Diabetic Foot Ulcer Infections and *Pseudomonas aeruginosa* Biofilm Production During the COVID-19 Pandemic

Marwa A. Yakout* and Ibrahim A. Abdelwahab

Department of Microbiology and immunology, Faculty of Pharmacy, Pharos University in Alexandria, Egypt.

Abstract

During the different waves of the coronavirus (COVID-19) pandemic, there has been an increased incidence of diabetes mellitus and diabetic foot infections. Among gram-negative bacteria, *Pseudomonas aeruginosa* is the predominant causative agent for diabetic foot ulcer infections in low-resource countries. *P. aeruginosa* possesses a variety of virulence factors, including biofilm formation. Biofilm formation is an important benchmark characteristic in the pathophysiology of diabetic foot ulceration. The main objective of the current study was to identify the most commonly isolated organisms and their antibiotic susceptibility patterns in diabetic foot patients during the COVID-19 pandemic. We also determined the genes associated with bacterial persistence and biofilm formation in the predominantly isolated organism. Accordingly, 100 wound swab samples were collected from diabetic foot patients from different hospitals in Alexandria, Egypt. Through phenotypic detection of biofilm formation, 93% (40) of the 43 *P. aeruginosa* isolates examined were categorized as biofilm producers. Molecular detection of the biofilm-encoding genes among the 43 *P. aeruginosa* isolates was as follows: algD (100%), pelF (88%) and pslD (49.7%), and this highlights a need for biofilm formation inhibitors to prevent the persistence of bacterial pathogens, and thus achieve better clinical outcomes in diabetic foot ulcer infections.

Keyword: Diabetic foot ulcer infections, *Pseudomonas aeruginosa*, biofilm, COVID-19
INTRODUCTION

According to the International Diabetes Federation, there has been an increased incidence of diabetes mellitus (DM) during the different waves of the coronavirus (COVID-19) pandemic. A study in Wuhan reported that diabetic patients constituted 2–20% of all positive cases, and accounted for 7.1% of COVID-19 positive patients were diabetic. Accordingly, several reports have attempted to determine the reason for the correlation between COVID-19 and DM. One hypothesis is that the angiotensin-converting enzyme 2 (ACE2) receptor necessary for the entry of SARS-CoV-2 is overexpressed in diabetic patients taking antidiabetic medications. In addition, the use of corticosteroids in COVID-19 patients increases blood glucose levels in both diabetic and non-diabetic individuals. Additionally, diabetic patients are more vulnerable to viral and bacterial infections. The COVID-19 pandemic has posed many challenges for the diabetic community, such as lack of sufficient resources, overworked health care workers, and scarcity of proper care for diabetic patients to avoid the development of infections.

Diabetic foot ulcer (DFU) is a common complication of DM, with an increasing prevalence worldwide. Thirty-three percent of all diabetic patients are expected to be diagnosed with DFUs at least once during their lifetime. Untreated DFUs can result in leg amputations, permanent disability, and increased mortality rates in DM patients. DFUs are most commonly associated with clinical infections with different etiological agents. Microbiological studies have shown that diabetic foot ulcers generally have polymicrobial etiologies. The etiological agent may differ from one individual to another, and from country to country. Aerobic gram-positive bacteria that are frequently isolated in DFUs include Staphylococcus spp. beta-hemolytic Streptococcus and Enterococcus spp. Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae are among the gram-negative bacteria that are most commonly isolated in DFUs. Pseudomonas spp. are generally encountered in immunocompromised patients due to their high pathogenicity and variety of virulence factors, including biofilm formation. Virulence factors and biofilm formation are the benchmark characteristics in the pathophysiology of DFUs. The formation of biofilms by bacteria is considered to be the cornerstone that provides bacteria protection against several environmental factors, mediates persistence in medical devices, facilitates immune system evasion, and contributes to the development of antimicrobial resistance. Antibiotic resistance is a global public health concern, especially in patients with diabetic foot infections (DFIs). Multidrug resistance results in poor clinical outcomes, financial burden, and increased morbidity and mortality in DFU patients.

The main objective of the current study was to identify the commonly isolated organisms and their antibiotic susceptibility patterns in DFU patients during the COVID-19 pandemic. In addition to phenotypic detection of biofilms, we also determined genes encoding biofilm formation in the predominantly isolated organism.

MATERIALS AND METHODS

One hundred wound swab samples were collected from DFU patients at the Vascular Surgery and Diabetic Foot Unit of Abou Hommos Central Hospital, Alexandria Main University Hospital, Mowasat Hospital, Abou Qir Central Hospital, and Medical Research Institute, in Alexandria, Egypt, between January 2020 and January 2021. The study was approved by the Ethics Committee in Pharos University in Alexandria, and all procedures were performed according to Helsinki ethical standards. Specimens were subjected to Gram staining, and were cultured in mannitol salt agar, MacConkey agar, blood agar, and Sabouraud dextrose agar (Oxoid, Cambridge, UK). Isolates were identified using standard biochemical methods, and P. aeruginosa isolates were confirmed with MALDI-TOF/MS (Bruker, Billerica, MA, USA). The identified stock cultures were preserved at −80 °C in 15% glycerol.

Antimicrobial susceptibility test

Antibiotic susceptibility tests were done by disc diffusion method on Mueller–Hinton agar plates (Oxoid) according to Clinical Laboratory Standards Institute (CLSI) 2019 guidelines. The antibiotic discs include: Ceftazidime (CAZ, 30 μg),
Cefepime (FEP, 30 μg), Piperacillin-tazobactam (TZP, 100 μg/10 μg), Aztreonam (ATM, 30 μg), Levofloxacin (LEV, 5 μg), Amikacin (AMK, 30 μg), Azithromycin (AZM, 15 μg), Erythromycin (E, 15 μg), Gentamycin (CN, 10 μg), Tetracycline (TE, 30 μg), Cefoxitin (FOX, 30 μg), Chloramphenicol (C, 30 μg), Ampicillin (AMP, 10 μg), Imipenem (IPM, 10 μg), Linezolid (LZD, 30 μg), Amoxicillin-clavulanate (AMC, 20 μg/10 μg), and Methicillin (MET, 5 μg).

Quantification of Biofilm formation by *P. aeruginosa*

200 μL of overnight broth subculture of the tested isolates in sterile trypticase soy broth (TSB) (Oxoid), equivalent to 1.5×10^8 CFU/mL, was added to each well of a 96-well flat-bottomed microtiter plate, in triplicates. The plates were then incubated at 35 °C for 24 h. The next day, the medium was discarded, and the wells were washed with phosphate-buffered saline (PBS, pH 7.2) (Sigma-Aldrich, Milan, Italy). Biofilm fixation was performed by incubating the 96-well plates at 60 °C for 1 h. 0.1% (w/v) Crystal violet was used for staining, and was extracted with 99.5% ethanol. The optical density (OD) value of each well was measured at 620 nm on a microtitre plate ELISA reader (STATFAX2100, Fisher Bioblock scientific, France). The isolates were characterized according to their biofilm-forming ability as strong, moderate, weak, or non-biofilm producers, as previously described by Stepanovic et al. Molecular detection of biofilm encoding genes in *P. aeruginosa*

DNA was extracted from the *P. aeruginosa* isolates using the boiling method. DNA amplification was performed using Master Mix (iNtRON biotechnology, Seongnam, South Korea). The primers (SBS GeneTech, Beijing, China) and the annealing temperatures used are listed in Table 1. PCR program was as follows: initial denaturation at 95 °C for 5 min, followed by denaturation at 95 °C for 1 min, 30 cycles at 58 °C for *algD*, *pelF* and 56 °C for *pslD* gene for 40 seconds, then 72 °C for 45 seconds, and a final elongation at 72 °C for 5 min.

PCR products were separated on 2% agarose gel in TBE buffer, stained with 2 μg/mL ethidium bromide, and visualized under ultraviolet transillumination (BIORAD, Italy). Statistical analysis

Statistical analysis of the data was performed using IBM SPSS software version 20.0. (IBM Corp, Armonk, NY, USA). The chi-square test and Fisher’s exact test were used. Statistical significance was set at a p-value of 5% or lower.

RESULTS

The present study included swabs from 100 DFU patients (75 male and 25 female) admitted to the Vascular Surgery and Diabetic Foot Unit of Abou Hommos Central Hospital, Alexandria Main University Hospital, Mowasat Hospital, Abou Qir Central Hospital, and Medical Research Institute, Alexandria, Egypt, between January 2020 and January 2021. The ages ranged from 44 to 76 years.

Microbiological Culture Results

The microbiological culture of the 100 DFU swabs yielded monomicrobial bacterial growth in 76 samples (76%), polymicrobial bacterial growth (2–3 microorganisms) in 20 samples (20%), and *Candida albicans* in 4 samples (4%) (Table 2).

The microbial species isolated from the DFU specimens are listed in Table 3. The

Table 1. Primers used for detection of genes involved in Biofilm formation by *Pseudomonas aeruginosa*

Gene	Primers	Annealing Temp.	Band Size
algD	F-CTACATCGAGACCGTCTGCC R-GCATCAACGAACCGAGCATC	58	593
pelF	F-GAGGTCAGCTACATCGTGCG R-TCATGCAATCTCGTGGCTT	58	789
pslD	F- TGTACACCGTGCTCAACGAC R-CTTCGCGCCTGATCCATC	56	369
majority of the isolates were gram-negative (88%), and *P. aeruginosa* was the predominant gram-negative bacteria isolated (43%), followed by *K. pneumoniae* (21%), *P. mirabilis* (11%), *E. coli* (9%), and *Serratia marcescens* (4%). The gram-positive bacteria isolated were *S. aureus* (5%) and *Enterococcus* spp. (2%). *C. albicans* was the only fungal species isolated (5%).

Antibiotic Susceptibility Profile

Antibiotic susceptibility in the forty-three *P. aeruginosa* isolates was as follows: Ampicillin (100%), followed by Aztreonam (74%), Amikacin (72%), Levofloxacin, Aminocillin-clavulanate (69.7%), Cefoxitin (46.5%), Ceftazidime (41%), Imipenem (32.5%), and varied degrees of resistance to other antibiotics (Table 4).

Quantification of Biofilm formation by *P. aeruginosa*

Of the forty-three *P. aeruginosa* isolates examined, twenty-three (53.5%) were strong biofilm producers, ten (23.2%) were moderate biofilm producers, seven (16.3%) were weak biofilm producers, and just three isolates (7%) were non-biofilm producers.

Molecular detection of Biofilm encoding genes in *P. aeruginosa*

The following genes encoding biofilm exopolysaccharides were identified in the 43 *P. aeruginosa* isolates: *algD* (100%), *pelF* (88%) and *pslD* (49.7%). The presence of *algD*, *pslD*, and *pelF* genes was noted in a large proportion of the 43 *P. aeruginosa* isolates. Our findings revealed that 82.6% of the 23 strong biofilm producers had the genotypic pattern *algD*+/*pslD*+/*pelF*+ while the rest were *algD*−/*pslD*−/*pelF*−. On the other hand, 66.6% of the three non-biofilm producers carried the biofilm encoding genes, as shown in Table 5.

DISCUSSION

DFU is a debilitating consequence of DM with an increasing prevalence worldwide. During the different waves of the COVID-19 pandemic, DM was increasingly diagnosed worldwide. Based on the recommendation of the International Diabetes Federation, increased care should be given to diabetic patients to avoid the devastating complications of DM. Among the hypothesized reasons contributing to the increased incidence of DFIs during the COVID-19 pandemic is the increased expression of the ACE2 receptor necessary for the entry of SARS-CoV-2.
Table 4. Resistance profile of the tested isolates to different antimicrobial agents

Name of microorganism	Total No. of Isolates	Antibiotics	% Resistance																														
Pseudomonas aeruginosa	43	AZM	132	ATM	97	IPM	132	FEP	123	CAZ	123	AMC	123	AMP	123	TZP	123	LEV	123	CN	123	AMK	123	FOX	123	MET	123	C	123	LZD	123	TE	123
Klebsiella pneumoniae	21	AZM	68	ATM	97	IPM	68	FEP	97	CAZ	97	AMC	97	AMP	97	TZP	97	LEV	97	CN	97	AMK	97	FOX	97	MET	97	C	97	LZD	97	TE	97
Proteus mirabilis	11	AZM	33	ATM	97	IPM	33	FEP	97	CAZ	97	AMC	97	AMP	97	TZP	97	LEV	97	CN	97	AMK	97	FOX	97	MET	97	C	97	LZD	97	TE	97
Escherichia coli	9	AZM	27	ATM	97	IPM	27	FEP	97	CAZ	97	AMC	97	AMP	97	TZP	97	LEV	97	CN	97	AMK	97	FOX	97	MET	97	C	97	LZD	97	TE	97
Citrobacter freundii	4	AZM	0	ATM	0	IPM	0	FEP	0	CAZ	0	AMC	0	AMP	0	TZP	0	LEV	0	CN	0	AMK	0	FOX	0	MET	0	C	0	LZD	0	TE	0
Morganella morgani	5	AZM	0	ATM	0	IPM	0	FEP	0	CAZ	0	AMC	0	AMP	0	TZP	0	LEV	0	CN	0	AMK	0	FOX	0	MET	0	C	0	LZD	0	TE	0
Staphylococcus aureus	2	AZM	0	ATM	0	IPM	0	FEP	0	CAZ	0	AMC	0	AMP	0	TZP	0	LEV	0	CN	0	AMK	0	FOX	0	MET	0	C	0	LZD	0	TE	0
Enterococcus spp.	0	AZM	0	ATM	0	IPM	0	FEP	0	CAZ	0	AMC	0	AMP	0	TZP	0	LEV	0	CN	0	AMK	0	FOX	0	MET	0	C	0	LZD	0	TE	0

in diabetic patients. Other reported reasons include the rise in blood glucose levels noted in patients receiving corticosteroids. Additionally, diabetic patients are more vulnerable to viral and bacterial infections. Other challenges contributing to the increased incidence of DFIs include a lack of sufficient resources, overworked health care workers, and a scarcity of proper care for diabetic patients to avoid the development of infections.

The present study included swab samples from 100 patients with DFUs (75 male and 25 female). Other studies have also supported the male predominance of foot ulceration and its associated complications. Culture results of the 100 specimens showed 76% monomicrobial bacterial growth, 20% polymicrobial bacterial growth, and 4% fungal growth. Hitam et al. also reported a similar percentage (28.8%) of polymicrobial infections in DFI patients. Additionally, culture results showed that the majority of isolates were gram-negative (88%) bacteria, and P. aeruginosa was the predominant microorganism isolated (43%), followed by K. pneumoniae (21%), P. mirabilis (11%), E. coli (9%), and S. marcescens (4%). Among gram-positive bacteria, S. aureus was the most common isolate. Pseudomonas spp. was regarded as the main causative agent of DFI by Hitam et al., Hatipoglu et al., Hobizal et al., and Ramakant et al. P. aeruginosa is also reported to be the most predominant causative agent for DFIs in low-resource countries. P. aeruginosa should not be regarded as a normal flora in burn wounds and diabetic foot patients. P. aeruginosa can cause extensive tissue damage in diabetic patients and result in sepsis. Additionally, S. aureus has been reported to be the most common gram-positive etiological pathogen of DFI.

Antibiotic susceptibility testing revealed that 100% of the forty-three P. aeruginosa isolates were resistant to Ampicillin, followed by Aztreonam (74%), Amikacin (72%), Levofloxacin, Gentamycin and Amoxicillin-clavulanate (69.7%), Cefoxitin (46.5%), Ceftazidime (41%), Imipenem (32.5%), and varied degrees of resistance to other antibiotics was observed. Multidrug resistance (MDR) was observed in 30 (69.7%) of the P. aeruginosa isolates. Sivanmaliappan et al. reported that 55.5% of P. aeruginosa were
multidrug resistant (MDR); 100% were resistant to ampicillin, 83.3% to piperacillin, and 66.6% to ceftazidime, gentamycin and imipenem. However, our results show that ceftazidime, imipenem, and piperacillin/tazobactam combination display higher activity as antipseudomonal agents. Banar et al.30 also stated that ceftazidime displayed high activity in \(P.\ aeruginosa \) isolates. In a study on DFI in Tanzania, resistance was noted for all commonly used antibiotics, except imipenem (100% sensitivity). This can be attributed to the fact that imipenem is expensive in low-resource countries.38 Previous reports described the increased efficacy of piperacillin-tazobactam against several virulence traits, such as adhesion, biofilm production, and flagellin production.39 The increased prevalence of MDR has been noted in different studies worldwide.30,31,40,41 This can be attributed to extensive use of antibiotics, which gives a selective advantage for survival of pathogenic bacterial strains. MDR \(P.\ aeruginosa \) guarded by biofilms that are difficult to penetrate can survive and develop more resistance.41,42

Biofilm production is the benchmark characteristic for the development of DFIs, and provides a balance between colonization and infection.25 Bacteria within biofilms produce their own matrix of extracellular polymeric substances (EPS). EPS contains glycoproteins and polysaccharides that provide protection against several environmental factors, mediate persistence in medical devices, facilitate immune system evasion, and contribute to the development of antimicrobial resistance.15,21,22 There are three major exopolysaccharides that significantly contribute to the formation and stabilization of the biofilm matrix of \(P.\ aeruginosa \). The pentasaccharide \(Psl \) is essential to promote both cell–cell and cell–surface interactions, thereby initiating biofilm formation and providing structural support to the formed biofilm. The PsID protein is encoded by the \(psID \) gene, a part of the \(psl \) operon. The \(PsID \) protein is located in the periplasm/outer membrane and contributes to the export of essential biofilm exopolysaccharides. Alginate is another important polymer that significantly stabilizes biofilm formation and provides additional protection. The synthesis of alginate protein is mediated by the \(algACD \) operon. The \(algD \) gene controls the synthesis of the alginate proteins. The \(algD \) gene controls the production of the final precursor, GDP-mannuronic acid, one of the two monomers of alginate. The pellicle operon controls the synthesis of the third major exopolysaccharide, the Pel protein, which is responsible for pellicle formation.30,31

In this context, biofilm formation was evaluated both phenotypically using the crystal violet assay, in addition to molecular detection of genes responsible for biofilm formation, \(algD \), \(psID \), and \(pelf \). Phenotypic characterization revealed that 93% (40) of the 43 \(P.\ aeruginosa \) isolates examined were biofilm producers; 53.4% (23) of \(P.\ aeruginosa \) isolates were strong biofilm producers, 23.3% (10) were moderate biofilm producers, 16.3% (7) were weak biofilm producers, and only 6.9% (3) were non-biofilm producers. Kamali et al. reported that 83.75 % of their \(P.\ aeruginosa \) isolates were biofilm producers with variable degrees of biofilm production.31 Banar et al.30 reported that out of 57 \(P.\ aeruginosa \) isolates tested 55 (96.5%) isolates were biofilm producers

Phenotypic pattern of biofilm, no. (%)	Genotypic pattern of biofilm, no. (%)	\(\chi^2 \)	FEp		
Strong 23 (53.5%)	AlgD +/pslD +/pelf +	19 (82.6%)	4 (17.4%)	0.953	0.473
Moderate 10 (23.2%)	AlgD -/pslD -/pelf -	7 (70%)	3 (30%)	0.332	0.674
Weak 7 (16.3%)		5 (71.4%)	2 (28.6%)	0.132	0.656
Non 3 (7%)		2 (66.6%)	1 (33.4%)	0.184	0.558
Total		33	10		

\(\chi^2 \): Chi-square test, FE: Fisher Exact, p: p-value for comparing between the studied groups
with variable degrees of biofilm production, and only 2 (3.5%) isolates were regarded as non-biofilm producers.

The frequency of genes encoding biofilm exopolysaccharides among the 43 P. aeruginosa isolates was as follows: algD (100%), pelf (88%) and pslD (49.7%). The present study showed a high prevalence of all three genes, algD, pslD, and pelf, in a considerable proportion of the P. aeruginosa isolates. Approximately 82.6% of the 23 strong biofilm producers showed a algD+/pslD+/pfel+ genotypic pattern, while 17.4% showed algD−/pslD−/pfel−.

Banar et al.30 also reported similar frequencies of biofilm genes: pelf (93%), pslD (54.65%), and algD (100%), with algD+/pslD+/pfel+ being the predominant genotypic pattern among their isolates. Another study by Kamali et al.31 reported that algD+/pslD+/pfel+ genotypic pattern (87.5%) was the predominant pattern among their isolates. Pournajaf et al.41 reported a frequency of 83.7% for pslD and pfel genes was 89.5% and 57.3%, respectively, in their isolates. Ghadaksaz et al.42 reported a frequency of 83.7% for pslD and 45.2% for pfel in their isolates. However, to the best of our knowledge, only a few studies have investigated the presence of biofilm-encoding genes, algD, pslD, and pfel.31

CONCLUSION

During the different waves of the COVID-19 pandemic, there has been an increased incidence of DM and DFIs. P. aeruginosa is the predominant etiological agent for DFIs. In the present study, the majority of P. aeruginosa isolates were MDR and biofilm producers. A high prevalence of biofilm-encoding genes were identified in this study, highlighting a need for inhibitors of biofilm formation to prevent the persistence of bacterial pathogens, and thereby achieve better clinical outcomes.

ACKNOWLEDGMENTS

The authors thank Pharos University in Alexandria and Medical technology centre for their technical support.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION

Both the authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

None.

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT

The study was approved by the Unit of Research Ethics Approval Committee [UREAC], Pharos University in Alexandria, Egypt.

REFERENCES

1. Rastogi A, Hiteshi P, Bhansali AA, Jude EB. Virtual triage and outcomes of diabetic foot complications during COVID-19 pandemic: A retrospective observational cohort study. PLoS One. 2021;16(5):e0251143. doi: 10.1371/journal.pone.0251143

2. Chaudhary S, Bhansali A, Rastogi A. Mortality in Asian Indians with Charcot’s neuroarthropathy: a nested cohort prospective study. Acta Diabetol. 2019;56(12):1259-1264. doi: 10.1007/s00592-019-01376-9

3. Rastogi A, Goyal G, Kesavan R, et al. Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study. Diabetes Res Clin Pract. 2020;162:108113. doi: 10.1016/j.diabres.2020.108113

4. American Diabetes Association (ADA). 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135-s151. doi: 10.2337/dc20-5011

5. Ugwuze CV, Ezeokpo BC, Nnolim BI, Agim EA, Anikpo NC, Onyekachi KE. COVID-19 and Diabetes Mellitus: The Link and Clinical Implications. Diabetes Res Clin Pract. 2020;162:108113. doi: 10.1016/j.diabres.2020.108113

6. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5

7. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125(Pt A):21-38. doi: 10.1016/j.phrs.2017.06.005

8. European Societies of Cardiology Position statement of ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. March 13, 2020 [Online] Available from: https://www.escardio.org/Councils/
Council-on-hypertension-(CHT)/News/Position statement-of the esc-council-on hypertension-on-ace inhibitors and angiotensin receptor blockers. Accessed 2020 May 16.

9. Liu C, Li Y, Guan T, et al. ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus. *Cardiovasc Diabetol.* 2018;17(1):127. doi: 10.1186/s12933-018-0773-1

10. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. *Diabet Med.* 2006;23(6):623-628. doi: 10.1111/j.1464-5491.2006.01861.x

11. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. *Am J Physiol Endocrinol Metab.* 2020;318(5):E736-e741. doi: 10.1152/ajpendo.00124.2020

12. Riddle MC, Buse JB, Franks PW, et al. COVID-19 in People With Diabetes: Urgently Needed Lessons From Early Reports. *Diabetes Care.* 2020;43(7):1378-1381. doi: 10.2337/dc20-0024

13. Boulton AJM. Diabetic Foot Disease during the COVID-19 Pandemic. *Medicina (Kaunas).* 2021;57(2):97. doi: 10.3390/medicina57020097

14. Adeleye OO, Ugwu ET, Gezawa ID, Okpe I, Ezanei I, Enamino M. Predictors of intra-hospital mortality in patients with diabetic foot ulcers in Nigeria: data from the MEDFUN study. *BMC Endor Disord.* 2020;20(1):134. doi: 10.1186/s12902-020-00614-4

15. Mutonga DM, Mureithi MW, Ngugi NN, Otieno FCF. Bacterial isolation and antibiotic susceptibility from diabetic foot ulcers in Kenya using microbiological tests and comparison with RT-PCR in detection of *S. aureus* and MRSA. *BMC Res Notes.* 2019;12(1):244. doi: 10.1186/s13104-019-4278-0

16. Mendes J, Neves J. Diabetic foot infections: current diagnosis and treatment. *J Diabet Foot Complicat.* 2012;4(2):26-45.

17. Uckay I, Gariani K, Pataky Z, Lipsky BA. Diabetic foot infections: state-of-the-art. *Diabetes Obes Metab.* 2014;16(4):305-316. doi: 10.1111/dob.12190

18. Lipsky BA, Richard JL, Lavigne JP. Diabetic foot ulcer microbiome: one small step for molecular microbiology. One giant leap for understanding diabetic foot ulcers? *Diabetes.* 2013;62(3):679-681. doi: 10.2337/db12-1325

19. Stappers MHT, Hagen F, Reimnitz P, Mouton JW, Meis JF, gysens IC. Direct molecular versus culture-based assessment of Gram-positive cocci in biopsies of patients with major abscesses and diabetic foot infections. *Eur J Clin Microbiol Infect Dis.* 2015;34(9):1885-1892. doi: 10.1007/s10096-015-2428-4

20. Messad N, Prajsnar TK, Lina G, et al. Existence of a Colonizing Staphylococcus aureus Strain Isolated in Diabetic Foot Ulcers. *Diabetes.* 2015;64(8):2991-2995. doi: 10.2337/db15-0031

21. Spichler A, Hurwitz BL, Armstrong DG, Lipsky BA. Microbiology of diabetic foot infections: from Louis Pasteur to 'crime scene investigation'. *BMC Med.* 2015;13(1):2. doi: 10.1186/s12196-014-0232-0

22. Banu A, Noorul Hassan MM, Rajkumar J, Srinivasa S. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study. *Australas Med J.* 2015;8(9):280-285. doi: 10.4066/AMJ.2015.2422

23. Shahi SK, Kumar A. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers. *Front Microbiol.* 2015;6:1464. doi: 10.3389/fmicb.2015.01464

24. Sivanmaliappan TS, Sevanan M. Antimicrobial Susceptibility Patterns of *Pseudomonas aeruginosa* from Diabetes Patients with Foot Ulcers. *Int J Microbiol.* 2011;2011:605195. doi: 10.1155/2011/605195

25. Pouget C, Dunyach-Remy C, Pantel A, Schuldiner S, Sotto A, Lavigne J-P. Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. *Microorganisms.* 2020;8(10):1580. doi: 10.3390/microorganisms8101580

26. Clinical and laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing: CLSI Supplement M100. 29th Ed. CLSI, Wayne, PA, 2019.

27. Alcaraz E, Garcia C, Papalia M, Vay C, Friedman L, de Rossi BP. *Stenotrophomonas maltophilia* isolated from patients exposed to invasive devices in a university hospital in Argentina: molecular typing, susceptibility and detection of potential virulence factors. *J Med Microbiol.* 2018;67(7):992-1002. doi: 10.1099/jmm.0.007764

28. Stepanovic S, Vukovic D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. *Apimis.* 2007;115(8):891-899. doi: 10.1111/j.1600-0463.2007.apm_630.x

29. Sambrook J, Russell D. Molecular Cloning: Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. 2001.

30. Banar M, Emaneini M, Satarzadeh M, et al. Evaluation of Mannosidase and Trypsin Enzymes Effects on Biofilm Production of *Pseudomonas aeruginosa* Isolated from Burn Wound Infections. *PLoS One.* 2016;11(10):e0164622. doi: 10.1371/journal.pone.0164622

31. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of *Pseudomonas aeruginosa*. *BMC Res Notes.* 2020;13(1):27. doi: 10.1186/s13104-020-4890-z

32. Jarl G, Alnemo J, Tranberg R, Lundqvist L-O. Gender differences in attitudes and attributes of people using diabetic foot ulcer and biofilm formation: A prospective study. *Wounds.* 2008;20(5):127-131.

33. Hitam SAS, Hassan SA, Maning N. The Significant Association between Polymicrobial Diabetic Foot Infection and Its Severity and Outcomes. *Malays J Med Sci.* 2019;26(1):107-114. doi: 10.21315/mjms2019.26.1.10
35. Hatipoglu M, Mutluoglu M, Uzun G, Karabacak E, Turhan V, Lipsky BA. The microbiologic profile of diabetic foot infections in Turkey: a 20-year systematic review: diabetic foot infections in Turkey. *Eur J Clin Microbiol Infect Dis.* 2014;33(6):871-878. doi: 10.1007/s10096-014-2047-5

36. Hobizal KB, Wukich DK. Diabetic foot infections: current concept review. *Diabet Foot Ankle.* 2012;3:18409. doi: 10.3402/dfa.v3i0.18409

37. Ramakant P, Verma AK, Misra R, et al. Changing microbiological profile of pathogenic bacteria in diabetic foot infections: time for a rethink on which empirical therapy to choose? *Diabetologia.* 2011;54(1):58-64. doi: 10.1007/s00125-010-1893-7

38. Chalya PL, Mabula JB, Dass RM, et al. Surgical management of Diabetic foot ulcers: A Tanzanian university teaching hospital experience. *BMC Res Notes.* 2011;4:365. doi: 10.1186/1756-0500-4-365

39. Zhang J, Chu Y, Wang P, et al. Clinical outcomes of multidrug resistant *Pseudomonas aeruginosa* infection and the relationship with type III secretion system in patients with diabetic foot. *Int J Low Extrem Wounds.* 2014;13(3):205-210. doi: 10.1177/1534734614545878

40. Srivastava P, Sivashanmugam K. Combinatorial Drug Therapy for Controlling *Pseudomonas aeruginosa* and Its Association With Chronic Condition of Diabetic Foot Ulcer. *Int J Low Extrem Wounds.* 2020;19(1):7-20. doi: 10.1177/1534734619873785

41. Zubair M, Malik A, Ahmad J. Clinico-microbiological study and antimicrobial drug resistance profile of diabetic foot infections in North India. *Foot (Edinb).* 2011;21(1):6-14. doi: 10.1016/j.foot.2010.10.003

42. Matta-Gutiérrez G, García-Morales E, García-Álvarez Y, Álvaro-Afonso FJ, Molines-Barroso RJ, Lázaro-Martín J. The Influence of Multidrug-Resistant Bacteria on Clinical Outcomes of Diabetic Foot Ulcers: A Systematic Review. *J Clin Med.* 2021;10(9):1948. doi: 10.3390/jcm10091948

43. Pournajaf A, Razavi S, Irjani G, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis *Pseudomonas aeruginosa* isolates. *Infez Med.* 2018;26(3):226-236. PMID: 30246765

44. Ghadaksaz A, Fooladi IAA, Mahmoodzadeh Hosseini H, Amin M. The prevalence of some *Pseudomonas* virulence genes related to biofilm formation and alginate production among clinical isolates. *J Appl Biomed.* 2015;13(1):61-68. doi: 10.1016/j.jab.2014.05.002