Diurnal Variation of Circulating Interleukin-6 in Humans: A Meta-Analysis

Gustav Nilsonne1,2*, Mats Lekander1,2, Torbjörn Åkerstedt1,2, John Axelsson1,2, Michael Ingre1

1 Stockholm University, Stress Research Institute, Stockholm, Sweden, 2 Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden

* gustav.nilsonne@ki.se

Abstract

The pleiotropic cytokine interleukin-6 (IL-6) has been proposed to contribute to circadian regulation of sleepiness by increasing in the blood at night. Earlier studies have reported diurnal variation of IL-6, but phase estimates are conflicting. We have therefore performed a meta-analysis on the diurnal variation of circulating IL-6. Studies were included if they reported IL-6 in plasma or serum recorded at least twice within 24 hours in the same individual. A systematic search resulted in the inclusion of 43 studies with 56 datasets, for a total of 1100 participants. Individual participant data were available from 4 datasets with a total of 56 participants. Mixed-effects meta-regression modelling confirmed that IL-6 varied across the day, the most conspicuous effect being a trough in the morning. These results stand in contrast to earlier findings of a peak in the evening or night, and suggest that diurnal variation should be taken into account in order to avoid confounding by time of day in studies of IL-6 in plasma or serum.

Introduction

Sleepiness is regulated in humans by two main processes: the circadian process, which makes us sleepier in the night, and the homeostatic process, which causes sleepiness to increase with time awake [1]. It has been proposed that interleukin-6, a pleiotropic cytokine, participates in circadian sleepiness regulation by increasing at night in the blood and inducing sleepiness through signalling in the brain [2–6]. Early studies of diurnal variation of IL-6 in humans found a peak in the night-time [7, 8], and it is this observational relationship that forms the main line of evidence for a regulatory effect of circulating IL-6 on sleepiness. However, further studies have since found peaks at different times of the day or have found no peaks at all. Fig 1 shows locations of peaks and troughs that have been estimated in the literature so far. Notably, estimates have ranged quite widely. Nonetheless, the general impression of these earlier claims is consistent with an increase of IL-6 levels in the night-time.

One previous meta-analysis of IL-6 and time of day has been reported [9] (published again in [10] and [11]). This meta-analysis primarily investigated diurnal variation of interleukin-6 in patients with rheumatoid arthritis, but also included an estimate for healthy control
participants from 11 studies. Data inclusion procedures were informal; no systematic method for identifying and including data was reported. The main finding in healthy participants was an increase if IL-6 from the evening, continuing during the night, followed by a drop in the morning. The pattern in patients with rheumatoid arthritis was similar, but with a more pronounced peak in the early morning before levels started to fall.

Thus, the observational relationship between IL-6 and time of day in healthy humans has important implications for the theoretical understanding of immune-brain interactions in sleepiness regulation, but there is no consensus on estimates of phase. Therefore, we have performed a meta-analysis, aiming to investigate the diurnal variation of IL-6 in the blood.

Materials and Methods

Literature search and data acquisition

The PubMed database was searched using the terms "interleukin-6 AND (sleep OR diurnal OR circadian)", and the limit "human". The search was last updated on 2016-01-03. Records were reviewed by one investigator (GN). Studies were included if they reported IL-6 in plasma or serum from healthy participants with a time-course including two or more time-points within 24 hours. Fig 2 shows a flowchart of data inclusion. Table 1 shows characteristics of included studies. Table 2 lists studies that fulfilled inclusion criteria but which could nonetheless not be included. The most common reason was that data could not be estimated \((k = 25) \). Of these 25 studies, 7 reported that data were largely or entirely under the assay detection limit. In the remaining cases, data could not be estimated because they were given as a difference score \((k = 5) \), because they were not shown \((k = 4) \), because time of day was not given \((k = 3) \), or for other reasons, specified in Table 2 \((k = 6) \). Additionally, seven studies were excluded due to duplicate publication of data, and four studies were excluded because the reported levels of IL-6 were very high and therefore judged not to represent levels consistent with physiological regulation or variation in healthy humans. Of these studies, one reported one participant, whose IL-6 levels increased ten-fold after venous catheterization [12], and we judged that this change was not representative of diurnal variation. Another study reported ten participants with mean plasma IL-6 levels of about 10-30 pg/ml over the course of two days [13]. This is about ten times higher than expected for healthy participants, raising questions about the validity of the absolute values. We judged that these measures may not accurately reflect the target outcome, and that they would unduly influence the regression model on account of the very high values. They were therefore excluded. Finally, two studies [14, 15] reported 40 and 60 participants, possibly with overlapping samples, both with mean values of about 35 and 55 pg/ml at 09:00 and 02:00, respectively. Because these levels were so much
higher than expected for healthy participants, these studies were also excluded. Thirteen studies were included from sources other than the PubMed results. These were found mostly because they were cited by papers identified in the literature search, and in some cases because they were known to us beforehand.

Data were estimated from published tables or from graphs using GetData Graph Digitizer, version 2.25.0.25 (getdata-graph-digitizer.com). Error bars were assumed to represent standard errors unless otherwise indicated. Time of day was coded, as well as sleep or wake, time asleep, and time awake. For studies reporting participants kept in the lab overnight, data obtained at the time-point when the lights-out period began were coded as awake and data from the time-point when the lights-out period ended were coded as asleep. When times for falling asleep and waking up were not recorded or not reported, we assumed that they were 23:00 and 07:00. When applicable, time from catheter insertion was also coded. Unless otherwise specified, serial sampling with more than two samples within the same 24-hour period was assumed to have been performed using an indwelling catheter inserted at the first sampling time point. Data recorded during sleep deprivation were not included. IL-6 data were ln-transformed to better approximate a normal distribution. For datasets where individual participant data were not available, transformation was performed as described in [16].

Individual participant data were available from 4 datasets, which were coded separately (see Table 1). In these datasets, data points below assay detection limits (meaning lowest known point of assay linear range) were conservatively re-coded to the value of the detection limit. In
Table 1. Characteristics of included studies. Where studies reported several datasets, these are specified separately.

1st Author	Year	Ref.	n subjects	n timepoints	Regression weight, %	Notes
Sothern	1995	[17]	11	8	0.99	a
Spáth-Schwalbe	1998	[41]	16	4	1.01	
Dugue	1998	[42]	22	3	1.21	
Vgontzas	1999	[24]	8	24	1.24	
Úndar	1999	[37]	10	7	0.84	
Spáth-Schwalbe	2000	[43]	18	3	0.99	
Redwine	2000	[44]	31	15	3.80	b
Haack	2000	[45]	20	9	1.90	
Vgontzas	2000	[46]	12; 11	2; 2	0.54; 0.49	c
Baker	2001	[47]	8	6	0.82	
Haack	2001	[48]	10	10	1.00	
Haack	2002	[21]	12	25	1.99	
Vgontzas	2002	[35]	11	24	1.71	
Vgontzas	2003	[34]	15; 13	48; 48	3.29; 2.85	d
Alberi	2003	[49]	20	2	0.49	
Irwin	2004	[50]	15	4	0.95	
Vgontzas	2004	[51]	25	48	5.49	
Szczudlik	2004	[52]	17	4	1.08	
Alesci	2005	[53]	9	22	1.34	
Mehrha	2006	[26]	150; 23; 12; 35; 30	2; 2; 2; 2; 2	6.72; 1.03; 0.54; 1.56; 1.34	d
Burgos	2006	[38]	11	8	0.99	
Vgontzas	2007	[53]	20; 20	48; 48	4.39; 4.39	e
Frey	2007	[54]	19	15	2.33	b
Lindahl	2007	[55]	14	4	0.89	
Miles	2008	[40]	51	5	3.61	
Vgontzas	2008	[56]	15; 13	48; 48	3.29; 2.85	
Knudsen	2008	[59]	15	8	1.14	a, f
Benedict	2009	[57]	17	15	2.09	
Peeling	2009	[58]	8	5	0.57	
Phillips	2010	[59]	7	3; 3	0.38; 0.38	g
Rief	2010	[60]	60; 52	2; 2	2.69; 2.33	
Gill	2010	[61]	14	13	1.60	
Chennaoui	2011	[62]	12	6	0.93	
Pledge	2011	[63]	6	4	0.76	
Crispim	2012	[64]	6; 7; 9	7; 7; 7	0.50; 0.59; 0.75	
Voderholzer	2012	[65]	16	6	1.24	
Grigolet	2012	[66]	10	7	0.84	
Abedmalek	2013	[67]	12	2	0.54	
Pejovic	2013	[68]	30	24	4.65	
Lekander	2013	[69]	9	40	1.30	
Agorastos	2014	[36]	11	24	1.71	
Kritikou	2014	[23]	18; 21	24; 24	2.79; 3.26	
Karshikoff	2015	[18]	21	4	1.31	a, h
Total			1100	789	100	

a: Individual participant data were available. b: Some data were given in time relative to sleep onset or wake-up, and were re-coded using mean chronological time as a best approximation. c: Averaged over 3 consecutive days. d: 358 of 385 participants were included in analyses of IL-6. Final n for each sub-group was not given, and was therefore conservatively coded as the lowest possible n in each sub-group. Error bars were denoted as standard deviation, but were coded as standard errors because they were incredibly small for standard deviations. e: Each dataset was said to have 50% of the total participants (n = 41), and both were conservatively coded as n = 20. f: 15 of 16 participants could be identified in the graph. g: The same 7 participants were included twice with a 10-week interval, yielding two different data sets. h: We have previously published data from this study [71].

doi:10.1371/journal.pone.0165799.t001
Sothern 1995 [17], 7 values out of 88 (8%), ranging from 0.5 to 0.96 pg/ml, were re-coded to 1 pg/ml. In Karshikoff 2015 [18], 23 values out of 83 (28%), ranging from 0.01 to 0.88 pg/ml, were re-coded to 0.9 pg/ml.

Ethical approval was not required. The study protocol was not registered. All data and the full analysis code are freely available at [19].
Meta-analysis

To investigate the diurnal time course of IL-6 in plasma and possible moderator variables, we used hierarchical mixed-effects models. This approach allows for more complex model fitting and is expected to have higher statistical power compared to fitting models separately in each dataset and then analysing summary measures such as acrophase and amplitude. Diurnal variation was investigated by fitting cosinor functions with periods of 24, 12, and 6 hours. Time from catheterisation was included with a random slope for each data set in order to account for the proposed effect that catheterization induces higher values in blood drawn from the catheter [20, 21]. Effects of sleep were investigated exploratively with a binary factor for sleep/wake, as well as time asleep and time awake. Datasets were weighted by the number of participants multiplied by the square root of the number of time-points in each study. Models were compared using likelihood ratio tests. Analyses were performed using R version 3.2.0 [22] with the nlme package [23].

Results

Diurnal variation of IL-6

First, we fitted a null model including only time from catheterization and a random intercept for each dataset. Fig 3 shows residuals after these effects have been accounted for, suggesting that there remains variation to explain. The distribution of these residuals suggests a morning trough in IL-6 levels (Fig 3). Next, we compared a model with a 24 h cosinor function to the null model. The 24 h cosinor model fit better (log likelihood -483.5 vs -528.8, \(p < 0.0001 \), Fig 4). We then added another cosinor function with 12 h period. We did this for two reasons.

Fig 3. Residuals from null model. Data points sized by regression weight. In the null model, a random intercept for each study and a linear effect of time from catheterization have been included. Therefore, these residuals show the putative diurnal variation to be modeled. To explore this variation, we fitted a weighted LOESS curve (red line). This curve shows a trough in the morning. Note that the shape of the LOESS curve depends on the smoothing parameter. It is therefore possible to generate different LOESS curves from the same data, and not all of them show a peak in the early afternoon. The LOESS curve was fitted on three repeated days of the same data, and the curve for the second day shown, to ensure that the estimates would meet at 00:00 and 24:00. Time from 22:00 to 07:00 is shaded to indicate the night. Left: All data points shown. Right: Y axis range restricted to increase resolution.

doi:10.1371/journal.pone.0165799.g003
The first reason was that addition of shorter periods allows a better estimation of non-sinusoidal effects, albeit at a cost of higher risk of overfitting. The second reason was that 12 h periods have been proposed by earlier investigators [24], and we considered that these claims should be tested. The model with both 24 h and 12 h cosinor functions fit better than the model with only the 24 h period (log likelihood -460.1 vs -483.5, \(p < 0.0001 \), Fig 4). Next, we exploratively investigated the addition of yet another cosinor with a 6 h period, but that did not improve model fit (log likelihood -457.7 vs -460.1, \(p = 0.09 \), prediction not shown).

Attempting to disentangle diurnal variation from effects of sleep, we investigated the addition of model effects for sleep (asleep/awake), time asleep (hours since sleep onset), and time awake (hours since wake onset). Starting with the best-fitting model including 24 and 12 h periods, we found that the addition of sleep, time asleep and time awake, or all three variables, did not improve model fit (log likelihoods -459.9, -459.2, and -459.0, respectively, vs -460.1, with \(p \) values 0.80, 0.36, and 0.36). Finally, we investigated the addition of sleep, time asleep and time awake, and all three variables, to the model with 24 h period. When comparing these models to the best-fitting model with 24 and 12 h periods, we saw worse fit (log likelihoods -475.5, -471.5, and -471.5, vs -460.1, with \(p \) values \(< 0.0001 \)). When comparing to the model with 24 h period only, we found that the addition of sleep, time asleep and time awake, or all three variables, yielded better-fitting models (log likelihoods -475.5, -471.5, and -471.5, vs -483.5, \(p \) values 0.0003, \(< 0.0001 \), and \(< 0.0001 \)).

The best-fitting model with 24 and 12 h periods had a conspicuous trough between 09:00 and 10:00 in the morning and a second less pronounced trough close to 22:00, and two peaks located close to 17:00 and 02:00 (Fig 4). Since diurnal rhythms are commonly investigated using cosinor functions with 24 h periods, we show predictions from this simpler model too (Fig 4). This model estimated bathyphase (lowest point) at 08:05 and acrophase (highest point) at 20:05, with an amplitude of 0.166. All the included datasets, with predictions from the best-fitting model, are shown in Figs 5 and 6. Individual participant data are shown in Fig 7, for those four studies from which individual participant data were available.
Fig 5. Data and fitted time courses, showing the first 30 out of 56 datasets. Data are shown as estimated from original publications, with error bars showing standard deviations. Y axes show ln IL-6 (pg/ml) throughout. Hours are in chronological time where 1 is 01:00 on the first day. Red lines show predictions from the best-fitting model.

doi:10.1371/journal.pone.0165799.g005
Fig 6. Data and fitted time courses, showing the last 26 out of 56 datasets. Data are shown as estimated from original publications, with error bars showing standard deviations. Y axes show ln IL-6 (pg/ml) throughout. Hours are in chronological time where 1 is 01:00 on the first day. Red lines show predictions from the best-fitting model.

doi:10.1371/journal.pone.0165799.g006
Assessment of risk of bias

Our literature review identified 36 eligible studies which could not be included. Not counting participants with duplicate data, these studies reported 468 participants, compared to the 1100 included in our meta-analysis. Of the ineligible studies, seven, most of which were published in the 1990s, were unable to find reliable data because most values were close to or below assay detection limits (Table 2). From the point of view of bias, this is not a major problem since assay detection limits were unrelated to time of day for sampling. More concerning are data that were not reported because no effect was found. Only one paper explicitly stated that data were not shown for this reason [25]. Additionally, an unknown number of studies with eligible data have never been published. It is likely that unreported studies were more likely not to have found significant effects. However, with regard to estimating diurnal phase, we suspect that earlier investigators have been happy to report effects regardless of the location of peaks and troughs, reflected in the wide variety of published estimates (Fig 1). Therefore, even though the first reports of diurnal effects reported peaks in the night, we suspect that the studies included here were not strongly biased towards reporting effects at any particular time of day. Furthermore, to the extent that earlier reports may have been influenced by a prevailing theory, the effect most often referred to is a night-time peak. Since our meta-analysis did not find a night-time peak, we think it is unlikely that a bias in favor of this particular effect will have had a major influence on our model estimates.

Included datasets comprise both data from studies that were designed to measure diurnal or circadian variation, and data from studies that incidentally happened to fulfil our inclusion criteria. The latter group generally had fewer time points for measurements. Since this meta-analysis uses mixed-effects meta-regression by time of day, and is hence not based on single summary measures of included studies, it is not possible to investigate heterogeneity and bias by usual means such as a funnel plot. The results did not strongly depend on any single study. The most influential study was Mehra et al. [26], with a total regression weight of 11.19% over five different datasets.

Since this analysis concerns an observational relationship, confounding from a variety of sources cannot be ruled out. Light exposure and photoperiod were not controlled nor recorded except in laboratory studies, and season or time of the year were not reported frequently enough to justify inclusion in coding. Similarly, physical activity can affect levels of IL-6, but any instructions to participants about physical activity, and measures of their behavior, were
for the most part not reported in included studies. Our assumption that participants in datasets not specifying sleep times on average slept 23:00-07:00 would limit the ability to estimate effects of sleep, but that is beyond the scope of this paper, and as the sleep variable was not included in the best-fitting model, the assumption only indirectly affects the risk of bias in diurnal variation. Since the sleep variable made very little difference when added to the best-fitting model, it is unlikely that a different assumption would lead to a different result.

Based on the above considerations, we judge that the risk of bias due to selective publishing and data inclusion is probably moderate to low.

Discussion

Our meta-analysis confirmed that circulating IL-6 shows diurnal variation. The most marked effect was a morning trough. The best-fitting model included a 24 h and a 12 h cosinor component. The LOESS curve shown in Fig 3 suggests a relatively flat curve from the afternoon to the late night, and the better fit obtained by adding the 12 h component may reflect the rather steep change occurring between the morning and the afternoon. For this reason, we are reluctant to consider the best-fitting model as proof that there are two distinct peaks and/or troughs during the 24 h day.

Our analytical approach treats sleep as a confounder to be eliminated, in order to best estimate diurnal variation. The effect of sleep on circulating IL-6 is an interesting question in its own right, but is better addressed by experimental sleep deprivation studies, which were not investigated here. A recent meta-analysis of the effect of sleep deprivation on IL-6 included 12 studies and found no significant effect [27].

One previous meta-analysis [9] (reported again in [10] and [11]) has investigated diurnal variation of circulating IL-6. As discussed in the introduction, this earlier meta-analysis aimed primarily to describe diurnal variation in patients with rheumatoid arthritis, and no systematic method to find data from healthy participants was described. Compared to this earlier meta-analysis, we have used a more systematic approach and we include more data ($k = 56$ datasets compared to $k = 11$). The present findings contrast markedly with those of the earlier meta-analysis, as that study located a morning peak at approx. 06:00 in healthy controls (Fig 1) as well as in patients with rheumatoid arthritis, while we report a morning trough at about 08:00-09:00 in healthy humans. This raises the hypothesis that diurnal variation is different between healthy humans and patients with rheumatoid arthritis, possibly correlating in patients to the diurnal time course of symptoms such as joint stiffness and pain, which tend to be worse in the morning.

The shape of the diurnal curve estimated in this meta-analysis is not suggestive of a mechanism where the immune system secretes more IL-6 into the blood at night in order to promote sleepiness. While the present results do not disprove this putative mechanism, the lack of a night-time peak, compared to the afternoon, suggests that other regulatory mechanisms are dominant.

The estimated morning trough is rather close after the time of day when cortisol levels peak, and also close to the diurnal trough of monocyte and lymphocyte concentrations in peripheral blood [28–30]. The data investigated here cannot speak directly to the relationship between diurnal variation of IL-6 to cortisol and white blood cell concentrations, and further studies will be required to elucidate whether any direct links exist.

The diurnal variation estimated here is large enough to pose a risk of confounding if sampling is performed without regard to time of day, and we therefore recommend that time of day should be taken in to consideration in studies recording IL-6 in plasma or serum from healthy humans. As far as we are aware, IL-6 is the the only cytokine to date to be subject to a
meta-analysis of diurnal variation. Further research is required to determine conclusively whether other cytokines also show diurnal variation.

Supporting Information
S1 File. PRISMA checklist.
(DOC)

Author Contributions
Conceptualization: GN ML TÅ JA MI.
Data curation: GN.
Formal analysis: GN MI.
Investigation: GN ML TÅ JA MI.
Methodology: GN MI.
Supervision: ML TÅ.
Visualization: GN.
Writing – original draft: GN.
Writing – review & editing: ML TÅ JA MI.

References
1. Borbély AA. Processes underlying sleep regulation. Hormone Research. 1998; 49(3-4):114–117. doi: 10.1159/000023156
2. Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain, behavior, and immunity. 2002; 16(5):503–512. doi: 10.1016/S0889-1591(02)00003-X PMID: 12401464
3. Bryant PA, Trinder J, Curtis N. Sick and tired: Does sleep have a vital role in the immune system? Nature reviews Immunology. 2004; 4(6):457–467. doi: 10.1038/nri1369 PMID: 15173834
4. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Trakada G, Chrousos GP. IL-6 and its circadian secretion in humans. Neuroimmunomodulation. 2005; 12(3):131–140. doi: 10.1159/000084844 PMID: 15905620
5. Rohleder N, Aringer M, Boentert M. Role of interleukin-6 in stress, sleep, and fatigue. Annals of the New York Academy of Sciences. 2012; 1261:88–96. doi: 10.1111/j.1749-6632.2012.06634.x PMID: 22823398
6. Gamaldo CE, Shaikh AK, McArthur JC. The sleep-immunity relationship. Neurologic clinics. 2012; 30(4):1313–1343. doi: 10.1016/j.ncl.2012.08.007 PMID: 22999140
7. Gudewill S, Pollmächer T, Vedder H, Schreiber W, Fassbender K, Holsboer F. Nocturnal plasma levels of cytokines in healthy men. European Archives of Psychiatry and Clinical Neuroscience. 1992; 242(1):53–56. doi: 10.1007/BF02190343 PMID: 1390956
8. Bauer J, Hohagen F, Ebert T, Timmer J, Ganter U, Krieger S, et al. Interleukin-6 serum levels in healthy persons correspond to the sleep-wake cycle. The clinical investigator. 1994; 72(4):315–315. doi: 10.1007/BF00180048 PMID: 8043981
9. Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: Implications for pathophysiology and therapeutic management. Arthritis & Rheumatism. 2007; 56(2):399–408. doi: 10.1002/art.22365 PMID: 17265475
10. Cutolo M, Straub RH, Buttgereit F. Circadian rhythms of nocturnal hormones in rheumatoid arthritis: translation from bench to bedside. Annals of the Rheumatic Diseases. 2008; 67(7):905–908. doi: 10.1136/ard.2008.088955 PMID: 18556443
11. Cutolo M, Straub RH. Circadian rhythms in arthritis: hormonal effects on the immune/inflammatory reaction. Autoimmunity Reviews. 2008; 7(3):223–228. doi: 10.1016/j.autrev.2007.11.019 PMID: 18190882
12. Gudmundsson A, Ershler WB, Goodman B, Lent SJ, Barczi S, Barnes M. Serum Concentrations of Interleukin-6 Are Increased When Sampled Through an Indwelling Venous Catheter. Clinical Chemistry. 1997; 43(11):2199–2201. PMID: 9365415

13. Born J, Lange T, Hansen K, Mølle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. The Journal of Immunology. 1997; 158(9):4454–4464. PMID: 9127011

14. Dominguez Rodríguez A, Abreu González P, García MJ, de la Rosa A, Vargas M, Marrero F. [Circadian variations in proinflammatory cytokine concentrations in acute myocardial infarction]. Revista española de cardiology. 2003; 56(6):555–560. PMID: 12783730

15. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia M, Ferrer J, de la Rosa A, Vargas M, et al. Light/ dark patterns of interleukin-6 in relation to the pineal hormone melatonin in patients with acute myocardial infarction. Cytokine. 2004; 26(2):89–93. doi: 10.1016/j.cyto.2004.01.003 PMID: 15050609

16. Higgins JPT, White IR, Anzures-Cabrera J. Meta-analysis of skewed data: Combining results reported on log-transformed or raw scales. Statistics in Medicine. 2008; 27(29):6072–6092. doi: 10.1002/sim.3427 PMID: 18800342

17. Soothern RB, Roitman-Johnson B, Kanabrocki EL, Yager JG, Fuerstenberg RK, Weatherbee JA, et al. Circadian characteristics of interleukin-6 in blood and urine of clinically healthy men. In vivo (Athens, Greece). 1995; 9(4):331–339. PMID: 8555432

18. Karshikoff B, Lekander M, Ingvar M, Kosek E, et al. Modality and sex differences in pain sensitivity during human endotoxemia. Brain, Behavior, and Immunology. 2015; 46:35–43. doi: 10.1016/j.bbi.2014.11.014 PMID: 25486090

19. Nilsson G, Ingre M. IL6_diurnal : Release for publication. Zenodo.

20. Seiler W, Müller H, Hiemke C. Interleukin-6 in plasma collected with an indwelling cannula reflects local, not systemic, concentrations. Clinical Chemistry. 1994; 40(9):1778–1779. PMID: 8070091

21. Haack M, Kraus T, Schuld A, Dalal M, Koethe D, Pollmächer T. Diurnal variations of interleukin-6 plasma levels are confounded by blood drawing procedures. Psychoneuroendocrinology. 2002; 27(8):921–931. doi: 10.1016/S0306-4530(02)00006-9 PMID: 12383453

22. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2015. Available from: http://www.R-project.org/.

23. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; 2015. Available from: http://CRAN.R-project.org/package=nlme.

24. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A, et al. Circadian characteristics of interleukin-6 secretion and quantity and depth of sleep. The Journal of clinical endocrinology and metabolism. 1999; 84(8):2603–2607. doi: 10.1210/jcem.84.8.5894 PMID: 10443646

25. Dinges DF, Douglas SD, Zaugg L, Campbell DE, McMann JM, Whitehouse WG, et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. Journal of Clinical Investigation. 1994; 93(5):1930–1939. doi: 10.1172/JCI117184 PMID: 7910171

26. Mehra R, Storfer-Isser A, Kirchner H, et al. Soluble interleukin 6 receptor: A novel marker of moderate to severe sleep-related breathing disorder. Archives of Internal Medicine. 2006; 166(16):1725–1731. doi: 10.1001/archinte.166.16.1725 PMID: 16983050

27. Irwin MR, Olmstead R, Carroll JE. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biological Psychiatry. 2015. doi: 10.1016/j.biopsych.2015.05.014 PMID: 26140821

28. Lasselin J, Rehman J, Äkerstedt T, Lekander A, Axelsson J. Effect of long-term sleep restriction and subsequent recovery sleep on the diurnal rhythms of white blood cell subpopulations. Brain, Behavior, and Immunity. 2010; 24(4):406–411. doi: 10.1016/j.bbi.2010.04.004 PMID: 20541611

29. Sennels HP, Jergensen HL, Hansen AS, Goetze JP, Fahrenkrug A. Diurnal variation of hematology parameters in healthy young males: The Bispebjerg study of diurnal variations Scandinavian Journal of Clinical and Laboratory Investigation. doi: 10.3109/00365513.2011.602422 PMID: 21988588

30. Ackermann K, Revell VL, Lao O, Rombouts EJ, Skene DJ, Kayser M. Diurnal Rhythms in Blood Cell Populations and the Effect of Acute Sleep Deprivation in Healthy Young Men Sleep. doi: 10.1065/sleep.1954 PMID: 22754039

31. Kanabrocki EL, Soothern RB, Messmore HL, Roitman-Johnson B, McCormick JB, Dawson S, et al. Circadian interrelationships among levels of plasma fibrinogen, blood platelets, and serum interleukin-6, Clinical and applied thrombosis/hemostasis: official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 1999; 5(1):37–42. PMID: 10725981

32. Soothern RB, Roitman-Johnson B, Kanabrocki EL, Yager JG, Roodell MM, Weatherbee JA, et al. Circadian characteristics of circulating interleukin-6 in men. Journal of Allergy and Clinical Immunology. 1995; 95(5):1029–1035. doi: 10.1016/S0091-6749(95)70104-4 PMID: 7751499

Diurnal Variation of Interleukin-6
50. Irwin M, Rinetti G, Redwine L, Motivala S, Dang J, Ehlers C. Nocturnal proinflammatory cytokine-associated sleep disturbances in abstinent African American alcoholics. Brain, Behavior, and Immunity. 2004; 18(4):349–360. doi: 10.1016/j.bbi.2004.02.001 PMID: 15157952
51. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. The Journal of clinical endocrinology and metabolism. 2004; 89(5):2119–2126. doi: 10.1210/jc.2003-031562 PMID: 15126529

52. Szczudlik A, Dziedzic T, Bartus S, Sliwko A, Kieltyka A. Serum interleukin-6 predicts cortisol release in acute stroke patients. Journal of endocrinological investigation. 2004; 27(1):37–41. doi: 10.1007/BF03359098 PMID: 15053241

53. Vgontzas AN, Pejovic S, Zoumakis E, Lin HM, Bixler EO, Basta M, et al. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. American Journal of Physiology—Endocrinology and Metabolism. 2007; 292(1):E253–E261. doi: 10.1152/ajpendo.00651.2005 PMID: 17690468

54. Frey DJ, Fleshner M, Wright KP Jr. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain, Behavior, and Immunity. 2007; 21(8):1050–1057. doi: 10.1016/j.bbi.2007.04.003 PMID: 17524614

55. Lindahl MS, Olovsson M, Nyberg S, Thorsen K, Olsson T, Sundström Poromaa I. Increased cortisol responsivity to adrenocorticotropic hormone and low plasma levels of interleukin-1 receptor antagonist in women with functional hypothalamic amenorrhea. Fertility and Sterility. 2007; 87(1):136–142. doi: 10.1016/j.fertnstert.2006.06.029 PMID: 17094981

56. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Collins B, Basta M, et al. Selective effects of CPAP on sleep apnoea-associated manifestations. European Journal of Clinical Investigation. 2008; 38(8):585–595. doi: 10.1111/j.1365-2362.2008.01984.x PMID: 18627419

57. Benedict C, Scheller J, Rose-John S, Born J, Marshall L. Enhancing influence of intranasal interleukin-6 on slow-wave activity and memory consolidation during sleep. The FASEB Journal. 2009; 23(10):3629–3636. doi: 10.1096/fj.08-122853 PMID: 19546306

58. Peeling P, Dawson B, Goodman C, Landers G, Wiegerswick ET, Swinkels DW, et al. Effects of exercise on hepatic response and iron metabolism during recovery. International journal of sport nutrition and exercise metabolism. 2009; 19(6):583–597. doi: 10.1249/MSS.0b013e3181f367e2 PMID: 20175428

59. PHILLIPS MD, FLYNN MG, MCFARLIN BK, STEWART LK, TIMMERMAN KL. Resistance Training at Eight-Repetition Maximum Reduces the Inflammatory Milieu in Elderly Women. [Miscellaneous Article]. Medicine & Science in Sports & Exercise February 2010. 2010; 42(2):314–325. doi: 10.1249/MSS.0b013e3181bb013e PMID: 20925260

60. Rief W, Mills PJ, Ancoli-Israel S, Ziegler MG, Pung MA, Dimsdale JE. Overnight changes of immune markers in healthy young adults. Brain, Behavior, and Immunity. 2011; 56(2):318–324. doi: 10.1016/j.bbi.2011.05.005 PMID: 21632260

61. Rief W, Mills PJ, Ancoli-Israel S, Ziegler MG, Pung MA, Dimsdale JE. Overnight changes of immune markers in healthy young adults. Brain, Behavior, and Immunity. 2011; 56(2):318–324. doi: 10.1016/j.bbi.2011.05.005 PMID: 21632260

62. Chennouai M, Sauvet F, Drogou C, Van Beers P, Langrume C, Guillard M, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cyto. 2011; 55(2):318–323. doi: 10.1016/j.cyto.2011.06.002 PMID: 21737301

63. Peeling P, Dawson B, Goodman C, Landers G, Wiegerswick ET, Swinkels DW, et al. Effects of exercise on hepatic response and iron metabolism during recovery. International journal of sport nutrition and exercise metabolism. 2009; 19(6):583–597. doi: 10.1249/MSS.0b013e3181f367e2 PMID: 20175428

64. Crippen CA, Padilha HG, Zimberg IZ, Waterhouse J, Dattilo M, Tufik S, et al. Adipokine Levels Are Altered by Shiftwork: A Preliminary Study. Chronobiology International. 2012; 29(5):587–594. doi: 10.3109/07420528.2012.675847 PMID: 22621355

65. Voderholzer U, Fiebich BL, Dersch R, Feige B, Piosczyk H, Kopasz M, et al. Effects of Sleep Deprivation on Nocturnal Cytokine Concentrations in Depressed Patients and Healthy Control Subjects. The Journal of Neuropsychiatry and Clinical Neurosciences. 2012; 24(3):354–366. doi: 10.1176/appi.neuropsych.11060142 PMID: 23037650

66. Grigoleit JS, Kullmann JS, Winkelhaus A, Engler H, Wegner A, Hammes F, et al. Single-trial conditioning in a human taste-endotoxin paradigm induces conditioned odor aversion but not cytokine responses. Brain, Behavior, and Immunity. 2012; 26(2):234–238. doi: 10.1016/j.bbi.2011.09.001 PMID: 21925260

67. Abedelmalek S, Chhourou H, Aloui A, Aouchaoui C, Souissi N, Tabka Z. Effect of time of day and partial sleep deprivation on plasma concentrations of IL-6 during a short-term maximal performance. European Journal of Applied Physiology. 2013; 113(1):241–248. doi: 10.1007/s00421-012-2432-7 PMID: 22677919

68. Pejovic S, Basta M, Vgontzas AN, Kritikou I, Shaffer ML, Tsaoussoglou M, et al. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime
sleepiness and performance. American journal of physiology Endocrinology and metabolism. 2013; 305 (7):E890–896. doi: 10.1152/ajpendo.00301.2013 PMID: 23941878

69. Lekander M, Andreasson AN, Kecklund G, Ekman R, Ingre M, Akerstedt T, et al. Subjective health perception in healthy young men changes in response to experimentally restricted sleep and subsequent recovery sleep. Brain, Behavior, and Immunity. 2013; 34:43–46. doi: 10.1016/j.bbi.2013.06.005 PMID: 23598957

70. Kritikou I, Basta M, Vgontzas AN, Pejovic S, Liao D, Tsaoussoglou M, et al. Sleep apnoea, sleepiness, inflammation and insulin resistance in middle-aged males and females. European Respiratory Journal. 2014; 43(3):145–155. doi: 10.1183/09031936.00126712 PMID: 23598957

71. Nilsson G. Endotoxin RestingState 2015: Release for publication; 2015. Available from: http://dx.doi.org/10.5281/zenodo.35770.

72. Lemmer B, Schwuléra U, Thrun A, Lissner R. Circadian rhythm of soluble interleukin-2 receptor in healthy individuals. European cytokine network. 1992; 3(3):335–336. PMID: 1498263

73. Pollmächer T, Schreiber W, Gudewill S, Vedder H, Fassbender K, Wiedemann K, et al. Influence of endotoxin on nocturnal sleep in humans. The American journal of physiology. 1993; 264(6 Pt 2): R1077–1083. PMID: 8391756

74. Arvidson NG, Gudbjörnsson B, Elfman L, Rydén AC, Tötterman TH, Hallgren R. Circadian rhythm of serum interleukin-6 in rheumatoid arthritis. Annals of the Rheumatic Diseases. 1994; 53(6):521–524. doi: 10.1136/ard.53.8.521 PMID: 7944637

75. Seiler W, Müller H, Hiemke C. Diurnal variations of plasma interleukin-6 in man: methodological implications of continuous use of indwelling cannulae. Annals of the New York Academy of Sciences. 1995; 762:468–470. doi: 10.1111/j.1749-6632.1995.tb32370.x PMID: 7668560

76. Pollmächer T, Mullington J, Korth C, Schreiber W, Hermann D, Orth A, et al. Diurnal Variations in the Human Host Response to Endotoxin. Journal of Infectious Diseases. 1996; 174(5):1040–1045. doi: 10.1093/infdis/174.5.1040 PMID: 8896506

77. Korth C, Mullington J, Schreiber W, Pollmächer T. Influence of endotoxin on daytime sleep in humans. Infection and Immunity. 1996; 64(4):1110. PMID: 8606066

78. Crofford LJ, Kalogeras KT, Mastorakos G, Magiakou MA, Wells J, Kanik KS, et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. The Journal of clinical endocrinology and metabolism. 1997; 82(4):1279–1283. doi: 10.1210/jcem.82.4.3852 PMID: 9100607

79. Lissoni P, Rovelli F, Brivio F, Brivio O, Fumagalli L. Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Natural immunity. 1998; 16(1):1–5. doi: 10.1159/000069464 PMID: 9789119

80. Bornstein SR, Licinio J, Tauchnitz R, Engelmann L, Negrão AB, Gold P, et al. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. The Journal of clinical endocrinology and metabolism. 1998; 83(1):280–283. doi: 10.1210/jcem.83.1.4610 PMID: 9435456

81. Hermann DM, Mullington J, Hinze-Seich D, Schreiber W, Galanos C, Pollmächer T. Endotoxin-induced changes in sleep and sleepiness during the day. Psychoneuroendocrinology. 1998; 23(5):427–437. doi: 10.1016/S0306-4530(98)00030-4 PMID: 9802118

82. Genesca J, Segura R, Gonzalez A, Catalán R, Martí R, Torregrosa M, et al. Nitric oxide may contribute to nocturnal hemodynamic changes in cirrhotic patients. The American Journal of Gastroenterology. 1999; 94(6):1539–1544. doi: 10.1111/j.1572-0241.2000.02092.x PMID: 10894593

83. Mastorakos G, Ilia I. Relationship between interleukin-6 (IL-6) and hypothalamic-pituitary-adrenal axis hormones in rheumatoid arthritis. Zeitschrift für Rheumatologie. 2000; 59 Suppl 2:II/75–79. doi: 10.1007/s003930070023 PMID: 11155809

84. Mullington J, Korth C, Hermann DM, Orth A, Galanos C, Holsboer F, et al. Dose-dependent effects of endotoxin on human sleep. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology. 2000; 278(4):R947–R955. PMID: 10749783

85. Johansson A, Carlström K, Ahén B, Cederquist K, Krylborg E, Forsberg H, et al. Abnormal cytokine and adrenocortical hormone regulation in myotonic dystrophy. The Journal of clinical endocrinology and metabolism. 2000; 85(9):3169–3176. doi: 10.1210/jcem.85.9.6794 PMID: 10999804

86. Shaw JA, Chin-Dusting JPF, Kingwell BA, Dart AM. Diurnal Variation in Endothelium-Dependent Vasodilation Is Not Apparent in Coronary Artery Disease. Circulation. 2001; 103(6):806–812. doi: 10.1161/01.CIR.103.6.806 PMID: 11171787
87. Lange T, Marshall L, Späth-Schwalbe E, Fehm HL, Born J. Systemic immune parameters and sleep after ultra-low dose administration of IL-2 in healthy men. Brain, Behavior, and Immunity. 2002; 16 (6):663–674. doi: 10.1016/S0889-1591(02)00018-1 PMID: 12480497

88. Haack M, Sánchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007; 30 (9):1145–1152. PMID: 17910386

89. Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. An fMRI Study of Cytokine-Induced Depressed Mood and Social Pain: The Role of Sex Differences. NeuroImage. 2009; 47(3):881–890. doi: 10.1016/j.neuroimage.2009.04.040 PMID: 19376240

90. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR. Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain, Behavior, and Immunity. 2010; 24(4):558–563. doi: 10.1016/j.bbi.2009.12.009 PMID: 20081528

91. Haimovich B, Calvano J, Haimovich A, Calvano SE, Coyle SMM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes*. Critical Care Medicine March 2010. 2010; 38(3):751–758. doi: 10.1097/CCM.0b013e3181cd131c PMID: 20081528

92. Sauvet F, Lefttheriotis G, Gomez-Merino D, Langrume C, Drogou C, Van Beers P, et al. Effect of acute sleep deprivation on vascular function in healthy subjects. Journal of applied physiology (Bethesda, Md: 1985). 2010; 108(1):68–75. doi: 10.1152/japplphysiol.00851.2009 PMID: 19910332

93. Grigoleit JS, Kullmann JS, Wolf OT, Hammers F, Wegner A, Jablonowski S, et al. Dose-Dependent Effects of Endotoxin on Neurobehavioral Functions in Humans. PLoS ONE. 2011; 6(12):e28330. doi: 10.1371/journal.pone.0028330 PMID: 22164271

94. MILES M, KELLER J, KORDICK L, KIDD J. Basal, Circadian, and Acute Inflammation in Normal versus Overweight Men. [Miscellaneous Article]. Medicine & Science in Sports & Exercise December 2012. 2012; 44(12):2290–2298. doi: 10.1249/MSS.0b013e318267b209 PMID: 22776877

95. Schreuf A, O’Donnell M, Luo Y, Bradley CS, Kreder K, Lutgendorf S. Inflammation and inflammatory control in interstitial cystitis/bladder pain syndrome: Associations with painful symptoms. PAIN.

96. Wegner A, Eisenbruch S, Maluck J, Grigoleit JS, Engler H, Jäger M, et al. Inflammation-induced hyperalgesia: Effects of timing, dosage, and negative affect on somatic pain sensitivity in human experimental endotoxemia. Brain, Behavior, and Immunity.

97. Scott HA, Latham JR, Callister R, Pretto JJ, Baines K, Saltos N, et al. Acute exercise is associated with reduced exhaled nitric oxide in physically inactive adults with asthma. Annals of Allergy, Asthma & Immunology. 2015; 114(6):470–479. doi: 10.1016/j.anai.2015.04.002 PMID: 25935433