Supplement of

The role of organic acids in new particle formation from methanesulfonic acid and methylamine

Rongjie Zhang et al.

Correspondence to: Hong-Bin Xie (hbxie@dlut.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Selection of Boundary Clusters

In ACDC simulation, the boundary clusters are ones allowed to flux out the simulation box for further growth, therefore, these clusters are required to have favorable compositions for the stability. In the studied MSA-MA-ForA system, the binary (MSA)\(_z\)(MA)\(_z\) (\(z = 1\) - 3) and (MSA)\(_{z+1}\)(MA)\(_z\) (\(z = 1\) - 2) clusters have relatively lower evaporation rates than other binary MSA-MA clusters at all considered temperature conditions (238.15-298.15 K). For ForA-containing clusters, the effective evaporation rates (as described in the main manuscript) of small (MSA)\(_1\)(ForA)\(_1\) and (MSA)\(_1\)(MA)\(_1\)(ForA)\(_1\) cluster are lower than those of corresponding binary MSA-MA clusters. However, effective evaporation rates for clusters with larger size are much higher than those of corresponding binary MSA-MA clusters. Therefore, ForA-containing clusters can not be selected as the boundary clusters and only possibly stable (MSA)\(_4\)(MA)\(_3\) and (MSA)\(_4\)(MA)\(_4\) clusters are chosen as boundary clusters for ACDC simulation in this study.
Table S1. Atmospheric concentrations (molecules cm⁻³) and acid dissociation constants (pKₐ) of organic acids and MSA.

Organic Acids	Concentration (molecules cm⁻³)	pKₐ₁	pKₐ₂
ForA	(2.50 × 10⁹-3.75 × 10¹¹)⁹ⁱ⁷	3.75⁵⁶	-
AceA	(7.50 × 10⁹-4.00 × 10¹¹)⁹ⁱ⁷	4.76⁵⁶	-
GlyA	(1.00 × 10⁸-7.71 × 10⁶)²⁴	3.18⁵⁶	-
OxaA	(1.01 × 10⁹-9.61 × 10⁹)²⁴	1.25⁵⁶	3.81⁵⁶
PyrA	(9.64 × 10⁶-6.10 × 10⁷)³⁴	2.39⁵⁶	-
MalA	(5.96 × 10⁷-6.42 × 10⁸)³⁴	2.85⁵⁶	5.70⁵⁶
MaleA	(1.35 × 10⁷-1.38 × 10⁸)³⁴	1.92⁵⁶	6.23⁵⁶
SucA	(1.07 × 10⁸-9.94 × 10⁸)³⁴	4.21⁵⁶	5.64⁵⁶
GluA	(4.11 × 10⁷-2.06 × 10⁸)³⁴	4.32⁵⁶	5.42⁵⁶
AdiA	(2.13 × 10⁷-1.35 × 10⁸)³⁴	4.41⁵⁶	5.41⁵⁶
BenA	(5.47 × 10⁷-1.05 × 10⁹)⁴¹	4.20⁵⁶	-
PinA	(3.64 × 10⁷-3.19 × 10⁸)⁵⁶	4.72⁵⁶	-
MSA	(1.00 × 10⁵-1.00 × 10⁷)⁷⁷	-1.86⁸⁸	-

[1] (Khwaja, 1995); [2] (Haynes et al., 2016); [3] (Ho et al., 2007); [4] (Ho et al., 2010); [5] (Kavouras et al., 1998); [6] (Kolodziejczyk et al., 2019); [7] (Chen and Finlayson-Pitts, 2017); [8] (NIST Database, 2013).
Table S2. Calculated (effective) evaporation rates of the (MSA)$_x$(MA)$_y$(ForA)$_z$ (0 ≤ y ≤ $x+z$ ≤ 3) clusters at 238.15, 258.15, 278.15 and 298.15 K.

Clusters	(Effective) Evaporation rates (s$^{-1}$)			
	298.15 K	278.15 K	258.15 K	238.15 K
(MSA)$_1$(MA)$_1$	1.67 × 106	2.44 × 105	2.62 × 104	1.94 × 103
(MA)$_1$(ForA)$_1$	1.41 × 106	3.63 × 105	7.52 × 104	1.19 × 104
(MSA)$_2$(MA)$_1$	2.50 × 100	1.26 × 10$^{-1}$	4.01 × 10$^{-3}$	7.20 × 10$^{-5}$
(MSA)$_1$(MA)$_1$(ForA)$_1$	6.29 × 10$^{-1}$	5.59 × 10$^{-2}$	3.41 × 10$^{-3}$	1.29 × 10$^{-4}$
(MA)$_1$(ForA)$_2$	8.60 × 106	2.74 × 106	7.38 × 105	1.59 × 105
(MA)$_1$(MSA)$_3$	8.29 × 101	5.79 × 100	2.67 × 10$^{-1}$	7.31 × 10$^{-3}$
(MSA)$_2$(MA)$_1$(ForA)$_1$	2.80 × 102	3.59 × 101	3.59 × 100	2.09 × 10$^{-1}$
(MSA)$_1$(MA)$_1$(ForA)$_2$	1.37 × 102	1.40 × 101	1.00 × 100	4.61 × 10$^{-2}$
(MA)$_1$(ForA)$_3$	6.36 × 103	1.02 × 103	1.17 × 102	1.05 × 101
(MSA)$_2$(MA)$_2$	4.33 × 10$^{-1}$	2.41 × 10$^{-2}$	8.52 × 10$^{-4}$	1.72 × 10$^{-5}$
(MSA)$_1$(MA)$_2$(ForA)$_1$	4.89 × 105	9.15 × 104	1.32 × 104	1.36 × 103
(MA)$_2$(ForA)$_2$	4.09 × 107	1.43 × 107	4.21 × 106	1.01 × 106
(MSA)$_3$(MA)$_2$	7.67 × 101	4.18 × 100	1.45 × 10$^{-1}$	2.84 × 10$^{-3}$
(MSA)$_2$(MA)$_2$(ForA)$_1$	3.33 × 103	4.21 × 102	3.86 × 101	2.37 × 100
(MSA)$_1$(MA)$_2$(ForA)$_2$	1.93 × 105	3.67 × 104	5.39 × 103	5.72 × 102
(MA)$_2$(ForA)$_3$	1.40 × 107	3.50 × 106	7.04 × 105	1.78 × 105
(MSA)$_3$(MA)$_3$	9.86 × 100	5.04 × 10$^{-1}$	1.62 × 10$^{-2}$	2.90 × 10$^{-4}$
(MSA)$_2$(MA)$_3$(ForA)$_1$	3.43 × 103	5.10 × 102	5.64 × 101	4.29 × 100
(MSA)$_1$(MA)$_3$(ForA)$_2$	8.11 × 103	1.45 × 103	1.98 × 102	1.92 × 101
(MA)$_3$(ForA)$_3$	3.13 × 106	6.60 × 105	1.09 × 105	1.33 × 104
(MSA)$_2$	6.29 × 104	6.01 × 103	3.97 × 102	1.66 × 101
(MSA)$_1$(ForA)$_1$	2.08 × 103	2.91 × 102	2.99 × 101	2.10 × 100
--------	-------	-------	-------	-------
(ForA)$_2$	6.57×10^3	1.11×10^3	1.41×10^2	1.27×10^1
(MSA)$_3$	7.63×10^6	1.10×10^6	1.18×10^5	8.59×10^3
(MSA)$_2$(ForA)$_1$	3.45×10^8	1.30×10^8	4.25×10^7	1.15×10^7
(MSA)$_1$(ForA)$_2$	8.55×10^7	3.08×10^7	9.51×10^6	2.41×10^6
(ForA)$_3$	4.75×10^7	2.33×10^7	1.02×10^7	3.86×10^6
Table S3. The calculated mean concentrations of (SA)\textsubscript{i}(amine)\textsubscript{j}(OAs)\textsubscript{k} based on the mass balance equation, reported concentrations of precursors and energetic data of the (SA)\textsubscript{i}(amine)\textsubscript{j}(OAs)\textsubscript{k} clusters.*

Clusters	ΔG (kcal mol-1) (amine=MA)	Concentration (amine=MA) (molecules cm-3)	ΔG (kcal mol-1) (amine=DMA)	Concentration (amine=DMA) (molecules cm-3)
(SA)\textsubscript{i}(amine)\textsubscript{j}(ForA)\textsubscript{k}	-21.00	1.98×10^3	-22.02	1.11×10^4
(SA)\textsubscript{i}(amine)\textsubscript{j}(AceA)\textsubscript{k}	-18.21	1.92×10^1	-22.29	1.88×10^4
(SA)\textsubscript{i}(amine)\textsubscript{j}(OxaA)\textsubscript{k}	-18.91	1.63×10^0	-21.25	8.48×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(PyrA)\textsubscript{k}	-16.19	1.10×10^{-4}	-20.94	3.34×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(MalA)\textsubscript{k}	-17.63	1.24×10^{-2}	-22.12	2.43×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(MaleA)\textsubscript{k}	-22.11	5.17×10^{-2}	-26.50	8.57×10^3
(SA)\textsubscript{i}(amine)\textsubscript{j}(SucA)\textsubscript{k}	-18.00	3.63×10^{-2}	-22.33	5.44×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(GluA)\textsubscript{k}	-21.81	5.07×10^{-2}	-22.75	2.48×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(AdiA)\textsubscript{k}	-21.17	1.09×10^{-2}	-23.02	2.48×10^1
(SA)\textsubscript{i}(amine)\textsubscript{j}(BenA)\textsubscript{k}	-18.74	1.27×10^{-1}	-20.65	3.19×10^0
(SA)\textsubscript{i}(amine)\textsubscript{j}(PinA)\textsubscript{k}	-18.15	1.51×10^{-2}	-22.44	2.12×10^1

*Binding free energy (ΔG) (kcal mol-1) of (SA)\textsubscript{i}(amine)\textsubscript{j}(OAs)\textsubscript{k} was calculated by the equation: $\Delta G = \Delta G_{R1} + \Delta G_{R2}$, $R1$ presents the reaction $SA + amine \rightarrow (SA)\textsubscript{i}(amine)\textsubscript{j}$ and $R2$ for reaction $(SA)\textsubscript{i}(amine)\textsubscript{j} + OA \rightarrow (SA)\textsubscript{i}(amine)\textsubscript{j}(OA)\textsubscript{k}$. (Li et al., 2020). Concentrations of precursors are from Table S1. [amine] and [SA] were set to be 2.5×10^8 molecules cm-3 (~10ppt) and 10^7 molecules cm-3 in the calculations, respectively.
Figure S1. Lowest Gibbs free energy conformations of MaleA and (MSA)_{1}(MA)_{1}(MaleA)_{1} cluster at the ωB97X-D/6-31++G(d,p) level of theory. The red balls represent oxygen atoms, blue ones for nitrogen atoms, gray ones for carbon atoms, and white ones for hydrogen atoms.
Figure S2. Lowest Gibbs free energy conformations of the organic acid monomers at the oB97X-D/6-31++G(d,p) level of theory. The red balls represent oxygen atoms, blue ones for nitrogen atoms, gray ones for carbon atoms, and white ones for hydrogen atoms. Dashed red lines indicate hydrogen bonds.
Figure S3. Lowest Gibbs free energy conformations of ForA-containing clusters at the ωB97X-D/6-31++G(d,p) level of theory. The red balls represent oxygen atoms, blue ones for nitrogen atoms, gray ones for carbon atoms, and white ones for hydrogen atoms. Dashed red lines indicate hydrogen bonds.
Figure S4. Formation free energy (ΔG) (kcal mol⁻¹) of (MSA)ₓ(MA)ᵧ(ForA)ₓ (0 ≤ y ≤ x+² ≤ 3) clusters calculated at the DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory, at 298.15 K and 1 atm. a) without ForA monomer, b) containing 1 ForA monomer, c) containing 2 ForA monomers, and d) containing 3 ForA monomers.
Figure S5. Variation of the enhancing coefficient (R) with coagulation sink coefficient (s^{-1}) at $[\text{MA}] = 10$ ppt, $[\text{MSA}] = 10^7$ cm$^{-3}$, $[\text{ForA}] = 10^{11}$ cm$^{-3}$ and $T = 258.15$ K.
Figure S6. Main cluster formation pathways for the ternary MA-MSA-ForA system at two different [MA] (1 ppt (a) and 100 ppt (b)), $T = 258.15$ K, [MSA] = 10^7 cm$^{-3}$, and [ForA] = 10^{11} cm$^{-3}$.
Figure S7. Main cluster formation pathways for the ternary MA-MSA-ForA system at two different [MSA] (10^5 cm\(^{-3}\) (a) and 10^8 cm\(^{-3}\) (b)), \(T = 258.15\) K, [MA] = 10 ppt, and [ForA] = 10^{11} cm\(^{-3}\).
Figure S8. Main cluster formation pathways for the ternary MA-MSA-ForA system at two different coagulation sink coefficients (2×10^{-4} s$^{-1}$ (a) and 2×10^{-3} s$^{-1}$ (b)), $T = 258.15$ K, $[\text{MA}] = 10$ ppt, $[\text{MSA}] = 10^7$ cm$^{-3}$ and $[\text{ForA}] = 10^{11}$ cm$^{-3}$.
Coordinates of all optimized organic acids and clusters

ForA

	C	O	H
O	1.113654	-0.091447	0.000001
C	-0.131480	0.401285	0.000000
O	-1.133493	-0.264478	0.000000
H	1.050917	-1.058312	-0.000003
H	-0.103328	1.498008	-0.000001

AceA

	C	O	H
C	1.055277	-0.917024	0.000000
C	0.000000	0.151467	0.000000
O	0.196381	1.344113	0.000000
H	2.040634	-0.454362	0.000000
H	0.937609	-1.552060	0.881829
H	0.937609	-1.552060	-0.881829
O	-1.244280	-0.371530	0.000000
H	-1.864320	0.371157	0.000000

GlyA

	C	O	H
C	-0.746216	-0.761242	0.000000
C	0.000000	0.579543	0.000000
O	1.323966	0.459917	0.000000
O	-0.591134	1.626184	0.000000
O	-0.136040	-1.802595	0.000000
H	-1.845623	-0.691929	0.000000
H	1.548590	-0.485932	0.000000

OxaA

	C	O	H
C	0.754712	0.164430	0.000111
C	-0.754717	-0.164438	0.000075
O	-1.529126	0.902788	-0.000162
O	1.529139	-0.902775	-0.000162
H	-0.957238	1.690766	-0.000218
H	0.957292	-1.690791	-0.000228
O	1.139986	1.306770	0.000114
O	-1.140002	-1.306774	0.000127

PyrA

C	0.767813	-0.279635	0.000019
C	1.008278	-1.458435	0.000056
--------	----------	-----------	----------
O	-1.693077	0.673528	0.00008
H	1.229743	1.530264	-0.00024
C	-0.677199	0.280943	-0.00020
C	-1.793986	-0.709227	-0.00006
H	-2.751467	-0.189685	-0.00062
H	-1.706445	-1.360020	-0.87531
H	-1.706501	-1.359927	0.875377
O	-0.806993	1.488268	-0.00056

MalA

C	0.000279	-0.023685	0.959207
C	1.268432	0.033674	0.134554
C	-1.268353	-0.040237	0.133528
O	1.217344	1.013785	-0.78364
O	2.230493	-0.675810	0.292731
O	-1.219242	-0.976417	-0.82954
O	-2.228795	0.663313	0.324582
H	0.042990	-0.927835	1.570040
H	-0.041702	0.848483	1.614903
H	2.054870	1.004334	-1.26873
H	-2.056703	-0.942459	-1.31328

MaleA

C	1.558612	0.056128	-0.000185
O	1.252519	1.238358	0.000001
O	2.834226	-0.333031	-0.000138
H	3.389080	0.460593	-0.000132
C	0.639117	-1.100777	0.000085
H	1.141080	-2.062929	0.000215
C	-0.701849	-1.088279	0.000197
H	-1.197425	-2.054438	0.000419
C	-1.737644	0.013262	-0.000027
O	-2.901702	-0.317275	0.000164
O	-1.371213	1.284454	-0.000104
H	-0.392790	1.394721	-0.000298

SucA

C	1.922376	-0.101722	-0.000013
O	2.162315	-1.287411	-0.000114
---	---	---	
O	2.893452	0.830879	
H	3.740410	0.363163	
C	0.552009	0.522705	
H	0.474301	1.181835	
H	0.474291	1.181955	
C	-0.552009	-0.522705	
H	-0.474295	-1.181840	
H	-0.474297	-1.181950	
C	-1.922376	0.101722	
O	-2.162315	1.287411	
O	-2.893452	-0.830879	
H	-3.740410	-0.363163	

GluA

C	-1.017098	-0.784553
C	0.000003	-0.001322
C	1.017025	0.783436
C	1.955695	-0.085230
H	0.520544	1.479046
H	-1.641170	-1.407371
H	-0.520649	-1.479044
H	-0.528923	0.704235
O	2.767814	0.647692
C	-1.955689	0.085541
O	-2.018834	1.294254
O	-2.767800	-0.645926
H	3.346786	0.029006
H	1.641033	1.405233
H	-3.346752	-0.026404
H	0.529013	-0.708061
O	2.018882	-1.294004

AdiA

C	-0.714848	1.296432	
C	0.368757	0.254083	
C	1.721658	0.683007	
C	-2.085803	0.884131	
C	2.828058	-0.292482	
C	-2.709709	-0.253714	
O	3.987298	0.061944	
-------	-------	-------	
O	2.737188	-1.277367	-0.766851
O	-3.759099	-0.786924	-0.454469
O	-2.359810	-0.652667	1.287912
H	-0.789142	1.477289	1.037782
H	-0.437288	2.248605	-0.508065
H	0.085575	-0.704319	0.127632
H	0.457898	0.085720	-1.397387
H	1.680935	0.812101	-1.324952
H	2.027306	1.656160	-0.168100
H	-2.041397	0.602592	-1.627249
H	-2.794887	1.718849	-0.509068
H	4.647136	-0.600668	0.273555
H	-4.122959	-1.484953	0.108816

BenA

C	-0.217545	0.029809	0.000005
C	2.564772	-0.043411	-0.000003
C	0.512148	1.221527	0.000093
C	0.446946	-1.199814	-0.000084
C	1.837935	-1.232805	-0.000099
C	1.901776	1.183270	0.000097
C	-1.701749	0.119638	-0.000020
O	-2.308412	-1.084734	0.000227
H	3.260368	-0.916164	0.000068
H	-0.023426	2.164855	0.000151
H	2.467595	2.109251	0.000176
H	3.650077	-0.072706	-0.000008
H	2.354962	-2.186858	-0.000185
H	0.124149	-2.121220	-0.000149
O	-2.332883	1.153929	-0.000225

PinA

O	-2.957415	-1.438942	0.687771
O	2.978084	1.098032	-0.281856
O	3.970771	-0.643755	0.713927
C	0.592799	-0.408779	-0.835215
C	-0.331045	0.596522	-0.070653
C	-1.549224	-0.148150	-0.746416
C	-0.622947	-1.331880	-1.059223
C	-0.294853	0.416642	1.446667
C	-0.175599	2.065047	-0.441196
---------	-----------	----------	-----------
C	-2.769288	-0.385445	0.109942
C	-3.731554	0.773832	0.238571
C	1.806462	-1.024115	-0.160875
C	2.942802	-0.061164	0.063763
H	0.903679	0.053118	-1.778535
H	-1.842401	0.399583	-1.649941
H	-0.727283	-1.803877	-2.038889
H	-0.713805	-2.099959	-0.284788
H	0.668424	0.752937	1.845146
H	-1.073896	1.019517	1.926301
H	-0.454208	-0.622589	1.749833
H	-0.984324	2.665449	-0.007165
H	-0.197914	2.201169	-1.527527
H	0.779564	2.453166	-0.076692
H	-4.477755	0.563807	1.005424
H	-3.190538	1.695646	0.478498
H	-4.231681	0.939161	-0.722393
H	2.194306	-1.849644	-0.770859
H	1.550130	-1.472025	0.805652
H	4.660865	0.026797	0.814971

(MSA)\textsubscript{1}(MA)\textsubscript{1}(ForA)\textsubscript{1}

N	1.139107	1.719249	0.000203
H	0.486508	1.629418	-0.800794
H	1.706188	0.845109	-0.000211
C	1.959672	2.943036	-0.000008
H	2.588597	2.954246	-0.889954
H	1.307824	3.816561	0.000728
H	2.589943	2.953705	0.888990
S	-1.463822	-0.040312	-0.000059
O	-0.980346	-1.447880	-0.001385
O	-1.076705	0.700946	-1.230781
O	-1.075784	0.698949	1.231565
H	0.487372	1.629115	0.801811
C	-3.240262	-0.158332	0.000462
H	-3.542310	-0.697548	-0.897325
H	-3.541669	-0.699047	0.897565
H	-3.647806	0.852585	0.001463
C	2.444384	-1.853859	0.000114
	(MSA)₁(MA)₁(AceA)₁			
N	0.012601	2.096751	0.009713	
H	-0.591836	1.776897	-0.771126	
H	0.866069	1.495982	-0.025672	
C	0.318973	3.537516	0.006008	
H	0.860761	3.786724	-0.906113	
H	-0.610051	4.105987	0.048333	
H	0.936951	3.777321	0.871064	
S	-1.720226	-0.511519	-0.000902	
O	-0.714199	-1.602743	-0.091697	
O	-1.721303	0.370129	-1.200376	
O	-1.604818	0.273691	1.257816	
H	-0.525466	1.766838	0.830808	
C	-3.301652	-1.329389	0.038761	
H	-3.410536	-1.896399	-0.885719	
H	-3.318076	-1.991737	0.904241	
H	-4.075547	-0.565991	0.118333	
C	4.101790	-0.993169	0.037596	
C	2.636737	-0.655382	-0.015780	
O	2.235381	0.507387	-0.047757	
O	1.869854	-1.712373	-0.014388	
H	4.349279	-1.700141	-0.757482	
H	4.698316	-0.087285	-0.057616	
H	4.319982	-1.483504	0.990357	
H	0.881155	-1.523843	-0.041254	

(MSA)₁(MA)₁(GlyA)₁

	(MSA)₁(MA)₁(GlyA)₁				
N	0.335474	2.165995	0.007774		
H	0.912236	1.807009	-0.776533		
H	0.855186	1.801867	0.826247		
C	0.115221	3.623520	0.005352		
H	1.077229	4.133908	0.044203		
H	-0.414474	3.904787	-0.904332		
H	-0.483310	3.898720	0.873379		
S	1.942431	-0.557970	-0.000876		
---	---	---	---	---	---
O	0.953178	-1.671244	-0.073122		
O	1.821887	0.235698	1.250357		
O	1.920191	0.307981	-1.209471		
H	-0.544569	1.615340	-0.022892		
C	3.530032	-1.361419	0.036114		
H	3.636449	-1.939021	-0.882014		
H	4.297457	-0.590094	0.099713		
H	3.559183	-2.012153	0.909971		
C	-3.788756	-0.956059	0.019572		
C	-2.284178	-0.627856	-0.013448		
O	-1.577460	-1.716648	-0.005364		
O	-1.887697	0.525984	-0.042288		
O	-4.625754	-0.094686	0.015911		
H	-4.028954	-2.034279	0.047411		
H	-0.562322	-1.586325	-0.029277		

(MSA)₁(MA)₁(OxaA)₁

| | | | | |
|---|---|---|---|
| C | -2.029621 | -0.359488 | -0.077176 |
| C | -3.570145 | -0.501405 | 0.040959 |
| O | -4.185530 | 0.678117 | -0.063029 |
| O | -1.397919 | -1.468410 | -0.016511 |
| H | -3.499967 | 1.354353 | -0.192477 |
| H | -0.372953 | -1.416629 | -0.124422 |
| O | -1.570243 | 0.779183 | -0.215126 |
| O | -4.135086 | -1.542727 | 0.207837 |
| N | 0.842192 | 2.170479 | 0.059739 |
| H | 1.231980 | 1.738706 | 0.914932 |
| H | -0.074556 | 1.706571 | -0.084393 |
| C | 0.755770 | 3.641962 | 0.088891 |
| H | 0.097633 | 3.950481 | 0.900879 |
| H | 1.750283 | 4.059339 | 0.243841 |
| H | 0.354773 | 3.997223 | -0.860076 |
| S | 2.184088 | -0.664715 | -0.009839 |
| O | 1.083356 | -1.619610 | -0.332454 |
| O | 1.982736 | 0.011860 | 1.297072 |
| O | 2.427034 | 0.312121 | -1.106161 |
| H | 1.474695 | 1.779601 | -0.670352 |
| C | 3.644168 | -1.671695 | 0.116891 |
| H | 3.795249 | -2.164971 | -0.843079 |
| H | 4.484026 | -1.019399 | 0.355929 |
	(MSA)$_1$(MA)$_1$(PyrA)$_1$			
	C	-2.039879	-0.128253	0.013331
	C	-3.594756	-0.149546	0.018471
	C	-4.271478	-1.484849	-0.112197
	O	-4.178928	0.900938	0.123406
	O	-1.437686	0.932702	0.014151
	O	-1.523819	-1.322260	0.008699
	H	-3.960853	-1.972889	-1.041037
	H	-5.352134	-1.343435	-0.099715
	H	-3.961729	-2.145296	0.702939
	H	-0.504363	-1.353111	0.011191
	N	1.011649	2.191511	-0.012881
	H	1.497493	1.769085	0.798201
	H	0.052943	1.791482	0.003023
	C	1.032059	3.664380	-0.057588
	H	0.532043	4.058857	0.826476
	H	2.064836	4.011651	-0.082294
	H	0.508814	4.003427	-0.951170
	S	2.149817	-0.758273	0.008386
	O	0.992094	-1.696359	0.016915
	O	2.220425	0.080067	1.233782
	O	2.211587	0.065163	-1.229101
	H	1.489642	1.720358	-0.804401
	C	3.589933	-1.805067	0.008555
	H	3.562231	-2.417184	0.910056
	H	3.555591	-2.428280	-0.885048
	H	4.472206	-1.164891	0.001516

	(MSA)$_1$(MA)$_1$(MalA)$_1$			
	C	-2.970744	-1.368828	-0.263544
	C	-3.949160	-0.227602	-0.140017
	C	-1.546277	-0.915908	0.003575
	O	-4.389693	-0.078006	1.120860
	O	-4.310334	0.477609	-1.050989
	O	-0.699751	-1.898538	-0.081194
	O	-1.275792	0.253065	0.258422
	H	-3.214341	-2.173063	0.434831
	H	-3.015803	-1.767492	-1.279453
---	---	---	---	
H	-4.986029	0.683801	1.129336	
H	0.269143	-1.645164	0.097120	
N	0.746601	2.090902	-0.016726	
H	-0.034449	1.420935	0.142403	
H	1.203209	1.765959	-0.884467	
C	0.303849	3.496552	-0.033007	
H	-0.440093	3.630367	-0.818044	
H	-0.140267	3.741090	0.931486	
H	1.159375	4.145503	-0.218968	
S	2.665388	-0.395826	0.022741	
O	2.297338	0.212720	-1.282387	
O	1.785008	-1.541925	0.386346	
O	2.752714	0.623808	1.103221	
H	1.467775	1.863363	0.696918	
C	4.292424	-1.095742	-0.156930	
H	4.981105	-0.292967	-0.420042	
H	4.570488	-1.550193	0.793908	
H	4.250995	-1.845925	-0.946509	

(MSA)$_1$(MA)$_1$(MaleA)$_1$

N	0.826939	2.546133	-0.478341
H	1.242735	3.455997	-0.293528
H	0.221895	2.283963	0.326471
C	0.007315	2.545871	-1.714960
H	-0.778981	3.295295	-1.629736
H	0.648469	2.755088	-2.570869
H	-0.440945	1.557239	-1.815716
S	2.129851	-0.562199	0.081139
O	1.294486	-1.543776	-0.639644
O	1.498094	-0.026096	1.324520
O	2.592906	0.566354	-0.783348
H	1.596696	1.820804	-0.558817
C	3.595277	-1.430562	0.593774
H	3.286171	-2.255722	1.235451
H	4.093658	-1.803391	-0.300924
H	4.234286	-0.734395	1.136567
C	-3.107920	0.367122	0.813536
C	-3.346967	-0.535774	-0.140096
C	-1.721505	0.719902	1.246934
C	-2.268039	-1.325904	-0.809727
---	---	---	---
	-1.059731	-0.279882	1.767623
O	-1.286160	1.859633	1.106437
O	-1.166517	-0.599050	-1.031739
O	-2.400034	-2.489414	-1.106403
H	-3.917732	0.918222	1.281692
H	-4.362262	-0.782991	-0.431515
H	-0.070682	-0.126856	1.735890
H	-0.352821	-1.157090	-1.101136

(MSA)$_1$(MA)$_1$(SucA)$_1$

N	1.494872	2.100632	0.033998
H	1.990533	1.748692	0.871889
H	0.641504	1.507389	-0.051655
C	1.200801	3.544060	0.045673
H	0.543242	3.772804	0.884142
H	2.131673	4.102096	0.145034
H	0.706984	3.816969	-0.886629
S	3.209223	-0.518273	0.005963
O	2.208576	-1.600972	-0.188092
O	3.025200	0.210740	1.289764
O	3.275119	0.416248	-1.151745
H	2.134523	1.790620	-0.724229
C	4.785707	-1.341111	0.092105
H	4.942216	-1.866774	-0.849806
H	5.554557	-0.583882	0.245693
H	4.756999	-2.041537	0.926661
C	-4.954837	-0.138784	0.033940
O	-5.409715	-1.249211	0.181119
O	-5.738268	0.955719	-0.045023
H	-6.654845	0.656311	0.035067
C	-3.495555	0.214835	-0.082144
H	-3.350303	0.749708	-1.026222
H	-3.256668	0.938362	0.703501
C	-2.596095	-1.007465	0.002723
H	-2.763394	-1.553628	0.936658
H	-2.819354	-1.723628	-0.793356
C	-1.128263	-0.661299	-0.069421
O	-0.364183	-1.717073	-0.062314
H	0.626570	-1.531362	-0.104486
O	-0.730037	0.502597	-0.121573
(MSA)$_1$(MA)$_1$(GluA)$_1$

Atom	x	y	z
C	1.987775	-1.073292	1.309092
C	3.004035	-1.531008	0.257885
C	2.808115	-0.897877	-1.135634
C	1.354154	-0.740581	-1.502142
H	3.256150	0.095611	-1.169739
H	2.287361	-1.444426	2.296655
H	1.004745	-1.508121	1.106070
H	4.019518	-1.298248	0.588913
O	0.666342	-1.861175	-1.489992
C	1.858519	0.431567	1.437965
O	2.758879	1.215534	1.234142
O	0.652227	0.888992	1.813660
H	-0.311743	-1.660563	-1.492855
H	3.294323	-1.524121	-1.890623
H	-0.066251	0.204966	1.721548
H	2.921945	-2.618567	0.180445
O	0.844799	0.348553	-1.747252
N	-0.238999	2.430624	-0.363505
H	0.204694	2.410088	0.561304
H	-1.148590	1.909112	-0.263921
C	-0.409991	3.787649	-0.915732
H	-1.043017	4.372720	-0.249076
H	0.563739	4.266587	-1.016738
H	-0.885563	3.709446	-1.892858
S	-2.234065	-0.568863	0.148922
O	-1.905350	-1.320825	-1.084085
O	-2.445555	0.888247	-0.079897
O	-1.265505	-0.822881	1.255077
H	0.337999	1.820805	-0.970289
C	-3.799106	-1.203606	0.712641
H	-4.535400	-1.031623	-0.072465
H	-3.677448	-2.270048	0.902030
H	-4.072148	-0.674858	1.625710

(MSA)$_1$(MA)$_1$(AdiA)$_1$

Atom	x	y	z
N	-0.638022	-1.579531	0.795203
H	-0.370559	-0.599384	1.015831
H	-0.914074	-1.555377	-0.202230
---	---	---	
C	0.416431	-2.558542	1.123315
H	1.323171	-2.315888	0.566979
H	0.618179	-2.517349	2.193802
H	0.074018	-3.557965	0.854872
S	-3.381550	-0.403244	-0.229968
O	-2.347749	-0.835457	-1.210784
O	-3.323175	1.059165	0.046595
O	-3.351162	-1.230356	1.004949
H	-1.550856	-1.733047	1.260241
C	-4.969269	-0.679438	-0.989395
H	-5.012754	-0.091079	-1.905936
H	-5.062177	-1.743609	-1.206225
H	-5.738622	-0.358590	-0.287021
C	2.465321	2.242176	0.398265
C	2.771820	0.950255	-0.360326
C	4.090615	0.316554	0.082459
C	1.141203	2.878824	-0.016166
C	4.245850	-1.101580	-0.403458
C	-0.070564	2.034621	0.318288
O	5.515782	-1.408430	-0.715290
O	3.351023	-1.916628	-0.488337
O	-1.156477	2.438342	-0.281866
O	-0.011947	1.078195	1.089742
H	2.439017	2.030999	1.473317
H	3.269132	2.969689	0.23270
H	1.966113	0.231136	-0.194499
H	2.806100	1.148210	-1.438863
H	4.124260	0.262617	1.179204
H	4.956251	0.905656	-0.231122
H	1.114693	3.092496	-1.08998
H	1.002123	3.843421	0.486015
H	5.531443	-2.338703	-0.983037
H	-1.963298	1.859518	-0.089514

(MSA)_1(MA)_1(BenA)_1

C	-2.737301	-0.175483	-0.040216
C	-5.518865	-0.251643	0.079604
C	-3.398304	-1.402730	0.059051
C	-3.471830	1.012022	-0.081161
C	-4.860565	0.973264	-0.022199
---	-----	-----	-----
C	-4.787775	-1.437747	0.119724
C	-1.248412	-0.106555	-0.099152
O	-0.663168	-1.272520	-0.066539
H	0.343569	-1.251323	-0.117337
H	-2.819803	-2.318906	0.089095
H	-5.300023	-2.391017	0.199640
H	-6.603083	-0.281898	0.128405
H	-5.429460	1.896959	-0.054761
H	-2.942386	1.955235	-0.160581
O	-0.659595	0.974543	-0.169343
N	1.805096	2.122724	0.051858
H	0.865978	1.677242	-0.057673
H	2.398826	1.733750	-0.705978
C	1.737484	3.593299	0.096416
H	1.304442	3.961216	-0.833510
H	1.109330	3.899206	0.932893
H	2.740165	4.002191	0.220965
S	3.068905	-0.732954	0.001651
O	3.009699	-0.004974	1.297530
O	3.319414	0.191408	-1.138224
O	1.884632	-1.606296	-0.219163
H	2.226369	1.681048	0.887694
C	4.462348	-1.838664	0.081289
H	4.292191	-2.538620	0.899368
H	4.528914	-2.364799	-0.870939
H	5.358262	-1.243955	0.259079

(MSA)\(_1\)(MA)\(_1\)(PinA)\(_1\)

O	1.786498	2.417461	-0.196248
O	-0.337581	-0.984749	-1.727560
O	-0.757591	-2.526650	-0.152798
C	2.550771	-1.476936	-0.758573
C	2.676646	-0.761986	0.627381
C	3.212405	0.492830	-0.177496
C	2.626858	-0.107092	-1.464632
C	1.349413	-0.498457	1.337125
C	3.671861	-1.391646	1.594050
C	2.746071	1.840652	0.296299
C	3.501067	2.450261	1.449065
C	1.425228	-2.474436	-1.057273
---	---	---	---
C	0.018422	-1.915863	-1.010054
H	3.490692	-2.014714	-0.932928
H	4.308606	0.477550	-0.170773
H	3.241641	-0.043480	-2.365370
H	1.638986	0.295421	-1.684256
H	0.910115	-1.433772	1.694026
H	1.499077	0.147064	2.209825
H	0.602946	-0.014344	0.704104
H	3.836640	-0.752146	2.469008
H	4.640377	-1.568329	1.114355
H	3.291423	-2.352842	1.957637
H	2.980425	3.330658	1.825761
H	3.625181	1.711826	2.248270
H	4.506603	2.731234	1.116579
H	1.493354	-3.323427	-0.372042
H	1.573279	-2.854750	-2.074575
H	-1.666254	-2.089719	-0.061947
N	-0.848775	1.676494	-1.075077
H	-0.802422	0.759745	-1.547754
H	0.116358	1.980936	-0.885801
C	-1.623698	2.669993	-1.848020
H	-2.637977	2.286637	-1.955445
H	-1.637758	3.611879	-1.299647
H	-1.156691	2.817511	-2.822125
S	-3.272873	-0.032308	0.525282
O	-3.069503	-1.495118	0.335564
O	-3.762396	0.670226	-0.673591
O	-2.057775	0.629195	1.102517
H	-1.313403	1.446686	-0.158484
C	-4.538961	0.100984	1.774993
H	-4.184046	-0.395208	2.678227
H	-4.722085	1.159589	1.959746
H	-5.437375	-0.385278	1.394376

185 \[(MSA)_{1}(ForA)_{1}\]

O	-2.448986	-1.114963	-0.089408											
C	-2.844299	0.128536	-0.011037											
O	-2.129012	1.118969	-0.031538											
H	-1.460991	-1.173114	-0.167857											
H	-3.932726	0.208240	0.081094											
	S													
--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
	1.120729	-0.078290	0.141887											
	0.223553	-1.138499	-0.346948											
	1.512126	-0.108908	1.534837											
	0.483250	1.319765	-0.244940											
	-0.516596	1.275754	-0.157511											
	2.253160	-0.048775	-0.886128											
	3.171590	0.025663	-1.926914											
	3.100346	0.807412	-0.590274											
(ForA)2														
	-1.504618	1.073962	0.000318											
	-1.892188	-0.174674	-0.000201											
	-1.161047	-1.153849	-0.000050											
	-0.507891	1.133231	0.000551											
	-2.983856	-0.269172	-0.000957											
	1.504743	-1.073998	0.000229											
	1.892138	0.174729	-0.000141											
	1.160942	1.153864	-0.000185											
	0.508093	-1.133529	0.000329											
	2.983792	0.269309	-0.000367											
(MSA)2(ForA)1														
	2.417544	2.281834	0.392595											
	3.598876	1.939107	-0.094857											
	3.970700	0.805600	-0.304406											
	1.881667	1.474448	0.551995											
	4.214343	2.826174	-0.290655											
	0.929319	-1.180519	-0.056028											
	0.806263	0.027431	0.799752											
	0.717687	-0.963717	-1.474909											
	-0.061008	-2.271778	0.512793											
	-0.991245	-1.908411	0.468199											
	2.477708	-1.962130	0.263691											
	3.242057	-1.245543	-0.047173											
	2.540223	-2.167339	1.332012											
	2.512974	-2.878923	-0.324626											
	-2.669919	0.408188	0.063389											
	-3.985475	0.899634	0.382273											
	-2.362741	-1.008709	0.309859											
	(ForA) 1	(MSA) 1(ForA) 2	(ForA) 3											
------	-----------------	-----------------	-----------------											
O	-1.623882	2.009645	1.494300											
H	-0.741115	0.851918	0.370404											
C	-2.277379	0.760806	-0.190712											
H	-2.979128	0.191689	1.803269											
H	-2.406286	1.831312	-0.028606											
H	-1.251833	0.441772	2.072314											
O	-2.167278	2.009645	-0.255435											
C	-3.251696	1.311354	0.576732											
O	-3.315268	0.097434	-0.075134											
H	-1.368288	1.426349	0.370404											
H	-4.141703	1.945336	-0.190712											
O	2.201918	1.995349	1.074187											
C	3.325364	1.305704	0.994165											
O	3.407275	0.129844	0.781166											
H	1.434672	1.405437	2.072314											
H	4.196137	1.941745	-0.023057											
S	-0.023057	-1.038931	-0.255435											
O	0.251829	-1.237600	-0.075134											
O	-0.007138	0.368787	0.370404											
O	-1.411959	-1.655654	-0.190712											
H	-2.161710	-1.005299	1.803269											
C	1.074187	-1.993573	0.190712											
H	0.994165	-3.032543	0.994165											
H	0.781166	-1.870608	-0.007138											
H	2.072314	-1.587082	-1.411959											

31
C	2.003502	-1.528732	-0.267494
O	2.369625	-0.506795	0.286601
H	0.089389	-1.376505	0.000946
H	2.719069	-2.233041	-0.708078

(MA)₁(ForA)₁

O	-1.041581	1.072200	-0.260310
C	-1.720066	-0.047383	-0.104249
O	-1.269971	-1.098545	0.303906
H	-0.078507	0.924644	0.031216
H	-2.773729	0.079923	-0.393205
C	1.960328	-0.489186	-0.470096
H	1.198805	-1.261636	-0.597434
H	2.103094	0.013754	-1.429476
H	2.904487	-0.963482	-0.178060
N	1.464421	0.483663	0.512910
H	1.305642	0.024882	1.405397
H	2.140108	1.225058	0.668498

(MSA)₁(MA)₁(ForA)₁

N	1.139107	1.719249	0.000203	
H	0.486508	1.629418	-0.800794	
H	1.706188	0.845109	-0.000211	
C	1.959672	2.943036	-0.000008	
H	2.588597	2.954246	-0.889954	
H	1.307824	3.816561	0.000728	
H	2.589943	2.953705	0.888990	
S	-1.463822	-0.040312	-0.000059	
O	-0.980346	-1.447880	-0.001385	
O	-1.076705	0.700946	-1.230781	
O	-1.075784	0.698949	1.231565	
H	0.487372	1.629115	0.801811	
C	-3.240262	-0.158332	0.000462	
H	-3.542310	-0.697548	-0.897325	
H	-3.541669	-0.699047	0.897565	
H	-3.647806	0.852585	0.001463	
C	2.444384	-1.853859	0.000114	
O	2.567125	-0.634695	-0.000331	
O	1.342657	-2.537361	0.000139	
H	0.488288	-1.990810	-0.000355	
-----	---------	---------	---------	---------
H	3.326128	-2.507817	0.000549	

(MA)\(_{2}\)\(\text{ForA}\)_2

O	2.344383	-0.409782	-0.577745
C	1.792691	-1.460996	-0.061939
O	0.661091	-1.536071	0.406872
H	1.691821	0.446013	-0.550236
H	2.455644	-2.337978	-0.066013
C	0.667152	1.959870	1.000051
H	0.374316	1.058503	1.543716
H	1.633105	2.292291	1.387360
H	-0.079805	2.738792	1.183687
N	0.795622	1.620014	-0.424299
H	-0.121113	1.333174	-0.777254
H	1.097722	2.426103	-0.963008
O	-1.977248	-1.202386	0.467315
C	-2.539979	-0.195840	-0.160643
O	-1.967930	0.688830	-0.767087
H	-0.989060	-1.199166	0.385133
H	-3.633533	-0.240756	-0.072942

(MSA)\(_{2}\)(MA)\(_{1}\)(ForA)\(_{1}\)

N	-0.766017	-1.566752	1.395612	
H	0.205458	-1.422704	1.064663	
H	-1.344665	-1.842814	0.580712	
C	-0.828417	-2.567973	2.478924	
H	-0.230547	-2.221514	3.321418	
H	-1.864935	-2.698669	2.788711	
H	-0.431771	-3.514810	2.113648	
S	-0.915813	1.705066	0.453357	
O	-0.736495	0.650229	-0.635900	
O	0.340726	2.407927	0.708258	
O	-1.569173	1.088762	1.630080	
H	-1.111631	-0.630683	1.686295	
C	-2.075651	2.873470	-0.226874	
H	-2.247658	3.642425	0.526707	
H	-1.632470	3.305659	-1.124106	
H	-3.003289	2.350752	-0.461470	
S	2.634304	-0.433375	-0.400034	
O	3.691847	-1.186866	-1.034516	
---	--------	--------	--------	
O	1.870324	-1.071560	0.683126	
O	1.629629	0.017961	-1.535746	
H	0.741670	0.311774	-1.166490	
C	3.270444	1.100929	0.227433	
H	3.970579	0.853286	1.026090	
H	3.781888	1.605808	-0.592194	
H	2.428936	1.691072	0.597420	
O	-2.693975	-0.469040	-1.969969	
C	-3.004545	-1.683834	-1.598431	
O	-2.510086	-2.307198	-0.673343	
H	-1.954862	-0.075547	-1.417360	
H	-3.793791	-2.111115	-2.228720	

(MSA)₁(MA)₁(ForA)₂

O	-1.937706	-2.095459	-0.485490
C	-2.828882	-1.580784	-1.144684
O	-3.145612	-0.318979	-1.188827
H	-0.437131	-1.739822	0.350879
H	-3.479483	-2.182684	-1.792085
C	0.604343	-2.815486	1.809567
H	-0.228228	-2.849005	2.511819
H	0.622835	-3.731607	1.219890
H	1.543265	-2.710197	2.352620
N	0.433975	-1.659283	0.908265
H	0.373456	-0.755268	1.419034
H	1.236090	-1.560767	0.257883
O	2.817039	-1.394421	-0.531744
C	3.354724	-0.436035	-1.065912
O	2.807620	0.718481	1.328823
H	-2.577258	0.261921	-0.597558
H	4.403924	-0.471486	-1.385669
S	-0.383733	1.504220	0.438873
O	0.182069	0.986943	1.708331
O	-1.855876	1.359165	0.343182
O	0.292107	0.900478	-0.750571
H	1.836369	0.763290	-1.059383
C	-0.048538	3.252136	0.403923
H	1.030479	3.395204	0.466910
H	-0.441971	3.653120	-0.530192
H	-0.547451	3.706104	1.260206
(MA)$_1$(ForA)$_3$

O	2.772514	1.159237	-0.704914
C	3.572652	0.244271	-0.596538
O	3.330212	-0.957811	-0.142699
H	0.829259	1.578080	-0.511463
H	4.626666	0.360077	-0.883268
C	0.117331	2.108354	1.365425
H	1.102425	2.002805	1.819706
H	-0.076070	3.157002	1.139378
H	-0.643890	1.735921	2.050746
N	0.075648	1.307651	0.126922
H	0.282716	0.283089	0.333546
H	-0.857550	1.351651	-0.316645
O	0.837081	-1.189749	0.504283
C	-0.004306	-2.132836	0.340378
O	-1.230758	-2.003902	0.216216
H	2.362165	-1.089682	0.121301
H	0.413838	-3.154252	0.311782
O	-3.431300	-0.745869	-0.191452
C	-3.515008	0.507239	-0.529041
O	-2.595537	1.305881	-0.642627
H	-2.495716	-1.087947	-0.031548
H	-4.555099	0.805231	-0.713791

(MSA)$_1$(MA)$_2$(ForA)$_1$

N	0.519734	-2.417492	-0.193626
H	0.704203	-3.252702	-0.744707
H	-0.350176	-1.960159	-0.559539
C	0.336804	-2.741442	1.239389
H	-0.442371	-3.496285	1.349125
H	1.279882	-3.103437	1.649001
H	0.024342	-1.826759	1.743079
N	0.856499	1.873940	0.183974
H	1.372188	-1.785249	-0.310495
H	0.314145	1.293969	0.843009
C	1.087409	3.236232	0.697957
H	1.643905	3.807396	-0.044907
H	0.132990	3.722843	0.902287
H	1.677069	3.175627	1.612587
S	-1.934423	0.108252	-0.219600
	36	36	36
-----	------	------	------
	0.749677	1.172968	0.638352
	0.016239	2.187268	0.345592
	-1.193319	2.156605	0.105924
	0.030051	-0.221604	0.413850
	0.545838	3.158563	0.317561
	-0.525136	-2.090318	1.234002
	0.420364	-2.234119	1.757578
	-1.250865	-1.645300	1.915527
	-0.898814	-3.053251	0.882924
	-0.316652	-1.180986	0.095181
	0.442851	-1.507081	-0.510835
	-1.208281	-0.995194	-0.437886
	3.168812	0.678429	-0.007132
	3.291903	-0.505702	-0.541103
	2.405147	-1.324499	-0.730944
	2.209024	0.909915	0.258635
	4.334790	-0.714158	-0.819106
	-3.904560	-0.421375	-0.202752
	-4.708245	0.305984	-0.372748
	-4.285387	-1.419638	-0.436868
	-3.656086	-0.396137	0.861955
	-2.693142	-0.150221	-0.980941
	-2.907260	-0.123613	-1.972479
	-2.312640	0.766808	-0.721829
----	-------	-------	-------
N	0.120939	2.264367	-0.332194
H	-0.795890	1.882291	-0.662722
H	0.883974	1.742386	-0.809971
C	0.214150	3.714348	-0.592016
H	-0.598983	4.222593	-0.074105
H	1.172336	4.086653	-0.229810
H	0.130956	3.889371	-1.664283
N	-0.295226	-2.301939	-0.044039
H	-0.522313	-1.698812	0.757229
H	0.654582	-2.026781	-0.382454
C	-0.342230	-3.731111	0.318771
H	-1.339720	-3.977024	0.682649
H	-0.113477	-4.328775	-0.563130
H	0.396798	-3.927946	1.095143
S	-2.684454	-0.041064	-0.577925
O	-2.304215	1.272738	-1.160322
O	-2.124226	-0.240182	0.783796
O	-2.374457	-1.192619	-1.468730
H	-1.011537	-2.044601	-0.757985
C	-4.459522	0.001469	-0.416729
H	-4.720878	0.830000	0.241759
H	-4.886291	0.147679	-1.409104
H	-4.787485	-0.947519	0.007730
S	2.719871	-0.199176	-0.516669
O	2.255091	-1.591071	-0.749872
O	2.490960	0.244564	0.890023
O	2.176439	0.775954	-1.492063
H	0.187900	2.064105	0.680086
C	4.484781	-0.226429	-0.746216
H	4.684142	-0.533255	-1.772982
H	4.866836	0.777407	-0.561133
H	4.907417	-0.939098	-0.038106
O	0.468593	-0.511568	2.353959
C	-0.298516	0.497711	2.721560
O	-0.109110	1.664501	2.435144
H	1.258742	-0.191305	1.820520
H	-1.138343	0.164997	3.340124
\[(\text{MSA})_1(\text{MA})_2(\text{ForA})_2\]

O	2.147051	1.112107	-0.039581
C	2.029713	2.375363	-0.121190
O	0.971141	3.024824	-0.059839
H	1.130973	-0.320090	0.169522
H	2.968676	2.942151	-0.259357
C	0.876120	-1.608120	1.782720
H	1.721980	-1.162701	2.306680
H	-0.064468	-1.173913	2.121436
H	0.865095	-2.685613	1.945778
N	1.014038	-1.339189	0.334676
H	1.887534	-1.750291	-0.030396
H	0.172492	-1.682915	-0.175432
O	4.505196	0.178499	-0.377790
C	4.606199	-1.120798	-0.412470
O	3.699131	-1.929699	-0.282552
H	3.547401	0.515979	-0.237249
H	5.642716	-1.444473	-0.576374
C	-2.321654	3.372246	0.393561
H	-2.191018	4.104843	-0.402533
H	-3.376339	3.113468	0.490280
H	-1.954840	3.794158	1.329037
N	-1.539421	2.163784	0.072390
H	-1.868326	1.700048	-0.788611
H	-0.505536	2.397734	-0.004050
S	-2.413524	-1.010283	-0.296298
O	-1.442717	-2.065127	-0.683404
O	-2.627551	0.020248	-1.340632
O	-2.063684	-0.394198	1.022219
H	-1.669785	1.409224	0.768038
C	-3.974509	-1.841414	-0.072242
H	-3.851783	-2.598106	0.702713
H	-4.717532	-1.100905	0.223596
H	-4.246933	-2.303148	-1.021415

\[(\text{MA})_2(\text{ForA})_3\]

O	-3.206279	-1.457326	-0.515162
C	-4.047340	-0.573055	-0.476657
O	-3.840161	0.693542	-0.235246
H	-1.319501	-1.617293	-0.323028
	(MSA)$_2$(MA)$_3$(ForA)$_1$		
---	-----------------------------	---	
H	-5.111496	-0.781869	-0.650815
C	-0.298370	-1.837030	1.473635
H	-1.166516	-1.557038	2.070586
H	-0.223787	-2.922887	1.414150
H	0.615106	-1.437451	1.914313
N	-0.447190	-1.286040	0.109482
H	-0.577369	-0.250916	0.143321
H	0.402009	-1.525847	-0.467839
O	-1.362638	1.267044	0.143111
C	-0.916968	2.429164	0.407733
O	0.283063	2.746458	0.478797
H	-2.859315	0.918615	-0.077624
H	-1.672321	3.215305	0.585129
O	2.957129	-1.156818	0.728543
C	2.784006	-2.001752	-0.191316
O	1.885139	-1.958623	-1.072509
H	1.391760	1.664542	-0.022052
H	3.488926	-2.853542	-0.227518
C	3.405477	1.959805	-0.505794
H	3.205961	2.807525	-1.161591
H	3.643640	2.325462	0.492346
H	4.242201	1.374010	-0.886867
N	2.204195	1.104588	-0.412254
H	1.935954	0.739026	-1.325627
H	2.414873	0.235531	0.176642

	(MSA)$_2$(MA)$_3$(ForA)$_1$		
C	-1.705930	-0.947300	-3.145942
H	-1.872921	-2.005318	-3.347344
H	-2.569719	-0.375069	-3.483211
H	-0.809655	-0.605317	-3.664215
N	-1.545104	-0.754006	-1.691345
H	-0.736403	-1.284736	-1.332709
H	-1.402988	0.249202	-1.473808
N	2.669559	1.426285	-0.017017
H	2.328146	2.276854	-0.495307
H	2.613898	0.611823	-0.667079
C	4.009846	1.541259	0.585961
H	4.019648	2.368507	1.295511
H	4.229482	0.605482	1.099485
--------	--------	--------	
H	4.745358	1.719125	-0.198298
N	-1.003316	-0.810358	1.679645
H	-0.715583	0.136002	1.376391
H	-0.520527	-1.473307	1.056025
C	-0.603995	-1.040894	3.081763
H	-1.071672	-0.284790	3.712383
H	-0.949336	-2.027514	3.391495
H	0.482152	-0.983720	3.159033
S	-0.390270	2.639381	-0.195529
O	0.792243	3.299147	-0.798305
O	0.021461	1.700359	0.902788
O	-1.286801	1.986572	-1.173227
H	-2.070893	-0.920109	1.559320
C	-1.350341	3.920740	0.586783
H	-0.724958	4.409784	1.333612
H	-1.655635	4.627985	-0.184503
H	-2.221989	3.457640	1.049790
S	1.899220	-1.846300	-0.186720
O	0.466484	-2.246326	-0.330065
O	2.181165	-1.248780	1.136813
O	2.356123	-0.984989	-1.312468
H	1.938884	1.244292	0.686976
C	2.830655	-3.361373	-0.301488
H	2.641795	-3.805606	-1.278750
H	3.887511	-3.120682	-0.185326
H	2.496828	-4.026449	0.495039
O	-3.799826	-1.591279	-0.631925
C	-4.239760	-1.468041	0.538547
O	-3.600411	-1.114425	1.562795
H	-2.426913	-1.088545	-1.175950
H	-5.312031	-1.696852	0.687454

\[(\text{MSA})_1(\text{MA})_3(\text{ForA})_2\]

C	-1.340115	-0.035807	3.115523
H	-0.283710	-0.047605	3.386641
H	-1.820614	0.856521	3.516790
H	-1.834033	-0.919385	3.519664
N	-1.471662	-0.038181	1.646897
H	-0.986411	-0.849588	1.233364
H	-2.505955	-0.064597	1.339259
$$\text{(MA)}_3(\text{ForA})_3$$

O	-0.371058	1.575967	1.372149
C	-1.459085	1.840500	1.951935
O	-2.569302	1.307469	1.706833
H	-0.147919	-0.160922	1.082007
H	-1.432998	2.604870	2.750012
---	---	---	---
C	-0.484378	-1.882535	2.190487
H	-0.004922	-1.507651	3.094780
H	-1.559801	-1.708187	2.252414
H	-0.282801	-2.948920	2.091021
N	0.074170	-1.173648	1.023535
H	1.142776	-1.276222	1.009123
H	-0.303735	-1.549325	0.131334
O	3.531956	0.061144	-0.165653
C	3.611559	-0.956076	0.573088
O	2.674017	-1.552563	1.155486
H	2.257261	0.841874	-0.446326
H	4.626599	-1.369380	0.723225
C	-3.596654	-0.809545	-0.839261
H	-3.789267	-1.067624	-1.880767
H	-3.032149	-1.622111	-0.384940
H	-4.535191	-0.651757	-0.307185
N	-2.778000	0.420838	-0.771564
H	-3.239774	1.191114	-1.250399
H	-2.634227	0.729005	0.247725
O	-0.478539	0.028293	-2.139604
C	-0.348677	-1.232329	-2.293340
O	-0.753956	-2.099039	-1.496972
H	-1.835359	0.277728	-1.239779
H	0.165638	-1.563162	-3.214118
C	2.055528	2.712800	-1.379352
H	2.730361	3.194882	-0.672079
H	2.624136	2.400263	-2.255078
H	1.272563	3.411077	-1.678346
N	1.463499	1.521798	-0.742837
H	0.903250	1.764306	0.087327
H	0.823180	1.020170	-1.383149
Reference

NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101, R. D. Johnson III, Release 16a, August 2013. http://cccbdb.nist.gov/, Chen, H. and Finlayson-Pitts, B. J.: New particle formation from methanesulfonic acid and amines/ammonia as a function of temperature, Environ. Sci. Technol., 51, 243-252, http://doi.org/10.1021/acs.est.6b04173, 2017.

Haynes, W. M., Lide, D. R., and Bruno, T. J.: CRC Handbook of Chemistry and Physics (97th Edition), CRC Press., 2016.

Ho, K. F., Cao, J. J., Lee, S. C., Kawamura, K., Zhang, R. J., Chow, J. C., and Watson, J. G.: Dicarboxylic acids, ketocarboxylic acids, and dicarboxylic acids in the urban atmosphere of China, J. Geophys. Res.: Atmos., 112, D22S27, http://doi.org/10.1029/2006jd008011, 2007.

Ho, K. F., Lee, S. C., Ho, S. S. H., Kawamura, K., Tachibana, E., Cheng, Y., and Zhu, T.: Dicarboxylic acids, ketocarboxylic acids, alpha-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006), J. Geophys. Res.: Atmos., 115, D19312, http://doi.org/10.1029/2009jd013304, 2010.

Kavouras, I. G., Mihalopoulos, N., and Stephanou, E. G.: Formation of atmospheric particles from organic acids produced by forests, Nature, 395, 683-686, http://doi.org/10.1038/27179, 1998.

Khwaja, H. A.: Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site, Atmos. Environ., 29, 127-139, http://doi.org/10.1016/1352-2310(94)00211-3, 1995.

Kolodziejczyk, A., Pyrcz, P., Pobudkowska, A., Blaziak, K., and Szmigielski, R.: Physicochemical properties of pinic, pinonic, norpinic, and norpinonic acids as relevant alpha-pinene oxidation products, J. Phys. Chem. B 123, 8261-8267, http://doi.org/10.1021/acs.jpcb.9b05211, 2019.

Li, Y., Zhang, H., Zhang, Q., Xu, Y., and Nadykto, A. B.: Interactions of sulfuric acid with common atmospheric bases and organic acids: Thermodynamics and implications to new particle formation, J. Environ. Sci., 95, 130-140, http://doi.org/10.1016/j.ijes.2020.03.033, 2020.