Value signals in orbitofrontal cortex predict economic decisions on a trial-to-trial basis

Vincent B. McGinty1* & Shira M. Lupkin1,2
1. Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark
2. Behavioral and Neural Sciences Graduate Program, Rutgers University - Newark
*Correspondence: vince.mcginty@rutgers.edu, 197 University Ave, Newark, NJ 07102

Acknowledgements: W.T. Newsome for funding, material support, and thoughtful discussions; A. Rangel for thoughtful discussions; J. Brown, E. Carson, S. Fong, A. McCormick, M. Ortiz, J. Powell, J. Sanders, D. Siegel for technical assistance; and R. Ebitz, D. Headley, G. Karpov, D. Kimmel, M. Rosenberg-Lee, K. Peterson, and D. Sharma for helpful comments on the manuscript.

Funding: This work was supported by the Howard Hughes Medical Institute (W.T. Newsome), National Institutes of Health Grant K01-DA-036659-01 (V.B.M.), the Busch Biomedical Foundation (V.B.M.), and a Whitehall Foundation fellowship (V.B.M.).

Author contributions: VBM designed the research; VBM and SML performed the research. VBM and SML analyzed the data. VBM and SML wrote the paper.

Data and code availability: After peer review is complete and the final version of this study is accepted for publication, the data and code that support the findings of this study will be available from the corresponding author upon reasonable request.

ABSTRACT

Neuroeconomics seeks to explain how neural activity contributes to decision behavior. For value-based decisions, the primate orbitofrontal cortex (OFC) is thought to have a key role; however, the mechanism by which single OFC cells contribute to choices is still unclear. Here, we show for the first time a trial-to-trial relationship between choices and population-level value representations in OFC, defined by the weighted sum of activity from many individual value-coding neurons.
INTRODUCTION

One of the key ways of identifying decision mechanisms is to show a relationship between neural variability and behavioral variability. The canonical example is in the primate extrastriate area MT, where trial-to-trial variability in the firing of motion-sensitive neurons correlates with trial-to-trial variability in motion judgements, even over trials in which the same noisy motion stimulus is repeated many times. From a mechanistic standpoint, this fine-grained relationship between neural activity and behavior – known as ‘choice probability’ – is extremely informative. In concert with other findings, it evinces the likely causal role of MT neurons in motion perception, and, more broadly, provides the foundation for a robust computational framework for understanding how motion evidence is represented by neurons and transformed into a decision.

For economic choices, defined as those based upon value or preference, the OFC is thought to have a similar causal role: encoding evidence in the form of value representations that are ultimately transformed into a decision. Substantial converging evidence supports this hypothesis. First, perturbation of OFC activity disrupts value-based choices. Second, a large fraction of OFC neurons encodes economic value, a function for which this region appears to be specialized within the frontal lobe. Of particular significance are the findings that the sensitivity of value coding neurons matches the behavioral sensitivity of the subjects measured in the same sessions, and that network-level fluctuations in OFC value representations correlate with decision reaction times in single trials. However, while these studies suggest some link between value representation and decision behavior, one key finding has been conspicuously absent: value-based choice probability. Even in large and rigorously analyzed samples of OFC cells, a significant trial-to-trial correlation between value coding and value-based choices has yet to be found. This is especially puzzling; if OFC value signals mediate value-based choices, there must be some measurable relationship between them.
Moreover, it is a major barrier to progress in the field, because until this relationship is identified, it will be difficult to fully validate the causal role of OFC, or to establish the kind of robust computational framework for value-based decisions like that available for perceptual judgements.

What can explain the absence of value-based choice probability in OFC? One possibility is that choices are not mediated by value signals, but by some other form of decision-related activity found in OFC, such as the encoding of spatial variables. Another possibility, suggested by the elegant work of Conen and Padoa-Schioppa, is that the influence of any single OFC neuron is so small that single-cell choice probabilities cannot be detected above chance levels.

We reasoned that if the latter hypothesis were true, it may be possible to observe significant choice probabilities using population-level value signals – i.e. value representations derived from an ensemble of many simultaneously recorded OFC neurons, which should generally be more informative than signals from individual cells. To test this hypothesis, we recorded from populations of OFC neurons in monkeys making value-based choices, and correlated their decisions with value representations calculated at the population level. Consistent with prior studies using multi-neuronal methods in OFC, we identify population-level representations of economic value; however, unlike prior work, we also identify a robust relationship between these value representations and the decisions made in individual trials.

RESULTS
Two macaque monkeys performed a novel economic choice task. In every trial, two choice targets were shown on the left and right sides of the task display, each associated with the delivery of a fixed juice reward, between 1-5 drops (Fig. 1a,b). There were 12 physically unique targets used in a given session, but only 5 levels of juice reward; the term ‘target identity’
therefore refers to a target’s unique physical appearance, and ‘target value’ is used to refer to its
reward association. An important feature of this task is that after an initial fixation period,
saccadic eye movements were unrestricted – and in fact were required for optimal performance.
The reason is that in each trial the two choice targets were obscured from view until the
monkeys fixated upon them directly, an effect achieved through the use of visual crowding (Fig.
1c)28,29 and a dynamic display that was contingent upon gaze (see Methods, and also Hunt et
al.21 for a similar approach). The monkeys therefore viewed the targets sequentially, by fixating
them one at a time. Monkeys could view the targets in any order and for any amount of time,
and eye tracking was used to determine when each target was viewed. The monkeys were free
to choose at any time, and did so by first lifting a central response lever (extinguishing the
targets), and then pressing the left or right lever within a 500ms deadline (Fig. 1a, bottom). The
task therefore combines two features that were advantageous for neural analysis: First, decision
times were recorded in every trial, permitting pre-decision neural activity to be distinguished
from post-decision activity. Second, the target viewing times indicated when the target values
became known to the monkey in each trial, and were therefore used as temporal reference
points for analysis of neural value coding.
The monkeys viewed both targets at least once in the vast majority of trials (99.3% for Monkey
C, 93.2% for Monkey K), and their choices were consistent with both target values being
considered in nearly every trial. They almost always chose the larger reward when the targets
differed in value by 3 or 4 drops of juice, but chose left or right at near-chance levels when the
targets were of equal value (Fig. 1d). In addition, the decision reaction times (RTs) and the
mean number of on-target fixations per trial both increased as a function of the difference in
target values (Fig. 1e,f). The graded nature of the choice outcomes, RTs, and fixations are
consistent with a deliberative process dependent upon the target values. Moreover, the
extremely low rate of suboptimal choices in trials with large value differences suggests that the
more variable choices in trials with small or no value differences can be attributable to variability in the choice process itself, rather than to lapses, exploration, or perceptual failure.

Figure 1: Decision-making task and performance in two monkeys. (a) Abbreviated task sequence, not shown to scale; see Figure S1 for full task sequence. The yellow and blue glyphs are choice targets, and the six gray “+” shapes indicate the location of crowders designed to obscure the targets until they are viewed (fixated) directly. For clarity, in this panel the crowders are illustrated in gray at reduced scale; on the actual task display, crowders were multicolored and the same size as the targets, as in panel (c). The interval between target arrays onset and center lever lift defines the decision reaction time (RT). (b) Example set of 12 choice targets, organized into 5 groups corresponding to the 5 levels of associated juice reward. (c) Close-up view of a single target array, consisting of a central yellow choice target surrounded by six non-task-relevant crowders. Two such arrays appear on the display, each centered 7.5° from the display center. (d-f) Choices, reaction time, and fixations over 10,972 trials in 16 sessions for Monkey C and 9,617 trials in 16 sessions for Monkey K. (d) Fraction of left choices as a function of the left minus right target value. Smooth lines give logistic fit (Eqn. 1). Logistic regression estimates for effect of left minus right value: Monkey K, 1.25 (SE 0.02, n = 9,617 trials); Monkey C, 1.42 (SE 0.03, n = 10,972 trials). (e) Mean reaction times decreased as a function of trial difficulty, defined as the absolute difference in target values. SEMs are too small to plot, and are smaller than 0.004s for all data points. A linear fit of RT as a function of difficulty gives the following average slopes: Monkey K -0.035 (SE 0.001); Monkey C, -0.035 (SE 0.001). (f) Mean number of fixations performed per trial, as a function of trial difficulty. SEMs are too small to plot, and are smaller than 0.03 for all data points. A linear fit gives the following average slopes: Monkey K, -0.106 (SE 0.007); Monkey C, -0.120 (SE 0.006).
OFC neural activity was recorded using multi-channel linear arrays (Fig. 2a-c, Fig. S2), and cells were isolated using semi-automated spike-sorting procedures (see Methods). On average, 45 cells were isolated per session (16 sessions and 848 cells for Monkey K, 16 sessions and 602 cells for Monkey C).

Because the target values in each trial were revealed serially (by sequential viewing, see Fig. 1a), we characterized neural activity with variables defined by the order in which the targets were viewed, consistent with prior studies using serial designs\(^{21,31,32}\). The target values were characterized by the value of the first target viewed by the monkey in each trial (variable name: ‘1st value’), and the value of the second target viewed in each trial (variable name: ‘2nd value’), in units of juice drops (Fig. 1b). Choice outcome was characterized by the variable ‘1st chosen’, which was defined as \textit{true} when the first-viewed target was chosen, and \textit{false} otherwise. So that all variables were defined for every trial, neural analyses used only trials in which monkeys viewed both targets (see above).

We quantified the fraction OFC cells encoding these variables at each moment in time throughout the trial. Consistent with prior work\(^{21}\), the encoding of the variable ‘1st value’ increased following the viewing of the first target (Fig. 2d); and encoding of ‘2nd value’ increased following the viewing of the second target (Fig. 2e). Notably, after viewing the second target, a large fraction of cells continued to encode ‘1st value’ (black line in Fig. 1e), consistent with prior findings that the OFC maintains a representation of recently viewed items\(^{21,31,32}\). A small fraction of cells encoded ‘1st chosen arising primarily after the monkey viewed the second target (Fig. 2e, gray line).
Figure 2: OFC recording and choice probability analysis

(a) Example placement of electrode array in OFC. See also Figure S2. (b) Traces from an example recording. Numerals give array channels. Highlighted channels are shown in panel (c). (c) Blue, red, and green traces show three sorted units. (d-e) Fraction of cells with significant encoding of three task variables in a linear model (p < 0.001 uncorrected, see Eqns. 1 and 2). Data are combined across monkeys. In (d) and (e), the data are aligned to the viewing of the first and second target in each trial, respectively. The blue and gray box plots above the x-axis indicate the onsets of second target viewing and of the decision RT, respectively. The shading gives the epoch used for the analyses in panels (f) through (i). (f) Estimates of the value of the first-viewed target, decoded from neural population activity recorded during the shaded epoch in panel (d). Data are from a single representative session. Each dot shows the weighted sum of spiking observed across all recorded cells in a held-out test trial (Eqn. 4, n = 284 test trials total). Trials are grouped according to the reward associated with the first-viewed target; horizontal spread of dots within each group are for visualization purposes only. Horizontal black lines indicate group means. (g) The neurally-decoded value estimates in panel (f) were transformed into *normalized variable estimates* (NVEs, see Methods), which quantify the degree to which the decoded values are more or less than expected given the nominal value of the first-viewed target. In other words, NVEs quantify the vertical spread within each group in panel (f). Conventions are the same as in panel (f). (h) Variability in the NVEs predicted variability in choices. From the data in panel (g), trials in which the targets differed by 0 or 1 drop of juice were selected (n = 141 out of 284 trials), and were then divided according to the decision outcome (first/second target chosen in the upper/lower histograms, respectively). Arrows give the distribution medians. In this example, the ability of an ideal observer to discriminate between the upper and lower distributions corresponds to an area under the ROC curve of 0.644. (i) Choice probabilities aggregated across sessions and monkeys. On average, choice probabilities derived from population-based NVEs (left, 32 sessions) were significantly larger than choice probabilities derived from single cells (right, 515 cells with non-zero weights in Eqn. 3). Gray line indicates chance-level performance. P-value indicates outcome of two-sample t-test.
If neural representations of the target values contribute to choice, they should exhibit choice probability: a trial-to-trial relationship between variability in neural activity and variability in the choices. Whereas prior studies computed choice probabilities for single neurons22,24, here choice probability was measured with respect to population-level value signals, by leveraging the simultaneous nature of the neural recordings (mean 45 cells per session).

We first considered neural activity within the shaded epoch in Fig. 2d, in which ‘1st value’ is the only variable represented. To find the population-level representation of ‘1st value’ in this epoch, we computed a weighted sum of activity of all of the simultaneously recorded cells in a given session. The weights for each cell were obtained from the fitted coefficients of a linear model, in which ‘1st value’ is explained as a linear function of the activity of all the cells recorded in a session (Eqn. 3). In other words, the weights quantify each cell’s unique contribution to explaining variance in ‘1st value’. Critically, Eqn. 3 uses LASSO regression, meaning that cells making only a negligible contribution to explained variance are assigned weights of exactly zero33. For example, in the shaded epoch in 2d, non-zero weights were assigned to 16.1 cells per session on average, or 515 cells total across all 32 sessions in both monkeys. To find the weighted sums, the firing of each cell was multiplied by its respective weight, and added together (Eqn. 4), over a set of held-out test trials that were not used to fit the weights.

The weighted sums provide out-of-sample estimates of the value of the first target, decoded from the neural activity on each trial. Naturally, as the value of the first target increases, the neurally-decoded estimates of target value also increase, evident in the means of these estimates when they are grouped by ‘1st value’, as in the single-session example in Fig. 2f. Note, however, that over repeated presentations of targets with the same value, the neurally-decoded estimates have substantial across-trial variability, evident in the wide vertical spread within each of the groups in Fig. 2f.
Trial-to-trial variability in decoded value is the key measure that we use to assess the relationship between neural variability and decision variability (choice probability). To quantify neural variability, the decoded values from Eqn. 4 were transformed into normalized variable estimates (NVE), which measures the degree to which the decoded values exceed or fall short of their expected magnitude given the identity of the target (see Methods). For example, Fig. 2f shows the neurally-decoded values for a single session, and Fig. 2g shows these data transformed into their corresponding NVEs. Thus, in Fig. 2f the data reflect mean differences across value levels as well as trial-to-trial variability within each value level; but in Fig. 2g the data reflect only the variability across trials – i.e. the residual variability left after taking target values into account.

The NVEs were then were used to compute choice probability, defined as the accuracy of an ideal observer using neural activity to classify binary decision outcomes. Here, decisions were classified in terms of whether the first or second target was chosen, and accuracy was quantified by the area under the receiver operating characteristic (ROC) curve, for which chance performance is 0.5 (Fig. 2h). Importantly, only difficult trials were used for classification – those in which the targets differed in value by 0 or 1 – because these were the only trials in which choices were sufficiently variable (Fig. 1d).

As shown in Fig. 2h-i, variability in the neurally-decoded value signals predicted variability the outcome of the monkey’s choices. Specifically, higher NVEs for ‘1st value’ predicted a greater likelihood of choosing the first target, and lower NVEs predicted a greater likelihood of choosing the second target. Overall, classification accuracy significantly greater than chance: across 32 sessions, the mean area under the ROC curve (AUC) was 0.528 (SEM 0.008, p = 0.003, Fig. 2i.)
While low in absolute terms, this AUC is comparable to choice probabilities reported for single MT neurons during motion discrimination1,7. Moreover, it is notable that this choice-predictive activity is detectable well before the decision reaction time, and before the value of the other target is represented in OFC firing (Fig. 2d).

These choice probability effects – derived from value representations measured at the population-level – are also substantially higher than those reported for single OFC cells in prior studies22–24. To directly compare population-based choice probabilities to single cells in our own study, we focused on the cells with non-zero weights in Eqns. 3 and 4, i.e. the cells that contribute to the decoded population value signal. Using the sign of each cell’s weight to specify the positive class (see Methods), the AUC was calculated individually for every cell (n = 515 total, mean 16.1 per session). The average AUC was not significantly different from chance (0.497, SEM 0.002, \(p = 0.14 \)), and was significantly smaller than the session-wise average AUCs derived from the population (\(p = 0.0009 \) by rank sum test, Fig. 2i). Choice probabilities were also not distinguishable from chance when using the cells’ weights to calculate a weighted mean AUC over the 515 cells (0.493, bootstrapped 99% confidence interval [0.483 0.501]); or when finding the mean AUC of the highest-weighted cell in a given session (mean AUC 0.496, SEM 0.013, \(p = 0.94 \) by t-test) These latter two results rule out the possibility that significant population-derived choice probabilities are due only to the weighting applied to each cell, or due to the decoded value signal being dominated by one highly-predictive cell. Consistent with prior work34, both the population-derived and single-cell choice probabilities were slightly larger when AUCs were calculated within conditions using non-normalized data (see Methods). However, with this method, population-based choice probabilities were still significantly larger than in single cells (Fig. S4). Thus, the neural representation of the value of the first target, decoded from ensembles of primate OFC neurons, provided robust choice probability effects that were not evident at the level of the individual neurons.
To evaluate choice probability over the course of the trial, the analysis above was performed in bins of 200ms at increments of 25ms, and was performed separately for the variables ‘1st value’, ‘2nd value’, and ‘1st chosen’. (For ‘1st chosen’, spiking variance attributable to the two target values was removed before finding the cells weights; see Methods for details.) As shown in Fig. 3a-b, significant choice probability effects for ‘1st value’ and ‘2nd value’ were evident starting ~200ms after viewing the respective targets, mirroring the timing pattern for the fraction of cells encoding these variables (Fig. 2d-e). The opposite signs of the ‘1st value’ and ‘2nd value’ effects indicate that higher ‘1st value’ NVEs predict more choices in favor of the first target, whereas higher ‘2nd value’ NVEs predict the opposite.

Notably, the choice probability effect for ‘1st value’ was maintained during the ‘late’ epoch indicated by the shading in Fig. 3b, appearing to exceed the magnitude of choice probability effects in the ‘early’ epoch indicated in Fig. 3a. We therefore focused on this late epoch for follow-up analyses for all three variables of interest.

First, as shown in the black and blue bars in Fig. 3c, the population-based choice probabilities for ‘1st value’ and ‘2nd value’ were larger than the average choice probabilities in the single cells with non-zero weights (a total of 512 or 16.0 cells per session for ‘1st value’, and 621 or 19.4 cells per session for ‘2nd value’). This indicates that within this epoch, the population-based NVEs depended upon the summed activity of many cells that individually had only weak choice-predictive activity. In contrast, for ‘1st chosen’, the population-based and single-cell choice probabilities were not different (gray bars). This can be explained by the fact that only 31 cells (mean 0.97 per session) had non-zero weights for ‘1st chosen’ in this epoch; as a result, in most sessions the NVEs for ‘1st chosen’ reflected the activity of only a single cell, and consequently that the single-cells and NVEs yielded virtually the same level of classifier
performance. The results were similar when each monkeys' data was analyzed individually (Fig. S3), and when using non-condition-normalized data to calculate AUCs (Fig. S4). Results were also similar when using the decision RT as the temporal reference (lever lift in Fig. 1a), and computing choice probability using the final 100ms of neural activity prior to the lever lift (Fig. S5).

Figure 3: Choice probability over time and neuron-dropping analysis (a-b) Choice probability effects are time-locked to target viewing times. Population-based choice probabilities are given by solid lines with shading (means and SEMs, aggregated over 32 sessions and both monkeys). Small rectangles at top indicate bins for which the population effects are significantly different from 0.5 at a threshold of p < 0.005 (uncorrected) using a one-sample t-test. Dotted lines give the means of choice probabilities calculated from single cells individually (no SEM shown, numbers of cells vary by bin, see Methods). The blue and gray horizontal box plots give the distribution of second target viewing times and choice RTs, respectively. The shaded epochs in panels (a) and (b) indicate epochs used in subsequent analyses (see main text). (c) Comparison of population and single-cell choice probabilities during the late epoch in panel (b). To facilitate comparison across variables, AUCs were transformed to the same positive scale; this was done by either subtracting 0.5 from the AUCs (for ‘1st value’ and ‘1st chosen’) or by multiplying the AUCs by -1 and then adding 0.5 (‘2nd value’). ** and *** indicate significant differences by t-test at uncorrected thresholds of p < 0.01 and p < 0.001, respectively. The population data show the mean and SEM for 32 sessions; the single cell data show the mean and SEM of 512 cells for ‘1st value’, 621 cells for ‘2nd value’, and 31 cells for ‘1st chosen’. (d) Neuron dropping analysis for choice probability effects in the late epoch. Line colors indicate variables as in panel (a). Lines and shading give mean and SEM over 32 sessions. Open and closed rectangles indicate significant difference from 0.5 at uncorrected thresholds of p < 0.05 and p < 0.005 (respectively) by t-test. See Fig. S3 for data from individual monkeys.
We also used the late epoch data to estimate the fraction of cells contributing to the population-based choice probability effects, by iteratively removing the cells with the highest absolute encoder weights in each session. Classification performance for the two value variables degraded in approximately linear fashion, falling to near-chance levels after the removal of about ~10 cells on average (Fig. 3d, black and blue lines). In contrast, choice probabilities for ‘1st chosen’ fell to chance after removal of just one cell (Fig. 3d, gray line), consistent with the fact that on average only a single cell per session was assigned a non-zero weight. These findings were consistent in both monkeys (Fig. S3), and were similar when using non-condition-normalized data to calculate AUCs (Fig. S4). Choice probabilities did not depend upon the total number of cells recorded in each session (Fig. S6a), and did not drastically change when using either a smaller or larger pool of cells isolated under stricter or more liberal sorting quality criteria, respectively (Fig. S6b-c). We conclude that, within the sampling regime of this study, choice probability effects depend upon value signals distributed relatively evenly over a modest fraction of recorded cells (~20% on average), and that sampling from a significantly larger pool of neurons in the same regions of OFC would not necessarily produce large gains in classifier performance.

Within the late epoch in Fig. 3b, the representations of ‘1st value’ and ‘2nd value’ were nearly orthogonal, both with respect to the subspaces encoding the value variables, and, critically, with respect to the trial-wise fluctuations in value signals. Specifically, there was no correlation between the cell weights for ‘1st value’ and ‘2nd value’ (r = -0.006, p = 0.81, for n = 1,450 cells pooled across 32 sessions, Fig. S7a), and only a small negative correlation between their NVEs (r = -0.075, p < 1e-10, for n = 9,920 test trials pooled across 32 sessions, Fig. S7b). We also compared these late epoch value representations to representations of ‘1st value’ in the early epoch in Fig. 3a; the results are summarized in Fig. S7c-f. The most notable finding was that the ‘1st value’ NVEs in the early epoch were only weakly correlated with the two late epoch NVEs
(R^2 < 0.008 for both). The overall lack of correlation between the NVEs suggests that they are separable, and that they may therefore make an independent contribution towards the trial-to-trial variability in choice outcomes.

To quantify the net choice-predictive effects of the NVEs at both early and late epochs, we fit a model that explained choice outcomes through a combination of both behavioral and neural predictors. Using logistic regression, the fraction of first target choices was explained as a function of the difference in target values, and, critically, the NVEs for ‘1st value’ at the early epoch, as well as NVEs for both ‘1st value’ and ‘2nd value’ at the late epoch (Eqn. 5). As expected, the mean regression estimate for the effect of relative target value was significantly positive (mean 1.50, SEM 0.09, 32 sessions, p < 1e-10), indicating that the greater the relative value of the first-viewed target, the greater the fraction of first target choices. For the ‘1st value’ NVEs, the session-wise average regression estimates were significantly greater than zero, both at the early (0.343, SEM 0.100, n = 32 sessions, p = 0.001 by t-test) and the late epochs (0.660, SEM 0.141, p = 0.0001), with the late estimates significantly larger than the early estimates (mean difference 0.317, SEM 0.154, p = 0.049 by paired t-test). For ‘2nd value’ NVEs, regression estimates were significantly less than zero (-0.555, SEM 0.100, p < 1e-5). Thus, when considered within the same neural-behavioral model, variability in neural value signals at both time points explain variability in choice outcome, consistent with their making independent contributions to behavior.

DISCUSSION

In summary, we show for the first time a trial-to-trial relationship between variability in OFC value representations and variability in value-based choices in primates performing at behavioral threshold. This newly identified neural-behavioral link complements important prior work that links OFC value representations to decision reaction times^{11} and to choice behavior at
the session level\(^\text{10}\), as well as detailed analyses of single-cell choice probability effects in different OFC sub-populations\(^\text{22,24}\). Thus, our findings are significant because they fill a critical missing piece of a long-standing puzzle in neuroeconomics – i.e. they show how cell-level representations of value may contribute to the outcome of value-based choices at the resolution of single trials.

Beyond the use of ensemble recording and analysis, two design elements in this study likely contributed to the robust choice probability effects we identified. First, equal-value choice conditions provided maximal choice variability, and therefore maximal leverage for detecting a correspondence between choice outcome and neural value signals\(^\text{30}\). Moreover, when the net evidence for a given decision is weak, behavior is presumably more sensitive to small fluctuations in neural activity – again providing ideal conditions for identifying neural-behavioral correlations\(^\text{1}\). Second, the fact that the target values were revealed serially (based on the monkey’s gaze sequence) permitted us to isolate neural activity related to specific choice targets. Together, our approach permitted single-trial estimates of subjective value to be obtained for specific choice targets, and correlated with the variable choices of animals performing at threshold levels.

With respect to decision mechanisms, the results give several direct insights into how OFC value signals may be read out by downstream circuits that are more proximal to the ultimate motor output. First, they suggest a primary role for cells encoding value signals (‘1st value’ and ‘2nd value’), and a smaller role for cells encoding choice behavior in binary fashion (‘1st chosen’). Second, they suggest a significant contribution from monotonically value-coding cells that are read out via a simple weighted sum of their activity – although this does not preclude an additional contribution from cells with non-monotonic or non-linear value encoding\(^\text{35,36}\). Third, when both targets values are represented simultaneously (late epoch in Fig. 3b), they are
encoded by orthogonal neural populations whose trial-wise value representations are only
minimally correlated. This suggests that value representations are nearly independent within
OFC, and therefore linearly separable by downstream circuits37.

Finally, variability in the ‘1st value’ signals measured after viewing the first target were not
strongly correlated with variability in ‘1st value’ signals measured after viewing the second target
Thus, even though a representation of the first target persists in OFC well after it is initially
viewed, the stochastic variation present in the initial representation is not carried over into the
late representation. Importantly, the value signals at both time points significantly explained
variance in choice outcome. On the one hand, this suggests that downstream circuits may
accumulate value evidence over time as targets are viewed, rather than instantaneously once
the value of both targets is known38,39. However, late value signals explain more variance than
early value signals (see Eqn. 5 and related results), even though a similar fraction of cells
encodes ‘1st value’ at each time point (Fig. 2d-e). In other words, the fraction of cells encoding
value at a given time point did not necessarily correspond to the degree of choice-predictive
activity. The mechanisms underlying this discrepancy are unclear, and will require further study.
Possible explanations include the existence of output-potent and output-null subspaces within
the OFC40; gated or time-varying evidence accumulation in downstream circuits41; or the
presence of a ‘leaky’ evidence accumulation process, such that the influence of early evidence
decays substantially over time42.

The apparently linear read-out of value signals for value-based choice indicates potential
similarities to mechanisms for perceptual motion discrimination, in which a linear read-out of
motion-sensitive MT cells is sufficient to explain motion judgements3,7. The study of perceptual
decision mechanisms may therefore provide a fruitful roadmap for future experiments. These
include, for example: further examination of correlated noise among value-coding neurons,
especially with respect to cells that encode different choice targets24,26; the identification of circuits downstream from OFC that may represent accumulated evidence 38,39; and the use of microstimulation to selectively target value-coding cells with choice-predictive activity, to enact a direct causal test of their role in behavior2. In summary, the identification of robust value-based choice probability has the potential to open many new avenues for understanding the computational and neuronal mechanisms of economic choice.

METHODS

SUBJECTS AND APPARATUS

All procedures were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals, and were approved by the Animal Care and Use Committees of Stanford University, and Rutgers University – Newark. The subjects were two adult male rhesus macaques designated K and C, weighing \textasciitilde14kg each at the time of the study. Data from Monkey K were acquired at Stanford University, and from Monkey C were acquired at Rutgers University – Newark. They were implanted with MR-compatible head holders and recording chamber (Crist Instruments, Hagerstown, MD); craniotomies were also performed to allow access to the OFC. Monkey K had bilateral chambers and craniotomies, permitting bilateral recordings. Monkey C had a single chamber and craniotomy overlying the left OFC. All procedures were performed under full surgical anesthesia using aseptic techniques and instruments, with analgesics and antibiotics given pre-, intra- and/or post-operatively as appropriate. Data were collected while the monkeys were head-restrained and seated \textasciitilde57 cm from a fronto-parallel CRT monitor displaying the task stimuli (120Hz refresh rate, 1024x768 resolution). Three response levers (ENV-612M, Med Associates, Inc., St. Albans, VT) were placed in front of the subjects, within their reach. The “center” lever was located approximately 21cm below the display center, and the other two levers were located approximately 8.5cm to the left and right of the center lever. Stimulus presentation, reward delivery, and monitoring of
behavioral responses was controlled through MATLAB (Mathworks, Inc., Natick, MA), using the ROME toolbox (R. Kiani, 2012). Horizontal and vertical eye position was recorded noninvasively at 250Hz (Eyelink, SR Research, Mississauga, Ontario, Canada). Fluid rewards were delivered via a gravity-fed reservoir and solenoid valve. Neural activity, eye position, and task event data were acquired and stored using a Plexon Omniplex system (Plexon, Inc., Dallas, TX). Analysis was performed using custom routines in MATLAB 2019b and the R computing environment (version 4.0.2) with the glmnet package (version 4.0-2).

DECISION TASK

Task structure: Fig. 1a shows an abbreviated task sequence; Fig. S1a shows the full sequence as described here: Monkeys initiated a trial by fixating a central point on the display, and manually depressing the center lever (Fig. S1a). After holding fixation and the center lever for a variable duration of 1-1.5s, the fixation point disappeared, and two ‘target arrays’ appeared, centered 7.5 degrees of visual angle to the left and right of the display center (Fig. 1a). As soon as the arrays appeared, the monkeys were allowed to shift their gaze as they desired to view the targets, in any order and for any amount of time, until they initiated a choice. Eye position was monitored throughout, but had no programmatic effect on the trial outcome (with the exception of enforced central fixation necessary to initiate a trial). The monkeys were encouraged to view each target at least once, through the use of visual crowding and gaze contingent programming, described in detail below. The monkeys were free to choose at any time, by first lifting the center lever (extinguishing the targets), and then pressing either the left or right lever to choose the left or right target, respectively. After the left/right press, a juice reward of 1-5 drops was delivered, depending on the value of the chosen target (Fig. 1b). To discourage the monkey from engaging in significant deliberation (e.g. changes of mind) after the center lever lift, the interval between center lift and left/right press was limited to 400ms.
(Monkey K) or 500ms (Monkey C); failure to respond within this deadline resulted in an aborted trial.

Choice targets: The choice targets were colored glyphs, each a unique combination of one of four colors and one of four shapes. A full example set of 12 targets is shown in Fig. 1b. New targets sets were generated every 1-5 sessions, to minimize over-learning of the stimuli. The available shape primitives and the set generation procedure is given in Fig. S1b.

Target values ranged from 1-5 drops of juice. Importantly, every value stratum contained at least two unique targets, permitting us to offer choices between two distinct but equal-value targets. Note that the term ‘target value’ refers to a target’s reward association (1-5 juice drops), and the term ‘target identity’ refers to a target’s unique color/shape combination, of which there are a total of 12 in every set (Fig. 1b). Targets and crowders (see below) were all 0.75x0.75 degrees of visual angle. The patch colors used for targets and crowders were selected to be isoluminant. The nominal patch luminance for all colors used in Monkey C’s sessions was ~2.7 cd/m^2 with negligible background luminance; and for Monkey K’s session was ~22 cd/m^2 with background luminance of ~4cd/m^2, as measured by a Tektronix luminance J17 photometer with a J1820 head. Note that during data collection, the luminance of the target stimuli was reduced by up ~50% of these nominal values (with no change to the crowders), in order to better obscure the targets within the crowder array (Fig. 1c). Note that the luminance reduction did not prevent the monkeys from identifying the targets, because choice performance was nearly perfect for the easiest trials (Fig. 1d, value differences of 3 and 4).

Target arrays, visual crowding, and gaze-contingent mask: Two methods were used to encourage the monkeys to directly fixate both targets prior to making a choice. First, each target was surrounded by six ‘crowders’, which were randomly generated, multi-colored ‘+’ or ‘×’
shapes that had no direct association with reward. (Fig. 1c). Crowders reduce the effectiveness
of peripheral vision, making it difficult to identify a target without using high-acuity foveal
vision. Second, we used gaze-contingent programming to initially obscure the targets until the
first eye movement was made: At the moment the target arrays first appeared on the display,
the two targets were masked with a randomly generated crowder (Fig. S1A). Therefore, no
information about target identity or value was initially available. At the moment the monkey’s eye
position breached the central fixation window (diameter 3.5 degrees), both masks were
removed, and the choice targets were shown in their place, one each at the center of the two
target arrays. Because the display frame rate interval (~8ms) was shorter than the time needed
to complete a saccade (~20-40ms), the masks were usually replaced with the targets while the
eyes were still moving. Thus, the task design ensured that the monkeys could gain no
information about the target values until they initiated a saccade towards one of the two targets.
After the targets were shown, they remained in place until the monkey initiated a choice by
lifting the center lever, at which point both targets and all crowders were extinguished.

NEURAL RECORDINGS
Linear recording arrays (Plexon V-Probes) were introduced into the brain through a sharpened
guide tube whose tip was inserted 1-3mm below the dura. Probes had 16, 24, or 32 channels,
spaced either 50 or 100µm apart; up to 2 probes were used per hemisphere (32-80 channels,
mean 50 for monkey C, 75 for Monkey K). OFC was identified on the basis of gray/white matter
transitions, and by consulting a high-resolution MRI acquired from each animal. We targeted the
fundus and lateral bank of the medial orbital sulcus and the laterally adjacent gyrus (Fig. S2),
over anterior-posterior coordinates ranging from +32 to +38mm anterior to the intra-aural
landmark.
Neural unit signals were sorted by automated spike detection and sorting routines (Kilosort2, default parameters, except for ops.th = [4 12] and ops.lam = 15) followed by manual curation (Phy2 GUI). Sorted units were considered eligible for analysis if they had less than 2% of inter-spike intervals (ISIs) below 2ms, and also had less than 25% of spikes estimated to have come from ‘rogue’ units, according to the methods of Hill et al. Based upon follow-up manual inspection (Plexon Offline Sorter), these criteria selected all well-isolated single units, as well as less-well isolated units lightly contaminated with rogue spikes. We collectively refer to units that meet these thresholds as ‘cells’, recognizing that they represent a mix of units of varying isolation quality. The key findings in this study were confirmed when using a more stringent 1% ISIs threshold, and 10% rogue spike threshold (Fig. S6b-c).

ANALYSIS

Behavior and key task variables: Choice performance was quantified by a logistic regression in which the fraction of left choices was explained by the left-minus-right target value (in drops of juice, Fig. 1d). The number of fixations per trial and the decision RTs were averaged by task difficulty, defined as the best-minus-worst target value (Fig. 1e,f). For neural data analyses, only the trials in which monkeys viewed both targets were used (99.3% of trials for Monkey C, and 93.2% of trials for Monkey K). Neural data analysis was based on three task variables defined in a viewing order-based reference frame: ‘1st value’ and ‘2nd value’ were defined as the number of juice drops associated with the first and second target (respectively) viewed in every trial; and ‘1st chosen’ was defined as true when the monkey chose the first target he viewed in the trial, and false otherwise.

Single cell generalized linear model (GLM): To quantify the fraction of cells encoding the variables above, we fit for each cell a stepwise linear model: First, we fit the following GLM, assuming a Poisson error function:
\[SPIKES = \beta_0 + \beta_1 \cdot val1 + \beta_2 \cdot val2 + RESID \]

Where \(SPIKES \) is the spike count of a single cell in a single time bin, \(val1 \) and \(val2 \) are the variables '1st value' and '2nd value' as defined above, and \(RESID \) indicates the model residuals. We then fit a second model:

\[RESID = \beta_0 + \beta_1 \cdot ch1 \]

Where \(RESID \) is the residuals from the model fit in Eqn. 1, and \(ch1 \) is the Boolean variable '1st chosen' defined above. As a result, all of the variance in spiking due to \(val1 \) and \(val2 \) was accounted for before assessing the effects of \(ch1 \); this ensured that the effects of \(ch1 \) could only be attributed to this variable, and could not attributed in any way to collinearity between \(ch1 \) and the two value variables. This approach was chosen because it mirrors that of the encoder/decoder models used for choice probability calculations (Eqns. 3 and 4 below).

The fraction of cells with a significant effect of each variable was quantified at an uncorrected threshold of \(p < 0.001 \), chosen to produce minimal false positives before target viewing. The GLM used spike counts observed in 100ms bins, moved at 25ms increments, using the viewing of the first and second targets as temporal reference points.

Choice probability measured from population activity: At a high level, our approach entails the classification of choice outcomes using population-level representations of value. While there are many potential approaches for binary classification, we chose choice probability to facilitate comparison to prior studies\(^1,22-24\). With regards to the calculation of population value signals, we chose a LASSO regression model\(^33\), also known as L1-regularized linear regression. LASSO
was chosen because it enforces a sparse set of regression estimates – meaning in this case that it clearly defines a subset of cells that contribute to the population value signal. As described below, having a clearly defined subset of contributing cells facilitates a direct comparison between population-based and single-cell choice probability effects.

Choice probability analysis proceeded in three steps: fitting a model to explain an objective variable as a function of neural activity (encoding); using the model to estimate that objective variable in held-out trials (decoding); and classification of choice outcomes using the decoded estimates of the objective variable (classification). Note that the encoding and decoding steps can be interpreted as a form of dimensionality reduction and projection: the fitted parameters of the encoding model define an axis (a 1-D sub-space) within the neural state space that encodes the objective variable, and the decoded estimates quantify the projection of neural activity onto that axis.

Three objective variables were tested in separate analyses: ‘1st value’, ‘2nd value’, and ‘1st chosen’, defined above. To show the time course of choice probability effects, the analysis was performed using spike counts observed in 200ms bins, moved at 25ms increments, using two different temporal reference points: the viewing of the first target in each trial, and the viewing of the second target in each trial. Results were similar when using 100ms bins (not shown). These steps were performed independently within each bin, meaning that fitted parameters could vary across bins – in particular, that from one bin to the next, different cells could be assigned non-zero weights in the LASSO model described in Eqn. 3 below. For some follow-up analyses we defined an ‘early’ epoch, 0.2 to 0.4s after first target viewing; and a ‘late’ epoch, 0.2 to 0.4s after second target viewing (Fig. 3a-b).
First, in the encoding step, the data were stratified into a training and test set, maintaining whenever possible equal numbers of trial types, defined by the values of the first- and second-viewed target in each trial. Then we fit the following L1-regularized linear model (LASSO)33 to the training trials, using the \texttt{glmnet} package in R:

\begin{equation}
Y = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \ldots \beta_N S_N ,
\end{equation}

where Y is one of the three objective variables described above (‘1st value’, ‘2nd value’, or ‘1st chosen’), S_i is the spike count observed from cell i in a given bin, and N is the number of simultaneously recorded cells in a session. The resulting fitted parameters, \{$\beta_1, \beta_2, \ldots, \beta_N$\}, can be interpreted as a set of weights that indicate the degree to which the firing of each cell uniquely contributes to explaining variance in the dependent variable Y. The model was fit by minimizing the negative log likelihood plus a penalty $\lambda||\{\beta_1, \beta_2, \ldots, \beta_N\}||_1$, where $||1$ indicates the L1 norm. The scaling parameter λ (lower-bounded by zero) was selected to minimize cross-validation error (10-folds) within the training trials.

This form of regularization results in a sparse set of weights33, such that the weights for cells that explain negligible variance are set to zero. In this way, the model unambiguously selects a subset of cells (those with non-zero weights) whose activity contributes to the encoding of the objective variable. Having a clearly defined subset of cells is important, because it allows the population-based choice probability effects to be directly compared to single-cell choice probabilities over the exact same cells (see below). Note that the cell weights were fit independently in every 200ms time bin, meaning that different subsets of cells could be defined at each bin. While the weights in Eqn. 3 were generally consistent with the single-cell GLM
estimates obtained from Eqn. 1, they were not identical, due to the fact that in Eqn. 3, a given

Before fitting Eqn. 3, the effects of non-relevant variables were removed from the spiking data

(training trials only), so that non-relevant variables would not influence the weights pertaining to

the objective variable. This was most important for the epochs where more than once variable

was being represented in neural activity (e.g. following fixations onto the second target, Fig. 2e),

but was performed at all time bins for the sake of consistency. When \(Y \) was the variable ‘1st

value’, our goal was to remove from the spiking data all variance associated with the value of

the (non-relevant) second-viewed target. This was necessary because the distribution of the

variable ‘2nd value’ was not guaranteed to be identical across every stratum of the variable ‘1st

value’. As a result, changes in firing driven by ‘2nd value’ could be inappropriately attributed to

‘1st value’, leading to inaccurate regression weights. Therefore, before model fitting, the spiking

data were normalized with respect to ‘2nd value’, by grouping trials according to the identity of

the second-viewed target, and then mean-centering each of those groups. Likewise, when \(Y \)

was the variable ‘2nd value’, the spiking data were normalized according to ‘1st value’ in similar

fashion. When \(Y \) was the variable ‘1st chosen’, the goal was to remove variance associated with

either target value, in order to isolate spiking activity related only to choice outcome. To do this,

spiking data were normalized according to \textit{both} ‘1st value’ \textit{and} ‘2nd value’ simultaneously, by

obtaining the residuals from a two-way factorial ANOVA, in which spiking is explained by the

both identity of the first-viewed target and the identity of the second-viewed target, with no

interaction term.

Next, in the decoding step, we compute the following weighted sum in a set of held-out test

trials:
\[\hat{Y} = \beta_0 + \sum_{i=1}^{N} \beta_i S'_i \]

(4)

where \(\beta_0 \) and \(\beta_i \) are the intercept and fitted parameters from Eqn. 3, and \(S'_i \) is the spike count from the \(i \)-th cell, and \(N \) is the total number of cells. This yields for every held-out trial the weighted sum of spike counts across all simultaneously observed cells. In their raw form, these weighted sums estimate the objective variable \(Y \) in Eqn. 3; for example, when the objective variable is ‘1st value’, \(\hat{Y} \) is on average, a monotonically increasing function of the first-viewed target value (Fig. 2f.) However, the goal of this analysis is to consider the trial-to-trial variability in \(\hat{Y} \), i.e. the degree to which the decoded estimates exceed or fall short of their expected value from one trial to the next. To isolate this variability, we normalize \(\hat{Y} \) by taking the residuals obtained from a two-way factorial ANOVA, in which \(\hat{Y} \) is explained by the both identity of the first-viewed target and the identity of the second-viewed target (with no interaction term). This normalized \(\hat{Y} \) is referred to as the Normalized Variable Estimates (NVEs) for the objective variable (Fig. 2g). Note that normalization is performed with respect to the 12 unique stimulus identities, rather than to the 5 levels of reward value (Fig. 1b.); this is necessary to control for the possibility that the monkeys may idiosyncratically assign different subjective values to targets that have equal reward associations.

The NVEs therefore reflect trial-to-trial variability in the population-level representations of the objective variable, and serve as the input data for classification, as follows: The NVEs are used to classify held-out trials according to whether the first target was chosen, using standard receiver-operating characteristic (ROC) analyses. While encoding and decoding were performed over all of the training and test trials (respectively), classification was only performed over test trials for which the two targets differed by 0 or 1 drop of juice, because these were the only trials with sufficient choice variability (mean 145 trials per session for Monkey K; 175 trials
per session for Monkey C). This produced for every session one area under the ROC curve (AUC). For all three objective variables, the positive class was defined as choices in favor of the first-viewed target. Therefore, the AUC was above 0.5 when higher NVEs corresponded to a greater tendency to select the first target, and was below 0.5 when higher NVEs were associated with a tendency to select the second target.

Choice probability in individual cells: This analysis used the same binned spiking data as the population-based choice probability analysis described above, except that it was performed individually for each cell. Before analysis, spike counts that were first normalized with respect to the target identities, using a two-way factorial ANOVA in which spiking is explained by both the identity of the first-viewed target and the identity of the second-viewed target, with no interaction term. This is the same normalization used to transform decoded value signals (obtained from Eqn. 4) into NVEs. ROC calculations were based upon those trials in the test set in which the target values differed by 0 or 1 were used.

To directly compare the single cell with population results, average choice probabilities were calculated for three groups of cells: cells with non-zero weights in Eqn. 3 when the objective variable was ‘1st value’; cells with non-zero weights for the objective variable ‘2nd value’; and cells with non-zero weights for the objective variable ‘1st chosen’. In other words, mean choice probabilities were calculated for the cells that contributed to the NVE calculations for each respective variable. The positive class of each cell was determined by the sign of the weight from Eqn. 3: when the weight was above zero, the positive class was defined as choices in favor of the first-viewed target; and when the weight was below zero, the positive class was defined as second target choices. This ensures that the direction of the single-cell ROC results (i.e. whether the AUC is above or below 0.5) have the same interpretation as the population-based ROC results. Note that the three groups of cells were not mutually exclusive: an
individual cell could be used to calculate mean choice probabilities for more than one variable, if
it was assigned non-zero weights for more than one variable.

Choice probability calculated with non-condition-normalized data: We confirmed the main
findings of the study using alternative method for calculating AUCs (Fig. S4). In this method,
trials were grouped according to condition, and the non-condition-normalized data (either
Eqn. 4 or the spike counts for single neurons) were used to calculate a separate AUC within
each condition. Then, within each session the AUCs were averaged across conditions to arrive
at the session-wise AUC. As expected from prior work34, with this method the resulting AUCs
were slightly higher than AUCs calculated from normalized data as described above. Note that
using non-condition-normalized data typically requires that every condition have a sufficient 	number of trials to calculate a per-condition AUCs, and that this was generally not the case in
our study: Each condition was defined by the identities of the first- and second-viewed targets.
With 12 unique targets, there were 66 conditions (12 choose 2), and therefore a relatively small
number of trials per condition. For conditions with too few trials, no AUC calculation could be
performed, and as a result these trials were essentially discarded, and made no contribution
towards to calculation of the session-wise average AUC. Specifically, only 34.6% of trials were
used to calculate AUCs using non-condition-normalized data; for this reason, the main analyses
use normalized data.

Neuron dropping: The population choice probability analysis above was repeated over a
successively smaller pool of cells. Within a session the N recorded cells were ranked according
to the absolute value of the weights obtained in Eqn. 3. Then, the cell with the highest absolute
weight was removed from the pool, and decoding and classification steps were performed,
yielding an AUC based upon the $N-1$ remaining cells. This procedure was repeated until no cells
remained. Results are plotted for the first 20 removed cells.
Logistic regression with behavioral and neural regressors: The fraction of first target choices in the test trials was explained by the following logistic regression:

\[
\text{logit}(ch1) = \beta_0 + \beta_1 (val1 - val2) + \beta_2 \text{NVE}_{1\text{early}} + \beta_3 \text{NVE}_{1\text{late}} + \beta_4 \text{NVE}_{2\text{late}}
\] \hspace{1cm} (5)

where \(\text{logit()}\) is the logit function, \(ch1\) is a Boolean variable indicating a choice in favor of the first-viewed target, \(val1\) and \(val2\) are variables ‘1st value’ and ‘2nd value’ defined above, \(\text{NVE}_{1}\) and \(\text{NVE}_{2}\) refer to the NVEs for ‘1st value’ and ‘2nd value’ defined above, and the subscripts indicate data measured at the ‘early’ and ‘late’ epochs indicated in Fig. 3a-b. The model was fit for each session, and then the regression estimates were averaged across sessions. Similar results (not shown) were obtained from a regression that also included the NVEs for ‘1st chosen’ measured at the ‘late’ epoch; and also from a regression that includes a Boolean variable that takes ‘true’ when the monkey selected the first-viewed target on the previous trial, and ‘false’ otherwise. This latter term accounts for any potential effects of choice hysteresis, i.e. the potential for the monkey’s choice to be influenced by the choices in the trial immediately prior.
SUPPLEMENTARY FIGURES

FIGURE S1

a Initial fixation and lever press 1-1.5s
Target arrays on; targets are masked; gaze and RT are now unrestricted
First saccade detected; targets are now visible
First saccade ends; monkey views first target
Self-paced viewing continues until center lever lift
Center lever lift, targets extinguished, left or right lever must be pressed within deadline
Rig/i/ght lever press and reward delivery

b

Figure S1: (a) Illustration of the complete task sequence. Note that for illustration purposes, in this panel the background is white, and the surrounding crowders are shown at reduced saturation relative to the centrally located targets. However, on the actual task display, the background was dark, and target luminance was reduced relative to the crowders (see Fig. 1c), in order to better obscure the targets when they are not being viewed directly. (b) The 7 shape primitives used to generate choice stimuli. To create a new stimulus set, four shapes are selected without replacement from the 7 primitives; then each is rotated randomly by 0, 90, 180, 270 degrees. The four rotated shapes are then combined with four colors selected randomly from equally-spaced points on a color wheel defined within the RGB gamut in the CIELUV color space. A sub-set of 12 targets is then selected, and assigned to reward values ranging from 1-5 drops (Fig. 1b).
Figure S2: OFC recordings targeted the medial orbital gyrus, as well as the lateral bank of the medial orbital sulcus, over an anterior-posterior range of approximately +32 to +38mm relative to the intra-aural landmark. A representative anterior and posterior MR section (T2-weighted) is shown for each animal, with representative array trajectories shown in green. In Monkey C, recordings were from the left hemisphere only; in Monkey K, recordings were typically obtained bi-laterally. Scale bars are 10mm.
Figure S3: Choice probability and neuron dropping analyses for individual monkeys. Same format and conventions as Fig. 3a-d. In panels (c) and (g), * and *** indicate significant differences at uncorrected thresholds of $p < 0.05$ and $p < 0.001$, respectively. ‘ns’ indicates $p > 0.05$.
Figure S4: Choice probability and neuron dropping analyses when using non-condition-normalized data to calculate the area under the ROC curve (see Methods). Note the overall larger effects in comparison to Fig. 3. In panel (c), † indicates $p = 0.07$. Otherwise, all conventions are the same as in Fig. 3a-d. Note that the single-cell choice probabilities for the ‘1st value’ and ‘2nd value are comparable to those reported in prior studies that calculate AUCs with non-condition-normalized data: Specifically, Conen and Padoa-Schioppa24 report mean single-cell choice probabilities of 0.013 greater than chance, with a standard error of 0.007 in a sample of 229 cells (their Figure 7A), implying a standard deviation of ~0.11 in their sample. In panel (c), the mean choice probability for ‘1st value’ is 0.021 greater than chance, with a standard deviation of 0.096 in sample of 512 cells; and for ‘2nd value’ the mean choice probability is 0.014 above chance, standard deviation 0.091, in a sample of 621 cells. Thus, in our study, single OFC cells exhibit choice probabilities that do not appear drastically different from previous reports both in terms of the mean effects and standard deviation across cells.
Figure S5 Choice probability effects, placed on the same positive scale, using the data from the final 100ms before the decision RT in each trial. Conventions are the same as in Fig. 3c.
Figure S6. (a) AUCs as a function of the number of cells recorded in each session, using the data from the ‘late’ epoch in Fig. 3b. Solid lines give linear fit. For ‘1st value’ the correlation was -0.024 (p = 0.90), and for ‘2nd value’ was 0.067 (p = 0.71). (b-c) Choice probability effects referenced to second target viewing, using cells meeting ‘strict’ sort quality criteria (<1% of ISIs shorter than 2ms, and <10% of ISIs estimated to come from rogue spikes) or ‘liberal’ sorting criteria (<50% of ISIs from rogue spikes, no restriction on ISIs shorter than 2ms). Mean cells per session for strict criteria were 23.9, and for liberal criteria were 77.6. Conventions are the same as in Fig. 3b.
Figure S7: Correlations between LASSO regression weights from Eqn. 3 (panels a, c, e); and between NVEs (panels b, d, f). Each panel shows a scatter plot in which data are collapsed across all 32 sessions, and a histogram of correlations calculated within each session. All data are from either the ‘late’ epoch in Fig. 3b, or the ‘early’ epoch in Fig. 3a. (a) Correlation between weights from ‘1st value’ and ‘2nd value’ LASSO models, using data from the late epoch. On the scatter plot, each dot indicates a single cell (n = 1,450 total); note that the many cells have zero weights due to the L1 regularization used by the LASSO model. (b) Correlation between NVEs for ‘1st value’ and ‘2nd value’, from the late epoch. On the scatter plot, each dot indicates a single test trial (n = 9,920 total). (c-d) Correlations between ‘1st-value’ LASSO weights (c) and between NVEs (d) measured at two different time points. The first time point is the early epoch (x-axis), and the second time point is the late epoch (y-axis). Conventions are otherwise the same as in panels (a) and (b). (e-f) Correlations between LASSO weights (e) and between NVEs (f), for ‘1st-value’ cells during the early epoch (x-axis), and ‘2nd-value’ cells during the late epoch (y-axis). Conventions are the same as in panels (a) and (b).
Figure S8: Comparison of regression estimates obtained from single-cell GLMs (Eqn. 1) with the weights assigned by the LASSO model (Eqn. 3), for all 1,450 cells recorded in the study. (a) GLM estimates and LASSO weights for the variable ‘1st value’ at the late epoch defined in Fig. 3b. (b) GLM estimates and LASSO weights for the variable ‘2nd value’ at the late epoch defined in Fig. 3b. Each dot indicates a single cell. While there is general consistency between these measures, especially in terms of their signs, the correlations were modest: for ‘1st value’ $r = 0.384$, and for ‘2nd value’ $r = 0.416$. Correlations were also modest between the absolute values (not illustrated): for ‘1st value’ $r = 0.222$, and for ‘2nd value’ $r = 0.249$. In other words, cells identified as strongly value coding by the single-cell GLM were not guaranteed to be identified as strongly value coding in the LASSO model. This discrepancy is explained by the fact that the LASSO model considers the joint contribution of all of the cells in a session, and uses a penalty term to shrink the weights of cells that don’t contribute uniquely to explaining variance in the objective variable. The GLM, in contrast, evaluates cells one at a time, and returns an estimate that does not depend on the activity of other cells recorded simultaneously. Thus, a cell that is strongly modulated by value, but that is also strongly correlated with other value-coding cells in the same session, may have a smaller weight in the LASSO than in the GLM. Likewise, a cell that is only weakly modulated by value, but that explains a portion of the model variance in Eqn. 3 not accounted for by other cells may have a larger LASSO weight than GLM estimate.
REFERENCES

1. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. *Vis. Neurosci.* **13**, 87–100 (1996).

2. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. *Nature* **346**, 174–177 (1990).

3. Yates, J. L., Katz, L. N., Levi, A. J., Pillow, J. W. & Huk, A. C. A simple linear readout of MT supports motion direction-discrimination performance. *J. Neurophysiol.* **123**, 682–694 (2019).

4. Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. *Nature* **535**, 285–288 (2016).

5. Gold, J. I. & Shadlen, M. N. The Neural Basis of Decision Making. *Annu. Rev. Neurosci.* **30**, 535–574 (2007).

6. Shadlen, M. N. & Newsome, W. T. Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey. *J. Neurophysiol.* **86**, 1916–1936 (2001).

7. Cohen, M. R. & Newsome, W. T. Estimates of the Contribution of Single Neurons to Perception Depend on Timescale and Noise Correlation. *J. Neurosci.* **29**, 6635–6648 (2009).

8. Thorpe, S. J., Rolls, D. E. T. & Maddison, S. The orbitofrontal cortex: Neuronal activity in the behaving monkey. *Exp. Brain Res.* **49**, 93–115 (1983).

9. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. *Nature* **398**, 704–708 (1999).

10. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. *Nature* **441**, 223–226 (2006).

11. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. *Nat. Neurosci.* advance online publication (2016).

12. Yamada, H., Louie, K., Tymula, A. & Glimcher, P. W. Free choice shapes normalized value signals in medial orbitofrontal cortex. *Nat. Commun.* **9**, 162 (2018).

13. Ballesta, S., Shi, W., Conen, K. E. & Padoa-Schioppa, C. Values Encoded in Orbitofrontal Cortex Are Causally Related to Economic Choices. http://biorxiv.org/lookup/doi/10.1101/2020.03.10.984021 (2020)
doi:10.1101/2020.03.10.984021.

14. Knudsen, E. B. & Wallis, J. D. Closed-Loop Theta Stimulation in the Orbitofrontal Cortex Prevents Reward-Based Learning. *Neuron* (2020) doi:10.1016/j.neuron.2020.02.003.

15. Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M. & Turchi, J. Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. *eLife* **4**, e11695 (2015).

16. Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. *Nat. Neurosci.* **16**, 1140–1145 (2013).

17. Setogawa, T. *et al.* Neurons in the monkey orbitofrontal cortex mediate reward value computation and decision-making. *Commun. Biol.* **2**, 126 (2019).
18. Eldridge, M. A. G. et al. Disruption of relative reward value by reversible disconnection of orbitofrontal and rhinal cortex using DREADDs in rhesus monkeys. Nat. Neurosci. 19, 37–39 (2016).

19. Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables. J. Cogn. Neurosci. 21, 1162–1178 (2008).

20. McGinty, V. B., Rangel, A. & Newsome, W. T. Orbitofrontal Cortex Value Signals Depend on Fixation Location during Free Viewing. Neuron 90, 1299–1311 (2016).

21. Hunt, L. T. et al. Triple dissociation of attention and decision computations across prefrontal cortex. Nat. Neurosci. 21, 1471–1481 (2018).

22. Padoa-Schioppa, C. Neuronal Origins of Choice Variability in Economic Decisions. Neuron 80, 1322–1336 (2013).

23. Kimmel, D. L., Elsayed, G. F., Cunningham, J. P. & Newsome, W. T. Value and choice as separable and stable representations in orbitofrontal cortex. Nat. Commun. 11, 3466 (2020).

24. Conen, K. E. & Padoa-Schioppa, C. Neuronal variability in orbitofrontal cortex during economic decisions. J. Neurophysiol. 114, 1367–1381 (2015).

25. Yoo, S. B. M., Sleezer, B. J. & Hayden, B. Y. Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum. J. Cogn. Neurosci. 30, 898–913 (2018).

26. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

27. Enel, P., Wallis, J. D. & Rich, E. L. Stable and dynamic representations of value in the prefrontal cortex. eLife 9, e54313 (2020).

28. Crowder, E. A. & Olson, C. R. Macaque monkeys experience visual crowding. J. Vis. 15, 14 (2015).

29. Whitney, D. & Levi, D. M. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15, 160–168 (2011).

30. Fetsch, C. R. The importance of task design and behavioral control for understanding the neural basis of cognitive functions. Curr. Opin. Neurobiol. 37, 16–22 (2016).

31. Strait, C. E., Blanchard, T. C. & Hayden, B. Y. Reward Value Comparison via Mutual Inhibition in Ventromedial Prefrontal Cortex. Neuron doi:10.1016/j.neuron.2014.04.032.

32. Rudebeck, P. H., Ripple, J. A., Mitz, A. R., Averbeck, B. B. & Murray, E. A. Amygdala contributions to stimulus–reward encoding in the macaque medial and orbital frontal cortex during learning. J. Neurosci. 0933–16 (2017) doi:10.1523/JNEUROSCI.0933-16.2017.

33. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288 (1996).

34. Kang, I. & Maunsell, J. H. R. Potential confounds in estimating trial-to-trial correlations between neuronal response and behavior using choice probabilities. J. Neurophysiol. 108, 3403–3415 (2012).

35. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

36. Saez, A., Rigotti, M., Ostojic, S., Fusi, S. & Salzman, C. D. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex. Neuron 87, 869–881 (2015).

37. Yoo, S. B. M. & Hayden, B. Y. The Transition from Evaluation to Selection Involves Neural Subspace Reorganization in Core Reward Regions. Neuron 0, (2019).
38. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat Neurosci 13, 1292–1298 (2010).

39. Shadlen, M. N. & Shohamy, D. Decision Making and Sequential Sampling from Memory. Neuron 90, 927–939 (2016).

40. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

41. Okazawa, G., Sha, L., Purcell, B. A. & Kiani, R. Psychophysical reverse correlation reflects both sensory and decision-making processes. Nat. Commun. 9, 3479 (2018).

42. Usher, M. & McClelland, J. L. On the Time Course of Perceptual Choice: The Leaky Competing Accumulator Model. 72.

43. Öngür, D. & Price, J. L. The Organization of Networks within the Orbital and Medial Prefrontal Cortex of Rats, Monkeys and Humans. Cereb. Cortex 10, 206–219 (2000).

44. Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality Metrics to Accompany Spike Sorting of Extracellular Signals. J. Neurosci. 31, 8699–8705 (2011).