Significance of Ventricular Arrhythmia Based on Stored Electrogram Analysis in a Pacemaker Population

Junya Hosoda,1 MD, Toshiyuki Ishikawa,1 MD, Katsumi Matsumoto,1 MD, Masayoshi Kiyokuni,1 MD, Yuka Taguchi,1 MD, Masatoshi Narikawa,1 MD, Kiyoshi Hibi,1 MD, Teruyasu Sugano,1 MD, Tomoaki Ishigami,1 MD, Kouichi Tamura,1 MD and Kazuo Kimura,1 MD

Summary

The incidence of ventricular arrhythmia in patients with an implanted pacemaker is not yet known. The aim of this study was to analyze non-sustained ventricular tachycardia (NSVT) episodes based on stored electrograms (EGM) and determine the occurrence rate and risk factors for NSVT in a pacemaker population.

This study included 302 consecutive patients with a dual-chamber pacemaker. A total of 1024 EGMs stored in pacemakers as ventricular high-rate episodes were analyzed. The definition of NSVT was ≥ 5 consecutive ventricular beats at ≥ 150 bpm lasting < 30 seconds.

In baseline, most patients (94.8%) had ≥ 60% left ventricular ejection fraction. Of 1024 EGMs, 420 (41.0%) showed appropriate NSVT episodes, as well as premature atrial contractions, atrial tachyarrhythmia, or atrial fibrillation with a rapid ventricular response, whereas other EGMs did not show an actual ventricular arrhythmia. On EGM analysis, during a mean follow-up period of 46.1 months, NSVT occurred one or more times in 82 patients (33.1%). On multivariate analysis, ≥ 50% right ventricular pacing was an independent risk factor for NSVT (odds ratios, 4.519; P < 0.001), but NSVT was not associated with increased all-cause mortality.

Moreover, in the pacemaker population, ≥ 50% right ventricular pacing is an independent risk factor for NSVT; however, NSVT was not associated with increased all-cause mortality because of the preserved left ventricular function.

(Int Heart J 2020; 61: 922-926)

Key words: Non-sustained ventricular tachycardia, Right ventricular pacing, Outcomes

Over the last 50 years, approaches and developments for cardiac implantable electronic device have continued. Current implanted pacemakers have the capacity to record multiple types of atrial and ventricular arrhythmia, including non-sustained ventricular tachycardia (NSVT), which has been shown to be the most common event observed on routine pacemaker follow-up.13 The incidence and significance of NSVT have been reported in the implantable cardioverter defibrillator (ICD) population with low left ventricular ejection fraction (LVEF) or coronary artery disease (CAD).23 However, the incidence and clinical impact of ventricular arrhythmia in patients with an implanted pacemaker are not yet known. The aim of this study was to analyze NSVT episodes based on stored electrograms (EGM) and determine the occurrence rate and risk factors for NSVT in a pacemaker population.

Methods

This study included 302 consecutive patients who had undergone implantation of a dual-chamber pacemaker at Yokohama City University Hospital between 2011 and 2017. All patients had a class I or II indication for pacemaker implantation according to guidelines of the Japanese Circulation Society.6 Patients with NSVT detected by resting electrocardiograms (ECGs) or 24-hour Holter ECG recordings, continuous atrial fibrillation, or a history of AV node ablation were excluded. Therefore, a total of 248 patients were retrospectively analyzed in the present study.

Baseline patient characteristics, including physical examination findings, underlying disease, and 12-lead ECG, were collected just before implantation of the pacemaker. Settings of the pacemaker, such as lower rate, were decided by each physician. The patients were followed at 1 month after implantation of the pacing system and every 5 months thereafter during the study. At each follow-up, the stored data on the pacemaker memory were retrieved, and a total of 1024 EGMs related to ventricular high-rate episodes were collected. The detected and stored criteria of the ventricular high-rate episodes were nominal settings in all pacemakers. Each waveform of these stored EGMs

From the Department of Medical Science and Cardio-renal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Address for correspondence: Junya Hosoda, MD, Department of Cardiology, Yokohama City University Hospital, 3-9 Fukaura, Kanazawa-ku, Yokohama 236-0004, Japan. E-mail: j_hosoda@yokohama-cu.ac.jp
Received for publication February 28, 2020. Revised and accepted May 5, 2020.
Released in advance online on J-STAGE September 12, 2020.
doi: 10.1536/ihj.20-141
All rights reserved by the International Heart Journal Association.
VENTRICULAR ARRHYTHMIA IN A PACEMAKER POPULATION

Figure 1. Electrogram of appropriate NSVT episode consisting of 13 ventricular beats with atrioventricular dissociation. Atrial and ventricular electrograms are shown in the upper tracing and atrial and ventricular markers in the lower tracing.

was carefully analyzed. In this study, NSVT was defined as ≥ 5 consecutive ventricular beats at ≥ 150/minutes lasting < 30 seconds. This threshold was chosen to balance the default settings for NSVT detection of each manufacturer. The definition of the patients with NSVT was those with one or more past histories of NSVT after implantation.

This study was approved by the Yokohama City University Hospital Ethics Committee (B190300030).

Statistical analysis: Comparisons of quantitative and categorical variables between groups were performed using Pearson chi-squared test or Student’s t-test. All continuous data were expressed as mean ± standard deviation. Univariate or multivariate Cox regression models with a forward stepwise approach were run to assess crude and multivariate adjusted odds ratios (ORs), which were presented with 95% confidence intervals (CIs). For all tests, \(P < 0.05 \) was considered statistically significant. All statistical analysis was carried out using SPSS.

Results

Baseline characteristics: The mean age of the study population was 72.0 years, 55.6% of which were male. Indications in all patients for original pacemaker implantation were atrioventricular block (AVB) in 50.4%, sick sinus syndrome (SSS) in 48.8%, and others in 0.8%. The underlying diseases were hypertension in 55.2%, diabetes mellitus in 17.7%, paroxysmal atrial fibrillation in 37.1%, cerebral infarction in 6.5%, and CAD in 17.3%. The mean LVEF was 68.4 ± 9.9%, and most patients (94.8%) had ≥ 60% LVEF. The proportion of patients receiving an anti-coagulant drugs at the time of discharge after pacemaker implantation was 50.4%, which also included β-blocker in 17.7%, angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker in 35.1%, and anti-arrhythmic drug (AAD) in 13.7%. AAD, however, consisted of flecainide in 35.2%, bepridil in 26.5%, cibenzoline in 14.7%, pilsicainide in 14.7%, and others. Device manufacturers included St. Jude Medical (28.0%), Medtronic (24.0%), Boston Scientific (21.7%), SORIN (15.4%), and Biotronik (10.9%).

EGM analysis of ventricular high-rate episodes: During a mean follow-up period of 46.1 months, a total of 1024 EGMs stored on the pacemaker memory were collected as ventricular high-rate episodes. Of 1024 EGMs, 420 (41.0%) showed NSVT episodes (Figures 1, 2). The other EGMs did not show actual ventricular episodes and showed premature atrial contractions in 219 (21.4%), atrial tachycardia in 215 (21.0%), atrial fibrillation in 113 (11.0%), paroxysmal supraventricular tachycardia or atrioventricular junctional rhythm in 32 (3.1%), sinus tachycardia in 14 (1.4%), far-field atrial sensing by ventricular lead in 9 (0.9%), and electromagnetic noise in 2 (0.2%) (Figures 3, 4).

Occurrence rate and risk factors for NSVT: EGM analysis revealed that NSVT occurred one or more times in 82 patients (33.1%) during the follow-up period. All 82 patients were free of symptoms. Baseline characteristics according to NSVT are listed in Table I. In NSVT group, male gender and AVB were more prevalent. We focused on the cumulative percent of right ventricular pacing, which was calculated as the ratio of right ventricular pacing beats to the total beats during the life of the pacemaker. The mean right ventricular pacing percent in NSVT group was significantly higher than that in no NSVT group (72.0% versus 38.5%, \(P < 0.001 \)). In the present study, the cut-off value of the mean right ventricular pacing percent was defined as 50%, which was used in prior studies.\(^7\)\(^8\)

In univariate Cox regression analysis, ≥ 50% right ventricular pacing was associated with a higher risk of NSVT (odds ratio = 4.652, 95% CI 2.612-8.286, \(P < 0.001 \)). Other clinical variables, including male gender, were associated with NSVT (Table II). Multivariate Cox regression analysis controlling for age and sex revealed that ≥ 50% right ventricular pacing was an independent risk factor for NSVT (odds ratio = 4.519, 95% CI 2.480-8.237, \(P < 0.001 \)) (Table III). Furthermore, right ventricular pacing percent itself was a strong risk factor for NSVT.
Figure 2. Electrogram of appropriate NSVT episode consisting of 18 ventricular beats with atrioventricular dissociation. Atrial and ventricular electrograms are shown in the upper tracing and atrial and ventricular markers in the lower tracing.

Figure 3. Electrogram of atrial tachycardia consisting of fast regular atrial activity with transmitted ventricular 1:1 conduction. Atrial and ventricular electrograms are shown in the upper tracing and atrial and ventricular markers in the lower tracing.

(odds ratio = 1.016 per 1% increase, $P < 0.001$). In addition, subgroup analysis was performed in the SSS patient group. SSS patients with $\geq 50\%$ right ventricular pacing had a statistically higher rate of NSVT compared with SSS patients with $< 50\%$ right ventricular pacing (65.0% versus 15.3%, $P < 0.001$).

Impact of ventricular pacing and NSVT on clinical outcomes: During the follow-up period, 35 (14.1%) of 248 patients died of any cause, including 7 (2.8%) cardiovascular deaths. In Kaplan-Meier analysis, there was no evidence for the effect of NSVT on increased all-cause mortality. Furthermore, there was no association between the fastest cycle length of NSVT and all-cause mortality.

Discussion

The major findings of the present study are that 82 (33.1%) patients had episodes of NSVT documented by stored EGM and that $\geq 50\%$ right ventricular pacing is an independent risk factor for NSVT in the pacemaker population. However, NSVT was not associated with increased all-cause mortality.

There are several studies on the burden of NSVT in a pacemaker population. The first study of NSVT, which enrolled 231 patients with a pacemaker, showed that 54 (25.7%) patients had episodes of NSVT documented by stored EGM.9) Seth, et al. suggested that 223 of 1125 patients (20%) with an implanted pacemaker had NSVT.10) In a recent prospective cohort study, among 565 patients with long-term pacemakers, NSVT was found in 125 (22.1%).11) In this study, the occurrence rate of NSVT in a pacemaker population was 33.1%, which is similar to that in previous studies.

Furthermore, in the present study, we focused on the cumulative percent of right ventricular pacing. In previous studies, frequent right ventricular pacing correlated with asynchronous ventricular contraction and an increased incidence of heart failure in the pacemaker or ICD popula-
of the indication for the pacemaker implantation.

In this study, however, NSVT was not associated with all-cause mortality. In a large cohort study including 1125 patients with a pacemaker, there were 93 deaths, with no differences in survival between the NSVT and no NSVT groups during a mean follow-up of 2.8 years.10 Gabries, et al. analyzed all 262 patients with an implanted Medtronic pacemakers and suggested that NSVT was not associated with increased mortality.17 In the US population without a pacemaker, the long-term outcome in asymptomatic subjects with no structural heart disease and frequent and complex ventricular ectopy was similar to that of the healthy US population, with no increased risk

Table I. Baseline Characteristics According to NSVT

	NSVT (n = 82)	No NSVT (n = 166)	P-value
Age (years)	72.1 ± 12.7	72.0 ± 14.1	0.958
Male	60 (74%)	76 (46%)	< 0.001
Right ventricular pacing percent	72.0 ± 41.8	38.5 ± 45.2	< 0.001
Atrialventricular block	54 (66%)	70 (42%)	< 0.001
Hypertension	52 (63%)	85 (51%)	0.069
Diabetes mellitus	16 (18%)	28 (17%)	0.874
Atrial fibrillation	23 (29%)	68 (41%)	0.073
Heart failure	5 (6%)	8 (5%)	0.871
LVEF (%)	66.2 ± 10.5	69.4 ± 9.4	0.099

Table II. Univariate Risk Factors for NSVT

Variables	Odds Ratio	95% CI	P-value
≥ 50% right ventricular pacing	4.652	2.612-8.286	< 0.001
Male	3.357	1.876-6.010	< 0.001
Hypertension	1.652	0.960-2.842	0.070
Atrial fibrillation	0.596	0.338-1.052	0.074
LVEF	0.968	0.932-1.005	0.090
Anti-arrhythmia agent	0.480	0.200-1.155	0.102
Anticoagulant agent	0.676	0.374-1.221	0.195
β-blocker	0.820	0.404-1.668	0.585
Heart failure	1.063	0.512-2.204	0.870
Age	1.001	0.981-1.020	0.958

LVEF indicates left ventricular ejection fraction.

Table III. Multivariate Risk Factors for NSVT

Variables	Odds Ratio	95% CI	P-value
≥ 50% right ventricular pacing	4.519	2.480-8.237	< 0.001
Male	3.074	1.665-5.674	< 0.001
Age	1.007	0.986-1.028	0.521

NSVT indicates non-sustained ventricular tachycardia; LVEF, left ventricular ejection fraction; ACE-I, angiotensin-converting enzyme inhibitor; and ARB, angiotensin receptor blocker.

To our knowledge, research focused on the right ventricular pacing percent and occurrence rate of NSVT has not yet been reported. In the present study, ≥ 50% right ventricular pacing was an independent risk factor for NSVT (OR, 4.519; P < 0.001). This cut-off value of 50% was used in prior studies.7,10,12-16 The vast majority of patients had right ventricular pacing under 10% (41.5%) or over 90% (45.1%), with the remaining patients spread fairly evenly between 10% and 90%. Therefore, in further analysis using a different pacing percent cut-off value of 40%, 70% or 90%, very similar findings were obtained. Subgroup analysis in the SSS patient group revealed that SSS patients with ≥ 50% right ventricular pacing had a statistically higher rate of NSVT compared with patients with < 50% right ventricular pacing (65.0% versus 15.3%, P < 0.001). This finding could support the idea that ventricular pacing itself was a risk factor for NSVT, independent of the indication for the pacemaker implantation.

Figure 4. Electrogram of electromagnetic noise. Atrial and ventricular electrograms are shown in the upper tracing and atrial and ventricular markers in the lower tracing.
of death.19 On the other hand, some studies suggested that NSVT may be a predictor of sudden cardiac death in patients with ischemic heart disease, hypertrophic cardiomyopathy, or dilated cardiomyopathy.19-21 However, in the present study, most patients (94.8% in this study population) had \textgreater{} 60% LVEF, and many patients (84.7% in this study population) did not have structural heart disease. Therefore, the reason for these benign outcomes in a pacemaker population was that the majority of patients had normal or near-normal left ventricular function at the time of implantation.

The present study has several limitations. One possible limitation is the retrospective analysis in a single center. Another possible limitation is that a limited number of EGMs can be stored due to the finite storage capability of the pacemaker, although all of the NSVT episodes can be counted. Further study with a larger sample size is needed to confirm the present study results.

Conclusion

Stored EGM analysis is useful to detect NSVT in patients with an implanted pacemaker. A higher percent of right ventricular pacing is an independent risk factor for NSVT in the pacemaker population. However, NSVT was not associated with all-cause mortality because of the preserved left ventricular function.

Disclosure

Conflicts of interest: None.

References

1. Crossley GH, Chen J, Choucair W, et al. Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers. J Am Coll Cardiol 2009; 54: 2022-9.
2. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002; 346: 877-83.
3. Buxton AE, Fisher JD, Josephson ME, et al. Prevention of sudden death in patients with coronary artery disease: The Multicenter Unsustained Tachycardia Trial (MUSTT). PACE 1993; 36: 215-26.
4. Zhou X, Gunderson BD, Olson WH, Gem DR ICD Clinical Worldwide Investigators. Incidence of nonsustained and sustained ventricular tachyarrhythmias in patients with an implantable cardioverter-defibrillator. J Cardiovasc Electrophysiol 2004; 15: 14-20.
5. Mittal S, Lomnitz DJ, Mirchandani S, et al. Prognostic significance of nonsustained ventricular tachycardia after revascularization. J Cardiovasc Electrophysiol 2002; 13: 342-6.
6. JCS Joint Working Group. Guidelines for non-pharmacotherapy of cardiac arrhythmias (JCS 2011). Circ J 2013; 77: 249-74.
7. Steinberg JS, Fischer A, Wang P, et al. The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol 2005; 16: 359-65.
8. Barshehst A, Moss AJ, McNitt S, et al. Long-term implications of cumulative right ventricular pacing among patients with an implantable cardioverter-defibrillator. Heart Rhythm 2011; 8: 212-8.
9. Faber TS, Gradinger R, Treusch S, et al. Incidence of ventricular tacharyrhythmias during permanent pacemaker therapy in low-risk patients results from the German multicentre EVENTS study. Eur Heart J 2007; 28: 2238-42.
10. Seth N, Kaplan R, Bustamante E, et al. Clinical significance of nonsustained ventricular tachycardia on routine monitoring of pacemaker patients. Pacing Clin Electrophysiol 2015; 38: 980-8.
11. Jamil HA, Mohammed SA, Gierula J, et al. Prognostic significance of incidental nonsustained ventricular tachycardia detected on pacemaker interrogation. Am J Cardiol 2019; 123: 409-13.
12. Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: The Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002; 288: 3115-23.
13. Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 2003; 107: 2932-7.
14. Stockburger M, Celebi O, Krebs A, et al. Right ventricular pacing is associated with impaired overall survival, but not with an increased incidence of ventricular tacharyrhythmias in routine cardioverter/defibrillator recipients with reservedly programmed pacing. Europace 2009; 11: 924-30.
15. Witt CM, Lenz CJ, Shih HH, et al. Right ventricular pacemaker lead position is associated with differences in long-term outcomes and complications. J Cardiovasc Electrophysiol 2017; 28: 924-30.
16. Okada M, Kashiwase K, Hirata A, et al. Clinical influence and predictors of pacing-induced mechanical asynchrony in patients with normal cardiac function with ventricular lead placed in non-apical position. Int Heart J 2018; 59: 1275-87.
17. Gabriels J, Wu M, Rosen L, Patel A, Goldner B. Clinical significance of nonsustained ventricular tachycardia on stored electrograms in permanent pacemaker patients. Pacing Clin Electrophysiol 2016; 39: 1335-9.
18. Kennedy HL, Whitlock JA, Sprague MK, Kennedy LJ, Buckingham TA, Goldberg RJ. Long-term follow-up of asymptomatic healthy subjects with frequent and complex ventricular ectopy. N Engl J Med 1985; 312: 193-7.
19. McLenachan JM, Henderson E, Morris KI, Dargie HJ. Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med 1987; 317: 787-92.
20. Monserrat L, Elliott PM, Gimeno JR, Sharma S, Penas-Lado M, McKenna WJ. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: An independent marker of sudden death risk in young patients. J Am Coll Cardiol 2003; 42: 873-9.
21. Grimm W, Christ M, Bach J, Müller HH, Maisch B. Non-invasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: Results of the Marburg cardiomyopathy Study. Circulation 2003; 108: 2883-91.
22. Spirito P, Raperzi C, Autore C, et al. Prognosis of asymptomatic patients with hypertrophic cardiomyopathy and nonsustained ventricular tachycardia. Circulation 1994; 90: 2743-7.
23. Adabag AS, Casey SA, Kuskowski MA, Zenovich AG, Maron BJ. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol 2005; 45: 697-704.