MULTIGRADED FUJITA APPROXIMATION

SHIN-YAO JOW

Abstract. The original Fujita approximation theorem states that the volume of a big divisor D on a projective variety X can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. One can also formulate it in terms of graded linear series as follows: let $W_\bullet = \{W_k\}$ be the complete graded linear series associated to a big divisor D:

$$W_k = H^0(X, \mathcal{O}_X(kD)).$$

For each fixed positive integer p, define $W_\bullet(p)$ to be the graded linear subseries of W_\bullet generated by W_p:

$$W_m^{(p)} = \begin{cases} 0, & \text{if } p \nmid m; \\ \text{Image}(S^kW_p \to W_{kp}), & \text{if } m = kp. \end{cases}$$

Then the volume of $W_\bullet(p)$ approaches the volume of W_\bullet as $p \to \infty$. We will show that, under this formulation, the Fujita approximation theorem can be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field K, and let D be a (Cartier) divisor on X. When X is projective, the following limit, which measures how fast the dimension of the section space $H^0(X, \mathcal{O}_X(mD))$ grows, is called the volume of D:

$$\text{vol}(D) = \text{vol}_X(D) = \lim_{m \to \infty} \frac{h^0(X, \mathcal{O}_X(mD))}{m^d/d!}.$$

One says that D is big if $\text{vol}(D) > 0$. It turns out that the volume is an interesting numerical invariant of a big divisor ([Laz04 §2.2.C]), and it plays a key role in several recent works in birational geometry ([BDPP04], [Tsu00], [HM06], [Tak06]).

When D is ample, one can show that $\text{vol}(D) = D^d$, the self-intersection number of D. This is no longer true for a general big divisor D, since D^d may even be negative. However, it was shown by Fujita [Fuj94] that the volume of a big divisor can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. This theorem, known as Fujita approximation, has

Date: 11 May 2010.

2000 Mathematics Subject Classification. 14C20.

Key words and phrases. Fujita approximation, multigraded linear series, Okounkov body.
several implications on the properties of volumes, and is also a crucial ingredient in [BDPP04] (see [Laz04, §11.4] for more details).

In their recent paper [LM08], Lazarsfeld and Mustaţă obtained, among other things, a generalization of Fujita approximation to graded linear series. Recall that a graded linear series \(W_\bullet = \{ W_k \} \) on a (not necessarily projective) variety \(X \) associated to a divisor \(D \) consists of finite dimensional vector subspaces

\[
W_k \subseteq H^0(X, \mathcal{O}_X(kD))
\]

for each \(k \geq 0 \), with \(W_0 = K \), such that

\[
W_k \cdot W_\ell \subseteq W_{k+\ell}
\]

for all \(k, \ell \geq 0 \). Here the product on the left denotes the image of \(W_k \otimes W_\ell \) under the multiplication map \(H^0(X, \mathcal{O}_X(kD)) \otimes H^0(X, \mathcal{O}_X(\ell D)) \to H^0(X, \mathcal{O}_X((k+\ell)D)) \).

In order to state the Fujita approximation for \(W_\bullet \), they defined, for each fixed positive integer \(p \), a graded linear series \(W^{(p)}_\bullet \) which is the sub graded linear series of \(W_\bullet \) generated by \(W_p \):

\[
W^{(p)}_m = \begin{cases}
0, & \text{if } p \nmid m; \\
\text{Im} \left(S^k W_p \to W_{kp} \right), & \text{if } m = kp.
\end{cases}
\]

Then under mild hypotheses, they showed that the volume of \(W^{(p)}_\bullet \) approaches the volume of \(W_\bullet \) as \(p \to \infty \). See [LM08, Theorem 3.5] for the precise statement, as well as [LM08, Remark 3.4] for how this is equivalent to the original statement of Fujita when \(X \) is projective and \(W_\bullet \) is the complete graded linear series associated to a big divisor \(D \) (i.e. \(W_k = H^0(X, \mathcal{O}_X(kD)) \) for all \(k \geq 0 \)).

The goal of this note is to generalize the Fujita approximation theorem to multigraded linear series. We will adopt the following notations from [LM08, §4.3]: let \(D_1, \ldots, D_r \) be divisors on \(X \). For \(\vec{m} = (m_1, \ldots, m_r) \in \mathbb{N}^r \) we write \(\vec{m}D = \sum m_i D_i \), and we put \(|\vec{m}| = \sum |m_i| \).

Definition 1. A multigraded linear series \(W_\bullet \) on \(X \) associated to the \(D_i \)'s consists of finite-dimensional vector subspaces

\[
W_{\vec{k}} \subseteq H^0(X, \mathcal{O}_X(\vec{k}D))
\]

for each \(\vec{k} \in \mathbb{N}^r \), with \(W_0 = K \), such that

\[
W_{\vec{k}} \cdot W_{\vec{m}} \subseteq W_{\vec{k}+\vec{m}},
\]

where the multiplication on the left denotes the image of \(W_{\vec{k}} \otimes W_{\vec{m}} \) under the natural map \(H^0(X, \mathcal{O}_X(\vec{k}D)) \otimes H^0(X, \mathcal{O}_X(\vec{m}D)) \to H^0(X, \mathcal{O}_X((\vec{k}+\vec{m})D)) \).

Given \(\vec{a} \in \mathbb{N}^r \), denote by \(W_{\vec{a}, \bullet} \) the singly graded linear series associated to the divisor \(\vec{a}D \) given by the subspaces \(W_{k\vec{a}} \subseteq H^0(X, \mathcal{O}_X(k\vec{a}D)) \). Then put

\[
\text{vol}_{W_\bullet}(\vec{a}) = \text{vol}(W_{\vec{a}, \bullet})
\]
(assuming that this quantity is finite). It will also be convenient for us to consider $W_{\tilde{a}}$ when $\tilde{a} \in \mathbb{Q}^r_{\geq 0}$, given by

$$W_{\tilde{a}} = \begin{cases} W_{k\tilde{a}}, & \text{if } k\tilde{a} \in \mathbb{N}^r; \\ 0, & \text{otherwise.} \end{cases}$$

Our multigraded Fujita approximation, similar to the singly-graded version, is going to state that (under suitable conditions) the volume of $W_{\tilde{a}}$ can be approximated by the volume of the following finitely generated sub multigraded linear series of $W_{\tilde{a}}$:

Definition 2. Given a multigraded linear series $W_{\tilde{a}}$ and a positive integer p, define $W_{\tilde{a}}^{(p)}$ to be the sub multigraded linear series of $W_{\tilde{a}}$ generated by all $W_{\tilde{m}}$ with $|\tilde{m}| = p$, or concretely

$$W_{\tilde{m}}^{(p)} = \begin{cases} 0, & \text{if } p \nmid |\tilde{m}|; \\ \sum_{\tilde{m} \mid \tilde{m}_1 + \cdots + \tilde{m}_k = \tilde{m}} W_{\tilde{m}_1} \cdots W_{\tilde{m}_k}, & \text{if } |\tilde{m}| = kp. \end{cases}$$

We now state our multigraded Fujita approximation when $W_{\tilde{a}}$ is a complete multigraded linear series, since this is the case of most interest and allows for a more streamlined statement. We will point out in Remark 4 afterward what assumptions on $W_{\tilde{a}}$ are actually needed in the proof.

Theorem 3. Let X be an irreducible projective variety of dimension d, and let D_1, \ldots, D_r be big divisors on X. Let $W_{\tilde{a}}$ be the complete multigraded linear series associated to the D_i’s, namely

$$W_{\tilde{m}} = H^0 \left(X, \mathcal{O}_X(\tilde{m}D) \right)$$

for each $\tilde{m} \in \mathbb{N}^r$. Then given any $\varepsilon > 0$, there exists an integer $p_0 = p_0(\varepsilon)$ having the property that if $p \geq p_0$, then

$$\left| 1 - \frac{\text{vol}_{W_{\tilde{a}}}^{(p)}(\tilde{a})}{\text{vol}_{W_{\tilde{a}}}(\tilde{a})} \right| < \varepsilon$$

for all $\tilde{a} \in \mathbb{N}^r$.

Acknowledgments. The author would like to thank Robert Lazarsfeld for raising this question during an email correspondence.

2. Proof of Theorem 3

The main tool in our proof is the theory of Okounkov bodies developed systematically in [LM08]. Given a graded linear series $W_{\tilde{a}}$ on a d-dimensional variety X, its Okounkov body $\Delta(W_{\tilde{a}})$ is a convex body in \mathbb{R}^d that encodes many asymptotic invariants of $W_{\tilde{a}}$, the most prominent one being the volume of $W_{\tilde{a}}$, which is precisely
Proof of Theorem 3. Let $T = \{(a_1, \ldots, a_r) \in \mathbb{R}_{\geq 0}^r \mid a_1 + \cdots + a_r = 1\}$, and let T_Q be the set of all points in T with rational coordinates. The fraction inside (11) is invariant under scaling of \vec{a} due to homogeneity, hence it is enough to prove (11) for $\vec{a} \in T_Q$.

Let $\Delta(W_{\bullet}) \subseteq \mathbb{R}^d \times \mathbb{R}^r$ be the global Okounkov cone of W_{\bullet} as in [LM08, Theorem 4.19], and let $\pi: \Delta(W_{\bullet}) \rightarrow \mathbb{R}^r$ be the projection map. For each $\vec{a} \in T$ we write $\Delta(W_{\bullet})_{\vec{a}}$ for the fiber $\pi^{-1}(\vec{a})$. We also define in a similar fashion the convex cone $\Delta(W_{\bullet}(p))$ and the convex bodies $\Delta(W_{\bullet}(p))_{\vec{a}}$. By [LM08, Theorem 4.19],

$$\Delta(W_{\bullet})_{\vec{a}} = \Delta(W_{\bullet, \vec{a}}) \quad \text{for all } \vec{a} \in T_Q.$$

Note that although [LM08] Theorem 4.19 requires \vec{a} to be in the relative interior of T, here we know that (2) holds even for those \vec{a} in the boundary of T because the big cone of X is open and W_{\bullet} was assumed to be the complete multigraded linear series. By the singly-graded Fujita approximation, $\text{vol}(W_{\bullet})_{\vec{a}}$ can be approximated arbitrarily closely by $\text{vol}(W_{\bullet}(p))_{\vec{a}}$ if p is sufficiently large. (Here by $W_{\bullet}(p)$ we mean W_{\bullet} restricted to the \vec{a} direction, which certainly contains $(W_{\bullet, \vec{a}}(p))$. Hence given any finite subset $S \subset T_Q$ and any $\varepsilon' > 0$, we have

$$\text{vol}(\Delta(W_{\bullet}(p))_{\vec{a}}) \geq \text{vol}(\Delta(W_{\bullet})_{\vec{a}}) - \varepsilon' \quad \text{for all } \vec{a} \in S$$

as soon as p is sufficiently large.

Because the function $\vec{a} \mapsto \text{vol}(\Delta(W_{\bullet})_{\vec{a}})$ is uniformly continuous on T, given any $\varepsilon' > 0$, we can partition T into a union of polytopes with disjoint interiors $T = \bigcup T_i$, in such a way that the vertices of each T_i all have rational coordinates, and on each T_i we have a constant M_i such that

$$M_i \leq \text{vol}(\Delta(W_{\bullet})_{\vec{a}}) \leq M_i + \varepsilon' \quad \text{for all } \vec{a} \in T_i.$$

Let S be the set of vertices of all the T_i’s. Then as we saw in the end of the previous paragraph, as soon as p is sufficiently large we have

$$\text{vol}(\Delta(W_{\bullet}(p))_{\vec{a}}) \geq \text{vol}(\Delta(W_{\bullet})_{\vec{a}}) - \varepsilon' \quad \text{for all } \vec{a} \in S.$$

We claim that this implies

$$\text{vol}(\Delta(W_{\bullet}(p))_{\vec{a}}) \geq \text{vol}(\Delta(W_{\bullet})_{\vec{a}}) - 2\varepsilon' \quad \text{for all } \vec{a} \in T_Q.$$

To show this, it suffices to verify it on each of the T_i’s. Let $\vec{v}_1, \ldots, \vec{v}_k$ be the vertices of T_i. Then each $\vec{a} \in T_i$ can be written as a convex combination of the vertices:
\(\vec{a} = \sum t_j \vec{v}_j \) where each \(t_j \geq 0 \) and \(\sum t_j = 1 \). Since \(\Delta(W^{(p)}) \) is convex, we have
\[
\Delta(W^{(p)})_{\vec{a}} \supseteq \sum t_j \Delta(W^{(p)})_{\vec{v}_j},
\]
where the sum on the right means the Minkowski sum. By (3) and (4), the volume of each \(\Delta(W^{(p)})_{\vec{v}_j} \) is at least \(M_i - \varepsilon' \), hence by the Brunn-Minkowski inequality [KK08, Theorem 5.4], we have
\[
\text{vol}(\Delta(W^{(p)})_{\vec{a}}) \geq M_i - \varepsilon' \quad \text{for all } \vec{a} \in T_i \cap T_Q.
\]
This combined with (3) shows that (5) is true on \(T_i \cap T_Q \), hence it is true on \(T_Q \) since the \(T_i \)'s cover \(T \).

Since (1) follows from (5) by choosing a suitable \(\varepsilon' \), the proof is thus complete. \(\square \)

Remark 4. In the statement of Theorem 3 we assume that \(W \vec{\cdot} \) is the complete multigraded linear series associated to big divisors. But in fact since the main tool we used in the proof is the theory of Okounkov bodies established in [LM08], in particular [LM08, Theorem 4.19], the really indispensable assumptions on \(W \vec{\cdot} \) are the same as those in [LM08] (which they called Conditions (A') and (B'), or (C')). The only place in the proof where we invoke that we are working with a complete multigraded linear series is the sentence right after (2), where we want to say that (2) holds not only in the relative interior of \(T \) but also in its boundary. Hence if \(W \vec{\cdot} \) is only assumed to satisfy Conditions (A') and (B'), or (C'), then given any \(\varepsilon > 0 \) and any compact set \(C \) contained in \(T \cap \text{int}(\text{supp}(W \vec{\cdot})) \), there exists an integer \(p_0 = p_0(C, \varepsilon) \) such that if \(p \geq p_0 \) then
\[
\text{vol}_{W^{(p)}}(\vec{a}) > \text{vol}_{W^{(p)}}(\vec{a}) - \varepsilon
\]
for all \(\vec{a} \in C \cap T_Q \).

References

[BDPP04] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Paun, and Thomas Peternell, *The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*, preprint, arXiv:math/0405285

[Fuj94] Takao Fujita, *Approximating Zariski decomposition of big line bundles*, Kodai Math. J. 17 (1994), no. 1, 1–3.

[HM06] Christopher Hacon and James McKernan, *Boundedness of pluricanonical maps of varieties of general type*, Invent. Math. 166 (2006), 1–25.

[KK08] Kiumars Kaveh and Askold Khovanskii, *Convex bodies and algebraic equations on affine varieties*, preprint, arXiv:0804.4095

[KK09] Kiumars Kaveh and Askold Khovanskii, *Newton convex bodies, semigroups of integral points, graded algebras and intersection theory*, preprint, arXiv:0904.3350

[Laz04] Robert Lazarsfeld, *Positivity in Algebraic Geometry I–II*, Ergeb. Math. Grenzgeb., vols. 48–49, Berlin: Springer, 2004.

[LM08] Robert Lazarsfeld and Mircea Mustaţă, *Convex bodies associated to linear series*, to appear in Ann. Sci. Ecole Norm. Sup., arXiv:0805.4559
[Oko96] Andrei Okounkov, *Brunn-Minkowski inequality for multiplicities*, Invent. Math. 125 (1996), 405–411.

[Oko03] Andrei Okounkov, *Why would multiplicities be log-concave?*, The orbit method in geometry and physics, Progress in Mathematics vol. 213, Boston, MA: Birkhäuser Boston, 2003, pp. 329–347.

[Tak06] Shigeharu Takayama, *Pluricanonical systems on algebraic varieties of general type*, Invent. Math. 165 (2006), 551–587.

[Tsu00] Hajime Tsuji, *Effective birationality of pluricanonical systems*, preprint, arXiv:math/0011257

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104
E-mail address: jows@math.upenn.edu