A complete and explicit solution to the three-dimensional problem of two fixed centres

Francesco Biscani1* and Dario Izzo2
1Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
2ESA – Advanced Concepts Team, European Space Research Technology Centre (ESTEC), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk The Netherlands

28 October 2015

ABSTRACT

We present for the first time an explicit, complete and closed-form solution to the three-dimensional problem of two fixed centres, based on Weierstrass elliptic and related functions. With respect to previous treatments of the problem, our solution is exact, valid for all initial conditions and physical parameters of the system (including unbounded orbits and repulsive forces), and expressed via a unique set of formulae. Various properties of the three-dimensional problem of two fixed centres are investigated and analysed, with a particular emphasis on quasi-periodic and periodic orbits, regions of motion and equilibrium points.

Key words: Celestial mechanics - Gravitation

1 INTRODUCTION

The problem of two fixed centres is the dynamical system consisting of two fixed bodies exerting inverse-square forces on a test particle. It is also known as Euler’s three-body problem (E3BP), the Euler-Jacobi problem, and the two-centre Kepler problem, and it is the simplest three-body problem of physical interest. The solvability of the E3BP was first established by Euler in the 1760s, who demonstrated the existence of integrals of motion involving inverse square roots of quartic expressions. Later on, the E3BP attracted the attention of Legendre, Lagrange and Jacobi, who recognized that the solution of the E3BP can be expressed in terms of elliptic functions and integrals.

Throughout the twentieth century, mathematicians and astronomers frequently returned to the E3BP. Darboux (1901) showed how the E3BP can be generalised with the addition of complex masses at complex distances, while retaining separability in the elliptic coordinate system. Charlier (1902) used the E3BP as the starting point for a discussion of the restricted three-body problem in his treatise on celestial mechanics. Hiltebeitel (1911) introduced further generalisations of the E3BP involving linear and inverse-cube forces.

In the early days of quantum mechanics, the E3BP served as a model of the hydrogen molecule ion H\textsubscript{2}+(Pauli 1922). The advent of the space age brought a renewed interest in the E3BP, after it was established that the it could be used as an approximation of the potential of rotationally-symmetric rigid bodies (Vinti 1959; Demin 1961; Aksenov et al. 1962; Deprit 1962; Aksenov et al. 1963; Alfriend et al. 1977). Even recently, the E3BP has been the subject of ongoing research, both in its classical formulation but also in connection with quantum mechanics and general relativity (Cordani 2003; Varvoglis et al. 2004; Waalkens et al. 2004; Coelho & Herdeiro 2009). The work of Ó'Mathúna (2008) is particularly noteworthy, devoting four chapters to the E3BP.

From a purely mathematical point of view, the interest in the E3BP arises from the fact that it belongs to the very restrictive class of Liouville-integrable dynamical systems (Arnold 1989). From a physical and astronomical point of view, the E3BP is noteworthy for at least two reasons:

- as a (completely solvable) stepping-stone between the two-body problem and the three-body problem. In particular, the planar E3BP is analogous to a circular restricted three-body problem without centrifugal force;
- as an approximation of the potential of a rotationally-symmetric rigid body.

Despite more than two centuries of research, a full and explicit solution to the E3BP has so far proven elusive. As pointed out by Ó’Mathúna (2008), most authors explain that the solution involves elliptic functions and integrals, but they stop short of explicitly computing such solution or even sketching out how it is to be attained. This is particularly true for the three-dimensional E3BP, which is typically treated as an extension of the bidimensional case. Even in the very thorough exposition of Ó’Mathúna (2008), the solu-
tion of the three-dimensional E3BP is limited to the case of negative energy and it is not explicit in the third coordinate and in the time-angle relation.

The aim of this paper is to present for the first time a full explicit solution to the three-dimensional E3BP in terms of Weierstrassian elliptic and related functions. Our solution is expressed via unique formulæ valid for any set of physical parameters and initial conditions of the three-dimensional case. The use of the Weierstrassian formalism allows us to provide a compact formulation for the solution and to avoid the fragmentation usually associated to the use of Jacobi elliptic functions.

We need to point out that our focus is the three-dimensional case, and although the method presented here might also be suitable for the solution of the bidimensional case, we will not consider planar motion: our solution to the three-dimensional case stands alone and it is not formulated as a generalisation of the bidimensional case. We also need to make clear that the main objective of this work is to make clear that the main objective of this work is to understand the fragmentation usually associated to the use of Jacobi elliptic functions.

The paper is structured as follows: in Section 2, we formulate the problem and we identify the integrals of motion in the Hamiltonian formalism; in Section 3, we solve the equations of motion and the time equation in elliptic-cylindrical coordinates; Section 4 is dedicated to the analysis of the solution, which focuses on periodic and quasi-periodic orbits, regions of motion, equilibrium points and displaced circular orbits; Section 5 is dedicated to the conclusions and to possible future extensions of the work presented here.

2 FORMULATION OF THE PROBLEM

The setup of the three-dimensional E3BP is sketched in Figure 1. Without loss of generality, we can position the two centres on the positive and negative z axis at a distance a from the origin of an inertial reference frame. This choice naturally allows to take immediate advantage of the cylindrical symmetry of the problem, as it will be shown shortly.

The Lagrangian of a test particle moving in the potential exerted by the two fixed centres reads:

$$L (r; \dot{r}) = \frac{\dot{\rho}^2}{2} + \frac{\mu_1}{\sqrt{\rho^2 + y^2 + (\rho - a)^2}} + \frac{\mu_2}{\sqrt{\rho^2 + y^2 + (\rho + a)^2}},$$

where $\rho = (x, y, z)$ is the vector of cartesian coordinates of the test particle, \dot{r} its time derivative, and $\mu_{1,2}$ represent the strength of the two centres of attraction. $\mu_{1,2}$ can either be either positive or negative, resulting respectively in attractive or repulsive forces on the test particle. In the gravitational E3BP, $\mu_{1,2}$ are gravitational parameters:

$$\mu_{1,2} = GM_{1,2},$$

where $M_{1,2}$ are the masses of the two centres and G is the gravitational constant. Although our solution is valid for both negative and positive $\mu_{1,2}$, in the analysis of the results we will focus on the gravitational E3BP, as it is arguably the most useful version of the E3BP in an astronomical context.

Following Waalkens et al. (2004), the first step of the separation of the problem is the introduction of cylindrical coordinates:

$$x = \rho \cos \phi, \quad y = \rho \sin \phi, \quad \rho = \sqrt{x^2 + y^2},$$

for the coordinates and

$$\dot{x} = \dot{\rho} \cos \phi - \rho \dot{\phi} \sin \phi, \quad \dot{\rho} = \frac{x \dot{x} + y \dot{y}}{\sqrt{x^2 + y^2}},$$

$$\dot{y} = \dot{\rho} \sin \phi + \rho \dot{\phi} \cos \phi, \quad \dot{\phi} = \frac{y \dot{x} - x \dot{y}}{x^2 + y^2},$$

for the velocities, where arctan () is the two-argument inverse tangent function. The Lagrangian in cylindrical coordinates reads:

$$L (\rho, \phi, z; \dot{\rho}, \dot{\phi}, \dot{z}) = \frac{\dot{\rho}^2 + \rho^2 \dot{\phi}^2 + \dot{z}^2}{2} + \frac{\mu_1}{\sqrt{\rho^2 + (z-a)^2}} + \frac{\mu_2}{\sqrt{\rho^2 + (z+a)^2}}.$$

As a result of the rotational symmetry of the system, the ϕ coordinate is now cyclic and the Lagrangian is reduced to two degrees of freedom (in the variables ρ and z).

We now proceed to introduce elliptical coordinates on the (ρ, z) plane via the transformation

$$\rho = a \sqrt{(\xi^2 - 1) (1 - \eta^2)},$$

$$z = a \xi \eta,$$

its inverse

$$\xi = \frac{\sqrt{\rho^2 + (z+a)^2} + \sqrt{\rho^2 + (z-a)^2}}{2a},$$

$$\eta = \frac{\sqrt{\rho^2 + (z+a)^2} - \sqrt{\rho^2 + (z-a)^2}}{2a},$$

Figure 1. Setup of the three-dimensional E3BP. Two fixed centres μ_1 and μ_2 are located on the positive and negative z axis at a distance a from the origin of an inertial frame of reference. μ_1 and μ_2 exert inverse-square forces F_1 and F_2 (attractive or repulsive) on a test particle P located at the position \mathbf{r}. The cylindrical radius ρ is the magnitude of the projection of \mathbf{r} on the xy plane. ϕ is the azimuthal angle.
and the corresponding transformations for the velocities,
\[
\dot{\rho} = a \frac{\xi (1 - \eta^2) - \eta \eta \xi (\xi^2 - 1)}{\sqrt{(\xi^2 - 1)(1 - \eta^2)}},
\]
\[
\dot{z} = a \left(\xi \eta + \xi \dot{\eta} \right),
\]
and
\[
\dot{\xi} = \frac{1}{2a} \left[\frac{\dot{\rho} \rho + \dot{z} (z + a)}{\sqrt{\rho^2 + (z + a)^2}} + \frac{\dot{\rho} \rho + \dot{z} (z - a)}{\sqrt{\rho^2 + (z - a)^2}} \right],
\]
\[
\dot{\eta} = \frac{1}{2a} \left[\frac{\dot{\rho} \rho + \dot{z} (z + a)}{\sqrt{\rho^2 + (z + a)^2}} - \frac{\dot{\rho} \rho + \dot{z} (z - a)}{\sqrt{\rho^2 + (z - a)^2}} \right].
\]

The right-hand side of eq. (10) represents the sum of the distances of the point \((\rho, z)\) from the two centres, normalised by 2a. Similarly, the right-hand side of eq. (11) represents the difference of the distances of the point \((\rho, z)\) from the two centres, normalised by 2a. It thus follows that the lines of constant \(\xi\) and \(\eta\) in the \((\rho, z)\) plane are ellipses and branches of hyperbola whose foci are coincident with the masses. The domain of \(\xi\) is \([1, \infty)\), the domain of \(\eta\) is \([-1, 1]\).

The Lagrangian in elliptic-cylindrical coordinates reads:
\[
L (\xi, \eta; \dot{\xi}, \dot{\eta}, \dot{\phi}) = \frac{a^2}{2} \left[\dot{\xi}^2 \frac{(1 - \eta^2)}{\xi^2 - 1} + \dot{\eta}^2 \frac{(\xi^2 - 1)}{1 - \eta^2} \right] + \dot{\phi}^2 (\xi^2 - 1) (1 - \eta^2) + \frac{\mu_1}{a (\xi - \eta)} + \frac{\mu_2}{a (\xi + \eta)}.
\]

Switching now to the Hamiltonian formulation of the problem with a Legendre transformation, we introduce the generalised momenta via the relations
\[
p_{\xi} = \frac{\partial L}{\partial \dot{\xi}} = a^2 \dot{\xi} \left(\frac{\xi^2 - 1}{\xi^2 - 1} \right),
\]
\[
p_{\eta} = \frac{\partial L}{\partial \dot{\eta}} = a^2 \dot{\eta} \left(\frac{\xi^2 - 1}{1 - \eta^2} \right),
\]
\[
p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = a^2 \dot{\phi} \left(\frac{\xi^2 - 1}{1 - \eta^2} \right),
\]
and the inverse
\[
\dot{\xi} = \frac{p_{\xi}}{a^2 (\xi^2 - \eta^2)},
\]
\[
\dot{\eta} = \frac{p_{\eta} (1 - \eta^2)}{a^2 (\xi^2 - \eta^2)},
\]
\[
\dot{\phi} = \frac{p_{\phi}}{a^2 (\xi^2 - 1) (1 - \eta^2)}.
\]

The Hamiltonian then reads:
\[
\mathcal{H} (p_{\xi}, p_{\eta}, p_{\phi}; \xi, \eta, \phi) = \frac{1}{2a^2 (\xi^2 - \eta^2)} \left[p_{\xi}^2 \left(\xi^2 - 1 \right) + p_{\eta}^2 \left(1 - \eta^2 \right) \right] + \frac{p_{\phi}^2}{2a^2 (\xi^2 - 1) (1 - \eta^2)} - \frac{\mu_1}{a (\xi - \eta)} - \frac{\mu_2}{a (\xi + \eta)}.
\]

We proceed now to the introduction of the new Hamiltonian \(\mathcal{H}_r\), obtained through the following Poincaré time transformation (Siegel & Moser 1971; Carinena et al. 1988; Saha 2009):
\[
\mathcal{H}_r = (\mathcal{H} - h) \left(\xi^2 - \eta^2 \right),
\]
where \(h\) is the energy constant of the system (i.e., the numerical value of \(\mathcal{H}\) after the substitution of the initial conditions into (23)). The Hamiltonian \(\mathcal{H}_r\) generates the equations of motion with respect to the new independent variable \(\tau\) (often called a fictitious time), connected to the real time \(t\) through the differential relation
\[
dt = (\xi^2 - \eta^2) \ d\tau.
\]

The Poincaré time transform can be seen as the Hamiltonian analogue of a Sundman transformation (Sundman 1912): it regularises the problem by slowing time down when the particle is close to either fixed centre (note how in correspondence of the two centres \(\xi^2 - \eta^2\) is zero).

The equations of motion in fictitious time read:
\[
\frac{d\xi}{d\tau} = \frac{\partial \mathcal{H}_r}{\partial p_{\xi}}, \quad \frac{dp_{\xi}}{d\tau} = -\frac{\partial \mathcal{H}_r}{\partial \xi},
\]
\[
\frac{d\eta}{d\tau} = \frac{\partial \mathcal{H}_r}{\partial p_{\eta}}, \quad \frac{dp_{\eta}}{d\tau} = -\frac{\partial \mathcal{H}_r}{\partial \eta},
\]
\[
\frac{d\phi}{d\tau} = \frac{\partial \mathcal{H}_r}{\partial p_{\phi}}, \quad \frac{dp_{\phi}}{d\tau} = -\frac{\partial \mathcal{H}_r}{\partial \phi},
\]
while the complete expression for \(\mathcal{H}_r\) is
\[
\mathcal{H}_r (p_{\xi}, p_{\eta}, p_{\phi}; \xi, \eta, \phi) = -\xi^2 h - \frac{\xi}{a} (\mu_1 + \mu_2) + \frac{p_{\phi}^2}{2a^2 (\xi^2 - 1)} + \frac{p_{\phi}^2}{2a^2 (\xi^2 - 1)},
\]
\[
\eta^2 h - \frac{\eta}{a} (\mu_1 - \mu_2) + \frac{p_{\phi}^2}{2a^2 (1 - \eta^2)} + \frac{p_{\phi}^2}{2a^2 (1 - \eta^2)}.
\]

The Hamiltonian \(\mathcal{H}_r\) has thus been separated into the two constants of motion
\[
h_{\xi} = -\xi^2 h - \frac{\xi}{a} (\mu_1 + \mu_2) + \frac{p_{\phi}^2}{2a^2 (\xi^2 - 1)} + \frac{p_{\phi}^2}{2a^2 (\xi^2 - 1)},
\]
\[
h_{\eta} = \eta^2 h - \frac{\eta}{a} (\mu_1 - \mu_2) + \frac{p_{\phi}^2}{2a^2 (1 - \eta^2)} + \frac{p_{\phi}^2}{2a^2 (1 - \eta^2)}.
\]

We can now move on to the solution of the equations of motion.

3 Integration of the Equations of Motion

We proceed now to the explicit integration of the equations of motion (26)–(28) and of the time equation (25). We detail initially the solution for the \(\xi\) coordinate; the solution for the \(\eta\) coordinate if formally identical, while the solutions for the \(\phi\) coordinate and for the time equation require a different procedure. The solutions for the momenta \(p_{\xi}\) and \(p_{\eta}\) will be
easily computed via the solutions for \(\xi \) and \(\eta \). In this section we will focus on the mathematical details of the solution. Section 4 will be dedicated to the analysis of our results.

3.1 Solution for \(\xi \)

The equation of motion for \(\xi \), eq. (26), reads:

\[
\frac{d\xi}{d\tau} = \frac{\xi^3 p_\xi}{a^2} - \frac{p_\xi}{a^2}.
\]

(32)

We can use the constant of motion \(h_\xi \) to express \(p_\xi \) as a function of \(\xi \), via the inversion of eq. (30):

\[
p_\xi = \pm \frac{1}{\xi^2 - 1} \sqrt{f_\xi(\xi)}.
\]

(33)

where

\[
f_\xi(\xi) = 2\xi^4 a^2 h + \xi^3 (2\mu_1 a + 2\mu_2 a) + \xi^2 (-2a^2 h + 2a^2 h_\xi) + \xi (-2\mu_1 a - 2\mu_2 a) - 2a^2 h_\xi - p_\phi^2.
\]

(34)

is a polynomial of degree 4 in \(\xi \). The equation of motion for \(\xi \) then reads:

\[
\frac{d\xi}{d\tau} = \pm \frac{\sqrt{f_\xi(\xi)}}{a^2}.
\]

(35)

Before proceeding to the integration and inversion of this equation, we need to highlight a useful property of \(f_\xi(\xi) \). It can be checked by direct substitution that

\[
f_\xi(1) = -p_\phi^2 < 0,
\]

(36)

that is, the value of the polynomial is always negative for \(\xi = 1 \). On the other hand, for any choice of initial conditions, \(f_\xi(\xi) \) must assume positive values in a subrange of \(\xi > 1 \), otherwise the radicand in eq. (35) would be negative. Consequently, the polynomial \(f_\xi(\xi) \) must have at least one real root in the range \((1, +\infty) \) (i.e., in the domain of interest for the variable \(\xi \)). Figure 2 visualises the phase portraits for \(\xi \) in a few randomly-selected cases. It should be noted how a necessary condition for unbounded motion is a positive energy constant \(h \): according to eqs. (34) and (35), if \(h \) is negative the radicand on the right-hand side of eq. (35) assumes negative values for \(\xi \rightarrow \infty \). Thus, for negative \(h \) the phase portrait for the \(\xi \) variable must be a closed curve.

The integration by quadrature of eq. (35) reads:

\[
\int_{\xi_0}^{\xi} \frac{ds}{\sqrt{f_\xi(s)}} = \pm \frac{1}{a^2} \int_0^\tau ds,
\]

(37)

where \(s \) is a dummy integration variable, \(\xi_0 \) is an arbitrary initial value for \(\xi \) and, without loss of generality, we have set the initial fictitious time to 0. The \(\pm \) sign in front of the integral on the right-hand side can be chosen as the sign of the initial value of \(d\xi/d\tau \). With this convention, the right-hand side of eq. (37) represents the time needed by the system to evolve from \(\xi_0 \) to \(\xi \) along a trajectory in which the sign of \(d\xi/d\tau \) is constant.

The left-hand side of eq. (37) is an elliptic integral which can be inverted to yield \(\xi(\tau) \) using a formula by Weierstrass, reported in Whittaker & Watson (1927, §20.6). The general formula is rather complicated, but it can be simplified considerably by choosing as the initial value for the integration a root \(\xi_r \) of the polynomial \(f_\xi(\xi) \). With such a choice, eq. (37) reads

\[
\int_{\xi_0}^{\xi} \frac{ds}{\sqrt{f_\xi(s)}} = \pm \frac{1}{a^2} \int_0^\tau ds,
\]

(38)

where now \(\tau_\xi \) is the fictitious time of root passage for \(\xi \). In analogy with the Kepler problem, when \(\xi_r \) is the smallest reachable root in the domain of interest \(\tau_\xi \) can be considered as a kind of fictitious “time of pericentre passage” for the \(\xi \) variable. \(\tau_\xi \) can be computed by solving the elliptic integral:

\[
\tau_\xi = \pm a^2 \int_{\xi_0}^{\xi_r} \frac{ds}{\sqrt{f_\xi(s)}}.
\]

(39)

As we have mentioned above, the existence of at least one root \(\xi_r \) in the domain of interest for \(\xi \) is guaranteed by the properties of the coefficients of \(f_\xi(\xi) \). \(\xi_r \) can be computed either numerically or algebraically (via the quartic formula).

Equation (38) can now be integrated and inverted to yield

\[
\xi(\tau) = \xi_r + \frac{1}{4} \frac{f_\xi'(\xi_r)}{\wp(\frac{\tau-\tau_\xi}{a^2}) - \frac{1}{4} \wp'(\xi_r)}.
\]

(40)

In this formula, the derivatives of \(f_\xi(\xi) \) are to be taken with respect to \(\xi \), and \(\wp(\cdot) \) is a Weierstrass elliptic function defined in terms of the two invariants

\[
g_2 = \mu_1^2 a^2 + 2\mu_1 \mu_2 a^2 + \mu_2^2 a^2 + \frac{a^4 h^2}{3} - \frac{14h}{3} a^4 h_\xi
\]

+ \frac{a^4 h^2}{3} - 2a^2 h_\phi^2,
\]

(41)

\[
g_3 = -\frac{\mu_1^2 a^4}{3} + \frac{\mu_1^2 h_\xi a^4}{3} + \frac{\mu_1^2 h_\phi^2}{4} a^2
\]

- \frac{2\mu_1 \mu_2 a^4 h + 2\mu_2 a^2 h_\xi + \mu_1^2 a^2}{3} h_\phi^2
\]

- \frac{\mu_1^2 h_\xi}{3} a^4 + \frac{\mu_1^2 h_\phi^2}{4} a^2
\]

+ \frac{a^6 h^3}{27} + \frac{11h_\xi a^6 h_\phi^2}{9} - \frac{11}{9} a^4 h_\xi - \frac{a^6 h^3_\xi}{27}
\]

+ \frac{2h_\xi a^6 h_\phi^2}{3} - \frac{2h_\xi a^6 h_\phi^2}{9}.
\]

(42)

computed from the coefficients of the polynomial \(f_\xi(\xi) \) following Whittaker & Watson (1927, §20.6). Without giving a full account of the theory of the Weierstrassian functions (for which we refer to standard textbooks such as Whittaker & Watson (1927), Abramowitz & Stegun (1964), Akhiezer (1990)), we will recall here briefly a few fundamental notions about the \(\wp(\cdot) \) function. As commonly done, in the following we will suppress the verbose notation \(\wp(\cdot; g_2, g_3) \) in favour of just \(\wp(\cdot) \), with the understanding that \(\wp(\cdot) \) refers to a Weierstrass function defined in terms of the invariants (41) and (42).

The elliptic function \(\wp(z; g_2, g_3) \) is a doubly-periodic complex-valued function of a complex variable \(z \) defined in terms of the two invariants \(g_2 \) and \(g_3 \). The complex primitive half-periods of \(\wp(\cdot) \) can be related to the invariants via formulæ involving elliptic integrals and the roots \(e_1, e_2 \) and \(e_3 \) of the Weierstrass cubic

\[
4\xi^3 - g_2 \xi - g_3 = 0
\]

(43)

(e.g., see Abramowitz & Stegun 1964, §18.9). The sign of
The three-dimensional problem of two fixed centres

the modular discriminant

\[\Delta = g_2^3 - 27g_3^2 \]

(44)
determines the nature of the roots \(c_1, c_2 \) and \(c_3 \). In this specific case, the invariants are by definition real, \(\tau \) is also real, and \(\wp_\xi (\tau) \) can thus be regarded as a real-valued singly-periodic function on the real axis (see Abramowitz & Stegun 1964, Chapter 18). We refer to the real half-period of \(\wp_\xi \) as \(\omega_\xi \). It should be noted that, according to eq. (39), if the real period of \(\wp_\xi \) is \(2\omega_\xi \), then the period of \(\xi \) is \(2a^2\omega_\xi \).

\(\wp \) is an even function, and it has second-order poles at each point of the period lattice. That is, \(\wp_\xi \) satisfies the following properties (where \(k \in \mathbb{Z} \)):

\[\wp_\xi (\tau) = \wp_\xi (\tau + 2k\omega_\xi), \]

(45)
\[\wp_\xi (\tau) = \wp_\xi (-\tau), \]

(46)
\[\lim_{\tau \to 2k\omega_\xi} \wp_\xi (\tau) = +\infty, \]

(47)

and in proximity of \(\tau = 2k\omega_\xi \) the function \(\wp_\xi (\tau) \) behaves, on the real axis, like \(1/\tau^2 \) in proximity of \(\tau = 0 \). Figure 3 illustrates graphically the behaviour of the Weierstrass elliptic function on the real axis.

We can also use the inverse Weierstrass elliptic function \(\wp^{-1} \) to express the time of root passage via the inversion of eq. (40) after setting \(\tau = 0 \):

\[\tau_\xi = a^2 \wp^{-1}_\xi \left[\frac{1}{24} f'_{\xi} (\xi_r) + \frac{f_{\xi} (\xi_r)}{4 (\xi_0 - \xi_r)} \right]. \]

(48)

This is an alternative (but equivalent) formulation of the elliptic integral (39). It must be noted that the function \(\wp^{-1} \) has two solutions within the fundamental parallelogram of \(\wp \), and thus two possible values for \(\tau_\xi \) exist. This ambiguity physically translates to the fact that each value assumed by the \(\xi \) coordinate is visited twice along a trajectory, once with a positive value for \(d\xi/d\tau \) and once with a negative value\(^1\).

\(^1\) Another manifestation of this ambiguity is the symmetry with respect to the horizontal axis of the phase portraits - see the examples in Figure 2.

Figure 2. Phase portraits for the \(\xi \) variable in ten randomly-generated cases. The shaded region corresponding to \(\xi < 1 \) is the domain in which the \(\xi \) variable does not represent any real physical coordinate. The trajectories in the \((\xi, d\xi/d\tau) \) plane are elliptic curves. All the portraits refer to bounded trajectories, apart from the third panel in the first row.

Figure 3. Plot of \(\wp(2,3; z) \) on the real axis over two real periods (solid line). In this specific case, the real period \(2\omega \) is approximately 2.39. The vertical dashed lines represent asymptotes, close to which \(\wp \) behaves like \(1/z^2 \) close to zero. The vertical dashed-dotted lines in correspondence of the real half-period \(\omega \) cross \(\wp \) at its absolute minimum value, and they are axes of symmetry for \(\wp \) within the real period.

The correct choice for \(\tau_\xi \) is the value which, when plugged into eq. (75) (which describes the evolution of \(p_\xi \) in fictitious time), returns the initial value of \(p_\xi \).

3.2 Solution for \(\eta \)

The equation of motion for \(\eta \), eq. (27), reads:

\[\frac{d\eta}{d\tau} = -\frac{\eta^2p_0}{a^2} + \frac{p_0}{a^2}. \]

(49)

Following the same procedure adopted for \(\xi \), we can express \(p_\eta \) by inverting eq. (31), and rewrite the equation of motion...
functions. In order reduce visual clutter, we introduce the notation
\[A_6 = f_6^\prime(\xi_r), \quad A_0 = f_0^\prime(\eta_r), \]
\[B_6 = \frac{1}{24} f_6''(\xi_r), \quad B_0 = \frac{1}{24} f_0''(\eta_r). \]

\[A_6, B_6, A_0, \text{ and } B_0 \text{ are all constants of motion depending on the physical parameters of the system and on the initial conditions.} \]

The general theory of the integration of rational functions of Weierstrass elliptic functions is given, e.g., in Halphen (1886, Chapter VII) and Greenhill (1959, Chapter VII). Here it will be enough to first perform a fraction decomposition with respect to \(\varphi \), and then to integrate the decomposed fractions using the formulæ from Tannery & Molk (1893, Chapter CXII). After the substitution of eqs. (40) and (53) into eq. (57), the decomposition for \(d\varphi/d\tau \) is:

\[
\frac{d\phi}{d\tau} = \frac{p_0 A_6}{8a^2 (\xi_r + 1)^2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) + \frac{A_6 - 4B_6 \xi_r - 4B_0}{4(\xi_r + 1)} \right] - \frac{p_0 A_6}{8a^2 (\xi_r - 1)^2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) + \frac{A_6 - 4B_6 \xi_r - 4B_0}{4(\xi_r - 1)} \right] + \frac{p_0 A_0}{8a^2 (\eta_r + 1)^2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) + \frac{A_0 - 4B_0 \eta_r - 4B_0}{4(\eta_r + 1)} \right] + \frac{p_0 A_0}{8a^2 (\eta_r - 1)^2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) + \frac{A_0 - 4B_0 \eta_r - 4B_0}{4(\eta_r - 1)} \right] + p_0 \right] a^2 (\xi_r - 1) - p_0 \phi}}.\]

The decomposition for \(dt/d\tau \) reads:

\[
\frac{dt}{d\tau} = \frac{A_6^2}{16 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) - B_0 \right]^2} + \frac{A_6 \xi_r}{2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) - B_0 \right]} + \xi_r^2 - \frac{A_6^2}{16 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) - B_0 \right]^2} - 2 \left[\varphi \left(\frac{\tau - \tau_0}{\alpha} \right) - B_0 \right] - \eta_r^2. \]

In order integrate eqs. (61) and (62), we employ two formulæ from Tannery & Molk (1893, Chapter CXII) (see also Gradshteyn & Ryzhik (2007, §5.141)):
of eqs. (63) and (64) (modulo additive and multiplicative constants)\footnote{It must be noted how the right-hand sides of eqs. (63) and (64) have singularities when \(\varphi' (v) \) is zero. In this situation, alternative formul\ae need to be used, as detailed in Tannery & Molk (1893, Chapter CXII) and Gradshtein & Ryzhik (2007, §5.141). We will not consider this special case here.}

Following Tannery & Molk (1893, Chapter CXII), we introduce the shorthand notation for the two integrals (63) and (64)

\[
\mathcal{J}_1 (u, v) = \int \frac{du}{\varphi(u) - \varphi(v)}, \quad (65)
\]

\[
\mathcal{J}_2 (u, v) = \int \frac{du}{[\varphi(u) - \varphi(v)]^2}, \quad (66)
\]

(with the understanding that we will add a \(\xi \) or \(\eta \) subscript depending on the subscript of the Weierstrassian functions appearing in the integrals). With this convention, we can integrate eq. (61) and obtain:

\[
\phi (\tau) = \phi_0 + \frac{p_\phi A_\xi}{8 (\xi_\tau + 1)^2} \left[\mathcal{J}_{\xi,1} \left(\frac{\tau - \tau_\xi}{a^2}, v_{\xi,1} \right) - \mathcal{J}_{\xi,1} \left(-\frac{\tau_\xi}{a^2}, v_{\xi,1} \right) \right] \\
- \frac{p_\phi A_\xi}{8 (\xi_\tau - 1)^2} \left[\mathcal{J}_{\xi,1} \left(\frac{\tau - \tau_\xi}{a^2}, v_{\xi,2} \right) - \mathcal{J}_{\xi,1} \left(-\frac{\tau_\xi}{a^2}, v_{\xi,2} \right) \right] \\
- \frac{p_\phi A_\eta}{8 (\eta + 1)^2} \left[\mathcal{J}_{\eta,1} \left(\frac{\tau - \tau_\eta}{a^2}, v_{\eta,1} \right) - \mathcal{J}_{\eta,1} \left(-\frac{\tau_\eta}{a^2}, v_{\eta,1} \right) \right] \\
+ \frac{p_\phi \tau}{a^2 (\xi_\tau^2 - 1)} - \frac{p_\phi \tau}{a^2 (\eta_\tau^2 - 1)}, \quad (67)
\]

where we have introduced the constants

\[
v_{\xi,1} = \varphi^{-1} \left[\frac{A_\xi - 4B_\xi \xi_\tau - 4B_\xi}{4 (\xi_\tau + 1)} \right], \quad (68)
\]

\[
v_{\xi,2} = \varphi^{-1} \left[\frac{A_\xi - 4B_\xi \xi_\tau + 4B_\xi}{4 (\xi_\tau - 1)} \right], \quad (69)
\]

\[
v_{\eta,1} = \varphi^{-1} \left[\frac{A_\eta - 4B_\eta \eta_\tau - 4B_\eta}{4 (\eta + 1)} \right], \quad (70)
\]

\[
v_{\eta,2} = \varphi^{-1} \left[\frac{A_\eta - 4B_\eta \eta_\tau + 4B_\eta}{4 (\eta - 1)} \right], \quad (71)
\]

in order to simplify the notation. Analogously, the integration of eq. (62) yields

\[
t (\tau) = \frac{a^2 A_\xi^2}{16} \left[\mathcal{J}_{\xi,2} \left(\frac{\tau - \tau_\xi}{a^2}, b_\xi \right) - \mathcal{J}_{\xi,2} \left(-\frac{\tau_\xi}{a^2}, b_\xi \right) \right] \\
+ \frac{a^2 A_\xi \xi_\tau}{2} \left[\mathcal{J}_{\xi,1} \left(\frac{\tau - \tau_\xi}{a^2}, b_\xi \right) - \mathcal{J}_{\xi,1} \left(-\frac{\tau_\xi}{a^2}, b_\xi \right) \right] \\
- \frac{a^2 A_\eta^2}{16} \left[\mathcal{J}_{\eta,2} \left(\frac{\tau - \tau_\eta}{a^2}, b_\eta \right) - \mathcal{J}_{\eta,2} \left(-\frac{\tau_\eta}{a^2}, b_\eta \right) \right] \\
- \frac{a^2 A_\eta \eta_\tau}{2} \left[\mathcal{J}_{\eta,1} \left(\frac{\tau - \tau_\eta}{a^2}, b_\eta \right) - \mathcal{J}_{\eta,1} \left(-\frac{\tau_\eta}{a^2}, b_\eta \right) \right] \\
+ (\xi_\tau^2 - \eta_\tau^2) \tau, \quad (72)
\]
where we have introduced the constants
\[b_{x} = \wp_{1}^{-1} (B_{x}) , \]
\[b_{y} = \wp_{n}^{-1} (B_{y}) \]
again in order to simplify the notation.

3.4 Solution for \(p_{x} \) and \(p_{y} \)

The explicit solution in fictitious time for \(p_{x} \) and \(p_{y} \) can be computed by inverting eqs. (32) and (49) to yield
\[p_{x} (\tau) = \frac{a^{2}}{\xi^{2} (\tau) - 1} \frac{d \xi (\tau)}{d \tau} , \]
\[p_{y} (\tau) = \frac{a^{2}}{1 - \eta^{2} (\tau)} \frac{d \eta (\tau)}{d \tau} . \]
The derivatives of \(\xi (\tau) \) and \(\eta (\tau) \) can be computed from the solutions (40) and (53):
\[\frac{d \xi (\tau)}{d \tau} = - \frac{A_{x} \wp_{1} (\frac{\tau - \xi}{\sigma_{x}})}{4a^{2} \left[\wp_{1} (\frac{\tau - \xi}{\sigma_{x}}) - B_{x} \right]^{2}} , \]
\[\frac{d \eta (\tau)}{d \tau} = - \frac{A_{y} \wp_{n} (\frac{\tau - \eta}{\sigma_{y}})}{4a^{2} \left[\wp_{n} (\frac{\tau - \eta}{\sigma_{y}}) - B_{y} \right]^{2}} . \]

4 ANALYSIS OF THE RESULTS

In the previous sections we computed the full exact solution of the three-dimensional E3BP. The evolution of the coordinates \(\xi, \eta \) and \(\phi \) in fictitious time is given by eqs. (40), (53) and (67). The evolution in fictitious time of the momenta \(p_{x} \) and \(p_{y} \) is given by eqs. (75) and (76) (the third momentum, \(p_{z} \), is a constant of motion). The connection between the fictitious time \(\tau \) and the real time \(t \) is given by eq. (72). The equations are valid for all initial conditions and physical parameters of the three-dimensional system (that is, when \(p_{0} \) is not zero).

The solutions for \(\xi, \eta, p_{x} \) and \(p_{y} \) are expressed solely in terms of the elliptic functions \(\wp \) and \(\wp' \). \(\xi \) and \(p_{x} \) are thus periodic functions of \(\tau \) with period \(2a^{2} \omega_{x} \), while \(\eta \) and \(p_{y} \) are periodic functions of \(\tau \) with period \(2a^{2} \omega_{y} \). In general, the two periods will be different.

The solutions for \(\phi (\tau) \) and \(t (\tau) \) involve also the Weierstrassian functions \(\sigma \) and \(\zeta \) (see eqs. (63) and (64)), which are not elliptic functions: they are quasi-periodic functions\(^4\). The fictitious time derivatives (57) and (58) of \(\phi \) and \(t \), however, involve only the function \(\wp \) and they can be thus seen as sums of functions with two different periods, \(2a^{2} \omega_{x} \) and \(2a^{2} \omega_{y} \). Such functions are sometimes called almost-periodic functions (Besicovitch 1932).

\(^4\) Here we use the term “quasi-periodic” in the following sense: a function \(f \) is quasi-periodic with quasi-period \(T \) if \(f (z + T) = g (z, f (z)) \). In the specific cases of \(\sigma \) and \(\zeta \), the following relations hold:
\[\sigma (z + T) = A e^{i T} \sigma (z) , \]
\[\zeta (z + T) = \zeta (z) + C , \]
where \(A, B \) and \(C \) are constants (Abramowitz & Stegun 1964, eqs. 18.2.19 and 18.2.20).

In a way, the fictitious time \(\tau \) can be considered as the E3BP analogue of the eccentric anomaly in the two-body problem. Kepler’s equation for the elliptic two-body problem reads:
\[t (E) = \frac{E - e \sin E}{n} , \]
where \(E \) is the eccentric anomaly, \(e \) the eccentricity of the orbit and \(n \) the (constant) mean motion. Clearly, Kepler’s equation is structurally similar to (albeit much simpler than) eq. (72); they are both transcendental equations featuring a combination of linear and periodic parts. Kepler’s equation is a quasi-periodic function, so that
\[t (E + 2 \pi n) = t (E) + 2 \pi n . \]

In a similar fashion, \(t (\tau) \) is the sum of two parts, one quasi-periodic with quasi-period \(2a^{2} \omega_{x} \), the other quasi-periodic with quasi-period \(2a^{2} \omega_{y} \). Following the nomenclature introduced earlier, we can then refer to \(t (\tau) \) (and to \(\phi (\tau) \) as well, since it is structurally identical) as an almost quasi-periodic function. In §4.2 we will examine periodicity and quasi-periodicity in the E3BP in more detail.

4.1 Boundedness and regions of motion

As we noted in the previous paragraph, the solution of the E3BP in terms of Weierstrassian functions is expressed as a set of unique formulae valid for all initial conditions and physical parameters of the system. That is, both bounded and unbounded orbits can be described by the same equations. Now, according to eqs. (8) and (9), the test particle can go to infinity only when \(\xi \) goes to infinity (by definition, the \(\eta \) coordinate is confined to the \([-1,1]\) interval). The solution for \(\xi (\tau) \), here reproduced for convenience,
\[\xi (\tau) = \xi_{0} + \frac{1}{4} \wp_{1} (\frac{\tau - \xi_{0}}{\sigma_{x}}) - \frac{1}{24} f'' (\xi_{0}) , \]
shows how the necessary and sufficient condition for the motion to be bounded is
\[\wp_{1 \text{min}} > \frac{1}{24} f'' (\xi_{0}) , \]
where \(\wp_{1 \text{min}} \) is the minimum value assumed by \(\wp_{1} \) in the real period \(2 \omega_{x} \). When this condition holds, the right-hand side of eq. (83) has no poles and \(\xi (\tau) \) is bounded. Vice versa, when the condition does not hold \(\xi \) will reach infinity in a finite amount of fictitious time. According to the theory of elliptic functions, within the real period and on the real axis
\[\wp_{1 \text{min}} = \wp_{1} (\omega_{x}) . \]
That is, the global minimum of \(\wp \) on the real axis is in correspondence of the real half-period. In addition,
\[\wp_{1} (\omega_{x}) = e_{1} , \]
where \(e_{1} \) is one of the roots of the Weierstrass cubic (43). By using eqs. (86) and (85), we can thus rewrite the condition (84) as
\[e_{1} > \frac{1}{24} f'' (\xi_{0}) . \]
For unbounded orbits, we can compute the fictitious time at which ξ goes to infinity, τ_∞, using the condition:

$$\varphi_\xi \left(\frac{\tau_\infty - \tau_0}{a^2} \right) - \frac{1}{24} f''_\xi (\xi_\tau) = 0,$$

that is,

$$\tau_\infty = \tau_0 + a^2 \varphi^{-1} \left[\frac{1}{24} f''_\xi (\xi_\tau) \right].$$

When the motion is unbounded τ_∞ is a real quantity, whereas when the motion is bounded τ_∞ becomes complex. With the definitions (73) and (60), we can rewrite eq. (89) as

$$\tau_\infty = \tau_0 + a^2 \varphi^{-1} (B_\xi).$$

We can then immediately verify how the substitution of τ_∞ for τ in eq. (62) leads to the two denominators of the form

$$\varphi_\xi \left(\frac{T - \tau_0}{a^2} \right) - B_\xi$$

on the right-hand side to go to zero. That is, for $\tau = \tau_\infty$ dt/dτ has a vertical asymptote, and the real time thus goes to infinity in a finite amount of fictitious time.

In contrast to $t(\tau)$, $\phi(\tau)$ has no asymptotes in fictitious time. For $\tau = \tau_\infty$, in unbounded orbits $\phi(\tau)$ assumes the finite value ϕ_∞ (which can be calculated via the substitution of τ_∞ for τ in eq. (67)). In the E3BP, ϕ_∞ plays the same role that the approach and departure angles play in hyperbolic trajectories in the two-body problem.

It should be noted that φ^{-1} is a multivalued function, and there are thus two possible values to choose from for τ_∞ within the fundamental parallelogram of φ. This duality physically corresponds to the fact that unbounded orbits have two asymptotes, one inbound and one outbound. Correspondingly, there are two possible ϕ_∞ values, one at $t = -\infty$ and the other one at $t = \infty$. Figure 5 illustrates graphically the evolution in fictitious time of the coordinates and of t in a representative unbounded trajectory.

It is worth stressing that, from a purely mathematical point of view, even in unbounded trajectories the evolution of ξ is still periodic. This periodicity is in fictitious time and it does not carry over to the evolution in real time because of the asymptotes in $t(\tau)$.

In bounded trajectories, by contrast, both ξ and η vary periodically within the finite ranges $[\xi_{\min}, \xi_{\max}]$ and $[\eta_{\min}, \eta_{\max}]$. Consequently, $t(\tau)$ has no asymptotes in bounded trajectories, and the periodicity of ξ and η in fictitious time translates to a periodicity in real time. Figure 6 illustrates graphically the evolution in fictitious time of the coordinates and of t in a representative bounded trajectory.

In Section 2, we introduced the elliptic-cylindrical coordinate system defined by eqs. (10) and (11):

$$\xi = \frac{\sqrt{\rho^2 + (z + a)^2 + \sqrt{\rho^2 + (z - a)^2}}}{2a},$$

$$\eta = \frac{\sqrt{\rho^2 + (z + a)^2 - \sqrt{\rho^2 + (z - a)^2}}}{2a}.$$

For fixed values of ξ and η, these two equations define confocal ellipses and hyperbolic branches in the (ρ, z) plane. This means that, in bounded orbits, the motion of the test particle in the (ρ, z) plane is confined in the intersection of two geometric regions:

- an elliptic ring implicitly defined by the condition $\xi_{\min} \leq \xi \leq \xi_{\max}$,
- a hyperbolic ring implicitly defined by the condition $\eta_{\min} \leq \eta \leq \eta_{\max}$.

The regions of motion in a representative bounded case are illustrated in Figure 7.

We can explicitly compute the fictitious time at which ξ and η assume their minimum and maximum values. According to the theory of elliptic functions, φ_ξ has a global finite minimum on the real axis in correspondence of the real half-period ω_ξ (and, analogously, φ_η has a global minimum at ω_η). The global maximum for φ_ξ on the real axis is at $2k\omega_\xi$ ($k \in \mathbb{Z}$), where the value of the function is $+\infty$. Consequently:

$$\xi_{\min} = \xi (\tau_\xi), \quad \xi_{\max} = \xi (a^2 \omega_\xi + \tau_\xi),$$

$$\eta_{\min} = \eta (\tau_\eta), \quad \eta_{\max} = \eta (a^2 \omega_\eta + \tau_\eta).$$

4.2 Periodicity and quasi-periodicity

In the previous sections we have mentioned how the evolution of ξ and η in fictitious time is periodic, with two periods that, in general, will be different. The periodicity in fictitious time of each coordinate translates to a periodicity in real time only for bounded orbits. By contrast, the evolution in fictitious time of the third coordinate ϕ and of the real time t derives from the integration of almost periodic functions, and it is thus almost quasi-periodic. We are now going to examine in more detail the behaviour of ϕ and t.

We will focus on the study of $\phi(\tau)$, as $t(\tau)$ is structurally identical.

The derivative in fictitious time for $\phi(\tau)$, eq. (57), can
be seen as a linear combination of two periodic functions:

\[
\frac{d\phi}{d\tau} = \frac{d\phi_\xi(\tau)}{d\tau} + \frac{d\phi_\eta(\tau)}{d\tau},
\]

where

\[
\frac{d\phi_\xi(\tau)}{d\tau} = \frac{p_\xi}{a^2 \eta^2(\tau)}, \quad \frac{d\phi_\eta(\tau)}{d\tau} = \frac{p_\eta}{a^2 [1 - \eta^2(\tau)]}.
\]

The sign of \(d\phi/d\tau\) is either always positive or always negative, depending on the sign of the constant \(p_\xi\), and thus \(\phi(\tau)\) is a monotonic function. \(\phi_\xi(\tau)\) is given by the terms in eq. (67) related to \(\xi\), and similarly \(\phi_\eta(\tau)\) is given by the terms related to \(\eta\), so that eq. (67) can be written as

\[
\phi(\tau) = \phi_0 + \phi_\xi(\tau) + \phi_\eta(\tau).
\]

Since their derivatives are periodic functions with periods \(2\omega_\xi\) and \(2\omega_\eta\), \(\phi_\xi(\tau)\) and \(\phi_\eta(\tau)\) are arithmetic quasi-periodic functions with quasi-periods \(2\omega_\xi\) and \(2\omega_\eta\). That is, for any \(\tau \in \mathbb{R}\),

\[
\frac{\phi_\xi(\tau + 2\omega_\xi) - \phi_\xi(\tau)}{2\omega_\xi} = \Phi_\xi, \quad \frac{\phi_\eta(\tau + 2\omega_\eta) - \phi_\eta(\tau)}{2\omega_\eta} = \Phi_\eta,
\]

where \(\Phi_\xi\) and \(\Phi_\eta\) are constants representing the average rate of change of \(\phi_\xi(\tau)\) and \(\phi_\eta(\tau)\). It follows then that the average rate of change of \(\phi(\tau)\) is simply

\[
\Phi_\xi + \Phi_\eta.
\]

That is, \(\phi(\tau)\) will oscillate almost-periodically around a line parallel to the line

\[
\Phi_\xi + \Phi_\eta \tau.
\]

The situation is illustrated in Figure 8.

The ratio between the periods of \(\xi\) and \(\eta\), \(\omega_\xi/\omega_\eta\), is in general a real value. If

\[
\frac{\omega_\xi}{\omega_\eta} = \frac{n}{m},
\]

where \(n\) and \(m\) are two coprime positive integers, then \(\xi\) and \(\eta\) will share the same finite period \(T = 2m\omega_\xi = 2m\omega_\eta\):

\[
\xi(\tau) = \xi(\tau + 2m\omega_\xi) = \xi(\tau + T), \quad \eta(\tau) = \eta(\tau + 2m\omega_\eta) = \eta(\tau + T).
\]

We refer to this case as an isochronous configuration. In an isochronous configuration, \(d\phi/d\tau\) and \(dt/d\tau\) become periodic functions of period \(T\). \(\phi(\tau)\) and \(t(\tau)\) are integrals of periodic functions, and thus they are arithmetic quasi-periodic functions:

\[
\phi(\tau + T) = \phi(\tau) + \phi_T, \quad t(\tau + T) = t(\tau) + t_T,
\]

where \(\phi_T\) and \(t_T\) are two constants depending only on the
The three-dimensional problem of two fixed centres

11

0 1 2 3 4 5 6
τ
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
ξ
0 1 2 3 4 5 6
τ
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
η
0 1 2 3 4 5 6
τ
□12
□10
□8
□6
□4
□2
0
2
φ
0 1 2 3 4 5 6
τ
0
1
2
3
4
5
6

Figure 6. Evolution in fictitious time τ of the coordinates ξ, η and ϕ, and of the real time t in a representative bounded orbit in the E3BP. $\xi(\tau)$ and $\eta(\tau)$ are periodic functions with two different periods, $t(\tau)$ and $\phi(\tau)$ are almost quasi-periodic functions.

Figure 8. Evolution in fictitious time τ of the ϕ coordinate in a representative bounded trajectory in the E3BP. The solid line represents the actual evolution of the ϕ coordinate, while the dashed line represents the average rate of change of ϕ in fictitious time, which amounts to $\Phi_\xi + \Phi_\eta$ (see eq. (103)). ϕ is an almost quasi-periodic function of τ.

initial conditions and physical parameters of the system. From a geometric point of view, an isochronous configuration generates a quasi-periodic three-dimensional trajectory. That is, after a quasi period T, the coordinates ξ and η and the momenta p_ξ and p_η will assume again their original values, while the coordinate ϕ will be augmented by ϕ_T.

It is possible to look for isochronous configurations by setting up a numerical search. After fixing two coprime positive integers n and m and the physical parameters of the system, the goal will be to find a set of initial conditions that minimises the quantity

$$|m\omega_\xi - n\omega_\eta|.$$ \hspace{1cm} (109)

Such a search can be performed with standard minimisation algorithms. In this case, we used the SLSQP algorithm from Kraft (1994), as implemented in the SciPy Python library (Jones et al. 2015). Figure 9 displays a representative quasi-periodic trajectory found by a numerical search.

As a next step, we can look for periodic orbits: if, in an isochronous configuration, the ϕ_T constant is commensurable with 2π, then the trajectory of the test particle in the three-dimensional space will be a closed curve. In other words, the search for periodic orbits can be cast as the minimisation of the function

$$|m\omega_\xi - n\omega_\eta| + \left|\phi_T \% \frac{2\pi}{k}\right|,$$ \hspace{1cm} (110)

where n, m and k are positive integers, n and m are coprime and $\%$ is the modulo operator. Figure 10 displays a representative periodic trajectory found by a numerical search.

4.3 Equilibrium points

In the last section of our analysis, we will briefly examine the equilibrium points in the E3BP. It is clear from the form of the Lagrangian (1) that in cartesian coordinates there is an equilibrium point lying on the z axis, where the forces
exerted by the two bodies are balanced. This is a “real” equilibrium point, in the sense that the test particle will be at rest if placed in this point with a null initial velocity. This equilibrium point corresponds to the L1,2,3 Lagrangian points in the circular restricted three-body problem.

In elliptic-cylindrical coordinates, we cannot properly characterise the equilibrium point on the z axis as it lies in correspondence of a singularity of the coordinate system. On the other hand, in elliptic-cylindrical coordinates we have another set of equilibrium points characterised by constant ξ and/or η. These are not equilibrium points in which the particle is at rest:

- if only ξ is constant, then the motion is confined to a section of the surface of an ellipsoid of revolution,
- if only η is constant, then the motion is confined to a section of the surface of a hyperboloid of revolution,
- if both ξ and η are constant, the motion is confined to a circle resulting from the intersection of an ellipsoid and a hyperboloid of revolution.

The third case, in particular, corresponds to the following initial setup:

- the net force acting on the particle is parallel to the xy plane,
- the velocity vector of the particle is also parallel to the xy plane,
- the direction and the magnitude of the velocity vector are those of a Keplerian circular orbit with a virtual centre of attraction on the z axis whose mass is exerting a force equal to the net force acting on the particle.

In other words, this case corresponds to a circular orbit parallel to the xy plane along which the z components of the forces from the two centres of attraction cancel each other, leaving a net force directed towards the z axis. We refer to this particular setup as a displaced circular orbit.

From the point of view of our solution to the E3BP, a displaced circular orbit is characterised by the solutions for ξ and η collapsing to constant functions. According to eqs. (40) and (53), this can happen only when

\[
\begin{align*}
\dot{\xi}(\xi_x) &= 0, \\
\dot{\eta}(\eta_y) &= 0.
\end{align*}
\]

From the physical point of view, the balance of the z components of the two forces acting on the test particle leads to the following relation between ρ and z:

\[
\rho = \sqrt{\frac{(a + z)^2 [\mu_1 (a - z)]^{\frac{2}{3}} - (a - z)^2 [\mu_2 (a + z)]^{\frac{2}{3}}}{[\mu_1 (a - z)]^{\frac{1}{3}} - [\mu_2 (a + z)]^{\frac{1}{3}}}},
\]

Given a pair of coordinates (ρd, zd) satisfying eq. (113), we can then compute the magnitude of the total net force acting on the test particle (parallel to the xy plane and directed towards the z axis) as

\[
F_d = \frac{\mu_1 \rho d}{[\rho_d^2 + (z_d - a)^2]^{\frac{5}{2}}} + \frac{\mu_2 \rho d}{[\rho_d^2 + (z_d + a)^2]^{\frac{5}{2}}},
\]

\[
F_d \text{ corresponds to the force exerted by a virtual centre of attraction, lying at the coordinates (0, zd) in the (ρ, z) plane, whose gravitational parameter is}
\]
\[
\mu_d = \rho_d^2 F_d.
\]

5 Displaced circular orbits are also present in the Stark problem, which is a limiting case of the gravitational E3BP (Namouni & Guzzo 2007; Lantoine & Russell 2011; Biscani & Izzo 2014)
We can now use the well-known relation between gravitational parameter and orbital radius for circular Keplerian orbits to compute the velocity along a circular displaced orbit as

\[v_d = \sqrt{\frac{\mu_d}{\rho_d}} \]

(116)

Figures 11 and 12 depict two representative slightly perturbed displaced circular orbits.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented for the first time a complete, closed-form solution to the three-dimensional problem of two fixed centres. Our solution is based on the theory of Weierstrass elliptic and related functions, and it is expressed via unique formulae valid for any set of initial conditions and physical parameters of the system.Remarkably, our solution is strikingly similar to (albeit more complicated than) the solution of the two-body problem: the real time is substituted by a fictitious time, analogue to the mean anomaly in Kepler’s problem, and the connection between real and fictitious time is established by an equation structurally similar to Kepler’s equation.

The compact form of our solution allows us to investigate the properties of the dynamical system. In particular, we have formulated analytical criteria for quasi-periodic and periodic motion, and we have identified, via a simple numerical search, a few concrete representative quasi-periodic and periodic orbits. We have also discussed the dichotomy between bounded and unbounded orbits, the topology of the regions of motion, and we have identified displaced circular orbits as equilibrium points in elliptic-cylindrical coordinates.

In future papers, we will focus on the physical and astronomical applications of the results presented here. Of particular interest are the application of our solution to the Vinti potential and the interpretation of the E3BP as a limiting case of the circular restricted three-body problem.

REFERENCES

Abramowitz M., Stegun I. A., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables. Courier Dover Publications 4, 5, 8, 15

Akhiocoder N. I., 1990, Elements of the Theory of Elliptic Functions. American Mathematical Society, Providence, RI 4

Aksenov Y. P., Grebenikov Y. A., Demin V. G., 1962, Planetary and Space Science, 9, 491 1

Aksenov Y. P., Grebenikov Y. A., Demin V. G., 1963, Soviet Astronomy, 7, 276 1

Alfriend K. T., Dasenbrock R., Pickard H., Deprit A., 1977, Celestial mechanics, 16, 441 1

Arnold V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd edn. Springer 1

Besicoitch A. S., 1932, Almost Periodic Functions. Cambridge University Press

Biscani F., Izzo D., 2014, Monthly Notices of the Royal Astronomical Society, 439, 810 7, 12

Carinena J. F., Ibort L. A., Lacombe E. A., 1988, Celestial Mechanics, 42, 201 3

Charlier C. V. L., 1902, Die Mechanik des Himmels. Leipzig, Veit 1
Figure 11. Graphical depiction of a slightly perturbed displaced circular orbit in the E3BP near the xy plane. The initial conditions have been chosen close to the setup described by eqs. (113) and (116). The left panel displays the trajectory in the (ρ,z) plane (solid line), together with the boundaries of the region of motion (dashed lines). The right panel displays the trajectory in the three-dimensional space.

Figure 12. Graphical depiction of a slightly perturbed displaced circular orbit in the E3BP far from the xy plane. The initial conditions have been chosen close to the setup described by eqs. (113) and (116). The left panel displays the trajectory in the (ρ,z) plane (solid line), together with the boundaries of the region of motion (dashed lines). The right panel displays the trajectory in the three-dimensional space.
The three-dimensional problem of two fixed centres

namiical Astronomy, 99, 31 12

Ö'Mathúna D., 2008, Integrable Systems in Celestial Mechanics. Springer Science & Business Media 1

Pauli W., 1922, Annalen der Physik, 373, 177 1

Saha P., 2009, Monthly Notices of the Royal Astronomical Society, 400, 228231 3

Siegel C. L., Moser J. K., 1971, Lectures on Celestial Mechanics. Springer 3

Sundman K. F., 1912, Acta Mathematica, 36, 105 3

Tannery J., Molk J., 1893, Éléments de la Théorie des Fonctions Elliptiques. Vol. 4, Gauthier Villars Et Fils Imprimeurs, Paris 6, 7

Varvoglis H., Vozikis C., Wodnar K., 2004, Celestial Mechanics and Dynamical Astronomy, 89, 343 1

Vinti J. P., 1959, Journal of Research of the National Bureau of Standards, Section B: Mathematics and Mathematical Physics, 62B, 105 1

Waalkens H., Dullin H. R., Richter P. H., 2004, Physica D: Nonlinear Phenomena, 196, 265 1, 2

Whittaker E. T., Watson G. N., 1927, A Course of Modern Analysis, 4 edn. Cambridge University Press 4, 6

APPENDIX A: SOLUTION ALGORITHM

In this section, we are going to detail the steps of a possible implementation of our solution to the three-dimensional E3BP, starting from initial conditions in cartesian coordinates. The algorithm outlined below requires the availability of implementations of the Weierstrassian functions \(\rho \), \(\phi \), \(\phi^{-1} \), \(\zeta \) and \(\sigma \), and of a few related ancillary functions (e.g., for the conversion of the invariants \(g_2 \) and \(g_3 \) to the periods).

The algorithm is given as follows:

(i) transform the initial cartesian coordinates into initial elliptic-cylindrical coordinates \(\xi \), \(\eta \) and \(z \), and compute the initial Hamiltonian momenta \(p_\xi \), \(p_\eta \) and \(p_z \). The formulæ for these transformations are available in Section 2;

(ii) compute the constants of motion \(h \), \(h_\xi \) and \(h_\eta \), through the substitution of the initial Hamiltonian coordinates and momenta into eqs. (23), (30) and (31);

(iii) compute the values of the invariants \(g_2 \) and \(g_3 \) for both \(\phi_\xi \) and \(\phi_\eta \), using eqs. (41), (42), (54) and (55). The periods of \(\phi_\xi \) and \(\phi_\eta \) can be determined from the invariants using known formulæ (see, e.g., Abramowitz & Stegun 1964, Chapter 18);

(iv) determine the roots \(\xi \) and \(\eta \) of the polynomials (34) and (51). Since these are quartic polynomials, there are 4 possible values for each root. We can immediately discard complex roots and those roots whose values are outside the domains of interest for the variables (i.e., \((1, +\infty)\) for \(\xi \) and\((-1, 1)\) for \(\eta \). Note that complex roots and roots outside the domain of physical interest can still be used for the computation of the solution, but they lead to complex-valued times of pericentre passage and they have no immediate physical interpretation;

(v) using the surviving values for \(\xi \) and \(\eta \), compute the times of pericentre passage \(\tau_\xi \) and \(\tau_\eta \) via eqs. (48) and (56). As explained at the very end of Subsection 3.1, the calculation of \(\tau_\xi \) and \(\tau_\eta \) via \(\phi^{-1} \) produces a pair of values for each \(\xi \) and \(\eta \). We can immediately discard the values of \(\xi \) and \(\eta \) which result in complex \(\tau_\xi \) and \(\tau_\eta \), for they correspond to unreachable roots;

(vi) at this point either one (for unbounded motion) or two (for bounded motion) values for \(\xi \) and \(\eta \) remain, both real. We select the smaller values for \(\xi \) and \(\eta \) (as we are interested in the times of pericentre passage), and we compute the corresponding pairs of values for \(\tau_\xi \) and \(\tau_\eta \) via eqs. (48) and (56). These pairs of values will all be real and positive. We select the smaller values for both times of pericentre passage and we check the sign of the initial values for \(d\xi/d\tau \) and \(d\eta/d\tau \): if they are positive, we negate the corresponding time of pericentre passage (as the pericentre was reached before \(\tau = 0 \)), otherwise we can leave them as they are (as the pericentre will be reached after \(\tau = 0 \));

(vii) after having determined \(\xi \), \(\tau_\xi \), \(\eta \) and \(\tau_\eta \) we have all the ingredients to implement the solutions for the three coordinates, their conjugate momenta and the time equation (eqs. (40), (53), (67), (72), (75) and (76)).

The procedure outlined above assumes the following conventions:

- the period pairs for \(\phi_\xi \) and \(\phi_\eta \) are chosen as explained in Subsection 3.1: the first period is always real and positive, the second one is always complex with positive imaginary part;
- the \(\phi^{-1} \) function returns a pair of values within the fundamental parallelogram defined by the periods pair.

APPENDIX B: CODE AVAILABILITY

We have implemented our solution to the E3BP in an open-source Python module which is freely available for download here:

https://github.com/bluescarni/e3bp

The module depends on the \texttt{w_elliptic} Python/C++ library, which provides an implementation of the Weierstrassian functions. The code is available here:

https://github.com/bluescarni/w_elliptic

All the numerical computations and all the graphs presented in the paper have been implemented with and produced by these two software modules.

This paper has been typeset from a \LaTeX/ \BibTeX file prepared by the author.