Characterization of six tumor suppressor genes and microsatellite instability in hepatocellular carcinoma in southern African blacks

C. Martins, M.A. Kedda, M.C. Kew*

Subject headings carcinoma, hepatocellular; southern African blacks; cumulative LOH; tumor suppressor genes; microsatellite genomic instability; liver neoplasms

Abstract

AIM To analyse cumulative loss of heterozygosity (LOH) of chromosomal regions and tumor suppressor genes in hepatocellular carcinomas (HCCs) from 20 southern African blacks.

METHODS p53, RB1, BRCA1, BRCA2, WT1 and E-cadherin genes were analysed for LOH, and p53 gene was also analysed for the codon 249 mutation, in tumor and adjacent non-tumorous liver tissues using molecular techniques and 10 polymorphic microsatellite markers.

RESULTS p53 codon 249 mutation was found in 25% of the subjects, as was expected, because many patients were from Mozambique, a country with high aflatoxin B1 exposure. LOH was found at the RB1, BRCA2 and WT1 loci in 20%(4/20) of the HCCs, supporting a possible role of these genes in HCC. No LOH was evident in any of the remaining genes. Reports of mutations of p53 and RB1 genes in combination, described in other populations, were not confirmed in this study. Change in microsatellite repeat number was noted at 9/10 microsatellite loci in different HCCs, and changes at two or more loci were detected in 15%(3/20) of subjects.

CONCLUSION We propose that microsatellite/genomic instability may play a role in the pathogenesis of a subset of HCCs in black Africans.

INTRODUCTION

The evolution of cancer is thought to occur from the stepwise accumulation of genetic aberrations in the same cell. These include loss of function of tumor suppressor genes, activation of proto-oncogenes, faulty DNA mismatch repair, and the integration of viral DNA[12]. Hepatocellular carcinoma (HCC) is a leading cause of death in both Africa and the Far East, resulting in at least 310000 deaths worldwide each year[6]. HCC is multifactorial in etiology and its pathogenesis is complex. The major risk factors involved in the development of the tumor are chronic HBV and HCV infections, cirrhosis and aflatoxin B1 (AFB) exposure[4,5].

Heavy dietary AFB intake is thought to cause a guanine (G) to thymine (T) transversion at the third base of codon 249 of the p53 gene, and for this reason clustering of this point mutation occurs in HCCs from Africa and China[6-8]. In addition, other mutations in, or deletions of, the p53 gene (on chromosome 17p13.1) are found with relatively high frequency in human HCCs in other countries. The functional loss of this tumor suppressor gene, as well as its abnormal expression, have been proposed to play a significant role in HCC development[9] or at least in the development of a subset of HCCs. The majority of p53 alterations reported to date have loss of one allele accompanied by mutations of the second allele[10]. Abnormalities of the p53 gene, such as gene mutation, deletion, or the nuclear accumulation of mutant p53 protein have also been found to correlate with increased allelic loss at the Breast Cancer Susceptibility Gene 1 (BRCA1) locus (17q21). This gene is thought to encode a transcription factor which acts as a tumor suppressor[11]. LOH of the BRCA1 gene in HCC was reported in a Korean study[12]. The Breast Cancer Susceptibility Gene 2 (BRCA2) (13q12-13) product is thought to be a tumor suppressor[13] involved in cellular proliferation and differentiation[14], and may be involved in the development of HCC[15]. LOH at the BRCA2 locus has been reported in HCC[15,16] and it has been suggested that mutations of the BRCA2 gene may be involved in hepatocarcinogenesis[15]. The retinoblastoma (RB1) gene (13q14.2) product (pRB) functions as a cell cycle regulator[17], and its
absence leads to unrestricted cell growth. Although there is no definite evidence that mutations of the RB gene are involved in HCC, LOH of the RB1 gene has been documented in human HCCs\cite{18,12}, LOH of WT1 and 11p13 have been reported in human HCCs\cite{12,16}. WT1 appears to be involved in proliferation, differentiation and apoptosis\cite{19,20}. The product of the E-cadherin (Uvomorulin) gene (16q22.1) is the primary adhesion molecule in epithelium\cite{21}. Loss of function of E-cadherin may lead to decreased cell-cell adhesion\cite{22}, cellular invasive properties\cite{23}. In HCC, multicentric phenotypic changes, and the development of metastases is common\cite{24}. LOH on chromosome 16q development and the formation of intrahepatic epithelium\cite{21}. Loss of function of E-cadherin may have been previously reported to be important in the initiation or progression of HCC\cite{25,26}.

Polymerase chain reaction (PCR) amplification of microsatellites (sequences uniformly distributed throughout the human genome) provides a simple and effective method of rapidly detecting loss of heterozygosity/microsatellite instability (LOH/MI)\cite{27}. Microsatellite instability is defined as the loss or gain of microsatellite repeats at 2 or more loci and is detected by the presence of extra bands or band shifts between tumor and non-tumorous tissue DNA.

In this study, we examined the G-T transversion at codon 249 of the p53 gene, LOH of the p53, RB1, BRCA1, BRCA2, WT1 and E-cadherin genes, and microsatellite instability at 10 loci flanking these genes, in HCC and adjacent non-tumorous liver from 20 southern African blacks.

Materials and Methods

Subjects

The subjects included 20 southern African black men, aged between 20 and 40 years. HCC tissue and matched non-tumorous liver were obtained at necropsy or during surgical resection. DNA was extracted from the tissues using a modified “salting-out” procedure\cite{28}.

HBV markers

The HBV status of the subjects was determined previously using commercially available kits to detect HBV markers in serum (Abbott Labs, Chicago, IL, USA).

LOH and microsatellite instability

Microsatellite instability (MI) and loss of heterozygosity (LOH) studies were carried out by PCR and gel electrophoresis using polymorphic repeat markers (Table 1).

PCR products of the polymorphic loci p53, D17S846 and RB1.20 were resolved on 4% composite agarose gels, while radioactively labeled PCR products of the remaining loci were resolved on polyacrylamide gels, and viewed by autoradiography. Band mobility shifts between tumor and matched non-tumorous liver DNA were scored as a change in allele repeat number. LOH was characterized by the disappearance of one band or a considerable (≥80%) decrease in band intensity in heterozygotes, whilst microsatellite instability was determined by expansion and/or contraction of microsatellite sequences.

PCR for LOH and MI

A standard PCR protocol (primers, Table 1) was followed for the p53, WT1, D1 3S137, RB(1.20), D13S1020, D13S127, D17S855, and D17S846 loci. Each PCR reaction consisted, at final volume, of 100ng DNA, 1U Taq DNA polymerase (Promega, Madison, USA), 1×buffer, 1 mM each dATP, dTTP, dGTP, 0.1 mM dCTP, 0.025 μCi α32 P dCTP, and 50 pmol of each primer; in a total volume of 50 μL, amplification for 30 cycles of denaturation at 94 °C for 30 s, annealing 55 °C for 30 s, extension at 72 °C for 1min, and a final cycle of 72 °C for 10 minutes.

The PCR reaction for the D16S301 and D16S260 loci (primers, Table 1) consisted, at final volume, of 100 ng DNA, 1U Taq DNA Polymerase (Promega, Madison, USA), 1×buffer, 0.1 % gelatin, 1 mM each dATP, dTTP, dGTP, 0.1 mM dCTP, and 0.025 μCi α32 P dCTP, and 50 pmol of each primer; in a total volume of 25 μL, amplification for 25 cycles of denaturation at 94 °C for 1min, annealing at 55 °C for 2 min, extension at 72 °C for 2.5 min, and a final cycle of 72 °C for 10 minutes.

p53 codon 249 mutation

The p53 codon 249 mutation was detected by PCR-RFLP using primer sequences F3 and R3 (Table 1), and confirmed by sequence analysis. The PCR reaction consisted of, at final volume\cite{6}, 100 ng DNA, 2.5U of Taq-DNA Polymerase (Promega), 1×buffer, 1 mM MgCl2, 0.8 mM each of dCTP, dATP, dGTP, dTTP, and 50 pmol of each primer; in a total volume of 50 μL, amplification for 30 cycles of denaturation at 94 °C for 15 s, annealing at 56 °C for 15 s, and extension at 72 °C for 30 s. The 110 bp PCR product was sized on ethidium bromide stained agarose gels against a 100 bp DNA ladder (Promega). AG to T transversion at the third base of codon 249 was detected by the presence or absence of a HaeIII restriction site\cite{6}. All samples shown by digestion to have the codon 249 mutation were sequenced in both directions both upstream and downstream in separate reactions, to confirm the presence of the mutation.
sequencing

All sequencing was carried out using the Sequenase PCR Product Sequencing Kit (United States Biochemical Corp., Cleveland, Ohio), according to the manufacturer’s instructions.

results

HBV status

Seven patients were currently infected with HBV (5 of these were HBsAg-positive; HBeAg-negative; the HBeAg status of the remaining 2 was unknown), and 6 were previously infected (anti-HBc and anti-HBs-positive). The HBV status of the remaining patients was not known (Table 2).

LOH/MI analyses

LOH was noted for the WT1 (1/13 subjects), RB (1/10 subjects), D13S120 (1/20 subjects) and D13S127 (2/14 subjects) loci (Table 2).

The D13S137 and D13S127 loci flank the RB1 gene, while the RB (1.20) repeat sequence is within intron 20 of the same gene. LOH at the D13S127 locus suggests loss of at least a portion of the RB1 gene as shown in 2/14 informative subjects. LOH at RB (1.20) indicated loss of the RB1 gene in a further 1/10 informative subjects. The RB1 gene was thus lost in 3/18 informative subjects (Table 2). LOH at the D13S120 and D13S127 loci flanking the BRC A2- gene was shown in 2/20 informative subjects (Table 2). No LOH was found for any of the remaining loci (Table 2).

Microsatellite/genomic instability (or a gain/loss of microsatellite repeats) was found in 15% (3/20) of subjects.

p53 gene codon 249 analysis

The p53 codon 249 mutation was detected in 25% of the subjects using PCR-RFLP analysis, and confirmed by sequencing. The p53 codon 249 mutation was detected in the tumor tissue of 3 subjects, in the non-tumorous liver of 1 subject, and in both the tumor and non-tumorous liver tissue of 1 subject (Table 2).

Sequencing gel electrophoresis of the p53 gene product revealed a gel artifact, in all subjects with wild-type chromosomes, previously described by Kapelner *et al* (1994).

All tumors were at an advanced stage. No attempt was made to correlate the presence of LOH or microsatellite instability with clinical or other features.

Table 1 PCR primers

Gene/Locus	Primer	Primer sequence	Amplicon	Amplicon length
p53	p53F3	5'GTTGGCTCTGACTGTT-ACCAC	exon 7 spanning codon 249 [6]	110bp
	p53R3	5'CTGGAGTCTTCCTAGTGTGAT		
p53	p53ivs1a	5'GACACTTCTCACTCTACA	ALU sequence within intron 1 of p53 gene [6]	200bp-300bp
	p53ivs1b	5'ACACGACTTTGAGTAAATGCAACGATOCTC		
D13S120	1353L	5'ATGACCTAGAATGATAGCTGGC	(AC)_7 repeat at D13S120 [6]	112bp-136bp
	1353R			
D17S846	FF	5'TGATAGCTCTGACTCTAGAGTGCAG	(GCAGA)_2 repeat at D17S846 [6]	250bp-300bp
	RF			
D17S855	FS	5'GGATGCGCTTTTATAGAAATGTTG	AC repeat at D17S855 [6]	145bp
	RS	5'ATGAGGCACCTAGCTGAGG		
WT1		5'ATGTACCGCTAGGCTATCTC	AC repeat within 3' untranslated sequence of WT33 [51]	100bp-200bp
		5'ATTAAACATCTGGGTCGTTGAT		
RB1	B57	5'CTGGATGCTCTGACTCTAGAGTGCAG	(AC)_7 repeat at RB1 [52]	400bp-600bp
	B103			
D13S127	1341L	5'CAGATAATGCTACTAGCAATG	(AC)_5 repeat at D13S127 [6]	130bp-142bp
	1341R			
D13S137	F	5'TTTCCTCATTTCATTCACATG	(GT)_2 repeat at D13S137 [50]	135bp
	R	5'ACAGAGGGATGAGTCACCTC		
E-cadherin	E-cadF1	5'GATCCTAAGGACAATTAGATGCCTCT	D16S301 locus polymorphic	146bp
	E-cadF1	5'AGCCACTTCCCAACTGGGCTTCCA	AC repeat region [51]	
E-cadherin	E-cadF2	5'GATCCTAAGGACAATTAGATGCCTCT	D16S260 locus polymorphic	234bp
	E-cadR2	5'GATCCTAAGGACAATTAGATGCCTCT	AC repeat region [51]	

Note: WT1: Wilms’ tumor gene; RB1: Retinoblastoma gene; BRCA1: Breast cancer susceptibility gene 1; BRCA2: Breast cancer susceptibility gene 2; bp: base pairs.
DISCUSSION

LOH of the \(p53 \) gene has been reported with relatively high frequency in HCCs from Japan (29%-69%) \(^{[29,30]} \), and also from southern Africa (60%), and Taiwan (39.3%) \(^{[6,31]} \). No LOH was detected for \(p53 \) in this study, although inactivation/reduction of \(p53 \) gene expression or of its product by means other than LOH may have occurred in our population. In a study by Walker et al (1991), \(p53 \) allele loss occurred only in HBV-negative tumors. It thus appeared as if a mechanism other than loss of one \(p53 \) allele and mutation of the second allele was operating in HBV-positive tumors, thereby eliminating fully functional \(p53 \) protein. The obvious mechanism would be the formation of complexes between wild-type \(p53 \) protein and viral protein/s leading to the loss of function of wild-type \(p53 \) protein. Such associations have been well documented in the literature \(^{[32]} \). In our study most samples were HBV positive and a mechanism such as that mentioned above, rather than \(p53 \) gene inactivation by physical mutation and LOH, may have been operating in our tumors to eliminate the function of the \(p53 \) protein. Alternatively, should both alleles of the \(p53 \) gene be mutated in ways other than LOH in our samples, such as point mutations and small deletions (<50bp) \(^{[18]} \), these would not have been detected by the techniques employed in this study.

The \(p53 \) codon 249 mutation was detected in 25% (5/20) subjects. This was expected as the subjects were southern African blacks, some of whom came from Mozambique and other areas where aflatoxin exposure is prevalent. The \(p53 \) codon 249 mutation was found in both tumor and non-tumorous liver tissues of one subject. This could have been caused by contamination of the nontumorous liver with tumor tissue. In another subject the mutation was detected in the non-tumorous liver only. The presence of this mutation has been documented in non-tumorous liver and not in the corresponding tumor tissues \(^{[33]} \), where it was proposed that normal liver subjected to prolonged aflatoxin exposure could gradually accumulate high levels of AGT mutations, whereas the mutation would not necessitate a rily arise in neoplastic populations that were cloned from single progenitor cells resistant to aflatoxin. Unfortunately, insufficient
tissue was available in these two patients for histopathological examination, so we cannot exclude microscopic contamination as a cause of this finding in the two subjects. Two patients with a codon 249 G\(\rightarrow\)T transversion were HBsAg positive, 2 subjects were anti-H Bs/anti-HBc positive and the HBV status of 1 subject was unknown. This concurred with previous studies where mutations at codon 249 were not found in non-HB V-related HCCs\(^{34}\), and is in agreement with previous work which suggests that both aflatoxin exposure and HBV infection are required for this mutation to occur\(^{29,33}\).

A gel artefact generated by formation of a mini hairpin secondary structure in the codon 249 region of the \(p53\) gene in 34 wild type chromosomes, lead to a “missing” G at the third base of codon 249 in the sequence of the sense strand\(^{35}\). In a study by Kapelner et al\((1994)\), as with our samples, Hae-III digest confirmed the presence of the recognition sequence GGCC. However, since there has been no other report of this “G deletion” in such a commonly sequenced region, Kapelner et al\((1994)\) suggested that this artifact may not occur often.

LOH appears to have occurred in 4 subjects at the RB1 (3/18 to 17%), BRCA2 (2/20 or 10%) and WT1 (1/13 or 8%) loci (2 of these subjects had LOH at both the RB1 and BRCA2 genes). Although reduction to homozygosity h as been apparent in certain individuals, and has consistently been scored as LOH, ‘band disappearance’ may also be caused by a gain/loss in microsatellite repeats. We think, however, that this is unlikely to be the case in so many individuls.

LOH of the retinoblastoma gene has been documented in 33% of HCCs from Korea\(^{12}\), 16%-73% of HCCs from Japan\(^{18,30}\)and 27% of HCCs from Australia\(^{30}\). One copy of the RB1 gene was lost in 17% (3/18) of HCCs in this study. Although our sample is small, this frequency differs from the higher percentages found thus far. This may reflect population differences, LOH of the RB1 gene may play a role in a small subset of southern African HCCs. Coincident mutation of the \(p53\) and RB1 genes has been observed in 25%-18\(^{\circ}\), and 12.9%-37\(^{\circ}\) of advanced HCCs in Japan and Australia respectively\(^{16}\). Mutations and LOH in these genes is most frequently observed in advanced stage HCCs, like those investigated here. However, no coincident mutati on of these genes was detected in this study.

LOH of the BRCA2 gene has been reported in 3% of Japanese HCCs\(^{15}\), and in 40% of HCCs from the USA\(^{16}\). In this study one copy of the BRCA2 gene was lost in 10% (2/20) HCCs. This finding supports the notion that BRCA2 may function as a tumor suppressor gene in the liver\(^{15}\), and that it may in some way be involved in the progression of a small number of HCCs. To our knowledge, LOH of the BRCA1 gene has been reported only once, in a study in which 11.5% (3/6) of HCCs showed LOH at this locus\(^{12}\). No LOH was found for this gene in our sample populati on. LOH at 11p13, the region containing the WT1 gene, as well as LOH of the gene itself has been reported in 4%-7% HCCs\(^{12,16}\). Our result of 8% (1/13) LOH agrees with these findings. LOH of the region where the E-cadherin gene is located (16q22) has been reported in 64%-91% of Chinese and Japanese HCCs\(^{25,20}\). No LOH was as found for this gene in our study. Although all the HCCs used in this study were in advanced stages, it was not established whether they were highly undifferentiated. There may be retention of E-cadherin expression in these samples and no loss of intercellular adhesiveness.

We cannot say whether HBV played any role in the chromosome losses reported here\(^{37}\). Cumulative LOH is thought to reflect the sequential development of HCC progression.

LOH of a number of tumor suppressor genes may be important in the advancement of HCC\(^{37}\). Frequent loss of tumor suppressor genes has been reported in Korean HCCs, where 86% HCCs had LOH of 1 gene, and 59% had LOH of 2 - 4 genes\(^{12}\). Piao et al\((1997)\), investigated 10 tumor suppressor genes (-VHL, APC, EXT1, WT1, RB1, \(p53\), BRCA1, nm23, DPC4, DCC). The genes most often lost were \(p53\) (66\%), RB1 (33\%), EXT1 (33\%), and APC (20\%). The genes found to be lost most often in our study were RB1 (17\%) and BRCA2 (10\%). However, as the total LOH of the \(p53\), RB1, BRCA1, BRCA2, WT1 and E-cadherin genes in this study was 20\% (4/20), we conclude that LOH of tumor suppressor genes is infrequent in our HCCs.

Microsatellite/genomic instability is reflected in the expansion/contraction of microsatellite sequences, and is thought to be a product of replication errors\(^{38}\). Microsatellite instability has been considered to be insignificant in HCC development by some authors, while others believe that it may be significant\(^{39}\). To our knowledge, this is the first time microsatellite instability has been looked at in HCCs from a southern African black population. It is important to note that there are differences in allele frequency between our so uthem African Negroid population and the Asian, European and Australian populat i ons, characterized previously at the WT1, D13S137, D13S120,
D13S127, D17S855, D16S301, and D16S260 loci (paper in preparation). Microsatellite instability has been documented in 40% of HCCs from the USA[39], and in 41% of HCCs at two or more loci in a French study[40]. In a Korean study microsatellite instability was detected in 4/10 (40%) HCCs, where each subject showed instability at two or more loci[39]. Of the 9 markers used in their study, 3 showed genetic instability in one or more subjects. In our study 3/20 (15%) HCCs showed instability at two or more loci. Of the 10 loci investigated, 9 showed genetic instability in one or more subjects. Cumulative microsatellite in stability indicates advanced HCC. One of these subjects also had the codon 249 mutation in the p53 gene. We were not able to determine whether joint changes at the loci were necessary for tumor development, or whether they represented independent events in tumor initiation and/or progression. Microsatellite/genomic instability is believed to occur at random and may reflect alteration of the entire genome of the cancer cell[41]. The order of these changes is most likely insignificant. Their cumulative effect however, may be important[42]. We propose that microsatellite/genomic instability may play a role only in a small subset of HCC in our population.

In conclusion, our observations support a possible role of p53, WT1 and BRCA2 genes in the pathogenesis of HCC, and that microsatellite instability appears to be an important factor contributing to HCC development in a subset of our HCCs.

REFERENCES

1 Yee CJ, Roodi N, Verrier CS, Parl FF. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res, 1994;54:1641-1644
2 Fujimoto Y, Kohgo Y. Alteration of genomic structure and/or expression of cancer associated genes in hepatocellular carcinoma. Abstract in English, article in Japanese. Rinsho Byori, 1998;46:9-14
3 Parkin DM, Stijemswrd J, Muir C. Estimates of the worldwide frequency of twelve major cancers. Bull WHO, 1984:62:163-182
4 Harris CC. Hepatocellular carcinogenesis: recent advances and speculations. Cancer Cells, 1990;2:146-148
5 Saito LM, Yamamura TO, Ohbayashi A, Harada H, Katayama T, Kikuchi S, Watanabe Y, Koi S, Onji M, Ohta Y, Choo QL, Houghton M, Kew M, Cameron RG, Alaoui-Jamali MA. Allele-specific PCR analysis of p53 codon 249 in liver tissues from patients infected with the hepatitis B virus. Proc Natl Acad Sci USA, 1992;89:2128-2133
6 Murakami Y, Hayashi K, Hirohashi S, Sekiya T. Altermations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas. Cancer Res, 1991;51:5520-5525
7 Shimoyama Y, Hirohashi S, Hiran Y, Noguchi M, Shimosato Y, Takeichi M, Abe O. Cadherin cell adhesion molecules in human epithelial tissues and carcinomas. Cancer Res, 1989;49:2128-2133
8 Takeichi M, Cadherins: a molecular family important in selective cell cell adhesion. Nature Rev, 1997;59:237-252
9 Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol, 1989;108:2434-2447
10 Nagao T, Inoue S, Yoshimi F, Sodeyama M, Omori Y, Mizuta T, Kawano N, Moriko Y. Postoperative recurrence of hepatocellular carcinoma. Ann Surg, 1990;211:28-33
11 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
12 Evans RM, Hollenberg SM. Zinc fingers: gilt by association. Cell, 1989;52:1-13
13 Menke AL, Shvarts A, Riteco N, Park S, Watanabe Y, Choo QL, Hirohashi S, Koi S, Onji M, Ohta Y, Choo QL, Houghton M, Kew M, Cameron RG, Alaoui-Jamali MA. Allele-specific PCR analysis of p53 codon 249 in liver tissues from patients infected with the hepatitis B virus. Proc Natl Acad Sci USA, 1992;89:2128-2133
14 Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nuc Acids Res, 1988;16:1215
15 Oda T, Tsuda H, Scarpas A, Sakamoto M, Hirohashi S. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res, 1992;52:6358-6364
16 Fujiimoto Y, Tatsumi M, Masuda T, Kakehi Y, Hirohashi S, Koi S, Onji M, Ohta Y, Choo QL, Houghton M, Kew M, Cameron RG, Alaoui-Jamali MA. Allele-specific PCR analysis of p53 codon 249 AGT transversion in liver tissues from patients infected with the hepatitis B virus. Proc Natl Acad Sci USA, 1992;89:2128-2133
17 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
18 Evans RM, Hollenberg SM. Zinc fingers: gilt by association. Cell, 1989;52:1-13
19 Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nuc Acids Res, 1988;16:1215
20 Oda T, Tsuda H, Scarpas A, Sakamoto M, Hirohashi S. p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res, 1992;52:6358-6364
21 Fujiimoto Y, Tatsumi M, Masuda T, Kakehi Y, Hirohashi S, Koi S, Onji M, Ohta Y, Choo QL, Houghton M, Kew M, Cameron RG, Alaoui-Jamali MA. Allele-specific PCR analysis of p53 codon 249 AGT transversion in liver tissues from patients infected with the hepatitis B virus. Proc Natl Acad Sci USA, 1992;89:2128-2133
22 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
23 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
24 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
25 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
26 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
27 Slagle BL, Zhou YZ, Birchmeier W, Scorsone KA. Deletion of the E-cadherin gene in hepatoblastoma. Cancer Res, 1991;51:49-54
34 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science, 1991;253:49-53
35 Kaplaner SN, Turner RT, Sarkar G, Bolander ME. Deletion mutation can be an unsuspected gel artifact. Biotechniques, 1994;17:64-66
36 Walker GJ, Hayward NK, Falvey S, Graham W, Cooksley WGE. Loss of somatic heterozygosity in hepatocellular carcinoma. Cancer Res, 1991;51:4367-4370
37 Yumoto Y, Hanafusa T, Hada H, Morita T, Ooguchi S, Shinji N, Mitani T, Hamaya K, Koide N, Tsuji T. Loss of heterozygosity and analysis of mutation of p53 in hepatocellular carcinoma. J Gastroenterol Hepatol, 1995;10:179-185
38 Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, Horn K. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res, 1995;55:1002-1005
39 Kazachkov Y, Yoffe B, Khaoustov VI, Solomon H, Klintmalm GB, Tabor E. Microsatellite instability in human hepatocellular carcinoma: relationship to p53 abnormalities. Liver, 1998;18:156-161
40 Salvucci M, Lemoine A, Azoulay D, Sebag M, Bismuth H, Reynolds M, May E, Debuire B. Frequent microsatellite instability in human hepatocellular carcinoma: relationship to p53 abnormalities. Liver, 1998;18:156-161
41 Li C, Larsson C, Futreal A, Lancaster J, Pheban C, Aspenblad U, Sundelin B, Liu Y, Ekman P, Auer G, Bergberger US. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene, 1999;13:2681-2685
42 Butel JS, Lee TH, Slagle BL. Is the DNA repair system involved in hepatitis B virus mediated hepatocellular carcinogenesis? Trends Microbiol, 1996;4:119-124
43 Futreal PA, Barrett JC, Wiseman RW. An ALU polymorphism intragenic to the TP53 gene. Nuc Acids Res, 1991;19:6977
44 Bowcock A, Osborne Lawrence S, Barnes R, Chakravarti A, Washinton S, Dunn C. Microsatellite polymorphism linkage map of human chromosome 13q. Genomics, 1993;15:376-386
45 Fletjer WL, Kukowska-latallo JF, Kioussis S, Chandrasakharappa SC, King SE, Chamberlain JS. Tetranucleotide repeat polymorphism at D17S846 maps within 40kb of GAS at 17q12.22. Hum Molec Genet, 1993;2:1
46 Anderson LA, Friedman L, Osborne Lawrence S, Lynch E, Weissenbach J, Bowcock A, King MC. High density genetic map of the BRCA1 region of chromosome 17q12 q21. Genomics, 1993;17:618-623
47 Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Douglass EC, Housman DE. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilm's tumor. Cell, 1990;61:1257-1269
48 Henson JW, Schnitiker BL, Corea KM, von Deimling A, Fassbender F, Xu HJ, Benedict WF, Yandell DW, Louis DN. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol, 1994;36:714-721
49 Yandell DW, Dryja TP. Detection of DNA sequence polymorphisms by enzymatic amplification and direct genomic sequencing. Am J Hum Genet, 1989;45:547-555
50 Petrukhin KE, Speer MC, Cayanis E, Bonaldo MF, Tantravahi U, Soares MB, Fischer SG, Warburton D, Gilliam C, Ott J. A microsatellite genetic linkage map of human chromosome 13. Genomics, 1993;15:76-85
51 Thompson AD, Shen Y, Holman K, Sutherland GR, Callen DF, Richards RL. Isolation and characterization of AC repeats in D17S267 loci. Genomics, 1992;13:402-408
52 Weber JL, Kwiecik AE, May PE. Dinucleotide repeat polymorphisms at the D16S260, D16S261, D16S265, D16S266, and D16S267 loci. Nuc Acids Res, 1990;18:4034

Edited by MA Jing-Yun