Introduction

The soybean crop, one of the main crops cultivated in Brazil, is the principal commodity when it comes to generating foreign exchange income for the country. However, there are obstacles limiting productivity, thereby causing losses. These include interference caused by weeds in the initial stages of development, with losses as high as 95% (BARNES et al., 2018) and rendering harvesting unfeasible in extreme cases. Weeds, having mechanisms that enable them to thrive in adverse environments, can reduce productivity as well as damage the crop quality, leading to uneven maturation and loss of grain quality, or can act as hosts for pests or diseases that may eventually affect the crop (OLIVEIRA JUNIOR et al., 2011).

With the introduction of glyphosate-resistant soybean and simplification of weed control, which essentially involves the exclusive use of...
this herbicide, cases of glyphosate tolerance and resistance have emerged, creating one of the major issues encountered in soybean, corn, and cotton crop cultivation currently. It is becoming increasingly difficult to control the weed *Elephantopus mollis* (elephant’s paw or sussuaia), which was previously absent in agricultural production systems (BALBINOT, 2016). *E. mollis*, belonging to the family Asteraceae is a perennial herbaceous plant with medicinal potential (WU et al., 2017) and comprises a slightly lignified base and extremely short branches (BUNWONG et al., 2014). It is native to the American continent and is found throughout Brazil (FRANCISCO et al., 2019). Flowers are purplish, arranged in terminal and axillary capitula and protected by bracts (BUNWONG et al., 2014). New leaves bud underneath the existing leaves, which indicates that the meristems are protected, thereby enabling the weed to resume growth after a period of stress. Its perpetuation in the field mainly occurs via rhizomes, which explain its occurrence in coppices within the area.

Difficulties in controlling this weed are currently being reported. The herbicide glyphosate does not cause injury to the point of reducing the population. Moreover, considering that *E. mollis* ceases its metabolism during the cold period, herbicides used on winter crops do not impact the weed’s development. Pre-seeding desiccation using contact herbicides, such as paraquat, even at high doses, only causes the weed to present necrosis and lose turgescence for a few days before recovering growth via new shoots.

The presence of a xylopodium at the base of *E. mollis* may be the structure responsible for the weed’s ability to produce new shoots because contact herbicides do not reach this site. In Brazil, there are no records of any commercial products or any concrete studies regarding the control of *E. mollis*; therefore, there is a demand for studies on feasible means of controlling it. This study aimed to evaluate the differential sensitivity of biotypes of *E. mollis* from agricultural and nonagricultural areas and to determine the best combinations of herbicides applied at different stages of development to control this species.

MATERIALS AND METHODS

Three experiments were conducted to determine a method for the control of *E. mollis*. The differential sensitivity and dose–response experiments were conducted in a greenhouse in a controlled environment in the municipality of Sertão–Rio Grande do Sul, Brazil (28°02’46” S, 52°16’00” W) in 2016. The differential sensitivity experiment was conducted between the months of March and July 2016, in 2-L vessels filled with substrate. The dose–response experiment was conducted between September and December of the same year in 0.5-L vessels. For the two experiments conducted in the greenhouse, the mean temperatures were 22.3 °C ± 3.2 °C and 25.8 °C ± 4.1 °C, and the relative air humidity was 73.2% ± 6.6% and 62.0% ± 7.2%. The field experiment was conducted between September and November 2017 in a grain production area having *E. mollis* presence at Fazenda Cazaroto, São João, in the municipality of Sertão–Rio Grande do Sul, Brazil (28°03’77” S, 52°25’19” W).

In the differential sensitivity experiment, a completely randomized experimental design having a trifactorial arrangement (2 × 2 × 11) with four replications was followed. The first factor comprised two biotypes of *E. mollis*—one from an agricultural area with grain cultivation where the experiment was subsequently conducted in the field and the other from a nonagricultural area (lawn). The second factor comprised two stages of plant development—vegetative (3–4 leaves) and reproductive (flowering). The third factor comprised the application of 10 post-emergent herbicidal treatments along with the control (Table 1).

The dose–response experiment was conducted as four repetitions of the sprinkling of 8 doses of 7 herbicides or mixtures (Table 2). For the field experiment, the experimental design involved randomized blocks with subdivided plots, and four replications were employed. The main plot was comprised sprinkling 8 treatments of herbicides, either individual herbicide or mixtures, along with the control (Table 1), or the subplot included sequential or non-sequential sprinkling of the herbicide paraquat (400 g a.i. ha⁻¹) at 28 days after the first application.

In all three experiments, the herbicidal treatments were applied using a 200 kPa CO₂-pressurized sprayer, providing 180 L ha⁻¹, and Teejet XR11001 tips. Visual control evaluations in *E. mollis* were conducted via a visual examination to determine the effect of the herbicides, using a scale of 0–100, where 0 indicates the absence of symptoms and 100 indicates total weed control (FRANS & CROWLEY, 1986).

The data obtained from the field and differential sensitivity experiments were analyzed using the Shapiro–Wilk normality test to determine the need for data transformation. When necessary, data were transformed into “root of x + 1” to stabilize variances. Data were assessed using analysis of variance, followed by a comparison of means using
Importance of sequential herbicide application in the control of *Elephantopus mollis*.

Ciência Rural, v.51, n.9, 2021.

Tukey test (p ≤ 0.05), when the F test of the analysis of variance was significant (p ≤ 0.05).

For the dose–response experiment, regressions were performed using the SigmaPlot program, version 12.5, establishing the ratio between the percentage of the control and dose of the herbicide used. Nonlinear regression models were adjusted for the response variables using the three-parameter logistic model, according to STREIBIG (1988):

\[
y = \frac{\alpha}{1 + \left(\frac{x}{b}\right)^{c}}
\]

where, “\(y\)” is the control percentage; “\(x\)” is the herbicide dose in g a.i. ha\(^{-1}\); and “\(\alpha\)”, “\(b\)” and “\(c\)” are parameters estimated by the equation, where “\(\alpha\)” is the amplitude between the maximum and minimum point of the variable; “\(b\)” is the dose corresponding to 50% weed control (C\(_{50}\)); and “\(c\)” is the slope of the curve around “\(b\)”. C\(_{80}\) and C\(_{95}\) values were determined using the inverse equation, according to CARVALHO et al. (2005):

\[
x = b \left(\frac{\alpha}{y} - 1\right)^{\frac{1}{c}}
\]

RESULTS AND DISCUSSION

Differential sensitivity experiment

Only the interactions “biotypes × herbicides” and “stage × herbicides” were significant (Tables 3 and 4, respectively). Regarding biotypes, the lawn biotype showed higher sensitivity to herbicides than the agricultural area biotype (Table 3). Chlorimuron did not exhibit satisfactory control in either of these biotypes. The herbicide pyraflufen, a PROTOX inhibitor, was more efficient in the nonagricultural areas area biotype. The higher sensitivity of the lawn biotype than the agricultural area biotype was expected because the recurrent application of herbicides having the same mechanism of action in the agricultural area results in weed

Table 1 - Relationship among herbicides, doses, concentrations/formulations, and manufacturers used in the field and differential sensitivity experiments (IFRS, Sertão–RS, 2017).

Common names	Trade name	Rates g a.i. ha\(^{-1}\)	Concentration/formulation	Manufacturer
Untreated (control)	--	--	--	--
Paraquat (Prqt)	Orbit	600	200 SL	Sinon
Glyphosate (Gly)	Roundup WG (R WG)	1080\(^1\)	720 WG	Bayer
Saflufenacil (Saf)	Heat	35	700 WG	Basf
Pyraflufen	Kabuki	8,75	25 EC	Nichino
2,4-D amine (2,4-D)	Aminol 806	1340\(^1\)	806 S	Adama
Chlorimuron	Classic	30	250 WG	Corteva
Glufosinate	Finale	400	200 SL	Bayer
Gly + Saf	R WG + Heat	1080\(^1\) + 35	720 WG + 700 WG	Bayer + Basf
Gly + pyraflufen	R WG + Kabuki	1080\(^1\) + 8.75	720 WG + 25 EC	Bayer + Nichino
Gly + chlorimuron	R WG + Classic	1080\(^1\) + 30	720 WG + 250 WG	Bayer + Corteva

Field experiment

Common names	Trade name	Rates g a.i. ha\(^{-1}\)	Concentration/formulation	Manufacturer
Untreated (control)	--	--	--	--
Gly / Prqt	R WG / Orbit	1080\(^1\) / 400	720 WG + 200 SL	Bayer / Sinon
Gly + Saf/Prqt	R WG + Heat / Orbit	1080\(^1\) + 35 / 400	720 WG + 700 WG / 200 SL	Bayer + Basf / Sinon
Gly + 2,4-D/Prqt	R WG + Aminol / Orbit	1080\(^1\) + 1340\(^1\) / 400	720 WG + 806 S / 200 SL	Bayer + Adama / Sinon
2,4-D/Prqt	Aminol / Orbit	670\(^1\) / 400	806 S / 200 SL	Adama / Sinon
2,4-D/Prqt	Aminol/ Orbit	1000\(^1\) / 400	806 S / 200 SL	Adama / Sinon
2,4-D/Prqt	Aminol/ Orbit	1340\(^1\) / 400	806 S / 200 SL	Adama / Sinon
2,4-D/Prqt	Aminol/ Orbit	1675\(^1\) / 400	806 S / 200 SL	Adama / Sinon

\(^1\)g a.e. ha\(^{-1}\).

Abbreviations: SL = soluble concentrate; WG = water-dispersible granule; EC = emulsifiable concentrate; S = solution.
population with greater resistance to these herbicides (Yu et al., 2013).

Regarding to the stage of plant development, the behavior of the herbicides was similar in both phases (Table 4). For the herbicides glyphosate, pyraflufen, and glufosinate, at 57 days after application (DAA), the control levels were 31%, 25%, and 20% higher in the vegetative phase than that in the reproductive phase. With plant development, the absorption and translocation of herbicides become increasingly limited and the mechanisms of detoxification become increasingly effective (OLIVEIRA JUNIOR et al., 2011). However, some herbicides that control the species of the Asteraceae family did not present satisfactory control in the vegetative phase of *E. mollis* (Table 4). This demonstrates that this species may present barriers to absorption and translocation as well as elaborate mechanisms of detoxification of herbicides and their effects in the vegetative phase itself.

Regarding the efficiency of the herbicides in this experiment, in the evaluations performed at 14 DAA, the contact herbicides and mixtures showed the best results (Tables 3 and 4). In the evaluation at 57 DAA, the contact herbicides began losing efficiency owing to plant regrowth, and systemic herbicides showed better performance. *E. mollis* contains rhizome-developing activity and is capable of developing shoots from the existing leaves.

Contact herbicides are unable to reach the region where the shoots occur. In the final evaluation at 81 DAA, the best results were obtained in the treatments using systemic herbicides that showed a good mobility within the plant, such as the combination of 2,4-D amine and glyphosate with saflufenacil or chlorimuron. The exception was the herbicide glufosinate, which presented medium mobility within the plant and resulted in high control at 81 DAA.

Dose–response experiment

The visual control data fit the three-parameter logistic model. R^2 values were between 0.97 and 0.99, and the significance of the adjustments, denoted by p-value was <0.0001. The dose required for the control of 50% of the population (C_{90}) and that required for the control of 80% and 95% of the population (C_{90} and C_{95}) were determined via model adjustment and using the inverse equation, respectively. The C_{90} and C_{95} values are important from a practical viewpoint. The C_{90} value is the dose needed to obtain 80% control, which is the minimum acceptable control. However, in cases where a new instance of resistance or tolerance is being observed, it is considered that the biotype should be eradicated to prevent the spread of the issue. Therefore, C_{95} values were also evaluated for evaluation of the results. C_{90} and C_{95} values will be compared with the maximum-recommended dose for the control of

Table 2 - Relationship among herbicides, doses, concentrations, and formulations used in the dose–response experiment (IFRS, Sertão–RS, 2017).

Common names	Mechanism of action	Rates (g a.i. ha$^{-1}$)
Paraquat	PS I Electron Diversion	75, 150, 300, 600, 1200, 2400, 4800
Glufosinate	In. of Glutamine Synthetase	75, 150, 300, 600, 1200, 2400, 4800
Pyraflufen	Inhibition of PROTOX	1,09, 2,18, 4,38, 8,75, 17,5, 35, 70
Saflufenacil	Inhibition of PROTOX	4,38, 8,75, 17,5, 35, 70
Chlorimuron	Inhibition of ALS	3,75, 7,5, 15, 30, 60, 120, 240
Glyphosate (Gly)	Inhibition of EPSPS	135¹, 270, 540, 1080, 2160, 4320, 8640
Pyraflufen + Gly	PROTOX + EPSPS	1,09², 2,18, 4,38, 8,75, 17,5, 35, 70
Saflufenacil + Gly	PROTOX + EPSPS	4,38², 8,75, 17,5, 35, 70, 140, 280
Chlorimuron + Gly	ALS + EPSPS	3,75², 7,5, 15, 30, 60, 120, 240
2,4-D amine	Auxin mimics	167,5³, 335, 670, 1340, 2680, 5360, 10720

¹g a.e. ha$^{-1}$. ²In all doses of the treatments “Pyraflufen + Gly”, “Saflufenacil + Gly” and “Chlorimuron + Gly”, glyphosate was added at 1080 g a.e. ha$^{-1}$.

Abbreviations: SL, soluble concentrate WG, water-dispersible granule; EC, emulsifiable concentrate; S, solution; Conc, Concentration.
Importance of sequential herbicide application in the control of *Elephantopus mollis*.

Table 3 - Visual control (%) of *Elephantopus mollis* at 14, 35, 57, and 81 days after application (DAA) as a function of the interaction between biotypes (agricultural area and non-agricultural area) and herbicides.

Herbicide	---	---	---	---	---	---	---	---	---												
	14 DAA	35 DAA	57 DAA	81 DAA	14 DAA	35 DAA	57 DAA	81 DAA	14 DAA	35 DAA	57 DAA	81 DAA									
Parquat	71 aBC¹	48 bB	76 aA	66 aAB	31 aCD	11 bC	35 aBCD	30 aDEF	71 aBC¹	48 bB	76 aA	66 aAB	31 aCD	11 bC	35 aBCD	30 aDEF					
Glyphosate	38 aDE	18 bC	8 aDE	18 aC	89 aA	42 bBC	78 aA	49 bBCDE	38 aDE	18 bC	8 aDE	18 aC	89 aA	42 bBC	78 aA	49 bBCDE					
Saflufenacil	93 aA	96 aA	67 aAB	85 aA	70 aAB	68 aAB	65 aAB	68 aABCD	93 aA	96 aA	67 aAB	85 aA	70 aAB	68 aAB	65 aABCD						
Pyraflufen	28 aEF	8 bC	46 aABCD	27 aBC	44 aBC	1 bD	54 aABC	4 bF	28 aEF	8 bC	46 aABCD	27 aBC	44 aBC	1 bD	54 aABC	4 bF					
2,4-D amine	12 aFG	11 aC	10 aCDE	10 aC	92 aA	91 aA	92 aA	97 aA	12 aFG	11 aC	10 aCDE	10 aC	92 aA	91 aA	92 aA	97 aA					
Chlorimuron	5 aG	2 aC	3 aE	15 aC	8 aD	11 aCD	19 aCD	20 aEF	5 aG	2 aC	3 aE	15 aC	8 aD	11 aCD	19 aCD	20 aEF					
Glufosinate	90 aAB	88 aA	79 aA	71 aA	93 aA	87 aA	90 aA	79 aA	90 aAB	88 aA	79 aA	71 aA	93 aA	87 aA	90 aA	79 aA					
Glyphosate + saflufenacil	99 aA	98 aA	75 aA	96 aA	98 aA	90 aA	90 aA	90 aA	99 aA	98 aA	75 aA	96 aA	98 aA	90 aA	90 aA	90 aA					
Glyphosate + pyraflufen	54 aCD	49 aB	52 aABC	65 aAB	92 aA	50 bB	93 aA	48 bCDE	54 aCD	49 aB	52 aABC	65 aAB	92 aA	50 bB	93 aA	48 bCDE					
Glyphosate + chlorimuron	18 aEFG	12 aC	3 aE	0 aC	95 aA	60 aAB	83 aA	85 aABC	18 aEFG	12 aC	3 aE	0 aC	95 aA	60 aAB	83 aA	85 aABC					
Untreated (control)	0 aG	0 aC	0 aE	0 aC	0 aD	0 aD	0 aF	0 aG	0 aC	0 aE	0 aC	0 aD	0 aD	0 aF	0 aG	0 aC	0 aE	0 aC	0 aD	0 aD	0 aF

¹Uppercase letters denote the comparison of herbicide treatments within the same biotype (column), and lowercase letters denote the comparison of herbicide treatments within different biotypes (row). Means followed by the same letter, either lowercase or uppercase, are not significantly different according to the Tukey test at 0.05.
Increasing doses of 2,4-D amine differed only in the evaluation performed at 28 DAA, where the control observed at the doses of 670 and 1005 g a.e. ha$^{-1}$ was lower than that observed with the remaining doses of 2,4-D amine. The combination of glyphosate + 2,4-D amine presented a control of 38% at 28 DAA, whereas the combination of glyphosate + saflufenacil showed greater visual control than the other treatments with a mean control of 60% in the evaluations performed between 7 and 28 DAA (Table 6).

At 28 DAA, sequential paraquat application was performed. The levels of control increased compared with the treatments that did not receive this sequential application (Table 7). The exceptions were the glyphosate and glyphosate + saflufenacil treatments, for which some evaluations showed no difference, regardless of the presence or absence of paraquat. The greatest increases in control following sequential application were observed in the treatments where the initial application presented lower efficiency. On averaging the control obtained using the treatments, sequential paraquat application increased the control of E. mollis by 44% compared with isolated application. Following a sequential paraquat application, treatments containing 2,4-D amine presented higher values of visual control based on the evaluation performed at 35 DAA. Plants sprinkled with glyphosate or glyphosate + saflufenacil showed gradual regrowth, reducing the visual weed control to 15%. At the end of the experiment, 50 days after the sequential application (DAS), treatments with 2,4-D amine (1675 g a.e. ha$^{-1}$) and glyphosate + 2,4-D amine, both with sequential paraquat application, presented the highest levels of visual control, with 85% and 94%, respectively (Table 7).

Low levels of visual control before sequential paraquat application demonstrated the difficulty in controlling E. mollis in the field. Isolated glyphosate application has shown low efficiency in several weeds. Therefore, the use of mixtures enables the spectrum of control to be expanded (RONCHI et al., 2002). The lethal effect of the 2,4-D amine application requires a longer duration to appear compared with other mechanisms of action (SENSEMAN, 2007). This situation would explain the lack of differences in control between the doses of 2,4-D amine in the first evaluations before sequential application (Table 6), with a dose-related
Importance of sequential herbicide application in the control of *Elephantopus mollis*.

Table 5 - Parameters of the logistic equation and C_{50}, C_{80}, and C_{95} values as a function of visual control (%) of *Elephantopus mollis* in response to herbicide application at 14, 35, and 81 days after application (DAA).

Herbicide	Evaluation	a1	c1	C_{50} 2	Deviation	C_{80} 2	C_{95}	Recommended maximum dose (g a.i. ha$^{-1}$)
Paraquat	14 DAA	98,9	-2,43	86,9	2,7	157,4	323,3	400
	35 DAA	116,1	-0,73	257,1	181,6	764,7	2019,4	
	81 DAA	106,0	-1,18	265,2	35,8	687,4	1648,4	
Glyphosate	14 DAA	65,1	-0,94	14256,2	17805,4	>85211,3	>48764,3	10801
	35 DAA	32,9	-1,36	260,5	16,0	>384,6	>356,1	
	81 DAA	87,7	-1,66	287,4	16,4	>1177,3	>1348,4	
2,4-D amine	14 DAA	106,2	-1,42	2198,0	370,3	4824,2	9906,1	10051
	35 DAA	119,6	-0,84	1494,2	335,1	3451,2	7463,9	
	81 DAA	101,5	-1,71	295,0	29,2	636,1	1415,8	
Glufosinate	14 DAA	95,7	-1,30	96,0	13,7	335,9	4195,2	600
	35 DAA	100,9	-1,17	124,1	19,1	390,9	1334,4	
	81 DAA	102,4	-1,46	88,7	14,0	212,1	509,5	
Pyraflufen	14 DAA	97,8	-2,02	4,9	0,7	10,2	27,9	10
	35 DAA	143,9	-0,50	16,7	18,8	26,2	63,0	
	81 DAA	130,8	-0,70	9,5	7,2	18,2	38,3	
Pyraflufen + Glyphosate	14 DAA	110,9	-0,78	2,4	0,5	8,1	23,5	10
	35 DAA	151,3	-0,45	13,1	17,6	16,9	41,9	
	81 DAA	106,7	-0,83	1,9	0,2	7,1	23,7	
Saflufenacil	14 DAA	103,3	-1,20	10,6	0,7	29,6	80,8	35
	35 DAA	101,2	-1,40	9,40	0,20	24,3	66,0	
Saflufenacil + Glyphosate	14 DAA	97,9	-1,96	4,6	0,1	10,0	27,5	35
	35 DAA	98,2	-1,13	3,3	0,7	12,2	66,3	
Chlorimuron	14 DAA	6,4	-1,10	11,5	1,7	>12,4	>12,2	20
	35 DAA	60,7	-1,70	11,6	1,3	>26,8	>21,1	
	81 DAA	87,5	-1,30	17,0	1,3	>105,0	>119,8	
Chlorimuron + Glyphosate	14 DAA	48,1	-1,10	28,4	5,6	>65,5	>54,0	20
	35 DAA	60,6	-0,75	11,9	3,4	>78,7	>46,1	
	81 DAA	100,5	-0,90	7,0	1,1	31,8	165,9	

1a = amplitude between the maximum and minimum point of the variable; c = slope of the curve around C_{50}. 2 For 50%, 80%, and 95% control, respectively. 3 g a.e. ha$^{-1}$.

differentiation only occurring in the evaluation performed at 28 DAA. The combination of the herbicide 2,4-D amine and glyphosate improves weed control. Plants sprinkled with 2,4-D amine showed little re-growth capacity compared with those that received the other treatments. The high translocation capacity of 2,4-D amine and its mechanism of action in the weed can limit re-growth, rendering this herbicide fundamental for controlling this weed in agricultural production systems.

The devised glyphosate + 2,4-D amine mixture was efficient in the control of *Convolvulus arvensis* in wheat production areas (STONE et al., 2005) and *Conyza canadensis* during the winter period in the southern United States of America (WIESE et al., 1995). Control of the weed *Artemisia verlotorum*,
which, similar to *E. mollis* exhibits high re-growth capacity, was efficient using increasing doses of glyphosate + 2,4-D amine mixture (BRIGHENTI et al., 1994). Therefore, under the conditions in which the experiment was performed, the best control level of *E. mollis* was obtained using the glyphosate + 2,4-D amine application, followed by sequential paraquat application. Considering the possible ban of paraquat in Brazil in 2020 (ANVISA, 2017), the herbicide glufosinate and herbicides that inhibit the

Table 6 - Visual control (%) of *Elephantopus mollis* at 7, 14, 21, and 28 days after application (DAA) as a function of spraying herbicides in the field experiment.

Herbicide	g a.e. ha⁻¹	----7 DAA----	----14 DAA----	----21 DAA----	----28 DAA----
Glyphosate	1080	2 c²	9 d	8 c	16 d
2,4-D amine	670	19 b	12 ed	10 bc	19 d
2,4-D amine	1005	15 b	14 ed	11 bc	24 ed
2,4-D amine	1340	22 b	18 bc	12 bc	30 bc
2,4-D amine	1675	24 b	19 bc	16 b	35 b
Glyphosate + 2,4-D amine	1080+1340	21 b	24 b	18 b	38 b
Glyphosate + saflufenacil	1080+35¹	60 a	58 a	61 a	60 a
Untreated-check	--	0 c	0 e	0 d	0 e

¹g a.i. ha⁻¹. ²Means followed by the same letter in the columns are not significantly different according to the Tukey test at 0.05.

Table 7 - Visual control (%) of *Elephantopus mollis* at 7, 21, 35, and 50 days after application (DAA) as a function of the interaction between herbicides and the presence or absence of sequential paraquat application in the field experiment.

Treatment	g a.e. ha⁻¹	---Paraquat (7 DAA)---	---Paraquat (21 DAA)---	---Paraquat (35 DAA)---	---Paraquat (50 DAA)---						
		Absence	Presence								
Glyphosate (Gly)	1080	15	bC²	59 ab	5 aAB	15 aDE	6 bCD	22 aD	10 aC	15 aE	
2,4-D amine	670	27	bB	76 aAB	10 bAB	26 aCDE	14 bBCD	47 aC	30 bB	49 aD	
2,4-D amine	1005	32	bAB	66 aAB	12 bAB	34 aBCD	24 bAB	51 aBC	35 bAB	65 aC	
2,4-D amine	1340	35	bAB	74 aAB	21 bAB	58 aAB	25 bAB	62 aBC	40 bAB	80 aB	
2,4-D amine	1675	39	bAB	68 aAB	18 bAB	41 aABC	22 bABC	68 aAB	39 bAB	85 aA	B
Gly + 2,4-D amine	1080+1340	40	bAB	80 aA	26 bA	65 aA	35 bA	84 aA	44 bA	94 aA	
Gly + saflufenacil	1080+35¹	46	bA	78 aAB	8 aAB	15 aDE	6 aCD	15 aD	6 bC	14 aE	
Untreated (control)	--	0	bD	60 aB	0 aB	9 aE	0 aD	9 aD	0 bC	12 aE	

¹g a.i. ha⁻¹. ²Uppercase letters denote the comparison of herbicide treatments having the same type of sequential paraquat application (presence or absence; column), and lowercase letters denote the comparison of herbicide treatments having the same type of sequential paraquat application (presence or absence; row). Means followed by the same letter, either lowercase or uppercase, are not significantly different according to the Tukey test at 0.05.
Importance of sequential herbicide application in the control of *Elephantopus mollis*.

CONCLUSION

For most herbicides tested, *E. mollis* plants from lawn areas presented greater sensitivity to herbicides compared with those from agricultural areas. There was a similarity in the control levels between the vegetative and reproductive phases for most herbicides and doses used in this study. Among the isolated herbicide applications, glufosinate and 2,4-D amine were the most effective ones for controlling *E. mollis*. The glyphosate + 2,4-D amine mixture application, followed by sequential parquat application presented high control of *E. mollis*.

DECLARATION OF CONFLICT OF INTEREST

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

AUTHORS’ CONTRIBUTIONS

All authors conceived and designed experiments. ALN and BC performed the experiments and statistical analyses of the manuscript, and in the decision to publish the results.

REFERENCES

ANVISA. Voto Nº 056/2017/DIREG/ANVISA. *Processo nº 25351.056773/2013-21*. D. D. R. Sanitária. Brasília: ANVISA. Expediente nº 0080490/13-8; 22 p. 2017.

BALBINOT, Andrisa. *Elephantopus mollis Kunth (Asteraceae): emergency flow and herbicides dose-response curves.* 2016. 71 f. Dissertação (Mestrado em Ciências Biológicas) - Universidade Federal de Santa Maria, Santa Maria, 2016.

BARNES, E.R., et al. Common ragweed (*Ambrosia artemisiifolia* L.) interference with soybean in Nebraska. *Agronomy Journal*, v.110, n.2, p.646-653. 2018. Available from: <https://agronomy.unl.edu/Jhala/publications/2018/Common-rgweed-Ambrosia-artemisiifolia-L-interference-with-soybean-Nebaska_Barnes-etal.pdf>. Accessed: Jan. 22, 2019. doi: 10.2134/ajon2017.09.0554.

BRIGHENTI, A.M., et al. Controle químico da losna em plantio direto de trigo. *Planta Daninha*, v.12, p.03-08. 1994. Available from: <http://www.scielo.br/pdf/pd/v12n1/a01v12n1p.pdf>. Accessed: Jan. 28, 2019. doi: 10.1590/s0100-83581994000100001.

BUNWONG, S., et al. Revisions and key to the Vernonieae (Compositae) of Thailand. *Phytokeys*, v.37, p.25-101. 2014. Available from: <https://phytokeys.pensoft.net/article/1527/>. Accessed: Jan. 23, 2019. doi: 10.3897/phytokeys.37.6499.

CARVALHO, S.J.P., et al. Curvas de dose-resposta para avaliação do controle de fluxos de emergência de plantas daninhas pelo herbicida imazapic. *Planta Daninha*, v.23, p.535-542. 2005. Available from: <http://www.scielo.br/pdf/pd/v23n3/a18v23n3.pdf>. Accessed: Jan. 23, 2019. doi: 10.1590/s0100-83582005000300018.

FIGUEIREDO, M.R. A. Interações entre os herbicidas 2,4-D e glifosato: aspectos químicos, bioquímicos e fisiológicos. 2015. Dissertação (Mestrado em Fitotecnia) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2015. doi: 10.11606/D.11.2015.tde-04052015-092942. Accessed: Jan. 22, 2019; 2019-05-15.

FRANCISCO, F., et al. Maturation, processing and seed storage of *Elephantopus mollis* Kunth. *Acta Scientiarum-Agronomy*, v.41. 2019. Available from: <http://www.scielo.br/pdf/acs/v41/1807-8621-asa41-e42628.pdf>. Accessed: May, 05, 2019. doi: 10.4025/actasciagron.v41i11.42628.

OLIVEIRA JUNIOR, R.S.D., et al. Biologia e manejo de plantas daninhas. Curitiba: Omnipax. 2011. 348 p.

RONCHI, C.P., et al. Misturas de herbicidas para o controle de plantas daninhas do gênero Commelina. *Planta Daninha*, v.20, p.311-318. 2002. Available from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-83582002000200018&nrm=iso>. Accessed: Jan. 29, 2019. doi: 10.1590/s0100-83582002000200018.

SENSEMAN, S.A. *Herbicide handbook.* Lawrence: Weed Science Society of America, v.1. 2007. 458 p.

STONE, A.E., et al. Efficacy and acceptance of herbicides applied for field bindweed (*Convolvulus arvensis*) control. *Weed Technology*, v.19, n.1, p.148-153. 2005. Available from: <https://www.jstor.org/stable/3989125?seq=1#page_scan_tab_contents>). Accessed: Jan. 22, 2019; 2019-02-12. doi: 10.1614/wt-04-0442/2.

STREIBIG, J.C. Herbicide bioassay. *Weed Research*, v.28, n.6, p.479-484. 1988. Available from: <https://onlinelibrary.wiley.com/doi/abstra...1988.tb00831.x>. Accessed: Jan. 22, 2019. doi: 10.1111/j.1365-3180.1988.tb00831.x.

WIESE, A.F., et al. Downy brome (*Bromus tectorum*), jointed goatgrass (*Aegilops cylindrica*) and horseweed (*Conyza canadensis*) control in fallow. *Weed Technology*, v.9, n.2, p.249-254. 1995. Available from: <https://www.cambridge.org/core/article/downy-brome-bromus-tectorum-jointed-goatgrass-aegilops-cylindrica-and-horseweed-conyza-canadensis-control-in-fallow-0630495CB218200D9108E004D9747467>. Accessed: Feb. 12, 2019. doi: 10.1017/s0890037x00023290.

WU, Z.N., et al. Sesquiterpene lactones from *Elephantopus mollis* and their anti-inflammatory activities. *Phytochemistry*, v.137, n.1, p.81-86. 2017. Available from: <http://www.scielo.br/pdf/pd/v137n1/a18v137n1p.pdf>. Accessed: Jan. 23, 2019. doi: 10.1111/j.1365-3180.1988.tb00831.x.

YU, Q., et al. Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant *Lolium rigidum*. *Plant Cell Environment*, v.36, n.4, p.818-27. 2013. Available from: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/pace.2017>. Accessed: Feb. 04, 2019. doi: 10.1111/pace.2017.

Ciência Rural, v.51, n.9, 2021.