Erratum to: Heparin-binding protein is important for vascular leak in sepsis

Peter Bentzer1,2,4, Jane Fisher3,4, HyeJin Julia Kong4, Mattias Mörgelin3, John H. Boyd4, Keith R. Walley4, James A. Russell4 and Adam Linder3,4*

* Correspondence: adam.linder@med.lu.se
1Department of Infectious Diseases, University of Lund and Skåne University Hospital, Getingevägen, Lund SE-221 85, Sweden
2Department of Clinical Sciences Lund, Lund University, Lund, Sweden
3Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada

Erratum
The original article [1] contains an oversight whereby Fig. 7 presents data on a molecule, ‘PLAH’ that was intended to be omitted from this article.

The reason for the intended omission of this molecule throughout the article was due to complications in obtaining the license for both the use of and presentation of research involving this molecule, and its presence within Fig. 7 was unintentional.

As such, the appropriate version of Fig. 7 can be seen below.

Author details
1Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden. 2Department of Clinical Sciences Lund, Lund University, Lund, Sweden. 3Department of Infectious Diseases, University of Lund and Skåne University Hospital, Getingevägen, Lund SE-221 85, Sweden. 4Centre for Heart Lung Innovation, Division of Critical Care Medicine, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada.

Received: 12 January 2017 Accepted: 12 January 2017
Published online: 20 January 2017

Reference
1. Bentzer P et al (2016) Heparin-binding protein is important for vascular leak in sepsis. Intensive Care Medicine Experimental 4:33. doi:10.1186/s40635-016-0104-3
Fig. 7 Low molecular weight heparins blocked HBP-induced permeability increases. EA.hy926 cells were grown to confluence on permeable supports and stimulated with 10 μg/mL HBP, pre-incubated with the indicated inhibitor. TEER was measured after 1.5 h after stimulation and is normalized to empty inserts. Error bars are standard error of the mean, n = 3 for each condition. One-way ANOVA with Dunnett’s test for multiple comparisons was used to compare each group to the condition with HBP and no inhibitor (far left). UFH unfractionated heparin. *P < 0.05, **P < 0.01