A report on 33 unrecorded bacterial species of Korea isolated in 2014, belonging to the class *Gammaproteobacteria*

Yeonjung Lim¹, Yochan Joung¹, Gi Gyun Nam¹, Kwang-Yeop Jahng², Seung-Bum Kim³, Ki-seong Joh⁴, Chang-Jun Cha⁵, Chi-Nam Seong⁶, Jin-Woo Bae⁷, Wan-Taek Im⁸ and Jang-Cheon Cho¹,*

¹Department of Biological Sciences, Inha University, Incheon 22212, Korea
²Department of Life Sciences, Chonbuk National University, Jeonju-si 54899, Korea
³Department of Microbiology, Chungnam National University, Daejeon 34134, Korea
⁴Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 02450, Korea
⁵Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
⁶Department of Biology, Sunchon National University, Suncheon 57922, Korea
⁷Department of Biology, Kyung Hee University, Seoul 02453, Korea
⁸Department of Biotechnology, Hankyong National University, Anseong 17546, Korea

*Correspondent: chojc@inha.ac.kr

In 2014, as a subset study to discover indigenous prokaryotic species in Korea, a total of 33 bacterial strains assigned to the class *Gammaproteobacteria* were isolated from diverse environmental samples collected from soil, tidal flat, freshwater, seawater, oil-contaminated soil, and guts of animal. From the high 16S rRNA gene sequence similarity (>98.5%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 33 species have been described in Korea; therefore, 1 strain of the Aeromonadales, 6 strains of the Alteromonadales, 3 strains of the Chromatiales, 5 strains of the Enterobacteriales, 4 strains of the Oceanospirillales, 11 strains of the Pseudomonadales, and 3 strains of the Xanthomonadales within the Gammaproteobacteria are described for unreported bacterial species in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, and isolation sources are also described in the species description section.

Keywords: 16S rRNA, bacterial diversity, Gammaproteobacteria, unreported species

© 2016 National Institute of Biological Resources
DOI:10.12651/JSR.2016.5.2.241

INTRODUCTION

The class *Gammaproteobacteria* forms the largest phylogenetic group (at least 180 genera and over 750 species) in the phylum *Proteobacteria* and members of the class show diverse metabolic pathways and phenotypes (Garrity et al., 2005; Kersters et al., 2006; Williams et al., 2010). In general, all organisms in this class are unicellular and mostly rods, and are abundant in various freshwater habitats (Kim et al., 2012a; Zhang et al., 2014; Keller-Costa et al., 2014), seawater habitats (Giovannoni et al., 1990; Cho and Giovannoni, 2004; Du et al., 2009; Yan et al., 2011; Wang et al., 2012), and guts of animal (Kersters et al., 2006; Williams et al., 2010). The class *Gammaproteobacteria* contains photosynthetic purple sulfur bacteria (Chromatiales) together with a great number of familiar chemoheterotrophic groups, such as Enterobacteriales, Legionellales, Pasteurellales, Pseudomonadales, and also some chemolithotrophic sulfur and iron-oxidizing bacteria group (Kersters et al., 2006). Based on the branching pattern in the 16S rRNA gene trees, the class *Gammaproteobacteria* has been currently divided into 16 main orders (Parte, 2014): Aeromonadales, Alteromonadales, Arenicellales, Cardiobacteriales, Chromatiales, Enterobacteriales, Legionellales, Methylococcales, Oceanospirillales, Orbales, Pasteurellales, Pseudomonadales, Salinisphaerales, Thiotrichales, Vibrionales, Xanthomonadales (Garrity et al., 2005; Kersters et al., 2006; Williams et al., 2010).

As a part of the research program of ‘The survey of Korean indigenous species’, during 2014 we collected diverse environmental samples including ginseng field
soil, mud flats, freshwater, and seawaters and isolated hundreds of novel bacterial species and unreported bacterial species in Korea. Using the bacterial strains isolated during the study of 2014 research period, we have identified the strains based on 16S rRNA gene phylogeny and found that they belonged to the classes/phyyla Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Deinococci, and Verrucomicrobia. As a subset of this study, the present report focuses on the description of bacterial species belonging to the Gammaproteobacteria that have not officially reported in Korea. Here in the present study we report 33 unreported bacterial species in Korea belonging to 12 families of 7 orders in the Gammaproteobacteria.

Materials and Methods

All bacterial strains were isolated as pure cultures by a serial streaking onto different culture media. As a result, a total of 33 bacterial strains assigned to the class Gammaproteobacteria were isolated from various environmental habitats including gut of animals, ginseng soil, soil, mud flat, oil-contaminated lakes and soil, freshwater, and seawater. Each environmental sample was processed separately, spread onto diverse culture agar media including R2A agar (BD, USA), marine agar 2216 (MA; BD, USA), tryptic soy agar (TSA; BD, USA) and nutrient agar (NA; BD, USA), and incubated at 15-37°C for 1-5 days (Table 1). All of these strains were Gram-staining-negative and rod-shaped or cocci-shaped bacteria (Fig. 1). colony morphology of the strains were observed on agar plates with a magnifying glass after the cells were cultivated to their stationary phase. Cellular morphology and cell size were examined by either transmission electron microscopy or scanning electron microscopy (Fig. 1). Gram staining was performed using a Gram-staining kit (bioMérieux) according to the manufacturer’s instructions.

Bacterial DNA extraction, PCR amplification, and 16S rRNA gene sequencing were performed using standard procedures described elsewhere. The 16S rRNA gene sequences of the strains assigned to the class Gammaproteobacteria were selected for subsequent analyses. The 16S rRNA gene sequences of gammaproteobacterial strains were compared with those of the validly-published type strains using the EzTaxon-e server (Kim et al., 2012b). The cutoff value of 98.5% sequence similarity was applied for the identification of species. For phylogenetic analyses, multiple alignments between the 16S rRNA gene sequences of the isolates and those of the valid type strains were carried out using the ClustalW program and manually checked with the EzEditor (Jeon et al., 2014). Based on the sequences aligned, phylogenetic trees were generated by using neighbor-joining method (Saitou and Nei, 1987) that is programmed in MEGA 6.0 software (Tamura et al., 2013). The robustness of the phylogenetic trees was confirmed by bootstrap analyses based on 1,000 random replications (Felsenstein, 1985).

Results and Discussion

From the diverse habitats listed in Table 1, a total of 33 bacterial strains belonging to the class Gammaproteobacteria were isolated. The taxonomic composition and identification results of the isolates are summarized in Table 1. Based on 16S rRNA gene sequences and phylogenetic analyses, these 33 strains were assigned into 7 orders of the Gammaproteobacteria: 1 strain of the Aeromonadales, 6 strains of the Alteromonadales, 3 strains of the Chromatiales, 5 strains of the Enterobacteriales, 4 strains of the Oceanospirillales, 11 strains of the Pseudomonadales, and 3 strains of the Xanthomonadales (Table 1). All of these strains were Gram-staining-negative and rod-shaped or cocci-shaped bacteria (Fig. 1). Phylogenetic trees of bacterial strains assigned into the orders Aeromonadales, Alteromonadales, and Chromatiales (Fig. 2), Enterobacteriales, Oceanospirillales, and Xanthomonadales (Fig. 3), and Pseudomonadales (Fig. 4) are shown in Fig. 2, Fig. 3, and Fig. 4, respectively.

A single strain assigned to the family Aeromonadaceae of the order Aeromonadales was identified as being a member of Aeromonas eucrenophila (Fig. 2). Six strains in the order Alteromonadales belonged to 5 separate genera of 4 families: Alteromonas (1 species), Marinobacter (2 species), Thalassotalea (1 species), Porticoccus (1 species), and Shewanella (1 species). Three strains assigned to the family Chromatiales of the order Chromatiales belonged to the genus Rheinheimera. Five strains assigned to the family Enterobacteriaceae of the order Enterobacteriales belonged to the genera Citrobacter, Kluyvera, Kosakonia, Kosakonia, and Pantoea (Fig. 3). Four strains in the order Oceanospirillales belonged to 2 genera of 2 families: Alcanivorax (3 species) and Kushneria (1 species). Three strains assigned to the family Xanthomonadaceae belonged to the genera Arenimonas, Pseudoxanthomonas, and Dyella (Fig. 3). Finally, 11 strains in the order Pseudomonadales (Fig. 4) were found to belong to 2 genera (Psychrobacter and Acinetobacter) within the Maricaellaceae and the single genus Pseudomonas (8 strains) within the family Pseudomonadaeae.

Since there is no official report that these 33 species of
Table 1. Summary of strains isolated belonging to the Gammaproteobacteria and their taxonomic affiliations.

Order	Family	Genus	Strain ID	NIBR ID	Most closely related species (Type strain of species)	Similarity (%)	Isolation source	Medium	Incubation conditions
Aeromonadales	Aeromonadaceae	Aeromonas	MD2F 12	NIBRBA00000114772	*Aeromonas eucrenophila* (CECT 4224^T)	99.92%	Fresh water	R2A	25℃, 2 days
Alteromonadales	Alteromonadaceae	Alteromonas	HMF2613	NIBRBA00000114999	*Alteromonas australica* (H 17^T)	99.80%	Sea water	MA	37℃, 2 days
		Marinobacter	HME9674	NIBRBA00000114991	*Marinobacter luteus* (JCM 11179^T)	99.30%	Sea water	MA	25℃, 3 days
Colwelliaceae	Alteromonadaceae	Alteromonas	IMCC12363	NIBRBA00000114859	*Marinobacter algicola* (DG893^T)	98.90%	Sea water	MA	15℃, 3 days
		Thalassotalea	HME9272	NIBRBA00000114987	*Thalassotalea piscium* (T202^T)	99.00%	Water	MA	25℃ 3 days
		Porticoccus	IMCC12427	NIBRBA00000114867	*Porticoccus hydrocarbonoclasticus* (MCTG13^T)	100.00%	Sea water	MA	15℃ 3 days
Shewanellaceae	Shewanella	Shewanella	61DPR3	NIBRBA00000114794	*Shewanella putrefaciens* (LMG 26268^T)	99.10%	Fresh water	R2A	25℃ 2 days
Chromatiales	Chromatiaceae	Rheinheimera	HMF2735	NIBRBA00000115001	*Rheinheimera tangshanensis* (JA3-B52^T)	99.10%	Sea water	R2A	30℃ 5 days
		Rheinheimera	MIH20	NIBRBA00000114775	*Rheinheimera arenilitoris* (J-MSI^T)	98.78%	Sea water	R2A	25℃ 2 days
		Rheinheimera	Duck L2	NIBRBA00000114823	*Rheinheimera tangshanensis* (JA3-B52^T)	98.92%	Oil-contaminated lake	R2A	25℃ 2 days
Enterobacteriales	Enterobacteriaceae	Citrobacter	WR25	NIBRBA00000114766	*Citrobacter freundii* (ATCC 8090^T)	99.43%	Fresh water	R2A	25℃ 2 days
		Kluyvera	142-3	NIBRBA00000114788	*Kluyvera ascorbata* (ATCC 33433^T)	99.10%	Fresh water	R2A	25℃ 2 days
		Kosakonia	HME8565	NIBRBA00000114985	*Kosakonia covani* (CIP 107300^T)	99.40%	Water	R2A	30℃ 3 days
		Kosakonia	HME2475	NIBRBA00000114997	*Kosakonia sacchari* (SP^T)	99.70%	Water	R2A	25℃ 3 days
		Pantoea	HMF2842	NIBRBA00000115006	*Pantoea vagans* (LMG 24199^T)	99.60%	Sediment	R2A	30℃ 3 days
Oceanospirillae	Alcanivoracaceae	Alcanivorax	IMCC12288	NIBRBA00000114857	*Alcanivorax dieselolei* (B-5^T)	99.50%	Sea water	MA	15℃ 5 days
		Alcanivorax	IMCC12379	NIBRBA00000114861	*Alcanivorax marinus* (R8-12^T)	100.00%	Sea water	MA	15℃ 5 days
		Alcanivorax	IMCC12398	NIBRBA00000114865	*Alcanivorax venustensis* (ISO4^T)	100.00%	Sea water	MA	15℃ 5 days
		Halomonadaceae	ET2115	NIBRBA00000114951	*Kushneria marisflavi* (SW32^T)	98.63%	Gut of *Eumicrotremus asperninus*	TSA	25℃ 3 days
Pseudomonadales	Moraxellaceae	Psychrobacter	ET131	NIBRBA00000114934	*Psychrobacter cephei* (SW-238^T)	98.51%	Gut of *Eumicrotremus asperninus*	TSA	25℃ 3 days
		Psychrobacter	BM06	NIBRBA00000114949	*Psychrobacter arcticus* (273-4^T)	98.67%	Gut of *Anadara granosa*	MA	25℃ 3 days
		Acinetobacter	I45-5	NIBRBA00000114785	*Acinetobacter baumannii* (DSM 14964^T)	100.00%	Fresh water	TSA	25℃ 2 days
Pseudomonadales	Pseudomonas	HMF2483	NIBRBA00000114998	*Pseudomonas tolaasii* (ATCC 33618^T)	99.70%	Soil	TSA	30℃ 1 day	
Description of *Aeromonas eucrenophila* MD2F 12

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and white colored after 2 days of incubation on R2A at 25°C. Positive for urease in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, esculin hydrolysis, gelatinase and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain MD2F 12 (= NIBRBA0000114772) was isolated from a freshwater sample, Jeonju, Korea.

Description of *Alteromonas australica* HMF2613

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and entire, and beige colored after 2 days of incubation on MA at 37°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain HMF2613 (= NIBRBA0000114999) was isolated from a seawater sample, Gangneung, Korea.

Description of *Thalassotalea piscium* HME9272

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and entire, and yellowish-white colored after 3 days of incubation on MA at 25°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain HME9272 (= NIBRBA0000114999) was isolated from a seawater sample, Gyeongpo-ho, Korea.

Description of *Marinobacter lutaoensis* HME9674

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and entire, and beige-colored after 3 days of incubation on MA at 25°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetylglucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain HME9674 (= NIBRBA0000114987) was isolated from a seawater sample, Gyeongpo-ho, Korea.
20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Capric acid and adipic acid are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate and phenylacetic acid. Strain HME9674 (= NIBRA0000114991) was isolated from a seawater sample, Gyeongpo-ho in Korea.

Description of Marinobacter algicola IMCC12363

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular and convex, and cream colored after 3 days of incubation on MA at 15°C. Positive for nitrate reduction in API 20NE,
but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate and malic acid are utilized. Does not utilize capric acid, adipic acid, trisodium citrate and phenylacetic acid. Strain IMCC12363 (= NIBRBA0000114794) was isolated from a seawater sample, Sokcho, Korea.

Description of Porticoccus hydrocarbonoclasticus

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular and convex, and cream colored after 3 days of incubation on MA at 15°C. Positive for nitrate reduction and β-galactosidase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis and gelatinase. D-Mannose, N-acetyl-glucosamine and D-maltose are utilized. Does not utilize L-glucose, L-arabinose, D-mannitol, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain IMCC12427 (= NIBRBA0000114867) was isolated from a seawater sample, Sokcho, Korea.

Description of Porticoccus hydrocarbonoclasticus

Cells are Gram-staining-negative, flagellated, non-pig-
mented, and rod-shaped. Colonies are circular, smooth and flat, and bright brown colored after incubation on R2A at 25°C. Positive for esculin hydrolysis in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, gelatinase and β-galactosidase. Malic acid is utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, trisodium citrate and phenylacetic acid. Strain 61DPR3 (= NBRBA0000114794) was isolated from a fresh water sample, Daejeon, Korea.

Description of Rheinheimera tangshanensis HMF2735

Cells are Gram-staining-negative, flagellated, non-pig-

Fig. 3. Neighbor-joining phylogenetic tree, based on 16S rRNA gene sequences, showing the phylogenetic relationship between the strains isolated in this study and their relatives of the order Enterobacteriales, Oceanospirillales and Xanthomonadales in the class Gammaproteobacteria. Sphingopyxis macrogoltabida IFO 15033T (D13723) was used as an outgroup. Bootstrap values (>70%) are shown above nodes for the neighbor-joining. Scale bar: 0.02 changes per nucleotide.
mented, and rod-shaped. Colonies are circular, raised and entire, and beige colored after 5 days of incubation on R2A at 30°C. Positive for nitrate reduction, arginine dihydrolase and gelatinase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Capric acid is utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain HMF2735 (= NIBRBA 0000114988) was isolated from a seawater sample, Gangneung, Korea. The 16S rRNA gene sequence accession number is KP196826.

Description of Rheinheimera arenilitoris MIH20

Cells are Gram-staining-negative, non-flagellated, non-

![Fig. 4. Neighbor-joining phylogenetic tree, based on 16S rRNA gene sequences, showing the phylogenetic relationship between the strains isolated in this study and their relatives of the order Pseudomonadales in the class Gammaproteobacteria, Sphingopyxis macrofotatibida IFO 15033 (D13723) was used as an outgroup. Bootstrap values (>70%) are shown above nodes for the neighbor-joining. Scale bar: 0.02 changes per nucleotide.](image-url)
pigmented, and rod-shaped. Colonies are circular, raised and entire, and brown colored after 2 days of incubation on R2A at 25°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-Glucose, D-mannitol and potassium gluconate are utilized. Does not utilize L-arabinose, D-mannose, N-acetyl-glucosamine, D-maltose, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain MIH20 (= NIBRBA0000114775) was isolated from a seawater sample, Marado, Korea.

Description of *Rheinheimera tangshanensis* Duck L2

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are wrinkled and convex, and wavy white colored after 2 days of incubation on R2A at 25°C. Positive for esculin hydrolysis, gelatinase and β-galactosidase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease and β-galactosidase. D-Glucose, L-arabinose, D-mannose, N-acetyl-glucosamine, D-maltose and malic acid are utilized. Does not utilize D-mannitol, potassium gluconate, capric acid, adipic acid, trisodium citrate and phenylacetic acid. Strain Duck L2 (= NIBRBA0000114823) was isolated from an oil-contaminated lake sample, Daejeon, Korea.

Description of *Citrobacter freundii* WR25

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and white colored after 2 days of incubation on R2A at 25°C. Positive for urease and gelatinase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, esculin hydrolysis and β-galactosidase. D-Mannitol, potassium gluconate, adipic acid, malic acid and phenylacetic acid are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, N-acetyl-glucosamine, D-maltose, capric acid and trisodium citrate. Strain WR25 (= NIBRBA0000114766) was isolated from a freshwater sample, Jeonju, Korea.

Description of *Kluyvera ascorbata* 142-3

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and cream colored after 2 days of incubation on TSA at 25°C. Positive for nitrate reduction, esculin hydrolysis and β-galactosidase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease and gelatinase. D-Glucose, D-mannose, D-mannitol, potassium gluconate and adipic acid are utilized. Does not utilize L-arabinose, N-acetyl-glucosamine, D-maltose, capric acid, malic acid, trisodium citrate and phenylacetic acid. Strain 142-3 (= NIBRBA0000114788) was isolated from a freshwater sample, Cheongsong, Korea.

Description of *Kosakonia cowanii* HME8565

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and entire, and cream colored after 3 days of incubation on R2A at 30°C. Positive for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis and β-galactosidase in API 20NE, but negative for arginine dihydrolase, urease and gelatinase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize capric acid and adipic acid. Strain HME8565 (= NIBRBA0000114985) was isolated from a freshwater sample, Yongin, Korea.

Description of *Kosakonia sacchari* HMF2475

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and entire, and beige colored after 3 days of incubation on R2A at 25°C. Positive for nitrate reduction, esculin hydrolysis and β-galactosidase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease and gelatinase. Adipic acid is utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid. Strain HMF2475 (= NIBRBA0000114997) was isolated from a freshwater sample, Yongin, Korea.

Description of *Pantoea vagans* HMF2842

Cells are Gram-staining-negative, flagellated, non-pigmented, and short rod-shaped. Colonies are circular, convex and entire, and beige colored after 3 days of incubation on R2A at 30°C. Positive for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis and β-galactosidase. Capric acid, adipic acid, malic acid and trisodium citrate are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate and phenylacetic acid. Strain HMF2842 (= NIBRBA0000115006) was isolated from a sediment sample, Taebaek, Korea.

Description of *Alcanivorax dieselolei* IMCC12288

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and short rod-shaped. Colonies are circular,
convex and opacity, and cream colored after 5 days of incubation on MA at 15°C. Positive for nitrate reduction and arginine dihydrolase in API 20NE, but negative for indole production, glucose fermentation, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-Maltose and adipic acid are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid. Strain IMCC12288 (NIBRBA0000114857) was isolated from a seawater sample, Sokcho, Korea.

Description of Alcanivorax marinus IMCC12372

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, convex and opaque, and white colored after 3 days of incubation on MA at 15°C. Positive for gelatinase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain IMCC12372 (NIBRBA0000114861) was isolated from a seawater sample, Sokcho, Korea.

Description of Alcanivorax venustensis IMCC12398

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are punctiform, convex and dry, and white colored after 3 days of incubation on MA at 15°C. Positive for nitrate reduction, esculin hydrolysis and gelatinase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease and β-galactosidase. N-Acetyl-glucosamine, D-maltose and malic acid are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, potassium gluconate, capric acid, adipic acid, trisodium citrate and phenylacetic acid. Strain IMCC12398 (NIBRBA0000114865) was isolated from a seawater sample, Sokcho, Korea.

Description of Kushneria marisflavi ET2115

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, and orange-yellow colored after 3 days of incubation on TSA at 25°C. Negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase in API 20NE. Capric acid, malic acid and trisodium citrate are utilized. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, adic acid and phenylacetic acid. Strain ET2115 (NIBRBA0000114951) was isolated from gut of Eumicrotremus asperrimus.

Description of Psychrobacter celer ET131

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and cocci-shaped. Colonies are circular, and cream colored after 3 days of incubation on TSA at 25°C. Positive for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, esculin hydrolysis, gelatinase and β-galactosidase in API 20NE, but negative for urease. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize adipic acid. Strain ET131 (NIBRBA0000114934) was isolated from gut of Eumicrotremus asperrimus.

Description of Psychrobacter arcticus BM06

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and cocci-shaped. Colonies are circular, and cream colored after 3 days of incubation on MA at 25°C. Positive for nitrate reduction and arginine dihydrolase in API 20NE, but negative for indole production, glucose fermentation, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-Glucose, D-mannose, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize L-arabinose, D-mannitol, D-maltose and adipic acid. Strain BM06 (NIBRBA0000114949) was isolated from gut of Anadara granosa.

Description of Acinetobacter bouvetii 145-5

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and cream colored after 2 days of incubation on TSA at 25°C. Positive for nitrate reduction, glucose fermentation, esculin hydrolysis and β-galactosidase in API 20NE, but negative for indole production, arginine dihydrolase, urease and gelatinase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize capric acid, adipic acid and phenylacetic acid. Strain 145-5 (NIBRBA0000114785) was isolated from freshwater, Cheongsong, Korea.

Description of Pseudomonas tolaasii HMF2483

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and beige colored after 1 day of incubation on TSA at 30°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, ar-
ginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adipic acid, malic acid, trisodium citrate and phenylacetic acid. Strain HMF2483 (= NIBRBA0000114998) was isolated from soil, Yongin, Korea.

Description of Pseudomonas mohnii HMF2783

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular, raised and entire, and beige colored after 3 days of incubation on R2A at 30°C. Positive for nitrate reduction in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-Glucose, L-arabinose, D-mannose, D-mannitol, potassium gluconate, capric acid, adipic acid, malic acid and trisodium citrate are utilized. Does not utilize N-acetyl-glucosamine, D-maltose and phenylacetic acid. Strain HMF2783 (= NIBRBA0000115003) was isolated from sediment, Taebaek, Korea.

Description of Pseudomonas migulae R1-18

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are slightly irregular, smooth and glistening, and white colored on R2A at 30°C. Positive for arginine dihydrolase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis, gelatinase and β-galactosidase. D-Glucose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid and trisodium citrate are utilized. Does not utilize L-arabinose, D-maltose, adipic acid and phenylacetic acid. Strain R1-18 (= NIBRBA0000114815) was isolated from soil, Daejeon, Korea.

Description of Pseudomonas entomophila KM2-7

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular and raised, and transparent weak yellow colored after 2 days on R2A at 25°C. Positive for nitrate reduction, esculin hydrolysis and β-galactosidase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease and gelatinase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize adipic acid. Strain KM2-7 (= NIBRBA0000114822) was isolated from oil-contaminated soil, Daejeon, Korea.

Description of Pseudomonas azotoformans SRYB1

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are circular and raised, and white colored after 2 days on R2A at 25°C. Positive for esculin hydrolysis in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, arginine dihydrolase, urease, gelatinase and β-galactosidase. D-Glucose, D-mannose, D-mannitol, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize L-arabinose, N-acetyl-glucosamine, D-maltose, capric acid, adipic acid and phenylacetic acid. Strain SRYB1 (= NIBRBA0000114777) was isolated from freshwater, Jeonju, Korea.

Description of Pseudomonas alcaligenes B2-2

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are irregular, undulate and raised, and white colored after 2 days on R2A at 30°C. Positive for arginine dihydrolase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, urease, esculin hydrolysis, gelatinase and β-galactosidase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize D-maltose and adipic acid. Strain B2-2 (= NIBRBA0000114881) was isolated from ginseng soil, Anseong, Korea.

Description of Pseudomonas seleniipraecipitans B11-1

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are irregular, undulate and raised, and white colored after 2 days on R2A at 30°C. Positive for arginine dihydrolase, urease and gelatinase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation, esculin hydrolysis and β-galactosidase. D-Glucose, D-mannose, D-mannitol, N-acetyl-glucosamine, potassium gluconate, capric acid, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize L-arabinose, D-mannitol, N-acetyl-glucosamine, D-maltose and adipic acid. Strain B11-1 (= NIBRBA0000114882) was isolated from flat sediment, Jebu island, Korea.

Description of Pseudomonas marincola B11-2

Cells are Gram-staining-negative, flagellated, non-pigmented, and rod-shaped. Colonies are irregular, undulate and raised, and yellow colored after 2 days on R2A at 30°C. Positive for urease, esculin hydrolysis, gelatinase and β-galactosidase in API 20NE, but negative for nitrate reduction, indole production, glucose fermentation and arginine dihydrolase. Does not utilize D-glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, capric acid, adi-
pic acid, malic acid, trisodium citrate and phenylacetic acid. Strain B11-2 (= NIBRBA0000114883) was isolated from flat sediment, Jeju island, Korea.

Description of Arenimonas aquaticum WS26

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, round and convex, and pale yellow colored after 2 days on R2A at 30 °C. Positive for nitrate reduction, esculin hydrolysis and gelatinase in API 20NE, but negative for indole production, glucose fermentation, arginine dihydrolase, urease and β-galactosidase. D-Glucose, D-maltose, potassium gluconate and adipic acid are utilized. Does not utilize L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, capric acid, malic acid, trisodium citrate and phenylacetic acid. Strain WS26 (= NIBRBA0000115014) was isolated from a freshwater sample, Upo-wetland, Korea.

Description of Pseudoxanthomonas japonensis RK 6Y-4-1

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped. Colonies are circular, entire and raised, and pale yellow colored after 2 days on R2A at 30 °C. Positive for nitrate reduction, glucose fermentation, urease and β-galactosidase in API 20NE, but negative for indole production, arginine dihydrolase, esculin hydrolysis and gelatinase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid, trisodium citrate and phenylacetic acid are utilized. Does not utilize capric acid and adipic acid. Strain RK 6Y-4-1 (= NIBRBA0000114892) was isolated from ginseng soil, Anseong, Korea.

Description of Dyella japonica N1-1

Cells are Gram-staining-negative, non-flagellated, non-pigmented, and rod-shaped after 2 days on NA at 30°C. Positive for nitrate reduction, glucose fermentation, arginine dihydrolase, esculin hydrolysis and β-galactosidase in API 20NE, but negative for indole production, urease and gelatinase. D-Glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-glucosamine, D-maltose, potassium gluconate, malic acid and trisodium citrate are utilized. Does not utilize capric acid, adipic acid and phenylacetic acid. Strain N1-1 (= NIBRBA0000114810) was isolated from soil, Daejeon, Korea.

Acknowledgements

This study was supported by the research grant “The Survey of Korean Indigenous Species” from the National Institute of Biological Resources of the Ministry of Environment in Korea.

References

Cho, J.C. and S.J. Giovannoni. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70: 432-440.

Du, Z., D. Zhang, S. Liu, J. Chen, X. Tian, Z. Zhang, H. Liu and G. Chen. 2009. Gilvimarinus chinensis gen. nov., sp. nov., an agar-digesting marine bacterium within the class Gammaproteobacteria isolated from coastal seawater in Qingdao, China. Int. J. Syst. Evol. Microbiol. 59:2987-2990.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Garrity, G., D. Brenner, N. Krieg and J. Staley. 2005. Bergey’s Manual of Systematic Bacteriology. Volume 2 (The Proteobacteria), part B (The Gammaproteobacteria). New York: Springer.

Giovannoni, S.J., E.F. DeLong, T.M. Schmidt and N.R. Pace. 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 56:2572-2575.

Jeon, Y., K. Lee, S. Park, B. Kim, Y. Cho, S. Ha and J. Chun. 2014. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64:689-691.

Keller-Costa, T., A. Jousset, L. van Overbeek, J.D. van Elsas and R. Costa. 2014. The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLoS One 9: e88429.

Kersters, K., P. De V os, M. Gillis, J. Swings, P. Vandamme and E. Stackebrandt. 2006. Introduction to the Proteobacteria. In The prokaryotes, pp. 3-37. Springer.

Kim, A., S. Lee, K. Han and T. Ahn. 2012a. Arenimonas aquaticum sp. nov., a member of the Gammaproteobacterium, isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 50:354-358.

Kim, O., Y. Cho, K. Lee, S. Yoon, M. Kim, H. Na, S. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012b. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylogenotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716-721.

Parte, A.C. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42:D613-6.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Ku-
mar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
Wang, Y., H.F. Sheng, Y. He, J.Y. Wu, Y.X. Jiang, N.F. Tam, and H.W. Zhou. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78:8264-8271.
Williams, K.P., J.J. Gillespie, B.W. Sobral, E.K. Nordberg, E.E. Snyder, J.M. Shallom and A.W. Dickerman. 2010. Phylogeny of Gammaproteobacteria. J. Bacteriol. 192: 2305-2314.
Yan, S., M. Yu, Y. Wang, C. Shen and X. Zhang. 2011. Catenovulum agarivorans gen. nov., sp. nov., a peritrichously flagellated, chain-forming, agar-hydrolysing gammaproteobacterium from seawater. Int. J. Syst. Evol. Microbiol. 61:2866-2873.
Zhang, J., X. Zhang, Y. Liu, S. Xie and Y. Liu. 2014. Bacterioplankton communities in a high-altitude freshwater wetland. Ann. Microbiol. 64:1405-1411.