{i,t}z_t}{\det D'},$$

where all of $\alpha_{i,j}$ are integer and bounded by $2n6^{n/2}$ in absolute value.

We now aim to find such a solution $w_1,\cdots,w_m,z_1,\cdots,z_t$, where all variables are distinct, natural and do not exceed $4n^46^{n/2}$.

Now we demonstrate that it is possible to choose from multidimensional cube $[0,K-1]^t$, (where $K = n^2$), such t-tuple $(z_1,...,z_t)$, so that all elements in $y = (z_1,...,z_t,w_1,...,w_m)$ would be distinct. Indeed, amount of possible points belonging to cube is K^t. Any equality of the form $z_i = z_j, z_i = w_j, w_i = w_j$ determines a hyperplane of the form $\alpha_1z_1 + \cdots + \alpha_tz_t = 0$ - clearly, all integer points belonging to hyperplane can be projected onto the face of hypercube (and projections are integers, too). Therefore there are at most K^{t-1} integer points on any hyperplane. In total, there are at most $C_n^2K^{t-1} < K^t$ points in total.

Having this coordinates $(z_1,...,z_t)$ we construct corresponding $w_1,...,w_m$, multiply all elements of $y = (z_1,\cdots,w_1,\cdots)$ by $\det D'$ and obtain an integer-valued vector, whose maximal element does not exceed either $n^2 \times \det D' \leq n^2 \times 6^{n/2}$, (if it was one of z_i), or $n \times \max(\alpha) \times \max(z_i) \leq n \times 2n6^{n/2} \times n^2 = 2n^46^{n/2}$ (if it was one of w_i) — and therefore we can bound maximal element as $2n^46^{n/2}$. To get rid off negative numbers, we shift coordinates of y `to right' to obtain set of naturals, with maximal element not exceeding $2 \times 2n^46^{n/2}$.

Remark 1. Clearly, one cannot get rid off exponential multiplier c^n, since there is not such compression for set $\{0,1,2,4,...,2^n\}$ that would make maximal element less than 2^n.

4
Lemma 2.2 (on compression into subset of segment of cubic length). If set X of size n belongs to segment $[1, \ldots, M]$, where $M = 4n^46^{n/2}$, then there exists such subset $X' \subseteq X$, $|X'| \geq |X|/2$ which might be compressed into subset of segment $[n^3]$.

Proof. Let us consider first prime numbers $p_1 = 2, p_2 = 3, p_3 = 5, \ldots$. Let us take the minimal prime number which does not divide any difference in X and denote it by p_{k+1}. Then for any $p_k, t \leq k$, there are such distinct x_i, x_j, x_t such that $p_t|(x_i - x_j)$. From here we obtain

$$2 \times 3 \times 5 \times \cdots \times p_k \prod_{i \neq j}(x_i - x_j).$$

From here we obtain the following bound (via using $p_k > k$, $|x_i - x_j| < M$):

$$2 \times 3 \times \cdots \times k \leq M^{n^2-n}.$$

Apply log to both parts:

$$k \ln k - k \leq \frac{n^2-n}{2} \ln M,$$

from where it is easy to observe that $p_{k+1} < 2n^3$ for large enough n.

Thus, there exists such prime $p \leq 2n^3$ which does not divide any difference in X. Let us now consider a set $X' = \{x_1 \pmod{p}, x_2 \pmod{p}, \ldots\}$. It has size n, and belongs to segment $[0, \ldots, p-1]$, therefore intersects by half with one of the segments $L_1 = [0, \ldots, p/2]$, and $L_2 = [p/2, p-1]$ (it is clear, that if elements form a progression in X, then so their images do in $X' \cap L_i$, provided that all of them belong to this image), and therefore we can remove at most half of the elements such that remaining set is compressible into subset of segment $[n^3]$.

Lemma 2.3 (on compression into subset of segment of almost-linear length). If set X of size n belongs to segment $[8n^3]$, then for any $\epsilon > 0$ there exists $X' \subseteq X$, $|X'| \geq (1/2 - \epsilon)|X|$ such that $|C_n \ln n|$, where C_n is a constant, depending only on ϵ.

Proof. For n sufficiently large we consider prime numbers in segment $[2n, \ldots, 2cn \ln n]$, where c is a positive constant. By Tchebyshev theorem, when n is large enough, this segment would contain at least cn prime numbers. We number them as p_1, p_2, \ldots, p_s, $s > cn$. Consider triples (i, j, t), where i, j, t are such that $p_t|(x_i - x_j)$. Notice that each pair (i, j) of indexes participates in at most 2 triples, since $|x_i - x_j| < 8n^3$ and cannot be divisible by 3 or more distinct prime numbers exceeding $2n$. Therefore, there are at most n^2 such triples. By Dirichlet’s box principle some p_t corresponds to at most $n^2/cn = n/c$ triples. We remove from X all x_i, x_j, belonging to any of this triples, and remaining set X_r would have size at least $|X| - 2n^2/cn \geq |X| - 2n^2$.

For set X_r it is true that difference of any two distinct elements is not divisible by any prime $p_t < 2cn \ln n$, and in the same spirit as in previous lemma we remove from X_r at most half of the elements such that remaining set might be compressed into subset X' of segment $[2cn \ln n]$. Since we can take constant c arbitrary large (and, accordingly, take $n > n(c)$), we have proved the desired assertion for any $\epsilon > 0$.

Now we turn to a proof of the Hypothesis 1 in the special case $\epsilon \in (3/4, 1)$:
Proof. We assume that $\epsilon \in (3/4, 1)$. First we compress set X of n elements into subset of segment $[4n^{1/2}6^{n/2}]$ by Lemma 2.1. Then we throw away at most half of the elements and compress X into subset of segment $[n^3]$ by Lemma 2.2. Now we fix some $\delta > 0$ and apply Lemma 2.3 to $X \subseteq [1, \ldots, n^3] \sim [1, \ldots, 8(\frac{n}{2})^3]$, throw away at most $(\frac{1}{2} + \delta)\frac{n}{2}$ elements and compress remaining elements into the segment $[1, C\delta^2 \frac{n}{2}]$. In total we loose at most

$$\frac{n}{2} + (\frac{1}{2} + \delta)\frac{n}{2} = (\frac{3}{4} + \frac{\delta}{2})n$$

elements, so we take δ such that inequality $\frac{3}{4} + \frac{\delta}{2} \leq \epsilon$ holds. Obviously, $\delta := 2\epsilon - \frac{3}{2} > 0$ would work. \hfill \square

3 Proof of Theorem 1

In what follows, we would need a following lemma:

Lemma 3.1 (on lower-bound for density). For any natural a, b and natural $k \geq 3$ the following inequality holds:

$$\rho_k(3ab) \geq \rho_3(a)\rho_k(b)/3.$$

Proof. Let us bisect a segment of length $3ab$ into segments of length $3b$. Let us choose among them those, whose numbers correspond to maximal subset of segment $[a]$, free of arithmetical progressions of length 3 (clearly, there would be exactly $g_3(a) = a\rho_3(a)$ of such segments). We bisect chosen segments into subsegments of length b, and only keep ‘middle’ ones. Then we take a maximal subset free of arithmetical progressions of length k of size $g_k(b) = b\rho_k(b)$ in each of these middle subsegments. Clearly, the union of all those subsets does not contain any arithmetical progression of length k, and therefore $\rho_k(3ab) \geq g_3(a)g_k(b)/3ab = \rho_3(a)\rho_k(b)/3$. \hfill \square

Before proving Theorem 1, we need following inequality:

Lemma 3.2. For large enough natural n, natural $k \geq 3$ and positive real $\alpha \in (0, 1/4)$, the following inequality holds:

$$\phi_k(n) > \alpha n \rho_k(C\alpha n \ln n).$$

Proof. Let us consider an arbitrary set X of n elements. By special case of Hypothesis 1 with $1 - \frac{1+\alpha}{2} \to \epsilon$, one can remove at most ϵn elements in such a way, so that remaining set might be compressed into subset A of segment $[C_\alpha n \ln n]$ of size $\frac{1+\alpha}{2}n$. Let us set $m := C_\alpha n \ln n$. Now we consider $\epsilon > 0$ such that $\frac{1+\alpha}{2}(1 - \epsilon) > \alpha$. Let us show that there exists such natural number s, depending only on α, with the following property: if one considers maximal subset free of arithmetical progressions of length k (which we denote by T) in the segment $[m + 1, m + (s + 1)m]$, then there is such a shift $A + x$ of set A, which has large intersection with T (clearly, $|T| = (s + 1)m\rho_k((s + 1)m))$:

$$|(A + x) \cap T| \geq (1 - \epsilon)|A|\rho_k((s + 1)m).$$

(1)

Indeed, let us consider shifts of A ‘to the right’: $A + 1, A + 2, \ldots, A + sm$. Notice that any element of T, located left to $m + sm$, belongs to exactly $|A|$ shifts. Let $T_1 := T \cap [m + 1, m + sm]$ and $T_2 := T \cap [m + sm + 1, m + (s + 1)m]$. Clearly $|T| = |T_1| + |T_2|$. Let us assume that (1) does not
hold. By Dirichlet’s box principle some shift of A intersects T by at least $|T||A|/sm$ elements, and therefore one can conclude that $|T||A|/sm \leq (1-\epsilon)|A|\rho_k((s+1)m)$, and therefore $|T_2| \geq |T| - |T_1| \geq (1+se)\rho_k((s+1)m)$ elements of T.

By Lemma 3.1 (we assume that $s+1$ is divisible by 3) we see $\rho_k(m) \geq (1+se)\rho_k((s+1)m) \geq (1+se)\rho_3((s+1)/3)\rho_k(m)$ (we derive leftmost inequality from the fact that set free of progressions of length k cannot have density more than $\rho_k(m)$ on segment of length m). Therefore, to get a contradiction, it is enough to take s to be that large so that inequality $(1+se)\rho_3((s+1)/3) \geq 1$ holds.

This is possible since $\rho_3(n) \geq \frac{1}{k^{3\sqrt{\log n}}}k^{3\sqrt{\log n}}$, denominator is subpolynomial, and the function $(1+se)\rho_3(\frac{s+1}{3})$ has polynomial growth on s. So, we obtained required s depending on ϵ and k, or on α and k.

So, now we have desired inequality $\phi_k(n) > \frac{1}{4+\alpha}(1-\epsilon)n\rho_k((s+1)m) > \alpha\rho_k(H_{\alpha,k}n\ln n)$.

Now we turn to Theorem 1:

Proof. Let us suppose that statement of Theorem 1 does not hold for some $k \geq 3$. Therefore, there exists some $\epsilon > 0$, such that for any $o(1)$ there is some segment $I = [m, me^{(\ln m)^{1/2+o(1)}}]$, such that for any $n \in I$ inequality $\phi_k(n) < (1/4-\epsilon)g_k(n)$ holds. On the other side, by Lemma 3.2, any $n \in I$ satisfies $(1/4-\epsilon)g_k(n) \geq \alpha\rho_k(C_{\alpha,k}n\ln n)$, where $\alpha > (1/4-\epsilon)$ (one can set $\alpha := 1/4-\epsilon/2$). From here we obtain that for some constant $c > 1$ ($c := \frac{1}{1/4-\epsilon}$) inequality $\rho_k(n) > c\rho_k(C_{c,k}n\ln n)$ takes place whenever $n \in I$.

Now we build the sequence $t_1 = m, t_2 = Ct_1\ln t_1, t_3 = Ct_2\ln t_2, \ldots$ (we continue while $t_i \in I$ holds — clearly, there are at least $(\ln m)^{1/2+o(1)}$ such t_i).

Therefore, $\rho_k(t_1) > c\rho_k(t_2) > c^2\rho_k(t_3) > \cdots$

Now, combining lower bound for $\rho_k(n)$, and the fact that sequence of t_i has at least $(\ln m)^{1/2+o(1)}$ elements, the bound $\rho_k(t_1) \geq c^{t_i-1}\rho_k(t_i)$ would yield a contradiction for the last t_i in the list.

References

[Beh46] F. A. Behrend. “On Sets of Integers Which Contain No Three Terms in Arithmetical Progression”. *Proceedings of the National Academy of Sciences* 32.12 (1946), pp. 331–332. DOI: 10.1073/pnas.32.12.331. URL: https://www.pnas.org/content/32/12/331.

[Blo12] Thomas F. Bloom. “Translation invariant equations and the method of Sanders”. *Bulletin of the London Mathematical Society* 44.5 (2012), pp. 1050–1067. DOI: 10.1112/blms/bds045. URL: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms/bds045.

[Gow01] W. T. Gowers. “A new proof of Szemerédi’s theorem”. *Geom. Funct. Anal.* 11.3 (2001), 465–588 (2001), erratum 11, no. 4, 869. DOI: https://doi.org/10.1007/s00039-001-0332-9.

[KSS75] J. Komlós, M. Sulyok, and E. Szemerédi. “Linear problems in combinatorial number theory”. *Acta Mathematica Academiae Scientiarum Hungarica* 26 (1975), pp. 113–121. DOI: https://doi.org/10.1007/BF01895954.

[OBr13] K. O’ Bryant. “Thick Subsets that Do Not Contain Arithmetic Progressions”. *Integers* 13 (2013), A18. DOI: 10.1515/9783110298161.249. arXiv: 0912.1494 [math.NT].
[Shk06] Ilya Shkredov. “Szemerédi’s theorem and problems on arithmetic progressions”. Uspekhi Mat. Nauk 61 (Jan. 2006), pp. 111-178. DOI: 10.4213/rm5293.

[TV06] T. Tao and V. Vu. “Additive Combinatorics”. Vol. 105. Cambridge Univ. Press, Cambridge, 2006.

A.S. Semchankau
The Steklov Institute of Mathematics
119991, Russian Federation, Moscow, Ulitsa Gubkina, 8
aliaksei.semchankau@gmail.com