Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes

Maria Pia Miglietta, Stéphane Hourdez, Dominique A. Cowart, Stephen W. Schaeffer, Charles Fisher

To cite this version:

Maria Pia Miglietta, Stéphane Hourdez, Dominique A. Cowart, Stephen W. Schaeffer, Charles Fisher. Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes. Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 2010, 57 (21-23), pp.1916-1925. 10.1016/j.dsr2.2010.05.007 . hal-01250940

HAL Id: hal-01250940
https://hal.archives-ouvertes.fr/hal-01250940

Submitted on 5 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes

Maria Pia Miglietta a,*, Stephane Hourdez b, Dominique A. Cowart a, Stephen W. Schaeffer a, Charles Fisher a

a The Pennsylvania State University, Department of Biology, 208 Mueller Lab, University Park, PA 16802-5301, USA
b Station Biologique de Roscoff, CNRS-UPMC, BP74, 29680 Roscoff, France

At least six morphospecies of vestimentiferan tubeworms are associated with cold seeps in the Gulf of Mexico (GOM). The physiology and ecology of the two best-studied species from depths above 1000 m in the upper Louisiana slope (Lamellibrachia luymesi and Seepiophila jonesi) are relatively well understood. The biology of one rare species from the upper slope (escarpiid sp. nov.) and three morphospecies found at greater depths in the GOM (Lamellibrachia sp. 1, L. sp. 2, and Escarpia laminata) are not as well understood. Here we address species distributions and boundaries of cold-seep tubeworms using phylogenetic hypotheses based on two mitochondrial genes. Fragments of the mitochondrial large ribosomal subunit rDNA (16S) and cytochrome oxidase subunit I (COI) genes were sequenced for 167 vestimentiferans collected from the GOM and analyzed in the context of other seep vestimentiferans for which sequence data were available. The analysis supported five monophyletic clades of vestimentiferans in the GOM. Intra-clade variation in both genes was very low, and there was no apparent correlation between the within-clade diversity and collection depth or location. Two of the morphospecies of Lamellibrachia from different depths in the GOM could not be distinguished by either mitochondrial gene. Similarly, E. laminata could not be distinguished from other described species of Escarpia from either the west coast of Africa or the eastern Pacific using COI. We suggest that the mitochondrial COI and 16S genes have little utility as barcoding markers for seep vestimentiferan tubeworms.

1. Introduction

For the better part of the last century, marine biologists assumed oceans were largely interconnected by currents that enabled larvae and propagules to reach distant shores and assure gene flow even over great distances. More recently, the use of molecular tools has challenged assumptions regarding population structure and speciation in the ocean and demonstrated that marine animals often have genetically distinct populations despite geographic proximity (Palumbi and Warner, 2003). Although sharp genetic breaks between close populations have been recorded throughout the ocean, most of what is known about speciation patterns and phylogeography has been inferred from shallow-water and coastal systems, which represent only about 15% of the aquatic environment. Thus, our knowledge of processes that lead to population divergence and speciation in the open ocean is relatively limited (Thornhill et al., 2008, and references therein; Zardus et al., 2006).

Vestimentiferan tubeworms, which include 10 genera in the polychaete family Siboglinidae (Halanych et al., 2001; Kojima et al., 2002; McMullin et al., 2003; Rouse, 2001), are abundant at deep-sea hydrothermal vents and cold seeps at depths ranging from 80 to 9345 m (Cordes et al., 2007b; Mironov, 2000; Miura et al., 2002). In the deep Gulf of Mexico, six morphospecies have been reported (Cordes et al., 2009). Two described species, Lamellibrachia luymesi (van der Land and Narrevang, 1975) and Seepiophila jonesi (Gardiner et al., 2001), are relatively well studied, and their ecology and physiology are well understood (Bergquist et al., 2002; Cordes et al., 2007a, b). They occur on the upper Louisiana slope at between ~500 and 950 m depth and occasionally co-occur with a rare undescribed species, escarpiid sp. nov. The three other morphological species are found on the lower Louisiana slope at depths greater than about 950 m (Lamellibrachia sp. 1, L. sp. 2, and Escarpia laminata).

In this paper, we present phylogenetic hypotheses based on the mitochondrial large ribosomal subunit rDNA gene (16S) and mitochondrial cytochrome oxidase 1 gene (COI) of over 200

* Corresponding author.
E-mail address: mp.miglietta@psu.edu (M. Pia Miglietta).
vestimentiferans (sequenced for either or both genes) including 180 individuals from the six morphospecies that occur in the Gulf of Mexico. Phylogenetic trees are used to examine the distribution of vestimentiferans in the Gulf of Mexico and their relations to other vestimentiferans around the world. We examined the concordance between the morphological and phylogenetic data to identify differences between the genealogical and morphological species analyzed. Finally, we compared between- and within-species 16S and COI genetic distances and show that these two mitochondrial genes have little utility as “barcoding molecules” for vestimentiferans.

2. Material and methods

2.1. Collection of material

Vestimentiferans were collected in the deep Gulf of Mexico from 12 sites on two cruises in 2006 and 2007, using the DSV ALVIN and R.V. Atlantis in 2006 and ROV JASON II and the NOAA ship Ronald Brown in 2007 (see Fig. 1). Vestimentiferans were collected using either the Bushmaster Jr. collection device (for samples destined also for community ecology analyses, see Cordes et al., 2010) or the submersible manipulators and placed directly into a collection box. Aboardship, all vestimentiferans were identified using morphological criteria, and subsamples of vestimentum tissue were frozen for subsequent analyses at the Pennsylvania State University. Additional frozen vestimentiferan tissue samples collected previously from shallower sites on the upper Louisiana slope using the DSV JOHNSON SEA LINK were also analyzed for this study (see Table 1 for a complete list of specimens).

2.2. DNA sequencing

DNA was extracted either by boiling a small amount of frozen tissue in 600 µL of 10% Chelex solution (Bio-Rad) or using a CTAB+PVP method modified from Doyle and Doyle (1987), followed by a standard ethanol precipitation.

A 524 bp fragment of the mitochondrial 16S gene was amplified using primers 16Sar and 16Sbr (Kojima et al., 1995). A 689 bp fragment of the mitochondrial gene COI was amplified using the primers HCO and LCO (Folmer et al., 1994). Amplification was performed under the following PCR conditions: 94°C (1 min); 50°C (2 min); and 72°C (2.5 min) for 30 cycles. All PCR reactions were performed using 0.5 µl of each primer, 2.5 µl of 10XBuffer, 2 µl of 10 µM dNTPs, 0.2 µl of taq, 16.5 µl of water, and 3 µl of template. The PCR product was first purified with the ExoSap-it protocol (USB, Affimetrix) and then run on a 2% agarose gel stained with ethidium bromide to enable us to check the quantity and quality of the product. The purified PCR product was used as a template for double-stranded sequencing that was carried out at the Pennsylvania State University Sequencing Core Facility, University Park, Pennsylvania, using ABI 3730 sequencer machines.

2.3. Phylogenetic analysis

Sequences were first assembled and edited using Geneious Pro 4.0.4 (Biomatters Ltd.), and then aligned using ClustalX (Thompson et al., 2002). All alignments were confirmed and edited visually in MacClade 4.06 OS X (Maddison and Maddison, 2000) to insure that indel variation was aligned consistently among all sequenced genes.

Phylogenetic analyses of the aligned sequences were conducted using the maximum parsimony (MP) optimality criterion and neighbor joining (Saitou and Nei, 1987) (NJ) in PAUP* version 4.0b10 for Macintosh (Wilgenbusch and Swoford, 2003), and the maximum likelihood (ML) optimality criterion in GARLI v0.951.0sX-GUI (Zwickl, 2006) and PhyML (Guindon and Gascuel, 2003). The best-fit model used in PhyML and PAUP* was assessed using the akaike information criterion as implemented in modelfit (Posada, 2003; Posada and Crandall, 1998).

The best-fit model was (HKY+I+G) for the COI dataset and (GTR+G) for the 16S dataset. Clade stability was assessed by ML bootstrap analysis (Felsenstein, 1985) in GARLI (100 bootstrap replicates) and NJ (1000 replicates) in PAUP*. The ML analyses in GARLI were performed using random starting trees and default termination conditions. Within- and between-species distances were estimated in MEGA 4 (Tamura et al., 2007).

3. Results

The complete COI dataset includes 146 sequences (Table 1) of the six Gulf of Mexico (COM) cold-seep morphospecies, the available GenBank sequences of E. southwardae, E. spicata, and assorted Lamellibrachia species from around the world. Sequences from the hydrothermal vent-dwelling genera Riftia, Oasiaia, Tevnia, and Arcovestia were used as outgroups. We restricted our analyses to

![Fig. 1. Map of new deep-water collection sites in the Gulf of Mexico.](image-url)
Sample	Clade	Location	GenBank Accession #	Genes
1.AC818	*Escarbia laminata*	GOM AC818 16S: GU068165	16S/COI	COI: GU059163
2.AC818	*Escarbia laminata*	GOM AC818 16S: GU068166	16S/COI	COI: GU059205
3.AC818	*Escarbia laminata*	GOM AC818 16S: GU068167	16S/COI	COI: GU059214
4.AC818	*Escarbia laminata*	GOM AC818 16S: GU068168	16S/COI	COI: GU059222
5.AC818	*Escarbia laminata*	GOM AC818 16S: GU068169	16S/COI	COI: GU059228
6.AC818	*Escarbia laminata*	GOM AC818 16S: GU068170	16S/COI	COI: GU059234
8.AC818	*Lamellibrachia hyymesi*	GOM AC818 16S: GU068171	16S/COI	COI: GU059164
10.GB697	*Escarbia laminata*	GOM GB697 16S: GU068172	16S/COI	COI: GU059170
11.GB829	*Escarbia laminata*	GOM GB829 16S: GU068173	16S/COI	COI: GU059174
12.GB829	*Escarbia laminata*	GOM GB829 16S: GU068174	16S/COI	COI: GU059177
13.GC600	*Escarbia laminata*	GOM GC600 16S: GU068175	16S/COI	COI: GU059185
14.GC852	*Escarbia laminata*	GOM GC852 16S: GU068176	16S/COI	COI: GU059192
17.GC852	*Escarbia laminata*	GOM GC852 16S: GU068177	16S/COI	COI: GU059193
18.GC852	*Escarbia laminata*	GOM GC852 16S: GU068178	16S/COI	COI: GU059194
19.GC852	*Escarbia laminata*	GOM GC852 16S: GU068179	16S/COI	COI: GU059195
19B.AC818	*Escarbia laminata*	GOM AC 818 16S: GU068180	16S/COI	COI: GU059196
20.WR269	*Escarbia laminata*	GOM WR269 16S: GU068181	16S/COI	COI: GU059197
21.WR269	*Escarbia laminata*	GOM WR269 16S: GU068182	16S/COI	COI: GU059198
22.WR269	*Escarbia laminata*	GOM WR269 16S: GU068183	16S/COI	COI: GU059199
23.WR269	*Escarbia laminata*	GOM WR269 16S: GU068184	16S/COI	COI: GU059200
24.WR269	*Escarbia laminata*	GOM WR269 16S: GU068185	16S/COI	COI: GU059201
26.AT340	*Escarbia laminata*	GOM AT340 16S: GU068186	16S/COI	COI: GU059202
27.AT340	*Escarbia laminata*	GOM AT340 16S: GU068187	16S/COI	COI: GU059203
28.AT340	*Escarbia laminata*	GOM AT340 16S: GU068188	16S/COI	COI: GU059204
29.AT340	*Escarbia laminata*	GOM AT340 16S: GU068189	16S/COI	COI: GU059205
30.AT340	*Escarbia laminata*	GOM AT340 16S: GU068190	16S/COI	COI: GU059206
31.AT340	*Escarbia laminata*	GOM AT340 16S: GU068191	16S/COI	COI: GU059207
32.AT340	*Escarbia laminata*	GOM AT340 16S: GU068192	16S/COI	COI: GU059208
33.AT340	*Escarbia laminata*	GOM AT340 16S: GU068193	16S/COI	COI: GU059209
34.WR264	*Escarbia laminata*	GOM WR264 16S: GU068194	16S/COI	COI: GU059210
35.WR269	*Escarbia laminata*	GOM WR269 16S: GU068195	16S/COI	COI: GU059211
37.AC601	*Escarbia laminata*	GOM AC601 16S: GU068196	16S/COI	COI: GU059212
38.AC601	*Escarbia laminata*	GOM AC601 16S: GU068197	16S/COI	COI: GU059213
39.AC601	*Escarbia laminata*	GOM AC601 16S: GU068198	16S/COI	COI: GU059214
40.AC601	*Escarbia laminata*	GOM AC601 16S: GU068199	16S/COI	COI: GU059215
41.AC601	*Escarbia laminata*	GOM AC601 16S: GU068200	16S/COI	COI: GU059216
42.AC601	*Escarbia laminata*	GOM AC601 16S: GU068201	16S/COI	COI: GU059217
43.AC601	*Escarbia laminata*	GOM AC601 16S: GU068202	16S/COI	COI: GU059218
44.AC601	*Escarbia laminata*	GOM AC601 16S: GU068203	16S/COI	COI: GU059219
45.AC601	*Escarbia laminata*	GOM AC601 16S: GU068204	16S/COI	COI: GU059220
Sample	Clade	Location	GenBank Accession #	Genes
----------	-----------------------------	----------	---------------------	-------
48.AC601	Escarpia laminata	GOM AC601	GU068203	16S
49.AC601	Escarpia laminata	GOM AC601	GU068204	16S/COI
50.AC601	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068205	16S
51.AT340	Escarpia laminata	GOM AT340	GU068206	16S
52.AT340	Escarpia laminata	GOM AT340	GU068207	16S
54.AC601	Escarpia laminata	GOM AC601	GU068208	16S/COI
55.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068209	16S/COI
56.L. sp. 1 GB697	Lamellibrachia luymesi/sp. 1	GOM GB697	GU068210	16S
57.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068211	16S/COI
58.L. sp. 1 GC852	Lamellibrachia luymesi/sp. 1	GOM GC852	GU068212	16S/COI
59.L. sp. 1 AC601	Lamellibrachia luymesi/sp. 1	GOM AC601	GU068213	16S
60.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068214	16S/COI
61.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068215	16S
62.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068216	16S/COI
63.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068217	16S
64.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068218	16S/COI
65.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068219	16S
66.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068220	16S/COI
67.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068221	16S
68.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068222	16S/COI
69.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068223	16S/COI
70.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068224	16S/COI
71.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068225	16S
72.L. luymesi BP	Lamellibrachia luymesi/sp. 1	GOM GC233	GU068226	16S/COI
73.L. sp. 1 GB697	Lamellibrachia luymesi/sp. 1	GOM GB697	GU068227	16S/COI
74.L. sp. 1 GB697	Lamellibrachia luymesi/sp. 1	GOM GB697	GU068228	16S
75.L. sp. 1 GB697	Lamellibrachia luymesi/sp. 1	GOM GB697	GU068229	16S/COI
76.L. sp. 1 GB829	Lamellibrachia luymesi/sp. 1	GOM GB829	GU068230	16S/COI
77.L. sp. 1 GB829	Lamellibrachia luymesi/sp. 1	GOM GB829	GU068231	16S
78.L. sp. 1 GB829	Lamellibrachia luymesi/sp. 1	GOM GB829	GU068232	16S/COI
79.L. sp. 1 GB829	Lamellibrachia luymesi/sp. 1	GOM GB829	GU068233	16S
80.L. sp. 1 GB829	Lamellibrachia luymesi/sp. 1	GOM GB829	GU068234	16S/COI
81.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068235	16S/COI
82.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068236	16S
84.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068237	16S/COI
85.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068238	16S/COI
86.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068239	16S/COI
88.L. sp. 1 GC600	Lamellibrachia luymesi/sp. 1	GOM GC600	GU068240	16S/COI
89.L. sp. 1 GC600	Lamellibrachia luymesi/sp. 1	GOM GC600	GU068241	16S/COI
90.L. sp. 1 GC852	Lamellibrachia luymesi/sp. 1	GOM GC852	GU068242	16S/COI
91.L. sp. 1 GC852	Lamellibrachia luymesi/sp. 1	GOM GC852	GU068243	16S
92.L. sp. 1 GC852	Lamellibrachia luymesi/sp. 1	GOM GC852	GU068244	16S/COI
93.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068245	16S/COI
94.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068246	16S
95.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068247	16S/COI
96.L. luymesi BH	Lamellibrachia luymesi/sp. 1	GOM GC185	GU068248	16S
97.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068249	16S/COI
98.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068250	16S/COI
99.L. luymesi GC234	Lamellibrachia luymesi/sp. 1	GOM GC234	GU068251	16S/COI
100.L. sp. 1 WR269	Lamellibrachia luymesi/sp. 1	GOM WR269	GU068252	16S
102.L. sp. 1 WR269	Lamellibrachia luymesi/sp. 1	GOM WR269	GU068253	16S/COI
Sample	Clade	Location	GenBank Accession #	Genes
--------	-------------------------------	----------	--------------------	-------
103.L. sp. 1 AT340	Lamellibrachia luymesi/sp. 1	GOM AT340	16S: GU868254	16S/COI
104.L. sp. 1 WR269	Lamellibrachia luymesi/sp. 1	GOM WR269	16S: GU868255	16S/COI
105.L. sp. 1 WR269	Lamellibrachia luymesi/sp. 1	GOM WR269	16S: GU868256	16S/COI
107.L. sp. 1 AC601	Lamellibrachia luymesi/sp. 1	GOM AC601	16S: GU868257	16S/COI
110.L. sp. 1 AC601	Lamellibrachia luymesi/sp. 1	GOM AC601	16S: GU868258	16S/COI
112.GB697	Lamellibrachia sp. 2	GOM GB697	16S: GU868259	16S
114.GB697	Lamellibrachia sp. 2	GOM GB697	16S: GU868260	16S/COI
116.GB829	Lamellibrachia sp. 2	GOM GB829	16S: GU868261	16S
117.GC600	Lamellibrachia sp. 2	GOM GC600	16S: GU868262	16S
118.GC852	Lamellibrachia sp. 2	GOM GC852	16S: GU868263	16S
119.GC852	Lamellibrachia sp. 2	GOM GC852	16S: GU868264	16S/COI
121.GR269	Lamellibrachia sp. 2	GOM GR269	16S: GU868265	16S/COI
122.GR269	Lamellibrachia sp. 2	GOM GR269	16S: GU868266	16S
123.GR269	Lamellibrachia sp. 2	GOM GR269	16S: GU868267	16S
124.GR269	Lamellibrachia sp. 2	GOM GR269	16S: GU868268	16S
126.GC601	Lamellibrachia sp. 2	GOM GC601	16S: GU868269	16S/COI
128.GC601	Lamellibrachia sp. 2	GOM GC601	16S: GU868270	16S/COI
130.GB697	Seepiophila jonesi	GOM GB697	16S: GU868271	16S/COI
131.GB647	Seepiophila jonesi	GOM GB647	16S: GU868272	16S/COI
132.GC234	Seepiophila jonesi	GOM GC234	16S: GU868273	16S/COI
133.GC234	Seepiophila jonesi	GOM GC234	16S: GU868274	16S/COI
134.GC234	Seepiophila jonesi	GOM GC234	16S: GU868275	16S/COI
134b.GC234	Seepiophila jonesi	GOM GC234	16S: GU868276	16S/COI
135.GC234	Seepiophila jonesi	GOM GC234	16S: GU868277	16S/COI
136.GC234	Seepiophila jonesi	GOM GC234	16S: GU868278	16S
137.BH	Seepiophila jonesi	GOM GC234	16S: GU868279	16S
138.BH	Seepiophila jonesi	GOM GC234	16S: GU868280	16S
139.BH	Seepiophila jonesi	GOM GC234	16S: GU868281	16S
140.GC234	Seepiophila jonesi	GOM GC234	16S: GU868282	16S
141.GB647	Seepiophila jonesi	GOM GB647	16S: GU868283	16S/COI
142.GB647	Seepiophila jonesi	GOM GB647	16S: GU868284	16S/COI
143.GB647	Seepiophila jonesi	GOM GB647	16S: GU868285	16S/COI
144.GB647	Seepiophila jonesi	GOM GB647	16S: GU868286	16S/COI
145.GC234	Seepiophila jonesi	GOM GB647	16S: GU868287	16S/COI
146.GC234	Seepiophila jonesi	GOM GB647	16S: GU868288	16S/COI
147.GC234	Seepiophila jonesi	GOM GB647	16S: GU868289	16S
148.GC234	Seepiophila jonesi	GOM GB647	16S: GU868290	16S
149.GC234	Seepiophila jonesi	GOM GB647	16S: GU868291	16S
150.GC234	Seepiophila jonesi	GOM GB647	16S: GU868292	16S
151.GC234	Seepiophila jonesi	GOM GB647	16S: GU868293	16S
152.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868294	16S/COI
153.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868295	16S/COI
154.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868296	16S/COI
155.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868297	16S/COI
156.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868298	16S/COI
157.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868299	16S/COI
158.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868300	16S/COI
160.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868301	16S/COI
161.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868302	16S/COI
162.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868303	16S/COI
165.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868304	16S/COI
166.GC234	Lamellibrachia luymesi/sp. 1	GOM GB647	16S: GU868305	16S/COI
S. jonesi BH	Seepiophila jonesi	GOM GC185	16S: GU868306	16S/COI
S. jonesi GB425	Seepiophila jonesi	GOM GC185	16S: GU868307	16S/COI
Sample†	Clade	Location§	GenBank Accession #	Genes
---------	-------	-----------	---------------------	-------
Lamellibrachia luymesi	Lamellibrachia luymesi	GOM GC234	AY129136	COI
Besibranchia mariana	Besibranchia mariana	West Pacific	U74078	COI
Arcovestia	Arcovestia ianovii	West Pacific	AB073491	COI
E. laminata	Escarpia laminata	West Atlantic	U74063	COI
E. southwardae	Escarpia southwardae	West Africa	AY362304	COI
E. southwardae	Escarpia southwardae	West Africa	AY362303	COI
E. spicata	Escarpia spicata	East Pacific	U54262	COI
L. sp.1_b	Lamellibrachia luymesi/sp. 1	GOM AT340	U74061	COI
Oasisia HaploA	Oasisia alvinae	East Pacific	AY646001	COI
Lam.2000Nanaki	Lamellibrachia sp.	West Pacific	D30592	COI
Lam.3000Sagami	Lamellibrachia sp.	West Pacific	AY886774	COI
Lam.3000Sagami 1	Lamellibrachia sp.	West Pacific	D38029	COI
Lam bara10b	Lamellibrachia barhami	East Pacific	AY129137	COI
Lam bara11b	Lamellibrachia barhami	East Pacific	AY129138	COI
Lam bara1b	Lamellibrachia barhami	East Pacific	AY129147	COI
Lam bara1	Lamellibrachia barhami	East Pacific	AY129146	COI
Lam bara1b	Lamellibrachia barhami	East Pacific	AY129145	COI
L. barhami2	Lamellibrachia barhami	East Pacific	AF315045	16S
L. barhami3	Lamellibrachia barhami	East Pacific	AF315045	16S
Lam columnna	Lamellibrachia columna	West Pacific	U74061	COI
Lam columna	Lamellibrachia columna	West Pacific	AB055210	COI
Lam juni	Lamellibrachia junci	West Pacific	AB242858	COI
Lam juniHaplo1	Lamellibrachia junci	West Pacific	AB264601	COI
Lam juniHaplo2	Lamellibrachia junci	West Pacific	AB264602	COI
Lam juniHaplo3	Lamellibrachia junci	West Pacific	AB264603	COI
Lam juniHaplo4	Lamellibrachia junci	West Pacific	AB264604	COI
Lam juniHaplo5	Lamellibrachia junci	West Pacific	AB264605	COI
Lam L4	Lamellibrachia sp.	West Pacific	AB055209	COI
Lam 5	Lamellibrachia sp.	West Pacific	AB055210	COI
Lam 6	Lamellibrachia sp.	West Pacific	AB088674	COI
Lam 7	Lamellibrachia sp.	West Pacific	AB088675	COI
LamaymesiBH 2	Lamellibrachia luymesi	GOM GC185	AY129133	COI
LamaymesiBHb	Lamellibrachia luymesi	GOM GC185	AY129132	COI
LamaymesiBHc	Lamellibrachia luymesi	GOM GC185	AY129139	COI
LamaymesiGB4252	Lamellibrachia luymesi	GOM GB425	AY129135	COI
LamaymesiGC354	Lamellibrachia luymesi	GOM GC354	AY129126	COI
Lamaymesi VK	Lamellibrachia luymesi	GOM VK26	AY129124	COI
Lam Med	Lamellibrachia sp. from Med.	Mediterranean	EU046616	COI
Lam satsumab	Lamellibrachia satsumensis	West Pacific	AF342671	COI
NewEscarpiidGB425	Escarpid sp. nov.	GOM GB425	AY129134	COI
Oasisia fujikurai	Oasisia fujikurai	South/West Pacific	AB242857	COI
Paraescarpia	Paraescarpia cf. echinopsina	West Pacific	D50594	COI
Ridgea	Ridgea piscacea	Juan de Fuca Ridge	AF315054	16S
Ridgea	Ridgea piscacea	Juan de Fuca Ridge	AF315054	16S
Ridgea	Ridgea piscacea	Juan de Fuca Ridge	AF315054	16S
Ridgea	Ridgea piscacea	Juan de Fuca Ridge	AF315054	16S
Rifina	Rifina pachyphtyla	East Pacific	AY459899	COI
Tevnia jerichonana	Tevnia jerichonana	East Pacific	16S: AF315042	COI
S. jonesi BH	Seepiophila jonesi	GOM GC185	AY317287	COI
S. jonesi GB425	Seepiophila jonesi	GOM GB425	AY317288	COI

† Samples analyzed for this study are numbered and labeled as for Figs. 2 and 3. Sequences from Genbank are listed by names assigned in Genbank.
§ Samples from the Gulf of Mexico are indicated by GOM followed by the abbreviation of their collection sites. V1K26, GC185, GC233, GB425, GC234, and GC354 are all on the upper Louisiana slope at depths < 800 m. The other GOM sites are at depths > 900 m and are indicated on Fig. 1.

the species’ boundaries for Lamellibrachia, Escarpia, and Seepiophila, and we do not infer higher level phylogenetic relationships among genera because neither 16S nor COI offers sufficient resolution at deeper nodes. The complete and aligned COI dataset included 690 bp, of which 460 were invariant sites, 207 were phylogenetically informative sites, and 23 were autapomorphies. The complete 16S dataset consisted of 133 sequences (see Table 1 for the complete list of samples), 127 of which were from the Gulf of Mexico. Sequences from the vent-dwelling genera Tevnia and Ridgea were used as outgroups. The aligned 16S dataset consisted of 524 bp, of which 433 were invariant sites, 72 were phylogenetically informative, and 19 were autapomorphies. MP, ML, and NJ analyses produced congruent trees, and the GARLI ML phylogeny is presented in Fig. 2 A and B and 3 A and B. Both 16S and COI phylogenies identify five distinct monophyletic clades of vestimentiferans in the Gulf of Mexico. Four of the clades represent single morphospecies, S. jonesi, E. laminata, Lamellibrachia sp. 2, and escarpiid sp. nov., from the upper slope. However, the fifth clade includes both Lamellibrachia sp. 1 from the collections in the deeper GOM and L. luymesi from the upper Louisiana slope sites. They were, therefore, considered a single species when within- and between-species distances for the 16S and COI datasets were estimated. Additionally, COI sequences of E. laminata did not differ from those of E. spicata and
E. southwardae from the East Pacific and East Atlantic, respectively. We were unable to obtain 16S sequences for E. spicata or E. southwardae.

Estimates of within- and between-species diversity (p) for both genes are shown in Tables 2 and 3. Within a species, p distances range from 0% to 0.1% for 16S and 0% to 0.9% for the more variable COI. The very low values for the undescribed escarpiid may reflect the small number of individuals of this species analyzed (n = 3 for COI and n = 2 for 16S).

4. Discussion

4.1. Distribution of vestimentiferan species in the Gulf of Mexico and relation to other seep species

Vestimentiferans have been collected from both hydrothermal vent and cold-seep sites. The vent and seep species fall into two different clades. However, it should be noted that “seep species” are sometimes found in sedimented hydrothermal vent areas with low levels of diffuse flow, and that “cold-seep” fluids may have temperatures elevated over background (Black et al., 1998; Kojima et al., 1997; MacDonald et al., 2000; Joye et al., 2005); so this separation really reflects more aspects of their habitat than temperature alone. Vestimentiferans found at cold seeps worldwide can be further divided into two clades. One clade includes at least five named and three unnamed species in the genus Lamellibrachia. The other clade includes three named species in the genus Escarpia, S. jonesi, Paraescarpia echinospica, and a rarely collected species (escarpiid sp. nov.) from the shallow GOM. Although Arcovestia seems basal to the Lamellibrachia clade (Fig. 2B), this position is not well supported.

Three species in the escarpiid clade of seep vestimentiferans are found in the GOM: S. jonesi has been collected from numerous sites,
ranging in depth from 500 to 950 m; escariiid sp. nov. from two sites ranging in depth from 600 to 640 m, where it co-occurs with S. jonesi (although it has been reported also from GC234 at 525 m; see Cordes et al., 2003); and E. laminata from 950 to 3200 m depth. S. jonesi and E. laminata co-occurred at only one site, GB847, at a depth of 950 m. The undescribed escariiid differs morphologically from S. jonesi, as it lacks the curl of the ventral vestimental fold that is a defining character of the genus Seepiophila (Gardiner et al., 2001). Additionally, the obturacular process of the undescribed escariiid forms a spike, whereas it is flat in S. jonesi and barely protrudes from the top of the obturaculum.

Both the COI and 16S phylogenetic trees distinguish these three species and place them within the escariiid clade of seep vestimentiferans (Figs. 2 and 3). Both the 16S tree and the 16S p distance matrix suggest E. laminata is more closely related to S. jonesi (between-species uncorrected p = 2%) than to the undescribed escariiid (between-species uncorrected p = 3.5%). However, the COI tree groups the undescribed escariiid with the described Escarpia spp. The bootstrap value based on COI data supporting this clade is low (61%), and the grouping observed for the 16S dataset has a bootstrap below 50%. Neither tree allows us to state clearly whether this new escariiid is more closely related to Escarpia, Paraescarpia, or Seepiophila.

As previously noted by other authors, COI does not separate Escarpia southwardae, E. spicata, and E. laminata, respectively, from cold seeps on the west coast of Africa in the eastern Atlantic, Guaymas Basin, off the coast of Mexico, and the GOM (Black et al., 1998). Also, there is very little to no intra-clade diversity within this group (Table 3). This result may indicate that those three nominal species represent a single genealogical species with a surprisingly wide geographic distribution and variable morphology. However, this assumption would require a high level of gene flow between quite distant localities, especially since the closing of the Isthmus of Panama 3.5 million years ago, followed the closing of the deep sea exchange 10 million years ago (Burton et al., 1997). This level of genetic exchange over these distances seems quite unlikely, considering what is known about larval development times for vestimentiferans (Marsh et al., 2001, Young et al., 1996). Although the life span of Escarpia larvae has not been determined, the larval life span of the vent species Riftia pachyptila is estimated at about three weeks (Marsh et al., 2001) and the larval life span of the seep vestimentiferan L. laymesi is estimated to be about one month (Young et al., 1996). Tyler and Young (1999) estimate that the maximal dispersal distances for these species are on the order of 60 km per generation, which is unlikely to support the level of genetic mixing necessary to maintain genetic homogeneity among the three described species of Escarpia from such widely separated geographic locations. It is possible, however, that undiscovered seeps around South America could connect all of these species.

The lack of fixed COI differences within Escarpia spicata, E. laminata, and E. southwardae could also be due to different rates of evolution of the COI gene in different taxa. COI has been used for higher level phylogenetic reconstructions in other groups of annelids (Halanych and Janosik, 2006) and has been adopted as an appropriate gene for the “barcode of life” for animals in general by the barcode of life initiative (BOLI; http://www.dnabarcodes.org/). However, the fact that COI fails to identify morphologically distinct populations of Escarpia from such widely separated areas implies that in this clade the mutation rate may be considerably slower than in other lineages. Slower rates of evolution in the mitochondrial DNA have been recognized in some other groups, such as the cnidarian class Anthozoa, where this phenomenon has been linked to an especially efficient repair system of their mitochondrial DNA (France and Hoover, 2002; Pont-Kingdon et al., 1998); however, no evidence of a similar system has been found in vestimentiferan mitochondrial DNA. Seep vestimentiferans can also be extremely long-lived (Bergquist et al., 2000; Cordes et al., 2001a), which may contribute to a slower rate of change of mitochondrial DNA (see for example Nabholz et al., 2008) for a consideration of longevity effects on mitochondrial rates of evolution in vertebrates.

In the COI dataset, the Lamellibrachia clade is divided into eight distinct groups that represent presumptive species, including five basal species (L. juni, L. barhami, L. satsuma, L. sp. Japan, and L. sp. West Pacific), all of which are from the Pacific Ocean and four of which are from the western Pacific. This observation is consistent with the hypothesis that the genus Lamellibrachia originated in the Pacific, likely the western Pacific, and subsequently radiated to the eastern Pacific, the Atlantic, and the GOM. Three morphological species of Lamellibrachia were identified in collections from the GOM: L. laymesi, from the upper slope at
between about 400 m and 800 m; L. sp. 1, from 950 to 2320 m; and L. sp. 2, from 1175 to 2320 m. L. luymesi and L. sp. 1 have a similar number of sheath lamellae, but the deep-water L. sp. 1 generally has more gill lamellae, ranging between 21 and 27 in the 28 individuals examined, whereas the shallow-water L. luymesi has between 15 and 22 gill lamellae in the 20 individuals examined for the species description. The morphological character that allowed rapid identification of animals aboard the ship was the relatively short and fat vestimentum of L. sp. 1. The ratio of length to width of the vestimentum of L. sp. 1 ranges from 2.4 to 4.7 and from 6.2 to 16.4 in L. luymesi. L. sp. 2 has a similar number of sheath and gill lamellae as L. sp. 1, and the vestimentum length to width ratio tends to be shorter (1.9 to 3). The most distinct field character for L. sp. 2 is the lack of a ventral vestimental fold, which is present on L. sp. 1.

Despite morphological characters that distinguish the three GOM *Lamellibrachia* presumptive species, only either the COI or the 16S phylogenetic trees resolved two of them. Specifically, both genes failed to separate L. luymesi from the shallow GOM and L. sp. 1 from the deeper GOM sites. This lack of genetic differences between individuals that span such a wide depth range is unusual (Chase et al., 1998; Zardus et al., 2006) and surprising, given the morphological differences. Both 16S and COI genes consistently identify *Lamellibrachia* sp. 2 as a separate clade, sister to the L. luymesi/L. sp. 1 clade.

There were no apparent geographic distributional patterns that were independent of depth for the seep vestimentiferans in the Gulf of Mexico. The common species present on the upper Louisiana slope (L. luymesi and *S. jonesi*) have been found at both the eastern-most and western-most sites where we have collected vestimentiferans. *E. laminata* from the lower slope range from the Alaminos Canyon sites, our most westerly collection sites for this study, to the Florida Escarpment in the eastern GOM (Cordes et al., 2009; McMullin et al., 2003). Both of the *Lamellibrachia* spp. found at the deeper sites occurred over the entire E–W range of sites within their depth range (from the Alaminos Canyon sites in the west to AT340 in the east).

4.2. Within-species diversity of the GOM vestimentiferans

Tables 2 and 3 report within- and between-species *p* distance calculated for the GOM genetic species. In most cases, within-species diversity for both 16S and in the COI genes is strikingly low, a finding that is in contrast to previous studies on deep-sea mollusks and echinoderms, where large amounts of genetic variation were observed over small distances (Chase et al., 1998; Howell et al., 2004; Quattro et al., 2001). However, large-scale studies indicate that low within-species genetic variation may be typical of deep-sea organisms (Bisol et al., 1984) and even suggest that it may decrease with increase in depth (France and Kocher, 1996). Genetic variation has been suggested to be an important feature of the genome of an organism that allows it to adapt to a changing environment (Powers et al., 1991). Organisms that live in the deep sea may experience a long-term stable environment, resulting in low levels of within-species genetic diversity. Alternatively, low within-species genetic diversity may be the result of fewer replication errors, more efficient repair in the germ line, or repeated population bottlenecks.

E. laminata, *E. spicata*, and *E. southwardae clade* and *L. luymesi* sp. 1 and *L. sp. 2* have a moderate degree of intra-specific diversity (Figs. 2 and 3). However, as with all of the GOM vestimentiferans analyzed, none of the within-species clades grouped by specific geographic locations or depth. A similar pattern was found in the seep mussel *Bathymodiolus childressi*, which, based on markers ranging from microsatellites to mitochondrial genes, has a panmictic population in the GOM ranging across 550 km east to west and from 540 to 2200 m depth (Carney et al., 2006; Cordes et al., 2007b). In contrast, genetic breaks and barriers that restrict gene flow were identified in both hydrothermal vent vestimentiferans and mussels along the East Pacific Rise (EPR). Specifically, Won et al. (2003) used COI sequences to identify two highly divergent clades on the EPR on the two sides of the Easter Island Microplate. Similarly, Hurtado et al. (2004) used COI sequences to identify several geographic breaks and barriers that restrict gene flow in three genera of annelids along the EPR, including two species of vestimentiferan (*Riftia pachyptila* and *Tevnia jerichonana*).

5. Summary

In this study, our primary goals were to identify and characterize the distributions of vestimentiferans at seep sites covering a wide geographic and depth range in the Gulf of Mexico and to investigate their relationship to other seep vestimentiferan species, using phylogenetic analysis of mitochondrial gene sequences. Although the genetic analyses confirmed identification of most of the morphological species during collections, we also identified an unexpected discrepancy between the morphospecies identified during the collections and genealogical species identified using the mitochondrial genes COI and 16S. Using morphological characters, we identified two new species of *Lamellibrachia* (sp. 1 and 2). However, neither COI nor 16S distinguished the deeper occurring morphospecies *L. sp. 1* from *L. luymesi*, the common *Lamellibrachia* species on the upper Louisiana slope. Our molecular genetic analyses confirm the presence of three vestimentiferan species within the escarpid clade in the Gulf of Mexico. However, since COI also does not differentiate between *E. laminata* found in the Gulf of Mexico and the other described *Escarpia* species off the coast of Africa or in the eastern Pacific Ocean, we suggest that COI or 16S genes may not reliably distinguish closely related species of long-lived seep vestimentiferans. We are currently evaluating the usefulness of several nuclear genes to clarify the relationships among the named species of *Escarpia* and the *Lamellibrachia* species in the Gulf of Mexico.

Acknowledgments

This work was funded by a subcontract to Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) contract #1435-01-05-39187, “Investigations of Chemosynthetic Communities on the Lower Continental Slope of the Gulf of Mexico (Chemo III),” with vessel and submersgence facilities support provided by National Oceanic and Atmospheric Administration’s Office of Ocean Exploration and Research. This study would not have been possible without the support and expertise of the captains, crews, and expedition leaders of the Research Vessel Atlantis, the DSV ALVIN, the NOAA ship Ronald Brown, and the ROV JASON II. The authors are grateful to Erik Cordes and Erin Becker for help at sea, to Stephanie Lessard-Pilon, Erin Becker, and Meredith Cole Patterson for help in the laboratory, to Erin McMullin for sharing DNA and expertise, and to A. Fauchi and ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

References

Bergquist, D.C., Urcuyo, I.A., Fisher, C.R., 2002. Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Marine Ecology—Progress Series 241, 89–98.

Bergquist, D.C., Williams, F.M., Fisher, C.R., 2000. Longevity record for deep-sea invertebrate. Natur 403 (6769), 499–500.

Bisol, P.M., Costa, R., Sibuet, M., 1984. Ecological and genetic survey on two ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

References

Bergquist, D.C., Urcuyo, I.A., Fisher, C.R., 2002. Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Marine Ecology—Progress Series 241, 89–98.

Bergquist, D.C., Williams, F.M., Fisher, C.R., 2000. Longevity record for deep-sea invertebrate. Natur 403 (6769), 499–500.

Bisol, P.M., Costa, R., Sibuet, M., 1984. Ecological and genetic survey on two ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

References

Bergquist, D.C., Urcuyo, I.A., Fisher, C.R., 2002. Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Marine Ecology—Progress Series 241, 89–98.

Bergquist, D.C., Williams, F.M., Fisher, C.R., 2000. Longevity record for deep-sea invertebrate. Natur 403 (6769), 499–500.

Bisol, P.M., Costa, R., Sibuet, M., 1984. Ecological and genetic survey on two ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

References

Bergquist, D.C., Urcuyo, I.A., Fisher, C.R., 2002. Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Marine Ecology—Progress Series 241, 89–98.

Bergquist, D.C., Williams, F.M., Fisher, C.R., 2000. Longevity record for deep-sea invertebrate. Natur 403 (6769), 499–500.

Bisol, P.M., Costa, R., Sibuet, M., 1984. Ecological and genetic survey on two ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.

References

Bergquist, D.C., Urcuyo, I.A., Fisher, C.R., 2002. Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. Marine Ecology—Progress Series 241, 89–98.

Bergquist, D.C., Williams, F.M., Fisher, C.R., 2000. Longevity record for deep-sea invertebrate. Natur 403 (6769), 499–500.

Bisol, P.M., Costa, R., Sibuet, M., 1984. Ecological and genetic survey on two ChEss Siboglinidae Workshop participants for suggestions and helpful discussion.
Black, M.B., Trivedi, A., Maas, P.A.Y., Lutz, R.A., Vrijenhoek, R.C., 1998. Population genetics and biogeography of vestimentiferan tube worms. Deep-Sea Research II: Topical Studies in Oceanography 45, 1–3.

Burton, K.W., Ling, H.F., Ronions, R.K., 1997. Closure of the Central American isthmus and its effect on deep-water formation in the North Atlantic. Nature 386 (6623), 382–385.

Carney, S.L., Formica, M.L., Divatia, H., Nelson, K., Fisher, C.R., Schaeffer, S.W., 2006. Population structure of the mussel “Bathydoliolus” childressi from Gulf of Mexico hydrocarbon seeps. Deep-Sea Research I: Oceanographic Research Papers 53 (6), 1061–1072.

Chase, M.R., Etter, R.J., Rex, M.A., Quattro, J.M., 1998. Bathymetric patterns of genetic variation in a deep-sea protobranch bivalve, Demissa acetabulum. Marine Biology 131 (2), 301–308.

Cordes, E.E., Bergquist, D.C., Fisher, C.R., 2009. Macro-ecology of Gulf of Mexico cold seeps. Annual Review of Marine Science 1, 143–168.

Cordes, E.E., Bergquist, D.C., Redding, M.L., Fisher, C.R., 2007a. Patterns of growth in cold-seep vestimentiferans including Seipholia jonesi: a second species of long-lived tubeworm. Marine Ecology—An Evolutionary Perspective 28 (1), 160–168.

Cordes, E.E., Becker, E.L., Hordure, S., Fisher, C.R., 2010. Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps. Deep-Sea Research II: Topical Studies in Oceanography 57 (21–23), 1870–1881.

Cordes, E.E., Carney, S.L., Hordure, S., Carney, R.S., Brooks, J.M., Fisher, C.R., 2007b. Influence of the foundation species, depth, and location on diversity and community composition at Gulf of Mexico cold seeps. Marine Biology 154 (2), 409–517.

Cordes, E.E., Carney, S.L., Formica, M.I., Divatia, H., Nelson, K., Fisher, C.R., Schaeffer, S.W., 2006. Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico cold seeps. Marine Biology 150 (2), 507–513.

Halanych, K.M., Feldman, R.A., Vrijenhoek, R.C., 2001. Molecular evidence that Siboglinidae caulleryi (Annelida) is a new genus and species of vestimentiferan tube worm (Annelida: Pogonophora) from hydrocarbon seep communities in the Gulf of Mexico. Proceedings of the Biological Society of Washington 114 (3), 694–707.

Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate phylogenies from large biological sequence datasets under the maximum likelihood criterion. Molecular Biology and Evolution 20 (5), 53–55.