Broca, Stewart, Krogman and Iscan have considered stature as a parameter of human biodemography. However, new studies on European and Asiatic whites have been few, including those by Jit and Singh, Oliver, and Cerny and Komenda. Germans, of Telkka on Finns, of Mendes-Correa on Portuguese, of Yung-hao, Shulin, Fangwu and Shitai on Chinese, of Breitinger on east African Blacks, of Lundy on South African blacks, and in case of mass disasters, etc.

In countries like India, even animals and vultures may attack a dead body and mutilate it in a very short time, when exposed in an open field. Duty of a forensic expert starts when human remains are discovered that cannot be recognized.

Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world.

Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world.

Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world. Forensic medicine have multiple discipline among them Identification is very important aspect. Identification means to explore identify of an individual which required in this civilized world.

Methods of Collecting the Data:

- The necessary informed consent taken before taking the measurements.
- Rigor mortis was broken before taking measurements.
- All the measurements were taken with dead body lying in supine position.
SUPINE LENGTH
Supine length was measured from vertex of head to heel of foot, after placing dead body on autopsy table using graduations on side of autopsy table.

FOOT BREADTH
Foot breadth was taken as the distance between the medial margin of the head of the first metatarsal and the lateral margin of the head of the fifth metatarsal.2

OBSERVATION AND RESULTS
Anthropometric measurements of 200 (100 males and 100 females) adult cadavers were taken. For statistical computation & understanding and also for uniform & fair comparisons total number of cases, both males and females were divided in to four age groups of 10 year intervals with 25 individuals in each age group. Linear regression equations and multiplication factors were formulated independently for male & female and separately for each age group in relation with parameters included in the present study.

The age and sex wise distribution of cases is shown in Table – 1.

TABLE – 1: DISTRIBUTION OF CASES

Age groups	Males (n = 100)	Females (n = 100)	Total(N = 200)
18–28 years	25	25	50
29–38 years	25	25	50
39–48 years	25	25	50
>48 years	25	25	50

SUPINE LENGTH
The supine length of the dead body was measured while body was lying in supine position on standardized graduated autopsy table from vertex of skull to heel of foot. The average supine lengths were more in males as shown in Table – 2 below.

TABLE – 2: SUPINE LENGTH MEASUREMENTS

Sex	Min	Max	Mean	SD
Male (n = 100)	150	191	165.90	6.9497
Female (n = 100)	133	175	153.68	6.8071

SUPINE LENGTH IN MALES: The minimum supine length of 150 cm was observed in 39-48 yr age group and maximum value of 191 cm as shown in Table – 3.

TABLE – 3: MEASUREMENTS OF SUPINE LENGTH IN MALES

Age groups	No. of cases	Min	Max	Mean	SD
18–28 years	25	157	180	167.220	6.4389
29–38 years	25	150	191	165.880	8.7480
39–48 years	25	154	178	166.920	6.4091
>48 years	25	150	174	163.580	5.6267

SUPINE LENGTH IN FEMALES: Minimum value of supine length as 133 cm observed in 39-48 yr age group and maximum value of 175 cm seen in 18-28 age group as described in Table – 4.

TABLE – 4: SUPINE LENGTH MEASUREMENTS IN FEMALES

Age groups	No. of cases	Min	Max	Mean	SD
18–28 years	25	140	175	153.680	7.7229
29–38 years	25	141	165	153.840	6.1079
39–48 years	25	133	164	153.840	7.6468
>48 years	25	141	165	153.360	5.9626

FOOT BREADTH: In males mean value of left foot breadth found to be 8.33 cm and standard deviation as 0.2939 cm. Similarly in case of females, standard deviation being 0.5126 and mean value of 7.692 cm as depicted in Table – 5.

TABLE – 5: COMPARISON OF FOOT BREADTH

Sex	Side	Min	Max	Mean	SD
Male (n=100)	L	7.8	9.4	8.331	0.2939
Female(n=100)	L	6.8	8.5	7.692	0.5126

Significant bisexual differences were seen in foot breadth. The foot breadth is observed to be less in females as compared to males.

LEFT FOOT BREADTH IN MALES: The left foot breadth in males showed minimum value in 39–48 yr and more than 48 yr age groups i.e. older groups while the maximum value in 18-28yr and 29–38yr age groups i.e. the younger ones. The mean value of left foot breadth was least in more than 48 yr age group which also showed minimum value of the standard deviation as illustrated in Table – 6.

TABLE – 6: LEFT FOOT BREADTH MEASUREMENTS

Age groups	No. of cases	Min	Max	Mean	SD
18–28 years	25	7.9	9.4	8.465	0.3203
29–38 years	25	8.1	9.4	8.376	0.3086
39–48 years	25	7.8	8.9	8.336	0.2737
>48 years	25	7.8	8.6	8.156	0.1828

Linear regression equations derived are depicted in Table – 7. (Figure 1)

TABLE – 7: REGRESSION EQUATION IN MALES

Age groups	Regression equation	SEE(+/-) cms	r value	p-value
18-28 years	54.059+13.382×LFtB	4.9087	0.666	0.001
29-38 years	20.970×LFtB-9.761	6.0131	0.740	0.001
39-48 years	63.174+12.445×LFtB	5.5459	0.531	0.006
>48 years	101.637+7.595×LFtB	5.5701	0.247	0.235

Linear regression equation derived from left foot breadth for estimation of supine length in males show significantly positive ‘r’ value with highest among 29-38 yr age groups thus gives better result as for estimation of supine length in males from foot length. But equally good prediction can be made using equation derived from combined age group

LEFT FOOT BREADTH IN FEMALES: The minimum value observed in 39–48 yr and more than 48 yr age groups and maximum value was similar in all age groups. The mean value of left foot breadth was least in more than 48 yr age group. The standard deviation observed minimum in 29-38 yr age group and maximum in 39-48 yr age group as shown in Table – 8.

TABLE – 8: MEASUREMENTS OF LEFT FOOT BREADTH IN FEMALES

Age groups	No. of cases	Min	Max	Mean	SD
18–28 years	25	7.0	8.5	7.804	0.4886
29–38 years	25	6.9	8.5	7.788	0.4475
39–48 years	25	6.8	8.5	7.752	0.5425
>48 years	25	6.8	8.5	7.424	0.4994

Linear regression equations derived are depicted in Table – 9. (Figure 2)

TABLE – 9: REGRESSION EQUATION IN FEMALES

Age groups	Regression equation	SEE(+/-) cms	r value	p-value
18-28 years	132.525+2.711×LFtB	7.7721	0.172	0.412
29-38 years	155.376-0.197×LFtB	6.2386	0.014	0.945
39-48 years	120.463+4.306×LFtB	7.4380	0.305	0.138
>48 years	145.867+1.008×LFtB	6.0691	0.084	0.668

Linear regression equation derived from foot breadth for estimation of supine length in females show positive ‘r’ value for all age groups with highest in 39-48 yr age groups. But the p-value in all age groups is >0.05. So left foot breadth in females from this study does not
provide better correlation of stature.

Linear regression equation derived from foot breadth for estimation of supine length in combined cases (males + females)-

$$SL = 77.038 + 10.329 \times LFB, (SE = 7.4430), (r = 0.590) \text{ (Figure 3)}$$

On comparing it was observed that foot breadth provide better correlation of supine length in males. While for females this study does not provide better correlation of stature. However correlation was significantly positive and highest for left foot length when total cases were combined together ($p = 0.001$).

Multiplication factors were derived for each parameter included in the study and is shown in Table – 10.

TABLE – 10: MULTIPLICATION FACTORS FOR DIFFERENT PARAMETERS
Parameter
Left foot breadth

DISCUSSION

The distinct advantage of mathematical method over anatomical method is that a single body part can be used to estimate the living stature of an individual. Standard error of estimate needs to be considered giving a possible range of stature from a given bone/body part.

According to Roche (1986), genetically stature at 18 years is accepted as adult, although there are small increments in stature after this. In the present study the average age of an individual ranges from 18 years and above which has been done on the cosmopolitan population of Delhi region of India.

STATURE:

The mean stature for males in the present study is 165.90 cm and for females it is 153.68 cm. Minimum and maximum stature in males is 150 cm and 191 cm, while in females it is 133 cm and 175 cm respectively. In the present study mean stature was less in females than males, which is consistent on comparing with other studies so it can be inferred that females are smaller than males. This was seen even true when in this study age group wise comparisons made among females and males as described in Table – 3 and 4.

FOOT BREATH:

The mean left foot breadth in males is 8.381 cm and in females it is 7.692 cm.

Significant bisexual differences seen with greater foot breadth among males this is consistent with the other studies too. The measured mean foot breadth are similar with study of Rani et al, while there is slight variations left foot breadth in both genders with the other study. This might be attributed to different geographical areas covered along with different nutritional patterns in the study group. (Table-11)

TABLE – 11: FOOT BREATH COMPARISON
Authors
Ozaslan et al’
Zeybek et al’
Rani et al’
Krishan,Sharma A
Krishan et al’
Kanchan et al’
Sen et al’
Bhavna,Naths
Chilkhalter et al’
Present Study

In the present study foot breadth shows reverse results on comparing it with foot length. The correlation coefficient in males is 0.644 for right 0.612 for left foot breadth. The highest value seen in 29-28 year age group (0.779 for right and 0.740 for left side) followed by in youngest age group i.e. 18-28 years. In females it is less 0.143 and 0.156 for right and left respectively. Thus males give better results than females for foot breadth. The value of ‘r’ is 0.600 and 0.590 when compared for males and females respectively. The highest value seen in 29-28 year age group. (Table-11)

The regression equation derived from present study give best estimation of stature among males with similar standard error as done by Kanchan et al and Bhavna et al. Present study provide better correlation coefficient.

TABLE 12: COMPARISON OF REGRESSION EQUATIONS DERIVED
Authors
Zeybek et al’ (Turkey)
Krishan,Sharma A
Krishan et al’ (Himachal Pradesh)
Table 13 depicts the bisexual variations. By using unpaired t-test the Mean differences, t- value and p- value of various measurements in both males and females were derived. Sex differences are statistically significant (p<0.01) for all the measurements as shown below.

TABLE 13: BISEXUAL VARIATIONS IN VARIOUS MEASUREMENTS AMONG MALES AND FEMALES.

Variable	Mean difference	t- value	p- value	Inference
Left foot breadth	0.6390	10.814	<0.001	Highly significant

TABLE 14: COMPARISON OF DIFFERENT PARAMETERS IN TOTAL MALES

Parameter	Side	Regression equation	SEE (+/-) cms	r value
Foot breadth	L	45.414+14.462×LFB	5.5258	0.612

TABLE 15: COMPARISON OF DIFFERENT PARAMETERS IN TOTAL FEMALES

Parameter	Side	Regression equation	SEE (+/-) cms	r value
Foot breadth	L	137.774+2.068×LFB	6.7582	0.156

TABLE 16: COMPARISON OF DIFFERENT PARAMETERS IN TOTAL NUMBER OF CASES

Parameter	Side	Regression equation	SEE (+/-) cms	r value
Foot breadth	L	77.038+10.329×LFB	7.4430	0.590

TABLE – 17: MULTIPLICATION FACTORS FOR DIFFERENT PARAMETERS

Parameter	Multiplication factor for males	Multiplication factor for females
Left foot breadth	19.909	19.986

CONCLUSIONS AND SUMMARY

1) The mean value of supine length /average height in male is about 12 cm more as compared to female.
2) The left foot breadth showed positive correlation with supine length.
3) Significant bisexual differences seen in foot breadth. The foot breadth is observed to be less in females as compared to males.
4) Correlation of stature gives better estimate for stature in males with foot breadth.
5) Multiplication factors were derived for both genders in the present study but are less accurate than regression equations.
6) Regression equations derived in this study can be used for the population all over the country as present study done in cosmopolitan population.

REFERENCES

1. Sagar A, Sharma B.R. Estimation of Stature from the Anthropometric Measurement of Lower Limb. Journal Indo-Pacific Academy of Forensic Odontology;2010;1(2):133-7.
2. Krexler ER. Forensic Anthropology In: Tedeschi CG, Eckert WG, Tedeschi LG (eds). Forensic Medicine, Vol 2 Physical Trauma. Philadelphia: WB Saunders Company; 1977. p.1101-15.
3. Dikshit PC. Introduction and history of forensic medicine. Textbook of forensic medicine and toxicology. 1st ed New Delhi PEEPE Publishers 2007 p.1-4.
4. Blessing C, Didiu, Erhelbert C, Nédka, Okechukwu A. Stature Estimation Formulae for Nigerians. J Forensic Sci, January 2009;54(1):20-1.
5. Patel S.M, Shah GV, Patel SV. Anthropological study of the foot and its relationship between Different Parameters and Stature in an Adult Population of Different Areas of Gujarat. NJIRM 2011; 23(3):67-70.