Cardiac Function in Infants Born to Mothers With Gestational Diabetes
— Estimation of Early Diastolic Intraventricular Pressure Differences —

Satoru Iwashima, PhD; Satoshi Hayano, PhD; Yusuke Murakami, PhD; Aki Tanaka, PhD; Yumiko Joko, MD; Shuji Morikawa, MD; Mayumi Ifuku, MD; Takeshi Iso, MD; Ken Takahashi, PhD

Background: This study compared the myocardial performance of infants born to mothers with gestational diabetes mellitus (IGDM) and without GDM (controls) under the new GDM definitions.

Methods and Results: The subjects consisted of 36 IGDM and 39 control infants. GDM diagnosis was based on oral glucose tolerance test during pregnancy or the presence of diabetes prior to the current pregnancy. Between-group infant cardiac function was determined and compared using 2-D speckle tracking analysis, intraventricular pressure difference (IVPD) and IVP gradient (IVPG), using color M-mode Doppler imaging. IVPD and IVPG were higher in IGDM than in the controls, particularly the mid–apical IVPG. The global circumferential strain (GCS) and endocardial GCS were higher in IGDM than in controls. Increased maternal glycated hemoglobin was correlated with reduced transmural and epicardial GCS in the IGDM. Maternal maximum fasting blood sugar had a mild, positive correlation with IVPD and IVPG.

Conclusions: Ventricular sucking force, measured as the IVPD, IVPG, and endocardial GCS, were higher in IGDM than in the controls. A hyperglycemic environment during pregnancy leads to impaired cardiac performance in IGDM, compared with control infants. IGDM might have favorable systolic and diastolic cardiac performance due to cardiac metabolic adaptations occurring before poor glucose control causes impaired cardiac performance.

Key Words: Color M-mode Doppler imaging; Diabetic cardiomyopathy; Infant with gestational diabetes mother; Intraventricular pressure difference

Gestational diabetes mellitus (GDM) increases the risk of numerous complications in the neonate, including both structural and functional cardiovascular disease. Infants, with structurally normal hearts, born to mothers with GDM (IGDM) may develop transient myocardial hypertrophy and associated systolic and diastolic dysfunction. When present, IGDM with hypertrophic cardiomyopathy (HCM) tends to spontaneously regress in the first few months of life, but asymptomatic IGDM without cardiac hypertrophy develop subclinical decreases in systolic and diastolic myocardial function. Recently, new technology has been developed to estimate cardiac systolic and diastolic function, including 2-D speckle tracking echocardiography (2DST)-derived strain imaging. Additionally, 2DST deformation imaging has superior prognostic value over conventional measures for predicting major adverse cardiac events. Moreover, layer-specific myocardial strain can be measured in the endocardial, transmural, and epicardial left ventricular (LV) layers using this technique. Further, intraventricular pressure differences (IVPD) and intraventricular pressure gradients (IVPG) can be measured on color M-mode imaging to accurately and non-invasively estimate active suction. IVPD has an excellent correlation with Tau index, which is a gold standard, although Tau index is an invasive method of evaluating diastolic function.

In 2010, the International Association of Diabetes and Pregnancy Study Groups recommended new criteria for the diagnosis and classification of hyperglycemia during pregnancy, recognizing the increasing prevalence of undi-
Under the new GDM definition, there is little information currently available regarding estimating myocardial changes that occur in IGDM using either conventional echocardiography or new technologies, including 2DST, IVPD, and IVPG. Thus, in this study we evaluated the myocardial performance of IGDM and control infants, using echocardiography, and assessed the factors affected by maternal glucose metabolism abnormalities under the new GDM definition.

Methods

Subjects

The subjects consisted of infants and mothers attending the Department of Pediatrics, Chutoen Medical Center, between June 2017 and October 2018. There were a total of 36 IGDM, 39 control infants, and their respective mothers. Infants were excluded if they were born at a gestational age <37 weeks, had congenital heart disease, were outside the size range for their gestational age (defined as birth weight below or above the 10th percentile for their gestational age), required artificial ventilation, had Apgar score <7 at 5 min, or had chromosomal abnormalities. Mothers were excluded if they had chronic medical conditions, such as hypertension (including pregnancy-induced hypertension), gestational thyroid disease and so on. Women with GDM were defined as those with a glucose metabolism abnormality that existed prior to or began during the current pregnancy and was diagnosed on oral glucose tolerance test (OGTT). A simplified, 1-step OGTT that required only a 75-g, 2-h oral test was used. Glucose metabolism abnormalities were identified on fasting blood glucose ≥92 mg/dL or blood glucose ≥180 mg/L at 1 h or ≥153 mg/dL at 2 h after consuming the glucose solution. One (one hit) or more (two and three hit) of these values from a 75-g OGTT must be equaled or exceeded for the diagnosis of GDM. Figure 1 shows the study flow chart. In the IGDM group, 4 mothers were identified as having pre-existing type 1 (n=1) or type 2 (n=3) DM. Of the remaining 32 mothers identified with GDM following the 75-g OGTT, 16 were one hit, 13 were two hits, and 3 were three hits. The 4 mothers with type 1 or 2 DM were receiving insulin before the pregnancy and the others received nutritional counseling by a registered dietitian and were placed on appropriate, low-carbohydrate diets. Infants in the IGDM group were monitored to determine blood glucose levels after birth. When an infant's blood glucose was <40 mg/dL, an i.v. glucose infusion was given to maintain optimal glucose levels.

The Ethics Committee of Chutoen Medical Center approved the study protocol, which conformed to the principles of the Declaration of Helsinki (approval date, 21 November 2018; approval number, 85).

Data Collection

Given that this study was an observational, retrospective, historical cohort study, the results required validation using prospective evaluation in a small cohort of patients. Baseline demographic and clinical data were collected from the medical records of all participants.

Baseline Blood Pressure (BP) and Cord Blood

Replicate BP measurements were obtained from the left or right legs of relaxed, supine newborns. Infant BP was measured at the time of echocardiography. Cord blood was taken from a double-clamped cord and analyzed less than or equal to 15 min after collection.

Echocardiography

A Vivid-S5 cardiac ultrasound system (GE Healthcare Japan, Tokyo, Japan) with a 6S or 12S sector array transducer was used to conduct echocardiograms when the patient was at rest. All neonates underwent routine echocardiography. The stored digital scans were analyzed by an expert blinded to patient details. Measurements from basic 2-D echocardiograms were conducted, including LV and right ventricle (RV) and atrial volume determination, using standard procedures recommended by the American Society of Echocardiography. LV and RV stroke volumes and LV output were determined using pulsed Doppler imaging.
Doppler Wave imaging. To overcome heart rate differences, the timings of all parameters were normalized to the duration of systole (i.e., at the onset of the QRS-wave \([t=0\%]\) and at end-systole \([t=100\%]\)).

Experts, blinded to the patient details, analyzed the stored digital scans. Myocardial Layer-Specific Strain on 2DST The 2DST analyses were retrospectively performed using vendor-specific software (EchoPAC PC, version 201, GE Healthcare) by an experienced observer, blinded to patient information. Manual tracings of the endocardial border during end-systole, in 3 apical views and at 3 levels of the short axis views, were performed to measure longitudinal and circumferential strain. The software performed speckle tracking over the entire myocardium included in the region of interest, allowing assessment of the relationship between layer-specific strain parameters and fundamental anthropometric variables. Subsequently, the software determined strain and strain rate at the transmural (not midwall) and endocardial locations, epicardial strain, the ratio of endocardial longitudinal (circumferential) strain at end-systole \((GL(C)S)\) to epicardial GL(C)S, diastolic global longitudinal peak strain rate–early \((DGLSR e)\), DGLSR–late \((DGLSR a)\), DGLSR e/a ratio, diastolic global circumferential peak strain rate–early \((DGCSR e)\), DGCSR–late \((DGCSR a)\), and DGCSR e/a ratio. This recently introduced speckle-

Figure 2. Estimation of early diastolic intraventricular pressure difference (IVPD). (A) Three-dimensional temporal and spatial profiles of IVPD. (B) Temporal profile at peak total IVPD and mid-apical IVPD. (C) IVPD spatial profile at peak IVPD, at the MV level. The basal and mid-apical IVPD segments were calculated based on the left ventricle segmentation rule of one-third for basal and two-thirds for mid-apical. AoV, aortic valve; MV, mitral valve.
Cardiac Function in Infants With GDM

Comparisons between the control and IGDM groups were performed using the Mann-Whitney U-test, chi-squared test, or Fisher’s exact test, as appropriate. Spearman’s rank correlation was used to evaluate the relationship between echocardiographic and other findings. Comparisons involving more than 3 variables were tested using the Kruskal-Wallis test. Post-hoc analyses were performed using the Bonferroni test. The variables found to be significant on univariate analysis were assessed on multivariate analysis using stepwise logistic regression. Observer variability parameters were used to calculate mean bias (average difference between measurements), SD, 95% CI, coefficients of variation using the Bland-Altman approach, and the intra-class correlation coefficient. For all statistical analysis, performed using SPSS Statistics 21 (SPSS, Chicago, IL, USA), P<0.05 was considered significant.

Results

Primary Outcome

A comparison of the baseline characteristics and echocardiography parameters of IGDM and controls is shown in Table 1 and Supplementary Table 1. On conventional echocardiography, the median intraventricular septal wall thickness at diastole (IVSd) was greater in the IGDM group than in the control group. The between-group comparison of color M-mode and 2DST analyses are shown in Table 2. On univariate analysis of the color M-mode data, total IVPD, apical IVPD, and IVPG were higher in the IGDM group than in the control group. Specific-layer GLS analyses failed to show any significant differences between the tracking echocardiography technology allows non-invasive bedside assessment of layer-specific myocardial deformations. We used a 2DST analysis that incorporated a high sampling rate (median, 78 samples/s; range, 66-137 samples/s). An expert, blinded to patient details, analyzed the stored digital scans. This new, sensitive indicator is highly effective in detecting cardiac dysfunction in various cardiac diseases, including in children.

Outcomes

The primary outcomes were comparisons of the myocardial performance of IGDM and control infants on conventional 2-D echocardiography, 2DST, IVPD, and IVPG. The secondary outcome was identification of the factors affecting myocardial performance in IGDM. We also investigated the relationships between echocardiography parameters, IVPD, and IVPG, and maternal factors.

Measurement Reproducibility

To reduce recall bias, intra- and interobserver variability in the measurement of 2-D global strain; the strain rate of the transmural myocardium, endocardium, and epicardium; and diastolic global strain rate in both the longitudinal and circumferential directions were recorded in 10 randomly selected infants by 2 independent observers and by one of the observers on 2 different occasions. IVPD and IVPG measurement on color M-mode imaging has been previously shown to be accurate and reproducible.

Statistical Analysis

The results are expressed as median (IQR). Two-sided comparisons between the control and IGDM groups were performed using the Mann-Whitney U-test, chi-squared test, or Fisher’s exact test, as appropriate. Spearman’s rank correlation was used to evaluate the relationship between echocardiographic and other findings. Comparisons involving more than 3 variables were tested using the Kruskal-Wallis test. Post-hoc analyses were performed using the Bonferroni test. The variables found to be significant on univariate analysis were assessed on multivariate analysis using stepwise logistic regression. Observer variability parameters were used to calculate mean bias (average difference between measurements), SD, 95% CI, coefficients of variation using the Bland-Altman approach, and the intra-class correlation coefficient. For all statistical analysis, performed using SPSS Statistics 21 (SPSS, Chicago, IL, USA), P<0.05 was considered significant.

Table 1. Subject Characteristics (n=75)

	IGDM group (n=36)	Control group (n=39)	P-value
Sex (male)	18 (50.0)	17 (43.6)	0.647
GA (weeks)	39 (38–39)	39 (38–40)	0.187
Apgar score (5-min)	9 (9–9)	9 (9–9)	0.138
Length (cm)	50.5 (50.0–51.0)	50.0 (49.0–51.0)	0.108
Weight (g)	3,175 (2,892–3,464)	2,948 (2,838–3,223)	0.039
BSA (m²)	0.21 (0.20–0.22)	0.21 (0.20–0.21)	0.038
Time to echo (days)	1 (1–1)	1 (1–2)	0.06
Cardiac variables			
HR (beats/min)	125 (114–136)	120 (107–130)	0.217
SBP (mmHg)	67 (60–67)	65 (59–71)	0.668
DBP (mmHg)	38 (35–43)	36 (31–38)	0.041
MBP (mmHg)	49 (45–54)	48 (43–53)	0.352
M-mode parameters			
LVDd (mm)	17.3 (16.3–18.5)	18 (17.0–19.1)	0.353
LVDs (mm)	11.3 (10.9–12.4)	11.5 (10.9–12.3)	0.545
IVSd (mm)	3.6 (3.3–4.2)	3.3 (2.7–3.6)	0.003
IVSs (mm)	3.9 (3.4–4.4)	3.7 (3.3–3.9)	0.102
LVPWd (mm)	2.5 (2.3–2.7)	2.6 (2.4–2.8)	0.615
LVPWs (mm)	3.8 (3.5–4.2)	3.7 (3.3–3.9)	0.093
LVEF (%)	69.5 (66.5–73.8)	71.9 (69.1–74.7)	0.154

Data given as n (%) or median (IQR). BSA, body surface area; DBP, diastolic blood pressure; GA, gestational age; HR, heart rate; IGDM, infants with structurally normal hearts, born to mothers with gestational diabetes mellitus; IVSd, intraventricular septal wall thickness at diastole; IVSs, intraventricular septal wall thickness at systole; LVDd, left ventricular diastolic dimension; LVDs, left ventricular systolic dimension; LVEF, left ventricular ejection fraction; LVPWd, left ventricular posterior wall thickness at diastole; LVPWs, left ventricular posterior wall thickness at systole; MBP, mean blood pressure; SBP, systolic blood pressure.
Table 2. 2-D Speckle Tracking and Color M-Mode Analysis

	IGDM group (n=36)	Control group (n=39)	P-value
GLS			
Global (%)			
Transmural GLS	−13.4 (−14.4−11.9)	−12.9 (−14.1−11.0)	0.201
Endocardial GLS	−16.6 (−18.6−14.8)	−16.4 (−17.1−13.4)	0.234
Epicardial GLS	−10.9 (−12.2−9.6)	−10.6 (−11.9−9.1)	0.442
GLS Endo/Epi ratio	1.51 (1.43−1.60)	1.48 (1.40−1.57)	0.228
DGLSR (s⁻¹)			
DGLSR e	1.9 (1.4−2.5)	1.3 (1.1−1.0)	0.003
DGLSR a	1.1 (0.8−1.4)	0.9 (0.7−1.2)	0.067
DGLSR e/a ratio	1.8 (1.2−2.6)	1.6 (1.1−2.0)	0.381
GCS			
Base (%)			
Transmural GCS	−10.3 (−12.0−8.6)	−8.8 (−10.8−7.2)	0.094
Endocardial GCS	−21.0 (−23.5−17.0)	−17.0 (−21.1−14.7)	0.016
Epicardial GCS	−4.8 (−7.3−3.4)	−4.6 (−7.0−3.4)	0.679
GCS Endo/Epi ratio	3.10 (2.73–4.43)	3.23 (2.44–4.68)	0.577
Middle (%)			
Transmural GCS	−12.8 (−14.4−10.5)	−11.3 (−13.6−9.6)	0.193
Endocardial GCS	−24.5 (−28.1−20.4)	−21 (−23.9−18.6)	0.017
Epicardial GCS	−5.6 (−6.7−5.1)	−6.4 (−8.5−4.9)	0.319
GCS Endo/Epi ratio	3.88 (3.51–4.65)	3.08 (2.56–3.80)	0.008
Apex (%)			
Transmural GCS	−16.9 (−18.9−14.1)	−16 (−17.7−14.0)	0.256
Endocardial GCS	−33.6 (−37.3−29.5)	−30 (−31.9−26.2)	0.014
Epicardial GCS	−8 (−9.5−5.8)	−7.1 (−9.3−5.5)	0.519
GCS Endo/Epi ratio	4.38 (3.19–5.60)	3.77 (3.21–4.82)	0.467
DGCRS (s⁻¹)			
Base			
DGCSR e	1.0 (0.8–1.3)	0.8 (0.7–1.1)	0.149
DGCSR a	0.6 (0.5–0.8)	0.6 (0.4–0.8)	0.379
DGCSR e/a ratio	1.6 (1.2–2.3)	1.4 (1.1–2.1)	0.618
Middle			
DGCSR e	1.4 (1.2–1.6)	1.2 (0.9–1.5)	0.086
DGCSR a	0.7 (0.6–0.9)	0.6 (0.5–0.8)	0.121
DGCSR e/a ratio	1.9 (1.4–2.6)	2.0 (1.2–2.7)	0.866
Apex			
DGCSR e	1.7 (1.6–2.0)	1.6 (1.2–1.9)	0.144
DGCSR a	0.8 (0.7–1.2)	0.7 (0.6–1.0)	0.303
DGCSR e/a ratio	1.9 (1.4–2.6)	1.8 (1.6–2.8)	0.965
Color M-mode			
Total IVPD (mmHg)	1.05 (0.90–1.25)	0.85 (0.70–0.97)	0.001
Basal IVPD (mmHg)	0.53 (0.41–0.65)	0.51 (0.37–0.57)	0.252
Mid-apical IVPD (mmHg)	0.50 (0.38–0.56)	0.35 (0.27–0.41)	<0.001
Total IVPG (mmHg/cm)	0.38 (0.32–0.44)	0.29 (0.24–0.35)	0.003
Basal IVPG (mmHg/cm)	0.23 (0.17–0.28)	0.21 (0.16–0.25)	0.308
Mid-apical IVPG (mmHg/cm)	0.21 (0.17–0.24)	0.15 (0.11–0.18)	<0.001

Data given as median (IQR). DGCSR, diastolic global circumferential strain rate; DGCSR a, DGCSR late peak strain rate; DGCSR e, DGCSR early peak strain rate; DGLSR, diastolic global longitudinal strain rate; DGLSR e, DGLSR late peak strain rate; DGLSR a, DGLSR early peak strain rate; GCS, global circumferential strain; GLS, global longitudinal strain; IGDM, infants with structurally normal hearts, born to mothers with gestational diabetes mellitus; IVPD, intraventricular pressure difference; IVPG, intraventricular pressure gradient.
groups. On specific-layer analysis of the GCS, endocardial GCS at the basal and apical levels was higher in the IGDM group than in the controls. Further, the GCS endocardial/epicardial ratio at the middle level was also higher in the IGDM group than in the controls. On stepwise multiple linear regression analysis (Table 3) using dependent variables that were significant on univariate analysis, significant-between-group differences were observed for IVSd and apical IVPG (R²=0.334; IVSd: β=0.406, P=0.003; apical IVPG: β=0.355, P=0.008).

Secondary Outcomes
The maternal baseline (pregnancy) characteristics were compared between the IGDM and control infants (Supplementary Table 2). On univariate analysis significant-between-group differences were seen in age, weight gain during pregnancy, and maximum fasting blood sugar during pregnancy. The cord blood samples also showed significant-between-group differences in carbon dioxide partial pressure and potassium concentration.

On comparison of conventional echocardiography, 2DST, and color M-mode parameters between women taking insulin and those managing their diabetes with nutritional therapy, there was no significant differences. The relationship between maternal hemoglobin A1c (HbA1c) and infant myocardial performance is shown in Figure 3. Maternal HbA1c had a positive correlation with transmural GCS (r=0.441, P<0.05), epicardial GCS (r=0.598, P=0.01), and endocardial/epicardial GCS ratio (r=0.503, P<0.05) at the basal level. HbA1c did not correlate with endocardial data (r=0.182) and was negatively correlated with the endocardial/epicardial GCS ratio at the apex level (r=0.472, P<0.05). There was no significant correlation between HbA1c and GLS in the specific layers and color M-mode parameters.

Other Outcomes
The correlations of IVPD and IVPG with maternal factors, M-mode, Doppler, tissue Doppler image (TDI), and 2DST parameters are listed in Supplementary Table 3. Maternal maximum fasting blood sugar had a mild positive correlation with IVPD and IVPG. The mitral E wave and IVS-TDI E' had a mild positive correlation with IVPD and IVPG. Myocardial layer-specific strain testing, using 2DST, showed that GLS had a weak–mild negative correlation with IVPD and IVPG. Similarly, DGLSR e show a mildly positive correlation with IVPD and IVPG. Endocardial and transmural GCS at the base and middle of the ventricle showed weakly to mildly negative correlations with IVPD and IVPG. The layer-specific DGCSR e for the 3 areas of the ventricle had weak–mild positive correlations with IVPD and IVPG.

Reproducibility
The intra- and interobserver variability scores for layer-specific 2DST and GLS and GCS diastolic myocardial strain rate were within an acceptable range (Table 4).

Discussion
Cardiac Performance: IGDM vs. Control
In the present study, IVPD and IVPG were higher in the IGDM group than in the control group, especially for apical IVPG. One 2DST analysis, there were no significant between-group GLS differences for any of the myocardial layers. In contrast, endocardial GCS was significantly higher at all levels in the IGDM group than in the controls. In previous cardiac performance studies involving IGDM infants, impaired LV systolic and diastolic function was seen in infants with and without cardiac hypertrophy, following poor glycemic control during pregnancy.1,28,29 In the present study, however, favorable systolic and diastolic performance was seen in the IGDM, compared with control infants. This apparent discrepancy may be explained by other previously published studies. In a previous experimental study the LV peak filling rate on magnetic resonance imaging was significantly higher in diabetic mice than in non-diabetic mice with heart failure induced by pressure overload.30 In addition, other previous studies have investigated favorable systolic performance in conditions of increased afterload, monitored using strain-imaging techniques. It was shown that the GLS was uniformly lower in individuals with diabetes than in controls,31,32 whereas the GCS changes were variable.33–38 Although GLS is known to be reduced in IGDM,39 GCS has not been elucidated in this population. GCS mechanics may be viewed as the “myocardial compensatory domain”, especially in increased afterload situations, such as hyperten-
The transition to heart failure is generally accepted to be accompanied by a shift in cardiac substrate preference, with a greater reliance on glucose utilization and a concomitant suppression of FA oxidation (FAO). This metabolic shift seems to precede the onset of cardiac dysfunction. The diabetic heart appears to rely almost exclusively on FAO and has lost the flexibility to switch from FAO to glucose utilization. A shift from FAO to glucose utilization, in heart failure, may be a beneficial adaptation. At birth, the rapid changes in pre- and after-loading that occur due to the fall in pulmonary vascular resistance and clamping of the cord, may result in occult myocardial injury. These echocardiography findings are consistent with changes in cardiac biomarkers, including serum cardiac troponin T and B-type natriuretic peptide, which increase from birth through the first day of life.

We speculate that GCS in IGDM is maintained or increased during GLS reductions due to hyperinsulinemia and overall poor glycemic control during pregnancy. The mechanism associated with the favorable systolic and diastolic performances in IGDM is suggested to involve metabolic adaptations in the heart. In diabetic mice, these adaptations seem to prevent the heart from failing during conditions of pressure overload, suggesting that a restoration of the balance between glucose and fatty acid (FA) utilization is beneficial for cardiac function. Further, metabolic remodeling of the heart may be an important contributor to the development of heart failure. The transition to heart failure is generally accepted to be accompanied by a shift in cardiac substrate preference, with a greater reliance on glucose utilization and a concomitant suppression of FA oxidation (FAO). This metabolic shift seems to precede the onset of cardiac dysfunction. The diabetic heart appears to rely almost exclusively on FAO and has lost the flexibility to switch from FAO to glucose utilization. Unfortunately, the nearly total reliance on FAO may be detrimental to the diabetic heart; a shift from FAO to glucose utilization, in heart failure, may be a beneficial adaptation. At birth, the rapid changes in pre- and after-loading that occur due to the fall in pulmonary vascular resistance and clamping of the cord, may result in occult myocardial injury. These echocardiography findings are consistent with changes in cardiac biomarkers, including serum cardiac troponin T and B-type natriuretic peptide, which increase from birth through the first day of life.

Moreover, a hyperglycemic environment during pregnancy may impair cardiac performance in IGDM, but favorable glycemic control during pregnancy can prevent harmful cardiac effects. This leads to the speculation that metabolic adaptations occur in the heart to restore the balance between glucose and FA utilization in IGDM.
Table 4. Intra- and Inter-Observer Variability in Layer-Specific GSR and Diastolic MSR

GLS	Bias	SD	95% CI	CV	ICC	95% CI		
Intra-observer variability								
Transmural	1.153	1.039	−0.546	1.831	0.90	0.735	0.349	0.910
Endocardial	1.602	1.167	−0.973	2.600	0.73	0.893	0.698	0.966
Epicardial	1.576	1.417	1.576	1.417	0.90	0.524	0.008	0.824
GCS								
Intra-observer variability								
Transmural	0.642	1.769	−0.546	1.831	2.76	0.941	0.780	0.984
Endocardial	0.814	2.659	−0.973	2.600	3.27	0.843	0.418	0.958
Epicardial	0.714	1.682	−0.416	1.845	2.36	0.928	0.734	0.981
Transmural	0.642	1.769	−0.546	1.831	2.76	0.941	0.780	0.984
Endocardial	0.814	2.659	−0.973	2.600	3.27	0.843	0.418	0.958
Epicardial	0.714	1.682	−0.416	1.845	2.36	0.928	0.734	0.981
Inter-observer variability								
Transmural	0.642	1.769	−0.546	1.831	2.76	0.941	0.780	0.984
Endocardial	0.814	2.659	−0.973	2.600	3.27	0.843	0.418	0.958
Epicardial	0.714	1.682	−0.416	1.845	2.36	0.928	0.734	0.981
Transmural	0.642	1.769	−0.546	1.831	2.76	0.941	0.780	0.984
Endocardial	0.814	2.659	−0.973	2.600	3.27	0.843	0.418	0.958
Epicardial	0.714	1.682	−0.416	1.845	2.36	0.928	0.734	0.981
GCS								
Intra-observer variability								
Transmural	0.223	1.277	−0.549	0.995	5.73	0.926	0.783	0.976
Endocardial	0.754	1.038	0.127	1.381	1.38	0.967	0.901	0.990
Epicardial	−0.617	0.802	−1.126	−0.107	1.30	0.941	0.816	0.982
Transmural	0.223	1.277	−0.549	0.995	5.73	0.926	0.783	0.976
Endocardial	0.754	1.038	0.127	1.381	1.38	0.967	0.901	0.990
Epicardial	−0.617	0.802	−1.126	−0.107	1.30	0.941	0.816	0.982
Inter-observer variability								
Transmural	0.223	1.277	−0.549	0.995	5.73	0.926	0.783	0.976
Endocardial	0.754	1.038	0.127	1.381	1.38	0.967	0.901	0.990
Epicardial	−0.617	0.802	−1.126	−0.107	1.30	0.941	0.816	0.982

CV, coefficient of variation; GSR, global strain rate; ICC, intra-class correlation coefficient; MSR, myocardial strain rate. Other abbreviations as in Tables 1,2.
GLS in any of the myocardial layers. Cardiac hypertrophy in IGDM may be caused by fetal hyperinsulinemia, which increases the synthesis and deposition of fat and glycogen in myocardial cells. In patients with HCM, reductions in specific-layer GLS and in transmural and epicardial GCS were observed to impair myocardial function, but the preserved endocardial GCS might reflect the effect of compensation for the impaired myocardial function through an increase in relative wall thickness. In the present study, GLS in IGDM were different but GCS were similar to previously reported in adults.

mitral E wave, IVS-TDI, E′, IVPD, IVPG, and Other Parameters

On echocardiography the diastolic parameters, including mitral E wave, IVS-TDI, E′ and DGCSR e, had mild positive correlations with IVPD and IVPG. In contrast, the systolic parameters, including layer-specific GLS and base and transmural GCS, had weak-mild negative correlations with IVPD and IVPG. These results are similar to those previously reported in adults. Elucidating the causal relationships between LV wall mechanics and IVPD and IVPG is difficult because they occur almost simultaneously and interact with each other. Further study is therefore needed to clarify these relationships.

Present Study and Past Studies

The present study investigated diastolic performance on color M-mode echocardiography whereas conventional methods for assessing diastolic performance using echocardiography involve mitral E and A wave measurements and TDI. These conventional methods have limitations due to their dependence on loading conditions and their limited accuracy in patients with regional myocardial dysfunction. The suction force, during early diastole, from the LA to the LV apex has been thought to play an important role in diastolic function, with apical IVPD being important for the creation of active suction. Additionally, the present definition of GDM involved the new guideline recommendations, and the mothers with GDM, in the present study, mostly had HbA1c in the normal range, had favorable weight control, and exercised favorable glycemic control throughout their pregnancies.

Study Limitations

This study has several limitations. First, this study involved a relatively small number of patients and used a retrospective design. Second, the high frame rate required for 2DST may have meant that the 2DST measurements were underestimated due to the high neonatal heart rates. Third, there were a few mothers in the GDM group who were being treated with insulin, possibly introducing bias. Despite these limitations, this study provides some significant new insights. Additional studies, involving larger numbers of individuals, are needed to confirm the observed correlations.

Conclusions

Favorable systolic and diastolic performance was seen in IGDM whose mothers maintained favorable glycemic control during pregnancy. This suggests that cardiac metabolic adaptations restore the balance between glucose utilization and FAO to prevent harmful myocardial effects due to maternal GDM.

Acknowledgments

The authors thank Ryoosuke Shiozawa, Soichiro Yata, Toshiko Kubota, and Akira Kubota for their valuable assistance in the treatment of infants admitted to the Department of Pediatrics, Chutoen General Medical Center.

Disclosures

There are no conflicts of interest to declare. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Equipment of the Chutoen General Medical Center was used.

References

1. Kozák-Bárány A, Jokinen E, Kero P, Tuominen J, Rönnemaa T, Välimäki I. Impaired left ventricular diastolic function in newborn infants of mothers with pregestational or gestational diabetes with good glycemic control. Early Hum Dev 2004; 77: 13–22.
2. Zielinski P, Piccoli AL Jr. Myocardial hypertrophy and dysfunction in maternal diabetes. Early Hum Dev 2012; 88: 273–278.
3. Zablah JE, Gruber D, Stoffels G, Cabezas EG, Hayes DA. Subclinical decrease in myocardial function in asymptomatic infants of diabetic mothers: A tissue Doppler study. Pediatr Cardiol 2017; 38: 801–806.
4. Geyer H, Caracciolo G, Abe H, Wilansky S, Carrey S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. J Am Soc Echocardiogr 2010; 23: 351–369.
5. Voigt JU, Pedrizzetti G, Lysiansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 2015; 16: 1–11.
6. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014; 100: 1673–1680.
7. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 2010; 11: 377–385.
8. Kobayashi M, Takahashi K, Yamada M, Yazaiki K, Matsui K, Tanaka N, et al. Assessment of early diastolic intraventricular pressure gradient in the left ventricle among patients with repaired tetralogy of Fallot. Heart Vessels 2017; 32: 1364–1374.
9. Popović ZB, Richards KE, Greenberg NL, Rovner A, Drinko J, Cheng Y, et al. Scaling of diastolic intraventricular pressure gradients is related to filling time duration. Am J Physiol Heart Circ Physiol 2006; 291: H762–H769.
10. Yamamoto Y, Takahashi K, Takemoto Y, Kobayashi M, Itatani K, Shimizu T, et al. Evaluation of myocardial function according to early diastolic intraventricular pressure difference in fetuses. J Am Soc Echocardiogr 2017; 30: 1130–1137.
11. Notomi Y, Popovic ZB, Yamada H, Wallick DW, Martin MG, Oryszak SJ, et al. Ventricular untwisting: A temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol 2008; 294: H505–H513.
12. International Association of Diabetes and Pregnancy Study Groups
Circulation Reports Vol.1, September 2019

26. Hatem MA, Zielinsky P, Hatem DM, Nicoloso LH, Manica JL, et al. Prevalence of diabetes and high risk for diabetes using AIC criteria in U.S. population in 1988–2006. Diabetes Care 2010; 33: 562–568.

30. Itabashi K, Fujimura M, Kusuda S, Tamura M, Hayashi T, et al. Introduction of new gestational age-specific standards for birth size. Jpn Pediatr Soc 2010; 114: 1271–1293.

34. Yeh P, Emery E, Impéy L. The relationship between umbilical cord arterial pH and severe adverse neonatal outcome: Analysis of 51,519 confirmed consecutive validated samples. BJOG 2012; 119: 824–831.

38. Lang RM, Badano LP, Mor-Avi V, Aifalos J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.

41. Kenny JF, Plappert T, Doubilet P, Saltzman DH, Cartier M, et al. Assessment of diastolic ventricular function in women with normal pregnancy and gestational diabetes mellitus. J Am Coll Cardiol 2006; 47: 1175–1181.

45. Sun JP, Stewart WJ, Yang XS, Donnell RO, Leon AR, Felner JM, et al. Differentiation of hypertrophic cardiomyopathy and cardiomyopathy based on other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol 2009; 103: 411–415.

50. Popovic ZB, Kwon DH, Mishra M, Buahkamri S, Greenberg NL, Thamilarasan M, et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 1299–1305.

54. Al-Biltagi M, Tolla OA, Rowisha MA, Mahfouz Ael-S, Elewa M, et al. Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol 2015; 36: 445–453.

60. Carasso S, Zeiithofer R, Laffitte M, Lesick J, Aronson D, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol 2011; 107: 1052–1057.

65. van der Molen GW, van Beek EJ, Brummelink J, Postmus H, et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents mitochondrial dysfunction and in vivo application revealing profound metabolic inflexibility in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994; 26: 1371–1375.

69. Zhong M, Alonso CE, Taegtmeyer H, Kundra BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med 2013; 54: 609–615.

75. Oakes ND, Talen P, Aasum E, Edgley A, Larsen T, Furler SM, et al. Cardiac metabolism in mice: Tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetic. Am J Physiol Endocrinol Metab 2006; 290: E870–E881.

Circulation Reports Vol.1, September 2019

38. Lang RM, Badano LP, Mor-Avi V, Aifalos J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.

41. Kenny JF, Plappert T, Doubilet P, Saltzman DH, Cartier M, et al. Assessment of diastolic ventricular function in women with normal pregnancy and gestational diabetes mellitus. J Am Coll Cardiol 2006; 47: 1175–1181.

45. Sun JP, Stewart WJ, Yang XS, Donnell RO, Leon AR, Felner JM, et al. Differentiation of hypertrophic cardiomyopathy and cardiomyopathy based on other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol 2009; 103: 411–415.

50. Popovic ZB, Kwon DH, Mishra M, Buahkamri S, Greenberg NL, Thamilarasan M, et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 1299–1305.

54. Al-Biltagi M, Tolla OA, Rowisha MA, Mahfouz Ael-S, Elewa M, et al. Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol 2015; 36: 445–453.

60. Carasso S, Zeiithofer R, Laffitte M, Lesick J, Aronson D, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol 2011; 107: 1052–1057.

65. van der Molen GW, van Beek EJ, Brummelink J, Postmus H, et al. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents mitochondrial dysfunction and in vivo application revealing profound metabolic inflexibility in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994; 26: 1371–1375.

69. Zhong M, Alonso CE, Taegtmeyer H, Kundra BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med 2013; 54: 609–615.

75. Oakes ND, Talen P, Aasum E, Edgley A, Larsen T, Furler SM, et al. Cardiac metabolism in mice: Tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetic. Am J Physiol Endocrinol Metab 2006; 290: E870–E881.
51. Iwashima S, Sekii K, Ishikawa T, Ito H. Serial change in myocardial tissue Doppler imaging from fetus to neonate. *Early Hum Dev* 2013; 89: 687 – 692.

52. Tyrala EE. The infant of the diabetic mother. *Obstet Gynecol Clin North Am* 1996; 23: 221 – 241.

53. Okada K, Yamada S, Iwano H, Nishino H, Nakabachi M, Yokoyama S, et al. Myocardial shortening in 3 orthogonal directions and its transmural variation in patients with nonobstructive hypertrophic cardiomyopathy. *Circ J* 2015; 79: 2471 – 2479.

54. Lin X, Yang P, Reece EA, Yang P. Premenstrual type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. *Am J Obstet Gynecol* 2017; 217: e1 – e3.

55. Iwano H, Kammura D, Fox E, Hall M, Vlachos P, Little WC. Altered spatial distribution of the diastolic left ventricular pressure difference in heart failure. *J Am Soc Echocardiogr* 2015; 28: 597 – 605.

56. Nagah SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *J Am Soc Echocardiogr* 2016; 29: 277 – 314.

57. Ohara T, Niebel CL, Stewart KC, Charonko JJ, Pu M, Vlachos PP, et al. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: Evaluation by color M-mode echocardiography. *JACC Cardiovasc Imaging* 2012; 5: 861 – 870.

58. Yotti R, Bermejo J, Benito Y, Antoranz JC, Desco MM, Rodriguez-Pérez D, et al. Noninvasive estimation of the rate of relaxation by the analysis of intraventricular pressure gradients. *Circ Cardiovasc Imaging* 2011; 4: 94 – 104.

59. Negoita M, Zolgharni M, Dadkho E, Pernigo M, Mielewczik M, Cole GD, et al. Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software. *Int J Cardiol* 2016; 218: 31 – 36.

Supplementary Files

Please find supplementary file(s):

http://dx.doi.org/10.1253/circrep.CR-19-0062

Temma S, et al. Plasma brain natriuretic peptide concentrations in healthy children from birth to adolescence: Marked and rapid increase after birth. *Eur J Endocrinol* 1995; 133: 207 – 209.

Tyrala EE. The infant of the diabetic mother. *Obstet Gynecol Clin North Am* 1996; 23: 221 – 241.