INTRODUCTION

In recent decades, the southern steppe region of Ukraine has again undergone significant changes, then the activation, then the decline of human impact on the remnants of natural ecosystems. Natural processes in the southern steppes, which have formed the modern fertility potential of the agroecosystems, are entirely disrupted. First of all, this is accompanied by the loss of quantitative and qualitative characteristics of species biodiversity, which has shaped the mechanisms of sustainable functioning over the centuries. For species diversity that is not used by humans, leaving only those areas that its characteristics are unsuitable for intensive agricultural production. One of such territories is depressions in the interfluve of the Dnipro — Molochna.

The nesting density of background steppe species was determined, the highest density of Alauda arvensis in different years is characteristic of Ahaymany (245,2 pairs/km²) and Barnashivsky depression (211,2 pairs/km²), and Melanocorypha calandra — for the Big Chapelsk depression (140,1 pairs/km²). Stable is only the territory of the Big Chapelsk depression the protected regime under moderate grazing load of wild ungulates. A positive correlation was established between the values of steppe habitat area and Alauda arvensis nesting in the Ahaymany, Barnashivsky, Small Chapelsk, and Green depressions and, accordingly, a negative dependence for Melanocorypha calandra.

Keywords: ornithocomplex, Passeriformes, anthropogenic transformation, biodiversity, agrolandscape.
scription of the avifauna of the region [12–15], or relate to individual depressive ecosystems, such as the Big Chapelsk depression [16–18], or individual species [19–21]. However, despite the study of birds in the region, under the influence of anthropogenic factors, there is an acceleration of changes in their ecology, which should track, analyze and take action to minimize the negative factors.

MATERIALS AND RESEARCH METHODS

To assess the state of ecotopes, their changes under the anthropogenic influence, materials obtained as a result of ground-based visual inspection and analysis of space images of the Sentinel-2 region were used. Studies of the population structure and lark numbers were conducted during 2018–2020 in the depression ecosystems of the Dnipro — Molochna interfluve. For this purpose, laid accounting transect with an area of 0.14 to 0.33 km² were established. The area of the model plots was 2.14 km². During the research period, we covered 63 km of walking accounting routes with different modes of nature use. The density of singing males, and behind them the estimated number of nesting pairs were determined using the route method with a fixed width of the accounting strip [22] — 100 m (50 m on both sides). The routes were located closer to the middle of the studied biotopes in order to exclude ecotone effects. Birds were recorded during the nesting period in the morning and before sunset (April to June). The analysis included observations of two background species of larks: Melanocorypha calandra Linnaeus, 1766, and Alauda arvensis Linnaeus, 1758. Due to the high ecological valence of species, their characteristics are suitable for comparison in biocenoses of varying degrees of disturbance. All singing males were registered, taking into account their species identity. The calculation of the density of nesting pairs was performed according to formula 1 [23]:

\[D = \frac{n}{MW} \]

where \(n \) — the total number of males detected on the accounting route; \(M \) — the length of the accounting route; \(W \) — the width of the accounting route.

To compare climatic indicators, the data of the meteorological station Askania-Nova were taken, which were processed by the program Microsoft Excel.

RESULTS AND DISCUSSION

Dynamics of changes in depressive ecosystems. The research was conduct in the years that have similar climatic conditions (Fig. 1). At the beginning of the nesting period in 2018 (April), there was almost no rain (2.7 mm — 9.6% of normal), which did not stimulate the active development of steppe vegetation. The beginning of the nesting period in 2019 (April) was rainy (38.9 mm — 138.9% of normal). May and June were noted the somewhat average level of rainfall and amounted to 42.4 mm (111.5% of normal) and 14.1 mm (30.6% of normal). In April 2020, there was almost no rain (7.5 mm — 26.7% of normal). May and June were rainier during this period amount of precipitation were 42.4 mm and 59.3 mm — 111.5 and 128.9% of normal. The indicators of the average decade temperature did not differ significantly.

It should be noted that the process of plowing fallows, depressions, coastal strips, despite the numerous recommendations of nature conservationists, in recent years is gaining momentum.
again. Steppe biotope as of 2020 remained only partially at the bottom of the depressions. Thus, in the largest of the depressions — Ahaymany — natural ecosystems now occupy no more than 12.8% of the total area of the depression (Table 1). Part of the territory of its bottom is annually mowed for haymaking. At the same time, according to our observations, at a mowing height of 11–15 cm, larks continue to hold territory, and re-nest, which is due to the presence of conditions for the hidden location of nests and forage base. The upland and slopes of this depression are completely plowed, farming carried out, where only single pairs of field larks are observing on nesting.

Barnashivsky depression situated near the Biosphere Reserve «Askania Nova». Has an insignificant difference in height between the bottom and the upland of the catchment area. The slopes and half of the bottom of the depressions are plowed. Every year the area of plowed areas increases. For 2020, 27.8% of the total area is in the natural state, where hay is also harvested annually, with a height of 11–15 cm.

The Green depression also transformed. It is cut by the main and drainage channels of the Kakhovka irrigation system. In the middle of the depression, there is a large 200-hectare storage pond on the slopes and the upland plowed. Steppe biotopes remained at the bottom of the depression their area during the study period continued to decrease — from 36.8 to 28%. Steppe areas are used for haymaking. In contrast to the above-mentioned depressions, mowing with grass (3–5 cm) is very noticeable here, which causes mechanical damage to the nests and leaves almost no block forest planting for re-nesting.

Small Chapelsk depression is subject to extensive economic use by grazing livestock, due to which in its south-eastern part there is overgrazing. A small part of the territory is not mowed every year, damaging the nests of birds. Unlike previous depressions, steppe areas are reduced due to littering with waste from livestock farms — 6% of the total area.

The area and load of steppe biotopes of the Big Chapelsk depression, which is a part of the protected area of the Askania-Nova Biosphere Reserve, is stable. At the same time, a significant number of wild ungulates, which devour the green mass and cause its regrowth, and the real protected regime create stable conditions for the stay of birds of different ecological groups, including larks.

Dynamics of nesting density of larks. A comparative analysis of the results of bird counts in Big Chapelsk, Ahaymany, Barnashivsky, Green, and Small Chapelsk depressions revealed a significant difference in the density of nesting pairs of *Alauda arvensis* and *Melanocorypha calandra*. Thus, the highest density of *Alauda arvensis* in general in different years is characteristic of the Ahaymany (245.2 pairs/km2) and Barnashivskyi depression (211.2 pairs/km2), the lowest — of the Big Chapelsk depression (50.1 pairs/km2), and the Small Chapelsk depression (60.0 pairs /km2).

At the same time, the highest density of *Melanocorypha calandra* (140.1 pairs/km2) is observed in Big Chapelsk, and the lowest density is typical for the Green depression — 13.9 pairs/km2 (Table 2). Estimation of dynamics for a short period of research is conditional, but even during this time, the general tendency of change of density of nesting of species is already traced.

Table 1

Year of research	Small Chapelsk	Ahaymany	Barnashivsky	Green	Small Chapelsk
Depression area	44,0 100	120,0 100	16,0 100	49,0 100	27,0 100
of them: steppe biotopes	2018 26,0 59,1	73,5 61,3	8,1 50,6	18,1 36,8	13,8 51,1
	2019 26,0 59,1	47,7 39,8	6,3 39,6	15,2 31,0	9,5 35,2
	2020 26,0 59,1	15,6 12,8	4,5 27,8	13,7 28,0	8,7 32,2

Source: developed by the author.
In particular, for four depressions, an increase in the number of *Alauda arvensis* and a relatively stable density in the Big Chapelsk depression were found. Over the years of observations, the population dynamics of *Melanocorypha calandra* is positive only for Big Chapelsk, in other depressions the number decreases.

The impact of changes in the area of steppe biotopes areas on the number of nesting pairs of larks was determined by correlation analysis. A positive correlation has been established between the values of the steppe biotopes area and nesting *Alauda arvensis* in Ahaymany, Barnashivsky, Small Chapelsk, and Green depressions. And, accordingly, a negative dependence for *Melanocorypha calandra* (Table 3).

The revealed dependence of the dynamics of lark density in key areas is probably explained by the biological characteristics of species as *Alauda arvensis* is a more ecologically plastic species it settles in semi-deserts, agro-landscapes, beams with meadow, and steppe vegetation [9; 10]. Probably, the transformation of steppe biotopes leads to the displacement of authentic steppe species of Sparrows, thus freeing up an ecological niche for *Alauda arvensis*.

In turn, *Melanocorypha calandra* is found for nesting in all areas where there are even small areas of steppe vegetation (at least 0.1 km2). At the same time, cluster groupings of a kind are trace from 3 to 5–6 pairs. But the reduction of virgin areas in both depressions ecosystems and adjacent areas leads to a sharp decrease in the number of nesting groups of this species with subsequent possible extinction.

CONCLUSIONS

Depression ecosystems of the Dnipro — Molochna interfluve, which are the most attractive biotopes for larks nesting *Alauda arvensis* and
Melanocorypha calandra, are significantly affected by anthropogenic factors.

The highest intensity of plowing in the last 5 years concerns the Ahaymany depression. Only Big Chapelsk with a protected regime under pasture load is stable.

The highest density Alauda arvensis is characteristic of the Ahaymany (245.2 pairs/km²) and Barnashivsky (211.2 pairs/km²) depressions, and Melanocorypha calandra — for the Big Chapelsk depression (140.1 pairs/km²).

A positive relationship was found between the values of steppe habitat area and nesting Alauda arvensis and, accordingly, a negative dependence for Melanocorypha calandra. According to the data obtained, the most favorable for Melanocorypha calandra are steppe biotopes with a moderate level of a load of wild ungulates, and for Alauda arvensis — moderately mowed steppe areas.

REFERENCES

1. Shapoval, V.V., Starovoitova, T.V. & Marushhak, O.Ju. (2019). Aghajmansjkyj pid [Ahaymany Depression]. Terytorii, shho proponuyutsja do vkljuchennja u merezhu Emerald [Smaraghdovu merezhu] Ukrainyj [shadow list, part 2] — Territories proposed for inclusion in the Emerald (Emerald Network) network of Ukraine [shadow list]. Part 2, 355, 166–169 [in Ukrainian].

2. Shapoval, V.V., Starovoitova, T.V. & Marushhak, O. Ju. (2019). Barnashivskyj pid [Barnashivsky Depression]. Terytorii, shho proponuyutsja do vkljuchennja u merezhu Emerald [Smaraghdovu merezhu] Ukrainyj [shadow list, part 2] — Territories proposed for inclusion in the Emerald (Emerald Network) network of Ukraine [shadow list]. Part 2, 175–176 [in Ukrainian].

3. Shapoval, V.V., Starovoitova, T.V. & Marushhak, O.Ju. (2019). Zelenyj pid [Green Depression]. Terytorii, shho proponuyutsja do vkljuchennja u merezhu Emerald [Smaraghdovu merezhu] Ukrainyj [shadow list, part 2] — Territories proposed for inclusion in the Emerald (Emerald Network) network of Ukraine [shadow list]. Part 2, 175–176 [in Ukrainian].

4. Shapoval, V.V., Starovoitova, T.V. & Marushhak, O.Ju. (2019). Malyj Chapeljsjkyj pid [Small Chapelsk Depression]. Terytorii, shho proponuyutsja do vkljuchennja u merezhu Emerald [Smaraghdovu merezhu] Ukrainyj [shadow list, part 2] — Territories proposed for inclusion in the Emerald (Emerald Network) network of Ukraine [shadow list]. Part 2, 179–180 [in Ukrainian].

5. Shapoval, V.V. (2007). Synantropnyj element flory askanijsjkogho stepu: struktura ta dynamika u kontekstgi rezervatnoji ekspoziciji terytoriji [Synanthropic element of the flora of the Askanian steppe: structure and dynamics in the context of the reserve exposition of the territory. Zapovidnyi stepy Ukrainyj. Suchasnyj stan ta perspektyvy jikh zberezhennja — Reserved steppes of Ukraine. Current state and prospects for their preservation, 115–119 [in Ukrainian].

6. Tkachenko, V.S. & Shapoval, V.V. (2010). Sukcesiji fitosystem diljanky «Pivnichna» novoaskanijsjkogho zapovidnogo stepu v zapovidnomu stepu Askania-Nova [Successions of phytosystems of the «Northern» area of the Novoaskanian protected steppe in the second half of the XX and the beginning of the XXI century]. Visti Biosfernoho zapovidnyka «Askania-Nova» — News Biosphere Reserve «Askania-Nova», 12, 21–32 [in Ukrainian].

7. Lystopadsky, M.A. & Gofman, O.P. (2017) Osobly`vosti ekologiyi ta prostorovoyi struktury` naselennya zhavoronka stepovogo (Melanocorypha calandra) v zapovidnomu stepu Askaniya-Nova [Features of ecology and spatial structure of the population of calandra lark (Melanocorypha calandra) in the protected steppe Askania-Nova.] Zapovidna sprava u Stepovi zoni Ukrajiny — Protected area in the steppe zone of Ukraine, 3, 259–263 [in Ukrainian].

8. Kuzmenko, T.M. (2012). Bird Distribution in Biotopes of Open Agricultural Lands in Breeding Season. Vestnik zoologii, 46(1), 41–44 [in English].

9. Bolnykh, S.I. (2011). Nekotorye zakonomernosti formirovaniya gnezdivogo naselenija polevogo zhavoronka (Alauda arvensis) na sel`skohozajstvennyh zemljah Lipeckoj oblasti [Some conformities of formation of the nested population of the Alauda arvensis on the agricultural landscapes of Lipetsk region]. Vestnik TGPU — Tomsk State Pedagogical University Bulletin, 5 (107), 91–96 [in Russian].

10. Oparin M.L. et al. (2015). Dinamika struktury gnezdivogo naselenija zhavoronkov (Alaudidae, Aves) v polupustyne saratovskogo Zavolz`ha [Structure dynamics of the breeding population of larks (Alaudidae, Aves) in a semidesert of the Saratov Trans-Volga region]. Povolzhskij jekologicheskiy zhurnal — Povolzhskiy Journal of Ecology, 3, 277–293 [in Russian].

11. Didem Ambarl, C. Can Bilgin. (2014). Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppe. Agriculture, Ecosystems and Environment, 182, 37–48 [in English].

12. Andryushchenko, Yu.A., Chernichko, I.I., Kinda, V.V. & Popenko, V.M. (2006). Rezultaty pervogo bolshogo ucheta zimuyushchikh ptits v zonalnyh landshaftakh yuga Ukrajini [Results of the first large census of wintering birds in zonal landscapes of South Ukraine] Branta — Branta, 9, 123–149. [in Ukrainian].
ВПЛИВ АНТРОПОГЕННИХ ФАКТОРІВ НА ЕКОЛОГІЮ *MELANOCORPHA CALANDRA* ТА *ALAUDA ARvensis* У ПОДОВИХ ЕКОСИСТЕМАХ МЕЖИРІЧЧЯ ДНІПРО—МОЛОЧНА

Т.В. Старовойтова
аспірантка
Інститут агроекології і природокористування НААН (м. Київ, Україна)
e-mail: starovoitovatetana@gmail.com
ORCID: https://orcid.org/0000-0003-4243-1311

Дослідження проводилися впродовж 3-х років у степових біотопах дніща Агайманського, Барнашівського, Зеленого, Великого Чапельського та Малого Чапельського подів межиріччя Дніпро—Молочна. На основі аізуларного огляду та обробки космічних знімків проаналізовано зміни антропогенної трансформації цих екосистем. На півдні України характерний для Агайманського поду. Серед чинників, що суттєво впливають на здійснення екосистемних процесів, життєвої діяльності птахів, є також вплив антропогенної діяльності: поголов’я мляка і вирощування свиней (Малий Чапельський під).

Висновки. Цо відбулося у межиріччі Дніпро—Молочна, характерно для області Агайманського поду. Особливість дослідження полягає в тому, що вони були здійснені впродовж трьох років у степових біотопах межиріччя Дніпро—Молочна. У разі поширення антропогенної трансформації екосистем гніздування птахів в межиріччі Дніпро—Молочна, є також вплив антропогенної діяльності: поголов’я мляка і вирощування свиней (Малий Чапельський під).
а Melanocorypha calandra — для Великого Чапельського поду (140,1 пар/км²). Стабільною є тільки територія Великого Чапельського поду з заповідним режимом під польовим насінницьким навантаженням дикими кошными тваринами. Встановлено позитивний кореляційний зв'язок між значеннями площі степових біотопів та гніздування Alauda arvensis в Агайманському, Барнашівському, Малому Чапельському та Зеленому подах і, відповідно, негативну залежність для Melanocorypha calandra.

Ключові слова: орнітокомплекс, Горобцеподібні, антропогенна трансформація, біорізноманіття, агроландшафт.

ЛІТЕРАТУРА
1. Агайманський під / Шаповал В.В., Старовойтова Т.В., Марущак О.Ю. Території, що пропонуються до включення у мережу Емеральд (Смарагдову мережу) України («тіньовий список», частина 2): кол. авт., під ред. Борисенко К.А., Куземко А.А. 2019. С. 166–169.
2. Барнашівський під / Шаповал В.В., Старовойтова Т.В., Марущак О.Ю. Території, що пропонуються до включення у мережу Емеральд (Смарагдову мережу) України («тіньовий список», частина 2): кол. авт., кол. авт., під ред. Борисенко К.А., Куземко А.А. 2019. С. 170–172.
3. Зелений під / Шаповал В.В., Старовойтова Т.В., Марущак О.Ю. Території, що пропонуються до включення у мережу Емеральд (Смарагдову мережу) України («тіньовий список», частина 2): кол. авт., під ред. Борисенко К.А., Куземко А.А. 2019. С. 179–181.
4. Малий Чапельський під / Шаповал В.В., Старовойтова Т.В., Марущак О.Ю. Території, що пропонуються до включення у мережу Емеральд (Смарагдову мережу) України («тіньовий список», частина 2): кол. авт., під ред. Борисенко К.А., Куземко А.А. 2019. С. 186–188.
5. Шаповал В.В. Синантропний елемент флори асканійського степу: структура та динаміка у контексті резерватної експозиції території. Заповідні степи України. Сучасний стан та перспективи їх збереження. 2007. С. 115–119.
6. Ткаченко В.С., Шаповал В.В. Сукцесії фітосистем ділянки «Північна» новоасканійського заповідного степу у другій половині ХХ і на початку ХХІ ст. Вісті Біосферного заповідника «Асканія-Нова». 2010. Т. 12. С. 21–32.
7. Листопадський М.А., Гофман О.П. Особливості екології та просторової структури населення жайвопра вник степових (Melanocorypha calandra) в заповідному степу Асканія-Нова. Заповідна справа у Сте поповій зоні України (до 90-річчя від створення Надморських заповідників). 2017. № 3. С. 259–263.
8. Kuzmenko T.M. Bird Distribution in Biotopes of Open Agricultural Lands in Breeding Season. Vestnik zoologii. 2012. 46(1): e-41–e-44.
9. Больных С.И. Некоторые закономерности формирования гнездового населения полевого жаворонка (Alauda arvensis) на сельскохозяйственных землях Липецкой области. Вестник ТГПУ. 2011. Выпуск 5 (107). С. 91–96.
10. Опарин М.Л. и др. Динамика структуры гнездового населения жаворонков (Alaudidae, Aves) в полупустыне саратовского Заволжья. Поволжский экологический журнал. 2015. № 3. С. 277–293.
11. Didem Ambarlı, C. Can Bilgin. Effects of landscape, land use and vegetation on bird community composition and diversity in Inner Anatolian steppes. Agriculture, Ecosystems and Environment. 2014. (182). P. 37–46.
12. Андрющенко Ю.А. и др. Результаты первого большого учета зимующих птиц в зональных ландшафтах юга Украины. Бранта. 2006. Вып. 9. С. 123–149.
13. Андрющенко Ю.А., Дядичева Е.А., Попенко В.М. К характеристике весеннего населения птиц суходольной подзоны Украины в пределах междуречья Днепра и Молочной. Беркут. 2015. № 24, вип 2. С. 77–86.
14. Andryushchenko Yu.O., Gavrilenko V.S., Kostiushyn V.A., Kucherenko V.N., Mezinov A.S., Petrovich Z.O., Redinov K.A., Rusev I.T., Yakovlev M.V. Current status of Anserinae wintering in Azov-Black Sea region of Ukraine. Vestnik Zoologii. 2019. № 53 (4). P. 297–312.
15. Кошелев О.І., Кошелев В.О., Жуков О.В. Різноманіття угруповань та індикаторні плеяди птахів природних й антропогенно трансформованих ландшафтах Півдня та Південного сходу України. Agrology. № 2 (4). 2019. С. 229–240.
16. Гавриленко В.С., Мезинов О.С. Роль Великого Чапельського поду в збереженні біорізноманіття нановолнових птахів Дніпровсько-Молочинського межиріччя. Екология водо-болотных угод і торфовищ (збірник наукових статей). Київ, 2011. С. 18–25.
17. Гавриленко В.С., Листопадський М.А. Трансформація орнітокомплексів природного ядра і суміжних територій Біосферного заповідника «Асканія-Нова». Вісті Біосферного заповідника «Асканія-Нова». 2016. Т. 18. С. 98–115.
19. Гавриленко В.С., Листопадський М.А., Мезінов О.С., Чегорка П.П. Нові знахідки рідкісних видів птахів на території Біосферного заповідника «Асканія-Нова» та в його регіоні. Вісті Біосферного заповідника «Асканія-Нова». 2013. Т. 15. С. 267–269.

20. Гавриленко В.С., Старовойтова Т.В. Особенности весенней миграции серого журавля Grus grus (Linnaeus, 1758) через Биосферный заповедник «Аскания-Нова» и сопредельные территории в 2018 году. Информационный бюллетень РГЖ Евразии. Москва, 2018. № 1. С. 32–35.

21. Гавриленко В.С., Старовойтова Т.В. Поди межиріччя Дніпро–Молочна як важливі осередки збереження птахів Червоної книги України. Агроекологічний журнал. 2020. № 3. С. 13–25.

22. Бибби К., Джонс М., Марсден С. Методы полевых экспедиционных исследований. Исследования и учеты птиц. Москва, 2000. 186 с.

23. Равкин Е.С., Челинцев Н.Г. Методические рекомендации по комплексному маршрутному учету птиц. Москва, 1990. 36 с.

ВІДОМОСТІ ПРО АВТОРА

Старовойтова Тетяна Вікторівна, аспірантка, Інститут агроекології та природокористування НАН (вул. Метрологічна, 12, м. Київ, Україна, 03143; e-mail: starovoitovatetana@gmail.com; тел.: +380963654064; ORCID: https://orcid.org/0000-0003-4243-1311)

Кабінет Міністрів України 21 квітня затвердив порядок проведення національної інвентаризації лісів, який дасть можливість отримати вичерпну інформацію про кількість і якість лісів в Україні.