Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases

Isabelle Audo, Kinga Bujakowska, Thierry Léveillard, Saddek Mohand-Saïd, Marie-Elise Lancelot, Aurore Germain, Aline Antonio, Christelle Michiels, Jean-Paul Saraiva, Mélanie Letexier, et al.

To cite this version:

Isabelle Audo, Kinga Bujakowska, Thierry Léveillard, Saddek Mohand-Saïd, Marie-Elise Lancelot, et al.. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet Journal of Rare Diseases, BioMed Central, 2012, 7 (1), pp.8. 10.1186/1750-1172-7-8. inserm-00697616

HAL Id: inserm-00697616

https://www.hal.inserm.fr/inserm-00697616

Submitted on 15 May 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases

Isabelle Audo1,2,3,4,*, Kinga M Bujakowska1,2,3, Thierry Léveillard1,2,3, Saddek Mohand-Saïd1,2,3,4, Marie-Elise Lancelot1,2,3, Aurore Germain1,2,3, Aline Antonio1,2,3,4, Christelle Michiels1,2,3, Jean-Paul Saraiva6, Mélanie Letexier6, José-Alain Sahel1,2,3,4,7,8, Shomi S Bhattacharya1,2,3,5,9 and Christina Zeitz1,2,3*

Abstract

Background: Inherited retinal disorders are clinically and genetically heterogeneous with more than 150 gene defects accounting for the diversity of disease phenotypes. So far, mutation detection was mainly performed by APEX technology and direct Sanger sequencing of known genes. However, these methods are time consuming, expensive and unable to provide a result if the patient carries a new gene mutation. In addition, multiplicity of phenotypes associated with the same gene defect may be overlooked.

Methods: To overcome these challenges, we designed an exon sequencing array to target 254 known and candidate genes using Agilent capture. Subsequently, 20 DNA samples from 17 different families, including four patients with known mutations were sequenced using Illumina Genome Analyzer IIx next-generation-sequencing (NGS) platform. Different filtering approaches were applied to identify the genetic defect. The most likely disease causing variants were analyzed by Sanger sequencing. Co-segregation and sequencing analysis of control samples validated the pathogenicity of the observed variants.

Results: The phenotype of the patients included retinitis pigmentosa, congenital stationary night blindness, Best disease, early-onset cone dystrophy and Stargardt disease. In three of four control samples with known genotypes NGS detected the expected mutations. Three known and five novel mutations were identified in NR2E3, PRPF3, EYS, PRPF8, CRB1, TRPM1 and CACNA1F. One of the control samples with a known genotype belongs to a family with two clinical phenotypes (Best and CSNB), where a novel mutation was identified for CSNB. In six families the disease associated mutations were not found, indicating that novel gene defects remain to be identified.

Conclusions: In summary, this unbiased and time-efficient NGS approach allowed mutation detection in 75% of control cases and in 57% of test cases. Furthermore, it has the possibility of associating known gene defects with novel phenotypes and mode of inheritance.

Keywords: NGS, retinal disorders, diagnostic tool.
be related to the dysfunction of the same gene [2-4]. Furthermore, there may be additional phenotype-genotype associations that are still not recognized. The state-of-the-art phenotypic characterization including precise family history and functional as well as structural assessment (i.e. routine ophthalmic examination, perimetry, color vision, full field and multifocal electroretinography (ERG), fundus autofluorescence (FAF) imaging and optical coherence tomography (OCT)) allows targeted mutation analysis for some disorders. However, in most cases of inherited retinal diseases, similar phenotypic features can be due to a large number of different gene defects. Various methods can be used for the identification of the corresponding genetic defect. All these methods have advantages and disadvantages. Sanger sequencing is still the gold-standard in determining the gene defect, but due to the heterogeneity of the disorders it is time consuming and expensive to screen all known genes. Mutation detection by commercially available APEX genotyping microarrays (ASPER Ophthalmics, Estonia) [5,6] allows the detection of only known mutations. In addition, a separate microarray has been designed for each inheritance pattern, which tends to escalate the costs especially in simplex cases, for which inheritance pattern cannot be predetermined. Indirect methods with single nucleotide polymorphism (SNP) microarrays for linkage and homozygosity mapping are also powerful tools, which has proven its reliability in identifying novel and known gene defects [7-12]. However, in case of homozygosity mapping the method can only be applied to consanguineous families or inbred populations. To overcome these challenges, we designed a custom sequencing array in collaboration with a company (IntegraGen, Evry, France) to target all exons and part of flanking sequences for 254 known and candidate retinal genes. This array was subsequently applied through NGS to a cohort of 20 patients from 17 families with different inheritance pattern and clinical diagnosis including RP, CSNB, Best disease, early-onset cone dystrophy and Stargardt disease.

Methods
Clinical investigation
The study protocol adhered to the tenets of the Declaration of Helsinki and was approved by the local Ethics Committee (CPP, Ile de France V). Informed written consent was obtained from each study participant. Index patients underwent full ophthalmic examination as described before [13]. Whenever available, blood samples from affected and unaffected family members were collected for co-segregation analysis.

Previous molecular genetic analysis
Total genomic DNA was extracted from peripheral blood leukocytes according to manufacturer’s recommendations (Qiagen, Courtaboeuf, France). DNA samples from some patients with a diagnosis of RP were first analyzed and excluded for known mutations by applying commercially available microarray analysis (arRP and adRP ASPER Ophthalmics, Tartu, Estonia). In some cases, pathogenic variants in EYS, C2orf71, RHO, PRPF31, PRPH2 and RP1 were excluded by direct Sanger sequencing of the coding exonic and flanking intronic regions of the respective genes [13-17]. Conditions used to amplify PRPH2 can be provided on request.

Molecular genetic analysis using NGS
A custom-made SureSelect oligonucleotide probe library was designed to capture the exons of 254 genes for different retinal disorders and candidate genes according to Agilent’s recommendations (Table 1). These genes include 177 known genes underlying retinal dysfunction (http://www.sph.uth.tmc.edu/retnet/sum-dis.htm, October 2010, Table 1) and 77 candidate genes associated with existing animal models and expression data (Table 2). The eArray web-based probe design tool was used for this purpose https://earray.chem.agilent.com/earray. The following parameters were chosen for probe design: 120 bp length, 3x probe-tiling frequency, 20 bp overlap in restricted regions, which were identified by the implementation of eArray’s RepeatMasker program. A total of 27,430 probes, covering 1177 Mb, were designed and synthesized by Agilent Technologies (Santa Clara, CA, USA). Sequence capture, enrichment, and elution were performed according to the manufacturer’s instructions (SureSelect, Agilent). Briefly, three µg of each genomic DNA were fragmented by sonication and purified to yield fragments of 150-200 bps. Paired-end adaptor oligonucleotides from Illumina were ligated on repaired DNA fragments, which were then purified and enriched by six PCR cycles. 500 ng of the purified libraries were hybridized to the SureSelect oligo probe capture library for 24 h. After hybridization, washing, and elution, the eluted fraction underwent 14 cycles of PCR-amplification. This was followed by purification and quantification by qPCR to obtain sufficient DNA template for downstream applications. Each eluted-enriched DNA sample was then sequenced on an Illumina GAIIx as paired-end 75 bp reads. Image analysis and base calling was performed using Illumina Real Time Analysis (RTA) Pipeline version 1.10 with default parameters. Sequence reads were aligned to the reference human genome (UCSC hg19) using commercially available software (CASA1A.7, Illumina) and the ELANDv2 alignment algorithm. Sequence variation annotation was performed using the IntegraGen in-house pipeline, which consisted of gene annotation (RefSeq), detection of known polymorphisms (dbSNP 131, 1000 Genome) followed by mutation characterization (exonic, intronic,
Number	Gene name
1	ABCA4
2	ABCC6
3	ADAM9
4	AHI1
5	AIPL1
6	ALMS1
7	ARL6
8	ARMS2
9	ATXN7
10	BBS10
11	BBS12
12	BBS2
13	BBS4
14	BBS5
15	BBS7
16	BBS9
17	BEST1
18	C1QTNF5
19	C2
20	C2orf71
21	C3
22	CA4
23	CABP4
24	CACNA1F
25	CACNA2D4
26	CC2D2A
27	CDH23
28	CDH3
29	CEP290
30	CERKL
31	CFB
32	CFH
33	CHM
34	CLN3
35	CLRN1
36	CNGA1
37	CNGA3
38	CNGB1
39	CNGB3
40	CNNM4
41	COL11A1
42	COL2A1
43	COL9A1
44	CRB1
45	CRX
46	CYP4V2
47	DFNB31
48	DMD
49	DPP3
50	EFEMP1
51	ELOVL4
52	ERCC6
53	EYS
54	FAM161A
55	FBLN5
56	FSCN2
57	FZD4
58	GNAT1
59	GNAT2
60	GPR98
61	GRK1
62	GRM6
63	GUCA1A
64	GUCA1B
65	GUCY2D
66	HMCN1
67	HTRA1
68	IDH3B
69	IMPDH1
70	IMPG2
71	INPP5E
72	INVS
73	IQCB1
74	JAG1
75	KCNU13
76	KCNV2
77	KLHL7
78	LCA5
79	LRAT
80	LRPS
81	MERTK
82	MFRP
83	MKS5
84	MKS1
85	MTND1
86	MTND6
87	MT-AP6
88	MTND2
89	MTND5
90	MTND4
91	MYO7A
92	NDP
93	NPHP1
94	NPHP3
95	NPHP4

(Continued)
silent, nonsense etc.). For each position, the exomic frequencies (homozygous and heterozygous) were determined from all the exomes already sequenced by IntegraGen and the exome results provided by HapMap project.

Investigation of annotated sequencing data
We received the annotated sequencing data in the form of excel tables. On average 946 SNPs and 83 insertions and deletions were identified for each sample (Figure 1). By using the filtering system, we first investigated variants (nonsense and missense mutations, intronic

Table 1 Known retinal disease genes (Continued)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
variants located +/- 5 apart from exon), which were absent in dbSNP and NCBI databases http://ncbi.nlm.nih.gov/. In the absence of known gene defects or putative pathogenic variants (see below) in the first step, we selected known genes, which were previously clinically associated including variants present in dbSNP and NCBI databases (Figure 1). Each predicted pathogenic variant was confirmed by Sanger sequencing.

Assessment of the pathogenicity of variants
Following criteria were applied to evaluate the pathogenic nature of novel variations identified by NGS: 1) stop/frameshift variants were considered as most likely to be disease causing; 2) co-segregation in the family; 3) absence in control samples; 4) for missense mutations amino acid conservation was studied in the UCSC Genome Browser http://genome.ucsc.edu/ across species from all different evolutionary branches. If the amino acid residue did not change it was considered as “highly conserved”. If a different change was seen in fewer than five species and not in the primates then it was considered as “moderately conserved” and if a change was present in 5-7, it was considered as “weakly conserved”, otherwise the amino acid residue was considered as “not conserved”, 5) pathogenicity predictions with bioinformatic tools (Polyphen: Polyorphism Phenotyping, http://genetics.bwh.harvard.edu/pph/ and SIFT: Sorting Intolerant From Tolerant, http://blocks.fhcrc.org/sift/SIFT.html) if at least one of the program predicted the variant to be possibly damaging, it was considered to be pathogenic; 6) presence of the second mutant allele in the case of autosomal recessive inheritance. Mutations were described according to the HGVS website http://www.hgvs.org/mutnomen. In accordance with this nomenclature, nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG.

Table 2 Candidate genes for retinal disorders (Continued)

No.	Gene	Function	Expression	Reference
48	PKD2L1	Diff. expression in human retinal detachment	Delyfer et al. 2011 submitted	
49	PLEKHA1	Age-related macular degeneration	[57]	
50	PPEF2	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
51	RABBA	Interacts with RPGR, role in cilia biogenesis and maintenance	[58]	
52	RABGEF1	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
53	RCVRN	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
54	RG5	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
55	RNF144B	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
56	RORB	Rod photoreceptor development in mice	[59]	
57	RXRG	Retinoic acid receptor, highly expressed in the eye	Expression databases	
58	SGIP1	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
59	SLC16A8	Altered visual function in ko-mice	[60]	
60	SLC17A7	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
61	STAM2	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
62	STK35	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
63	STX3	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
64	SV2B	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
65	TBC1D24	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
66	THR8	Essential for M-cone development in rodents	[61]	
67	TMEM216	Cilia protein, mutations lead to Joubert and Meckel syndrome	[62]	
68	TMEM67	Cilia protein, mutations lead to Joubert	[63]	
69	TRPC1	diff. expression rd1 mouse	diff. expression Rd1 mouse	
70	UHMK1	diff. expression rd1 mouse	diff. expression Rd1 mouse	
71	VSX1	Stimulator for promoter NXNL1	[64]	
72	VSX2	Stimulator for promoter NXNL1	[64]	
73	WDR17	diff. expression rd1 mouse	diff. expression Rd1 mouse	
74	WDR31	diff. expression Nxnl1-/- mouse	[65]	
75	WISP1	diff. expression rd1 mouse	Chalmel et al., manuscript in preparation	
76	XIAP	Protects photoreceptors in animal models of RP	[66]	
77	ZDHHC2	diff. expression Rd1 mouse	Chalmel et al., manuscript in preparation	
translation initiation codon in the reference sequence. The initiation codon is codon 1. The correct nomenclature for mutation was checked applying Mutalyzer http://www.lovd.nl/mutalyzer/.

Results
The overall sequencing coverage of the captured regions was 98.4% and 90.4% for a 1× and a 10× coverage respectively. The overall sequencing depth was > 120×. The number of reference and variant sequences detected by NGS, reflected the correct zygosity state of the variant; on average if 50% of the sequences represented the variant, then a heterozygous state was called, while if 100% of the sequences represented the variant, then a homozygous or hemizygous state was annotated by IntegraGen.

Validation of the novel genetic testing tool for retinal disorders
To validate the novel genetic testing tool for retinal disorders, we used four DNA samples from families, in which we had previously identified different types of mutations by Sanger sequencing: one 1 bp duplication and one 1 bp deletion in PRPF31 and missense mutations in TRPM1 and BEST1 (Table 3). Three of the four mutations were detectable by NGS, whereas the deletion in PRPF31 was not identified. To validate if this was due to a technical problem of deletion detection in general or low coverage at this position, the sequencing depth was investigated in detail. Indeed the coverage at this position reflected by the mean depth was only ~1-6 for all samples. This indicates that although the coverage in
general was very good, specific probes used here need to be redesigned to improve the capture for specific exons.

Detection of known and novel mutations
Some of the patients from the 14 families with no known gene defect were previously excluded for known mutations using microarray analysis and by Sanger sequencing in the known genes EYS, C2orf71, RHO, PRPF31, PRPH2 and RP1. Other samples were never genetically investigated. In four DNA samples known mutations were detected (Table 4) from three different families with autosomal dominant (ad) or recessive (ar) RP. All mutations co-segregated with the phenotype (Figure 2). In seven samples, novel mutations in known genes were identified. These mutations co-segregated with the phenotype from five different families with adCSNB, x-linked incomplete CSNB, adRP, arRP and x-linked RP (Table 5, Figures 3 and 4). One of the cases from these five families was also used as a control for Best disease carrying a known BEST1 mutation (Table 4, Figure 3).

Unsolved cases
In six of the 14 families with Stargardt disease, adRP, adCD with postreceptoral defects, arRP, early onset arCD with macrocephaly and mental retardation described in affected sister and x-linked cCSNB, the disease associated mutations remain to be elucidated or validated (Table 6, Figure 5).

Discussion
By using NGS in 254 known and candidate genes we were able to detect known and novel mutations in 57% of families tested. In order to achieve this goal, we applied a rigorous protocol (Figure 1). To our knowledge, this is the first report using NGS to investigate all inherited retinal disorders at once. In a study restricted to adRP, Bowne and co-workers used a similar approach including 46 known and candidate genes for adRP [18]. All their cases had previously been screened and excluded for most of the known genes underlying adRP. The authors were able to identify known or novel mutations in five out of 21 cases in genes not included in a pre-screening [18]. This added five patients to their

Table 3 Patients with known mutations used to validate the novel genetic approach for retinal disorders

Index	Phenotype	Gene	Mutation	Allele State	Read reference NGS	Read variant NGS	Mutation detected by NGS	Mean depth
CIC00034, F28	adRP	PRPF31	c.666dupG	het	11	13	yes	21.3-22.5
CIC00140, F108	adRP	PRPF31	c.997delG	het	-	-	no	5.0-5.2
CIC00238, F165	arCSNB	TRPM1	c.1418G > C	homo	0	38	yes	36.7
CIC00707, F470	Best and adCSNB see Table 5	BEST1	c.73C > T	het	40	38	yes	99.4

Table 4 Detection of known mutations by using the novel genetic approach for retinal disorders

Index	Phenotype	Pre-screening	Gene	Mutation	Allele State	Read reference NGS	Read variant NGS	Reference Sanger and co-segregation	Mutation verified by Sanger and co-segregation
CIC00019, F16	adRP	Linkage, RHO, PRPF31, PRPH2, RP1	PRPF31	c.1481C > T p.T494M	het	25	22	[67]	yes
CIC0000893, F574	adRP	RHO, PRPF31, PRPH2, RP1	NR2E3	c.166G > A p.G56R	het	5	3	[68]	yes
CIC000128, F100	arRP, consang	-	EYS	c.408_423del p.N137VfsX24	homo	-	179	[13,69]	yes
CIC0000943, F100	arRP, consang	-	EYS	c.408_423del p. N137VfsX24	homo	0	193	[13,69]	yes
adRP cohort with known gene defects, indicating that 64% of their patients show known mutations with new genes still to be discovered in the remaining 36%. The current study provides a more exhaustive tool, since it incorporates screening of 254 genes implicated in various retinal disorders of different inheritance patterns and additional candidate genes for these phenotypes. With this approach a cohort of both pre-screened and unscreened samples, was investigated. The mutation detection rate of 57% is high and was never obtained before by high throughput screening methods. Furthermore, this approach is probably less time consuming and expensive than existing methods such as direct sequencing of all known genes or microarray analysis. Of note however is one of the variants detected with the NGS approach (i.e. p.V973L exchange in GLYC2D), which was not confirmed by direct Sanger sequencing, suggesting the possibility of false positive using the high throughput screening. Verification by direct Sanger sequencing of most likely pathogenic variants is therefore essential to validate NGS data, although the false positive rate is assumed to be low (in our study 1/28 verified sequence variants represented a false positive).

Overall, the study of 20 subjects from 17 families by NGS showed that most of the targeted regions are well covered (more than 98%). However, some of the regions showed a lower coverage (GC-rich regions) or were not captured (repetitive regions). This was for instance the case for two genes underlying cCSNB, (i.e. NYX and GRM6) and the repetitive region of ORF15 of RPGR. For GC-rich regions the capture design could be improved in the future by modifying NGS chemistry, as...
it was successfully achieved for Sanger sequencing using different additives, which improved the amplification and subsequent sequencing. If repetitive regions like ORF15 of RPGR remain problematic for sequencing by NGS, direct Sanger sequencing of these targets might be the first screening of choice; in particular for disorders caused only by a few gene defects such as CSNB, and xl-RP.

By applying NGS sequencing to our retinal panel, known and novel mutations were detected in different patients. We believe that our diagnostic tool is particularly important for heterogeneous disorders like RP, for which many gene defects with different prevalence have been associated to one phenotype. It also allows the rapid detection of novel mutations in minor genes which are often not screened as a priority by direct Sanger sequencing. This was the case in our study for three individuals from one family with adRP in which NGS detected a novel PRPF8 mutation in both affected and one unaffected family member (Table 4, Figure 4). In this family, the RP phenotype is mild and therefore it is possible that the unaffected member may develop symptoms later in life or alternatively it may be a case of incomplete penetrance as reported for another splicing factor gene, PRPF31 and recently for PRPF8 as well [19-22]. Interestingly, a novel TRPM1 mutation was identified in a patient with adCSNB, a gene previously only associated with arCSNB [23-26]. This is the first report of a TRPM1 mutation co-segregating with ad Schubert-Bornschein type complete CSNB. Since the location of this mutation is not different compared to other mutations leading to arCSNB, it is not quite clear how TRPM1 mutations might lead to either ad or arCSNB. Functional investigations are needed to validate the pathogenicity of this variant. Furthermore, this finding suggests that TRPM1 heterozygous mutation carriers from arCSNB families should be investigated by electroretinography to determine whether they display similar retinal dysfunction as in affected members of the presented adCSNB family. Detection of a novel RPGR splice site mutation in family 146 presented a challenge. The actual disease causing change was concealed under a wrongly annotated rs62638633, which had previously been clinically associated to RP by a German group [27], but has recently been reported to be a variant of unknown clinical significance [28].

Table 5 Detection of novel mutations by using the novel genetic approach for retinal disorders

Index	Phenotype	Pre-screening	Gene	Mutation	Allele State	Read reference	Read variant	Mutation verified by Sanger and co-segregation	Conservation	Polyphen	Sift
CIC00707, F470	adCSNB and Best see Table 3	RHO, PRPH2, RP1, adRP chip	TRPM1	c.1961A > C, p.H654P	het	39	38	yes	moderately conserved	possibly damaging	tolerated
CIC000348, F232	adRP, mild	RHO, PRPF31, PRPH2, RP1, adRP chip	PRPF8	c.6992A > G, p.E2331G	het	13	10	yes	moderately conserved	possibly damaging	affect protein function
CIC000346, F232	adRP	-	PRPF8	c.6992A > G, p.E2331G	het	5	9	yes	moderately conserved	possibly damaging	affect protein function
CIC000347, F232	adRP	-	PRPF8	c.6992A > G, p.E2331G	het	15	17	yes	moderately conserved	possibly damaging	affect protein function
CIC04240, F2025	arRP, consang., detailed clinic in [78]	RST	CRB1	c.2219C > T, p.S740F	homo	2	194	yes	highly conserved	probably damaging	affect protein function
CIC00199, F146	adRP or x-linked RP with affected carrier	RHO, PRPF31, PRPH2, RP1, adRP chip	RPGR	c.248-2A > G	hetero	30	22	yes	conserved splice site	n.a.	n.a.
CIC04094, F1915	icCSNB	-	CACNA1F	c.973C > T, p.Q325X	hemi	0	28	yes	n.a.	n.a.	n.a.
referenced disease causing variants. Bearing this in mind one can still first investigate unknown variants, but should then examine dbSNP for referenced variants either described to be disease causing, having a low minor allele frequency or present in interesting candidate genes. An accurate discrimination of non-pathogenic polymorphisms versus disease causing polymorphism in SNP databases is warranted to resolve this challenge.

In six families from the investigated cohort the disease causing mutations still remain to be identified. In the Stargardt patient with no pathogenic ABCA4 mutations two variants in CFH were detected, one of which (rs1061170) had previously been reported to predispose to age related macular degeneration (AMD) [27-29]. The second CFH change is a novel variant, affecting a highly conserved residue, not found in NGS data from the other 19 samples and never associated with a disease. The variants co-segregated in the only available family members, which were the patient’s parents. Apart from the association with AMD, CFH mutations have been previously associated with renal diseases, the most common being membranoproliferative glomerulonephritis and hemolytic uremic syndrome, which can be also associated with an eye phenotype [30,31]. No renal dysfunction was present in our patient. To validate if the two variants identified in CFH are indeed disease causing, the DNA samples from other available family members for co-segregation analysis as well as characterization of functional consequences of the novel variant are needed. One patient with complete CSNB had an affected nephew and thus x-linked inheritance was assumed. However, neither Sanger nor NGS detected a mutation in the only known x-linked gene, NYX, causing cCSNB. To exclude recessive inheritance TRPM1 and GRM6 were investigated in detail. Indeed the patient carried a novel heterozygous

Figure 3 Best disease and CSNB co-segregating in one family a) Sanger and NGS detected in all patients with Best disease a BEST1 mutation. b) NGS detected in all patients with a cCSNB phenotype a novel TRPM1 mutation. c) Fundus colour photographs (above) and fundus autofluorescence (below) of patient 707 showing multiple yellow deposits within the posterior pole which are hyper autofluorescent d) Electro-oculogram of patient 707 showing no slight rise after illumination in keeping with the diagnosis of Best disease e) Full Field Electroretinogram of patient 707 showing ON-bipolar cell pathway dysfunction in keeping with the diagnosis of cCSNB.
TRPM1 variant, which affects a highly conserved amino acid and was not identified in the other 19 samples investigated here (Table 6). However, direct Sanger sequencing of lower covered regions did not identify a second mutation in this gene. Similarly no mutations in GRM6 were identified. These findings outline the need for additional family members to determine, through co-segregation, the pathogenicity of the numerous variants identified by NGS. This was also true for two other families with nonsense mutations in CUBN (Fam795) and RP1L1 (Fam761) (Table 6). The nonsense mutation in CUBN, co-segregated with the phenotype in most of the family members (Figure 5). Had we not had access to additional family members, we might have retained this gene defect as the underlying cause for adCD and considered CUBN as a new gene involved in adCD. None of the other putatively pathogenic mutations identified in CUBN, TRPM1 and GUCY2D co-segregated with the phenotype in this family (Table 6, Figure 5). RP1L1 was already a candidate for adRP [32] but was previously associated with occult macular dystrophy [33]. In our study, this variant did not co-segregate with the phenotype in other affected family members (data not shown).

This NGS study ended with six genetically unresolved families, which can be further investigated with whole exome sequencing. Although, no clear information about the actual percentage of missing gene defects underlying each group of inherited retinal disorders exists, previous studies have reported that in many cases the genetic cause still needs to be determined [18,34]. Whole exome sequencing approaches allow the detection of both, novel and known gene defects, but also generate numerous variants and therefore require the inclusion of more than one DNA sample for each family to rapidly exclude non-pathogenic variants. Due to the higher costs of exome sequencing for one sample compared to targeted sequencing, we propose to initially perform targeted sequencing in the index patient and proceed only after exclusion of a known gene defect to whole exome sequencing.

Figure 4 Detection of novel mutations using NGS in 254 retinal genes. Novel mutations in PRPF8, CRB1, RPGR and CACNA1F co-segregated in affected and asymptomatic carriers with the adRP, arRP, x-linked dominant and X-linked icCSNB phenotypes respectively. Asymptomatic individuals are marked with a question mark.
Index	Phenotype	Pre-screening	Gene	Mutation	Allele State	Read reference NGS	Read variant NGS	Mutation verified by Sanger and co-segregation	Comment
CIC03282, F1388	Stargardt	ABCA4 microarray	ABCA4	c.1268A > G p.H423R	het	77	61	yes	but reported as polymorphism [71]
				c.6764G > T p.S2255I					but reported as polymorphism [72]
CFH				c.3482C > A p.P1161Q	het	77	52	yes	conserved, probably damaging
				c.1204C > T p.H402Y		94	87	yes	AMD
CIC01269, F761	adRP		RP1L1	c.5959C > T p.Q1987X	het	145	150	yes, did not co-segregate	pass to whole exome sequencing
CIC01312, F795	adCD with post-receptor defects	RHO, PDE6B, GNAT1	CUBN	c.127C > T p.R43X	het	139	102	yes, did not co-segregate	pass to whole exome sequencing
CUBN				c.9340G > A p.G3114S		61	44	yes, did not co-segregate	
GUCY2D				c.1499C > T p.S500L		41	34	yes, did not co-segregate	
TRPM1				c.3904T > C p.C1302R	het	102	99	yes, did not co-segregate	
CIC03225, F1362	arRP consang.	arRP chip	PROM1	c.314A > G p.Y105C	het	120	115	yes, but no additional mutation	no homo, no compound hets, pass to whole exome sequencing
GUCY2D				c.2917G > A p.V973L		6	2	false positive, not found by Sanger	
DSCAML1				c.592C > T p.R198C	het	70	81	yes, but no additional mutation	
TBC1D24				c.641G > A p.R214H	het	27	12	yes, but no additional mutation	
TMEM67				c.1700A > G p.Y567C	het	80	58	yes, but no additional mutation	
CIC04757, F2364	Index and affected sister early onset drCD, macrocephaly and mental retardation in affected sister consang.		IMPG2	c.3439C > T p.P1147S	homo	0	140	no	Polyphen and Sift benign, not conserved
PKD2L1				c.1027C > T p.R343C	het	63	68		appeared also het in 11 of our samples
				c.1202T > G p.V401G		25	19		appeared also het in affected sister but no other mutation in less covered exons
Conclusions
In summary, our diagnostic tool is an unbiased time efficient method, which not only allows detecting known and novel mutations in known genes but also potentially associates known gene defects with novel phenotypes. This genetic testing tool can now be applied to large cohorts of inherited retinal disorders and should rapidly deliver the prevalence of known genes and the percentage of cases with missing genetic defect for underlying forms of retinal disorders.

List of abbreviations
ad: autosomal dominant; ar: autosomal recessive; as: asymptomatic; het: heterozygous; homo: homozygous; hemi: hemizygous; - not noted; consang.

Table 6 Patients with unsolved genotype and unlikely disease causing mutations (Continued)

Gene	Mutation	Genotype	Case	Control	Phenotype	Comment
DFNB31	c.1943C > A p.S648Y	het	7	7	yes	affected sister also both variants from father, no other variant in lower covered region.
	c.2644C > A p.R882S	het	27	14	yes	
EYS	c.7597A > G p.K2533E	het	151	149	yes	Affected sister does not carry this variant
RPGRIP1	c.2417C > T p.T806I	het	138	132	no	not conserved
CIC04152, F1953	male x-linked	NYX				
	cCSNB, has affected nephew	c.470C > T p.S157F	het	118	130	yes, no other het mutation. x-linked inheritance and phenotype verification

Index patients and respective gene defect are highlighted in bold. In some cases also family members were used for NGS.

Figure 5 Detection of novel mutation by using NGS in 254 retinal genes. Family 795 reveals autosomal dominant cone dystrophy with post-receptoral defects. Four putative disease causing mutations were investigated on the basis of co-segregation. However, none of them co-segregated in all affected family members with the phenotype and thus are not considered to be disease causing. Individuals marked with a star were clinically investigated, patients with a question mark are asymptomatic and patients with a plus sign show high myopia.

Fam 795:
M1: CUBN: c.127C>T p.R43X
M2: CUBN: c.9340G>A p.G311S
M3: GUCY2D: c.1499C>T p.P500L
M4: TRPM1: c.3904T>C p.C1302R
consanguinity was reported; n.a.: not applicable, CSNB: congenital stationary night blindness, RP: retinitis pigmentosa.

Acknowledgements

The authors are grateful to the families described in this study, Dominique Santard-Baron and Christine Chaumeil for their help in DNA collection and to clinical staff. The project was financially supported by Gis-maladies rares (CZ), Agence Nationale de la Recherche (ANR, SSB), Foundation Voir et Entendre and BQR, Foundation Fighting Blindness (IA, FBB Grant # CD-CL-0808-0466-CHNO and the CC503 recognized as an FBB center, FBB Grant # C-CMM-0907-0428-INSERM04), Ville de Paris and region Ile de France.

Author details

1. INSERM, U968, Paris, F-75012, France. 2. CNRS, UMR 7210, Paris, F-75012, France. 3. UPMC Univ Paris 06, UMR 968, Department of Genetics, Institut de la Vision, Paris, F-75012, France. Centre Hospitalier National d’Ophthalmologie des Quinze-Vingts, INSERM-OHNES CIC 503, Paris, F-75012, France. 4. UCL-Institute of Ophthalmology, London, UK. 5. Integragen SA, Genopole CAMPUS 1 bat G8 FR-91030 EVRY France. 6. Fondation Ophthalmologique Adolphe de Rothschild, Paris, France. 7. Académie des Sciences-Instiut de France, 75006 Paris, France. 8. Department of Cellular Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Isla de Cartuja, Seville, Spain.

Authors’ contributions

IA was involved in the study design, participated in the choice of genes, interpreted the NGS data, clinically investigated patients, collected DNA samples, and has been involved in drafting the manuscript. KB participated in the choice of genes, interpreted the NGS data and has been involved in drafting the manuscript. TL was involved in the study design, participated in the choice of genes and has been involved in drafting the manuscript. SM-S clinically investigated patients and collected DNA samples. M-EL confirmed the NGS data by Sanger sequencing, performed control and co-segregation analysis. AG extracted DNA, confirmed the NGS data by Sanger sequencing, and performed control and co-segregation analysis. AA extracted DNA, confirmed the NGS data by Sanger sequencing, and performed control and co-segregation analysis. CM confirmed the NGS data by Sanger sequencing, and performed control and co-segregation analysis. J-PS performed NGS. ML performed the bioinformatic interpretation of NGS. J-AS clinically investigated patients and participated in the study design. SSB participated in the study design and has been involved in drafting the manuscript. CZ has made the study design, participated in the choice of genes, interpreted the NGS data and wrote the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 12 September 2011 Accepted: 25 January 2012 Published: 25 January 2012

References

1. Sahoo LJ, Hider RN, Emerich DF, et al: The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 2008, 27:213-235.
2. Boon CJ, Klevering BJ, Leroy BP, Huygen CJM, Smit ME, Luttikhuizen EP, Keuning JE: The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2008, 27:187-205.
3. Schorle WC, Green P, Naderi S, et al: Novel C2orf71 mutations account for approximately 1% of cases in a large French adRP cohort. Hum Mutat 2011, 32:E2091-2103.
4. Bandah-Rozenfeld D, Collin RW, Banin E, van den Born LI, Coene KL, Smit ME, Luttikhuizen EP, Keuning JE: The spectrum of rhodopsin mutations in French autosomal dominant rod-cone dystrophies. Hum Mutat 2010, 31:E1406-1435.
5. Boon CJ, Klevering BJ, Keuning JE: Expression of PRPF31 mRNA in the human retina. Exp Eye Res 2009, 88:499-505.
6. Boon CJ, Klevering BJ, Keuning JE: Expression of PRPF31 mRNA in cones and photoreceptors of the retina. Exp Eye Res 2009, 88:499-505.
7. Boon CJ, Klevering BJ, Keuning JE: Expression of PRPF31 mRNA in the human retina. Exp Eye Res 2009, 88:499-505.
8. Boon CJ, Klevering BJ, Luttikhuizen EP, Keuning JE: The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2008, 27:213-235.
9. Schorle WC, Green P, Naderi S, et al: Novel C2orf71 mutations account for approximately 1% of cases in a large French adRP cohort. Hum Mutat 2011, 32:E2091-2103.
10. Boon CJ, Klevering BJ, Luttikhuizen EP, Keuning JE: The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2008, 27:213-235.
11. Bandah-Rozenfeld D, Collin RW, Banin E, van den Born LI, Coene KL, Smit ME, Luttikhuizen EP, Keuning JE: The spectrum of rhodopsin mutations in French autosomal dominant rod-cone dystrophies. Hum Mutat 2010, 31:E1406-1435.
12. Boon CJ, Klevering BJ, Keuning JE: Expression of PRPF31 mRNA in the human retina. Exp Eye Res 2009, 88:499-505.
13. Boon CJ, Klevering BJ, Luttikhuizen EP, Keuning JE: The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 2008, 27:213-235.
Bernd A, Antonio A, Moskova-Doumanova V, Lancelot ME, Poloschek CM, Bertrand JY, Cantagrel V, Silhavy JL, Bielas SL, Swistun D, Marsh SE, Beales PL, Dietz HC, Fisher S, Katsanis N. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 2006; 439:326-330.

Kornak U, Kasper D, Boul MR, Kaiser E, Schweizer M, Schuler A, Friedman W, Delling G, Jentsch TJ. Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104:205-215.

Colville DJ, Savage J. Alport syndrome. A review of the oculomacular manifestations. Ophthalm Genet 1997; 18:161-173.

Lemmink HH, Hochzikul T, van den Heuvel LP, Schroder CH, Barontos N, Monnens LA, van Oost BA, Brunner HG, Reinders ST, Smets HJ. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet 1994; 3:1293-1273.

Jefferson JA, Lemmink HH, Hughes AE, Hill CM, Smets HJ, Doherty CC, Maxwell AP. Autosomal dominant Alport syndrome linked to the type IV collagen alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial Transplant 1997; 12:1595-1599.

Lemmink HH, Klijtmans LA, Brunner HG, Schroder CH, Kriebelmann B, Jelinikova E, van Oost BA, Monnens LA, Smets HJ. Abrantial splicing of the COL4A3 gene in patients with Alport syndrome. Hum Mol Genet 1994; 3:317-322.

Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997; 6:641-647.

Mitton RP, Swain PK, Khanna H, Dowd M, Apel I, Swaroop A. Interaction of retinal BZIP transcription factor NRL with IT12-interacting zinc-finger protein Fiz1: possible role of Fiz1 as a transcriptional repressor. Hum Mol Genet 2003; 12:365-373.

Xu X, Quinlao AB, Robin L, Pardue MT, Max JL, Rohlich P, Peayը, Al-Ubaidi MR. Degeneration of cone photoreceptors induced by expression of the Mas1 protooncogene. Exp Neurol 2000; 163:207-219.

Kubota R, Kodou J, Maitima Y, Asakawa S, Minoshima S, Hejtmancik JF, Oguchi Y, Shimizu N. Genomic organization of the human myocilin gene (MYOC) responsible for primary open angle glaucoma (GLC1A). Biochim Biophys Acta 1998; 1425:1-20.

Bhattarayya SS: A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 1q9-13.4 (RP11). Mol Cell Biol 2001; 21:375-381.

Maubaret CG, Vaclavik V, Muhopadhyay R, Waseem NH, Churchill A, Holder GE, Moore AT, Bhattarayya SS, Webster AR. Autosomal Dominant Retinitis Pigmentosa with Intralaminar Variability and Incomplete Penetration in Two Families carrying Mutations in PRP8. Invest Ophthalmol Vis Sci 2011.

Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 2009; 85:711-719.

van Gendersen MM, Bijveel MM, Claassen YB, Florijn Rj, Pearing JN, Meire FM, McCall MA, Riemsag FC, Gregg RG, Bergeren AG, Kammens M. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 2009; 85:730-736.

Audo I, Kohl S, Lenoy BP, Munier FL, Guillonneau X, Mohand-Said S, Bujakowska K, Nandrot EF, Lorence B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova-Doumanova V, Lancret ME, Poloscek CM, Dunmire J, Defoe-Delhommeres S, Wissinger B, Leveillard T, Harpal CP, Schorster DF, DeBaere E, Berger W, Jacobson SG, Zierner E, Sahel J, Bhattarayya SS, Dietz HC. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 2009, 85:720-729.

Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C, Kadozaki M, Kondo M, Miyake Y, Furutaka T. TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis 2010; 16:4-15.

Klein RJ, Geiz C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308:385-389.

Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308:421-424.

Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308:421-424.

Bowen SJ, Daiger SP, Malone KA, Heckenlively JR, Kennan A, Humphries P, Factor H and the pathogenesis of renal diseases. Pediatr Nephrol 2004, 19:1045-1053.

Boon CJ, van de Kar NC, Klevering BJ, Keunen JE, Cremers FP, Klaver CC, Hoyng CB, Daha MR, den Hollander AI. The spectrum of phenotypes caused by variants in the CFH gene. Mol Immunol 2009; 46:1573-1594.

Bovine SJ, Daiger SP, Malone KA, Heckenlively JR, Kennan A, Humphries P, Hugbikents-Wheaton D, Birch DG, Liu Q, Piente EA, Zuo J, Huang G, Donovan DD. Characterization of RP1L1, a highly polymorphic paralog of the retinitis pigmentosa 1 (RP1) gene. Mol Vis 2003; 9:147-153.

Akahori M, Tsunoda K, Miyake Y, Fukuda Y, Ishiura H, Tsuji S, Usui T, Hatase T, Nakamura M, Odate In, Ibatachi T, Okamoto H, Takada Y, Iwata T. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum Genet 2010; 87:242-429.

Berger W, Kloeckener-Gruissem B, Nendhurt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29:335-375.

Vaclavik V, Gaillard MC, Tsai L, Schorster DF, Munier FL. Variable phenotypic expressivity in a Swiss family with autosomal dominant retinitis pigmentosa due to a T949M mutation in the RPFR3 gene. Mol Vis 2010; 16:467-475.

Zhao SH, Pan DY, Zhang Y, Wu JH, Lu X, Xu Y. Annexin A2 promotes chondrocyte neovascularization by increasing vascular endothelial growth factor expression in a rat model of argon laser coagulation-induced chondrocyte neovascularization. Chin Med J (Engl) 2010; 123:713-721.

Cantagrel V, Silhavy JL, Schwitters D, Marsh SE, Bertrand JY, Audolent S, Attie-Bitach T, Holder KR, Dobyns WB, Traver D, Aiazli L, Ali BR, Lindner TH, Caspary T, Otto HA, Hildebrandt F, Glass IA, Logan CV, Johnson CA, Bennett C, Biancata F, Valente EM, Woods CG, Gleeson JG. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet 2008, 83:710-719.

Sehgal R, Sheibani N, Rhodes SJ, Belely Adams TL. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression. Dev Biol 2009; 322:429-443.

Beales PL, Badano JL, Ross AJ, Andsey SJ, Hooiens BE, Kirsten B, Mein CA, Trope ML, Scambler PJ, Lewis RA, Lupski JR, Katsanis N. Genetic interaction of BS51 mutations with alleles at other BS5 loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet 2003; 72:1187-1199.

Badano JL, Leitch CC, Andsey SJ, May-Simera H, Lawson S, Lewis RA, Beales PL, Dietz HC, Fisher S, Katsanis N. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 2006; 439:326-330.

Kornak U, Kasper D, Boul MR, Kaiser E, Schweizer M, Schuler A, Friedrich W, Delling G, Jentsch TJ. Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104:205-215.
implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet 2010, 19:3591-3598.
59. Jia L, Oh EC, Ng L, Srinivas M, Brooks M, Swaroop A, Forrest D: Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci USA 2009, 106:17354-17359.
60. Daniele L, Sauer B, Gallagher SM, Pugh EN Jr, Philip NJ: Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 2008, 295:C451-457.
61. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Venstrom B, Reh TA, Forrest D: A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 2001, 27:94-98.
62. Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Soutoqho C, Hildebrandt F, Otto EA, Held S, Dipla BH, Davis EE, Mikula M, Strom CM, Ben-Zeke B, et al: Mutations in TMEM216 perturb cilogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 2010, 42:619-625.
63. Baala L, Romano S, Khaddour R, Saunier S, Smith UM, Audollent S, Ozbol C, Faivre L, Laurent N, Folletier B, Munnich A, Lyonnet S, Salomon R, Encha-Razavi F, Guider MC, Boddart N, de Lonlay P, Johnson CA, Vekemans M, Antignac C, Attie-Bitach T: The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet 2007, 80:186-194.
64. Reichman S, Kalathur RK, Lambard S, Ait-Ali N, Yang Y, Lardenois A, Ripp R, Poch O, Zick DJ, Sahel JA, Leveillard T: The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina. Hum Mol Genet 2010, 19:250-261.
65. Cronin T, Raffelsberger W, Lee-Rivera J, Jallard C, Niepomniasz ML, Kinzel B, Clerin E, Petroian A, Picaud S, Poch O, Sahel JA, Leveillard T: The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ 2010, 17:1199-1210.
66. Leonard KC, Perlin D, Coupland SG, Baker AN, Leonard BC, LaCasse EC, Hauwirth WW, Korneluk RG, Tsilfidis C: XIAP protection of photoreceptors in animal models of retinitis pigmentosa. PLoS ONE 2007, 2:e314.
67. Chakarova CF, Hims MM, Bozic H, Abu-Safieh L, Patel RJ, Papaioannou MG, Inglehearn CF, Keen TJ, Willis C, Moore AT, Rosenberg T, Webster AR, Bird AC, Gal A, Hunt D, Vithana EN, Bathe Shataya SS, Zeitz C: Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicate in autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002, 11:87-92.
68. Cooper Net, Leroy BP, Belayen D, Helfemans M, De Bosscher K, Haegebarth A, Koppereau L, Lejeune M, Coucke PJ, De Baere E: Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet 2007, 81:147-157.
69. Bandah-Rozenfeld D, Littin KW, Ban-Yosef T, Strom TM, Chewers I, Collin RW, hen Holland, AI, van den Born LI, Zonneveld MN, Merin S, Banin E, Cremers FP, Sharon D: Novel null mutations in the EYS gene are a frequent cause of autosomal recessive retinitis pigmentosa in the Israeli population. Invest Ophthalmol Vis Sci 2010, 51:4387-4394.
70. Bujakowska K, Audo I, Audo S, Lancelot ME, Bovman A, Germain A, Mann G, Leveillard T, Lettenoi M, Saranne JP, Lonjou C, Carpenter W, Sahel J, Hackett Shataya SS, Zet C: CRB1 mutations in inherited retinal dystrophies. Hum Mutat 2011, 33:306-315.
71. Rivera A, White K, Stothar H, Steiner K, Hymens N, Grimm T, Jurkies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH: A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 2000, 67:800-813.
72. Shroyer NF, Lewis RA, Lupski JR: Analysis of the ABCR (ABCR) gene in 4-aminooxquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease? Am J Ophthalmol 2001, 131:761-766.