Identification of novel splice site mutation IVS9+1(G>A) and novel complex allele G355R/R359X in Type 1 Gaucher patients heterozygous for mutation N370S

Kourtnee Hoitsema, Dominick Amato, Aneal Khan, Sandra Sirrs, Francis Y.M. Choy

1. Introduction

Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder resulting from deficient glucocerebrosidase activity. Over 350 mutations that cause Gaucher disease have been described to date. Novel mutations can potentially provide insight into the glucocerebrosidase structure–function relationship and biochemical basis of the disease. Here, we report the identification of two novel mutations in two unrelated patients with Type I (non-neuronopathic) Gaucher disease: (1) a splice site mutation IVS9+1G>A; and (2) a complex allele (cis) G355R/R359X. Both patients have a common N370S mutation in the other allele. The splice site mutation results from an intronic base substitution (G to A, c.1328+1, g.5005) at the donor splice site of exon and intron 9. The complex allele results from two point mutations in exon 8 of glucocerebrosidase (G to C at c.1180, g.4396, and T to C at c.1192, g.4408) substituting glycine by arginine (G355R) and arginine by a premature termination (R359X), respectively. In order to demonstrate that G355R/R359X are in cis arrangement, PCR-amplified glucocerebrosidase exon 8 genomic DNA from the patient was cloned into the vector pJET1.2 in Escherichia coli TOP10F strain. Out of the 15 clones that were sequence analyzed, 10 contained the normal allele sequence and 5 contained the complex allele G355R/R359X sequence showing both mutations in cis arrangement. Restriction fragment length polymorphism analysis using HphI restriction endonuclease digest was established for the IVS9+1G>A mutation for confirmation and efficient identification of this mutation in future patients. Past literature suggests that mutations affecting splicing patterns of the glucocerebrosidase transcript as well as mutations in Gaucher complex alleles are detrimental to enzyme activity. However, compound heterozygosity with N370S, a mild mutation, will lead to a mild phenotype. The cases reported here support these past findings.

Abbreviations: bp, base pairs; EC, enzyme commission number; GD, Gaucher disease; GBA, glucocerebrosidase gene; GBA, glucocerebrosidase enzyme protein; Hb, hemoglobin; MRI, magnetic resonance imaging; OMIM, Online Mendelian Inheritance in Man entry number; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; RT-PCR, reverse transcription-PCR.

Grant support: This work was supported by a grant from Genzyme-Sano Canada to F.Y.M. Choy.

Corresponding author: Department of Biology, University of Victoria, P.O. Box 3020, Station CSC, Victoria, British Columbia V8W 3N5, Canada.
E-mail address: lchoy@uvic.ca (F.Y.M. Choy).

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Jewish population GD alleles, and 70% of general population GD alleles (Mao et al., 2001). Although studies of genotype–phenotype correlations have revealed significant heterogeneity, some consistent patterns have emerged for prognostic and therapeutic decisions. For example, a milder phenotype is associated with the N370S allele (Beutler and Gelbart, 1996). Alternatively, null (i.e., completely non-functional) alleles such as 844G in combination with a severe mutation such as L444P in the second GBA allele, are commonly associated with severe clinical manifestations and symptoms of the central nervous system. To date, there has been no reported case of a Gaucher patient homozygous for two null alleles, e.g. 844G/844G, suggesting that this genotype is presumably lethal prenatally (Beutler and Grabowski, 1995).

This report describes the identification of a novel splice site mutation IVS9 + 1G→A, and a novel complex allele G355R/R359X, in two unrelated patients with Type I GD, who are both heterozygous for the common missense mutation, N370S. The entire GBA coding sequence of both patients was sequenced and the results were analyzed. We have also established a restriction fragment length polymorphism (RFLP) analysis of the GBA restriction endonuclease digest to confirm the presence of the IVS9 + 1 mutation and to screen for its presence in other patients. To demonstrate that mutations G355R and R359X are in cis arrangement, i.e. within the same allele on the same chromosome, GBA exon 8 in which the mutations are located was cloned and sequence analyzed.

2. Case reports

Patient 1 is of English ancestry and was diagnosed at 3 years of age with GD from a bone biopsy showing “Gaucher” cells but treatment was never sought. At 70 years of age, he pursued medical treatment of his GD. He had severe hepatosplenomegaly, thrombocytopenia (platelets 15 × 10^9/L) with a history of easy bleeding and easy bruising from various minor injuries, leukopenia (leukocytes 2 × 10^9/L) and anemia [hemoglobin (Hb) 125 g/L], marrow replacement on spinal MRI (magnetic resonance imaging) and an elevated chitotriosidase [19,322 nmol/h/mL (normal 4–120, Integrated Genetics, LabCorp Specialty Testing Group, Santa Fe, NM, U.S.A.). His peripheral T-lymphocyte beta-glucosidase activity was 0.3 (reference 8.9–21.5 nmol/h/mg protein, Floyd Snyder, Alberta Children’s Hospital, Calgary, AB, Canada). He also had a monoclonal gammopathy of uncertain significance (MGUS) with only a mild elevation of immunoglobulin G kappa and free light chains.

Patient 2 was diagnosed in 1983 at age 20, when hepatosplenomegaly and mild thrombocytopenia led to a bone marrow biopsy that showed “Gaucher” cells. Acid beta-glucosidase level and mutation analysis were not done at that time. Over the next 30 years, her Hb and platelet count gradually decreased, the former from 125 g/L to 91 g/L by 2013, and the latter from 84 × 10^9/L to 34 × 10^9/L. She was then referred to our centre. Past history also included easy bruising, frequent nosebleeds, menorrhagia, and mild hypertension. Her spleen and liver were palpated 11 and 7 cm below the respective costal margins. Beta-glucosidase level was 1 nmol/ml protein (normal 8–16). Chitotriosidase level was 18,690 nmol/h/mL (normal 4–120). MRI of the abdomen showed liver and spleen volumes of 1802 and 1141 cm^3, respectively, as well as the presence of cholelithiasis. MRI of the femurs showed the classic Erlenmeyer flask abnormality and evidence of marrow packing, but no necrosis or infarcts. The patient was begun on imiglucerase 30 mg/kg every 2 weeks; as of May 2015 her Hb was 129 g/L, platelets 90 × 10^9/L, and chitotriosidase 1125 nmol/h/mL.

3. Materials and methods

The methods for collecting dot blood samples on filter paper cards, (Devost and Choy, 2000) PCR amplification of GBA genomic DNA for sequence analysis using GBA specific primers, and RFLP analysis of GBA mutations are described in Supplementary information. In order to confirm that mutations G355R/R359X were in cis arrangement i.e. present in the same allele, exon 8 was cloned into the sequencing vector pJET1.2. One Shot TOP10® chemically competent E. coli (Life Technologies, Carlsbad, CA) was transformed with pJET1.2/exon 8 and transformants were selected for on low sodium LB agar containing 100 μg/mL ampicillin. Colony PCR was performed on 24 clones, 15 of which contained the exon 8 insert and were sequenced analyzed by Europhins MWG Operon.

4. Results

Sequencing results were compared to functional GBA genomic sequence from GenBank (gi|183011). The results revealed that in patient 1 at nucleotide position c.1226 (g.4824), there was a heterozygous A to G transition that resulted in asparagine codon (AAG) being substituted by that for serine (AGC) in GBA amino acid residue position 370 (N370S) (Fig. 1, left column and Fig. 2, panel B). At nucleotide position g.5005, c.1328 + 1, the sequence shows a heterozygous G to A transition (Fig 1, right column and Fig. 2, panel A). Although this substitution is intronic, it is located at the intron-exon boundary and within the spliceosome recognition sequence (Mount, 1982), specifically the donor sequence. The chromatogram of both regions revealed a double peak depicting the normal and mutant sequence at the respective locations at c.1226 and c.1328 + 1, which is consistent with a heterozygous mutation (Fig. 2). These findings were confirmed by performing sequence analysis in both the forward and reverse directions (data not shown). Sequence analysis of the rest of the GBA coding region and intron-exon boundaries showed identity with the Genbank wild type sequence. RFLP analysis was employed to confirm each of the putative mutations. For N370S, mismatch PCR using primer set M370/FBII was performed, resulting in an amplified fragment of 105 bp. As first described by Beutler et al. (1990), the mutation N370S creates a cleavage site in this fragment and upon digestion by XhoI restriction endonuclease and electrophoresis in 6% polyacrylamide, DNA fragment lengths from patient 1 at 105, 86 and 19 bp were noted, while the normal control showed only a single band at 105 bp (data not shown). These results are consistent with the presence of heterozygous N370S mutation in the patient.

NEBCutter software (New England Biolabs) was used to determine various restriction sites in normal and IVS9 + 1G→A mutant alleles. The enzyme HphI was determined to cleave in 2 positions on the normal allele, but 3 on the mutant allele as mutation IVS9 + 1G→A creates an additional HphI cut sites. After digestion with HphI, samples were run in an 8% acrylamide gel and visualized with ethidium bromide. The normal control has fragment lengths of only 145, 74 and 33 bp (Fig 3, lane 4). The fragment lengths for patient 1 were revealed to be 145, 107, 74, 38 and 33 bp, which is consistent with IVS9 + 1G→A in the heterozygous form (Fig 3, lane 3).

Sequence analysis of patient 2 showed that mutation N370S is present in the heterozygous form with two other heterozygous point mutations: G to C at c.1180 (g.4396), and T to C at c.1328+1, which is consistent with a heterozygous mutation (Fig 2). These findings were confirmed by performing sequence analysis in both the forward and reverse directions (data not shown). Sequence analysis of the rest of the GBA coding region and intron-exon boundaries showed identity with the Genbank wild type sequence. RFLP analysis was employed to confirm each of the putative mutations. For N370S, mismatch PCR using primer set M370/FBII was performed, resulting in an amplified fragment of 105 bp. As first described by Beutler et al. (1990), the mutation N370S creates a cleavage site in this fragment and upon digestion by XhoI restriction endonuclease and electrophoresis in 6% polyacrylamide, DNA fragment lengths from patient 1 at 105, 86 and 19 bp were noted, while the normal control showed only a single band at 105 bp (data not shown). These results are consistent with the presence of heterozygous N370S mutation in the patient.
normal homozygous. These findings indicated that the parents of pa-
tient 2 had transmitted mutation N370S and the complex G355R/
R359X allele to her, and the normal GBA allele to her unaffected sister.

5. Discussion

There have been more than 350 mutations recorded to date, includ-
ing 16 splice site mutations that cause Gaucher disease (http://www.
hgmd.org). Many of these mutations, including IVS9 + 1(G→A) and
G355R/R359X, are present in only one or a small number of individu-
als. A splice site mutation can have a range of consequences including exon
skipping, activation of cryptic splice sites, creation of a pseudo-exon
within a gene or intron retention (Nakai and Sakamoto, 1994). In the
case of the highly prevalent splice site mutation IVS2+1(G→A), exon
2 is entirely removed from the spliced mRNA (He and Grabowski,
1992). In order to assess the possible impact of the IVS9 + 1 (G→A) mu-
tation found in patient 1 on GBA mRNA splicing, we used the RegRNA
2.0 program (http://regrna2.mbc.nctu.edu.tw/), the Neural Network
program (http://www.fruitfly.org/seq_tools/splice.html), and the Max-
imum Entropy program (http://genes.mit.edu/burgelab/maxent/
Xmaxentscan_scoresseq.html) to predict how this mutation would affect
RNA processing. All three programs indicate that the IVS9 + 1 mutat-
ion sequence would no longer be recognized as donor splice site (please
refer to Supplementary Information for details of the in silico analyses).
Additionally, the Neural Network and Maximum Entropy programs pre-
dicted that the mutation would result in a much lower splice site signal
below recognition threshold. Thus, the IVS9 + 1 mutation will be very
detrimental for GBA mRNA processing and enzyme function. An alterna-
tive possibility is the activation of cryptic donor splice sites. In a study
describing another exon 9 splice site mutation (c.1389-1 G→A), the
Neural Network and Maximum Entropy programs predicted the mutat-
ed sequence would no longer be recognized as an acceptor splice site.
However, when RT-PCR analysis was performed on mRNAs from
cultured fibroblasts, it was found that the mutation led to exon slippage
of 4 nucleotides and activation of a cryptic acceptor splice site (Malini
et al., 2014). We are unable to perform similar RT-PCR analysis of fibro-
blast GBA mRNAs from patient 1 because dried dot blood on filter paper
cards is the only available cell source for our study.

The structure of GBA has been elucidated by x-ray crystallography
and provides some insight to the role of the 497 residues making up
the three domains of GBA polypeptide. Domain I (GBA amino acid resi-
dues 1–27 and 383–414) is a β-sheet containing two disulfide bridges
and a glycosylation at N19, which is required for activity in vivo. Domain
II (GBA amino acid residues 30–75 and 431–497) consists of two β-
sheets resembling an immunoglobulin fold that may interact with
saposin C, an essential activator of GBA (Aerts et al., 1990; Dvir et al.,
2003; Tamargo et al., 2012). Domain III (GBA amino acid residues 76–
381 and 416–430) consists of a ([αα]3 TIM barrel containing the catalyt-
ic site: E340, the nuclease, and E235, the acid/base catalyst (Dvir
et al., 2003). Exon 9 codes for GBA amino acid residues 370–424, and
therefore plays a major role in the formation of the both Domain I and
the catalytic domain. An absence of exon 9 because of aberrant splicing
would be detrimental to GBA function by abolishing its activity
completely. In this case, however, the second Gaucher allele is the rela-
tively mild mutation N370S (Beutler and Grabowski, 1995; Grace et al.,
1990) which modulates the clinical expression to a mild to moderate
Type 1 form. Other splicing mutations have been reported in compound
heterozygosity with N370S in patients with Type 1 GD (Dominissini
et al., 2006; Jack et al., 2014; Malini et al., 2014). The novel complex allele G355R/R359X in patient 2 will result first in
a substitution of glycine by arginine, followed by a protein truncation
at GBA amino acid residue 359. Complex alleles are often the result of
reciprocal or non-reciprocal recombination events with the pseudogene
(Hruska et al., 2008). The human GBA pseudogene is 96% homologous to
the GBA functional gene but contains a 55 bp deletion in exon 9 and a
number of exonic point mutations as well as large deletions in several

Fig. 1. Location of nucleotide and amino acid substitution in the GBA gene and polypeptide for patients 1 and 2. The mutation N370S in patients 1 and 2 is located at the beginning of exon 9. The IVS9 + 1(G→A) in patient 1 is located at the junction between exon 9 and intron 9. The complex allele G355R/R359X in patient 2 is located at the end of exon 8. Uppercase letters represent the coding region of GBA; lowercase represent the intronic region. Base and amino acid substitutions are shown in red.

Fig. 2. Sequence results for patient 1. Panel A: Forward trace chromatogram of the junction between exon and intron 9 indicated the G→A transition at nucleotide position g.5005 corresponding to IVS9 + 1G→A. Panel B: Reverse trace chromatogram of exon 9 indicating the T→C transition at nucleotide position g.4824 corresponding to N370S.
intron digestion (Horowitz et al., 1989). In the case of G355R/R359X, however, neither mutation is pseudogene-derived, and therefore, there is no evidence to suggest this is the result of a recombination event. The nonsense mutation G355R has not previously been reported; however, two studies have characterized another mutation, G355D, in which glycine at GBA amino acid residue 355 is substituted by aspartic acid instead of arginine. In one study, G355D in combination with L444P resulted in the neuronopathic Type II GD (Tsai et al., 2001). In another study, homozygous G355D/G355D resulted in Type 1 GD, which again demonstrates the rescuing properties of the transcript resulting from nonsense mutation may also be prematurely degraded via nonsense-mediated mRNA decay, a post-transcriptional quality control process in eukaryotes that degrades transcripts carrying disease-causing premature termination codons (Turner and Choy, 2015; Popp and Maquat, 2013). These will be detrimental to GBA function and it is reasonable to postulate that the complex allele G355R/R359X might also be lethal when in combination with another severe or lethal Gaucher allele. However, the second Gaucher allele is the relatively mild mutation N370S which ameliorates the clinical severity and as such (as in the case of patient 1), patient 2 presents with Type 1 GD, which again demonstrates the rescuing properties of N370S as we previously reported (Jack et al., 2014). The nonsense mutation R359X has been reported in patients heterozygous for N370S, who also presented with Type 1 GD (Alfonso et al., 2007).

6. Conclusion

We have identified a novel splice site mutation (IVS9+1G>A) and a novel complex allele G355R/R359X in two unrelated patients with Type 1 GD, who are heterozygous for N370S. We have also developed a RFLP procedure that utilizes HphI restriction endonuclease digest for confirmation and efficient identification of the IVS9 + 1 mutation in future patients. In silico analysis of these novel Gaucher alleles showed that they are detrimental to either GBA splicing and/or structure and function. However, compound heterozygosity with mutation N370S in both patients has modulated the clinical expression to a mild to moderate Type 1 Gaucher phenotype.

Acknowledgements

We would like to thank the patients and families as well as Wendy Paquin, R.N. and Mary Anne Paterson, R.N., for their assistance, and David Minkley for his expert advice in using the bioinformatics tools for in silico analysis of the mutations.

References

Aerts, J.M.G.F., Sa Miranda, M.C., Brouwer-Kelder, E.M., van Weely, S., Barranger, J.A., Tager, J.M., 1990. Conditions affecting the activity of glucocerebrosidase purified from spleens of control subjects and patients with type 1 Gaucher disease. Biochim. Biophys. Acta 1041, 55–63. http://dx.doi.org/10.1016/0167-4838(90)90122-v.

Alfonso, P., Aznar, Z., Giralt, M., Pocovi, Giraldo P., 2007. Mutation analysis and genotype/phenotype relationships of Gaucher disease patients in Spain. J. Hum. Genet. 52, 391–396. http://dx.doi.org/10.1523/JNEUROSCI.0903-07.2007.

Ankleshwaria, C., Mistri, M., Bose, D., Muranjan, M., Dave, U., Tamhankar, P., Khanna, V., Jaisinge, E., Nampoothiri, S., Kadangot, S., Seth, F., Gupta, S., Seth, J., 2014. Novel mutations in the glucocerebrosidase gene of Indian patients with Gaucher disease. J. Hum. Genet. 59, 223–228. http://dx.doi.org/10.1038/jjhg.2015.27.

Beutler, E., Gelbart, T., 1996. Glucocerebrosidase (Gaucher disease). Hum. Mutat. 8, 213–223. http://dx.doi.org/10.1002/(sici)1098-1004(1996)8:3<213::aid-amj14n3.0.co;2-w.

Beutler, E., Grabowski, G.A., 1995. Glucosylceramide lipidosis: Gaucher disease. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D. (Eds.), The Metabolic and Molecular Bases of Inherited Disease, seventh ed. McGraw-Hill, New York, pp. 2641–2670.

Beutler, E., Gelbart, T., West, C., 1990. The facile detection of the NT 1226 mutation of glucocerebrosidase by “mismatched” PCR. Clin. Chim. Acta 194, 191–196. http://dx.doi.org/10.1016/0009-8913(89)90130-k.

Brady, R.O., Kanfer, J.N., Shapiro, D., 1965. Metabolism of glucocerebrosides II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem. Biophys. Res. Commun. 18, 221–225. http://dx.doi.org/10.1016/0006-291X(65)90743-6.

Devost, N.C., Choy, F.Y.M., 2000. Mutation analysis of Gaucher disease using dot blot samples on FTA® filter paper. Am. J. Med. Genet. 94, 417–420. http://dx.doi.org/10.1002/1096-8626(20001023)94:5<417::aid-amj14n3.0.co;2-w.

Dominissini, S., Buratti, E., Benbi, B., Baralle, M., Pittig, M.G., 2006. Characterization of two novel GBA mutations causing Gaucher disease that lead to aberrant RNA species by using functional splicing assays. Hum. Mutat. 27, 63. http://dx.doi.org/10.1002/humu.20395.

Dvir, H., Harel, M., McCarthy, A.A., Toker, I., Silman, I., Futerman, A.H., Sussman, J.L., 2003. X-ray structure of human acid α-1-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 4, 704–709. http://dx.doi.org/10.1038/sj.embor.73.
Grace, M.E., Graves, P.N., Smith, F.I., Grabowski, G.A., 1990. Analyses of catalytic activity and inhibitor binding of human acid beta-glucosidase by site-directed mutagenesis. Identification of residues critical to catalysis and evidence for causality of two Ashkenazi Jewish Gaucher disease type 1 mutations. J. Biol. Chem. 265, 6827–6835. http://dx.doi.org/10.1515/bc.2008.163.

Guggenbuhl, P., Grosbois, B., Chalès, G., 2008. Gaucher disease. Joint Bone Spine 75, 116–124. http://dx.doi.org/10.1016/j.jbspin.2007.06.006.

He, G.S., Grabowski, G.A., 1992. Gaucher disease: A G+1→A+1 IVS2 splice donor site mutation causing exon 2 skipping in the acid beta-glucosidase mRNA. Am. J. Hum. Genet. 51, 810–820.

Hruska, K.S., LaMarca, M.E., Ronald, S.C., Sidransky, E., 2008. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum. Mutat. 29, 567–583. http://dx.doi.org/10.1002/humu.20676.

Jack, A., Amato, D., Morris, G., Choy, F.Y.M., 2014. Two novel mutations in glucocerebrosidase, C23W and IVS7-1 G→A, identified in type 1 Gaucher patients heterozygous for N370S. Genes 538, 84–87. http://dx.doi.org/10.1016/j.gene.2014.01.015.

Malini, E., Grossi, S., Deganuto, M., Rosano, C., Parini, R., D ominisini, S., Carati, R., Zampieri, S., Bembi, B., Filocamo, M., Dardis, A., 2014. Functional analysis of 11 novel GBA alleles. Eur. J. Hum. Genet. 22, 511–516. http://dx.doi.org/10.1038/ejhg.2013.182.

Mao, R., O’Brien, J.F., Rao, S., Schmitt, E., Roa, B., Feldman, G.L., Spence, W.C., Snow, K., 2001. Identification of a 55-bp deletion in the glucocerebrosidase gene in Gaucher disease: phenotypic presentation and implications for mutation detection assays. Mol. Genet. Metab. 72, 248–253. http://dx.doi.org/10.1006/mgme.2000.3141.

Mount, S.M., 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472. http://dx.doi.org/10.1093/nar/10.2.459.

Nakai, K., Sakamoto, H., 1994. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141, 171–177. http://dx.doi.org/10.1016/0378-1119(94)90567-3.

Popp, M.W., Maquat, L.E., 2013. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165. http://dx.doi.org/10.1146/annurev-genet-111212-133424.

Stone, D.L., van Diggelen, O.P., de Klerk, J.R.C., Gaillard, J.L.J., Niermeijer, M.F., Willemsen, R., Tayebi, N., Sidransky, E., 1999. Is the perinatal lethal form of Gaucher disease more common than classic type 2 Gaucher disease? Eur. J. Hum. Genet. 7, 505–509. http://dx.doi.org/10.1038/sj.ejhg.5200315.

Sunwoo, M.K., Kim, S.M., Lee, S., Lee, P.H., 2011. Parkinsonism associated with glucocerebrosidase mutation. J. Clin. Neurosci. 7, 99–101. http://dx.doi.org/10.3988/jcn.2011.7.2.99.

Tamargo, R.J., Velayati, A., Goldin, E., Sidransky, E., 2012. The role of saponin in Gaucher disease. Mol. Genet. Metab. 106, 257–263. http://dx.doi.org/10.1016/j.ymgme.2012.04.024.

Tsai, F., Lee, C., Wu, M., Lin, S., Lin, C., Tsai, C., Kodama, H., Wu, J., 2001. Mutation analysis of Type II Gaucher disease in Five Taiwanese Children: identification of two novel mutations. Acta Paediatr. Taiwan. 42, 231–235 (ISSN: 1608-8115).

Turner, K.A., Choy, F.Y.M., 2015. Treatment of nonsense mutations using stop codon read-through therapeutics and creation of animal models using CRISPR-Cas9. J. Mol. Genet. Med. 9, 172. http://dx.doi.org/10.4172/1747-0862.1000172.