Growth Response of *Ixora coccinea* (L.) Cuttings to Coconut Water Treatment under a Low Polythene Sheet Dome

Samuel Ebo Owusu

Department of Crops and Soil Science Education, College of Agriculture Education, University of Education, Winneba, Asante-Mampong Campus, Ghana.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAERI/2020/v21i530142

Editor(s):

(1) Dr. Ozdal Gokdal, Professor, Aydin Adnan Menderes University, Turkey.

Reviewers:

(1) R. S. Loushambam, Manipur University, India.

(2) P. Prabakaran, Tamil Nadu Agricultural University, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/57656

ABSTRACT

Aims: To investigate the effects of coconut water treatment and polythene sheet dome on the establishment of *Ixora coccinea* (L.), stem cuttings.

Study Design: A 4 × 2 factorial Randomized Complete Block Design (RCBD) with three replicates was used.

Place and Duration of Study: The study was carried out at the Multipurpose Crop Nursery of the University of Education, Winneba, Mampong campus between September and December 2019.

Methodology: Two hundred and forty (240) cuttings of equal length of 12 cm were excised and each cutting planted to a depth of 2 cm with 10 cm above the soil in each of the 240 potting bags, which were filled, with sterilized soil to a depth of 15 cm from the bottom leaving 1.5 cm from the top.

Results: Results showed that treatments with varying levels of coconut water in combination with the plain polythene dome had a significant influence on growth parameters. Increasing levels of coconut water resulted in a subsequent increase in the number of leaves, plant height, and roots as well as survival rate. The treatment with 100 ml coconut water in combination with polythene dome recorded the highest plant height, number of leaves per plant and number of roots per plant [12.22 cm, 21.89 and 22.00] respectively at the end of the experiment. The percentage survival of plants however reduced significantly by 60 DAP [83.33%] when compared no polythene dome (control) [94.44%].

Corresponding author: E-mail: ebow4c@gmail.com;
1. INTRODUCTION

Cuttings are used as one of the Asexual means of propagating new plants. A cutting is a part of a plant separated from a parent plant or stock plant, which can grow under the favorable conditions for regeneration and will result in a new plant similar to the mother plant [1]. Vegetative propagation by stem cutting in Ixora coccinea (Linnaeus, 1753) generally involves the use of the terminal and sub-terminal stem cuttings. These cuttings taken at various growth stages, may contain a considerable number of growing tips (terminal section or sub-terminal stem sections), and are referred to as tip cutting or stem cuttings respectively. Nursery cultivators and non-professional gardeners use vegetative propagation methods like stem cuttings [2]. Furthermore, several ornamental plants are known to have difficulty in initiating adventitious roots if conditions are not very favorable [3]. One of such is the Ixora coccinea plant.

Ixora coccinea Linn is a common flowering shrub native to Asia belonging to the family Rubiaceae which is commonly known as Jungle Geranium, Flame of the woods, or Jungle flame or vetchi in Ayurveda [4,5]. Ixora coccinea (L.) is a hedging plant common in the subtropical regions of India and most tropical areas of the world [6,7]. It is a common hedge plant in Ghana and it is used widely in most landscape designs. As a hardy shrub with beautiful bright flowers, colours range from yellow, red, pink, white, and peach. A combination of these varieties makes Ixora coccinea an indispensable ornamental plant in many residential and commercial landscapes. Ixora is a moderate to root plant species and its rooting ability is moderate under natural conditions [8]. It is traditionally used as hepatoprotective, Chemo protective, antimicrobial, anti-oxidant, anti-nociceptive, antimitotic, and anti-inflammatory substance [4]. Root decoctions are used for treating nausea, hiccups, anorexia and are used to clarify the urine [4]; poultice fresh leaves and stems for sprains, eczema, boils and contusions and powdered roots are used for treating sores and chronic ulcers in Indochina [9]. Formation of adventitious root is an important step in vegetative propagation of most woody or horticultural species and problems associated with root development of cuttings usually results in greater commercial losses [10,11]. The success of rooting of woody stem cuttings, in the majority of ornamental plants and fruit trees, depends primarily on the physiological stage of the mother plant [12], time at which the cuttings were taken [13,14] and the type of growth regulators used (IAA, IBA, cytokinin, and gibberellins) [15]. The hormone that stimulates the growth of adventitious roots is known as auxin, commercially available in the form of Indolebutyric acid (IBA) and Naphthalene Acetic acid (NAA).

Coconut water contains natural plant growth hormones such as auxin, gibberellins, cytokinins and natural inhibitors and regulators that include ethylene, abscisic acid, phenols and flavonols [16,17]. Therefore, coconut water could be used to improve the rooting of Ixora cuttings and their establishment since it is an accessible cheap source of nutrients and environmentally friendly.

Polyethylene plastic film was first used in the propagation of plants by cuttings at the Arnold Arboretum in February 1953 [18]. Before this, it had been used in making air-layers and also quite extensively used in the shipping of plant material from the Arboretum to distant parts of the world, but it had never been tried in the propagation of cuttings [18]. Locally in Ghana, some nurserymen and gardeners employ the technique of starting Ixora cuttings under a low polythene sheet cover or dome and have claimed a higher success rate in some cases compared to not using the polythene sheet dome with or without a rooting hormone application. These claims have however not been substantiated with any empirical evidence or study and considering and the opportunity it presents to the horticulture industry as a whole such knowledge is worth investigating and documenting. This current

Conclusion: The study concludes that *Ixora coccinea* (L.) cuttings treated with 100 ml of coconut water in combination with a polythene dome will enhance the growth and development of *Ixora coccinea* (L.) cuttings, however, the use of the polythene dome should be curtailed before 60DAP.

Keywords: Coconut water; *Ixora coccinea* (L.); cuttings; polythene sheet; growth; survival rate.

ABBREVIATIONS

- **DAP**: Days after planting
- **P₀**: No polythene cover
- **P₁**: Polythene cover

study, therefore, sought to investigate the effects of coconut water treatment on the establishment of *Ixora coccinea* (L.) stem cuttings under polythene dome.

2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY

2.1 Description of the Study Area

The experiment was carried out at the Multi-purpose Crop Nursery of the University of Education, Winneba, College of Agriculture Education, Asante–Mampong Campus.

2.2 Planting Materials

Ixora coccinea (L.) cuttings were sourced from the Hindu Monastery of Africa, Ashanti – Mampong Branch.

2.3 Growth Media

Topsoil was collected from the Multi-purpose Crop Nursery, sterilized, and sieved. Potting bags were filled with the topsoil to a depth of 15 cm from the bottom of the bag leaving a space of 1.5 cm from the top to avoid run-off during watering. Two hundred and forty (240) bags were used for the study.

2.4 Planting

Two hundred and forty (240) cuttings of equal length of 12 cm were prepared and each planted in a separate bag of soil to a depth of 2 cm with 10 cm above the soil.

2.5 Treatments and Experimental Design

A 4 × 2 factorial Randomized Complete Block Design (RCBD) was employed. There were eight treatments; *(T_1)* = No coconut water + No polythene dome, *(T_2)* = 80 ml coconut water + No polythene dome, *(T_3)* = 90 ml coconut water + No polythene dome, *(T_4)* = 100 ml coconut water + No polythene dome, *(T_5)* = No coconut water + polythene dome, *(T_6)* = 80 ml coconut water + polythene dome, *(T_7)* = 90 ml coconut water + polythene dome, *(T_8)* = 100 ml coconut water + polythene dome which were all replicated three times. A total of ten cuttings was used per treatment. The varied levels of coconut water were applied once every week throughout the period of study.

2.6 Polythene Dome

Polythene sheet dome was created by bending flexible bamboo branches into an arc and mounted at extreme ends and middle of an experimental block. A transparent polythene sheet of 500 gauge thickness (125 microns) was used in covering the bamboo frame and the ends were firmed in at the edges with wet soil.

2.7 Data Collection

Growth data including the number of leaves per plant, plant height, number of roots per plant and number of survived cuttings were collected at predetermined periods depending on the parameter being measured.

2.7.1 Number of leaves/plant

The number of leaves was counted from three (3) plants in each replicate and the average estimated. This was done every two weeks from the first day of sprouting.

2.7.2 Plant height

Plant height was measured from three (3) plants in each replicate and the average estimated. This was done every two weeks from the first day of planting.

2.7.3 Percentage of survival

This was obtained by counting the number of plants that survived under each treatment and their percentage estimated from the total number of cuttings that sprouted. The counting was done at the end of the experimental period at seventy-five days after planting and the values computed.

2.7.4 Number of roots per plant

Six plants from each replicate were selected and their bags removed, leaving the soil around the root zone. The root zone with the soil was then immersed into water until all the soil was washed off, making the roots visible for counting. The number of roots for each plant was then counted and the average estimated. This data was obtained at sixty days after planting.

2.8 Data Analysis

The collected data were subjected to analysis of variance (ANOVA) with the help of Genstat statistical package, windows version, 11th edition. Means which differed significantly were
separated using Tukey’s HSD at a 5% level of probability [19].

3. RESULTS AND DISCUSSION

3.1 Number of Leaves

There was a significant increase in the number of leaves per plant at 30, 45, and 60 DAP with varied levels of coconut water when compared with the control (Table 1). There was no significant variation between 80 and 90 ml of coconut water applied in terms of the number of leaves per plant at 45 and 60 DAP. At 60 DAP, no significant effect was observed between 90 and 100 ml; 80 and 100 ml however varied significantly in terms of the number of leaves. The increase in the number of leaves through an increase in the levels of coconut water could be due to an increase in the concentration of auxins and nutrients that stimulate several life processes of the plant. This is in agreement with the results of [8], who observed that the number of leaves of *Ixora coccinea* (L.) increased by 38%, 50%, and 70% at 30, 45, and 60 DAP when treatment with 100 ml coconut water.

More so, the polythene dome significantly increased the number of leaves per plant as compared to the control throughout the experimental period. There were significant variations amongst the interactions of coconut water levels and polythene dome in terms of the number of leaves at 30, 45, and 60 DAP. 100 ml of coconut water and polythene dome interactively (100* P1) resulted in the significantly highest number of leaves followed by (90 ml* P1), which however varied insignificantly from (100 ml* P1). It was observed during the study that there was warmth and high humidity inside the polythene dome each time the plants were visited. Temperature is a very important factor that influences the growth of plants due to its influence on enzymatic activities. The increase in the concentration of the coconut water could have resulted in the accumulation of growth hormones and nutrients which also accelerated the development of the leaves by the hormones inducing rapid meristematic growth. Thus, the polythene dome created an environment of optimal temperature and relative humidity, increased hormone and nutrient concentration with coconut water to induce rapid enzymatic activity for the plants to perform its functions, such as respiration and photosynthesis leading to the production of more leaves. Coconut water contains phytohormones such as auxins, gibberellins, cytokinins, ethylene, and abscisic acid, as well as the plant growth regulators polyamines and nitric oxide [20].

Table 1. Individual and interactive effects of coconut water and polythene sheet dome on number of leaves per plant

Treatment	Days after planting (DAP)		
	30	45	60
Coconut water (ml)			
0.0	2.11^a	7.16^a	13.78^a
80.0	4.33^b	10.33^b	18.16^b
90.0	5.00^c	11.67^b	18.83^{bc}
100.0	5.78^d	13.11^c	20.16^c
HSD (0.05)	0.334	1.418	1.406
Cover			
No polythene (P₀)	3.22^a	9.06^a	16.75^a
Polythene (P₁)	5.39^a	12.08^b	18.72^b
HSD (0.05)	0.507	1.002	0.994
Interaction			
0ml * P₀	2.44^{ab}	7.11^a	13.89^a
0ml * P₁	1.78^a	7.22^a	13.67^a
80ml * P₀	3.11^b	8.67^{ac}	17.11^b
80ml * P₁	5.55^c	12.00^b	19.22^{cd}
90ml * P₀	3.11^b	9.33^{cd}	17.55^{bc}
90ml * P₁	6.89^e	14.00^{de}	20.11^{de}
100ml * P₀	4.22^c	11.11^e	18.44^{bc}
100ml * P₁	7.33^e	15.11^e	21.89^e
HSD (0.05)	1.013	2.005	1.988

Within a column, means bearing different superscripts differ significantly (P ≤ 0.05)
3.2 Plant Height

Generally, plant height increased with increasing levels of coconut water (Table 2). 100 ml treated cuttings recorded the highest mean values of 10.30 cm, 11.06 cm, and 11.88 cm at 30, 45, and 60 DAP respectively which were also significantly higher than the control. No significant variations existed amongst the applied levels of coconut water (80, 90, and 100 ml) in terms of plant height at 30 and 45 DAP. At 60 DAP however, 100 ml coconut water varied significantly from 80 and 90 ml in terms of plant height. Polythene dome significantly increased plant height at 30 and 60 DAP but had no significant effect on plant height at 45 DAP (Table 2). Interactively, there were significant variations amongst some of the combined treatments in plant height (Table 2). The application of 100 ml coconut water together with polythene dome generally produced plant height of 10.48 cm, 11.28 cm, and 12.22 cm at 30, 45, and 60 DAP respectively, and was significantly different from the rest of the combined treatments at 60 DAP.

The increase in plant height with the application of coconut water could be attributed to the influence of the auxins in the coconut water, which promotes cell division and elongation. Cytokinins also increase the nitrogen content of leaves which is important in the formation of protein, nucleic acid, chlorophyll, enzyme, vitamins, and plant hormones. The result is in agreement with [8] who reported 43%, 25%, and 28% significant increases in the height of Ixora plants at 30, 45, and 60 DAP respectively due to the application of coconut water compared to the control. These results also corroborate with that of [21] who reported that cytokinins stimulate the growth of roots and shoots, which in turn, increased plant height.

The higher plant height recorded under polythene dome could be a result of the polythene dome created an environment of optimal temperature, low evapotranspiration, availability of water, and relative humidity, which are favorable conditions for plant growth. This result agrees with that of [22] who reported that critical soil temperature increases the height and diameter of the tomato plant. [23] also recorded a significant increase in stalk length of sugarcane due to the use of colored polyethylene cover.

3.3 Number of Roots

Coconut water treated cuttings gave a higher number of roots per plant when compared with the control. There were no significant

Table 2. Individual and interactive effects of coconut water and polythene sheet dome plant height (cm)
Treatment
Coconut water (ml)
0.0
10.07 ^a
80.0
10.22 ^{ab}
90.0
10.22 ^b
100.0
10.30 ^b
HSD (0.05)
Cover
No polythene (P_o)
10.13 ^a
Polythene (P₁)
10.27 ^b
HSD (0.05)
Interaction
0ml *P₀
10.06 ^a
0ml *P₁
10.08 ^{abc}
80ml *P₀
10.13 ^{abc}
80ml *P₁
10.31 ^{bcd}
90ml *P₀
10.22 ^c
90ml *P₁
10.22 ^c
100ml *P₀
10.12 ^c
100ml *P₁
10.48 ^d
HSD (0.05)

*Within column means bearing different superscripts differ significantly (P ≤ 0.05)
differences observed in the number of roots for 80 and 90 ml coconut water application however 100ml coconut water showed a significantly higher number of roots (19.00) in comparison with both 80 ml (16.11) and 90 ml (16.72) coconut water applications. Also, Ixora cuttings covered with polythene dome (P₁) gave a significant (P ≤ 0.05) number of roots (17.47) over the control (P₀) (15.17). Interactively, 100 ml*P₁ recorded the highest number of roots of 22.00 but this value was not significantly different from those of 80 ml*P₁ and 90 ml*P₁. 0 ml * P₀ recorded the least number of roots (12.67) which was significantly lower than the highest number of roots (22.00) recorded by 100 ml*P₁. Coconut water contains auxins, various cytokinins, GAs, and ABA [24-28] all of which play critical roles in the growth and development of plants. As can be seen from Table 3, increasing levels of coconut water gave a corresponding higher number of roots. This was corroborated by [29], who asserted that adventitious root development was promoted in Draceana purplecompacta L. by IAA in coconut water extracts.

3.4 Percentage Survived Cuttings

Percentage survived cuttings at 60 DAP within coconut treated cuttings and between the controls was insignificant. The use of polythene dome at 60 DAP showed a significantly lower (76.39) percentage of survived cuttings compared with the control which recorded 88.89. Interactively, (80 ml*P₀) and (100 ml*P₀) recorded a higher (94.44) percentage of survived cuttings and was significantly different from (80 ml*P₁) which had 88.89 at 60 DAP. There was however no significant difference between 100 ml *P₁ and 100 ml*P₀ at 60 DAP. The performance of the control could be attributed to its exposure to the ambient temperature of the immediate environment, sunlight, and relative humidity which was much more conducive for the plants at that physiological stage at 60 DAP. Whiles, on the other hand, the covered cuttings experienced deprivation of carbon dioxide which hampered its continuous growth at that physiological stage resulting in reduced photosynthetic activity. At a more mature stage of the plant’s development, they do need adequate amounts of Carbon dioxide to undergo photosynthetic processes for continued survival.

4. CONCLUSION

The results from the study showed a positive response of Ixora cutting establishment to the application of coconut water and the use of polythene dome. The application of 100 ml coconut water together with polythene dome interactively proved significantly superior in enhancing the growth and development of *Ixora coccinea* (L.) cuttings.

On the contrary, coconut water applications had no significant effect on percentage survived cuttings and the control recorded higher percentage survived cuttings when compared to cuttings under polythene dome by 60 days after planting.

There was however, no significant difference in percentage survival between covered and
uncovered cuttings treated with 100 ml coconut water.

Ixora coccinea (L.) cuttings treated with 100 ml of coconut water in combination with a polythene dome will enhance the growth and development of *Ixora coccinea* (L.) cuttings, however, the polythene dome produced a significant detrimental effect on cutting survival by 60 DAP; an observation that could be further investigated to determine when best to remove the polythene dome.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Hamilton DF, Midcap JT. Propagation of woody ornamentals by cuttings. In Florida Cooperative Extension Service, Inst. of Food and Agric. Sci., University of Florida, Gainesville. 2003;32611.

2. Asif Ali Baloch, Saba Ambreen Memon, Qadir Bux Baloch et al. Exploring sprouting and growth response of *Ixora* stem cuttings (*Ixora coccinea*). International Journal of Development Research. 2019;09(01):25208-25213.

3. George EF, Hall MA, De Klerk GJ. (Eds.). Plant propagation by tissue culture: volume 1. the background (Vol. 1). Springer Science & Business Media; 2007.

4. Elumalai A, Eswaraiah C, Venkatesh Y, Narendar C. Phytochemical and pharmacological profile Of *Ixora coccinea* Linn. International Journal of Pharmacy & Life Sciences. 2012;3(3).

5. *Ixora coccinea* catalog*. Flowers of India. Available: http://www.flowersofindia.net/catalog/slides/ixora%20red.html

6. Dontha S, Kamurthy H, Mantripragada B. Phytochemical and pharmacological profile of *Ixora*: A review. International Journal of Pharmaceutical Sciences and Research. 2015;7:567-584.

7. Hammer K, Khoshbakht K. A domestication assessment of the big five plant families. Genetic Resources and Crop Evolution. 2015;62(5):665-689.

8. Karunarathna B, Harris KD. Effect of Coconut Water on the Cutting Establishment of *Ixora* (*Ixora coccinea* (L.) L.). Int Jrev. 2016;1(11):27-33.

9. Glossary of Indian Medicinal plants with active principles. National Institute of Science Communication and Information Resources, New Delhi. 1992;1:374.

10. De Klerk GJ, Van Der Krieken WM, De Jong JC. The formation of adventitious roots; new concepts, new possibilities. *In Vitro* Cell Dev. Biol. 1999;35:189-199.

11. Mohammed AAF, Hamid AEY. Vegetative propagation of Peltophorium petrocarpum (DC) Backer ex k. Heyne: A multi-purpose tree. Net Journal of Agricultural Science. 2014;2(4):113-116.

12. Day JS, Loveys BR. Propagation from cuttings of two woody ornamental Australian shrubs, Boroniamegastigma and Hypocalyymmaanguistifolium, Endl. (White myrtle). Australian Journal of Experimental Agriculture. 1998;38:201-206.

13. Hartmann HT, Loreti F. Seasonal variation in rooting of leafy olives cuttings under mist. *Proc. American Society of Horticultural Sciences*. 1995;87:194-98.

14. Darwesh RSS. Studies on propagation of *Ficusretusa* cv. Hawaii, M.Sc. Thesis, Faculty of Agriculture Cairo University, Egypt; 2000.

15. Roweazk MMA. Response of some ornamental plants to temperature with growth substances. M.Sc. Thesis, Faculty of Agriculture, Cairo University, Egypt; 2001.

16. Juanita CM, Estella TP, Lorele CT, Emmanuel SP, Angela DC. Enhancement of seedling growth with extracts from coconut water. Phillipp. J.Crop Sc. 1988;13(1):17.

17. Oluwagbenga D, Gabriel A, Taiwo A. Effect of alternative hormones on the rootability of *Parkia* biglobosa. *Scientia Agriculturae*. 2016;13(2):113-118.

18. Coggeshall RG. Polyethylene Plastic—Its Application to the propagation of hardwood cuttings. Arnoldia. 1954;14(11): 57-63.

19. Omer SO, Hussin SH. An assessment of multiple comparisons for a single variety trial in block designs. *International Journal of Multidisciplinary Research and Development*. 2015;2(1):197-200.

20. Cassán F, Vanderleyden J, Spaepen S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. *Journal of Plant Growth Regulation*. 2014;33(2):440-459.
21. Yong WH, Jean, Liya G, Yan Fei ND, Swee NT. The composition of plant growth regulators in coconut water. Parsons Laboratory, Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA 3Natural Sciences and Science Education, Nanyang Technological University, Nanyang Walk, Singapore; 2013.

22. Tressen T. Polyethylene Mulches in Vegetable Production. Order No. 78-008, Ontario. 1993.

23. Ahmed M, Baiyeri KP, Echezona BC. Effect of colored polyethylene mulch and harvesting stage on growth and yield of industrial sugarcane in Nigeria. African Journal of Biotechnology. 2013;12(10).

24. Kobayashi H, Morisaki N, Tago Y, Hashimoto Y, Iwasaki S, Kawachi E, Nagata R, Shudo K. Structural identification of a major cytokinin in coconut milk as 14-O-(3-O-[β-D-galactopyranosyl-(1→2)-α-D-galactopyranosyl-(1→3)-α-L-arabinofuranosyl]-4-O-(α-L-arabinofuranosyl)-β-D-galactopyranosyl)-trans-zeatin riboside. Chem. Pharm. Bull. 1997;45:260–264.

25. Ge L, Tan S, Yong JWH, Tan SN. Capillary electrophoresis for cytokinin analyses: A review. Electrophoresis. 2006;27:4779–4791.

26. Ge L, Peh CYC, Yong JWH, Tan SN, Hua L, Ong ES. Analyses of gibberellins by capillary electrophoresis-mass spectrometry combined with solid-phase extraction. J. Chromatogr. A. 2007;1159: 242–249.

27. Ma Z, Ge L, Lee ASY, Yong JWH, Tan SN, Ong ES. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction, Anal. Chim. Acta. 2008;610:274–281.

28. Wu Y, Hu B. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid microextraction-high performance liquid chromatography, J. Chromatogr. A. 2009;1216:7657–7663.

29. Agampodi VA, Jayawardena B. Effect of coconut (Cocos nucifera L.) water extracts on adventitious root development in vegetative propagation of Dracaena purplecompacta L. Acta physiologiae plantarum. 2009;31(2):279-284.