Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade

A White Paper to the NRC Planetary Science and Astrobiology Decadal Survey 2023-2032

Primary author: Abigail R. Azari, Space Sciences Lab, University of California, Berkeley

Co-authors†: John B. Biersteker1, Ryan M. Dewey2, Gary Doran3, Emily J. Forsberg4, Camilla D. K. Harris2, Hannah R. Kerner5, Katherine A. Skinner6, Andy W. Smith7

Secondary Contributors: Rashied Amini3, Saverio Cambioni8, Victoria Da Poian9, Tadhg M. Garton10, Michael D. Himes11, Sarah Millholland12, Suranga Ruhunusiri13

Co-signers: Andrew M. Annex14, K.-Michael Aye15, Matthew R. Argall16, Marissa E. Cameron3, Xin Cao13, Frank Crary15, Daniel J. Crichton3, Matthew Cross17, Mario D’Amore18, Julien de Wit1, Raymond Francis3, Jörn Helbert18, Don R. Hood19, Catriona M. Jackman20, Anthony Lagain21, Raven E. Larson15, Chuhong Mai22, Lukas Mandrake3, Andrew Needham23, Victor Pankratius1, James Parr24, Louise M. Prockter25, Fernando Pérez26, Jani Radebaugh27, Bethany P. Theiling9, Matthew Tiscareno28, Andrew Vanderburg29, Jon Vandegriff30, Josh Vander Hook3, Indhu Varatharajan18, Kiri Wagstaff3, Ingo Waldmann31

Affiliations:
1 Massachusetts Institute of Technology
2 University of Michigan
3 Jet Propulsion Laboratory, California Institute of Technology
4 University of Idaho
5 University of Maryland at College Park
6 Georgia Institute of Technology
7 Mullard Space Science Laboratory, University College London (UCL)
8 Lunar and Planetary Laboratory, University of Arizona
9 NASA Goddard Space Flight Center
10 University of Southampton
11 University of Central Florida
12 Princeton University
13 University of Iowa
14 Johns Hopkins University (JHU)
15 Laboratory for Atmospheric and Space Physics, University of Colorado
16 Space Science Center, University of New Hampshire
17 Institute for Earth and Space Exploration, Western University
18 German Aerospace Center (DLR)
19 Texas A&M University
20 Dublin Institute for Advanced Studies
21 Space Science and Technology Centre, Curtin University
22 Arizona State University
23 Jacobs, NASA Johnson Space Center
24 Frontier Development Laboratory
25 Universities Space Research Association, Lunar and Planetary Institute
26 University of California, Berkeley, Lawrence Berkeley National Laboratory
27 Brigham Young University
28 SETI Institute
29 University of Wisconsin, Madison
30 JHU Applied Physics Laboratory
31 Centre for Space Exochemistry Data, UCL

†We would like to recognize the extraordinary effort which this decadal has taken and the members of our community who were unable to participate in this work. We would also like to acknowledge conversations with additional white paper teams on data management, automation, and other machine learning relevant contributions and we encourage you to review these data science relevant papers submitted to the survey. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
1 Introduction

In the last decade, machine learning has emerged as one of the most promising complements to traditional data analysis and modeling methods in scientific fields. In one of the most profound examples, the first image of a black hole was captured by applying a machine learning algorithm to petabytes of data collected from eight telescopes [1]. Since planetary science’s last decadal survey, the use of machine learning has increased in each division of NASA’s Science Mission Directorate (SMD). However, even though the number of planetary science publications involving machine learning has grown exponentially over the last ten years, it lags in both percent share and growth rate compared to heliophysics, astrophysics, and Earth science (Figure 1). In this white paper, we assert that planetary science, similar to related disciplines, has the opportunity to leverage machine learning methods for scientific advancement in our field.

Planetary science is rapidly transforming into a data rich field with missions in the next ten years set to collect larger and more detailed datasets than ever before. For example, in the fourteen years orbiting Mars, the Mars Reconnaissance Orbiter has already returned more data than all other interplanetary missions combined, including missions currently active (see MRO By The Numbers). These missions increase the total data available to our community and increase the rate at which we receive new observations. This can pose challenges to data analysis efforts that machine learning can help address. For example, the Transiting Exoplanet Survey Satellite (TESS) generates ∼1 million new light curves every month, pushing the exoplanet community toward automated candidate identification [2]. Integrating machine learning into planetary science has the potential to enhance current endeavors and lead to new discoveries in our field.

The broad applicability of data science methods is considered a new branch of scientific investigation [3]. Data from planetary science missions and the field’s interest in interpretable models and reproducible science pose challenges to immediate application of off-the-shelf machine learning methods [e.g., 4]. However, these challenges are shared by other fields, including Earth science [5]. We can learn from demonstrated funding programs and researchers in sibling disciplines to adopt field-specific machine learning methods. These efforts should embrace interdisciplinary partnerships across multiple application fields and industry to address unique challenges in planetary science as they manifest in the context of machine learning. Our vision for the next decade is one rich with applications of machine learning at every stage of planetary missions. We envision machine learning enhancing current activities by operating alongside established methods.

In recognition of the novelty of these methods to the field, a concerted effort is needed to ensure integration and applicability of machine learning methods in planetary science.
The purpose of this white paper is two-fold. First, to introduce and demonstrate to the reader the applicability of these methods at every stage of a mission (Section 2). Second, to offer recommendations to ensure the next decade of planetary science capitalizes on the benefits of machine learning for scientific advancement (Section 3). To support these applications we recommend a sustained commitment to the ecosystem of machine learning in planetary science, independent of individual mission funding.

2 Machine Learning at Every Stage of the Mission Lifecycle

2.1 Mission Development

Mission development requires surveys of existing datasets and the development of models to translate science goals into discrete engineering requirements. Data science techniques are already informing the design of missions currently under development. In this section we highlight several examples of how ML can be incorporated to efficiently develop future missions.

Planning trajectories for missions is critical for meeting requirements. Trajectory design is constrained by vehicle configuration and fuel capacity, resulting in a non-trivial problem that can be computationally expensive [6]. ML can be used to improve accuracy and reduce computational cost of optimal trajectory design. Recent work [7] has shown the potential for ML to address current challenges by demonstrating the feasibility of training a deep neural network on the ground to enable real-time onboard spacecraft guidance.

Earth and laboratory analog studies can be combined with machine learning to develop mission-like training datasets for missions exploring new environments. This style of transfer learning, in which a trained machine learning model is used on a different dataset, could offer significant advantages from the bevy of Earth data we have toward mission planning.

Initial landing site selection is labor intensive and can be subject to human errors, with gigabytes of terrain maps being labeled by hand and locations evaluated with respect to predicted landing ellipses. ML and data-driven techniques can efficiently provide high-level classification of surface terrain across large areas to automate preliminary selection of potential sites. Recent work to aid in landing site selection of the Mars 2020 mission [8] leveraged ML to enable automated classification of orbital images by terrain type, allowing scientists to focus on choosing landing sites with the highest potential for scientific return.

Evaluation of mission architecture and instrument design against scientific requirements cycles through design, testing, and improvement. Data science techniques can improve and accelerate this cycle through robust uncertainty propagation and surrogate models that approximate the re-
sults of high-fidelity simulations. For example, during hardware testing, an iterative approach using Bayesian inference can improve model validation and reduce uncertainty in instrument performance [9]. Probabilistic models of individual components can be combined into estimates for the performance envelope of an entire system, resulting in more reliable benchmarking against design requirements early in the design cycle [10]. Probabilistic models combined with models of the physical system can generate simulated datasets that data pipelines and analysis techniques can be tested against for satisfaction of requirements.

These examples show how data science methods impact the development of missions. In the next decade we expect machine learning techniques to improve mission designs by enabling the use of larger datasets and enhancing mission development.

2.2 Mission Operations

Machine learning shows promise for increasing scientific return from planetary missions by addressing limitations in science operations and data return. While planetary missions have increasingly generated and returned more data to Earth over the last several decades, physical limitations on communication bandwidth and latency combined with an increasing number of missions that must share Deep Space Network resources mean that much less data can be returned compared to Earth-orbiting missions. Data science techniques can automate or assist with science operations. The use of ML in tandem with onboard planning enables new mission architectures and exploration of high science value, high risk destinations. In this section, we describe opportunities for integrating ML into operations onboard spacecraft and on the ground.

Automated content-based alerts can accelerate science planning by notifying scientists of interesting observations. Scientists might have as little as 5 hours to decide which commands to send to the spacecraft at the next communication opportunity [11]. Using automated classification, science planners could filter new observations to review only those containing features of interest, or could “subscribe” to be notified when an onboard algorithm detects such features. Current examples include implementing a convolutional neural network to classify geologic features and spacecraft hardware within Mars rover and orbital imagery [12] and automatically generating image captions for content-based search or notification capabilities [13].

Prioritization of novel observations can also help focus scientists’ attention on unusual phenomena and respond with any follow-up observations while there is still an opportunity to do so. Applications have prioritized the order of spectra shown to an expert, improving the accuracy of spectrum classification [14] and have identified novel geology in multi-spectral images to flag observations for mission team members [15]. See Figure 2 (left) for a successful example on detecting Martian geologic features.

Onboard detection and summarization (i.e., high-level observation summaries) of features can greatly increase the number of observations containing these phenomena returned from a mission. It is nearly impossible to sequence observations of transient, unpredictable events (e.g., dust devils, storms, plumes) in advance. Searching for phenomena onboard a spacecraft enables downlinking only those candidate observations likely to contain the desired target or returning more data for targets [16]. This approach has been used on several missions, including the delivery of observation content summaries from EO-1 [17] and the automatic detection of dust devils on Mars Exploration Rover Opportunity [18]. Even imperfect algorithms will increase the fraction of valuable observations in the downlink.
Autonomous targeting can recover mission time spent waiting for ground-in-the-loop targeting decisions. Such methods are becoming essential for certain operations. For example, the AEGIS system (Figure 2), used to identify geologic targets for follow-up observations onboard Mars Exploration Rovers and Mars Science Laboratory, has increased observations by \(\sim 28\% \) per day [19].

Onboard autonomy will be increasingly important for missions at far distances (icy moons and icy giants), with multiple spacecraft, and with short duration and limited communication opportunities (Europa and Venus landers). Applications of autonomy are extremely valuable, but face challenges in hardware and software design and in producing explainable and interpretable results. Long-term success will require addressing these challenges (Section 3), but promises to improve the scientific return of planetary missions.

2.3 Analyses

Statistical techniques have long been used to analyze planetary data to advance scientific understanding. Recent increases in data volume returned by planetary missions have expanded the applicability of data science techniques. We present a high level overview of leading edge applications that these methods and data volumes enable.

Detection, characterization, and classification with ML can systematically and autonomously identify features of interest and distinguish real objects and events from false positives. Applications range from standardizing and identifying rare plasma intensifications in a time series [21] to vetting large datasets for exoplanet candidate identification [22]. Compared to compiling such events or features by eye, ML can be employed as a tool to find and reduce bias while improving reproducibility for scientific analyses.

Grouping features (clustering) into categories with statistics-based assumptions has the potential to be a major method leading to groundbreaking findings in planetary science. Such techniques have been implemented in Bayesian clustering for mineral identification on Mars [23]. ML also offers the opportunity to develop techniques that can be quickly and feasibly applied to much larger data volumes. For example, the development of PlanetNet, a tool to “quickly and accurately map spatial and spectral features across large, heterogeneous areas” illustrated in Figure 3, uses a dataset that is too large for manual identification [24].

Resolving (and integrating across) multi-dimensional non-linear trends is of great interest in studying planetary environments. Traditional statistical analysis struggles to account for these multivariate trends, particularly when the complete parameter space has not been thoroughly sampled. Data science allows for the identification and description of simultaneous, multivariate, and nonlinear trends; for example using temporal variability to estimate spatial scales [25].

Figure 2: Examples of automated feature detection on Mars with Mars Science Laboratory. Left: Mastcam images of a meteorite (top) and light-toned material (bottom) corresponding to red pixels detected by a ML algorithm [20]. Right: Navcam image of the Martian surface highlighting targets for follow-up analysis from the Autonomous Exploration for Gathering Increased Science (AEGIS) [19].
Describing large physical systems with spatiotemporal varying datasets can be challenging. Planetary missions can only capture small snapshots of large-scale systems. Statistical techniques can use these snapshots to construct global descriptions of the system. This can be done, for example, by combining observations into useful proxies [26].

ML integration in physical models can build on the physics-based modeling already embraced by the field. Large-scale physical models have been a mainstay for interpreting planetary science datasets for decades and ML techniques are quickly gaining use in enhancing physics-based model performance and returns [27].

Advanced statistical techniques are adding a new branch of methods with which to engage in data-driven scientific pursuit. Similar to other mission stage applications, interpretability of these methods’ results is an active challenge. To fully enable ML applications, it is therefore of critical importance to develop these techniques within planetary science.

3 Recommendations

To reach our future vision of the field, we have crafted ten recommendations for integration of machine learning into planetary science for the next decade.

1. **Invest in post-mission and non-mission related funding and activities.** Due to the structure of the NASA Planetary Science Division, funding opportunities are often tied to missions or demonstrable scientific goals. Because ML techniques are best suited to larger datasets, we expect many ML proposals will focus on missions considered retired or ended. Increased funding for post-mission studies would assist in these applications. Beyond missions, research is needed for how ML techniques will address specific challenges in planetary science data. ML applications to physical problems are still a major research area. Recent findings highlight the need for incorporating domain knowledge to increase interpretability of ML [4] and propose a machine assisted pipeline in scientific discovery [28]. Basic investigations into domain-specific concerns of ML techniques are needed and are not funded by missions.

2. **Expand programs for data analysis.** ML applications currently fit into data analysis programs, such as the existing NASA Planetary Data Archiving, Restoration, and Tools and Data Analysis Programs. We recommend a review of these programs for inclusion of ML.

3. **Increase support for planetary data infrastructures.** The NASA Planetary Data System (PDS) forms the backbone of NASA’s planetary data. We recommend increased discussions for PDS and other data and tool hubs (e.g. MAPSIT) to support ML applications.

4. **Invest in onboard software and hardware.** A maturation pipeline is needed to mitigate risk of including instruments and spacecraft capable of onboard data processing in mission proposals. We recommend including ML in PICASSO and MatISSE or developing new programs for increasing technology readiness levels of onboard software and automation.

5. **Invest in the continued development of data return facilities.** For ML users interested in data from missions traveling far from Earth (like the upcoming Dragonfly and Europa Clipper missions), data return and the cost of transmission limit data sizes. In addition to onboard solutions...
(see previous item), we support investments for updates to the Deep Space Network and other solutions for higher data return from the outer planets.

6. **Review changing demands for computational resources on the ground.** Greater usage of NASA’s high performance computing facilities is expected as ML applications increase the demand on computational resources. We recommend that these facilities receive continued support.

7. **Invest in education.** Educational resources for new users of ML methods are essential. Research programs like the Frontier Development Laboratory work to integrate artificial intelligence with NASA research and provide training for students and early career professionals. We recommend expansion of these programs and investigation into models that would educate larger groups (see AI4ESS for a potential model). On longer timelines we see planetary science degrees incorporating data rich courses [see 29, for necessity of such courses in education] and hiring the staff required to teach such courses (see NSF FDSS for an program that encouraged investment through faculty sponsorship).

8. **Support community groups and early career researchers.** While the community of ML users in planetary science is growing, in our observation it is less cohesive than other subsets of the field and is primarily composed of early career participants. On this white paper for example, all of the authors are early career professionals or students. Supporting early career researchers and groups like OpenPlanetary that focus on planetary data access will help connect researchers. The NSF EarthCube Intelligent Systems for Geosciences provides an ideal example.

9. **Actively support underrepresented members of our community.** Geoscience and computer science are source fields for ML in planetary science. These fields, respectively, are the least racially diverse of all STEM fields [30] and have some of the lowest shares of women degree recipients with declining participation in recent years [31]. Opportunities must actively include the participation, experiences, and leadership of underrepresented members of our communities or they will reinforce existing inequalities and propagate injustices into the next decade.

10. **Support interdisciplinary work.** For the continued success and growth of ML in domain applications, scientific fields must engage in interdisciplinary work [32], such as with ML industry researchers and physical scientists of other fields. This furthers Strategy 1.3 in the NASA SMD 2020-2024 strategy plan to “Advance discovery in emerging fields by identifying and exploiting interdisciplinary opportunities” [33].

A Single Solution: ‘SpaceCube’

Our recommendations represent different aspects of a single target: the sustained commitment to people, applications, and infrastructure outside of mission funding. We have looked across fields for examples for our future, referencing the joint program between the NSF Directorate for Geosciences and the Division of Advanced Cyberinfrastructure called NSF EarthCube. For Earth research, EarthCube envisions almost every aspect of our recommendations. EarthCube funded projects have supported community groups, worked to create data infrastructures, and defined new research areas. Given NASA’s excellence in planetary research, and NSF’s EarthCube program, an NSF-NASA partnership would further our vision for the field to engage in purposeful work in machine learning for planetary science.

We propose a ‘SpaceCube’ partnership between NASA and NSF to target areas of shared advancement to address these recommendations.
4 Conclusions

The future of planetary science is exciting, with each new discovery changing our understanding of the solar system and beyond. Machine learning and data science are poised to advance these discoveries and add value at each step of the mission lifecycle. In this white paper we have envisioned a data rich future for our field achieved by integrating these methods. For the full incorporation of machine learning into planetary science, investigations into domain-specific applications for our field must be supported. The successes of adjacent fields have informed our recommendations, which will enable planetary science to join them in benefiting from machine learning techniques for scientific insight. The NSF EarthCube program exemplifies many of our recommendations; but for Earth science. As such, we urge the survey to consider cross-agency collaborations to leverage current activities outside of NASA. The last decadal survey stated that planetary missions have benefited from “laboratory studies, theoretical studies, and modeling” [34]. We look forward to seeing data science and machine learning methods included in the next decade.

References

[1] K. L. Bouman, M. D. Johnson, D. Zoran, V. L. Fish, S. S. Doeleman, and W. T. Freeman, “Computational imaging for VLBI image reconstruction,” in 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, pp. 913–922. DOI: 10.1109/CVPR.2016.105.

[2] L. Yu, A. Vanderburg, C. Huang, C. J. Shallue, I. J. M. Crossfield, B. S. Gaudi, T. Daylan, A. Dattilo, D. J. Armstrong, G. R. Ricker, R. K. Vanderspek, D. W. Latham, S. Seager, J. Dittmann, J. P. Doty, A. Glidden, and S. N. Quinn, “Identifying exoplanets with deep learning. III. Automated triage and vetting of TESS candidates,” The Astronomical Journal, vol. 158, no. 1, p. 25, 2019. DOI: 10.3847/1538-3881/ab21d6.

[3] T. Hey, S. Tansley, and K. Tolle, Eds., The fourth paradigm: Data-intensive scientific discovery. Redmond, Washington, USA: Microsoft Research, 2009. [Online]. Available: https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/.

[4] A. R. Azari, J. W. Lockhart, M. W. Liemohn, and X. Jia, “Incorporating physical knowledge into machine learning for planetary space physics,” Frontiers in Astronomy and Space Sciences, 2020. DOI: 10.3389/fspas.2020.00036.

[5] A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar, “Machine learning for the geosciences: Challenges and opportunities,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 8, pp. 1544–1554, 2019. DOI: 10.1109/TKDE.2018.2861006.

[6] A. Mereta, D. Izzo, and A. Wittig, “Machine learning of optimal low-thrust transfers between near-Earth objects,” in International Conference on Hybrid Artificial Intelligence Systems, F. J. Martínez de Písón, R. Urraca, and H. Quintián, Eds., Cham: Springer International Publishing, 2017, pp. 543–553. DOI: 10.1007/978-3-319-59650-1_46.

[7] D. Izzo, C. I. Sprague, and D. V. Tailor, “Machine learning and evolutionary techniques in interplanetary trajectory design,” in Modeling and Optimization in Space Engineering : State of the Art and New Challenges, G. Fasano and J. D. Pintér, Eds., Cham: Springer International Publishing, 2019, pp. 191–210. DOI: 10.1007/978-3-030-10501-3_8.

[8] M. Ono, B. Rothrock, E. Almeida, A. Ansar, R. Otero, A. Huertas, and M. Heverly, “Data-driven surface traversability analysis for mars 2020 landing site selection,” in 2016 IEEE Aerospace Conference, 2016, pp. 1–12. DOI: 10.1109/AERO.2016.7500597.

[9] K. D. Stout, “Bayesian-based simulation model validation for spacecraft thermal systems,” PhD thesis, Dept. of Aeronaut. and Astronaut., MIT, Boston, MA, USA, 2015. [Online]. Available: https://dspace.mit.edu/handle/1721.1/97358.
[10] S. Uebelhart, D. Miller, and C. Blaurock, “Uncertainty characterization in integrated modeling,” in 46th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics and Materials Conference. 2005. DOI: 10.2514/6.2005-2142.

[11] M. Wilson, J. Trosper, and F. Abilleira, “NASA Mars 2020 landed mission development,” in 26th Int. Symposium on Space Flight Dynamics, 2017. [Online]. Available: http://hdl.handle.net/2014/45965.

[12] K. Wagstaff, Y. Lu, A. Stanboli, K. Grimes, T. Gowda, and J. Padams, “Deep Mars: CNN classification of Mars imagery for the PDS Imaging Atlas,” in AAAI Conference on Artificial Intelligence, 2018. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16040.

[13] M. Ono, B. Rothrock, C. Mattmann, T. Islam, A. Didier, V. Z. Sun, D. Qiu, P. Ramirez, K. Grimes, and G. Hedrick, “Make planetary images searchable: Content-based search for PDS and on-board datasets,” in 50th Lunar and Planetary Science Conference, 2019. [Online]. Available: https://www.hou.usra.edu/meetings/lpsc2019/pdf/2552.pdf.

[14] K. L. Wagstaff, N. L. Lanza, D. R. Thompson, T. G. Dietterich, and M. S. Gilmore, “Guiding scientific discovery with explanations using DEMUD,” in AAAI Conference on Artificial Intelligence, 2013. DOI: 10.5555/2891460.2891586.

[15] H. R. Kerner, K. L. Wagstaff, B. D. Bue, D. F. Wellington, S. Jacob, J. F. Bell III, C. Kwan, and H. B. Amor, “Comparison of novelty detection methods for multispectral images in rover-based planetary exploration missions,” Data Mining and Knowledge Discovery, 2020. DOI: 10.1007/s10618-020-00697-6.

[16] D. R. Thompson, B. J. Bornstein, S. A. Chien, S. Schaffer, D. Tran, B. D. Bue, R. Castaño, D. F. Gleeson, and A. Noell, “Autonomous spectral discovery and mapping onboard the EO-1 spacecraft,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 2191–2201. DOI: 10.1145/3292500.3330656.

[17] S. Chien, R. Castano, B. Bornstein, A. Fukunaga, A. Castano, R. Greeley, P. Whelley, J. Biesiadecki, and M. Lemmon, “Results from automated cloud and dust devil detection onboard the MER rovers,” in International Symposium on Artificial Intelligence, Robotics and Automation for Space, 2008. [Online]. Available: http://hdl.handle.net/2014/41748.

[18] R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Science Robotics, vol. 2, 7 2017. DOI: 10.1126/scirobots.aan4582.

[19] H. R. Kerner, D. F. Wellington, K. L. Wagstaff, J. F. Bell, C. Kwan, and H. B. Amor, “Novelty detection for multispectral images with application to planetary exploration,” in The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence, vol. 33, 2019, pp. 9484–9491. DOI: 10.1609/aaai.v33i01.33019484.

[20] A. R. Azari, M. W. Liemohn, X. Jia, M. F. Thomsen, D. G. Mitchell, N. Sergis, A. M. Rymer, G. B. Hospodarsky, C. Paranas, and J. Vandegeiff, “Interchange injections at Saturn: Statistical survey of energetic H+ sudden flux intensifications,” Journal of Geophysical Research: Space Physics, vol. 123, pp. 4692–4711, 2018. DOI: 10.1029/2018JA025391.

[21] S. Millholland and G. Laughlin, “Supervised learning detection of sixty non-transiting hot Jupiter candidates,” The Astronomical Journal, vol. 154, 2017. DOI: 10.3847/1538-3881/aa7a0f.

[22] M. Dundar and B. L. Ehlmann, “Rare jarosite detection in CRISM imagery by non-parametric Bayesian clustering,” in 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2016, pp. 1–5. DOI: 10.1109/WHISPERS.2016.8071747.

[23] I. P. Waldmann and C. A. Griffith, “Mapping Saturn using deep learning,” Nature Astronomy, vol. 3, pp. 620–625, 2019. DOI: 10.1038/s41550-019-0753-8.
[25] A. W. Smith, C. M. Jackman, C. M. Frohmaier, J. C. Coxon, J. A. Slavin, and R. C. Fear, “Evaluating single spacecraft observations of planetary magnetotails with simple Monte Carlo simulations: 1. Spatial distributions of the neutral line,” *Journal of Geophysical Research: Space Physics*, vol. 123, pp. 10 109–10 123, 2018. DOI: 10.1002/2018JA025958.

[26] S. Ruhunusiri, J. S. Halekas, J. R. Espley, F. Eparvier, D. Brain, C. Mazelle, Y. Harada, G. A. DiBraccio, Y. Dong, Y. Ma, and et al., “An artificial neural network for inferring solar wind proxies at Mars,” *Geophysical Research Letters*, vol. 45, pp. 10 855–10 865, 2018. DOI: 10.1029/2018GL079282.

[27] S. Cambioni, E. Asphaug, A. Emsenhuber, T. S. J. Gabriel, R. Furfaro, and S. R. Schwartz, “Realistic on-the-fly outcomes of planetary collisions: Machine learning applied to simulations of giant impacts,” *The Astrophysical Journal*, vol. 875, no. 1, p. 40, 2019. DOI: 10.3847/1538-4357/ab0e8a.

[28] V. Pankratius, J. Li, M. Gowanlock, D. M. Blair, C. Rude, T. Herring, F. Lind, P. J. Erickson, and C. Lonsdale, “Computer-aided discovery: Toward scientific insight generation with machine support,” *IEEE Intelligent Systems*, vol. 31, no. 4, pp. 3–10, 2016. DOI: 10.1109/MIS.2016.60.

[29] National Academies of Sciences, Engineering, and Medicine, *Data science for undergraduates: Opportunities and options*. Washington, DC, USA: The National Academies Press, 2018. DOI: 10.17226/25104.

[30] K. Dutt, “Race and racism in the geosciences,” *Nature Geoscience*, vol. 13, pp. 2–3, 2020. DOI: 10.1038/s41561-019-0519-z.

[31] National Science Foundation, National Center for Science and Engineering Statistics. “Women, Minorites, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 19-304,” Alexandria, VA, USA, 2019. [Online]. Available: https://www.nsf.gov/statistics/wmpd.

[32] I. Ebert-Uphoff, S. M. Samarasinghe, and E. A. Barnes, “Thoughtfully using artificial intelligence in Earth science,” *Eos*, 2019. DOI: 10.1029/2019EO135235.

[33] NASA Science Mission Directorate, “Science 2020-2024, A Vision for Scientific Excellence,” Washington, DC, USA, 2020. [Online]. Available: https://science.nasa.gov/about-us/science-strategy#2020.

[34] National Research Council, *Vision and voyages for planetary science in the decade 2013-2022*. Washington, DC: The National Academies Press, 2011. DOI: 10.17226/13117.