PROMPT intervention for children with severe speech motor delay: a randomized control trial

Namasivayam et al. 2020

Department of Speech-Language Pathology
University of Toronto

Intervenção PROMPT para crianças com atraso motor de fala severo: estudo clínico randomizado controlado

Tradução para o Português: Dra. Elisabete Giusti

Original citation:

Namasivayam, A. K., Huynh, A., Granata, F., Law, V., & van Lieshout, P. (2020). PROMPT intervention for children with severe speech motor delay: a randomized control trial. Pediatric Research, 1-10. https://doi.org/10.1038/s41390-020-0924-4
A Prática Informada por Evidência (anteriormente conhecida como Prática Baseada em Evidência) é um conceito importante em Fonoaudiologia. Os fonoaudiólogos e alunos são fortemente encorajados a examinar criticamente a literatura de pesquisa para informar sua prática. Entre a vasta literatura e modelos de estudo disponíveis, um Modelo de Estudo Clínico Randomizado Controlado ou Estudo Randomizado Controlado (RCT: Randomized Controlled Trial) é considerado o “GOLD STANDARD” ou design de pesquisa de alta qualidade para estabelecer causalidade entre tratamento (variável independente) e alterações observadas nos efeitos de comportamento ou terapia (variável dependente). No entanto, o estado atual da literatura de pesquisa no campo da Fonoaudiologia com esse nível de evidência é limitado, particularmente, no que diz respeito ao tratamento dos transtornos motores de fala em crianças.

Nos últimos 7 anos, o Dr. Aravind Namasivayam (Pesquisador Principal) e seu co-investigador, Dr. Pascal van Lieshout, do Departamento de Fonoaudiologia (Universidade de Toronto), publicaram com sucesso mais de 14 estudos de pesquisa revisados por pares em crianças com transtornos motores de fala, incluindo Apraxia da Fala na Infância (AFI). Seu estudo mais recente é um estudo de intervenção de alto nível em larga escala em crianças com transtornos motores de fala, usando um desenho de estudo randomizado bem controlado. É o maior estudo, realizado com 49 crianças que receberam tratamento motor de fala (Prompts para Reorganização dos Alvos Oromusculares e Fonéticos - PROMPT). O estudo foi publicado recentemente (1º de maio de 2020) na prestigiada revista Nature.com Pediatric Research - a versão original em inglês do estudo está disponível em: https://www.nature.com/articles/s41390-020-0924-4 e uma cópia completa e pode ser impressa gratuitamente, está disponível aqui https://www.nature.com/articles/s41390-020-0924-4.pdf).

Abaixo está o resumo do estudo com modificações (informações/interpretações adicionais) para melhorar o alcance do artigo. Reescrito em português e espanhol com permissão do primeiro autor (Dr. Aravind K Namasivayam) e de acordo com o licenciamento CC BY 4.0 - Creative Commons Attribution 4.0 International License.

Traduzido para o Português por: Dra. Elisabete Giusti (Fonoaudióloga)

Original citation: Namasivayam, A. K., Huynh, A., Granata, F., Law, V., & van Lieshout, P. (2020). PROMPT intervention for children with severe speech motor delay: a randomized control trial. Pediatric Research, 1-10. https://doi.org/10.1038/s41390-020-0924-4
INTRODUÇÃO

Crianças com transtornos motores da fala (TMF) são resistentes às abordagens tradicionais de intervenção fonológica e de articulação e apresentam maior risco para transtornos de sons de fala persistentes (SSD; Hayden et al., 2010; Namasivayam et al., 2013; Namasivayam et al., 2019; Shriberg et al., 2012). É provável que essas crianças experimentem dificuldades de curto e longo prazo nos domínios social, emocional e acadêmico (Raitano et al., 2004). Para limitar o impacto do transtorno de fala, é importante identificar a natureza específica do transtorno e selecionar terapias clinicamente eficazes. Existem diferentes tipos de transtornos dos sons da fala e Shriberg et al. propuseram o Sistema de Classificação dos Transtornos dos Sons da Fala (SCTSF) (Shriberg et al., 2010, Shriberg et al., 2019a) que categorizam os transtornos motores em 4 tipos: apraxia de fala na infância (AFI), disartria infantil (DI), AFI + DI e atraso motor da fala (AMF). Antes de 2017, o AMF era chamado de transtorno motor de fala não-específico (Shriberg et al., 2010, Shriberg et al, 2019a) e às vezes, chamado de transtorno de som de fala com componente motor (Namasivayam et al., 2019). O presente estudo focou em crianças com transtornos motores de fala porque já existem ensaios clínicos randomizados recentes para apraxia e disartria na infância (Murray et al., 2015; Pennington et al., 2019), e atualmente há informações muito limitadas sobre a natureza, diagnóstico e eficácia do tratamento para crianças com atraso motor de fala (Shriberg et al., 2019a, b; Vick et al., 2019b).

Crianças com atraso motor da fala são 3-4 vezes mais comuns na clínica pediátrica do que crianças com AFI. Cerca de 10 a 12% das crianças que apresentam dificuldades com sons são atraso motor de fala, com uma prevalência populacional de 4 crianças por 1.000 (Shriberg et al., 2019a, b; Vick et al., 2019b). Na clínica, os fonoaudiólogos podem observar essas crianças apresentando deslizamento lateral/horizontais da mandíbula, menor capacidade de controlar a altura da mandíbula (especialmente para vogais médias, por exemplo, [e], [o], [ɛ] e [ɔ]), ou amplitude excessiva de movimento da mandíbula (por exemplo, boca muito aberta para /a/), dificuldade em arredondar e retrair os lábios com precisão ou movimentos retraídos excessivos dos lábios superiores (Namasivayam et al., 2013, 2019). Sugere-se que no atraso motor de fala, a fisiopatologia esteja relacionada à execução neuromotora, especificamente, há um atraso na maturação do sistema motor da fala, causando dificuldade na precisão articulatória, estabilidade da fala, voz e prosódia (Shriberg et al., 2019a b).

O Dr. Namasivayam e sua equipe na Universidade de Toronto nos últimos 7 anos coletaram dados preliminares para essa população com atraso motor de fala junto com os dados de pesquisa da AFI (Namasivayam et al., 2013, Namasivayam et al 2015a, 2015b; Square et al., 2014) Estes estudos clínicos preliminares da Fase I e II, são uma série de estudos de pesquisa que seguem o modelo de teste de Randall Robey (Robey, 2004). Esses estudos preliminares foram conduzidos pelo Dr. Namasivayam e pela Equipe da Universidade de Toronto entre 2013 e 2019 e ajudaram a decidir o seguinte para este estudo clínico randomizado controlado: tamanho da amostra (quantas crianças são necessárias para o estudo), tamanho dos efeitos do tratamento (quanta mudança podemos esperar do tratamento), seleção das medidas de resultado corretas (como medir corretamente a mudança com a terapia), métodos padronizados para avaliar a qualidade e a quantidade de indicação do tratamento (também chamada de “fidelidade ao tratamento”) e calcular a dosagem correta do tratamento (quantidade de sessão: 1x semana, 2 x semana; quantidade de prática por objetivo, por exemplo: 50 a 100 vezes o objetivo-alvo na sessão). Esses estudos preliminares foram todos publicados em revistas especializadas e podem ser obtidos pelo e-mail Dr. Namasivayam (a.namasivayam@utoronto.ca).
O presente estudo testou se o programa PROMPT (Hayden et al., 2010; Namasivayam et al., 2013) era uma terapia eficaz para crianças com transtornos motores de fala (especificamente subtipo Atraso Motor de Fala). A terapia PROMPT foi escolhida porque aborda a precisão e a estabilidade da produção nessa população, diferentemente de outras terapias que focam apenas na precisão do resultado da fala (Hayden et al., 2010; Namasivayam et al., 2013; Namasivayam et al., 2015a, 2015b, 2019; Yu et al., 2014). O estudo que relatamos é chamado de estudo de eficácia de intervenção da Fase III, usando um “GOLD STANDARD” ou um design de pesquisa de alta qualidade chamado Estudo Randomizado Controlado. Esse design RCT nos mostrará se a terapia PROMPT é uma terapia eficaz para crianças com transtornos motores da fala (subtipo AMF).

Objetivos e Hipóteses do Estudo

A terapia PROMPT (administrada 2x/semana por 10 semanas) melhora o controle motor, a articulação, a inteligibilidade da fala e os resultados da comunicação funcional em crianças com transtornos motores de fala (subtipo - AMF), em relação às que estão na lista de espera e recebem treinamento para praticar em casa?

MÉTODOS

No design de Estudo Randomizado Controlado, as crianças com transtorno motor de fala severo (subtipo AMF) foram avaliadas primeiro no início (pré-tratamento) e depois foram aleatoriamente designados para (1) um grupo de intervenção imediata com PROMPT (por 10 semanas com sessões de 45 minutos de intervenção; 2x por semana) ou (2) um grupo controle que estava na lista de espera no mesmo período e recebeu instruções de treinamento em casa. As avaliações foram realizadas após o período de 10 semanas de intervenção / lista de espera.

A qualidade do estudo foi rigorosamente monitorada por uma agência externa, o Centro de Pesquisa em Saúde Aplicada (AHRC) do St. Michael’s Hospital em Toronto. O AHRC verificou o seguinte: consentimento informado dos participantes, se os participantes preencheram os critérios de inclusão/exclusão do estudo; monitoramento de dados no local; administração das tarefas aleatórias por meio de envelopes com numeração sequencial e selados; verificou a entrada de dados e conduziu todo o tamanho da amostra e análise estatística. Os autores do estudo não realizaram nenhuma análise estatística dos resultados para evitar viés do estudo.

Randomização e avaliação cega

A randomização foi realizada por uma agência externa de monitoramento e segurança de dados, o Centro de Pesquisa em Saúde Aplicada (AHRC) do St. Michael’s Hospital, em Toronto, Ontário. Para o estudo atual, todo o pessoal do estudo (incluindo o investigador principal, toda equipe de pesquisa e clínica e avaliadores de resultados) não sabia (avaliações cegas) a designação de grupo dos participantes. Todas as informações de identificação foram removidas de todas as gravações de áudio e vídeo das produções da criança, para que os ouvintes e avaliadores não soubessem se a criança era do grupo de tratamento ou do grupo controle.
Gestão dos dados

O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade de Toronto (Protocolo nº 29142) e foi registrado no Registro de Ensaios Clínicos antes da submissão (nº NCT02105402).

Participantes

As crianças tinham entre 3 e 10 anos de idade com transtorno do som de fala moderado a severo (≤ 64% de severidade na porcentagem de consoantes corretas (PCC; Shriberg et al., 1997) e foram classificadas descritivamente como tendo atraso motor de fala (AMF) usando o Índice de Estabilidade de Precisão relatado por Shriberg et al. (Shriberg et al., 2010; 2019a, b). Todas as crianças falavam inglês como idioma primário e possuíam habilidades de audição, visão, inteligência não verbal e linguagem receptiva dentro dos limites normais em avaliações padronizadas (Ehrler & McGhee, 2008; Semel et al., 2003; Wiig et al., 2004). Para serem incluídas no estudo, as crianças devem apresentar um mínimo de 4 em 9 sinais de dificuldade motora (bandeiras vermelhas para problemas motores da fala - ver Namasivayam et al, 2013). Foram excluídas do estudo as crianças que apresentassem um dos seguintes: (a) sinais e sintomas sugerindo envolvimento motor global (por exemplo, Paralisia Cerebral ou disartria infantil); (b) presença de características da apraxia da fala na infância (como listados em Namasivayam et al., 2015); (c) transtorno do espectro autista; (d) questões estruturais /de ressonância orais; e (e) problemas de alimentação/baba.

Grupo Experimental e Grupo Controle

Grupo experimental (intervenção): este grupo recebeu terapia PROMPT. Existem muitos estudos para apoiar o uso do PROMPT em crianças e adultos com transtornos da fala. Esses estudos foram conduzidos, replicados e validados por pesquisadores e laboratórios independentes de todo o mundo. (Dale & Hayden, 2013; Namasivayam et al., 2013; Square et al., 2014; Yu et al., 2014; Ward et al., 2014). A terapia PROMPT integra os objetivos da terapia nos domínios físico-sensorial, cognitivo-linguístico e socioemocional. As metas são escolhidas com base na idade da criança, nas necessidades e na progressão do desenvolvimento do sistema motor da fala, chamado hierarquia motora da fala (Hayden et al., 2010). O PROMPT utiliza técnicas específicas para estimular a entrada sensorial (isto é, tátil, cinestésica, proprioceptiva, auditiva e visual) para ajudar na formação de vias motoras sensoriais necessárias para o desenvolvimento correto dos padrões de fala. O PROMPT é uma intervenção motora e usa princípios da aprendizagem motora, como tipos de prática (por exemplo, bloqueada e aleatória), feedback do conhecimento do desempenho (por exemplo, “use sua boca pequena”) e do conhecimento dos resultados (por exemplo, “foi muito bom”) para melhorar o desempenho de fala da criança. Como existem muitos artigos e grupos discutindo a terapia PROMPT em detalhes, encaminhamos o leitor a esses artigos (Dale & Hayden, 2013; Hayden et al., 2010). A terapia com o grupo experimental foi realizado por fonoaudiólogos certificados PROMPT.

Além disso, para entender o efeito do tratamento, também devemos saber como os parâmetros de dose foram dados. Neste estudo, a intervenção PROMPT foi realizada usando os seguintes parâmetros de dose: forma da dose (jogo estruturado em ambiente calmo), dose (69,75 produções por objetivo), frequência da dose (duas vezes por semana), duração da sessão (45 minutos), total duração da intervenção (10 semanas) e intensidade de intervenção cumulativa (1395 produções por objetivo).
Grupo controle (lista de espera/treinamento em casa): os pais e responsáveis pelas crianças deste grupo receberam uma apostila de 4 páginas detalhando as estratégias de fala, linguagem e alfabetização a serem realizadas em casa. Os materiais foram desenvolvidos pelo Centro Erinoak Kids para Tratamento e Desenvolvimento (https://www.erinoakkids.ca/home.aspx) e adaptados da literatura (Justice et al., 2009). Esses folhetos são fornecidos como parte do tratamento padrão na província de Ontário, Canadá, para cuidadores de crianças que aguardam o recebimento de serviços de fala e linguagem. O grupo de treinamento em casa recebeu estratégias de terapia relacionadas a: prontidão para terapia (por exemplo, seguir os interesses do filho, usar linguagem simples, ficar face a face), ser responsivo ao esforço de comunicação da criança (por exemplo, fazer perguntas com opções, repitir qualquer parte da frase que você entender, dar o modelo correto para ensinar habilidades de revisão) e promover habilidades precoces de alfabetização (por exemplo, leitura compartilhada de livros, incentivar a explicação/organização de livros e impressos). Durante o período de 10 semanas do estudo, os cuidadores dos participantes da lista de espera/grupo controle relataram o uso consistente de estratégias em casa e nenhuma criança recebeu qualquer outra intervenção fonoaudiológica.

Medidas

Variáveis apropriadas a serem usadas para medir a mudança no tratamento de crianças com transtornos motores de fala foram publicadas por Kearney et al., (2015). No presente estudo, para tornar a mudança de tratamento clinicamente relevante, usamos a estrutura CIF da Organização Mundial da Saúde (OMS-ICF-CY; OMS, 2007; Kearney et al., 2015; veja a figura 1) para escolher variáveis de medida. Avaliámos especificamente as alterações na fala de acordo com o nível de estruturas e funções corporais da CIF (controle motor de fala, articulação e inteligibilidade) e nível de participação das atividades (comunicação funcional).

Medidas ao nível das estruturas e funções corporais:

a. O controle motor de fala: foi avaliado usando o Verbal Motor Production Assessment for Children (VMPAC; Hayden & Square, 1999) e um procedimento de lista de palavras referenciado por critérios (Dale & Hayden, 2013; Square et al., 2014). Duas subseções do VMPAC foram administradas: (a) controle oromotor focal (VMPAC-FOC) e (b) sequenciamento (VMPAC-SEQ).

b. A articulação da fala foi avaliada por:

i. Teste do nível de palavra simples, usando o teste Diagnóstico de Avaliação da Articulação e Fonologia (DEAP-Dodd et al., 2002).

ii. Porcentagem de consoantes corretas (PCC; Shriberg et al., 1997).

iii. Análise dos processos fonológicos.

c. A inteligibilidade da fala foi avaliada no nível das palavras e das frases.

i. Para o teste de inteligibilidade da fala no nível da palavra, usamos a Medida de Inteligibilidade da Fala em Crianças (CSIM; Wilcox & Morris, 1999).

ii. Para inteligibilidade no nível das frases, usamos o Teste de Inteligibilidade para Iniciantes (BIT; Osberger et al. 1994).
Para ambos os testes de inteligibilidade, as imitações da criança dos modelos fornecidos pelos clínicos foram gravadas em áudio e reproduzidas para um grupo de três ouvintes cegos para a alocação de grupo e sessão (pré ou pós). Nenhum ouvinte ouviu a mesma criança ou a lista de palavras/frases duas vezes. No total, 135 ouvintes (idade M = 22,61 anos; DP = 3,94; 61% feminino) participaram do estudo (Namasivayam et al., 2015; Namasivayam et al., 2019; Osberger et al. 1994; Wilcox & Morris, 1999)

Atividades e nível de participação

A comunicação funcional foi avaliada com Focus on the Outcomes of Communication Under Six (FOCUS; Thomas-Stonell et al., 2013). Uma mudança de ≥ 16 pontos indica uma diferença mínima clinicamente importante (MCID; Thomas-Stonell et al., 2013). Uma pontuação mais alta no seguimento de 10 semanas implica melhores resultados.

![Diagrama de atividades e níveis de participação](image)

Figura 1. Diferentes medidas de resultados usadas para avaliar as estruturas e funções corporais, atividades e níveis de participação da estrutura da CIF/OMS. Consulte a seção Medidas de resultados para obter mais detalhes.

a) Avaliação Verbal da Produção Motora para Crianças - Controle Oromotor Focal.
b) Avaliação Verbal da Produção Motora para Crianças - Sequenciamento.
c) Sondar palavras.
d) Sub-teste de avaliação de articulação de uma palavra do teste Diagnóstico de Avaliação da Articulação e Fonologia (DEAP).
e) PCC, porcentagem de consoantes corretas derivada do DEAP teste.
f) Sub-teste de avaliação fonológica de uma palavra do teste Avaliação Diagnóstica de Articulação e Fonologia (DEAP).
g) Medida de inteligibilidade da fala infantil (CSIM).
h) Teste de inteligibilidade para iniciantes (BIT).
i) Focus on the Outcomes of Communication Under Six tool (FOCUS).
Cálculos do tamanho da amostra

Para que um estudo RCT seja de alta qualidade, o número de participantes (tamanho da amostra) necessário para mostrar um efeito do tratamento deve ser calculado antes do início da coleta de dados (denominada “a priori power” analysis). Esta análise indicou que eram necessários entre 5 e 22 participantes por grupo para diferentes variáveis (controle motor da fala, articulação da fala e inteligibilidade da fala) para detectar um efeito de intervenção com potência de 0,95 e nível alfa de 0,05. Para o cálculo intermediário do tamanho da amostra (ou ponto intermediário do estudo), foram utilizados dados de CSIM e FOCUS. Para o FOCUS, a análise mostrou que precisávamos de 122 participantes. Para o CSIM, a análise mostrou que precisávamos de 25 participantes por grupo. No entanto, um tamanho amostral de 122 por grupo é clínica e praticamente impossível em um prazo razoável para transtornos motores da fala, como AMF ou AFI (as taxas de incidência/prevalência são baixas). Assim, decidimos encerrar o recrutamento do estudo com um tamanho de amostra final clinicamente viável de 25 participantes por grupo, com base nos cálculos de tamanho de amostra de CSIM, reconhecendo o fato de que os resultados da medida de resultado do FOCUS seriam insuficientes.

Gravação, fidelidade e confiabilidade

A estatística Kappa (Viera, & Garrett, 2005) foi usada para cálculos de confiabilidade entre avaliadores. O coeficiente Kappa médio para a transcrição fonética IPA para todas as avaliações foi de 0,73, o que é concordância substancial entre os avaliadores. Os clínicos também atenderam ao requisito de fidelidade da intervenção de > 80%, com base em gravações em vídeo das sessões de intervenção, usando checklist de fidelidade publicado (Hayden et al., 2015).

Análise Estatística

Todas as verificações dos dados e análises estatísticas primárias foram realizadas por um bioestatístico da pesquisa do AHRC. Todas as medidas de resultado foram analisadas com um modelo de Análise de Covariância (ANCOVA) com escores de linha de base definidos como covariáveis usando o princípio da intenção de tratar (intent-to-treat principle). Os dados ausentes foram tratados como ausentes nas análises e apresentados na tabela 2. Os tamanhos dos efeitos foram calculados a partir dos modelos de regressão nas unidades originais de cada variável e relatados juntamente com seus intervalos de confiança de 95%. Todos os procedimentos estatísticos foram realizados no software R Versão 3.5.1 (R Core Team, 2019) com nível alfa bilateral de 0,05.

RESULTADOS E DISCUSSÃO

Este estudo é muito importante para a patologia fonoaudiológica pediátrica. Para nosso conhecimento, este é o primeiro estudo a avaliar a eficácia da intervenção PROMPT (2x / semana, 10 semanas) para melhorar os resultados funcionais da fala em crianças com atraso motor da fala grave em relação a um grupo controle (lista de espera com treinamento em casa), usando o design de Estudo Randomizado Controlado (RCT). Este estudo também é o maior estudo em crianças com transtorno do som da fala grave e que receberam tratamento motor de fala.
O desenho e fluxo do estudo são apresentados na figura 2, de acordo com as diretrizes do *Consolidated Standards of Reporting Trials* (CONSORT; Moher et al., 2010). Foram avaliadas 90 crianças quanto à elegibilidade e 49 crianças foram randomizadas (N = 24 grupo de intervenção PROMPT, idade média = 48,70 meses, DP = 11,17; N = 25 para lista de espera / grupo de treinamento em casa, idade média = 48,08 meses, DP = 12,33). Dados de 45 crianças estavam disponíveis para análise final. Características da linha de base para 45 crianças, apresentadas na Tabela 1.

Figura 2. Diagrama de fluxo Consolidated Standards of Reporting Trials (CONSORT).
Tabela 1. Dados demográficos dos participantes. Média (DP: desvio padrão). Veja a seção Participantes e configuração para mais detalhes

Participantes	PROMPT Tratamento	Lista de espera/Casa Treinamento	Faltando %
Idade em meses	48.70 (11.17)	48.08 (12.33)	2.0
Gênero*	9 (39.10)	10 (40.00)	2.0
Primeira Língua (Inglês) falado em casa a	24 (100.0)	25 (100.0)	0.0
Audição e Visão (dentro dos limites em casa) a	24 (100.0)	25 (100.0)	0.0
História da intervenção fonoaudiológica a	13 (65.0)	19 (82.60)	12.2
Teste Primário de Inteligência Não-verbal (P-TONI) b	103.95 (12.96)	106.39 (23.94)	12.2
Índice não verbal	40.42 (15.22)	44.47 (19.15)	6.1
Porcentagem de consoantes correta (PCC) c	91.81 (14.16)	101.12 (15.50)	32.7
Avaliação Clínica dos Fundamentos da Linguagem (CELF) d	72.24 (11.53)	80.50 (18.34)	32.7
Número Médio de Indicadores			
Envolvimentos da fala motora e	8.11 (1.71)	8.29 (1.68)	20.4
Apraxia de Fala Infantil f	3.76 (0.83)	4.10 (1.02)	24.5

Tabelas e desvios padrão (DP; entre parênteses) e dados ausentes para todas as medidas na linha de base e 10 semanas de acompanhamento são relatados na tabela 2. A Tabela 3 representa os tamanhos dos efeitos (quantidade de alteração do tratamento), intervalos de confiança de 95% para os tamanhos dos efeitos e valores de p do modelo ANCOVA usando o princípio da intenção de tratar com a linha de base como covariável. A análise da ANCOVA em 45 participantes (grupo de intervenção PROMPT: n = 21; lista de espera / grupo de treinamento em casa: n = 24) revelou que 10 semanas de intervenção do PROMPT estavam associadas a alterações significativas no controle motor da fala (VMPAC-FOC: p = 0,016 , aumento de 6,27%; teste de palavras: p = 0,025; aumento de 28,79 pontos), articulação da fala (p = 0,002, melhora na pontuação padrão de 5,15), porcentagem de consoantes corretas (p <0,001, aumento de 10,85%) e nível de inteligibilidade da fala (p = 0,002, aumento de 8,59%) em relação ao grupo da lista de espera / treinamento em casa. A terapia PROMPT não alterou significativamente o VMPAC-SEQ (sequenciamento), erros quanto aos processos fonológicos, inteligibilidade da fala no nível da frase ou comunicação funcional.
Medidas de Resultado	PROMPT Tratamento (n=24)	Lista de Espera/Treinamento em Casa (n=25)	Ausência %			
	Média da linha de base (SD)	Média de acompanhamento - 10 semanas (SD)	Média da linha de base (SD)	Média de acompanhamento - 10 semanas (SD)	Linha de Base	Acompanhamento 10 semanas
Controle Motor da Fala						
VMPAC-FOC^a	68.57 (14.30)	78.55 (14.43)	66.26 (11.49)	69.11 (13.50)	6.1	14.3
VMPAC-SEQ^b	51.58 (24.84)	61.09 (24.20)	47.19 (21.07)	52.93 (20.52)	6.1	14.3
Sondar Palavras^c	223.67 (80.82)	267.22 (57.94)	223.38 (75.42)	239.25 (69.79)	0.0	12.2
Articulação da Fala						
Articulação de uma única palavra^d	61.82 (6.99)	67.50 (9.53)	64.40 (8.58)	65.83 (8.93)	4.1	10.2
PCC^e	40.42 (15.22)	54.48 (17.36)	44.47 (19.15)	46.27 (20.02)	6.1	10.2
Erros no processo fonológico^f	59.76 (6.42)	62.00 (7.85)	65.21 (8.78)	64.35 (8.16)	8.2	12.2
Inteligibilidade da Fala						
Nível palavras (CSIM)^g	40.64 (15.07)	50.44 (16.97)	41.54 (16.30)	41.80 (14.59)	8.2	18.4
Nível frases (BIT)^h	21.80 (19.41)	31.62 (23.41)	19.23 (15.01)	30.28 (19.87)	8.2	16.3
Funcionalidade da Comunicação						
FOCUSⁱ	213.91 (54.26)	228.65 (52.99)	214.55 (56.81)	227.24 (53.93)	10.2	16.3

Tabela 2. Estatísticas descritivas. Média, desvios padrão (DP; entre parênteses) e dados ausentes para todas as medidas na linha de base e 10 semanas de acompanhamento. Consulte a seção Medidas de resultado para obter mais detalhes.

^a VMPAC-FOC, pontuações percentuais da Avaliação Verbal da Produção Motora para Crianças - Controle Oromotor Focal.
^b VMPAC-SEQ, pontuações percentuais da Avaliação da produção motor verbal de crianças - Sequenciamento.
^c Sondar palavras, pontuações brutas com base na lista de itens de 40 palavras.
^d refere-se a pontuações padrão derivadas do subteste de avaliação de articulação de palavra única do teste Diagnóstico de Avaliação de Articulação e Fonologia (DEAP).
^e PCC, porcentagem de consoantes correta.
^f refere-se a pontuações padrão derivadas do subteste de avaliação fonológica de uma palavra do teste de Avaliação Diagnóstica de Articulação e Fonologia (DEAP).
^g refere-se às pontuações percentuais da Medida de inteligibilidade da fala das crianças (CSIM).
^h refere-se a pontuações percentuais do Teste de inteligibilidade do iniciante (BIT).
ⁱ Foco nos resultados da comunicação Sob os seis instrumentos (FOCUS).
O PROMPT é uma intervenção motora de fala, os erros de processos fonológicos não mudaram por não serem direcionados no tratamento. É interessante notar que as mudanças no nível do controle motor da fala e na inteligibilidade da fala no nível da palavra não se traduziram em mudanças notáveis em unidades de produção mais longas (por exemplo, inteligibilidade no nível da frase) ou em melhorias no funcionamento diário (Namasiyayam et al., 2013). É possível que crianças com dificuldades de execução neuromotora na fala (Shriberg et al., 2019a) estejam experimentando demandas crescentes em seu sistema motor da fala durante a produção de expressões mais longas e mais complexas (Pennington et al., 2019). Assim, melhorias na inteligibilidade da fala no nível da frase podem não ser possíveis em um curto período de intervenção de 10 semanas (Namasiyayam et al., 2019; Namasiyayam et al., 2019). Além disso, ao final de 10 semanas de intervenção, as crianças do estudo eram aproximadamente 31% inteligíveis no nível das frases, enquanto as crianças em desenvolvimento típico dessa faixa etária devem estar entre 71-99% inteligíveis (Chin et al., 2003). Sabe-se que menos de 60% de fala inteligível afeta negativamente a interação de uma criança em contextos sociais e deve ser considerado como

Medidas de Resultado	Tamanho do Efeito	Inferior 95% CI	Superior 95% CI	p-valor	
Controle Motor da Fala	VMPAC-FOC \(^{a}\)	6.270	1.223	11.318	0.016
	VMPAC-SEQ \(^{b}\)	4.769	-3.050	12.587	0.225
	Sondar Palavras \(^{c}\)	28.790	3.748	53.832	0.025
Articulação da Fala	Articulação de uma única palavra \(^{d}\)	5.157	2.061	8.252	0.002
	PCC \(^{e}\)	10.855	6.166	15.545	<.001
	Erros no processo fonológico \(^{f}\)	1.858	-1.807	5.523	0.311
Inteligibilidade da Fala	Nível palavras (CSIM) \(^{g}\)	8.595	3.283	13.907	0.002
	Nível frases (BIT) \(^{h}\)	-1.632	-11.059	7.796	0.728
Funcionalidade da Comunicação	FOCUS \(^{i}\)	2.042	-14.971	19.056	0.809

\(^{a}\) VMPAC-FOC, pontuações percentuais da Avaliação Verbal da Produção Motora para Crianças - Controle Oromotor Focal. \(^{b}\) VMPAC-SEQ, pontuações percentuais da Avaliação da produção motor verbal de crianças - Sequenciamento. \(^{c}\) Sondar palavras, pontuações brutas com base na lista de itens de 40 palavras. \(^{d}\) refere-se a pontuações padrão derivadas do subteste de avaliação de articulação de palavra única do teste Diagnóstico de Avaliação de Articulação e Fonologia (DEAP). \(^{e}\) PCC, porcentagem de consoantes correta. \(^{f}\) refere-se a pontuações padrão derivadas do subteste de avaliação fonológica de uma palavra do teste de Avaliação Diagnóstica de Articulação e Fonologia (DEAP). \(^{g}\) refere-se às pontuações percentuais da Medida de inteligibilidade da fala das crianças (CSIM). \(^{h}\) refere-se a pontuações percentuais do Teste de inteligibilidade do iniciante (BIT). \(^{i}\) Foco nos resultados da comunicação Sob os seis instrumentos (FOCUS).
candidato em potencial à intervenção contínua para atingir níveis aceitáveis de inteligibilidade e comunicação funcional (Gordon-Brannan & Hodson, 2000)

Qual é a interpretação clínica desses resultados?

Os pesquisadores devem mostrar como o estudo forneceu benefícios clínicos à população estudada (não relatam apenas significância estatística). No geral, 10 semanas de intervenção com PROMPT demonstraram melhorias estatisticamente e clinicamente significativas em crianças com transtorno motor de fala severo (subtipo AMF). Usamos a tabela abaixo (tabela 4) para explicar como as medidas e estatísticas no estudo podem ser clinicamente interpretadas.

Medidas	Tamanho Efeito	Interpretação dos Resultados	Significância Clínica
VMPAC- Focal Oromotor Control	6% aumento	Criança de 3 anos: aumento de 6% nas habilidades motoras da fala = aproximando-se da média de crianças normais /em processo normal de desenvolvimento após o tratamento com PROMPT.	
> 3 anos de idade: aumento de 6% nas habilidades motoras da fala = mudança de um déficit severo para leve após o tratamento com PROMPT. | Melhora clinicamente significativa e significante.
Implica intervenção PROMPT facilita a normalização das habilidades motoras da fala (Hayden & Square, 1999) |
| Teste de escores de palavras | Aumento de 28 pontos | Indica 9% de melhora nas habilidades motoras da fala | Melhora clinicamente significativa e significante.
Alteração semelhante ao VMPAC e relatada na literatura (Namasivayam et al., 2013; Square et al., 2014) |
| Articulação da fala | Aumento de 5 pontos na pontuação padrão | Indica melhora clínica de 0, 4 para o percentil 2.º no ranking | Melhora clinicamente significativa, mas são necessários serviços de terapia para crianças percentil 7 (Washington Speech and Hearing Association, 2019) |
| Porcentagem de Consoantes PCC | 10% de aumento | Indica melhora clínica com diminuição da gravidade: severo a moderada-severo | Melhora clinicamente significativa e significante. (Issac & Michael, 1997; Shriberg et al., 1997) |
|-------------------------------|----------------|--|--|
| Inteligibilidade de fala no nível da palavra | 8.5% de aumento | Indica melhora clínica fora da medição da maturação e erro | Melhoria clinicamente significativa e significante. (Namasivayam et al., 2013; Namasivayam et al., 2015; Wilcox & Morris, 1999) |

Limitações

 Houve várias limitações observadas no presente estudo:

1. Este foi um estudo randomizado controlado (RCT) e requer condições controladas e configurações ideais para criar alta validade interna. Esta é a razão pela qual o estudo foi realizado por Fonoaudiólogos Instrutores Certificados pelo PROMPT, com mais de 10 anos de experiência. Pesquisas futuras devem refletir as configurações da prática no mundo real, variações adaptativas na entrega da intervenção e diferenças na experiência dos fonoaudiólogos.

2. O estudo não abordou a manutenção dos efeitos da intervenção. A manutenção dos ganhos de intervenção por um longo período de tempo (por exemplo, 4 meses) é importante para entender os benefícios do tratamento (Murray et al., 2015). Estudos de acompanhamento são incentivados a incluir testes de manutenção.

3. A falta de alterações observadas na medida de resultado do FOCUS pode refletir um tamanho inadequado da amostra, conforme observado anteriormente (consulte a seção Cálculo do tamanho da amostra). Apesar de realizar um RCT multicêntrico usando procedimentos de recrutamento ativos e elaborados, não era clínica e logicamente viável recrutar um grande tamanho de amostra para um transtorno como o AMF que tem baixa prevalência e incidência (Shriberg et al., 2019a, b). Pesquisas futuras podem considerar o orçamento para o recrutamento de uma amostra maior envolvendo mais locais.
Conclusão

Este é o primeiro estudo randomizado controlado (RCT) que examinou a eficácia da intervenção PROMPT em crianças com AMF severo. Os resultados sugerem que a intervenção PROMPT, quando fornecida duas vezes por semana, durante 10 semanas, resulta em ganhos significativos e clinicamente notáveis no controle motor da fala, articulação e inteligibilidade da fala no nível das palavras. No entanto, essa população também pode precisar de mais de um bloco de terapia de 10 semanas para atingir níveis aceitáveis de inteligibilidade no nível da frase e comunicação funcional. No geral, os resultados sugerem que a intervenção PROMPT é uma abordagem de intervenção clinicamente eficaz para crianças com transtornos motores da fala severos (subtipo AMF).

O Dr. Namasivayam compartilha que: “Pela primeira vez, o estudo fornece uma indicação clara da magnitude das mudanças relacionadas à intervenção nessa população, além das atividades de maturação neuromotora e de treinamento em casa, apoiando claramente a necessidade de intervenção fonoaudiológica direta para esta população”. O Dr. Namasivayam apresentou os resultados do estudo com seus coautores na convenção anual da American Speech-Language-Hearing Association em Boston em novembro de 2018. O artigo está atualmente publicado na revista Nature.com journal- Pediatric Research (https://www.nature.com/articles/s41390-020-0924-4)

Nota de Conflito de interesse: O estudo foi financiado por meio de uma bolsa competitiva de pesquisa em ensaios clínicos do Instituto PROMPT em Santa Fe (Novo México, EUA), concedida ao Dr. Namasivayam. Para evitar qualquer potencial viés e conflito de interesses, a integridade do estudo foi monitorada por uma agência externa, o Centro de Pesquisa em Saúde Aplicada (AHRC) do St. Michael's Hospital em Toronto e foi pré-registrada antes do início do estudo no Registro de Ensaios Clínicos dos Institutos Nacionais de Saúde dos EUA (https://clinicaltrials.gov/; Identificador: NCT02105402). A agência financiadora não esteve envolvida no desenho do estudo, coleta de dados, análise e interpretação dos dados, redação do relatório ou na decisão de enviar o artigo para publicação.

Agradecimentos

Gostaríamos de agradecer a todas as famílias que participaram do estudo e a toda a equipe, incluindo mais de 40 assistentes de pesquisa, contratados independentes (fonoaudiólogos) e voluntários da Universidade de Toronto que ajudaram no estudo. Agradecemos a colaboração dos seguintes centros clínicos que participaram da coleta de dados para este estudo: Centro Infantil John McGivney, no Condado de Essex (Windsor, Ontário), Instituto de Fala e Gagueira (Toronto, Ontário) e Erinoak Kids Center for Treatment and Desenvolvimento (Mississauga, Ontário).

Acesso livre

Este será um artigo de acesso aberto. Ele será distribuído de acordo com a licença Creative Commons Attribution Non Commercial (CC BY-NC 4.0), que permite que outros distribuam, remixem, adaptem, construam esse trabalho não comercialmente e licenciem seus trabalhos derivados em termos diferentes, desde que o trabalho original é citado corretamente, é concedido crédito apropriado, são
indicadas quaisquer alterações e o uso não é comercial. Veja: http://creativecommons.org/licenses/by-nc/4.0/.

Original citation: Namasivayam, A. K., Huynh, A., Granata, F., Law, V., & van Lieshout, P. (2020). PROMPT intervention for children with severe speech motor delay: a randomized control trial. Pediatric Research, 1-10. https://doi.org/10.1038/s41390-020-0924-4

REFERÊNCIAS

1. Chin, S. B., Tsai, P. L. & Gao, S. Connected speech intelligibility of children with cochlear implants and children with normal hearing. Am J Speech Lang Pathol. 12(4), 440-451 (2003).
2. Dale, P. & Hayden, D. Treating speech subsystems in CAS with tactual input: The PROMPT approach. Am J Speech Lang Pathol. 4, 644-661 (2013).
3. Dodd, B., Crosbie, S., Zhu, H., Holm, A. & Ozanne, A. The Diagnostic Evaluation of Articulation and Phonology. (The Psychological Corporation, London, USA, 2002).
4. Ehrler, D. J. & McGhee, R. L. Primary Test of Nonverbal Intelligence. (Pro-Ed, Austin, TX, USA, 2008).
5. Gordon-Brannan, M. & Hodson, B. W. Intelligibility/severity measurements of prekindergarten children’s speech. Am J Speech Lang Pathol. 9(2), 141-150 (2000).
6. Hayden, D. & Square, P. VMPAC: Verbal motor production assessment for children. (The Psychological Corporation, San Antonio, TX, USA, 1999).
7. Hayden, D., Namasivayam, A. K. & Ward, R. The assessment of fidelity in a motor speech treatment approach. Speech Lang Hear. 18(1), 30-38 (2015).
8. Hayden, D., Eigen, J., Walker, A. & Olsen, L. PROMPT: A tactually grounded model. In Interventions for Speech Sound Disorders in Children (Williams, L., McLeod, S., & McCauley, R., eds) (Brookes, Baltimore, MD, USA, 2010).
9. Issac, S. & Michael, W.B., editors. Handbook in research and evaluation for education and the behavioral sciences 3rd edn. (EdITS Publishers, San Diego, CA, USA, 1997).
10. Justice, L. M., Kaderavek, J. N., Fan, X., Sofka, A. & Hunt, A. Accelerating preschoolers’ early literacy development through classroom-based teacher-child storybook reading and explicit print referencing. Lang Speech Hear Serv Sch. 40, 67-85 (2009).
11. Kearney, E., et al. Outcome Measures in Developmental Speech Sound Disorders with a Motor Basis. Curr Dev Disord. 2, 253-272 (2015).
12. Maas, E., et al. Principles of motor learning in treatment of motor speech disorders. Am J Speech Lang Pathol. 17(3), 277-298 (2008).
13. Moher, D., et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 340, c869 (2010).
14. Morgan, A. T., Elizabeth Murray, E, & Liégeois, F. J. Interventions for childhood apraxia of speech. Cochrane Database of Systematic Reviews 5 (2018).
15. Murray, E., McCabe, P. & Ballard, K. J. A randomized controlled trial for children with childhood apraxia of speech comparing rapid syllable transition treatment and the Nuffield Dyspraxia Programme—Third Edition. J Speech Lang Hear Res. 58(3), 669-686 (2015).
16. Namasivayam, A. K., et al. Relationship between speech motor control and speech intelligibility in children with speech sound disorders. J Commun Disord. 46(3), 264-280 (2013).
17. Namasivayam, A., et al. Motor speech treatment protocol for developmental motor speech disorders. Dev Neurorehab. 18(5), 296-303 (2015).
18. Namasivayam, A. K., et al. Treatment intensity and childhood apraxia of speech. Int J Lang Commun Disord. 50(4), 529-546 (2015).
19. Namasivayam, A. K., et al. Investigating intervention dose frequency for children with speech sound disorders and motor speech involvement. Int J Lang Commun Disord. 54(4), 673-686 (2019).
20. Osberger, M. J., Robbins, A. M., Todd, S. L. & Riley, A. I. Speech intelligibility of children with cochlear implants. Volta Rev. 96, 169-180 (1994).
21. Pennington, L., et al. Internet delivery of intensive speech and language therapy for children with cerebral palsy: a pilot randomised controlled trial. BMJ open. 9(1), e024233 (2019).
22. Raitano, N. A., Pennington, B. F., Tunick, R. A., Boada, R. & Shriberg, L. D. Pre-literacy skills of subgroups of children with speech sound disorders. J Child Psychol Psychiatr. 45(4), 821-835 (2004).
23. Robey, R. R. A five-phase model for clinical-outcome research. J Commun Disord. 37(5), 401-411 (2004).
24. R Core Team. R: A language and environment for statistical computing. Version 3.5.1 [software]. R Foundation for Statistical Computing (2013). (cited 2019 Nov 25). https://cran.r-project.org/bin/windows/base/old/3.5.1/.
25. Semel, E. M., Wiig, E. H. & Secord, W. A. Clinical Evaluation of Language Fundamentals. 4th edn. (The Psychological Corporation, San Antonio, TX, USA, 2003).
26. Shriberg, L. D., Lohmeier, H. L., Strand, E. A. & Jakielski, K. J. Encoding, memory, and transcoding deficits in childhood apraxia of speech. Clin Linguist Phon. 26(5), 445-482 (2012).
27. Shriberg, L. D. & Wren, Y. E. A frequent acoustic sign of speech motor delay (SMD). Clin Linguist Phon. 33(8), 757-771 (2019).
28. Shriberg, L. D., Austin, D., Lewis, B. A., McSweeny, J. L. & Wilson, D. L. The percentage of consonants correct (PCC) metric: Extensions and reliability data. J Speech Lang Hear Res. 40(4), 708-722 (1997).
29. Shriberg, L. D., et al. Extensions to the speech disorders classification system (SDCS). Clin Linguist Phon. 24(10), 795-824 (2010).
30. Shriberg, L. D., Kwiatkowski, J. & Mabie, H. L. Estimates of the prevalence of motor speech disorders in children with idiopathic speech delay. Clin Linguist Phon. 33(8), 679-706 (2019).
31. Square, P. A., Namasivayam, A. K., Bose, A., Goshulak, D. & Hayden, D. Multi-sensory treatment for children with developmental motor speech disorders. Int J Lang Commun Disord. 49(5), 527-542 (2014).
32. Tavakol, M. & Dennick, R. Making sense of Cronbach’s alpha. Int J Med Educ. 2, 53-55 (2011).
33. Thomas-Stonell, N., Oddson, B., Robertson, B. & Rosenbaum, P. Validation of the FOCUS©: FOCUS on the outcomes of communication under six: a communicative participation outcome measure. Dev Med Child Neurol. 55(6), 546-552 (2013).
34. Viera, A. J. & Garrett, J. M. Understanding inter-observer agreement: the kappa statistic. Fam med. 37(5), 360-363 (2005).
35. Vick, J. C., et al. Data-driven subclassification of speech sound disorders in preschool children. J Speech Lang Hear Res. 57(6), 2033-2050 (2014).
36. Ward, R., Leitão, S. & Strauss, G. An evaluation of the effectiveness of PROMPT therapy in improving speech production accuracy in six children with cerebral palsy. Int J Speech Lang Pathol. 16(4), 355-371 (2014).
37. Washington Speech and Hearing Association. Suggested guidelines for evaluation and identification of students with communication disorders [Internet]. (Washington Speech and
Hearing Association, Washington DC, cited 2019 Nov 25).
https://www.tumwater.k12.wa.us/cms/lib/WA01001561/Centricity/Domain/1373/WSHA%20GUIDELINES.pdf.

38. Wilcox, K. A. & Morris, S. Children's Speech Intelligibility Measure: CSIM. Psychological Corporation (1999).

39. Wiig, E. H., Secord, W. & Semel, E. M. CELF preschool 2: clinical evaluation of language fundamentals preschool. (Pearson/PsychCorp, USA, 2004).

40. World Health Organization. International Classification of Functioning, Disability and Health—Children and Youth Version. (World Health Organization, Geneva, CH, Switzerland, 2007).

41. Yu, V. Y., et al. Changes in voice onset time and motor speech measures in children with motor speech disorders after PROMPT therapy. Clin Linguist Phon. 28(6), 396-412 (2014).