Negative resistance, capacitance in Mn/SiO₂/p-Si MOS structure

A Ashery¹, Mohamed M M Elnasharty², Ahmed Asaad I Khalil* and A A Azab*¹

¹Solid State Electronics Laboratory, Solid State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
²Microwave Physics and Dielectrics Department, Physics Division, National Research Centre, Dokki, Giza, 12622, Egypt
³Laser Sciences and Interactions Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, 12613, Egypt
E-mail: aliazab@hotmail.com

Keywords: Mn/SiO₂/p-Si, negative capacitance, dielectric properties, MOS

Abstract
In this work is that we have manufactured a new structure that had not been studied by researchers before. This structure is Mn/SiO₂/Si was synthesised by liquid phase epitaxy (LPE) as a metal-oxide-semiconductor (MOS) and can be used as a tunneling diode; demonstrated from I–V measurement and negative resistance. The structure and its characterization were examined by scanning electron microscope, XRD diffraction, C–V and I–V measurements. We studied the temperature, voltage dependence of dielectric and electrical parameters of the fabricated Mn/SiO₂/P-Si MOS device. I–V measurements for this structure display diode tunnel behavior with negative resistance. Parameters such as series resistance (Rs), permittivity (ε″), dielectric loss (ε″), a tangent of the dielectric loss factor (tan δ), real and imaginary parts of electrical modulus (M′ and M″) and ac conductivity were examined in a temperature range of 303–393 K and frequency range (10 Hz–20 MHz) under 1 Vrms applied voltage along with dc bias range of (−2.0–2.0 V). We found that thermal reordering of the interface is a reason for a continuous density of interface states with homogenous relaxation time, which in turn induced a higher sensitivity to both C and G/w response with electric field frequency. The device showed negative values for capacitance (C), dielectric loss (ε″), and dielectric loss tangent (tan δ) at all temperatures.

1. Introduction

Industrial processing of semiconductor devices is a very critical issue when it comes to the interface layer; different categories that allow different functionalities based on their layer structure can be addressed. Namely Metal-insulator-semiconductor (MIS), Metal oxide semiconductor (MOS) in which the interfacial layer plays a critical role in determining the series resistance, the interface stiffness [1] and it’s build-up electric field due to work function differences between the two layers as well as the band bending near the interface. However, the interface is physically controlled by the migration of some atoms to another following some fractal [2–4] that characterizes the segregation process and gives rise to its physical properties, the migration process of particles in the interface is typical in many other semiconductor systems, in which temperature is the main factor to determine the layer content [5–9]. Consequently, together with dielectric and electrical properties of such devices are subjective by different non-idealities [10–12], for example, the interface density of states [12–19], thickness, or homogeneity of interfacial interface layer [20–22] and temperature [23–27]. The (MIS/MOS) structure is a semiconductor substrate covered by an insulator or oxide layer such as Si₃N₄, TiO₂, SiO₂, and SnO₂, and then a metal electrode is placed which is a typical structure. The presence of the insulating layer induces an intense effect on the electrical and dielectric properties of the MOS and MIS structures [4, 28–30]. At the metal-semiconductor interface, here is a broad spectrum of energy states that are allocated in the bandgap area of the semiconductor structure. Which induce different device behavior due to alternation of local energy states; in other words, their presence is the disruption of the episodic lattice construction at the surface [13, 14, 31]. These interface states are the reason for shifting the frequency dispersion property of the C and G/w curves [32–36]. However, the oxide layer might originate border state charges by bias due to an extra electric field

© 2020 The Author(s). Published by IOP Publishing Ltd
in the insulator layer that impacts both electrical and dielectric features [32, 34, 36]. The insulator or oxide layer is a compelling part of the MIS or MOS structures as its thickness affects both the applied voltage and the series resistance in addition to the distribution of charges across this layer [37–39]. Consequently, the thickness of the insulator or oxide layer between metal and semiconductor determines the reliability and performance of MIS or MOS devices. By looking into C-V and G/w graphs, one can reveal information about the dielectric and electrical properties of the manufactured MOS device. The innovation in this article is that we have synthetic a construction that had not been introduced or cited by investigators before. This assembly is \(\text{Mn/\text{SiO}_2/p-Si} \) was manufactured by liquid phase epitaxy (LPE) as a metal-oxide- semiconductor (MOS) and can be used as tunneling diode as revealed from I–V measurement and negative resistance. The construction and description of this structure was inspected by scanning electron microscope, XRD diffraction, C-V and I–V measurements. This creation structure is considered new and therefore all properties are considered a unique. In this work, we measured the C and G/w as a function of temperature for different frequencies. The electrical and dielectric characterization of the \(\text{Mn/\text{SiO}_2/p-Si} \) (MOS) structure was characterized using C and G/w measurements in the temperature range of 30 °C–90 °C for dielectric properties and from 25 °C–150 °C for I–V measurements. The device characteristics were also measured at wide frequency range, to determine \(\varepsilon' \), \(\varepsilon'' \), tan \(\delta \), and M' and M'' of \(\text{Mn/\text{SiO}_2/p-Si} \) (MOS) construction, using the admittance technique [40].
2. Experimental procedure

(p-Si) Wafer single crystal of orientation (100) and resistivity 20 Ω·cm² were used to fabricate the device with dimension of 12 mm × 12 mm × 350 μm. We boiled the silicon wafer in NH₄OH + H₂O₂ + H₂O for 15 min. Then, in HCl + H₂O₂ + H₂O at 70 °C for another 10 min after, add another etching step in HF: 10 H₂O solutions to remove the oxide layer, and then we applied sonication in isopropanol and acetone,

Figure 3. XRD pattern of Mn/SiO₂/p-Si structure.

Figure 4. (a), (b) The C-V curves for the Mn/SiO₂/p-Si structure at (a) different temperatures (b) different frequencies. 4(c), (d) The G/ω-V curves for the Mn/SiO₂/p-Si structure at (c) different temperatures (d) different frequency.
respectively. The wafer is then left to dry in an argon atmosphere. The controlled thickness SiO$_2$ thin-film was formed by oxidation in a furnace in the presence of oxygen with the pressure of 2×10^{-6} m bar at 850 °C.

2.1. Thin films preparation by LPE

The manufacture technologies were liquid phase epitaxy (LPE) and oxide furnace, to prepare the Mn/SiO$_2$/p-Si structure. The oxide layer of the SiO$_2$ is formed on top of the Si surface using the O$_2$ gas stream below high temperature. Mn film was deposited on SiO$_2$/p-Si substrates by LPE [41].

3. Results and discussion

3.1. Structural properties

Figure 1 shows the structure of our MOS Mn/SiO$_2$/p-Si. This figure illustrates the three layers of the MOS structure along with the upper and lower silver paste covering the whole MOS surface to ensure good contact. Then the MOS is placed within the measuring cell of the broadband dielectric spectrometer, BDS, system (concept 40, Novocontrol, Germany) to be measured under mentioned temperature, frequency and dc bias voltage. Figure 2 shows the manganese thin film deposited on SiO$_2$/Si by liquid phase epitaxy, which appears smooth in the SEM images. It is noticed little separated islands are created rather than closed thin films. The deposited thin film is observed well covering, pinhole-free and crack-free. XRD patterns of the samples synthesized by the liquid phase epitaxy are shown in figure 3. The diffraction peaks of SiO$_2$, Mn, and Si can be identified in the XRD patterns. Moreover, the intensity of the Mn and Si diffraction peak is much higher than that of SiO$_2$. This means the degree of crystallinity of Mn is far better than that of SiO$_2$. The structure identified by x-ray diffraction forms for the epitaxial grown Mn/SiO$_2$/p-Si is revealed in figure 3. All the detected peaks were indexed in the form of both components. As shown, the form denoted only for the main structures of Si, SiO$_2$, and Mn in the lacking any new structures. The high-intensity peak in the figure is for Si with an orientation of (400). Furthermore, the figure displays the epitaxial growth of together SiO$_2$ and Mn with favored
orientations of (001) and (510), correspondingly. It is a novel structure, and therefore we have not found articles to cite.

3.2. Electrical properties

Figures 4(a)–(d) shows the measured C-V and G-W-V characteristics of the Mn/SiO₂/p-Si structure. As shown in figures 4(a), (b) shows capacitance, conductance versus applied voltage at different temperatures and frequency. Figure 4(a) shows negative capacitance values at all temperatures and applied voltage, it decreases with increasing temperature and its absolute value increases with increasing applied bias voltage. Which is
clearly seen from the \(G/\omega \) values increase with increasing temperature and applied bias voltage as shown in figure 4(c). The negative capacitance has many applications in numerous semiconductor devices, for example, detectors even in organic or inorganic semiconductor devices, (MOS), MS (LEDs), Schottky diodes, metal/polymer/semiconductor, heterojunction, \([42]\).

The inductive behavior of the materials from which such devices are formed is thought to cause such a negative capacitance behavior. Also, the accumulation region in the interface can lead to the reduction of the charge carriers at the electrodes \([43]\). Vural et al \([44]\) provided clarification for the negative capacitance, version to which the capacitance of some junction (C) can be defined by \(C = dQ/dV \). The diffusion process is sometimes exceeded by radiative recombination during forwarding bias. Consequently, the capacitance of this junction will be negative since \(dV \) necessity is positive altogether periods. At the exceptional values of the biasing voltage, the junction voltage got the fullness, and so the lesser values of \(dV \) and the exceptional values of capacitance. For the perfect diode, forward biasing voltage increases the minority carrier intensity exponentially, and henceforth, additional carriers are inserted. Such a procedure improves the recombination velocity at this junction. The overhead condition clues to the maximum and falls to be in negative values \([42–44]\). Change in

Figure 7. (a) \(\varepsilon' - V \), (b) \(\varepsilon'' - V \) and (c) \(\tan \delta - V \) curves for the Mn/SiO2/p-Si structure at different Frequencies.
capacities and G/ω with applied voltage and different frequency as shown in figures 4(b), (d) was very slight at high frequency. But increase with decrease frequency, and increase with increasing applied voltage.

Figures 5(a), (b) show C–T and G/ω–T with different frequency; it is noticed the capacitance and G/ω increase with decreasing frequency and increasing temperature. This consequence can be ascribed in detail that the edge states subsequent the AC sign at all frequencies and this means an extra capacitance exists in adding to the space charges [44–48].

Furthermore, as shown in figure 4(c) the G/ω–V characteristics of Mn/SiO$_2$–p–Si structure increased with increasing temperature depending on the applied bias voltage. Such performance is attributed to the reorganization of the edge state densities and Rs. Additionally, this exact G/ω–V manners might be indorsed to a specific spreading of the interface states amid metal-semiconductor layers [34, 48, 49].

Figure 8. (a) ε'–T, (b) The ε''–T and (c) tan δ–T curves for the Mn/SiO$_2$–p–Si structure at different temperatures.
Figures 6(a)–(c) shows the ě′-V, ě″-V, and tan δ-V of the MOS capacitor at different temperatures. As seen in figure 6(a), the values of ě′ are negative, like what happened in capacitance [43, 44, 50] and its absolute values increase with both bias voltage and temperature. In figure 6(b), the values of ě″ increase with increasing both temperature and applied voltage. In figure 6(c), shows tan δ-V the values of tan δ are negative, as mentioned before [43, 44] in capacitance and permittivity.

In figures 7(a)–(c) shows the ě′-V, ě″-V and tan δ-V of the MOS capacitor at a different frequency, the values of ě′, ě″ and tan δ increase with decreasing frequency and raise with raising the bias voltage, but remain constant at high frequencies because of the properties of surface conditions or polarization procedures and Rs of the construction or interfacial oxide layer, correspondingly. In other words, the variations of the ě′, ě″, and tan δ by frequency are the outcomes of the presence of the Nss and likely dipole and surface polarization [51, 52].

Figures 8(a)–(c) shows ě′-T, ě″-T and tan δ-T of Mn/SiO2/p-Si (MOS) with different frequencies. The values of ě′, ě″ and tan δ increase with increasing temperature especially in low frequency, Rising temperature enhances the appearance of imperfections/disorders effect in the lattice, adding to the mobility of the majority charge carriers (ions and electrons) which increase too by the escalating temperature. All these factors increase ě′ and ě″ values with increasing temperature. The increased concentration of the charge carriers influences the space charge effect [53–57]. Otherwise, while the tan δ decreases with increment frequency and nearly free temperature particularly at high frequencies [31, 58, 59].

Figures 9(a), (b) M′-V and M″-V the values of M′ and M″ display peaks in the high frequency and low bias voltage. The values of the actual share of electrical modulus result in M′ a characteristic peak at high frequencies due to the reorganization and rearrangement of the charges at the surface states below an exterior dc voltage or electric field [60–64].

Rs-V, Rs-T are shown in figures 10(a), (b) for various temperatures and frequencies. Figure 10(a), Rs increases with decreasing temperature; i.e. the device is having a metallic behavior. Also, Rs gives a peak in the voltage range of −1 to 0 V depending on temperature, shifting towards positive bias. Figure 9(b) shows the values of Rs as a function of temperature for different frequencies, Rs increase with decreasing frequency and decreases with increasing temperature.

Figure 11 displays σac versus T of Mn/SiO2/p-Si at different frequencies. The σac raise with raising both temperature and frequency. It is branded that the conductivity is proportional with increment of temperature,
settling the thermal steadiness of the Mn/SiO$_2$/p-Si and signifying that the procedure of dielectric polarization in MOS device receipts place through a mechanism alike to the conduction procedure [65–68]. It also noticeable that electrical conductivity usually rises with growing frequency. Like performance was detected in the literature [65–67]. The decrement in series resistance with increasing frequency causes this behavior [68]. Figure 12 shows a current-voltage characteristic (I–V) plot for MOS structure Mn/SiO$_2$/p-Si. From this figure, the I–V characteristic shows a rectifying behavior of tunnel diode. Tunnel diode displays negative resistance as shown in figure 12 inset. This is the significant property of diode because instead of absorbing power, a negative resistance
product power. In tunnel diode, the electric current is produced by ‘Tunneling’. The tunnel diode is used as a very fast switching device in computers. It is also used in high-frequency oscillators and amplifiers [69–71].

4. Conclusion

The Mn/SiO₂/p-Si structure was synthesized by liquid phase epitaxy (LPE), for the first time. This metal–oxide–semiconductor (MOS) can be used a tunneling diode as demonstrated from I–V measurement and negative resistance. The structure and characterization of this structure were examined by scanning electron microscope, XRD diffraction, C–V and I–V measurements. I–V measurements for Mn/SiO₂/p-Si performed negative resistance and Tunneling behavior. That means when the voltage has increased the current through it decreases, electrical and dielectric properties of Mn/SiO₂/p-Si (MOS) in the temperature range (30 °C–90 °C), frequency (10 Hz–10 MHz), analyzed the major physical parameters such as the Rs, ε', ε'', M', M'' and σac conductivity by using experimental (C–V and G/ω–V) measurements. Rs of the fabricated device decreases with increasing frequency and temperature. The ε', ε'', tan δ, M', M'' and σac depend on frequency, temperature, and applied voltage, ε', ε'', tan δ, increase with decreasing frequency and increase with increasing voltage and temperature. Moreover, M' and M'' rise with raising frequency and applied voltage. σac increases with rising temperature and frequency. The device showed negative values of capacitance (C), permittivity (ε'), dielectric loss tangent (tan δ) at all temperatures. The origin of negative values of (C, ε', tan δ) is due to the inductive behavior of the deliberate materials.

ORCID iDs

Ahmed Asaad I Khalil https://orcid.org/0000-0003-2629-058X
A A Azab https://orcid.org/0000-0003-3926-3118

References

[1] Abdellatif M H and Azab A A 2019 Elastic properties of Cr-doped Mn ferrite Bull. Natl. Res. Cent. 43 111–8
[2] Abdellatif M H, Abdelrasoul G N, Salerno M, Liakos I, Scarpellini A, Marras S and Diaspro A 2016 Fractal analysis of inter-particle interaction forces in gold nanoparticle aggregates Colloids Surfaces A Physicochem. Eng. Asp. 497 225–32 (https://sciedirect.com/science/article/abs/pii/S0927775716301376)
[3] Abdellatif M H 2017 Fractal phenomena The Nanoparticles Aggregation (Riga, Latvia: LaP Lambert Academic Publishing) (https://amazon.com/Fractal-Phenomena-Nanoparticles-Aggregation-Fractals-dp/3330041536)
[4] Abdellatif M H and Azab A A 2018 Fractal growth of ferrite nanoparticles prepared by citrate–gel auto-combustion method Silicon. 10 1991–7
[5] Abdellatif M H, Song J D, Choi W J and Cho N K 2012 In/Ga inter–diffusion in InAs quantum dot in InGaAs/GaAs asymmetric quantum well J. Nanosci. Nanotechnol. 12 5774–7 (https://ingentaconnect.com/content/asp/jnn/2012/00000012/00000007/art00121)
[6] Abdellatif M H, Songa J D, Lee D and Jang Y 2016 Analysis of InGa/Ga inter-diffusion effect on the thermodynamical properties of InAs quantum dot Appl. Sci. Converg. Technol. 25 158–61 (http://koreascience.or.kr/article/JAKO2016073657005057.page)

[7] Intartaglia R, Rodrio M, Abdellatif M, Prato M and Salerno M 2016 Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid Materials 9 775–84 (https://mdpi.com/1994-19/9/7/775)

[8] Abdellatif M H, Keshavan S, Danie S and Salerno M 2017 Induced inhomogeneity in graphene work function due to graphene—Γ_0/Ag/ glass substrate interaction Thin Solid Films 628 43–9 (https://sciencedirect.com/science/article/abs/pii/S0040609017301876)

[9] Abdellatif M H, Songa J D, Choi W J, Cho N K and Lee J J 2011 Quantum dot-like effect in InGaAs/GaAs quantum well JEP Appl. Phys. 95 30204–3 (https://epjap.eapsj.org/abs/pii/1911/08/40/100342.html)

[10] Yücedağ İ 2009 On the anomalous peak at low and moderate frequency C-V curves of Al/SiO$_2$/p-Si structure at the forward bias region Optoelectron. Adv. Mater.—RAPID Commun. 3 612–5 (https://researchgate.net/publication/279553162_On_the_anomalous_peak_at_low_and Moderate_frequency_C-V_curves_of_AlSiO2p-Si_structure_at_the_forward_bias_region)

[11] Nicolian E H and Goetzberger A 1967 The Si-SiO$_2$ interface-electrical properties as determined by the metal–insulator–silicon conductance technique Bell Syst. Tech. J. 46 1055–133

[12] Bülbül M M, Zeyrek S, Altundal Ş and Yüzer H 2006 On the profile of temperature dependent series resistance in Al/SiO$_2$/p-Si (MIS) Schottky diodes Microelectron. Eng. 83 577–81 (https://sciencedirect.com/science/article/abs/pii/S016793170500398X)

[13] Ng K K and Sze S M 2006 Physics of Semiconductor Devices (Hoboken, New Jersey: John Wiley & Sons) (http://amazon.co.uk/Physics of-Semiconductor-Devices-Simon-Sze-dp/0471143325(accessed May 14, 2019)

[14] Rhoderick E H 1978 Metal–semiconductor contacts (Oxford: Clarendon) (http://amazon.co.uk/Metal-semiconductor-Electronic-Engineering-Monographs-dp/019893326(accessed May 14, 2019)

[15] Altundal S, Asar Y Ş, Kaya A and Sonmez Z 2012 Investigation of interface states in Al/SiO$_2$/p-Si (MIS) structures with 50 and 826 Å SiO$_2$ interfacial layer using admittance spectroscopy method J. Optoelectron. Adv. Mater. 14 998–1004 (https://joam.inoe.ro/articles/investigation-of-interface-states-in-alSiO2p-Si-mis-structures-with-50-and-826-å-sio2-interfacial-layer-using-admittance-spectroscopy-method/)

[16] Card H C and Rhoderick E H 1971 Studies of surface tunnel MOS diodes I. Interface effects in silicon Schottky diodes J. Phys. D: Appl. Phys. 4 589–601

[17] Cowley A M and Sze S M 1965 Surface states and barrier height of metal-semiconductor systems J. Appl. Phys. 36 3212–20

[18] Abdellatif M H, Salerno M, Polovitsyn A, Marras S and De Angelis F 2017 Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air Appl. Surf. Sci. 403 371–7 (https://sciencedirect.com/science/article/pii/S016793261631964)

[19] Abdellatif M H, Azab A A and Moustafa A M 2017 Dielectric spectroscopy of localized electrical charges in ferrite thin film J. Electron. Mater. 47 378–84

[20] Yücedağ İ, Kaya A, Altundal Ş and Uslu I 2014 Frequency and voltage–dependent electrical and dielectric properties of Al/Co-doped PVA/p-Si structures at room temperature Chinese Phys. B 23 047304–6

[21] Kaya A, Altundal Ş, Asar Y Ş and Sonmez Z 2013 On the voltage and frequency distribution of dielectric properties and ac electrical conductivity in Al/SiO$_2$/p-Si (MOS) capacitors Chinese Phys. Lett. 30 017301–4

[22] Kaya A, Zeyrek S, San Ş and Altundal Ş 2014 Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range Chinese Phys. B 23 018506

[23] Tecimer H, Uslu H, Alahmadi Z A, Yakuphanoğlu F and Altundal Ş 2014 On the frequency and voltage dependence of admittance characteristics of Al/PCTDA/p-Si (P-MPS) type Schottky diodes (SBDs) Compos. Part B Eng. 57 25–30

[24] Janardhanan V, Ashok Kumar A, Rajagopal Reddy V and Narasimha Reddy P 2009 Study of current–voltage temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (1 0 0) J. Alloys Compd. 485 467–72 (https://sciencedirect.com/science/article/abs/pii/S0925888909113437)

[25] Laha A and Krupanidhi S B 2003 Dielectric response and impedance spectrum of 0.7Pb(1/3Nb2/3)O3–0.3PbTiO3 thick films Mater. Sci. Eng. B 98 204–12 (https://sciencedirect.com/science/article/abs/pii/S0921510703000333)

[26] Tekeli Z, Altundal Ş, Çakmak M, Ozçelik S and Özbay E 2008 The profile of temperature and voltage dependent series resistance and the interface states in (Ni/Al)0.3Ga0.7N/AIN/GaN heterostructures Microelectron. Eng. 85 2316–21 (https://sciencedirect.com/science/article/abs/pii/S0921510708006368)

[27] Özer M, Yldz D E, Altundal Ş and Bülbül M 2007 Temperature dependence of characteristic parameters of the Au/SnO$_2$/n-Si (MIS) Schottky diodes Solid. State. Electron. 51 941–9

[28] Abdellatif M H, El-Komy G M, Azab A A and Moustafa A M 2017 Oscillator strength and dispersive energy of dipoles in ferrite thin film Mater. Res. Express 4 076410–9

[29] Abdellatif M H, Salerno M, Abdelsalouf G N G N, Liakos I, Scarpellini A, Marras S and Diaspro A 2016 Effect of Anderson localization on light emission from gold nanoparticle aggregates Beilstein J. Nanotechnol. 7 2013–22

[30] Abdellatif M H, El-Komy G M, Azab A A and Salerno M 2018 Crystal field distortion of La$_{2+x}$ ion–doped Mn–Cr ferrite J. Magn. Magn. Mater. 447 15–20 (https://sciencedirect.com/science/article/abs/pii/S0304885317324277)

[31] Nicolian E H and Brews J R 2003 Experimental Evidence For Interface Trap Properties MOs (Metal Oxide Semiconductor) Physics and Technology 2003 (Hoboken, New Jersey: Wiley-InterScience) 286–7 (https://www.worldcat.org/title/mos-metal-oxide-semiconductor-physics-and-technology-oclc/31526844)

[32] Bülbül M M 2007 Frequency and temperature dependent dielectric properties of Al/Si$_3$N$_4$/p-Si(l 0 0) MIS structure Microelectron. Eng. 84 124–8 (https://sciencedirect.com/science/article/abs/pii/S0304885307004680)

[33] Yücedağ İ, Altundal Ş and Tatarağrı A 2006 On the profile of frequency dependent series resistance and dielectric constant in MIS structure Microelectron. Eng. 84 180–6 (https://sciencedirect.com/science/article/abs/pii/S0304885307005867)

[34] Tatarağrı A 2006 Electrical and dielectric properties of MIS Schottky diodes at low temperatures Microelectron. Eng. 83 2551–7 (https://sciencedirect.com/science/article/abs/pii/S0304885307004473)

[35] Depas M, Van Meirhaeghe R L, Lafriere W H and Cardon F 1994 Electrical characteristics of Al/SiO$_2$/n-Si tunnel diodes with an oxide layer grown by rapid thermal oxidation Solid. State. Electron. 37 433–41

[36] Nicolian E H and Goetzberger A 1965 Mos conductance technique for measuring surface state parameters Appl. Phys. Lett. 7 216–9

[37] Abdellatif M H, Kopolyov O S S, Song J D I, Choi W J, Cho N K N and Lee J 2009 Time resolved infrared photo luminescence of InAs/GaAs quantum dot Annual Meeting of the Korean Society of Kinetic Engineering NT. P026, 606–9 (https://researchgate.net/publication/317908746_Time_resolved_infrared_photo_luminescence_of_InGaAs_quantum_dot)

[38] Abdellatif M H, Song J D, Choi W J, Cho N K N and Lee J J 2010 Evidence of correlated electron hole pairs in dots in asymmetric quantum well structures J. Phys. Cond. Mat. 22 012050–4
[39] Salah L M, Mahied A F and Abdellatif M H 2018 Multiferroic property of Ca4−xLa4xTi12O45 perovskite structure J. Magn. Magn. Mater. 458 10–4 (https://sciedirect.com/science/article/abs/pii/S0304885317337344)

[40] Prijambodo B, Takashima H, Wang R, Shoji A and Itoh M 2008 Dielectric properties of SrTiO3 thin film prepared in a mixture of 1802 and 1603, gas J. Alloys Compd. 449 48–51

[41] El-Menyawy E M, Ashery A, Azab A M and Zeama M G 2014 Current-voltage-temperature characteristics and magnetic response of Co/n-CuO/p-Si heterojunction diode Superlattices Microstruct. 71 275–84 (https://sciedirect.com/science/article/abs/pii/S0749606314000822)

[42] Bilkan G, Gümüş A and Altundal Ş 2015 The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p–Si Schottky barrier diodes (SBDs) Mater. Sci. Semicond. Process. 39 884–91

[43] Jones B K, Santana J and McPherson M 1998 Negative capacitance effects in semiconductor diodes Solid. State. Commun. 107 47–50

[44] Vural Ö, Bilkan Ç, Gümüş A and Tataro V and Gümüş A 2014 Current-voltage-temperature characteristics and magnetic response of Cr/p–Si Schottky barrier diodes and Rs effects on the C−V and G−V characteristics J. Alloys Compd. 513 107–11

[45] Karataş Ş and Tüürüt A 2004 The determination of interface state energy distribution of the H-terminated Zn/p-Type Si Schottky diodes with high series resistance by the admittance spectroscopy Vacuum 74 45–53

[46] Zhu J-J, Ma X-H, Hou B, Chen W-W and Hao Y 2014 Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis AIP Adv. 4 037108

[47] Yakuphanoglu F, Çaglar Y, Çaglar M and Ilıcak S 2012 Electrical characterization of the diodes-based nanostructure ZnO:B Eur. J. Appl. Phys. 58 30101–8 (https://cambridge.org/core/journals/the-european-physical-journal-applied-physics/article/electrical-characterization-of-the-diodes-based-nanostructure-znob/977C98EB1613CE78001E02362A70A25)

[48] Chattopadhyay P and RayChaudhuri B 1993 Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes Solid. State. Electron. 36 605–10

[49] Karataş Ş and Kara Z 2011 Temperature dependent dielectric and electrical properties of Sn/p-Type metal–semiconductor (MS) structures Microelectron. Reliab. 51 2205–9 (https://sciedirect.com/science/article/abs/pii/S0026271411001247)

[50] Zhu C Y, Feng L F, Wang C D, Cong H X, Zhang G Y, Yang Z J and Chen Z Z 2009 Negative capacitance in light-emitting devices Solid. State. Electron. 53 324–8

[51] Shiwalokti N, Bobby A, Asokan K and Antony B 2016 Temperature dependent dielectric studies of Ni/n- GaP Schottky diodes by capacitance and conductance measurements Mater. Sci. Semicond. Process. 42 378–82

[52] Sengwa R J, Dhatwaral P and Choudhury S 2015 Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes Curr. Appl. Phys. 15 135–43

[53] Maurya D, Kumar J and Shripathi 2005 Dielectric-spectroscopic and a.c. conductivity studies on layered Na2-XKXTi3O7 J. Polym. Sci., Part B: Polym. Phys. 43 1609–18 (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.20642)

[54] Munir M M, Noor A M, Ahmad M and Karim M M 2008 Dielectric properties of Pb(Mg1/3Nb2/3O3)-based ceramics J. Alloys Compd. 458 458–62 (https://www.sciencedirect.com/science/article/pii/S092583880700620X)

[55] Prabakar K, Narayandas S K and Mangalaraj D 2003 Dielectric properties of Ca4−xZnxTi12O45 thin films Phys. Status Solidi 199 507–14

[56] Fanggao C, Saunders G A, Lambson E F, Hampton R N, Carini G, Di Marco G and Lanza M 1996 Temperature and frequency dependencies of the complex dielectric constant of polyethylene oxide under hydrostatic pressure J. Polym. Sci., Part B: Polym. Phys. 34 425–33

[57] Çetinkaya H G, Yıldırım M, Durmuş P and Altundal Ş 2017 Diode–to-diode variation in dielectric parameters of identically prepared metal–ferroelectric–semiconductor structures J. Alloys Compd. 728 896–901

[58] Sattar A A and Rahman S A 2003 Dielectric properties of rare earth substituted Cu2–Zn ferrites Phys. Stat. Sol. 200 415–22

[59] Dutta P, Biswas S and De S K 2002 Dielectric relaxation in polyami–polyvinyl alcohol composites Mater. Res. Bull. 37 193–200

[60] Bidault O, Goux P, Klichmech M, Belkaoui M and Maglione M 1994 Space-charge relaxation in perovskites Phys. Rev. B 49 7986–73

[61] Asokan K and Altundal Ş 2004 A novel chemical route for preparing thin films J. Mater. Sci. 39 3425–33

[62] Baghel M, Chaudhary A and Sood P 2015 Low temperature dependence of dielectric constant of AlN films prepared by RF magnetron sputtering using nitrogen gas Thin Solid Films 583 1–8 (https://elsevier.com/locate/tsf)

[63] Özaki T, Ogasawara T, Kosugi T and Kamada T 1999 Dielectric dispersion of SiO2 glass at low temperatures Phys. B Condens. Matter. 263–264 535–5

[64] Tataro V, Altundal Ş and Bülbul M M 2005 Temperature and frequency dependent electrical and dielectric properties of Al2O3/p–Si (MOS) structure Microelectron. Eng. 80 1140–9

[65] Wang L, Figueiredo J M L, Iromside C N and Wasige E 2011 DC characterization of tunnel diodes under stable non–oscillating circuit conditions IEEE Trans. Electron Devices 58 343–7

[66] Leib A, Hannanchi R, Beji I and Jani B E L 2016 Effect of band gap narrowing on GaN tunnel diode I–V characteristics Phys. B Condens. Matter. 502 93–6

[67] Md Zawawi M A and Misous M 2017 Design and fabrication of low power GaAs/AlAs resonant tunneling diodes Solid. State. Electron. 138 30–4