Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties

Semih DOĞAN, Süreyya Oğuz TÜMA, Ceylan MUTLU BALCI, Serkan YEŞİLOT, Serap BEŞLİ

Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey

Received: 24.05.2019 • Accepted/Published Online: 03.09.2019 • Final Version: 11.02.2020

Abstract: In this study, a series of cyclotriphosphazene derivatives containing a Schiff base (3a–3d) were synthesized by the reactions of hexachlorocyclotriphosphazene (1) with bis-aryl Schiff bases (2a–2d) having different terminal groups (H, F, Cl, and Br). The products (3a–3d) were characterized by elemental and mass analyses, FT-IR, and 1H, 13C, and 31P NMR spectroscopies. Furthermore, the structure of compound 3a was also determined by X-ray crystallography. The thermal behaviors and the spectral properties of the new cyclotriphosphazene compounds (3a–3d) were investigated and the results were compared in the series.

Key words: Cyclotriphosphazene, Schiff base, thermal stability, UV absorption, substituent effect

1. Introduction

Heterocyclic systems containing mainly phosphorus, nitrogen, sulfur, and oxygen atoms compose a large class of inorganic compounds and they have applications in various areas [1–5]. The cyclophosphazenes, (NPCl2)3,4, are among the most important members of these systems [3–7]. Cyclotriphosphazene and its derivatives have particularly great stability thanks to their six-membered ring structures. In addition, their physical and chemical properties can be adjusted via appropriate groups substituted on the phosphorus atoms [6–15].

Schiff bases (imines) are among the most popular classes of organic compounds due to their excellent kinetic and thermodynamic stabilities and potential photoelectric properties [16–21]. Aryl Schiff bases, which contain a classical π-conjugated system, have potential optoelectronic properties [16,17,22,23]. There are important influences on the molecular properties due to the substituents on the aromatic rings of an aryl Schiff base [16,24,25].

Although some cyclophosphazene derivatives containing Schiff bases were randomly synthesized in recent years [8,26–32], their thermal stabilities and absorbance properties have not been investigated systematically. In this study, it was planned to synthesize a thermally stable new type of heterocyclic structures by combining the thermal properties of hexachlorocyclotriphosphazene and Schiff bases. Schiff bases (2a–2d) including H, F, Cl, and Br atoms at the para position on the terminal phenyl ring were prepared and then cyclotriphosphazene (1) was sequentially reacted with the bases. The thermal stabilities of Schiff base-substituted cyclotriphosphazenes (3a–3d) were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)

∗ This work is dedicated to our supervisor, Prof. Dr. Adem Kılıç, on his retirement.
∗∗ Correspondence: besli@gtu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
techniques, while their absorbance spectral properties were investigated in different solvent systems by UV-Vis spectrometry. Thermal analysis results demonstrated that the thermal stability of the cyclotriphosphazenes containing Schiff bases was significantly higher than that of corresponding Schiff bases. Their UV absorption spectra, which were measured in different solvent systems, showed that λ_{max} of compounds from 3a–3d shifts to the red region.

2. Experimental

2.1. Materials and physical measurements

Hexachlorocyclotriphosphazene (Aldrich) was purified by fractional crystallization from n-hexane. Dichloromethane (DCM; Merck), n-hexane (Merck), n-heptane (Merck), absolute ethanol (Merck), 4-aminophenol (Aldrich), benzaldehyde (Aldrich), 4-fluorobenzaldehyde (Aldrich), 4-chlorobenzaldehyde (Aldrich), and 4-bromobenzaldehyde (Aldrich) were used as received. Tetrahydrofuran (THF; Merck) was distilled over a sodium/potassium alloy under an atmosphere of dry argon. For sodium hydride with 60% dispersion in mineral oil (Merck, prior to use the oil was removed by washing with dry n-hexane followed by decantation. All reactions were performed under a dry argon atmosphere. CDCl$_3$ and dimethyl sulfoxide (DMSO-d$_6$) for NMR spectroscopy were obtained from Merck. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel plates (Merck, Kieselgel 60, 0.25 mm thickness) with F$_{254}$ indicator. Elemental analyses were obtained using an ELEMENTAR Vario MICRO Cube. Mass analyses were recorded on a Bruker MALDI-TOF (matrix-assisted laser desorption/ionization-time-of-flight) spectrometer using 1,8,9-trihydroxyanthracene as a matrix for compounds 3a–3d. Infrared spectra were recorded on a PerkinElmer Spectrum 100 Two spectrometer with ATR in the region of 4000–650 cm$^{-1}$. 1H, 13C, and 31P NMR spectra were recorded for all compounds in CDCl$_3$ for 3a and 3b and DMSO-d$_6$ for 3c and 3d on a Varian INOVA 500 MHz spectrometer using TMS as an internal reference for 1H and 13C and 85% H$_3$PO$_4$ as an external reference for 31P NMR measurements. Electronic absorption spectra in solution were recorded using a Shimadzu 2101 PC UV spectrophotometer. The thermal analyses were performed on Mettler Toledo TGA/SDTA 851 and Mettler Toledo DSC 822 devices. The TGA were measured between 25°C and 700°C with 10°C/ min and under 50 mL/min N$_2$ flow. The DSC data were recorded between room temperature (RT) and 300°C. The heating rate was also 10°C/min.

2.2. X-ray crystallography

Intensity data were recorded on a Bruker APEX II QUARZAR diffractometer using monochromated Mo K$_\alpha$, X-radiation ($\lambda = 0.71073$ Å). Absorption correction was performed by the multiscan method implemented in SADABS [33] and space groups were determined using XPREP implemented in APEX2 [34]. Structures were determined using the direct methods procedure in SHELXS-97 and refined by full-matrix least squares on F2 using SHELXL-97 [35]. All nonhydrogen atoms were refined with anisotropic displacement factors and C-H hydrogen atoms were placed in calculating positions and allowed to ride on the parent atom. The final geometrical calculations were carried out with the PLATON [36] and MERCURY [37] programs and the molecular drawings were done with the DIAMOND [38] program. Structure determination was deposited with the Cambridge Crystallographic Data Centre with reference CCDC 1865974 for compound 3a. Although the synthesis of compound 3a exists in the literature [26], the molecular structure of compound 3a has been determined by X-ray crystallography for the first time in this study.
2.3. Synthesis

2.3.1. Synthesis of Schiff bases (2a–2d)

The preparations of Schiff bases (2a–2d) were as reported in the literature [16,39]. Schiff bases were prepared by the condensation of 0.1 mol of the corresponding benzaldehyde and 0.1 mol of 4-aminophenol in ethanol for 3 h under reflux. The products crystallized while cooling and were recrystallized from ethanol several times for purification.

2.3.2. General procedure used for synthesis of compounds 3a–3d

Compound 2a (2.13 g; 10.8 mmol) was dissolved in 10 mL of dry THF in a 100 mL three-necked round-bottomed flask and NaH (60% oil suspension, 0.45 g; 10.8 mmol) in 5 mL of dry THF was quickly added dropwise to the stirred solution under an argon atmosphere. Then a solution of hexachlorocyclotriphosphazene (1) (0.40 g; 1.2 mmol) in 5 mL of THF was prepared and added by dropping funnel dropwise to the stirred solution of 2a. The reaction was stirred under reflux for 48 h. The reaction was followed by TLC on silica gel plates using \(n \)-hexane-THF (3:2) as the mobile phase. The reaction mixture was filtered to remove the sodium chloride and any other insoluble material. The excess THF was removed under reduced pressure and then the reaction mixture was extracted with DCM/distilled water phase for separation from excess Schiff base. \(n \)-Hexane was slowly added to the solution and the solids precipitated. The resulting solids were filtered, washed with \(n \)-hexane, and then dried at room temperature. Compound 3a was crystallized from the \(n \)-heptane-THF (2:1). A summary of the preparation of all compounds is given in Table 1.

Table 1. Preparation of compounds 3a–3d.	a, b								
Compound 1	**Schiff base**	**Sodium hydride**	**Yield %**	**Mp (°C)**	**Isolated Cmp**				
g	mmol	g	mmol	g	mmol				
0.40	1.20	2a	2.13	10.80	0.45	10.80	66	172	3a
0.40	1.20	2b	2.32	10.80	0.46	10.80	61	211	3b
0.40	1.20	2c	2.50	10.80	0.47	10.80	65	239	3c
0.40	1.20	2d	2.98	10.80	0.48	10.80	62	262	3d

\(^{a}\) All reactions carried out for 48 h under reflux.

\(^{b}\) \(n \)-Hexane/THF (3:2) solvent system was used as mobile phase for TLC analysis.

Anal. calc. for 3a: \(C_{78}H_{60}N_{9}O_{6}P_{3} \): C, 71.39; H, 4.61; N, 9.61 %, M, 1312.3. Found: C, 71.59; H, 4.68; N, 9.18 %, [M+H] \(^+\), 1313.2. FT-IR (cm\(^{-1}\)) 3059 (Ar-C-H), 1626 (HC=N), 1497 (C=C), 1168, 1202 (P=N), 951 (P-O-C-aryl). \(^{1}\)H NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 8.50 (s, H; HC=N), 7.91 (d, 2H, aryl), 7.49 (t, 3H, aryl), 7.21 (d, 2H, aryl), 6.88 (d, 2H, aryl). \(^{13}\)C NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 167.28, 160.20, 148.79, 134.45, 129.00, 128.83, 128.68, 121.93, 121.68. \(^{3}P\) NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 9.46.

Anal. calc. for 3b: \(C_{78}H_{54}F_{6}N_{9}O_{6}P_{3} \): C, 65.96; H, 3.83; N, 8.88 %, M, 1420.3. Found: C, 66.18; H, 3.91; N, 8.27 %, [M+H] \(^+\), 1421.5. FT-IR (cm\(^{-1}\)) 3023 (Ar-C-H), 1627 (HC=N), 1506 (C=C), 1164, 1174 (P=N), 953 (P-O-C-aryl). \(^{1}\)H NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 8.32 (m, H; HC=N), 7.78 (m, 2H, aryl), 7.07–7.03 (m, 4H, aryl), 6.87 (m, 2H, aryl). \(^{13}\)C NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 165.57, 163.54, 157.07, 154.37, 144.70, 132.67, 130.58, 122.34, 116.00, 115.94, 155.82. \(^{3}P\) NMR, CDCl\(_3\), 298 K, \(\delta \) (ppm) 9.38.
Anal. calc. for 3c: C$_{78}$H$_{54}$Cl$_6$N$_9$O$_6$P$_3$: C, 61.68; H, 3.58; N, 8.30%, M, 1519.0. Found: C, 61.75; H, 3.67; N, 7.87%, [M+H$^+$], 1518.6. FT-IR (cm$^{-1}$): 3040 (Ar-C-H), 1625 (HC=N), 1494 (C=C), 1168, 1180 (P=N), 949 (P-O-C-aryl). 1H NMR, DMSO-d$_6$, 298 K, δ (ppm) 8.45 (s, H; H C=N), 7.80 (d, 2H, aryl), 7.42 (d, 2H, aryl), 7.14 (d, 2H, aryl), 7.06 (d, 2H, aryl). 13C NMR, DMSO-d$_6$, 298 K, δ (ppm) 158.53, 154.66, 137.50, 130.90, 129.86, 129.46, 128.99, 121.89, 121.67, 115.66. 31P NMR, DMSO-d$_6$, 298 K, δ (ppm) 9.44.

Anal. calc. for 3d: C$_{78}$H$_{54}$Br$_6$N$_9$O$_6$P$_3$: C, 52.46; H, 3.05; N, 7.06%, M, 1785.7. Found: C, 52.87; H, 3.14; N, 6.88%, [M+H$^+$], 1785.6. FT-IR (cm$^{-1}$): 3033 (Ar-C-H), 1624 (HC=N), 1496 (C=C), 1165, 1200 (P=N), 951 (P-O-C-aryl). 1H NMR, DMSO-d$_6$, 298 K, δ (ppm) 8.44 (s, H; H C=N), 7.72 (d, 2H, aryl), 7.57 (d, 2H, aryl), 7.14 (d, 2H, aryl), 7.05 (d, 2H, aryl). 13C NMR, DMSO-d$_6$, 298 K, δ (ppm) 158.39, 135.51, 133.92, 131.73, 130.05, 125.36, 121.90, 121.47, 113.39. 31P NMR, DMSO-d$_6$, 298 K, δ (ppm) 9.43.

3. Results and discussion
3.1. Synthesis and characterization of compounds

Schiff base ligands (2a–2d) bearing four different side groups at the para position on the terminal phenyl ring were prepared from the condensation reaction of 4-aminophenol with benzaldehyde, p-fluoro-, chloro-, and bromobenzaldehyde in ethanol [16,39]. Full substituted cyclotriphosphazene products (3a–3d) were synthesized from the nucleophilic substitution reactions of chlorocyclotriphosphazene (1) with Schiff bases including hydroxyl groups in high yields. The general synthesis route and the structures of compounds 3a–3d are shown in Scheme 1 and Scheme 2. All compounds (3a–3d) were characterized by FT-IR, elemental analysis, MALDI-TOF mass spectrometry, and 1H, 13C, and 31P NMR spectroscopies. The molecular structure of compound 3a was also determined by X-ray crystallography. The analysis of the data for each new compound is provided as part of the analytical data in Section 2.3.

Scheme 1. The synthesis pathway of Schiff bases 2aD-2d.

The FT-IR spectra of compounds 3a–3d showed characteristic stretching bands at 3023–3059 cm$^{-1}$ (aromatic C–H groups), 1624–1627 cm$^{-1}$ (C≡N stretching vibrations), 1494–1506 cm$^{-1}$ (alkenyl C=C stretch), 1150–1202 cm$^{-1}$ (P=N), and 949–953 cm$^{-1}$ (P–O–C), as expected. The FT-IR spectra of compounds 2b and 3b are given as an example in Figure 1. When the IR spectrum of compound 2b was compared with that of compound 3b, it was seen that the OH vibration in the 3103–3126 cm$^{-1}$ region disappeared in the spectrum of compound 3b and a new band appeared in the 949–953 cm$^{-1}$ region because of P–OAr absorption. The characteristic P≡N stretching vibrations of cyclophosphazenes were observed between 1164 and 1174 cm$^{-1}$ as sharp bands.

The proton decoupled 31P NMR spectra of compounds 3a–3d exhibit an A$_3$ type spin system due to same phosphorus environments within the molecule, as expected, as shown in Supplementary Figures S1–S3. The 31P NMR spectrum of compound 3b, shown as an example in Figure 2, exhibited a unique sharp singlet at 9.38 ppm.
Scheme 2. The synthesis pathway of compounds 3a-D-3d.

The 1H NMR spectra of compounds 2a–2d and 3a–3d have similar chemical shifts, except for some obvious differences. For example, while OH protons were observed at 9.53–9.57 ppm for compounds 2a–2d, the signals disappeared in the 1H NMR spectra of compounds 3a–3d. The azomethine protons for compounds 3a–3d were observed between 8.32 and 8.50 ppm as singlets in the spectra. The aromatic protons were observed between 6.87 and 7.91 ppm. The 1H NMR spectra of compounds 2d and 3d are given as examples in Figure 3.

The MALDI-TOF mass spectra of 3a–3d provided definitive characterization and the results are given in Section 2. The mass spectrum of compound 3d is given as an example in Figure 4.

3.2. Characterization of compound 3a by X-ray crystallography

The molecular structure of compound 3a was characterized by X-ray crystallography and its crystal structure is shown in Figure 5. The crystallographic data and refinement parameters are summarized in Table 2. Selected bond lengths and angles are given in Table S1. The molecular structure of compound 3b (each terminal phenyl ring contains fluorine atoms at the para position) was also confirmed by X-ray analysis, as shown in Figure S4, but the crystal structure could not be fully elucidated due to crystallographic problems. Although different crystallization systems and methods were tried, quality crystals could not be obtained.

Compound 3a is crystallized in the monoclinic space group C 2/c, with $a = 46.790$ (4) Å; $b = 7.9041$ (6)
Å; c = 39.079 (3) Å; α, γ = 90°; and β = 114.969 (4)° (shown in Table 2). The phosphazene consists of a six-membered ring, (PN)$_3$, which is substituted with six bis-aryl Schiff base groups on the three P atoms. Three of the six arms are located on one side of the ring, while the others are on the other side. The six-membered N$_3$P$_3$ ring is a very slightly twisted conformation in the compound with the maximum deviation from the plane of the cyclotriphosphazene ring being only 0.066 Å (on P2 atom) with a total puckering amplitude Q_T of 0.154 Å, as shown in Figure S5 and Table S1. Normally, P-N bond lengths in the hexachlorocyclotriphosphazene ring
Figure 3. 1H NMR spectra of a) compound 2d and b) compound 3d in d$_6$-DMSO.

Figure 4. Mass spectrum of compound 3d.
are equal to each other and the P-N bond distance is 1.581 Å. N-P-N and P-N-P bond angles are 118.40° and 121.40°, respectively. In compound 3a, the average values of endocyclic bond parameters of the phosphazene ring are 1.578 Å for the P-N bond distance and 117.19° for the N-P-N angle. The P-N-P bond angles are a little larger than the N-P-N bond angles and the average value of P-N-P angles is 121.55° (Table S1). Thus, the P-N bond lengths are in the normal ranges and all of these bond parameters were compatible with those reported for fully substituted cyclotriphosphazene derivatives [29,40,41].

The investigation of the crystal structure of compound 3a shows that there is no classical hydrogen bond but there are many short intermolecular contacts where separation between donor and acceptor atoms is less than 3.5 Å. These contacts are observed predominantly between the hydrogen atoms and heteroatoms (C, N, O). The orientations of the phenyl rings allow intermolecular π-π interactions, which may be effective in the stabilization of this self-organization. The intramolecular π-stacking interaction is 4.409 Å in the solid state, as shown in Figure S6.

3.3. Thermal properties

Cyclotriphosphazene, consisting of alternating phosphorous and nitrogen atoms, exhibits unusual thermal properties such as flame retardancy and self-extinguishing ability [42–44]. Additionally, it can be decorated with thermally and chemical stable groups via nucleophilic substitution reactions in order to further increase its thermal stability. Here, the cyclotriphosphazene ring was appended with Schiff bases, which are also attractive compounds owing to cheapness, ease of synthesis, and their chemical and thermal stability.
Table 2. Crystal data and structure refinement details for compound 3a.

Compound	3a
Empirical formula	C_{78}H_{60}N_{9}O_{6}P_{3}
Formula weight	1312.26 g/mol
Temperature (K)	120 (2)
Crystal system	Monoclinic
Space group	C 1 2/c 1
a (Å)	46.790 (4)
b (Å)	7.9041 (6)
c (Å)	39.079 (3)
α (°)	90°
β (°)	114.969 (4)
γ (°)	90°
Volume/Å³	13101.9 (18)
Z	8
Density calc./g cm⁻³	1.331
μ/mm⁻¹	0.155
F(000)	5472
Crystal size/mm³	0.18 × 0.24 × 0.30
Radiation	Mo Kα (λ = 0.71073 Å)
2θ range for data collection/°	2.94 to 25.00°
Completeness	0.992
Index ranges	−55 ≤ h ≤ 53, −9 ≤ k ≤ 9, −46 ≤ l ≤ 46
Reflections collected	74825
Independent reflections	11463 [R (int) = 0.0546]
Data/restraints/parameters	11463 / 66 / 872
Goodness-of-fit on F²	1.044
Final R indexes [I ≥ 2σ(I)]	R1 = 0.0654, wR2 = 0.1560
Final R indexes [all data]	R1 = 0.0971, wR2 = 0.1690
Largest diff. peak/hole/e Å⁻³	0.758 and −0.562

The melting points (T_m) of all compounds (2a–2d and 3a–3d) were determined by DSC technique and are shown in Figure 6 and Figures S7–S9. The endothermic sharp peak belonging to the melting point in the DSC thermograms of compounds 3a–3d showed that the compounds were obtained in high purity, as shown in Figure 6. DSC analysis results indicated that the melting points of compounds 3b, 3c, and 3d were higher than those of corresponding Schiff base compounds 2b, 2c, and 2d, excluding 3a, as shown in Table 3. When the DSC curves given in Figure 7 are examined, it can be said that the melting point increased in the order of terminal groups, which is hydrogen, fluorine, chlorine, and bromine.

TGA thermograms of the compounds (2a–2d and 3a–3d) were recorded between RT and 700° C under 50 mL/min N₂ flow. TGA was utilized to evaluate the thermal stability of the Schiff bases (2a–2d) and compounds (3a–3d). The onset decomposition temperatures (T_on) were recorded at a heating rate of 10°C/min. The
The DSC curves of compounds 2c and 3c heated under nitrogen to 300 °C at a heating rate of 10 °C/min.

The DSC curves of compounds 3a–3d heated under nitrogen to 300 °C at a heating rate of 10 °C/min.

Table 3. Thermal analysis results of compounds 1, 2a–2d, and 3a–3d.

Compounds	DSC (°C) (Tm)	First mass loss in TGA (°C)	Remaining amount at 700 °C (%)		
		T_on	T_dm		
Cyclotriphosphazene					
1	114	159	167	1.4	
Schiff bases					
2a	187	206	275	14.5	
2b	153	198	290	19.6	
2c	184	234	292	38.5	
2d	207	234	280	38.6	
Cyclotriphosphazene derivatives					
3a	175	398	458	62.5	
3b	211	366	427	56.5	
3c	239	379	431	56.6	
3d	262	396	436	62.9	

T_m: Melting temperature.
T_on: Onset temperature, starting point of the decomposition processes.
T_dm: Maximum point of decomposition temperature.

curves of the TGA measurements are given in Figures S10–S12. The onset decomposition temperatures (T_on), maximum point of decomposition temperatures (T_dm), and remaining substance amounts at 700 °C (%) are given in Table 3. All compounds decomposed in one step. The thermal stabilities of the new cyclotriphosphazene derivatives (3a–3d) are obviously higher than those of the Schiff bases (2a–2d) and cyclotriphosphazene (1). For example, while the decomposition temperature (T_dm) of 2a was 275 °C, the T_dm value was 458 °C for compound 3a, as shown in Figure 8.

The T_on and T_dm values of products decreased in the order of hydrogen (3a), bromine (3d), chlorine (3c), and fluorine (3b) derivatives of the Schiff bases, respectively (Table 3). The thermal stability of the
products slightly reduced in the order of 3a, 3d, 3c, and 3b, as shown in Figure 9. The main factor affecting this trend is the size of the halogen group (Ph-X; X = F, Cl, Br) substituted on the Schiff base [45,46]. It is seen that as the size of the halogen atoms increases, the cross-linking process on decomposition decreases. Another factor explaining this trend is the increase of bond dissociation energy in the order of C-Br < C-Cl < C-F.

The char yields of new cyclotriphosphazene derivatives 3a–3d (62.5% for 3a; 56.5% for 3b; 56.6% for 3c; 62.9% for 3d) are quite high because of the P-N skeleton and cross-linking process on decomposition (Table 3).

3.4. UV-Vis absorption properties of 3a–3d

The optical properties of new cyclotriphosphazene derivatives (3a–3d) containing Schiff bases and precursor Schiff bases (2a–2d) were evaluated with UV-Vis spectroscopy. All of the spectral measurements were carried out in a spectroscopic quartz cuvette by using a micropipette at 25 °C. UV-Vis electronic absorption spectra of compounds 2a–2d and 3a–3d were plotted in CH2Cl2 and the epsilon values of all compounds in CH2Cl2 were calculated and are given Table 4. As shown in Figure 10, 1 × 10−5 M of compounds 2a–2d and 3a–3d demonstrated the absorption maximum between 266–339 nm, attributed to π-π* transitions for benzene rings and azomethine moieties [47–50]. Importantly, the UV-Vis electronic absorption wavelengths of compounds 3a–3d were similar to those of their precursor Schiff bases (2a–2d), which showed that there was no effective ground state interaction with the appended Schiff base on the cyclotriphosphazene scaffold. On the other hand, the absorbances of compounds 3a–3d were much higher than those of the corresponding Schiff bases (2a–2d) at the same concentration, which was most probably due to the increasing number of absorbing Schiff base groups on the cyclotriphosphazene scaffold [51]. The molar absorption coefficients of 3a–3d were as high as 10^4 to 10^5 L mol⁻¹ cm⁻¹, which were deterministic for π-π* state transition characteristics of cyclotriphosphazene derivatives (3a–3d) [52]. These obtained results are quite reasonable because it is well known that cyclophosphazenes are optically inert in the UV-Vis region and their photophysical properties can be adjusted according to the appended moiety [10,53–55].

The normalized UV-Vis electronic absorption spectra in CH2Cl2 of compounds 3a–3d are given in Figure 11. As can be seen, the maximum wavelengths of electronic absorption of compounds 3a–3d changed
for not only the first absorption bands (266–278 nm) but also the second absorption bands (318–330 nm) in the following order: 3d > 3c > 3b > 3a (Br > Cl > F > H). When the substitution at the Schiff base on the cyclotriphosphazene changed from H to Br, red shifts of the first and second electronic absorption bands were determined to be 13 nm and 22 nm, respectively. These alterations of the electronic absorption maxima of 3a–3d can be attributed to the increase of polarizability of heavy atoms, which was consistent with previous reports in the literature [10,24,25].

The solvent system and working concentration can significantly affect the UV-Vis properties of molecules [24,56]. Therefore, solvent effect on absorption of compounds 3a–3d were investigated with different solvents.
such as cyclohexane, 1,4-dioxane, THF, dichloromethane, DMSO, and water, as shown in Figure S13. Although water and cyclohexane were used for dissolution, the UV-Vis spectra of compounds 3a-3d were not obtained due to the solubility problem of the compounds. As can be seen from Figure S13, compounds 3a-3d have good solubility in organic solvents (1,4-dioxane, THF, dichloromethane) and moderate solubility in a polar solvent (DMSO). In addition, it can be understood that the UV-Vis electronic absorption of compounds 3a-3d was not affected by the change of solvents and π-π* transitions between 266 and 330 nm were consistent without any shift. The effects of concentration on the UV-Vis electronic absorption spectra of compounds 3a-3d were examined at various concentrations between 10^{-5} and 10^{-6} M, as shown in Figures S14–S17. The UV-Vis absorbance of compounds 3a-3d gradually decreased without any red or blue shift when concentrations of solutions were diluted from 1×10^{-5} to 1×10^{-6} M, which indicated that no inter- or intramolecular interaction existed between attached Schiff base groups on the cyclotriphosphazene scaffold.

After evaluation of the UV-Vis electronic absorption properties of cyclotriphosphazene derivatives (3a–3d) containing Schiff bases, the fluorescence properties of compounds 3a-3d were investigated at various concentrations between 10^{-5} and 10^{-6} M in 1,4-dioxane, THF, dichloromethane, and DMSO, which were excited between 250 and 350 nm. However, compounds 3a-3d showed no appreciable fluorescence properties in these conditions. These results obtained for the fluorescence properties of Schiff base derivatives are expected and consistent with the literature because it is well known that C=N isomerization is the predominant decay process of the excited states for Schiff base derivatives with an unbridged C=N structure such that those compounds are often nonfluorescent [56–60].

4. Conclusions

To summarize, we report on the synthesis and characterization of a series of cyclotriphosphazene derivatives containing Schiff base ligands and their thermal and absorbance properties. It was found that the newly synthesized compounds (3a–3d) have good thermal properties, making them potentially suitable for some industrial applications, such as flame-retardant additives to polymers. It was also found that the electronic absorption maxima of 3a–3d are slightly shifted to the red region when the substitution at the Schiff base on cyclotriphosphazene changes from H to Br.
References

1. De Proft F, Geerlings P. Structure, Bonding and Reactivity of Heterocyclic Compounds. Berlin, Germany: Springer, 2014.
2. Eicher T, Hauptmann S, Seicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis and Applications. Weinheim, Germany: Wiley-VCH, 2012.
3. Allcock HR. Chemistry and Application of Polyphosphazenes. Hoboken, NJ, USA: Wiley-Interscience, 2003.
4. Gleria M, de Jaeger R (editors). Applicative Aspects of Cyclophosphazenes. New York, NY, USA: Nova Science Publishers, 2004.
5. Andrianov AK. Polyphosphazenes for Biomedical Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.
6. Chandrasekhar V, Krishnan V. Advances in the chemistry of chlorocyclophosphazenes. Advances in Inorganic Chemistry 2002; 53: 159-211. doi: 10.1016/S0065-3806(02)53005-1
7. Çokut B, Durmuş M, Kilç A, Yeşilol Ş. Synthesis, thermal and photophysical properties of phenoxy-substituted dendrimeric cyclic phosphazenes. Inorganica Chimica Acta 2011; 366: 161-172. doi: 10.1016/j.ica.2010.10.031
8. He Q, Dai H, Tan X, Cheng X, Liu F et al. Synthesis and characterization of room temperature columnar mesogens of cyclotriphosphazene with Schiff base units. Journal of Material Chemistry C 2013; 1: 7148-7154. doi: 10.1039/C3TC31371A
9. Ün I, Ibioğlu H, Sahin Ün S, Çokut B, Kilç A. Syntheses, characterizations, thermal and photophysical properties of cyclophosphazenes containing adamantane units. Inorganica Chimica Acta 2013; 399: 219-226. doi: 10.1016/j.ica.2013.01.028
10. Tümay SO, Uşlu A, Arıc Alıdağ H, Kazan HH, Bayraktar C et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg (II) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry 2018; 42: 14219-14228. doi: 10.1039/C8NJ02482K
11. Mutlu Balcı C, Beşli S. The synthesis and thermal properties of fluorodioxy-substituted N,N'-spiro bridged cyclotriphosphazenes. Polyhedron 2017; 126: 49-59. doi: 10.1016/j.poly.2017.01.014
12. Jiménez J, Callizo L, Serrano JL, Barbera J, Oriol L. Mixed-substituent cyclophosphazenes with calamitic and polycatenar mesogens. Inorganic Chemistry 2017; 56: 7907-7921. doi: 10.1021/acs.inorgchem.7b00612
13. Liu X, Breon JP, Chen C, Allcock HR. Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Transactions 2012; 41: 2100-2109. doi: 10.1039/c1dt11606a
14. Prasanna D, Selvaraj V. Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications. Journal of Colloid and Interface Science 2016; 472: 116-125. doi: 10.1016/j.jcis.2016.03.032
15. Chandrasekhar V, Andavan GTS, Azhakar R, Pandian BM. Cyclophosphazene-supported tetramolecular copper assembly containing 15 contiguous inorganic rings. Inorganic Chemistry 2008; 47: 1922-1924. doi: 10.1021/ic070500n
16. Cao CT, Zhou W, Cao C. Abnormal effect of hydroxyl on the longest wavelength maximum in ultraviolet absorption spectra for bis-aryl Schiff bases. Journal of Physical Organic Chemistry 2017; 30: 3672-3680. doi: 10.1002/poc.3672
17. Ceyhan G, Köse M, Tümer M, Demirtas I. Anticancer, photoluminescence and electrochemical properties of structurally characterized two imine derivatives. Spectrochimica Acta Part A 2015; 149: 731-743. doi: 10.1016/j.saa.2015.05.021
18. El-Sonbati AZ, Diaba MA, El-Bindarya AA, Mohamed GG, Morgan SM et al. Geometrical structures, thermal stability and antimicrobial activity of Schiff base supramolecular and its metal complexes. Journal of Molecular Liquids 2016; 215: 423-442. doi: 10.1016/j.molliq.2015.12.006
19. Yerrasani R, Karunakar M, Dubey R, Singh AK, Rao TR. Thermal, optical and photophysical behaviour of some mesogenic benzimidazole-based Schiff-bases. Journal of Molecular Liquids 2017; 248: 214-218. doi: 10.1016/j.molliq.2017.10.051

20. Ayoub MA. Synthesis, spectroscopic, thermal, fluorescence properties and molecular modeling of novel Pt (II) complex with schiff base containing NS donor atoms. Journal of Molecular Structure 2018; 1173: 17-25. doi: 10.1016/j.molstruc.2018.06.051

21. Venkatesana J, Sekar M, Thanikachalamb V, Manikandan G. Thermal decomposition and kinetic analyses of sulfonamide Schiff’s bases in oxygen atmosphere - A comparative study. Chemical Data Collections 2017; 9-10: 229-243. doi: 10.1016/j.cdc.2017.07.001

22. Jia Y, Li JB. Molecular assembly of Schiff base interactions: construction and application. Chemical Reviews 2015; 115 (3): 1597-1621. doi: 10.1021/cr400559g

23. Vukovic L, Burmeister CF, Kral P, Groenhof G. Control mechanisms of photoisomerization in protonated Schiff bases. Journal of Physical Chemistry Letters 2013; 4 (6): 1005-1011. doi: 10.1021/jz40133un

24. Yazdanbaksh MR, Mohammadi A. Synthesis, substituent effects and solvatochromic properties of some disperse azo dyes derived from N-phenyl-2,2’-iminodiethanol. Journal of Molecular Liquids 2009; 148 (1): 35-39. doi: 10.1016/j.molliq.2009.06.001

25. Lohmann W. Halogen-substitution effect on the optical absorption bands of uracil. Zeitschrift für Naturforschung C 1974; 29 (9): 493-495. doi: 10.1515/znc-1974-9-1007

26. Odabaşoğlu M, Turgut G, Karaer H. Preparation and characterization of chromophor group containing cyclotriphosphazenes: I Lmino chromophor carrying some cyclotriphosphazenesphosphorus. Sulfur and Silicon 1999; 152 (1): 9-25. doi: 10.1080/10426509908031613

27. Aslan F, Oztürk AI, Söylemez B. Synthesis of fluorescence organocyclotriphosphazene derivatives having functional groups such as formyl, Schiff base and both formyl and Schiff base without using Ar or N₂ atmosphere. Journal of Molecular Structure 2017; 1137: 387-395. doi: 10.1016/j.molstruc.2017.01.047

28. Khatri PK, Jain SL. Multiple o xo-vanadium Schiff base containing cyclotriphosphazene as a robust heterogeneous catalyst for regioselective oxidation of naphthols and phenols to quinones. Catalysis Letters 2012; 142 (8): 1020-1025. doi: 10.1007/s10562-012-0852-y

29. Tümer Y, Yukseltepe Ç, Batı H, Çalışkan N, Büyüküngör O. Preparation and characterization of hexakis [2-methoxy-4-(2,3-dimethylphenylimino) phenylato] cyclotriphosphazene. Phosphorus Sulfur and Silicon and the Related Elements 2010; 185 (12): 2449-2454. doi: 10.1080/10426501003692078

30. Bertani R, Facchin G. Organometallic and coordination chemistry on phosphazenes Part I. Zn (II), Pd (II) and Pt (II) complexes on Schiff base-containing cyclophosphazenes. Inorganica Chimica Acta 1989; 165 (1): 13-82. doi: 10.1016/S0020-1693(00)83403-9

31. Moriya K, Kawanishi Y, Yano S, Kajiwara M. Mesomorphic phase transition of a cyclotetraphosphazene containing Schiff base moieties: comparison with the corresponding cyclotriphosphazene. Chemical Communications 2000; 1111-1112. doi: 10.1039/b004971

32. Xu J, Ling TC, He C. Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. Journal of Polymer Science Part A 2008; 46 (14): 4691-4703. doi: 10.1002/pola.22800

33. Bruker. SADABS. Madison, WI, USA: Bruker AXS Inc., 2005.

34. Bruker. APEX2 (Version 2011.4-1). Madison, WI, USA: Bruker AXS Inc., 2008.

35. Sheldrick GM. A short history of SHELX. Acta Crystallographica A 2008; 64 (1): 112-122. doi: 10.1107/S0108773107043930
36. Spek AL. Structure validation in chemical crystallography. Acta Crystallographica Section D 2009; 65 (2): 148-155. doi: 10.1107/S090744490804362X
37. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P et al. Mercury CSD 2.0 - New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 2008; 41: 466-470. doi: 10.1107/S0021889807067908
38. Brandenburg K. DIAMOND 3.1 for Windows. Bonn, Germany: Crystal Impact GbR, 2006.
39. Kaur G, Singh S, Sreekumar A, Choudhury AR. The evaluation of the role of C-H:F hydrogen bonds in crystal altering the packing modes in the presence of strong hydrogen bond. Journal of Molecular Structure 2016; 1106: 154-169. doi: 10.1016/j.molstruc.2015.10.105
40. Wahl H, Haynes DA, Roex T. A series of polymorphs of hexakis(4-fluorophenoxy)cyclotriphosphazene. Crystal Growth & Design 2012; 12 (8): 4031-4038. doi: 10.1021/cg300503p
41. Cho Y, Baek H., Sohn YS. Functionalization of organophosphazene trimers: synthesis and characterization of hexakis(dicarboxylic amino acid ester)cyclotriphosphazenes and their salt derivatives. Polyhedron 1999; 18 (13): 1799-1804. doi: 10.1016/S0277-5387(99)00042-X
42. Zhang X, Akram R, Zhang S, Ma H, Wu Z et al. Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy. Reactive and Functional Polymers 2017; 113: 77-84. doi: 10.1016/j.reactfunctpolym.2017.02.010
43. Byczynski L, Dutkiewicz M, Januszewski R. Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Progress in Organic Coatings 2017; 108: 51-58. doi: org.doi.org/10.1016/j.porgcoat.2017.04.010
44. Xu M, Xu GR, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polymer Degradation and Stability 123; 2016; 105-114. doi: 10.1016/j.polymdegradstab.2015.11.018
45. Alvarez JC, De la Campa JG, Lozano AE, De Abajo J. Thermal and mechanical properties of halogen-containing aromatic polyamides. Macromolecular Chemistry and Physics 2001; 202 (16): 3142-3148. doi: 10.1002/1521-3935(20011101)202:16<3142::AID-MACP3142>3.0.CO;2-R
46. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Halogen bonding in supramolecular chemistry. Angewandte Chemie 2008; 47 (33): 6114-6127. doi: 10.1002/anie.200800128
47. Ketata I, Mechi L, Ayed TB, Dusek M, Petricek V et al. Synthesis, characterization, spectroscopic and crystallographic investigation of cobalt (III) Schiff base complex with two perpendicular diamine coumarin ligands. Open Journal of Inorganic Chemistry 2012; 2: 33-39. doi: 10.4236/ojic.2012.22006
48. Lo WK, Wong WK, Guo J, Wong WY, Li KF et al. Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes. Inorganica Chimica Acta 2004; 357 (15): 4510-4521. doi: 10.1016/j.ica.2004.06.041
49. Lo WK, Wong WK, Guo J, Yeung KT et al. Heterobimetallic Zn (II) – Ln (III) phenylene-bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence. Inorganic Chemistry 2006; 45 (23): 9315-9325. doi: 10.1021/ic0610177
50. Zhang J, Zhao F, Zhu X, Wong WK, Ma D et al. New phosphorescent platinum (II) Schiff base complexes for PHOLED applications. Journal of Materials Chemistry 2012; 22: 16448-16457. doi: 10.1039/C2JM32266H
51. Yêşilot S, Çoşut B, Ardiç Alidağı H, Hacivelioğlu F, Altunbaş Özşanar G et al. Intramolecular excimer formation in hexakis-(pyrenyloxy)cyclotriphosphazene: photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions 2014; 43: 3428-3433. doi: 10.1039/C3DT52957F
52. Tang HH, Zhang L, Zeng LL, Fang XM, Lin LR et al. A pair of Schiff base enantiomers studied by absorption, fluorescence, electronic and vibrational circular dichroism spectroscopies and density functional theory calculation. RSC Advances 2015; 5: 36813-36819. doi: 10.1039/C5RA02154E

53. Tümay SO, Yıldırım Sarıkaya S, Yeşilot S. Novel iron (III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. Journal of Luminescence 2018; 196: 126-135. doi: 10.1016/j.jlumin.2017.12.019

54. Uslu A, Tümay SO, Şenocak A, Yuksel F, Özcan E et al. Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu$^{2+}$: synthesis, configurational isomers, and crystal structures. Dalton Transactions 2017; 46: 9140-9156. doi: 10.1039/C7DT01134B

55. Ardiç Alidağı H, Hacıvelioğlu F, Tümay SO, Çoşut B, Yeşilot S. Synthesis and spectral properties of fluorene substituted cyclic and polymeric phosphazenes. Inorganica Chimica Acta 2017; 457: 95-102. doi: 10.1016/j.ica.2016.12.013

56. Dkaki M, Lyazidi SA, Haddad M. Concentration effect on the absorption and emission spectra of the 9-oxa-2,3,4’-methoxybenzobicyclo[4.3.0]non-1(6)-ene-7,8-dione: self-associated dimer and excimer. Journal of Physical Chemistry A 1998; 102 (27): 5275-5279. doi: 10.1021/jp970151x

57. Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF et al. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Organic Letters 2007; 9 (1): 33-36. doi: 10.1021/ol062518z

58. Sheng JR, Feng F, Qiang Y, Liang FG, Sen L et al. A coumarin-derived fluorescence chemosensors selective for copper(II). Analytical Letters 2008; 41 (12): 2203-2213. doi: 10.1080/00032710802237673

59. Li L, Liu F, Li HW. Selective fluorescent probes based on C=N isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochimica Acta Part A 2011; 79 (5): 1688-1692. doi: 10.1016/j.saa.2011.05.036

60. Song X, Han X, Yu F, Zhang J, Chen L et al. A reversible fluorescent probe based on C=N isomerization for the selective detection of formaldehyde in living cells and in vivo. Analyst 2018; 143 (2): 429-439. doi: 10.1039/C7AN01488K