How do quarks and gluons lose energy in the QGP?

M. J. Tannenbaum

Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 USA
E-mail: mjt@bnl.gov

Abstract. RHIC introduced the method of hard scattering of partons as an in-situ probe of the the medium produced in A+A collisions. A suppression, $R_{AA} \approx 0.2$ relative to binary-scaling, was discovered for π^0 production in the range $5 \leq p_T \leq 20$ GeV/c in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, and surprisingly also for single-electrons from the decay of heavy quarks. Both these results have been confirmed in Pb+Pb collisions at the LHC at $\sqrt{s_{NN}} = 2.76$ TeV. Interestingly, in this p_T range the LHC results for pions nearly overlap the RHIC results. Thus, due to the flatter spectrum, the energy loss in the medium at LHC in this p_T range must be $\sim 40\%$ larger than at RHIC. Unique at the LHC are the beautiful measurements of the fractional transverse momentum imbalance $1 - \langle \hat{p}_T^2 / \hat{p}_T^1 \rangle$ of di-jets in Pb+Pb collisions. At the Utrecht meeting in 2011, I corrected for the fractional imbalance of di-jets with the same cuts in p-p collisions and showed that the relative fractional jet imbalance in Pb+Pb/p-p is $\approx 15\%$ for jets with $120 \leq \hat{p}_T^1 \leq 300$ GeV/c. CMS later confirmed this much smaller imbalance compared to the same quantity derived from two-particle correlations of di-jet fragments at RHIC corresponding to jet $\hat{p}_T \approx 10 - 20$ GeV/c, which appear to show a much larger fractional jet imbalance $\approx 45\%$ in this lower \hat{p}_T range. The variation of apparent energy loss in the medium as a function of both p_T and $\sqrt{s_{NN}}$ is striking and presents a challenge to both theory and experiment for improved understanding. There are many other such unresolved issues, for instance, the absence of evidence for a \hat{q} effect, due to momentum transferred to the medium by outgoing partons, which would widen the away-side di-jet and di-hadron correlations in a similar fashion as the k_T-effect. Another issue well known from experiments at the CERN ISR, SpS and SpS collider is that parton-parton hard-collisions make negligible contribution to multiplicity or transverse energy production in p-p collisions—soft particles, with $p_T \leq 2$ GeV/c, predominate. Thus an apparent hard scattering component for A+A multiplicity distributions based on a popular formula,

$$dN_{AA}^{ch}/d\eta = [(1-x)\langle N_{part}\rangle dN_{pp}^{ch}/d\eta/2 + x\langle N_{col}\rangle dN_{pp}^{ch}/d\eta],$$

seems to be an unphysical way to understand the deviation from N_{part} scaling. Based on recent p-p and d+Au measurements, a more physical way is presented along with several other stimulating results and ideas from recent d+Au (p+Pb) measurements.

1. Introduction

There is a great textbook from 1950 titled "Nuclear Physics" from a course given by Enrico Fermi [1]. Chapter I of ten is "PROPERTIES OF NUCLEI" and Chapter II, "INTERACTION OF RADIATION WITH MATTER", which contains three sections: A) Energy Loss by Charged Particles; B. Scattering; C. Passage of Electromagnetic Radiation through Matter. Imagine that today we were going to write a textbook on QGP physics. After 13 years at RHIC and 2 years at LHC-IONS, we could do a fair job on Chapter I, "PROPERTIES OF THE QGP"; but for Chapter II "INTERACTION OF QUARKS AND GLUONS AND OTHER RADIATION WITH
THE QGP”, I don’t know. I have not seen evidence that provides convincing proof of any theory or model. I don’t know any formula comparable to Bethe-Bloch for ionization loss or Bethe-Heitler for radiation. For instance, I would like to see something for quarks and gluons in the QGP like Fig. 1 for a muon in Cu. Of course the situation is much more complicated for the muon momentum μ_momm.

There are many different theoretical studies of energy loss of a quark or gluon with their color charges fully exposed passing through a medium with a large density of similarly exposed color charges (i.e. a QGP). The approaches are different, but the one thing that they have in common is the transport coefficient of a gluon in the medium, denoted \hat{q}, which is defined from the mean 4-momentum transfer q^2 per collision but is expressed as the mean 4-momentum transfer q^2 per mean free path of a gluon in the medium. Thus the mean 4-momentum transfer q^2 for a gluon traversing length L in the medium is,

$$\langle q^2(L) \rangle = \hat{q} L = \mu^2 L / \lambda_\text{mfp},$$

where λ_mfp is the mean free path for a gluon interaction in the medium, and μ, the mean momentum transfer per collision, is the Debye screening mass acquired by gluons in the medium. In this, the original BDMPSZ formalism, the energy loss of an outgoing parton due to coherent gluon bremsstrahlung per unit length (x) of the medium, $-dE/dx$, takes the form:

$$-dE/dx \simeq \alpha_s \langle q^2(L) \rangle = \alpha_s \hat{q} L = \alpha_s \mu^2 L / \lambda_\text{mfp},$$

so that the total energy loss in the medium goes like L^2. Also the accumulated transverse momentum, $\langle k_T^2 \rangle$, for a gluon traversing a length L in the medium is well approximated by

$$\langle k_T^2 \rangle \simeq \langle q^2(L) \rangle = \hat{q} L.$$

Experiments at RHIC were the first to use hard-scattering as an in-situ probe of gluons and quarks traversing the medium in Relativistic Heavy Ion (RHI) collisions. Many important and beautiful results have been obtained using single inclusive measurements and two-particle correlations. A simple estimate shows that the $\langle k_T^2 \rangle \approx \hat{q} L$ should be observable at RHIC via the broadening of di-hadron azimuthal correlations. Assume that for a trigger particle with p_T, the away-parton traverses slightly more than half the 14 fm diameter medium for central collisions of Au+Au, say 8 fm. With a $\hat{q} = 1 \text{ GeV}^2/\text{fm}$, this would correspond to $\langle k_T^2 \rangle = \hat{q} L = 8$.
GeV\(^2\), compared to the measured \[7\] \(\langle k_2^2 \rangle = 8.0 \pm 0.2\) (GeV/c)\(^2\) for di-hadrons in p-p collisions\(^2\) with roughly the same \(p_T\) and \(p_T^{assoc}\). This should be visible as an azimuthal width \(\sim \sqrt{2}\) larger in Au+Au than in p-p collisions at \(\sqrt{s_{NN}} = 200\) GeV.

However, there is no direct evidence as yet for broadening of di-hadron or di-jet correlations from the effect of \(\hat{q}\). The best measurement so far is an early measurement from the STAR collaboration \[8\] (Fig. 2) of di-hadron azimuthal correlations which shows that for a trigger particle with transverse momentum \(8 < p_T < 15\) GeV/c, the conditional yield of associated charged hadrons with \(p_T^{assoc}\) in the away-side peak can be fit to a Gaussian with a width of \(\sigma_{\Delta \phi} = 0.24 \pm 0.07\) for d+Au and \(0.20 \pm 0.02\) (0.22 \pm 0.02) for 20%-40% (0-5%) centrality Au+Au collisions. The result is not statistically significant for a difference in \(\sigma_{\Delta \phi}\) for d+Au and Au+Au.

![Figure 2. Di-hadron azimuthal correlations for charged hadron triggers with \(8 < p_T < 15\) GeV/c and several values of \(p_T^{assoc}\) in minimum bias d+Au and 20%-40% (0-5%) centrality Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV \[8\].](image)

There are many other such unresolved issues in RHI physics. In the following sections, I review some of the latest results at RHIC starting with some of the original results of hard-scattering and the discovery of “Jet Quenching” to place the latest results in context.

2. Jet Quenching in High \(p_T\) Physics at RHIC

The use of hard-scattering at RHIC as an in-situ probe of the medium produced in A+A collisions by the effect of the medium on outgoing hard-scattered partons has led to many important discoveries (and puzzles). The effect of the medium on outgoing hard-scattered partons produced in the initial A+A collision is determined by comparison to measurements in p+A (or d+A) collisions, where no (or negligible) medium is produced.

\(^2\) In both cases the azimuthal projection is only half the quoted \(\langle k_2^2 \rangle\) or \(\langle k_z^2 \rangle\).
The discovery at RHIC [9] that hadrons with $p_T > 3$ GeV/c are suppressed in central Au+Au collisions by roughly a factor of 5 compared to point-like (binary) scaling from p-p collisions is arguably the major discovery in RHIC physics. In order to verify that the suppression was due to the medium produced in Au+Au collisions and not an effect in the cold matter of an individual nucleus, measurements in d+Au collisions were performed in 2003 which were so definitive that all four experiments at RHIC had their results displayed on the front cover of Physical Review Letters (Fig. 3a). Figure 3b shows the Nuclear Modification factor R_{AA} for non-identified charged hadrons (h^\pm) and π^0, mesons measured by PHENIX [10] in d+Au and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV where $R_{AA}(p_T)$ is the ratio of the yield of particles (h) for a given centrality Au+Au collision to the point-like-scaled p-p cross section,

$$R_{AA}(p_T) = \frac{[d^2N_{AA}^h/dp_Td(y_{NN})]/\langle T_{AA} \rangle}{d^2\sigma_{pp}^h/dp_Tdy}$$

where $\langle T_{AA} \rangle$ is the overlap integral of the nuclear thickness functions for that centrality. Two things are important to note about Fig. 3b: i) both the h^\pm and π^0 are suppressed in Au+Au central collisions but not suppressed in d+Au collisions; ii) the h^\pm and π^0 exhibit different values of R_{AA} in both d+Au and Au+Au collisions. This showed that suppression was a medium effect and that particle identification is crucial in these measurements because different particles behave differently.

The method of calculating the suppression of high p_T particles in Au+Au collisions at RHIC is shown in Fig. 4 for π^0. The hard-scattering in p-p collisions is indicated by the power law behavior p_T^n for the invariant cross section, $Edd^3\sigma/dp^3$, with $n = 8.10\pm0.05$ for $p_T > 3$ GeV/c at $\sqrt{s_{NN}} = 200$ GeV. The Au+Au data at a given p_T can be characterized either as shifted lower in p_T by δp_T from the point-like scaled p-p data at $p_T^0 = p_T + \delta p_T$, or reduced in magnitude at the same p_T, i.e. suppressed. In Fig. 4, the suppression of the many identified particles measured by PHENIX at RHIC over many years is presented as the Nuclear Modification Factor, R_{AA}. These results show an interesting pattern. All particles are suppressed for $p_T \geq 2$ GeV/c, even the electrons (e_{HF}^\pm) from c and b quark decay (but not the direct-γ). There is one notable exception—the protons are enhanced. This is called the baryon anomaly [12, 13]. The non-suppression of
the direct-γ in Au+Au collisions while the π^0, η and all the other mesons in Fig. 4 are suppressed shows that the suppression is an effect of the medium, the QGP, presumably due to the loss of energy by their parent quark or gluon with exposed color charge.

Direct-γ production at large p_T is one of most beautiful hard-scattering processes in QCD as well as the best probe of the QGP because the γ ray participates directly in the predominant constituent reaction $g+q \rightarrow \gamma+q$ and emerges unscathed by the medium so that its momentum can be measured precisely. Also, since the scattered quark has equal and opposite p_T to the direct-γ, the p_T of the outgoing quark is known precisely at the production point. The simplicity and clarity of the constituent reaction stands in marked contrast to the difficulty of the experiment.
due to the overwhelming background of γ-rays from the γ+γ decay of π0 and η mesons. However, with a properly designed experiment one can make four measurements, the π0 and direct-γ pT spectra in both p-p and A+A collisions which span many orders of magnitude (Fig. 5a), to obtain a precise comparison of R_{AA} for π0 and direct-γ (Fig. 5b) [17]. The π0 are more suppressed with increasing centrality while the direct-γ, with constant $R_{AA} \approx 1$, are unaffected by the medium.

The dominance of the single constituent subprocess $g + q \rightarrow γ + q$ for direct-γ production allows an illustration of a fundamental property of QCD using the recent PHENIX measurements in p-p at $\sqrt{s} = 200$ GeV [18] combined with a collection of the world’s measurements of direct-γ production in p-p and \bar{p}+p collisions. Figure 6a shows an x_T scaling plot of all the measurements using the naive parton model value of $n_{eff} = 4.0$ [13, 20], which shows significant deviations compared to the beautiful x_T scaling (Fig. 6b) with index $n_{eff} = 4.5$. The difference of Figs. 6a and b illustrates the non-scaling of QCD due to the running coupling constant $\alpha_s(Q^2)$ and the evolution of the parton distribution functions [21].

![Figure 6](image)

Figure 6. Direct-γ measurements plotted as $\sqrt{s}^{n_{eff}} \times Ed^3σ/dp^3(x_T)$: a) (left) with $n_{eff} = 4.0$ b) (right) with $n_{eff} = 4.5$; where $x_T = 2p_T/\sqrt{s}$ [18]. The legend gives the experiment and \sqrt{s}.

For those who find the discussion in this section too sketchy, Jan Rak and I have published a book this year, with all this kind of information, which gives a full survey of “High p_T Physics in the Heavy Ion Era” over more than a century, from Rutherford (1911) to 2012, including many of the Pb+Pb results from the LHC [22].

3. New Results since Utrecht-2011

At the last meeting in this series that I attended, in Utrecht, the first results of the ALICE measurements of suppression of high p_T charged hadrons h^\pm at $\sqrt{s_{NN}} = 2.76$ TeV at LHC were presented [23]. Despite more than a factor of 20 higher c.m. energy, the R_{AA} measurements by ALICE at LHC (Fig. 7a) [24] appear to be nearly identical to those from PHENIX at RHIC.
for $5 \leq p_T \leq 20$ GeV/c, except that for the LHC data, with better statistics, the upward trend of $R_{AA}(p_T)$ over the whole interval is significant (although the more recent PHENIX data in Fig. 7a [24] show a small but significant upward trend). However, what is most important to realize is that the exponent of the power-law at LHC ($n \approx 6$) is flatter than at RHIC ($n \approx 8$), so that to get the same value for R_{AA} at LHC as at RHIC, a $\sim 40\%$ larger shift $\delta p_T/p'_T$ in the spectrum from p-p to A+A is required. This led us more recently to compare the data in terms of $\delta p_T/p'_T$ (Fig. 7b) which clearly shows the larger shift for central collisions at LHC. The larger shift in the p_T spectrum likely indicates $\sim 40\%$ larger fractional energy loss at LHC than at RHIC in this p_T range due to the probably hotter and denser medium. These measurements can be combined with the previous measurements at RHIC for $\sqrt{s_{NN}} = 39$ and 62.4 GeV [25] (Fig. 8) to reveal a systematic increase of $\delta p_T/p'_T$ in central A+A collisions at $p'_T = 7$ GeV/c, going from 5% to 30% over the c.m. energy range $\sqrt{s_{NN}} = 39$ GeV to 2.76 TeV.

Figure 7. a) (left) R_{AA} of π^0 in $\sqrt{s_{NN}} = 200$ GeV central (0-5%) and peripheral (70-80%) Au+Au collisions [24] at RHIC compared to non-identified charged hadron (h$^\pm$) R_{AA} in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at LHC. b) (right) Fractional shift of p_T spectrum $\delta p_T/p'_T$ vs. p'_T (p-p) calculated by PHENIX [24] for RHIC and LHC.

Figure 8. Fractional shift of p_T spectrum $\delta p_T/p'_T$ in central A+A collisions from $\sqrt{s_{NN}} = 39$ GeV to 2.76 TeV
At Utrecht, I also discussed another unexpected discovery at RHIC \cite{7}, that the distribution of particles, with p_T, opposite in azimuth to a trigger particle, e.g. a π^0 with large p_T, which is itself the fragment of a jet, does not measure the fragmentation function of the jet opposite in azimuth to the trigger, but, instead, measures the ratio of \hat{p}_T, of the away-parton, to \hat{p}_T, of the trigger-parton, and depends only on the same power n as the invariant single particle spectrum:

$$dP/dx_E|_{p_T} \approx N (n-1)/[\hat{x}_h(1+x_E/\hat{x}_h)^n].$$

This equation gives a simple relationship between the ratio, $x_E \approx \hat{p}_T / \hat{p}_T$, of the transverse momenta of the away-side particle to the trigger particle, and the ratio of the transverse momenta of the away-jet to the trigger-jet, $\hat{x}_h = \hat{p}_T / \hat{p}_T$. PHENIX measurements \cite{26} of the x_E distributions of π^0, correlations in p-p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV were fit to Eq. 3 (Fig. 9a,b) \cite{27}. The results for the fitted parameters are shown on the figures. In general the values of \hat{x}_h^{pp} do not equal 1 but vary between $0.8 < \hat{x}_h^{pp} < 1.0$ due to k_T smearing and the range of x_E covered. In order to take account of the imbalance ($\hat{x}_h^{pp} < 1$) observed in the p-p data, the ratio $\hat{x}_h^{AA}/\hat{x}_h^{pp}$ is taken as the measure of the energy of the away jet relative to the trigger jet in A+A compared to p-p collisions.

The fractional jet imbalance was also measured directly with reconstructed di-jets by the CMS collaboration at the LHC in Pb+Pb central collisions at $\sqrt{s_{NN}} = 2.76$ TeV (Fig. 10) \cite{28}. At Utrecht, I calculated the same ratio $\hat{x}_h^{AA}/\hat{x}_h^{pp}$ for the CMS data to correct for the large effect in p-p collisions \cite{27} and the results were compared to PHENIX as shown in Fig. 9c. The dashed line shows my estimate of the Fractional Jet Imbalance vs. E(Jet) at $\sqrt{s_{NN}} = 2.76$ TeV and includes the 40% increase in $\delta p_T/p_T'$ from Fig. 7. New results in 2012 by CMS (Fig. 11) \cite{29} significantly extend and improve their previous measurement and confirm my correction \cite{27}. The large difference in fractional jet imbalance between RHIC and LHC c.m. energies could be due to the difference in jet \hat{p}_T between RHIC (~ 20 GeV/c) and LHC (~ 200 GeV/c), a difference in the properties of the medium, the difference in n for the different $\sqrt{s_{NN}}$, or a problem with Eq. 3 which has not been verified by direct comparison to di-jets. In any case the strong \hat{p}_T dependence of the fractional jet imbalance (apparent energy loss of a parton) also
Figure 10. CMS measurement [28] of $\langle 1 - \hat{p}_{T,2}/\hat{p}_{T,1} \rangle$, the fractional jet imbalance, for 3 centralities in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, compared to PYTHIA simulations for p-p collisions.

Figure 11. a) (left 3 panels) CMS [29] measurements of average di-jet transverse momentum ratio, $\hat{x}_h = \hat{p}_{T,2}/\hat{p}_{T,1}$, as a function of leading jet $\hat{p}_{T,1}$ at $\sqrt{s_{NN}} = 2.76$ TeV in p-p collisions and for 3 centralities in Pb+Pb collisions, as well as simulated p-p di-jets embedded in heavy ion events. b) (right) Fractional jet imbalance [27], $1 - \hat{x}_{AA}/\hat{x}_h$, for the RHIC data from Fig. 9 with CMS measurement from (a). The solid (dotted) lines represent the systematic uncertainty of the CMS 0-20% (20-50%) results. The dashed line is the estimate of the Fractional Jet Imbalance vs. E(Jet) at $\sqrt{s_{NN}} = 2.76$ TeV from Fig. 9c.

seems to disfavor purely radiative energy-loss in the QGP [4] and indicates that the details of energy loss in a QGP remain to be understood. Future measurements at both RHIC and LHC will need to sort out these issues by extending di-jet and two-particle correlation measurements to overlapping regions of \hat{p}_{T}.

In distinction to the case of di-hadron correlations (where both hadrons are fragments of jets) which do not measure the fragmentation function, direct-γ-hadron correlations do measure the fragmentation function of the jet from the away parton (most likely a u quark [22]). PHENIX has shown that this is true for p-p collisions Fig. 12h, 30. This year, improved measurements by PHENIX [31] in both p-p and Au+Au collisions (Fig. 12h) now indicate a significant modification of the fragmentation function in Au+Au (0-40%) central collisions compared to p-p, with an enhancement at low $\zeta_T = p_T^h/p_T^A$ (large $\xi = -\ln \zeta_T$) and a suppression at large ζ_T (small ξ) which is more clearly seen as $I_{AA}(\xi)$, the ratio of the fragmentation functions in Au+Au/pp (Fig. 12h). As shown in Fig. 12h, restricting the away-side azimuthal range reduces the large $\xi > 0.9 (p_T^A \leq 3$ GeV/c) enhancement but leaves the suppression at small $\xi < 0.9$ relatively unchanged, which shows that the large ξ enhancement is predominantly at large angles, similar to the effect observed by CMS with actual jets. [32].
The principal difficulty in observing the broadening of di-jet or di-hadron azimuthal correlations by the transport coefficient \hat{q} of the QGP stems from artifacts with names such as “Mach Cone”, “Ridge”, “Head and Shoulders” (Fig. 13). Perhaps one should have been suspicious because the artifact was observed in correlations triggered by both high (Fig 13a) and low (Fig 13b) p_T particles. These artifacts are now known to be due to odd harmonics.

Figure 12. a) (left) PHENIX measurement [30] of direct-γ-h correlations in p-p collisions at $\sqrt{s} = 200$ GeV in the variable $\xi = - \ln x_E \approx - \ln (p_T^h/p_T^\gamma)$ compared to fragmentation functions measured in e^+e^- collisions at $\sqrt{s} = 14$ and 44 GeV by TASSO [30]. b)(right)-(top) ξ distributions of direct-γ-h correlations in Au+Au and p-p collisions at $\sqrt{s} = 200$ GeV. c) (right)-(bottom) Ratio of the Au+Au/p-p distributions, $I_{AA}(\xi)$ when the away side azimuthal range is restricted as indicated [31].

Figure 13. a) (left) Azimuthal correlation $C(\Delta \phi)$ (■) of h^\pm with $1 \leq p_T \leq 2.5$ GeV/c from a “high p_T” trigger h^\pm with $2.5 \leq p_T \leq 4$ GeV/c in Au+Au central (0-5%) collisions at $\sqrt{s_{NN}} = 200$ GeV [32]. The solid line is the correction for v_2 which is subtracted to give the jet correlation function $J(\Delta \phi)$ (●); b)(right) $C(\Delta \phi)$ for like sign h^\pm-pairs with $0.2 < p_T^1, p_T^2 < 0.4$ GeV/c for both particles [33].
of collective flow, notably v_3, which were thought to be forbidden by the assumed azimuthal symmetry $\phi \rightarrow \phi + \pi$ of the almond shaped participant region of an $A+A$ collision but were shown (only recently [35]) to be produced from event-by-event fluctuations in the collision geometry.

Of course, understanding that the extra “bumps” in the correlation function are due to odd harmonics still requires one to know the values of these harmonics in order to subtract them. This is still the largest systematic uncertainty in attempts to observe the q-broadening, for instance in a recent measurement by STAR of jet-hadron correlations [36] (Fig. 14). When the

![Figure 14. a) (left) Azimuthal correlation $J(\Delta \phi)$ with systematic uncertainties shown [36]. b) (right)-(top) Preliminary result [37] for Away-side rms width, σ_{AS}, as a function of p_{T_a}. c) (right)-(bottom) Final result [36] for σ_{AS}, as a function of p_{T_a}.](image)

full systematic uncertainties, including those on v_2 and v_3 (Fig. 14b), are taken into account, the result for the medium induced broadening of the away-side widths, σ_{AS}, in Au+Au relative to p-p which looked significant in the preliminary results (Fig. 14) [37] become only “suggestive of medium-induced broadening [36]” in the final result (Fig. 14c) because “they are highly dependent on the shape of the subtracted background [36],” notably the v_2 and v_3 of the trigger jets.

One way out of this dilemma, at least for di-hadron correlations, has been pointed out by Roy Lacey and his group [38] who proposed “acoustic scaling” of the harmonics in analogy with attenuation of pressure driven sound waves in a viscous medium. They observe that viscous corrections damp the eccentricity-driven flow harmonics, v_n with increasing n but have minimal effect on the p_T dependence because of the small values of η/s. The proposed “acoustic scaling” that $v_n/(v_2)^{n-2}$ is independent of p_T was verified, at least for v_3 and v_4 (Fig. 15) [38], using previously published PHENIX measurements [39]. This opens the way to reduce the systematic uncertainty in subtracting the harmonic background to di-hadron correlations: once $v_2(p_T)$ is known or determined at any value of p_T and centrality, the acoustic scaling can be used to constrain the higher harmonics.
Another major topic this year was the p+Pb run at LHC which spurred new or improved d+Au results from RHIC. There is both clarity and confusion in the d+Au results. First, the clarity. Switching momentarily to soft multi-particle physics, new PHENIX measurements of \(E_T \) distributions at mid-rapidity in p-p, d+Au and Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV verify that starting from the p-p distribution, the Au+Au distribution can be calculated by taking the fundamental elements of particle production as the number of constituent-quark participants, as proposed in 2003 [40] (NQP model). For symmetric systems such as Au+Au the NQP model is equivalent to the Additive Quark Model (AQM) from 1982 [41] in which the fundamental element is a color string stretched between constituent quark participants in the projectile and target with the additional restriction that only one color-string can be attached to a quark-participant. For asymmetric systems such as d+Au, the models differ because the number of color-strings is proportional only to the number of quark-participants in the smaller nucleus. In

![Figure 15.](image1)

Another major topic this year was the p+Pb run at LHC which spurred new or improved d+Au results from RHIC. There is both clarity and confusion in the d+Au results. First, the clarity. Switching momentarily to soft multi-particle physics, new PHENIX measurements of \(E_T \) distributions at mid-rapidity in p-p, d+Au and Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV verify that starting from the p-p distribution, the Au+Au distribution can be calculated by taking the fundamental elements of particle production as the number of constituent-quark participants, as proposed in 2003 [40] (NQP model). For symmetric systems such as Au+Au the NQP model is equivalent to the Additive Quark Model (AQM) from 1982 [41] in which the fundamental element is a color string stretched between constituent quark participants in the projectile and target with the additional restriction that only one color-string can be attached to a quark-participant. For asymmetric systems such as d+Au, the models differ because the number of color-strings is proportional only to the number of quark-participants in the smaller nucleus.

![Figure 16.](image2)

![Figure 16.](image3)
Fig. 16 [12] the calculations which are based only on the measured p-p E_T distribution and Monte Carlo Glauber calculations of the nuclear geometry for the various cases show that the NQP calculation agrees with both the d+Au (Fig. 16a) and Au+Au (Fig. 16b) E_T measurements, but that the AQM exhibits a factor of 1.7 less E_T emission than observed in d+Au (Fig. 16a) due to the restriction on the number of effective constituent quark participants in the larger nucleus. In the Glauber calculation, the positions of the three constituent-quarks are generated about the position of each nucleon according to the measured charge distribution of the proton, which gives a physical basis for “proton size fluctuations” in nuclear geometry calculations. On the hard-scattering front, new results for identified charged hadrons in d+Au (Fig. 17a) [43] may give a clue for understanding the baryon anomaly. In all centrality classes, the mesons, π^0, π^\pm, K^\pm and ϕ show point-like behavior, $R_{dA} = 1$, over the range $2 \leq p_T \leq 6$ GeV/c, while, apart from the most peripheral bin, the protons exhibit a huge enhancement (Cronin effect [45]) for $2 \leq p_T \leq 4$ GeV/c similar to the baryon anomaly in Au+Au (recall Fig. 4). In fact, as originally shown in a previous PHENIX measurement [10] and confirmed with the new more precise measurements [43], the proton enhancement in d+Au is generally considerably larger than in Au+Au. The new observation makes it clear that a common explanation of the d+Au and Au+Au baryon enhancements for $2 \leq p_T \leq 4$ − 6 GeV/c is needed.

It has been popular, though not necessarily correct [47, 48], to attribute the baryon anomaly to recombination of soft partons rather than fragmentation of hard-scattered partons [49, 50] because the suppression has been observed to be related to a “baryon vs. meson dynamic, as opposed to a simple mass-dependence” [13]. However a new d+Au measurement of single e^\pm_{HF} from c and b heavy quarks, mostlikely from the decay of D-mesons with mass twice that of the proton, appears to create another layer of doubt to the recombination argument (Fig. 17b) [43]. In Au+Au (recall Fig. 4b), the e^\pm_{HF} are suppressed like the (K^\pm) mesons in the range $2 \leq p_T \leq 6$ GeV/c; but in d+Au (Fig. 17a) they show a Cronin enhancement like the baryons, not like the mesons, in central (0-20%) collisions. Thus the recombination issue is coupled to understanding the Cronin effect [43] which suffers from the problem that in the nearly 40 years since its discovery, the exact cause of the Cronin effect still remains a mystery.
Another confusing cold nuclear matter (CNM) effect concerns the definition of centrality in d+Au collisions. This is visible mostly in peripheral collisions for \(p_T > 10 \) GeV/c. In Fig. [17] the \(R_{dA} \) for peripheral (60-88\%) collisions for \(2 \leq p_T \leq 6 \) GeV/c looked reasonable, i.e. \(R_{dA} \approx 1 \) for all the particles, while in Fig. [18a, 51], for higher \(p_T \) \(\pi^0 \), \(\eta \) mesons as well as jets, there appears to be a problem or something exciting according to one’s taste. The peripheral collisions show a huge enhancement (which doesn’t make sense to the author because true peripheral collisions are largely single nucleon-nucleon collisions) while the central collisions don’t look unreasonable. Personally, I think that we should only use minimum bias p+A collisions to understand the nuclear-size dependence of any CNM effect because the hard-scattering cross section in p+A collisions is simply \(A \) times the p-p cross section (modulo some possible isotopic spin effects, which are small). Glauber calculations and matching to some measure of centrality are not necessary. Also the comparison with parton distribution functions measured in e+A collisions is straightforward because centrality has generally not been measured in electron scattering and is likely not measurable. In fact, the minimum bias \(R_{dA} \) for \(\pi^0 \) and \(\eta \) from the same measurement [51] (Fig. [18b]) look reasonable; and the minimum bias jet \(R_{dA} \) looks similar to the minimum bias \(\pi^0 \) \(R_{dA} \) rather than to the central collision jet \(R_{dA} \) [52]. A p+A run with several \(A \) is planned at RHIC for 2015-16 in addition to runs with \(^3\)He+Au and possibly more d+Au.

For PHENIX, the future plans are built around a new detector, sPHENIX, based on a superconducting thin-coil solenoid surrounded by EM and Hadron calorimeters in order to measure jets as well as to improve on other hard-scattering measurements by taking advantage of high-rate calorimeter triggers and the much larger solid angle. Personally, I am fond of such a detector because the first thin coil superconducting solenoid detector at a collider was used in the CCOR experiment at CERN in 1977 (Fig. [19a]) which made some of the major original

Figure 18. a) (left) \(R_{dA} \) for \(\pi^0 \), \(\eta \) and jets as a function of \(p_T \) for central (0-20\%) and peripheral (60-88\%) d+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV [51]. b) (right) \(R_{dA} \) for minimum bias \(\pi^0 \) and \(\eta \) [51].
Figure 19. a) (left) CCOR thin coil superconducting solenoid, 70 cm radius, installed at the CERN ISR in 1977. b) (right) BABAR thin coil superconducting solenoid, 1.5 m radius, being shipped from Ansaldo in Italy to SLAC in 1997.

hard-scattering measurements \[22, 53\]. This year, sPHENIX got a big boost by the acquisition of the BABAR solenoid magnet from SLAC (Fig. 19b) which became available when the B-factory in Italy was cancelled. The conceptual design of the new experiment is well underway \[54\], with mid-rapidity, forward and eRHIC capability (Fig. 20). New collaborators are most welcome.

Figure 20. sPHENIX concept with forward detector \[53\].

References

[1] Orear J, Rosenfeld A H and Schluter R A 1950 Nuclear Physics. A Course Given by Enrico Fermi at the University of Chicago (The University of Chicago Press)
[2] Amsler C and others (Particle Data Group) 2008 Phys. Lett. B 667 1
[3] Burke K M and others (JET Collaboration) 2013 Extracting jet transport coefficient from jet quenching at RHIC and LHC Preprint arXiv:1312.5003v2.
[4] Baier R, Schiff D and Zakharov B G 2000 Annu. Rev. Nucl. Part. Sci. 50 37–69
[5] Baier R 2003 Nucl. Phys. A 715 209c–218c
[6] Baier R, Dokshitzer Y L, Mueller A H, Peigne S and Schiff D 1997 Nucl. Phys. B 483 291–320
Adler S S and others (PHENIX Collaboration) 2006 Phys. Rev. D 74 072002
7
Adams J, Magestro D and others (STAR Collaboration) 2006 Phys. Rev. Lett. 97 162301
8
Adcox K and others (PHENIX Collaboration) 2002 Phys. Rev. Lett. 88 022301
9
Adler S S and others (PHENIX Collaboration) 2003 Phys. Rev. Lett. 91 072303
10
Adler S S and others (PHENIX Collaboration) 2007 Phys. Rev. C 76 034904
11
Adler S S and others (PHENIX Collaboration) 2003 Phys. Rev. Lett. 91 172301
12
Adler S S and others (PHENIX Collaboration) 2004 Phys. Rev. C 69 034910
13
Fritzsche H and Minkowski P 1977 Phys. Lett. B 69 316–320
14
Adler S S and others (PHENIX Collaboration) 2008 Phys. Rev. Lett. 101 232301
15
Adare A and others (PHENIX Collaboration) 2007 Phys. Rev. D 76 051106(R)
16
Adler S S and others (PHENIX Collaboration) 2005 Phys. Rev. Lett. 94 232301
17
Adare A and others (PHENIX Collaboration) 2012 Phys. Rev. D 86 072008
18
Berman S M, Bjorken J D and Kogut J B 1971 Phys. Rev. D 4 3388–3418
19
Blankenbecler R, Brodsky S J and Gunion J F 1975 Phys. Lett. B 42 461–465
20
Cahalan R F, Geer K A, Kogut J and Susskind L 1972 Phys. Rev. B 71 1199–1212
21
Rak J and Tannenbaum M J 2013 High pT Physics in the Heavy Ion Era (Cambridge University Press)
22
Aamodt K and others (ALICE Collaboration) 2011 Phys. Lett. B 696 30–39
23
Adare A and others (PHENIX Collaboration) 2013 Phys. Rev. C 87 034911
24
Adare A and others (PHENIX Collaboration) 2012 Phys. Rev. Lett. 109 152301
25
Adare A and others and p+Au Collisions Preprint arXiv:1302.6184
26
Chatrchyan S and others (CMS Collaboration) 2013 Jet-Hadron Correlations in √sNN = 200 GeV Au+Au
27
and p+p Collisions Preprint arXiv:1105.3782v2
28
Chatrchyan S and others (CMS Collaboration) 2011 Phys. Rev. C 84 024906
29
Adare A and others (PHENIX Collaboration) 2010 Phys. Rev. D 82 072001
30
Adare A and others (PHENIX Collaboration) 2013 Phys. Rev. Lett. 111 032301
31
Roland G and others (CMS Collaboration) 2013 Nucl. Phys. A 904-905 43c–50c
32
Mitchell J T and others (PHENIX Collaboration) 2007 J. Phys. G 34 S911–S914
33
Mitchell J T and others (PHENIX Collaboration) 2007 Proc. 6th International Workshop on High-pT
34
Physics at the LHC (CERN-Proceedings no 2012-001) ed Eskola K, van Leeuwen M, Levai P, Morsch A,
35
Peitzmann T and Rak J (Geneva: CERN) pp 37–42
36
Chatrchyan S and others (CMS Collaboration) 2011 Phys. Rev. C 84 024906
37
Caines H and others (STAR Collaboration) 2011 J. Phys. G 38 124019
38
Adare A and others (PHENIX Collaboration) 2012 Phys. Rev. Lett. 107 252301
39
Eremin S and Voloshin S 2003 Phys. Rev. C 67 064905
40
Chatrchyan S and others (CMS Collaboration) 2013 Phys. Rev. D 87 034911
41
Alper B and Roland G 2010 Phys. Rev. C 81 054905
42
Adamczyk L and others (STAR Collaboration) 2013 Nucl. Phys. A 904-905 795c–798c
43
Cromin J W, Frisch H J, Shochet M J, Boymoned J P, Piroué P A and Summer R L 1975 Phys. Rev. D 11
44
3105–3123
45
Adler S S and others (PHENIX Collaboration) 2007 Phys. Rev. C 75 051902(R)
46
Adare A and others (PHENIX Collaboration) 2007 Phys. Rev. Lett. 100 202303
47
Fries R J, Müller B, Nonaka C and Bass S A 2003 Phys. Rev. Lett. 90 202303
48
Hwa R and Yang C B 2004 Phys. Rev. C 70 037901
49
Adler S S and others (PHENIX Collaboration) 2006 Phys. Rev. C 74 024900
50
Adler S S and others (PHENIX Collaboration) 2005 Phys. Rev. C 71 051902(R)
51
Sahlmueller B and others (PHENIX Collaboration) 2013 Nucl. Phys. A A904-905 795c–798c
52
Perepelitsa D V Inclusive jet production in ultrarelativistic proton-nucleus collisions Ph. D. Thesis, Columbia
53
University, November, 2013
54
PHENIX Collaboration The ePHENIX MIE Proposal (submitted September 27, 2013). Available at
55
http://www.phenix.bnl.gov/plans