System for automated process parameters adjustment of packed absorbers intended for selective gas emissions treatment

N A Merentsov¹, A V Persidskiy², A B Golovanchikov¹, V N Lebedev³ and V V Groshev¹
¹Volgograd State Technical University, Volgograd 400005, Russia
²JSC Federal Scientific and Production Centre «Titan - Barricady», Volgograd 400071, Russia
³Branch of LUKOIL-Engineering VolgogradNIPmorneft, Volgograd 400078, Russia
¹E-mail: steeple@mail.ru

Abstract. The article represents the system for automated process parameters adjustment of packed mass exchange apparatuses intended for selective gas emissions treatment. It describes the flow chart and algorithm of adjustment program of the packed mass exchange apparatus. It also outlines the identification technique for required (optimal) flow dynamic operating modes of the mass exchange packed absorbers. The data obtained through automated adjustment of process parameters serve (are needed) for functioning of the self-adaptable automated mode control system of industrial absorbers for selective gas emissions treatment.

1. Introduction
Mass exchange apparatuses of various structural design and applications are widely used in chemical, petrochemical, oil and gas, construction, metal, nuclear and other industries [1-56]. The sorption processes and apparatuses play a major role in water treatment and water disposal systems [57-92]. The role of mass exchange sorption processes is of special importance for the ecological equipment intended for selective treatment of liquid and gas emissions [93-110]. It refers to such processes as absorption, adsorption, ion exchange, desorption. In ecological mass exchange equipment the major role belongs to the operating quality as it frequently deals with low or extra low concentrations of the substances to be collected. For that reason we can evidence a brisk development of mass exchange processes intensification in several directions, i.e. they are aided with physical effects, electric fields, etc. [111-114], (electrical absorption, electrical adsorption, ion exchange within electric field). But all of the said effects and mass exchange intensification methods can show their full effect if the mass exchange equipment is operated under high-rate flow dynamic modes, under ultimately high intensity of heat and mass exchange processes. For example, for absorption and ion exchange the ultimately high intensity of ion and molecule absorption from continuous gas or liquid flows is observed in case of high-rate filtration flow through the layers of absorbent and ion-exchange resins provided the absorbent surface is intensively washed with continuous flows which entails the development of inertial constituents of the filtration flow structure and formation of turbulent flows (turbulization) within the intra-pore space of the absorbent layers [115].
For absorption in packed mass exchange apparatuses, the highest mass exchange efficiency and values of collection of substances from gas flows are observed under the phase inversion (emulsification) mode. The highest intermixing degree of mass exchange products and of turbulization of gas and liquid flow within the packing layer is inherent to emulsification mode. This (phase inversion) mode of the mass exchange processes has essential advantages and disadvantages. In terms of quality the critical advantages are the intensity of mass exchange and treatment efficiency of gas emissions even if the harmful (hazardous) concentrations in continuous gas flows are low. It is connected with the creation of the most developed phase contact as well as with the intensive intermixing of mass exchange products. The essential advantages of the emulsification (inversion) mode include high retention capability of the packing block in relation to the liquid and gas phases which proves the extended duration of presence time of the mass exchange products in the packing block and has a positive resource saving effect (as to the fresh absorbent saving). The disadvantages of emulsification (inversion) mode include its instability during the industrial operation of process equipment as well as high energy consumption needed for creation (formation) of the phase contact surfaces and against the hydraulic resistance of the packing layer (at emulsification mode). The authors of the article are intensively working to eliminate the said disadvantages. As far as the first disadvantage, i.e. instability of emulsification mode is concerned, the inversion mode is as a rule observed within a rather narrow mode range and in case of increased rate of continuous gas flow or absorbent consumption, the packing block is flooded, i.e. the operating mode of mass exchanger is disrupted. It is suggested that the said disadvantage is addressed with the use of two main methods, i.e. use of dynamic packing contact devices [115-116], which show their dynamic and resonating characteristics within each individual packing element; this leads to higher intensity of intermixing of the mass exchange products within each packing element as well as all over the entire layer of the packing block. In this case the dynamic characteristics are demonstrated naturally, due to the energy of gas filtration flow through the block of packing elements in bulk; this leads to vibration excitation, to formation of the dynamic phase contact surfaces and to overall intensification of the mass exchange processes. The use of packing blocks composed of dynamic packing elements will lead to a broader range of existence of the emulsification (phase inversion) mode, which enables its identification and maintenance both in the laboratory conditions and during the industrial operation of the mass exchange process equipment.

The second method to be used to ensure steady emulsification (phase inversion) mode is the use of automated systems for process parameter adjustment and for self-adapting mode control of the mass exchange absorbers similar to the developed systems [117-124]. The automated system for process parameter adjustment and mode control of the mass exchange absorbers enable the analysis of fluid and gas dynamics within broad flow rate ranges of continuous and dispersion phases, identification of the required mode ranges (existence range of phase inversion) and maintenance of the highest performance values irrespectively of the fluctuations of both continuous and dispersion phases. Besides, the developed systems for self-adapting control of the mass exchange absorbers function with the ongoing analysis of initial and final concentrations of the collected substances which enables a smooth adaptive transition of the developed systems from the total collection mode to the energy- and resource saving mode of the mass exchange apparatus.

Mathematical modelling and calculations of the packed absorbers operated under the emulsification (phase inversion) mode show that the maintenance of the steady emulsification mode leads to 40 % reduction of the packing volume if compared to the volume of a standard mass exchange apparatus and operating modes which results in smaller sizes and therefore, faster response time (less inertia) and flexible automated high quality adjustment of mass exchange systems. This can entail considerable energy- and resource saving. Thus, maintenance of steady phase inversion mode by making use of the developed systems for automated self-adapting operating mode control of the mass exchange packed absorbers is a critical task and the purpose of this study.

This study details the flow chart and the algorithm of the automated process parameter adjustment program for the packed absorbers intended for selective gas emissions treatment which may be the basis...
for the program to be used for automated self-adapting operating mode control of mass exchange absorbers.

2. Methods and materials

Figure 1 shows the control flow chart of the mass exchange apparatus designed for automated identification of the required operating parameters of the packed absorber and for automated recognition and self-adapting operating mode control. It consists of programmable logical controller (PLC) which runs the adjustment and control programs by collecting the sensor data (and sending the execution unit instructions), the gas flow rate sensor $S1$ which measures the incoming (outgoing) gas flow rate of the apparatus, concentration sensors of the collected substances in the continuous gas flow outgoing ($S2$) from and incoming ($S5$) to the mass exchange apparatus. $S3$ and $S4$ sensors are used to measure the hydraulic resistance of the packing layer. Liquid absorbent is supplied to the mass exchange apparatus by the electrically driven pump AP, the frequency of its rotation is ensured by frequency converter $FC1$. Treated gas is injected into the connecting pipe in the bottom part of the mass exchange apparatus by means of the blower (B) equipped with electrical motor $M2$ which rotation frequency is controlled by frequency converter $FC2$. Clean absorbent is taken from the clean absorbent tank CAT; it gets in contact with the continuous gas flow in the packing block of the mass exchange apparatus and is disposed into the used absorbent tank UAT where from it can be discharged for treatment (recovery) or utilization.

The so called adjustment process is implemented for automated identification of the majority of parameters needed for functioning of the controlling program. It is an automated process with a few established initial process and geometric parameters of the mass exchange apparatuses. The rest of the parameters are identified and calculated through automated testing of the apparatus under various modes and by receiving the sensor data. The adjustment process is always launched manually. It should be launched during the start-up stage and preparation of the mass exchange apparatus for operation, it also can be launched from time to time to eliminate the faults of the steady efficient operating modes of the mass exchange system which may be caused by the changed surface of the packing elements (surface contamination of the packing elements) or by the wear of the parts of the apparatus. These can result in unacceptable gas emission treatment results. During the adjustment the apparatus cannot be a part of the technical process. The algorithm of the program for the automated process parameters adjustment of packed absorbers intended for selective gas emissions treatment is shown at figure 2.

The adjustment starts when the operator inputs the following parameters: Emu - indicates the spike of turbulization index value which can be regarded as the beginning of the emulsification mode (for some of hydro-mechanical modes which are studied under the laboratory conditions). This parameter depends on the used packing type and is established in the laboratory conditions, however for new packings it can be established as 1.6–1.7. Then the height of the packing layer H is to be entered. This geometric parameter depends on the structural design of the mass exchange apparatus. Then the minimum power frequency of the pump $F1\text{min}$ - this parameter can be determined either by the minimum frequency which ensures sufficient spraying of the packing with the absorbent (minimum absorbent consumption) or by the process requirements as the least allowed spraying intensity of the packing (optimal absorbent consumption). Then the operator inputs the minimum power frequency of the blower $F2\text{min}$. This parameter is established based on the minimum allowed capacity of the apparatus related to the treated continuous gas flow as specified by the process requirements.

After those values are entered, the program determines the adjustment interval of rotation frequency for each electrical drive as 1% of the frequency ranging from the minimum value to 50 Hz. After that the program gets to calculate the mean-square deviation of the data from the gas flow rate (velocity) sensor for the three power frequency values of the blower $M2$: 10 Hz, 30 Hz and 50 Hz.

For this purpose the program creates an array $Vfj0$ of 11 elements for recording $S1$ sensor data under the power frequency of the blower equal to 10 Hz, and after that it instructs the $FC2$ frequency converter to maintain this frequency value and undertakes a cycle when it fills out the created array with the values received from $S1$ with a 3 s interval (the time is to be established based on the inertia value of the mass exchange system which is also identified during the adjustment of the mass exchange apparatus). It also
gets the sum of the received values in the variable \(Vav \) (velocity average) to later on divide its value by the quantity of measurements and calculate the average gas flow velocity rate per 10 measurements. Then the program calculates the dispersion value and the mean square deviation, after that it deletes the array, increases the power frequency of the fan to 30, later 50 Hz and executes the above operations. After that the program identifies the highest of the mean-square deviations \(SVf \).

The program further gets to calculate (for each of the eventual power frequencies of the absorbent supply pump \(M1 \)) the coefficients accounting for the porous structure impact on the dynamics of the turbulent flow \(K \), the turbulization index at which the mass exchange apparatus packing block starts working in the emulsification mode \(nEmu \) as well as the turbulization index value preceding the flooding \(nMax \) of the packing block.

Figure 1. Control flow chart of the packed absorber: 1 – body of the mass exchange apparatus, 2, 3 – incoming/outgoing connecting pipes (pipe sleeves) for treated continuous gas flow, 4 – liquid absorbent distributor (sprayer), 5 – connecting pipe (pipe sleeve) for used absorbent disposal, 6 – liquid distributor (packing support), 7 – mass exchange packing block, 8 – support of mass exchange column.
Figure 2. The algorithm (block diagram) of the program for automated process parameters adjustment of packed absorbers intended for selective gas emissions treatment.

The use of the turbulization index for identification of the hydrodynamic modes of the mass exchange apparatus is based on the power-law equation

$$v_f = K_{mpi} \left(\frac{\Delta P}{H} \right)^{1/n_i}.$$

where K_{mpi} is the coefficient accounting for the porous structure impact on the dynamics of the turbulent flow; I/n_i is the exponent reflecting the force of inertia of the filtration flow. Since the K_{mpi} and $<I/n_i>$ values are the functions of filtration velocity, this equation can be used for description of dependence $\Delta P/H=f(v_f)$ only within the narrow range of the filtration velocity changes. Approximation by linear dependence of these experimental data represented in the coordinates $\ln(\Delta P/H)=\ln(v_f)$ enables calculation of K_{mpi} and $<I/n_i>$ values. The $<I/n_i>$ values identified for the range of the increasing filtration velocity intervals can indicate the increase in the intensity of the constituent of the overall pressure differential due to inertia force which is determined by the increasing turbulization within the porous space. The program uses the strong dependence

$$n_i = \frac{\ln(\Delta P/H)}{\ln(v_f/K_{mpi})}.$$

The details of the turbulization index and its applications are described in the study [115]. It is important to note that the modified equation [111, 112, 115] can be also used to identify the intervals of existence of the flow dynamic modes and for the self-adapting mode control of the mass exchange packed absorbers, the equation allows assessing the formation of the turbulent flow dynamics and the development of the inertial constituents of the filtration flow reduced by viscous components [111, 112, 115].

The adjustment program undertakes a cycle where each iteration corresponds to one power frequency of the absorbent feed pump which increases before each iteration from the established minimum value to 50 Hz through 100 intervals. After the power frequency of the pump at $FC1$ is established, the program begins to increase the power frequency of the blower at $FC2$ with a 10 % or less increment (to be set up by the operator) unless the gas flow velocity, according to the $S1$ sensor, is other than zero and steady. The steady mode is identified due to the cyclical obtaining by the program of the two flow velocity values with a 1 second interval from the $S1$ sensor. If the first value lies within the interval of the mean-square deviation of the second value, then they are almost equal and the mode can be regarded as steady. After that the program increases the power frequency of the blower at $FC2$ by another 10 %
by means of the cycle similar to the above-described one which can be called a “waiting cycle”, the program waits till the gas flow mode is stable and then it gets to measure and calculate the coefficient accounting for the impact of the porous medium structure (of the packing block) K.

Since the impact of the dynamic constituent of the resistance is rather low at the low velocity range of gas flow through the packing layer, the turbulization index under such range is almost equal to 1. Thus, K can be calculated with the use of equation (1) as follows:

$$K = \frac{H \cdot \nu_f}{\Delta P}.$$

(3)

Then the program checks whether there is a gas flow through the packing layer at the set minimum allowed power frequency of the blower at $FC2$. If the check occurs during the 100th iteration of the cycle, i.e. the spraying of the packing with the absorbent is at its maximum and the established minimum allowed power frequency of the blower is less than the current one, the program changes the minimum allowed frequency value to the current one and saves it.

The purpose of the next adjustment stage is to identify the turbulization index at which the packing block of the mass exchange apparatus is exposed to emulsification (phase inversion) and also the turbulization index which precedes the flooding. The criterion of emulsification (phase inversion) mode is the occurrence of spike periods of the turbulization index, i.e. hydrodynamic «spikes». The example of identification of each period is shown in figure 3.

![Figure 3. Hydrodynamic modes with corresponding turbulization indices (operations with turbulization indices).](image)

The program undertakes the cycle where at each iteration the power frequency of the blower at $FC2$ increases with a 10 % increment (the interval is to be set by the operator), the program is waiting for the steady gas flow mode and after that it gets the hydraulic resistance value of the packing block (pressure difference) and then calculates the turbulization index by using equation (3).

After that the program checks whether the condition which testifies to the turbulization index spikes presence is fulfilled - the identified turbulization index must not be less than the product of the index
identified at the previous step and the Emu coefficient introduced at the beginning of adjustment process. If the condition is not fulfilled, the identified index is saved into the variable which stores the previous turbulization index value, the power frequency of the blower at FC2 is increased increases by another 10 % (the increment is to be set by the operator) and the operations are repeated. If the condition is fulfilled, then the current turbulization index is saved as the relevant element of the nEmu array as the beginning value for the emulsification mode at the established power frequency of the absorbent feed pump FC1 (absorbent consumption).

After that the program continues increasing the power frequency of the blower at FC2 by 10 % (with a set increment), it identifies the turbulization index at each stage and saves it into the nMax array as the maximum allowed turbulization index which is followed by the flooding of the packing block. If according to the SI sensor the gas flow velocity (rate) becomes equal to zero or if at 100 % power frequency of the blower at FC2 there is no flooding of the packing block, the program quits the cycle and the value of the nMax array element as identified during the previous iteration is to be saved as the required one. After that the program goes to the next iteration of the main cycle. The power frequency of the absorbent feed pump at FC1 increases by 1 % and all the above operations are repeated.

Upon completion of the 100th iteration of the main cycle the program saves to the permanent controller memory the arrays K, nEmu and nMax as well as the values of the frequency adjustment intervals for converters FC1 and FC2. After that the program stops the both electric motors. This is the end of the adjustment process. The data obtained by the program during the adjustment of the process parameters are used by the program for automated self-adapting operating mode adjustment of the apparatus which is continuously functioning during the operation of the mass exchange equipment.

3. Conclusions
Thus, the developed flow chart and algorithm of the program for automated adjustment of the process parameters of the packed absorbers intended for selective gas emissions treatment allow identifying and storing in the controller’s memory of the ranges of emulsification modes based on the turbulization index and also obtaining the required data for functioning of the program for automated self-adapting control with account of initial and final concentrations to be collected.

It is important to note that adjustment of the process parameters of the packed absorbers can be based on other scientific tools, such as, for example, structures of the gas and liquid phases of the flow. Both in the laboratory and industrial conditions the adjustment of the process parameters can go on under the integrated system of parameter recording and identification of the required operating modes. The results of the integrated system for identification of the operating modes (with account of the continuous and dispersion flows) can be linked to the corresponding turbulization indices. The automated system for process parameters adjustment as described in this study will enable obtaining even more precise data on the mass exchange system, mode control ranges, mass exchange optimization which gives an opportunity for efficient adaptive automated mode control of the packed absorbers.

Acknowledgements
This work was supported by a grant from the President of the Russian Federation (MK-1287.2020.8) «Modelling of control processes in mass transfer environmental and petroleum processing equipment».

References
[1] Timonin A S, Bozhko G V, Borschchev V Ya, Gusev Y I and others. 2019 Equipment for oil and gas processing, chemical and petrochemical industries (Moscow: Infra-Engineering) p 476
[2] Timonin A S, Baldin B G, Borschchev V Y and Gusev Y I 2014 Chemical production machines and apparatus (Kaluga: Noosphere) p 856
[3] Timonin A S 2013 Engineering and ecological reference book vol 2 (Kaluga: Noosphere) p 884
[4] Sokol B A, Chermyshov A K and Baranov D A 2009 Mass-transfer column packed-type devices (Moscow: Infokhim) p 358
[5] Kagan A M, Laptev A G, Pushnov A S and Farakhov M I 2013 Contact packings in industrial
heat-and-mass transfer apparatuses (Kazan: Otechestvo) p 454

[6] Laptev A G, Farakhov T M and Basharov M M 2016 Processes and apparatuses of chemical technologies: Modeling and modernization of industrial desulfurizing packed columns at refineries Chemistry and Technology of Fuels and Oils 52(5) 472-9

[7] Golovanchikov A B, Balashov V A and Merentsov N A 2017 The filtration equation for packing material Chemical and Petroleum Engineering 53 10-3

[8] Merentsov N A, Balashov V A, Bunin D Y, Lebedev V N, Persidskiy A V and Topilin M V2018Method for experimental data processing in the sphere of hydrodynamics of packed heat and mass exchange apparatuses MATEC Web of Conferences 243 5

[9] Madyshev I N, Dmitrieva O S and Dmitriev A V 2019 Development of new types of contact devices for heat-mass transfer apparatuses, used at petrochemical enterprises, Proceed. of the 5th Intern. Conf. on Ind. Eng. (ICIE 2019), Lecture Notes in Mechan. Eng. vol 11 95-101

[10] Madyshev I N, Dmitrieva O S, Dmitriev A V and Nikolaev A N 2016 Study of fluid dynamics of mass-transfer apparatuses having stream-bubble contact devices Chemical and Petroleum Engineering 52(5-6) 299-304

[11] Zinurov V, Sharipov I, Dmitrieva O and Madyshev I 2020 The experimental study of increasing the efficiency of emulsion separation E3S Web of Conf. 157 06001

[12] Dmitriev A, Madyshev I, Dmitrieva O 2020 Experimental study of hydraulic and heat and mass transfer parameters of inclined-corrugated contact elements of cooling tower sprinkler Ecology and Industry of Russia 24(1) 4-8

[13] Madyshev I N, Dmitrieva O S and Dmitriev A V 2019 Determination of settling efficiency of solid finely dispersed particles within devices with rectangular separators Proceed. of the 5th Intern. Conf. on Ind. Eng. (ICIE 2019), Lecture Notes in Mechan. Eng. 11 79-84

[14] Madyshev I N, Dmitrieva O S, Dmitriev A V and Nikolaev A N 2015 Assessment of change in torque of stream-bubble contact mass transfer devices Chemical and Petroleum Engineering 51(5-6) 383-7

[15] Laptev A G, Farakhov T M and Afanas’ev E P 2018 Comparative thermohydraulic efficiency of processes in channels with chaotic packing Theoretical Foundations of Chemical Engineering 52(5) 853-8

[16] Madyshev I N, Dmitrieva O S and Dmitriev A V 2017 Hydraulic resistance of thermal deaerators of thermal power stations (TPS) with jet-film contact devices MATEC Web of Conf. 141 01023

[17] Dmitrieva O S, Dmitriev A V, Madyshev I N and Kruglov L V 2017 Impact of the liquid level in the jet-film contact devices on the heat-and-mass transfer process MATEC Web of Conf. 129 06010

[18] Pushnov A S, Chizh K V and Berengarten M G 2013 X-ray study of the structure of a random-packing layer confined by a cylindrical surface Journal of Surface Investigation 7(6) 1047-51

[19] Dmitriev A V, Madyshev I N and Dmitrieva O S 2019 Engineering method of calculation for the scrubber with jet-film contact devices Inter. Multi-Conf. on Ind. Eng.and Modern Tech. (FarEastCon), IEEE Xplore 1-5

[20] Farakhov T M and Laptev A G 2019 Modeling of processes of gas cooling by contact with a liquid and updating of column apparatuses Chemical and Petroleum Engineering 55(3-4) 282-9

[21] Dmitrieva O S, Dmitriev A V, Madyshev I N and Nikolaev A N 2017 Flow dynamics of mass exchangers with jet-bubbling contact devices Chemical and Petroleum Engineering 53(1-2) 130-4

[22] Laptev A G and Farakhov T M 2019 Mathematical model of mass transfer in randomly packed columns with phase maldistribution Journal of Engineering Thermophysics 28(3) 392-9

[23] Dmitriev A V, Dmitrieva O S and Madyshev I N 2017 Optimal designing of mass transfer apparatuses with jet-film contact devices Chemical and Petroleum Engineering 53(7-8) 430-4

[24] Dmitriev A V, Dmitrieva O S, Madyshev I N and Nikolaev A N 2017 Efficiency of the contact
stage of a jet-film device during rectification of ethylbenzene–styrene mixture *Chemical and Petroleum Engineering* 53(7-8) 501-7

[25] Laptev A G and Lapteva E A 2018 A Modified Method of the Number of Transfer Units for Calculating a Cooling Tower *Chemical and Petroleum Engineering* 54(7-8) 569-75

[26] Klyushenkova M I, Kuznetsova N A, Pushnov A S, Berengarten M G and Mokrousova E A 2014 Hydrodynamics of filled helical polymer packings *Chemical and Petroleum Engineering* 50 7-8

[27] Madyshev I N, Dmitriev A V and Khafizova A I 2019 Estimation of Cooling Capacity of Reagent-Free Evaporative Cooling Tower *Inter. Multi-Conf. on Ind. Eng.and Modern Tech. (FarEastCon)*, IEEE Xplore 1-4

[28] Bagomedov M G, Pushnov A S and Berengarten M G 2019 Effect of packing type on hydraulic resistance of contact devices *Chemical and Petroleum Engineering* 55(5-6) 379-83

[29] Ivanov A E, Berengarten M G and Klyushenkova M I 2010 Processes and equipment for chemical and oil-gas production: hydrodynamics of the bubbling layer in a new type of combined heat and mass exchanger *Chemical and Petroleum Engineering* 46(7) 433-40

[30] Madyshev I N, Dmitriev A O S and Dmitriev A V 2018 Efficiency of cooling the water droplets within Jet-Film unit of cooling tower filler *MATEC Web of Conf.* 224 02079

[31] Lapteva E A, Stolyarova E Y and Lapteva A G 2018 Thermohydraulic efficiency of the process of cooling of water in miniature cooling towers with regular packing *Chemical and Petroleum Engineering* 54(3-4) 161-4

[32] Madyshev I N, Dmitrieva O S and Dmitriev A V 2017 Heat-transfer, inside of the ground heat-transfer units, from liquid, additionally cooling the oil-immersed transformer *MATEC Web of Conf.* 141 01012

[33] Laptev A G and Lapteva E A 2015 Determination of heat and mass transfer efficiency on a bubbling plate with account for scale transition *Journal of Engineering Physics and Thermophysics* 88(4) 806-14

[34] Dmitrieva G B, Berengarten M G, Pushnov A S, Poplavskii V Y and Marshik F 2006 New combination packing for heat-and mass-exchange vessels *Chemical and Petroleum Engineering* 42(5-6) 361-6

[35] Madyshev I N, Dmitrieva O S and Dmitriev A V 2018 Determination of heat-mass transfer coefficients within the apparatuses with jet-film contact devices *MATEC Web of Conf.* 194 01013

[36] Gorodilov A A, Berengarten M G and Pushnov A S 2016 Experimental study of mass transfer on structured packings of direct-contact crossflow heat exchangers *Theoretical Foundations of Chemical Engineering* 50(5) 422-9

[37] Madyshev I N, Khafizova A I and Dmitrieva O S 2019 The study of gas-liquid flow dynamics in the inclined-corrugated elements of cooling tower filler unit *E3S Web of Conf.* 126 00031

[38] Ivanov A E, Berengarten M G and Klyushenkova M I 2009 Hydrodynamic operating regimes for a combined heat-and-mass exchanger *Chemical and Petroleum Engineering* 45(9-10) 526-31

[39] Madyshev I N, Dmitrieva O S and Dmitriev A V 2018 Heat-mass transfer efficiency within the cooling towers with jet-film contact devices *MATEC Web of Conf.* 194 01036

[40] Gorodilov A A, Berengarten M G and Pushnov A S 2016 Features of fluid film falling on the corrugated surface of structured packings with perforations *Theoretical Foundations of Chemical Engineering* 50(3) 325-34

[41] Vaganov A A and Timonin A S 2011 Aerodynamics of cellular polymeric packing *Chemical and Petroleum Engineering* 46(11-12) 657-9

[42] Merentsov N, Golovanchikov A, Lebedev V and Gendler A 2020 Modelling and calculation of a small-size evaporation cooling apparatus for industrial recirculated water with a heat-and-mass exchange packing based on wastes from metal-working machinery *E3S Web of Conferences* 193 02003

[43] Golovanchikov A B, Merentsov N A and Balashov V A 2013 Modeling and analysis of a
mechanical-draft cooling tower with wire packing and drip irrigation Chemical and Petroleum Engineering 48 595-601

[44] Merentsov N, Persidskiy A, Lebedev V, Prokhorenko N and Golovanchikov A 2019 Heat and mass exchange packing for disinfection of circulation water in electric field Advances in Intelligent Systems and Computing 983 547-59

[45] Dmitriev A V, Madyshev I N, Kharkov V V, Dmitrieva O S and Zinurov V E 2021 Experimental investigation of fill pack impact on thermal-hydraulic performance of evaporative cooling tower Thermal Science and Engineering Progress 22 100835

[46] Madyshev I, Kharkov V and Dmitriev A 2020 Cooling efficiency of filler unit in non-chemical cooling tower with advanced contact surface E3S Web of Conferences 193 01044

[47] Zinurov V E, Dmitriev A V, Ruzanova M A and Dmitrieva O S 2020 Classification of bulk material from the gas flow in a device with coaxially arranged pipes E3S Web of Conferences 193 01056

[48] Madyshev I, Dmitriev A and Kharkov V 2020 Determination of Volumetric Heat and Mass Transfer Coefficients in Filling Unit of Evaporative Cooling Tower 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020 9271292

[49] Dmitriev A V, Madyshev I N, Khafizova A I, Kharkov V V and Vakhitov M R 2020 Heat and mass transfer in unit of cooling tower filler with advanced gas-liquid contact surface IOP Conference Series: Materials Science and Engineering 862(6) 062099

[50] Merentsov N A, Lebedev V N, Persidskiy A V and Balashov V A 2019 Cascade bowl-type heat and mass exchange packing with dripping irrigation mode IOP Conference Series: Earth and Environmental Science 288 012106

[51] Merentsov N A, Lebedev V N, Golovanchikov A B, Balashov V A and Nefed'Eva E E 2018 Experimental assessment of heat and mass transfer of modular nozzles of cooling towers IOP Conference Series: Earth and Environmental Science 115 012017

[52] Persidskiy A V, Merentsov N A, Lebedev V N and Golovanchikov A B 2019 Heat and mass exchange packing with adjustable parameters for absorption and evaporation cooling IOP Conference Series: Earth and Environmental Science 288 012110

[53] Dmitriev A, Madyshev I and Dmitrieva O 2020 Experimental study of hydraulic and heat and mass transfer parameters of inclined-corrugated contact elements of cooling tower sprinkler Ecology and Industry of Russia 24(1) 4-8

[54] Madyshev I N, Khafizova A I and Dmitrieva O S 2019 The study of gas-liquid flow dynamics in the inclined-corrugated elements of cooling tower filler unit E3S Web of Conferences 126 00031

[55] Merentsov N A, Persidskiy A V and Lebedev V N 2020 Use of wastes from metalworking machining for packings in contact heat-and-mass exchange devices Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), Lecture Notes in Mechanical Engineering II 1443-54

[56] Merentsov N A, Persidskiy A V, Topilin M V, Lebedev V N, Balashov V A and Golovanchikov A B 2019 Experimental plant for studying hydrodynamics and heat and mass exchange processes in packing contact devices Journal of Physics: Conference Series 1278 012024

[57] Madyshev I N, Dmitriev A V and Dang Suan Vin 2020 Determination of oil-water emulsions separation efficiency in the separator with a vortex flow IOP Conference Series: Mater. Sci. and Eng. 709 033025

[58] Merentsov N, Balashov A, Golovanchikov A and Topilin M 2020 The determination of hydraulic resistance during laminar filtration through layers of sorbents and ion-exchange granules in environmental mass exchange equipment E3S Web of Conferences 193 02002

[59] Merentsov N A, Balashov V A, Bokhan S A, Nefed'eva E E, Tezikov D A and Groshev V V 2019 Modeling and calculation of flow filter IOP Conference Series: Earth and Environmental Science 224 012041

[60] Nikolaeva L A and Aikenova N E 2021 Adsorption purification of phenol-containing wastewater
from oil refineries *Theoretical and Applied Ecology* **2020**(4) 136-42

[61] Nikolaeva L A 2020 Treatment of a TPP’s Water from Oil Products with Hydrophobic Carbonate Sludge *Thermal Engineering* **67**(10) 751-5

[62] Fomenko A and Sokolov L 2015 Sorption removal of oil products from waste water *Ecology and Industry of Russia* **19**(5) 8-12

[63] Dremicheva E 2019 Use of agricultural waste for wastewater treatment of industrial enterprises *Ecology and Industry of Russia* **23**(4) 16-9

[64] Prolejchik A, Gaponenkov I and Fedorova O 2018 Extraction of heavy metal ions from inorganic wastewater *Ecology and Industry of Russia* **22**(3) 35-9

[65] Nikolaeva L A, Golubchikov M A and Minneyarova A R 2018 Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge *Chemical and Petroleum Engineering* **53**(11-12) 806-13

[66] Sokolov L I 2013 Use of wastes of grinding industry for cleaning of chromium containing effluent waters *World Applied Sciences Journal* **22**(5) 690-6

[67] Merentsov N A, Bokhan S A, Lebedev V N, Persidskiy A V and Balashov V A 2018 System for centralised collection, recycling and removal of waste pickling and galvanic solutions and sludge *Materials Science Forum* **927** 183-9

[68] Alexandrov R, Feklistov D, Laguntsov N and Kurchatov I 2019 Mobile installation of water treatment in the aftermath of emergency situations *Ecology and Industry of Russia* **23**(1) 4-10

[69] Dremicheva E 2019 Use of agricultural waste for wastewater treatment of industrial enterprises *Ecology and Industry of Russia* **23**(4) 16-9

[70] Dremicheva E S and Laptev A G 2019 Modeling the process of sorption for the purification of waste water from petroleum products and heavy metals *Theoretical Foundations of Chemical Engineering* **53**(3) 355-63

[71] Dremicheva E S and Shamsutdinov E V 2018 Intensification of sedimentation treatment of wastewater from oil products *Water and Ecology* **1** 3-8

[72] Nikolaeva L A and Ishakova R Y 2019 Integrated Wastewater Treatment for a GRES *Thermal Engineering* **66**(8) 587-92

[73] Nikolaeva L A and Ishakova R Ya 2019 Adsorption of industrial wastewater from oil products with application of mathematical modeling *IOP Conference Series: Earth and Environmental Science* **288**(1) 012017

[74] Nikolaeva L A and Khamzina D A 2019 Purification of water sources from oil contamination by hydrophobic carbonate sludge *IOP Conference Series: Earth and Environmental Science* **288**(1) 012018

[75] Nikolaeva L A and Ishakova R Y 2019 Mathematical modeling of wastewater treatment by adsorption of petroleum products *Chemical and Petroleum Engineering* **55**(1-2) 68-75

[76] Nikolaeva L A and Minneyarova A R 2019 Adsorption treatment of reverse-osmosis concentrate from water-treatment units at thermal power stations *Thermal Engineering* **66**(5) 372-6

[77] Nikolaeva L A, Golubchikov M A and Minneyarova A R 2018 Research on the mechanism and kinetics of oil-product adsorption from industrial wastewater by a modified hydrophobic carbonate sludge *Chemical and Petroleum Engineering* **53**(11-12) 806-13

[78] Nikolaeva L A and Golubchikov M A 2012 Study of the sorption of oil products of power station wastewater modified with a TPP illuminator slurry *Thermal Engineering* **59**(5) 404-7

[79] Nikolaeva L A and Nedzvetkskaya R Ya 2012 Purification of effluent waters from industrial enterprises using a biosorption technology *Thermal Engineering* **59**(3) 258-60

[80] Golovanchikov A and Merentsov N 2019 Ion exchange in continuous apparatus with diffused flow structure in liquid *Advances in Intelligent Systems and Computing* **983** 645-52

[81] Kutergin A and Nedobukh T 2020 The use of aluminosilicate sorbent for the purification of natural waters from heavy metals *Ecology and Industry of Russia* **24**(3) 19-23

[82] Krivosheev P A, Komarova L F, Poletaeva M A, Lebedev I A and Lavrinenko S S 2004 Wastewater treatment with new activated charcoals to remove butano *Russian Journal of
Journal of Physics: Conference Series 1889 (2021) 022040 doi:10.1088/1742-6596/1889/2/022040

Applied Chemistry 77(9) 1515-7
[83] Prolechik A, Gaponenkov I and Fedorova O 2018 Extraction of heavy metal ions from inorganic wastewater Ecology and Industry of Russia 22(3) 35-9
[84] Fomenko A I and Sokolov L I 2019 Study of sorption properties of bog ores for extraction of manganese and iron ions from ground water Russian Journal of Applied Chemistry 92(2) 288-94
[85] Rachkova N G and Shuktomova I I 2010 Sorption of uranium, radium, and thorium by analcym-containing rock and sorbents based on plant tissue Russian Journal of Applied Chemistry 83(4) 620-4
[86] Zaporozhskikh T A, Tret'yakova Ya K, Grabeln'nykh V A, Russavskaya N V, Vshytsev V Yu, Levanova E P, Sukhomazova E N, Korabel I V and Korchevin N A 2008 Granulated sulfur-containing sorbents for recovery of heavy metal ions from aqueous solutions Russian Journal of Applied Chemistry 81(5) 886-8
[87] Fomenko A I and Sokolov L I 2019 Sorption properties of fly ash microspheres of thermal power plants Ecology and Industry of Russia 23(1) 50-4
[88] Smirnov V G, Dyrin V V, Manakov A Y, Fedorova N I, Shikina N V and Ismagilov Z R 2019 Physicochemical and sorption properties of natural coal samples with various degrees of metamorphism Russian Journal of Applied Chemistry 92(10) 1410-21
[89] Fomenko A I and Sokolov L I 2017 Ash of incineration plants as industrial resource for extracting rare earth elements Ecology and Industry of Russia 21(12) 28-31
[90] Fomenko A I and Sokolov L I 2015 A study of sorption of phosphate ions from aqueous solutions by wood ash Russian Journal of Applied Chemistry 88(4) 652-6
[91] Dremicheva E S 2017 Studying the sorption kinetics on peat ions of iron(III) and copper(II) from wastewater Moscow University Chemistry Bulletin 72(4) 196-9
[92] Nikolaeva L A and Khamitova E G 2019 The use of energy industry waste as sorption material in the purification of reverse osmosis concentrate Chemical and Petroleum Engineering 55(5-6) 427-32
[93] Dmitriev A, Madyshiev I and Dmitrieva O 2018 Cleaning of industrial gases from aerosol particles in apparatus with jet-film interaction of phases Ecology and Industry of Russia 22(6) 10-4
[94] Golovanchikov A and Merentsov N 2019 Modelling of absorption process in a column with diffused flow structure in liquid phase Advances in Intelligent Systems and Computing 983 635-44
[95] Merentsov N, Persidskiy A, Lebedev V, Topilin M and Golovanchikov A 2019 Modelling and calculation of industrial absorber equipped with adjustable sectioned mass exchange packing Advances in Intelligent Systems and Computing 983 560-73
[96] Farakhov M I, Laptev A G and Basharov M M 2016 Import substitution of industrial devices for gas purification from the disperse phase in petrochemical industry Chemical and Petroleum Engineering 52(5-6) 316-9
[97] Madyshiev I N, Dmitrieva O S and Dmitrieva A V 2017 Purification of gas emissions from thermal power plants by means of apparatus with Jet-Bubbling contact devices MATEC Web of Conf. 91 01019
[98] Laptev A G, Basharov M M and Lapteva E A 2017 Separation and energy efficiency of packed apparatuses for purifying gases from aerosols Theoretical Foundations of Chemical Engineering 51(5) 639-46
[99] Golovanchikov A B, Merentsov N A and Topilin M V 2019 Modeling of adsorption process in continuous counter current column having diffused flow structure in gaseous phase Journal of Physics: Conference Series 1278 012023
[100] Nikolaeva L A, Zainullina É R and Al'-Okbi A K 2019 Adsorption drying of natural gas by carbonate sludge Chemical and Petroleum Engineering 54(11-12) 919-25
[101] Nikolaeva L A and Khusnutdinov A N 2018 A Study of the absorption of nitrogen oxides from the boiler flue gases Thermal Engineering 65(8) 575-9
[102] Nikolaeva L A and Khusnutdinov A N 2018 Purification of gas emissions of chemical industry enterprises by carbonaceous cutting Ecology and Industry of Russia 22(8) 14-8
[103] Nikolaeva L A 2013 Research of sorption processes using chemical water purification sludge for nitrogen and sulfur oxides contained in smoke gases emitted from a thermal power station Thermal Engineering 60(4) 244-7
[104] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2019 The use of industrial wastes from machine-building enterprises as packing materials for small-sized absorbers for gas emissions purification MATEC Web of Conferences 298 00031
[105] Dmitriev A, Madyshev I and Dmitrieva O 2018 Cleaning of industrial gases from aerosol particles in apparatus with jet-film interaction of phases Ecology and Industry of Russia 22(6) 10-4
[106] Dmitrieva O S, Nguyen V L, Yakimov N D and Sheshukov E G 2019 Evaluation of the efficiency of rectangular separators to collect the particles from the gas flows IOP Conference Series: Earth and Environmental Science 337(1) 012057
[107] Zinurov V E, Popkova O S and Nguyen V L 2019 Separator design optimization for collecting the finely dispersed particles from the gas flows E3S Web of Conferences 126 00043
[108] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency MATEC Web of Conferences 224 02073
[109] Dmitriev A V, Zinurov V E and Dmitrieva O S 2018 Intensification of gas flow purification from finely dispersed particles by means of rectangular separator IOP Conference Series: Materials Science and Engineering 451(1) 012211
[110] Dmitriev A V, Zinurov V E and Dmitrieva O S 2019 Collecting of finely dispersed particles by means of a separator with the arc-shaped elements E3S Web of Conferences 126 00007
[111] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Calibration of technological parameters of an electroadsorption apparatus with a fixed layer of adsorbent Journal of Physics: Conference Series 1679(5) 052020
[112] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Control of operating modes of an electroadsorption apparatus with a fixed layer of adsorbent Journal of Physics: Conference Series 1679(5) 052096
[113] Merentsov N A, Golovanchikov A B, Topilin M V, Persidskiy A V and Tezikov D A 2019 Mass transfer apparatus for a wide range of environmental processes Journal of Physics: Conf. Series 1399 055028
[114] Merentsov N A, Persidskiy A V, Topilin M V and Golovanchikov A B 2020 Designs of electroadsorption mass transfer apparatuses Journal of Physics: Conference Series 1679(5) 052021
[115] Merentsov N A, Golovanchikov A B, Persidskiy A V and Lebedev V N 2020 Modeling of control processes in environmental mass transfer equipment (Volgograd: Volgograd State Technical University Press) p 188
[116] Golovanchikov A B, Merentsov N A, Topilin M V and PersidskiyA V 2019 Dynamic packing for heat and mass exchange processes IOP Conf. Ser.: Earth and Environmental Science 288 012089
[117] Merentsov N, Persidskiy A, LebedevV and Golovanchikov A 2020 Automatic control of operating modes of packed apparatus for selective gas emissions cleaning Ecology and Industry of Russia 24(2) 10-6
[118] Merentsov N A, Lebedev V N, Persidskiy A V and Golovanchikov A B 2020 Automatic control system for operation modes and calibration of technological parameters of evaporation cooling apparatuses Journal of Physics: Conference Series 1515 022004
[119] Merentsov N A, Persidskiy A V, Groshev V V, Kozlovtev V A and Golovanchikov A B 2019 Self-organization of processes in gas and liquid-phase catalytic reactors Journal of Physics: Conference Series 1399 044041
[120] Merentsov N, Persidskiy A and Topilin M 2019 Description of the process and packing materials
for pulse liquid extraction *Materials Today: Proceedings* 19(5) 1908-12

[121] Merentsov N, Persidskiy A and Lebedev V 2019 Automatic parameter adjustment system for packing materials and control of flow modes in mass exchange columns *Materials Today: Proceedings* 19(5) 1899-903

[122] Merentsov N, Persidskiy A, Topilin M and Golovanchikov A 2019 Sectional automatic adjustment of catalyst layers in gas and liquid phase reactors *MATEC Web of Conferences* 298 00030

[123] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Elastically deformable packing materials based on the waste of metalworking machines and hydrodynamic adjustment of contact blocks in mass-exchange apparatuses *Materials Today: Proceedings* https://doi.org/10.1016/j.matpr.2020.08.144

[124] Merentsov N, Persidskiy A, Lebedev V and Golovanchikov A 2020 Calibration of technological parameters of adjustable elastically deformable blocks of packed materials in mass exchange apparatuses *Materials Today: Proceedings* https://doi.org/10.1016/j.matpr.2020.08.147