AdaGAN: Boosting Generative Models

Ilya Tolstikhin1, Sylvain Gelly2, Olivier Bousquet2, Carl-Johann Simon-Gabriel1, and
Bernhard Schölkopf1

1Max Planck Institute for Intelligent Systems
2Google Brain

Abstract

Generative Adversarial Networks (GAN)2 are an effective method for training generative models of complex data such as natural images. However, they are notoriously hard to train and can suffer from the problem of missing modes where the model is not able to produce examples in certain regions of the space. We propose an iterative procedure, called AdaGAN, where at every step we add a new component into a mixture model by running a GAN algorithm on a reweighted sample. This is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a strong composite predictor. We prove that such an incremental procedure leads to convergence to the true distribution in a finite number of steps if each step is optimal, and convergence at an exponential rate otherwise. We also illustrate experimentally that this procedure addresses the problem of missing modes.

1 Introduction

A recent trend in modelling high dimensional data such as natural images is to use generative models represented by neural networks9,6. One popular approach, called Generative Adversarial Networks (GAN)6, relies on using a classifier trained in an adversarial fashion. In this case, a generator and a classifier (discriminator) engage in a game, where the generator tries to produce synthetic samples that appear to come from the same distribution as the original data, while the classifier tries to discriminate real and synthetic data. If the capacities and training procedures of both systems are suitably tuned, then the generator will improve over time in order to be able to fool the discriminator.

While the original GAN algorithm of Goodfellow et al.6 often does an impressive job to begin with, several failure modes were reported in the literature, making GANs rather difficult to use. This gave rise to numerous followup works (e.g.,13,16), where the authors alter the original algorithm in various ways so as to make it more stable, easy to tune, improve the visual quality of the sampled data, etc. A major issue with GANs is the missing modes problem, where the generator converges to only one or few modes of the data distribution, thus not providing enough variability in the generated data. Several approaches have been proposed to address this issue1,18. The present paper, inspired by boosting methods, studies the issue theoretically and proposes an algorithmic solution.

1.1 Boosting via Additive Mixtures

Motivated by the problem of missing modes, in this work we propose to use multiple generative models combined into a mixture. These generative models are trained iteratively by adding, at each step, another model to the mixture that should hopefully cover the areas of the space not covered by the previous mixture components1 We show analytically that the optimal next mixture component can be obtained by reweighting

1Note that the term “mixture” should not be interpreted to imply that each component models only one mode: the models to be combined into a mixture can themselves cover multiple modes already.
the true data, and thus propose to use the reweighted data distribution as the target for the optimization of the next mixture components. This leads us naturally to a meta-algorithm, which is similar in spirit to AdaBoost in the sense that each iteration corresponds to learning a “weak” generative model (e.g., GAN) with respect to a reweighted data distribution. The latter adapts over time to focus on the “hard” examples, i.e. those that the mixture has not been able to properly generate thus far.

In this paper we don’t aim at improving a performance of the original GAN algorithm. Instead, we propose a new meta-algorithm, which may be used in conjunction with any available implementation of GAN to effectively fight the problem of missing modes.

Before diving into the technical details we provide an informal intuitive discussion of our new meta-algorithm, which we call AdaGAN (a shorthand for Adaptive GAN, similar to AdaBoost). The pseudocode is presented in Algorithm 1.

On the first step we run the GAN algorithm (or some other generative model) in the usual way and initialize our generative model with the resulting generator G_1. On every t-th step we (a) pick the mixture weight β_t for the next component, (b) update weights W_t of examples from the training set in such a way to bias the next component towards “hard” ones, not covered by the current mixture of generators G_{t-1}, (c) run the GAN algorithm, this time importance sampling mini-batches according to the updated weights W_t, resulting in a new generator G_t^c, and finally (d) update our mixture of generators $G_t = (1 - \beta_t)G_{t-1} + \beta_tG_t^c$ (notation expressing the mixture of G_{t-1} and G_t^c with probabilities $1 - \beta_t$ and β_t). This procedure outputs T generator functions G_1^c, \ldots, G_T^c and T corresponding non-negative weights $\alpha_1, \ldots, \alpha_T$, which sum to one. For sampling from the resulting model we first define a generator G_t^c, by sampling the index i from a multinomial distribution with parameters $\alpha_1, \ldots, \alpha_T$, and then we return $G_t^c(Z)$, where $Z \sim P_Z$ is a standard latent noise variable used in the GAN literature.

Algorithm 1: AdaGAN, a meta-algorithm to construct a “strong” mixture of T individual GANs, trained sequentially. The mixture weight schedule ChooseMixtureWeight and the training set reweighting schedule UpdateTrainingWeights should be provided by the user. Section 3 gives a complete instance of this family.

Input: Training sample $S_N := \{X_1, \ldots, X_N\}$.

Output: Mixture generative model $G = G_T$.

Train vanilla GAN:

$W_1 = (1/N, \ldots, 1/N)$

$G_1 = \text{GAN}(S_N, W_1)$

for $t = 2, \ldots, T$ do

#Choose a mixture weight for the next component

$\beta_t = \text{ChooseMixtureWeight}(t)$

#Update weights of training examples

$W_t = \text{UpdateTrainingWeights}(G_{t-1}, S_N, \beta_t)$

#Train t-th “weak” component generator G_t^c

$G_t^c = \text{GAN}(S_N, W_t)$

#Update the overall generative model

#Notation below means forming a mixture of G_{t-1} and G_t^c.

$G_t = (1 - \beta_t)G_{t-1} + \beta_tG_t^c$

end for
The effect of the described procedure is illustrated in a toy example in Figure 1. On the left images, the red dots are the training (true data) points, the blue dots are points sampled from the model mixture of generators G_t. The background colour gives the density of the distribution corresponding to G_t, non-zero around the generated points, almost zero everywhere else. On the right images, the color corresponds to the weights of training points, following the reweighting scheme proposed in this work. The top row corresponds to the first iteration of AdaGAN, and the bottom row to the second iteration. After the first iteration (the result of the vanilla GAN), we see that only the top left mode is covered, while the three other modes are not covered at all. The new weights (top right) show that the examples from covered mode are aggressively downweighted. After the second iteration (bottom left), the combined generator can then generate two modes.

Although motivated by GANs, we cast our results in the general framework of the minimization of an f-divergence (cf. [12]) with respect to an additive mixture of distributions. We also note that our approach may be combined with different “weak” generative models, including but not limited to GAN.

Figure 1: A toy illustration of the missing mode problem and the effect of sample reweighting, following the discussion in Section 1.1. On the left images, the red dots are the training (true data) points, the blue dots are points sampled from the model mixture of generators G_t. On the right images, the color corresponds to the weights of training points, following the reweighting scheme proposed in this work. The top row corresponds to the first iteration of AdaGAN, and the bottom row to the second iteration.
1.2 Related Work

Several authors \cite{19,17,7} have proposed to use boosting techniques in the context of density estimation by incrementally adding components in the log domain. In particular, the work of Grover and Ermon \cite{7}, done in parallel to and independent of ours, is applying this idea to GANs. A major downside of these approaches is that the resulting mixture is a product of components and sampling from such a model is nontrivial (at least when applied to GANs where the model density is not expressed analytically) and requires to use techniques such as Annealed Importance Sampling \cite{11} for the normalization.

Rosset and Segal \cite{15} proposed to use an additive mixture model in the case where the log likelihood can be computed. They derived the update rule via computing the steepest descent direction when adding a component with infinitesimal weight. This leads to an update rule which is degenerate if the generative model can produce arbitrarily concentrated distributions (indeed the optimal component is just a Dirac distribution) which is thus not suitable for the GAN setting. In contrast, for any fixed weight of the new component our approach gives the overall optimal update (rather than just the best direction), and applies to any f-divergence.

Wang et al. \cite{18} propose an additive procedure similar to ours but with a different reweighting scheme, which is not motivated by a theoretical analysis of optimality conditions. On every new iteration the authors propose to run GAN on the top k training examples with maximum value of the discriminator from the last iteration. Empirical results of Section 4 show that this heuristic often fails to address the missing modes problem.

Finally, Che et al. \cite{1} investigate a completely different approach for addressing the same issue by adding an autoencoding cost directly to the training objective of GAN, hence making sure that each example in the training set can be approximately reconstructed.

The paper is organized as follows. In Section 2 we present our main theoretical results regarding optimization of mixture models under general f-divergences. In particular we show that it is possible to build an optimal mixture in an incremental fashion, where each additional component is obtained by applying a GAN-style procedure with a reweighted distribution. In Section 2.5 we show that if the GAN optimization at each step is perfect, the process converges to the true data distribution at exponential rate (or even in a finite number of steps, for which we provide a necessary and sufficient condition). Then we show in Section 2.6 that imperfect GAN solutions still lead to the exponential rate of convergence under certain “weak learnability” conditions. These results naturally lead us to a new boosting-style iterative procedure for constructing generative models, which is combined with GAN in Section 3, resulting in a new algorithm called AdaGAN. Finally, we report initial empirical results in Section 4 where we compare AdaGAN with several benchmarks, including original GAN, uniform mixture of multiple independently trained GANs, and iterative procedure of Wang et al. \cite{18}.

2 Minimizing f-divergence with Additive Mixtures

In this section we derive a general result on the minimization of f-divergences over mixture models.

2.1 Preliminaries and notations

In this work we will write P_d and P_{model} to denote a real data distribution and our approximate model distribution, respectively, both defined over the data space \mathcal{X}.

Generative Density Estimation In the generative approach to density estimation, instead of building a probabilistic model of the data directly, one builds a function $G : \mathcal{Z} \rightarrow \mathcal{X}$ that transforms a fixed probability distribution $P_{\mathcal{Z}}$ (often called the noise distribution) over a latent space \mathcal{Z} into a distribution over \mathcal{X}. Hence P_{model} is the pushforward of $P_{\mathcal{Z}}$, i.e. $P_{\text{model}}(A) = P_{\mathcal{Z}}(G^{-1}(A))$. Because of this definition, it is generally impossible to compute the density $dP_{\text{model}}(x)$, hence it is not possible to compute the log-likelihood of the
training data under the model. However, if \(P_Z \) is a distribution from which one can sample, it is easy to also sample from \(P_{\text{model}} \) (simply sampling from \(P_Z \) and applying \(G \) to each example gives a sample from \(P_{\text{model}} \)).

So the problem of generative density estimation becomes a problem of finding a function \(G \) such that \(P_{\text{model}} \) looks like \(P_d \) in the sense that samples from \(P_{\text{model}} \) and from \(P_d \) look similar. Another way to state this problem is to say that we are given a measure of similarity between distributions \(D(P_{\text{model}} \parallel P_d) \) which can be estimated from samples of those distributions, and thus approximately minimized over a class \(G \) of functions.

f-Divergences In order to measure the agreement between the model distribution and the true distribution of the data we will use an \(f \)-divergence defined in the following way:

\[
D_f(Q \parallel P) := \int f\left(\frac{dQ}{dP}(x)\right) dP(x) \tag{1}
\]

for any pair of distributions \(P, Q \) with densities \(dP, dQ \) with respect to some dominating reference measure \(\mu \). In this work we assume that the function \(f \) is convex, defined on \((0, \infty)\), and satisfies \(f(1) = 0 \). The definition of \(D_f \) holds for both continuous and discrete probability measures and does not depend on specific choice of \(\mu \).

It is easy to verify that \(D_f \) is convex, defined on \((0, \infty)\), and it is equal to 0 when \(P = Q \). Note that \(D_f \) is not symmetric, but \(D_f(P \parallel Q) = D_{f^*}(Q \parallel P) \) for \(f^*(x) := xf(1/x) \) and any \(P \) and \(Q \). The \(f \)-divergence is symmetric when \(f(x) = f^0(x) \) for all \(x \in (0, \infty) \), as in this case \(D_f(P \parallel Q) = D_f(Q \parallel P) \).

We also note that the divergences corresponding to \(f(x) \) and \(f(x) + C \cdot (x - 1) \) are identical for any constant \(C \). In some cases, it is thus convenient to work with \(f_0(x) := f(x) - (x - 1)f'(1) \), (where \(f'(1) \) is any subderivative of \(f \) at 1) as \(D_f(Q \parallel P) = D_{f_0}(Q \parallel P) \) for all \(Q \) and \(P \), while \(f_0 \) is nonnegative, nonincreasing on \((0, 1)\), and nondecreasing on \((1, \infty)\). In the remainder, we will denote by \(F \) the set of functions that are suitable for \(f \)-divergences, i.e. the set of functions of the form \(f_0 \) for any convex \(f \) with \(f(1) = 0 \).

Classical examples of \(f \)-divergences include the Kullback-Leibler divergence (obtained for \(f(x) = -\log x \), \(f_0(x) = -\log x + x - 1 \)), the reverse Kullback-Leibler divergence (obtained for \(f(x) = x \log x \), \(f_0(x) = x \log x - x + 1 \)), the Total Variation distance \((f(x) = f_0(x) = |x - 1|)\), and the Jensen-Shannon divergence \((f(x) = f_0(x) = -(x + 1) \log \frac{x + 1}{2} + x \log x)\). More details can be found in Appendix \[\text{B}\]. Other examples can be found in [12]. For further details on \(f \)-divergences we refer to Section 1.3 of [10] and [14].

GAN and f-divergences We now explain the connection between the GAN algorithm and \(f \)-divergences. The original GAN algorithm \[6\] consists in optimizing the following criterion:

\[
\min_G \max_D \mathbb{E}_{P_d} [\log D(X)] + \mathbb{E}_{P_Z} [\log (1 - D(G(Z)))], \tag{2}
\]

where \(D \) and \(G \) are two functions represented by neural networks, and this optimization is actually performed on a pair of samples (one being the training sample, the other one being created from the chosen distribution \(P_Z \), which corresponds to approximating the above criterion by using the empirical distributions. For a fixed \(G \), it has been shown in [9] that the optimal \(D \) for \[2\] is given by \(D^*(x) = \frac{dP_d(x)}{dP_d(x) + dP_g(x)} \) and plugging this optimal value into \[2\] gives the following:

\[
\min_G -\log(4) + 2JS(P_d \parallel P_g), \tag{3}
\]

where \(JS \) is the Jensen-Shannon divergence. Of course, the actual GAN algorithm uses an approximation to \(D^* \) which is computed by training a neural network on a sample, which means that the GAN algorithm can be considered to minimize an approximation of \[3\].

\[2\] The integral in \[4\] is well defined (but may take infinite values) even if \(P(dQ = 0) > 0 \) or \(Q(dP = 0) > 0 \). In this case the integral is understood as \(D_f(Q \parallel P) = \int f(dQ/dP) \cdot \mathbb{1}_{dQ/dP > 0} \cdot dP + \int f(0)Q(dP = 0) + f'(0)Q(dP = 0), \) where both \(f(0) \) and \(f'(0) \) may take value \(\infty \). This is especially important in case of GAN, where it is impossible to constrain \(P_{\text{model}} \) to be absolutely continuous with respect to \(P_d \) or vice versa.

\[3\] Actually the criterion that is minimized is an empirical version of a lower bound of the Jensen-Shannon divergence.
another f-divergence into $\|\cdot\|$ and it turns out that other f-divergences can be written as the solution to a maximization of a criterion similar to $\|\cdot\|$. Indeed, as demonstrated in [12], any f-divergence between P_i and P_\emptyset can be seen as the optimal value of a quantity of the form $\mathbb{E}_{P_i}[f_1(D(X))] + \mathbb{E}_{P_\emptyset}[f_2(D(G(Z)))]$ for appropriate f_1 and f_2, and thus can be optimized by the same adversarial training technique. There is thus a strong connection between adversarial training of generative models and minimization of f-divergences, and this is why we cast the results of this section in the context of general f-divergences.

Hilbertian Metrics As demonstrated in [5, 8], several commonly used symmetric f-divergences are Hilbertian metrics, which in particular means that their square root satisfies the triangle inequality. This is true for the Jensen-Shannon divergence \sqrt{H} as well as for the Hellinger distance and the Total Variation among others. We will denote by \mathcal{F}_H the set of f functions such that D_f is a Hilbertian metric. For those divergences, we have $D_f(P\|Q) \leq (\sqrt{D_f(P\|R)} + \sqrt{D_f(R\|Q)})^2$.

Generative Mixture Models In order to model complex data distributions, it can be convenient to use a mixture model of the following form:

$$P_{model}^T := \sum_{i=1}^{T} \alpha_i P_i,$$

where $\alpha_i \geq 0$, $\sum_i \alpha_i = 1$, and each of the T components is a generative density model. This is very natural in the generative context, since sampling from a mixture corresponds to a two-step sampling, where one first picks the mixture component (according to the multinomial distribution whose parameters are the α_i) and then samples from it. Also, this allows to construct complex models from simpler ones.

2.2 Incremental Mixture Building

As discussed earlier, in the context of generative modeling, we are given a measure of similarity between distributions. We will restrict ourselves to the case of f-divergences. Indeed, for any f-divergence, it is possible (as explained for example in [12]) to estimate $D_f(Q\|P)$ from two samples (one from Q, one from P) by training a “discriminator” function, i.e. by solving an optimization problem (which is a binary classification problem in the case where the divergence is symmetric $\|\cdot\|$). It turns out that the empirical estimate \hat{D} of $D_f(Q\|P)$ thus obtained provides a criterion for optimizing Q itself. Indeed, \hat{D} is a function of $Y_1, \ldots, Y_n \sim Q$ and $X_1, \ldots, X_n \sim P$, where $Y_i = G(Z_i)$ for some mapping function G. Hence it is possible to optimize \hat{D} with respect to G (and in particular compute gradients with respect to the parameters of G if G comes from a smoothly parametrized model such as a neural network).

In this work we thus assume that, given an i.i.d. sample from any unknown distribution P we can construct a simple model $Q \in \mathcal{G}$ which approximately minimizes

$$\min_{Q \in \mathcal{G}} D_f(Q\|P).$$

(5)

Instead of just modelling the data with a single distribution, we now want to model it with a mixture of the form $\sum_i \alpha_i P_i$ where each P_i is obtained by a training procedure of the form (5) with (possibly) different target distributions P for each i.

A natural way to build a mixture is to do it incrementally: we train the first model P_1 to minimize $D_f(P_1\|P_d)$ and set the corresponding weight to $\alpha_1 = 1$, leading to $P_{model}^1 = P_1$. Then after having trained t components $P_1, \ldots, P_t \in \mathcal{G}$ we can form the $(t+1)$-st mixture model by adding a new component Q with weight β as follows:

$$P_{model}^{t+1} := \sum_{i=1}^{t} (1 - \beta) \alpha_i P_i + \beta Q.$$

(6)

\footnote{which means such a property can be used in the context of the original GAN algorithm.}

\footnote{One example of such a setting is running GANs, which are known to approximately minimize the Jensen-Shannon divergence.}
We are going to choose \(\beta \in [0,1] \) and \(Q \in \mathcal{G} \) greedily, while keeping all the other parameters of the generative model fixed, so as to minimize

\[
D_f((1 - \beta)P_g + \beta Q \parallel P_d),
\]

where we denoted \(P_g := P_{\text{model}}^t \) the current generative mixture model before adding the new component.

We don’t necessarily need to find the optimal \(Q \) that minimizes (7) at each step. Indeed, it would be sufficient to find some \(Q \) which allows to build a slightly better approximation of \(P_d \). This means that a more modest goal could be to find \(Q \) such that, for some \(c < 1, \)

\[
D_f((1 - \beta)P_g + \beta Q \parallel P_d) \leq c \cdot D_f(P_g \parallel P_d).
\]

(8)

However, we observe that this greedy approach has a significant drawback in practice. Indeed, as we build up the mixture, we need to make \(\beta \) decrease (as \(P_{\text{model}}^t \) approximates \(P_d \) better and better, one should make the correction at each step smaller and smaller). Since we are approximating (7) using samples from both distributions, this means that the sample from the mixture will only contain a fraction \(\beta \) of examples from \(Q \). So, as \(t \) increases, getting meaningful information from a sample so as to tune \(Q \) becomes harder and harder (the information is “diluted”).

To address this issue, we propose to optimize an upper bound on (7) which involves a term of the form \(D_f(Q \parallel Q_0) \) for some distribution \(Q_0 \), which can be computed as a reweighting of the original data distribution \(P_d \).

In the following sections we will analyze the properties of (7) (Section 2.4) and derive upper bounds that provide practical optimization criteria for building the mixture (Section 2.3). We will also show that under certain assumptions, the minimization of the upper bound will lead to the optimum of the original criterion. This procedure is reminiscent of the AdaBoost algorithm [4], which combines multiple weak predictors into one very accurate strong composition. On each step AdaBoost adds one new predictor to the current composition, which is trained to minimize the binary loss on the reweighted training set. The weights are constantly updated in order to bias the next weak learner towards “hard” examples, which were incorrectly classified during previous stages.

2.3 Upper Bounds

Next lemma provides two upper bounds on the divergence of the mixture in terms of the divergence of the additive component \(Q \) with respect to some reference distribution \(R \).

Lemma 1 Let \(f \in \mathcal{F} \). Given two distributions \(P_d, P_g \) and some \(\beta \in [0,1] \), for any distribution \(Q \) and any distribution \(R \) such that \(\beta dR \leq dP_d \), we have

\[
D_f((1 - \beta)P_g + \beta Q \parallel P_d) \leq \beta D(Q \parallel R) + (1 - \beta)D_f\left(P_g \parallel \frac{P_d - \beta R}{1 - \beta}\right).
\]

(9)

If furthermore \(f \in \mathcal{F}_H \), then, for any \(R \), we have

\[
D_f((1 - \beta)P_g + \beta Q \parallel P_d) \leq \left(\sqrt{\beta D_f(Q \parallel R)} + \sqrt{D_f((1 - \beta)P_g + \beta R \parallel P_d)}\right)^2.
\]

(10)

Proof For the first inequality, we use the fact that \(D_f \) is jointly convex. We write \(P_d = (1 - \beta)\frac{P_g - \beta R}{1 - \beta} + \beta R \) which is a convex combination of two distributions when the assumptions are satisfied.

The second inequality follows from using the triangle inequality for the square root of the Hilbertian metric \(D_f \) and using convexity of \(D_f \) in its first argument.

We can exploit the upper bounds of Lemma 1 by introducing some well-chosen distribution \(R \) and minimizing with respect to \(Q \). A natural choice for \(R \) is a distribution that minimizes the last term of the upper bound (which does not depend on \(Q \)).
2.4 Optimal Upper Bounds

In this section we provide general theorems about the optimization of the right-most terms in the upper bounds of Lemma 1.

For the upper bound (10), this means we need to find \(R \) minimizing \(D_f((1 - \beta)P_g + \beta R \| P_d) \). The solution for this problem is given in the following theorem.

Theorem 1 For any \(f \)-divergence \(D_f \), with \(f \in \mathcal{F} \) and \(f \) differentiable, any fixed distributions \(P_d, P_g \), and any \(\beta \in (0, 1] \), the solution to the following minimization problem:

\[
\min_{Q \in \mathbb{P}} D_f((1 - \beta)P_g + \beta Q \| P_d),
\]

where \(\mathbb{P} \) is a class of all probability distributions, has the density

\[
dQ_\beta^*(x) = \frac{1}{\beta} \left(\lambda^* dP_d(x) - (1 - \beta) dP_g(x) \right)_+
\]

for some unique \(\lambda^* \) satisfying \(\int dQ_\beta^* = 1 \). Furthermore, \(\beta \leq \lambda^* \leq \min(1, \beta/\delta) \), where \(\delta := P_d(dP_g = 0) \). Also, \(\lambda^* = 1 \) if and only if \(P_d((1 - \beta)dP_g > dP_d) = 0 \), which is equivalent to \(\beta dQ_\beta^* = dP_d - (1 - \beta)dP_g \).

Proof See Appendix A.1.

For the upper bound (9), we need to minimize \(D_f\left(P_g \| P_d - \beta R \right) \). The solution is given in the next theorem.

Theorem 2 Given two distributions \(P_d, P_g \) and some \(\beta \in (0, 1] \), assume

\[P_d(dP_g = 0) < \beta. \]

Let \(f \in \mathcal{F} \). The solution to the minimization problem

\[
\min_{Q: \beta dQ \leq dP_d} D_f\left(P_g \| P_d - \beta Q \right)
\]

is given by the distribution

\[
dQ_\beta^*(x) = \frac{1}{\beta} \left(\lambda^* (1 - \beta) dP_g \right)_+
\]

for a unique \(\lambda^* \geq 1 \) satisfying \(\int dQ_\beta^* = 1 \).

Proof See Appendix A.2.

Remark 1 Notice that the term that we optimized in upper bound (10) is exactly the initial objective (7). So that Theorem 1 also tells us what the form of the optimal distribution is for the initial objective.

Remark 2 Surprisingly, in both Theorem 1 and 2, the solution does not depend on the choice of the function \(f \), which means that the solution is the same for any \(f \)-divergence. This also means that by replacing \(f \) by \(f^\circ \), we get similar results for the criterion written in the other direction, with again the same solution. Hence the order in which we write the divergence does not matter and the optimal solution is optimal for both orders.

Remark 3 Note that \(\lambda^* \) is implicitly defined by a fixed-point equation. In Section 3.1 we will show how it can be computed efficiently in the case of empirical distributions.

Remark 4 Obviously, \(\lambda^* \geq \lambda^1 \), where \(\lambda^1 \) was defined in Theorem 1. Moreover, we have \(\lambda^* \leq 1/\lambda^1 \). Indeed, it is enough to insert \(\lambda^1 = 1/\lambda^* \) into definition of \(Q_\beta^1 \) and check that in this case \(Q_\beta^1 \geq 1 \).
2.5 Convergence Analysis for Optimal Updates

In previous section we derived analytical expressions for the distributions R minimizing last terms in upper bounds (9) and (10). Assuming Q can perfectly match R, i.e. $D_f(Q\,∥\,R) = 0$, we are now interested in the convergence of the mixture (6) to the true data distribution P_d for $Q = Q^*_β$ or $Q = Q^1_β$.

We start with simple results showing that adding $Q^*_β$ or $Q^1_β$ to the current mixture would yield a strict improvement of the divergence.

Lemma 2 Under the conditions of Theorem 2, we have

$$D_f((1 - β)P_g + βQ^*_β \,∥\,P_d) \leq D_f((1 - β)P_g + βP_d \,∥\,P_d) \leq (1 - β)D_f(P_g \,∥\,P_d).$$

Under the conditions of Theorem 2 we have

$$D_f\left(P_g \,∥\,\frac{P_d - βQ^1_β}{1 - β}\right) \leq D_f(P_g \,∥\,P_d),$$

and

$$D_f((1 - β)P_g + βQ^1_β \,∥\,P_d) \leq (1 - β)D_f(P_g \,∥\,P_d).$$

Proof The first inequality follows immediately from the optimality of $Q^*_β$ (hence the value of the objective at $Q^*_β$ is smaller than at P_d), and the fact that D_f is convex in its first argument and $D_f(P_d∥P_d) = 0$. The second inequality follows from the optimality of $Q^1_β$ (hence the value of the objective at $Q^1_β$ is smaller than its value at P_d which itself satisfies the condition $βdP_d ≤ dP_d$). For the third inequality, we combine the second inequality with the first inequality of Lemma 1 (with $Q = R = Q^1_β$).

The upper bound (11) of Lemma 2 can be refined if the ratio dP_g/dP_d is almost surely bounded:

Lemma 3 Under the conditions of Theorem 2, if there exists $M > 1$ such that

$$P_d((1 - β)dP_g > MdP_d) = 0$$

then

$$D_f((1 - β)P_g + βQ^*_β \,∥\,P_d) ≤ f(λ^*) + \frac{f(M)(1 - λ^*)}{M - 1}.$$

Proof We use Inequality (20) of Lemma 6 with $X = β, Y = (1 - β)dP_g/dP_d, c = λ^*$. We easily verify that $X + Y = ((1 - β)dP_g + βdP_d)/dP_d$ and $\max(c,Y) = ((1 - β)dP_g + βdQ^*_β)/dP_d$ and both have expectation 1 with respect to P_d. We thus obtain:

$$D_f((1 - β)P_g + βQ^*_β \,∥\,P_d) ≤ f(λ^*) + \frac{f(M) - f(λ^*)}{M - λ^*}(1 - λ^*).$$

Since $λ^* ≤ 1$ and f is non-increasing on $(0,1)$ we get

$$D_f((1 - β)P_g + βQ^*_β \,∥\,P_d) ≤ f(λ^*) + \frac{f(M)(1 - λ^*)}{M - 1}.$$

Remark 5 This upper bound can be tighter than that of Lemma 2 when $λ^*$ gets close to 1. Indeed, for $λ^* = 1$ the upper bound is exactly 0 and is thus tight, while the upper bound of Lemma 2 won’t be zero in this case.
Imagine repeatedly adding T new components to the current mixture P_g, where on every step we use the same weight β and choose the components described in Theorem 1. In this case Lemma 2 guarantees that the original objective value $D_f(P_g \parallel P_d)$ would be reduced at least to $(1 - \beta)^T D_f(P_g \parallel P_d)$. This exponential rate of convergence, which at first may look surprisingly good, is simply explained by the fact that Q^*_β depends on the true distribution P_d, which is of course unknown.

Lemma 2 also suggests setting β as large as possible. This is intuitively clear: the smaller the β, the less we alter our current model P_g. As a consequence, choosing small β when P_g is far away from P_d would lead to only minor improvements in objective \mathcal{L}. In fact, the global minimum of \mathcal{L} can be reached by setting $\beta = 1$ and $Q = P_d$. Nevertheless, in practice we may prefer to keep β relatively small, preserving what we learned so far through P_g: for instance, when P_g already covered part of the modes of P_d and we want Q to cover the remaining ones. We provide further discussions on choosing β in Section 3.2.

In the reminder of this section we study the convergence of \mathcal{L} to 0 in the case where we use the upper bound (10) and the weight β is fixed (i.e. the same value at each iteration). This analysis can easily be extended to a variable β.

Lemma 4 For any $f \in \mathcal{F}$ such that $f(x) \neq 0$ for $x \neq 1$, the following conditions are equivalent:

(i) $P_d((1 - \beta) dP_g > dP_d) = 0$;
(ii) $D_f((1 - \beta)P_g + \beta Q^*_\beta \parallel P_d) = 0$.

Proof The first condition is equivalent to $\lambda^* = 1$ according to Theorem 1. In this case, $(1 - \beta)P_g + \beta Q^*_\beta = P_d$, hence the divergence is 0. In the other direction, when the divergence is 0, since f is strictly positive for $x \neq 1$ (keep in mind that we can always replace f by f_0 to get a non-negative function which will be strictly positive if $f(x) \neq 0$ for $x \neq 1$), this means that with P_d probability 1 we have the equality $dP_d = (1 - \beta)dP_g +\beta dQ^*_\beta$, which implies that $(1 - \beta)dP_g > dP_d$ with P_d probability 1 and also $\lambda^* = 1$.

This result tells that we can not perfectly match P_d by adding a new mixture component to P_g as long as there are points in the space where our current model P_g severely over-samples. As an example, consider an extreme case where P_g puts a positive mass in a region outside of the support of P_d. Clearly, unless $\beta = 1$, we won’t be able to match P_d.

Finally, we provide a necessary and sufficient condition for the iterative process to converge to the data distribution P_d in finite number of steps. The criterion is based on the ratio dP_1/dP_d, where P_1 is the first component of our mixture model.

Corollary 1 Take any $f \in \mathcal{F}$ such that $f(x) \neq 0$ for $x \neq 1$. Starting from $P^1_{\text{model}} = P_1$, update the model iteratively according to $P^{t+1}_{\text{model}} = (1 - \beta)P^t_{\text{model}} + \beta Q^*_\beta$, where on every step Q^*_β is as defined in Theorem 1 with $P_g := P^t_{\text{model}}$. In this case $D_f(P^t_{\text{model}} \parallel P_d)$ will reach 0 in a finite number of steps if and only if there exists $M > 0$ such that

$$P_d((1 - \beta) dP_1 > MdP_d) = 0.$$ \hspace{1cm} (12)

When the finite convergence happens, it takes at most $-\ln \max(M, 1)/\ln(1 - \beta)$ steps.

Proof From Lemma 4, it is clear that if $M \leq 1$ the convergence happens after the first update. So let’s assume $M > 1$. Notice that $dP^{t+1}_{\text{model}} = (1 - \beta)dP^t_{\text{model}} + \beta dQ^*_\beta = \max(\lambda^*dP_d, (1 - \beta)dP^t_{\text{model}})$ so that if $P_d((1 - \beta)dP^t_{\text{model}} > MdP_d) = 0$, then $P_d((1 - \beta)dP^{t+1}_{\text{model}} > M(1 - \beta)dP_d) = 0$. This proves that (12) is a sufficient condition.

Now assume the process converged in a finite number of steps. Let P^t_{model} be a mixture right before the final step. Note that P^t_{model} is represented by $(1 - \beta)^{t-1}P_1 + (1 - (1 - \beta)^{t-1})P$ for certain probability distribution P. According to Lemma 4, we have $P_d((1 - \beta) dP^t_{\text{model}} > dP_d) = 0$. Together these two facts immediately imply (12).

It is also important to keep in mind that even if (12) is not satisfied the process still converges to the true distribution at exponential rate (see Lemma 2 as well as Corollaries 2 and 3 below)
2.6 Weak to Strong Learnability

In practice the component Q that we add to the mixture is not exactly Q^*_β or Q^\dagger_β, but rather an approximation to them. We need to show that if this approximation is good enough, then we retain the property that (8) is reached. In this section we will show that this is indeed the case.

Looking again at Lemma 1 we notice that the first upper bound is less tight than the second one. Indeed, take the optimal distributions provided by Theorems 1 and 2 and plug them back as R into the upper bounds of Lemma 1. Also assume that Q can match R exactly, i.e. we can achieve $D_f(Q \parallel R) = 0$. In this case both sides of (10) are equal to $D_f((1-\beta)P_g + \beta Q^* \parallel P_d)$, which is the optimal value for the original objective (7).

On the other hand, (9) does not become an equality and the r.h.s. is not the optimal one for (7). This means that using (10) allows to reach the optimal value of the original objective (7), whereas using (9) does not. However, this is not such a big issue since, as we mentioned earlier, we only need to improve the mixture by adding the next component (we don’t need to add the optimal next component). So despite the solution of (7) not being reachable with the first upper bound, we will still show that (8) can be reached.

The first result provides sufficient conditions for strict improvements when we use the upper bound (9).

Corollary 2 Given two distributions $P_d, P_g,$ and some $\beta \in (0, 1]$, assume
\[
P_d \left(\frac{dP_g}{dP_d} = 0 \right) < \beta.
\] (13)

Let Q^\dagger_β be as defined in Theorem 2. If Q is a distribution satisfying
\[
D_f(Q \parallel Q^\dagger_\beta) \leq \gamma D_f(P_g \parallel P_d)
\]
for some $\gamma \in [0, 1]$ then
\[
D_f((1-\beta)P_g + \beta Q \parallel P_d) \leq (1-\beta(1-\gamma))D_f(P_g \parallel P_d).
\]

Proof Immediately follows from combining Lemma 1, Theorem 1, and Lemma 2.

Next one holds for Hilbertian metrics and corresponds to the upper bound (10).

Corollary 3 Assume $f \in \mathcal{F}_H$, i.e. D_f is a Hilbertian metric. Take any $\beta \in (0, 1]$, $P_d, P_g,$ and let Q^\dagger_β be as defined in Theorem 2. If Q is a distribution satisfying
\[
D_f(Q \parallel Q^\dagger_\beta) \leq \gamma D_f(P_g \parallel P_d)
\]
for some $\gamma \in [0, 1]$, then
\[
D_f((1-\beta)P_g + \beta Q \parallel P_d) \leq \left(\sqrt{\gamma \beta} + \sqrt{1-\beta} \right)^2 D_f(P_g \parallel P_d).
\]

In particular, the right-hand side is strictly smaller than $D_f(P_g \parallel P_d)$ as soon as $\gamma < \beta/4$ (and $\beta > 0$).

Proof Immediately follows from combining Lemma 1, Theorem 2, and Lemma 2. It is easy to verify that for $\gamma < \beta/4$, the coefficient is less than $(\beta/2 + \sqrt{1-\beta})^2$ which is < 1 (for $\beta > 0$).

Remark 6 We emphasize once again that the upper bound (10) and Corollary 3 both hold for Jensen-Shannon, Hellinger, and total variation divergences among others. In particular they can be applied to the original GAN algorithm.

Conditions 14 and 15 may be compared to the “weak learnability” condition of AdaBoost. As long as our weak learner is able to solve the surrogate problem 19 of matching respectively Q^\dagger_β or Q^*_β accurately enough, the original objective (7) is guaranteed to decrease as well. It should be however noted that Condition 15
with $\gamma < \beta/4$ is perhaps too strong to call it “weak learnability”. Indeed, as already mentioned before, the weight β is expected to decrease to zero as the number of components in the mixture distribution P_g increases. This leads to $\gamma \to 0$, making it harder to meet Condition 15. This obstacle may be partially resolved by the fact that we will use a GAN to fit Q, which corresponds to a relatively rich class of models G in [5]. In other words, our weak learner is not so weak.

On the other hand, Condition (14) of Corollary 2 is much milder. No matter what $\gamma \in [0, 1]$ and $\beta \in (0, 1]$ we choose, the new component Q is guaranteed to strictly improve the objective functional. This comes at the price of the additional Condition (13), which asserts that β should be larger than the mass of true data P_d missed by the current model P_g. We argue that this is a rather reasonable condition: if P_g misses many modes of P_d we would prefer assigning a relatively large weight β to the new component Q.

3 AdaGAN

In this section we provide a more detailed description of Algorithm 1 from Section 1.1, in particular how to reweight the training examples for the next iteration and how to choose the mixture weights.

In a nutshell, at each iteration we want to add a new component Q to the current mixture P_g with weight β, to create a mixture with distribution $(1 - \beta)P_g + \beta Q$. This component Q should approach an “optimal target” Q_β^* and we know from Theorem 1 that:

$$dQ_\beta^* = \frac{dP_d}{\beta} \left(\lambda^* - (1 - \beta) \frac{dP_g}{dP_d} \right)_+.$$

Computing this distribution requires to know the density ratio dP_g/dP_d, which is not directly accessible, but it can be estimated using the idea of adversarial training. Indeed, we can train a discriminator D to distinguish between samples from P_d and P_g. It is known that for an arbitrary f-divergence, there exists a corresponding function h (see [12]) such that the values of the optimal discriminator D are related to the density ratio in the following way:

$$\frac{dP_g}{dP_d}(X) = h(D(X)).$$

(16)

In particular, for the Jensen-Shannon divergence, used by the original GAN algorithm, it holds that $h(D(X)) = \frac{1-D(X)}{D(X)}$. So in this case for the optimal discriminator we have

$$dQ_\beta^* = \frac{dP_d}{\beta} \left(\lambda^* - (1 - \beta)h(D) \right)_+,$$

which can be viewed as a reweighted version of the original data distribution P_d.

In particular, when we compute dQ_β^* on the training sample $S_N = (X_1, \ldots, X_N)$, each example X_i has the following weight:

$$w_i = \frac{p_i}{\beta} \left(\lambda^* - (1 - \beta)h(d_i) \right)_+$$

(17)

with $p_i = dP_d(X_i)$ and $d_i = D(X_i)$. In practice, we use the empirical distribution over the training sample which means we set $p_i = 1/N$.

3.1 How to compute λ^* of Theorem 1

Next we derive an algorithm to determine λ^*. We need to find a value of λ^* such that the weights w_i in (17) are normalized, i.e.:

$$\sum_i w_i = \sum_{i \in \mathcal{X}(\lambda^*)} \frac{p_i}{\beta} \left(\lambda^* - (1 - \beta)h(d_i) \right)_+ = 1,$$

6The hardness of meeting Condition 15 of course largely depends on the class of models G used to fit Q in [5]. For now we ignore this question and leave it for future research.
where $\mathcal{I}(\lambda) := \{i : \lambda > (1 - \beta)h(d_i)\}$. This in turn yields:

$$\lambda^* = \frac{\beta}{\sum_{i \in \mathcal{I}(\lambda^*)} p_i} \left(1 + \frac{(1 - \beta)}{\beta} \sum_{i \in \mathcal{I}(\lambda^*)} p_i h(d_i) \right). \tag{18}$$

Now, to compute the r.h.s., we need to know $\mathcal{I}(\lambda^*)$. To do so, we sort the values $h(d_i)$ in increasing order: $h(d_1) \leq h(d_2) \leq \ldots \leq h(d_n)$. Then $\mathcal{I}(\lambda^*)$ is simply a set consisting of the first k values, where we have to determine k. Thus, it suffices to test successively all positive integers k until the λ given by Equation (18) verifies:

$$(1 - \beta)h(d_k) < \lambda \leq (1 - \beta)h(d_{k+1}).$$

This procedure is guaranteed to converge, because by Theorem 1, we know that λ^* exists, and it satisfies Equation (18). In summary, λ^* can be determined by the Algorithm 2.

Algorithm 2: Determining λ^*

1. Sort the values $h(d_i)$ in increasing order;
2. Initialize $\lambda \leftarrow \frac{\beta}{\sum_{i=1}^{N} p_i} \left(1 + \frac{(1 - \beta)}{\beta} \sum_{i=1}^{N} p_i h(d_i) \right)$ and $k \leftarrow 1$;
3. while $(1 - \beta)h(d_k) \geq \lambda$ do
 4. $k \leftarrow k + 1$;
 5. $\lambda \leftarrow \frac{\beta}{\sum_{i=1}^{k} p_i} \left(1 + \frac{(1 - \beta)}{\beta} \sum_{i=1}^{k} p_i h(d_i) \right)$

3.2 How to choose a mixture weight β

While for every β there is an optimal reweighting scheme, the weights from (17) depend on β. In particular, if β is large enough to verify $dP_\beta(x)\lambda^* - (1 - \beta)dP_g(x) \geq 0$ for all x, the optimal component Q_{β}^* satisfies $(1 - \beta)P_g + \beta Q_{\beta}^* = P_d$, as proved in Lemma 1. In other words, in this case we exactly match the data distribution P_d, assuming the GAN can approximate the target Q_{β}^* perfectly. This criterion alone would lead to choosing $\beta = 1$. However in practice we know we can’t get a generator that produces exactly the target distribution Q_{β}^*. We thus propose a few heuristics one can follow to choose β:

- Constant β.
- All generators to be combined with equal weights in the final mixture model. This corresponds to setting $\beta_t = \frac{1}{t}$, where t is the iteration.

- Instead of choosing directly a value for β one could pick a ratio $0 < r < 1$ of examples which should have a weight $w_i > 0$. Given such an r, there is a unique value of β (β_r) resulting in $w_i > 0$ for exactly $N \cdot r$ training examples. Such a value β_r can be determined by binary search over β in Algorithm 2.

Possible choices for r include:

- r constant, chosen experimentally.
- r decreasing with the number of iterations, e.g., $r = c_1 e^{-c_2 t}$.

- Alternatively, one can set a particular threshold for the density ratio estimate $h(D)$, compute the fraction r of training examples that have a value above that threshold and derive β from this ratio r (as above). Indeed, when $h(D)$ is large, that means that the generator does not generate enough examples in that region, and the next iteration should be encouraged to generate more there.
Algorithm 3: AdaGAN, a meta-algorithm to construct a “strong” mixture of T individual GANs, trained sequentially. The mixture weight schedule ChooseMixtureWeight should be provided by the user (see 3.2). This is an instance of the high level Algorithm 1, instantiating UpdateTrainingWeights.

Input: Training sample $S_N := \{X_1, \ldots, X_N\}$.

Output: Mixture generative model $G = G_T$.

Train vanilla GAN: $G_1 = \text{GAN}(S_N)$

for $t = 2, \ldots, T$ do
 #Choose a mixture weight for the next component
 $\beta_t = \text{ChooseMixtureWeight}(t)$
 #Compute the new weights of the training examples (UpdateTrainingWeights)
 #Compute the discriminator between the original (unweighted) data and the current mixture G_{t-1}
 $D \leftarrow \text{DGAN}(S_N, G_{t-1})$;
 #Compute λ^* using Algorithm 2
 $\lambda^* \leftarrow \lambda(\beta_t, D)$
 #Compute the new weight for each example
 for $i = 1, \ldots, N$ do
 $W^i_t = \frac{1}{N\beta_t} (\lambda^* - (1 - \beta_t) h(D(X_i)))_+$
 end for
 #Train t-th “weak” component generator G^c_t
 $G^c_t = \text{GAN}(S_N, W_t)$
 #Update the overall generative model
 #Notation below means forming a mixture of G_{t-1} and G^c_t.
 $G_t = (1 - \beta_t)G_{t-1} + \beta_tG^c_t$
end for

3.3 Complete algorithm

Now we have all the necessary components to introduce the complete AdaGAN meta-algorithm. The algorithm uses any given GAN implementation (which can be the original one of Goodfellow et al. or any later modifications) as a building block. Accordingly, $G^c \leftarrow \text{GAN}(S_N, W)$ returns a generator G^c for a given set of examples $S_N = (X_1, \ldots, X_N)$ and corresponding weights $W = (w_1, \ldots, w_N)$. Additionally, we write $D \leftarrow \text{DGAN}(S_N, G)$ to denote a procedure that returns a discriminator from the GAN algorithm trained on a given set of true data examples S_N and examples sampled from the mixture of generators G. We also write $\lambda^*(\beta, D)$ to denote the optimal λ^* given by Algorithm 2. The complete algorithm is presented in Algorithm 3.

4 Experiments

We tested AdaGAN on toy datasets, for which we can easily compute and interpret the missing modes. We compare several variants and baselines, on different metrics.
4.1 Problem Setup

The target distribution is defined as a mixture of normal distributions, with different variances. The distances between the means are relatively large compared to the variances, so that each Gaussian of the mixture is “isolated”. We vary the number of modes to test how well each algorithm performs when there are fewer or more expected modes.

More precisely, we set $X = \mathbb{R}^2$, each Gaussian component is isotropic, and their centers are sampled uniformly in a square. That particular random seed is fixed for all experiments, which means that for a given number of modes, the target distribution is always the same. The variance parameter is the same for each component, and is decreasing with the number of modes, in order to have each mode staying apart from each other.

This target density is very easy to learn, using a mixture of Gaussians model, and for example the EM algorithm [3]. If applied to the situation where the generator is producing single Gaussians (i.e. P_Z is a standard Gaussian and G is a linear function), then AdaGAN produces a mixture of Gaussians, however it does so incrementally unlike EM, which keeps a fixed number of components. In any way AdaGAN was not tailored for this particular case and we use the Gaussian mixture model simply as a toy example to illustrate the missing modes problem.

4.2 Algorithms

We compare different meta-algorithms based on GAN, and the baseline GAN algorithm. All the meta-algorithms use the same implementation of the underlying GAN procedure. In all cases, the generator uses latent space $Z = \mathbb{R}^5$, and two ReLU hidden layers, of size 10 and 5 respectively. The corresponding discriminator has two ReLU hidden layers of size 20 and 10 respectively. We use 64k training examples, and 15 epochs, which is enough compared to the small scale of the problem, and all networks converge properly and overfitting is never an issue. Despite the simplicity of the problem, there are already differences between the different approaches.

We compare the following algorithms:

- The baseline GAN algorithm, called Vanilla GAN in the results.
- The best model out of N runs of GAN, that is: run N GAN instances independently, then take the run that performs best on a validation set. This gives an additional baseline with similar computational complexity as the ensemble approaches. Note that the selection of the best run is done on the reported target metric (see below), rather than on the internal metric. As a result this baseline is slightly overestimated. This procedure is called Best of N in the results.
- A mixture of T GAN generators, trained independently, and combined with equal weights (the “bagging” approach). This procedure is called Ensemble in the results.
- A mixture of GAN generators, trained sequentially with different choices of data reweighting:
 - The AdaGAN algorithm (Algorithm 1), for $\beta = 1/t$, i.e. each component will have the same weight in the resulting mixture (see §3.2). This procedure is called Boosted in the results.
 - The AdaGAN algorithm (Algorithm 1), for a constant β, exploring several values. This procedure is called for example Beta0.3 for $\beta = 0.3$ in the results.
 - Reweighting similar to “Cascade GAN” from [18], i.e. keeping the top r fraction of examples, based on the discriminator corresponding to the previous generator. This procedure is called for example TopKLast0.3 for $r = 0.3$.
 - Keep the top r fraction of examples, based on the discriminator corresponding to the mixture of all previous generators. This procedure is called for example TopK0.3 for $r = 0.3$.

4.3 Metrics

To evaluate how well the generated distribution matches the target distribution, we use a coverage metric C. We compute the probability mass of the true data “covered” by the model distribution P_{model}. More precisely, we compute $C := P_d(d_{\text{model}} > t)$ with t such that $P_{\text{model}}(d_{\text{model}} > t) = 0.95$. This metric is more interpretable than the likelihood, making it easier to assess the difference in performance of the algorithms. To approximate the density of P_{model}, we use a kernel density estimation method, where the bandwidth is chosen by cross validation. Note that we could also use the discriminator D to approximate the coverage as well, using the relation from [16].

Another metric is the likelihood of the true data under the generated distribution. More precisely, we compute $L := \frac{1}{n} \sum x_i \log P_{\text{model}}(x_i)$, on a sample of n examples from the data. Note that [20] proposes a more general and elegant approach (but less straightforward to implement) to have an objective measure of GAN. On the simple problems we tackle here, we can precisely estimate the likelihood.

In the main results we report the metric C and in Appendix C we report both L and C. For a given metric, we repeat the run 35 times with the same parameters (but different random seeds). For each run, the learning rate is optimized using a grid search on a validation set. We report the median over those multiple runs, and the interval corresponding to the 5% and 95% percentiles. Note this is not a confidence interval of the median, which would shrink to a singleton with an infinite number of runs. Instead, this gives a measure of the stability of each algorithm. The optimizer is a simple SGD: Adam was also tried but gave slightly less stable results.

4.4 Results

With the vanilla GAN algorithm, we observe that not all the modes are covered (see Figure 1 for an illustration). Different modes (and even different number of modes) are possibly covered at each restart of the algorithm, so restarting the algorithm with different random seeds and taking the best (“best of N”) can improve the results.

Figure 2 summarizes the performance of the main algorithms on the C metric, as a function of the number of iterations T. Table 1 gives more detailed results, varying the number of modes for the target distribution. Appendix C contains details on variants for the reweighting heuristics as well as results for the L metric.

As expected, both the ensemble and the boosting approaches significantly outperform the vanilla GAN and the “best of N” algorithm. Interestingly, the improvements are significant even after just one or two additional iterations ($T = 2$ or $T = 3$). The boosted approach converges much faster. In addition, the variance is much lower, improving the likelihood that a given run gives good results. On this setup, the vanilla GAN approach has a significant number of catastrophic failures (visible in the lower bound of the interval).

5 Conclusion

We presented an incremental procedure for constructing an additive mixture of generative models by minimizing an f-divergence criterion. Based on this, we derived a boosting-style algorithm for GANs, which we call AdaGAN. By incrementally adding new generators into a mixture through the optimization of a GAN criterion on a reweighted data, this algorithm is able to progressively cover all the modes of the true data distribution. This addresses one of the main practical issues of training GANs.

We also presented a theoretical analysis of the convergence of this incremental procedure and showed conditions under which the mixture converges to the true distribution either exponentially or in a finite number of steps.

Our preliminary experiments (on toy data) show that this algorithm is effectively addressing the missing modes problem and allows to robustly produce a mixture which covers all modes of the data.

However, since the generative model that we obtain is not a single neural network but a mixture of such networks, the corresponding latent representation no longer has a smooth structure. This can be seen as a
Table 1: Performance of the different algorithms on varying number of mixtures of Gaussians. The reported score is the coverage C, probability mass of P_d covered by the 5th percentile of P_g defined in Section 4.3. See Table 2 for more metrics. The reported scores are the median and interval defined by the 5% and 95% percentile (in parenthesis) (see Section 4.3), over 35 runs for each setting. Note that the 95% interval is not the usual confidence interval measuring the variance of the experiment itself, but rather measures the stability of the different algorithms (would remain even if each experiment was run an infinite number of times). Both the ensemble and the boosting approaches significantly outperform the vanilla GAN even with just three iterations (i.e. just two additional components). The boosting approach converges faster to the optimal coverage and with smaller variance.

	Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10
Vanilla	0.97 (0.9;1.0)	0.88 (0.4;1.0)	0.63 (0.5;1.0)	0.72 (0.5;0.8)	0.58 (0.4;0.8)	0.59 (0.2;0.7)
Best of N (T=3)	0.99 (1.0;1.0)	0.96 (0.9;1.0)	0.91 (0.7;1.0)	0.80 (0.7;0.9)	0.84 (0.7;0.9)	0.70 (0.6;0.8)
Best of N (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	0.98 (0.8;1.0)	0.80 (0.8;0.9)	0.87 (0.8;0.9)	0.71 (0.7;0.8)
Ensemble (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.93 (0.8;1.0)	0.78 (0.6;1.0)	0.85 (0.6;1.0)	0.80 (0.6;1.0)
Ensemble (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.91 (0.8;1.0)	0.88 (0.8;1.0)	0.89 (0.7;1.0)
TopKLast0.5 (T=3)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.95 (0.9;1.0)	0.95 (0.8;1.0)	0.86 (0.7;1.0)	0.86 (0.6;0.9)
TopKLast0.5 (T=10)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.98 (1.0;1.0)	0.99 (0.8;1.0)	0.99 (0.8;1.0)	1.00 (0.8;1.0)
Boosted (T=3)	0.99 (1.0;1.0)	0.99 (0.9;1.0)	0.98 (0.9;1.0)	0.91 (0.8;1.0)	0.91 (0.8;1.0)	0.86 (0.7;1.0)
Boosted (T=10)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)
Figure 2: Coverage C of the true data by the model distribution P_{model}^T, as a function of iterations T. Experiments correspond to the data distribution with 5 modes. Each blue point is the median over 35 runs. Green intervals are defined by the 5% and 95% percentiles (see Section 4.3). Iteration 0 is equivalent to one vanilla GAN. The left plot corresponds to taking the best generator out of T runs. The middle plot corresponds to the “ensemble GAN”, simply taking a uniform mixture of n independently trained GAN generators. The right plot corresponds to our boosting approach (AdaGAN), carefully reweighting the examples based on the previous generators, with $\beta_t = 1/t$. Both the ensemble and boosting approaches significantly outperform the vanilla approach with few additional iterations. They also outperform taking the best out of T runs. The boosting outperforms all other approaches. For AdaGAN the variance of the performance is also significantly decreased.

disadvantage compared to standard GAN where one can perform smooth interpolation in latent space. On the other hand it also allows to have a partitioned latent representation where one component is discrete. Future work will explore the possibility of leveraging this structure to model discrete aspects of the dataset, such as the class in object recognition datasets in a similar spirit to [2].

A Proofs

A.1 Proof of Theorem 1

Before proving Theorem 1 we introduce two lemmas. The first one is about the determination of the constant λ, the second one is about comparing the divergences of mixtures.

Lemma 5 Let P and Q be two distributions, $\gamma \in [0, 1]$ and $\lambda \in \mathcal{R}$. The function

$$g(\lambda) := \int \left(\lambda - \gamma \frac{dQ}{dP} \right)_+ dP$$

is nonnegative, convex, nondecreasing, satisfies $g(\lambda) \leq \lambda$, and its right derivative is given by

$$g'_+(\lambda) = P(\lambda \cdot dP \geq \gamma \cdot dQ).$$

The equation

$$g(\lambda) = 1 - \gamma$$

has a solution λ^* (unique when $\gamma < 1$) with $\lambda^* \in [1 - \gamma, 1]$. Finally, if $P(dQ = 0) \geq \delta$ for a strictly positive constant δ then $\lambda^* \leq (1 - \gamma)\delta^{-1}$.

Proof The convexity of g follows immediately from the convexity of $x \mapsto (x)_+$ and the linearity of the integral. Similarly, since $x \mapsto (x)_+$ is non-decreasing, g is non-decreasing.

We define the set $\mathcal{I}(\lambda)$ as follows:

$$\mathcal{I}(\lambda) := \{x \in \mathcal{X} : \lambda \cdot dP(x) \geq \gamma \cdot dQ(x)\},$$
Now let’s consider $g(\lambda + \epsilon) - g(\lambda)$ for some small $\epsilon > 0$. This can also be written:

$$g(\lambda + \epsilon) - g(\lambda) = \int_{\mathcal{I}(\lambda)} \epsilon dP + \int_{\mathcal{I}(\lambda + \epsilon) \setminus \mathcal{I}(\lambda)} (\lambda + \epsilon) dP - \gamma dQ$$

$$= P(\mathcal{I}(\lambda)) + \int_{\mathcal{I}(\lambda + \epsilon) \setminus \mathcal{I}(\lambda)} (\lambda + \epsilon) dP - \gamma dQ.$$

On the set $\mathcal{I}(\lambda + \epsilon) \setminus \mathcal{I}(\lambda)$, we have

$$(\lambda + \epsilon) dP - \gamma dQ \in [0, \epsilon].$$

So that

$$\epsilon P(\mathcal{I}(\gamma)) \leq g(\lambda + \epsilon) - g(\lambda) \leq \epsilon P(\mathcal{I}(\gamma)) + \epsilon P(\mathcal{I}(\lambda + \epsilon) \setminus \mathcal{I}(\lambda)) = \epsilon P(\mathcal{I}(\lambda + \epsilon))$$

and thus

$$\lim_{\epsilon \to 0^+} \frac{g(\lambda + \epsilon) - g(\lambda)}{\epsilon} = \lim_{\epsilon \to 0^+} P(\mathcal{I}(\lambda + \epsilon)) = P(\mathcal{I}(\lambda)).$$

This gives the expression of the right derivative of g. Moreover, notice that for $\lambda, \gamma > 0$

$$g'_+(\lambda) = P(\lambda \cdot dP \geq \gamma \cdot dQ) = P\left(\frac{dQ}{dP} \leq \frac{\lambda}{\gamma}\right) = 1 - P\left(\frac{dQ}{dP} > \frac{\lambda}{\gamma}\right) \geq 1 - \gamma / \lambda$$

by Markov’s inequality.

It is obvious that $g(0) = 0$. By Jensen’s inequality applied to the convex function $x \mapsto (x)_+$, we have $g(\lambda) \geq (\lambda - \gamma)_+$. So $g(1) \geq 1 - \gamma$. Also, $g = 0$ on \mathcal{R}^- and $g \leq \lambda$. This means g is continuous on \mathcal{R} and thus reaches the value $1 - \gamma$ on the interval $(0, 1]$ which shows the existence of $\lambda^* \in (0, 1]$. The unicity comes from the fact that since $g(x) = 0$ on \mathcal{R}^-, g is convex and non-decreasing, g cannot be constant on an interval not containing 0 and thus $g(x) = 1 - \gamma$ has a unique solution for $\gamma < 1$.

Also by convexity of g,

$$g(0) - g(\lambda^*) \geq -\lambda^* g'_+(\lambda^*),$$

which gives $\lambda^* \geq (1 - \gamma) / g'_+(\lambda^*) \geq 1 - \gamma$ since $g'_+ \leq 1$. If $P(dQ = 0) \geq \delta > 0$ then also $g'_+(0) \geq \delta > 0$. Using the fact that g'_+ is increasing we conclude that $\lambda^* \leq (1 - \gamma) \delta^{-1}$.

Next we introduce some simple convenience lemma for comparing convex functions of random variables.

Lemma 6 Let f be a convex function, X, Y be real-valued random variables and $c \in \mathcal{R}$ be a constant such that

$$\mathbb{E}[\max(c, Y)] = \mathbb{E}[X + Y].$$

Then we have the following bound:

$$\mathbb{E}[f(\max(c, Y))] \leq \mathbb{E}[f(X + Y)] - \mathbb{E}[X(f'(Y) - f'(c))_+] \leq \mathbb{E}[f(X + Y)].$$

(19)

If in addition, $Y \leq M$ a.s. for $M \geq c$, then

$$\mathbb{E}[f(\max(c, Y))] \leq f(c) + \frac{f(M) - f(c)}{M - c}(\mathbb{E}[X + Y] - c).$$

(20)

Proof We decompose the expectation with respect to the value of the max, and use the convexity of f:

$$f(X + Y) - f(\max(c, Y)) = 1_{[Y \leq c]}(f(X + Y) - f(c)) + 1_{[Y > c]}(f(X + Y) - f(Y))$$

$$\geq 1_{[Y \leq c]}f'(c)(X + Y - c) + 1_{[Y > c]}Xf'(Y)$$

$$= (1 - 1_{[Y > c]})(f'(c) + f'(c)Y - max(c, Y)) + 1_{[Y > c]}Xf'(Y)$$

$$= f'(c)(X + Y - max(c, Y)) + Xf'(Y) - f'(c).$$

$$= f'(c)(X + Y - max(c, Y)) + Xf'(Y) - f'(c)_+,\quad 19$$
where we used that f' is non-decreasing in the last step. Taking the expectation gives the first inequality.

For the second inequality, we use the convexity of f on the interval $[c, M]:$

$$f(\max(c,Y)) \leq f(c) + \frac{f(M) - f(c)}{M - c}(\max(c,Y) - c).$$

Taking an expectation on both sides gives the second inequality.

Proof [Theorem 1] We first apply Lemma 5 with $\gamma = 1 - \beta$ and this proves the existence of λ^* in the interval $(\beta, 1]$, which shows that Q^*_β is indeed well-defined as a distribution.

Then we use Inequality (19) of Lemma 6 with $X = \beta d Q / d P_d$, $Y = (1 - \beta) d P_g / d P_d$, and $c = \lambda^*$. We easily verify that $X + Y = ((1 - \beta) d P_g + \beta d Q)/d P_d$ and $\max(c,Y) = ((1 - \beta) d P_g + \beta d Q^*_\beta)/d P_d$ and both have expectation 1 with respect to P_d. We thus obtain for any distribution Q,

$$D_f((1 - \beta) P_g + \beta Q \| P_d) \leq D_f((1 - \beta) P_g + \beta Q^*_\beta \| P_d).$$

This proves the optimality of Q^*_β.

A.2 Proof of Theorem 2

Lemma 7 Let P and Q be two distributions, $\gamma \in (0, 1)$, and $\lambda \geq 0$. The function

$$h(\lambda) := \int \left(\frac{1}{\gamma} - \lambda \frac{d Q}{d P} \right) d P$$

is convex, non-increasing, and its right derivative is given by $h'_+(\lambda) = -Q(1/\gamma \geq \lambda d Q(X)/d P(X))$. Denote $\Delta := P(d Q(X)/d P(X) = 0)$. Then the equation

$$h(\lambda) = \frac{1 - \gamma}{\gamma}$$

has no solutions if $\Delta > 1 - \gamma$, has a single solution $\lambda^1 \geq 1$ if $\Delta < 1 - \gamma$, and has infinitely many or no solutions when $\Delta = 1 - \gamma$.

Proof The convexity of h follows immediately from the convexity of $x \mapsto (a - x)_+$ and the linearity of the integral. Similarly, since $x \mapsto (a - x)_+$ is non-increasing, h is non-increasing as well.

We define the set $\mathcal{J}(\lambda)$ as follows:

$$\mathcal{J}(\lambda) := \left\{ x \in \mathcal{X} : \frac{1}{\gamma} \geq \lambda \frac{d Q}{d P}(x) \right\}.$$

Now let’s consider $h(\lambda) - h(\lambda + \epsilon)$ for any $\epsilon > 0$. Note that $\mathcal{J}(\lambda + \epsilon) \subseteq \mathcal{J}(\lambda)$. We can write:

$$h(\lambda) - h(\lambda + \epsilon) = \int_{\mathcal{J}(\lambda)} \left(\frac{1}{\gamma} - \lambda \frac{d Q}{d P} \right) d P - \int_{\mathcal{J}(\lambda + \epsilon)} \left(\frac{1}{\gamma} - (\lambda + \epsilon) \frac{d Q}{d P} \right) d P$$

$$= \int_{\mathcal{J}(\lambda) \setminus \mathcal{J}(\lambda + \epsilon)} \left(\frac{1}{\gamma} - \lambda \frac{d Q}{d P} \right) d P + \int_{\mathcal{J}(\lambda + \epsilon)} \left(\epsilon \frac{d Q}{d P} \right) d P$$

$$= \int_{\mathcal{J}(\lambda) \setminus \mathcal{J}(\lambda + \epsilon)} \left(\frac{1}{\gamma} - \lambda \frac{d Q}{d P} \right) d P + \epsilon \cdot Q(\mathcal{J}(\lambda + \epsilon)).$$

Note that for $x \in \mathcal{J}(\lambda) \setminus \mathcal{J}(\lambda + \epsilon)$ we have

$$0 \leq \frac{1}{\gamma} - \lambda \frac{d Q}{d P}(x) < \epsilon \frac{d Q}{d P}(x).$$
This gives the following:
\[\epsilon \cdot Q(J(\lambda + \epsilon)) \leq h(\lambda) - h(\lambda + \epsilon) \leq \epsilon \cdot Q(J(\lambda)) + \epsilon \cdot Q(J(\lambda) \setminus J(\lambda + \epsilon)) = \epsilon \cdot Q(J(\lambda)), \]
which shows that \(h \) is continuous. Also
\[\lim_{\epsilon \to 0^+} \frac{h(\lambda + \epsilon) - h(\lambda)}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{-Q(J(\lambda + \epsilon))}{\epsilon} = -Q(J(\lambda)). \]

It is obvious that \(h(0) = \frac{1}{\gamma} \) and \(h \leq \gamma^{-1} \) for \(\lambda \geq 0 \). By Jensen’s inequality applied to the convex function \(x \mapsto (a - x)_+ \), we have \(h(\lambda) \geq (\gamma^{-1} - \lambda)_+ \). So \(h(1) \geq \gamma^{-1} - 1 \). We conclude that \(h \) may reach the value \((1 - \gamma)/\gamma = \gamma^{-1} - 1 \) only on \([1, +\infty)\). Note that
\[h(\lambda) \to \frac{1}{\gamma} P\left(\frac{dQ}{dP}(X) = 0 \right) = \frac{\Delta}{\gamma} \geq 0 \quad \text{as} \quad \lambda \to \infty. \]
Thus if \(\Delta/\gamma > \gamma^{-1} - 1 \) the equation \(h(\lambda) = \gamma^{-1} - 1 \) has no solutions, as \(h \) is non-increasing. If \(\Delta/\gamma = \gamma^{-1} - 1 \) then either \(h(\lambda) > \gamma^{-1} - 1 \) for all \(\lambda \geq 0 \) and we have no solutions or there is a finite \(\lambda' \geq 1 \) such that \(h(\lambda') = \gamma^{-1} - 1 \), which means that the equation is also satisfied by all \(\lambda \geq \lambda' \), as \(h \) is continuous and non-increasing. Finally, if \(\Delta/\gamma < \gamma^{-1} - 1 \) then there is a unique \(\lambda' \) such that \(h(\lambda') = \gamma^{-1} - 1 \), which follows from the convexity of \(h \).

Next we introduce some simple convenience lemma for comparing convex functions of random variables.

Lemma 8 Let \(f \) be a convex function, \(X, Y \) be real-valued random variables such that \(X \leq Y \) a.s., and \(c \in \mathbb{R} \) be a constant such that
\[\mathbb{E}[\min(c, Y)] = \mathbb{E}[X]. \]
Then we have the following lower bound:
\[\mathbb{E}[f(X) - f(\min(c, Y))] \geq 0. \]

Proof We decompose the expectation with respect to the value of the min, and use the convexity of \(f \):
\[f(X) - f(\min(c, Y)) = 1_{[Y \leq c]}(f(X) - f(Y)) + 1_{[Y > c]}(f(X) - f(c)) \]
\[\geq 1_{[Y \leq c]} f'(Y)(X - Y) + 1_{[Y > c]}(X - c)f'(c) \]
\[\geq 1_{[Y \leq c]} f'(c)(X - Y) + 1_{[Y > c]}(X - c)f'(c) \]
\[= Xf'(c) - \min(Y, c)f'(c), \]
where we used the fact that \(f' \) is non-decreasing in the previous to last step. Taking the expectation we get the result.

Lemma 9 Let \(P_g, P_d \) be two fixed distributions and \(\beta \in (0, 1) \). Assume
\[P_d\left(\frac{dP_g}{dP_d} = 0 \right) < \beta. \]

Let \(\mathcal{M}(P_d, \beta) \) be the set of all probability distributions \(T \) such that \((1 - \beta)dT \leq dP_d\). Then the following minimization problem:
\[\min_{T \in \mathcal{M}(P_d, \beta)} \mathcal{D}_f(T \| P_g) \]
has the solution \(T^* \) with density
\[dT^* := \min(dP_d/(1 - \beta), \lambda^1 dP_g), \]
where \(\lambda^1 \) is the unique value in \([1, \infty)\) such that \(\int dT^* = 1. \)

\(^7\)Generally it is not guaranteed that such a constant \(c \) always exists. In this result we assume this is the case.
Proof We will use Lemma 8 with \(X = dT(Z)/dP_g(Z) \), \(Y = dP_d(Z)/((1 - \beta)dP_g(Z)) \), and \(c = \lambda^*, Z \sim P_g \). We need to verify that assumptions of Lemma 8 are satisfied. Obviously, \(Y \geq X \). We need to show that there is a constant \(c \) such that
\[
\int \min \left(c, \frac{dP_d}{(1 - \beta)dP_g} \right) dP_g = 1.
\]
Rewriting this equation we get the following equivalent one:
\[
\beta = \int (dP_d - \min (c(1 - \beta)P_g, dP_d)) = (1 - \beta) \int \left(\frac{1}{1 - \beta} - c \frac{dP_g}{dP_d} \right) + dP_d.
\]
Using the fact that
\[
P_d \left(\frac{dP_g}{dP_d} = 0 \right) < \beta
\]
we may apply Lemma 7 and conclude that there is a unique \(c \in [1, \infty) \) satisfying (21), which we denote \(\lambda^\dagger \).

To conclude the proof of Theorem 2, observe that from Lemma 9, by making the change of variable \(T = (P_d - \beta Q)/(1 - \beta) \) we can rewrite the minimization problem as follows:
\[
\min_{Q: \beta dQ \leq dP_d} D_{f^\beta} \left(P_g \parallel \frac{P_d - \beta Q}{1 - \beta} \right)
\]
and we verify that the solution has the form \(dQ^\dagger = \frac{1}{\beta} (dP_d - \lambda^\dagger(1 - \beta)dP_g)_+ \). Since this solution does not depend on \(f \), the fact that we optimized \(D_{f^\beta} \) is irrelevant and we get the same solution for \(D_f \).

B \(f \)-Divergences

Jensen-Shannon This divergence corresponds to
\[
D_f(P \parallel Q) = JS(P, Q) = \int_X f \left(\frac{dP}{dQ}(x) \right) dQ(x)
\]
with
\[
f(u) = -(u + 1) \log \frac{u + 1}{2} + u \log u.
\]
Indeed,
\[
JS(P, Q) = \int_X q(x) \left(- \frac{p(x)}{q(x)} + 1 \right) \log \left(\frac{\frac{p(x)}{q(x)} + 1}{2} \right) + \frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} \right) dx
\]
\[
= \int_X q(x) \left(\frac{p(x)}{q(x)} \log \frac{2q(x)}{p(x) + q(x)} + \frac{2q(x)}{p(x) + q(x)} \log \frac{p(x)}{q(x)} \right) dx
\]
\[
= \int_X p(x) \log \frac{2q(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} + p(x) \log \frac{p(x)}{q(x)} dx
\]
\[
= KL \left(Q, \frac{P + Q}{2} \right) + KL \left(P, \frac{P + Q}{2} \right).
\]
C Additional experimental results

At each iteration of the boosting approach, different reweighting heuristics are possible. This section contains more complete results about the following three heuristics:

- Constant β, and using the proposed reweighting scheme given β. See Table 3.
- Reweighting similar to “Cascade GAN” from [15], i.e. keep the top $x\%$ of examples, based on the discriminator corresponding to the previous generator. See Table 4.
- Keep the top $x\%$ of examples, based on the discriminator corresponding to the mixture of all previous generators. See Table 5.

Note that when properly tuned, each reweighting scheme outperforms the baselines, and have similar performances when used with few iterations. However, they require an additional parameter to tune, and are worse than the simple $\beta = 1/t$ heuristic proposed above.

References

[1] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode regularized generative adversarial networks. arXiv:1612.02136, 2016.
[2] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2172–2180, 2016.
[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39:1–38, 1977.
[4] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
[5] B. Fuglede and F. Topsoe. Jensen-shannon divergence and hilbert space embedding. In IEEE International Symposium on Information Theory, pages 31–31, 2004.
[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.
[7] A. Grover and S. Ermon. Boosted generative models. ICLR 2017 conference submission, 2016.
[8] M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In AISTATS, pages 136–143, 2005.
[9] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
[10] F. Liese and K.-J. Miescke. Statistical Decision Theory. Springer, 2008.
[11] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.
[12] S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems, 2016.
[13] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
[14] M. D. Reid and R. C. Williamson. Information, divergence and risk for binary experiments. Journal of Machine Learning Research, 12:731–817, 2011.
The boosting approach converges faster to the optimal coverage. Significantly outperform the vanilla GAN even with just three iterations (i.e., just two additional components). Both the ensemble and the boosting approaches under the model \(C \) defined in Section 4.3. The bottom table reports the log likelihood of the true data. Note that the 95% interval is not the usual confidence interval measuring the variance of the experiment itself, but rather measures the stability of the different algorithms (would remain even if each experiment was run an infinite number of times). Both the ensemble and the boosting approaches significantly outperform the vanilla GAN even with just three iterations (i.e., just two additional components). The boosting approach converges faster to the optimal coverage.

	Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10
Vanilla	0.97 (0.9;1.0)	0.88 (0.4;1.0)	0.63 (0.5;1.0)	0.72 (0.5;0.8)	0.58 (0.4;0.8)	0.59 (0.2;0.7)
Best of N (T=3)	0.99 (1.0;1.0)	0.96 (0.9;1.0)	0.91 (0.7;1.0)	0.80 (0.7;0.9)	0.84 (0.7;0.9)	0.70 (0.6;0.8)
Best of N (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	0.98 (0.8;1.0)	0.80 (0.8;0.9)	0.87 (0.8;0.9)	0.71 (0.7;0.8)
Ensemble (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.93 (0.8;1.0)	0.78 (0.6;1.0)	0.85 (0.6;1.0)	0.80 (0.6;1.0)
Ensemble (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.91 (0.8;1.0)	0.88 (0.8;1.0)	0.89 (0.7;1.0)
Boosted (T=3)	0.99 (1.0;1.0)	0.99 (0.9;1.0)	0.98 (0.9;1.0)	0.91 (0.8;1.0)	0.91 (0.8;1.0)	0.86 (0.7;1.0)
Boosted (T=10)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)

	Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10
Vanilla	−4.49 (−5.4;−4.4)	−6.02 (−86.8;−5.3)	−16.03 (−59.6;−5.5)	−23.65 (−118.8;−5.7)	−126.87 (−250.4;−12.8)	−55.51 (−185.2;−11.2)
Best of N (T=3)	−4.39 (−4.6;−4.3)	−5.40 (−24.3;−5.2)	−5.57 (−23.5;−5.4)	−9.91 (−35.8;−5.1)	−36.94 (−90.6;−9.7)	−19.12 (−59.2;−9.7)
Best of N (T=10)	−4.34 (−4.4;−4.3)	−5.24 (−5.4;−5.2)	−5.45 (−5.6;−5.3)	−5.49 (−9.4;−5.0)	−9.72 (−17.3;−6.5)	−9.12 (−16.8;−6.6)
Ensemble (T=3)	−4.46 (−4.8;−4.4)	−5.59 (−6.6;−5.2)	−4.78 (−5.5;−4.6)	−14.71 (−51.9;−5.4)	−6.70 (−28.7;−5.5)	−8.59 (−25.4;−6.1)
Ensemble (T=10)	−4.52 (−4.7;−4.4)	−5.49 (−6.6;−5.2)	−4.98 (−6.5;−4.6)	−5.44 (−6.0;−5.2)	−5.82 (−6.4;−5.5)	−6.08 (−6.3;−5.7)
Boosted (T=3)	−4.50 (−4.8;−4.4)	−5.32 (−5.8;−5.2)	−4.80 (−5.8;−4.6)	−5.39 (−19.3;−5.1)	−5.56 (−12.4;−5.2)	−8.03 (−28.7;−6.1)
Boosted (T=10)	−4.55 (−4.6;−4.4)	−5.30 (−5.5;−5.2)	−5.07 (−5.6;−4.7)	−5.25 (−5.5;−4.8)	−5.03 (−5.5;−4.8)	−5.92 (−6.2;−5.6)

Table 2: Performance of the different algorithms on varying number of mixtures of Gaussians. The reported scores are the median and interval defined by the 5% and 95% percentile (in parenthesis) (see Section 4.3), over 35 runs for each setting. The top table reports the coverage \(C \), probability mass of \(P_q \) covered by the 5th percentile of \(P_g \) defined in Section 4.3. The bottom table reports the log likelihood of the true data under the model \(P_g \). Note that the 95% interval is not the usual confidence interval measuring the variance of the experiment itself, but rather measures the stability of the different algorithms (would remain even if each experiment was run an infinite number of times). Both the ensemble and the boosting approaches significantly outperform the vanilla GAN even with just three iterations (i.e., just two additional components). The boosting approach converges faster to the optimal coverage.
	Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10
Vanilla	0.98 (0.9;1.0)	0.86 (0.5;1.0)	0.66 (0.5;1.0)	0.61 (0.5;0.8)	0.55 (0.4;0.7)	0.58 (0.3;0.8)
Boosted (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.93 (0.8;1.0)	0.97 (0.8;1.0)	0.87 (0.6;1.0)
Boosted (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.99 (0.9;1.0)	0.99 (0.8;1.0)	0.97 (0.8;1.0)
Beta0.2 (T=3)	0.99 (1.0;1.0)	0.97 (0.9;1.0)	0.97 (0.9;1.0)	0.95 (0.8;1.0)	0.96 (0.7;1.0)	0.88 (0.7;1.0)
Beta0.2 (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (0.9;1.0)	1.00 (0.9;1.0)
Beta0.3 (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.96 (0.8;1.0)	0.96 (0.6;1.0)	0.88 (0.7;1.0)
Beta0.3 (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (0.9;1.0)	0.99 (0.9;1.0)
Beta0.4 (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.95 (0.9;1.0)	0.94 (0.8;1.0)	0.89 (0.7;1.0)	0.89 (0.7;1.0)
Beta0.4 (T=10)	0.99 (1.0;1.0)	0.99 (0.9;1.0)	0.96 (0.9;1.0)	0.97 (0.8;1.0)	0.99 (0.8;1.0)	0.90 (0.8;1.0)
Beta0.5 (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.97 (0.8;1.0)	0.82 (0.8;1.0)	0.86 (0.7;1.0)	0.81 (0.6;1.0)
Beta0.5 (T=10)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.97 (0.9;1.0)	0.84 (0.8;1.0)	0.87 (0.7;1.0)	0.91 (0.8;1.0)

Table 3: Performance with constant β, exploring a range of possible values. The reported scores are the median and interval defined by the 5% and 95% percentile (in parenthesis) (see Sectio 4.3), over 35 runs for each setting. The top table reports the coverage C, probability mass of P_β covered by the 5th percentile of P_γ defined in Section 4.3. The bottom table reports the log likelihood of the true data under P_γ.
Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10	
Vanilla	0.96 (0.9;1.0)	0.90 (0.5;1.0)	0.65 (0.5;1.0)	0.61 (0.5;0.8)	0.69 (0.3;0.8)	0.59 (0.3;0.7)
Boosted (T=3)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.93 (0.8;1.0)	0.97 (0.8;1.0)	0.87 (0.6;1.0)
Boosted (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.99 (0.9;1.0)	0.99 (0.8;1.0)	0.97 (0.8;1.0)
TopKLast0.1 (T=3)	0.98 (0.9;1.0)	0.93 (0.8;1.0)	0.89 (0.6;1.0)	0.72 (0.5;1.0)	0.68 (0.5;0.9)	0.51 (0.4;0.7)
TopKLast0.1 (T=10)	0.99 (0.9;1.0)	0.97 (0.8;1.0)	0.90 (0.7;1.0)	0.67 (0.4;0.9)	0.61 (0.5;0.8)	0.58 (0.4;0.8)
TopKLast0.3 (T=3)	0.99 (0.9;1.0)	0.97 (0.9;1.0)	0.93 (0.7;1.0)	0.81 (0.7;1.0)	0.84 (0.7;1.0)	0.78 (0.5;1.0)
TopKLast0.3 (T=10)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.95 (0.7;1.0)	0.94 (0.7;1.0)	0.89 (0.7;1.0)	0.88 (0.7;1.0)
TopKLast0.5 (T=3)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.95 (0.9;1.0)	0.95 (0.8;1.0)	0.86 (0.7;1.0)	0.86 (0.6;0.9)
TopKLast0.5 (T=10)	0.99 (1.0;1.0)	0.98 (0.9;1.0)	0.98 (1.0;1.0)	0.99 (0.8;1.0)	0.99 (0.8;1.0)	1.00 (0.8;1.0)
TopKLast0.7 (T=3)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.94 (0.9;1.0)	0.83 (0.7;1.0)	0.87 (0.6;1.0)	0.82 (0.7;1.0)
TopKLast0.7 (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.98 (0.8;1.0)	0.99 (0.9;1.0)	0.95 (0.8;1.0)

Table 4: Reweighting similar to “Cascade GAN” from [18], i.e. keep the top r fraction of examples, based on the discriminator corresponding to the previous generator. The mixture weights are all equal (i.e. $\beta = 1/t$). The reported scores are the median and interval defined by the 5% and 95% percentile (in parenthesis) (see 43), over 35 runs for each setting. The top table reports the coverage C, probability mass of P_g covered by the 5th percentile of P_g defined in Section 4.3. The bottom table reports the log likelihood of the true data under P_g.
Table 5: Reweighting using the top r fraction of examples, based on the discriminator corresponding to the mixture of all previous generators. The mixture weights are all equal (i.e. $\beta = 1/6$). The reported scores are the median and interval defined by the 5% and 95% percentile (in parenthesis) (see 4.3), over 35 runs for each setting. The top table reports the coverage C, probability mass of P_g covered by the 5th percentile of P_g defined in Section 4.3. The bottom table reports the log likelihood of the true data under P_g.

Modes	Modes : 1	Modes : 2	Modes : 3	Modes : 5	Modes : 7	Modes : 10
Vanilla	0.97 (0.9;1.0)	0.77 (0.5;1.0)	0.65 (0.5;0.9)	0.70 (0.5;0.8)	0.61 (0.5;0.8)	0.58 (0.3;0.8)
Boosted (T=3)	0.99 (1.0;1.0)	0.99 (0.9;1.0)	0.97 (0.9;1.0)	0.95 (0.8;1.0)	0.91 (0.8;1.0)	0.89 (0.8;1.0)
Boosted (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)
TopK0.1 (T=3)	0.98 (0.9;1.0)	0.98 (0.8;1.0)	0.91 (0.7;1.0)	0.84 (0.7;1.0)	0.80 (0.5;0.9)	0.60 (0.4;0.7)
TopK0.1 (T=10)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	0.98 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	0.96 (0.8;1.0)
TopK0.3 (T=3)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.95 (0.9;1.0)	0.95 (0.8;1.0)	0.84 (0.6;1.0)	0.79 (0.5;1.0)
TopK0.3 (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	0.98 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)
TopK0.5 (T=3)	0.99 (0.9;1.0)	0.99 (1.0;1.0)	0.96 (0.9;1.0)	0.98 (0.8;1.0)	0.88 (0.7;1.0)	0.88 (0.6;1.0)
TopK0.5 (T=10)	1.00 (1.0;1.0)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)	1.00 (1.0;1.0)
TopK0.7 (T=3)	0.98 (0.9;1.0)	0.98 (0.9;1.0)	0.94 (0.8;1.0)	0.84 (0.8;1.0)	0.86 (0.7;1.0)	0.81 (0.7;1.0)
TopK0.7 (T=10)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	0.99 (1.0;1.0)	1.00 (0.8;1.0)	1.00 (0.9;1.0)	1.00 (0.9;1.0)
[15] S. Rosset and E. Segal. Boosting density estimation. In *Advances in Neural Information Processing Systems*, pages 641–648, 2002.

[16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, and C. Radford, A. Abd. Chen. Improved techniques for training GANs. In *Advances in Neural Information Processing Systems*, 2016.

[17] Z. Tu. Learning generative models via discriminative approaches. In *2007 IEEE Conference on Computer Vision and Pattern Recognition*, pages 1–8. IEEE, 2007.

[18] Y. Wang, L. Zhang, and J. van de Weijer. Ensembles of generative adversarial networks. *arXiv:1612.00991*, 2016.

[19] M. Welling, R. S. Zemel, and G. E. Hinton. Self supervised boosting. In *Advances in neural information processing systems*, pages 665–672, 2002.

[20] Y. Wu, Y. Burda, R. Salakhutdinov, and R. Grosse. On the quantitative analysis of decoder-based generative models, 2016.