In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of *Macleaya cordata* (Bo Luo Hui)

Qifang Lei, Haibo Liu*, Yong Peng and Peigen Xiao

Abstract

Background: Some isoquinoline alkaloids from *Macleaya cordata* (Willd.) R. Br. (Bo Luo Hui) exhibited antibacterial, antiparasitic, antitumor, and analgesic effects. The targets of these isoquinoline alkaloids are undefined. This study aims to investigate the compound–target interaction network and potential pharmacological actions of isoquinoline alkaloids of *M. cordata* by reverse pharmacophore database screening.

Methods: The targets of 26 isoquinoline alkaloids identified from *M. cordata* were predicted by a pharmacophore-based target fishing approach. Discovery Studio 3.5 and two pharmacophore databases (PharmaDB and HypoDB) were employed for the target profiling. A compound–target interaction network of *M. cordata* was constructed and analyzed by Cytoscape 3.0.

Results: Thirteen of the 65 predicted targets identified by PharmaDB were confirmed as targets by HypoDB screening. The targets in the interaction network of *M. cordata* were involved in cancer (31 targets), microorganisms (12 targets), neurodegeneration (10 targets), inflammation and autoimmunity (8 targets), parasitosis (5 targets), injury (4 targets), and pain (3 targets). Dihydrochelerythrine (C6) was found to hit 23 fitting targets. Macrophage migration inhibitory factor (MIF) hits 15 alkaloids (C1–2, C11–16, C19–25) was the most promising target related to cancer.

Conclusion: Through in silico target fishing, the anticancer, anti-inflammatory, and analgesic effects of *M. cordata* were the most significant among many possible activities. The possible anticancer effects were mainly contributed by the isoquinoline alkaloids as active components.

Background

Macleaya cordata (Willd.) R. Br. (Bo Luo Hui) (Fig. 1) has been used for the treatment of cancer [1], insect bites [2], and ringworm infection [3] in Mainland China, North America, and Europe. Phytochemical and pharmacological studies demonstrated that the isoquinoline alkaloids derived from *M. cordata* are its major active components [4]. Thirty isoquinoline alkaloids have been isolated from *M. cordata* (Fig. 2), including chelerythrine (C12), sanguinarine (C15), sanguidimerine (C17), chelidimerine (C18), berberine (C21), coptisine (C23), allocryptopine (C24, C25), and protopine (C26). These alkaloids exhibited a broad spectrum of biological activities, such as antitumor [5–8], anti-inflammatory [9–11], antimicrobial [12–14], analgesic [15], and antioxidant [16] activities.

In our previous study [17], we found that *M. cordata* could be counted not only as one of the richest resources in Mainland China among all species of the tribe Chelidonieae, but also as one of the most promising natural resources for drug discovery. *M. cordata* has gained the attention of pharmacognosists since early 1990s (Fig. 3). However, its obscure molecular actions have hindered its use in drug development.
Although protein–ligand docking techniques have been available in virtual drug screening for specific targets, such as tumor necrosis factor α-converting enzyme (TACE) [18], inducible nitric oxide synthase (iNOS) [19], and Janus-activated kinase 2 (JAK2) [20], these docking approaches to virtual screening are often too computationally expensive [21].

This study aims to investigate the compound-target interaction network of isoquinoline alkaloids of *M. cordata* by reverse pharmacophore database screening technology, and outline its potential action mechanisms.

Methods

Workflow

Figure 4 shows the workflow of this study. The structures and bioactivities of the isoquinoline alkaloids of *M. cordata* were collected by literature review [17]. The alkaloids were then applied to target fishing with two pharmacophore and target databases, PharmaDB and HypoDB. The hit pharmacophore models were picked out according to the threshold of a predetermined fit value. The results from PharmaDB screening were compared with those from HypoDB screening. After analysis of the hit targets and their associated pathways and diseases, as well as the interactions between the alkaloids and the targets, an action network of *M. cordata* was constructed. Literature retrieval was simultaneously carried out to verify the findings.

Compound collection

The active components of *M. cordata* were collected from our own database [17] and the literature. All 26 isoquinoline alkaloids of *M. cordata* and their bioactivities are listed in Table 1. As shown in Fig. 2, the alkaloids were divided into three classes: benzo[c]phenanthridines (Ben, C1–C18), protoberberines (Ber, C19–C23), and protopines (Pro, C24–C26). Based on the replacement of the C-ring, C1–C9 belong to the dihydrobenzo[c]phenanthridines, C10 is a N-demethyl subtype, and C11–C16 are quaternary ammonium bases that share an iminium moiety (C=\(\text{N}^{+}\)). The remaining two bisbenzo[c]phenanthridines (BisBen, C17–C18) are epimers to one another.

Conformation analysis

The structures of all 26 alkaloid candidates were prepared in MOL format, and converted from 2D drawings to 3D models. Their energies were minimized by the software Discovery Studio (DS, v3.5) developed by BIVIA (USA) with the CHARMM force field. A Monte Carlo-based conformational analysis (FAST mode) was performed to generate conformers from the initial conformations. The maximal 255 conformers were allowed with an energy interval of 20 kcal/mol. These alkaloid molecules were rigid, and the number of conformers for each compound was much fewer than 255. Hence, a total of 135 conformers were generated for the 26 isoquinoline alkaloids.

Ligand profiling

A pharmacophore model represented a series of common features of a set of ligands with a special pharmacological target. The features of a pharmacophore model reflected the target–ligand interaction mode. Pharmacophore-based virtual screening was an alternative to docking. Automated ligand profiling was available in DS 3.5 as the so-called “Ligand Profiler” protocol. The software offered automated pharmacophore-based activity profiling and reporting [22]. In this study, the default parameters of DS 3.5 were used. For each candidate ligand, three or more features were mapped.

Pharmacophore databases

DS 3.5 was equipped with two available pharmacophore databases, i.e., HypoDB [23] and PharmaDB [24]. HypoDB contained about 2500 pharmacophore models derived from protein–ligand 3D complex structures as well as structural data on small bioactive organic molecules. PharmaDB was created from the sc-PDB, a
well-accepted data source in structure-based profiling protocols. The sc-PDB was a collection of 3D structures of binding sites found in the Protein Data Bank (PDB). The binding sites were extracted from crystal structures in which a complex between a protein cavity and a small molecule ligand could be identified. PharmaDB consisted
Fig. 3 The statistics of Pubmed publications on *Macleaya cordata* between 1972 and 2014

Fig. 4 The workflow of this study
Table 1 Basic information of the isoquinoline alkaloids in M. cordata

No.	Compounds	Bioactivities	Virtual hitting targets
1	6-Acetonyl-dihydrosanguinarine	Anti-bacteria, Insecticidal	MIF, TTR, NQO1
2	6-Acetonyl-dihydrochelerythrine	Anti-oxidant, Anti-HIV	HSD1, MIF, PDE4D, NQO1, PLA2s, nAChR 7α, AknH, TegR
3	6-Methoxy-dihydrochelerythrine	Anti-cancer, Anti-parasitic	CAR/RXR, MR, ERα, JNK3, SHBG, AR, 15S-LOX, MMP12, PPARγ, SARS M(pro), Scy D, MAO-A
4	6-Methoxy-dihydrosanguinarine	Anti-bacteria, Anti-cancer, Anti-platelet aggregation	MR, ERα, FNR, MAO-A
5	Bocconoline	Anti-bacteria, Anti-fungal	Opsin 2, HSD1, CAR/RXR, MD, ERα, JNK3, SHBG, Chk1, AR, 15S-LOX, CDK2, CAMKII, Aurora A, PIM1, MMP12, Tankyrase 2, SARS M(pro), PLENR, FabZ, DHODH, CDPKs, FNR, ENR, Scy D, MAO-A
6	Dihydrochelerythrine	Anti-bacteria, Anti-fungal	CAR/RXR, MR, ERα, PPO, TTR, JNK3, SHBG, NQO1, RBP4, 15S-LOX, CK2, PIM1, FabZ, DHODH, Snaol, FNR, ENR, Scy D, MAO-A, MAO-B, AchE, HIV-1 RT, OSBP
7	Dihydrosanguinarine	Anti-bacteria, Anti-fungal	MR, ERα, PPO, SHBG, 15S-LOX, CDK2, CK2, MAO-A, AchE
8	Oxsanguinarine	Anti-platelet aggregation	PIM1, CK2
9	Oxycelerythrine	Cytotoxic	CAR/RXR, TTR, JNK3, SHBG, 15S-LOX, CLK1, CK2, PIM1, MMP12, MAPK p38, COMP, FabZ, Sona1, FNR, ENR, MAO-A, MAO-B, AchE, OSBP
10	Norsanguinarine	Anti-fungal	MIF, TTR, JNK3, GAPDH, nAChR 7α, FabZ, CAT, LmrR, HSSB Pol
11	6-ethoxycelerythrine	Anti-bacteria, Anti-fungal	CK2, NmrA
12	Chelerythrine	Anti-bacteria, Anti-parasitic	MIF, TTR, FabZ, HSSB Pol
13	Chelirubine	Anti-proliferative	MIF, NQO1, GR, ZipA-FtsZ, AknH, opdA
14	Macarpine	Cytotoxic	PDE4B, PDE 4B, TTR, NQO1, PIM1, MAPK p38, GR, ZipA-FtsZ, AknH
15	Sanguinarine	Anti-bacteria, Anti-oxidant, Anti-cancer, Anti-parasitic, Anti-cancer, Anti-oxidant, Hepatotoxicity	MIF, nAChR 7α
16	Sanguilutine	Anti-proliferative	HSD1, MIF, PDE4D, PLA2s, FabZ
17	Sanguidimerine	Unreported	ATP
18	Chelidimerine	Unreported	MDR, HIV-1 Protease
19	Chelanthifoline	Anti-malarial	ALR, ERα, Erβ, MIF, PDK-1, CK2, PIM1, Pi3 Ky, GR, nAChR 7α, TEM-1, ActR, MAO-B, HIV-1 RT, OSBP
20	Dehydrocicanthifoline	Unreported	HSD1, MR, PDE4B, PDE4D, PPO, MIF, TTR, JNK3, CRBP-2, MAPK p38, AR, PIM1, ZipA-FtsZ, HSSB Pol, HIV-1 RT
21	Berberine	Anti-fungal	MIF, FabZ, Scy D, AchE
22	Dehydrocelanthifoline	Anti-virus	ERα, ERβ, MIF, GSK-3β, TTR, CDK2, PLA2s, MAO-B
23	Coptisine	Cytotoxic	MIF
24	α-Allocryptopine	Anti-fungal	HSD1, MIF, HSSB Pol, Scy D, BACE1
of about 68,000 pharmacophores derived from 8000 protein–ligand complexes from the sc-PDB dataset. PharmaDB is a new and updated pharmacophore database developed in collaboration with Prof. Didier Rognan [25, 26]. The target and pharmacophore models from PharmaDB and HypoDB were not entirely consistent. PharmaDB had a larger quantity of targets, while the models in the HypoDB were fewer and described as being experimentally validated. Therefore, in this study, PharmaDB was employed in the target fishing, and HypoDB was used to validate the results.

Regarding PharmaDB, multiple pharmacophores with shape or excluded volume constraints were generated for each protein target. For the pharmacophores with shape constraints, the suffix “-s” was added to the name. In addition, a numerical suffix referred to the ranking of selectivity evaluated by a default algorithm in DS v3.5. In this study, only the best models with “−1” in their names were employed in the ligand profiling [23]. For each pharmacophore database, a classification tree was available, from which the individual models could be selected.

Parameters
In the profiling with PharmaDB, all the pharmacophore models with the shape of the binding pocket were selected for the virtual screening with default settings. The RIGID mode was used as the molecular mapping algorithm. No molecular features were allowed to be missed while mapping these ligands to the pharmacophore models to increase selectivity. The minimal inter-feature distance was set at 0.5 Å. Parallel screening technology for one or more compounds against a multitude of pharmacophore models was available as a Pipeline Pilot protocol. The number of parallel processing procedures was set at 4. The whole calculation was carried on a T5500 workstation (DELL inc., USA).

Binding mode refinement
All the poses of the ligands mapped into the pharmacophore were preserved. A series of target-ligand pairs were selected as emphasis for further examinations. The selection was based upon compatibility with the reported pharmaceutical activities, as well as traditional usage of M. cordata. A further refinement was carried out in Molecular Operating Environment (MOE) developed by CCG (Canada) to identify the protein–ligand binding modes. Energy minimization was carried out by conjugated gradient minimization with the MMFF94x force field, until an RMSD of 0.1 kcal mol$^{-1}$ Å$^{-1}$ was reached.

Network construction
An interaction table between alkaloids and targets was presented as the ligand profiling results. For each target, the name and pathway information were collected from the PDB and KEGG. The diseases related to the targets were collected from the Therapeutic Target Database (TTD; http://bidd.nus.edu.sg/group/cjttd/) [27] and DrugBank (http://www.drugbank.ca/) [28] databases. Compound-Target-Pathway networks were generated by Cytoscape 3.0 (Cytoscape Consortium, USA) [29]. In the networks, nodes represented the compounds, targets, and biological pathways. The edges linking the compound-target and target-pathway represented their relationships and were marked with different types of lines. After the network was built, the basic parameters of the network were computed and analyzed.

Results and discussion
The profiling results are presented in two HTML tables, designated MoleculeFits and PharmacophoreFits. Two descriptors, fit value and shape similarity, were used to measure the fitness of the ligand and pharmacophore. A fit value equal to or greater than 0.3 was used as a heuristic threshold to select targets from the activity profiler. For each pharmacophore model, the classification information of the target can be indicated in a HTML table created by DS 3.5 called as PharmacophoreFits. Finally, 98 pharmacophore models were mapped. The models belonged to 65 protein targets, and were involved in 60 pathways. A complete list of the 241 target-ligand pairs is shown in Table 2. The name and indication information of the targets are shown in Table 3. The 13 targets verified by HypoDB screening are marked with an asterisk in Table 3.

Analysis of the interaction network
A topological analysis of the interaction network offered insights into the biologically relevant connectivity
Table 2 The results of ligand profiling

Class	CMD-ID	pH4	Target short name	Gene	Uniprot-AC	Fit value	Shape similarity
Ben	1	3cfn	TTR	TTHY_HUMAN	P02766	0.750635	0.508475
Ben	1	1h69	NQO1	NQO1_HUMAN	P15559	0.923086	0.536437
Ben	2	3kba	Progesterone receptor	PRGR_HUMAN	P06401	0.334698	0.506897
Ben	2	1xom	PDE4D	PDE4D_HUMAN	Q08499	0.346437	0.527574
Ben	2	2wnj	nAChR 7α	Q8WSF8_APLCA	Q8WSF8	0.43985	0.505495
Ben	2	1h69	NQO1	NQO1_HUMAN	P15559	0.928158	0.504604
Ben	3	2oz7	AR	ANDR_HUMAN	P10275	0.360858	0.500849
Ben	3	2a3i	MR	MCR_HUMAN	P08235	0.375601	0.528195
Ben	3	5std	ScyO	SCYD_MAGGR	P56221	0.418672	0.543119
Ben	3	1lzi	Erα	ESR1_HUMAN	P03372	0.420147	0.542969
Ben	3	1xrp	CAR/RXR	NR1B3_HUMAN	Q14994	0.460385	0.534672
Ben	3	3mpl	PPARγ	PPARG_HUMAN	P37231	0.526039	0.500787
Ben	3	1dzs	SHBG	SHBG_HUMAN	P04278	0.558685	0.563525
Ben	3	2gz7	SARS M(pro)	R1AB_CVHSA	POC6X7	0.559512	0.547348
Ben	3	2p0m	15S-LOX	LOX15_RABIT	P12530	0.639897	0.537344
Ben	3	3f15	MMP12	MMP12_HUMAN	P39900	0.725254	0.50503
Ben	3	2bxr	MAO-A	AOFA_HUMAN	P21397	0.799156	0.521008
Ben	3	2ozu	JNK3	MK10_HUMAN	P53779	0.835637	0.577825
Ben	4	2bgj	FNR	Q9L6V3_RHOCA	Q9L6V3	0.427793	0.516878
Ben	4	1lzi	Erα	ESR1_HUMAN	P03372	0.452535	0.593291
Ben	4	2bxr	MAO-A	AOFA_HUMAN	P21397	0.793632	0.533917
Ben	5	504	P3RNR	Q9B177_PLAFA	Q9B177	0.315455	0.518182
Ben	5	3gou	DHODH	PYRD_HUMAN	Q02127	0.369491	0.508604
Ben	5	2bxr	MAO-A	AOFA_HUMAN	P21397	0.387312	0.544118
Ben	5	2a3i	MR	MCR_HUMAN	P08235	0.387489	0.563771
Ben	5	7std	ScyO	SCYD_MAGGR	P56221	0.422146	0.504744
Ben	5	2uze	CDC26	CDC2_HUMAN	P24941	0.424268	0.567108
Ben	5	2oz7	AR	ANDR_HUMAN	P10275	0.426337	0.510961
Ben	5	3coh	Aurora-A	STK6_HUMAN	Q14965	0.4511	0.531532
Ben	5	3kr8	Tankyrase 2	TNKS2_HUMAN	Q9H2K2	0.464801	0.548729
Ben	5	1dzs	SHBG	SHBG_HUMAN	P04278	0.480784	0.571721
Ben	5	1lzi	Erα	ESR1_HUMAN	P03372	0.493882	0.57529
Ben	5	2wel	CAMKII	KCC2D_HUMAN	Q13557	0.493929	0.516729
Ben	5	3me	ENR	INHA_MYCTU	P0A5Y6	0.50498	0.546169
Ben	5	1xrp	CAR/RXR	NR1B3_HUMAN	Q14994	0.508683	0.576427
Ben	5	5std	ScyO	SCYD_MAGGR	P56221	0.522671	0.566972
Ben	5	2brg	Chk1	CHK1_HUMAN	O14757	0.541427	0.517111
Ben	5	3doz	FabZ	QSG940_HELPLY	Q5G940	0.546379	0.507843
Ben	5	2bgj	FNR	Q9L6V3_RHOCA	Q9L6V3	0.553334	0.549296
Ben	5	3nf	ENR	INHA_MYCTU	P0A5Y6	0.562321	0.511494
Ben	5	3nh	ENR	INHA_MYCTU	P0A5Y6	0.614823	0.507547
Ben	5	2p0m	15S-LOX	LOX15_RABIT	P12530	0.673148	0.541414
Ben	5	3dp1	FabZ	QSG940_HELPLY	Q5G940	0.687924	0.53816
Ben	5	2g7	SARS M(pro)	R1AB_CVHSA	POC6X7	0.694125	0.551789
Ben	5	2ozu	JNK3	MK10_HUMAN	P53779	0.805153	0.553719
Ben	5	3f15	MMP12	MMP12_HUMAN	P39900	0.893862	0.507187
Ben	6	3f6	DHODH	PYRD_HUMAN	Q02127	0.341464	0.566038
Ben	6	5std	ScyO	SCYD_MAGGR	P56221	0.364451	0.555556
Ben	6	1dzs	SHBG	SHBG_HUMAN	P04278	0.367805	0.529289
Class	CMD-ID	ph4	Target short name	Gene	Uniprot-AC	Fit value	Shape similarity
-------	--------	-----	------------------	---------------------	-------------	------------	------------------
Ben	6	2a3i	MR	MCR_HUMAN	P08235	0.368001	0.559289
Ben	6	1xvp	CAR/RXR	NR1I3_HUMAN	Q14994	0.423023	0.572534
Ben	6	2v60	MAO-B	AOF8_HUMAN	P27338	0.436774	0.511294
Ben	6	1i2i	ERα	ESR1_HUMAN	P03372	0.451108	0.529175
Ben	6	1rbp	RBP4	RET4_HUMAN	P02753	0.486949	0.516378
Ben	6	2nsd	ENR	INHA_MYCTU	P0A5Y6	0.509088	0.530738
Ben	6	1kgj	TTR	TTHY_RAT	P02767	0.522255	0.529412
Ben	6	1tv6	HIV-1 TR	POL_HV1B1	P03366	0.564994	0.529981
Ben	6	2bgj	FNR	Q9L6V3_RHOCA	Q9L6V3	0.636419	0.536325
Ben	6	2p0m	15S-LOX	LOX15_RABIT	P12530	0.663082	0.545045
Ben	6	3nuu	TTR	TTHY_HUMAN	P02766	0.690803	0.577011
Ben	6	3dp1	FabZ	QSG940HELPY	QSG940	0.705916	0.565401
Ben	6	2o2u	JNK3	MK10_HUMAN	P53779	0.705945	0.507463
Ben	6	1h69	NQO1	NQO1_HUMAN	P15559	0.755827	0.508911
Ben	6	2brx	MAO-A	AOF8_HUMAN	P21397	0.795152	0.541573
Ben	6	1jwv	SnnoL	Q9RNS9Salvar_9	Q9RNS9	0.904111	0.661572
Ben	6	2j3q	ACHE	ACES_TORCA	P04058	0.992134	0.661327
Ben	7	2xn1	CTK2	CTK2_HUMAN	P24941	0.329358	0.521253
Ben	7	1dzs	SHBG	SHBG_HUMAN	P04278	0.340019	0.542857
Ben	7	1izj	Erα	ESR1_HUMAN	P03372	0.465563	0.553846
Ben	7	3j3q	ACHE	ACES_TORCA	P04058	0.470546	0.67
Ben	7	2p0m	15S-LOX	LOX15_RABIT	P12530	0.639874	0.545254
Ben	7	2brx	MAO-A	AOF8_HUMAN	P21397	0.825209	0.546964
Ben	8	3bpg	PIM-1	PIM1_HUMAN	P11309	0.659102	0.52193
Ben	9	2wv7	CK1	CK3_HUMAN	P49761	0.333353	0.541053
Ben	9	1dzs	SHBG	SHBG_HUMAN	P04278	0.40988	0.526096
Ben	9	2nsd	ENR	INHA_MYCTU	P0A5Y6	0.417703	0.527277
Ben	9	1tha	TTR	TTHY_HUMAN	P02766	0.42188	0.505071
Ben	9	1xvp	CAR/RXR	NR1I3_HUMAN	Q14994	0.459386	0.600775
Ben	9	1fbm	COMP	COMP_RAT	P35444	0.540756	0.509542
Ben	9	2p0m	15S-LOX	LOX15_RABIT	P12530	0.609094	0.548596
Ben	9	2brx	MAO-A	AOF8_HUMAN	P21397	0.636415	0.524336
Ben	9	3w7	MAPKp38	MK14_HUMAN	Q16539	0.671331	0.532803
Ben	9	1swv	SnnoL	Q9RNS9Salvar_9	Q9RNS9	0.679871	0.665953
Ben	9	2bgj	FNR	Q9L6V3_RHOCA	Q9L6V3	0.68446	0.509554
Ben	9	3dp1	FabZ	QSG940HELPLY	QSG940	0.723083	0.601732
Ben	9	2v60	MAO-B	AOF8_HUMAN	P27338	0.818911	0.501006
Ben	9	2o2u	JNK3	MK10_HUMAN	P53779	0.878824	0.532609
Ben	9	2j3q	ACHE	ACES_TORCA	P04058	0.992667	0.679157
Ben	10	2wmn	NmR1A	NMRL1_HUMAN	Q9HBL8	0.635677	0.601671
Ben	11	3oz	FabZ	QSG940HELPLY	QSG940	0.380298	0.514677
Ben	11	3kvx	JNK3	MK10_HUMAN	P53779	0.408174	0.518987
Ben	11	2wnj	nAChR 7a	Q8WS8APLCA	Q8WS8	0.408648	0.512476
Ben	11	3doy	FabZ	QSG940HELPLY	QSG940	0.456816	0.515444
Ben	11	3mp	GAPDH	G3PG_TRYCR	P22513	0.56209	0.509311
Ben	11	1qa	CAT	CAT3_ECOLX	P00484	0.780585	0.505747
Ben	11	38f	LmrR	A2R836LACLMM	A2R836	0.817481	0.51932
Ben	13	1xan	GR	GSHR_HUMAN	P00390	0.573697	0.520833
Class	CMD-ID	pH	Target short name	Gene	Uniprot-AC	Fit value	Shape similarity
-------	--------	----	------------------	------------	------------	------------	------------------
Ben	13	3kba	Progesterone receptor	PRGR_HUMAN	P06401	0.651629	0.522059
Ben	13	1h69	NQO1	NQO1_HUMAN	P15559	0.811055	0.503055
Ben	13	3a3w	opdA	Q93LD7_HRHD	Q93LD7	0.833715	0.510158
Ben	14	3huc	MAPK p38	MK14_HUMAN	Q16539	0.340704	0.534901
Ben	14	1xan	GR	GSR_HUMAN	P00390	0.517848	0.510823
Ben	14	1h69	NQO1	NQO1_HUMAN	P15559	0.723867	0.515504
Ben	14	1xom	PDE4D	PDE4D_HUMAN	Q08499	0.745933	0.503704
Ben	14	1lx	PDE4B	PDE4B_HUMAN	Q07343	0.796555	0.52037
Ben	15	2wng	nAChR 7α	Q8WSF8_APLCA	Q8WSF8	0.495424	0.509356
Ben	16	3kba	Progesterone receptor	PRGR_HUMAN	P06401	0.342606	0.537671
Ben	16	1xom	PDE4D	PDE4D_HUMAN	Q08499	0.816692	0.539427
BisBen	17	1rs1	ATTP	TTPA_HUMAN	P49638	0.32356	0.514156
BisBen	18	1rt9	MDR HIV-1 Protease	Q5RTL1_HIV	Q5RTL1	0.621229	0.507743
Ber	19	1u3s	ERβ	ES2_HUMAN	Q92731	0.408794	0.535377
Ber	19	23q	AChE	ACES_TORCA	P40548	0.485705	0.596737
Ber	19	354	Pi3 Ky	PK3CG_HUMAN	P48736	0.498919	0.59589
Ber	19	1pzo	TEM-1	BLAT_ECOLX	P62593	0.523404	0.526667
Ber	19	2kg	ALR	ALDR_HUMAN	P15121	0.561704	0.507109
Ber	19	1c1c	HIV-1 TR	POL_HV1H2	P04385	0.577074	0.542373
Ber	19	2r7b	PDK-1	PDK1_HUMAN	Q15530	0.587223	0.533049
Ber	19	1yye	ERβ	ES2_HUMAN	Q92731	0.679767	0.56691
Ber	19	1qkt	ERα	ES1_HUMAN	P03372	0.681913	0.56351
Ber	19	1xan	GR	GSR_HUMAN	P00390	0.715506	0.548544
Ber	19	2wng	nAChR 7α	Q8WSF8_APLCA	Q8WSF8	0.87937	0.501031
Ber	19	36c	ActR	Q53901_STRCO	Q53901	0.880577	0.597561
Ber	19	1x78	ERβ	ES2_HUMAN	Q92731	0.909059	0.522565
Ber	20	1xm4	PDE4B	PDE4B_HUMAN	Q07343	0.402388	0.569138
Ber	20	1tha	TTR	TTH_HUMAN	P02766	0.45615	0.514286
Ber	20	1tv6	HIV-1 TR	POL_HV1B1	P03366	0.459002	0.521154
Ber	20	2n4w	AR	ANDR_RAT	P15207	0.463505	0.541203
Ber	20	1opb	CRBP2	RET2_RAT	P06768	0.485837	0.534653
Ber	20	2waj	JNK3	MK10_HUMAN	P53779	0.572085	0.603104
Ber	20	1kgj	TTR	TTH_HUMAN	P02767	0.740087	0.65531
Ber	20	1xom	PDE4D	PDE4D_HUMAN	Q08499	0.811727	0.542406
Ber	20	1lx	PDE4B	PDE4B_HUMAN	Q07343	0.859016	0.51341
Ber	20	36d	PPO	PPOX_BACSU	P32397	0.97618	0.570499
Ber	21	5std	ScyO	SCYD_MAGGR	P56221	0.324086	0.505682
Ber	21	23q	AChE	ACES_TORCA	P04508	0.992907	0.672209
Ber	22	1d18	CDR2	CDR2_HUMAN	P24941	0.406566	0.501094
Ber	22	1u3s	ERβ	ES2_HUMAN	Q92731	0.661777	0.509434
Pro	24	5std	ScyO	SCYD_MAGGR	P56221	0.538905	0.543636
Pro	24	3ine	BACE1	BACE1_HUMAN	P56817	0.54561	0.522968
Pro	25	1tyr	TTR	TTH_HUMAN	P02766	0.356425	0.526412
Pro	25	3inf	BACE1	BACE1_HUMAN	P56817	0.377118	0.504303
Pro	25	2wng	nAChR 7α	Q8WSF8_APLCA	Q8WSF8	0.553029	0.533461
Pro	25	3ine	BACE1	BACE1_HUMAN	P56817	0.597712	0.51259
Pro	25	3hx3	CRALBP	RLBP1_HUMAN	P12271	0.604625	0.513158
Pro	25	5std	ScyO	SCYD_MAGGR	P56221	0.763034	0.522523
Pro	26	2ow2	PENR	MMP9_HUMAN	P14780	0.302479	0.507865
Pro	26	2f1o	NQO1	NQO1_HUMAN	P15559	0.432407	0.52183
Targets	Short name	Type	Pathway	Diseases			
---	------------	----------	--	---			
Retinaldehyde-binding protein	CRALBP	Research	Retinaldehyde metabolism	Retinitis pigmentosa			
Rhodopsin	Opsin 2	Research	Retina metabolism	Retinitis pigmentosa			
11-Beta-hydroxysteroid dehydrogenase	HSD1	Successful	Glucocorticoid concentration	Diabetes, Osteoporosis, Hepatotoxicity			
CAR/RXR heterodimer	CAR/RXR	Research	Triglyceride metabolism	Diabetes, Hepatitis, Diabetes, Pain			
Aldose reductase	ALR	Successful	Glucolipid metabolism	Diabetes, Hepatitis, Diabetes, Pain			
Mineralocorticoid receptors	MR	Successful	Na+/K+ equilibrium	Inflammatory, autoimmune disease, Injury			
Phosphodiesterase 4B	PDE4B	Successful	AKT/mTOR pathway	Cancer, Obesity			
Phosphodiesterase 4D	PDE4D	Successful	Intracellular cAMP/CREB signaling	Cancer, Alzheimer’s			
Protoporphyrinogen oxidase	PPO	Research	Heme biosynthesis	Cancer, Parasitosis, Cancer, Alzheimer’s Injury, Osteoporosis			
Transthyretin	TTR	Clinic Trial	Thyroxine carrier	Cancer, Alzheimer’s			
Mitogen-activated protein kinase 10	JNK3	Research	GbrH/ErbB/MAPK/insulin signaling pathway	Cancer, Alzheimer’s			
Sex hormone-binding globulin	SHBG	Research	Sex steroids biosynthesis	Cancer			
NAD(P)H quinone oxidoreductase	NQO1	Research	Quinones metabolism	Cancer			
Cellular retinol binding protein II	CRBP2	Research	Retinol metabolism	Cancer			
Estrogen receptor alpha	ERα	Successful	Estrogen metabolism	Cancer, Alzheimer’s			
Mitogen-activated protein kinase 10	JNK3	Research	GbrH/ErbB/MAPK/insulin signaling pathway	Cancer, Alzheimer’s			
Sex hormone-binding globulin	SHBG	Research	Sex steroids biosynthesis	Cancer			
NAD(P)H quinone oxidoreductase	NQO1	Research	Quinones metabolism	Cancer			
Cellular retinol binding protein II	CRBP2	Research	Retinol metabolism	Cancer			
Estrogen receptor beta	ERβ	Successful	Estrogen metabolism	Cancer, Alzheimer’s			
Checkpoint kinase 1	Chk1	Research	DNA damage response	Cancer			
Androgen receptor	AR	Successful	Hormone metabolism	Cancer			
Retinolocyte 15S-lipoxygenase	15S-LOX	Research	Arachidonic acid metabolism	Cancer			
3-Phosphoinositide-dependent kinase 1	PDK-1	Research	Phosphatidylinositol 3 kinase (PI3K) signaling	Cancer			
Casein kinase 2	CK2	Research	Ser/Thr pathway	Cancer			
Cyclin dependent kinase 2	CDK2	Research	Cell cycle	Cancer			
Calcium/calmodulin dependent protein kinase II	CAMKII	Research	NF-kB-mediated inflammatory response	Cancer, Inflammatory, autoimmune disease			
Dual-specific protein kinase 1	CLK1	Research	Nuclear redistribution of SR proteins	Cancer			
Proto-oncogene serine threonine kinase 1	PIM-1	Research	Cell cycle regulation JAK/STAT pathway	Cancer			
Aurora kinase A	Aurora-A	Clinical trial	Cell cycle arrest	Cancer			
Matrix metalloproteinases	MMP12	Research	Cell invasion, metastasis	Cancer, Inflammatory, autoimmune disease			
Phospholipase A2	PLA2s	Successful	VEGF/MAPK/GnRH signaling	Cancer, Inflammatory, autoimmune disease			
Mitogen-Activated Protein Kinases p38 MAPK p38		Clinical trial	MAPK signaling	Cancer			

Inflammatory, autoimmune disease, Dermatosis
Targets	Short name	Type	Pathway	Diseases
Tankyrase 2	Tankyrase 2	Research	Canonical Wnt signaling	Cancer
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma isoform	PI3Kγ	Research	Cancer migration, invasion	Cancer Inflammatory, autoimmune disease
PPARgamma-LBD^a	PPARγ^a	Research	LPS-induced iNOS expression	Cancer Inflammatory, autoimmune disease Osteoporosis
Cartilage oligomeric matrix protein	COMP	Research	Bone regeneration	Autoimmune disease Injury
Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro))	SARS M(pro)	Research	Virus maturation	Virus infection
Glycosomal glyceraldehyde-3-Phosphate Dehydrogenase	GAPDH	Successful	Glyceraldehydes metabolism	Parasitosis
Glutathione disulfide oxidoreductase	GR	Research	Glutathione metabolism	Parasitosis
Acyl carrier protein reductase^a	PFIENR^a	Successful	Fatty acid biosynthesis	Parasitosis
Acetylcholine binding protein alpha7	nACHR 7α	Successful	Calcium signaling pathway	Alzheimer’s Pain
3R-hydroxyacyl-acyl carrier protein dehydratase	FabZ	Research	Fatty acid biosynthesis	Parasitosis
Dihydroorotate dehydrogenase	DHODH	Successful	Pyrimidine metabolism	Parasitosis
TEM-1 Beta-Lactamase^a	TEM-1^a	Successful	Cefotaxime metabolism	Bacterial infection
Chloramphenicol acetyltransferase	CAT	Research	Chloramphenicol metabolism	Bacterial infection
Polyketide cyclase SnoaL	SnoaL	Research	Nogalamycin biosynthesis	Bacterial infection
ZipA attaches FtsZ protein	ZipA-FtsZ	Research	Cell division	Bacterial infection
Ferredoxin-NADP⁺ reductase	FNR	Successful	Redox metabolism	Bacterial infection
Polyketide cyclase AknH	AknH	Research	Aclacinomycin biosynthesis	Bacterial infection
Enoyl-acyl carrier protein reductase	ENR	Successful	Fatty acid biosynthesis	Bacterial infection
Multidrug binding protein TtgR	TtgR	Research	Active extrusion of drug	Bacterial infection
NmrA-like family domain	NmrA	Research	Transcriptional repress	Fungal infection
Bacterial phosphotriesterase	opdA	Research	Organophosphate metabolism	Bacterial infection
Streptomyces coelicolor TetR family protein AcnR^a	ActR^a	Research	Transcriptional repress	Bacterial infection
Multidrug binding transcriptional regulator LmrR	LmrR	Research	Autoregulatory mechanism	Bacterial infection
Sctyalone Dehydratase	SctyD	Research	Fungicide	Fungal infection
Human monoamine oxidase A	MAO-A	Successful	Monoamines metabolism	Depression Alzheimer’s Parkinson’s
Acetylcholinesterase	AChE	Successful	Glycerophospholipid metabolism	Alzheimer’s Parkinson’s
β-Site amyloid precursor protein cleaving enzyme	BACE1	Clinical trial	Neuregulin processing	Alzheimer’s Parkinson’s
Multidrug-resistant HIV-1 protease^a	MDR HIV-1 protease^a	Successful	Self-activation	AIDS
HIV-1 reverse transcriptase	HIV-1 TR	Successful	ATP-dependent excision, pyrophosphorylisis	AIDS
Oxysterol binding protein	OSBP	Research	Intracellular lipid homeostasis Signal conduction	Virus infection Cancer
Rhodopsin	Opsin 2	Research	Rod photoreceptor	Retinitis pigmentosa
Macrophage migration inhibitory factor	MIF	Clinical trial	Phenylalanine, tyrosine metabolism	Cancer Inflammatory, autoimmune disease
Glycogen synthase kinase-3 beta	GSK-3β	Research	Glycogen biosynthesis	Cancer Alzheimer’s Diabetes
Hepatitis C virus (HCV) polymerase	HS5B Pol	Successful	DNA biosynthesis	Virus infection

^a The targets verified by HypoDB screening
patterns, and highly influential compounds or targets. Some Chinese medicines had been investigated by interaction network analysis [30–32].

The pharmacological network of *M. cordata* had three types of nodes (Fig. 5). The 26 alkaloid nodes formed the core of the network, and were surrounded by 65 target nodes. Each target was linked to at least one pathway. A total of 60 pathway nodes constituted the outer layer of the network. Each alkaloid was the center of a star-shaped action net except for the two bisbenzo[c]phenanthridines (BisBen), which were only linked to one target and one pathway, respectively. The alkaloids and targets were strongly interconnected in many-to-many relationships.

A general overview of the global topological properties of the network was obtained from the statistical data by the Network Analyzer of Cytoscape. The diameter of the network was 8.0, the centralization was 0.14, and the density was 0.024. The node degree indicated the number of edges linking to other nodes. The highly connected nodes were referred to as the hubs of the network. The degrees of all the alkaloids (Fig. 6a) and important targets (Fig. 6b) were investigated. The compounds with higher degree values, such as C5, C6, C9, C19, and C20, that might participate in more interactions than the other components were the hubs in the network. The target degree values mostly ranged between 2 and 7. The targets with the highest degree values included MIF (16), TTR (11), FabZ* (11), ERα* (10), and MR (10). The targets with higher degree values might be involved in the pharmacological actions of *M. cordata*.

Interpreting the pharmacological actions

By mining the PubMed and TTD, the targets of *M. cordata* in the PharmaDB profiling results were annotated with biological functions and clinical indications (Table 3). Furthermore, the targets were classified according to the reported pharmacological activities of *M. cordata* as follows: microorganism (including bacterial, fungal, and viral) infection (12 targets, with 3 targets verified by HypoDB screening), parasitic disease (5 targets), cancer (9 targets), and diabetes (2 targets).

Fig. 5 The pharmacological network of *Macleaya cordata*. Hexagon, targets; Rectangle, biopathway; Ellipse, alkaloids (bright green Ben, dark green BisBen, green Ber, orange Pro).
targets, with 2 targets validated by HypoDB screening),
pain (3 targets), cancer (31 targets, with 8 targets con-
firmed by HypoDB screening), inflammation (8 targets, with 1 target verified by HypoDB screening), and injury
(4 targets, with 2 targets fished by HypoDB screening).

Antibacterial activity
The extracts and their purified alkaloids from *M. cor-
data* exhibited notable activities against *Staphylococcus aqueus*, *Pseudomonas aeruginosa*, *Escherichia coli*, *Bacillus subtilis*, *Tetracoccus* spp., and methicillin-resistant *Staphylococcus aureus* (MRSA) [12, 33]. In this study, 12 proposed targets were closely related to microorganisms, and seven of them exhibited antibacterial activities (Fig. 7). The key types of alkaloids with antibacterial activity were dihydro-benzo[c]phenanthridine alkaloids and protoberberines.

Five targets (*LmrR, TEM-1*, CAT, FNR, and ActR) were related to multidrug-resistant bacterial strains. *LmrR*, a multidrug binding transcriptional repressor and the predicted target of *C11*, was a PadR-related transcriptional repressor that regulated the production of LmrCD, a major multidrug ABC transporter in *Lactococcus lactis* [34, 35]. TEM-1* (TEM-1 beta-lactamase) fished by *C19* was one of the antibiotic-resistance determinants for penicillins, early cephalosporins, and novel drugs from their derivatives [36]. A new drug, Avibactam™, innovated by AstraZeneca is a TEM-1 inhibitor that has already entered phase III clinical development [37]. In addition, chloramphenicol acetyltransferase (CAT), an antibiotic-inactivating enzyme predicted by *C11*, catalyzed the acetyl-S-CoA-dependent acetylation of chloramphenicol at the 3-hydroxyl group and resulted in chloramphenicol-resistance in bacteria [38]. Ferredoxin-NADP+ reductase (FNR), targeted in silico by *C4, C5, C6*, and *C9*, participated in numerous electron transfer reactions, had no homologous enzyme in humans, and was a target for the accumulation of multidrug-resistant microbial strains [39]. The *Streptomyces coelicolor* TetR family protein ActR* was found by *C19*. ActR* may mediate timely self-resistance to an endogenously-produced antibiotic. TetR-mediated antibiotic-resistance might have been acquired from an antibiotic-producer organism [40].

Two targets indicating other pathways were involved in the antibacterial activity. The ZipA-FtsZ complex was fished by *C13, C14*, and *C20* (Fig. 8). ZipA was a membrane-anchored protein in *E. coli* that interacted with
FtsZ-mediated bacterial cell division, and was considered a potential target for antibacterial agents [41]. The target ENR catalyzed an essential step in fatty acid biosynthesis. ENR was a target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species [42].

Antiparasitic activity

M. cordata showed remarkable effects against *Ichthyophthirius multifilis* in grass carp [43] and richadsin [44], as well as against *Dactylogyrus intermedius* in *Carassius auratus* [45]. The total alkaloids of *M. cordata* were able to kill gastrointestinal parasites [46].

In this study, five targets involved in parasitic diseases were predicted. Because of the lack of reported protein–ligand crystal structures for parasitosis, these five targets were not related to the above parasitosis in either humans or other animals. However, the findings suggested the potential of *M. cordata* to treat other parasitosis, such as malaria, Chagas disease, and Kala-azar. The enoyl-acyl carrier reductase PfENR* fished by two alkaloids (C5 and C26) and the (3R)-hydroxymyristoyl acyl carrier protein dehydratase FabZ* in silico targeted by six alkaloids (C5, C6, C9, C11, C12, and C16) were involved in the fatty acid biosynthesis of *Plasmodium falciparum*. The antioxidant enzyme GR fished by C13, C14, and C19 was a target for antimalarial drug development [47]. The target glycosomal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) found by C11 was a target for the development of novel chemotherapeutic agents for the treatment of Chagas disease [48]. Dihydroorotate dehydrogenase (DHODH) retrieved by C5 and C6 was related to both *Leishmania* infection and *Trypanosoma* infection [49].

Analgesic activity

A mixture of the isoquinoline alkaloids from *M. cordata* exhibited strong analgesic activity towards the pain caused by inflammatory cytokines and direct peripheral nerve stimulation [50]. In this study, three targets related to pain were identified. nAChR7α was abundantly expressed in the central and peripheral nervous systems, and involved in subchronic pain and inflammation [51]. In the profiling results, nAChR7α was picked out by five alkaloids (C2, C11, C15, C19, and C25). MAPK p38 fished by C9, C14, and C20 was involved in the development and maintenance of inflammatory pain [52, 53]. The reductase ALR fished by C19 was a specific target of painful diabetic neuropathy [54, 55]. Inhibitors of ALR relieved pain and improved somatic and autonomic nerve function [56]. In addition, based on the action
network, berberines (Ber) such as C19 and C20 may also be involved in the analgesic activity of *M. cordata*.

Anti-inflammatory activity

Eight targets related to inflammation were identified in this study. Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3 Ky) fished by C19 recruited leukocytes [57]. The proteinase MMP12, also known as macrophage metalloelastase (MME) or macrophage elastase (ME), was identified with three fitted compounds (C3, C5, and C9) in this study. MMP12 mediated neutrophil and macrophage recruitment and T cell polarization [58], and was a potential therapeutic target for asthma [59]. PPARγ* fished by C3 was another inflammation-related target. Some early findings demonstrated the anti-inflammatory effects of PPARγ by activating human or murine monocytes/macrophages and monocyte/macrophage cell lines [60]. MAPK p38 was involved in a signaling cascade controlling cellular responses to inflammatory cytokines, and it was verified for this pathway in murine macrophage RAW264.7 cells that the *M. cordata* extract increased both the mRNA and protein levels of cytoprotective enzymes including heme oxygenase-1 (HO-1) and thioreductin 1 via activation of the p38 MAPK/Nrf2 pathway [16]. The kinase calcium/calmodulin-dependent protein kinase II (CAMKII) was a regulator of intracellular Ca²⁺ levels, which triggered activation of the transcription factor nuclear factor-kappa B (NF-κB) after T-cell receptor stimulation. An inhibitory effect of CAMKII on NF-κB was confirmed [61]. Phospholipase A2 (PLA2s) was a key enzyme in prostaglandin (PG) biosynthesis for discharging arachidonic acid. Selective inhibitors of PLA2s were implicated in inflammation and connected to diverse diseases, such as cancer, ischemia, atherosclerosis, and schizophrenia [62].

The target mineralocorticoid receptor (MR) fished by five compounds (C3, C4, C6, C7, and C20) was activated by mineralocorticoids, such as aldosterone and deoxycorticosterone, as well as by glucocorticoids, like cortisol. Antagonists of MR had cardioprotective and anti-inflammatory effects in vivo via aldosterone-independent mechanisms [63]. Macrophage migration inhibitory factor (MIF) was involved in both innate and adaptive immune responses. Inhibitors of MIF were potential anti-inflammatory agents [64].

Seven of the eight predicted targets were also related to cancer. These dual correlative targets were PI3Kγ, MMP12, PPARγ*, MAPK p38, CAMKII, PLA2s, and MIF. Their matching compounds are shown in Fig. 9, and the benzo[c]phenanthridine (Ben) alkaloids and berberine (Ber) alkaloids were involved in the anti-inflammatory activity.

Injury healing activity

In this study, four predicted targets (ERα*, ERβ*, MR, and COMP) were involved in injury repair. Among them, ERα*, ERβ*, and MR were linked with internal injuries, such as brain injury [65], vascular injury [66], and neuronal injury [67]. The other target, cartilage oligomeric matrix protein (COMP), found by C9 was a non-collagenous extracellular matrix protein found predominantly in cartilage, but also in tendon, ligament, and meniscus [68]. COMP was a marker for joint destruction associated with osteoarthritis, rheumatoid arthritis, trauma, and intense activity [69].

Antitumor activity

Both the mixed and single alkaloids of *M. cordata* strongly inhibited proliferation and induced apoptosis of cancer cells [6, 70]. The anticancer drug Ukrain™ is an isoquinoline type. The major components of Ukrain™ are chelidonine, sanguinarine, chelerythrine, protopine, and allocryptopine. Ukrain™ exerted cytotoxic effects in cancer cells without negative effects on normal cells [71], and had radiosensitization effects on cancer cells, while exerting radioprotective effects on normal cells [72].

In the pharmacological profiling results, almost half of the predicted targets (31 of 65 targets) had a close relationship with cancer, and ten of them (Table 3) successfully entered into clinical trial observations. In total, nine targets related to cancer were fished by more than five compounds. The results revealed promising prospects for *M. cordata* in antitumor drug research and development. Based on the action network (Fig. 5), possible antitumor molecular mechanisms of *M. cordata* were analyzed as follows: (1) most possible effective targets and (2) most likely contributing compounds.
The MIF column was particularly tall (Fig. 10) because it was fished by 15 compounds, including all quaternary benzo[c]phenanthridine (Ben) alkaloids (C11–C16), two other benzo[c]phenanthridine (Ben) alkaloids, five protoberberine (Ber) alkaloids, and two protopine (Pro) alkaloids. The discovered pathways of these 15 compounds mainly included NF-κB and ERK signaling pathways [73, 74], Bax/Bcl and caspase-dependent pathway [75], ROS-mediated mitochondrial pathway [76], p38 MAPK/Nrf2 pathway [77], and VEGF-induced Akt phosphorylation pathway [78]. All of these pathways were linked closely with MIF [79–84]. However, there have been no experimental reports on the interactions between MIF and these alkaloids.

Both transthyretin (TTR) and proto-oncogene serine threonine kinase* (PIM-1) were found by seven compounds. TTR was a biomarker for lung cancer [85] and pancreatic ductal adenocarcinoma [86], but has not yet been confirmed as a therapeutic target. PIM-1* fished by C5, C6, C8, C9, C14, C19, and C20, and also verified by HypoDB screening, was responsible for cell cycle regulation, antiapoptotic activity, mediation of homing, and migration of receptor tyrosine kinases via the JAK/STAT pathway. PIM-1 was upregulated in many hematological malignancies and solid tumors. Although PIM kinases were described as weak oncogenes, they were heavily targeted for anticancer drug discovery [87]. C12 was partially involved in the JAK/STAT pathway [88].

The benzo[c]phenanthridine (Ben) alkaloids of M. cordata hit cancer-related targets a total of 75 times, compared with 25 times for protoberberines (Ber), five times for protopines (Pro), and one time for bisbenzo[c]phenanthridines (BisBen) (Fig. 11). According to the quantitative determination of alkaloids from M.
cordata, the quaternary benzo[c]phenanthridine alkaloids C12, C13, and C15 were the main active components [89]. However, the dihydro-benzo[c]phenanthridines such as C5, C6, and C9 rarely reached the limit of detection (LOD), and hit more targets than the main alkaloids. As the quaternary and dihydro-benzo[c]phenanthridines can be transformed into one another, the dihydro-benzo[c]phenanthridines could be active compounds in vivo. The metabolism of C15 was examined in pig liver microsomes and cystosol by electrospay ionization hybrid ion trap/time-of-flight mass spectrometry, and C7 was one of the main metabolites in liver microsomes and the only metabolite in cystosol [90]. Hence, the issue of whether the dihydro-benzo[c]phenanthridines were the main compounds combining with the targets in vivo requires further investigation.

Among the 31 cancer-related targets, at least seven (including MIF, PPARY*, CAMKII, and PI3Ky) were involved in the immune system. These immune-associated targets might be crucial to for oncotherapy with M. cordata.

Potential pharmacological activities

According to the pharmacological profiling, some unreported pharmacological performances of M. cordata emerged. In this study, 10 targets linked with neurodegeneration were fished, among which AChE and MAO-B were crucial therapeutic targets in Alzheimer’s disease and Parkinson’s disease [91–94].

In addition, antiviral activities, especially anti-HIV, anti-SARS coronavirus, and antifungal activities, were kinds of extensions of the antibacterial function of M. cordata. The possible anti-HIV activity was notable, because HIV-1 reverse transcriptase and multidrug-resistant HIV-1 protease* were particularly related to because HIV-1 reverse transcriptase and multidrug-resistant HIV-1 protease were crucial therapeutic targets in Alzheimer’s disease and Parkinson’s disease [91–94].

Meanwhile, the anti-HIV activity was partly confirmed by HypoDB screening. The protein SARS-CoV M(pro) predicted by C3 and C5 was an attractive target for structure-based drug design of anti-SARS drugs owing to its indispensability for the matura-tion of severe acute respiratory syndrome coronavirus (SARS-CoV) [100]. Another target, HSS5B Pol, fished by five alkaloids was a target for anti-HCV therapeutic advances [101]. Inhibitors of HSS5B Pol would be a principal option for the treatment of HCV [102]. Meanwhile, scytalone dehydratase and negative transcriptional regulator NmrA were suggested to be physiological targets of new fungicides and the subjects of inhibitor design and optimization [103–105].

In this paper, we proposed a very wide range of the promising targets for the isoquinoline alkaloids of M. cordata. Most of the hits are not yet proven by pharmacological experiment.

Conclusion

Through in silicotarget fishing, the anticancer, anti-inflammatory, and analgesic effects of M. cordata were the most significant among many possible activities. The possible anticancer effects were mainly contributed by the isoquinoline alkaloids as active components.

Abbreviations

CHARMM: chemistry at Harvard Macromolecular Mechanics; MOE: molecular operating environment; RMSD: root mean square deviation; MMFF: Merck molecular force field; PDB: Protein Data Bank; KEGG: Kyoto Encyclopedia of genes and genomes; TTD: Therapeutic Target Database; HTML: hypertext markup language.

Authors’ contributions

HBL, QFL and PGX perceived and designed the study. HBL, QFL and PGX performed the experiments. HBL, QFL and YP wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Prof. Jun Xu (Sun Yat-sen University, China) and Prof. Yanze Liu (IMPLAD, China) for assistance in preparing the manuscript and Dr. Rong Zhao (National Yang-Ming University, Taiwan) for assistance in analyzing the pathway. This work was supported by National Natural Science Foundation of China (Grant No. 81072995), and Peking Union Medical College Youth Fund (Grant No. 3532013079).

Competing interests

The authors declare that they have no competing interests.

Received: 28 October 2014 Accepted: 10 November 2015

Published online: 17 December 2015

References

1. Xu GJ, Wang Q, Yu BM. Color illustrations of antitumor traditional Chinese medicine. Fuzhou: Fujian Sci Technol Publ House, 1997. p. 759.

2. Griewe M. A modern herbal. Middlesex: Penguin Books; 1984.

3. Duke JA, Ayenius ES. Medicinal plants of China. Inc. Algonac: Reference Publications; 1984.

4. Pisotova J, Vecera R, Zdanilova A, Anzenbacherova E, Kosina P, Svobodova A, Hrbac J. Safety assessment of sanguiritrin, alkaloid fraction of Macleaya cordata, in rats. Vet Med-Czech. 2006;51(4):145–55.

5. Pang JX, Ma RQ, Liu LM, Jiang YP, Sun LS. In vitro cytotoxic effect on Hep3B cells and in vivo antitumor effect in mice. J First Mil Med Univ. 2005;235(3):325–8.

6. Yang S, Liu Y, Yang QF, Xiang JF, Tang YL, Xu GZ. Antitumor effect of Macleaya cordata and its molecular mechanism on inducement of human telomeric DNA to form G-quadruplex. Chin Trad Herb Drugs. 2011;42(4):738–42.

7. Pang FG. Study on the Anticancer Constituents of Macleaya cordata (Willd) R Br. Master Thesis. Shenyang Pharmaceutical University; 2005.

8. Kemery-Beke A, Aradi J, Damjanovich J, Beck Z, Facsco A, Berta A, Bodnár A. Apoptotic response of uveal melanoma cells upon treatment with chelidonine, sanguinarine and chelerythrine. Cancer Lett. 2006;237(1):67–75.

9. Lenfeld J, Kroult M, Marsälek E, Slavík J, Preininger V, Šimánek V. Antinflammatory activity of quaternary benzophenanthridine alkaloids from Chelidonium majus. Planta Med. 1981;43(2):161–5.

10. Park JE, Cuong TD, Hwang TM, Lee I, Na M, Kim JC, Ryoo S, Lee JH, Choi JS, Woo KH. Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells. Bioorg Med Chem Lett. 2011;21:6960–3.

11. Xiao L, Yi J, Zhao J, Xu L, Liu BY, Liu DM, Zeng XG. Protective effect of Macleaya cordata extract on alcohol-induced acute hepatic injury in rats. Cent South Pharm. 2011;9(7):485–9.
12. Kosina P, Gregorova J, Grutz J, Vacek J, Kolar M, Vogel M, Roos W, Naumann S, Simanek V, Ulrichova J. Phytochemical and antimicrobial characterization of *Macleaya cordata* herb. Fitoterapia. 2010;81(1):1006–12.

13. Cheng RB, Chen X, Liu SJ, Zhang GH. Effect of Chelerythrine on glucose transporter and water-insoluble glucan of *Streptococcus mutans*. *Shanghai J Stomatol*. 2007;16(3):524–7.

14. Yu JP, Zhao DL, Meng XB, Zhou XQ. The antibacterial effect of *Chelidonium majus* extracts on isolated guinea-pig ileum. *Planta Med.* 1998;64(8):758–60.

15. Hiller KO, Ghorbani M, Schilcher H. Antispasmodic and relaxant activity of *Macleaya micromeris* L. *Planta Med.* 1998;64(8):758–60.

16. Lei QF, Zhao XL, Xu LJ, Peng Y, Xiao PG. Chemical constituents of *Macleaya cordata* extract and its constituent sanguinarine in *RAW264.7* cells. *Fitoterapia*. 2012;83(3):239–35.

17. Li, Fei P, Zhao XL, Yu JP, Peng Y, Xiao PG. Chemical constituents of plants from tribe Chelidonieae and their bioactivities. *Chin Herb Med.* 2014;6(1):1–21.

18. Liu LJ, Leung KH, Lin S, Chan DS, Susanti D, Rao W, Chan PW, Ma DL, Leung CH. Pharmacophore modeling for the identification of small molecule inhibitors of TACE. *Methods*. 2015;71(1):92–7.

19. Zhong HJ, Liu J, Jiang CM, Lu L, Wang M, Chan DS, Chan PW, Lee SM, Ma DL, Leung CH. Discovery of a natural product-like INOS inhibitor by molecular docking with potential neuroprotective effects in vivo. *Planta Med.* 2014;80(9):e929–35.

20. Ma DL, Chan DS, Wei G, Zhong HJ, Yang H, Leung LT, Gullen EA, Chiu P, Cheng YC, Leung CH. Virtual screening and optimization of Type II inhibitors of iNOS from a natural product library. *Commun Chem*. (Camb). 2014;5(40):10001:13885–8.

21. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J. TarfDock: a web server for identifying drug targets with docking approach. *Nucleic Acids Res.* 2006;34(suppl 2):W219–24.

22. Schuster D. 3D pharmacophores as tools for activity profiling. *Drug Discov Today* Tech. 2010;7(4):205–11.

23. Steindl TM, Schuster D, Weller G, Schuster D, Weller G, Langer T. Parallel screening: a novel approach. *Nucleic Acids Res.* 2006;34(suppl 2):W219–24.

24. Schuster D. 3D pharmacophores as tools for activity profiling. *Drug Discov Today* Tech. 2010;7(4):205–11.

25. Steindl TM, Schuster D, Weller G, Langer T. Parallel screening: a novel concept in pharmacophore modelling and virtual screening. *J Chem Inf Model*. 2006;46(5):1645–67.

26. Steindl TM, Schuster D, Weller G, Langer T. Parallel screening: a novel concept in pharmacophore modelling and virtual screening. *J Chem Inf Model*. 2006;46(5):1645–67.

27. Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Liu X, Zhang J. Therapeutic target database update 2012: a resource for facilitating molecular targeted drug discovery. *Nucleic Acids Res.* 2012;40(D1):D128–36.

28. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mac K, Neeve U. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. *Nucleic Acids Res.* 2011;39(suppl 1):D1035–41.

29. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. TcYsop: 2.8. new features for data integration and network visualization. *Bioinformatics*. 2011;27(3):431–2.

30. Ehrman T, Barlow DJ, Hylands PJ. In silico search for multi-target inhibitors of TACE. *Methods*. 2015;71(1):92–7.

31. Ehrman T, Barlow DJ, Hylands PJ. In silico search for multi-target inhibitors of TACE. *Methods*. 2015;71(1):92–7.

32. Yao J, Shu T, Li XL, Xu Y, Hao GJ, Pan XY, Wang GX, Yin WL. Effect of sanguinarine from the leaves of *Macleaya cordata* against *Ichthyophthirius multifiliis* in grass carp (*Ctenopharyngodon idella*). *Parasitol Res*. 2010;107(5):1033–42.

33. Yao J, Zhou ZM, Li XL, Yim W, Hu RS, Pan XY, Hao GJ, Xu Y, Shen JY. Antiparasitic efficacy of dihydroxy sanguinarine and dihydroxy chelerythrine from *Macleaya microcarpa* against *Ichthyophthirius multifiliis* in richadsin (*Squaliobarbus carinatus*). *Vet Parasitol*. 2011;173(1–2):105–13.

34. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karolus PA, Glutathione reductase of the malarial parasite *Plasmodium falciparum*: crystal structure and inhibitor development. *J Mol Biol*. 2003;328(4):893–907.

35. Lehmann A, Andricopulo AD, Oliva G, Pupo MT, de Marchi AA, Vieira PC, da Silva MF, Feresse VF, de Souza MC, Sam M, Moraes VR, Montanari CA. Structure–activity relationships of novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase. *Bioorg Med Chem Lett*. 2004;14(9):2199–204.

36. Pinheiro MP, Emery FS, Nonato MC. Target sites for the design of anti-trypsinomastocytidomatid drugs based on the structure of dihydroorotato dehydrogenase. *Curr Pharm Des*. 2013;19(14):2615–27.

37. Cai YT, Ju CY, Yan HR, Sun LQ. Experimental research on analgesic effect of *Macleaya micromeris* L. *Pharm Des*. 2013;19(14):2594–605.

38. Catalano-Dupuy DL, Lopez-Rivero A, Soldano A, Ceccarelli EA. Redox proteins as targets for drugs development against pathogens. *Curr Pharm Des*. 2013;19(14):2594–605.

39. Willems AR, Tahan K, Taguchi T, Zhang K, Lee ZZ, Ichinose K, Junop MS, Nodwell JR. Crystal structures of the *Streptomyces coelicolor* TcTA-like protein ActA and in complex with actinorhodin or the actinorhodin biosynthetic precursor (S)-DNP4. *J Mol Biol*. 2008;376(5):1377–87.

40. Tsao DW, Sutherland AG, Jennings LD, Li Y, Rush TR, Alvarez-Jong JC, Ding W, Dushin EG, Dushin RG, Haney SA. Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. *Bioorg Med Chem*. 2006;14(23):7953–61.
53. Laufer S, Lehmann F. Investigations of SCIO-469-like compounds for the inhibition of p38 MAP kinase. Bioprog Med Chem Lett. 2009;19(5):1461–4.

54. Steuber H, Heine A, Klebe G. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. J Mol Biol. 2007;368(3):618–38.

55. Suryanarayana P, Kumar PA, Sarawat M, Petras JM, Reddy GB. Inhibition of aldose reductase by tannin precursors: implications for the prevention of sugar cataract. Mol Vis. 2010;14:104–8.

56. Young RJ, Ewing DJ, Clarke BF. A controlled trial of sorbinil, an aldose reductase inhibitor. Lancet. 1992;340(8837):1537–8.

57. Wymann MP, Solinas G. Inhibition of phosphoinositide 3-kinase gamma attenuates inflammation, obesity, and cardiovascular risk factors. Ann N Y Acad Sci. 2013;1280:44–7.

58. Dufour A, Overall CM. Missing the target: matrix metalloproteinase antagonists in inflammation and cancer. Trends Pharmacol Sci. 2013;34(4):233–42.

59. Mukhopadhyay S, Syepe J, Tavendale R, Gartner UI, Winter J, Li W, Page K, Fleming M, Brady J, O'Toole M. Matrix metalloproteinase-12 is a therapeutic target for asthma in children and young adults. J Allergy Clin Immunol. 2010;126(1):70–6.

60. Clark RB. The role of PPARs in inflammation and immunity. J Leukoc Biol. 2002;71(3):388–400.

61. Maubach G, Sotolova O, Wolfen M, Rotherkotter HU, Naumann M. Calmodulin-related kinase II contributes to inhibitor of nuclear factor-kappa B kinase complex activation in Helicobacter pylori pylori infection. Int J Cancer. 2013;133(6):1507–12.

62. Mahalka AK, Kinnaunen PK. Class specific peptide inhibitors for secretory phospholipases A2. Biochem Biophys Res Commun. 2004;326(2):549–53.

63. Usher MG, Duan SZ, Vlaschenko CY, Frieler RA, Berger S, Schutz G, Lumeng CN, Mortensen RM. Myeloid metalloprotease receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120(9):3350–64.

64. Xu L, Li Y, Sun H, Zhen X, Qiao C, Tian S, Hou T. Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discov Today. 2013;18(11–12):592–600.

65. Dubai DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindsy MS, Wise PM. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA. 2001;98(4):1952–7.

66. Karas RH, Hodgin JB, Kwoun M, Krege JH, Aronovitz M, Mackey W, Seckl JR, Olsson T. Mineralocorticoid receptor expression and increased survival following neuronal injury. Eur J Neurosci. 2003;17(8):1549–55.

67. Smith RK, Heinegard D. Cartilage oligomeric matrix protein (COMP) in skeletal disease. Curr Drug Targets. 2008;9(10):869–77.

68. Posey KL, Hecht JT. The role of cartilage oligomeric matrix protein. Int J Radiat Biol. 2002;78(1):17–27.

69. Hohenwarter O, Strutzenberger K, Katinger H, Liepins A, Nowicky JW. Macleaya microcarpa (Maxim.) l. l. l. protects human fibroblasts but not human tumour cells in vitro against ionizing radiation. Int J Radiat Biol. 2002;78(1):17–27.

70. Lee JS, Jung WK, Jeong MH, Yoon TR, Kim HK. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int J Toxicol. 2012;31(1):70–7.

71. Choi WY, Kim GY, Lee WH, Choi YH. Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen species-mediated mitochondrial pathway. Chemotherapy. 2008;54(4):279–87.

72. Vrba J, Orolinova E, Ulrichova J. Induction of heme oxygenase-1 by Macleaya cordata extract and its constituent sanguinarine in RAW264.7 cells. Fitosfera. 2012;83(2):329–35.

73. Ansari KM, Santini SE, Bussolati S, Grusselli F. Sanguinarine inhibits VEGF-induced Akt phosphorylation. Ann N Y Acad Sci. 2007;1095:371–4.

74. Hassain F, Freissmuth M, Volkel D, Thiele M, Douillard P, Antoine G, Thurner F, Ehrlich H, Schwarz HP, Scheiflinger F. Human anti-macrophage migration inhibitory factor antibody (MIF) antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2013;12(7):1233–4.

75. Guo Y, Hou J, Luo Y, Wang D. Functional disruption of macrophage migration inhibitory factor (MIF) suppresses proliferation of human H460 lung cancer cells by caspase-dependent apoptosis. Cancer Cell Int. 2013;13(1):28–36.

76. Wadgaonkar R, Sonnay K, Garcia JC. Thrombin induced secretion of macrophage migration inhibitory factor (MIF) and its effect on nuclear signaling in endothelium. J Cell Biochem. 2008;105(5):1279–88.

77. Sun B, Nishihiro J, Suzuki M, Fukushima N, Ishibashi T, Kondo M, Sato Y, Todo S. Induction of macrophage migration inhibitory factor by lysophosphatidic acid: relevance to tumor growth and angiogenesis. Int J Mol Med. 2003;12(4):633–41.

78. Chuang YC, Su WH, Lei HY, Lin SY, Liu HS, Chang GP, Yeh TM. Macrophage migration inhibitory factor mediator induces autophagy via reactive oxygen species generation. PLoS One. 2012;7(5):e37613.

79. Mathew B, Jacobson JR, Siegler JH, Moirra J, Blasco M, Xie L, Unzueta C, Zhou T, evenoski C, Al-Sakka M. Role of migratory inhibition factor in age-related susceptibility to radiation lung injury via NF-E2-related factor-2 and antioxidative regulation. Ann N Y Acad Cell Mol Biol. 2013;129(4):269–78.

80. Liu L, Sun S, Liu J, Wu S, Dai S, Wang X, Huang L, Xiao X, He D. A new serum biomarker for lung cancer—transthyretin. Zhongguo Fei Ai Za Zhi. 2009;12(4):300–5.

81. Chen J, Chen LJ, Xia YL, Zhou HC, Yang RB, Wu W, Lu Y, Hu LW, Zhao Y. Identification and verification of transthyretin as a potential biomarker for pulmonary ductal adenocarcinoma. J Cancer Res Clin Oncol. 2013;139(7):1117–27.

82. Blanco-Aparicio C, Camero A. Prm kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol. 2013;85(5):629–43.

83. Pan J, Fukuda K, Sato M, Matsuzaki J, Kojima H, Sano M, Takahashi T, Kato T, Ogawa S. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res. 1999;84(4):1127–36.

84. Penicilova K, Urbanova J, Muzi P, Taborska E, Gregorova J. Seasonal variation of bioactive alkaloid contents in Macleaya microcarpa (Maxim.) Fedde. Molecules. 2011;16(4):3391–401.

85. Zhang HH, Wu Y, Sun ZL, Liu ZY. Identification of sanguinarine metabolites in pig liver preparations by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(9):979–84.

86. Fang L, Gou S, Fang X, Cheng L, Fleck C. Current progresses of novel target-directed benzylideneindanone derivatives: anti-beta-amyloid target-directed benzylideneindanone derivatives: anti-beta-amyloid aggregation, antioxidant, metal chelation, and monoamine oxidase inhibition. Bioorg Med Chem Lett. 2012;22(19):5848–53.

87. DeMarcoida JA, Schwid SR, White WB, Blinderau K, Fahn S, Kiebzutz K, Stern M, Shoulson I. Effects of tyramine administration in Parkinson’s disease patients treated with selective MAO-B inhibitor rasagiline. Mov Disord. 2006;21(10):1716–21.
95. Boyer PL, Clark PK, Hughes SH. HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol. 2012;86(10):5885–94.
96. Klarmann GJ, Hawkins ME, Le Grice SF. Uncovering the complexities of retroviral ribonuclease H reveals its potential as a therapeutic target. AIDS Rev. 2002;4(4):183–94.
97. Ambrose Z, Herman BD, Sheen CW, Zelina S, Moore KL, Tachedjian G, Nissley DV, Sluis-Cremer N. The human immunodeficiency virus type 1 nonnucleoside reverse transcriptase inhibitor resistance mutation I132M confers hypersensitivity to nucleoside analogs. J Virol. 2009;83(8):3826–33.
98. Sadiq SK, Noe F, De Fabritiis G. Kinetic characterization of the critical step in HIV-1 protease maturation. Proc Natl Acad Sci USA. 2012;109(50):20449–54.
99. Martin PA, Vickrey JF, Proteasa G, Jimenez YL, Wawrzak Z, Winters MA, Merigan TC, Kovari LC. "Wide-open" 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target. Structure. 2005;13(12):1887–95.
100. Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ, Tsai KC, Hsieh HP, Chao YS, Wu SY. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J Med Chem. 2006;49(17):5154–61.
101. Patel BA, Krishnan R, Khadtare N, Gurukumar KR, Basu A, Arora P, Bhatt A, Patel MR, Dana D, Kumar S. Design and synthesis of L- and D-phenylalanine derived rhodamines with novel CS-arlylenes as inhibitors of HCV NS5B polymerase. Bioorg Med Chem. 2013;21(11):3262–671.
102. Varshney J, Sharma PK, Sharma A. A review on an update of NS5B polymerase hepatitis C virus inhibitors. Eur Rev Med Pharmacol Sci. 2012;16(5):667–71.
103. Jordan DB, Basarab GS, Steffens JJ, Schwartz RS, Doughty JG. Tight binding inhibitors of scytalone dehydratase: effects of site-directed mutations. Biochemistry-Us. 2000;39(29):8593–602.
104. Stammers DK, Ren J, Leslie K, Nichols CE, Lamb HK, Cocklin S, Dodds A, Hawkins AR. The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases. EMBO J. 2001;20(23):6619–26.
105. Zhao X, Hume SL, Johnson C, Thompson P, Huang J, Gray J, Lamb HK, Hawkins AR. The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases. Protein Sci. 2010;19(7):1405–19.