Jet charge modification in dense QCD matter

Haitao Lia and Ivan Vitevb,*
a,bLos Alamos National Laboratory, Mail Stop B283, Los Alamos, NM 87545, USA
E-mail: haitaoli@lanl.gov, ivitv@lanl.gov

In these proceedings we report a recent calculation of the jet charge modification in heavy-ion relative to proton collisions at the LHC. Jets have played an essential role in constraining theories of in-medium parton shower evolution and in determining the properties of the quark-gluon plasma created in ultra-relativistic nuclear reactions. It is important to extend these studies to flavor-tagged jets and explore observables that are sensitive to their partonic origin. The average jet charge, introduced early on in the history of quantum chromodynamics, is a proxy for the electric charge of the quark or gluon that initiates the jet. In the framework of soft-collinear effective theory, we show how to evaluate the jet charge in a dense strongly-interacting matter environments. We identify observables that can isolate the contribution of in-medium branching from isospin effects and present predictions for the transverse momentum dependence of the jet charge distribution in nucleus-nucleus collisions and its modification relative to the proton case.

HardProbes2020
1-6 June 2020
Austin, Texas

*Speaker
Jet charge modification in dense QCD matter

Ivan Vitev

1. Introduction

The jet charge is a substructure observable designed to approximate the electric charge of the hard scattered parton that initiates the jet. It was introduced in the late 1970s [1] and is defined as the transverse momentum-weighted sum of the charges of particles within the jet cone

\[Q_{\kappa,\text{jet}} = \frac{1}{(p_T^{\text{jet})})^\kappa} \sum_{i \in \text{jet}} Q_i (p_i^T)\kappa. \]

(1)

Here, \(Q_i \) and \(p_i^T \) are the electric charge and the transverse momentum of particle \(i \), and \(\kappa > 0 \) is a free parameter. From the point of view of heavy-ion physics, the ability to identify the partonic origin of jets is extremely useful, as the modification in nuclear matter is different for quark and gluon jets [2].

Jet charge calculations for lead-lead (Pb+Pb) collisions at the LHC have been performed using a Monte Carlo approach [3] and the framework of soft-collinear effective theory (SCET) [4]. In these proceedings we review the latter. First measurements of the jet charge in heavy-ion collisions have also appeared and have been used to isolate the fraction of gluon-like jets [5].

Starting with the definition Eq. (1) and realizing that gluons do not contribute to the average jet charge, this observable can be expressed as follows:

\[\langle Q_{\kappa,\text{q}} \rangle = \int dz \, z^\kappa \sum_h \frac{\sigma_{\text{q}\text{jett}}} {\sigma_{\text{q}\text{jett}}} \frac{d\sigma_{\text{q}\text{jett}}}{dz}, \quad \langle Q_{\kappa,\text{q}} \rangle = \frac{\tilde{J}_{qq}(E, R, \kappa, \mu)}{J_q(E, R, \mu)} \tilde{D}_Q^Q(\kappa, \mu), \]

(2)

where \(J_q(E, R, \mu) \) is a jet function. \(\tilde{J}_{qq}(E, R, \kappa, \mu) \) is the Wilson coefficient for matching the quark fragmenting jet function onto a quark fragmentation function and \(\tilde{D}_Q^Q(\kappa, \mu) \) is a fragmentation function [6]. The \((\kappa + 1)\)-th Mellin moments of the jet matching coefficient and fragmentation function are defined as

\[\tilde{J}_{qq}(E, R, \kappa, \mu) = \int_0^1 dz \, z^\kappa J_{qq}(E, R, z, \mu), \quad \tilde{D}_Q^Q(\kappa, \mu) = \int_0^1 dz \, z^\kappa \sum_h Q_h D_h^Q(z, \mu). \]

(3)

In Eq. (3) \(z = p_i^T/p_T \), \(E \) is the jet energy, \(R \) is the jet radius, and \(\mu \) is the factorization scale. An important property of the jet charge is that it is sensitive to scaling violations in QCD

\[\frac{p_T}{\langle Q_{\kappa,\text{q}} \rangle} \frac{d}{dp_T} \langle Q_{\kappa,\text{q}} \rangle = \frac{\alpha_s}{\pi} \tilde{P}_{qq}^{(\kappa)}, \]

(4)

where \(\tilde{P}_{qq}^{(\kappa)} \) is the \((\kappa + 1)\)-th Mellin moment of the leading order splitting function. The effect has been measured in proton-proton collisions [7] and this serves as a strong motivation to extend the observable to heavy-ion collisions.

2. Theoretical formalism in heavy ion collisions and numerical results

Before we proceed to the evaluation of the jet charge in Pb+Pb collisions we will validate the SCET formalism in the simpler p+p reactions. The ATLAS collaboration has performed measurements of back-to-back jets at \(\sqrt{s} = 8 \) TeV, denoting them as a more forward and a more central jet, and extracted the flavor dependent jet charge

\[\langle Q_{\kappa}^{f/c} \rangle = (f_\alpha^{f/c} - f_\alpha^{f/c})\langle Q_{\kappa}^\alpha \rangle + (f_d^{f/c} - f_d^{f/c})\langle Q_{\kappa}^d \rangle. \]

(5)
In Eq. (5) f_q^j/κ^j is the fraction of q-flavored jets for the more forward/central jets and $\langle Q^2_j \rangle$ is the average charge for the q jet. Our theoretical results for the average jet charge and the up- and down-quark jet charges as a function of jet p_T are shown in Fig. 1. The average jet charge only relies on one non-perturbative parameter/boundary condition for a given κ and the jet type, which we obtain through PYTHIA simulations. The uncertainties are evaluated by varying the factorization scale μ by a factor of two. The left panel of Fig. 1 gives the average jet charge for more central jets and its absolute value decreases with κ, as expected from Eq. (1). The right panel of Fig. 1 gives the flavor-separated charges for up- and down-quark jets. The predictions agree very well with the measurements by ATLAS [7], even though the data have large experimental uncertainties.

Propagation of partons in QCD matter adds a medium-induced component to the parton showers that characterize simpler reactions. The in-medium branching processes relevant to shower formation can be calculated order-by-order in powers of the mean number of scatterings [9]. An important characteristic of medium-induced showers, which persists to higher orders in α_s [8], is that they are softer and broader than the vacuum ones. Jet production and jet substructure in reactions with nuclei can be evaluated in a systematic and improvable fashion using a generalization of SCET to include interactions between its degrees of freedom and QCD matter mediated by Glauber gluons (SCET$_G$). Thus, the ingredients of SCET factorization receive medium corrections where relevant. For example, QGP contribution to the the matching coefficients can be expressed in terms of the in-medium splitting kernels

$$J_{qq}^{\text{med}}(E, R, x, \mu) = \frac{\alpha_s(\mu)}{2\pi^2} \int_0^{2E x(1-x)\tan R/2} \frac{d^2k_\perp}{k_\perp^2} P_{qg,qq}^{\text{med}}(x, k_\perp).$$

The medium correction to the full quark jet function reads

$$J_q^{\text{med}}(E, R, \mu) = \int_0^1 dx x \left(J_{qq}^{\text{med}}(E, R, x, \mu) + J_{qg}^{\text{med}}(E, R, x, \mu) \right)$$

$$= \frac{\alpha_s(\mu)}{2\pi^2} \int_0^1 dx \int_0^{2E x(1-x)\tan R/2} \frac{d^2k_\perp}{k_\perp^2} P_{qg,qq}^{\text{med, real}}(x, k_\perp),$$

Figure 1: Left: transverse momentum dependence of the average jet charge distribution with $\kappa = 0.3, 0.5$ and 0.7 for the more central jets in $\sqrt{s_{NN}} = 8$ TeV p+p collisions at the LHC. Right: average charge of up and down-quark jets as a function of jet p_T. Data is from ATLAS [7].
Jet charge modification in dense QCD matter

Ivan Vitev

Figure 2: Left: The average jet charge in \(\sqrt{s_{NN}} = 5.02 \) TeV central Pb+Pb collisions for more central jets and its modification relative to p+p collisions. Calculations for \(\kappa = 0.3, 1 \) and \(2 \) are shown. Right: Modification of the up-jet charge due to in-medium evolution as a function of transverse momentum.

see also [10]. Finally, in a QCD medium the evolution of the charge-weighted fragmentation function becomes

\[
\frac{d}{d \ln \mu} \tilde{D}^Q_{\text{full}}(\kappa, \mu) = \frac{\alpha_s(\mu)}{\pi} \left(\tilde{P}_{qq}(\kappa) + \tilde{P}_{\text{med}}^{qq}(\kappa, \mu) \right) \tilde{D}^Q_{\text{full}}(\kappa, \mu),
\]

(9)

where \(\tilde{P}_{\text{med}}^{qq}(\kappa, \mu) \) is the \((\kappa + 1)\)-th Mellin moment of the medium splitting kernel. The additional scale dependence in the medium-induced part of Eq. (9) reflects the difference in the \(k_\perp \) dependence of the vacuum and in-medium branching processes [11].

The jet charge and its modification in central Pb+Pb collisions at the LHC are shown in the left panel of Fig. 2. At very high transverse momenta it is completely dominated by isospin effects. However, for \(p_T < 200 \) GeV one begins to observe the effects of in-medium evolution. The uncertainty bands correspond to the variation of the coupling \(g \) between the jet and the medium in the interval \((1.8, 2.0)\). The need to cleanly isolate the contribution of in-medium evolution to jet charge modification led us to propose a new observable – the modification of individual flavor jet charge in heavy-ion versus proton collisions. This can be seen in the right panel of Fig. 2 where we show the medium modifications to the up-quark jet charge. The only difference between the up- and down-quark jet charges is the fragmentation function boundary condition, hence their modification is the same

\[
\frac{\langle Q^{Pb+Pb}_{\kappa, \text{up}}(p_T) \rangle}{\langle Q^{Pb+Pb}_{\kappa, \text{up}}(p_T) \rangle} = \frac{\langle Q^{Pb+p}_{\kappa, \text{up}}(p_T) \rangle}{\langle Q^{Pb+p}_{\kappa, \text{up}}(p_T) \rangle}.
\]

(10)

The individual jet charge modification eliminates the initial-state isospin effects and helps reveal the final-state medium-induced parton shower contribution to the jet function and the fragmentation function evolution. For this reason, the medium corrections are larger for smaller energy jets - a kinematic region where the medium-induced splitting functions are more important. Furthermore, when \(\kappa \) is large the \((\kappa + 1)\)-th Mellin moment of the medium splitting function is more sensitive to soft-gluon emission.
3. Conclusions

We presented recent calculation of the jet charge distributions in heavy-ion collisions in the SCET\(_G\) effective field theory framework [4]. In the presence of nuclear matter the jet functions, jet matching coefficients, and the evolution of the fragmentation functions are constructed with the help of the medium-induced splitting kernels. The jet charge observable is particularly interesting because of its ability to discriminate between jets of various flavors, for example up-quark jets, down-quark jets and gluon jets. This discriminating power remains valid in nucleus-nucleus collisions. Furthermore, the charge of jets can provide novel insight into the Mellin moments of medium-induced splitting functions and the in-medium evolution of the non-perturbative fragmentation functions.

The jet charge definition is independent of the hard process. Thus, jet charge modification can be studied in other types of nuclear matter such as e+A collisions at the future electron-ion collider (EIC). Recent calculations of light and heavy meson production at the EIC have shown that with appropriate choice of center-of-mass energies and rapidity domains jet quenching effects in cold nuclear matter can be large and observable [12]. We plan to evaluate the jet charge in e+A reactions in the future.

References

[1] R. D. Field and R. P. Feynman, Nucl. Phys. B 136, 1 (1978)

[2] Y. T. Chien and I. Vitev, JHEP 05, 023 (2016) [arXiv:1509.07257 [hep-ph]].

[3] S. Y. Chen, B. W. Zhang and E. K. Wang, Chin. Phys. C 44, no.2, 024103 (2020) [arXiv:1908.01518 [nucl-th]].

[4] H. T. Li and I. Vitev, Phys. Rev. D 101, 076020 (2020) [arXiv:1908.06979 [hep-ph]].

[5] A. M. Sirunyan et al. [CMS], JHEP 07, 115 (2020) [arXiv:2004.00602 [hep-ex]].

[6] D. Krohn, M. D. Schwartz, T. Lin and W. J. Waalewijn, Phys. Rev. Lett. 110, no.21, 212001 (2013) [arXiv:1209.2421 [hep-ph]].

[7] G. Aad et al. [ATLAS], Phys. Rev. D 93, no.5, 052003 (2016) doi:10.1103/PhysRevD.93.052003 [arXiv:1509.05190 [hep-ex]].

[8] M. Fickinger, G. Ovanesyan and I. Vitev, JHEP 07, 059 (2013) [arXiv:1304.3497 [hep-ph]].

[9] M. D. Sievert, I. Vitev and B. Yoon, Phys. Lett. B 795, 502-510 (2019) [arXiv:1903.06170 [hep-ph]].

[10] Z. B. Kang, F. Ringer and I. Vitev, Phys. Lett. B 769, 242-248 (2017) [arXiv:1701.05839 [hep-ph]].

[11] Z. B. Kang, R. Lashof-Regas, G. Ovanesyan, P. Saad and I. Vitev, Phys. Rev. Lett. 114, no.9, 092002 (2015) [arXiv:1405.2612 [hep-ph]].

[12] H. T. Li, Z. L. Liu and I. Vitev, [arXiv:2007.10994 [hep-ph]].