Study in statistics: motivation, independence, and learning achievement

Edi Irawan
IAIN Ponorogo, Ponorogo, East Java, Indonesia

E-mail: nawariide@iainponorogo.ac.id

Abstract. Statistics are very important for students to master, but many experience difficulties. This study aims to determine the effectiveness of a combination of blended learning and problem-based learning in improving student motivation, independence, and statistical learning achievement. This research is a quasi-experimental study conducted on IAIN Ponorogo students. The instruments used for data collection were achievement tests, learning independence tests, and learning motivation questionnaires. The data collected was analyzed using MANOVA and continued with the Bonferroni Test. The result of the MANOVA test has obtained a significance of 0.000 so that it can be concluded that the combination of blended learning and problem-based learning was more effective in increasing student motivation, independence, and statistical learning achievement than blended learning and problem-based learning methods. Specifically, the combination method is more effective in increasing student learning motivation than blended learning and problem-based learning. In the aspect of increasing student learning independence, the combination method has the same effectiveness as problem-based learning. Both are more effective in increasing the independence of student learning than blended learning. Whereas in the aspect of learning achievement, the combination method is more effective in increasing student statistical learning achievement than blended learning and problem-based learning.

1. Introduction
Mathematics as a rapidly developing field of knowledge is continuously applied in various fields of work and education [1]. Statistics, is one part of an important subject for students including prospective teacher students. Students are not only required to understand the concept of statistics, but are also able to apply it to research. Students must understand the concepts of descriptive and inferential statistics properly and correctly. Low mastery of concepts, will have implications for the ability of students in their application. The fact is, many students avoid quantitative research because of their low understanding of statistics. The results of previous studies indicate that students' mastery of statistical concepts is still low. The existing problems need to immediately get a solution so that students can understand statistics properly and correctly.

The solution to improve students' understanding is to use contemporary learning. Learning following the characteristics of generation Z. One of the characteristics of generation Z is the use of information technology [2, 3]. Therefore, the learning developed must be following the characteristics of today's students.

One alternative to contemporary learning is by combining learning with blended learning and problem-based learning. Blended is defined as the combination of the best features of traditional
learning and online learning [4–7]. Thus, blended learning can be considered a sort of electronic learning or its extension; its main difference is the necessity of face-to-face communication of students with each other and with the instructor [7–9]. Blended learning is also very relevant for university use [10–12]. The application used for blended learning in this study is Google Classroom. Google classroom is a supporting application for the learning management system developed by Google. The advantages of this application compared to other applications are practical, easy to use, flexible, integrated email, and free [13]. While learning problem-based learning is a teaching method characterized by the existence of real problems as a context for students learning critical thinking and problem-solving skills, and gaining knowledge [14–16]. The strengths of this learning are that it is realistic with student life, concepts are following student needs, fosters student inquiry nature, concept retention becomes strong, and fosters problem-solving abilities [17].

Existing research so far has only focused on blended learning [5, 8, 11, 18, 19] or problem-based learning [20–22]. Therefore, this study attempts to fill in existing emptiness, namely the use of a combination of blended learning and problem-based learning as well as the impact on motivation, independence, and student achievement in statistical learning. The study was conducted involving three different classes and each received a different treatment. Therefore, the purpose of this study is to: 1) determine the effectiveness of a combination of blended learning and problem-based learning in increasing student motivation, independence, and statistical learning achievement; 2) find out which is more effective in increasing student motivation, blended learning, problem-based learning, or a combination of blended learning and problem-based learning; 3) find out which one is more effective in increasing student learning independence, blended learning, problem-based learning, or a combination of blended learning and problem-based learning; 4) find out which is more effective in improving student achievement in statistical learning, blended learning, problem-based learning, or a combination of blended learning and problem-based learning.

2. Methods
This type of research is a quasi-experimental design with a pretest-posttest equivalent comparison group design. The study population was students of the Tarbiyah Faculty and Teacher Training IAIN Ponorogo. As a sample, three classes were chosen randomly. One class was treated with a combination of blended learning and problem-based learning, one class was treated with only blended learning and one class was treated with only problem-based learning.

Before being treated, a manova test was carried out to ensure that all three classes had the same motivation, independence, and statistical learning achievement. The instruments used in this study were learning motivation questionnaires and learning independence questionnaire and statistical learning achievement test. Each instrument was developed concerning the grid and has been through expert judgment and trials to determine its validity and reliability. Only valid instrument items are used for data collection. Based on the results of the reliability test using Cronbach Alpha obtained r-value on the learning motivation instrument of 0.862 (reliable), learning independence of the instrument of 0.791 (reliable) and learning motivation of 0.916 (reliable).

Furthermore, the data that has been collected is analyzed descriptively and inferentially. Descriptive data analysis is used to describe the average, standard deviation, maximum and minimum scores of motivation, independence, and student statistical learning achievement. The inferential analysis is used to test research hypotheses using multivariate analysis of variance (MANOVA). Previously, a manova prerequisite test consisted of a multivariate normality test and a variance-covariance matrix homogeneity test. After a manova test, a post hoc test is performed using the Bonferroni test if the data is homogeneous and using the Games-Howell test if the data is not homogeneous. This further test aims to find out which treatment is more effective in increasing motivation, independence, and statistical learning achievement of students. Technically the data analysis was performed using SPSS 25 software.
3. Results and discussion

3.1. Results

The treatment of blended learning is done using Google Classroom as a management learning system. Lecture material, assignment collection, and exams are conducted online using Google Classroom. Figure 1, Figure 2, and Figure 3 are some pictures of the lecture process using Google Classroom as a learning system.

Figure 1. Blended learning process using Google Classroom

Figure 2. The process of giving assignments and lecture material

Figure 3. The process of gathering and evaluating assignments
Before and after learning using blended learning and also problem-based learning for one semester, a questionnaire was given to measure learning motivation and learning independence as well as tests to measure student achievement in statistical learning. Description of learning motivation data presented in Table 1, data on learning independence presented in Table 2, and learning achievement presented in Table 3.

Table 1. Description of Student Learning Motivation Data

Description	Combination of Blended Learning and Problem Based Learning	Blended Learning	Problem Based Learning			
	Pre Test	Post Test	Pre Test	Post Test	Pre Test	Post Test
Average	78,03	88,00	77,11	83,71	78,21	76,91
Standard Deviation	4,718	5,122	5,357	5,773	5,439	5,439
N	35	35	35	35	33	33

Table 2. Description of Student Learning Independence Data

Description	Combination of Blended Learning and Problem Based Learning	Blended Learning	Problem Based Learning			
	Pre Test	Post Test	Pre Test	Post Test	Pre Test	Post Test
Average	78,03	86,46	77,11	77,91	76,91	85,36
Standard Deviation	4,119	4,300	4,159	4,388	4,146	6,152
N	35	35	35	35	33	33

Table 3. Description of Student Statistics Learning Achievement Data

Description	Combination of Blended Learning and Problem Based Learning	Blended Learning	Problem Based Learning			
	Pre Test	Post Test	Pre Test	Post Test	Pre Test	Post Test
Average	59,91	92,11	59,26	83,83	58,97	82,67
Standard Deviation	4,566	5,395	3,416	4,805	4,217	4,113
N	35	35	35	35	33	33

Table 1 above illustrates that students' initial learning motivation in the three classes is the same, both in the blended learning class, problem-based learning, and in the combination, class blended learning and problem-based learning. However, the results of the post-test showed that the average student motivation in the three classes was not the same. Meanwhile, in Table 2 above illustrates that the independence of early learning of students in the three classes is also relatively the same, both in blended learning classes, problem-based learning, as well as in-class combinations of blended learning
and problem-based learning. However, the results of the post-test showed that the average learning independence of students in the three classes was not all the same. Whereas in Table 3 above, it illustrates that the initial achievement of students in the three experimental classes is relatively the same, both in the blended learning class, problem-based learning, and in the combination class blended learning and problem based learning. However, the results of the post-test showed that the average statistical learning achievement of students in the three classes was different.

Furthermore, data analysis was carried out to determine the effectiveness of a combination of blended learning and problem based learning in increasing student motivation, independence, and statistical learning achievement. Before the Manova test is carried out, a prerequisite test which includes a multivariate normality test with the results presented in Table 4 and a variance-covariance matrix homogeneity test with the results presented in Table 5.

Table 4. Multivariate Normality Test Results

	d_i^2 Pre Test	d_i^2 Post Test
Combination of Blended Learning and Problem Based Learning	50.32%	51.72%
Blended Learning	55.09%	53.41%
Problem Based Learning	51.84%	52.27%

Table 5. Box’s Test of Equality of Covariance Results

	Pre Test	Post Test
Box’s M	16,361	11,318
F	1,304	0,902
Sig.	0,208	0,544

The results of data analysis as listed in table 4 show that the value d_i^2 is more than 50%, both in pre-test and post-test blended learning, pre-test and post-test problem-based learning [23,24], as well as pre-test and post-test combination of blended learning and problem-based learning. It can be concluded that all data, both pre-test and post-test are normally distributed multivariate. Furthermore, in table 5 shows that the value Sig. is more than α that H_0 is accepted [23,24], so it can be concluded that the variance-covariance matrix in the pre-test and post-test is homogeneous.

The fulfillment of the two main assumptions of manova, can be a foothold to proceed on the manova test. The results of the manova test to determine the effectiveness of blended learning, problem-based learning, a combination of blended learning and problem based learning in increasing motivation, independence, and student achievement in statistical studies are presented in Table 6.

Table 6. Manova Test Results Using Hotelling’s Trace

	Pre Test	Post Test
Value	0.976	2.137
F	0.405	34.548
Sig.	0.875	0.000
Based on the above table, the pre-test results show that \textit{Sig.} the Hotelling’s Trace test value is more than α that H_0 is accepted [24, 25], so it can be concluded that the motivation, independence, and achievement of student statistics in blended learning classes, problem based learning, a combination of blended learning and problem based learning are equally good. While the post test results show that the value of Sig. Hotelling’s Trace test is less than α that H_0 is rejected [24, 25], so it can be concluded that the effectiveness of blended learning, problem based learning, a combination of blended learning and problem based learning in increasing motivation, independence, and statistical learning achievement of students is not the same. Therefore, to see the effectiveness of each treatment, post manova further testing is needed. The results of further tests using the Bonferroni Test are presented in Table 7 below.

Dependent Variable	(I) Method	(J) Method	Mean Difference (I-J)	Std. Error	Sig.
Motivation to learn	Combination Model	Blended Learning	4.29	1.303	0.004
		Problem Based Learning	11.09	1.323	0.000
	Blended Learning	Problem Based Learning	6.81	1.323	0.000
Learning independence	Combination Model	Blended Learning	8.54	1.161	0.000
		Problem Based Learning	1.09	1.178	1.000
	Blended Learning	Problem Based Learning	-7.45	1.178	0.000
Learning achievement	Combination Model	Blended Learning	8.29	1.221	0.000
		Problem Based Learning	9.45	1.159	0.000
	Blended Learning	Problem Based Learning	1.16	1.083	0.534

3.2. \textit{Discussion}

Based on the above data analysis, it appears that there are differences in the effectiveness of the blended learning model, problem based learning, and the combination of blended learning problem based learning in increasing motivation, independence, and student achievement in statistical learning. Specifically, it can be seen from the results of the analysis of the effectiveness test data as listed in Table 7 above. Therefore some conclusions can be formulated as follows. First, because the value of Sig. comparative motivation between the combination of blended learning problem based learning and blended learning is less than α that H_0 is rejected [25], it can be concluded that there are differences in student motivation to learn using the blended learning method and the combination of blended learning problem based learning. Taking into account the difference between the two, it can be concluded that the learning motivation of students who learn to use the combination method of blended learning problem based learning is higher than blended learning. Likewise because the value of Sig. comparative motivation between the combination of blended learning problem based learning
and problem based learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in learning motivation of students who learn to use the method of problem based learning and the combination of blended learning problem based learning. Taking into account the difference between the two, it can be concluded that the learning motivation of students who learn to use the combination method of blended learning problem based learning is higher than problem based learning. Furthermore, because the \(\text{Sig.} \) value of comparative motivation between blended learning and problem based learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in learning motivation of students who learn to use blended learning methods and problem based learning. Taking into account the difference between the two, it can be concluded that the learning motivation of students who learn to use blended learning methods is higher than problem based learning. These three conclusions are in line with various previous research results which state that blended learning can significantly increase student learning motivation [26–28].

Second, because the value of the \(\text{Sig.} \) comparative independence between the combination of blended learning problem based learning and blended learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in the learning independence of students who learn to use the blended learning method and the combination of blended learning problem based learning. Taking into account the difference between the two, it can be concluded that the learning independence of students who study using the combination method of blended learning problem based learning is higher than blended learning. Meanwhile, because the value of comparative independence between blended learning and problem based learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in the learning independence of students who learn to use the blended learning method and problem based learning. Taking into account the difference between the two, it can be concluded that the independence of learning of students who learn using problem based learning methods is higher than blended learning. However, because the value of comparative independence between the combination of blended learning problem based learning and problem based learning is more than \(\alpha \) that \(H_0 \) is accepted [25], it can be concluded that the learning independence of students who learn to use the method of problem based learning and the combination of blended learning problem based learning is equally. This conclusion is in accordance with other studies which concluded that problem based learning is effective in increasing learning independence [29,30].

Third, because the value of \(\text{Sig.} \) comparative achievement between the combination of blended learning problem based learning and blended learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in the learning achievements of students who learn to use the blended learning method and the combination of blended learning problem based learning. Taking into account the difference between the two, it can be concluded that the learning achievement of students who study using the combination method of blended learning problem based learning is higher than blended learning. Likewise, because the value of \(\text{Sig.} \) comparative achievement between the combination of blended learning problem based learning and problem based learning is less than \(\alpha \) that \(H_0 \) is rejected [25], it can be concluded that there are differences in student achievement in learning that learns using the method of problem based learning and the combination of blended learning problem based learning. Taking into account the difference between the two, it can be concluded that the learning achievement of students who learn to use the combination method of blended learning problem based learning is higher than problem based learning. These results are consistent with the results of other studies which concluded that blended learning is effective in increasing student achievement [10,12,31–33]. However, because the value of \(\text{Sig.} \) comparative achievement between blended learning and problem based learning is more than \(\alpha \) that \(H_0 \) is accepted [25], it can be concluded that the learning achievements of students who learn using the blended learning method and problem based learning are equally.
4. Conclusion
Based on the results of the data analysis and discussion above, the following conclusions can be formulated. First, there is a difference in effectiveness between blended learning, problem based learning, and the combination of blended learning and problem based learning in increasing student motivation, independence, and statistical learning achievement. Second, the combination of blended learning and problem based learning methods is more effective in increasing student learning motivation than blended learning and problem based learning. Likewise the blended learning method is more effective in increasing student motivation than problem based learning. Third, the combination method of blended learning and problem based learning has the same effectiveness as problem based learning in increasing student learning independence. Both are more effective in increasing the independence of student learning than blended learning. Fourth, the combination of blended learning and problem based learning methods is more effective in increasing student statistical learning achievement than blended learning and problem based learning. However, the blended learning method and problem based learning have the same effectiveness in increasing students' statistical learning achievement.

Acknowledgement
The author would like to thank Ponorogo State Islamic Institute as a place for writers to teach and research and facilitate this scientific publication. Besides, we also thank the AD-Intercommee committee for facilitating this scientific publication.

References
[1] National Council Of Teachers Of Mathematics 2000 Principles and Standards for School Mathematics Sch. Sci. Math. 47 868–279
[2] Santosa E T 2015 Raising Children In Digital Era (Jakarta: Elek Media Komputindo)
[3] Susanti A and Natalia T W 2018 Public space strategic planning based on Z generation preferences IOP Conference Series: Materials Science and Engineering 407 (Institute of Physics Publishing)
[4] Yigit T, Koyun A, Yuksel A, Behavioral I C-P-S and and and 2014 U 2014 Evaluation of Blended Learning Approach in Computer Engineering Education Elsevier 141 807–12
[5] Gaiz A and Mosawy S 2018 Educational Technologies for Online and Blended Learning in Medical Science Acta Sci. Med. Sci. 2 50–4
[6] Garrison D R (D. R and Vaughan N D 2008 Blended learning in higher education: framework, principles, and guidelines (Jossey-Bass)
[7] Siregar N, Siregar T M and Siregar B H 2019 Blended learning in students’ view Journal of Physics: Conference Series 1188 (Institute of Physics Publishing)
[8] Murtikusuma R P, Hobri, Fatahillah A, Hussen S, Prasetyo R R and Alfarisi M A 2019 Development of blended learning based on Google Classroom with osing culture theme in mathematics learning Journal of Physics: Conference Series 1165 (Institute of Physics Publishing)
[9] Setyaningrum W 2019 Self-regulated learning in blended learning approach J. Phys. Conf. Ser. 1320 012089
[10] Garrison D R and Vaughan N D 2012 Blended Learning in Higher Education: Framework, Principles, and Guidelines (San Fransisco: John Wiley & Sons Inc)
[11] Wintarti A, Masriyah, Ekawati R and Fiangga S 2019 Blended Learning as a Learning Strategy in the Disruptive Era Journal of Physics: Conference Series 1387 (Institute of Physics Publishing)
[12] Al-Huneidi A and Schreurs J 2013 Constructivism based blended learning in higher education Communications in Computer and Information Science 278 581–91
[13] Iftakhar S 2016 Google Classroom: What works and How? J. Educ. Soc. Sci. 3 12–8
[14] Barrows H S 1996 Problem-based learning in medicine and beyond: A brief overview New Dir.
Teach. Learn. 1996 3–12

[15] Wilkerson L and Gijselaers W 1996 Bringing Problem-Based Learning To Higher Education: Theory And Practice (San Fransisco: Josey-Bass Inc)

[16] Stinson J E and Milter R G 1996 Problem-based learning in business education: Curriculum design and implementation issues New Dir. Teach. Learn. 1996 33–42

[17] Graaf E De and Education A K-J of E 2003 Characteristics of problem-based learning Int. J. Eng. Educ. 19 657–62

[18] Fitri S and Zahari C L 2019 The implementation of blended learning to improve understanding of mathematics Journal of Physics: Conference Series 1188 (Institute of Physics Publishing)

[19] Islam S, Baharun H, Muali C, Ghufron M I, Bali M el I, Wijaya M and Marzuki I 2018 To Boost Students’ Motivation and Achievement through Blended Learning Journal of Physics: Conference Series 1114 012046

[20] Meke K D P, Wutsqa D U and Alfi H D 2018 The Effectiveness of Problem-based Learning Using Manipulative Materials Approach on Cognitive Ability in Mathematics Learning Journal of Physics: Conference Series 1097 (Institute of Physics Publishing)

[21] Darma I K, Candiasa I M, Sadia I W and Dantes N 2018 The effect of problem based learning model and authentic assessment on mathematical problem solving ability by using numeric ability as the covariable Journal of Physics: Conference Series 1040 (Institute of Physics Publishing)

[22] Amini R, Setiawan B, Fitria Y and Ningsih Y 2019 The difference of students learning outcomes using the project-based learning and problem-based learning model in terms of self-efficacy Journal of Physics: Conference Series 1387 (Institute of Physics Publishing)

[23] Haigh J, Johnson R A and Wichern D W 2007 Applied Multivariate Statistical Analysis (New Jersey: Pearson Prentice Hall)

[24] Rencher A C 2002 Methods of Multivariate Analysis Second Edition” (New York: John Wiley & Sons Inc)

[25] Skinner C J and Anderson T W 2003 An Introduction to Multivariate Statistical Analysis. (New Jersey: John Wiley & Sons Inc)

[26] Bibi S and Jati H 2015 Efektivitas Model Blended Learning Terhadap Motivasi dan Tingkat Pemahaman Mahasiswa Mata Kuliah Algoritma dan Pemrograman J. Pendidik. Vokasi 5 74

[27] Fitri E, Ifdil I and S. N 2016 Efektivitas Layanan Informasi dengan Menggunakan Metode Blended Learning untuk Meningkatkan Motivasi Belajar J. Psikol. Pendidik. dan Konseling J. Kaji. Psiko. Pendidik. dan Bimbing. Konseling 2 84

[28] Sjukur S B 2013 Pengaruh blended learning terhadap motivasi belajar dan hasil belajar siswa di tingkat SMK J. Pendidik. Vokasi 2

[29] Lestari P 2016 Kefektifan Model Based-Learning dengan Pendekatan Saintifik Terhadap Kemampuan Pemecahan Masalah dan Kemandirian Belajar Peserta Didik Kelas VII Unnes J. Math. Educ. 5

[30] Savin-Baden M 2000 Problem-Based Learning In Higher Education: Untold Stories (Philadelphia: SRHE and Open University Press)

[31] Garrison D R and Kanuka H 2004 Blended learning: Uncovering its transformative potential in higher education Internet High. Educ. 7 95

[32] Husamah H 2015 Blended Project Based Learning: Metacognitive Awareness of Biology Education New Students J. Educ. Learn. 9 274

[33] López-Pérez M V, Pérez-López M C and Rodriguez-Ariza L 2011 Blended learning in higher education: Students’ perceptions and their relation to outcomes Comput. Educ. 56 818–26