Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants

Emily D. Richards 1, Krysta L. Martin 1, Catherine E. Donnell 2, Maaike O. Clapham 1 and Lisa A. Tell 1,*

1 Food Animal Residue Avoidance and Depletion Program and Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
2 School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
* Correspondence: latell@ucdavis.edu

Simple Summary: This review is a summary of published studies that contain drug residue depletion data for edible tissues and milk following treatment of sheep and goats. The information is separated by antibiotic class for ease of comparison between studies. This summary is useful for understanding medication residue depletion following extra-label drug use and can be used to help estimate withdrawal intervals in order to help protect the human food chain.

Abstract: This review provides a summary of extracted data from the published literature that contains drug residue depletion data for edible tissues and milk following treatment of sheep and goats. Out of 20,234 records obtained during the initial search, data from 177 records were included in this review. The data is separated by antibiotic class for ease of comparison between studies. Extracted data includes the active ingredient, dosing information, animal health status, analytical method and limits of detection, tolerance and maximum residue limit information, and time frames relative to residue absence or detection. This information is useful for understanding drug residue depletion profiles following extra-label use and for estimating withdrawal intervals, in order to protect the human food chain.

Keywords: small ruminant; sheep; goat; milk; edible tissue; antibiotic drug residue

1. Introduction

Drinking water and availability of food for both humans and animals are affected by climate change that lowers rainfall and an increasing world population, especially in semi-arid climates [1]. Small ruminants present a unique opportunity for developing nations, specifically in developing nations that are in semi-arid climates, due to their multi-purpose use (meat, milk and fibers), lower production cost compared to large ruminants, and tolerance to low rainfall and hot climates [1].

According to data from the Food and Agriculture Organization of the United Nations (FAO), the number of sheep and goats worldwide has increased from approximately 1.4 billion head combined (1 billion sheep, ~400 million goats) in 1961 to approximately 2.3 billion head combined (~1.2 billion sheep, ~1.1 billion goats) in 2019 [2]. Between 2014 and 2019, the largest producers of sheep meat worldwide were China, Australia, New Zealand, Turkey and Algeria, whereas during this same time period, the largest producers of goat meat worldwide were China, India, Pakistan, Nigeria and Bangladesh.

In the United States, sheep and goats are considered minor species by the Food and Drug Administration (FDA) [3]; however, sheep are considered major species while goats are considered minor species by the European Medicines Agency (EMA) Committee for Medicinal Products for Veterinary Use [4]. In the United States, there is a “severe shortage of approved new animal drugs for use in minor species” [5].
The Food Animal Residue Avoidance and Depletion Program (FARAD) is a United States Department of Agriculture (USDA)-funded program with a mission to provide veterinary practitioners with scientifically based withdrawal interval recommendations following extra-label drug use or chemical/pesticide contamination in food-producing species. FARAD call submission data for small ruminants indicates a steady increase in the number of withdrawal interval request submissions from 2015 to 2019, with a steep increase in the number of submissions in 2020 (2015 = 435 submissions for sheep, 223 for goats; 2019 = 343 submissions for sheep, 710 for goats; 2020 = 595 submissions for sheep, 1401 for goats). The most commonly requested drug categories include antibiotics, anthelmintics, and non-steroidal anti-inflammatory drugs (NSAIDs). This data reflects the increasing numbers of backyard or hobby-farm environments, where the food-products are consumed by the family keeping the sheep or goats. Given the limited FDA-approved medications for use in sheep or goats, drugs are commonly prescribed in an extra-label manner which is legalized by the Animal Medicinal Drug Use Clarification Act of 1994 (AMDUCA) [6].

Given the importance of sheep and goats as commodity groups worldwide, the purpose of this review is to summarize research studies investigating antibiotic medication use in small ruminants with respect to the potential for drug residues to be present in small ruminant meat and milk products. Due to the large volume of published literature in small ruminants, this review only includes antibacterial medications; however, a second review will be completed incorporating anthelmintics and other medication classes not included here. It is important to note that residue depletion times referenced in the text are based on data from scientific studies. Normal industry practice to withdraw feed 8 to 12 h prior to processing the animals in order to minimize fecal contamination [7] may not have occurred in scientific research studies examining a zero day withdrawal. In addition, the residue depletion times listed in this manuscript are dependent on the sensitivity of the analytical method utilized in the study. Summaries of drug residue studies, drug approvals, tolerances (in the United States), and maximum residue limits (MRLs; in the European Union) have been provided in the tables for the reader’s convenience. If available, FDA-approved medications for use in sheep and goats should be utilized according to directions and labeled withdrawal times adhered to in order to guarantee human food safety.

2. Materials and Methods

2.1. Search Strategy

A systematic literature search was conducted using various databases and compared to publications included FARAD Program’s literature database. The aim of the search was to collect milk and edible tissue residue data for antibiotics that had been administered to small ruminants. Published literature between 1926 and 2021 was searched using PubMed, Cab Direct, Scopus, and Web of Science. Search terms and key words included: “sheep”, “goat(s)”, “small ruminants”, “caprine”, “ovine”, “drug absorption”, “clearance”, “drug residue(s)”, “pharmacokinetics”, “metabolic clearance rate”, “intestinal absorption”, “bioavailability”, “biological availability”, “metabolism”.

2.2. Screening Results

For systematic screening, search results were imported into the Covidence online platform (Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia) and duplicate results were removed by the Covidence software. Initially, the 20,234 “Titles and Abstracts” were screened by one reviewer (EDR or CED) for relevancy and categorized as ‘yes’, ‘no’, or ‘maybe’ using predetermined inclusion and exclusion criteria. The category of ‘maybe’ was used for trials that did not explicitly state the inclusion or exclusion criteria in the abstract and thus required further review of the full text. Inclusion criteria were as follows: in vivo sheep or goat drug trial; drug or metabolite concentration data and time point in tissue and/or milk; drug dose, route of administration, and dosing frequency stated. Exclusion criteria were as follows: any animal not a sheep or goat; in vitro study; concentration or residue data for non-drug substances (pesticide,
toxin, vitamins) or drugs of abuse; drug plasma or serum concentrations only; dose of drug, route of administration, and dosing frequency missing. After initial screening for exclusion criteria, 1769 ‘yes’ and ‘maybe’ results moved to a ‘Full Text’ screening by one reviewer (EDR, KLM, or CED). These records were further excluded or included based on the above criteria and a reason was assigned. Records were excluded due to: not being a study (e.g., review, short communication, corrigendum; \(n = 128 \)), not being able to verify text (e.g., full text not available from lenders worldwide, abstract only from proceedings, text unable to be translated; \(n = 141 \)), being the wrong patient population/study design (e.g., not in live animals, in live animals other than small ruminants, etc.; \(n = 84 \)), chemical product of study was a non-drug substance (\(n = 10 \)), matrices under study did not consist of tissues or milk (\(n = 1076 \)), and lack of specific concentration versus time presented in the paper (\(n = 60 \)). A total of 270 records met the complete inclusion criteria. Figure 1 displays a flowchart representation of the screening process completed in this literature search.

![Figure 1](schematic-diagram.png)

Figure 1. Schematic diagram of the process for three independent evaluators to assess published manuscripts and the numerical outcome of each step. The ultimate goal was to curate manuscripts with tissue and milk residue data from live sheep and goat antibacterial drug studies.

For comparison, the FARAD database returned 832 records for both sheep and goats; however, 78 records were removed from the review due to incorrect matrices (i.e., plasma or serum data only). Ultimately, only 177 records met the complete inclusion criteria.

3. Data Extraction and Presentation (Antibiotic Drug Classes, Residue Detection, and Analytical Methods)

The published literature presenting tissue and milk residue data for antibiotics used in sheep and goats is presented in the Tables below and is categorized by antibiotic class. Tolerances or maximum residue limits are presented for FDA-approvals and EMA-approvals, respectively. The basic analytical method is described, with a focus on the limit of detection and limit of quantitation, alongside the dosing regimen for each study. Animal health status and additional information are also included, since variations in health- or lactation-status may affect drug residue depletion. Finally, two columns are included to indicate when residues were last detected. The column titled ‘Last sampling time point for which residues WERE detected (post-last treatment)’ refers the last sampling point when residues were detected based on the study sampling protocol. This is in contrast to the column titled ‘Sampling time point when NO residues were detected (post-last treatment)’ which refers to the last sampling point when residues were not detected based on the study sampling protocol.
protocol. Instances where a greater than symbol (“>”) is utilized refers to situations where residues were still detected at the last sampling time point of the study protocol.

Data for the summarized studies includes analytical methods since it is important to consider how those methods impact the sensitivity of drug residue detection and how the analytical limits of detection compare to tolerances or MRLs. Newer analytical methods can detect drug residues at lower concentrations than historical microbiological bioassays or colorimetric testing, resulting in a greater number of days with detectable drug residues. In contrast, studies using less sensitive methods, having higher limits of detection, may have found shorter periods with detectable drug residues upon withdrawal of the drug. Readers are cautioned to keep the sensitivity of the analytical methods in mind when evaluating the data presented within this review, as well as the fact that most of the studies were completed in healthy animals. It is also important to note that US products approved for use in small ruminants should be used according to the FDA-approved label directions. The FDA-approved label withdrawal time should take precedent above any of the data summarized in this paper.

When considering antibiotic drug classes, it is important to remember that the World Health Organization (WHO) classifies antibiotics into categories based on their place in therapy for some infections in human medicine. These categories include critically important, highly important and important [8]. Some critically important antibiotics are then sub-divided by priority if they are considered sole or limited therapy for some infections in human medicine [8]. Some cephalosporins (third, fourth and fifth generations), quinolones, macrolides are classified as highest priority critically important antibiotics for human health. Aminoglycosides, some cephalosporins (first and second generations) are classified as high priority critically important antibiotics. Amphenicols, some penicillins (antipseudomonal, aminopenicillins with and without beta-lactamase inhibitors, amidinopenicillins, anti-staphylococcal, narrow spectrum), sulfonamides and tetracyclines are classified as highly important antibiotics for human health by the WHO.

3.1. Aminoglycosides

Aminoglycosides (amikacin, apramycin, dihydrostreptomycin, gentamicin, tobramycin, neomycin, streptomycin) are concentration dependent, bactericidal antibiotic agents produced from Streptomyces spp. and Micromonospora spp. Aminoglycosides act by irreversibly binding to the 30s subunit of the bacterial ribosome thereby inhibiting protein synthesis. Their spectrum of activity includes mostly Gram-negative bacteria, with some mycobacteria and staphylococci coverage. Transmission of Enterococcus spp., Enterobacteriaceae (including E. coli), and Mycobacterium spp. can occur from non-human sources and potentially result in human infection. Therefore, the appropriate use of aminoglycosides in food animal species is essential to maintain human safety.

Aminoglycosides are generally not well absorbed from the gastrointestinal tract [9], unless there is damage to the intestinal mucosa. When administered parenterally, aminoglycosides are rapidly and completely absorbed. Elimination of aminoglycosides is primarily renally, which may result in persistent residues in the kidneys. In most published studies in sheep and goats, residues in renal tissue exceeded the duration of the study [10–17]. In humans, aminoglycosides are poorly excreted into breastmilk [18]. This may also be the case for sheep and goats as a few studies have shown short duration of residue detection in milk following IV and IM administration [19–26].

In the United States, the only aminoglycoside FDA-approved for use in small ruminants is neomycin sulfate. However, the EMA has approved streptomycin/dihydrostreptomycin and kanamycin for sheep, while also extending MRLs from other species for gentamicin and neomycin. Table 1 shows the published literature that provides data for edible tissue or milk residues of aminoglycosides following treatment of sheep and goats.
Table 1. Aminoglycoside residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)*	Health Status	Additional Information	Source/ Year
Amikacin	Goat; Baladi; 2-3 years; n = 5	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.2 ppm	IV	7.5 mg/kg Amikacin sulfate	1	Milk	4 h (0.22 ppm)	6 h	Healthy	Mid-lactation; Milked 2 × [19]	1999
Amikacin	Goat; NS; 1-2-2 years; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.1 ppm	NS	IM	10 mg/kg Amikacin sulfate	1	Milk	5 h (NS)	6 h	Healthy	Lactating [20]	2001
Amikacin	Sheep; crossbred; 2-4 years; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.19 ppm	IV	7.5 mg/kg Amikacin sulfate	1	Milk	9.5 h (0.85 ppm §)	>3 day	Healthy	Lactating; Milked 2 × /day [21]	2004
Apramycin	Goat; Saanen; adult; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.1 ppm	IV	20 mg/kg Apramycin sulfate	1	Milk	10 h (0.12 ppm §)	>50 h	Healthy	Early Lactation [22]	1995
Apramycin	Sheep; Awassi; adult; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.1 ppm	IM	10 mg/kg Apramycin sulfate	1	Milk	720 min (0.15 ppm §)	1440 min	Diseased-Mastitis	Mid-lactation [22]	1995
Apramycin	Sheep; Awassi; adult; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.1 ppm	IV	20 mg/kg Apramycin sulfate	1	Milk	6 h (0.11 ppm §)	8 h	Healthy	Mid-lactation [22]	1995
Apramycin	Sheep; NS; Lambs; n = 12 study; n = 3/time pt	US Tol: Not established. EMA MRL: Not established.	HPLC	901 ppb	NS	PO	10 mg/kg Apramycin daily	3	Liver, Kidney, Muscle, Fat, Liver, Kidney, Muscle, Fat	Liver: 300 ppb, Kidney: 304 ppb, Muscle: 124 ppb, Fat: 42 ppb	Liver: 300 ppb, Kidney: 304 ppb, Muscle: 124 ppb, Fat: 42 ppb	Healthy	NS [19]	1999

*Sampling time point when no residues were detected (post-last treatment) varies depending on species, age, and health status.
Table 1. Cont.

Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOQ	LOD	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year	
Apramycin	Goat; NS; Adult; NS	US Tol: Not established. EMA MRL: Not established	NS	NS	NS	IM	20 mg/kg Apramycin	1	Milk	10 h (NS)	12 h (NS)	Healthy	Dry off period (mean 0.3) 1.4 days 50 (range 25–156) days; 1 tube per gland before drying off; Sample collected after kidding	[23] 2000	
Dihydro-streptomycin	Goat; NS; Adults; n = 220	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.13 ppm	0.15 ppm	IMM	300,000 IU Procaine benzyl-penicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin	1	Milk	6 days post kidding (≥0.2 ppm)	7 days post kidding	Healthy	Healthy	Dry off period (mean 112 days (range 85–225 days); 1 tube per gland before drying off; Sample collected after lambing	[19] 1995
Dihydro-streptomycin	Sheep; Lacaune; adult; n = 8	US Tol: Not established. EMA established MRL: 200 ppb (milk).	Bioassay	0.02 ppm	NS	IMM	300,000 IU Procaine benzyl-penicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin	1	Milk	3 days (0.02 ppm 5)	4 days	Healthy	Healthy	Dry off period (mean 112 days (range 85–225 days); 1 tube per gland before drying off; Sample collected after lambing	[19] 1995
Dihydro-streptomycin	Sheep; Awassi; adult; n = 3	US Tol: Not established. EMA established MRL: 200 ppb (milk).	Bioassay	NS	NS	IV	20 mg/kg Dihydro-streptomycin (radio-labeled) then 10 mg/kg for 4 doses 45 min interval	5	Milk	24 h (0.20 ppm 6)	36 h	Healthy	Lactating; Milked 2×/day	[24] 1973	
Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year	
---------	---	----------------	-----------------	-----	-----	-------------------------	-------------------------	-------------	--------	---	---	-------------	---------------------	--------------	
Dihydrostreptomycin	Sheep; NS; NS; n = 22 study	US Tol: Not established. EMA established MRL: 300 ppb (liver, muscle, fat); 1000 ppb (kidney).	Bioassay	0.5 ppm	NS	IM	10 mg/kg Dihydrostreptomycin combined w/ 10,000 IU procaine penicillin-G daily	5	Kidney	28 days (0.5 ppm)	>28 days	Healthy	NS	[11] 1995	
Dihydrostreptomycin	Sheep; Awassi; Adult; n = 2	US Tol: Not established. EMA established MRL: 200 ppb (milk).	Bioassay	NS	NS	IM	20 mg/kg Dihydrostreptomycin (radio-labeled)	1	Milk	12 h (0.22 ppm)	24 h	Healthy	Disease-mastitis	Lactating	[29] 1974
Dihydrostreptomycin	Sheep; NS; NS; n = 8	US Tol: Not established. EMA established MRL: 300 ppb (liver, muscle, fat); 1000 ppb (kidney); 200 ppb (milk).	HPLC	NS	50 ppb	IM	10 mg/kg Dihydrostreptomycin combined with benzyl-penicillin daily	3	Milk	<LOQ @ 14 days	14 days	Healthy	NS	[25] 2005	
Dihydrostreptomycin	Sheep; Suffolk & Suffolk/Cheviot; Adult; n = 8	US Tol: Not established. EMA established MRL: 200 ppb (milk).	HPLC	0.02 ppm	0.05 ppm	IM	10 mg/kg Dihydrostreptomycin combined w/ procaine penicillin daily	3	Milk	48 h (0.06 ppm)	80 h	Healthy	Lactating	Milked; 2×/day	[26] 2002
Dihydrostreptomycin	Sheep; NS; NS; n = 12 study; n = 4/time pt	US Tol: Not established. EMA established MRL: 300 ppb (liver, muscle, fat); 1000 ppb (kidney).	HPLC	NS	400 ppb	IM	10 mg/kg Dihydrostreptomycin combined w/ benzyl-penicillin daily	3	Liver	<LOQ @ 14 days	14 days	Healthy	NS	[30] 2000	
Dihydrostreptomycin	Sheep; NS; NS; n = 12 study; n = 4/time pt	US Tol: Not established. EMA established MRL: 300 ppb (liver, muscle, fat); 1000 ppb (kidney).	HPLC	NS	400 ppb	IM	10 mg/kg Dihydrostreptomycin combined w/ procaine penicillin daily	3	Liver	<LOQ @ 14 days	14 days	Healthy	NS	[31] 1998	
Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year	
---------	---	----------------	------------------	-----	-----	-------------------------	--------------------------	------------	--------	---	---	----------------	----------------------	--------------	
Gentamicin	Sheep; mixed breed; adult; n = 7	US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney).	Bioassay	NS	NS	IV	4 mg/kg Gentamicin	1	Kidney	biopsy	28 days (9.9 ppm)	35 days	Healthy	NS	1985
Gentamicin	Sheep; Suffolk; adult; n = 9 study; n = 3/time pt	US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney); 30 ppb (muscle).	Immunoassay	0.01 ppm	NS	IM	3 mg/kg Gentamicin sulfate at 8 h intervals	2	Kidney	IM	15 days (0.0 ppm)	>15 days	Healthy	NS	1985
Gentamicin	Sheep; Suffolk; adult; n = 12 study; n = 3/time pt	US Tol: Not established. EMA established MRL in all mammalian food producing species: 250 ppb (liver); 750 ppb (kidney); 50 ppb (muscle, fat).	Immunoassay	0.01 ppm	NS	IM	18 mg/kg Gentamicin sulfate	1	Liver	IM	12 days (0.31 ppm)	>12 days	Healthy	NS	1986
Gentamicin	Sheep; western range; adult; n = 4	US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney).	Immunoassay	0.04 ppm	NS	IM	3 mg/kg Gentamicin sulfate at 12 h intervals	20	Kidney	IM	77 days (87.71 ppm)	>77 days	NS	NS	1988
Kanamycin	Sheep; Bergamo; adult; n = 12 study; n = 3/time pt	US Tol: Not established. EMA established MRL: 600 ppb (liver); 2500 ppb (kidney); 100 ppb (muscle).	Bioassay	NS	NS	IM	20 mg/kg Kanamycin	1	Liver	IM	3 days (2.2 ppm)	6 days	NS	NS	1991
Table 1. Cont.

Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year
Neomycin	Goat; NS; NS; n = 18 study; n = 4/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	Bioassay NS 0.5 ppm	POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[15] 1996	
Neomycin	Goat; NS; NS; n = 20 study; n = 5/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	Bioassay NS 0.5 ppm	PO	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[16] 2000	
Neomycin	Goat; NS; NS; n = 20 study; n = 4/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	NS NS 0.5 ppm	POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[17] 1995	
Neomycin	Sheep; NS; NS; n = 18 study; n = 4/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	Bioassay NS 0.5 ppm	POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[15] 1996	
Neomycin	Sheep; NS; NS; n = 20 study; n = 5/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	Bioassay NS 0.5 ppm	POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[16] 2000	
Neomycin	Sheep; NS; NS; n = 20 study; n = 4/time pt	US Tol: 3600 ppb (liver); 7200 ppb (kidney)	Bioassay NS 0.5 ppm	POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 12 h	ND @ 12 h	12 h	>96 h	Healthy NS	[17] 1995	
Table 1. Cont.

Analyte	Species; Breed; Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year
Neomycin	Sheep; NS; NS; n = 20 study, n = 4/time point, 3600 ppb (liver), 7200 ppb (kidney), 1200 ppb (muscle); EMA extrapolated to all food-producing species: 5500 ppb (liver), 9000 ppb (kidney), 500 ppb (muscle, fat)	NS NS 0.5 ppm POMW	22 mg/kg Neomycin sulfate daily	14	Liver Kidney Muscle Fat	ND @ 1 day 1 day (male) (1.26 ppm) 3 days (female) (0.45 ppm) 7 days (male)	Not detected	Healthy NS [34] 1996						
	Sheep; NS; NS; n = 4	HS LC NS 50 ppb IM	10 mg/kg Streptomycin combined w/ dihydro-streptomycin daily	3	Milk	48 h (0.07 ppm)	60 h	Healthy Lactating, Milked 2×/day [25] 2005						
	Sheep; Suffolk & Suffolk/Cheviot; adult; n = 9	HS LC N 0.02 ppm 0.05 ppb† 0.05 ppm IM	10 mg/kg Streptomycin combined w/ dihydro-streptomycin daily	3	Milk	48 h (0.07 ppm)	60 h	Healthy Milked 2×/day [26] 2002						
	Sheep; NS; NS; NS	HS LC N 0.02 ppm 0.05 ppb† 0.05 ppm IM	10 mg/kg Streptomycin daily	3	Liver Kidney Muscle Fat Inj. Site	2 days (655 ppb) >2 days	2 days (914 ppb) >2 days 2 days	Healthy NS [30] 2000						

† Manuscript states limit of quantitation as 0.05 ppb; however, the limit of detection is in parts per million, therefore it is likely an error and should be interpreted as 0.05 parts per million. # = number. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: 2×/day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, PO = per os, POMF = per os as medicated feed, POMW = per os as medicated water, SC = subcutaneous. § Data points manually extracted using scanning software (Webplot digitizer or UnScanIt 7.0). Units: s = seconds, min = minutes, h = hours, ppt = parts per trillion, ppb = parts per billion, ppm = parts per million.
3.2. Amphenicols

Amphenicols (chloramphenicol, florfenicol, thiamphenicol) are broad-spectrum antibiotics. These antibiotics are typically bacteriostatic agents that act by inhibiting microbial protein synthesis by binding to the 50s bacterial ribosomal subunit. Amphenicols are broad-spectrum against many aerobic and anaerobic Gram-positive and Gram-negative bacteria.

Little pharmacokinetic data is available following the use of amphenicols in sheep or goats. The limited data available in goats shows that florfenicol and thiamphenicol residues do enter the milk after intramuscular and intravenous administration, however tissue data was not available [35,36]. In one study, thiamphenicol concentrations were higher in the mammary gland that was frequently stripped compared to the gland that was not [35].

In the United States, there are no amphenicol products FDA-approved for use in sheep or goats. Chloramphenicol is prohibited from use in food producing animals in several countries including the United States, European Union, and Canada [6,37,38] due to the risk of blood dyscrasias, such as aplastic anemia and bone marrow suppression, in humans. Table 2 summarizes the published literature evaluating edible tissue or milk residues of amphenicols following treatment of sheep and goats.
Table 2. Amphenicol residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species, Breed, Age; # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matris	Last Sampling Time Point (Past-Last Treatment When Residues WERE Detected)	Sampling Time Point When NO Residues Were Detected (Past-Last Treatment)	Health Status	Additional Information	Source/ Year
Chloramphenicol	Sheep; Awassi; adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Chemically	NS	NS	IM	50 mg/kg Chloramphenicol	1	Milk	26 h (1.68 ppm §)	>26 h	Healthy		[39] 1973
			Bioassay	NS	NS	IM	50 mg/kg Chloramphenicol	1	Milk	26 h (2.02 ppm §)	>26 h	Healthy	Lactating	[41] 1973
	Radio-activity			NS	NS	IM	50 mg/kg Chloramphenicol (radilabeled)	1	Milk	13 h (NS)	>13 h	Healthy		[42] 1990
Chloramphenicol	Sheep; Awassi; adult; n = 1	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	50 mg/kg Chloramphenicol sodium succinate then 12.5 mg/kg for 2 doses at 90 min interval	3	Milk	24 h (0.65 ppm §)	36 h	Healthy	Lactating, Milked 2x/day	[41] 1973
	Radio-activity			NS	NS	IV	50 mg/kg Chloramphenicol sodium succinate then 12.5 mg/kg for 2 doses at 90 min interval	3	Milk	48 h (0.81 ppm §)	60 h	Healthy		
Chloramphenicol	Sheep; Awassi; Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	50 mg/kg Chloramphenicol	1	Milk	56 h (0.85 ppm §)	>56 h	Healthy	Lactating	[39] 1974
	Radio-activity			NS	NS	IM	50 mg/kg Chloramphenicol (radilabeled)	1	Milk	56 h (0.2 ppm §)	>56 h	Healthy		[39] 1974
Chloramphenicol	Sheep; Rouge de L’Ouest; adult; n = 11 study; n = 3 & 2/time pt	US Tol: Not established. EMA MRL: Not established.	HPLC	2 ppb	NS	IM	30 mg/kg Chloramphenicol	1	Liver	24 h (0.35 ppm §)	>38 h	Healthy		[40] 1990
									Kidney	206 h (0.76 ppm §)	>38 h	Healthy		
									Muscle	206 h (2.13 ppm §)	>38 h	Healthy		
									Inj. Site	206 h (4.33 ppm §)	>38 h	Healthy		
Chloramphenicol	Sheep; Awassi; adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	30 mg/kg Chloramphenicol sodium succinate	1	Milk	NS	NS	Healthy	Lactating, Milked 2x/day	[41] 1975
Table 2. Cont.

Analyte	Species, Breed, Age, # of Animals per Time Point	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Florfenicol amine	Sheep; Polypay; NS; n = 25 study; n = 5/time pt	US Tol: Not established. EMA MRL by extension from bovine to ovine: 3000 ppb (liver); 300 ppb (kidney); 200 ppb (muscle).	HPLC	NS	NS	SC	40 mg/kg Florfenicol daily	3	Liver	40 days (1.99 ppm)	>40 days	NS	NS	[42] 2006
Florfenicol amine	Sheep; mixed breed; 6–7 months; n = 26 study; n = 5/time pt	US Tol: Not established. EMA MRL by extension from bovine to ovine: 3000 ppb (liver); 300 ppb (kidney); 200 ppb (muscle).	HPLC	NS			40 mg/kg Florfenicol daily	3	Liver	40 days (NS)	>40 days	Healthy	NS	[43] 2008
Thiamphenicol	Sheep; crossbred; adult; n = 16 study; n = 4/time pt	US Tol: Not established. EMA MRL by extension from bovine to ovine: 50 ppb (liver, kidney, muscle, fat, milk).	HPLC	5 ppb	21 ppb	IM	30 mg/kg Thiamphenicol daily	5	Liver	ND # 4 days	4 days	Healthy	NS	[44] 2000
Chloramphenicol	Goat; Does; 9–12 months; n = NS	US Tol: Not established. EMA MRL: Not established.	Colorimetric	NS	NS	IM								
Chloramphenicol	Goat; NS/Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	HPLC	5 ppb		IM								
Thiamphenicol	Goat; Saanen & crossbred; adult; n = 6	US Tol: Not established. EMA MRL by extension from bovine to ovine: 50 ppb (liver, kidney, muscle, fat, milk).	HPLC	NS	NS	IV	50 mg/kg Thiamphenicol	1	Milk	12 h (4.02 ppm 5)	>12 h	Healthy	Late Lactation	[35] 1991
Florfenicol	Goat; Saanen & crossbred; adult; n = 10	US Tol: Not established. EMA MRL: Not established.	HPLC	NS	NS	IV	25 mg/kg Florfenicol	1	Milk	8 h (0.21 ppm 5)	>8 h	Healthy	Mid-Lactation	[36] 1991

5 Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). # = number. *Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: 2×/day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, PO = per os, POMF = per os as medicated feed, SC = subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
3.3. *Penicillin and Penicillin-Derivatives*

Penicillins (penicillin G procaine, penicillin G benzathine) and penicillin-derivatives (amoxicillin, ampicillin, cloxacillin, dicloxacillin, nafcillin) are bactericidal antibiotics that act by inhibiting cell wall synthesis. These antibiotics display a broad spectrum of activity against many Gram-positive and Gram-negative bacteria, including anaerobic bacteria.

Amoxicillin and ampicillin show limited milk penetration or accumulation, even when the blood-milk barrier is altered in cases of mastitis [47,48]. However, beta-lactam products labeled for intramammary administration in cattle can result in very high antibiotic concentrations within the small ruminant udder due to the differences in both body and udder size [49,50]. Consequently, intramammary administration of cattle-labeled products to small ruminants can lead to persistent residues present in the milk and require extended withdrawal intervals beyond the labeled withdrawal times for cattle [49,51–54]. In the United States, penicillin G procaine is FDA-approved for use in sheep via intramuscular administration. In the EU, MRLs have been extended from bovine species to all ruminants for nafcillin.

Due to the potential for allergic reactions to penicillin and penicillin-derivatives in humans, caution must be exhibited to ensure food-products from small ruminants do not contain traces of penicillins [55,56]. Table 3 summarizes the published literature evaluating edible tissue or milk residues of beta-lactams or penicillins following treatment of sheep and goats.
Table 3. Penicillin and penicillin-derivative residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOQ	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year	
Amoxicillin	Sheep; Texel; adult; n = 12	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Amoxicillin sodium	1	Milk	500 min (0.03 ppm §)	>500 min	Healthy & Diseased-mastitis	Lactating	[47] 1979	
Amoxicillin	Goats; Saanen; adult; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.001 ppm	NS	IMM	200 mg Amoxicillin trihydrate; 50 mg potassium clavulanate; 50 mg prednisolone combo product at 8 h intervals	3	Milk	5 days (0.07 ppm §)	>5 days	Healthy	Lactating; Milked 2 × /day; 1 syringe / gland	[40] 1989	
Amoxicillin	Sheep; Texel; adult; n = 12	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Amoxicillin trihydrate	1	Milk	500 min (0.06 ppm §)	>500 min	Healthy & Diseased-mastitis	Lactating	[47] 1979	
Amoxicillin	Sheep; Friesland; adult; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.001 ppm	NS	IMM	200 mg Amoxicillin trihydrate; 50 mg potassium clavulanate; 50 mg prednisolone combo product at 8 h intervals	3	Milk	7 days (0.03 ppm §)	>7 days	Healthy	Lactating; Milked 2 × /day; 1 syringe / gland	[51] 1989	
Amoxicillin	Sheep; Comisana; adult; n = 10	US Tol: Not established. EMA MRL: Not established. HPLC	1.5 ppb	2.5 ppb	IM	12.5 mg/kg Amoxicillin trihydrate (long acting)	1	Milk	132 h (1.5 ppb)	6 days	Healthy	Lactating; Milked 2 × /day	[57] 2002		
Amoxicillin	Sheep; domestic dairy breed; adult; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	3 ppb	4 ppb	IMM w/ IM	200 mg Amoxicillin trihydrate; 50 mg potassium clavulanate; 50 mg prednisolone combo product (IMM) at 12 h intervals co-administered with 140 mg/35 mg per ml amoxicillin trihydrate/clavulanic acid (IM) at 24 h intervals		Milk	192 h (4.5 ppb)	>192 h	Diseased-mastitis	Lactating; 1 syringe/gland	[52] 2009	
Amoxicillin	Sheep; crossbred; NS; n = 36 study; n = 4/time pt Dairy type; adult; n = 20	US Tol: Not established. EMA MRL: Not established. LC-MS	5.8 ppb	25.6 ppb	IM	7 mg/kg Amoxicillin 7 daily	5	Liver	NS	48 h	NS	Healthy	NS	[46] 2012	
Amoxicillin				NS	NS	NS	7 mg/kg Amoxicillin 7 daily	5	Muscle	NS	48 h	NS	Healthy	NS	[46] 2012
Amoxicillin				NS	NS	NS	7 mg/kg Amoxicillin 7 daily	5	Fat	NS	48 h	NS	Healthy	NS	[46] 2012
				NS	NS	NS	7 mg/kg Amoxicillin 7 daily	5	Inj. Site	NS	48 h	NS	Healthy	NS	[46] 2012
				NS	NS	NS	7 mg/kg Amoxicillin 7 daily	5	Liver	NS	48 h	NS	Healthy	NS	[46] 2012
Amoxicillin	Sheep; Texel; adult; n = 12	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Ampicillin sodium	1	Milk	8 h (0.01 ppm §)	>8 h	Healthy	Diseased-mastitis	Lactating	[47] 1979
Table 3. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Ampicillin	Goats; Saanen; adult; n = 24 study	US Tol: Not established. EMA MRL: Not established.	HPLC	1.5 ppb	2.2 ppb	IM	15 mg/kg Amoxicillin † (long acting) at 72 hour interval	2	Milk	168 h (6.0 ppb)	193 h	Healthy	Mid-lactation; Milked 2 × /day	[34] 2010
Ampicillin	Sheep; Texel; adult; n = 12	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Ampicillin trihydrate	1	Milk	12 h (0.04 ppm§)	>12 h	Healthy	Diseased-mastitis	[47] 1979
Ampicillin	Sheep; NS; adult; n = 4	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	250,000 IU Ampicillin trihydrate	1	Milk	72 h (0.11 ppm)	96 h	NS	Lactating; Half syringe per gland	[93] 1977
Cloxacillin	Goats; Saanen; adult; n = 8	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.02 ppm	NS	IM	200 mg Cloxacillin at 48 h intervals	3	Milk	13 h (0.15 ppm§)	>13 h	Healthy		[52] 1984
Dicloxacillin	Sheep; Sarda; 2–3.5 years; n = 4	US Tol: Not established. EMA MRL: Not established.	HPLC	NS	0.02 ppm	IM	100 mg/half Dicloxacillin at 12 h intervals	3	Milk	60 h (0.109 ppm)	72 h	Healthy	Lactating; High production; Milked 2 × /day	[56] 2000
Nafcillin	Goats; NS; Adults; n = 220	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.012 ppm	0.015 ppm	IM	300,000 IU Procaine benzylpenicillin; 100 mg dihydrostreptomycin; 100 mg nafcillin	1	Milk	NS	3 days	Healthy	Dry off period (mean 61.0 ± 14.3 days SD (range 23–156 days); 1 tube per gland before drying off; Sample collected after kidding	[27] 1995
Nafcillin	Sheep; Lacaune; adult; n = 8	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.02 ppm	NS	IM	300,000 IU Procaine benzylpenicillin; 100 mg dihydrostreptomycin; 100 mg nafcillin	1	Milk	ND	2 days	Healthy	Dry off period (mean 112 days (range 95–222 days); 1 tube per gland before drying off; Sample collected after kidding	[28] 1995
Pen-ethamate	Goats; NS; Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	200,000 IU Penethamate (oil) 200,000 IU Penethamate (aqueous)	1	Milk	1 day (0.004 U/mL)	1 day	NS	Lactating	[98] 1966
Penicillin	Sheep; Awassi; Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	20 mg/kg Penicillin †	1	Milk	12 h (0.02 ppm§)	1 day	Healthy	Diseased-mastitis	[29] 1974
Table 3. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Penicillin	Goats; NS; Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Busaway	NS	NS	IM	200,000 IU Procaine penicillin (oil)	1	Milk	1 day (0.010 U/mL)	>1 day	Lactating	Dry off period (mean 61.0 ± 14.3 days (range 23–156 days) 1 tube per gland before drying off. Sample collected after kidding	[98] 1966
							200,000 IU Procaine penicillin (aqueous)	1	Milk	12 h (0.012 U/mL)	1 day		Early & mid-lactation; Milked 2x/day, 1 syringe per gland	[96] 1984
							500,000 IU Procaine penicillin (oil)	1	Milk	1 day (0.017 U/mL)	>1 day			[86] 1996
							500,000 IU Procaine penicillin (aqueous)	1	Milk	1 day (0.02 U/mL)	>1 day			
Penicillin	Goats; dairy type; 2-7 years; n = 10	US Tol: Not established. EMA MRL: Not established.	Busaway	0.002 IU/mL	0.004 IU/mL	IMM	300,000 IU Procaine benzylpenicillin, 100 mg dihydro-streptomycin, 100 mg nafcillin combo product	1	Milk	7 days Healthy	4 days	Healthy	Dry off period (mean 112 days (range 85–223 days) 1 tube per gland before drying off. Sample collected after lambing	[28] 1995
							100,000 IU Procaine G penicillin at 12 h intervals	3	Milk	60 h (0.49 ppm §)	>60 h			[61] 2010
Penicillin	Sheep; NS; n = 2	US Tol: Zero. EMA MRL: Not established.	LC-MS	0.005 ppm	NS	IM	1500 mg Benzylpenicillin daily	5	Liver	2 days (0.24 ppm)	>2 days	Healthy		
							Kidney Muscle	2 days (0.07 ppm)	>2 days	NS		[95] 1996		
Penicillin	Sheep; Lacaune; adult; n = 8	US Tol: Zero. EMA MRL: Not established.	Busaway	0.016 ppm	NS	IMM	300,000 IU Procaine benzylpenicillin, 100 mg dihydro-streptomycin, 100 mg nafcillin	1	Milk	3 days (0.01 ppm §)	4 days	Healthy		
Penicillin	Sheep; NS; 14-17 months; n = 10/1 study; n = 0/2 time pt	US Tol: Zero. EMA MRL: Not established.	Busaway	0.0125 ppm	NS	IM	3000 IU/lt Penicillin G penicillin daily	4	Liver	NS	9 days	Healthy		
							Kidney Muscle	NS	9 days	NS				
							Fat	NS	9 days	NS		[61] 2010		
							Inj. Site	NS	9 days	NS				
Penicillin	Sheep; Awassi; adult; n = 3	US Tol: Zero. EMA MRL: Not established.	Busaway	NS	NS	IV	20 mg/kg Penicillin †, then 10 mg/kg for 4 doses 45 min interval	5	Milk	26 h (0.01 ppm §)	48 h	Healthy	Lactating; Milked 2x/day	[24] 1973
Penicillin	Sheep; Sardinian; Adult; n = 5	US Tol: Zero. EMA MRL: Not established.	Radioactivity	NS	NS	IV	20 mg/kg Penicillin † (radiolabeled), then 10 mg/kg for 4 doses 45 min interval	5	Milk	9 h (0.10 ppm §)	10 h	Healthy		
Penicillin	Sheep; domestic dairy breed; adult; n = 10	US Tol: Zero. EMA MRL: Not established.	HPLC	2.6 ppb	8.8 ppb	IM	24 mg/kg Penicillin G sodium	1	Milk	8 days (0.01 ppm)	> 9 days	NS	Lactating; Milked 2x/day	[50] 1998
Penicillin	Sheep; domestic dairy breed; adult; n = 10	US Tol: Zero. EMA MRL: Not established.	Busaway	3 ppb	4 ppb	IMM co-administered w/IM	1,000,000 IU Benzyloxycarbonyl penicillin (IM) daily co-administered with 250,000 IU benzylpenicillin (IM) at 24 h intervals	5	Milk	192 h (8.9 ppm)	192 h	Diseased	Lactating; 1 syringe/gland	[12] 2009

Salt form unclear or not stated in article. § = number. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. † Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). Abbreviations: 2x/day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, PO = per os, POMF = per os as medicated feed, SC = subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million, mL = milliliter.
3.4. Cephalosporins

Cephalosporins (first-generation: cephapirin, cefacetrile, cephalothin, cephradine, cephalaxin; second-generation: cefonicid; third-generation: ceftazidime, ceftiofur, ceftriaxone; fourth-generation: cefquinome, cefepime) are beta-lactam antibiotics divided into five ‘generations’ based on the spectrum of activity (first-generation cephalosporins are active against Gram-positive bacteria but not Gram-negative bacteria, while each consecutive generation has increased activity against Gram-negative bacteria with decreased Gram-positive activity). In the United States, cephalosporins are permitted to be used in an extra-label manner in minor species, such as sheep and goats, unlike major food producing species (cattle, swine, chickens & turkeys).

In general, cephalosporins have low penetration into milk [62–66] with variable pharmacokinetic parameters and slower milk depletion in mastitic animals [67,68]. Cephalexin exhibited a nearly double terminal serum elimination half-life in ewes compared to cattle, in addition to increased concentrations of cephalexin residues [69]. Cephapirin exhibited a longer presence of residues in goat samples compared to cattle when used for mastitis treatment [70].

Ceftiofur sodium (Naxcel®) is currently the only FDA-approved cephalosporin for use in sheep and goats with a 0 day meat and milk withdrawal time. Pharmacokinetic parameters of both intravenous and intramuscular ceftiofur sodium are found to be similar between sheep and goats when administered at the same dose [71]. Table 4 summarises the published literature evaluating edible tissue or milk residues of cephalosporins following treatment of sheep and goats.
Table 4. Cephalosporin residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Cefepime	Goat; NS; Adult; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	20 mg/kg Cefepime	1	Milk	12 h (0.27 ppm)	>12 h	Healthy	Lactating: Milked 2x/day	[62] 2004
Cefepime	Goat; NS; 1 year; n = 5	US Tol: Not established. EMA MRL: Not established.	HPLC	1.15 ppm	3.49 ppm	IM	20 mg/kg Cefepime	1	Milk	12 h (0.25 ppm)	>12 h	Healthy	Lactating: Milked 1x/day	[7] 2010
Cefonicid	Goat; Montanara-Granadina; 2–4 years; n = 6	US Tol: Not established. EMA MRL: Not established.	HPLC	500 ppb	790 ppb	IV	10 mg/kg Cefonicid sodium	1	Milk	<LOQ @ 1 h	1 h	Healthy	Lactating: Milked 1x/day	[63] 2020
Cef-quinome	Goat; Zaraibi; 30–36 months; n = 5	US Tol: Not established. EMA MRL: Not established.	HPLC	0.006 ppm	0.027 ppm	IV	3 mg/kg Cefquinome sulfate	1	Milk	48 h (0.01 ppm)	>2 days	Healthy	Lactating: Milked 1x/day	[67] 2019
Cef-quinome	Goat; Zaraibi; 30–36 months; n = 5	US Tol: Not established. EMA MRL: Not established.	IMM	0.006 ppm	0.027 ppm	IM	75 mg Cefquinome sulfate	1	Milk	120 h (0.01 ppm)	>120 h	Healthy	Early & mid-lactating: 1 full tube per gland	[64] 2019
Cef-tazidime	Goat; Creole; Adult; n = 1	US Tol: Not established. EMA MRL: Not established.	Bioassay	0.125 ppm	0.3 ppm	IM	10 mg/kg Cefotaxime	1	Milk	12 h (0.02 ppm)	>12 h	Healthy	Lactating: Milked 2x/day	[7] 2011
Ceftriaxone	Goat; Alpine & Alpine-Saanen; 4 years; n = 6	US Tol: 100 ppb (milk). EMA MRL: extrapolated from bovine to all mammalian species 100 ppb (milk).	HPLC	NS	0.05 ppm	IV	2.2 mg/kg Ceftriaxone sodium	1	Milk	24 h (NS)	2 days	Healthy	Lactating: Milked 2x/day	[7] 1994
Ceftriaxone	Sheep; NS; Adult; n = 9	US Tol: 100 ppb (milk). EMA MRL: extrapolated from bovine to all mammalian species 100 ppb (milk).	HPLC	NS	NS	IM	2 mg/kg Ceftriaxone sodium daily	5	Milk	<LOQ @ 12 h	12 h	Healthy	Lactating	[7] 2006
Ceftriaxone	Goat; mixed dairy type; 28 months; n = 5	US Tol: 100 ppb (milk). EMA MRL: extrapolated from bovine to all mammalian species 100 ppb (milk).	LC-MS	NS	20 ppb	IM	125 mg Ceftriaxone hydrochloride sodium	2	Milk	72 h (37 ppm)	4 days	Healthy	Milk: Early lactation: Milked 2x/day Left udder half infused	[7] 2015
Ceftriaxone	Goat; Dairy type; 1.5–2 years; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	20 mg/kg Ceftriaxone sodium	1	Milk	2 h (0.11 ppm)	2.5 h	Healthy	Lactating	[61] 2013
Table 4. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information Source/Year
Ceftriaxone	Goat; NS; 2–2.5 years; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.2 ppm	IV	20 mg/kg Ceftriaxone 20 mg/kg Ceftriaxone	1	Milk	8 h (0.36 ppm) 10 h	10 h	Healthy Lactating	[60] 2005
Ceftriaxone	Sheep; native breed; 2–5 years; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	0.1 ppm	IV	20 mg/kg Ceftriaxone 20 mg/kg Ceftriaxone	1	Milk	10 h (0.22 ppm) 12 h	12 h	Healthy Lactating	[75] 2006
Ceph-acetrile	Sheep; Texel; adult; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	12 mg/kg Benzathinecephalothin	1	Milk	24 h (NS) >1 day	24 h	Healthy Lactating	[76] 2005
Cephalexin	Goat; NS; 1 year; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Cephalexin	1	Milk	8 h (0.46 ppm) >8 h	Healthy	Late lactation	[77] 1998
Cephalexin	Sheep; Awassi; adult; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	10 mg/kg Cephalexin	1	Milk	8 h (0.19 ppm) >12 h	Healthy	Early lactation; Restricted diet	[78] 1996
Cephalothin	Goat; Creole; adult; n = 20	US Tol: Not established. EMA MRL: Not established.	HPLC	0.01 ppm	NS	IV	50 mg/kg Cephalothin	1	Milk	12 h (0.31 ppm) >8 h	Healthy	Early lactation; Balanced diet	[79] 1986
Cephapirin	Goat; French Alpine; 1–7 years; n = 20	US Tol: Not established. EMA MRL: Not established.	HPLC	0.01 ppm	NS	IV	200 mg Cephapirin at 12 h intervals	1	Milk	6 h (0.08 ppm) >8 h	Healthy	Early lactation; Restricted diet	[80] 2007
Cephradine	Goat; dairy type; 2–7 years; n = 10	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IMM	200 mg Sodium cephradine at 12 h intervals	2	Milk	ND > 192 h 8 days	Healthy	Early lactation; Milked 2 × /day	[81] 1986
Cephradine	Goat; NS; adult; n = 4	US Tol: Not established. EMA MRL: Not established.	Spectrophotometrically	0.2 ppm	NS	IMM	50 mg/kg Cephradine 30 mg/kg Cephradine at 12 h intervals	1	Milk	8 h (1.55 ppm) 12 h	Healthy and Diseased	Lactating	[82] 1994

§ Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). # = number. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: 1 × /day: once daily. 2 × /day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, SC = subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
3.5. Fluoroquinolones/Quinolones

Fluoroquinolones (ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, levofloxacin, marbofloxacin, moxifloxacin, norfloxacin, orbifloxacin, pefloxacin, sarafloxacin) are broad-spectrum antibiotics that exhibit concentration-dependent bactericidal activity via inhibition of DNA gyrase in bacterial cells. As a drug class, fluoroquinolones exhibit a high lipid solubility, low protein binding, high bioavailability (especially after parenteral administration) and large volumes of distribution in most species, including small ruminants [81–95]. Due to the importance of fluoroquinolones to human health, fluoroquinolones are prohibited from extra-label drug use in food-producing species in the United States.

Studies suggest that the pharmacokinetics of fluoroquinolones change during lactation due to the increased elimination of the drug from serum [88,96]. Additionally, multiple fluoroquinolones extensively penetrate into milk, with some drugs in the class exhibiting up to a 10× higher concentration in milk compared to plasma or serum [88,96–98]. This variation can be useful in mastitis cases since these drugs can accumulate in the milk at concentrations above the MIC for a sustained period of time [96,97,99].

In the United States, there are no fluoroquinolones FDA-approved for use in small ruminants, and due to the stipulations outlined by AMDUCA in the CFR, fluoroquinolones are prohibited from extra-label use in food-producing species [6]. In the European Union, flumequine is the only approved fluoroquinolone for use in sheep, while MRLs have been extended from bovine species to all food-producing species for enrofloxacin. Table 5 summarizes the published literature evaluating edible tissue or milk residues of quinolones following treatment of sheep and goats.
Analyte	Species, Breed, Age, # of Animals	Tolerance/ MRL	Analytical Method	LOQ	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year
Ciprofloxacin	Goats; Nil, adult; n = 6	US Tol: Prohibited. EMA MRL: Not established.	Bioassay	0.05 ppm	NS	IV	4 mg/kg Ciprofloxacin	1	Milk	24 h (0.07 ppm)	30 h	Healthy	Lactating	[61] 2014
Ciprofloxacin	Goats; Baladi; 30-36 months; n = 5	US Tol: Prohibited. EMA MRL: Not established.	Bioassay	0.01 ppm	NS	IV	5 mg/kg Ciprofloxacin	1	Milk	10 h (0.11 ppm)	18 h	Healthy	Lactating	[62] 1998
Danofloxacin	Goats; Murciano-Granadina; 1.5–3 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	0.005 ppm	0.005 ppm	SC	6 mg/kg Danofloxacin	1	Milk	36 h (0.01 ppm)	48 h	Healthy	Lactating	[63] 2007
Danofloxacin	Sheep; Manchega; 2–4 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	0.005 ppm	0.005 ppm	SC	6 mg/kg Danofloxacin	1	Milk	36 h (0.02 ppm)	48 h	Healthy	Lactating	[64] 2007
Danofloxacin	Sheep; Assaf, adult; n = 12	US Tol: Prohibited. EMA MRL: Not established.	Bioassay	0.04 ppm	NS	IV	1.25 mg/kg Danofloxacin	1	Milk	24 h (0.07 ppm)	>1 day	Healthy	Mal-lactating	[65] 2007
Danofloxacin	Sheep; Assaf; 2–3 years; n = 5	US Tol: Prohibited. EMA MRL: Not established.	HPLC	4 ppb	5 ppb	IM	1.25 mg/kg co-administered with 0.2 mg/kg tetramethrin	1	Milk	24 h (0.07 ppm)	>4 h	Healthy	Mal-lactating	[66] 2011
Danofloxacin	Sheep; Assaf; 2–3 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	4 ppb	5 ppb	IM	1.25 mg/kg Danofloxacin	1	Milk	24 h (0.08 ppm)	>4 h	Healthy	Mal-lactating	[67] 2013
Danofloxacin	Sheep; Assaf; 2–3 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	100 ppb	1	IM	1.25 mg/kg Danofloxacin	1	Milk	24 h (0.03 ppm)	>4 h	Healthy	Mal-lactating	[68] 2013
Danofloxacin	Sheep; Assaf, adult; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	19 ppb		IM	1.25 mg/kg Danofloxacin standard diet	1	Milk	24 h (0.05 ppm)	>24 h	Healthy	Mal-lactating	[69] 2016
Difloxacin	Goats; Mastiano-Granadina; 4-5 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	10 ppb		IV	5 mg/kg Difloxacin	1	Milk	40 h (0.02 ppm)	72 h	Healthy	Lactating	[70] 2010
Difloxacin	Goats; Mastiano-Granadina; 4-5 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC	10 ppb		SC	5 mg/kg Difloxacin	1	Milk	36 h (0.02 ppm)	48 h	Healthy	Lactating	[71] 2011
Table 5. Cont.

Analyte	Species, Breed, Age, # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)*	Health Status	Additional Information	Source/ Year		
Enrofloxacin	Goats; Sham; 2-3 years; n = 10	US Tol: Prohibited; EMA MRL extension from bovine to all food producing species: 100 ppb (milk)	Bioassay	NS	0.02 ppm	IV	5 mg/kg Enrofloxacin co-administered with 7.5 mg/kg albendazole PO	1	Milk	24 h (0.06 ppm)	36 h	Healthy	Lactating	2005		
						IV	5 mg/kg Enrofloxacin co-administered with 7.5 mg/kg albendazole PO	1	Milk	24 h (0.11 ppm)	24 h					
						IM	5 mg/kg Enrofloxacin co-administered with 7.5 mg/kg albendazole PO	1	Milk	36 h (0.08 ppm)	48 h					
						IM	5 mg/kg Enrofloxacin	1	Milk	24 h (0.16 ppm)	36 h					
	Goats; Montano-Granadina; 2.5-3.5 years; n = 6	US Tol: Prohibited; EMA MRL extension from bovine to all food producing species: 100 ppb (milk)	HPLC	NS	NS	SC	5 mg/kg Enrofloxacin	1	Milk	NS	NS†	Healthy	Lactating	2009		
						IV	5 mg/kg Enrofloxacin (long acting)	1	Milk	NS	NS‡					
						SC	5 mg/kg Enrofloxacin (long acting)	1	Milk	NS	NS§					
	Goats; Neo-natal	US Tol: Prohibited; EMA MRL extension from bovine to all food producing species: 100 ppb (milk)	HPLC	NS	10 ppb	PO	7.5 mg/kg Enrofloxacin	1	Milk	30 h (0.08 ppm)	36 h					
							5 mg/kg Enrofloxacin	1	Milk	36 h (0.02 ppm)	48 h					
	Sheep; Neo-natal	US Tol: Prohibited; EMA MRL by extension from bovine to ovine: 200 ppb (liver, 200 ppb (kidney)); 100 ppb (muscle, fat)	HPLC	NS	10 ppb	PO	7.5 mg/kg Enrofloxacin	1	Milk	24 h (0.03 ppm †)	24 h (0.15 ppm †)	>24 h		Healthy	Lactating	1998
	Sheep; crossbred; 2-4 years; n = 6	US Tol: Prohibited; EMA MRL extension from bovine to all food producing species: 100 ppb (milk)	Bioassay	NS	0.019 ppm	IV	2.5 mg/kg Enrofloxacin	1	Milk	24 h (0.09 ppm †)	>24 h	Healthy	Lactating; Milked 2×/day	2005		
						IM	2.5 mg/kg Enrofloxacin	1	Milk	24 h (0.05 ppm †)	>24 h	Healthy	Lactating; Milked 2×/day	2006		
	Sheep; Assid; 2-3 years; n = 12	US Tol: Prohibited; EMA MRL extension from bovine to all food producing species: 100 ppb (milk)	HPLC	NS	NS	IM	2.5 mg/kg Enrofloxacin co-administered with 14 mg/kg gentamycin IM	1	Milk	24 h (0.09 ppm †)	>24 h	Healthy	Lactating; Milked 2×/day	2005		
Table 5. Cont.

Analyte	Species, Breed, Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment When Residues Were Detected)	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Ibafloxacin	Goats; Murciano-Granadina; 3–4 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC NS	0 ppb	IV	15 mg/kg Ibafloxacin	1 Milk	6 h (0.05 ppm §)	12 h	Healthy Lactating	[89] 2007			
Levofloxacin	Goats; NS; 3–5 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	Bioassay NS	0.05 ppm	IV	4 mg/kg Levofloxacin hemihydrate	1 Milk	36 h (0.06 ppm §)	48 h	Healthy Lactating	[90] 2009			
Marbofloxacin	Goats; Anglo-nubian; 3–5 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC NS	0.025 ppm	IV	5 mg/kg Marbofloxacin	1 Milk	36 h (0.06 ppm §)	48 h	Healthy Lactating	[91] 2017			
Moxifloxacin	Goats; Murciano-Granadina; 3–4 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC NS	0 ppb	IV	2.5 mg/kg Moxifloxacin	1 Milk	24 h (0.05 ppm §)	>24 h	Healthy Mid-lactation	[92] 1997			
Norfloxacin	Sheep; crossbred; adult; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC NS	0.07 ppm	IV	25 mg/kg Norfloxacin nitrate	1 Milk	24 h (10 ppm)	>24 h	Healthy Lactating	[109] 2001			
Oritrifloxacin	Goats; Murciano-Granadina; 3–4 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	HPLC 20 ppb	25 ppb	SC	2.5 mg/kg Oritrifloxacin	1 Milk	12 h (0.05 ppm §)	24 h	Healthy Lactating	[107] 2007			
Oritrifloxacin	Sheep; Barky; 4–6 years; n = 6	US Tol: Prohibited. EMA MRL: Not established.	Bioassay NS	0.04 ppm	IM	2.5 mg/kg Oritrifloxacin	1 Milk	24 h (0.06 ppm §)	48 h	Healthy Lactating	[94] 2009			
Pefloxacin	Goats; Egyptian; 2 years; n = 5	US Tol: Prohibited. EMA MRL: Not established.	Bioassay NS	0.025 ppm	IV	10 mg/kg Pefloxacin	1 Milk	10 h (0.1 ppm)	12 h	Healthy Lactating	[95] 2002			
Table 5. Cont.

Analyte	Species, Breed, Age, # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	# of Doses	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year
Flumequine	**Sheep** US Tol: Not established, EMA established MRL: 300 ppb (liver), 300 ppb (kidney), 50 ppb (muscle, fat, skin).	HPLC NS 10 ppb IM	12 mg/kg Flumequine for first dose, then 6 mg/kg at 12 h intervals	10	Muscle	7-OH: 78 h (13.8 ppb) Flu: 78 h (100 ppb)	**Liver** 100 ppb	Flu: >78 h	Flu: >78 h	**NS** NS	[109] 1997	
						7-OH: 36 h (43.5 ppb) Flu: >78 h	**Kidney** 100 ppb	Flu: >78 h	7-OH: >78 h	**NS** NS	[109] 1997	
						7-OH: 30 h (13.5 ppb) Flu: >78 h	**Fat** 100 ppb	Flu: >90 h	7-OH: >78 h	**NS** NS	[109] 1997	
						7-OH: 0.018 ppm IV 2.5 mg/kg	**Int. Site** 100 ppb	Flu: >78 h	7-OH: >78 h	**NS** NS	[109] 1997	
						7-OH: 0.018 ppm IV 2.5 mg/kg	Enrolbactam	Flu: >78 h	7-OH: >78 h	**NS** NS	[109] 1997	
7-Hydroxy-	**Sheep; NS; NS; 300 ppb (liver),	HPLC NS 5 ppb IM	12 mg/kg Flumequine for first dose, then 6 mg/kg at 12 h intervals	6	Muscle	7-OH: 78 h (10 ppb) Flu: 78 h (13.5 ppb)	**Liver** 100 ppb	Flu: >78 h	7-OH: >78 h	**Healthy** NS	[109] 1998	
flumequine	300 ppb (kidney), 50 ppb (muscle, fat, skin).					7-OH: 30 h (13.5 ppb) Flu: >78 h	**Kidney** 100 ppb	Flu: >78 h	7-OH: >78 h	**Healthy** NS	[109] 1998	
						7-OH: 30 h (13.5 ppb) Flu: >78 h	**Muscle** 100 ppb	Flu: >78 h	7-OH: >78 h	**Healthy** NS	[109] 1998	
						7-OH: 0.018 ppm IV 2.5 mg/kg	**Fat** 100 ppb	Flu: >78 h	7-OH: >78 h	**Healthy** NS	[109] 1998	

6 Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). # = number. 5 Enrofloxacin parent half-life reported = 2.74 h; Ciprofloxacin metabolite half-life = 4.79 h. 1 Intravenous half-life reported= 5.39 h. 2 Subcutaneous half-life reported= 14.85 h. 3 Enro; Enrofloxacin. 4 Cipro; Ciprofloxacin. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. 1 LOD and LOQ values should be confirmed with authors; however, they are reported as published. Abbreviations: 1 ×/day: once daily. 2 ×/day: twice daily. 7-OH: 7-hydroxyflumequine. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. FLU: flumequine. MRL: Maximum residue limit. NS: Not specified. Routes of Administration: IM = intramuscular, IV = intravenous, PO = per os, SC = subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
3.6. Macrolides

Macrolides (erythromycin, gamithromycin, spiramycin, tilmicosin, tulathromycin and tylosin) are a group of bacteriostatic compounds that bind to the 50S bacterial ribosomal subunit inhibiting bacterial protein synthesis and cell growth [110]. These antibiotics are effective against Mycoplasma spp. and Gram-positive organisms, and less effective against Gram-negative organisms.

Penetration into tissues, milk and blood are shown to be relatively quick with high systemic availability [111]. Macrolides show good penetration and distribution into the udder. In particular, tilmicosin and tulathromycin have been shown to have persistent drug residues in the milk [112–117], thus they are not recommended for use in lactating animals. Erythromycin, spiramycin and tylosin also exhibit good udder penetration, but result in shorter withdrawal intervals [29,60,111,118–122]. Some small ruminant macrolide pharmacokinetic parameters (absorption, volume of distribution and elimination) were found to be similar to those reported in cattle [111,112,116,123,124].

In the United States, the only FDA-approved macrolide for use in sheep is tilmicosin; however, this approval specifically excludes lactating sheep. Therefore, no tolerance has been established for milk. In the European Union, multiple macrolides are approved for use in small ruminants: gamithromycin and tilmicosin in sheep, and tulathromycin in both sheep and goats. Additionally, MRLs have been extended from other species for erythromycin, tilmicosin (in goats) and tylosin. Table 6 summarizes the published literature evaluating edible tissue or milk residues of macrolides following treatment of sheep and goats.
Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues WERE Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year	
Erythromycin	Goat; dairy type; 2–7 years; n = 10	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk)	Bioassay	NS	NS	IM	300 mg Erythromycin at 12 h intervals	3	Milk	24 h (0.05 ppm §)	36 h	Healthy	Early & mid-lactation; Milked 2x/day, Whole tub per gland	NW	1984
Erythromycin	Goat; NS; adult; n = 6	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk)	Bioassay	NS	0.024 ppm	IV IM	10 mg/kg Erythromycin. 15 mg/kg Erythromycin.	1	Milk	12 h (0.14 ppm §)	>12 h	Healthy	Early lactation	[221]	2007
Erythromycin	Sheep; NS; 3–4 years; n = 6	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk)	Bioassay	NS	0.039 ppm	IV IM SC	10 mg/kg Erythromycin.	1	Milk	12 h (0.14 ppm §)	24 h	Healthy	Lactating	[111]	2007
Erythromycin	Sheep; NS; NS; n = 20 study; n = 4/time pt	US Tol: Not established. EMA established MRL: 200 ppb (liver, kidney, muscle, fat).	Bioassay	NS	Liver: 250 ppb Kidney: 250 ppb Muscle: 200 ppb Fat: 200 ppb Inj Site: 200 ppb	IM	10 mg/kg Erythromycin daily	5	Liver	1 day (1.22 ppm)	3 days	Healthy		NS	2000
						Kidney	1 day (0.77 ppm)	3 days							
					Muscle	1 day (0.42 ppm)	3 days								
					Fat	ND	1 day								
					Inj Site	15 days (0.37 ppm)	>15 days								
					Liver	1 days (0.41 ppm)	3 days								
					Kidney	1 days (0.09 ppm)	3 days								
					Muscle	1 days (0.07 ppm)	3 days								
					Fat	ND	1 day								
					Inj Site	6 days (0.40 ppm)	9 days								
Table 6. Cont.

Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LDQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year
Gamithromycin	Sheep; Merino; 5–6 months; n = 9 study; n = 3/time pt	US Tol: Not established. EMA MRL: Not established.	LS-MC	NS	10 ppb	SC	6 mg/kg Gamithromycin	1	Skin	10 days (276 ppb)	>10 days	Healthy	NS	[29] 2014
Gamithromycin	Sheep; NS; 7 months; n = 35 study; n = 5/time pt	US Tol: Not established. EMA established MRL: 300 ppb (liver); 200 ppb (kidney); 50 ppb (muscle & fat).	LS-MC	NS	NS	SC	5 mg/kg Gamithromycin	1	Liver	NS	NS	Healthy	NS	[26] 2016
Spirotonycin	Sheep; Awassi; adult; n = 1	US Tol: Not established. EMA MRL: Not established.	Bioassay Radioactivity	NS	NS	IV	20 mg/kg Spirotonycin adipate	1	Milk	60 h (2.78 ppm §)	>96 h	Healthy	Lactating; Milked 2×/day	[24] 1973
Spirotonycin	Sheep; Awassi; Adult; n = 2	US Tol: Not established. EMA MRL: Not established.	Bioassay Radioactivity	NS	NS	IM	20 mg/kg Spirotonycin adipate	1	Milk	56 h (2.40 ppm §)	>56 h	Healthy	Diseased-mastitis	[25] 1974
Tilmicosin	Goats; NS; 2.5–3 years; n = 5	US Tol: Not established. EMA MRL by extention from ovine to all food producing species: 40 ppb (milk).	Bioassay	10 ppb	NS	SC	10 mg/kg Tilmicosin	1	Milk	11 days (0.04 ppm §)	12 days	Healthy	Early lactation	[13] 1997
Tilmicosin	Sheep; Barki; 2–3 years; n = 5	US Tol: Not established. EMA MRL: 40 ppb (milk).	Bioassay	0.1 ppm	SC	10 mg/kg Tilmicosin phosphate	1	Milk	8 days (0.08 ppm §)	>8 days	Healthy	Mid-lactation	[127] 1999	
Tilmicosin	Sheep; Suffolk crossed; adult; n = 4	US Tol: Not established. EMA MRL: 40 ppb (milk).	HPLC	50 ppm	NS	SC	10 mg/kg Tilmicosin	1	Milk	11 days (48 ppb)	>11 days	NS	Early & mid-lactation; Milked 2×/day	[23] 1994
Table 6. Cont.

Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year
Tilmicosin	Sheep; Beulah Cross; 10–11 weeks; n = 14 study (slaughter 4 time pts)	Radioactivity	NS	NS	SC	20 mg/kg Tilmicosin phosphate (radiolabeled)	1	Liver	28 days (2.7 ppm)	>28 days	Healthy			
							Muscle	28 days (1.55 ppm)	>28 days					
							Fat	28 days (0.26 ppm)	>28 days					
							Inj. Site	28 days (0.55 ppm)	>28 days					
							Liver	28 days (0.55 ppm)	>28 days					
							Inj. Site	28 days (0.55 ppm)	>28 days					
							Kidney	28 days (0.55 ppm)	>28 days					
							Muscle	7 days (193.5 ppm)	>21 days					
							Fat	7 days (77 ppm)	>7 days					
							Inj. Site	7 days (77 ppm)	>7 days					
							Kidney	28 days (121.8 ppm)	>28 days					
							Liver	56 days (81 ppb)	>56 days					
							Muscle	<LOQ @ 14 days	14 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	21 days (7 ppm)	>28 days					
							Liver	28 days (0.26 ppm)	>28 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	56 days (81 ppb)	>56 days					
							Liver	35 days (89 ppb)	>35 days					
							Fat	7 days (77 ppm)	>7 days					
							Inj. Site	7 days (77 ppm)	>7 days					
							Kidney	28 days (121.8 ppm)	>28 days					
							Liver	56 days (81 ppb)	>56 days					
							Muscle	<LOQ @ 14 days	14 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	21 days (7 ppm)	>28 days					
							Liver	28 days (0.26 ppm)	>28 days					
							Fat	<LOQ @ 14 days	14 days					

Source/ Year

[113] 1997

Additional Information

Healthy

Health Status

Healthy

Tilmicosin

Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/ Year
Tilmicosin	Sheep; NS; lambs; n = 12 study; n = 3/time pt	Radioactivity	NS	NS	SC	20 mg/kg Tilmicosin phosphate (radiolabeled)	1	Liver	28 days (2.7 ppm)	>28 days	Healthy			
							Muscle	28 days (1.55 ppm)	>28 days					
							Fat	28 days (0.26 ppm)	>28 days					
							Inj. Site	28 days (0.55 ppm)	>28 days					
							Liver	28 days (0.55 ppm)	>28 days					
							Inj. Site	28 days (0.55 ppm)	>28 days					
							Kidney	28 days (0.55 ppm)	>28 days					
							Muscle	7 days (193.5 ppm)	>21 days					
							Fat	7 days (77 ppm)	>7 days					
							Inj. Site	7 days (77 ppm)	>7 days					
							Kidney	28 days (121.8 ppm)	>28 days					
							Liver	56 days (81 ppb)	>56 days					
							Muscle	<LOQ @ 14 days	14 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	21 days (7 ppm)	>28 days					
							Liver	28 days (0.26 ppm)	>28 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	56 days (81 ppb)	>56 days					
							Liver	35 days (89 ppb)	>35 days					
							Fat	7 days (77 ppm)	>7 days					
							Inj. Site	7 days (77 ppm)	>7 days					
							Kidney	28 days (121.8 ppm)	>28 days					
							Liver	56 days (81 ppb)	>56 days					
							Muscle	<LOQ @ 14 days	14 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	21 days (7 ppm)	>28 days					
							Liver	28 days (0.26 ppm)	>28 days					
							Fat	<LOQ @ 14 days	14 days					
							Inj. Site	<LOQ @ 14 days	14 days					
							Kidney	56 days (81 ppb)	>56 days					
							Liver	35 days (89 ppb)	>35 days					
Table 6. Cont.

Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year	
Tilmicosin	Sheep; Suffolk crossbred; Adult; n = 4	US Tol: Not established. EMA established MRL: 50 ppb (milk).	HPLC	NS	50 ppb	SC	10 mg/kg Tilmicosin	1	Milk	15 days (0.3 ppm)	>15 days	Healthy	Early lactation	[114] 2008	
Tulathromycin	Goats; Boer; 5-7 months; n = 16 study; n = 4/time pt	US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (liver); 540 ppb (liver); 1800 ppb (kidney).	UPLC	0.7 ppb	2 ppb	SC	2.5 mg/kg Tulathromycin at 7-day interval	2	Liver	20 days (0.79 ppm)	>20 days	Healthy	NS	[123] 2012	
Tulathromycin	Goats; Mixed; 7-8 weeks; n = 6	US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (liver); 540 ppb (liver); 1800 ppb (kidney).	LC-MS	Liver: 0.75 ppm	Kidney: 0.29 ppm	Muscle: 0.24 ppm	2.5 mg/kg Tulathromycin	1	Liver	<LOD @ 14 days	14 days	Healthy	Juveniles		
Tulathromycin	Goats; Mixed; 7-8 months; n = 30 study; n = 4/time pt	US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (liver); 540 ppb (liver); 1800 ppb (kidney).	LC-MS	Liver: 0.75 ppm	Kidney: 0.29 ppm	Muscle: 0.24 ppm	2.5 mg/kg Tulathromycin	1	Liver	<LOD @ 14 days	14 days	Healthy	Juveniles		
Tulathromycin	Mixed; 2-3 weeks; n = 12	US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (liver); 540 ppb (liver); 1800 ppb (kidney).	LC-MS	Liver: 0.75 ppm	Kidney: 0.29 ppm	Muscle: 0.24 ppm	2.5 mg/kg Tulathromycin at 7-day interval	3	Muscle	<LOD @ 7 days	7 days	Healthy	Juveniles	NS [124] 2012	
Table 6. Cont.

Analyte	Species; Breed Age; # of Animals	Tolerance/ MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year	
Tulathromycin	Goats; dairy type; 2–5 years; n = 8	US Tol: Not established. EMA MRL: Not established.	HPLC	1.8 ppb	5.0 ppb	SC	2.5 mg/kg Tulathromycin	1	Milk	45 days (2 ppb) >45 days	Healthy	Lactating; Milked 2x/day	[115] 2016		
	Goats; NS; 30–36 months; n = 5	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IM	2.5 mg/kg Tulathromycin	1	Milk	19 days (0.08 ppm §) >19 days	Healthy	Lactating	[116] 2012		
	Goats; dairy type; 1–7 years; n = 8	US Tol: Not established. EMA MRL: Not established.	LS-MS	1.8 ppb	5.0 ppb	SC	2.5 mg/kg Tulathromycin at 7-day interval	2	Milk	56 days (0.3 ppm) >61 days	Healthy	Lactating; Milked 2x/day	[117] 2016		
Tulathromycin	Sheep; NS; NS; n = 30 study; n = 3/time pt	US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (liver); 3400 ppb (kidney).	LS-MC	NS			2.5 mg/kg Tulathromycin	1	Liver	35 days (0.3 ppm) >42 days	Healthy	NS	[130] 2015		
					Liver: 300 ppb										
				Kidney: 200 ppb											
				Muscle: 50 ppb											
				Fat: 50 ppb								[Inj Site: 50 ppb]			
				IM											
	Tylosin	Goats; NS; adult; n = 5	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk).	Bioassay	NS	NS	IV	15 mg/kg Tylosin	1	Milk	24 h (0.6 ppm) >24 h	Healthy	Lactating	[118] 1991	
				IM	15 mg/kg Tylosin	1	Milk	24 h (1.7 ppm) >24 h	Healthy	Lactating	[118] 1991				
	Tylosin	Sheep; Awassi; adult; n = 3	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk).	Bioassay	NS	NS	IM	20 mg/kg Tylosin	1	Milk	26 h (1.80 ppm) >26 h	Healthy	Diseased-mastitis	Lactating; Milked 2x/day	[119] 1973
	Tylosin	Sheep; Merinos; adult; n = 7	US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk).	HPLC	NS	NS	IM	10 mg/kg Tylosin	5	Milk	26 h (10.9 ppm) >48 h	Healthy	Lactating; Milked 2x/day	[120] 2011	

* § Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). # = number. ‡ Liver HL reported= 5.48 days; Kidney HL reported = 4.22 days; Muscle HL = 2.55 days; Fat HL reported = 2.62 days; Injection site core = 4.43 days; Injection site ring = 2.39 days. † Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: 2x/day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, SC = subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
3.7. Sulfonamides

Sulfonamides (sulfadiazine, sulfadimethoxine, sulfamethoxazole, sulfachlorpyrazine) are bacteriostatic antibacterial medications that compete with para-aminobenzoic acid disrupting folic acid synthesis. They are active against Gram-positive and Gram-negative bacteria and protozoa.

One study administered sulfonamides in both normal and mastitic ewes. Sulfonamide concentrations were found to be much higher in the mastitic ewe milk, which the authors attributed in part to the increase in milk pH of mastitic milk [131]. Another study found that some sulfonamides are found in the milk in higher concentrations than blood, whereas others (sulfathiazole, sulfadimidine, sulfadiazine and sulfacetamide) are found in the milk in lower concentrations than blood [132].

Due to the potential for allergic reactions to sulfonamides, caution must be exhibited to ensure food-products from small ruminants do not contain traces of sulfonamides [133,134]. In the US, extra-label use of sulfonamides is prohibited in dairy cattle 20 months of age and older, due to allergic potential of affected milk and increased violative residues.

In the United States, there are no sulfonamide products FDA-approved for use in small ruminants, whereas there are some sulfonamide active ingredients with established milk MRLs for small ruminants in the EU. Table 7 summarizes the published literature evaluating edible tissue or milk residues of sulfonamides following treatment of sheep and goats.
Table 7. Sulfonamide residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Sulfadimethoxine	Goat; NS; adult; n = 5	US Tol: Not established. EMA MRL: Not established.	Colorimetrically	NS	NS	PO	286 mg/kg sulfadimethoxine	1	Milk	2 days (NS)	3 days	Healthy	Lactating	[135] 2016
Sulfanilamide	Goat; NS; Adult; n = 1	US Tol: Not established. EMA established MRL: 100 ppm (milk).	Spectrometric	NS	NS	IMM	1000 mg Sulfanilamide	1	Milk	4 days (143 ppm)	>4 days	Healthy	Lactating; Single gland	[132] 1958
Sulfacetamide	Goat; NS; Adult; n = 1	US Tol: Not established. EMA established MRL: 100 ppm (milk).	Spectrometric	NS	NS	IMM	1000 mg Sulfacetamide	1	Milk	4 days (2520 ppm)	>4 days	Healthy	Lactating; Single gland	[132] 1958
Sulfanilamide	Sheep; NS; adult; n = 7	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV PO	150 mg/kg Sulfanilamide PO at 12 h intervals	8	Liver	8 days (79 ppm)	>8 days	Healthy	NS	[136] 1977
Sulfmethoxy-pyridazine	Sheep; NS; adult; n = 7	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	PO	35 mg/kg Sulfamethoxy-pyridazine once then 25 mg/kg Sulfamethoxy-pyridazine daily	4	Liver	8 days (55 ppb)	>8 days	Healthy	NS	[136] 1977
Sulfathiazole	Sheep; mixed; lambs; n = 15 study; n = 3/time pt	US Tol: Not established. EMA MRL: Not established.	Spectrometric	NS	NS	IV	72 mg/kg Sodium sulfathiazole	1	Liver	1 day (0.12 ppm ④)	>1 day	Healthy	NS	[137] 1977
Sulfamerazine	Sheep; mixed; 22 months; n = 13 study; n = 3/time pt	US Tol: Not established. EMA MRL: Not established.	HPLC	NS	0.1 ppm	PO	132 mg/kg Sulfamerazine once, then 66 mg/kg at 12 h intervals	6	Liver	5 days (0.11 ppm)	7 days	Healthy	NS	[138] 1972
Table 7. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analysis Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/ Year
Sulfa-merazine	Sheep; NS; adult; n = 12	US Tol: Not established. EMA MRL: 100 ppm (milk).	Spectrographic	NS	NS	PO	100 mg/kg Sulfamerazine	1	Milk	2 days (3.7 ppm)	>2 days	Healthy	Lactating; Full dose/gland	[139]
						IV	100 mg/kg Sulfamerazine	1	Milk	1 day (5.0 ppm)	2 days			
						IM	100 mg/kg Sulfamerazine	1	Milk	1 days (4.2 ppm)	2 days			
						IMM	500 mg Sulfamerazine	1	Milk	12 min (428 ppm)	>12 min			
Sulfa-	Goat; West African Dwarf; 1 year;	US Tol: Not established. EMA MRL: Not established.	Spectrographic	0.05 ppm	NS	IM	100 mg/kg Sulfadimidine	1	Liver	30 days (5.29 ppm)	>30 days	Healthy	NS	[133]
methazine	n = 20 study; n = 1/time point								Kidney	30 days (3.84 ppm)	>30 days			
									Muscle	30 days (2.01 ppm)	>30 days			
									Fat	30 days (4.84 ppm)	>30 days			
									Liver	30 days (5.33 ppm)	>30 days			
									Kidney	30 days (4.79 ppm)	>30 days			
									Muscle	30 days (1.38 ppm)	>30 days			
									Fat	30 days (4.53 ppm)	>30 days			
Sulfa-	Sheep; Targhee/Rambouillet; lambs; n = 16 study; n = 2/time pt	US Tol: Not established. EMA MRL: Not established.	Spectrographic	NS	NS	IV	107.25 mg/kg Sodium sulfamethazine	1	Liver	4 days (0.11 ppm)	>4 days	Healthy	NS	[134]
methazine									Kidney	4 days (0.14 ppm)	>4 days			
									Muscle	4 days (0.09 ppm)	>4 days			
									Fat	4 days (0.05 ppm)	>4 days			
Table 7. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year
Sulfa- methazine†	Sheep; crossbred; 2–3 years; n = 25 study; n = 5/time pt	US Tol: Not established. EMA MRL: Not established.	HPLC	NS	0.1 ppm	PO	391 mg/kg Sulfamethazine	1	Liver	4 days (0.3 ppm)	8 days	Healthy	NS	[140] 1991
									Kidney	4 days (0.25 ppm)	8 days			
									Muscle	4 days (0.2 ppm)	8 days			
									Fat	ND	4 days			
Sulfa- methazine†	Sheep; crossbred; adult; n = 10	US Tol: Not established. EMA Established MRL: 100 ppb (milk).	Spectro- metric	NS	NS	PO	15,000 mg Sulfamethazine	1	Milk	1 day (NS)	>1 day	Healthy		
									Milk	2 days (NS)	>2 days	Healthy		
									Milk	2 days (NS)	>2 days	Healthy		
									Milk	2 days (NS)	>2 days	Healthy		
									Milk	>53 h (NS)	>53 h	Diseased-mastitis	Lactating	[131] 1965

Note: * Denotes that residues were detected only at the last sampling time point.

† Indicates that the analyte is a sulfa-methazine.
Table 7. Cont.

Analyte	Species; Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point (Post-Last Treatment) *	Health Status	Additional Information	Source/Year
Sulfa-methazine†	Sheep; NS; NS; NS	NS NS NS PO	107.25 mg/kg Sulfamethazine	1	Liver Kidney Muscle Fat	2 days (0.1 ppm §) >2 days	Healthy NS	[141] 1978						
Sulfa-methazine†	Sheep; Suffolk; NS; n = 2; n = 1/time pt	Radioactivity NS NS NS PO	100 mg/kg Sulfamethazine (radiolabeled)	1	Liver Kidney Muscle	2 days (10 ppm) >2 days	Healthy NS	[142] 1983						
Sulfa-methazine†	Sheep; Balady; 2–4 years; n = 9 study; n = 3/time pt	NS NS NS IM	0.1 mg/kg Sulfadimidine	1	Liver Kidney Muscle	4 h (20 ppm) >4 h	Healthy NS	[143] 1980						
Sulfadiazine	Sheep; Balady; 2–4 years; n = 9 study; n = 3/time pt	NS NS NS IM	0.1 mg/kg Sulfadiazine	1	Liver Kidney Muscle	4 h (25 ppm) >4 h	Healthy NS	[143] 1980						

§ Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). # Number. † Sulfa-methazine and sulfadimidine are the same chemical/active ingredient. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, PO = per os. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
3.8. Tetracyclines

Tetracyclines (chlortetracycline, doxycycline oxytetracycline, tetracycline) are broad-spectrum antibiotics that act by inhibiting the 30S bacterial ribosomal subunit thus inhibiting protein synthesis. They are active against Gram-positive and Gram-negative bacteria, as well as some atypical mycobacteria and protozoa [144–146].

In oxytetracycline- and chlortetracycline-treated animals, milk production decreased 15% [147]. Infusion of drug into one half of the udder resulted in diffusion of low concentrations into the untreated udder half [147].

Following intramammary infusion of chlortetracycline, residues were detected for a shorter time in goat milk compared to cow milk; however, parenteral chlortetracycline administration results in similar milk residue depletion between goats and cows [122].

In the United States, there are multiple tetracycline approvals for both sheep and goats: chlortetracycline (mediated feed for sheep), oxytetracycline (sheep) and tetracycline (sheep and goats; only topical administration for goats). In the EU, MRLs have been determined for chlortetracycline, oxytetracycline and tetracycline in all food-producing species. Table 8 summarizes the published literature evaluating edible tissue or milk residues of tetracyclines following treatment of sheep and goats.
Table 8. Tetracycline residues in milk or edible tissue samples from sheep or goats following treatment.

Analyte	Species/Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matris	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year			
Chlortetra-cycline	Sheep; Chios & Friesian; adult; n = 4	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	Bioassay	NS	NS	IM	25 mg/kg Chlortetra-cycline hydrochloride	1	Milk	72 h (0.1 ppm)		Healthy	Lactating; Only right 1/2 of udder infused.	[147] 1982			
	Sheep; NS; lambs; NS	US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 100 ppb (liver); 100 ppb (kidney), 200 ppb (muscle).	NS	NS	Liver: 0.05 ppm Kidney: 0.025 ppm Muscle: 0.027 ppm Fat: 0.027 ppm	POMF	50 mg/kg Chlortetra-cycline daily	42	Liver	0 days (0.11 ppm)	2 days (0.06 ppm)	2 days (0.03 ppm)	ND	2 days	Healthy	NS	1996
Chlortetra-cycline	Sheep; NS; lambs; NS	US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 100 ppb (liver); 100 ppb (kidney), 200 ppb (muscle).	NS	NS	Liver: 0.05 ppm Kidney: 0.025 ppm Muscle: 0.027 ppm Fat: 0.027 ppm	POMF	50 mg/kg Chlortetra-cycline daily co-admin with 50 mg/kg sulfamethazine daily	42	Liver	0 days (0.21 ppm)	6 days (0.05 ppm)	0 days (0.04 ppm)	ND	4 days	Healthy	NS	1996
	Goat; NS; adult; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	5 mg/kg Doxy-cycline hydrochloride	1	Milk	48 h (0.12 ppm)	>2 days	Healthy	Lactating		[149] 1989		
Doxy-cycline	Goat; NS; 1.5-2 years; n = 6	US Tol: Not established. EMA MRL: Not established.	Bioassay	NS	NS	IV	5 mg/kg Minocycline hydrochloride	1	Milk	36 h (0.11 ppm)	2 days	Healthy	Lactating		[150] 1999		
Mino-cycline	Sheep; mixed breed; NS; n = 24, study; n = 4/time pt	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	Bioassay	0.5 ppm	NS	IM	20 mg/kg Oxytetracycline	1	Milk	72 h (NS)	>3 days	Healthy	Early lactation		[151] 1982		
Oxytetra-cycline	Sheep; mixed breed; NS; n = 24, study; n = 4/time pt	US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 100 ppb (milk).	Bioassay	HPLC	Liver: 85 ppb Kidney: 42 ppb Muscle: 65 ppb Fat: 45 ppb	IM	19.8 mg/kg Oxytetracycline (long acting)	1	Muscle	14 days	14 days	Healthy	NS	NS	[152] 1997		
Table 8. Cont.

Analyte	Species, Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matric	Last Sampling Time Point (Post-Last Treatment)	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment)	Health Status	Additional Information	Source/Year		
Oxytetracycline	Sheep; Sardinian; adult; n = 5	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	HPLC	5.2 ppb	17.5 ppb	IM	20 mg/kg Oxytetracycline	1	Milk	7 days (0.1 ppm §)	>7 days [153]	NS	Lactating, Milked 2 × /day	1999		
Oxytetracycline	Sheep; mixed breed; NS; n = 24 study; n = 4/time pt	US Tol: 8000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 150 ppb (liver); 500 ppb (kidney); 100 ppb (muscle).	HPLC	NS	Liver: 5 ppb	IM	20 mg/kg Oxytetracycline (long acting)	1	Liver	7 days (52 ppb)	>14 days	14 days	Healthy	NS [154]	2000	
Oxytetracycline	Sheep; NS; 16 months; n = 2 study; n = 1/time pt	US Tol: 8000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 150 ppb (liver); 500 ppb (kidney); 100 ppb (muscle).	LC-MS	Liver Ocy: 15.3 ppb	Liver 4-Epi †: 16.6 ppb	IM	30 mg/kg Oxytetracycline daily	5	Muscle	7 days (272.8 ppb)	>7 days	4-Epis †: 4 h (217.8 ppb)	4-Epis †: 2 days	Healthy	NS [155]	2008
4-epi-Oxytetracycline	Sheep; desert; 9–12 months; n = 12; study; n = 4/time pt	US Tol: 8000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 150 ppb (liver); 500 ppb (kidney); 100 ppb (muscle).	LC-MS	Liver Ocy: 15.3 ppb	Liver 4-Epi †: 16.6 ppb	IM	30 mg/kg Oxytetracycline daily	5	Muscle	7 days (272.8 ppb)	>7 days	4-Epis †: 4 h (217.8 ppb)	4-Epis †: 2 days	Healthy	NS [156]	2000

Source References
- [153](#)
- [154](#)
- [155](#)
- [156](#)
- [157](#)
- [158](#)
Table 8. Cont.

Analyte	Species/Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/Year						
Oxytetracycline	Sheep; Chios; 16 months; n = 30 study; n = 5/time pt	US Tol: 6000 ppb (liver), 12,000 ppb (kidney, fat), 2000 ppb (muscle)	EMA established MRL for all food producing species: 300 ppb (liver), 600 ppb (kidney), 100 ppb (muscle).	LC-MS	NS	IM	20 mg/kg Oxytetracycline daily	5	Muscle	Kidney	50 ppb	Kidney	50 ppb	Liver: 30 ppb	Liver	Oxy: 4 days [0.05 ppm]	4-Epi †: 2 days [0.05 ppm]	Healthy	NS	[146] 2009
4-epi-Oxytetracycline	Goat; Saanen; adult; n = 8	US Tol: Not established.		HPLC	NS	IM	20 mg/kg Oxytetracycline (long acting)	1	Milk	7.5 days (60 ppm)	14 days	Healthy	Lactating; Milked 2 ×/day	[137] 2000						
Oxytetracycline	Goat; mixed breed; NS; n = 32	US Tol: Not established.		HPLC	NS	NS	20 mg/kg Oxytetracycline (long acting)	1	Fat	7 days (385 ppb)	>14 days	Healthy	Lactating; Milked 2 ×/day	[143] 2002						
Oxytetracycline	Goat; Canary Island; adult; n = 5	US Tol: Not established.		HPLC	NS	IM	20 mg/kg Oxytetracycline (long acting)	1	Milk	178 h (0.46 ppm)	>178 h	Healthy	Lactating; Milked 2 ×/day	[160] 1995						
Oxytetracycline	Goat; Saanen; adult; n = 8	US Tol: Not established.		HPLC	NS	IM	15 mg/kg Oxytetracycline daily	4	Milk	100 h (0.46 ppm)	>300 h	Healthy	Lactating; Milked 2 ×/day	[139] 1994						
Oxytetracycline	Goat; Canary Island; adult; n = 5	US Tol: Not established.		HPLC	NS	IM	15 mg/kg Oxytetracycline daily	4	Milk	96 h (0.46 ppm)	>96 h	Healthy	Lactating; Milked 2 ×/day	[160] 1995						
Oxytetracycline	Goat; Saanen; adult; n = 8	US Tol: Not established.		LC-MS	15 ppb	50 ppb	20 mg/kg Oxytetracycline	1	Milk	180 h (0.46 ppm)	8 days	Healthy	Lactating; Milked 2 ×/day	[161] 2002						
Analyte	Species, Breed; Age; # of Animals	Tolerance/MRL	Analytical Method	LOD	LOQ	Route of Administration	Dose & Active Ingredient	# of Doses	Matrix	Last Sampling Time Point (Post-Last Treatment) When Residues Were Detected	Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) *	Health Status	Additional Information	Source/Year						
-------------	----------------------------------	--	-------------------	-----	-----	--------------------------	--------------------------	------------	--------	--	--	--------------	------------------------	-------------						
Oxytetracycline	Goat, Nubian, Alpine & LaMancha, adult; n = 15	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	HPLC	NS	NS	IM	426 mg Oxytetracycline hydrochloride per half at 12 h intervals	3	Milk	96 h (0.02 ppm §)	108 h	Healthy	Early & mid-lactation; Milkted 2 ×/day; 1 tube/ mammary gland	[60] 1984						
Oxytetracycline	Goat, Murciano-Granadina, adult; n = 5	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	HPLC	NS	NS	IM	20 mg/kg Oxytetracycline chloride at 48 h interval	1	Milk	2 days (0.25 ppm §)	>2 days	Healthy	Healthy	[162] 2001						
Oxytetracycline	Goat; NS; 2-7 years; n = 10	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	Bioassay	NS	NS	IM	426 mg Oxytetracycline hydrochloride per half at 12 h intervals	3	Milk	96 h (0.02 ppm §)	108 h	Healthy	Early & mid-lactation; Milkted 2 ×/day; 1 tube/ mammary gland	[60] 1984						
Tetracycline	Sheep, Awassi; Adult; n = 2	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	Bioassay	NS	NS	IM	20 mg/kg Tetracycline	1	Milk	48 h (0.08 ppm §)	>2 days	Healthy	Diseased-mastitis	[20] 1974						
Tetracycline	Sheep, Awassi; adult; n = 4	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	Radioactivity	NS	NS	IM	20 mg/kg Tetracycline (radiolabeled)	1	Milk	48 h (0.14 ppm §)	>2 days	Healthy	Diseased-mastitis	[20] 1974						
Tetracycline	Goat, Canary Island; adult; n = 5	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	HPLC	NS	NS	IM	15 mg/kg Tetracycline	4	Milk	96 h (0.01 ppm)	>96 h	Healthy	Lactating; Milkted 2 ×/day	[100] 1995						
Tetracycline	Goat; NS, adult; NS	US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk).	HPLC	NS	NS	IM	15 mg/kg Tetracycline daily	4	Milk	100 h (0.01 ppm)	>100 h	Healthy	Lactating	[139] 1994						

§ Data points manually extracted use scanning software (Webplot digitizer or UnScanIt 7.0). n = number. 4-epi-Oxytetracycline Metabolite. * Projected time for which residues could still be detected based on study protocol for sample collection time points and sample concentration results. Authors caution readers to critically evaluate these publications to estimate when full residue depletion might occur. Abbreviations: 2 ×/day: twice daily. LOD: Limit of detection. LOQ: Limit of quantification. EMA: European Medicines Agency. MRL: Maximum residue limit. ND: Not detected. NS: Not specified. Routes of Administration: IMM = intramammary, IM = intramuscular, IV = intravenous, PO = per os, POMF = per os as medicated feed, SC= subcutaneous. Units: s = seconds, min = minutes, h = hours, ppb = parts per billion, ppm = parts per million.
4. Conclusions

The judicious use of medications and drug residue avoidance is an important topic in animal agriculture and for veterinarians treating animals that provide food for humans. Although there are numerous published studies that describe drug residues in sheep and goat meat and milk, they are scattered throughout the primary literature. In this review, these studies are compiled, and data extracted for easy reference to help facilitate a comprehensive overview of the scientific data, with respect to drug residues in edible tissues and milk from sheep and goats for antibiotics used in small ruminant practice.

Author Contributions: Conceptualization, L.A.T.; methodology, L.A.T.; visualization, M.O.C.; writing—original draft preparation, E.D.R. and L.A.T.; writing—review and editing, K.L.M. and C.E.D.; project administration, L.A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by United States Department of Agriculture, National Institute of Food and Agriculture, Food Animal Residue Avoidance and Depletion Program grant numbers 2020-41480-32518 and 2021-41480-35268.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this review are included in the main manuscript and included tables. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AMDUCA Animal Medicinal Drug Use Clarification Act of 1994
CFR Code of Federal Regulations
EMA European Medicines Agency
FAO Food and Agriculture Organization of the United Nations
FARAD Food Animal Residue Avoidance and Depletion Program
FDA Food and Drug Administration
MIC Minimum inhibitory concentration
MRL Maximum residue limit
NSAIDs Non-steroidal anti-inflammatory drugs
USDA United States Department of Agriculture
WHO World Health Organization

References

1. Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small Ruminants: Farmers’ Hope in a World Threatened by Water Scarcity. *Animals* 2019, 9, 456. [CrossRef] [PubMed]
2. Food and Agriculture Organization of the United Nations. FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#compare (accessed on 22 November 2021).
3. Food and Drug Administration. *Minor Use/Minor Species*; Food and Drug Administration: Spring, MD, USA, 2022.
4. European Medicines Agency. *Guideline on Safety and Residue Data Requirements for the Establishment of Maximum Residue Limits in Minor Species*; European Medicines Agency: Amsterdam, The Netherlands, 2022.
5. Congress of the United States. *Minor Use and Minor Species Animal Health Act of 2004*; Congress of the United States: Washington, DC, USA, 2004.
6. Food and Drug Administration. *Title 21, Chapter I, Subchapter E, Part 530: Extralabel Drug Use in Animals*; Food and Drug Administration: Silver Spring, MD, USA, 2022.
7. Northcutt, J.K. Preslaughter factors affecting poultry meat quality. In *Poultry Meat Processing*; Woodhead Publishing: Cambridge, UK, 2000.
8. World Health Organization. *Critically Important Antimicrobials for Human Medicine 6th Revision*; World Health Organization: Geneva, Switzerland, 2018.
9. Riviere, J.E.; Craigmill, A.L.; Sundlof, S.F. Aminoglycosides. In *Handbook of Comparative Pharmacokinetics and Residues of Veterinary Antimicrobials*; CRC Press: Boca Raton, FL, USA, 1991.
10. European Medicines Agency Committee for Veterinary Medicinal Products. *Apramycin Summary Report (2)*; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 1999; Volume 526, pp. 1–8.

11. Heitzman, R. Dihydrostreptomycin Streptomycin. *Residues Some Vet. Drugs Anim. Foods* 1995, 41, 17–29.

12. Brown, S.; Riviere, J.; Coppoc, G.; Hinsman, E.; Carlton, W.; Steckel, R. Single intravenous and multiple intramuscular dose pharmacokinetics and tissue residue profile of gentamicin in sheep. *Am. J. Vet. Res.* 1985, 46, 69–74. [PubMed]

13. Brown, S.; Coppoc, G.; Riviere, J. Effects of dose and duration of therapy on gentamicin tissue residues in sheep. *Am. J. Vet. Res.* 1986, 47, 2373–2379. [PubMed]

14. Brown, S.; Baird, A. Evaluation of renal gentamicin depletion kinetic properties in sheep, using serial percutaneous biopsies. *Am. J. Vet. Res.* 1988, 49, 2056–2059.

15. The Upjohn Company. NADA 011-315 Neomycin 325/Neomix Ag 325 Soluble Powder—Supplemental Approval. (Date of Approval: 3 April 1996); F0I—Neomix- NADA 011-315; The Upjohn Company: Hastings, MI, USA, 1996; pp. 1–3.

16. European Medicines Agency Committee for Veterinary Medicinal Products. Neomycin Summary Report (2); EMEA/MRL/730/00-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 730, pp. 1–8.

17. Livingston, R.C. Neomycin. *Residues Some Vet. Drugs Anim. Foods* 1995, 41, 57–67.

18. National Library of Medicine. *Drugs and Lactation Database (LactMed)*; National Library of Medicine: Bethesda, MD, USA, 2006.

19. El-Sooud, K.A. Pharmacokinetics of amikacin in lactating goats. *Zent. Vet. Reihe A* 1999; 526, pp. 1–7.

20. Agrawal, A.; Singh, S.; Jayachandran, C. Pharmacokinetics of amikacin in goats after single intramuscular administration. *Indian J. Pharmocol.* 2001, 33, 374.

21. Haritova, A.; Lashev, L. Pharmacokinetics of amikacin in lactating sheep. *Vet. Res. Commun.* 2004, 28, 429–435. [CrossRef]

22. Ziv, G.; Kurtz, B.; Risenberg, R.; Glickman, A. Serum and milk concentrations of apramycin in lactating cows, ewes and goats. *J. Vet. Pharmacol. Ther.* 1995, 18, 346–351. [CrossRef]

23. El-Gendi, A.Y.; Amer, A.M.; Azooz, H.A. Disposition kinetics and milk residues of apramycin in goats. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 8th Congress, Jerusalem, Israel, 30 July–3 August 2000.

24. Ziv, G.; Bogin, E.; Shani, J.; Sulman, F.G. Distribution and blood-to-milk transfer of labeled antibiotics. *Antimicrob. Agents Chemother.* 1974, 3, 607–613. [CrossRef]

25. European Medicines Agency Committee for Veterinary Medicinal Products. *Dihydrostreptomycin (Extrapolation to All Ruminants) Summary Report (4)*; EMEA/CVMP/211249/2005-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2005; Volume 211249, pp. 1–5.

26. Friedlander, L.G.; Stephany, R.W. Dihydrostreptomycin and Streptomycin Addendum. *Residues Some Vet. Drugs Anim. Foods* 2002, 41, 37–41.

27. Lohuis, J.; Poutrel, B.; Cremoux, R.; Perez, V.; Aguer, D. Milk residues of penicillin, nafcillin and dihydrostreptomycin in dairy goats postpartum treated with Nafpenzal N8 at drying-off. In Proceedings of the Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995.

28. Lohuis, J.; Berthelot, X.; Cester, C.; Perez, V.; Aguer, D. Pharmacokinetics and milk residues of penicillin, nafcillin and dihydrostreptomycin in dairy sheep treated with nafpenzal DC at drying-off. In Proceedings of the Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995.

29. Ziv, G.; Bogin, E.; Shani, J.; Sulman, F. Penetration of radioactive-labeled antibiotics from blood serum into milk in normal and mastitic ewes. *Ann. Rech. Vet.* 1974, 5, 15–28.

30. European Medicines Agency Committee for Veterinary Medicinal Products. *Streptomycin and Dihydrostreptomycin Summary Report*; EMEA/CVMP/211249/2005-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 728, pp. 1–7.

31. Heitzman, R.J. Dihydrostreptomycin/Streptomycin Addendum. *Residues Some Vet. Drugs Anim. Foods* 1998, 41, 39–44.

32. Toutain, P.; De Poymeres, H.; Larrieu, G.; Periquet, B.; More, J. An in vivo model for pharmacokinetic studies in the kidney. *J. Pharmacol. Methods* 1995, 14, 1–11. [CrossRef]

33. Andreini, G.; Pignattelli, P. Kanamycin blood levels and residues in domestic animals. *Vet. Milano* 1991, 51, 51–72.

34. Pfizer, Inc. *ANADA 200-046 Neomycin Sulfate Soluble Powder 325 g/lb—Supplemental Approval (3 April 1996)*; F0I—Neomix- ANADA 200-046; Pfizer: New York, NY, USA, 1996; pp. 1–3.

35. Lavy, E.; Ziv, G.; Glickman, A. Single-dose pharmacokinetics of thiamphenicol in lactating goats. *Acta Vet. Scand. Suppl.* 1991, 87, 99–102.

36. Lavy, E.; Ziv, G.; Soback, S.; Glickman, A.; Winkler, M. Clinical pharmacology of florfenicol in lactating goats. *Acta Vet. Scand. Suppl.* 1991, 87, 133–136.

37. Government of Canada. *Questions and Answers on Health Canada’s Policy on Extra-Label Drug Use (ELDU) in Food-Producing Animals*; Government of Canada: Ottawa, ON, Canada, 2009.

38. European Food Safety Authority. *Scientific Opinion on Chloramphenicol in Food and Feed*; European Food Safety Authority: Parma, Italy, 2014. [CrossRef]

39. Ziv, G.; Bogin, E.; Sulman, F. Blood and milk levels of chloramphenicol in normal and mastitic cows and ewes after intramuscular administration of chloramphenicol and chloramphenicol sodium succinate. *Zent. Vet. Reihe A* 1973, 20, 801–811. [CrossRef]
40. Dagorn, M.; Guillot, P.; Sanders, P. Pharmacokinetics of chloramphenicol in sheep after intravenous, intramuscular and subcutaneous administration. Vet. Q. 1990, 12, 166–174. [CrossRef]

41. Ziv, G. Pharmacokinetics of antimycoplasmia antibiotics in dairy cows and ewes. In Proceedings of the 8th International Meeting of Diseases in Cattle, Milan, Italy, 9–13 September 1974; pp. 80–92.

42. Wetzlitz, S.E.; Lane, V.M.; Craigmill, A.L. Tissue residue depletion after multiple subcutaneous administration of florfenicol to sheep. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 10th Congress, Turin, Italy, 17–22 September 2006; Volume 29, pp. 154–155

43. Lane, V.M.; Villarroel, A.; Wetzlitz, S.; Clifford, A.; Taylor, I.; Craigmill, A. Tissue residues of florfenicol in sheep. J. Vet. Pharmacol. Ther. 2008, 31, 178–180. [CrossRef]

44. Wells, R.J. Thiampenicol; Addendum to the thiampenicol residue monograph prepared by the 47th meeting of the Committee and published in FAO Food and Nutrition Paper 41/9, Rome 1996. Residues Some Vet. Drugs Anim. Foods 2000, 41, 119–128.

45. Roy, B.; Bories, G.F. High performance liquid chromatographic determination of chloramphenicol in milk. J. Assoc. Off. Anal. Chem. 1980, 63, 1044–1048. [CrossRef]

46. Ziv, G.; Nouws, J. Serum and milk concentrations of ampicillin and amoxycillin in ruminants. Refuah Vet. 1979, 36, 104–110.

47. Ramos, F.; Boison, J.; Friedlander, L.G. Amoxicillin. Residues Some Vet. Drugs Anim. Foods 2012, 1–35. Available online: https://www.fao.org/fileadmin/user_upload/vetdrug/docs/12-2012-amoxicillin.pdf (accessed on 7 August 2022).

48. Buswell, J.; Knight, C.; Barber, D. Antibiotic persistence and tolerance in the lactating goat following intramammary therapy. Vet. Rec. 1989, 125, 301–303. [CrossRef]

49. Roncada, P.; Tomasi, L.; Stracciari, G.; Ermini, L.; Strochia, A. Milk depletion of dicloxacillin residues in cows and sheep following intramammary administration. J. Vet. Pharmacol. Ther. 2000, 23, 237–241. [CrossRef] [PubMed]

50. Buswell, J.; Barber, D. Antibiotic persistence and tolerance in the lactating sheep following a course of intramammary therapy. Br. Vet. J. 1989, 145, 552–557. [CrossRef]

51. Pengov, A.; Kirbis, A. Risks of antibiotic residues in milk following intramammary and intramuscular treatments in dairy sheep. Anal. Chim. Acta 2009, 637, 13–17. [CrossRef] [PubMed]

52. Hill, B.; Jagusch, K.; Rajan, L.; Kidd, G. Antibiotic residues in goats milk following intramammary treatment. N. Z. Vet. J. 1984, 32, 130–131. [CrossRef]

53. Ferrini, A.M.; Trenta, S.; Mannoni, V.; Rosati, R.; Coni, E. Depletion of long-acting ampicillin in goat milk following intramuscular administration. J. Agric. Food Chem. 2010, 58, 12199–12203. [CrossRef]

54. Boatto, G.; Cerri, R.; Pau, A.; Palomba, M.; Pintore, G.; Denti, M.G. Monitoring of benzylpenicillin in ovine milk by HPLC. J. Pharm. Biomed. Anal. 1998, 17, 733–738. [CrossRef]

55. Gee, H.-E.; Ho, K.-B. Toothull, J. Liquid chromatographic determination of benzylpenicillin and cloxacillin in animal tissues and its application to a study of the stability at −20 °C of spiked and incurred residues of benzylpenicillin in ovine liver. J. AOAC Int. 1996, 79, 640–644. [CrossRef]

56. Longo, F.; Cozzani, R.; Santis, L.d.; Boselli, C.; Rosati, R.; Fagiolo, A.; Cinquina, A. Amoxicillin detection in milk using screening tests and liquid chromatography after administration to lactating sheep. Riv. Sci. Dell’alimentazione 2002, 31, 313–319.

57. Chaleva, E.; Dinecheva, E. Ampicillin tolerance and content in the mammary gland of lactating cows and sheep. Vet. Med. Nauk. 1977, 14, 73–78.

58. Edwards, S. Penicillin levels in the milk following intramuscular injection. Vet. Rec. 1966, 78, 583–585. [CrossRef]

59. Long, P.; Heavner, J.; Ziv, G.; Geleta, J.; Nepote, K. Depletion of antibiotics from the mammary gland of lactating goats. J. Dairy Sci. 1984, 67, 707–712. [CrossRef]

60. Norbrook Laboratories, Ltd. Freedom of Information Summary, Supplemental New Animal Drug Application, NADA 065-010. Norocillin (Penicillin G Procaine Injectable Suspension) Cattle, Sheep, Swine, and Horses; To Revise the Currently Approved Formulation to Include Lecithin as a Surfactant; FOI—Norocillin NADA 065-010; Norbrook Laboratories, Ltd.: Newry, UK, 2010; pp. 1–27.

61. Rule, R.; Lacchini, R.; Mordovjoovich, P.; Antonini, A. Evaluation of cephaline kinetic variables and milk production volume in goats. Arg. Bras. Med. Vet. Zootec. 2004, 56, 116–118. [CrossRef]

62. Badillo, E.; Escudero, E.; Hernandis, V.; Galecio, J.S.; Marin, P. Pharmacokinetics of cefonicid in lactating goats after intravenous, intramuscular and subcutaneous administration, and after a long-acting formulation for subcutaneous administration. J. Vet. Pharmacol. Ther. 2020, 43, 50–56. [CrossRef]

63. Yadav, K.; Jayachandran, C.; Singh, M.; Jha, H.; Sinha, S. Kinetics of intravenously administered ceftriaxone in lactating goat. Indian J. Anim. Sci. 2013, 70, 163–165.

64. Ismail, M. Pharmacokinetics, urinary and mammary excretion of ceftriaxone in lactating goats. J. Vet. Med. Ser. A 2005, 52, 354–358. [CrossRef]

65. Ziv, G.; Nouws, J. Clinical pharmacology of cephalerin in ruminants. Zent. Vet. Reihe B 1977, 24, 798–811. [CrossRef]

66. El BADAWY, S.; AMER, A.; KAMEL, G.; ELDEIB, K.; CONSTABLE, P. Comparative pharmacokinetics using a microbiological assay and high performance liquid chromatography following intravenous administration of cefquinome in lactating goats with and without experimentally induced Staphylococcus aureus mastitis. Small Rumin. Res. 2015, 133, 67–76. [CrossRef]
68. El Badawy, S.A.; Amer, A.M.; Kamel, G.M.; Eldeib, K.M.; Constable, P.D. Pharmacokinetics and pharmacodynamics of intramammary cefquinome in lactating goats with and without experimentally induced Staphylococcus aureus mastitis. *J. Vet. Pharmacol. Ther.* 2019, 42, 452–460. [CrossRef]

69. Soback, S.; Ziv, G.; Bor, A.; Shapira, M. Pharmacokinetics of cephalexin glycinate in lactating cows and ewes. *Zent. Veter. Reihe A* 1988, 35, 755–760.

70. Wetzel, R.K.; Stayer, P.A.; Wildman, E.E.; Randy, H.A. Depletion of cephaerin in goat’s milk following intramammary infusion. *J. Dairy Sci.* 1986, 69, 245.

71. Courtin, F.; Wetzlich, S.; Gustafson, C.; Craigmill, A. Pharmacokinetics and milk residues of ceftiofur and metabolites in dairy goats. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 6th Congress, Edinburgh, UK, 7–11 August 1994; pp. 81–82.

72. El-Rabbat, N.A.; Abdel-Wadood, H.M.; Sayed, M.; Mousa, H.S. High-performance liquid chromatographic determination and pharmacokinetic study of cefepime in goat plasma and milk after pre-column derivatization with Hg(I). *J. Sep. Sci.* 2010, 33, 2599–2609. [CrossRef]

73. Rule, R.; Villagra, S.; Barrena, P.; Lacchini, R.; Reynaldni, F.J. Pharmacokinetics of ceftazidime administered to lactating and non-lactating goats. *J. S. Afr. Vet. Assoc.* 2011, 82, 219–223. [CrossRef]

74. European Medicines Agency Committee for Veterinary Medicinal Products. *Ceftiofur (Extension to Ovine and Extrapolation to All Mammalian Species) Summary Report (4)*; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2006; Volume 80785, pp. 1–3.

75. Garrett, E.; Dinikolu, L.; Grover, G. Milk and serum concentration of ceftriaxone following intramammary infusion in goats. *J. Vet. Pharmacol. Ther.* 2015, 38, 569–574. [CrossRef]

76. Goudah, A.; Shin, H.; Shim, J.; El-Aty, A.A. Characterization of the relationship between serum and milk residue disposition of ceftriaxone in lactating ewes. *J. Vet. Pharmacol. Ther.* 2006, 29, 307–312. [CrossRef] [PubMed]

77. Rageh, A.H.; Abdel-Rahim, S.A.; Askal, H.F.; Saleh, G.A. Hydrophilic-interaction planar chromatography in ultra-sensitive pharmacokinetic study of cefepime in goat plasma and milk after pre-column derivatization with Hg (I). *J. Pharm. Biomed. Anal.* 2010, 51, 421–434. [CrossRef] [PubMed]

78. Rule, R.; Cordiviola, C.; Vita, M.; Lacchini, R. Correlations between milk production and kinetic variables in milk of cephalothin administered to lactating goats. *Arch. Zootec.* 2007, 56, 807–815.

79. El-Sayed, M.; Atef, M.; El-Komy, A. Disposition kinetics of cephadrine in normal and Escherichia coli infected goats. *Dtsch. Tierarztl. Wochenschr.* 1994, 101, 56–60.

80. Singh, C.S.; Singh, S.D.; Singh, M.K.; Jayachandran, C. Disposition kinetics and distribution of ciprofloxacin in biological fluids of goats after intravenous administration. *Indian J. Anim. Sci.* 2001, 71, 635–637.

81. Ferreira, P.M.; Almeida, P.; Sousa, J.N.; Batista, P.; Silva, J.; Santos, M.C.; Vilar, S.A.; Carneiro, M.; Estevão, J.; Gouveia, J.; et al. Pharmacokinetics of ciprofloxacin in lactating goats. *Dtsch. Tierarztl. Wochenschr.* 1998, 105, 35–38.

82. Escudero, E.; Cárceles, C.; Fernández-Varón, E.; Marin, F.; Benchaouí, H. Pharmacokinetics of danofloxacin 18% in lactating sheep and goats. *J. Vet. Pharmacol. Ther.* 2007, 30, 572–577. [CrossRef]

83. Escudero, E.; Marin, P.; Cárceles, C.M.; Ramírez, M.J.; Fernández-Varón, E. Pharmacokinetic and milk penetration of a difloxacin long-acting poloxamer gel formulation with carboxy-methylcellulose in lactating goats. *J. Vet. Pharmacol. Ther.* 2011, 34, 92–95. [CrossRef]

84. Escudero, E.; Cárceles, C.M.; Escudero, E.; Fernández-Varón, E. Pharmacokinetics and milk penetration of ibafloxacin after intravenous administration to lactating goats. *Pharmacol. Res.* 2003, 48, 389–395. [CrossRef]

85. Escudero, E.; Cárceles, C.M.; Escudero, E.; Fernández-Varón, E. Pharmacokinetics and milk penetration of ibafloxacin after intramuscular administration to lactating goats. *J. Pharm. Biomed. Anal.* 2007, 41, 53–56. [CrossRef]

86. Escudero, E.; Cárceles, C.M.; Escudero, E.; Fernández-Varón, E.; Titos, J.; Hernandis, V.; Cárceles, C. Pharmacokinetics and milk penetration of an enrofloxacin long-acting poloxamer 407 gel formulation in lactating goats. *J. Vet. Pharmacol. Ther.* 2009, 32, 195–196.

87. Narayan, J.P.; Kumar, N.; Jha, H.; Jayachandran, C. Effect of probenecid on kinetics of enrofloxacin in lactating goats after subcutaneous administration. *Indian J. Exp. Biol.* 2009, 47, 53–56.

88. Haritova, A.; Lashev, L.; Pashov, D. Pharmacokinetics of enrofloxacin in lactating sheep. *Res. Vet. Sci.* 2003, 74, 241–245. [CrossRef]

89. Marin, P.; Cárceles, C.M.; Escudero, E.; Fernández-Varón, E. Pharmacokinetics and milk penetration of ibafloxacin after intravenous administration to lactating goats. *Can. J. Vet. Res.* 2007, 71, 74.

90. Goudah, A.; Abo-El-Soud, K. Pharmacokinetics, urinary excretion and milk penetration of levofloxacin in lactating goats. *J. Vet. Pharmacol. Ther.* 2009, 32, 101–104. [CrossRef]

91. Lorenzutti, A.; Litterio, N.; Himelfarb, M.; Zarazaga, M.D.P.; Andrés, M.S.; De Lucas, J. Pharmacokinetics, milk penetration and PK/PD analysis by Monte Carlo simulation of marbofloxacin, after intravenous and intramuscular administration to lactating goats. *J. Vet. Pharmacol. Ther.* 2017, 40, 629–640. [CrossRef]

92. Shem-Tov, M.; Ziv, G.; Glickman, A.; Saran, A. Pharmacokinetics and penetration of marbofloxacin from blood into the milk of cows and ewes. *J. Vet. Med. Ser. A* 1997, 44, 511–519. [CrossRef]

93. Fernández-Varón, E.; Villamayor, L.; Escudero, E.; Espuny, A.; Cárceles, C.M. Pharmacokinetics and milk penetration of moxifloxacin after intravenous and subcutaneous administration to lactating goats. *Vet. J.* 2006, 172, 302–307. [CrossRef]
Animals 2022, 12, 2607

94. Goudah, A.; Cho, H.J.; Shin, H.C.; Shim, J.H.; Regmi, N.L.; Shimoda, M.; Abd El-Aty, A.M. Pharmacokinetics and milk distribution characteristics of orbifloxacin following intravenous and intramuscular injection in lactating ewes. *J. Vet. Pharmacol. Ther.* 2009, 32, 338–344. [CrossRef]

95. El-Aty, A.M.A.; Goudah, A. Some pharmacokinetic parameters of pefloxacin in lactating goats. *Vet. Res. Commun.* 2002, 26, 553–561. [CrossRef]

96. Real, R.; Egido, E.; Pérez, M.; Gonzalez-Lobato, L.; Barrera, B.; Prieto, J.G.; Alvarez, A.; Merino, G. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the secretion of danofloxacin into milk: Interaction with ivermectin. *J. Vet. Pharmacol. Ther.* 2011, 34, 313–321. [CrossRef] [PubMed]

97. Perez, M.; Otero, J.A.; Barrera, B.; Prieto, J.G.; Merino, G.; Alvarez, A.I. Inhibition of ABCG2/BCRP transporter by soy isoflavones genistein and daidzein: Effect on plasma and milk levels of danofloxacin in sheep. *Vet. J.* 2013, 196, 203–208. [CrossRef] [PubMed]

98. Pulido, M.M.; Molina, A.J.; Merino, G.; Mendoza, G.; Prieto, J.G.; Alvarez, A.I. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2). Influence of flavonoids and role in milk secretion in sheep. *J. Vet. Pharmacol. Ther.* 2006, 29, 279–287. [CrossRef] [PubMed]

99. Shem-Tov, M.; Ziv, G.; Glickman, A.; Saran, A. Pharmacokinetics and penetration of danofloxacin from the blood into the milk of ewes. *Vet. Res.* 1997, 28, 571–579.

100. Barrera, B.; Gonzalez-Lobato, L.; Otero, J.A.; Real, R.; Prieto, J.G.; Alvarez, A.I.; Merino, G. Effects of triclabendazole on secretion of danofloxacin and moxidectin into the milk of sheep: Role of triclabendazole metabolites as inhibitors of the ruminant ABCG2 transporter. *Vet. J.* 2013, 198, 429–436. [CrossRef]

101. Otero, J.A.; Garcia-Mateos, D.; Alvarez-Fernández, I.; García-Villalba, R.; Espín, J.C.; Alvarez, A.I.; Merino, G. Flaxseed-enriched diets change milk concentration of the antimicrobial danofloxacin in sheep. *BMC Vet. Res.* 2018, 14, 14. [CrossRef]

102. Marín, P.; Escudero, E.; Fernández-Varón, E.; Ramírez, M.; Cárceles, C. Pharmacokinetics and milk penetration of difloxacin after a long-acting formulation for subcutaneous administration to lactating goats. *J. Dairy Sci.* 2010, 93, 3056–3064. [CrossRef]

103. Fernández-Varón, E.; Escudero, E.; Marín, P.; Titos, J.; Espuny, A.; Cárceles, C. Pharmacokinetics and milk penetration of enrofloxacin and its metabolite ciprofloxacin after subcutaneous administration to lactating goats. *J. Vet. Pharmacol. Ther.* 2009, 32, 196–197.

104. European Medicines Agency Committee for Veterinary Medicinal Products. *Enrofloxacin (Extension to Sheep, Rabbits and Lactating Cows) Summary Report (3); EMEA/MRL/389/98-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 1998; Volume 389, pp. 1–5.

105. Cárceles, C.M.; Villamayor, L.; Escudero, E.; Marín, P.; Fernández-Varón, E. Pharmacokinetics and milk penetration of moxifloxacin after intramuscular administration to lactating goats. *Vet. J.* 2007, 173, 452–455. [CrossRef]

106. Soback, S.; Gips, M.; Blair, M.; Bor, A. Effect of lactation on single-dose pharmacokinetics of norfloxacin nicotinate in ewes. *Antimicrob. Agents Chemother.* 1994, 38, 2336–2339. [CrossRef]

107. Marín, P.; Escudero, E.; Fernández-Varón, E.; Cárceles, C. Pharmacokinetics and milk penetration of orbifloxacin after intravenous, subcutaneous, and intramuscular administration to lactating goats. *J. Dairy Sci.* 2007, 90, 4219–4225. [CrossRef]

108. Delmas, J.; Chapel, A.; Gaudin, V.; Sanders, P. Pharmacokinetics of flumequine in sheep after intravenous and intramuscular administration: Bioavailability and tissue residue studies. *J. Vet. Pharmacol. Ther.* 1997, 20, 249–257. [CrossRef]

109. Francis, P.G.; Wells, R.J. Flumequine. *Residues Some Vet. Drugs Anim. Foods* 1998, 41, 59–70.

110. European Medicines Agency Committee for Veterinary Medicinal Products. *Erythromycin Summary Report (2); EMEA/MRL/720/99-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 720, pp. 1–8.

111. Goudah, A.; Sher Shah, S.; Shin, H.; Shim, J.; Abd El-Aty, A. Pharmacokinetics and mammary residual depletion of erythromycin in healthy lactating ewes. *J. Vet. Med. Ser. A* 2007, 54, 607–611. [CrossRef]

112. Ramadan, A. Pharmacokinetics of tilmicosin in serum and milk of goats. *Res. Vet. Sci.* 1997, 62, 48–50. [CrossRef]

113. MacNeil, J.D. Tilmicosin. *Residues Some Vet. Drugs Anim. Foods* 1997, 41, 106–118.

114. Xu, S.; Arnold, D. Tilmicosin: Addendum to the monographs prepared by the 47th meeting of the Committee and published in the FAO Food and Nutrition paper 41/9. *Residues Some Vet. Drugs Anim. Foods* 2008, 41, 1–37.

115. Grismer, B.; Rowe, J.D.; Carlson, J.; Wetzlich, S.; Tell, L.A. Pharmacokinetics of tulathromycin in plasma and milk samples after a single subcutaneous injection in lactating goats (C apra hircus). *J. Vet. Pharmacol. Ther.* 2014, 37, 205–208. [CrossRef]

116. Amer, A.; Constable, P.; Goudah, A.; El Badawy, S. Pharmacokinetics of tulathromycin in lactating goats. *Small Rumint. Res.* 2012, 108, 137–143. [CrossRef]

117. Lin, Z.; Cuneo, M.; Rowe, J.D.; Li, M.; Tell, L.A.; Allison, S.; Carlson, J.; Riviere, J.E.; Gehring, R. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. *BMC Vet. Res.* 2016, 12, 258. [CrossRef]

118. Atef, M.; Youssf, S.; Atta, A.; El-Maaz, A. Disposition of tylosin in goats. *Dtsch. Tierartztl. Wochenschr.* 1991, 98, 451–453. [CrossRef]

119. Ziv, G.; Sulman, F.G. Serum and milk concentrations of spectinomycin and tylosin in cows and ewes. *Am. J. Vet. Res.* 1973, 34, 329–333.

120. Nagy, J.; Popelka, P.; Sokol, J.; Turek, P.; Neuschl, J. The excretion of tylosin residues in ewes milk after its experimental administration. *Folia Vet.* 2001, 45, 196–198.
146. Fletouris, D.; Papapanagiotou, E. Tissue residue depletion of oxytetracycline after repeated intramuscular administration of Oxyssentin 100 in sheep. J. Vet. Pharmacol. Ther. 2009, 32, 56–61. [CrossRef]

147. Anifantakis, E.M. Excretion rates of antibiotics in milk of sheep and their effect on yogurt production. J. Dairy Sci. 1982, 65, 426–429. [CrossRef]

148. Wells, R.J. Chlortetracycline. Residues Some Vet. Drugs Anim. Foods 1996, 41, 31–66.

149. Jha, V.; Jayachandran, C.; Singh, M.; Singh, S. Pharmacokinetic data on doxycycline and its distribution in different biological fluids in female goats. Vet. Res. Commun. 1989, 13, 11–16. [CrossRef]

150. Jayachandran, C.; Singh, M.; Singh, S.; Jha, H. Pharmacokinetics and distribution of minocycline in different biological fluids of goats after intravenous administration. Indian J. Anim. Sci. 2012, 69, 304–306.

151. Immelman, A.; Ziv, G. Serum and milk concentrations of oxytetracycline after the administration of a long-acting formulation to sheep. J. S. Afr. Vet. Assoc. 1982, 53, 199–200.

152. Arndt, T.; Robinson, D.; Holland, R.; Wetzlich, S.; Craigmill, A. Oxytetracycline residues in sheep following im dosing with a long-acting formulation. J. Vet. Pharmacol. Ther. 1997, 20, 314–315.

153. Boatto, G.; Pau, A.; Palomba, M.; Arenare, L.; Cerri, R. Monitoring of oxytetracycline in ovine milk by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1999, 20, 321–326. [CrossRef]

154. Craigmill, A.; Holland, R.; Robinson, D.; Wetzlich, S.; Arndt, T. Serum pharmacokinetics of oxytetracycline in sheep and calves and tissue residues in sheep following a single intramuscular injection of a long-acting preparation. J. Vet. Pharmacol. Ther. 2000, 23, 345–352. [CrossRef]

155. Fletouris, D.J.; Papapanagiotou, E.P. A new liquid chromatographic method for routine determination of oxytetracycline marker residue in the edible tissues of farm animals. Anal. Bioanal. Chem. 2008, 391, 1189–1198. [CrossRef] [PubMed]

156. Fletouris, D.J.; Papapanagiotou, E.P.; Nakos, D.S. Liquid chromatographic determination and depletion profile of oxytetracycline in milk after repeated intramuscular administration in sheep. J. Chromatogr. B 2008, 876, 148–152. [CrossRef] [PubMed]

157. Cinquina, A.L.; Gianetti, L.; Barchi, D.; Fagiolo, A.; Rosati, R.; Cozzani, R. Comparative pharmacokinetics of oxytetracycline in goat and sheep milk. Residues of Veterinary Drugs in Food. In Proceedings of the European Residue Conference IV, Veldhoven, The Netherlands, 8–10 May 2000; pp. 285–290.

158. Reja, A.; Gonzalez, R.; Serrano, J.M.; Santiago, D.; Guímera, M.E.; Cano, M. Oxytetracycline and tetracycline residues in goat milk. Blood/milk transference rates. Rev. Toxicol. 1995, 12, 29–34.

159. Rule, R.; Moreno, L.; Serrano, J.M.; Garcia Roman, A.; Moyano, R.; Garcia, J. Pharmacokinetics and residues in milk of oxytetracyclines administered parenterally to dairy goats. Aust. Vet. J. 2001, 79, 492–496. [CrossRef]