Determinants of Functional Capacity and Quality of Life After Implantation of a Durable Left Ventricular Assist Device

Kiran K Mirza and Finn Gustafsson

Department of Cardiology, Rigshospitalet, Copenhagen, Denmark

Abstract
Continuous-flow left ventricular assist devices (LVADs) are increasingly used as destination therapy in patients with end-stage heart failure and, with recent improvements in pump design, adverse event rates are decreasing. Implanted patients experience improved survival, quality of life (QoL) and functional capacity (FC). However, improvement in FC and QoL after implantation is not unequivocal, and this has implications for patient selection and preimplantation discussions with patients and relatives. This article identifies preimplantation predictors of lack of improvement in FC and QoL after continuous-flow LVAD implantation and discusses potential mechanisms, allowing for the identification of potential factors that can be modified. In particular, the pathophysiology behind insufficient improvement in peak oxygen uptake is discussed. Data are included from 40 studies, resulting in analysis of 5700 exercise tests. Mean peak oxygen uptake was 13.4 ml/kg/min (equivalent to 48% of predicted value; 259 days after implantation, range 31–1017 days) and mean 6-minute walk test distance was 370 m (182 days after implantation, range 43–543 days). Finally, the interplay between improvement in FC and QoL is discussed.

Keywords
Predictors, 6-minute walk test, peak oxygen uptake, exercise, Kansas City Cardiomyopathy Questionnaire, Minnesota Living with Heart Failure Questionnaire, 5-Level EQ-5D

Methods
Search Strategy
On 1 November 2019, a PubMed search was conducted using the search terms ‘quality of life’, ‘EuroQol-5 Dimensions-5 levels’, ‘Minnesota Living With Heart Failure’, ‘Kansas City Cardiomyopathy Questionnaire’, ‘exercise’, ‘six minute walk test’, ‘six-minute walk test’, ‘peak oxygen uptake’, ‘exercise capacity’, ‘peak oxygen consumption’, ‘exercise training’, ‘cardiac rehabilitation’, ‘ventricular assist device’ and ‘continuous-flow left ventricular assist device’ (Supplementary Material Table 1). The search resulted in 609 items (Figure 1). After excluding studies published prior to 2006 and those written in languages other than English, the titles of 417 publications were screened by both investigators independent of each other (i.e. blinded). This process resulted in the identification of 143 publications by FG and 241 publications by KM. Mismatch and disagreement in 98 cases led to full-text review. The full text of one article could not be acquired, which resulted in its exclusion. Finally, 36 papers and four ‘add-on’ studies (e.g. extra studies found by reference review or other sources) were included in this narrative review.

According to the third report from the International Society for Heart and Lung Transplantation (ISHLT) Mechanically Assisted Circulatory Support Registry, more than 15,500 left ventricular assist devices (LVADs) were implanted worldwide between 2013 and 2017. Originally, LVADs were exclusively implanted as part of a bridge to transplantation (BTT) strategy, but in recent years a large proportion of patients undergoing LVAD implantation received the device as final treatment for advanced heart failure (HF), so-called destination therapy. Survival rates after LVAD implantation have increased greatly over the past decade, as improvements in LVAD technology and management have resulted in a lower risk of adverse events. Hence, in recent studies, 2-year survival rates range from 80% to 90%. Patients treated with LVADs experience significant improvements in HF symptoms, quality of life (QoL) and functional capacity (FC), although the latter remains reduced in this patient group, especially when measured as peak oxygen uptake (pVO).

Given the increased use of LVAD as destination therapy and the long wait times for transplantation in those implanted with an LVAD as BTT, optimisation of FC and QoL is critically important. In order to identify potential strategies to improve FC and QoL after LVAD implantation, a detailed understanding of the mechanisms behind residual impairment of these parameters is essential.

This review summarises the available evidence describing improvement in FC and QoL after LVAD implantation with the specific aim of identifying reproducible predictors of improvement in QoL and FC with the intervention.
Results and Discussion

Functional Capacity After LVAD Implantation

The most widely accepted measures of functional capacity in HF are symptoms, measured by New York Heart Association (NYHA) class, 6MWD and pVO$_2$. Each of these measures has its own advantages and disadvantages, such as variable reproducibility or technical demands, but all are useful and required to characterise different aspects of the exercise limitation of HF populations. Patients referred for LVAD implantation are almost invariably severely symptomatic (e.g. NYHA IIIB–IV with 6MWD <300–400 m and low pVO$_2$). The latter is typically below 12 ml/kg/min, which is also the limit used as part of the indication for destination therapy LVAD in the US Medicare system.

In all studies of patients undergoing LVAD implantation, NYHA class improves in most patients from Class III/IV before implantation (100%) to Class I or II.9,49 Studies are remarkably consistent in finding that approximately 80% of patients are in NYHA Class I–II after implantation, and the improvement in symptoms has been documented to be sustained over time.5,10,49 However, some patients (<5%) remain severely symptomatic (NYHA Class IV) even 12 months after LVAD implantation.9,49

The 6MWD is widely used in LVAD recipients.9,13,16,24,31,48,49 FC measured using the 6MWT prior to implantation is low (mean 6MWD 221 m [range 39–356 m]; mean 6MWD weighted for population size 215 m), and significant improvements are observed soon after implantation (mean 6MWD 373 m [range 126–531 m]; mean 6MWD weighted for population size 357 m; Figure 2A).9,18,24,43,49 The improvement from baseline to the 6-month follow-up is, on average, +144 m (range 41–319 m; mean improvement weighted for population size 113 m), which is equivalent to an approximate 40% improvement.9,18,24,43,46,49

Improvement in the 6MWD can be difficult to interpret across different studies because some studies include mostly ambulatory patients and some include patients who would not be able to complete any exercise testing prior to implantation due to critical clinical condition (e.g. Interagency Registry of Mechanically Assisted Circulatory Support [INTERMACS] profile 1–2). In the large LVAD trials, increments in 6MWD were in the range 98–250 m from baseline to a maximum 2 years after implantation.5,9,49 When investigating FC expressed as pVO$_2$, the reported preimplantation values are low (mean 11 ml/kg/min [range 10.1–11.8 ml/kg/min]; mean pVO$_2$ weighted for population size 11 ml/kg/min), although improvement is observed because studies reporting pre- and postimplantation pVO$_2$ values show an improvement of approximately 20% after implantation.2,37,38,43

Postimplantation mean pVO$_2$ values (Figure 2B) vary from 8.8 to 21.4 ml/kg/min (mean pVO$_2$ weighted for population size 13.2 ml/kg/min), showing that pVO$_2$ generally remains reduced after implantation at, on average, 48% of the expected value for age and sex.9,13,16,24,31,32,35,37,38,42,44,47,51 A considerable proportion of the variance of postimplantation pVO$_2$ between published studies can be attributed to differences in the mean age of included patients.11

Preimplantation Predictors of Quality of Life and Functional Capacity

Preimplantation predictor	References
Quality of life	
Communication (patient–healthcare worker; patient–patient)	Modica et al. 201532
Patient resources	Modica et al. 201532
Diabetes	Kiernan et al. 201616
Pulmonary artery pressure	Kiernan et al. 201616
Right ventricular function	Kiernan et al. 201616
Younger age	Cowger et al. 201832
Higher preoperative haemoglobin	Cowger et al. 201832
Higher baseline quality of life score	Cowger et al. 201832
Ability to complete the 6MWT preoperatively	Cowger et al. 201832
Functional capacity	
Diabetes	Kiernan et al. 201616
HASin et al. 201224	
Right atrial pressure	Hasin et al. 201224
Chronic obstructive pulmonary disease	Kiernan et al. 201616
AF	Gustafsson et al. 202044
Age	Gustafsson et al. 202044
Schmidt et al. 201845	
Cowger et al. 201845	
NYHA Class IV	Gustafsson et al. 202044
INTERMACS profile 1–2	Gustafsson et al. 202044
Higher baseline functional capacity	Gustafsson et al. 202044
Cowger et al. 201845	

See text for explanation and Supplementary Material Table 2 for a full list of studies that have investigated predictors (before and/or after implantation). 6MWT = 6-minute walk test; INTERMACS = Interagency Registry of Mechanically Assisted Circulatory Support; NYHA = New York Heart Association.

Calculations

Mean values weighted for population size for pVO$_2$ and the 6-minute walk test (6MWT) were calculated as follows:

\[
\text{Weighted mean } p\text{VO}_2 = \frac{\sum (p\text{VO}_2 \times n_{p\text{VO}_2})}{\sum n_{p\text{VO}_2}}
\]

\[
\text{Weighted mean 6MWT} = \frac{\sum (6\text{MWD} \times n_{6\text{MWD}})}{\sum n_{6\text{MWD}}}
\]

Where \(n\) refers to the number of patients in each study, while \(N\) is the total number of all studied patients. 6MWD is the distance covered in the 6MWT.
Although the improvement from pre- to postimplantation FC, measured as both 6MWT and pVO₂, may appear modest, these changes are much larger than the effect of other device therapies in HF, such as cardiac resynchronisation therapy or the use of vasodilators.4,5,9 Furthermore, it should be re-emphasised that the sickest patients were excluded from studies presenting changes in FC from before to after implantation because these patients were not able to complete preimplantation measurements (e.g. because of the need for ventilator treatment or temporary mechanical circulatory support). Hence, the improvement in 6MWD and pVO₂ from before to after implantation is often underestimated in the literature.

Preimplantation Predictors of Postimplantation Functional Capacity
Several studies have elucidated preimplantation determinants of postimplantation QoL and/or FC (Table 1 and Supplementary Material Table 2).17,18,24,27,38,43,48,49 Advanced age is generally a predictor of inferior outcomes in cardiovascular medicine; this also holds true for patients implanted with an LVAD. In a Multicenter Study of MAGLEV Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) substudy including 265 patients from the US, younger age was one of the strongest predictors of the ‘living well on a left ventricular assist system’ endpoint (6MWD >300 m and Kansas City Cardiomyopathy [KCCQ] score >50).17 Confirming these findings, Martina et al. showed that HeartMate II (HMII) recipients <50 years of age performed significantly better than LVAD recipients >50 years of age.16 Several other studies have confirmed age as an independent preoperative determinant of postimplantation FC.17,46,68

Other strong preoperative predictors of FC are a lower INTERMACS profile, NYHA class, chronic obstructive pulmonary disease (COPD), diabetes and lower estimated glomerular filtration rate (eGFR).18,24 Higher haemoglobin, eGFR and INTERMACS profile and better NYHA class, chronic obstructive pulmonary disease (COPD), Other strong preoperative predictors of FC are a lower INTERMACS profile, NYHA class, chronic obstructive pulmonary disease (COPD), diabetes and lower estimated glomerular filtration rate (eGFR).18,24 Higher haemoglobin, eGFR and INTERMACS profile and better NYHA class, chronic obstructive pulmonary disease (COPD), diabetes and lower estimated glomerular filtration rate (eGFR).18,24

The importance of perioperative diabetes has been suggested in four studies, although the largest study did not find perioperative diabetes of importance for postimplantation FC.18,24,48,68 This may be due to differences in the definitions of FC used, as well as follow-up time, and more studies dissecting the interplay between diabetes and outcome after LVAD implantation are clearly needed. These studies provide important information that can be used in the clinical setting when aligning expectations with potential LVAD recipients and their families and carers. In general, most of the studies mentioned above investigated HMI recipients in a historical period where knowledge regarding patient selection was sparse. Further, studies including data on preoperative cardiopulmonary exercise testing (which is the gold standard for studying FC), are limited.27,38,43 A few studies evaluated preoperative...
predictors of postimplantation FC, with FC measured as walking ability (6MWT), and these have been discussed above.24,41,46,58,61 The studies described above are small, with considerable heterogeneity, and clearly more studies are needed to establish the importance of intrinsic cardiac contractility in the FC of LVAD recipients.

Chronotropic Incompetence, Arrhythmia and Pacing

Several studies have documented the negative effects of chronotropic incompetence on exercise capacity in LVAD recipients.12,21,27,38,65 Depending on the definition of chronotropic incompetence, it has been reported in approximately half of all examined LVAD recipients. Chronotropic incompetence may represent a somewhat clinically modifiable factor, because many LVAD recipients receive beta-blockers, digoxin or amiodarone and are equipped with pacing devices that could be programmed to improve chronotropic competence. In fact, in a recent study in 30 patients, turning on rate response pacing in LVAD recipients with pacing devices was shown to improve FC (6MWT and treadmill FC) most clearly in patients with chronotropic incompetence.48

Perioperative AF has also been associated with lower FC after LVAD implantation.49 In an analysis from the ELEVATE registry of 194 patients with an HM3, preimplantation AF was an independent predictor of poor performance (6MWD <300 m) 6 months after implantation.48,58

In patients with LVADs, LV preload is of dire importance, and patients with AF (with or without symptoms) lack the atrial kick that could impair RV function, which, in turn, affects the LV preload. Whether pharmacological therapy or AF ablation after LVAD implantation to restore sinus rhythm will improve exercise capacity has not been tested. Future studies are needed to further explore these findings to enable improvements in current technologies.

Pump Design, Placement and Settings

There is no evidence to suggest that one continuous-flow LVAD (e.g. axial versus centrifugal design) is associated with better postimplantation FC than other continuous-flow LVADs. Suboptimal cannula position will lead to reduced circulatory support and would likely impair FC, but this has not been studied in detail.67 Increasing pump speed during exercise has been investigated in several studies and, in most, has been associated with improved FC.46,47,50,70 Likely, a future ‘smart pump’ with the ability to increase pump speed in response to increased LV filling during exercise would be beneficial for the FC of LVAD recipients.

Comorbidities

Recently, Schmidt et al. showed that weight gain after implantation is linked to less improvement in FC (specifically, there was a negative correlation between weight gain and absolute pVO\textsubscript{2} improvement) and that pVO\textsubscript{2} plateaus after implantation with LVADs.45 Regarding weight, recent reports suggest that BMI does not affect patient survival.71-73 However, it could be speculated that weight gain (as seen in Schmidt et al.45) could affect specific AEs; in particular, large body size and associated comorbidities, such as diabetes, may leave the patient more prone to infection, thereby lowering FC, as discussed above.74

In studies investigating blood chemistry, haemoglobin, preoperative C-reactive protein and persistently low perioperative serum albumin concentrations were associated with lower FC after implantation.35,61,64 All these parameters are adjustable. Surprisingly, B-type natriuretic peptide (BNP) was not associated with FC measured as pVO\textsubscript{2}, although increasing BNP concentrations were associated with lower QoL.50 Iron deficiency is common in LVAD recipients, but its effect on survival,
Predictors of FC and QOL in LVADs

Regardless of age, physical training programs (e.g. cardiac rehabilitation) after LVAD implantation have been investigated in several studies, some of which have demonstrated a beneficial effect on FC.14,16,26,37,41 However, others have shown no effect of physical training on FC.13 All studies have shown that physical training is safe and generally well tolerated.14,15,20–23,35,38,62–49,51–42,60–83

Quality of Life

Overall, both large clinical studies and smaller studies included in this review have reported that QoL improves significantly after LVAD implantation.9,13–18,20,26,49,58

Different studies have assessed QoL using different QoL scores, including the 36-item Short Form Health Survey (SF-36),12,17,26 KCCQ,14,16,18,49 Minnesota Living with Heart Failure (MLWHF) questionnaire,14,15,17,18,20,45,49,58 and the 5-Level EQ-SD (EQ-SD-5L).13,58 There is no consensus as to which QoL score is superior in the LVAD population, and this complicates comparisons between studies. However, data are consistent in showing significant improvements in QoL both in the short and long term (i.e. after a minimum of 6 months follow-up), regardless of methods of quantification.9,13–18,20,26,49,58 There is only one exception: a study of 10 LVAD recipients in the early postimplantation stage.45

The mean improvement in KCCQ score was 27 points from approximately 6 weeks to 6 months after implantation.16,49 The greatest increase in KCCQ overall summary score of 178% was seen 24 months after implantation.49 No differences between centrifugal and axial flow pumps have been reported regarding improvements in QoL.49 In two studies that investigated QoL at either 8 weeks or 6 months after implantation, there was a mean change in SF-26 score of 9.8 points versus preimplantation.14,15 The same pattern was seen when investigating QoL using the MLWHF questionnaire and the EQ-SD-5L.9,17,18,20,45,49,58

As earlier studies showed that a five-point change in both MLWHF and KCCQ scores are a clinically meaningful change, the improvements described above are highly important.93–45

Some factors related to postimplantation QoL, including exercise rehabilitation in different forms, comorbidities and device characteristics, have been described (Table 1 and Supplementary Material Table 2).13,14,16–18,20 Of these, the most consistent were COPD, diabetes and FC,14,16,20 although conflicting data exist.13 The continued focus on alleviating AEs in LVAD recipients is highlighted by the documented correlation between QoL and AEs.49 Interestingly, one study highlighted the importance of the patient–physician relationship for QoL in LVAD, and it could be speculated that this may be particularly important in patients with AEs.17

Exercise capacity is closely linked to QoL. Better QoL is related to better muscular strength, treadmill time, anaerobic threshold and pVO2, all of which are factors describing aspects of FC.14,16,21 The fact that increasing FC is associated with better QoL in patients implanted with a continuous-flow LVAD, as in HF patients not supported by an LVAD, highlights the need for continued focus on optimising exercise tolerance.25 Indeed, an interplay between AEs, FC and QoL exists in LVAD recipients, and to improve overall QoL the other two components must be addressed (Figure 3).

Conclusion

Based on a literature review, it is clear that both FC and QoL are severely impaired in advanced HF patients prior to LVAD implantation, but significant improvements are observed after implantation, even though FC remains severely reduced after implantation. Important preoperative predictors of low FC are age, diabetes, COPD, INTERMACS profile, NYHA class, AF and baseline walking distance (e.g. the ability to perform an FC test at baseline). Importantly, poor FC after LVAD implantation is closely related to QoL and is associated with the risk of AEs. These factors should be considered when considering LVAD implantation, especially as destination therapy, and reversible modifiable factors should be aggressively managed both before and after LVAD implantation.
Grosman-Rimon L, McDonald MA, Pollock Bar-Ziv S, et al. Relationship between pump speed and by a rise in native cardiac output. Eur J Cardiol. 2014;39:220–7. doi.org/10.1097/EJC.0000000000000557.

Kerrigan DJ, Williams CT, Ehrman JK, et al. Muscular strength and cardiorespiratory fitness are associated with health status and survival in patients with recently implantable continuous flow (VAD) – Cardiopulm Rehabil Prev 2013;33:394–400. doi.org/10.1016/j.hfc.2014.06.014; PMID: 24547448.

Medoč J, Jersiefska S, Matysik P, et al. Quality of life and emotional distress early after left ventricular assist device implant: a mixed method study. Artif Organs 2015;39:220–7. doi.org/10.1111/aor.12936; PMID: 26010470.

Klemán MS, Sundareswaran KS, Pham DT, et al. Preoperative determinants of quality of life and functional capacity responses to exercise therapy in left ventricular assist device patients. Cardiopulm Rehabil Prev 2016;12:797–805. doi.org/10.1016/j.hfc.2016.01.006; PMID: 25717775.

Jung MS, Velasco CA, Caldarosa P, Fump speed modifications and sub-maximal exercise tolerance in left ventricular assist device recipients: a double-blind, randomized trial. J Heart Lung Transplant 2017;36:39–47. doi.org/10.1016/j.healun.2016.07.005; PMID: 27222486.

Jung MH, Goeter JF, Boesgaard S, Gustafsson F. Nagel KE, Slaughter MS, Miller LW, et al. Use of an assist device after left ventricular assist device implantation. J Card Fail 2020;247–52. doi.org/10.1056/NEJMoa1610426; PMID: 24988495.

Kavcic V, Apostolos A, Caldarari G, et al. Left ventricular assist device recipients: a double-blind, randomized trial. J Heart Lung Transplant 2017;36:39–47. doi.org/10.1016/j.healun.2016.07.005; PMID: 27222486.

Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual report of the INTERMACS project for the assessment of left and right ventricular volumes and function in patients with left ventricular assist devices. J Nucl Cardiol 2018;25:625–34. doi.org/10.1007/s12350-016-0670-5; PMID: 27950308.

Klein MS, Kelleher L, D’Amore J, et al. Exercise capacity and cardiorespiratory fitness are associated with health status and survival in patients with recently implantable continuous flow (VAD) – Cardiopulm Rehabil Prev 2013;33:394–400. doi.org/10.1016/j.hfc.2014.06.014; PMID: 24547448.

Medoč J, Jersiefska S, Matysik P, et al. Quality of life and emotional distress early after left ventricular assist device implant: a mixed method study. Artif Organs 2015;39:220–7. doi.org/10.1111/aor.12936; PMID: 26010470.

Klemán MS, Sundareswaran KS, Pham DT, et al. Preoperative determinants of quality of life and functional capacity responses to exercise therapy in left ventricular assist device patients. Cardiopulm Rehabil Prev 2016;12:797–805. doi.org/10.1016/j.hfc.2016.01.006; PMID: 25717775.

Jung MS, Velasco CA, Caldarosa P, Fump speed modifications and sub-maximal exercise tolerance in left ventricular assist device recipients: a double-blind, randomized trial. J Heart Lung Transplant 2017;36:39–47. doi.org/10.1016/j.healun.2016.07.005; PMID: 27222486.

Jung MH, Goeter JF, Boesgaard S, Gustafsson F. Nagel KE, Slaughter MS, Miller LW, et al. Use of an assist device after left ventricular assist device implantation. J Card Fail 2020;247–52. doi.org/10.1056/NEJMoa1610426; PMID: 24988495.
patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant 2015;34:522–9. https://doi.org/10.1016/j.healun.2014.11.004; PMID: 25632894.

70. Butler J, Howser R, Partner PM, Pierson RN. Body mass index and outcomes after left ventricular assist device placement. Am Thorac Surg 2005;79:66–73. https://doi.org/10.1016/j.athoracsur.2004.06.047; PMID: 15620917.

71. Go PH, Nemeh HA, Borgi J, et al. Effect of body mass index on outcomes in left ventricular assist device recipients. J Card Surg 2016;31:462–7. https://doi.org/10.1111/jocs.12702; PMID: 26856974.

72. Rashid MA, Qureshi BA, Ahmed N, Sherwani MA. Impact of body mass index on outcomes in left ventricular assist device recipients. Ann Thorac Surg 2005;79:66–73. https://doi.org/10.1016/j.athoracsur.2004.06.047; PMID: 15620917.

73. Go PH, Nemeh HW, Borgi J, et al. Effect of body mass index on outcomes in left ventricular assist device recipients. J Card Surg 2016;31:242–7. https://doi.org/10.1111/jocs.12702; PMID: 26856974.

74. Rashid MA, Qureshi BA, Ahmed N, Sherwani MA. Impact of body mass index on left ventricular mass. J Ayub Med Coll Abbottabad 2014;26:167–9. PMID: 25603669.

75. Clerkin KJ, Naka Y, Mancini DM, et al. The impact of obesity on patients bridged to transplantation with continuous-flow left ventricular assist devices. JACC Heart Fail 2016;4:761–8. https://doi.org/10.1016/j.jchf.2016.05.010; PMID: 27614942.

76. Amione-Guerra J, Cruz-Solbes S, Bhimaraj A, et al. Iron deficiency is the most common cause of anemia in CF-LVAD patients. Int J Artif Organs 2017;40:481–8. https://doi.org/10.1080/01445590.2017.1366596; PMID: 28623639.

77. Rashid MA, Qureshi BA, Ahmed N, Sherwani MA. Impact of body mass index on outcomes in left ventricular assist device recipients. Ann Thorac Surg 2005;79:66–73. https://doi.org/10.1016/j.athoracsur.2004.06.047; PMID: 15620917.

78. Rashid MA, Qureshi BA, Ahmed N, Sherwani MA. Impact of body mass index on outcomes in left ventricular assist device recipients. Ann Thorac Surg 2005;79:66–73. https://doi.org/10.1016/j.athoracsur.2004.06.047; PMID: 15620917.

79. Rashid MA, Qureshi BA, Ahmed N, Sherwani MA. Impact of body mass index on outcomes in left ventricular assist device recipients. Ann Thorac Surg 2005;79:66–73. https://doi.org/10.1016/j.athoracsur.2004.06.047; PMID: 15620917.