Hadronic three-body D decays mediated by scalar resonances

Hai-Yang Cheng,1 Cheng-Wei Chiang,2,3 and Zhi-Qing Zhang4

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, ROC
2Department of Physics, National Taiwan University, Taipei, Taiwan 10617, ROC
3Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan 10617, ROC
4Department of Physics, Henan University of Technology, Zhengzhou, Henan 450052, P.R. China

Abstract

We study the quasi-two-body $D \to SP$ decays and the three-body D decays proceeding through intermediate scalar resonances, where S and P denote scalar and pseudoscalar mesons, respectively. Our main results are: (i) Certain external and internal W-emission diagrams with the emitted meson being a scalar meson are na"ively expected to vanish, but they actually receive contributions from vertex and hard spectator-scattering corrections beyond the factorization approximation. (ii) For light scalars with masses below or close to 1 GeV, it is more sensible to study three-body decays directly and compare with experiment as the two-body branching fractions are either unavailable or subject to large finite-width effects of the scalar meson. (iii) We consider the two-quark (scheme I) and four-quark (scheme II) descriptions of the light scalar mesons, and find the latter generally in better agreement with experiment. This is in line with recent BESIII measurements of semileptonic charm decays that prefer the tetraquark description of light scalars produced in charmed meson decays. (iv) The topological amplitude approach fails here as the $D \to SP$ decay branching fractions cannot be reliably inferred from the measurements of three-body decays, mainly because the decay rates cannot be factorized into the topological amplitude squared and the phase space factor. (v) The predicted rates for $D^0 \to f_0P, a_0P$ are generally smaller than experimental data by one order of magnitude, presumably implying the significance of W-exchange amplitudes. (vi) The W-annihilation amplitude is found to be very sizable in the SP sector with $|A/T|_{SP} \sim 1/2$, contrary to its suppression in the PP sector with $|A/T|_{PP} \sim 0.18$. (vii) Finite-width effects are very important for the very broad $\sigma/f_0(500)$ and $\kappa/K_0^*(700)$ mesons. The experimental branching fractions $\mathcal{B}(D^+ \to \sigma\pi^+)$ and $\mathcal{B}(D^+ \to \kappa^0\pi^+)$ are thus corrected to be $(3.8 \pm 0.3) \times 10^{-3}$ and $(6.7^{+5.6}_{-4.5})\%$, respectively.
I. INTRODUCTION

In recent years many measurements of hadronic three-body and four-body decays of charmed mesons have been performed with Dalitz-plot amplitude analyses. Amplitudes describing D meson decays into multibody final states are dominated by quasi-two-body processes, such as $D \rightarrow PP,VP,SP,AP$ and TP, where P,V,S,A and T denote pseudoscalar, vector, scalar, axial-vector and tensor mesons, respectively. Among various S-, P- and D-wave intermediate resonances, the identification of the scalar mesons is rather difficult due to their broad widths and flat angular distributions.

Scalar mesons with masses lower than 2 GeV can be classified into two nonets: one nonet with masses below or close to 1 GeV, including $\sigma/f_0(500)$, $f_0(980)$, $a_0(980)$ and $\kappa/K_0^*(700)$; and the other nonet with masses above 1 GeV, including $a_0(1450)$, $K_0^*(1430)$, $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$. Since the last three are all isosinglet scalars and only two of them can be accommodated in the quark model, implying a dominant scalar glueball content in one of the three isosinglets.

In this work, we shall study the quasi-two-body $D \rightarrow SP$ decays and the three-body D decays proceeding through intermediate scalar resonances. In Tables I and II we collect all the measured branching fractions of $D \rightarrow SP \rightarrow P_1P_2P$ decays available in the Particle Data Group (PDG) [1].

It is clear that $f_0(980)$ and the f_0 family such as $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ are observed in the three-body decays of D^+,D^0 and D_s^+, while $a_0(980)$ is seen exclusively in three-body D_0 decays (except for $D_s^+ \rightarrow a_0^+(\pi^0,+)$). Contrary to $f_0(980)$ and $a_0(980)$ which are relatively easy to identify experimentally, the establishment of σ and κ is very difficult and controversial because their widths are so broad that their shapes are not clearly resonant. Nevertheless, their signals in three-body D decays have been identified in $D^+ \rightarrow \sigma\pi^+\pi^0\pi^+\pi^+, D^+ \rightarrow \kappa^0\pi^+ \rightarrow K_S\pi^0\pi^+\pi^+$ and $D^+ \rightarrow \kappa^0K^+ \rightarrow \pi^+K^-K^+$, respectively. Because of threshold and coupled-channel effects for $f_0(980)$ and $a_0(980)$ and the very broad widths for σ and κ, it is no longer pertinent to use the conventional Breit-Wigner parametrization to describe their line shapes.

The $D \rightarrow SP$ decays and related three-body D decays have been studied previously in Refs. [2–13]. In the $D \rightarrow SP$ decays, the flavor diagram of each topology has two possibilities: one with the spectator quark in the charmed meson going to the pseudoscalar meson in the final state, and the other with the spectator quark ending up in the scalar meson. We thus need two copies of each topological diagram to describe the decay processes. Many of these decays have been observed in recent years through dedicated experiments and powerful Dalitz plot analysis of multi-body decays. We will investigate whether an extraction of the sizes and relative strong phases of these amplitudes is possible.

One purpose of studying these decays is to check our understanding in the structures and properties of light even-parity scalar mesons. Another goal is to learn the final-state interaction pattern in view of the rich resonance spectrum around the D meson mass range. Not only does this work update our previous study [9], we also study the finite-width effect in the three-body decays mediated by the scalar mesons. Such an effect is observed to be particularly important for decays involving $\sigma/f_0(500)$ and $\kappa/K_0^*(700)$ in the intermediate state because of their broad widths compared to their masses, respectively. Therefore, one should be careful in the use of the narrow
width approximation (NWA) to extract the $D \to SP$ two-body decays from the three-body decay rates.

This paper is organized as follows. In Section II we review the current experimental status about how various $D \to SP$ decay branching fractions are extracted using the NWA from three-body decay rates. In Section III we discuss the two-quark $q\bar{q}$ and tetraquark pictures of the scalar nonet near or below 1 GeV along with the associated conundrums. The decay constants and form factors required for subsequent numerical calculations are given in this section, too. Section IV sets up the notation and formalism of flavor amplitude analysis, for both quark-antiquark and $f_0(980)$ decays followed by SP or P_1P_2. The results of various experiments are summarized in Tables I and II. To extract the branching fraction for a $D \to SP$ decay, it is the usual practice to use the NWA:

$$\Gamma(D \to SP \to P_1P_2P) = \Gamma(D \to SP)_{NWA} B(S \to P_1P_2).$$ (2.1)

Since this relation holds only in the $\Gamma_S \to 0$ limit, we put the subscript NWA to emphasize that $B(D \to SP)$ thus obtained is under this limit. Finite width effects will be discussed in Section VI B. For the branching fractions of two-body decays of scalar mesons, we shall use $[^1]$

$$B(a_0(980) \to \pi\eta) = 0.850 \pm 0.017, \quad B(\sigma(500) \to \pi^+\pi^-) = \frac{2}{3}, \quad B(f_0(1500) \to \pi\pi) = 0.345 \pm 0.022, \quad B(f_0(1710) \to K^+K^-) = 0.292 \pm 0.027, \quad (2.2)$$

$$B(K^*(0)(1430) \to K^+\pi^-) = \frac{2}{3}(0.93 \pm 0.10), \quad B(\kappa(700) \to K^+\pi^-) = \frac{2}{3},$$

where we have applied the average of $\Gamma(a_0(980) \to K\overline{K})/\Gamma(a_0(980) \to \pi\eta) = 0.177 \pm 0.024$ from PDG $[^1]$ to extract the branching fraction of $a_0(980) \to \pi\eta$, assuming that its width is saturated by the $K\overline{K}$ and $\pi\eta$ modes. For $f_0(1710)$ we have used the values of $\Gamma(f_0(1710) \to \pi\pi)/\Gamma(f_0(1710) \to K\overline{K}) = 0.23 \pm 0.05$ and $\Gamma(f_0(1710) \to \eta\eta)/\Gamma(f_0(1710) \to K\overline{K}) = 0.48 \pm 0.15$ from PDG together with the assumption of its width being saturated by $\pi\pi$, $K\overline{K}$ and $\eta\eta$ modes. For $S = f_0(980)$ or $a_0(980)$, we are not able to extract the branching fractions of $D \to SP$ due to the lack of information of $B(S \to P_1P_2)$ (except for $a_0(980) \to \pi\eta$), especially for $B(S \to K\overline{K})$ where the threshold effect must be taken into account. For example, the NWA relation

$$\Gamma(D^+ \to f_0(980)K^+ \to K^+K^-K^+) = \Gamma(D^+ \to f_0(980)K^+) B(f_0(980) \to K^+K^-)$$ (2.3)
cannot be applied to extract the branching fraction of $D^+ \to f_0(980)K^+$ due to the unknown $B(f_0(980) \to K^+K^-)$. Therefore, we will calculate the branching fractions of $B(D \to SP \to P_1P_2P)$ directly and compare them with experiment (see Table VIII below).

III. PHYSICAL PROPERTIES OF SCALAR MESONS

It is known that the underlying structure of scalar mesons is not well established theoretically (see, e.g., Refs. [19, 20] for a review). Scalar mesons with masses lower than 2 GeV can be classified into two nonets: one nonet with masses below or close to 1 GeV, including the isoscalars $f_0(500)$ (or σ), $f_0(980)$, the isodoublet $K^*_0(700)$ (or κ) and the isovector $a_0(980)$; and the other nonet with masses above 1 GeV, including $f_0(1370)$, $a_0(1450)$, $K^*_0(1430)$ and $f_0(1500)/f_0(1710)$. If the scalar meson states below or near 1 GeV are identified as the conventional low-lying 0^+ $q\bar{q}$ nonet, then the nonet states above 1 GeV could be excited $q\bar{q}$ states.

In the naïve quark model, the flavor wave functions of the light scalars read

$$\sigma = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d}) , \quad f_0 = s\bar{s} ,$$

$$a_0^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d}) , \quad a_0^+ = u\bar{d} , \quad a_0^- = d\bar{u} ,$$

$$\kappa^+ = u\bar{s} , \quad \kappa^0 = d\bar{s} , \quad \bar{\kappa}^0 = s\bar{d} , \quad \kappa^- = s\bar{u} ,$$

where an ideal mixing for f_0 and σ is assumed as $f_0(980)$ is the heaviest one and σ the lightest one in the light scalar nonet. However, as summarized in Ref. [9], this simple picture encounters several serious problems:

1. It is impossible to understand the mass degeneracy between $f_0(980)$ and $a_0(980)$, which is the so-called “inverted spectrum problem.”

2. The P-wave 0^+ meson has one unit of orbital angular momentum which costs an energy around 500 MeV. Hence, it should have a mass lying above rather than below 1 GeV.

3. It is difficult to explain why σ and κ are much broader than $f_0(980)$ and $a_0(980)$ in width.

4. The $\gamma\gamma$ widths of $a_0(980)$ and $f_0(980)$ are much smaller than naïvely expected for a $q\bar{q}$ state [21].

5. The radiative decay $\phi \to a_0(980)\gamma$, which cannot proceed if $a_0(980)$ is a pure $q\bar{q}$ state, can be nicely described by the four-quark nature of $a_0(980)$ [22, 23] or the kaon loop mechanism [24]. Likewise, the observation of the radiative decay $\phi \to f_0(980)\gamma \to \pi\pi\gamma$ is also accounted for by the four-quark state of $f_0(980)$ [23].

It turns out that these difficulties can be readily resolved in the tetraquark scenario where the
TABLE I: Experimental branching fractions of \((D^+, D_s^+) \to SP \to P_1P_2P\) decays. For simplicity and convenience, we have dropped the mass identification for \(\sigma(500), f_0(980), a_0(980), \kappa(700)\) and \(K_0(1430)\). Data are taken from Ref. [1] unless specified otherwise. We have applied the NWA given by Eq. (2.1) to extract the branching fractions of the two-body \(D\) decay denoted by \(B(D \to SP)_{\text{NWA}}\).

\(B(D \to SP; S \to P_1P_2)\)	\(B(D \to SP)_{\text{NWA}}\)
\(B(D^+ \to f_0\pi^+; f_0 \to \pi^+\pi^-) = (1.56 \pm 0.33) \times 10^{-4}\)	\(B(D^+ \to f_0(1370)\pi^+; f_0(1370) \to \pi^+\pi^-) = (8 \pm 4) \times 10^{-5}\)
\(B(D^+ \to f_0(1500)\pi^+; f_0(1500) \to \pi^+\pi^-) = (1.1 \pm 0.4) \times 10^{-4}\)	\(B(D^+ \to f_0(1500)\pi^+) = (4.78 \pm 1.77) \times 10^{-4}\)
\(B(D^+ \to f_0(1710)\pi^+; f_0(1710) \to \pi^+\pi^-) < 5 \times 10^{-5}\)	\(B(D^+ \to f_0(1710)\pi^+) < 5.8 \times 10^{-4}\)
\(B(D^+ \to f_0K^+; f_0 \to \pi^+\pi^-) = (4.4 \pm 2.6) \times 10^{-5}\)	\(B(D^+ \to f_0K^+) = (1.23 \pm 0.02) \times 10^{-5}\)
\(B(D^+ \to f_0K^+; f_0 \to K^+K^-) = (1.23 \pm 0.02) \times 10^{-5}\)	\(B(D^+ \to f_0(1450)\pi^+; a_0^0 \to K^+K^-) = (4.5 \pm 1.8) \times 10^{-4}\)
\(B(D^+ \to \sigma\pi^+; \sigma \to \pi^+\pi^-) = (1.38 \pm 0.12) \times 10^{-3}\)	\(B(D^+ \to \sigma\pi^+) = (2.07 \pm 0.18) \times 10^{-3}\)
\(B(D^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to KS\pi^0) = (6^{+5}_{-4}) \times 10^{-3}\)	\(B(D^+ \to \bar{K}^0\pi^+) = (3.6^{+3.0}_{-2.4})\%\)
\(B(D^+ \to \bar{K}^0K^+; \bar{K}^0 \to K^+\pi^-) = (6.8^{+3.5}_{-2.1}) \times 10^{-4}\)	\(B(D^+ \to \bar{K}^0K^+) = (1.0^{+0.5}_{-0.3}) \times 10^{-3}\)
\(B(D^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to K^-\pi^+) = (1.25 \pm 0.06)\%\)	\(B(D^+ \to \bar{K}^0\pi^+) = (2.02 \pm 0.24)\%\)
\(B(D^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to K^0\pi^0) = (2.7 \pm 0.9) \times 10^{-3}\)	\(B(D^+ \to \bar{K}^0\pi^+) = (1.74 \pm 0.61)\%\)
\(B(D^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to K^-\pi^+) = (1.82 \pm 0.35) \times 10^{-3}\)	\(D^+ \to \bar{K}^0\pi^+\) prohibited on-shell
\(B(D_s^+ \to f_0\pi^+; f_0 \to K^+K^-) = (1.14 \pm 0.31)\%\)	\(B(D_s^+ \to f_0(980)\pi^+) = (2.1 \pm 0.4) \times 10^{-3}\)
\(B(D_s^+ \to f_0(1370)\pi^+; S(980) \to K^+K^-) = (1.05 \pm 0.07)\%\)	\(B(D_s^+ \to f_0(1370)\pi^+) = (7 \pm 5) \times 10^{-4}\)
\(B(D_s^+ \to f_0(1500)\pi^+; f_0 \to K^+K^-) = (7 \pm 2) \times 10^{-4}\)	\(B(D_s^+ \to f_0(1500)\pi^+) = (7 \pm 2) \times 10^{-4}\)
\(B(D_s^+ \to f_0\pi^+; f_0 \to K^+K^-) = (1.3 \pm 0.2) \times 10^{-3}\)	\(B(D_s^+ \to f_0\pi^+) = (6.6 \pm 2.8) \times 10^{-4}\)
\(B(D_s^+ \to f_0(1710)\pi^+; f_0 \to K^+K^-) = (10 \pm 4) \times 10^{-4}\)	\(B(D_s^+ \to f_0(1710)\pi^+) = (2.26 \pm 0.98) \times 10^{-3}\)
\(B(D_s^+ \to f_0(1710)\pi^+; f_0 \to K^+K^-) = (10 \pm 4) \times 10^{-4}\)	\(B(D_s^+ \to f_0(1710)\pi^+) = (3.42 \pm 1.40) \times 10^{-3}\)
\(B(D_s^+ \to a_0^0\pi^+; a_0^0 \to \eta\pi^+) = (1.46 \pm 0.27)\%\)	\(B(D_s^+ \to a_0^0\pi^+ + a_0^0\pi^0) = (1.72 \pm 0.32)\%\)
\(B(D_s^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to K^-\pi^+) = (1.8 \pm 0.4) \times 10^{-3}\)	\(B(D_s^+ \to \bar{K}^0\pi^+) = (2.9 \pm 0.7) \times 10^{-3}\)
\(B(D_s^+ \to \bar{K}^0\pi^+; \bar{K}^0 \to K^-\pi^+) = (1.6 \pm 0.4) \times 10^{-3}\)	\(B(D_s^+ \to \bar{K}^0\pi^+) = (2.6 \pm 0.7) \times 10^{-3}\)
\(B(D_s^+ \to K^0\pi^+; K^0 \to K^-\pi^+) = (5.0 \pm 3.5) \times 10^{-4}\)	\(B(D_s^+ \to K^0\pi^+) = (8.1 \pm 5.7) \times 10^{-4}\)

\(^a\text{Assuming a fit fraction of 20\% for } D^+ \to f_0(980)K^+ \text{ in } D^+ \to K^+K^-K^+ \text{ decay}\) [14].

\(^b\text{BESIII data taken from Ref. [15].}\)

\(^c\text{BESIII data taken from Ref. [16].}\)

\(^d\text{S}(980) \text{ denotes both } f_0(980) \text{ and } a_0(980).\)

\(^e\text{The branching fraction is assigned to be (2.2 \pm 0.4)\% by the PDG}\) [1]. However, as pointed out in Ref. [17], the fraction of \(D_s^+ \to a_0(980)(0^+)\pi^0(0^+), a_0(980)(0^+) \to \pi^0(0^+q)\eta\) with respect to the total fraction of \(D_s^+ \to a_0(980)\pi, a_0(980) \to \pi\eta\) is evaluated to be 0.66. Consequently, the branching fraction should be multiplied by a factor of 0.66 to become (1.46 \pm 0.27)\%.\)
four-quark flavor wave functions of light scalar mesons are symbolically given by

\[
\begin{align*}
\sigma &= uudd, \\
f_0 &= \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d})s\bar{s}, \\
a_0 &= \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d})s\bar{s}, \\
a_0^+ &= uds\bar{s}, \\
a_0^- &= d\bar{s}s, \\
k^+ &= u\bar{s}\bar{d}, \\
k^0 &= d\bar{s}u, \\
k^- &= s\bar{d}u, \\
k^- &= s\bar{u}d.
\end{align*}
\]

The four quarks \(q^2 q^2\) can form an S-wave (rather than P-wave) \(0^+\) meson without introducing one unit of orbital angular momentum. This four-quark description explains naturally the inverted
mass spectrum of the light nonet, and accounts for the broad widths of \(\sigma \) and \(\kappa \) while \(f_0(980) \) and \(a_0(980) \) are narrow because of the suppressed phase space for their decays to the kaon pairs. Lattice calculations have confirmed that \(a_0(1450) \) and \(K^*_0(1430) \) are \(q\bar{q} \) mesons, and suggested that \(\sigma, \kappa \) and \(a_0(980) \) are tetraquark mesonia \[27,31].

The inverted spectrum problem can also be alleviated in the scenario where the light scalars are dynamically generated from the meson-meson interaction, with the \(f_0(980) \) and the \(a_0(980) \) coupling strongly to the \(KK \) channel with isospin 0 and 1, respectively. Indeed, the whole light scalar nonet appears naturally from properly unitarized chiral amplitudes for pseudoscalar-pseudoscalar scatterings \[32,33\]. Consequently, both \(f_0(980) \) and \(a_0(980) \) are good candidates of \(KK \) molecular states \[34\], while \(\sigma \) and \(\kappa \) can be considered as the bound states of \(\pi\pi \) and \(K\pi \), respectively.

In the naïve two-quark model with ideal mixing for \(f_0(980) \) and \(\sigma(500) \), \(f_0(980) \) is purely an \(s\bar{s} \) state, while \(\sigma(500) \) is an \(n\bar{n} \) state with \(n\bar{n} \equiv (\bar{u}u + \bar{d}d)/\sqrt{2} \). However, there also exists some experimental evidence indicating that \(f_0(980) \) is not a purely \(s\bar{s} \) state. For example, the observation of \(\Gamma(J/\psi \rightarrow f_0(2\omega)) \approx \frac{1}{2}\Gamma(J/\psi \rightarrow f_0(\phi)) \) \[1\] clearly shows the existence of the non-strange and strange quark contents in \(f_0(980) \). Therefore, isoscalars \(\sigma(500) \) and \(f_0(980) \) must have a mixing

\[
|f_0(980)| = |s\bar{s}| \cos \theta + |n\bar{n}| \sin \theta , \quad |\sigma(500)| = -|s\bar{s}| \sin \theta + |n\bar{n}| \cos \theta .
\]

Various mixing angle measurements have been discussed in the literature and summarized in Refs. \[35,36\]. A recent measurement of the upper limit on the branching fraction product \(B(T^0 \rightarrow J/\psi f_0(980)) \times B(f_0(980) \rightarrow \pi^+\pi^-) \) by LHCb leads to \(|\theta| < 30^\circ \) \[37\]. Likewise, in the four-quark scenario for light scalar mesons, one can also define a similar \(f_0-\sigma \) mixing angle

\[
|f_0(980)| = |n\bar{n}s\bar{s}| \cos \phi + |u\bar{u}d\bar{d}| \sin \phi , \quad |\sigma(500)| = -|n\bar{n}s\bar{s}| \sin \phi + |u\bar{u}d\bar{d}| \cos \phi .
\]

It has been shown that \(\phi = 174.6^\circ \) \[38\].

In reality, the light scalar mesons could have both two-quark and four-quark components. Indeed, a real hadron in the QCD language should be described by a set of Fock states of which has the same quantum number as the hadron. For example,

\[
|a^+(980)| = \psi^a_{ud \bar{u} \bar{d}} |ud\bar{u}\bar{d}| + \psi^a_{ud \bar{g}} |ud\bar{g}| + \psi^a_{uds\bar{s}} |ud\bar{s}\bar{s}| + \ldots
\]

In the tetraquark model, \(\psi^a_{ud\bar{u}\bar{d}} \gg \psi^a_{ud\bar{g}} \) while it is the other way around in the two-quark model. Although as far as the spectrum and decay are concerned, light scalars are predominately tetraquark states, their productions in heavy meson decays and in high energy hadron collisions are probably more sensitive to the two-quark component of the scalar mesons. For example, one may wonder if the energetic \(f_0(980) \) produced in \(B \) decays is dominated by the four-quark configuration as it requires to pick up two energetic quark-antiquark pairs to form a fast moving light tetraquark. Since

\[1\] However, it has been claimed recently in Ref. \[26\] that the inverse mass hierarchy can be realized in the \(q\bar{q} \) picture through a \(U(1) \) axial anomaly including explicit \(SU(3)_F \) breaking. The anomaly term contributes to \(a_0(980) \) with the strange quark mass and to \(\kappa/K^*_0(700) \) with the up or down quark mass due to its flavor singlet nature. The current mass of the strange quark makes the \(a_0 \) meson heavier than the \(\kappa \) meson.
the scalar meson production in charm decays is not energetic, it is possible that it has adequate
time to form a tetraquark state. In principle, the two-quark and four-quark descriptions of
the light scalars can be discriminated in the semileptonic charm decays. For example, the ratio
\[
R = \frac{\mathcal{B}(D^+ \to f_0 \ell^+ \nu) + \mathcal{B}(D^+ \to \sigma \ell^+ \nu)}{\mathcal{B}(D^+ \to a_0^0 \ell^+ \nu)}
\] (3.6)
is equal to 1 in the two-quark scenario and 3 in the four-quark model under the flavor SU(3)
symmetry. Based on the BESIII measurements of \(D^+ \to a_0(980)^0 e^+ \nu_e\) \[39\], \(D^+ \to \sigma e^+ \nu_e\) and
the upper limit on \(D^+ \to f_0(980) e^+ \nu_e\) \[41\], it follows that \(R > 2.7\) at 90\% confidence level. Hence,
the BESIII results favor the SU(3) nonet tetraquark description of the \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\)
produced in charmed meson decays. A detailed analysis of BESIII and CLEO data on the decays
\(D^+ \to \pi^+ \pi^- e^+ \nu_e\) and \(\bar{s} \to \pi^+ \pi^- e^+ \nu_e\) in Ref. \[42\] also shows results in favor of the four-quark
nature of light scalar mesons \(f_0(500)\) and \(f_0(980)\).

The vector and scalar decay constants of the scalar meson are, respectively, defined as
\[
\langle S(p) | \bar{q} \gamma_\mu q_1 | 0 \rangle = f_S p_\mu, \quad \langle S | \bar{q} q_1 | 0 \rangle = m_S f_S.
\] (3.7)
The neutral scalar mesons \(\sigma, f_0\) and \(a_0^0\) cannot be produced via the vector current owing to charge
conjugation invariance or conservation of vector current:
\[
f_\sigma = f_{f_0} = f_{a_0^0} = 0.
\] (3.8)
Applying the equation of motion to Eq. (3.7) yields
\[
\mu_S f_S = \bar{f}_S, \quad \text{with } \mu_S = \frac{m_S}{m_2(\mu) - m_1(\mu)},
\] (3.9)
where \(m_2\) and \(m_1\) are the running current quark masses. Therefore, the vector decay constant of
the scalar meson \(f_S\) vanishes in the SU(3) or isospin limit. The vector decay constants of \(K_0^*(1430)\)
and the charged \(a_0(980)\) are non-vanishing, but they are suppressed due to the small mass difference
between the constituent \(s\) and \(u\) quarks and between \(d\) and \(u\) quarks, respectively. The scalar decay
constants \(\bar{f}_S\) have been computed in Ref. \[35\] within the framework of QCD sum rules. For reader’s
convenience, we list the scalar decay constants (in units of MeV) at \(\mu = 1\) GeV relevant to the
present work
\[
\bar{f}_{f_0} = 370 \pm 20, \quad \bar{f}_{a_0} = 365 \pm 20, \quad \bar{f}_\sigma = 350 \pm 20, \quad \bar{f}_\kappa = 340 \pm 20,
\bar{f}_{a_0(1450)} = 460 \pm 50, \quad f_{f_0(1500)} = 490 \pm 50, \quad \bar{f}_{K_0^*} = 445 \pm 50.
\] (3.10)
From Eq. (3.9), we obtain (in units of MeV) \(^2\)
\[
|f_{a_0(980)}| = 1.3, \quad |f_{a_0(1450)}| = 1.1, \quad |f_\kappa| = 45.5, \quad |f_{K_0^*(1430)}| = 35.3.
\] (3.11)
In short, the vector decay constants of scalar mesons are either zero or very small for non-strange
scalar mesons.

\(^2\) The vector decay constants of the scalar meson and its antiparticle are of opposite sign. For example,
\(f_{a_0(980)} = -1.3\) MeV and \(f_{a_0(980)} = 1.3\) MeV.
Form factors for $D \to P, S$ transitions are defined by

$$
\langle P(p')|V_\mu|D(p)\rangle = \left(P_\mu - \frac{m_D^2 - m_{P}^2}{q^2} q_\mu \right) F_1^{DP}(q^2) + \frac{m_{D}^2 - m_{P}^2}{q^2} q_\mu F_0^{DP}(q^2),
$$

$$
\langle S(p')|A_\mu|D(p)\rangle = -i \left[\left(P_\mu - \frac{m_D^2 - m_{S}^2}{q^2} q_\mu \right) F_1^{DS}(q^2) + \frac{m_{D}^2 - m_{S}^2}{q^2} q_\mu F_0^{DS}(q^2) \right],
$$

(3.12)

where $P_\mu = (p + p')_\mu$ and $q_\mu = (p - p')_\mu$. As shown in Ref. [44], a factor of $(-i)$ is needed in the $D \to S$ transition in order for the $D \to S$ form factors to be positive. This can also be checked from heavy quark symmetry consideration [44].

Throughout this paper, we use the 3-parameter parametrization

$$
F(q^2) = \frac{F(0)}{1 - a(q^2/m_D^2) + b(q^2/m_D^2)^2}
$$

(3.13)

for $D \to S$ transitions. For hadronic $D \to SP$ decays, the relevant form factor is $F_0^{DS}(q^2)$. The parameters $F_0^{DS}(0)$, a and b for $D \to S$ transitions calculated in the covariant light-front quark model (CLFQM) [44, 45], covariant confined quark model (CCQM) [46], light-cone sum rules (LCSR) [47–49] are exhibited in Table III. Note that the matrix element $\langle S(p')|A_\mu|D(p)\rangle$ is sometimes parametrized as

$$
\langle S(p')|A_\mu|D(p)\rangle = -i \left[F_+^{DS}(q^2) P_\mu + F_-^{DS}(q^2) q_\mu \right].
$$

(3.14)

It is easily seen that

$$
F_1(q^2) = F_+(q^2), \quad F_0(q^2) = \frac{q^2}{m_D^2 - m_S^2} F_-(q^2) + F_+(q^2),
$$

(3.15)

and hence $F_1(0) = F_0(0) = F_+(0)$. It was argued in [49] that the relation $F_-(q^2) = -F_+(q^2)$ holds in the LCSR calculation. In [49], the $D \to S$ transition form factors are defined by

$$
\langle S(p)|A_\mu|D(p + q)\rangle = -i \left[F'_+(q^2) p_\mu + F'_-(q^2) q_\mu \right].
$$

(3.16)

They are related to $F_+(q^2)$ and $F_-(q^2)$ through the relation

$$
F'_+(q^2) = 2F_+(q^2), \quad F'_-(q^2) = F_+(q^2) + F_-(q^2).
$$

(3.17)

For the q^2 dependence of the form factors in various models, the parameters a and b are available in Refs. [44, 45] and Ref. [47] for CLFQM and LCSR(I), respectively. In CCQM and LCSR(II), one needs to apply Eq. (3.15) to get the q^2 dependence of F_0. The form-factor q^2 dependence in the LCSR(III) calculation is shown in Fig. 3 of Ref. [49].

BESIII has measured the branching fractions of both $D^0 \to a_0(980)^- e^+ \nu_e$ and $D^+ \to a_0(980)^0 e^+ \nu_e$ [50]. The theoretical calculations depend on the form factors $F_+(q^2)$ and $F_-(q^2)$ and their q^2 dependence (see e.g. Ref. [51]). It turns out that the predicted branching fractions for $D \to a_0(980)e^+\nu_e$ in LCSR(II) [48] are too large by more than a factor of 2 compared to the BESIII experiment (see Table VI of Ref. [49]). Hence, this model is disfavored.
TABLE III: Form factors $F_0^{DS}(0)$ for $D, D_s \rightarrow f_0(980), a_0(980), a_0(1450)$ and $K_0^*(1430)$ transitions in various models.

Transition	CLFQM	CCQM	LCSR(I)	LCSR(II)	LCSR(III)
$D \rightarrow f_0(980)$	$0.51^{+0.04}_{-0.05}$	0.45 ± 0.02	0.321		
$D_s^+ \rightarrow f_0(980)$	$0.52^{+0.01}_{-0.01}$	0.36 ± 0.02			
$D \rightarrow a_0(980)$	0.55 ± 0.02		0.88 ± 0.13	$0.85^{+0.10}_{-0.11}$	
$D \rightarrow a_0(1450)$	$0.51^{+0.01}_{-0.02}$			$0.94^{+0.02}_{-0.03}$	
$D \rightarrow K_0^*(1430)$	$0.47^{+0.02}_{-0.03}$				
$D_s^+ \rightarrow K_0^*(1430)$	$0.55^{+0.02}_{-0.03}$				

*For $D \rightarrow f_0^0$ transition.
*bFor $D_s^+ \rightarrow f_0^0$ transition.
*cIt stands for either $D^0 \rightarrow a_0(980)^-$ or $D^+ \rightarrow a_0(980)^0$ transition.
*dUse of the relation $F_\pm(0) = F'_\pm(0)/2$ has been made.

IV. DIAGRAMMATIC AMPLITUDES

A least model-dependent analysis of heavy meson decays can be carried out in the so-called topological diagram approach. In this diagrammatic scenario, all two-body nonleptonic weak decays of heavy mesons can be expressed in terms of six distinct quark diagrams: T, the external W-emission tree diagram; C, the internal W-emission; E, the W-exchange; A, the W-annihilation; H, the horizontal W-loop; and V, the vertical W-loop. The one-gluon exchange approximation of the H graph is the so-called “penguin diagram.” These diagrams are classified according to the topologies of weak interactions with all strong interaction effects encoded.

The topological amplitudes for $D \rightarrow SP$ decays have been discussed in [6, 9]. Just as $D \rightarrow VP$ decays, one generally has two sets of distinct diagrams for each topology. For example, there are two external W-emission and two internal W-emission diagrams, depending on whether the emitted particle is an even-parity meson or an odd-parity one. Following the convention in [6, 9], we shall denote the primed amplitudes T' and C' for the case when the emitted meson is a scalar one. For the W-exchange and W-annihilation diagrams with the final state $q_1 \bar{q}_2$, the primed amplitude denotes that the even-parity meson contains the quark q_1. Since K_0^*, $a_0(1450)$ and the light scalars $\sigma, \kappa, f_0(980), a_0(980)$ fall into two different SU(3) flavor nonets, in principle one cannot apply SU(3) symmetry to relate the topological amplitudes in $D^+ \rightarrow f_0(980)\pi^+$ to, for example, those in $D^+ \rightarrow K_0^*\pi^+$. In Ref. [6] we have presented the topological amplitude decomposition in $D \rightarrow SP$ decays in two different schemes. In scheme I, light scalar mesons $\sigma, \kappa, a_0(980)$ and $f_0(980)$ are described by the ground-state $q\bar{q}$ states, while K_0^* and $a_0(1450)$ as excited $q\bar{q}$ states. In scheme II, light scalars are tetraquark states, while K_0^* and $a_0(1450)$ are ground-state $q\bar{q}$. The topological amplitudes for $D \rightarrow SP$ decays are listed in Table IV. The expressions of topological amplitudes are the same in
TABLE IV: Topological amplitudes of various $D \to SP$ decays. Schemes I has $(\alpha, \beta) = (\sin \theta, \cos \theta)$, and scheme II has $(\alpha, \beta) = (1, \sqrt{2})$ for those modes with one f_0 and $(0, \sqrt{2})$ for those modes with one σ. In Scheme I, light scalar mesons $\sigma, \kappa, a_0(980)$ and $f_0(980)$ are described by the $q\bar{q}$ states, while K^*_0 and $a_0(1450)$ as excited $q\bar{q}$ states. In Scheme II, light scalars are tetraquark states, while K^*_0 and $a_0(1450)$ are ground-state $q\bar{q}$. The $f_0 - \sigma$ mixing angle θ in the two-quark model is defined in Eq. (3.3). The experimental branching fractions denoted by B_{NWA} are taken from Tables II and III For simplicity, we do not consider the $f_0 - \sigma$ mixing in the tetraquark model as its value is close to $\pi \ [38]$.

Decay	Amplitude	B_{NWA}	
$D^+ \to f_0 \pi^+$	$\frac{1}{\sqrt{2}}\alpha V_{ud}^* V_{us}(T + C' + A + A') + \beta V_{us}^* V_{us}C'$		
	$f_0 K^+$	$V_{us}^* V_{us} \left[\frac{1}{\sqrt{2}}\alpha(T + A') + \beta A \right]$	
	$a_0^0 K^0$	$V_{us}^* V_{us}(T' + C)$	
	$a_0^0 \pi^+$	$\frac{1}{\sqrt{2}}V_{us}^* V_{us}(-T - C' - A + A')$	
	$\sigma \pi^+$	$\frac{1}{\sqrt{2}}\beta V_{us}^* V_{us}(T + C' + A + A') - \alpha V_{us}^* V_{us}C'$	$(2.1 \pm 0.2) \times 10^{-3}$
	$K^0 \pi^+$	$V_{us}^* V_{us}(T + C')$	$(3.6^{+3.0}_{-2.4})\%$
	$K^0 K^+$	$V_{us}^* V_{us}T + V_{us}^* V_{us}A$	$(1.0^{+0.5}_{-0.3}) \times 10^{-3}$
$D^0 \to f_0 \pi^0$	$\frac{1}{2}\alpha V_{us}^* V_{us}(-C + C' - E - E') + \frac{1}{\sqrt{2}}\beta V_{us}^* V_{us}C'$		
	$f_0 K^0$	$V_{us}^* V_{us} \left[\frac{1}{\sqrt{2}}\alpha(C + E) + \beta E' \right]$	
	$a_0^+ \pi^0$	$V_{us}^* V_{us}(T' + E)$	
	$a_0^- \pi^0$	$V_{us}^* V_{us}(T + E')$	
	$a_0^0 K^0$	$V_{us}^* V_{us}(T' + E)$	
	$a_0^0 \pi^0$	$V_{us}^* V_{us}(C - E)/\sqrt{2}$	$(2.83 \pm 0.66)\%$
	$a_0^+ K^0$	$V_{us}^* V_{us}(T + E')$	
	$\sigma \pi^0$	$\frac{1}{2}V_{us}^* V_{us}\beta(-C + C' - E - E') - \frac{1}{\sqrt{2}}\alpha V_{us}^* V_{us}C'$	$(1.8 \pm 0.3) \times 10^{-4}$
$D_s^+ \to f_0 \pi^+$	$\frac{1}{\sqrt{2}}V_{us}^* V_{us} \left[\sqrt{2}\beta T + \alpha(A + A') \right]$		
	$f_0 K^+$	$V_{us}^* V_{us} \left[\beta(T + C' + A) + \frac{1}{\sqrt{2}}\alpha A' \right] + \frac{1}{\sqrt{2}}V_{us}^* V_{us}A C'$	
	$a_0^0 \pi^+$	$\frac{1}{\sqrt{2}}V_{us}^* V_{us}(-A + A')$	$(0.86 \pm 0.23)\%$

a Since the decay amplitudes of $D_s^+ \to a_0^+ \pi^0$ and $D_s^+ \to a_0^0 \pi^+$ are the same except an overall negative sign, they have the same rates.
both schemes I and II except for the channels involving f_0 and σ. For example,

$$A(D^+ \to f_0\pi^+) = \begin{cases} \frac{1}{\sqrt{2}} V_{cd} V_{ud} (T + C' + A + A') \sin \theta + V_{cs}^* V_{us} C' \cos \theta & \text{Scheme I,} \\ \frac{1}{\sqrt{2}} V_{cd}^* V_{ud} (T + C' + A + A') + \sqrt{2} V_{cs}^* V_{us} C' & \text{Scheme II,} \end{cases}$$

$$A(D^+ \to \sigma\pi^+) = \begin{cases} \frac{1}{\sqrt{2}} V_{cd} V_{ud} (T + C' + A + A') \cos \theta - V_{cs}^* V_{us} C' \sin \theta & \text{Scheme I,} \\ V_{cd}^* V_{ud} (T + C' + A + A') & \text{Scheme II.} \end{cases}$$

In our numerical estimates, we will take $\theta = 30^\circ$, saturating the measured upper bound mentioned earlier.

In Table IV the upper part involves only light scalar mesons ($f_0, a_0, \sigma,$ and κ), whereas the lower part involves the $a_0(1450)$ and $K_0^*(1430)$ mesons in the heavier nonet representation. This division is made because the amplitudes of the same topology in these two groups have no a priori relations. In each group we have 15 unknown parameters for the 8 topological amplitudes T, C, E, A and T', C', E', A'. For neutral scalar mesons σ, f_0 and a_0^0, we cannot set $T' = C' = 0$ even though their vector decay constants vanish. As will be discussed in Sec. V.A, T' and C' do receive nonfactorizable contributions through vertex and spectator-scattering corrections [55, 56]. Nevertheless, it is naively expected that, for example, $|T'| \ll |T|$ and $|C'| \ll |C|$ for charged a_0. However, as we shall see in Sec. V.C, a realistic calculation yields $|C'| > |C|$ instead. At any rate, we have more theory parameters than observables (6 in the upper part and 5 in the lower part of the table), barring a fit.

Since the branching fractions of $f_0 \to \pi\pi$ and $(f_0, a_0) \to K\overline{K}$ are unknown, many of the two-body decays in Table IV cannot be extracted from the data of three-body decays. Nevertheless, the strong couplings such as $g_{f_0\to\pi\pi}, g_{f_0\to K\overline{K}}, g_{a_0\to K\overline{K}}$ and $g_{a_0\to \eta\pi}$ have been inferred from a fit to the data. There are 17 available $D \to SP \to P_1 P_2 P_3$ modes, but there are only 14 data related to $D \to SP$ and we have 15 parameters to fit. Moreover, since we need to introduce appropriate energy-dependent line shapes for the scalar mesons, it is not conceivable to extract the topological amplitudes from three-body decays as the decay rate cannot be factorized into the topological amplitude squared and the phase space factor. We will come back to this point later.

It is interesting to notice that the current data already imply the importance of W-exchange and W-annihilation amplitudes. Consider the decays: $D^0 \to a_0^+ \pi^- \to K^+ \overline{K}^0 \pi^-$ and $D^0 \to a_0^- \pi^+ \to K^- \overline{K}^0 \pi^+$ with the two-body decay amplitudes proportional to $(T' + E)$ and $(T + E')$, respectively (see Table IV). If the W-exchange contributions are negligible, the former mode governed by the amplitude T' is expected to have a rate smaller than the latter (cf. Table III). Experimentally, it is the other way around. This is an indication that E and E' play some role.

V. FACTORIZATION APPROACH

The diagrammatic approach has been applied quite successfully to hadronic decays of charmed mesons into PP and VP final states [57–66]. When generalized to the decay modes involving a scalar meson in the final state, it appears that the current data are still insufficient for us to fully extract the information of all amplitudes. Therefore, we take the naïve factorization formalism
as a complementary approach to estimate the rates of these decay modes. In this framework, the
W-exchange and $-annihilation$ type of contributions will be neglected.

A. Factorizable and nonfactorizable amplitudes

The factorizable amplitudes for the $D \to SP$ decays read

$$X^{(DS,P)} = \langle P(q)|(V - A)_\mu|0\rangle \langle S(p)|(V - A)^\mu|D(p_D)\rangle,$$

$$X^{(DP,S)} = \langle S(q)|(V - A)_\mu|0\rangle \langle P(p)|(V - A)^\mu|D(p_D)\rangle,$$

and have the expressions

$$X^{(DS,P)} = -f_P(m_D^2 - m_S^2)F_0^{DS}(q^2), \quad X^{(DP,S)} = f_S(m_D^2 - m_D^2)F_0^{DP}(q^2),$$

where use of Eqs. (3.7) and (3.12) has been made. Hence,

$$T = -a_1(SP)f_P(m_D^2 - m_S^2)F_0^{DS}(q^2), \quad C = -a_2(SP)f_P(m_D^2 - m_S^2)F_0^{DS}(q^2),$$

$$T' = a_1(PS)f_S(m_D^2 - m_P^2)F_0^{DP}(q^2), \quad C' = a_2(PS)f_S(m_D^2 - m_P^2)F_0^{DP}(q^2).$$

The primed amplitudes T' and C' vanish for the neutral scalar mesons such as $\sigma/f_0(500)$, $f_0(980)$ and $a_0(980)$ as they cannot be produced through the $(V - A)$ current; that is, $f_S = 0$. Nevertheless, beyond the factorization approximation, contributions proportional to the scalar decay constant f_S of the scalar meson defined in Eq. (3.7) can be produced from vertex and hard spectator-scattering corrections. It has been shown in Refs. [55][56] that the nonfactorizable amplitudes can be recast to

$$T' = a_1(PS)f_S(m_D^2 - m_P^2)F_0^{DP}(q^2), \quad C' = a_2(PS)f_S(m_D^2 - m_P^2)F_0^{DP}(q^2),$$

for $S = \sigma/f_0(500), f_0(980)$ and $a_0(980)$, etc., while the expressions of T' and C' given in Eq. (5.3) are valid for $S = a_0^\pm, \kappa/K_0^*(800)$ and $K_0^*(1430)$, etc.

B. Flavor operators

The flavor operators $a_i(M_1M_2)$ in Eqs. (5.3) and (5.4) are basically the Wilson coefficients in conjunction with short-distance nonfactorizable corrections such as vertex corrections and hard spectator interactions. In general, they have the expressions

$$a_1(M_1M_2) = \left(c_1 + \frac{c_2}{N_c}\right)N_1(M_2) + \frac{c_2}{N_c} \frac{C_F\alpha_s}{4\pi} \left[V_1(M_2) + \frac{4\pi^2}{N_c}H_1(M_1M_2)\right],$$

$$a_2(M_1M_2) = \left(c_2 + \frac{c_1}{N_c}\right)N_2(M_2) + \frac{c_1}{N_c} \frac{C_F\alpha_s}{4\pi} \left[V_2(M_2) + \frac{4\pi^2}{N_c}H_2(M_1M_2)\right],$$

where c_i are the Wilson coefficients, $C_F = (N_c^2 - 1)/(2N_c)$ with $N_c = 3$, M_2 is the emitted meson and M_1 shares the same spectator quark with the D meson. The quantities $V_i(M_2)$ account for

3 Notice that a_1 and a_2 do not receive contributions from penguin contractions.
TABLE V: Numerical values of the flavor operators $a_{1,2}(M_1M_2)$ for $M_1M_2 = SP$ and PS at the scale $\mu = \bar{m}_e(\bar{m}_e) = 1.3$ GeV, where use of $c_1(\mu) = 1.33$ and $c_2(\mu) = 0.62$ has been made.

	$f_0(500)\pi$	$\pi f_0(500)$	$K_0(700)\pi$	$\pi K_0(700)$
a_1	$1.292 + 0.080i$	$0.033 - 0.056i$	$1.292 + 0.080i$	$1.579 - 0.492i$
a_2	$-0.527 - 0.172i$	$-0.070 + 0.121i$	$-0.527 - 0.172i$	$-1.147 + 0.930i$

	$f_0(980)\pi$	$\pi f_0(980)$	$f_0(980)K$	$K f_0(980)$
a_1	$1.292 + 0.080i$	$0.033 - 0.056i$	$1.295 + 0.075i$	$0.033 + 0.075i$
a_2	$-0.527 - 0.172i$	$-0.070 + 0.121i$	$-0.533 - 0.162i$	$-0.070 + 0.121i$

	$a_0(980)^0\pi$	$\pi a_0(980)^0$	$a_0(980)^0K$	$K a_0(980)^0$
a_1	$1.292 + 0.080i$	$±(-10.04 + 20.03i)$	$1.295 + 0.075i$	$±(-10.04 + 20.03i)$
a_2	$-0.527 - 0.172i$	$±(23.89 - 43.14i)$	$-0.533 - 0.162i$	$±(23.89 - 43.14i)$

	$a_0(1450)\pi$	$\pi a_0(1450)$	$K_0(1430)\pi$	$\pi K_0(1430)$
a_1	$1.292 + 0.080i$	$0.033 - 0.056i$	$1.292 + 0.080i$	$1.692 - 0.544i$
a_2	$-0.527 - 0.172i$	$-0.071 + 0.108i$	$-0.527 - 0.172i$	$-1.390 + 1.171i$

Results for the flavor operators $a_i(M_1M_2)$ with $M_1M_2 = SP$ and PS are shown in Table V.\(^4\)

We see from Eqs. (5.5) and (5.6) that the factorizable contributions to $a_1(PS)$ and $a_2(PS)$ vanish for $S = \sigma, f_0$ and a_0^0. Beyond the factorization approximation, nonfactorizable contributions proportional to the decay constant \bar{f}_x can be produced from vertex and spectator-scattering corrections.\(^55,56\) Therefore, when the strong coupling α_s is turned off, the nonfactorizable contributions vanish accordingly. In short, the primed amplitudes T' and C' are factorizable for $S = a_0^0, \kappa, K_0^*$, namely $\langle S\mid J^\mu (0)\mid P\rangle \langle P\mid J'_\mu \mid D\rangle$, whereas they are nonfactorizable for $S = \sigma, f_0, a_0^0$.

Upon an inspection of Table V, we see that (i) the flavor operators $a_i(PS)$ and $a_i(SP)$ are very different as the former does not receive factorizable contributions (i.e. $N_i(S) = 0$), and (ii) while

\(^4\) Studies of $B \to SP$ decays in QCDF were presented in Refs. 55, 56. Here We generalize these works to the $D \to SP$ decays and obtain the flavor operators given in Table V.
As noticed in Eqs. (5.3) and (5.4), the nonfactorizable amplitudes are proportional to

\(|T(\pi^- a^+_0)\) and \(|T'a_{-0}(\pi^0 a^0_0)\) are similar for any light and heavy scalar mesons, namely \(a_1(SP) \approx 1.29 \pm 0.08i\) and \(a_2(SP) \approx -0.53 - 0.17i\), \(a_1(PS)\) and \(a_2(PS)\) vary from neutral to the charged ones as shown in Table VI. One may wonder why the flavor operators \(a_{1,2}(\pi a^+_0)\) are much greater than \(a_{1,2}(\pi a^0_0)\). As noticed in Eqs. (5.3) and (5.4), the nonfactorizable amplitudes are proportional to \(a_{1,2}(\pi a^+_0)f_{a^+_0}\) for charged \(a^+_0\) and to \(a_{1,2}(\pi a^0_0)f_{a^0_0}\) for neutral \(a^0_0\). Hence, \(a_{1,2}(\pi a^+_0)/a_{1,2}(\pi a^0_0) = f_{a^0_0}/f_{a^+_0} \gg 1\). We see from Table VII that \(a_{1,2}(PS)\) become larger when the decay constants become smaller.

C. Implications

Na\'ively it is expected that \(|T'(\pi^- a^+_0)| \ll |T(\pi^- a^+_0)|\) because \(f_\pi \gg f_{a^+_0}\) and \(|C'(\pi^+ k^0)| < |C(\pi^+ f_0)|\) due to the fact that \(f_\pi > f_\kappa\). Although we are not able to extract the topological amplitudes of \(D \to SP\) from the experimental data of three-body \(D \to P_1 P_2 P_3\) decays, we can use the theoretical calculations to see their sizes and relative phases. From Eq. (5.9) we have

\[
\begin{align*}
T(f_0 \pi^+) &= -a_1(f_0 \pi) f_\pi (m_D^2 - m_{f_0}^2) F^{Df_0}(m_\pi^2), \\
C(f_0 \pi^0) &= -a_2(f_0 \pi) f_\pi (m_D^2 - m_{f_0}^2) F^{Df_0}(m_\pi^2), \\
T'(\pi^- a^+_0) &= a_1(\pi a^+_0) f_{a^+_0} (m_D^2 - m_{a^+_0}^2) F^{D_{a^+_0}}(m_{a^+_0}^2), \\
C'(\pi^0 f_0) &= a_2(\pi f_0) f_{a^+_0} (m_D^2 - m_{a^+_0}^2) F^{D_{a^+_0}}(m_{a^+_0}^2), \\
C'(\pi^+ k^0) &= a_2(\pi k) f_{a^+_0} (m_D^2 - m_{a^+_0}^2) F^{D_{a^+_0}}(m_{a^+_0}^2).
\end{align*}
\]

(5.7)

Using the flavor operators given in Table VII, form factors \(F^{DS}\) listed in Table III and \(F^{DP}(q^2)\) evaluated in the covariant confining quark model \(69\), we find numerically (in units of \(10^{-6}\) GeV),

\[
\begin{align*}
T(f_0 \pi^+) &= 1.80 e^{-i186^\circ}, & C(f_0 \pi^0) &= 0.77 e^{-i18^\circ}, & T'(\pi^- a^+_0) &= 0.55 e^{i177^\circ}, \\
C'(\pi^0 f_0) &= 0.99 e^{i120^\circ}, & C'(\pi^+ k^0) &= 1.26 e^{i141^\circ}. \\
\end{align*}
\]

(5.8)

For heavier scalar mesons we find

\[
\begin{align*}
T(K_0^- \pi^+) &= 0.70 e^{-i177^\circ}, & T'(\pi^- K_0^+) &= 1.29 e^{-i18^\circ}, & C'(\pi^0 K_0^0) &= 1.32 e^{i140^\circ}, \\
T(a_0(1450)^+ \pi^+) &= 0.93 e^{-i177^\circ}, & T'(\pi^- a_0(1450)^+) &= 0.59 e^{i121^\circ}, & C'(\pi^0 a_0(1450)^0) &= 1.21 e^{i123^\circ}.
\end{align*}
\]

(5.9)

In the light scalar meson sector, we have \(|T| > |T'|\) and \(|C| < |C'|\) rather than \(|T| \gg |T'|\) and \(|C| > |C'|\). For scalar mesons in the higher nonet representation, we find \(|T'| > |C'| > |T|\) with \(|T|\) being suppressed as the mass term \((m_D^2 - m_{S}^2)\) becomes smaller when \(S\) becomes heavier.
D. Flatté line shape

To describe three-body decays we need to introduce a line shape of the scalar resonance. Normally we use the relativistic Breit-Wigner line shape to describe the scalar resonance contributions to three-body decays \(D \rightarrow SP \rightarrow P_1 P_2 P \):

\[
T^{BW}(s) = \frac{1}{s - m_R^2 + i m_R \Gamma_R(s)},
\]

(5.10)

with

\[
\Gamma_R(s) = \Gamma_R^0 \left(\frac{q}{q_0} \right) \frac{m_R}{\sqrt{s}},
\]

(5.11)

where \(q = |\vec{p}_1| = |\vec{p}_2| \) is the c.m. momentum in the rest frame of \(R \), \(q_0 \) the value of \(q \) when \(s \) is equal to \(m_R^2 \). However, this parametrization is not suitable to describe the decay of \(f_0(980) \) or \(a_0(980) \) into \(K \bar{K} \) as \(m(K^+) + m(K^-) = 987.4 \text{ MeV} \) and \(m(K^0) + m(\bar{K}^0) = 995.2 \text{ MeV} \) are near threshold. In other words, one has to take the threshold effect into account. Since \(f_0(980) \) couples strongly to the channel \(K \bar{K} \) as well as to the channel \(\pi \pi \), they can be described by a coupled channel formula, the so-called Flatté line shape [70].

\[
T^{\text{Flatte}}_{f_0}(s) = \frac{1}{s - m_{f_0}^2 + i \left[g_{f_0 \rightarrow \pi \pi}^2 \rho_{\pi \pi}(s) + g_{f_0 \rightarrow K \bar{K}}^2 \rho_{K \bar{K}}(s) \right]},
\]

(5.12)

with the phase space factor

\[
\rho_{a b} = \frac{1}{16\pi} \left[1 - \frac{(m_a + m_b)^2}{s} \right]^{1/2} \left[1 - \frac{(m_a - m_b)^2}{s} \right]^{1/2},
\]

(5.13)

so that

\[
\rho_{K \bar{K}}(s) = \rho_{K^+ K^-}(s) + \rho_{K^0 \bar{K}^0}(s) = \frac{1}{16\pi} \left(\sqrt{1 - (4m_{K^0}^2/s)} + \sqrt{1 - (4m_{K^+}^2/s)} \right),
\]

\[
\rho_{\pi \pi}(s) = \rho_{\pi^+ \pi^-}(s) + \frac{1}{2} \rho_{\pi^0 \pi^0}(s) = \frac{1}{16\pi} \left(\sqrt{1 - (4m_{\pi^0}^2/s)} + \frac{1}{2} \sqrt{1 - (4m_{\pi^+}^2/s)} \right),
\]

(5.14)

and \(\rho \rightarrow i\sqrt{-\rho^2} \) when below the threshold, i.e. \(s < 4m_K^2 \) for \(\rho_{K \bar{K}} \). The dimensionful coupling constants in Eq. (5.12) are

\[
g_{f_0 \rightarrow \pi \pi} \equiv g_{f_0 \rightarrow \pi^+ \pi^-} = \sqrt{2} g_{f_0 \rightarrow \pi^0 \pi^0}, \quad g_{f_0 \rightarrow K \bar{K}} \equiv g_{f_0 \rightarrow K^+ K^-} = g_{f_0 \rightarrow K^0 \bar{K}^0}.
\]

(5.15)

Likewise, \(a_0(980) \) couples strongly to \(K \bar{K} \) and \(\eta \pi \)

\[
T^{\text{Flatte}}_{a_0}(s) = \frac{1}{s - m_{a_0}^2 + i \left[g_{a_0 \rightarrow \eta \pi}^2 \rho_{\eta \pi}(s) + g_{a_0 \rightarrow K \bar{K}}^2 \rho_{K \bar{K}}(s) \right]},
\]

(5.16)

with

\[
\rho_{\eta \pi}(s) = \frac{1}{16\pi} \left[1 - \frac{(m_\eta - m_\pi)^2}{s} \right]^{1/2} \left[1 - \frac{(m_\eta + m_\pi)^2}{s} \right]^{1/2}.
\]

(5.17)

It is important to check whether \(g_{f_0 \rightarrow \pi \pi} \) and \(g_{f_0, a_0 \rightarrow K \bar{K}} \) can be interpreted as the strong couplings of \(f_0 \) to \(\pi \pi \) and \(K \bar{K} \), respectively. Using the formula

\[
\Gamma(f_0 \rightarrow \pi^+ \pi^-) = \frac{p_c}{8\pi m_{f_0}^2} g_{f_0 \rightarrow \pi^+ \pi^-}^2,
\]

(5.18)
with p_c being the c.m. momentum of the pion in the rest frame of f_0, it is easily seen that the term $g_{f_0 \rightarrow \pi \pi}^2 \rho_{\pi \pi}(m_{f_0}^2)$ in Eq. (5.12) is identical to $m_{f_0}(\Gamma(f_0 \rightarrow \pi^+\pi^-) + \Gamma(f_0 \rightarrow \pi^0\pi^0))$. Therefore, we are sure that $g_{f_0 \rightarrow \pi \pi}$ is the strong coupling appearing in the matrix element $\langle \pi^+\pi^-|f_0\rangle$. The strong couplings $g_{f_0, a_0 \rightarrow \overline{K}K}$, $g_{f_0 \rightarrow \pi \pi}$ and $g_{a_0 \rightarrow \eta\pi}$ have been extracted from fits to the experimental data. In this work we shall use

\[
g_{f_0 \rightarrow \overline{K}K} = (3.54 \pm 0.05) \text{ GeV}, \quad g_{a_0 \rightarrow \overline{K}K} = (3.77 \pm 0.42) \text{ GeV},
\]
\[
g_{f_0 \rightarrow \pi \pi} = (1.5 \pm 0.1) \text{ GeV}, \quad g_{a_0 \rightarrow \eta\pi} = (2.54 \pm 0.16) \text{ GeV},
\]

where the values of $g_{f_0 \rightarrow \overline{K}K}$ and $g_{f_0 \rightarrow \pi \pi}$ are taken from Ref. [18], dominated by the Dalitz plot analysis of $e^+e^- \rightarrow \pi^0\pi^0\gamma$ performed by KLOE [71]. The couplings $g_{a_0 \rightarrow \overline{K}K}$ and $g_{a_0 \rightarrow \eta\pi}$ are taken from the analysis of the decay $D^0 \rightarrow K^0\overline{K}^0\overline{K}^0$ by BESIII [18].

5 Note the result for the coupling $g_{f_0 \rightarrow \pi \pi}$ is consistent with the value of $1.33^{+0.29}_{-0.26}$ GeV extracted from Belle’s measurement of the partial width of $f_0(980) \rightarrow \pi^+\pi^-$. The partial widths can be inferred from the strong couplings listed in Eq. (5.19) as

\[
\Gamma(f_0(980) \rightarrow \pi\pi) = (65.7 \pm 8.8) \text{ MeV}, \quad \Gamma(a_0(980) \rightarrow \eta\pi) = (85.2 \pm 10.7) \text{ MeV},
\]

though they are not directly measured.

E. Line shape for $\sigma/f_0(500)$

As stressed in Ref. [74], the scalar resonance $\sigma/f_0(500)$ is very broad and cannot be described by the usual Breit-Wigner line shape. Its partial wave amplitude does not resemble a Breit-Wigner shape with a clear peak and a simultaneous steep rise in the phase. The mass and width of the σ resonance are identified from the associated pole position $\sqrt{s_\sigma}$ of the partial wave amplitude in the second Riemann sheet as $\sqrt{s_\sigma} = m_\sigma - i\Gamma_\sigma/2$ [74]. We shall follow the LHCb Collaboration [75] to use a simple pole description

\[
T_\sigma(s) = \frac{1}{s - s_\sigma} = \frac{1}{s - m_\sigma^2 + \Gamma_\sigma^2/4 + im_\sigma\Gamma_\sigma(s)},
\]

with $\sqrt{s_\sigma} = m_\sigma - i\Gamma_\sigma/2$ and

\[
\Gamma_\sigma(s) = \Gamma_\sigma^0 \left(\frac{q}{q_0} \right) \frac{m_\sigma}{\sqrt{s}}.
\]

Using the isobar description of the $\pi^+\pi^-$ S-wave to fit the $B^+ \rightarrow \pi^+\pi^-\pi^+$ decay data, the LHCb Collaboration found [75]

\[
\sqrt{s_\sigma} = (563 \pm 10) - i(350 \pm 13) \text{ MeV},
\]

5 From the amplitude analysis of the $\chi_{c1} \rightarrow \eta\pi^+\pi^-$ decay, BESIII obtained another set of couplings: $g_{a_0 \rightarrow \eta\pi} = (4.14 \pm 0.02) \text{ GeV}$ and $g_{a_0 \rightarrow \overline{K}K} = (3.91 \pm 0.02) \text{ GeV}$ [72]. However, this set of couplings is not appealing for two reasons: (a) the large coupling constant $g_{a_0 \rightarrow \eta\pi}$ will yield too large partial width $\Gamma_{\eta\pi} = 222 \text{ MeV}$, recalling that the total width of $a_0(980)$ lies in the range of 50 to 100 MeV [1], and (b) it is commonly believed that $a_0(980)$ couples more strongly to $K\overline{K}$ than to $\eta\pi$, especially in the scenario in which $a_0(980)$ is a $K\overline{K}$ molecular state.
consistent with the PDG value of $\sqrt{s_{\sigma}} = (400 - 550) - i(200 - 350)$ MeV.

In principle, we could also use a similar pole shape $T_{\kappa}(s)$

$$T_{\kappa}(s) = \frac{1}{s - s_{\kappa}} = \frac{1}{s - m_{\kappa}^2 + \Gamma_{\kappa}^2(s)/4 + im_{\kappa}\Gamma_{\kappa}(s)},$$

(5.24)

to describe the broad resonance $\kappa/K_0^*(700)$ and follow [76] to use the latest result

$$\sqrt{s_{\kappa}} = (648 \pm 7) - i(280 \pm 16)$$

(5.25)
determined from a dispersive data analysis. However, we find that this line shape together with

the parameter $\beta = 1$ is expected to be of order unity. We shall use

$$m_{BW} = 845 \pm 17 \text{ MeV}, \quad \Gamma_{BW} = 468 \pm 30 \text{ MeV}.$$

(5.26)

F. Three-body decays

We take $D^+ \to \sigma \pi^+ \to \pi^+ \pi^- \pi^+$ as an example to illustrate the calculation for the three-body rate. The two-body decay amplitude for $D^+ \to \sigma(m_{12}) \pi^+$ with $m_{12} (m_{12}^2 = (p_1 + p_2)^2)$ being the invariant mass of the σ is given by

$$A(D^+ \to \sigma(m_{12}) \pi^+) = \frac{G_F}{\sqrt{2}} V_{ud} \left[-a_1(\sigma\pi) f_\pi(m_D^2 - s) F_{0}^{D\sigma}(m_{12}^2)
+ a_2(\pi\sigma) f_\sigma(m_D^2 - m_{\pi}^2) F_{0}^{D\sigma}(s) \right].$$

(5.27)

Denoting $A_{\sigma} \equiv A(D^+ \to \sigma \pi^+ \to \pi^+(p_1) \pi^-(p_2) \pi^+(p_3))$, we have

$$A_{\sigma} = g^{\sigma \to \pi^+ \pi^-} F(s_{12}, m_{\sigma}) T_{\sigma}(s_{12}) A(D^+ \to \sigma(s_{12}) \pi^+) + (s_{12} \leftrightarrow s_{23}),$$

(5.28)

where the σ line shape T_{σ} is given by Eq. [5.21]. When σ is off the mass shell, especially when s_{12} is approaching the upper bound of $(m_D - m_{\pi})^2$, it is necessary to account for the off-shell effect.

For this purpose, we shall follow [77] to introduce a form factor $F(s, m_R)$ parametrized as

$$F(s, m_R) = \left(\frac{A^2 + m_R^2}{\Lambda^2 + s} \right)^n,$$

(5.29)

with the cutoff Λ not far from the resonance,

$$\Lambda = m_R + \beta \Lambda_{QCD},$$

(5.30)

where the parameter β is expected to be of order unity. We shall use $n = 1$, $\Lambda_{QCD} = 250$ MeV and $\beta = 1.0 \pm 0.2$ in subsequent calculations.

The decay rate then reads

$$\Gamma(D^+ \to \sigma \pi^+ \to \pi^+ \pi^- \pi^+)$$

$$= \frac{1}{2} \frac{1}{(2\pi)^3} \int ds_{12} ds_{23} \left\{ |g^{\sigma \to \pi^+ \pi^-}|^2 F(s_{12}, m_{\sigma})^2
\left(s_{12} - m_{\sigma}^2 + \Gamma_{\sigma}(s_{12})/4 \right)^2 + m_{\sigma}^2 \Gamma_{\sigma}^2(s_{12}) |A(D^+ \to \sigma(m_{12}) \pi^+)|^2
\right\},$$

(5.31)
TABLE VII: Branching fractions for various $D \rightarrow SP$ decays calculated in schemes I and II. The upper part involves only light scalar mesons (f_0, a_0, σ, and κ), whereas the lower part involves the $a_0(1450)$ and $K^*_0(1430)$ mesons in the heavier nonet representation. The theoretical calculations are done in the factorization approach with both W-exchange and W-annihilation amplitudes being neglected. In scheme I, K^*_0 and $a_0(1450)$ are excited $q\bar{q}$ states. Hence, their predictions are not presented here. The $f_0 - \sigma$ mixing angle θ is taken to be 30° for scheme I.

Decay	Scheme I	Scheme II	\mathcal{B}_{NWA}
$D^+ \rightarrow \sigma \pi^+$	2.6×10^{-3}	4.6×10^{-3}	$(2.1 \pm 0.2) \times 10^{-3}$
$\rightarrow \bar{\kappa}^0 \pi^+$	6.1%	6.1%	$(3.6^{+3.0}_{-2.4})\%$
$\rightarrow \bar{\kappa}^0 K^+$	1.1×10^{-3}	1.1×10^{-3}	$(1.0^{+0.5}_{-0.3}) \times 10^{-3}$
$D^0 \rightarrow a^0_0 \bar{\kappa}^0$	4.2×10^{-3}	4.2×10^{-3}	$(2.83 \pm 0.66)\%$
$\rightarrow \sigma \pi^0$	7.8×10^{-5}	0	$(1.8 \pm 0.3) \times 10^{-4}$
$D^+_s \rightarrow a^0_0 \pi^+$	0	0	$(0.86 \pm 0.23)\%$
$D^+ \rightarrow \bar{K}^0_0 \pi^+$		2.19%	$(1.98 \pm 0.22)\%$
$D^0 \rightarrow K^*_0 \pi^+$	2.1×10^{-3}	$(8.8 \pm 1.5) \times 10^{-3}$	
$\rightarrow K^0_0 \pi^0$	2.1×10^{-3}	$(9.5^{+8.1}_{-2.8}) \times 10^{-3}$	
$\rightarrow K^{+} \pi^-$	1.1×10^{-5}	< 4.5×10^{-5}	
$D^+_s \rightarrow K^*_0 \pi^+$	2.9×10^{-4}	$(8.1 \pm 5.7) \times 10^{-4}$	
$\rightarrow \bar{K}^0_0 K^+$	3.1×10^{-3}	$(2.8 \pm 0.5) \times 10^{-3}$	

where the factor of $\frac{1}{2}$ accounts for the identical particle effect. The coupling constant $g^\sigma_{\rightarrow \pi^+ \pi^-}$ is determined by the relation

$$\Gamma_{\sigma \rightarrow \pi^+ \pi^-} = \frac{p_c}{8\pi m_\sigma^2} g^2_{\sigma \rightarrow \pi^+ \pi^-}. \quad (5.32)$$

VI. RESULTS AND DISCUSSION

In Tables VII and VIII we have calculated two-body $D \rightarrow SP$ and three-body $D \rightarrow SP \rightarrow P_1 P_2 P$ decays, respectively, in schemes I and II using the factorization approach with W-exchange and W-annihilation being neglected. We see from Table IV that the decay modes $D^+ \rightarrow a^0_0 \bar{\kappa}^0$, $\bar{\kappa}^0$ and $\bar{K}^0_0 \pi^+$ are free of W-annihilation contributions and they are ideal for testing the validity of the factorization approach. From Table VIII it is evident that the calculated rates of $D^+ \rightarrow \bar{\kappa}^0 \pi^+ \rightarrow K^0_0 \pi^0 \pi^+$ and $D^+ \rightarrow \bar{K}^0_0 \pi^+ \rightarrow (K^0)^0 \pi^+$ in scheme II are in agreement with experiment. These modes are governed by the topologies $T + C'$ which interfere constructively. This is in contrast to the Cabibbo-favored (CF) $D^+ \rightarrow K^0_0 \pi^+$ decay in the PP sector where T and C contribute destructively. For $(D^+, D^0, D^+_s) \rightarrow f_0 P; f_0 \rightarrow P_1 P_2$, predictions in scheme II are improved over that in scheme I and the discrepancies presumably arise from the W-exchange or W-annihilation amplitude. This implies that the tetraquark picture for light scalars works better than the quark-antiquark scenario.

Upon an inspection of Table VII, the reader may wonder (i) why the branching fractions for $D \rightarrow (f_0, \sigma)P$ decays in scheme II are always larger than that in scheme I except for $D^0 \rightarrow f_0 \pi^0$, and
and (ii) why the predicted branching fractions of $D^+ \to \sigma \pi^+$ and $D^+ \to \kappa^0 \pi^+$ are larger than experimental data, while the corresponding three-body decays agree with the measurements. For (i), we see from Table IV and also Eq. (4.1) that the W-emission decay amplitude involving σ is suppressed by a factor of $\cos \theta/\sqrt{2}$ in scheme I relative to that in scheme II, while it is suppressed by a factor of $\sin \theta$ for the W-emission decay amplitude involving $f_0(980)$. As a consequence our choice of $\theta = 30^\circ$, the branching fractions for $D \to (f_0, \sigma)P$ in scheme II are always larger than scheme I except for $D^0 \to f_0 \pi^0$. For (ii), it has something to do with the finite-width effects of σ and κ as they are both very broad. We shall see in Sec. VI B that the extraction of $B(D \to SP)$ from the data is affected by the broad widths of both σ and κ.

A. W-annihilation amplitude

In the factorization calculations presented in Tables VII and VIII we have neglected both W-exchange and W-annihilation amplitudes. The $D^+_s \to a_0^0 \pi^+$ mode recently observed by BESIII [17] proceeds only through the W-annihilation amplitudes. However, its branching fraction at a percent level is much larger than the other two W-annihilation channels $D^+_s \to \omega \pi^+$ and $\rho^0 \pi^+$ whose branching fractions are $(1.92 \pm 0.30) \times 10^{-3}$ and $(1.9 \pm 1.2) \times 10^{-4}$, respectively [1]. This implies that $|A(SP)| > |A(VP)|$. In other words, the W-annihilation amplitude plays a more significant role in the SP sector than in the VP one.

Consider the decay amplitude of $D^+_s \to a_0^0 \pi^+$ and the W-annihilation contribution to $D^+_s \to f_0 \pi^+$ (in scheme II)

$$A(D^+_s \to a_0^0 \pi^+) = \frac{1}{\sqrt{2}} V^*_{cs} V_{ud}(-A + A'), \quad A(D^+_s \to f_0 \pi^+)_{\text{ann}} = \frac{1}{\sqrt{2}} V^*_{cs} V_{ud}(A + A').$$

Following the G-parity argument given in Ref. [57], it is obvious that the direct W-annihilation process through $c\bar{s} \to W \to u\bar{d}$ is allowed in $D^+_s \to f_0 \pi^+$ decay but not in $D^+_s \to a_0^0 \pi^+$ decay as $G(u\bar{d}) = -$, $G(a_0 \pi) = +$ and $G(f_0 \pi) = -$. This means that short-distance W-annihilation
TABLE VIII: Branching fractions of various $D \to SP \to P_1P_2P$ decays calculated in schemes I and II. For simplicity and convenience, we have dropped the mass identification for $f_0(980)$, $a_0(980)$ and $K^*_0(1430)$. Data are taken from Tables [I] and [III] In scheme I, K^*_0 and $a_0(1450)$ are excited $q\bar{q}$ states. Hence, their predictions are not presented here. The $f_0 - \sigma$ mixing angle θ is taken to be 30° for scheme I.

Decay	Scheme I	Scheme II	Experiment
$D^+ \to f_0\pi^+; f_0 \to \pi^+\pi^-$	7.6×10^{-5}	2.2×10^{-4}	$(1.56 \pm 0.33) \times 10^{-4}$
$D^+ \to f_0K^+; f_0 \to \pi^+\pi^-$	3.6×10^{-7}	1.2×10^{-5}	$(4.4 \pm 2.6) \times 10^{-5}$
$D^+ \to f_0K^+; f_0 \to K^+K^-$	2.5×10^{-7}	8.4×10^{-6}	$(1.23 \pm 0.02) \times 10^{-5}$
$D^+ \to \sigma\pi^+; \sigma \to \pi^+\pi^-$	4.9×10^{-4}	1.7×10^{-3}	$(1.38 \pm 0.12) \times 10^{-3}$
$D^+ \to \bar{K}_0^0\pi^+; \bar{K}_0^0 \to K_S\pi^0$	5.4×10^{-3}	5.4×10^{-3}	$(6.2_{-3}^{+5}) \times 10^{-3}$
$D^+ \to \bar{K}_0^0K^+; \bar{K}_0^0 \to K^+\pi^0$	3.7×10^{-4}	3.7×10^{-4}	$(6.8_{-2.1}^{+3.5}) \times 10^{-4}$
$D^0 \to f_0\pi^0; f_0 \to \pi^+\pi^-$	1.6×10^{-5}	1.4×10^{-5}	$(3.7 \pm 0.9) \times 10^{-5}$
$D^0 \to f_0\pi^0; f_0 \to K^+K^-$	1.1×10^{-5}	8.8×10^{-6}	$(3.6 \pm 0.6) \times 10^{-4}$
$D^0 \to f_0\bar{K}^0; f_0 \to \pi^+\pi^-$	9.0×10^{-6}	3.0×10^{-4}	$(2.40_{-0.26}^{+0.80}) \times 10^{-3}$
$D^0 \to f_0\bar{K}^0; f_0 \to K^+K^-$	4.3×10^{-6}	1.4×10^{-4}	$< 1.8 \times 10^{-4}$
$D^0 \to a_0^0\pi^-; a_0^0 \to K^+\bar{K}^0$	1.3×10^{-5}	1.3×10^{-5}	$(1.2 \pm 0.8) \times 10^{-3}$
$D^0 \to a_0^0\pi^-; a_0^0 \to K^-K^0$	2.9×10^{-4}	2.9×10^{-4}	$(2.6 \pm 2.8) \times 10^{-4}$
$D^0 \to a_0^0K^+; a_0^0 \to K^+\bar{K}^0$	2.2×10^{-4}	2.2×10^{-4}	$(1.47 \pm 0.33) \times 10^{-3}$
$D^0 \to a_0^0K^+; a_0^0 \to K^+K^-$	3.4×10^{-4}	3.4×10^{-4}	$(6.18 \pm 0.73) \times 10^{-3}$
$D^0 \to a_0^0\bar{K}^0; a_0^0 \to \eta\pi^0$	1.1×10^{-3}	1.1×10^{-3}	(2.40 ± 0.56)%
$D^0 \to a_0^0K^+; a_0^0 \to K^-\bar{K}^0$	1.7×10^{-5}	1.7×10^{-5}	$< 2.2 \times 10^{-4}$
$D^0 \to f_0\pi^0; f_0 \to \pi^+\pi^-$	2.2×10^{-5}	2.0×10^{-4}	$(1.22 \pm 0.22) \times 10^{-4}$
$D^+ \to f_0\pi^+; f_0 \to K^+K^-$	2.5×10^{-3}	5.1×10^{-3}	(1.14 ± 0.31)%
$D^+ \to a_0^0\pi^0; a_0^0 \to \eta\pi^+; a_0^0 \to \pi^+\pi^+$	0	0	(1.46 ± 0.27)%
$D^+ \to a_0(1450)^0\pi^+; a_0^0 \to K^+K^-$	1.7×10^{-5}	1.7%	$(4.5_{-1.8}^{+7.0}) \times 10^{-4}$
$D^0 \to \bar{K}_0^0\pi^+; \bar{K}_0^0 \to K^+\pi^+$	1.3%	(1.25 ± 0.06)%	
$D^0 \to \bar{K}_0^0\pi^+; \bar{K}_0^0 \to K_S\pi^0$	6.0×10^{-3}	$(5.4 \pm 1.8) \times 10^{-3}$	
$D^0 \to \bar{K}_0^0K^+; \bar{K}_0^0 \to K^+\pi^+$	7.6×10^{-5}	$(1.82 \pm 0.35) \times 10^{-3}$	
$D^0 \to a_0(1450)^0\pi^-; a_0^0 \to K^-K^0$	6.1×10^{-6}	$(5.0 \pm 4.0) \times 10^{-5}$	
$D^0 \to a_0(1450)^0\pi^-; a_0^0 \to \bar{K}^0\pi^0$	1.8×10^{-7}	$(6.4 \pm 5.0) \times 10^{-5}$	
$D^0 \to a_0(1450)^0\pi^-; a_0^0 \to K^-K_S$	$< 0.6 \times 10^{-3}$		
$D^0 \to K_0^0\pi^-; K_0^0 \to \bar{K}^0\pi^-$	8.3×10^{-4}	$(5.34_{-0.66}^{+0.80}) \times 10^{-3}$	
$D^0 \to K_0^0\pi^-; K_0^0 \to K^-\pi^0$	4.2×10^{-4}	$(4.8 \pm 2.2) \times 10^{-3}$	
$D^0 \to \bar{K}_0^0\pi^0; \bar{K}_0^0 \to K^-\pi^+$	9.6×10^{-4}	$(5.9_{-1.6}^{+5.0}) \times 10^{-3}$	
$D^0 \to K^+\pi^0; K^0 \to K^+\pi^+$	5.4×10^{-6}	$< 2.8 \times 10^{-5}$	
$D^+ \to K_0^0\pi^+; K_0^0 \to K^+\pi^+$	1.3×10^{-4}	$(5.0 \pm 3.5) \times 10^{-4}$	
$D^+ \to K_0^0K^+; K_0^0 \to K^-\pi^+$	2.0×10^{-3}	$(1.7 \pm 0.3) \times 10^{-3}$	
D\(^+_s\) + \pi(1800) \rightarrow \pi^+\
\pi^+

D\(^+_s\) \rightarrow \rho^+\eta, \eta', \eta'' + a_0^0 + \pi^0

FIG. 2: Manifestation of Fig. 1 at the hadron level: (a) resonant contribution from the nearby resonance \(\pi(1800)\) and (b) the triangle rescattering diagram.

contributions respect the relation \(A' = A\), contrary to the naive expectation. Hence, one needs large long-distance \(W\)-annihilation which yields \(A' = -A\). Since \(D\(^+_s\) \rightarrow \rho^+\eta\) has the largest branching fraction of \((8.9 \pm 0.8)\%\) among the CF \(D\(^+_s\) \rightarrow VP\) decays [1], it is conceivable that long-distance contribution from the weak decays \(D\(^+_s\) \rightarrow \rho^+\eta\) followed by the resonantlike final-state rescattering of \(\rho^+\eta \rightarrow a_0^0\pi^+\) (see Fig. 1), which has the same topology as \(W\)-annihilation, may explain the large \(W\)-annihilation rate. It is customary to evaluate the final-state rescattering contribution, Fig. 1, at the hadron level manifested in Fig. 2. One of the diagrams, namely, the triangle graph in Fig. 2(b) has been evaluated recently in [78, 79]. It yields a major contribution to \(D\(^+_s\) \rightarrow a_0^0\pi^+\) owing to the large coupling constants for \(\rho^+ \rightarrow \pi^+\pi^0\) and \(a_0^0 \rightarrow \pi^0\eta\). The graph in Fig. 2(a) shows the resonant final-state interactions manifested by the nearby resonance \(\pi(1800)\) whose strong decay to \(a_0\pi\) has been seen experimentally [1]. However, we are not able to have a quantitative statement owing to the lack of information on its partial width. Assuming \(A' \approx -A\), the annihilation amplitude extracted from the data of \(D\(^+_s\) \rightarrow a_0^0\pi^+\) is (in units of \(10^{-6} \text{ GeV}\)),

\[
|A| = 0.91 \pm 0.12. \tag{6.2}
\]

Hence, the annihilation amplitude is very sizable in the \(SP\) sector, \(|A/T|_{SP} \sim 1/2\), contrary to its suppression \(|A/T|_{PP} \sim 0.18\) in the \(PP\) sector [80] and \(|A/V/T|_{VP} \sim 0.07\) in the \(VP\) sector [81].

B. Finite Width Effects

The finite-width effect is accounted for by the quantity \(\eta_R\) defined by [82, 83]

\[
\eta_R \equiv \frac{\Gamma(D \rightarrow RP_3 \rightarrow P_1P_2P_3)_{R \rightarrow 0}}{\Gamma(D \rightarrow RP_3 \rightarrow P_1P_2P_3)} = \frac{\Gamma(D \rightarrow RP_3)B(R \rightarrow P_1P_2)}{\Gamma(D \rightarrow RP_3 \rightarrow P_1P_2P_3)} = 1 + \delta, \tag{6.3}
\]

so that the deviation of \(\eta_R\) from unity measures the degree of departure from the NWA when the resonance width is finite. It is naively expected that the correction \(\delta\) will be of order \(\Gamma_R/m_R\).

The hadronic weak decays \(D\(^+_s\) \rightarrow \rho^+\eta', \bar{K}^{*0}K^+\) and \(\bar{K}^{*0}K^{*+}\) followed by final-state rescattering will also contribute to \(D\(^+_s\) \rightarrow a_0^0\pi^+\).
TABLE IX: A summary of the η_R parameter for scalar resonances produced in the three-body D decays. The mass and width of $\sigma/f_0(500)$ are taken from Eq. (5.23).

Resonance	$D \to R\pi \to h_1h_2h_3$	Γ_R (MeV) [1]	m_R (MeV) [1]	Γ_R/m_R	η_R
$\sigma/f_0(500)$	$D^+ \to \sigma^+ \to \pi^+\pi^-\pi^+$	700 ± 26	563 ± 10	1.243 ± 0.051	1.850
$\kappa/K_0^*(700)$	$D^+ \to \kappa^0\pi^+ \to K_S^0\pi^0\pi^+$	468 ± 30	845 ± 17	0.554 ± 0.037	1.873
$K_0^*(1430)$	$D^+ \to K_0^*\pi^+ \to K^-\pi^+\pi^+$	270 ± 80	1425 ± 50	0.19 ± 0.06	0.985

It is calculable theoretically but depends on the line shape of the resonance and the approach of describing weak hadronic decays such as QCD factorization and perturbative QCD.

Using the branching fractions of two-body and three-body D decays calculated in Tables VII and VIII, respectively, in scheme II, the resultant η_R parameters for scalar resonances σ, κ and K_0^* produced in the three-body D decays are summarized in Table IX. We only consider the D^+ decays as the three-body modes listed in Table IX are not contaminated by the W-annihilation amplitude and hence the calculated finite width effects are more trustworthy. We have also checked explicitly that $\eta_R \to 1$ in the narrow width limit as it should be. The η_R parameters for various resonances produced in the three-body B decays have been evaluated in [82, 83]. Our results for η_R’s in Table IX have similar features as the values $\eta_{\sigma/f_0(500)} = 2.15 \pm 0.05$ and $\eta_{K_0^*(1430)} = 0.83 \pm 0.04$ obtained in B decays.

Note that a priori we do not know if the deviation of η_R from unity is positive or negative. In general, it depends on the line shape, mass and width of the resonance. As alluded to above, the mass and width have a more dominant effect than the line shape in the case of $\kappa(700)$. As another example, we found in Ref. [83] that $\eta_\rho > 1$ for the Breit-Wigner line shape and $\eta_\rho < 1$ when the Gounaris-Sakurai model [84] is used to describe the line shape of the broad $\rho(770)$ resonance. To our knowledge, there is no good argument favoring one line shape over the other. Therefore, $\eta_{K_0^*(1430)} = 0.985 < 1$, for example, is the result of our particular line shape choice.

When the resonance is sufficiently broad, it is necessary to take into account the finite-width effects characterized by the parameter η_R. Explicitly [82, 83],

$$\mathcal{B}(D \to RP) = \eta_R \mathcal{B}(D \to RP)_{\text{NWA}} = \eta_R \frac{\mathcal{B}(D \to RP_3 \to P_1P_2P_3)_{\text{expt}}}{\mathcal{B}(R \to P_1P_2)_{\text{expt}}},$$

(6.4)

Therefore, the experimental branching fractions $\mathcal{B}(D \to RP)_{\text{NWA}}$ for $D^+ \to \sigma^+\pi^+, \kappa^0\pi^+$ and $K_0^*\pi^+$ decays in Tables I and VII should have the following corrections:

$$\mathcal{B}(D^+ \to \sigma^+\pi^+) : (2.1 \pm 0.2) \times 10^{-3} \to (3.8 \pm 0.3) \times 10^{-3},$$
$$\mathcal{B}(D^+ \to \kappa^0\pi^+) : (3.6_{-2.4}^{+3.0})\% \to (6.7_{-4.5}^{+5.6})\%,$$
$$\mathcal{B}(D^+ \to K_0^*\pi^+) : (1.98 \pm 0.22)\% \to (1.94 \pm 0.22)\%.$$

(6.5)

From Table VII, it is evident that the agreement between theory and experiment is substantially improved for $D^+ \to \sigma^+\pi^+$ and $D^+ \to \kappa^0\pi^+$.

If we employ the pole mass and width, $m_\kappa = 648 \pm 7$ MeV and $\Gamma_\kappa = 560 \pm 32$ MeV, respectively, for $\kappa/K_0^*(700)$ and the pole line shape given in Eq. (5.24), we will be led to the results $\mathcal{B}(D^+ \to$
$\bar{\kappa}^0\pi^+) = 8.10\%$, $\mathcal{B}(D^+ \rightarrow \bar{\kappa}^0\pi^+ \rightarrow K_S^0\pi^0\pi^+) = 1.62 \times 10^{-3}$ and $\eta_\kappa = 8.34$. This implies that the finite-width correction will be unreasonably too large and thus unlikely, as alluded to at the end of Sec. V E. However, if the Breit-Wigner mass and width are used instead, we get $\eta_\kappa = 1.92$ for pole line shape, which is a more reasonable result. This implies that in this case, it is the mass and width rather than the line shape that governs the finite-width correction.

For the case of $f_0(500)$, one may wonder what the correction will be if the Breit-Wigner line shape is used. According to PDG [1], the Breit-Wigner mass and width of $f_0(500)$ lie in the wide ranges of 400-800 MeV and 100-800 MeV, respectively. As a result, it is quite difficult to pin down a specific set of parameters and thereby determine the finite-width correction. On the contrary, LHCb has determined its pole mass and width with reasonable accuracy using the pole line shape [see Eq. (5.23)]. It turns out that the pole mass and width fall within the above allowed ranges of the Breit-Wigner mass and width. Therefore, it is more sensible to use pole mass and width for calculations in either line shapes.

VII. CONCLUSIONS

In this work we have examined the quasi-two-body $D \rightarrow SP$ decays and the three-body D decays proceeding through intermediate scalar resonances. Our main results are:

- In the $D \rightarrow SP_3 \rightarrow P_1 P_2 P_3$ decays, we cannot extract the two-body branching fractions $\mathcal{B}(D \rightarrow SP)$ for $S = f_0(980)$ and $a_0(980)$ due to the lack of information of $\mathcal{B}(S \rightarrow P_1 P_2)$ (except for $a_0(980) \rightarrow \pi\eta$). For $S = \kappa/K_0^*(700)$ and $\sigma/f_0(500)$, the extracted two-body branching fractions are subject to large finite-width effects owing to their broad widths. Hence, for light scalars it is more sensible to study $\mathcal{B}(D \rightarrow SP \rightarrow P_1 P_2 P)$ directly and compare with experiment.

- We have considered the two-quark (scheme I) and four-quark (scheme II) descriptions of the light scalar mesons with masses below or close to 1 GeV. Recent BESIII measurements of semileptonic charm decays favor the SU(3) nonet tetraquark description of the $f_0(500)$, $f_0(980)$ and $a_0(980)$ produced in charmed meson decay. In Table VIII we have calculated $D \rightarrow SP_3 \rightarrow P_1 P_2 P_3$ in schemes I and II. It is evident that scheme II agrees better with experiment for decays such as $D^+ \rightarrow f_0\pi^+$ followed by $f_0 \rightarrow \pi^+\pi^-$ and $D^+ \rightarrow f_0 K^+$ followed by $f_0 \rightarrow \pi^+\pi^-$ or $f_0 \rightarrow K^+ K^-$. This again favors the tetraquark structure for light scalars. The predicted rates for $D^0 \rightarrow f_0 P, a_0 P$ are generally smaller than experimental data by one order of magnitude, presumably implying the importance of W-exchange.

- The three-body decay modes $D^+ \rightarrow \bar{\kappa}^0(\rightarrow K_S\pi^0)\pi^+, D^+ \rightarrow \bar{K}_0^*(\rightarrow K^-\pi^+)\pi^+$ and $D^+ \rightarrow \bar{K}_0^*(\rightarrow K_S\pi^0)\pi^+$ are ideal for testing the validity of the factorization approach as they are free of W-annihilation contributions. T and C' amplitudes contribute constructively, contrary to the Cabibbo-allowed $D^+ \rightarrow \bar{K}_0^0\pi^+$ decay where the interference between external and internal W-emission is destructive.
Denoting the primed amplitudes T' and C' for the case when the emitted meson is a scalar meson, it is na"ively expected that $T' = C' = 0$ for the neutral scalars σ, f_0 and a_0^0, $|T'| \ll |T|$ and $|C'| \ll |C|$ for the charged a_0 and $|T'| < |T|$ and $|C'| < |C|$ for the κ and $K_0^*(1430)$. Beyond the factorization approximation, contributions proportional to the scalar decay constant \bar{f}_S can be produced from vertex and hard spectator-scattering corrections for the above-mentioned neutral scalars.

We have studied the flavor operators $a_{1,2}(M_1 M_2)$ for $M_1 M_2 = \text{SP}$ and PS within the framework of QCD factorization. Notice that $a_i(\text{PS})$ and $a_i(\text{SP})$ are very different as the former does not receive factorizable contributions. While $a_{1,2}(\text{SP})$ are similar for any light and heavy scalar mesons, $a_1(\text{PS})$ and $a_2(\text{PS})$ vary from neutral to the charged ones as shown in Table VI. The flavor operators $a_{1,2}(\pi a^\pm_0)$ are much greater than $a_{1,2}(\pi a^0_0)$. In general, $a_{1,2}(\text{PS})$ become larger when the vector decay constants become smaller.

For $f_0(980)$ and $a_0(980)$, we use the Flatté line shape to describe both of them to take into account the threshold and coupled channel effects. For the very broad $\sigma/f_0(500)$, we follow LHCb to employ a simple pole description.

The annihilation amplitude inferred from the measurement of $D_s^+ \rightarrow a_0^{+,0} \pi^{0,+} \rightarrow \eta \pi^{+,0} \pi^{0,+}$ is given by $|A| = (0.91 \pm 0.12) \times 10^{-6} \text{ GeV}$. It is very sizable in the SP sector, $|A/T| \sim 1/2$, contrary to its suppression in the PP sector with $|A/T|_{\text{PP}} \sim 0.18$.

Since σ and κ are very broad, we have considered their finite-width effects characterized by the parameter η_S, whose deviation from unity measures the degree of departure from the NWA when the resonance width is finite. We find η_σ and η_κ to be of order $1.85 - 1.87$. The experimental branching fractions $B(D^+ \rightarrow \sigma \pi^+)$ and $B(D^+ \rightarrow \kappa \pi^+)$ should then read $(3.8 \pm 0.3) \times 10^{-3}$ and $(6.7^{+5.6}_{-4.5})\%$, respectively.

For each scalar nonet (lighter and heavier one) we have 15 unknown parameters for the 8 topological amplitudes T, C, E, A and T', C', E', A'. However, there are only 14 independent data to fit. Moreover, since we need to introduce appropriate energy-dependent line shapes for the scalar mesons, it is not conceivable to extract the topological amplitudes from three-body decays as the decay rates cannot be factorized into the topological amplitude squared and the phase space factor.

Acknowledgments

This research was supported in part by the Ministry of Science and Technology of R.O.C. under Grant Nos. MOST-107-2119-M-001-034, MOST-110-2112-M-001-025 and MOST-108-2112-M-002-005-MY3, the National Natural Science Foundation of China under Grant No. 11347030, the Program of Science and Technology Innovation Talents in Universities of Henan Province 14HASTIT037.
[1] P.A. Zyla et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.
[2] F. Hussain, A. N. Kamal and S. N. Sinha, “Cabibbo Angle Favor ed Decays: $D \to SP$,” Z. Phys. C 36, 199 (1987).
[3] A. C. Katoch and R. C. Verma, “D decays into pseudoscalar and scalar mesons,” Z. Phys. C 62, 173 (1994).
[4] S. Fajfer, “$D \to PS$ decays and the effective chiral Lagrangian for heavy and light mesons,” Z. Phys. C 68, 81 (1995).
[5] F. Buccella, M. Lusignoli and A. Pugliese, “Charm nonleptonic decays and final state interactions,” Phys. Lett. B 379, 249 (1996) [arXiv:hep-ph/9601343].
[6] H. Y. Cheng, “Hadronic D decays involving scalar mesons,” Phys. Rev. D 67, 034024 (2003) [arXiv:hep-ph/0212117].
[7] B. El-Bennich, O. Leitner, J. P. Dedonder and B. Loiseau, “The Scalar Meson $f_0(980)$ in Heavy-Meson Decays,” Phys. Rev. D 79, 076004 (2009) [arXiv:0810.5771 [hep-ph]].
[8] D. R. Boito, J. P. Dedonder, B. El-Bennich, O. Leitner and B. Loiseau, “Scalar resonances in a unitary $\pi - \pi S$-wave model for $D^+ \to \pi^+\pi^+\pi^+$,” Phys. Rev. D 79, 034020 (2009) [arXiv:0812.3843 [hep-ph]].
[9] H. Y. Cheng and C. W. Chiang, “Hadronic D decays involving even-parity light mesons,” Phys. Rev. D 81, 074031 (2010) [arXiv:1002.2466 [hep-ph]].
[10] J. P. Dedonder, R. Kamiński, L. Lesniak and B. Loiseau, “Dalitz plot studies of $D^0 \to K_0^0\pi^+\pi^-$ decays in a factorization approach,” Phys. Rev. D 89, 094018 (2014) [arXiv:1403.2971 [hep-ph]].
[11] J. J. Xie, L. R. Dai and E. Oset, “The low lying scalar resonances in the D^0 decays into K_0^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$,” Phys. Lett. B 742, 363-369 (2015) [arXiv:1409.0401 [hep-ph]].
[12] B. Loiseau, “Theory overview on amplitude analyses with charm decays,” PoS CHARM2016, 033 (2016) [arXiv:1611.05286 [hep-ph]].
[13] J. P. Dedonder, R. Kamiński, L. Leśniak and B. Loiseau, “Dalitz plot studies of $D^0 \to K_0^0 K^+ K^-$ decays in a factorization approach,” Phys. Rev. D 103, 114028 (2021) [arXiv:2105.03555 [hep-ph]].
[14] R. Aaij et al. [LHCb Collaboration], “Dalitz plot analysis of the $D^+ \to K^- K^+ K^+$ decay,” JHEP 04, 063 (2019) [arXiv:1902.05884 [hep-ex]].
[15] M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis and branching fraction measurement of the decay $D^+_s \to \pi^+ \pi^0 \pi^0$,” [arXiv:2109.12660 [hep-ex]].
[16] M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis and branching fraction measurement of $D^+_s \to K^+ K^- \pi^+$,” Phys. Rev. D 104, 012016 (2021) [arXiv:2011.08041 [hep-ex]].
[17] M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis of $D^+_s \to \pi^+ \pi^0 \eta$ and first observation of the pure W-annihilation decays $D^+_s \to a_0(980)^+ \pi^0$ and $D^+_s \to a_0(980)^0 \pi^+$,” Phys. Rev. Lett. 123, 112001 (2019) [arXiv:1903.04118 [hep-ex]].
[18] M. Ablikim et al. [BESIII Collaboration], “Analysis of the decay $D^0 \to K_0^0 K^+ K^-$,”
[19] C. Amsler and N. A. Tornqvist, “Mesons beyond the naïve quark model,” Phys. Rept. 389, 61-117 (2004).
[20] F. E. Close and N. A. Tornqvist, “Scalar mesons above and below 1-GeV,” J. Phys. G 28, R249-R267 (2002) [arXiv:hep-ph/0204205 [hep-ph]].
[21] T. Barnes, “Two Photon Decays Support the (K̅K) Molecule Picture of the S*(975) and ̂δ(980),” Phys. Lett. B 165, 434-440 (1985).
[22] N. N. Achasov and V. N. Ivanchenko, “On a Search for Four Quark States in Radiative Decays of φ Meson,” Nucl. Phys. B 315, 465-476 (1989).
[23] N. N. Achasov, “Radiative decays of φ meson about nature of light scalar resonances,” Nucl. Phys. A 728, 425-438 (2003) [arXiv:hep-ph/0309118 [hep-ph]].
[24] D. Black, M. Harada and J. Schechter, “Chiral approach to φ radiative decays,” Phys. Rev. D 73, 054017 (2006) [arXiv:hep-ph/0601052 [hep-ph]].
[25] R. L. Jaffe, “Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-Quark) Mesons,” Phys. Rev. D 15, 267 (1977); “Multi-Quark Hadrons. 2. Methods,” Phys. Rev. D 15, 281 (1977).
[26] Y. Kuroda, M. Harada, S. Matsuzaki and D. Jido, “Inverse Mass Hierarchy of Light Scalar Mesons Driven by Anomaly-Induced Flavor Breaking,” PTEP 2020, 053D02 (2020) [arXiv:1910.09146 [hep-ph]].
[27] S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur and D. Mohler, “Lattice study of light scalar tetraquarks with I = 0, 1, 1/2, 3/2: Are σ and κ tetraquarks?,” Phys. Rev. D 82, 094507 (2010) [arXiv:1005.0948 [hep-lat]]; S. Prelovsek and D. Mohler, “A lattice study of light scalar tetraquarks,” Phys. Rev. D 79, 014503 (2009) [arXiv:0810.1759 [hep-lat]].
[28] N. Mathur, A. Alexandru, Y. Chen, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu, S. Tamhankar and J. B. Zhang, “Scalar mesons a₀(1450) and σ(600) from lattice QCD,” Phys. Rev. D 76, 114505 (2007) [arXiv:hep-ph/0607110].
[29] C. Alexandrou, J. O. Daldrop, M. Dalla Brida, M. Gravina, L. Scorzato, C. Urbach and M. Wagner, “Lattice investigation of the scalar mesons a₀(980) and κ using four-quark operators,” JHEP 04, 137 (2013) [arXiv:1212.1418 [hep-lat]].
[30] C. Alexandrou, J. Berlin, M. Dalla Brida, J. Finkenrath, T. Leontiou and M. Wagner, “Lattice QCD investigation of the structure of the a₀(980) meson,” Phys. Rev. D 97, 034506 (2018) [arXiv:1711.09815 [hep-lat]].
[31] M. Wakayama, T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi and H. Wada, “Lattice QCD study of four-quark components of the isosinglet scalar mesons: Significance of disconnected diagrams,” Phys. Rev. D 91, 094508 (2015) [arXiv:1412.3909 [hep-lat]].
[32] J. A. Oller, E. Oset and J. R. Pelaez, “Nonperturbative approach to effective chiral Lagrangians and meson interactions,” Phys. Rev. Lett. 80, 3452-3455 (1998) [arXiv:hep-ph/9803242 [hep-ph]].
[33] J. A. Oller, E. Oset and J. R. Pelaez, “Meson meson interaction in a nonperturbative chiral approach,” Phys. Rev. D 59, 074001 (1999) [erratum: Phys. Rev. D 60, 099906 (1999); erratum: Phys. Rev. D 75, 099903 (2007)] [arXiv:hep-ph/9804209 [hep-ph]].
[34] J. D. Weinstein and N. Isgur, “$K\bar{K}$ Molecules,” Phys. Rev. D 41, 2236 (1990)
[35] H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless hadronic B decays involving scalar mesons: Implications to the nature of light scalar mesons,” Phys. Rev. D 73, 014017 (2006) [arXiv:hep-ph/0508104 [hep-ph]].
[36] R. Fleischer, R. Knegjens and G. Ricciardi, “Anatomy of $B_0 \to J/\psi f_0(980)$,” Eur. Phys. J. C 71, 1832 (2011) [arXiv:1109.1112 [hep-ph]].
[37] R. Aaij et al. [LHCb collaboration], “Analysis of the resonant components in $B_0 \to J/\psi \pi^+ \pi^-$,” Phys. Rev. D 87 (2013) 052001 [arXiv:1301.5347 [hep-ex]].
[38] L. Maiani, F. Piccinini, A.D. Polosa, and V. Riquer, “A New look at scalar mesons,” Phys. Rev. Lett. 93, 212002 (2004) [arXiv:hep-ph/0407017 [hep-ph]].
[39] W. Wang and C. D. Lu, “Distinguishing two kinds of scalar mesons from heavy meson decays,” Phys. Rev. D 82, 034016 (2010) [arXiv:0910.0613 [hep-ph]].
[40] M. Ablikim et al. [BESIII Collaboration], “Observation of the Semileptonic Decay $D_0 \to a_0(980)^- e^+ \nu_e$ and Evidence for $D^+ \to a_0(980)^0 e^+ \nu_e$,” Phys. Rev. Lett. 121, 081802 (2018) [arXiv:1803.02166 [hep-ex]].
[41] M. Ablikim et al. [BESIII Collaboration], “Observation of $D^+ \to f_0(500)^0 e^+ \nu_e$ and Improved Measurements of $D \to pe^+ \nu_e$,” Phys. Rev. Lett. 122, 062001 (2019) [arXiv:1809.06496 [hep-ex]].
[42] N. N. Achasov, A. V. Kiselev and G. N. Shestakov, “Semileptonic decays $D \to \pi^+ \pi^- e^+ \nu_e$ and $D_s \to \pi^+ \pi^- e^+ \nu_e$ as the probe of constituent quark-antiquark pairs in the light scalar mesons,” Phys. Rev. D 102, no.1, 016022 (2020) [arXiv:2005.06455 [hep-ph]].
[43] M. Wirbel, B. Stech and M. Bauer, “Exclusive Semileptonic Decays of Heavy Mesons,” Z. Phys. C 29, 637 (1985); M. Bauer, B. Stech and M. Wirbel, “Exclusive Nonleptonic Decays of $D, D_s,$ and B Mesons,” Z. Phys. C 34, 103 (1987).
[44] H. Y. Cheng, C. K. Chua and C. W. Hwang, “Covariant light-front approach for s-wave and p-wave mesons: Its application to decay constants and form factors,” Phys. Rev. D 69, 074025 (2004) [arXiv:hep-ph/0310359].
[45] R. C. Verma, “Decay constants and form factors of s-wave and p-wave mesons in the covariant light-front quark model,” J. Phys. G 39, 025005 (2012) [arXiv:1103.2973 [hep-ph]].
[46] N. R. Soni, A. N. Gadaria, J. J. Patel and J. N. Pandya, “Semileptonic Decays of Charmed Mesons to Light Scalar Mesons,” Phys. Rev. D 102, 016013 (2020) [arXiv:2001.10195 [hep-ph]].
[47] Y. J. Shi, W. Wang and S. Zhao, “Chiral dynamics, S-wave contributions and angular analysis in $D \to \pi \pi \ell \nu$,” Eur. Phys. J. C 77, 452 (2017) [arXiv:1701.07571 [hep-ph]].
[48] X. D. Cheng, H. B. Li, B. Wei, Y. G. Xu and M. Z. Yang, “Study of $D \to a_0(980)^0 e^+ \nu_e$ decay in the light-cone sum rules approach,” Phys. Rev. D 96, 033002 (2017) [arXiv:1706.01019 [hep-ph]].
[49] Q. Huang, Y. J. Sun, D. Gao, G. H. Zhao, B. Wang and W. Hong, “Study of form factors and branching ratios for $D \to S, Al\bar{t}$ with light-cone sum rules,” [arXiv:2102.12241 [hep-ph]].
[50] M. Ablikim et al. [BESIII Collaboration], “Observation of the Semileptonic Decay $D^0 \to a_0(980)^- e^+ \nu_e$ and Evidence for $D^+ \to a_0(980)^0 e^+ \nu_e$,” Phys. Rev. Lett. 121, 081802 (2018) [arXiv:1803.02166 [hep-ex]].
[51] H. Y. Cheng and X. W. Kang, “Branching fractions of semileptonic D and D_s decays from the covariant light-front quark model,” Eur. Phys. J. C 77, 587 (2017) [erratum: Eur. Phys. J. C 77, 863 (2017)] [arXiv:1707.02851 [hep-ph]].

[52] L. L. Chau and H. Y. Cheng, “Analysis of Exclusive Two-Body Decays of Charm Mesons Using the Quark Diagram Scheme,” Phys. Rev. D 36, 137 (1987); “Analysis of the Recent Data of Exclusive Two-body Charm Decays,” Phys. Lett. B 222, 285-292 (1989).

[53] L. L. Chau, “Quark Mixing in Weak Interactions,” Phys. Rept. 95, 1-94 (1983).

[54] L. L. Chau and H. Y. Cheng, “Quark Diagram Analysis of Two-body Charm Decays,” Phys. Rev. Lett. 56, 1655-1658 (1986).

[55] H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless hadronic B decays involving scalar mesons: Implications to the nature of light scalar mesons,” Phys. Rev. D 73, 014017 (2006) [arXiv:hep-ph/0508104 [hep-ph]].

[56] H. Y. Cheng, C. K. Chua, K. C. Yang and Z. Q. Zhang, “Revisiting charmless hadronic B decays to scalar mesons,” Phys. Rev. D 87, 114001 (2013) [arXiv:1303.4403 [hep-ph]].

[57] H. Y. Cheng, C. W. Chiang, “Two-body hadronic charmed meson decays,” Phys. Rev. D 81, 074021 (2010) [arXiv:1001.0987 [hep-ph]].

[58] B. Bhattacharya and J. L. Rosner, “Flavor symmetry and decays of charmed mesons to pairs of light pseudoscalars,” Phys. Rev. D 77, 114020 (2008) [arXiv:0803.2385 [hep-ph]].

[59] B. Bhattacharya and J. L. Rosner, “Decays of Charmed Mesons to PV Final States,” Phys. Rev. D 79, 034016 (2009) [arXiv:0812.3167 [hep-ph]].

[60] B. Bhattacharya and J. L. Rosner, “Charmless meson decays to two pseudoscalars,” arXiv:0911.2812 [hep-ph].

[61] H. Y. Cheng and C. W. Chiang, “Direct CP violation in two-body hadronic charmed meson decays,” Phys. Rev. D 85, 034036 (2012) [arXiv:1201.0785 [hep-ph]]; 85, 079903(E) (2012).

[62] H. Y. Cheng and C. W. Chiang, “SU(3) symmetry breaking and CP violation in $D \to PP$ decays,” Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].

[63] H. -n. Li, C. D. Lu and F. S. Yu, “Branching ratios and direct CP asymmetries in $D \to PP$ decays,” Phys. Rev. D 86, 036012 (2012) [arXiv:1203.3120 [hep-ph]].

[64] Q. Qin, H. n. Li, C. D. Lü, and F. S. Yu, “Branching ratios and direct CP asymmetries in $D \to PV$ decays,” Phys. Rev. D 89, 054006 (2014) [arXiv:1305.7021 [hep-ph]].

[65] H. Y. Cheng, C. W. Chiang and A. L. Kuo, “Global analysis of two-body $D \to VP$ decays within the framework of flavor symmetry,” Phys. Rev. D 93, 114010 (2016) [arXiv:1604.03761 [hep-ph]].

[66] H. Y. Cheng and C. W. Chiang, “CP violation in quasi-two-body $D \to VP$ decays and three-body D decays mediated by vector resonances,” Phys. Rev. D 104, 073003 (2021) [arXiv:2104.13548 [hep-ph]].

[67] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, “QCD factorization for $B \to \pi\pi$ decays: Strong phases and CP violation in the heavy quark limit,” Phys. Rev. Lett. 83, 1914 (1999) [arXiv:hep-ph/9905312]; “QCD factorization for exclusive, non-leptonic B meson decays: General arguments and the case of heavy-light final states,” Nucl. Phys. B 591, 313 (2000) [arXiv:hep-ph/0006124].
[68] M. Beneke and M. Neubert, “QCD factorization for $B \to PP$ and $B \to PV$ decays,” Nucl. Phys. B 675, 333 (2003) [arXiv:hep-ph/0308039 [hep-ph]].
[69] M. A. Ivanov, J. G. Körner, J. N. Pandya, P. Santorelli, N. R. Soni and C. T. Tran, “Exclusive semileptonic decays of D and D$_s$ mesons in the covariant confining quark model,” Front. Phys. (Beijing) 14, 64401 (2019) [arXiv:1904.07740 [hep-ph]].
[70] S. M. Flatte, “Coupled - Channel Analysis of the $\pi\eta$ and $K\bar{K}$ Systems Near $K\bar{K}$ Threshold,” Phys. Lett. B 63, 224-227 (1976).
[71] F. Ambrosino et al. [KLOE Collaboration], “Dalitz plot analysis of $e^+e^- \to \pi^0\pi^0\gamma$ events at \sqrt{s} approximately $M(\phi)$ with the KLOE detector,” Eur. Phys. J. C 49, 473-488 (2007) [arXiv:hep-ex/0609009 [hep-ex]].
[72] M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis of the $\chi_{c1} \to \eta\pi^+\pi^-$ decays,” Phys. Rev. D 95, 032002 (2017) [arXiv:1610.02479 [hep-ex]].
[73] T. Mori et al. [Belle Collaboration], “High statistics study of $f_0(980)$ resonance in $\gamma\gamma \to \pi^+\pi^-$ production,” Phys. Rev. D 75, 051101 (2007) [arXiv:hep-ex/0610038 [hep-ex]].
[74] J. R. Pelaez, “From controversy to precision on the sigma meson: a review on the status of the non-ordinary $f_0(500)$ resonance,” Phys. Rept. 658, 1 (2016) [arXiv:1510.00653 [hep-ph]].
[75] R. Aaij et al. [LHCb Collaboration], “Amplitude analysis of the $B^+ \to \pi^+\pi^+\pi^-$ decay,” Phys. Rev. D 101, 012006 (2020) [arXiv:1909.05212 [hep-ex]].
[76] J. R. Peláez and A. Rodas, “Determination of the lightest strange resonance $K^*_s(700)$ or κ, from a dispersive data analysis,” Phys. Rev. Lett. 124, 172001 (2020) [arXiv:2001.08153 [hep-ph]].
[77] H. Y. Cheng, C. K. Chua and A. Soni, “Final state interactions in hadronic B decays,” Phys. Rev. D 71, 014030 (2005) [arXiv:hep-ph/0409317 [hep-ph]].
[78] Y. K. Hsiao, Y. Yu and B. C. Ke, “Resonant $a_0(980)$ state in triangle rescattering $D_s^+ \to \pi^+\pi^0\eta$ decays,” Eur. Phys. J. C 80, 895 (2020) [arXiv:1909.07327 [hep-ph]].
[79] X. Z. Ling, M. Z. Liu, J. X. Lu, L. S. Geng and J. J. Xie, “Can the nature of $a_0(980)$ be tested in the $D_s^+ \to \pi^+\pi^0\eta$ decay?,” Phys. Rev. D 103, 116016 (2021) [arXiv:2102.05349 [hep-ph]].
[80] H. Y. Cheng and C. W. Chiang, “Revisiting CP violation in $D \to PP$ and VP decays,” Phys. Rev. D 100, 093002 (2019) [arXiv:1909.03063 [hep-ph]].
[81] H. Y. Cheng, C. W. Chiang and C. K. Chua, “Finite-Width Effects in Three-Body B Decays,” Phys. Rev. D 104, 073003 (2021) [arXiv:2104.13548 [hep-ph]].