Compatibility improvement method of empty fruit bunch fibre as a replacement material in cement bonded boards: A review

Hayana Dullah1, Zainal Abidin Akasah1,* Nik Mohd Zaini Nik Soh1, Sajjad Ali Mangi1

1 Faculty of Civil and Environmental Engineering, UTHM Malaysia
*Corresponding author: zainal59@uthm.edu.my

Abstract. The utilization of oil palm empty fruit bunch (OPEFB) fibre on bio-composite product has been introduced to replace current material mainly wood fibre. OPEFB is widely available as palm oil is one of the major agricultural crops in Malaysia. EFB fibre are lignocellulosic materials that could replace other natural fibre product especially cement bonded board. However, the contains of residual oil and sugar in EFB fibre has been detected to be the reason for incompatibility issue between EFB fibre and cement mixtures. Regarding on the issue, a study has been conducted widely on finding the suitable pre-treatment method for EFB fibre to remove carbohydrate contained in the said fibre that are known to inhibit cement hydration. Aside from that, cement accelerator was introduced to enhance the hydration of cement when it was mixed with natural fibre. Hence, this paper will summaries the previous findings and in-depth study on the use of EFB fibre as a replacement material in cement bonded fibre boards.

1. Introduction

The potential use of natural fibre as bio-composites has been accepted globally, because it is cheap, sustainable, biodegradable and reduces the carbon dioxide (CO₂) emissions [1]. The use of wood fibre has been increased rapidly as a natural composite in cement based products i.e. cement bonded board [2]. However, the utilization of wood fibre will lead to the increase demand of forest sources. Ultimately, the use of wood fibre as a bio-composites material will increase the rate of deforestation [3]. The growth in the use of palm oil production caused the environmental issue and created solid waste in terms of abundance quantity of empty fruit bunch (EFB) from oil palm mills [4]. Oil palm empty fruit bunch fibre (OPEFB) is the most important fibre that is readily available within Malaysia. subsequently, the attention is required on the production of OPEFB-cement products and study on the incompatibility of cement and OPEFB fibre. The issue of compatibility between natural fibre and cement has been highlighted in many previous studies on application of bio-composites. Based on research by Yi, et al. [5], there is compatibility issue between cement and fibre due to the existing of hemi-cellulose, starch, sugar, tannins and lignin which appear to inhibit significantly the setting of cement hydration.

To resolve this issue, previous research suggested the most effective method is pre-treatment of the natural fibre using Sodium hydroxide (NaOH) and cement-curing accelerator to accelerate the curing time of cement which could improve the compatibility of natural fibre with the cement [6, 7]. This article summarises the methods of OPEFB pre-treatment and cement accelerator for cement bonded...
fibre board (CBFB) used by previous researchers. It is expected that this information will provide an idea to utilize OPEFB as a main material for cement bonded composites.

2. Previous research work

This paper summarises the previous findings on the factors that affect compatibility, improving compatibility, pre-treatment and the use of chemical additive as cement accelerator by utilizing EFB fibre.

2.1. Factors affecting compatibility

The compatibility affecting of EFB fibre on cement is consisted by a number of factors. One of the factors is of EFB fibre's wide range of carbohydrates such as hemi-cellulose, starch, sugar, tannins and lignin that are known to inhibit normal setting and delayed the setting time of the cement matrix [8]. The natural fibre cannot be used directly on cement matrix due to the existence of residual oil that interrupts the penetration of binding agent and thus affecting the properties of the final EFB-products [9, 10].

2.2. Method of compatibility improvement

Many researchers carried a series of tests to improve the compatibility of fibre and cement by using some modification of fibre method mainly physical, chemical and thermal pre-treatments (extraction or soaking of wood particles in some solutions such as hot water and sodium hydroxide before its mixing with cement) [11, 12]. Natural fibre needs to be modified before being utilized on cement bonded board, thus reducing carbohydrate contained in EFB fibre is essential to improve the bonding between EFB fibre and cement.

On the other hand, some studies carried out a series of tests designed to improve the natural fibre-cement mixtures by addition of some chemicals such as magnesium chloride and calcium chloride [14, 15]. Chemical additive is one of the modification method commonly found to accelerate the setting time of cement matrix which is suitable for application of natural fibre cement composite products. It is reported by Nazerian and Sadeghiapanah [15] that fibre-cement compatibility and rapid hydration of cement paste could be improved by addition of an accelerator. There were different methods tried by researchers to treat the EFB fibre in order to enhance its compatibility with many types of product. Table 1 shows the previous research focusing on methods of OPEFB treatment. It is clearly shown that the most common fibre pre-treatment has been used by other researcher is chemical treatment by using sodium hydroxide (NaOH).
Table 1: Previous study on EFB pre-treatment method.

Ref.	Research	Fibre treatment	Method	Finding
[9]	Oil Content Effect	0.2, 0.4, 0.6 & 0.8% of; -NaOH -Acetic acid	Soaked 24 hours	Treated fibre using NaOH successfully removed more residual oil from the EFB surface compared to treatments using acetic acid.
[10]	Thermal Behavior	10% NaOH	Soaked 48 hours	NaOH has removed a significant percentage of hemicellulose thus increasing the cellulose content compared to H$_2$O$_2$ treated fibre.
[12]	Effect of OPEFB Pre-treatments	Physical Chemical (NaOH) Thermal	Soaked 4 hours	Fibre treated by chemical followed by thermal treatment has produced the best reducing sugars as compared to the physical pre-treatment.
[16]	Medium Density Fibre Board	2% NaOH	Soaked 30 minutes	Fibre treated with NaOH is more effective than water to remove the residual oil.
[17]	Biocomposite	20g in 500ml Erlenmeyer flask of distilled water	Soaked 3 hours at temperature 75ºC	Tensile and flexural modulus of treated EFB fibre is higher than untreated EFB fibre.
[18]	Medium Density Fibre Board	2% NaOH	Soaked 30 minutes	Fibre treated with NaOH shows the highest MOR (31.4 MPa) and increased the mechanical and physical properties of fibreboards.
[19]	Biocomposite	5% NaOH	Soaked 2 hours	Treated fibre biocomposite shows increasing values of mechanical properties compared to untreated fibre.
[20]	Corrugating Medium & Fibreboard	0, 1, & 2% NaOH	121 ºC for 1, 2 & 3 hours	Optimum conditions for chemical treatment was 2 hr with 2% NaOH.
[21]	Medium Density Fibre Board	0.2, 0.4, 0.6 & 0.8% of; -NaOH -Acetic acid	Soaked 24 hours	Fibre treated with 0.4% of NaOH produced the lowest TS compared with other treatment concentrations.
[22]	Reinforced Epoxy Composite	2% NaOH	Soaked 30 minutes	Fibre treatment improved the tensile strength of the OPEFB fibre reinforced epoxy composites.

Sodium hydroxide (NaOH) is reportedly could modify the surface of EFB fibre and disrupts the crystalline region in the cellulose, thus undergo complete de-crystallization and weaken the energy bonding of cellulose [13, 14]. Furthermore, oil and impurities of EFB fibre could be removed by using chemical pre-treatment method. It was noted by Ndazi et al. [24] that the sodium hydroxide (NaOH) have good ability to break hydrogen bonding in network structure of fibre cellulose which can increase fibre surface roughness. From Table 1, Sodium hydroxide (NaOH) is the reagent that is widely used for EFB fibre pre-treatments, which can be conducted over a wide range of operating condition such as different concentration of NaOH and soak period of EFB fibre. Apart from pre-treatment, the previous studies indicated that the chemical accelerator could affect the hydration setting and compressive strength of cement-bonded fibre board [24, 25] i.e. Modulus of Rupture (MOR) and Modulus of Elasticity (MOE). The percentage and type of chemical additives on
compatibility of fibre-cement water mixtures are summarized in Table 2. Normally the percentage of chemical additive that have been used in range between 0.5 – 5% depending on the type of chemical. Based on the table, the favourable type of chemical used as cement accelerator is calcium chloride (CaCl$_2$) followed by magnesium chloride (MgCl$_2$).

Table 2: Previous study of chemical additive used as cement accelerator.

Ref.	Material	Chemical additive (%)	Remarks
[3]	Wood (Afzelia Africana)	MgCl$_2$ 2 A1Cl$_3$ 2 CaCl$_2$ 2 Al$_2$(SO$_4$)$_3$ 2 Other 2	CaCl$_2$ was the best accelerator follow by MgCl$_2$ and A1Cl$_3$. MgCl$_2$ is most effective additive among other chemicals.
[5]	Wood (Sugi)	MgCl$_2$ 4 A1Cl$_3$ 4 CaCl$_2$ 4 Al$_2$(SO$_4$)$_3$ 4	4% CaO, Na$_2$SiO$_3$ 2% CaCl$_2$ was selected for the best compatibility. Admixture with a chloride basis had an excellent behaviour.
[14]	Waste Wood	MgCl$_2$ 0.5, 1 2.5 A1Cl$_3$ 0.5, 1 2.5 CaCl$_2$ 0.5, 1 2.5 Al$_2$(SO$_4$)$_3$ 0.5, 1 2.5 FeCl$_3$ 4	Three chemical additives were suitable as an accelerator.
[25]	Pinus Wood Dust	MgCl$_2$ 4 A1Cl$_3$ 4 Na$_2$SiO$_3$ Al$_2$SO$_4$ 4	MOR & MOE increased when added 5-7% of MgCl$_2$.
[26]	Wood (Tree Pruning Waste)	MgCl$_2$ 3 A1Cl$_3$ 3 CaCl$_2$ 3 Al$_2$(SO$_4$)$_3$ 3	Three chemical additives were suitable as an accelerator.
[27]	Oil palm Frond	MgCl$_2$ 0, 2.5 5 A1Cl$_3$ 0, 2.5 5 CaCl$_2$ 0, 2.5 5	The accelerator was compatible with cement.
[28]	Bagasse, Cotton stalk, Sunt sawdust	MgCl$_2$ - A1Cl$_3$ - CaCl$_2$ - Al$_2$(SO$_4$)$_3$ -	Aluminium sulphate meets the requirements of MS 934.
[29]	Bamboo	MgCl$_2$ 2 A1Cl$_3$ 2 CaCl$_2$ 2 Al$_2$(SO$_4$)$_3$ + Na$_2$SiO$_3$ 2	1.5% of CaCl$_2$ was similar to 3.5% of MgCl$_2$.
[30]	6 forest species	MgCl$_2$ 1.5, 2.5, 3.5 A1Cl$_3$ 1.5, 2.5, 3.5 CaCl$_2$ 1.5, 2.5, 3.5 Al$_2$(SO$_4$)$_3$ + Na$_2$SiO$_3$ 1.5, 2.5, 3.5	Optimum condition obtained when CaCl$_2$ is 5%.
[31]	Newsprint paper	MgCl$_2$ - A1Cl$_3$ - CaCl$_2$ - Al$_2$(SO$_4$)$_3$ -	CaCl$_2$ and CaO were found to be effective accelerator.
[32]	Kenaf Fibre	MgCl$_2$ - A1Cl$_3$ - CaCl$_2$ - Al$_2$(SO$_4$)$_3$ -	Improved physical and mechanical properties of wood-cement composite.
[33]	Wood	MgCl$_2$ 3 A1Cl$_3$ 3 CaCl$_2$ 3 Al$_2$(SO$_4$)$_3$ 3	Additional chemical accelerator affects the properties of CBFB.
[34]	Musa Paradisiaca	MgCl$_2$ - A1Cl$_3$ - CaCl$_2$ - Al$_2$(SO$_4$)$_3$ -	5% dose of CaCl$_2$ enhanced the MOE & MOR properties.
[35]	Eucalypt and Poplar	MgCl$_2$ - A1Cl$_3$ - CaCl$_2$ - Al$_2$(SO$_4$)$_3$ -	5
It was observed that additional chemical additive can modify the setting time of cement hydration for utilization of natural fibre into cement bonded fibre board products. Early study on utilization of oil palm fibre was conducted by Hermawan et al. [27] to cement bonded fibre board product which was reported to enhance the mechanical performance with addition of 5-7 % of MgCl₂. However, the additional of other accelerator need to be emphasized based on previous studies that applied several types of chemical accelerator on different type of natural fibre which have same structural composition with EFB fibre. Therefore, other types of chemical additive should also need to be considered to accelerate the setting time of EFB fibre-cement mixture.

3. Conclusion
Based on the extensive literature review as suggested by the several researchers, the following conclusions have been drawn;

(a) EFB fibre can be utilized as replacement of other natural fibre i.e. wood fibre by improvement method of chemical treatment with sodium hydroxide (NaOH) which could remove the part of hemicellulose and lignin contains present in EFB fibre.
(b) Amount of silica body removed in EFB fibre is depend to the concentration of Sodium Hydroxide (NaOH) and soaking period.
(c) It was perceived from the previous studies that the cement accelerator could affect the hydration setting and compressive strength of cement-bonded fibre boards.
(d) Chemical additive by using CaCl₂ and MgCl₂ seems to be a good potential as they increased the setting time of cement matrix.

As per conclusions above, it is recommended to modify the structure of EFB fibre by using Sodium Hydroxide (NaOH) as a pre-treatment agent and additional of cement-curing accelerator i.e. calcium chloride (CaCl₂) and magnesium chloride (MgCl₂) to improve the compatibility between EFB fibre and cement for the cement bonded board product. However, it is essential to study on the different concentration of the chemicals to observe the optimum percentage for application of EFB fibre since there are very limited and rare to found published research finding about the effect of EFB fibre as a main material for the cement bonded board product.

4. References
[1] Brandt A M 2008 Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering Compos. Struct. 86 (1–3) 3–9
[2] Kochova K, Schollbach K and Brouwers H J H 2015 Use of alternative fibres in wood wool cement boards and their influence on cement hydration 19th International Conference on Building Materials (London: ICABMMA 2017) pp 1375–1382
[3] Sotannde O A, Oluwadare A O, Ogedoh O and Adeogun P F 2012 Evaluation of cement-bonded particle board produced from Afzelia africana wood residues J. Engineering Sci. Technology 7 (6) 732–743
[4] Sumathi S, Chai S P and Mohamed A R 2008 Utilization of oil palm as a source of renewable energy in Malaysia,” Renew. Sustain. Energy Rev. 12 (9) 2404–2421
[5] Yi M W, Tomita B, Hiramatsu Y, Miyatake A and Fujii T 2002 Study of hydration behaviors of wood-cement mixtures: Compatibility of cement mixed with wood fiber strand obtained by the water-vapor explosion process J. Wood Sci. 48 (5) 365–373
[6] Bin N, Zhiqiang W, Haiqin W and Xiaoning L 2014 Wood-cement compatibility review Wood Research 59 (5) 813–826
[7] Karade S R 2010 Cement-bonded composites from lignocellulosic wastes Constr. Build. Mater. 24 (8) 1323–1330
[8] Pacheco Torgal F and Jalali S 2011 Cementitious building materials reinforced with vegetable fibres: A review Constr. Build. Mater. J. 25 (2) 575–581
[9] Ibrahim Z, Abdul Aziz A and Ramli R 2015 Effect of treatment on the oil content and surface morphology of oil palm (Elaeis guineensis) empty fruit bunches (EFB) fibres Wood Research 60 (1) 157–166

[10] Hassan N S and Badri K 2016 Thermal behaviors of oil palm empty fruit bunch fiber upon exposure to acid-base aqueous solutions Malaysian J. Anal. Sci. 20 (5) 1095–1103

[11] Aanifah F J M, Yee P L, Wasoh H and Abd-Aziz S 2014 Effect of different alkaline treatment on the release of ferulic acid from oil palm empty fruit bunch fibres J. Oil Palm Res. 26 (4) 321–331

[12] Ariffin H, Hassan M A, Md Shah U K, Abdullah N and Shirai Y 2008 Effect of physical, chemical and thermal pretreatments on the enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB) (Kesan prarawatan fizikal, kimia dan termal terhadap hidrolisis enzimistik tandan kosong kelapa sawit) J. Trop. Agric. and Fd. Sc. 36 (2) 1–10

[13] Frybort S, Mauritz R., Teischinger A and Müller U 2008 Cement bonded composites - A mechanical review BioResources 3 (2) 602–626

[14] Wang L, Chen S S, Tsang D C W, Chi S P and Kaimin S 2016 Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards Constr. Build. Mater. 125 316–325

[15] Nazerian M and Sadeghipanah V 2013 Cement-bonded particleboard with a mixture of wheat straw and poplar wood J. For. Res. 24 (2) 381–390

[16] Ramli R, Shaler S and Jamaludin M A 2002 Properties of Medium density fibreboard from oil palm empty fruit bunch J. oil palm Res. 14 (2) 34–40

[17] Suradi S S, Yunus R M, Beg M D H and Yusof Z A M 2009 Influence pre-treatment on the properties of lignocellulose based biocomposite National Conference on Postgraduate Research (NCON-PGR) 2009 67–78

[18] Norul Izani M A, Paridah M T, Mohd Nor M Y and Anwar U M K 2013 Properties of medium-density fibreboard (MDF) made from treated empty fruit bunch of oil palm J. Trop. For. Sci. 25 (2) 175–183

[19] Senawi R, Mohd Alauddin S, Mohd Saleh R and Shueb M I 2013 Polyactic acid/empty fruit bunch fiber biocomposite: Influence of alkaline and silane treatment on the mechanical properties Int. J. Biosci. Biochem. Bioinforma 3 (1) 59–61

[20] Mulyantara H L T, Rizaluddin A T, Nakagawa I A and Ohi H 2015 Properties of fibers prepared from oil palm empty fruit bunch for use as corrugating medium and fiberboard J.—STAGE Adv. 1148 1349–1159

[21] Ibrahim Z, Ahmad M, Aziz A A, Ramli R, Jamaludin M A, Muhammed S and Alias A H 2016 Dimensional Stability Properties of Medium Density Fibreboard (MDF) from Treated Oil Palm (Elaeis guineensis) Empty Fruit Bunches (EFB) Fibres, Open J. Compos. Mater., 6 (4) 91–99

[22] Hassan S, Chellaiah N R, Sahari B, Salit M S and Abdul Aziz N 2016 Effect of chemical treatment on oil palm empty fruit bunch (OPEFB) fiber on water absorption and tensile properties of OPEFB fiber reinforced epoxy composite Key Engineering Materials 701 295–299.

[23] Mat Soom R, Wan Hassan W H, Md Top A G and Hassan K 2006 Thermal properties of oil palm fibre J. Palm Oil Res. 18 272–277

[24] Ndazi B S, Karlsson S, Tesha J V and Nyahumwa C W 2007 Chemical and physical modifications of rice husks for use as composite panels Compos. Part A Appl. Sci. Manuf. 38 (3) 925–935

[25] Matoski A, Hara M M, Iwakiri S and Casali J M 2013 Influence of accelerating admixtures in wood-cement panels: Characteristics and properties Acta Sci. Technology 35 (4) 655–660

[26] Nasser R A, Salem M Z M, Al-Mefarje H A and Aref I M 2016 Use of tree pruning wastes for manufacturing of wood reinforced cement composites Cem. Concr. Compos. 72 246–256

[27] Hermawan D, Hata T, Kawai S, Nagadomi W and Kuroki Y 2002 Manufacturing oil palm fronds cement-bonded board cured by gaseous or supercritical carbon dioxide J. Wood Sci. 48 (1) 20–24
[28] Mohamed T E 2004 Effects of mixing some wood and non-wood lignocellulosic materials on the properties of cement and resin-bonded particleboard University of Khartoum Ph.D Thesis

[29] Sudin R and Swamy N 2006 Bamboo and wood fibre cement composites for sustainable infrastructure regeneration Journal of Materials Science, 41 (21) 6917–6924

[30] Noor Azrieda A R, Razali A K, Izran K, Rahim S and Adbul Aziz M 2009 Hydration performance of cement-bonded wood composites: Compatibility assessment of six pioneer forest species Borneo Sci. 25 47–58

[31] Ashori A, Tabarsa T and Valizadeh I 2011 Fiber reinforced cement boards made from recycled newsprint paper Mater. Sci. Engineering A 528 (25–26) 7801–7804

[32] Amel B A, Paridad M T, Rahim S, Osman Z, Zakiah A and Ahmed S H 2014 Effects of kenaf bast fibres on hydration behaviour of cement J. Trop. For. Sci. 26 (3) 340–346

[33] de Castro V G, Braz R L, Azambuja R R, Loiola P L, Iwakiri S and Matos J L M 2015 Wood-cement boards of Eucalyptus saligna with different chemical additives and methods of formation Floresta 45 (2) 349–360

[34] Ogunsile B O and Adepegba J A 2015 Cement bonded particle board from Musa paradisiaca stalk Pacific J. Sci. Technol. 16 (1) 12–20

[35] Ashori A, Tabarsa T, Azizi K and Mirzabeygi R 2011 Wood-wool cement board using mixture of eucalypt and poplar Ind. Crops Prod. 34 (1) 1146–1149

Acknowledgments
The authors are gratefully acknowledging the technical and financial support of Faculty of Civil and Environmental Engineering, and Centre of Graduate Studies, UTHM, Malaysia.