Lepton flavor violating $Z \rightarrow l_1^+ l_2^-$ decays with the localized new Higgs doublet in the extra dimension

E. O. Iltan *
Physics Department, Middle East Technical University
Ankara, Turkey

Abstract
We predict the branching ratios of $Z \rightarrow e^\pm \mu^\pm$, $Z \rightarrow e^\pm \tau^\pm$ and $Z \rightarrow \mu^\pm \tau^\pm$ decays in the framework of the 2HDM with the inclusion of one and two extra dimensions, by considering that the new Higgs doublet is localized in the extra dimension with a Gaussian profile. We observe that their BRs are at the order of the magnitude of 10^{-10}, 10^{-8} and 10^{-5} with the inclusion of a single extra dimension, in the given range of the free parameters. These numerical values are slightly suppressed in the case that the localization points of new Higgs scalars are different than origin.

*E-mail address: eiltan@heraklit.physics.metu.edu.tr
1 Introduction

The lepton flavor violating (LFV) interactions are sensitive to the physics beyond the standard model (SM) and they are rich theoretically since they exist at least in the one loop level. The Z decays with different lepton flavor outputs, such as $Z \rightarrow e\mu$, $Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$ are among the candidates of LFV decays and they are clean in the sense that they are free from the long distance effects. In the literature, there is an extensive work on these decays [1]-[14]. The theoretical studies on such Z decays have been stimulated by the Giga-Z option of the Tesla project which aims to increase the production of Z bosons at resonance.

In the framework of the SM the lepton flavor is conserved and its extension with massive neutrinos, so called νSM model, permits the LFV interactions with the lepton mixing mechanism [15]. However, in this model, the theoretical predictions of the branching ratios (BRs) of these LFV Z decays are extremely small when the internal light neutrinos are light [1, 2]

$$BR(Z \rightarrow e^\pm \mu^\pm) \sim BR(Z \rightarrow e^\pm \tau^\pm) \sim 10^{-54},$$
$$BR(Z \rightarrow \mu^\pm \tau^\pm) < 4 \times 10^{-60}. \quad (1)$$

These numbers are far from the experimental limits obtained at LEP 1 [3]:

$$BR(Z \rightarrow e^\pm \mu^\pm) < 1.7 \times 10^{-6},$$
$$BR(Z \rightarrow e^\pm \tau^\pm) < 9.8 \times 10^{-6},$$
$$BR(Z \rightarrow \mu^\pm \tau^\pm) < 1.2 \times 10^{-5}. \quad (2)$$

and from the improved ones at Giga-Z [7]:

$$BR(Z \rightarrow e^\pm \mu^\pm) < 2 \times 10^{-9},$$
$$BR(Z \rightarrow e^\pm \tau^\pm) < f \times 6.5 \times 10^{-8},$$
$$BR(Z \rightarrow \mu^\pm \tau^\pm) < f \times 2.2 \times 10^{-8} \quad (3)$$

with $f = 0.2 - 1.0$. Here the BRs are obtained for the decays $Z \rightarrow \bar{l}_1l_2 + \bar{l}_2l_1$, namely,

$$BR(Z \rightarrow \bar{l}_1l_2) = \frac{\Gamma(Z \rightarrow \bar{l}_1l_2 + \bar{l}_2l_1)}{\Gamma_Z}. \quad (4)$$

The extensions of νSM with one heavy ordinary Dirac neutrino [2], and with two heavy right-handed singlet Majorana neutrinos [2] ensure to enhance the BRs of the corresponding LFV Z decays. The possible enhancements in their BRs have been obtained in other models; in the the Zee model [8], the two Higgs doublet model (2HDM), without (with) the inclusion
of the extra dimension \([9](10)\), the supersymmetric models \([11, 12]\) and the top-color assisted technicolor model \([13]\).

In this work, we study the LFV processes \(Z \rightarrow e^\pm \mu^\pm\), \(Z \rightarrow e^\pm \tau^\pm\) and \(Z \rightarrow \mu^\pm \tau^\pm\) in the framework of the 2HDM with the inclusion of a single (two) extra dimension(s). Here the LFV interactions are induced by the internal new neutral Higgs bosons \(h^0\) and \(A^0\) at least in the one loop level. The extension of the Higgs sector brings new contribution to the BRs of the considered decays. On the other hand, the inclusion the extra dimensions enhance the BRs since the particle spectrum extends after the compactification of the extra dimensions.

The extra dimension idea was originated from the study of Kaluza-Klein \([16]\) which was related to the unification of electromagnetism and the gravity and the motivation increased with the study on the string theory which was formulated in a space-time of more than four dimensions. Since the extra dimensions are hidden to the experiments at present, the most favorable description is the compactification these new dimensions to the surfaces with small radii. In the case of that the extra dimensions are at the order of submilimeter distance, for two extra dimensions, the hierarchy problem in the fundamental scales could be solved and the true scale of quantum gravity would be no more the Planck scale but in the order of electroweak (EW) scale \([17, 18]\).

The effects of extra dimensions on various physical processes have been studied in the literature extensively \([17]-[43]\). In the extra dimension scenarios, the compactification procedure leads to appear new particles, namely Kaluza-Klein (KK) modes in the theory. If all the fields feel the extra dimensions, so called universal extra dimensions (UED), the extra dimensional momentum, therefore the KK number at each vertex, is conserved. If some fields feel the extra dimensions but not all in the theory, those extra dimensions are called non-universal extra dimensions and this is the case where the KK number at vertices is not conserved. The non-conservation of the KK number at the vertex results in the possibility of the existence of the tree level interaction of KK modes with the ordinary particles. In another scenario, some fields are considered to be localized in the extra dimension(s). In the split fermion scenario \([32]-[39]\), the fermions are assumed at different points in the extra dimension with Gaussian profiles and this ensures a possible solution to the hierarchy of fermion masses by considering the overlaps of fermion wave functions in the extra dimensions. The localization of the Higgs doublet in the extra dimension has been considered in \([40]\), by introducing an additional localizer field. In \([41]\) the branching ratios of the radiative LFV decays have been studied in the split fermion scenario, with the assumption that the new Higgs doublet is restricted to the 4D brane or to

2
a part of the bulk in one and two extra dimensions, in the framework of the 2HDM. [42] is devoted to analysis of the BRs of the radiative LFV decays in the case that the new Higgs scalars were localized in the extra dimension with the help of the localizer field and the SM Higgs was considered to have a constant profile. In the recent work [43], the radiative LFV decays were studied with the assumption that the new Higgs doublet was localized in the extra dimension with a Gaussian profile, by an unknown mechanism, however, the other particle zero modes have uniform profile in the extra dimension.

The present work is devoted to the BRs of the LFV Z decays in the 2HDM, with the inclusion of one and two extra dimensions by considering that the new Higgs doublet is localized in the extra dimension with a Gaussian profile, by an unknown mechanism, however, the other particle zero modes have uniform profile in the extra dimension. First, we assume that the new Higgs doublet is localized around origin and, second, we take the localization point as different than the origin but near to that. We observe that the BRs of the LFV Z decays $Z \to e^\pm \mu^\pm$, $Z \to e^\pm \tau^\pm$ and $Z \to \mu^\pm \tau^\pm$ reach to the values at the order of the magnitude of 10^{-10}, 10^{-8} and 10^{-5} with the inclusion of a single extra dimension, in the given range of the free parameters. These numerical values are slightly suppressed in the case that the localization points of new Higgs scalars are different than origin.

The paper is organized as follows: In Section 2, we present the effective vertex and the BRs of LFV Z decays in the 2HDM with the inclusion of extra dimensions. Section 3 is devoted to discussion and our conclusions. In appendix section, we give the explicit expressions of the factors appearing in the effective vertex.

2 The effect of the localization of the new Higgs doublet on the lepton flavor violating $Z \to l_1^\pm l_2^\mp$ decays in the framework of the two Higgs Doublet model.

The LFV Z boson decays $Z \to l_1^- l_2^+$ exist at least in the one loop level and, therefore, the theoretical values of the BRs are extremely small in the SM. With the extension of the Higgs sector in which the flavor changing neutral current (FCNC) at tree level is permitted, there appear additional contributions to the BRs of the LFV processes. The multi Higgs doublet models are among the candidates for such models and, in the present work, we consider the 2HDM with FCNC at tree level. The inclusion of the the spatial extra dimension further enhances the BRs, since the particle spectrum is extended after its compactification and the KK modes of the fields which are accessible to the extra dimension bring additional contributions.
Here, the idea is to consider that the new Higgs scalars are localized in the extra dimension, with Gaussian profiles, by an unknown mechanism, and, the other particles have constant zero mode profiles in the extra dimension.

The Yukawa Lagrangian responsible for the LFV interactions in a single extra dimension reads,

\[L_Y = \xi_{5ij} \bar{l}_i \phi_2 E_{jR} + h.c. , \]

(5)

where \(L \) and \(R \) denote chiral projections, \(L(R) = 1/2(1 \mp \gamma_5) \), \(\phi_2 \) is the new scalar doublet and \(\xi_{5ij} \) are the FV Yukawa couplings in five dimensions, where \(i, j \) are family indices of leptons, \(l_i \) and \(E_j \) are lepton doublets and singlets respectively. These fields are the functions of \(x^\mu \) and \(y \), where \(y \) is the coordinate represents the fifth dimension. Here we choose the Higgs doublets \(\phi_1 \) and \(\phi_2 \) as

\[\phi_1 = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 0 \\ v + H^0 \end{pmatrix} + \sqrt{2} \frac{\chi^+}{i\chi^0} \right] ; \phi_2 = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} \sqrt{2}H^+ \\ H_1 + iH_2 \end{pmatrix} \right), \]

(6)

and their vacuum expectation values as

\[<\phi_1> = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} ; <\phi_2> = 0 . \]

(7)

This choice makes it possible to collect the SM (new) particles in the first (second) doublet and \(H_1 \) and \(H_2 \) becomes the mass eigenstates \(h^0 \) and \(A^0 \), respectively since no mixing occurs between two CP-even neutral bosons \(H^0 \) and \(h^0 \) at tree level.

The five dimensional lepton doublets and singlets and the SM Higgs field are expanded into their KK modes with the compactification of the extra dimension on an orbifold \(S^1/Z_2 \) with radius \(R \) and they read

\[\phi_1(x, y) = \frac{1}{\sqrt{2\pi R}} \left\{ \phi_1^{(0)}(x) + \sqrt{2} \sum_{n=1}^{\infty} \phi_1^{(n)}(x) \cos(ny/R) \right\} , \]

\[l_i(x, y) = \frac{1}{\sqrt{2\pi R}} \left\{ l_i^{(0)}(x) + \sqrt{2} \sum_{n=1}^{\infty} [l_i^{(n)}(x) \cos(ny/R) + l_i^{(n)}(x) \sin(ny/R)] \right\} , \]

\[E_i(x, y) = \frac{1}{\sqrt{2\pi R}} \left\{ E_i^{(0)}(x) + \sqrt{2} \sum_{n=1}^{\infty} [E_i^{(n)}(x) \cos(ny/R) + E_i^{(n)}(x) \sin(ny/R)] \right\} , \]

(8)

where \(\phi_1^{(0)}(x), l_i^{(0)}(x) \) and \(E_i^{(0)}(x) \) are the four dimensional Higgs doublet, lepton doublets and lepton singlets respectively. On the other hand the new Higgs scalar profiles read,

\[S(x, y) = Ae^{-\beta y^2} S(x) , \]

(9)
and the mechanism beyond the localization is unknown\(^1\). Here the normalization constant \(A\) is
\[A = \frac{(2\beta)^{1/4}}{\pi^{1/4} \sqrt{\text{Erf} \left[\sqrt{2\beta \pi R} \right]}}. \tag{10}\]

The strength of the localization of the new Higgs doublet in the extra dimension is regulated by the parameter \(\beta = 1/\sigma^2\), where \(\sigma, \sigma = \rho R\), is the Gaussian width of \(S(x,y)\) in the extra dimension. Here the function \(\text{Erf}[z]\) is the error function, which is defined as
\[\text{Erf}[z] = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt. \tag{11}\]

The modified Yukawa interactions in four dimensions can be obtained by integrating the combination \(\bar{f}_{iL}^{(0(n))}(x,y) S(x,y) f_{jR}^{(n(0))}(x,y)\), appearing in the Lagrangian (eq. (5)), over the fifth dimension as
\[I = \int_{-\pi R}^{\pi R} dy \, \bar{f}_{iL}^{(0(n))}(x,y) S(x,y) f_{jR}^{(n(0))}(x,y), \tag{12}\]
where \(f_{jR}^{(n(0))}\) are the KK basis (zero-mode) for lepton fields (eq. (8)), and finally, we get
\[I = V_n \bar{f}_{iL}^{(0(n))}(x) S(x) f_{jR}^{(n(0))}(x), \tag{13}\]
with the factor \(V_n\)
\[V_n = A c_n, \tag{14}\]
and the function \(A\) which is defined in eq. (10). The function \(c_n\) in eq. (14) is obtained as:
\[c_n = e^{-n^2/4 \beta R^2} \left(\frac{\text{Erf} \left[\frac{1+n+2\beta \pi R^2}{2 \sqrt{\beta R}} \right] + \text{Erf} \left[\frac{-1+n+2\beta \pi R^2}{2 \sqrt{\beta R}} \right]}{4 \sqrt{\beta \pi R}} \right). \tag{15}\]

Notice that the factor \(A\) is embedded into the definition of the the Yukawa couplings \(\xi_{ij}^E\) in four dimensions as
\[\xi_{ij}^E = A \xi_{ij}^E, \tag{16}\]
where \(\xi_{ij}^E\) are the Yukawa couplings in five dimensions (see eq. (5)).

In the following, we consider that the new Higgs scalars are localized in the extra dimension at the point \(y_H, y_H = \alpha \sigma\) near to the origin, namely,
\[S(x,y) = A_H e^{-\beta(y-y_H)^2} S(x), \tag{17}\]
\(^1\)We consider the zero mode Higgs scalars and we do not take into account the possible KK modes of Higgs scalars since the mechanism for the localization is unknown and we expect that the those contributions are small due to their heavy masses.
with the normalization constant
\[A_H = \frac{2 (\beta)^{1/4}}{(2\pi)^{1/4} \sqrt{\text{Erf}[\sqrt{2} \beta (\pi R + y_H)] + \text{Erf}[\sqrt{2} \beta (\pi R - y_H)]}}. \] (18)

The integration of the combination \(\bar{f}^{(0)}_{iL(R)}(x, y) S(x, y) f^{(n(0))}_{jR(L)}(x, y) \) over extra dimension brings the factor \(V_n \) appearing in eq. (13) as
\[V_n = A_H c_n, \] (19)
where \(A_H \) is the normalization constant defined in eq. (18) and function \(c_n \) reads
\[c_n = e^{-\frac{\pi^2 R^2}{2 \beta}} \cos \left[\frac{ny_H}{R} \right] \frac{\left(\text{Erf}[\frac{i n + 2 \beta \pi R^2}{2 \sqrt{\beta R}}] + \text{Erf}[\frac{-i n + 2 \beta \pi R^2}{2 \sqrt{\beta R}}] \right)}{4 \sqrt{\beta \pi R}}. \] (20)

Similar to the previous case, we define the Yukawa couplings in four dimensions as
\[\xi^E_{ij} = A_H \xi^E_{5ij}. \] (21)

Now, we would like to make the same analysis in the case of two spatial extra dimensions. The six dimensional lepton doublets and singlets and the SM Higgs fields are expanded into their KK modes with the compactification of the extra dimension on an orbifold \((S^1 \times S^1)/Z_2\), with radius \(R \) and they read
\[\phi_1(x, y, z) = \frac{1}{2\pi R} \left\{ \phi^{(0)(0)}_1(x) + 2 \sum_{n,s} \phi^{(n,s)}_1(x) \cos(ny/R + sz/R) \right\}, \]
\[l_i(x, y, z) = \frac{1}{2\pi R} \left\{ l^{(0)(0)}_{iL}(x) + 2 \sum_{n,s} \left[l^{(n,s)}_{iL}(x) \cos(ny/R + sz/R) + l^{(n,s)}_{iR}(x) \sin(ny/R + sz/R) \right] \right\}, \]
\[E_i(x, y, z) = \frac{1}{2\pi R} \left\{ E^{(0)(0)}_{iR}(x) + 2 \sum_{n,s} \left[E^{(n,s)}_{iR}(x) \cos(ny/R + sz/R) + E^{(n,s)}_{iL}(x) \sin(ny/R + sz/R) \right] \right\}, \] (22)
where \(\phi^{(0)(0)}_1(x) \), \(l^{(0)(0)}_{iL}(x) \) and \(E^{(0)(0)}_{iR}(x) \) are the four dimensional Higgs doublet, lepton doublets and lepton singlets respectively. Here the summation is done over the indices \(n, s \) but both are not zero at the same time. Similar to a single extra dimension case, the new Higgs scalar profiles read,
\[S(x, y, z) = A' e^{-\beta(y^2 + z^2)} S(x), \] (23)
and the mechanism beyond its localization is unknown. Here normalization constant \(A' \) is
\[A' = \frac{(2 \beta)^{1/2}}{\pi^{1/2} \text{Erf}[\sqrt{2} \beta \pi R]}. \] (24)
The modified Yukawa interactions in four dimensions can be obtained by integrating the combination \(\bar{f}^{(0,0,n,s)}(x,y) S(x,y,z) f^{(n,s)(0,0)}(x,y) \) over the fifth and sixth dimensions:

\[
I = \int_{-\pi R}^{\pi R} dy \int_{-\pi R}^{\pi R} dz \, \bar{f}^{(0,0,n,s)}(x,y) S(x,y,z) f^{(n,s)(0,0)}(x,y,z) ,
\]

where

\[
I = V_{n,s} \bar{f}^{(0,0,n,s)}(x) S(x) f^{(n,s)(0,0)}(x) ,
\]

with the factor \(V_{n,s} \)

\[
V_{n,s} = A' c_{n,s} ,
\]

and the function \(A' \) which is defined in eq. (24). The function \(c_{n,s} \) in eq. (27) is obtained as:

\[
c_{n,s} = e^{-\frac{\pi^2 m^2}{4 \beta R^2}} \left(\operatorname{Erf} \left[\frac{i n + 2 \beta \pi R^2}{2 \sqrt{\beta R}} \right] + \operatorname{Erf} \left[\frac{-i n + 2 \beta \pi R^2}{2 \sqrt{\beta R}} \right] \right) \left(\operatorname{Erf} \left[\frac{i s + 2 \beta \pi R^2}{2 \sqrt{\beta R}} \right] + \operatorname{Erf} \left[\frac{-i s + 2 \beta \pi R^2}{2 \sqrt{\beta R}} \right] \right) ,
\]

Here the Yukawa couplings \(\xi_{ij}^E \) in four dimensions read

\[
\xi_{ij}^E = A' \xi_{6ij}^E ,
\]

where \(\xi_{6ij}^E \) are the Yukawa couplings in six dimensions.

The internal neutral Higgs particles \(h^0 \) and \(A^0 \) play the main role in the existence of the \(Z \to l_1^{-} l_2^{+} \) decay, theoretically. In Fig. 1 the necessary 1-loop diagrams, the self energy and vertex diagrams, are given. The inclusion of extra dimensions brings additional lepton KK mode contributions. The general effective vertex for the interaction of on-shell Z-boson with a fermionic current reads

\[
\Gamma_{\mu} = \gamma_{\mu} (f_{V} - f_{A} \gamma_5) + \frac{i}{m_W} (f_{M} + f_{E} \gamma_5) \sigma_{\mu \nu} q^\nu ,
\]

where \(q \) is the momentum transfer, \(q^2 = (p - p')^2 \), \(f_{V} \) (\(f_{A} \)) is vector (axial-vector) coupling, \(f_{M} \) (\(f_{E} \)) magnetic (electric) transitions of unlike fermions. Here \(p \) (\(p' \)) is the four momentum vector of lepton (anti-lepton). The vector (axial-vector) \(f_{V} \) (\(f_{A} \)) couplings and the magnetic (electric) transitions \(f_{M} \) (\(f_{E} \)) including the contributions coming from a single extra dimension can be obtained as

\[
f_{V} = \sum_{i=1}^{3} \left(f_{iV}^{(0)} + 2 \sum_{n=1}^{\infty} f_{iV}^{(n)} \right) ,
\]

\[
f_{A} = \sum_{i=1}^{3} \left(f_{iA}^{(0)} + 2 \sum_{n=1}^{\infty} f_{iA}^{(n)} \right) ,
\]
\[f_M = \sum_{i=1}^{3} \left(f_{iM}^{(0)} + 2 \sum_{n=1}^{\infty} f_{iM}^{(n)} \right), \]
\[f_E = \sum_{i=1}^{3} \left(f_{iE}^{(0)} + 2 \sum_{n=1}^{\infty} f_{iE}^{(n)} \right), \]
(31)

where \(f_{i(V,A,M,E)}^{(0)} \) are the couplings without lepton KK mode contributions and they can be calculated by taking \(n = 0 \) in eq. (35). On the other hand the couplings \(f_{i(V,A,M,E)}^{(n)} \) are the ones due to the KK modes of the leptons (see eq. (35)). Here the summation over the index \(i \) represents the sum due to the internal lepton flavors, namely, \(e, \mu, \tau \). We present \(f_{i(V,A,M,E)}^{(n)} \) in the appendix, by taking into account all the masses of internal leptons and external lepton (anti-lepton). If we consider two extra dimensions where all the particles are accessible, the couplings \(f_{i(V,A,M,E)}^{(n)} \) appearing in eq. (31) should be replaced by \(f_{i(V,A,M,E)}^{(n,s)} \) and they read

\[f_{V} = \sum_{i=1}^{3} \left(f_{iV}^{(0,0)} + 4 \sum_{n,s} f_{iV}^{(n,s)} \right), \]
\[f_{A} = \sum_{i=1}^{3} \left(f_{iA}^{(0,0)} + 4 \sum_{n,s} f_{iA}^{(n,s)} \right), \]
\[f_{M} = \sum_{i=1}^{3} \left(f_{iM}^{(0,0)} + 4 \sum_{n,s} f_{iM}^{(n,s)} \right), \]
\[f_{E} = \sum_{i=1}^{3} \left(f_{iE}^{(0,0)} + 4 \sum_{n,s} f_{iE}^{(n,s)} \right), \]
(32)

where the summation would be done over \(n, s = 0, 1, 2, \ldots \) except \(n = s = 0 \) (see appendix for their explicit forms).

Finally, the BR for \(Z \to l_1^- l_2^+ \) can be written in terms of the couplings \(f_{V}, f_{A}, f_{M} \) and \(f_{E} \) as

\[BR(Z \to l_1^- l_2^+) = \frac{1}{48 \pi \frac{m_Z}{\Gamma_Z}} \left| f_{V} \right|^2 + \left| f_{A} \right|^2 + \frac{1}{2 \cos^2 \theta_W} \left(\left| f_{M} \right|^2 + \left| f_{E} \right|^2 \right) \]
(33)

where \(\Gamma_Z \) is the total decay width of \(Z \) boson. In our numerical analysis we consider the BR due to the production of sum of charged states, namely

\[BR(Z \to l_1^\pm l_2^\pm) = \frac{\Gamma(Z \to (l_1^\pm l_2^- + l_2^\pm l_1^-))}{\Gamma_Z}. \]
(34)

3 Discussion

The LFV \(Z \) decays \(Z \to l_1^\pm l_2^\pm, l_1 \neq l_2 \) are rare decays in the sense that they exist at least in the one loop level and they are rich theoretically since the physical parameters of these decays
contain number of free parameters of the model used. In the framework of the 2HDM the internal leptons and new scalar bosons drive the interaction and the corresponding physical quantities are sensitive to the Yukawa couplings\(^2\) \(\xi_{N,ij}^E\), \(i,j=e,\mu,\tau\), which are among the free parameters of the model. These couplings should be restricted by using present and forthcoming experiments. Here, we assume that the couplings which contain \(\tau\) index are dominant respecting the Cheng-Sher scenario \([44]\) and, therefore, we consider only the internal \(\tau\) lepton in the loop diagrams. In addition to this, we take the Yukawa couplings \(\xi_{N,ij}^D\) as symmetric with respect to the indices \(i\) and \(j\). As a result, among the Yukawa couplings we need the numerical values for the \(\xi_{N,\tau e}^D\), \(\xi_{N,\tau \mu}^D\) and \(\xi_{N,\tau \tau}^D\). Furthermore, the new Higgs masses are also free parameters of the model and we take their numerical values as \(m_h = 100 \text{ GeV}\), \(m_A = 200 \text{ GeV}\).

In the present work, we study the LFV decays \(Z \rightarrow l_1^\pm l_2^\pm\), \(l_1 \neq l_2\) in the framework of the 2HDM with the addition extra dimensions. Our assumption is that the new Higgs scalars are localized in the extra dimension with Gaussian profiles by an unknown mechanism, however, the other particles have uniform zero mode profiles in the extra dimension. Here we choose one (two) extra dimension(s) which are compactified on to orbifold \(S^1/Z_2 ((S^1 \times S^1)/Z_2)\) with the compactification scale \(1/R\), which is another free parameter. The direct limits from searching for KK gauge bosons imply \(1/R > 800 \text{ GeV}\), the precision electro weak bounds on higher dimensional operators generated by KK exchange place a far more stringent limit \(1/R > 3.0 \text{ TeV}\) \([22]\) and, from \(B \rightarrow \phi K_S\), the lower bounds for the scale \(1/R\) have been obtained as \(1/R > 1.0 \text{ TeV}\), from \(B \rightarrow \psi K_S\) one got \(1/R > 500 \text{ GeV}\), and from the upper limit of the \(BR\), \(BR (B_s \rightarrow \mu^+\mu^-) < 2.6 \times 10^{-6}\), the estimated limit was \(1/R > 800 \text{ GeV}\) \([36]\). On the other hand, the localization of new Higgs doublet is regulated by the parameter \(\sigma\), which is the Gaussian width of new Higgs doublet in the extra dimension, and it is chosen so that it does not contradict with the experimental results. Here, we take the compactification scale \(1/R\) in the range \(200 \text{ GeV} \leq 1/R \leq 1000 \text{ GeV}\) and choose the Gaussian width \(\sigma = \rho R\) at most \(0.05R\). Notice that throughout our calculations we use the input values given in Table \(1\).

\(^2\)In the following we use the dimensionful coupling \(\xi_{N,ij}^E\) in four dimensions, with the definition \(\xi_{N,ij}^E = \sqrt{\frac{G_F}{\sqrt{2}}} \xi_{N,ij}^E\) where \(N\) denotes the word "neutral".
\[
\begin{array}{|c|c|}
\hline
\text{Parameter} & \text{Value} \\
\hline
m_\mu & 0.106 \text{ (GeV)} \\
 m_\tau & 1.78 \text{ (GeV)} \\
m_W & 80.26 \text{ (GeV)} \\
m_Z & 91.19 \text{ (GeV)} \\
m_{h^0} & 100 \text{ (GeV)} \\
m_{A^0} & 200 \text{ (GeV)} \\
G_F & 1.1663710^{-5} \text{(GeV}^{-2}) \\
\Gamma_Z & 2.490 \text{(GeV)} \\
sin \theta_W & \sqrt{0.2325} \\
\hline
\end{array}
\]

Table 1: The values of the input parameters used in the numerical calculations.

In our analysis, we first consider that the new Higgs doublet is localized around the origin in a single extra dimension. Furthermore, we choose the localization point is near to the origin, at the point \(y_H = \alpha \sigma \), and study its effect on the BRs. We continue to analyze the same physical quantity with the inclusion of two extra dimensions.

Fig. 2 is devoted to the parameter \(\rho = \sigma/R \) dependence of the BR (\(Z \rightarrow \mu^\pm e^\pm \)) for \(\bar{\xi}_{N,\tau e} = 0.1 \text{ GeV} \), \(\bar{\xi}_{N,\tau \mu} = 10 \text{ GeV} \) and \(1/R = 500 \text{ GeV} \). Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions). It is observed that BR is at the order of the magnitude of \(10^{-14} \) without lepton KK modes in a single extra dimension, for the the parameter \(\rho \sim 0.05 \). In this case the BR is sensitive to \(\rho \). With the inclusion of lepton KK modes, the BR enhances to the values of the order of \(10^{-10} \) and this is almost four order enhancement in the BR. For two extra dimensions, the numerical value of the BR is slightly smaller compared to the single extra dimension case, since there is an additional suppression factor (see the exponential factor in eq. (28)) appears in the expressions.

In Fig. 3 we present the \(\rho \) dependence of the BR (\(Z \rightarrow \tau^\pm e^\pm \)) for \(\bar{\xi}_{N,\tau e} = 0.1 \text{ GeV} \), \(\bar{\xi}_{N,\tau \tau} = 100 \text{ GeV} \) and \(1/R = 500 \text{ GeV} \). Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions). This figure shows that BR is at the order of the magnitude of \(10^{-12} \) without lepton KK modes in a single extra dimension, for the the parameter \(\rho \sim 0.05 \) and its sensitivity to the parameter \(\rho \) is strong. The inclusion of lepton KK modes results in an considerable enhancement in the BR almost four order and the BR of the decay under consideration enhances to the values of the order of \(10^{-8} \). For two extra dimensions, the numerical value of the BR is almost the same as the single extra dimension case.
Fig. 4 represents the ρ dependence of the BR ($Z \rightarrow \tau^\pm \mu^\pm$) for $\xi_{N,\tau\mu}^D = 10\,\text{GeV}$, $\xi_{N,\tau\tau}^D = 100\,\text{GeV}$ and $1/R = 500\,\text{GeV}$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions). We observe that BR is at the order of the magnitude of 10^{-8} (10^{-5}) without (with) lepton KK modes in a single extra dimension, for the parameter $\rho \sim 0.05$. Similar to the previous decays, the inclusion of lepton KK modes results in a considerable enhancement in the BR more than three orders. For two extra dimensions, the numerical value of the BR is almost the same as the single extra dimension case.

At this stage, we study the dependence of the BR of the LFV Z decays to the Yukawa couplings, regulating the lepton-lepton-new Higgs interactions. Figs. 5-6-7 represent the Yukawa coupling $\bar{\xi}_{E,N,\tau\tau}^N - \bar{\xi}_{E,N,\tau e}^N - \bar{\xi}_{E,N,\tau\mu}^N$ dependence of the BR ($Z \rightarrow \mu^\pm e^\pm$)-BR ($Z \rightarrow \mu^\pm e^\pm$)-BR ($Z \rightarrow \tau^\pm \mu^\pm$) for $\xi_{N,\tau\mu}^D = 10\,\text{GeV}$-$\xi_{N,\tau\tau}^D = 100\,\text{GeV}$-$\xi_{N,\tau\mu}^D = 10\,\text{GeV}$, $\rho = 0.01$ and $1/R = 500\,\text{GeV}$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions) for all figures. The BR is strongly sensitive to the Yukawa coupling $\bar{\xi}_{E,N,\tau\tau}^N - \bar{\xi}_{E,N,\tau e}^N - \bar{\xi}_{E,N,\tau\mu}^N$ and in the interval $0.005 \leq \bar{\xi}_{E,N,\tau e}^N \leq 0.05 - 0.005 \leq \bar{\xi}_{E,N,\tau\tau}^N \leq 0.05 - 50 \leq \bar{\xi}_{E,N,\tau\mu}^N \leq 100$ it enhances almost two-two-one order of magnitude. These figures also show that the inclusion of lepton KK modes causes the BR to increase considerably.

Finally, we study the effects of the position of the localization point of the new Higgs doublet on the BR of the considered decays.

Fig. 8 represents the parameter α dependence of BR ($Z \rightarrow \mu^\pm e^\pm$) for the Yukawa couplings $\bar{\xi}_{s_N,\tau\mu}^E = 10\,\text{GeV}$, $\bar{\xi}_{s_N,\tau\tau}^E = 0.1\,\text{GeV}$, $\rho = 0.01$ and $1/R = 500\,\text{GeV}$. Here the solid (dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension). Without lepton KK modes, the BR is not sensitive to the parameter α for the interval $0.1 \leq \alpha \leq 1$. The inclusion of lepton KK modes makes the BR sensitive to the parameter α and increasing values of this parameter results in to decrease the BR almost one order for the interval taken.

Fig. 9-10 represents the parameter α dependence of BR ($Z \rightarrow \tau^\pm e^\pm$)-BR ($Z \rightarrow \tau^\pm \mu^\pm$) for the Yukawa couplings $\bar{\xi}_{s_N,\tau\tau}^E = 100\,\text{GeV}$, $\bar{\xi}_{s_N,\tau e}^E = 0.1\,\text{GeV}$-$\bar{\xi}_{s_N,\tau\mu}^E = 10\,\text{GeV}$, $\rho = 0.01$ and $1/R = 500\,\text{GeV}$. Here the solid (dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension) for both figures.
The BR is not sensitive to α for the interval $0.1 \leq \alpha \leq 1$ without lepton KK modes for both decays. The inclusion of lepton KK modes increases the sensitivity of the BR to the parameter α and increasing values of this parameter results in to decrease the BR almost one order for the considered interval for both decays.

As a summary, the BR ($Z \to \mu^\pm e^\pm$) ($Z \to \tau^\pm e^\pm$, $Z \to \tau^\pm \mu^\pm$) enhances up to the values of the order of 10^{-10} (10^{-8}, 10^{-5}) with the inclusion of lepton KK modes in a single extra dimension. For two extra dimensions, the numerical value of the BRs are slightly smaller compared to the single extra dimension case. On the other hand the inclusion of lepton KK modes makes the BRs sensitive to the parameter α and increasing values of this parameter results in to decrease the BR almost one order for the considered interval of this parameter. With the forthcoming more accurate experimental measurements of the these decays, the valuable information can be obtained to detect the effects due to the extra dimensions and the possible localization of the Higgs doublet.

A The explicit expressions appearing in the text

Here we present the explicit expressions for $f_{iV}^{(n)}$, $f_{iA}^{(n)}$, $f_{iM}^{(n)}$ and $f_{iE}^{(n)}$ \cite{9} (see eq. (31)):

\[
f_{iV}^{(n)} = \frac{g}{64 \pi^2 \cos \theta_W} \int_0^1 dx \frac{1}{m_{i_2}^2 - m_{i_1}^2} \left\{ c_V \left(m_{i_2}^+ + m_{i_1}^- \right) \\
\left(\left(-m_i \eta_i^+ + m_{i_1}^- \left(-1 + x \right) \eta_Y^V \right) \ln \frac{L_{1,h_0}^{self}}{\mu^2} + \left(m_i \eta_i^+ - m_{i_2}^- \left(-1 + x \right) \eta_Y^V \right) \ln \frac{L_{2,h_0}^{self}}{\mu^2} \right) \\
+ \left(m_i \eta_i^- + m_{i_1}^+ \left(-1 + x \right) \eta_Y^V \right) \ln \frac{L_{1,A_0}^{self}}{\mu^2} - \left(m_i \eta_i^- + m_{i_2}^+ \left(-1 + x \right) \eta_Y^V \right) \ln \frac{L_{2,A_0}^{self}}{\mu^2} \right\} \\
+ c_A \left(m_{i_2}^+ - m_{i_1}^- \right) \\
\left(\left(-m_i \eta_i^- + m_{i_1}^+ \left(-1 + x \right) \eta_Y^A \right) \ln \frac{L_{1,h_0}^{self}}{\mu^2} + \left(m_i \eta_i^- + m_{i_2}^+ \left(-1 + x \right) \eta_Y^A \right) \ln \frac{L_{2,h_0}^{self}}{\mu^2} \right) \\
+ \left(m_i \eta_i^- + m_{i_1}^+ \left(-1 + x \right) \eta_Y^A \right) \ln \frac{L_{1,A_0}^{self}}{\mu^2} - \left(m_i \eta_i^- + m_{i_2}^+ \left(-1 + x \right) \eta_Y^A \right) \ln \frac{L_{2,A_0}^{self}}{\mu^2} \right) \} \\
- \frac{g}{64 \pi^2 \cos \theta_W} \int_0^1 dx \int_0^{1-x} dy \left\{ m_i^2 \left(c_A \eta_Y^A - c_V \eta_Y^V \right) \left(\frac{1}{L_{A_0}^{ver}} + \frac{1}{L_{h_0}^{ver}} \right) - \left(1 - x - y \right) m_i \left(c_A \left(m_{i_2}^+ - m_{i_1}^- \right) \eta_i^- \left(\frac{1}{L_{h_0}^{ver}} - \frac{1}{L_{A_0}^{ver}} \right) + c_V \left(m_{i_2}^+ + m_{i_1}^- \right) \eta_i^+ \left(\frac{1}{L_{h_0}^{ver}} + \frac{1}{L_{A_0}^{ver}} \right) \right) \\
- \left(c_A \eta_Y^A + c_V \eta_Y^V \right) \left(-2 + (q^2 x y + m_{i_1} m_{i_2} \left(-1 + x + y \right)^2 \right) \left(\frac{1}{L_{h_0}^{ver}} + \frac{1}{L_{A_0}^{ver}} \right) - ln \frac{L_{ver}^{ver} L_{A_0}^{ver}}{\mu^2} \right) \\
- \left(m_{i_2}^+ + m_{i_1}^- \right) \left(1 - x - y \right) \left(\frac{\eta_i^A \left(x m_{i_1}^- + y m_{i_2}^+ \right) + m_i \eta_i^-}{2 L_{A_0}^{ver} h_0} + \frac{\eta_i^A \left(x m_{i_1}^- + y m_{i_2}^+ \right) - m_i \eta_i^-}{2 L_{h_0}^{ver} A_0} \right) \right\}
\]
\[
\begin{split}
&+ \frac{1}{2} \eta_i^A \ln \frac{L_{A^0_\mu}^{\text{ver}} L_{\eta^0_\mu A^0}^{\text{ver}}}{\mu^2} \\
&+ \frac{g}{64 \pi^2 \cos \theta_W} \int_0^1 dx \int_0^{1-x} dy \left\{ m_i^2 (c_V \eta_i^A - c_A \eta_i^V) \left(\frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) + \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \right\} \\
&- m_i (1 - x - y) \left(c_V \eta_i^A - c_A \eta_i^V \right) \left(\frac{1}{L_{A^0_\mu}^{\text{ver}}} - \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \right) \\
&+ \left((1 - x - y) \left(\frac{c_V \eta_i^V + c_A \eta_i^A}{2} \right) \left(x m_{i_1} - y m_{i_2} \right) - m_i \left(c_A (x - y) \eta_i^- + c_V \eta_i^+ (x + y) \right) \right) \frac{1}{L_{A^0_\mu}^{\text{ver}}} \\
&+ \left((1 - x - y) \left(\eta_i^- (x m_{i_1} - y m_{i_2}) + m_i \eta_i^+ \right) \left(\frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) + \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \right) + \frac{m_i \eta_i^-}{2} \left(\frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} - \frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) \right\} ,
\end{split}
\]

\[
\begin{split}
f_{i^\mu}^{(n)} = & \frac{1}{2} \eta_i^A \ln \frac{L_{A^0_\mu}^{\text{ver}} L_{\eta^0_\mu A^0}^{\text{ver}}}{\mu^2} \\
&+ \frac{g}{64 \pi^2 \cos \theta_W} \int_0^1 dx \int_0^{1-x} dy \left\{ \left(1 - x - y \right) \left(c_V \eta_i^V + c_A \eta_i^A \right) \left(x m_{i_1} - y m_{i_2} \right) \\
&+ m_i \left(c_A (x - y) \eta_i^- + c_V \eta_i^+ (x + y) \right) \right\} \frac{1}{L_{A^0_\mu}^{\text{ver}}} \\
&+ \left((1 - x - y) \left(c_V \eta_i^V + c_A \eta_i^A \right) \left(x m_{i_1} - y m_{i_2} \right) - m_i \left(c_A (x - y) \eta_i^- + c_V \eta_i^+ (x + y) \right) \right) \frac{1}{L_{A^0_\mu}^{\text{ver}}} \\
&- \left((1 - x - y) \left(\frac{\eta_i^- \left(x m_{i_1} - y m_{i_2} \right)}{2} \right) \left(\frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) + \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \right) + \frac{m_i \eta_i^-}{2} \left(\frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} - \frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) \right\} ,
\end{split}
\]

\[
\begin{split}
f_{i^E}^{(n)} = & \frac{1}{2} \eta_i^A \ln \frac{L_{A^0_\mu}^{\text{ver}} L_{\eta^0_\mu A^0}^{\text{ver}}}{\mu^2} \\
&+ \frac{g}{64 \pi^2 \cos \theta_W} \int_0^1 dx \int_0^{1-x} dy \left\{ \left(1 - x - y \right) \left(c_V \eta_i^V + c_A \eta_i^A \right) \left(x m_{i_1} - y m_{i_2} \right) \\
&+ m_i \left(c_A (x - y) \eta_i^+ + c_V \eta_i^- (x + y) \right) \right\} \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \\
&+ \left((1 - x - y) \left(c_V \eta_i^V + c_A \eta_i^A \right) \left(x m_{i_1} - y m_{i_2} \right) + m_i \left(c_A (x - y) \eta_i^+ + c_V \eta_i^- (x + y) \right) \right) \frac{1}{L_{A^0_\mu}^{\text{ver}}} \\
&- \left((1 - x - y) \left(\frac{\eta_i^+ \left(x m_{i_1} - y m_{i_2} \right)}{2} \right) \left(\frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) + \frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} \right) + \frac{m_i \eta_i^+}{2} \left(\frac{1}{L_{h^0_\mu A^0}^{\text{ver}}} - \frac{1}{L_{A^0_\mu}^{\text{ver}}} \right) \right\} ,
\end{split}
\]
\[+ (1 - x - y) \left(\frac{\eta_i^V}{2} (m_{i_1} x - m_{i_2} y) \left(\frac{1}{L_{A_0^0 h_0}^{ver}} + \frac{1}{L_{h_0^0 A_0}^{ver}} \right) + \frac{m_i \eta_i^+}{2} \left(\frac{1}{L_{A_0^0 h_0}^{ver}} - \frac{1}{L_{h_0^0 A_0}^{ver}} \right) \right), \]

where

\[
\begin{align*}
L_{1, h_0}^{self} &= m_{h_0}^2 (1 - x) + (m_i^{(n)} - m_i^{(n)} (1 - x)) x, \\
L_{1, A_0}^{self} &= L_{1, h_0}^{self}(m_{h_0} \rightarrow m_{A_0}), \\
L_{2, h_0}^{self} &= L_{1, h_0}^{self}(m_{i_1} \rightarrow m_{i_2}^+), \\
L_{2, A_0}^{self} &= L_{1, A_0}^{self}(m_{i_1} \rightarrow m_{i_2}^+), \\
L_{h_0}^{ver} &= m_{h_0}^2 (1 - x - y) + m_i^{(n)} (x + y) - q^2 x y, \\
L_{h_0 A_0}^{ver} &= m_{A_0}^2 x + m_i^{(n)} (1 - x - y) + (m_{h_0} - q^2 x) y, \\
L_{A_0}^{ver} &= L_{h_0}^{ver}(m_{h_0} \rightarrow m_{A_0}), \\
L_{h_0 A_0}^{ver} &= L_{h_0 A_0}^{ver}(m_{h_0} \rightarrow m_{A_0}),
\end{align*}
\]

and

\[
\begin{align*}
\eta_i^V &= c^2_n \left(\xi_{E}^E \xi_{E}^{*} + \xi_{E}^{*} \xi_{E}^{E} \right), \\
\eta_i^A &= c^2_n \left(\xi_{E}^E \xi_{E}^{*} - \xi_{E}^{*} \xi_{E}^{E} \right), \\
\eta_i^+ &= c^2_n \left(\xi_{E}^E \xi_{E}^{*} + \xi_{E}^{*} \xi_{E}^{E} \right), \\
\eta_i^- &= c^2_n \left(\xi_{E}^E \xi_{E}^{*} - \xi_{E}^{*} \xi_{E}^{E} \right).
\end{align*}
\]

The parameters \(c_V \) and \(c_A \) are \(c_A = -\frac{1}{4} \) and \(c_V = \frac{1}{4} - \sin^2 \theta_W \) and the masses \(m_i^{(n)} \) read

\[m_i^{(n)} = \sqrt{m_i^2 + n^2 / R^2}, \]

where \(R \) is the compactification radius. In eq. (37) the flavor changing couplings \(\xi_{E_{i,j}} \) represent the effective interaction between the internal lepton \(i \), \((i = e, \mu, \tau) \) and outgoing (incoming) \(j = 1 (j = 2) \) one. The parameter \(c_n \) is defined in eq. (15) for the localization of the new Higgs doublet around the origin and in eq. (20) for the localization of the new Higgs doublet around the point \(y_H \) near to the origin. In the case of two extra dimensions \(c_n \) is replaced by \(c_{n,s} \) (see eq. (28)) and the masses \(m_i^{(n)} \) are replaced by \(m_i^{(n,s)} \),

\[m_i^{(n,s)} = \sqrt{m_i^2 + m_n^2 + m_s^2}, \]

with \(m_n = n / R, m_s = s / R. \)

Finally, the couplings \(\xi_{i,j}^E \) may be complex in general and they can be parametrized as

\[\xi_{i,j}^E = |\xi_{i,j}^E| e^{i\theta_{ij}}, \]

where \(i, l_j \) denote the lepton flavors and \(\theta_{ij} \) are CP violating parameters which are the possible sources of the lepton EDM. However, in the present work we take these couplings real.
References

[1] T. Riemann and G. Mann, “Nondiagonal Z decay: Z → eµ”, in Proc. of the Int. Conf. Neutrino’82, 14-19 June 1982, Balatonfüred, Hungary (A. Frenkel and E. Jenik, eds.), vol. II, pp. 58-, Budapest, 1982, scanned copy at http://www.ifh.de/~riemann G. Mann and T. Riemann, Annalen Phys. 40 (1984) 334.

[2] J. I. Illana, M. Jack and T. Riemann, hep-ph/0001273 (2000), J. I. Illana, and T. Riemann, Phys. Rev. D63 053004 (2001).

[3] Particle Data Group Collaboration, C. Caso et al., Eur. Phys. J. C3 (1998) 1.

[4] OPAL Collaboration, R. Akers et al., Z. Phys. C67 (1995) 555.

[5] L3 Collaboration, O. Adriani et al., Phys. Lett. B316 (1993) 427.

[6] DELPHI Collaboration, P. Abreu et al., Z. Phys. C73 (1997) 243.

[7] G. Wilson, “Neutrino oscillations: are lepton-flavor violating Z decays observable with the CDR detector?” and “Update on experimental aspects of lepton-flavour violation”, talks at DESY-ECFA LC Workshops held at Frascati, Nov 1998 and at Oxford, March 1999, transparencies obtainable at http://wwwsis.lnf.infn.it/talkshow/ and at http://hepnts1.rl.ac.uk/ECFA_DESY_OXFORD/scans/0025_wilson.pdf

[8] A. Ghosal, Y. Koide and H. Fusaoka, Phys.Rev. D64 (2001) 053012.

[9] E. O. Iltan, I. Turan, Phys.Rev. D65 (2002) 013001.

[10] E. O. Iltan, Eur. Phys. J C41 (2005) 233; E. O. Iltan, hep-ph/0507213.

[11] J. Illiana, M. Masip, Phys. Rev. D67 (2003) 035004.

[12] J. Cao, Z. Xiong, J. Mi. Yang, Eur. Phys. J. C32 (2004) 245.

[13] C. Yue, W. Wang, F. Zhang, J. Phys. G30 (2004) 1065.

[14] M. A. Perez, G. T. Velasco, J. J. Toscano, Int.J.Mod.Phys. A19 (2004) 159; A. Flores-Tlalpa, J.M. Hernandez, G. Tavares-Velasco, J.J. Toscano, Phys. Rev. D65 (2002) 073010, R. Hawkings and K. Mönig, Eur. Phys. J. direct C8 (1999) 1; V. Ganapathi, T. Weiler,
E. Laermann, I. Schmitt, and P. Zerwas, *Phys. Rev.* **D27** (1983) 579, M. Clements, C. Footman, A. Kronfeld, S. Narasimhan, and D. Photiadis, *Phys. Rev.* **D27** (1983) 570.

[15] B. Pontecorvo, *Zh. Eksp. Teor. Fiz.* **33** (1957) 549, Z. Maki, M. Nakagawa, and S. Sakata, *Prog. Theor. Phys.* **28** (1962) 870, B. Pontecorvo, *Sov. Phys. JETP* **26** (1968) 984.

[16] Th. Kaluza, Sitzungober, Preuss. Akad. Wiss. Berlin, p. 966 (1921); O. Klein, Z. Phys. 37 (1926) 895.

[17] I. Antoniadis, *et al.*, *Phys. Lett.* **B436** (1998) 257; I. Antoniadis, S. Dimopoulos, G. Dvali, Nucl. Phys. **B516** (1998) 70.

[18] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, *Phys. Lett.* **B429** (1998) 263;

[19] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, *Phys. Rev.* **D59** 086004 (1999).

[20] I. Antoniadis, *Phys. Lett.* **B246**, 377 (1990); I. Antoniadis and K. Benakli, *Phys. Lett.* **B326** 69 (1994).

[21] I. Antoniadis, K. Benakli, and M. Quiros, *Phys. Lett.* **B331**, 313 (1994); A. Pomarol and M. Quiros, *Phys. Lett.* **B438**, 255 (1998); I. Antoniadis, K. Benakli, and M. Quiros, *Phys. Lett.* **B460**, 176 (1999); P. Nath, Y. Yamada, and M. Yamaguchi, *Phys. Lett.* **B466**, 100 (1999); M. Masip and A. Pomarol, *Phys. Rev.* **D60**, 096005 (1999) A. Delgado, A. Pomarol, and M. Quiros, *JHEP* **01**, 030 (2000); P. Nath and M. Yamaguchi, *Phys. Rev.* **D60**, 116004 (1999); A. Muck, A. Pilaftsis, and R. Ruckl, *Phys. Rev.* **D65**, 085037 (2002); A. Muck, A. Pilaftsis, and R. Ruckl, [hep-ph/0203032](http://arxiv.org/abs/hep-ph/0203032); C. D. Carone, *Phys. Rev.* **D61**, 015008 (2000).

[22] T. G. Rizzo and J. D. Wells, *Phys. Rev.* **D61**, 016007 (2000);

[23] I. Antoniadis, C. Munoz, M. Quiros, *Nucl. Phys* **B397** 515 (1993);

[24] T. Appelquist, H.-C. Cheng, B. A. Dobrescu, *Phys. Rev.* **D64** 035002 (2001).

[25] J. Papavassiliou and A. Santamaria, *Phys. Rev.* **D63**, 016002 (2001).

[26] D. Chakraverty, K. Huitu, and A. Kundu, Phys.Lett. B558 (2003) 173-181; A. J. Buras, M. Spranger, and A. Weiler, Nucl.Phys. B660 (2003) 225.

[27] K. Agashe, N.G. Deshpande, G.-H. Wu, *Phys. Lett.* **514** 309 (2001).
[28] K. R. Dienes, E. Dudas, T. Gherghetta 9811428, Q. H. Shrihari, S. Gopalakrishna, C. P. Yuan, 0312339

[29] F. Agulia, M. P. Victoria, J. Santiago, JHEP 0302 051, (2003); Acta Phys.Polon. B34, 5511 (2003).

[30] E. O. Iltan, hep-ph/0401229; JHEP 0402 065, (2004); JHEP 0408 020, (2004); JHEP 0404 018, (2004); Mod. Phys. Lett. A20 1845, (2005).

[31] C. S. Lam, hep-ph/0302227, 2003; C. A. Scrucca, M. Serona, L. Silvestrini, Nucl.Phys. B669 128, (2003); M. Gozdz, W. A. Kaminsk, Phys. Rev. D68 057901, (2003) ; C. Biggio, et.al, Nucl.Phys. B677 451, (2004); M. Carena, et.al, Phys. Rev. D68 035010, (2003); A. J. Buras, et. al., Nucl.Phys. B678 (2004) 455; T. G. Rizzo, JHEP 0308 051 (2003), A. J. Buras, hep-ph/0307202 2003; S. Matsuda, S. Seki, hep-ph/0307361, 2003; R. N. Mohapatra, Phys. Rev. D68 116001, (2003); B. Lillie, JHEP 0312 030 (2003); A.A Arkhipov, hep-ph/0309327 2003; F. Feruglia, Eur.Phys.J. C33 (2004) S114.

[32] E. A. Mirabelli, Schmaltz, Phys. Rev. D61 (2000) 113011.

[33] W. F. Chang, I. L. Ho and J. N. Ng, Phys. Rev. D66 076004 (2002).

[34] G. C. Branco,A. Gouvea, M. N. Rebelo, Phys. Lett. B506 (2001) 115.

[35] W. F. Cang, J. N. Ng, JHEP 0212 (2002) 077.

[36] B. Lillie, J. L. Hewett, Phys. Rev. 68 (2003) 116002.

[37] Y. Grossman and G. Perez, Phys. Rev. D67 (2003) 015011; Pramana 62 (2004) 733.

[38] E. O. Iltan, Eur.Phys.J. C44 (2005) 411.

[39] Y. Grossman, Int. J. Mod. Phys. A15 (2000) 2419; D. E. Kaplan and T. M. Tait, JHEP 0111 (2001) 051; G. Barenboim, et. al., Phys. Rev. D64 (2001) 073005; W. F. Chang, I. L. Ho and J. N. Ng, Phys. Rev. D66 (2002) 076004; W. Skiba and D. Smith, Phys. Rev. D65 (2002) 095002; Y. Grossman, R. Harnik, G. Perez, M. D. Schwartz and Z. Surujon, Phys. Rev. D71 (2005) 056007; P. Dey, G. Bhattacharya, Phys. Rev. D70 (2004) 116012; Y. Nagatani, G. Perez, JHEP 0502 (2005) 068; R. Harnik, G. Perez, M. D. Schwartz, Y. Shirman, JHEP 0503 (2005) 068.

[40] Z. Surujon, Phys.Rev. D73 (2006) 016008.
[41] E. O. Iltan, arXiv:hep-ph/0509096 (2005).

[42] E. O. Iltan, arXiv:hep-ph/0511241.

[43] E. O. Iltan, hep-ph/hep-ph/0602170.

[44] T. P. Cheng and M. Sher, Phy. Rev. D35 (1987) 3383.
Figure 1: One loop diagrams contribute to $Z \to k^+ j^-$ decay due to the neutral Higgs bosons h_0 and A_0 in the 2HDM. i represents the internal, j (k) outgoing (incoming) lepton, dashed lines the vector field Z, h_0 and A_0 fields. In 5 (6) dimensions there exist also the KK modes of lepton and Higgs fields.
Figure 2: BR($Z \rightarrow \mu^\pm e^\pm$) with respect to the parameter ρ for $\bar{\xi}^D_{N,\tau e} = 0.1 \, GeV$, $\bar{\xi}^D_{N,\tau \mu} = 10 \, GeV$ and $1/R = 500 \, GeV$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).
Figure 3: $\text{BR}(Z \rightarrow \tau^\pm e^\pm)$ with respect to the parameter ρ for $\bar{\xi}_{\text{D}}^\rho_{\tau\tau} = 0.1 \text{GeV}$, $\bar{\xi}_{\text{D}}^\rho_{\tau\tau} = 100 \text{GeV}$ and $1/R = 500 \text{GeV}$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).
Figure 4: BR($Z \rightarrow \tau^\pm \mu^\pm$) with respect to the parameter ρ for $\xi_{N,\tau\mu} = 10$ GeV, $\xi_{N,\tau\tau} = 100$ GeV and $1/R = 500$ GeV. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).
Figure 5: $Z \rightarrow \mu^\pm e^\pm$ with respect to $\bar{\xi}_{N,\tau e}$ for $\bar{\xi}_{N,\tau \mu} = 10 \, GeV$, $\rho = 0.01$ and $1/R = 500 \, GeV$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).
Figure 6: $Z \to \tau^± e^\pm$ with respect to $\xi_{E,N,\tau e}$ for $\xi_{D,N,\tau\tau} = 100 \text{ GeV}$, $\rho = 0.01$ and $1/R = 500 \text{ GeV}$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).
Figure 7: $Z \rightarrow \tau^\pm \mu^\pm$ with respect to $\bar{\xi}_{E}\tau\tau$ for $\bar{\xi}_{N,\tau\mu} = 10\ GeV$, $\rho = 0.01$ and $1/R = 500\ GeV$. Here the solid (dashed, small dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension, with lepton KK modes in two extra dimensions).

Figure 8: $Z \rightarrow \mu^\pm e^\pm$ with respect to the parameter α for $\bar{\xi}_{N,\tau\mu} = 10\ GeV$, $\bar{\xi}_{N,\tau\tau} = 0.1\ GeV$, $\rho = 0.01$ and $1/R = 500\ GeV$. Here the solid (dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension).
Figure 9: $Z \to \tau^\pm e^\pm$ with respect to the parameter α for $\xi_{N,\tau\tau}^E = 100\, GeV$, $\xi_{N,\tau\tau}^E = 0.1\, GeV$, $\rho = 0.01$ and $1/R = 500\, GeV$. Here the solid (dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension).

Figure 10: $Z \to \tau^\pm \mu^\pm$ with respect to the parameter α for $\xi_{N,\tau\tau}^E = 100\, GeV$, $\xi_{N,\tau\mu}^E = 10\, GeV$, $\rho = 0.01$ and $1/R = 500\, GeV$. Here the solid (dashed) line represents the BR without lepton KK modes in a single extra dimension (with lepton KK modes in a single extra dimension).