Distinct Origin of the Y and St Genome in *Elymus* Species: Evidence from the Analysis of a Large Sample of St Genome Species Using Two Nuclear Genes

Chi Yan¹,², Genlou Sun¹,²*, Dongfa Sun¹*

¹ College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China, ²Biology Department, Saint Mary’s University, Halifax, Nova Scotia, Canada

Abstract

Background: Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic *Elymus* species originated from different donors: the St from a diploid species in *Pseudoroegneria* and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species *Pseudoroegneria spicata* (Pursh) Á. Löve suggested that one accession of *P. spicata* species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determine the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species.

Methodology/Principal Findings: Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of *Pseudoroegneria* and *Elymus* species, together with those from *Hordeum* (H), *Agropyron* (P), *Australopyrum* (W), *Lophopyrum* (E¹), *Thinopyrum* (E²), and *Dasypyrum* (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences.

Conclusions/Significance: Our results confirmed that St and Y genome in *Elymus* species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allotetraploid StY genome species.

Citation: Yan C, Sun G, Sun D (2011) Distinct Origin of the Y and St Genome in *Elymus* Species: Evidence from the Analysis of a Large Sample of St Genome Species Using Two Nuclear Genes. PLoS ONE 6(10): e26853. doi:10.1371/journal.pone.0026853

Editor: Simon Joly, Montreal Botanical Garden, Canada

Received June 22, 2011; Accepted October 5, 2011; Published October 27, 2011

Copyright: © 2011 Yan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a discovery grant (238425) from Natural Sciences and Engineering Research Council of Canada, Canadian Foundation for Innovation, and a Senate Research Grant at Saint Mary’s University to GS, and the earmarked fund for China Agriculture Research System to DS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: genlou.sun@smu.ca (GS); sundongfa1@mail.hzau.edu.cn (DS)

Introduction

Hybridization and polyploidization have played an important role in the history of plant evolution, and contribute greatly to speciation [1]. Previous studies have reported that hybridization and chromosome doubling would create genetic shocks and the newly formed allopolyploids would need to undergo major intra- and inter-genomic changes. Many of these genome-wide alterations in allopolyploids could arise from rapid loss and recombination of low-copy DNA, retrotransposon activation, DNA methylation pattern changes and epigenetic gene silencing during or following polyploidization [2–4]. These rapid genomic changes may lead to genetic asymmetry evolution resulting in conformity and convergent effects caused by the inter-genome invasion of chromatin segments in either only one pair of chromosomes (chromosome-specific sequences) or in several chromosome pairs of one genome (genome-specific sequences) in the allopoloids [5–10]. These changes may result in full fertility and stabilization of the hybrid condition and assist in establishing the phenotype in nature [11]. However, a clear and appropriate identification of phylogenetic relationships among taxa and genes, as well as genomic elements is needed.

The tribe Triticeae contains the world’s most economically important grasses such as wheat, barley, and forage crops. The tribe combines a wide variety of biological mechanisms and genetic systems which make it an excellent group for research in evolution, and speciation [12]. *Elymus*, the largest genus in grass tribe Triticeae, includes approximately 150 species that are widely distributed all over the world. Moreover, *Elymus* is an exclusively allopolyploid genus but closely related to other genera in the Triticeae. Cytological analyses have identified five basic genomes (St, H, Y, P, and W) in this genus. It is believed that the St
Distinct Origin of the Y and St in Elymus Species

Intron sequences were used in a maximum-likelihood (ML) analysis. The data set was used to determine the phylogenetic relationships among the Elymus species. The results showed that the Y and St genomes were derived from the same common progenitor genome. The analysis also supported the hypothesis that the Y and St genomes share a common progenitor genome. The results are consistent with previous studies that suggested a common origin for the Y and St genomes. The analysis also supported the hypothesis that the Y and St genomes share a common progenitor genome. The results are consistent with previous studies that suggested a common origin for the Y and St genomes.
for RPB2 data and 600,000 generations for EF-G were ran. Samples were taken every 1000 generations under the GTR model with gamma-distributed rate variation across sites and a proportion of invariable sites. For all analyses, the first 25% of samples from each run were discarded as burn in to ensure the stationarity of the chains. Bayesian posterior probability (PP) values were obtained from a majority rule consensus tree generated from the remaining sampled trees.

Results

Sequence variation

The amplified patterns from each diploid species show a single band for both the RPB2 and EF-G sequences with a size of approximately 800–1000 bp, which corresponds well to previous findings [21,22]. Not only have extensive sequence variations been detected in the present study between the sequences from the St and V genomes, but also among the sequences from the diploid St genome species. Notably, sequence alignment shows a large insertion/deletion (indel) in the RPB2 data (Fig. 1) which occurred at position 10. Some sequences were downloaded from Genbank and shorter than the others, so they were excluded for the comparison of this indel. In order to compare insertion/deletion among different species, we placed the data into three groups (boxes) (Fig. 1). The sequences in group I were deficient for all diploid St genome sequences and two sequences from the W genome (PI 533014 and PI 547363) together with one sequence from the H genome (PI 499645), compared to the St and Y sequences from allotetraploid StY species and all the sequences from P, E, E', and V genomes. Group II included all sequences from diploid St species except the three P. libanotica accessions (PI 330687, PI 330688 and PI401274) and one P. spicata accession (PI 610986) that had 31 bp deletions, while the sequences from St and Y genomes in tetraploid Elymus species, and the sequences from the H, W (except PI 531553), P, E, E', and V genome species did not have this deletion. Group III comprised samples with a 6 bp insertion that occurred in the Y, H, W (except PI 531553), P, and E genome sequences. None of the St genome contained the sequence GAATGT in this region.

Phylogenetic analyses of RPB2 sequences

Maximum parsimony analysis was conducted using *Brachytrium sterilis* as the outgroup. The parsimony analysis resulted in 826 equally most parsimonious trees (CI excluding uninformative characters = 0.650; RI = 0.836). The separated Bayesian analyses using GTR model resulted in identical trees with mean log-likelihood values −5318.82 and −5490.62 (data not shown). The tree topologies were almost identical in both ML and Bayesian likelihood trees and similar to those generated by MP, but only one of the most parsimonious trees with Bayesian PP and maximum parsimony bootstrap (1000 replicates) value is shown (Fig. 2).

Phylogenetic analyses separated the sequences into three clades. All diploid species from the St genome and one sequence of *D. villosum* representing the V genome were grouped together in 67% BS (PP = 0.95). Included in the clade are the St genome sequences from tetraploid *Elymus* species (Fig. 2), while the Y copy sequences from tetraploid StY *Elymus* species formed a clade with the W and P genome species in 71% BS (PP = 1.00). The two copies of sequences from each *Elymus* species except *E. pendulius* (H9896) and *E. longaristatus* (PI 401280) were separated well into two different clades, while the sequence from *E. pendulius* (H8986) and *E. longaristatus* (PI 401280) was related to the presumed Y-W-P genome clade. The only difference among the MP, ML, and BI trees is the Y copy sequence of *E. semiarticulatus* (PI 207452) which separated from the subclade with two other Y copy from accessions PI 639828 and PI 499476 in the ML tree. These three sequences were grouped together and were fairly well supported by the BI and MP trees (63% BS, PP = 0.99).

Within the St (Pseudoroegneria + *Elymus*) clade, all *P. spicata* accessions except PI 610986 and PI 506274 formed a well supported subclade (92% BS, PP = 0.96), within which *P. strigosa* and *P. gracilis* were nested. The *P. spicata* sequences from accession PI 610986 and PI 506274, along with the St copy from

![Figure 1. Partial alignment of amplified RPB2 sequences from Elymus StY and their putative diploid donor species.](image-url)
Figure 2. One of the 826 parsimonious trees derived from *RPB2* sequence data. The tree was conducted using heuristic search with TBR branch swapping. Numbers above and below branches are bootstrap values and Bayesian posterior probability (PP) values, respectively. Heavy internal branches are retained in the strict consensus tree. *Bromus sterilis* was used as an outgroup. Consistency index (CI) = 0.650, retention index (RI) = 0.836, rescale consistency index (RCI) = 0.543.
doi:10.1371/journal.pone.0026853.g002
StY tetraploid species were placed outside this subclade. The sequences from *P. tauri*, *P. libanotica* and *E. caucasicus* were grouped into a separate subclade.

Phylogenetic analyses of the EF-G sequences

The parsimony analysis resulted in 556 most parsimonious trees (CI excluding uninformative characters = 0.863; RI = 0.906). The Bayesian analyses using GTR model resulted in identical trees with mean log-likelihood values of -4132.80 and -4508.50 (data not shown). The tree topologies generated by ML, MP and Bayesian analyses were similar to each other, but only one of the most parsimonious trees with BS and PP values is shown in Figure 3.

In contrast to the *RPB2* sequences, Maximum Parsimony and Bayesian analyses based on *EF-G* sequences clearly separated the sequences from the *St* genome species into two distinct clades (Fig. 3). The first contained *P. tauri* and *P. libanotica*, as well as *E. longearistatus* and *E. caucasicus* with 96% BS support (PP = 1.00) and the second included *P. spicata*, *P. gracillima*, *P. stipifolia*, *P. ferganensis*, *P. strigosa* and *Elymus* species. However, the ML tree based on *EF-G* sequences still combined these two subclades into one large clade. The *P. spicata* accession PI 232134 that was suggested as the *Y* genome donor to *E. longearistatus* [24] was sister to the subclade (83% BS) of the other two *P. spicata* accessions (PI 537309 and PI 610906), and included in this *Pseudoroegneria* + *Elymus* clade.

All but one of the *Y* containing taxa with the *E* and *W* genomes formed a well supported clade (BS = 99%, PP = 1.00). The *Y* genome clade was further divided into two subclades. The first contained *E. semicosatus*, *E. strictus*, *E. abolini*, *E. antiquus*, *E. pendulinus*, and *E. gmelinii* with 100% bootstrap support (PP = 1.0). The second group comprised of *E. longearistatus* and *E. caucasicus* with 100% bootstrap support (PP = 1.0). The *Y* copy sequence from *E. fedtschenkoi* (PI 564927) was not grouped into the *Y* genome clade and instead appeared as a sister to the *H* genome sequences.

Figure 3. One of the 556 parsimonious trees derived from *EF-G* sequence data. The tree was conducted using heuristic search with TBR branch swapping. Numbers above and below branches are bootstrap values and Bayesian posterior probability (PP) values, respectively. Heavy internal branches are retained in the strict consensus tree. *Bromus sterilis* was used as an outgroup. Consistency index (CI) = 0.863, retention index (RI) = 0.906, rescale consistency index (RCI) = 0.783.

doi:10.1371/journal.pone.0026853.g003

Distinct Origin of the Y and St in *Elymus* Species
Discussion

Possible origin of the Y genome and the relationships among the St and Y genome with other genomes in Elymus species

The phylogenetic analyses of Elymus and as many as 31 accessions from 8 St genome diploid species, in the present study, provide support for the distinct origin of the Y genome in polyploid StY species. Both RPB2 and EF-G phylogenetic trees have well separated the Y genome from the St genome. These results are in accordance with the previous findings by Mason-Gamer et al. [19,20] and Sun et al. [21], and support Dewey’s hypothesis that there is a Y diploid species from which the Y genome originated. The data do not support the idea that the St and Y genomes have the same origin, which was based on ITS data by Liu et al. [18]. Recently, Okito et al. [24] suggested that one accession of P. spicata (PI 232134) might be the donor of the Y genome and a prime candidate for the origin of the Y genome to E. longearistatus (StY). In our study, the accession of P. spicata (PI 232134) was included but both RPB2 and EF-G phylogenetic trees placed this accession in the St genome together with other Pseudoroegneria species. This indicates that there is not a close link between St genome in P. spicata and the Y genome in E. longearistatus or other StY genome species. Since the Y genome grouped with the W genome sequences in both the RPB2 and EF-G trees, it implies that the W genome is closely related to the Y genome.

With respect to the relationships among different diploid species with the St genome, both the RPB2 and EF-G data separated the P. libanotica + P. tauri group from other St genome species. The separation of P. libanotica from P. spicata was expected since previous AFLF analysis indicated a great difference between P. libanotica and P. spicata [42]. An interesting result in the RPB2 tree was that the presumed St genome copy of E. longearistatus (StY) placed close to the Y genome clade with a 69% BS, rather than being grouped with other St-genome sequences from tetraploid StY species. Furthermore, in the EF-G tree, the presumed St-genome copy of E. longearistatus (StY) proved to be different from other larger St-genome clade sequences and formed another well-supported clade (96% BS) with two P. libanotica individuals and P. tauri. This discrepancy within the sequence data between the St copy of E. longearistatus and the St genome clade sequences may be the reason why Okito et al. [24] suggested that one accession of P. spicata (PI 232134) could be the candidate donor of the Y genome to E. longearistatus (StY). However, since the sequences in the St genome of E. longearistatus are quite different from the other St genome sequences. In both the trees of RPB2 and EF-G sequences, P. libanotica grouped with the St copy of E. caucasicus (PI 531573) and separated from other diploid St genome species. These data indicate that P. libanotica may be the donor of the St genome in allotetraploid E. caucasicus species.

Dense sampling of intraspecies accession does not affect the identification of genome origin in polyploids

Intraspecific variation is abundant in all types of systematic characters which could cause bias in the phylogenetic analyses [43]. Systematists use different ways to deal with intraspecific variation [26]. There has been considerable debate as to which of the methods for directly analyzing polymorphic data is superior (e.g., [44–46]). One simulation study found that, overall, the most accurate methods were likelihood, the additive distance methods, and the frequency of parsimony method [26]. Okito et al. [24] used relatively large samples from P. spicata (St genome) to investigate the origin of the Y genome, and suggested that one accession of P. spicata (PI 232134) may be the donor of the Y genome, which conflicts the previous findings of Mason-Gamer et al. [19,20,21] and Sun and Komatsuda [22] who used a few samples from the St genomes species. In most previous phylogenetic studies, only one or two accessions have been used to represent entire species data, however, this neglects the change of intraspecific variation, and may result in a biased conclusion. This is the first time we used as many as 31 accessions from 8 St genome species in the phylogenetic analysis to evaluate if intraspecific variation could affect the phylogenetic result of the Y genome origin. MP, ML and Bayesian analyses reached the same conclusion that the St and Y genomes have distinct origins. Although fairly intraspecific variation has been detected in P. spicata [42] and other diploid species (data not shown), they do not influence the identification of the Y genome origin. It has been shown in previous studies that effective taxon sampling would be beneficial when analyzing the relationships across various levels of biological organization (e.g., genes, genomes, individuals, populations, species, or clades) due to poor taxon sampling leading to an increase in the apparent rate of variation which results in the overrepresentation of older nodes in the phylogenetic trees, and therefore, the bias caused by incomplete species sampling must be considered when using phylogenies to test hypotheses about species diversity (e.g., [47–51]). However, since the genome-wide recombination would have a much greater variation than the ones of intraspecies accessions, the sample size of each species would not affect our investigation of the inter-genome questions, such as genome origination, if the minimal requirement (two or more representative accessions per species) is reached.

Genome evolution in allopolyplod species

The process of polyploidy occurs in cells and organisms when there are more than two paired (homologous) sets of chromosomes. During or after the process of allopolyploidization, rapid sequence elimination and restructuring of low-copy DNA, cytosine methylation, as well as the changes of transposable element activation and epigenetic gene silencing in allopolyploids shape the genomes in plants [2–4]. In this study, extensive nucleotide changes and genome-wide indels have been found between the sequences of the diploid St species and the allopolyploid StY species. The present study shows a 47 bp insertions in all the St copies of the RPB2 sequences from allotetraploid StY species and all the diploid St species lack this insertion(Fig. 1 Part I and II) except the three P. libanotica accessions (PI 330687, PI 330688 and PH01274) and one P. spicata accession (PI 610986). One possible scenario is that the St genome in tetraploid StY species was donated by these four accessions. However, the geographical distribution of P. spicata does not overlap with StY Elymus species, and phylogenetic analyses did not provide convincing evidence of that the accession PI 610986 of P. spicata and P. libanotica are the St donor species to all allotetraploid StY species analyzed here (Figs. 2 and 3).

Another possible scenario is that the St genome in Elymus species acquired this part of the sequence by the inter-genome invasion of chromatin segments from the Y genome to the St genome and abundant genome-wide recombination following the fusion of St and Y gametes, before or after the process of polyploidization. It is also possible that the noted indels are homoplastic, however, since the RPB2 gene data from other genomic diploid species contain the same insertion as well, we could not rule out the possibility that this is due to the gene introgression between the St genome and other diploid species from the W, H or E genomes. Furthermore, this theory of gene introgression wouldn’t work for the following reasons. The RPB2
sequence data indicated that the tetraploid species *E. pendulinus* (H9396) and *E. longearistatus* (PI 401290) representing StY genome exhibited a high similarity between the two copies from St and Y genomes. As the result, the St copies of *E. pendulinus* (H9906) and *E. longearistatus* (PI 401290) are sister with the presumed Y-genome clade (99% BS) in the MP, ML and Bayesian trees. It could be that the St and Y genome have a common origin, however, the majority of 13 other tetraploid StY species sequences contain distinct St and Y genomes. Hence, the similarities between the RPB2 sequences in the St and Y genome in *E. pendulinus* (H9906) and *E. longearistatus* (PI 401290) could not be explained by the same origin of the St and Y genomes. Also, only one copy of EF-G sequence from *E. pendulinus* (H9906) was found even though more than ten clones were screened. Assuming no bias in cloning or PCR amplification, this gives a 99.9% chance of obtaining at least one copy of each of the two ancestral allelic types for the allotetraploid [52]. Gene introgression between the St and Y genome species and other diploid species could not explain this. Genome-wide recombination between the St and Y genome could result in the two genome sequences at this location being identical to the extent that we could not distinguish one from the other in this specific DNA fragment. Therefore, the explanation of genetic asymmetry evolution between the two parental genomes following polyploidization seems to be more likely than gene introgression.

Previous research has shown genome-wide recombination of allopolyploid between two constituent genomes in wheat species *T. turgidum* subsp. *dicoccoides* (Koern.) Thell., indicating that allopolyploid organisms can “select” the most efficient gene combination from one genome to control a set of related traits [11]. Comparative chromosomal studies using genetic mapping and fluorescence in situ hybridization (FISH) have demonstrated that inter-genome invasion of chromosomes can occur from the B genome into the A genome (e.g., [53]). In the multiple independent synthetic lines of *Brassica napus* allotetraploids, genetic asymmetry evolution has been reported by Gaeta et al. [34], who found that convergent evolution of the two parental genomes could reflect extensive genomic combination. In contrast to the multiple copy genes, such as ITS, single-copy genes may more easily suffer from the loci loss due to random events after polyploidization [53]. Our finding using StY genome species support these ideas for the genome convergent evolution in allopolyploids. Based on the two nuclear gene sequence data, we still could not determine the exact origin and the clear location of the Y genome in the tribe Triticeae. Since sequence variability has been found in *E. pendulinus* and *E. longearistatus* more research is needed, to reveal the phylogenetic relationships and genome convergence in these species. Clearly, there are still a number of aspects which requires further study.

Supporting Information

Table S1

Taxa from Bromus, Elymus, Hordeum, Pseudo-rogerinia, Lophopyrum, Thinopyrum, Agropyron, Australopyrum and Dasypyrum used in this study.
Author Contributions

Conceived and designed the experiments: GS. Performed the experiments: CY GS DS. Analyzed the data: CY GS DS. Contributed reagents/materials/analysis tools: GS DS. Wrote the paper: CY GS DS.

Acknowledgments

We thank Jonathon Forest and Qianni Hu for valuable discussions on the manuscript and Professor D.H.S Richardson, Dean Emeritus, Saint Mary’s University for revisions and helpful comments on an early draft of this manuscript.

References

1. Cui L, Wall PK, Leebens-Mack JH, Lindsey RG, Solins DE, et al. (2006) Widespread genome duplications throughout the history of flowering plants. Genome Research 16: 738–749.
2. Chen RJ, Zharkov A, Blatt M, Zhou J, Karp P (2005) Genome-wide recombination of allopolyploids in *Triticum* and *Hordeum* reveals convergent evolution. Genome Research 15: 563–570.
3. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy induced rapid genome evolution in the wheat (Agropyron–Triticum group). Plant Cell 13: 1735–1747.
4. Ozkan H, Levy AA, Feldman M (2002) Rapid differentiation of homoeologous chromosomes in newly formed allopolyploid wheat. Isr J Plant Sci 50: 63–76.
5. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytose deletion are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749–1759.
6. Salina EA, Numerova OM, Ozkan H, Feldman M (2004) Alterations in interspecific and intergeneric hybrids and allopolyploids of *Triticum*. Genome 47: 676–723.
7. Han FF, Fedak G, Guo WL, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (p4G-1R-1a) in newly synthesized wheat allopolyploids. Genetics 170: 1239–1245.
8. Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary upregulation followed by gradual changes. J Genet Genomics 36: 511–518.
9. Botthmer Rvon, Salomon B (1994) Triticeae: a tribe for food, feed and fun. In: Wang RRC, Jensen KB, Jaussi C, eds. Proceedings of the 2nd International Triticeae symposium. Utah: Logan Press. pp 1–12.
10. Dewey DR (1994) The genomic system of classification. A guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP, ed. Gene manipulation in Plant Improvement. New York: Plenum Press. pp 209–280.
11. Jensen KB (1990) Cytology, fertility, and morphology of *Elymus* kengi (Keng) Tuvel and E. grandiflora (Keng). *Elymus* (Poaceae): Genome 35: 563–570.
12. Torabinejad J, Mueller RJ (1993) Genome Constitution of the Australian *Elymus* subsp. *boissieri*. *Elymus* (Poaceae): Genome 36: 147–151.
13. Jensen KB, Salomon B (1995) Cytogenetics and morphology of *Elymus* panasonicus var. *heterophyllus* (Keng) A. Love and its relationship to *Elymus* panasonicus (Poaceae: Triticeae). Int J Plant Sci 156: 731–739.
14. Lu BR, Liu Q (2005) The possible origin of the “SW” genome *E. fujianensis*: a new mechanism of allopolyploidy in plants. Czech J Genet Plant Breed 41: 58.
15. Liu Q, Gu S, Tan G, Zhang X, Zhu G, et al. (2006) Phylogenetic relationships in *Elymus* (poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast *trnL-F* sequences. New Phytol 170: 411–420.
16. Mason-Gamer RJ, Burns MM, Naum M (2005) Polyploidy, introgression, and nuclear gene trees. *Mol Phylogenet Evol* 46: 563–570.
17. Sun G, Komatsuda T (2010) Origin of the Y genome in *Elymus canadensis*. Int J Plant Sci 156: 731–739.
18. Liu Q, Gu S, Tang H, Zhang X, Zhu G, et al. (2006) Phylogenetic relationships in *Elymus* (poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast *trnL-F* sequences. New Phytol 170: 411–420.
19. Mason-Gamer RJ, Burns MM, Naum M (2010) Phylogenetic relationships and reticulation among Asian *Elymus* (Poaceae) allopolyploids: Analyses of three nuclear gene trees. *Mol Phylogenet Evol* 54: 10–22.
20. Sun G, Ni Y, Doley T (2006) Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in *Elymus* species. *Mol Phylogenet Evol* 46: 897–907.
21. Sun G, Komatsuda T (2010) Origin of the Y genome in *Elymus* and its relationship to other genomes in *Triticeae* based on evidence from elongation factor *G* (EF-G) gene sequences. *Mol Phylogenet Evol* 46: 727–733.
22. Dewey DR (1971) Synthetic hybrids of *Hordeum bogdani* with *Elymus canadensis* and *Sinapis flaccida*. *Amer J Bot* 58: 902–908.
23. Okito P, Mott JW, Wu Y, Wang RR (2009) A Y genome specific STS marker in *Pseudoroegneria* and *Elymus* species (Triticeae: Gramineae). Genome 52: 391–400.
24. Garamszegi LZ, Moller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. *Biol Rev* (in press), doi: 10.1111/j.1469-185X.2010.00126.x.
26. Wiens JJ, Servedio MR (1998) Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. Syst Biol 47: 228–253.
27. Junghans H, Metzlaff M (1990) A simple and rapid method for the preparation of total plant DNA. Biotechniques 8: 176.
28. Sun G, Daley T, Ni Y (2007) Molecular evolution and genome divergence at RPB1 gene of the St and H genome in Elymus species. Plant Mol Biol 64: 645–655.
29. Komatsu T, Tanou K, Salomoo B, Bryngelsson T, von Bothmer R (1999) Phylogeny in the genus Hordeum based on nucleotide sequences closely linked to the vrl1 locus (row number of spikelets). Genome 42: 973–981.
30. Thompson JD, Gibson TJ, Plewniak F, Jeanmouguin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.
31. Swoford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland: Sinauer Associates.
32. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 781–791.
33. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
34. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20: 86–93.
35. Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro H, ed. Mammalian Protein Metabolism. New York: Academic Press, vol. III, 24, 21–132.
36. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Biol 162: 99–112.
37. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.
38. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.6a2. Distributed by the author. Seattle: Department of Genetics, University of Washington.
39. Hasegawa M, Kishino H, Yano T (1985) Dating of the Human-Ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22: 160–174.
40. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
41. Ronquist F, Huelsenbeck JP (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R, ed. Statistical methods in molecular evolution Springer-Verlag Press. pp 183–232.
42. Larson SR, Jones TA, Jensen KB (2004) Population structure in Pseudosorus spicata (Poaceae: Triticeae) as evidenced by Bayesian clustering of AFLP genotypes. Amer J Bot 91: 1789–1801.
43. Harmon LJ, Lossos JB (2005) The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59: 2703–2710.
44. Felsenstein J (1985) Phylogenies and the comparative method. Amer Nat 125: 1–15.
45. Swoford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogeny reconstruction. In: Hillis DM, Moritz C, Mable BK, eds. Molecular systematics, 2nd edition. Massachusetts: Sinauer Associates, pp 407–414.
46. Wiens JJ, Servedio MR (1997) Accuracy of phylogenetic analysis including and excluding polymorphic characters. Syst Biol 46: 332–345.
47. Hillis DM (1996) Inferring complex phylogenies. Nature 383: 130–131.
48. Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47: 3–10.
49. Hedike SM, Townsend TM, Hillis DM (2006) Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55: 522–529.
50. Heath TA, Hedike SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analysis. J Mol Evol 66: 239–257.
51. McCormack JE, Huang H, Knowles LL (2009) Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Syst Biol 58: 501–508.
52. Jakobsson M, Hagenblad J, Tavare S, Sall T, Hallén C, et al. (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. Mol Biol Evol 23: 1217–1231.
53. Belvyva A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43: 1021–1026.
54. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19: 1405–1417.
55. Malchka V, Kopecky D (2010) Gene capture from across the grass family in the allotetraploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSII and molecular cytogenetics. Mol Biol Evol 27: 1370–1390.