ANOMALOUS COOLING OF THE MASSIVE WHITE DWARF IN U GEMINORUM FOLLOWING A NARROW DWARF NOVA OUTBURST

EDWARD M. SION, F. H. CHENG, PAULA SZKODY, WARREN SPARKS, BORIS GÄNSICKE, MIN HUANG, AND JANET MATTIE

ABSTRACT

We obtained Hubble Space Telescope Goddard High-Resolution Spectrograph medium-resolution (G160M grating), phase-resolved spectroscopic observations of the prototype dwarf nova U Geminorum during dwarf nova quiescence, 13 days and 61 days following the end of a narrow outburst. The spectral wavelength ranges were centered on three different line regions: N v (1238 Å, 1242 Å), Si iii (1300 Å), and He ii (1640 Å). All of the quiescent spectra at both epochs are dominated by absorption lines and show no emission features. The Si iii and He ii absorption-line velocities versus orbital phase trace the orbital motion of the white dwarf, but the N v absorption velocities appear to deviate from the white dwarf motion. We confirm our previously reported low white dwarf rotational velocity, \(V \sin i \approx 100 \text{ km s}^{-1} \). We obtain a white dwarf orbital velocity semiamplitude \(K_1 = 107 \text{ km s}^{-1} \). Using the \(\gamma \)-velocity of Wade, we obtain an Einstein redshift of 80.4 km s\(^{-1}\) and hence a carbon core white dwarf mass of \(\sim 1.1 M_\odot \). We report the first subsolar chemical abundances of C and Si for U Gem with C/H = 0.05 times solar, almost certainly a result of C depletion due to thermonuclear processing. This C depletion is discussed within the framework of a weak thermonuclear runaway, contamination of the secondary during the common envelope phase, and mixing of C-depleted white dwarf gas with C-depleted matter deposited during a dwarf nova event. Remarkably, the \(T_{\text{eff}} \) of the white dwarf 13 days after outburst is only 32,000 K, anomalously cooler than previous early postoutburst measurements. Extensive cooling during an extraordinarily long (210 days) quiescence followed by accretion onto an out-of-equilibrium cooled degenerate could explain the lower \(T_{\text{eff}} \).

Subject headings: novae, cataclysmic variables — stars: abundances — stars: individual (U Geminorum) — ultraviolet: stars — white dwarfs

1. INTRODUCTION

The dwarf nova U Geminorum undergoes both wide (~14 days) and narrow (~4–7 days) outbursts during which it is expected that differing amounts of mass and angular momentum accretion occur onto the white dwarf. Therefore, in a continuing effort to elucidate the tangential accretion physics, in particular the actual mechanism of accretional heating, e.g., shear mixing, compression, and irradiation, it is of interest to compare the white dwarf to outbursts of different lengths—for example, a wide outburst versus a narrow outburst. The differential heating effect of a normal outburst versus a superoutburst has already been demonstrated for the case of the white dwarf in VW Hydri (Sion et al. 1996; Gänscicke & Beuermann 1996). We obtained Goddard High-Resolution Spectrograph (GHRS) observations of U Gem during the quiescence following a narrow outburst, which allowed us to do just that. Moreover, we obtained these spectra at the orbital quadratures to maximize the velocity displacements of the lines, delineate different regions of line formation, and estimate the mass of the white dwarf from its gravitational redshift. In this paper we report the results of our experiment and interpret the results comparatively with the results and predictions of earlier investigations of U Gem.

2. HUBBLE SPACE TELESCOPE GHRS FAR-ULTRAVIOLET OBSERVATIONS

Upon notification of the onset of an outburst of U Gem by AAVSO observers, we obtained two sets of GHRS observations of U Gem during the following quiescence, the first set on 1995 October 10 (obs. 1) and the second set on 1995 November 27 (obs. 2). The temporal placement of the observations with respect to the narrow outburst is shown in Figure 1, where we present the AAVSO light-curve data for the outburst and the following quiescence. The first set of observations took place 13 days after outburst, while the second data set was obtained 61 days after outburst. Both sets of observations were carried out in the ACCUM mode with the D2 detector of GHRS and the G160M disperser. Three wavelength regions were covered by the observations: the N v region (1219–1255 Å), the Si iii region (1269–1304 Å), and the He ii region (1616–1648 Å) with a resolution of 0.25 Å. The wavelength scale has an accuracy of ~0.10 Å. Since the objective of our line formation study was to delineate the white dwarf photosphere in quiescence and obtain maximum velocity displacement and mass information for the white dwarf, the observations were obtained close to the quadrature points of the orbit.
A detailed log of the observations is given in Table 1, where we tabulate for each ion wavelength region the start time of the observation, the total exposure time in seconds, the start and end times in modified Julian Date (MJD), and the orbital phase at the start and end times of each exposure. For the phasing we adopted the orbital ephemeris of et al. where phase 0.0 corresponds to inferior conjunction of the secondary star, viz.,

$$HJD = 2437,638.82325 + 0.1769061911.$$

In this phase convention, the white dwarf would have maximum positive velocity at phase 0.75 and maximum negative velocity at phase 0.25. While the Si III and He II velocities during obs. 1 and obs. 2 are consistent with the expected motion of the white dwarf, the N V velocities are inconsistent with this motion. For example, N V absorption shows a peculiar shift with $V \approx 202 \text{ km s}^{-1}$ near zero phase! Therefore, the N V absorption features cannot be associated with the Einstein-redshifted rest frame of the white dwarf photosphere. The two sets of spectra for obs. 1 and obs. 2 are displayed in Figure 2.

In Table 2 we present measurements of the strongest absorption features in the three wavelength regions. For the N V doublet, He II, and the five individual members of the Si III multiplet, we have tabulated the average of the individual velocities, $\langle V \rangle$ and $\langle V^2 \rangle$; we also listed the average binary phase $\langle \Phi \rangle$.

3. SURFACE TEMPERATURES AND CHEMICAL ABUNDANCES DURING QUIESCENCE

It is clear that with only three GHRS settings covering different 35 Å wavelength regions and different orbital phase ranges, synthetic spectral fitting will be less accurate than if the entire far-UV spectrum were available. This disadvantage of the limited continuum is offset slightly by the

TABLE 1

HST GHRS Observations of U Gem

Ion	Start Time (s)	T_{exp} (s)	Start Time (MJD)	Φ	End Time (MJD)	Φ
N V	18:36:31	1767	50,000.77536378	0.40	50,000.80212738	0.55
Si III	20:09:49	1767	50,000.84015545	0.76	50,000.86692050	0.92
He II	21:46:05	1767	50,000.90700730	0.14	50,000.9377235	0.29
He II	23:22:35	408	50,000.97402119	0.52	50,000.9801858	0.56

TABLE 2

Line Measurements

Ion	j(rest)	Obs. 1	$\langle \Phi \rangle$	$\langle V \rangle$	Obs. 2	$\langle \Phi \rangle$	$\langle V^2 \rangle$
N V	1238.821	1238.98	0.48	+50	1239.62	0.96	+202
	1242.804	1243.05			1243.67		
Si III	1294.545	1295.56	0.84	+251	1294.87	0.35	+75
	1297.26	1297.93			1297.08		
	1298.946	1299.94			1299.23		
	1301.194	1302.23			1301.49		
	1303.322	1304.46			1303.65		
He II	1640.414	1640.78	0.22	+56	1641.52	0.73	+191
detailed line-profile information we have available. We have assumed that no temporal changes occurred within each set of Hubble Space Telescope (HST) observations, and for obs. 1 and obs. 2 we have fitted synthetic spectra to the three spectral regions simultaneously.

Our fitting attempt utilized both single-temperature white dwarf models and combined white dwarf plus accretion belt synthetic fluxes. The details of our fitting procedure are the same as in our previous analyses, and for the sake of brevity will not be repeated here (see Sion et al. 1996; Cheng et al. 1997a, 1997b). The best-fitting models at 13 days postoutburst are displayed in Figure 3, while the best-fitting models to the data at 61 days postoutburst are displayed in Figure 4.

Our best-fitting single-temperature white dwarf model yielded the values at 99% confidence level for obs. 1 and obs. 2 shown in Table 3.

The derived abundances are the first to indicate subsolar values in the accreted atmosphere of the U Gem white dwarf. The C and Si abundances are significantly lower than the essentially solar abundances derived in earlier HST and Hopkins Ultraviolet Telescope (HUT) analyses at lower spectral resolution (Cheng et al. 1997a; Long et al. 1994, 1996), a point we return to in § 7. Note also that the magnitude of the heating and cooling is also reduced compared with earlier analyses (see § 4).

Two temperature fits were also attempted and were subject to the earlier caveats regarding the limited spectral coverage. The best results were achieved with white dwarf models having essentially the same temperatures as in Table 1, in combination with a rapidly spinning belt with $V_{\text{belt}} = 3300$ km s$^{-1}$ and $T_{\text{belt}} = 45,000$–$50,000$ K. While these fits yielded slightly lower χ^2 values than the single white dwarf models, we found less agreement with the depths of the absorption-line features, especially the Si III photospheric lines which are fitted nearly perfectly by a slowly rotating single-temperature white dwarf model.

4. THE GRAVITATIONAL REDSHIFT MASS OF THE U GEM WHITE DWARF AND ITS IMPLICATIONS

In Table 2 we list the rest wavelengths, the observed wavelength measurements, the corresponding orbital phase at mid-exposure for each ion, and the corresponding velocities of N V, Si III, and He II for both obs. 1 and obs. 2. The shift $\Delta \lambda$ is defined as $\lambda_{\text{obs}} - \lambda_{\text{model}}$.

The observed shifts for Si III and He II in both obs. 1 and obs. 2 are consistent in phase with the expected motion of the white dwarf. We regard the Si III as completely photospheric in origin. However, given that He II may also be contributing from the same high-temperature region as N V (i.e., $T_{\text{eff}} > 80,000$ K), it is unlikely to be entirely photospheric, and is therefore disregarded in the gravitational redshift determination. Given that Si III is Einstein redshifted in the rest frame of the white dwarf, and that its multiplet consists of six individually resolved lines, we take an average of the individual transitions as the true global photospheric feature, and adopt it for a gravitational red-

TABLE 3

Parameter	Obs. 1 (13 Days POB)	Obs. 2 (61 Days POB)
$\log g$	8.0	8.0
T_{wd} (103 K)	32.2 \pm 0.8	30.0 \pm 1.0
V_{rot} (km s$^{-1}$)	100 \pm 30	120$^{+40}_{-40}$
Abundances (in solar units):		
C	0.05$^{+0.1}_{-0.2}$	0.05$^{+0.2}_{-0.2}$
Si	0.4$^{+0.1}_{-0.2}$	0.4$^{+0.1}_{-0.2}$
Others	1.0	1.0
shift determination. At midexposure phase 0.84 the Si \textsc{iii} velocity is 251 km s\(^{-1}\), while at midexposure phase 0.35 the Si \textsc{iii} velocity is 75 km s\(^{-1}\).

Using Si \textsc{iii} and assuming a sinusoidal relation to solve for \(K_1\), we find it is 107 km s\(^{-1}\). At present there are two well-measured but discordant values of the gamma velocity of U Gem: 84 km s\(^{-1}\) (Wade 1981) and 43 km s\(^{-1}\) (Friend et al. 1990). Adopting the systemic velocity of Friend et al. (1990), viz., 43 km s\(^{-1}\), we find that the gravitational redshift of the white dwarf is 118 km s\(^{-1}\). Adopting the systemic velocity of Wade (1981), viz., 84 km s\(^{-1}\), we find that the gravitational redshift of the white dwarf is 77 km s\(^{-1}\). We do not know which is closer to being correct, so we will take a mean of the two. If we take this mean gamma velocity, we find the resulting redshift is 99 km s\(^{-1}\). It is quite remarkable that all three of these redshift values, when compared with the mass-radius relation from the extensive grid of evolutionary models by M. Wood (1997, private communication) for a carbon core, indicate a very massive white dwarf. While we cannot rule out an O-Ne-Mg core for the U Gem degenerate, the redshift yielded by using the Friend et al. (1990) value can almost certainly be ruled out because it implies a mass exceeding the Chandrasekhar mass. Even the mean value (62 km s\(^{-1}\)) yields a mass \(\gtrsim 1.2\ M_\odot\).! The Wade (1981) value, however, yields an entirely reasonable mass of 1.1 \(M_\odot\), a result in agreement with the optical spectroscopic radial velocity study of Stover (1981); see also Zhang & Robinson 1987), which yielded a white dwarf mass of 1.18 \(M_\odot\). Furthermore, Webbink’s (1990) critical systematic redetermination of cataclysmic variable (CV) white dwarf masses yielded a value for the U Gem white dwarf of \(~1.1\ M_\odot\).

5. HEATING AND COOLING OF THE WHITE DWARF

It is surprising that the white dwarf \(T_{\text{eff}}\) values 13 days and 61 days after outburst are cooler \(T_{\text{eff}}\) measurements at comparable times after outburst than those obtained in previous studies. This is supported by a lower flux level of our GHRS spectra (by \(4 \times 10^{-14}\) ergs cm\(^{-2}\) s\(^{-1}\) \(\text{Å}^{-1}\)) compared with all other postoutburst temperature measurements at comparable times in quiescence (e.g., Sion et al. 1994; Long et al. 1994, 1996). Our observations and the Faint Object Spectrograph (FOS) observations of Long et al. (1994) were both obtained following a narrow outburst of U Gem. Since we expect that the amount of heating of the white dwarf and the subsequent rate of cooling should be similar following the same types of outburst, then it is clear that the white dwarf \(T_{\text{eff}}\) 13 days postoutburst (POB) (32,000 K) is considerably lower than the value (39,000 K) measured 13 days after the narrow outburst of U Gem reported by Long et al. (1994). We believe the \(T_{\text{eff}}\) difference is real, and is almost certainly related to the extraordinarily long quiescence experienced by U Gem in 1994/1995, which was ended after 210 days by a wide outburst in 1995 April, then a short 68 day quiescence followed by the narrow outburst preceding our observations (see Fig. 1). The normal quiescent interval of U Gem is 118 days. Long et al. (1996) reported a \(T_{\text{eff}}\) of 29,000 K 185 days into the long 210 day quiescence. Since that quiescence lasted another 25 days, it is even possible that some additional cooling of the white dwarf took place. Therefore, if the white dwarf had cooled down to 27,000–29,000 K, the compressional heating calculations of Sion (1995) at a rate \(M = 10^{-8} M_\odot\) yr\(^{-1}\) for 7 days would predict a peak heating of only \(~35,000\) K at the exact end of the outburst and a subsequent cooling down to \(~27,000\) K, which is not too far below the estimated \(T_{\text{eff}}\) at 185 days POB by Long et al. (1994). In this scenario, the long quiescence could have disrupted a normal time-averaged “equilibrium” between accretional heating of the upper envelope and cooling by radiation. The normal (average equilibrium would be re-established only after a sufficient number of dwarf nova cycles.

On the other hand, the long (210 day) quiescence could have led to a complete or nearly complete spin-down of differentially rotating white dwarf surface layers (i.e., an accretion belt; see Cheng et al. 1997a). Hence, subsequent accretion events during the following wide and narrow outbursts would have deposited mass and energy with a proportionally greater dissipation in the boundary layer, thus resulting in a greater proportion of the accretion energy being released at soft X-ray/extreme ultraviolet wavelengths. This may account for the lower surface temperature we observe postoutburst, and would directly manifest a dependence of the heating of the white dwarf on the accreting star’s short-term angular momentum history.

6. IMPLICATIONS OF THE WHITE DWARF

CHEMICAL ABUNDANCES

If the white dwarf accretes solar or nearly solar C, then C must rapidly gravitationally settle out of its atmosphere. This leads to two major conflicts. Why do the other metals not gravitationally settle out also, and why is the C abundance the same subsolar value at 13 and 61 days after the dwarf nova outburst? For example, ongoing accretion of a solar mix of gas during quiescence would quickly replenish diffusion-depleted C. There is another possible solution: an ancient thermonuclear runaway (TNR).

It is fully expected that U Gem and all other dwarf novae will undergo (and have undergone in the past) a TNR when the white dwarf has accumulated sufficient hydrogen-rich material (Starrfield, Sparks, & Shaviv 1988). During a TNR, C captures a proton to form N. If the C abundance is larger than solar, then a strong TNR results, leading to a nova outburst (Starrfield 1995). This C overabundance comes from the accreted material mixing with the white dwarf’s core material (Starrfield et al. 1972). Thus, most observations of novae end up with an overabundance of C, even though much of the C has been processed to N. If there is no mixing with the core, then in most cases the TNR will be weak. The notable exception is a rapidly accreting, very high mass white dwarf (\(~1.35\ M_\odot\)), which is associated with recurrent novae (Sparks et al. 1990). For a more slowly accreting white dwarf (as in the case of a dwarf nova, or a less massive white dwarf), the TNR will be weaker, little or no material will be ejected during the outburst, and a large common envelope will form. Although some of the common envelope may be ejected, a fraction will be deposited on the secondary, and a similar fraction will be consumed by the white dwarf’s rekindled. H-shell source. This shell source will leave a He-rich material layer enriched in N and depleted in C. This He layer should prevent core material et al. Thus, most observations of novae end up with an overabundance of C, even though much of the C has been processed to N. If there is no mixing with the core, then in most cases the TNR will be weak. The notable exception is a rapidly accreting, very high mass white dwarf (\(~1.35\ M_\odot\)), which is associated with recurrent novae (Sparks et al. 1990). For a more slowly accreting white dwarf (as in the case of a dwarf nova, or a less massive white dwarf), the TNR will be weaker, little or no material will be ejected during the outburst, and a large common envelope will form. Although some of the common envelope may be ejected, a fraction will be deposited on the secondary, and a similar fraction will be consumed by the white dwarf’s rekindled. H-shell source. This shell source will leave a He-rich material layer enriched in N and depleted in C. This He layer should prevent core material from being mixed up, thus leading to subsequent weak TNRs. Later dwarf novae will deposit C-depleted material due to the TNR and common envelope to be mixed with even stronger C-depleted white dwarf material due to the TNR and the remnant H-shell burning source. Thus C will be depleted, and the N will be enhanced in both the accreted
material and the white dwarf's surface material. We did not cover any photospheric N lines in our GHRS setting with which to obtain an N abundance, but our prediction is that N should be overabundant in U Gem.

A number of our HST observations of U Gem support, or are at least consistent with, this scenario. First, the white dwarf's very slow rotation velocity and very low C abundance are indicators that not much material has been accreted since the last TNR. Both the C abundance and the rotational velocity will increase with the amount of accreted material. Second, the large white dwarf mass means that the amount of accreted mass needed to trigger TNR will be small. The small accreted mass implies that the accretion timescale will also be short. A short accretion timescale works against two of the four proposed mixing mechanisms: accretion-driven shear mixing and diffusion (Livio 1993). The weaker TNR from the low initial C abundance hinders the other two mechanisms (convection-driven shear mixing and undershooting) from penetrating the remnant He layer. If this scenario is correct, it means that U Gem and probably other dwarf novae are massive WDs increasing in mass with the possibility of becoming a Type I supernova.

7. CONCLUDING REMARKS

Using GHRS G160M spectroscopic observations, we have uncovered surprises in further characterizing the physical characteristics of the white dwarf in U Gem and its response to heating by the dwarf nova outburst. The markedly lower elevation of white dwarf surface temperature that we have measured, compared to previous observations, is probably related to the very long quiescent interval preceding the two following outbursts. Since the Kelvin time of the heated upper envelope is of order 1

\[\text{yr} \]

for the age of U Gem as a CV.

One of us (E. M. S.) wishes to express his sincere gratitude to K. S. Cheng and the Robert Black College of the University of Hong Kong for their kind hospitality and support during the completion of this manuscript. This work was supported by NASA through grant GO5412.01-94A (to Villanova University) from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Partial support was also provided by NASA LTSA grant NAGW-3726 and NSF grant AST 90-16283, both to Villanova University, and by NASA LTSA grant NAGW-3158 to the University of Washington.

REFERENCES

Cheng, F. H., Sion, E. M., Horne, K., Hubeny, I., Huang, M., & Vrtilek, S. D., 1997a, AJ, 114, 1165
Cheng, F. H., Sion, E. M., Szkody, P., & Huang, M. 1997b, ApJ, 484, L149
Friend, M. T., Martin, J. S., Smith, R. C., & Jones, D. H. P. 1990, MNRAS, 246, 637
Gänsicke, B. T., & Beuermann, K. 1996, A&A, 309, L47
Livio, M. 1993, in SAASFE Conf., ed. M. Livio & S. Shore
Long, K., Raymond, J., Blair, W., Szkody, P., & Mattei, J. 1996, ApJ, 469, 841
Long, K., Sion, E. M., Huang, M., & Szkody, P. 1994, ApJ, 424, L49
Marsh, T. R., Horne, K., Schlegel, E. M., Honeycutt, R. K., & Kaitchuck, R. H. 1990, ApJ, 364, 637
Sion, E. M. 1991, AJ, 102, 295
Sion, E. M. 1995, ApJ, 438, 876
Sion, E. M., Cheng, F. H., Szkody, P., Huang, M., Sparks, W., & Hubeny, I. 1996, ApJ, 480, L17
Sion, E. M., Long, K. S., Szkody, P., & Huang, M. 1994, ApJ, 430, L53
Sparks, W. M., Kutter, S., Starrfield, S., & Truran, J. 1990, in The Physics of Classical Novae, ed. A. Cassatella & R. Viotti (Berlin: Springer), 36
Starrfield, S. G. 1995, in Physical Processes in Astrophysics, ed. I. Roxborough (Berlin: Springer), 99
Starrfield, S. G., Sparks, W. M., & Shaviv, G. 1988, ApJ, 326, L35
Starrfield, S. G., Truran, J., Sparks, W. M., & Kutter, S. 1972, ApJ, 176, L69
Stover, R. 1981, ApJ, 248, 684
Wade, R. 1981, ApJ, 246, 215
Webbink, R. 1990, in Accretion-powered Compact Binaries, ed. C. Mauche (Cambridge: Cambridge Univ. Press), 177
Zhang, E.-H., & Robinson, E. L. 1987, ApJ, 321, 813