How to Cite this article: Jonathan Chávez-Íñiguez and Brian Rifkin, Dual RAAS Blockade in CKD: Does the Hype have Teeth?, *Kidney360*, Publish Ahead of Print, 2022, 10.34067/KID.0000912022

Article Type: Perspective

Dual RAAS Blockade in CKD: Does the Hype have Teeth?

DOI: 10.34067/KID.0000912022

Jonathan Chávez-Íñiguez and Brian Rifkin

Key Points:

Abstract:

Disclosures: The authors have nothing to disclose

Funding:

Author Contributions: Jonathan Chávez-Íñiguez: Writing - original draft; Writing - review and editing Brian Rifkin: Writing - original draft; Writing - review and editing

Data Sharing Statement:

Clinical Trials Registration:

Registration Number:

Registration Date:

The information on this cover page is based on the most recent submission data from the authors. It may vary from the final published article. Any fields remaining blank are not applicable for this manuscript.
Dual RAAS Blockade in CKD: Does the Hype have Teeth?

Jonathan S. Chávez-Íñiguez¹² and Brian S. Rifkin³

¹Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde.
²University of Guadalajara Health Sciences Center, Guadalajara, Jalisco. Mexico.
ORCID https://orcid.org/0000-0003-2786-6667

³Hattiesburg Clinic, Division of Nephrology
Hattiesburg, MS
ORCID https://orcid.org/0000-0001-8395-3744

Corresponding Author:
Brian Rifkin
Hattiesburg Clinic, Division of Nephrology
Hattiesburg, MS 39402
Email: brian.rifkin@hattiesburgclinic.com, brifkin@hotmail.com
Phone: 601-543-7192
The mere mention of the renin-angiotensin-aldosterone system (RAAS) is enough to get the average nephrologist salivating with excitement, like Pavlov’s proverbial pet. Medications that block the RAAS have been the cornerstones of treatment for the prevention of chronic kidney disease (CKD) progression for decades. Nephrologists had hoped by combining the power of RAAS blocking agents we could further improve our patients’ chances of decelerating glomerular filtration rate (GFR) loss, but did we bite off more than we could chew? Our enthusiasm has been gnawed away by a series of studies that have failed to show any added benefit of combining RAAS blockade treatments, while even suggesting potential harm. Are angiotensin converting enzyme inhibitors (ACEi), angiotensin II receptor blockers (ARBs) and/or mineralocorticoid receptor (MRA) blockers combined potential for improving cardiovascular and kidney outcomes truly toothless?

Since their introduction in 1977, ACEi have been widely used for hypertension, heart disease and chronic kidney disease. The effects of ACEi on the kidneys are modulated by both the glomerular actions of angiotensin II (AG II) and their effects on autoregulation of glomerular blood flow.[1] AG II constricts both the afferent and efferent arterioles at the glomerulus, with preferential increase in efferent resistance. The net effect is that the intraglomerular pressure is increased to maintain GFR. The associated decline in GFR induced by ACEi glomerular efferent arteriole dilation occurs within the first few days of initiation of therapy, as AG II levels are rapidly reduced. The decline in GFR that occurs with ACEi is indicative of decreased glomerular pressure, a probable mechanism for glomerular protection. In patients treated with either ACEi or ARBs, when compared to other blood pressure lowering agents, there has been noted to be a reduction of kidney disease progression especially when albuminuria is present.[2]

ARBs effects on the human kidney are broadly similar to ACEi. Many studies have looked at their effects in patients with proteinuria, with and without diabetes. In IDNT patients with type 2 diabetes and CKD were treated with irbesartan, which slowed the progression of diabetic kidney disease independent of its anti-hypertensive effects. There was a 23% improvement in the primary endpoint (doubling of baseline creatinine, end stage kidney disease [ESKD], all-cause mortality) compared with amlodipine.[3] In
RENNAL, patients with DKD similarly showed that losartan decreased proteinuria (35%), doubling of serum creatinine (25%) and progression to ESKD (28%), but did not provide a mortality benefit. Patients in RENNAL were excluded if they were on ACEi.[4]

There are at least some physiological reasons why the combination of ACEi and ARBs might have proven to be better than either medication alone. There is substantial evidence that upregulation of the RAAS plays a key role in CKD progression and suppression of this complex pathway seems unlikely to hinge on a single element. Renin is a proteolytic enzyme stored in the juxtaglomerular cells and is normally released in response to reduced kidney afferent blood flow or increased sympathetic tone. Renin cleaves angiotensinogen into angiotensin I which in turn is converted to AG II by ACE. ACEi as solitary agents, though high up in the enzymatic cascade, provide incomplete blockade of the RAAS (Figure 1). Additionally, with chronic ACE inhibition there is evidence of partial escape of ACE, reflected by a shortened duration of AG II suppression.[5] Furthermore, the efficacy of ARBs may be compromised with chronic use by compensatory increases in AG II levels. Finally, the efficacy of either ACEi or ARBs may be limited by their tissue penetration, with effective dosing improved by combination therapy.[6]

Long term efficacy and tolerability of combination therapy was demonstrated in non-diabetic nephropathy in the COOPERATE study.[7] Those in the combination group had a 60% lower rate of doubling of serum creatinine or ESKD compared with those only receiving a single RAAS inhibiting agent. The COOPERATE study was eventually retracted, however, due to questionable patient consent practices and the lack of verifiable data. Next, the CHARM-Added study, conducted with 2,548 CHF patients, added candesartan to ACEi. There was an associated 15% reduced risk of cardiovascular death or hospitalization despite increased hyperkalemia and acute kidney injury (AKI).[8] Furthermore, Val-HeFT added valsartan to ACEi (in 93% of study patients) with reduction in the risk of death or cardiovascular morbidity by 13.2%.[9] Unfortunately, these early favorable studies started to lose their bite with the completion of ONTARGET (2008) and VA NEPHRON D (2013).
In ONTARGET telmisartan was given to patients with cardiovascular disease or diabetes.[10] The study concluded telmisartan was at least as good as ramipril in preventing death, MI, and stroke. Patients taking the combination had no added benefit but did have increased adverse events. Elevated medication doses used in the study, at least in part, were blamed for some of the harmful effects. Furthermore, in the VA-NEPHRON-D trial in patients with CKD stage 2-3, diabetes, and albuminuria, it was shown that dual RAAS blockade had no added impact on GFR, ESKD, or death. VA NEPHRON D was criticized, however, for also having high doses of study medications with aggressive titration and having no female participants. It was also noted participants had non-nephrotic range proteinuria (median proteinuria 2.1 grams in the combination group), which might not have even warranted dual blockade. In the LIRICO study, patients with diabetes and albuminuria were placed on dual RAAS blockade for 2.7 years and had the same cardiorenal events and albuminuria reduction as either agent alone.[11] This lack of improved albuminuria with dual RAAS blockade in the LIRICO study may have been due once again to medication dosing. Finally, in the VALIANT and ONTARGET studies, patients on dual RAAS blockade had lower sustained blood pressures.[12] It is possible that periods of hypotension were responsible for adverse events such as AKI, and if hypotension was avoided results might have been more encouraging. Another possibility is that AKI events induced by the combination of ACEi and ARBs are not entirely negative. Elevated creatinine induced by combination RAAS inhibition may be hemodynamic and protective and not represent actual histological injury to the nephron. Additionally, it is speculated, had the studies been longer, we might have detected additional cardiovascular and kidney benefits. Based on the current evidence, ACEi and ARBs may have the same efficacy in patients with diabetes, albuminuria, and high cardiovascular risk, but the benefits of the combination therapy for mortality and cardiorenal protection remain unproven.

Mineralocorticoid receptor antagonists (MRAs) have also been considered in dual RAAS blockade therapy. A review of the Cochrane database that included 44 studies of patients with CKD and MRAs (mostly spironolactone and eplerenone) observed that adding MRAs to ACEi or ARBs reduced albuminuria by 51%, with no effects on cardiorenal events or mortality. Similar to studies where ACEi were added to
ARBs there was a 2-fold increased risk of AKI and hyperkalemia. [13] Finerenone is a new non-steroidal MRA that blocks mineralocorticoid receptor mediated sodium reabsorption and overactivation. It has demonstrated anti-inflammatory and anti-fibrotic effects as well. It is potentially more potent and safer than spironolactone, but steroidal and non-steroidal MRAs have not been compared head-to-head in recent studies. [14] The FIDELITY study jointly analyzed two Phase III RCTs (FIDELIO and FIGARO) in 13,026 patients with CKD G3a, albuminuria, diabetes, and serum potassium <4.8 mmol/L taking RAAS inhibitors (99.8%) at optimized doses. The efficacy outcomes were a composite cardiovascular outcome of time to cardiovascular death, non-fatal MI, non-fatal stroke, or hospitalization for heart failure. The kidney specific outcomes included onset of kidney failure, sustained >57% decrease in eGFR, or renal death. The composite kidney outcomes were ESKD or a sustained decrease in eGFR to <15 cc/min or kidney transplantation. The study population included elderly patients (median 65 years), with prior cardiovascular disease (45%) and moderate albuminuria (median UACR 515mg/gr), that is, patients with a high cardiovascular and kidney risk. This population approximates the patients commonly seen in nephrology clinics that would be considered for dual RAAS blockade.

Patients were randomized to receive finerenone or placebo for 3 years. The finerenone group had a 14% reduction in composite cardiovascular events, a 23% reduction in the composite renal outcomes, and a 20% reduction in ESKD. Patients on finerenone had twice the risk of developing hyperkalemia.[15] The finerenone group had a reduction in GFR in the first 4 weeks (-3.18 mL/min compared to placebo -0.73 mL/min), but after 44 weeks the finerenone group lost less GFR (-2.66 mL/min compared to placebo -3.97ml/min) demonstrating its potential long term positive effect on kidney function. After review of this study, it is likely that finerenone will be used more and more, consequently we will accumulate further data from phase IV studies and real-world use, broadening our picture of its benefits and risks.

Finally, before we start gnashing our teeth about recent studies lacking strong positive evidence for dual RAAS inhibition, let’s examine clinical trials from a pragmatists point of view. It has been observed that the populations studied in clinical trials are not the same as those seen in clinical practice. The results of randomized
clinical trials tend to overestimate the relative risk of adverse events because of higher than usual drug dosing and increased laboratory tests frequency. A meta-analysis showed that in patients not involved in RAAS blockade studies, ~20% abandoned dual RAAS blockade, similar to most antihypertensive regimens. Curiously, these patients had negligible changes in potassium and eGFR, suggesting that these events were not the main reason for abandonment.[16] The truth is that most nephrologists consider the failure of studies to show the benefits of combination RAAS inhibition may be because these studies don’t represent the timing, dosing, indications, and demographics of patients that are routinely encountered in clinical practice. It is still reasonable to consider double RAAS blockade (either by combining ACEi with ARB or with MRAs) in certain patients with CKD, significant albuminuria, and high cardiovascular risk. Unfortunately, we don’t have all the answers and still have much to chew on.

Disclosures
The authors have nothing to disclose.

Funding
None

Acknowledgments
The content of this article reflects the personal experience and views of the author(s) and should not be considered medical advice or recommendation. The content does not reflect the views or opinions of the American Society of Nephrology (ASN) or Kidney360. Responsibility for the information and views expressed herein lies entirely with the author(s).

Author Contributions
J. Chávez-Íñiguez: Writing – original draft; Writing – review and editing. B. Rifkin: Writing – original draft; Writing – review and editing.
References

1 Braam B, Koomans HA. Renal responses to antagonism of the renin-angiotensin system. Curr Opin Nephrol Hypertens. 1996 Jan;5(1):89-96. doi: 10.1097/00041552-199601000-00015. PMID: 8834166.

2 Basile J. Lessons learned from the ONTARGET and TRANSCEND trials. Curr Atheroscler Rep. 2009 Sep;11(5):371-6. doi: 10.1007/s11883-009-0056-0. PMID: 19664381.

3 Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I; Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001 Sep 20;345(12):851-60. doi: 10.1056/NEJMoa011303. PMID: 11565517.

4 Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S; RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001 Sep 20;345(12):861-9. doi: 10.1056/NEJMoa011161. PMID: 11565518.

5 van den Meiracker AH, Man in 't Veld AJ, Admiraal PJ, Ritsema van Eck HJ, Boomsma F, Derkx FH, Schalekamp MA. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J Hypertens. 1992 Aug;10(8):803-12. PMID: 1325513.

6 Burnier M, Brunner HR. Angiotensin II receptor antagonists. Lancet. 2000 Feb 19;355(9204):637-45. doi: 10.1016/s0140-6736(99)10365-9. PMID: 10696996.

7 Nakao N, Yoshimura A, Morita H, Takada M, Kayano T, Ideura T. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomized controlled trial. Lancet.
8 McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003 Sep 6;362(9386):767-71. doi: 10.1016/S0140-6736(03)14283-3. PMID: 13678869.

9 Tepper D. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. Congest Heart Fail. 2002 Jan-Feb;8(1):57-8. PMID: 11821630.

10 ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008 Apr 10;358(15):1547-59. doi: 10.1056/NEJMoa0801317. Epub 2008 Mar 31. PMID: 18378520.

11 Saglimbene V, Palmer SC, Ruospo M, Natale P, Maione A, Nicolucci A, Vecchio M, Tognoni G, Craig JC, Pellegrini F, Lucisano G, Hegbrant J, Ariano R, Lamacchia O, Sasso A, Morano S, Filardi T, De Cosmo S, Pugliese G, Procaccini DA, Gesualdo L, Palasciano G, Johnson DW, Tonelli M, Strippoli GFM; Long-Term Impact of RAS Inhibition on Cardiorenal Outcomes (LIRICO) Investigators. The Long-Term Impact of Renin-Angiotensin System (RAS) Inhibition on Cardiorenal Outcomes (LIRICO): A Randomized, Controlled Trial. J Am Soc Nephrol. 2018 Dec;29(12):2890-2899. doi: 10.1681/ASN.2018040443. Epub 2018 Nov 12. PMID: 30420421; PMCID: PMC6287867.

12 Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP, Solomon SD, Swedberg K, Van de Werf F, White H, Leimberger JD, Henis M, Edwards S, Zelenkofske S, Sellers MA, Califf RM; Valsartan in Acute Myocardial Infarction Trial Investigators. Valsartan, captopril, or both in myocardial infarction complicated by heart
failure, left ventricular dysfunction, or both. N Engl J Med. 2003 Nov 13;349(20):1893-906. doi: 10.1056/NEJMoa032292. Epub 2003 Nov 10. Erratum in: N Engl J Med. 2004 Jan 8;350(2):203. PMID: 14610160.

13 Chung EY, Ruospo M, Natale P, Bolignano D, Navaneethan SD, Palmer SC, Strippoli GF. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020 Oct 27;10(10):CD007004. doi: 10.1002/14651858.CD007004.pub4. PMID: 33107592; PMCID: PMC8094274.

14 Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmekamp-Kirschbaum N, Ruilope LM; Mineralocorticoid Receptor Antagonist Tolerability Study–Diabetic Nephropathy (ARTS-DN) Study Group. Effect of Finerenone on Albuminurin in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. JAMA. 2015 Sep 1;314(9):884-94. doi: 10.1001/jama.2015.10081. PMID: 26325557.

15 Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, Kolkhof P, Nowack C, Gebel M, Ruilope LM, Bakris GL; FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2021 Nov 22:ehab777. doi: 10.1093/eurheartj/ehab777. Epub ahead of print. PMID: 35023547.

16 McAlister FA, Zhang J, Tonelli M, Klarenbach S, Manns BJ, Hemmelgarn BR; Alberta Kidney Disease Network. The safety of combining angiotensin-converting-enzyme inhibitors with angiotensin-receptor blockers in elderly patients: a population-based longitudinal analysis. CMAJ. 2011 Apr 5;183(6):655-62. doi: 10.1503/cmaj.101333. Epub 2011 Mar 21. PMID: 21422125; PMCID: PMC3071385.
Figure 1.

ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; BP, blood pressure; CHF, chronic heart failure; CKD, chronic kidney disease; DRI, direct renin inhibitors; MRA, mineralocorticoid receptor antagonist; NS-MRA non-selective mineralocorticoid receptor antagonist; RAAS renin-angiotensin-aldosterone system; UACR, urine albumin-creatinine ratio.
