Resource Article

Multi-Depot Pickup and Delivery Problem with Resource Sharing

Yong Wang,1 Lingyu Ran,1 Xiangyang Guan,2 and Yajie Zou3

1School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China
2Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
3Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China

Correspondence should be addressed to Yajie Zou; zouyajie@tongji.edu.cn

Received 10 April 2021; Revised 28 April 2021; Accepted 15 May 2021; Published 2 June 2021

Abstract
Resourcesharing (RS) integrated into the optimization of multi-depot pickup and delivery problem (MDPDP) can greatly reduce the logistics operating cost and required transportation resources by reconfiguring the logistics network. This study formulates and solves an MDPDP with RS (MDPDPRS). First, a bi-objective mathematical programming model that minimizes the logistics cost and thenumber of vehicles is constructed, in which vehicles are allowed to be used multiple times by one or multiple logistics facilities. Second, a two-stage hybrid algorithm composed of a k-means clustering algorithm, a Clark-Wright (CW) algorithm, and a nondominated sorting genetic algorithm II (NSGA-II) is designed. The k-means algorithm is adopted in the first stage to reallocate customers to logistics facilities according to the Manhattan distance between them, by which the computational complexity of solving the MDPDPRS is reduced. In the second stage, CW and NSGA-II are adopted jointly to optimize the vehicle routes and find the Pareto optimal solutions. CW algorithm is used to select the initial solution, which can increase the speed of finding the optimal solution during NSGA-II. Fast nondominated sorting operator and elite strategy selection operator are utilized to maintain the diversity of solutions in NSGA-II. Third, benchmark tests are conducted to verify the performance and effectiveness of the proposed two-stage hybrid algorithm, and numerical results prove that the proposed methodology outperforms the standard NSGA-II and multi-objective particle swarm optimization algorithm. Finally, optimization results of a real-world logistics network from Chongqing confirm the applicability of the mathematical model and the designed solution algorithm. Solving the MDPDPRS provides a management tool for logistics enterprises to improve resource configuration and optimize logistics operation efficiency.

1. Introduction

With the advancement of information technology and Internet of Things, the logistics industry is playing an increasingly important role in the development of modern businesses [1, 2]. However, national and local governments worldwide are focusing on the environmental impacts of logistics and the efficient use of resources [3, 4]. In a logistics network, customers send out a series of requests for delivery and pickup services, and logistics service providers (LSPs) design service plans and arrange vehicles for these requests to deliver or pickup goods [5, 6]. Efficient logistics service plan can improve the operation efficiency of LSPs and resource utilization [7, 8]. Therefore, making an effective logistics service plan with resource sharing (RS) is essential, which not only helps to reduce the operating cost for logistics facilities but also promotes the development of green logistics and provides better logistics services for consumers [9, 10].

In this study, a multi-depot pickup and delivery problem with RS (MDPDPRS) combines components from three subproblems: multi-depot vehicle routing problem (MDVRP) with pickups and deliveries (MDVRPDD), MDVRP with pickups and deliveries and time windows (MDVRPDDTW), and RS [11–13]. However, one of the difficult challenges in solving this problem is how to handle pickup and delivery activities among multiple depots through RS [14, 15]. In the traditional MDVRPDD, each vehicle performs only one type of activity in the service route, which may be delivering or picking up goods [16–18].
In addition, the traditional MDVRPPDTW and single-depot vehicle routing problem with pickups and deliveries mostly only consider the optimization of logistics operational costs [19, 20]. Therefore, MDPDPRS focuses on how to support and achieve the efficient utilization of transportation resources with RS strategy, and optimizes the logistics network.

With regard to RS, it is often jointly adopted with collaboration or cooperation between LSPs to optimize the logistics networks with multiple depots [21, 22]. RS strategy supports the sharing of customer information and transport resources to improve the resource configuration among logistics facilities to optimize the logistics network [23, 24]. Here, the sharing of customer information is often enabled by customer clustering, whereas the sharing of transportation resources is related to the use of shared transportation equipment [25, 26].

As for MDVRPPD, it is a crucial logistics issue with extensive applications, especially in reverse logistics [27]. Three basic types of vehicle routing problems exist in reverse logistics [28]. The first type is the vehicle routing problem with mixed deliveries and pickups, which involves customers with delivery demands, pickup demands, and delivery and pickup demands [29]. Vehicle routing problem with simultaneous delivery and pickup is the second type, which requires all customers to have both delivery and pickup demands [30]. The third type is the common MDVRPPD, which includes delivery and pickup customers in the logistics network [19, 31–33]. In this study, the consideration of customer service time windows makes MDVRPPD realistic.

In this study, the MDPDPRS can be formulated into a bi-objective mathematical model to minimize the total logistics operating cost and number of vehicles [32, 34]. On the basis of the multi-depot and RS properties of MDPDPRS, a two-stage hybrid algorithm is proposed to find the Pareto optimal solution. In the first stage, a k-means algorithm is adopted to reconfigure resources through customer clustering; thus, the MDVRPPDTW is simplified for solving [35]. The second stage focuses on finding the Pareto optimal solution for the bi-objective optimization problem [23, 36]. The Clarke-Wright (CW) algorithm, which is good at constructing the initial solution of vehicle routes, and the nondominated sorting genetic algorithm (NSGA-II), which is known for its capability of finding the Pareto solution, are adopted to optimize the vehicle routing in the second stage [33, 37, 38].

The remainder of this study is arranged as follows. Section 2 reviews the relevant literature. Section 3 elaborates the specifics of the MDPDPRS. Section 4 explains the bi-objective mathematical model for the MDPDPRS. Section 5 presents the designed methodology for solving the MDPDPRS. Section 6 analyzes the performance and application of the proposed model formulation and solution algorithm in a real-world case study compatible to the MDPDPRS. Finally, Section 7 summarizes the conclusions and discusses potential future research.

2. Literature Review

MDPDPRS is mainly related to the MDVRPPD, MDVRPPDTW, and RS strategy [18, 36]. MDVRPPD and MDVRPPDTW are the extension problems of MDVRP and MDVRPTW with respect to the logistics service type of customer demands, respectively [39, 40]. In the widely studied MDVRP and MDVRPTW, the service types of customers are either deliveries or pickups [16, 33, 41]. However, in a real-world logistics network with multiple depots, customers with distribution and pickup demands often exist simultaneously and the service time windows are the additional characteristics of customers; this issue is abbreviated by scholars as MDVRPPD [11, 13]. Therefore, MDVRPPD and MDVRPPDTW have begun to attract the attention of scholars, and the difference between the two issues is mainly whether customers’ service time window feature is considered [42, 43]. In the MDVRPPDTW, the optimization of vehicle routes focuses on the confirmation of customers’ service time windows and the integration of vehicles’ delivery and pickup activities, which are suitable with the factors that LSPs must consider if optimizing vehicle routes [44, 45]. The adoption of RS into the optimization of logistics network is also a current trend [12]. Thus, the MDPDPRS in this study integrates vehicles’ distribution and pickup arrangement with the RS strategy to optimize the MDVRPPD.

In contrast to the MDVRP, the MDVRPPD studies customers with delivery and pickup demands [35, 42]. The MDVRPPDTW is an extension of MDVRPPD, which considers the characteristics of customer service time windows [46, 47]. Many scholars have studied MDVRPPD and MDVRPPDTW considering diverse aspects and proposed different mathematical models and algorithms [30, 48]. In terms of models, many of the proposed mathematical models reflect the characteristics of their problem studied by different constraints, including capacity, time windows, and priority constraints [29, 49]. Ropke et al.[50] established a standard three-index model based on the characteristics of customer time window and designed an accurate algorithm to solve it. Gribkovskaia et al.[19] studied the vehicle routing problem with deliveries and pickups considering the number of times a customer has been visited and proposed a mixed integer linear programming model. Chen et al.[31] established a comprehensive mathematical model to minimize the transportation costs for unpaired vehicle routing problem with deliveries and pickups in a multi-factory production network. Conversely, hybrid heuristics algorithms (e.g., genetic algorithm and adaptive large neighborhood search algorithm) and exact algorithms based on column generation are commonly designed to solve MDVRPPD and MDVRPPDTW [50–52]. The proposed model and solution methodology in the above studies provide abundant reference for solving the basic MDVRPPD and MDVRPPDTW. However, few studies have optimized MDVRPPDTW with RS strategy [32, 34].

Customer clustering analysis is a research aspect that groups customers based on their characteristics (e.g., location and time window), and common clustering algorithms include k-means clustering, parallel clustering, and fuzzy-based customer clustering [53–56]. In comparison with other customer clustering algorithms, k-means clustering is widely adopted to solve vehicle routing problems [57, 58].
Xu et al. [59] proposed an enhanced ant colony algorithm based on \(k \)-means clustering to solve dynamic vehicle routing problems and achieved good optimization results. Hakim et al. [60] designed a cluster-based method to solve a vehicle routing problem with limited vehicle capacity, and their calculation results proved the effectiveness of that method. Mourelo Ferrandez et al. [61] reduced the calculation difficulty of truck-drone in tandem delivery network by \(k \)-means clustering algorithm. Wang et al. [35] proposed a hybrid heuristic algorithm based on three-dimensional \(k \)-means clustering and improved reference point NSGA-II to solve the multi-objective optimization model. Therefore, cluster analysis can simplify the difficulty of solving vehicle routing problem [62, 63].

At present, the construction of multi-objective optimization model and multi-objective optimization algorithm is the research hotspot of finding the Pareto solution of vehicle routing problems, and scholars have designed different algorithms [38, 64]. NSGA-II and multi-objective particle swarm optimization (MOPSO) algorithm are two common multi-objective algorithms [65, 66]. NSGA-II adopts a reference point strategy to maintain population diversity [67]. Srivastava et al. [68] proposed a NSGA-II to solve the multi-objective optimization model for MDPVRPTW and verified that the method is superior to the latest method of that problem through a real-world case study. Maadanpour Safari et al. [69] adopted NSGA-II, multi-objective simulated annealing (MOSA), and MOPSO to optimize the proposed three-objective mathematical function and concluded that NSGA-II was superior to MOSA according to the results of their examples. Shafiei Nikabadi et al. [70] formed a multi-objective model for the route selection of freight fleet, optimized it with NSGA-II and MOPSO, and considered that MOPSO was superior to NSGA-II. Therefore, NSGA-II and MOPSO are two commonly typical multi-objective optimization algorithms that can find Pareto solutions [71].

Many scholars have adopted the cooperation and RS strategy to optimize the multicenter logistics network [11, 17, 24]. Zhang et al. [15] believed that in the collaborative e-commerce truck carrier, participants can share transportation resources and customer demands to maximize the total profit of the whole alliance and improve vehicle utilization. Wang et al. [14] adopted the cooperation strategy to optimize the MDPVRPDTW with minimization of the operating cost of the transportation network and the total number of vehicles. Deng et al. [21] allowed the capabilities of the logistics facility, the vehicle resources, and the customer information to be shared through RS strategies, and they proved that this strategy can improve the utilization of logistics resources. In the study of Nourinejad et al. [72], vehicles can be used multiple times to reduce fleet size by extending vehicle reservation time. Li et al. [73] adopted the resource-sharing strategy to significantly optimize the logistics network and maximized the utilization of resources. Therefore, the adoption of RS strategy not only helps optimize the logistics costs but also improves the utilization of resources to protect the environment [22, 74].

In summary, the existing literature has provided rich reference materials about MDPVRPPD, MDPVRPPDTW, and RS, including model formulations and solution algorithms. However, the existing literature related to MDPDPRS has the following limitations. (1) Few studies on MDPDPRS have considered RS, MDPVRPPD, and MDPVRPPDTW. (2) The fact that a vehicle can be used multiple times on a working day is insufficiently considered in the proposed mathematical models. (3) Most of the proposed solution algorithms in the existing literature only address how to solve MDPVRP, MDPVRPPD, and MDPVRPPDTW, and RS has not been incorporated into the designed algorithms. (4) Most of the existing literature focuses on raising problems and designing algorithms but neglects testing the proposed methods with practical cases.

In consideration of the aforementioned shortcomings, the main contributions of this study to MDPDPRS are as follows: (1) Characteristics of RS, MDPVRPPD, and MDPVRPPDTW are comprehensively incorporated to enrich the research on MDPDPRS. (2) On the basis of RS, this study proposes and tests that vehicles can be used multiple times and that customer information can be shared to save the transportation resources of logistics networks, which are considered in the proposed mathematical model. (3) A two-stage algorithm is designed to combine RS with vehicle routing optimization to optimize the logistics network. (4) Benchmark and real-world cases are utilized to test and verify the performance and applicability of the proposed model and solution algorithm in this study.

3. Problem Statement

RS is an effective strategy that can optimize logistics operation costs and resource allocation in a multicenter logistics network with pickups and deliveries [21, 35]. In this study, the logistics network consists of multiple distribution centers (DCs), multiple pickup centers (PCs), and multiple customers. The logistics network before and after optimization with RS, which is composed of DC1, DC2, DC3, PC1, PC2, and 52 customers (marked C1, C2, . . ., C52), is shown in Figure 1. The numerical number near the line represents the time distance between two elements (including facilities and customers).

In Figure 1(a), the unreasonable arrangement of vehicle routes and the nonsharing of resources are the main reasons for the higher operating costs of the logistics network. First, staggered driving and long-distance service are the two most significant unreasonable arrangements, and they cause additional travel costs. Second, vehicles that violate customers’ time windows often occur. Arriving early and arriving late are generating penalty costs. Finally, the nonsharing of resources between facilities results in the capacity of facilities and transportation resources being left unused. For example, the vehicle no longer works after returning from C2 to DC1 in the service route DC1 → C25 → C6 → C1 → C2 → DC1.

In Figure 1(b), the logistics network is optimized through the sharing of customers and transportation resources among facilities. First, the reallocation of customers between facilities facilitates the rearrangement of vehicles, which can avoid staggering and long-distance service.
Figure 1: Continued.
Second, vehicle resources can be better configured through sharing among multiple facilities. For example, V1 is used by DC3 and DC1. V2 and V3 have also implemented distribution and pickup services. The repeated use of vehicles prevents resources from being idle. Finally, the situation of vehicle violating the customers’ time window is avoided.

To clearly demonstrate the discounts that RS brings to logistics network optimization, six indicators are counted, namely, total travel cost (TTC), total penalty cost (TPC), total maintenance cost (TMC), total fixed cost (TFC), number of vehicles (NV), and total operating cost (TOC), which are listed in Table 1. The unit time travel cost using a vehicle can be set to $10/h, and the unit time penalty cost for waiting or late can be set to $20/h, and the maintenance cost using a vehicle in a working period can be defined as $100, and the fixed cost of a facility being used in a working period can be set to $200.

In Table 1, the gap of TOC and NV in the initial and optimized logistics network is $1880 and 7, respectively, which are highly significant. Before optimization, TTC ($1500), TPC ($440), and TMC ($1400) are the main elements that cause additional logistics costs. In the optimized logistics network, the penalty costs are avoided, and the reduction in the number of vehicles also reduces the maintenance costs with RS. In addition, the travel costs of vehicles are also greatly reduced. Therefore, RS is an effective strategy for optimizing the logistics network of the MDPDPRS.

4. Mathematical Model for MDPDPRS

4.1. Assumptions and Notations

Some necessary assumptions can ensure the usability of the mathematical model [75] and those assumptions are listed as follows [14, 30, 36, 42, 49, 50].

Assumption 1. In a working period, the demand and coordination of customers are stable and known.
Assumption 2. Centralized transportation among logistics facilities is performed by trucks.

Assumption 3. The vehicles can be used multiple times by the same or different logistics facilities.

The relevant notations and their descriptions are listed in Table 2.

4.2. Mathematical Model. A bi-objective mathematical model that minimizes the logistics operational costs (Equation (1)) and the number of vehicles (Equation (2)) is formed to solve the MDPDPRs. In Equation (1), the logistics operation cost is composed of four parts, which are marked by the TTC (Equation (3)), TPC (Equation (4)), TMC (Equation (5)), and TFC (Equation (6)). In Equation (2), \(x_{vcfk} \) represents the shared times of vehicle \(v \).

Min \(\text{TOC} = \text{TTC} + \text{TPC} + \text{TMC} + \text{TFC}, \)

Min \(\text{TNV} = \sum_{v \in V} \min \left\{ \sum_{c \in S_p} \sum_{h \in C_U} x_{vcvh}, 1 \right\}, \)

\[\text{TTC} = T \times \sum_{v \in V} \sum_{c \in C_U} \sum_{h \in C_U} \sum_{o \in S_p} x_{vcvh} \times d_{ch} \times f_v \times P_v \]

\[+ T \times \sum_{b \in B} \sum_{o \in S_p} \sum_{f \in S_F} \sum_{h \in C_U} x_{bof} \times d_{af} \times f_b \times P_b, \]

\[\text{TPC} = T \times \sum_{v \in V} \sum_{c \in C_U} \sum_{k \in R} x_{vcfk} \times (P_v \times \max\{E_c - A_{vck}, 0\} + P_v \times \max\{A_{vck} - L_v, 0\}), \]

\[\text{TMC} = \sum_{v \in V} \frac{M_v}{W} \min\{R_v, 1\} + \sum_{b \in B} \sum_{o \in S_p} \sum_{f \in S_F} \sum_{h \in C_U} \frac{M_b}{W} x_{bof}, \]

\[\text{TFC} = \sum_{f \in S_F} \frac{z_f \times I_f}{W}, \]

Subject to

\[\sum_{v \in V} \sum_{f \in S_F} \sum_{k \in R} x_{vcfk} = 1, \quad \forall c \in C_U, \]

\[R_v = \sum_{c \in S_p} \sum_{h \in C_U} x_{vcvh}, \quad \forall v \in V, \]

\[\sum_{f \in S_F} x_{vcfk} = 1, \quad \forall v \in V, \quad k \in R_v, \quad c \in C_U, \]

\[\sum_{h \in C_U} x_{vcvh} - \sum_{h \in C_U} x_{vhc} = 0, \quad \forall v \in V, \quad c \in C_U, \]
Table 1: Comparison of MDPDPRS before and after optimization.

	TTC ($)	TPC ($)	TMC ($)	TFC ($)	NV	TOC ($)	NV	TOC ($)	Gap
Initial	1500	440	1400	1000	14	4340	7	2460	7
Optimized	760	0	700	1000	7	2460	7	1880	

Table 2: Notations and description.

Set	Description
SD	Set of DCs, the total number of DCs is ND
SP	Set of PCs, the total number of PCs is NP
SF	Set of DCs and PCs, S=SP∪SD
CD	Set of delivery customers
CP	Set of pickup customers
CU	Set of all customers, U=CP∪Cp
V	Set of vehicles, the total number of vehicles is NV
B	Set of trucks, the total number of trucks is NB

Parameters

- Qf: Delivery demand of customer c, c ∈ CD
- Qc: Pickup demand of customer c, c ∈ CP
- [E, L]: Service time window of customer or logistics facility c, c ∈ C∪SF
- d:b:v: Travel distance between customer or facility c and customer or facility h, c, h ∈ C∪SF
- t:v:h: Travel time of a vehicle driving from customer or facility c to customer or facility h, c, h ∈ C∪SF
- Pe: Waiting penalty coefficient of arriving earliness (unit: dollars/unit time)
- Pt: Tardiness penalty coefficient of arriving delay (unit: dollars/unit time)
- W: Number of working periods in a year
- T: Number of working days in a working period
- Tr:v: Maximum travel time of vehicle v, v ∈ V
- Tb:v:b: Maximum travel time of truck b, b ∈ B
- f:v: Fuel consumption rate of vehicle v per km (unit: gallon/miles)
- b:v: Fuel consumption rate of truck b per km (unit: gallon/miles)
- Pf:v: Gasoline price (unit: dollars/gallon)
- Pb:v: Gasoline price (unit: dollars/gallon)
- Cv:v: Capacity of vehicle v, v ∈ V
- Cb:v:b: Capacity of truck b, b ∈ B
- Cp:v:f: Capacity of facility f, f ∈ SF
- M:v:C: Annual maintenance cost of vehicle v, v ∈ V
- M:b:f: Annual maintenance cost of truck b, b ∈ B
- l:v:f: Annual fixed cost of facility f, f ∈ SF
- R:v:f: The total service route number of vehicle v, f ∈ SF
- G:v:k:f: The departure time of vehicle v from facility f in the kth service route. v ∈ V, f ∈ SF, k ∈ Rv
- A:v:k:f: The arriving time of vehicle v at customer or facility c in the kth service route. v ∈ V, c ∈ CU∪SF, f ∈ Rv
- Q:v:f: The number of transported goods from facility o to f, o, f ∈ SF

Variables

- x:v:k:f: if customer c is served by vehicle v departing from DC or PC f in the kth service route of vehicle v; otherwise, x:v:k:f = 0, v ∈ V, c ∈ C, f ∈ SF, k ∈ V
- x:v:f: if the facility providing logistics service for customer c is changed from facility o to f; otherwise, x:v:o:f = 0, v ∈ V, c ∈ CU, f ∈ SF
- x:v:h: if vehicle v travels directly from facility o to customer or facility c to h; otherwise, x:v:h = 0, v ∈ V, c, h ∈ C∪SF
- x:b:f: if the goods transported from facility o to f is carried by truck k; otherwise, x:b:f,o = 0, b ∈ B, o, f ∈ SF
- x:b:w:f: if truck k departs from facility o and travels directly from facility w to f; otherwise, x:b:w:f,o = 0, b ∈ B, o, w, f ∈ SF
- z:v:f: if facility f agrees to share resource, otherwise, z:v:f = 0, f ∈ SF

Constraint (7) ensures that each customer is served once. Constraint (8) counts the shared times of vehicle v. Constraints (9)–(11) ensure that flow conservation is achieved on each customer. Constraints (12) and (13) are the flow balance constraints of the truck. Constraints (14)–(16) ensure that the loading quantity of each vehicle and each truck cannot
exceed their capabilities. Constraints (17) and (18) count the quantity of transshipment goods between logistics facilities. Constraints (19) and (20) guarantee that the total service quantity of each facility does not exceed its capacity. Constraints (21) and (22) require that the departure time and return time of each vehicle must meet the service time window of its served facility. Constraints (23) and (24) ensure that each vehicle must provide services for customers within the customers’ service time window. Constraint (25) requires that the total working time of each vehicle does not exceed its maximum working time. Constraints (26)–(28) are used to eliminate the sub-tours of each vehicle and truck. The constraints of relevant binary variables are listed in Constraints (29)–(34).

5. Solution Methodology for MDPDPRS

MDVRPTW and MDVRPPDTW are typical NP-hard problems [12, 18, 41]. Multi-objective optimization algorithm and two-stage algorithm are often designed in combination to solve MDVRPPDTW [14, 23, 36]. Here, a two-stage algorithm with customer clustering first and then vehicle routing optimization is designed to solve MDPDPRS. This two-stage hybrid algorithm is composed of k-means, CW, and NSGA-II algorithms, and named KCW-NSGA-II. In the first stage of KCW-NSGA-II, customers and resources are reconstructed by the k-means clustering algorithm [57, 58]. The main purpose of the second stage is to optimize vehicle routes and find the Pareto optimal solution. The CW algorithm is adopted to construct the initial solution for NSGA-II [33, 37, 64, 65, 67].

The designed algorithm flow is illustrated in Figure 2. Here, Gen is the current number of iterations; MaxGen is the maximum number of iterations; r is the number of iterations of the current internal re-optimization mechanism, which is between clustering and vehicle routing optimization; and MaxR is its maximum number of iterations.

In Figure 2, the two-stage characteristics of customer clustering first and vehicle routing optimization later are clearly demonstrated. First, a k-means customer clustering mechanism based on Manhattan distance is designed. The clustering results are checked, updated, and saved after finishing the reallocation of all customers. Second, the CW algorithm is adopted to design the initial population and initial feasible solution, which accelerates the speed and possibility of NSGA-II algorithm to find the Pareto optimal solution. Third, the elite strategy and genetic operation of NSGA-II are used to iteratively optimize the generated initial solution to find the Pareto optimal solution, which is mainly embodied in the change of Gen. Fourth, a regulatory re-optimization mechanism between customer clustering and vehicle routing optimization is set up to maintain gene stability during genetic operation, and this mechanism is implemented by the re-updating of r. Finally, if Gen is updated to MaxGen, then the iterative optimization of the algorithm is finished and the found Pareto optimal solution is outputted.

5.1. K-Means Clustering Algorithm. Customer clustering is an important measure to reduce the complexity of solving MDVRPPDTW [36]. K-means algorithm is widely used to solve MDVRPTW due to its simplicity and efficiency [14, 21]. The k-means clustering pseudocode based on Manhattan distance is listed in Algorithm 1.

5.2. CW Algorithm. A common and effective way to construct the initial solution of VRP is the CW savings algorithm, which is actually a greedy heuristic algorithm [33, 37, 76]. The service time windows of customers and the capacity of vehicles are the main constraints to construct the initial solution [77, 78]. The pseudocode of the CW algorithm designed in this study is listed in Algorithm 2.

5.3. NSGA-II. NSGA-II is a multi-objective optimization algorithm based on GA, which searches the Pareto optimal solution for multi-objective optimization [38, 64, 68]. Fast nondominated sorting operator, individual crowding distance operator, and elite strategy selection operator are the three key designs of NSGA-II [33, 65]. Here, we suppose that the population is P and n individuals exist, and the individual objective function value of individual i is x_i.

5.3.1. Fast Nondominated Sorting Operator. The key design of NSGA-II is to find the Pareto optimal solution. To enhance the possibility of finding the Pareto solution, the fast nondominated sorting operator stratifies the population P according to the quality of individual solutions [33, 64, 65, 67]. This method is a cyclic process of grading based on population fitness. Here, the nondominated solution set and the rank value assigned to the individual are the two indicators for fast nondominated sorting. Assume that F_i represents the nondominated solution set, and r_i represents the rank value of individual i. Then, the pseudocode of the fast nondominated sort operator is shown in Algorithm 3.

5.3.2. Crowding Distance and Its Comparison Principle. The crowding distance is designed to drive the population to converge to the Pareto optimal solution and maintain the diversity of the population, which is mainly for individuals in the same nondominant layer [38, 64, 68]. We assume that n individuals exist in the nondominant level of S_p, and the objective function value of individual i is x_i. Then, the crowding distance is calculated as

$$L(i) = \begin{cases} \infty, & i = 1 \text{ or } i = n, \\ |x_{i-1} - x_{i+1}|, & 2 \leq i \leq n-1. \end{cases}$$

(35)

In Equation (35), $|x_{i-1} - x_{i+1}|$ represents the sum of the distance between individuals $i-1$ and $i+1$ in each direction of the objective function. Here, the objective function values of individuals need to be sorted before calculating the crowding distance. If the rank values of individuals i and j are i_r and j_r, then the crowding distance is $L(i)$ and $L(j)$, respectively. The individual crowding comparison strategy based on crowding distance and nondominated ranking results is as follows.
Algorithm 1: Procedure of k-means algorithm.

Input: The datasets, including logistics facility and customer information, such as the coordination, time windows, and demands.

Output: The clustering results.

1. **Step 1:** Select k objects as the initial clustering center.
2. **Step 2:** Calculate the Manhattan distance between each customer and each clustering center.
3. **Step 3:** (Re-)Assign each customer to their closest clustering center.
4. **Step 4:** If some customers need to be adjusted among the clustering results, then enter **Step 3**; otherwise, go to **Step 5**.
5. **Step 5:** Update the clustering centers.
6. **Step 6:** Output the clustering results.

Algorithm 1: Procedure of k-means algorithm.
(1) If \(i > j \), then individual \(i \) is the best one. If \(i < j \), then individual \(j \) is the best one.

(2) If \(i = j \), then the individual with the most crowded distance is the better one.

5.3.3. Elite Strategy Selection Operator. To prevent the Pareto optimal solution from being lost in the iteration process, an elite strategy selection operator is designed, which selects the optimal solution by nondominated sorting and crowding distance between the parent and offspring populations. Suppose that the current iteration is \(t \) and the parent population is \(P_t \), the offspring population is \(Q_t \), and \(R_t \) is composed by \(P_t \) and \(Q_t \). First, a fast nondominated sorting is performed for \(R_t \), and the crowding distance is then calculated. On the basis of the crowding distance and the nondominated layer, \(N \) individuals with high-quality solutions are selected to form a new population \(P_{t+1} \).

6. Empirical Analyses

6.1. Algorithm Comparison. The standard NSGA-II, GA-PSO, and MOPSO are adopted for comparison to verify the applicability and effectiveness of the proposed KCW-NSGA-II algorithm in solving MDPDPDRS \[38, 64–66, 68, 79\]. The benchmark dataset C-mdvrptw (consisting of instances of 20 groups) is utilized for the test, which is mainly obtained from the website. Networking and emerging optimization and their related characteristics are listed in Table 3. To meet the characteristics of the research object in this study, depots are regarded as logistics facilities, and customers are divided into two types, that is, those with distribution demands and those with pickup demands.

In Table 3, the number of customers and logistics facilities in each instance is different. The first instance comprises four facilities and 48 customers, whereas Instance 10 includes six facilities and 288 customers. In addition, the loading capacity of vehicle used in each instance is differentiated.

 Relevant parameters are properly unified to mitigate their effects on algorithm performance. These parameters are set as follows \[38, 64–66, 68, 79\]: (1) parameters about GA: population size \(\text{popsize} = 200 \), selection possibility \(sp = 0.6 \), crossover possibility \(cp = 0.9 \), mutation possibility \(mp = 0.2 \); (2) parameters about PSO: \(\text{popsize} = 200 \), inertia weight \(iw = 0.85 \), the personal learning confidences \(pc = 2 \), and social learning confidence \(gc = 3 \); and (3) other relevant parameters: maximum number of generation \(\text{genmax} = 1200 \) and velocity of vehicle \(v = 5 \). The costs, number of vehicles (NV), and computation time (CT) are calculated to verify the performance of the algorithms and the numerical results are listed in Table 4.

The numerical results shown in Table 4 demonstrate that the proposed algorithm KCW-NSGA-II performs better than the other three algorithms. First, the average cost of the four algorithms is $2584, $2944, $2746, and $3025, respectively. By contrast, the costs and the number of vehicles optimized by KCW-NSGA-II are the most economical solution compared with the other three algorithms in each instance. Second, the value of \(t \)-test also shows that the KCW-NSGA-II is significantly different from the other three algorithms. In addition, the proposed algorithm can obtain the optimal solution quickly. Therefore, the proposed algorithm KCW-NSGA-II outperforms the other three algorithms. Moreover, this algorithm can be adjusted to address problems such as VRPMDP, VRPSDP, and PVRP.

6.2. Data Source and Relevant Parameter Setting. As an inland international logistics hub and an open highland, Chongqing is a new first-tier city in China. Therefore, as our experimental results, the logistics network adopted from Chongqing is appropriate to verify the applicability of this study. Six logistics facilities (i.e., DC1, DC2, DC3, PC1, PC2, and PC3) and 220 customers are the main elements of this real-world logistics network. The information and characteristics of these elements are listed in Table 5, and the spatial allocation information is plotted in Figure 3.

In Table 5, the number of customers served by the six logistics facilities is 27, 36, 46, 31, and 41, respectively. In Figure 3, an obvious feature is that the customer allocation of each facility is relatively dispersed. The service area edge of each facility is not a clear division. In Table 6, the initial vehicle routes for the logistics network are shown, including the specific information of each service route.

In Table 6, the total number of vehicles used in the initial logistics network is 33, and the number of vehicles used at each facility is 5, 6, 6, 6, 4, and 6, respectively. In addition, some vehicles return to their origin early, such as V9, V10, V17, and V18, indicating that these vehicle resources are underutilized. The service vehicle routes of DC1 and the 27 customers it serves in the logistics network are shown in Figure 4.

In Figure 4, the service routes of V3, V4, and V5 are relatively complex. V5 performs delivery services for customers C23, C22, C6, C16, C2, and C5. However, these customers may be closer to DC3 on the basis of the perspective of spatial distribution. Therefore, optimizing this logistics network is necessary. The values of the relevant parameters used in this real-world case study are shown in Table 7 \[38, 64, 65, 68\].

6.3. Optimization Results. Clustering customers to optimize resource allocation is the first step in optimizing the logistics network. The customer clustering results of this logistics network by \(k \)-means algorithm are shown in Figure 5.

In Figure 5, the service relationship between customers and facilities is optimized by clustering. Each customer is covered by the logistics facility that is located close to that customer. On the whole, the service area of each logistics facility has been obviously allocated. For example, C23, C22, C6, C16, and C2 are served by DC1 before clustering; however, they are also served by DC3. Statistical analysis of customers whose service relationship has changed like those five customers is the key to handle centralized transportation. The details of the amount of goods transferred among facilities are shown in Figure 6.
In Table 9, the number of vehicles used jointly by the six logistics facilities is 12. Some of the vehicles are used multiple times within and between the facilities. For example, V1 performs the route DC1 → C86 → C13 → C20 → C11 → C4 → C12 → C7 → C5 → C1 → C25 → C3 → C8 → DC1 and the route DC3 → C73 → C97 → C42 → C2 → C82 → C29 → C16 → C40 → DC3, which occur in DC1 and DC3, respectively. V10 provides service for PC2 and PC3 successively. V2, V4, and V6 are shared in DC1, DC2, and DC3, respectively.

To clarify the effect of the proposed model and algorithm, the gap of the cost and the number of vehicles in the initial and optimized logistics network are counted and listed in Table 10. Here, the TOC of the logistics facility includes the TTC, TFC, TPC, and TMC. Centralized transportation is a special project generated by the sharing of customer information and transportation resources among facilities. Therefore, the costs of centralized transportation should be jointly borne by all the facilities participating in the sharing. Similarly, given that
the vehicle is shared and some vehicles are used multiple times, the maintenance of the vehicles should be co-paid by all facilities.

In Table 10, the fixed costs of each facility are stable, which are $315, $427, $533, $578, $612, and $590, respectively. Reducing the travel, penalty, and maintenance costs is the main objective of optimizing the logistics operating cost. The TOC of the initial logistics network is $25473, whereas the optimized TOC is $16614, which indicates that the logistics network is significantly improved. Transportation resources are greatly saved, as the number of vehicles before and after optimization is 33 and 14, respectively. The gap of TTC before and after optimization is shown in Figure 7, which can directly prove the optimization effect of vehicle routes.

Table 3: Characteristics of benchmark datasets.

Instance	Datasets	Maximum loading capacity	Number of depots	Number of customers	Delivery demands	Pickup demands
1	C-mdvrptw-pr01	200	2	2	24	24
2	C-mdvrptw-pr02	195	2	2	48	48
3	C-mdvrptw-pr03	190	2	2	72	72
4	C-mdvrptw-pr04	185	2	2	96	96
5	C-mdvrptw-pr05	180	2	2	120	120
6	C-mdvrptw-pr06	175	2	2	144	144
7	C-mdvrptw-pr07	200	3	3	36	36
8	C-mdvrptw-pr08	190	3	3	72	72
9	C-mdvrptw-pr09	180	3	3	108	108
10	C-mdvrptw-pr10	170	3	3	144	144
11	C-mdvrptw-pr11	200	2	2	24	24
12	C-mdvrptw-pr12	195	2	2	48	48
13	C-mdvrptw-pr13	190	2	2	72	72
14	C-mdvrptw-pr14	185	2	2	96	96
15	C-mdvrptw-pr15	180	2	2	120	120
16	C-mdvrptw-pr16	175	2	2	144	144
17	C-mdvrptw-pr17	200	3	3	36	36
18	C-mdvrptw-pr18	190	3	3	72	72
19	C-mdvrptw-pr19	180	3	3	108	108
20	C-mdvrptw-pr20	170	3	3	144	144

Table 4: Comparison results of the four algorithms.

Instance	KCW-NSGA-II	NSGA-II	GA-PSO	MOPSO										
Cost	NV	CT	Cost	NV	CT	Cost	NV	CT	Cost	NV	CT	Cost	NV	CT
1	1033	4	71	1178	4	77	1298	5	82	1593	5	98		
2	1787	8	72	1724	9	91	2172	10	93	2115	8	119		
3	2742	17	110	3121	18	133	2879	18	103	3309	18	127		
4	3216	20	129	4027	21	146	3371	21	171	3579	21	184		
5	3693	18	131	3827	22	239	3835	22	217	4121	30	264		
6	3569	15	306	3671	23	290	4008	24	301	4577	33	298		
7	1687	7	85	2386	9	83	1767	8	97	2044	14	79		
8	2093	12	95	2394	13	141	2181	12	114	2361	12	147		
9	2614	19	218	4010	22	210	2653	20	203	3167	30	240		
10	3123	24	258	3355	24	311	3277	25	277	3459	29	325		
11	1118	4	77	1405	5	74	1190	6	85	1754	11	101		
12	2068	10	94	2692	11	96	2394	11	88	2135	11	114		
13	1572	18	97	2655	18	103	2690	22	119	3282	28	99		
14	3028	21	162	3564	24	186	3108	23	162	3620	25	172		
15	3709	22	209	4117	26	240	3812	27	241	4272	33	248		
16	3993	25	262	4072	25	305	4154	28	301	4366	34	339		
17	1578	7	69	1763	7	87	1665	7	65	1652	7	126		
18	2324	12	66	2428	12	110	2430	14	109	2635	19	166		
19	2440	20	212	2790	21	206	2493	22	202	3029	22	241		
20	3295	23	186	3692	25	316	3546	25	213	3421	26	309		
Average	2584	15	148	2944	17	172	2746	18	162	3025	21	190		
t-test	-13.95	-3.73	-3.29	-6.44	-4.76	-3.41	-8.60	-4.84	-5.31					
p-value	$9.8E-12$	$7.2E-04$	$1.9E-03$	$1.8E-06$	$6.8E-05$	$1.5E-03$	$2.8E-08$	$5.7E-05$	$2.0E-05$					
Table 5: Characteristics of the logistics network.

Symbol	Description	Number of served customers	Mark of customers
○	DC1 and its customers	27	C1 - C27
●	DC2 and its customers	36	C28 - C63
●	DC3 and its customers	39	C64 - C102
△	PC1 and its customers	46	C103 - C148
□	PC2 and its customers	31	C149 - C179
●	PC3 and its customers	41	C180 - C220

Figure 3: Spatial distribution of DCs, PCs, and their customers.

Table 6: Distribution routes of DCs and pickup routes of PCs in the initial logistics network.

Facility	Vehicle	Departure time	Arriving time	Route
DC1	V1	162	689	DC1→C19→C1→C17→DC1
	V2	0	906	DC1→C13→C7→C20→C12→DC1
	V3	159	619	DC1→C8→C25→C11→C3→C4→C10→DC1
	V4	33	730	DC1→C27→C24→C21→C9→C26→C14→C15→C18→DC1
	V5	0	924	DC1→C23→C22→C6→C16→C2→C5→DC1
	V6	0	1037	DC2→C42→C45→C48→C34→C35→C50→C54→DC2
	V7	30	1016	DC2→C58→C39→C41→C47→C37→C30→C43→C40→DC2
	V8	0	1014	DC2→C46→C61→C28→C59→C36→C32→C62→C52→C60→DC2
	V9	0	319	DC2→C63→C51→C49→DC2
DC2	V10	35	823	DC2→C56→C55→C38→C53→DC2
	V11	10	1196	DC2→C31→C33→C44→C29→C57→DC2
In Figure 7, the initial TTC of DC1, DC2, DC3, PC1, PC2, and PC3 is $2210, $3581, $3730, $4900, $3067, and $3506, respectively. The optimized TTC of each facility is $2047, $1738, $1134, $2064, $2025, and $2361, respectively. The difference of TTC before and after optimization is relatively obvious. Although the transportation cost generated by the centralized transportation is $1651, the logistics network is still significantly optimized on the whole.
Table 7: Relevant parameter setting.

Parameter	Numerical value	Parameter	Numerical value
P_E	35 per hour	C_b	1000
P_L	35 per hour	C_f	2000
W	52	M_v	13000
T	7	M_b	20000
T_v	10 hour	[I_{DC1}, I_{DC2}, I_{DC3}, I_{IPC1}, I_{IPC2}, I_{IPC3}]	[315, 427, 533, 578, 612, 590]
T_b	15 hour	Population size	300
f_v	0.363 gallon per miles	Maximum generations	1000
f_b	0.566 gallon per miles	Crossover probability	0.8
P_v	6.18 per gallon	Mutation probability	0.2
P_b	6.18 per gallon	Travel speed of vehicle	40
C_v	200	Travel speed of truck	60

Customers in this area are served by DC1
Customers in this area are served by DC2
Customers in this area are served by DC3

(a)

Figure 5: Continued.
6.4. Analysis and Discussion. The optimization of the logistics network is divided into four cases based on the RS strategy to analyze the influence of RS on the optimization of the logistics network. In Case 1, customer information and transportation resources are privately owned by each logistics facility. In Case 2, RS is adopted by DCs (i.e., DC1, DC2, and DC3). Correspondingly, in Case 3, the members participating in RS are PCs (i.e., PC1, PC2, and PC3). In Case 4, all six facilities receive the RS strategy. Transportation resources can be used jointly by DCs and PCs in Case 4. Table 11 and Figure 8 show the numerical optimization results of the logistics network in the four scenarios.

In Table 11 and Figure 8, Case 4 outperforms Cases 2 and 3 in most aspects. First, the TOC of Cases 2 and 3 is $17038 and $16977, respectively, which are larger than
Table 9: Vehicle distribution and pickup sharing routes in the optimized logistics network.

Vehicle	Facility	Departure time	Arriving time	Origin	Destination	Vehicle distribution and pickup sharing routes
V1		000	002	DC1	DC3	C6 — C13 — C20 — C11 — C14 — C12 — C7 — C5 — C1 — C25 — C3 — C8
V2	DC1	077	012	DC1	DC1	C17 — C90 — C101 — C78 — C30 — C18 — C65 — C35 — C96 — C73 — C50 — C54 — C37
V3		0	012	DC1	DC1	C63 — C21 — C41 — C19 — C26 — C69 — C37 — C13 — C10 — C68
V4		0	012	DC2	DC2	C46 — C31 — C80 — C64 — C33 — C36 — C85 — C88 — C41 — C47 — C38 — C44
V5	DC2	65	026	DC2	DC2	C32 — C30 — C70 — C99 — C88 — C33 — C100 — C40 — C64 — C60
V6	DC3	121	043	DC3	DC3	C32 — C43 — C28 — C36 — C39 — C41 — C47 — C38 — C44
V7		450	012	DC3	DC3	C39 — C97 — C43 — C3 — C82 — C29 — C36 — C40
V8	PC1	59	056	PC1	PC1	C119 — C115 — C198 — C130 — C194 — C61 — C186 — C128 — C116
V9	PC1	640	1089	PC1	PC1	C112 — C134 — C140 — C131 — C159 — C137 — C118 — C138 — C109 — C218 — C110 — C108 — C124
V10	PC1	393	906	PC1	PC1	C145 — C155 — C104 — C172 — C126 — C144 — C204 — C125
V11	PC1	37	571	PC2	PC2	C113 — C148 — C166 — C133 — C152 — C107 — C200 — C215 — C208 — C106 — C202
V12	PC1	392	1104	PC2	PC2	C219 — C220 — C103 — C213 — C306 — C174 — C192 — C149 — C173 — C175 — C184
V13	PC2	0	630	PC2	PC2	C148 — C160 — C162 — C179 — C196 — C207 — C122 — C139 — C189 — C200 — C201 — C182 — C166 — C159
V14	PC2	692	997	PC3	PC3	C114 — C211 — C156 — C120 — C176 — C309 — C179 — C177 — C164 — C154 — C117 — C139 — C111
V15	PC2	28	306	PC3	PC3	C341 — C188 — C143 — C163 — C150 — C216 — C190 — C112
V16	PC2	355	843	PC3	PC3	C117 — C191 — C180 — C132 — C160 — C171 — C183 — C155
V17	PC3	49	170	PC3	PC3	C167 — C136 — C153 — C142 — C147 — C187 — C185 — C123 — C202 — C170
V18	PC3	192	928	PC3	PC3	C181 — C137 — C193 — C131 — C214 — C210 — C148 — C158 — C199
$13020 in Case 4. Second, the number of vehicles and the TMCs of Scenario 4 is 14 and $539, respectively, which indicates that Case 4 is more conducive to saving resources. Finally, the gap of TOC between Cases 4 and 1 is $8859. Therefore, if the six logistics facilities adopt RS simultaneously, then the logistics costs can be optimized better and the transportation resources can be saved considerably.

6.5. Management Insights. In this study, the RS strategy optimizes the logistics network significantly by reallocating customers, including the logistics operation costs and the number of vehicles. Therefore, the management insights obtained in this study are as follows:

(1) In a multi-depot, large-scale logistics network with pickups and deliveries, customer information, facility capacity, and transportation resources can be shared to amplify resource utilization by introducing RS strategies. RS is not only conducive to the operation of logistics facilities, including the use of logistics costs and transport resources, but also conducive for providing customers with more convenient logistics services. In a logistics network with vehicle sharing, vehicles are used multiple times within and between facilities to avoid idle

Facility	Initial TTC	Optimized TTC	Gap
DC1	2210	2047	1738
DC2	3581	1738	1844
DC3	3730	1134	2596
PC1	4900	2064	2836
PC2	3067	2025	1012
PC3	3506	2361	1145
Centralized transportation	-	1651	1651
Total	25473	16614	8859

Table 10: Comparison before and after optimization.

Cases	TTC ($)	TPC ($)	TFC ($)	NV	TMC ($)	TOC ($)	NV	TOC ($)	Gap
Case 1	20994	246	3055	33	1178	25473			
Case 2	17038	120	3055	23	841	21053	10	3956	4420
Case 3	16977	126	3055	24	876	21034	9	4017	4439
Case 4	13020	0	3055	14	539	16614	19	7974	8859

Table 11: Comparison results of the four cases.

Figure 7: Comparison results of TTC before and after optimization.
vehicle resources. In addition, the sharing of customer information helps facilities provide logistics services to customers with higher quality. Therefore, participating actively in RS is remarkably necessary for LSPs.

(2) From the perspective of local traffic management departments and environmental departments, the optimization of the logistics network through RS not only reduces transportation resources but also relieves the local traffic pressure. In addition, the efficient use of resources promotes the development of green environment. Therefore, local government departments can actively support and give incentive policies to promote RS among local logistics facilities to optimize the logistics network and ease the traffic environment. Moreover, the effective sharing mechanism in the multicenter logistics network with pickups and deliveries can enhance the efficient operation of the logistics system and promote the green and sustainable development of the local intelligent logistics system. Therefore, the introduction of RS can promote the construction and development of local smart and green urban logistics with the incentive of departments and the active participation of facilities.

7. Conclusions

This study handles the MDPDPRS, which optimizes the logistics network by sharing customer and transportation resources. The reconfiguration of resources and customers improve the operating efficiency of the logistics network. The main contributions of this study include the following aspects. First, the MDPDPRS is modeled as a bi-objective mathematical model to optimize the total logistics operating cost and number of vehicles. Second, a two-stage hybrid algorithm is designed to solve the MDPDPRS, which contains the k-means, CW, and NSGA-II algorithms. Third, the application of the proposed mathematical model and methodology are improved by the numerical result of a real-world case study and benchmark.

In view of the shared transportation resources and customers' information, a two-stage algorithm is designed, which initially clusters customers to reconfigure the resources and then optimizes the vehicle routes. On the one hand, k-means algorithm, which clusters customers based on Manhattan distance, helps reduce the difficulty of solving MDPDPRS and enables vehicle resources to be used in a centralized manner multiple times. On the other hand, the combination of CW and NSGA-II algorithms improves the global searching capability and the speed of the algorithm in finding the Pareto optimal solutions.

The numerical results of a real-word case study, which is obtained in Chongqing, China, is discussed and analyzed to improve the application and performance of the designed mathematical model and methodology in solving practical problems similar to the MDPDPRS. The gap of the logistics operating costs and number of vehicles before and after the optimization are $8859 and 19, respectively, which verify the effectiveness of the model and methodology proposed in this study. In addition, the algorithm comparison results of benchmarks (from C-mdvrptw datasets) verify that the proposed KCW-NSGA-II algorithm is superior to the standard NSGA-II, GA-PSO, and MOPSO. The results of numerical discussion on the four cases in which different RS strategies are adopted prove that RS is helpful to optimize logistics costs and save transportation resources.

In this study, the bi-objective mathematical model and methodology of MDPDPRS are designed, which provide references for the reconfiguration of resources and the optimization of logistics operation costs. In view of the limitations of the current study and the dynamic development of the logistics industry, further research can be considered from the following aspects. (1) The dynamic change in customer demands and customer satisfaction are the two aspects that the realistic LSPs focus on, and these aspects can be added into the study of MDPDPRS. (2) Constructing a dynamic mathematical programming model and designing an exact algorithm to find the exact solution of MDPDPRS are worthy of research. (3) Exploring the approaches to realize RS in a large logistics network and the means to reduce the effect of logistics transportation on the environment can be considered in the study of MDPDPRS. (4) Considering the cost sharing mechanism under the RS mechanism to promote the formation of collaboration and maintain its stability can enrich the study of MDPDPRS.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they do not have any conflicts of interest.
Acknowledgments

This research was supported by National Natural Science Foundation of China (Project Nos. 71871035 and 41977337), the Fundamental Research Funds for the Central Universities (grant no. 22102010009), Humanity and Social Science Youth Foundation of Ministry of Education of China (18YJC630189), Key Science and Technology Research Project of Chongqing Municipal Education Commission (KJZD-K202000702), Key Project of Human Social Science of Chongqing Municipal Education Commission (No. 20SKGH079), Social Science Foundation of Chongqing of Chongqing Municipal Education Commission (No. 2019YBGL054), and Chongqing Graduate Tutor Team Construction Project (No. JDDSTD2019008). This research was also supported by 2018 Chongqing Liuchuang Plan Innovation Project (cx2018111).

References

[1] C. K. M. Lee, Y. Lv, K. K. H. Ng, W. Ho, and K. L. Choy, “Design and application of Internet of things-based warehouse management system for smart logistics,” International Journal of Production Research, vol. 56, no. 8, pp. 2753–2768, 2017.

[2] S. Liu, Y. Zhang, Y. Liu, L. Wang, and X. V. Wang, “An "Internet of Things" enabled dynamic optimization method for smart vehicles and logistics tasks,” Journal of Cleaner Production, vol. 215, pp. 806–820, 2019.

[3] S. A. R. Khan, C. Jian, Y. Zhang, H. Golpira, A. Kumar, and A. Sharir, “Environmental, social and economic growth indicators spur logistics performance: from the perspective of South Asian Association for Regional Cooperation countries,” Journal of Cleaner Production, vol. 214, pp. 1011–1023, 2019.

[4] O. Seroka-Stolka, “The development of green logistics for implementation sustainable development strategy in companies,” Procedia - Social and Behavioral Sciences, vol. 151, pp. 302–309, 2014.

[5] G. Ann E, K. Uday S, and S. Abraham, “Design and operation of an order-consolidation warehouse: models and application,” European Journal of Operational Research, vol. 58, no. 1, pp. 14–36, 1992.

[6] T. C. Poon, K. L. Choy, H. K. H. Chow, H. C. W. Lau, F. T. S. Chan, and K. C. Ho, “A RFID case-based logistics resource management system for managing order-picking operations in warehouses,” Expert Systems with Applications, vol. 36, no. 4, pp. 8277–8301, 2009.

[7] R. Dekker, J. Bloemhof, and C. Mallidis, “Operations Research for green logistics - an overview of aspects, issues, contributions and challenges,” European Journal of Operational Research, vol. 219, no. 3, pp. 671–679, 2012.

[8] Y. Yu, C. Yu, G. Xu, R. Y. Zhong, and G. Q. Huang, “An operation synchronization model for distribution center in E-commerce logistics service,” Advanced Engineering Informatics, vol. 43, 2020.

[9] S. A. R. Khan, “The nexus between carbon emissions, poverty, economic growth, and logistics operations empirical evidence from southeast Asian countries,” Environmental Science and Pollution Research, vol. 26, no. 13, pp. 13210–13220, 2019.

[10] W. Zhang, M. Zhang, W. Zhang, Q. Zhou, and X. Zhang, "What influences the effectiveness of green logistics policies? A grounded theory analysis," Science of the Total Environment, vol. 714, Article ID 136731, 2020.

[11] M. Gansterer and R. F. Hartl, “Shared resources in collaborative vehicle routing,” Top, vol. 28, no. 1, pp. 1–20, 2020.

[12] M. Mirabi, S. M. T. Fatemi Ghomi, and F. Jolai, "Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem," Robotics and Computer-Integrated Manufacturing, vol. 26, no. 6, pp. 564–569, 2010.

[13] M. D. A. Serna, C. A. S. Urán, J. A. Z. Cortes, and A. F. A. Benitez, “Vehicle routing to multiple warehouses using a memetic algorithm,” Procedia - Social and Behavioral Sciences, vol. 160, pp. 587–596, 2014.

[14] Y. Wang, J. Zhang, K. Assogba, Y. Liu, M. Xu, and Y. Wang, “Collaboration and transportation resource sharing in multiple centers vehicle routing optimization with delivery and pickup,” Knowledge-Based Systems, vol. 160, pp. 296–310, 2018.

[15] M. Zhang, S. Pratap, G. Q. Huang, and Z. Zhao, “Optimal collaborative transportation service trading in B2B e-commerce logistics,” International Journal of Production Research, vol. 55, no. 18, pp. 5485–5501, 2017.

[16] W. Ho, G. T. S. Ho, P. Ji, and H. C. W. Lau, “A hybrid genetic algorithm for the multi-depot vehicle routing problem,” Engineering Applications of Artificial Intelligence, vol. 21, no. 4, pp. 548–557, 2008.

[17] Y. Wang, X. Ma, Z. Li, Y. Liu, M. Xu, and Y. Wang, “Profit distribution in collaborative multiple centers vehicle routing problem,” Journal of Cleaner Production, vol. 144, pp. 203–219, 2017.

[18] D. Chen and Z. Yang, “Multiple depots vehicle routing problem in the context of total urban traffic equilibrium,” Journal of Advanced Transportation, vol. 2017, Article ID 8524960, 14 pages, 2017.

[19] I. Gribkovskaiia, Ø. Halskau, G. Laporte, and M. Vlček, “General solutions to the single vehicle routing problem with pickups and deliveries,” European Journal of Operational Research, vol. 180, no. 2, pp. 568–584, 2007.

[20] J. Luo and M.-R. Chen, “Multi-phase modified shuffled frog leaping algorithm with extremal optimization for the MDVRP and the MDVRPTW,” Computers & Industrial Engineering, vol. 72, pp. 84–97, 2014.

[21] S. Deng, Y. Yuan, Y. Wang, H. Wang, and C. Koll, “Collaborative multicenter logistics delivery network optimization with resource sharing,” PLoS One, vol. 15, no. 11, Article ID e0242555, 2020.

[22] A. Angelopoulos, D. Gavalas, C. Konstantopoulos, D. Kyriapiidas, and G. Pantziou, “Incentivized vehicle relocation in vehicle sharing systems,” Transportation Research Part C: Emerging Technologies, vol. 97, pp. 175–193, 2018.

[23] Y. Wang, Y. Yuan, X. Guan et al., “Collaborative two-echelon multicenter vehicle routing optimization based on state-space-time network representation,” Journal of Cleaner Production, vol. 258, 2020.

[24] L. Verdonck, A. Caris, K. Ramaekers, and G. K. Janssens, “Collaborative logistics from the perspective of road transport companies,” Transportation Research Part C: Emerging Technologies, vol. 33, no. 6, pp. 700–719, 2013.

[25] C. Defryn and K. Sørensen, “A fast two-level variable neighborhood search for the clustered vehicle routing problem,” Computers & Operations Research, vol. 83, pp. 78–94, 2017.

[26] R. J. Kuo, C. H. Mei, F. E. Zulvia, and C. Y. Tsai, “An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation,” Neurocomputing, vol. 205, pp. 116–129, 2016.
[27] S. Yang, L. Ning, P. Shang, and L. Tong, "Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows," Transportation Research Part E: Logistics and Transportation Review, vol. 135, 2020.

[28] N. A. Wassan, G. Nagy, and S. Ahmadi, "A heuristic method for the vehicle routing problem with mixed deliveries and pickups," Journal of Scheduling, vol. 11, no. 2, pp. 149–161, 2008.

[29] N. Wassan and G. Nagy, "Vehicle routing problem with deliveries and pickups: modelling issues and meta-heuristics solution approaches," International Journal of Transportation, vol. 2, no. 1, pp. 95–110, 2014.

[30] R. Liu, X. Xie, V. Augusto, and C. Rodriguez, "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, vol. 230, no. 3, pp. 475–486, 2013.

[31] Q. Chen, K. Li, and Z. Liu, "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, vol. 69, pp. 218–235, 2014.

[32] S. Vaziri, F. Etebari, and B. Vahdani, "Development and optimization of a horizontal carrier collaboration vehicle routing model with multi-commodity request allocation," Journal of Cleaner Production, vol. 224, pp. 492–505, 2019.

[33] Y. Wang, S. Peng, X. Zhou, M. Mahmoudi, and L. Zhen, "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, vol. 143, 2020.

[34] E. Benavent, M. Landete, E. Mota, and G. Tirado, "The multiple vehicle pickup and delivery problem with LIFO constraints," European Journal of Operational Research, vol. 243, no. 3, pp. 752–762, 2015.

[35] Y. Wang, Q. Li, X. Guan, M. Xu, Y. Liu, and H. Wang, "Two-echelon collaborative multi-depot multi-period vehicle routing problem," Expert Systems with Applications, vol. 167, 2021.

[36] Y. Wang, S. Peng, C. Xu et al., "Two-echelon logistics delivery and pickup network optimization based on integrated cooperation and transportation fleet sharing," Expert Systems with Applications, vol. 113, pp. 44–65, 2018.

[37] T. Pichpibul and R. Kawtummachai, "An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem," ScienceAsia, vol. 38, no. 3, 2012.

[38] A. Martínez-Puras and J. Pacheco, "MOAMP-Tabu search and NSGA-II for a real Bi-objective scheduling-routing problem," Knowledge-Based Systems, vol. 112, pp. 92–104, 2016.

[39] J. Luo and M.-R. Chen, "Improved Shuffled Frog Leaping Algorithm and its multi-phase model for multi-depot vehicle routing problem," Expert Systems with Applications, vol. 41, no. 5, pp. 2535–2545, 2014.

[40] S. N. Parragh, K. F. Doerner, and R. F. Hartl, "A survey on pickup and delivery problems," Journal für Betriebswirtschaft, vol. 58, no. 2, pp. 81–117, 2008.

[41] C. Ting and C. H. Chen, "Combination of multiple ant colony system and simulated annealing for the multi-depot vehicle-routing problem with time windows transportation research record," Journal of the Transportation Research Board, vol. 2089, no. 1, pp. 85–92, 2008.

[42] S. Yanik, B. Bozkaya, and R. deKervenoael, "A new VRPPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, vol. 236, no. 3, pp. 879–890, 2014.

[43] M. Alzaqebah, S. Jawarneh, S. Jawarneh, H. M. Sarim, and S. Abdullah, "Bees algorithm for vehicle routing problems with time windows," International Journal of Machine Learning and Computing, vol. 8, no. 3, pp. 236–240, 2018.

[44] M. Oberscheider, J. Zazgornik, M. Gronalt, and P. Hirsch, "An exact approach to minimize the greenhouse gas emissions in timber transport," Journal of Applied Operational Research, vol. 7, no. 2, pp. 43–59, 2015.

[45] M. Oberscheider, J. Zazgornik, C. B. Henriksen, M. Gronalt, and P. Hirsch, "Minimizing driving times and greenhouse gas emissions in timber transport with a near-exact solution approach," Scandinavian Journal of Forest Research, vol. 28, no. 5, pp. 493–506, 2013.

[46] A. Bettinelli, A. Ceselli, and G. Righini, "A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows," Mathematical Programming Computation, vol. 6, no. 2, pp. 171–197, 2014.

[47] S. Irnich, "A multi-depot pickup and delivery problem with a single hub and heterogeneous vehicles," European Journal of Operational Research, vol. 122, no. 2, pp. 310–328, 2000.

[48] E. Queiroga, Y. Frota, R. Sadykov, A. Subramanian, E. Uchoa, and T. Vidal, "On the exact solution of vehicle routing problems with backhauls," European Journal of Operational Research, vol. 287, no. 1, pp. 76–89, 2020.

[49] T. Leelertkij, P. Parthanaidee, J. Buddhakulsomsiri, and A. Lambert, "Vehicle routing problem with transshipment: mathematical model and algorithm," Journal of Advanced Transportation, 2021, Article ID 8886572, 15 pages, 2021.

[50] S. Ropke and J.-F. Cordeau, "Branch and cut and price for the pickup and delivery problem with time windows," Transportation Science, vol. 43, no. 3, pp. 267–286, 2009.

[51] V. Kachitvichyanukul, P. Sombuntham, and S. Kunnapapdeeert, "Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO," Computers & Industrial Engineering, vol. 89, pp. 125–136, 2015.

[52] A. Šoriano, M. Gansterer, and R. F. Hartl, "The two-region multi-depot pickup and delivery problem," OR Spectrum, vol. 40, no. 4, pp. 1077–1108, 2018.

[53] Y. Wang, X. Ma, Y. Lao, and Y. Wang, "A fuzzy-based customer clustering approach with hierarchical structure for logistics network optimization," Expert Systems with Applications, vol. 41, no. 2, pp. 521–534, 2014.

[54] S. Barreto, C. Ferreira, J. Paixão, and B. S. Santos, "Using clustering analysis in a capacitated location-routing problem," European Journal of Operational Research, vol. 179, no. 3, pp. 968–977, 2007.

[55] S. Mitra, "A parallel clustering technique for the vehicle routing problem with split deliveries and pickups," Journal of the Operational Research Society, vol. 59, no. 11, pp. 1532–1546, 2017.

[56] M. Assari, J. Delaram, and O. Fatahi Vallalai, "Mutual manufacturing service selection and routing problem considering customer clustering in Cloud manufacturing," Production & Manufacturing Research, vol. 6, no. 1, pp. 345–363, 2018.

[57] P. Singamanamala, D. Reddy, and P. Venkataramaiah, "Solution to a multi depot vehicle routing problem using K-means algorithm, Clarke and Wright algorithm and ant colony optimization," International Journal of Applied Engineering Research, vol. 13, no. 21, pp. 15236–15246, 2018.
[58] R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, and Parthiban, “Optimization of multiple vehicle routing problems using approximation algorithms,” 2010, https://arxiv.org/ftp/arxiv/papers/1001/1001.4197.pdf.

[59] H. Xu, P. Pu, and F. Duan, “Dynamic vehicle routing problems with enhanced ant colony optimization,” Discrete Dynamics in Nature and Society, vol. 2018, Article ID 1295485, 13 pages, 2018.

[60] M. W. A. Hakim, S. R. Dewi, Y. Windiatmoko, and U. A. Aziz, Optimizing planning service territories by dividing into compact several sub-areas using binary K-means clustering according vehicle constraints, 2010.

[61] S. Mourelo Fernández, T. Harbison, T. Weber, R. Sturges, and R. Rich, “Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm,” Journal of Industrial Engineering and Management, vol. 9, no. 2, 2016.

[62] M. Elango, S. Nachiappan, and M. K. Tiwari, “Balancing task allocation in multi-robot systems using K-means clustering and auction based mechanisms,” Expert Systems with Applications, vol. 38, no. 6, pp. 6486–6491, 2011.

[63] Y. Li, B. Qian, R. Hu, L.-P. Wu, and B. Liu, “Two-stage algorithm for solving multi-depot green vehicle routing problem with time window,” Intelligent Computing Theories and Application, vol. 12, pp. 665–675, 2019.

[64] N. Alikar, S. M. Mousavi, R. A. Raja Ghazilla, M. Tavana, and E. U. Olugu, “Application of the NSGA-II algorithm to a multi-period inventory-redundancy allocation problem in a series-parallel system,” Reliability Engineering & System Safety, vol. 160, pp. 1–10, 2017.

[65] V. Babaveisi, M. M. Paydar, and A. S. Safaei, “Optimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms,” Journal of Industrial Engineering International, vol. 14, no. 2, pp. 305–326, 2017.

[66] O. Kaiwartya, S. Kumar, D. K. Lobiyal, P. K. Tiwari, A. H. Abdullah, and A. N. Hassan, “Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization,” Journal of Sensors, vol. 2015, Article ID 189832, 14 pages, 2015.

[67] Z. Cui, Y. Chang, J. Zhang, X. Cai, and W. Zhang, “Improved NSGA-III with selection-and-elimination operator,” Swarm and Evolutionary Computation, vol. 49, pp. 23–33, 2019.

[68] G. Srivastava, A. Singh, and R. Mallippeddi, “NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows,” Expert Systems with Applications, vol. 176, Article ID 114779, 2021.

[69] F. Maadanpour Safari, F. Etebari, and A. Pourghader Chobar, “Modelling and optimization of a tri-objective Transportation-Location-Routing Problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II,” Journal of Optimization in Industrial Engineering, vol. 14, no. 2, pp. 99–114, 2021.

[70] M. Shafiei Nikabadi, E. Molayi, and M. Akhavan Rad, “Optimization of vehicle routing problem under uncertainty with emphasis on green-lean practices and customer satisfaction,” Journal of Transportation Research, vol. 18, no. 1, pp. 113–134, 2021.

[71] M. Rabbani, N. Oladzad-Abbasabady, and N. Akbarian-Saravi, “Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms,” Journal of Industrial Management Optimization, vol. 13, no. 5, 2017.