Search for B Meson Decays to ωK^{*0}

K. Abe,10 I. Adachi,10 H. Aihiara,52 K. Arinstein,1 T. Aso,56 V. Aulchenko,1 T. Auhev,22,16 T. Aziz,48 S. Bahinipati,3 A. M. Bakht,47 V. Balagura,19 Y. Ban,38 S. Banerjee,48 E. Barberio,25 A. Bay,22 I. Bedny,1 K. Belous,15 V. Bhardwaj,37 U. Bitenc,17 S. Blyth,29 A. Bondar,1 A. Bozek,31 M. Bračko,24,17 J. Brodzicka,10 T. E. Browder,9 M.-C. Chang,4 P. Chang,30 Y. Chao,30 A. Chen,28 K.-F. Chen,30 W. T. Chen,28 B. G. Cheon,8 C.-C. Chiang,30 R. Chistov,16 I.-S. Cho,58 S.-K. Choi,7 Y. Choi,46 Y. K. Choi,46 S. Cole,47 J. Dalseno,25 M. Danilov,16 A. Das,48 M. Dash,37 J. Dragic,10 A. Drutskoy,3 S. Eidelman,15 D. Epifanov,1 S. Fratina,17 H. Fujii,10 M. Fujikawa,27 N. Gabyneveh,1 A. Garmash,40 A. Go,28 G. Goldzweig,3 B. Golob,23,17 M. Grosse Perdikamp,12,41 H. Guler,9 H. Ha,19 J. Haba,10 K. Hara,26 T. Har,36 Y. Hasegawa,45 N. C. Hastings,52 K. Hayasaka,26 H. Hayashii,27 M. Hazumi,10 D. Heffner,36 T. Higuchi,10 L. Hinz,22 H. Hoedlmoser,9 T. Hohuke,26 Y. Horii,51 Y. Hoshi,50 K. Hoshina,55 S. Hou,28 W.-S. Hou,30 Y. B. Hsiung,30 H. J. Hyun,21 Y. Igarashi,10 T. Iijima,26 K. Ikado,26 K. Inami,26 A. Ishikawa,42 H. Ishino,53 R. Itoh,10 M. Iwabuchi,6 I. Iwasaki,52 Y. Iwasaki,10 C. Jacoby,22 M. Jones,9 N. J. Joshi,38 M. Kaga,26 D. H. Kah,21 H. Kaji,26 S. Kajiwara,36 H. Kakuno,52 J. H. Kang,58 P. Kapusta,31 S. U. Kataoka,27 N. Katayama,10 H. Kawai,2 T. Kawasanshi,33 A. Kibayashi,10 H. Kichimi,10 H. J. Kim,21 H. O. Kim,40 J. H. Kim,46 S. K. Kim,44 Y. J. Kim,6 K. Kinoshita,3 S. Korpar,24,17 Y. Kozakai,3 P. Križan,14,17 P. Krokovny,10 R. Kumar,37 E. Kurihara,2 A. Kusaka,52 A. Kuzmin,1 Y.-J. Kwon,58 J. S. Lange,45 G. Leder,14 J. Lee,24 J. S. Lee,45 M. J. Lee,14 S. E. Lee,14 T. Leskai,31 J. Li,9 A. Limosi,25 S.-W. Lin,30 Y. Liu,6 D. Liventsev,16 J. MacNaughton,10 G. Majumder,48 F. Mandl,14 D. Marlow,20 T. Matsumura,26 A. Matyja,31 S. McOnie,47 T. Medvedeva,16 Y. Mikami,51 W. Mitaloff,14 K. Miyabayashi,27 H. Miyake,36 H. Miyata,33 Y. Miyazaki,20 R. Mizuk,16 G. R. Moloney,25 T. Mori,26 J. Mueller,39 A. Murakami,42 T. Nagamine,51 Y. Nagasaka,11 Y. Nakahama,52 I. Nakamura,10 E. Nakano,35 M. Nakao,10 H. Nakayama,52 H. Nakazawa,28 Z. Naidupatkar,1 H. Neicli,50 S. Nishida,10 K. Nishimura,9 Y. Nishio,26 I. Nishizawa,54 O. Nitoh,55 S. Noguchi,27 T. Nozaki,10 A. Ogawa,42 S. Ogawa,49 T. Ohshima,26 S. Okuno,18 S. L. Olsen,9 S. Ono,53 W. Ostrowicz,31 H. Ozaki,10 P. Pakhlov,16 G. Pakhlov,16 H. Palko,31 C. W. Park,46 H. Park,21 K. S. Park,46 N. Parslow,47 L. S. Peak,47 M. Pernicka,14 R. Pestotnik,17 M. Peters,9 L. E. Piilonen,57 A. Poluektov,1 J. Rorie,9 M. Rozanska,31 H. Sahoo,9 Y. Sakai,10 H. Sakamoto,20 H. Sakaue,35 T. R. Sarangi,8 N. Satoyama,45 K. Sayeed,3 T. Schietinger,22 O. Schneider,22 P. Schönmeier,51 J. Schümann,10 C. Schwanda,14 A. J. Schwartz,3 R. Seidl,12,41 A. Sekiya,27 K. Senyo,35 M. E. Sevior,25 L. Shang,12 M. Shapkin,15 C. P. Shen,13 H. Shibuya,49 S. Shinomiya,36 J.-G. Shiu,30 B. Shwartz,1 J. B. Singh,37 A. Sokolov,15 E. Solovieva,16 A. Somov,3 S. Stanič,34 M. Starić,17 J. Stypula,31 A. Sugiyama,42 K. Sumisawa,10 T. Sumiyoshi,54 S. Suzuki,42 S. Y. Suzuki,10 O. Tajima,10 F. Takasaki,10 K. Tamai,14 N. Tamura,33 M. Tanaka,10 N. Taniguchi,26 G. N. Taylor,25 Y. Teramoto,35 I. Tikhomirov,16 K. Trabelsi,10 Y. F. Tse,25 T. Tsuboyama,10 K. Uchida,9 Y. Uchida,6 S. Uehara,10 K. Ueno,30 T. Uglov,16 Y. Unno,8 S. Uno,10 P. Urquijo,25 Y. Ushiroda,10 Y. Usos,1 G. Varner,9 K. E. Varvell,37 K. Vervink,22 S. Villa,22 A. Vinokurova,1 C. C. Wang,30 C. H. Wang,29 J. Wang,38 M.-Z. Wang,30 P. Wang,13 K. X. Wang,13 M. Watanabe,33 Y. Watanabe,18 R. Wedd,25 J. Wicht,22 L. Widhalm,14 J. Wieczynski,31 E. Won,19 B. D. Yabsley,47 A. Yamaguchi,51 H. Yamamoto,51 M. Yamaoka,26 Y. Yamashita,32 M. Yamauchi,10 C. Z. Yuan,13 Y. Yusa,57 C. C. Zhang,13 L. M. Zhang,43 Z. P. Zhang,43 V. Zhihlic,1 V. Zhulanov,1 A. Zupanc,17 and N. Zwahlen22

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4Department of Physics, Fu Jen Catholic University, Taipei
5Justus-Liebig-Universität Gießen, Gießen
6The Graduate University for Advanced Studies, Hayama
7Gyeongsang National University, Chinju
8Hanyang University, Seoul
9University of Hawaii, Honolulu, Hawaii 96822
10High Energy Accelerator Research Organization (KEK), Tsukuba
11Hiroshima Institute of Technology, Hiroshima
We report a search for the charmless vector-vector decay \(B^0 \to \omega K^* \) with \(520 \times 10^6 \) \(B \overline{B} \) pairs collected with the Belle detector at the KEKB \(e^+e^- \) collider. We measure the branching fraction in units of \(10^{-6} \):

\[
B(B^0 \to \omega K^*) = 1.2^{+0.9}_{-0.8} \pm 0.2 \left(< 2.7 \right),
\]

where the first error is statistical, the second systematic, and the upper limit is at the 90% confidence level.

Recently, \(b \to s \bar{q}q \) penguin decays have received much attention in the literature. These decays proceed via an internal loop diagram and thus are potentially sensitive to new types of propagators and couplings. Such decays have sometimes yielded unexpected results, e.g., the \(b \to s \bar{u}u \) decay \(B^0 \to K^+\pi^- \) exhibits substantial direct \(CP \) violation \cite{1,2}, and the \(b \to s \bar{s}s \) decay \(B \to \phi K^* \) exhibits large transverse polarization \cite{3,4}. This latter observation implies that non-factorizable contributions to the decay amplitude play a significant role. Here we search for the \(b \to s \bar{d}d \) decay \(B^0 \to \omega K^{*0} \) (Fig. 1), which has not yet been observed \cite{5,6}. The expected standard model (SM) rate is small \cite{7}, and observing an enhancement above this rate could indicate new physics. Furthermore, \(B^0 \to \omega K^{*0} \) decays can be useful for determining the Cabibbo-Kobayashi-Maskawa (CKM) angle \(\phi_3 (= \gamma) \) \cite{8}.

This analysis uses 479 fb\(^{-1}\) of data containing \(520 \times 10^6 \)
$B \bar{B}$ pairs. The data was collected with the Belle detector \cite{10} at the KEKB \cite{11} e^+e^- asymmetric-energy (3.5 GeV on 8.0 GeV) collider with a center-of-mass (CM) energy at the $\Upsilon(4S)$ resonance. The production rates of $B^0\bar{B}^0$ and B^+B^- pairs are assumed to be equal.

The Belle detector is a large-solid-angle spectrometer. It consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect $K\pi$ pairs. The data was collected with the Belle detector \cite{15} and define signal regions $-0.10 \text{ GeV} < \Delta E < 0.06 \text{ GeV}$ and $5.27 \text{ GeV} c^2 < M_{bc} < 5.29 \text{ GeV} c^2$.

The dominant source of background arises from random combinations of particles in continuum $e^+e^- \rightarrow q\bar{q}$ events ($q = u, d, s, c$). To discriminate spherical-like $B\bar{B}$ events from jet-like $q\bar{q}$ events, we use event-shape variables, specifically, 16 modified Fox-Wolfram moments combined into a Fisher discriminant, F_{13}. Additional discrimination is provided by θ_B, the polar angle in the CM frame between the B direction and the negative direction of the positron beam axis. True B mesons follow a $1 - \cos^2 \theta_B$ distribution, while candidates in the continuum are approximately uniformly distributed in $\cos \theta_B$.

The displacement along the beam axis between the signal B vertex and that of the other B, Δz, is also used. This variable provides discrimination against continuum events, whose tracks typically have a common vertex.

Further discrimination against continuum background is achieved through the use of b-flavor tagging information. The flavor of the B meson accompanying the signal candidate is identified via its decay products: charged leptons, kaons, and Λs. The Belle tagging algorithm \cite{14} yields the flavor of the tagged meson, q ($= \pm 1$), and a flavor-tagging quality factor, r. The latter ranges from zero for no flavor discrimination to one for unambiguous flavor assignment. For signal events, q is usually consistent with the flavor opposite to that of the signal B, while it is random for continuum events. Thus, the quantity $q r F_B$ is used to separate signal and continuum events, where F_B is the flavor of the signal B as indicated by the charge of the final state kaon: $F_B = +1(-1)$ for $B^0 (\bar{B}^0)$.

We use Monte Carlo (MC) simulated signal \cite{15} and data sideband events (defined as $5.20 \text{ GeV} c^2 < M_{bc} < 5.26 \text{ GeV} c^2$, $|\Delta E| < 0.2 \text{ GeV}$) to form F and obtain the $\cos \theta_B$, Δz, and $q r F_B$ distributions. Our signal MC is generated to be 50% longitudinally polarized ($f_L = 0.5$). Probability density functions (PDFs) derived from F, the $\cos \theta_B$ distributions, and the Δz distributions are multiplied to form signal (L_S) and continuum background ($L_{\bar{q}q}$) likelihood functions. These are combined to form a likelihood ratio $R = L_S / (L_S + L_{\bar{q}q})$. We divide the events into six bins of $q r F_B$ and determine the optimum R selection criteria for each bin by maximizing

\[R = \frac{L_S}{L_S + L_{\bar{q}q}} \]

FIG. 1: Penguin diagram for $B^0 \rightarrow \omega K^{*0}$ decays.
components of the \(q \) for event ground (b decay background). We choose the best candidate in an event to be the one that minimizes the quantity preserves 50% of the signal while rejecting 99% of background events estimated to be in the signal region. We refer that 8.5% of signal decays have at least one particle included unbinned ML fit to \(\Delta E \) (1).

![Figure 2: Projections of \(\Delta E \) (a), \(M_{bc} \) (b), \(M_{\pi\pi} \) (c) and \(M_{K\pi} \) (d) for events in the signal region of the other three variables. The solid curve is the fit function, the dashed curve is the \(B^0 \rightarrow \omega K^{*0} \) component, the dot-dashed curve is the \(B^0 \rightarrow \omega K^{*+}\pi^- \) component, and the dotted curve is the sum of the \(q\bar{q} \), \(b \rightarrow c \) and \(b \rightarrow s, u, d \) components.

The likelihood function for event \(i \) is defined as

\[
\mathcal{L} = \frac{e^{-(\sum Y_j)}}{N!} \prod_{i=1}^{N} \sum_{j} Y_j P_j^i,
\]

where \(Y_j \) is the yield of events from component \(j \) and \(N \) is the total number of events in the sample.

The results of the fit are shown in Fig. 2. We find strong peaking in \(\Delta E \), \(M_{bc} \) and \(M_{\pi\pi} \), which have shapes consistent with those observed in MC simulations. However, we do not observe a strong \(K^{*0} \) resonance. Instead, we observe a high density of events in the upper sideband of the \(M_{K\pi} \) distribution, which the fit assigns to non-resonant decays. The branching fraction is evalu-
Calculate the data/MC efficiency ratio for the
520
ε
dici
cyber of
ated using the following quantities:
Y
ωKπ
floating the non-resonant
tions by
SCF and
The sources of systematic error are listed in Table I. The errors on the PDF shapes are obtained by varying
PDF shape calibration 6
Shape of
PDF shape calibration 1
The effects of higher
resonances by calcu-
lated in the positive branching fraction, we use a fourth-order Chebyshev polynomial. In
The Breit-Wigner shape is obtained in the same way as for the four-dimensional fit. For the non-resonant component, we find the shape of the signal + non-resonant and b → s, u, d components are identical to those used in the four-dimensional fit, with the exception that here, we do not model the true-signal and SCF events separately.

To verify the large non-resonant contribution, we fit the background-subtracted
M
Kπ
distribution to extract the signal yield. To obtain this distribution, we bin the data in
M
Kπ from [0.75, 1.25] GeV/c² and, for each bin, perform a two-dimensional extended unbinned ML fit to
ΔE and
M
bc. The likelihood function consists of three components: signal + non-resonant,
q
q + b → c, and
b → s, u, d. We use a single PDF to describe the signal + non-resonant component, since their individual shapes are almost identical in
ΔE and
M
bc. A single PDF is also used to model
q
q + b → c, since in several of the bins, the statistics are too low to model them independently. The
ΔE and
M
bc PDFs for the signal + non-resonant and
b → s, u, d components are identical to those used in the four-dimensional fit, with the exception that here, we do not model the true-signal and SCF events separately. For the
q
q + b → c PDF, we use a first order Chebyshev polynomial for
ΔE and an ARGUS function for
M
bc. We fix the shapes of the signal + non-resonant and
b → s, u, d components from MC simulation. In the final fit, we fix the fraction of
b → s, u, d, while allowing the other two normalizations, and the
ΔE and
M
bc shapes of the
q
q + b → c PDF, to vary.

The results are shown in Fig. 3. We perform a χ² fit to this background-subtracted
M
Kπ distribution. The Breit-Wigner shape is obtained in the same way as for the four-dimensional fit. For the non-resonant component, we use a fourth-order Chebyshev polynomial. In

Type	Fractional error (%)
Track reconstruction efficiency	4.80
π₀ reconstruction efficiency	4.00
K⁺π⁻ identification efficiency	1.33
ΔE PDF shape calibration	3.46
M	
bc PDF shape calibration	2.12
Shape of	
PDFs	3.45
Shape of true-signal PDF	0.69
Shape of	
PDFs	9.02
Fraction of	
b → s, u, d background	2.59
SCF fraction	5.66
Possible fitting bias	1.50
Effect of higher	
resonances |

| N
M
Kπ | 1.31 |
| Total | 16.1 |

of the likelihood function in the positive branching fraction region. The systematic error is included by convolving the likelihood function with a Gaussian having a standard deviation equal to the systematic uncertainty. The statistical significance of the signal, defined as \(\sqrt{-2 \ln \mathcal{L}/\mathcal{L}_{\text{max}}} \), where \(\mathcal{L}_{\text{max}} \) (\(\mathcal{L} \)) is the value of the likelihood function when \(Y_{\omega K^{*0}} \) is allowed to vary (set to 0), is 1.6σ.

To verify the large non-resonant contribution, we fit the background-subtracted
M
Kπ distribution to extract the signal yield. To obtain this distribution, we bin the data in
M
Kπ from [0.75, 1.25] GeV/c² and, for each bin, perform a two-dimensional extended unbinned ML fit to
ΔE and
M
bc. The likelihood function consists of three components: signal + non-resonant,
q
q + b → c, and
b → s, u, d. We use a single PDF to describe the signal + non-resonant component, since their individual shapes are almost identical in
ΔE and
M
bc. A single PDF is also used to model
q
q + b → c, since in several of the bins, the statistics are too low to model them independently. The
ΔE and
M
bc PDFs for the signal + non-resonant and
b → s, u, d components are identical to those used in the four-dimensional fit, with the exception that here, we do not model the true-signal and SCF events separately. For the
q
q + b → c PDF, we use a first order Chebyshev polynomial for
ΔE and an ARGUS function for
M
bc. We fix the shapes of the signal + non-resonant and
b → s, u, d components from MC simulation. In the final fit, we fix the fraction of
b → s, u, d, while allowing the other two normalizations, and the
ΔE and
M
bc shapes of the
q
q + b → c PDF, to vary.

The results are shown in Fig. 3. We perform a χ² fit to this background-subtracted
M
Kπ distribution. The Breit-Wigner shape is obtained in the same way as for the four-dimensional fit. For the non-resonant component, we use a fourth-order Chebyshev polynomial. In

FIG. 3: Signal yields obtained from the
ΔE-
M
bc distribution in bins of
M
Kπ for events in the \(\omega \) signal region. The solid curve is the fit function, the dashed curve is the \(B^0 \rightarrow \omega K^{*0} \) component, and the dot-dashed curve is the \(B^0 \rightarrow \omega K^+\pi^- \) component.
the final fit, we float the non-resonant shape parameters along with the fractional signal yield. We obtain $Y_{\omega K^0}/(Y_{\omega K^0}+Y_{\omega K^+}) = (9.3\pm10.6)\%$, which is very similar to the result of the four-dimensional fit: $(10.3^{+7.7}_{-7.0})\%$.

In summary, we present a measurement of the branching fraction of $B^0 \to \omega K^{*0}$ decays using $520 \times 10^6 B\bar{B}$ pairs. The statistical significance of our signal yield is only 1.6σ, and thus we set an upper limit of $B < 2.7 \times 10^{-6}$ at the 90% C.L. Our result is in agreement with theoretical estimates [7]. The limit obtained is below the previous constraint from BaBar [6] by a factor of 1.6. In addition, we observe a large rate for non-resonant $B^0 \to \omega K^+ \pi^-$ decays.

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and Super-SINET network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China and the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No. 10575109 and IHEP-U-503; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea, the CHEP SRC program and Basic Research program (grant No. R01-2005-000-10089-0) of the Korea Science and Engineering Foundation, and the Pure Basic Research Group program of the Korea Research Foundation; the Polish State Committee for Scientific Research; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] Belle Collaboration, Y. Chao et al., Phys. Rev. Lett. 93, 191802 (2004).
[2] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 131801 (2004); BaBar Collaboration, B. Aubert et al., hep-ex/0709016 Submitted to Phys. Rev. Lett.
[3] Belle Collaboration, K.F. Chen et al., Phys. Rev. Lett. 91, 201801 (2003); Belle Collaboration, K.F. Chen et al., Phys. Rev. Lett. 94, 221804 (2005).
[4] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171802 (2003); BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 231804 (2004); BaBar Collaboration, B. Aubert et al., arXiv:0705.1798 submitted to Phys. Rev. Lett.
[5] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 71, 031103 (2005).
[6] BaBar Collaboration, B. Aubert et al., Phys. Rev. D 74, 051102 (2006).
[7] G. Kramer and W.F. Palmer, Phys. Rev. D 45, 193 (1992); G. Kramer and W.F. Palmer, Phys. Rev. D 46, 2960 (1992); A. Ali, G. Kramer, and C.-D. Lü, Phys. Rev. D 58, 094009 (1998); A. Ali, G. Kramer, and C.-D. Lü, Phys. Rev. D 59, 014005 (1999); Y.H. Chen et al., Phys. Rev. D 60, 094014 (1999); H. Y. Cheng and K.C. Yang, Phys. Lett. B 511, 40 (2001).
[8] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 50, 531 (1983).
[9] D. Atwood and A. Soni, Phys. Rev. D 59, 013007 (1999); D. Atwood and A. Soni, Phys. Rev. D 65, 073018 (2002); H.-W. Huang et al., Phys. Rev. D 73, 014011 (2006).
[10] Belle Collaboration, A. Abashian et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
[11] S. Kurokawa and E. Kikutani, Nucl. Instrum. Meth. Phys. Res., Sect. A 499, 1 (2003), and other papers in this volume.
[12] Charge-conjugate decays are included unless explicitly stated otherwise.
[13] The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in this Letter are described in Belle Collaboration, S. H. Lee et al., Phys. Rev. Lett. 91, 261801 (2003).
[14] H. Kakuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 516 (2004).
[15] Evtgen generator. D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001). The detector response is simulated with GEANT, R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[16] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[17] T. Skwarnicki, Ph.D. Thesis, Institute for Nuclear Physics, Krakow 1986; DESY Internal Report, DESY F31-86-02 (1986).
[18] Kernel Estimation in High-Energy Physics, K. Cranmer, Comput. Phys. Commun. 136 (2001) 198207, hep-ex/0011057.
[19] ARGUS Collaboration, H. Albrecth et al., Phys. Lett. B 241, 278 (1990).