The isobaric tags for relative and absolute quantification-based quantitative proteomics of fresh tissue-derived secretome in hepatocellular carcinoma

Hai-Tao Jiang1,2,4, Guo-Sheng Gao3,4, Feng Ren1,2,4, Yun-Jie Chen1,2,4

1 Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, China
2 Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, China
3 Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, China
4 Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, China

Submitted: 11 December 2019
Accepted: 10 March 2020

Arch Med Sci
DOI: https://doi.org/10.5114/aoms/118871
Copyright © 2020 Termedia & Banach

Abstract

Introduction: Proteomics technology platforms offer an extremely useful tool for the discovery of new cancer biomarkers. Secreted proteins play important roles in signal transduction, cellular growth, proliferation, differentiation, and apoptosis. This study aimed to investigate the molecular signatures of the hepatocellular carcinoma (HCC) by quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ) with liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Material and methods: In this study, we used an iTRAQ-based quantitative proteomic approach to analyse the secretome of HCC tissues to identify plasma biomarkers. Serum-free conditioned media (CM) were collected from the primary cultures of cancerous tissues, the surrounding noncancerous tissues, and distal noncancerous tissues.

Results: A proteomic analysis of the CM proteins allowed for a total of 5214 identified proteins, of which 190 and 44 proteins were dysregulated in the HCC tissues/distal noncancerous tissues (HCC/DN group) and the adjacent noncancerous tissues/distal noncancerous tissues (AN/DN group) compared with the distal noncancerous tissues. The dysregulated proteins in the HCC/DN group were concentrated in mitogen-activated protein kinase (MAPK) signalling and Janus kinase-signal transducer and activator of the transcription (JAK-STAT) signalling, but the dysregulated proteins in the AN/DN group were more concentrated in the basal material metabolism.

Conclusions: The secretome profile alternations and signalling pathways were associated with HCC incidence and development. The dysregulated proteins in the HCC/DN group were concentrated in the MAPK signalling and JAK-STAT signalling, but the dysregulated proteins in the AN/DN group were more concentrated in the basal material metabolism.

Key words: hepatocellular carcinoma (HCC), iTRAQ, tissue secretome, incidence and development, molecular mechanism.

Introduction

Hepatocellular carcinoma (HCC) is a kind of clinical common malignant tumour with an insidious onset, which is invasively fast-growing
and has a poor prognosis [1]. Although surgical excision was demonstrated to be the first choice for HCC treatment, most HCC is not diagnosed until the advanced stage of the disease, when surgical treatments are not suitable for treating the disease [2]. Therefore, early detection and treatment are key to improving therapeutic outcomes, reducing mortality, and increasing the long-term survival rate in HCC patients.

Alpha-fetoprotein (AFP) was the only widely accepted and applied biomarker in clinical practice because of its practical value for the diagnosis and monitoring of the development of HCC. However, the AFP method experienced insufficient sensitivity and specificity in the early diagnosis of HCC. Meanwhile, the AFP level is also easily affected by other diseases, such as hepatitis during pregnancy and liver regeneration after damage, which increases the inaccuracy of clinical diagnoses [3–5]. There is, therefore, an urgent need to identify new biomarkers with high sensitivity and high specificity for the early diagnosis of HCC.

Proteomics technology platforms are an extremely useful tool for the discovery of new cancer biomarkers. A highly desirable biomarker for cancer screening and monitoring would be a biomarker that can be measured in body fluid samples [6]. Accordingly, blood samples such as serum and plasma have been the ideal targets of proteomics studies aimed at identifying cancer diagnostic and prognostic biomarkers [7, 8]. However, several challenges have hindered the progress of these studies. The main 2 reasons include the complex nature of serum and plasma samples and the large dynamic range between the concentrations of different proteins.

Secreted proteins play important roles in signal transduction, cellular growth, proliferation, differentiation, and apoptosis. They are also important in tumourigenesis, development, invasion, and metastasis of HCC [9]. Therefore, the secretomes of cell lines are also performed during screening. Many researchers have reported the application of secretomes in the screening of diagnostic and prognostic protein biomarkers [10–12]. Essentially, it is well established that any potential biomarker candidates screened from HCC cell lines should be ultimately validated in clinical tissue samples that are closer to tumours than any of the model systems. As a result, it is more direct and convincing to utilise the primary culture of tumour tissues and the proteomic analysis of serum-free conditioned media to search the diagnostic or prognostic biomarkers [13, 14].

We, thus, conducted this study to investigate the molecular signatures of HCC by quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ) coupling with liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Material and methods

Sample collection and tissue culture in vitro

In our study, the HCC tissue group, the adjacent noncancerous tissue (AN) group, and the distal noncancerous tissue (DN) group were obtained from 2 primary HCC patients who were diagnosed with HCC by post-operative pathological examinations and subjected to standard radical resection. The fresh tissues were collected at the time of surgery from the HCC patients and immediately washed with phosphate-buffered saline in a sterile environment. Subsequently, the tissues were cut into 2 mm3 pieces, washed several times until the tissues became colourless, and then cultured in a Dulbecco’s modified eagle serum-free medium at 5% CO2 for 24 hours. Thereafter, the supernatants were collected for protein extraction. This study was approved by the Ethics Committee of our hospital, and the 2 patients signed informed consent forms.

Protein extraction and digestion

The collected culture supernatant was centrifuged at a low speed (200 g) to remove the cells and tissue debris and then filtered with a 0.22 µm filter membrane to remove the residual cells. Thereafter, the filtrate was concentrated with 3K ultrafiltration until the phenolic red colour was completely removed. The proteins were precipitated by ice-cold acetone, and the protein concentration of the supernatant was determined by bicinchoninic acid assay following the manufacturer’s protocol. Subsequently, 4 µl of a reducing reagent was added to each sample tube and vortex to mix and incubate the tubes at 60°C for 1 hour, and 2 µl of a cysteine blocking reagent was added to each tube and vortex to mix and incubate the tubes at room temperature for 10 minutes. Finally, the proteins were digested by sequence-grade modified trypsin through filter-aided sample preparation.

Isobaric tags for relative and absolute quantification labelling

The peptides from 100 µg proteins per group were labelled according to the Applied Biosystems iTRAQ™ reagent chemistry reference guide. The peptides were labelled as follows: 2 HCC groups became colourless, and then cultured in a Dulbecco’s modified eagle serum-free medium at 5% CO2 for 24 hours. Thereafter, the supernatants were collected for protein extraction. This study was approved by the Ethics Committee of our hospital, and the 2 patients signed informed consent forms.

High pH reversed-phase separation

The dried peptide mixture was fractionated by high pH separation using ekxpert™ ultraLC 100
The isobaric tags for relative and absolute quantification-based quantitative proteomics of fresh tissue-derived secretome in hepatocellular carcinoma

Mobile phase A: 20 mM ammonium formate in water, mobile phase B: 20 mM ammonium formate in 80% ACN, the pH was adjusted to 10.0 with ammonium hydroxide. High pH (pH = 10) separation was performed using a 65-min linear gradient as follows: 0–5 min, 0–5% B; 5–30 min, 5–15% B; 30–45 min, 15–38% B; 45–46 min, 38–90% B; 46–54.5 min, 90–90% B; 54.5–55 min, 90–5% B; 55–65 min, 5–5% B. Finally, 40 fractions were collected, and 4 fractions with the same time interval were pooled together to reduce the fraction numbers, such as 1, 2 and 21, 22 and 3, 4 and 23, 24, and so on [15]. Ten fractions at the end were dried in a vacuum concentrator for further usage.

The Nano-LC-MS/MS analysis

The fractions were re-suspended with 30 µl solution A (solution A: 0.1% FA and 2% ACN in water) and 8 µl was loaded on an exigent nano LC-Ultra system nano-LC with a trap column (ChromXP C18-CL-3 µm, 120A, 350 µm × 0.5 µm) with a flow of 2 µl/min. The column flow rate was maintained at 300 nl/min with a 101 min linear gradient as follows: 0–0.1 min, 5–10% B; 0.1–60 min, 10–25% B; 60–85 min, 25–48% B; 85–86 min, 48–80% B, 86–90 min, 80–80% B; 90–91 min, 80–5% B; 91–101 min, 5–5% B (solution B: 0.1% FA and 2% ACN in water). The MS data were collected by the Triple TOF 5600 system. The electrospray voltage of 2.3 kV and 150°C heating at the inlet of the mass spectrometer was used. The resolution was set at 30,000 with the scan range of 300–1500 m/z. The cumulative scanning time was 250 ms in the high-resolution scanning mode, and up to 40 sub-ion scans could be performed each time. Each Fraction was repeated three times with instrumental analysis, and all parent ions were collision-induced dissociation using fluctuating collision energy.

Data analysis

The MS data were processed using ProteinPilot 4.5 (AB SCIX, Foster City, CA, USA) and then searched using Mascot (version 2.2; Matrix Science, London, United Kingdom) search algorithms against the UniProt human database. The enzyme specificity of trypsin was used and up to a maximum of 2 missed cleavages were allowed for protease digestion. Mascot was searched with a parent ion tolerance of 10 parts per million (ppm) and a fragment ion mass tolerance of 0.05 Da. Carbamidomethylation of cysteine, as well as iTRAQ modification of peptide N-terminus and lysine residues, were set as a fixed modification; oxidation of methionine and iTRAQ 8-plex labelling of tyrosine were specified as variable modifications. The proteins were accepted if the protein FDR was < 1%.

To identify proteins whose expression was significantly altered in the 2 different groups, a threshold of the iTRAQ ratios were used to define differentially expressed proteins. The proteins were considered to be differentially expressed if the iTRAQ ratio was > 1.5 or < 0.67 in the 2 different groups with the p-value of < 0.05, which were statistically analysed by a paired T-test. The gene ontology (GO) annotation and pathway enrichment analysis of the differentially expressed proteins were carried out using the online tool DAVID (http://david.abcc.ncifcrf.gov/). The gene ontology annotation contains biological processes, cell components, and molecular functions. The pathway analysis was based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The gene ontology annotations and signalling pathways were ranked in terms of the enrichment or number of the differentially expressed proteins. The protein and protein interaction was performed using the online String database (https://string-db.org/).

Results

The relative quantification of the secretome of the primary hepatocellular carcinoma patients

In this study, total proteins were extracted from the collected tumours, their adjacent noncancerous tissues and their distal noncancerous tissues were taken from patients and analysed using iTRAQ 2D LC-MS/MS, and the workflow as described in Figure 1. In total, we quantified 5214 proteins, of which 190 and 44 proteins were classified as differentially expressed in the HCC tissues/distal noncancerous tissues (HCC/DN) group and the adjacent noncancerous tissues/distal noncancerous tissues (AN/DN) group (Table I and II). As is evident in Figure 2A, the number of differentially expressed proteins identified in the HCC/DN group was much higher than that in the AN/DN group.

When we compared the differences between the 2 groups, we found that among these differentially expressed proteins, 35 proteins altered their expression in both HCC types, while 155 proteins were dysregulated in the HCC/DN group only and 9 proteins were dysregulated in the AN/DN group only (Figure 2B). We then analysed the biological functions and signalling pathways of these proteins, including the proteins differentially expressed in both groups and the proteins differentially expressed individually in 1 group.

The gene ontology analysis of the differentially expressed proteins in primary hepatocellular carcinomas

The gene ontology annotation analysis showed that the cell components of the differentially ex-
pressed proteins either overlapped in the 2 groups or were unique in 1 group and were mostly located in the extracellular exosome (Figure 3). For the biological process analysis, the GO annotation analysis showed that the proteins overlapped in both groups and were the major participants in the protein folding, lipid metabolic process, gluconeogenesis, nucleobase-containing compound metabolic process, and canonical glycolysis (Figure 3 A).

There were 155 dysregulated proteins in the HCC group compared to the distal noncancerous tissues (DN) group, but these proteins were not dysregulated in the adjacent noncancerous (AN) tissues group compared to the DN group. These dysregulated proteins were mainly involved in signal transduction, cell proliferation, protein stabilisation, and negative regulation of the apoptotic process (Figure 3 B).

Interestingly, there were 9 dysregulated proteins in the AN group compared to the DN group, but they were not dysregulated in the HCC group compared to the DN group. The gene ontology results also showed that these dysregulated proteins were mainly involved in desmosome organisation, positive regulation of sister chromatid cohesion, translation, rRNA processing, nuclear-transcribed mRNA catabolic process, translational initiation, and SRP-dependent co-translational protein targeting to the membrane (Figure 3 C).

The Kyoto Encyclopaedia of Genes and Genomes pathway analysis of the differentially expressed proteins

As shown in Figure 4, the pathway of metabolism, genetic information processing, environmental information processing, and cellular was analysed. According to the results of the analysis, the dysregulated proteins in HCC are mostly involved in the Janus kinase-signal transducer and activator of the transcription (JAK-STAT) pathway and mitogen-activated protein kinase (MAPK) pathway. However, the signalling pathway that was only enriched in the AN group comprised mainly basic metabolisms, such as biological oxidations, amino
Table I. Differentially expressed proteins identified between hepatocellular carcinoma tissues and distal noncancerous tissues

No.	Accession	Name	FC	P-value					
1	sp	P08670	VIME_HUMAN Vimentin OS = Homo sapiens GN = VIM PE = 1 SV = 4	4.875285	0.00000000486				
2	sp	P16615	AT2A2_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS = Homo sapiens GN = ATP2A2 PE = 1 SV = 1	4.655861	0.000000146				
3	sp	P07602	SAP_HUMAN Prosaposin OS = Homo sapiens GN = PSAP PE = 1 SV = 2	4.613766	0.00058				
4	sp	P10809	CH60_HUMAN 60 kDa heat shock protein, mitochondrial OS = Homo sapiens GN = HSPD1 PE = 1 SV = 2	4.487454	0.000000000382				
5	sp	P14314	GLU2B_HUMAN Glucosidase 2 subunit beta OS = Homo sapiens GN = PRKCSH PE = 1 SV = 2	3.872576	0.000281				
6	sp	P31327	PSM_HUMAN Carbamoyl-phosphate synthase [ammonia], mitochondrial OS = Homo sapiens GN = CPS1 PE = 1 SV = 2	3.531832	0.000000000162				
7	sp	Q10471	GALT2_HUMAN Polypeptide N-acetylgalactosaminyltransferase 2 OS = Homo sapiens GN = GALNT2 PE = 1 SV = 1	3.43558	0.00000579				
8	sp	Q04695	K1C17_HUMAN Keratin, type I cytoskeletal 17 OS = Homo sapiens GN = KRT17 PE = 1 SV = 2	3.11311	0.000898				
9	sp	Q05783	K1C18_HUMAN Keratin, type I cytoskeletal 18 OS = Homo sapiens GN = KRT18 PE = 1 SV = 2	3.16278	0.0000367				
10	sp	P32004	L1CAM_HUMAN Neural cell adhesion molecule L1 OS = Homo sapiens GN = L1CAM PE = 1 SV = 2	3.133286	0.00000598				
11	sp	P27797	CALR_HUMAN Calreticulin OS = Homo sapiens GN = CALR PE = 1 SV = 1	3.076097	0.000000882				
12	sp	P07237	PDI1_HUMAN Protein disulphide-isomerase OS = Homo sapiens GN = P4HB PE = 1 SV = 3	3.019952	0.000287				
13	sp	P50584	ECHB_HUMAN Trifunctional enzyme subunit beta, mitochondrial OS = Homo sapiens GN = HADHB PE = 1 SV = 3	2.85759	0.000323				
14	sp	P80723	BASP1_HUMAN Brain acid soluble protein 1 OS = Homo sapiens GN = BASP1 PE = 1 SV = 2	2.85759	0.0000445				
15	sp	Q16497	GANAB_HUMAN Neutral alpha-glucosidase AB OS = Homo sapiens GN = GANAB PE = 1 SV = 3	2.805434	0.000569				
16	sp	Q00839	HNRPU_HUMAN Heterogeneous nuclear ribonucleoprotein U OS = Homo sapiens GN = HNRNUPE PE = 1 SV = 6	2.728798	0.000193				
17	sp	Q12931	TRAP1_HUMAN Heat shock protein 75 kDa, mitochondrial OS = Homo sapiens GN = TRAP1 PE = 1 SV = 3	2.679168	0.0000193				
18	sp	P14625	ENPL_HUMAN Endoplasmic OS = Homo sapiens GN = HSP90B1 PE = 1 SV = 1	2.630268	0.000362				
19	sp	P09394	ECH_HUMAN Trifunctional enzyme subunit alpha, mitochondrial OS = Homo sapiens GN = HADHA PE = 1 SV = 2	2.630268	0.000143				
20	sp	P27824	CALX_HUMAN Calnexin OS = Homo sapiens GN = CANX PE = 1 SV = 2	2.630268	0.000476				
21	sp	P42704	LPPRC_HUMAN Leucine-rich PPR motif-containing protein, mitochondrial OS = Homo sapiens GN = LRP1PC PE = 1 SV = 3	2.558586	0.000000421				
22	sp	P06576	ATP8_HUMAN ATP synthase subunit beta, mitochondrial OS = Homo sapiens GN = ATP5B PE = 1 SV = 3	2.558586	0.00071				
23	sp	QRTME1	PO210_HUMAN Nuclear pore membrane glycoprotein 210 OS = Homo sapiens GN = NUP210 PE = 1 SV = 3	2.535129	0.000341				
24	sp	P05203	AT1A1_HUMAN Sodium/potassium-transporting ATPase subunit alpha-1 OS = Homo sapiens GN = ATP1A1 PE = 1 SV = 1	2.535129	0.000341				
25	sp	P02545	LMNA_HUMAN Prelamin-A/C OS = Homo sapiens GN = LMNA PE = 1 SV = 1	2.511886	0.000397				
26	sp	Q3N833	DXX21_HUMAN Nucleolar RNA helicase 2 OS = Homo sapiens GN = DXX21 PE = 1 SV = 5	2.511886	0.000515				
27	sp	P02786	TFRI_HUMAN Transferrin receptor protein 1 OS = Homo sapiens GN = TFRC PE = 1 SV = 2	2.466039	0.000549				
28	sp	P49792	RB2_HUMAN E3 SUMO-protein ligase RanBP2 OS = Homo sapiens GN = RANBP2 PE = 1 SV = 2	2.443431	0.000679				
No.	Accession	Name	OS	GN	PE	SV	FC	P-value	
-----	-----------	------	----	-----	----	----	----	---------	
29	sp	Q86U2P	KTN1_HUMAN	Kinectin	Homo sapiens	KTN1	1	2.421029	0.000000491
30	sp	Q07065	CKAP4_HUMAN	Cytoskeleton-associated protein 4	Homo sapiens	CKAP4	1	2.421029	0.00000087
31	sp	P11021	GRP78_HUMAN	78 kDa glucose-regulated protein	Homo sapiens	HSPA5	1	2.398833	0.000000146
32	sp	Q9PE2E	RIBP1_HUMAN	Ribosome-binding protein 1	Homo sapiens	RRP1	1	2.398833	0.000000948
33	sp	P52277	HNRPM_HUMAN	Heterogeneous nuclear ribonucleoprotein M	Homo sapiens	HNRP	1	2.208005	0.000000866
34	sp	P04843	RPNI_HUMAN	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1	Homo sapiens	RPNI	1	2.208005	0.000056
35	sp	Q9U33S	SRRM2_HUMAN	Serine/arginine repetitive matrix protein 2	Homo sapiens	SRRM2	1	2.167704	0.00000419
36	sp	P08195	F2_HUMAN	4F2 cell-surface antigen heavy chain	Homo sapiens	SLC3A2	1	2.108628	0.0000497
37	sp	Q16891	MIC60_HUMAN	MICOS complex subunit MIC60	Homo sapiens	IMMT	1	2.108628	0.00000733
38	sp	Q96RP9	EFGM_HUMAN	Elongation factor G, mitochondrial OS	Homo sapiens	GFM1	1	2.108628	0.000905
39	sp	P78527	PRKDC_HUMAN	DNA-dependent protein kinase catalytic subunit OS	Homo sapiens	PRKDC	1	2.089296	0.00000377
40	sp	Q9NE4	SYIM_HUMAN	Isoleucine-tRNA ligase, mitochondrial OS	Homo sapiens	IARS2	1	2.070141	0.000341
41	sp	Q9H0E6	XR2_HUMAN	5′-3′ exoribonuclease 2	Homo sapiens	XRN2	1	2.051162	0.00038
42	sp	Q9N2M1	MYOF_HUMAN	Myosin	Homo sapiens	MYOF	1	2.013724	0.000021
43	sp	Q9211	DHK9_HUMAN	ATP-dependent RNA helicase A	Homo sapiens	DHK9	1	2.013724	0.000672
44	sp	P38666	SERPINE1_HUMAN	Stress-70 protein, mitochondrial OS	Homo sapiens	HSPA5	1	1.995262	0.00000556
45	sp	P5705	ATPAR_HUMAN	ATP synthase subunit alpha, mitochondrial OS	Homo sapiens	ATP5A1	1	1.995262	0.000861
46	sp	P13667	PDIA4_HUMAN	Protein disulphide-isomerase A4	Homo sapiens	PDIA4	1	1.958645	0.0000668
47	sp	P06748	NPM_HUMAN	Nucleophosmin	Homo sapiens	NPM1	1	1.940886	0.000862
48	sp	P5526S	DSRAD_HUMAN	Double-stranded RNA-specific adenosine deaminase	Homo sapiens	ADAR	1	1.923092	0.000118
49	sp	Q9UHB6	LMA1_HUMAN	Lim domain and actin-binding protein 1	Homo sapiens	LMA1	1	1.923092	0.000813
50	sp	Q1343	NNTM_HUMAN	NAD(P) transhydrogenase, mitochondrial OS	Homo sapiens	NNT	1	1.853532	0.0000358
51	sp	Q19Y21	TRAP2_HUMAN	Thyroid hormone receptor-associated protein 3	Homo sapiens	TRAP3	1	1.836538	0.000124
52	sp	Q13263	TIFB_HUMAN	Transcription intermediary factor 1-beta OS	Homo sapiens	TRIM28	1	1.786488	0.000475
53	sp	Q1514	PLEC_HUMAN	Plectin OS	Homo sapiens	PLEC	1	1.584893	0.0000000695
54	sp	Q13813	SPT1_HUMAN	Spectrin alpha chain, non-erythrocytic 1 OS	Homo sapiens	SPTAN1	1	1.559666	0.0000874
55	sp	Q9Y490	TLN1_HUMAN	Talin-1 OS	Homo sapiens	TLN1	1	0.60256	0.0000353
No.	Accession	Name	FC	P-value					
-----	-----------	------	----	---------					
56	sp	Q14315	Filamin-C OS = Homo sapiens GN = FLNC PE = 1 SV = 3						
57	sp	Q5T457	E3 ubiquitin-protein ligase UBR4 OS = Homo sapiens GN = UBR4 PE = 1 SV = 1						
58	sp	Q14152	Eukaryotic translation initiation factor 3 subunit A OS = Homo sapiens GN = EIF3A PE = 1 SV = 1						
59	sp	Q14974	Importin subunit beta-1 OS = Homo sapiens GN = KPNB1 PE = 1 SV = 2						
60	sp	P41091	Eukaryotic translation initiation factor 2 subunit 3 OS = Homo sapiens GN = EIF2S3 PE = 1 SV = 3						
61	sp	P3621	Coatomer subunit alpha OS = Homo sapiens GN = COPA PE = 1 SV = 2						
62	sp	Q16851	UDP-glucose-1-phosphate uridylyltransferase OS = Homo sapiens GN = UGP2 PE = 1 SV = 5						
63	sp	Q96P70	Importin-9 OS = Homo sapiens GN = IPO9 PE = 1 SV = 3						
64	sp	Q8W4M4	Programmed cell death 6-interacting protein OS = Homo sapiens GN = PDCD6IP PE = 1 SV = 1						
65	sp	P46940	Ras GTPase-activating-like protein IQGAP1 OS = Homo sapiens GN = IQGAP1 PE = 1 SV = 1						
66	sp	Q92973	Transportin-1 OS = Homo sapiens GN = TNP1 PE = 1 SV = 2						
67	sp	Q92598	Heat shock protein 105 kDa OS = Homo sapiens GN = HSPH1 PE = 1 SV = 1						
68	sp	Q14204	Cytoplasmic dynein 1 heavy chain 1 OS = Homo sapiens GN = DYNC1H1 PE = 1 SV = 5						
69	sp	Q92616	eIF-2-alpha kinase activator GCN1 OS = Homo sapiens GN = GCN1 PE = 1 SV = 6						
70	sp	P35606	Myosin-9 OS = Homo sapiens GN = MYH9 PE = 1 SV = 4						
71	sp	P35606	Coatomer subunit beta OS = Homo sapiens GN = COPB2 PE = 1 SV = 2						
72	sp	Q27708	CAD protein OS = Homo sapiens GN = CAD PE = 1 SV = 3						
73	sp	Q68VP6	Cullin-associated NEDD8-disassociated protein 1 OS = Homo sapiens GN = CAND1 PE = 1 SV = 2						
74	sp	P20073	Annexin A7 OS = Homo sapiens GN = ANXA7 PE = 1 SV = 3						
75	sp	Q13228	Selenium-binding protein 1 OS = Homo sapiens GN = SELENBP1 PE = 1 SV = 2						
76	sp	Q96AC1	Fermitin family homolog 2 OS = Homo sapiens GN = FERMT2 PE = 1 SV = 1						
77	sp	Q9UQ80	Proliferation-associated protein 2G4 OS = Homo sapiens GN = PA2G4 PE = 1 SV = 3						
78	sp	P46821	Microtubule-associated protein 1B OS = Homo sapiens GN = MAP1B PE = 1 SV = 2						
79	sp	P40763	Signal transducer and activator of transcription 3 OS = Homo sapiens GN = STAT3 PE = 1 SV = 2						
80	sp	P22314	Ubiquitin-like modifier-activating enzyme 1 OS = Homo sapiens GN = UBA1 PE = 1 SV = 3						
81	sp	Q34932	Heat shock 70 kDa protein 4 OS = Homo sapiens GN = HSPA4 PE = 1 SV = 4						
82	sp	P62826	GTP-binding nuclear protein Ran OS = Homo sapiens GN = RAN PE = 1 SV = 3						
83	sp	P23526	Adenosylhomocysteinase OS = Homo sapiens GN = AHCY PE = 1 SV = 4						
No.	Accession	Name	FC	P-value					
-----	-----------	--	----------	--------------------					
84	sp	P27816	MAP4_HUMAN	Microtubule-associated protein 4 OS = Homo sapiens GN = MAP4 PE = 1 SV = 3	0.380189	0.0000000706			
85	sp	PODMV9	HS71B_HUMAN	Heat shock 70 kDa protein 1B OS = Homo sapiens GN = HSPA1B PE = 1 SV = 1	0.366438	0.00000206			
86	sp	Q99832	TCPH_HUMAN	T-complex protein 1 subunit eta OS = Homo sapiens GN = CCT7 PE = 1 SV = 2	0.363078	0.000659			
87	sp	Q99613	EIF3C_HUMAN	Eukaryotic translation initiation factor 3 subunit C OS = Homo sapiens GN = EIF3C PE = 1 SV = 1	0.356451	0.000267			
88	sp	P48643	TCP_E_HUMAN	T-complex protein 1 subunit epsilon OS = Homo sapiens GN = CCT5 PE = 1 SV = 1	0.353183	0.00000384			
89	sp	P78344	IF4G2_HUMAN	Eukaryotic translation initiation factor 4 gamma 2 OS = Homo sapiens GN = EIF4G2 PE = 1 SV = 1	0.353183	0.000055			
90	sp	P23921	IRI_HUMAN	Ribonucleoside-diphosphate reductase large subunit OS = Homo sapiens GN = RRM1 PE = 1 SV = 1	0.343558	0.00001906			
91	sp	Q06210	GFPT1_HUMAN	Glutamine–fructose-6-phosphate aminotransferase [isomerizing] 1 OS = Homo sapiens GN = GFPT1 PE = 1 SV = 3	0.337287	0.000328			
92	sp	Q9BXJ9	NAA15_HUMAN	N-alpha-acetyltransferase 15, NatA auxiliary subunit OS = Homo sapiens GN = NAA15 PE = 1 SV = 1	0.331131	0.0000275			
93	sp	P49368	TCPG_HUMAN	T-complex protein 1 subunit gamma OS = Homo sapiens GN = CCT3 PE = 1 SV = 4	0.328095	0.000143			
94	sp	O75083	WDR1_HUMAN	WD repeat-containing protein 1 OS = Homo sapiens GN = WDR1 PE = 1 SV = 4	0.322107	0.00061			
95	sp	P55786	PSA_HUMAN	Puromycin-sensitive aminopeptidase OS = Homo sapiens GN = NPEPPS PE = 1 SV = 2	0.316228	0.000026			
96	sp	P09960	LKH4A_HUMAN	Leukotriene A4 hydrolase OS = Homo sapiens GN = LTA4H PE = 1 SV = 2	0.316228	0.000935			
97	sp	P30520	PUR2_HUMAN	Adenylosuccinate synthetase isozyme 2 OS = Homo sapiens GN = ADSS PE = 1 SV = 3	0.316228	0.0000165			
98	sp	QI5691	MARE1_HUMAN	Microtubule-associated protein RP/E/B family member 1 OS = Homo sapiens GN = MAPRE1 PE = 1 SV = 3	0.316228	0.000408			
99	sp	P12814	ACTN1_HUMAN	Alpha-actinin-1 OS = Homo sapiens GN = ACTN1 PE = 1 SV = 2	0.313239	0.000176			
100	sp	P30044	PRDX5_HUMAN	Peroxiredoxin-5, mitochondrial OS = Homo sapiens GN = PRDX5 PE = 1 SV = 4	0.313239	0.000749			
101	sp	P78371	TCPB_HUMAN	T-complex protein 1 subunit beta OS = Homo sapiens GN = CCT2 PE = 1 SV = 4	0.304794	0.00000242			
102	sp	P51436	SYRC_HUMAN	Arginine–tRNA ligase, cytoplasmic OS = Homo sapiens GN = RARS PE = 1 SV = 2	0.304794	0.000287			
103	sp	P09951	TCPD_HUMAN	T-complex protein 1 subunit delta OS = Homo sapiens GN = CCT4 PE = 1 SV = 4	0.304794	0.0000303			
104	sp	P23588	IF4B_HUMAN	Eukaryotic translation initiation factor 4B OS = Homo sapiens GN = EIF4B PE = 1 SV = 2	0.304794	0.0000105			
105	sp	P13489	LIN_HUMAN	Ribonuclease inhibitor OS = Homo sapiens GN = RNHI PE = 1 SV = 2	0.304794	0.000529			
106	sp	P555263	ADK_HUMAN	Adenosine kinase OS = Homo sapiens GN = ADK PE = 1 SV = 2	0.301995	0.000591			
107	sp	P40227	TCPZ_HUMAN	T-complex protein 1 subunit zeta OS = Homo sapiens GN = CCT6A PE = 1 SV = 3	0.296483	0.000029			
108	sp	P15559	NQO1_HUMAN	NAD(P)H dehydrogenase [quinone] 1 OS = Homo sapiens GN = NQO1 PE = 1 SV = 1	0.296483	0.000441			
109	sp	P50990	TCPQ_HUMAN	T-complex protein 1 subunit theta OS = Homo sapiens GN = CCT8 PE = 1 SV = 4	0.291072	0.00000345			
110	sp	P31947	1433S_HUMAN	14-3-3 protein sigma OS = Homo sapiens GN = SFN PE = 1 SV = 1	0.285759	0.000365			
Table I. Cont.

No.	Accession	Name	FC	P-value		
111	sp	Q16658	FSCN1_HUMAN	Fascin OS = Homo sapiens GN = FSCN1 PE = 1 SV = 3	0.280543	0.00000154
112	sp	Q01518	CAP1_HUMAN	Adenylyl cyclase-associated protein 1 OS = Homo sapiens GN = CAP1 PE = 1 SV = 5	0.275423	0.0000322
113	sp	P00966	ASSY_HUMAN	Argininosuccinate synthase OS = Homo sapiens GN = ASS1 PE = 1 SV = 2	0.272898	0.0000194
114	sp	P60981	DEST_HUMAN	Destrin OS = Homo sapiens GN = DSTN PE = 1 SV = 3	0.272898	0.0000395
115	sp	P52209	6PGD_HUMAN	6-phosphogluconate dehydrogenase, decarboxylating OS = Homo sapiens GN = PGD PE = 1 SV = 3	0.270396	0.0000138
116	sp	Q9Y2T3	GUAD_HUMAN	Guanine deaminase OS = Homo sapiens GN = GDA PE = 1 SV = 1	0.270396	0.000249
117	sp	Q7L1Q6	BZW1_HUMAN	Basic leucine zipper and W2 domain-containing protein 1 OS = Homo sapiens GN = BZW1 PE = 1 SV = 1	0.265461	0.000453
118	sp	Q16401	PSMD5_HUMAN	26S proteasome non-ATPase regulatory subunit 5 OS = Homo sapiens GN = PSMD5 PE = 1 SV = 3	0.260615	0.00000517
119	sp	P16152	CBR1_HUMAN	Carboxyl reductase [NADPH] 1 OS = Homo sapiens GN = CBR1 PE = 1 SV = 3	0.260615	0.0017
120	sp	P9N7K5	OLA1_HUMAN	Obg-like ATPase 1 OS = Homo sapiens GN = OLA1 PE = 1 SV = 2	0.258226	0.000491
121	sp	P11586	CTC_HUMAN	C-1-tetrahydrofolate synthase, cytoplasmic OS = Homo sapiens GN = MTHFD1 PE = 1 SV = 3	0.253513	0.0000226
122	sp	P40925	MDHC_HUMAN	Malate dehydrogenase, cytoplasmic OS = Homo sapiens GN = MDH1 PE = 1 SV = 4	0.251189	0.0000186
123	sp	P95373	IPO7_HUMAN	Importin-7 OS = Homo sapiens GN = IPO7 PE = 1 SV = 1	0.244343	0.000934
124	sp	Q9Y617	SERC_HUMAN	Phosphoserine aminotransferase OS = Homo sapiens GN = PSAT1 PE = 1 SV = 2	0.244343	0.000026
125	sp	P54578	UBP14_HUMAN	Ubiquitin carboxyl-terminal hydrolase 14 OS = Homo sapiens GN = USP14 PE = 1 SV = 3	0.235050	0.000113
126	sp	P36952	SPB5_HUMAN	Serpin B5 OS = Homo sapiens GN = SERPINB5 PE = 1 SV = 2	0.235050	0.000299
127	sp	Q9UG17	TES_HUMAN	Testin OS = Homo sapiens GN = TES PE = 1 SV = 1	0.235050	0.000587
128	sp	P49588	SYAC_HUMAN	Alanine--tRNA ligase, cytoplasmic OS = Homo sapiens GN = AARS PE = 1 SV = 2	0.233466	0.00000015
129	sp	P54577	SYC_HUMAN	Tyrosine--tRNA ligase, cytoplasmic OS = Homo sapiens GN = YARS PE = 1 SV = 4	0.231207	0.000000451
130	sp	Q16719	KYNU_HUMAN	Kynureninase OS = Homo sapiens GN = KNYU PE = 1 SV = 1	0.229087	0.000151
131	sp	P07900	HS90A_HUMAN	Heat shock protein HSP 90-alpha OS = Homo sapiens GN = HSP90AA1 PE = 1 SV = 5	0.226986	0.0000039
132	sp	P23381	SYWC_HUMAN	Tryptophan--tRNA ligase, cytoplasmic OS = Homo sapiens GN = WARS PE = 1 SV = 2	0.224906	0.0000214
133	sp	P50395	GDIB_HUMAN	Rab GDP dissociation inhibitor beta OS = Homo sapiens GN = GDI2 PE = 1 SV = 2	0.218776	0.000381
134	sp	P41266	GSTM3_HUMAN	Glutathione S-transferase Mu 3 OS = Homo sapiens GN = GSTM3 PE = 1 SV = 3	0.218776	0.0000181
135	sp	Q01813	PFKAP_HUMAN	ATP-dependent 6-phosphofructokinase, platelet type OS = Homo sapiens GN = PFKP PE = 1 SV = 2	0.216770	0.0000109
136	sp	P29401	TKT_HUMAN	Transketolase OS = Homo sapiens GN = TKT PE = 1 SV = 3	0.214783	0.00000818
137	sp	Q14980	XPO1_HUMAN	Exportin-1 OS = Homo sapiens GN = XPO1 PE = 1 SV = 1	0.214783	0.000144
138	sp	P35237	SPB6_HUMAN	Serpin B6 OS = Homo sapiens GN = SERPINB6 PE = 1 SV = 3	0.214783	0.000441
No.	Accession	Name	FC	P-value		
-----	-----------	-----------------------------	------	---------------		
139	sp	P26038	MOES_HUMAN	Moesin OS = Homo sapiens GN = MSN PE = 1 SV = 3	0.212814	0.0000000083
140	sp	P60174	TP1S_HUMAN	Triosephosphate isomerase OS = Homo sapiens GN = TP1 PE = 1 SV = 3	0.210863	0.0000000565
141	sp	P17987	TCPA_HUMAN	T-complex protein 1 subunit alpha OS = Homo sapiens GN = TCP1 PE = 1 SV = 1	0.210863	0.000000355
142	sp	P37837	TALDO_HUMAN	Transaldolase OS = Homo sapiens GN = TALDO1 PE = 1 SV = 2	0.210863	0.00002
143	sp	P00491	PNPH_HUMAN	Purine nucleoside phosphorylase OS = Homo sapiens GN = PNP PE = 1 SV = 2	0.210863	0.000182
144	sp	P12429	ANXA3_HUMAN	Annexin A3 OS = Homo sapiens GN = ANXA3 PE = 1 SV = 3	0.207014	0.000102
145	sp	P60842	IF4A1_HUMAN	Eukaryotic initiation factor 4A-I OS = Homo sapiens GN = EIF4A1 PE = 1 SV = 1	0.205116	0.00039
146	sp	P08133	ANKA6_HUMAN	Annexin A6 OS = Homo sapiens GN = ANKA6 PE = 1 SV = 3	0.203236	0.0000209
147	sp	P21102	PUR2_HUMAN	Trifunctional purine biosynthetic protein adenosine-3 OS = Homo sapiens GN = GART PE = 1 SV = 1	0.201372	0.000000215
148	sp	Q16881	TRXR1_HUMAN	Thioredoxin reductase 1, cytoplasmic OS = Homo sapiens GN = TXNRD1 PE = 1 SV = 3	0.199526	0.0000000739
149	sp	P35241	RADI_HUMAN	Radixin OS = Homo sapiens GN = RDX PE = 1 SV = 1	0.199526	0.0000185
150	sp	P30085	KCY_HUMAN	UMP-CMP kinase OS = Homo sapiens GN = CMPK1 PE = 1 SV = 3	0.192309	0.000245
151	sp	P17812	PYRG1_HUMAN	CTP synthase 1 OS = Homo sapiens GN = CTPS1 PE = 1 SV = 2	0.188799	0.000024
152	sp	P49327	FAS_HUMAN	Fatty acid synthase OS = Homo sapiens GN = FASN PE = 1 SV = 3	0.183654	0.0
153	sp	P08238	HS9OB_HUMAN	Heat shock protein HSP 90-beta OS = Homo sapiens GN = HSP90AB1 PE = 1 SV = 4	0.183654	0.0000176
154	sp	P19399	PUR9_HUMAN	Bifunctional purine biosynthesis protein PURH OS = Homo sapiens GN = ATIC PE = 1 SV = 3	0.183654	0.000000181
155	sp	P3687	PGM1_HUMAN	Phosphoglucomutase-1 OS = Homo sapiens GN = PGM1 PE = 1 SV = 3	0.183654	0.0000167
156	sp	P18669	PGAM1_HUMAN	Phosphoglycerate mutase 1 OS = Homo sapiens GN = PGAM1 PE = 1 SV = 2	0.183654	0.000112
157	sp	P14143	G6PD_HUMAN	Glucose-6-phosphate 1-dehydrogenase OS = Homo sapiens GN = G6PD PE = 1 SV = 4	0.177011	0.00000103
158	sp	P17655	CAN2_HUMAN	Calpain-2 catalytic subunit OS = Homo sapiens GN = CAPN2 PE = 1 SV = 6	0.177011	0.00000121
159	sp	P43175	ERA_HUMAN	D-3-phosphoglycerate dehydrogenase OS = Homo sapiens GN = PHGDH PE = 1 SV = 4	0.175388	0.0000184
160	sp	P4075	ALDOA_HUMAN	Fructose-bisphosphate aldolase A OS = Homo sapiens GN = ALDOA PE = 1 SV = 2	0.17378	0.0000134
161	sp	P41250	SYG_HUMAN	Glycine--tRNA ligase OS = Homo sapiens GN = GARS PE = 1 SV = 3	0.17378	0.000000134
162	sp	P75874	DHIC_HUMAN	Isocitrate dehydrogenase [NADP] cytoplasmic OS = Homo sapiens GN = IDH1 PE = 1 SV = 2	0.172187	0.000000103
163	sp	P18206	VINC_HUMAN	Vinculin OS = Homo sapiens GN = VCL PE = 1 SV = 4	0.170608	0.0
164	sp	P31948	STIP1_HUMAN	Stress-induced-phosphoprotein 1 OS = Homo sapiens GN = STIP1 PE = 1 SV = 1	0.158489	0.000000108
165	sp	P53936	ACLY_HUMAN	ATP-citrate synthase OS = Homo sapiens GN = ACLY PE = 1 SV = 3	0.157036	0.0000000426
166	sp	Q9Y266	NUDC_HUMAN	Nuclear migration protein nudC OS = Homo sapiens GN = NUDC PE = 1 SV = 1	0.157036	0.000000195
No.	Accession	Name	FC	P-value		
-----	-----------	------	------	-----------------		
167	sp	P55060	Exportin-2 OS = Homo sapiens GN = CSE1L PE = 1 SV = 3	0.155597	0.00000000656	
168	sp	O43776	Asparagine--tRNA ligase, cytoplasmic OS = Homo sapiens GN = NARS PE = 1 SV = 1	0.155597	0.0000275	
169	sp	P13797	Plastin-3 OS = Homo sapiens GN = PL35 PE = 1 SV = 4	0.148594	0.000000327	
170	sp	Q14914	Prostaglandin reductase 1 OS = Homo sapiens GN = PTGR1 PE = 1 SV = 2	0.143219	0.000000538	
171	sp	P62258	14-3-3 protein epsilon OS = Homo sapiens GN = YWHAPE PE = 1 SV = 1	0.138038	0.0000521	
172	sp	P26639	Threonine--tRNA ligase, cytoplasmic OS = Homo sapiens GN = TAR5 PE = 1 SV = 3	0.136773	0.0000000522	
173	sp	P27348	14-3-3 protein theta OS = Homo sapiens GN = YWHAQ PE = 1 SV = 1	0.131826	0.0000612	
174	sp	Q15185	Prostaglandin E synthase 3 OS = Homo sapiens GN = PTGES3 PE = 1 SV = 1	0.12942	0.0000842	
175	sp	P00338	L-lactate dehydrogenase A chain OS = Homo sapiens GN = LDHA PE = 1 SV = 2	0.128233	0.000000672	
176	sp	P08758	Annexin A5 OS = Homo sapiens GN = ANX5 PE = 1 SV = 2	0.128233	0.0000000417	
177	sp	Q15181	Inorganic pyrophosphatase OS = Homo sapiens GN = PPA1 PE = 1 SV = 2	0.128233	0.0000608	
178	sp	P07195	L-lactate dehydrogenase B chain OS = Homo sapiens GN = LDHB PE = 1 SV = 2	0.122462	0.0000861	
179	sp	P06733	Alpha-enolase OS = Homo sapiens GN = ENO1 PE = 1 SV = 2	0.115878	0.000000119	
180	sp	Q06830	Peroxiredoxin-1 OS = Homo sapiens GN = PRDX1 PE = 1 SV = 1	0.104713	0.000282	
181	sp	P13639	Elongation factor 2 OS = Homo sapiens GN = EF2 PE = 1 SV = 4	0.102802	0.0000215	
182	sp	O00299	Chloride intracellular channel protein 1 OS = Homo sapiens GN = CLC1 PE = 1 SV = 4	0.102802	0.000245	
183	sp	P15311	Ezrin OS = Homo sapiens GN = EZR PE = 1 SV = 4	0.1	0.000000224	
184	sp	P15121	Aldose reductase OS = Homo sapiens GN = AKR1B1 PE = 1 SV = 3	0.099083	0.00000144	
185	sp	P37802	Transgelin-2 OS = Homo sapiens GN = TAGLN2 PE = 1 SV = 3	0.095499	0.0000496	
186	sp	P06744	Glucose-6-phosphate isomerase OS = Homo sapiens GN = G6PI PE = 1 SV = 4	0.091201	0.00000011	
187	sp	P00558	Phosphoglycerate kinase 1 OS = Homo sapiens GN = PCK1 PE = 1 SV = 3	0.089496	0.00000202	
188	sp	P30041	Peroxiredoxin-6 OS = Homo sapiens GN = PRDX6 PE = 1 SV = 3	0.079433	0.00000231	
189	sp	Q01581	Hydroxymethylglutaryl-CoA synthase, cytoplasmic OS = Homo sapiens GN = HMGS1 PE = 1 SV = 2	0.06792	0.000000145	
190	sp	P12725	Alpha-1-antiproteinase OS = Ovis aries PE = 1 SV = 1	0.064269	0.0000536	
Table II. Differentially expressed proteins identified between adjacent noncancerous tissues and distal noncancerous tissues of hepatocellular carcinoma

No.	Accession	Name	FC	P-value		
1	sp	P12763	FETUA_BOVIN	Alpha-2-HS-glycoprotein OS = Bos taurus GN = AHSG PE = 1 SV = 2	4.37	0.000000647
2	sp	00299	CLIC1_HUMAN	Chloride intracellular channel protein 1 OS = Homo sapiens GN = CLIC1 PE = 1 SV = 4	3.49945211	0.00064666
3	sp	P78417	GSTO1_HUMAN	Glutathione S-transferase omega-1 OS = Homo sapiens GN = GSTO1 PE = 1 SV = 2	3.46736908	0.00088023
4	sp	P0558	PGK1_HUMAN	Phosphoglycerate kinase 1 OS = Homo sapiens GN = PGK1 PE = 1 SV = 3	3.34	0.000000494
5	sp	P17812	PYRG1_HUMAN	CTP synthase 1 OS = Homo sapiens GN = CTPS1 PE = 1 SV = 2	3.28095293	0.0009827
6	sp	Q01813	PFKAP_HUMAN	ATP-dependent 6-phosphofructokinase. platelet type OS = Homo sapiens GN = PFKP PE = 1 SV = 2	3.2210691	0.00021282
7	sp	P06744	G6PI_HUMAN	Glucose-6-phosphate isomerase OS = Homo sapiens GN = G6PI PE = 1 SV = 4	3.16	0.00000522
8	sp	P04264	K2C1_HUMAN	Keratin. type II cytoskeletal 1 OS = Homo sapiens GN = KRT1 PE = 1 SV = 6	3.133286	0.00012301
9	sp	P21266	GSTM3_HUMAN	Glutathione S-transferase Mu 3 OS = Homo sapiens GN = GSTM3 PE = 1 SV = 3	2.88	0.0000379
10	sp	P30041	PRDX6_HUMAN	Peroxiredoxin-6 OS = Homo sapiens GN = PRDX6 PE = 1 SV = 3	2.83139205	0.00092527
11	sp	P08133	ANXA6_HUMAN	Annexin A6 OS = Homo sapiens GN = ANXA6 PE = 1 SV = 3	2.83139205	0.00077018
12	sp	P31939	PURH_HUMAN	Bifunctional purine biosynthesis protein OS = Homo sapiens GN = ATIC PE = 1 SV = 3	2.56	0.0000395
13	sp	P36871	PGM1_HUMAN	Phosphoglucomutase-1 OS = Homo sapiens GN = PGM1 PE = 1 SV = 3	2.49	0.00000426
14	sp	Q15181	PYR_HUMAN	Inorganic pyrophosphatase OS = Homo sapiens GN = PPA1 PE = 1 SV = 2	2.48885703	0.00020884
15	sp	Q96970	IP9_HUMAN	Importin-9 OS = Homo sapiens GN = IPO9 PE = 1 SV = 3	2.46603894	0.00095205
16	sp	P50395	GDIB_HUMAN	Rab GDP dissociation inhibitor beta OS = Homo sapiens GN = GDIB PE = 1 SV = 2	2.38	0.0000832
17	sp	P00491	PNPH_HUMAN	Purine nucleoside phosphorylase OS = Homo sapiens GN = PNP PE = 1 SV = 2	2.37684011	0.00012449
18	sp	Q96177	SERC_HUMAN	Phosphoserine aminotransferase OS = Homo sapiens GN = PSAT1 PE = 1 SV = 2	2.26986504	0.00016311
19	sp	P55060	XPO2_HUMAN	Exportin-2 OS = Homo sapiens GN = CSE1L PE = 1 SV = 3	2.25	0.00000809
20	sp	P13797	PLST_HUMAN	Plastin-3 OS = Homo sapiens GN = PLS3 PE = 1 SV = 4	2.051162	0.00014754
21	sp	Q01581	HMCS1_HUMAN	Hydroxymethylglutaryl-CoA synthase. cytoplasmic OS = Homo sapiens GN = HMCS1 PE = 1 SV = 2	1.95884502	0.00053098
22	sp	P18206	VINC_HUMAN	Vinculin OS = Homo sapiens GN = VCL PE = 1 SV = 4	1.91	0.00000266
No.	Accession	Name	FC	P-value		
-----	-----------	------	------	---------------		
23	sp	P49588	SYAC_HUMAN	Alanine-tRNA ligase, cytoplasmic OS = Homo sapiens GN = AARS PE = 1 SV = 2	1.87	0.00000459
24	sp	P49327	FAS_HUMAN	Fatty acid synthase OS = Homo sapiens GN = FASN PE = 1 SV = 3	1.85	0.000000763
25	sp	P14133	G6PD_HUMAN	Glucose-6-phosphate 1-dehydrogenase OS = Homo sapiens GN = G6PD PE = 1 SV = 4	1.80301797	0.00072658
26	sp	Q86U2P	KTN1_HUMAN	Kinectin OS = Homo sapiens GN = KTN1 PE = 1 SV = 1	0.60255963	0.00045493
27	sp	P13667	PDIA4_HUMAN	Protein disulfide-isomerase A4 OS = Homo sapiens GN = PDIA4 PE = 1 SV = 2	0.603	0.0000523
28	sp	P25705	ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial OS = Homo sapiens GN = ATP5A1 PE = 1 SV = 1	0.53951061	0.00031264
29	sp	O75369	FLNB_HUMAN	Filamin-B OS = Homo sapiens GN = FLNB PE = 1 SV = 2	0.535	0.000967
30	sp	P13127	CPSM_HUMAN	Carbamoyl-phosphate synthase [ammonia], mitochondrial OS = Homo sapiens GN = CPS1 PE = 1 SV = 2	0.492	0.00000077
31	sp	Q9P2E9	RBP1_HUMAN	Ribosome-binding protein 1 OS = Homo sapiens GN = RBP1 PE = 1 SV = 4	0.488	0.0000851
32	sp	Q14126	DSG2_HUMAN	Desmoglein-2 OS = Homo sapiens GN = DSG2 PE = 1 SV = 2	0.40550849	0.00097142
33	sp	P30050	RL12_HUMAN	60S ribosomal protein L12 OS = Homo sapiens GN = RPL12 PE = 1 SV = 1	0.38725761	0.00062865
34	sp	P14049	MDH2_HUMAN	Malate dehydrogenase, mitochondrial OS = Homo sapiens GN = MDH2 PE = 1 SV = 3	0.37325019	0.00081137
35	sp	Q07065	CAP43_HUMAN	Cytoskeleton-associated protein 4 OS = Homo sapiens GN = CAP43 PE = 1 SV = 2	0.366	0.00000472
36	sp	P23246	SFPQ_HUMAN	Splicing factor, proline- and glutamine-rich OS = Homo sapiens GN = SFPQ PE = 1 SV = 2	0.36078097	0.0001904
37	sp	Q8IVZ2	AHN2_HUMAN	Protein AHN2 OS = Homo sapiens GN = AHN2 PE = 1 SV = 2	0.36	0.000000183
38	sp	Q13813	SPTN1_HUMAN	Spectrin alpha chain, non-erythrocytic 1 OS = Homo sapiens GN = SPTAN1 PE = 1 SV = 3	0.344	0.0000000289
39	sp	P19338	NUCL_HUMAN	Nucleolin OS = Homo sapiens GN = NCL PE = 1 SV = 3	0.316	0.0000007999
40	sp	P11021	GRP78_HUMAN	78 kDa glucose-regulated protein OS = Homo sapiens GN = HSPA5 PE = 1 SV = 2	0.27	0.00000000617
41	sp	P27824	CALX_HUMAN	Calnexin OS = Homo sapiens GN = CANX PE = 1 SV = 2	0.258586	0.0005111
42	sp	P46779	RL28_HUMAN	60S ribosomal protein L28 OS = Homo sapiens GN = RPL28 PE = 1 SV = 3	0.237684	0.00034004
43	sp	P10809	CH60_HUMAN	60 kDa heat shock protein, mitochondrial OS = Homo sapiens GN = HSPD1 PE = 1 SV = 2	0.215	0.00000000379
44	sp	P08670	VIME_HUMAN	Vimentin OS = Homo sapiens GN = VIM PE = 1 SV = 4	0.175	0.00000297
Figure 2. Features of the hepatocellular carcinoma secretome dataset from the isobaric tags for relative and absolute quantification shotgun analysis. A – The distribution of differently abundant proteins in 2 groups. B – Venn diagrams show the numbers of the identified proteins and the overlaps of differently abundant proteins in the 2 groups.

Figure 3. The gene ontology (GO) analysis of the differently abundant proteins. A – The GO analysis of differently abundant proteins overlapped in the 2 groups. B – The GO analysis of differently abundant proteins only involved in the hepatocellular carcinoma tissues/distal noncancerous tissues group.
The isobaric tags for relative and absolute quantification-based quantitative proteomics of fresh tissue-derived secretome in hepatocellular carcinoma

The isobaric tags for relative and absolute quantification-based quantitative proteomics of fresh tissue-derived secretome in hepatocellular carcinoma

Molecular function
- Viral transcription
- SRP-dependent cotranslational protein targeting to membrane
- Translation initiation
- Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
- Translation
- Positive regulation of sister chromatid cohesion
- Positive regulation of skeletal muscle contraction by regulation of release of actin
- Desmosome organization
- Extracellular exosome
- Plasma membrane
- Cytoplasm
- Cellular protein agglutination activity
- Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
- rRNA processing
- Translation
- Positive regulation of sister chromatid cohesion
- Positive regulation of skeletal muscle contraction by regulation of release of actin
- Desmosome organization
- Extracellular exosome
- Plasma membrane
- Cytoplasm
- Cellular protein agglutination activity
- Cellular protein agglutination activity
- Cytoplasmic large ribosomal subunit
- Structural constituent of ribosome
- DNA binding
- RNA binding
- Nucleotide binding
- Methylarsonate reductase activity
- Malate dehydrogenase (NADP+) activity
- Glutathione dehydrogenase (ascorbate) activity
- Cell adhesive protein binding involved in bundle of His cell-Purkinje myocyte co-telomeric DNA binding
- RNA polymerase II distal enhancer sequence-specific DNA binding
- Number of proteins

Figure 3. Cont. C – The GO analysis of differently abundant proteins only involved in the adjacent noncancerous tissues/distal noncancerous tissues group

acids metabolism, trichloroacetic acid (TCA) cycle, glucose metabolism, etc.

The String analysis of the differentially expressed proteins

As shown in Figure 5A, in the HCC/DN group, the proteins could be classified into 3 major clusters: proteins in the red region were related to protein translation and post-translation processing, proteins in the blue region were related to protein glycosylation modification, and proteins in the green region were related to biological metabolic functions dominated by glucose metabolism. While in the AN/DN group, the proteins could also be classified into 3 clusters: the red region represented proteins related to immune and metabolic functions, the green region represented proteins related to apoptosis functions, and the blue region represented proteins related to protein binding functions (Figure 5 B).

Discussion

Hepatocellular carcinoma has become the third-most-common cause of cancer-related death worldwide. Most cases of HCC were developed in patients who had already had liver cirrhosis [16]. Therefore, surveillance for the early onset of HCC was recommended. The biomarkers with high sensitivity and specificity were essential for optimising the management of HCC [17]. Zhang et al. used the iTRAQ pipeline to distinguish the proteomic profiles of malignant ascites in HCC patients from those with non-malignant liver cirrhosis and found that Enolase-1 and fibrinogen are potential ascitic fluid-based biomarkers for diagnosis and prognosis of HCC [18]. Guo et al. reported that assaying CD14 levels may complement AFP measurement for the early detection of HCC [19]. Wang et al. suggested that different molecular alterations and specific signalling pathways were indeed involved in different HCC subtypes [20]. Our study aimed to investigate the molecular signatures of the HCC by quantitative proteomics using iTRAQ with LC-MS/MS.

In our study, the number of differentially expressed proteins identified in the HCC/DN group was much higher than in the AN/DN group. These findings indicate that the features between the adjacent noncancerous tissues and distant noncancerous tissues were more similar than those between the HCC tissues and the distant noncancerous tissues, which were accorded with objective existence.

The gene ontology annotation analysis showed that the cell components of the differentially expressed proteins that either overlapped in 2 groups or uniquely in 1 group were mostly located in the extracellular exosome, which indicated that the proteins extracted in this experiment were mainly secreted proteins. For the biological process analysis, the GO annotation analysis showed that the proteins overlapped in both the groups and were the major participants in the protein folding, lipid metabolic process, gluconeogenesis, nucleobase-containing compound metabolic process, and canonical glycolysis. Most of these processes focused on metabolic changes, which
Figure 4. The key signalling pathways involved in the 2 groups. A – The key signalling pathways involved in the hepatocellular carcinoma tissues/distal noncancerous tissues group. B – The key signalling pathways involved in the adjacent noncancerous tissues/distal noncancerous tissues group. The top 10 enriched signalling pathways were displayed in the figures.
Figure 5. The interaction networks of differently abundant proteins in the 2 groups. A – The interaction networks of differently abundant proteins involved in the hepatocellular carcinoma tissues/distal noncancerous tissues group. B – The interaction networks of differently abundant proteins involved in the adjacent noncancerous tissues/distal noncancerous tissues group.
suggested that the changes in the material metabolism were universal, regardless of the transformation from distant cancer to adjacent cancer or the approach of adjacent cancer to HCC. The molecular function of these proteins also focuses on energy metabolism, which also supported the hypothesis [15, 21–23].

There were 155 dysregulated proteins in the HCC group compared to the DN group, but these proteins were not dysregulated in the AN group compared to the DN group. We further analysed that these proteins involved the biological process by GO analysis; the results showed that these dysregulated proteins were mainly involved in signal transduction, cell proliferation, protein stabilisation, and the negative regulation of the apoptotic process. These processes might have been involved in the formation of development of HCC, and it has been reported that these processes are involved in the disturbing of the signal transduction and protein degradation [24–27], apoptotic process [27, 28], and cell proliferation [28, 29] in tumours. The molecular function of these proteins, such as the cadherin binding involved in cell-cell adhesion, protein homodimerisation activity, ubiquitin-protein ligase binding, calcium ion binding, GTP binding, etc., also supported this conclusion.

Interestingly, there were 9 dysregulated proteins in the AN group compared to the DN group but no dysregulation in the HCC group compared to the DN group, and the GO results showed that these dysregulated proteins were mainly involved in desmosome organisation, positive regulation of sister chromatid cohesion, translation, rRNA processing, nuclear-transcribed mRNA catabolic process, translational initiation, and SRP-dependent co-translational protein targeting the membrane. The results also showed that the dysregulated proteins may have affected the incidence and progress of HCC, such as the change of the combination of the protein and the RNA function presenting the disorder of the transcription and translation function, which suggested that the surrounding noncancerous cells might increase the expression of the nucleic acid and enzyme by tumour microenvironment to promote the HCC proliferation and growth [30], and that the changes of telomere and telomerase in the surrounding noncancerous cells revealed the dysregulation on the chromosome stability, repair, and proliferation, which were all closely related to the incidence of HCC development [31, 32]. Similarly, the molecular function of these proteins, such as cadherin binding-involved nucleotide binding, RNA binding, calcium ion binding, chromatin binding, transcription regulatory region DNA binding, identical protein binding, etc., also supported this conclusion.

To further reveal the possible molecular mechanisms of the tumourigenesis and the development of the primary HCC, we applied the KEGG database to analyse the signalling pathways in which the differentially expressed proteins were involved. Our study also analysed the pathway of metabolism, genetic information processing, environmental information processing, and cellular. According to the results of the analysis, the dysregulated proteins in HCC are mostly involved in the JAK-STAT pathway and MAPK pathway. All the above-mentioned signalling pathways are actively associated with cancers [33–36]. It has been reported that the MAPK signalling pathway played an essential role in the development and aggressive behaviour of tumours by enhancing tumour cell proliferation, differentiation, apoptosis, and cell cycle [37, 38]. Therefore, it is not surprising that the MAPK signalling pathway is involved in HCC tissues. Interestingly, the JAK-STAT pathway was only enriched in the HCC group but not in the AN group. JAK-STAT pathway has been regarded as one of the main molecular pathways in HCC progression [39].

However, the signalling pathway only enriched in the AN group comprised mainly basic metabolisms, such as biological oxidations, amino acids metabolism, TCA cycle, glucose metabolism, and so on. All of these processes belong to the material metabolism and illustrate that the primary material changes play an important role in the tumourigenesis and development of HCC. Also, the different pathways in the HCC and the AN group suggest that there might be different molecular mechanisms in the carcinogenesis and development of the primary HCC in the HCC tissue and the surrounding noncancerous tissues. The above-mentioned results that were analysed demonstrate that our quantitative proteomics approach is suitable in studying the overall molecular profile changes of HCC and could give further insight into the possible molecular mechanisms.

In our study, the proteins in the HCC/DN group could be classified into 3 major clusters: proteins in the red region were related to protein translation and post-translation processing, proteins in the blue region were related to protein glycosylation modification, and proteins in the green region were related to biological metabolic functions dominated by glucose metabolism. As is already known, the malignant proliferation of tumour cells was a process of energy consumption, so the hyperactive glucose metabolism in the HCC group might provide the necessary conditions for the progression of HCC [40, 41]. Glycosylation was involved in the folding, aggregation, maturation, and transportation of protein-peptide chains and was a terminal signal on the surface of the cancer cells in carcinogenesis [42, 43]. The incidence, development, and invasion of HCC were accompanied by glycosylation changes of relevant glycoproteins, so the change of the carbohydrate
structure on the surface of the HCC cells played an important role in the occurrence and development progress of HCC [44, 45].

The proteins in the AN/DN group could also be classified into 3 clusters: the red region represented proteins related to immune and metabolic functions, the green region represented proteins related to apoptosis functions, and the blue region represented proteins related to protein binding functions. This indicated that immune and metabolic changes were relatively active in the para cancer tissues, which might be related to changes in the tumour microenvironment [46–49]. All these results suggest that the evolution of the tissues adjacent to HCC promoted the incidence of HCC.

In summary, this study applied the iTRAQ-based qualitative proteomic approach to analyse the secretome of the primary cultures of HCC tumour tissues. The results visibly showed that the secretome profile alternations and signalling pathways were associated with HCC occurrence and development. The dysregulated proteins in the HCC/DN group were concentrated in the MAPK signalling and JAK-STAT signalling, but the dysregulated proteins in the AN/DN group were more concentrated in the basal material metabolism. The different protein expression profiles in the primary HCC tissues, the surrounding non-cancerous tissues, and the distal noncancerous tissues might also reveal different underlying molecular mechanisms. This study provides a valuable resource of the HCC tissue secretome to investigate the molecular mechanism of HCC incidence and development.

In conclusion, the secretome profile alternations and signalling pathways were associated with HCC incidence and development. The dysregulated proteins in the HCC/DN group were concentrated in the MAPK signalling and JAK-STAT signalling, but the dysregulated proteins in the AN/DN group were more concentrated in the basal material metabolism.

Acknowledgements

This work was supported by Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, China (No.2019E10020) and Ningbo Clinical Research Center for Digestive System Tumors, China (No.2019A21003).

Conflict of interest

The authors declare no conflict of interest.

References

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136: E359-86.

2. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY. The global burden of liver disease: the major impact of China. Hepatology 2014; 60: 2099-108.

3. Sterling RK, Wright EC, Morgan TR, et al. Frequency of elevated hepatocellular carcinoma (HCC) biomarkers in patients with advanced hepatitis C. Am J Gastroenterol 2012; 107: 64-74.

4. Liu X, Cheng Y, Sheng W, et al. Clinicopathologic features and prognostic factors in alpha-fetoprotein-producing gastric cancers: analysis of 104 cases. J Surg Oncol 2010; 102: 249-55.

5. El-Bahrawy M. Alpha-fetoprotein-producing non-gem cell tumours of the female genital tract. Eur J Cancer 2010; 46: 1317-22.

6. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005; 4: 409-18.

7. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845-67.

8. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature 2008; 452: 571-9.

9. Paltridge JL, Belle L, Khew-Goodall Y. The secretome in cancer progression. Biochim Biophys Acta 2013; 1834: 2233-41.

10. Slany A, Haudek-Prinz V, Zwickl H, Stättner S, Graslkraupp B, Gerner C. Myofibroblasts are important contributors to human hepatocellular carcinoma: evidence for tumor promotion by proteome profiling. Electrophoresis 2013; 34: 3315-25.

11. Yu Y, Pan X, Ding Y, et al. An iTRAQ based quantitative proteomic strategy to explore novel secreted proteins in metastatic hepatocellular carcinoma cell lines. Analyst 2013; 138: 4505-11.

12. Cao J, Hu Y, Shen C, et al. Nanozeolite-driven approach for enrichment of secretory proteins in human hepatocellular carcinoma cells. Proteomics 2009; 9: 4881-8.

13. Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics 2005; 4: 1480-6.

14. Yang L, Rong W, Xiao T, et al. Secretory/releasing proteome-based identification of plasma biomarkers in HBV-associated hepatocellular carcinoma. Sci China Life Sci 2013; 56: 638-46.

15. Song C, Ye M, Han G, et al. Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem 2010; 82: 53-6.

16. Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. Mass Spectrom Rev 2019; 38: 265-90.

17. Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16: 553-68.

18. Zhang J, Liang R, Wei J, et al. Identification of candidate biomarkers in malignant ascites from patients with hepatocellular carcinoma by iTRAQ-based quantitative proteomic analysis. Biomed Res Int 2018; 2018: 5484976.

19. Guo J, Jing R, Zhong JH, et al. Identification of CD14 as a potential biomarker of hepatocellular carcinoma using iTRAQ quantitative proteomics. Oncotarget 2017; 8: 62011-28.

20. Wang Y, Liu H, Liang D, et al. Reveal the molecular signatures of hepatocellular carcinoma with different sizes by iTRAQ based quantitative proteomics. J Proteomics 2017; 150: 230-41.
21. Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta 2011; 1807: 534-42.
22. Yu M. Somatic mitochondrial DNA mutations in human cancers. Adv Clin Chem 2012; 57: 99-138.
23. Larman TC, DePalma SR, Hadjipanayis AG, et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A 2012; 109: 14087-91.
24. Deschênes-Simard X, Lessard F, Gaumont-Leclerc ME, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13: 1840-58.
25. Adhikary A, Chakraborty S, Mazumdar M, et al. Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold/matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells. J Biol Chem 2014; 289: 25431-44.
26. Zhang S, Wang X, Iqbal S, et al. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasms (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. J Biol Chem 2013; 288: 14679-90.
27. Sabit I, Hashimoto N, Matsumoto Y, Yamaji T, Furukawa K, Furukawa K. Binding of a sialic acid-recognizing lectin Siglec-9 modulates adhesion dynamics of cancer cells via calpain-mediated protein degradation. J Biol Chem 2013; 288: 35417-27.
28. Wang F, Weaver VM, Petersen OW, et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A 1998; 95: 14821-6.
29. Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461-6.
30. Robichaud N, Hsu BE, Istomine R, et al. Translational control in the tumor microenvironment promotes lung metastasis: phosphorylation of eIF4E in neutrophils. Proc Natl Acad Sci U S A 2018; 115: E2202-E2209.
31. Tahmasebi-Birgani M, Ansari H, Carloni V. Defective mitosis-linked DNA damage response and chromosomal instability in liver cancer. Biochim Biophys Acta Rev Cancer 2019; 1872: 60-5.
32. Yang SF, Chang CW, Wei RJ, Shiue YL, Wang SN, Yeh YT. Involvement of DNA damage response pathways in hepatocellular carcinoma. Biomed Res Int 2014; 2014: 153867.
33. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37-40.
34. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer 2014; 120: 3446-56.
35. Pencik J, Pham HT, Schmoller J, et al. JAK-STAT signaling in cancer: from cytokines to non-coding genome. Cytokine 2016; 87: 26-36.
36. Morevi V, Adamo S, Bergghella L. The JAK/STAT pathway in skeletal muscle pathophysiology. Front Physiol 2019; 10: 500.
37. Blaj C, Schmidt EM, Lamprecht S, et al. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res 2017; 77: 1763-74.
38. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 1773: 1263-84.
39. Vasuri F, Visani M, Acquaviva G, et al. Role of microRNAs in the main molecular pathways of hepatocellular carcinoma. World J Gastroenterol 2018; 24: 2647-2660.
40. Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther 2012; 11: 14-23.
41. Grasmann G, Smolle E, Olszewski H, Leitner K. Glucose homeostasis in cancer cells – repurposing of a starvation-induced metabolic pathway? Biochim Biophys Acta Rev Cancer 2019; 1872: 24-36.
42. Rodrigues JG, Balmana M, Macedo JA, et al. Glycogenosis in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333: 46-57.
43. Cheng WK, Oon CE. How glycogenolysis aids tumor angiogenesis: an updated review. Biomed Pharmacother 2018; 103: 1246-52.
44. Mehta A, Herrera H, Block T. Glycogenolysis and liver cancer. Adv Cancer Res 2015; 126: 257-79.
45. Zhang S, Cao X, Gao Q, Liu Y. Protein glycosylation in viral hepatitis-related HCC: characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett 2017; 406: 64-70.
46. Albini A, Bruno A, Noonan DM, Mortara L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 2018; 9: 527.
47. Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 2018; 15: 428-37.
48. Reina-Campos M, Shelton PM, Diaz-Meco MT, Moscat J. Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochim Biophys Acta Rev Cancer 2018; 1870: 88-95.
49. Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18: 10.