Effects of coated sodium butyrate on production performance, egg quality, serum biochemistry, digestive enzyme activity, and intestinal health of laying hens

Sasa Miao, Wenting Zhou, Huaiyu Li, Mingkun Zhu, Xinyang Dong and Xiaoting Zou

Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China

ABSTRACT
The present study was conducted to investigate the effects of coated sodium butyrate (CSB) on production performance, egg quality, serum biochemistry, digestive enzyme activity, intestinal health of laying hens. 720 hens at 52 weeks were assigned in five groups including basal diet (control) and a basal diet supplemented with 250, 500, 750, and 1000 mg/kg CSB for 8 weeks. The results showed that the 500 mg/kg CSB group increased laying rate but 500 and 750 mg/kg groups decreased feed conversion ratio \((p < .05) \). At the fourth week, dietary CSB at more than or equal to 500 mg/kg level increased the Haugh unit \((p < .01) \); At the eighth week, 500 and 1000 mg/kg CSB groups improved the eggshell strength, Haught unit and albumen height \((p < .05) \). Dietary CSB administration except for the 250 mg/kg group increased the serum albumin and calcium and decreased the triglyceride content \((p < .05) \). 500 and 750 mg/kg CSB groups increased the activities of trypsin and amylase in the pancreas and duodenum \((p < .05) \). The groups of 500 and 750 mg/kg increased the villus height and villus height to crypt depth ratio \((V/C) \) in the jejunum and ileum \((p < .05) \). In the jejunum, at more than or equal to 500 mg/kg CSB groups increased the expressions of ZO-1 and Occludin \((p < .05) \); In the ileum, 500 and 750 mg/kg CSB groups increased the expressions of claudin-1 and occludin and ZO-2 \((p < .05) \). Conclusively, dietary supplementation of CSB can improve egg production, egg quality, digestive enzyme activity and present a positive effect on improving villi and intestinal mechanical barrier function.

HIGHLIGHTS
- A significant improvement in production performance and egg quality was observed in birds fed diet with coated sodium butyrate.
- Administration of coated sodium butyrate enhanced protein and mineral availability and lipid metabolism of serum.
- Supplementation of coated sodium butyrate presented a positive impact on regulating intestinal health.

ARTICLE HISTORY
Received 5 March 2021
Revised 19 July 2021
Accepted 22 July 2021

KEYWORDS
Coated sodium butyrate; egg quality; digestive enzyme; intestine; laying hens

Introduction
The growth and production of poultry rely on the intestinal digestion and absorption of the diet (Chocht 2009). Intestinal health is necessary to maintain efficient and sustainable gastrointestinal tract (GIT) physiology (Salois et al. 2016). The GIT has powerful multifunction, including digestion, absorption, metabolism, immunity, and endocrine (Svihus 2014). If the intestine health and its functions are damaged, the whole organism will be affected (Oviedo-Rondón 2019). Therefore, in poultry nutrition, we need to use supplements that improve the bird’s performance through promoting their intestine health. Sodium butyrate gets more and more focus due to its biological effects on the intestinal tissues and gut health (Elnesr et al. 2020).

The main component of sodium butyrate is butyric acid, which can be produced by the fermentation of dietary fibre by gastrointestinal microflora, in addition,
to obtain from butyrate (Pryde et al. 2002). Butyric acid is unstable and volatile, which is made into relatively stable sodium butyrate and applied in animal husbandry in feed production. It was reported that sodium butyrate had a variety of biological functions, including anti-oxidative (Ahmed 2018), anti-inflammatory (Hu et al. 2014), and antineoplastic (Wang et al. 2013). In addition, butyric acid has received more and more attention because of its regulation of intestinal health (Bedford and Gong 2018). Butyrate is the most important energy substance in colonic epithelial cells (Roediger 1982), which can regulate the differentiation and proliferation of gastrointestinal epithelial cells (Galfi and Neogrady 2001) and promote the apoptosis of genetically disordered cells (Leu et al. 2009). Sodium butyrate was found to protect the intestinal barrier by regulating the expression of tight junction protein and intestinal permeability (Song et al. 2017). Moreover, numerous studies reported that sodium butyrate had a variety of biological functions, including anti-oxidative (Ahmed 2018), anti-inflammatory (Hu et al. 2014), and antineoplastic (Wang et al. 2013). In addition, butyric acid has received more and more attention because of its regulation of intestinal health (Bedford and Gong 2018). Butyrate is the most important energy substance in colonic epithelial cells (Roediger 1982), which can regulate the differentiation and proliferation of gastrointestinal epithelial cells (Galfi and Neogrady 2001) and promote the apoptosis of genetically disordered cells (Leu et al. 2009). Sodium butyrate was found to protect the intestinal barrier by regulating the expression of tight junction protein and intestinal permeability (Song et al. 2017). Moreover, numerous studies reported that sodium butyrate is conducive to improve the development of the intestinal mucosa and morphological structures as well as regulate intestinal flora balance (Hu and Guo 2007; Smulikowska et al. 2009; Wu et al. 2018). However, uncoated sodium butyrate with a special lipid odour has a limiting effect on feed take (Lacorn et al. 2010) and is hard to reach the distal portion of the GIT (Claus et al. 2007; Piva et al. 2007). Dietary supplementation with coated sodium butyrate could delay the release of substance along with the GIT, stimulating hind-gut absorption and exerting its antimicrobial effect (Warnecke and Gill 2005; Bortoluzzi 2017). Moreover, the efficacy of butyrate was enhanced when it is fed in a coated form (Smith 2012). Considering the multifunctional and high efficiency, CSB is a candidate strategy to improve poultry production and health.

To our knowledge, the application of sodium butyrate in laying hens has been conducted actually, but recent advances on this issue are lacking. Therefore, dietary coated sodium butyrate was hypothesised to improve the performance of laying hens by ameliorating intestinal morphology, enhancing gut barrier function, and promoting nutrient absorption. The objective of the present trial is to evaluate the influence of coated sodium butyrate on egg production, egg quality, serum biochemistry, digestive enzyme activity, intestinal morphology, and barrier function of laying hens.

Material and methods

Experimental design, animals, and diets

In this study, a total of 720 commercial hens of Huafeng at the age of 52 weeks were randomly assigned to five treatment groups and each group with six replicates. Four hens were housed in individual stainless steel cages (50 × 50 × 50 cm), which were equipped with two nipple drinkers and one feeder. All laying hens were kept in three-layer stepped cages, and six cages in the same layer were regarded as a replicate. The laying hens were housed in an enclosed, ventilated, and conventional room. Feed and water were provided ad libitum. The experiment lasted 9 weeks, including 1 week for acclimation and 8 weeks for the experiment. The five groups were divided into the control group and four treatment groups. The control group was fed basal diet, the hens in the other four experimental groups were fed basal diets supplemented with 250, 500, 750, and 1000 mg, respectively, and in the control without additional sodium butyrate.

Sample collections

During the trial, the eggs from each replicate were counted and weighted daily to calculate the daily egg production, egg weight. Feed consumption was recorded weekly on a replication basis and the average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated. At the end of the experiment.

Table 1. Ingredient compositions and nutrient levels of basal diet for hens.

Items	Composition
Ingredients	Content (%)
Corn	62
Soybean meal	24.50
Soybean oil	0.50
Limestone	8
Premix ^a	5
Total	100
Nutrient ^b	
Metabolism energy, MJ/kg	10.99
Crude protein, %	15.67
Lysine, %	0.80
Methionine, %	0.34
Calcium, %	3.69
Total phosphorus, %	0.54

^aThe premix provided following per kilogram of diet: vitamin A, 7500 IU; vitamin D₃, 2500 IU; vitamin E, 49.5 mg; vitamin K₃, 2.5 mg; vitamin B₁, 1.5 mg; vitamin B₂, 4 mg; vitamin B₆, 2 mg; vitamin B₁₂, 0.02 mg; niacin, 30 mg; folic acid, 1.1 mg; pantothenic acid, 10 mg; biotin, 0.16 mg; chloride choline, 400 mg; Sodium chloride, 2500 mg; Fe, 80 mg; Cu, 20 mg; Mn, 60 mg; Zn, 80 mg; I, 0.8 mg; Se, 0.3 mg.

^bThe premix in five treatments provided per kilogram of diet: sodium butyrate, 250, 500, 750, and 1000 mg, respectively, and in the control without additional sodium butyrate.

^cValues were calculated from Chinese feed database provided with tables of feed composition and nutritive values in China (21th edition).
two birds per replicate (12 birds each treatment) were chosen. After 12 h of fasting (water was offered ad libitum), the blood sample was obtained from the wing vein and centrifuged at 3000 x g for 15 min at 4 °C to separate serum for biochemical analysis. Then birds were euthanised by cervical dislocation. The small intestine and pancreas were collected immediately. Part of the small intestine was fixed in 4% paraformaldehyde and kept at 4 °C for histological evaluation. The pancreas and other parts of intestine were stored at −80 °C for further analysis.

Egg quality

In the 4th and the 8th weeks of the experiment, egg quality was measured immediately on three eggs collected randomly from each replicate. Eggshell thickness (without shell membrane) was measured by Egg Shell Thickness Gauge (ESTG-1, Orka Food Technology Ltd., Ramat Hasharon, Israel). Albumen height, Haugh unit, yolk colour, and eggshell strength were determined by a multi-functional egg quality analyser (DET-6000, Nabel Co., Ltd., Kyoto, Japan).

Serum biochemical indicators

The concentrations of total protein (TP), albumin (ALB), calcium (Ca), phosphorus (P), triglyceride (TG), total cholesterol (T-CHO), along with the activities of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in the serum were assayed and calculated followed by the instructions of commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

Determination of digestive enzyme activities

The weight of the pancreas and duodenum chyme and the volume of Phosphate Buffered Saline was used to prepare the tissue homogenate at 1:9. The tissue homogenate was centrifuged at 3500rpm for 15 min, and the supernatant was collected and stored at −80 °C. The activities of lipase, amylase, and trypsin were determined by spectrophotometer according to the kit instructions (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The protein concentrations were determined using the Coomassie Brilliant Blue G-250 reagent with BSA as a standard.

Histopathological analysis

About 1-cm segment of the duodenum, jejunum, and ileum fixed with 4% paraformaldehyde was trimmed and embedded in paraffin wax. The paraffin sections were cut into 6μm thick using a microtome (Leica Microsystems, RM2016), then stained with haematoxylin and eosin (H&E) for histopathological observation. Villus height and crypt depth of 12 villi in each intestinal sample were calculated by optical microscopy (Nikon Eclipse 80i, Nikon, Tokyo, Japan).

Real-time PCR

The detailed processes of total RNA extraction and complementary DNA (cDNA) synthesis are as described previously (Miao et al. 2020 (Miao et al., 2020)). The gene expressions of ZO-1, ZO-2, claudin-1, claudin-4, and occludin in jejunum and ileum were determined on a real-time polymerase chain reaction (PCR) system (ABI 7500; Applied Biosystems, Foster City, CA, USA) following the protocol of SYBR qPCR Master Mix kit (Vazyme Biotech Co., Ltd, Nanjing, Jiangsu, China). The expression of target genes was normalised to that of β-Actin. The Gene-specific primers are presented in Table 2. There were six samples in each group, and each sample was made in duplicate, excluding the template control. The 2−ΔΔCT method was used to

Gene symbol	Gene name	Primer sequence (5'-3')	Accession No.
β-Actin	β-Actin	F: TCCCTGGAGAAGAGCTATGAA	NM_205518.1
		R: CAGGACTCTCCATACCCAAAGAAG	
ZO-1	Zonula Occludens 1	F: TTAGGCACAGCGAAGGGG	XM_015278975
		R: CTTGAATGCTCTTTTTTTG	
Claudin-4	Claudin 4	F: GAAGGCTGAACCGGATACCAA	AY435420
		R: TCTCTCTCTCTCTCTCTCT	
Occludin	Occludin	F: TACGCTGCTGCTTGCTCTG	NM_205128
		R: TCTCTCTCTCTCTCTCTCTCT	
Claudin-1	Claudin 1	F: TGGAGATGACCACTGAGAAG	NM_001013611
		R: CGAGCACTGCTGGCTGCTG	
ZO-2	Zonula Occludens 2	F: ACGGCTGCTGCCCAAAATGAGATG	NM_204918
		R: CCCAGTCTGCCACTCACAAGA	

F: forward; R: reverse.

*p*β-Actin served as endogenous reference gene.

Table 2. Primer sequences used for RT-qPCR analysis.
calculate the average mRNA expression level relative to the β-Actin (Livak and Schmittgen, 2001).

Statistical analysis

The data were statistically analysed by one-way ANOVA using SPSS 20.0 (SPSS Inc., Chicago, IL, USA) and expressed as means and SEM. Linear and quadratic effects were tested and considered significant at \(p < .05 \). Tukey post-hoc test was used to compare the significant differences \((p < .05) \) between means. Before analysis, the laying rate was subjected to an arcsine transformation.

Results

Growth performance

The effects of CSB on production performance are summarised in Table 3. The laying rate was increased quadratically \((p < .01) \) with the increasing of the dietary CSB levels, and did best in the group of 500 mg/kg. However, the feed conversion ratio (FCR) showed a linear and quadratic decrease \((p < .01) \) after CSB treatments. In addition, no significant differences were found in egg weight and ADFI \((p > .05) \).

Egg quality

The effects of CSB on egg quality are shown in Table 4. The Haugh unit (HU) presented a linear and quadratic increase after CSB treatments \((p < .01) \) at the end of the fourth week. After 8 weeks of the feeding trial, the eggshell strength, Haugh unit, and Albumen height were significantly increased in a linear or quadratic manner due to the addition of CSB in the diet \((p < .01) \).

Serum biochemistry

Serum biochemical indices are presented in Table 5. The level of ALB and Ca were significantly enhanced \((p < .05) \) in a linear and quadratic manner with dietary supplementation of CSB. On the contrary, the level of TG showed a quadratic decrease as the dietary CSB level increased \((p < .01) \). There are no significant differences in levels of serum TP, P, T-CHO, GOT, and GPT among all groups.

Digestive enzyme activity in the pancreas and duodenum chyme

The digestive enzyme activity in the pancreas and duodenum is shown in Table 6. In the pancreas, the activity of amylase was linearly and quadratically

Table 3. Effect of coated sodium butyrate (CSB) on production performance of laying hens.

Items	Control	250	500	750	1000	SEM	\(p \)-Value	Linear Quadratic
Laying rate, %	73.60b	74.62ab	76.93a	76.29ab	75.11ab	1.07	0.030	0.076
Egg weight, g	49.56	49.47	49.68	49.21	49.47	0.47	0.894	0.098
ADFI, g	89.25	88.04	89.65	89.28	90.21	2.05	0.874	0.480
FCR	2.50b	2.50a	2.33b	2.34b	2.39ab	0.05	0.003	0.007

SEM: standard error of the means; ADFI: average daily feed intake; FCR: feed conversion ratio. Values are represented as the mean & SEM \((n = 6) \). \(a,b \)Means within a column with different superscripts are significantly different \((p < .05) \).

Table 4. Effects of coated sodium butyrate (CSB) on egg quality of laying hen.

Items	Control	250	500	750	1000	SEM	\(p \)-Value	Linear Quadratic
4th week								
Eggshell strength, kgf/m²	3.97	4.01	4.10	4.07	4.03	0.10	0.691	0.373
Eggshell thickness, mm	0.34	0.34	0.34	0.34	0.35	0.05	0.586	0.132
Haugh unit	73.15b	74.72ab	76.88a	76.65a	76.93a	1.10	0.006	0.001
Albumen height, mm	5.17	5.11	5.24	5.20	5.37	0.16	0.575	0.160
Yolk colour	6.56	6.61	6.39	6.44	6.33	0.17	0.441	0.103
8th week								
Eggshell strength, kgf/m²	3.73	3.90ab	4.00a	4.03a	3.92a	0.06	0.001	<0.001
Eggshell thickness, mm	0.38	0.39	0.39	0.38	0.38	0.01	0.411	0.736
Haugh unit	67.14b	70.76ab	73.27a	72.76ab	73.63a	2.07	0.022	0.003
Albumen height, mm	4.85b	5.12ab	5.31a	5.27ab	5.47a	0.14	0.003	<0.001
Yolk colour	6.17	6.5	6.33	6.17	6.17	0.27	0.659	0.575

SEM: standard error of the means. Values are represented as the mean & SEM \((n = 18) \). \(a,b \)Means within a column with different superscripts are significantly different \((p < .05) \).
increased ($p < .01$) by increasing the CSB levels in the diet, whereas the activity of trypsin responded quadratically ($p < .01$). In the duodenum, the activity of trypsin and amylase showed a quadratic increase as dietary CSB levels increased ($p < .01$). No significant difference was observed among all groups in the activity of lipase ($p > .05$).

The morphology of intestinal tract

Histological changes in the small intestine were assessed by a light microscope. As shown in Table 7, in the jejunum, increasing dietary CSB concentration significantly increased the villus height and V/C in a linear or quadratic manner ($p < .01$). In the ileum, the villus height and V/C presented a quadratic increase ($p < .01$). No difference was exhibited in duodenum morphology ($p > .05$).

Gene expression of tight junctions (TJs) in jejunum and ileum

The expression of TJs in the jejunum and ileum is shown in Figure 1. In the jejunum, CSB treatment significantly upregulated the mRNA levels of ZO-1 and Occludin in a linear or quadratic manner ($p < .01$), but did not affect the mRNA expression levels of ZO-2, Claudin-1, and Claudin-4. In the ileum, the gene expressions of ZO-2, Claudin-1, and occludin showed a quadratic increase as the dietary CSB levels increased ($p < .01$), whereas this had no effects on the mRNA levels of ZO-1 and Claudin-4 ($p > .05$).

Discussion

Previous studies have found that dietary supplementation of sodium butyrate benefitted the performance and health condition of animals. Pardo et al. (2009) reported that dietary supplementation of coated sodium butyrate could significantly increase the daily gain, feed intake, and feed conversion rate of broiler in the middle and late period. Sikandar et al. (2017) observed that feeding sodium butyrate at 500 mg/kg diet could significantly improve the growth performance of broilers. Similarly, in the present study, different levels of CSB improved egg production and feed efficiency to varying degrees. These observed improvements in bird growth egg production and feed efficiency resulted from CSB supplementation can be, at least partially, explained by the following two distinct aspects. On the one hand, butyrate sodium has a beneficial effect on gut tissue and intestinal function (Kotunia, 2004; Hu and Guo, 2007). On the other hand, butyrate sodium indirectly enhanced the

| Table 5. Effect of coated sodium butyrate (CSB) on serum biochemistry of laying hens. |
|----------------|----------------|----------------|----------------|----------------|
| **Items** | **Control** | **Coated sodium butyrate (mg/kg)** | **SEM** | **p-Value** | **Linear** | **Quadratic** |
| **TP, g/L** | 22.29 | 23.46 | 27.18 | 23.98 | 26.98 | 2.25 | 0.147 | 0.083 | 0.182 |
| **ALB, g/L** | 19.96 | 23.42 | 24.97 | 24.61 | 24.40 | 1.38 | 0.008 | 0.036 | 0.004 |
| **Ca, mmol/L**| 3.29 | 3.44 | 3.56 | 3.61 | 3.52 | 0.08 | 0.031 | 0.011 | 0.034 |
| **P, mmol/L** | 1.25 | 1.27 | 1.30 | 1.31 | 1.29 | 0.05 | 0.799 | 0.283 | 0.426 |
| **TG, mmol/L**| 15.33 | 13.22 | 11.76 | 11.61 | 14.63 | 1.41 | 0.047 | 0.402 | 0.009 |
| **T-CHO, mmol/L** | 3.40 | 2.89 | 2.95 | 3.02 | 3.16 | 0.38 | 0.686 | 0.686 | 0.379 |
| **GOT, IU/L** | 23.07 | 22.87 | 25.27 | 24.13 | 22.93 | 1.76 | 0.613 | 0.802 | 0.480 |
| **GPT, IU/L** | 0.54 | 0.80 | 0.63 | 0.71 | 0.54 | 0.21 | 0.656 | 0.846 | 0.509 |

SEM: standard error of the means; TP: total protein; ALB: albumin; Ca: calcium; P: phosphorus; TG: triglyceride; T-CHO: total cholesterol; GOT: aspartate aminotransferase; GPT: alanine aminotransferase.

Values are represented as the mean & SEM (n = 12).

Means within a column with different superscripts are significantly different ($p < .05$).

| Table 6. Effects of coated sodium butyrate (CSB) on the digestive enzyme activity of laying hens. |
|----------------|----------------|----------------|----------------|----------------|
| **Items** | **Control** | **Coated sodium butyrate (mg/kg)** | **SEM** | **p-Value** | **Linear** | **Quadratic** |
| **Pancreas** | | | | | | |
| Trypsin, U/mgprot | 334.15^a | 394.46^a | 450.80^a | 463.27^a | 386.66^a | 37.13 | 0.022 | 0.102 | 0.004 |
| Lipase, U/gprot | 235.42 | 284.80 | 270.17 | 246.25 | 245.74 | 33.19 | 0.580 | 0.813 | 0.455 |
| Amylase, U/mgprot | 50.29^b | 55.25^a | 77.87^a | 77.36^a | 76.11^a | 7.46 | 0.008 | 0.002 | 0.002 |
| **Duodenum** | | | | | | |
| Trypsin, U/mgprot | 238.39^a | 335.81^a | 357.23^a | 352.97^a | 309.12^b | 31.20 | 0.010 | 0.093 | 0.001 |
| Lipase, U/gprot | 84.76 | 88.13 | 87.16 | 84.58 | 84.06 | 2.62 | 0.447 | 0.402 | 0.271 |
| Amylase, U/mgprot | 1.87^{bc} | 3.11^{ab} | 4.57^a | 4.07^a | 2.90^{ab} | 0.64 | 0.013 | 0.170 | 0.002 |

SEM: standard error of the means.

Values are represented as the mean & SEM (n = 12).

^a–^cMeans within a column with different superscripts are significantly different ($p < .05$).
digestion and absorption of nutrients of laying hens via increasing the activity of digestive enzymes, which can be proved that feeding the diet supplemented with CSB improved the trypsin and amylase activity. Moreover, we found a positive effect of CSB on the performance of hens is at relatively lower dietary sodium butyrate contents (500–750 mg/kg). This suggests that a dose–effect response exists between sodium butyrate and hens performance, which was supported by the non-significant effect of 1000 mg/kg coated sodium butyrate in this study and the similar result reported in broilers by Lan et al. (2020).

Eggs exist the high risk of eggshell damage in the process of collection, packaging, and transportation which cause huge economic losses to lay producer (Li et al. 2019). One of the main concerns is the value of eggshell strength is not enough big. In our study, CSB treatments led to a significant increase in eggshell strength as shown in Table 7.

Table 7. Effects of coated sodium butyrate (CSB) on villi morphology of small intestine of laying hens.

Items	Control	Coated sodium butyrate(mg/kg)	SEM	p-Value	Linear	Quadratic				
Duodenum										
Villus height, μm	1286.41	1281.04	1305.83	1296.82	1289.63	43.99	0.983	0.815	0.922	
Crypt depth, μm	170.77	166.31	163.33	165.45	163.97	0.85	0.38	0.757	0.334	0.451
V/C	7.54	7.74	8.03	7.85	7.89	0.38	0.38	0.757	0.334	0.451
Jejunum										
Villus height, μm	996.23	1047.86	1190.44	1153.17	1137.26	48.37	0.003	0.003	0.001	
Crypt depth, μm	139.65	133.18	136.70	135.24	138.02	0.34	0.34	0.001	0.003	<0.001
V/C	7.14	7.88	8.71	8.52	8.23	0.34	0.34	0.001	0.003	<0.001
Ileum										
Villus height, μm	723.05	775.73	807.69	778.18	778.94	21.29	0.008	0.028	0.001	
Crypt depth, μm	87.12	81.65	82.63	85.48	86.61	3.04	0.30	0.700	0.170	
V/C	8.34	9.54	9.78	9.26	9.02	0.44	0.44	0.028	0.341	0.009

SEM: standard error of the means; V/C: Villus height/crypt depth. Values are represented as the mean & SEM (n = 12).

Means within a column with different superscripts are significantly different (p < .05).

Figure 1. Effects of coated sodium butyrate (CSB) on mRNA expression of ZO-1, ZO-2, claudin-1, claudin-2, and occludin of laying hens. Method of 2^-ΔΔCt_ was applied for calculation of relative gene expression with β-actin as the endogenous control and the average ΔCt value of control group as the calibrator to normalise the signal. Values were expressed as mean with range (n = 6). Columns with different superscript letters were significantly different (p < .05). PL and PQ represented linear and quadratic analysis, respectively.

Eggs exist the high risk of eggshell damage in the process of collection, packaging, and transportation which cause huge economic losses to lay producer (Li et al. 2019). One of the main concerns is the value of eggshell strength is not enough big. In our study, CSB treatments led to a significant increase in eggshell strength as shown in Table 7.

Table 7. Effects of coated sodium butyrate (CSB) on villi morphology of small intestine of laying hens.

Items	Control	Coated sodium butyrate(mg/kg)	SEM	p-Value	Linear	Quadratic				
Duodenum										
Villus height, μm	1286.41	1281.04	1305.83	1296.82	1289.63	43.99	0.983	0.815	0.922	
Crypt depth, μm	170.77	166.31	163.33	165.45	163.97	0.85	0.38	0.757	0.334	0.451
V/C	7.54	7.74	8.03	7.85	7.89	0.38	0.38	0.757	0.334	0.451
Jejunum										
Villus height, μm	996.23	1047.86	1190.44	1153.17	1137.26	48.37	0.003	0.003	0.001	
Crypt depth, μm	139.65	133.18	136.70	135.24	138.02	0.34	0.34	0.001	0.003	<0.001
V/C	7.14	7.88	8.71	8.52	8.23	0.34	0.34	0.001	0.003	<0.001
Ileum										
Villus height, μm	723.05	775.73	807.69	778.18	778.94	21.29	0.008	0.028	0.001	
Crypt depth, μm	87.12	81.65	82.63	85.48	86.61	3.04	0.30	0.700	0.170	
V/C	8.34	9.54	9.78	9.26	9.02	0.44	0.44	0.028	0.341	0.009

SEM: standard error of the means; V/C: Villus height/crypt depth. Values are represented as the mean & SEM (n = 12).

Means within a column with different superscripts are significantly different (p < .05).
Weaver (2017). Therefore, we speculated that the enhanced bioavailability of calcium (Whisner and and lowered the pH value of the intestine, and butyrate) increased the eggshell breaking strength, demonstrated that dietary supplementation of SCFA (mainly butyrate). Sengor et al. (2007) also demonstrated that dietary inclusion of CSB (mainly butyrate) significantly reduced the TG content. Results from our study showed that dietary CSB significantly increased Haught unit and album height, suggesting that CSB is effective in persevering the freshness of eggs. There is no difference in other egg quality traits, indicating that CSB had no effect on egg yellow pigmentation. Based on the above results, dietary supplementation with CSB is meaningful to the transportation and preservation of eggs.

Serum biochemical indexes of animals can be used as diagnostic tools to reflect the physiological health status of the body (Nyblom et al. 2004; Prvulovic et al. 2012). The TP and ALB contents can reflect the state of protein absorption and metabolism of the body (Liu et al. 2013). Results from our experiment revealed that dietary inclusion of CSB significantly promoted serum ALB levels. The reason may be that butyric acid can increase body bioavailability and preserve proteins by increasing the absorption of certain essential amino acids in the intestine (Roberts 2004; Ng and Koh 2017). In poultry, calcium is the key element of eggshell formation, which takes place along the gastrointestinal tract (Sugiyama et al. 2007). Sodium butyrate, as an SCFA, could irritate epithelial cell proliferation and intestinal morphology (García et al. 2007), and then effectively make use of the calcium (Boling-Frankenbach et al. 2001; Soltan 2008). There was also evidence that sodium butyrate can increase the villus height and total mucosa of ileum (Zou et al. 2019). In our study, the serum calcium was enhanced by supplementing with CSB, which is consistent with the change in eggshell. The concentrations of T-CHO and TG can reflect the status of body fat metabolism. Results from our study found that the supplementation of CSB significantly reduced the TG content. Triglycerides are synthesised in the liver, whose level can be used as an indicator of liver function (Osman et al. 2010; Deng et al. 2011). We surmised that CSB may reduce TG levels by inhibiting hepatic lipogenesis. To sum up, CSB is beneficial to enhance protein and mineral availability and lipid metabolism, but more in-depth studies need to be explored.

The digestion and absorption of food require the coordination and cooperation of the various organs of the digestive system. The activities of digestive enzymes are valuable indicators to evaluate feed utilisation efficiency and performance of domestic animals (Yi et al. 2013). Interestingly, the current study indicated that dietary supplementation CSB significantly increased the trypsin and amylase activities in the pancreas and duodenum. These outcomes were in line with previous studies, which showed that organic acid can enhance digestive enzymes and or inhibit pathogenic bacteria due to its slight acidifying properties (Castillo et al. 2014; Hoseinifar et al. 2017). These results revealed that CSB addition improved the digestibility of the protein and starch components of the feed. Furthermore, these data explained the improved feed conversion efficiency observed in hens supplemented with CSB. These outcomes were consistent with previous studies, which provided evidence that dietary CSB supplementation can improve nutrient digestibility in piglet and broiler (Zhong et al. 2009; Yang et al. 2011).

The morphology of the villi and crypts of the intestinal mucosa are essential indicators of intestinal health (Chen et al. 2021). The longer the villus height and the shallower the crypt depth in the small intestine, the greater the ability to absorb nutrients. The ratio of villus height to crypt depth can comprehensively reflect the functional status of the gut. Increased ratio indicated favourable intestinal mucosa and enhanced digestion and absorption capacity (Chee et al. 2010). A report showed that sodium butyrate could significantly improve the histomorphological indexes of jejunum and duodenum of broilers (Sikandar et al. 2017). Czerwinski et al. (2012) demonstrated that the villus height of jejunum in broilers was significantly increased by adding coated sodium butyrate. Same as previous studies, our results revealed that dietary CSB intake increased the villus height and ratio of villi height to the crypt depth of the jejunum and ileum, promoting the intestinal health. The possible reason is that the addition of butyric acid increased the content of SCFA, which facilitated the proliferation of intestinal epithelial cells leading to longer villi (Tomaszewksa et al. 2018). Meanwhile, our result found that CSB presented better on the hindgut morphology because CSB is a coated
product to achieve protection and sustained release of biological activity.

A major component of the intestinal barrier is the formation of tight junctions between epithelial cells (Liu et al. 2019). Tight junctions are complex composed of a variety of proteins, mainly including transmembrane proteins (claudin family and occludin) and cytoplasmic proteins (ZOs), which play an important role in maintaining the polarity of intestinal mucosal epithelial cells and regulating the permeability of the intestinal barrier (Camilleri et al. 2012). Occludin and claudin protein has strong adhesion to close cell voids and protect intestinal barriers. Simultaneously, ZOs can enhance the formation of tight junctions between cells, thus preventing macromolecules, such as bacteria and toxins from entering the body and maintaining the physical barrier function of the intestinal tract (Xu et al. 2016). Our results showed that the supplementation of CSB could significantly affect intestinal integrity and increase the gene expressions of ZO-1, ZO-2, Claudin-1, and Occludin, indicating that CSB could enhance the intestinal barrier. This was consistent with a previous study that the addition of sodium butyrate increased the intestinal gene expression of claudin and ZO-1 in fish (Liu et al. 2019). Ma et al. (2012) also reported that sodium butyrate increased the gene expression of Zos, which could promote wound healing. A recent report (Peng et al. 2009) has shown that butyrate accelerated the assembly of tight junctions by activating AMP-activated protein kinase (AMPK) to enhance intestinal barrier function. AMPK is a serine/threonine kinase, which relates to the synthesis of glucose and fatty acid metabolism and protein (Hardie et al. 2006). Tight junction assembly is impaired when AMPK activity is down-regulated by gene manipulation strategies (Zhang et al. 2006; Zheng and Cantley 2007). We hypothesised that the increased expression of genes involved in the intestinal barrier was associated with the up-regulation of AMPK activity. However, the concrete mechanisms remain to be expounded.

Conclusions

In conclusion, the current study indicated that dietary coated sodium butyrate supplementation could improve egg production and egg quality, enhance protein and mineral availability, and lipid metabolism. Furthermore, coated sodium butyrate could improve digestive enzyme activity, intestinal morphology, and intestinal barrier function. In this experiment, 500 mg/kg is the suitable added concentration of coated sodium butyrate on hens’ diet according to quadratic regression analysis.

Ethical approval

The current study was approved by the Animal Care and Welfare Committee of Animal Science College and the Scientific Ethical Committee of the Zhejiang University (No. ZJU2013105002) (Hangzhou, China).

Disclosure statement

The authors declare no conflict of interest.

Funding

This research was supported by the Modern Argo-Industry Technology Research System of China (CARS-40-K10).

References

Bedford A, Gong J. 2018. Implications of butyrate and its derivatives for gut health and animal production. Anim Nutr. 4(2):151–159.

Boling-Frankenbach SD, Snow JL, Parsons CM, Baker DH. 2001. The effect of citric acid on the calcium and phosphorus requirements of chicks fed corn-soybean meal diets. Poult Sci. 80(6):783–788.

Bortoluzzi C, Pedroso AA, Mallo JJ, Puyalto M, Kim WK, Applegate TJ. 2017. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult Sci. 96(11):3981–3993.

Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Van Meerveld BG, Verne GN. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 24(6):503–512.

Castillo S, Rosales M, Pohlencz M, Gatlin DM. 2014. Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture. 433:6–12.

Chee SH, Iji PA, Choc M, Mikkelsen LL, Kocher A. 2010. Functional interactions of manno-oligosaccharides with dietary threonine in chicken gastrointestinal tract. II. Mucosal development, mucin dynamics and nutrient utilisation. Br Poult Sci. 51(5):667–676.

Chen F, Zhang H, Du E, Jin F, Zheng C, Fan Q, Zhao N, Guo W, Zhang W, Huang S, et al. 2021. Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens at the late of the laying cycle. Poult Sci. 100(2):835–843.

Choc M. 2009. Managing gut health through nutrition. Br Poult Sci. 50(1):9–15.

Claus R, Günthner D, Letzgu H. 2007. Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. J Anim Physiol Anim Nutr. 91(7–8):312–318.

Czerwiński J, Højberg O, Smulikowska S, Engberg RM, Mieczkowska A. 2012. Effects of sodium butyrate and
salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch Anim Nutr. 66(2):102–116.

Deng JM, An QC, Bi BL, Wang QJ, Kong LF, Tao LL, Zhang X. 2011. Effect of ethanolic extract of propolis on growth performance and plasma biochemical parameters of rainbow trout (Oncorhyncus mykiss). Fish Physiol Biochem. 37(4):959–967.

Elners SS, Alagawany M, Elwan MA, Falah MR. 2020. Effect of sodium butyrate on intestinal health of poultry—a review. Ann Anim Sci. 20(1):29–41.

Galli P, Neogrady S. 2001. The pH-dependent inhibitory action of n-butyrate on gastrointestinal epithelial cell division. Food Res Int. 34(7):581–586.

Garcia V, Catala-Gregori P, Hernandez F, Megias MD, Madrid J. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. J Appl Poultry Res. 16(4):555–562.

Hardie D, Hawley S, Scott J. 2006. AMP-activated protein kinase—development of the energy sensor concept. J Physiol. 574(1 Pt 1):7–15.

Hoseinifar SH, Sun YZ, Caipang CM. 2017. Short-chain fatty acids as feed supplements for sustainable aquaculture: an updated view. Aquac Res. 48(4):1380–1391.

Hu Z, Guo Y. 2007. Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim Feed Sci Tech. 132(3–4):240–249.

Hu X, Zhang K, Xu C, Chen Z, Jiang H. 2014. Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Exp Ther Med. 8(1):229–232.

Kotunia A, Wolinski J, Laubitz D, Jurkowski M, Rome V, Guilloteau P, Zabielski R. 2004. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J Physiol Pharmacol. 55(2):59–68.

Lacorn M, Goerke M, Claus R. 2010. Inulin-coated butyrate increases ileal MCT1 expression and affects mucosal morphology in the porcine ileum by reduced apoptosis. J Anim Physiol Anim Nutr. 94(5):670–676.

Lan RX, Li SQ, Zhao ZH, An LL. 2020. Sodium butyrate as an effective feed additive to improve growth performance and gastrointestinal development in broilers. Vet Med Sci. 6(3):491–499.

Leu RKL, Hu Y, Brown IL, Young GP. 2009. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr Metab. 6(1):11.

Li LL, Gong YJ, Zhan HQ, Zheng YX, Zou XT. 2019. Effects of dietary Zn-methionine supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. Poult Sci. 98(2):923–931.

Liu Y, Chen ZC, Dai JH, Yang P, Xu WQ, Ai QH, Zhang QH, Zhang YG, Zhang YJ, Mai KS. 2019. Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): Effects on inflammatory status, mucosal barriers and microbiota in the intestine. Fish Shellfish Immunol. 88:65–75.

Liu TY, Su BC, Wang JL, Zhang C, Shan AS. 2013. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs. J Northeast Agr Univ. 20(4):59–65.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408.

Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DF. 2012. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci. 90(suppl 4):266–268.

Ma N, Abaker JA, Bilal MS, Dai H, Shen X. 2018. Sodium butyrate improves antioxidant stability in sub-acute ruminal acidosis in dairy goats. BMC Vet Res. 14(1):275.

Miao LP, Gong YJ, Li HY, Xie C, Xu QQ, Dong XY, Elwan HAM, Zou XT. 2020. Alterations in cecal microbiota and intestinal barrier function of laying hens fed on fluoride supplemented diets. Ecotox and Environ Safe. 193:110372.

Ng WK, Koh CB. 2017. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev Aquacult. 9(4):342–368.

Nyblom H, Berggren U, Baldin J, Olsson R. 2004. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcoholism. 39(4):336–339.

Osman AGM, Koutb M, Sayed EDH. 2010. Use of hematological parameters to assess the efficiency of quince (Cydonia oblonga Miller) leaf extract in alleviation of the effect of ultraviolet–A radiation on African catfish Clarias gariepinus (Burchell, 1822). J Photochem Photobiol B. 99(1):1–8.

Oviedo-Rondón EO. 2019. Holistic view of intestinal health in poultry. Anim Feed Sci Tech. 250:1–8.

Pardo FOC, Puyalto M, Ortiz A, Torrelaba H, Riboty R. 2009. Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and development in broilers chickens. Int J Poult Sci. 13(7).

Peng LY, Li ZR, Green RS, Holzman IR, Lin J. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 139(9):1619–1625.

Piva A, Pizzamiglio V, Morlacchini M, Tedeschi M, Piva G. 2007. Lipid microencapsulation allows slow release of organic acids and natural identical flavors along the swine intestine. J Anim Sci. 85(2):486–493.

Prvulovic D, Kosarcic S, Popovic M, Dimitrijev D, Grubor-Laj G. 2012. The influence of hydrated aluminosilicate on bio-chemical and haematological blood parameters, growth performance and carcass traits of pigs. J Anim Vet Adv. 11(1):134–140.

Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 217(2):133–139.

Rattanawut J, Pimpaa O, Yamauchi KE. 2018. Effects of dietary bamboo vinegar supplementation on performance, egg-shell quality, ileal microflora composition, and intestinal villus morphology of laying hens in the late phase of production. Anim Sci J. 89(11):1572–1580.

Roberts JR. 2004. Factors affecting egg internal quality and egg shell quality in laying hens. Jpn Poult Sci. 41(3):161–177.
Roediger WE. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83(2):424–429.

Salois MJ, Cady RA, Heskett EA. 2016. The environmental and economic impact of withdrawing antibiotics from US broiler production. J Food Distrib Res. 47(1):2.

Sengor E, Sahin H, Bayram I, Dogan I, Cetingul S, Yardimci M. 2007. Effects of short chain fatty acid (SCFA) supplementation on performance and egg characteristics of old breeder hens: short communication. S Afr J Anim Sci. 37(3).

Sikandar A, Zaneb H, Younus M, Aslam A, Khattak Sengor E, Sahin H, Bayram I, Dogan I, Cetingul S, Yardimci S, Salois MJ, Cady RA, Heskett EA. 2016. The environmental Roediger WE. 1982. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83(2):424–429.

Soltan MA. 2008. Effect of dietary organic acid supplementation on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens. Asian-Australas J Anim Sci. 30(5):690–699.

Smith DJ, Barri A, Herges G, Hahn J, Yersin AG, Jourdan A. 2012. In vitro dis-solution and in vivo absorption of calcium butyrate in free or protected forms. J Agric Food Chem. 60(12):3151–3157.

Smulikowska S, Czerwiński J, Mieczkowska A, Jankowiak J. 2009. The effect of fat-coated organic acid salts and a feed enzymeon growth performance, nutrient utilization, microflora activity, and morphology of the small intestine in broiler chickens. J Anim Feed Sci. 18(3):478–489.

Song BC, Li HX, Wu YY, Zhen WR, Wang Z, Xia ZF, Guo YM. 2017. Effect of microencapsulated sodium butyrate dietary supplementation on growth performance and intestinal barrier function of broiler chickens infected with necrotic enteritis. Anim Feed Sci Tech. 232:6–15.

Sugiyama T, Kikuchi H, Hiyama S, Nishizawa K, Kusuhara S. 2007. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. Br Poult Sci. 48(2):233–238.

Svihus B. 2014. Function of the digestive system. J Appl Poultry Res. 23(2):306–314.

Tomaszewska E, Dobrowolski P, Muszyński S, Kwiecień M, Kasperek K, Knaga S, Tomczyk-Warunek A, Kowalik S, Jeżewska-Witkowska G, Grela ER. 2018. Intestinal mucosa develops in a sex-dependent manner in Japanese quail (Coturnix japonica) fed Saccharomyces cerevisiae. Br Poult Sci. 59(6):689–697.

Vlčková J, Tůmová E, Miková K, Englmaierová M, Okrouhlá M, Chodová D. 2019. Changes in the quality of eggs during storage depending on the housing system and the age of hens. Poult Sci. 98(11):6187–6193.

Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ. 2013. Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med. 31(4):967–974.

Warnecke T, Gill RT. 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact. 4(1):25.

Whisner CM, Weaver CM. 2017. Prebiotics and Bone. Adv Exp Med Biol. 1033:201–224.

Wu W, Xiao ZB, An WY, Dong YY, Zhang BK. 2018. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLOS One. 13(5):e0197762.

Xu J, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, et al. 2016. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 55:64–87.

Yang Z, Zou Y, Yang W, Jiang S, Zhang G. 2011. Effect of microcapsule sodium butyrate on intestinal digestive enzyme activities in broilers. Feed Industry. (S2):27–29.

Yi JQ, Piao XS, Li ZC, Zhang HY, Chen Y, Li YQ, Liu JD, Zhang Q, Ru YJ, Dong B. 2013. The effects of enzyme complex on performance, intestinal health and nutrient digestibility of weaned pigs Asian Australas. Asian Australas J Anim Sci. 26(8):1181–1188.

Zhan HQ, Dong XY, Li LL, Zheng YX, Gong YJ, Zou XT. 2019. Effects of dietary supplementation with Clostridium butyricum on laying performance, egg quality, serum parameters, and cecal microflora of laying hens in the late phase of production. Poult Sci. 98(2):896–903.

Zhang L, Li J, Young L, Caplan M. 2006. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci USA. 103(46):17272–17277.

Zheng B, Cantley L. 2007. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci USA. 104(3):819–822.

Zhong X, Huang X, Chen S, Li W, Wang T. 2009. Effects of sodium butyrate on growth performance and digestive enzyme activity in intestine of weaning piglets. Chinese J Anim Nutr. 21(5):719–726.

Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL. 2019. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci. 98(10):4449–4456.