Introduction

PM$_{2.5}$ refers to atmospheric particulate matter with a dynamic diameter less than 2.5 μm [1]. With the rapid urbanization in China in recent years, the issue of PM$_{2.5}$ pollution has attracted more and more attention. PM$_{2.5}$ pollution may cause adverse effects on human health [2-7] and the environment [8-9], and even influence the climate change [10]. Due to the small particle size of PM$_{2.5}$, it is easy to be inhaled, and then it is also easy to cause respiratory diseases, affecting the cardiovascular system [11] and nervous system [3]. Besides, it can also cause to cancer [2] or premature death [4-6]. Once PM$_{2.5}$ pollution increases, atmospheric visibility decreases [8], which will affect people’s travel, meanwhile, the solar radiation time on the ground has become shorter, which will affect plant photosynthesis and ecosystems. In addition, PM$_{2.5}$ particles dissolved in rainwater will produce sulfuric acid and nitric acid through a series...
of chemical reactions, which will cause harm to buildings and vegetation health [9]. Finally, the presence of PM$_{2.5}$ can even influence climate change by altering the earth’s energy balance [10].

Therefore, satellite-based PM$_{2.5}$ pollution mapping and the PM$_{2.5}$ pollution mechanism revealing are of great significance for the PM$_{2.5}$ pollution forecasting, public health protecting, environmental pressure relieving, and air pollution improvement measures formulating. In addition, obtaining large-scale continuous dynamic PM$_{2.5}$ data through model estimation can provide basic data guarantee for current atmospheric environmental governance, which is a hot issue in current PM$_{2.5}$ pollution research.

PM$_{2.5}$ ground monitoring, atmospheric chemical transport modeling, and statistical satellite-based PM$_{2.5}$ estimation modeling are three mainly used methods for PM$_{2.5}$ prediction. First, PM$_{2.5}$ ground monitoring is estimated based on the values measured by ground-based monitoring stations. This method was widely used before the development of remote sensing technology, the measurement method is simple, and the measurement results are not affected by cloud coverage and surface conditions [12]; however, the ground measurement method is greatly affected by the distribution and terrain, etc. When the sites in the research area are densely distributed, the estimation results are more accurate, while the PM$_{2.5}$ estimation results are not that accurate in areas with sparse sites [13-14]. Second, the complex chemical and physical mechanism inherent between PM$_{2.5}$ and influence factors is considered in the atmospheric chemical transport model, and this kind of models is theoretically reliable [15]. However, the computational time and memory requirements of this model are high, which limits the application of it [16-17]. Finally, the PM$_{2.5}$ statistical model based on satellite remote sensing is based on the statistical relationship between AOD and PM$_{2.5}$, coupling with other factors affecting PM$_{2.5}$. The PM$_{2.5}$ estimations results based on remote sensing has high timeliness, certain periodicity and is continuous in a large spatial coverage.

With the progress of research, the spatial representation of the first method, and higher operation speed cost of the second method limited the extensive continuous dynamic estimation of PM$_{2.5}$. However, the PM$_{2.5}$ statistical model based on satellite remote sensing has become a main method to obtain a large range of continuous PM$_{2.5}$ concentration. PM$_{2.5}$ statistical model based on satellite remote sensing is constantly evolving, from the simplest linear model [18-20] to complex statistical model. In addition, many studies have shown that there is a complex non-linear relationship between PM$_{2.5}$ and many influencing factors. Machine learning model can better characterize the complex non-linear relationship between PM$_{2.5}$ and many influencing factors, and it can also effectively process big data and measure the importance of each influencing factor. Taking into account the high accuracy and the simple implementation of the machine learning methods, they are introduced into PM$_{2.5}$ estimation at this stage, such as BP’s artificial neural network model, support vector machine model and random forest [21-22]. Chen et al. estimated daily PM$_{2.5}$ concentrations across China from 2005-2016, showing that daily random forest models had much higher accuracy than conventional regression models [23]. Zhao et al. established a random forest model to estimate high resolution daily PM$_{2.5}$ concentrations in Beijing-Tianjin with the R2 value of 0.83 [24].

To obtain higher PM$_{2.5}$ estimation accuracy, it is necessary to comprehensively sort out the influencing factors of PM$_{2.5}$. Previous studies found that the main factors affecting PM$_{2.5}$ concentration include: AOD, SO$_2$, NO$_2$, meteorological factors, socio-economic factors, land use [25-27]. Meanwhile, energy consumption and NO$_2$ and SO$_2$ produced by human activities (such as automobile exhaust and factory exhaust) are the main drivers of PM$_{2.5}$ concentration [28-31]. Besides, meteorological factors can influence the distribution of PM$_{2.5}$ by affecting the formation, diffusion and settlement of particulate matter [32-35]. In addition, social factors such as regional GDP, population density, as well as vegetation cover [36-38] can also affect the distribution of PM$_{2.5}$.

This paper attempted to build a PM$_{2.5}$ estimation model for NCP and generated a spatially surface PM$_{2.5}$ dataset over NCP by using sites-based PM$_{2.5}$ observations, MODIS/AOD data, MODIS/NDVI data, satellite-observed emissions data (i.e., OMI/SO$_2$ and OMI/NO$_2$), meteorological factors, population density, gross regional product (GDP), and DEM. Subsequently, the random forest model was utilized in to build the PM$_{2.5}$ estimation model, and then daily PM$_{2.5}$ dataset with a resolution of 0.1°×0.1° in NCP was calculated and generated from this PM$_{2.5}$ estimation model. Finally, the spatial and temporal distribution of PM$_{2.5}$ concentration was revealed. The study aims to: (1) construct a high resolution daily PM$_{2.5}$ estimation model suitable for NCP, and (2) explore the spatial and temporal distribution patterns of PM$_{2.5}$ in NCP using PM$_{2.5}$ estimation results.

Data and Methods

Study Area

NCP was the study area in this paper (shown in Fig. 1). NCP locates at 32°N~42°N, 110°E~120°E, and there are five provinces in this region including Beijing, Tianjin, Hebei, Henan and Shandong. Besides, it is also the political, economic, and cultural center of China, and it has high temperature and rain in summer, frequent sand and dust storms in spring, cold and dry winter, increased coal heating, large population,
industrial pollution emissions, automobile gas and dust from construction sites, and sharp contradictions between resource environment and urban development. The air quality in this region has always been the focus and urgent need of environmental research today of China [39]. Establishing a regional PM$_{2.5}$ estimation model and obtaining a large-scale continuous coverage of PM$_{2.5}$ estimation results are of great significance for mitigating regional PM$_{2.5}$ pollution, formulating relevant measures, and alleviating development contradictions.

Data

In this study, 16 kinds of data were utilized, and the data types, data representation, time range, spatial resolution, temporal resolution, and data sources of these datasets were shown in the Table 1.

PM$_{2.5}$ Monitoring Sites

PM$_{2.5}$ measurements from the ground-based sites in NCP were used to build the PM$_{2.5}$ simulation model.

Table 1. Overview of the relevant data in this study.

Data Types	Abbreviation	Time	Spatial Resolution	Temporal Resolution	Data Sources
AOD	MODIS/AOD	2015-2020	0.05°×0.05°	24h	NASA LAADS DAAC
NDVI	MODIS/NDVI	2015-2020	0.05°×0.05°	16d	NASA LAADS DAAC
SO$_2$	OMI/SO$_2$	2015-2020	0.25°×0.25°	24h	NASA EARTH DATA
NO$_2$	OMI/NO$_2$	2015-2020	0.25°×0.25°	24h	NASA EARTH DATA
Elevation	DEM	2015	1km×1km	-	RESDC
Economic	GDP	2015	0.1°×0.1°	-	RESDC
Population	POPU	2015	0.1°×0.1°	-	RESDC
Boundary Layer Height	BLH	2015-2020	0.1°×0.1°	1h	ECMWF
Surface Solar Radiation	SSRD	2015-2020	0.1°×0.1°	1h	ECMWF
Relative Humidity	RH	2015-2020	0.1°×0.1°	1h	ECMWF
Wind Speed	WS	2015-2020	0.1°×0.1°	1h	ECMWF
Wind Direction	WD	2015-2020	0.1°×0.1°	1h	ECMWF
Surface Pressure	SP	2015-2020	0.1°×0.1°	1h	ECMWF
Temperature	T	2015-2020	0.1°×0.1°	1h	ECMWF
Total Precipitation	TP	2015-2020	0.1°×0.1°	1h	ECMWF
Total Cloud Cover	TCC	2015-2020	0.1°×0.1°	1h	ECMWF
China established the national air pollution (including PM$_{2.5}$) monitoring network at the end of 2012, and the PM$_{2.5}$ data was released on the national air quality release platform from 2013 (http://106.37.208.233:20035/). The spatial distribution of the ground-based monitoring sites in NCP is shown in Fig. 1.

Satellite Data

AOD is a measure of the sun's beam blocked by air pollutants and is widely used as an indicator of near-Earth pollutants [40], is of great significance in the study of air pollution, MODIS AOD product is the most widely used aerosol optical thickness dataset in the PM$_{2.5}$ simulation. The MODIS AOD product is one of the atmospheric products carried by the medium-resolution imaging spectrometer on the Terra and Aqua satellites, which were successfully launched by NASA on December 1, 1999 and April 18, 2002, respectively. MODIS AOD has the characteristics of large spatial-coverage, wide spectrum range, fast data update, and MODIS data can be freely downloaded. Therefore, MODIS AOD data was selected in this study as one of the important input factors for PM$_{2.5}$ estimation. In addition, Terra and Aqua satellites have different transit times, and AOD products from these two satellites cover different spatial ranges. Therefore, in order to improve the temporal representation of AOD data and expand the spatial coverage of AOD data, MOD09CMA and MYD09CMA aerosol products from Terra and Aqua satellites from 2015 to 2020 were averaged in this study, and then the averaged AOD data was utilized to estimate surface PM$_{2.5}$ data in NCP during 2015 and 2020. The spatial resolution of these two daily MODIS AOD products is 0.05°×0.05°.

In addition to AOD, the SO$_2$, NO$_2$ emitted by human activities also have significant influence on the production of PM$_{2.5}$. The SO$_2$ and NO$_2$ data from 2015 to 2020 used in this work were L3 daily products observed by the Ozone Measurement Instrument (OMI) loaded in the AURA satellite, and the spatial resolution of these daily datasets is 0.25°×0.25°. The OMI is a sensor jointly developed by the Netherlands and Finland to measure the concentrations of ozone, HCHO, NO$_2$, and SO$_2$, as well as multiple data on aerosols, clouds, and surface ultraviolet radiation. Besides, the Normalized Difference Vegetation Index (NDVI) can reveal the variations of vegetation coverage, impact the environment and climate, and also influence the PM$_{2.5}$ concentration changes. MODIS 16 days NDVI product MYD13C1 from 2015 to 2020 with the spatial resolution of 0.05°×0.05° was used in this work. Finally, MODIS AOD data [18, 41-42], OMI SO$_2$ and OMI NO$_2$ data [27, 43-45] and NDVI product involved in this work were widely used in previous studies and the quality and product accuracy of them are well illustrated in these articles.

Meteorological Reanalysis Data

Meteorological factors can affect the distribution of PM$_{2.5}$ concentration by influencing the formation, diffusion, and sedimentation of particulate matter. [33-35,46]. Through the literature review, boundary layer height, surface solar radiation, relative humidity, wind speed, wind direction, surface air pressure, temperature, total precipitation, and total cloud cover were selected as main PM$_{2.5}$ influencing meteorological factors. Hourly ERA5 meteorological reanalysis data from the European Mid-scale Weather forecast Center (ECMWF, European Center for Medium-Range Weather Forecasts) with a spatial resolution of 0.1°×0.1° was used in this work to build the PM$_{2.5}$ estimation model, and the time range of the meteorological data was from 1 January 2015 to 31 December 2020. The quality and product accuracy of these reanalysis data were documented in previous studies [47-50].

DEM and Socioeconomic Factors Data

Digital Elevation Model (DEM) affects the transmission and diffusion of air pollutants. Besides, Gross Domestic Product (GDP) and population density (POPU) indicates the level of urban development, the human activity intensity, and they can also influence the pollutant emissions [51-53]. Therefore, the DEM, GDP, and POPU data served as the terrain and socioeconomic influencing factors of PM$_{2.5}$. All these datasets were obtained from the Resource and Environmental Science and Data Center of Chinese Academy of Sciences. The spatial resolution of the DEM, GDP and POPU data are 1km×1km, and all these data were resampled to 0.1°×0.1° grids. The latest available data provided by the website is the GDP and POPU data of 2015, and these two data of 2015 were used in this work.

Research Technique

Space-Temporal Matching of Multi-Source Data

All the PM$_{2.5}$ influencing factors were spatiotemporal matched and resampled to establish the 0.1°×0.1° grids for all data. The spatial resolution of OMI/ SO$_2$, OMI/ NO$_2$ is 0.25°×0.25° and these two datasets were interpolated to the 0.1°×0.1° grids. Besides, the fused MODIS/AOD, MODIS/NDVI (0.05°×0.05°), and DEM, GDP and POPU data (1km×1km) were resampled to 0.1°×0.1°. Moreover, the temporal resolution of MODIS/NDVI data is 16 days, so we use the NDVI value of the day when the NDVI observation value is available to replace the NDVI value of the next 16 days. In addition, SSRD and TP used in this work are the daily cumulative data, and the T used is the daily highest temperature. While other meteorological factors used in this work are daily average values (local 8 am to 22 am).
PM\textsubscript{2.5} Estimation Models

Random Forest is first proposed as a classifier by Leo Breiman and trained on training samples using multiple trees [54-55]. It takes the decision tree as the basic unit, combined with the bootstrap resampling method (random sampling), and improves the classification accuracy through the combination of multiple decision trees. Later, the random forest model can also be used for nonlinear regression, and the algorithm is easy to implement and the accuracy of it is high [56]. Meanwhile, the Extreme Gradient Boosting (XGBoost) model is also a machine learning algorithm implemented in the Gradient Boosting framework, and it classifies and predicts the datasets based on the CART regression tree [57-58].

In this study, the nonlinear relationship model between PM\textsubscript{2.5} and various variables established with random forest model and XGBoost model can be described as follows:

\[
\text{PM}_{2.5} \sim \text{RF/XGBoost (Month, NO}_2\text{, SO}_2\text{, T, RH, WS, WD, SSRD, BLH, TCC, TP, GDP, POPU, DEM, NDVI, AOD)}
\] (1)

Where NO\textsubscript{2} and SO\textsubscript{2} represent the concentration of nitrogen dioxide and sulfur dioxide, T, RH, WS, WD, SSRD, BLH, TCC, TP are meteorological data, and the relevant details of these parameters are shown in Table 1. Besides, GDP denotes gross domestic product, POPU is population density, DEM represents the elevation of the corresponding position, and NDVI means the Normalized Difference Vegetation Index.

In the modeling progress of RF and XGBoost, 10\% of the sites were randomly selected as the validation sites, and the remaining 90\% of the sites were used as the modeling training data and testing data. In these remaining 90\% sites, 80\% of the data samples are randomly selected as model training data, and the remaining 20\% of the data samples are used as testing data. Finally, the accuracy of both models was evaluated by the validation sites data.

Results and Discussion

Models Verification Accuracy

The sites data were randomly divided into validation sites (10\%), modeling training data (90\%×80\%), and modeling testing data (90\%×20\%). The cross-validation results of the RF PM\textsubscript{2.5} estimation model and XGBoost PM\textsubscript{2.5} estimation model are shown in Fig. 2. As shown in Fig. 2, the accuracy of the test results of these two models is relatively high, and the correlation coefficients (R value) between the model simulation results of these two models and the observation data are both higher than 0.81. Similarly, the accuracy of the validation results of these two models is also relatively high with the R values both higher than 0.80. However, when the test and validation results of the RF model and the XGBoost model are compared, the results show that the accuracy of the XGBoost model are

![Fig. 2. Comparison results of the cross validation accuracy between RF model and XGBoost model. (a-c) present the scatter plots between observed and estimated PM\textsubscript{2.5} using RF model. (d-e) are similar with (a-c) but for the results of XGBoost model.](image-url)
higher with the both R values of the test and validation results are 0.84, which are higher than the results of the RF model (R value of 0.81 and 0.80).

Table 2 shows the statistical results of the R^2, RMSE and mean error between the observed PM$_{2.5}$ and model estimated PM$_{2.5}$ using RF model and XGBoost model. The R^2 values of four seasons are all higher than 0.79, and this means that these two PM$_{2.5}$ estimation models have higher model accuracy. Besides, the prediction accuracy of both models in autumn and winter are higher than that in spring and summer, and the highest value appears in winter while the lowest is in summer. From the perspective of RMSE and the mean error, the largest RMSE and mean error value are in winter while the smallest values are in summer. This is due to the serious pollution and the large base of pollutant concentration in winter. Although the absolute error value is relatively large, it is not inconsistent with the high relative accuracy of R^2. In conclusion, the accuracy of the XGBoost model is higher than that of the RF model, so the PM$_{2.5}$ estimation results using XGBoost model were derived and selected for further analysis.

Season	Sample number	R^2	RMSE (μg m$^{-3}$)	Mean error (μg m$^{-3}$)
RF				
Spring	22138	0.84	12.42	7.37
Summer	16680	0.80	8.45	5.29
Autumn	17113	0.86	13.24	7.54
Winter	19496	0.87	19.46	11.55
XGBoost				
Spring	22138	0.85	11.63	7.60
Summer	16680	0.79	8.56	5.90
Autumn	17113	0.87	12.08	7.39
Winter	19496	0.89	16.78	9.51

Order of Influence Factor Importance

The relative importance of the 16 variables used in the PM$_{2.5}$ estimation model is shown in Fig. 3. It reveals that NO$_2$ is the most important influencing factor in the PM$_{2.5}$ estimation model with the highest relative importance, accounting for about 11.4%. Previous studies have shown that PM$_{2.5}$ mainly derived from the NO$_2$ and SO$_2$ emitted from fossil fuel combustion and human activity [28-31]. Besides, Fig. 9 revealed that the severe PM$_{2.5}$ pollution generally showed a significantly downward trend with the proportion of severe PM$_{2.5}$ pollution in NCP reduced from 1.9% (2015) to 0.4% (2020). Generally, PM$_{2.5}$ pollution is mainly controlled by emissions caused by human activities, and then the generation of PM$_{2.5}$ pollution is ultimately caused by human activities, so the main reasons for the decline in PM$_{2.5}$ pollution in NCP from 2015 to 2020 was due to the reduction of NO$_2$ and SO$_2$ emissions from human activities in the same period of time. This result is consistent with previous relevant research results [59-
61]. And it also shows that the air cleaning plan started by the Chinese government in 2013 is more effective. Besides, temperature also has a great influence on PM$_{2.5}$, and higher temperature will increase atmospheric turbulence, which is conducive to the diffusion of pollutants and can reduce the concentration of pollutants [62], while low temperature in the winter heating season often leads to the burning of fossil fuels and the emission of polluting gases, which has an impact on the formation of PM$_{2.5}$. Moreover, the contribution of SO$_2$, RH, WS, NDVI, AOD, SSRD, and WD are roughly similar with a relative importance of more than 6.9%. Among them, meteorological factors including RH, WS, SSRD, and WD affect the concentration of PM$_{2.5}$ by influencing the diffusion and deposition of particulate matter [32-35, 62-63], and these results are in consistence with previous studies [64]. Under high humidity conditions, aerosols can attach more impurities, so the PM$_{2.5}$ concentration also increases [65]. AOD reflects the concentration of near-ground pollutants [18, 25, 40], while areas with high vegetation cover have less human activity, and NDVI have a positive effect (reducing pollutant concentrations) on the deposition of PM$_{2.5}$ particles [66, 67], and then both factors contribute to PM$_{2.5}$ estimation. The relative importance of BLH, TCC and month to PM$_{2.5}$ is between 5.4% and 6.5%. In addition, the relative importance of DEM, GDP, POPU and TP for PM$_{2.5}$ is less than 4%, indicating that social factors, altitude information and precipitation are not the key factors affecting PM$_{2.5}$ concentration.

Spatial and Temporal Variation of PM$_{2.5}$

According to the PM$_{2.5}$ estimation model established above, daily gridded PM$_{2.5}$ results were calculated, and the spatial distribution of the average PM$_{2.5}$ from 2015 to 2020 is shown in Fig. 4. It is indicated that the PM$_{2.5}$ concentration in NCP is in the range of 75–120 μg m$^{-3}$, and most parts of this region are in heavy PM$_{2.5}$ pollution with the high PM$_{2.5}$ concentration in the range of 90–110 μg m$^{-3}$. The distribution of PM$_{2.5}$ concentration has obvious spatial agglomeration, and the pollution in the south of 40°N, the north of 34°N and the east side of Taihang Mountain is heavier, while the highest concentration of PM$_{2.5}$ occurs at the junction of Beijing, Hebei, Shanxi and Henan provinces. Shanxi
Province, Hebei Province, and Beijing have large-scale areas with high concentrations of PM$_{2.5}$, which are related to the industrial structure of them. Shanxi Province has a large number of coal fields, and the high-value areas are exactly where the coal mines are located. Coal mining and transportation lead to elevated PM$_{2.5}$ pollution. Meanwhile, Hebei Province is dominated by heavy industry, and the first pillar industry is the iron and steel industry that emits a lot of nitrogen oxides. In addition, as the political and cultural center of China, it is not surprising that Beijing has a high level of pollution with a dense population, frequent human activities and heavy traffic.

To reveal the seasonal spatial patterns of PM$_{2.5}$, the seasonal average PM$_{2.5}$ results are shown in Fig. 5.

The results show that the PM$_{2.5}$ pollution level is the highest in winter, and the scope of pollution is also the largest. Following winter, spring and autumn are the other two seasons with the most serious PM$_{2.5}$ pollution. However, summer is the season with the lightest PM$_{2.5}$ pollution. For PM$_{2.5}$ pollution in winter, the most severely PM$_{2.5}$ pollution regions are concentrated in southern Hebei, northern Henan and southern Shandong with
PM$_{2.5}$ concentrations ranging in 112–128 μg m$^{-3}$, and it is related to winter heating in NCP, where a large amount of coal is burned, accompanied by a large amount of polluting gas emissions. Meanwhile, the temperature is low in winter and air convection slows down. These two factors make it difficult for the pollution to spread effectively, and PM$_{2.5}$ pollution increases in this region. In the terms of PM$_{2.5}$ in summer, the temperature is higher, and the air convection is accelerated, which is conducive to the diffusion of PM$_{2.5}$ pollution. Therefore, PM$_{2.5}$ pollution in summer is the lowest in four seasons with PM$_{2.5}$ concentration in most areas ranging in 64–104 μg m$^{-3}$. In early spring, NCP is still affected by the northwesterly wind from Mongolia-Siberia. The vegetation and loose soil in the area where the monsoon passes are sparse. Therefore, the monsoon will carry a lot of dust and be blocked by the Taihang Mountains, resulting in a high PM$_{2.5}$ concentration on the northwest side of the Taihang Mountains.

To reveal the temporal variations of PM$_{2.5}$ concentration, the spatial distribution of PM$_{2.5}$ concentration variation in adjacent two years was obtained by calculating the difference of the average PM$_{2.5}$ concentration in these two years and the result is shown in Fig. 6. From 2015 to 2020, the PM$_{2.5}$ pollution concentration generally shows a decreasing trend. Most notably, compared with 2019, the PM$_{2.5}$ pollution in NCP has decreased significantly in 2020, and the

Fig. 8. PM$_{2.5}$ exceedances (daily mean PM$_{2.5}$ >150 μg m$^{-3}$) in each season, (a-d) present the results of spring, summer, autumn and winter, respectively.

Fig. 9. Statistical results of annual cumulative exceedances ratio (left axis) and exceedances of PM$_{2.5}$ (right axis) in each year during 2015 and 2020 in NCP.
main reason for this phenomenon may be the impact of the COVID-19 epidemic.

Spatial and Temporal Patterns of PM$_{2.5}$ Exceedances

To better reveal the temporal and spatial variation of PM$_{2.5}$ pollution, the temporal and spatial variation characteristics of PM$_{2.5}$ pollution exceedances according to the national ambient air quality standards (GB 3095-2012) [68] were calculated and analyzed. Furthermore, the 24-hour average standard values of PM$_{2.5}$ pollution is shown in the following Table 3.

In order to focus on the situation of heavy PM$_{2.5}$ pollution, this study uses k>150 μg m$^{-3}$ as the PM$_{2.5}$ pollution standard according to the air pollution standards in the Table 3, and the counts and frequency of PM$_{2.5}$ pollution exceedances (daily mean PM$_{2.5}$ >150 μg m$^{-3}$) in the study area was calculated and showed in the following parts of the work.

The number of exceedances in each grid during 2015 and 2020 over NCP was calculated and shown in Fig. 7. The results reveal the spatial distribution of the cumulative counts of PM$_{2.5}$ pollution exceedances during 2015 and 2020. As shown in the figure, the distribution of exceedances is generally in line with the daily average distribution patterns revealed in Figure 5, and the severe PM$_{2.5}$ pollution with higher exceedances mainly locate in the border of Hebei and Shanxi, the border of Hebei and Henan and southern Shandong province. Compared with the higher average concentration of PM$_{2.5}$ in eastern Shanxi, the days exceeding severe PM$_{2.5}$ pollution standards in east Shanxi is lower, which shows that most region in eastern Shanxi are moderately polluted, and PM$_{2.5}$ concentration does not exceed the standard of serious pollution (<150 μg m$^{-3}$). At the junction of Henan, Hebei and Shanxi provinces, PM$_{2.5}$ exceedance occurs more frequently. In terms of topography, this region with severe PM$_{2.5}$ pollution is low in terrain, surrounded by mountains in the west and north, which is not conducive to the diffusion of pollutants. From the perspective of industrial structure, Hebei Province is a major province of heavy industry, Shanxi province is a major province of coal resources, and Henan Province is a major agricultural province with emissions from the straw burning and the using of nitrogen fertilizer. In addition, the number of exceedances in southern Shandong Province is also higher, which is a well-known industrial area in China.

Fig. 8 reveals the spatial distribution of the statistical results of the number of exceedances of severe PM$_{2.5}$ pollution in each season. Summer is the season with the least exceedances of PM$_{2.5}$, and there is almost no exceedance of PM$_{2.5}$ in most regions of NCP, indicating that there is rarely heavy PM$_{2.5}$ pollution in summer. On the contrary, the number of exceedances of PM$_{2.5}$ in winter is the largest in four seasons, and the spatial coverage of the exceedances of PM$_{2.5}$ is also the largest. The highly polluted regions in winter mainly located in south Hebei, the junction of Shandong and Henan, and the exceedances in most parts of these regions are between 60-80 days. It is related to the large amount of coal burning in the cold season. In addition, the numbers of exceedances in spring and autumn are less than that in winter, and the number of exceedances is less than 60 days in most regions of NCP. Meanwhile, the number of the exceedances in spring is slightly less than that in autumn. In addition, the spatial distribution of the exceedances in the two seasons is different, and the PM$_{2.5}$ pollution in spring mainly distributes in the northern region while in autumn it mainly distributes in the southeast of NCP, and it is related to wind direction, temperature in this region. Finally, spatial distribution pattern of PM$_{2.5}$ exceedances in different seasons (Fig. 8) is roughly similar with that of average PM$_{2.5}$ concentration shown in Fig. 5.

To further reveal the levels of exceedances in different years, annual cumulative exceedances ratio and exceedances of PM$_{2.5}$ in each year during 2015 and 2020 was showed in Fig. 9. From 2015 to 2020, the severe PM$_{2.5}$ pollution generally showed a significantly downward trend with the proportion of severe PM$_{2.5}$ pollution in NCP reduced from 1.9% to 0.4%. However, the severe PM$_{2.5}$ pollution levels also experienced some repetitions between 2015 and 2020, in which the severe PM$_{2.5}$ pollution in 2019 increased compared with 2018. In addition, the proportion of severe PM$_{2.5}$ pollution in 2020 has dropped significantly compared to 2018, which may be due to the impact of the COVID-19 epidemic in NCP in the first half of 2020. The “Air Pollution Prevention and Control Action Plan” was promulgated during 2013-2017 and mainly aimed to reduce ambient PM$_{2.5}$ pollution. Previous studies reported that the Action Plan led to 59% and 21% decreases in anthropogenic SO$_2$ and NO emissions [59-61], respectively.

Conclusions

The MODIS AOD, NDVI, DEM, population density, OMI/SO$_2$ and OMI/NO$_x$ data and meteorological reanalysis data from 2015 to 2020 were used to construct the PM$_{2.5}$ estimation models with RF model and XGBoost model. After two PM$_{2.5}$ estimation models were built, the accuracy of these two models was validated and compared to reveal which model is more accurate and more suitable for establishing PM$_{2.5}$ in NCP. The accuracy of both PM$_{2.5}$ estimation models is relative high, but the accuracy of XGBoost model is higher and the verification R2 value of randomly selected site is 0.71. Meanwhile, the relative importance of each influencing factor in PM$_{2.5}$ estimation model was revealed, and NO$_x$, T, SO$_2$, RH, WS, NDVI, AOD, SSRD and WD play an important role in dominating the PM$_{2.5}$ concentration. Among these factors, NO$_x$ is the primary influencing factor, which is inseparable from
the formation mechanism of PM$_{2.5}$. Subsequently, the XGBoost model was chosen to estimate daily average PM$_{2.5}$ results in NCP during 2015 and 2020. In terms of spatial-temporal distribution, PM$_{2.5}$ concentration in NCP has obvious spatial agglomeration. The areas with heavier PM$_{2.5}$ pollution are concentrated in the areas south of 40°N latitude, north of 34°N latitude and east of Taihang Mountains. The highest concentration of PM$_{2.5}$ locates in Beijing and the junction of Hebei, Shanxi and Henan. PM$_{2.5}$ concentration in NCP has a strong seasonal pattern with the highest PM$_{2.5}$ pollution level appears in winter, while the lowest PM$_{2.5}$ pollution level is in summer. The PM$_{2.5}$ pollution in NCP generally showed a downward trend, and the PM$_{2.5}$ concentration in 2020 decreased significantly compared with 2019. Overall, this work provides a high precision PM$_{2.5}$ estimation model in NCP, and daily gridded PM$_{2.5}$ results with spatial resolution of 0.1°×0.1° from 2015 to 2020 in NCP were estimated by the estimation model. Furthermore, spatiotemporal variation characteristics of PM$_{2.5}$ were also revealed in this work. In addition, the relative importance of each influencing factor to PM$_{2.5}$ pollution in NCP was quantitatively revealed. The severe PM$_{2.5}$ pollution generally showed a significantly downward trend in NCP during 2015 and 2020. And the leading roles of NO$_x$ and SO$_2$ in PM$_{2.5}$ pollution in NCP were revealed in this work. Generally, the main reasons for the decline in PM$_{2.5}$ pollution in NCP from 2015 to 2020 were due to the reduction of NO$_x$ and SO$_2$ emissions from human activities. This study reveals that the Chinese government’s air pollution prevention and control plan is effective, which also provides treatment ideas and technical support for further reducing PM$_{2.5}$ pollution in China, especially in NCP.

Acknowledgments

This work was supported by the project ZR2021QD034 supported by Shandong Provincial Natural Science Foundation. The authors are grateful to China National Environmental Monitoring Center (CNEMC) for making observations of surface ozone and surface PM$_{2.5}$ (http://www.cnemc.cn), the OMI group for providing NO$_x$ and SO$_2$ data (https://disc.gsfc.nasa.gov/datasets?keywords=OMI), the MODIS group for providing AOD and NDVI data (https://ladsweb.modaps.eosdis.nasa.gov/search), the China Resource and Environmental Science Data Center for providing DEM, GDP and population density data (http://www.resdc.cn/Default.aspx), and ECMWF for providing ERA5 reanalysis (https://cds.climate.copernicus.eu/#!/search?text=ERA5).

Conflict of Interest

The authors declare no conflict of interest.

References

1. BROOK R.D., RAJAGOPALAN S., POPE C.A., BROOK J.R., BHATNAGAR A., DIEZ-ROUX A.V., HOLGUIN F., HONG Y., LUEPKER R.V., MITTLEMAN M.A., PETERS A., SISCOVICK D., SMITH S.C., WHITSEL L., KAUFMAN J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation, 121 (21), 2331, 2010.

2. HAMRA G.B., GUHA N., COHEN A., LADEN F., RAASCHOU-NIELSEN O., SAMET J.M., VINEIS P., FORASTIERE F., SALDIVA P., YORIFUJI T., LOOMIS D. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environmental Health Perspectives, 122 (9), 906, 2014.

3. KIOUMOURTZOGLOU T., AVOUHIS M.A., SCHWARTZ J.D., WEISSKOPF M.G., MELLY S.J., WANG Y., DOMINICI F., ZANOBETTI A. Long-term PM$_{2.5}$ exposure and neurological hospital admissions in the northeastern United States. Environmental Health Perspectives, 124 (1), 23, 2016.

4. SON J.Y., LEE H.J., KOUTRAKIS P., BELL M.L. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007. American Journal of Epidemiology, 186 (11), 1268, 2017.

5. MAJI K.J., ARORA M., DIKSHIT A K. Premature mortality attributable to PM$_{2.5}$ exposure and future policy roadmap for ‘airpocalypse’ affected Asian megacities. Process Safety and Environmental Protection, 118, 371, 2018.

6. QI Z., ZHANG Y., CHEN Z.F., YANG C., SONG Y., LIAO X., LI W., TSANG S.Y., LIU G., CAI Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM$_{2.5}$. Ecotoxicology and Environmental Safety, 201 (March), 110827, 2020.

7. LEE H.J. Advancing Exposure Assessment of PM$_{2.5}$. Using Satellite Remote Sensing: A Review. Asian Journal of Atmospheric Environment, 14 (4), 319, 2020.

8. WATSON J.G. Visibility: Science and regulation. Journal of the Air and Waste Management Association, 52 (6), 628, 2002.

9. LIU W., SONG X., HUANG F., HU L. Experimental study on the disintegration of granite residual soil under the combined influence of wetting-drying cycles and acid rain. Geomatics, Natural Hazards and Risk, 10 (1), 1912, 2019.

10. TIE X., MADRONICH S., WALTERS S., EDWARDS D.P., GINOUX P., MAHOWALD N., ZHANG R., LOU C., BRASSEUR G. Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research D: Atmospheres, 110 (3), 1, 2005.

11. PUETT R.C., HART J.E., YANOSKY J.D., PACIOREK C., SCHWARTZ J., SUH H., SPEIZER F.E., LADEN F. Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study. Environmental Health Perspectives, 117 (11), 169, 2009.

12. GUPTA P., CHRISTOPHER S.A. An evaluation of Terra-MODIS sampling for monthly and annual particulate matter air quality assessment over the Southeastern United States. Atmospheric Environment, 42 (26), 6465, 2008.

13. LEE M., KLOOG I., CHUDNOVSKY A., LYAPUSTIN A., WANG Y., MELLY S., COULL B., KOUTRAKIS P., SCHWARTZ J. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011. Journal of Exposure...
Science and Environmental Epidemiology, 26 (4), 377, 2016.

14. CHU J., DONG Y., HAN X., XIE J., XU X., XIE G. Short-term prediction of urban PM$_{2.5}$ based on a hybrid modified variational mode decomposition and support vector regression model. Environmental Science and Pollution Research, 28 (1), 56, 2021.

15. LIN C., LI Y., YUAN Z., LAU A.K.H., LI C., FUNG J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM$_{2.5}$. Remote Sensing of Environment, 156, 117, 2015.

16. ZOU B., BENJAMIN ZHAN F., GAINES WILSON J., ZENG Y. Performance of AERMOD at different time scales. Simulation Modelling Practice and Theory, 18 (5), 612, 2010.

17. ZOU B., CHEN J., ZHAO L., FANG X., ZHENG Z. Satellite based mapping of ground PM$_{2.5}$ concentration using generalized additive modeling. Remote Sensing, 9 (1), 1, 2017.

18. WANG J., CHRISTOPHER S.A. Intercomparison between satellite-derived aerosol optical thickness and PM$_{10}$ mass: Implications for air quality studies. Geophysical Research Letters, 30 (21), 2, 2003.

19. GUPTA P., CHRISTOPHER S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research Atmospheres, 114 (14), 1, 2009.

20. LEE H.J., LIU Y., COULL B.A., SCHWARTZ J., KOUTRAKIS P. A novel calibration approach of MODIS AOD data to predict PM$_{2.5}$ concentrations. Atmospheric Chemistry and Physics, 11 (15), 7991, 2011.

21. ZHANG G., RUI X., FAN Y. Critical review of methods to estimate PM$_{10}$ concentrations within specified research region. Canadian Historical Review, 7 (9), 2018.

22. RYBARCZYK Y., ZALAKEVICIUTE R. Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8 (12), 2018.

23. CHEN G., LI S., KNIBBS L.D., HAMM N.A.S., CAO W., LI T., GUO J., REN H., ABRAMSON M.J., GUO Y. A machine learning method to estimate PM$_{2.5}$ concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 636, 52, 2018.

24. ZHAO C., WANG Q., BAN J., LIU Z., ZHANG Y., MAO J., LI C., HOLBEN B.N. Global monitoring of air pollution over land from the Earth Observing System—Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108 (21), 1, 2003.

25. WANG G., SU J., CHU P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30 (21), 2, 2003.

26. TAO J., GAO J., ZHANG L., ZHANG R., CHE H., ZHANG Z., LIN Z., JING J., CAO J., HSU S.C. PM$_{2.5}$ pollution in a megacity of Southwest China: Source apportionment and implication. Atmospheric Chemistry and Physics, 14 (16), 8679, 2014.

27. WANG H.J., CHEN H.P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmospheric Chemistry and Physics, 16 (6), 4205, 2016.

28. GUPTA P., CHRISTOPHER S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Remote Sensing, 9 (1), 1, 2017.

29. ZOU B., CHEN J., ZHAO L., FANG X., ZHENG Z. Satellite based mapping of ground PM$_{2.5}$ concentration using generalized additive modeling. Remote Sensing, 9 (1), 1, 2017.

30. WANG J., CHRISTOPHER S.A. Intercomparison between satellite-derived aerosol optical thickness and PM$_{10}$ mass: Implications for air quality studies. Geophysical Research Letters, 30 (21), 2, 2003.

31. GUPTA P., CHRISTOPHER S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research Atmospheres, 114 (14), 1, 2009.

32. LEE H.J., LIU Y., COULL B.A., SCHWARTZ J., KOUTRAKIS P. A novel calibration approach of MODIS AOD data to predict PM$_{2.5}$ concentrations. Atmospheric Chemistry and Physics, 11 (15), 7991, 2011.

33. ZHANG G., RUI X., FAN Y. Critical review of methods to estimate PM$_{10}$ concentrations within specified research region. Canadian Historical Review, 7 (9), 2018.

34. RYBARCZYK Y., ZALAKEVICIUTE R. Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8 (12), 2018.

35. CHEN G., LI S., KNIBBS L.D., HAMM N.A.S., CAO W., LI T., GUO J., REN H., ABRAMSON M.J., GUO Y. A machine learning method to estimate PM$_{2.5}$ concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 636, 52, 2018.

36. ZHAO C., WANG Q., BAN J., LIU Z., ZHANG Y., MAO J., LI C., HOLBEN B.N. Global monitoring of air pollution over land from the Earth Observing System—Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108 (21), 1, 2003.

37. WANG G., SU J., CHU P.C. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30 (21), 2, 2003.

38. TAO J., GAO J., ZHANG L., ZHANG R., CHE H., ZHANG Z., LIN Z., JING J., CAO J., HSU S.C. PM$_{2.5}$ pollution in a megacity of Southwest China: Source apportionment and implication. Atmospheric Chemistry and Physics, 14 (16), 8679, 2014.

39. WANG H.J., CHEN H.P. Understanding the recent trend of haze pollution in eastern China: Roles of climate change. Atmospheric Chemistry and Physics, 16 (6), 4205, 2016.

40. GUPTA P., CHRISTOPHER S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Remote Sensing, 9 (1), 1, 2017.
model over Beijing, China. PLoS ONE, 15 (10 October), 1, 2020.

43. BOGUMIL K., ORPHAL J., HOMANN T., VOIGT S., SPIETZ P., FLEISCHMANN O.C., Vogel A., HARTMANN M., KROMMINGA H., BOVENSMA NN, FRERICK J., BURROWS J.P. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region. Journal of Photochemistry and Photobiology A: Chemistry, 157 (2-3), 167, 2003.

44. PIETERNEL F., LEVELT E.H., GILBERT W., LEPERRE-MESEE, M., MEMBER, IEEE, GJISBERTUS H.J., VAN D.O., PAWAN K., BHARTIA JT., JOHAN F., DE HAAN J.P.V. Science objectives of the ozone monitoring instrument, 44 (5), 1199, 2006.

45. N. LAMSAL, L., A. KROTKOV N., VASILKOV A., REQUIA W.J., JHUN I., COULL B.A., KOUTRAKIS P., ZHONG J., ZHANG X., WANG Y., SUN J., ZHANG M. A DEM-assisted Information Diffusion Algorithm: A Case Study in China. Renewable and Sustainable Energy Reviews, 100 (November 2018), 186, 2019.

46. ZHANG W., ZHANG R., WU C., TECK A., GOH C., LACASSE S., LIU Z., LIU H. Geoscience Frontiers State-of-the-art review of soft computing applications in underground excavations. Geoscience Frontiers, 11 (4), 1095, 2020.

47. GENG G., XIAO Q., ZHENG Y., TONG D., ZHANG Y., ZHANG X., ZHANG Q., KE L., LIU Y. Impact of China’s Air Pollution Prevention and Control Action Plan on PM$_{2.5}$ chemical composition over eastern China. Science China Earth Sciences, 62 (12), 1872, 2019.

48. ZHAI S., JACOB D.J., WANG X., SHEN L., LI K., ZHANG Y., GUI K., ZHAO T., LIAO H. Fine particulate matter (PM$_{2.5}$) trends in China, 2013-2018. separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19 (16), 11031, 2019.

49. FAN J., WU L., ZHANG F., CAI H., ZENG W., WANG X. Effective and empirical machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renewable Energy, 140. 2019.

50. ZHANG Q. Tracking PM$_{2.5}$ pollution and the relationship of individual meteorological factors on local PM$_{2.5}$ concentration in the Jing-Jin-Ji region. Scientific Reports, 7 (January), 1, 2017.

51. ZHANG H., WANG Y., HU J., YING Q., HU X. M. Relationships between meteorological parameters and air pollution in three megacities in China. Environmental Research, 140, 242, 2015.

52. DUO B., CUI L., ZHANG Q., CHEN X., LEE Y.S. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 254, 2019.

53. ZHANG H., WANG Y., HU J., YING Q., HU X. M. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242, 2015.

54. LEO B. Random Forests. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 45 (1), 5, 2001.