任意の荷重経路と有限変形を許容する新しい三次元J積分法の提案

荒井 皓一郎*1, 岡田 裕*2, 遊佐 泰紀*3

A new three-dimensional J-integral formulation for arbitrary load history and finite deformation

Koichiro ARAI*1, Hiroshi OKADA*2 and Yasunori YUSA*3

*1 Graduate School of Science and Technology, Tokyo University of Science
2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
*2, *3 Faculty of Science and Technology, Tokyo University of Science
2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

Abstract

In this paper, a new formulation of three-dimensional J-integral for the evaluation of elastic-plastic fracture problem is presented. It is known that the J-integral represents the energy release rate per unit crack extension. The J-integral is a path-independent integral and can be computed on arbitrary integral path or domain. This property requires the assumption of proportional loading when an elastic-plastic material is considered. Because of this assumption, J-integral loses path-independent property under a non-proportional loading condition. We present a new formulation of three-dimensional J-integral representing the energy dissipation inside a small but finite domain in the vicinity of crack front. The dissipated energy includes the energy released by crack extension and the deformation energy that dissipates in the process zone. This formulation is the extension of the three-dimensional J-integral using equivalent domain integral method and derived without any assumptions on the deformation history. Therefore, it is possible to evaluate the J-integral for problems subject to any load histories. Finally, the problems of hyperelastic and large deformation cyclic elastic-plastic analysis using finite element method are presented. They show that the proposed method can be applied to non-proportional loading problem.

Keywords: J-integral, Non-linear fracture mechanics, Non-proportional loading, Cyclic elastic-plastic deformation, Finite element method, Finite deformation, Domain integral method

1. 緒 言

弾塑性破壊力学評価手法としてEshelby（Eshelby, 1956）やRice（Rice, 1968）によって提案されたJ積分は現在も構造物の健全性評価に広く用いられている。厳密には，J積分は線形・非線形弾性体や全ひずみ理論が成立する弾塑性材料に対して適用可能な破壊力学パラメータである。J積分はき裂の長さや面積の増大によって解放されるエネルギーをき裂先端を通る径路積分によって評価するものであり，その値が積分経路に依存しない径路独立性を有する。また，後にRice, Rosengren（Rice and Rosengren, 1968）, Hutchinson（Hutchinson, 1968）によってJ積分が弾塑性材料のき裂先端近傍の特異場を表すことが示された。これはHRR場と呼ばれている。これらにより，J積分は弾塑性材料の破壊力学パラメータとして広く用いられている。

二次元問題で定義されたJ積分の二次元問題への拡張が行われてきた。宮本ら（宮本他，1983）やKikuchiら（Kikuchi et al., 1984）は面積分を用いて三次元J積分の計算法を提案した。しかし，有限要素法解析結果からJ積分を計算する際，有限要素法解析モデルに基づく積分のための面情報データを生成する必要があり，有限要素法解析モデルに加えてJ積分計算用入力データの準備が必要となる。一方，有限要素法との親和性が高い破壊力学評価手法としてParks（Parks, 1977）らによって提案された仮想き裂進展法がある。仮想き裂進展法は仮想的に微小

No.18-00115 [DOI:10.1299/transjme.18-00115]
*1 正員，東京理科大学工学部 理工学研究科（〒278-8510 千葉県野田市山崎2641）
*2 正員，ウェロー，東京理科大学 工学部
*3 正員，東京理科大学 工学部
E-mail of corresponding author: 7516701@ed.tus.ac.jp

© The Japan Society of Mechanical Engineers
積分評価手法
積分を用いた低サイクル疲労問題に対する積分はCTOAらを用いたR积分などの積分や積分を任意の領域の積分の形に拡張した領域積分法が見られ、き裂進展による問題に対して適用可能な破壊力学評価手法である。

積分は、T積分や積分を適用する場合に示すようなき裂を有する物体で、積分は全積分とすれども、J積分は全積分を適用する。J積分は、比例負荷を仮定せずに導出された領域積分法を用いた三次元積分を仮定した大変形弾塑性問題に対して適用可能な破壊力学評価手法である。

一方、Koshimaら(Koshima and Okada, 2015)は、比例負荷を仮定せずに導出された領域積分を用いた三次元J積分の局所最小二乗法を用いた実装法を示し、大変形弾塑性問題の解析を行った。Koshimaらは、有限変形を仮定した大変形弾塑性問題に対してJ積分を適用する場合、比例負荷の仮定が成立しないことを示した。

本研究では、大変形弾塑性繰返し荷重問題に対しても適用可能な破壊力学評価手法として三次元J積分の定式化を見直し、T*積分の考え方と同様に、き裂前縁を含む有限な領域で散逸するエネルギーを表すものとして再定義を行った。その結果、経路依存性を無条件に有する新たな三次元J積分を導出した。導出した三次元J積分はT*積分とは異なる表現である。本論文では、定式化の詳細を説明し、さらに数値解析例によりその有用性を示す。

2. 領域積分法による三次元J積分(従来法)

J積分(Rice, 1968)は図1に示すようなき裂を有する物体で、き裂進展によるき裂の長さや面積の増大によってき裂先端で解放されるひずみエネルギーを表す。

二次元平面ひずみ問題で有限変形の仮定の下、物体力がないとき、き裂進展によるき裂長さの増大によって、き裂前縁を含む微小領域Δεに関するエネルギーを次の式で表すことができる。

\[J = \lim_{\varepsilon \to 0} \int_{\epsilon \to 0} \left(W^0 n_1 - n_1 \Pi_{ij} \frac{\partial u_j}{\partial x_1} \right) d\epsilon \] \((1) \)

ここで、\(W^0 \)は初期配置に基づくひずみエネルギー密度、\(n_1 \)は領域Δεの表面上に作用する単位法線ベクトル、\(u_j \)は変位、\(\Pi_{ij} \)は公称応力である。これらはき裂進展方向をX1とした初期配置に基づく直交座標系上で考えられる。式(1)は\(\varepsilon \to 0 \)とすることで、き裂の先端で解放されるエネルギーを表す。すなわちエネルギー解放率である。式(1)に対して、
図1に示すΓ_0と$\Gamma’$で囲まれた閉区間にガウスの発散定理を用い、弾性体を仮定することで、J積分（Rice, 1968）の経路独立性が示される。

三次元問題では、有限要素法解析を用いた計算の容易さから領域積分法を用いたJ積分（Nikishkov and Atluri, 1987）は多用される。三次元問題を仮定した領域積分法では、図2に示すような閉領域V_0を仮想き裂進展面積を表すスカラー関数$q(X)$の導入を行い、図2に示すような閉領域$V_0 - V_{\epsilon 0}$に対してガウスの発散定理を用い、弾性体を仮定することで、き裂の進展によって解放されるひずみエネルギの計算が可能である。

三次元問題の場合、有限変形を考慮した領域積分法を用いたJ積分（Nikishkov and Atluri, 1987）は以下の式で表される。

$$J = - \frac{1}{\Delta A} \int_{V_0} \left(W_0^{\delta_0} - \Pi_i \frac{\partial u_i}{\partial X_j} \right) \frac{\partial q(X)}{\partial X_i} dV_0$$ (2)

式（2）は、図2に示す三次元物体の一部を用いて式（1）を拡張し、両辺に領域V_0上で仮想き裂進展面積を表すスカラー関数$q(X)$の導入を行い、図2に示すような閉領域$V_0 - V_{\epsilon 0}$に対してガウスの発散定理を用い、弾性体を仮定することで導出される。スカラー関数$q(X)$は閉領域内部で連続かつ一回微分可能であり、領域表面で“0”となる関数である。ここで、$\int_{\Delta} q(X) dX = \Delta A$であり、$\Delta A$は仮想き裂進展面積を表す。

式（2）はき裂前縁で解放されるひずみエネルギを領域V_0の形状や大きさを仮定せずに表している。すなわち、積分領域V_0を任意に設定することができる。この性質が領域積分法を用いたJ積分における経路独立性である。また、式（2）は導出の過程で弾性体を仮定し、$\Pi_i = \partial W/\partial X_i$（ここで$F_0$は変形勾配テンソル）が成立として導出された式である。式（2）は弾塑性問題で、非比例負荷状態のように変形履歴に依存する問題では、前述の仮定に反することからJ積分計算結果が積分領域の設定に依存する（Koshima and Okada, 2015）。

式（2）の導出の際に弾性体を仮定しなければ、以下の式が得られる（Koshima and Okada, 2015）。

$$J = - \frac{1}{\Delta A} \int_{V_0} \left(W_0^{\delta_0} - \Pi_i \frac{\partial u_i}{\partial X_j} \right) \frac{\partial q(X)}{\partial X_i} dV_0 - \frac{1}{\Delta A} \int_{V_{\epsilon 0}} q(X) \left(\frac{\partial W_0^{\epsilon 0}}{\partial X_1} - \Pi_i \frac{\partial^2 u_i}{\partial X_1 \partial X_1} \right) dV_{\epsilon 0}$$ (3)

式（3）の第二項に含まれる$\partial W_0^{\epsilon 0}/\partial X_i$に関する項はき裂前縁で可積分でないため、式（3）をそのまま用いて評価を行うことは大変困難である（Koshima and Okada, 2015）。

![Fig. 1 A two-dimensional cracked body A_{entire}^0, Γ_0^0 is the contour of small domain A_{entire}^0 surrounding the crack tip. Its radius ϵ is set to be 0 in a limit. Γ_ϵ^0 and Γ_0^0 are the boundaries with prescribed external forces and displacements, respectively. a^0 is the crack length and Δa^0 is the differential length of crack propagation. All of them are defined in the initial undeformed configuration.](image1)

![Fig. 2 A three-dimensional integral domain V_0^0 for the evaluation of J-integral. V_{ϵ}^0 is the extension A_{ϵ}^0 in three dimensions. Δ is the width of V_0^0 and V_{ϵ}^0.](image2)
3. 有限な領域\(V^0\)に散逸するひずみエネルギーを評価する三次元 \(J\) 積分定義式の拡張

\(T_j^0\)積分(Okada and Atluri, 1999)の定義と同様に，き裂の進展に伴ってき裂の長さや面積の増大に伴い，き裂前縁を囲む有限な領域\(V^0\)内部に散逸していくエネルギーに関する考察から，三次元 \(J\) 積分の再定義を行う。

はじめに，図 3(a)に示すようなき裂を有し，外力が作用している二次元の物体を考える。き裂進展方向を \(X_1\) とした初期配置に基づく直交座標系を用いて以降の議論を進める。有限変形問題を考え，物体全体の領域を \(A^0_{\text{entire}}\)，物体表面 \(\Gamma_j^0\) 上に作用する外力によるトラクションを \(T_j^0\) とし，変位を \(u_j\) と表す。これらは，\(J\) 積分定義式の拡張 \(\mathcal{G}\) を切り出し，これについて議論を進める。

\[
G = \int_{t^0} T_j^0 \frac{Du_j}{Da} \, d\Gamma_j^0 - \frac{D}{Da} \int A_{\text{entire}}^0 W^0 \, dA_{\text{entire}}^0
\]

ここで変位 \(u_j\) とひずみエネルギー密度 \(W^0\) は材料 \(X\) とき裂長さ \(a\) に依存する関数である。微分演算子 \(D\) は，き裂長さの変化の影響をすべて考慮する微係数として定義する。

対象の物体を三次元問題に拡張し，初期配置に基づく物体全体の領域を \(V^0_{\text{entire}}\) と表す。この時，き裂前縁の接線方向を \(X_1\) とする。この領域から図 3(b)に示す幅 \(b^0\) の領域 \(V^0_{\text{part}}\) を切り出し，これについて議論を進める。式(4)右辺を，き裂前縁を含む有限な領域 \(V^0_{\text{part}}\) 関する項とそれ以外の領域 \(V^0_{\text{part}} - V^0_{\text{entire}}\) 関する項に分離すると，以下の式を得る。

\[
G = \frac{1}{b^0} \left(\int_{t^0} \left[A_j^0 + A_j^0 + S^0 \right] T_j^0 \frac{Du_j}{Da} \, dS^0 - D \frac{Du_j}{Da} \int_{A_{\text{entire}}^0} \left(W^0 - V^0_j \right) \, dS^0 \right) \]

\[
+ \frac{1}{b^0} \left(- D \frac{Du_j}{Da} \int_{A_j^0} W^0 \, dV^0 + \int_{S_j^0} A_j^0 + S_j^0 \frac{Du_j}{Da} \, dS^0 \right)
\]

![Fig. 3](image-url)

ここで \(S_j^0\) は領域 \(V^0_{\text{part}}\) の表面を示し，\(A_j^0\) は \(S_j^0\) 上に作用するトラクションである。また，式(5)第一項はき裂前縁を含まない領域を考えた積分である。式(5)の第一項のひずみエネルギー密度の積分は，この領域で特異性を持たない連続な関数であることから以下のように変形できる。
$$\frac{D}{Da^0} \int_{V_{\mu\nu}} W_0^0 dV_0 = \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0$$

\(DW^0/DA^0\)はき裂長さの変化に伴う微係数であることをからひずみエネルギー速度を考えることができ、公称応力\(\Pi_{ij}\)、変形勾配テンソル\(F_j\)を用いると\(D W^0/DA^0 = \Pi_{ij} F_j / D\)となる。ここで\(H_j\)を変位勾配テンソル、\(I_{ij}\)を単位テンソルとすると、\(F_j = I_{ij} + H_{ij}\)、\(H_{ij} = \partial u_{ij} / \partial X_i\)であることから、式(5)の右辺第一項を次式のように変形することができる。

$$\int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0 - \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0 - \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0$$

$$= \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0 - \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0 - \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0$$

変位が規定された境界上で\(Du / Da^0\)は“0”となる。また、\(Du / Da^0\)は物体内部で変形かつ一回微分可能である。そのため、\(Du / Da^0\)は運動学的可容変位（例えば、文献（京谷他、2008））と考えることができる。そのため、仮想仕事の原理より、平衡状態が満足されれば式（7）右辺は“0”であることがわかる。このことから式（5）の第一項は“0”であり、領域\(I_{ij}\)に関する微分の第二項だけが残り、次式を得る。

$$G = \frac{1}{b^0} \left(-\frac{D}{Da^0} \int_{V_{\mu\nu}} W_0^0 dV_0 + \int_{V_{\mu\nu}} \frac{D W_0^0}{Da^0} dV_0 \right)$$

Atluri (Atluri, 1986) と同様の式変形を式(8)中的\(D \left(\int_{V_{\mu\nu}} W_0^0 dV_0 / DA^0 \right) / Du / Da^0\)と与えると、\(D \left(\int_{V_{\mu\nu}} W_0^0 dV_0 / DA^0 \right) / Du / Da^0\)はき裂前縁で可積分でない\(X_i\)に関する微分項を用いて表すことができ、また、\(Du / Da^0 = \partial u_{ij} / \partial X_i - \partial u_{ij} / \partial X_1\)と表すことができる。ここで\(n_{ij}\)を領域\(V_0^0\)の表面上に作用する単位法線ベクトルとする。これらを用いて式(8)は以下のようになる。

$$G = \frac{1}{b^0} \left[\int_{V_{\mu\nu}} \frac{\partial W_0^0}{\partial a^0} dV_0 \right] + \int_{V_{\mu\nu}} \frac{\partial W_0^0}{\partial a^0} dV_0 + \int_{V_{\mu\nu}} \frac{\partial W_0^0}{\partial a^0} dV_0$$

$$+ \int_{V_{\mu\nu}} \frac{\partial W_0^0}{\partial a^0} dV_0 + \int_{V_{\mu\nu}} \frac{\partial W_0^0}{\partial a^0} dV_0$$

ここで、き裂長さ\(a^0\)に関する微係数は、座標に関する微係数と比べて微小である。き裂の進展に伴ってき裂前縁周辺の場が変化しない定常状態であると仮定すると、き裂長さ\(a^0\)に関する微係数を無視することができる。

以上より、\(f^0 = n_i \Pi_{ij}\)を代入し、領域\(I_{ij}\)が有限領域であり、き裂が自己相似的に進展するとし、定常状態であると仮定すると、式(9)は次のようになる。

$$G = \frac{1}{b^0} \left(\int_{V_{\mu\nu}} W_0^0 dV_0 - \int_{V_{\mu\nu}} n_i \Pi_{ij} \frac{\partial u_{ij}}{\partial X_1} dV_0 \right) - \frac{1}{b^0} \left(\int_{V_{\mu\nu}} n_i \Pi_{ij} \frac{\partial u_{ij}}{\partial X_1} dV_0 \right) + \int_{V_{\mu\nu}} n_i \Pi_{ij} \frac{\partial u_{ij}}{\partial X_1} dV_0$$

さらに、極限操作\(b^0 \to 0\)を行えば式(10)の右辺第一項は経路\(I_{ij}\)上の線積分、右辺第二項は三次元\(J\)積分の定式化（宮本他、1983）で現れるような座標\(X_i\)に関する微係数で表すことができる。

$$G = \int_{V_{\mu\nu}} W_0^0 n_i - n_i \Pi_{ij} \frac{\partial u_{ij}}{\partial X_1} dV_0 - \int_{V_{\mu\nu}} \Pi_{ij} \frac{\partial u_{ij}}{\partial X_1} dV_0$$

© The Japan Society of Mechanical Engineers
式(11)は図4(a)に示すような$A_0^ε$に囲まれた円盤の位置で断面$A_0^ε$を有し、X_3方向に単位長さを有する円柱内部の領域に散逸するひずみエネルギーを表す式である。

次に、式(11)に対して仮想き裂進展量を表す連続なスカラ関数$q(X_3)$を導入し、領域積分法(Nikishkov and Atluri, 1987)を適用する。X_3に対し微小長さ$Δ$の範囲について積分する。その結果、式(11)の右辺第一項は図4(b)に示す曲面$S^ε_0$での面積分に拡張される。なお、$q(X_3)$は積分範囲の両端で値が"0"であるとする。

$$\int_Δ Gq(X_3)dX_3 = \int_{S^ε_0} \left(W^0_1n_i - n_i \Pi_j \frac{∂q}{∂X_j} \right)q(X_3)dS^ε_0 - \int_Δ \int_{A^ε_0} \frac{∂}{∂X_3} \left(\Pi_{ij} \frac{∂q}{∂X_j} \right)q(X_3)dA^ε_0 dX_3 \quad (12)$$

さらに、図5(a)のように、内側に領域$V^ε_0$を含み、領域V^0と接する部分でX_3方向の幅が$Δ$の領域を設定する。この領域を領域積分法の積分領域V^0として考え、$q(X)$=0を満足するものとする。加えて、$q(X)$は領域$V^ε_0$内部のX_1-X_2面内で一定であり、X_3方向にのみ変化する連続かつ1回微分可能な関数とする。また、$\int_Δ q(X_3)dX_3 = ΔA$とし、$ΔA$は仮想き裂進展面積を表す。なお、$Δ$の範囲内でGを一定と近似する。

式(12)右辺第一項に対して図5(b)に示す積分領域$V^ε_0$表面と領域V^0表面で囲まれた閉領域に対するガウスの発散定理を適用し、領域V^0-$V^ε_0$の体積積分に変換する。右辺第二項に対してはX_3に関する部分積分を行う。積分領域外表面で$q(X)=0$であることから次式を得る。

$$G = -\frac{1}{ΔA} \int_{V^ε_0} \left[W^0_1n_i - n_i \Pi_j \frac{∂q}{∂X_j} \right]q(X_3)dV^0 + \frac{1}{ΔA} \int_{S^ε_0} \int_Δ \Pi_{ij} \frac{∂q}{∂X_i}q(X_3)dA^ε_0$$

$$+ \frac{1}{ΔA} \int_Δ \int_{A^ε_0} \frac{∂q}{∂X_3}q(X_3)dX_3dA^ε_0 \quad (13)$$

面$A^ε_0$をX_3方向に微小長さ$Δ$に対して積分した領域は領域V^0である。また、領域V^0内面で$q(X)$はX_3に関する微係数だけ非0値である。これを利用し、式(13)の右辺第三項を次式で表わすことができる。

$$\frac{1}{ΔA} \int_Δ \int_{A^ε_0} \Pi_{ij} \frac{∂q}{∂X_i}q(X_3)dX_3dA^ε_0 = \frac{1}{ΔA} \int_{V^ε_0} \left(W^0_1n_i - n_i \Pi_j \frac{∂q}{∂X_j} \right)q(X_3)dV^0 \quad (14)$$

式(14)を式(13)と置換し、物体力がないことを仮定すると次式を得る。

© The Japan Society of Mechanical Engineers
式(15)はき裂の面積が増大する際に、き裂のエネルギー解放と有限な領域に散逸するひずみエネルギーの合計を、領域積分法を用いて評価する式である。式(15)を新しい三次元J積分として定義する。積分領域がき裂前縁を含む場合、\(\partial W/\partial X \)に関する項は可積分でない。提案する領域積分法では、\(\partial W/\partial X \)を含む積分は領域\(V_0 \)を取除いた領域\(V_0 - V_0 \)に対して行われるため、そのような強い特異性を有する項に対する数値積分を近似的にも実行する必要がない。

式(15)で弾性体を仮定した場合、変形勾配テンソル\(F_{ij} \)を用いて

\[
\frac{\partial W^0}{\partial X_1} = \frac{\partial W^0}{\partial F_{\mu\nu}} \frac{\partial F_{\mu\nu}}{\partial X_1} = \Pi_{ij} \frac{\partial u_j}{\partial X_1} = \Pi_{ij} \frac{\partial^2 u_j}{\partial X_i \partial X_1} \tag{16}
\]

が成り立つことから、右辺第二項は0となり式(2)に示す領域積分法を用いたJ積分と等価となる。

\[
G = J = -\frac{1}{\Delta A} \int_{V_0} \left[W^0 \delta_{ij} - \Pi_{ij} \frac{\partial u_j}{\partial X_1} \right] \frac{\partial q(X)}{\partial X_i} dV^0 - \frac{1}{\Delta A} \int_{V_0 - V_0} q_k(X) \left[\frac{\partial W^0}{\partial X_k} - \Pi_{ij} \frac{\partial^2 u_j}{\partial X_i \partial X_k} \right] dV^0 \tag{17}
\]

この時、式(17)は領域\(V_0 \)に関する積分項が消えた式であり、領域\(V_0 \)に依存しない。

本手法は弾性体、あるいは弾塑性体でも比例負荷状態であれば、従来のJ積分と同様にき裂の解放に用いるエネルギーを評価する。また、応力やひずみエネルギー密度が変形履歴に依存するときは、き裂の解放に用いるエネルギーと有限な領域\(V_0 - V_0 \)への散逸によるひずみエネルギーの合計を領域積分法により評価することが可能である。有限な領域\(V_0 \)はエネルギーの散逸を評価したい領域として解析者が設定できる。また、導出の過程で構成則に関する仮定を一切行っていないことから、本手法は任意の構成則のもとで有効である。

4. 有限要素法解析結果を用いた新定式化の数値計算手法

式(15)を有限要素法解析のポスト処理プログラムとして実装を行った。Okadaら(Okada and Ohata, 2013)と同様に、式(15)のスカラー値関数\(q(X) \)を仮想き裂進展方向を表すベクトル関数\(q_k(X) \)に置き換えた形に変形し、実装を行った。

\[
J = -\frac{1}{\Delta A} \int_{V_0} \left[W^0 \delta_{ik} - \Pi_{ij} \frac{\partial u_j}{\partial X_1} \right] \frac{\partial q_k(X)}{\partial X_i} dV^0 - \frac{1}{\Delta A} \int_{V_0 - V_0} q_k(X) \left[\frac{\partial W^0}{\partial X_k} - \Pi_{ij} \frac{\partial^2 u_j}{\partial X_i \partial X_k} \right] dV^0 \tag{18}
\]
式(15)は図6(a)のようなき裂前縁上の局所座標系で、式(18)は全体座標系で記述された式である。式(18)を用いて数値計算を行い、積分領域の中央部に位置するき裂前縁上の節点を原点とした図6(a)のような局所座標系を考える。この局所座標系上の\(X_1\)方向（き裂進展方向）の単位ベクトルとの内積により、式(15)の計算を行う。式(18)の第二項の計算ではKoshimaら(Koshima and Okada, 2015)と同様に局所最小乗法を用い、ガウス積分点上の全ひずみエネルギー密度\(W_0^\theta\)と変位勾配\(\partial u_j/\partial X_k\)を各節点に補間し、有限要素法の形状関数を用いて微係数の計算を行う。

積分領域\(V^\theta\)およびき裂前縁を含む有限な領域\(V_{e0}^\theta\)の設定と\(q(X)\)の設定は次の手順で行う。図6(a)に示すようなき裂前縁上の節点を原点とし、\(X_3\)方向をき裂前縁の接線方向とし、これを軸方向とした円筒座標系を用いた。図6(b)に示すような長方形の領域に\(q(X)\)の分布を与え、これを360度回転させた円筒領域を積分領域\(V^\theta\)とする。この探索領域を用いて有限要素法解析モデルの節点に対して探索を行い、領域内部の節点に\(q(X)\)の値を与える。この操作によって得られた積分領域\(V^\theta\)に含まれる有限要素の例を図6(d)に示す。

式(18)の第二項の被積分関数であるひずみエネルギー密度の勾配\(\partial W_0^\theta/\partial X_1\)がき裂前縁で強い特異性を有するため、き裂前縁近傍で数値積分結果に大きな数値誤差が含まれる。また、き裂前縁付近は不連続点であることから有限要素法による離散化誤差も多発される。Koshimaら(Koshima and Okada, 2015)の四面体二次要素を用いた検討では、き裂前縁の周囲2層の要素でこれらの数値誤差が大きくなることが示されている。大きな数値誤差が生じる要素を領域\(V_{e0}^\theta\)に含むように設定することで、これらの数値誤差の原因となる計算を回避する。

Fig. 6 Local Cartesian coordinate system at a crack front node is shown in (a). \(X_1\) is the crack propagation direction, \(X_2\) is the direction normal to the crack face, \(X_3\) is the tangential direction of the crack front, and \(R\) is the distance from the origin of the cylindrical coordinate system. (b) shows the variation of the \(q(X)\) function. Here, \(q(X) = 1\) at the crack front node that the center of integral domain and \(q(X) = 0\) outside the domain. In \(R \leq r_0\), \(q(X)\) changes linearly only in \(X_3\) direction. In \(r_0 < R \leq r_1\), \(q(X)\) changes linearly in \(X_3\) and \(R\) directions. (c) shows the integral domains \(V^\theta\) and \(V_{e0}^\theta\). These are set by rotating the rectangle of (b) on \(X_3\)-axis. Example of \(V^\theta\) and \(V_{e0}^\theta\) with a finite element model is shown in (d).
5. 数値計算例

5・1 解析対象とする CT 試験片の概要と有限要素法解析モデル

図7に示すCT試験片モデルを用いて解析を行った。文献(菊池他、1984)を参考に、通常のICT試験片の半分の厚さの試験片を簡略化したモデル寸法(図7(a))をもとに、図7(b)に示す有限要素法解析モデルを作成した。六面体一次要素を使用し、有限要素法解析モデルの総節点数と総要素数はそれぞれ254,543と240,240であった。体積ロッキングを回避するために定体積ひずみ要素を使用した。有限要素法解析はMSC Marc 2016を用いて行った。また、J積分計算に必要なひずみエネルギー密度、応力、変位などを有限要素法の解析結果から書き出し、それらを用いてJ積分計算を行った。き裂前線付近の要素は図7(c)に示すように、x, y 方向の辺の長さが0.5 mmの正方形となるように設定し、き裂前縁の節点間距離は物体表面付近で\(\Delta_{crack_{surf}} = 0.25\) mm、き裂中央付近で\(\Delta_{crack_{center}} = 0.5\) mmとし、平均節点間距離を\(\Delta_{crack_{ave}} = 0.417\) mmとした。図7(d)に示すように、き裂面は二重節点を用いて表現し、実験時にクリップゲージが取り付けられる位置にあたる、き裂面の上面に位置する点 A と下面に位置する点 A' の y 方向の距離を \(\delta\) とし、き裂面の開口距離とした。図8に示すように上穴の上部、下穴の下部のそれぞれ円周方向±45°の範囲に位置する節点にそれぞれ多点拘束を与えた。各ピン穴の中心部にそれらの代表節点を配置した。下部のピンの代表節点に対しては \(x, y, z\) 方向の変位を拘束した。上部のピンの代表節点には \(x, y, z\) 方向の変位を拘束し、y 方向には強制変位を与えた。

有限要素法解析結果から式(2)と式(15)を用いた評価を行った。積分領域 \(V_0\)は図6(b) (c)に示すような探索領域を用いて設定した。探索領域の大きさは \(z_1 = \Delta_{crack_{ave}} \times 1, r_1 = \Delta_{crack_{ave}} \times 10, 15, 30\) の 3 つの大きさの積分領域 \(V_0\)を設定し、それぞれを Small, Medium, Large とした(図9)。また式(15)では各積分領域で、き裂前縁を含む領域 \(V_0\)の設定を変えて計算を行った。

Fig. 7 The dimensions of a CT specimen and the details of its finite element model. (a) Simplified CT specimen. (b) a whole view of the finite element model. Detailed mesh information including its size at the crack front is shown in (c) and (d). Crack face nodes except crack front are expressed by double nodes. Point A and A' are the nodal points of clip gauge position at the upper and lower surfaces of the crack, respectively. The distance between the points A and A' represents the crack opening displacement \(\delta\). Point B is the central node of crack front.
5.2 超弾性体問題

本節ではCT試験片を対象に超弾性問題を仮定した有限要素法解析を行い、その解析結果から式(2)と式(15)の評価を行った。有限要素法解析モデル及び境界条件は5.1節で示したものを用い、上部ピン位置の多点拘束点に対してy方向に最大8 mmの強制変位を与えた。また、Neo-Hookeanモデルを仮定した。Neo-Hookeanモデルでは弾性ポテンシャルがひずみエネルギ密度を表す。

上記の仮定のもとにひずみエネルギ密度は式(19)のように体積変化と偏差成分にかかわる部分に分けられる。

\[
W = W_{\text{vol}} + W_{\text{dev}}
\]

\[
W_{\text{vol}} = 9K\left(M_{c}^{3/2} - 1\right)^{2}/2
\]

\[
W_{\text{dev}} = c_{10}(I_{c} - 3)
\]

ここで、\(I_{c}(= I_{1}/3H_{c}^{3/2})\)は低減不変量であり、\(I_{c}\)と\(H_{c}\)はそれぞれ右コーシー-グリーン変形テンソル\(C_{ij}\)の第一、第三不変量である。ヤング率\(E\)とボアソン比\(v\)から定数\(c_{10}\)及び体積弾性率\(K\)は以下の式で与えられる。本解析ではヤング率を206 GPa、ボアソン比を0.3とした。

\[
c_{10} = \frac{E}{4(1+v)}
\]

\[
K = \frac{E}{3(1-2v)}
\]

上部ピンの代表節点に与えたy方向強制変位が8 mmのときのミーゼス相当応力分布図を図10に示す。

上部ピンの代表節点に与えたy方向強制変位が8 mmのときの有限要素法解析結果を用いて式(2)と式(15)の評価を行った。式(2)と式(15)を用いて求められた計算結果を図11に示す。図11(a)は積分領域\(I_{p}\)を図9に示すLargeとして式(2)と式(15)を用いて求めた計算結果である。ここで、式(15)は領域\(I_{p}\)を\(r_{0} = 0, 0.7071, 1.4142, 2.1213\ mm\)としてそれぞれ計算を行った。これらはき裂の前縁から0層、1層、2層、3層の要素となるような境界条件である。また、図11(b)は式(2)と領域\(I_{p}\)を\(r_{0} = 1.4142\ mm\)とした式(15)を用い、積分領域\(I_{p}\)を図9に示すLargeとし、領域\(I_{p}\)を\(r_{0} = 0, 0.7071, 1.4142, 2.1213\ mm\)とした場合の式(15)の第二項の値を図12に示す。これらの値は二次元弾性問題の参照解(Srawley, 1976)から得た\(J_{\text{ref}}\)を
用いて正規化した値である。これらの図の凡例は、使用した式、式(15)を用いた場合は領域V_εの半径r_0の大きさ、複数の積分領域V_εを用いて比較を行った場合は積分領域V_εの大きさをそれぞれ表す。

本解析例は超弾性体を仮定している。このような問題では式(16)の仮定が成り立つことから、式(3)と式(15)の第二項は“0”となり、式(2)を用いた評価が可能である。しかし、図12から、r_0=0 mm と r_0=0.7071 mm のとき、つまり領域V_εの要素1層のときに、式(15)の第二項が無視できない値を持つ、これにより式(15)の計算結果が式(2)で計算される値と大きく異なる(図11(a))。これはき裂前縁で生じる数値誤差によるものである。r_0=1.4142 mm よりも大きいとき、すなわちき裂前縁から2層以上の要素を領域V_εに含む場合では、式(15)の第二項はほぼ0となる。このことから、領域V_εはき裂前縁から少なくとも2層の要素を含むように設定する必要がある。これはKoshimaら(Koshima and Okada, 2015)が四面体二次要素を用いて示した結果と同様の結果である。

Fig. 10 The deformation of the CT specimen and the distribution of equivalent von Mises stress (at δ = 7.77 mm) of the hyper-elastic CT specimen.

Fig. 11 J values when δ = 7.77 mm. These values are computed by using result of finite element analysis when δ = 7.77 mm. (a) J values computed by equation (2) and equation (15) that r_0 = 0, 0.7071, 1.4142, 2.1213 mm. They are computed by Large integral domain as shown in Fig. 9. (b) J values computed by equation (2) and equation (15). They are computed by three kinds of integral domains as shown in Fig. 9 (Small, Medium, Large) and r_0=1.4142 mm in equation (15). These results show that J values computed using equation (15) with r_0 = 0 or 0.7071 mm (V_ε is less than 2 layers of elements) contains a large magnitude of numerical error. On the other hand, J values computed using equation (15) with r_0 ≥ 1.4142 mm (V_ε is 2 layers of elements or more around crack front) are equivalent to J value computed by using equation (2). In this case, equation (15) does not depend on the size of V_ε. The results of equation (2) and equation (15) do not depend on the size of the domain of integration.
大変形弾塑性繰返し荷重問題

本節ではCT試験片を対象に大変形弾塑性繰返し荷重問題の有限要素法解析を行い、得られた解析結果に対して式(2)と式(15)を用いた評価を行った。

構成則は等方硬化則及び移動硬化則を仮定した。解析に使用した商用有限要素法プログラムMSC Marc 2016では移動硬化則の発展則にPrager則が用いられる(MSC Software, 2016)。背応力の発展方程式は以下の式で表される。

\[
\dot{X} = \frac{2}{3}He^p
\] (24)

ここで\(\dot{X}\)は背応力速度、\(e^p\)は塑性ひずみ速度、\(H\)は硬化係数であり、相当応力-相当塑性ひずみ関係の傾きである。また一次元の応力-ひずみ関係を以下の式で仮定した。

\[
\varepsilon = \frac{\sigma}{E} \quad (\sigma \leq \sigma_y)
\]

\[
\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{E} - \left(\frac{\sigma_y}{E}\right)^n\right)^n \quad (\sigma > \sigma_y)
\] (25)

ここで、ヤング率\(E\)を206 GPaとし、ボアソーン比を0.3とした。また降伏応力を\(\sigma_y = 549.2\) MPaとし、\(E' = 1.609\) GPa、\(n = 3.0\)とした。これらは文献(菊池他, 1984)を参考に設定した。図13に相当応力-相当塑性ひずみ関係を示す。この相当応力-相当塑性ひずみ曲線を多直線近似により入力した。

有限要素法解析モデル及び境界条件は5・1節で示したものを利用した。上部ピン位置の多点拘束制御点に対して1荷重サイクル目の負荷として\(8\) mmの強制位変を与えた後に\(1.2\) mm位置まで戻し、2荷重サイクル目として再度\(8\) mm位置まで制限変位を与え、1.6 mm位置まで戻す境界条件を与え、2荷重サイクルの引張・圧縮の繰返し荷重を仮定した解析を行った。これらの制限変位量は、等方硬化則を仮定した場合にき裂面の自己接触が起きない条件である。そのため、図の解析ではき裂面の接触を考慮していない。

等方硬化則と移動硬化則を用いた解析の荷重-き裂開口変位曲線を図14に示す。また、移動硬化則を用いた際の2荷重サイクル目の\(\delta = 8.12\) mmのときのミーゼス相当応力の分布を図15(a)に、相当塑性ひずみの分布を図15(b)に示す。これらの有限要素法解析結果を用い、図7(d)に示す板厚中央の節点Bを積分領域の中心とした式(2)と式(15)を用いた計算結果を示す。積分領域\(I^0\)は図9に示す3通りとした。式(2)を用いた計算結果と領域\(V^\varepsilon_0\)を用いた計算結果を図12に示す。
を \(r_0 = 1.4142 \text{mm} \)（領域 \(V^o \) にき裂前縁の要素が2層含まれる領域）として式（15）を用いた計算結果の比較を等方硬化則、移動硬化則それぞれの場合について図16、図17に示す。また、移動硬化則を用い、積分領域 \(V^o \) を図9に示す Large とし、領域 \(V^o \) を \(r_0 = 1.4142, 2, 2.5, 3, 3.5, 4 \text{mm} \) とした際の式（15）を用いた計算結果を図18に示す。これらは降伏応力 \(\sigma_y \) 及びヤング率 \(E \)、解析対象のき裂長さ \(a = 30.48 \text{mm} \) を用いて正規化された値である。これらの図中の凡例は、使用した式、式（15）を用いた場合は積分領域 \(V^o \) の大きさをそれぞれ表す。

図16(a)、17(a)より、式（2）を用いた場合の計算結果は1荷重サイクル目の引張荷重過程でも、積分領域の大きさによって異なる値となることがわかる。式（2）で定義された \(J \) 積分は、有限変形弾塑性問題では単調荷重過程であっても、変形が非常に大きい場合に積分経路に依存することが知られている（Carka and Landis, 2011）。また、1荷重サイクル目の引張荷重の後、圧縮荷重をかけた際には顕著に比例荷重の仮定から外れた状態となる。このような場合、式（2）を用いた計算結果が積分領域の大きさに対して大きく依存する。一方で式（15）を用いた場合、図16(b)、17(b)に示すように、2荷重サイクルで常に積分領域の設定に依存しない結果が得られる。また、図16(b)、17(b)の結果から、等方硬化則・移動硬化則の場合によらず式（15）の計算結果は積分領域に依存しないことがわかる。提案手法は構成則によらない手法である。原理的には構成方程式の種類や荷重経路によらず、破壊力学的評価を行うことが可能であると言える。

図16に示すように、等方硬化則を仮定した解析では圧縮荷重時に \(J \) 積分値が負となる。 \(J \) 積分はき裂の進展に伴って解放されるエネルギと定義されることから、圧縮荷重下での \(J \) 積分値は破壊評価に関わる物理的な意味ではないと考えられる。

また、き裂前縁を含む有限な領域 \(V^o \) の大きさを変えて式（15）の計算を行った場合、図18に示すように領域 \(V^o \) の大きさに依存した値を示すことがわかる。これは領域 \(V^o \) の大きさが変化すれば、式（15）でエネルギの散逸量が変わることを意味する。エネルギ散逸とは塑性変形に関係するひずみエネルギのことである。

Fig. 13 The relationship between equivalent stress and equivalent plastic strain adopted in the elastic-plastic analysis in this paper.

Fig. 14 Load – displacement relationship of CT specimen with isotropic hardening and kinematic hardening laws.
Fig. 15 The deformation and the distribution of (a) equivalent von Mises stress and (b) equivalent plastic strain of the CT specimen at the maximum load in the 2nd load cycles. Kinematic hardening law was assumed.

Fig. 16 J values computed by equation (2) and by equation(15) are shown in (a) and (b). The results of finite element analysis with the isotropic hardening law are used in the J-integral evaluations. The J values are normalized by yield stress $\sigma_y = 549.2$ MPa, crack length $a = 30.48$ mm and Young's modulus $E = 206$ GPa. Each case is computed by using three kinds of domains of integration shown in Fig. 9 (Small, Medium, Large). In equation (15), the small finite domain V_e^0 is set to be $r_0 = 1.4142$ mm (V_e^0 is 2 layers of elements around crack front). It is seen from (a) that J-integral values depend on the domain of integration especially after the first peak load. On the other hand, (b) shows that proposed method of equation (15) does not depend on integral domain even when the loading that deviates from the proportional loading.
Fig. 17 J values computed by equation (2) and by equation (15) are shown in (a) and (b). The results of finite element analysis with the kinematic hardening law are used in the J-integral evaluations. The J values are normalized in the same manner as in Fig.16. Each case is computed by using three kinds of domains of integration shown in Fig.9 (Small, Medium, Large). In equation (15), the small finite domain V_{ε_0} is set to be $r_0=1.4142$ mm (V_{ε_0} is 2 layers of elements around crack front). It is seen from (a) that J-integral values depend on the domain of integration after the first peak load. On the other hand, (b) shows that proposed method equation (15) does not depend on integral domain even when the loading that deviates from the proportional loading. Fig.16 and Fig.17 show that proposed method does not depend on integral domain with arbitrary constitutive equation.

Fig. 18 J values computed by equation (15). The J values are normalized. The results of finite element analysis with the kinematic hardening law are used in the J-integral evaluations. The computations were performed by setting the radius r_0 of the small finite domain V_{ε_0} to 1.4142, 2, 2.5, 3, 3.5, 4 mm. All of them were computed by using large integral domain as shown in Fig. 9. (a) and (b) show the results of 1st and 2nd load cycle respectively. Fig. 18 shows that computational results of equation (15) depend on the size of V_{ε_0}. Equation (15) represents the energy release rate due to the crack propagation and the energy dissipating inside the domain V_{ε_0}. Thus, V_{ε_0} represents the domain for evaluating dissipation of energy inside itself. If V_{ε_0} is the infinitely small volume, equation (15) represents only energy release rate due to the crack propagation.
6. 結 言

本論文では弾塑性破壊問題や大変形弾塑性問題のような問題に対する三次元破壊力学評価が可能な新たな手法の定式化を行った。従来のJ積分を繰返し荷重問題のような非比例荷重問題に適用する場合、積分経路・領域に依存性が生じることから評価指標として用いることはできない。一方、提案手法は比例荷重に関する仮定なしに導出を行ったことから、それらの問題に対しても積分領域依存性が生じない。また、導出の過程で構成則に関する仮定をしていないことから任意の構成則を用いて計算を行うことが可能である。

提案手法は三次元J積分の導出を見直し、き裂前縁を含む微小な有限領域を表す式として拡張を行った手法である。これはOkadaら（Okada and Atluri, 1999）による貢献積分の考え方と同じものである。提案手法は比例荷重に関する仮定なしに導出を行ったことから、それらの問題に対しても積分領域依存性が生じない。また、導出の過程で構成則に関する仮定をしていないことから任意の構成則を用いて計算を行うことが可能である。

提案手法はこの考え方に基づき三次元J積分を再定義したものである。これによりOkadaら（Okada and Atluri, 1999）によるTε*積分の考え方と同じものである。提案手法はこの考え方に基づき三次元J積分を再定義したものである。これにより提案手法はこの考え方を仮定して導出されたTε*積分の厳密な三次元問題への拡張と考えることができる。

提案手法は従来のJ積分法と等価であり、き裂のエネルギ解放率を表す。また、提案手法はひずみ履歴に依存する問題に対しては、き裂のエネルギー解放と有限な領域に散逸していくひずみエネルギーの合計を表す。しかしながら提案手法はひずみエネルギー密度の微係数が強い特異性を有するため、大きな数値誤差が生じる。5・2節で示した超弾性体に対する有限要素法解析結果は、き裂前縁を囲む二層の有限要素で特に大きな数値誤差を含むことを示している。大きな数値誤差を含む領域は、式(15)の2項の計算手法に依存する。本報の解析例で使用した局所最小二乗法を用いた計算手法（Koshima and Okada, 2015）を用いた場合では、き裂前縁を囲む二層の有限要素の数値誤差がJ積分計算結果に大きな影響を与えることが本報の解析例から明らかになった。しかし、提案手法は提案手法で使用した式(15)の2項の計算手法とは異なる計算手法を用いる場合には、このような数値誤差を含む領域の大きさについて改めて調査を行う必要がある。

また、提案するJ積分は、領域P0に散逸するエネルギーや裂進展によるエネルギ解放の両方を同時に評価する式であるため、領域P0の大きさによってその物理的意味が異なる。破壊力学評価手法として提案手法を用いる場合には領域P0を一定の大きさに設定し、提案手法を用いた計算結果と実験等から得られた破壊力学的評価指標の関係性を調査する必要がある。この領域P0の大きさと物理的意味の関係については、今後の検討課題とした。
菊池正紀, 宮本博, 町田賢司, 北川喜久, 千葉晃司, 三次元の J 積分に関する研究（第 2 報, CT 試験片の弾塑性解析と J 積分評価）, 日本機械学会論文集 A 編, Vol.50, No.456 (1984), pp.1524-1530.

Kikuchi, M., Miyamoto, H. and Tanaka, M., J integral evaluation of CT specimen in elastic-plastic state, Bulletin of JSME, Vol.27, No.233 (1984), pp.2365-2371.

Koshima, T. and Okada, H., Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology, Engineering Fracture Mechanics, Vol.135 (2015), pp.34-63.

宮本博, 菊池正紀, 石田克己, 三次元の J 積分に関する研究 (第 1 報, 弾性体中の貫通き裂, 表面き裂の J 積分), 日本機械学会論文集 A 編, Vol.49, No.439 (1983), pp.314-321.

Moran, B. and Shih, C. F., Crack tip and associated domain integrals from momentum and energy balance, Engineering Fracture Mechanics, Vol.27, No.6 (1987), pp.615-642.

MSC Software, Marc® 2016 Volume A: theory and user information, MSC Software corporation, (2016).

Nikishkov, G. P. and Atluri, S. N., Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the 'equivalent domain integral' method, International Journal for Numerical Methods in Engineering, Vol.24, No.9 (1987), pp.1801-1821.

Nishioka, T., Fujimoto, T. and Atluri, S. N., On the path independent T^a integral in nonlinear and dynamic fracture mechanics, Nuclear Engineering Design, Vol.111, No.1 (1989), pp.109-121.

Okada, H. and Atluri, S. N., Further studies on the characteristics of the T^c integral: Plane stress stable crack propagation in ductile materials, Computational Mechanics, Vol.23, No.4 (1999), pp.339-352.

Okada, H. and Ohata, S., Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element, Engineering Fracture Mechanics, Vol. 109 (2013), pp.58-77.

Parks, D. M., The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, Vol.12, No.3 (1977), pp.353-364.

Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, Vol.35, No.2 (1968), pp.379-386.

Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, Vol.16, No.1 (1968), pp.1-12.

Srawley, J. E., Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens, International Journal of Fracture, Vol.12, No.3 (1976), pp.475-476.

References

Atluri, S. N., Energetic approaches and path-independent integrals in fracture mechanics, in Computational Methods in the Mechanics of Fracture (Edited by Atluri, S. N.), North-Holland Press (1986).

Atluri, S. N., Nishioka, T. and Nakagaki, M., Incremental path-independent integrals in inelastic and dynamic fracture mechanics, Engineering Fracture Mechanics, Vol. 20, No.2 (1984), pp.209-244.

Brust, F. W., McGowan, J. J. and Atluri, S. N., A combined numerical/experimental study of ductile crack growth after a large unloading, using T^c and CTOA criteria, Engineering Fracture Mechanics, Vol. 23, No.3 (1986), pp.537-550.

Brust, F. W., Nakagaki, M. and Springfield, C., Integral parameters for thermal fracture, Engineering Fracture Mechanics, Vol.33, No.4 (1989), pp.561-579.

Brust, F. W., Nishioka, T., Atluri, S. N. and Nakagaki, M., Further studies on elastic-plastic stable fracture utilizing the T^c integral, Engineering Fracture Mechanics, Vol. 22, No.6 (1985), pp.1079-1103.

Carla, D. and Landis, C. M., On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material, Journal of Applied Mechanics, Vol.78, No.1 (2011), 011006.

Eshelby, J. D., The continuum theory of lattice defects, Solid State Physics, Academic Press, New York (1956), Vol.3,
pp.79-144.
Hutchinson, J. W., Singular behaviour at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, Vol.16, No.1 (1968), pp.13-31.
Kikuchi, M., Miyamoto, H., Machida, K., Kitagawa, Y. and Chiba, K., On the three-dimensional J integral (2nd report, the J integral of the CT specimen in elastic-plastic state), Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.50, No.456 (1984), pp.1524-1530 (in Japanese).
Kikuchi, M., Miyamoto, H. and Tanaka, M., J integral evaluation of CT specimen in elastic-plastic state, Bulletin of JSME, Vol.27, No.233 (1984), pp.2365-2371.
Koshima, T. and Okada, H., Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology, Engineering Fracture Mechanics, Vol.135 (2015), pp.34-63.
Kyoya, T. and Japan Association for Nonlinear CAE, Continuum Mechanics, Morikita Publishing Co. (2008) (in Japanese).
Lei, Y., J-integral evaluation for cases involving non-proportional stressing, Engineering Fracture Mechanics, Vol.72, No.4 (2005), pp.577-596.
McMeeking, R. M., Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture, Journal of the Mechanics and Physics of Solids, Vol.25, No.5 (1977), pp.357-381.
Miyamoto, H., Kikuchi, M. and Ishida, K., Three-dimensional J integral (1st report, J integral of through cracks and surface cracks in elastic body), Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.49, No.439 (1983), pp.314-321 (in Japanese).
Moran, B. and Shih, C. F., Crack tip and associated domain integrals from momentum and energy balance, Engineering Fracture Mechanics, Vol. 27, No. 6 (1987), pp. 615-642.
MSC Software, Marc® 2016 Volume A: theory and user information, MSC Software corporation, (2016).
Nikishkov, G. P. and Atluri, S. N., Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the 'equivalent domain integral' method, International Journal for Numerical Methods in Engineering, Vol.24, No.9 (1987), pp.1801-1821.
Nishioka, T., Fujimoto, T. and Atluri, S. N., On the path independent T_ε^* integral in nonlinear and dynamic fracture mechanics, Nuclear Engineering Design, Vol.111, No.1 (1989), pp. 109-121.
Okada, H. and Atluri, S. N., Further studies on the characteristics of the T_ε^* integral: Plane stress stable crack propagation in ductile materials, Computational Mechanics, Vol.23, No.4 (1999), pp.339-352.
Okada, H. and Ohata, S., Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element, Engineering Fracture Mechanics, Vol. 109 (2013), pp.58-77.
Parks, D. M., The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, Vol.12, No.3 (1977), pp. 353-364.
Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, Vol.35, No.2 (1968), pp.379-386.
Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, Vol.16, No.1 (1968), pp.1-12.
Srawley, J. E., Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens, International Journal of Fracture, Vol.12, No.3 (1976), pp.475-476.