A Theoretical and Experimental Comparison of One Time Pad Cryptography using Key and Plaintext Insertion and Transposition (KPI T) and Key Coloumnar Transposition (KCT) Method

Pryo Utomo*,1, Nadia Widari Nasution1, Arisman1, Rahmat Widia Sembiring2

1School of Informatics Engineering, Universitas Sumatera Utara, Medan, 20155, Indonesia
2Department of Informatics Engineering, Universitas Sumatera Utara, Medan, 20155, Indonesia
Email: utomopryo@gmail.com, nadianwidari@gmail.com, arisman.pili@gmail.com, rahmatwsphd@gmail.com

ARTICLE INFO
Article history:
Received: 17 March, 2017
Accepted: 20 April, 2017
Online: 13 June, 2017
Keywords:
cryptography
Key insertion
Exclusive-OR

ABSTRACT
One Time Pad (OTP) is a cryptographic algorithm that is quite easy to be implemented. This algorithm works by converting plaintext and key into decimal then converting into binary number and calculating Exclusive-OR logic. In this paper, the authors try to make the comparison of OTP cryptography using KPI and KCT so that the ciphertext will be generated more difficult to be known. In the Key and Plaintext Insertion (KPI) Method, we modify the OTP algorithm by adding the key insertion in the plaintext that has been splitted. Meanwhile in the Key Coloumnar Transposition (KCT) Method, we modify the OTP algorithm by dividing the key into some parts in matrix of rows and coloumnns. Implementation of the algorithms using PHP programming language.

1. Introduction

In terms about security especially Information Technology (IT), security is very important to be applied. There are many methods that used for this security. But there is no security method that guaranteed reliability. All of them must have weakness. So, for decreasing every weakness we need to make experiment about security method. One of this method is enhancement of cryptography algorithm.

In cryptography are known some algorithms, one of them is One Time Pad (OTP) Algorithm. OTP includes flow ciphers. Discovered by Major J Maugborne and G Vernam in 1971. Each key is only used for a single message.

The encryption process with One Time Pad (OTP) Algorithm or One Time Pad Cryptography is essentially an Exclusive-OR algorithm that is consistent with a less complicated implementation [4].

In transposition cipher, plaintext is similar, but its order was changed. On the other words, the algorithm do transposition of the character set in the text. The other name for this method is permutation because of doing the transposition each character in the text is similar with make permutation the characters.

In this paper, modified the One Time Pad (OTP) algorithm by splitting each binary plaintext into 4 sections and then inserting a key between separate plaintexts.

In transposition process, there is a key in which is mostly used in order to make the cryptanalist be difficult to guess the ciphertext. Transposition would be solution before doing insertion process. Transposition method in this process using matrix [4x2].

After that, Exclusive-OR process will be done so that the ciphertext will be more difficult to be known.

2. Materials and Methods

The underlying mathematical basis of the process of encryption and decryption is the relation between two sets, plaintext and ciphertext. Encryption and decryption are functions of transformation between the sets.

In principle, cryptography has 4 main components:
1. Plaintext : Readable messages
2. Ciphertext : Random messages that can not be read
3. Key : The key that’s doing cryptographic
4. Technique Algorithm: Methods for encryption and decryption
In cryptography, the main process used is encryption and decryption. Encryption is formed based on an algorithm that will randomize an information into a form that cannot be read or cannot be seen. Decryption is a process with the same algorithm to return random information to its original form. The algorithm used should consist of carefully planned arrangement of procedures that must effectively produce an encrypted form that cannot be returned by someone, even if they have the same algorithm.

Encryption is the process used to encode plaintext by converting plaintext into ciphertext. While decryption is the reverse process, which is to change the ciphertext to plaintext [2].

Formula of the encrypt and decrypt process as follows:

Encrypt:

\[\text{plaintext} \oplus \text{key} = \text{ciphertext} \]

Decrypt:

\[\text{ciphertext} \oplus \text{key} = \text{plaintext} \]

Here the flowcharts of encrypt and decrypt process:

Figure 1. Flowchart of Encrypt Process

Figure 2. Flowchart of Decrypt Process

Table 1. Encryption Process

Step	Description	Value
a	Plaintext=K	01001011
b	\(a/4 \)	01 00 10 11
c	KEY=T	01010100
d	TRANSPOSE Key	00001110
e	MIX\(d \) to \(b \)	0100001110 0000001110 1000001110 1110001110
f	MERGER\(e \)	01000011100000011101000001110
g	\(d/4 \)	01000011 10000000 11101000 00111011
h	XOR KEY\(d \) with\(g \)	01001101 10001110 11100110 00110101
i	DECI\(h \)	77 142 230 53
j	ASCII\(i \)	M A µ 5

www.astesj.com
3. Results and Discussions

One Time Pad (OTP) in the encryption and decryption process will perform XOR logic on plaintext-key and ciphertext-key. The ciphertext that is generated by OTP has the exact character length of plaintext and key so it opens up opportunities for cryptanalysis to guess key and plaintext.

But in this case, the authors perform the XOR process after the insertion of key into individual plaintext characters. So the ciphertext will be generated more difficult to be guessed. For more details here is a description of how the KPI algorithm works:

3.1. Encryption Process

We must determine the plain text to be encrypted.

According both of the tables, ciphertext was obtained from plaintext “K” with key “T” is “Mجاب5” and plaintext from ciphertext “Mجاب5” with key “T” is “K”.

4. Implementation of The Algorithm

To find out the success of this algorithm, we will try to implement this algorithm at PHP Language. This application is a program that do encryption and decryption process from the text. On this application User will be requested for entering a plain text, algorithm will processing it and make a result of chiper text up to four times from plain text.

For the fruitfulness test of this algorithm, we will encryption a text as follows: “PLAINTEXT”

The Following is view of encryption process result using the key "KEY".

5. Conclusions

According the Implementation, we have concluded that the modification of One Time Pad (OTP). Algorithm using insertion key On the splitting plain that the authors develop in this paper can working properly as an alternative cryptographic algorithm, so this algorithm able to improve the capability One Time Pad (OTP) algorithm for today and future. Based using this algorithm we can see the Compare result from the encryption process with a text as follows: “K” and the key "T".

CHAR	OTP	OTP with KPI	OTP with KCT
Plaintext	K	K	K
Key	T	T	T
Ciphertext	▼	Mجاب5	Q"
References

[1] Chen, Z and Xu, J, One-Time-Pads Encryption in the Tile Assembly Model, IEEE Explorer and Conference Proceeding, 2008.
[2] Kurniawan, Y, Cryptography: Internet Security and Communication System, Informatika Bandung, 2004.
[3] Mezaal, Y. S, OTP Encryption Enhancement Based on Logical Operations, IEEE Explorer and Conference Proceeding, 2016.
[4] Saragih, F. R, Using Cryptography One Time Pad (Algorithm Vernam) in Information Security, 2008.
[5] Pryo Utomo, Enhancement of OTP Cryptography Using Key and Plaintext Insertion, KPI Journal, 2017.