Kernel density estimation for directional-linear data

Eduardo García-Portugués¹,², Rosa M. Crujeiras¹ and Wenceslao González-Manteiga¹

Abstract

A nonparametric kernel density estimator for directional-linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and Mean Integrated Squared Error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some particular distributions, an explicit formula for the MISE is obtained and compared with its asymptotic version, both for directional and directional-linear kernel density estimators. In this same setting a closed expression for the bootstrap MISE is also derived.

Keywords: Directional-linear data; Kernel density estimator; Nonparametric statistics.

1 Introduction

Kernel density estimation, and kernel smoothing methods in general, is a classical topic in nonparametric statistics. Starting from the first papers by Akaike (1954), Rosenblatt (1956) and Parzen (1962), extensions of the kernel density methodology have been brought up in different contexts, dealing with other smoothers, more complex data (censorship, truncation, dependence) or dynamical models (see Müller (2006) for a review). Some comprehensive references in this topic include the books by Silverman (1986), Scott (1992) and Wand and Jones (1995), among others.

Beyond the linear case, kernel density estimation has been also adapted to directional data, that is, data in the q-dimensional sphere (see Jupp and Mardia (1989) for a complete review of the theory of directional statistics). Hall et al. (1987) defined two type of kernel estimators and give asymptotic formulae of bias, variance and square loss. Almost simultaneously, Bai et al. (1988) established the pointwise, uniformly strong consistency and $L₁$ consistency of a quite similar estimator in the same context. Later, Zhao and Wu (2001) stated a central limit theorem for the integrated squared error of the previous kernel density estimator based on the U-statistic martingale ideas developed by Hall (1984). Some of the results by Hall et al. (1987) were extended by Klemelä (2000), who studied the estimation of the Laplacian of the density and other types of derivatives. All these references consider the data lying on a general q-sphere of arbitrary dimension q, which comprises as particular cases circular data ($q = 1$) and spherical data ($q = 2$). For the particular case of circular data, there are more recent works dealing with the problem of smoothing parameter selection in kernel density estimation, such as Taylor (2008) and Oliveira et al. (2012). Di Marzio et al. (2011) study the kernel density estimator on the q-dimensional torus, and propose some bandwidth selection methods. A more general approach has been followed by Hendriks (1990), who discusses the estimation of the underlying distribution by means of Fourier expansions in a Riemannian manifold. This differential geometry viewpoint has been exploited recently by Pelletier (2005) and Henry and Rodriguez (2009). Nevertheless, the original approach seems to present a good balance between generality and complexity.

The aim of this work is to introduce and derive some basic properties of a joint kernel density estimator for directional-linear data, i.e. data with a directional and a linear component. This type
of data arise in a variety of applied fields such as meteorology (when analysing the relation between wind direction and wind speed), oceanography (in the study of sea currents) and environmental sciences, among others. As an example, such an estimator has been used by García-Portugués et al. (2013) for studying the relation between pollutants and wind direction in the presence of an emission source. Specifically, the novelty of this work comprises the analysis of asymptotic properties of the directional-linear kernel density estimator, deriving bias, variance and asymptotic normality. As a by-product, the Mean Integrated Squared Error (MISE) follows, as well as the expression for optimal Asymptotic MISE (AMISE) bandwidths. In addition, for a particular class of densities consisting of mixtures of directional von Mises and normals, it is possible to compare the AMISE with the exact MISE. These results have been also obtained for the purely directional case, considering mixtures of von Mises distributions in the q-dimensional sphere, completing the existing results for directional data.

This paper is organized as follows. Section 2 presents some background on kernel density estimation for linear data and directional data. The proposed directional-linear kernel density estimator and the main results of this paper are included in Section 3, where the bias, variance and asymptotic normality are derived. Section 4 is focused in the issue of error measurement and expressions for the AMISE of the estimator and the exact MISE for particular cases of mixtures are obtained, both in the directional and directional-linear contexts. Conclusions and final comments are given in Section 5. The proofs of the results and some technical lemmas are given in the Appendix.

2 Background on linear and directional kernel density estimation

This section is devoted to a brief introduction on kernel density estimation for linear and directional data. For the sake of simplicity, f will denote the target density in this paper, which may be linear, directional, or directional-linear, depending on the context.

Let Z denote a linear random variable with support $\text{supp}(Z) \subseteq \mathbb{R}$ and density f. Consider Z_1, \ldots, Z_n a random sample of Z, with size n. The linear kernel density estimator introduced by Akaike (1954), Rosenblatt (1956) and Parzen (1962) is defined as

$$
\hat{f}_g(z) = \frac{1}{ng} \sum_{i=1}^{n} K \left(\frac{z - Z_i}{g} \right), \quad z \in \mathbb{R},
$$

where K denotes the kernel, usually a symmetric density about the origin, and $g > 0$ is the bandwidth parameter, which controls the smoothness of the estimator. Specifically, large values of the bandwidth parameter will produce oversmoothed estimates of f, whereas small values will provide undersmoothed curves. The asymptotic properties of this estimator and its adaptation to different contexts yielded a remarkably prolific field within the statistical literature, as noted in the introduction.

It is well known that under some regularity conditions on the kernel and the target density, the bias of the estimator (1) is of order $\mathcal{O}(g^2)$, whereas the variance is $\mathcal{O}\left((ng)^{-1}\right)$, clearly showing the need of accounting for a trade-off between bias and variance in any bandwidth selection procedure. Specifically, the expected value of the linear kernel estimator at $z \in \mathbb{R}$ is:

$$
\mathbb{E}\left[\hat{f}_g(z)\right] = f(z) + \frac{1}{2} \mu_2(K) f''(z) g^2 + o\left(g^2\right),
$$

where $\mu_p(K) = \int_{\mathbb{R}} z^p K(z) \, dz$ represents the p-th moment of the kernel K. Similarly, the variance of
(1) at $z \in \mathbb{R}$ is given by:
\[
\Var \left[\hat{f}_q(z) \right] = (ng)^{-1} R(K)f(z) + o((ng)^{-1}),
\]
where $R(K) = \int_{\mathbb{R}} K^2(z) \, dz$. Further details on computations for the linear kernel density estimator can be found in Section 2.5 of Wand and Jones (1995).

2.1 Kernel density estimation for directional data

As previously mentioned, kernel density estimation has been adapted to different contexts such as directional data, that is, data on a q-dimensional sphere, being circular data ($q = 1$) and spherical data ($q = 2$) particular cases. Let \mathbf{X} denote a directional random variable with density f. The support of such a variable is the q-dimensional sphere, denoted by $\Omega_q = \{ \mathbf{x} \in \mathbb{R}^{q+1} : x_1^2 + \cdots + x_{q+1}^2 = 1 \}$. The Lebesgue measure in Ω_q will be denoted by ω_q and, therefore, a directional density satisfies
\[
\int_{\Omega_q} f(\mathbf{x}) \omega_q(d\mathbf{x}) = 1.
\]

Remark 1. When there is no possible misunderstanding, ω_q will also denote the surface area of Ω_q:
\[
\omega_q(\Omega_q) = \frac{2\pi^{q+1}}{\Gamma(\frac{q+1}{2})}, \quad q \geq 1,
\]
where Γ represents the Gamma function defined as $\Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} \, dx$, for $p > -1$.

The directional kernel density estimator was proposed by Hall et al. (1987) and Bai et al. (1988), following two different perspectives in the treatment of directional data. In this paper, the definition in Bai et al. (1988) will be considered, although it can also be related with one of the proposals in Hall et al. (1987). Given a random sample $\mathbf{X}_1, \ldots, \mathbf{X}_n$, of a directional variable \mathbf{X} with density f, the directional kernel density estimator is given by:
\[
\hat{f}_h(\mathbf{x}) = \frac{c_{h,q}(L)}{n} \sum_{i=1}^{n} L \left(\frac{1 - \mathbf{x}^T \mathbf{X}_i}{h^2} \right), \quad \mathbf{x} \in \Omega_q,
\]
where L is the directional kernel, $h > 0$ is the bandwidth parameter and $c_{h,q}(L)$ is a normalizing constant depending on the kernel L, the bandwidth h and the dimension q. The scalar product of two vectors, \mathbf{x} and \mathbf{y}, is denoted by $\mathbf{x}^T \mathbf{y}$, where T is the transpose operator.

In this setting, directional kernels are not directional densities but functions of rapid decay. Therefore, to ensure that the resulting estimator is indeed a directional density, the normalizing constant $c_{h,q}(L)$ is needed. Specifically (see Bai et al. (1988)), the inverse of this normalizing constant for any $\mathbf{x} \in \Omega_q$ is given by
\[
c_{h,q}(L)^{-1} = \int_{\Omega_q} L \left(\frac{1 - \mathbf{x}^T \mathbf{y}}{h^2} \right) \omega_q(d\mathbf{y}) = h^q \lambda_{h,q}(L) \sim h^q \lambda_q(L),
\]
with $\lambda_{h,q}(L) = \omega_q^{-1} \int_0^{2h^{-2}} L(r)r^{q-1} (2 - rh^2)^{\frac{q}{2} - 1} \, dr$ and $\lambda_q(L) = 2^{\frac{q}{2} - 1} \omega_q^{-1} \int_0^{\infty} L(r)r^{q-1} \, dr$. The asymptotic behaviour of $\lambda_{h,q}(L)$ is established in Lemma 1 and the notation $a_n \sim b_n$ indicates that $\frac{a_n}{b_n} \to 1$ as $n \to \infty$ (see also Bai et al. (1988) and Zhao and Wu (2001)).

Properties of the directional kernel density estimator (2) have been analysed by Bai et al. (1988), who proved pointwise, uniform and L_1-norm consistency. A central limit theorem for the integrated squared error of the estimator has been established by Zhao and Wu (2001), as well as the expression for the bias under some regularity conditions, stated below:
D1. Extend \(f \) from \(\Omega_q \) to \(\mathbb{R}^{q+1} \setminus \{0\} \) by defining \(f(x) \equiv f(x/\|x\|) \) for all \(x \neq 0 \), where \(\|\cdot\| \) denotes the Euclidean norm. Assume that the gradient vector \(\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \ldots, \frac{\partial f(x)}{\partial x_{q+1}} \right)^T \) and the Hessian matrix \(\mathcal{H}f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right)_{1 \leq i,j \leq q+1} \) exist, are continuous on \(\mathbb{R}^{q+1} \setminus \{0\} \) and square integrable.

D2. Assume that \(L : [0, \infty) \rightarrow [0, \infty) \) is a bounded and Riemann integrable function such that
\[
0 < \int_0^\infty L^k(r)r^{\frac{q}{2}-1} \, dr < \infty, \quad \forall q \geq 1, \text{ for } k = 1, 2.
\]

D3. Assume that \(h = h_n \) is a sequence of positive numbers such that \(h_n \rightarrow 0 \) and \(nh_n^q \rightarrow \infty \) as \(n \rightarrow \infty \).

Remark 2. \(L \) must be a rapidly decreasing function, quite different from the bell-shaped kernels \(K \) involved in the linear estimator (1). To verify D2, \(L \) must decrease faster than any power function, since \(\int_0^\infty r^\alpha r^{\frac{q}{2}-1} \, dr = \infty, \forall \alpha \in \mathbb{R}, \forall q \geq 1 \).

Lemma 2 in Zhao and Wu (2001) states that, under the previous conditions D1–D3, the expected value of the directional kernel density estimator in a point \(x \in \Omega_q \), is
\[
\mathbb{E} \left[\hat{f}_h(x) \right] = f(x) + b_q(L)\Psi(f, x)h^2 + o(h^2),
\]
where
\[
\Psi(f, x) = -x^T \nabla f(x) + q^{-1} \left(\nabla^2 f(x) - x^T \mathcal{H}f(x)x \right),
\]
\[
b_q(L) = \int_0^\infty L(r)r^{\frac{q}{2}} \, dr / \int_0^\infty L(r)r^{\frac{q}{2}-1} \, dr,
\]
being \(\nabla^2 f(x) = \sum_{i=1}^{q+1} \frac{\partial^2 f(x)}{\partial x_i^2} \) the Laplacian of \(f \). Note that the bias is of order \(O(h^2) \), but in (4), apart from the curvature of the target density which is captured by the Hessian matrix, a gradient vector also appears. On the other hand, the scaling constant \(b_q(L) \) can be interpreted as a kind of moment of the directional kernel \(L \). Note that, condition D2 with \(k = 1 \) is needed for the bias computation. The same condition with \(k = 2 \) is required for deriving the pointwise variance of the estimator (2), which was also given by Hall et al. (1987) and Klemelä (2000).

Proposition 1. Under conditions D1–D3, the variance of \(\hat{f}_h(x) \) at \(x \in \Omega_q \) is given by
\[
\text{Var} \left[\hat{f}_h(x) \right] = \frac{c_{h,q}(L)}{n}d_q(L)f(x) + o((nh^q)^{-1}),
\]
where
\[
d_q(L) = \int_0^\infty L^2(r)r^{\frac{q}{2}-1} \, dr / \int_0^\infty L(r)r^{\frac{q}{2}-1} \, dr.
\]
Regarding the normalizing constant expression (3), the order of the variance is \(O \left((nh^q)^{-1} \right) \), where \(q \) is the dimension of the sphere. This order coincides with the corresponding one for a multivariate kernel density estimator in \(\mathbb{R}^q \) (see Scott (1992)).

A popular choice for the directional kernel is \(L(r) = e^{-r}, r \geq 0 \), also known as the von Mises kernel due to its relation with the von Mises-Fisher distribution (see Watson (1983)). In a \(q \)-dimensional sphere, the von Mises model \(\text{vM} (\mu, \kappa) \) has density
\[
f_{\text{vM}}(x; \mu, \kappa) = C_q(\kappa) \exp \{ \kappa x^T \mu \}, \quad C_q(\kappa) = \frac{\kappa^{\frac{q-1}{2}}}{(2\pi)^{\frac{q+1}{2}}} I_{\frac{q-1}{2}}(\kappa),
\]
being $\mu \in \Omega_q$ the directional mean and $\kappa \geq 0$ the concentration parameter around the mean. In Figure 1 (left plot), the contour plot of a spherical von Mises is shown. I_ν is the modified Bessel function of order ν,

$$I_\nu(z) = \frac{\left(\frac{z}{2}\right)^\nu}{\pi^{1/2} \Gamma\left(\nu + \frac{1}{2}\right)} \int_{-1}^{1} (1 - t^2)^{\nu - \frac{1}{2}} e^{zt} \, dt.$$

For the particular case of the target density being a q-dimensional von Mises $vM(\mu, \kappa)$, the term (4) in the bias computation becomes:

$$\Psi (f_{vM}(\cdot; \mu, \kappa), x) = \kappa C_q(\kappa) e^{\kappa x^T \mu} \left(-x^T \mu + \kappa q^{-1} (1 - (x^T \mu)^2)\right).$$

As $\kappa \to 0$, which means that the distribution is approaching a uniform model in the sphere, the previous term also tends to zero.

Considering the von Mises kernel in the directional estimator (2) allows for its interpretation as a mixture of von Mises-Fisher densities

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^{n} f_{vM}(x; X_i, 1/h^2),$$

where, for each von Mises component, the mean value is i-th observation X_i and the concentration is given by $1/h^2$, involving the smoothing parameter.

Figure 1: Left: contour plot of a von Mises density $vM(\mu, \kappa)$, with $\mu = (0, 0, 1)$ and $\kappa = 3$. Right: contour plot of the mixture of von Mises densities (14).

In addition, the normalizing constant (3) appearing in the construction of the directional kernel estimator (2) has a simple expression for a von Mises kernel, given by

$$c_{h,q}(L)^{-1} = \frac{\sqrt{\pi} z}{\Gamma\left(\frac{q}{2}\right)} \int_{-1}^{1} \exp\left\{-\frac{1 + t}{h^2}\right\} (1 - t^2)^{\frac{q}{2} - 1} dt = C_q(1/h^2)^{-1} e^{-1/h^2}.$$

For a general kernel, the asymptotic behaviour of $c_{h,q}(L)^{-1}$ was remarked in (3) and it can be specified for the von Mises kernel. In this case, (8) depends on $C_q(1/h^2)$, which involves a Bessel function of order $(q - 1)/2$. Applying a Taylor expansion for I_ν, it can be seen that $I_\nu(z) = e^z\left(\frac{z}{\sqrt{2\pi}} + O(z^{3/2})\right)$, $z \geq 0$ and $c_{h,q}(L)^{-1}$ presents also a simple form:

$$c_{h,q}(L)^{-1} = (2\pi)^{\frac{q}{2}} e^{-\frac{1}{2\pi} h^q - e^{-\frac{1}{2\pi} \left(\frac{h}{\sqrt{2\pi}} + O(h^3)\right)}} = (2\pi)^{\frac{q}{2}} h^q + O\left(h^{q+2}\right).$$
Finally, the other terms involved in bias and variance, namely $b_q(L)$ and $d_q(L)$, become

$$b_q(L) = \frac{q}{2}, \quad d_q(L) = 2^{-\frac{q}{2}+1}, \quad \forall q \geq 1$$

for the von Mises kernel.

2.2 Kernel density estimation for directional-linear data

Consider a directional-linear random variable, (X, Z) with support $\text{supp}(X, Z) \subseteq \Omega_q \times \mathbb{R}$ and joint density f. For the simple case of circular data ($q = 1$), the support of the variable is the cylinder. Following the ideas in the previous section for the linear and directional cases, given a random sample $(X_1, Z_1), \ldots, (X_n, Z_n)$, the directional-linear kernel density estimator can be defined as:

$$\hat{f}_{h,q}(x,z) = \frac{c_{h,q}(L)}{ng} \sum_{i=1}^{n} LK \left(\frac{1 - x^T X_i}{h^2}, \frac{z - Z_i}{g} \right), \quad (x,z) \in \Omega_q \times \mathbb{R},$$

(9)

where LK is a directional-linear kernel, g is the bandwidth parameter for the linear component, h the bandwidth parameter for the directional component and $c_{h,q}(L)$ is the normalizing constant for the directional part, defined in (3). For the sake of simplicity, a product kernel $LK(\cdot, \cdot) = L(\cdot) \times K(\cdot)$ will be considered throughout this paper. Although a product kernel formulation has been adopted, the results could be generalized for a directional-linear kernel, with the suitable modifications in the required conditions.

3 Main results

Before stating the main results, some notation will be introduced. The target directional-linear density will be denoted by f. The gradient vector and Hessian matrix of f, with respect to both components (directional and linear) are defined in this setting as:

$$\nabla f(x,z) = \left(\frac{\partial f(x,z)}{\partial x_1}, \ldots, \frac{\partial f(x,z)}{\partial x_{q+1}}, \frac{\partial f(x,z)}{\partial z} \right)^T = \left(\nabla_x f(x,z), \nabla_z f(x,z) \right)^T,$$

$$\mathcal{H} f(x,z) = \begin{pmatrix}
\frac{\partial^2 f(x,z)}{\partial x_1^2} & \ldots & \frac{\partial^2 f(x,z)}{\partial x_1 \partial x_{q+1}} & \frac{\partial^2 f(x,z)}{\partial x_1 \partial z} \\
\vdots & \ddots & \vdots & \vdots \\
\frac{\partial^2 f(x,z)}{\partial x_{q+1} \partial x_1} & \ldots & \frac{\partial^2 f(x,z)}{\partial x_{q+1} \partial x_{q+1}} & \frac{\partial^2 f(x,z)}{\partial x_{q+1} \partial z} \\
\frac{\partial^2 f(x,z)}{\partial z \partial x_1} & \ldots & \frac{\partial^2 f(x,z)}{\partial z \partial x_{q+1}} & \frac{\partial^2 f(x,z)}{\partial z^2}
\end{pmatrix} = \begin{pmatrix}
\mathcal{H}_x f(x,z) & \mathcal{H}_{x,z} f(x,z) \\
\mathcal{H}_{x,z} f(x,z)^T & \mathcal{H}_z f(x,z)
\end{pmatrix},$$

where subscripts x and z are used to denote the derivatives with respect to the directional and linear components, respectively. The Laplacian of f restricted to the directional component is denoted by $\nabla_x^2 f(x,z) = \sum_{i=1}^{q+1} \frac{\partial^2 f(x,z)}{\partial x_i^2}$. The following conditions will be required in order to prove the main results:

DL1. Extend f from $\Omega_q \times \mathbb{R}$ to $\mathbb{R}^{q+2}\setminus A$, $A = \{(x,z) \in \mathbb{R}^{q+2} : x = 0\}$, by defining $f(x,z) \equiv f(x/\|x\|, z)$ for all $x \neq 0$ and $z \in \mathbb{R}$, where $\|\cdot\|$ denotes the Euclidean norm. Assume that $\nabla f(x,z)$ and $\mathcal{H} f(x,z)$ exist, are continuous and square integrable.

DL2. Assume that the directional kernel L satisfies condition D2 and the linear kernel K is a symmetric around zero and bounded linear density function with finite second order moment.

DL3. Assume that $h = h_n$ and $g = g_n$ are sequences of positive numbers such that $h_n \to 0$, $g_n \to 0$ and $nh_n^2g_n \to \infty$ as $n \to \infty$.

6
The next two results provide the expressions for the bias and the variance of the directional-linear kernel density estimator (9).

Proposition 2. Under conditions **DL1–DL3**, the expected value of the directional-linear kernel density estimator (9) in a point \((x, z) \in \Omega_q \times \mathbb{R}\) is given by

\[
\mathbb{E} \left[\hat{f}_{h,g}(x, z) \right] = f(x, z) + b_q(L) \Psi_x(f, x, z) h^2 + \frac{1}{2} \mu_2(K) \mathcal{H}_x f(x, z) g^2 + o \left(h^2 + g^2 \right),
\]

where

\[
\Psi_x(f, x, z) = -x^T \nabla_x f(x, z) + q^{-1} \left(\nabla_x^2 f(x, z) - x^T \mathcal{H}_x f(x, z) x \right).
\]

Proposition 3. Under conditions **DL1–DL3**, the variance for the directional-linear kernel density estimator (9) in a point \((x, z) \in \Omega_q \times \mathbb{R}\) is given by

\[
\text{Var} \left[\hat{f}_{h,g}(x, z) \right] = \frac{c_{h,q}(L)}{ng} R(K) d_q(L) f(x, z) + o \left((nh^q g)^{-1} \right).
\]

In view of the previous results, some comments must be done. Firstly, the effects of the directional and linear part can be clearly identified. For the bias, marginal contributions appear as two addends and also the remaining orders from each part are separated. For the variance, the terms corresponding to both parts can be also identified, although turning up in a product form. In addition, the respective orders for bias and variance are analogous to those ones obtained with a \((q + 1)\)-multivariate estimator in \(\mathbb{R}^{q+1}\) (see Scott (1992)).

It can be also proved that the directional-linear kernel density estimator (9) is asymptotically normal, under the same conditions as those ones used for deriving the expected value and the variance, and a further smoothness property on the product kernel.

Theorem 1. Under conditions **DL1–DL3**, if \(\int_0^\infty \int_\mathbb{R} L K^{2+\delta} (r, v) r^{\frac{q}{2} - 1} dv dr < \infty\) for some \(\delta > 0\), then the directional-linear kernel density estimator (9) is asymptotically normal:

\[
\sqrt{nh^q g} \left(\hat{f}_{h,g}(x, z) - f(x, z) - \text{ABias} \left[\hat{f}_{h,g}(x, z) \right] \right) \xrightarrow{d} \mathcal{N} \left(0, R(K) d_q(L) f(x, z) \right),
\]

pointwise in \((x, z) \in \Omega_q \times \mathbb{R}\), where \(\text{ABias} \left[\hat{f}_{h,g}(x, z) \right] = b_q(L) \Psi_x(f, x, z) h^2 + \frac{1}{2} \mu_2(K) \mathcal{H}_x f(x, z) g^2\).

The smoothness condition on the directional-linear kernel is required in order to ensure Lyapunov’s condition and obtain the asymptotic normal distribution. Again, the effect of the two parts can be identified in the previous equation, as well as in the rate of convergence of the estimator.

4 Error measurement and optimal bandwidth

The analysis of the performance of the kernel density estimator requires the specification of appropriate error criteria. Consider a generic kernel density estimator \(\hat{f}\), which can be linear, directional or directional-linear. A global error measurement for quantifying the overall performance of this estimator is given by the MISE:

\[
\text{MISE} \left[\hat{f} \right] = \int \mathbb{E} \left[(\hat{f}(u) - f(u))^2 \right] du.
\]

The MISE can be interpreted as a function of the bandwidth and its minimization yields an optimal bandwidth in the sense of the quadratic loss.
For the linear kernel density estimator (1) and under some regularity conditions (see Wand and Jones (1995)), the MISE is given by:

$$\text{MISE} \left[\hat{f}_g \right] = \frac{1}{4} \mu_2(K)^2 R(f'') (ng)^{-1} R(K) + o \left(g^4 + (ng)^{-1} \right).$$

The asymptotic version of the MISE, namely the AMISE, can be used to derive an optimal bandwidth that minimizes this error. This optimal bandwidth is given by

$$g_{\text{AMISE}} = \left[\frac{R(K)}{\mu_2(K)^2 R(f'n)} \right]^{\frac{1}{2}}.$$

Although the previous expression does not provide a bandwidth value in practice, given that it depends on the curvature of the target density $R(f'')$, some interesting issues should be noticed. For instance, the order of the asymptotic optimal bandwidth is $O(n^{-1/5})$. Also, this result is the starting point of more sophisticated bandwidth selectors such as the ones given by Sheather and Jones (1991) and Cao (1993). A comparison of the performance of different bandwidth selectors can be found in Cao et al. (1994), whereas Jones et al. (1996) provides a review on bandwidth selection methods.

4.1 MISE for directional and directional-linear kernel density estimators

In the previous sections, the bias and variance for the directional kernel estimator (see Zhao and Wu (2001) for the bias and Proposition 1 for the variance) and for the directional-linear kernel estimator (Propositions 2 and 3) were obtained. Hence, it is straightforward to get the MISE for these estimators.

Proposition 4. Under conditions $D1$–$D3$, the MISE for the directional kernel density estimator (2) is given by

$$\text{MISE} \left[\hat{f}_h \right] = b_q(L)^2 \int_{\Omega_q} \Psi(f(x))^2 \omega_q(dx) h^4 + \frac{c_{h,q}(L)}{n} d_q(L) + o \left(h^4 + (nh^q)^{-1} \right).$$

Following Wand and Jones (1995), $\text{MISE} \left[\hat{f}_h \right] = \text{AMISE} \left[\hat{f}_h \right] + o \left(h^4 + (nh^q)^{-1} \right)$, providing $\text{AMISE} \left[\hat{f}_h \right]$ a suitable large sample approximation that allows for the computation of an optimal bandwidth with closed expression, minimizing this asymptotic error criterion.

Corollary 1. The AMISE optimal bandwidth for the directional kernel density estimator (2) is given by

$$h_{\text{AMISE}} = \left[\frac{q d_q(L)}{4 b_q(L)^2 \lambda_q(L) R(\Psi(f, \cdot)) n} \right]^{\frac{1}{q+\phi}},$$

where $R(\Psi(f, \cdot)) = \int_{\Omega_q} \Psi(f(x))^2 \omega_q(dx)$ and $\lambda_q(L) = 2^{2^{-1} \omega_{q-1}} \int_0^\infty L(r) r^{2^{-1}-1} dr$.

Expressions for MISE and AMISE can be also derived for the directional-linear estimator. In order to simplify the notation, let denote $\mathcal{I} \left[\phi \right] = \int_{\Omega_q \times \mathbb{R}} \phi(x, z) dz \omega_q(dx)$, for a function $\phi : \Omega_q \times \mathbb{R} \rightarrow \mathbb{R}$.

Proposition 5. Under conditions $DL1$–$DL3$, the MISE for the directional-linear kernel density estimator (9) is given by

$$\text{MISE} \left[\hat{f}_{h,g} \right] = b_q(L)^2 \mathcal{I} \left[\Psi_X(f, \cdot, \cdot)^2 \right] h^4 + \frac{1}{4} \mu_2(K)^2 \mathcal{I} \left[\mathcal{H}_z f(\cdot, \cdot)^2 \right] g^4 + b_q(L) \mu_2(K) \mathcal{I} \left[\Psi_X(f, \cdot, \cdot) \mathcal{H}_z f(\cdot, \cdot) \right] h^2 g^2 + \frac{c_{h,q}(L)}{ng} d_q(L) R(K) + o \left(h^4 + g^4 + (nh^q g)^{-1} \right).$$
Unfortunately, it is not straightforward to derive a full closed expression for the optimal pair of bandwidths \((h, g)_{AMISE}\), although it is possible to compute them by numerical optimization. However, such a closed expression can be obtained for the particular case \(q = 1\), where the circular and linear bandwidths can be considered as proportional.

Corollary 2. Consider the parametrization \(g = \beta h\). The optimal AMISE pair of bandwidths \((h, g)_{AMISE} = (h_{AMISE}, \beta h_{AMISE})\) can be obtained from

\[
h_{AMISE} = \left(\frac{(q + 1)d_q(L)R(K)}{4\beta_\lambda_q(L)R(b_q(L)\lambda_x(f, \cdot, \cdot) + \frac{\beta_2}{2}\mu_2(K)H_zf(\cdot, \cdot))n}\right)^{\frac{1}{q + 1}},
\]

where \(R(b_q(L)\lambda_x(f, \cdot, \cdot) + \frac{\beta_2}{2}\mu_2(K)H_zf(\cdot, \cdot)) = \int_{\Omega_q \times \mathbb{R}} (b_q(L)\lambda_x(f, x, z) + \frac{\beta_2}{2}\mu_2(K)H_zf(x, z))^2 \, dz \, \omega_q(dx)\) and \(\lambda_q(L)\) is defined as in the previous corollary. For the circular-linear data case \((q = 1)\), the parameter \(\beta\) is given by:

\[
\beta = \left(\frac{\frac{1}{2}\mu_2(K)^2I[H_zf(\cdot, \cdot, \cdot)]}{b_q(L)^2I[\lambda_x(f, \cdot, \cdot)^2]}\right)^{\frac{1}{4}}.
\]

Despite a formal way for deriving the orders of the AMISE bandwidths has not been derived, a quite plausible conjecture is that for \(q > 1\), \((h, g)_{AMISE} = (O(n^{-1/(4+q)}), O(n^{-1/3}))\) or, equivalently, that \(\beta = \beta_n = O(n^{-\frac{(q-1)}{(5(4+q))}})\). Indeed, this is satisfied for \(q = 1\).

Finally, it is interesting to note that considering \(g = \beta h\), a single bandwidth for the kernel estimator (9) is required, having the optimal bandwidth under this formulation order \(O(n^{-1/(5+q)})\). This coincides with the order of the kernel linear estimator in \(\mathbb{R}^p\), with \(p = \dim(\Omega_q \times \mathbb{R}) = q + 1\).

4.2 Some exact MISE calculations for mixture distributions

Closed expressions for the MISE for the directional and directional-linear estimators can be obtained for some particular distribution models, and they will be derived in this section. In the linear setting, Marron and Wand (1992) obtained a closed expression for the MISE of (1) if the kernel \(K\) is a normal density and the underlying model is a mixture of normal distributions. Specifically, the density of an \(r\)-mixture of normal distributions with respective means \(m_j\) and variances \(\sigma_j^2\), for \(j = 1, \ldots, r\) is given by

\[
f_r(z) = \sum_{j=1}^{r} p_j \phi_{\sigma_j}(z - m_j), \quad \sum_{j=1}^{r} p_j = 1, \quad p_j \geq 0,
\]

where \(p_j, j = 1, \ldots, r\) denote the mixture weights and \(\phi_{\sigma}(z) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{z^2}{2\sigma^2}\right\}\). Marron and Wand (1992) showed that the exact MISE of the linear kernel estimator is

\[
MISE[\hat{f}_g] = \left(2\pi^{\frac{1}{2}} gn\right)^{-1} + \mathbf{p}^T \left[(1 - n^{-1})\Omega_2(g) - 2\Omega_1(g) + \Omega_0(g)\right] \mathbf{p},
\]

where \(\mathbf{p} = (p_1, \ldots, p_r)^T\) and \(\Omega_a(g)\) are matrices with entries \(\Omega_a(g) = (\phi_{\sigma_a}(m_i - m_j))_{ij}\), \(\sigma_a = (a g^2 + \sigma_a^2 + \sigma_j^2)^{\frac{1}{2}}\), for \(a = 0, 1, 2\).

Similar results can be obtained for the directional and directional-linear estimators, when considering mixtures of von Mises for the directional case, and mixtures of von Mises and normals for the
directional-linear scenario (see Figure 2 for some examples). For the directional setting, an r-mixture of von Mises with means μ_j and concentration parameters κ_j, for $j = 1, \ldots, r$ is given by

$$f_r(x) = \sum_{j=1}^r p_j f_{VM}(x; \mu_j, \kappa_j), \quad \sum_{j=1}^r p_j = 1, \quad p_j \geq 0. \quad (11)$$

Consider a random sample X_1, \ldots, X_n, of a directional variable X with density f_r (see Figure 1, right plot). The following result gives a closed expression for the MISE of the directional kernel estimator.

Proposition 6. Let f_r be the density of an r-mixture of directional von Mises (11). The exact MISE of the directional kernel estimator (2), obtained from a random sample of size n, with von Mises kernel $L(r) = e^{-r}$ is

$$\text{MISE} \left[\hat{f}_h \right] = (D_q(h) n)^{-1} + p^T \left[(1 - n^{-1}) \Psi_2(h) - 2 \Psi_1(h) + \Psi_0(h) \right] p,$$

where $p = (p_1, \ldots, p_r)^T$ and $D_q(h) = C_q \left(1/h^2\right)^2 C_q \left(2/h^2\right)^{-1}$. The matrices $\Psi_a(h)$, $a = 0, 1, 2$ have entries:

$$\Psi_0(h) = \left(\frac{C_q(\kappa_i)C_q(\kappa_j)}{C_q(||\kappa_i \mu_i + \kappa_j \mu_j||)} \right)_{ij},$$

$$\Psi_1(h) = C_q(1/h^2) \left(C_q(\kappa_i)C_q(\kappa_j) \int_{\Omega_q} \frac{e^{\kappa_j x^T \mu_j}}{C_q(||x/h + \kappa_i \mu_i||)} \omega_q(dx) \right)_{ij},$$

$$\Psi_2(h) = C_q(1/h^2)^2 \left(C_q(\kappa_i)C_q(\kappa_j) \int_{\Omega_q} \left[C_q(||x/h + \kappa_i \mu_i||)C_q(||x/h + \kappa_j \mu_j||) \right]^{-1} \omega_q(dx) \right)_{ij},$$

where C_q is defined in equation (6).

The matrices involved in (12) are not as simple as the ones for the linear case, due to the convolution properties of the von Mises density. For practical implementation of the exact MISE, it should be noticed that matrices $\Psi_2(h)$ and $\Psi_1(h)$ can be evaluated using numerical integration in q-spherical coordinates. For clarity purposes, constants $C_q(\kappa_i)$ are included inside matrices $\Psi_2(h)$, $\Psi_1(h)$ and $\Psi_0(h)$ but it is computationally more efficient to consider them within the weights, that is, take $p = (p_1 C_q(\kappa_1), \ldots, p_r C_q(\kappa_r))$.

Figure 2: From left to right: circular-linear mixture (15) and corresponding circular and linear marginal densities, respectively. Random samples of size $n = 200$ are drawn.

From Proposition 6, it is easy to derive an analogous result for the case of a r-mixture of directional-linear independent von Mises and normals:

$$f_r(x, z) = \sum_{j=1}^r p_j f_{VM}(x; \mu_j, \kappa_j) \times \phi_{\sigma_j}(z - m_j), \quad \sum_{j=1}^r p_j = 1, \quad p_j \geq 0. \quad (13)$$
Proposition 7. Let \(f_r \) be the density of an \(r \)-mixture of directional-linear independent von Mises and normals densities given in (13). For a random sample of size \(n \), the exact MISE of the directional-linear kernel density estimator (9) with von Mises-normal kernel \(LK(r,t) = e^{-r} \times \phi_1(t) \) is

\[
\text{MISE}\left[\hat{f}_{h,g}\right] = \left(D_q(h)2\pi^{\frac{3}{2}}gn\right)^{-1} \\
+ p^T \left((1-n^{-1})\Psi_2(h) \circ \Omega_2(g) - 2\Psi_1(h) \circ \Omega_1(g) + \Psi_0(h) \circ \Omega_0(g)\right) p,
\]

where \(\circ \) denotes the Hadamard product between matrices and the involved terms are defined as in Proposition 6 and equation (10).

Once the exact MISE and the AMISE for mixtures of von Mises and normals are derived, it is possible to compare these two error criteria. To that end, let consider the following directional mixture

\[
\frac{2}{5}\text{vM}((1,0_q), 2) + \frac{2}{5}\text{vM}((0_q, 1), 10) + \frac{1}{5}\text{vM}((−1, 0_q), 2), \tag{14}
\]

where \(0_q \) represents a vector of \(q \) zeros, and the directional-linear mixture

\[
\frac{2}{5}\mathcal{N}\left(0, \frac{1}{4}\right) \times \text{vM}((1,0_q), 2) + \frac{2}{5}\mathcal{N}(1, 1) \times \text{vM}((0_q, 1), 10) \\
+ \frac{1}{5}\mathcal{N}(2, 1) \times \text{vM}((−1, 0_q), 2). \tag{15}
\]

Figure 3 shows the comparison between the exact and asymptotic MISE for the linear, circular and spherical case. As first noted by Marron and Wand (1992) for the linear estimator, there exist significative differences between these two errors, being the most remarkable one the rapid growth of the AMISE with respect to the MISE for larger values of the bandwidth. This effect is due to the fact that, for a general bandwidth \(h \), \(\lim_{h \to \infty} \text{AMISE}[\hat{f}_h] = \infty \) since \(\text{AMISE}[\hat{f}_h] \) is proportional to \(h^4 \), whereas the MISE level offs at \(\lim_{h \to \infty} \text{MISE}[\hat{f}_h] = \int_{\Omega_q} f(x)^2 \omega_q(dx) \). Besides, for the directional case, this effect seems to be augmented probably because of a scale effect in the bandwidths, in the sense that the support of the directional variables is bounded, which is not the case for the linear ones considered. However, although the AMISE and MISE curves differ significantly, the corresponding optimal bandwidths get closer for increasing sample sizes.

Figure 4 contains the contourplots of the exact and asymptotic MISE for the circular-linear and spherical-linear cases. The conclusions are more or less the same as for Figure 3: the asymptotic
MISE grows rather quickly than the exact MISE for large values of h or g. On the other hand, the contour lines of both surfaces are quite close for small values of the bandwidths and the optimal bandwidths also get closer for larger sample sizes.

Figure 4: Upper plot, from left to right: exact MISE versus AMISE for the circular-linear mixture (15) for $n = 100$ and $n = 1000$. Lower plot, from left to right: spherical-linear mixture (15) for $n = 100$ and $n = 1000$. The solid curves are for the MISE, where the dashed ones are for the AMISE. The pairs of bandwidths that minimizes each surface error are denoted by $(h,g)_{\text{MISE}}$ and by $(h,g)_{\text{AMISE}}$.

As an immediate application of Propositions 6 and 7, a bootstrap version of the MISE for the directional and directional-linear estimators can be derived. The bootstrap MISE is an estimator of the true MISE obtained by considering a smooth bootstrap resampling scheme, which will be briefly detailed. In the linear case, the bootstrap MISE is given by

$$\text{MISE}_{gP}^* \left[\hat{f}_g \right] = \mathbb{E}^* \left[\int_{\mathbb{R}} \left(\hat{f}_g^* (z) - \hat{f}_{gP} (z) \right)^2 dz \right],$$

where $\hat{f}_g^* (z) = \frac{1}{ng} \sum_{i=1}^n K \left(\frac{z - Z_i^*}{g} \right)$, being the sample Z_1^*, \ldots, Z_n^* distributed as \hat{f}_{gP}. In this case, g_P is a pilot bandwidth and the expectation \mathbb{E}^* is taken with respect to the density estimator \hat{f}_{gP}. For the linear case, Cao (1993) derived an exact closed expression for $\text{MISE}_{gP}^* \left[\hat{f}_g \right]$ that actually
avoids the needing of resampling and obtained a bandwidth that minimizes the bootstrap MISE by
previously computing a suitable pilot bandwidth g_P.

The following two results show the bootstrap MISE expressions for the estimators (2) and (9) in the
case where the kernels are von Mises and normals. As in the linear case, no resampling is needed for
computing the bootstrap MISE. These bootstrap versions of the error provide an overall summary
of the estimator behaviour, with no restriction on the underlying densities, as long as von Mises and
normal kernels are considered. In addition, the following results could be used to derive a bandwidth
of the estimator behaviour, with no restriction on the underlying densities, as long as von Mises and
normal kernels are considered. In addition, the following results could be used to derive a bandwidth
selector, but it will depend on the selection of pilot bandwidths for both components, which is not
an easy problem.

Corollary 3. The bootstrap MISE for directional data, given a sample of length n, the von Mises
kernel $L(r) = e^{-r}$ and a pilot bandwidth h_P, is:

$$
\text{MISE}_{h_P}^* \left[\hat{f}_h \right] = (D_q(h)n)^{-1} + n^{-2}1^T \left[(1 - n^{-1})\Psi^*_2(h) - 2\Psi^*_1(h) + \Psi^*_0(h) \right] 1,
$$
where the matrices $\Psi^*_a(h)$, $a = 0, 1, 2$ have the same entries as $\Psi_a(h)$ but with $\kappa_i = 1/h_P^2$ and
$\mu_i = X_i$ for $i = 1, \ldots, n$.

Remark 3. The particular case where $q = 1$ and $h_P = h$, Corollary 3 corresponds to the expression
of the bootstrap MISE given in Di Marzio et al. (2011).

Corollary 4. The bootstrap MISE for directional-linear data, given a sample of length n, the von
Mises-normal kernel $L K(r, t) = e^{-r} \times \phi_1(t)$ and a pair of pilot bandwidths (h_P, g_P), is:

$$
\text{MISE}_{h_P,g_P}^* \left[\hat{f}_{h,g} \right] = \left(D_q(h)2\pi^{\frac{1}{2}}g_n \right)^{-1}
+ n^{-2}1^T \left[(1 - n^{-1})\Psi^*_2(h) \circ \Omega^*_2(g) - 2\Psi^*_1(h) \circ \Omega^*_1(g) + \Psi^*_0(h) \circ \Omega^*_0(g) \right] 1,
$$
where the matrices $\Psi^*_a(h)$ and $\Omega^*_a(g)$, $a = 0, 1, 2$ have the same entries as $\Psi_a(h)$ and $\Omega_a(g)$ but with
$\kappa_i = 1/h_P^2$, $\mu_i = X_i$, $m_i = Z_i$ and $\sigma_i = g_P$ for $i = 1, \ldots, n$.

5 Conclusions

A kernel density estimator for directional-linear data is proposed. Bias, variance and asymptotic
normality of the estimator are derived, as well as expressions for the MISE and AMISE. For the
particular case of mixtures of von Mises, for directional data, and mixtures of von Mises and
normals, in the directional-linear case, the exact expressions for the MISE are obtained, which enables
the comparison with their asymptotic versions.

Undoubtedly, one of the main issues in kernel estimation is the appropriate selection of the band-
width parameter. Although an optimal pair of bandwidths in the AMISE sense has been derived,
 Further research must be done in order to obtain a bandwidth selection method that could be
applied in practice. This problem extends somehow to the directional setting, where (likelihood and
least squares) cross-validation methods seem to be the available procedures. However, the exact
MISE computations open a route to develop bandwidth selectors, for instance, following the ideas
in Oliveira et al. (2012). In fact, a bootstrap version for the MISE when assuming that the under-
lying mode is a mixture allows for the derivation of bootstrap bandwidths, as in Cao (1993) for the
linear case.

A straightforward extension of the proposed estimator can be found in the directional-multidimen-
sional setting, considering a multidimensional random variable. In this case, the linear part of the
estimator should be properly adapted including a multidimensional kernel and possibly a band-
width matrix.
Acknowledgements

The authors acknowledge the support of Project MTM2008–03010, from the Spanish Ministry of Science and Innovation, Project 10MDS207015PR from Dirección Xeral de I+D, Xunta de Galicia and IAP network StUdyS, from Belgian Science Policy. Work of E. García-Portugués has been supported by FPU grant AP2010–0957 from the Spanish Ministry of Education. The authors also acknowledge the suggestions by two anonymous referees that helped improving this paper.

A Some technical lemmas

Some technical lemmas that will be used along the proofs of the main results are introduced in this section. To begin with, Lemma 1 establishes the asymptotic behaviour of $\lambda_{h,q}(L)$ in (3). With the aim of clarifying the computation of the integrals in the proofs of the main results, Lemma 2 details a change of variables in Ω_q, whereas Lemma 3 is used to simplify integrals in Ω_q. Lemma 4 shows some of the constants introduced along the work for the case where the kernel is von Mises and, finally, Lemma 5 states the Lemma 2 of Zhao and Wu (2001).

Detailed proofs of these lemmas can be found in Appendix C. This appendix also includes a rebuild of the proof of the Lemma 5, using the same techniques as for the other results, which presents some differences from the original proof.

Lemma 1. Under condition D2, the limit of $\lambda_{h,q}(L) = \omega_{q-1} \int_0^{2h^{-2}} L(r) r^{\frac{q}{2}-1} (2 - r h^2)^{\frac{q}{2}-1} dr$, when $h \to 0$, is

$$\lim_{h \to 0} \lambda_{h,q}(L) = \lambda_q(L) = 2^{\frac{q}{2}-1} \omega_{q-1} \int_0^{\infty} L(r) r^{\frac{q}{2}-1} dr,$$

where ω_q is the surface area of Ω_q, for $q \geq 1$.

Lemma 2 (A change of variables in Ω_q). Let f be a function defined in Ω_q and $y \in \Omega_q$ a fixed point. The integral $\int_{\Omega_q} f(x) \omega_q(dx)$ can be expressed in one of the following equivalent integrals:

$$\int_{\Omega_q} f(x) \omega_q(dx) = \int_{-1}^{1} \int_{\Omega_q-1} f\left(t, (1 - t^2)^{\frac{q}{2}} \xi\right) (1 - t^2)^{\frac{q}{2}-1} \omega_{q-1}(d\xi) dt,$$

$$\int_{\Omega_q} f(x) \omega_q(dx) = \int_{-1}^{1} \int_{\Omega_q-1} f\left(ty + (1 - t^2)^{\frac{q}{2}} b_y \xi\right) (1 - t^2)^{\frac{q}{2}-1} \omega_{q-1}(d\xi) dt,$$

where $B_y = (b_1, \ldots, b_q)_{(q+1) \times q}$ is the semi-orthonormal matrix $(B_y^T B_y = I_q$ and $B_y B_y^T = I_{q+1} - yy^T$) resulting from the completion of y to the orthonormal basis $\{y, b_1, \ldots, b_q\}$.

Lemma 3. Consider $x \in \Omega_q$, a point in the q-dimensional sphere with entries (x_1, \ldots, x_{q+1}). For all $i, j = 1, \ldots, q + 1$, it holds that

$$\int_{\Omega_q} x_i \omega_q(dx) = 0, \quad \int_{\Omega_q} x_i x_j \omega_q(dx) = \begin{cases} 0, & i \neq j, \\ \omega_q, & i = j, \end{cases}$$

where ω_q is the surface area of Ω_q, for $q \geq 1$.

Lemma 4. For the von Mises kernel, i.e., $L(r) = e^{-r}, r \geq 0$,

$$c_{h,q}(L) = e^{1/h^2} h^{q-1} (2\pi)^{\frac{q+1}{2}} I_{q-1}(1/h^2), \quad \lambda_q(L) = (2\pi)^{\frac{q}{2}}, \quad b_q(L) = \frac{q}{2}, \quad d_q(L) = 2^{-\frac{q}{2}}.$$

Lemma 5 (Lemma 2 in Zhao and Wu (2001)). Under the conditions D1–D3, the expected value of the directional kernel density estimator in a point $x \in \Omega_q$, is

$$\mathbb{E} \left[\hat{f}_h(x) \right] = f(x) + b_q(L) \Psi(f, x) h^2 + a(h^2),$$

where $\Psi(f, x)$ and $b_q(L)$ are given in (4) and (5), respectively.
B Proofs of the main results

Proof of Proposition 1. The variance can be decomposed in two terms as follows:

\[\text{Var} \left[\hat{f}_h(x) \right] = \frac{c_{h,q}(L)^2}{n} \mathbb{E} \left[L^2 \left(\frac{1 - x^T X}{h^2} \right) \right] - n^{-1} \mathbb{E} \left[\hat{f}_h(x) \right]^2, \]

(19)

where the calculus of the first term is quite similar to the calculus of the bias given in Lemma 5 and the second is given by the same result.

Therefore, analogously to the equation (47) of Lemma 5, the first addend can be expressed as

\[\frac{c_{h,q}(L)^2}{n} h^q \int_0^{2h^{-2}} L^2(r) r^{\frac{q}{2} - 1}(2 - h^2 r)^{\frac{q}{2} - 1} \int_{\Omega_q-1} f(x + \alpha_{x,\xi}) \omega_{q-1}(d\xi) \, dr, \]

(20)

just replacing the kernel \(L \) by the squared kernel \(L^2 \) and where \(\alpha_{x,\xi} = -r h^2 x + h [r(2 - h^2 r)]^\frac{1}{2} B_x \xi \in \Omega_q \) with \(B_x \) defined as in Lemma 2. By condition D1, the Taylor expansion of \(f \) at \(x \) is

\[f(x + \alpha_{x,\xi}) - f(x) = \alpha_{x,\xi}^T \nabla f(x) + \frac{1}{2} \alpha_{x,\xi}^T \mathcal{H} f(x) \alpha_{x,\xi} + o(\alpha_{x,\xi}^T \alpha_{x,\xi}). \]

Hence,

\[
\begin{align*}
(20) &= \frac{c_{h,q}(L)^2}{n} h^q \int_0^{2h^{-2}} L^2(r) r^{\frac{q}{2} - 1}(2 - h^2 r)^{\frac{q}{2} - 1} \left\{ f(x) - r h^2 \omega_{q-1} x^T \nabla f(x) \\
&\quad + \frac{r^2 h^4 \omega_{q-1}}{2} x^T \mathcal{H} f(x) + \frac{h^2 r (2 - h^2 r) \omega_{q-1}}{2q} (\nabla^2 f(x) - x^T \mathcal{H} f(x) x) + r \omega_{q-1} o(h^2) \right\} \, dr \\
&= \frac{c_{h,q}(L)}{n} \left\{ \omega_{q-1} \left[\int_0^{2h^{-2}} c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2} - 1}(2 - h^2 r)^{\frac{q}{2} - 1} \, dr \right] f(x) \\
- h^2 \omega_{q-1} \left[\int_0^{2h^{-2}} c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2} + 1}(2 - h^2 r)^{\frac{q}{2} - 1} \, dr \right] x^T \nabla f(x) \\
+ \frac{h^4 \omega_{q-1}}{2} \left[\int_0^{2h^{-2}} c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2} + 1}(2 - h^2 r)^{\frac{q}{2} - 1} \, dr \right] x^T \mathcal{H} f(x) x \\
+ \frac{h^2 \omega_{q-1}}{2} \left[\int_0^{2h^{-2}} c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2}}(2 - h^2 r)^{\frac{q}{2} - 1} \, dr \right] q^{-1} (\nabla^2 f(x) - x^T \mathcal{H} f(x) x) \\
+ \omega_{q-1} \left[\int_0^{2h^{-2}} c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2} - 1}(2 - h^2 r)^{\frac{q}{2} - 1} \, dr \right] o(h^2) \right\}. \end{align*}
\]

(21)

The integrals in (21) can be simplified. For that purpose, define for \(h > 0 \) and indices \(i = -1, 0, 1, \) \(j = 0, 1 \) the following function:

\[\phi_{h,i,j}(r) = c_{h,q}(L) h^q L^2(r) r^{\frac{q}{2} + i}(2 - h^2 r)^{\frac{q}{2} - j} \mathbb{I}_{[0,2h^{-2}]}(r), \quad r \in [0, \infty). \]

As \(n \to \infty \), the bandwidth \(h \to 0 \) and the limit of \(\phi_{h,i,j} \) is given by

\[\phi_{i,j}(r) = \lim_{h \to 0} \phi_{h,i,j}(r) = \lambda_q(L)^{-1} L^2(r) r^{\frac{q}{2} + i} 2^{\frac{q}{2} - j} \mathbb{I}_{[0,\infty]}(r). \]
Applying the Dominated Convergence Theorem (DCT) and the same techniques of the proof of Lemma 1 (see Remark 5), it can be seen that:

\[
\lim_{h \to 0} \int_0^\infty \phi_{h,i,j}(r) \, dr = \lambda_q(L)^{-1} 2^{\frac{2}{r^2 + i} - j} \int_0^\infty \lambda_q(L) L^2(r) \, dr = c_{h,q}(L) \left(d_q(L) f(x) + e_q(L) h^2 \Psi(f,x) \right) + o((nh^q)^{-1}).
\]

(16)

where \(e_q(L) = \int_0^\infty L^2(r) \, dr / \int_0^\infty L(r) \, dr \). Then, taking into account that \(\int_0^\infty \varphi_{h,i,j}(r) \, dr = \int_0^\infty \psi_{i,j}(r) \, dr (1 + o(1)) \) the integrals in brackets of (21) can be replaced, obtaining that

\[
(21) = \frac{c_{h,q}(L)}{n} \left[d_q(L) f(x) + e_q(L) h^2 \Psi(f,x) \right] + o((nh^q)^{-1}).
\]

(22)

The second term in (19) is given by

\[
\mathbb{E} \left[\hat{f}_h(x) \right]^2 = \left[f(x) + b_q(L) h^2 \Psi(f,x) \right]^2 + o(h^2).
\]

(23)

The result holds from (22) and (23):

\[
\text{Var} \left[\hat{f}_h(x) \right] = \frac{c_{h,q}(L)}{n} \left[d_q(L) f(x) + e_q(L) h^2 \Psi(f,x) \right] - \frac{1}{n} \left[f(x) + b_q(L) h^2 \Psi(f,x) \right]^2 + o((nh^q)^{-1}),
\]

which can be simplified into

\[
\text{Var} \left[\hat{f}_h(x) \right] = \frac{c_{h,q}(L)}{n} d_q(L) f(x) + o((nh^q)^{-1}).
\]

\[
\square
\]

Proof of Proposition 2. Denote by \(\text{Bias}[\hat{f}_{h,q}(x,z)] = \mathbb{E}[\hat{f}_{h,q}(x,z)] - f(x,z) \) the bias of the kernel estimator. Applying the change of variables stated in Lemma 2 and then an ordinary change of variables given by \(r = \frac{1-x^T X}{h^2} \), the bias results in:

\[
\text{Bias} \left[\hat{f}_{h,q}(x,z) \right] = \frac{c_{h,q}(L)}{g} \mathbb{E} \left[L K \left(\frac{1-x^T X}{h^2}, z - \frac{t}{g} \right) \right] - f(x,z)
\]

\[
= \frac{c_{h,q}(L)}{g} \int_{\Omega_q} \int_\mathbb{R} \left(\frac{1-x^T y}{h^2}, z - \frac{t}{g} \right) \left(f(y,t) - f(x,z) \right) dt \omega_q(dy)
\]

\[
= \frac{c_{h,q}(L)}{g} \int_{\Omega_q} \int_\mathbb{R} \left(\frac{1-x^T y}{h^2}, v \right) \left(f(y,z - gv) - f(x,z) \right) dv \omega_q(dy)
\]

\[
= \frac{c_{h,q}(L)}{g} \int_{\Omega_q} \int_\mathbb{R} \left(\frac{1-u}{h^2}, v \right) \left(f \left(u x + (1 - u^2)^{\frac{1}{2}} B_x \xi, z - gv \right) - f(x,z) \right)
\]

\[
\times (1 - u^2)^{\frac{1}{2} - 1} d\omega_q^{-1}(d\xi) du
\]

\[
= \frac{c_{h,q}(L) h^3}{g} \int_0^{2h^{-2}} \int_{\Omega_q} \int_\mathbb{R} L K \left(r, v \right) \left(f \left(\frac{(x,z) + \alpha_x z \xi}{h^2} \right) - f(x,z) \right) d\omega_q^{-1}(d\xi) dv
\]

\[
\times r^{\frac{1}{2} - 1} (2 - h^2 r)^{\frac{1}{2} - 1} dr
\]

\[
= \frac{c_{h,q}(L) h^3}{g} \int_0^{2h^{-2}} L \left(\frac{r^{\frac{1}{2} - 1} (2 - h^2 r)^{\frac{1}{2} - 1} \int_\mathbb{R} K(v)}{\omega_q^{-1}(d\xi)} dv dr,
\]

(24)
where $\alpha_{x,z} = (-rh^2x + h [r(2 - h^2r)]^{\frac{1}{2}} B_x \xi, -gv) \in \Omega_q \times \mathbb{R}$. The computation of the last integral in (24) is achieved using the multivariate Taylor expansion of f at (x, z), in virtue of condition DL1:

$$f((x, z) + \alpha_{x,z}) - f(x, z) = \alpha_{x,z}^T \nabla f(x, z) + \frac{1}{2} \alpha_{x,z}^T \mathcal{H} f(x, z) \alpha_{x,z} + o\left(\alpha_{x,z}^T \alpha_{x,z}\right).$$

Let denote by $\gamma_{x,z} = -rh^2 x + h [r(2 - h^2r)]^{\frac{1}{2}} B_x \xi$. Bearing in mind the directional and linear components of the gradient $\nabla f(x, z)$ and the Hessian matrix $\mathcal{H} f(x, z)$, it follows

$$f((x, z) + \alpha_{x,z}) - f(x, z) = [\gamma_{x,z}^T \nabla f(x, z) - gv \nabla_z f(x, z)]$$

$$+ \frac{1}{2} \left[\gamma_{x,z}^T \mathcal{H} f(x, z) \gamma_{x,z} - 2gv \gamma_{x,z}^T \mathcal{H} f(x, z) + g^2 v^2 \mathcal{H} f(x, z)\right]$$

$$+ o\left(\alpha_{x,z}^T \alpha_{x,z}\right).$$

Then, the calculus of the integral $\int_{\Omega_q-1} (f((x, z) + \alpha_{x,z}) - f(x, z)) \omega_{q-1}(d\xi)$ can be split into six addends. Second and sixth terms are computed straightforward:

$$\int_{\Omega_q-1} -gv \nabla_z f(x, z) \omega_{q-1}(d\xi) = -\omega_{q-1} gv \nabla_z f(x, z),$$

(25)

$$\int_{\Omega_q-1} g^2 v^2 \mathcal{H} f(x, z) \omega_{q-1}(d\xi) = \omega_{q-1} g^2 v^2 \mathcal{H} f(x, z).$$

(26)

For the first and fourth addends, by Lemma 3, the integration of ξ_i with respect to ξ is zero:

$$\int_{\Omega_q-1} \gamma_{x,z}^T \nabla f(x, z) \omega_{q-1}(d\xi) = -\omega_{q-1} h^2 r x^T \nabla f(x, z),$$

(27)

$$\int_{\Omega_q-1} -2gv \gamma_{x,z} \mathcal{H} f(x, z) \omega_{q-1}(d\xi) = 2gv \omega_{q-1} h^2 r x^T \mathcal{H} f(x, z).$$

(28)

Finally, in the fifth term, the integrand can be decomposed as follows:

$$\gamma_{x,z}^T \mathcal{H} f(x, z) \gamma_{x,z} = h^2 r^2 x^T \mathcal{H} f(x, z) x + h^2 r (2 - h^2r) \sum_{i,j=1}^q \xi_i \xi_j b_i^T \mathcal{H} f(x, z) b_j$$

$$- 2 h^3 r^2 (2 - h^2r)^2 \sum_{i=1}^q \xi_i x^T \mathcal{H} f(x, z) b_i.$$
Note also that the order of $\alpha_{x,z}^{T} \alpha_{x,z}$ is easily computed:

$$o(\alpha_{x,z}^{T} \alpha_{x,z}) = o(h^2) + o(g^2).$$ \hfill (30)

Combining (25)–(30), and using condition $DL2$ on the kernel K:

$$c_{h,q}(L)h^q \int_0^{2h^{-2}} L(r) r^{\frac{q}{2}-1}(2-h^2r) \frac{q}{2} \int K(v) \left\{ -h^2r x^T \nabla_{x}f(x,z) \\
+ \frac{1}{2} \left[h^2r x^T \nabla_{x}f(x,z) + h^2r(2-h^2r)(\nabla_{x}^2f(x,z) - x^T \nabla_{x}f(x,z)x) \right] \\
+ g^2 H_z f(x,z) + r o(h^2) + o(g^2) \right\} dv dr$$

$$= \omega_{q-1} c_{h,q}(L)h^q \int_0^{2h^{-2}} L(r) r^{\frac{q}{2}-1}(2-h^2r) \frac{q}{2} \int K(v) \left\{ -h^2r x^T \nabla_{x}f(x,z) \\
+ \frac{1}{2} \left[h^2r x^T \nabla_{x}f(x,z) + h^2r(2-h^2r)(\nabla_{x}^2f(x,z) - x^T \nabla_{x}f(x,z)x) \right] \\
+ g^2 H_z f(x,z) + r o(h^2) + o(g^2) \right\} dv dr$$

$$= \omega_{q-1} c_{h,q}(L)h^q \int_0^{2h^{-2}} L(r) r^{\frac{q}{2}-1}(2-h^2r) \frac{q}{2} \int K(v) \left\{ -h^2r x^T \nabla_{x}f(x,z) \\
+ \frac{1}{2} \left[h^2r x^T \nabla_{x}f(x,z) + h^2r(2-h^2r)(\nabla_{x}^2f(x,z) - x^T \nabla_{x}f(x,z)x) \right] \\
+ g^2 H_z f(x,z) + r o(h^2) + o(g^2) \right\} dv dr$$

For $h > 0$, $i = -1, 0, 1$, $j = 0, 1$, consider the following functions

$$\varphi_{h,i,j}(r) = c_{h,q}(L)h^q L(r) r^{\frac{q}{2}+i}(2-h^2r) \frac{q}{2} \int_0^{2h^{-2}} (r) \quad r \in [0, \infty).$$

When $n \to \infty$, $h \to 0$ and the limit of $\varphi_{h,i,j}$ is given by

$$\varphi_{i,j}(r) = \lim_{h \to 0} \varphi_{h,i,j}(r) = \lambda_q(L)^{-1} L(r) r^{\frac{q}{2}+i} 2^{\frac{q}{2}+i} \int_0^{2h^{-2}} (r).$$

Applying Remark 5 of Lemma 1,

$$\lim_{h \to 0} \int_0^{\infty} \varphi_{i,j,h}(r) dr = \lambda_q(L)^{-1} 2^{\frac{q}{2}+i} \int_0^{\infty} L(r) r^{\frac{q}{2}+i} dr$$

Then, the six integrals in (31) can be written using $\int_0^{\infty} \varphi_{i,j,h}(r) dr = \int_0^{\infty} \varphi_{i,j}(r) dr (1 + o(1))$. Replacing this in (31) leads to

$$= -h^2 \omega_{q-1} \left[\frac{b_2(L)}{\omega_{q-1}} + o(1) \right] x^T \nabla_{x}f(x,z)$$

$$+ \frac{h^4 \omega_{q-1}}{2} \left[\frac{b_2(L)}{\omega_{q-1}} + o(1) \right] x^T \nabla_{x}f(x,z)x$$

$$+ \frac{h^2 \omega_{q-1}}{2} \left[\frac{b_2(L)}{\omega_{q-1}} + o(1) \right] q^{-1} (\nabla_{x}^2f(x,z) - x^T \nabla_{x}f(x,z)x)$$

$$+ \frac{\omega_{q-1}}{2} \left[\frac{1}{\omega_{q-1}} + o(1) \right] g^2 H_z f(x,z) \mu_2(K)$$
Define the following functions, for proof of Proposition 3.

Analogous to (24), in the previous result.

Applying the multivariate Taylor expansion of \(\omega = h,q (33) = h,h_q (\omega_2 f(x,z) + g^2 H_z f(x,z)\mu_2(K) + o(h^2 + g^2). \)

Proof of Proposition 3. The variance can be decomposed as

\[
\text{Var} \left[\hat{f}_{h,q}(x,z) \right] = \frac{c_{h,q}(L)^2}{ng} \mathbb{E} \left[LK^2 \left(\frac{1 - x^T X}{h^2}, z - Z \right) \right] - n^{-1} \mathbb{E} \left[\hat{f}_{h,q}(x,z) \right]^2, \tag{32}
\]

where the calculus of the first term is quite similar to the calculus of the bias and the second is given in the previous result.

Analogous to (24),

\[
\frac{c_{h,q}(L)^2}{ng} \mathbb{E} \left[LK^2 \left(\frac{1 - x^T X}{h^2}, z - Z \right) \right] = \frac{c_{h,q}(L)^2}{ng} h^q \int_0^{2h^2} L^2(r) r^{q-1}(2 - h^2 r)^{q-1} \int_{\mathbb{R}} K^2(v) \times \int_{\Omega_{q-1}} f((x,z) + \alpha_{x,z,\xi}) \omega_{q-1}(d\xi) dv dr, \tag{33}
\]

just replacing \(LK \) by \(LK^2 \). Then, using that \(K^2 \) is a symmetric function around zero:

\[
\int_{\mathbb{R}} K^2(v) dv = R(K), \int_{\mathbb{R}} vK^2(v) dv = 0, \int_{\mathbb{R}} v^2 K^2(v) dv = \mu_2(K^2), \tag{34}
\]

Applying the multivariate Taylor expansion of \(f \) at \((x,z)\) and by (34), equation (33) results in

\[
(33) = \omega_{q-1} \frac{c_{h,q}(L)^2}{ng} h^q \int_0^{2h^2} L^2(r) r^{q-1}(2 - h^2 r)^{q-1} \int_{\mathbb{R}} K^2(v) \left\{ f((x,z) - h^2 r x^T \nabla_x f(x,z) - \frac{1}{2} \left[h^4 r^2 x^T \mathbf{H}_x f(x,z) + h^2 r (2 - h^2 r) q^{-1} (\nabla_x^2 f(x,z) - x^T \mathbf{H}_x f(x,z)) \right] + g^2 v^2/2 \mathbf{H}_z f(x,z) + r o(h^2) + v^2 o(g^2) \right\} dv dr
\]

\[
(34) = \omega_{q-1} \frac{c_{h,q}(L)^2}{ng} h^q \int_0^{2h^2} L^2(r) r^{q-1}(2 - h^2 r)^{q-1} \left\{ R(K) f((x,z) - h^2 r x^T \nabla_x f(x,z) + R(K) h^2 r x^T \nabla_x f(x,z) + \mu_2(K^2) g^2/2 \mathbf{H}_z f(x,z) + r o(h^2) + \mu_2(K^2) o(g^2) \right\} dr. \tag{35}
\]

Define the following functions, for \(h > 0, i = -1, 0, 1 \) and \(j = 0, 1: \)

\[
\phi_{h,i,j}(r) = c_{h,q}(L) h^q L^2(r) r^{q-i}(2 - h^2 r)^{q-j} \mathbb{1}_{[0,2h^2]}(r), \quad r \in [0, \infty).
\]

When \(n \to \infty, h \to 0 \) and the limit of \(\phi_{h,i,j} \) is given by

\[
\phi_{i,j}(r) = \lim_{h \to 0} \phi_{h,i,j}(r) = \lambda_q(L)^{-1} L^2(r) r^{q+i} 2^{q-j} \mathbb{1}_{[0,\infty]}(r).
\]

19
Applying the same techniques of the proof of Lemma 1 to the functions \(\phi_{h,i,j} \) with the different values of \(i, j \) and \(L^2 \) instead of \(L \), and using the relation (3), it follows:

\[
\lim_{h \to 0} \int_0^\infty \phi_{h,i,j}(r) \, dr = \lambda_q(L)^{-1} 2^{2-j} \int_0^\infty L^2(r) r^{2+i} \, dr \quad (16)
\]

\[
= \begin{cases}
\frac{2^{-i-j} d_q(L)}{\omega_q^{-1}}, & i = -1, \\
\frac{2^{-i-j} e_q(L)}{\omega_q}, & i = 0, \\
\frac{2^{-i-j} \int_0^\infty L^2(r) r^{2+i} \, dr}{\omega_q}, & i = 1,
\end{cases}
\]

where \(e_q(L) = \int_0^\infty L^2(r) r^{2-i} \, dr / \int_0^\infty L(r) r^{2-i} \, dr \). So, for the terms between square brackets of (35), \(\int_0^\infty \phi_{h,i,j}(r) \, dr = \int_0^\infty \phi_{i,j}(r) \, dr (1 + o(1)) \). Replacing this leads to

\[
(35) = \frac{c_h q(L)}{ng} \left\{ R(K) \omega_q - 1 \left[\frac{d_q(L)}{\omega_q - 1} + o(1) \right] f(x, z) - R(K) h^2 \omega_q - 1 \left[\frac{e_q(L)}{\omega_q - 1} + o(1) \right] x^T \nabla x f(x, z) \right. \\
\left. + \frac{R(K) h^2 \omega_q - 1}{2} \left[\frac{1}{\omega_q - 1} - \int_0^\infty L^2(r) r^{2+i} \, dr + o(1) \right] x^T H_x f(x, z) \right. \\
\left. + \frac{R(K) h^2 \omega_q - 1}{2} \left[\frac{2 e_q(L)}{\omega_q - 1} + o(1) \right] q^{-1} (\nabla^2 x f(x, z) - x^T H_x f(x, z) x) \right. \\
\left. + \frac{\mu_2 (K^2) g^2 \omega_q - 1}{2} \left[\frac{d_q(L)}{\omega_q - 1} + o(1) \right] H_x f(x, z) \right. \\
\left. + \omega_q - 1 \left[\frac{e_q(L)}{\omega_q - 1} + o(1) \right] o(h^2) + \omega_q - 1 \left[\frac{d_q(L)}{\omega_q - 1} + o(1) \right] o(g^2) \right\} \\
= \frac{c_h q(L)}{ng} \left[R(K) d_q(L) f(x, z) + R(K) e_q(L) h^2 \Psi_x f(x, z) + \mu_2 (K^2) d_q(L) g^2 \frac{1}{2} H_x f(x, z) \right] \\
+ o((nh^2 g)^{-1}) . \quad (36)
\]

The second term of (32) is

\[
\mathbb{E} \left[\hat{f}_{h,g}(x, z) \right]^2 = \left[f(x, z) + b_q(L) h^2 \Psi_x f(x, z) + \frac{g^2}{2} \mu_2 (K) H_x f(x, z) \right]^2 + o(h^2 + g^2) . \quad (37)
\]

Joining (36) and (37),

\[
\text{Var} \left[\hat{f}_{h,g}(x, z) \right] = \frac{c_h q(L)}{ng} \left[R(K) d_q(L) f(x, z) + R(K) e_q(L) h^2 \Psi_x f(x, z) \right. \\
\left. \quad + \mu_2 (K^2) d_q(L) g^2 \frac{1}{2} H_x f(x, z) \right] \\
\left. - \frac{1}{n} \left[f(x, z) + b_q(L) h^2 \Psi_x f(x, z) + \frac{g^2}{2} \mu_2 (K) H_x f(x, z) \right]^2 \right] \\
+ o((nh^2 g)^{-1}) + o(n^{-1}(h^2 + g^2)) ,
\]

which can be simplified into

\[
\text{Var} \left[\hat{f}_{h,g}(x, z) \right] = \frac{c_h q(L)}{ng} R(K) d_q(L) f(x, z) + o((nh^2 g)^{-1}) .
\]

Proof of Theorem 1. Let \(\{(X_i, Z_i)\}_{i=1}^n \) be a random sample from the directional-linear random variable \((X, Z) \), whose support is contained in \(\Omega_q \times \mathbb{R} \). The directional kernel estimator in a fixed point
\((x, z) \in \Omega_q \times \mathbb{R}\) can be written as

\[
\hat{f}_{h_n, g_n}(x, z) = \frac{1}{n} \sum_{i=1}^{n} V_{n,i}, \quad V_{n,i} = \frac{c_{h_n, q}(L)}{g_n} LK \left(\frac{1 - x^T X_i}{h_n^2}, \frac{z - Z_i}{g_n} \right),
\]

where notation \(h_n\) and \(g_n\) for the bandwidths remarks their dependence on the sample size \(n\) given by condition DL3.

As \(\{(X_i, Z_i)\}_{i=1}^{n}\) is a collection of independent and identically distributed (iid) copies of \((X, Z)\), then \(\{V_{n,i}\}_{i=1}^{n}\) is also an iid collection of copies of the random variable \(V_n = LK \left(\frac{1 - x^T X}{h_n^2}, \frac{z - Z}{g_n} \right)\). Then, the Lyapunov’s condition ensures that, if for some \(\delta > 0\) the next condition holds:

\[
\lim_{n \to \infty} \frac{\mathbb{E} \left[|V_n - \mathbb{E} [V_n]|^{2+\delta} \right]}{n^{\frac{\delta}{2}} \mathbb{var} [V_n]^{1+\frac{\delta}{2}}} = 0,
\]

then the following central limit theorem is valid:

\[
\sqrt{n} \frac{V_n - \mathbb{E} [V_n]}{\sqrt{\mathbb{var} [V_n]}} \xrightarrow{d} \mathcal{N}(0, 1),
\]

where \(\bar{V}_n = \frac{1}{n} \sum_{i=1}^{n} V_{n,i}\). This condition will be proved for \(V_n = LK \left(\frac{1 - x^T X}{h_n^2}, \frac{z - Z}{g_n} \right)\).

First of all, the order of \(\mathbb{E} \left[|V_n|^{2+\delta} \right]\) is

\[
\mathbb{E} \left[|V_n|^{2+\delta} \right] = \int_{\Omega_q \times \mathbb{R}} \left| \frac{c_{h_n, q}(L)}{g_n} LK \left(\frac{1 - x^T y}{h_n^2}, \frac{z - t}{g_n} \right) \right|^{2+\delta} f(y, t) \, dt \, dy
\]

\[
= \left(\frac{c_{h_n, q}(L)}{g_n} \right)^{2+\delta} \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} \left(\frac{1 - x^T y}{h_n^2}, \frac{z - t}{g_n} \right) f(y, t) \, dt \, dy
\]

\[
= \left(\frac{c_{h_n, q}(L)}{g_n} \right)^{2+\delta} \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} (r, v) f((x, z) + \alpha_{x,z}\xi) \, dv \omega_q-1(d\xi)
\]

\[
\times r^{\frac{\delta}{2}-1} (2 - h_n^2 r)^{\frac{\delta}{2}-1} dr
\]

\[
= \left(\frac{c_{h_n, q}(L)}{g_n} \right)^{2+\delta} \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} (r, v) \, dv \omega_q-1(d\xi) r^{\frac{\delta}{2}-1} (2 - h_n^2 r)^{\frac{\delta}{2}-1} dr
\]

\[
\times \left[f(x, z) + o(h_n^2 + g_n^2) \right]
\]

\[
\sim \left(\frac{c_{h_n, q}(L)}{g_n} \right)^{2+\delta} \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} (r, v) \, dv \omega_q-1(d\xi) r^{\frac{\delta}{2}-1} \times f(x, z)
\]

\[
\sim \frac{\lambda_q(L)^{-1} h_n^{-\frac{\delta}{2}}}{g_n} \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} (r, v) r^{\frac{\delta}{2}-1} \, dv \, dr \times f(x, z)
\]

\[
= (h_n^q g_n)^{-(1+\delta)} \times \int_{\Omega_q \times \mathbb{R}} LK^{2+\delta} (r, v) r^{\frac{\delta}{2}-1} \, dv \, dr \times f(x, z)
\]

\[
= \mathcal{O} \left((h_n^q g_n)^{-(1+\delta)} \right).
\]

On the other hand, by Proposition 3, the variance of \(V_n\) has order

\[
\mathbb{Var} [V_n] = \frac{c_{h_n, q}(L)}{g_n} R(K) d_q(L) f(x, z) + o((h_n^q g_n)^{-1}) \sim \frac{R(K)d_q(L)f(x, z)}{\lambda_q(L)} \frac{1}{h_n^q g_n} = \mathcal{O} \left((h_n^q g_n)^{-1} \right).
\]
Using that $\mathbb{E}[|V_n - \mathbb{E}[V_n]|^{2+\delta}] = \mathcal{O}(\mathbb{E}[|V_n|^{2+\delta}])$ (see Remark 4) and by condition DL3, it follows that the Lyapunov’s condition is satisfied:

$$
\frac{\mathbb{E}[|V_n - \mathbb{E}[V_n]|^{2+\delta}]}{n^{\frac{\delta}{2}}\text{Var}[V_n]^{1+\frac{\delta}{2}}} = \mathcal{O}\left(\frac{(h_n^q g_n)^{-(1+\delta)}}{n^{\frac{\delta}{2}}(h_n^q g_n)^{-(1+\frac{\delta}{2})}}\right) = \mathcal{O}\left((nh_n^q g_n)^{-\frac{\delta}{2}}\right) \to 0,
$$
as $n \to \infty$. Therefore,

$$
\frac{\hat{f}_{h_n,g_n}(x,z) - \mathbb{E}\left[\hat{f}_{h_n,g_n}(x,z)\right]}{\sqrt{\text{Var}\left[\hat{f}_{h_n,g_n}(x,z)\right]}} \xrightarrow{d} \mathcal{N}(0,1),
$$
pointwise for every $(x,z) \in \Omega_q \times \mathbb{R}$ (note that \sqrt{n} is included in the variance term). Plugging-in the asymptotic expressions for the bias and the variance results

$$
\sqrt{nh_n^q g_n} \left(\hat{f}_{h_n,g_n}(x,z) - f(x,z) - \text{ABias}\left[\hat{f}_{h_n,g_n}(x,z)\right]\right) \xrightarrow{d} \mathcal{N}(0, R(K)d_q(L)f(x,z)).
$$

Remark 4. The proof of $\mathbb{E}[|V_n - \mathbb{E}[V_n]|^{2+\delta}] = \mathcal{O}(\mathbb{E}[|V_n|^{2+\delta}])$ is simple. For example, using the Newton Binomial: for any $r \in \mathbb{R}$, $(x+y)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^{r-k} y^k$, with $\binom{r}{k} := \frac{(r-1)\cdots(r-k+1)}{k!}$. As $2+\delta > 1$, by the triangular inequality and the Newton Binomial,

$$
\mathbb{E}[|V_n - \mathbb{E}[V_n]|^{2+\delta}] \leq \mathbb{E}\left[\left(|V_n| - |\mathbb{E}[V_n]|\right)^{2+\delta}\right]
= \mathbb{E}\left[\sum_{k=0}^{\infty} \binom{2+\delta}{k} |V_n|^{2+\delta-k} |\mathbb{E}[V_n]|^k\right]
= \sum_{k=0}^{\infty} \binom{2+\delta}{k} \mathbb{E}\left[|V_n|^{2+\delta-k}\right] |\mathbb{E}[V_n]|^k.
$$
Now, as $\mathbb{E}[V_n] = f(x,z) + \mathcal{O}\left(h_n^2 + g_n^2\right) = \mathcal{O}(1)$ by Proposition 2 and by condition DL3, the terms $\mathbb{E}[V_n]$ are constants asymptotically. Also, as $\mathbb{E}[|V_n|^r] \leq \mathbb{E}[|V_n|^s]$ for $0 \leq r \leq s$, it follows

$$
\mathbb{E}[|V_n - \mathbb{E}[V_n]|^{2+\delta}] = \mathcal{O}\left(\sum_{k=0}^{\infty} \binom{2+\delta}{k} \mathbb{E}\left[|V_n|^{2+\delta-k}\right]\right) = \mathcal{O}\left(\mathbb{E}\left[|V_n|^{2+\delta}\right]\right).
$$

\[\square\]

Proof of Proposition 4. It is straightforward from Proposition 1 and Lemma 5. For a point x in Ω_q:

$$
\text{MSE}\left[\hat{f}_h(x)\right] = \mathbb{E}\left[\left(\hat{f}_h(x) - f(x)\right)^2\right] + \text{Var}\left[\hat{f}_h(x)\right]
= [b_q(L)\Psi(f,x)h^2 + o(h^2)]^2 + \frac{c_{h,q}(L)}{n} d_q(L) f(x) + o((nh^q)^{-1})
= b_q(L)^2 \Psi(f,x)^2 h^4 + \frac{c_{h,q}(L)}{n} d_q(L) f(x) + o\left(h^4 + (nh^q)^{-1}\right).
$$

Integrating over Ω_q in the previous equation,

$$
\text{MISE}\left[\hat{f}_h\right] = b_q(L)^2 \int_{\Omega_q} \Psi(f,x)^2 \omega_q(dx) h^4 + \frac{c_{h,q}(L)}{n} d_q(L) + o\left(h^4 + (nh^q)^{-1}\right).
$$

\[\square\]
Proof of Corollary 1. To obtain the bandwidth that minimizes AMISE consider (3) in the previous equation and derive it with respect to h:

$$
\frac{d}{dh} \text{AMISE} \left[\hat{f}_h \right] = 4b_q(L)^2 R(\Psi(f, \cdot)) h^3 - q\lambda_q(L)^{-1} h^{-(q+1)} d_q(L)n^{-1} = 0.
$$

The solution of this equation results in

$$
h_{\text{AMISE}} = \left[\frac{qd_q(L)}{4b_q(L)^2 \lambda_q(L) R(\Psi(f, \cdot)) n} \right]^\frac{1}{q+1}.
$$

Proof of Proposition 5. It is straightforward from Propositions 2 and 3:

$$
\text{MSE} \left[\hat{f}_{h,g}(x, z) \right] = \left[\mathbb{E} \left[\hat{f}_{h,g}(x, z) \right] - f(x, z) \right]^2 + \text{Var} \left[\hat{f}_{h,g}(x, z) \right]
$$

$$
= \left[h^2 b_q(L) \psi_x(f, x, z) + \frac{g^2}{2} \mathcal{H}_z f(x, z) \mu_2(K) + \sigma(h^2) + \sigma(g^2) \right]^2
$$

$$
+ \frac{c_{h,q}(L)}{ng} R(K) d_q(L) f(x, z) + \sigma(nh^q g^{-1})
$$

$$
= h^4 b_q(L)^2 \psi_x(f, x, z)^2 + \frac{g^4}{4} \mu_2(K)^2 \mathcal{H}_z f(x, z)^2
$$

$$
+ h^2 g^2 b_q(L) \mu_2(K) \mathcal{H}_z f(x, z) \psi_x(f, x, z)
$$

$$
+ \frac{c_{h,q}(L)}{ng} R(K) d_q(L) f(x, z) + \sigma(h^4 + g^4 + (nh^q g^{-1})).
$$

Integrating the previous equation and denoting by $I[\phi] = \int_{\Omega_q \times \mathbb{R}} \phi(x, z) dz \omega_q(dx)$ for a function $\phi: \Omega_q \times \mathbb{R} \to \mathbb{R}$,

$$
\text{MISE} \left[\hat{f}_{h,g} \right] = b_q(L)^2 I \left[\psi_x(f, \cdot, \cdot)^2 \right] h^4 + \frac{g^4}{4} \mu_2(K)^2 I \left[\mathcal{H}_z f(\cdot, \cdot)^2 \right]
$$

$$
+ h^2 g^2 b_q(L) \mu_2(K) I \left[\psi_x(f, \cdot, \cdot) \mathcal{H}_z f(\cdot, \cdot) \right] + \frac{c_{h,q}(L)}{ng} d_q(L) R(K)
$$

$$
+ \sigma(h^4 + g^4 + (nh^q g^{-1})).
$$

Proof of Corollary 2. Suppose that $g = \beta h$ in the previous equation. Again, use that $c_{h,q}(L) \sim \lambda_q(L)^{-1} h^{-q}$ and derive with respect to h to obtain

$$
\frac{d}{dh} \text{AMISE} \left[\hat{f}_{h,\beta h} \right] = 4c_1 h^3 + 4c_2 h^3 + 4c_3 h^3 - (q + 1)c_4 h^{-(q+2)} = 0,
$$

where

$$
c_1 = b_q(L)^2 I \left[\psi_x(f, \cdot, \cdot)^2 \right], \quad c_2 = \frac{1}{4} \mu_2(K)^2 I \left[\mathcal{H}_z f(\cdot, \cdot)^2 \right] \beta^4,
$$

$$
c_3 = b_q(L) \mu_2(K) I \left[\psi_x(f, \cdot, \cdot) \mathcal{H}_z f(\cdot, \cdot) \right] \beta^2, \quad c_4 = \frac{d_q(L) R(K)}{\lambda_q(L) n \beta}.
$$

It follows immediately that

$$
h_{\text{AMISE}} = \left[\frac{(q + 1)c_4}{4(c_1 + c_2 + c_3)} \right]^\frac{1}{q+1}.
$$
Given that $R(b_q(L)\Psi_x(f,\cdot,\cdot) + \frac{\theta^2}{2} \mu_2(K)\mathcal{H}_z f(\cdot,\cdot)) = c_1 + c_2 + c_3$, the desired expression is obtained.

In the case where $q = 1$ it is possible to derive the form of β by solving $\frac{\partial}{\partial \theta} \text{AMISE}[\hat{f}_{h,g}] = 0$ and $\frac{\partial}{\partial \gamma} \text{AMISE}[\hat{f}_{h,g}] = 0$. For this case, β has the closed form

$$\beta = \left(\frac{\frac{1}{2} \mu_2(K)^2 I [\mathcal{H}_z f(\cdot,\cdot)]^2}{b_q(L)^2 I [\Psi_x f(\cdot,\cdot)]^2} \right)^{\frac{1}{4}}.$$

\[\square\]

Proof of Proposition 6. Consider the r-mixture of directional von Mises densities given in (11). Then:

$$\text{MISE}[\hat{f}_h] = \mathbb{E} \left[\int_{\Omega_q} \left(\hat{f}_h(x) - f_r(x) \right)^2 \omega_q(dx) \right]$$

$$= \mathbb{E} \left[\int_{\Omega_q} \hat{f}_h(x)^2 - 2\hat{f}_h(x)f_r(x) + f_r(x)^2 \omega_q(dx) \right]$$

$$= \frac{c_{h,q}(L)^2}{n} \int_{\Omega_q} \int_{\Omega_q} L^2 \left(1 - \frac{x^T y}{h^2} \right) f_r(y) \omega_q(dy) \omega_q(dy)$$

$$+ \frac{c_{h,q}(L)^2(n-1)}{n} \int_{\Omega_q} \int_{\Omega_q} \int_{\Omega_q} L \left(1 - \frac{x^T y}{h^2} \right) L \left(1 - \frac{x^T z}{h^2} \right) f_r(y)f_r(z)$$

$$\times \omega_q(dx) \omega_q(dy) \omega_q(dz)$$

$$- 2c_{h,q}(L) \int_{\Omega_q} \int_{\Omega_q} L \left(1 - \frac{x^T y}{h^2} \right) f_r(x)f_r(y) \omega_q(dx) \omega_q(dy)$$

$$+ \int_{\Omega_q} f_r(x)^2 \omega_q(dx)$$

$$= (38) + (39) - (40) + (41).$$

The four terms of the previous equation will be computed separately. The first one is

$$(38) = \frac{c_{h,q}(L)^2}{n} \int_{\Omega_q} \int_{\Omega_q} L^2 \left(1 - \frac{x^T y}{h^2} \right) f_r(y) \omega_q(dx) \omega_q(dy)$$

$$= \sum_{j=1}^{n} \frac{p_j c_{h,q}(L)^2}{n} \int_{\Omega_q} \int_{\Omega_q} e^{-\frac{1}{2} \frac{x^T x}{h^2}} C_q(\kappa_j) e^{\kappa_j y^T \mu_j} \omega_q(dx) \omega_q(dy)$$

$$= \sum_{j=1}^{n} \frac{p_j c_{h,q}(L)^2}{n} \int_{\Omega_q} \int_{\Omega_q} e^{-\frac{1}{2} \frac{x^T x}{(h/\sqrt{2})^2}} \omega_q(dx) C_q(\kappa_j) e^{\kappa_j y^T \mu_j} \omega_q(dy)$$

$$= \sum_{j=1}^{n} \frac{p_j c_{h,q}(L)^2}{c_{h/\sqrt{2},q}(L)n} \int_{\Omega_q} C_q(\kappa_j) e^{\kappa_j y^T \mu_j} \omega_q(dy)$$

$$= \sum_{j=1}^{n} \frac{p_j c_{h,q}(L)^2}{c_{h/\sqrt{2},q}(L)n} = (D_q(h)n)^{-1}.$$

The second one is

$$(39) = \frac{c_{h,q}(L)^2(n-1)}{n} \int_{\Omega_q} \int_{\Omega_q} \int_{\Omega_q} L \left(1 - \frac{x^T y}{h^2} \right) L \left(1 - \frac{x^T z}{h^2} \right) f_r(y)f_r(z) \omega_q(dx) \omega_q(dy) \omega_q(dz)$$
where \(\Psi \)

\[
\begin{align*}
\Psi &= \frac{c_{h,q}(L)^2 (n - 1)}{n} \int_{\Omega} \int_{\Omega} \int_{\Omega} e^{-2/h^2} e^{x^T y/h^2} e^{x^T z/h^2} \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) e^{\kappa_j y^T \mu_j} e^{\kappa_l z^T \mu_l} \\
&\quad \times \omega_q(dx) \omega_q(dy) \omega_q(dz) \\
&= \frac{c_{h,q}(L)^2 (n - 1)}{n} e^{-2/h^2} \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) \\
&\quad \times \int_{\Omega} \int_{\Omega} \int_{\Omega} e^{x^T y/h^2} e^{x^T z/h^2} e^{\kappa_j y^T \mu_j} e^{\kappa_l z^T \mu_l} \omega_q(dx) \omega_q(dy) \omega_q(dz) \\
&= \frac{(n - 1)}{n} \left(\frac{2\pi^{q+1}}{2} h^{-1} I_{q+1} \right) \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) \\
&\quad \times \int_{\Omega} \left[\int_{\Omega} e^{x^T y/h^2} e^{x^T z/h^2} e^{\kappa_j y^T \mu_j} e^{\kappa_l z^T \mu_l} \omega_q(dy) \right] \omega_q(dx) \\
&= (1 - n^{-1}) C_q(1/h^2) \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) \int_{\Omega} \left[\int_{\Omega} e^{||x/h^2 + \kappa_j y^T \mu_j||} \omega_q(dy) \right] \omega_q(dx) \\
&\quad \times \omega_q(dx) e^{\kappa_j y^T \mu_j} \omega_q(dy) \\
&= (1 - n^{-1}) C_q(1/h^2) \sum_{j=1}^r \sum_{l=1}^r p_j p_l \int_{\Omega} \frac{C_q(\kappa_j) C_q(\kappa_l)}{C_q(||x/h^2 + \kappa_j \mu_j||) C_q(||x/h^2 + \kappa_l \mu_l||)} \omega_q(dx) \\
&= (1 - n^{-1}) \mathbf{p}^T \mathbf{\Psi}_2(h) \mathbf{p},
\end{align*}
\]

where \(\mathbf{\Psi}_2(h)_{r \times r} \) is the matrix with \(ij \)-th entry \(C_q(1/h^2) \int_{\Omega} \frac{C_q(\kappa_j) C_q(\kappa_l)}{C_q(||x/h^2 + \kappa_j y^T \mu_j||) C_q(||x/h^2 + \kappa_l y^T \mu_l||)} \omega_q(dx) \).

The third one results in:

\[
(40) = c_{h,q}(L) \int_{\Omega} \int_{\Omega} L \left(\frac{1 - x^T y}{h^2} \right) f_r(x) f_r(y) \omega_q(dx) \omega_q(dy) \\
= c_{h,q}(L) \sum_{j=1}^r \sum_{l=1}^r p_j p_l \int_{\Omega} \int_{\Omega} e^{-1/h^2} C_q(\kappa_j) C_q(\kappa_l) e^{\kappa_j x^T \mu_j} e^{\kappa_l x^T \mu_l} \omega_q(dx) \omega_q(dy) \\
= c_{h,q}(L) e^{-1/h^2} \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) \int_{\Omega} \int_{\Omega} e^{||y/h^2 + \kappa_j y^T \mu_j||} \omega_q(dy) \\
&\quad \times \omega_q(dx) e^{\kappa_j y^T \mu_j} \omega_q(dy) \\
= C_q(1/h^2) \sum_{j=1}^r \sum_{l=1}^r p_j p_l C_q(\kappa_j) C_q(\kappa_l) \int_{\Omega} \frac{e^{\kappa_j y^T \mu_j}}{C_q(||y/h^2 + \kappa_j \mu_j||)} \omega_q(dy) \\
&= \mathbf{p}^T \mathbf{\Psi}_1(h) \mathbf{p},
\]

where the matrix \(\mathbf{\Psi}_1(h)_{r \times r} \) has \(ij \)-th entry \(C_q(1/h^2) C_q(\kappa_j) C_q(\kappa_l) \int_{\Omega} \frac{e^{\kappa_j y^T \mu_j}}{C_q(||y/h^2 + \kappa_j \mu_j||)} \omega_q(dy) \). Finally, the fourth term is:

\[
(41) = \int_{\Omega} \left(\sum_{j=1}^r p_j f_{VM}(x; \mu_j, \kappa_j) \right)^2 \omega_q(dx) \\
= \int_{\Omega} \sum_{j=1}^r \sum_{l=1}^r p_j p_l f_{VM}(x; \mu_j, \kappa_j) f_{VM}(x; \mu_l, \kappa_l) \omega_q(dx)
\]
Proof of Proposition 7. Consider the r-mixture of directional-linear independent von Mises and normals \(f_r(x, z) = \sum_{j=1}^{r} p_j f_{\nu M}(x; \mu_j, \kappa_j) \times \phi_{\sigma_j}(z - m_j) \). Hence:

\[
\text{MISE}\left[\hat{f}_{h,q} \right] = \mathbb{E}\left[\int_{\Omega_q \times \mathbb{R}} (\hat{f}_{h,q}(x, z) - f_r(x, z))^2 \, dz \omega_q(dx) \right]
\]

\[
= \mathbb{E}\left[\int_{\Omega_q \times \mathbb{R}} \hat{f}_{h,q}(x, z)^2 - 2\hat{f}_{h,q}(x, z) f_r(x, z) + f_r(x, z)^2 \, dz \omega_q(dx) \right]
\]

\[
= \frac{c_{h,q}(L)^2}{ng^2} \int_{\Omega_q \times \mathbb{R}} \int_{\Omega_q \times \mathbb{R}} LK^2 \left(\frac{1 - x^T y}{h^2}, \frac{z - t}{g} \right) f_r(y, t) \, dz \omega_q(dx) \, dt \omega_q(dy)
+ \frac{c_{h,q}(L)^2(n-1)}{ng} \int_{\Omega_q \times \mathbb{R}} \int_{\Omega_q \times \mathbb{R}} \int_{\Omega_q \times \mathbb{R}} LK \left(\frac{1 - x^T y}{h^2}, \frac{z - t}{g^2} \right)
\times LK \left(\frac{1 - x^T u}{h^2}, \frac{z - s}{g} \right) f_r(y, t) f_r(u, s) \, dz \omega_q(dx) \, dt \omega_q(dy) \, ds \omega_q(du)
- 2 \frac{c_{h,q}(L)}{g} \int_{\Omega_q \times \mathbb{R}} \int_{\Omega_q \times \mathbb{R}} LK \left(\frac{1 - x^T y}{h^2}, \frac{z - t}{g} \right) f_r(x, z) f_r(y, t)
\times dt \omega_q(dy)
\times dz \omega_q(dx)
\]

As the directional-kernel is a product kernel and the mixtures are independent the directional and linear parts can be easily disentangled:

\[
\text{(42)} = \frac{1}{g} \int_{\mathbb{R}} \int_{\mathbb{R}} K \left(\frac{z - t}{g} \right) \phi_{\sigma_j}(t - m_j) \, dt
\]

\[
+ \left(1 - n^{-1} \right) \sum_{j=1}^{n} \sum_{l=1}^{n} p_j p_l \left[c_{h,q}(L)^2 \int_{\Omega_q} \int_{\Omega_q} L^2 \left(\frac{1 - x^T y}{h^2} \right) f_{\nu M}(y; \mu_j, \kappa_j) \omega_q(dx) \omega_q(dy) \right]
\]

\[
\times \left[1 - \int_{\mathbb{R}} \int_{\mathbb{R}} K \left(\frac{z - t}{g} \right) K \left(\frac{z - s}{g} \right) \phi_{\sigma_j}(t - m_j) \phi_{\sigma_l}(s - m_l) \, dz \, dt \right]
\]

\[
= \frac{1}{g} \int_{\mathbb{R}} \int_{\mathbb{R}} K \left(\frac{z}{g} \right) K \left(\frac{z - s}{g} \right) \phi_{\sigma_j}(t - m_j) \phi_{\sigma_l}(s - m_l) \, dz \, dt \, ds
\]
- \sum_{j=1}^{n} \sum_{l=1}^{n} p_{jl} \left[c_{h,q}(L) \int_{\Omega_q} \int_{\Omega_q} L \left(\frac{1-x^T y}{h^2} \right) f_{vM}(x; \mu_j, \kappa_j) f_{vM}(y; \mu_l, \kappa_l) \right. \\
\times \omega_q(dx) \omega_q(dy) \right] \times \left[1 \int_{\mathbb{R}} \int_{\mathbb{R}} K \left(\frac{z-t}{g} \right) \phi_{\sigma_j}(z-m_j) \phi_{\sigma_l}(z-m_l) dz dt \right] \\
+ \sum_{j=1}^{n} \sum_{l=1}^{n} p_{jl} \left[\int_{\mathbb{R}} \phi_{\sigma_j}(z-m_j) \phi_{\sigma_l}(z-m_l) dz \right] \times \left[\int_{\Omega_q} f_{vM}(x; \mu_j, \kappa_j) \right. \\
\times f_{vM}(x; \mu_l, \kappa_l) \omega_q(dx) \right].

The directional parts were calculated in the previous theorem and the linear ones were studied in Marron and Wand (1992) (see also Wand and Jones (1995), page 26). The combination of these two results yields

\begin{align}
(43) = \left(D_q(h) 2\pi^2 n g \right)^{-1} + (1-n^{-1}) p^T \left[\Psi_2(h) \circ \Omega_2(g) \right] p + p^T \left[\Psi_1(h) \circ \Omega_1(g) \right] p \\
+ p^T \left[\Psi_0(h) \circ \Omega_0(g) \right] p,
\end{align}

where the $r \times r$ matrices $\Omega_a(g)$ have the ij-th entry equal to $\phi_{\sigma_a}(m_i - m_j)$, $\sigma_a = (ag^2 + \sigma^2_1 + \sigma^2_2)^{\frac{1}{2}}$ for $a = 0, 1, 2$ and $\Psi_a(h)$ are the matrices of Proposition 6. The notation \circ denotes the Hadamard product between matrices, i.e., if $(A)_{ij} = a_{ij}$, $(B)_{ij} = b_{ij}$, then $(A \circ B)_{ij} = a_{ij}b_{ij}$.

Proof of Corollary 3. In virtue of equation (7), if the kernel of the density estimator (2) is $L(r) = e^{-r}$, $r \geq 0$, then the kernel estimator is the n-mixture of von Mises with means X_i, $i = 1, \ldots, n$, and common concentrations $1/h^2_F$, given by (7), where h_F is the pilot bandwidth parameter.

Proof of Corollary 4. It follows immediately from the previous proposition and corollary.

C Proofs of the technical lemmas

Proof of Lemma 1. Consider the functions

\[\varphi_h(r) = L(r)r^{-\frac{q}{2}-1}(2-h^2r)^{\frac{3}{2}-1}\mathbb{1}_{[0,2h^{-2}]}(r), \]

\[\varphi(r) = \lim_{h \to 0} \varphi_h(r) = L(r)r^{-\frac{q}{2}-1}2^{\frac{3}{2}-1}\mathbb{1}_{[0,\infty]}(r). \]

Then, proving $\lim_{h \to 0} \lambda_h q(L) = \lambda_q(L)$ is equivalent to proving $\lim_{h \to 0} \int_0^\infty \varphi_h(r) \, dr = \int_0^\infty \varphi(r) \, dr.$

Consider first the case $q \geq 2$. As $\frac{q}{2} - 1 \geq 0$, then $(2-h^2r)^{\frac{3}{2}-1} \leq 2^{\frac{3}{2}-1}, \forall h > 0, \forall r \in [0,2h^{-2})$. Then:

\[|\varphi_h(r)| \leq L(r)r^{-\frac{q}{2}-1}2^{\frac{3}{2}-1}\mathbb{1}_{[0,2h^{-2}]}(r) \leq \varphi(r), \quad \forall r \in [0, \infty), \forall h > 0. \]

Because $\int_0^\infty \varphi(r) \, dr < \infty$ by condition **D2** on the kernel L, then by the DCT it follows that $\lim_{h \to 0} \int_0^\infty \varphi_h(r) \, dr = \int_0^\infty \varphi(r) \, dr.$

For the case $q = 1$, \(\varphi_h(r) = L(r)r^{-\frac{1}{2} - \frac{1}{2}}(2-h^2r)^{-\frac{1}{2}} \). Consider now the following decomposition:

\[\int_0^\infty \varphi_h(r) \, dr = \int_0^\infty L(r)r^{-\frac{1}{2}}(2-h^2r)^{-\frac{1}{2}}\mathbb{1}_{[0,h^{-2}]}(r) \, dr + \int_0^\infty L(r)r^{-\frac{1}{2}}(2-h^2r)^{-\frac{1}{2}}\mathbb{1}_{[h^{-2},2h^{-2}]}(r) \, dr. \]
The limit of the first integral can be derived analogously with the DCT. As \((2 - h^2 r)^{-\frac{1}{2}}\) is monotone increasing, then \((2 - h^2 r)^{-\frac{1}{2}} \leq 1, \forall r \in [0, h^{-2}), \forall h > 0\). Therefore:

\[
|L(r) r^{-\frac{1}{2}} (2 - h^2 r)^{-\frac{1}{2}} 1_{[0,h^{-2}]}(r)| \leq L(r) r^{-\frac{1}{2}} 1_{[0,h^{-2}]}(r) \leq \varphi(r), \quad \forall r \in [0, \infty), \forall h > 0.
\]

Then, as \(\lim_{h \to 0} L(r) r^{-\frac{1}{2}} (2 - h^2 r)^{-\frac{1}{2}} 1_{[0,h^{-2}]}(r) = \varphi(r)\) and \(\int_0^\infty \varphi(r) \, dr < \infty\) by condition D2, DCT guarantees that \(\lim_{h \to 0} \int_0^\infty L(r) r^{-\frac{1}{2}} (2 - h^2 r)^{-\frac{1}{2}} 1_{[0,h^{-2}]}(r) \, dr = \int_0^\infty \varphi(r) \, dr\).

For the second integral, as a consequence of D2 and Remark 2, \(L\) must decrease faster than any power function. In particular, for some fixed \(h_0 > 0\), \(L(r) \leq r^{-1}, \forall r \in [h^{-2}, 2h^{-2}), \forall h \in (0, h_0)\). Using this, it results in:

\[
\lim_{h \to 0} \int_{h^{-2}}^{2h^{-2}} L(r) r^{-\frac{1}{2}} (2 - h^2 r)^{-\frac{1}{2}} \, dr \leq \lim_{h \to 0} \int_{h^{-2}}^{2h^{-2}} r^{-\frac{1}{2}} (2 - h^2 r)^{-\frac{1}{2}} \, dr = \lim_{h \to 0} h = 0.
\]

This completes the proof.

Remark 5. It is possible to apply the same techniques to prove the result with the functions

\[
\varphi_{h,i,j,k}(r) = L^k(r) r^{\frac{3}{2} + r} (2 - h^2 r)^{-\frac{3}{2}} 1_{[0,2h^{-2}]}(r),
\]

\[
\varphi_{i,j,k}(r) = \lim_{h \to 0} \varphi_{h,i,j,k}(r) = L^k(r) r^{\frac{3}{2} + r} 2^{\frac{3}{2} - j} 1_{[0,\infty]}(r),
\]

with \(i = -1, 0, 1, j = 0, 1\) and \(k = 1, 2\). For the cases where \(\frac{3}{2} - j \geq 0\), use DCT. For the other cases, subdivide the integral over \([0, 2h^{-2})\) into the intervals \([0, h^{-2})\) and \([h^{-2}, 2h^{-2})\). Then apply DCT in the former and use a suitable power function to make the latter tend to zero in the same way as described previously.

Proof of Lemma 2. Following Blumenson (1960), if \(x\) is a vector of norm \(r\) with components \(x_j, j = 1, \ldots, n\), with respect to an orthonormal basis in \(\mathbb{R}^n\), then the \(n\)-dimensional spherical coordinates of \(x\) are given by

\[
\begin{aligned}
x_1 &= r \cos \phi_1, \\
x_j &= r \cos \phi_j \prod_{k=1}^{j-1} \sin \phi_k, & j = 2, \ldots, n-2, \\
x_{n-1} &= r \sin \theta \prod_{k=1}^{n-2} \sin \phi_k, \quad J = r^{n-1} \prod_{k=1}^{n-2} \sin \phi_{n-1-k} \quad \cdots \cdots \text{(44)} \\
x_n &= r \cos \theta \prod_{k=1}^{n-2} \sin \phi_k,
\end{aligned}
\]

where \(0 \leq \phi_j \leq \pi, j = 1, \ldots, n-2, 0 \leq \theta < 2\pi\) and \(0 \leq r < \infty\). \(J\) denotes the Jacobian of the transformation. Special cases of this parametrization are the polar coordinates \((n = 2)\),

\[
\begin{aligned}
x_1 &= r \cos \theta, \\
x_2 &= r \sin \theta, \quad J = r,
\end{aligned}
\]

and the spherical coordinates \((n = 3)\),

\[
\begin{aligned}
x_1 &= r \cos \phi, \\
x_2 &= r \sin \theta \sin \phi, \quad J = r^2 \sin \phi, \\
x_3 &= r \cos \theta \sin \phi,
\end{aligned}
\]
Note that sometimes this parametrization appears with the roles of x_1 and x_3 swapped.

To continue with the previous notation, let denote $q = n - 1$. Using the spherical coordinates $(r = 1$, as the integration is on $\Omega_{n-1})$ and then applying the change of variables

$$t = \cos \phi_1, \quad d\phi_1 = -(1 - t^2)^{-\frac{1}{2}} dt,$$

it follows that

$$\int_{\Omega_{n-1}} f(x) \omega_{n-1}(dx)$$

$$= \int_{\Omega_{n-1}} f(x_1, \ldots, x_n) dx_1 \ldots dx_n$$

$$(44) = \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} f\left(t, \cos \phi_2(1 - t^2)^{\frac{1}{2}}, \ldots, \cos \theta \prod_{k=2}^{n-2} \sin \phi_k(1 - t^2)^{\frac{1}{2}}\right)$$

$$\times \prod_{k=1}^{n-2} \sin^k \phi_{n-1-k} \prod_{j=n-2}^1 d\phi_j d\theta$$

$$(45) = \int_{-1}^{-1} \int_0^{2\pi} \cdots \int_0^{\pi} f\left(t, \cos \phi_2(1 - t^2)^{\frac{1}{2}}, \ldots, \cos \theta \prod_{k=2}^{n-2} \sin \phi_k(1 - t^2)^{\frac{1}{2}}\right)$$

$$\times \prod_{k=1}^{n-3} \sin^k \phi_{n-1-k}(1 - t^2)^{\frac{n-3}{2}} \prod_{j=n-2}^2 d\phi_j dt d\theta$$

$$= \int_{-1}^{1} \int_{\Omega_{n-2}} f\left(t, (1 - t^2)^{\frac{1}{2}} \xi_1, \ldots, (1 - t^2)^{\frac{1}{2}} \xi_{n-1}\right) \left(1 - t^2\right)^{\frac{n-3}{2}}$$

$$\times d(\xi_1, \ldots, \xi_{n-1}) dt$$

$$= \int_{-1}^{1} \int_{\Omega_{n-2}} f\left(t, (1 - t^2)^{\frac{1}{2}} \xi\right) (1 - t^2)^{\frac{n-3}{2}} \omega_{n-2}(d\xi) dt.$$

So, for the q-dimensional sphere Ω_q, equation (17) follows. Note that as the parametrization (44) is invariant to coordinates permutations and t can be placed in any argument of the function. The rest of the arguments will remain having the entries $(1 - t^2)^{\frac{n-3}{2}} \xi$.

This expression can be improved using an adequate basis representation. From a fixed point $y \in \Omega_q$, it is possible to complete an orthonormal basis of \mathbb{R}^{q+1}, say $\{y, b_1, \ldots, b_q\}$. So an element $x \in \Omega_q$ will be expressed as:

$$x = \langle x, y \rangle y + \sum_{i=1}^{q} \langle x, b_i \rangle b_i = ty + (1 - t^2)^{\frac{1}{2}} \xi,$$

where $t = \langle x, y \rangle \in [-1, 1]$ and $\xi \in T_y = \{\eta \in \Omega_q : \eta \perp y\}$. Related to the basis $\{y, b_1, \ldots, b_q\}$, there are the orthogonal matrix $B = (y, b_1, \ldots, b_q)_{(q+1) \times (q+1)}$ and the semi-orthogonal matrix $B_y = (b_1, \ldots, b_q)_{(q+1) \times q}$. Using the fact that B is an orthonormal matrix, is possible to make the
change $x = Bz$, with $\det B = 1$ and $B^{-1}\Omega_q = B^T\Omega_q = \Omega_q$ (as B preserves distances). Then, the
relation (18) holds:
\[
\int_{\Omega_q} f(x) \omega_q(dx) = \int_{B^{-1}\Omega_q} f(Bz) \det B \omega_q(dz)
\]
\[
= \int_{\Omega_q} f(Bz) \omega_q(dz)
\]
\[(17) \int_{-1}^{1} \int_{\Omega_{q-1}} f\left(B(t, (1 - t^2)^{\frac{3}{2}}\xi)^T \right) (1 - t^2)^{\frac{3}{2}-1} \omega_{q-1}(d\xi) dt
\]
\[
= \int_{-1}^{1} \int_{\Omega_{q-1}} f\left(ty + (1 - t^2)^{\frac{1}{2}} B_y\xi \right) (1 - t^2)^{\frac{3}{2}-1} \omega_{q-1}(d\xi) dt.
\]
\]

Proof of Lemma 3. Without loss of generality, assume that, by the q-spherical coordinates (44),
$x_i = \cos \phi_1$ and $x_j = \cos \phi_2 \sin \phi_1$. Using this, the calculus are straightforward for the integrands
x_i and $x_i x_j$ (it is assumed that only the terms with positive index are taken into account in the
products):
\[
\int_{\Omega_q} x_i \omega_q(dx) = \int_{\Omega_q} x_i \omega_q(dx)
\]
\[
= \int_{0}^{2\pi} \int_{0}^{\pi} (q-1) \times \int_{0}^{\pi} \cos \phi_1 \sum_{k=1}^{q-2} \sin^k \phi_1 \sin^{q-1} \phi_1 \prod_{j=q}^{1} d\phi_j d\theta
\]
\[
= \int_{0}^{2\pi} \int_{0}^{\pi} (q-2) \times \int_{0}^{\pi} \prod_{k=1}^{q-2} \sin^k \phi_1 \sin^{q-1} \phi_1 \prod_{j=q}^{1} d\phi_j d\theta
\]
\[
= \omega_{q-1} \times 0 = 0,
\]
\[
\int_{\Omega_q} x_i x_j \omega_q(dx) = \int_{\Omega_q} x_i x_j \omega_q(dx)
\]
\[
= \int_{0}^{2\pi} \int_{0}^{\pi} (q-1) \times \int_{0}^{\pi} x_i x_j \omega_q(dx)
\]
\[
= \int_{0}^{2\pi} \int_{0}^{\pi} (q-3) \times \int_{0}^{\pi} x_i x_j \omega_q(dx)
\]
\[
= \omega_{q-2} \times 0 \times 0 = 0.
\]
The integrand x_i^2 is even simpler, using the fact that the integration is over Ω_q:
\[
\int_{\Omega_q} x_i^2 \omega_q(dx) = \frac{1}{q+1} \sum_{k=1}^{q+1} \int_{\Omega_q} x_i^2 \omega_q(dx) = \frac{1}{q+1} \sum_{k=1}^{q+1} x_i^2 \omega_q(dx) = \omega_q.
\]
\[
\int_{\Omega_q} x_i x_j \omega_q(dx) = \frac{1}{q+1} \sum_{k=1}^{q+1} x_i x_j \omega_q(dx) = \omega_q.
\]

Proof of Lemma 4. For $a = 1, 2, p = 0, 1$ and $q \geq 1$, the properties of the Gamma function ensure that
\[
\int_{0}^{\infty} L^a(r)^{\frac{q}{2}-p} dr = \int_{0}^{\infty} e^{-ar^{\frac{q}{2}-p} dr = \frac{\Gamma\left(\frac{q}{2} - p + 1\right)}{a^{\frac{q}{2}-p+1}}.
\]
Therefore:

$$\lambda_q(L) = 2^\frac{q}{2} - 1 \frac{2\pi^\frac{q}{2}}{\Gamma\left(\frac{q}{2}\right)} \Gamma\left(\frac{q}{2}\right) = (2\pi)^\frac{q}{2}, \quad b_q(L) = \Gamma\left(\frac{q}{2}\right) \frac{q}{2} \Gamma\left(\frac{q}{2}\right) = \frac{1}{2}, \quad d_q(L) = \frac{\Gamma\left(\frac{q}{2}\right)}{2^\frac{q}{2}} \Gamma\left(\frac{q}{2}\right) = 2^{-\frac{q}{2}}.$$

The expression for $c_{h,q}(L)$ arises from the fact that $c_{h,q}(L) = C_q \left(1/h^2\right) e^{1/h^2}$.

Proof of Lemma 5. This proof is a rebuild of the one given in Zhao and Wu (2001) and is included for the aim of completeness of this work. Furthermore, many techniques used in this proof are also helpful for the proofs of other results in this paper.

Let denote $\text{Bias}[\hat{f}_h(x)] = \mathbb{E}[\hat{f}_h(x)] - f(x)$. To compute the bias, use Lemma 2 for the change of variables with the orthonormal and semi-orthonormal matrices $B = (b_1, \ldots, b_q)$ and $B_x = (b_1, \ldots, b_q)$, and then apply the ordinary change of variables

$$r = \frac{1 - t}{h^2}, \quad dr = -h^{-2} dt.$$

This results in:

$$\text{Bias} \left[\hat{f}_h(x) \right] = c_{h,q}(L) \mathbb{E} \left[L \left(\frac{1 - x^T X}{h^2} \right) \right] - f(x)
= c_{h,q}(L) \int_{\Omega_q} L \left(\frac{1 - x^T y}{h^2} \right) f(y) \omega_q(dy) - c_{h,q}(L) \int_{\Omega_q} L \left(\frac{1 - x^T y}{h^2} \right) \omega_q(dy) f(x)
= c_{h,q}(L) \int_{\Omega_q} \left(\frac{1 - x^T y}{h^2} \right) (f(y) - f(x)) \omega_q(dy)
= c_{h,q}(L) \int_{\Omega_q} \left(\frac{1 - x^T y}{h^2} \right) \left(f(tx + (1 - t^2)^\frac{1}{2} B_x \xi) - f(x) \right)
\times (1 - t^2)^{\frac{q}{2} - 1} \omega_q-1(d\xi) dt
\tag{46}
= c_{h,q}(L) h^q \int_{0}^{2h^{-2}} \int_{\Omega_{q-1}} L(r) (f(x + \alpha_{x,\xi}) - f(x)) r^{\frac{q}{2} - 1} (2 - h^2 r)^{\frac{q}{2} - 1} \omega_q-1(d\xi) dr
= c_{h,q}(L) h^q \int_{0}^{2h^{-2}} L(r) r^{\frac{q}{2} - 1} (2 - h^2 r)^{\frac{q}{2} - 1} \int_{\Omega_{q-1}} (f(x + \alpha_{x,\xi}) - f(x))
\times \omega_q-1(d\xi) dr,
\tag{47}
$$

where $\alpha_{x,\xi} = -r h^2 x + h \left[r(2 - h^2 r) \right]^\frac{1}{2} B_x \xi \in \Omega_q$. By condition D1, the Taylor expansion of f at x is

$$f(x + \alpha_{x,\xi}) - f(x) = \alpha^T_{x,\xi} \nabla f(x) + \frac{1}{2} \alpha^T_{x,\xi} \mathcal{H} f(x) \alpha_{x,\xi} + o \left(\alpha^T_{x,\xi} \alpha_{x,\xi} \right),$$

so the calculus of (47) can be split in three parts. For the first use that the integration of ξ_i vanishes by Lemma 3:

$$\int_{\Omega_{q-1}} \alpha^T_{x,\xi} \nabla f(x) \omega_{q-1}(d\xi) = -r h^2 \int_{\Omega_{q-1}} x^T \nabla f(x) \omega_{q-1}(d\xi)
+ h \left[r(2 - h^2 r) \right]^\frac{1}{2} \int_{\Omega_{q-1}} \xi^T B^T_x \nabla f(x) \omega_{q-1}(d\xi)
= -r h^2 \omega_{q-1} x^T \nabla f(x)
\tag{48}$$
In the second, by the results of Lemma 3,
\[
\int_{\Omega_{q-1}} \alpha_{x,\xi}^T \mathcal{H} f(x) \alpha_{x,\xi} \omega_{q-1}(d\xi) = r^2 h^4 \int_{\Omega_{q-1}} x^T \mathcal{H} f(x) x \omega_{q-1}(d\xi)
- 2 rh^3 [r(2-h^2 r)]^{\frac{3}{2}} \int_{\Omega_{q-1}} x^T \mathcal{H} f(x) B_x \omega_{q-1}(d\xi)
+ h^2 r (2-h^2 r) \int_{\Omega_{q-1}} \xi^T B_x^T \mathcal{H} f(x) B_x \omega_{q-1}(d\xi)
= r^2 h^4 \omega_{q-1} x^T \mathcal{H} f(x) x
+ h^2 r (2-h^2 r) \sum_{i,j=1}^q b_i^T \mathcal{H} f(x) b_j \xi_i \xi_j \omega_{q-1}(d\xi)
= r^2 h^4 \omega_{q-1} x^T \mathcal{H} f(x) x
+ h^2 r (2-h^2 r) \omega_{q-1} q^{-1} [\nabla^2 f(x) - x^T \mathcal{H} f(x)x].
\] (49)

In the last step it is used that by \(\sum_{i=1}^q b_i b_i^T + xx^T = B_x B_x^T = I_{q+1} - xx^T \),
\[
\sum_{i=1}^q b_i^T \mathcal{H} f(x) b_i = \text{tr} \left[\mathcal{H} f(x) \sum_{i=1}^q b_i b_i^T \right] = \text{tr} \left[\mathcal{H} f(x) (I_{q+1} - xx^T) \right] = \nabla^2 f(x) - x^T \mathcal{H} f(x)x.
\]

Apart from this, the order of the Taylor expansion is
\[
\sigma(\alpha_{x,\xi}^T \alpha_{x,\xi}) = \sigma(r^2 h^4 + h^2 r (2-h^2 r)) = \sigma(r^2 h^4 + 2h^2 r - h^4 r^2) = r \sigma(h^2).
\] (50)

Adding (48)–(50),
\[
(47) = \omega_{q-1} c_{h,q}(L) h^q \int_0^{2h^2} L(r) r^{\frac{q}{2}-1} (2-h^2 r)^{\frac{q}{2}-1} \left\{ - rh^2 x^T \nabla f(x) + \frac{r^2 h^4}{2} x^T \mathcal{H} f(x)x \right\} dr
- h^2 \omega_{q-1} \left[\int_0^{2h^2} c_{h,q}(L) h^q L(r) r^{\frac{q}{2}} (2-h^2 r)^{\frac{q}{2}-1} dr \right] x^T \nabla f(x)
+ \frac{h^4 \omega_{q-1}}{2} \left[\int_0^{2h^2} c_{h,q}(L) h^q L(r) r^{\frac{q}{2}+1} (2-h^2 r)^{\frac{q}{2}-1} dr \right] x^T \mathcal{H} f(x)x
+ \frac{h^2 \omega_{q-1}}{2} \left[\int_0^{2h^2} c_{h,q}(L) h^q L(r) r^{\frac{q}{2}} (2-h^2 r)^{\frac{q}{2}} dr \right] q^{-1} (\nabla^2 f(x) - x^T \mathcal{H} f(x)x)
+ \omega_{q-1} \left[\int_0^{2h^2} c_{h,q}(L) h^q L(r) r^{\frac{q}{2}} (2-h^2 r)^{\frac{q}{2}-1} dr \right] o(h^2).
\] (51)

Consider the following functions for \(h > 0 \) and \(i, j = 0, 1 \):
\[
\varphi_{h,i,j}(r) = c_{h,q}(L) h^q L(r) r^{\frac{q}{2}+i} (2-h^2 r)^{\frac{q}{2}-j} I_{[0,2h^2]}(r), \quad r \in [0, \infty).
\]
When $n \to \infty$, $h \to 0$ and the limit of $\varphi_{h,i,j}$ is given by

$$
\varphi_{i,j}(r) = \lim_{h \to 0} \varphi_{h,i,j}(r) = \lambda_q(L)^{-1} L(r)^{\frac{q}{2}+j} [1]_{[0,\infty)}(r).
$$

Then, by Remark 5 and Lemma 1:

$$
\lim_{h \to 0} \int_0^\infty \varphi_h(r) \, dr = \lambda_q(L)^{-1} \int_0^\infty L(r)^{\frac{q}{2}-i} \, dr
\stackrel{(16)}{=} \begin{cases}
\frac{1}{\omega_{q-1}} b_q(L), & i = 0, \\
\frac{1}{\omega_{q-1}} \int_0^\infty L(r)^{\frac{q}{2}+1} \, dr, & i = 1.
\end{cases}
$$

So, for the terms between square brackets of (51), $\int_0^\infty \varphi_h(r) \, dr = \int_0^\infty \varphi(r) \, dr (1 + o(1))$. Replacing this in (51) leads to

$$(51) = -h^2 \omega_{q-1} \left[\frac{b_q(L)}{\omega_{q-1}} + o(1) \right] x^T \nabla f(x)
+ h^4 \omega_{q-1} \left[\frac{b_q(L)}{\omega_{q-1}} \int_0^\infty L(r)^{\frac{q}{2}+1} \, dr + o(1) \right] x^T \mathcal{H} f(x) x
+ h^4 \omega_{q-1} \left[\frac{b_q(L)}{\omega_{q-1}} + o(1) \right] \omega_{q-1} \left[\frac{b_q(L)}{\omega_{q-1}} + o(1) \right] o(h^2)
= h^2 b_q(L) \left[-x^T \nabla f(x) + q^{-1} (\nabla^2 f(x) - x^T \mathcal{H} f(x) x) \right] + O(h^4) + o(h^2)
= h^2 b_q(L) \Psi(f, x) + o(h^2).
$$

\(\square \)

References

Akaike, H. (1954). An approximation to the density function. *Ann. Inst. Statist. Math.*, 6(2):127–132.

Bai, Z. D., Rao, C. R., and Zhao, L. C. (1988). Kernel estimators of density function of directional data. *J. Multivariate Anal.*, 27(1):24–39.

Blumenson, L. E. (1960). Classroom notes: a derivation of n-dimensional spherical coordinates. *Amer. Math. Monthly*, 67(1):63–66.

Cao, R. (1993). Bootstrapping the mean integrated squared error. *J. Multivariate Anal.*, 45(1):137–160.

Cao, R., Cuevas, A., and Gonzalez Manteiga, W. (1994). A comparative study of several smoothing methods in density estimation. *Comput. Statist. Data Anal.*, 17(2):153–176.

Di Marzio, M., Panzera, A., and Taylor, C. C. (2011). Kernel density estimation on the torus. *J. Statist. Plann. Inference*, 141(6):2156–2173.

García-Portugués, E., Crujeiras, R. M., and González-Manteiga, W. (2013). Exploring wind direction and SO_2 concentration by circular-linear density estimation. *Stoch. Environ. Res. Risk Assess.*, 27(5):1055–1067.

Hall, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density estimators. *J. Multivariate Anal.*, 14(1):1–16.

Hall, P., Watson, G. S., and Cabrera, J. (1987). Kernel density estimation with spherical data. *Biometrika*, 74(4):751–762.
Hendriks, H. (1990). Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions. *Ann. Statist.*, 18(2):832–849.

Henry, G. and Rodriguez, D. (2009). Kernel density estimation on Riemannian manifolds: asymptotic results. *J. Math. Imaging Vision*, 34(3):235–239.

Jones, C., Marron, J. S., and Sheather, S. J. (1996). Progress in data-based bandwidth selection for kernel density estimation. *Computation. Stat.*, (11):337–381.

Jupp, P. E. and Mardia, K. V. (1989). A unified view of the theory of directional statistics, 1975-1988. *Int. Stat. Rev.*, 57(3):261–294.

Klemelä, J. (2000). Estimation of densities and derivatives of densities with directional data. *J. Multivariate Anal.*, 73(1):18–40.

Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error. *Ann. Statist.*, 20(2):712–736.

Müller, H.-G. (2006). Density estimation-II. In Kotz, S., Balakrishnan, N., Read, C., and Vidakovic, B., editors, *Encyclopedia of statistical sciences*, volume 2, pages 1611–1626. John Wiley & Sons, Hoboken, second edition.

Oliveira, M., Crujeiras, R. M., and Rodríguez-Casal, A. (2012). A plug-in rule for bandwidth selection in circular density estimation. *Comput. Statist. Data Anal.*, 56(12):3898–3908.

Parzen, E. (1962). On estimation of a probability density function and mode. *Ann. Math. Statist.*, 33(3):1065–1076.

Pelletier, B. (2005). Kernel density estimation on Riemannian manifolds. *Statist. Probab. Lett.*, 73(3):297–304.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. *Ann. Math. Statist.*, 27(3):832–837.

Scott, D. W. (1992). *Multivariate density estimation*. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. John Wiley & Sons, New York.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. *J. Roy. Statist. Soc. Ser. B*, 53(3):683–690.

Silverman, B. W. (1986). *Density estimation for statistics and data analysis*. Monographs on Statistics and Applied Probability. Chapman & Hall, London.

Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. *Comput. Statist. Data Anal.*, 52(7):3493–3500.

Wand, M. P. and Jones, M. C. (1995). *Kernel smoothing*, volume 60 of *Monographs on Statistics and Applied Probability*. Chapman & Hall, London.

Watson, G. S. (1983). *Statistics on spheres*, volume 6 of *University of Arkansas Lecture Notes in the Mathematical Sciences*. John Wiley & Sons, New York.

Zhao, L. and Wu, C. (2001). Central limit theorem for integrated square error of kernel estimators of spherical density. *Sci. China Ser. A*, 44(4):474–483.