Correction: Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

Prudence O. Powell, Mitchell A. Sullivan, Joshua J. Sheehy, Benjamin L. Schulz, Frederick J. Warren, Robert G. Gilbert

Figs 1, 2, and 3 appear in the incorrect order in the published article. Please view correct versions of the figures here.
Fig 1. Aqueous SEC weight distributions of acid hydrolyzed glucans. Phytoglycogen (a) and liver glycogen (b) particle samples were taken over 14 days of acid hydrolysis. The following terms have been abbreviated: minute: min; hours: h; days: d. Curves have been normalized to equal areas.

doi:10.1371/journal.pone.0134065.g001
Fig 2. TEM images of glucans. Typical composite α particles of phytoglycogen (a) and liver glycogen (b) particles are indicated by an arrow. Scale bars are 500 nm, images taken at 50K magnification.

doi:10.1371/journal.pone.0134065.g002
Fig 3. Aqueous SEC weight distributions of water-hydrolyzed glucans. Sample distributions of phytoglycogen (a) and liver glycogen (b) particles after being dissolved directly in eluent (0 min) and after heating at 80°C for 7 days (7 d). Curves have been normalized to equal areas.

doi:10.1371/journal.pone.0134065.g003

Reference

1. Powell PO, Sullivan MA, Sheehy JJ, Schulz BL, Warren FJ, Gilbert RG (2015) Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles. PLoS ONE 10(3): e0121337. doi: 10.1371/journal.pone.0121337 PMID: 25799321