COMMENT

Repurposing anticancer drugs for COVID-19-induced inflammation, immune dysfunction, and coagulopathy

Kamal S. Saini1,2, Carlo Lanza1, Marco Romano1, Evandro de Azambuja3,4, Javier Cortes5,6,7, Begoña de las Heras1,8, Javier de Castro9, Monika Lamba Saini10, Sibylle Loibl11,12, Giuseppe Curigliano13,14, Chris Twelves15, Manuela Leone16 and Minral M. Patnaik16

Three cardinal manifestations of neoplasia, namely inflammation, immune dysfunction, and coagulopathy are also seen in patients with severe SARS-CoV-2 infection, providing a biological rationale for testing selected anticancer drugs for their ability to control the symptoms and/or modify the course of COVID-19.

British Journal of Cancer (2020) 123:694–697; https://doi.org/10.1038/s41416-020-0948-x

MAIN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in >5.9 million infections and 363,000 deaths as of 29 May 2020.

Although SARS-CoV-2 primarily infects the upper and lower respiratory tract, it can also affect the intestine, heart, liver, kidney, brain, and other organs. Among 1482 patients with confirmed COVID-19 in the United States, the most common signs and symptoms included cough (86%), fever or chills (85%), shortness of breath (80%), diarrhoea (26%), and nausea or vomiting (24%).

No treatment has shown convincing benefit yet for patients with COVID-19, but the Food and Drug Administration (FDA) recently granted emergency use authorisation for the repurposed investigational anti-Ebola drug remdesivir for COVID-19. Repurposing refers to the use of approved or investigational drugs beyond the scope of the original medical indication. Repurposing, not only of antiviral drugs but also those used in other diseases such as cancer, is worthy of consideration to shorten timelines for identifying an effective therapy for COVID-19.

Inflammation, immune dysfunction, and coagulopathy in COVID-19 and cancer

Although many of the details regarding the SARS-CoV-2 virus and its effects on humans are yet to be elucidated, a few interesting commonalities between the pathophysiology of COVID-19 and cancer are beginning to emerge. Notably, both these diseases exhibit the triad of inflammation, immune dysregulation, and coagulopathy.

The intracellular entry of SARS-CoV-2 is facilitated by the angiotensin-converting enzyme 2 receptor, which is expressed in type II alveolar cells of lung, cholangiocytes, oesophageal keratinocytes, ileal and colonic enterocytes, myocardial cells, renal proximal tubule cells, bladder urothelial cells, fibroblasts, endothelial cells, oral mucosal epithelium, and haematopoietic cells, including monocytes and macrophages. Crosstalk between monocytes, macrophages, and other antigen-presenting cells could explain some features of inflammation and immune dysfunction in severe COVID-19.

Dysregulated immune responses in critically ill patients with COVID-19 is reflected by lymphopenia, affecting mostly CD4+ T cells, including effector, memory, and regulatory T cells, and decreased IFN-γ expression in CD4+ T cells. Exhaustion of cytotoxic T lymphocytes, activation of macrophages, and a low human leukocyte antigen-DR expression on CD4+ monocytes has been noted in patients with COVID-19.

A marked pro-coagulant tendency has been observed in patients with severe COVID-19 and may present as microvascular or macrovascular thrombosis affecting the lung, heart, intestine, kidney, or other organs, with elevated D-dimer, fibrin/fibrinogen degradation products, fibrinogen level, or disseminated

1Covance Inc, Princeton, NJ, USA; 2East Suffolk and North Essex NHS Foundation Trust, Ipswich, UK; 3Institut Jules Bordet, Brussels, Belgium; 4Université Libre de Bruxelles (ULB), Brussels, Belgium; 5IOB Institute of Oncology, Quiron Group, Madrid, Spain; 6Vall d’Hebron Institute of Oncology, Barcelona, Spain; 7Medica Scientia Innovation Research, Ridgewood, NJ, USA; 8Madrid Medical Doctors Association, Madrid, Spain; 9La Paz Hospital, Madrid, Spain; 10HistoGeneX, Antwerp, Belgium; 11G8G, Neu-Isenburg, Germany; 12Centre for Haematology and Oncology Bethanien, Frankfurt, Germany; 13Istituto Europeo di Oncologia, IRCCS, Milan, Italy; 14University of Milan, Milan, Italy; 15University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK and 16Mayo Clinic, Rochester, MN, USA

Correspondence: Manuela Leone (Manuela.Leone@covance.com)

Received: 7 May 2020 Revised: 21 May 2020 Accepted: 4 June 2020

Published online: 22 June 2020

© Cancer Research UK 2020
Table 1. Approved anticancer agents being tested in patients with COVID-19.

Class	Agent	Mechanism	US FDA approval for cancer type or cancer symptom	COVID-19 trial identifier
Interleukin (IL) inhibitor	Tocilizumab	Competitive blockade of the IL-6 binding site	Cytokine release syndrome	NCT04361552, NCT04313795
	Siltuximab	Prevents the binding of IL-6 to both soluble and membrane-bound IL-6 receptors	Multicentric Castleman's disease	NCT04329650, NCT04300638
Corticosteroid	Prednisolone	Anti-inflammatory and immunosuppressive	Lymphomas, leukaemias	NCT04273321, NCT04263402
	Dexamethasone	Anti-inflammatory and immunosuppressive	Lymphomas, leukaemias	NCT04325061, NCT04327401
	Hydrocortisone	Anti-inflammatory and immunosuppressive	Palliation of leukaemias and lymphomas	NCT04348305, NCT02735707
Anticoagulant	Enoxaparin	Binds to antithrombin to irreversibly inactivate clotting factor Xα	Prophylaxis of deep vein thrombosis in abdominal surgery or medical patients with severely restricted mobility during acute illness	NCT04345848, NCT04359277
Interferon	IFN-α	Immunomodulator	Hairy cell leukaemia, melanoma, follicular lymphoma	NCT04320238, NCT04254874
Checkpoint inhibitor	Nivolumab	Blocks programmed death-1 receptor	Melanoma, non-small cell lung cancer, renal cell cancer, Hodgkin's lymphoma, squamous cell cancer of the head and neck, urothelial cancer, colorectal cancer, hepatocellular cancer	NCT04333914, NCT04365208
	Pembrolizumab	Blocks programmed death-1 receptor	Melanoma, non-small cell lung cancer, head and neck squamous cell cancer, Hodgkin's lymphoma, primary mediaslial large B-cell lymphoma, urothelial cancer, microsatellite instability-high cancer, gastric cancer, cervical cancer, hepatocellular cancer, Merkel cell cancer	NCT04335305
Anti-vascular endothelial growth factor	Bevacizumab	Binds circulating vascular endothelial growth factor	Colorectal cancer, non-squamous non-small cell lung cancer, glioblastoma, Renal cell cancer	NCT04305106, NCT04275414
Kinase inhibitor	Ruxolitinib	Inhibits Janus kinase (JAK) 1 and 2	Primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis	NCT04339858, NCT04354714
	Imatinib	Inhibits bcr-abl tyrosine kinase	Chronic myeloid leukaemia, acute lymphoblastic leukaemia, gastrointestinal stromal tumours	NCT04355713, NCT04346147
	Acalabrutinib	Inhibits Bruton’s tyrosine kinase	Mantle cell lymphoma	NCT04346199
	Duvelisib	Inhibits phosphoinositide-3 kinase δ and γ	Chronic lymphocytic leukaemia, small lymphocytic lymphoma, follicular lymphoma	NCT04372602
Immunomodulator	Thalidomide	Immunomodulatory, antiangiogenic, and modulation of tumour necrosis factor-α	Multiple myeloma	NCT04273529, NCT04273581
	Lenalidomide	Immunomodulatory, antiangiogenic	Multiple myeloma	NCT04361643
Nuclear export inhibitor	Selinexor	Binds to exportin 1	Multiple myeloma	NCT043555676, NCT04349099
Granulocyte, macrophage-colony stimulating factor	Sargramostim	Haematopoietic growth factor and immune modulator	Shorten neutrophil recovery after induction chemotherapy	NCT04326920
Retinoid	Isotretinoin	Induces apoptosis	High-risk neuroblastoma	NCT04361422, NCT043553180
Interleukin	IL-2	Expansion and activation of regulatory T cells	Melanoma, renal cell cancer	NCT04357444
Cytotoxic chemotherapy	Etoposide	Topoisomerase II inhibitor	Testicular tumours, small cell lung cancer	NCT04356690
	Methotrexate	Antimetabolite, inhibits dihydrofolate reductase	Breast cancer, epidermoid cancers of the head and neck, cutaneous T cell lymphoma, squamous cell lung cancer, small cell lung cancer, non-Hodgkin's lymphoma	NCT04352465
Radiotherapy	External beam radiation	DNA damage	Multiple cancer types	NCT04366791

A maximum of two representative trials have been included for a given agent.

intravascular coagulation. Out of 184 patients admitted with COVID-19, 31% had thrombotic complications despite standard thromboprophylaxis, with pulmonary embolism being the most common event. A multifactorial process termed as microvascular COVID-19 lung vessel obstructive thromboinflammatory syndrome could play a role in the rapid evolution of multiorgan injury. Important manifestations of severe COVID-19 infection are shared with neoplasia, namely inflammation, immune dysfunction, and coagulopathy. Inflammation has been long known to play a central role in cancer pathogenesis, and in 2011, Hanahan and Weinberg labelled tumour-promoting inflammation as a hallmark of cancer. Chronic inflammation is both a risk factor and a consequence of cancer. Innate cytotoxic cells as well as the adaptive immune cells are dysfunctional in cancer, allowing neoplastic cells to avoid detection and elimination by the immune system. Thromboembolism is recognised as a leading cause of death in patients with cancer, with the risk of venous thrombosis increased several fold.
Repurposing anticancer drugs for COVID-19-induced inflammation, immune... KS Saini et al.

Repurposing anticancer drugs against COVID-19

The clinical development of a new drug or vaccine usually takes several years. Given the urgent need to quickly find efficacious therapies for COVID-19, existing drugs are being repurposed and tested in clinical trials, potentially substantially accelerating development timelines. The pharmaceutical industry, contract research organisations (CROs), and academia have spent decades developing drugs for cancer-induced inflammation, immune dysfunction, and coagulopathy; given that this triad is also seen in patients affected by COVID-19, it is reasonable to consider testing selected anticancer agents in a rational manner against this viral illness.

Several drugs that have been approved for a cancer indication by the US FDA are now in COVID-19 clinical trials (see Table 1). These include the anti-interleukin tocilizumab, which competitively blocks the IL-6-binding site and is approved for multicentric Castleman’s disease; corticosteroids like prednisolone and dexamethasone, which are used in lymphomas and leukaemias; enoxaparin used for the prophylaxis of deep vein thrombosis in patients with cancer; bevacizumab, which binds vascular endothelial growth factor and is approved for several solid cancers; immunomodulators like thalidomide and lenalidomide used for multiple myeloma; IFN-α used for hairy cell leukaemia, myeloproliferative neoplasms, melanoma, and follicular lymphoma; checkpoint inhibitors like the programmed death receptor-1 inhibitors nivolumab and pembrolizumab that are approved for several types of cancers; tyrosine kinase inhibitors like imatinib, duvelisib, and acalabrutinib; antimetabolites; topoisomerase II inhibitors; and even radiotherapy. In addition, CAR therapeutic agents, approved for some haematological cancers, is also being studied in COVID-19-infected patients (clinicaltrials.gov identifier NCT04324996).

Finally, there are several drugs and cell and gene therapies in clinical development for a cancer indication that are now being tested for efficacy against COVID-19.

Preliminary safety and efficacy data are currently available for only a few of these approved anticancer agents currently being tested in patients with COVID-19. In the CORIMUNO-19 trial, 129 patients with moderate or severe COVID-19 pneumonia received either tocilizumab plus standard treatment or standard treatment alone. The primary efficacy endpoint (a combination of the need for ventilation or death on day 14) was achieved in a significantly lower proportion of patients in the tocilizumab arm according to a pre-publication announcement.15 Preliminary data for 21 of the 25 patients treated with siltuximab in the SiSCO trial showed that 76% of the patients had either stabilised or had demonstrated improved disease symptoms at the interim analysis.15 In an observational study of 2773 hospitalised COVID-19 patients, the in-hospital mortality among 786 patients who received systemic anticoagulation was 22.5% with a median survival of 21 days, compared with 22.8% and 14 days, respectively, in patients who did not receive anticoagulation.16 Eleven of the 31 patients in a retrospective review of patients with COVID-19 had received corticosteroid treatment, and no association was observed between corticosteroid treatment and virus clearance time (hazard ratio [HR], 1.26; 95% confidence interval [CI], 0.58–2.74), hospital length of stay (HR, 0.77; 95% CI, 0.33–1.78) or duration of symptoms (HR, 0.86; 95% CI, 0.40–1.83).17 There are emerging and sometimes conflicting data regarding the use of corticosteroids in patients with COVID-19, including potential adverse effects on viral clearance and replication. Two patients who tested positive for the SARS-CoV-2 infection during the course of treatment with checkpoint inhibitors were reported to have recovered from the viral infection and will resume anticancer therapy.18

Anti-cytokines are among the most common classes of agents being tested for COVID-19. On the one hand, neutrophils and macrophages may secrete IL-6, TNF, IL-17A, granulocyte macrophage colony stimulating factor (CSF), and granulocyte CSF, all of which tip the scales in favour of hyperinflammation; on the other hand, regulatory T cells, natural killer cells, and B cells secrete IL-15, IFN-α, -β, and -γ, IL-12, and 1L-21, which aid viral clearance and hence need to be spared.19 There is, therefore, a need for caution in selecting which precise components of the cytokine system to target therapeutically in patients with COVID-19. For this reason, the National Cancer Institute has recently discouraged the use of JAK inhibitors in patients with COVID-19 since this class of agents has a broad anti-inflammatory action.20

Conclusion

The COVID-19 pandemic has swiftly swept through the world, resulting in huge morbidity and significant mortality. Until an effective vaccine or antiviral specifically against SARS-CoV-2 is developed, there will remain a need for new and effective treatment for patients with severe COVID-19. Repurposed drugs targeting inflammation, immune dysfunction, and coagulopathy, including a variety of anticancer agents, should be evaluated systematically through well-designed and often novel trial platforms. The COVID-19 pandemic is an opportunity for the pharmaceutical and CRO industry, academia, and clinicians across a range of specialties to develop new models for the rapid evaluation of innovative therapeutic approaches.

AUTHOR CONTRIBUTIONS

M.L., K.S.S., and M.R. conceptualised the manuscript; all authors provided significant inputs; K.S.S. wrote the manuscript; all authors reviewed, edited, and approved the manuscript.

ADDITIONAL INFORMATION

Ethics approval and consent to participate Not applicable.

Consent to publish Not applicable.

Data availability All data mentioned in this manuscript are from publicly available sources.

Competing interests K.S.S. reports consulting fees from the European Commission outside the submitted work. C.L. reports consulting fees from Animeon AG, Akibia Therapeutics Inc, and Ergomed Plc outside the submitted work. E.d.A. reports honoraria and advisory board from Roche/GNE, Novartis, and Seattle Genetics; travel grants from Roche/GNE GSK and Novartis; and research grant to institution from Roche/GNE, AstraZeneca, GSK, Novartis, and Servier outside the submitted work. J.C. reports consulting/advisory fees from Roche, Celgene, Celsestra, AstraZeneca, Biothera Pharmaceutical, Merus, Seattle Genetics, Daiichi Sankyo, Erytech, Athenex, Polyphor, Lilly, Servier, Merck Sharp&Dohme, GSK, Leuko, Bioasis, Clovis Oncology, and Boehringer Ingelheim; honoraria from Roche, Novartis, Celgene, Eisai, Pfizer, Samsung Bioepis, Lilly, Merck Sharp&Dohme, and Daiichi Sankyo; research funding to his institution from Roche, Aria, AstraZeneca, Baxalta GMBH/Servier Affairs, Bayer Healthcare, Eisai, F.Hoffman-La Roche, Guardanhd Health, Merck Sharp&Dohme, Pfizer, Piqur Therapeutics, Puma C, and Queen Mary University of London; stock, patents, and intellectual property from MedSIR; travel, accommodation and expenses from Roche, Novartis, Eisai, Pfizer, and Daiichi Sankyo outside the submitted work. G.C. reports personal fees for consulting, advisory role, and speakers’ bureau from Roche/Gentechent, Novartis, Pfizer, Lilly, Foundation Medicine, Samsung, and Daiichi-Sankyo; honoraria from Ellipse Pharma; fees for travel and accommodation from Roche/Gentechent and Pfizer outside the submitted work. Other authors do not report any competing interests.

Funding information No funding was received for the preparation of this manuscript.

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
REFERENCES
1. Wang, T., Du, Z., Zhu, F., Cao, Z., An, Y., Gao, Y. et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet 395, e52 (2020).
2. Garg, S., Kim, L., Whitaker, M., O’Halloran, A., Cummings, C., Holstein, R. et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID-NET, 14 States, March 1–30, 2020. MMWR Morb. Mortal Wkly. Rep. 69, 458–464 (2020).
3. Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
4. Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 526, 135–140 (2020).
5. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
6. Liu, B., Li, M., Zhou, Z., Guan, X. & Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun. 111, 102452 (2020).
7. Moore, J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science 368, 473–474 (2020).
8. Tay, M. Z., Poh, C. M., Rénia, L., MacAsy, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).
9. Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-0331-4 (2020).
10. Xi, H., Lu, X., Emary, C. & Li, Y. C. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol. 20, 271–272 (2020).
11. The Pharma Letter. Small COVID-19 study shows encouraging results for EUSA Pharma. https://www.thepharmaletter.com/article/small-covid-19-study-shows-encouraging-results-for-eusa-pharma (2020). Accessed 7 May 2020.
12. Paranjpe, I., Fuster, V., Lala, A., Russak, A., Glicksberg, B. S. & Levin, M. A. et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2020.05.001 (2020).
13. Zha, L., Li, S., Pan, L., Tefsen, B., Li, Y., French, N. et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med. J. Aust. 212, 416–420 (2020).
14. Giacomo, D., Gambale, E., Monterisi, S., Valente, M. & Maio, M. SARS-COV-2 in cancer patients undergoing checkpoint blockade: clinical course and outcome. Eur. J. Cancer 133, 1–3 (2020).
15. Schett, G., Sticherling, M. & Neurath, M. F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol. 20, 271–272 (2020).
16. COVID-19 Treatment Guidelines Panel. National Institutes of Health. Coronavirus diseases 2019 (COVID-19) treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/ (2020). Accessed 7 May 2020.

Repurposing anticancer drugs for COVID-19-induced inflammation, immune... KS Saini et al.
