Postoperative Outcome in Children aged between 6 and 10 years in Major Abdominal Surgery, Neurosurgery and Orthopedic Surgery

Claudine Kumba (claudine.kumba@gmail.com)
Hôpital Universitaire Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, APHP, Université de Paris https://orcid.org/0000-0002-9748-5141

Research Article

Keywords: Children aged between 6 and 10 years, abdominal surgery, neurosurgery, orthopedics, outcome, goal directed therapies

Posted Date: June 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-669076/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Anticipating postoperative evolution in surgical patients is an important issue in our daily practice.

We have demonstrated in a previous study that predictors of postoperative outcome are multiple including American Society of Anesthesiologists status (ASA), transfusion, emergency, surgery and age. A detailed description of postoperative outcome was undertaken in children aged between 6 and 10 years included in the initial study.

Objective

To describe postoperative outcome in children aged between 6 and 10 years included in the initial cohort in abdominal surgery, neurosurgery and orthopedics.

Methods

Secondary analysis of postoperative outcome in children aged between 6 and 10 years included retrospectively in the initial study of 594 patients. The study was approved by the Ethics Committee.

Results

There were 88 patients with a mean age of 98.7±13.8 months.

The most common surgical interventions were scoliosis in 23 patients (26.1%), femoral osteotomy 7 patients (7.9%), limb tumor resection 7 patients (7.9%), intracerebral tumor resection 6 patients (6.8%), intestinal resection 5 patients (5.6%), Chiari's malformation 4 patients (4.5%), pelvic osteotomy 4 patients (4.5%) and renal transplantation 4 patients (4.5%).

Most patients (45%) were American Society of Anesthesiologists grade 3 (ASA 3) and 13 (14.8%) were ASA grade 4.

22(25%) patients had intra-operative and or postoperative complications (organ dysfunction or sepsis). 2 patients (2.3%) had intra-operative hemorrhagic, 1 patient (1.1%) had an intra-operative difficult intubation and 1 patient experienced intra-operative anaphylaxis. 9 patients (10.2%) had postoperative neurologic failure and 2 (2.3%) postoperative cardio-circulatory failure. 3 patients (3.4%) had postoperative septicemia, 2 patients (2.3%) had postoperative pulmonary and urinary sepsis and 1 patient (1.1%) had postoperative abdominal sepsis. 3 patients (3.4%) had re-operations. 42(47.7%) patients had intra-operative transfusion.

There was 1 in-hospital death (1.1%). Median total length of hospital stay was 9 days [5-16].

Conclusion

25% of the patients had intra-operative and or postoperative complications and most of them were ASA grade ≥3. Integrating goal directed therapies to optimize intra-operative management in these patients is a necessary implementation to improve postoperative outcome in surgical pediatric patients.

Introduction

Postoperative outcome in surgical patients is an important issue in our daily practice.

Predictors of postoperative outcome are multifactorial among which American Society of Anesthesiologists status (ASA), transfusion, emergency, surgery and age were identified in previous studies (1, 2, 3, 4). Predictors of postoperative outcome in this study were not exhaustive which means that other non-identified factors may contribute in how patients evolve after surgery.

For a better postoperative outcome, anticipating patient's management optimization begins preoperatively, continues intra-operatively and postoperatively. Intra-operative patient optimization includes fluid and hemodynamic goal directed therapy with tools validated in children, blood patient transfusion protocols guided with point of care tests in hemorrhagic surgery and enhanced recovery after surgery protocols (5, 6, 7, 8, 9, 10, 11, 12, 13). These goal directed therapies have been shown in adults to improve postoperative outcome. In children, goal directed therapies are not well developed and are not in routine generalized practice.

The study presented here had the objective to describe postoperative outcome in children aged between 6 and 10 years who were included in the initial retrospective study (1). The aim was to emphasize how these patients in major surgery evolved and to propose improvement
implementation protocols.

Methods And Materials

Secondary analysis of children between 6 and 10 years old included in the initial study (1).

The study was declared to the CNIL, National Commission for Computer Science and Liberties on 21 February 2017 under the registration number 2028257 v0. The Ethics Committee of Necker approved the study on 21 March 2017 under the registration number 2017-CK-5-R1. Patients were included retrospectively from 1 January 2014 to 17 May 2017.

Inclusion criteria were children aged between 6 and 10 years old.

Exclusion criteria were children aged less than 6 years old and older than 10 years.

Statistics were analyzed with XLSTAT 2020.4.1 software.

Continuous variables were described in means ± standard deviation or medians with interquartile ranges. Categorical variables were described in proportions.

Results

Table 1 illustrates the general characteristics.
Characteristics	N = 88
Mean age in months±standard deviation	98.7±13.8
Abdominal surgery n (%)	17(19.3)
Neurosurgery n (%)	26(29.5)
Orthopedic surgery n (%)	45(51.1)
Elective surgery n (%)	77(87.5)
Emergency surgery n (%)	11(12.5)
Re-surgery n (%)	3(3.4)
Patients with intra-operative and or postoperative complications (organ failure and or sepsis) n (%)	22(25)
Intra-operative hemorrhagic shock n (%)	2(2.3)
Intra-operative difficult intubation n (%)	1(1.1)
Intra-operative anaphylaxis n (%)	1(1.1)
Postoperative neurologic failure n (%)	9(10.2)
Postoperative cardio-circulatory failure n (%)	2(2.3)
Postoperative endocrinal failure n (%)	1(1.1)
Postoperative miscellaneous n (%)	1(1.1)
Postoperative multi-organ failure n (%)	1(1.1)
Postoperative septicemia n (%)	3(3.4)
Postoperative pulmonary sepsis n (%)	2(2.3)
Postoperative urinary sepsis n (%)	2(2.3)
Postoperative abdominal sepsis n (%)	1(1.1)
In hospital Mortality n (%)	1(1.1)
Transfusion n (%)	42(47.7)
Mean preoperative hemoglobin levels± standard deviation g/dL	11.6±1.9
Mean postoperative hemoglobin levels ± standard deviation g/dL	10.9±1.5
ASA I n (%)	3(3.4)
ASA II n (%)	31(35.2)
ASA III n (%)	40(45.5)
ASA IV n (%)	13(14.8)
ASA V n (%)	1(1.1)
Median length of intensive care unit stay in days [interquartile range]	4[1 – 6]
Median length of hospital stay in days [interquartile range]	6[3.7–10.2]
Median total length of hospital stay in days [interquartile range]	9[5 – 16]
Median length of mechanical ventilation (invasive or non-invasive) in days [interquartile range]	0[0–1]

There were 88 patients with a mean age of 98.7±13.8 months.

There were 17 patients (19.3%) in abdominal surgery, 26 (29.5%) in neurosurgery and 45 (51.1%) in orthopedic surgery. 11 patients (12.5%) had an emergency intervention.

Table 2 illustrates types of surgery.
Table 2

Surgery	Number of patients (%)
Basal skull schwannoma	3(3.4)
Brainstem lesion resection	1(1.1)
Cerebral aneurysm/Cerebral arterio-venous malformation angioembolization	1(1.1)
Cerebral cavernoma	1(1.1)
Chiari’s malformation	4(4.5)
Craniosynostosis	3(3.4)
Epileptogenic lesion resection	1(1.1)
Femoral osteotomy	6(6.8)
Femoral prothesis	1(1.1)
Hepatic tumor	1(1.1)
Interscapular thoracic desarticulation	2(2.2)
Intestinal resection	5(5.6)
Intracerebral tumor resection	6(6.8)
Knee prothesis	1(1.1)
Laparotomy for volvulus	1(1.1)
Limb tumor resection	8(9.1)
Liver transplantation	3(3.4)
Neuroblastoma	1(1.1)
Orbital tumor	1(1.1)
Pelvic osteotomy	4(4.5)
Pelvic tumor	1(1.1)
Posterior fossa decompression	1(1.1)
Renal transplantation	4(4.5)
Scoliosis	23(26.1)
Splenectomy	1(1.1)
Ventriculostomy	1(1.1)
Vertebral laminectomy/Arthrodesis	3(3.4)

The most common surgical interventions were scoliosis in 23 patients (26.1%), femoral osteotomy in 6 patients (6.8%), limb tumor resection in 8 patients (9.1%), intracerebral tumor resection in 6 patients (6.8%), intestinal resection in 5 patients (5.6%), Chiari’s malformation in 4 patients (4.5%), pelvic osteotomy in 4 patients (4.5%) and renal transplantation in 4 patients (4.5%).

Most patients (45%) were American Society of Anesthesiologists grade 3 (ASA 3) and 13 (14.8%) patients were ASA grade 4.

22(25%) patients had intra-operative and or postoperative complications (organ dysfunction or sepsis).

The most common intra-operative complication was hemorrhagic shock in 2 patients (2.3%) followed by difficult intubation and anaphylaxis in 1 patient (1.1%) respectively. The most common postoperative organ failure was neurologic in 9 patients (10.2%), followed by cardio-circulatory in 2 patients (2.3%). The most common postoperative infection was septicemia in 3 patients (3.4%) followed by pulmonary and urinary sepsis in 2 patients (2.3%) respectively and abdominal sepsis in 1 patient (1.1%). 3 patients (3.4%) had re-operations. 42(47.7%) patients had intra-operative transfusion. There was 1 in hospital death (1.1%) (Table 3).
Median total length of hospital stay was 9 days [5–16].

Table 4 illustrates outcomes per surgery.

Table 4 outcomes per surgery

Surgery	Age months	ASA score	Co-morbidities	Intra-operative complications	Postoperative outcome	Delay of in-hospital mortality in days	Emergency	Transfusion
Posterior fossa decompression	85	5	Sickle cell disease	0	Multiple organ failure and pulmonary sepsis	7	Yes	Yes

Table 5 illustrates co-morbidities. The most common co-morbidities were intracerebral tumor in 7 patients (7.9%), Ewing’s sarcoma in 5 patients (5.7%), psychomotor deficiency in 5 patients (5.7%), arthritis in 4 patients (4.5%), cerebral anoxic lesions in 4 patients (4.5%), chronic renal failure in 4 patients (4.5%), hepatic failure in 4 patients (4.5%) and poly-malformation syndrome in 4 patients (4.5%).
Table 5
Co-morbidities

Co-morbidity	Number of cases (%)
Arachnoid cyst	1(1.1)
Arthritis	4(4.5)
Bronchodysplasia Sequelae	1(1.1)
Cancer	2(2.2)
Cerebral aneurysm/Cerebral arterio-venous malformation, Pulmonary hypertension	2(2.2)
Cerebral anoxic lesions	4(4.5)
Chiari’s malformation	2(2.2)
Chronic renal failure	4(4.5)
Convulsive encephalopathy	1(1.1)
Crohn’s disease	1(1.1)
Epilepsy	2(2.2)
Ewing’s sarcoma	5(5.7)
Extradural hematoma	1(1.1)
Gorlin’s syndrome	1(1.1)
Hepatic failure	4(4.5)
Intestinal pseudo-occlusion	1(1.1)
Intracerebral tumor	7(7.9)
Klippel-Feil Syndrome	1(1.1)
Larsen syndrome	1(1.1)
Morquio syndrome	1(1.1)
Myelomeningocele	2(2.2)
Necrotizing enterocolitis Sequelae	1(1.1)
Neurofibromatosis	3(3.4)
Pierre Robin syndrome	1(1.1)
Polymalformation syndrome	4(4.5)
Polytrauma	2(2.2)
Psychomotor deficiency	5(5.7)
Rachitism	1(1.1)
Sarcoidosis	1(1.1)
Sickle cell disease	1(1.1)
Crouzon syndrome	1(1.1)

Discussion And Conclusion

The rate of patients with intra-operative and or postoperative complications in this cohort of 88 children between 6 and 10 years in major abdominal surgery, neurosurgery and orthopedics was 25%. These patients were in majority ASA grade 3 or more. As revealed in the initial studies (1, 2, 3, 4) postoperative outcome depends on multiple factors precisely ASA status, transfusion, age, emergency and surgery. Integrating goal directed therapies for intra-operative management in these patients is a necessary implementation to improve postoperative outcome in pediatric surgical patients. Goal directed therapies include intra-operative fluid and hemodynamic goal directed therapy with
validated tools in children, intra-operative transfusion goal directed protocols with point of care devices to guide blood product
administration and enhanced recovery after surgery (5, 6, 7, 8, 9, 10, 11, 12, 13). All these therapies have the same aim which is to optimize
intra-operative patient status which contributes to a favorable postoperative evolution. In our Hospital, goal directed therapies are not yet a
routine generalized practice. It is time to reconsider integrating goal directed therapies in intra-operative patient management in high risk
patients and surgery to improve postoperative outcome.

Declarations

Conflicts of Interest

The author declared no conflicts of interest

References

1. Kumba C, Cresci F, Picard C et al. Transfusion and Morbi-Mortality Factors: An Observational Descriptive Retrospective Pediatric Cohort
Study. J Anesth Crit Care Open Access 2017; 8(4): 00315. DOI:10.15406/jaccao.2017.08.00315.
2. Kumba C, Taright H, Terzi E, Telion C, Beccaria K, Paternoster G, Zerah M, Bustarret O, Jugie M, Rubinsztajn R, Treluyer JM. Blood Product
Transfusion and Postoperative Outcome in Pediatric Neurosurgical Patients. EC Anaesthesia 2018; 4(8) : 288–298.
3. Kumba C, Lenoire A, Cairet P, Dogaru-Dedieu E, Belloni I, Orliaguet G. Is Transfusion an Independent Risk Factor of Postoperative
Outcome in Pediatric Orthopedic Surgical Patients? A Retrospective Study. J Emerg Med Critical Care 2018; 4(2) :7. DOI:
10.13188/2469-4045.1000018.
4. Kumba C, Querciagrossa S, Blanc Thomas, Treluyer JM. Transfusion and Postoperative Outcome in Pediatric Abdominal Surgery. J Clin
Res Anesthesiol 2018; 1(1):1–8.
5. Kumba C. "Do Goal Directed Therapies Improve Postoperative Outcome in Children? (Perioperative Goal Directed Fluid and
Haemodynamic Therapy; Transfusion goal directed therapy using viscoelastic methods and enhanced recovery after surgery and
Postoperative outcome): A Study Research Protocol". Acta Scientific Paediatrics 2019; 2(7) :17–19.
6. Doi:10.31080/ASPE.2019.02.0094.
7. Kumba C. Physiology Principles Underlying Goal Directed Therapies in Children. Res Pediatr Neonatol. 4(4).RPN.000591.2020.Doi/10.31031/RPN.2020.04.000591.
8. Kumba C (2020) Rationale of Goal Directed Therapies in Children. Adv Pediatr Res 7:42. Doi:10.35248/2385-4529.20.7.42.
9. Kumba C, Willems A, Querciagrossa s, Harte C, Blanc T et al. A Systematic Review and Meta-Analysis of Intraoperative Goal Directed
Fluid and Haemodynamic Therapy in Children and Postoperative Outcome. J Emerg Med Critical Care 2019; 5(1):1–9. DOI:
10.13188/2469-4045.1000020.
10. Kumba C. Goal directed fluid and hemodynamic therapy and postoperative outcomes in children: Value of transthoracic
echocardiographic aortic blood flow peak velocity variation: A multi-centre randomized controlled trial protocol. Adv Pediatr Res 2020;
7:35. doi: 10.35248/2385-4529.20.7.35.
11. Kumba C. Trans-Thoracic Echocardiographic Aortic Blood Flow Peak Velocity Variation, Distance Minute, Aortic Velocity Time Integral
and Postoperative Outcome in Pediatric Surgical Patients—An Observational Pilot Study Protocol. Open Journal of Internal Medicine,
2020;10: 90–95. doi: 10.4236/ojim.2020.101009.
12. Kumba C, Querciagrossa S, Harte C, Willems A, De Cock A, Blanc T et al. A Systematic Review and Meta-analysis of Goal Directed Intra-
Operative Transfusion Protocols Guided by Viscoelastic Methods and Perioperative Outcomes in Children.Int J Recent Sci Res 2019; 10
(03), pp. 31466–31471. DOI: http://dx.doi.org/10.24327/ijrsrc.2019.1003.3266.
13. Kumba C, Blanc T, De Cock A, Willems A, Harte C, Querciagrossa S et al. Rapid Recovery Pathways after Surgery in Children: A
Systematic Review and Meta-Analysis. Med J Clin Trials Case Stud 2019, 3(3): 000211. DOI: 10.23880/mjccs-16000211.
14. Kumba C and Melot C. “The Era of Goal Directed Therapies in Paediatric Anaesthesia and Critical Care”. EC Emergency Medicine and
Critical Care 3.5 (2019): 306–309.