JESUS ARAUJO
ALAIN ESCASSUT

p-adic analytic interpolation

Annales mathématiques Blaise Pascal, tome 2, n° 1 (1995), p. 29-41

<http://www.numdam.org/item?id=AMBP_1995__2_1_29_0>
Abstract. Let K be a complete ultrametric algebraically closed field. We study the Kernel of infinite van der Monde Matrices and show close connections with the zeroes of analytic functions. We study when such a matrix is invertible. Finally we use these results to obtain interpolation processes for analytic functions. They are more accurate if K is spherically complete.

1991 Mathematics subject classification: 46S10

1. NOTATIONS, DEFINITIONS AND THEOREMS

K denotes an algebraically closed field complete for an ultrametric absolute value. Given $a \in K$, $r > 0$, we denote by $d(a, r)$ (resp. $d(a, r^-)$) the disk $\{x \in K : |x - a| \leq r\}$ (resp. $\{x \in K : |x - a| < r\}$). Given $r > 0$ we denote by $C(0, r)$ the circle $d(0, r) \setminus d(0, r^-)$.

Given $r_1, r_2 \in \mathbb{R}_+$ such that $0 < r_1 < r_2$, we denote by $\Gamma(0, r_1, r_2)$ the set $d(0, r_2^-) \setminus d(0, r_1)$.

Given $r > 0$, we denote by $A(d(0, r^-))$ the algebra of the power series $\sum_{n=0}^{\infty} b_n x^n$ converging for $|x| < r$.

Given K-vector spaces E, F, $\mathcal{L}(E, F)$ will denote the space of the K-linear mappings from E into F.

\mathcal{E} will denote the K-vector space of the sequences in K, and \mathcal{E}_0 will denote the subspace of the bounded sequences. The identically zero sequence will be denoted by (0).

\mathcal{E}_1 will denote the set of the sequences (a_n) such that $\limsup_{n \to \infty} \sqrt[n]{|a_n|} \leq 1$. So \mathcal{E}_1 is seen to be a subspace of \mathcal{E} isomorphic to the space $A(d(0, 1^-))$, and obviously contains \mathcal{E}_0.

Let M_∞ be the set of the infinite matrices $(\lambda_{i,j})$ with coefficients in K.

$\delta_{i,j}$ will denote the Kronecker symbol. I_∞ will denote the infinite identical matrix defined as $\lambda_{i,j} = \delta_{i,j}$.

* Research partially supported by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PS90-100)
In this paper, \((a_n)\) will denote an injective sequence in \(d(0,1^-)\) such that \(a_n \neq 0\) for every \(n > 0\). and we will denote by \(M(a_n)\) the infinite matrix \(M = (\lambda_{i,j})\) defined as
\[
\lambda_{i,j} = (a_i)^j, \quad (i,j) \in \mathbb{N} \times \mathbb{N}.
\]
A matrix \(M = (\lambda_{i,j}) \in M_\infty\) will be said to be \textit{bounded} if there exists \(A \in \mathbb{R}_+\) such that \(|\lambda_{i,j}| \leq A\) whenever \((i,j) \in \mathbb{N} \times \mathbb{N}\).

\(M\) will be said to be \textit{line-vanishing} if for each \(i \in \mathbb{N}\), we have \(\lim_{j \to \infty} \lambda_{i,j} = 0\).

A line-vanishing matrix \(M\) is seen to define a \(K\)-linear mapping \(\psi_M\) from \(E_0\) into \(E\).

So the matrix \(M = M(a_n)\) clearly defines a \(K\)-linear mapping \(\psi_M\) from \(E_1\) into \(E\), because given a sequence \((b_n) \in E_1\), the series \(\sum_{n=0}^{\infty} b_n(a_j)^n\) is obviously convergent.

Lemmas 1 and 2 are immediate:

Lemma 1: Let \(M \in M_\infty\) be line vanishing.

The three following statements are equivalent:

- \(\psi_M\) is continuous
- \(\psi_M\) is an endomorphism of \(E_0\)
- \(M\) is bounded.

In particular, Lemma 1 applies to matrices of the form \(M(a_n)\).

Lemma 2: Let \(M = M(a_n)\) and let \((b_n) \in E_1\). Then \((b_n)\) belongs to \(\text{Ker} \phi_M\) if and only if the analytic function \(f(t) = \sum_{n=0}^{\infty} b_n t^n\) admits each point \(a_j\) for zero.

Theorem 1: Let \(M = M(a_n)\). Then \(\text{Ker} \phi_M \neq \{(0)\}\) if and only if \(\lim_{n \to \infty} |a_n| = 1\).

Besides \(\text{Ker} \psi_M \neq \{(0)\}\) if and only if \(\prod_{n=0}^{\infty} |a_n| > 0\).

Theorem 2: Let \(b = (b_n) \in E_0\). There exists an injective sequence \((a_n)\) in \(d(0,1^-)\) such that \(b \in \text{Ker} \psi_{M(a_n)}\) if and only if \(b\) satisfies \(|b_j| < \sup_{n \in \mathbb{N}} |b_n|\) for all \(j \in \mathbb{N}\).

Definitions and notations: An injective sequence \((a_n)\) in \(d(0,1^-)\) will be called a \textit{regular sequence} if \(\inf_{n \neq m} |a_n - a_m| > 0\) and \(\lim_{n \to \infty} |a_n| = 1\).

Let \((a_n)\) be a regular sequence and let \(\rho = \inf_{n \neq m} |a_n - a_m|\). For every \(r \in]0,1[,\) we will denote by \(\Omega((a_n), r)\) the set \(d(0,1^-) \setminus \left(\bigcup_{n \in \mathbb{N}} d(a_n, r^-) \right)\), and by \(\Omega(a_n)\) the set \(d(0,1^-) \setminus \left(\bigcup_{n \in \mathbb{N}} d(a_n, \rho^-) \right)\).
Let \(a = (a_n) \) and \(b = (b_n) \) be two sequences in \(K \). We will denote by \(a \ast b \) the convolution product \((c_n) \) defined as \(c_n = \sum_{j=0}^{n} a_j b_{n-j} \).

Theorem 3: Let \((\alpha_n) \) be a regular sequence of \(d(0,1^-) \) such that there exists \(g \in A(d(0,1^-)) \) satisfying

(i) \(\alpha_n \) is a zero of order 1 of \(g \) for all \(n \in \mathbb{N} \).
(ii) \(g(x) \neq 0 \) whenever \(x \in d(0,1^-) \) \(\backslash \{ \alpha_n : n \in \mathbb{N} \} \).
(iii) \(\lim_{x \to 0, x \in \partial d(\alpha_n)} |g(x)| = +\infty \).

Let \(M = M(\alpha_n) \). Then \(\psi_M \) is injective but its image does not contain \(\mathcal{E}_0 \). Also there exists \(P = (\lambda_{i,j}) \in \mathcal{M}_\infty \) (not unique) satisfying

(1) \(P \) is line-vanishing.
(2) \(\lim_{n \to \infty} \lambda_{n,j} \alpha_h^n = 0 \) for all \((j, h) \in \mathbb{N} \times \mathbb{N} \).
(3) \(\sum_{n=0}^{\infty} \lambda_{n,j} \alpha_h^n = \delta_{j,h} \) for all \((j, h) \in \mathbb{N} \times \mathbb{N} \).
(4) \(MP = PM = I_\infty \).
(5) \(P(b) \in \mathcal{E}_1 \) for all \(b \in \mathcal{E}_0 \).
(6) \(MP(b) = b \) for all \(b \in \mathcal{E}_0 \).
(7) \(\psi_P \) is injective.

Let \((\nu_n) \) be a sequence in \(K \) such that \(|\nu_0| \geq |\nu_n| \) for every \(n > 0 \). For every \(j \in \mathbb{N} \), let

\((\mu_{n,j})_{n \in \mathbb{N}} \) denote the sequence \(\left(\frac{1}{\sum_{m=0}^{\infty} \nu_m \alpha_j^m} \right) ((\lambda_{n,j} \ast (\nu_n)) \). Then the matrix \(Q = (\mu_{i,j}) \) also satisfies properties (1) – (7) and is not equal to \(P \) for infinitely many sequences \((\nu_n) \).

Remarks. 1. Mainly, the proof of Theorem 3 takes inspiration from that of Lemma 3 in [7]. However, in this lemma, the considered matrix, roughly, was \(P \). Here the matrix we consider is a van der Monde matrix \(M \) and we look for \(P \).

2. Given \(M \), the matrix \(P \) depends on \(g \) and therefore is not unique satisfying (1) – (7). Indeed \(\mathcal{M}_\infty \) is not a ring because the multiplication of matrices is not always defined and even when it is defined, is not always associative. As a consequence, if \(P, P' \) satisfy \(MP = MP' = PM = P'M = I_\infty \), we cannot conclude \(P' = P \).

Actually we can consider \(\phi_M \circ \psi_P \in \mathcal{L}(\mathcal{E}_0, \mathcal{E}) \) and then this is the identity in \(\mathcal{E}_0 \). Next we can consider \(\psi_P \circ \psi_M \in \mathcal{L}(\mathcal{E}_0, \mathcal{E}_1) \) and this is the identity in \(\mathcal{E}_0 \). But we cannot consider \(\psi_P \circ (\phi_M \circ \psi_P) \) because \(\psi_P \) is not defined in \(\mathcal{E}_1 \). In the same way, we cannot consider \((\psi_P \circ \psi_M) \circ \psi_P \) because \(\psi_P \circ \psi_M \) is only defined in \(\mathcal{E}_0 \).

We consider the matrix \(P \) and look for "inverses" \(M \) such that \(MP = PM = I_\infty \). Suppose that there exists a bounded matrix \(M' \neq M \) such that \(PM' = M'P = I_\infty \). Now we can consider \(\phi_{M'} \circ (\psi_P \circ \psi_M) \in \mathcal{L}(\mathcal{E}_0, \mathcal{E}) \). Since \(\psi_P \circ \psi_M \) is the identity in \(\mathcal{E}_0 \), then \(\phi_{M'} \circ (\psi_P \circ \psi_M) \) is equal to \(\psi_{M'} \). Next we can consider \((\phi_{M'} \circ \psi_P) \circ \psi_M \in \mathcal{L}(\mathcal{E}_0, \mathcal{E}) \). Since
\(\phi_{M'} \circ \psi_P \) is the identity on \(\mathcal{E}_0 \), we have \((\phi_{M'} \circ \psi_P) \circ \psi_M = \psi_M \) and therefore \(\psi_M = \psi_{M'} \), hence \(M = M' \).

3. Let \(P, Q \in \mathcal{M}_\infty \) satisfy (1) – (7). Let \(\mathcal{E}' = \psi_P(\mathcal{E}_0) \), let \(\mathcal{E}'' = \psi_Q(\mathcal{E}_0) \). Then the restriction of \(\phi_M \) to \(\mathcal{E}' \) (resp. \(\mathcal{E}'' \)) is just the reciprocal of \(\psi_P \) (resp. \(\psi_Q \)).

Conjecture. Under the hypothesis of Theorem 1, every matrix satisfying properties (1) – (7) is of the form

\[
\mu_{n,j} = \left(\frac{1}{\sum_{m=0}^{\infty} \nu_m \alpha_{n,m}^j} \right) ((\lambda_n, \nu_n))
\]

Theorem 4: Let \(K \) be spherically complete, and let \((\alpha_n) \) be a sequence in \(d(0,1^-) \) satisfying \(|\alpha_n - \alpha_m| \geq \min(|\alpha_n|,|\alpha_m|) \) whenever \(n \neq m \), \(\lim_{n \to -\infty} |\alpha_n| = 1 \), and \(\prod_{n=0}^{\infty} |\alpha_n| = 0 \).

Then \(\mathcal{M}(\alpha_n) \) admits inverses \(P \) such that, for every bounded sequence \(b := (b_n) \) in \(K \), the sequence \(a := (a_n) = P(b) \) defines a function \(f(x) = \sum_{n=0}^{\infty} a_n x^n \in A(d(0,1^-)) \) satisfying \(f(\alpha_n) = b_n \).

Theorem 5: Let \((\alpha_n) \) be a regular sequence in \(d(0,1^-) \). There exists a regular sequence \((\gamma_n) \in d(0,1^-) \) such that \((\alpha_n) \) is a subsequence of \((\gamma_n) \) satisfying: for every inverse matrix \(P \) of \(\mathcal{M}(\gamma_n) \) and for every bounded sequence \(b = (b_n) \) of \(K \), the sequence \(a = P(b) := (a_n) \) defines an analytic function \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) such that \(f(\gamma_j) = b_j \) whenever \(j \in \mathbb{N} \).

2. **PROVING THEOREMS 1 AND 2.**

For each set \(D \) in \(K \), we denote by \(H(D) \) the set of the analytic elements in \(D \) (i.e., the completion of the set of the rational functions with no pole in \(D \)).

Given \(f(t) = \sum_{n=0}^{\infty} b_n t^n \in A(d(0,1^-)) \), one defines the valuation function \(v(f,\mu) \) in the interval \(]0, +\infty[\) as \(v(f,\mu) = \inf_{n \in \mathbb{N}} (v(b_n) + n\mu) \).

Lemma 3 Let \(f(t) = \sum_{n=0}^{\infty} b_n t^n \in A(d(0,1^-)) \). For every \(\mu > 0 \), \(f \) satisfies

\[
v(f,\mu) = \lim_{v(t) \to \mu, v(t) \neq \mu} v(f(t)). \text{ For every } x \in d(0,1^-), \text{ } f \text{ satisfies } v(f(x)) \geq v(f, v(x)).
\]

Lemma 4 For every \(r \in]0,1[\), \(f \) satisfies \(-\log \|f\|_{d(0,r)} = v(f, -\log r) \).

Besides \(f \) is bounded in \(d(0,1^-) \) if and only if the sequence \((b_n) \) belongs to \(\mathcal{E}_0 \). If \(f \) is bounded in \(d(0,1^-) \), then \(\|f\|_{d(0,1^-)} = \sup_{n \in \mathbb{N}} |b_n| \) and \(-\log \|f\|_{d(0,1^-)} = \lim_{\mu \to 0} v(f,\mu) \).
Lemma 4: Let $f(t) \in A(d(0,1^-))$ and let $r_1, r_2 \in (0,1)$ satisfy $r_1 < r_2$. If f admits q zeros in $d(0,r_1)$ (taking multiplicities into account) and t distinct zeros $\alpha_1, \ldots, \alpha_t$, of multiplicity order ζ_j $(1 \leq j \leq t)$ respectively in $\Gamma(0, r_1, r_2)$, then f satisfies

$$v(f, -\log r_2) - v(f, -\log r_1) = -\sum_{j=1}^{t} \zeta_j (v(a_j) + \log r_2) - q(\log r_2 - \log r_1).$$

Proof of Theorem 1. Let $b = (b_n) \in \mathcal{E}_1 \backslash \{(0)\}$ and let $f(t) = \sum_{n=0}^{\infty} b_n t^n \in A(d(0,1^-))$.

First we suppose $\ker \phi_M \neq \{(0)\}$ and therefore we can assume $b \in \ker \phi_M$. Then, by Lemma 2, f satisfies $f(\alpha_j) = 0$ for every $j \in \mathbb{N}$. But for every $r \in]0,1[\), we know that f belongs to $H(d(0,r))$ and has finitely many zeros in $d(0,r)$. Hence we have $\lim_{n \to \infty} |a_n| = 1$.

Reciprocally, let the sequence (a_n) satisfy $\lim_{n \to \infty} |a_n| = 1$. By Proposition 5 in [4], we know that there exists a not identically zero analytic function $f(t) = \sum_{n=0}^{\infty} b_n t^n \in A(d(0,1^-))$ which admits each α_j as a zero. Hence we have $\sum_{n=0}^{\infty} b_n a_j^n = 0$, and of course the sequence (b_n) belongs to \mathcal{E}_1, hence to $\ker \phi_M$.

Now we suppose that $\ker \psi_M \neq (0)$ and we assume that the sequence (b_n) belongs to $\ker \psi_M$. In particular $\ker \phi_M \neq (0)$ and therefore $\lim_{n \to \infty} |a_n| = 1$. Without loss of generality we may clearly assume $|a_n| \leq |a_{n+1}|$ for all $n \in \mathbb{N}$. Besides, by definition we have $|a_1| > 0$.

By Lemma 3 we know that $\inf_{n \in \mathbb{N}} v(b_n) = \lim_{\mu \to 0^+} v(f,\mu) = \lim_{|z| \to 0^-} f(z) = -\log \|f\|_{d(0,1^-)}$. Now for each $\mu > 0$, let $q(\mu)$ be the unique integer such that $v(a_n) \geq \mu$ for every $n \leq q(\mu)$ and $v(a_n) < \mu$ for every $n > q(\mu)$. By Lemma 4, we check

$$v(f, \mu) - v(f, v(a_1)) \leq \sum_{j=2}^{q(\mu)} \mu - v(a_j) + 2(\mu - v(a_1)).$$

Since $v(f,\mu)$ is bounded when μ approaches 0, by (1) it is seen that $\sum_{j=1}^{\infty} v(a_j)$ must be bounded and therefore we have $\prod_{n=1}^{\infty} |a_n| > 0$.

Reciprocally we suppose $\prod_{n=1}^{\infty} |a_n| > 0$. We can easily check that $\lim_{n \to \infty} |a_n| = 1$, and then we can assume $|a_n| \leq |a_{n+1}|$ for all $n \in \mathbb{N}$ without loss of generality. For each
$j \in \mathbb{N}$ we put $P_j(x) = \prod_{m=1}^j (1 - x/a_m)$. By Theorem 1 in [2], we can check that there exists $f \in A(d(0,1^-))$ (f not identically zero) satisfying

1. $f(a_m) = 0$ for all $m \in \mathbb{N}$, and
2. $v(f, \mu) \geq v(P_{q(\mu)}, \mu) - 1$ for all $\mu > 0$.

Now we notice that if $\mu_1 > \mu_2 > 0$ then we have $v(P_{q(\mu_1)}, \mu_1) = v(P_{q(\mu_2)}, \mu_1)$ and then we see that $\lim_{\mu \to 0^+} v(P_{q(\mu)}, \mu) = \sum_{j=1}^\infty v(a_j)$. But by (2) we have $\sum_{j=1}^\infty v(a_j) < +\infty$ and therefore by (4), $v(f, \mu)$ is bounded in $]0, +\infty[$. Let $f(t) = \sum_{n=0}^\infty b_n t^n$. By Lemma 3 the sequence (b_n) is bounded and by (3) it clearly belongs to Ker.ψ_M. This finishes the proof of Theorem 1.

Lemma 5: Let $f(t) = \sum_{n=0}^\infty b_n t^n \in A(d(0,1^-))$ and let $r \in (0,1)$. Then f admits at least one zero in $C(0,r)$ if and only if there exist $k,l \in \mathbb{N}$ ($k < l$) such that $|b_k| r^k = |b_l| r^l$.

Proof of Theorem 2. As a consequence of Lemma 5, a function $f(t) = \sum_{n=0}^\infty b_n t^n \in A(d(0,1^-))$ admits infinitely many zeros in $d(0,1^-)$ if and only if $|b_j| < \sup_{n \in \mathbb{N}} |b_n|$ for every $j \in \mathbb{N}$. Then the conclusion comes from Lemma 2.

3. PROVING THEOREM 3.

As an application of Corollary (of Theorem 5) in [8], we have this lemma.

Lemma 6: Let $f \in A(d(0,1^-))$ have a regular sequence of zeros (b_n) and satisfy

$$\lim_{\substack{|x| \to 1^- \\ x \in \Omega(b_n)}} |f(x)| = +\infty.$$ Then $1/f$ belongs to $H(\Omega(b_n))$.

Proof of Theorem 3. We may obviously assume $|\alpha_n| \leq |\alpha_{n+1}|$ and therefore $\alpha_n \neq 0$ whenever $n > 0$. Since g is not bounded in $d(0,1^-)$, by Lemma 3 we have $\lim_{\mu \to 0^+} v(g, \mu) = -\infty$, and by Lemma 4 the sequence of the zeros (α_n) satisfies $\prod_{n=1}^\infty |\alpha_n| = 0$, hence ψ_M is injective.

Now we look for P. Since g admits each α_j as a simple zero, it factorizes in $A(d(0,1^-))$ in the form $\psi_j(x)(1 - x/\alpha_j)$ and we have $\psi_j(\alpha_j) \neq 0$. We put $g_j(x) = \frac{\psi_j(x)}{\psi_j(\alpha_j)}$. Then g_j belongs to $A(d(0,1^-))$ and may be written as $\sum_{n=0}^\infty \lambda_{n,j} x^n$. We denote by P the matrix
and we will show that satisfies Properties (1) - (7).

For convenience, we put \(D = \Omega(\alpha_n) \). Since \(\lim_{|x|^{-1}} |g(x)| = +\infty \), by Lemma 6, we know that \(1/g \) belongs to \(H(D) \). For each \(n \in \mathbb{N} \), we put \(u_n = x^n/g \). Then in \(H(D) \), \(u_n \) has a Mittag-Leffler series ([3], [5]) of the form \(\sum_{j=0}^{\infty} \frac{\beta_{j,n}}{1 - x/\alpha_j} \). Now we put \(\theta_j = \psi_j(\alpha_j) \) and we have \(g(x) = \theta_j g_j(x)(1-x/\alpha_j) \). We will compute the \(\beta_{j,n} \). Let \(\nu_{j,n} = (1-x/\alpha_j)u_n \). Then we have \(\nu_{j,n}(\alpha_i) = \frac{\alpha_i^n}{g_j(\alpha_j) \theta_j} \). But since \(g_j(\alpha_j) = 1 \) whenever \(j \in \mathbb{N} \), we see that \(\beta_{j,n} = \alpha_j^n/\theta_j \), hence \(x^n g(x) = \sum_{j=0}^{\infty} \frac{\alpha_j^n}{\theta_j (1 - x/\alpha_j)} \). We notice that \(\| \frac{\alpha_j^n}{1 - x/\alpha_j} \|_D = \frac{|\alpha_j|^n+1}{\rho} \) and then we have \(\lim_{j \to \infty} |\theta_j| = +\infty \), because the sequence of the terms \(x^n/g(x) \) must tend to 0. Now we have \(x^n = \sum_{j=0}^{\infty} \frac{\alpha_j^n g(x)}{\theta_j (1 - x/\alpha_j)} \), while \(g_j(x) = \frac{g(x)}{\theta_j (1 - x/\alpha_j)} \). Since \(g_j(x) = \sum_{n=0}^{\infty} \lambda_{n,j} x^n \), we obtain

\[
(8) \quad x^n = \sum_{j=0}^{\infty} \alpha_j^n (\sum_{h=0}^{\infty} \lambda_{h,j} x^h).
\]

In particular, (8) holds in every disk \(d(0,r) \) with \(r \in]0,1[\). But then we know that \(\| g_j \|_{d(0,r)} = \sup_{\lambda \in \mathbb{N}} |\lambda_{j,h}| r^h \leq \frac{\| \psi_j \|_{d(0,r)}}{|\theta_j|} \). Now, we have \(\| \phi_j \|_{d(0,r)} \leq \| g \|_{d(0,r)} \) as soon as \(|\alpha_i| > r \) because then \(\| 1/(1 - x/\alpha_j) \|_{d(0,r)} = 1 \) and therefore the sequence \(\| \phi_j \|_{d(0,r)} \) is bounded. Then the family \((\lambda_{h,j} x^h)_{j,h \in \mathbb{N}} \) tends to zero when \(j \) tends to +\(\infty \), uniformly with respect to \(h \). In particular, \(P \) is line-vanishing. For each \(h \in \mathbb{N} \), we put \(s_h = \sup_{h \in \mathbb{N}} |\lambda_{h,j}| \). We will show

\[
(9) \quad \lim_{h \to +\infty} \sup_{h \in \mathbb{N}} s_h^{1/h} \leq 1.
\]

Indeed this is equivalent to show that for every \(r \in]0,1[\), we have

\[
(10) \quad \lim_{h \to +\infty} s_h r^h = 0.
\]
Let \(r \in]0, 1[\) and let \(\epsilon > 0 \). Since the family \(\{|\lambda_{h,j}| r^h\}_{j,h \in \mathbb{N}} \) tends to zero uniformly with respect to \(h \) when \(j \) tends to \(+\infty \), there clearly exists \(N \) such that \(|\lambda_{h,j}| r^h < \epsilon \) whenever \(j > N \), whenever \(h \in \mathbb{N} \), hence for every \(h \in \mathbb{N} \), we have \(s_h r^h \leq \max_{1 \leq j \leq N} |\lambda_{h,j}| r^h \). But for each fixed \(i \in \mathbb{N} \), we know that \(\lim_{h \to \infty} |\lambda_{h,j}| r^h = 0 \), hence \(\lim_{h \to \infty} \max_{1 \leq j \leq N} |\lambda_{h,j}| r^h = 0 \). This finishes showing (10). Therefore (9) is proven and so is (2).

Now, we can apply the limits inversion theorem and, then, by (8), we have

\[
(11) \quad x^n = \sum_{h=0}^{\infty} \left(\sum_{j=0}^{\infty} \alpha_j^n \lambda_{h,j} \right) x^h,
\]

whenever \(x \in d(0, r) \). Actually this is true for all \(r \in]0, 1[\) and therefore (11) holds for all \(x \in d(0, 1^-) \). Hence we have \(\sum_{j=0}^{\infty} \alpha_j^n \lambda_{h,j} = 0 \) whenever \(n \neq h \) and \(\sum_{j=0}^{\infty} \alpha_j^n \lambda_{n,j} = 1 \). So (3) is satisfied.

Thus we have proven that \(PM = I_\infty \). Now we check that \(MP = I_\infty \). For every \(h \neq j \), we have \(g_j(\alpha_h) = g(\alpha_h) = 0 \), hence \(\sum_{h=0}^{\infty} \alpha_h^n \lambda_{h,j} = 0 \). Besides, it is seen that \(g_j(\alpha_j) = 1 \), hence \(\sum_{n=0}^{\infty} \alpha_j^n \lambda_{n,j} = 1 \). So we conclude that \(MP = I_\infty \) and this finishing proving (4).

Now, we will check that \(P(b) \in E_1 \) for all \(b \in E_0 \). Let \(b := (b_n) \in E_0 \), let \(a := (a_n) = P(b) \) and let \(f(t) = \sum_{n=0}^{\infty} a_n t^n \). For each \(j \in \mathbb{N} \) we put \(f_j(t) = \sum_{m=0}^{j} b_m g_m(t) \). Then \(f_j \) belongs to \(A(d(0, 1^-)) \) for all \(j \in \mathbb{N} \). Let \(r \in]0, 1[\). Like the family \(\{|\lambda_{n,j}| r^n\} \), the family \(\{|\lambda_{n,j}| r^n\} \) tends to zero uniformly with respect to \(n \) when \(j \) tends to \(+\infty \). That way, in \(H(d(0, r)) \) we have \(\lim_{j \to \infty} \|f - f_j\|_{d(0, r)} = 0 \) and therefore \(f \) belongs to \(H(d(0, r)) \). This is true for all \(r \in]0, 1[\) and therefore \(f \) belongs to \(A(d(0, 1^-)) \). Hence \(P(b) \in E_1 \). This shows (5).

Let us show (6). Let \(b := (b_0, \ldots, b_n, \ldots) \) be a bounded sequence. Let \(a = P b \), and let \(a = (a_0, \ldots, a_n, \ldots) \). We will show

\[
(12) \quad \limsup_{n \to \infty} |a_n|^{1/n} \leq 1.
\]

Without loss of generality, we may assume \(|b_j| \leq 1 \), whenever \(j \in \mathbb{N} \). Then we have \(|a_n| \leq \sup_{j \in \mathbb{N}} |\lambda_{n,j}| = s_n \), therefore \(\limsup_{n \to \infty} |a_n|^{1/n} \leq \limsup_{n \to \infty} s_n^{1/n} \leq 1 \). Now, by (12), it is seen that for all \(j \in \mathbb{N} \), the series \(\sum_{n=0}^{\infty} a_n \alpha_j^n \) is convergent and therefore we may consider
$Ma = M(Pb)$. By definition, for each $i \in \mathbb{N}$, we have $a_i = \sum_{j=0}^{\infty} \lambda_{i,j} b_j$. Let $Ma = (x_h)_{h \in \mathbb{N}}$.

For each $h \in \mathbb{N}$ we have $x_h = \sum_{m=0}^{\infty} \alpha_h^m a_m = \sum_{m=0}^{\infty} \alpha_h^m (\sum_{j=0}^{\infty} \lambda_{m,j} b_j)$. Let $r = |\alpha_h|$. As we saw, the family $|\lambda_{m,j} b_j| r^m$ tends to 0 when m tends to $+\infty$, uniformly with respect to j. Hence by the Limits Inversion Theorem, we have

$$\sum_{m=0}^{\infty} \alpha_h^m (\sum_{j=0}^{\infty} \lambda_{m,j} b_j) = \sum_{j=0}^{\infty} b_j \sum_{m=0}^{\infty} \lambda_{m,j} \alpha_h^m.$$

Hence by (3), we see that $x_j = b_j$ and this finishes proving (6). Then by (6) ψ_P is clearly injective.

Finally we will prove the last statement of the theorem. Let $\phi(x) = \sum_{n=0}^{\infty} \nu_n x^n$. The function ϕ belongs to $A(d(0,1^-))$ and is invertible in $A(d(0,1^-))$ thanks to the inequality $|\nu_0| > |\nu_n|$ whenever $n > 0$. Hence the function $G(x) = g(x)\phi(x)$ is easily seen to satisfy i), ii), iii), iv) like g. Then G factorizes in $A(d(0,1^-))$ and can be written as $\phi_j(x)(1-x/\alpha_j)$

with $\phi_j(x) = \psi_j(x)\phi(x)$. Hence we put $G_j(x) = \frac{\phi_j(x)}{\phi_j(\alpha_j)} = \frac{g_j(x)\phi(x)}{\phi(\alpha_j)}$. Now it is clearly seen that the power series of G_j is $\sum_{n=0}^{\infty} \mu_{n,j} x^n$. By definition, the matrix Q satisfies the same properties as P. But when ϕ is not a constant function, for each fixed $j \in \mathbb{N}$, we do not have $\mu_{n,j} = \lambda_{n,j}$ for all $n \in \mathbb{N}$. Hence Q is different from P. As a consequence we see that ψ_M is not surjective, it would be an automorphism of E_0 and therefore ψ_P would also be an automorphism of E_0 and it would be unique. This ends the proof of Theorem 3.

4. PROVING THEOREMS 4 AND 5

Notation. For each integer $q \in \mathbb{N}^*$, we will denote by $G(q)$ the group of the q-roots of 1.

Lemma 7 : Let (a_n) be a sequence in $d(0,1^-)$ such that $\lim_{n \to \infty} |a_n| = 1$. For each $s \in \mathbb{N}$, there exists a prime integer $q > p$ and $\zeta \in G(q)$ such that $|\zeta^h a_s - a_j| = \max(|a_s|, |a_j|)$ for every $j \in \mathbb{N}$, for every $h = 1, \ldots, q - 1$.

Proof. Let $r = |a_s|$. Since $\lim_{n \to \infty} |a_n| = 1$, the circle $C(0, r)$ contains finitely many terms of the sequence (a_n). Without loss of generality we may assume $|a_n| < r$ whenever $n < l$, $|a_n| > r$ whenever $n > t$ and $|a_n| = r$, whenever $n = l, \ldots, t$ (with obviously $l \leq s \leq t$). Whatever $q \in \mathbb{N}$, $\zeta \in G(q)$ are, it is seen that we have $|\zeta^h a_s - a_j| = |a_s|$ for all $j < l$ and $|\zeta^h a_s - a_j| = |a_j|$ for all $j > t$. In the residue class field k of K, for every $j = l, \ldots, t$ let γ_j be the class of a_j/a_s. There does exist a prime integer $q > p$ such that the polynomial $p(x) = x^q - 1$ admits none of the γ_j ($l \leq j \leq t$) as a zero. Hence, for
every q-root ζ of 1 in K, we have $\zeta^h \neq \zeta_j$ whenever $j = 1, \ldots, t$, whenever $h = 1, \ldots, q - 1$. Now let ζ be a q-th root of 1 in K. Then by classical properties of the polynomials, we have $|\zeta^h - a_j| = 1$, hence $|\zeta^h a_s - a_j| = |a_s| = r$ whenever $h = 1, \ldots, q - 1$, whenever $j = 1, \ldots, t$. This completes the proof of Lemma 7.

Lemma 8: Let (a_n) be a regular sequence and let $\rho = \inf_{n \neq m} |a_n - a_m|$. There exists a sequence (b_n) in $d(0,1^-)$ satisfying:

1. $\lim_{n \to \infty} |b_n| = 1$.
2. $|b_n - b_m| \geq \rho$ whenever $n \neq m$.
3. (a_n) is a subsequence of (b_n).
4. There exists a sequence (q_n) of prime integers different from p satisfying $\lim_{n \to \infty} q_n = +\infty$, such that for every $m \in \mathbb{N}$, $\zeta \in G(q_n)$, ζb_n is another term of the sequence (b_n).
5. There exists $f \in A(d(0,1^-))$ admitting each b_n as a simple zero and having no other zero in $d(0,1^-)$, satisfying $\lim_{|x| \to 1^-} |f(x)| = +\infty$.

Proof. First we will construct a sequence (b'_n) satisfying (1), (2), (3), (4). Let (q_j) be a strictly increasing sequence of prime integers strictly bigger than p and, for each $j \in \mathbb{N}$, let $S_j = \{0, q_j, \ldots, q_j - 1\}$. We will show that a good choice of the sequence (q_j) enables us to obtain

$$(6) \quad |b'_n - b'_m| = \max(|b'_n|, |b'_m|)$$

for every couple (n, m) satisfying $n \neq m$ and $(n, m) \neq (s_i, s_j)$ whenever $(i, j) \in \mathbb{N} \times \mathbb{N}$. In other words $|b'_n - b'_m| = \max(|b'_n|, |b'_m|)$ must be true all time except when $n = m$ and when (b'_n, b'_m) is equal to some couple (a_{s_i}, a_{s_j}). For each $t \in \mathbb{N}$, let $F_t = \{s_0, s_1, \ldots, s_t\}$ and let E_t be $\{0, 1, \ldots, s_t - 1\} \setminus F_t$. Assume that $q_0, q_1, \ldots, q_{t-1}$ have been chosen to satisfy the following properties (α_t) and (β_t)

$$(\alpha_t) \quad |b'_n - a_{s_j}| = \max(|b'_n|, |a_{s_j}|) \text{ for all } j \in \mathbb{N}, \text{ for all } n \in E_t.$$

$$(\beta_t) \quad |b'_n - b'_m| = \max(|b'_n|, |b'_m|) \text{ for all } (n, m) \in E_t \times E_t \text{ such that } n \neq m.$$ We will choose q_t such that both (α_{t+1}), (β_{t+1}) are satisfied. Indeed, by Lemma 7 we can take a prime integer u such that, given $\zeta_t \in G(u)$, we have $|\zeta_t a_t - a_j| = \max(|a_t|, |a_j|)$ for all $j \in \mathbb{N}$, for all $h = 1, \ldots, u - 1$, $|\zeta_t a_t - b'_n| = \max(|a_t|, |b'_n|)$ for all $n < s_t$, for all $h = 1, \ldots, u - 1$. Thus we can take $q_t = u$ and we see that both (α_{t+1}), (β_{t+1}) are satisfied. Hence we can construct the sequence (q_t) by induction and, therefore, the sequence (b'_n) satisfying (6) is now constructed. Then it is easily checked that the sequence (b'_n) so obtained satisfies (1), (2), (3), (4).
Now let \(\{r_0, \ldots, r_n, \ldots\} = \{|a_j| : j \in \mathbb{N}\} \) and let \(D = \Omega(b_n) \). The infinite product
\[
g(x) = \prod_{j=0}^{\infty} (1 - (x/a_j)^{q_j})
\]
converges in \(A(d(0, 1^-)) \) and has no zero in \(d(0, r) \cap D \) because, by construction of the sequence \((b'_n)\), each zero of \(g \) is one of the points \(b'_m \) for some \(m \in \mathbb{N} \). Hence it is seen that we have \(|g(x)| \geq 1\) for every \(x \in d(0, 1^-) \setminus \bigcup C(0, r_n) \). For each \(n \in \mathbb{N} \), let \(\Sigma_n = D \cap C(0, r_n) \), let \(\tau_n = \inf_{x \in \Sigma_n} |g(x)| \), let \(\sigma_n \in (r_n, r_{n+1}) \cap |K| \), let \(c_n \in C(0, \sigma_n) \), and let \(u_n > \min(p, n) \) be a prime integer such that \(\tau_n(c_n)^{u_n} > n + 1 \). Since
\[
\lim_{n \to \infty} u_n = +\infty,
\]
it is seen that the infinite product \(h(x) = \prod_{n=0}^{\infty} (1 - (x/c_n)^{u_n}) \) converges in \(A(d(0, 1^-)) \). Let \(D' = \Omega((c_n, \rho) \) and let \(D'' = D' \cap D \). Let \(h(x) = \sum_{n=0}^{\infty} \lambda_n x^n \) and, for each \(r \in (0, 1) \), let \(M(r) = \sup_{n \in \mathbb{N}} |\lambda_n| r^n \). Each pole of \(h \) is simple and is of the form \(\zeta c_n \) with \(\zeta \in G(u_n) \). Hence it is seen that \(h \) satisfies \(|h(x)| \geq M |x| / \rho \) for all \(x \in D' \). Hence if \(x \in D'' \setminus \bigcup \Sigma_n \), then we have
\[
|g(x)h(x)| = M(r_n)\tau_n \geq (r_n/r_{n-1})^{u_{n-1}} \tau_n > n + 1
\]
and finally we have
\[
(7) \quad \lim_{|x| \to 1, x \in D''} |g(x)h(x)| = +\infty.
\]
Now let \((b''_n)\) be the sequence of the zeros of \(g \). Clearly \((b''_n)\) satisfies (1) and (4) and also satisfies \(|b''_n - b'_m| = \max(|b''_n|, |b'_m|)\) whenever \(n, m \in \mathbb{N} \) and \(|b''_n - b'_m| = \max(|b''_n|, |b'_m|)\) whenever \(n \neq m \). Now we put \(b_{2n} = b'_n \) and \(b_{2n+1} = b''_n \). The sequence \((b_n)\) clearly satisfies (1), (2), (3), (4) and also satisfies (5) because the zeros of \(h \) are the \(b''_n \) while those of \(g \) are the \(b'_n \). Thus the zeros of \(f \) are just the \(b_n \), and then, by (7), we have
\[
\lim_{|x| \to 1, x \in \Omega(b_n)} |f(x)| = +\infty.
\]
This ends the proof of Lemma 8.

Proof of Theorem 4. Without loss of generality we may obviously assume \(|\alpha_n| \leq |\alpha_{n+1}|\) whenever \(n \in \mathbb{N} \). Let \(\rho = |\alpha_0| \). Hence by hypothesis each disk \(d(\alpha_q, \rho^-) \) contains no point \(\alpha_n \) for each \(n \neq q \). Let \(D = \Omega((\alpha_n), \rho^-) \).

For each \(n \in \mathbb{N} \), let \(T_n \) be the hole \(d(\alpha_n, \rho^-) \) of \(D \). Since \(|\alpha_n| = 0\), it is shortly checked that the sequence \((T_n, 1)\) is a \(T \)-sequence of \(D \) ([8]). Then, since \(K \) is spherically complete, by [4], Theorem 4, there exists \(g \in A(d(0, 1^-)) \) admitting each \(\alpha_n \) as a simple zero and having no zero else in \(d(0, 1^-) \). Therefore, as \(\prod_{n=0}^{\infty} |\alpha_n| = 0 \), is is seen that \(g \)
satisfies \(\lim_{|x| \to 1} |g(x)| = +\infty \). Now we can apply Theorem 3, which shows that the matrix \(M = M(a_n) \) admits inverses \(P \). Then the sequence \((a_n) \) satisfies \(\sum_{n=0}^{\infty} a_n a_j^n = b_j \) for every \(j \in \mathbb{N} \) and this clearly ends the proof of Theorem 4.

Proof of Theorem 5. By Lemma 8, there exists a regular sequence \((\gamma_n) \) of \(d(0,1^-) \) such that \((a_n) \) is a subsequence of \((\gamma_n) \) together with an analytic function \(g \in A(d(0,1^-)) \) admitting each \(\gamma_m \) as a simple zero and having no other zero in \(d(0,1^-) \), satisfying \(\lim_{|x| \to 1^-} |g(x)| = +\infty \) with \(\rho = \inf_{n \neq m} |\gamma_n - \gamma_m| \). Then, by Theorem 3, the matrix \(M = M(\gamma_n) \) admits line-vanishing inverses \(M' \) satisfying \(M(M'(b)) = b \) for all bounded sequence \(b = (b_n) \). Let \(a := (a_n) = M'(b) \). Thus we have \(M(a) = b \) and therefore \(\sum_{n=0}^{\infty} a_n \gamma_j^n = b_j \) whenever \(j \in \mathbb{N} \). This ends the proof of Theorem 5.

Acknowledgement: We are very grateful to Labib Haddad whose remarks contributed to suggest Theorems 1 and 2.

REFERENCES

[1] AMICE, Yvette, *Les nombres p-adiques*, P.U.F. 1975.

[2] FRESNEL, Jean, DE MATHAN, Bernard, *L'image de la transformation de Fourier p-adique*, C.R.A.S. Paris, Série A, 278 (1974), 653-656.

[3] KRASNER, Marc, *Prolongement analytique uniforme et multiforme dans les corps valués complets. Les tendances géométriques en algèbre et théorie de nombres*. Clermont-Ferrand 1964, pp 97-141. Centre Nationale de la Recherche Scientifique (1966) (Colloques internationaux du C.N.R.S., Paris, 143).

[4] LAZARD, Michel, *Les zéros d'une fonction analytique sur un corps valué complet*, Publications Mathématiques, 14 (1962), 47-75, IHES (PUF).

[5] ROBBA, Philippe, *Fonctions analytiques sur les corps valués ultramétriques complets. Prolongement analytique et algèbres de Banach ultramétriques*, Astérisque, 10 (1973), 109-220.

[6] SARMANT, Marie-Claude, *Produits méromorphes*, Bulletin des Sciences Mathématiques: 109 (1985), 155-178.

[7] SARMANT, Marie-Claude, ESCASSUT, Alain, *Prolongement analytique à travers un T-filtre*, Studia Scientiarum Mathematicarum Hungarica, 22 (1987), 407-444.

[8] SARMANT, Marie-Claude, ESCASSUT, Alain, *Fonctions analytiques et produits croulants*, Collectanea Mathematica, 36 (1985), 199-218.
[9] SERRE, Jean Pierre, *Endomorphismes complètement continus d'espaces de Banach p-adiques*, Publications Mathématiques n 12, IHES (1962), 69-85.

Jesus Araujo
Departamento de Matemáticas, Estadística y Computación,
Facultad de Ciencias,
Universidad de Cantabria,
Avda. de los Castros,
39071 Santander,
Spain
e-mail address : araujo@ccucvx.unican.es

Alain Escassut
Laboratoire de Mathématiques Pures,
Université Blaise Pascal, *(Clermont-Ferrand)*,
Les Cézeaux,
63177 Aubière,
France
e-mail address : escassut@ucfma.univ-bpclermont.fr