Modelo SEIR para avaliação do comportamento da pandemia de Covid-19 em Marabá-PA

Walisson Ferreira Barbosa¹, Ester Barros da Costa Moreira², Juliana Mattei de Araújo³, Antônio Pazin-Filho⁴, Cláudia Dizioli Franco Bueno⁵

Barbosa WF, Moreira EBC, Araújo JM, Pazin-Filho A, Bueno CDF. Modelo SEIR para avaliação do comportamento da pandemia de Covid-19 em Marabá-PA / SEIR Model to assess the Covid-19 pandemic behavior in Marabá-PA. Rev Med (São Paulo). 2021 jul.-ago.;100(4):322-8.

RESUMO: Objetivo: Determinar o comportamento da curva de casos de Covid-19 em Marabá. Metodologia: Aplicou-se o modelo compartimentado SEIR baseando-se nos dados epidemiológicos locais com os valores estimados de tempo de latência e tempo infeccioso obtido em populações chinesas que foram testadas objetivamente para estimar o desenvolvimento da infecção pelo SARS-CoV-2 em Marabá. Resultados: O primeiro pico apresentou um total de 1438 infectados (28/09/2020) após a documentação do primeiro caso (23/03/2020) demonstrando comportamento exponencial. Observou-se ainda para os próximos 30 dias, a partir do dia 14/08/2020, uma tendência de queda do número de casos no município, o número de reprodução basal (R_0) assumiu o valor de 3,29 entre o início da pandemia e a data do primeiro pico (28/06/2020), já ao final do período de estudo este número foi de 0,8. Discussão: O modelo teve bom comportamento ao se comparar com os casos documentados, mas observou-se uma discrepância na fase descendente da pandemia, possivelmente decorrente da ausência de dados mais acurados. Este comportamento adequado do modelo com base nestes dados indica que o comportamento de disseminação da COVID-19 pode ser assumido como sendo similar apesar das distâncias geográficas e da miscigenação da população brasileira. Isto abre a possibilidade de se utilizar o modelo SEIR para previsão da pandemia em territórios com carência de testagem viral. Conclusão: A utilização do modelo SEIR baseando-se nos dados epidemiológicos locais com os valores estimados de tempo de latência e tempo infeccioso obtido em populações chinesas testadas objetivamente demonstrou-se como uma ferramenta útil para previsão do comportamento da pandemia de COVID-19.

Palavras-chave: COVID-19; Coronavírus; Infecções por coronavírus; Epidemiologia analítica; Modelos epidemiológicos; Brasil/epidemiologia.

ABSTRACT: Objective: To determine the behavior of the COVID-19 case curve in Marabá. Methodology: The SEIR compartmentalized model was applied based on the local epidemiological data with the estimated values of latency time and infectious time obtained in Chinese populations that were tested objectively to estimate the development of SARS-CoV-2 infection in Marabá. Results: The first peak showed a total of 1438 infected (28/09/2020) after the documentation of the first case (23/03/2020) demonstrating exponential behavior. We also observed for the next 30 days, from 14/08/2020, a downward trend in the number of cases in the city, the number of basal reproduction (R_0) assumed the value of 3.29 between the beginning of the pandemic and the date of the first peak (28/06/2020), at the end of the study period this number was 0.8. Discussion: The model performed well when compared to the documented cases, but there was a discrepancy in the downward phase of the pandemic, possibly due to the absence of more accurate data. This adequate behavior of the model based on these data indicates that the COVID-19 dissemination should be similar despite the geographical distances and the miscenagation of the Brazilian population. Conclusion: The use of the SEIR model based on local epidemiological data with the estimated values of latency time and infectious time obtained in objectively tested Chinese populations proved to be a useful tool for predicting the behavior of the COVID-19 pandemic.

Keywords: COVID-19; Coronavirus; Coronavirus disease; Forecasting; Statistical models; Epidemiology; Brazil/epidemiology.

1. Universidade do Estado do Pará, Faculdade de Medicina, Departamento de Ciências Biológicas e da Saúde. ORCID: https://orcid.org/0000-0003-1450-6363. E-mail: walisson.barbosa@aluno.uepa.br.
2. Universidade do Estado do Pará, Faculdade de Medicina, Departamento de Ciências Biológicas e da Saúde. ORCID: https://orcid.org/0000-0002-8163-3832. E-mail: ester.moreira@aluno.uepa.br.
3. Universidade do Estado do Pará, Faculdade de Medicina, Departamento de Ciências Biológicas e da Saúde. ORCID: https://orcid.org/0000-0002-1195-4112. E-mail: juliana.araujo@aluno.uepa.br.
4. Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto. ORCID: https://orcid.org/0000-0001-5242-329X. E-mail: apazin@fmrp.usp.br.
5. Universidade do Estado do Pará, Faculdade de Medicina, Departamento de Ciências Biológicas e da Saúde. ORCID: https://orcid.org/0000-0001-7308-117X. E-mail: claudia.bueno@uepa.br.

Endereço para correspondência: Walisson Ferreira Barbosa. Av. Itacaiúmas, 1607. Novo horizonte. Marabá-PA, Brasil. E-mail: walisson.barbosa@aluno.uepa.br.
INTRODUÇÃO

A COVID-19 é causada pelo coronavírus SARS-CoV-2, com manifestações respiratórias variando desde quadros assintomáticos até a insuficiência respiratória, sendo que o tratamento é limitado às medidas de suporte e a vacinação no município de Marabá iniciou-se em 19 de janeiro de 2021. Caracteriza-se por rápida disseminação por via respiratória ou por contato, com crescimento exponencial do número de casos. Seu potencial de disseminação pode ser ilustrado por suas características de uma doença, o Tempo de Latência, que é determinado pelas multiplicação de α (inverso do período médio de incubação) pelo valor de S do dia anterior; a passagem de E (Expostos) para I (Infectados) é determinada pelas taxas de recuperação e letalidade. Estas variam diariamente de forma que S, E, I, R variam a depender das variáveis β (número de reprodução no tempo t), α (inverso do período médio de incubação), γ (inverso do período médio infeccioso), ou seja conforme a Figura 1.

Com base nesse pressuposto, o modelo compartimentado SEIR é um modelo matemático composto por cinco compartimentos, que possibilitam simulações da evolução da doença ao longo do tempo. Dentre eles, tem-se o modelo epidemiológico SEIR, que foi utilizado no presente estudo na determinação do comportamento da curva de crescimento dos casos de COVID-19 no município de Marabá-PA.

CASUÍSTICA E MÉTODOS

Trata-se de um estudo epidemiológico observacional de caráter analítico, transversal, retrospectivo quanto à coleta de dados e prospectivo quanto à estimativa do comportamento dos casos, aprovado pelo Comitê de Ética em Pesquisa da Universidade do Estado do Pará Campus VIII / Marabá-PA (CAAE 33465720.3.0000.8607). Todos os indivíduos residentes no município de Marabá foram incluídos no estudo. A coleta de dados foi realizada de 18 de julho até 14 de agosto de 2020, sendo baseada nos boletins epidemiológicos diários da Prefeitura de Marabá de 20 de março de 2020 a 14 de agosto de 2020 e nas informações disponibilizadas no Portal da Transparência de Registro Civil.

Utilizou-se a metodologia clássica do Modelo Compartimentado SEIR que classifica a população (N) em suscetíveis (S), expostos (E), infectados (I), removidos (R). Estes variam diariamente de forma que S, E, I, R variam a depender das variáveis β (número de reprodução no tempo t), α (inverso do período médio de incubação), γ (inverso do período médio infeccioso), ou seja conforme a Figura 1.

Fluxograma do Modelo SEIR

Na figura a passagem de S (Suscetíveis) para E (Expostos) é determinada pelas multiplicações de S com E, o númerode infectados no dia anterior (I) e pelo inverso do número total de indivíduos do modelo (N), de forma que N = S + E + I + R, e N = S + E + I + R, comprimento diário do valor de S do dia anterior; a passagem de E (Expostos) para I (Infectados) é determinada pelas multiplicações de α e γ da população. A probabilidade de em cada período t um indivíduo passar para o próximo compartimento é definida...
sucessivamente nas equações:

\[p_{SE}(t) = 1 - \exp\left(-\frac{\gamma I_t}{N}\right), \quad p_{SE}(t) = 1 - \exp\left(-\frac{\gamma I_t}{N}\right), \quad p_{EI}(t) = 1 - \exp(-\alpha p_{EI}(t) = 1 - \exp(-\alpha) \]

e \quad p_{IR}(t) = 1 - \exp(-\gamma) p_{IR}(t) = 1 - \exp(-\gamma), \]

onde \(p_{SE}(t) \), \(p_{SE}(t) \), \(p_{EI}(t) \), \(p_{IR}(t) \) representam respectivamente a probabilidade de passagem do compartimento S para o E, do E para o I e do I para o R; \(r_e \) corresponde ao número de infectados secundários médios causados por um infectado em um período \(t \); \(Y \) symboliza o inverso do tempo de Infecção; \(\alpha \) configura como o inverso do tempo de latência; \(I_t \) constitui o número de infectados em um período \(t \) e \(N \) retrata o total da população suscetível, no caso toda população de Marabá.

\[SE_{t+1} \sim \text{Binomial}(r_e, Y)SE_{t+1} \sim \text{Binomial}(r_e, Y) \]

\[EI_{t+1} \sim \text{Binomial}(\alpha)EI_{t+1} \sim \text{Binomial}(\alpha) \]

\[IR_{t+1} \sim \text{Binomial}(Y)IR_{t+1} \sim \text{Binomial}(Y) \]

Com isso, os compartimentos evoluem diariamente conforme as equações

\[S_{t+1} = S_t - SE_{t+1} = S_t - SE_{t+1}, \quad E_{t+1} = E_t + SE_{t+1} - EI_{t+1} \]

\[I_{t+1} = I_t + EI_{t+1} - IR_{t+1} = I_t + EI_{t+1} - IR_{t+1} \]

Sobre o número de reprodução \((r_e) \), define-se \(r_e \) como o número de casos secundários gerados a partir de um mesmo caso em todo seu período infeccioso em uma faixa de tempo \(t \). Para cada período de 12 dias, período igual ao tempo de infeccão selecionado, foi assumido um valor diferente de \(r_e \) com a finalidade de contar a grande inconstância do número de infectados acumulados durante esse intervalo de tempo.

Com isso, \(r_e \) assume o valor que utilizado nas equações diferenciais do modelo SEIR minimiza o valor de \(D \) na função objetivo

\[D = \sum_{i=1}^{T} \left(\frac{C_{(i)} - C_{(i)}^d}{C_{(i)}} \right)^2 \]

Na qual, \(C_{(i)} \) representa o número de infectados acumulados no tempo \(t \) estimado pelo modelo, ou seja, \(C_{(i)} = I_t + R_t \). \(C_{(i)} \) é \(I_t + R_t \). Por sua vez, \(C_{(i)}^d \) retrata o número de infectados acumulado notificado pela prefeitura e \(D \) representa numericamente o quão discrepantes estão os valores de \(C_{(i)} \) e \(C_{(i)}^d \).

Para a previsão do comportamento da curva de infectados foi mantido o cálculo do modelo SEIR por mais 30 dias, nos quais foram assumidos valores de \(r_e \) constante e igual ao de \(r_e \) calculado para o último período de 12 dias.

Ademais, foi aplicada a média móvel de período igual a 12 dias, conforme o período infeccioso, para atenuar as oscilações dos dados diários notificados pela prefeitura.

Analisou-se o comportamento da curva de infectados de acordo com as medidas de combate ao coronavírus em Marabá. O período foi determinado levando em consideração o período de incubação18 e o infeccioso como quatro e doze dias19, respectivamente, portanto os quatro dias anteriores são irrelevantes para a alteração da curva uma vez que os indivíduos ainda não se encontram na janela infecciosa.

Por fim, calculou-se um valor de \(r_0 \) como um \(r_e \) constante do período do início da pandemia até a data do primeiro pico, a fim de avaliar de forma geral o quão rápido cresce o número de casos em Marabá.

RESULTADOS

O modelo aproximou-se dos dados notificados pela prefeitura como exposto na Figura 2, entretanto no período indicado pela seta os dados apresentam-se discrepantes. Através do modelo proposto, montou-se o gráfico da Figura 3 que apresenta a curva de infectados e 2 picos ao longo do período estudado. O primeiro pico, do dia 28/06/2020, apresenta um total de 1438 infectados, enquanto o segundo
pico, datado no dia 23/07/2020, apresenta 912 infectados. Ao se observar a notificação diária de casos ajustada pela média móvel (12 dias) observou-se a formação de 2 picos que coincidem com o 1º pico estimado pelo modelo (Figura 3). Já na comparação com o segundo pico estimado pelo modelo SEIR com os casos diários relatados, não se observou picos correspondentes. Finalmente, observa-se que o modelo apresenta tendência de queda do número de infectados para os próximos 30 dias. O R_0 assumiu o valor de 3,29 entre o início da pandemia e a data do primeiro pico (28/06/2020), já nas últimas semanas esse valor caiu para 0,8.

Figura 2. Comparação dos infectados acumulados estimados pelo modelo SEIR com os infectados acumulados notificados pela prefeitura e previsão para os próximos 30 dias dos infectados acumulados, ambos com um intervalo de confiança de 95%

A seta indica uma região mais escura na qual o modelo é mais discrepante, onde, apesar da tendência de queda do número de casos observada no município, os cálculos realizados pelo modelo demonstram uma tendência de alta no mesmo período.

Figura 3. Comparação do número de casos infectados estimados pelo modelo SEIR (eixo à esquerda) com os infectados diários documentados pela Prefeitura de Marabá (eixo à direita)
No primeiro eixo (esquerda), uma curva de infectados pelo SARS-CoV-2 em Marabá é uma previsão para os próximos 30 dias estimados através do modelo SEIR com um intervalo de confiança de 95%. No segundo eixo (direita) o número de casos diários notificados pela prefeitura e a sua média móvel com um período de 12 dias. A seta indica uma região mais escura na qual o ocorre um segundo pico que pode ser considerado como uma anomalia matemática e limitação do modelo utilizado.

DISCUSSÃO

O presente trabalho apresenta a utilização do modelo SEIR para análise do comportamento da COVID-19 em uma cidade da região Norte da federação com poucos recursos para testagem e enfrentamento da pandemia. Utilizou-se o modelo com base em dados fornecidos pelas autoridades sanitárias. O modelo teve bom comportamento ao se comparar com os casos documentados, mas observou-se uma discrepância na fase descendente da pandemia, que talvez possa ser decorrente da ausência de dados mais acurados.

Os casos cumulativos estimados pelo modelo SEIR apresentaram boa correlação com os dados das autoridades sanitárias. Isto é esperado considerando que os cálculos foram baseados nestes dados, mas é importante ressaltar que as estimativas para os cálculos foram baseadas em dados de dois estudos chineses com elevado número de pacientes e que realizaram testagem que não foi possível em Marabá. Este comportamento adequado do modelo com base nestes dados é importante pois indica que o comportamento de disseminação da COVID-19 pode ser assumido como sendo similar apesar das distâncias geográficas e da miscigenação, forte traço demográfico da população brasileira, mesmo a China apresentando uma raça étnica predominantemente homogênea. Isto abre a possibilidade de se utilizar o modelo SEIR para previsão da pandemia em territórios com carência de testagem viral, como é a realidade da maioria dos municípios brasileiros.

Na Figura 3, observa-se, em Marabá, os picos dos casos de COVID-19, que representam o momento em que o número de novos casos tende a diminuir ou estabilizar. É válido salientar que as projeções da cadeia de contágio pela doença podem variar constantemente ao longo do tempo, considerando as novas condições da epidemia e a adesão às medidas de combate à disseminação do vírus. Ressalta-se ainda que após o pico epidemiológico, se houver redução do número de casos, não significa que a curva permanecerá descendente quanto ao número de infeccões, mas pelo contrário, uma nova fase de propagação do vírus pode ser instaurada, resultando no retorno da ascensão da curva. Com as novas ondas de contágio, facilitadas pela ausência de vacinas, tratamentos farmacológicos validados e as medidas de flexibilização, outras variáveis surgem e, dessa forma, os cálculos devem ser refeitos com base nas novas condições.

Dentre as ações que contribuíram para o pico epidêmico, destaca-se a influência do decreto de número 60, do dia 18 de junho de 2020, que trata acerca da permissão da reabertura de alguns serviços como shoppings, academias, entidades de ensino superior privado, cursos profissionalizantes e a realização de atividades religiosas como missas e cultos. Ainda que o funcionamento esteja condicionado às normas e a assinatura do Termo de Responsabilidade Sanitária, observa-se que a reabertura parcial contribui para o crescimento do número de casos. O decreto de número 61, datado de 18 de junho de 2020, estabelece ainda regras específicas para a abertura do comércio que, além de manterem as regras da vigilância sanitária, devem seguir horários específicos de funcionamento. Além disso, o decreto de número 66 versa sobre restrições de capacidade de academias, restaurantes e seus congêneres, bem como o reforço do distanciamento e outras normas sanitárias.

Como indicado pela seta na Figura 2, apesar da tendência de queda do número de casos observada no município, os cálculos realizados pelo modelo demonstram uma tendência de alta no mesmo período. Como resultado, nota-se a presença de um segundo pico, no período de maior disparidade entre os casos reais e os estimados, indicado pela seta na Figura 3. Com base nos dados disponíveis, é difícil explicar objetivamente esta discrepância. Uma possibilidade poderia ser a diminuição da documentação dos casos pelas autoridades sanitárias, considerando que a população com casos mais leves não tenha buscado os serviços de saúde por já ter aprendido sobre o comportamento da pandemia. Em entanto, outra possibilidade poderia ser que este “novo” pico seja considerado como uma distorção e, portanto, uma possível limitação para utilização do modelo. No entanto, considerando o bom desempenho observado, novos dados seriam necessários para explicar esta distorção e desestimular a utilização do modelo com todo o potencial de uma ferramenta pró-ativa de estimativa de casos.

De acordo com Renardyet al., a redução dos contatos individuais é capaz de atrasar a ocorrência do segundo pico e também reduzir a sua magnitude, o que pode estar ocorrendo em Marabá considerando que a estimativa de infectados seja próximo do estimado por estes autores. Assumiu-se para os próximos 30 dias, a partir do dia 14/08/2020, o valor de inferior a 1, indicando como mostrado na Figura 3 uma tendência de queda.
proporcional ao valor de R_0^{24}. Entretanto, notou-se no trabalho de Aguas et al. que o número básico de reprodução (R_0) assume valores entre 2,5 e 5 a porcentagem de indivíduos necessários para reverter a curva e evitar novos picos cai para 10-20%.

Em Marabá, o R_0 encontrado entre o primeiro caso notificado e o pico equivale a aproximadamente 3,29. O R_0 encontrado para o município está 0,03 ponto superior ao encontrado para o Brasil em Kwok et al., e neste trabalho inferiu-se que necessitaria de no mínimo 69,3% da população infectada para que a emergência de uma nova onda pudesse ser evitada ou mitigada. Contudo, no período final de análise observa-se uma tendência decrescente o que pode indicar que essa porcentagem pode ser menor do que a previamente inferida, relacionando-se com os resultados de Aguas et al.25.

Dessa forma, a pesquisa realizada fornece bases para o entendimento acerca da dinâmica de transmissão do SARS-CoV-2 no município de Marabá-PA, auxiliando no planejamento de intervenções, pela equipe de vigilância epidemiológica, e para a promoção da melhoria da assistência aos infectados, além de servir como ferramenta para a contenção do vírus. A utilização do modelo SEIR facilita a comparação com outros estudos por ser um modelo bem difundido na literatura. Além disso, oferece base para futuros estudos na região acerca do tema, como a análise na subnotificação, por outros pesquisadores.

CONCLUSÃO

Em suma, a utilização do modelo SEIR baseando-se nos dados epidemiológicos locais com os valores estimados de tempo de latência e tempo infeccioso obtido em populações externas que foram testadas objetivamente demonstrou-se como uma ferramenta útil para previsão do comportamento da pandemia de COVID-19. Isto abre a possibilidade de sua utilização em locais que não disponham de testagem como é a realidade na maioria dos municípios brasileiros. Os autores declaram não haver conflitos de interesse.

CONTRIBUIÇÃO DOS AUTORES: Walisson Ferreira Barbosa: concepção; Walisson Ferreira Barbosa, Ester Barros da Costa Moreira e Juliana Mattei de Araújo: planejamento e análise, interpretação e redação do trabalho; Cláudia Dzioli Franco Bueno e Antônio Pazin Filho: revisão crítica. Todos os autores aprovaram a versão final encaminhada.

REFERÊNCIAS

1. Organização Pan-Americana da Saúde. Módulos de Princípios de Epidemiologia para o Controle de Enfermidades. Módulo 2: Saúde e doença na população. Brasilia: Organização Pan-Americana da Saúde; 2010 [citado 20 jul 2020]. Disponível em: https://www.paho.org/br/index.php?option=com_docman&view=download&alias=950-modulos-principios-epidemiologia-para-controle-enfermidades-mopece-modulo-2-0&category_slug=informacao-e-analise-saude-096&Itemid=965.

2. Prefeitura de Marabá. Covid-19: Marabá inicia vacinação contra o Coronavírus [citado 03 jul 2021]. Disponível em: https://maraba.pa.gov.br/67235-2/.

3. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronavirus enoninimatesurfaces and the irinactivationwithbiocidalagents. J Hosp Infect. 2014;104(62):246-51. doi: https://doi.org/10.1016/j.jhin.2020.01.022.

4. World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Geneva: World Health Organization; 2020 [citado 2020 July 20]. Available from: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meetingof-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-n cov).

5. Wordometer. COVID-19 Coronavirus Pandemic [citado 2021 July 02]. Available from: https://www.worldometers.info/coronavirus/.

6. Brasil. Ministério da Saúde. Brasil confirma primeiro caso da doença. Brasília: Ministério da Saúde; 2020 [citado julho 2020]. Disponível em: https://www.saude.gov.br/noticias/agencia-saude/46435-brasil-confirma-primeiro-caso-de-novo-coronavirus.

7. Mendonça FD, Santiago SR, Daniel LPP, Stefan VO. Região Norte do Brasil e a pandemia de COVID-19: análise socioeconômica e epidemiológica. J Health NPEPS. 2020;5(1):20-37. doi: http://dx.doi.org/10.30661/252610104535.

8. Coelho FC, Lima RM, Cruz OG, Villela D, Bastos LS, et al. Assessing the potential impact of COVID-19 in Brazil: mobility, morbidity and the Burden on the Health Care System. MedRxiv:2020;03(19):1-17. doi: https://doi.org/1
9. Brasil. Ministério da Saúde. Painel Coronavirus. Brasília; 2020 [citado 20 julho 2020]. Disponível em: https://covid.saude.gov.br/.

10. Lira M. Confirmado primeiro caso de COVID no Pará. Belém: Sespa; 2020 [citado jul. 2020]. Disponível em: http://www.saude.pa.gov.br/2020/03/18/confirmao-o-primeiro-caso-de-covid-19-no-para/.

11. Instituto Brasileiro de Geografia e Estatística. Cidades e Estados. População estimada, 2019 [citado 25 jul. 2020]. Disponível em: ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2019/estimativa_TCU_2019_20200622.pdf.

12. Cirino S, Silva JAL. Modelo Epidemiológico SEIR de Transmissão da dengue em redes de populações acopladas. TEMA – Tend Mat Apl Comput. 2004;5(1):55-64. doi: https://doi.org/10.5540/tema.2004.05.01.0055.

13. Newton EA, Reiter PA. A model of the Transmission of Dengue Fever With an Evaluation of the Impact of Ultra-Low Volume (ULV) Insecticide Applications on Dengue Epidemics. Am J Trop Med Hygiene. 1992;47(6):709-20. doi: 10.4269/ajtmh.1992.47.709.

14. Portal de Transparência do Registro Civil. Óbitos com suspeita ou confirmação de COVID-19 [citado 25 jul. 2020]. Disponível em: https://transparencia.registrocivil.org.br/ especial-covid.

15. Coletivo Covid-19br Team. Nota técnica de 26 de abril de 2020. Modelos implementados [citado 20 jul. 2020]. Disponível em: https://arxiv.org/pdf/2004.13488.

16. Miettinen OS. Epidemiological research: terms and concepts. Dordrecht: Springer Nature; 2011. doi: 10.1007/978-94-007-1171-6.

17. World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (covid-19) [citado 2020 July 25]. Available from: https://www.who.int/publications/s item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).

18. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032.

19. Chen J. Clinical progression of patients with covid-19 in Shanghai, China. J Infect. 2020;80(5):e1-e6. doi: https://doi.org/10.1016/j.jinf.2020.03.004.

20. Gomes ECS. Conceitos e ferramentas da epidemiologia. Recife: Ed. Universitária da UFPE; 2015.

21. Prefeitura Municipal de Marabá. Decreto nº 60, de 17 de junho de 2020. Decreto nº 61, de 18 de junho de 2020. Decreto nº 66, de 25 de junho de 2020 [citado 25 jul. 2020]. Disponível em: http://www.governotransparente.com.br/transparencia/4466490/leismunicipais?datainfo=MTIwMjAwOTA2MTA1MFBQUA==&clean=false.

22. Renardy M, Kirschner DE. Predicting the second wave of COVID-19 in Washtenaw County, MI. J Theoret Biol. 2020;492(20):413-8. doi: https://doi.org/10.1016/j.jtbi.2020.110461.

23. Londoño SLM. Estimação do número de reprodução basal em modelos compartimentais [dissertação]. Campinas: Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica; 2014 [citado 20 jul. 2020]. Disponível em: http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/305840/1/MercadoLondono_SergioLuis_M.pdf.

24. Kwok KO, Lai F, Wei W, Wong SYS, Tang JWT. Herd immunity – estimating the level required to halt the COVID-19 epidemics in affected countries. J Infect. 2020;80(6):512-9. doi: https://doi.org/10.1016/j.jinf.2020.03.027.

25. Aguais R, Corder RM, King JG, Gonçalves G, Ferreira MU, Gabriela GM. Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics. MedRxiv. 2020;70(6):314-20. doi: https://doi.org/10.1101/2020.07.23.20160762.

Submetido: 04.11.2020
Aceito: 30.07.2021