A class of global large, smooth solutions for the magnetohydrodynamics with Hall and ion-slip effects

Huali Zhang

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, China

Correspondence
Huali Zhang, School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China. Email: 13110180066@fudan.edu.cn

Communicated by: R. Rodriguez

Funding information
National Natural Science Foundation of China, Grant/Award Number: 12101079; Education Department of Hunan Province, Grant/Award Number: 21B0346; the Natural Science Foundation of Hunan Province, Grant/Award Number: 2021JJ40561

1 INTRODUCTION

In this paper, we consider the following incompressible magnetohydrodynamics (MHD) with Hall and ion-slip effects:

\[
\begin{align*}
 u_t + \nu \Lambda^a u + u \cdot \nabla u + \nabla p - b \cdot \nabla b &= 0, \\
 b_t + \mu \Lambda^\beta b + u \cdot \nabla b - b \cdot \nabla u + \sigma \nabla \times ((\nabla \times b) \times b) - \kappa \nabla \times ((\nabla \times b) \times b) &= 0, \\
 \nabla \cdot u &= 0, \quad \nabla \cdot b = 0, \\
 u|_{t=0} = u_0, \quad b|_{t=0} = b_0,
\end{align*}
\]

(1.1)

on the domain \((t,x) \in \mathbb{R}^+ \times \mathbb{R}^3\), where \(\Lambda = \sqrt{-\Delta}, \beta = 2, \alpha \in [0,2]\). Here, \(u = (u_1, u_2, u_3)^T, b = (b_1, b_2, b_3)^T \in \mathbb{R}^3\) denote the fluid velocity and magnetic fields respectively. The scalars \(p, \nu, \) and \(\mu\) are the pressure, viscosity, magnetic diffusivity, respectively (\(\nu \) and \(\mu\) are positive constants). \(\kappa\) and \(\sigma\) are constants and \(\kappa \geq 0\). The term \(\nabla \times ((\nabla \times b) \times b)\) is for the Hall effect, and \(\nabla \times ((\nabla \times b) \times b)\) is for the ion-slip effect. The functions \(u_0\) and \(b_0\) are initial data, and they satisfy

\[
\nabla \cdot u_0 = \nabla \cdot b_0 = 0.
\]

(1.2)

Equation (1.1) is very important to describe some physical phenomena, e.g., in the magnetic reconnection in space plasmas, star formation, neutron stars, and dynamo. In the case \(\sigma = \kappa = 0\), Equation (1.1) reduces to the standard MHD equations; in the case \(\kappa = 0\), Equation (1.1) reduces to Hall-MHD system. They have been extensively researched by a lot of excellent works.1–18
For the MHD system with Hall and ion-slip effects, there are some interesting results related to the local well-posedness theory; see previous studies. For global solutions, Fan et al. established global existence and time decay for small solutions. Very recently, Zhao and Zhu gave a proof of global existence for small solutions under weaker smallness conditions. However, none of results are known for MHD system with the Hall and ion-slip effects for general initial data without smallness conditions. It is quite rare to prove the existence of large, smooth, global solutions for quasilinear system. Under a class of large initial data, we found some results for incompressible Navier–Stokes equations, the incompressible MHD equations, and the incompressible Hall-MHD equations; see previous studies. Those motivate us to study the global well-posedness of the Cauchy problem of Equation (1.1) with large initial data. But the Hall and ion-slip term heightens the level of nonlinearity of the standard MHD system from a second-order semilinear to a second-order quasilinear level, significantly making its qualitative analysis more difficult. To the author's knowledge, it is quite rare to prove the existence of large, smooth, global solutions for quasilinear system.

The aim of this paper is to prove the existence of a unique, global smooth solution of MHD system with the Hall and ion-slip effects in $H^3(R^3)$. Our result completely drops the smallness condition on the initial data.

Before we state our main results, let us first give some notations. Let $\chi(x) \in C^\infty_0(R^3)$ be a cut off function satisfying

\begin{align}
\chi(x) &\equiv 1, \text{ for } |x| \leq 1; \chi(x) \equiv 0, \text{ for } |x| \geq 2, \\
|\nabla^k \chi(x)| &\leq 2, 0 \leq k \leq 5.
\end{align}

Denote

\begin{align}
\chi_M(x) := \chi \left(\frac{x}{M_0} \right).
\end{align}

Here, M_0 is a positive constant. Let v_0 be that constructed by Lei et al., and it has the following properties

\begin{align}
\nabla \cdot v_0 = 0, \quad \nabla \times v_0 = \sqrt{-\Delta} v_0,
\end{align}

\begin{align}
\text{supp} \hat{v}_0 &\subseteq \{ |\xi| 1 - \delta \leq |\xi| \leq 1 + \delta \}, \quad 0 < \delta \leq \frac{1}{2}, \\
\| \hat{v}_0 \|_{L^1} &\leq M_1, \quad |\nabla^k \hat{v}_0| \leq \frac{M_2}{1 + |x|}, \quad 0 \leq k \leq 5,
\end{align}

where M_1 and M_2 are positive constants, \hat{v}_0 is the Fourier transform of v_0, and the operator $\sqrt{-\Delta}$ is defined through the Fourier transform

\begin{align}
\sqrt{-\Delta} f(\xi) = |\xi| \hat{f}(\xi).
\end{align}

Our main result is as follows.

Theorem 1.1. Consider the Cauchy problem (1.1)–(1.2). Suppose that

\begin{align}
u_0 &= u_{01} + \chi_M u_{02}, \\
b_0 &= b_{01} + \chi_M b_{02}.
\end{align}

with

\begin{align}
\nabla \cdot u_{02} = \nabla \cdot b_{02} = 0, \\
u_{02} &= \alpha_1 v_0, \quad b_{02} = \alpha_2 v_0,
\end{align}
where χ_{M_0} and v_0 are stated as above. a_1, a_2 are two real constants. Then there exist constants $\delta^{-\frac{1}{2}} \geq M_0 \gg 1$ depending on $M_1, M_2, a_1, a_2, \mu, v, \sigma$, and κ such that the problem (1.1)–(1.2) has a unique, global smooth solution provided that

$$\|u_0\|_{H^3} + \|b_0\|_{H^3} \leq M_0^{-\frac{1}{2}}.$$ \hspace{1cm} (1.12)

Remark 1.1. For

$$\|u_0\|_{L^\infty} + \|b_0\|_{L^\infty} \leq M_1,$$

$$\|u_0\|_{H^3} + \|b_0\|_{H^3} \leq \left(M_0^{-\frac{1}{2}} + (|a_1| + |a_2|) \sum_{k \geq 0} M_2 \right),$$

and the constant M_1, M_2 can be arbitrary large, thus our initial data can be arbitrary large. Comparing with Fan et al.22,23 and Zhao et al.22,23 our result can be seen as a nontrivial improvement of Fan et al.’s and Zhao et al.’s work, for we completely drop the smallness condition on the initial data.

Remark 1.2. The parameter α, β indicates the strength of dissipation for velocity and magnetic field, respectively. If the parameter α, β is larger, then the corresponding dissipation is stronger. When $\sigma = \kappa = 0$, the conclusion in Theorem 1.1 still holds for all $\alpha, \beta \in [0, 2]$. If $\sigma \neq 0$ or $\kappa \neq 0$, considering the quasilinear terms for magnetic field on (1.1), then the strong dissipative term $\mu \Delta b(\beta = 2)$ may be necessary to compensate for the loss of regularity in exploring large solutions.

Remark 1.3. In the limiting case $\delta = 0$, $\nabla \times u_{02} = u_{02}$, $\nabla \times b_{02} = b_{02}$, and the flow, magnetic field are called Beltrami flow and force-free fields, respectively. Let us also mention that the magnetic energy achieves the minimum value for force-free fields; one can refer Taylor37 for details.

Remark 1.4. We throughout use a notation C. It may be different from line to line, but it is a universal positive constant in this paper.

The proof of Theorem 1.1 is based on a perturbation argument along with a standard cut-off technique, and the perturbation is as large as the initial data. Compared with Hall-MHD equations, a part of the nonlinearities may not be small for Equation (1.1) (see 3.3). Fortunately, by combining the nonlinear structure of the term and commutator estimates, these terms can be estimated carefully.

This paper is organized as follows: In Section 2, we introduce commutator estimates and give some estimate of quadratic and cubic terms. Section 3 is devoted to prove the global existence and uniqueness of large smooth solutions for Equation (1.1).

2 | PRELIMINARIES

Lemma 2.1 (3). Let $s > 0$. Let $p, p_2, p_3 \in (1, \infty)$ and $p_2, p_4 \in (1, \infty)$ satisfy

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4}.$$

Then there exist two constants C_1, C_2,

$$\|\Lambda^s (fg)\|_{L^p} \leq C_1 \left(\|\Lambda^s f\|_{L^{p_1}} \|g\|_{L^{p_2}} + \|\Lambda^s g\|_{L^{p_3}} \|f\|_{L^{p_4}} \right),$$

$$\|[\Lambda^s, f]g\|_{L^p} \leq C_2 \left(\|\Lambda^s f\|_{L^{p_1}} \|g\|_{L^{p_2}} + \|\Lambda^s g\|_{L^{p_3}} \|\nabla f\|_{L^{p_4}} \right).$$

Let f and g satisfy

$$\begin{cases}
f_t + \nu \Lambda^s f = 0, \\
t = 0 : f = u_{02}.
\end{cases}$$

(2.1)
and
\[
\begin{aligned}
g_t - \mu \Delta g &= 0, \\
t = 0 : g &= b_{02}.
\end{aligned}
\] (2.2)

Therefore, we have
\[
f = e^{-\nu t} u_{02}, \quad g = e^{\mu t} b_{02}.
\]

Lemma 2.2. Let \(f, g\) be defined in (2.1) and (2.2). It holds
\[
\nabla \cdot f = 0, \quad \nabla \times f = \sqrt{-\Delta} f, \\
\nabla \cdot g = 0, \quad \nabla \times g = \sqrt{-\Delta} g.
\]

|\[\nabla^k f| \leq \frac{|\alpha_1|M_2}{1 + |x|} e^{-\frac{|x|}{2}}, \quad |\nabla^k g| \leq \frac{|\alpha_2|M_2}{1 + |x|} e^{-\frac{|x|}{2}}, \quad 0 \leq |k| \leq 5.\]

Proof. By
\[
\nabla \cdot v_0 = 0, \quad \nabla \times v_0 = \sqrt{-\Delta} v_0, \\
f = e^{-\nu t} u_{02}, \quad g = e^{\mu t} b_{02},
\]
we can deduce that
\[
\nabla \cdot f = 0, \quad \nabla \times f = \sqrt{-\Delta} f, \\
\nabla \cdot g = 0, \quad \nabla \times g = \sqrt{-\Delta} g.
\]

We choose a \(C^\infty(\mathbb{R}^3)\) cut-off function \(\gamma(\xi)\) such that \(a \equiv 1\) on the support of \(v_0\), and \(\gamma(\xi) \equiv 0\) if \(|\xi| \geq 1 + 2\delta\) or \(|\xi| \leq 1 - 2\delta\). Then we have
\[
f(t, x) = a_1 e^{-\frac{|x|}{2}} F^{-1} \left(e^{-\nu |\xi|} \pi^{-\frac{1}{2}} \gamma(\xi) \right) * v_0, \\
g(t, x) = a_2 e^{-\frac{|x|}{2}} F^{-1} \left(e^{-\mu |\xi|} \pi^{-\frac{1}{2}} \gamma(\xi) \right) * v_0.
\]

In a result, we get
\[
|\nabla^k f| \leq \frac{|\alpha_1|M_2}{1 + |x|} e^{-\frac{|x|}{2}}, \quad |\nabla^k g| \leq \frac{|\alpha_2|M_2}{1 + |x|} e^{-\frac{|x|}{2}}, \quad 0 \leq |k| \leq 5. \quad \square
\]

Lemma 2.3. Set \(\tilde{f} := \chi_{M_0} f, \tilde{g} := \chi_{M_0} g\). Let \(f, g, \chi_{M_0}\) be defined in (2.1), (2.2), and (1.4) respectively. Then we have
\[
\|\tilde{f}\|_{W^{\infty, \infty}} + \|\tilde{g}\|_{W^{\infty, \infty}} \leq C \left(|\alpha_1|M_1 e^{-\frac{|x|}{2}} + |\alpha_2|M_1 e^{-\frac{|x|}{2}} \right),
\] (2.3)
\[
\|\nabla \times (\nabla \times f)\|_{H^2} + \|\nabla \times (\nabla \times g)\|_{H^2} \leq C \left(a_1^2 e^{-\frac{|x|}{2}} + a_2^2 e^{-\frac{|x|}{2}} \right) \left(\delta M_0^3 M_1^3 + M_0^{-1} M_2^3 \right),
\] (2.4)
\[
\|((\nabla \times \tilde{g}) \times \tilde{g})\|_{H^2} \leq C \left(\delta M_0^3 M_1^3 + M_0^{-1} M_2^3 \right) |\alpha_2|^3 e^{-\frac{|x|}{2}},
\] (2.5)
\[
\int_0^\infty \|\tilde{f} \times \tilde{g}\|_{H^1} dt \leq C M_0^\frac{3}{2} M_1^2 (1 + a) \delta.
\] (2.6)

Proof. First, we have \(|\nabla^k \chi_{M_0}| \leq C M_0^{-k}, k \leq 5\). Then
\[
\|\tilde{f}\|_{W^{\infty, \infty}} = \|\chi_{M_0} f\|_{W^{\infty, \infty}} \leq \|\chi_{M_0}\|_{W^{\infty, \infty}} \|f\|_{W^{\infty, \infty}} \leq C \|f\|_{W^{\infty, \infty}}.
\] (2.7)
Using $\hat{f} = e^{-v|\xi|}\hat{u}_{02}$ and $\text{supp}\hat{u}_{02} \subseteq \{\xi | 1 - \delta \leq |\xi| \leq 1 + \delta\}$, $0 < \delta \leq \frac{1}{2}$, we get

$$\|f\|_{W^{2,\infty}} \leq \|(1 + |\xi|)^3 \hat{f}\|_{L^2} \leq C\|e^{-v|\xi|}\hat{u}_{02}\|_{L^2} \leq C|a_1|M_1e^{-\frac{v}{2}}.$$

Similarly, we have

$$\|g\|_{W^{2,\infty}} \leq C|a_2|M_1e^{-\frac{v}{2}}. \quad (2.8)$$

Adding (2.8) to (2.7), we obtain

$$\|\hat{f}\|_{W^{3,\infty}} + \|\hat{g}\|_{W^{3,\infty}} \leq C\left(|a_1|M_1e^{-\frac{v}{2}} + |a_2|M_1e^{-\frac{v}{2}}\right).$$

Secondly, we notice the fact

$$\nabla \times (\chi_{M_\delta}f) = \nabla \chi_{M_\delta} \times f + \chi_{M_\delta} \nabla \times f,$$

$$\nabla \times (\chi_{M_\delta}g) = \nabla \chi_{M_\delta} \times g + \chi_{M_\delta} \nabla \times g.$$

Thus, we get

$$\|\hat{f} \times (\nabla \times \hat{f})\|_{H^1} + \|\hat{g} \times (\nabla \times \hat{g})\|_{H^1} \leq C\|\chi_{M_\delta}f \times (\nabla \times (\chi_{M_\delta}f))\|_{H^1} + \|\chi_{M_\delta}g \times (\nabla \times (\chi_{M_\delta}g))\|_{H^1} \leq C\|\chi_{M_\delta}f\|_{H^3} \left(\|f\|_{H^2} + \|\nabla f\|_{H^1}\right) + C\|\nabla (\chi_{M_\delta}^2)\|_{W^{3,\infty}} \left(\|f\|_{H^1}^2 + \|g\|_{H^3}^2\right)$$

and

$$\|(\nabla \times \hat{g}) \times \hat{g}\|_{H^1} \leq C\left(\|\nabla \chi_{M_\delta}^3\|_{H^1} \|g\|_{W^{3,\infty}} + \|\nabla (\chi_{M_\delta}^3)\|_{W^{3,\infty}}\right). \quad (2.9)$$

We calculate that

$$\|\chi_{M_\delta}f\|_{H^3} + \|\chi_{M_\delta}^3\|_{H^1} \leq C\sum_{l=0}^{3} M_{0}^{-l} M_{0}^{3} \leq CM_{0}^{3} \quad (2.10)$$

$$\|\nabla (\chi_{M_\delta}^3)\|_{W^{3,\infty}} \leq C\sum_{l=0}^{3} M_{0}^{-l} \leq CM_{0}^{-1}.$$

For $f \times f = 0$, $g \times g = 0$, then we have

$$\|f \times (\nabla \times f)\|_{W^{3,\infty}} + \|g \times (\nabla \times g)\|_{W^{3,\infty}} \leq C\sum_{l=0}^{3} M_{0}^{-l} M_{0}^{3} \leq CM_{0}^{3} \quad (2.11)$$

and

$$\|(\nabla \times g) \times g\|_{W^{3,\infty}} \leq C\delta \|g\|_{W^{3,\infty}} \leq C\delta M_{1} |a_2|^3 e^{-\frac{v}{2}}. \quad (2.12)$$
Then we complete the proof of Lemma 2.3.

\[|||f|||_{H^s}^{2} + |||g|||_{H^s}^{2} \leq C(|||f|||_{L^2}^{2} + |||g|||_{L^2}^{2}) \leq C \left(a_1^2 e^{-\frac{m}{3}} M_2^2 + a_2^2 e^{-\frac{n}{3}} M_2^2 \right), \]

(2.13)

and

\[|||g|||_{H^s}^{3} \leq C|||g|||_{L^2}^{3} \leq C|||g|||_{L^2}^{3} \leq C[a_2]^3 M_2^3 e^{-\frac{n}{3}}. \]

(2.14)

Combining the inequalities (2.10), (2.11), and (2.13), we get

\[\| \hat{f} \times (V \times \hat{f}) \|_{H^s} + \| \hat{g} \times (V \times \hat{g}) \|_{H^s} \leq C \left(a_1^2 e^{-\frac{m}{3}} + a_2^2 e^{-\frac{n}{3}} \right) \left(\delta M_0^3 M_1^3 + M_0^{-1} M_2^3 \right). \]

Combining inequalities (2.9), (2.12), and (2.14), we deduce that

\[\| (V \times \hat{g}) \times \hat{g} \|_{H^s} \leq C \left(\delta M_0^3 M_1^3 + M_0^{-1} M_2^3 \right) |a_2|^3 e^{-\frac{n}{3}}. \]

In what follows, we will estimate \(\int_0^t \| \hat{f} \times \hat{g} \|_{H^s}(t) dt \). On one hand,

\[\| \hat{f} \times \hat{g} \|_{H^s} \leq \| \chi_{M_0} f \times (\chi_{M_0} g) \|_{H^s} \leq \| \chi_{M_0} f \|_{H^s} \| f \times g \|_{W^{3,\infty}}. \]

(2.15)

On the other hand, \(\supp \hat{f} \times g \subseteq \{ |\xi| \leq 2 + 2\delta \} \), \(0 < \delta \leq \frac{1}{2} \). Then, we have

\[\| \hat{f} \times \hat{g} \|_{H^s} \leq CM_0^3 \| \hat{f} \times \hat{g} \|_{L^2}. \]

(2.16)

Calculate

\[\hat{f} \times \hat{g} = a_1 a_2 \int_{\mathbb{R}^3} e^{-\mu|\xi-\eta|^2} \hat{v}_0(\xi-\eta) \times e^{-\mu|\eta|^2} \hat{v}_0(\eta) d\eta \]

(2.17)

and

\[|e^{-\mu|\xi-\eta|^2} - e^{-\mu|\eta|^2}| \leq C e^{-\mu|\eta|^2} \frac{|\xi - \eta|^2}{|\xi - \eta|^a} + C e^{-\mu|\eta|^2} \frac{|\xi - \eta|^a}{|\xi - \eta|^2} \]

(2.18)

In the support of \(\hat{v}_0(\xi-\eta) \times \hat{v}_0(\eta) \), we have

\[\frac{|\xi - \eta|^2}{|\xi - \eta|^a} \leq 3^{1-a} \delta, \quad \frac{|\xi - \eta|^a}{|\xi - \eta|^2} \leq 8a \delta. \]

(2.19)

Therefore, we conclude that

\[\int_0^\infty \| \hat{f} \times \hat{g} \|_{H^s}(t) dt \leq CM_0^3 M_1^3 (1 + \alpha) \delta \]

(2.20)

Then we complete the proof of Lemma 2.3.
3 | THE PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1 using a perturbation argument along with a standard cut-off technique.

Proof of Theorem 1.1. Let \(\tilde{f} = \chi_{M_0} \tilde{f}, \tilde{g} = \chi_{M_0} \tilde{g} \), and \(u = U + \tilde{f}, b = B + \tilde{g} \). Then, \(U, B \) satisfy

\[
U_t + \nu \Lambda^n U + \nabla \left(p + \frac{1}{2} |\tilde{f}|^2 - \frac{1}{2} |\tilde{g}|^2 \right) = -U \cdot \nabla U - \tilde{f} \cdot \nabla U - U \cdot \nabla \tilde{f} + B \cdot \nabla B + \tilde{g} \cdot \nabla B + B \cdot \nabla \tilde{g} + F, \tag{3.1}
\]

\[
B_t - \mu \Delta B - \nabla \times ((\nabla \times B) \times B) = -U \cdot \nabla B - \tilde{f} \cdot \nabla B - U \cdot \nabla \tilde{g} + B \cdot \nabla U + \tilde{g} \cdot \nabla U + B \cdot \nabla \tilde{f} - \sigma \nabla \times ((\nabla \times B) \times B) - \sigma \nabla \times ((\nabla \times \tilde{g}) \times \tilde{g}) + G \tag{3.2}
\]

where

\[
F := \tilde{f} \times (\nabla \times \tilde{f}) - \tilde{g} \times (\nabla \times \tilde{g}) - \nu \Delta \chi_{M_0} f + 2\nu \nabla \cdot (\chi_{M_0} f),
\]

\[
G := \nabla \times (\tilde{f} \times \tilde{g}) - \mu \Delta \chi_{M_0} g + 2\mu \nabla \cdot (\chi_{M_0} g) + \frac{1}{2} \tilde{f} \cdot \nabla \chi_{M_0} \tilde{g} - \frac{1}{2} \tilde{g} \cdot \nabla \chi_{M_0} \tilde{f} - \sigma \nabla \times ((\nabla \times \tilde{g}) \times \tilde{g}) - \kappa \nabla \times ((\nabla \times \tilde{g}) \times B) + \kappa \tilde{g} \times ((\nabla \times \tilde{g}) \times B). \tag{3.3}
\]

In what follows, we will derive some energy estimates of \(U \) and \(B \).

Step 1: Energy inequalities of \(\tilde{B} \)

Taking the derivatives \(\Lambda^k, 0 \leq k \leq 3 \) on Equation (3.2) and \(L^2 \) inner product with \(\Lambda^k B \), we get

\[
\frac{1}{2} \frac{d}{dt} \|B\|_{H^1}^2 + \|\nabla B\|_{H^1}^2 = I_1 + I_2 + I_3 + I_4 + I_5 + I_6
\]

\[
+ J_1 + J_2 + J_3 + \int_{\mathbb{R}^3} G \cdot B dx
\]

\[
+ K_0 + K_1 + K_2 + K_3 + K_4 + K_5 + K_6,
\]

where

\[
I_1 = -\sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (U \cdot \nabla B) \cdot \Lambda^k B dx,
I_2 = -\sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\tilde{f} \cdot \nabla B) \cdot \Lambda^k B dx,
I_3 = -\sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (U \cdot \nabla \tilde{g}) \cdot \Lambda^k B dx,
I_4 = \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (B \cdot \nabla U) \cdot \Lambda^k B dx,
I_5 = \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\tilde{g} \cdot \nabla U) \cdot \Lambda^k B dx,
I_6 = \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (B \cdot \nabla \tilde{f}) \cdot \Lambda^k B dx,
\]

\[
J_1 = -\sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k ((\nabla \times B) \times B) \cdot (\nabla \times \Lambda^k B) dx,
J_2 = -\sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k ((\nabla \times B) \times \tilde{g}) \cdot (\nabla \times \Lambda^k B) dx,
J_3 = -\sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k ((\nabla \times \tilde{g}) \times B) \cdot (\nabla \times \Lambda^k B) dx,
\]
\[K_0 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times B) \times B) \cdot (\nabla \times \Lambda^k B) dx, \]

\[K_1 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times B) \times \tilde{g}) \cdot (\nabla \times \Lambda^k B) dx, \]

\[K_2 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times B) \times \tilde{g}) \times (\nabla \times \Lambda^k B) dx, \]

\[K_3 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times B) \times \tilde{g}) \cdot (\nabla \times \Lambda^k B) dx, \]

\[K_4 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times \tilde{g}) \times B) \cdot (\nabla \times \Lambda^k B) dx, \]

\[K_5 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times \tilde{g}) \times B) \cdot (\nabla \times \Lambda^k B) dx, \]

\[K_6 = \kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k((\nabla \times \tilde{g}) \times B) \cdot (\nabla \times \Lambda^k B) dx. \]

Firstly, we estimate \(I_1, I_2 \) in the following:

\[
|I_1 + I_2| \leq \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (\Lambda^k(U \cdot \nabla B) - (U \cdot \nabla \Lambda^k B) \cdot \Lambda^k B) dx + \int_{\mathbb{R}^3} (\Lambda^k(\tilde{f} \cdot \nabla B - \tilde{f} \cdot \nabla \Lambda^k B)) \cdot \Lambda^k B dx \right) \\
+ \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (U \cdot \nabla \Lambda^k B) \cdot \Lambda^k B dx \right) \\
\leq \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (\Lambda^k(U \cdot \nabla B) - (U \cdot \nabla \Lambda^k B) \cdot \Lambda^k B dx) + \int_{\mathbb{R}^3} (\Lambda^k(\tilde{f} \cdot \nabla B - \tilde{f} \cdot \nabla \Lambda^k B)) \cdot \Lambda^k B dx \right) \\
\leq C \left(\| \nabla U \|_{L^\infty} \| \nabla B \|_{H^3} + \| \nabla B \|_{L^4} \| U \|_{W^{3,2}} \right) \| B \|_{H^3} \\
+ C \left(\| \nabla B \|_{H^3} \| \nabla \tilde{f} \|_{L^\infty} + \| \nabla B \|_{L^4} \| \tilde{f} \|_{W^{3,1}} \right) \| B \|_{H^3}. \]

By Sobolev's inequality, we deduce that

\[
|I_1 + I_2| \leq C \left(\| \Lambda^3 \check{U} \|_{H^3} \| \nabla B \|_{H^3} \| B \|_{H^3} + \| B \|_{H^3}^2 (\| \tilde{f} \|_{W^{2,\infty}} + \| \tilde{f} \|_{W^{3,1}}) \right). \tag{3.5} \]

For \(I_3 \), it is easy for us to get

\[
|I_3| \leq C \| U \|_{H^3} \| B \|_{H^3} \| \tilde{g} \|_{W^{2,\infty}}. \tag{3.6} \]

For \(I_5 \) and \(I_4 \), we derive that

\[
|I_4 + I_5| \leq C \left(\| \nabla U \|_{H^3} \| \nabla B \|_{L^\infty} + \| \nabla U \|_{L^2} \| B \|_{W^{3,2}} \right) \| B \|_{H^3} \\
+ C \left(\| \nabla U \|_{H^3} \| \nabla \tilde{f} \|_{L^\infty} + \| \nabla U \|_{L^2} \| \tilde{f} \|_{W^{3,1}} \right) \| B \|_{H^3} \tag{3.7} \]

\[
\leq C \left(\| \Lambda^3 \check{U} \|_{H^3} \| \nabla B \|_{H^3} \| B \|_{H^3} + \| U \|_{H^3} \| B \|_{H^3} (\| \tilde{f} \|_{W^{2,\infty}} + \| \tilde{f} \|_{W^{3,1}}) \right). \]

Considering \(I_6 \), we have

\[
|I_6| \leq C \| B \|_{H^3}^2 \| \tilde{f} \|_{W^{2,\infty}}. \tag{3.8} \]
Next step, we will estimate J_1, J_2, J_3. For

$$J_1 = \sum_{0 \leq k \leq 3} \sigma \int_{\mathbb{R}^3} \Lambda^k (\nabla \times B) \cdot \Lambda^k ((\nabla \times B) \times B) \, dx$$

$$= \sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \{ \Lambda^k ((\nabla \times B) \times B) - \Lambda^k ((\nabla \times B) \times B) \} \cdot \Lambda^k (\nabla \times B) \, dx.$$

Using Lemma 2.1, we deduce that

$$|J_1| \leq C|\sigma| \sum_{0 \leq k \leq 3} ||\Lambda^k (\nabla \times B)||_{L^2} ||\Lambda^k ((\nabla \times B) \times B) - \Lambda^k ((\nabla \times B) \times B)||_{L^2}$$

$$\leq C|\sigma| \|\nabla B\|_{H^1} (||\nabla \times B||_{H^1} ||\nabla B||_{L^\infty} + ||\nabla \times B||_{L^\infty} ||B||_{H^1})$$

$$\leq C|\sigma| \|\nabla B\|^2_{H^1} ||B||_{H^1}. \quad (3.9)$$

For J_2, we calculate

$$J_2 = \sum_{0 \leq k \leq 3} \sigma \int_{\mathbb{R}^3} \Lambda^k (\nabla \times B) \cdot \Lambda^k ((\nabla \times B) \times \tilde{g}) \, dx$$

$$= \sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\nabla \times B) \cdot (\Lambda^k ((\nabla \times B) \times \tilde{g}) - \Lambda^k ((\nabla \times B) \times \tilde{g}) \, dx$$

$$+ \sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} (\nabla \times \Lambda^k B) \cdot ((\nabla \times \Lambda^k B) \times \tilde{g}) \, dx$$

$$= \sigma \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\nabla \times B) \cdot (\Lambda^k ((\nabla \times B) \times \tilde{g}) - \Lambda^k ((\nabla \times B) \times \tilde{g}) \, dx,$$

for we use the fact that $\int_{\mathbb{R}^3} (\nabla \times \Lambda^k B) \cdot ((\nabla \times \Lambda^k B) \times \tilde{g}) \, dx = 0$. Using Lemma 2.1, we then derive that

$$|J_2| \leq C|\sigma| \|\nabla B\|_{H^1} \|\nabla B\|_{H^1} \|\tilde{g}\|_{W^{3,\infty}}$$

$$\leq C|\sigma| \|\nabla B\|_{H^1} \|B\|_{H^1} \|\tilde{g}\|_{W^{3,\infty}}$$

$$\leq \frac{\mu}{16} \|\nabla B\|^2_{H^1} + C \|B\|^2_{H^1} \|\tilde{g}\|^2_{H^{4,\infty}}. \quad (3.10)$$

For J_3, we could estimate it directly that

$$|J_3| \leq C \|\tilde{g}\|_{W^{4,\infty}} \|B\|_{H^1} \|\nabla B\|_{H^1}$$

$$\leq \frac{\mu}{16} \|\nabla B\|^2_{H^1} + C \|B\|^2_{H^1} \|\tilde{g}\|^2_{H^{4,\infty}}. \quad (3.11)$$

For some quadratic $\nabla \Lambda^3 B$ (highest derivatives) in K_1, K_2, we could not get good estimate of K_1, K_2 when \tilde{g} is large. We also should not neglect K_0, K_3 containing some positive items. Therefore, we then find that it’s a effective way to estimate K_1, K_2, K_0 and K_3 together.

$$K_0 + K_1 + K_2 + K_3$$

$$= -\kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} |(\nabla \times \Lambda^k B) \times B|^2 + 2((\nabla \times \Lambda^k B) \times B) \cdot (\tilde{g} \times (\nabla \times \Lambda^k B))$$

$$+ F_0 + F_1 + F_2 + F_3 - (\nabla \times \Lambda^k B) \times \tilde{g}|^2 dx$$

$$\leq -\kappa \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} |(\nabla \times \Lambda^k B) \times B| - |(\nabla \times \Lambda^k B) \times \tilde{g}|^2 + F_0 + F_1 + F_2 + F_3, \quad (3.12)$$
where

\[
F_0 = \kappa \sum_{0 \leq k \leq 3} \sum_{|\beta| \leq 2, \beta + \gamma = \kappa} \int_{\mathbb{R}^3} (((\nabla \times \Lambda^\beta B) \times \Lambda^\gamma B) \times (\nabla \times \Lambda^\kappa B)) dx, \tag{3.13}
\]

\[
F_1 = \kappa \sum_{0 \leq k \leq 3} \sum_{|\beta| \leq 2, \beta + \gamma = \kappa} \int_{\mathbb{R}^3} (((\nabla \times \Lambda^\beta B) \times \Lambda^\gamma \tilde{g}) \times \Lambda^\kappa B) \cdot (\nabla \times \Lambda^\kappa B) dx, \tag{3.14}
\]

\[
F_2 = \kappa \sum_{0 \leq k \leq 3} \sum_{|\beta| \leq 2, \beta + \gamma = \kappa} \int_{\mathbb{R}^3} (((\nabla \times \Lambda^\beta B) \times \Lambda^\gamma \tilde{g}) \times \Lambda^\kappa \tilde{g}) \cdot (\nabla \times \Lambda^\kappa B) dx, \tag{3.15}
\]

\[
F_3 = \kappa \sum_{0 \leq k \leq 3} \sum_{|\beta| \leq 2, \beta + \gamma = \kappa} \int_{\mathbb{R}^3} (((\nabla \times \Lambda^\beta B) \times \Lambda^\gamma \tilde{g}) \times \Lambda^\kappa \tilde{g}) \cdot (\nabla \times \Lambda^\kappa B) dx. \tag{3.16}
\]

For \(F_0 \), we have

\[
F_0 \leq C \left(\|\nabla B\|_{L^2} \|\nabla B\|_{L^\infty} \|B\|_{L^2} + \|\nabla B\|_{L^2} \|B\|_{L^2} + \frac{3}{2} \|\nabla B\|_{L^2} \right) \|\nabla B\|_{H^3}
\leq C \|\nabla B\|_{H^2}^2. \tag{3.17}
\]

For \(F_1 \), we derive that

\[
F_1 \leq C \|\tilde{g}\|_{W^{4,\infty}} \|B\|_{H^3}^2 \|\nabla B\|_{H^3}
\leq \frac{\mu}{16} \|\nabla B\|_{H^3}^2 + C \|\tilde{g}\|_{W^{4,\infty}}^2 \|B\|_{H^3}^4. \tag{3.18}
\]

For \(F_2 \), we could get

\[
F_2 \leq C \|\nabla B\|_{H^3} \left(\|\nabla B\|_{L^2} \|\tilde{g}\|_{L^\infty} + \|B\|_{L^2} \|\tilde{g}\|_{W^{4,\infty}} \right) \|\nabla B\|_{H^3}
+ C \|\nabla B\|_{W^{1,6}} \left(\|\nabla B\|_{W^{1,4}} \|\tilde{g}\|_{W^{1,6}} + \|B\|_{W^{1,6}} \|\tilde{g}\|_{W^{1,6}} \right) \|\nabla B\|_{H^3}
\leq \frac{\mu}{16} \|\nabla B\|_{H^3}^2 + C \left(\|\tilde{g}\|_{W^{1,6}}^2 + \|\tilde{g}\|_{W^{1,6}}^2 \right) \|B\|_{H^3}^4. \tag{3.19}
\]

For \(F_3 \), it is easy for us to get

\[
F_3 \leq C \|\nabla B\|_{H^3} \|\tilde{g}\|_{L^2}^2 \|\nabla B\|_{H^3} + \|\nabla B\|_{W^{2,4}} \|\tilde{g}\|_{W^{2,4}}^2 \|\nabla B\|_{H^3}
+ C \|\nabla B\|_{L^2} \|\tilde{g}\|_{W^{2,4}}^2 \|\nabla B\|_{H^3}
\leq \frac{\mu}{16} \|\nabla B\|_{H^3}^2 + C \left(\|\tilde{g}\|_{W^{2,4}}^4 + \|\tilde{g}\|_{W^{2,4}}^4 \right) \|B\|_{H^3}^2. \tag{3.20}
\]

To estimate \(K_4, K_5, K_6 \), we have

\[
K_4 \leq C \|\tilde{g}\|_{W^{4,\infty}} \|B\|_{H^3} \|\tilde{g}\|_{W^{3,\infty}} \|\nabla B\|_{H^3}
\leq \frac{\mu}{16} \|\nabla B\|_{H^3}^2 + C \|\tilde{g}\|_{W^{4,\infty}}^4 \|B\|_{H^3}^2, \tag{3.21}
\]

\[
K_5 \leq C \|\tilde{g}\|_{W^{4,\infty}} \|B\|_{H^3}^2 \|\nabla B\|_{H^3}
\leq \frac{\mu}{16} \|\nabla B\|_{H^3}^2 + C \|\tilde{g}\|_{W^{4,\infty}}^2 \|B\|_{H^3}^4, \tag{3.22}\]
\[K_6 \leq C \lVert (\nabla \times \tilde{g}) \times \tilde{g} \rVert_{W^{3,\infty}} + \lVert B \rVert_{H^s} \lVert \nabla B \rVert_{H^{s+1}} \]
\[\leq \frac{\mu}{16} \lVert \nabla B \rVert_{H^s}^2 + C \lVert \tilde{g} \rVert_{W^{3,\infty}} \lVert B \rVert_{H^s}. \]

(3.23)

At last, we consider the term \(\int_{\mathbb{R}^3} \Lambda^k G \Lambda^k B \, dx \). Recalling the expression of \(G \), we have

\[
\begin{aligned}
\sum_{0 \leq k \leq 3} \left| \int_{\mathbb{R}^3} \Lambda^k G \Lambda^k B \, dx \right| \\
= \sum_{0 \leq k \leq 3} \left| \int_{\mathbb{R}^3} \Lambda^k (\nabla \times (\tilde{f} \times \tilde{g}) + 2\nu \nabla \cdot (\nabla \chi_M g) - \nu \Delta \chi_M g \\
+ \frac{1}{2} f \cdot \nabla \chi_M^2 g - \frac{1}{2} g \cdot \nabla \chi_M^2 f \} \cdot \Lambda^k B \, dx \right| \\
&\quad + \sum_{0 \leq k \leq 3} \left| \int_{\mathbb{R}^3} \Lambda^k (\sigma (\nabla \times \tilde{g}) \times \tilde{g}) - \kappa (\nabla \times \tilde{g}) \times \tilde{g}) \cdot \Lambda^k (\nabla \times B) \, dx \right| \\
&\leq C \lVert \tilde{f} \times \tilde{g} \rVert_{H^s} \lVert \nabla B \rVert_{H^s} + \lVert \nabla \chi_M g \rVert_{H^s} \lVert \nabla B \rVert_{H^s} + C \lVert \Delta \chi_M g \rVert_{W^{3,\infty}} \lVert B \rVert_{W^{3,\infty}} \\
&\quad + C \left(\| f \cdot \nabla \chi_M^2 g \|_{W^{3,\infty}} + \| g \cdot \nabla \chi_M^2 f \|_{W^{3,\infty}} \right) \| B \|_{W^{3,\infty}} \\
&\quad + C \left(\| (\nabla \times \tilde{g}) \times \tilde{g} \|_{H^s} + C \| (\nabla \times \tilde{g}) \times \tilde{g} \|_{H^s} \| \nabla B \|_{H^s} \right) \\
&\leq C \left(\| \tilde{f} \times \tilde{g} \|_{H^s} + M_0^{-\frac{1}{2}} \| f \|_{H^s} + M_0^{-\frac{1}{2}} \| g \|_{H^s} \right) \| \nabla B \|_{H^s} \\
&\quad + C |\alpha_1 | \alpha_2 | M_0^{-\frac{1}{2}} \| f \|_{H^s} e^{-\frac{|x|^2}{2}} \| \nabla B \|_{H^s} \\
&\quad + C \left(\| (\nabla \times \tilde{g}) \times \tilde{g} \|_{H^s} + C \| (\nabla \times \tilde{g}) \times \tilde{g} \|_{H^s} \| \nabla B \|_{H^s} \right) \| \nabla B \|_{H^s}. \\
\end{aligned}
\]

(3.24)

Step 2: Energy inequalities of \(U \).

Operating Equation (3.1) with \(\Lambda^k, 0 \leq k \leq 3 \), and taking \(L^2 \) on Equation (3.1) yields

\[
\frac{1}{2} \frac{d}{dt} \| U \|_{H^s}^2 + \mu \| \nabla U \|_{H^s}^2 = H_1 + H_2 + H_3 + H_4 + H_5 + H_6 \\
+ \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k F \Lambda^k U \, dx - \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k \nabla \left(p + \frac{1}{2} | \tilde{f} |^2 - \frac{1}{2} | \tilde{g} |^2 \right) \Lambda^k U \, dx,
\]

where

\[
\begin{aligned}
H_1 &= - \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (U \cdot \nabla U) \cdot \Lambda^k U \, dx, \\
H_2 &= - \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\tilde{f} \cdot \nabla U) \cdot \Lambda^k U \, dx, \\
H_3 &= - \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (U \cdot \nabla \tilde{f}) \cdot \Lambda^k U \, dx, \\
H_4 &= \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (B \cdot \nabla B) \cdot \Lambda^k U \, dx, \\
H_5 &= \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (\tilde{g} \cdot \nabla B) \cdot \Lambda^k U \, dx, \\
H_6 &= \sum_{0 \leq k \leq 3} \int_{\mathbb{R}^3} \Lambda^k (B \cdot \nabla \tilde{g}) \cdot \Lambda^k U \, dx.
\end{aligned}
\]
First, we have

\[|H_1 + H_2| \leq \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (\Lambda^k (U \cdot \nabla U) - (U \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx + \int_{\mathbb{R}^3} (\Lambda^k (f \cdot \nabla U - \bar{f} \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx \right) \]

\[+ \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} ((U \cdot \nabla U) \cdot \Lambda^k U + (\bar{f} \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx \right) \]

\[\leq \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (\Lambda^k (U \cdot \nabla U) - (U \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx + \int_{\mathbb{R}^3} (\Lambda^k (\bar{f} \cdot \nabla U - \bar{f} \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx \right) \]

\[+ \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (u \cdot \nabla \Lambda^k U) \cdot \Lambda^k U dx \right) \]

\[\leq \sum_{0 \leq k \leq 3} \left(\int_{\mathbb{R}^3} (\Lambda^k (U \cdot \nabla U) - (U \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx \right) + \left(\int_{\mathbb{R}^3} (\Lambda^k (\bar{f} \cdot \nabla U - \bar{f} \cdot \nabla \Lambda^k U) \cdot \Lambda^k U) dx \right) \]

\[\leq C \left(\|U\|_{L^6} \|\nabla U\|_{H^s} + \|\nabla U\|_{L^6} \|\|U\|_{W^{1,6}} \right) \|U\|_{H^s} \]

\[+ C \left(\|\nabla U\|_{H^s} \|\nabla \bar{f}\|_{L^6} + \|\nabla U\|_{L^6} \|\bar{f}\|_{W^{1,6}} \right) \|U\|_{H^s} \]

By using Sobolev inequality, we deduce that

\[|H_1 + H_2| \leq C \left(\|\Lambda^\frac{2}{3} U\|_{H^s}^2 \|U\|_{H^s} + \|U\|_{H^s}^2 \|\bar{f}\|_{W^{1,6}} + \|\bar{f}\|_{W^{1,6}} \right) \]. \hspace{1cm} (3.25) \]

For \(H_3 \), it is easy for us to get

\[|H_3| \leq C \|U\|_{H^s} \|B\|_{H^s} \|\bar{f}\|_{W^{1,6}}. \] \hspace{1cm} (3.26) \]

Using the similar way to estimate \(H_1 + H_2 \), we have

\[|H_4 + H_5| \leq C \left(\|\nabla B\|_{H^s} \|\nabla B\|_{L^6} + \|\nabla B\|_{L^6} \|\|B\|_{W^{1,6}} \right) \|U\|_{H^s} \]

\[+ C \left(\|\nabla B\|_{H^s} \|\nabla g\|_{L^6} + \|\nabla B\|_{L^6} \|\|g\|_{W^{1,6}} \right) \|U\|_{H^s} \]

\[\leq C \left(\|\nabla B\|_{H^s}^2 \|B\|_{H^s} + \|U\|_{H^s} \|B\|_{H^s} \|\|g\|_{W^{1,6}} + \|\|g\|_{W^{1,6}} \right) \] \hspace{1cm} (3.27) \]

For \(H_6 \), we have

\[|H_6| \leq C \|U\|_{H^s} \|B\|_{H^s} \|\bar{g}\|_{W^{1,6}}. \] \hspace{1cm} (3.28) \]

As for \(\int_{\mathbb{R}^3} \Lambda^k F \Lambda^k U dx \), it suffices for us to have

\[\sum_{0 \leq k \leq 3} \left| \int_{\mathbb{R}^3} \Lambda^k F \Lambda^k U dx \right| = \sum_{0 \leq k \leq 3} \left| \int_{\mathbb{R}^3} \Lambda^k (\bar{f} \times (\nabla \times \bar{f}) - \bar{g} \times (\nabla \times \bar{g}) - \nu \Delta \chi_{M_0} f \right. \]

\[+ 2 \nu \nabla \cdot (\nabla \chi_{M_0} f) \cdot \Lambda^k U dx \] \]

\[\leq C \left(\|\bar{f} \times (\nabla \times \bar{f})\|_{H^s} + \|\bar{g} \times (\nabla \times \bar{g})\|_{H^s} \right) \|U\|_{H^s} \]

\[+ C \left(\|\nabla \chi_{M_0} f\|_{W^{1,6}} + \|\Delta \chi_{M_0} f\|_{W^{1,6}} \right) \|U\|_{W^{1,6}} \] \hspace{1cm} (3.29)

\[\leq C \left(\|\bar{f} \times (\nabla \times \bar{f})\|_{H^s} + \|\bar{g} \times (\nabla \times \bar{g})\|_{H^s} \right) \|U\|_{H^s} \]

\[+ C M_0 \frac{1}{2} M_2 |\alpha_1| e^{-\frac{c}{2}} \|\Lambda^\frac{s}{2} U\|_{H^s}. \]
We could estimate the pressure term in the same way with in Zhang. Since
\[
p = (-\Delta)^{-1} \text{div} (u \cdot \nabla u - b \cdot \nabla b) = \sum_{ij} (-\Delta)^{-1} \partial_i \partial_j (u_i u_j - b_i b_j) + (-\Delta)^{-1} \nabla \cdot (U \cdot \nabla \tilde{f} - B \cdot \nabla \tilde{g}) + (-\Delta)^{-1} \nabla \cdot (\tilde{f} \times (\nabla \times \tilde{f}) - \tilde{g} \times (\nabla \times \tilde{g})) - \frac{1}{2} |\tilde{f}|^2 + \frac{1}{2} |\tilde{g}|^2,
\]
then we have
\[
\Pi := \left| - \sum_{k \geq 3} \int_{\mathbb{R}^3} \Lambda^k \nabla \left(p + \frac{1}{2} |\tilde{f}|^2 - \frac{1}{2} |\tilde{g}|^2 \right) \Lambda^k U dx \right| \\
\leq \left(\|u \otimes U\|_{W^{3,2}}^2 + \|h \otimes B\|_{W^{3,2}}^2 \right) \|\nabla \delta \chi M_1\|_{W^{3,2}} + \|\nabla \delta \chi B\|_{H^6} \|U\|_{H^6} + \|\nabla \delta \chi \tilde{g}\|_{H^3} \|U\|_{H^6}.
\]
By Hölder's inequality, we furthermore derive that
\[
\Pi \leq C \left(\|U\|_{H^6}^2 + \|B\|_{H^6}^2 \right) \left(\|\nabla \delta \chi M_1\|_{W^{3,2}} + \|\nabla \delta \chi B\|_{H^6} \right) \alpha_1 M_2 M_0^{-1} e^{-\frac{\mu}{\nu}} \left| a_2 \right| M_2 M_0^{-1} e^{-\frac{\mu}{\nu}} \left| a_1 \right| M_1 e^{-\frac{\mu}{\nu}} \left| a_2 \right| M_1 e^{-\frac{\mu}{\nu}} \left| a_1 \right| M_1 e^{-\frac{\mu}{\nu}} \left(\delta M_0^{-1} M_1^2 + M_0^{-1} M_2^2 \right) \|U\|_{H^6}.
\]
In a result, we get
\[
\Pi \leq C \left(\|a_1 \right| M_1 + M_2) e^{-\frac{\mu}{\nu}} \|U\|_{H^6}^2 + \left| a_1 \right| M_2 e^{-\frac{\mu}{\nu}} \|B\|_{H^6}^2 \right) + C \left| a_2 \right| M_1 e^{-\frac{\mu}{\nu}} \|U\|_{H^6} \|B\|_{H^6}^2 + C \left(a_2^2 e^{-\frac{\mu}{\nu}} + a_2^2 e^{-\frac{\mu}{\nu}} \right) \left(\delta M_0^{-1} M_1^2 + M_0^{-1} M_2^2 \right) \|U\|_{H^6}^2 + C \left| a_1 a_2 \right| M_0^{-1} M_2^2 e^{-\frac{\mu}{\nu}} \|\nabla B\|_{H^6}^2.
\]
Step 3: Energy estimates of U and B.
Gathering above estimates in Steps 1 and 2, we obtain
\[
\frac{1}{2} \frac{d}{dt} \left(\|U\|_{H^6}^2 + \|B\|_{H^6}^2 \right) + \frac{\nu}{2} \|\nabla U\|_{H^3}^2 + \frac{\mu}{2} \|\nabla B\|_{H^3}^2 + P(t) \leq C \sum_{i=1}^8 I_i,
\]
where
\[
P(t) = \kappa \sum_{k \geq 3} \int_{\mathbb{R}^3} \left(|(\nabla \times \Lambda^k B) \times B| + |(\nabla \times \Lambda^k \tilde{g}) \times \tilde{g}| \right)^2 dx,
\]
\[
J_1 = \left(\|U\|_{H^6} + \|B\|_{H^6} \right) \left(\|\nabla U\|_{H^3}^2 + \|\nabla B\|_{H^3}^2 \right),
\]
\[
J_2 = \left(\|\tilde{f}\|_{W^{4,\infty}} + \|\tilde{g}\|_{W^{4,\infty}} \right) \left(\|U\|_{H^6}^2 + \|B\|_{H^6}^2 \right),
\]
\[J_3 = \left(\| \tilde{f} \times \tilde{g} \|_{H^3} + M_0^{-\frac{1}{2}}M_2|a_2|e^{-\frac{u_i}{\tau}} + |a_1a_2|M_0^{-\frac{1}{2}}M_2^2e^{-\frac{(u_i^2 + v_i^2)}{4\tau}} \right) \| \nabla B \|_{H^4}. \]

\[J_4 = (|\sigma|\|\nabla \times \tilde{g} \times \tilde{g}\|_{H^5} + \kappa\|((\nabla \times \tilde{g}) \times \tilde{g})\|_{H^5}) \| \nabla B \|_{H^5} \]

\[J_5 = |a_1|\|M_1 + M_2\|e^{-\frac{u_i}{\tau}}\|U\|_{H^2} + \|\tilde{g}\|_{W^{3,\infty}} \| \nabla B \|_{H^5}. \]

\[J_6 = |a_1|M_2e^{-\frac{u_i}{\tau}} \| \nabla B \|_{H^2} + |a_2|\|M_1e^{-\frac{u_i}{\tau}}\|U\|_{H^5} \| \nabla B \|_{H^5}. \]

\[J_7 = \left(a_1^2e^{-\frac{u_i}{\tau}} + a_2^2e^{-\frac{v_i}{\tau}} \right) \left(\delta M_0^2M_1^3 + M_0^{-1}M_2^3 \right) \| U \|_{H^1}. \]

\[J_8 = |a_1a_2|M_0^{-\frac{1}{2}}M_2^2e^{-\frac{(u_i^2 + v_i^2)}{4\tau}} \| \nabla B \|_{H^4}. \]

\[J_9 = \left(\| \tilde{f} \times (\nabla \times \tilde{f})\|_{H^5} + \| \tilde{g} \times (\nabla \times \tilde{g})\|_{H^5} \right) \| U \|_{H^5}. \]

\[J_{10} = \sigma\|\nabla B\|_{H^t}\|\nabla B\|_{H^4}\|\tilde{g}\|_{W^{3,\infty}} + M_0^{-\frac{3}{2}}M_2e^{-\frac{u_i}{\tau}} \| \Lambda^{\frac{3}{2}}U \|_{H^5}. \]

\[J_{11} = C\|B\|_{H^t}^4 \left(\| \tilde{g} \|_{W^{3,\infty}} + \| \tilde{g} \|_{W^{2,\infty}} \right) + C\|B\|_{H^t}^2 \left(\| \tilde{g} \|_{W^{4,\infty}} + \| \tilde{g} \|_{W^{3,\infty}} \right). \]

Using Lemma 2.3, Young's inequality and \(\delta \geq M_0 \gg 1 \), we derive that

\[
\frac{d}{dt} \left(\| U \|_{H^t}^2 + \| B \|_{H^t}^2 \right) + \left(\frac{\nu}{2} - C\| U \|_{H^t} - | C \| B \|_{H^t} \right) \| \Lambda^{\frac{3}{2}}U \|_{H^5}^2 + \left(\frac{\mu}{2} - C\| U \|_{H^t} - | C \| B \|_{H^t} \right) \| \nabla B \|_{H^t}^2 \leq C \left(e^{-\frac{u_i}{\tau}} + e^{-\frac{v_i}{\tau}} \right) \left(\| U \|_{H^t}^2 + \| B \|_{H^t}^2 \| B \|_{H^t} \right) + C \left(M_0^{-1} + \delta^2M_0^2 \right) \left(e^{-\frac{u_i}{\tau}} + e^{-\frac{v_i}{\tau}} \right)
\]

for some constant \(C \) depending on \(M_1, M_2, \mu, \nu, \sigma, \kappa, a_1, a_2 \).

For \(t \in [0, \infty) \), we assume that

\[\| U(t) \|_{H^t}^2 + \| B(t) \|_{H^t}^2 \leq \frac{\min\{\mu, \nu\}}{4C}. \]

In case \(t = 0 \), the above estimate holds. Applying differential inequality (3.33), Gronwall's inequality and \(\delta \leq M_0^{-2} \), we have

\[\| U(t) \|_{H^t} + \| B(t) \|_{H^t} \leq M_0^{-\frac{1}{2}}. \]

In a result,

\[\| U(t) \|_{H^t} + \| B(t) \|_{H^t} \leq M_0^{-\frac{1}{2}} \]

for all \(t \in [0, \infty) \). Therefore, we complete the proof of Theorem 1.1.

\[\square \]

ACKNOWLEDGEMENTS

The author Huali Zhang is also supported by the National Natural Science Foundation of China (Grant No.12101079) and the Natural Science Foundation of Hunan Province, China (Grant No.2021JJ40561), and the Education Department of Hunan Province, China(Grant No.21B0346).

CONFLICT OF INTEREST

The authors declared that this work does not have any conflicts of interest.
REFERENCES

1. Acheritogaray M, Degond P, Frouvelle A, Liu JG. Kinetic formulation and global existence for the Hall-magneto-hydrodynamics system. *Kinet Relat Models*. 2011;4:901-918.
2. Chae D, Degond P, Liu JG. Well-posedness for Hall magnetohydrodynamics. *Ann I H Poincaré*. 2014;31:555-565.
3. Caffarelli L, Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. *Ann Math*. 2010;171:1903-1930.
4. Chae D, Lee J. On the blow-up criterion and small data global existence for the Hall- magneto-hydrodynamics. *J Diff Equat*. 2014;263:3835-3858.
5. Chae D, Wan R, Wu J. Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. *J Math Fluid Mech*. 2015;17:627-638.
6. Chae D, Weng S. Singularity formation for the incompressible Hall-MHD equations without resistivity. *Ann Inst Henri Poincaré Anal Non Linéaire*. 2016;33:1009-1022.
7. Chae D, Wolf J. On partial regularity for the 3D non-stationary Hall magneto-hydrodynamics equations on the plane. *SIAM J Math Anal*. 2016;48:443-469.
8. Chemin JY, Gallagher I. Well-posedness and stability results for the Navier-Stokes equations in R^3. *Ann Inst H H Poincaré Anal Non Linéaire*. 2009;26:599-624.
9. Constantin P, Majda A. The Beltrami spectrum for incompressible fluid flows. *Commun Math Phys*. 1988;115:435-456.
10. Dai MM. Regularity criterion for the 3D Hall-magneto-hydrodynamics. *J Differ Equat*. 2016;261:573-591.
11. Lei Z, Lin FH, Zhou Y. Structure of helicity and global solutions of incompressible Navier-Stokes equation. *Arch Ration Mech Anal*. 2015;218:1417-1430.
12. Lin FH, Zhang P. Global small solutions to an MHD-type system: the three-dimensional case. *Comm Pure Appl Math*. 2014;67:531-580.
13. Lin YK, Zhang HL, Zhou Y. Global smooth solutions of MHD equations with large data. *J Differ Equat*. 2016;261:102-112.
14. Jeong IJ, Oh SJ. On the Cauchy problem for the Hall and electron magnetohydrodynamic equations without resistivity I: illposedness near degenerate stationary solutions. arXiv:1902.02025v1.
15. Ren XX, Wu J, Xiang Z, Zhang ZF. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. *J Funct Anal*. 2014;267:503-541.
16. Sermange M, Temam R. Some mathematical questions related to the MHD equations. *Comm Pure Appl Math*. 1983;36:635-664.
17. Yamazaki K, Moha MT. Well-posedness of Hall-magnetohydrodynamics system forced by Lévy noise. *Stoch PDE: Anal Comp*. 2018;1:48.
18. Zhou Y, Zhu Y. A class of large solutions to the 3D incompressible MHD and Euler equations with damping. *Acta Math Sinica(English Series)*. 2018;34:63-78.
19. Davidson PA. *An Introduction to Magnetohydrodynamics*. Cambridge: Cambridge University Press; 2001.
20. Mulone G, Salemì F. Some continuous dependence theorems in MHD with Hall and ion-slip currents in unbounded domains. *Rend Ac Sci Fis Mat Napoli*. 1988;55:139-152.
21. Mulone G, Solonnikov VA. On an initial boundary-value problem for the equation of magnetohydrodynamics with the Hall and ion-slip effects. *J Math Sci*. 1997;87(2):3381-3392.
22. Fan J, Jia X, Nakamura G, Zhou Y. On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects. *Z Angew Math Phys*. 2015;66:1695-1706.
23. Zhao XP, Zhu MX. Global well-posedness and asymptotic behavior of solutions for the three-dimensional MHD equations with Hall and ion-slip effects. *Z Angew Math Phys*. 2018;69(2):22. 13 pp.
24. Li JL, Wu X. Global smooth solutions of the 3D Hall-magnetohydrodynamic equations with large data. arXiv:1906.03953v1.
25. Zhang HL. Global large smooth solutions for 3-D Hall-magnetohydrodynamics. *Discrete Cont Dyn*. 2019;39:6669-6682.
26. Zhang H, Zhao K. On 3D Hall-MHD equations with fractional Laplacians: global well-posedness. *J Math Fluid Mech*. 2021;23(3). Paper No. 82, 25 pages.
27. Zhang H, Li J. Global large, smooth solutions of the 2D surface quasi-geostrophic equations. *Math Meth Appl Sci*. 2021;44:10076-10083.
28. Wan R. Global well-posedness to the 3D incompressible MHD equations with a new class of large initial data. arXiv:2015.09766v1.
29. Gala S, Ragusa MA. On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in R^3. *Z Angew Math Phys*. 2016;67:18.
30. Peng WM, Zhou Y. Global large solutions to incompressible Navier-Stokes equations with gravity. *Math Meth Appl Sci*. 2015;38:590-597.
31. Mielke A. Uniqueness of MHD thermodiffusive mixture flows with Hall and ion-slip effects. *Meccanica*. 1977;12:9-14.
32. Kwak M, Lkhagvasuren B. Global wellposedness for Hall-MHD equations. *Nonlinear Anal*. 2018;174:104-117.
33. Liu F, Wang Y. Global solutions to three-dimensional generalized MHD equations with large initial data. *Z Angew Math Phys*. 2019;70:69.
34. Stein EM. *Singular Integrals and Differentiability Properties of Functions*. Princeton: Princeton University Press; 1970.
35. Duan N. Global well-posedness and analyticity of solutions to three-dimensional Hall-MHD equations. *J Math Anal Appl*. 2018;463:506-516.
36. Chae D, Schonbek M. On the temporal decay for the Hall-magnetohydrodynamic equations. *J Differ Equat*. 2013;255:3971-3982.
37. Taylor JB. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. *Phys Rev Lett*. 1974;33:1138-1141.

How to cite this article: Zhang H. A class of global large, smooth solutions for the magnetohydrodynamics with Hall and ion-slip effects. *Math Meth Appl Sci*. 2022;45(10):5721-5736. doi:10.1002/mma.8136