Quetiapine-Induced Thyroid Dysfunction: A Systematic Review

Mohamed Adil Shah Khoodoruth, MD, MRCPsych, Ameen Khamis Abedalaziz Abdo, MD, and Sami Ouanes, MD

Abstract
Thyroid abnormalities are documented consequences of quetiapine treatment. This may have clinical implications as changes in thyroid hormones may deteriorate a person’s affective state. Yet less is known about the clinical factors and underlying mechanisms associated with thyroid hormones on quetiapine therapy. We therefore systematically reviewed the published literature of evidence of quetiapine-induced thyroid abnormalities. We searched MEDLINE, PsycINFO, Google Scholar, and EMBASE for articles in which individuals developed biochemically confirmed thyroid abnormalities (with or without clinical symptoms) while on quetiapine treatment. We included case reports, case series, observational, and experimental studies. We included 32 studies, 20 of which were observational and experimental studies. There were 10 case reports and 1 case series. All the research designs suggested an association between quetiapine and hypothyroidism. However, these findings were limited by the quality of the included studies and the general lack of either a clear temporal relationship or dose response. Quetiapine has been associated with thyroid abnormalities, mainly with hypothyroidism. Drug imputability in these abnormalities is not always clear, and the underlying pathophysiology may include immunological and nonimmunological mechanisms. Large prospective studies are required to clarify this association and to further inform the management of patients treated with quetiapine where hypothyroidism occurs.

Keywords
adverse effects, antipsychotic, hypothyroid, psychopharmacology, quetiapine, seroquel, systematic review, thyroid, thyroid gland

The systematic review protocol was registered with the Open Science Framework (OSF) on January 2, 2021 (osf.io/uqgwz).

The hypothalamic-pituitary-thyroid axis (Figure 1) has long been an area of interest in mental health research, as altered thyroid states can manifest with psychiatric symptoms such as depression, anxiety, mood swings, and psychosis. The symptoms of hypothyroidism often resemble those of depression, whereas those of hyperthyroidism include anxiety, dysphoria, emotional lability, intellectual dysfunction, mania, or depression. In clinical practice, drug-induced thyroid dysfunctions are not uncommon, targeting at various pathways of synthesis, secretion, transport, metabolism, and absorption of thyroid hormones. In this context, certain antipsychotics have been associated with lower concentrations of serum-free thyroxine (FT4). In particular, quetiapine, a widely used second-generation antipsychotic with a broad receptor profile, has been associated with lower levels of FT4, variable changes in thyroid-stimulating hormone (TSH), total thyroxine (TT4), and total triiodothyronine (TT3). Several factors might contribute in generating thyroid abnormalities in patients treated with quetiapine. These factors may include the nature of the mental illness, sex, age group, duration of treatment, positive antithyroperoxidase antibodies (anti-TPOs) and whether quetiapine was used as monotherapy or in combination with other drugs. It is also important to highlight that the drug manufacturer reported that quetiapine was associated with a dose-related decrease in TT4 and FT4. However, the underlying mechanism was not mentioned.

In this systematic review, we investigated (1) the incidence or risk of thyroid abnormalities in patients on quetiapine; (2) the clinical factors associated with thyroid abnormalities on quetiapine, including the underlying psychiatric diagnosis, sex, age group, duration of treatment, and whether quetiapine was used as monotherapy or combination therapy; and (3) the underlying mechanisms of quetiapine-induced thyroid dysfunction.

The clinical implications of the present review about thyroid abnormalities in patients on quetiapine can be of importance to mental health professionals. Indeed,

Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Submitted for publication 10 July 2021; accepted 25 August 2021.

Corresponding Author:
Mohamed Adil Shah Khoodoruth, MD, MRCPsych, Clinical Fellow, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
Email: mkhoodoruth@hamad.qa
Khoodoruth et al

Figure 1. Regulation of the hypothalamic-pituitary-thyroid axis. The paraventricular nucleus (PVN) in the hypothalamus releases TRH, which acts on pituitary thyrotropes to stimulate TSH synthesis. TSH acts on thyrocytes to stimulate all steps of thyroid hormone synthesis. The thyroid hormones T4 and T3 act on PVN neurons and on the thyrocytes to inhibit TRH and TSH synthesis and release and this feedback regulation is the main regulatory mechanism of thyroid function. The pituitary thyrotropes are also regulated by local factors in through autocrine and paracrine pathways. Green arrows represent stimulation, and red arrows represent inhibition. T3, triiodothyronine; T4, thyroxine; TRH, thyrotropin-releasing hormone; TSH, thyroid-stimulating hormone.

Reproduced with permission from Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-pituitary-thyroid axis. Comprehensive Physiology 2016;6:1387-1428.

Methods

Our protocol was registered on OSF (osf.io/uqgwz) and is reported following the items outlined in Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data guidelines.\(^1\)

Information Sources and Search Strategy

We conducted a search on the MEDLINE, PsycINFO, Google Scholar, and EMBASE databases for studies indexed from inception to December 31, 2020. We used Google Scholar as a gray literature database for this project. The search query used for each of the databases was “Quetiapine AND (thyroid OR FT4 OR TSH or FT3 OR TT4 or TT3 or TRH).”

We used filters to restrict the search to articles in English, French, Spanish, German, Italian, Portuguese, or Arabic.

Inclusion and Exclusion Criteria

We included observational or experimental studies, case reports, case series, and conference or meeting abstracts about thyroid abnormalities associated with quetiapine, in any age group, and for any indication of quetiapine.

We excluded narrative and systematic reviews, clinical guidelines, and protocols, as well as articles in a language other than English, French, Spanish, German, Italian, Portuguese, or Arabic.

Data Management

All identified articles were imported into Rayyan software, where duplicates were removed by a reviewer (M.A.S.K.), with a double-check of this step conducted by another reviewer (S.O.).\(^1\) Two reviewers (M.A.S.K. and S.O.) independently conducted a multilevel screening on Rayyan software. To examine articles for inclusion/exclusion criteria, we first screened titles and abstracts of all articles. We then screened the included full text to select the relevant articles that were included in our systematic review. In the Title/Abstract screening step, we agreed that we would be inclusive: If one of the reviewers thought that the report needed to go through a full-text screening, we would include the report in this following step.

For the full-text screening step, reasons for exclusion in each screening step were recorded. One reviewer (M.A.S.K.) extracted data on Excel (Microsoft Corp., Redmond, Washington) for articles published in English. Another reviewer (S.O.) extracted data on Excel for articles published in French, Spanish, German, Italian, and Portuguese. A different reviewer (A.K.A.A.) extracted data on Excel for articles published in Arabic, and S.O. checked all of the extracted data.

We extracted articles’ characteristics such as authors, digital object identifier, language, demographic data, underlying mental illness, medical comorbidities, duration of treatment, mono- or combination therapy, incidence/prevalence of thyroid function test (TFT) abnormalities, type of alteration of the TFTs (increase or
decrease in TSH, FT4, FT3, TT4, TT3, or thyrotropin-releasing hormone), and the underlying mechanisms. Any disagreement during the extraction process was resolved by discussion and consensus between the reviewers.

Assessment of Methodological Quality of Included Articles
We assessed the quality of the articles by 2 independent reviewers. We used the Newcastle-Ottawa Scale to assess the quality of nonrandomized studies to be included in our systematic review.12 For case reports and case series, we used the framework for appraisal, synthesis, and application of evidence suggested by Murad et al13 based on the domains of selection, ascertainment, causality, and reporting.

Data Synthesis
Data were analyzed to evaluate (1) the incidence/prevalence of thyroid abnormalities in patients on quetiapine; (2) the degree of thyroid derangements based on the underlying mental illness, sex, age group, duration of treatment, and whether quetiapine was used as mono- or combination therapy; and (3) the underlying mechanisms of quetiapine-induced thyroid dysfunction. Tables were used to tabulate results of individual studies.

Results
A literature search yielded a total of 503 results (393 in Embase, 45 in PubMed, 35 in PsycINFO, and 30 in Google Scholar), with 6 additional studies found via screening of references or other sources (Figure 2). Following duplicate removal, title and abstract screening, then full-text screening, we included 32 studies, 20 of which were observational or experimental studies. There were 11 case reports and 1 case series.

Clinical and Sociodemographic Characteristics
The 11 case reports gave details on 15 patients (Table 1).14–24 Quetiapine was used for a range of psychiatric diagnoses including bipolar disorder (BD; n = 5), schizoaffective disorder bipolar subtype (n = 4), and schizophrenia (n = 2). The majority of patients were women (n = 12) and were between 18 and 65 years of age (n = 10). Ten patients were on combination therapy, mostly with selective serotonin reuptake inhibitors. Duration of treatment before diagnosing the thyroid abnormality varied between 3 weeks and 1.5 years. The dose of quetiapine ranged between 50 mg and 1500 mg.

One case series reported 23 adolescents (16 boys and 7 girls) with severe early-onset psychosis treated with quetiapine.25 Patients were stratified according to whether they were changed to quetiapine from another antipsychotic medication (change-over group, n = 12)
No.	Author, Year	Age, y/Sex	Diagnosis	Quetiapine Dose/Duration	Mono- or Combination Therapy	Symptoms	Autoantibodies	TSH	T3	T4	Treatment
1	Feret et al, 2000	46/F	Schizoaffective disorder, bipolar type	425 mg/1 y	CT (sertraline, VPA)	NR	NR	High = 8.45 μIU/L	NR	NR	LT4 50 μg/day
2	Dobbs et al, 2004	18/M	Schizoaffective disorder, conduct disorder, moderate learning disability, features of borderline personality disorder	1500 mg/1.5 years	CT (methylphenidate, fluoxetine, gabapentin, trazodone, benztropine)	NR	NR	1.54 mIU/L	NR	Low = 3.5 μg/dL	QTP continued
3	Ramaswamy et al, 2005	43/F	Schizoaffective disorder, bipolar type	400 mg/5 months	MT	20-kg weight gain, leg edema, hoarseness of voice, chronic constipation	NR	High = 9.01 mIU/L	NR	NR	QTP discontinued. LT4 50 μg/day
4	Liappas et al, 2006	49/F	Dysthymia with 2 major depressive episodes	800 mg/6 mo	CT (venlafaxine, paroxetine)	Modest weight gain, decline of appetite, hoarseness of voice, expressionless face, slowing of intellectual and motor activity, and constipation	High anti-TPO = 126.36 IU/mL	High = 6.78 μIU/mL	0.77 ng/mL	4.17 μg/dL	TFT normalized within 2 mo after QTP tapered off
5	Tor et al, 2007	72/F	Bipolar disorder with psychotic features	150 mg/6 mo	MT	Dry skin, hair loss	High anti-thyroglobulin = 2507 IU/mL	High = 79.4 mIU/L	Low FT3 = 1.9 pmol/L	Low FT4 = 2.7 pmol/L	Thyroxine 50 μg/d
6	Kontaxakis et al, 2009	(a) 51/F	Schizophrenia	300 mg/TFT at 3 weeks	MT	None	Normal range	High = 5.98 μIU/mL	0.86 ng/mL	Low TT4 = 5.05 μg/dL	TFT normalized after 45 d on QTP
		(b) 46/M	Bipolar disorder	350 mg/3 wk	MT	None	Normal range	High = 5.58 μIU/mL	1.13 ng/mL	Low TT4 = 3.93 μg/dL	TFT normalized after 45 d on QTP

(Continued)
No.	Author, Year	Age, y/Sex	Diagnosis	Quetiapine Dose/Duration	Mono- or Combination Therapy	Symptoms	Autoantibodies	TSH	T3	T4	Treatment
7	Poutanen et al, 2010	(a) 14/F Asperger syndrome	600 mg long-acting/6 wk	MT	None	NR	High = 4.7 mU/L	NR	Low FT4 = 11.1 pmol/L	QTP discontinued; TFT normalized after 45 d	
		(b) 18/F Schizophrenia	600 mg long-acting/unknown	CT (citalopram, lorazepam, levomepromazine)	Tiredness	High antithyroid antibody titres = 83 kU/L ≤ 6 kU/L	2.8 mU/L	Low FT3 = 2.8 pmol/L	Low FT4 = 10 pmol/L	QTP discontinued; LT4 100 μg/d; TFT normalized in 3 mo	
		(c) 24/F Severe depressive episode with anxiety	600 mg long-acting/13 wk	CT (citalopram, mirtazapine, lorazepam)	Depression	High = 5.4 mU/L	4.5 pmol/L	Low FT4 = 7.9 pmol/L	QTP continued; LT4 150-200 μg/d; TFT normalized		
8	Park et al, 2011	(a) 21/F Both had bipolar disorder, admitted for manic symptoms	500 mg/short-term	VPA and QTP – short-term	NR	NR	1.78 μU/mL	Low = 0.68 ng/mL	Low = 4.0 ng/d	NR	
		(b) 29/F	800 mg/long-term	VPA and QTP – long-term	NR	NR	High = 6.06 μU/mL	Low = 0.66 ng/d	Low = 4.8 ng/d	NR	
9	Dreijerink et al, 2013	36/M Depression, psychosis, suicidal behavior, schizoaffective personality disorder	600 mg/1.5 y	CT (venlafaxine, promethazine, lorazepam, temazepam)	Fatigue and weakness (especially while exercising), feeling cold, and a weight gain of ~50 kg during a period of 1.5 y	NR	NR	2.4 mU/L	NR	Low = 0.68 ng/d	QTP discontinued; LT4 (dose NR); TFT normalized
10	Shoib et al, 2013	27/F Bipolar I disorder	50 mg/3 months	CT (clonazepam)	Easy fatigability, generalized weakness, and cold intolerance	Antithyroid peroxidase normal	High = 8.8 mU/L	3.2 pg/mL	FT4 = 1.4 ng/d	QTP discontinued; TFT normalized after 3 mo	
11	Zenno et al, 2020	12/F Mood instability	225 mg/1 y	CT (fluoxetine)	Fatigue	NR	1.18 mU/L	Low FT3 = 3.1 pg/mL	Low FT4 = 0.8 ng/d	QTP discontinued; LT4 25 μg/d; TFT normalized after 8 wk	

CT, combination therapy; FT3, free triiodothyronine; FT4, free thyroxine; LT4, levothyroxine; MT, monotherapy; NR, not reported; QTP, quetiapine; T3, triiodothyronine; TFT, thyroid function test; TT4, total thyroxine; VPA, valproic acid.
or directly treated with quetiapine (acute high-dosage group, n = 11). Daily dosage ranged between 300 mg and 1200 mg.

There were twenty observational or experimental studies (Table 2) that included a total of 6880 patients who were treated with quetiapine.2,4,9,26–42 The number of participants on quetiapine was not reported in one study.41 Of these patients, the majority were women in the age group 18 to 65 years of age. Four studies investigated quetiapine in 134 children and adolescents.31,32,37,39 One study assessed the long-term tolerability, safety, and clinical benefit of quetiapine in 184 elderly patients with psychosis.30 Quetiapine was used mainly for schizophrenia and BD. Three studies specifically looked at treatment-resistant schizophrenia33 and bipolar depression.4,39 Quetiapine was used in combination with divalproex in 15 adolescents with BD32 and in combination with lithium or divalproex in 310 adult patients with BD.36 Two studies examined the dose-response relationship of quetiapine in patients with schizophrenia.27,29

Changes in Thyroid Function Tests
All 15 patients from case reports had hypothyroidism: 10 primary14,15,17–21,24 and 5 secondary,16,19,20,22,23 and of the 10 cases with primary hypothyroidism, 4 were subclinical.14,15,21,24 It is of note that mild or subclinical hypothyroidism, which is commonly regarded as a sign of early thyroid failure, is defined by TSH concentrations above the reference range and free thyroxine concentrations within the normal range.5 Eight were asymptomatic,14,16,18–20 while 7 were symptomatic.15,17,19,21–24 Weight gain and fatigue were common symptoms reported. Autoantibodies, namely anti-TPO, antithyroglobulin, and antithyroid antibody, were positive in 3 cases, respectively,18,19,23 and not reported in 8 cases.14,16,19,20,22–24 High anti-TPO was reported.

As for the case series, in the change-over and acute high-dosage groups, FT4 values were slightly below the norm in 67% and 33% of the cases, respectively. No significant changes in TSH or FT3 were observed.25

Thirteen observational or experimental studies showed a decrease in thyroxine levels.2,4,27–31,32,35,37,41,42 Among these, TSH level was increased, compared to baseline, in 6 studies.4,31,34,35,39,42 Three studies that only measured TSH showed no difference in TSH levels.26,32,38 Hypothyroidism was reported in 6.5% of patients on combination therapy (lithium or divalproex) and in 2.4% of patients on monotherapy, respectively.36,40 In another large study of 3798 patients on quetiapine for BD (of 24 574 patients treated for BD), the 4-year risk of hypothyroidism was estimated at 8.26%.9 Two studies reported a dose-dependent decrease in thyroxine levels.27,29 In terms of side effects, 12% in the quetiapine group reported sedation, somnolence, and constipation.35 Additionally, a lower level of FT4 was associated with self-reported weight gain.2 In pediatric patients on 150 to 300 mg of quetiapine extended release, TSH increased above 5 mIU/L in 4.7% of participants.39

Pathophysiology
Three female patients had positive autoantibodies, namely anti-TPO, antithyroglobulin, and antithyroid antibody, respectively, suggesting an autoimmune mechanism.15,17,19 In the case of a 49-year-old woman with mood disorder who developed symptomatic subclinical hypothyroidism, anti-TPO rose to 126.36 IU/mL 1 week after quetiapine discontinuation, and then decreased to 74/40 IU/mL 2 months after discontinuation.15 As for the elderly patient with BD with psychotic features who developed primary hypothyroidism, the endocrinology team suggested that quetiapine could have caused autoimmune thyroiditis in light of the hypothyroid state, elevated antithyroglobulin antibodies at 2507 IU/mL and antithyroid peroxidase antibodies at 50 IU/mL.17 Finally, antithyroid antibody titers were 83 kU/L (reference range, 0 to <6 kU/L) after discontinuing quetiapine because of symptomatic secondary hypothyroidism in an 18-year-old woman with schizophrenia.19 Another possible mechanism could be dysregulation of leptin and adiponectin.37

Assessment of Quality
The results of the quality assessment of the included studies are presented in Tables 3 and 4. Table 3 includes the leading explanatory questions used in all 4 areas. We made an overall judgment of the quality of the case reports and series included on the basis of the questions most critical. In the domain “selection,” the overall quality was assessed to be medium. For “ascertainment,” exposure and outcome should be sufficiently ascertained, which was deemed high by authors. As for the “causality,” the case reports could not rule out alternative causes that might explain the observations and no challenge/rechallenge was possible, which rendered a judgment of low quality. Finally, the cases described were of wide-ranging but mostly sufficient detail, rendering a medium quality in the domain “reporting.” In accordance with the Newcastle-Ottawa Scale quality assessment scale, half of the included observational and experimental studies were of high evidence quality. Of note, the assessment of outcome was generally of high quality in most case reports, series, and observational and experimental studies.

Management of Quetiapine-Induced Thyroid Abnormalities
Care guidance and approach can be summarized in 4 different ways: (1) continue quetiapine and monitor,16,18
Table 2. Characteristics of Included Observational and Experimental Studies

No.	Author(s), Year	Study Design and Recruitment	Psychiatric Diagnosis	Outcome Measures	No. of Participants	Sex/Age, y	Duration of Quetiapine Therapy	Findings	
1	Wetzela et al, 1995	Open clinical trial	Schizophrenia or schizophreniform disorder with predominantly positive symptomatology	TSH levels at days 0, 14, and 28	12	58.3% M; Age range, 19-61	12-28 days; 400-600 mg	No alteration is TSH levels	
2	Arvanitis et al, 1997	Double-blind, multicenter study to evaluate a dose-response relationship of quetiapine	Acute exacerbation of chronic schizophrenia	TFTs at baseline and 3, 4, 5, and 6 weeks	361	76% M; mean age, 37	6 weeks; 5 fixed doses: 75, 150, 300, 600, or 750 mg	Dose-dependent decrease in TT4 and FT4; smaller decreases in TT3 and reverse T3 were seen at higher doses; TSH changes not seen; decreases in total T4 and free T4 were generally within 20% of the lower limit of normal, and clinical hypothyroidism did not occur	
3	Peuskens et al, 1997	Double-blind, randomized, multicenter, parallel-group study, QTP vs chlorpromazine	Hospitalized patients with acute exacerbation of subchronic or chronic schizophrenia, or schizophreniform disorder	TFTs at baseline and weekly	101	63% M; mean age, 32	6 weeks; mean daily dose of 407 mg	Modest decrease in TT4 in both arms; small decrease in TT3 (QTP) vs modest increase in CPZ; no significant increase in TSH among 2 groups; clinically significant values were recorded for 10% patients on QTP and 5% of patients on CPZ; patients remained asymptomatic	
4	Small et al, 1997	A high- (≤ 750 mg/d) and low-dose (≤ 250 mg) double-blind comparison with placebo	Hospitalized with chronic or subchronic schizophrenia	TFTs weekly	94 patients received low-dose quetiapine and 96 received high-dose	Low-dose group: 69% M Mean age, 36 High-dose group: 78% M Mean age, 37	6 weeks	Mean dose in low-dose group 209 mg Mean dose in high-dose group 360 mg	Decrease in TT3 and TT4 was significantly greater in high-dose group than low-dose group; decrease in TT4 in low-dose group greater than in placebo, suggesting a dose-response relationship; no statistically significant differences were found among treatment groups for change from baseline for TSH

(Continued)
No.	Author(s), Year	Study Design and Recruitment	Psychiatric Diagnosis	Outcome Measures	No. of Participants	Sex/Age, y	Duration of Quetiapine Therapy	Findings
5	Tariot et al, 2000	Open-label, multicenter, uncontrolled trial	Elderly patients with psychosis	TFT at week 36	184	53.3% F; mean age, 76.1	52 weeks; median daily dose, 137.5 mg	A small decrease in FT4 (within normal range) occurred without an increase in TSH
6	Shaw et al, 2001	Open-label trial	Adolescents with psychotic disorders	TFT at baseline and at week 8	15	53% M; mean age, 15.1	8 weeks; 467 mg/d	FT4 levels decreased. TSH levels increased, nonsignificant findings
7	Delbello et al, 2002	Randomized, double-blind, placebo-controlled study; QTP in combination with DVP	Adolescents with BD	TSH weekly	15	53% M; mean age, 14.1	6 weeks; 432 mg/d	No alteration in TSH levels
8	Greenspan et al, 2005	Randomized, double-blind, study with a total of 382 patients assigned to treatment with risperidone, QTP, or placebo in a 2:2:1 fashion	Schizophrenia	TFT at baseline and at week 6	79	NR	NR	Statistically significant decrease in TT4 and TT3; TSH significantly increased
9	Kelly et al, 2005	Randomized double-blind trial with 38 adults treated with QTP, risperidone, or fluphenazine	Treatment-resistant schizophrenia	TFT at baseline and week 6	10	80% M; mean age, 42.6	6 weeks; 400 mg/d	Mean TT4 levels decreased significantly; decrease in TSH level was not significant; no signs and symptoms of hypothyroidism
10	Potkin et al, 2006	International, randomized, double-blind study included a 2-week monotherapy phase followed by a 4-week additive therapy phase; 382 patients were randomly assigned to risperidone, QTP, or placebo in a 2:2:1 fashion	Recently exacerbated patients with schizophrenia or schizoaffective disorder	TFT at baseline, 2 and 6 weeks	156	64% M; mean age, 34.2	6 weeks; mean doses at days 14 and 42 were 523 mg and 556 mg, respectively	Statistically significant decrease in mean TT3 and TT4 levels observed in QTP group compared with risperidone and placebo groups; at the additive therapy phase endpoint a significant increase in TSH, compared with baseline, was also found in the QTP group; 12% reported sedation, somnolence, and constipation in QTP group

(Continued)
No.	Author(s), Year	Study Design and Recruitment	Psychiatric Diagnosis	Outcome Measures	No. of Participants	Sex/Age, y	Duration of Quetiapine Therapy	Findings
11	Suppes et al., 2009	Multicenter, randomized, parallel-group, double-blind study comparing quetiapine plus lithium or DVP and placebo plus lithium or DVP in the maintenance treatment of adult patients with bipolar I disorder for up to 104 wk	Bipolar I disorder	NR	310 patients received QTP plus lithium (42.3%) or DVP (57.7%)	NR	104 weeks; 400-800 mg	Hypothyroidism was reported in 6.5% patients in QTP + Li/DVP group vs 1.3% in placebo + Li/DVP; parameters were not mentioned
12	Pina-Camacho et al, 2012	Longitudinal, observational, uncontrolled clinical study to observe the obesogenic capacity of antipsychotics (risperidone, OLZ, and QTP) in naïve adolescents	87 antipsychotic-naive children and adolescent patients	TFT at baseline, 3 and 6 months	12 received QTP	NR for QTP group	NR for QTP group	FT4 levels decreased significantly in the whole sample without significant differences among treatment groups
13	Radhakrishnan et al, 2013	Retrospective hospital-based study on 468 inpatient samples; TFTs were obtained for 343 patients	Schizophrenia (31.49%), BD (35.57%), major depressive disorder (18.37%)	TFT on admission and on suspicion; TSH was done on almost all patients; T3, T4, FT3, FT4, and anti-TPO were done when TSH level was abnormal	9 received QTP	NR for QTP group	NR for QTP group	There was no significant difference in TSH levels among the patients on different classes of antipsychotics, although levels of TSH were least with QTP and highest with OLZ
14	Findling et al, 2014	Multicenter, double-blind, randomized, placebo-controlled study investigated quetiapine XR in pediatric outpatients	Pediatric bipolar depression	Baseline, weeks 4 and 8	70/92 completed the study in the QTP arm	51.1% F; 27.2% and 72.8% were in the 10-12 and 13-17 age groups, respectively	8 weeks; 150-300 mg QTP XR daily	4.7% in QTP group had a shift in TSH >5 mIU/L
Table 2. Continued

No.	Author(s), Year	Study Design and Recruitment	Psychiatric Diagnosis	Outcome Measures	No. of Participants	Sex/Age, y	Duration of Quetiapine Therapy	Findings	
15	Lambert et al, 2016	Administrative claims data on 24,574 patients with BD were analyzed with competing risk survival analysis	BD	At least 1 thyroid test during monotherapy	3798	65.9% F; mean age, 40.1	The duration of observation ranged from 1 day to 3255 days (8.9 years), with a mean of 269 days and median of 142 days	8.26% 4-year estimated risk of hypothyroidism	
16	Hayes et al, 2016	Population-based cohort study on adverse endocrine events during maintenance mood stabilizer treatment for BD	BD	NR	1376	69.69% F; median age, was 38.08 y	Median duration of treatment was 1.06 years	33 and 6 events of hypo- and hyperthyroidism, respectively; the rate of thyroid disease was elevated in people taking lithium, compared to valproate and OLZ, but not QTP	
17	Iversen et al, 2018	Cross-sectional study looking at the differences in thyroid hormone levels between patients with severe mental illness and healthy controls	Schizophrenia and BD	TSH and FT4 were measures in patients and healthy controls	NR	Participants were between 18 and 65	NR	Significant associations between lower FT4 level and QTP and OLZ, but no significant associations were found with TSH level	
18	Vedal et al, 2018	Naturalistic study investigating thyroid function associated with use of antipsychotics in patients with psychotic disorders compared with healthy controls	Psychotic and mood disorders	NR	66	NR	NR	Lower level of FT4 was associated with self-reported weight gain	(Continued)
No.	Author(s), Year	Study Design and Recruitment	Psychiatric Diagnosis	Outcome Measures	No. of Participants	Sex/Age, y	Duration of Quetiapine Therapy	Findings	
-----	----------------	-----------------------------	----------------------	-----------------	-------------------	---------	-------------------------------	----------	
19	Li et al, 2019	Depressed BD	TFT at 4 and 12 wk	58	53.4% M; mean age, 20.7	3-month treatment: 52 patients received 300 mg/d; the rest received 400-500 mg/d	TT4, FT4, FT3 decreased in posttreatment 1 month, whereas TSH increased 2 patients with subclinical hypothyroidism TT3 unchanged Subgroup of 13 patients followed for 3 months, serum level of TT4, TT3, FT4, and FT3 was significantly reduced compared to baseline, and serum level of TSH was not significantly changed	Depressed BD	
20	Samawi et al, 2020	Retrospective, cross-sectional observational study exploring the effect of QTP and OLZ on thyroid function	Schizophrenia	TFT at baseline and 12 weeks	36	75% M;	3 months; 200-400 mg/day	TT3 and TT4 levels decreased, while TSH level increased	

Anti-TPO, antithyroid peroxidase antibodies; BD, bipolar disorder; CPZ, chlorpromazine; DVP, divalproex; NR, not reported; OLZ, olanzapine; QTP, quetiapine; TFT, thyroid function test; TSH, thyroid stimulating hormone; XR, extended release.
Table 3. Quality Assessment of Case Reports and Series

Study	Selection	Ascertainment	Causality	Reporting			
1. Does the patient(s) represent(s) the whole experience of the investigator (center) or is the selection method unclear to the extent that other patients with similar presentation may not have been reported?							
2. Was the exposure adequately ascertained?							
3. Was the outcome adequately ascertained?							
4. Were other alternative causes that may explain the observation ruled out?							
5. Was there a challenge/rechallenge phenomenon?							
6. Was there a dose–response effect?							
7. Was follow-up long enough for outcomes to occur?							
8. Is the case(s) described with sufficient details to allow other investigators to replicate the research or to allow practitioners to make inferences related to their own practice?							
Feret et al	1	1	1	0	0	1	0
Dobbs et al	1	1	1	0	0	1	1
Liappas et al	1	1	1	1	0	0	1
Tor et al	0	0	1	0	0	0	1
Kontaxacis et al	1	1	1	0	0	0	1
Poutanen et al	1	1	1	0	0	1	1
Park et al	1	1	1	0	0	0	0
Shoib et al	0	0	1	1	0	0	1
Dreijerink et al	0	1	1	1	0	0	1
Zenno et al	0	1	1	1	0	0	1
Ramaswamy et al	1	1	1	0	0	0	1
Beer et al	1	1	1	0	0	0	1

0 = no; 1 = yes.
Table 4. Quality Assessment of Observational and Experimental Studies

Study	Selection	Comparability a	Outcome/Exposure	Evidence Quality b
Vedal et al	****	**	***	High
Li et al	**	*	***	Low
Wetzel et al	***	...	***	Low
Arvanitis et al	****	**	***	Low
Peuskens et al	****	*	***	Moderate
Small et al	****	**	***	High
Tariot et al	***	...	***	Low
Shaw et al	***	...	***	Low
Delbello et al	****	**	***	High
Greenspan et al	****	*	***	High
Kelly and Conley	****	**	***	High
Potkin et al	****	**	***	High
Suppes et al	****	**	***	High
Pina-Camacho et al	****	**	***	Moderate
Radhakrishnan et al	***	*	**	Low
Findling et al	****	**	***	High
Lambert et al	****	**	***	High
Hayes et al	****	**	***	High
Iversen et al	****	*	*	Low
Samawi et al	***			Low

*Also includes controlling for potential confounders.

Evidence quality: low = downgrading from moderate to low based on design or lack of information in report; moderate = study met selection criteria (4 stars), comparability (1 star and upgraded level for 2 stars), and outcome assessment; high = upgrading from moderate to high based on comparability of 2 stars.

(2) continue quetiapine with thyroid replacement,14,19
(3) stop quetiapine and monitor,15,19,21 and (4) stop quetiapine and add thyroid replacement.17,19,22–24 Management plan was not reported for 2 patients.20 Clinical and family history influenced the decision to continue or discontinue quetiapine in 3 cases.18,23 Thyroid replacement consisted of levothyroxine with a range of 25 to 200 μg/d. TFT normalized in 45 days to 3 months when quetiapine was continued.

Discussion

Quetiapine has been associated with thyroid dysfunction in clinical trials, and thyroid abnormalities were included in product labeling for the drug.5 To our knowledge, this is the first systematic review of all published reports of thyroid dysfunction associated with quetiapine. We found 32 studies, 20 of which were observational or experimental studies. There were 11 case reports and 1 case series. We applied the Newcastle-Ottawa Scale and the Murad et al13 framework for assessing quality of included studies.

The mechanisms by which quetiapine induces a hypothyroid state are unclear, with several different theories proposed by researchers. One explanation is an underlying autoimmune mechanism, especially in women. Hormonal and genetic factors that influence the female predominance of autoimmunity have been proposed to explain why women are more prone to develop autoimmune diseases.43 It is noteworthy that the antithyroid peroxidase antibodies (anti-TPOs), considered as the most sensitive and specific marker of thyroid autoimmunity, were initially greater than normal limits but within the reference range after quetiapine discontinuation in a female patient with symptomatic subclinical hypothyroidism treated for mood disorder.15 This may indicate an immune reaction due to quetiapine, similar to the one reported in patients who develop hypothyroidism with associated anti-TPOs during lithium therapy,44,45 or an accidental finding that mood and anxiety disorders frequently coexist with thyroid autoimmunity in the community.46,47 These findings suggest that thyroid autoantibodies, especially anti-TPOs could have potential utility as a biomarker for hypothyroidism in patients taking quetiapine and may even affect prognosis.7 Another plausible mechanism for the decrease of thyroid hormones during quetiapine treatment is competitive metabolism of thyroid hormones and quetiapine by uridine 5’-diphospho-glucuronyltransferase.33 Nonetheless, direct action of quetiapine on the hypothalamic-pituitary axis cannot also be excluded, although TSH levels have been reported to remain unaffected in context of decrease in thyroid hormones in some studies (Table 2). Moreover, leptin and adiponectin may be associated with development of quetiapine-related thyroid and metabolic side effects, especially in pediatric antipsychotic-naïve patients.37 One explanation could be the potential relationship between thyroid hormones and adipose tissue metabolism, as a study showed positive correlation between TSH and body mass index and leptin but negative correlation between TSH and adiponectin.48
There are a number of important clinical considerations. For instance, sudden changes in thyroid hormone levels may precipitate a psychiatric relapse, while thyroid dysregulation in a patient with a mood disorder may mimic the symptoms of their psychiatric disorder and therefore be easily missed. This highlights the importance of checking thyroid function in acutely ill psychiatric patients, particularly if they are on quetiapine therapy, not responding to treatment, or in case of high quetiapine dosage (because of the potential dose-dependent decrease in thyroxine levels). It is well established that thyroid function tests should be routinely performed before initiating lithium therapy, then periodically repeated as long as the patients are on lithium. However, the recommendations regarding monitoring TFTs for patients on quetiapine remains less clear, possibly because of the lower incidence of thyroid abnormalities on quetiapine compared to lithium. Maudsley guidelines recommend that patients on quetiapine should have yearly TFTs, although the risk of abnormality is very small.

By systematically reviewing the literature, we report the largest collection to date of case reports, observational studies, and experimental studies on the association between quetiapine therapy and thyroid dysfunction. Our search was not limited to studies in English, and we used a database source of gray literature. However, there were several limitations to be acknowledged. Many of the papers were of variable quality. TFTs, autoantibodies, and symptoms of thyroid illness were inconsistently reported. There was heterogeneity in the reference ranges, study populations, and designs, limiting the possibility to carry out a meta-analysis. The limited number of prospective studies meant that a clear temporal relationship could not be established in most cases, although there was some evidence of dose response. A plausible alternative explanation for any association might be that patients on quetiapine in these studies are more likely to have their thyroid function monitored than in clinical practice; therefore, incident cases are more likely to be detected. In addition, it is possible that concomitant psychotropic medication could be responsible for changes in thyroid function. In fact, one study found that rates of thyroid disease were elevated in people taking lithium compared to valproate and olanzapine but not quetiapine. Therefore, these make it difficult to make any conclusions regarding the nature of the association between quetiapine and thyroid dysfunction. Large prospective studies using the most important and sensitive TSH test are required to clarify this association and to guide the clinical management of patients with quetiapine in whom thyroid abnormalities occur. Another limitation in terms of our search strategy was that we avoided using thyroxine as a search term since most search results including this term referred to the use of thyroxine as a treatment rather than endogenous thyroxine. We also checked that adding this term to the query did not yield additional articles that were not included in the review. Therefore, we preferred omitting this search term since this seemed to improve specificity without compromising sensitivity.

Nonetheless, after reviewing the highest quality papers, we can conclude that (1) there seems to be a decrease in TT3 and TT4 with an apparent dose-response relationship; (2) alterations in TSH levels in adolescents showed mixed results, that is, elevated TSH and no change in TSH in bipolar depression and manic/mixed affective states, respectively; and (3) the rate of thyroid disease remains higher in people taking lithium compared to quetiapine.

Conclusion

Quetiapine has been associated with thyroid abnormalities, mainly with hypothyroidism. Drug imputability in these abnormalities is not always clear, and the underlying pathophysiology may include immunological and nonimmunological mechanisms. These abnormalities seem to be more commonly reported in adult females. It seems wise to request TFTs in patients before starting quetiapine, especially when they are potentially at risk for hypothyroidism (young, female, family history of thyroid disease, high doses of quetiapine, use of other drugs that can affect the thyroid function). It is also recommended to monitor TFTs yearly and to work in partnership with family practitioners and endocrinologists. Thyroid abnormalities should be considered whenever a patient on quetiapine stops responding to the treatment or exhibits “new” mood, psychotic, or cognitive symptoms despite good adherence. When thyroid abnormalities on quetiapine are diagnosed, the pros and cons of continuing vs discontinuing quetiapine can be discussed with the patient in a case-by-case manner. If hypothyroidism persists after quetiapine is discontinued, or if the decision was to pursue treatment with quetiapine, it seems reasonable to prescribe levothyroxine targeting a normalization of the TSH levels in most cases.

Acknowledgments

Open Access funding provided by Qatar National Library.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding

No funding was received to assist with the preparation of this article.
Data Sharing

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamic-pituitary-thyroid axis. Comprehensive Physiology. 2016;6:1387-1428.
2. Vedal TSJ, Steen NE, Birkeland KL, et al. Free thyroxine and thyroid-stimulating hormone in severe mental disorders: a naturalistic study with focus on antipsychotic medication. J Psychiatr Res. 2018;106:74-81.
3. Feldman AZ, Shrestha RT, Hennessey JV. Neuropsychiatric manifestations of thyroid disease. Endocrinology Metabolism Clin. 2013;42(3):453-476.
4. Li C, Lai J, Huang T, et al. Thyroid functions in patients with bipolar disorder and the impact of quetiapine monotherapy: a retrospective, naturalistic study. Neuropsychiatr Dis Treat. 2019;15:2285-2290.
5. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism Lancet (London, England). 2017;390(10101):1550-1562.
6. Li C, Lai J, Huang T, et al. Thyroid functions in patients with bipolar disorder and the impact of quetiapine monotherapy: a retrospective, naturalistic study. Neuropsychiatr Dis Treatment. 2019;15:2285.
7. Said M, Ouanes S, Hajri M, Nezfi R, Triki R, Ghabem R. Anti-thyroid antibodies in bipolar disorder. Eur Psychiatry. 2015;30(S1):1-1.
8. Product monograph: Seroquel. Astra Zeneca Canada Inc. Revised 2019. https://www.astrazeneca.ca/content/dam/azca/downloads/productinformation/seroquel-product-monograph-en.pdf. Accessed December 21, 2020.
9. Lambert CG, Mazuir AJ, Lauve NR, et al. Hypothyroidism risk compared among nine common bipolar disorder therapies in a large US cohort. Bipolar Disord. 2016;18(3):247-260.
10. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
11. Gazzani M, Hammady H, Fedorowicz Z, Elmargamid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.
12. Lo CK-L, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Method. 2014;14(1):45.
13. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ Evidence-Based Medicine. 2018;23(2):60-63.
14. Feret BM, Caley CF. Possible hypothyroidism associated with quetiapine. Ann Pharmacother. 2000;34(4):483-486.
15. Liappas J, Paparrigopoulou T, Mourikis I, Soldatos C. Hypothyroidism induced by quetiapine: a case report. J Clin Psychopharmacol. 2006;26(2):208-209.
16. Dobbs RL, Braham NC, Fast G, Brown RC. Thyroid function alterations following quetiapine initiation in a developmentally disabled adolescent. Ann Pharmacother. 2004;38(9):1541-1542.
17. Tor P, Lee H, Fones C. Late-onset mania with psychosis associated with hypothyroidism in an elderly Chinese lady. Singapore Med J. 2007;48(4):354.
18. Kontaxakis VP, Karaikos D, Havaki-Kontaxaki BJ, Ferentinos P, Papadimitriou GN. Can quetiapine-induced hypothyroidism be reversible without quetiapine discontinuation? Clin Neuropsychopharmacol. 2009;32(5):295-296.
37. Pina-Camacho L, Tapia-Casellas C, Rodriguez-Latorre P, et al. Obesogenic capacity of second-generation antipsychotics in naive-adolescents and their impact on leptin, adiponectin and ghrelin. Eur Neuropsychopharmacol. 2011;21:S605-S606.
38. Radhakrishnan R, Calvin S, Singh JK, Thomas B, Srinivasan K. Thyroid dysfunction in major psychiatric disorders in a hospital based sample. Indian J Med Res. 2013;138(6):888.
39. Findling RL, Pathak S, Earley WR, Liu S, DelBello MP. Efficacy and safety of extended-release quetiapine fumarate in youth with bipolar depression: an 8 week, double-blind, placebo-controlled trial. J Child Adolescent Psychopharmacol. 2014;24(6):325-335.
40. Hayes JF, Marston L, Walters K, Geddes JR, King M, Osborn DP. Adverse renal, endocrine, hepatic, and metabolic events during maintenance mood stabilizer treatment for bipolar disorder: a population-based cohort study. PLoS Med. 2016;13(8):e1002058.
41. Iversen T, Steen NE, Birkeland KI, et al. T229. antipsychotic drug use and thyroid function in patients with severe mental disorders. Schizophr Bull. 2018;44(suppl_1):S205-S206.
42. Samawi OH, AlDabbas RM, Bisharat TI, Aldowaib BA, Al-Adayleh FA. The effect of quetiapine and olanzapine on thyroid function in schizophrenic patients. Scholars Acad J Pharm. 2020.
43. Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A, Anaya J-M. Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J Autoimmun. 2012;38(2-3):J109-J119.
44. Johnston AM, Eagles JM. Lithium-associated clinical hypothyroidism. Br J Psychiatry. 1999;175(4):336-339.
45. Lazarus J. The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid. 1998;8(10):909-913.
46. Carta MG, Hardoy MC, Boi MF, Mariotti S, Carpiniello B, Usai P. Association between panic disorder, major depressive disorder and celiac disease: a possible role of thyroid autoimmunity. J Psychosom Res. 2002;53(3):789-793.
47. Carta MG, Loviselli A, Hardoy MC, et al. The link between thyroid autoimmunity (antithyroid peroxidase autoantibodies) with anxiety and mood disorders in the community: a field of interest for public health in the future. BMC Psychiatry. 2004;4(1):1-5.
48. Iacobellis G, Cristina Ribaudo M, Zappaterreno A, Valeria Iannucci C, Leonetti F. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin Endocrinol (Oxf). 2005;62(4):487-491.
49. Fairbrother F, Petzl N, Scott JG, Kisely S. Lithium can cause hyperthyroidism as well as hypothyroidism: a systematic review of an under-recognised association. Australian New Zealand J Psychiatr. 2019;53(5):384-402.
50. Taylor DM, Barnes TR, Young AH. The Maudsley Prescribing Guidelines in Psychiatry. Hoboken, NJ: John Wiley & Sons; 2018.
51. American Thyroid Association. Hypothyroidism (Underactive). https://www.thyroid.org/hypothyroidism/. Published 2021. Accessed August 21, 2021.