Crohn’s Disease: Is the Cold Chain Hypothesis Still Hot?

Jean-Pierre Hugot, a,b Anne Dumay, a Frédérick Barreau, c Ulrich Meinzera,b

aCentre de recherche sur l’inflammation, UMR1149 INSERM and Université de Paris, Paris, France bService des maladies digestives et respiratoires de l’enfant, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris, France cIRSD, UMR1220, Université de Toulouse, INSERM, INRA, ENV'T, UPS, Toulouse, France

Corresponding author: Jean-Pierre Hugot, MD, PhD, Service des maladies digestives et respiratoires de l’enfant, Hôpital Robert Debré, 48 Bd Sérurier, F75019 Paris, France. Tel.: [33] 1 40 03 57 12; fax: [33] 1 40 03 57 66; email: jean-pierre.hugot@aphp.fr

Abstract

Crohn’s disease (CD) is an inflammatory bowel disease of unknown aetiology. During recent decades, significant technological advances led to development of -omic datasets allowing a detailed description of the disease. Unfortunately these have not, to date, resolved the question of the aetiology of CD. Thus, it may be necessary to reconsider hypothesis-driven approaches to resolve the aetiology of CD. According to the cold chain hypothesis, the development of industrial and domestic refrigeration has led to frequent exposure of human populations to bacteria capable of growing in the cold. These bacteria, at low levels of exposure, particularly those of the genus Yersinia, are believed to be capable of inducing exacerbated inflammation of the intestine in genetically predisposed subjects. We discuss the consistency of this working hypothesis in light of recent data from epidemiological, clinical, pathological, microbiological, and molecular studies.

Key Words: Crohn’s disease; Yersinia; causality chain; macrophages; autophagy; cold; refrigeration; plague; mucosal immune response; gut inflammation; mesenteric lymph nodes; creeping fat; food products; enteral nutrition; exclusion diet
studies have further substantiated it or, on the contrary, have pushed it out of the realm of possibility.

To construct the theory, we started from four major, indisputable, disease-specific observations that require full explanations: 1) CD is related to the modern Western lifestyle; 2) some nutritional interventions reduce intestinal inflammation at least temporarily; 3) inflammation of the small intestine and/or colon is focal with transmural lesions, thickening of mesenteric fat, and sometimes granulomas; 4) a set of genes involved in innate immunity play a role in CD susceptibility.

Below, we will develop and discuss the chain of reasoning in support of the cold chain hypothesis with respect to the above-mentioned observations and in light of recent publications [Table 1].

1. Are epidemiological data consistent with the cold chain hypothesis?

CD is definitively associated with the occidental modern way of life. If the cold chain hypothesis is valid, the emergence of CD must be parallel to the development of industrial and domestic refrigeration. Figure 1A compares the annual incidence of the disease and the household equipment rate in several countries. There is a temporal correlation between these variables. It should be noted, however, that in a given country the disease begins to be detectable not at the time when refrigerators begin to be sold, but only when about 50% of households are equipped. This observation is counter-intuitive.

Results from mathematical modelling can provide an explanation. In this approach, a disease is modelled by a small number of key biological functions. For a given individual, depending on his/her genetic and environmental background, these biological functions are permissive or, on the contrary, protective against the occurrence of the disease. Applied to CD [and other complex genetic disorders], it has made it possible to reproduce age-dependent incidence curves. Looking at the effect of environmental changes applied to the population, the model showed that the increase in CD incidence only began to be readily detectable when about 50% of the general population was exposed to the risk factor (Figure 1B in Victor et al.4). Since the number of refrigerators sold is a marker of exposure to refrigerated foods, the temporal evolution of the incidence of CD and the development of domestic refrigeration appear to be consistent with the cold chain hypothesis.

A few years after the publication of the hypothesis, two studies investigated the link between individual exposure to domestic cooling and CD. In a study performed in Wales, where CD first appeared in the 1960s, elderly patients had a refrigerator in their homes at a younger age than the control group 7. Another study was conducted in Iran, where CD first appeared in the 1990s. Again, patients were exposed to a refrigerator earlier in life than controls 10. Although these epidemiological studies have significant methodological limitations and do not formally demonstrate the role of refrigeration in CD [an association is necessary but not sufficient to prove a causality], their results are consistent with the working hypothesis.

2. What do nutritional treatments for CD teach us?

Nutritional treatment of CD was first proposed by Voit in 1973 36. The treatment consists of administering a specific liquid formula for 6–8 weeks by oral and/or enteral routes [for a review see Hansen and Duerksen23]. Many formulas have been proposed, including elementary, semi-elementary, or polymeric diets based on proteins from various origins [Table 2] 17. In all cases they are exclusion diets, that is the patient needs to stop his/her usual diet and replace it with an exclusive intake of the dietary product.

Nutritional treatments are effective 18. In children, their efficacy is comparable to that of corticosteroids 19. In adults, they are generally less effective, probably due to non-compliance with the exclusive liquid diet and/or a more advanced disease phenotype. Within a few days, nutritional treatments decrease digestive and extra-digestive symptoms and systemic inflammatory response, and lead to mucosal healing. Thus, nutritional treatments can arguably induce deep remission. The sine qua non of their effectiveness is, however, that the exclusion diet is strictly followed. As soon as the usual diet is resumed, even in small quantities, gut inflammation returns.

Table 1. Overview of the cold chain hypothesis and key findings supporting it.

Causality chain	Key findings	References
The development of refrigeration increased the exposure to *Yersinia* species.	CD is associated with the modern Western way of life	3
The expansion of domestic cold parallels the outbreak of CD in the USA, Europe, and China	4-8	
CD patients are exposed earlier to domestic cold	9, 10	
Yersinia species are common in refrigerated food	11-13	
They can be found in ileal tissues of CD and controls	14-16	
Enteral nutrition products contain all kinds of macronutrients and additives in various proportions, but exposure to refrigerated foods is drastically reduced in all CD diets	17-19	
Key findings during the acute infection:	20-22	
* Lesions centred by intestinal lymphoid follicles	23-24	
* Epitheloid and gigantocellular granulomas	25-26	
Chronic lesions observed after the infection:		
* Decrease of Tregs and increase of Th17 lymphocytes	27-32	
* Mesenteric adenolymphitis and alteration of the lymphatic network	33	
* Inflammatory mesenteric adipose tissue	34	
* Dysbiosis and increased reactivity toward commensal bacteria		
Mutations specifically associated with CD are characterised by a defect of intracellular bacterial clearance	35	
NOD2 mutations are associated with an increased inflammatory response toward *Yersinia* in mice		
ATG16L1 mutations are also associated with an exacerbated response to *Yersinia*	36	
NOD2-mutated people have probably been protected during plague outbreaks in the past	37	
Figure 1. Observed [A] and modelled [B] annual incidence of Crohn's disease in relation to exposure to domestic refrigeration. [A] Approximate values of the annual incidences of CD in the USA, Sweden, the UK, and China for the indicated decades. Arrows show the periods during which domestic refrigeration has expanded. The ends of the arrows correspond respectively to the approximate times when 5% and 95% of households own a refrigerator. Arrowheads indicate when about 50% of the population owns a refrigerator. [B] Values calculated from a mathematical model predictive of disease risk. T0 corresponds to the time point when 50% of the population is exposed to the environmental risk factor (here supposed to be domestic refrigeration). CD, Crohn’s disease.

Table 2. Nutritional analysis of 61 products with reported efficacy for induction of clinical remission in CD patients [from Logan et al.]

Diet	Polymeric: 39	Semi-elemental: 16	Elemental: 6
Main sources of macronutrients	Carbohydrates: maltodextrin, sucrose, glucose syrup, starch of diverse origins, corn syrup, rice flour, dextrins	Fat: sunflower oil, canola oil, soybean oil, rape-seed oil, fish oil, corn oil, palm oil, coconut oil, safflower oil, milk fat, arachidonic acid, DHA, none	Fibres: fructo-oligosaccharides, inulin, gum arabic, pectin, resistant starch, cellulose, guar gum, none
Proportions of nutrients.	Carbohydrates: from 22.8% to 89.3%	Protein: from 7.8% to 30.1%	Fat: from 0% to 28.6%
	Saturated fat: from 0% to 28.6%	n-6:n-3 fatty acid ratio: from 0.25 to 46.5	
Additives [portion of products containing the additive]	Modified starch [60/60]	Inorganic phosphates [49/54]	Maltodextrin [47/60]
	Soy lecithin [38/55]	Carrageenan [12/55]	Carboxymethylcellulose [7/55]
	Sucralose [3/55]	Polysorbate 80 [3/55]	

CD, Crohn’s disease.

The mechanisms of action of exclusive enteral nutrition remain unknown. It has been suggested that formulas may have direct anti-inflammatory properties [eg, by modulating the TGF-β or NF-κB pathways] but this explanation does not explain the efficacy of the multiple products with various compositions. The impact of formulas on the intestinal microbiota has also been put forward to explain its mechanism of action, but in practice their effect is opposite to that expected, in particular by reducing microbial diversity. The role of specific food allergens seems unlikely, since the formulas are based on proteins of various origins. Furthermore, no specific foodstuff has been incriminated in CD, and combining enteral nutrition with a highly controlled oral diet was recently shown to be effective.

To explain the link between food and CD, an unbalanced diet associated with the modern Western way of life is often cited. To illustrate this concept, mice genetically susceptible to colitis have been fed a high-fat diet instead of normal kibble. The animals had modified bile acids composition, intestinal dysbiosis, and a higher risk of colitis. In another study, mice on a high-sugar diet developed more severe experimental colitis than control mice. The animals had fewer short-chain fatty acids, lower microbial diversity, and higher intestinal permeability. Thus, animal models provide evidence that an unbalanced diet can lead to an over-risk of colitis.

From this point of view, the efficiency of nutritional treatments would be related to their ability to rebalance the diet. Because the modern Western diet is usually characterised by a higher amount of fats, refined sugars and animal proteins but less fibres, the roles of these food groups have been questioned in CD. Rapid sugars have been suspected but not confirmed in a randomised clinical trial. The total amount of fat ingested does not seem to have a major role either, and enteral nutrition solutions, in particular those rich in fatty acids, still have a beneficial effect. Alcohol has no identified significant role. Researchers have also investigated for risky dietary patterns. A ‘prudent diet’ rich in fruits, vegetables, and fish was found to be protective in one study but not in another.

In fact, the macronutrient composition of enteral nutrition formulas used to treat CD display substantial variations with regard to both quality and quantity [Table 2]. Furthermore, the macronutrient balance of enteral nutrition therapy resembles that of spontaneous diets of patients. Hence, clinical observations provide little support for the need to equilibrate the diet to treat CD.
In the absence of conclusive roles for specific aliments or nutrients, the role of industrialised food has been questioned \(^{11}\). Indeed, ultra-processed food accounts for 16% of food weight and 33% of the calories consumed daily in developed countries.

Food additives which are increasingly used in industrial food production are likely candidates to carry a pro-inflammatory effect. Microparticles, such as titanium dioxide and aluminum silicates, are capable of accumulating in tissues, increasing intestinal permeability and promoting local inflammation \(^{14,15}\). However, in clinical trials, reducing the intake of microparticles had a limited impact \(^{16,17}\). Other groups of additives are emulsifiers and thickeners. They include products like lecithin, carrageenans, carboxymethylcellulose, and polysorbate-80, which have repeatedly been associated with a risk of colitis in animals \(^{18-20}\). Food additives could thus play a role in inflammation by modifying the intestinal microbiota or by altering the intestinal barrier.

Although food additives are likely candidates, it should be noted that most enteral nutrition formulas used for the treatment of CD contain such additives. Among the 61 products studied by Logan \textit{et al.} \(^{17}\), all contained several food additives [median 11, range 6-16]. Modified starch, including maltodextrin, was present in all formulas, carrageenan was present in 12/55 [22%], carboxymethyl cellulose was present in 7/55 [13%], and sucralose and polysorbate 80 were present in 3/55 [5%] formulas \(^{17}\). In addition, all enteral nutrition products had approximately the same efficacy in treating CD, regardless of their additive content, suggesting that there is no need to exclude them from the diet \(^{17}\). Finally, a recent prospective cohort study found no association between ultra-processed food and CD \(^{52}\). Nevertheless, industrial food is becoming an increasingly topical issue and many diets offered to patients today exclude industrial food, suggesting that it may be related to CD risk [eg, CD exclusion diet \(^{19}\), specific carbohydrate diet \(^{61}\), paleolithic diet\(^{36}\)...].

3. **Is CD related to refrigerated foods?**

Industrialization involves not only the processing of foodstuffs, but also the packaging of products and methods for transporting and preserving food. In that case, domestic and industrial refrigeration may explain the link between food and disease. Indeed, more than half of our food is refrigerated at some point, including both natural and manufactured products. Of note, under this hypothesis, not only is the link between food categories and the disease difficult to identify, but even the link between processed and non-processed food becomes tenuous, as observed for CD.

The role of refrigeration, if any, cannot be linked to a change in the nutritional quality of food. Rather, refrigeration should be seen as promoting exposure to an exogenous risk factor. The most plausible candidates are psychotropic bacteria. These bacteria multiply at best at temperatures above 30°C but they are still able to grow at temperatures near or below 0°C. Among them we can mention \textit{Listeria monocytogenes}, \textit{Pseudomonas fluorescens}, and \textit{Yersinia} species. These bacteria have been proposed to have a role in CD but only \textit{Yersinia} has been effectively investigated in CD.

Species of the genus \textit{Yersinia} are present in the environment, particularly in freshwater rivers and lakes. However, the main source of contamination in humans is food \(^{11}\). Typically, \textit{Yersinia} is found in meat, poultry, raw vegetables, fish and seafood, pastries, raw milk, etc. \(^{13,14}\). Sample contamination rates are high, ranging from 10% to 75% depending on detection methods and food products. It can therefore be concluded that we are probably all exposed to \textit{Yersinia} on a regular basis. The foodstuffs most commonly contaminated with \textit{Yersinia} are meat products. However, exposure to \textit{Yersinia} depends on the method of production, transport, storage and preparation of the food. For example, salted, dried or smoked meat is not contaminated and cooking easily kills bacteria. Under these conditions, it is very difficult to link CD to a particular food group and to evaluate the exposure of a given person to \textit{Yersinia} species.

\textit{Yersinia} are able to survive and proliferate at refrigeration temperatures and in vacuum packaging. Thus, contamination of food during the industrial production chain, transport, or home storage appears to be very common. It is favoured by factory farming, the world food trade, the production of industrial dishes, and thus the modern Western lifestyle as a whole. However, little is known about the actual exposure of the general population to \textit{Yersinia}, as these bacteria are difficult to identify by culture. Polymerase chain reaction (PCR) methods are more sensitive but most often look for pathogenic bacteria, whereas the genus \textit{Yersinia} comprises 18 different species, most of which have low pathogenicity. In addition, legislation does not require mandatory food monitoring in most countries. Where information of \textit{Yersinia} contamination is available, it is for products traditionally monitored by the food industry, but few data are available on manufactured food, delicatessen products, or catering. Information on the sources of \textit{Yersinia} is therefore very incomplete and the number of contaminated foods is probably seriously underestimated.

It should be noted, however, that enteral nutrition effectively excludes refrigerated foods. Formulas are based on sterile products or powders that are reconstituted extemporaneously or kept in the refrigerator only for short periods of time. Similarly, the exclusion scheme proposed by Levine \textit{et al.} for the treatment of CD prohibits industrial foods, excludes frozen products, and requires peeling of fruit and vegetables, thus drastically limiting \textit{Yersinia} contamination \(^{19}\). Food handling that has been proven to be effective in CD therefore effectively excludes contact with products potentially contaminated by \textit{Yersinia}.

4. **Are Yersiniae present in the intestine of CD patients?**

If \textit{Yersinia} is involved in CD, a link between the bacterium and the disease must be established. The clinical similarity between CD and yersiniosis has been known for decades. More importantly, numerous reported cases indicate a possible progression from \textit{Yersinia} infection to CD. Conversely, stigmas of immune responses towards \textit{Yersinia} have been observed in CD patients \(^{81}\).

The presence of the bacterium in CD lesions has been reported by only two independent teams \(^{14,131}\). In contrast, most groups did not find \textit{Yersinia} species in CD lesions. This naturally raises questions about the validity of the link between CD and \textit{Yersinia}.

It is obvious to everyone that CD is not due to bacterial multiplication and invasion of the gut by the bacteria. Thus, large quantities of bacteria are not expected to be found in the intestinal tissues. On the contrary, the role of \textit{Yersinia}, if any, should be to trigger an excessive immune response. Given the intense immune response, the number of viable bacteria present in the lesions is expected to be very small, and therefore \textit{Yersinia} could probably not be detectable by conventional microbiological culture methods. Similarly, analyses of the intestinal microbiota are doomed to failure because they do not reliably detect very minor bacteria present in the digestive tract.

In an attempt to explore this question, we developed a PCR detection method for seven species of \textit{Yersinia}: \textit{Y. aldovae}, \textit{Y. bercovieri}, \textit{Y. enterocolitica}, \textit{Y. intermedia}, \textit{Y. mollaretii}, and
Y. pseudotuberculosis. We tested ileal samples from surgical specimens or biopsies from patients with CD, ulcerative colitis, or non-inflammatory digestive diseases: 10% of the 338 participants had a positive PCR for at least one Yersinia species. This rate was the same regardless of the patient group or clinical presentation of CD. The most frequently positive samples were Peyer’s patches, lymph nodes, and ileal surgical specimens. Positivity was estimated in the range of 1 to 100 bacteria per sample tested. Finally, the larger the number of tissue samples examined in a given person, the greater the likelihood that this person would be positive. Thus, considering the very small sizes of the tested samples, it is credible that the bacterium is present in almost everyone.

From this work, we conclude that Yersinia are present in very small quantities in the human ileum, pathological or not, and this probably in a very common way. The distribution of the Yersinia species in CD patients was the same as that observed in contaminated food. At the first glance, this suggests that these are ‘ordinary’ bacteria that could be considered as innocent bystanders. However, since Yersinia are more frequent in deep tissue and Peyer’s patches, it is difficult to consider them as simple commensal bacteria of the intestinal lumen.

5. What are the intestinal consequences of exposure to Yersinia?

Yersinia species are generally low in pathogenicity, as shown by the high rate of exposure compared with the limited number of reported infections. In fact, most strains have few or no virulence factors and Yersinia infections are mainly caused by Y. enterocolitica and Y. pseudotuberculosis.

The reservoir of the bacterium is in the caecum and terminal ileum in mice. Bacteria are capable of colonising Peyer’s patches of the small intestine and isolated lymphoid follicles of the colon in mice and in humans. Several studies have shown that these sites are also the sites of the very initial aphthoid lesions in CD patients as well as that observed in contaminated food. At the first glance, this suggests that these are ‘ordinary’ bacteria that could be considered as innocent bystanders. However, since Yersinia are more frequent in deep tissue and Peyer’s patches, it is difficult to consider them as simple commensal bacteria of the intestinal lumen.

In mice, a moderate dose of Y. pseudotuberculosis results in the resolution of intestinal infection within 3 weeks. Despite effective control of the bacterium by infiltration of infected tissues by polynuclear cells and macrophages, 70% of mice develop chronic mesenteric adenolymphitis, which is also seen in humans. Lymph node hypertrophy can persist as long as 9 months after infection. The lymph nodes do not contain Yersinia, but they are not sterile. They contain various microbes, mainly lactobacilli. Furthermore, chronic inflammation is partially reversible with antibiotic treatment, demonstrating the non-specific role of the intestinal microbiota in perpetuating the post-infection abnormalities.

Mice with chronic mesenteric adenolymphitis have a defect in response to antigens affecting Treg cells, Th17 cells, and IgA + B cells. The observed post-infection effect is related to structural abnormalities of the lymph nodes and a defect in the migration of dendritic cells from the epithelium to the lymph node. Of note, compartmentalised drainage of lymph nodes in the gut dictates adaptive immune responses in mice. If true in humans, this finding could explain why CD lesions are focal and relapse in the same place in case of recurrent exposure to microbial challenge.

In mice, post-infection changes also include an increased permeability of the lymphatic vessels and accumulation of lipids in the mesenteric tissue, which persist for up to 10 months after acute infection. The enlarged mesenteric adipose tissue is infiltrated with inflammatory cells secreting Th1 cytokines [IFN-γ, TNF-α, and IL-1β]. It contains numerous dendritic cells, if as these had escaped into the fat tissue before reaching the lymph node. CD8 memory lymphocytes of Yersinia infection are also located in mesenteric fat.

Increased lymph vessel density and lymph drainage abnormalities have also been shown in CD or in a Crohn-like model in dogs. The lymphatic network in CD is characterised by the presence of tertiary lymphoid follicles and granulomas, which are hallmarks of CD. The bacteria then colonise the intestinal lymphatic tissue up to the draining lymph nodes. This dissemination occurs through uptake by macrophages and dendritic cells present in the intestine. Indeed, a defect in bacterial clearance within the macrophage is associated with CD and may promote local dissemination of the bacterium [see below]. Finally, it has been shown that modulation of T cells by Y. pseudotuberculosis leads to a strong alteration in Treg induction and differentiation towards Th17 cells, both of which are also present in patients with CD.

In mice, the modulation of Y. pseudotuberculosis infection is related to the structural abnormalities of the lymph nodes and the migration of dendritic cells from the epithelium to the lymph node. Of note, compartmentalised drainage of lymph nodes in the gut dictates adaptive immune responses in mice. If true in humans, this finding could explain why CD lesions are focal and relapse in the same place in case of recurrent exposure to microbial challenge.

In mice, post-infection changes also include an increased permeability of the lymphatic vessels and accumulation of lipids in the mesenteric tissue, which persist for up to 10 months after acute infection. The enlarged mesenteric adipose tissue is infiltrated with inflammatory cells secreting Th1 cytokines [IFN-γ, TNF-α, and IL-1β]. It contains numerous dendritic cells, if as these had escaped into the fat tissue before reaching the lymph node. CD8 memory lymphocytes of Yersinia infection are also located in mesenteric fat.

Increased lymph vessel density and lymph drainage abnormalities have also been shown in CD or in a Crohn-like model in dogs. The lymphatic network in CD is characterised by the presence of tertiary lymphoid follicles and granulomas, which are hallmarks of CD. The bacteria then colonise the intestinal lymphatic tissue up to the draining lymph nodes. This dissemination occurs through uptake by macrophages and dendritic cells present in the intestine. Indeed, a defect in bacterial clearance within the macrophage is associated with CD and may promote local dissemination of the bacterium [see below]. Finally, it has been shown that modulation of T cells by Y. pseudotuberculosis leads to a strong alteration in Treg induction and differentiation towards Th17 cells, both of which are also present in patients with CD.
NOD2 is part of a plasma membrane-associated complex that is formed in contact with pathogenic bacteria. It recruits ATG16L1, which initiates the formation of a double-membrane vesicle allowing the internalisation of the bacteria. The autophagy machinery then starts up and the internalised bacterium is degraded by activation of the NADPH complex and addressing the lysosome. Mutations in NOD2, XIAP, NPC1, IRGM, ATG16L1, and NADPH complex all alter this biological function, leading to a defect in bacterial clearance. It could be caricatured that the specific genetic defects of CD lead to macrophage indigestion of invading bacteria.

Mutations in the SCL39A8 zinc transporter gene have also been associated with CD. SCL39A8 regulates the intracellular concentration of zinc. In line, low zinc intakes have been associated with CD in two prospective cohorts. Zinc deficiency was also predictive of a shorter time to subsequent relapse in a prospective study. Zinc plays a key role in autophagy and bacterial clearance, thus pointing toward the same biological defect. Furthermore, chronic stimulation of NOD2 induces metallothionein expression in macrophages, leading to increased intracellular zinc levels. Co-stimulation of toll-like receptors 5 or 9 produces a synergetic effect. This finding can be related to the anecdotal case of a man carrying both TLR5 and NOD2 mutations, who developed severe chronic yersiniosis. Overall, the observations on zinc homeostasis also support a key defect in autophagy and bacterial clearance in CD.

Several bacteria, including Salmonella typhimurium, Shigella flexneri, Listeria monocytogenes, group A Streptococcus, Francisella tularensis, Mycobacterium tuberculosis, and Yersinia species are all engulfed by the phagocytes via xenophagy. Is Yersinia special in regard to CD susceptibility genes? NOD2 is involved in the innate immune response toward a very large number of bacteria. For all pathogens studied, NOD2 mutations associated with CD are deleterious in vitro or in vivo and lead to more severe infections. To our knowledge, the only exception is Y. pseudotuberculosis. Mice that are invalidated for Nod2, or carry a mutation homologous to the human 1007fs mutation associated with development of CD, are resistant to oral infection with Y. pseudotuberculosis. This effect is due to an increased immune response at the site of entry of the bacterium. At the molecular level, it is likely mediated by fine tuning of IL-1β secretion which is controlled by the bacterial virulence factors YopJ and YopM. YopJ subverts Nod2/RICK/TAK1 signalling and promotes activation of caspase 1 and IL-1β secretion. No link has been demonstrated between YopM and Nod2, but both molecules are structurally close, with leucine-rich domains, and both interfere with caspase 1. Thus, CD associated Nod2 mutations appear to result in a more intense response to oral Y. pseudotuberculosis infection.

NOD2 mutations are common in human populations of European ancestry but are rarely present in Asian and African people. In Europe, up to 10% of healthy individuals carry one
or more CD-associated NOD2 mutations. This particularly high frequency suggests a beneficial effect for mutation carriers which may outweigh the deleterious effects of mutations in response to pathogens and the development of CD. As an example, such a mechanism has been proposed for a mutation in the haemoglobin gene that confers protection against malaria in heterozygotes but causes sickle cell anaemia in homozygotes. Since Y. pseudotuberculosis is genetically very similar to Y. pestis, we hypothesised that NOD2 mutations may have provided a survival advantage to mutation carriers in the past during plague epidemics. As supposed, the current frequencies of CD-associated NOD2 mutations [ie, in the offspring of plague survivors] are correlated with the intensity of past Y. pestis epidemics in European and Mediterranean countries. This finding further supports a link between NOD2 and Yersinia.

To our knowledge, among the other CD susceptibility genes, a relationship with Yersinia infection has been investigated only for ATG16L1. Human monocytes carrying the CD at-risk mutation have a clearance defect with respect to Y. enterocolitica. The same observation was made with mouse macrophages carrying the mutation homologous to the human one. These macrophages secreted more IL-1β in the presence of the bacterium. Finally, mice mutated for Atg16l1 developed an exacerbated immune response with production of IL-1β, TNF-α, and IL-6 in their mesenteric lymph nodes. Thus, as with NOD2, ATG16L1 mutations that are associated with CD are characterised by an exacerbated inflammatory response in the gut following exposure to Yersinia.

7. Conclusion

In summary, data from recent years provide additional elements in favour of the cold chain hypothesis, which is now supported by a large number of independent observations from epidemiological, clinical, anatomopathological, microbiological, and molecular studies. With time, the hypothesis thus becomes more and more valid in proposing a comprehensive theory to explain the causes of CD; but as no single experiment can definitively confirm the theory, we must continue to test it with additional works. Among them [and even if insufficient to definitively validate the hypothesis], a randomised clinical trial comparing patients with low versus high exposure to Yersinia would be an important step.

Above all, if the cold chain hypothesis is correct, it would have important practical consequences for the management of CD. Several non-mutually exclusive interventions could be proposed to prevent and treat CD. The first is to implement food surveillance of Yersinia species in food products and to revise rules of good practice in food industry. The second is to reduce patient exposure to Yersinia through precautionary measures. These measures would necessarily be very restrictive. Fruit and vegetables should be washed, peeled, or cooked before consumption. Meat and fish dishes should be cooked or reheated to above 70°C. Certain products should be prohibited such as ice creams, prepared salads, cold cuts, some dairy products, etc. In general, foods prepared at home with controlled products are preferable. Finally, the third intervention could be to reduce Yersinia colonisation of food and surfaces by using phages specific to the bacterium.

Funding

This study was supported by Investissements d’Avenir programme ANR-11-IDEX-0005-02, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX.

Conflict of Interest

The authors have no conflict of interest to declare.

Author Contributions

All authors participated in manuscript focus and concept. JPH and UM are responsible for literature review and drafting of the manuscript. AD is responsible for drawings. FB is responsible for critical revision of the manuscript. All authors have approved the final version of the manuscript for publication.

References

1. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017;389:1741–55.
2. Hugot JP, Alberti C, Berrebi D, Bingen E, Cédard JP. Crohn’s disease: the cold chain hypothesis. Lancet 2003;362:2012–5.
3. Ng SC, Shi HY, Hamid N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018;390:2769–78.
4. Victor JM, Dehret G, Lene A, et al. Network modeling of Crohn’s disease incidence. PLoS One 2016;11:e0156138.
5. Lapidus A. Crohn’s disease in Stockholm County during 1990–2000: An epidemiological update. World J Gastroenterol 2006;12:75.
6. Lofrus CG, Lofrus EV, Harmense SW, et al. Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflamm Bowel Dis 2007;13:254–61.
7. Rose JD, Roberts GM, Williams G, Mayberry JF, Rhodes J. Cardiff Crohn’s disease jubilee: the incidence over 50 years. Gut 1988;29:346–51.
8. Thévenot R. Essai pour une Histoire du Froid Artificiel dans le Monde. Paris: Institut International du froid; 1978.
9. Forbes A, Kalantzis T. Crohn’s disease: the cold chain hypothesis. Int J Colorectal Dis 2006;21:399–401.
10. Malekzadeh F, Alberti C, Nouraei M, et al. Crohn’s disease and early exposure to domestic refrigeration. PLoS One 2009;4:e4288.
11. Hwang C, Ross V, Mahadevan U. Popular exclusionary diets for inflammatory bowel disease: the search for a dietary culprit. Inflamm Bowel Dis 2014;20:732–41.
12. Gupta V, Gulati P, Bhagat N, Dhar MS, Virdi JS. Detection of Yersinia enterocolitica in food: an overview. Eur J Clin Microbiol Infect Dis 2015;34:641–50.
13. Özdemir F, Arslan S. Genotypic and phenotypic virulence characteristics and antimicrobial resistance of Yersinia spp. isolated from meat and milk products. J Food Sci 2015;80:M1306–13.
14. Kalinowski F, Wassmer A, Hofmann MA, et al. Prevalence of enteropathogenic bacteria in surgically treated chronic inflammatory bowel disease. Hepatogastroenterology 1998;45:1532–8.
15. Lamps LW, Madhusudhan KT, Havens JM, et al. Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn’s disease. Am J Surg Pathol 2003;27:220–7.
16. Le Baut G, O’Brien C, Pavli P, et al.; REMIND GROUP. Prevalence of Yersinia species in the ileum of Crohn’s disease patients and controls. Front Cell Infect Microbiol 2018;8:336.
17. Logan M, Gikakis K, Svolos V, et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease - new insights into dietary disease triggers. Aliment Pharmacol Ther 2020;51:935–47.
18. Comeche JM, Caballero P, Gutierrez-Hervas A, et al. Enteral nutrition in patients with inflammatory bowel disease. Systematic review, meta-analysis, and meta-regression. Nutrients 2019;11:2657.
19. Levine A, Wine E, Assa A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 2019;157:440–50.e8.
20. Revell PA, Miller VL. Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 2001;205:159–64.
21. Fujimura Y, Kamoi R, Iida M. Pathogenesis of aphthous ulcers in Crohn’s disease: correlative findings by magnifying colonoscopy, electron microscopy, and immunohistochemistry. Gut 1996;38:724–32.
Crohn's Disease: the Cold Chain Hypothesis

doi: 10.1016/j.cgh.2020.01.046.
67. Van Kraaij HJ, Colombel JF. The forgotten role of lymphangitis in Crohn’s disease. Gut 2007;56:1–4.
68. Pedica F, Ligorio C, Tonelli P, Bartolini S, Raccarin P. Lymphangiogenesis in Crohn’s disease: an immunohistochemical study using monoclonal antibodies D2-40. Virochim Arch 2008;45:52–63.
69. Randolph GJ, Bala S, Rahier JF, et al. Lymphoid aggregates remodel lymphatic collecting vessels that serve mesenteric lymph nodes in Crohn disease. Am J Pathol 2016;186:3066–73.
70. von der Weid PY, Rehal S, Ferrazz JG. Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol 2011;27:335–41.
71. Kamdar K, Khakpour S, Chen J, et al. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe 2016;19:21–31.
72. Jostins L, Ripke S, Weersma RK, et al.; International IBD Genetics Consortium [IBDGC]. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–24.
73. Henderson P, Wilson DC, Satsangi J, Stevens C. A role for vimentin in Crohn disease. Autophagy 2012;8:1695–6.
74. Li D, Achkar JP, Haritunians T, et al. A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology 2018;151:724–32.
75. Collij V, Imhann F, Vich Vila A, et al.; SLCA39A8 missense variant is associated with Crohn’s disease but does not have a major impact on gut microbiome composition in healthy subjects. PLoS One 2019;14:e0211328.
76. Ananthakrishnan AN, Khalili H, Song M, Higuchi LM, Richter JM, Chan AT. Zinc intake and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Int J Epidemiol 2015;44:1995–2003.
77. Vasseur P, Dugelay E, Benamouzig R, et al. Dietary zinc intake and inflammatory bowel disease in the French nutrient-santé cohort. Am J Gastroenterol 2020;115:1293–7.
78. MacMaster MJ, Damianopoulos S, Thomson C, et al. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clinical Nutrition 2020. doi: 10.1016/j.clnu.2020.05.010.
79. Liu JZ, van Sommeren S, Huang H, et al.; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015;47:979–86.
80. Lahiri A, Abraham C. Activation of pattern recognition receptors up-regulates metallothioneins, thereby increasing intracellular accumulation of zinc, autophagy, and bacterial clearance by macrophages. Gastroenterology 2014;147:835–46.
81. Netea MG, Kullberg BJ. Chronic yersiniosis due to defects in the TLR5 and NOD2 recognition pathways. Neth J Med 2010;68:6.
82. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins in the immune system. Nat Immunol 2015;16:1014–24.
83. Al Nabhani Z, Dietrich G, Hugot JP, Barreau F. Nod2: the intestinal gate keeper. PLoS Pathog 2017;13:e1006177.
84. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 2014;14:9–23.
85. Ratner D, Orning MP, Starheim KK, et al. Manipulation of interleukin-1β and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J Biol Chem 2016;291:16417.
86. Meinerz U, Barreau F, Esmiol-Weterlin S, et al. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 2012;11:337–51.
87. Liu JZ, van Sommeren S, Huang H, et al.; International Multiple Sclerosis Genetics Consortium; International IBD Genetics Consortium. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015;47:979–86.
88. Gasche C, Nemeth M, Grundtner P, Willheim-Polli C, Ferenci P, Schwarzenbacher R. Evolution of Crohn’s disease-associated Nod2 mutations. Immunogenetics 2008;60:115–20.
89. Nakagome S, Mano S, Kozłowski L, et al. Crohn’s disease risk alleles on the NOD2 locus have been maintained by natural selection on standing variation. Mol Biol Evol 2012;29:1569–85.
90. Haldane JBS. The rate of mutation of human genes. Hereditas 2010;35:267–73.
91. Murthy A, Li Y, Peng I, et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014;506:456–62.
92. Jun JW, Park SC, Wicklund A, Skurnik M. Bacteriophages reduce accumulation of zinc, autophagy, and bacterial clearance by macrophages. J Food Microbiol 2018;271:33–47.