RESEARCH ARTICLE

Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a

Chunqiao Liu1,5, Chen Lin1,#, Chun Gao2, Helen May-Simera1, Anand Swaroop1,5 and Tiansen Li1,5

ABSTRACT

Planar cell polarity (PCP) signaling plays a critical role in tissue morphogenesis. In mammals, disruption of three of the six “core PCP” components results in polarity-dependent defects with rotated cochlear hair cell stereocilia and open neural tube. We recently demonstrated a role of Prickle1, a core PCP molecule in Drosophila, in mammalian neuronal development. To examine Prickle1 function along a broader developmental window, we generated three mutant alleles in mice. We show that the complete loss of Prickle1 leads to systemic tissue outgrowth defects, aberrant cell organization and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome.

KEY WORDS: Planar cell polarity, Development, Morphogenesis, Organogenesis, Conditional mouse mutants

INTRODUCTION

Embryonic development utilizes a network of transcription regulatory factors and signaling pathways to generate diverse cell types that are organized into functional entities (e.g., tissues). Within each tissue, individual cells require further instructions to establish an ordered architecture by acquiring specific polarity, defining and disruption of polarity machinery. Curiously, Prickle1 mutants recapitulate the characteristic features of human Robinow syndrome and phenocopy mouse mutants with Wnt5a or Ror2 gene defects, prompting us to explore an association of Prickle1 with the Wnt pathway. We show that Prickle1 is a proteasomal target of Wnt5a signaling and that Dvl2, a target of Wnt5a signaling, is misregulated in Prickle1 mutants. Our studies implicate Prickle1 as a key component of the Wnt-signaling pathway and suggest that Prickle1 mediates some of the WNT5A-associated genetic defects in Robinow syndrome.

KEY WORDS: Planar cell polarity, Development, Morphogenesis, Organogenesis, Conditional mouse mutants

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Received 27 March 2014; Accepted 30 July 2014
development, we engineered three *Prickle1* mutant alleles in mice. Combinations of these with select Cre-drivers were predicted to generate varied gene-dosage in different tissues and bypass early embryonic lethality observed in *Prickle1* null mutants (Tao et al., 2009). Here, we report global and pleiotropic PCP defects in *Prickle1* null and hypomorphic mutants that closely resemble Wnt5a, *Ror* or *Ryk* mutant mice and recapitulate features of human Robinow syndrome (RS; RRS, MIM#268310, http://omim.org/entry/268310; DRS, MIM#180700, http://omim.org/entry/180700), prompting us to explore the link between *Prickle1* and the Wnt pathway. Our studies implicate *Prickle1* in regulating *Wnt/PCP* pathway and provide novel insights into RS disease mechanism.

RESULTS

Prickle1 mutant alleles in mice lead to shortened limbs, snout and multiple tissue defects

We generated three mutant *Prickle1* alleles in mice by targeting exon 2 with the starting ATG: a gene-trap allele (*Prickle1*^a^), a null allele (*Prickle1*^b^), and a conditional allele (*Prickle1*^c^) (Fig. 1A). The gene-trap allele was predicted to be a hypomorph and produce a trace amount of protein, whereas *Prickle1*^b^ and Cre-excised *Prickle1*^c^ alleles would be null systemically or in targeted tissues. We first verified that *Prickle1* protein was abolished in *Prickle1*^b/b^ mutant by immunoblot analysis using two independent antibodies against different domains of *Prickle1* (Fig. 1B). The null mutants (*Prickle1*^b/b^) we produced survived until postnatal day 2 (P2). The *Prickle1*^c/c^ conditional deletion generated by a broadly expressed Sox-cre, which effectively represented a null genotype in most tissues, survived for about 2 days longer. The morphological defects of *Prickle1*^b/b^ mutant mice were seen as early as embryonic day (E) 15.5 and become more evident at P0 with shortened limbs and snout (supplementary material Fig. S1A,B). A close view of fore- and hind- paws showed blunted digit tips in the mutants (supplementary material Fig. S1C,D). Although the mutant mice are generally slightly smaller at P0, shortening of limb and snout are more pronounced than shortening of the body axis (supplementary material Fig. S1E,F). Additional phenotypes observed at P0 included open eyelid (supplementary material Fig. S2A), bifid and truncated tongue (supplementary material Fig. S2B), cleft palate (supplementary material Fig. S2C, >17 out of 31), curly tail (supplementary material Fig. S2D) and hair orientation defect (supplementary material Fig. S2E,F). Similar phenotypes were seen in Sox2-Cre conditional mutants (supplementary material Fig. S2E,G). Skeletal staining with alcin blue and alizarin red (Fig. 1Ca–e) revealed shortened nasal, premaxillary and dentary bones (Fig. 1Cd). Extensive internal organ defects were observed some of which will be described below (and data not shown).

Cardiac outflow tract defects and disorganized myocardial fibers in the *Prickle1* mutants

Malformation of the heart, a PCP target organ, causes postnatal death in many instances. In *Prickle1* mutants, heart chambers and outflow tracts were developed at E14.5 (Fig. 2A). The aorta (Ao)...

Fig. 1. Generation of *Prickle1* mutant alleles, and skeletal defects in *Prickle1* null mutants. (A) Genomic structure and targeting strategy (box) at the *Prickle1* gene locus is shown at the top (wt). *Prickle1*^a^ is a gene-trap allele with an inserted eYFP reporter (yellow arrow), neo selection cassette (black arrow). Flt (red bars) and loxPs (green arrowheads) as shown in the graph. *Prickle1*^b^ is a null allele (straight KO) derived from *Prickle1*^a^, having undergone cre-mediated excision of exon 2 with starting ATG, and the Pgk-neo cassette in the germline. *Prickle1*^c^ is a conditional allele generated by Flu-mediated excision of the eYFP and Pgk-neo cassettes in *Prickle1*^a^, with two remaining loxPs flanking exon 2 that could be further excised by a tissue-specific Cre. (B) Western blots probed with custom-made Pk1 antibodies revealed elimination of Pk1 protein expression in the null (*Prickle1*^b/b^) brain tissue collected at postnatal day 2 (P2). * Denotes Pk1 protein band. (C) Skeletal structures revealed by alcian blue and alizarin red staining. a, Craniofacial and skull skeleton: arrows indicate premaxillary and dentity bones. b, Rib cages: Brackets indicate sternebrae; top asterisks indicate sternal manubrium, bottom asterisks indicate xiphisternum. c, Formlimb long bones: top panels, scapula and humerus; bottom panels, radius and ulna. d and e, Digit phalange bones of fore paw and hind paw, respectively. ‘l’, digit I; ‘V’, digit V. Asterisks indicate phalanges bones with absent or delayed ossification centers.
Distorted renal tubules and cell misarrangement in the mutant kidney

We next examined the kidney, another PCP target organ in which branching and tubule diameter are affected in Vangl2 (Yates et al., 2010) and Wnt9b (Karner et al., 2009) mutant mice, respectively. Cystic kidney has also been observed in Robinow syndrome patients with mutations in Ror2 (Bacino, 1993), a receptor for Wnt5a (Ho et al., 2012). Kidney size in the Prickle1 mutants was comparable to that of the control. There were frequently blood spots on the surface (supplementary material Fig. S3A, 24 out of 30 pulps). The development of renal tubules was largely normal judged by calbindin-D28K labeled ureteric bud (UB) and E-cadherin labeling (supplementary material Fig. S3B). Overt cystic kidneys were observed at birth albeit at very low penetrance (<5%, 3 out of 61) (supplementary material Fig. S3C). H&E staining showed dilated renal tubules in the mutants (Fig. 3A). *Lotus tetragonalobus lectin* (LTL)-labeled proximal convoluted tubules (PCT) appeared to be distorted, with narrowing of PCT in the outer renal cortex but widening of the inner renal cortex (Fig. 3B). The collecting ducts (CD) of the renal papilla were barely discernable by DAPI staining alone (compare Fig. 3C,D). E-cadherin staining showed irregular elliptical shape of the mutant collecting ducts (Fig. 3C). With simple quantification (Fig. 4A–D), we detected a significant increase in displaced/disarranged cells of the mutant kidney as revealed by E-cadherin and DAPI staining (off plane cells in Fig. 4A,B, arrowheads). No change was obvious in the collecting duct density per unit area (Fig. 4E). Quantification of cell-cell connections from a longitudinal view of collecting ducts (supplementary material Fig. S4A) revealed increased 4-lateral intersections of the mutants (supplementary material Fig. S4B).

To further investigate whether the kidney tubules were generally disorganized, we quantified cell alignment defects in the ascending Henle’s loop, which has different origin from the collecting ducts during nephron formation. The thick ascending limb of the Henle’s loop was easily identified by E-cadherin staining exhibiting a large plane of cuboidal epithelial cells (Fig. 4F). Cell-cell intersection pattern was significantly altered in the mutant with increased 4-lateral intersections in contrast to predominantly 3-lateral intersections in the control (Fig. 4F,G). Most cuboidal epithelial cells in the control were convex hexagons, but appeared irregular in the mutants with many more quadrilaterals and pentagons (Fig. 4H,I). The altered intersection mode and shape of the mutant epithelial cells were also accompanied by aberrant cell alignment. To quantify this feature, we first define a shortest compound line path between two adjacent columns of cells along the vertical direction of a tubule (supplementary material Fig. S4C,D). We then performed vectorial additions for laterals from each cell vertex on the compound line (supplementary material Fig. S4D) and acquired

and pulmonary arteries (Pa), however, were transposed in more than half of the mutant embryos (19 out of 31). Similar phenotypes were observed in newborn (P0) mutant pups, with significantly enlarged right atrium (Fig. 2A, lower panels; 2B, upper panels) and juxtaposed Ao and Pa (Fig. 2B). The atrial septum was also open (Fig. 2C). At the cellular level, H&E staining showed round mutant cardiomyocyte nuclei in contrast to the spindle-shaped nuclei of the control, indicating the loss of polarity (Fig. 2D). Actin filament in myofibrils were disorganized and misaligned (Fig. 2E,F). A significant increase of randomness in fiber orientation was also noticeable in the mutants (Fig. 2F,G), a novel feature that has not been reported in other PCP mutants.
collections of new vectors. In a plotted polar coordinate (supplementary material Fig. S4E), significantly increased vector variations were observed in the mutants by paired t-test analysis (supplementary material Fig. S4E, \(P = 2.4E-07\), Length: \(P = 2.02E-06\)). The vectorial variations in the mutants may indicate a decreased tubule stability and vulnerability to distortion.

Neural tube closure and axon outgrowth defect
Open neural tube is a typical PCP defect identified in Fz, Dvl, Celsr and Vangl mutants (Curtin et al., 2003; Etheridge et al., 2008; Murdoch et al., 2001; Wang et al., 2006). In Prickle1 mutants, the neural tube was largely normal with a slight delay in closure at E10.5 (Fig. 5A, 8 out of 15). We observed brain and axon outgrowth defect as early as E10.5 (3 out of 4). Neural filament staining indicated the failure of innervation of trigeminal (V) and facial (VII) nerves (Fig. 5B). At P0, H&E staining showed enlarged lateral ventricles and misshaped hippocampus (Fig. 5C). The thalamic-cortical axonal tract was also disorganized in the Prickle1 mutants (Fig. 5D, 3 out of 5).

However, scanning electron microscopy (SEM) did not reveal stereocilia rotation defects in the inner ear hair cells that are typically observed in other PCP mutants. Rather, the stereociliary actin bundles of the Prickle1 mutant hair cells were shorter and splayed at the tip (Fig. 5E,F, 3 out of 3), consistent with the actin filament defects identified in the heart.

Cell polarity machinery and actin assembly defects in the Prickle1 mutant renal tubules
Since PCP components were distributed asymmetrically, we asked whether the localization of other PCP proteins, such as Dvl and Vangl, was perturbed in the Prickle1 mutants. Dvl1-3 and

Fig. 3. Distorted renal tubule shape in the Prickle1 mutant kidney. (A) H&E stained kidney plastic sections showing dilated tubules in the renal cortex (arrows). Lower panels are high magnification images from roughly the same areas from the respective top panels. (B) Lotus tetragonolobus lectin (LTL) stained proximal convoluted tubules (PCT) (green). Loss of the uniform PCT shape is obvious in the mutant kidney in comparison with the wild type (arrows). (C) Cross sections of E-cadherin stained collecting ducts (CD) in the renal papilla. The control CDs showed well-formed circular shape, while majority of mutant CDs was irregular and shows elliptical shapes (dashed circles). Double crossing arrows indicate longest and shortest axes of tubules wall on cross sections. (D) DAPI staining alone from the same section in C can barely identify tubule structure in the mutant.

Fig. 4. Impaired cell connection/arrangement in the mutant collecting ducts and renal tubules. (A–E) Quantification of CD wall composition. E-cadherin and DAPI staining were used to identify CD wall on cross sections (A,B). The diameters of CD were measured as number of cells. Cells out of an imaged plane (off-plane cells, arrows in A and B) of a CD wall but still can be identified by DAPI and E-cadherin staining (dashed circles) were counted as part of the tubule wall (arrows). Each imaged plane is composed of 7×1 μm-projected stacks. There is a slightly decrease in average CD diameter in the mutant (C). (D) Significant increase of off-plane cells in mutant CD walls. (E) No significant changes in the mutant CD area density compared to the control. (F) Ascending limb of the Henle’s loop stained by E-cadherin that marks the cell junctions. Most of cell intersections in the control possess 3 laterals (3-lateral intersections, dotted circle), while many of them possess 4 laterals (4-lateral intersections) in the mutant. (G) Quantification of 4-lateral intersections in the control and the mutant tubules. (H) Representative images for quantification of the interfaces of the epithelial cells in descending Henle’s loop. Numbers indicate the interfaces of a cell. The interfaces of a cell (-int) are defined by the number of cells it directly contacts with, which was visualized by both E-cadherin and DAPI staining. (I) Quantification of the cell interfaces. A total 331 wild type and 416 mutant cells derived from three animals of each genotype were analyzed. T-test was used to determine P-values. A significant increase of 4- and 5-int cells and a decrease of 6- and 7-int cells were observed in the mutants.
Vangl2 are concentrated at the apical domain of the control ureteric bud cells (Fig. 6A–D, left panels), yet a significant fraction of these was mislocalized to the lateral and basal aspects of the epithelia in the mutants (Fig. 6A–D, right panels). The results are consistent with an earlier report of disrupted apicolobasal polarity in Prickle1 mutant embryonic epiblasts (Tao et al., 2009). Actin assembly is a downstream event of PCP, which involves small GTPases (Schlessinger et al., 2009). We found that, rather than apical enrichment, the actin distribution was shifted more laterally in the mutant ureteric buds (Fig. 6E). Consistent with this observation, RhoA also decreased its apical enrichment (Fig. 6E; supplementary material Fig. S5A). Rac1 and Cdc42 are important for lamellilopodia and filopodia formation, respectively, in many types of cultured cells. Interestingly, they are ectopically accumulated in many cells of the mutant ureteric bud and other types of tubules (Fig. 6G,H and supplementary material Fig. S5B,C arrows). Their misexpression/deposition could indicate significantly increased variations in cell motility and/or local rearrangement, either of which could underlie the distorted tubular shapes seen in the mutants.

Disruption of asymmetrical distribution of core PCP proteins in the mutant chondrocytes

To understand the cause of limb outgrowth defects in the mutants, we examined two polarity proteins, Vangl2 and Dvl2, which were reported to mediate Wnt5a signaling crucial for limb outgrowth (Gao et al., 2011; Ho et al., 2012). Vangl2 localizes asymmetrically in chondrocytes at E12.5 (Gao et al., 2011). We found a similar, proximally enriched pattern of Vangl2 in the control chondrocytes but this asymmetry was diminished in the mutant (Fig. 7A; supplementary material Fig. S6A and Fig. S7A). Asymmetrical distribution of Vangl2 protein was also observed at E14.5 in the circumferential areas of the bone ossification center of the control, but the localization pattern was broadened in the mutants (Fig. 7B; supplementary material Fig. S7B), and mutant cells with polarized Vangl2 were reduced (supplementary material Fig. S7C, arrows).
Further analysis demonstrated a reduction of alignment of the mutant cells with Vangl2 staining (supplementary material Fig. S7C). Although Vangl2 localization was reported to polarize along proximal-distal axis in general, it appeared to polarize radially surrounding the ossification center (supplementary material Fig. S6B). Dvl2 polarization was not detected at E12.5 in the control digit chondrocytes (data not shown) but emerged at E14.5 appearing as a distally enriched pattern and the opposite of Vangl2 (Fig. 7C and supplementary material Fig. S6C, left panel). This polarization was completely lost in the mutant (Fig. 7C and supplementary material Fig. S6C, right panel). These results indicated that similar to the kidney tubules, the cell polarity machinery in chondrocytes was also perturbed, which could explain the shortened limb phenotype.

Disruption of Wnt5a signaling and Robinow syndrome-like features in Prickle1 mutants

To explore the relationship between Prickle1 and Wnt5a signaling, we first turned to in vitro assays in cultured HEK293 cells. We found that ubiquitination of a GFP-tagged Prickle1 was enhanced by Wnt5a and Ryk in presence of MG132, a proteasome inhibitor (Fig. 8A, compare lane2 with lane1). As expected, accumulation of ubiquitinated Prickle1 was less significant without MG132 treatment (Fig. 8A, compare lanes 2 and 3), presumably due to its rapid proteasomal degradation. These results suggest a negative regulation of Prickle1 by Wnt5a signaling. Accordingly, increased Prickle1 accumulation was observed in Wnt5a null mutant tissues (Fig. 8B). Wnt5a enhances Dvl2 phosphorylation in several cell lines and in embryonic fibroblasts as well (González-Sancho et al., 2004; Ho et al., 2012) (Fig. 8C). We therefore examined Dvl2 expression in Prickle1 mutants. A disproportional increase of phosphorylated and shifted form of Dvl2 (ps-Dvl2) was detected in both mutant kidney and distal paw tissues at P0 (Fig. 8D), suggesting that loss of Prickle1 potentiates Wnt5a signaling. To further corroborate that Dvl2 phosphorylation regulated through Wnt5a-Prickle1 is a critical event during limb outgrowth, we examined Dvl2 phosphorylation status in Wnt5a mutant distal paws. A decreased Dvl2 phosphorylation was observed (Fig. 8E), consistent with the finding that Wnt5a signaling degrades Prickle1. Taken together...
Recapitulate most phenotypic features of human RS patients (Fig. 9G, metatarsals, 3 out of 3). Thus (Fig. 9F, Femurs) and digital bones were consistently observed. Computed tomography (CT) scans detected incomplete and of 15), and fused mandibular incisors (Fig. 9D, 14 out of 30). Eyelid and eyelashes (supplementary material Fig. S8A–D, 15 out forehead (Fig. 9C) (30 out of 30), abnormal appearance of wide spaced eyes, flat nose, short snout (Fig. 9B), prominent developed shorter stature (Fig. 9A) and craniofacial defects with the expected Mendelian ratio and survived to adulthood, but combined gene-trap and germline knockout (Prickle1a/b generated mice with gene-trap (Prickle1) expectancies, we examined whether Prickle1 hypomorph mutants would survive to adulthood and display RS-like features. We generated mice with gene-trap (Prickle1a/a) alleles alone and with combined gene-trap and germline knockout (Prickle1a/b) alleles. Both Prickle1a/a and Prickle1a/b hypomorphs were born at the expected Mendelian ratio and survived to adulthood, but developed shorter stature (Fig. 9A) and craniofacial defects with wide spaced eyes, flat nose, short snout (Fig. 9B), prominent forehead (Fig. 9C) (30 out of 30), abnormal appearance of eyelid and eyelashes (supplementary material Fig. S8A–D, 15 out of 15), and fused mandibular incisors (Fig. 9D, 14 out of 30). Computed tomography (CT) scans detected incomplete and distorted vertebrae formation in the mutant spinal cord (Fig. 9E, 3 out of 3). Significantly shortened long bones (Fig. 9F, Femurs) and digital bones were consistently observed (Fig. 9G, metatarsals, 3 out of 3). Thus Prickle1 hypomorphs recapitulate most phenotypic features of human RS patients (Butler and Wadlington, 1987; Patton and Afzal, 2002). Our findings uncover an unexpected aspect of RS pathophysiology and suggest that loss-of-function mutations in human PRICKLE1 might also be a cause of this condition.

DISCUSSION

Organization of similar and/or different cell types throughout a large field is crucial for systemic functions. PCP is among the best-known signaling pathway managing large-scale cell organization. In mammals, disruption of different homologues of insect core-PCP proteins suggest variable functions of PCP components in distinct cellular processes during embryonic development. For example, disruption of Frizzleds (Wang et al., 2006), Dvl3 (Etheridge et al., 2008), Celsr1 (Curtin et al., 2003) and Vangl2 (Kibar et al., 2001) exhibit some phenotypic commonalities including open neural tube and misoriented inner ear stereociliary bundles, which are considered classic PCP phenotypes. Disruption of Diego/Inversin lead to left-right asymmetry defects without significant classic PCP phenotypes (Morgan et al., 1998; Simons et al., 2005; Watanabe et al., 2003).

Wnts are suggested to be functionally linked to the activity of core-PCP components regardless of whether these are part of or parallel to the core-PCP. Wnts have been demonstrated in flies and lower vertebrates as critical morphogens for the core PCP complex (Takeuchi et al., 2003; Veeman et al., 2003; Wu et al., 2013). However, disruption of Wnt5a, a known PCP-related morphogen in mammals, gives rise to characteristic shortening of distal tissue axes (Gao et al., 2011; Ho et al., 2012; Qian et al., 2007), which is barely seen in other PCP mutants. Furthermore, mutations in either Wnt5a or its receptor Ror2 in humans lead to Robinow syndrome, distinct from that of other PCP gene mutations (Kibar et al., 2007; Murdoch et al., 2001; Wang et al., 2011). In the present study, we show that null and hypomorphic Prickle1 mutations in mice manifest clinical features of human RS caused by mutations of Wnt5a pathway. Wnt5a regulates Prickle1 degradation to signal Dvl2 phosphorylation further suggest that Prickle1, unlike other identified core PCP component, is dedicated to Wnt pathway, which is particularly important for dynamic cell arrangement and migration during tissue outgrowth. The phenotypic similarity and its role in mediating Wnt5a/Ror2 signaling make Prickle1 a likely candidate gene for Robinow syndrome.

We initially generated different Prickle1 alleles in order to bypass early embryonic lethality reported previously in a Prickle1 null mutant (Tao et al., 2009). Our goal was to study Prickle1 late-stage PCP function, which cannot be addressed using conventional knockout mice. Surprisingly, the Prickle1 null embryos in our colonies survived through gastrulation, and mutant mice were born at the expected Mendelian ratio. Our Prickle1 gene targeting strategy was identical to that of the previous study (Tao et al., 2009). In both studies, exon2 carrying the protein translation start codon was deleted. This should result in a null allele, which were able to confirm directly by showing absence of residual or aberrant proteins on immunoblots using both N and C-terminal Prickle1 antibodies. Furthermore, we replaced exon2 by an eYFP reporter carrying its own poly(A) signal, which should cause RNA transcription to stop and thus a further disruption to Prickle1 gene expression. Therefore the stark discrepancy in mutant survival between the two studies cannot be attributed to a differential degree of gene ablation. Rather, this differences are most likely due to the difference in genetic background, which in our case is an equal mixture of C57Bl/6

Fig. 9. Robinow syndrome features presented in Prickle1 mutant mice. (A) Top view of short stature of a Prickle1b/a hypomorphic mutant (Prickle1a/a, right) with a kinked tail. (B) Front view of control and hypomorphic mutant mice. Straight white lines indicate eye distance; curved white lines indicate nose curvature. The white line and curved line in the mutant are copied from the wild type, are therefore same in length and curvature. Red dotted and curved lines indicate expansion of eye distance and facial flatness in the mutant mouse, respectively. (C) Side view shows prominent forehead and less-pointed nose in the mutant (arrows). (D) Ventral view of the same control and mutant pair in c. Angles show pointiness of nose; arrows indicate incisors, which are not well separate in the mutant. (E) Computed tomography (CT) scan showing the distorted and incomplete cervical vertebrae defects in the mutants. (F) Hind limb long bones are shorter in the mutants. (G) Hind paw metatarsals of digit ‘I’ and ‘II’. Note digit ‘I’ is severely shorter, but ‘II’ is comparable.
and Sv/129 but a pure C57Bl/6J through backcrossing in the prior study. The pleiotropic tissue outgrowth defects in \textit{Prickle1} mutants indicate a disruption of PCP pathway that govern morphogenesis. The vectorial cell disarrangement in \textit{Prickle1} mutant tissues including in kidney and heart demonstrates a role of \textit{Prickle1} in PCP function. However, PCP defects in \textit{Prickle1} mutants appear to mechanistically differ from those in other PCP genes. Mislocalization of PCP proteins, small GTPases and F-actin are reminiscent of disrupted AB polarity, which is not usually seen in other PCP mutants. This part of our data is consistent with the suggested role of \textit{Prickle1} in embryonic epiblast AB polarity (Tao et al., 2009). These observations indicate that \textit{Prickle1} may also be involved in setting up apico-basal polarity.

Our study suggests that \textit{Prickle1} is a major component of Wnt5a signaling. Several lines of evidence support this conclusion: i) \textit{Prickle1} is targeted to proteasomal degradation upon Wnt5a signaling; ii) \textit{Prickle1} is upregulated in Wnt5a null mutant limb tissue; and iii) Dvl2 phosphorylation, a hallmark of Wnt5a activation (González-Sancho et al., 2004; Ho et al., 2012), is altered in \textit{Prickle1} mutant tissues. Published studies demonstrate ubiquitination of \textit{Prickle1} by Smurf/Par6 complex upon Wnt5a signaling (Narimatsu et al., 2009) and Dvl2 stability regulated by \textit{Prickle1} (Carreira-Barbosa et al., 2003) provide additional support for notion that \textit{Prickle1} transduces Wnt5a signaling to downstream targets. A previous study demonstrated that Vangl2 is a phosphorylation target upon Wnt5a/Ror2 signaling, and Vangl2 polarization is lost upon disruption of Wnt5a signaling in chondrocytes (Gao et al., 2011). However, in Ror compound mutant MEF cells, Dvl rather than Vangl2 phosphorylation is found to be a critical event (Ho et al., 2012). Similarly, our data showed that Dvl2 phosphorylation is a downstream target of \textit{Prickle1}-mediated Wnt5a signaling. We also found that Vangl2 polarization is partially retained in \textit{Prickle1} mutant chondrocytes, suggesting that \textit{Prickle1} and Dvl2 may act downstream of Vangl2.

Loss of \textit{Prickle1} leads to enhanced Wnt5a signaling in biochemical assays yet the mutant phenotypes mimic those of both gain- and loss-of-function mutants of Wnt5a (van Amerongen et al., 2012; Yamaguchi et al., 1999) (supplementary material Fig. S9). This paradox could be explained by the nature of polarity signaling. Namely, Wnt5a gradient confers a vectorial (directional) cue that drives cell behavior. Both absence of Wnt5a or excess Wnt5a that saturates signaling around the entire cell will lead to loss of the vectorial information (supplementary material Fig. S10). Loss of \textit{Prickle1} disrupts Wnt5a signaling to downstream targets so that cells cannot interpret or respond to the vectorial information. Hence all three genetic alterations lead to a similar defect in tissue morphogenesis.

MATERIALS AND METHODS

Generation of \textit{Prickle1} mutant alleles

All procedures involving the use of mice were approved by National Eye Institute Animal Care and Use Committee (ACUC). \textit{Prickle1} gene-trap mutant strain was generated as described previously (Liu et al., 2013). The knockout construct was designed as a gene-trap allele first and was brought into straight and conditional knockout alleles upon excisions by Cre and Flp recombinase, respectively. Briefly, the following elements were engineered into \textit{Prickle1} locus in order: \textit{Frt}, \textit{En2} splicing acceptor, eYFP, polyadenylation signal (poly (A)), \textit{loxP}, PGK-neo, \textit{Frt}, and \textit{loxP} right before \textit{Prickle1} exon 2, and a third \textit{loxP} after Exon2. This allele allows eYFP reporter expression under the control of endogenous \textit{Prickle1} promoter, and was designated as \textit{Prickle1eYFP} (Fig. 1A). A complete Cre and Flp recombination will convert \textit{Prickle1eYFP} to \textit{Prickle1eYFP} and \textit{Prickle1eYFP} alleles, respectively (Fig. 1A). Southern analysis and genotyping were conducted as described previously (Liu et al., 2013).

Histology, immunohistochemistry and imaging

Mouse skeletal visualization entirely followed protocol by Ovchinnikov (Ovchinnikov, 2009). Images were taken with dissection Zeiss microscope equipped with Axiovision digital camera. Tissues were dissected and fixed with 4% PFA and subjected to sectioning at 15 um for frozen sections, or 50 um for vibratome sections. H&E staining was performed on fixed frozen sections (FD Neurotechnologies, Inc, PS103-1, PS-104-1), and on methacrylate plastic sections generated at NEI Histology core. Immunohistochemistry were performed as previously described (Liu et al., 2012). Skin flat mount was prepared exactly following the description by Wang et al. (Wang et al., 2010). Briefly, skin was dissected and cleaned away of fat tissues, fixed with 4% PFA, and cleared with benzyl benzoate:benzyl alcohol (BBBA), imaging using a Zeiss dissection microscope (Liu et al., 2008). Antibodies and fluorescent dyes were used in this study as follows: Phalloidin-Alexa 488, (Invitrogen, A12379); Lotus tetragonolobus lectin, (Vector Laboratories, FL-1321); rat anti-E-cadherin, (Sigma, U3254); mouse anti-calcibindin D28K, (Sigma, C9848, CB-955); mouse anti-actin monomer tubulin, (Sigma, T6793); mouse anti-Dvl1, (3F12, Santa Cruz Sc-8025); mouse anti-Dvl3, (4D3, Santa Cruz : SC3027); mouse anti-Dvl2 (Santa Cruz, sc-8026); mouse anti-Ror2 (DSHB), rabbit anti-Vangl2, (gift from Dr. Matthew Kelley at NIDCD, NIH); mouse anti-RhoA, (Sigma, SAB1440017; Cytoskeleton, Inc. Cat. ARH03); β-catenin (610154, BD transduction laboratories); rabbit anti-NF-145, (Chemicon, AB1987); mouse anti-Cdc42, (Cytoskeleton, Inc, Cat # ACD03); mouse anti-Rac1, and (Cytoskeleton, Inc, Cat # ARCO3). Fluorescent images were collected using Leica SP5 and Olympus FV1000 confocal microscope at NNRL and NEI imaging core. Fluorescent intensity measurement was conducted using NIH ImageJ software.

Quantification of cardiac myofibrils’ orientation, renal tubules’ cell arrangement, cell alignment and interfaces

The cardiac myofibrils orientation is defined by a group of arrows arbitrarily drawn along Phalloidin stained actin. Each arrow marks at least 4 continuous A-bands (Fig. 2H). Angles of arrows are measured referring to epicardium surface, on which rays from any given points are defined as 0 and 180 degree angles respective to opposite directions (right versus left). All angles are forced into quadrant I–II (0–180˚) by subtracting 180˚ if they happen to fall into quadrant III–VI (180–360˚). Arrows are binned into 0˚–90˚ and 91˚–180˚, and presented as percentage of total in graph. About 35 angular arrows/section were drawn to illustrate myofibrils’ orientations. Three tissue sections from each animal were used for quantification. Three animals for each genotype were used for analysis. Total 108 and 111 angular arrows from respective control and the mutant tissue sections were measured.

Thickness of a collecting duct (CD) wall was quantified as cell number. E-cadherin and DAPI staining was used to identify cells making up the CD wall on cross sections. Each imaged plane is composed of 7×1 μm-projected stacks. Cells out of an imaged plane are named off-plane cells. Three tissue sections from each animal were used for analysis. About 90 tubules were counted for each genotype. Student t-test was used to detect the P value for all groups of data.

Cell arrangement was quantified by examination of cell intersection pattern in the thick ascending limb of the Henle’s loop. Depending on number of cell laterals (junctions) intersect, cell arrangement is defined as 3-lateral and 4-lateral patterns. Cell alignment was quantified as a transformation of lateral vectorial lengths of two adjacent columns of cells. A shortest countound line path between two adjacent columns of
cells along the vertical direction of a tube was drawn (supplementary material Fig. S4C). Vectorial additions were then performed for laterals from each cell vertex on the compound line using parallellogram method to create collections of new vectors (supplementary material Fig. S4D). These vectors were plotted in a polar coordinate (supplementary material Fig. S4E). The orientations and lengths of the vectors variations were subjected to paired t-test to detect statistical differences. 68 vectors acquired roughly equally from three animals of either wild type or the mutant Henle’s loop were analyzed and plotted.

Cell interfaces of a Henle’s loop cell were quantified by counting cells directly contacting that cell. Because the shapes of many mutant cells are not regular, we therefore named the cells by their interfaces (int). Three tissue sections from each animal were used for quantification. Three animals for each genotype were used for analysis. Total 331 wild type and 416 mutant cells were cataloged.

Quantification of alignment of Vangl2 staining

Cells with positive Vangl2 staining were counted. Fractions of polarized Vangl2 cells were presented as percentage. A set of three sections derived from either wild type or mutant embryos were used for analysis. P-values were computed by T-test function. The aligned cell groups were defined only if three center points of Vangl2 staining of adjacent cells make an angle equal or larger than 165 degree (arbitrarily defined), for example angles a, b and c (supplementary material Fig. S7). By this definition, the aligned cells do not deviate more than 15 degree from each other in terms of stained Vangl2 orientations. Three wild type and three mutant embryos were analyzed, each of which 24 cell groups were analyzed. A t-test was conducted using the Excel program to compute p values.

Tissue culture and transfection

Culture medium used for MEFs and HEK293 cells is based on DMED/F12 (Invitrogen, Cat. 12660-012) supplemented with or without 10% FBS and penicillin/streptomycin (Invitrogen, Cat. 15070-063). Cell transfection was performed in 6-well dishes with total amount 2 µg DNA/well using Lipofectamine 2000 (Invitrogen, Cat. 11668-019) for different combinations of GFP-Pk1, Wnt5a and Ryk plasmids. Biological triplicates and technical replicates were made for each transfection. 36 hr after transfection, cells were treated with 100 nM DMSO or MG-68 in 1:1000 dilutions for Western blots. Mouse anti-Ubiquitin (Sigma, 555575; RhoA, Cdc42 and Rac1 (Cytoskeleton, Inc) were used at 1:1000; rabbit anti-Dvl2 (Chemicon, AB5972; Cell Signaling, Cat# 3216) and rabbit anti-GFP were used at 1:2000; mouse anti-Ubiquitin antibody (ab72583) was used at 1:1000.

SEM ultrastructure analysis of the inner ear cells in cochlea

Samples were prepared for SEM as described (May-Simera and Kelley, 2012). Dissected cochlea sensory epithelia were fixed in EM fix (2.5% glutaraldehyde, 4% PFA, 10 mM CaCl2 in 0.1M Hapes) for 2 hr at room temperature. After coating with repeated washes of 1% OsO4 and 1% tannic acid, samples were dehydrated through an ethanol series, critical point-dried, and imaged on a S-4800 (Hitachi) field emission scanning electron microscope.

X-ray micro computed tomography (micro-CT imaging)

X-ray micro computed tomography (micro-CT imaging) is performed in the Mouse Imaging Facility. The mouse is placed under general anesthesia in an induction chamber with 3–5% isoflurane delivered by a gas mixture of oxygen, medical air and nitrogen. Once the animal is unconscious, anesthesia is maintained with 1–2% isoflurane administered via nosecone. Sterile ophthalmic ointment is applied to the corneas to prevent desiccation under anesthesia. The animal is placed on the imaging platform secured into the necessary imaging position using transpore and autoclave tape. Depth of anesthesia is monitored by direct visualization of the animal respiratory rate. Body temperature is maintained by the imaging systems warm air blower. Anesthetic gasses are scavenged in a centralized vacuum system approved by the Division of Safety. Total imaging time is approximately 5–30 minutes for a 180 or 360 degree scan.

Acknowledgements

We thank Dr. Jeremy Nathans at Johns Hopkins for experimental and intellectual inputs, Dr. Lijin Dong at National Eye Institute (NEI) Genetic Engineering Facility (GEF) for mutant mouse generation, Dr. Robert Fariss at NEI Imaging Facility, and Brenda Klaunberg at NIH Mouse Imaging Facility for help with imaging analysis, Yide Mi, Linn Gieseke, and Balakrishna Archana for technical assistance, Dr. Tudor Baeda at NEI for helpful discussions, and Sarah Cheng for initial English Editing. This work is supported by intramural research program of the NEI.

Competing interests

The authors have no competing interests to declare.

Author contributions

Chunqiao Liu and Tiansen Li designed experiments and performed data analysis. Chunqiao Liu, Chen Lin, Chun Gao, and Helen May-Simera performed experiments. Chunqiao Liu, Tiansen Li and Anand Swaroop prepared the manuscript.

Funding

This research is partly or wholly funded by the NIH.

References

Afzal, A. R., Rajab, A., Fenske, C., Crosby, A., Lahiri, N., Ternes-Pereira, E., Murday, V. A., Houlston, R., Patton, M. A. and Jeffery, S., 2000. Linkage of recessive Robinow syndrome to a 4 cM interval on chromosome 9q22. Hum. Genet. 106, 351–354.

Afzal, A. R., Rajab, A., Fenske, C. D., Oldridge, M., Elango, N., Ternes-Pereira, E., Tüysüz, B., Murday, V. A., Patton, M. A., Wilkie, A. O. et al., 2000b. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422.

Ali, B. R., Jeffery, S., Patel, N., Tinworth, L. E., Meguid, N., Patton, M. A. and Afzal, A. R., 2007. Novel Robinow syndrome causing mutations in the proximal region of the frizzled-like domain of ROR2 are retained in the endoplasmic reticulum. Hum. Genet. 122, 389–395.

Bacino, C., 1983. ROR2-Related Robinow Syndrome. In GeneReviews (ed. R. A. Pagon, T. D. Bird, C. R. Dolan, K. Stephens and M. P. Adam). Seattle, WA: University of Washington.

Bakker, E. R., Raghoebril, L., Franken, P. F., Helvensteijn, W., van Gurp, L., Marinus, F., van der Valk, M. A., Rottier, R. J., Kuipers, E. J., van Weelen, V. and Smits, R., 2012. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev. Biol. 369, 91–100.

Butler, M. G. and Wadlington, W. B., 1987. Robinow syndrome: report of two patients and review of literature. Clin. Genet. 31, 77–85.
Planar cell polarity signaling: a common mechanism for cellular polarization.

Kuruvilla, R. and Greenberg, M. E. (2005). Planar cell polarity, ciliogenesis and neural tube morphogenesis. Genes Dev. 19, 1265-1277.

van Amerongen, R., Fuerer, C., Mizutani, M. and Nusse, R. (2003). Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680-685.

Wallengford, J. B. (2006). Planar cell polarity, ciliogenesis and neural tube defects. Hum. Mol. Genet. 15, R227-R234.

Wallengford, J. B. and Harland, R. M. (2002). Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129, 5815-5825.

Wallengford, J. B., Fraser, S. E. and Harland, R. M. (2002). Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell. 2, 695-706.

Wang, Y. and Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647-658.

Wang, Y., Guo, N. and Nathans, J. (2006). The role of Frizzled3 and Frizzled4 in neural tube morphogenesis and in the planar polarity of inner-ear sensory hair cells. J. Neurosci. 26, 2147-2157.

Wang, Y., Chang, H. and Nathans, J. (2010). When whorls collide: the development of hair patterns in frizzled 6 mutant mice. Development 137, 4091-4099.

Wang, B., Sinha, T., Jiao, K., Serra, R. and Wang, J. (2011). Disruption of PCP signaling causes limb, cardiac and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum. Mol. Genet. 20, 271-285.

Weightnabe, D., Saijoh, Y., Nonaka, S., Sasaki, G., Ikawa, Y., Yokoyama, T. and Hamada, H. (2003). The left-right determinant in the Drosophila embryo is a component of node monolayer and other +H0 cells. Development 130, 1725-1734.

Wu, J., Roman, A. C., Carvajal-Gonzalez, J. M. and Mlodzik, M. (2013). Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat. Cell Biol. 15, 1045-1055.

Yamaguchi, T. P., Bradley, A., McMahon, A. P. and Jones, S. (1999). A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211-1223.

Yang, T., Bassuk, A. G. and Fritzsche, B. (2013). Prickle1 stunts limb growth through alteration of cell polarity and gene expression. Dev. Dyn. 242, 1293-1306.

Yates, L. L., Papakrivopoulos, J., Long, D. A., Gogollou, P., Connolly, J. O., Wu, J., Sasaki, G. and Dhar, N. (2012). The planar cell polarity gene Vang2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum. Mol. Genet. 19, 4663-4676.

Yu, H., Smallwood, P. M., Wang, Y., Vidalatmayaro, R., Reed, R. and Nathans, J. (2009). Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and jaw development. PLoS Genet. 5, e1000570.

Zhang, L., Zhang, J., Carthew, R. W. (1995). frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121, 3045-3055.