Motor vehicle crashes during pregnancy and cerebral palsy during infancy: a longitudinal cohort analysis

Donald A Redelmeier, Faisal Naqib, Deva Thiruchelvam

ABSTRACT

Objectives: To assess the incidence of cerebral palsy among children born to mothers who had their pregnancy complicated by a motor vehicle crash.

Design: Retrospective longitudinal cohort analysis of children born from 1 April 2002 to 31 March 2012 in Ontario, Canada.

Participants: Cases defined as pregnancies complicated by a motor vehicle crash and controls as remaining pregnancies with no crash.

Main outcome: Subsequent diagnosis of cerebral palsy by age 3 years.

Results: A total of 1 325 660 newborns were analysed, of whom 7933 were involved in a motor vehicle crash during pregnancy. A total of 2328 were subsequently diagnosed with cerebral palsy, equal to an absolute risk of 1.8 per 1000 newborns. For the entire cohort, motor vehicle crashes correlated with a 29% increased risk of subsequent cerebral palsy that was not statistically significant (95% CI −16 to +110, p=0.274). The increased risk was only significant for those with preterm birth who showed an 89% increased risk of subsequent cerebral palsy associated with a motor vehicle crash (95% CI +7 to +266, p=0.037). No significant increase was apparent for those with a term delivery (95% CI −62 to +79, p=0.510). A propensity score-matched analysis of preterm births (n=4384) yielded a 138% increased relative risk of cerebral palsy associated with a motor vehicle crash (95% CI +27 to +349, p=0.007), equal to an absolute increase of about 10.9 additional cases per 1000 newborns (95% CI +27 to +349, p=0.007). The increased risk was only significant for those with preterm birth who showed an 89% increased risk of subsequent cerebral palsy associated with a motor vehicle crash (95% CI +7 to +266, p=0.037). No significant increase was apparent for those with a term delivery (95% CI −62 to +79, p=0.510). A propensity score-matched analysis of preterm births (n=4384) yielded a 138% increased relative risk of cerebral palsy associated with a motor vehicle crash (95% CI +27 to +349, p=0.007), equal to an absolute increase of about 10.9 additional cases per 1000 newborns (95% CI +27 to +349, p=0.007).

Conclusions: Motor vehicle crashes during pregnancy may be associated with an increased risk of cerebral palsy among the subgroup of cases with preterm birth. The increase highlights a specific role for traffic safety advice in prenatal care.

BACKGROUND

Cerebral palsy is a leading cause of disability during childhood, with about 25 children diagnosed with cerebral palsy each day in the USA. The severity spectrum spans from individuals living independently in the community to those needing comprehensive care in an institution. The average lifetime cost of cerebral palsy amounts to about $1 million in the USA. Several risk factors for cerebral palsy have been identified including prematurity, abnormal genetics, multiple pregnancy, maternal infections and birth asphyxia. However, most cases of cerebral palsy are unexplained and considered due to an unidentified injury to the young developing brain.

Motor vehicle crashes are a common cause of maternal trauma, complicating over 2000 per 100 000 pregnancies. The consequences include maternal death (1 per 100 000 pregnancies) and fetal death (4 per 100 000 pregnancies). The non-fatal short-term consequences of a motor vehicle crash include placental abruption, premature rupture of membranes, uterine dissection or early delivery. Fetal injury following a motor vehicle crash correlates imperfectly with the severity of maternal injury, can occur without direct uterine injury and may have a delayed presentation. Maternal trauma
from a motor vehicle crash, therefore, might cause injury to a young developing brain.

Several mechanisms could contribute to a possible association between a motor vehicle crash during pregnancy and subsequent cerebral palsy during infancy. The most direct mechanism is acute trauma leading to preterm birth. Less direct mechanisms include fetal cerebral hypoxia caused by maternal hypotension. Other possibilities include a stress response involving the maternal autonomic vascular or metabolic systems that compromises uterine perfusion. A further mechanism relates to chronic placental insufficiency from clot formation or traumatic shear forces. These mechanisms, however, are speculative and no population-based study has tested whether cerebral palsy during infancy might be linked to a motor vehicle crash during pregnancy.

METHODS

Study setting

We conducted a retrospective longitudinal population-based cohort study using data sets from the Institute for Clinical Evaluative Sciences (ICES). These data sets integrate information from medical encounters by patients throughout the Ontario healthcare system as covered by the universal health insurance plan. This plan provided all-inclusive access to care with no cost to patients for emergency or prenatal treatments, thereby providing comprehensive longitudinal patient data for analysis. Patients were not involved in setting the research agenda.

Pregnancy identification

We identified women (age 14–50 years) who gave birth between 1 April 2002 and 31 March 2012 by screening physician codes for a newborn delivery (codes P006, P018, P020) using the MOM-BABY database at ICES. Abortions were excluded and repeat pregnancies were counted as separate events. One woman, therefore, was counted for each birth and twins were counted as separate observations. Each pregnancy was categorised as complicated or not complicated by a motor vehicle crash, defined as a traffic event sending the woman to an emergency department. Regardless of crashes, we also distinguished each pregnancy followed by a preterm delivery (International Statistical Classification of Diseases (ICD) V.10 codes O60) or followed by an at-term or post-term delivery.

Newborn identification

Children were identified using the MOM-BABY database at ICES that linked maternal and birth records with 98% completeness. The database has been used extensively. We excluded individuals with faulty medical records, living outside Ontario or high-order multiple births; otherwise, the sampling was comprehensive and complete. Limitations of the database include the lack of direct information on sibling relationships, paternal connections and home environment. The database also lacked information about multiple lifestyle behaviours including smoking, alcohol, substance abuse, domestic violence, dietary intake, toxin exposure, marital status and other social determinants of health.

Identification of crashes

We identified motor vehicle crashes using validated diagnostic codes from all emergency departments throughout Ontario (ICD V.10 codes V00-V69). This definition reflected motor vehicle crashes that sent the woman as a patient to an emergency department, including events as drivers, passengers, or other road users and excluding events related to aircraft or watercraft. Additional crash characteristics included day, season, clock-time (morning, afternoon, night), position (driver, passenger, other), enrolment interval (first 5 years, second 5 years), ambulance involvement (yes, no) and triage urgency (higher, lower). For each case, we also determined whether subsequent newborn delivery occurred within 48 hours of the crash.

Identification of cerebral palsy

Newborns were followed for 3 years to determine survival and subsequent diagnosis since most cerebral palsy is diagnosed by age 3 years. Diagnostic codes were used to search for a physician diagnosis of cerebral palsy (ICD V.9 code 343, V.10 code G80). We further distinguished cerebral palsy cases as explained or unexplained according to known antecedents, namely congenital abnormalities, maternal infection, birth asphyxia, illicit drug use and bleeding complication. We did not define prematurity as a direct explanation because it might be an intermediate mechanism (explored in secondary analysis).

Identification of additional predictors

The demographic registry was used to obtain maternal data on age, socioeconomic status and home location (urban, rural). Prenatal care, pregnancy duration, mode of delivery, twin gestations and length of hospital stay were determined based on linked identifiers. Primiparity and multiparity were based on birth records from the previous 20 years. Neonatal variables included prematurity (binary), sex (binary), day of delivery (weekend vs weekday) and enrolment interval (first 5 years, second 5 years). The databases did not contain driving history, roadway infractions, chosen destinations, license status, travel diaries, vehicle distances, injury severity or impact velocity.

Statistical analysis

The primary study outcome was the risk of a subsequent diagnosis of cerebral palsy by age 3 years. The main analysis used proportional hazards analysis to compare children born after a pregnancy complicated by a motor vehicle crash, therefore, might cause injury to a young developing brain.
vehicle crash to children born after a pregnancy not complicated by a motor vehicle crash. HRs were used for relative risk estimates and interval deaths were censored in the primary analysis (considered in secondary analysis). Stratified analyses assessed differences according to individual characteristics with special attention to preterm births.49-53 We also used propensity-matched analysis to re-examine preterm births and re-evaluate the risk of cerebral palsy after accounting for other baseline characteristics. More extensive regressions with interaction terms were not conducted due to small numerators in some groups.

RESULTS
Maternal characteristics
A total of 884,897 women gave birth to 1,325,660 newborn children, of whom 7933 newborns (1 in 170) had the pregnancy complicated by a motor vehicle crash. As expected, motor vehicle crashes involved women across a wide spectrum of age, socioeconomic status and home location. Overall, 29.9 years and slightly lower for those pregnancies complicated by a motor vehicle crash compared with those pregnancies not complicated by a motor vehicle crash. Otherwise, the distributions of socioeconomic status, parity, pregnancy duration, mode of delivery and hospital length of stay were similar for the two groups. A total of 38 women had more than one crash during pregnancy. A total of 52 women delivered within 48 hours of a crash.

Subsequent child outcomes
A total of 2328 children were diagnosed with cerebral palsy by age 3 years (1,325,660 identified newborns, 5,425 interval deaths). The median age at cerebral palsy diagnosis was 586 days and median age at death was 7 days. The most common identified reasons linked to cerebral palsy were perinatal disorders and congenital abnormalities, collectively accounting for 1225 children (53%). The remaining 1103 children (47%) were classified as having unexplained cerebral palsy. The median age for diagnosing unexplained cerebral palsy was 610 days. The overall rate of cerebral palsy per 1000 pregnancies was about the same in the first 5 years of the study and the second 5 years of the study (1.82 vs 1.70, respectively).

Motor vehicle crashes and cerebral palsy risk
A total of 18 children diagnosed with cerebral palsy were born following 7933 pregnancies complicated by a motor vehicle crash. In contrast, 2310 children with cerebral palsy were born following 1,317,727 pregnancies with no motor vehicle crash. The difference in risk equaled a marginally increased incidence of cerebral palsy associated with motor vehicle crashes per 1000 pregnancies (2.27 vs 1.75, p=0.274), equal to a 29% relative increase in risk (95% CI +16 to +110). The absolute difference amounted to 685 fewer cases of cerebral palsy among those who did not have a crash during pregnancy. The increased risk was most apparent before age 2 years (see online supplementary appendix).

Patient characteristics
The increased risk of cerebral palsy associated with a motor vehicle crash was evident for subgroups with different characteristics (table 2). The highest observed relative risks were among pregnancies followed by a preterm delivery that showed an 89% relative increase in risk (95% CI +7 to +266, p=0.037). No significant

Characteristic	Motor vehicle crash Present (n=7933)	Motor vehicle crash Absent (n=1,317,727)
Age		
<25	2112 (27)	225,742 (17)
25–35	4887 (62)	884,878 (67)
>35	934 (12)	207,107 (16)
Socioeconomic status*		
Higher	2757 (35)	488,943 (37)
Middle	1610 (20)	266,435 (20)
Lower	3566 (45)	562,349 (43)
Home location		
Urban	6891 (87)	1,182,313 (90)
Rural	1042 (13)	135,414 (10)
Enrolment interval		
First 5 years	4011 (51)	645,370 (49)
Second 5 years	3922 (49)	672,357 (51)
Prenatal care†		
≥13 clinic encounters‡	7422 (94)	1,147,405 (87)
≥1 hospital admission§	3253 (41)	438,570 (33)
Parity		
Primiparous	3968 (50)	597,344 (45)
Multiparous	3965 (50)	720,383 (55)
Pregnancy duration‡		
Preterm	548 (7)	86,887 (7)
At-term	6481 (82)	1,080,323 (82)
Post-term §	904 (11)	150,517 (11)
Mode of delivery		
Vaginal	5657 (71)	952,375 (72)
Caesarean	2276 (29)	365,352 (28)
Newborn child		
Male	3973 (50)	669,801 (51)
Female	3870 (49)	635,266 (48)
Not recorded	90 (1)	12,660 (1)
Length of hospital stay		
≤3 days	4739 (60)	826,711 (63)
>4 days	3194 (40)	491,016 (37)

Values are count (percentage) of each group. Each pregnancy counted as a separate event.
*Based on median neighbourhood income quintile.
†In previous year.
‡Maternal ICD-10 code O60.
§Maternal ICD-10 code O48.
ICD, International Statistical Classification of Diseases.
increase was apparent among the large number of pregnancies followed by a term delivery or among the small number of pregnancies followed by post-term delivery. All CIs were wide, almost all upper bounds overlapped a 100% relative increase in risk, and no subgroup showed a statistically significant contrary pattern.

Additional predictors in cases with preterm birth

Several baseline characteristics were also associated with cerebral palsy following a preterm birth (Table 3). Older age predicted lower risk, whereas socioeconomic status and home location were not significant predictors. Those born in recent years had a lower risk. Prenatal care visits were associated with lower risk. Conversely, past hospitalisations predicted higher risk (perhaps as a proxy for underlying patient illnesses). As expected, cerebral palsy was more frequent in boys. The absolute rate of cerebral palsy averaged about 9.7 per 1000 pregnancies among all newborns with preterm birth (estimate essentially unchanged in analyses that excluded interval deaths or analyses that excluded the 12 cases with preterm birth who delivered within 48 hours of a crash).

Propensity-matched analysis in preterm birth

Propensity score matching yielded a cohort of 4384 newborns with preterm birth, of whom 548 had the pregnancy complicated by a motor vehicle crash and the remaining 3836 had no complicating motor vehicle crash (matching ratio 1 in 7 by design). As expected, the distribution of maternal characteristics was similar for the two groups (Table 4). A total of 38 children were subsequently diagnosed with cerebral palsy, equal to a 138% increased relative risk of cerebral palsy associated with a

Table 2 Subsequent cerebral palsy diagnosis

Total cases of cerebral palsy	Relative risk after crash	CI	
Full cohort			
Age			
<25	451	1.20	0.57 to 3.06
25–35	1479	1.48	0.88 to 2.69
>35	398	0.56	0.17 to 4.16
Socioeconomic			
Higher	794	1.58	0.82 to 3.47
Middle	478	0.35	0.10 to 2.58
Lower	1056	1.51	0.86 to 2.91
Home location			
Urban	2087	1.41	0.91 to 2.32
Rural	241	0.54	0.16 to 4.04
Enrolment interval			
First 5 years	1179	1.65	0.99 to 3.01
Second 5 years	1149	0.90	0.45 to 2.11
Prenatal care			
≥13 clinic visits	1982	1.26	0.80 to 2.11
≥1 admissions	1069	1.14	0.64 to 2.29
Parity			
Primiparous	1179	1.16	0.64 to 2.32
Multiparous	1149	1.43	0.80 to 2.87
Pregnancy duration			
Preterm	850	1.89	1.07 to 3.66
At-term	1314	0.76	0.38 to 1.79
Post-term	164	2.06	0.73 to 8.94
Mode of delivery			
Vaginal	1285	1.05	0.57 to 2.20
Caesarean	1043	1.55	0.89 to 3.00
Newborn child			
Male	1339	1.52	0.91 to 2.77
Female	989	1.00	0.50 to 2.34
Length of stay			
≤3 days	1026	1.37	0.74 to 2.86
≥4 days	1302	1.19	0.68 to 2.29

Estimates provide results from subgroup analyses (full cohort listed at top). Referent based on pregnancies with no motor vehicle crash. Relative risk estimate from proportional hazards analysis (Cox regression). CI based on 95% limits using normal approximation (Wald statistic).
motor vehicle (95% CI +27 to +349, p=0.007). The absolute risk of cerebral palsy equalled 10.9 additional cases per 1000 pregnancies complicated by a motor vehicle crash (18.2 vs 7.3, p=0.010). Repeating the analysis after excluding twins yielded a similar absolute increase (17.7 vs 7.9, p=0.034).

Crash features
The increased overall risk of cerebral palsy associated with a motor vehicle crash was evident for crashes with different features (table 5). The most frequent time for a crash was a weekday and no large seasonal variation was apparent. The second trimester accounted for a disproportionate number of crashes and afternoon hours accounted for more than half of the crashes. All secondary estimates overlapped the primary analysis, most showed a nominal increase in relative risk, and most were not statistically significant in isolation. Afternoon crashes were a high outlier and associated with a 91% increased relative risk of cerebral palsy (95% CI +19 to +225, p=0.011). About half of the crashes received subsequent ambulance transport and most were assigned high triage urgency.

DISCUSSION
We studied over a million newborn children and found that a motor vehicle crash during pregnancy was associated with an increased subsequent risk of cerebral palsy among cases with preterm birth. The baseline rate of cerebral palsy was similar to past reports and the most frequent predictor was preterm birth (observed in 1 in 15 newborns and 1 in 3 cases of cerebral palsy, equal to a fivefold increased cerebral palsy risk). The relative risk of cerebral palsy associated with a motor vehicle crash was particularly large for those with preterm birth after propensity score adjustment for imbalances in measured baseline characteristics. The most vulnerable interval was afternoon traffic that explained more than half the crashes.

Our research supports past reports describing an increased risk of cerebral palsy following a motor vehicle crash. A case series of 10 children with cerebral palsy following pregnancies complicated by a motor vehicle crash found brain lesions on MRI consistent with cerebral vascular damage from trauma. Individual case reports have also described maternal injury causing fetal intracranial haemorrhage. Direct injury to fetal brain tissue or diffuse axonal injury without brain deformation may be other possible mechanisms described in animal models. In contrast, no study, to the best of our knowledge, suggests that a motor vehicle crash in pregnancy might decrease the risk of cerebral palsy.

A different set of possible mechanisms involves indirect injury to the fetus from placental compromise. Blunt trauma may cause the placenta to shear from the uterus resulting in placental blood flow insufficiency. The extreme case is placental abruption and preterm birth; however, less severe trauma might result in small degrees of shearing and losses in perfusion that chronically deprive the fetus of nutrients needed for brain development. A related speculative mechanism is transient placental underperfusion due to maternal catecholamine surges from acute stress that shunt blood flow away from uterine arteries. Regardless of potential mechanisms, our study also indicates that the fetus is resilient because the vast majority of motor vehicle crashes during pregnancy do not result in cerebral palsy.

An important limitation of our research relates to random chance and statistical imprecision (since a high number of term births can mask a significant difference among the preterm group). Collectively, the observed frequency of motor vehicle crashes exceeded 1 per 200 pregnant women and the sample size for the whole cohort amounted to about four million patient-years of follow-up. However, the estimated relative risks of cerebral palsy associated with a motor vehicle crash were wide, overlapped the null and ranged to more than a

Table 3 Additional predictors of cerebral palsy risk in preterm newborns

Predictor	Univariate analysis*	Multivariable analysis†		
	Relative risk	CI	Relative risk	CI
Age (per year older)	0.82	0.73 to 0.93	0.86	0.76 to 0.97
Socioeconomic (low)	0.98	0.84 to 1.14	–	–
Home (rural)	1.22	0.98 to 1.51	–	–
Enrolment (recent)	0.82	0.72 to 0.94	0.84	0.73 to 0.96
Prenatal care ≥13 encounters ‡	0.83	0.69 to 0.99	0.80	0.66 to 0.95
Hospital care ≥1 admission ‡	1.25	1.09 to 1.43	1.24	1.08 to 1.43
Parity (multiparous)	0.85	0.74 to 0.97	0.89	0.78 to 1.03
Newborn (male)	1.32	1.15 to 1.52	1.32	1.15 to 1.52

Analyses based on 850 events in 87 435 children (absolute risk=9.7 per 1000). Relative risk estimate from proportional hazards analysis (Cox regression). CI based on 95% limits using normal approximation (Wald statistic). *Basic univariate comparison with no adjustments for other baseline differences. †Adjusted multivariable comparison accounting for significant univariate predictors. ‡In previous year.
100% increase. Taking into account term births, we estimate that future research may require a sample size exceeding 20 million patient-years of follow-up to confirm or refute our findings. We doubt such data will be available soon.

Our study has several other limitations. Women who have adverse behaviours during pregnancy (eg, alcohol) may have both an increased risk of a motor vehicle crash during pregnancy as well as an increased risk of preterm birth.\(^6^6\) Maternal and delivery characteristics were unavailable (eg, APGAR scores, differing degrees of prematurity), as were data on biomechanical forces and minor crashes receiving no medical attention.\(^6^7\) The total number of observed crashes was not enormous and the totality of all-cause maternal trauma would be greater due to injuries from falls, assault and self-harm.\(^1^8\) Details of the severity of the crashes were also not known and most crashes did not result in cerebral palsy. Subgroup analyses are also prone to chance findings and analyses adjusting for an intermediate feature along a causal pathway can lead to underestimated risks.\(^6^8\) More research is justified examining these and other clinical distinctions.

Previous data suggest that pregnant women have a significant incidence of a motor vehicle crash during pregnancy.\(^2^3\) Few studies describe the long-term consequences of maternal trauma on the surviving children. Our data suggest that a motor vehicle crash during pregnancy might increase the subsequent risk of cerebral palsy in cases of preterm birth. These results highlight an opportunity around prenatal traffic safety counselling for reducing the risks to a developing fetus.\(^7^1\)\(^7^2\) Injuries due to motor vehicle crashes may be particularly important

Table 4 Propensity score-matched analysis of preterm newborns (n=4384)*

Characteristic	Motor vehicle crash Present † (n=548)	Motor vehicle crash Absent ‡ (n=3836)
Age		
<25	132 (24)	933 (24)
25–35	351 (64)	2430 (63)
>35	65 (12)	473 (12)
Socioeconomic status§	181 (33)	1230 (32)
Higher	104 (19)	762 (20)
Middle	263 (48)	1844 (48)
Lower		
Home location	Urban	485 (89)
Rural	63 (11)	389 (10)
Enrolment interval		
First 5 years	277 (51)	1970 (51)
Second 5 years	271 (49)	1866 (49)
Prenatal care¶	516 (94)	3620 (94)
≥13 clinic encounters	322 (59)	2278 (59)
Parity	288 (53)	2024 (53)
Primiparous	260 (47)	1812 (47)
Multiparous		
Pregnancy duration		
Preterm	548 (100)	3836 (100)
At-term	–	–
Post-term	–	–
Mode of delivery		
Vaginal	321 (59)	2255 (59)
Caesarean	227 (41)	1581 (41)
Newborn child		
Male	287 (52)	2036 (53)
Female	252 (46)	1761 (46)
Not recorded	9 (2)	39 (1)
Length of hospital stay		
≤3 days	173 (32)	1224 (32)
≥4 days	375 (68)	2612 (68)

Values are count (percentage) of each group.
*All data from propensity-matched analysis of original cohort.
†Crash present group includes all cases with preterm birth.
‡Crash absent group includes those from 1:7 matching of cases to controls.
§Based on median neighbourhood income quintile.
¶In previous year.

Table 5 Crash features and cerebral palsy risk

Total pregnancies with a crash	Relative risk after crash	CI	
Full cohort	7933	1.29	0.84 to 2.10
Crash position			
Driver	4358	1.57	0.94 to 2.85
Not driver	3575	0.96	0.48 to 2.24
Crash day			
Weekend	1982	1.73	0.86 to 4.04
Weekday	5951	1.15	0.69 to 2.09
Crash season			
Spring/Summer	3717	1.07	0.56 to 2.36
Autumn/Winter	4216	1.49	0.87 to 2.78
Pregnancy trimester			
First	2457	1.39	0.70 to 3.26
Second	3714	1.08	0.56 to 2.36
Third	1762	1.62	0.77 to 4.11
Vehicle			
Car	7100	1.12	0.69 to 1.95
Other	833	2.74	1.22 to 7.78
Time of day			
Morning	1719	0.66	0.24 to 2.87
Afternoon	4488	1.91	1.19 to 3.25
Night	1726	0.33	0.10 to 2.46
Ambulance arrival			
Yes	3957	1.30	0.72 to 2.59
No	3976	1.29	0.72 to 2.58
Triage urgency			
Higher	5525	1.45	0.89 to 2.51
Lower	2408	0.95	0.42 to 2.69

Estimates provide results from subgroup analyses (full cohort listed at top).
Referent based on pregnancies with no motor vehicle crash.
Relative risks estimate from proportional hazards model.
CI based on 95% limits.
and relevant since they are often preventable by following standard safety warnings. Avoiding a crash might possibly prevent a wide range of disability.

Author affiliations

1Department of Medicine, University of Toronto, Toronto, Ontario, Canada
2Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
3Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
4Institute for Health Policy Management and Evaluation
5Division of General Internal Medicine, University of Toronto, Toronto, Ontario, Canada
6Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
7Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada

Acknowledgements

The authors thank the following for helpful comments on specific points: Noor Ladhani, Sharon May, Nir Melamed, Jason Rajchgot, Sheharyar Raza, Jason Woodfine and Arthur Zaltz.

Contributors

The lead author (DAR) had full access to all the data in the study, takes responsibility for the integrity of the data, is accountable for the accuracy of the analysis and wrote the first draft of the manuscript. The second author (FN) was responsible for literature review and manuscript revisions. The third author (DT) was responsible for data analysis and statistical programming. The final author (.JFB) was responsible for manuscript revisions and additional clinical insights. All were responsible for critical revisions.

Funding

This project was supported by the Canada Research Chair in Medical Decision Sciences, the Canadian Institutes of Health Research and the BrightFocus Foundation.

Disclaimer

The views expressed are those of the authors and do not necessarily reflect the Ontario Ministry of Health.

Competing interests

None declared.

Ethics approval

This study was approved by the ethics board of Sunnybrook Research Institute. Specific points: Noor Ladhani, Sharon May, Nir Melamed, Jason Rajchgot, Sheharyar Raza, Jason Woodfine and Arthur Zaltz.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

All original data are available at the Institute for Clinical Evaluative Sciences (ICES).

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Significance

Critical revisions.

For more information on the Journal of Clinical Evaluative Sciences (ICES): 20 years and counting.

References

1. Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS, et al. Prevalence of cerebral palsy in 8-year-old children in three areas of the United States in 2002: a multisite collaboration. Pediatrics 2008;121:547–54.
2. Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment—United States, 2003. MMWR Morb Mortal Wkly Rep 2004;53:57–9.
3. Doyle LW, Victorian Infant Collaborative Study Group. Outcome at 5 years of age of children 23 to 27 weeks gestation: refining the prognosis. Pediatrics 2001;108:134–41.
4. Robertson CM, Watt MJ, Yasui Y. Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years. JAMA 2007;297:2733–40.
5. Platt MJ, Cans C, Johnson A, et al. Trends in cerebral palsy among infants of very low birthweight (<1500 g) or born prematurely (<32 weeks) in 16 European centres: a database study. Lancet 2007;369:43–50.
6. Vincen MJ, Allen AC, Joseph KS, et al. Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics 2006;118:e1621–6.
7. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med 1986;315:81–8.
8. Petterson B, Nelson KB, Watson L, et al. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. BMJ 1993;307:1239–43.
9. Grether JK, Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997;278:207–11. Erratum in: JAMA 1998;279:1118.
10. Streja E, Miller JE, Bech BH, et al. Congenital cerebral palsy and prenatal exposure to self-reported maternal infections, fever, or smoking. Am J Obstet Gynecol 2013;209:332.e1–332.e10.
11. Strijbis EM, Oudman I, van Essen P, et al. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. Obstet Gynecol 2006;107:1357–65.
12. O’Callaghan ME, MacLennan AH, Gibson CS, et al. Australian Collaborative Cerebral Palsy Research Group. Epidemiologic study of cerebral palsy. Obstet Gynecol 2011;118:576–82.
13. Nelson KB. Can we prevent cerebral palsy? N Engl J Med 2003;349:1765–9.
14. Koman LA, Smith BP, Shilt JS. Cerebral palsy. N Engl J Med 2004;350:1619–31.
15. Ahlin K, Himmelmann K, Hagberg G, et al. Non-infectious risk factors for different types of cerebral palsy in term-born babies: a population-based, case-control study. BJOG 2013;120:724–31.
16. Shah KH, Simons RK, Holbrook T, et al. Trauma in pregnancy: maternal and fetal outcomes. J Trauma 1998;45:83–6.
17. El-Kady D, Gilbert WM, Anderson J, et al. Trauma during pregnancy: an analysis of maternal and fetal outcomes in a large population. Am J Obstet Gynecol 2004;190:1661–8.
18. Mendez-Figueroa H, Dahlke JD, Vrees RA, et al. Trauma in pregnancy: an updated systematic review. Am J Obstet Gynecol 2012;209:1–10.
19. Hyde LK, Cook LJ, Olson LM, et al. Effect of motor vehicle crashes on adverse fetal outcomes. Obstet Gynecol 2003;102:279–86.
20. Redelmeier DA, May SC. Cautions while driving with a baby on board. Significance 2015;11:30–5.
21. Williams JK, McClain L, Rosemurgy AS, et al. Evaluation of blunt abdominal trauma in the third trimester of pregnancy: maternal and fetal considerations. Obstet Gynecol 1990;75:33–7.
22. John PR, Shiozawa A, Haut ER, et al. An assessment of the impact of pregnancy on trauma mortality. Surgery 2011;149:94–8.
23. Redelmeier DA, May SC, Thiruchelvam D, et al. Pregnancy and risk of a traffic crash. CMAJ 2014;186:1169.
24. Theurer DE, Kaiser IH. Traumatic fetal death without uterine injury. Report of a case. Obstet Gynecol 1963;21:477–80.
25. Stryker JL, Casey BM, McIntire DD, et al. Long-term fetal outcomes in pregnant trauma patients. Am J Surg 2006;192:715–21.
26. Vannucci RC. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 1990;27(1 Pt):317–26.
27. Burke CJ, Tannenberg AE. Prenatal brain damage and placental infarction—an autopsy study. Dev Med Child Neurol 1995;37:555–62.
28. Diego MA, Jones NA, Field T, et al. Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom Med 2006;68:747–53.
29. Field T, Diego M, Hernandez-Reif M. Prenatal depression effects on the fetus and newborn: a review. Infant Behav Dev 2006;29:445–35.
30. Hayes B, Ryan S, Stephenson JB, et al. Cerebral palsy after maternal trauma in pregnancy. Dev Med Child Neurol 2007:49:700–6.
31. Strand KM, Anderslan GL, Haavaldsen C, et al. Association of placental weight with cerebral palsy: population-based cohort study in Norway. BJOG. Published Online First: 22 Dec 2015. doi:10.1111/1471-0528.13827
32. Dolan D, Grainger J, MacCallum N, et al. The Institute for Clinical Evaluative Sciences: 20 years and counting. Healthc Q 2012;15:19–21.
33. Ministry of Health and Long-Term Care. Public information. Toronto, ON: Ministry of Health and Long-Term Care. 2015. http://www. health.gov.on.ca/en/public/ (accessed 30 Sep 2015).
34. Urquia ML, Frank JW, Glazier RH, et al. Birth outcomes by neighbourhood income and recent immigration in Toronto. Health Rep 2007;18:21–30.
35. Ray JG, Henry DA, Urquia ML. Sex ratios among Canadian liveborn infants of mothers from different countries. CMAJ 2012;184:E492–6.
36. Ananth CV, Platt RW, Savitz DA. Regression models for clustered binary responses: implications of ignoring the intraclass correlation in an analysis of perinatal mortality in twin gestations. *Ann Epidemiol* 2005;15:293–301.

37. Redelmeier DA, Zung JD, Thiruchelvam D, et al. Fibromyalgia and the risk of a subsequent motor vehicle crash. *J Rheumatol* 2015;42:1502–10.

38. Urquia ML, Frank JW, Glazier RH, et al. Neighborhood context and infant birthweight among recent immigrant mothers: a multilevel analysis. *Am J Public Health* 2009;99:2869–73.

39. Urquia ML, Frank JW, Moineddin R, et al. Association between birth order and emergency room visits and acute hospital admissions following pediatric vaccination: a self-controlled study. *PLoS ONE* 2013;8:e81070.

40. Hawken S, Kwong JC, Deeks SL, et al. Association between birth order and maternal autoimmune disease: evidence from a large birth registry. *Arch Dis Child* 2012;97:493–9.

41. Shen S, Campbeltt MA, Calzavara A, et al. Seasonal influenza vaccine effectiveness in pre- and full-term children aged 6–23 months over multiple seasons. *Vaccine* 2013;31:2974–8.

42. Ray JG, Redelmeier DA, Urquia ML, et al. Risk of cerebral palsy among the offspring of immigrants. *PLoS ONE* 2014;9:e102275.

43. Vigod SN, Gomes T, Wilton AS, et al. Antipsychotic drug use in pregnancy: high dimensional, propensity matched, population based cohort study. *BMJ* 2015;350:h2298.

44. Gedeborg R, Engquist H, Berglund L, et al. Neighboring effects of residential exposure to traffic on birth outcomes – a population based case-control study. *Am J Epidemiol* 2001;153:549–54.

45. Evans P, Elliott M, Alberman E, et al. Models of fetal brain injury, intrauterine inflammation, and preterm birth. *Am J Reprod Immunol* 2010;63:287–94.

46. Joseph KS, Allen AC, Lutfi S, et al. Does the risk of cerebral palsy increase or decrease with increasing gestational age? *BMC Pregnancy Childbirth* 2003;3:8.

47. Winter S, Autry A, Boyle C, et al. Trends in the prevalence of cerebral palsy in a population-based study. *Pediatrics* 2002;110:1220–5.

48. Cumming DC, Wren FD. Fetal skull fracture from an apparently trivial motor vehicle accident. *Am J Obstet Gynecol* 1978;132:342–3.

49. Bowdler N, Faiz RG, Elkins T. Fetal skull fracture and brain injury after a maternal automobile accident. A case report. *J Reprod Med* 1987;32:376–8.

50. Evrard JR, Sturman WQ, Murray EJ. Fetal skull fracture from an automobile accident. *Am J Forensic Med Pathol* 1989;10:232–4.

51. Murdoch Eaton DG, Ahmed Y, Dubowitz LM. Maternal trauma and cerebral lesions in preterm infants. Case reports. *Br J Obstet Gynaecol* 1991;98:1961.

52. Hartl R, Ko K. In utero skull fracture: case report. *J Trauma* 1996;41:549–52.

53. Sadro CT, Zins AM, Debiec K, et al. Case report: lethal fetal head injury and placental abruption in a pregnant trauma patient. *Emerg Radiol* 2012;19:175–80.

54. Yamamoto T, Koeda T, Ishii S, et al. A patient with cerebral palsy whose mother had a traffic accident during pregnancy: a diffuse axonal injury? *Brain Dev* 1999;21:334–6.

55. Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. *Am J Reprod Immunol* 2012;67:287–94.

56. Weiss HB, Songer TJ, Fabio A. Fetal deaths related to maternal injury. *JAMA* 2001;286:1863–8.

57. Esaat TH, de Haan J. 1981: continuous infusion of norepinephrine on maternal pelvic and fetal umbilical blood flow in pregnant sheep. *J Perinat Med* 1986;14:211–8.

58. Stevens AD, Lumbers ER. Effects of intravenous infusions of noradrenaline into the pregnant ewe on uterine blood flow, fetal renal function, and umbilical liquid flow. *Can J Physiol Pharmacol* 1995;73:202–8.

59. Schiff MA, Holt VL. Pregnancy outcomes following hospitalization for motor vehicle crashes in Washington State from 1989 to 2001. *Am J Epidemiol* 2005;161:503–10. Erratum in: *Am J Epidemiol* 2005;162:197.

60. Hirvonen M, Ojala R, Korhonen P, et al. Cerebral palsy among children born moderately and late preterm. *PEDIATRICS* 2014;134:e1584–93.

61. Pearl J. An introduction to causal inference. *Int J Biostat* 2010;6:Article 7,1–59.

62. Wilcox AJ, Weinberg CR, Basso O. On the pitfalls of adjusting for gestational age at birth. *Am J Epidemiol* 2011;174:1062–8.

63. Vivian-Taylor J, Roberts CL, Chen JS, et al. Motor vehicle accidents during pregnancy: a population-based study. *BJOG* 2012;119:500–505.

64. Redelmeier DA, Yarmell CJ, Thiruchelvam D, et al. Physicians’ warnings for uninf drivers and the risk of trauma from road crashes. *N Engl J Med* 2012;367:1228–36.

65. Redelmeier DA, Tien HC. Medical interventions to reduce motor vehicle collisions. *CMAJ* 2014;186:118–24.