Atomic structure of the carbon like ion Ca XV

N. Alwadie1,2, A. Almodlej3, N. Ben Nessib1,3 and M.S. Dimitrijević4,5

1 Department of Physics and Astronomy, College of Sciences, King Saud University, Saudi Arabia
2 Department of Physics, College of Sciences, King Khalid University, Saudi Arabia
3 GRePAA, INSAT, Centre Urbain Nord, University of Carthage, Tunis, Tunisia
4 Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia
5 Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92190 Meudon, France

Received: July 31, 2019; Accepted: September 28, 2019

Abstract. Energy levels, oscillator strengths and transition probabilities for the multicharged carbon like Ca XV ion have been calculated using the pseudo-relativistic Hartree-Fock (HFR) approach using the new Cowan atomic structure code 2018. Results have been compared with NIST database and other calculated data. There are great lack on atomic structure data of Ca XV and obtained new data will be important for plasma diagnostic and astrophysical modeling.

Key words: spectral lines – energy levels – oscillator strengths – transition probabilities

1. Introduction

Carbon-like ions are highly abundant elements and their lines are prominent in both stellar and interstellar spectra and they are interesting for possible astrophysical plasma diagnostic applications (Al-Modlej et al., 2018). One example of them is calcium (Ca) which has a nuclear charge $Z=20$ and it has cosmic abundances in astrophysical spectra (Träbert et al., 2018). Carbon-like ions are also important for investigation in plasma physics, fusion research and plasma technologies.

In general, we can obtain ionized calcium by Tokamaks which are proven light sources suitable for measuring spectra of astrophysical relevance (Träbert et al., 2018), as well as by the solar flare plasma where Extreme Ultra-Violet (EUV) solar emission lines of highly ionized calcium have been recorded (Nahar, 2017).
Indeed, what is interesting now is the study of Ca XV, a highly charged carbon-like ion that typically exists in high temperature plasmas and plays an important role for diagnostics and modeling.

Researchers have done some important experimental studies on spectral lines of Ca XV where the diagnostic potential of these lines was noted. It is worth mentioning that the data on atomic properties are not only relevant to spectroscopy, but these values are of interest in a variety of other fields in physics and technology (Colón and Alonso-Medina, 2010). As an example, the diagnostic emission lines have been frequently observed in solar EUV spectra of carbon-like Ca XV by Dere (1978). Moreover, Ca XV was detected in the Extreme-Ultraviolet Explorer satellite spectrum of the star ξ Bootis A (Laming and Drake, 1999). Also, EUV emission lines of Ca XV in solar and laboratory spectra were studied by Keenan et al. (2003).

Recently, the most important experimental study in this field was by Trbert et al. (2018), where they investigated the emission line intensity pattern of highly charged Ca and Ar in the EUV in a laboratory plasma, by using a Tokamak plasma discharge in hydrogen carrying some Ar and intermittently seeded with Ca. The task is done injecting these elements by laser pulse into a plasma dominated by hydrogen. Fortunately, the results of the study of spectrum for Ca produced a fair number of spectral lines. The data of this experimental study have been compared with databases especially CHIANTI (Dere et al., 2019). Most importantly, they found that Ca XV is particularly rich in lines in the EUV spectral range and the strongest line was \(2s^2 \ 2p^2 \ 1D_2\) - \(2s\ 2p^3 \ 1D_0\) at \(\lambda = 161.1\ \text{Å}\).

In the present work, we calculated energy levels for the configuration expansion: \(2s^2 \ 2p^2, 2s^2 \ 2p\ 3p, 2s^2 \ 2p \ 4p, 2s\ 2p^4, 2s^2 \ 2p\ 3s, 2s^2 \ 2p\ 4s, 2s^2 \ 2p\ 5s\) and \(2s^2 \ 2p\ 3d\). Also, we computed oscillator strengths and transition probabilities corresponding to some spectral lines of the carbon like Ca XV ion using a relativistic configuration interaction method based on numerical wave functions calculated with a single configurations Hartree-Fock Relativistic (HFR) approach including core-polarization potential and the corresponding corrections in the matrix elements because for any system considered, complex like Ca XV ion, both relativistic and correlation effects could be relevant. So, all our calculations were in the framework of the HFR by means of a recent version of the Cowan computer code adapted by Kramida (2018).

We describe in Section 2 the theoretical calculations and then in Section 3 the results of the atomic structure of Ca XV ion. The conclusions are presented in Section 4.

2. Hartree-Fock Relativistic method

For the hydrogen atom, the Schrödinger equation is solved exactly, but for a system consisting of a multi-electron atom or molecule, we must use approxi-
imate methods such as the HFR method, where the Schrödinger equation for \(N \)-electrons atom wavefunction can be written as:

\[
\left[\sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} \right) + \sum_{i<j} \frac{1}{r_{ij}} \right] \psi(q_1, q_2, \ldots, q_N) = E \psi(q_1, q_2, \ldots, q_N) \tag{1}
\]

where \(q_i \) denotes the set of the discrete spin variable of electron \(i \) and continuous spatial coordinates \(r_i \).

In this method, the many wave functions are written as a linear superposition of products of single-particle spin orbitals wave functions but these wave functions, anti-symmetric for \(N \)-electrons, must satisfy the Pauli principle. So, this product is written as a determinant known as the Slater Determinant (Bransden & Joachain, 2003):

\[
\psi(q_1, q_2, \ldots, q_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} u_\alpha(q_1) & u_\beta(q_1) & \cdots & u_\nu(q_1) \\ u_\alpha(q_2) & u_\beta(q_2) & \cdots & u_\nu(q_2) \\ \vdots & \vdots & \ddots & \vdots \\ u_\alpha(q_N) & u_\beta(q_N) & \cdots & u_\nu(q_N) \end{vmatrix} \tag{2}
\]

The functions \(u_\lambda(q_i) \) satisfy the Hartree-Fock Relativistic equation (Al-Towyan et al., 2016; Colón and Alonso-Medina, 2010):

\[
\left[-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} \right] u_\lambda(q_i) + \sum_{\mu} \int u_\mu^*(q_j) \frac{1}{r_{ij}} u_\mu(q_j) dq_j u_\lambda(q_i) - \sum_{\mu} \int u_\mu^*(q_j) \frac{1}{r_{ij}} u_\lambda(q_j) dq_j = E_\lambda u_\lambda(q_i) \tag{3}
\]

where \(\lambda, \mu = \alpha, \beta, \ldots, \nu \) and the summation over \(\mu \) extends over the \(N \) occupied spin-orbitals.

We note from Eq. (2) that the determinant vanishes if two electrons are the same. That means the Hartree wavefunction is anti-symmetric with respect to the interchange of any set of space-spin coordinates of any two particles, but its Hamiltonian must be invariant under this condition. From here it was necessary to introduce the relativistic corrections with a Breit-Pauli Hamiltonian including mass-variation term, one-body Darwin term and Blume-Watson spin-orbit term which contain the part of the Breit interaction that can be reduced to a one-body operator, also treated by the perturbation theory Alonizan et al. (2016).

In previous works (Alonizan et al. (2016), for example), we obtained better results with HFR method comparing to similar methods as TFDA potential method; which gives advantage of this method.

The Cowan (CW) code, a suite of four atomic structure programs (RCN, RCN2, RCG and RCE) version 2018 (Kramida, 2018), uses this HFR method. The three first codes are for \textit{ab initio} atomic structure calculations and the
fourth one (RCE) is used to have least-squares fit calculations using an iterative procedure (Cowan, 1981).

3. Atomic structure of the ion Ca XV

We performed calculations of energy levels for the carbon-like ion Ca XV by the suite of atomic structure codes of Cowan adapted by Kramida (2018). The configuration expansion of the basis set used in this work consists of 3 even parity configurations: \(2s^2 2p^2\) and \(2s^2 2p\, np\ (n=3,4)\) and 5 odd parity configurations: \(2s\, 2p^3\), \(2s^2 2p\, ns\ (n=3,4,5)\) and \(2s^2 2p\ 3d\).

The calculated values of energy levels and oscillator strengths obtained with this code have been compared with other theoretical methods (Ekman et al., 2014), and with data from NIST database (Kramida et al., 2018).

3.1. Energy levels of the ion Ca XV

In Tables 1 to 5, we list energy levels of the configurations \(2s^2 2p^2\), \(2s\ 2p^3\), \(2s^2 2p\, ns\ (n = 3, 4, 5)\), \(2s^2 2p\, np\ (n = 3, 4)\), \(2s^2 2p\ 3d\) for Ca XV ion. The obtained values are compared with those of NIST atomic database (Kramida et al., 2018) and with Ekman et al. (2014) values which are calculated using the Multi-Configuration Hartree-Fock (MCHF) method.

Table 1. "Energy levels for the configuration \(2s^2 2p^2\) of Ca XV." E(NIST) are from NIST database, E(CW) are the energy levels calculated by using the Cowan (CW) code, and E(EK) calculated using (MCDHF) by Ekman et al. All energies are in cm\(^{-1}\).

Conf.	Term	J	E(NIST)	E(CW)	E(EK)
\(2s^2 2p^2\)	\(3P\)	0	0	0	0
\(2s^2 2p^2\)	\(3P\)	1	17559	16353	17553
\(2s^2 2p^2\)	\(3P\)	2	35923	35171	35920
\(2s^2 2p^2\)	\(1D\)	2	108600	104491	108736
\(2s^2 2p^2\)	\(1S\)	0	197670	214620	197839

For the configuration \(2s^2 2p^2\), CW code gives close to results to NIST. The results differ by about 4% from the NIST values, while, Ekman et al. values are very close to the NIST database values by 0.1%.

For the configuration \(2s\ 2p^3\), the CW code gives values 5.6% higher than NIST database. Ekman et al. values are roughly the same differing by only 0.02% from the NIST ones.
Table 2. Same as Table 1, but for configuration 2s 2p 3 of Ca XV.

Conf. Term	J	E(NIST)	E(CW)	E(EK)
2s 2p 3 5S o	2	275900	311928	275788
2s 2p 3 3D o	3	500230	533862	500273
2s 2p 3 3D o	2	496680	529034	496724
2s 2p 3 3D o	1	497570	529652	497632
2s 2p 3 3P o	1	582780	607890	582942
2s 2p 3 3P o	2	585670	611053	585800
2s 2p 3 3P o	0	581730	606177	581886
2s 2p 3 1D o	2	729650	759011	730043
2s 2p 3 3S o	1	728880	757132	729176
2s 2p 3 1P o	1	814380	835599	814815

Table 3. Same as Table 1, but for configurations 2s 2p 2 ns (n = 3, 4, 5) of Ca XV.

Conf. Term	J	E(NIST)	E(CW)	E(EK)
2s 2p 2s 3P o	0	-	4392032	4079795
2s 2p 2s 3P o	1	-	4396297	4084845
2s 2p 2s 3P o	2	-	4428144	4115926
2s 2p 2s 1P o	1	-	4441352	4134012
2s 2p 2s 3P o	0	-	4395728	5520070
2s 2p 2s 3P o	1	-	4396731	5522133
2s 2p 2s 3P o	2	-	4431652	5556429
2s 2p 2s 1P o	1	-	4433840	5561725
2s 2p 2s 3P o	0	-	4657441	-
2s 2p 2s 3P o	1	-	4657861	-
2s 2p 2s 3P o	2	-	4693386	-
2s 2p 2s 1P o	1	-	4694256	-

For the configurations 2s 2p ns (n = 3, 4, 5) and 2s 2p np (n = 3, 4) the NIST values do not exist for comparison. It should be noted that, we have obtained new energy values that do not exist in Ekman et al. for the configuration 2s 2p 5s and for the term 2s 2p 4p 1S.
Table 4. Same as Table 1, but for configurations $2s^2\ 2p\ np\ (n = 3, 4)$ of Ca XV.

Conf.	Term	J	$E(\text{NIST})$	$E(\text{CW})$	$E(\text{EK})$
$2s^2\ 2p\ 3p$	3S	1	4476007	4257457	
$2s^2\ 2p\ 3p$	1P	1	4446957	4228086	
$2s^2\ 2p\ 3p$	3D	1	4424400	4205709	
$2s^2\ 2p\ 3p$	3D	2	4445944	4229376	
$2s^2\ 2p\ 3p$	3D	3	4472023	4255295	
$2s^2\ 2p\ 3p$	3P	0	4475994	4250224	
$2s^2\ 2p\ 3p$	3P	1	4494910	4270847	
$2s^2\ 2p\ 3p$	3P	2	4501838	4276163	
$2s^2\ 2p\ 3p$	1D	2	4528268	4314496	
$2s^2\ 2p\ 3p$	1S	0	4567681	4361378	
$2s^2\ 2p\ 4p$	3S	1	4491238	5618735	
$2s^2\ 2p\ 4p$	1P	1	4487896	5612050	
$2s^2\ 2p\ 4p$	3D	1	4450829	5572096	
$2s^2\ 2p\ 4p$	3D	2	4456178	5583680	
$2s^2\ 2p\ 4p$	3D	3	4488453	5613455	
$2s^2\ 2p\ 4p$	1S	0	4459660	5590557	
$2s^2\ 2p\ 4p$	3P	1	4455693	5582839	
$2s^2\ 2p\ 4p$	3P	2	4491171	5619232	
$2s^2\ 2p\ 4p$	1D	2	4496043	5631037	

Table 5. Same as Table 1, but for configuration $2s^2\ 2p\ 3d$ of Ca XV.

Conf.	Term	J	$E(\text{NIST})$	$E(\text{CW})$	$E(\text{EK})$
$2s^2\ 2p\ 3d$	$^3F^o$	2	4363300	3951477	4363635
$2s^2\ 2p\ 3d$	$^3F^o$	3	4379400	3963833	4378814
$2s^2\ 2p\ 3d$	$^3F^o$	4	-	3988654	4401309
$2s^2\ 2p\ 3d$	$^1D^o$	2	-	3966033	4385007
$2s^2\ 2p\ 3d$	$^3D^o$	1	4399500	3975409	4402470
$2s^2\ 2p\ 3d$	$^3D^o$	2	4411500	3991878	4413002
$2s^2\ 2p\ 3d$	$^3D^o$	3	4426400	4000316	4425526
$2s^2\ 2p\ 3d$	$^3P^o$	2	4435400	4006954	4433389
$2s^2\ 2p\ 3d$	$^3P^o$	1	4434500	4008947	4435381
$2s^2\ 2p\ 3d$	$^3P^o$	0	-	4010358	4436968
$2s^2\ 2p\ 3d$	$^1F^o$	3	4475000	4032514	4474373
$2s^2\ 2p\ 3d$	$^1P^o$	1	4473400	4032524	4475119
Moreover, with respect to the configuration 2s² 2p 3d, some values of 3P⁰, 3D⁰ and 3P⁰ terms in NIST database do not exist and for the existing data, the CW code gives results 9.6% higher than the NIST values but Ekman et al. values stays very close at the same rate from NIST. Indeed, we recommend the use of our CW results, because of the fact that we got new values with the CW code that are not present in the NIST database.

3.2. Oscillator strengths of the ion Ca XV

Instead of the absorption oscillator strengths f_{ij} or the emission oscillator strengths f_{ji}, we use the weighted oscillator strengths g_f:

\[g_f = g_i f_{ij} = g_j f_{ji} \] (4)

The weighted oscillator strengths and transition probabilities for selected allowed transitions 2s² 2p² 3P - 2s 2p³ 3S⁰, 2s² 2p² 3P - 2s 2p³ 3P⁰ and 2s² 2p² 3P - 2s 2p³ 3D⁰ were computed using the CW code adapted by Kramida (2018).

Tables from 6 to 8 give the weighted oscillator strengths and transition probability values of these transitions for Ca XV ion obtained \textit{ab initio} by CW code and just compared with Ekman \textit{et al.} (2014) values which are calculated using the MCHF method because there is no data to compare in NIST atomic database (Kramida \textit{et al.}, 2018).

Table 6. Weighted oscillator strengths and transition probabilities for the transition (2s² 2p² 3P - 2s 2p³ 3S⁰) of Ca XV ion. log g_f(CW), log g_f(EK) and g_A(CW) and g_A(EK) are the weighted oscillator strengths and transition probabilities calculated by us and by Ekman \textit{et al.} using the Cowan and (MCDHF) respectively. g_i and g_k are respectively the statistical wights of the term 3P - 3S⁰.

λ (nm)	g_i	g_k	log g_f	g_A	
	(CW)	(EK)		(CW)	(EK)
13.9	-0.317	-0.462	1.68E+11	1.11E+11	
13.5	-0.599	-0.762	9.22E+10	5.82E+10	
13.2	-1.076	-1.249	3.21E+10	2.00E+10	

So, for the results of weighted oscillator strengths log g_f for selected transitions, we found that our results for 2s² 2p² 3P - 2s 2p³ 3P⁰ transitions were in a good agreement (the difference is 3.6% for log g_f) with the values of Ekman \textit{et al.}. Also, for the other transitions, the results differ from the Ekman \textit{et al.} values by about 20% for 2s² 2p² 3P - 2s 2p³ 3S⁰ and 17% for 2s² 2p² 3P - 2s 2p³ 3D⁰.

On the other hand, the results for transition probabilities g_A for selected transitions were compared to the values of the Ekman \textit{et al.}: The CW calculated
Table 7. Same as Table 6, but for the transition \(2s^22p^2 3P - 2s^22p^3 3P^o\) of Ca XV.

\(\lambda\) (nm)	\(g_i\)	\(g_k\)	\(\log gf\) (CW)	\(\log gf\) (EK)	\(gA\) (CW)	\(gA\) (EK)
17.46058	5	3	-1.34	-1.32	1.01E+10	9.54E+09
17.36467	5	5	-0.59	-0.61	5.75E+10	4.91E+10
16.95419	3	1	-1.25	-1.25	1.31E+10	1.20E+10
16.90512	3	3	-1.07	-1.12	1.98E+10	1.61E+10
16.8152	3	5	-1.68	-1.54	4.94E+09	6.15E+09
16.45036	1	3	-1.41	-1.37	9.59E+09	9.66E+09

Table 8. Same as Table 6, but for the transition \(2s^22p^2 3P - 2s^22p^3 3D^o\) of Ca XV.

\(\lambda\) (nm)	\(g_i\)	\(g_k\)	\(\log gf\) (CW)	\(\log gf\) (EK)	\(gA\) (CW)	\(gA\) (EK)
20.25	5	5	-1.790	-2.105	2.64E+09	1.11E+09
20.22	5	3	-2.992	-3.365	1.66E+08	6.15E+07
20.05	5	7	-0.500	-0.699	5.24E+10	2.88E+10
19.51	3	5	-0.644	-0.815	3.98E+10	2.34E+10
19.48	3	3	-1.399	-1.616	7.02E+09	3.72E+09
18.88	1	3	-0.956	-1.126	2.07E+10	1.24E+10

data for \(2s^22p^2 3P - 2s^22p^3 3P^o\) transition was in average less than 13% higher of the Ekman et al. values, but for \(2s^22p^2 3P - 2s^22p^3 3S^o\) transition was in average 57% higher of the Ekman et al. values and for \(2s^22p^2 3P - 2s^22p^3 3D^o\) transition the difference reach 100%.

4. Conclusion

When comparing the calculated energy levels with experimental values from NIST and the results from Ekman et al., we find that our results for configurations \(2s^22p^2, 2s^22p^3\) and \(2s^22p^33d\) were close to the NIST database by about 4\% to 9\%. While, for the other configurations, there are no values to compare with them in NIST, but we found values in the Ekman et al. for these configurations except the \(2s^22p^2 5s\) configuration. So, we got new values with the CW code for the \(2s^22p^2 5s\) configuration and for the term \((2s^22p^2 4p^1S)\) that did not exist before in any experimental data.

As for the results obtained with CW code for all the above transitions of weighted oscillator strengths \(\log gf\) are in a good agreement with the values of Ekman et al. Also, the results of transition probabilities \(gA\) for selected transitions are close to Ekman et al. values. For example, the weighted oscillator
strengths and transition probabilities for $2s^22p^2\,^3P - 2s\,2p^3\,^3P^o$ transitions are in average 3.6% for gf and 12% for gA different from the values of Ekman et al.

As we mentioned before, there is no abundant data for Ca XV transitions in NIST database, where there are only 14 lines for it (Kramida et al., 2018). So, this study is extremely important to overcome this great lack on atomic structure data for Ca XV ion and it provides the missing values of NIST database and supports the results given by Ekman et al. for the weighted oscillator strengths gf and transition probabilities gA which will be very important for the atomic data needed in astrophysical spectroscopy and laboratories.

Acknowledgements. This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (12-MAT2879-02).

References

Al-Modlej, A., Alraddadi, R.A.B., and Ben Nessib, N.: Energy levels and oscillator strengths for carbon isoelectronic sequence from C I to Ne V 2018, *Eur. Phys. J. Plus* **133**, 379. DOI: 10.1140/epjp/i2018-12192-9

Alonizan, N., Qindeel, R., & Ben Nessib, N., Atomic structure calculations for neutral oxygen. 2016, *International Journal of Spectroscopy*, **2016** DOI: 10.1155/2016/1697561

Al-Towyan, A., Nessib, N.B., Alonizan, N., Qindeel, R., and Yacoub, N.: Stark widths dependence on electron temperature for neutral chromium spectral lines 2016, *Eur. Phys. J. Plus* **131**, 9. DOI: 10.1140/epjp/i2016-16009-7

Bransden, B. & Joachain, C. 2003, Physics of Atoms and Molecules, Prentice Hall

Colón, C., and Alonso-Medina, A.: Calculation of oscillator strengths, transition probabilities and radiative lifetimes of levels in Sn III 2010, *J. Phys. B: At. Mol. Phys.* **43**, 165001. DOI: 10.1088/0953-4075/43/16/165001

Cowan, R.D.: The theory of atomic structure and spectra 1981, *Los Alamos Series in Basic and Applied Sciences.*

Dere, K.P.: Spectral lines observed in solar flares between 171 and 630 Angstroms. 1978, *Astron. J.* **221**, 1062. DOI: 10.1086/156110

Dere, K.P., Del Zanna, G., Young, P.R., Landi, E., and Sutherland, R.S.: CHI-ANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-Ray Satellite Lines 2019, *The Astrophysical Journal Supplement Series* **241**, 22. DOI: 10.3847/1538-4365/ab05cf

Ekman, J., Jönsson, P., Gustafsson, S., Hartman, H., Gaigalas, G., Godefroid, M.R., and Froese Fischer, C.: Calculations with spectroscopic accuracy: energies, transition rates, and Landé g_f-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV 2014, *Astron. Astrophys.* **564**, A24. DOI: 10.1051/0004-6361/201323163
Keenan, F.P., Aggarwal, K.M., Katsiyannis, A.C., and Reid, R.H.G.: Extreme Ultra-violet Emission Lines of Ca xv in Solar and Laboratory Spectra 2003, *Solar Physics* **217**, 225. DOI: 10.1023/B:SOLA.000006871.49518.eb

Kramida, A., A Suite of Atomic Structure Codes Originally Developed by RD Cowan Adapted for Windows-Based Personal Computers. Available: https://catalog.data.gov/dataset/a-suite-of-atomic-structure-codes-originally-developed-by-r-d-cowan-adapted-for-windows-ba [2019, January 10]. DOI: 10.18434/T4/1502500

Kramida, A., Yu. Ralchenko, Reader, J., & and NIST ASD Team. 2018, NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019, April 18]. National Institute of Standards and Technology, Gaithersburg, MD.

Laming, J.M., and Drake, J.J.: Stellar Coronal Abundances. VI. The First Ionization Potential Effect and ξ Bootis A: Solar-like Anomalies at Intermediate-Activity Levels 1999, *Astron. J.* **516**, 324. DOI: 10.1086/307112

Nahar, S.N.: Photoionization of Ca XV with high energy features 2017, *New Astronomy* **51**, 69. DOI: 10.1016/j.newast.2016.08.010

Träbert, E., Beiersdorfer, P., Lepton, J.K., Reinke, M.L., and Rice, J.E.: EUV Spectra and Line Ratios of Multiply Ionized Calcium and Argon Atoms in a Laboratory Plasma 2018, *Astron. J.* **865**, 148. DOI: 10.3847/1538-4357/aadba7