Nonequilibrium dynamical mean-field calculations based on the non-crossing approximation and its generalizations

Martin Eckstein1 and Philipp Werner1

1Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
(Dated: May 12, 2010)

We solve the impurity problem which arises within nonequilibrium dynamical mean-field theory for the Hubbard model by means of a self-consistent perturbation expansion around the atomic limit. While the lowest order, known as the non-crossing approximation (NCA), is reliable only when the interaction U is much larger than the bandwidth, low-order corrections to the NCA turn out to be sufficient to reproduce numerically exact Monte Carlo results in a wide parameter range that covers the insulating phase and the metal-insulator crossover regime at not too low temperatures. As an application of the perturbative strong-coupling impurity solver we investigate the response of the double occupancy in the Mott insulating phase of the Hubbard model to a dynamical change of the interaction or the hopping, a technique which has been used as a probe of the Mott insulating state in ultracold fermionic gases.

I. INTRODUCTION

Experiments with ultracold atoms in optical lattices, as well as pump-probe spectroscopy with femtosecond time-resolution and transport measurements on quantum dots, enable a systematic investigation of strongly interacting quantum many-particle systems under nonequilibrium conditions. In a pump-probe experiment, a material is excited with a strong laser pulse, and its subsequent evolution is probed by a second pulse that reaches the sample at a controlled time-delay. The breakdown of the Mott insulating phase within a few times of the inverse hopping has been observed in this way. Ultracold gases in optical lattices, on the other hand, can be prepared in an equilibrium state and suddenly quenched out of equilibrium by modifying a Hamiltonian parameter. These experiments can address fundamental questions such as the thermalization in isolated quantum systems.

The ongoing experimental progress has stimulated intensive research on the theoretical side. While many theoretical approaches that are designed for the investigation of correlated systems in thermal equilibrium must be modified considerably before they can be used to compute the real-time evolution, dynamical mean-field theory (DMFT) is an approximate scheme which is per se applicable to both equilibrium and nonequilibrium situations. The method relies on a mapping of lattice models to a single impurity model, which is exact in the limit of infinite dimensions and provides a good basis for the realistic simulation of many correlated materials. Nonequilibrium DMFT has so far been used, e.g., to study transport beyond linear response in the Falicov-Kimball model as well as interaction quenches and interaction ramps in the Falicov-Kimball model and in the Hubbard model. In the last part of this paper we will use DMFT to study the response of the Mott insulating phase to a periodic modulation of the hopping or the interaction similar to what can now be done in experiments with cold atomic gases.

Currently, the biggest challenge within the context of nonequilibrium DMFT is the development of impurity solvers which allow to compute the long-time dynamics after a perturbation. An exact solution, via a closed set of equations of motion, is known only for the Falicov-Kimball model. For the Hubbard model, continuous-time Quantum Monte Carlo (CTQMC) can in principle be used to obtain an unbiased solution. Both the weak-coupling expansion and the strong-coupling expansion of the relevant Anderson impurity model have been translated from their respective imaginary-time variants (Refs. and Ref. for weak-coupling and Ref. for strong-coupling) to the Keldysh formalism, in order to study the real-time evolution. However, in these real-time Monte Carlo calculations, the accessible times are limited by the notorious dynamical sign problem. A big advantage of the weak-coupling expansion over the strong-coupling expansion is that the diagrammatic series simplifies in the case of particle-hole symmetry. On the other hand, the sign problem in a weak-coupling calculation increases with the interaction strength. It is thus essentially impossible to use CTQMC to study complex excitation processes within the Mott insulating phase, e.g., the excitation with a short laser pulse and the subsequent relaxation.

In order to avoid the sign problem and access the regime of strong interactions and relatively long times, we explore the direct summation of the self-consistent diagrammatic hybridization expansion up to fixed order, as opposed to CTQMC, which is in essence a stochastic summation of the full (non self-consistent) series. This approach proves to be very accurate in a wide parameter regime and suitable for the calculation of the real-time dynamics.

Systematic approximations for the expansion around the atomic limit of the Anderson impurity model have been used for a long time. The simplest conserving approximation, which has been termed non-crossing approximation (NCA), can correctly recover the Kondo
temperature T_K when charge fluctuations are suppressed by the Coulomb interaction U, although the Fermi-liquid behavior for $T \ll T_K$ is not correctly reproduced.36,37 If U is finite, however, the width of the Kondo resonance is severely underestimated, and various resummation schemes of the expansion have been devised to cure this problem.38,39 Already the simplest to NCA within these schemes, the so-called one-crossing approximation (OCA), can cure the deficiencies of NCA to a large extent. Motivated by the fact that NCA is already very good in the insulating parameter regime, Gull et al.40 recently developed a bold-line hybridization expansion, i.e., an approach which is based on a Monte Carlo sampling of the corrections beyond NCA.

Starting with the work of Pruschke, Cox, and Jarrell,41 both the NCA and the OCA have been used as an impurity solver for DMFT (for some recent references that involve the investigation of real materials, see Refs.42–44). Furthermore, NCA and its corrections can readily be translated into the Keldysh formalism to study nonequilibrium situations, although the evaluation of higher-order diagrams in real time involves quite some numerical effort. For example, the buildup of the Kondo resonance after a sudden shift of the impurity level in the Kondo model has been investigated with NCA.45 The fairly accurate results in equilibrium calculations and the straightforward portability to the Keldysh contour make the self-consistent hybridization expansion an interesting candidate for the solution of the impurity problem within nonequilibrium DMFT.

The purpose of this paper is twofold. First, we give a detailed description of the self-consistent expansion on the Keldysh contour (Sections II and III), and we benchmark the method by applying it to the interaction quench in the Hubbard model on the Bethe-lattice (Sec. IV). We find similar trends for both equilibrium and nonequilibrium: While NCA is unreliable unless the interaction U is much larger than the bandwidth, OCA provides an important correction, and the third order is in almost quantitative agreement with QMC results over a wide parameter range which includes the insulating phase and the crossover regime between metal and insulator. As an application of the perturbative impurity solver we then study the excitation of a Mott insulator by a time-dependent modulation of the hopping or the interaction strength (Sec. V). Because the interaction is rather large in this problem, a solution using weak-coupling CTQMC is currently not feasible.

II. DEFINITION OF THE IMPURITY PROBLEM ON THE KELDYSH CONTOUR

To describe a nonequilibrium situation in which the system is prepared in a thermal equilibrium state at temperature $T = 1/\beta$ for times $t < 0$ and later acted on by some perturbation, we use the Keldysh formalism.46,47 The imaginary-time contour of the Matsubara Green’s functions for finite-temperature equilibrium states is thereby extended to the L-shaped contour C that runs from 0 to time t_{max} (i.e., the largest time of interest) along the real axis, back to 0, and finally to $-i\beta$ along the imaginary time axis (Fig. 1). The Keldysh formalism is based on the use of contour-ordered correlation functions $\langle T_C A(t_1) B(t_2) \rangle$, where T_C exchanges the order of the two operators $A(t_1)$ and $B(t_2)$ in the product $A(t_1) B(t_2)$ if t_2 appears later on the contour than t_1, according to the order which is indicated by the arrows in Fig. 1. An additional minus sign appears if the exchange involves an odd number of Fermi operators. The use of contour-ordered Green’s functions allows the application of Wick’s theorem if the action is quadratic.48 Depending on the choice of the time arguments, a contour-ordered correlation function describes either real-time correlations, or it recovers the imaginary-time ordered correlation function of the initial equilibrium state.

In the following sections we consider an impurity model which is defined by the following action on the L-shaped contour C,

\begin{align}
S_{\text{imp}} &= S_{\text{loc}} + S_{\text{hyb}}, \\
S_{\text{loc}} &= -i \int_C dt \, H_{\text{loc}}[d_p(t), d_p(t), t], \\
S_{\text{hyb}} &= -i \int_C dt_1 dt_2 \sum_{p_1,p_2} d_{p_1}(t_1) \Lambda_{p_1,p_2}(t_1,t_2) d_{p_2}(t_2).
\end{align}

In this action, d_p and $d_{p \dagger}$ denote annihilation and creation operators for an electron in the impurity level p (p labels spin and orbital degrees of freedom), and H_{loc} is the local Hamiltonian of the impurity site, which can be interacting and time-dependent in general. The hybridization function $\Lambda_{p_1,p_2}(t_1,t_2)$ gives the amplitude for the hopping of an electron from the p_2-orbital into the bath at time t_2, its propagation within the bath, and the hopping back into the impurity orbital p_1 at time t_1. The action S_{hyb} can be derived from an impurity Hamiltonian with time-dependent coupling between bath and impurity,

\begin{equation}
H(t) = H_{\text{loc}}(t) + \sum_{\nu} \epsilon_{\nu} c_{\nu}^\dagger c_{\nu} + \sum_{p,\nu} [V_{p,\nu}(t) d_p^\dagger c_{\nu} + h.c.]
\end{equation}

by tracing out the bath degrees of freedom c_{ν}. It also arises as the effective single-site problem in nonequilibrium DMFT12 without direct reference to a given Hamiltonian formulation.
The single-particle Green’s function of the impurity model \(G_{p,p'}(t, t') = \langle d_p(t) d_{p'}(t') \rangle_{\text{imp}}, \) is given by

\[G_{p,p'}(t, t') = -i \langle d_p(t) d_{p'}(t') \rangle_{\text{imp}}, \]

where the contour-ordered expectation value for the action \(S \) is defined as

\[\langle \cdots \rangle_S = \frac{\text{Tr}[T_C \exp(S) \cdots]}{\text{Tr}[T_C \exp(S)]}. \]

The nonequilibrium formalism presented below reduces to the Matsubara formalism for the initial equilibrium state when all calculations are restricted to the imaginary branch of the contour. For time-arguments \(t = -i\tau \) and \(t' = -i\tau' \) on the imaginary branch of \(C \), the Green’s function \(G(t, t') \) is directly related to the Matsubara Green’s function \(G^\text{M}(au) \) of the initial thermal equilibrium state,

\[G(-i\tau, -i\tau') \equiv iG^\text{M}(\tau - \tau'), \]

which is translationally invariant in time. An analogous equation is used to define the Matsubara component of all two-time contour-ordered correlation functions that are used in the following. The factor \(i \) on the right-hand side of Eq. (3) is needed to recover the conventional definition of the Matsubara functions.

III. SELF-CONSISTENT DIAGRAMMATIC HYBRIDIZATION EXPANSION OF THE ANDERSON IMPURITY MODEL

A. Pseudoparticle representation

In this section we compute the Green’s function \(G_{p,p'} \) by expanding the expectation value \(\langle \cdots \rangle_S \) in terms of the hybridization function \(\Lambda(t, t') \). The self-consistent hybridization expansion for the Anderson model in thermal equilibrium has been described previously in many places \(\text{28–36,38,39,44} \) and the generalization from the imaginary-time contour to the Keldysh contour is rather straightforward. Nevertheless we give a detailed derivation below, in order to discuss some important technical differences between the equilibrium and the nonequilibrium variants of the expansion.

Because the local part \(H_{\text{loc}}(t) \) of the action is generally not quadratic, standard diagrammatic perturbation theory does not apply to the expansion around the atomic limit \((\Lambda = 0) \). There exist several related strategies to by-pass this difficulty. In the CTQMC variant of the hybridization expansion, high-order time-ordered correlation functions of the impurity problem are explicitly evaluated in a suitable basis of the local problem. We will follow a different approach, which is based on the introduction of auxiliary particles.\(\text{33,34} \) This allows to use standard resummation tricks from diagrammatic perturbation theory, at the expense of having to do a projection from the extended pseudoparticle Hilbert space to the physical Hilbert space.

The local part \(H_{\text{loc}}(t) \) of the impurity Hamiltonian is diagonalized at each instant of time,

\[H_{\text{loc}}(t) = \sum_m |m(t)\rangle E_m(t) \langle m(t)|, \]

and for each eigenstate \(m \) one flavor of pseudoparticles, with annihilation (creation) operator \(a^\dagger_m(t) \), is introduced. We assume that eigenstates \(|m(t)\rangle \) are smooth functions of time. Pseudoparticles are bosons if the state \(|m\rangle \) corresponds to an even number of particles on the impurity, and fermions otherwise. By means of the isomorphism \(|m(t)\rangle \leftrightarrow a^\dagger_m \langle \text{vac} \rangle \), the physical Hilbert space of the impurity can be identified with the subspace of the pseudoparticle Fock space in which the total number of pseudoparticles,

\[Q = \sum_m a^\dagger_m a_m, \]

is exactly one. Hence the expectation value \(\langle A(t) \rangle_{\text{imp}} \) of any impurity observable \(A \) can be computed in the pseudoparticle space as

\[\langle A(t) \rangle_{\text{imp}} = \langle \tilde{A}(t) \rangle_{Q = 1} = \frac{\langle \delta Q, 1 \tilde{A}(t) \rangle_{\text{imp}}}{\langle \delta Q, 1 \rangle_{\text{imp}}}, \]

provided that the pseudoparticle action \(\tilde{S}_{\text{imp}} \) and the observable \(\tilde{A} \) are constructed such that they coincide with \(S_{\text{imp}} \) and \(A \) in the \(Q = 1 \) subspace (\(\delta Q, 1 \) is the projection onto \(Q = 1 \)). The requirement is satisfied by choosing

\[\tilde{d}^\dagger_p(t) = \sum_{m,n} F^p_{m,n}(t) a^\dagger_m a_n \]
\[\tilde{d}_p(t) = \sum_{m,n} F^p_{m,n}(t)^* a^\dagger_m a_n \]
\[F^p_{m,n}(t) = \langle m(t) | d^\dagger_p | n(t) \rangle \]

for the electron annihilation and creation operators, and

\[\tilde{S}_{\text{loc}} = -i \sum_m \int_C dt E_m(t) a^\dagger_m a_m(t) \]
\[\tilde{S}_{\text{hyb}} = -i \sum_{m,n,m',n'} \sum_{p,p'} \sum_{t,t'} \int_C dt dt' a^\dagger_m(t) a_n(t) \times \]
\[\times F^p_{m,n}(t) A_{p,p'}(t, t') F^{p'}_{n',n}(t)^* a^\dagger_{m'}(t') a_n(t') \]

for the impurity action. The first line in Eq. (10) follows from Eqs. (11) and (3), and the second line results from direct insertion of Eqs. (9) into Eq. (11).
for $t > 0$ has no influence on the expectation value of physical observables. We choose λ to be present only at times $t < 0$, i.e., on the imaginary part of the contour, where $t = -i\tau$, such that

$$a_m(t) = a_m \exp(\lambda \Im t)$$

(11a)

$$\bar{a}_m(t) = a_m^\dagger \exp(-\lambda \Im t),$$

(11b)

and the grand canonical average can be denoted as

$$\langle \tilde{A}(t) \rangle_\lambda = \frac{\langle e^{-\beta Q \tilde{A}(t)} \rangle_{\text{imp}}}{\langle e^{-\beta Q} \rangle_{\text{imp}}}.$$ (12)

Grand-canonical pseudoparticle propagators on the contour C are defined as

$$\mathcal{G}^\lambda_{m,m'}(t, t') = -i\langle T_C a_m(t) a_{m'}^\dagger(t') \rangle_\lambda.$$ (13)

(In the following, propagators are considered to be matrices in their flavor indices m, m', and the indices will be omitted whenever this is not ambiguous.)

The restricted trace in Eq. (5) can be recovered from grand-canonical expectation values by means of an expansion in powers of the fugacity $\zeta = e^{-\beta \lambda \mathcal{Q}}$. For observables which annihilate the $Q = 0$ state [such as the impurity Green's function $\mathcal{G}_\text{loc}(0)$], an expansion of Eq. (12) in ζ yields

$$\frac{\langle \tilde{A}(t) \rangle_\lambda}{\langle Q \rangle_\lambda} = \langle \tilde{A}(t) \rangle_{Q=1} + O(\zeta).$$ (14)

Furthermore, the leading terms of the Green's functions $\mathcal{G}^\lambda_{m,m'}(t, t')$ can be obtained in the form [cf. Eq. (11)]

$$\mathcal{G}^\lambda(t, t') = k^\lambda(t, t')[\mathcal{G}(t, t') + O(\zeta)],$$ (15)

where the projected Green's function $\mathcal{G}(t, t')$ is independent of λ, and the pre-factor is given by

$$k^\lambda(t, t') = e^{\lambda(\Im t - \Im t')} [\Theta_C(t, t') + \Theta_C(t', t) \zeta].$$ (16)

The step function $\Theta_C(t, t')$ is 0 if t is earlier on C than t', and 1 otherwise. In order to obtain a perturbation expansion directly in terms of projected quantities, the limit $\lambda \to \infty$ must be taken analytically in all expressions below. As a consequence, projected Green's functions become the basic objects in the hybridization expansion.

In addition to the symmetries of the grand-canonical propagators, projected propagators have a number of useful properties, which we list in the following paragraph. First, one can show from their definition that they satisfy an initial condition

$$\mathcal{G}_{m,m'}(t^+, t) = -i\delta_{m,m'},$$ (17)

when t^+ is infinitesimally later on C than t. Furthermore, the factor k^λ essentially restricts propagation of pseudoparticles to one direction along the contour. In particular, the leading order of the product of two Green's functions A^λ and B^λ is given by

$$A^\lambda(t, t_1)B^\lambda(t_1, t') \sim k^\lambda(t, t')A(t, t_1)B(t_1, t')$$ (18)

if the time arguments t', t_1, and t are in cyclic order with respect to the arrow in Fig. 1, and smaller by a factor ζ otherwise. [In the following, we will use the notation $t_1 < t_2 < \ldots < t_n$ to indicate that time arguments $t_1 \ldots t_n$ are in cyclic order along C, according to the arrow in Fig. 1.] Consequently, to leading order in ζ the contour convolution of the two functions is given by

$$\int_C d\bar{t} A^\lambda(\bar{t}, \bar{t}') B^\lambda(\bar{t}, t') = k^\lambda(t, t') \int_C d\bar{t} A(t, \bar{t}) B(\bar{t}, t')$$ (19)

where the integral range on the right hand side must be restricted such that $t' < t < t$.

B. Pseudoparticle Dyson equation

Grand-canonical pseudoparticle propagators obey the usual Dyson equation with the pseudoparticle self-energy Σ^λ

$$\mathcal{G}^\lambda = \mathcal{G}^0 + \mathcal{G}^0 * \Sigma^\lambda * \mathcal{G}^\lambda,$$ (20)

where $[a * b](t, t') = \int_C d\bar{t} a(t, \bar{t}) b(\bar{t}, t')$ denotes the contour convolution, and

$$\mathcal{G}^\lambda_{0,mm'}(t, t') = -i\langle a_m(t) a_{m'}^\dagger(t') \rangle_{\text{esc}, \lambda}$$ (21)

is the bare pseudoparticle propagator (i.e., at zero hybridization). The latter satisfies the equation of motion

$$[i\partial_t - \lambda(t) - E(t)] \mathcal{G}^\lambda_0(t, t') = \delta_{C}(t, t'),$$ (22)

where $\lambda(t) = \lambda$ on the imaginary part of the contour and zero otherwise, and $[E(t)]_{mm'} = \delta_{mm'} E_{mm}(t)$ is a diagonal matrix in the flavor indices. We use the notation of Ref. 19 for the derivative ∂_t and the contour delta-function δ_C, i.e., the latter is defined such that $\int_C d\tau \delta_C(t, \tau) f(\tau) = f(t)$ holds for any function $f(t)$ on the C, and $\partial_t \Theta_C(t, t') = \delta_C(t, t')$.

Although we will not need an explicit expression for the bare projected propagator $\mathcal{G}_0(t, t')$ in the following, it may be a useful illustration to compute it from the equation of motion (22) and verify that it satisfies all the usual symmetries of the contour Green’s functions and the initial condition (17). By integrating Eq. (22) with a periodic or antiperiodic boundary condition for Bose and Fermi particles, respectively, we obtain the grandcanonical propagator

$$\mathcal{G}^\lambda_0(t, t') = -i e^{\lambda(\Im t' - \Im t)} \exp[-i \int_{t'}^t d\bar{t} E(\bar{t})] e^{\beta[\lambda(t) + E(0)]}$$

$$\times [e^{\beta[\lambda(t) + E(0)]} \Theta_C(t, t') + \chi \Theta_C(t', t)],$$ (23)

where $\chi = +1 \ (-1)$ for Bose (Fermi) particles, and $E(0)$ is the value on the imaginary time axis. Taking
the limit \(\lambda \to \infty \) in this expressions yields \(G_0^\lambda(t, t') = \kappa_\lambda(t, t')G_0(t, t') \), with the projected propagator

\[
G_0(t, t') = -ie^{-iE(t)\tau} [\Theta_c(t, t') + \chi e^{-\beta E(0)}\Theta_c(t', t)].
\]

(24)

Using Eq. (22), the Dyson equation can be written in differential form

\[
[i\partial_t - \lambda(t) - E(t)]G^\lambda(t, t') - [\Sigma^\lambda \ast G^\lambda](t, t') = \delta_c(t, t').
\]

(25)

The corresponding Dyson equation for the projected propagators is then derived by inserting Eqs. (15), (18), and (19) into (25), and taking the limit \(\lambda \to \infty \),

\[
[i\partial_t - E(t)]G(t, t') - \int d\bar{t} \Sigma(t, \bar{t})G(\bar{t}, t') = 0.
\]

(26)

The delta-function on the right hand side has been omitted, because this equation will be considered only for \(t \neq t' \).

The numerical solution of Eq. (26) can be performed in the same way as the solution of Dyson-like equations for real-particle propagators, which is described in detail in Ref. 13. However, the structure of the integral in Eq. (26) implies an important simplification. In Eq. (26), the derivative \(\partial_t G(t, t') \) is determined entirely by the value of \(G(t_1, t') \) for \(t' < t_1 < t \). For fixed \(t' \), Eq. (26) is thus a Volterra integrodifferential equation whose numerical solution is similar to that of an ordinary differential equation with initial condition (17). This is particularly interesting for the initial state, i.e., when all time arguments are on the imaginary branch of the contour. Substituting the definition (4) into Eqs. (24) and (26) yields

\[
(-\partial_\tau - \lambda - E) G^\lambda,\Sigma(\tau) = \int_0^\beta d\bar{\tau} \Sigma^\lambda,\Sigma(\tau - \bar{\tau})G^{\lambda,\Sigma}(\bar{\tau}) = \delta(\tau),
\]

(27)

for the grand-canonical version of the Dyson equation, and

\[
(-\partial_\tau - E) G^{\Sigma}(\tau) - \int_0^\tau d\bar{\tau} \Sigma^\lambda(\tau - \bar{\tau})G^{\lambda}(\bar{\tau}) = 0,
\]

(28)

for the projected Dyson equation. While Eq. (27) is a boundary value problem and must be solved by Fourier transformation \(\left[G^{\lambda,\Sigma}(\beta) = \pm G^{\lambda,\Sigma}(0^-) \right] \) for bosons or fermions, the projected Eq. (28) is an initial value problem \(G^{\Sigma}(0) = -1 \), which is most efficiently solved in the imaginary time domain.

C. Diagram rules for the pseudoparticle self-energy

Because the local part of the pseudoparticle action (10) is quadratic, a diagrammatic expansion of pseudoparticle Green’s functions and self-energies in terms of \(\Lambda \) can be derived from the standard rules for general quartic interaction terms (see, e.g., Ref. 19). Each diagram for \(\Sigma^\lambda \) contains one sequence of pseudoparticle propagators that connect the two external vertices (the “backbone”), and possibly additional loops of propagator lines, e.g., renormalizations of the hybridization function (Fig. 2). To leading order in \(\zeta \), the backbone \(G^\lambda(t, t_n) \) is given by \(k_\lambda(t, t')G(t, t_n) \) if \(t_1, \ldots, t_n \) are in cyclic order along \(C \) and smaller by \(O(\zeta) \) if the vertices are not ordered [cf. Eq. (18)]. Each closed loop of pseudoparticle propagators contributes an additional exponentially small factor \(\zeta \). Thus the diagram rules for the projected self-energy \(\Sigma(t, t') = \Sigma^\lambda(t, t') / k_\lambda(t, t') \) can be obtained from the diagram rules for \(\Sigma^\lambda \) by (i), replacing pseudoparticle propagators (19) by projected propagators (11), (ii), discarding diagrams with closed loops, and (iii), requiring vertices along the backbone to be in cyclic order along \(C \).

For completeness we summarize the final rules for constructing the projected self-energy \(\Sigma(t, t') \): (i) The nth order contribution to \(\Sigma(t, t') \) is given by all diagrams consisting of 2n three-leg vertices (Fig. 2a) at times \(t_0 = t', t_1, \ldots, t_{2n} = t \), of which \(n \) correspond to annihilation operators \(d \) (outgoing hybridization line), and \(n \) correspond to \(d^\dagger \) (ingoing hybridization line). The vertices are labeled according to Fig. 2a. They are connected by one sequence of pseudoparticle lines (solid lines, pointing from \(t' \) to \(t \)), and \(n \) hybridization lines (dotted lines) in all possible ways such that the diagram cannot be separated into two parts by cutting only one line. (ii) Sum over all internal flavor indices, and integrate over the internal times \(t_1, \ldots, t_{2n-1} \), respecting the cyclic order \(t' < t_1 < \ldots < t \). (iii) Because exactly one fermionic pseudoparticle operator is attached to each end of a hybridization line, the sign of the diagram is \((-1)^{s+f} \), where \(s \) is the number of crossing of hybridization lines, and \(f \) is the number hybridization lines that point opposite to the direction of the backbone. (iv) An overall factor \(i^n \) must be added.

The diagrammatic expansion for \(\Sigma \) can be resumed by replacing bare propagators with interacting propagators \(G \), and in turn taking into account only skeleton diagrams, i.e., diagrams in which internal propagator lines have no self-energy insertions. Truncation of the skeleton series \(\Sigma^{scel}[G, \Lambda] \) at finite order leads to conserving approximations because it can be derived from the Luttinger-Ward functional. In particular, this fact ensures the conservation of the pseudoparticle number (4), which is crucial in order to obtain a meaningful approximation scheme for nonequilibrium situations. To leading order in \(\zeta, \) the conservation of \(\langle Q \rangle^\lambda \) implies

\[
\hat{Q} \equiv \lim_{\lambda \to \infty} \frac{\langle Q \rangle^\lambda}{\zeta} = i \sum_m (-1)^m g_m(t, t^+),
\]

(29)

\[
= - \sum_m g_m^0(\beta),
\]

(30)
where t^+ is infinitesimally later on \mathcal{C} than t, and $(-1)^m = \pm 1$ if m corresponds to Bose or Fermi particles, respectively. These relations provide a good check for the numerical implementation.

All skeleton diagrams up to third order are displayed in Fig. 2. The self-consistent strong-coupling expansion has been proposed long ago as an approximate solution for the Anderson impurity model. Kuramoto coined the term non-crossing approximation for the lowest order, i.e., keeping only the first diagram in Fig. 2. In the present work we use the skeleton series up to third order as an impurity solver within nonequilibrium DMFT, and compare the results to CTQMC (Sec. 1V).

D. Diagram rules for the impurity Green’s function

In general, expressions for observables in the impurity model can be derived from the grand potential

$$\Omega_\lambda = -\beta^{-1} \log \text{Tr}[\mathcal{C}^Q T \mathbb{e}^{-\mathcal{S}_\text{imp}}].$$

Because diagrams for the correction $\Delta \Omega_\lambda = \Omega_\lambda - \Omega_\lambda(\Lambda = 0)$ contain at least one closed loop of pseudoparticle lines, $\Delta \Omega_\lambda$ is proportional to ζ for $\lambda \to \infty$. The leading order in ζ,

$$\Omega = \lim_{\lambda \to \infty} \frac{-1}{\zeta^2} \log \text{Tr}[\mathcal{C}^Q T \mathbb{e}^{-\mathcal{S}_\text{imp}}]$$

is obtained by adding to the local contribution $\Omega(\Lambda = 0)$ all diagrams of order Λ, which contain only one loop, in which G^Λ is replaced by \mathcal{G}, and where integrals over the internal vertices are restricted such that the vertices are in cyclic order. (See the analogous argument for Σ in Sec. 1VIC.)

Using Eq. (14), the impurity Green’s function $\mathcal{G}_{pp'}(t, t')$ is given by $G(t, t') = \lim_{\Lambda \to \infty} G^\Lambda(t, t')/Q$, where $G_{pp'}^\Lambda(t, t') = i(T_c d_p(t) d_{p'}(t')\Lambda)$. It can thus be obtained from the derivative [cf. Eqs. (9), (13), (29), and (31)]

$$G_{pp'}(t, t') = \frac{\beta}{Q} \frac{\delta \Omega}{\delta \Lambda_{pp'}(t', t)}.\quad (32)$$

Diagrams for $G(t, t')$ (in terms of the projected pseudoparticle Green’s functions) are therefore constructed by removing one hybridization line from the diagrams for Ω (Fig. 3). Note that a diagram for Ω generally has a symmetry factor $1/S \neq 1$, where S is the number of topologically equivalent ways to label the vertices. The symmetry factor disappears in the expansion of G, because for a diagram with symmetry factor $1/S$ there are S ways to remove a hybridization line which lead to the same diagram for G. The series for G can thus be summed in the same way as the series for Σ, i.e., by keeping only skeleton diagrams for G, and replacing \mathcal{G}_0 with \mathcal{G}. Equation (32) then holds also for the skeleton expansion,

$$G_{pp'}^{\text{scel}}(t, t') = \frac{\beta}{Q} \frac{\delta \Omega^{\text{scel}}}{\delta \Lambda_{pp'}(t', t)}.\quad (33)$$

where $\Omega^{\text{scel}}(\mathcal{G}, \Lambda)$ is the Luttinger Ward functional, i.e., the skeleton expansion for Ω in terms of the fully interacting (projected) propagators \mathcal{G}. To design an approximation for $G^{\text{scel}}(\mathcal{G}, \Lambda)$ which is consistent with a given approximation of Σ one must truncate both $\Omega^{\text{scel}}(\mathcal{G}, \Lambda)$ and $\Sigma^{\text{scel}}(\mathcal{G}, \Lambda)$ at the same order.

The final rules for $G^{\text{scel}}(\mathcal{G}, \Lambda)$ read: The nth order contribution consists of a loop of projected pseudoparticle propagator lines (Fig. 2) which connects $2n$ vertices (n annihilation operators, n creation operators). One d-vertex (time t, Λ-line labeled p) and one d'-vertex (time t', Λ-line labeled p') are external vertices. The internal vertices are connected by hybridization lines such that no internal line has a self-energy insertion. Sum over all internal flavor indices, and integrate over internal (contour) time variables respecting the cyclic order of $t_1 \ldots t_{2n}$ along the contour. Add a pre-factor i^n. To determine the sign of a diagram D, reinsert the Λ-line between the external vertices. This recovers the diagram D' in the expansion of Ω from which the diagram D is
The numerical effort of the evaluation of diagrams is mainly determined by the contour integrals over the internal vertices. Using Monte Carlo for the evaluation of the integrals for higher order diagrams will suffer from a sign problem. We use a quadrature formula for the integrals which is based on equidistant discretization of the contour C. The nth order diagrams have $2n - 2$ internal integrals (cf. Figs. [2] and [3]), which have to be evaluated for each combination of the two external time variables. (Nonequilibrium correlation functions depend on both time arguments separately). This seems to imply that the numerical effort for the evaluation of Σ and G scales with the number N of mesh points like N^2, N^4, and N^6 for first, second and third order, respectively. (The effort for the solution of the Dyson equation, which is essentially a matrix inversion on C, scales like N^3.) However, one can reduce the effort for the evaluation of the third-order diagrams to N^5 by factorizing out a vertex part \tilde{F} with two internal integrals and three external variables (Fig. 2c); Σ and G can then be computed from \tilde{F} with only two additional integrals. Since \tilde{F} does not have to be stored in memory, this way of evaluation is more efficient than performing four internal integrals.

E. Numerical implementation

Before presenting first benchmark results for the self-consistent hybridization expansion, we like to make some remarks on the numerical implementation. First of all, we note that the number of possible labelings for the internal flavor indices is usually quite restricted. As an example, consider the single-impurity Anderson model with the four basis states $|0 \rangle$, $| \sigma \rangle = d_{i \sigma}^\dagger |0 \rangle$, and $| \uparrow \rangle = d_{i \uparrow}^\dagger d_{i \downarrow} |0 \rangle$, $H_{\text{loc}} = U d_{i \uparrow}^\dagger d_{i \uparrow} + \mu (d_{i \downarrow}^\dagger d_{i \downarrow} + d_{i \uparrow}^\dagger d_{i \downarrow})$, and $S_{\text{hyb}} = -i \int dt dt' \sum_{\sigma} d_{i \sigma}^\dagger(t) \Lambda_{\sigma}(t, t') d_{i \sigma}(t')$. The matrix elements are nonzero only for the combinations $F_{\sigma,0} = 1$ and $F_{\bar{\sigma},\sigma} = \sigma$. Furthermore, Green’s functions are diagonal in pseudoparticle flavor, because both the interaction part and the hybridization function are diagonal in the occupation number basis. The second-order diagram for $\Sigma_{\text{num}}(t, t')$, e.g., then only allows eight possible labelings for the three internal Green’s function lines, which are $| \uparrow \rangle, | \downarrow \rangle, | \uparrow \rangle, | \downarrow \rangle, | \uparrow \rangle, | \downarrow \rangle, | \uparrow \rangle, | \downarrow \rangle$, and $| \downarrow \rangle, | \uparrow \rangle, | \uparrow \rangle, | \downarrow \rangle$, for $m = | \downarrow \rangle, | \uparrow \rangle, | \downarrow \rangle, | \uparrow \rangle$. To obtain a self-consistent solution, the hybridization expansion is evaluated iteratively solving the Dyson equation (20) for $G(t, t')$, and evaluating the integral expressions for $\Sigma(t, t')$. However, the real-time version of the expansion can easily be implemented in a slightly simpler way that exploits the causal structure of the equations. If we have computed $G(t, t')$ for $\text{Re}(t)$, $\text{Re}(t') \leq t_{\text{max}}$, then $G(t_{\text{max}} + \Delta t, t')$ and $G(t, t_{\text{max}} + \Delta t)$ can be obtained from the above mentioned iteration in only one or two steps by starting from a polynomial extrapolation of $G(t, t')$. This amounts to a stepwise propagation of the solution on the imaginary branch of C to real times.

IV. COMPARISON TO CTQMC

A. Interaction quench in the Hubbard model

Nonequilibrium DMFT for the interaction quench in the Hubbard model provides a perfect framework to benchmark the perturbative impurity solver. The Hubbard Hamiltonian

$$H(t) = \sum_{i, \sigma} V_{ij} c_{i \sigma}^\dagger c_{j \sigma} + U(t) \sum_i \left(n_{i \uparrow} - \frac{1}{2} \right) \left(n_{i \downarrow} - \frac{1}{2} \right) \tag{34}$$

describes fermions of spin one half which hop on a lattice with hopping amplitude V_{ij} and interact with a repulsion energy U on each site. To perform an interaction quench, the system is prepared in a thermal equilibrium state at temperature $T = 1/\beta$ and interaction $U(t < 0) = U_0$ for times $t < 0$, and the interaction is suddenly switched to a new value $U(t > 0) = U$ at $t = 0$.

The DMFT equations for the interaction quench have been explained in detail in Refs. [12] and [13]. In the following we assume that the hopping matrix V_{ij} has a semieliptic local density of states

$$\rho(\epsilon) = \sqrt{4 - (\epsilon/V)^2} / 2\pi V \tag{35}$$

(with half-bandwidth $2V$), and we focus on the paramagnetic state at half-filling. DMFT then reduces to a set of two self-consistent equations (18, 19). The local lattice Green’s function (3) must be determined from the single-site action (11), where the index p now labels spin $\sigma = \uparrow, \downarrow$, and the local Hamiltonian is given by

$$H_{\text{loc}}(t) = U(t) \sum_i \left(n_{i \uparrow} - \frac{1}{2} \right) \left(n_{i \downarrow} - \frac{1}{2} \right). \tag{36}$$
(ii) The hybridization function is determined by the self-consistency:

$$\Lambda_\sigma(t, t') = V^2 G_\sigma(t, t').$$

The hopping $V = 1$ is used as an energy unit, and times are measured in units of the inverse hopping ($\hbar = 1$).

Below we solve these DMFT equations by means of the self-consistent hybridization expansion and compare to results from CTQMC. In particular, we focus on the time-evolution and the thermal equilibrium value of the double occupancy per site, $d(t) = \langle n_{i\uparrow} n_{i\downarrow} \rangle$, which is a local observable and can thus be measured directly in the impurity model, i.e.,

$$d(t) = i \tilde{Q}^{-1} G_{\uparrow\downarrow}(t, t^+),$$

where $G_{\uparrow\downarrow}$ is the propagator for doubly occupied sites, and t^+ is infinitesimally later on \mathcal{C} than t.

B. The initial equilibrium state

Figure 4 shows the double-occupancy $d_{eq}(\beta, U)$ in the thermal equilibrium state at interaction U and inverse temperature β. At large enough temperature, $d_{eq}(T, U)$ decreases smoothly as a function of U (Fig. 4). As T is lowered, the curves bend strongly around $U = 4.5$ (Fig. 4b), indicating a narrow crossover between metallic and insulating behavior. Below a critical temperature T_c, the transition between metal and insulator becomes a first-order phase transition (Fig. 4). For the semielliptic density of states, the endpoint of this Mott transition is located at $U_c = 4.7$ and $T_c = 0.055$. In agreement with recent results based on a Monte Carlo sampling around NCA, we find that NCA can reproduce the CTQMC results only deep in the insulating phase. However, already the lowest order correction to NCA, i.e., OCA, very well accounts for the nonlinear behavior of $d_{eq}(U, T)$ in the crossover regime, and the third order in the self-consistent hybridization expansion almost quantitatively recovers the CTQMC results even close to the critical point (Fig. 4). The location of the critical endpoint in the phase diagram is in good agreement with previous QMC results. If we estimate T_c from the smallest β for which we can detect hysteretic behavior in $d_{eq}(\beta, U)$ (this gives actually a lower bound for T_c), we find $T_c > 1/19 \approx 0.052$ for the 3rd order and $T_c > 1/26 \approx 0.038$ for OCA (Fig. 4). NCA, on the other hand, does not display singular behavior in this parameter regime. As usual, the convergence of the DMFT equations slows down close to the critical point, and it is thus hard to get precise numbers for T_c and U_c.

The order-by-order convergence of the self-consistent hybridization expansion is also evident from the local Green’s function $G(\tau)$, both in the crossover regime (Fig. 4a) and in the insulating phase (Fig. 4b). From the value $G(\beta/2)$ one can see that NCA overestimates the insulating nature of the solution. This fact reflects a well known deficiency of NCA: The Kondo temperature T_K for the Anderson model comes out correct within NCA for $U = \infty$, but it is severely underestimated for finite interaction U. This problem can be cured by taking into account certain vertex corrections, which correspond to summing up higher order terms in the self-consistent expansion. Our results show that the third order is sufficiently accurate in a wide parameter range covering the insulating phase and the crossover regime, even close to the critical point.

Another known deficiency of the NCA is that the Fermi-liquid in the Anderson impurity model for $T \ll T_K$ is not correctly described. Because this problem cannot be cured by taking into account finite order diagrams in the hybridization expansion, one would expect that even the third order will yield wrong results in the metallic phase at low enough temperature. Empirically, we find a slow-down of the convergence as the temperature is lowered in the metallic phase, and we have not systematically studied the breakdown of the truncated self-consistent hybridization expansion deep in the metallic phase.
C. Time evolution of the double occupancy

To test the accuracy of the strong-coupling expansion for nonequilibrium problems we compute the time-evolution of the double occupancy after an interaction quench. Due to the dynamical sign problem, weak-coupling CTQMC calculations for interacting initial states\(^\dagger\) can be performed only to relatively short times \(t_{\text{max}}\), which mainly depend on the final interaction \(U(t > 0)\). However, for those \(t_{\text{max}}\) which are accessible with CTQMC, the comparison with the strong-coupling expansion reveals a similar trend as for thermal equilibrium states (Fig. 5). For quenches from the crossover region to larger interaction both the initial state and the time evolution is not correctly described within NCA, whereas OCA is more reliable, and the third order calculation recovers the CTQMC results almost quantitatively (Figs. 6a and b). While Figs. 6c and d show the longest times accessible with CTQMC, the OCA and the 3rd order calculations can be carried to substantially longer times. For a quench from the insulating phase to smaller interaction, NCA is better suited to describe the initial state, but differences to CTQMC become more pronounced during the time evolution (Figs. 6c and d).

V. MODULATION SPECTROSCOPY ON THE MOTT INSULATING PHASE

A. Introduction

To illustrate the capability of the approach, we are now going to present an application of the strong-coupling hybridization expansion in a parameter regime where the weak-coupling CTQMC approach would be numerically too expensive. Our aim is to compute the response of the double occupancy in the Mott insulator to a time-dependent change of the interaction \(U\) or the hopping amplitude \(V\). Such an experiment, with a periodic change of the hopping, was originally proposed by Kollath et al.\(^\dagger\) as a new type of spectroscopy for ultracold gases in optical lattices without direct anolog to solid state physics. In the meantime, the technique has been used as an experimental probe for the detection of the Mott insulating phase of ultracold \(^{40}\text{K}\)-atoms in an optical lattice\(^\dagger\).

In the experiments, the hopping amplitude \(V(t) = V_0[1 + \alpha \cos(\omega t)]\) is modulated sinusoidally over several tens of periods \(2\pi/\omega\).\(^\dagger\) Apart from an oscillating component \(d_{\text{osc}}(t)\) with zero time-average, the double occupancy \(d(t)\) rises linearly in time for small times, and saturates within a timescale \(\tau_{\text{sat}}\). In the Mott insulating phase, the modulation spectrum, i.e., the magnitude of the response as a function of the frequency, has a peak when \(\omega\) is approximately at resonance with the energy \(U\) that is needed for the creation of a doublon-holon pair,
and a gap at $\omega = 0.20.34$.

Because the modulation strength can be quite large, many aspects of those experiments can only be understood by means of a nonequilibrium formalism. This is certainly the case for the saturation time $\tau_{\text{sat}}^{\text{mod}}$ and for the nonequilibrium quasisteady (time-periodic) state which the system is in once it has saturated. Even when averaged over time, such a state might have properties which do not resemble any thermal equilibrium state of the system. Nonequilibrium DMFT can be used to resolve some of these issues. In the following, we demonstrate that DMFT yields a modulation spectrum which is in agreement with a recent investigation based on slave-boson mean-field theory24 and similar to what has been obtained in time-dependent density-matrix renormalization group calculations for the one-dimensional Hubbard model.24 Furthermore, we will show that a slightly different modulation procedure, namely a quench of the hopping or the interaction by a few percent, provides another probe which is sensitive to the Mott transition and the metal-insulator crossover at higher temperatures.

B. Periodic modulation of U

In the following we consider the Hubbard model 14 with a time-dependent interaction

$$U(t > 0) = U_0[1 + \alpha \cos(\omega t)],$$

where α is the relative modulation strength ($\alpha < 1$). For times $t < 0$, the system is prepared in an equilibrium state at interaction $U(t < 0) = U_0$ and temperature $T = 1/\beta$. The model is treated within nonequilibrium DMFT, assuming a semielliptic density of states 55, such that the self-consistency is given by Eq. (37). The energy scale is fixed by the quarter bandwidth $V = 1$. Because we will restrict the investigation to insulating states and to the crossover regime, we will mainly use OCA as an impurity solver.

Experimentally, the hopping is more easily tunable than the interaction, because the former is strongly affected by a change of the optical lattice depth. Our description 29 is nevertheless justified, because modulation of U and V are equivalent from a theoretical point of view, and only the ratio U/V matters. The Hubbard model $H(t)$ with time-dependent interaction 29 and time-independent hopping V_0 can be mapped onto an equivalent model with time-independent interaction U_0 and periodic hopping $V(t') = V_0/[1 + \alpha \cos(\omega t')]$, where t' is the inverse of the transformation $t' = t + \alpha \sin(\omega t)/\omega$. To lowest order in α, modulation of $U(t) = U_0[1 + \alpha \cos(\omega t)]$ and $V(t') = V_0[1 - \alpha \cos(\omega t')]$ are thus equivalent, although higher harmonic terms $\propto \alpha^n \cos(n\omega t')$ appear in $V(t')$ for large α. The equivalence can be established by a simple change of time-variables in the time-evolution operator $\mathcal{U}(t, 0) = T_e \exp[-i \int_0^t dt' \mathcal{H}(t')]$ from t to t', which yields $U'(t', 0) = \mathcal{U}(t(t'), 0)$, where $U'(t', 0)$ is the time-evolution operator for the model $H'(t')$ with periodically modulated hopping $V(t')$.

The typical time-evolution of the double occupancy $d(t)$ during a periodic modulation of U is displayed in Fig. 7. The effect of the modulation vanishes for $\omega \to 0$, and is largest close to $\omega \approx U$. The anharmonic behavior in $d(t)$ for small frequencies ω is due to a rather large amplitude $\delta U \equiv \alpha U_0$. After removing the oscillating component $d_{\text{osc}}(t)$ by taking an average $d_{\text{av}}(t) = \int_{-\tau/2}^{\tau/2} dt' d(t')$ over one period $\tau = 2\pi/\omega$, one can clearly identify an initial linear increase with a slope $\Gamma(\omega)$, followed by a trend towards saturation at longer times.

The rate $\Gamma(\omega)$ can be obtained from second order time-dependent perturbation theory, i.e., $\Gamma \propto \alpha^2$ for $\alpha \ll 1$. Linear response yields only an oscillating contribution. Since the resulting Fermi’s golden rule ex-
pression for Γ depends only on the equilibrium state of the system at $U = U_0$, it would be best to measure $\Gamma(\omega)$ directly in the limit $\alpha \to 0$. To extract the slope $\Gamma(\omega)$, one has to go to small amplitudes α anyway, because only then does the linear region extend over many oscillation periods. On the other hand, experiments are performed at quite large α in order to obtain a good signal to noise ratio, and the magnitude of the response is defined by the value of the double occupancy $d_{av}(t)$ at a given time t_0. Usually, t_0 is chosen so large that $d_{av}(t)$ is no longer linearly increasing at $t = t_0$.

In Fig. [7] we compare two ways to quantify the response: Either (i), the increase of the double occupancy $d_{av}(t_0) - d(0)$ is measured at a given time t_0 for large modulation amplitudes as a function of frequency, or (ii), the slope $\Gamma(\omega)$ is obtained from a linear fit to the initial increase for smaller amplitudes α. Both approaches give a modulation spectrum with a peak at $\omega \approx U$, and a gap at $\omega = 0$. Similar to the findings of the previous section, the NCA solution slightly overestimates the insulating nature of the solution compared to the more reliable OCA. Like in the one-dimensional case, our data show that the location of the peak at $\omega \approx U$ is not considerably shifted if the measurement is no longer performed at $\alpha \ll 1$. The gap, on the other hand, is most reliably extracted from the second approach (ii). In the following we will only focus on the peak, and not investigate the low frequency weight in detail.

Figure [5] displays the peak in the modulation spectrum for various values of U_0. For the semielliptic density of states, the first-order phase transition line terminates at $U_c \approx 4.7$ and $T_c \approx 0.055$. The zero-temperature transition is located at $U_{c2} \approx 6$. Hence the data in Fig. [5], which are computed at $T = 0.1$, correspond to a cut through the crossover region of the metal-insulator phase diagram. The peak in the modulation spectrum is clearly visible all throughout the insulating phase and the crossover regime between metal and insulator. Its position $\omega_{\text{max}}(U_0)$ scales linearly with U_0 in the insulating phase (Fig. [5]), while in the crossover regime we find only a weak dependence on U_0. This finding is in good agreement with results for $\Gamma(\omega)$ from slave-boson mean-field theory [24] where peaks around $\omega \approx U$ and $\omega \approx U_{c2}$ are predicted for the insulating phase and the metallic phase, respectively. In the slave-boson approach, these spectral features arise from excitations between the Hubbard bands in the insulator, and between pre-formed Hubbard bands in the metallic phase.

Since our calculation is performed at temperatures above T_c and the pre-formed Hubbard bands shift with U, the almost kink-like $\omega_{\text{max}}(U_0)$ seems very remarkable. It should be investigated whether the third order in the expansion leads to a smoothening of this feature. This will require quite some numerical effort (although it is still feasible using small-scale parallelization), and it is thus left to future work, which should involve a more realistic setup.

Another interesting topic is the saturation of $d_{av}(t)$ at large times. A scaling of the time-axis with α^2 indicates that the saturation time τ_{sat} behaves like α^{-2} in the insulating phase for frequencies $\omega = U$ (Fig. [7]), while the saturation value $d_{av}(t) \to \infty$ does not depend sensitively on δU. However, due to the long times needed to reach saturation at small δU, this result has so far only been computed using NCA as an impurity solver, which is reliable only deep in the insulating phase. A dependence $\tau_{\text{sat}} \propto \alpha^{-2}$ would be consistent with an incoherent pumping mechanism into a doublon-holon continuum [55].

C. Quench-like modulation of U

Modulation spectroscopy for the double occupancy is in principle not restricted to the periodic modulation Eq. (39). In particular, a small interaction quench from $U(t < 0) = U_0$ to $U(t > 0) = U_0 + \delta U$, or an equivalent quench of the hopping, can be viewed as a modulation experiment as well. In order to extract a frequency-dependent response signal, we define the Fourier transform

$$\tilde{d}(\omega) = \text{Re} \int_{0}^{t_{\text{max}}} dt e^{i\omega t} [d(t) - d(t_{\text{max}})],$$

where t_{max} is the maximum time reached in the simulation, and $d(t) = (1/Z)\text{Tr}[e^{-\beta H_0}e^{iHt}de^{-iHt}]$ is the time-dependent double occupancy. Using first-order perturbation theory one obtains

$$\tilde{d}(\omega) = \omega^{-1} \text{Im} \chi(\omega) + O[(\delta U)^2],$$

where $\chi(\omega) = \int_{0}^{\infty} ds e^{i(\omega + i0^+)s} \chi(s)$ is the Fourier transform of linear response function

$$\chi(s) = -i \frac{1}{Z} \text{Tr}[e^{-\beta H}e^{iHs}de^{-iHs}, d].$$
VI. CONCLUSION

In this paper we have presented a self-consistent diagrammatic strong-coupling expansion on the Keldysh contour, which can be used to solve the Anderson impurity model in rather general nonequilibrium situations. The main purpose of this study was the development of an impurity solver for nonequilibrium DMFT which can cover the regime of large interactions and relatively long times. By comparing results from our strong-coupling expansion to numerically exact weak-coupling CTQMC for the Hubbard model, we found that the strong-coupling expansion is a good candidate to fulfill these requirements: While it fails in the metallic phase and at very low temperatures, and while the first order or non-crossing approximation is correct only deep in the insulating phase, an important correction arises already in the second order (OCA). In the insulating phase and in the crossover regime the latter gives quite reliable results, which can be brought into almost quantitative agreement with CTQMC by going to the third order of the expansion.

Although the numerical effort for the evaluation of the diagrams rises considerably with the expansion order, even calculations up to third order can be carried to substantially longer times than CTQMC, because the latter suffers from an exponential increase of the computational cost due to the dynamical sign problem. We thus believe that the strong-coupling expansion will allow to extend nonequilibrium DMFT investigations into the parameter regime of rather strong interactions and not too low temperatures which was so far not accessible within weak-coupling CTQMC. It is precisely this parameter regime which is relevant for many experiments with cold atomic gases\cite{17,18} and pump-probe spectroscopy. The broad range of possible applications of DMFT in this field includes the excitation of the Mott insulating phase by a short laser pulse (similar to the experiments in Refs. 3 and 4), the response of the Mott insulator to very strong electrical fields that might lead to a dielectric breakdown\cite{19} or an extended investigation of the interaction quench in the Hubbard model\cite{20}.

In the last part of the paper we have used the self-consistent hybridization expansion as an impurity solver within nonequilibrium DMFT in order to study the generation of doubly occupied sites in a Mott insulator by a time-dependent variation of the interaction or hopping strength. In agreement with previous investigations\cite{20,21,22} the modulation spectrum was found to have a gap at $\omega = 0$ and a pronounced maximum at $\omega \approx U$. The maximum persists in the crossover regime, but its location is then no longer proportional to U. Furthermore, we have studied the double occupancy $d(t)$ as a function of time after small interaction quenches. In the crossover regime, the behavior of $d(t)$ is drastically changing, which is most clearly evidenced by the disappearence of the gap in the Fourier transform of $d(t)$. Although the absolute changes of the double occupancy are small, its time-evolution

![Figure 9](image-url)

FIG. 9: (a) The double occupancy after quenches from $U = U_0$ to $U = U_0 - \delta U$, with $\delta U = 0.5$, $\beta = 10$, and $U_0 = 7, 6, 5.6, 5, 4.5$. OCA has been used as an impurity solver. (b) Fourier transform of the data in (a).
may thus yield a sensitive probe of the metal-to-insulator crossover in the Hubbard model.

An interesting next step would now be to repeat similar calculations in a more realistic setup, e.g., on a cubic lattice. A careful comparison of results from the self-consistent hybridization expansion up to second and third order, and from CTQMC (for small times) will allow to make definite experimental predictions, such as for the modulation spectrum in the insulating phase and the crossover regime, and for the saturation behavior of the double occupancy.

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant PP002-118866). CTQMC calculations were run on the Brutus cluster at ETH Zurich, using the ALPS library.

1. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
2. S. Iwai, M. Ono, A. Maeda, H. Matsuzaki, H. Kishida, H. Okamoto, and Y. Tokura, Phys. Rev. Lett. 91, 057401 (2003).
3. L. Perfett, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, Phys. Rev. Lett. 97, 067402 (2006); New J. of Phys. 10, 053019 (2008).
4. S. Wall, D. Brida, S. R. Clark, H. P. Ehrke, D. Jaksch, D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav and M. A. Kastner, Nature 391, 156 (1998).
5. M. Eckstein and M. Kollar, arXiv:cond-mat/0202046 (unpublished); P. Schmidt, Diploma thesis, University of Bonn (1999).
6. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
7. G. Kotliar and D. Vollhardt, Phys. Today 57 (3), 53 (2004).
8. J. K. Freericks, V. M. Turkowski, and V. Zlatic, Phys. Rev. Lett. 97, 266408 (2006).
9. J. K. Freericks, Phys. Rev. B 77, 075109 (2008).
10. N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. B 78, 235124 (2008).
11. N. Tsuji, T. Oka, and H. Aoki, Phys. Rev. Lett. 103, 047403 (2009).
12. M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404 (2008).
13. M. Eckstein and M. Kollar, arXiv:0911.1282 (to appear in New Jour. of Phys.).
14. M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. Lett. 103, 056403 (2009).
15. M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B 81, 115131 (2010).
16. C. Kollath, A. Iucci, I. P. McCulloch, and T. Giamarchi, Phys. Rev. A 74, 041604R (2006).
17. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, Nature 455, 204 (2008).
18. N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler, Phys. Rev. Lett. 104, 080401 (2010).
19. U. Brandt and C. Mielsch, Z. Phys. B 75,365 (1989).
20. P. Werner, T. Oka and A. J. Millis, Rev. B 79, 035320 (2009).
21. M. Schiró, arXiv:0911.0184
22. A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).
23. E. Gull, P. Werner, O. Parcollet, and M. Troyer, Europhys. Lett. 82, 57003 (2008).
24. P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
25. Ph. Werner, T. Oka, M. Eckstein, and A. J. Millis, Phys. Rev. B 81, 035108 (2010).
26. H. Keiter and J. C. Kimball, Intern. J. Magnetism 1, 233 (1971); J. Appl. Phys. 42, 1460 (1971).
27. N. Grewe and H. Keiter, Phys. Rev. B 24, 4420 (1981).
28. Y. Kuramoto, Z. Phys. B 53, 37 (1983).
29. S. E. Barnes, J. Phys. F 6, 1375 (1976).
30. P. Coleman, Phys. Rev. B 53, 271 (1984).
31. N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B 36, 2036 (1987).
32. N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
33. Th. Pruschke and N. Grewe, Z. Phys. B 74, 439 (1989).
34. J. H. Shim, K. Haule, and G. Kotliar, Nature 446, 513 (2007).
35. J. H. Shim, K. Haule and G. Kotliar, Science 318, 1615 (2007).
36. K. Haule, Ch.-Hou Yee, K. Kim, arXiv:0907.0595
37. P. Nordlander, M. Pustilnik, Y. Meir, N. S. Wingreen, and L. V. Keldysh, J. Exptl. Theoret. Phys. 20, 1018 (1965).
49. J. W. Negele and H. Orland, *Quantum Many-Particle Systems*, Addison-Wesley, Redwood City, 1988.

50. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev. 127, 1391 (1962).

51. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

52. For a derivation of this equation in the nonequilibrium case, see M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, and F. A. Wolf, Eur. Phys. J. Special Topics (2010), in press.

53. N. Blümer, *Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions* (PhD thesis), Shaker Verlag, Aachen, 2003.

54. S. D. Huber and A. Rüegg Phys. Rev. Lett. 102, 065301 (2009).

55. F. Hassler and S. D. Huber, Phys. Rev. A 79, 021607 (2009).

56. T. Oka, R. Arita, and H. Aoki, Phys. Rev. Lett. 91, 066406 (2003); T. Oka, N. Konno, R. Arita, and H. Aoki, Phys. Rev. Lett. 94, 100602 (2005).

57. A. F. Albuquerque et al., Journal of Magnetism and Magnetic Materials 310, 1187 (2007).