Breathing space: deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages

James W. E. Dickey · Neil E. Coughlan · Jaimie T. A. Dick · Vincent Médoc · Monica McCard · Peter R. Leavitt · Gérard Lacroix · Sarah Fiorini · Alexis Millot · Ross N. Cuthbert

Received: 26 October 2020 / Accepted: 16 April 2021 / Published online: 30 April 2021
© Crown 2021

Abstract The influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10530-021-02542-3.

J. W. E. Dickey · N. E. Coughlan · J. T. A. Dick · M. McCard · P. R. Leavitt · R. N. Cuthbert
Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
e-mail: jdickey03@qub.ac.uk

J. W. E. Dickey
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany

N. E. Coughlan
School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.

Keywords Climate change · Functional responses · Hypoxia · Invasive alien species · *Neogobius melanostomus*

Introduction

The global spread of invasive alien species (IAS) has had wide-ranging consequences, such as negatively impacting ecosystem services, human health, economies and food security, while also contributing to the current sixth mass extinction (Ceballos et al. 2015; Turvey and Crees 2019; Cuthbert et al. 2021). With increasingly globalised transport networks creating novel pathways for IAS spread (Hulme 2009; Zieritz et al. 2016; Seebens et al. 2019), the numbers arriving in new locations will likely increase in the future (Seebens et al. 2018). These invasions will occur against a backdrop of changing climate and anthropogenic alterations of ecosystems, which may alter introduction success and ecological impacts of IAS (MacDougall and Turkington 2005; Rahel and Olden 2008; Zeng and Yeo 2018). This species-environment interaction is important as successful invaders commonly exhibit a greater tolerance to changes in the biophysical environment than do native taxa (Moyle and Light 1996; Grabowski et al. 2007). Understanding the interactions of IAS with environmental change is therefore crucial to both developing forecasts of IAS impacts and developing effective mitigation strategies (Hellmann et al. 2008).

There is growing empirical evidence that taxa from certain regions are predisposed to invasion success (Cuthbert et al. 2020; Paiva et al. 2018; Stern and Lee 2020), and high adaptability to new environments is an especially common trait for IAS originating from the Ponto-Caspian region, i.e. the Black, Azov and Caspian Sea areas (Ketelaars 2004; Gallardo and Aldridge 2015; Sturtevant et al. 2019). Many Ponto-Caspian species thrive at the expense of native taxa in areas of significant anthropogenic alteration (Den Hartog et al. 1992; Borza et al. 2017; Cerwenka et al. 2018; Bussmann and Burkhardt-Holm 2020) and, despite being from brackish conditions, many establish in high numbers in freshwater systems (Casties et al. 2016; Pauli et al. 2018). The development of improved methods for predicting which of such species are likely to establish, spread, proliferate and exert ecological impact is vital (Dick et al. 2017b); however, forecasts have thus far proven difficult due to the highly context-dependent nature of invasions and their impacts (Dick et al. 2017a). Further, management options for suppression or eradication of established invader populations are often complex, resource-intensive and expensive endeavours that require prioritisation based on cost–benefit analyses (Caffrey et al. 2011; Piria et al. 2017; Coughlan et al. 2018).

Of the myriad abiotic consequences of a changing climate, the implications of temperature increases have been most intensively studied (Dillon et al. 2010; Beaumont et al. 2011; Bellard et al. 2012). Although initially ignored, studies on aquatic systems now recognize the potential for effects of atmospheric warming, including declines in oxygen content of aquatic systems. Oxygen solubility in water is inversely related to water temperature, with higher water temperatures also increasing the biological oxygen demand of cold-blooded aquatic organisms, which can lead to oxygen demand exceeding supply (Ficke et al. 2007). Increased hypoxia has been reported in rivers (Blaszczak et al. 2019), lakes (Mallin et al. 2006; Jenny et al. 2016) and coastal
waters, with rates increasing exponentially each year (Vaquer-Sunyer and Duarte 2008). Such thermally-induced hypoxia is further exacerbated by elevated levels of organic matter production and pollution (MacNeil et al. 2004), especially associated with urbanisation and intensive animal agriculture (Wen et al. 2017). Areas of decreased oxygen, known as ‘dead zones’ in marine studies, have a wide range of consequences for species, such as increased exposure to predators, suppressed immune responses and recruitment failure (Díaz et al. 2009). Crucially, some successful IAS have demonstrated a greater ability to survive and establish in such areas of low dissolved oxygen at the expense of natives (Jewett et al. 2005; Lagos et al. 2017). However, there is a crucial need for further studies assessing how such oxygen depleted zones and IAS act in concert (Norkko et al. 2012).

The round goby (Neogobius melanostomus) is a widespread predatory invasive fish from the Ponto-Caspian region that has spread across Europe and into the Great Lakes of North America. It has a broad diet, aggressive behaviour, numerous spawning events, parental care by males and a tendency to be larger than native trophic analogues (Dubs and Corkum 1996; Corkum et al. 2004; Bergstrom and Mensinger 2009). Impacts of round goby invasions include exclusion of native species (Hempel et al. 2016), trophic cascades ensuing from predation on invertebrates (Kipp and Ricciardi 2012), native fish population reductions and often total community replacements in European and North American waters (van Kessel et al. 2016); for example, the decline of mottled sculpin, Cottus bairdi, in Lake Michigan (Janssen and Jude 2001). Crucially, it is known to have a wide tolerance for abiotic stressors, such as temperature (Christensen et al. 2021), salinity (Behrens et al. 2017) and oxygen, with populations often experiencing seasonal hypoxia in their invasive range (Arend et al. 2011).

Here, we therefore assessed the potential ecological impact of N. melanostomus relative to an endangered trophically-analogous European native fish, the bullhead, Cottus gobio, at three oxygen saturation treatments representing high, medium and low saturations. Across its range, C. gobio has been threatened by a number of anthropogenic factors, including pollution and IAS (Utzing et al. 2008; Lorenzoni et al. 2018). Further, this species has a co-evolutionary relationship with freshwater communities in western Europe, and hence serves as a baseline for comparison of ecological impacts with the invader (see Dick et al. 2017b).

This paper uses three recently-developed methods to assess the effect of oxygen saturation on the ecological impacts of the two study species. First, the Comparative Functional Response method (CFR: Dick et al. 2014, 2017a) uses the classic metric of the functional response (FR: Solomon 1949; Holling 1959) to quantify how resource density influences resource consumption rates and thus ecological impact. This method also allows incorporation of a wide range of biotic and abiotic contexts, including habitat complexity (Cuthbert et al. 2019), temperature (Wasserman et al. 2018), higher order predators (Barrios-O’Neill et al. 2014), and parasites (Ilitis et al. 2018), and has been shown to highlight known damaging invaders as having higher maximum feeding rates than trophic analogues (Dick et al. 2014).

Here, we used CFR to assess the effects of oxygen regime on prey consumption by the invasive N. melanostomus and native C. gobio. With the tolerance of N. melanostomus to different abiotic stressors already outlined, and goby invasion success often facilitated by anthropogenic alteration of ecosystems, such as reduced dissolved oxygen levels (Cerwenka et al. 2018), we therefore hypothesise that the Ponto-Caspian invader will have a higher maximum feeding rate (FR asymptote) than the native across all oxygen treatments. Second, the Relative Impact Potential (RIP) metric combines the FR parameters (e.g. maximum feeding rate, 1/h) with a proxy for the Numerical Response (NR: e.g. consumer abundance or density) to increase overall predictive power of ecological impact (Dick et al. 2017b; Dickey et al. 2020). Third, we introduce the new Relative Total Impact Potential (RTIP) metric to assess the overall fish species’ impact (i.e. combined impact of IAS and native) on a system over four invasion stages: Pre-invasion, Arrival, Replacement and Proliferation (Fig. 1; see also Dickey et al. 2020). For example, across these invasion stages, the impact exerted by the invader may add to that already being exerted by the native, perhaps leading to a temporary, amplified impact on the system (Fig. 1). We assessed the differing impacts of the two fish species within each invasion stage in two ways: (1) using consumption data from our FR experiment with individual predators and combining those data with actual recorded field density data of the two fish species (from areas of one...
river at different stages of *N. melanostomus* invasion, and an uninvaded river for a “baseline” native species density), and; (2) a mesocosm experiment to simulate the four invasion stages, with multiple predators of both fish species, which is important to capture multiple predator effects (MPEs) that may be additive, synergistic or antagonistic (Mofu et al. 2019).

Methods

Animal collection and maintenance

Fish were sampled via electrofishing (*n* = 40 ind. species$^{-1}$). The invasive round goby, *Neogobius melanostomus*, was collected on the 6th of October 2018 from the Moselle River at Koenigsmacker, Moselle, France (49°24′14.6″N 6°15′24.3″E), and the native bullhead, *C. gobio*, on the 4th of October 2018 from Ru du Dragon, Longueville, France (48°31′20.4″N 3°14′22.3″E), where *N. melanostomus* has not yet invaded. Fish selected for experiments were matched as closely as possible with respect to total length (TL mm ± SD: goby = 83.0 ± 5.45; bullhead = 80.4 ± 3.41) and mouth gape height (GH mm ± SD: goby = 7.12 ± 0.97; bullhead = 8.3 ± 0.62) to quantify species-specific differences unrelated to fish size and mouth gape. If anything, this may underestimate the ecological impacts of the invader that tends to grow larger than the native (max. recorded total length of *N. melanostomus* 30 cm; max. recorded total length of *C. gobio* 18 cm: Froese and Pauli 2020). Fish were transported in continuously aerated source water and housed separately in a shaded outdoor enclosure at CEREEP Ecotron Île-De-France (Saint-Pierre-lès-Nemours, France) in opaque 250-L drums containing continuously aerated, 50-μm-filtered lake water acquired on site (280 μS; 8.5 pH). A full water change was performed every second day within each drum. A standard diet of frozen chironomid larvae, purchased commercially, was provided ad libitum. The experimental prey, the amphipod *Echinogammarus berilloni* (TL: 0.5–0.8 cm), known to be consumed by both species in the field and in the lab (Laverty et al. 2017), and representative of the diet of both fish species, were collected from Le Lunain River, Nonville, France (48°17′24.0″N 2°47′20.6″E), via kick sampling and transported in source water to a laboratory at CEREEP Ecotron Île-De-France (19 ± 2 °C). These prey were maintained on a diet of source stream flora and fauna ad libitum in 7-L containers containing continuously aerated, filtered lake water. Fish were reused systematically in experiments following a designated recovery time (≥ 48 h) under standard diet and housing conditions (as per Alexander et al. 2015). Reuse helped minimise the number of individuals required, especially of the endangered native bullhead (see also Ethics statement).

Individual functional responses (FRs)

We quantified FRs of both fish species at three oxygen regimes over six prey densities. Treatments were fully randomised spatially and temporarily to eliminate block effects. Prior to FR experiments, fish were starved separately for 24 h in the laboratory (19 ± 2 °C; 12:12 light regime) to standardise hunger levels. Following starvation, fish were introduced individually to 7-L opaque polypropylene arenas (33.5 × 24.5 cm) containing filtered lake water and...
Breathing space: deoxygenation of aquatic environments can drive differential ecological…

allowed to acclimatise for 2.5 h. Similarly, *E. berillonii* prey were added to 2-L arenas with filtered lake water at each of six densities (2, 4, 8, 16, 32 and 64; *n* = 3 per experimental group) and acclimatised to the experimental treatments in the same increments. The experiment was run at 19 °C under three levels of oxygen saturation: 90%, 60% and 30% (i.e. 8.4 mg L$^{-1}$, 5.6 mg L$^{-1}$ and 2.8 mg L$^{-1}$ oxygen, respectively), monitored continually using a FireSting oxygen probe (Pyro Science, Germany). Oxygen was slowly reduced from 100% saturation (9.3 mg L$^{-1}$) in each experimental arena in three 50-min increments, first to 90 ± 2%, then 60 ± 2%, and finally 30 ± 2%, by bubbling nitrogen through the water, following the method of Dick et al. (1998) and Laverty et al. (2015). While we acknowledge that adaptation was brief, we aimed to strike a balance between the stress of insufficient acclimatisation and that of keeping the fish in arenas individually with repeated disturbance. These oxygen levels were chosen to be representative of pristine through to degraded waterways (e.g. see Huang et al. 2017 which studied dissolved oxygen levels in an urban river ranging from supersaturated, 11.5 mg L$^{-1}$, to depleted, 3.6 mg L$^{-1}$, near a wastewater treatment plant). Disturbance in experimental arenas (bubbling and use of oxygen probe), was standardised during all incremental oxygen reductions. Trials were initiated following the addition of designated prey densities to each experimental unit, with fish allowed to feed subsequently for 1 h. Controls consisted of a replicate under each level of ‘oxygen regime’ and ‘prey density’ to account for any potential background prey mortality. Following the feeding period, fish were removed and remaining live prey counted to derive prey numbers consumed.

Invasion-stage mesocosms

To examine the effects of invasion stage on the predatory impact of the invasive *N. melanostomus* and the native *C. gobio* across oxygen levels, we employed a factorial design with respect to ‘invasion stage’ (4 levels: “Pre-invasion”, “Arrival”, “Replacement” and “Proliferation”, see Fig. 1) and ‘oxygen regime’ (3 levels: 90%, 60% and 30%, as above) in a mesocosm experiment. Fish were starved for 24 h prior to experimentation in a shaded outdoor enclosure (14 ± 2 °C) after which they were introduced into one of four treatment combinations (Pre-invasion: 2 × *C. gobio*; Arrival: 2 × *C. gobio* + 2 × *N. melanostomus*; Replacement: 2 × *N. melanostomus*; Proliferation: 4 × *N. melanostomus*). Each arena was an opaque 50-L (80 × 63 cm) container with filtered lake water from a continuously-aerated source. Similarly, the focal prey, *E. berillonii*, were separately adapted at densities of 200 individuals in 2-L arenas containing previously aerated, filtered lake water (*n* = 3 per experimental group). Methods to reduce oxygen concentration for predators and prey were similar to those used in the FR experiment with staged declines (i.e. 90% saturation, 9.3 mg L$^{-1}$; 60%, 6.2 mg L$^{-1}$; and 30%, 3.1 mg L$^{-1}$ at 14 °C), starting from total saturation (100%, 10.3 mg L$^{-1}$), by bubbling nitrogen gas through experimental water. Trials were initiated through the addition of the 200 prey individuals to each replicate, with fish allowed to feed for 1 h. Controls comprised a replicate under each oxygen regime with no fish present. After the feeding period, fish were removed and remaining live prey counted to quantify prey numbers consumed.

Prey activity across oxygen levels

Changes in activity levels of *E. berillonii* were measured across the three oxygen levels above to account for effects of the experimental oxygen conditions on prey activity and subsequent fish predatory rate. Prey (*n* = 9 per oxygen treatment) were slowly acclimated to the experimental oxygen saturation levels, in the same stepwise manner described earlier, before being added individually to 500 ml of water (90, 60 and 30%, ± 2% saturation; lab temperature 19 ± 2 °C) in glass crystallising dishes via pipetting. Each dish had a line drawn across the diameter of the base, and individual activity was recorded using a CX action camera (ACTIVEON Inc., U.S.A.) and watched back, with the number of line-crosses over the following 10 min counted as an indicator of *E. berillonii* movement, from the addition of individual *E. berillonii* to each dish.

Data analyses

Our analyses followed three key steps to quantify system-level ecological impacts of invasive species under oxygen regime shifts. We first modelled functional responses of the invasive and native fishes, with a significantly negative first-order term being
indicative of a destabilising Type II FR (i.e. little refuge for prey at low densities: Dick et al. 2014), whilst a significantly positive first-order term, followed by a significantly negative second-order term, is considered a stabilising Type III FR (a degree of prey refuge at low prey densities; further outlined in Supplementary Material). We also compared their attack rate (a) and handling time (h) parameters across different oxygen regimes, both visually with 95% confidence intervals and using the difference method (see Supplementary Material for further details). Second, we combined maximum feeding rates ($1/h$) from the functional responses with field-reported densities of the invasive and native fishes to quantify their Relative Impact Potential (RIP) across different oxygen regimes (see Supplementary Material). Density data for the invader were taken from Masson et al. (2018), which measured $N. melanostomus$ densities at three points of the Moselle river—a long established area, an old invasion front and the current invasion front. Density data for the native $C. gobio$ were recorded by Fédération de Seine-Et-Marne Pour La Pêche et la Protection du Milieu Aquatique in Ru du Dragon on the 4th October 2018, a river in which the invader has not yet established. As RIP qualifies impacts of invaders relative to natives, RIP scores > 1 indicate a higher ecological impact of invaders compared to natives. Thirdly, Relative Total Impact Potential (RTIP) was used to quantify and compare system-scale ecological impacts of invasive and native species, using both functional response and fish density data (see Supplementary Material) and invasion-stage mesocosm results. This allowed for comparative assessment of ecological impacts at hypothetical invasion stages based on different invader/native predator compositions. Here, similar to above, RTIP scores > 1 indicate greater ecological impacts than pre-invaded communities.

The numbers of line crosses of the prey species $E. berilloni$ with respect to ‘oxygen regime’ (3 levels: 90%, 60% and 30%) were analysed using GLMs, which assumed a quasi-Poisson distribution. In each model, backward eliminations of non-significant terms and interactions resulted in the most parsimonious fits (Crawley 2014). Further details are provided in the Supplementary Material.

Results

Individual functional responses (FRs)

Survival of prey in fish-free control groups was 99.5% or higher, therefore experimental deaths were attributed to predation, which was often also observed. Destabilising Type II FRs were recorded for all predator and oxygen treatments, with significantly negative first-order terms in each instance (Table 1; Fig. 2; Supplementary Material). At 90% oxygen saturation, attack rates did not differ significantly between $N. melanostomus$ and $C. gobio$ ($z = 0.53, p = 0.59$) and neither did handling times or maximum feeding rates ($z = 0.54, p = 0.59$; see Table 1; Fig. 2; Supplementary Material). At 60% oxygen saturation, attack rates of the invader $N. melanostomus$ were significantly higher than the native $C. gobio$ ($z = 2.64, p = 0.008$), whereas handling times and maximum feeding rates remained similar ($z = 0.485, p = 0.628$; see Table 1; Fig. 2; Supplementary Material). At 30% oxygen saturation, however, attack rates of $N. melanostomus$ were significantly higher than those of $C. gobio$ ($z = 3.98, p < 0.001$) and handling times significantly lower, leading to significantly higher maximum feeding rates of the invader ($z = 3.05, p = 0.002$; Table 1; Fig. 2; Supplementary Material). This latter result is clearly demonstrated by a lack of overlap between the 95% confidence interval clouds for the two species and the native species feeding rate dropping radically at the low oxygen saturation (Fig. 2).

Relative Impact Potential

Densities of $N. melanostomus$ in the Moselle River were 2.70 ind. m$^{-2}$ at the most recent invasion front, 9.80 ind. m$^{-2}$ at what had been the invasion front in the prior year and 29.80 ind. m$^{-2}$ in the long-invaded area (taken from Masson et al. 2018; see our Table 2). $C. gobio$ density in Ru du Dragon was 6.21 ind. m$^{-2}$ (Fédération de Seine-Et-Marne Pour La Pêche et la Protection du Milieu Aquatique; Table 2). Across all oxygen saturation treatments, ‘$N. melanostomus$ (high density)’ had an RIP > 1 (Table 2, Fig. 3a–c), with the greatest RIP value at 30% oxygen saturation (10.03 at 30% v 5.31 at 90%; v 1.66 at 60%). Medium densities of $N. melanostomus$ also had higher impacts than those of $C. gobio$ across all oxygen treatments; however,
again, this pattern was most pronounced at 30% saturation (3.30 at 30% v 1.74 at 90%; v 1.35 at 60%).

Low densities of *N. melanostomus* had lower impacts than did the native fish across all oxygen treatments (i.e. RIP < 1); however, at 30% saturation, the much higher feeding rate of the invader led to a RIP score close to 1 (0.91: Table 2; Fig. 3c) using the low density estimate. This equates to half the number of invaders exerting a similar impact to the native (Fig. 3c).

Relative Total Impact Potential using fish functional response and density data

Across all oxygen saturation treatments, RTIP was consistently highest in the Proliferation stage of invasion, followed by the Arrival (II) stage (Table 3; Fig. 4). RTIP scores were highest at 30% oxygen saturation levels (Table 3; Fig. 4). No RTIP scores were less than 1, indicative of heightened impacts upon the system relative to the Pre-invasion baseline (Table 3; Fig. 4) across all invader densities, stages of invasion and oxygen regime, with the low oxygen regime leading to a particularly high invader impact (Table 3; Fig. 4).

Table 1 First order terms and significance levels resulting from logistic regression of proportional prey consumption across different prey densities for the invader, *Neogobius melanostomus*, and the native, *Cottus gobio*

Predator	Oxygen (% conc.)	First order term, \(p \)	Attack rate \((a, p)\)	Handling time \((h, p)\)	Maximum feeding rate \((1/h)\)
Neogobius melanostomus	90	- 0.04, < 0.001	2.30, < 0.001	0.021, < 0.001	48.90
Cottus gobio	90	- 0.04, < 0.001	2.07, < 0.001	0.023, < 0.001	44.24
Neogobius melanostomus	60	- 0.03, < 0.001	2.42, < 0.001	0.018, < 0.001	57.16
Cottus gobio	60	- 0.02, 0.002	1.30, < 0.001	0.015, < 0.001	66.66
Neogobius melanostomus	30	- 0.05, < 0.001	4.28, < 0.001	0.025, < 0.001	39.60
Cottus gobio	30	- 0.03, < 0.001	1.20, < 0.001	0.053, < 0.001	18.95

Parameter estimates \((a, h, 1/h)\) of functional responses between species and across oxygen regimes from Rogers’ random predator equation

Fig. 2 Functional Responses of *Neogobius melanostomus* (dashed line) and *Cottus gobio* (solid line) towards *E. berilloni* at 90% (a), 60% (b) and 30% (c) dissolved oxygen saturation levels. Grey areas are bootstrapped 95% confidence intervals

Breathing space: deoxygenation of aquatic environments can drive differential ecological… 2837

Survival of prey in control groups with no fish exceeded 99.5%, therefore prey deaths were attributed.
to experimental fish predation, which was again often observed directly. Prey consumption was significantly influenced by invasion stage ($F_{3, 30} = 9.28, p < 0.001$; Table 4; Fig. 5), with consumption significantly greater at Arrival ($2 \times C. gobio, 2 \times N. melanostomus$) and Proliferation ($4 \times N. melanostomus$) stages as compared to Pre-invasion ($2 \times C. gobio$) and Replacement ($2 \times N. melanostomus$; all $p < 0.01$;
Fig. 5). On the other hand, there were no significant consumptive differences between Pre-invasion and Replacement ($p = 0.98$) or Arrival and Proliferation ($p = 0.931$). Oxygen also had a significant influence on prey consumption overall ($F_{2, 33} = 6.97, p = 0.003$; Fig. 5), with consumption at 30% oxygen saturation significantly lower than at 60% saturation ($p < 0.001$), whilst consumption at 90% did not significantly differ to that at 60% or 30% oxygen saturation levels (both $p > 0.05$). The effect of oxygen regime on consumption did not change significantly ($F_{6, 24} = 0.34, p = 0.91$) depending on the invasion stage, owing to a non-significant ‘invasion stage × oxygen regime’ interaction effect.

Comparison among stages revealed that the Arrival stage, the Replacement stage and the Proliferation stage all had greater RTIP than the Pre-invasion stage, with the exception of the Replacement stage at 90% oxygen saturation (RTIP < 1), when two *N. melanostomus* exerted a lower impact upon the prey than did two native *C. gobio* (Table 4; Fig. 6). At 90% and 30% saturation, the Proliferation stage, containing four *N. melanostomus*, had a lower RTIP than the Arrival stage, which featured two *N. melanostomus* and two *C. gobio* (90%: 1.52 v 1.78; 30%: 1.60 v 1.69), with the Proliferation stage having only a slightly larger RTIP at 60% saturation (1.78 v 1.77).

Table 3 Relative Total Impact Potential (RTIP) using MFR (Functional Response maximum feeding rates) derived from our CFR experiment and field density data (ind m$^{-1}$). *Neo gobius melanostomus* density across its invasion of the Moselle River, France taken from Masson et al. (2018), with *C. gobio* density data taken from the Ru du Dragon, France which has yet to be invaded by *N. melanostomus* (Fédération de Seine- Et-Marne Pour La Pêche et la Protection du Milieu Aquatique).

Invasion stage	Density (*N. melanostomus*)	Density (*C. gobio*)	MFR (*N. melanostomus*)	MFR (*C. gobio*)	Impact Potential (*N. melanostomus*)	Impact Potential (*C. gobio*)	Total Impact Potential	RTIP
90%								
1. Pre-invasion	0.00	6.21	48.90	44.24	0.00	274.70	274.70	1.00
2. Arrival (I)	2.70	6.21	48.90	44.24	132.04	274.70	406.74	1.48
3. Arrival (II)	9.80	6.21	48.90	44.24	489.05	274.70	763.75	2.78
4. Replacement	9.80	0.00	48.90	44.24	489.05	0.00	489.05	1.78
5. Proliferation	29.80	0.00	48.90	44.24	1457.31	0.00	1457.31	5.31

Invasion stage	No. *N. melanostomus*	No. *C. gobio*	MFR (*N. melanostomus*)	MFR (*C. gobio*)	Impact Potential (*N. melanostomus*)	Impact Potential (*C. gobio*)	Total Impact Potential	RTIP
60%								
1. Pre-invasion	0.00	6.21	57.16	66.66	0.00	413.93	413.93	1.00
2. Arrival (I)	2.70	6.21	57.16	66.66	154.34	413.93	568.27	1.37
3. Arrival (II)	9.80	6.21	57.16	66.66	560.20	413.93	974.13	2.35
4. Replacement	9.80	0.00	57.16	66.66	560.20	0.00	560.20	1.35
5. Proliferation	29.80	0.00	57.16	66.66	1703.46	0.00	1703.46	4.12

Invasion stage	No. *N. melanostomus*	No. *C. gobio*	MFR (*N. melanostomus*)	MFR (*C. gobio*)	Impact Potential (*N. melanostomus*)	Impact Potential (*C. gobio*)	Total Impact Potential	RTIP
30%								
1. Pre-invasion	0.00	6.21	39.60	18.95	0.00	117.69	117.69	1.00
2. Arrival (I)	2.70	6.21	39.60	18.95	106.91	117.69	224.60	1.91
3. Arrival (II)	9.80	6.21	39.60	18.95	388.04	117.69	505.73	4.30
4. Replacement	9.80	0.00	39.60	18.95	388.04	0.00	388.04	3.30
5. Proliferation	29.80	0.00	39.60	18.95	1179.96	0.00	1179.96	10.03
Oxygen level and *E. berilloni* activity

Echinogammarus berilloni activity did not differ significantly among the three oxygen regimes ($F_{2,26} = 0.45, \ p = 0.64$, Fig. S1 in Supplementary Materials). We therefore attribute differences in predator performance to variations in fish foraging abilities under different oxygen regimes.

Discussion

Climate change and IAS are interacting on a global scale and we thus need clear forecasts of their combined effects on biodiversity in the twenty-first century (Walther et al. 2009; Johnson et al. 2017); however, such combined threats of climate change and IAS tend to be overlooked (Fey and Herren 2014). To address this gap, we quantified how three oxygen levels (as % saturation) affected: functional responses (FRs) of an IAS, the Ponto-Caspian invasive fish, *N. melanostomus*, and trophically analogous, endangered native, *C. gobio*; the impact on prey populations exerted by both fish using the Relative Impact Potential (RIP) metric; and how the combined impacts of both fish change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation) using the novel Relative Total Impact Potential (RTIP) metric. From the comparative FR (CFR) experiment, we found that the invader had a significantly higher feeding rate relative to the native at low oxygen levels (30%). RIP revealed that low oxygen exacerbates the high relative impact of the invader, while our first calculation of

![Fig. 4](image.png)

Fig. 4 The conceptual spatio-temporal patterns of invasion impact across four invasion stages (see Fig. 1), under three oxygen saturation levels, populated by maximum feeding rate data from the FR experiments, and *N. melanostomus* and *C. gobio* field densities. Relative Total Impact Potential scores derived by comparing total impact of each invasion stage relative to that of the Pre-invasion baseline stage.

Invasion stage	No. *N. melanostomus*	No. *C. gobio*	Impact (mean consumption/200)	RTIP
90%				
1. Pre-invasion	0	2	75.67	1.00
2. Arrival	2	2	135.00	1.78
3. Replacement	2	0	71.67	0.95
4. Proliferation	4	0	115.67	1.53
60%				
1. Pre-invasion	0	2	88.67	1.00
2. Arrival	2	2	156.67	1.77
3. Replacement	2	0	101.33	1.14
4. Proliferation	4	0	158.00	1.78
30%				
1. Pre-invasion	0	2	60.67	1.00
2. Arrival	2	2	102.67	1.69
3. Replacement	2	0	68.00	1.12
4. Proliferation	4	0	97.00	1.60

Table 4 Relative Total Impact Potential (RTIP) with mesocosm data (using Pre-invasion stage as baseline), and predator per capita effect for each simulated ‘invasion stage’ across three oxygen saturation regimes (90%, 60% and 30%).
RTIP (based on field abundances) was consistently higher at low oxygen and especially high during invader Proliferation. In a mesocosm experiment, low oxygen lowered RTIP where both species were present, however, the IAS retained high relative impact during Replacement and Proliferation invasion stages.

The CFR method (Dick et al. 2014) demonstrated that prey consumption at 90% and 60% levels was similar between the IAS and native species, whilst the 30% treatment led to significantly reduced consumption by the native relative to the IAS. Mismatches between demand for oxygen and oxygen supply to tissues have been shown to negatively impact a number of higher functions, including muscular performance, behaviour, growth and reproduction (Pörtnér and Knust 2007). Here, we found that the feeding efficiency of the IAS was more robust to declines in oxygen levels expected to arise from global environmental change (Jenny et al. 2016; Adrian-Kalchhauser et al. 2020), with significantly higher attack rates, lower handling times, and higher maximum feeding rates than the native fish at 30% saturation.

N. melanostomus are known to be tolerant of low dissolved oxygen levels, with their blood having high oxygen affinity (Soltov 1997). While N. melanostomus are thought to prefer shallow water habitats (Kornis et al. 2012) and are regularly found in areas of high oxygen saturations (Jakubčinová et al. 2018), their low oxygen tolerance may contribute to their tendency to persist at great depths in native and invaded ranges (e.g. recorded at 130 m in Lake Ontario, Canada; Walsh et al. 2007). This adaptation may also help their survival of certain ballast water treatments (e.g. Tamburri et al. 2002).

Despite no significant difference between the two species in terms of prey consumption at 90% or 60% oxygen saturation, the IAS had significantly higher attack rates at a 60% saturation, indicating a propensity to exert greater impact at low prey densities. Furthermore, an adaptation to survive low oxygen levels may facilitate effective predation at low light intensities where oxygen depletion is more common (Jenny et al. 2016). The higher performance of this Ponto-Caspian goby supports the idea that this region, due to its variable abiotic regimes, has led to the
Assessment of ecological impact with the RIP metric (RIP: Dick et al. 2017b), using FRs as above and density data from the Moselle River (N. melanostomus established) and Ru du Dragon (native predominates), revealed that effects of invasive N. melanostomus were enhanced by hypoxic conditions characteristic of warming lakes and rivers (Jenny et al. 2016). While C. gobio have been shown to maintain populations in polluted rivers, such as agricultural areas with elevated nutrient loads (e.g. Great Ouse catchment, England: Copp 1992; Carter et al. 2004), evidence suggests that the combination of such abiotic stressors alongside IAS can have severe detrimental effects on the native (Lorenzoni et al. 2018). Consistent with this suggestion, our RIP biplots demonstrate that, even if C. gobio can maintain similar densities under different oxygen levels (Legalle et al. 2005), the potential impact it can exert on the aquatic food web is highest at 60% saturation, driven by its relatively high feeding rate at this oxygen level. In contrast, an obvious disparity in predatory capability and ecological impact emerges at 30% oxygen saturation, something further supported by the mesocosm experiment (see below), with the IAS capable of exerting a similar impact to the native at half the density.

Although we assessed per capita feeding rates at differing predator densities, we have not assessed the direct effect of declining dissolved oxygen levels on the relative densities (or other appropriate proxies of numerical response, e.g. fecundity) of the two species. However, Jones and Reynolds (1999) found no decrease in hatching success as a function of oxygen levels for common gobies (Pomatoschistus microps), possibly because they exhibit adaptive behaviours that compensate for decreased oxygen levels, such as increased time spent fanning their eggs (Jones and Reynolds 1999). Another behavioural adaptation is shown in sand gobies (Pomatoschistus minutus), which construct their nests to enhance oxygen flow (Lissåker et al. 2003). Therefore, while we lack studies on the effect of decreased oxygen levels on the nest-guarding behaviour of our study species, comparisons with other gobies suggest that the challenges posed by decreasing dissolved oxygen levels may be surmountable above a certain threshold. Our CFR experiments highlighting N. melanostomus as a more effective forager at 30% saturation relative to C. gobio may also indicate that other energetically-costly activities (e.g. egg fanning) could prove more difficult for C. gobio at low oxygen saturation levels found in warming waters (Jenny et al. 2016), thus potentially leading to declines in recruitment and population size. Nevertheless, the tendency for N. melanostomus to move away from hypoxic conditions, when possible, should not be discounted (Arend et al. 2011).

Our two measures of RTIP were used to demonstrate temporal shifts in ecological impact over different invasion stages of IAS arrival and establishment. First, we simulated these stages of invasion (we divided ‘Arrival’ into two parts to incorporate the spatio-temporal changes in N. melanostomus density as per Masson et al. 2018) by combining our FR maximum feeding rate data (across the three oxygen treatments) with fish density data from the field. Due to the high density of N. melanostomus in the long-established region of the Moselle river, we saw the Proliferation stage having the highest RTIP score across all oxygen treatments. With no RTIP scores <1 post-invasion, we can attribute heightened impact upon the system as a result of the IAS. The highest RTIP scores for each invasion stage were found at the 30% treatment, but the lowest were found under the 60% treatment, highlighting the importance of potential synergies between abiotic stressors and the impacts of invasive species.

Application of this method of RTIP, comprising individual FRs, assumes linear increases in potential impact with the density of the invasive species. This may fail to account for potential intra- and interspecific synergies or antagonisms between multiple consumers in a natural food web i.e. Multiple Predator Effects or MPEs (see Griffen and Delaney 1980; Médoc et al. 2013). We addressed this issue by assessing MPEs within a mesocosm setting, and again simulated four invasion stages under the three oxygen saturation treatments. We showed clearly that oxygen saturation treatment significantly influenced overall prey consumption. Across all three oxygen treatments, consumption was significantly greater in the Arrival and Proliferation stages, versus the Pre-invasion and Replacement stages, although this is to be expected considering the presence of four predators present in the Arrival and Proliferation stages versus two in the Pre-invasion and Replacement stages. However, it is feasible that multiple predators are so antagonistic as...
Breathing space: deoxygenation of aquatic environments can drive differential ecological...
intervention. Artificial oxygenation methods, such as constructed wetlands, are capable of increasing saturated oxygen levels as well as facilitating the removal of pollutants from water (Dong et al. 2012). Similarly, replenishment of oxygen in bottom waters through enhanced vertical circulation has been proposed for lakes (Dunalska and Wiśniewski 2016), while artificial oxygenation has been shown to be effective for some lotic ecosystems (Larsen et al. 2019). Such management interventions may prove crucial to maintaining current native populations, while resisting the establishment and ecological impacts of IAS.

Authors’ contribution JWED, NEC, JTAD, VM, MMcC and RNC conceived the study, with JWED, NEC and RNC performing the experiments, conducting statistical analyses and preparing the initial manuscript. JTAD, VM, MMcC, GL, PRL, SF, and AM contributed vital input to the development of concepts within the final manuscript.

Funding This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871081 (AQUACOSM) as well as financial support from the Regional Council of Île-de-France under the DIM Program R2DS I-05-098/R and 2015-1657. It has received a support under the French program “Investissements d’Avenir” with the references ANR-10-EQPX-13-01 Planqua and ANR-11-INBS-0001 AnaEE France. It has benefited from technical and human resources provided by CEREEP Ecotron ÎleDeFrance (CNRS/ENS UMS 3194), with JWED also supported by Inland Fisheries Ireland (IFI), RNC by the Alexander von Humboldt Foundation and Department for the Economy Northern Ireland, and NEC by Environmental Protection Agency (EPA). PRL thanks the Canada Research Chair program. Thanks also to the Natural Environment Research Council (NERC).

Availability of data and material The data that support the findings of this study are available from the corresponding author upon reasonable request.

Data availability Underlying raw data will be made available in the Supplementary Material.

Code availability Not applicable.

Declarations

Conflict of interest No conflicts/competing interests to declare.

Consent for publication All authors have given approval for publication.

Ethical approval Fish capture and transport were approved by the Direction Départementale des Territoires de la Moselle for the round goby (DDT 42) and the Direction Départementale des Territoires de la Seine et Marne (DDT 77) for the bullhead. All the procedures were conducted in accordance with appropriate European (Directive 2010/63/EU) and French national guidelines, permits and regulations regarding animal care and experimental use (B77-431–1). At the end of the experiments, bullheads were returned to their sampling site, whereas gobies were euthanised using MS-222 to meet European legislation on invasive alien species.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M, Solbakken MH, Suurväli J, Walser JC, Wilson JY, Alm Rosenblad M, Burguera D, Gutnik S, Michiels N, Töpel M, Pankov K, Schloissnig S, Winkler S (2020) The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol 18:1–33. https://doi.org/10.1186/s12915-019-0731-8
Alexander ME, Kaiser H, Weyl OL, Dick JTA (2015) Habitat simplification increases the impact of a freshwater invasive fish. Environ Biol Fish 98:477–486
Arend KK, Beletsky D, DePinto JV, Ludsain SA, Roberts JR, Rucinski DK et al (2011) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshw Biol 56:366–383
Barrios-O’Neill D, Dick JTA, Emmerson MC, Ricciardi A, Macisaac HJ, Alexander ME et al (2014) Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator. J Anim Ecol 83:693–701
Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci 108:2306–2311
Behrens JW, Van Deurs M, Christensen EAF (2017) Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity. PLoS One 12:1–19
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377
Breathing space: deoxygenation of aquatic environments can drive differential ecological... 2845

Bergstrom MA, Mensinger AF (2009) Interspecific resource competition between the invasive round goby and three native species: logperch, slimy sculpin, and spoonhead sculpin. Trans Am Fish Soc 138:1009–1017

Blaszczak JR, Delesantro JM, Urban DL, Doyle MW, Bernhardt ES (2019) Scoured or suffocated: urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol Oceanogr 64:877–894

Borza P, Huber T, Leitner P, Remund N, Graf W (2017) Success factors and future prospects of Pontus-Caspian peracarid (Crustacea: Malacostraca) invasions: Is the worst over? Biol Invasions 19:1517–1532

Bussmann K, Burkhardt-Holm P (2020) Round gobies in the third dimension – use of vertical walls as habitat enables vector contact in a bottom dwelling invasive fish. Aquat Invasions 15:683–699

Caffrey JM, Evers S, Millane M, Moran H (2011) Current status of Ireland’s newest invasive species—the Asian clam Corbicula fluminea (Müller, 1774). Aquat Invasions 6:291–299

Carter MG, Copp GH, Szomlai V (2004) Seasonal abundance and microhabitat use of bullhead Cottus gobio and accompanying fish species in the River Avon (Hampshire), and implications for conservation. Aquat Conserv Mar Freshw Ecosyst 14:395–412

Casties I, Seebens H, Briski E (2016) Importance of geographic origin for invasion success: A case study of the North and Baltic Seas versus the Great Lakes–St. Lawrence River Region. Ecol Evol 6:8318–8329

Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Casties I, Seebens H, Briski E (2016) Importance of geographic Region Ecol Evol 6:8318–8329

Coughlan NE, Walsh D, A., Caffrey, J.M., Davis, E., Lucy, F.E.,... (2021) Global economic costs of aquatic invasive alien species. Sci Tot Environ 775:145238

Cuthbert RN, Kotronaki SG, Dick JTA, Briski E (2020) Salinity tolerance and geographic origin predict global alien amphipod invasions. Biol Lett 16:20200354

Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA et al (2021) Global economic costs of aquatic invasive alien species. Sci Tot Environ 775:145238

Den Hartog C, Van Den Brink FWB, Van Der Velde G (1992) Opinion why was the invasion of the river rhine by corophium curvispinum and corbicula species so successful? J Nat Hist 26:1121–1129

Díaz RJ, Rosenberg R, Rabalais NN, Levin LA (2009) Dead zone dilemma. Mar Pollut Bull 58:1767–1768

Dick JTA, Falloon SE, Elwood RW (1998) Active brood care in an amphipod: Influences of embryonic development, temperature and oxygen. Anim Behav 56:663–672

Dick JTA, Alexander ME, Jeschke JM, Ricciardi A, Maatscha HJ, Robinson TB et al (2014) Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol Invasions 16:735–753

Dick JTA, Alexander ME, Ricciardi A, Laverty C, Paul OD, Xu M et al (2017a) Functional responses can unify invasion ecology. Biol Invasions 19:1667–1672

Dick JTA, Laverty C, Lennon JJ, Barrios-O’Neill D, Mensink PJ, Britton JR et al (2017b) Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J Appl Ecol 54:1259–1267

Dickey et al (2020) On The RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55:27–60

Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706

Dong H, Qiang Z, Li T, Jin H, Chen W (2012) Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. J Environ Sci Eng 95:72–722

Dubs DOL, Corkum LD (1996) Behavioral interactions between round gobies (Neogobius melanostomus) and mottled sculpins (Cottus Bairdi). J Great Lakes Res 22:838–844

Dunalska JA, Wisniewski G (2016) Can we stop the degradation of lakes? Innovative approaches in lake restoration. Ecol Eng 95:714–722

Fein SB, Herren CM (2014) Temperature-mediated biotic interactions influence enemy release of nonnative species in warming environments. Ecology 95:2246–2256

Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish

Gallardo B, Aldridge DC (2015) Is Great Britain heading for a Pontus-Caspian invasional meltdown? J Appl Ecol 52:41–49

Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84
Griffen B, Delaney D (1980) Species invasion shifts the importance of predator dependence. Ecology 88:3012–3021

Bellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

Hemel PM, Neukamm R, Thiél R (2016) Effects of introduced round goby (Neogobius melanostomus) on diet composition and growth of zander (Sander lucioperca), a main predator in European brackish waters. Aquat Invasions 11:167–178

Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320

Huang J, Yin H, Chapra SC, Zhou Q (2017) Modelling dissolved oxygen depression in an urban river in China. Water 9:1–19

Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

Ilitis C, Spataro T, Wattier R, Médoc V (2018) Parasitism may alter functional response comparisons: a case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biol Invasions 20:619–632

Jakubčinová K, Harušťaková D, Števove B, Švolíkova K, Ketelaars HAM (2004) Range extensions of Ponto-Caspian invasive species. Aquatic invertebrates in continental Europe. In Dumont HJ, Legalle M, Santoul F, Figuerola J, Mastrorillo S, Céréghino R, Shiganova TA, Niermann U (eds) Aquatic invasions in the Netherlands, pp 209–236

Jasson J, Jude DJ (2001) Recruitment failure of mottled sculpin Cottus bairdi in Calumet Harbor, southern Lake Michigan, induced by the newly introduced round goby Neogobius melanostomus. J Great Lakes Res 27:319–328. https://doi.org/10.1016/S0380-1330(01)70647-8

Jenny JP, Francus P, Normandeau A, Lapointe F, Pergas ME, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biol 22:1481–1489

Jewett EB, Hines AH, Ruiz GM (2005) Epifaunal disturbance by periodic low levels of dissolved oxygen: Native vs. invasive species response. Mar Ecol Prog Ser 304:31–44

Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, Guagnchun L et al (2017) Biodiversity losses and conservation responses in the Anthropocene. Science 275:270–275

Jones JC, Reynolds JD (1999) Costs of egg ventilation for male common gobies breeding in conditions of low dissolved oxygen. Anim Behav 57:181–188

Joyce PWS, Dickey JWE, Cuthbert RN, Dick JTA, Kregting L (2019) Using functional responses and prey switching to quantify invasion success of the Pacific oyster, Crassostrea gigas. Mar Environ Res 145:66–72

Ketelaars HAM (2004) Range extensions of Ponto-Caspian aquatic invertebrates in continental Europe. In Dumont HJ, Shiganova TA, Niermann U (eds) Aquatic invasions in the Black, Caspian, and Mediterranean Seas. Springer, Netherlands, pp 209–236

Kipp R, Ricciardi A (2012) Impacts of the eurasian round goby (neogobius melanostomus) on benthic communities in the upper st. lawrence river. Can J Fish Aquat Sci 69:469–486

Körns MS, Carlson J, Lehrer-Brey G, Vander Zanden MJ (2014) Experimental evidence that ecological effects of an invasive fish are reduced at high densities. Oecologia 175:325–334

Körns MS, Mercado-Silva N, Vander Zanden, M.J. (2012) Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. J Fish Biol 80:235–285

Lagos ME, Barneche DR, White CR, Marshall DJ (2017) Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. Glob Chang Biol 23:2321–2330

Larsen SJ, Kilminster KL, Mantovaneli A, Goss ZJ, Evans GC, Bryant LD et al (2019) Artificially oxygenating the Swan River estuary increases dissolved oxygen concentrations in the water and at the sediment interface. Ecol Eng 128:112–121

Laverty C, Dick JTA, Alexander ME, Lucy FE (2015) Differential ecological impacts of invader and native predatory freshwater amphipods under environmental change are revealed by comparative functional responses. Biol Invasions 17:1761–1770

Laverty C, Green KD, Dick JTA, Barrios-O’Neill D, Mensink PJ, Médoc V et al (2017) Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol Invasions 19:1653–1665

Legalle M, Santoul F, Figuerola J, Mastrorillo S, Cérégino R (2005) Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L., Teleostei Cottidae): A multi-scale study. Biodivers Conser 14:1319–1334

Lissáker M, Kvarnemo C, Svensson O (2003) Effects of a low oxygen environment on parental effort and filial cannibalism in the male sand goby, Pomatoschistus minutus. Behav Ecol 14:374–381

Lorenzoni M, Carosi A, Giovannetti M, La Porta G, Splendiani A, Barucchi VC (2018) Population status of the native Cottus gobio after removal of the alien Salmo trutta: a case-study in two Mediterranean streams (Italy). Knowl Manag Aquat Ecosyst 22:14

MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55

MacNeil C, Prenter J, Briffa M, Fielding NJ, Dick JT, Riddell GE et al (2004) The replacement of a native freshwater amphipod by an invader: roles for environmental degradation and intraguild predation. Can J Fish Aquat Sci 61:1627–1635

Mallin MA, Johnson VL, Ensign SH, MacPherson TA (2006) Factors contributing to hypoxia in rivers, lakes, and streams. Limnol Oceanogr 51:690–701

Masson L, Masson G, Beisal JN, Gutowsky LFG, Fox MG (2018) Consistent life history shifts along invasion routes? An examination of round goby populations invading on two continents. Divers Distrib 24:841–852

McCord N, South J, Cuthbert RN, Dickey JWE, McCord N, Dick JTA (2021) Pushing the switch: functional responses and prey switching by invasive lionfish may mediate their ecological impact. Biol Invasions

Médoc V, Spataro T, Arditi R (2013) Prey: Predator ratio dependence in the functional response of a freshwater amphipod. Freshw Biol 58:858–865

Springer
Breathing space: deoxygenation of aquatic environments can drive differential ecological… 2847

Mofu L, South J, Wasserman RJ, Dalu T, Woodford DJ, Dick JTA et al (2019) Inter-specific differences in invader and native fish functional responses illustrate neutral effects on prey but superior invader competitive ability. Freshw Biol 64:1655–1663

Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161

Norkko J, Reed DC, Timmermann K, Norkko A, Gustafsson BG, Bonsdorff E, Slomp CP, Carstensen J, Conley DJ (2012) A welcome can of worms? Hypoxia mitigation by an invasive species. Glob Change Biol 18(2):422–434. https://doi.org/10.1111/j.1365-2486.2011.02513.x

Paiva F, Barco A, Chen Y, Mirzajani A, Chan FT, Lauringson V et al (2018) Is salinity an obstacle for biological invasions? Glob Chang Biol 24:2708–2720

Pauli NC, Paiva F, Briski E (2018) Are Ponto-Caspian species able to cross salinity barriers? A case study of the gammarid Pontogammarus maetius. Ecol Evol 8:9817–9826

Piria M, Copp G, Dick J, Duplić A, Groom Q, Jelić D et al (2017) Tackling invasive alien species in Europe II: threats and opportunities until 2020. Manag Biol Invasions 8:273–286

Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(580):95–97

Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschké JM et al (2018) Global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci 15:1–10

Seebens H, Briski E, Ghabooli S, Shiganova T, MacIsaac HJ, Blasius B (2019) Non-native species spread in a complex network: the interaction of global transport and local population dynamics determines invasion success. Proc R Soc B Biol Sci 286:20190036

Shi J, Douglas R, Rippey B, Jordan P (2003) Modelling the diurnal variation of dissolved oxygen concentration in the River Oona. In: Brebbia CA, Almorza D, Sales D (eds) Water pollution VII—Modelling, Measuring and Prediction. WIT Press, New York, pp 403–412

Soldatov AA (1997) Oxyygen-dissociation properties of blood and intraerythrocytic medium composition in sea fish with different motor activity. J Evol Biochem Physiol 33:534–539

Solomon ME (1949) The natural control of animal populations. J Anim Ecol 18:1

Stern D Ben, Lee CE (2020) Evolutionary origins of genomic adaptations in an invasive copepod. Nat Ecol Evol 4:1084–1094

Sturtevant RA, Mason DM, Rutherford ES, Elgin A, Lower E, Martínez F (2019) Recent history of nonindigenous species in the Laurentian Great Lakes; An update to Mills et al., 1993 (25 years later). J Great Lakes Res, 1993

Tamburri MN, Wasson K, Matsuda M (2002) Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biol Conserv 103:331–341

Turvey ST, Crees JJ (2019) Extinction in the anthropocene. Curr Biol 29:R982–R986

Uttinger J, Roth C, Peter A (2008) Effects of environmental parameters on the distribution of bullhead Cottus gobio with particular consideration of the effects of obstructions. J Appl Ecol 35:882–892

Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457

Van Kessel N, Dorenbosch M, Kranenburg J, van der Velde G, Leuven RSEW (2016) Invasive Ponto-Caspian gobies rapidly reduce the abundance of protected native bullhead. Aquat Invasions 11:179–188

Walsh MG, Dittman DE, O’Gorman R (2007) Occurrence and Food Habits of the Round Goby in the Profundal Zone of Southwestern Lake Ontario. J Great Lakes Res 33:83–92

Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

Wasserman RJ, Cuthbert RN, Alexander ME, Dalu T (2018) Shifting interaction strength between estuarine mysid species across a temperature gradient. Mar Environ Res 140:390–393

Wen Y, Schoups G, Van De Giesen N (2017) Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci Rep 7:1–9

Zeng Y, Yeo DCJ (2018) Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: a Southeast Asian case study. Biol Conserv 223:58–67

Zieritz A, Gallardo B, Baker SJ, Britton JR, van Valkenburg JLC, Verreycken H et al (2016) Changes in pathways and vectors of biological invasions in Northwest Europe. Biol Invasions 19:1–14

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.