ON RYSTOV’S GENERALIZATION OF THE ČERNÝ CONJECTURE

NOAM LIFSHITZ, CIARAN MULLAN, AND BOAZ TSABAN

Abstract. We resolve a conjecture of Rystov concerning products of matrices, that generalizes the Černý Conjecture. This is a preliminary announcement. Later versions will include additional results and details.

The following conjecture is a generalization of the celebrated, and still open, Černý Conjecture. By product in A_1, \ldots, A_k of length l we mean a product

$$A_{i_1}A_{i_2}\cdots A_{i_l}$$

with $1 \leq i_1, \ldots, i_l \leq k$ not necessarily distinct.

Conjecture 1 (Rystov). Let $A_1, \ldots, A_k \in M_n(\mathbb{F})$, k arbitrary. If the semigroup generated by A_1, \ldots, A_k is finite and contains the zero matrix O, then there is a product in A_1, \ldots, A_k of length at most n^2 that is equal to O.

Over finite fields, the condition that the generated semigroup is finite is satisfied automatically, and the conjecture asserts that if any product in matrices A_1, \ldots, A_k equals O, then there is one of length at most n^2. As there are no zero divisors in a field, the conjecture is true when $n = 1$. We prove that this conjecture fails for all $n > 1$. In the language of semigroup theory, the following lemma is equivalent to the assertion that the semigroup of all singular matrices in $M_2(\mathbb{F})$ is categorical at 0.

Lemma 2 (folklore). Let $A, B, C \in M_2(\mathbb{F})$, B singular. If $ABC = O$, then $AB = O$ or $BC = O$.

Proof. If C is invertible we are done. Thus, assume that C is singular. If $C = O$ we are done, so assume C is nonzero. Then 0 is an eigenvalue of C, and the characteristic polynomial of C is $x(x - \gamma) = 0$. If $\gamma = 0$ then the Jordan form of C is

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

If $\gamma \neq 0$, then C is conjugate to a nonzero diagonal matrix of the form

$$\begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix}.$$

Since scalar multiplication does not affect our problem, we may assume in this case that C is conjugate to

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Conjugate A, B, C by the same matrix (and multiply C by a nonzero scalar, if needed), such that C obtains one of the two above-mentioned forms.
As B is singular, there is v such that the columns of B are $(v, \beta v)$ or $(\vec{0}, v)$. If $B = (v, \beta v)$, then
\[
O = ABC = A(v, \beta v)C = (Av, \beta Av)C = (Av, \vec{0}) \text{ or } (\vec{0}, Av),
\]
depending on the form of C. Then $Av = \vec{0}$, and therefore $AB = (Av, \beta Av) = O$. And if $B = (\vec{0}, v)$, then
\[
BC = (\vec{0}, v) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = O. \quad \Box
\]

Lemma 2 has the following consequence. Assume, in general, that
\[
A_1 \cdots A_k = O
\]
in $M_2(\mathbb{F})$. By cancelling off the regular matrices on the edges, We may then assume that A_1 and A_k are singular. Next, if any A_i is singular, $1 < i < k$, we can apply Lemma 2 to
\[
(A_1 \cdots A_{i-1})A_i(A_{i+1} \cdots A_{k-1}A_k)
\]
and conclude that
\[
(A_1 \cdots A_{i-1})A_i = O \text{ or } A_i(A_{i+1} \cdots A_{k-1}A_k) = O.
\]
We can continue this procedure until we arrive at a word of the form
\[
A_1 \cdots A_k = O
\]
where A_1 and A_k are singular, and all other matrices are invertible.

Corollary 3. Let $A, B \in M_2(\mathbb{F})$ with B invertible. If any product in A, B equals O, then there is a unique shortest product in A, B that equals O. The shortest product is of the form $AB^nA = O$. \quad \Box

We are now ready to prove the main result.

Theorem 4. Let $n \geq 2$. For each N, there is a finite field \mathbb{F} and matrices $A, B \in M_n(\mathbb{F})$ such that the minimal length of a product in A, B that equals O exists, and its length is greater than N.

Proof. If $A, B \in M_2(\mathbb{F})$ exemplify the assertion for $n = 2$, then for every larger n, the block matrices
\[
\begin{pmatrix} A & O \\ O & O \end{pmatrix}, \begin{pmatrix} B & O \\ O & O \end{pmatrix} \in M_n(\mathbb{F})
\]
exemplify the same assertion. Thus, we may assume that $n = 2$.

Take
\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},
\]
and note that B is invertible and A is idempotent. As
\[
B \begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} x + y \\ y \end{pmatrix},
\]
we have that
\[
B^k \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}
\]
for all \(k = 0, 1, \ldots \), where \(F_0 = 0, F_1 = 1 \), and \(F_{k+1} = F_k + F_{k-1} \) for all \(k > 1 \), that is, \(F_k \) is the \(k \)-th element of the Fibonacci sequence. Thus,

\[
AB^k A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} B^k \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} F_{k+1} & 0 \\ F_k & 0 \end{pmatrix} = F_{k+1}
\]

for all \(k \). Fix a prime number \(p \geq F_{N+1} \). Let \(k \) be minimal such that \(F_{k+1} = 0 \) (mod \(p \)). Necessarily, \(k \geq N \). Then, in \(M_2(\mathbb{F}_p) \),

\[
AB^k A = O,
\]

and \(AB^m A \neq O \) for all \(0 \leq m < k \). By Corollary 3 the length of the shortest \(O \) product is \(k + 2 \geq N + 2 > N \). \(\Box \)

Acknowledgments. We learned of the Rystov Conjecture from Benjamin Steinberg, who presented it in an open problem session during a recent conference in honor of Stuart Margolis. We thank Ben and Stuart for stimulating discussions on this problem.

Department of Mathematics, Bar Ilan University, 5290002 Ramat Gan, Israel
E-mail address: noamlifshitz@gmail.com

Technische Universität Darmstadt, Fachbereich Informatik, Kryptographie und Computeralgebra, Hochschulstrasse 10, 64289 Darmstadt, Germany

Department of Mathematics, Bar Ilan University, 5290002 Ramat Gan, Israel
E-mail address: tsaban@math.biu.ac.il
URL: http://www.cs.biu.ac.il/~tsaban