Comment on “Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas”

Michael Schecter,1 Dimitri M. Gangardt,2 and Alex Kamenev1,3

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
2School of Physics and Astronomy, University of Birmingham, B15 2TT, United Kingdom
3William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

In a recent paper Gamayun, Lychkovskiy, and Cheianov studied the dynamics of a mobile impurity weakly coupled to a one-dimensional Tonks-Girardeau gas of strongly interacting bosons. Employing the Boltzmann equation approach, they arrived at the following conclusions: (i) a light impurity, being accelerated by a constant force, F, does not exhibit Bloch oscillations, which were predicted and studied in Refs. 2 3; (ii) a heavy impurity does undergo Bloch oscillations, accompanied by a drift with the velocity \(v_F = \mu F \). The mobility \(\mu \) may be expressed exactly 3 in terms of \(E_0(P, \rho) \). Result (ii), while not valid at exponentially small forces, indeed reflects an interesting intermediate-force behavior.

The origin of Bloch oscillations is most transparent for a weakly interacting Bose gas, described by the Gross-Pitaevskii (GP) equation. Its solution reveals that a repulsive impurity binds to a dark soliton – a region of depleted host gas. The resulting composite object (the “deplenton”) has a periodic dispersion curve and thus exhibits Bloch oscillations, if a sufficiently small force is applied to the impurity. In a strongly interacting Bose gas the GP approach is not applicable, but the bound-state formation still takes place. To illustrate this phenomenon, one may represent the Tonks-Girardeau gas of \(N \) hard-core bosons by free fermions created by \(c^\dagger_{p,F} \), weakly coupled to a quantum impurity with the coordinate \(x \), through the density-density interaction (1):

\[
\hat{H} = -\frac{1}{2m_i} \frac{\partial^2}{\partial x_i^2} + \sum_p \frac{p^2}{2m_h} c^\dagger_p c_p^\dagger + \frac{\rho^2}{m_h N} \sum_{p,q} c^\dagger_p c^\dagger_q e^{ixpr} ,
\]

where \(m_h \) is the mass of host particles, \(m_i \) is the impurity mass and \(0 < \gamma \ll 1 \) is a dimensionless coupling constant.

Consider a state of the system with total momentum \(P > 0 \). If \(P < P_0 \equiv \min\{m_i v_F, k_F\} \), the low energy states are those where most of the momentum is carried by the impurity. Indeed, the impurity kinetic energy \(P^2/(2m_i) \) is less than that of soft particle-hole excitations above the Fermi sea \(\sim v_F P \). In the opposite limit \(P > P_0 \) the low energy states are those where hole excitations carry a significant fraction of the entire momentum \(P \). The many-body ground state adiabatically connects between these two limits, signaling strong impurity-hole hybridization at \(P > P_0 \). Indeed, consider a subspace of the full many-body space, which contains a single hole excitation with momentum \(0 < k < 2k_F \) in addition to the impurity with momentum \(P - k \) (this restriction is justified in the limit \(\gamma \ll 1 \)). The basis vectors of this subspace are

\[
|k; P\rangle = e^{i(P-k)x} c^\dagger_{k_F} c_{k_F-k}|\text{Fermi Sea}\rangle. \tag{2}
\]

The corresponding Schrödinger equation

\[
\sum_{k'} \langle k'|H|k\rangle \psi_{P/k'}(k') = E\psi_P(k)
\]

takes the form of the two-particle problem with the attractive delta-interaction (formally the attraction arises from anti-commuting the fermionic operators in the last term in Eq. (1)).

\[
\frac{(P-k)^2}{2m_i} + E_h(k) \psi_P(k) - \frac{\gamma \rho}{m_h} \int_0^{2k_F} \frac{dk'}{2\pi} \psi_{P/k'}(k') = E\psi_P(k)
\]

where \(E_h(k) = v_F k - k^2/(2m_h) \) is the hole kinetic energy (we measure \(E \) relative to \(NE_F/3 + \gamma \rho^2/m_h \)). This problem admits a unique bound-state solution, whose energy \(E = E_b(P) \) is found from the integral equation

\[
\int_0^{2k_F} \frac{dk'}{(P-k')^2 + E_h(k') - E_b(P)} = \frac{2\pi m_h}{\gamma \rho}. \tag{4}
\]

Its solution represents a non-perturbative correction to the bare impurity dispersion and is completely missed in the Boltzmann equation treatment. We plot \(E_b(P) \), along with the continuum of the scattering states, in Fig. 1 for the case of light, \(\eta = m_i/m_h < 1 \), and heavy, \(\eta > 1 \) impurity. The gap \(\Delta \) between the bound-state and the continuum is found to be \(\Delta/E_F \sim \gamma^2 \eta/(1-\eta) \) for \(\eta < 1-\gamma/\pi^2 \) and \(P_0 \leq P \), while \(\Delta/E_F \sim \exp(-\pi^2(\eta-1)/\gamma) \) for \(\eta > 1 + \gamma/\pi^2 \). For an almost equal mass case \([1-\eta] < \gamma/\pi^2 \), one finds \(\Delta/E_F \sim \gamma \). We also note that for \(\eta = 1 \), integrability of Eq. (1) allows access to the exact many-body ground state energy \(E_0(P \sim k_F) = E_F - \frac{2\pi^2 (P-k_F)^2}{3\gamma} \). Remarkably, as one may verify from Eq. (4), \(E_b(P \sim k_F) + \gamma \rho^2/m_h = E_0(P \sim k_F) \) for \(\gamma \ll 1 \), justifying our Hilbert space truncation.

The hard gap between the bound-state and the continuum is an artifact of restricting the particle in Eq. (2) to
be created right at the Fermi momentum k_F. Allowing for slight deviation $c^\dagger_{k_F} \to c^\dagger_{k_F+p}$, introduces interaction of the bound-state with low energy, $\sim v_F p$, excitations. It is known [4,6] that such interaction transforms the bound-state into the quasi bound-state with the power-law (instead of the pole) correlation function. These low energy excitations are responsible for radiation losses and thus for linear mobility μ. They do not, however, destroy the quasi bound-state and associated Bloch oscillations at small applied force.

The Bloch oscillations are destroyed if a large enough force $F > F_{\text{max}}$ is applied to the impurity. The physics of this process is that of the Landau-Zener transition between the bound-state and the continuum at $P \approx P_0 = k_F \min\{\eta, 1\}$. One may thus estimate the crossover force as $F_{\text{max}} \sim \Delta^2/v$, where $v = v_F \min\{1, 1/\eta\}$. This leads to the following estimate for the maximal force, preserving (nearly) adiabatic bound-state dynamics

$$F_{\text{max}} \propto \frac{k_F^3}{m_i} \left\{ \begin{array}{ll} \left(\frac{\gamma^2}{\eta} - 1\right)^2, & \eta < 1 - \frac{\gamma}{2}; \\ \frac{\eta}{\eta - 1} \left(\frac{\eta - 1}{\eta - 2}\right)^2 e^{-2\eta^2(\eta - 1)/\eta}, & \eta > 1 + \frac{\gamma}{2}, \end{array} \right. \quad (5)$$

while for $|1 - \eta| < \gamma/\pi^2$, one finds $F_{\text{max}} \propto k_F^3 \gamma^2/m_h$. For $F < F_{\text{max}}$ both light and heavy impurities exhibit Bloch oscillations along with the drift [3], whose velocity scales linearly with the force $v_D = \mu F$.

In Refs. [4, 7] it was shown that for a heavy impurity away from the Tonks-Girardeau limit, there exists a phase transition at a critical value of the impurity mass: for $m_i < M_c$ the ground-state is a smooth function of momentum, while for $m_i > M_c$ the ground-state exhibits a cuspid singularity at momenta $P = (1 + 2n)k_F$ for integer n (in the Tonks-Girardeau limit $M_c \to \infty$). In the latter case the impurity “overshoots” the intersection points at $P = (1 + 2n)k_F$ and has to emit phonons to reach the ground state. This leads to an enhanced dissipation [7] and thus to super-linear drift velocity

$$v_D \propto F^{1/(1+\alpha)},$$

where $\alpha \approx 2K - 1$ for $\gamma \ll 1$ and K is the Luttinger parameter of the host.

Notice that in the Tonks-Girardeau limit the validity of the $v_D = \mu F$ response for $\eta > 1$ is limited to an exponentially small force [3]. This scale originates from the exponentially narrow region of momenta, where the bound-state exhibits the avoided crossing behavior, Fig. [7]. For $F > F_{\text{max}}$ the impurity overshoots the avoided crossing and follows the “wrong” parabola before emitting phonons and returning to the ground state. Thus, for $F > F_{\text{max}}$ one may apply Eq. (6) with $K = 1$ – appropriate for the Tonks gas. This leads to $v_D \propto \sqrt{F}$, in full agreement with Ref. [1]. An important extension of Ref. [1] is that the super-linear drift [6] is to be expected for moderately heavy impurities $m_h > m_i > M_c$ in an intermediate range of forces where the linear mobility $v_D = \mu F$ is inapplicable.

M. S. and A. K. were supported by DOE Contract No. DE-FG02-08ER46482. D. M. G. acknowledges support by the EPSRC.

[1] O. Gamayun, O. Lychkovskiy and V. Cheianov, arXiv:1402.6362
[2] D. M. Gangardt and A. Kamenev, Phys. Rev. Lett. 102, 070402 (2009).
[3] M. Schecter, D. M. Gangardt, and A. Kamenev, Ann. Phys. (N.Y.) 327, 639 (2011).
[4] A. Lamacraft, Phys. Rev. B 79, 241105(R) (2009).
[5] A. Kamenev and L. I. Glazman, Phys. Rev. A 80, 011603(R) (2009).
[6] A. Imambekov, T. L. Schmidt and L. I. Glazman, Rev. Mod. Phys. 84, 1253 (2012).
[7] M. Schecter, A. Kamenev, D. M. Gangardt and A. Lamacraft, Phys. Rev. Lett. 108, 207001 (2012).