Association of Serum 25-Hydroxyvitamin D Deficiency with Risk of Incidence of Disability in Basic Activities of Daily Living in Adults >50 Years of Age

Mariane M Luiz,1 Roberta Máximo,1 Dayane C Oliveira,1 Paula C Ramírez,1,2 Aline F de Souza,1 Maicon LB Delinocente,3 Andrew Steptoe,4 Cesar de Oliveira,4 and Tiago Alexandre1,3,4,5

1Postgraduate Program in Physical Therapy, Federal University of São Carlos, São Carlos, Brazil; 2School of Physical Therapy, Santander Industrial University, Bucaramanga, Colombia; 3Postgraduate Program in Gerontology, Federal University of São Carlos, São Carlos, Brazil; 4Department of Epidemiology and Public Health, University College London, London, United Kingdom; and 5Gerontology Department, Federal University of São Carlos, São Carlos, Brazil

ABSTRACT

Background: Vitamin D deficiency compromises muscle function and is related to the etiology of several clinical conditions that can contribute to the development of disability. However, there are few epidemiological studies investigating the association between vitamin D deficiency and the incidence of disability.

Objectives: We aimed to assess whether vitamin D deficiency is associated with the incidence of disability in basic activities of daily living (BADL) and to verify whether there are sex differences in this association.

Methods: A 4-y follow-up study was conducted involving individuals aged 50 y or older who participated in ELSA (English Longitudinal Study of Ageing). The sample consisted of 4814 participants free of disability at baseline according to the modified Katz Index. Vitamin D was assessed by serum 25-hydroxyvitamin D [25(OH)D] concentrations and the participants were classified as sufficient (>50 nmol/L), insufficient (≥30 to ≤50 nmol/L), or deficient (<30 nmol/L). Sociodemographic, behavioral, and clinical characteristics were also investigated. BADL were re-evaluated after 2 and 4 y of follow-up. The report of any difficulty to perform ≥1 BADL was considered as an incident case of disability. Poisson models stratified by sex and controlled for sociodemographic, behavioral, and clinical characteristics were carried out.

Results: After 4-y follow-up, deficient serum 25(OH)D was a risk factor for the incidence of BADL disability in both women (IRR: 1.53; 95% CI: 1.16, 2.03) and men (IRR: 1.44; 95% CI: 1.02, 2.02). However, insufficient serum 25(OH)D was not a risk factor for the incidence of BADL disability in either men or women.

Conclusions: Independently of sex, deficient serum 25(OH)D concentrations were associated with increased risk of incidence of BADL disability in adults >50 y old and should be an additional target of clinical strategies to prevent disability in these populations. J Nutr 2020;00:1–8.

Keywords: 25-hydroxyvitamin D, vitamin D, disability, incidence, aging

Introduction

Vitamin D deficiency, assessed using serum 25-hydroxyvitamin D [25(OH)D] concentrations, is a growing health problem globally owing to its high prevalence (1), with ~25% of the world’s older population presenting with this condition (1, 2).

The role of 25(OH)D in osteomineral metabolism is well known. However, the presence of vitamin D receptors (VDRs) in a range of human tissues enabled researchers to identify a systemic action of vitamin D (3, 4). The discovery of VDRs in myocytes made it possible to identify the role of 25(OH)D in muscle metabolism (5, 6), such as the modulation of calcium influx (Ca$$^{2+}$$) to muscle cells and in myogenesis (7, 8). Thus, low serum 25(OH)D concentrations may result in less uptake of Ca$$^{2+}$$ in the muscles, which compromises the quality of muscle contraction and leads to the reduction of muscle mass and strength and muscle atrophy (9, 10). In addition to these biological mechanisms, aging decreases the absorption capacity and cutaneous synthesis of 25(OH)D and promotes a reduction in the number of VDRs in muscle cells (11–13). These compromise the musculoskeletal function and may result in adverse outcomes later in life, such as disability (14, 15).
25(OH)D also participates in the regulation of the metabolism of other important systems that maintain body homeostasis, such as the immune (16) and cardiovascular systems (17). Deficient serum 25(OH)D leads to compromised functioning of these systems and, therefore, can predispose to the development of numerous acute and chronic conditions (18), which impair functional capacity and favor the development of disability (19).

Cross-sectional studies have identified an association between deficient serum 25(OH)D and functional disability to perform basic activities of daily living (BADL) in Japanese and Italian populations (15, 20). However, longitudinal studies have not confirmed these results. Analyzing 665 individuals aged 77 y or older for a 3-y follow-up period, Houston et al. (21) found no association between deficient serum 25(OH)D (<50 nmol/L) and the incidence of disability in BADL. Analyzing 1002 women aged 65 y or older for a 3-y follow-up period, Verreault et al. (22) also found no association between deficient serum 25(OH)D (<25 nmol/L) and the incidence of disability regarding activities that utilize the lower and upper limbs, such as walking a quarter of a mile, walking around the room, climbing 10 steps, sitting down and standing up from a chair, lifting the arms over the head, handling and squeezing objects, and lifting and carrying a 10-pound weight.

Considering the conflicting findings between cross-sectional and longitudinal studies investigating the association between serum 25(OH)D status and functional disability, the aims of the present study were to verify whether deficient serum 25(OH)D is a risk factor for the incidence of BADL disability and whether there are sex differences in this association.

Methods

Study population

ELSA (English Longitudinal Study of Ageing) is an ongoing panel study of a representative cohort of men and women living in England aged 50 y or older. It was designed as a sister study to the Health and Retirement Study in the United States and is multidisciplinary in orientation, involving the collection of economic, social, psychological, cognitive, health, biological, and genetic data. The study commenced in 2002, and the sample has been followed up every 2 y through personal interviews and with additional nurse visits for the assessment of biomarkers every 4 y. Ethical approval for all waves of ELSA was granted by the London Multicenter Research and Ethics Committee (MREC 2/1/91) and all participants signed the free and informed consent form. Detailed descriptions of the study design and sampling procedures can be found in a previous publication (23).

Serum 25(OH)D

Fasting blood samples were collected for analysis of serum 25(OH)D concentrations. The measurement was performed using chemiluminescent-technology (DiaSorin Liaison immunoassay) and analyzed at the Royal Victoria Infirmary (Newcastle upon Tyne, United Kingdom). The serum 25(OH)D assay has an analytical sensitivity (lower detection limit) of 7.5 nmol/L. The detection limit represents the lowest measurable analyte concentration that can be distinguished from 0. All assays were performed in duplicate. The CV ranged from 8.7% to 9.4%. The laboratory performing the serum 25(OH)D analyses took part in the Internal and the Vitamin D External Quality Assessment Schemes. Serum 25(OH)D concentrations were used as a continuous variable or categorized as follows: >50 nmol/L = sufficient; >30 and ≤50 nmol/L = insufficient; and ≤30 nmol/L = deficient (26).

Control variables

The control variables collected at baseline were selected based on previous studies that analyzed factors associated with serum 25(OH)D deficiency (27, 28) and functional BADL disability (29–31).

The sociodemographic variables were age (50–59; 60–69; 70–79; 80–89; 90 y or older), skin color (white; nonwhite), marital status (with or without a conjugal life), schooling (<8; 8–9; 10–11; 12 or more), and physical activity (32). The former smoker; smoker), frequency of alcohol intake (rarely/never; daily; did not respond), and physical activity (32). Information on physical activity was obtained using 3 questions taken from a validated instrument used in the Health Survey for England on the frequency of physical activities of a mild, moderate, or vigorous intensity; the response options for each category were “more than once a week,” “once a week,” “one to three-time per month,” and “almost never” (33). The behavioral characteristics were smoking status (nonsmoker; former smoker; smoker), frequency of alcohol intake (rarely/never; frequently; daily; did not respond), and physical activity (32). We analyzed wave 6 (2012–2013) data as our baseline, because this was the first time that serum 25(OH)D concentrations were ascertained in ELSA (24). Out of 9169 participants at baseline, 1741 were excluded owing to having a BADL disability and 2468 owing to missing serum 25(OH)D data. Blood collection was not performed in individuals who had clotting or bleeding disorder, had ever had a seizure, were currently taking anticoagulant drugs, or did not give their consent in writing (24). A further 146 individuals were excluded owing to the lack of information on the covariates. Thus, the final analytical sample at baseline was comprised of 4814 individuals (2192 men and 2622 women) free of BADL disability. The outcome (any incident BADL disability) was assessed at wave 7 (2014–2015) and at wave 8 (2016–2017) (Figure 1).

BADL

BADL were assessed by self-reports of any difficulty in walking, transferring, toileting, bathing, dressing, and eating using the modified Katz Index (25). BADL were assessed at baseline (2012–2013) and reassessed in 2014–2015 and 2016–2017. Only individuals free of any BADL difficulty at baseline were included in the analysis. In 2014–2015 and 2016–2017 all 6 activities were re-evaluated and the BADL outcome was defined: “remained independent for all BADL during the follow-up period” or “developed difficulty to perform one or more BADL during the follow-up period.”

Supported by Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) financing code 001. The English Longitudinal Study of Ageing is financed by Economic and Social Research Council (ESRC-UK grant SR01AG07644-16, National Institute on Aging (NIH-USA) grant R01AG07644-18, and a consortium of governmental departments of the United Kingdom coordinated by the ESRC. TSA is supported by the Brazilian National Council of Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP) fund, grants 303981/2017-2 and 2018/13917-3. The funders had no role in the study design, data collection and analysis, or preparation of the manuscript.

Author disclosures: the authors report no conflicts of interest.

Supplemental Tables 1–4 are available from the “Supplementary data” link in the online posting of the article and from the same link in the online table of contents at https://academic.oup.com/jn/.

Address correspondence to TA (e-mail: tiagoalexandre@ufscar.br).

Abbreviations used: BADL, basic activities of daily living; Ca++, calcium; ELSA, the English Longitudinal Study of Ageing; PTH, parathyroid hormone; VDR, vitamin D receptor; WC, waist circumference; 25(OH)D, 25-hydroxyvitamin D.
Deficient 25-hydroxyvitamin D and disability

To calculate the disability incidence density in each BADL according to serum 25(OH)D status in both sexes, the numerator was the number of individuals who developed disability during the analyzed period and the denominator was the sum of the observation period of the population in question. For individuals who died, the follow-up was computed between the date of the interview in 2012 and the date of death. For individuals who did not develop disability, the follow-up period was computed between the dates of the 2012 and 2016 interviews. For individuals who developed disability, the follow-up period was computed as half of the period between the dates of the 2012 and 2016 interviews. All analyses were performed using the Stata 14 statistical program (Stata Corp.).

Results

Among the 4814 individuals interviewed and evaluated in 2012, the mean age was 66 y and the majority were women (54.5%), had white skin color, were former smokers, consumed alcohol frequently, and had an active lifestyle. The most prevalent clinical conditions were hypertension (35.3%), osteoarthritis (33.6%), and heart disease (14.4%). The prevalence of insufficient and deficient serum 25(OH)D concentrations was 32% and 23.4%, respectively (Table 1).

Individuals with deficient serum 25(OH)D had lower levels of schooling and wealth, consumed less alcohol, had a higher prevalence of depressive symptoms, higher waist circumference and BMI, as well as lower grip strength than those with sufficient or insufficient serum 25(OH)D. Moreover, individuals with deficient serum 25(OH)D had a higher prevalence of hypertension and lower prevalence of osteoporosis than those with sufficient serum 25(OH)D (Tables 1, 2).

Supplemental Tables 1 and 2 show the sample characteristics according to sex.

The comparison between individuals included and those excluded owing to missing data in serum 25(OH)D and covariates, but free of disability at baseline, showed that among excluded participants there was a higher proportion of

FIGURE 1 Study design (2012/2013–2016/2017). BADL, basic activities of daily living; 25(OH)D, 25-hydroxyvitamin D.
TABLE 1 Sociodemographic, behavioral, and clinical characteristics of 4814 individuals free of BADL disability at baseline according to serum 25(OH)D concentration, ELSA (2012)¹

Age, y	Total (n = 4814)	Sufficient 2 (n = 2149)	Insufficient 3 (n = 1538)	Deficient 4 (n = 1127)
50–59	24.7	23.0	24.5	28.4²
60–69	42.2	44.2	42.3	38.4²
70–79	25.5	26.6	25.7	23.2
80–89	6.9	5.8	6.8	9.0²
>90	0.7	0.4	0.7	1.0
Sex, %				
Women	54.5	53.7	52.6	58.5²
Skin color, %				
Nonwhite	2.6	1.1	2.6	5.6², b
Marital status, %				
With conjugal life	68.6	73.5	67.0³	61.5³, b
Schooling, %				
>13 y	36.0	36.1	36.0	31.9
12–13 y	29.0	29.1	29.6	28.2
≤11 y	36.0	34.8	34.4	40.0², b
Wealth, %				
Upper quintile	24.7	28.8	24.1³	17.7², b
Fourth quintile	23.0	24.4	24.1	18.6², b
Third quintile	21.0	22.1	20.0³	20.8³
Second quintile	17.6	14.5	18.2³	22.5³
Lower quintile	11.7	8.5	11.1	18.7², b
Not applicable	2.0	1.7	2.5	1.9
Smoking, %				
Nonsmoker	39.6	40.1	40.6	37.4
Former smoker	49.7	52.3	49.5	44.9³
Smoker	10.7	7.6	9.9	17.7
Alcohol intake, %				
Rarely/never	16.8	13.4	16.9³	23.1², b
Frequently	40.7	42.2	41.1	37.2²
Daily	34.9	39.3	33.7³	28.2³, b
Not applicable	7.6	5.1	8.3³	11.5³
Physical activity, %				
Sedentary lifestyle	2.0	1.7	1.8	3.0
Clinical conditions, %				
Hypertension	35.3	33.2	35.6	38.9³
Diabetes mellitus	8.4	7.5	8.2	10.3
Cancer	4.9	5.7	4.0	4.6
Heart disease	14.4	14.1	14.4	15.1
Lung disease	12.1	11.5	11.9	13.6
Stroke	2.8	2.4	2.5	3.9
Osteoporosis	6.5	8.6	5.5³	3.9³
Osteoarthritis	33.6	36.4	32.6	35.6
Dementia	0.4	0.3	0.5	0.7
Falls	18.0	18.9	18.0	16.4
Hip fracture	0.3	0.3	0.3	0.2
Depressive symptoms	8.7	6.8	8.6	12.5³, b

¹Continuous variable values are means ± SDs and were compared using ANOVA with Tukey’s post hoc test. Categorical variable values are n (%) and were compared using the chi-square test. BADL, basic activities of daily living; ELSA, English Longitudinal Study of Ageing; 25(OH)D, 25-hydroxyvitamin D.
²Serum 25(OH)D concentrations > 50 nmol/L.
³Serum 25(OH)D concentrations > 30 to ≤ 50 nmol/L.
⁴Serum 25(OH)D concentrations ≤ 30 nmol/L.
⁵Significant difference from sufficient, P < 0.05.
⁶Significant difference from insufficient, P < 0.05.
TABLE 2 Anthropometric variables and covariates of 4814 individuals free of BADL disability at baseline according to serum 25(OH)D concentration, ELSA (2012)1

Seasonality, %	Total (n = 4814)	Sufficient2 (n = 2149)	Insufficient3 (n = 1538)	Deficient4 (n = 1127)
Summer	23.2	31.5	20.9	10.14
Spring	8.0	5.2	7.8	13.6
Autumn	42.4	45.8	44.9	32.6
Winter	26.4	17.4	26.4	43.7
Vitamin D supplementation, %	4.1	4.2	3.9	4.0
Use of carbamazepine, %	2.0	1.9	2.1	2.0
Waist circumference, cm	94.9 ± 18.5	93.2 ± 23.1	95.7 ± 12.8	97.0 ± 14.4
BMI, kg/m²	27.7 ± 4.8	27.0 ± 4.2	28.0 ± 4.7	28.7 ± 5.5

1Continuous variables are shown as means ± SDs and were compared using ANOVA with Tukey’s post hoc test. Categorical variables are reported as n (%) and were compared using the chi-square test. BADL, basic activities of daily living; ELSA, English Longitudinal Study of Ageing; 25(OH)D, 25-hydroxyvitamin D.
2Serum 25(OH)D concentrations >50 nmol/L.
3Serum 25(OH)D concentrations 30 to <50 nmol/L.
4Serum 25(OH)D concentrations <30 nmol/L.
5Significant difference from insufficient, P < 0.05.
6Significant difference from sufficient, P < 0.05.

In this large nationally representative sample of older English adults, we found that deficient serum 25(OH)D was a risk factor for the incidence of disability to perform BADL in both sexes, over a 4-y follow-up.

Previous cross-sectional studies have demonstrated an association between deficient serum 25(OH)D and disability (15, 20). However, this association has not been confirmed in longitudinal studies. Houston et al. (21) analyzed 665 individuals and found no association between deficient serum 25(OH)D and disability.

In the Poisson models stratified by sex and using serum 25(OH)D concentrations as a continuous variable, we found that the higher the serum 25(OH)D concentration the lower was the risk of disability in women (IRR: 0.99; 95% CI: 0.98, 0.99; P = 0.012) but not in men (IRR: 0.99; 95% CI: 0.98, 1.00; P = 0.082) (data not shown). In the Poisson models stratified by sex and using serum 25(OH)D divided into 3 different statuses, deficient serum 25(OH)D was independently associated with the incidence of disability in BADL in both sexes. Men and women with deficient serum 25(OH)D had a 44% and 53% higher risk of developing disability in BADL, respectively, than individuals with sufficient serum 25(OH)D (IRR: 1.44; 95% CI: 1.02, 2.02 for men, and IRR: 1.53; 95% CI: 1.16, 2.03 for women). However, insufficient serum 25(OH)D was not a risk factor for the incidence of disability in both sexes (Table 3).

Table 4 shows the disability incidence density in each BADL per 1000 person-years according to the serum 25(OH)D status by sex over the 4-y follow-up. For men who had deficient serum 25(OH)D at baseline, the disability incidence density in bathing, toileting, and walking was statistically higher than for their counterparts with sufficient serum 25(OH)D. For women with deficient serum 25(OH)D at baseline, the disability incidence density in dressing, transferring, bathing, toileting, and walking was statistically higher than for their counterparts with sufficient serum 25(OH)D.

Discussion

In this large nationally representative sample of older English adults, we found that deficient serum 25(OH)D was a risk factor for the incidence of disability to perform BADL in both sexes, over a 4-y follow-up.

Previous cross-sectional studies have demonstrated an association between deficient serum 25(OH)D and disability (15, 20). However, this association has not been confirmed in longitudinal studies. Houston et al. (21) analyzed 665 individuals and found no association between deficient serum 25(OH)D and disability.

Table 3 Final adjusted Poisson regression models for incidence of disability in ≥1 BADL during a 4-y follow-up in men and women according to serum 25(OH)D concentration, ELSA (2012–2017)1

Serum 25(OH)D status	Men (n = 1831)	Women (n = 2216)
≥50 nmol/L	1.00	1.00
>50 to ≤100 nmol/L	1.05 (0.78, 1.41)	1.24 (0.94, 1.62)
<30 nmol/L	1.44 (1.02, 2.02)	1.53 (1.16, 2.03)

1Values are IRRs (95% CIs). BADL, basic activities of daily living; ELSA, English Longitudinal Study of Ageing; WC, waist circumference; 25(OH)D, 25-hydroxyvitamin D.
2Adjusted by age, skin color, schooling, physical activity, smoking, WC, muscle strength, use of carbamazepine, vitamin D supplementation, seasonality, cancer, heart disease, osteoarthritis, falls, hip fracture, and presence of depressive symptoms.
3Controlled by age, skin color, schooling, smoking, WC, muscle strength, use of carbamazepine, vitamin D supplementation, seasonality, hypertension, lung disease, osteoporosis, osteoarthritis, falls, hip fracture, and presence of depressive symptoms.

Deficient 25-hydroxyvitamin D and disability 5
TABLE 4 Disability incidence density in each BADL according to serum 25(OH)D concentration and sex, ELSA (2012–2017)†

BADL by serum 25(OH)D status	Men	Women
Dressing		
Sufficient	25.8 (21.0, 31.6)	18.8 (15.1, 23.4)
Insufficient	28.2 (22.4, 35.5)	29.5 (23.6, 36.5)
Deficient	34.8 (26.6, 45.5)	39.7 (32.3, 48.8)
Transferring		
Sufficient	22.9 (18.6, 28.2)	24.7 (20.5, 29.8)
Insufficient	24.5 (19.4, 31.1)	34.0 (28.1, 41.1)
Deficient	36.1 (28.1, 46.3)	39.0 (32.0, 47.5)
Bathing		
Sufficient	13.4 (10.2, 17.6)	13.4 (10.4, 17.4)
Insufficient	18.1 (13.8, 23.9)	21.9 (17.2, 27.9)
Deficient	31.1 (23.7, 40.9)	33.0 (26.4, 41.2)
Toileting		
Sufficient	7.1 (4.9, 10.3)	8.6 (6.3, 11.7)
Insufficient	7.2 (4.7, 11.0)	12.8 (9.4, 17.4)
Deficient	17.3 (12.2, 24.8)	16.3 (12.1, 22.9)
Walking		
Sufficient	6.5 (4.5, 9.6)	6.7 (4.7, 9.8)
Insufficient	7.9 (5.3, 11.9)	9.5 (6.7, 13.5)
Deficient	14.3 (9.7, 21.0)	15.8 (11.7, 21.4)
Eating		
Sufficient	3.0 (1.7, 5.1)	3.7 (2.3, 5.9)
Insufficient	5.5 (3.3, 8.9)	8.2 (5.6, 11.9)
Deficient	7.0 (4.1, 12.1)	6.3 (3.9, 10.1)

†Values presented per 1000 person-years (95% CIs). BADL, basic activities of daily living; ELSA, English Longitudinal Study of Ageing; 25(OH)D, 25-hydroxyvitamin D.

25(OH)D (<50 nmol/L) and the incidence of disability in BADL over a 3-y follow-up. Verreault et al. (22) analyzed 1002 women during a 3-y follow-up period and also found no association between deficient serum 25(OH)D (<25 nmol/L) and disability.

Some methodological differences between the cited studies and the present investigation may explain the conflicting results. First, we used a cutoff of <30 nmol/L to define deficiency, whereas Houston et al. (21) used <50 nmol/L. A cutoff of <50 nmol/L, according to the Institute of Medicine, indicates insufficient serum rather than deficient serum 25(OH)D (26). Thus, higher cutoffs may not be capable of detecting an association with negative outcomes, such as BADL disability. In contrast, Verreault et al. (22), despite using a cutoff of <25 nmol/L, did not find an association with the incidence of disability. This may be explained by the fact that the authors did not exclude individuals with disability at baseline, BADL were not measured using the Katz Index, and the models were not controlled for sociodemographic or behavioral variables.

The role of 25(OH)D in the musculoskeletal system may be one of the main mechanisms by which deficient serum 25(OH)D is a risk factor for the incidence of disability (9, 10). Low serum 25(OH)D concentrations decrease the expression of genes responsible for myogenesis (8, 41) and reduce the synthesis of muscle contractile proteins and the influx of Ca2+ into the sarcoplasmic reticulum of muscle cells (9, 10). These biological mechanisms compromise the muscle repair mechanism, alter the kinetics of muscle contraction, and compromise musculoskeletal function. They also lead to decreases in muscle strength and mass and cause atrophy, especially for type II muscle fibers (42–44). Damage to the musculoskeletal system can compromise BADL performance and represent a risk factor for disability.

In addition to the damage to the musculoskeletal system, evidence also shows a relation between serum 25(OH)D concentrations and immunosenescence (45). Deficient serum 25(OH)D is associated with an increased proliferation of inflammatory cytokines by cells of the immune system (46, 47) that leads to low-grade systemic inflammation (44–46). Systemic inflammation plays a crucial role in the etiology of several clinical conditions such as hypertension, diabetes, obesity, and cancer (45) and the presence of multimorbidity can represent an important risk factor for the development of disability (19).

The present study has strengths and limitations that should be considered. A strength is our use of a large representative sample of community-dwelling English individuals aged 50 y or older, which enabled us to perform analyses stratified by sex. Secondly, we included a wide range of socioeconomic, behavioral, and clinical variables to adjust our statistical models. Thirdly, the analysis included data from 3 waves of ELSA, which enabled a reasonably long follow-up time.

Regarding the limitations, disability was evaluated based on self-reports, which could have increased the risk of information bias. However, the Katz Index has international validity and is widely used in studies measuring BADL. ELSA only includes community-dwelling individuals and, therefore, does not allow estimations for institutionalized individuals, who tend to have more BADL disability (30). There was also a dropout rate during follow-up, which, although small, could be a source of bias. However, this occurrence is inevitable in longitudinal studies. Another potential source of bias could be that the majority of individuals we excluded, owing to missing data, were older, were nonwhite, had lower schooling and wealth, smoked more, consumed less alcohol, were more sedentary, had higher prevalence of chronic conditions, as well as had larger WC and lower grip strength than those included. However, it should be pointed out that we found a significant association between deficient serum 25(OH)D and the incidence of disability despite the excluded individuals. Finally, ELSA does not include 2 important control variables that should have been incorporated into the models, namely the parathyroid hormone (PTH) and creatinine concentrations. PTH is high in deficient serum 25(OH)D, characterizing secondary hyperparathyroidism, which is associated with a reduction in strength that could compromise functioning (48, 49). High creatinine concentrations indicate kidney failure, which could interfere with the metabolism of 25(OH)D, contributing to a reduction in its concentrations (50).

In conclusion, deficient serum 25(OH)D was a risk factor for the incidence of BADL disability in both sexes. Therefore, maintaining sufficient concentrations of this vitamin could help prevent the development of disability in individuals aged 50 y and older. Further longitudinal studies are needed to verify deficient serum 25(OH)D as a risk factor for the incidence of disability regarding instrumental activities of daily living.

Acknowledgments

The authors’ responsibilities were as follows—MML and TA: designed the study, wrote the manuscript, and analyzed and interpreted the data; AS, CdO, and TA: provided the data;
References

1. Mithal A, Wahl DA, Bonjour J-P, Bürckhardt P, Dawson-Hughes B, Eisman JA, Fuleihan GE-H, Josse RG, Lips P, Morales-Torres J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009;20(11):1807–20.

2. Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the Multiple Outcomes of Raloxifene Evaluation clinical trial. J Clin Endocrinol Metab 2001;86(12):3121–29.

3. Birde DL. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014;21(3):319–29.

4. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014;21(3):319–29.

5. Bischoff-Ferrari H, Borchers M, Gudat F, Dürmüller U, Stähelin H, Dick R, RM, PCR, and TA: ensured consistency of the database; MML: assumes responsibility for the integrity of the data

6. Janssen H, Emmelot-Vonk MH, Verhaar HJJ, Van der Schouw YT. The Concord Health and Ageing in Men Project. J Am Geriatr Soc 2009;57(6):923–37.

7. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The relationship between serum 25-hydroxyvitamin D levels and activities of daily living in noninstitutionalized elderly Japanese requiring care. J Bone Miner Res 2005;20(3):417–25.

8. Wagatsune A, Sakuma K. Vitamin D signaling in myogenensis: potential for treatment of sarcopenia. Biomed Res Int 2014:121234.

9. Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 2009;12(6):628–33.

10. Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med 2009;30(7-9):407–14.

11. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985;76(4):1536–8.

12. Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am 2013;42(2):319–32.

13. Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH, Christakos S. Vitamin D, calcium homeostasis and aging. Bone Res 2016;4(1):16041.

14. Zamboni M, Zoico E, Tosoni P, Zivelonghi A, Bortolani A, Maggi P. Premalignant and malignant skin tumors in patients with vitamin D deficiency. J Dermatol 2009;36(8):566–71.

15. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985;76(4):1536–8.

16. Janssen H, Emmelot-Vonk MH, Verhaar HJJ, Van der Schouw YT. The Concord Health and Ageing in Men Project. J Am Geriatr Soc 2009;57(6):923–37.

17. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The relationship between serum 25-hydroxyvitamin D levels and activities of daily living in noninstitutionalized elderly Japanese requiring care. J Bone Miner Res 2005;20(3):417–25.

18. Peterlik M, Brehm M, Buehlmann A, Brühlmann C, Radda G, Schmid R, Zingg R, et al. Vitamin D deficiency and the determinants of 25(OH)D concentration in older Irish adults: data from The Irish Longitudinal Study on Aging (TILDA). J Gerontol A Biol Sci Med Sci 2018;73(4):519–25.

19. Malfroy C, Beaufils J, Matalon S. Development of a standardised inequality index for the global distribution of vitamin D status. J Nutr 2010;140(5):1011–16.
the Concord Health and Aging in Men Project. J Gerontol A Biol Sci Med Sci 2018;73(1):131–8.

45. Gonçalves de Carvalho CMR, Ribeiro SML. Aging, low-grade systemic inflammation and vitamin D: a mini-review. Eur J Clin Nutr 2017;71(4):434–40.

46. Laird E, McNulty H, Ward M, Hoey L, McSorley E, Wallace JMW, Carson E, Molloy AM, Healy M, Casey MC, et al. Vitamin D deficiency is associated with inflammation in older Irish adults. J Clin Endocrinol Metab 2014;99(5):1807–15.

47. de Oliveira C, Biddulph JP, Hirani V, Schneider IJC. Vitamin D and inflammatory markers: cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J Nutr Sci 2017;6:e1.

48. Sai AJ, Walters RW, Fang X, Gallagher JC. Relationship between vitamin D, parathyroid hormone, and bone health. J Clin Endocrinol Metab 2011;96(3):E436–46.

49. Visser M, Deeg DJH, Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 2003;88(12):5766–72.

50. Agarwal R, Hyson JE, Hecht TJW, Light RP, Sinha AD. Short-term vitamin D receptor activation increases serum creatinine due to increased production with no effect on the glomerular filtration rate. Kidney Int 2011;80(10):1073–9.