Influence of Clove Tea (Syzygium Aromaticum) on Body Weight and Biochemical Parameters of Rats Subjected to Ethanol Consumption and Abstinence

Fernanda Mani**, Camila Pereira Braga¹, Ethel Lourenzi Barbosa Novelli¹ and José Maurício Sforcin²

¹Departamento de Química e Bioquímica, Instituto de Biociências, UNESP, Campus de Botucatu. Distrito de Rubião Junior, s/n, CEP 18600-000, Botucatu-SP, Brasil
²Departamento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Campus de Botucatu. Distrito de Rubião Junior, s/n, CEP 18600-000, Botucatu-SP, Brasil

Abstract

Clove has a large number of therapeutic properties and its tea has been used by the general population as anti-inflammatory, antihyperglycemic, antimutagenic, bactericidal, and nematocidal, among others. Thus, the aim of this study was to assess the effect of clove on biochemical parameters of rats subjected to ethanol consumption and abstinence. The animals were subjected to ethanol intake before and after treatment with clove tea, according to their groups, as follows: GW received water (control); GE received 3% ethanol alone; GC received clove alone; GCE received clove for 7 consecutive days followed by 3% ethanol for 16 consecutive days; GEC received 3% ethanol for 16 consecutive days followed by clove for 7 consecutive days. Administration of clove tea alone or ethanol alone did not change serum parameters such as glucose, triglycerides, total cholesterol, total protein and albumin, and it did not alter weight gain although there was a significant difference in mean food consumption, which suggests that under such conditions clove tea or ethanol does not interfere with these parameters. On the other hand, administration of clove tea before or after ethanol administration led to significant changes in several parameters such as glucose, triglycerides, cholesterol, total protein and albumin. The obtained results thus suggest that prolonged ethanol intake should be avoided when clove tea is consumed daily.

**Corresponding author: Fernanda Mani, Departamento de Química e Bioquímica - Instituto de Ciências – UNESP, Botucatu, São Paulo, Brazil, Tel: + 55 (14) 3811-6255; E-mail: femani@ibb.unesp.br

Copyright: © 2012 Mani F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
insulin and the serum levels of leptin and estrogen in mice. These data suggest an action of alcohol on the organism causing several metabolic changes that still need to be studied.

Ethanol is a compound present in several alcoholic beverages such as beer, wine, vodka, liqueurs and “cachaça”, which are frequently consumed by Brazilians in a slight, moderate or heavy manner. Excessive ethanol ingestion adds 9 kcal/g to the diet. Thus, addition of this compound to the diet may result in energy accumulation and consequently weight gain. However, a search in the literature using ethanol versus body weight lead us to several scientific studies from the 60’s to the 90’s reporting that ethanol does not interfere in weight gain [26-29].

There is no report in the literature about the effect of clove in association with ethanol administration. Thus, we studied the effect of clove on biochemical parameters after moderate alcohol intake, as well as on alcohol restriction.

Material and Methods

This study was submitted to the Ethics Committee on Animal Experimentation of the Institute of Biosciences of UNESP, Botucatu Campus, São Paulo State, Brazil, and was approved and certified by the Protocol no. 299-CEEA.

Obtaining and preparing clove tea

Clove was obtained in the local market in packages containing 1 kg of the respective product. The tea was prepared by following the method of Gazola et al. [30]; 65 mL water at 70°C was added to 5 grams of dry clove material and kept in infusion for 15 minutes. Then, the liquid was filtered off and used in the experiment. To obtain the dry weight, aliquots of clove tea were kept in an oven for solvent evaporation and estimation of the final concentration of clove was 26 mg/mL, which was subsequently used to calculate the concentrations to be administered to the animals.

Animals

Male Wistar rats (Rattus norvegicus albimus) were used, weighing 200 grams and were from the Central Animal Facility of UNESP/Botucatu Campus. The animals were transferred to the Experimentation Room of the Department of Chemistry and Biochemistry of Institute of Biosciences of UNESP, Botucatu Campus, and were kept there during the whole experimental period. Rats were kept in collective cages (3 rats per cage) at controlled room temperature of 25°C and photoperiod of 12 h light/12 h dark (6:00/18:00) and received water and pet food Purina ad libitum.

Experimental groups

Thirty male Wistar rats were randomly allocated to five experimental groups and acclimatized for 15 days before the beginning of the experiment. The following groups of six animals each were established: GW, control group that received distilled water; GE, control group that received 3% ethanol; GC, control group that received clove tea; GCE, group that received clove tea for 7 consecutive days, followed by 3% ethanol for 16 consecutive days; and GEC, group that received 3% ethanol for 16 consecutive days, followed by clove tea for 7 consecutive days.

During the experimental period, the animals were weighed once a week in a semi-analytical balance. The value of liquid and food consumed per day was measured during the 30 days.

Serum biochemical assays

Glucose, total protein, albumin, triglycerides and cholesterol in the serum were determined by means of colorimetric methods (Kits for diagnosis obtained from “CELM-Companhia Equipadora de Laboratorios Modernos”, São Paulo, Brazil).

Statistical analysis

For these completely randomized experiments, Analysis of Variance was adopted and F statistics was considered significant when p<0.05. Paired means of controls and treatments were compared by the Tukey method, calculating the minimal significant difference for α=0.05 [31].

Results

Initial and final weight, weight gain, food intake, and mean ingested volume obtained for each animal group. There was no significant difference between groups for final weight, weight gain and mean volume ingested by the animals; however, we noted a significant difference between groups in mean consumption of pet food per day. Compared to GW, groups GE, GC and GCE had a decrease in food consumption, i.e. administration of ethanol alone, clove alone or clove followed by ethanol induced a decrease in food consumption. This was not observed for GEC, which was subjected to alcohol restriction while receiving clove. On the other hand, compared to GE, groups GC, GCE and GEC had a significant increase in food consumption, suggesting that administration of ethanol alone during the experimental period induced a decrease in food consumption, whereas the use of clove before ethanol intake induced an increase in food consumption; similarly, the use of clove after ethanol intake increased the normal values. This effect of clove can be confirmed by comparing GC to GCE and GEC, which indicates that the values for GCE significantly decreased while those for GEC significantly increased, suggesting that this decrease is due to ethanol consumption after clove intake and the increase for GEC is due to clove intake, which suppresses the ethanol effect.

Biochemical assay of glucose

Comparison between groups indicated that the serum level of glucose remained unaltered, except for GEC which showed a significant increase relative to the remaining groups. This means that administration of ethanol followed by clove increased the serum levels of glucose.

Biochemical assay of triglycerides

The triglyceride level obtained for each group. Our results demonstrated that the triglyceride level remained unaltered for groups treated with ethanol alone (GE) or clove tea alone (GC), compared to the group that received only water (GW). However, the groups that received clove followed by alcohol (GC) or ethanol followed by clove tea (GEC) had a significant increase compared to the control groups or to the groups that received ethanol or clove tea.

Biochemical assay of cholesterol

Our statistical analyses of serum levels of cholesterol did not indicate significant difference when treated groups were compared to control groups.

Biochemical assay of protein

The serum level of total protein did not change significantly when
cholesterol, proteins, and albumin. As to glucose levels, our results showed a significant increase for GEC compared to GW, GE and GC. This result can be an effect of the alcohol restriction to which these animals were subjected and can be explained based on the findings of Villega et al. [34], who demonstrated that individuals subjected to alcohol restriction have an increase in the blood glucose rate which is not observed for individuals with occasional, moderate and high consumption, who remain with unaltered glucose levels. Considering the clove effect, Shukri et al. [19] showed that clove does not change the plasma glucose levels in normal rats. We suggest that this significant increase in glucose levels for GEC may be attributed to the alcohol restriction (abstinence) to which these animals were subjected.

Subsequently, we investigated the serum levels of triglycerides and cholesterol, which are associated with triglyceridemia. The latter is related to several diseases such as diabetes, atherosclerosis and myocardial infarction. Thus, the use of natural products to prevent triglyceridemia has been widely investigated. In our experiments, clove itself did not change triglyceride levels compared to control or when administered previously to ethanol. However, this result was not obtained when clove was administered during alcohol restriction. The groups of animals subjected to daily ingestion of 3% ethanol for 30 days did not show a significant difference compared to animals treated only with water (GW) or only with clove (GC). Visual analysis, however, showed an increase in triglyceride levels compared to GW and GC, suggesting that at the biological level there was an increase in serum triglycerides for these animals. On the other hand, there is controversy about the exact effect of ethanol on triglyceride levels, and scientific papers can be found in the literature showing increase [23, 35,36], decrease [37] or absence of ethanol effect on triglycerides [38]. However, GCE and GEC had increased triglyceride levels compared to GW, GE and GC. These results indicate that administration of ethanol followed by clove or administration of clove followed by ethanol increases the serum levels of triglycerides, which was not observed when ethanol or clove was administered alone, suggesting that this effect is only potentiated when there is administration of one after the other. However, there is the need of further experiments to define the exact effect of clove tea and ethanol, which will be carried out soon.

We did not find reports in the literature about the effect of clove on the serum levels of cholesterol in rats. In regard to ethanol, the available data are still confusing since we found reports of ethanol decreasing [39] or not changing [40] the serum levels of cholesterol in humans and in rats, while Wilson et al. [41] and Hashimoto et al. [42] showed that cholesterol accumulated in the pancreas and the liver when ethanol was ingested. Our results lead us to suggest that clove tea does not change the serum levels of cholesterol.

The change in total protein levels of animals is common in certain situations. A high level of total protein may be due to the presence of a paraprotein (abnormal plasma protein) and dehydration, whereas reduced protein levels occur in hepatic disease, nephrotic syndrome, and malnutrition [43]. The serum levels of total protein showed a significant difference when ethanol intake was followed by clove administration. In this case, there was an increase in the serum levels of total protein which was not observed when rats received clove alone, ethanol alone, or clove followed by ethanol, suggesting that the increase in total protein levels was due to the administration of clove. Although the statistical analysis did not show significant difference when the graph was visually analyzed, we could note an increase in the protein levels for animals that ingested clove alone (GC) and a slight decrease for animals that received ethanol alone. However, analyzing the animals that received ethanol followed by clove, we found values suggested by the administration of clove to ethanol.
similar to those obtained when clove or ethanol was administered alone, suggesting that ethanol minimized the effects of clove in increasing the plasma level of total protein. In association with the statistical analysis which suggested that the use of clove followed by ethanol intake increases the serum levels of protein, which in turn is not observed when ethanol intake is followed by clove consumption, these results indicate that clove administration to animals increases the serum levels of total protein when administered previously to ethanol.

Serum albumin constitutes approximately 60% plasma proteins [44]. Thus, we investigated whether the increase in total protein for GCE is related to the increase in albumin level. This group had a significant albumin increase when it received clove followed by ethanol, compared to the group that received ethanol alone. Therefore, we suggest that increased serum levels of total protein are due to increased serum levels of albumin. Analysis of the serum level of albumin is used to help diagnose dehydration when it is high, and response to acute phase, chronic inflammation, malnutrition and inherited deficiency when it is reduced [45]. On the other hand, it is too early to suggest any diagnosis based on the serum levels of protein and albumin under the conditions analyzed in these experiments; moreover, further experiments are needed to assess the exact role of clove and alcohol on the level of total protein and albumin.

Conclusion

In Brazil is usual the unrestricted consumption of tea as a natural product to revert or prevent metabolic changes. Our results imply that the clove tea consumption has no benefit properties over the metabolic changes caused by alcohol intake, thus his use has to be made with caution, when consumed with alcohol drinks.

References

1. Fichi G, Flamini G, Giovanelli F, Ottando D, Perrucci S (2007) Efficacy of an essential oil of Eugenia caryophyllata against Psoroptes cuniculi. Exp Parasitol 115: 168-172.
2. Ho SH, Cheng LPL, Sim KY, Tan HTW (1994) Potential of cloves (Syzygium aromaticum (L.) Merr. and Perry) as a grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol Technol 4: 179-183.
3. Cai L, Wu CD (1996) Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J Nat Prod 59: 987-990.
4. Kurokawa M, Hozumi T, Basnet P, Nakano M, Kadota S, et al. (1998) Purification and characterization of eugenin as an anti-herpesvirus compound from Geum japonicum and Syzygium aromaticum. J Pharmacol Exp Ther 284: 728-735.
5. Menon KV, Garg SR (2001) Inhibitory effect of clove oil on Listeria monocytogenes in meat and cheese. Food Microbiol 18: 847-850.
6. Mazzafera P (2003) Efeito alelopático do extrato alcoólico do cravo-da-india e eugenol. Revista Brasile Bol 26: 231-238.
7. Miyazawa M, Hisama M (2003) Antimutagenic activity of phenylpropanoids from clove (Syzygium aromaticum). J Agric Food Chem 51: 6413-6422.
8. Prasad RC, Herzog B, Boone B, Sims L, Walthner-Law M (2005) An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J Ethnopharmacol 96: 295-301.
9. Alqueria A, Alyahya A, Andersson L (2006) The effect of clove and benzocaine versus placebo as topical anesthetics. J Dent 34: 747-750.
10. Santoro GF, Cardoso MG, Guimarães LG, Mendonça LZ, Soares MJ (2007) Trypanosoma cruzi: activity of essential oils from Achilea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Exp Parasitol 116: 283-290.
11. Rodrigues TG, Fernandes JrA, Sousa JPB, Bastos JK, Storcin JM (2009) In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Natural Product Research 23: 319-326.
12. Devi KP, Nisha SA, Sakhthivel R, Pandian SK (2012) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130: 107-115.
13. Narayanan CR, Natu AA (1974) Triterpenes acids of Indian clove buds. Phytochemistry 13: 1999-2000.
14. Lee KG, Shibamoto T (2001) Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. Et Perry]. Food Chem 74: 443-448.
15. Nasser MI (2006) Flavonoid triglycosides from the seeds of Syzygium aromaticum. Carbohydr Res 341: 160-163.
16. Guan W, Li S, Yan R, Tang S, Quan C (2007) Comparison of essentials oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem 101: 1558-1564.
17. Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Kumar S (2001) Essential oil composition of Syzygium aromaticum leaf from Little Andaman, India. Flavour Fragr J 16: 334-336.
18. Gülpin I, Elmasstas M, Abott-Ereim HY (2011) Antioxidant activity of clove oil - A powerful antioxidant source. Arabian Journal of Chemistry: article in press.
19. Shukri R, Mohamed S, Mustapha NM (2010) Cloves protect the heart, liver and lens of diabetic rats. Food Chem 122: 1116-1121.
20. Reitz RC (1975) A possible mechanism for the peroxidation of lipids due to chronic ethanol ingestion. Biochem et Biophys Acta 380: 145-154.
21. Barbieriak JJ (1984) Alcohol, lipids and heart disease. Alcohol 1: 341-345.
22. Klatasky AL (2010) Alcohol and cardiovascular health. Physiol Behav 100: 76-81.
23. Avogaro P, Cazzolato G (1975) Changes in the composition and physico-chemical characteristics of serum lipoproteins during ethanol-induced lipaemia in alcoholic subjects. Metabolism 24: 1231-1242.
24. McMonagle J, Felip P (1975) Effects of ethanol ingestion on glucose tolerance and insulin secretion in normal and diabetic subjects. Metabolism 24: 625-632.
25. Hong J, Holcomb VB, Tekle SA, Fan B, Núñez NP (2010) Alcohol consumption promotes mammary tumor growth and insulin sensitivity. Cancer lett 294: 229-235.
26. Miron L (1965) Effect of prolonged ethanol intake on body weight, liver weight and liver nitrogen, glycogen, ADH, NAD and NADH of mice. Life Sci 4: 1195-1199.
27. Barr SI (1988) Influence of increasing concentrations of ethanol on food and water intake, body weight, and wheel-running of male Sprague-Dawley rats. Pharmacol Biochem Behav 29: 667-673.
28. Toffliver GA, Samson HH (1989) Oral ethanol self-administration in a continuous access situation: relation to food response requirements. Alcohol 6: 381-387.
29. Richardson A, Rumsey RDE, Read NW (1990) The effect of ethanol on the normal food intake and eating behavior of the rat. Physiol Behav 45: 845-848.
30. Gazolla R, Machado D, Ruggiero C, Singi G, Macedo Alexandre M (2004) Lippia Alba, Melissa officinalis and Cymbopogon citratus - A powerful antioxidant source. Arabian Journal of Chemistry: article in press.
36. Balasubramaniyan V, Nalini N (2003) The potential beneficial effect of leptin on an experimental model of hyperlipidemia, induced by chronic ethanol treatment. Clin Chim Acta 337: 85-91.

37. Gorinstein S, Zemser M, Weisz M, Halevy S, Martin-Belloso O, et al. (1996) The influence of alcohol-containing and alcohol-free beverages on lipid levels and lipid peroxides in serum of rats. J Nutr Biochem 9: 682-686.

38. Tomie Furuya D, Binsack R, Onishi ME, Monteiro Seraphim P, Machado UF (2005) Low ethanol consumption induces enhancement of insulin sensitivity of normal rats. Life Sci 77: 1813-1824.

39. Nakamura J (1994) Effect of short-term and long-term alcohol intake on plasma cholesterol in non-alcoholic humans. Clinica Chimica Acta 224: 107-109.

40. Koppes LLJ, Twisk JWR, Snij J, Mechelen WV, Kemper HCG (2000) Blood cholesterol levels of 32-year-old alcohol consumers are better than of nonconsumers. Pharmacol Biochem Behav 66: 163-167.

41. Wilson JS, Somer JB, Pirola RC (1984) Chronic ethanol feeding causes accumulation of serum cholesterol in rat pancreas. Exp Mol Pathol 41: 289-297.

42. Hashimoto S, Wisnieskie BJ, Wong H (1986) Gender-related effects of chronic ethanol ingestion on rat hepatic acyl-CoA: cholesterol acyltransferase. Biochimic Biophysica Acta 879: 86-72.

43. Gaw A, Cowan RA, O’Reilly DSJ, Stewart MJ, Shepherd J (2001) Bioquímica Clínica: um texto ilustrado em cores. Editora Guanabara Koogan, Rio de Janeiro.

44. Smith C, Marks A, Lieberman M (2007) Bioquímica médica básica de Marks. Editora Artmed. Porto Alegre.

45. Burtis CA, Ashwood ER (1998) Tietz Fundamentos de Química Clínica, Guanabara Koogan. Rio de Janeiro.