Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer

Davide Pellacani, Susanna Tan, Sylvain Lefort & Connie J Eaves*

Abstract

The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.

Keywords breast cancer; chromatin; epigenomics; mammary; transcriptional regulation

DOI 10.15252/embj.2018100330 | Received 23 July 2018 | Revised 22 October 2018 | Accepted 8 November 2018 | Published online 1 January 2019

The EMBO Journal (2019) 38: e100330

The normal adult human mammary gland

The adult human female mammary gland is a continuous branching tree of ducts that extend radially from the nipple and terminate in expanded alveolar structures frequently called lobules (Fig 1A). This structure is encased in a basement membrane and an outer layer of fibroblasts, all of which are embedded in a collagen-rich stroma containing adipocytes, macrophages, lymphocytes, and blood and lymph vessels. The mammary gland, itself, consists of two layers of cells with different features and functions. The outer “basal” layer is made up of cells that are in direct contact with the basement membrane. These cells are also referred to as myoepithelial cells because they possess contractile, smooth muscle-like properties. The inner “luminal” layer of the gland contains cells with quite different, polarized epithelial features and an ability to produce and secrete milk upon hormone induction.

The initial stages of development of the mammary gland that take place in humans before birth are not well documented, and hence, knowledge of these has had to rely on inferences drawn from studies of mice (Veltmaat et al, 2003; Spike et al, 2012; Makarem et al, 2013b). In that species, the mammary gland can be seen to originate in the embryo from cells in the ventral ectoderm that invade the underlying mesoderm to form a primitive branching structure. At this stage, the rudimentary gland is composed of cells with a mixture of properties that are associated with distinct cell types found in the adult mouse mammary gland. This primitive structure then expands rapidly after the onset of puberty. Thereafter, until menopause, the entire mammary gland in humans and mice alike undergoes continuous cyclical phases of expansion and involution under the control of changing levels of estrogen (E) and progesterone (P) (Fig 1B; Ramakrishnan et al, 2002). Current evidence indicates that the stimulatory effects of these hormones are exerted indirectly by activating paracrine signaling mechanisms that involve an upregulated production of amphiregulin by E, an induced secretion of RANKL by P, and an enhancing effect of hormonally controlled changes by WNT-producing macrophages (Wilson et al, 2006; Asselin-Labat et al, 2010; Brisken & O’Malley, 2010; Joshi et al, 2010; Roarty & Rosen, 2010; Visvader & Stingl, 2014; Arendt & Kuperwasser, 2015; Chakrabarti et al, 2018). Other growth factors implicated in regulating mammary gland development and homeostasis include members of the epidermal growth factor (EGF), insulin-like growth factor (IGF), and fibroblast growth factor (FGF) families (Hynes & Watson, 2010).

The development of reproducible methods for isolating the different cell types that constitute the major components of the normal adult human mammary gland as separate suspensions of single viable cells was a key advance because it then enabled the further biological and molecular characterization of these different cell
types. Most studies of normal human mammary cells have made use of discarded tissue obtained from women without known breast disease undergoing reduction mammoplasties. The pieces of tissue obtained are then subjected to a series of enzymatic dissociation and filtration steps, followed by removal of prevalent blood and endothelial cells using antibodies against CD45 and CD31. The three major cell types that constitute the mammary gland, plus remaining stromal fibroblasts, can then be separately isolated using flow cytometry according to their differential staining with antibodies to CD49f and EpCAM (Fig 2A). The three subpopulations of mammary cells obtained are typically referred to as basal cells (BCs), luminal progenitors (LPs), and luminal cells (LCs). Other antibody cocktails have also been used to obtain highly overlapping phenotypes with very similar biological and molecular properties (Raouf et al, 2008; Bachelard-Cascales et al, 2010; Keller et al, 2012; Kannan et al, 2014; Nguyen et al, 2014; Fridriksdottir et al, 2015; Lawson et al, 2015; Britschgi et al, 2017), and additional markers have proven useful to subdivide these three subpopulations of human mammary cells even further (Eirew et al, 2012; Shehata et al, 2012; Knapp et al, 2017; Morel et al, 2017). However, the combination of antibodies to CD49f and EpCAM has generally been the most widely utilized.

BCs are defined by their CD49f EpCAMlow phenotype and are so-named because they express numerous markers (e.g., KRT14, TP63, ACTA2/SMA, MME/CD10, and THY1/CD90) that distinguish cells of the basal layer from those of the luminal layer in histological preparations of normal human mammary tissue. In culture media containing insulin and EGF, as well as other supplements and a
feeder layer of fibroblasts, ~10–20% of freshly isolated BCs plated at low density will produce readily visualized adherent colonies within 8–10 days (Fig 2B; Eirew et al, 2008; Kannan et al, 2013). Many of the individual colonies produced from BCs under these conditions will contain a mixture of cells expressing either basal or luminal markers (Stingl et al, 2001). A smaller fraction of the BCs (~0.1%) will produce bilayered epithelial structures that resemble the normal human mammary gland when injected directly into “humanized” fat pads (Kuperwasser et al, 2004; Proia & Kuperwasser, 2006; Lim et al, 2009) or when transplanted in collagen gels that are then inserted either under the kidney capsule (Eirew et al, 2008, 2010; Nguyen et al, 2015) or subcutaneously (Pellacani D and Eaves C, unpublished) in immunocompromised mice. In both of these sites, the regenerated human mammary gland-like structures contain the same spectrum of EGF-dependent in vitro mammary colony-forming cells (CFCs) that are present in the normal human mammary gland, as well as rarer cells that can regenerate similar bilayered mammary gland structures and

Figure 2. Subpopulations of cells within the normal adult human mammary gland.
(A) Diagram showing the workflow for separating the four main cell populations present in the breast in addition to blood cells and endothelial cells (scale bar = 400 μm). (B) Examples of typical Giemsa-stained colonies derived from BCs and LPs and assessed after 7–9 days in vitro (scale bar = 400 μm).
mammary CFCs upon transplantation into secondary hosts (Eirew et al., 2008; Lim et al., 2009; Nguyen et al., 2014). In addition, the regenerated human gland-like structures will produce human milk proteins when appropriately hormonally stimulated (Eirew et al., 2008).

LPs and LCs are defined by their shared high expression of EpCAM, a well-established marker of cells that constitute the luminal layer of mammary glands. Both LPs and LCs also express other markers histologically associated with the luminal layer (e.g., KRT8, KRT18, and MUC1). However, these EpCAM+ mammary cells can be readily subdivided according to their differential expression of CD49f (and CD117, c-KIT). LC is the term assigned to the CD49f+ cells within the EpCAM+ fraction, and they include most of the cells that express E and P receptors (ER/ESR1 and PR/PGR) and express low to undetectable levels of EGF (Lim et al., 2009). Not surprisingly, LCs do not mount a significant direct signaling response to EGF (Knapp et al., 2017) and do not proliferate when exposed to EGF in vitro (Kannan et al., 2013, 2014). They are also incapable of reconstituting epithelial structures in vivo that contain clonogenic progeny (Eirew et al., 2008). However, it was recently reported that a small proportion (~0.4%) of EpCAM+CD271+CD166highCD117low human mammary cells, a phenotype expected to overlap with CD49fEpCAMhi LCs, will form colonies in cultures containing inhibitors to the TGF-β pathway (Fridriksdottir et al., 2015). Interestingly, cultures established from these cells could be expanded for 15 population doublings and their progeny continued to express ER and respond to E stimulation. In mice, similar evidence of the proliferative activity in vivo of non-clonogenic LCs has also been obtained from BrdU incorporation studies (Giraddi et al., 2015). Together, these findings raise the possibility that at least some human mammary cells with a LC phenotype can proliferate when appropriately stimulated. Nevertheless, the relevance of these in vitro findings to events that underpin the cellular dynamics within the mammary gland of normal adult women remains obscure as, in situ, very few ER+ or PR+ mammary cells appear to be proliferating (Clarke et al., 1997; Stingl, 2011).

LPs are defined as the EpCAM+ cells that co-express CD49f, suggesting that they might be an intermediate stage between BCs and LCs. However, these cells express other markers specific to the luminal layer of the epithelium assessed histologically, although only a minority express ER or PR (Lim et al., 2009). LPs are also distinct in their expression of high levels of CD117, a marker often used for their differential isolation (Fridriksdottir et al., 2015; Lawson et al., 2015). Approximately 50% of LPs also express KRT5/6 (Lim et al., 2009), a type of cytokeratin known to be expressed by cells in the basal layer of many types of epithelia (Purkis et al., 1990; Böcker et al., 1992). On average, 20–30% of LPs will generate colonies in vitro under the same conditions as BCs (Fig 2B). But, in this case, only cells with luminal features are produced (Stingl et al., 2005). A small proportion of LPs have also been reported to regenerate epithelial structures in vivo (Shehata et al., 2012), but the structures produced do not contain CFCs (Eirew et al., 2008).

Most LPs have very short telomeres and display a pronounced telomere-associated DNA damage response, even in mammary cells obtained from women in their twenties (Kannan et al., 2013). Interestingly, some LPs expressing activated caspase-3 will still show considerable subsequent proliferative activity in vitro (Knapp et al., 2017). LPs are also distinguished by elevated levels of reactive oxygen species (ROS) compared to LCs and BCs. In addition, they display an innately greater resistance to oxidative stress and a higher level of associated DNA damage (Kannan et al., 2014), two processes that have been proposed to accelerate telomere shortening (von Zglinicki, 2002; Richter & von Zglinicki, 2007), and predispose cells to transformation.

More recently, single-cell mass cytometry (Knapp et al., 2017) and RNA sequencing methodologies (Nguyen et al., 2018) have provided further support for the segregation of normal human mammary epithelial cells into the same three main cell types. On the other hand, these studies have also highlighted their extensive molecular heterogeneity and the possible existence of new subsets within each (Shehata et al., 2012; Knapp et al., 2017; Nguyen et al., 2018). Nevertheless, pseudo-temporal ordering of the available single-cell transcriptional data produces a differentiation trajectory profile that separates into three main branches corresponding to the historically visualized distinction of cells produced in the normal adult human mammary gland (Nguyen et al., 2018).

Taken together, these findings are consistent with a hierarchically organized sequence of changes initiated in bipotent BCs that are able to generate progeny with either luminal or basal features. Cells with luminal features can then be phenotypically and biologically segregated into an intermediate, luminal-restricted but EGF-responsive state, and a state in which the capacity to proliferate in response to EGF has been lost. However, this model of a hierarchical differentiation process should not be viewed as necessarily reflecting a series of tightly co-ordinated events and may also not reflect the operation of mechanisms that maintain these subpopulations under normal homeostatic conditions. Indeed, in the mouse, where analogous populations of BCs, LPs, and LCs have been identified, some luminal cells possess or can acquire the regenerative activity originally thought to be restricted to BCs (Shehata et al., 2012; Makarem et al., 2013a). In addition, in mice, in situ lineage-tracing experiments suggest that both myoepithelial and luminal lineages can display self-sustaining dynamics (Van Keymeulen et al., 2011), despite the continued presence and activity of transplantable cells with the bipotent regenerative properties of “stem cells” (Rios et al., 2014). Such findings are consistent with increasing evidence of an incomplete overlap of mechanisms that control mammary cell proliferative potential and those that determine whether their differentiated state will change (or not) with sequential divisions.

At the same time, it is important to recognize the caveats and assumptions inherent in available methods for associating functional and molecular properties of individual human mammary cells or the history of their acquisition and display. Deriving these associations is necessarily limited by an inability to undertake the requisite prospective lineage-tracing experiments in humans. Accordingly, direct measurements of normal human mammary cell outputs in situ cannot be compared with the outputs that can be elicited from the same cells when they are exposed to highly stimulatory conditions in vitro or following their transplantation into mice. In addition, both flow cytometry and clonal assays have technical limitations of efficiency and specificity. They may also be compromised by the use of markers that are not co-ordinately controlled by mechanisms that regulate their functional properties. However, these caveats may be partially reduced by the use of index-sorting strategies to link molecular and functional properties
more directly (Wilson et al, 2015), thereby circumventing the problem of assigning functions of rare cells present in bulk isolates.

Transcriptional differences between human mammary cell subsets

A variety of technologies have been used over the past 10 years to characterize the transcriptomes of BCs, LPs, and LCs isolated from normal adult female breast tissue (Bloustrain-Qimron et al, 2008; Raouf et al, 2008; Lim et al, 2009, 2010; Maruyama et al, 2011; Shehata et al, 2012; Kannan et al, 2013; Gascard et al, 2015; Pellacani et al, 2016). These studies have revealed consistent differences in the activity of hundreds of genes in each of these phenotypically defined subsets. In turn, these studies have pointed to a number of differentially activated pathways that may regulate their different biological properties (Liu et al, 2005). For example, many components of the NOTCH pathway are expressed at different levels in BCs, LPs, and LCs, with some evidence of corresponding functional consequences (Dontu et al, 2004; Raouf et al, 2008). WNT pathway components also show differential patterns of expression, with biological evidence of their importance in maintaining a mammary stem cell state, at least as inferred from studies of the mouse mammary gland (Teuli`ere et al, 2005; Roarty & Rosen, 2010; Zeng & Nusse, 2010; van Amerongen et al, 2012; Gu et al, 2013) with more limited, but consistent data for human cells (Arendt et al, 2014). Other pathways similarly implicated are the TGF-β (Moses & Barcellos-Hoff, 2011; Kahata et al, 2017) and the Hippo pathways (Chen et al, 2014; Pelissier et al, 2014; Skibinski et al, 2014; Shi et al, 2015; Britschgi et al, 2017). Importantly, all of these are variably deregulated in breast cancers (Howard & Ashworth, 2006).

Human mammary cell epigenomes reflect their transcriptional profiles

Several studies have now characterized the epigenomic features of human as well as mouse mammary cells (Maruyama et al, 2011; Choudhury et al, 2013; Dos Santos et al, 2015; Gascard et al, 2015; Huh et al, 2015; Pellacani et al, 2016; Shin et al, 2016; Lee et al, 2017). Early studies reported an association of differences in the H3K27me3 and DNA methylation of genes that are differently expressed in luminal and basal subsets (Maruyama et al, 2011). These genes include several that encode transcriptional regulators and/or other members of pathways of reported activity in the mammary gland. Subsequent analyses revealed DNA methylation to be a stable mark of exonic and intronic usage, with evidence of intron retention events specific to each subgroup and linked to differences in protein expression (Gascard et al, 2015). The latter study also found many more hypo-methylated enhancer elements in luminal cells (LPs + LCs) than in BCs and these were commonly associated with binding sites for FOXA1, GATA3, and ZNF217. These studies also indicated a higher overall transcriptional activity in the luminal cells. More extensive epigenomic characterization of highly purified human BCs, LPs, LCs and their associated stromal cells has now been derived from ChIP-seq analyses of H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K36me3, and H3K9me3 marks on histones and accompanying whole-genome bisulfite sequencing, with matching mRNA-seq and miRNA-seq data for the same cells (Pellacani et al, 2016). From these datasets, the chromatin landscape at putative enhancer sites of these different mammary cell types has been derived. Comparisons of these have also shown LPs to be intermediate between BCs and LCs, consistent with their different biological properties. Analysis of transcription factor binding sites (TFBS) and derived TF networks for each subpopulation has also enabled novel TFs to be identified as potential regulators of each subpopulation, in addition to others previously reported. Analysis of our more recently accrued epigenomic data has also provided new evidence of a bipartite TF network in LPs that includes elements of those operative in BCs and LCs (Fig 3A). In addition, this study showed that the epigenomic and transcriptional profiles of primary sources of normal human mammary cells are very different from those of established lines of immortalized but non-tumorigenic mammary cells (Fig 3B; Pellacani et al, 2016). This latter finding highlights the caveats of relying on data from such immortalized cell lines to infer mechanisms controlling the biological properties of normal human mammary cells, and, conversely, the importance of analyzing primary isolates for this purpose.

Epigenomic and transcriptional changes related to aging and reproductive history

Aging and pregnancy are associated, respectively, with an increase and decrease in breast cancer risk. Several groups have therefore started dissecting the molecular changes evident in mammary cells obtained from donors of different ages or different reproductive histories. These include a report of an expansion with aging of defective multipotent progenitors that show altered interactions with extracellular matrix elements and in KRT14+ and CD49f+ luminal cells (Garbe et al, 2012; Pelissier et al, 2014). Accompanying transcriptome changes suggested an aging-associated epigenomic deregulation, potentially mediated by changes in the microenvironment of the mammary gland (Miyano et al, 2017). Comparison of the transcriptomes of purified mammary cell subsets isolated from breast tissue of parous and nulliparous women has shown differences between the CD44+ cells from these two sources, with CDKN1B (p27) as one of the most differentially expressed genes (Choudhury et al, 2013). More extensive studies in mice have shown pregnancy to be associated with long-lasting alterations in DNA methylation profiles at sequences enriched for STAT5 binding sites (Dos Santos et al, 2015).
Figure 3.

Transcriptional control in human mammary cells

Davide Pellacani et al
Transcription factors regulating normal mammary cells

Epigenomic and transcriptional profiling of primary human mammary cells has also led to the identification of many candidate TFs that show subpopulation specificity. For example, several TFs are significantly elevated in only one of the three major subpopulations of normal human mammary cells (Fig 4A–C). In silico predictions further identify a differential enrichment of associated TFBSs at epigenetically defined promoter and enhancer regions in these cell types (Lim et al., 2010; Kannan et al., 2013; Gascard et al., 2015; Pellacani et al., 2016). Several studies in mice or human cell lines have also implicated a multitude of TFs to be involved in mammary cell development and differentiation. However, similar analyses of primary human cells are still very limited, although the strong correlations found between in silico predictions and results obtained from mice justify a brief overview of these.

One of the TFs implicated in modulating mouse mammary stem cell activity by acting directly on BCs is ΔNp63, a known regulator of normal stem cell maintenance in multiple epithelial tissues (Senoo et al., 2007). ΔNp63 appears to act by modulating several key pathways. These include enhancing WNT signaling by upregulating Fzd7 expression (Chakrabarti et al., 2014), activating Hedgehog signaling (Li et al., 2008; Memmi et al., 2015), and partially counteracting the effects of Notch signaling (Yalcin-Ozuysal et al,
GATA3 promoted differentiation of cells within the luminal lineage in the mouse gland in the mouse embryo, during puberty, and in adult life (Kouros-Mehr et al, 2014). Several SOX family TFs have likewise been implicated. For example, modulation of SOX9 expression was found to directly influence the ability of mouse mammary cells to produce organoid structures in vitro (Guo et al, 2012) and its conditional knockout impaired postnatal development of the gland (Malhotra et al, 2014). SOX10 is expressed specifically in mammary cells exhibiting the highest levels of stem/progenitor activity (Dravis et al, 2015) and SOX2 has also been implicated, albeit less directly, as its expression was induced by LGR4 downstream of WNT signaling (Wang et al, 2013).

Many of these studies in mice have associated expression of SOX TFs with the acquisition of features characteristic of mesenchymal cells in a process resembling an embryonic epithelial–mesenchymal transition (EMT). In fact, the possession of mesenchymal features has been frequently associated with mammary stem cell activity, both during development and subsequently throughout adulthood (Mani et al, 2008; Guen et al, 2017), although this is still controversial (Sikandar et al, 2017). Nevertheless, many other TFs associated with EMT have been directly linked to changes in the clonogenic or repopulating activity of mouse mammary cells. Of these, SNAI2 (SLUG) has been reported to cooperate with SOX9 (Guo et al, 2012) in regulating the transition of mouse mammary stem cells to short-term progenitors (Phillips et al, 2014). SNAI1 (SNAIL) is another member of this group, and it was found to regulate the spindle orientation machinery in mammary stem cells responding to SLIT2/ROBO1 signaling (Ballard et al, 2015). OVOL2, a transcriptional repressor, was likewise reported to restrict activation of EMT (Watanabe et al, 2014). More recently, another transcription factor, ZEB1, was shown to be expressed at high levels in a fraction of mammary BCs (Nguyen et al, 2018) and associated with cells expressing protein C receptor (ProCR; Wang et al, 2015). ZEB1 was also recently reported to have a protective role against oncogene-induced DNA damage in normal human mammary epithelial cells (Morig et al, 2017). Other TFs involved in mammary stem cell function include FOXO1 (Sreekumar et al, 2017), RUNX2 (Ferrari et al, 2015), MYC (Hynes & Stoelzle, 2009; Moumen et al, 2012), CEBPB (C/EBPβ; LaMarca et al, 2010), BCL11A (Khaled et al, 2015), and BCL11B (Miller et al, 2018).

TFs implicated in regulating luminal cell production and maintenance have also been identified. Of these, GATA3 was found to have an essential role in controlling the morphogenesis of the mammary gland in the mouse embryo, during puberty, and in adult life (Kouros-Mehr et al, 2006; Asselin-Labat et al, 2007). In addition, GATA3 promoted differentiation of cells within the luminal lineage in mice, potentially through a positive regulatory loop with ESR1 (Eeckhoute et al, 2007). FOXA1 was found to be involved in hormone-induced mammary ductal invasion (Bernardo et al, 2010), but did not affect lobulo-alveolar maturation and milk production. ELF5 was shown to be necessary for alveologenesis during pregnancy (Choi et al, 2009), and its deletion led to an accumulation of cells with mixed basal/luminal molecular phenotypes (Chakrabarti et al, 2012b). ELF5 was found to suppress EMT by down-regulating transcription of SNAI2 (Chakrabarti et al, 2012a). ELF5 also acted directly in LPs (Yamaji et al, 2009) to influence expression of STAT5A (Choi et al, 2009), another TF involved in alveologenesis (Liu et al, 1997). Contrary to the effects of RUNX2, RUNX1 was shown to induce the appearance of ER+ luminal cells at least partially through the modulation of ELF5 and FOXA1 expression (van Bragt et al, 2014), potentially downstream of the p38α kinase (Del Barco Barrantes et al, 2018).

Notably, the Hippo pathway regulator TAZ, together with many other TFs, has recently emerged as a negative regulator of luminal differentiation in primary human cells (Skibinski et al, 2014). Other TFs and chromatin modifiers necessary for correct human luminal cell differentiation include TFAP2C (Cyr et al, 2015), TBX3 (Arendt et al, 2014), NOTCH3 (Raouf et al, 2008), FOXM1 (Carr et al, 2012), and KDM6A (Yoo et al, 2016). However, many “potential” TFs identified more recently from genome-wide epigenomic analyses of both human and mouse mammary gland cells remain poorly characterized.

Cellular and molecular heterogeneity of human breast cancers

Breast cancers arise from single cells as aberrant clones of progeny that undergo a continuous process of evolution, demarcated by distributed genetic and epigenetic alterations in successive generations of daughter cells (Balani et al, 2017). Those that maintain and/or confer a selective growth advantage promote successive waves of subclonal expansion depending on local conditions and/or exposure to therapeutic agents. Such a complex history of subclonal evolution leading to the production of billions of genetically heterogeneous cells in human breast cancers has been dramatically revealed from genomic DNA sequence data (Nik-Zainal et al, 2012; Eirew et al, 2014). And this profound inter-tumor as well as intra-tumor heterogeneity is further exacerbated by the metastatic process in which subclones differentially populated different sites.

Breast cancers are currently classified clinically on the basis of their extent and confinement, or not, within the basement membrane that surrounds the normal mammary gland, the proliferative activity and presence of nuclear abnormalities in the malignant cells, and their expression of ER, PR, and HER2. Global gene expression profiling has led to the identification of five major subtypes (Pero et al, 2000) that can now be distinguished based on the measurement of transcript levels of just 50 genes (PAM50; Parker et al, 2009; Nielsen et al, 2010; Chia et al, 2012). Notably, many of these detect the same perturbed features that have long been recognized histologically (Table 1). The five major subtypes thus identified are referred to as follows: basal-like, luminal A, and luminal B, normal-like, and claudin-low tumors. More recently, additional subdivisions have come from analyses of both genomic sequencing data (Cancer Genome Atlas Network, 2012; Curtis et al, 2012) and altered epigenomic marks (Holm et al, 2010, 2016; Kamalakaran et al, 2011).

Interestingly, the expression profiles of the five main cancer subtypes are correlated with expression profiles of BCS, LPs, and LCs (Table 1). Even the PAM50 signature relies on an assessment of many gene transcripts (e.g., FOXA1, PGR, ESR1, KRT14, KRT5, EGFR, FOXC1, and MIA) that are normally present at different levels in BCS, LPs, and LCs. Generally, the transcriptional profiles of basal-like breast cancers are closest to those of LPs, those of luminal A and B cancers to LCs, and claudin-low cancers to BCS. These
findings reinforce the concept that malignancies represent perturbations of the normal tissue from which they arise and frequently retain many components of the transcriptional regulatory networks that control cell production, differentiation, and death in the normal human mammary gland.

Altered transcriptional regulation in human breast cancers

Breast cancer “drivers” is a term that has been used to refer to mutations that are found repeatedly, suggesting they contribute to the malignant properties of the cells. In contrast, “passenger mutations” is a term often assigned to mutations that are rare and do not appear to be relevant to the genesis or progression of the malignant population. It is notable that a majority of the most frequently encountered mutations affect genes linked directly or indirectly to transcriptional regulation (Nik-Zainal et al., 2016; Zacksenhaus et al., 2017).

One of the most frequently altered transcriptional regulators is GATA3 (mutated in >10% of cases; Cancer Genome Atlas Network, 2012), most often in ER+ breast cancers (Fig 5; Nik-Zainal et al., 2016). Both clinical and experimental lines of evidence link mutations in GATA3 directly to breast cancer development and progression. Expression of GATA3 has been associated with a favorable prognosis, although this is still debated (Chou et al., 2010; Takaku et al., 2018), and similarly, in mice and cell lines, a heightened expression reduces tumorigenesis, suppresses metastasis, and promotes expression of a luminal molecular signature. In contrast, a loss of GATA3 has been found to accelerate tumor progression (Asselin-Labat et al., 2011; Chou et al., 2013).

In >15% of breast cancers, MYC is amplified. This is generally associated with an unfavorable clinical prognosis (Deming et al., 2000) and an ER− breast cancer phenotype (Fig 5; Nik-Zainal et al., 2016). MYC is one of the most intensively studied oncogenes (Fallah et al., 2017). Of particular note is recent evidence that overexpression of MYC in immortalized human mammary cells triggers a reprogramming of the epigenome that confers tumor-initiating properties and a down-regulation of luminal-specific TFs and genes (Poli et al., 2018). MYC activity has also been shown recently to be influenced by its interaction with EPIC1, a long non-coding RNA, that is upregulated in many cancers (Wang et al., 2018). Interestingly, MYC amplification was also reported to be a frequent event in the genesis of transformants from primary human mammary cells.

Symbol	Histology	BC vs. LP	BC vs. LC	LC vs. LP
ACTR3B				
ANLN				
BAC1				
BCL2	DN			
BIRC5				
BLVRA				UP
CCNB1				
CCNE1				
CDC20				
CDC6				
CDH3				
CENPF				
CEP55				
CXXC5			UP	
EGFR				
ERBB2	✓			
ESR1	✓	DN	DN	
EXO1				
FGFR4				
FOXA1		DN		
FOXC1				DN
GPR160			DN	
GRB7				
KIF2C				
KRT14				
KRT17				
KRT5				
MAPT				
MDM2				
MELK				
MIA		DN		DN
MKI67	✓			
MLPH		DN	DN	UP
MMP11				
MYBL2				
MYC				
NAT1		DN		
NDC80				
NUF2				
ORC6				
PGR	✓			
PHGDH				
PTTG1				
RRM2				
SFRP1				
SLC39A6				
TMEM45B				
TYMS				
UBE2C				
UBE2T				

Table 1. List of the genes used for the PAM50 classification.

Symbol	Histology	BC vs. LP	BC vs. LC	LC vs. LP
ACTR3B				
ANLN				
BAC1				
BCL2	DN			
BIRC5				
BLVRA				UP
CCNB1				
CCNE1				
CDC20				
CDC6				
CDH3				
CENPF				
CEP55				
CXXC5			UP	
EGFR				
ERBB2	✓			
ESR1	✓	DN	DN	
EXO1				
FGFR4				
FOXA1		DN		
FOXC1				DN
GPR160			DN	
GRB7				
KIF2C				
KRT14				
KRT17				
KRT5				
MAPT				
MDM2				
MELK				
MIA		DN		DN
MKI67	✓			
MLPH		DN	DN	UP
MMP11				
MYBL2				
MYC				
NAT1		DN		
NDC80				
NUF2				
ORC6				
PGR	✓			
PHGDH				
PTTG1				
RRM2				
SFRP1				

Gene products used routinely in histological studies (✓) and transcripts increased (UP) or decreased (DN) in mammary epithelial cells are marked. Differential gene expression data are based on the RNA-seq data presented in Pellacani et al (2016).
BRCA_LumB, BRCA_Her2, BRCA_Normal No data

...human breast cancers (et al, 2001) and in radiation-induced mammary cell lines (Wade et al, 2015).

FOXA1 is a TF that is mutated or amplified less frequently in human breast cancers (~2% mutated and ~1% amplified; Cancer Genome Atlas Network, 2012; Robinson et al, 2013) and usually found to be altered in ER+ tumors (Fig 5; Nik-Zainal et al, 2016). FOXA1 is a main regulator of steroid receptor function in cancer (Augello et al, 2011), and it regulates ER signaling in breast cancer (Carroll et al, 2005; Lupien et al, 2008). FOXA1 mediates ESRI binding and transcriptional activity (Hurtado et al, 2011), and its expression is associated with superior breast cancer outcomes (Shou et al, 2016). Molecurarily, FOXA1 can recruit KMT2C (MLL3) to deposit H3K4me1 on FOXA1-bound enhancers (Jozwik et al, 2016).

KMT2C is another frequently mutated transcriptional regulator in breast cancer, with a mutational spectrum consistent with a loss-of-function role (Wang et al, 2011; Ellis et al, 2012; Cancer Genome Atlas Research Network, 2015). Functionally, it is the catalytic component of a complex called COMPASS (complex of proteins associated with Set1) or ASCOM (ASC-2- and MLL3-containing complex) and responsible for the monomethylation of H3K4 (Herz et al, 2014). In mouse models, Mll3 deletion in the mammary gland results in hyperplasia and expansion of cells with basal features in transplant experiments, and an acceleration of PI3K-driven tumorigenesis (Zhang et al, 2016), supporting its role as a tumor suppressor.

Many other histone methyltransferases are deregulated in breast cancer by genetic alteration (Michalak & Visvader, 2016) and thereby contribute to an increased emergence of epigenomic alterations in breast cancer. Consequent changes in the epigenomes of analyzed human breast cancers have revealed more than 100 frequently hyper- or hypo-methylated gene promoters and pronounced global DNA hypo-methylation (Davalos et al, 2017; Pasculli et al, 2018), and the functional implication of these changes is now starting to be investigated using CRISPR/Cas9 systems (Saunderson et al, 2017). These findings are particularly interesting clinically, as they may offer new biomarkers of risk, prognosis, and treatment response (Pouliot et al, 2015; Terry et al, 2016) that can be robustly measured at relatively low cost (Cheuk et al, 2017). However, downstream transcriptional alterations are not consistently predicted and many exceptions to the general inverse correlation between promoter methylation and gene expression exist. In addition, expression of many frequently hypermethylated genes in breast cancer cells is already repressed in normal mammary cells, usually by polycomb group proteins depositing H3K27me3 (Sproul et al, 2011).

Comparisons of the DNA methylation profiles of individual breast cancers have shown they are highly heterogeneous. However, when subjected to unsupervised clustering, these profiles subdivide into groups that correspond largely to established transcriptionally defined breast cancer subtypes with corresponding similarities to normal human mammary subpopulations (Holm et al, 2010, 2016; Kamalakaran et al, 2011). From these, specific DNA methylation signatures with prognostic potential have been derived for luminal B and basal-like subtypes (Stefansson et al, 2015).

Interestingly, DNA sequence alterations that do not occur within regions that encode protein sequences directly (non-coding mutations) represent ~98% of mutations in cancer and most still remain poorly characterized. Of these, mutations occurring in cis-regulatory elements (i.e., enhancers and promoters) are of particular interest, as they can directly alter expression of associated gene products, by directly or indirectly altering DNA binding of TFs (Deplancke et al, 2016; Shi et al, 2016). Such mutations are frequent in breast cancer...
(Bailey et al., 2016; Zhou et al., 2016; Rheinbay et al., 2017; Györrfy et al., 2018), but their significance is generally unclear (Nik-Zainal et al., 2016). However, mutations in ESR1 enhancer sequences found in ~7% of breast cancers have now been shown to be responsible for altering ESR1 expression by modulating TF binding activity (Bailey et al., 2016). In addition, a single-nucleotide variant in one of these enhancer sequences has been associated with increased breast cancer risk. Mutations in the promoter of FOXA1 that cause its overexpression through increased E2F binding constitute a second documented example of a biologically relevant mutation in a cis-element in some breast cancer genomes (Rheinbay et al., 2017). Variants linked to increased breast cancer risk have been found in distal regulatory elements of genes whose expression is modulated by FOXA1 (Cowper-Sal Lari et al., 2012).

Breast cancers also contain many cell types that are not part of the malignant population but, nevertheless, interact with them and co-evolve with them, adding further to the complexity and heterogeneity of breast tumors (Hanahan & Weinberg, 2011). These additional cell types include components of the blood and lymph vasculature, tissue macrophages and lymphocytes, and various stromal fibroblasts and their derivatives. Both the infiltrating leukocytes and resident cancer-associated fibroblasts (CAFs) are now well established as playing significant roles in modulating breast cancer cell growth and plasticity through direct interactions as well as through their secretion of growth factors, cytokines, and extracellular matrix components (Allinen et al., 2004; Aboussekhra, 2011; Place et al., 2011; Esquivel-Velázquez et al., 2015; Qiao et al., 2016).

One of the best characterized mechanisms of CAF modulation of human breast cancer cells is mediated by their secretion of TGF-β. Recently, this has been updated to include the suppression of adjacent normal mammary cells (Chatterjee et al., 2018) and the promotion of EMT in a xenografted breast cancer cell line through the transactivation of a HOX transcript antisense RNA (Ren et al., 2018). A third recently described role of CAFs is their induction of a FOXA1-mediated creation of a hormonal-sensitive, luminal gene regulatory program in basal-like breast cancers in response to PDGF secretion by the tumor cells (Roswall et al., 2018). Loss of TP53 in stromal fibroblasts has also been shown to promote breast tumor development in vivo through the production of SDF-1 (Addadi et al., 2010). Additional reported mechanisms include the altered expression in CAFs of non-coding RNAs and microRNAs (Vergheese et al., 2013; Shah et al., 2015; Ren et al., 2018). Other components of the tumor microenvironment, including tumor-associated macrophages, have been implicated in tumor promotion through the expression of TFEB (Fang et al., 2017).

Transcriptional deregulation during the initiation of breast cancers

Early events important to the genesis of human breast cancer are still limited and largely extrapolated from transgenic mouse models. Information derived from studies of human cancers has been largely limited to retrospective analyses of prevalent changes in established tumors (Futreal et al., 2004; Nik-Zainal et al., 2012), or a few analyses of preneoplastic mammary cells were obtained from carriers of BRCA1 mutations (Lim et al., 2009; Proia et al., 2011; Choudhury et al., 2013) or from samples of ductal carcinoma in situ (DCIS; Yeong et al., 2017). Events that accompany the acquisition of malignant properties by immortalized, but non-tumorigenic, human mammary cell lines have also been described (Debnath et al., 2003; Leung & Brugge, 2012). More recently, experimental models initiated directly with primary human mammary cells have been reported.

Transgenically controlled overexpression of potential culprit genes in mice, including overexpression of MYC and HER2, was important in providing the first experimental evidence that oncogene overexpression alone could induce the formation of malignant tumors (Stewart et al., 1984; Muller et al., 1988; Bouchard et al., 1989). Since then, derivative approaches are now able to model metastasis due to expression of co-operating oncogenes (Sinn et al., 1987; Guy et al., 1992; Podsypanina et al., 2008; Adams et al., 2011) and assess mechanisms of pathway perturbation including TGF-β and WNT (Pierce et al., 1995; Li et al., 2000). The introduction of conditional and inducible systems to drive the expression of transgenes has enabled these models to be further refined (Sandgren et al., 1995; Moody et al., 2002; Podsypanina et al., 2008; Menezes et al., 2014; Rutkowski et al., 2014), including a model in mice of invasive lobular breast cancer created using CRISPR/Cas9-mediated disruption of PTEN (Anunziato et al., 2016).

However, a major criticism of these mouse models of breast cancer is the very ease with which the tumors can be generated. They also frequently lack the genetic complexity of human breast cancers, and their similarities to their human counterparts are often restricted to specific sites within the tumors produced (Cardiff et al., 2000; Hollern et al., 2018). In addition, their pathology may be highly dependent on the promoters used to drive expression of the oncogenic transgene and few display highly invasive properties (Cardiff et al., 2000). Gene expression differences in mice are also notable (Pfefferle et al., 2013), and some types of human breast cancer have not yet been possible to model in mice. For example, although ER+ tumors account for the majority of all human breast cancers, stably ER+ mouse mammary tumors have been difficult to obtain and the genetic changes that lead to ER expression in mouse tumors are frequently not characteristic of patients’ ER+ tumors (Mohibi et al., 2011).

Immortalized cell lines, and the MCF10A line in particular, have also been used for modeling the human mammary cell transformation process also because of their ease of use and manipulation and their availability in virtually unlimited numbers. MCF10A cells were generated by immortalizing human mammary cells obtained from a donor with benign fibrocystic disease (Soule et al., 1990). Forced expression of multiple cancer genes in these cells has been found to induce some features of transformation (recently reviewed in Balani et al., 2017). Notably, aggressively tumorigenic lines have been derived from MCF10A cells forced to overexpress HRAS and passaged in vivo, and their extensive characterization has revealed the presence of a number of predicted driver mutations (Maguire et al., 2016). However, their controlled modification has not recapitulated the phenotypic, genomic, and functional heterogeneity found in most spontaneously arising human breast cancers (Kaur & Dufour, 2012).

Analysis of DCIS has been another strategy used to investigate early events leading to invasive breast cancer. Initial transgenic mouse models of DCIS were obtained by driving expression of the
SV40 large tumor antigen with the mouse WAP promoter that becomes highly active in terminal lobular luminal cells in pregnant mice (Schulze-Garg et al, 2000). More recently, in vivo models of human DCIS have also been developed by the intraductal injection of mice with experimentally transformed human cell lines (Behbod et al, 2009) or primary DCIS samples from patients (Valdez et al, 2011). These models generally recapitulate the histology and heterogeneity of the human disease, including occasional examples of disease progression indicated by cellular invasion into the surrounding stroma.

Experimental models of de novo mammary tumorigenesis starting from isolated primary cells from normal tissues are particularly attractive because they avoid species differences and concerns of extrapolating from human immortalized cell lines. However, there are very few reports of genetic perturbations that consistently yield fully malignant human mammary cells in transplanted female immunodeficient mouse hosts (either NOD/SCID or NGR—NOD-Rag1\(^{-/-}\)IL2Rc\(^{-/-}\) mice). Interestingly, most of those that have been reported have used different combinations of oncogenes, cell types, and sites of injection, with or without added fibroblasts. Immunohistological analyses of tumors produced from human EpCAM\(^{+}\) luminal cells transduced with either TP53\(^{R175H}\) + CCND1 + myristoylated PIK3CA + KRAS\(^{G12V}\) or SV40 T antigen + KRAS\(^{G12V}\) transplanted into “humanized” fat pads of NOD/SCID mice (obtained by added injection of human fibroblasts) suggested the tumors most closely resemble ductal carcinomas with predominant luminal features, including expression of ER\(\alpha\), CK8/18, and CK19. In contrast, the same manipulation of CD10\(^{+}\) (basal) cells caused them to acquire squamous and metaplastic features with reduced ER\(\alpha\) and CK19 expression and robust expression of the basal marker, CK14 (Keller et al, 2012). On the other hand, we have found that transduction of either normal human BCs or LPs (but not LCs or SCs from the same mammoplasty samples) with just a KRAS\(^{G12D}\)-encoding vector produces serially transplanted invasive ductal carcinomas rapidly and at high efficiency in mice using injection sites under the kidney capsule or subcutaneously (Nguyen et al, 2015). These KRAS\(^{G12D}\)-derived tumors are also highly heterogeneous with variable proportions of cells positive for ER\(\alpha\), Ki67, EGFR, CK14, and CK8/18, independently of their BC or LP cell of origin (Nguyen et al, 2015).

Use of a DNA barcoding strategy, to track the clonal dynamics of the primary and secondary KRAS\(^{G12D}\)-derived tumors, showed them to be consistently and highly polyclonal, regardless of the initial cell type transduced (Nguyen et al, 2015). The median size of the few clones found in both primary and secondary tumors derived from the same initial inoculum was larger than most of the clones appearing only after a first passage. Interestingly, normal human mammary cells transduced with the same tracking vector also showed a delayed appearance of new and larger clones in the “normal” structures obtained in secondary as compared to primary recipients of the same original cells (Nguyen et al, 2014). The invasive nature of the primary clones but their general lack of perpetuation in secondary implants contrasts with the conventional concept of the oncogenic process, in which the control of invasive properties by human mammary cells is usually modeled as property that is acquired after deregulated growth has created a large “premalignant” population from which a more advanced derivative then arises. Taken together, these findings thus challenge previous assumptions of a requirement for a multi-step selective process during which the genetic and/or epigenetic changes needed to obtain a continuously growing invasive tumor are successively accrued.

Transcriptional profiling of the polyclonal KRAS\(^{G12D}\)-induced primary tumors we have described has shown they are characterized by a global deregulation of gene expression that is largely but not completely independent of the cell type used to initiate them (Nguyen et al, 2015). A similar result was found for tumors derived by transducing primary cells from the same normal donors with SV40 T antigen + KRAS\(^{G12V}\) (Keller et al, 2012) or cells from donors with a different BRCA1 mutation status using vectors encoding TP53\(^{R175H}\) + CCND1 + myristoylated PIK3CA + KRAS\(^{G12V}\) (Proia et al, 2011). Thus, the initiating cell type may not necessarily make a major contribution to the transcriptional profile of the cells constituting the bulk of any breast cancer. Such a concept is of interest as it challenges the idea that globally acquired molecular profiles of breast cancers will provide informative indications of the cell of origin or the cells from which relapses are most likely to emerge.

Conclusions

Heterogeneity is a pronounced feature of human breast cancer genomes and epigenomes. These variable features likely explain the corresponding heterogeneity evident in the transcriptomes of these malignant populations. The multitude of these alterations, plus the still partial elucidation of the molecular networks governing the properties of normal human mammary cells, still obscures identification of critical initial transforming events. Nevertheless, early changes that lead to human breast cancer development remain important potential targets for more effective strategies. Expansion of de novo models now appears possible with established robust transduction protocols and new screening approaches on the horizon. The coupling of these strategies with clonal analyses, highly multiplexed gene manipulations, and exposure to small molecules thus holds new promise for the future more rapid identification of targetable mechanisms critical to breast cancer development.

Acknowledgements

This review was prepared with support from the BC Cancer Foundation Strategic Priorities fund, grant #702851 from the Canadian Cancer Society Research Institute and grant #22416 jointly funded by The Cancer Research Society and the Canadian Institutes of Health Research (CIHR). S Tan held a CIHR Banting and Best Research Studentship.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Aboussekra A (2011) Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 55: 841 – 849

Adams JR, Xu K, Liu JC, Agamez NMR, Loch AJ, Wong RG, Wang W, Wright KL, Lane TF, Zacksenhaus E, Egan SE (2011) Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res 71: 2706 – 2717
Addadi Y, Moskovits N, Granot D, Lozano G, Carmi Y, Apte RN, Neeman M, Oren M (2010) p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res 70: 9650–9658
Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyan K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32
van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/Ik-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11: 387–400
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, Bin Ali R, Arendt LM, Kuperwasser C (2015) Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30: 1470–1480
Arendt LM, St Laurent J, Wronski A, Caballero S, Lyle SR, Naber SP, Balani S, Nguyen LV, Eaves CJ (2019) An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: normal breast and benign proliferative lesions. Virchows Arch A Pathol Anat Histopathol 421: 315–322
Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P (1989) Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV-c-neu oncogene. Cell 57: 931–936
van Bragt MPA, Hu X, Xie Y, Li Z (2014) RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. Elife 4: e03881
Briskin C, O’Malley B (2010) Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2: a003178
Britschgi A, Duss S, Kim S, Couto JP, Brinkhaus H, Korey C, Roloff T, Studler MB, Scheel CH, Miraglia LJ, Orth AP, Bonamy GMC, Reddy VA et al (2017) The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with Erx. Nature 541: 541–545
Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: 61–70
Cancer Genome Atlas Research Network (2015) The molecular taxonomy of primary prostate cancer. Cell 163: 1011–1025
Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19: 968–988
Carr JR, Kiefer MM, Park HJ, Li J, Wang Z, Fontanarosa J, DeWaal D, Kopanja R, Deneau J, Wayne KL, Ruhnau J, Amadori D, Haffty BG, Kannan N, Mercatali L, Ibrahim T, Amadori D, Haffty BG, Sinha S, Kang Y (2012a) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Sna1.2. Nat Cell Biol 14: 1212–1222
Chakrabarti R, Wei Y, Andrews Blanco M, Wei Y, Lukanic M, Romano R-A, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haffty BG, Sinha S, Kang Y (2012b) Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signalling. Stem Cells 30: 1496–1508
Chakrabarti R, Wei Y, Wang P, Huang J, Harburg G, Maudry A, Coudray A, Tiede B, Romano R-A, DeCoste C, Mercatali L, Ibrahim T, Amadori D, Kannan N, Eaves CJ, Sinha S, Kang Y (2014) ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nat Cell Biol 16: 1004–1015, 1–13
Chakrabarti R, Cielià-Tarrassa T, Kumar S, Hang X, Wei Y, Coudray A, Hwang J, Peng J, Nixon B, Grady jj, DeCoste C, Gao J, van Es JH, Li MO, of ERalpha expression and mammary ductal morphogenesis. Development 137: 2045–2054
Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, Hu M, Chen H, Ustansky V, Antosiewicz JE, Argani P, Halushka M, Thomson JA, Pharoah P, Porgador A, Sukumar S, Parsons R, Richardson AL, Stampfer MR, Gelman RS et al (2008) Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA 105: 14076–14081
Böcker W, Bier B, Freytag T, Brömmelkamp B, Jarasch ED, Edel G, Dockhorn-Dworniczak B, Schmid KW (1992) An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: normal breast and benign proliferative lesions. Virchows Arch A Pathol Anat Histopathol 421: 315–322
Transcriptional control in human mammary cells

The EMBO Journal

Aifantis I, Clevers HC, Kang Y (2018) Notch ligand DI1 mediates cross-talk between mammary stem cells and the macrophage nidal. Science 360: eaan4153

Chattejee S, Basak P, Buchel E, Safneek J, Murphy LC, Mowat M, Kung SK, Eirew P, Eaves CJ, Raouf A (2018) Breast cancers activate stromal fibroblast-induced suppression of progenitors in adjacent normal tissue. Stem Cell Reports 10: 196 – 211

Chen Q, Zhang N, Gray RS, Li H, Ewald Aj, Zahnaw CA, Pan D (2014) A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev 28: 432 – 437

Cheuk IWY, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20: 12 – 19

Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S, Vickery T, Mardis E, Leung S, Ung K, Pritchard KI, Parker JS, Bernard PS, Perou CM, Ellis MJ, Nielsen TO (2012) A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res 18: 4465 – 4472

Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S (Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield 14

Chou J, Provot S, Werb Z (2010) GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 222: 42 – 49

Chou J, Lin JH, Brenot A, Kim J-W, Provot S, Werb Z (2013) GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15: 201 – 213

Choudhury S, Almendro V, Merino VF, Wu Z, Maruyama R, Su Y, Martins FC, Chou J, Lin JH, Brenot A, Kim J-W, Provot S, Werb Z (2013) GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15: 201 – 213

Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57: 4987 – 4991

Cowper-Sal Lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eckehoute J, Moore JH, Lupien M (2012) Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 44: 1191 – 1198

Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, Mckinney S, METABRIC Group, Lengerer A, Green A, Provenzano E et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486: 346 – 352

Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield GW, White-Baer LS, O’Malley YQ, Sugg SL, Olivier AK, Zhang W, Domann FE, Weigel RJ (2015) TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis. Oncogene 34: 436 – 444

Davalos V, Martinez-Cardus A, Esteller M (2017) The epigenomic revolution in breast cancer: from single-gene to genome-wide next-generation approaches. Am J Pathol 187: 2163 – 2174

Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256 – 268

Del Barco Barrantes I, Stephan-Otto Attolini C, Slobodnyuk K, Igea A, Gregorio S, Gawrzak S, Gomis RR, Nebreda AR (2018) Regulation of mammary luminal cell fate and tumorigenesis by p38x. Stem Cell Reports 10: 257 – 271

Deming SL, Nass SJ, Dickson RB, Trock BJ (2000) C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 83: 1688 – 1695

Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166: 538 – 554

Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605 – R615

Dos Santos CO, Dolzhenko E, Hodges E, Smith AD, Hannon GJ (2015) An epigenetic memory of pregnancy in the mouse mammary gland. Cell Rep 11: 3102 – 3109

Dravis C, Spike BT, Harrell JC, Johns C, Trejo CL, Southard-Smith EM, Perou CM, Wahl GM (2015) Sox10 regulates stem/progenitor and mesenchymal cell states in mammary epithelial cells. Cell Rep 12: 2035 – 2048

Eckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M (2007) Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 67: 6477 – 6483

Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emanuel JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14: 1384 – 1389

Eirew P, Stingl J, Eaves CJ (2010) Quantitation of human mammary epithelial stem cells with in vivo regenerative properties using a subrenal capsule xenotransplantation assay. Nat Protoc 5: 1945 – 1956

Eirew P, Kannan N, Knapp DJHF, Vaillant F, Enerman JT, Lindeman GJ, Visvader JE, Eaves CJ (2012) Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells 30: 344 – 348

Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A, Lister E, Biele J, Shumansky K, Rosner J, McPherson A, Nielsen C, Roth AJL, Lefebvre C, Bashashati A, de Souza C et al (2014) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518: 422 – 426

Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonic DB, Donaher JL, Poppescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15: 50 – 65

Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486: 353 – 360

Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JL, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 35: 1 – 16

Fallah Y, Brundage I, Allegakoen P, Shahjahan-Haq AN (2017) MYC-driven pathways in breast cancer subtypes. Biomolecules 7: 53

Fang L, Hodge J, Saaooud F, Wang J, Iwanowycz S, Wang Y, Hui Y, Evans TD, Razani B, Fan D (2017) Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment. Oncoimmunology 6: e1312042

Ferrari N, Riggio AI, Mason S, McDonald L, King A, Higgins T, Rosewell I, Neil JC, Smalley MJ, Sansom OJ, Morris JR, Cameron ER, Blyth K (2015) Runx2 contributes to the regenerative potential of the mammary epithelium. Sci Rep 5: 15658
Forster N, Saladi SV, van Bragt M, Sfondoulis ME, Jones FE, Li Z, Ellisen LW (2014) Basal cell signaling by p63 controls luminal progenitor function and lactation via NRG1. Dev Cell 28: 147 – 160
Fridriksdottir AJ, Kim J, Villadsen R, Klatigaard MC, Hopkinson BM, Petersen OW, Rannov-Jessen L (2015) Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun 6: 8786
Futrelle PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4: 177 – 183
Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, Villadsen RR, Giraddi RR, Shehata M, Gallardo M, Blasco MA, Simons BD, Stingl J, Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, Rønnov-Jessen L (2012) Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res 72: 3687 – 3701
Gascard P, Bilenky M, Sigragoudinia M, Zhao J, Li L, Carles A, Delaney A, Tam A, Kamoh B, Cho S, Griffith M, Chu A, Robertson G, Cheung D, Li I, Heravi-Moussavi A, Moksa M, Mingay M, Hussainkhal A, Davis B et al (2015) Epigenetic and transcriptional determinants of the human breast. Nat Commun 6: 6351
Giraddi RR, Shehata M, Gallardo M, Blasco MA, Simons BD, Stingl J (2015) Stem and progenitor cell division kinetics during postnatal mouse mammary gland development. Nat Commun 6: 8487
Gu B, Watanabe K, Sun P, Fallahi M, Dai X (2013) Chromatin effector Pyg02 mediates Wnt-notch crosstalk to suppress luminal/alsveolar potential of mammary stem and basal cells. Cell Stem Cell 13: 48 – 61
Guen VJ, Chavarría TE, Kröger C, Ye X, Weinberg RA, Lees JA, Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, Rønnov-Jessen L (2015) Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun 6: 8786

Huy SJ, Clement K, Jee D, Merlino A, Choudhury S, Maruyama R, Yoo R, Chytíl A, Boyle P, Ran FA, Moses HL, Barcellos-Hoff MH, Jackson-Grusby L, Meissner A, Polyak K (2015) Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells. Stem Cell Reports 4: 297 – 311
Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43: 27 – 33
Hynes NE, Stoezel Te (2009) Key signalling nodes in mammalian gland development and cancer. Myc. Breast Cancer Res 11: 210
Hynes NE, Watson CJ (2010) Mammalian mammary growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol 2: a003186
Joshi PA, Jackson HW, Bierristain AG, Di Grappa MA, Mote PA, Clarke CL, Stingl J, Waterhouse PD, Khokha R (2010) Progesterone induces adult mammary stem cell expansion. Nature 465: 803 – 807
Joyzick KM, Chemukhin I, Serandour AA, Nagarajan S, Carroll JS (2016) FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep 17: 2715 – 2723
Kahata K, Maturi V, Moustakas A (2017) TGF-β family signaling in ductal differentiation and branching morphogenesis. Cold Spring Harb Perspect Biol 10: a031997
Kamalakaran S, Varadan V, Giercksky Russnes HE, Levy D, Kendall J, Janesvki A, Riggs M, Banerjee N, Synnestvedt M, Schlichting E, Käresen R, Shama Prasada K, Rotti H, Rao R, Rao L, Eric Tang M-H, Satyamoorthy K, Lucito R, Wigler M, Dimitrova N et al (2011) DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol 5: 77 – 92
Kannan N, Huda N, Tu L, Droumeva R, Aubert G, Chavez E, Brinkman RR, Lansdorp P, Emerman J, Abe S, Eaves CJ, Gilley D (2013) The luminal progenitor compartment of the normal human mammary gland constitutes a unique site of telomere dysfunction. Stem Cell Reports 1: 28 – 37
Kannan N, Nguyen LV, Makarem M, Dong Y, Shih K, Eirew P, Raouf A, Emerman JT, Eaves CJ (2014) Glutathione-dependent and -independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. Natl Acad Sci USA 111: 7789 – 7794
Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2: 1 – 5
Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, Smith AE, Stampfer MR, LaBarge MA, Noske A, Zürrer-Härdi U, Bell G, Tam W-L, Mani SA, van Oudenaarden A, Emerman JT, Eaves CJ (2014) Histological subtypes of breast cancer are associated with characteristic DNA methylation patterns. Natl Acad Sci USA 111: 1041 – 1053
Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101: 4966 – 4971
Transcriptional control in human mammary cells

Davide Pellacani et al

LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F, Rosen JM (2010) CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells 28: 535–544

Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang C-Y, Yaswen P, Goga A, Werb Z (2015) Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526: 131–135

Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L (2017) Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 45: 4606–4618

Leung CT, Brugge JS (2012) Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482: 410–413

Li Y, Hively WP, Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19: 1002–1009

Li N, Singh S, Cherukuri P, Li H, Yuan Z, Ellis CN, Wang B, Robbins D, DiRenzo J (2008) Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 26: 1235–1246

Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, kConFab, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Vasseder JE et al (2009) Ablantert luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907–913

Lim E, Wu D, Pal B, Bouras T, Asselin-Labat M-L, Vaillant F, Yagita H, Lindeman CG, Smyth GK, Vasseder JE (2010) Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 12: R21

Liu X, Robinson CW, Wagner K-U, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11: 179–186

Liu S, Doniu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7: 86–95

Lupien M, Eckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown MA (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132: 958–970

Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, Doley F, Vyas S, Huang P, Lord CJ, Farnie G, Brennan K, Natrajan R (2016) Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10A model. J Pathol 240: 315–328

Makarem M, Kannan N, Nguyen LV, Knapp DJ, Balani S, Prater MD, Stingl J, Raouf A, Nemirovsky O, Eirew P, Eaves C (2013a) Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells. PLoS Biol 11: e1001630

Makarem M, Spike BT, Dravis C, Kannan N, Wahl GM, Eaves CJ (2013b) Stem cells and the developing mammary gland. J Mammary Gland Biol Neoplasia 18: 209–219

Malhotra GK, Zhao X, Edwards E, Kopp JL, Naramura M, Sander M, Band H, Band V (2014) The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells. BMC Dev Biol 14: 47

Mani SA, Guo W, Liao M-J, Eaton ET, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brinken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715

Maruyama R, Choudhury S, Kowalczczyk A, Bessaraba M, Beresford-Smith B, Conway T, Kaspi A, Wu Z, Nikolskaya T, Merino V, Lo P-K, Liu XS, Nikolsky Y, Sukumar S, Haviv I, Polyak K (2011) Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet 7: e1001369

Memesi EM, Sanarico AG, Giacobbe A, Peschirolli A, Frezza V, Cilacasa A, Piasit F, Tosoni D, Zhou H, Tonon G, Antonov A, Melino G, Pelicci PG, Bernassola F (2015) p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proc Natl Acad Sci USA 112: 3499–3504

Menezes ME, Das SK, Emdad L, Windle JJ, Wang X-Y, Sarkar D, Fisher PB (2014) Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Adv Cancer Res 121: 331–382

Michalak EM, Visvader JE (2016) Dysregulation of histone methyltransferases in breast cancer – opportunities for new targeted therapies? Mol Oncol 10: 1497–1515

Miller DH, Jin DX, Sokol ES, Cabrera JR, Supervia DA, Corella R, Kupperwasser C, Gupta PB (2018) BCL11B drives human mammary stem cell self-renewal in vitro by inhibiting basal differentiation. Stem Cell Reports 10: 1131–1145

Minayo M, Sayaman RW, Stoiber MH, Lin C-H, Stamper MR, Brown JB, LaBarge MA (2017) Age-related gene expression in luminal epithelial cells is La driven by a microenvironment microenvironment from myoepithelial cells. Aging (Albany NY) 9: 2026–2051

Mohibi S, Mirza S, Band H, Band V (2011) Mouse models of estrogen receptor-positive breast cancer. J Carcinog 10: 35

Moody SE, Sarkissian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff RD, Schnall MD, Chadosh LA (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2: 451–461

Morel A-P, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, Devoouassoux-Shisheboran M, Combaret V, Finetti P, Chassot C, Pinatel C, Fauvet F, Saintigny P, Thomas E, Moyret-Lalle L, Lacher J, Despras E, Jauffret J-L, Bertucci F, Guittion J et al (2017) A stemness-related ZEB1-MSRB3 axis governs cellular plasticity and breast cancer genome stability. Nat Med 23: 568–578

Moses H, Barcellos-Hoff MH (2011) TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 3: a003277

Moumen M, Chiche A, Deugnier M-A, Petit V, Ganderillas A, Glukhova MA, Faraldo MM (2012) The proto-oncogene Myc is essential for mammary stem cell function. Stem Cells 30: 1246–1254

Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105–115

Nguyen LV, Makarem M, Carles A, Moksa M, Kannan N, Pandoh P, Eirew P, Osako T, Kardel M, Cheung AMS, Kennedy W, Tse K, Zeng T, Zhao Y, Humphries RK, Aparicio S, Eaves CJ, Hirst M (2014) Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14: 253–263

Nguyen LV, Pellacani D, LeFort S, Kannan N, Osako T, Makarem M, Cox CL, Kennedy W, Beer PA, Carles A, Moksa M, Bilenky M, Balani S, Babovic S, Sun I, Rosin M, Aparicio S, Hirst M, Eaves CJ (2015) Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528: 267–271

Nguyen QH, Pervolarakis N, Blake N, Ma D, Davis RT, James N, Phung AT, Willey E, Kumar R, Jabart E, Driver I, Rock J, Goga A, Khan SA, Lawson DA, Werb Z, Kessenbrock K (2018) Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun 9: 2028
Nielsen TO, Parker JS, Leung S, Voduc D, Eebbert M, Vickery T, Davies SR, Snider J, Stijlemann IJ, Reed J, Cheang MCU, Mardis ER, Perou CM, Bernard PS, Ellis MJ (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16: $5222 – 5232$

Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shiwen A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, jia M, Rance R, Mudie LJ, Game SJ et al (2012) The life history of 21 breast cancers. Cell 149: 994 – 1007

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincocorena I, Alexandrov LB, Martin S, Wedge DC, Van Loo P, Ju YS, Smid M, Brinkman AB, Morganella S, Aure MR, Lingjaerde OC, Langerad A, Ringnér M, Ahn S-M et al (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534: 47 – 54

Parker JS, Mullins L, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijlemann IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27: 1160 – 1167

Pasculli B, Barbano R, Parrella P (2018) Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine. Semin Cancer Biol 51: 22 – 35

Pelissier FA, Garbe JC, Ananthanarayanan B, Miyano M, Lin C, Jokela T, Kumar KA, Nielsen TO, Parker JS, Leung S, Voduc D, Vickers T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijlemann IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27: 1160 – 1167

Phillips S, Prat A, Sedic M, Proia TA, Wronska A, Mazumdar S, Skibinski A, Shirley SH, Perou CM, Gill C, Gupta PB, Kuperwasser C (2014) Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Reports 2: 633 – 647

Pierce DF, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ, Moses HL (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92: 4254 – 4258

Place AE, Jin Huh S, Polya K (2011) The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 13: 227

Podsyspanina K, Politi K, Beverly LJ, Varmus HE (2008) Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 105: $S242 – S247$

Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, Miluzio A, Gaudioso G, Vaira V, Turdo A, Giaggianesi M, Chinnici A, Lipari E, Bicciato S, Bosani S, Todaro M, Zippo A (2018) MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun 9: 1024

Poulou M-C, Labrie Y, Dionio C, Durocher F (2015) The role of methylation in breast cancer susceptibility and treatment. Anticancer Res 35: 4569 – 4574

Pria DA, Kuperwasser C (2006) Reconstruction of human mammary carcinoma in a mouse model. Nat Protoc 1: 206 – 214

Pria TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schmitt S, Lander ES, Kuperwasser C (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8: 149 – 163

Purkis PE, Steel JB, Mackenzie IC, Nathrah WB, Leigh IM, Lane EB (1990) Antibody markers of basal cells in complex epithelia. J Cell Sci 97(Pt 1): 39 – 50

Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 is a key regulator of proinflammatory cytokine TNFα-mediated triple-negative breast cancer progression. J Biol Chem 291: 5068 – 5079

Ramakrishnan R, Khan SA, Badve S (2002) Morphological changes in breast tissue with menstrual cycle. Mod Pathol 15: 1348 – 1356

Raoof A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKney S, Emerman J, Aparicio S, Marra MA, Eaves CJ (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3: 109 – 118

Ren Y, Jia H-H, Xu Y-Q, Zhou X, Zhao X-H, Wang Y-F, Song X, Zhu Z-Y, Sun T, Dou Y, Tian W-P, Zhao X-L, Kang C-S, Mei M (2018) Paracrine and epigenetic control of CA9-induced metastasis: the role of HOTAIR stimulated by TFG-β1 secretion. Mol Cancer 17: 5

Rheinbay E, Parasuraman P, Grimsby J, Tiao G, Engreitz JM, Kim J, Lawrence MS, Taylor-Weiner A, Rodriguez-Cuevas S, Rosenberg M, Hess J, Stewart C, Maruvka YE, Stojanov P, Cortés ML, Seepo S, Cibulskis C, Tracy A, Pugh T, Lee J et al (2017) Recurrent and functional regulatory mutations in breast cancer. Nature 547: 55 – 60

Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42: 1039 – 1042

Rios AC, Fu NY, Lindeman GJ, Vissader JE (2014) in situ identification of bipotent stem cells in the mammary gland. Nature 506: 322 – 327

Roarty K, Rosen JM (2010) Wnt and mammary stem cells: hormones cannot fly wingless. Curr Opin Pharmacol 10: 643 – 649

Robinson JLL, Holmes KA, Carroll JS (2013) FOXA1 mutations in hormone-dependent cancers. Front Oncol 3: 20

Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G, Jansson S, Lehn S, Sjölund J, Reid S, Larsson C, Eriksson P, Anderberg C, Cortez E, Saal LH, Ormstrick-Cartaxo C, Cordero E, Haller BK, Hakkinen J, Vanhoven M, Liem E et al (2018) Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med 24: 463 – 473

Rutkowski MR, Allegrezza M, Svoronos N, Tesone AJ, Stephen TL, Perales-Pachao A, Nguyen J, Zhang P, Fiering SN, Daniel AB, Conot-Garcia JR (2014) Initiation of metastatic breast carcinoma by targeting of the ductal carcinoma (DCIS) of the mammary gland. J Vis Exp 2014: 100330

Saunerson EA, Stepper P, Gomm AJ, Hoa L, Morgan A, Allen MD, Jones JL, Puchalt A, Nguyen J, Zhang P, Fiering SN, Tchou J, Conejo-Garcia JR (2012) Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 55: 3915 – 3927

Sauldersen EA, Stepper P, Gomm AJ, Hoo L, Morgan A, Allen MD, Jones JL, Puchalt A, Nguyen J, Zhang P, Fiering SN, Tchou J, Conot-Garcia JR (2014) Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 55: 3915 – 3927

Schulze-Garg C, Löhler J, Gocht A, Deppert W (2000) A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19: 1028 – 1037

© 2019 The Authors

The EMBO Journal 38: e100330 | 2019 17 of 19
Transcriptional control in human mammary cells

Stingl J, Raouf A, Emerman JT, Eaves CJ (2005) Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 10: 49–59

Stingl J (2011) Estrogen and progesterone in normal mammary gland development and in cancer. Horm Cancer 2: 85–90

Takekawa M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, Perera L, Tucker CJ, Perou CM, Wade PA (2018) CATAZ3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 9: 1059

Terry MB, McDonald JA, Wu HC, Eng S, Santella RM (2016) Epigenetic biomarkers of breast cancer risk: across the breast cancer prevention continuum. Adv Exp Med Biol 882: 33–68

Teulière F, Faraldo MM, Deugnier M-A, Shtutman M, Ben-Ze’ev A, Thiery JP, Glukhova MA (2005) Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132: 267–277

Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F (2011) Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol 225: 565–573

Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479: 189–193

Veltmaat JM, Mailleux AA, Thiery JP, Belluscio S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71: 1–17

Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, Speirs V, Thorne JL, Thygessen HH, Zouman G, Hull MA, Hanby AM, Hughes TA (2013) MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 231: 388–399

Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28: 1143–1158

Wade MA, Sunter NJ, Fordham SE, Long A, Masic D, Russell LJ, Harrison CJ, Rand V, Elstob C, Bown N, Rowe D, Lowe C, Cuthbert G, Bennett S, Closier B, Bacon S, Bacon CM, Onel K, Scott K, Scott D, Travis LB et al (2015) c-MYC is a radiosensitive locus in human breast cells. Oncogene 34: 4985–4994

Wang X-G, Fu L, Li X, Wu X, Zhu Z, Fu L, Dong J-T (2011) Somatic mutations of the mixed-lineage leukemia 3 (MLL3) gene in primary breast cancers. Pathol Oncol Res 17: 429–433

Wang Y, Dong J, Li D, Lai L, Siwko S, Li Y, Liu M (2013) Lgr4 regulates mammary gland development and stem cell activity through the pluripotency transcription factor Sox2. Stem Cells 31: 1921–1931

Wang D, Cai C, Dong X, Yu QC, Zhang X-O, Yang L, Zeng YA (2015) Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517: 81–84

Wang Z, Yang B, Zhang M, Guo W, Wu W, Zhang Y, Jia L, Li S, Cancer Genome Atlas Research Network, Xie W, Yang D (2018) IncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic IncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell 33: 706–720.e9

Watanabe K, Villarreal-Ponce A, Sun P, Salmons ML, Fallahi M, Andersson B, Dai X (2014) Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovo2 transcriptional repressor. Deu Cell 29: 59–74

Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB (2006) Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer 13: 617–628
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16: 712–724

Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner K-U, Raffoul W, Brisken C (2010) Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ 17: 1600–1612

Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW, Hennighausen L (2009) Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 23: 2382–2387

Yeong J, Thike AA, Tan PH, Iqbal J (2017) Identifying progression predictors of breast ductal carcinoma in situ. J Clin Pathol 70: 102–108

Yoo KH, Oh S, Kang K, Wang C, Robinson GW, Ge K, Hennighausen L (2016) Histone demethylase KDM6A controls the mammary luminal lineage through enzyme-independent mechanisms. Mol Cell Biol 36: 2108–2120

Zacksenhaus E, Liu JC, Jiang Z, Yao Y, Xia L, Shrestha M, Ben-David Y (2017) Transcription factors in breast cancer-lessons from recent genomic analyses and therapeutic implications. Adv Protein Chem Struct Biol 107: 223–273

Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6: 568–577

von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27: 339–344

Zhang Z, Christin J, Wang C, Ge K, Oktay MH, Guo W (2016) Mammary-stem-cell-based somatic mouse models reveal breast cancer drivers causing cell fate dysregulation. Cell Rep 16: 3146–3156

Zhou S, Treloar AE, Lupien M (2016) Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations. Cancer Discov 6: 1215–1229

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.