On Finsler manifolds with hyperbolic geodesic flows

YONG FANG

Abstract. Let \((M, F)\) be a closed \(C^\infty\) Finsler manifold and \(\varphi\) its geodesic flow. In the case that \(\varphi\) is Anosov, we extend to the Finsler setting a Riemannian vanishing result of M. Gromov about the \(L^\infty\)-cohomology.

Mathematics Subject Classification. 37A35, 34D20, 37D35.

Keywords. Finsler metric, Kähler hyperbolicity, Anosov flow.

1. Introduction. Let \(M\) be a closed \(C^\infty\) manifold of dimension \(n\) and \(TM_0 = TM \setminus \{0\}\). A Finsler metric on \(M\) is a function \(F : TM \to \mathbb{R}^+\) satisfying:

\[
\text{(a) } F(tv) = tF(v) \quad \text{for any } v \in TM \text{ and } t > 0;
\]

\[
\text{(b) } F \text{ is strictly positive and } C^\infty \text{ on } TM_0; \text{ and}
\]

\[
\text{(c) in standard local coordinates } (x_i, y_i) \text{ on } TM, \text{ the matrix } \left(\frac{\partial^2 F^2}{\partial y_i \partial y_j} \right)_{1 \leq i, j \leq n}
\]

is positively definite.

For simplicity, we write \(F(v)\) instead of \(F(x, v)\), where \((x, v) \in TM\). A Finsler metric \(F\) on \(M\) is said to be Riemannian if for any \(x \in M\), there exists an inner product \(g_x\) on \(T_xM\) such that \(F^2_x(v) = g_x(v, v) \quad \forall v \in T_xM\). There exist lots of non-Riemannian Finsler metrics for example the so-called Randers metrics (see [5]). Given a Finsler manifold \((M, F)\), let \(c : [a, b] \to M\) be a piecewise \(C^\infty\) curve in \(M\). Since \(F\) is positively homogeneous, the length of \(c\) is well-defined as \(L(c) = \int_a^b F(c'(t)) dt\). For any \(p, q \in M\), we define \(d(p, q) = \inf_c L(c)\), where the infimum is taken over all piecewise \(C^\infty\) curves \(c\) issuing from \(p\) to \(q\). The geodesics of \((M, F)\) are characterized as the constant speed curves locally minimizing the length, which are then necessarily \(C^\infty\) curves. The Finsler metric \(F\) is said to be reversible if \(F(-v) = F(v)\) for any \(v \in TM\). In this article, we shall consider general Finsler metrics without the reversibility assumption. So generally speaking, for any \(p, q \in M\), we do not necessarily have \(d(p, q) = d(q, p)\), i.e. the distance function \(d\) is asymmetric.
This kind of asymmetry occurs naturally in many applications and offers one of the most interesting aspects in Finsler geometry (see [1]).

Gromov showed in [10] that if M is a closed Riemannian manifold of negative sectional curvature, then every closed bounded form of degree ≥ 2 on \tilde{M} has a bounded primitive. This means that the L^∞-cohomology of \tilde{M} vanishes in degree ≥ 2.

Given a closed Riemannian manifold (M, g) of negative curvature, it is well-known that its geometric hyperbolicity resulting from the negative curvature assumption implies that its geodesic flow defined on the sphere bundle SM is Anosov, i.e. dynamically hyperbolic. Therefore, the geometric hyperbolicity can be considered as stronger than the dynamical hyperbolicity. In this perspective, Cheng extended in [4] the vanishing result above to closed Riemannian manifolds with Anosov geodesic flows. In [2], Burns and Paternain obtained the same vanishing result for Riemannian manifolds with Anosov magnetic flows. In this paper, we generalize this Riemannian result to the Finsler setting:

Theorem 1.1. If M is a closed Finsler manifold with Anosov geodesic flow, then every closed bounded form of degree ≥ 2 on \tilde{M} has a bounded primitive.

The vanishing of the L^∞-cohomology in degree ≥ 2 is closely related to the following Riemannian question of S.S. Chern: let M be a $2m$-dimensional closed Riemannian manifold of negative sectional curvature. Is it true that the sign of the Euler number $\chi(M)$ and $(-1)^m$ are the same, i.e. $(-1)^m \cdot \chi(M) > 0$? Gromov proved in [10] this conjecture in the Kähler hyperbolic case.

Definition 1.2. A closed Kähler manifold (M, g, J) is said to be **Kähler hyperbolic** if the lifted Kähler form $\tilde{\omega}$ to the universal covering space \tilde{M} admits a bounded primitive.

More precisely, Gromov proved the following result:

Theorem 1.3 (Gromov [10]). Let M be a $2m$-dimensional closed Kähler manifold. If M is Kähler hyperbolic, then the Euler number $\chi(M)$ does not vanish and satisfies $(-1)^m \cdot \chi(M) > 0$.

Thus he obtained the following result: if M is a $2m$-dimensional closed C^∞ Riemannian manifold of negative sectional curvature, and M is homotopy equivalent to a closed Kähler manifold, then the Euler number $\chi(M)$ does not vanish and satisfies $(-1)^m \cdot \chi(M) > 0$. We deduce from Theorems 1.1 and 1.3 the following:

Corollary 1. Let M be a $2m$-dimensional closed C^∞ Finsler manifold with Anosov geodesic flow. If M is homotopy equivalent to a closed Kähler manifold, then the Euler number $\chi(M)$ does not vanish and satisfies $(-1)^m \cdot \chi(M) > 0$.

2. Symplectic formulation of Finsler geodesic flows. In this section, we recall some definitions concerning Finsler geodesic flows. See, for instance, [11] or [9] for more details. Let (M, F) be a closed C^∞ Finsler manifold and $\pi : TM_0 \to$
M be the canonical projection. The potential of (M,F) is defined as

$$A_v(\eta) = \frac{1}{2} \frac{d}{dt} (F^2(v + td\pi_v(\eta))) (0) \quad \forall v \in TM_0, \ \eta \in T_v(TM_0),$$

which is a C^∞ 1-form on TM_0. In the case of a Riemannian Finsler metric \sqrt{g}, we have

$$A_v(\eta) = g(d\pi_v(\eta), v),$$

which is the so-called Liouville 1-form of the Riemannian metric g.

Let $E : TM_0 \to \mathbb{R}$ be defined by $E(v) = \frac{1}{2} (F(v))^2$. Let ω be the symplectic form on TM_0 obtained by pulling back the canonical symplectic form of T^*M_0 via the Legendre transform, then we have $\omega = dA$ (see [11, Section 2]). Let X be the Hamiltonian vector field of E with respect to ω, i.e.

$$i_X \omega = -dE.$$

The Hamiltonian flow Φ generated by X preserves the map E and the symplectic form ω. The projections of the orbits of Φ to M are just the geodesics of (M,F). The unit sphere bundle with respect to F is defined as

$$S_F M = E^{-1} \left(\frac{1}{2} \right) = \{ v \in TM \mid F(v) = 1 \}.$$

The restriction of the Hamiltonian flow on $S_F M$ is said to be the geodesic flow of (M,F), denoted by ϕ. Since $\omega = dA$, ϕ integrates the Reeb field of the contact 1-form $A|_{SF M}$.

3. Anosov flows and transversality. Let us first recall some definitions: let N be a closed C^∞ manifold and $\psi : N \to N$ a C^∞ flow generated by the vector field X. We say that ψ is an Anosov flow if there exists a $D\psi$-invariant splitting of the tangent bundle

$$TN = E^{ss} \oplus \mathbb{R}X \oplus E^{su},$$

a Riemannian metric on N, and two positive numbers a and b such that

$$\|D\psi_t(v)\| \leq a \cdot e^{-bt} \| v \| \quad \forall v \in E^{ss}, \quad t \geq 0,$$

$$\|D\psi_{-t}(v)\| \leq a \cdot e^{-bt} \| v \| \quad \forall v \in E^{su}, \quad t \geq 0.$$

The vector bundles E^{ss} and E^{su} are called the strong stable and strong unstable distributions of ψ. They are both integrable to Hölder continuous foliations with C^∞ leaves, denoted respectively by F^{ss} and F^{su}. The vector bundles $E^{ss} \oplus \mathbb{R}X$ and $E^{su} \oplus \mathbb{R}X$ are called the stable and unstable distributions of ψ. They are also integrable to Hölder continuous foliations with C^∞ leaves, denoted respectively by F^s and F^u. For any $x \in N$, the leaves of F^{ss}, F^{su}, F^s, and F^u containing x are denoted respectively by $W^{ss}(x)$, $W^{su}(x)$, $W^s(x)$, and $W^u(x)$.

Let (M,F) be a closed C^∞ Finsler manifold of negative flag curvature (see [5]), it is well-known that its geodesic flow defined on $S_F M$ is Anosov [8]. See, for instance, [7] for a general study of Finsler geodesic flows in negative flag curvature. According to Theorem 2 and the comments concerning the Anosov hypothesis in [12], we have the following proposition:
Proposition 1 ([12]). Let (M, F) be a closed C^∞ Finsler manifold of dimension n and φ its geodesic flow defined on SFM. If φ is Anosov, then its stable foliation F^s is transverse to the fibers of the sphere bundle $\pi : SFM \to M$.

The proof of the following proposition is given only for the convenience of the reader since its arguments are known.

Proposition 2. Consider the lifted stable foliation \tilde{F}^s on the covering space $\tilde{SF}M$. If the geodesic flow φ is Anosov, then each leaf of \tilde{F}^s intersects each fiber of the sphere bundle $\tilde{\pi} : \tilde{SF}M \to \tilde{M}$ exactly once. In addition, \tilde{M} is diffeomorphic to \mathbb{R}^n, where $n = \dim(M)$.

Proof. Let $v \in S\tilde{F}M$ and $\tilde{W}^s(v)$ the leaf of \tilde{F}^s containing v. We deduce from the above proposition that the foliation \tilde{F}^s is transverse to the fibers of the sphere bundle $\tilde{\pi} : \tilde{SF}M \to \tilde{M}$. Since the fibers are compact, a result of C. Ehresmann (see [3]) implies that the map

$$\tilde{\pi} |_{\tilde{W}^s(v)} : \tilde{W}^s(v) \to \tilde{M}$$

is a covering map. Since \tilde{M} is simply connected, $\tilde{\pi} |_{\tilde{W}^s(v)}$ is a diffeomorphism. Therefore, $\tilde{W}^s(v)$ intersects each fiber of the bundle $S\tilde{F}M \to \tilde{M}$ at exactly one point.

Take $v \in S\tilde{F}M$ such that $\tilde{W}^s(v)$ contains no lifts of φ-periodic orbits. It is well-known that $\tilde{W}^s(v)$ is diffeomorphic to \mathbb{R}^n. We deduce that \tilde{M} is diffeomorphic to \mathbb{R}^n. □

4. Proof of Theorem 1.1. Let (M, F) be a closed C^∞ Finsler manifold with Anosov geodesic flow φ. Let $v \in S\tilde{F}M$ and $\tilde{W}^s(v)$ be the leaf containing v of the foliation \tilde{F}^s. We denote by \tilde{X} the tangent vector field of the lifted flow $\tilde{\varphi}$ over $S\tilde{F}M$. By Proposition 2, $\tilde{\pi}$ sends $\tilde{W}^s(v)$ diffeomorphically onto \tilde{M}. We define

$$\tilde{E}^{ss} = D\tilde{\pi}(\tilde{E}^{ss} |_{\tilde{W}^s(v)}) \quad \text{and} \quad \tilde{X} = D\tilde{\pi}(\tilde{X} |_{\tilde{W}^s(v)}).$$

Let τ be the C^∞ flow on \tilde{M} generated by \tilde{X}. Therefore, for any $t \in \mathbb{R}$,

$$\tau_t = \tilde{\pi} \circ \tilde{\varphi}_t \circ \tilde{\pi}^{-1}$$

and \tilde{E}^{ss} is τ-invariant. Since by Proposition 1 the distribution E^s is transverse to the vertical bundle $V(SFM)$, there exists $C_1 > 0$ such that for any $\xi \in \tilde{E}^s(v)$,

$$\frac{1}{C_1} \tilde{F}(D\tilde{\pi}(\xi)) \leq |\xi| \leq C_1 \tilde{F}(D\tilde{\pi}(\xi)),$$

where $|\xi|$ is calculated with respect to the lift of an arbitrarily chosen Riemannian metric on $SF M$.

Proposition 3. There exist positive constants C and b such that for any $x \in \tilde{M}$ and any $u \in \tilde{E}^{ss}(x)$, we have that for any $t \geq 0$,

$$\tilde{F}(Dt\tau_t(u)) \leq Ce^{-bt}\tilde{F}(u).$$
Proof. Since \(\varphi \) is Anosov, there exist \(a, b > 0 \) such that for any \(\xi \in \tilde{E}^{ss} \),
\[
|D\tilde{\varphi}_t(\xi)| \leq ae^{-bt} |\xi|
\]
for any \(t \geq 0 \). Let \(\xi \in \tilde{E}^{ss} \) such that \(d\tilde{\varphi}(\xi) = u \). We have
\[
\tilde{F}(D\tau_t(u)) = \tilde{F}(D\tilde{\varphi}(D\varphi_t(\xi))) \leq C_1 |D\varphi_t(\xi)| \\
\leq C_1 e^{-bt} |\xi| \leq C_1 e^{-bt} \tilde{F}(u)
\]
for any \(t \geq 0 \). We set \(C = C_1^2 a \).

Definition 4.1. A \(C^\infty \) \(k \)-form \(\alpha \) on \(\tilde{M} \) is said to be **bounded** if
\[
\||\alpha||_\infty = \sup_{x \in \tilde{M}} \|\alpha\|_x < +\infty,
\]
where \(\|\alpha\|_x = \sup_{e_1, \ldots, e_k \in T_x\tilde{M} \setminus \{0\}} |\alpha(e_1, \ldots, e_k)| \).

Now let us prove Theorem 1.1: we suppose that \(k \geq 2 \), let \(\alpha \) be a closed bounded \(C^\infty \) \(k \)-form on \(\tilde{M} \). Since \(\tilde{M} \) is diffeomorphic to \(\mathbb{R}^n \), \(\alpha \) is exact. Let us prove that there exists a bounded 1-form \(\beta \) such that \(\alpha = d\beta \). Let \(T \) be an arbitrary, fixed real number, and \(\tau \) be the flow on \(\tilde{M} \) generated by the vector field \(\tilde{X} \). Then we define
\[
\beta_T = - \int_0^T \tau^*_s(i_{\tilde{X}} \alpha) ds.
\]
Since \(\alpha \) is closed, we have
\[
\alpha - \tau^*_T \alpha = - \int_0^T \frac{d}{ds} \tau^*_s \alpha ds = - \int_0^T \tau^*_s L_{\tilde{X}} \alpha ds = - \int_0^T \tau^*_s di_{\tilde{X}} \alpha ds = d\beta_T.
\]
As we have seen above, \(\tilde{\pi} : \tilde{W}^s(v) \to \tilde{M} \) is a \(C^\infty \) diffeomorphism. Moreover, \(\tilde{E}^{ss} = D\tilde{\varphi}(\tilde{E}^{ss} |_{\tilde{W}^s(v)}) \) and \(\tilde{X} = D\tilde{\varphi}(\tilde{X} |_{\tilde{W}^s(v)}) \). We deduce that
\[
T\tilde{M} = \tilde{E}^{ss} \oplus \mathbb{R} \cdot \tilde{X}.
\]
Now let \(x \in \tilde{M} \) and \(w \in T_x\tilde{M} \). Thus there exist \(w' \in \tilde{E}^{ss}(x) \) and \(w'' \) colinear with \(\tilde{X}(x) \) such that \(w = w' + w'' \). Since the distribution \(E^{ss} \) on \(SFM \) is transverse to the vector field \(\tilde{X} \), there exists a positive constant \(C_2 \) such that
\[
\tilde{F}(w') \leq C_2 \tilde{F}(w).
\]
Therefore, for any \(w_1, \ldots, w_{k-1} \in T_x\tilde{M} \), we have, by Proposition 3, the following:
\[
|\tau^*_s(i_{\tilde{X}} \alpha) x(w_1, \ldots, w_{k-1})| \\
= |\alpha_{\tau^*_s(x)}(\tilde{X}(\tau^*_s(x)), D_x\tau^*_s(w_1), \ldots, D_x\tau^*_s(w_{k-1}))| \\
= |\alpha_{\tau^*_s(x)}(\tilde{X}(\tau^*_s(x)), D_x\tau^*_s(w'_1), \ldots, D_x\tau^*_s(w'_{k-1}))| \\
\leq \|\alpha\|_\infty \tilde{F}(x)(\tau^*_s(x)) \tilde{F}(D_x\tau^*_s(w'_1)) \cdots \tilde{F}(D_x\tau^*_s(w'_{k-1})) \\
\leq \|\alpha\|_\infty C_1 \|X\|_\infty C^{k-1} e^{-(k-1)bs} \tilde{F}(w'_1) \cdots \tilde{F}(w'_{k-1}) \\
\leq \|\alpha\|_\infty C_1 \|X\|_\infty C^{k-1} e^{-(k-1)bs} C_2^{k-1} \tilde{F}(w_1) \cdots \tilde{F}(w_{k-1}),
\]
where $\|X\|_\infty$ is calculated with respect to an arbitrarily chosen Riemannian metric on $S_F M$, and we are considering, without loss of generality, that all $k - 1$ terms of type C_2 concerning w'_i are equal, $i = 1, \ldots, k - 1$. Hence the form β_T converges as $T \to +\infty$ to a form β such that

$$|\beta_x(w_1, \ldots, w_{k-1})| \leq \|\alpha\|_\infty \|X\|_\infty C_1 C^{k-1} C_2^{k-1} \tilde{F}(w_1) \cdots \tilde{F}(w_{k-1}),$$

thus β is bounded. Moreover, since $\tau^*_T \alpha$ tends to zero, $\alpha = d\beta$. The proof of Theorem 1.1 is complete.

The proof of Corollary 1 is given for the convenience of the reader (see [4]): suppose that $\Psi : M \to M_1$ is a homotopy equivalence of M to a closed Kähler manifold M_1. By an approximation if necessary, we can assume that Ψ is C^∞. Let $\pi : \tilde{M} \to M$ and $\pi_1 : \tilde{M}_1 \to M_1$ be the universal covering maps. Let ω be the Kähler form of M_1, which is certainly bounded. Therefore, with respect to the lifted Finsler metric \tilde{F}, the pull back $(\Psi \circ \pi)^*(\omega) = \pi^*(\Psi^*(\omega))$ is also a bounded 2-form on \tilde{M}. Thus by Theorem 1.1, there exists a bounded 1-form β on \tilde{M} such that

$$(\Psi \circ \pi)^*(\omega) = d\beta.$$

Then we can deduce as in [6] that $\tau^*_1(\omega)$ also admits a bounded primitive, i.e. M_1 is Kähler hyperbolic. So by Theorem 1.3, we have $(-1)^m \cdot \chi(M_1) > 0$. Since the Euler number is a homotopy invariant, we get $(-1)^m \cdot \chi(M) > 0$.

Acknowledgements. I am grateful to the referee for valuable comments and suggestions.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Springer, Berlin (2013)

[2] Burns, K., Paternain, G.: Anosov magnetic flows, critical values and topological entropy. Nonlinearity 15, 281–314 (2002)

[3] Camacho, C., Lins, N.A.: Geometric Theory of Foliations. Birkhäuser, Boston (1985)

[4] Cheng, X.: Kähler hyperbolicity and the Euler number of a compact manifold with geodesic flow of Anosov type. Math. Ann. 325, 229–248 (2003)

[5] Chern, S.S., Shen, Z.: Riemann–Finsler Geometry. Nankai Tracts in Mathematics, 6. World Scientific Publishing, Singapore (2005)

[6] Cao, J., Xavier, F.: Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature. Math. Ann. 319, 483–491 (2001)

[7] Fang, Y., Foulon, P.: On Finsler manifolds of negative flag curvature. J. Topol. Anal. 7(3), 483–504 (2005)

[8] Foulon, P.: Estimation de l’entropie des systèmes lagrangiens sans points conjugués. Ann. Inst. H. Poincaré 57, 117–146 (1992)
[9] Grifone, J.: Structure presque-tangente et connexions. Ann. Inst. Fourier 22(1), 287–334 (1972)

[10] Gromov, M.: Kähler hyperbolicity and L_2-Hodge theory. J. Differential Geom. 33, 263–292 (1991)

[11] Hryniewicz, U.L., Salomao, P.A.S.: Global properties of tight Reeb flows with applications to Finsler geodesic flows on S^2. Math. Proc. Cambridge Philos. Soc. 154(1), 1–27 (2013)

[12] Paternain, G., Paternain, M.: On Anosov energy levels of convex Hamiltonian systems. Math. Z. 217, 367–376 (1994)

YONG FANG
Département de Mathématiques
CY Cergy Paris Université
2, Avenue Adolphe Chauvin
95302 Cergy-Pontoise Cedex
France
e-mail: yfang@cyu.fr

Received: 17 November 2020

Revised: 9 February 2021

Accepted: 19 March 2021.