INTRODUCTION

The human immunodeficiency infection (HIV) is assembled to the class Lentivirus inside the group of Retroviridae, subfamily Orthoretrovirinae [1]. HIV is categorized into types 1 and 2 based on genetic characteristics and contrasts in the viral antigens (HIV-1, HIV-2). The immunodeficiency infections of non-human primates are additionally gathered to the class Lentivirus. Epidemiological and phylogenetic studies currently available indicate that HIV was spread to the human population between 1920 and 1940. HIV-1 developed from infections of non-human primate immunodeficiency caused by Central African chimpanzees and HIV-2 from Bithy West African mangabeys [2, 3]. Infections can be an etiological operator in infections of nonhuman primate immunodeficiency spread to the human population between 1920 and 1940. HIV-1 was not frequently addressed, when a large portion of the study was completed, the identified retroviral viruses were confined to a few animal forms of creatures. The disclosure of the lethal human retrovirus HIV, however, changed all of that in the mid-1980s. Everyone who studied the rise in creature retroviruses quickly realized that retroviral replication cycle experiments may distinguish drug targets that could be beneficial in treating HIV-contaminated individuals and experiencing AIDS. Maximum anti-HIV drugs now in extensive use hinder reverse transcriptase and some obstruct the viral protease from another retroviral enzyme (To produce the final components of virus particles, this breaks down to the core of illness, and cause too close to the ordinary future. Antiretroviral treatment diminishes the likely danger of passings, which medications can be pricey and produce serious results. Without antiretroviral treatment, a normal endurance time span after the disease is determined around 9 to 11 y, concerning the sort of HIV [5]. HIV is ordered into two kinds like HIV 1, and HIV 2. Each started from nonhuman primates in West-focal Africa during the twentieth century. HIV 1 is starting from Chimpzees and HIV 2 is beginning from Old World Monkey [6]. Helps was at first distinguished by the U. S Centres for Disease Control and Prevention (CDC) in 1981, and it is causing the HIV contamination had been recognized during the early piece of the decade. At the hour of 2012, AIDS has prompts an expected 36 million passings around the globe, and around 35.3 million people live with HIV anywhere on the world [7]. Assortments of synthetic substances were surveyed for inhibitory impacts upon HIV replication in vitro. HIV has two primary focuses in vivo like tissue macrophages and CD4 lymphocytes. The medicines focused at the control of HIV replication in both cell types. The replicative pattern of HIV comprises of ten stages that may be viewed as alluring focuses for the medicines of HIV. Various exploration research centres are associated with the improvement of antiviral operators which influence with HIV in various phases of viral replication. In view of the stage from which they interact with the HIV replication cycle, a significant number of the counter HIV substances are allocated to one of these ten groups of HIV inhibitors, analogous to mix, adsorption, uncoating, DNA replication, incorporation, turn around record, interpretation, record, development, and get together or discharge [8]. The following text categorizes new natural products with anti-HIV action according to their chemical structures: terpenes, phenolics, alkaloids, peptides and carbohydrates, together with IC50 values [9].

Retrovirus replication: The mechanism of retrovirus replication [10] (fig. 1).

Treatment for HIV

Natural products: Nature has an extensive range of medicine to fight against many diseases which are to be safe. The natural products used for the treatment of HIV are given in below.

Anti-retroviral therapy

During the 1970s, one advantage of finding out how retroviruses replicate the detection of potential focus for antiviral therapies was not frequently addressed, when a large portion of the study was completed, the identified retroviral viruses were confined to a few animal forms of creatures. The disclosure of the lethal human retrovirus HIV, however, changed all of that in the mid-1980s. Everyone who studied the rise in creature retroviruses quickly realized that retroviral replication cycle experiments may distinguish drug targets that could be beneficial in treating HIV-contaminated individuals and experiencing AIDS. Maximum anti-HIV drugs now in extensive use hinder reverse transcriptase and some obstruct the viral protease from another retroviral enzyme (To produce the final components of virus particles, this breaks viral proteins) [53]. As of late, In the treatment of HIV infection, a blockade of viral integrase was also reported, one more vindication of endeavours to seek after the occasionally elusive procedures for infection replication [54]. As so numerous major advancements in research, the revelation of opposite transcriptase in 1970 stamped not merely the intersection of an end target. Likewise, the beginning stage for inspecting different parts of the augmentation pattern of retroviruses, the combination of viral DNA and dissemination of endogenous provirusarting points of viral oncogenes and the revelation of proto-oncogenes.
Fig. 1: The mechanism of retrovirus replication

![Diagram of retrovirus replication]

Fig. 2: Life cycle of virus

![Diagram of HIV life cycle]

Table 1: Anti-retroviral therapy

S. No.	Active constituent name	Chemical structure	Source	IC50		
1	Suksdorfin [11]	![Chemical structure](image)	Common name–Angelica scientific name- Angelicamorii family–Apiaceae	IC50 value-2.6 μM [12]		
No.	Name	Common name	Scientific name	Family	IC50 value	
-----	-----------------------	----------------------	--------------------------------------	-----------------	----------------	
2	Maslinic acid [13]	Asian herb bennet	Geum japonicum	Rosaceae	17.9 μM [14]	
3	Anolignan-A [15]	Axle wood	Anogeissus acuminate	Combretaceae	60.4 μg/ml [16]	1.072 μg/ml [17]
4	Anolignan-B [15]	Axle wood	Anogeissus acuminate	Combretaceae	20 μM [19]	
5	Calanolide-A [18]	Calophyllum	Calophyllum cardato-oblongum	Calophyllaceae	15 μM [20]	
6	Calanolide-B [18]	Calophyllum	Calophyllum cardato-oblongum	Calophyllaceae	5.49 μM [22]	
7	Retrojusticidin-B [21]	Ceylon myrtle	Phyllanthus myrtifolius	Euphorbiaceae	50.0 μg/ml [24]	4.1 μM [28]
8	Xanthohumol [23]	Common hop	Humulus lupulus	Cannabaceae		
9	Baicalin [25]	Chinese skullcap	Scrutella ribicolaensis	Lamiaceae		
10	Lanostanetriter pene	Corky debar tree	Polyalthia suberosa	Annonaceae	13.3 μM [32]	
11	Mallotojaponin [29]	Food wrappeplant	Mallotus japonicas	Euphorbiaceae	26.9 μM [30]	
12	Macluroxantho ne-B [31]	Fustic tree	Maclura tinctoria	Moraceae		
No.	Compound	Common Name	Scientific Name	Family	IC50 Value	
-----	------------------------	--	-------------------------------------	---------------------	------------	
13	Repandusinic acid [33]	Gale of the wind	Phyllanthus nirari	Phyllanthaceae	12.5 µM	
14	Wikstro B [35]	Indian string bush	Wikstroemia indica	Thymelaeaceae	184 ± 6 µM	
15	Robustaflavone [37]	Japanese wax tree	Rhus succedanea	Anacardiaceae	65 µM	
16	Lancilactone-C [39]	Kadsura	Kadsulancilimba	Schisandraceae	>100 µg/ml	
17	Prostratin [41]	Mamala tree	Homalanthus nutans	Euphorbiaceae	0.5 µM	
18	Lithospermic acid [43]	Red sage/Danshen	Salviamiltiorrhiza	Lamiaceae	7.91±1.59 µmol·L⁻¹	
19	Caffeic acid [45]	Ratanjot	Arnebiaeuchroma	Boraginaceae	18.9±10.1 µM	
20	Curcuminoids [47]	Turmeric	Curcuma longa	Zingibaraceae	100 µM	
21	Oleanolic acid [49]	Yellowwhorn	Xanthocerus sorbifolia	Sapindaceae	21.8 µM	
22	12-o-tetradecanoylphorbol-13-acetate [51]	Purging croton	Croton tiglium	Euphorbiaceae	0.48 mg/ml	
Curcuma longa for treatment of COVID-19

Curcumin is a polyphenolic compound isolated from establishments of rhizome plant curcuma longa (family Zingiberaceae), shows a wide extent of remedial belongings including disease counteraction specialist, unfriendly to microbial, against proliferative, alleviating neuroprotective and cardioprotective properties [55]. Curcumin applies antiviral activities against the wide scope of contaminations including HIV, HCV, HPV diseases, Influenza, Hepatitis, Zika virus Adenovirus contamination. Continuous experiments have shown that a related new SARS-CoV, SARS-CoV2, also targets human host Enzyme 2 (ACE2), the entry site for COVID-19 [56].

CONCLUSION

Despite the fact that HIV-1 has been the most examined irresistible specialist over the most recent 30 y, the new accessible advances have permitted the picking up of new data about infection structure and replication. Natural products, especially those in traditional medication have provided a premise of new medication possibility for some illnesses, HIV and, other neurocognitive issues.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN. Editor. Virology. 3rd ed Philadelphia: Lippincott-Raven; 1996. p. 1881–952.

2. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee pan troglodytes. Nature 1999;397:436–41.

3. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 2011;1:a006841.

4. Sepkowitz KA. AIDS-the first 20 y. New England J Med 2001;344:1764–72.

5. UNAIDS, WHO. AIDS epidemic update; 2007.

6. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives Med 2011;1:a006841.

7. Gallo RC. A reflection on HIV/AIDS research after 25 y. Retrovirology 2006;3:72.

8. Rajandep Kaur, Rajeev Khurb. Anti-HIV potential medicinally important plants. Int J Pharma Bio Sci 2011;2:387-98.

9. Mankil Jung, Seokjoon Lee, Hanjo Kim, Haeook Kim. Recent studies on natural products as anti-HIV agents. Curr Med Chem 2000;7:649-61.

10. De Clercq E. Antiviral therapy for human immunodeficiency virusinfections. Clin Microbiol Rev 1995;8:200–39.

11. Ohtake N, Nakai Y, Yamamoto M, Sakakibara I, Takeda S, et al. Separation and isolation methods for analysis of active principles of Sho-saiko-to (SST) oriental medicine. Planta Med 2000;66:564–7.

12. Li HY, Sun N J, Kashiwada Y, Sun L, Snider JV, Cosentino LM, et al. Novel anti-HIV-1 protease inhibitors and related triterpenes from Kadsura japonica. J Nat Prod 1995;58:392–400.

13. Reutrakul V, Kawanishi K. New lignans from anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 1999;62:94–7.

14. Kaur R, Sharma P, Gupta GK, Ntie Kang F, Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 2020;25:2070.

15. Gulakowski RJ, McMahon JB, Boag RK, et al. Survey of anti-HIV compounds from medicinal plants of the tropical rainforest. J Nat Prod 1992;55:2735–43.

16. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical forest tree, Calophyllum inanimum. J Med Chem 1992;35:2735–43.

17. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical forest tree, Calophyllum inanimum. J Med Chem 1992;35:2735–43.

18. Dong H, BuT P PH, Foo LY. Inhibitory activity of some phloroglucinol derivatives. FEBS Lett 1991;286:83–5.

19. Giraud P, Dissard J, Niemela M, Karius T, et al. Structure activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 2020;25:2070.

20. Cosentino LM, Tausif et al. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum inanimum. J Med Chem 1992;35:2735–43.

21. Reutrakul V, Kawanishi K. New lignans from anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 1995;58:392–400.

22. Reutrakul V, Kawanishi K. New lignans from anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 1995;58:392–400.

23. Rajandeep Kaur, Rajeev Kharb. Anti-HIV potential medicinally important plants. Int J Pharma Bio Sci 2011;2:387-98.

24. Gulakowski RJ, McMahon JB, Boag RK, et al. Survey of anti-HIV compounds from medicinal plants of the tropical rainforest. J Nat Prod 1992;55:2735–43.

25. Reutrakul V, Kawanishi K. New lignans from anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 1995;58:392–400.
37. Yao Haur K, Li-Ming Yang K. Antitumour and anti-AIDS triterpenes from Celastrus Hindsii. Phytochemistry 1997;44:1275–81.
38. Lin YM, Anderson H, Flavin MT, Pai YHS, Mata Greenwood E, Pongsuparp T, et al. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multijlora. J Nat Prod 1997;60:884–6.
39. Roth GN, Chandra A, Nair MG. Novel bioactivities of curcuma longa constituents. J Nat Prod 1998;61:542–5.
40. Chen DF, Zhang SX, Wang HK, Zhang SY, Sun QZ, Cosentino LM, et al. Novel anti-HIV lancilactone C and related triterpenes from Kadsura lancilimba. J Nat Prod 1999;62:94–7.
41. Emini EA, Fan HY. Immunological and pharmacological approaches to the control of retroviral infections. In: Coffin, editors. Retroviruses; 1999. p. 637–706.
42. http://www.caymanchem.com/pdfs/10272.pdf [Last accessed on 10 Apr 2021]
43. Pang XF, Zhang LH, Bai F, Wang NP, Garner RE, McKallip RJ, et al. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression 2015;9:6043–54.
44. http://en.cnki.com.cn/Article_en/CJFDTotal-ZXYZ200805011.htm [Last accessed on 10 Apr 2021]
45. Das S, Sarmah S, Lyndem S, Roy AS. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2020;13:1–11.
46. Fesen MR, Kohn KW, Leteurtre F, Pommier Y. Inhibitors of human immunodeficiency virus integrase. Proc Natl Acad Sci 1993;90:2399–403.
47. Roth GN, Chandra A, Nair MG. Novel bioactivities of curcuma longa constituents. J Nat Prod 1998;61:542–5.
48. Chattopadhyay D, Naik TN. Antivirals of ethnomedical origin: structure-activity relationship and scope. Mini Rev Med Chem 2007;7:275–301.
49. Kashiwada Y, Wang HK, Nagao T, Kitana S, Yasuda I, Fujioka T, et al. Anti-AIDS agents. 30 anti-HIV activity of olemolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod 1998;61:1090–5.
50. Jung M, Lee S, Kim H. Recent studies on natural products as anti-HIV agents. Curr Med Chem 2000;7:649–61.
51. El-Mekkawy S, Meselhy MR, Nakamura N, Hattori M, Kawahata T, Otake T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry 2000;53:457–64.
52. Chattopadhyay D, Naik TN. Antivirals of ethnomedical origin: structure-activity relationship and scope. Mini Rev Med Chem 2007;7:275–301.
53. Emini EA, Fan HY. Immunological and pharmacological approaches to the control of retroviral infections. In: Coffin, editors. Retroviruses; 2007. p. 637–706.
54. http://www.hivandhepatitis.com/recent/2007/1101607_a.html. [Last accessed on 10 Apr 2021]
55. Pang XF, Zhang LH, Bai F, Wang NP, Garner RE, McKallip RJ, et al. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Des Dev Ther 2015;9:6043–54.
56. Das S, Sarmah S, Lyndem S, Roy AS. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2020;13:1–11.