CHERN-OSSERMAN TYPE EQUALITY FOR COMPLETE SURFACES
IN \mathbb{R}^N

QING CHEN AND WENJIE YANG

Abstract. We obtain a Chern-Osserman type equality of a complete properly immersed surface in Euclidean space, provided the L^2-norm of the second fundamental form is finite. Also, by using a monotonicity formula, we prove that if the L^2-norm of mean curvature of a noncompact surface is finite, then it has at least quadratic area growth.

1. Introduction

Let M be a complete minimal surface in \mathbb{R}^n with finite total curvature, Chern and Osserman [2], [7] proved that

$$-\chi(M) \leq -\frac{1}{2\pi} \int_M K - k,$$

where K is the Gauss curvature of M, $\chi(M)$ is the Euler characteristic of M and k is the number of ends of M. Further results were obtained by Jorge and Meeks [5] that

$$-\chi(M) = -\frac{1}{2\pi} \int_M K - \lim_{t \to \infty} \frac{\text{area}(M \cap B(t))}{\pi t^2},$$

where $B(t)$ is the extrinsic ball of radius t.

When M is a general surface properly immersed in \mathbb{R}^n with $\int_M |A|^2 < \infty$, where A is the second fundamental form of the immersion, White [9] proved that $\frac{1}{2\pi} \int_M K$ must be an integer. In this paper, we present a general version of (1.2), where M is a general surface properly immersed in \mathbb{R}^n with the L^2-norm of the second fundamental form is finite.

Theorem 1.1. Let M be a complete properly immersed noncompact oriented surface in \mathbb{R}^n, A the second fundamental form of the immersion, r the distance of \mathbb{R}^n from a fixed point and $M_t = \{x \in M : r(x) < t\}$, $\chi(M)$ the Euler characteristic of M. Suppose $\int_M |A|^2 < \infty$, then

1. $\lim_{t \to \infty} \frac{\text{area}(M_t)}{\pi t^2}$ exists and is a positive integer;

2. $\lim_{t \to \infty} \frac{\text{area}(M_t)}{\pi t^2} = \chi(M) - \frac{1}{2\pi} \int_M K$.

Since $\int_M |A|^2 < +\infty$, then $\int_M |K| < +\infty$ by Gauss equation. When M is a complete surface with finite total Gaussian curvature, Huber [4] proved that M has finite topological...
type. And Cohn-Vossen [3] obtained:
\[2\pi \chi(M) - \int_M K \geq 0. \]
The explicit equality was obtained by Shiohama [8]:
\[\chi(M) - \frac{1}{2\pi} \int_M K = \lim_{t \to \infty} \frac{D(t)}{\pi t^2}, \]
where \(D(t) \) denote the area of geodesic balls of radius \(t \) at a fixed point. Our theorem shows that (1.4) also holds with extrinsic balls instead of geodesic balls if \(M \) is properly immersed in \(\mathbb{R}^n \).

The proof of Theorem 1.1 is based on two monotonicity formulas (Theorem 2.4). The monotonicity formulas also have an interesting application, namely, if the \(L^2 \)-norm of mean curvature \(H \) of the surface is finite, then it has at least quadratic area growth.

Corollary 1.2. (see also Corollary 2.5) Let \(M \) be a complete properly immersed noncompact surface in \(\mathbb{R}^n \) with \(\int_M |H|^2 < \infty \), then the volume of the intersection of \(M \) and the extrinsic balls has at least quadratic area growth.

2. Preliminaries

Let \(x : M \to \mathbb{R}^n \) be a complete properly immersed surface in \(\mathbb{R}^n \), \(r \) the distance function of \(\mathbb{R}^n \) from a fixed point. For simplicity, we always assume the fixed point to be 0, unless otherwise specified. Denote the covariant derivative of \(\mathbb{R}^n \) and \(M \) by \(\nabla \) and \(\nabla \) respectively. Let \(X, Y \) be two tangent vector fields of \(M \), then
\[
(\nabla^2 r)(X,Y) = XY(r) - \nabla_X Y(r) = (\nabla^2 r)(X,Y) - \langle A(X,Y), \nabla r \rangle.
\]
The equality (2.1), together with the fact that \(\nabla^2 r = \frac{1}{r}(g_{st} - dr \otimes dr) \), where \(g_{st} \) denotes the standard metric of \(\mathbb{R}^n \), implies

Proposition 2.1. For any unit tangent vector \(e \) of \(M \),
\[
(\nabla^2 r)(e,e) = \frac{1}{r}(1 - \langle e, \nabla r \rangle^2) + \langle A(e,e), \nabla^\perp r \rangle,
\]
where \(\nabla^\perp r \) is the projection of \(\nabla \) onto the normal of \(M \).

By Sard’s theorem, for a.e. \(t > 0 \), \(M_t = \{ x \in M : r(x) < t \} \) is a related compact open subset of \(M \) with the boundary \(\partial M_t \) being a closed immersed curve of \(M \). Let \(v(t) = area M_t \), \(A \) the second fundamental form of \(M \), and \(H = tr A \) the mean curvature vector.

Proposition 2.2. Suppose \(M \) is a complete properly immersed surface in \(\mathbb{R}^n \). Then for a.e. \(t > 0 \),
\[
2\pi \chi(M_t) - \int_{M_t} K = \frac{1}{t} \left(v'(t) + \int_{\partial M_t} \langle \nabla^\perp r, H \rangle \right) - \int_{\partial M_t} \langle A(\nabla r, \nabla r), \nabla^\perp r \rangle,
where \(x^\perp \) is the projection of position vector \(x \) onto the normal of \(M \).

Proof. By the Gauss-Bonnet formula, it’s sufficient to verify

\[
(2.2) \quad \int_{\partial M_t} k_g = \frac{1}{t} v'(t) + \int_{\partial M_t} \left\langle \frac{x^\perp}{|\nabla r|}, H \right\rangle - \int_{\partial M_t} \left\langle A(\frac{\nabla r}{|\nabla r|}, \frac{\nabla^2 r}{|\nabla r|^2}), \frac{\nabla^\perp r}{|\nabla r|} \right\rangle,
\]

where \(k_g \) denote the geodesic curvature of \(\partial M_t \) in \(M \).

Suppose \(e \) is the unit tangent vector of \(\partial M_t \). Since the normal of \(\partial M_t \) is \(\nabla r / |\nabla r| \),

\[
k_g = -\left\langle \nabla e, \frac{\nabla r}{|\nabla r|} \right\rangle
= \frac{1}{|\nabla r|} (\nabla^2 r)(e, e)
= \frac{1}{|\nabla r|} \left(\frac{1}{r} + \left\langle A(e, e), \frac{\nabla^\perp r}{|\nabla r|} \right\rangle \right)
= \frac{1}{|\nabla r|} \left(\frac{1}{r} + \left\langle H - A(\frac{\nabla r}{|\nabla r|}, \frac{\nabla^2 r}{|\nabla r|^2}), \frac{\nabla^\perp r}{|\nabla r|} \right\rangle \right),
\]

where the third equality follows by Proposition 2.1. Then by using co-area formula,

\[
v'(t) = \int_{\partial M_t} \frac{1}{|\nabla r|} \text{ and the fact that } \nabla^\perp r = \frac{x^\perp}{r}, \text{ we obtain (2.2).} \quad \square
\]

Proposition 2.3. Let \(M \) be a complete properly immersed surface in \(\mathbb{R}^n \), then

\[
tv'(t) = t \int_{\partial M_t} \frac{1}{|\nabla r|} |\nabla^\perp r|^2 + 2v(t) + \int_{M_t} \langle x^\perp, H \rangle.
\]

Proof. Since \(\frac{1}{2} \Delta r^2 = 2 + \langle x, H \rangle \), integrating over \(M_t \) and using the Green’s formula,

\[
(2.4) \quad t \int_{\partial M_t} |\nabla r| = 2v(t) + \int_{M_t} \langle x, H \rangle.
\]

By the co-area formula,

\[
v'(t) = \int_{\partial M_t} \frac{1}{|\nabla r|}.
\]

So we have,

\[
tv'(t) = t \left(\int_{\partial M_t} \frac{1}{|\nabla r|} - \int_{\partial M_t} |\nabla r| \right) + t \int_{\partial M_t} |\nabla r|
= t \int_{\partial M_t} |\nabla^\perp r|^2 + 2v(t) + \int_{M_t} \langle x^\perp, H \rangle. \quad \square
\]

Theorem 2.4. Let \(M \) be a complete properly immersed surface in \(\mathbb{R}^n \), \(r \) the distance of \(\mathbb{R}^n \) from a fixed point \(x_0 \), \(H \) the mean curvature of \(M \), \(M_t = \{ x \in M : r(x) < t \} \), \(v(t) = \text{area}M_t \), then both

\[
u_1(t) \triangleq \frac{v(t)}{t^2} = \frac{1}{24} \int_{M_t} |(x - x_0)^\perp| |H| + \frac{1}{16} \int_{M_t} |H|^2
\]
and
\[u_2(t) = v(t) - \frac{1}{t^2} \int_{M_t} |(x - x_0)^\perp| H | + \frac{1}{4} \int_{M_t} |H|^2 \]
are monotone nondecreasing in \(t \).

Proof. For simplicity, we assume \(x_0 = 0 \). By Proposition 2.3, we have
\[tv'(t) \geq t \int_{\partial M_t} \frac{|\nabla_r^\perp|^2}{|\nabla_r|} + 2v(t) - \int_{M_t} |x^\perp| H |. \quad (2.5) \]
By co-area formula and the weighted mean value inequalities,
\[\frac{d}{dt} \left(\int_{M_t} |x^\perp| H | \right) = \int_{\partial M_t} \frac{|\nabla_r^\perp| H |}{|\nabla_r|} \]
\[= t \int_{\partial M_t} \frac{|\nabla_r^\perp| H |}{|\nabla_r|} \]
\[\leq 2 \int_{\partial M_t} \frac{|\nabla_r^\perp|^2}{|\nabla_r|} + \frac{t^2}{8} \int_{\partial M_t} |H|^2. \quad (2.6) \]
Combining (2.5) and (2.6), we have
\[tv'(t) \geq \frac{t}{2} \left(t \int_{M_t} |x^\perp| H | \right)' - \frac{t^2}{8} \int_{\partial M_t} \frac{|H|^2}{|\nabla_r|} \]
\[+ 2v(t) - \int_{M_t} |x^\perp| H |, \quad (2.7) \]
or equivalently,
\[tv'(t) - 2v(t) - \frac{1}{2} \left(t \int_{M_t} |x^\perp| H | \right)' - 2 \int_{M_t} |x^\perp| H | \]
\[- \frac{t^3}{16} \int_{\partial M_t} \frac{|H|^2}{|\nabla_r|} \geq 0. \quad (2.8) \]
Dividing both sides of (2.8) by \(t^3 \) yields
\[\frac{d}{dt} \left(\frac{v(t)}{t^2} - \frac{1}{2} \int_{M_t} \frac{|x^\perp| H |}{t^2} + \frac{1}{16} \int_{M_t} |H|^2 \right) \geq 0, \quad (2.9) \]
this proves that \(u_1(t) \) is monotone nondecreasing in \(t \).

If we make slight modifications to (2.5) and (2.6), we have
\[tv'(t) \geq t \int_{\partial M_t} \frac{|\nabla_r^\perp|^2}{|\nabla_r|} + 2v(t) - 2 \int_{M_t} |x^\perp| H |, \quad (2.5)' \]
and
\[\frac{d}{dt} \left(\int_{M_t} |x^\perp| H | \right) \leq \int_{\partial M_t} \frac{|\nabla_r^\perp|^2}{|\nabla_r|} + \frac{t^2}{4} \int_{\partial M_t} \frac{|H|^2}{|\nabla_r|}. \quad (2.6)' \]
Combining (2.5)' and (2.6)', we obtain
\[\frac{d}{dt} \left(\frac{v(t)}{t^2} - \frac{1}{2} \int_{M_t} \frac{|x^\perp| H |}{t^2} + \frac{1}{4} \int_{M_t} |H|^2 \right) \geq 0, \quad (2.9)' \]
i.e. \(u_2(t) \) is monotone nondecreasing in \(t \).
\(\square \)
Remark 2.4. From the proof, we can see that the theorem is also valid for noncomplete surface, for \(t \) with \(\partial M \cap B_{x_0}(t) = \emptyset \), where \(B_{x_0}(t) \) is the ball in \(\mathbb{R}^n \) of radius \(t \) and centered at \(x_0 \).

By Theorem 2.4, we can get various volume estimates under suitable restrictions on mean curvature \(H \).

Corollary 2.5. Let \(M \) be a complete properly immersed noncompact surface in \(\mathbb{R}^n \) with \(\int_M |H|^2 < \infty \), then the volume of the intersection of \(M \) and the extrinsic balls has at least quadratic area growth.

Proof. Without loss of generality, we assume the center of the extrinsic balls to be 0. Since \(\int_M |H|^2 < \infty \), for a given \(\varepsilon > 0 \), there exists \(R > 0 \), such that

\[
\int_{M \setminus B_0(R)} |H|^2 < \varepsilon.
\]

Now for \(t > R \) large enough, choosing a point \(p \in M \cap \partial B_0(\frac{t+R}{2}) \), then \(B_p(\frac{t-R}{2}) \subset B_0(t) \setminus B_0(R) \), so we have

\[
\int_{M \cap B_p(\frac{t-R}{2})} |H|^2 < \varepsilon, \quad \text{Vol}(M \cap B_0(t)) \geq \text{Vol}(M \cap B_p(\frac{t-R}{2})).
\]

Taking \(x_0 = p \) in Theorem 2.4, then we have

\[
u_1(\frac{t-R}{2}) \geq \lim_{r \to 0} u_1(r) = \pi.
\]

Combining (2.10) and (2.11), we obtain

\[
\text{Vol}(M \cap B_0(t)) \geq \text{Vol}(M \cap B_p(\frac{t-R}{2})) \\
\geq \frac{(t-R)^2}{4} \left(u_1(\frac{t-R}{2}) - \frac{1}{16} \int_{M \setminus \frac{t-R}{2}} |H|^2 \right) \\
\geq \frac{\pi - \varepsilon}{4} (t-R)^2.
\]

The conclusion follows by choosing \(\varepsilon \) small. \(\Box \)

3. **Proof of Theorem 1.1**

Lemma 3.1. Let \(M \) be as in Theorem 1.1, then both \(\lim_{t \to \infty} \frac{v(t)}{t^2} \) and \(\lim_{t \to \infty} \frac{\int_{M_t} x^+ \cdot |H|}{t^2} \) exist.

Proof. First we prove:

Claim: \(\liminf_{t \to \infty} \frac{b}{t^2} < +\infty \).
Proof of the claim: Since by the weighted mean value inequality,

\begin{equation}
\frac{1}{t} \int_{\partial M_t} \frac{\langle x^+, H \rangle}{|\nabla r|} \leq \int_{\partial M_t} \frac{|H|}{|\nabla r|} \leq \frac{1}{2} \left(t \int_{\partial M_t} \frac{|H|^2}{|\nabla r|} + \frac{v'}{t} \right),
\end{equation}

by Proposition 2.2, we have

\begin{equation}
2\pi \chi(M_t) - \int K \geq \frac{1}{t} \left(v'(t) - \int_{\partial M_t} \frac{\langle x^+, H \rangle}{|\nabla r|} \right) - \int_{\partial M_t} |A| \frac{|\nabla^T r|}{|\nabla r|}
\end{equation}

(by Proposition 2.3)

\begin{align*}
&= \frac{v'}{2t} - \frac{t}{2} \int_{\partial M_t} \frac{|H|^2}{|\nabla r|} - \int_{\partial M_t} \frac{|A|^2}{|\nabla r|} - \frac{tv' - (2v(t) + \int_{M_t} \langle x^+, H \rangle)}{2t^2} \\
&= \frac{v}{t^2} - \frac{t}{2} \int_{\partial M_t} \frac{|H|^2}{|\nabla r|} - \int_{\partial M_t} \frac{|A|^2}{|\nabla r|} + \int_{M_t} \langle x^+, H \rangle \frac{2t^2}{|\nabla r|} \\
&\geq \frac{v}{t^2} - \frac{t}{2} \int_{\partial M_t} \frac{|H|^2}{|\nabla r|} - \int_{\partial M_t} \frac{|A|^2}{|\nabla r|} - \frac{\sqrt{v} \int_{M_t} |H|^2}{2t} \\
&\geq \frac{v}{t^2} - \frac{t}{2} \int_{\partial M_t} \frac{|H|^2}{|\nabla r|} - \int_{\partial M_t} \frac{|A|^2}{|\nabla r|} - \frac{1}{8} \int_{M_t} |H|^2
\end{align*}

where we use the weighted mean value inequalities in the second and the last equality, while the second equality count backwards follows from Cauchy’s inequality.

Since \(\int_M |H|^2 + \int_M |A|^2 < +\infty \), there exists a sequence \(\{\tau_i\} \) diverging to infinity such that

\begin{equation}
t(\int_{\partial M_t} \frac{|H|^2}{|\nabla r|} + \int_{\partial M_t} \frac{|A|^2}{|\nabla r|}) \bigg|_{t=\tau_i} \to 0 \quad \text{as} \quad i \to \infty.
\end{equation}

Otherwise, we must have \(\liminf_{t \to \infty} t(\int_{\partial M_t} \frac{|H|^2}{|\nabla r|} + \int_{\partial M_t} \frac{|A|^2}{|\nabla r|}) = \delta > 0 \). So for sufficient large \(t \), we have

\(t(\int_{\partial M_t} \frac{|H|^2}{|\nabla r|} + \int_{\partial M_t} \frac{|A|^2}{|\nabla r|}) > \frac{\delta}{2} \),

i.e.

\(\int_{\partial M_t} \frac{|H|^2}{|\nabla r|} + \int_{\partial M_t} \frac{|A|^2}{|\nabla r|} > \frac{\delta}{2t} \).

When you integrate \(t \), by the co-area formula, it is as bounded on the left as it is diverging on the right, a contradiction.

Then taking \(t = \tau_i \) in (3.2), together with the fact that

\(\chi(M_t) \leq 1, \quad \left| \int_{M_t} K \right| \leq \frac{1}{2} \int_M |A|^2 < +\infty \) and \(\int_{M_t} |H|^2 \leq 2 \int_M |A|^2 < +\infty \),
we have \(\limsup_{i \to \infty} \frac{v(t_i)}{t_i^2} < +\infty \), which implies \(\liminf_{t \to \infty} \frac{v(t)}{t^2} \leq \limsup_{i \to \infty} \frac{v(t_i)}{t_i^2} < +\infty \). This proves the claim.

Let \(u_1(t) \) and \(u_2(t) \) be as in Theorem 2.4 with \(x_0 = 0 \). By the claim, we have

\[
\liminf_{t \to \infty} u_1(t) \leq \liminf_{t \to \infty} \frac{v(t)}{t^2} + \frac{1}{16} \int_M |H|^2 < +\infty,
\]

\[
\liminf_{t \to \infty} u_2(t) \leq \liminf_{t \to \infty} \frac{v(t)}{t^2} + \frac{1}{4} \int_M |H|^2 < +\infty.
\]

Combining (3.4) and Theorem 2.4, we know that both \(u_1(t) \) and \(u_2(t) \) have finite limit as \(t \to \infty \).

Since derivative of each function in left side of (3.6) is non-negative, we have

\[
\int_M x^\perp \|H\| = 2u_1(t) - 2u_2(t) + \frac{3}{8} \int_M |H|^2,
\]

we conclude that both \(\lim_{t \to \infty} \frac{v(t)}{t^2} \) and \(\lim_{t \to \infty} \int_M \frac{x^\perp \|H\|}{t^2} \) exist. \(\square \)

Lemma 3.2. There exists a sequence \(\{t_k\} \) diverging to infinity such that

(i) \(\lim_{k \to \infty} \frac{v'(t_k)}{t_k} = \lim_{k \to \infty} \frac{2v(t_k)}{t_k} \lim_{k \to \infty} \frac{2}{t_k} \int_{\partial M_{t_k}} x^\perp \|H\| = \lim_{k \to \infty} \frac{1}{t_k} \int_{\partial M_{t_k}} x^\perp \|H\| = 0, \)

(ii) \(\lim_{k \to \infty} t_k \int_{\partial M_{t_k}} \frac{|H|^2}{\|\nabla r\|} = 0, \lim_{k \to \infty} t_k \int_{\partial M_{t_k}} \frac{|A|^2}{\|\nabla r\|} = 0. \)

Proof. Let \(u_1(t), u_2(t) \) be as in Lemma 3.1. Since \(u_1(t) + u_2(t) + \int_M |H|^2 + \int_M |A|^2 \) is bounded, arguing as in the proof of the claim in Lemma 3.1, we know that there is a sequence \(\{t_k\} \) diverging to infinity such that

\[
\left. \frac{d}{dt} \left(u_1(t) + u_2(t) + \int_M |H|^2 + \int_M |A|^2 \right) \right|_{t=t_k} \to 0 \text{ as } k \to \infty.
\]

Since derivative of each function in left side of (3.6) is nonnegative, we have

\[
t_k u_1'(t_k) \to 0, \quad t_k u_2'(t_k) \to 0 \quad \text{and}
\]

\[
t \left(\int_M |H|^2 \right)' \bigg|_{t=t_k} \to 0, \quad t \left(\int_M |A|^2 \right)' \bigg|_{t=t_k} \to 0
\]

as \(k \to \infty \). Combining (3.5) and (3.7), we get

\[
\left. t \left(\frac{v(t)}{t^2} \right)' \right|_{t=t_k} \to 0, \quad \left. t \left(\int_M \frac{x^\perp \|H\|}{t^2} \right)' \right|_{t=t_k} \to 0 \quad \text{and}
\]

\[
\left. t \left(\int_M |H|^2 \right)' \right|_{t=t_k} \to 0, \quad \left. t \left(\int_M |A|^2 \right)' \right|_{t=t_k} \to 0
\]
as \(k \to \infty \). So we obtain

\[
\lim_{k \to \infty} v'(t_k) = \lim_{k \to \infty} \frac{2v(t_k)}{t_k^2}, \quad \lim_{k \to \infty} \frac{1}{t_k} \left(\int_{M_{t_k}} |x^\perp||H| \right)' = \lim_{k \to \infty} \frac{2}{t_k^2} \int_{M_{t_k}} |x^\perp||H| \quad \text{and}
\]

\[
\lim_{k \to \infty} t_k \int_{\partial M_{t_k}} |H|^2 \frac{1}{\nabla r} = 0, \quad \lim_{k \to \infty} t_k \int_{\partial M_{t_k}} |A|^2 \frac{1}{\nabla r} = 0,
\]

where we use the fact that \(\lim_{t \to \infty} v(t) \) and \(\lim_{t \to \infty} \int_M |x^\perp||H| \) exist by Lemma 3.1, this proves (ii).

By co-area formula, when \(k \to \infty \),

\[
\frac{1}{t_k} \int_{D_{t_k}} \left(\int_{M_t} |x^\perp||H| \right)_{t=t_k} = \frac{1}{t_k} \int_{\partial M_{t_k}} |x^\perp||H| \frac{1}{\nabla r} \leq \int_{\partial M_{t_k}} \frac{|H|}{\nabla r} \leq \sqrt{v'(t_k)} \int_{\partial M_{t_k}} \frac{|H|^2}{\nabla r} = \sqrt{v'(t_k)} t_k \int_{\partial M_{t_k}} \frac{|H|^2}{\nabla r} \to 0.
\]

Combining (3.9) and (3.10), we have

\[
\lim_{k \to \infty} \frac{2}{t_k} \int_{M_{t_k}} |x^\perp||H| = \lim_{k \to \infty} \frac{1}{t_k} \int_{\partial M_{t_k}} |x^\perp||H| \frac{1}{\nabla r} = 0.
\]

Then (i) follows from (3.9) and (3.11).

Proof of Theorem 1.1 By Proposition 2.3, we have

\[
\left| \int_{\partial M_t} \left(A(\frac{\nabla r}{|\nabla r|}, \frac{\nabla r}{|\nabla r|}, \frac{\nabla^\perp r}{|\nabla r|}) \right) \right| \leq \int_{\partial M_t} |A| |\frac{\nabla^\perp r}{|\nabla r|}|
\]

\[
\leq \int_{\partial M_t} \left(\frac{|A|^2}{2 |\nabla r|^2} + \frac{|\nabla^\perp r|^2}{2t |\nabla r|^2} \right)
\]

\[
= \frac{t}{2} \int_{\partial M_t} |A|^2 |\nabla r| + \frac{tv'(t) + \int_M (x^\perp, H)}{2t^2},
\]

then Lemma 3.2 implies

\[
\lim_{k \to \infty} \int_{\partial M_{t_k}} \langle A(\frac{\nabla r}{|\nabla r|}, \frac{\nabla r}{|\nabla r|}, \frac{\nabla^\perp r}{|\nabla r|}) \rangle = 0.
\]
Taking \(t = t_k \) in Proposition 2.2 and letting \(k \to \infty \), together with (3.13) and Lemma 3.2, we get

\[
(3.14) \quad \lim_{k \to \infty} 2\pi \chi(M_{t_k}) - \int_M K = \lim_{k \to \infty} \frac{2v(t_k)}{t_k^2},
\]

which implies

\[
(3.15) \quad \lim_{t \to \infty} \frac{2v(t)}{t^2} \leq 2\pi \chi(M) - \int_M K.
\]

Since the extrinsic distance is smaller than intrinsic distance, we clearly have

\[
(3.16) \quad \lim_{t \to \infty} \frac{v(t)}{t} \geq \lim_{t \to \infty} \frac{D(t)}{t^2},
\]

where \(D(t) \) is the area of geodesic balls of radius \(t \) at a fixed point.

Combining (1.4), (3.15) and (3.16), we conclude that

\[
(3.17) \quad \lim_{t \to \infty} \frac{2v(t)}{t^2} = 2\pi \chi(M) - \int_M K.
\]

Furthermore, by the main theorem of White [9], we know that \(\frac{1}{4\pi} \int_M K \) is an integer, so is \(\lim_{t \to \infty} \frac{v(t)}{\pi t^2} \), and this limit must be positive by Corollary 2.5. This completes the proof of Theorem 1.1.

Corollary 3.3 Let \(M \) be a complete properly immersed noncompact oriented surface in \(\mathbb{R}^n \) with \(\int_M |A|^2 < 4\pi \), then \(\chi(M) = 1 \).

References

[1] Q. Chen and Y. Cheng, Chern-Osserman inequality for minimal surfaces in \(H^n \), Proc. AMS. 128 (1999), 2445-2450.
[2] S. S. Chern and R. Osserman, Complete minimal surface in \(\mathbb{R}^n \), J. d'Analyse Math. 19 (1967), 15-34.
[3] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, G'omposiho Math. 2 (1935), 69-133.
[4] A. Huber, On subharmonic functions and differential geometry in the large, Comment Math. Helv. 32 (1957) 13-72.
[5] L. P. Jorge and W. H. Meeks, The topology of minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221.
[6] J. H. Michael and L. M. Simon, Sobolev and Mean-Value Inequalities on Generalized submanifolds of \(\mathbb{R}^n \), Comm. Pure and Appl. Math., 26 (1973), 361-379.
[7] R. Osserman, A survey of minimal surfaces, Van Norstrand Rienhold, New York, 1969.
[8] K. Shiohama, Total curvature and minimal area of complete open surfaces, Proc. AMS. 94 (1985), 310-316.
[9] B. White, Complete surfaces of finite total curvature, J.Diff.Geom., 26 (1987), 315-326.