A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation

Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav; Yu, Kwan Ngok

Published in: Journal of Radiation Research

Published: 01/09/2016

Document Version: Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License: CC BY-NC

Publication record in CityU Scholars: Go to record

Published version (DOI): 10.1093/jrr/rrw063

Publication details: Shahmohammadi Beni, M., Krstic, D., Nikezic, D., & Yu, K. N. (2016). A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation. Journal of Radiation Research, 57(5), 492-498. https://doi.org/10.1093/jrr/rrw063

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
A calibration method for realistic neutron dosimetry in radiobiological experiments assisted by MCNP simulation

Mehrdad Shahmohammadi Beni¹, Dragana Krstic², Dragoslav Nikezic¹,² and Kwan Ngok Yu¹,³*

¹Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
²Faculty of Science, University of Kragujevac, Serbia
³State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
*Corresponding author. Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
Tel: +852-3442-7812; Fax: +852-3442-0538; Email: peter.yu@cityu.edu.hk
Received January 28, 2016; Revised March 23, 2016; Accepted May 9, 2016

ABSTRACT

Many studies on biological effects of neutrons involve dose responses of neutrons, which rely on accurately determined absorbed doses in the irradiated cells or living organisms. Absorbed doses are difficult to measure, and are commonly surrogated with doses measured using separate detectors. The present work describes the determination of doses absorbed in the cell layer underneath a medium column (Dₐ) and the doses absorbed in an ionization chamber (Dₑ) from neutrons through computer simulations using the MCNP-5 code, and the subsequent determination of the conversion coefficients R (= Dₛ/Dₑ) was found that R in general decreased with increase in the medium thickness, which was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in R values were observed at medium thicknesses of about 500, 1500, 2500 and 4000 μm, and these were attributed to carbon, oxygen and nitrogen nuclei, and were reflections of spikes in neutron interaction cross sections with these nuclei. For 0.1-MeV neutrons, no conspicuous bulges in R were observed (except one at ~2000 μm that was due to photon interactions), which was explained by the absence of prominent spikes in the interaction cross-sections with these nuclei for neutron energies <0.1 MeV. The ratio R could be increased by ~50% for small medium thickness if the incident neutron energy was reduced from 2 MeV to 0.1 MeV. As such, the absorbed doses in cells (Dₛ) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same.

KEYWORDS: neutrons, Monte Carlo, MCNP, radiation dosimetry

INTRODUCTION

Biological effects of neutrons are relatively less studied and less well understood compared with other types of ionizing radiations such as high-energy photons and heavy ions. Neutron-induced bystander effects (NIBEs) were in general not demonstrated in early in vitro or in vivo studies [1–3]. Only recently, NIBEs were demonstrated in zebrafish embryos [4]. Similarly, results on the neutron-induced radioadaptive response (RAR) have been equivocal. Wiencke et al. [5] and Ng et al. [6] demonstrated that neutrons failed to induce a RAR in human lymphocytes and zebrafish embryos, respectively. In contrast, Marples and Shov [7] revealed a neutron-induced RAR in Chinese hamster V79 cells. Interestingly, Gajendiran et al. [8] examined whole blood samples collected from 10 people, but detected a neutron-induced RAR in the samples from only one donor. Although the discrepancies between some of these results were explained in terms of mitigation of neutron-induced damages by the γ rays that were emitted together with the neutrons from the neutron sources [4, 6, 9–11], these might also have arisen because of the obscurity in the definition of the absorbed neutron dose.

Many studies on the biological effects of neutrons involve neutron dose responses, which can only be established with accurately determined absorbed doses in the irradiated cells or living organisms. Unfortunately, it is practically difficult to directly measure the absorbed doses in cells or in living organisms, and as such these are...
commonly surrogated with the doses measured using some separate radiation detectors such as an ionization chamber. However, it might not be straightforward to ascertain the ‘conversion coefficients’ between the neutron doses (D_N) recorded by such radiation detectors placed in the ambient environment and the neutron doses (D_E) actually absorbed in the exposed cells or living organisms, since both D_E and D_A critically depend on the dimensions, geometries and densities of these various exposed targets, the materials surrounding the exposed targets, and the energy of the incident neutrons. The present study used in vitro experiments with cells as an example to demonstrate how the conversion coefficients R ($= D_A/D_E$) could be determined through computer simulation using the MCNP (Monte Carlo N-Particle) code [12].

In fact, the task was similar to the development of concepts in the field of radiation protection. Traditionally, for radiation protection purposes, three categories of ‘quantities’ have been defined, namely (i) ‘physical quantities’ such as air kerma for photons and absorbed dose for β particles; (ii) ‘protection quantities’ (or ‘primary limiting dose quantities’) such as organ absorbed dose, organ equivalent dose, and effective dose; and (iii) ‘operational quantities’ such as the ambient dose equivalent $H(d)$, the directional dose equivalent $H'(d, \Omega)$ and the personal dose equivalent $H_p(d)$ [13] defined using the ICRU sphere phantom with a diameter of 30 cm built with a tissue-equivalent material (density = 1 g cm$^{-3}$); mass composition: 76.2% oxygen, 11.1% carbon, 10.1% hydrogen and 2.6% nitrogen). While the protection quantities were defined to characterize the risk of exposures to ionizing radiations, these were in general not measurable. As such, operational quantities were required that characterized the external exposures, either to an area or to an individual. Operational quantities could be calculated from physical quantities using the ICRU sphere phantom, while protection quantities could also be calculated from physical quantities using anthropomorphic phantoms together with the radiation weighting factors W_R and the tissue weighting factors W_T. As such, measurements on operational quantities could provide information on the protection quantities. The conversion coefficients for these quantities have been published by ICRP [14, 15].

The similarities between the task in the present work and the development of concepts in the field of radiation protection are summarized in Fig. 1. Both the absorbed dose in the cells (D_A) and the protection quantities described above gave directly relevant information in that they were used to establish realistic dose responses and to characterize the risk of exposures to ionizing radiations. However, both were practically difficult to measure. The role of the neutron doses (D_E) specified for neutron irradiation obtained from a detector in the present work was similar to the role of the operational quantities described above, with the former providing information on the absorbed dose in the cells and the latter providing information on the protection quantities. While operational and protection quantities could be calculated from physical quantities as described above, the neutron doses (D_E) absorbed in the detector and the absorbed dose (D_A) absorbed in the cells could be calculated using the MCNP-5 code from information on the dimensions of the detector and the cell layer, respectively. The conversion coefficients R ($= D_A/D_E$) then played a similar role as the conversion coefficients between the protection and operational quantities.

The present work examined the dependence of R on the thickness of the medium above the cell layer, the thickness of the cell layer itself, and the energy of neutrons. It was not our intention to give exhaustive results for all possible combinations of these parameters. Instead, the present work focused on outlining the concept and on proposing the methodology for determining the R values. The concept and methodology can be easily extended to studies with different detectors (e.g. with different dimensions and/or materials), different targets (e.g. targets with different geometries, and targets underneath medium of different thicknesses), neutrons with different energies or with different energy spectra, or even different types of ionizing radiations. Once the conversion coefficient R can be accurately determined for an experimental set-up, the doses absorbed by the irradiated cells or living organisms can be

Fig. 1. Comparison between the task in the present work and the development of concepts in the field of radiation protection. The quantities in bold are those in the field of radiation protection (i.e. operational quantity, physical quantity and protection quantity). The underlined quantities are those considered in the present work (i.e. absorbed neutron dose in ionization chamber (IOC), neutron fluence (Φ) and absorbed neutron dose in cells). The task in the present work was to obtain the conversion coefficient R ($= D_A/D_E$), with the procedures shown in the italicized descriptions.
realistically determined to provide accurate information on the dose responses.

MATERIALS AND METHODS

In the present work, in order to demonstrate the concept of and methodology for deriving the conversion coefficient \(R \), references were made to the realistic conditions at the Neutron Exposure Accelerator System for Biological Effects Experiments (NASBEE) at National Institute of Radiological Sciences (NIRS), Chiba, Japan, where details regarding the neutron energy, irradiation set-up and the detector for quantifying the neutron dose were fully available. The quasi-monoenergetic neutrons in the NASBEE facility were generated by the \(\text{Be}(d,n) \) reaction and had an average energy of 2 MeV. The neutron doses specified for neutron irradiation were obtained from an ionization chamber (IOC) (IC-17A, Far West Technology) \[16\]. Furthermore, the contamination of \(\gamma \)-rays was measured at a source-to-target distance (STD) of 1170 mm using an LET counter (F.W.T. LET-1/2, Far West Technology) and was found to be 14\% \[16\].

The task was to determine the relationship between \(D_A \) and \(D_B \), and the procedures are shown in Fig. 1. The neutron source was modeled as a circular mono-directional disk source. The diameter of the irradiation field was defined by the radius of this source. In principle, the neutron fluence \(\Phi \) was the physical quantity that controlled both \(D_A \) and \(D_B \). As such, once we knew \(D_B \), \(\Phi \) could be determined to give \(D_A \). By referring to the dimensions and materials of the ionization chamber, the neutron fluence \(\Phi \) could be determined through iterations to reproduce \(D_B \) through MCNP simulations. From the determined \(\Phi \) value, and by referring to the dimensions and materials of the cell layer and the culture-medium column, \(D_A \) could also be computed through MCNP simulations. In the present paper, contributions from neutrons and the generated photons were taken into account. The absorbed dose was quantified as the energy deposition in each domain (in MeV/g) determined using the track length estimate of the energy deposition (tally F6:NP). In fact, the MCNP-5 code could give the dose deposited per unit neutron, so we could directly focus on the conversion coefficients \(R \), defined as the ratio \((D_A/D_B) \) if explicit evaluation of \(\Phi \) was not necessary.

Absorbed neutron dose \(D_A \) in an ionization chamber

The IOC described above had a volume of 1 ml, with 0.127 cm thickness of tissue-equivalent plastic (TEP) (density = 1.127 g/cm\(^3\)) and an outer diameter of 15 mm, and it was filled with air (see the schematic diagrams in Fig. 2). The characteristics of the IOC are summarized in Table 1. In realistic situations, the IOC was calibrated using a \(^{60} \)Co \(\gamma \)-ray source \[16\]. The dose delivered per incident neutron in the air volume enclosed by TEP was computed using MCNP-5.

Table 1. Summary of geometry and dimensions of the ionization chamber (IOC) with a tissue equivalent plastic (TEP) wall

Geometry	Outer diameter	Inner diameter	Thickness of TEP	Volume
Spherical	1.5 cm	1.246 cm	0.127 cm	1 ml

Absorbed neutron dose \(D_A \) in cells

Suda et al. \[16\] used T25 cell culturing flasks (Falcon) with a surface area of 25 cm\(^2\) to hold the cells (contained in 3 ml of cell culture media) for irradiation. Accordingly, in our model, the flask was modeled as a cylinder with a surface area of 25 cm\(^2\). The surface area was an important parameter because it controlled the susceptibility of target volumes during neutron irradiation.

A variety of cell and medium thicknesses (and thus volumes) were investigated. The cell thicknesses were measured from the bottom of the cylindrical flask, and those cells were assumed to be at 100\% confluency. The materials of the cells and culture medium were surrogated with TEP and water, respectively. Tables 2 and 3 summarize the cell thicknesses (between 10 and 30 \(\mu \)m) and medium thicknesses (between 100 and 5000 \(\mu \)m) considered in the present work. The cell irradiation set-up for neutron exposure is schematically shown in Fig. 3. The cells were located at the bottom of the medium, so the neutrons needed to pass through the liquid medium before they could interact with the cells. Air was considered to be surrounding the medium column and the cell layer, as was the case in the real-life experimental set-up. The distance between the neutron source and the cell layer (target), referred to as the STD, was fixed at 710 mm \[16\]. When the medium thickness was increased, the distance between medium surface and source would decrease.

In this work, the neutron transport mode in MCNP-5 was used to determine the energy deposited in the cell layer per incident neutron. In order to achieve good statistical power, a total of 10\(^4\) simulations were run for each of the 12 source-detector distances. The results were averaged for each cell thickness (range 10–30 \(\mu \)m) and medium thickness (range 100–5000 \(\mu \)m) and were summarized in Table 3.
neutrons were employed for each calculation. The relative errors for the energy deposition tally were ~3–4%.

RESULTS AND DISCUSSIONS

By using MCNP-5, the dose D_E deposited in an IOC per 2-MeV neutron was determined as 6.50×10^{-15} Gy. Figure 4 shows the ratios $R = D_A/D_E$ for 2-MeV neutrons for varying medium thicknesses. It can be observed that the thickness of the medium has a major effect on the absorbed dose in the cell layer. In general, R decreases with increase in the medium thickness. This is expected since it is more likely that the neutrons emitted from the source will interact with the medium when its thickness increases. In hydrogenous media such as water, the neutron speed will be reduced due to elastic and inelastic scattering with light nuclei (hydrogen nuclei). In our case, the energy of the neutrons was fixed at 2 MeV, and these ‘fast’ neutrons mainly lost their energies through elastic collisions. The trends were not significantly different for different cell-layer thicknesses (between 10 and 30 μm), which was expected since neutron collisions and thus neutron energy deposition mainly occurred in the medium above the cell layer due to the much larger thickness of the medium compared with the thickness of the cell layer. In Fig. 5, the dose per incident neutron delivered to the water medium above a cell layer of varying thickness is shown, which demonstrates that the dose in general increases with the medium thickness. In other words, neutrons can deposit more energy in medium with larger numbers of nuclei. However, the energy deposition and its pattern are also highly dependent on the interaction cross sections between the neutrons and the nuclei.

Conspicuous bulges in the R values are observed at different medium thicknesses, such as about 1500, 3500 and 4500 μm, and these are attributed to the presence of carbon, nitrogen and oxygen nuclei in the medium, and are reflections of the spikes in the

Table 2. Thicknesses and volumes of cell layers considered in the present work

No.	Thickness (μm)	Volume (ml)
1	10	0.025
2	15	0.037
3	20	0.050
4	25	0.062
5	30	0.075

Table 3. Thicknesses and volumes of the medium columns above the studied cell layers considered in the present work

No.	Medium thickness (μm)	Medium volume (ml)
1	100	0.25
2	500	1.25
3	1000	2.50
4	1500	3.75
5	2000	5.00
6	2500	6.25
7	3000	7.50
8	3500	8.75
9	4000	10.00
10	4500	11.25
11	5000	12.50
neutron interaction cross sections for these nuclei shown in Fig. 6 (from Evaluated Nuclear Data File [ENDF/B-VI]). When the neutrons interacted with nuclei within the medium, their energies were reduced and could fall into cross-section regimes containing the spikes.

Furthermore, the dependence of \(R \) on the medium thickness was determined for incident neutrons with an energy of 0.1 MeV. By using MCNP-5, the dose \(D_E \) deposited in an IOC per 0.1-MeV neutron was determined to be \(7.52 \times 10^{-16} \) Gy. No conspicuous bulges were found in the \(R \) values for medium thicknesses of between 0 and 5000 \(\mu \)m (except for one at \(\approx 2000 \) \(\mu \)m, which was due to photon interactions), and this was explained by the absence of prominent spikes in the interaction cross sections with carbon, oxygen and nitrogen nuclei for neutron energies \(<0.1 \) MeV (see Fig. 6a to d). Considering the significantly different interaction cross sections with hydrogen, carbon, oxygen and nitrogen nuclei for neutrons with different energies, it was interesting to examine the ratio \(R \) for 0.1-MeV neutrons, the results of which are shown in Fig. 7. By comparing the results in Figs 4 and 7, \(R \) could be increased by \(\approx 50\% \) for small medium thicknesses if the incident neutron energy

![Graph](image-url)

Fig. 5. Dose per incident 2-MeV neutron delivered to the water medium above a cell layer of varying thickness. The uncertainties were computed from the relative errors provided in the outputs from the MCNP simulations.

![Graphs](image-url)

Fig. 6. Neutron interaction cross sections for (a) hydrogen, (b) carbon, (c) nitrogen and (d) oxygen nuclei.
MeV. The ratios \(R \) with carbon, oxygen and nitrogen nuclei for neutron energies was reduced from 2 MeV down to 0.1 MeV. As such, it was pertinent to note that the absorbed doses in cells \((D_A) \) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same.

CONCLUSIONS

The present work outlined the concept of and proposed methodology for determining the ratios \(R \) between the doses absorbed in the cell layer underneath a medium column \((D_A) \) and the dose absorbed in an IOC \((D_B) \) from neutrons. The realistic values of \(D_A \) and \(D_B \) were determined through computer simulations using the MCNP-5 code. The ratios \(R \) in general decreased with the medium thickness, and this was due to elastic and inelastic scattering. For 2-MeV neutrons, conspicuous bulges in the \(R \) values were observed at medium thicknesses of about 1500, 3500 and 4500 \(\mu \)m, and these were attributed to the presence of carbon, oxygen and nitrogen nuclei, and were reflections of the spikes in their interaction cross sections with neutrons. For 0.1-MeV neutrons, no conspicuous bulges in the \(R \) values were observed (except for one at \(\approx 2000 \mu \)m, which was due to photon interactions), and this was explained by the absence of prominent spikes in the interaction cross sections with carbon, oxygen and nitrogen nuclei for neutron energies <0.1 MeV. The ratios \(R \) could be increased by \(\approx 50\% \) for small medium thickness if the incident neutron energy was reduced from 2 MeV down to 0.1 MeV. Therefore, the absorbed doses in cells \((D_A) \) would vary with the incident neutron energies, even when the absorbed doses shown on the detector were the same. The above results have far-reaching implications for realistic establishment of dose–response relationships for studies on the radiobiological effects of neutrons. The concept and methodology can also easily be extended to studies with different detectors, different targets, neutrons with different energies or with different energy spectra, or even different types of ionizing radiations.

ACKNOWLEDGEMENTS

We acknowledge the support of the Neutron computer cluster from the Department of Physics and Materials Science, City University of Hong Kong, for the computational work involved in this paper.

FUNDING

Funding to pay the Open Access publication charges for this article was provided by the State Key Laboratory in Marine Pollution, City University of Hong Kong. The work described in this paper was supported by the University Grants Committee’s Teaching Development Grant.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

REFERENCES

1. Liu Z, Mothersill CE, McNell FE, et al. A dose threshold for a medium transfer bystander effect for a human skin cell line. Radiat Res 2006;166:19–23.
2. Seth I, Schwartz JL, Stewart RD, et al. Neutron exposures in human cells: bystander effect and relative biological effectiveness. PLoS One 2014;9:e98947.
3. Wang C, Smith RW, Duhig J, et al. Neutrons do not produce a bystander effect in zebrafish irradiated in vivo. Int J Radiat Biol 2011;87:964–73.
4. Ng CYP, Kong EY, Kobayashi A, et al. Neutron induced bystander effect among zebrafish embryos. Radiat Phys Chem 2015;117:153–9.
5. Wiencke JK, Shadley JD, Kelsey KT, et al. Failure of high intensity x-ray treatments or densely ionizing fast neutrons to induce the adaptive response in human lymphocytes. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds). Radiation Research. Vol. 1. London: Taylor and Francis, 1987, 212.
6. Ng CYP, Kong EY, Kobayashi A, et al. Non-induction of radioadaptive response in zebrafish embryos by neutrons. J Radiat Res 2016. 10.1093/jrr/rrv089.
7. Marples B, Skov KA. Small doses of high-linear energy transfer radiation increase the radioreistance of Chinese hamster V79 cells to subsequent X irradiation. Radiat Res 1996;146:382–7.
8. Gajendiran N, Tanaka K, Kumaravel TS, et al. Neutron-induced adaptive response studied in G0 human lymphocytes using the comet assay. J Radiat Res 2001;42:91–101.
9. Scott BR, Di Palma J. Sparingly ionizing diagnostic and natural background radiation are likely preventing cancer and other genomic-instability associated diseases. Dose Response 2006;5:230–55.
10. Portess DI, Bauer G, Hill MA, et al. Low-dose irradiation of nontransformed cells stimulates the selective removal of precan-cerous cells via intercellular induction of apoptosis. Cancer Res 2007;67:1246–53.
11. Ng CYP, Kong EY, Konishi T, et al. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility. Radiat Phys Chem 2015;114:12–7.
12. X-5 Monte Carlo Team. MCNP—a General Monte Carlo N-Particle Transport Code, Version 5. Vol. I: Overview and Theory. Los Alamos: Los Alamos National Laboratory. LA-UR-03-1987, 2003.
13. ICRU. Radiation quantities and units. ICRU Report 33. Washington: ICRU, 1980.
14. ICRP. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74, Annals of ICRP 26 (3–4), 1996.
15. ICRP. Conversion coefficients for radiological protection quantities for external radiation exposures. ICRP Publication 116, Annals of ICRP 40 (2–5), 2010.
16. Suda M, Hagihara T, Suya N, et al. Specifications of a neutron exposure accelerator system for biological effects experiments (NASBEE) in NIRS. Radiat Phys Chem 2009;78:1216–9.