Visualization of Differential Gene Expression by Improved Cyan Fluorescent Protein and Yellow Fluorescent Protein Production in Bacillus subtilis

Jan-Willem Veening, Wiep Klaas Smits, Leendert W. Hamoen,† Jan D. H. Jongbloed, and Oscar P. Kuipers*

Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands

Received 28 April 2004/Accepted 24 June 2004

The distinguishable cyan and yellow fluorescent proteins (CFP and YFP) enable the simultaneous in vivo visualization of different promoter activities. Here, we report new cloning vectors for the construction of cfp and yfp fusions in Bacillus subtilis. By extending the N-terminal portions of previously described CFP and YFP variants, 20- to 70-fold-improved fluorescent-protein production was achieved. Probably, the addition of sequences encoding the first eight amino acids of the N-terminal part of ComGA of B. subtilis overcomes the slow translation initiation that is provoked by the eukaryotic codon bias present in the original cfp and yfp genes. Using these new vectors, we demonstrate that, within an isogenic population of sporulating B. subtilis cells, expression of the abrB and spoIIE genes is distinct in individual cells.

The use of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has proven to be a powerful method to study in vivo gene expression in a broad range of hosts (2). Mutagenesis of gfp resulted in variants with different fluorescent properties (4, 14). The use of the distinguishable cyan (cfp) and yellow (yfp) variants of gfp has allowed studies of multiple cellular processes within a single cell (6, 8). One of the best-studied microbial organisms displaying cellular differentiation is the gram-positive bacterium Bacillus subtilis. Because of its ability to develop natural competence, secrete large quantities of proteins, and form highly resistant spores, it has been extensively studied and used as a model for bacterial cellular differentiation (5, 7, 19). Therefore, the availability of easily detectable variants of CFP and YFP in B. subtilis would considerably facilitate studies of multiple expression patterns in the organism.

Previously reported vectors for the production of fluorescent-protein fusions in B. subtilis contain the genes ecfp (Clontech) and eyfp (Clontech) (8) (in this work, we will refer to these genes as cfp and yfp, respectively). However, these fusions frequently display no or weak fluorescent signals when expressed in B. subtilis (reference 20 and this work). Here, we show that the cfp and yfp variants described are not efficiently translated in B. subtilis when used in promoter-cfp or -yfp fusions. In contrast to gfp (18), the codon usage in the cfp and yfp genes has been optimized for use in eukaryotic cell lines (8). Although a strong bias in codon usage has not been observed for B. subtilis (22), it was reported that, particularly at the initial stages of translation, the occurrence of less preferred triplets has an effect on translation efficiency (11, 27, 30, 32). Moreover, highly expressed genes of B. subtilis generally display a codon usage significantly different from that of genes expressed at low levels (22).

In order to obtain stable and efficiently translated variants of CFP and YFP in B. subtilis, vectors encoding CFP and YFP variants having an N-terminal extension were constructed. This N-terminal extension contains the first eight amino acids of ComGA, a strongly expressed B. subtilis protein involved in competence development (12). Our present studies show that the addition of this N-terminal extension overcomes the hampering of the initiation and processivity of translation. As a result, high levels of fluorescent protein can be produced.

Studying the underlying mechanisms of the differentiation of an isogenic population into distinct developmental stages is an important task in developmental biology. The new vectors described in this paper allow the visualization of differential gene expression within a genetically identical population. In this respect, the process of sporulation in B. subtilis has been studied for many years as a model for cellular differentiation. A major role of Spo0A, the key sporulation regulator, is to repress the expression of abrB and activate the transcription of the spoIIE operon (for a review, see reference 31). By visualizing the expression of the abrB and spoIIE promoters using the CFP- and YFP-encoding vectors described in this work, we demonstrate that within an isogenic population of B. subtilis cells, the initiation of sporulation is distinct from expression of the abrB promoter, which is observed in nonsporulating cells. These results demonstrate the practicability of the novel vectors for studying bacterial cellular differentiation.

MATERIALS AND METHODS

Bacterial strains, plasmids, media, and growth conditions. The bacterial strains and plasmids used in this study are listed in Table 1. TY (tryptone-yeast extract) medium contained Bacto-Tryptone (1%), Bacto-Yeast Extract (0.5%), and NaCl (1%). Sporulation medium contained dehydrated nutrient broth (0.8%), NaOH (0.5 mM), MgSO₄ (1 mM), KCl (1 g/liter), Ca(NO₃)₂ (1 mM), and NaCl (1%). Sporulation medium contained dehydrated nutrient broth (0.8%), NaOH (0.5 mM), MgSO₄ (1 mM), KCl (1 g/liter), Ca(NO₃)₂ (1 mM), and NaCl (1%).
The plasmid pIYFP carrying the improved yfp gene (yfp), the same primer pair was used in a PCR using pSG1187 (yfp) (8) as a template. Plasmid pSG1168 contains the cfp gene derived from pECP (Clontech), and pSG1187 contains the yfp gene derived from pEYFP-C1 (Clontech). The amplified fragments were subsequently cleaved with EcoRI and XbaI and ligated into the corresponding sites of pSG1168, replacing the cfp gene with the icfp and yfp genes. This resulted in plasmids pICFP and pIYFP, respectively. Sequences of the multiple cloning sites of pICFP and pIYFP showed that the cfp gene corresponds to the original gene, whereas the yfp gene contained a single (A → G) point mutation in nucleotide 557, resulting in an Asp186 → Gly186 (D186G) substitution. However, this point mutation does not appear to affect the fluorescence spectrum or intensity of IYFP compared to those of the previously reported YFP.

To construct plasmids p86-IIA and p87-IIA, carrying the B. subtilis spoI IA promoter region fused with the cfp or yfp gene, a PCR with the primers IIA-F and IIA-R (Table 2) was performed, using chromosomal DNA of B. subtilis 168 as a template. The amplified fragment was subsequently cleaved with KpnI and ClaI and ligated into the corresponding sites of pSG1168 and pSG1187, resulting in plasmids p86-IIA and p87-IIA, respectively.

To construct plasmids pICFP-IIA and pIYFP-IIA, carrying the B. subtilis spoI IA promoter region fused with the cfp or yfp sequence, a PCR with the primers IIA-F-800 and KpnI and pSpoIIA-R-HindIII (Table 2) was performed, using chromosomal DNA of B. subtilis 168 as a template. The amplified fragment was subsequently cleaved with KpnI and HindIII and ligated into the corresponding sites of pSG1168 and pSG1187, resulting in plasmids pICFP-IIA and pIYFP-IIA, respectively. It should be noted that the first 24 bp of comGA were included in the pSpoIIA-R-HindIII primer.

To construct plasmid pAmy-ICFP-IIA, plasmid pICFP-IIA was cleaved with KpnI and XbaI. The resulting 1.3-kb fragment, carrying the pSpoIIA-R-HindIII fusion, was ligated into the corresponding sites of pDK (36), resulting in the plasmid pAmy-ICFP-IIA. Note that as a result of this cloning strategy, the pSpoIIA-R-HindIII region replaced the bgaB gene present on pDK.

To construct plasmids p86-abrB, p87-abrB, pICFP-abrB, and pIYFP-abrB, a PCR with the primers F-abrB and R-abrB (Table 2) was performed, using chromosomal DNA of B. subtilis 168 as a template. The amplified fragment was subsequently cleaved with ClaI and EcoRI and ligated into the corresponding sites of pSG1168, pSG1187, pICFP, and pIYFP to generate plasmids p86-abrB, p87-abrB, pICFP-abrB, and pIYFP-abrB, respectively.

Plasmids. To construct the plasmid pICFP carrying the “improved” cfp gene (cfp), a PCR with the primers cfp-yfp-comG-F + EcoRI and RnlacZ-fw (Table 2) was performed, using the plasmid pSG1186 (cfp) (8) as a template. To construct

Plasmids	Relevant properties	Source or reference
pSG1186	bla cat cfp	8
pSG1187	bla cat yfp	8
pDK	bla amyE’ bgaB kan ‘amyE	36
pICFP	bla cat icfp	This study
pIYFP	bla cat yfp	This study
p86-IIA	bla cat PspoIIA-cfp	This study
p87-IIA	bla cat PspoIIA-cfp	This study
pICFP-IIA	bla cat PspoIIA-cfp	This study
pIYFP-IIA	bla cat PspoIIA-cfp	This study
pAmy-ICFP-IIA	bla amyE’ PspoIIA-icfp kan ‘amyE	This study
p86-abrB	bla cat PspoIIA-cfp	This study
p87-abrB	bla cat PspoIIA-cfp	This study
pICFP-abrB	bla cat PspoIIA-cfp	This study
pIYFP-abrB	bla cat PspoIIA-cfp	This study

Recombinant DNA techniques and oligonucleotides. Procedures for DNA purification, restriction, ligation, agarose gel electrophoresis, and transformation of E. coli were carried out as described by Sambrook et al. (28). Enzymes were obtained from Roche (Mannheim, Germany). B. subtilis was transformed as described by Lesky et al. (17). The oligonucleotides used in this study are listed in Table 2.

Plasmids. To construct the plasmid pICFP carrying the “improved” cfp gene (cfp), a PCR with the primers cfp-yfp-comG-F + EcoRI and RnlacZ-fw (Table 2) was performed, using the plasmid pSG1186 (cfp) (8) as a template. To construct

TABLE 1. Bacterial strains and plasmids
Strains and plasmids
E. coli MC1061
pSG1186
pSG1187
pDK
pICFP
pIYFP
p86-IIA
p87-IIA
pICFP-IIA
pIYFP-IIA
pAmy-ICFP-IIA
p86-abrB
p87-abrB
pICFP-abrB
pIYFP-abrB
Plasmids
pSG1186
pSG1187
pDK
pICFP
pIYFP
p86-IIA
p87-IIA
pICFP-IIA
pIYFP-IIA
pAmy-ICFP-IIA
p86-abrB
p87-abrB
pICFP-abrB
pIYFP-abrB

Recombinant DNA techniques and oligonucleotides. Procedures for DNA purification, restriction, ligation, agarose gel electrophoresis, and transformation of E. coli were carried out as described by Sambrook et al. (28). Enzymes were obtained from Roche (Mannheim, Germany). B. subtilis was transformed as described by Lesky et al. (17). The oligonucleotides used in this study are listed in Table 2.

Plasmids. To construct the plasmid pICFP carrying the “improved” cfp gene (cfp), a PCR with the primers cfp-yfp-comG-F + EcoRI and RnlacZ-fw (Table 2) was performed, using the plasmid pSG1186 (cfp) (8) as a template. To construct

TABLE 2. Oligonucleotides
Oligonucleotide
cfp-yfp-comG-F + EcoRI
RnlacZ-fw
IIA-F
IIA-R
IIA-F-500 + KpnI
pSpoIIA-R-HindIII
F-abrB
R-abrB

Recombinant DNA techniques and oligonucleotides. Procedures for DNA purification, restriction, ligation, agarose gel electrophoresis, and transformation of E. coli were carried out as described by Sambrook et al. (28). Enzymes were obtained from Roche (Mannheim, Germany). B. subtilis was transformed as described by Lesky et al. (17). The oligonucleotides used in this study are listed in Table 2.

Plasmids. To construct the plasmid pICFP carrying the “improved” cfp gene (cfp), a PCR with the primers cfp-yfp-comG-F + EcoRI and RnlacZ-fw (Table 2) was performed, using the plasmid pSG1186 (cfp) (8) as a template. To construct

TABLE 2. Oligonucleotides
Oligonucleotide
cfp-yfp-comG-F + EcoRI
RnlacZ-fw
IIA-F
IIA-R
IIA-F-500 + KpnI
pSpoIIA-R-HindIII
F-abrB
R-abrB
B. subtilis strain ipyF-abrB-IpfA-IIA-amE was obtained by transformation of strain ipyF-abrB with chromosomal DNA of strain icpA-IIA-amE. Transformants were selected on TY agar plates containing CHL and KAN after overnight incubation at 37°C.

Microscopy. Cells were prepared for microscopy and applied to agarose slides as described by Glaser et al. (9), and images were acquired using an Axio phot microscope equipped with an AxioVision camera (Zeiss, Oberkochen, Germany). Fluorescence filter sets used to visualize CFP and YFP were obtained from Zeiss. Fluorescent signals of CFP were visualized using set 47 (excitation, 426 to 446 nm; emission, 460 to 500 nm), and fluorescent signals of YFP were visualized using set 46 (excitation, 490 to 510 nm; emission, 520 to 550 nm). AxioVive software (Zeiss) was used for image capture, and the figures were prepared for publication using Corel Graphics Suite 11. The ICPF protein displays a fluorescence excitation maximum of 434 nm and an emission maximum of 477 nm. The IYFP protein displays a fluorescence excitation maximum of 434 nm and an emission maximum of 477 nm. The YFP protein displays a fluorescence excitation maximum of 514 nm and an emission maximum of 527 nm. CFP fluorescence cannot be visualized using the YFP filter, and likewise, fluorescence of YFP cannot be visualized using the CFP filter (data not shown).

Western blot analysis and immunodetection. Cells were separated from the growth medium by centrifugation (20,000 × g; 1 min; room temperature). The pellets of cells were resuspended in protoplast buffer (20 mM potassium phosphate, pH 7.5, 15 mM MgCl₂, 20% sucrose, and 1 mg of lysozyme/ml) and incubated at 37°C for 30 min. The resulting protoplasts were diluted with 2× sodium dodecyl sulfate (SDS) sample buffer, incubated at 95°C for 5 min, and separated by SDS-polyacrylamide gel electrophoresis (PAGE) as described previously (28). Next, the proteins were transferred to a polyvinylidene difluoride membrane (Roche) and horseradish peroxidase-anti-rabbit immunoglobulin G conjugate (Amersham Biosciences, Little Chalfont, United Kingdom) according to the manufacturers’ instructions. Anti-GFP antibodies can be used to detect CFP and YFP due to high amino acid sequence conservation among GFP, CFP, and YFP (15).

Fluorometric analysis of total cytoplasmic protein extracts. Cells were separated from the growth medium by centrifugation (10,600 × g; 2 min; room temperature). The pellets of cells were washed and resuspended in 50 mM Tris-HCl, pH 7. Next, 0.5 g of glass beads (50- to 105-μm diameter) were added, and the cells were disrupted using a minibeadbeater (twice for 1 min each time; Bio-Spec Products, Bartlesville, Wash.). To remove the glass beads, samples were centrifuged (20,000 × g; 5 min; 4°C), and the supernatants were transferred to clean 0.5-mL tubes. Cytoplasmic proteins were separated from membranes by velocity centrifugation (195,000 × g; rotor TLS-120-1; 30 min; 4°C). Samples were analyzed on a fluorometer (LS-50 B, Perkin-Elmer, Boston, Mass.) using quartz cuvettes (101 QS; Hellma, Müllheim, Germany). The settings to measure CFP fluorescence were as follows: excitation, 436/10; emission, 480/20. The settings to measure YFP fluorescence were as follows: excitation, 500/10; emission, 535/15. During all measurements, the photomultiplier tube voltage was set at 750 V.

Protein labeling, immunoprecipitation, SDS-PAGE, and fluorography. Pulse-chase labeling of B. subtilis, immunoprecipitation, SDS-PAGE, and fluorography, pulse-chase labeling of B. subtilis, immunoprecipitation, SDS-PAGE, and fluorography were performed as described previously (34). Immunoprecipitations were performed with specific antibodies against GFP (Molecular Probes).

RNA isolation and RNA dot blotting. Exponentially growing cells were collected by centrifugation, and RNA was extracted as described previously (35). The RNA quantity was spectrophotometrically measured on an ND-1000 Nanodrop Technologies, Wilmington, Del.), and the RNA quality was checked by capillary electrophoresis using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, Calif.). For the production of a radioactively labeled probe, a DNA fragment containing the yfp gene was amplified by PCR using primers gfp1 and gfp2 (Table 1) and was shown to be highly stable when used in fusions with CFP or YFP (data not shown). Using a primer carrying sequences encoding the first eight amino acid residues of ComGA (Table 2), the cfp and yfp genes were amplified and cloned into pSG1186 (8), replacing the original cfp gene with the extended cfp or yfp gene (see Materials and Methods). Using this cloning strategy, the original EcoRI recognition site of pSG1186 was removed and a new EcoRI recognition site was introduced upstream of the comGA sequence. Due to introduction of the comGA sequence, a TTG start codon was employed instead of the ATG start codon present in the original cfp or yfp sequence. The use of the non-ATG start codon TTG is quite common in gram-positive organisms (1) and does not seem to have a substantial influence on translation efficiency (24). A schematic presentation of the pICFP and pYFP vectors is given in Fig. 1. The pICFP and pYFP plasmids contain a multiple cloning site directly upstream of the TTG start codon. This allows the construction of C-terminal fluorescent protein fusions and/or promoter activity studies. The E. coli strain used for the production of CFP and YFP (pICFP, pYFP) (ECE180; pYFP, ECE181) can be ordered from the Bacillus Genetic Stock Center (http://www.bsgc.org/).

RESULTS AND DISCUSSION

Construction of new cfp and yfp variants. Promoter fusions with the unmodified cfp or yfp gene in B. subtilis resulted in little or no production of fluorescent protein and thus poor in vivo fluorescence (see below). For this reason, we set out to construct improved variants of cfp and yfp. To obtain vectors carrying improved variants of cfp and yfp, the first 24 bp of the coding sequence of comGA were fused to the cfp and yfp genes. The N terminus of ComGA was selected, because this protein is produced at high levels during competence development (1) and was shown to be highly stable when used in fusions with CFP or YFP (data not shown). Using a primer carrying sequences encoding the first eight amino acid residues of ComGA (Table 2), the cfp and yfp genes were amplified and cloned into pSG1186 (8), replacing the original cfp gene with the extended cfp or yfp gene (see Materials and Methods).

Using this cloning strategy, the original EcoRI recognition site of pSG1186 was removed and a new EcoRI recognition site was introduced upstream of the comGA sequence. Due to introduction of the comGA sequence, a TTG start codon was employed instead of the ATG start codon present in the original cfp or yfp sequence. The use of the non-ATG start codon TTG is quite common in gram-positive organisms (1) and does not seem to have a substantial influence on translation efficiency (24). A schematic presentation of the pICFP and pYFP vectors is given in Fig. 1. The pICFP and pYFP plasmids contain a multiple cloning site directly upstream of the TTG start codon. This allows the construction of C-terminal fluorescent protein fusions and/or promoter activity studies. The E. coli strain used for the production of CFP and YFP (pICFP, pYFP) (ECE180; pYFP, ECE181) can be ordered from the Bacillus Genetic Stock Center (http://www.bsgc.org/).

CFP and YFP are inefficiently produced in B. subtilis. To compare fluorescent-protein production from fusions made with the previously described vectors (8) and the vectors described above (Fig. 1), the B. subtilis abrB and spoIIA promoter regions were fused with the fluorescent-protein-encoding genes (see Materials and Methods). Expression driven from these promoters was shown to be high under specific growth conditions (29). The promoter fusion plasmids were introduced in B. subtilis 168 and integrated into the chromosome of the organism. Next, strains were examined for fluorescent-protein production by fluorescence microscopy and Western blotting. B. subtilis strains 86-abrB (P_{abrB}^Cfp), icfp-abrB (P_{abrB}^Icp), 87-abrB (P_{abrB}^Yfp), and yfp-abrB (P_{abrB}^Yfp) were grown in TY medium, and samples were withdrawn at the mid-exponential growth phase. In addition, strains 86-spoIIA (P_{spoIIA}^Cfp), icfp-spoIIA (P_{spoIIA}^Icp), 87-spoIIA (P_{spoIIA}^Yfp), and yfp-spoIIA (P_{spoIIA}^Yfp) were grown in sporulation medium, and cells were harvested 2 h after entry into the stationary growth phase. The cells were analyzed by fluorescence micros-
copy using the appropriate filters. Strikingly, only strains harboring the comGA-cfp and comGA-yfp fusions showed detectable fluorescence signals (Fig. 2). Therefore, we refer to these variants as improved cfp and yfp (icfp and iyfp). As shown by Western blotting, only minor amounts of CFP and YFP could be visualized in cells containing the original variants, whereas strains expressing the N-terminally extended variants (ICFP and IYFP) showed considerably higher protein production levels (Fig. 3).

To quantify the differences in fluorescent signals shown in Fig. 2, the total fluorescence in cytosolic protein extracts was determined using a fluorimeter. The different B. subtilis strains containing the abrB-promoter fusions were grown in TY medium, and samples were taken at the mid-exponential growth phase. The abrB fusion strains were chosen for this experiment, since abrB is highly expressed during exponential growth. Total cytosolic proteins were isolated, and fluorescence was measured as described in Materials and Methods. As specified in Table 3, ICFP protein extracts showed 20- to 30-times-higher fluorescence than CFP extracts. For IYFP, an improvement of between 50 and 70 times could be measured compared to the fluorescence of YFP.

Taken together, these results demonstrate that production of the modified fluorescent proteins in B. subtilis is considerably higher and is sufficient to be visualized by fluorescence microscopy, in contrast to the unmodified variants.

Production of cfp and yfp mRNAs in B. subtilis. To investigate whether the small amounts of CFP and YFP proteins produced in B. subtilis resulted from low mRNA production levels, RNA dot blot experiments were performed. The different B. subtilis strains containing abrB-promoter fusions were grown in TY medium, and samples were withdrawn at the mid-exponential growth phase. RNA was isolated, blotted, hybridized, and analyzed as described in Materials and Methods. As shown in Fig. 4, production levels of cfp and yfp mRNAs did not differ significantly from the levels produced by the icfp and iyfp variants. This result suggests that the insufficient production of CFP and YFP in B. subtilis is not related to an inadequate production of cfp and yfp mRNAs.

Increased translational efficiencies of ICFP and IYFP in B. subtilis. To investigate the stability and putative degradation of CFP/YFP and ICFP/IYFP, pulse-chase labeling experiments were performed. The different B. subtilis strains containing the abrB-promoter fusions were grown in S7 medium, and cells were labeled with [35S]methionine-[35S]cysteine for 30 s prior to a chase with an excess of nonradioactive methionine-cysteine. As depicted in Fig. 5, the fluorescent proteins with an N-terminal extension (ICFP and IYFP) are produced more rapidly and in larger quantities than CFP and YFP. While both the ICFP and IYFP proteins were already produced at high levels immediately after the chase of the cells, even small amounts of CFP and YFP were not detectable at that point. As already demonstrated by Western blotting (Fig. 3), significant degradation of the fluorescent proteins could not be observed. This indicates that proteolytic activity by one of the endogenous proteases of B. subtilis is probably not the cause of the low levels of CFP and YFP compared to the ICFP and IYFP protein levels. More likely, the low levels of CFP and YFP production were the result of the low translation efficiencies of the original cfp and yfp genes.

abrB and spoIIA are distinctly expressed. To demonstrate the experimental applicability of the vectors described in this work, we examined the expression of the abrB and spoIIA genes within an isogenic population of B. subtilis cells. In B. subtilis, transition state regulator proteins play an essential role in the adaptive capacity and survival of the cell. The transcription regulator AbrB regulates many stationary-phase processes.
(e.g., spo0E and spoVG), competence (e.g., comK), degradative enzyme production (e.g., aprE), amino acid utilization (e.g., dpp), and antibiotic production (e.g., tycA) (13, 26, 33). When cells reach the end of exponential growth and various environmental signals promote the activation of the response regulator Spo0A, abrB expression is repressed by Spo0A/H11011P (23, 25). Furthermore, Spo0A/H11011P activates PspoIIA (PspoIIA), which contains the early sporulation genes spoIIAA, spoIIAB, and sigF (21). Chung et al. proposed that expression of the spoIIA operon (and initiation of sporulation in general) requires a threshold concentration of Spo0A—P (3). Knowing this, it is to be expected that cells that initiate sporulation (i.e., express spoIIA) do not express abrB. To see whether expression of abrB and initiation of sporulation are strictly separated between individual cells, we investigated how the expression of abrB and spoIIA is distributed between cells within an isogenic population. Since cells that have initiated sporulation (and have not yet formed an asymmetric septum) are hardly distinguishable from other cells by light microscopy, a B. subtilis strain was constructed that enabled visualization of the activity of the abrB and spoIIA promoters at a single-cell level. We constructed a strain in which the icfp gene is under the control of the abrB promoter (integrated at the abrB promoter region) and the icfp gene is under the control of the spoIIA promoter (integrated at the amyE locus). The resulting double-labeled strain was grown overnight in TY medium, and cells were collected for analysis by fluorescence microscopy. As shown in Fig. 6, only part of the population produces IYFP expressed from the abrB promoter. In these cells, production of ICFP expressed from the spoIIA promoter cannot be observed. Accordingly, cells expressing ICFP from the spoIIA promoter do not express IYFP from the abrB promoter. It should be noted that in some cells that predominantly express ICFP, a weak signal in the yellow filter could be detected. This signal most likely represented residual IYFP protein that was produced due to abrB promoter activity at earlier growth stages and that is maintained in the cell as a result of its stable nature.

During exponential growth, all cells were shown to express IYFP from the abrB promoter (data not shown). Since AbrB is a repressor of many stationary-phase processes, this is not surprising. At the beginning of the stationary growth phase, expression of ICFP from the spoIIA promoter can be observed (data not shown). Interestingly, this expression was not ob-

![FIG. 2. Visualization of fluorescent-protein production in B. subtilis by fluorescence microscopy. Strains carrying an abrB promoter-cfp or -yfp fusion were grown in TY medium, and samples were withdrawn at mid-exponential growth phase (upper panels). Strains containing a spoIIA promoter-cfp or -yfp fusion were grown in sporulation medium, and cells were collected 2 h after entry into the stationary growth phase (lower panels). Production of CFP, YFP, ICFP, or IYFP, whose expression was driven by activity of either the abrB (PabrB) or the spoIIA (PsplIA) promoter, was visualized by fluorescence microscopy, as described in Materials and Methods.](image)

![FIG. 3. Fluorescent-protein production. Strains carrying an abrB and spoIIA promoter-cfp or -yfp fusion were grown as described in the legend to Fig. 2. Cells were separated from the growth medium by centrifugation and analyzed by SDS-PAGE and Western blotting using GFP-specific polyclonal antibodies. The arrow indicates GFP-specific signal.](image)

TABLE 3. Fluorescence determinations of cytosolic protein extracts

Sample	Fluorescence at:		
	1:100	1:50	1:10
CFP	ND	0.9	8
ICFP	ND	26.4	165
YFP	0.9	ND	11
IYFP	69.2	ND	568

Fluorescence is presented in arbitrary units. The results of three dilutions of cytosolic protein extracts are shown. Samples were normalized against a cytosolic protein extract of the parental B. subtilis 168 strain and were prepared and measured as described in Materials and Methods. ND, not determined.

Downloaded from http://aem.asm.org/ on April 26, 2019 by guest
served in all cells, indicating that initiation of sporulation is a heterogeneous process. This was also demonstrated in a different way by flow cytometry experiments (3). Gonzalez-Pastor and coworkers (10) showed that cells that have initiated sporulation development can delay the commitment to further stages of sporulation by killing their siblings and utilizing the nutrients that are released. The two operons involved in this so-called self-digestion (skf and sdp) are directly regulated by active Spo0A, as is the spoIIA operon (21, 29). The cannibalistic behavior of a sporulating culture could, at least in part, account for the observed heterogeneity in spoIIA expression. We are currently trying to understand the underlying mechanisms involved in this heterogeneous process.

Concluding remarks. We have constructed new cfp and yfp vectors encoding fluorescent proteins with an eight-amino-acid N-terminal extension that can be produced at useful levels in B. subtilis, and probably also in other high-AT gram-positive bacteria. Our results indicate that the presence of the sequence encoding this N-terminal extension overcomes the impairment of translation that is provoked by the human codon bias present in the original cfp and yfp genes. This shows that the codon usage in the initial sequence of a gene can play an important role in the production of that protein in B. subtilis. By extending a (heterologous) gene with a sequence encoding a stable and highly expressed protein of B. subtilis, the production of this (heterologous) protein can be significantly increased when expressed in B. subtilis and probably also in other high-AT gram-positive bacteria.

ACKNOWLEDGMENTS

We thank the Bacillus Genetic Stock Centre for providing plasmids pSG1186, pSG1187, and pDK. We thank Reindert Nijland for useful discussions.

J.-W.V. was supported by grant ABC-5587 from NWO-STW. W.K.S. was supported by grant 811.35.002 from NWO-ALW.

REFERENCES

1. Albanino, M., R. Breitling, and D. A. Dubnau. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171: 5386–5404.

2. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

3. Chung, J. D., G. Stephanopoulos, K. Ireton, and A. D. Grossman. 1994. The regulation of genetic competence in Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176:1977–1984.

4. Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38.

5. Dubnau, D. 1991. The regulation of genetic competence in Bacillus subtilis. Mol. Microbiol. 5:11–18.

6. Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain. 2002. Stochastic gene expression in a single cell. Science 297:1183–1186.

7. Errington, J. 1993. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57:1–33.

8. Feucht, A., and P. J. Lewis. 2001. Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 264: 289–297.
9. Glaser, P., M. E. Sharpe, B. Raether, M. Perego, K. Ohlsen, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11:1160–1168.

10. Gonzalez-Pastor, J. E., E. C. Hobbs, and R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510–513.

11. Haas, J., E. C. Park, and B. Seed. 1996. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6:315–324.

12. Haljema, B. J., J. Hahn, J. Haynes, and D. Dubnau. 2001. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol. 40:52-64.

13. Hamaon, L. W., D. Kausche, M. A. Marahiel, D. van Sinderen, G. Venema, and P. Serror. 2003. The Bacillus subtilis transition state regulator AbrB binds to the –35 promoter region of comK. FEBS Microbiol. Lett. 218:299–304.

14. Heim, R., and R. Y. Tsien. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6:175–182.

15. Kaltwasser, M., T. Wiegert, and W. Schumann. 2002. Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl. Environ. Microbiol. 68:2624–2628.

16. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256.

17. Leskela, S., V. P. Kontinen, and M. Sarvas. 1996. Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. Microbiology 142:71–77.

18. Lewis, P. J., and A. L. Marston. 1999. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227:101–110.

19. Losick, R., and P. Stragier. 1992. Cis-regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355:601–604.

20. Mascarenhas, J., J. Soppa, A. V. Strunnikov, and P. L. Graumann. 2002. Cell cycle-dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. EMBO J. 21:3108–3118.

21. Molle, V., M. Fujita, S. T. Jensen, P. Eichenberger, J. E. Gonzalez-Pastor, J. S. Liu, and R. Losick. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50:1683–1701.

22. Moszer, I., E. P. Kocha, and A. Danchin. 1999. Codon usage and lateral gene transfer in Bacillus subtilis. Curr. Opin. Microbiol. 2:524–528.

23. O’Reilly, M., and K. M. Devine. 1997. Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fin, the nucleoid binding protein from Escherichia coli. J. Bacteriol. 179:522–529.

24. Ozbudak, E. M., M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31:69–73.

25. Perego, M., C. Hanstein, K. M. Welsh, T. Djavakhishvili, P. Glaser, and J. A. Hoch. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047–1055.

26. Robertson, J. B., M. Gocht, M. A. Marahiel, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:8457–8461.

27. Robinson, M., R. Lilley, S. Little, J. S. Emtage, G. Yarranton, P. Stephens, A. Millican, M. Eaton, and G. Humphreys. 1984. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 12:6663–6671.

28. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

29. Schmeisser, F., J. A. Brannigan, R. J. Lewis, A. J. Wilkinson, P. Youngman, and I. Barak. 2000. A new mutation in spo0A with intragenic suppressors in the effector domain. FEBS Microbiol. Lett. 185:123–128.

30. Sharp, P. M., E. Cowe, D. G. Higgins, D. C. Shields, K. H. Wolfe, and F. Wright. 1988. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 16:8207–8211.

31. Sonenshein, A. L. 2000. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3:561–566.

32. Sorensen, M. A., C. G. Kurland, and S. Pedersen. 1989. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207:365–377.

33. Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbuly, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8:1615–1621.

34. van Dijl, J. M., A. de Jong, H. Smith, S. Bron, and G. Venema. 1991. Non-functional expression of Escherichia coli signal peptide I in Bacillus subtilis. J. Gen. Microbiol. 137:2073–2083.

35. van Hijum, S. A. F. T., R. J. Baerends, H. A. Karsens, A. de Jong, N. E. Robertson, J. B., M. Gocht, M. A. Marahiel, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:8457–8461.

36. van Hijum, S. A. F. T., R. J. Baerends, H. A. Karsens, A. de Jong, N. E. Robertson, J. B., M. Gocht, M. A. Marahiel, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:8457–8461.

37. Wilson, A. L., D. J. Gotschlich, and M. E. Sharpe. 1994. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

38. Winkler, M., and M. E. Sharpe. 1995. Codon usage de-