HADAMARD MATRICES FROM BASE SEQUENCES:
AN EXAMPLE

DRAGOMIR Ž. DOKOVIĆ

Abstract. There are several well-known methods that one can use to construct Hadamard matrices from base sequences $BS(m, n)$. In view of the recent classification of base sequences $BS(n + 1, n)$ for $n \leq 30$, it may be of interest to show on an example how prolific these methods are. For that purpose we have selected the Hadamard matrices of order 60. By using these methods and the transposition map we have constructed 1759 nonequivalent Hadamard matrices of order 60.

2000 Mathematics Subject Classification 05B20, 05B30

1. Introduction

Recall that a Hadamard matrix of order m is a $\{\pm 1\}$-matrix H of size $m \times m$ such that $HH^T = mI_m$, where T denotes the transpose and I_m the identity matrix. Let us denote by $H(m)$ the set of Hadamard matrices of order m. By abuse of language, we say that $H(m)$ exist if $H(m) \neq \emptyset$. If $m > 2$ and $H(m)$ exist, then m is divisible by 4. Two Hadamard matrices $A, B \in H(m)$ are said to be equivalent if $B = P AQ$ for some signed permutation matrices P and Q.

By binary respectively ternary sequence we mean a sequence $A = a_1, a_2, \ldots, a_m$ whose terms belong to $\{\pm 1\}$ respectively $\{0, \pm 1\}$. To such a sequence we associate the polynomial $A(z) = a_1 + a_2 z + \cdots + a_m z^{m-1}$. We refer to the Laurent polynomial $N(A) = A(z)A(z^{-1})$ as the norm of A. Base sequences $(A; B; C; D)$ are quadruples of binary sequences, with A and B of length m and C and D of length n, and such that $N(A) + N(B) + N(C) + N(D) = 2(m + n)$. We denote the set of such base sequences by $BS(m, n)$. We shall demonstrate that the base sequences and, their special cases, normal and near-normal sequences play an important role in the construction of Hadamard matrices [2] [12]. The recent discovery of a Hadamard matrix of order 428 [8] used a $BS(71, 36)$, constructed specially for that purpose.

As explained in [3], we can view the normal sequences $NS(n)$ and near-normal sequences $NN(n)$ as subsets of $BS(n + 1, n)$. For normal...
sequences $2n$ must be a sum of three squares, and for near-normal sequences n must be even or 1. The base sequences $(A; B; C; D) \in BS(n+1, n)$ are normal respectively near-normal if $b_i = a_i$ respectively $b_i = (-1)^{i-1}a_i$ for all $i \leq n$.

There are several known methods that one can use to construct Hadamard matrices from base sequences $BS(m, n)$. In view of the recent classification [6] of base sequences $BS(n+1, n)$ for $n \leq 30$, it may be of interest to show on an example how prolific these methods are. For that purpose we have selected the Hadamard matrices of order 60. By using these methods we have constructed 1086 Hadamard matrices of order 60. Exactly 1012 of them are pairwise nonequivalent. By taking transposes of these 1012 matrices, we obtain additional 747 equivalence classes. Thus in total we have constructed 1759 equivalence classes of $H(60)$ by using base sequences and the transposition. This is probably a very tiny portion of the totality of equivalence classes of $H(60)$. In that regard we mention that the incomplete classification, carried out very recently in [9], shows that the number of classes of $H(32)$ is well over 13 millions.

In Section 3 we describe the construction of $H(8n+4)$ from $BS(n+1, n)$ and we summarize the results of our computation in Table 1. The 558 pairwise nonequivalent Hadamard matrices constructed in this section are listed in Table 2.

Yang’s paper [13] contains four powerful “multiplication theorems”. The proofs of these theorems in loc. cit. are based on Yang’s generalization of Lagrange’s theorem on the sum of four squares to the ring of Laurent polynomials $\mathbb{Z}[x, x^{-1}]$ with integer coefficients. This beautiful generalization deserves to be wider known. In a recent paper with K. Zhao [7] we have shown that Yang’s generalization is essentially unique.

As 15 is a composite number, each of the four multiplication theorems can be used to construct base sequences $BS(15, 15)$, and then construct Hadamard matrices of order 60. The results of these computations are described in Sections 4-7. For the convenience of the reader, in each of these four sections we state explicitly the multiplication theorem that we use. Three misprints in the statement of Yang theorems have been observed in [5]. The number of equivalence classes of $H(60)$ constructed in these four sections are 192, 208, 64 and 64 respectively. Their representative matrices are listed in the Appendix in Tables 3-6 respectively.

In Section 8 we describe the encoding of base sequences $BS(n+1, n)$ that we use in Table 1, and have used in several of our previous papers. The appendix contains the Tables 2-6. We also explain there how to interpret the entries of the tables.
2. Preliminaries

All computations were carried out in Magma [1] modulo the tables of base sequences constructed in [3]. In fact we only make use of Table 2 of that paper. The main reason for using Magma is that it provides a (small) database of Hadamard matrices, in particular 256 matrices of order 60, and a useful collection of functions for working with these matrices. The 1759 classes mentioned above are all different from these 256. The most valuable functions for us were “IsHadamard” for testing whether a matrix is a Hadamard matrix, “HadamardCanonicalForm” which provides a test for equivalence of Hadamard matrices, and “HadamardMatrixToInteger” and its inverse “HadamardMatrixFromInteger” for compact representation of Hadamard matrices.

All Hadamard matrices in this note are constructed by using the Goethals–Seidel array:

$$
\begin{bmatrix}
Z_0 & Z_1 R & Z_2 R & Z_3 R \\
-Z_1 R & Z_0 & -RZ_3 & RZ_2 \\
-Z_2 R & RZ_3 & Z_0 & -RZ_1 \\
-Z_3 R & -RZ_2 & RZ_1 & Z_0 \\
\end{bmatrix}
$$

where Z_0, Z_1, Z_2, Z_3 are suitable circulant matrices, and R denotes the matrix having ones on the back-diagonal and all other entries zero.

Let us make a remark about this array. It is not hard to verify that if we permute the circulants Z_0, Z_1, Z_2, Z_3 then the new Hadamard matrix obtained from the above array will be equivalent to the original one provided that the permutation is even. If it is odd then the two Hadamard matrices may be nonequivalent. This is used in Section 6.

We now list additional notation and definitions that we need.

We separate the sequences by a semicolon, and use the comma as the concatenation operator. The symbol 0_s denotes the sequence of s zeros. For a sequence $A = a_1, a_2, \ldots, a_m$ we denote by A' the reversed sequence, i.e., $A' = a_m, a_{m-1}, \ldots, a_1$. Thus we have $a_k' = a_{m+1-k}$ for $k = 1, 2, \ldots, m$. If $f \in \{+1, -1\}$ then fA is the sequence fa_1, fa_2, \ldots, fa_m. For sequences A and B of length n, $A \pm B$ denotes the sequence with terms $a_i \pm b_i$, $i = 1, 2, \ldots, n$. For sequences $A = a_1, a_2, \ldots, a_{m+1}$ and $C = c_1, c_2, \ldots, c_m$ we denote by A/C the interlaced sequence

$$A/C = a_1, c_1, a_2, c_2, \ldots, a_{m}, c_{m}, a_{m+1}.$$

We say that two ternary sequences G and H of length n are disjoint if at most one of g_i and h_i is nonzero for each index i. We recall that T-sequences are quadruples $(A; B; C; D)$ of pairwise disjoint ternary sequences of length n such that $N(A) + N(B) + N(C) + N(D) = n$. We denote by $TS(n)$ the set of T-sequences of length n. It has been
conjectured that $TS(n) \neq \emptyset$ for all integers $n \geq 1$, and it is known that this is true for $n \leq 100$ different from 79 and 97. There is a map

$$\tag{2.1} TS(n) \rightarrow BS(n, n)$$

sending $(A; B; C; D) \rightarrow (Q, R, S, T)$ where

- $Q = A + B + C + D$;
- $R = A + B - C - D$;
- $S = A - B + C - D$;
- $T = A - B - C + D$.

3. Construction of $H(60)$ from $BS(8, 7)$

For any finite binary sequence X let Z_X denote the circulant matrix having X as its first row. It is well known (see e.g. [12]) that there is a map

$$\tag{3.1} BS(d, d) \rightarrow H(4d).$$

sending $(M; U; V; W)$ to the Hadamard matrix H constructed by plugging in the circulants Z_M, Z_U, Z_V, Z_W for Z_0, Z_1, Z_2, Z_3 in the Goethals–Seidel array.

One can also use base sequences $BS(m, n)$ with m and n arbitrary to construct Hadamard matrices of order $4(m + n)$. For that purpose we just compose the above map with the map

$$BS(m, n) \rightarrow BS(m + n, m + n)$$

which sends $(A; B; C; D) \rightarrow (A, C; A, -C; B, D; B, -D)$. In particular, for $m = n + 1$, we obtain the map

$$\tag{3.2} BS(n + 1, n) \rightarrow H(8n + 4).$$

In our recent paper [6] we have introduced a new equivalence relation in $BS(n + 1, n)$ which the reader should consult for further details. As this relation is not easy to describe, we shall just say that there is a group G_{BS} of order 2^{12}, whose definition depends on the parity of n, which acts on $BS(n+1, n)$ so that its orbits are exactly the equivalence classes. By using this group, it is easy to generate in Magma the whole equivalence class from its representative. We point out that the map (3.2) may produce many nonequivalent Hadamard matrices from a single equivalence class of base sequences (see Table 1).

Let $E \subseteq BS(n + 1, n)$ be an equivalence class. From above it follows that the cardinality of E must be a power of two, 2^k with $k \leq 12$. We are interested in the case $n = 7$ in which case $2n + 1 = 15$ and $8n + 4 = 60$. The set $BS(8, 7)$ splits into 17 equivalence classes.
The results of our computation in this case are summarized in Table 1. The listing of the equivalence classes of $BS(8,7)$ is taken from Table 2. The second column of Table 1 lists the representatives $(A; B; C; D)$ of the equivalence classes E of $BS(8,7)$. These representatives are written in encoded form (see Section 8 for the definition and our conventions for this encoding). For each representative we record the cardinality $\#E$ of E and the number of equivalence classes of $H(60)$ constructed from E via (3.2).

It turns out that any two nonequivalent base sequences in $BS(8,7)$ produce two nonequivalent Hadamard matrices. We do not know whether this is true in general.

Question: Is it true that two nonequivalent base sequences in $BS(n+1, n)$ always produce via (3.2) two nonequivalent Hadamard matrices of order $8n + 4$?

The sum of the numbers in the last column of Table 1 is 558. Consequently, we have constructed 558 equivalence classes of $H(60)$.

$AB; CD$	$\#E$	#Had.
1 0165; 6123	2048	32
2 0165; 6141	4096	64
3 0166; 6122	2048	32
4 0173; 6161	2048	32
5 0173; 6411	4096	64
6 0183; 6121	2048	32
7 0613; 1623	2048	32
8 0614; 1641	4096	64
9 0615; 1263	2048	32
10 0615; 1272	512	8
11 0616; 1262	2048	32
12 0618; 1261	2048	32
13 0635; 1621	1024	16
14 0638; 1620	2048	32
15 0641; 1622	2048	32
16 0646; 1222	256	6
17 0646; 1260	1024	16

4. **H(60) from Yang’s Theorem 1**

The theorem [13 Theorem 1] gives a map

$$(4.1) \quad NS(n) \times BS(s, t) \rightarrow TS(d), \quad d = (2n + 1)(s + t).$$
Normal sequences $NS(n)$ can be written as $(F, +; F, -; G + H; G - H)$ or $(F, -; F, +; G + H; G - H)$, where F, G and H are uniquely determined sequences of length n such that F is binary while G and H are ternary and disjoint. The map (4.1) is defined in terms of the sequences F, G and H. This map sends the ordered pair, having these normal sequences as the first component and $(A; B; C; D) \in BS(s, t)$ as the second, to the T-sequences (Q, R, S, T) where

\[
\begin{bmatrix}
Q \\
R \\
S \\
T
\end{bmatrix} = [X_1, X_2, \ldots, X_n, X_{n+1}]
\]

and the blocks X_k, $k = 1, 2, \ldots, n$ and X_{n+1} are given by

\[
X_k = \begin{bmatrix} f'_k A, & g'_k C + h'_k D, & 0_{s+t} \\
- h'_k C + g'_k D, & 0_{s+t} \\
0_{s+t}, & g'_k A - h'_k B, & - f'_k C \\
0_{s+t}, & h'_k A + g_k B, & - f_k D
\end{bmatrix},
\]

\[
X_{n+1} = \begin{bmatrix} - B', & 0_t \\
A', & 0_t \\
0_s, & - D' \\
0_s, & C'
\end{bmatrix}.
\]

Two misprints in the expression for τ_k in [13, p. 770] have been corrected. Instead of our sequences $g'_k A - h'_k B$ and $h'_k A + g'_k B$, inside the block X_k, Yang has $g'_k A - h'_k B$ and $h'_k A + g'_k B$, respectively. At a first glance our sequences appear to be in error since these have to be ternary. In fact they are binary since Theorem 8.1 guarantees that $g_k = 0$ iff $g'_k = 0$ and $h_k = 0$ iff $h'_k = 0$. Hence, exactly one of g'_k and h_k is zero and the same is true for h'_k and g_k.

There exists only one equivalence class of base sequences $BS(2, 1)$ and the same is true for $BS(3, 2)$. Their representatives are 03; 1 and 0; 0 in encoded form, or explicitly

\[
0; 0 = +, +; +, -; +; + \\
03; 1 = +, -, +; +, -; +, +; +, +.
\]

These are also representatives of the equivalence classes of normal sequences $NS(1)$ and $NS(2)$ respectively.

By applying the above theorem, with $s = 3$, $t = 2$ and $n = 1$, we compute the image of the whole set $NS(1) \times BS(3, 2)$ and then apply the map (5.2) to this image. We obtain 128 equivalence classes of $H(60)$. Another 64 equivalence classes are obtained by taking $s = 2$, $t = 1$ and $n = 2$, i.e., by using the set $NS(2) \times BS(2, 1)$. These $128 + 64 = 192$ equivalence classes turn out to be distinct.
5. **H(60) from Yang’s Theorem 2**

The theorem [13, Theorem 2] gives a map

\[(5.1) \quad NS(n) \times BS(s, t) \rightarrow BS(d, d), \quad d = n(s + t).\]

We write normal sequences \(NS(n)\) as in the previous section, i.e., as \((F, +; F, -; G + H; G - H)\) or \((F, -; F, +; G + H; G - H)\). The map \((5.1)\) sends the ordered pair consisting of these normal sequences and the base sequences \((A; B; C; D) \in BS(s, t)\) to the base sequences \((Q, R, S, T)\) defined by

\[
\begin{bmatrix}
Q \\
R \\
S \\
T
\end{bmatrix} = [X_1, X_2, \ldots, X_n], \quad X_k = \begin{bmatrix}
f_k A, & g_k C + h_k D \\
f_k B, & -h_k C + g_k D \\
g_k A - h_k B, & -f_k C \\
h_k A + g_k B, & -f_k D
\end{bmatrix}.
\]

There are two possibilities. First we take \(s = 3, t = 2\) and \(n = 3\). There exists only one equivalence class of normal sequences \(NS(3)\). As its representative we can take

\[
06; 11 = +, +, -; +, +, -; +, +, +; +, -; +, +, +.
\]

By computing the image of \(NS(3) \times BS(3, 2)\) under the map \((5.1)\) and applying the map \((3.2)\), we obtain 80 equivalence classes of \(H(60)\).

The second possibility is to take \(s = 2, t = 1\) and \(n = 5\). Again there exists only one equivalence class of normal sequences \(NS(5)\). As its representative we can take 016; 640, i.e.,

\[
+, +, +, +, +; +, +, +, +, -; +, +, +, +, -; +, +, +, -; +, +, +, +, -.
\]

In this case we obtain 128 equivalence classes of \(H(60)\).

These 80 + 128 = 208 equivalence classes turn out to be distinct.

6. **H(60) from Yang’s Theorem 3**

The theorem [13, Theorem 3] gives a map

\[(6.1) \quad NN(n) \times BS(s, t) \rightarrow TS(d), \quad d = (2n + 1)(s + t),\]

where \(n = 2m\) is even. To describe this map, we shall write near-normal sequences in \(NN(n)\) in the form

\[((Y, +)/X; (Y, -)/(-X); G + H; G - H),\]

where \(X\) and \(Y\) are binary sequences and \(G\) and \(H\) are disjoint ternary sequences, all of length \(n\). This map sends the ordered pair, having
these near-normal sequences as the first component and \((A; B; C; D) \in BS(s, t)\) as the second, to the \(T\)-sequences \((Q; R; S; T)\) where
\[
\begin{bmatrix}
Q \\
R \\
S \\
T
\end{bmatrix} = \begin{bmatrix}
U_1, U_2, \ldots, U_m, U_{m+1} \\
V_{m+1}, V_m, \ldots, V_1
\end{bmatrix},
\]
the blocks \(U_k\) and \(V_k\), \(k \leq m\), are given by
\[
U_k = \begin{bmatrix}
g'_{2k-1}A - h_{2k-1}B, & -y_kC, & g'_{2k}A - h_{2k}B, & -x_kD' \\
\end{bmatrix},
\]
\[
V_k = \begin{bmatrix}
x_kB, & g_{2k}C' + h_{2k}D', & y_k'A', & g_{2k-1}C' + h_{2k-1}D' \\
x_kA, & g'_{2k}D' - h'_{2k}C', & y_k'B', & g'_{2k-1}D' - h'_{2k-1}C'
\end{bmatrix},
\]
and
\[
U_{m+1} = \begin{bmatrix}
0_s, & -D', & 0_{n(s+t)} \\
0_s, & C', & 0_{n(s+t)}
\end{bmatrix}, \quad V_{m+1} = \begin{bmatrix}
0_{n(s+t)}, & -B, & 0_t \\
0_{n(s+t)}, & A, & 0_t
\end{bmatrix}.
\]
There exists only one equivalence class in \(NN(2)\). As its representative we can take
\[02; 1 = +, -, +; +, +, -; +, +, +; +, +, +, +, +, +, +, +.
\]
After computing the image of the map (6.1) with \(s = 2\), \(t = 1\) and \(n = 2\) and applying the maps (2.1) and (3.2) in succession, we obtain 32 equivalence classes of \(H(60)\). Another 32 equivalence classes are obtained by swapping the first two components of the base sequences produced by the map (2.1) (see the remark made in Section 2). These 32 + 32 = 64 equivalence classes turn out to be distinct.

7. \(H(60)\) from Yang’s Theorem 4

The theorem [13, Theorem 4] gives a map
\[
(7.1) \quad BS(m+1, m) \times BS(n+1, n) \to BS(d, d), \quad d = (2m+1)(2n+1),
\]
which sends the ordered pair \(((A; B; C; D), (F; G; H; E))\) to \((Q; R; S; T)\) defined again by the formula (1.2) but the blocks \(X_k\), \(k \leq n\), and \(X_{n+1}\) are now given by
\[
X_k = \begin{bmatrix}
f'_{k}A/g'_{k}C, & (-e_kB')/h_kD \\
f'_{k}B/g'_{k}D, & e_kA'/(-h_kC) \\
g'_{k}A/(-f_kC), & (-h_kB)/(-e_kD') \\
g_kB/(-f_kD), & h_kA/e_kC'
\end{bmatrix}, \quad X_{n+1} = \begin{bmatrix}
f_{1}A/g_{1}C \\
f_{1}B/g_{1}D \\
g_{1}A/(-f_{1}'C) \\
g_{1}'B/(-f_{1}'D)
\end{bmatrix}
\]
(a misprint in the expression for \(\beta_k\) in [13, p. 773] has been corrected).

We apply this theorem, with \(m = 1\) and \(n = 2\). We compute the image of \(BS(2, 1) \times BS(3, 2)\) and then apply the map (3.2). We obtain
32 equivalence classes of $H(60)$. Another 32 equivalence classes are obtained by using the set $BS(2,1) \times BS(3,2)$. These $32 + 32 = 64$ equivalence classes turn out to be distinct.

8. The encoding scheme

Let $(A;B;C;D) \in BS(n+1,n)$. For n even (odd) set $n = 2m$ ($n = 2m+1$). Decompose $(A;B)$ into quads

$$\begin{bmatrix} a_i & a_{n+2-i} \\ b_i & b_{n+2-i} \end{bmatrix}, \quad i = 1, 2, \ldots, \left\lfloor \frac{n+1}{2} \right\rfloor,$$

and, if n is even, the central column $\begin{bmatrix} a_{m+1} \\ b_{m+1} \end{bmatrix}$. Similar decomposition is valid for $(C;D)$. The quad encoding is based on [11, Theorem 1].

Theorem 8.1. The sum of the four quad entries is $2 \pmod{4}$ for the first quad of $(A;B)$ and is $0 \pmod{4}$ for all other quads of $(A;B)$ and for all quads of $(C;D)$.

There are 8 possibilities for the first quad of $(A;B)$:

$$1' = \begin{bmatrix} - & + \\ + & + \end{bmatrix}, \quad 2' = \begin{bmatrix} + & - \\ + & + \end{bmatrix}, \quad 3' = \begin{bmatrix} + & + \\ + & - \end{bmatrix}, \quad 4' = \begin{bmatrix} + & + \\ - & + \end{bmatrix},$$

$$5' = \begin{bmatrix} + & - \\ - & - \end{bmatrix}, \quad 6' = \begin{bmatrix} - & + \\ - & - \end{bmatrix}, \quad 7' = \begin{bmatrix} - & - \\ - & + \end{bmatrix}, \quad 8' = \begin{bmatrix} - & - \\ + & - \end{bmatrix}.$$

The possibilities for the remaining quads of $(A;B)$ and the quads of $(C;D)$ are:

$$1 = \begin{bmatrix} + & + \\ + & + \end{bmatrix}, \quad 2 = \begin{bmatrix} + & + \\ - & - \end{bmatrix}, \quad 3 = \begin{bmatrix} + & + \\ - & + \end{bmatrix}, \quad 4 = \begin{bmatrix} + & + \\ - & + \end{bmatrix},$$

$$5 = \begin{bmatrix} + & - \\ + & - \end{bmatrix}, \quad 6 = \begin{bmatrix} + & - \\ + & - \end{bmatrix}, \quad 7 = \begin{bmatrix} - & - \\ + & + \end{bmatrix}, \quad 8 = \begin{bmatrix} - & - \\ - & - \end{bmatrix}.$$

Finally, there are 4 possibilities for the central column:

$$0 = \begin{bmatrix} + \\ + \end{bmatrix}, \quad 1 = \begin{bmatrix} + \\ - \end{bmatrix}, \quad 2 = \begin{bmatrix} - \\ + \end{bmatrix}, \quad 3 = \begin{bmatrix} - \\ - \end{bmatrix}.$$

We encode $(A;B)$ by the symbol sequence $p_1p_2\ldots p_mp_{m+1}$, where p_i is the label of the ith quad except that for n even p_{m+1} is the label of the central column. Similarly, we encode $(C;D)$ by $q_1q_2\ldots q_m$ respectively $q_1q_2\ldots q_mq_{m+1}$ when n is even respectively odd. Here q_i, $i \leq m$, is the label of the ith quad and, for n odd, q_{m+1} is the label of the central column.
As an example, the base sequences

\begin{align*}
A &= +, +, +, +, -, -, +, +, +; \\
B &= +, +, +, - +, +, +, +, -; \\
C &= +, +, -, - +, -, - , +; \\
D &= +, +, +, +, -, +, +, -;
\end{align*}

are encoded as $3'6142;1675$. In Table 1 and elsewhere in the text we write 0 instead of $3'$.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (3-4) (1997), 235–265.
[2] C.J. Colbourn and J.H. Dinitz, Editors, Handbook of Combinatorial Designs, 2nd edition, Chapman & Hall, Boca Raton/London/New York, 2007.
[3] D. ˇZ. Dokovič, Aperiodic complementary quadruples of binary sequences, JCMCC 27 (1998), 3–31. Correction: ibid 30 (1999), p. 254.
[4] ______, Classification of near-normal sequences, Discrete Mathematics, Algorithms and Applications, 1, No. 3 (2009), 389–399.
[5] ______, Some new near-normal sequences, International Mathematical Forum (to appear). Preprint arXiv:0907.3129v1 [math.CO] 17 Jul 2009.
[6] ______, Classification of base sequences, Preprint: arXiv:1002.1414v2 [math.CO] 12 Feb 2010.
[7] D. ˇZ. Dokovič and K. Zhao, An octonion algebra originating in combinatorics, Proc. Amer. Math. Soc. (to appear). Preprint arXiv:1002.2752v1 [math.RA] 14 Feb 2010.
[8] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Designs 13 (2005), 435–440.
[9] H. Kharaghani and B. Tayfeh-Rezaie, On the classification of Hadamard matrices of order 32, J. Combin. Designs (to appear).
[10] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang, Multiplication of sequences with zero autocorrelation, Austral. J. Combin. 10 (1994), 5–15.
[11] C. Koukouvinos, S. Kounias and K. Sotirakoglou, On base and Turyn sequences, Mathematics of Computation 55 (1990), 825–837.
[12] J. Seberry and M. Yamada, Hadamard matrices, sequences and block designs, in Contemporary Design Theory: A Collection of Surveys, Eds. J.H. Dinitz and D.R. Stinson, J. Wiley, New York, 1992, pp. 431–560.
[13] C.H. Yang, On composition of four-symbol δ-codes and Hadamard matrices, Proc. Amer. Math. Soc. 107 (1989), 763–776.

9. Appendix

The following tables contain the list of Hadamard matrices constructed by the methods explained in Sections 3-7. Since these matrices are constructed by using the Goethals–Seidel array, i.e., via the map \([32]\), they can be stored very efficiently. Indeed it suffices to list only the base sequences \((A; B; C; D) \in BS(15, 15)\) used to construct
the Hadamard matrix. We first concatenate these four constituent binary sequences to obtain the binary sequence A, B, C, D of length 60. Next we replace each -1 term in this sequence with 0 to obtain a $\{0,1\}$-sequence, say S, of length 60. Next we split S into 15 pieces of length 4 each. Finally, we interpret each piece as the binary representation of a hexadecimal digit $0, 1, \ldots, 9, a, b, c, d, e, f$. Thus we obtain a sequence, X, of exactly 15 hexadecimal digits. Each entry in our tables is such a sequence. Clearly, one can easily reconstruct the base sequences $(A; B; C; D)$ from X.

Here is an example. We take $X = 0dc41a77adbf5e8$, the first hexadecimal sequence in Table 2. Each hexadecimal digit has to be replaced by its binary representation by using exactly four binary digits. Thus the hexadecimal digit 0 gets replaced by the sequence $0, 0, 0, 0$. Next the hexadecimal digit “d” is replaced by the sequence $1, 1, 0, 1$ etc. We thus obtain the sequence S as

$$00011011100100001101001111110101111011011001000.$$

Finally, we replace each 0 with -1 and read off the four binary sequences:

$$A = -,-,-,-,+,-,+,-,+,-,-,-,$$
$$B = -,-,-,-,+,-,+,-,+,-,+,-;$$
$$C = +,+,+,-,+,-,+,-,+,-,+,-;$$
$$D = +,+,+,-,+,-,+,-,+,-,-,-.$$

To obtain the Hadamard matrix $H \in H(60)$, it remains to form the circulants Z_A, Z_B, Z_C, Z_D and plug them (in that order) into the Goethals–Seidel array.

The Hadamard matrices within each table are pairwise nonequivalent. The same is true for the list of all Hadamard matrices made up from Tables 3, 5 and 6. However there is an overlap (32 matrices in total) between these tables and Table 4. Namely, 24 matrices in Table 4 are equivalent to some matrices in Table 3 and another 8 matrices in Table 4 are equivalent to some matrices in Table 5. Similarly, there is an overlap (42 matrices in total) between Table 2 and the other four tables. Thus these five tables together contain representatives of 1012 equivalence classes of $H(60)$.

Table 2: \(H(60) \) from \(BS(8, 7) \)

0dc41a77adbf5c8	a73bf489fb643e57	f2de4275f16b9d	b03bf618bace4f56			
e547cb71f44b6e6	d7edae2434e86e2	d7ceae753e427b7	ebc5d676c245837			
411283db96e72a3	a74f7f105b0a0c8	be6f7d2397172d	7db8f8a897b7289			
eb3bd7893ca7f6	82ed04269e3ed2e	b03bf618bace4f57	0d6c1b235ebee2			
ebedd6253d1a7dc	e56fcb2106e2a3	826f0523971729d	b09160d5ee6ba3			
d7c9ae77ca47937	824f705396472b7	413a88a9d6bd3c8	ebedd6253f1279d			
f23be58a9f75b7	7edaa2436e06a3	e5c5ca75f56bce8	7db8f8a89f5b389			
e5edca2506e2a0a	b0ed0275d1ebedc	7d3a8b897b7289	e591cad06e2a03			
a7984ed7f93e8d	4176a313967e2a7	a7994edf7d3e85	ebd1b77ca08d586			
a7cd4e66f82df7a	eb0bd77eae0d866	416633396872af	e7d4de4686d72			
be4f7d639d5d2c4	be5f7d43959ef2cc	e5f4cb610772091	e55cf4d10732099			
f2335e9b5fd6b85	f2235e5b5f96b8d	e5e5ca35f773e91	4f29fbb5f96b8d			
e5f5ca15f733e99	4f329fb95d6bd85	82f504169f35399	82e04369f75391			
4f6699f55eb8af	4f769f135e6bba7	bebe7c9e253bb	bea17cb9e653b3			
82a104be9f5f399	82b1049e9f75391	e55f6c410a6e6b	d723a8bac13d585			
d733af9ac17d850	e5f4cb61048a0ee	d71b7af93c8a7e8	d70baf93c8a7e6			
824f0549777291	f24e56d53edebe4	4f9889ef5e8baf	4f888eef5e6ba7			
82f50439737299	f25fe5435d9ebcc	e5f5ca15f4cbee6	e5e5ca35f48b5ee			
b05f614359d9ebcc	b04f61635ddec4	e50bcbe9f636eb3	e51bcb9f623ebb			
a75f4f2099c14c	a74f4f6209d144	e53d9283d0685	eb23db8379068d			
ebad16bfc8cf966	ebb1d69f8c8f99e	0d4e1b63addf5c4	0da01ab5c8cebe6			
be57c169d9d3cc	bee57c369d3d3c4	d777af13ace7927	f25f6435e66b3			
eb67d73037d0685	eb77d710379068d	be7771d96c72a7	d7b1a9c935d84c			
be677d396972a7	d7a1aebc35968c6	d7dace435b278d	d7dca863f2785			
5946b3729ff25301	4f569ff33fbb678	a77f4f0194eb2e2	f313e77ac15d854			
59c4b27796072bf	cf6f20253586e4	e5b9ca8e6a0d43	cfe9d25f3257f			
a7034f9651aadcc	a74f7479f5203	ca99f9ac3606b7	597eb3096e72a3			
cf59f53cb79b909	b0d5065cd7b9c8	a6b94c8f94f2fe	4f569f53c8f9f6			
e57fcb01963e32a	0d6e1b233cae7e	b0261a36d6b2e7c8	4f4e9273e07ea			
f2ed2473ea67ab	cf595e6c1b8d48	ca99f9ac3586b8	a7b94e865faacc0			
f3916d34a86ea	b09160df356795	a6814cf9f1729d	e53bcb9a9b5301			
a77f4f0298ed365	f547bb27abe4d3	e5a47c72bba63	a63b4d89e053bf			
d3b1a6e920e47a	d3a1a6ebe06c47	bbe57636782c7fa	bbf57616786c72			
bbb176e197c350	61be0c29ae85dabf	bba176bec935e8	61a02b00ee5d5a7			
dda1babd879308d	ddb1ba9d87d3085	9e4f3d637686avf	9e5f3d43766ca7			
dde5ba358683a0f	ddf5ba1586c30a7	11a022bf49698d	11b0229af69685			
88a110bf26c5e5f	88b1109f2e20e5f	88a110bf3d69d	88a1109f2d3e9d			
cba196bc46888f2	cbb1969c44288fa	cbb1969c47d0885	cba196bc479088d			
d30ba7e9df93b8d	d3b1a7ed9df3b85	ee4fdd632fd6585	ee5fdd4329658d			
Table 2 (continued)						

dda1babd853b0d8	ddb1ba0d575b0d0	ddf5ba15e63ca7	dde5ba35e683caf			
dd17bb2b190c35e	dd07bf2194c356	cb079f045a88ca	cb196f3fbb7729			
cb1797d045e88c2	887b110b45e9f4	cdb1965fba7f72	cb859f6f20b468			
886b112bf4e9f	cb9596d20fc460	dd3fbb21ab432	dd2fbb21af4321			
bb6b772a1b0431f	bb7b770a1b44317	bbe9762e79efc42	9e533d5b7f4e0ef			
bbf9760e79af4a	dd7bbba7b44f17	9e433d7b74beee8	bb3f772974c5f6			
dd6bb2a7b04f1f	bb7b770a7b44f17	bb2f77a2790cf5e	bb6b7729e703cf9			
bb7b7709743c97	881711d34dee9c2	bb6b772ab043f1f	880711f34daec9a			
88dd01872b9f5e8	88ad10a726f5e90	77bcee872b6e5e8	77aceea7f0e5e0			
776ae62b2c5f5c	777ae0b2c5e5f4	778ee2f0e679a1	778ee0f0e679a9			
eed1dc5f4d6ee9c2	116a232b4c8e90	cfb9960fbb7729	eec1dc7f4dae9c9a			
117a230bf4ce9e8	cbe9962fba7f72	6116c3d2ee5f5a1	6106c3f2eb5da9			
61e8c22f75eeec2	111623d32d6e5de	9ead3c7aa7feef0	61f8c20f75aeeca			
110623f2d4ec56d	dd07bfb2794cf56	9ebd3c7aa7feef0	dd17bfb2790c5e			
dd07bb21ab4329	cb7b970847a08b8	dd17bb21af4321	cb6b972847e0883			
d385a6ff7b85f774	d395a65d7b81f77c	dd6bb2a87f0f60	dd7bbba78e8f68			
9e2f3da2ed6ed2c	9e3f3d82eaddca	ee3f3d843d4e9d	ee2f3d3a6d9e0de			
61d4c57f64d7eb7	caf94074f0e9e2	9e3133daa7f54f95	ace558774e069bf			
d347a772b3f5601	ca814f4f0f69f9d	53b8a8f4dfe8e0	ca779770d601abf			
ca479753f469e98	9fd53e5e55fbcc8	9f153f3da75f15	534a7e67740e9f			
9f573f1e643cb7	537ea07032e5e2	8f397f5ab0ed662	d3b9a86f0e29bf			
69d53e5585bb0c8	f92bb3a987b3089	cb7f900d711a9d	9f2f3a8a1bb4039			
9e2f3db3dababece	792fa3abeb5f6c8	86130d5b7579c5	cbdf9606b2e5623			
ac475973c46e9f9	79e43e2586ab30e	ac035f6b4d16d9	cb996f8208b57e			
9f573f527a4f437	792fa3aa7e44f5f	79e25f7e44f6e	61ac3abeb7f7c89			
ed87daf0dd41bd7	7beb6e28f7be1e	133c2786edab8a	ed15d7b1e7643			
47688f2ee415fdl	9d33a58778e68e2	9d053fb6e5b0c6	ec51d95bf476e1			
b88bf072847b4ee9	b99772d2e33e0c2	b92d3a78a1e0120	ed79db0ec8b9a8			
9dfb3a091da23cb	b92d3a6e105c5f	1dd323a576fca0	c8eb902abdf09e			
b7796ff214657	131427fb616fbc	edadaa3b2b163	b786ebf0e8b9a8			
b7516f5e19b0c2c	e2f3bc4a765ce4b	b7516f5c0f9b9e	edadaa3b0f6761			
b9fb79ae0b5c9b	b94173f89a174b	b9bf7238b48f116	7e2ca8676fca0			
b7516f5e4f0899e	ed3ca7a8de9b9a8	47048f6e4b5e0e9	b8fb700ae5a65c			
13b6626b2c357f1	13a626b2c357f1	b94f721872b9f7	b9e37238b76292			
af4953f6b0f767e1	af59f4f0b37679	9d8f3ae2836d012	a05941e0558e0e			
a049146e55c0c7	f3cbea68b5e89b	9d9f3ae2832d01a	1360273ebcd57e			
f5bea48e389b8	1370271ec957ed	a0f3401ec69cac	a0e3403ae9dd1c			
05a60ab2e435cf9	05b60a92e475cf1	faf3f1a7564ed3	fac3f40a75624ed			
c8b79093d63ab8	c8a790b3d67f4b	a0db404a7474ef1	a0cb406a7434ef9			
Table 2 (continued)

37246fb6be3d7b8	37346f96be7d7b0	9de33a3a836d012	9df33a1a832d01a
9df33a1814d02e5	9de33a3814902ed	05e20a3a776ce92	05f20a1a772ce9a
9db73a93e9c7d47	9da73ab9e87d4f	1348276bec757f1	1358274ebc357f9
9df33ac014d02e5	c87b909d378fa8e	c87b90b3d7cfa86	9df33ae014902ed
afeb5e684fc8986	9d353b9417ec8286	ee8fd8e3d6d4a4	9d253bb4178828e
afeb5e484f8898e	ec9fd8c3d69faac	9d353b9416782b0	9d253bb4163828b
9d593b4c16782b0	c87b90b3d437af9	9d493b6613628b2	9d353bb35d3059d
1370271ebedd7a4	1360273ebe7d7ac	af1d5fe44f8999a	af0d5fe44f8999a
eca7d8b3d7cfa66	ecb7d893d7f8fa8e	3786ee2bd257db	3796ee2bd257d3
9d593b4c17c8286	9d493b6617c8286	f5b7ea904c709f1	f5a7eab04c309f9
b7b66eb433e818	edcfd602d705d1	1d203be85950cd	e2f7c41285350d9
ed8bdaeb4066873	85f70a12e135c59	ed19dbc2d705d1	0b8a6eac65bf3
2f5c5f46d5cc5be7	c24dc56684850fe	e209c5ee16526b4	b7b6e6302e85ba
d07a116d3d9b89	f119e9cdd5bc5	eda3dab032c0e7	85d0b66ed3dcd4
85090bed1e6a3b2	ed8bdaeb8f39798	a1b342991fda38	474c8f6687dd04
b75d6f442cc05e7	e2b655621d8284	a1b942c9128530	1db23a9a14842ef
b8b3709a84250fb	edcfd60a8858ae	7088f6e1626c2b	2b3c49a84250fb
1d083bec16cc2a6	ed19dbc2d2fa3a	b7756f142cc05e7	b7d6f47d39fa0c
edbbda8b0d6e7a63	e293c4da84450f7	47ee8e2215b42c	a1f422e2b05c49
0b38178edeedba2	b0441777b71f69c	1de3a2285b205c9	ed39db8cb97a2
2f9a5ebd4c7a7e	f5b3ea982cc05e7	f54deb642cc05e7	d04da167d73a98
a0ef4b62866d0b2	fab3f49a179c38	af53ebd06c7a67	53b0b9e1666c2b
85310b9fe937d59	2f5e6e266d87b2	f531eb9f4136859	f519ebcf246832
503b89e85350d9	54f4eb6683d084	0b4c176d73a98	0b1817e00d37d9
do4ca063d597acd	2f18f5ce5d357d9	2b5f8abf2d798	0b641736be57e7
f5b3e9a4b53e818	05300b9e85350d9	85e70a30195092cd	a01941ce8602a
fab3f49a146423f	5f5b3e9a173c298	0b3549a173c298	a3f159fa19684d
a16543341738298	a01941ce85950cd	56f4b36173c298	a1654337e66737
0d201bbee3686ca6	b0756116c4888ef	b18b62e834206fb	b17563153f7a90
e512bb1bc9e893ae	1b6f36129e83d3ae	27204f9ed95d3c5	27f64e192c39d5c5
e5f7ca1392b22e	8ddf1a413dd27c5	e48bce86942722fb	4fa29eb34246fb
b15d6346b37d810	8d8b1ae834006ef	e509bec97d13	8d571b153f7a90
b0b86b9342d46fb	d5b1847977f290	1b5c374798728ef	b0a360bac45b8f
1ba236ba9f7d390	b10963ed3e8a7ae	a75df449df3984	8d751b17c7910
a7a34eb989f7390	0d5c1b46377e690	4ff97e125746d1	a75df449df789d0
27b0e4d29d53c5	4f5c9f6e4858ef	a775f4146f789d0	e5dfca4392f2e
192c33a607ca08	2b054766c199b9c	2bfa560b361f6ecb	d43ca87b36fe6a0
199632d207ac08a	6768af2e06b0a	81150d46658cb4	195033e05a40cb
d405a9f735e66c3	81d302599eb3a8	e6afcca2065c0b4	d487a8f334166fd
---	---	---	---
d43da98737ee682	812d03a59ebb3a8	b30567f751e6a43	d441a97e5cde59c3
2368472e8efda10	898712f027a848a	f679ed0e454f85f	f6487e9f454f85f
2368472e8c151fd	a30547f4ee5b9d4	c5d38a5b12fe220	918722f1bedb7a8
f6ebe42a470c99e	6f78df0e454f8d7	6f9ede2a44f4d8e1	c569b27f3eee02
a3d3465b73eee02	a39746d3153ee202	6f50df5e270c49e	dc69b2f15062df
09c2127a46be8a8	a369472f122e220	898712f025404d7	89c3127826b84a8
89af12a1bdc3e03c	6f2d89a68051df	23d2465a8c151fd	a341476c8f49196
a3bf46808f49196	a3d3465b13e202	918722f3dabf6b8	6f2d467a2454f5
89eb122a40f861	a369472f0e114fd	6f6c3e7a26be4a8	dc6b8828f4d196
5340a77e270c49e	dc69b927e7ebc8a	3bea762be5a7cbb	5304af625e4e3
918722f14c129fd	35fa6a0a24f4e4e1	35be6a825e48c3	91c32279d029df
ac3d598641414fd	9f6e3e2b734ee16	cac3947a46fc84a0	91bf2282b05661
9f2d3afa773ae0a	c41589d67e5cfb4	89bf1280d709a9e	35866af244148fd
8979130cd7e9a82	acf85b0a470c89e	c469892fe547cd7	9f6e3e288d414ac3
91bf22814de29c3	f92d3a4eeb9da8	9f153fd7725e34	c451895fe65fb4
f9e6f22b10b6269	dc51b95c7eb4e9	9f693f2ced41dd7	f9ebf226cb11e9
9fa3ea084f49196	9f693f2ced41d7	5378a7e44148fd	9141237d3e1ac3
5bc667205140dd	25ba44a0a4e40e3	8f111df524ea36	f193c2d8af9b588
814503756cee2de3	8139038e911525d	81a302b8979928c	8f8f8e435196a4d
81e702316d72d1	81a302b96f9ad8c	f14de3675860a6f	f14de36753e10a
8fb3f1e98af79509	8131039f69d6d45	81750314979928c	f165e33753dea04
2bb2509c4878ef	81e7023291d5245	5be6b63205740d1	da5db546073c098
d44da967c7df884	8f091fecd315d9		
Table 3: $H(60)$ from Yang’s Theorem 1

d9d7bc22eb65e8f	f165ed4722f67bd	e963dd4b21f67dd	9443270ba1377c5
851105aeec3de64	f15bed38c2e9bbe	de17b3a288652ef	f763e14b25f675d
82170ba28c25267	de2fb3d1146216f	ef9dd0bd4ae98be	9383288bc237ba5
9d2935dd0f22007	c2d78a22e47d6f6	9ad13a2ef3de04	c1178da2eb7d8ec
831109ae883d2e4	8f451107cd2fa46	eb73d96a21f47dd	9be9385d1422167
ee9bd2b8c1e9bde	c128d1d777ad0c	f65de334a2f17bd	9be93851772d07
9a113ba8ef25207	84d70622883d2e4	831709a2eb3de84	9a2f3bd16f3a04
832f09d1773ad04	c6e9825d777ad0c	e85df34b9e94de	888318bced2fa46
82e9a05d0c222677	c5ef8451647a6f6	f69de2b4c2e9bbe	94452707c237ba5
85ef01456c3e64	f66e3e4b42eebde	9c1137aeeb25e87	9aef3a150f22007
8b43190bca27ba6	8c83168ba127c6	d9e9bc5d16d216f	93852887a137c5
e863df4b46eeb3e	82290bdd6c3ae64	eea5d2c721f67dd	f375e966224f7bd
f4b3e6ea22f47bd	e865df4725ee7e5	f75de134daf18bd	c2e98a5d046236
ecb5d6e621f47dd	dad1ba2ee77d0f0	832909dd143a164	de11b3aeeb65e8
c1298dd1471a6c	f775e1664ef4a3d	e875df662dec65e	efa3d0cb25ee7e
f0a5ee7c25f675d	ebb3d8ea41ebd	9d73d46f25207	9d7375ae2f3e04
c6ef8251147a16c	d9d1c2e88652ef	9783028be37625	f0a3eebcb4f6b3d
c2178ba2846536f	8f851087ad37645	daefba51076230f	f19becba2af17bd
9045207ae37625	c51186ae47d6f6c	f75be138b9f14d	c6d7822887d2ec
c61822eeb7de8c	e9a3dcb41eebde	84ef051143a164	f09beebd8a18bd
c5d1842e84636f	dde9b45d677af0c	9c1737a28252e7	e85bd3f8dae98be
dd29b5dd076230f	e95dd34c1e9bde	eb3d0ea2dec65e	d9efbe517762d0f
c2298bd647af6c	e873df6a4eeaca3e	dd17b5a2e77d0fc	9bd7382eb25e87
f0b3eeea4f4a3d	84e9065d773ad04	f765e14766f3b3	f3b5e642ecbde
da2fbbd1677af0c	ec75d76641ebd	eb5d0e64eeaca3e	f773e16a2df45d
dd77b422876530f	f6a3e2cb22f67bd	9e2937d7722d07	8b451907a127c6
ee05d43741eebde	e9fbd0b89e94de	f05b3ee62df65d	9de9345d6f3ae04
c1118da887d2ec	9743210bce2fa26	c5f285d1046236f	82d70a22ec3de64
852f05d10c22267	85d1024ce25267	f09d3eb49f14d	9c2f37d11422167
90852e87ce2fa6	f473e6a42ecbde	8c851687c2f1af0	fa15ec742eebde
88431f0bad37645	de29b3dd7762d0f	efa5d0c746ebeb3e	ee5bd338a1f17dd
e99dcd4a1f17dd	9bd138288252e7	84d17062eb3de84	da11bbae876530f
82ed3c33350853	4a32ac809e19dfa	ba034ec32f16dbb	be1344c3ad1f9a
7afccd1109682b	66805f4e999aea	aa416676e13fa3	72dded5b61d6203
9a8f0db8b159812	668ef5f309682b	a6f7f418a1191a1a	4212bc02c0d0a3
ba04d4ceca191a1a	b64549e91d9c02	aa4d6c7e039e84a	56494f739f04
86fd3503569d93	8edf25591d1c03	7af2cd00be999eaa	92ad1dcb91d1c0
a26f7c382310a5b	92a31da36e163fb	86fd351c159812	92af1db80390e4b
Table 3 (continued)

| be1d44dc2310a5b | 9e9f05d83350853 | 9a810de73f569d3 | 564094649e19dfa | 9e9105c7bd5f992 | 4a30ac840c58fb2 | a2617c27ad1fb9a | 421cbcdfa2dfa62 | 5a7e8c1b20d6a23 | 4602b4e0aed9be2 | b6315487fc5f1b2 | 564294600c58fb2 | 92a11da7fe571b3 | 8ed125476e163fb | b63354836e1e3fa | 6290fde43c909ab | 5a708c04aed9be2 | 6eace5bf61d6203 | 72dced5ff39704b | 4a3eac9bf39f04a | 6ea2e5a09e11dfe | 460cb4ff20d6a23 | 82e33d23bd5f992 | 72d0dd449e11dfb | 629efddb29f86a | b63f54980398e4a | aa4f6c7891d9c02 | 8edd255e0390e4b | 4a3cac9f61de202 | 72d2dd400c50fb3 | 5e6084242c0ba3 | 7eccc53fb29f86a | 564e947b61de202 | 6eae5bbf39704b | a67174072f16db | 7ee2c5203c909ab | 6ea0e5a40c50fb3 | 5e6e843ba2dfa62 | aa436c63fc5f1b2 | 8ed32543fc571b3 |
Table 4: $H(60)$ from Yang's Theorem 2

Sample Data
317431f20d9ee45a
29b2217bbaf6839
73a411763e979bd
087a2e67d9e83a
10bce6ca3e975de
7b7e4ba208ad59
642145a27782e68
7b6e85d2179dd94
d1a2c77bbf917a6
1076c74bb2f4452
087bec9bc5e9446
0fba8c6428f54d
d68c20fba6f1446
7c6e28a2089d7e4
7b277bae09a1eb
6b621177d1ee831
1076c3baa6f45a
08bb9c97c5e9825
6ca22f7a428f63e
736410f71dce45
1c835c902575f3f3
0073e647115a0b96
ff865d7055854c4b
b2b0ff18555c4b
f00cd3a8133d4d
b23800e515a0b96
8ada7020b73c1ba
75a5c7f993af761
381114b4b33c0bba
8a5a7020b33c0ba
fb9d6c517427859
aad87900b73d3f3
db9e9a8ca37af04
df86f5d2f5db6
c7e6a36d05e6428
713587fd93ae528
ff8dd5c66e8f59
dff02475ee6e90a
b629bf1ccaf0c4b
Table 4 (continued)

8e4b86ff2544c0a	3c0155b033d2f3	b239b63d7426a10	aa5986fe9b9e818
923bbe1dec6ea90	8e4b87ff2d44c8a	db1f64717426a10	b6a9b1f1cc2fddec8
df8ed88a37bd4d	7525c7f997af661	51b78edd50e6428	96abfe19ee6f8d9
e3fd592939fad1	c76d1d9601d7ad1	db1e9a8ca77ae04	e7d655f3b0fdec3
6d45bf1ca77bc4d	b629f3979427859	b6a84e111a18df	e3fd5c929b9fa51
fb1c92ac3132f04	e76caeb401e7761	e37d14b7bf0cc8a	f0d2d55ee6f8d9
8ecb9fda09d7a51	aec9c7fa939fad1	c3f8e26993ae528	8e4a312421740ba
4957f683132f04	1c835d9021752f3	04632475839e896	20f16d5111a18df
b23801e511a8a96	aad9cdcb8f0dec3	e7f1ed19609d7a51	ae48390245753f3
8adb66fb70cc0a	8a5a66fbf0cc8a	aa5987fe939e898	92b6f3b458b4e02
8adb88ed09d818	55a7ced901e7761	18931c921740ba	00f3647111a096
c3ff1c972d44c8a	fb1c93ace352e04	c3f54b2b9e818	c76f15b069d618
df8edaa8a77bc4d	c76f14b601d6898	b239b73d7c26a90	db9f2c542f2ce82

Table 5: $H(60)$ from Yang’s Theorem 3

3c987fcd5b0aadde	94772e1098f92a0	1b743015c943897	8b6b102b893f098
fc65f03588b26a9	939721d37886aef	8801b6e8909e9e	49692e9e5c8a6
ff1b8c9388b2a6a	1c983fcd4942897	a1956ccbf09ede	88b571014e909c9e
b39b61c8a0b0e9	d8f07b711aaf4b0e	3b747015db0bade	e7f9c04b53a9d8
239041d11b8836af	b3856f176a86ce6	c0158d5c973891	4878f14972891
070408f52ac4e6	939821e18b02a9	039601d1aadab4e6	88156d7893f098
b47660beaaf6ce6	a675030fb09de6	df1bb8c92a4e0	c36b8029c73891
e015c6d5db3bad8	dc65be352afa4e0	aff590f1b762d1	94e9272f886af
a80756f38b3f2d8	b4656e438a90e9	8ff519146940e9	ac87f03b762d1
c7f9890d4972891	047a0e092aca4e6	3f679315b0aade	971728d3f8cfe6
1fe639314942897	970928e98f92a0	180a36e9c943897	afe75930b4ed7
270448538826af	f87f711b8b36a9	247a4938826af	8feb192b0976091
fb89f1edb8b36a9	b6e567340a00e9	8c951fd70976091	ab7950f9b3f2d8
db89b1eadab3b0	90f7271018b30a	380a76e9dbbode	36b0c929db3bad8
8e8b1fe58940e9	b7166888af90e0	b0f867b0ab686aef	20e84732d8836af
e487cf15b3aad8	00e8072daac4e6	b705687eacfe6	ac995f7c7b40ed7
Table 6: $H(60)$ from Yang’s Theorem 4

DFA	Sequence	DFA	Sequence	DFA	Sequence
dfa308e8885c365	7c74ef6e25dc37a	2c604f44857176f	d461ba477071490		
86f51f6dc5dc225	27a2fdeeb658c23a	d6e11a6e30215d0	27a258c0857176f		
8fb70de9c5dc225	25225dc090715cf	753658c1d02148f	7c744a47708c09a		
8af70769cd3c65	22e252408f7162f	77b68ea25dc37a	2ee04a4490715cf		
2ee0ef6dc52162f	83b515edcfde365	8475bf44858c365	7536fde30d17da		
7ef4ea6e30dc1da	2c60ea6dd02148f	dd23a8c30171490	77b65dc1c52162f		
8d37adc230215d0	7ef44f47658c23a	292045c48f7162f	2522f8eb708c09a		
72f65741cf2176f	2ba06edcf2176f	dae302688f8c225	8135b5c48f8c225		
b96fabb29e41fbc	74dec0de947cefe	21881a743ed1bab	ec3b011834eace9		
35d832d41e51fbb	58ee9b9a947cefe	504ef9fac53c4d6	608c987eb4faee		
375837d41a151f3b	68ae883ee5bc0c6	e41b11586ac0c1	22081f7f431d1b2b		
b04fb9f2c5014d4	4c3ec11ab4fcaee	0faa46103ad1bab	0d3a43103ed1bab		
ddf9629ec01594	1bea6eb01a51f3b	f86b29b8146ce9f	d5972de9e41fbc		
dcf9609ec5014d4	441ed15ae5bc0c6	808dd87434eace9	7cfca09e53c4d6		
196abc01e51fbb	88adcb3465ac0c1	f04b39f8452e4d1	9cfde094452e4d1		
94ddfd41d15eef9	b14ffbf2cf05194	114a7bf04f11593	3df82294ff11593		