BRUNELLA–KHANEDANI–SUWA VARIATIONAL RESIDUES FOR INVARIANT CURRENTS

MAURICIO CORRÊA, ARTURO FERNÁNDEZ-PÉREZ, AND MARCIO G. SOARES

To Israel Vainsencher on the occasion of his 70th birthday

ABSTRACT. In this work we prove a Brunella–Khanedani–Suwa variational type residue theorem for currents invariant by holomorphic foliations. As a consequence, we give conditions for the leaves of a singular holomorphic foliation to accumulate in the intersection of the singular set of the foliation with the support of an invariant current.

CONTENTS

1. Introduction 1
2. Singular holomorphic foliations 4
3. Variational residue and proof of Theorem 1.1 5
References 8

1. INTRODUCTION

In [18] B. Khanedani and T. Suwa introduced an index for singular holomorphic foliations on complex compact surfaces called the Variational index. In [19] D. Lehmann and T. Suwa generalized the variational index for higher dimensional holomorphic foliations. In particular, they showed that if V is a complex subvariety invariant by a holomorphic foliation \mathcal{F} of dimension $k \geq 1$ on a n-dimensional complex compact manifold X, then

$$c_1^{n-k}(\det(N^*\mathcal{F})) \cdot [V] = (-1)^{n-k} \sum_{\lambda} \operatorname{Res}_{c_1^{n-k}}(\mathcal{F}; S_{\lambda}),$$

where S_{λ} is a connected component of $S(\mathcal{F}, V) := (\text{Sing}(\mathcal{F}) \cap V) \cup \text{Sing}(V)$ (here Sing(\mathcal{F}) and Sing(V) denote the singular sets of \mathcal{F} and V, respectively), $[V]$ is the integration current of V and $N^*\mathcal{F}$ is the conormal sheaf of \mathcal{F}. In the case X is a complex surface and $S(\mathcal{F}, V)$ is an isolated set, then for each $p \in S(\mathcal{F}, V)$,

$$- \operatorname{Res}_{c_1}(\mathcal{F}; p) = \operatorname{Var}(\mathcal{F}, V, p),$$

where $\operatorname{Var}(\mathcal{F}, V, p)$ denotes the Variational index of \mathcal{F} along V at p, as defined by Khanedani-Suwa in [18].

2010 Mathematics Subject Classification. Primary 32A27, 37F75, 32S65; Secondary 57R20, 34M45, 32C30.

Key words and phrases. Holomorphic foliations, Residues, Invariant currents.
M. Brunella in [5] studied the Khanedani-Suwa variational index and its relations with the GSV and the Camacho-Sad indices. See also [22, II, Proposition 1.2.1].

M. McQuillan, in his proof of the Green-Griffiths conjecture (for a projective surface \(X\) with \(c_2^e(X) > c_2(X)\), [22], showed that if \(X\) is a complex surface of general type and \(\mathcal{F}\) is a holomorphic foliation on \(X\), then \(\mathcal{F}\) has no entire leaf which is Zariski dense. See [12, 23, 16, 13] for more details about the Green-Griffiths conjecture and generalizations. M. Brunella in [1] provided an alternative proof of McQuillan’s result by showing that if \([T_f]\) is the Ahlfors current associated to a Zariski dense entire curve \(f : \mathbb{C} \to X\) which is tangent to \(\mathcal{F}\), then

\[
c_1(N^*\mathcal{F}) \cdot [T_f] = \frac{1}{2\pi i} \sum_{p \in \text{Sing}(\mathcal{F}) \cap \text{Supp}(T_f)} [T_f](\chi_{U_p} d(\phi_p \beta_p)) \leq 0,
\]

where \(\chi_{U_p}\) denotes the characteristic function of a neighborhood \(U_p\) of \(p \in \text{Sing}(\mathcal{F}) \cap \text{Supp}(T_f)\), see section 3 for more details.

To continue we consider \(\mathcal{F}\) a singular holomorphic foliation of dimension \(k \geq 1\) on a complex compact manifold \(X\) of dimension at least two. We recall that a positive closed current \(T\) in \(X\) is invariant by \(\mathcal{F}\) if \(T|\mathcal{F} \equiv 0\), that is, \(T(\eta) = 0\) for every test form \(\eta\) vanishing along the leaves of \(\mathcal{F}\), so that \(T(\eta)\) depends only on the restriction of \(\eta\) to the leaves.

In [4] M. Brunella proved a more general variational index type Theorem for positive closed currents of bidimension \((1, 1)\) invariant by one-dimensional holomorphic foliations, with isolated singularities, on complex compact manifolds. More precisely, he showed that if \(T\) is an invariant positive closed current of bidimension \((1, 1)\), then

\[
c_1(\det(N^*\mathcal{F})) \cdot [T] = \sum_{p \in \text{Sing}(\mathcal{F}) \cap \text{Supp}(T)} \frac{1}{2\pi i} [T](\chi_{U_p} d(\phi_p \beta_p)).
\]

Compare this formula with the so called asymptotic Chern Class of a foliation on a complex surface introduced in [11]. Moreover, M. Brunella showed, in the same work, that a generic one-dimensional holomorphic foliation on complex projective spaces has no invariant measure. In [17, Corollary 1.2] L. Kaufmann showed that there is no diffuse foliated cycle directed by embedded Lipschitz laminations of dimension \(k \geq n/2\) on \(\mathbb{P}^n\).

We denote the class of a closed current \(T\) of bidimension \((p, p)\) in the cohomology group \(H^{n-p,n-p}(X)\) by \([T]\). In order to provide a generalization of the above results, we define the residue of \(\mathcal{F}\) relative to \(T\) along a connected component of the singular set of \(\mathcal{F}\), (see for instance Def. 3.1 in Sect. 3.). In this work we prove the following result.

Theorem 1.1. Let \(\mathcal{F}\) be a holomorphic foliation, of dimension \(k \geq 1\), on a complex compact manifold \(X\) with \(\dim(\text{Sing}(\mathcal{F})) \leq k - 1\). Write \(\text{Sing}(\mathcal{F}) = \bigcup_{\lambda} Z_{\lambda}\), a decomposition into connected components and let \(U_{\lambda}\) be a regular neighborhood of \(Z_{\lambda}\). For \(p \geq k\), if \(T\) is a positive closed current of bidimension \((p, p)\) invariant by \(\mathcal{F}\), then

\[
c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T] = \sum_{Z_{\lambda} \subset \text{Supp}(T) \cap \text{Sing}(\mathcal{F})} \text{Res}(\mathcal{F}, T, Z_{\lambda}).
\]
A compact non-empty subset $M \subset X$ is said to be a **minimal set** for \mathcal{F} if the following properties are satisfied

(i) M is invariant by \mathcal{F};
(ii) $M \cap \text{Sing}(\mathcal{F}) = \emptyset$;
(iii) M is minimal with respect to these properties.

The problem of existence of minimal sets for codimension one holomorphic foliations on \mathbb{P}^n was considered by Camacho–Lins Neto–Sad in [11]. To our knowledge, this problem remains open for $n = 2$. If \mathcal{F} is a codimension one holomorphic foliation on \mathbb{P}^n, with $n \geq 3$, Lins Neto [20] proved that \mathcal{F} has no minimal sets.

M. Brunella posed in [2] the following question:

Conjecture. Let X be a compact connected complex manifold of dimension $n \geq 3$, and let \mathcal{F} be a codimension one holomorphic foliation on X such that $N\mathcal{F}$ is ample. Then every leaf of \mathcal{F} accumulates to $\text{Sing}(\mathcal{F})$.

In [3], Brunella–Perrone proved the above Conjecture for codimension-one holomorphic foliations on a projective manifold with cyclic Picard group. In [8] the natural conjecture has been stated:

Conjecture (Generalized Brunella’s conjecture). Let X be a compact connected complex manifold of dimension $n \geq 3$, and let \mathcal{F} be a holomorphic foliation of codimension $r < n$ on X such that $\det(N\mathcal{F})$ is ample. Then every leaf of \mathcal{F} accumulates to $\text{Sing}(\mathcal{F})$, provided $n \geq 2r + 1$.

The main result in [8] suggests that the property of accumulation of the leaves of a foliation \mathcal{F} to the its singular set (or nonexistence of minimal sets of \mathcal{F}) depends on the existence of strongly q-convex spaces which contains the singularities of \mathcal{F}. In [11] it was proved that there is no invariant measure with support on a nontrivial minimal set of a foliation on \mathbb{P}^2. We observe that in \mathbb{P}^n we have that $\det(N\mathcal{F})$ is ample for every foliation \mathcal{F}. The following Corollary 1.2 generalize the result in [11] Theorem 2.

Corollary 1.2. Let \mathcal{F} be a holomorphic foliation, of dimension $k \geq 1$, on a projective manifold X such that $\dim(\text{Sing}(\mathcal{F})) \leq k - 1$ and $\det(N\mathcal{F})$ ample. Suppose that $h^{n-p,n-p}(X) = 1$, for some $p \geq k$. If T is a positive closed current of bidimension (p,p) invariant by \mathcal{F}, then $\text{Supp}(T) \cap \text{Sing}(\mathcal{F}) \neq \emptyset$. In particular, there is no invariant positive closed current of bidimension (p,p) with support on a nontrivial minimal set of \mathcal{F}.

Compare Corollary 1.2 with [17] Corollary 5.5. Since $h^{n-p,n-p}(\mathbb{P}^n) = 1$, this result holds for foliations on \mathbb{P}^n, in particular if $V \subset \mathbb{P}^n$ is an \mathcal{F}-invariant complex subvariety, then $V \cap \text{Sing}(\mathcal{F}) \neq \emptyset$. This is the Esteves–Kleiman’s result [15 12, Proposition 3.4, pp. 12].

We can also apply Theorem 1.1 to the Ahlfors currents associated to $f : \mathbb{C}^k \to X$ a holomorphic map of generic maximal rank which is a leaf of the foliation \mathcal{F}. Fix a Kähler form ω on X. On \mathbb{C}^k we take the homogeneous metric form

$$\omega_0 := dd^c \ln |z|^2,$$

and denote by

$$\sigma = d^c \ln |z|^2 \wedge \omega_0^{k-1}$$
the Poincaré form. Consider \(\eta \in A^{1,1}(X) \) and for any \(r > 0 \) define
\[
T_{f,r}(\eta) = \int_0^r \frac{dt}{t} \int_{B_t} f^* \eta \wedge \omega_0^{k-1},
\]
where \(B_t \subset \mathbb{C}^k \) is the ball of radius \(t \). Then we consider the positive currents \(\Phi_r \in A^{1,1}(X)' \) defined by
\[
\Phi_r(\eta) := \frac{T_{f,r}(\eta)}{T_{f,r}(\omega)}.
\]
This gives a family of positive currents of bounded mass from which we can extract a subsequence \(\Phi_{r_n} \) which converges to a current \([T_f] \in A^{1,1}(X)' \) called the Ahlfors current of \(f \), see [16, Claim 2.1].

This construction has been generalized in [6] by Burns–Sibony and [14] by De Thélin. In order to associate to \(f : \mathbb{C}^k \to X \) a positive closed current of any bidimension \((s, s)\), \(1 \leq s \leq k \) (also called Ahlfors currents) it is necessary to impose some technical conditions.

We obtain another consequence of Theorem 1.1 as follows:

Corollary 1.3. Let \(\mathcal{F} \) be a holomorphic foliation, of dimension \(k \geq 1 \), on a projective manifold \(X \) such that \(\dim(\text{Sing}(\mathcal{F})) \leq k - 1 \) and \(\det(N_{\mathcal{F}}) \) ample. Let \(f : \mathbb{C}^k \to X \) be a holomorphic map of generic maximal rank which is a leaf of the foliation. Suppose that \(h^{n-p,p}(X) = 1 \), for some \(p \geq k \), and that there exists an Ahlfors current of bidimension \((p, p) \) associated to \(f \). Then \(\overline{f(\mathbb{C}^k) \cap \text{Sing}(\mathcal{F})} \neq \emptyset \).

Acknowledgments. MC was partially supported by CNPq, CAPES and FAPEMIG. A. F-P was partially supported by CNPq grant number 427388/2016-3.

2. Singular holomorphic foliations

Let \(X \) be a connected compact complex manifold of dimension \(n \). To define a (singular) holomorphic foliation \(\mathcal{F} \) on \(X \) we adopt the following point of view: such a \(\mathcal{F} \) is determined by a coherent subsheaf \(N^* \mathcal{F} \) of the cotangent sheaf \(T^* X = \Omega^1_X \) of \(X \) which satisfies

1) integrability: \(dN^* \mathcal{F} \subset N^* \mathcal{F} \wedge \Omega^1_X \) and
2) \(\Omega^1_X/N^* \mathcal{F} \) is torsion free.

The generic rank of \(N^* \mathcal{F} \) is the codimension of \(\mathcal{F} \), the dual \((N^* \mathcal{F})^* = N\mathcal{F} \) is the normal sheaf of the foliation and the singular locus of \(\mathcal{F} \) is
\[
\text{Sing}(\mathcal{F}) = \{ p \in X : (\Omega^1_X/N^* \mathcal{F})_p \text{ is not a free } \mathcal{O}_p \text{ module} \}.
\]
Condition 2 above implies \(\text{codim}(\text{Sing}(\mathcal{F})) \geq 2 \).

Remark that, on \(X \setminus \text{Sing}(\mathcal{F}) \), we have an exact sequence of holomorphic vector bundles
\[
0 \to N^* \mathcal{F} \to \Omega^1_X \to T^* \mathcal{F} \to 0
\]
and, dualizing
\[
0 \to T\mathcal{F} \to TX \to N\mathcal{F} \to 0,
\]
where $T\mathcal{F}$ is called the tangent bundle of \mathcal{F}, of dimension $k = (n - \text{codim}(\mathcal{F}))$. Also, since the singular set has codimension greater than 1 we have the adjunction formula

$$KX = K\mathcal{F} \otimes \det(N^*\mathcal{F}),$$

where $K\mathcal{F} = \det(T\mathcal{F})^*$ denotes the canonical bundle of \mathcal{F}.

If \mathcal{F} has codimension $(n - k)$ then, by taking the $(n - k)$-th wedge product of the inclusion

$$N^*\mathcal{F} \rightarrow \Omega^1_X,$$

we get a $(n - k)$-form ω with coefficients in the line bundle $(\wedge^{n-k} N\mathcal{F})^* = \det(N\mathcal{F})$.

2.1. Holomorphic foliations on complex projective spaces.

Let $\omega \in H^0(\mathbb{P}^n, \Omega^{n-k}_{\mathbb{P}^n}(m))$ be the twisted $(n-k)$-form induced by a holomorphic foliation \mathcal{F} of dimension k on \mathbb{P}^n.

Take a generic non-invariant linearly embedded subspace $i : L \cong \mathbb{P}^{n-k} \hookrightarrow \mathbb{P}^n$. We have an induced non-trivial section $i^*\omega \in H^0(L, \Omega^{n-k}_{\mathbb{P}^n}(m)) \simeq H^0(\mathbb{P}^{n-k}, \mathcal{O}_{\mathbb{P}^{n-k}}(k - n - 1 + m))$, since $\Omega^{n-k}_{\mathbb{P}^n-k} = \mathcal{O}_{\mathbb{P}^{n-k}}(k - n - 1)$. The degree of \mathcal{F} is defined by

$$\text{deg}(\mathcal{F}) := \text{deg}(Z(i^*\omega)) = k - n - 1 + m.$$

In particular, $\omega \in H^0(\mathbb{P}^n, \Omega^k_{\mathbb{P}^n}((\text{deg}(\mathcal{F})+n-k+1)))$. That is, $\det(N\mathcal{F}) = \mathcal{O}_{\mathbb{P}^n}(\text{deg}(\mathcal{F})+n-k+1)$ is ample.

A holomorphic foliation, of degree d, can be induced by a polynomial $(n - k)$-form on \mathbb{C}^{n+1} with homogeneous coefficients of degree $d+1$, see for instance [9].

3. Variational residue and proof of Theorem 1.1

Hence, a holomorphic foliation of dimension k is given by a family $(\{V_\mu\}, \{\omega_\mu\})_{\mu \in \Lambda}$, where $\mathcal{V} = \{V_\mu\}_{\mu \in \Lambda}$ is an open cover of X by Stein open sets, ω_μ is an integrable holomorphic $(n-k)$-form defined in V_μ and locally decomposable in $V_\mu \setminus \text{Sing}(\mathcal{F})$. This means that, for each $p \in V_\mu$, there is an open neighborhood $V_p \subset V_\mu$ of p such that

$$\omega_\mu|_{V_p} = \omega_1^\mu \wedge \cdots \wedge \omega_{{n-k}}^\mu,$$

where ω_j^μ is a holomorphic 1-form and $d\omega_j^\mu \wedge \omega_\mu = 0$ for $1 \leq j \leq n - k$.

The integrability condition tells us that, in $V_\mu \setminus \text{Sing}(\mathcal{F})$, there is a C^∞ 1-form α_μ satisfying:

(i) $d\omega_\mu = \alpha_\mu \wedge \omega_\mu$, for all $\mu \in \Lambda$. α_μ is not unique, but its restriction to the leaves of \mathcal{F} is, provided ω_μ is fixed.

(ii) α_μ is of type $(1,0)$ since ω_μ is holomorphic and $\alpha_\mu|_{\mathcal{F}}$ is holomorphic. This last fact follows from: if we assume that around a regular point the foliation \mathcal{F} is generated by $\partial/\partial z_i$, $i = 1, \ldots, k$, then $t_{\partial/\partial z_i}(d\omega_\mu) = (t_{\partial/\partial z_i} \alpha_\mu) \omega_\mu$. In particular, if $k = 1$ then $\alpha_\mu|_{\mathcal{F}}$ is closed and $d\alpha_\mu|_{\mathcal{F}} = 0$.

(iii) In the overlapping $V_{\mu\nu}$ we have $\omega_\mu = f_{\mu\nu} \omega_\nu$, with $f_{\mu\nu} \in \mathcal{O}^*(V_{\mu\nu})$ and the cocycle $\{f_{\mu\nu}\}_{\mu,\nu \in \Lambda}$ determines the line bundle $\det(N\mathcal{F})$. Hence

$$d(\alpha_\mu - \alpha_\nu - \frac{df_{\mu\nu}}{f_{\mu\nu}}) \wedge \omega_\mu = 0.$$

(3.1)
This shows that $\alpha_\mu - \alpha_\nu - \frac{df_{\mu\nu}}{f_{\mu\nu}}$ is a C^∞ local section of the conormal bundle $N^*\mathcal{F}$ of the regular foliation $\mathcal{F}|_{X\setminus\text{Sing}(\mathcal{F})}$. Since the sheaf of smooth sections of $N^*\mathcal{F}$ is acyclic, we have that there exist C^∞ 1-forms γ_μ in V_μ satisfying: γ_μ is a local section of $N^*\mathcal{F}$ and

$$\alpha_\mu - \alpha_\nu - \frac{df_{\mu\nu}}{f_{\mu\nu}} = \gamma_\mu - \gamma_\nu,$$

so that

$$\alpha_\mu - \gamma_\mu = \alpha_\nu - \gamma_\nu + \frac{df_{\mu\nu}}{f_{\mu\nu}}.$$

Call $\beta_\mu = \alpha_\mu - \gamma_\mu$, hence

$$(3.2) \quad \beta_\mu = \beta_\nu + \frac{df_{\mu\nu}}{f_{\mu\nu}}, \quad d\beta_\mu = d\beta_\nu \text{ in } V_\mu, \quad d\omega_\mu = \beta_\mu \wedge \omega_\mu \text{ and } d\beta_\mu \wedge \omega_\mu = 0.$$

By the second equality in (3.2), the 2-forms $\{d\beta_\mu\}$ piece together and we have a global C^∞ 2-form on $X \setminus \text{Sing}(\mathcal{F})$ which we denote by $d\beta$.

We shall briefly digress on the geometric meaning of this smooth 2-form $d\beta$ (see [7] 6.2.4): the first equality in (3.2) tells us that the 1-forms $\{\beta_\mu\}$ behave as connection matrices of $\det(N\mathcal{F})$, in V_μ, for some connection. In this case it’s natural to consider the basic connections (in the sense of Bott, see [10]).

Fix a C^∞ decomposition

$$TX|_{X\setminus\text{Sing}(\mathcal{F})} = N\mathcal{F} \oplus T\mathcal{F},$$

where $N\mathcal{F}$ and $T\mathcal{F}$ are the normal and tangent bundles, respectively, of the regular foliation $\mathcal{F}|_{X\setminus\text{Sing}(\mathcal{F})}$.

Let V_μ be the domain of a local trivialization of $N\mathcal{F}$ and $\{v_1^\mu, \ldots, v_{n-k}^\mu\}$ be a local frame for $N\mathcal{F}|_{V_\mu}$ such that $\omega_\mu(v_1^\mu, \ldots, v_{n-k}^\mu) \equiv 1$. For a suitable basic connection ∇ and ζ any section of $T\mathcal{F}|_{V_\mu}$, we have that

$$\beta_\mu(\zeta) = -\text{tr}(\theta^\mu)(\zeta)$$

if, and only if, $d\omega_\mu = \beta_\mu \wedge \omega_\mu$, where θ^μ is the connection matrix in V_μ of ∇ relative to the frame $\{v_1^\mu, \ldots, v_{n-k}^\mu\}$. In particular, the 1-forms $\{\beta_\mu\}$ piece together to give a well defined global form β on $X \setminus \text{Sing}(\mathcal{F})$. It follows that $d\beta = -\text{tr}(K\nabla) = -c_1(K\nabla)$ where $K\nabla = \{K^\mu\}_{\mu \in \Lambda}$ is the curvature form of ∇ and the class $d\beta = -c_1(N\mathcal{F}) = c_1(\det N^*\mathcal{F})$.

Definition 3.1. Let \mathcal{F} be a singular foliation of dimension $k \geq 1$, as above, and consider

$$\text{Sing}(\mathcal{F}) = \bigcup_{\lambda} Z_\lambda$$

a decomposition of its singular locus into connected components. For $p \geq k$, suppose T is a positive closed current of bidimension (p, p) which is invariant by \mathcal{F}. The residue of \mathcal{F} relative to T along Z_λ is

$$\text{Res}(\mathcal{F}, T, Z_\lambda) = \frac{T(d(\varphi_{\lambda}^{-1} \beta)_{n-k+1} \wedge \chi_{Z_\lambda} v_{Z_\lambda})}{\text{vol}(Z_\lambda)} \cdot [Z_\lambda],$$

where χ_{Z_λ} denotes the characteristic function, v_{Z_λ} is a volume element of Z_λ and $\varphi_{\lambda} : X \to \mathbb{R}$ is a C^∞ function satisfying $\varphi_{\lambda}^{-1}(0) = Z_\lambda$, $0 < \varphi_{\lambda} \leq 1$ in $X \setminus Z_\lambda$ and $\varphi_{\lambda} = 1$ in $X \setminus U_\lambda$.

Now, we are able to prove Theorem 1.1.

Theorem. Let \mathcal{F} be a holomorphic foliation of dimension k on a complex compact manifold X with $\dim(\text{Sing}(\mathcal{F})) \leq k - 1$. Write $\text{Sing}(\mathcal{F}) = \bigcup_{\lambda \in L} Z_\lambda$, a decomposition into connected components and let U_λ be a regular neighborhood of Z_λ. For $p \geq k$, if T is a positive closed current of bidimension (p,p) invariant by \mathcal{F} then,

$$c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T] = \sum_{Z_\lambda \subset \text{Supp}(T) \cap \text{Sing}(\mathcal{F})} \text{Res}(\mathcal{F}, T, Z_\lambda).$$

Proof. In order to show geometrically that $c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T]$ localizes at $\text{Supp}(T) \cap \text{Sing}(\mathcal{F})$ we will use the concept of regular neighborhood.

An open set U_λ, $Z_\lambda \subset U_\lambda \subset X$, is a regular neighborhood of Z_λ provided \overline{U}_λ is a (real) C^0 manifold of dimension n with boundary ∂U_λ. Regular neighborhoods can be obtained in the following way: take a Whitney stratification S of Z_λ and let W_λ be any open set containing Z_λ. By the proof of Proposition 7.1 of [21], we can construct a family of tubular neighborhoods $\{T_{S,\rho_S}\}$, with $[T_{S,\rho_S}] \subset W_\lambda$ (ρ_S is the tubular function), of the strata S of S, satisfying the commutation relations which give control data for S: if S and S' are strata with $S < S'$ then

$$\pi_S \pi_{S'}(p) = \pi_S(p)$$
$$\rho_S \pi_{S'}(p) = \rho_S(p).$$

This allows for the construction of U_λ as a subset of W_λ and, by shrinking W_λ, we may assume $U_\lambda \cap U_{\check{\lambda}} = \emptyset$ for $\lambda \neq \check{\lambda}$. We call $\{U_\lambda\}_{\lambda \in L}$ a system of regular neighborhoods of Z.

Let $\{U_\lambda\}_{\lambda \in L}$ be a system of regular neighborhoods of $\text{Sing}(\mathcal{F})$. Since

$$d(\varphi_\lambda \beta) = d\varphi_\lambda \wedge \beta + \varphi_\lambda d\beta = \varphi_\lambda d\beta$$

outside U_λ, $d\beta|_\mathcal{F} = 0$ in $X \setminus \text{Sing}(\mathcal{F})$ and T is \mathcal{F}-invariant, we have

$$(T \wedge \chi_{z_\lambda} u_{z_\lambda}) \left(d(\varphi_\lambda \beta)^{p-k+1} \right) = 0$$

in $X \setminus U_\lambda$. By reducing the tubular function of U_λ we conclude that

$$\text{Supp} \left(T \wedge \chi_{z_\lambda} u_{z_\lambda} \right) \left(d(\varphi_\lambda \beta)^{p-k+1} \right) \subseteq Z_\lambda$$

which gives

$$T \left(d(\varphi_\lambda \beta)^{p-k+1} \wedge \chi_{z_\lambda} u_{z_\lambda} \right) = \mu_{z_\lambda} [Z_\lambda] (u_{z_\lambda})$$

and

$$\mu_{z_\lambda} = \text{Res}(\mathcal{F}, T, Z_\lambda).$$

Since $d(\varphi_\lambda \beta)$ represents $c_1(\det N^*\mathcal{F})$, we get

$$c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T] = \sum_{Z_\lambda \subset \text{Supp}(T) \cap \text{Sing}(\mathcal{F})} \text{Res}(\mathcal{F}, T, Z_\lambda).$$

□
3.1. **Proof of Corollaries 1.2 and 1.3** It is enough to prove the Corollary 1.2. The result is a straightforward consequence of Theorem 1.1. In fact, suppose by contradiction that T is a closed positive current of bidimension (p, p) invariant by \mathcal{F} and that $\text{Supp}(T) \cap \text{Sing}(\mathcal{F}) = \emptyset$. Then, it follows from Theorem 1.1 that

$$c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T] = 0.$$

Since $h^{n-p,n-p}(X) = 1$ and $\det(N^*\mathcal{F})$ is ample, then $[T] = b \cdot c_1^{n-p}(\det(N^*\mathcal{F})) \in H^{n-p,n-p}(X)$, for some $b > 0$. Therefore, we have

$$c_1^{p-k+1}(\det(N^*\mathcal{F})) \cdot [T] = (-1)^{p-k+1}b \cdot c_1^{n-k+1}(\det(N^*\mathcal{F})) \neq 0.$$

This is a contradiction.

REFERENCES

[1] M. Brunella, *Courbes entières et feuilletages holomorphes*. Ens. Math. 45 (1999), 195-216.

[2] M. Brunella, *On the dynamics of codimension one holomorphic foliations with ample normal bundle*. Indiana University Mathematics Journal, vol. 57, no. 7, (2008), 3101-3113.

[3] M. Brunella and C. Perrone, *Exceptional singularities of codimension one holomorphic foliations*. Publicacions Matemàtiques 55 (2011), 295-312.

[4] M. Brunella, *Inexistence of invariant measures for generic rational differential equations in the complex domain*. Bol. Soc. Mat. Mexicana (3) 12(1), (2006), 43-49.

[5] M. Brunella, *Some remarks on indices of holomorphic vector fields*. Publicacions Matemàtiques, vol. 41, no. 2, (1997), 527-544.

[6] D. Burns and N. Sibony. *Limit currents and value distribution of holomorphic maps*. Ann. Inst. Fourier (Grenoble), 62(1):145-176, 2012

[7] A. Candel, L. Conlon, *Foliations II*. Graduate Studies in Mathematics vol. 60, AMS 2003 ISBN-10: 0-8218-0881-8.

[8] M. Corrêa and A. Fernández-Pérez, *Absolutely k-convex domains and holomorphic foliations on homogeneous manifolds*. Journal of the Mathematical Society of Japan. vol. 69, n.3, (2017), 1235-1246.

[9] M. Corrêa Jr.; L. G. Maza, M. G. Soares, *Hypersurfaces Invariant by Pfaff Equations*, Communications in Contemporary Mathematics, 17, 1450051. 2015.

[10] M. Corrêa and F. Lourenço, *Determination of Baum-Bott residues for higher dimensional foliations*. 2016, arXiv:1612.05787v1.

[11] C. Camacho, A. Lins Neto and P. Sad, *Minimal sets of foliations on complex projective spaces*. Publications Mathématiques de l’IHÉS 68 (1988), 187-203.

[12] J.P. Demailly, *Towards the Green-Griffiths-Lang conjecture*. In: Baklouti A., El Kacimi A., Kallel S., Mir N. (eds) Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol 127. Springer, Cham (2015).

[13] Y. Deng, *Degeneracy of entire curves into higher dimensional complex manifolds*, arXiv:1603.02227v1.

[14] H. De Thelin. *Ahlfors’ currents in higher dimension*. Ann. Fac. Sci. Toulouse Math. (6), 19(1):121-133, 2010

[15] E. Esteves and S. Kleiman, *Bounding solutions of Pfaff equations*. Comm. Algebra 31 (2003), 3771-3793.

[16] C. Gasbarri, G. Pacienza and E. Rousseau, *Higher dimensional tautological inequalities and applications*. Mathematische Annalen. 356(2), (2013), 703-735.

[17] L. Kaufmann, *Self-intersection of foliated cycles on complex manifolds*. Int. J. Math., 28, 1750054 (2017)

[18] B. Khanedani and T. Suwa, *First variations of holomorphic forms and some applications*. Hokkaido Math. J. 26 (1997), 323-335.

[19] D. Lehmann and T. Suwa, *Generalizations of variations and Baum-Bott residues for holomorphic foliations on singular varieties*. Int. J. Math. 10, (1999), 367-384.

[20] A. Lins Neto: *A note on projective Levi flats and minimal sets of algebraic foliations*. Ann. Inst. Fourier (Grenoble) 49(4) (1999), 1369-1385.
[21] J. Mather, Notes on topological stability, Bull. AMS, 49 (4), (2012), 475-506.
[22] M. McQuillan, Diophantine approximations and foliations. Publications Mathématiques de l’IHÉS. Tome 87 (1998), 121-174.
[23] M. Paun and N. Sibony, Value distribution theory for parabolic Riemann surfaces. arXiv:1403.6596v5.

Mauricio Corrêa, UFMG, Avenida Antônio Carlos, 6627, 30161-970 Belo Horizonte, Brazil
E-mail address: mauriciojr@ufmg.br

Arturo Fernández-Pérez, UFMG, Avenida Antônio Carlos, 6627, 30161-970 Belo Horizonte, Brazil
E-mail address: fernandez@ufmg.br

Marcio G. Soares, UFMG, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Brazil
E-mail address: msoares@impa.br