t(10;14)(q24;q11) TLX1/TRD

t(7;10)(q34;q24) TRB/HOX11

Tatiana Gindina, Karolien Beel

Cytogenetics Lab, Raisa Gorbacheva Memorial Institute of Children’s Oncology, Hematology and Transplantation at First Pavlov St. Petersburg State Medical University, Saint-Petersburg, Russia; tatgindina@gmail.com (TG); Center for Human Genetics, UZ Leuven, Belgium; karolien.beel@uzleuven.be (KB)

Published in Atlas Database: August 2018
Online updated version : http://AtlasGeneticsOncology.org/Anomalies/1014ID1068.html
Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68943/08-2017-1014ID1068.pdf
DOI: 10.4267/2042/68943

This article is an update of :
Pérot C. t(10;14)(q24;q11). Atlas Genet Cytogenet Oncol Haematol 1999;3(3)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2018 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on t(10;14)(q24;q11) and t(7;10)(q34;q24) translocations, with data on clinics, and the genes involved.

KEYWORDS

Identity

chromosome 10; chromosome 14; t(10;14)(q24;q11); t(7;10)(q34;q11); TLX1; TRD; TRB; T-cell Acute lymphoblastic leukemia
t(10;14)(q24;q11) or t(7;10) TLX1/TRD or TRB

Clinics and pathology

Disease
T-cell acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) with medullary involvement.

A t(10;14)(q24;q11)/TLX1/TRD was found in 69 cases of T-ALL (Dube et al., 1986; Raimondi et al., 1988; Kagan et al., 1989; Uckun et al., 1989; Parket al., 1992; Secker-Walker et al., 1992; Martin et al., 1996; Rack et al., 1997; Forestier et al., 1998; Heerema et al., 1998; Lai et al., 2000; Schneider et al., 2000; Kahl et al., 2001; Pedersen et al., 2001; Thomas et al., 2001; Mancini et al., 2002; Nordgren et al., 2002; Kristensen et al., 2003; Barber et al., 2004; Speleman et al., 2005; Stergianou et al., 2005; Cauwelier et al., 2006; Reichard et al., 2006; van Grotel et al., 2006; Strefford et al., 2007; Kwon et al., 2009; Le Noir et al., 2012; Setoodeh & Zhang, 2012; Grossmann et al., 2013; Park et al., 2014; Safavi et al., 2015; Gindina T. three personal unpublished cases).

A t(7;14)(q34;q24) TLX1/TRB was found in 21 cases of T-ALL (Kahl et al., 2001; Cauwelier et al., 2006; Le Noir et al., 2012; Raimondi et al., 1988).

In exceptional cases, a t(10;14) or a t(7;10) was found in T-prolymphocytic leukemia and ataxia telangiectasia (Rack et al., 1997), and, more surprisingly, in chronic lymphocytic leukemia, a B-cell disease (Delhomme-Bachy et al., 1992; Lu et al., 2006).

Phenotype/cell stem origin
T lineage. The gene expression pattern of TLX1-expressing lymphoblasts is similar to that of early cortical thymocytes, compatible with a leukemic arrest at the stage of the early cortical thymocyte (virtually all arrested at the early cortical (CD1+), CD4+ CD8+ "double-positive" stage of thymocyte development).

Epidemiology
Found in 5% of pediatric T-ALL (0.3% of all pediatric ALL) and 30% of adult T-ALL cases. Median age was 24 years (range 4-58). Sex ratio was 3 male : 1 female patients.

Clinics
Organomegaly with marked hepatosplenomegaly, lymphadenopathy, mediastinal mass, high WBC count (100 to 200 X 10^9/l) sometimes with anemia.

Cytology
High leukocyte count, very high circulating and central blast cell count.

Prognosis
TLX1 expression has been linked with a favorable prognosis and low risk of relapse in children and adults (van Vlierberghe et al., 2012). TLX1+ patients have a 92% probability of survival at 5 years. The lack of expression of anti-apoptotic genes in this stage of thymocyte development (and in TLX1-expressing lymphoblasts) leads to a high responsiveness to drug-induced apoptosis.

Genetics
Note
Both translocations $t(10;14)(q24;q11.2)$ and $t(7;10)(q34;q24)$ are insufficient to initiate malignancy in mice: activation of other mutant genes, including NOTCH1, is found in most TLX1+ T-ALL. This finding suggests that multiple cooperating changes, leading to impaired DNA repair, lead to T-cell differentiation arrest and leukemogenesis.

Cytogenetics

Additional chromosome anomalies were observed in about half of the cases (Dube et al., 1986; Raimondi et al., 1988; Kagan et al., 1989; Rack et al., 1997; Forestier et al., 1998; Lai et al., 2000; Schneider et al., 2000; Kahl et al., 2001; Pedersen et al., 2001; Mancini et al., 2002; Nordgren et al., 2002; Kristensen et al., 2003; Barber et al., 2004; Speleman et al., 2005; Stergianou et al., 2005; Cauwelier et al., 2006; Reichard et al., 2006; Strefford et al., 2007; Le Noir et al., 2012; Setoodeh & Zhang, 2012; Grossmann et al., 2013; Safavi et al., 2015; Gindina T., three personal cases). The most common of them

Top: Translocation $t(10;14)(q24;q11)$ in a 32-year-old male with T-ALL and OS 33 months+ - Courtesy Tatiana Gindina. Bottom: Complex karyotype with two translocations $t(10;14)(q24;q11)$ and $t(11;14)(p13;q11)$, deletions of 3q, 9p, trisomy 20 in a 31-year-old female with T-ALL and OS 37 months - Courtesy Tatiana Gindina.
are deletions of 9p (17%), 6q (13%), and 12p (9%). Deletions of 11p, 6p, 3q, 7q, 13q were less common. Trisomy 8 was present in 6 (7%) patients, and trisomy 20 was in 4 (4,5%) patients. Trisomies of other chromosomes were detected very seldom. In 34 (38%) cases the translocations t(10;14) and t(7;10) were a part of a complex karyotype.

Genes involved and proteins

TLX1 (T-cell leukemia homeobox 1)

Location
10q24.31

Note
Alias HOX11 (homeobox 11) alias TCL3 (T-cell leukemia 3).

DNA/RNA
spans over 7 kb, 3 exons, mRNA 7 kb

Protein
The homeobox gene TLX1 (HOX11) encodes for TLX1, a homedomain-containing transcription factor, nuclear transcription factor that belongs to the NK-linked or NK-like subfamily of homeobox genes. TLX1 is the founding member of a family of HOX genes, homeoprotein, 61 amino acids, nuclear localization. It binds to the DNA sequence 5’-GGCGGTAAGTGG-3’. The encoded protein is required and critical for normal development of the spleen during embryogenesis and is also involved in specification of neuronal cell fate. TLX1 is not normally expressed in adult tissues at levels detectable by routine Northern analysis.

TLX-1 leukemias show specific cooperating mutations rarely present in non-TLX-induced leukemias, including the NUP214 / ABL1 fusion oncogene and mutations in the PTPN2, Wilms tumor 1 (WT1), and PHF6 tumor suppressors (van Vlierberghe et al., 2012).

TRD (T cell Receptor Delta)

Location
14q11.2

Note
or TRB in the case of a 7q34-36 involvement

Protein
T-cell receptor

Result of the chromosomal anomaly

Fusion protein

Description
Both translocations place TLX1 under the control of strong enhancers in the T-cell receptor loci. The t(10;14) translocation places the TLX1 coding region under the transcriptional control of the TCR delta receptor (TRD)(14q11.2) promoter, the t(7;10) translocation places the TLX1 coding region under the transcriptional control of the TCR beta locus (TRB)(7q34-36), both leading to increased expression of TLX1 in T-cells. The t(10;14) can be detected by PCR, and a dual-color FISH probe is often used to detect HOX11 translocations on 10q24. However, TLX1 overexpression in leukemic blasts has been observed in the absence of 10q24 rearrangement in as many as 50% of T-ALL cases.

Oncogenesis
These genetic aberrations induce aberrant and abundant TLX1 expression in T- lineage cells bearing the translocation. In addition, it was recently proposed that the unique cortical thymic maturation arrest in TLX-induced leukemias may be related to the binding of TLX1- ETS1 complexes to TCR enhancer sequences, with the consequent down regulation of TCR gene rearrangement and expression (van Vlierberghe et al., 2012).

TLX1 overexpressing lymphoblasts are arrested at the stage of beta-selection in the thymocyte development. Leukemogenesis results from decreased cell death and increased proliferation of immature TLX1 expressing thymocytes, in the absence of normal DNA repair systems. The lack of anti-apoptotic actors in this stage explains the high responsiveness to chemotherapy, and the associated excellent outcome.

References

. Birth Defects Cytogeten Cell Genet. 1974;13(3):1-216
1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korpel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation Nature 2015 Oct 1;526(7571):68-74
A PROPOSED standard system of nomenclature of human mitotic chromosomes. Lancet 1960 May 14;1(7133):1063-5 PubMed PMID: 13857542
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM org: Online Mendelian Inheritance in Man (OMIM), an online catalog of human genes and genetic disorders Nucleic Acids Res 1996 Jan 1;24(1):27-30 PubMed PMID: 8529266
Aurias A, Rimbaud C, Buffe D, Dubousset J, Mazabraud A. [Translocation of chromosome 22 in Ewing’s sarcoma] C R Seances Acad Sci III 1983;296(23):1105-7
BEADLE GW. Genetics and metabolism in Neurospora Physiol Rev 1944 Oct;24:643-63
Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, Facemire L, Kumar S, Pang Y, Qi Y, Lazar IM, Li H. Recurrent chimeric fusion RNAs in non-cancer tissues and cells Nucleic Acids Res 2016 Apr 7;44(6):2859-72
Baccelli I, Schneeveis A, Riethdorf S, Stenzinger A, Schiller A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M, Holland-Leitz T, Höfner T, Sprick M, Schapff M, Marmé F, Sinn HP, Pantel K, Weichert W, Trumpp A. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay Nat Biotechnol. 2013 Jun;31(6):539-44
Caspersson T, Zech L, Modest EJ. Fluorescent labeling of chromosomal DNA: superiority of quinacrine mustard to quinacrine Science 1970 Nov 13;170(3959):762

Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R, Doench JG, Xu H, Chu SH, Qi J, Wang X, Delaney C, Bertram KM, Root DE, Hahn WC, Bradner JE, Armstrong SA. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia Nat Med 2015 Apr;21(4):335-43

Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev. 2011 Mar 15;25(6):534-55. doi: 10.1101/gad.2017311.

Clough E, Barrett T. The Gene Expression Omnibus Database Methods Mol Biol 2016;1418:93-110

Commo F, Ferêt C, Soria JC, Friend SH, André F, Guinney J. Impact of centralization on aCGH-based genomic profiles for precision medicine in oncology Ann Oncol 2015 Mar;26(3):582-8

Cook CE, Bergman MT, Finn RD, Cochran G, Binney E, Apweiler R. The European Bioinformatics Institute in 2016: Data growth and integration Nucleic Acids Res 2016 Jan 4;44(D1):D20-6

Cooper DN, Krawczak M. Human Gene Mutation Database Hum Genet 1996 Nov;98(5):629

Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood Nat Rev Clin Oncol 2013 Aug;10(8):472-84

Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantcheff M, Chan WI, Robson SC, Chung CW, Hofc, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Miguel O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia Nature 2011 Oct 2;478(7370):529-33

De Braekeleer E, Douet-Guilbert N, De Braekeleer M. Genetic diagnosis in malignant hemopathies: from cytogenetics to next-generation sequencing Expert Rev Mol Diagn 2014 Mar;14(2):127-9

Deng M, Brägelmann J, Schultz LE, Perner S. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets BMC Bioinformatics 2016 Feb 6;17:72

Diehl AG, Boyle AP. Deciphering ENCODE Trends Genet 2016 Apr;32(4):238-49

Dorkeld F, Bernheim A, Dessen P, Hurel JL. A database on cytogenetics in haematology and oncology Nucleic Acids Res 1999 Jan 1;27(1):353-4

Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reece SF, Ford JM, Capdeville R, Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome N Engl J Med 2001 Apr 5;344(14):1038-42

Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 Apr 5;344(14):1031-7

Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP, Lin YJ, Zhang H, Marquez VE, Hamburger PS, Wong KK, Kim CF. EZH2 inhibition sensitizes BRG1 and EGFMR mutant lung tumours to Topoll inhibitors Nature 2015 Apr 9;520(7546):239-42

Finn RD, Coggill P, Eberhardt RY, Eddy SR,istry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-
Kabacik NM, Spehrer FS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Mashevaran S, Kapur R, Haber DA, Toner M. Microfluidic, microencapsulated islet of Langerhans cell isolation for circulating tumor cells from blood samples. Nat Protoc 2014 Mar;9(3):694-710.

Kim N, Kim P, Nam S, Shin S, Lee S. ChimerDB-a knowledgebase for fusion sequences Nucleic Acids Res 2006 Jan 1;34(Database issue):D21-4.

Kim P, Yoon S, Kim N, Lee S, Ko M, Lee H, Kang H, Kim J, Lee S. ChimerDB 2.0—a knowledgebase for fusion genes updated Nucleic Acids Res.

Kim TM, Xi R, Luquette LJ, Park RW, Johnson MD, Park PJ. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes Genome Res 2013 Feb;23(2):217-27.

Klijn C, Durinck S, Stawiski EW, Havy PM, Jiang Z, Liu H, Degennhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynda GJ, Brauer MJ, Wu TD, Gentlemann RC, Manning G, Tzah RL, Bourbon R, Stooke D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z. A comprehensive transcriptional portrait of human cancer cell lines Nat Biotechnol 2015 Mar;33(3):306-12.

Klowska N, Czubak K, Wojciechowska M, Handschuh L, Zmienko A, Figlerowicz M, Dams-Kozlowska H, Kozlowski P. Oncogenomic portals for the visualization and analysis of genome-wide cancer data Oncotarget 2016 Jan 5;7(1):176-92.

Kohno T, Tsuta K, Tsuchihara K, Nakaoku T, Yoh K, Goto K. RET fusion gene: translation to personalized lung cancer therapy Cancer Sci 2015 Nov;106(11):1396-400.

Levi M, Tommassen GO, Bakken AC, Celestino R, Fioretos T, Lind GE, Lothe RA, Klothorn RI. Fusion gene microarray reveals cancer type-specificity among fusion genes Genes Chromosomes Cancer 2011 May;50(5):348-57.

Lawler M, Siu LL, Rehm HL, Chanock SJ, Alterovitz G, Burn PS, Hancock J, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynza GJ, Brauer MJ, Wu TD, Gentlemann RC, Manning G, Tzah RL, Bourbon R, Stooke D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z. A comprehensive transcriptional portrait of human cancer cell lines Nat Biotechnol 2015 Mar;33(3):306-12.

Lee JH, Thompson JE, Wang ES, Wetzler M. Philadelphia chromosome-positive acute lymphoblastic leukemia: current treatment and future perspectives Cancer 2011 Apr 15;117(8):1583-94.

Möller E, Hornik JL, Magnussen L, Veerla S, Domanski E, Schefter TL, Brasch TL, Sönnerborg A, Olofsson AO, McArthur H. Targeting the MLL recombinome of acute leukemias: New insights to the MLL recombinome of acute leukemias Nature 2012 Dec 6;492(7427):108-12.

Mertens F, Johannsson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer Nat Rev Cancer 2015 Jun;15(6):371-81.

Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emmerenciano M, Pombo de Oliveira M, Renneville A, Villarrese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J, De Braekeleer E, De Braekeleer M, Oh SH, Tsaur G, Fechina L, Krakowka A, Madsen HO, Archer DJ, Mertens F. FUS and FOXL1 Clin Cancer Res 2011 May 1;17(9):2646-53.

Müller E, Hennig JL, Magnussen L, Veerla S, Domanski E, Schefter TL, Brasch TL, Sönnerborg A, Olofsson AO, McArthur H. Targeting the MLL recombinome of acute leukemias: New insights to the MLL recombinome of acute leukemias Nature 2012 Dec 6;492(7427):108-12.

Mertens F, Johannsson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer Nat Rev Cancer 2015 Jun;15(6):371-81.

Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emmerenciano M, Pombo de Oliveira M, Renneville A, Villarrese P, Macintyre E, Cavé H, Clappier E, Mass-Malo K, Zuna J, Trka J, De Braekeleer E, De Braekeleer M, Oh SH, Tsaur G, Fechina L, Krakowka A, Madsen HO, Archer DJ, Mertens F. FUS and FOXL1 Clin Cancer Res 2011 May 1;17(9):2646-53.

Müller E, Hennig JL, Magnussen L, Veerla S, Domanski E, Schefter TL, Brasch TL, Sönnerborg A, Olofsson AO, McArthur H. Targeting the MLL recombinome of acute leukemias: New insights to the MLL recombinome of acute leukemias Nature 2012 Dec 6;492(7427):108-12.

Mertens F, Johannsson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer Nat Rev Cancer 2015 Jun;15(6):371-81.
JP, Capellari S, Parchi P, Polleggi A, Ladogana A, O’Donnell-Luria AH, Karczewski KJ, Marshall JL, Boehnke M, Laasko M, Mohlke KL, Kübler A, Chambert K, McC Carroll S, Sullivan PF, Hultman CM, Purcell SM, Sklar P, van der Lee SJ, Rotter JI, Janssen C, Hoffman A, Kraaij R, van Rooij JG, Ikram MA, Uitterlinden AG, van Duijn CM; Exome Aggregation Consortium (ExAC), Daly MJ, MacArthur DG. Quantifying prion disease penetrance using large population control cohorts Sci Transl Med 2016 Jan 20;8(322):322ra9
Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pessetat S, Sangrador-Vegas A, Scherrekeni DM, Mato R, Cato YS, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Oreno C, Sillitoe I, Mi H, Thomas PD, Finn RD. The InterPro protein families database: the classification resource after 15 years Nucleic Acids Res 2015 Jan;43(Database issue):D213-21
Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and genes fusions in Cancer Miyoshi I, Hiraki S, Kimura I, Miyamoto K, Sato J. 2/8 chromosome translocation in a Japanese Burkitt’s lymphoma Experience 1979 Jun 15;35(6):742-3
Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, Ma J, Coustan-Smith E, Harvey RC, Willman CL, Mikhaili FM, Meyer J, Carroll AJ, Williams RT, Cheng J, Heerema NA, Basso G, Pession A, Pui CH, Raimondi SC, Hunger SP, Downing JR, Carroll WL, Rabin KR. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia Nat Genet 2009 Nov;41(11):1243-6
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information Nucleic Acids Res 2016 Jan;44(D1):D7-19
Nirola A, Vihinen M. Variation Interpretation Predictors: Principles, Types, Performance, and Choice Hum Mutat 2016 Jun;37(6):579-97
Novo FJ, de Mendíbil IO, Vizmanos JL. TICdb: a collection of gene and protein sequence information for the T-cell receptor gene families Nucleic Acids Res 2016 Jan 4;44(D1):D746-52
Papenfuss AT, Spandiosos DA, Michalopoulos G. Human cancer databases (review) OncoRep 2015 Jan;33(1):3-18
Petryszak R, Keays M, Tang Y, Fonseca NA, Herrera E, Burdett T, Füllgrabe A, Fuentes AM, Jupp S, Koskinen S, Mannion O, Huerta L, Megy K, Snow C, Williams E, Barzine M, Hastings E, Weisser H, Wright J, Jaiswal P, Huber W, Choudhary J, Parkinson HE, Brazma A. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants Nucleic Acids Res 2016 Jan;44(D1):D746-52
Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer Nat Genet 2005 Jun;37 Suppl:S11-7
Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Lijng BM, Gray JW, Albertson DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays Nat Genet 1998 Oct;20(2):207-11
Pundir S, Misgrade M, Martin MJ, O’Donovan C; UniProt Consortium. Searching and Navigating UniProt Databases Curr Protoc Bioinformatics 2015 Jun;19:50-1
Rath A, Oly A, Dhommes F, Brandt MM, Urbero B, Ayme S. Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users Hum Mutat 2012 May;33(5):803-8
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dalai A, Freeman JL, González JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somervile MJ, Tchinda J, Valsesia A, Woodward C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estvil X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the human genome Nature 2006 Nov 23;444(7118):444-54
Rickman DS, Pfueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Settlur SR, Demichelis F, Rubin MA. SLC45A3-ELK4 is a novel and frequent erythroleukemia transformation-specific fusion transcript in prostate cancer Cancer Res 2009 Apr 1;69(7):2734-8
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarnci CE, Vilen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer Cell 2007 Dec 14;131(6):1190-203
Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, Chen SC, Payne-Turner D, Churchman ML, Harvey RC, Chen X, Kasap C, Yan G, Beckford J, Finney RP, Teachey DT, Maude SL, Tse K, Moore R, Jones S, Mungall K, Birol I, Edmonson MN, Hu Y, Buetow KE, Chen IM, Carroll WL, Wei L, Ma J, Kleppe M, Levine RL, Garcia-Manero G, Larsen E, Shah NP, Devidas M, Reaman G, Smith M, Paugh SW, Evans WE, Grupp SA, Jeha S, Pui CH, Gerhard DS, Downing JR, Willman CL, Loh M, Hunger SP, Marra MA, Mulligan CG. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute leukemia using large population control cohorts Sci Transl Med 2016 Jan 20;8(322):322ra9
Oshimura M, Freeman AI, Sandberg AA. Chromosomes and causation of human cancer and leukemia XXVI Binding studies in acute lymphoblastic leukemia (ALL) P celebratory;asczczycza A, Nilsson J, Magnussson L, Brosjö O, Larsson O, Vult von Steyern F, Domanska HA, Liljebörj H, Flowretos T, Tayebwa J, Mandahl N, Nord KH, Mertens F. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma Int J Biochem Cell Biol 2014 Aug;53:475-81
Pagon RA. GeneTests: an online genetic information resource for health care providers J Med Libr Assoc 2006 Jul;94(3):343-8
Pavlopoulos A, Spandiosos DA, Michalopoulos G. Human cancer databases (review) OncoRep 2015 Jan;33(1):3-18
lymphoblastic leukemia Cancer Cell 2012 Aug 14;22(2):153-66

Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Gurfavudoo L, Haeussler M, Harte RA, Heitner S, Hickey G, Hinrichs AS, Hubley R, Karolchik D, Learned K, Lee BT, Li CH, Miga KH, Nguyen N, Paizhen B, Raney BJ, Smit AF, Speir ML, Zweig AS, Hausser D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2015 update Nucleic Acids Res 2015 Jan;43(Database issue):D670-81

Rowley JD, Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining Nature 1973 Jun 1;243(5405):290-3

Rowley JD, Golomb HM, Dougerty C. 17/15 translocation, a consistent chromosomal change in acute promyelocytic leukaemia Lancet 1977 Mar 5;8010):549-50

Rubinstein WS, Maglott DR, Lee JM, Kattman BL, Malheiro AJ. Oetvysky M, Hem V, Gorelenkov V, Song G, Wallin C, Husain N, Chitipirala S, Katz KS, Hoffman D, Jang W, Johnson M, Karmanov F, Ukrainchik A, Denisenko M, Fomous C, Hudson K, Ostell JM. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency Nucleic Acids Res 2013 Jan;41(Database issue):D925-35

Rutkowski P, Van Glabbeke M, Rankin CJ, Ruka W, Rubin BP, Depbiec-Rychter M, Lazar A, Gelderblom H, Sciot R, Lopez-Terrada D, Hohenberger P, van Oosterom AT, Schuetze SM: European Organisation for Research and Treatment of Cancer Soft Tissue/Bone Sarcoma Group; Southwest Oncology Group. Imatinib mesylate in advanced dermatofibrosarcoma protubera: pooled analysis of two phase II clinical trials J Clin Oncol 2010 Apr;28(12):1772-9

Santo EE, Ebus ME, Koster J, Schulte JH, Lakeman A, van Sluis P, Vermeulen J, Gisselsson D, Øra I, Lindner S, Buckley PG, Stallings RL, Vandensompele J, Eggerdt A, Caron HN, Versteeg R, Molenaar JJ. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma Oncogene 2012 Mar 22;31(12):1571-81

Seidal T, Mark J, Hagmar B, Angervall L. Alveolar rhabdomyosarcoma: a cytogenetic and correlated cytological and histological study Acta Pathol Microbiol Immunol Scand A 1982 Sep;90(5):345-54

Shaffer LG, McGowen AS, Haussler D, Cremer T, Lichter P. Matrix and loss of the Y chromosome—two common deviations in malignant human salivary gland tumors Cancer Genet Cytogenet 1986 Aug;22(4):283-93

Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbing LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Fookens JA, Reis-Filho JS, van Veer L, Richardson AL, Borresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR. Complex landscapes of somatic rearrangement in human breast cancer genomes Nature 2009 Dec 24;462(7276):1005-10

Stratton MR, Campbell PJ, Futreal PA. The cancer genome Nature 2009 Apr;458(7239):719-24

Sverre Heim and Felix Mitelman. Cancer Cytogenetics: Chromosomal and Molecular Genetic Abberations of Tumor Cells 2015, Wiley-Blackwell, New-York

Swedlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms Blood 2016 Mar 15

Tennessen JA, Bigham AW, O'Connor TD, Fu W, Jenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rieder MJ, Mccabes G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD, Bamshad MJ, Akey JM; Broad GO; Seattle GO; NHLBI Exome Sequencing Project. Evolution and functional impact of rare coding variation from deep sequencing of human exomes Science 2012 Jul 6;337(6090):64-9

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer Science 2005 Oct 28;310(5748):644-8
t(10;14)(q24;q11) or t(7;10) TLX1/TRD or TRB

Turc-Carel C, Dal Cin P, Rao U, Karakousis C, Sandberg AA. Cytogenetic studies of adipose tissue tumors I. A benign lipoma with reciprocal translocation t(3;12)(q28;q14)

UniProt Consortium. UniProt: a hub for protein information 2015 Jan;43(Database issue):D204-12

Uraikam K, Shimoda Y, Ohshima K, Nagashita T, Serizawa M, Tanabe T, Saito J, Usui T, Watanabe Y, Naruoka A, Ohnami S, Ohnami S, Mochizuki T, Kusuhara M, Yamaguchi K. Next generation sequencing approach for detecting 491 fusion genes from human cancer Biomed Res 2016;37(1):51-62

Van Den Bergh E, Gosse P, Englebienne V, Cornu G, Sokal G. Variant translocation in Burkitt lymphoma Cancer Genetics and Cytogenetics 1960; 1: 9-14

Vanderlinden P, van Grotel M, Tjinda H, Lee C, Beverloo HB, van der Spek PJ, Stubbs A, Cools J, Nagata K, Fornerod M, Buijs J, Glavind J, Horstmann M, van Wering ER, Soulier J, Pieters R, Meijerink JP. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia Blood 2008 May 1;111(9):4668-80

Wang L, Motai T, Khanin R, Olsken A, Mertens F, Bridge J, Dal Cin P, Antonescu CR, Singer S, Hameed M, Bovee JV, Hogendoorn PC, Socci N, Ladanyi M. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data Genes Chromosomes Cancer 2012 Feb;51(2):127-39

Wang Y, Wu N, Liu J, Wu Z, Dong D. FusionCancer: a database of cancer fusion genes derived from RNA-seq data Diagn Pathol 2015 Jul 28;10:131

Watanabe M, Serizawa M, Sawada T, Takeda K, Takahashi T, Yamamoto N, Koizumi F, Koh Y. A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood J Transl Med 2014 May 23;12:143

Welsh JS, Westervelt P, Ding L, Larson DE, Kico JM, Kulkarni S, Wallis J, Chen K, Payton JE, Fulton RS, Vejey J, Schmidt H, Vickery TL, Heath S, Watson MA, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Ley TJ, Wilson RK. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene JAMA 2011 Apr 20;305(15):1577-84

West RB, Rubin BP, Miller MA, Subramanian S, Kaygusuz G, Montgomery K, Zhu S, Marinelli RJ, De Luca A, Downs-Kelly E, Goldblum JR, Corless CL, Brown PO, Gilks CB, Nielsen TO, Huntsman D, van der Rijn M. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells Proc Natl Acad Sci U S A 2006 Jan 17;103(3):690-5

Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse human populations Proc Natl Acad Sci U S A 2016 Apr 19;113(16):E2326-34

Wu C, Jin X, Tseng G, Afsarahi C, Su AI. BioGPS: building your own mash-up of gene annotations and expression profiles Nucleic Acids Res 2016 Jan 4;44(D1):D313-6

Wu J, Wu M, Li L, Liu Z, Zeng W, Jiang R. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions Database (Oxford) 2016 Mar 17:2016

Wu TJ, Shamsaddini A, Pan Y, Smith K, Crichton DJ, Simonyan V, Mazumder R. A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE) Database (Oxford) 2014 Mar 25;2014:bau022

Yang Y, Dong X, Xie B, Ding N, Chen J, Li Y, Zhang Q, Qu H, Fang X. Databases and web tools for cancer genomics study Genomics Proteomics Bioinformatics 2015 Feb;13(1):46-50

Yates A, Akanni W, Amode MR, Barrett D, Bills K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Jueltemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahz M, Riat HS, Sheppard D, Taylor K, Thomann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P, Ensembl 2016 Nucleic Acids Res 2016 Jan 4;44(D1):D710-7

Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vesgesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions Oncogene 2015 Sep 10;34(37):4845-54

Yu KH, Ricigliano M, Hidalgo M, Abou-Alfa GK, Lowery MA, Saltz LB, Crotty JF, Gary K, Cooper B, Lapidus R, Sadowska M, O'Reilly EM. Pharmacogenomic modeling of circulating tumor and invasive cells for prediction of chemotherapy response and resistance in pancreatic cancer Clin Cancer Res 2014 Oct 15;20(20):5281-9

Yue P, Moul J. Identification and analysis of deleterious human SNPs J Mol Biol 2006 Mar 10;356(5):1263-74

Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas Int J Cancer 1976 Jan 15;17(1):47-56

Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, Liang Y, Rivkin E, Wang J, Whitty B, Wong I, Cheng J, Cawthon R, Androulaki E, Marangos PJ. Cancer genomics data: an integrated resource Cancer Genomics Portal 2017 Jan;18(1):349-56

Zhao Q, Wang Q, Torres-Garcia W, Zheng S, Vesgesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions Oncogene 2015 Sep 10;34(37):4845-54

Zhou Y, Hwang D, Horstmann M, van de Rijn M, West RB, Rubin BP, Miller MA, Subramanian S, Kaygusuz G, Montgomery K, Zhu S, Marinelli RJ, De Luca A, Downs-Kelly E, Goldblum JR, Corless CL, Brown PO, Gilks CB, Nielsen TO, Huntsman D, van der Rijn M. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells Proc Natl Acad Sci U S A 2006 Jan 17;103(3):690-5

This article should be referenced as such:
Gindina T, Beel K. (t(10;14)(q24;q11) TLX1/TRD or TRB (t(7;10)(q34;q24) TRB/HOX11. Atlas Genet Cytogenet Oncol Haematol. 2018; 22(9):388-397.