Study on Ultimate Strength and Buckling Modes of Cold Formed Steel Structures

A Manimaran1, L Sathish2, P T Ravichandran3
1*Assistant Professor, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
2Assistant Construction Manager, Larsen & Toubro LTD, WDFCC Project, CTP 1&2, Jaipur, Rajasthan, India
3Professor, Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

E-mail: as.manimaran@gmail.com

Abstract. Stronger construction material is category from one of the steel structure are attain higher strength with stand the resistance of steel by natural as well as it could made in different shapes. The exact shape of steel structure and its profile are precisely designed from cross section to ensure Indian Standard along with mechanical and chemical characteristics. All over the country’s most of the industrialization is precise on sizes, shapes; strengths, storage practices and its composition of steel structure are used as per standards. cold-formed steel is effect with rolling of thin gauge steel sheet increasing the yield strength whose products are widely used in construction industries, as well as structure like columns, beams, joists, studs, floor decking, built-up section, telecommunication towers, electricity transmission steel tower, multi-storied steel structures, etc., due to its stronger and reduction in dead weight cold-formed steel is used. The dies are series of making various section of cold-formed steel structural member with different section and shapes by cold roll forming the steel to attain the preferred shape. As per the standard, nominal minimum yield strength of sheet steel rolled in cold-formed section is 250 N/mm². However, user trend use of greater strength, but it could be lesser as 230 N/mm².

1. Introduction
In construction building now days the rapid increase in use of cold-formed steel members [1]. In 1950s the use of cold-formed steel structural members are initiated with construction building in several countries [2], [3], and [4]. Frequent requirement of shapes as per cross sectional member cold-formed to intimate acceptances, which can be implement reliable. Preferred shape along with length could be creating on cold roll as per design [5], [6], and [7]. Pre-coated member can be formed to achieve for good-looking besides the finish metal along with corrosion resistance structure [8], [9], [10]. In cold-formed steel rolled structures the weight ratio and greater strength is achieved [11]. For the purpose of transportation and erect in different places of cold-formed steel is made easy by thin structural member ease of construction. [12]. The industrial materializing process of making material methods adopted by press braking operation and cold rolling are these two methods followed.

1.1 Comparison of cold rolled steel and hot rolled steel
The comparative values of standard hot rolled section against the standard cold formed precise steel dimension section are given in the table 1.
From the above table 1, it indicates that for the various sections having same cross-sectional area, [13] the section modulus and the moment of inertia is greater for the cold rolled sections which will be capable of resisting greater bending moments as shown in the figure 1 and figure 2.

Table 1. Comparison of hot rolled section with various cold formed sections.

Parameters	Notation	HRS ISA 60 × 40	CFS 100 × 50	HRS ISA 55 × 55	CFS 70 × 70
Thickness (cm)	t	0.60	0.40	0.5	0.4
Sectional Area (cm²)	a	5.65	5.66	5.27	5.26
Weight per meter (Kg)	w	4.40	4.44	4.10	4.13
	Ixx	19.90	60.30	14.70	25.7
Moment of Inertia (cm⁴)	Iyy	7.00	11.00	14.70	25.7
	Iuu	22.80	64.80	23.50	41.9
	Ivv	4.00	6.49	5.90	9.43
Section Modulus (cm³)	Zxx	5.00	9.41	3.70	5.09
	Zyy	2.30	2.72	3.70	5.09
Product of Inertia (cm⁴)	Ixy	6.80	15.60	8.60	16.2

Figure 1. Comparison of hot rolled section and cold formed section of unequal angles.

To enhance the strength of cold-formed steel effect it range from 15 % - 30% of yield stress increase. The minimum of 15 % yield stress could be considered as strong to enrich for design purpose [14].
Figure 2. Comparison of hot rolled section and cold formed section of equal angles.

1.2 Characteristics of cold formed steel sections
By relating with timber and concrete materials, it recognized that quality steel structure along through quantities of cold-formed members is light in weight, stronger and durable, forbearance of pre-casting and more fabrication, rapid installation with erection, significant delay based on weather could be eliminated, non-shrinking and creeping at ambient temperature, not required of formwork, excellence in uniform along with cost effective during transportation and handling.

2. Literature review
Behavior of cold-formed steel approach along with tilt in angle of column studied under axial load. Limitations of geometric chosen for three section as per (AISI S100 – 2007) based on North American conditions. The existing experimental values of finite element analysis work were validated by ABAQUS [15]. Confrontation along with performance of resistance based application for flange/ web toughness on plain cold-formed steel to adhere improve in torsional buckling [16]. The knowledge behind shape and thickness of cold-formed steel is easy method for industrial design with huge number on various structures formed constrained to economical [17], [18], [19]. Approach on flexural behavior of torsional buckling, finite element analysis, radius of gyration for cold-formed steel direction are as per (AISI S100 – 2007) calculated cited based on North American conditions [20], [21]. Alternative method of cold-formed steel columns substantiation from existing experiments provides the inconsistency on design along methodical miscalculation error [22]. A proposed innovative method for calculation of thin walled columns behavior of buckling predictions based on design of effective thickness is reliable to analysis [23]. The prominent role of uncertainties behavior complicates the design based on thin wall columns is compared with conventional method [24]. Buckling modes are revealing fewer than three categories by local, distortional and Euler [25], [26]. Behavior on cross-section and typical thin walled columns under elastic buckling are performed [27], [28].

3. Theoretical analysis
The typical cross section of the cold formed steel column section taken for analysis is shown in the Fig. 3 and the dimensions are represented in mm.
3.1 Cross section of cold formed steel column specimens of varying thickness

On providing the geometrical data to input window of the CUFSM software the cross section of varying thickness 1.00 mm, 2.55 mm, 3.15 mm and 4.00 mm are obtained as shown in the figure 4, 5, 6 and 7 from which the section is being analysed.

Figure 3. Typical Cross section of cold formed steel column specimen.

Figure 4. Cold formed steel section thickness of sample 1.00 mm.

Figure 5. Cold formed steel section thickness of sample 2.55 mm.
The software determines the various section parameters by means of the inbuilt programme and is validated by the known values. The section of any thickness can be analysed by the limiting values of analysis and is determined by the flat width ratio of the members as per the IS codes.

3.2 Section properties calculated using CUFSM software
The Section Properties of the cold formed section of varying thickness derived from CUFSM Software is given in table 2.

Sl. No	Description	Symbol	Value			
1	Area of the Section (mm²)	A	265.43	676.84	836.09	1061.71
2	Centre of Gravity X Axis (mm)	Cgx	27.21	27.21	27.21	27.21
3	Centre of Gravity Z Axis (mm)	Cgz	42.50	42.50	42.50	42.50
4	Moment of Inertia XX Axis (mm⁴)	Ixx	273332.5	696997.7	860997.2	1093329.7
5	Moment of Inertia ZZ Axis (mm⁴)	Izz	177811.9	453573	560296.4	711487.4
6	Shear Centre X Co-Ordinate (mm)	Xs	-35.32	-35.32	-35.32	-35.32
7	Shear Centre Z- Co-Ordinate (mm)	Zs	42.50	42.50	42.50	42.50
8. Warping Torsion Constant (mm4) C_w 299×105 763×106 943×106 119×107
9. Torsion Co-Efficient (mm4) J 136.12 1467.04 2765.38 5662.43

3.3 Calculation of ultimate load carrying capacity of the section
Load carrying capacity of different section under ultimate load with varying thickness and length for cold formed steel column section is given in table 3.

$$P_{a1} = \text{Flexural Torsional Stress } \times \text{Cross Sectional Area}$$

$$P_{a1} = 127.418 \times 265.43 \quad P_{a1} = 33.820 \text{ kN}$$

Ultimate Load = Factor of Safety $\times P_{a1} = 1.667 \times 33.820 = 56.38 \text{ kN}$

Sl. No	Thickness (mm)	Length (mm)	Ultimate Load Carrying Capacity of the Section (kN)
1	1.00	500	56.38
		1500	55.82
		2500	52.48
		3500	47.66
		5000	38.08
2	2.55	500	146.69
		1500	142.47
		2500	134.77
		3500	124.918
		5000	109.44
3	3.15	500	181.21
		1500	176.10
		2500	167.22
		3500	156.83
		5000	142.70
4	4.00	500	230.11
		1500	223.84
		2500	213.92
		3500	203.90
		5000	192.78

Table 3. Ultimate load carrying capacity of the cold formed steel column section.

4. Experimental Study
An experiment study on under ultimate load, varying lengths and thickness of different modes with ANSYS output results were change in buckling nature is good.

4.1 Study on variation of ultimate load with varying lengths
From the figure 8 it’s clear that ultimate load varying based on length and the thickness of member of 1 mm, 2.55mm, 3.15mm, and 4 mm respectively. From 1 mm to 2.55 mm the load resistance increase to 100 kN. Similarly, 3.15 mm to 4 mm load increase to 50 kN.

Figure 8. Comparison of ultimate load with varying length (t = 1.00,2.55,3.15 and 4 mm).
4.2 Study on variation of ultimate load with varying thickness

Similarly the plot is drawn on taking the varying thickness along the XX axis and the graphs obtained are as shown in the figure 9.

![Figure 9. Comparison on ultimate load with varying thickness along length.](image)

5. Results and discussion

The validated results helps to extend the study to vary the parameters of the section for the thickness of 1.00 mm, 2.55 mm, 3.15 mm and 4.00 mm and various lengths of the specimen. The extended section is analysed for ultimate load using the IS method and ANSYS software to obtain the theoretical and numerical results. And these results are compared to match each other with little variations table 4.

S. No	Thickness (mm)	Length (mm)	500	1500	2500	3500	5000
1	1.00		103.890	105.354	103.399	98.028	92.834
2	2.55		102.025	101.506	99.566	99.402	97.734
3	3.15		102.236	103.444	100.302	98.623	97.222
4	4.00		101.308	101.838	98.978	98.788	97.963

From the obtained values the variation of ultimate load from the both numerical and theoretical methods are further extended for the study on getting the fine result against the experimental values. The variation of ultimate load from the both numerical and theoretical analysis are plotted as shown in the figure 10, 11, 12 and 13 and it is evident that the results are appropriate in the analytical method of analysis.
Figure 10. Percentage variation of ultimate load by numerical and theoretical methods for the thickness of 1.00 mm.

Figure 11. Percentage variation of ultimate load by numerical and theoretical methods for the thickness of 2.55 mm.
6. Conclusion

- The ultimate strength of cold formed steel section is determined by the both numerical and theoretical methods for the various section parameters.
- The section is analysed for the different buckling modes for the various section parameters.
- The finite element model is extended for the study of ultimate load carrying capacity and buckling modes for the varying thickness of 1.00 mm, 2.55 mm, 3.15 mm & 4.00 mm and also for the varying length to 500 mm, 1500 mm, 2500 mm, 3500 mm & 5000 mm.
• The relation among local, distortional and universal buckling induces reduction in ultimate strength of cold formed steel columns.
• Both the theoretical and numerical analysis results concluded that,
• Load increases with the increase in thickness of the section at the rate of 37.44% for every 1.00 mm rise in the thickness
• Load decreases with the increase in length of the section at the rate of 5.77% for every 1000 mm rise in the length.

7. REFERENCES
[1] Ramanand Tiwari and Parihar V S 2017 A Study on the Peculiar Problems of Cold Formed Steel Design Int. j. res. 05 01 – 03
[2] Zetlin L 1955 Elastic Instability of Flat Plates Subjected to Partial Edge Loads J Eng Mech. 81 1 – 25
[3] Bakker M C M and Stark J W B 1994 Theoretical and experimental research on web crippling of cold-formed flexural steel members Thin-Walled Struct. 18 261 – 291
[4] Winter G and Pian R H J 1946 Crushing Strength of Thin Steel Webs Engineering Experiment Station Cornell University
[5] AISI-S100:2007 North America Specification for the Design of cold formed steel structural members Specifications
[6] Diptikar Behera Seleshi Tilahun and Sintayehu Assefa 2018 Experimental Analysis of Cold Formed Light Gauge Steel Structural Compression Member by Improving Distortional Strength Under Compression Int. j. mod.trends eng. res. 05 30 – 36
[7] Bin Wang Benoit P Gilbert Hong and Guan Lip H Teh 2016 Shape Optimisation of Manufacturable and Usable Cold-Formed Steel Singly-Symmetric and Open Columns Thin-Walled Struct. 109 271 – 284
[8] Watanapong Hiranman and Nuthaporn Nuttayasakul 2017 Experiment on Precast Solid Concrete Floor Slabs resting on Cold Formed Steel Framing Stud Walls Adv. Struct. Eng. 01 01 – 13
[9] Lawan M M Tahir M M Ngian S P and Sulaiman A 2015 Structural Performance of Cold - Formed Steel Section in Composite Structures: A Review Journal teknologi. 74 165 – 175
[10] Alhajri Talal M H F 2014 Structural Behaviour of an Innovative Precast Cold-Formed Steel Ferrocement as Composite Beam Universiti Teknologi Malaysia Ph.D Thesis
[11] Ben Young 2008 Research on Cold-Formed Steel Columns Journal of Structural Engineering 46 731 – 740
[12] Jintang Yan and Ben Young 2002 Column tests of Cold-Formed Channels with Complex Stiffeners Journal of Structural Engineering 128 737 – 745
[13] Roshan S Satpute and Valsson Varghese 2012 Building Design Using Cold Formed Steel Section International Refereed Journal of Engineering and Science 01 01 – 16
[14] Anil Kumar M V and Kalyanaraman V 2010 Evaluation of Direct Strength method for CFS Compression Members without Stiffeners Journal of Structural Engineering 136 879 – 885
[15] Aruna G Gayathri S Jeson John Williams W and Sukumar S 2016 Numerical Study on Behaviour of Cold Formed Steel Lipped Angle Columns International Journal of Research and Innovation in Engineering Technology 02 15 – 21
[16] Yerukdar D S and Vensawala G R 2015 Strength and Behavior of Cold Formed Steel Stiffened Sections under Interaction of Local Distortional and Lateral Torsional Buckling A Review International Journal of Civil and Structural Engineering Research. 03 234 – 250
[17] IS: 800 1984 Code of Practice for General Construction in Steel Bureau of Indian Standards New Delhi
[18] IS: 801 1975 Code of Practice for use of Cold Formed Light Gauge Steel Structural Members in General Building Construction Bureau of Indian Standards New Delhi
[19] IS: 811 1987 Specification for Cold Formed Light Gauge Structural Steel Section Bureau of Indian Standards New Delhi
[20] Pandian N Arul Jayachandran S Seetharaman S and Kad Vasanti Badasaheb 2003 Limit State Design of Cold-formed Steel Compression Members - Codal Comparisons Journal of Structural Engineering 30 173 – 178

[21] Sivakumaran K S and Nabil Abdel-Rahman 1998 A Finite Element Analysis Model for the Behaviour of Cold-formed Steel Members Thin-Walled Structures 31 305 – 324

[22] Schafer B W and Pekoz T 1999 Laterally Braced Cold-Formed Steel Flexural Members with Edge Stiffened Flanges Journal of Structural Engineering 125 118 – 127

[23] Narayanan S and Mahendran M 2003 Ultimate Capacity of Innovative Cold-Formed Steel Columns Journal of Constructional Steel Research 59 489 – 508

[24] Seah L.K, 1996 Ultimate Strength of Uniformly Compression Edge stiffened Thin Sections Journal of Constructional Steel Research 36 31 – 51

[25] Schafer B W 2002 Local Distortional and Euler Buckling of Thin-Walled Columns Journal of Structural Engineering 128 289 – 299

[26] Ben Young Nuno Silvestre and Dinar Camotim 2013 Cold-Formed Steel Lipped Channel Columns Influenced by Local-Distortional Interaction: Strength and DSM Design Journal of Structural Engineering 139

[27] Wang H and Zhang Y 2009 Experimental and Numerical Investigation on Cold-Formed Steel C-Section Flexural Members Journal of Constructional Steel Research 65 1225 – 1235

[28] Young B and Chen B J 2008 Column Tests of Cold-Formed Steel Non-Symmetric Lipped Angle Sections Struct Eng Mech. 64 808 – 815