A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

Pingsheng Hu 1, Xiaoming Chen 1, Lihong Huang 1, Shukai Liu 1, Fuyu Zang 1, Jinchao Xing 1, Youyue Zhang 1, Jiaqi Liang 1, Guihong Zhang 1, Ming Liao Corresp. 1, 2, 3, Wenbao Qi Corresp. 1, 2, 3

1 National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
2 Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
3 Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Ministry of Agriculture, Guangzhou, China

Corresponding Authors: Ming Liao, Wenbao Qi
Email address: mliao@scau.edu.cn, qiwenbao@scau.edu.cn

In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). An PRRSV GP5/M were inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M can provide better protection than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS.
A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system

Pingsheng Hu1*, Xiaoming Chen1*, Lihong Huang1, Shukai Liu1, Fuyu Zang1, Jinchao Xing1, Youyue Zhang1, Jiaqi Liang1, Guihong Zhang1, Ming Liao1. 2. 3,# and Wenbao Qi1. 2. 3,#

1National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

2Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.

3Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Ministry of Agriculture, Guangzhou, China.

Abstract
In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). An PRRSV GP5/M were inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced better antibody responses than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS.

Introduction

Porcine reproductive and respiratory syndrome (PRRS) is a disease that causes reproductive failures in sows and respiratory syndromes in pigs of all ages (Done & Paton 1995). In China, the first emergence of PRRS occurred in 1995, and the causative agent PRRSV was first isolated in 1996. In 2006, a new strain of PRRSV appeared in many provinces, named highly pathogenic PRRSV (HP-PRRSV). Since then, it has been circulating and predominating in the field (Li et al. 2007; Tong et al. 2007). The GP5 protein of PRRSV (encoded by ORF5) is one of the major antigens expressed on virion surfaces and along with matrix (M) protein, are thought to be the most important targets of protective antibodies (Li & Murtaugh 2012; Wang et al. 2007). Vaccination has been an effective way to control PRRS; and there are two main types of PRRS
vaccines since they were first reported, modified live-attenuated vaccines (MLVs) and inactivated virus vaccines (Charerntantanakul 2012). Three commercial HP-PRRS modified live virus vaccines (HP PRRS MLVs), TJM-F92, HuN4-F112, and JXA-1R, were introduced into the Chinese swine industry, all providing good protection against HP-PRRSV infection (Leng et al. 2012; Tian et al. 2009; Yu et al. 2013). However, both kinds of the vaccine, MLVs and inactivated virus vaccines, have inherent drawbacks. Although MLVs perform well against homologous infection (Jeong et al. 2016; Linhares et al. 2012), MLVs show poor protection to heterologous strains and cannot prevent PRRSV to disseminate through the placenta (Kimman et al. 2009). Furthermore, China and Denmark each have related reports that MLVs might revert to the high virulence strain (Botner et al. 1997; Jiang et al. 2015; Opriessnig et al. 2002). Inactivated virus vaccines are safer than MLVs, but the inactivated virus vaccines provide limited protective immunity against PRRSV infection (Renukaradhya et al. 2015; Scortti et al. 2007). Moreover, more time and much more work are needed to develop both kinds of vaccine. There is an urgent need to develop vaccines against PRRS that are more effective, safe, and can be more quickly obtained, especially when new phenotypes of the PRRSV emerge.

Virus replicons hold tremendous promise as vaccine candidates because they can replicate autonomously and effectively express foreign proteins without being infectious (Kato & Hishiki 2016). Because replicons lack the viral structural proteins genome, non-infectious replicons are as safe as a conventional inactive vaccine. At the same time, they can elicit a robust and broad reactive immune response (Aberle et al. 2005). In recent years, many flaviviruses virus replicons have been used as the expressing system for foreign genes or have been developed into vaccine candidates (Cao et al. 2011; Harvey et al. 2003). Strikingly, research has shown that the use of replicons as an expression system to create vaccines can support dual protection, both to itself and the exogenous virus (Huang et al. 2015; Yang et al. 2012).

Here, we constructed JEV DNA-based replicons with autonomous replication and effective expression of foreign proteins, which failed to generate infectious virus progeny in non-
complementing cells. Moreover, we expressed GP5/M proteins of HP-PRRSV on these JEV DNA-based replicons, which elicited a humoral and cellular immune response to PRRSV in a BALB/c mice model. Thus, the results suggest that the JEV replicons are an efficient expression system for foreign proteins, and the chimeric PRRSV vaccine based on JEV replicons could be developed as a potential vaccine candidate against HP-PRRS and JEV.

Material and methods

Cell lines, virus strain, vectors, and antibody.

BHK-21 cells, a baby hamster kidney cell line, and 293T cells, a human embryonic kidney cells line, were obtained from the Key Laboratory of Animal Disease Control and Prevention, the Ministry of Agriculture, China. Cells were grown in Dulbecco's Modified Eagle Medium (DMEM; Gibco, Invitrogen) supplemented with 10% fetal bovine serum (FBS; Gibco). The JEV vaccine strain SA-14-14-2 was also provided by the Key Laboratory of Animal Disease Control and Prevention, the Ministry of Agriculture, China. The HP-PRRSV strain, XH-GD, is stored at the Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, China. It was isolated in the Guangdong province in 2007 and is one of the epidemic HP-PRRSV strains in Guangdong, exhibiting 99.1% nucleotide sequence identity to strain JXA1. Plasmid pEGFP-N1 was purchased from Biosciences Clontech. Plasmids pIRES1-neo and pCAGGS were kindly provided by ZhiGao Bu (State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China).

The monoclonal antibodies against the GP5 protein of PRRSV were kindly provided by Researcher GuangZhi Tong (Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China). Mouse polyclonal antibody against the NS1 protein of JEV was prepared and provided by the Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture. IRDye® 800-labeled anti-mouse IgG secondary antibodies were obtained from Rockland. Fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG were obtained from SIGMA.
Plasmid constructs.

The JEV replicons plasmid vector is depicted in Fig. 1. All the primers used to construct the recombinant plasmid are shown in Table 1 and Table 2. Fragments 5′ UTR-c23,B,C, and II were amplified from the cNDA of JEV genome SA14-14-2 using primers in Table 1. The CMV promoter and fragment D were amplified from plasmid pEGFP-N1 using primers in Table 1. Fragment A was amplified from the CMV promoter and 5′ UTR-c23 by overlap PCR using primers pCMV-F and pJEV164-olR. Then, fragments A and B were used as template to produce fragment I through overlap PCR using primers pCMV-F and pJEV5706R. Amplified fragment III using primers pJEV9117F and HDVr-pA-R in the same way as shown in Fig.1. Finally, DNA fragment I, fragment II, and fragment III were subcloned into the Low copy plasmid named pJEV-REP. Fragment EGFP, both without and with the termination codon, were amplified from plasmid pEGFP-N1 using primers EGFP-F and EGFP-R or EGFP-F and EGFP-R-taa. Fragment IRES was amplified from the plasmid pIRES1-neo using primers IRES-F and IRS-588R. EGFP-IRES was amplified from the fragment IRES and fragment EGFP that includes the termination codon through overlap PCR using primers EGFP-F and IRES-588R. Finally, fragment EGFP without the termination codon and EGFP-IRES were digested by SalI and SpeI and then cloned into pJEV-REP namely pJEV-REP-GFP and pJEV-REP-GFP-IRES, respectively.

Fragments GP5 (primers GP5F and GP5R-FMDV2A-R) and M (primers MF-FMDV2A-F and MR-Sall) were amplified from the PRRSV genome. Fragment G-2A-M was amplified from fragments GP5 and M through overlap PCR using primers GP5F and MR-Sall. Then, G-2A-M as a template to amplify G-2A-MR using primers GP5F and M-R. Fragments G-2A-MR and IRES-588R. Finally, G-2A-M-IRES and G-2A-M were digested by SalI and SpeI and cloned into pJEV-REP vector, named pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M, respectively. Using IRES-F-SpeI-TAA and IRES-588R as primers, amplified IRES-SS from pJEV-REP-G-2A-M-IRES. Then, digested by SalI-HF and SpeI and cloned into a pJEV-REP vector named pJEV-
REP-IRE. Fragment G-2A-M-EX was amplified from pJEV-REP-G-2A-M using primers GP5F-
EcoRI and MR-XhoI. Then, fragment G-2A-M-EX was digested by EcoRI and XhoI and cloned
into eukaryotic expression vector pCAGGS, named pCAGGS-GM. All of our restriction enzyme
digestion and cloning procedures were performed according to standard protocols.

Transfection.

BHK-21 and 293T cells which grew to 90% confluence in 6-well cell culture plates, were
transfected with plasmid by Lipofectamine 2000 Reagent (Invitrogen, 11668-027) as previously
described (Qi et al. 2008). Briefly, 2 μg of DNA was diluted in 50μl of serum-free Opti-MEM
medium, and Lipofectamine 2000 was diluted in 50μl of serum-free Opti-MEM medium according
to the manufacturer’s recommendation. We then added diluted DNA to each tube of diluted
Lipofectamine 2000 Reagent (1:1 ratio) and incubated it at 25 °C for 5 min. We removed the cell
culture medium and washed with Opti-MEM. Then, DNA-reagent complex was added to cells. At
the same time, 500μl Opti-MEM also added and further cultured at 37 °C. After 6h, the supernatant
was removed, and the cells were further incubated with fresh medium with 2% FBS for 48 h.

Indirect immunofluorescence assays (IFA).

The cells were washed with phosphate-buffered saline (PBS) and then, fixed with 4%
paraformaldehyde at room temperature for 30 min. Cell monolayers were permeabilized with 0.2%
Triton X-100 for 10 min. Then, incubated for 1 h in the presence of Mouse polyclonal antibodies
against the NS1 protein of JEV (1:100) in PBS buffer at 37°C, followed by 1h incubation in PBS
containing goat anti-mouse secondary antibodies conjugated to FITC at a dilution of 1:200. The
fluorescence signals were visualized using a fluorescence microscope.

Western Blotting.

Western blot analysis was performed as previously described (Qi et al. 2015). Briefly, cell
monolayers were incubated with RIPA lysis buffer (Beyotim, P0013B) containing 1 mM PMSF
(Beyotim, ST506), then centrifuged and boiled with SDS-PAGE loading buffer. Equivalent
Proteins sample were separated on SDS-PAGE gels and electro-transferred onto PVDF
membranes (Beyotim, FFP30). After blocking, the membranes were incubated with primary antibodies, PRRSV GP5 protein monoclonal antibodies, and IRDye 800-conjugated goat anti-mouse as the secondary antibody. Finally, membranes were scanned using an Odyssey Imaging System (Li-Cor, America).

Immunization of mice.

Sixty (eight-week-old) SPF female BALB/c mice were purchased from the Guangdong Medical Laboratory Animal Center (GDMLAC) and the number of production license is SCXK 2013-0002. BALB/c mice were assigned randomly into five groups of twelve mice each. Three groups of BALB/c mice were immunized 50μl each hind leg with pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, or pJEV-REP-IRES respectively (100μg per mouse). Control groups were immunized using the same protocol with either pCAGGS-GM or PBS. Mice were immunized on days 0, 21, and 42. Mice blood samples were harvested every 2 weeks, and serum samples from each group were stored for virus antibody testing.

Enzyme Linked Immunosorbent Assay (ELISA).

Mouse sera were obtained from blood samples. The PRRSV antibodies level was tested using the ELISA Kit (LSIVet Porcine PRRSV/US-Serum, Franc). Briefly, mouse sera were diluted 100-fold, and a 100μl sample added to the 96 plate which be pre-packaged with PRRSV components. The wells were incubated for 30 min at 37°C. Then, after washing with PBS, 100μl HRP-Conjugate anti-mouse antibody reagent was added to every wells, and incubated for 60 min at 37°C. Washing with PBS again. 50ul Chromogen Solution A and Chromogen Solution B were added and evaded the light preservation for 15 min at 37°C. Finally, the absorbance at 630nm was read after adding the stop Solution.

CCK-8 assay.

Lymphocytes were isolated from different vaccination groups of mice two weeks after third immunization and treatment as previously described (Cao et al. 2011). The WST-8 dye (Beyotime
Inst Biotech, China) was used to detect cell proliferation according to manufacture’s instruction. Briefly, lymphocytes isolated from different vaccination groups mice. The lymphocytes were adjusted to a working concentration of 1×10^6 cells/ml in RPMI-1640 and 100μl lymphocytes were added into 96-well plate respectively. Then, 100μl concentration of 200 TCID$_{50}$/ml, XH-GD, PRRSV were added. As a control, 100μl RPMI-1640 and 100μl equal amount lymphocytes of PBS control group were added into another 96-well plate. Incubated the plates at 37°C in a 5% CO$_2$ incubator. Then, 10μl WST-8 dye was added to each well and the 96-well plates were incubated at 37°C for 3 h. The absorbance was determined at 450 nm using a microplate reader (Thermo Scientific). Calculated the stimulation index (SI) on behalf of Proliferation of the T lymphocyte, which is the ratio of OD$_{450}$ of stimulated wells to OD$_{450}$ of unstimulated ones.

plus or minus detection replicon RNA.

The cells were harvested at the indicated times post transfection and total RNA was extracted using TaKaRa MiniBEST Universal RNA Extraction Kit (TaKaRa). The primer 2403F was used as an antisense primer and the primer 2609R as a sense reverse transcription, then 85°C deactivation. The primers 2403F and 2609R (shown in Table 2) target a region within the E gene. After reverse transcription, the primer 2403F was used to selectively quantitate the sense strand and used primer 2609R to selectively quantitate the antisense strand by PCR.

Statistical analysis.

For all the data, the mean value, the standard error of the mean (SEM), and statistical analyses were performed using both the unpaired t test and paired t test to determine the statistical significance (P<0.05) between the two indicated test groups (GraphPad Prism 5.01 software).

Ethics statement and Biosafety.

Sixty (eight-week-old) SPF female BALB/c mice were purchased from the Guangdong Medical Laboratory Animal Center (GDMLAC) and the number of production license is SCXK 2013-0002. All experiments were carried out in ABSL-3 facilities in compliance with the biosafety committee of South China Agriculture University (SCAU) protocols. All animal experiments were
reviewed and approved by the Institutional Animal Care and Use Committee at SCAU and were carried out in accordance with the approved guidelines. All animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee at SCAU and were carried out in accordance with the approved guidelines.

RESULTS

Construction and characterization of JEV replicons.

We constructed a DNA-based replicons vector, pJEV-REP, from the JEV SA-14-14-2 strain. pJEV-REP contains the JEV genome sequence with a large in frame deletion (nucleotides 165–2402) in the viral genome, corresponding to the middle portion of structure proteins, C-prM-E. The overall strategy for constructing the JEV replicon is outlined in Fig. 1A. The sequences of ribozyme HDVr and polyA had been added at the end of 3’UTR to insure that transcript RNA correctly cleaved within complete 3’UTR sequence. For convenience in inserting the necessary foreign genes, the SpeI and SalI restriction sites were introduced into the deletion position of the structure protein. Because those restriction enzymes have many isocaudomers (Sun et al. 2013).

To investigate the function of JEV replicons, two different versions of the replicons vectors were constructed, as shown in Fig. 1B and Fig. 1C. The replicons vector, pJEV-REP-GFP, was modified by inserting reporter gene, EGFP, into the SpeI and SalI restriction sites (Fig. 1B), while pJEV-REP-GFP-IRES was constructed by inserting the EGFP-IRES gene and introducing a termination codon and an initiation codon at the end of EGFP and the front of E25, respectively (Fig. 1C).

The efficiency and replication of JEV replicons.

To investigate the replication of JEV replicons, pJEV-REP-GFP-IRES and pJEV-REP-GFP were transfected into 293T cells, and 48h post transfection we applied indirect immune fluorescence analysis (IFA) to monitor viral protein NS1 synthesis. The results of IFA showed that IFA staining was readily detected (Fig. 2A). To facilitate replication monitoring and to explore the possibility of expressing foreign genes in the JEV replicons, the EGFP was used as a report gene
and plasmids pJEV-REP-GFP-IRES and pJEV-REP-GFP was transfected into 293T cells and
BHK-21 cells, respectively. Following 48h post transfection, more EGFP-expressing cells were
detected in pJEV-REP-GFP-IRES than in pJEV-REP-GFP and the fluorescence intensity
increased as time went by (Fig. 2B). In addition, the RT-PCR was performed to detect the
replication of replicon RNA. The RT-PCR results showed increased levels of both plus- and
minus-sense RNA, while no specific bands can be detected in the group without RT step (Fig. 3).
Furthermore, when we diluted the cDNA at 10 times and 20 times, the specific bands amplified
from plus-sense RNA were significantly brighter than those of minus-sense RNA. These results
indicate that JEV replicons plasmids pJEV-REP-GFP-IRES and pJEV-REP-GFP replicated
efficiently in transfected cells and an excess amount of plus-sense RNA was synthesized relative
to the minus-sense RNA.

Generation of recombinant JEV replicons expressing GP5/M protein.

The JEV replicon constructed above was used for the generation of recombinant vectors
expressing the GP5/M gene of PRRSV. The nucleotide sequence of the HP-PRRSV strain, XH-GD,
ORF5 encoding GP5 protein (almost 22KD) and ORF6 encoding M protein (almost 19KD)
were amplified from the HP-PRRSV strain XH-GD genome. A DNA fragment encoding 2A
protease of the foot-and-mouth disease virus (FMDV-2A) was inserted between proteins GP5 and
M. Fragments G-2A-M and G-2A-M-IRES were cloned into the pJEV-REP vector and named
pJEV-REP-G-2A-M and pJEV-REP-G-2A-M-IRES, respectively (Fig. 4A). The G-2A-M gene
was also cloned into a eukaryotic expression vector, pCAGGS, named pCAGGS-GM to be used
as control. To verify the GP5/M protein expression, pJEV-REP-G-2A-M-IRES or pJEV-REP-G-
2A-M was transfected into 293T cells and transfected cells were harvested and analyzed by IFA
and western blot. IFA results showed that NS1 was expressed (Fig. 4B), and Western-blot analysis
showed that in the pJEV-REP-G-2A-M, pJEV-REP-G-2A-M-IRES and pCAGGS-GM, the fusion
protein were expressed in 293T cells successfully and in negative control the fusion protein were
not detect (Fig. 4C).
Cellular immune response induced by recombinant JEV replicons expressing GP5/M protein.

To characterize the cell-mediated immune response induced by the JEV replicons vaccine, mice were killed 8 weeks after the primary immunization, and the splenocyte proliferation-based WST-8 assay was performed. WST-8 assay indicated that the lymphocyte proliferation of mice immunized with pJEV-REP-G-2A-M-IRES or pJEV-REP-G-2A-M was higher than those immunized with pCAGGS-GM (DNA vaccine), but not significantly (Fig.5). Lymphocyte proliferation of the three immunized groups, pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M and pCAGGS-GM, were significantly high than the control groups pJEV-REP-IRES or PBS. These results indicate that immunization with the JEV DNA-based replicon vaccine induces lymphocyte proliferation in mice.

PRRSV-specific antibodies elicited by recombinant JEV replicons expressing GP5/M protein in mice.

Sera were harvested from mice at 0, 2, 4, 6, 8, and 10 weeks after the first immunization and PRRSV-specific antibodies were analyzed using ELISA. As shown in (Fig. 6), mice immunized with pJEV-REP-G-2A-M-IRES or pJEV-REP-G-2A-M could produce higher PRRSV specific antibodies than those immunized with pCAGGS-GM 2 weeks after the first immunization, and the specific antibodies of the three groups immunized with pJEV-REP-G-2A-M-IRES or pJEV-REP-G-2A-M or pCAGGS-GM peaked 2 weeks after the third immunization. Anti-PRRSV specific antibodies titers were significantly (P<0.05) higher in immune groups pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M than in the control groups pJEV-REP-IRES or PBS 6 weeks after first vaccination, but the pCAGGS-GM group was non-significant (P>0.05). However, Anti-PRRSV specific antibodies titers were significantly (P<0.05) higher in all three immune groups, pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, and pCAGGS-GM, than in the control groups pJEV-REP-IRES or PBS at 8 weeks after the first immunization. Although the antibody level declined, anti-PRRSV specific antibodies titers were also significantly (P<0.05) higher in the immune
groups pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M than in the control groups pJEV-REP-IRES or PBS at 10 weeks after the first immunization.

Discussion

In the swine industry today, HP-PRRS is considered to be one of the most challenging diseases. Vaccination has been an effective method of controlling PRRS ever since it was reported (Pileri & Mateu 2016). However, both MLVs and inactivated virus vaccines have inherent drawbacks. Furthermore, like other (+) RNA viruses, PRRSV is easy to mutate and recombine. In 2013-2014, a new HP-PRRSV strain emerged in China with a very different genetic background than the classic Chinese HP-PRRSV strains. It is a NADC30-like PRRSV strain recently introduced from North America that has undergone genetic exchange with the classic HP-PRRSV strains (Zhao et al. 2015), and the occurrence of attenuated strains reverting to high virulence strains has been reported (Jiang et al. 2015). Thus, it is necessary to develop effective, safe, and quickly obtained vaccines to protect against PRRSV, especially when new PRRS strains emerge.

The GP5 and M proteins are two kinds of structure proteins of the PRRSV, and they were associated in hetero dimeric complexes on the surface of PRRSV (Mardassi et al. 1996). The GP5 protein and M protein have been shown to induce antibodies and high production of IFN-β (Binjawadagi et al. 2016). Here, we describe the construction of JEV replicons and use JEV replicon vectors expressing the PRRSV GP5 and M proteins as a bivalent seedlings vaccine. We generate two kinds of PRRS vaccine, named pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M. In order to release the GP5 and M proteins from the JEV replicon polyprotein, the foot-and-mouse disease virus 2A autoprotease sequence was inserted between the GP5 and M genes. IFA with JEV-NS1 polyclonal antibody show that the JEV replicon vector can replicate effectively (Fig. 4B). Western-blot analysis showed that GP5/M proteins were also expressed successfully in vitro (Fig. 4C). Splenocyte proliferation was an important point in detecting a cell-mediated immune response. The result has demonstrated the ability of JEV replicon vaccine to induce splenocyte proliferation following the final immunization. The ability to induce PRRSV specific
immune responses was detected by ELISA. The research showed that the intramuscular immunization of mice with the JEV vaccine induced special anti-PRRSV antibodies after the first inoculation. With subsequent immunization boosting, the level of specific anti-PRRSV antibody increased and finally peaked 2 weeks after the third immunization. The result showed that the antibody levels of immune groups pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M were higher than immune group pCAGGS-GM all the time, and the antibodies of immune group pCAGGS-GM decreased faster than the JEV replicon vaccine group. Furthermore, in the pJEV-REP-IRES vaccinated group, the level of special anti-PRRSV antibodies were the same as in the PBS group. Meanwhile, the ELISA method is very accuracy and the immune response is specifically directed against PRRS proteins. We can infer that the PRRS proteins GP5 and M were responsible for the observed immune response rather than the backbone of the JEV replicon. Of course, the ELISA method is very accuracy. However, an additional control with pJEV-REP-IRES plasmid expressing an irrelevant protein can be worth to take into account to rule out the possibility that any protein different from GP5 or M induces antibodies that cross-react with PRRSV antigens.

All the data showed that the JEV replicon vaccine induced effective antibody against PRRSV. However, the protection capability of the JEV replicon vaccines against PRRS needs more assay in pigs though, previous report showed that Pigs immunized with CSF-JE VRP replicon vaccine displayed strong antibody responses and protection against CSFV and JEV challenge infections(Yang et al. 2012). In the aspect of preventing JEV infection, it is report that the JEV replicon vaccine could confer protection to itself (Huang et al. 2015). Therefore, we focus on the immune protection to PRRS rather than JEV. Of course, this genetic engineering vaccine can be further optimized to enhance the immune protective effect for example, to screen appropriate immune adjuvant for JEV replicon vaccine or inoculation of animals with suitable methods. At the same time, this vaccine with JEV replicons expressing GP5/M proteins induced a systemic immune responses to PRRS, it is can be a good heterologous Prime-Boost HP-PRRS Vaccination Regimens. The JEV replicon vaccine can be used for the first immunization and the commercial
HP-PRRS vaccines can be used to improve anti-PRRSV immunity. Because it is a laborious work to attenuate PRRSV and it takes a long time to develop a new modified live-attenuated vaccine when a new variation of PRRS emerges, this genetically engineered vaccine is good emergency supplement strategy.

Flaviviruses replicons, characterized by their high efficiency in expressing heterologous genes without producing infectious progeny virus, are useful tools for understanding the replication of viruses and exploring antiviral screening, and it is also applied as a potential expression system to be an antivirus vaccine candidate (Cao et al. 2011; Suzuki et al. 2014). Replicons vaccines has several advantages over inactivated vaccines and many subunit vaccines. It can prepared more quickly than inactivated virus vaccines, and replicons vaccines can enhance cross-protection through the fusion of expressing antigenic peptides of different strains (Sun et al. 2016). Compared with the baculovirus expression system, replicon vaccines are more convenient to operate since they do not need to express antigens by cell culture and be purified. Otherwise, the baculovirus expression system is liable to fail in vivo because of the complement system of host (Tani et al. 2003). Therefore, we constructed JEV DNA-based replicons through deleting the C, prM, E encoding region which replicates autonomously but fails to generate infectious virus progeny in non-complementing cells; therefore, it can be used as an expression system for foreign proteins. In this study, the nucleotides from 165–2402, corresponding to most of the structural proteins C, prM, E, were deleted in JEV replicons. The N-terminal 23 amino acids of the C protein, have been reported as performing the essential role of the cis-acting element and in regulating minus sense RNA synthesis (also known as containing the cyclization sequence) (Khromykh et al. 2001). Compared with other JEV replicons, we retained less of the nucleic acid sequence of C protein, and the IFA and RT-PCR results showed that our constructed JEV replicon can self-replicate effectively (Fig. 2). We also retained the C-terminal 25 amino acids of E protein to preserve the correct processing and translocation of NS1 and the remaining nonstructural polyprotein in the correct topology across the membrane of the endoplasmic reticulum (Ng et al. 2003).
At the same time, we constructed JEV DNA-based replicons with a cytomegalovirus (CMV) promoter. Compared with RNA-based replicons, DNA-based replicons operate more conveniently and are more stable in the form of plasmids. Furthermore, host cells are more likely to intake DNA-based replicons (Cao et al. 2011; Varnavski et al. 2000).

Conclusions

In conclusion, we describe the construction of JEV replicon with deletion in the C, prM, E encoding region, which can be used as an efficient expression system for foreign proteins. In addition, this JEV replicon used to express GP5/M proteins which showed better immunogenicity compared with tradition DNA vectors expressing GP5/M proteins. These results indicate that our JEV replicons are a useful molecular platform for expressing foreign proteins capable of inducing a protective immune response and could serve as a promising strategy to develop as a potential bivalent seedlings vaccine candidate.

Acknowledgments

We would like to thank the National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control providing HP-PRRSV strain. Also, we would like to thank Harbin Veterinary Research Institute providing plasmids. Moreover, we would like to thank Shanghai Veterinary Research Institute providing antibodies.

All authors reviewed and revised the first and final drafts of this manuscript.

Reference

Aberle JH, Aberle SW, Kofler RM, and Mandl CW. 2005. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. J Virol 79:15107-15113. 10.1128/JVI.79.24.15107-15113.2005

Binjawadagi B, Lakshmanappa YS, Longchao Z, Dhakal S, Hiremath J, Ouyang K, Shyu DL, Arcos J, Pengcheng S, Gilbertie A, Zuckermann F, Torrelles JB, Jackwood D, Fang Y, and Renukaradhya GJ. 2016. Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 161:1579-1589. 10.1007/s00705-016-2812-0

Botner A, Strandbygaard B, Sorensen KJ, Have P, Madsen KG, Madsen ES, and Alexandersen S. 1997. Appearance of
acute PRRS-like symptoms in sow herds after vaccination with a modified live PRRS vaccine. *Vet Rec* 141:497-499.

Cao F, Li XF, Yu XD, Deng YQ, Jiang T, Zhu QY, Qin ED, and Qin CF. 2011. A DNA-based West Nile virus replicon elicits humoral and cellular immune responses in mice. *J Virol Methods* 178:87-93. 10.1016/j.jvimet.2011.08.018

Charertantanakul W. 2012. Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. *World J Virol* 1:23-30. 10.5501/wjv.v1.i1.23

Done SH, and Paton DJ. 1995. Porcine reproductive and respiratory syndrome: clinical disease, pathology and immunosuppression. *Vet Rec* 136:32-35.

Harvey TJ, Anraku I, Linedale R, Harrich D, Mackenzie J, Suhrbier A, and Khromykh AA. 2003. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. *J Virol* 77:7796-7803.

Huang YT, Liao JT, Yen LC, Chang YK, Lin YL, and Liao CL. 2015. Japanese encephalitis virus replicon-based vaccine expressing enterovirus-71 epitope confers dual protection from lethal challenges. *J Biomed Sci* 22:74. 10.1186/s12929-015-0181-8

Jeong J, Choi K, Kang I, Park C, and Chae C. 2016. Evaluation of a 20year old porcine reproductive and respiratory syndrome (PRRS) modified live vaccine (Ingelvac(R) PRRS MLV) against two recent type 2 PRRS virus isolates in South Korea. *Vet Microbiol* 192:102-109. 10.1016/j.vetmic.2016.07.006

Jiang YF, Xia TQ, Zhou YJ, Yu LX, Yang S, Huang QF, Li LW, Gao F, Qu ZH, Tong W, and Tong GZ. 2015. Characterization of three porcine reproductive and respiratory syndrome virus isolates from a single swine farm bearing strong homology to a vaccine strain. *Vet Microbiol* 179:242-249. 10.1016/j.vetmic.2015.06.015

Kato F, and Hishiki T. 2016. Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. *Viruses* 8. 10.3390/v8050122

Khromykh AA, Meka H, Guyatt KJ, and Westaway EG. 2001. Essential role of cyclization sequences in flavivirus RNA replication. *J Virol* 75:6719-6728. 10.1128/JVI.75.14.6719-6728.2001

Kimman TG, Cornelissen LA, Moormann RJ, Rebel JM, and Stockhofe-Zurwieden N. 2009. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. *Vaccine* 27:3704-3718. 10.1016/j.vaccine.2009.04.022

Leng X, Li Z, Xia M, He Y, and Wu H. 2012. Evaluation of the efficacy of an attenuated live vaccine against highly pathogenic porcine reproductive and respiratory syndrome virus in young pigs. *Clin Vaccine Immunol* 19:1199-1206. 10.1128/CVI.05646-11

Li J, and Murtaugh MP. 2012. Dissociation of porcine reproductive and respiratory syndrome virus neutralization from antibodies specific to major envelope protein surface epitopes. *Virology* 433:367-376. 10.1016/j.virol.2012.08.026

Li Y, Wang X, Bo K, Wang X, Tang B, Yang B, Jiang W, and Jiang P. 2007. Emergence of a highly pathogenic porcine reproductive and respiratory virus in the Mid-Eastern region of China. *Vet J* 174:577-584. 10.1016/j.tvjl.2007.07.032

Linhares DC, Cano JP, Wetzel T, Nerem J, Torremorell M, and Dee SA. 2012. Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. *Vaccine* 30:407-413. 10.1016/j.vaccine.2011.10.075
Mardassi H, Massie B, and Dea S. 1996. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. *Virology* 221:98-112.

10.1006/viro.1996.0356

Ng CY, Gu F, Phong WY, Chen YL, Lim SP, Davidson A, and Vasudevan SG. 2007. Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. *Antiviral Res* 76:222-231. 10.1016/j.antiviral.2007.06.007

Opriessnig T, Halbur PG, Yoon KJ, Pogranichniy RM, Harmon KM, Evans R, Key KF, Pallares FJ, Thomas P, and Meng XJ. 2002. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Ingelevac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV. *J Virol* 76:11837-11844.

Pileri E, and Mateu E. 2016. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. *Vet Res* 47. Art 108 10.1186/s13567-016-0391-4

Qi WB, Hua RH, Yan LP, Tong GZ, Zhang GH, Ren T, Wu DL, and Liao M. 2008. Effective inhibition of Japanese encephalitis virus replication by small interfering RNAs targeting the NS5 gene. *Virus Res* 132:145-151. 10.1016/j.virusres.2007.11.014

Qi WB, Tian J, Su S, Huang LH, Li HN, and Liao M. 2015. Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. *Proteomics* 15:1512-1524. 10.1002/pmic.201400309

Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, and Lager KM. 2015. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction. *Vaccine* 33:3065-3072. 10.1016/j.vaccine.2015.04.102

Scortti M, Prieto C, Alvarez E, Simarro I, and Castro JM. 2007. Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV. *Vet Rec* 161:809-813.

Sun D, Khatun A, Kim WI, Cooper V, Cho YI, Wang C, Choi EJ, and Yoon KJ. 2016. Attempts to enhance cross-protection against porcine reproductive and respiratory syndrome viruses using chimeric viruses containing structural genes from two antigenically distinct strains. *Vaccine*. 10.1016/j.vaccine.2016.06.069

Sun Q, Liu J, Li Y, Zhang Q, Shan S, Li X, and Qi B. 2013. Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant. *Plant Mol Biol* 83:391-404. 10.1007/s11103-013-0096-2

Suzuki R, Ishikawa T, Konishi E, Matsuda M, Watashi K, Aizaki H, Takasaki T, and Wakita T. 2014. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon. *J Gen Virol* 95:60-65. 10.1099/vir.0.058008-0

Tani H, Limn CK, Yap CC, Onishi M, Nozaki M, Nishimune Y, Okahashi N, Kitagawa Y, Watanabe R, Mochizuki R, Morishii K, and Matsuura Y. 2003. In vitro and in vivo gene delivery by recombinant baculoviruses. *J Virol* 77:9799-9808. 10.1128/Jvi.77.18.9799-9808.2003

Tian ZJ, An TQ, Zhou YJ, Peng JM, Hu SP, Wei TC, Jiang YF, Xiao Y, and Tong GZ. 2009. An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects...
piglets against HP-PRRS. Vet Microbiol 138:34-40. 10.1016/j.vetmic.2009.03.003

Tong GZ, Zhou YJ, Hao XF, Tian ZJ, An TQ, and Qiu HJ. 2007. Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis 13:1434-1436. 10.3201/eid1309.070399

Varnavski AN, Young PR, and Khromykh AA. 2000. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 74:4394-4403.

Wang SP, Fang LR, Fan HY, Jiang YB, Pan YF, Luo R, Zhao Q, Chen HC, and Xiao SB. 2007. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 25:8220-8227. 10.1016/j.vaccine.2007.09.069

Yang Z, Wu R, Li RW, Li L, Xiong Z, Zhao H, Guo D, and Pan Z. 2012. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 165:61-70. 10.1016/j.virusres.2012.01.007

Yu X, Chen N, Deng X, Cao Z, Han W, Hu D, Wu J, Zhang S, Wang B, Gu X, and Tian K. 2013. Genomic sequencing reveals mutations potentially related to the overattenuation of a highly pathogenic porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol 20:613-619. 10.1128/CVI.00672-12

Zhao K, Ye C, Chang XB, Jiang CG, Wang SJ, Cai XH, Tong GZ, Tian ZJ, Shi M, and An TQ. 2015. Importation and Recombination Are Responsible for the Latest Emergence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in China. J Virol 89:10712-10716. 10.1128/Jvi.01446-15
FIG. 1. Schematic drawing of replicons. (A) Strategy to construct the JEV replicon. An in-frame deletion in the structural region of C-prM-E was from nt 165 to 2402 and SpeI and SalI site was generated at the junction of the deletion position. (B and C) Schematic drawing of replicons contain report gene. (B) The EGFP fragment without a termination code and initiation code was engineered into the deletion position at SpeI and SalI. (C) The IRES-EGFP fragment, containing a termination code at the end of EGFP and an initiation code at the front of E25, which was engineered into the deletion position at the SpeI and SalI site.

FIG. 2. The efficiency and replication of JEV replicons. (A) 293T cells transfected with replicon plasmids pJEV-REP-GFP-IRES or pJEV-REP-GFP were subjected to IFA at the indicated time points post transfection. JEV-NS1 polyclonal antibody and FITC-conjugated goat anti-mouse IgG antibody were used as primary and secondary antibodies for IFA, respectively. (B) BHK-21 cells and 293T cells were transfected with pJEV-REP-GFP-IRES or pJEV-REP-GFP and monitored the EGFP signals by fluorescence microscope at 48 h post transfection.

FIG. 3. Plus or minus detection of replicon RNA. (A) BHK-21 cells were transfected with replicon plasmids pJEV-REP-GFP-IRES or pJEV-REP-GFP. Total RNA isolated at 48 h post transfection was subjected to RT-PCR analysis with JEV-specific primers. RT reaction was performed under standard conditions with avian myeloblastosis virus (AMV) reverse transcriptase (Takara), Primer 2403F and 2609R targeting a region within the E gene, was used as a sense or an antisense primer respectively in RT step to selectively quantitate either minus- or plus-sense replicon RNA. (B) The cDNA samples obtained from B were diluted with 10 times or 20 times and quantitate either minus- or plus-sense replicon RNA by PCR.

FIG. 4. Expression of PRRSV GP5/M protein in JEV replicons. (A) Schematic drawing of pJEV-REP-G-2A-M and pJEV-REP-G-2A-M-IRES. (B) 293T cells transfected with replicon plasmids pJEV-REP-G-2A-M and pJEV-REP-G-2A-M-IRES were subjected to IFA at the indicated time points post transfection. JEV-NS1 polyclonal antibody and FITC-conjugated goat anti-mouse IgG antibody were used as primary and secondary antibodies for IFA. (C) Western Blot was used to...
analyze the GP5 and M protein expression, PRRSV GP5 protein monoclonal antibodies were used as primary antibodies and IRDye 800-conjugated goat anti-mouse as the secondary antibody. 293T cells transfected with pCAGGS-GM was used as a positive control while 293T cells were used as a negative control. Equivalent proteins sample were added in per lane. The GP5 protein almost 22KD and the M protein almost 19KD. The fusion protein almost 41KD was showed by red arrow.

FIG. 5. Lymphocyte proliferation elicited by recombinant JEV replicons expressing GP5/M protein in mice. Eight-week-old, SPF BALB/c mice were immunized with pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, pCAGGS-GM, pJEV-REP-IRES, and PBS respectively. Lymphocytes were separated from the spleens of mice two weeks after the third immunization. Then, 100μl lymphocytes were cultured with 100μl PRRSV. 100μl RPMI-1640 and 100μl lymphocytes of PBS control group were added into another 96-well plate as a control. After 84h, CCK-8 assay was performed to detect the lymphocyte proliferation. Stimulation Index (SI) = OD_{450nm} (PRRSV)/ OD_{450nm} (Control). Statistical were compared the pCAGGS-GM, pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M groups with the pJEV-REP-IRES group, respectively.

FIG. 6. Specific antibodies elicited by recombinant JEV replicons expressing GP5/M protein in mice. Eight-week-old, SPF BALB/c mice were immunized with pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, pCAGGS-GM, pJEV-REP-IRES, and PBS respectively. Mice sera were collected at indicated time points after immunization and used to detect the GP5 specific antibodies by ELISA.
Table 1 (on next page)

Primers used for construction of the subgenomic replicons of JEV.
| Table. 1 Primers used for construction of the subgenomic replicons of JEV. |
|---------------------------------|---------------------------------|
| primer | Sequences(5′-3′) |
| pCMV-F | TTTTTGCGGCGGCTAGTTATTAATAGTAATCAATTACGG |
| pCMV-R | GTTCACACAGATAAACTTTCTGGATCTGACGTTCACTAAA CCAGCTCTG |
| 5'UTR-c23 | |
| pJEV1-F | AGAAGTTTTATCTGTGTGAACCTCTTTGG |
| pJEV164-olR | CTCGGTCGACGGTGTTAACTAGTGCGGGGTAGGCGC GTTTTCAGC |
| Fragment B | |
| PJEV2403-olF | ACTAGTGTATACCAACCGTCAGCGAGACCGATCAATTGCTT TGG |
| pJEV5706R | TTACGCTCGCACAACGAC |
| Fragment II | |
| pJEV-5557F | CGACCCCGGCCTGGAACCACG |
| pJEV-9155R | GAACCCCAAGCTCTAAACCTCTAGA |
| Fragment C | |
| pJEV9117F | CTTGGAGAACGCGAGTATCTAGGATTTG |
| pJEV10976R | AGCCGGCGCCACGCGAGGCTGGGACCATGCGCCGCT CAGGAGATCCGTGTTTCTTCTCACCAC |
| Fragment D | |
| HDVr-pA-F | CCTGATGGCCCGGCATGCTCCCAACCTCTCAGGCTGGGCGCGGCG |
| | GCTAACTTTTATTGCAGCTTA |
| HDVr-pA-R | CGAGGTACCTTGTCGAAACTCATCAATGTATCTTA |

Lined part represent for restriction enzymes.
Table 2 (on next page)

Primers used for construction of different plasmid and primers used for plus or minus detection of replicon RNA.
Table 2: Primers used for construction of the subgenomic replicons of JEV.

Primer	Sequences (5′-3′)
EGFP-F	CCGCACTAGTATGGGTGAGCAAGGGGCAGG
EGFP-R	CTCGGTGCAGCTTGTACAGCTCGTCCATGC
EGFP-R-taa	GGGGGAGGGAGAGGGGCGTTACTTGACAGCTCGTCCATGCC
IRES-F	CGCCCCCTCTCCCTCCCC
IRES-588R	CTCGGTGGACCAGCAGCTTATTACATCGTGG
2403F	CGAGACCAGATCAATTGCTTTGG
2609R	CTTCGATAGGGATCTGGGCGTTCTGG
GP5F	CCGAAGGGACGATCCACCTCCCTCCCC
GP5R-FMDV2A-R	CTCAACGTCTCCGCAACTTGAGGAGGTGCAAGTTCGAC
MF-FMDV2A-F	GACCTCCCAGTGTTGCAGAGCTGGAGTCCACCC
MR-SalI	CCGCACTAGTATGGGCGTTACTTGAGGACAGCTGGG
M-R	GGGGGAAGGGAGAGGGGCGTTATTTGCGATATTTAACAAGG
GP5F-EcoRI	CCGCACTAGTATGGGCGTTACTTGAGGACAGCTGGG
MR-XhoI	CCGCACTAGTATGGGCGTTACTTGAGGACAGCTGGG
IRES-F-SpeI-TAA	CCGCACTAGTATGGGCGTTACTTGAGGACAGCTGGG

Lined part represents for restriction enzymes.
Figure 1

Schematic drawing of replicons.

(A) The numbers are the nucleotide positions based on the sequence of JEV SA-14-14-2 strain. An in-frame deletion in the structural region of C-prM-E was from nt 165 to 2402 and SpeI and SalI site was generated at the junction of the deletion position.

(B) The EGFP fragment without a termination code and initiation code was engineered into the deletion position at SpeI and SalI.

(C) The IRES-EGFP fragment, containing a termination code at the end of EGFP and an initiation code at the front of E25, which was engineered into the deletion position at the SpeI and SalI site.
Figure 2

The efficiency and replication of JEV replicons.

(A) 293T cells transfected with replicon plasmids pJEV-REP-GFP-IRES or pJEV-REP-GFP were subjected to IFA at the indicated time points post transfection. JEV-NS1 polyclonal antibody and FITC-conjugated goat anti-mouse IgG antibody were used as primary and secondary antibodies for IFA, respectively. (B) BHK-21 cells and 293T cells were transfected with pJEV-REP-GFP-IRES or pJEV-REP-GFP and monitored the EGFP signals by fluorescence microscope at 48 h post transfection.
Figure 3

Plus or minus detection of replicon RNA.

(A) BHK-21 cells were transfected with replicon plasmids pJEV-REP-GFP-IRES or pJEV-REP-GFP. Total RNA isolated at 48 h post transfection was subjected to RT-PCR analysis with JEV-specific primers. RT reaction was performed under standard conditions with avian myeloblastosis virus (AMV) reverse transcriptase (Takara), Primer 2403F and 2609R targeting a region within the E gene, was used as a sense or an antisense primer respectively in RT step to selectively quantitate either minus- or plus-sense replicon RNA. (B) The cDNA samples obtained from B were diluted with 10 times or 20 times and quantitate either minus- or plus-sense replicon RNA by PCR.
Figure 4

Expression of PRRSV GP5/M protein in JEV replicons

(A) Schematic drawing of pJEV-REP-G-2A-M and pJEV-REP-G-2A-M-IRES. (B) 293T cells transfected with replicon plasmids pJEV-REP-G-2A-M and pJEV-REP-G-2A-M-IRES were subjected to IFA at the indicated time points post transfection. JEV-NS1 polyclonal antibody and FITC-conjugated goat anti-mouse IgG antibody were used as primary and secondary antibodies for IFA (C) Western Blot was used to analyze the GP5 and M protein expression, PRRSV GP5 protein monoclonal antibodies were used as primary antibodies and IRDye 800-conjugated goat anti-mouse as the secondary antibody. 293T cells transfected with pCAGGS-GM was used as a positive control while 293T cells were used as a negative control. in the pJEV-REP-G-2A-M, pJEV-REP-G-2A-M-IRES and pCAGGS-GM, the fusion protein were expressed in 293T cells successfully and in negative control the fusion protein were not detected.
A

B

C

GP5/M

Ctrl

pJEV-REP-G-2A-M

pJEV-REP-G-2A-M-IRES

Protein Ladder

pJEV-REP-G-2A-M

pJEV-REP-G-2A-M-IRES

pCAGGS-GM

Negative Ctrl

(KD)
Lymphocyte proliferation elicited by recombinant JEV replicons expressing GP5/M protein in mice.

Eight-week-old, SPF BALB/c mice were immunized with pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, pCAGGS-GM, pJEV-REP-IRES, and PBS respectively. Lymphocytes were separated from the spleens of mice two weeks after the third immunization. Then, 100μl lymphocytes were cultured with 100μl PRRSV. 100μl RPMI-1640 and 100μl lymphocytes of PBS control group were added into another 96-well plate as a control. After 84h, CCK-8 assay was performed to detect the lymphocyte proliferation. Stimulation Index (SI) = OD_{450nm} (PRRSV)/OD_{450nm} (Control). Statistical were compared the pCAGGS-GM, pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M groups with the pJEV-REP-IRES group, respectively.
Figure 6

Specific antibodies elicited by recombinant JEV replicons expressing GP5/M protein in mice.

Eight-week-old, SPF BALB/c mice were immunized with pJEV-REP-G-2A-M-IRES, pJEV-REP-G-2A-M, pCAGGS-GM, pJEV-REP-IRES, and PBS respectively. Mice sera were collected at indicated time points after immunization and used to detect the GP5 specific antibodies by ELISA.