Обоснование. Стандартный метод Понсети составляет основу лечения детей с врожденной эквиноварусной деформацией стопы. Этот метод, включающий еженедельные манипуляции и поэтапное гипсование ноги практически по всей ее длине, показал хорошие долгосрочные результаты. Однако для исправления всех компонентов деформации необходимо примерно 4–5 нед., что затрудняет соблюдение режима лечения для ряда родителей пациентов из-за ограниченных материальных возможностей и отдаленности медицинских центров.

Цель — сравнение результатов ускоренного и стандартного методов консервативного лечения врожденной эквиноварусной деформации стопы по Понсети.

Материалы и методы. На основе рекомендаций PRISMA для выявления соответствующих исследований был проведен систематический поиск в базах данных PubMed, Google Scholar и Cochrane Database. В метаанализ было включено семь исследований (324 пациента, 408 конечностей). Протоколы сравнивали по пяти параметрам: оценке по шкале Пирани после лечения, частоте рецидивов, количеству тенотомий, количеству гипсовых повязок и общей продолжительности лечения.

Результаты. Общая продолжительность лечения по ускоренному методу Понсети составила 24,25 дня, а по стандартному методу Понсети — 41,54 дня (p < 0,00001). При этом ускоренный метод Понсети был сравним по эффективности со стандартным методом, которую определяли по шкале Пирани после окончания лечения (1,01 против 0,87, p = 0,19). Кроме того, оба подхода были сопоставимы по общему количеству необходимых для процедуры гипсовых повязок (4,94 против 5,05, p = 0,76), количеству тенотомий (73,29 против 65,27 %, p = 0,07) и частоте рецидивов (27,72 против 25,23 %, p = 0,56).

Заключение. Ускоренный метод Понсети характеризуется сходной эффективностью и более короткой продолжительностью лечения по сравнению со стандартной методикой Понсети.

Ключевые слова: ускоренный метод; косолапость; Понсети.

ACCELERATED VERSUS STANDARD PONSETI METHOD FOR IDIOPATHIC CONGENITAL TALIPES EQUINOVARUS: A SYSTEMATIC REVIEW AND META-ANALYSIS

© S.D. Savio1, 2, M.A. Maharjana1, 2

1 Udayana University, Bali, Indonesia;
2 Sanglah General Hospital, Bali, Indonesia

For citation: Savio SD, Maharjana MA. Accelerated versus standard Ponseti method for idiopathic congenital talipes equinovarus: A systematic review and meta-analysis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2020;8(4):473-484. https://doi.org/10.17816/PTORS35161

Received: 12.07.2020 Revised: 09.11.2020 Accepted: 07.12.2020
Врожденная эквиноварусная деформация стопы (ВЭВД), также известная как косолапость, — одна из наиболее распространенных врожденных деформаций, встречающаяся у 1—6,8 из каждой 1000 живорожденных детей [1]. При несовременном лечении эта патология может привести к ригидности, слабости и хронической болями и без проведения серии ревизионных операций обрекает пациентов на инвалидность [2]. Раннее выявление и комплексное лечение, несомненно, являются важными факторами успешного лечения ВЭВД. Однако способ лечения этой патологии значительно изменился с тех пор, как был впервые упомянут около 400 г до н. э. в работе Гиппократа. В 1743 г. Николас Андри, отец ортопедии, назвал это заболевание pedes equinus, подчеркнув сходство деформированной стопы с копытом лошади. Гипсовые повязки, предложенные М. Жюлем Гереном в 1836 г., были первым шагом в консервативном лечении косолапости [3]. В то время предпочитали отдавать хирургическому методу лечения, поскольку считали, что он дает наилучшие результаты. Однако при долгосрочном наблюдении выявлены неутешительные клинические, рентгенографические и биомеханические показатели. Кроме того, подростки, которым в младенчестве не удается получить удовлетворительные результаты, — у 90 % пациентов. Было доказано, что этот метод, который можно применить у пациентов в возрасте одного дня, помогает корректировать косолапость у младенцев, избегая обширных и серьезных операций. С тех пор еженедельные корректирующие манипуляции и гипсовые повязки по всей длине ноги были выбраны в качестве стандартного лечения, применяемого в современную эпоху как лучший вариант поэтапной коррекции всех компонентов косолапости [1, 3].

С другой стороны, даже несмотря на то, что метод гипсования по Понсети считается рентгенобным и безопасным, для исправления всех компонентов деформации необходимо примерно 4–5 нед. [2, 5], что затрудняет соблюдение режима лечения родителями ряда пациентов из-за их ограниченных материальных возможностей и отдаленности медицинских центров [6]. Некоторые авторы исследовали эффективность ускоренного протокола гипсования по Понсети: по ускоренному протоколу гипсовые повязки накладывают так же, как и по стандартному, но меняют чаще, обычно 3 раза в неделю. Тем не менее очень незначительное количество авторов провели систематический сравнительный анализ этих двух подходов, при этом ни один из авторов не сравнивал их статистически с помощью метаанализа.

Цель — сравнение результатов ускоренного и стандартного методов консервативного лечения ВЭВД стопы по Понсети.

Материалы и методы

Дизайн исследования представляет собой систематический обзор и метаанализ соответствующих рандомизированных контролируемых
исследований, а также нерандомизированных сравнительных исследований. С декабря 2018 по сентябрь 2019 г. осуществляли систематический поиск для выявления соответствующих исследований в базах данных PubMed, Google Scholar и Cochrane Database на основе рекомендаций PRISMA (рис. 1). Были использованы следующие ключевые слова: «ускоренный», «стандартный», «Понсети», «врожденная эквиноварусная деформация стопы» или «косолапость»).

Исследования были просмотрены всеми авторами в соответствии со следующими критериями включения: 1) сравнимыми вмешательствами были ускоренный и стандартный методы Понсети; 2) в популяцию исследования входили пациенты в возрасте до 3 лет с диагностированной ВЭВД/косолапостью; 3) был зарегистрирован по крайней мере один из следующих результатов: оценка по шкале Пирани после процедуры, продолжительность лечения, количество необходимых гипсовых повязок, количество рецидивов и/или количество тенотомий; 4) исследование было опубликовано на английском языке; 5) использовали дизайн рандомизированного контролируемого исследования или проспективного когортного исследования. Критериями исключения были: 1) запущенная косолапость (то есть начало лечения после 3 лет); 2) период наблюдения менее 6 мес.; 3) сопутствующее инфекционное заболевание или злокачественное новообразование. Хирургическое лечение и консервативные подходы, отличные от ускоренного и стандартного методов по Понсети, были исключены из анализа. Исследования in vivo и in vitro, проводившиеся на животных моделях и не являвшиеся сравнительными, также не были включены в исследование. В табл. 1 представлены критерии включения и исключения в соответствии с методом PICO (от англ. population, intervention, comparison, outcome — популяция, вмешательство, сравнение, результат).

Из каждого включенного исследования были извлечены и суммированы данные, относящиеся к характеристикам пациента и исследования (например, возраст, пол, исходный балл по шкале Пираны) и результатам. Непрерывные случайные переменные — количество баллов по шкале Пираны после лечения, количество необходимых гипсовых повязок и продолжительность лечения — сравнивали по взвешенной разности средних значений. Дихотомические переменные — количество тенотомий и частоту рецидивов — оценивали с помощью отношения шансов (ОШ) и 95 % доверительного интервала (ДИ). Расчеты выполнены с использованием программного обеспечения Review Manager (RevMan) (Version 5.3. Copenhagen: The Nordic Cochrane Centre, the Cochrane Collaboration, 2014). В случаях когда
гетерогенность (I2) составляла <50 %, использовали модель постоянных эффектов, а когда >50 % — модель случайных эффектов.

Результаты
Всего в метаанализ было включено 7 исследований (324 пациента, 408 конечности). Пять исследований были рандомизированными контролируемыми (уровень доказательности I), при этом 2 статьи представляли результаты проспективных контролируемых исследований (уровень доказательности II) (табл. 2). Критическая оценка всех исследований, основанных на системе оценки Института Джоанны Бриггс (Journal Briggs Institute Scoring System), показала, что ни одно не соответствовало более чем двум критериям достоверности (табл. 3).

Размер выборки, отобранной для исследования в рамках стандартного протокола Понсети, включал 207 конечностей, тогда как в исследование по ускоренному протоколу Понсети была

Компоненты исследования	Включение	Исключение
Популяция	≤3 лет при начале лечения.	Более 3 лет при начале лечения.
	Клинический диагноз врожденной эквиноварусной деформации стопы	Менее 6 мес. наблюдения.
		Запущенная косолапость.
		Сопутствующие инфекции или злокачественные образования.
		Исследования на животных моделях
Интервенция и сравнение	Ускоренный и стандартный метод Понсети (сравнение)	Хирургическое вмешательство.
		Все другие виды лечения
Результат	Шкала Пирани, количество гипсовых повязок, продолжительность лечения, количество тенотомий, количество рецидивов	Результат не отмечен или другие результаты
Публикация	Первичное исследование опубликовано на английском языке в рецензируемом журнале	Резюме, редакционные статьи, письма.
		Дублирующая публикация того же исследования/когорты, по которой нет данных о различиях в результатах.
		Презентация на конференции или в тезисах конференции
Дизайн	Рандомизированные контролируемые исследования.	Описание клинического случая или серии клинических случаев.
	Прогнозивные когортные исследования	Обзорные статьи

Таблица 1

Ссылка на автора	Журнал	Дизайн исследования	Уровень доказательности
Harnett et al., 2011 [7]	The Journal of Bone & Joint Surgery	Проспективное рандомизированное контролируемое исследование	I
Elgohary et al., 2015 [5]	The European Journal of Orthopaedic Surgery & Traumatology	Проспективное когортное исследование	II
Sahu et al., 2015 [8]	Journal of Orthopaedics, Traumatology and Rehabilitation	Проспективное рандомизированное контролируемое исследование	I
Mageshwaran et al., 2016 [6]	International Journal of Scientific Study	Проспективное рандомизированное контролирующее исследование	I
Barik et al., 2018 [1]	The European Journal of Orthopaedic Surgery & Traumatology	Проспективное когортное исследование	II
Solanki et al., 2018 [3]	Journal of Orthopaedics, Traumatology and Rehabilitation	Проспективное рандомизированное контролирующее исследование	I
Ahmed et al., 2019 [9]	Journal of Pakistan Orthopaedic Association	Рандомизированное контролирующее исследование	I

Таблица 2
включена 201 конечность. Возраст пациентов на момент манифестации заболевания был одинаковым в двух выборках: от 7 до 161 день для стандартного метода и от 14 до 182 дня для ускоренного метода. Мальчиков было больше, чем девочек; деформация чаще была односторонней, чем двусторонней. Во всех исследованиях повязки меняли всем пациентам 1 раз в неделю при стандартных вмешательствах, в то время как интервал смены повязок, принятый для ускоренной процедуры Понсети, варьировал от 2 до 5 дней. Исходя из оценки по шкале Пирани перед процедурой Понсети, баллы, полученные в рамках обоих подходов, были сопоставимы. Срок наблюдения составил от 6 до 71 мес. Характеристики выборки и результаты исследований представлены в табл. 4–6.

Из 5 проанализированных исходов результаты применения ускоренного метода Понсети статистически превосходили результаты стандартного метода Понсети стали широко применять во всем мире в качестве консервативного метода лечения косолапости. Манипуляции и наложения гипса, проводимые еженедельно, позволяют скорректировать деформацию, а также добиться релаксации коллагена и атравматического ремоделирования суставных поверхностей, при этом постепенно снижается риск фиброза, который может развиться в результате хирургического устранения косолапости. Понсети продемонстрировал, что если этот метод коррекции применять в течение первого месяца жизни, заднего медиального и латерального хирургического высвобождения можно избежать почти в 95 % случаев. Некоторые авторы утверждают, что у детей старшего возраста (от 7 до 10 мес.) вероятность успеха ниже, чем у младенцев. Однако Alves et al. (2009) представили противоположные данные: частота рецидивов и других исходов была одинакова независимо от возраста пациентов на начальном этапе лечения [10, 11].

Чтобы растянуть связки и постепенно исправить деформацию, сначала манипулируют стопой, стремясь скорректировать каждый компонент, действуя в определенной последовательности, которую отражает аббревиатура CAVE (от англ. cavus, adductus, varus, equinus — кавус, аддуктус, варус, эквинус), затем стопу фиксируют гипсовой

Обсуждение

С момента изобретения в 1940-х гг. доктором Игнасио Понсети метода серийного гипсования коррекцию по методу Понсети стали широко применять во всем мире в качестве консервативного метода лечения косолапости. Манипуляции и наложения гипса, проводимые еженедельно, позволяют скорректировать деформацию, а также добиться релаксации коллагена и атравматического ремоделирования суставных поверхностей, при этом постепенно снижается риск фиброза, который может развиться в результате хирургического устранения косолапости. Понсети продемонстрировал, что если этот метод коррекции применять в течение первого месяца жизни, заднего медиального и латерального хирургического высвобождения можно избежать почти в 95 % случаев. Некоторые авторы утверждают, что у детей старшего возраста (от 7 до 10 мес.) вероятность успеха ниже, чем у младенцев. Однако Alves et al. (2009) представили противоположные данные: частота рецидивов и других исходов была одинакова независимо от возраста пациентов на начальном этапе лечения [10, 11].

Чтобы растянуть связки и постепенно исправить деформацию, сначала манипулируют стопой, стремясь скорректировать каждый компонент, действуя в определенной последовательности, которую отражает аббревиатура CAVE (от англ. cavus, adductus, varus, equinus — кавус, аддуктус, варус, эквинус), затем стопу фиксируют гипсовой

Таблица 3

Достоверность	Harnett et al., 2011	Elgohary et al., 2015	Sahu et al., 2015	Mageshwaran et al., 2016	Barik et al., 2018	Solanki et al., 2018	Ahmed et al., 2019
Аналогичная популяция	●	●	●	●	●	●	●
Аналогичное воздействие	○	○	○	○	○	○	○
Измерение воздействия	●	●	●	●	●	●	●
Вмешивающиеся факторы	○	○	○	○	○	○	○
Стратегии обработки вмешивающихся факторов	●	●	●	●	●	●	●
Не содержат результатов на входе	●	●	●	●	●	●	●
Измерение результатов	●	●	●	●	●	●	●
Время наблюдения	●	●	●	●	●	●	●
Законченность наблюдения	●	●	●	●	●	●	●
Стратегии в случае незаконченного наблюдения	●	●	●	●	●	●	●
Статистический анализ	●	●	●	●	●	●	●
Ссылка на авторов	Размер выборки (конечности)	Возраст	Пол	Сторона деформации			
------------------	----------------------------	--------	-----	---------------------			
Harnett et al., 2011	21 (10–55 дней)	29 дней	М: 10 (48 %). Д: 11 (52 %)	Двусторонняя: 10 (48 %). Односторонняя: 11 (52 %)			
Elgohary et al., 2015	34 (20 детей)	10,7 ± 6,28 нед.	М: 23 (85,19 %). Д: 4 (14,81 %)	Двусторонняя: 13 (48,14 %). Правая: 7 (25,93 %). Левая: 7 (25,93 %)			
Sahu et al., 2015	40 (26 детей)	5,6 нед.	М: 12 (60 %). Д: 8 (40 %)	Двусторонняя: 6 (30 %). Правая: 8 (40 %). Левая: 8 (40 %)			
Mageshwaran et al., 2016	26 (20 детей)	28,4 дня	М: 11 (55 %). Д: 9 (45 %)	Двусторонняя: 10 (66,67 %). Односторонняя: 10 (33,3 %)			
Barik et al., 2018	26 (15 детей)	12,35 ± 16,37 дня	М: 22 (73,3 %). Д: 8 (26,7 %)	Двусторонняя: 9 (29 %). Односторонняя: 22 (71 %)			
Solanki et al., 2018	20	4,71 мес.	М: 19 (57,69 %). Д: 12 (42,30 %)				
Ahmed et al., 2019	40	1,58 ± 0,79 мес.	М: 24 (60 %). Д: 16 (40 %)	Нет данных			

Примечание. Д — девочки; М — мальчики; Правая — правая конечность; Левая — левая конечность; Двусторонняя — двусторонняя деформация; Односторонняя — односторонняя деформация.
Таблица 5

Ссылка на авторов	Стандартный протокол	Ускоренный протокол	Стандартный протокол	Ускоренный протокол	Стандартный протокол	Ускоренный протокол
Harnett et al., 2011	Каждую неделю	Каждые 2 дня	244 дня (25–346)	258 дней (70–348)	5,0	5,5
Elgohary et al., 2015	Каждую неделю	Дважды в неделю	25,25 ± 8,67 (12–48 мес.)	23,38 ± 9,21 (12–44 мес.)	5,17 ± 0,62	5,13 ± 0,61
Sahu et al., 2015	Каждую неделю	Каждые 3 дня	23 мес.	5,03 (2,5–6)	5,3 (3–6)	0,2
Mageshwaran et al., 2016	Каждую неделю	Дважды в неделю	6 мес.	4,97	5,025	0,075 в шесть месяцев
Barik et al., 2018	Каждую неделю	Каждые 3 дня	71 мес.	68 мес.	5,02	5,02
Solanki et al., 2018	Каждую неделю	Три раза в неделю	6,66 мес.	7,85 мес.	4,6	5,35
Ahmed et al., 2019	Каждую неделю	Каждые 5 дней	6 мес.	НД	НД	НД

Примечание: НД — нет данных.

Таблица 6

Ссылка на авторов	Количество гипсовых повязок	Продолжительность лечения, дни	Количество тенотомий	Количество рецидивов
Harnett et al., 2011	НД	НД	42 (35–84)	16 (14–20)
Elgohary et al., 2015	4,88 ± 0,88	5,16 ± 0,72	33,36 ± 6,69	18,13 ± 3,02
Sahu et al., 2015	6,2 (4–10)	7,4 (5–10)	57,4	23,8
Mageshwaran et al., 2016	5,55	5,95	52,8	39,65
Barik et al., 2018	5,23 ± 0,59	4,72 ± 0,61	54,38 ± 8,01	33,88 ± 9,03
Solanki et al., 2018	6,35	7	47,25	18,45
Ahmed et al., 2019	НД	НД	36,88 ± 5,11	20,73 ± 3,40
Исследование или подгруппа	Среднее	Стандартное отклонение	Итог	Среднее
-------------------------	--------	-----------------------	------	--------

Итог (95 % ДИ): 100

Гетерогенность: $\chi^2 = 3.81, df = 2 (p = 0.15); I^2 = 48\%$
Тест на суммарный эффект: $Z = 22.17 (p < 0.00001)$

Рис. 2. Форест-диаграмма результатов анализа продолжительности лечения

Исследование или подгруппа	Среднее	Стандартное отклонение	Итог	Среднее	Стандартное отклонение	Итог	Взвешенное значение (вес), %	Разница средних значений

Итог (95 % ДИ): 60

Гетерогенность: $\tau^2 = 0.02, \chi^2 = 2.71, df = 1 (p = 0.10); I^2 = 63\%$
Тест на суммарный эффект: $Z = 1.31 (p = 0.19)$

Рис. 3. Форест-диаграмма результатов анализа

Исследование или подгруппа	Среднее	Стандартное отклонение	Итог	Среднее	Стандартное отклонение	Итог	Взвешенное значение (вес), %	Разница средних значений

Итог (95 % ДИ): 60

Гетерогенность: $\tau^2 = 0.28, \chi^2 = 9.28, df = 1 (p = 0.002); I^2 = 89\%$
Тест на суммарный эффект: $Z = 0.31 (p = 0.76)$

Рис. 4. Форест-диаграмма результатов анализа количества потребовавшихся гипсовых повязок
Исследование или подгруппа	Стандартный протокол	Ускоренный протокол	Взвешенное значение (вес), %	Год			
	События	Итог	События	Итог			
Harnett, 2011	11	21	15	19	23,3	0,29 [0,07; 1,19]	2011
Elghohary, 2015	31	34	30	32	8,5	0,69 [0,11; 4,42]	2015
Sahu, 2015	31	40	33	40	23,1	0,73 [0,24; 2,20]	2015
Mageshwaran, 2016	3	26	6	25	16,8	0,41 [0,09; 1,88]	2016
Barik, 2018	22	26	21	25	10,2	1,05 [0,23; 4,74]	2018
Solanki, 2018	11	20	13	20	18,2	0,66 [0,18; 2,35]	2018
Итог (95 % ДИ)	**167**		**161**	**100,0**		**0,59 [0,34; 1,03]**	

С обозначениями:京

Исследование или подгруппа	Стандартный протокол	Ускоренный протокол	Взвешенное значение (вес), %	Год			
	События	Итог	События	Итог			
Harnett, 2011	11	21	15	19	28,2	0,67 [0,16; 2,85]	2011
Elghohary, 2015	5	34	5	32	27,5	0,93 [0,24; 3,58]	2015
Sahu, 2015	3	26	4	25	22,6	0,68 [0,14; 3,42]	2016
Mageshwaran, 2016	3	26	4	25	21,6	0,95 [0,21; 4,32]	2018
Barik, 2018	4	26	4	25	21,6	0,95 [0,21; 4,32]	2018
Итог (95 % ДИ)	**107**		**101**	**100,0**		**0,81 [0,39; 1,68]**	

Рис. 5. Форест-диаграмма результатов анализа количества рецидивов

Рис. 6. Форест-диаграмма результатов анализа количества тенотомий
Понсети способен привести к снижению тяжести деформации, сравнимой со снижением, достигаемым при действии по стандартному протоколу. К другому преимуществу, которое следует иметь в виду практикующим врачам при рассмотрении ускоренного метода Понсети, относится более низкий риск остеопении и пролежней, развитие которых связано с наложением гипса на длительный срок. Несмотря на то что в большинстве случаев остеопения проходит естественным образом в течение нескольких месяцев после снятия гипсовых повязок, эта патология была отмечена в области выше колена и после окончания иммобилизации при лечении косолапости. Пациенты могут получить хороший результат при более короткой продолжительности лечения в случае использования ускоренного протокола гипсования, при этом потенциальный вред от таких процедур может быть сведен к нулю или ограничен [7, 14]. Пролежни, кожные высыпания и дисфункциональная атрофия — это другие часто встречающиеся осложнения, связанные с длительным применением гипса, которые можно минимизировать с помощью ускоренного протокола [1]. Частая смена гипсовых повязок позволяет регулярно контролировать эти и другие возможные осложнения, в то же время сохраняя гипс сухим и чистым и избегать потери коррекции из-за увлажнения гипса [7].

Перед коррекцией задней части стопы до нейтрального положения в ряде случаев, когда расправлять не получается достичь полного тыльного сгибания (например, в случаях атипичной косолапости), для «освобождения» пяточной кости из-под таранной необходима тенотомия. В таких случаях для достижения полной коррекции дальнейшую растяжку и гипсование проводят после тенотомии [15], Mageshwaran et al. (2016) выполнили тенотомию, когда кавус, адуктуус и варус были полностью скорректированы, но дорсальная флексия голеностопного сустава оставалась менее чем на 10° выше нейтрального положения даже после серийного гипсования. Перед проведением тенотомии авторы убеждались, что отвоящая функция была адекватной [6]. Несмотря на то что тенотомия ахиллова сухожилия может быть выполнена открытым хирургическим способом или чрескожно, во всех исследованиях, включенных в этот метаанализ, был выбран предплечий вариант, который превосходит открытое операцию по показателям образования послеоперационных рубцов благодаря своей простоте и «бессшовности» [16]. В нашем исследовании не было обнаружено существенной разницы по количеству тенотомий при сравнении двух протоколов, хотя при применении ускоренного метода Понсети...
это количество было немного больше. Это может быть связано с более высокой начальной оценкой по Пирани в группе ускоренного протокола, по мнению Mageshwaran et al. (2016) [6], а также с различиями в степени тяжести деформации или техническими ошибками при гипсовании, как указывают Elgohary et al. (2015) [5].

Метаанализ показал, что частота рецидивов в обоих протоколах сопоставима в широком диапазоне периодов наблюдения от 6 до 71 мес. Тем не менее некоторые исследования также объясняют этот результат соблюдением режима фиксации шиной и уровнем образования членов семей пациентов. Рецидив можно предотвратить при условии регулярного наблюдения за фиксацией шиной. Это надо настоятельно разъяснить членам семьи пациентов, в то же время необходимо обучить их правильной подгонке ортезов и контролировать умения применять приобретенные знания [6, 17, 18].

У представленного исследования есть несколько ограничений.
1. Некоторые аналитические данные отличаются высокой гетерогенностью, особенно это касается баллов по шкале Пирани и количества необходимых гипсовых повязок.
2. Из-за ограниченного количества доступных исследований было решено включить в анализ пациентов старше 1 мес. (исключая «запущенные» случаи). Это может внести некоторую необъективность в результаты, поскольку в ряде источников утверждается, что возраст, в котором проявилась патология, может повлиять на результат.
3. Интервал между сменами гипсовой повязки сильно варьировал в разных исследованиях, включенных в метаанализ (от 2 до 5 дней), что могло повысить гетерогенность статистического анализа.

Однако исследование обладает и рядом преимуществ.
1. Насколько нам известно, это первый метаанализ преимуществ ускоренного и стандартного методов Понсети.
2. Литература, использованная в исследовании, включает источники достаточно высоких уровней доказательности (уровень I или II); 5 из 7 были хорошо спланированными рандомизированными контролируемыми исследованиями. Этот говорит в пользу точности и надежности метаанализа.
3. Результаты были тщательно оценены с точки зрения нескольких критериев оценки исхода, что позволит разработать более дифференцированные подходы в лечении косолапости. Исследование могло бы послужить «мостом» к будущим исследованиям с более крупными размерами выборки и меньшей гетерогенностью, а также включающими анализ финансовых выгод, которые дает сокращение продолжительности лечения.

Заключение

Данный метаанализ свидетельствует, что эффективность лечения по ускоренному методу Понсети сопоставима с эффективностью стандартного метода, что подтверждает оценка результатов лечения по шкале Пирани, оценка количества необходимых гипсовых повязок, количества тенотомий и частоты рецидивов. Кроме того, ускоренный метод Понсети предполагает более короткую продолжительность лечения, повышает вероятность соблюдения родителями пациентов режима лечения.

Дополнительная информация

Источник финансирования. Авторы не получали финансирования.

Конфликт интересов. Авторы заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией этой статьи.

Вклад авторов. Оба автора провели отбор литературы для участия в исследовании, выполнили систематический и метаанализ и совместно обсудили результаты, чтобы выявить различия, сформулировать обсуждение и заключение.

Все авторы внесли существенный вклад в проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией.

Благодарности. Авторы хотели бы поблагодарить Mark Streer из Uni-Edit: English Editing and Translation Service за помощь в редактировании и подготовке рукописи.

Литература

1. Barik S, Nazeer M, Mani BT. Accelerated Ponseti technique: Efficacy in the management of CTEV. *Eur J Orthop Surg Traumatol*. 2019;29(4):919-924. https://doi.org/10.1007/s00590-018-2353-1.
2. Fletcher C. The neglected clubfoot. *Glob J Med Res*. 2017;17(1).
3. Ajmera A, Solanki M, Rawat S. Comparative study of accelerated Ponseti method versus standard Ponseti method for the treatment of idiopathic clubfoot. *Journal of Orthopedics, Traumatology and Rehabilitation*. 2018;10(2):116. https://doi.org/10.4103/jotr.jotr_11_18.
4. Svehlik M, Floh U, Steinwender G, et al. Ponseti method is superior to surgical treatment in clubfoot — long-term, randomized, prospective trial. *Gait Posture*. 2017;58:346-351. https://doi.org/10.1016/j.gaitpost.2017.08.010.

5. Elghoray HS, Abulaaad M. Traditional and accelerated Ponseti technique: A comparative study. *Eur J Orthop Surg Traumatol*. 2015;25(5):949-953. https://doi.org/10.1007/s00590-015-1594-5.

6. Mageshwaran S, Murali VKB, Devendran R, et al. Evaluation of outcome of correction of clubfoot by conventional Ponseti and accelerated Ponseti. *Int J Sci Study*. 2016;4(10):199-202.

7. Harnett P, Freeman R, Harrison WJ, et al. An accelerated Ponseti versus the standard Ponseti method: A prospective randomised controlled trial. *J Bone Joint Surg Br*. 2011;93(3):404-408. https://doi.org/10.1302/0301-620X.93B3.24450.

8. Sahu B, Rajavelu R, Tudu B. Management of idiopathic congenital talipes equinovarus by standard versus accelerated Ponseti plaster technique: A prospective study. *Journal of Orthopedics, Traumatology and Rehabilitation*. 2016;4(10):199-202.

9. Ahmed J, Shahid S, Alam W, et al. Outcome of patients suffering from congenital idiopathic club foot: A comparative analysis of using classical versus accelerated Ponseti techniques. *J Pak Orthop Assoc*. 2019;31(2):44-47.

10. Herring JA. Tachdjian's pediatric orthopaedics: From the Texas Scottish Rite Hospital for Children. Saunders; 2013. 1696 p.

11. Alves C, Escalda C, Fernandes P, et al. Ponseti method: Does age at the beginning of treatment make a difference? *Clin Orthop Relat Res*. 2009;467(5):1271-1277. https://doi.org/10.1007/s11999-008-0698-1.

12. Lampasi M, Abati CN, Bettuzzi C, et al. Comparison of Dimiglio and Pirani score in predicting number of casts and need for tenotomy in clubfoot correction using the Ponseti method. *Int Orthop*. 2018;42(10):2429-2436. https://doi.org/10.1007/s00264-018-3873-3.

13. Dyer PJ, Davis N. The role of the Pirani scoring system in the management of club foot by the Ponseti method. *J Bone Joint Surg Br*. 2006;88(8):1082-1084. https://doi.org/10.1302/0301-620X.88B8.17482.

14. Lourenco AF, Morcuende JA. Correction of neglected idiopathic club foot by the Ponseti method. *J Bone Joint Surg Br*. 2007;89(3):378-381. https://doi.org/10.1302/0301-620X.89B3.18313.

15. Goriainov V, Judd J, Uglov M. Does the Pirani score predict relapse in clubfoot? *J Child Orthop*. 2010;4(5):439-444. https://doi.org/10.1007/s11832-010-0287-1.

16. Rahman A, Shahiduzzaman M, Alam MK, Rahman MS. Percutaneous needle tenotomy for Ponseti technique in the management of Congenital Talipes Equinovarus (CTEV). *Journal of Dhaka Medical College*. 2015;23(1):55-59. https://doi.org/10.3329/jdmc.v23i1.22695.

17. Cosma DI, Vasilescu DE. Ponseti treatment for clubfoot in Romania: A 9-year single-centre experience. *J Pediatr Orthop B*. 2014;23(6):512-516. https://doi.org/10.1097/BPB.0000000000000081.

18. Dobbs MB, Rudzki JR, Purcell DB, et al. Factors predictive of outcome after use of the Ponseti method for the treatment of idiopathic clubfoot. *J Bone Joint Surg Am*. 2004;86(1):22-27. https://doi.org/10.2106/00004623-200401000-00005.

Сведения об авторах

Шерли Деснита Савио* — ординатор отделения ортопедии и травматологии, медицинский факультет Университета Удаяна; больница общего профиля Сангла, Бали, Индонезия. https://orcid.org/0000-0003-4269-1156. E-mail: sherlydsavio@gmail.com.

Эллехорай Хэнс — ординатор отделения ортопедии и травматологии, медицинский факультет Университета Удаяна; больница общего профиля Сангля, Бали, Индонезия. https://orcid.org/0000-0003-4269-1156. E-mail: sherlydsavio@gmail.com.

Маде Агус Макарджана — консультант отделения ортопедии и травматологии, медицинский факультет Университета Удаяна; больница общего профиля Сангля, Бали, Индонезия. https://orcid.org/0000-0002-3953-2798. E-mail: agusmaharjana@yahoo.com.

Sherly Desnita Savio* — MD, Orthopaedic Resident, Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Bali, Indonesia. https://orcid.org/0000-0003-4269-1156. E-mail: sherlydsavio@gmail.com.

Made Agus Maharjana — MD, Consultant of Orthopaedics and Traumatology Department, Faculty of Medicine Udayana University, Sanglah General Hospital, Bali, Indonesia. https://orcid.org/0000-0002-3953-2798. E-mail: agusmaharjana@yahoo.com.