Stationary solutions of the Vlasov-Fokker-Planck equation: existence, characterization and phase-transition

M.H. Duonga,*, J. Tugautb

aMathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
bUniversité Jean Monnet, Institut Camille Jordan, 23, rue du docteur Paul Michelon, CS 82301, 42023 Saint-Étienne Cedex 2, France.

Abstract
In this paper, we study the set of stationary solutions of the Vlasov-Fokker-Planck (VFP) equation. This equation describes the time evolution of the probability distribution of a particle moving under the influence of a double-well potential, an interaction potential, a friction force and a stochastic force. We prove, under suitable assumptions, that the VFP equation does not have a unique stationary solution and that there exists a phase transition. Our study relies on the recent results by Tugaut and coauthors regarding the McKean-Vlasov equation.

Keywords:
Invariant measure, Vlasov-Fokker-Planck equation, McKean-Vlasov equation, stochastic processes.

2000 MSC: 60G10, 35Q83, 35Q84.

1. Introduction
1.1. The Vlasov-Fokker-Planck equation
We consider the following Vlasov-Fokker-Planck (VFP) equation,
\[\partial_t \rho = - \text{div}_q \left(\rho \frac{p}{m} \right) + \text{div}_p \left(\rho (\nabla_q V + \nabla_q \psi * \rho + \gamma \frac{p}{m}) \right) + \gamma kT \Delta_p \rho. \tag{1} \]

*Corresponding author.
Email addresses: m.h.duong@warwick.ac.uk (M.H. Duong), tugaut@math.cnrs.fr (J. Tugaut)

Preprint submitted to *** May 14, 2015
In this equation, the spatial domain is \mathbb{R}^{2d} with coordinates $(q,p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$. The unknown is a time-dependent probability measure $\rho: [0,T] \to \mathcal{P}(\mathbb{R}^{2d})$. Subscripts as in div_q and Δ_p indicate that the differential operators act only on those variables. The functions $V = V(q)$ and $\psi = \psi(q)$ are given. The convolution $\psi * \rho$ is defined by $(\psi * \rho)(q) = \int_{\mathbb{R}^{2d}} \psi(q-q')\rho(q',p') \, dq'\,dp'$. Finally γ, k and T are positive constants.

Equation (1) is the forward Kolmogorov equation of the following stochastic differential equation (SDE),

\begin{align*}
 dQ(t) &= P(t) \, dt, \\
 dP(t) &= -\nabla V(Q(t)) \, dt - \nabla \psi \ast \rho_t(Q(t)) \, dt - \gamma \frac{P}{m} \, dt + \sqrt{2\gamma kT} \, dW(t). \quad (2)
\end{align*}

This SDE models the movement of a particle with mass m under a fixed potential V, an interaction potential ψ, a friction force (the drift term $-\gamma \frac{P}{m} \, dt$) and a stochastic forcing described by the d-dimensional Wiener measures W. In this model, γ is the friction coefficient, k is the Boltzmann constant and T is the absolute temperature.

Eq. (1) and system (2) play an important role in applied sciences in particular in statistical mechanics. For instance, they are used as a simplified model for chemical reactions, or as a model for particles interacting through Coulomb, gravitational, or volume exclusion forces, see e.g., [Kra40, NPT84, BD95]. Eq. (1) (and related models) has been studied intensively in the literature by many authors from various points of view, see e.g. [Deg86, BD95, BGM10, DPZ13, DPZ14, Duo15] and references therein. In particular, invariant probabilities of Eq. (1) has been investigated in [Dre87, BGM10] (see also [Duo15]). However, in these papers, the potential V is assumed to be either bounded or globally Lipschitz or convex. As a result, there is a unique stationary solution. In this paper, we show that when the potential V is unbounded, non-convex and non-Lipschitz, of which a double-well potential is a typical example, non-uniqueness and phase transition can occur. Herein, we characterise the set of stationary solutions in such a case. Our study relies on the recent results by Tugaut and co-authors about the McKean-Vlasov diffusion by showing that the set of stationary solutions of the Vlasov-Fokker-Planck equation is related to that of the McKean-Vlasov equation.
1.2. Normalization

We first write (1) in dimensionless form. By setting

\[q =: L \tilde{q}, \quad p =: \frac{mL}{\tau} \tilde{p}, \quad t =: \tau \tilde{t} \]

and

\[V(q) =: \frac{mL^2}{\tau^2} \tilde{V}(\tilde{q}), \quad \psi(q) =: \frac{mL^2}{\tau^2} \tilde{\psi}(\tilde{q}), \quad \rho(p, q, t) =: \frac{\tau^d}{mdL^2d} \tilde{\rho}(\tilde{p}, \tilde{q}, \tilde{t}), \]

where \(L \) is the characteristic length scale, and \(\tau := \frac{mL}{\gamma} \) is the relaxation time of the particle dynamics. Then the dimensionless form of the Vlasov-Fokker-Planck equation is (after leaving out all the tilde)

\[\partial_t \rho = - \text{div}_q \left(\rho p \right) + \text{div}_p \left(\rho (\nabla_q V + \nabla_q \psi \ast \rho + p) \right) + \varepsilon \Delta_p \rho. \quad (3) \]

where \(\varepsilon := kT \tau^2 m^{-1} L^{-2} \) is the dimensionless diffusion coefficient.

In this paper, we are interested in stationary solutions of Eq. (3), i.e., solutions of the following equation

\[K\rho = 0, \quad (4) \]

where

\[K[\mu](\rho) := - \text{div}_q \left(\rho p \right) + \text{div}_p \left(\rho (\nabla_q V + \nabla_q \psi \ast \mu + p) \right) + \varepsilon \Delta_p \rho \quad (5) \]

for given \(\mu \in L^1(\mathbb{R}^d) \). Note that for a given \(\mu \), the operator \(K[\mu](\rho) \) is linear in \(\rho \). This can be seen as a linearised operator of \(K\rho \). Under the assumption that \(V \) and \(\psi \) are smooths, the linearised operator is hypo-elliptic.

1.3. Organisation of the paper

The rest of the paper is organised as follows. In Section 2, we state our assumptions and provide a characterization via an implicit equation for a solution of Eq. (4). In Section 3 we present main results of the paper which prove the existence, (non-) uniqueness and phase transition properties of such stationary solutions.
2. Characterization of invariant probabilities

We now characterize solutions of Eq. (4).

First of all, we consider the following assumption:

Assumption 1 (V-1): V is a smooth function and there exists $m \in \mathbb{N}^*$ and $C_{2m} > 0$ such that $\lim_{||x|| \to +\infty} \frac{V(x)}{||x||^m} = C_{2m}$.

Assumption (V-2): The equation $\nabla V(x) = 0$ admits a finite number of solution. We do not specify anything about the nature of these critical points. However, the wells will be denoted by a_0.

Assumption (V-3): $V(x) \geq C_4 ||x||^4 - C_2 ||x||^2$ for all $x \in \mathbb{R}^d$ with $C_2, C_4 > 0$. $||.||$ denotes the euclidian norm.

Assumption (V-4): $\lim_{||x|| \to +\infty} \text{Hess } V(x) = +\infty$ and $\text{Hess } V(x) > 0$ for all $x \notin K$ where K is a compact of \mathbb{R}^d which contains all the critical points of V.

Assumption (ψ-1): There exists an even polynomial function G on \mathbb{R} such that $\psi(x) = G(||x||)$. And, deg$(G) =: 2n \geq 2$.

Assumption (ψ-2): G and G'' are convex.

Assumption (ψ-3): $G(0) = 0$.

The simplest example (most famous in the literature) is that $V(x) = x^4 - x^2$ (i.e., V is a double-well potential) and $\psi = \frac{\alpha}{2} x^2$ for some α (i.e., ψ is a quadratic interaction).

Proposition 1. Suppose that Assumption 1 holds. If there exists a solution $\rho_\infty \in L^1 \cap L^\infty$ of Eq. (4) then

$$\rho_\infty(q,p) = Z_\varepsilon^{-1} \exp \left[-\frac{1}{\varepsilon} \left(\frac{p^2}{2} + V(q) + \psi * \rho_\infty(q) - \psi * \rho_\infty(0) \right) \right], \quad (6)$$

where Z_ε is the normalizing constant

$$Z_\varepsilon = \int_{\mathbb{R}^{2d}} \exp \left[-\frac{1}{\varepsilon} \left(\frac{p^2}{2} + V(q) + \psi * \rho_\infty(q) - \psi * \rho_\infty(0) \right) \right] dq dp. \quad (7)$$

Conversely any measure whose density satisfies (6) is invariant for (3).

Proof. The idea of the proof has appeared in [Dre87], where the authors study the Vlasov-Fokker-Planck equation but with different scaling and assumptions. The proof is divided into two steps.
Step 1. We first consider the linearised equation

\[K(\rho) := K[\mu](\rho) = 0, \]

(8)

where \(\mu \in L^1(\mathbb{R}^d) \) is a given. We prove the following assertion: Define

\[A := \left\{ v : \mathbb{R}^d \to \mathbb{R} \middle| v(\cdot, p) \in C^1(\mathbb{R}^d) \forall p \in \mathbb{R}^d; v(q, \cdot) \in C^2(\mathbb{R}^d) \forall q \in \mathbb{R}^d; \text{ and} \right\}. \]

Then the linearised equation (8) has a unique solution in \(A \) given by

\[u(q, p) := C \exp \left(-\frac{1}{\varepsilon} \left(\frac{1}{2} p^2 + V(q) + \psi * \mu(q) \right) \right), \]

(9)

where \(C \) is the normalisation constant so that \(\|u\|_1 = 1 \).

Indeed, since \(-\text{div}_q(vp + \varepsilon \nabla_p V) + \Delta_p f \in L^2 \) and \(\Delta_p f \in L^2 \), we have

\[-\text{div}_q(vp + \varepsilon \nabla_p (v \nabla_q V + \nabla_q \psi * \mu)) \]

\[= u^{1/2} \left[-\text{div}_q(f p) + \text{div}_p(f (\nabla_q V + \nabla_p \psi * \mu)) \right], \]

and

\[\text{div}_p \left(vp + \varepsilon \nabla_p v \right) = \text{div}_p \left(vp + \varepsilon \nabla_p (u u^{-1/2} f) \right) \]

\[= \text{div}_p \left(vp + \varepsilon (u \nabla_p (u^{-1/2} f) + \nabla_p u \cdot u^{-1/2} f) \right) \]

\[= \varepsilon \text{div}_p \left(u \nabla_p (u^{-1/2} f) \right). \]

Define \(Qf := -u^{-1/2} K(u^{1/2} f) = -u^{-1/2} K(v) \). Then from the above calculation, we get

\[Qf = -[-\text{div}_q(f p) + \text{div}_p(f (\nabla_q V + \nabla_p \psi * \mu))] - \varepsilon u^{-1/2} \text{div}_p \left(u \nabla_p (u^{-1/2} f) \right). \]
Therefore, by multiplying by \(f \) and integrating over \(\mathbb{R}^2 \), we obtain

\[
\langle Qf, f \rangle_{L^2} = \frac{1}{2} \int_{\mathbb{R}^2} \left[\text{div}_p(pf^2) - \text{div}_p(f^2(\nabla_qV + \nabla_p\psi \ast \mu)) \right] dqdp \\
- \varepsilon \int_{\mathbb{R}^2} u^{-1/2} \text{div}_p \left(u \nabla_p(u^{-1/2}f) \right) f dqdp \\
= \frac{1}{2} \int_{\mathbb{R}^2} \left[\text{div}_p(pf^2) - \text{div}_p(f^2(\nabla_qV + \nabla_p\psi \ast \mu)) \right] dqdp \\
- \varepsilon \int_{\mathbb{R}^2} \text{div}_p \left(u^{-1/2}[u \nabla_p(u^{-1/2}f)] \right) dqdp + \varepsilon \int_{\mathbb{R}^2} u \left(\nabla_p(u^{-1/2}f) \right)^2 dqdp \\
= \varepsilon \int_{\mathbb{R}^2} u \left(\nabla_p(u^{-1/2}f) \right)^2 dqdp.
\]

Since \(Qf = 0 \), it follows that \(\nabla_p(u^{-1/2}f) = 0 \), i.e., \(u^{-1/2}f = g(q) \) for some function \(g \). Hence \(v = u^{1/2}f = u \cdot g(q) \), and \(0 = K(v) = -up \cdot \nabla_qg(q) \). It implies that \(\nabla_qg(q) = 0 \), i.e., \(g \) is a constant. Since \(\|v\|_1 = 1 \), we obtain that \(g = 1 \), i.e. \(v = u \). In other words, Eq. (8) has \(u \) as a unique solution in \(A \) and \(\|u\|_1 = 1 \).

Step 2. Suppose that \(\rho_\infty \in L^1 \cap L^\infty \) is a solution of Eq. (4). Therefore, \(\rho_\infty \) solves the equation \(L[\rho_\infty](\nu) = 0 \). According to **Step 1**, this equation has a unique solution given by

\[
\tilde{\nu} = \frac{1}{Z} \exp \left[-\frac{1}{\varepsilon^2} \left(\frac{p^2}{2} + V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right].
\]

Hence \(\tilde{\nu} = \rho_\infty \), i.e., \(\rho_\infty \) satisfies (6). The reverse assertion is obvious. \(\square \)

3. **Main results**

In this section, we assume that Assumption 1 is fulfilled.

Theorem 1. We consider a measure \(\rho_\infty \) on \(\mathbb{R}^d \times \mathbb{R}^d \). It is an invariant probability for (3) if and only if \(q \mapsto \int_{\mathbb{R}^d} \rho_\infty(q,p)dp \) is an invariant probability of

\[
dX(t) = -\nabla V(Q(t)) dt - \nabla \psi \ast \mu_t(X(t)) dt + \sqrt{2\varepsilon} dW(t),
\]

(10)

Proof. Denote by \(\tilde{\rho}_\infty \) the first marginal of \(\rho_\infty \), i.e., \(\tilde{\rho}_\infty(q) = \int_{\mathbb{R}^d} \rho_\infty(q,p)dp \). \(\square \)
Then (6) becomes

$$\rho_\infty(q, p) = \frac{\exp \left[-\frac{1}{\varepsilon} \left(\frac{p^2}{2} + V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right]}{\int_{\mathbb{R}^d} \exp \left[-\frac{1}{\varepsilon} \left(\frac{p^2}{2} + V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right] dq dp}$$

$$= \frac{e^{-\frac{1}{\varepsilon} \frac{p^2}{2}} \times \exp \left[-\frac{1}{\varepsilon} \left(V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right]}{\int_{\mathbb{R}^d} e^{-\frac{1}{\varepsilon} \frac{p^2}{2}} dp \times \int_{\mathbb{R}^d} \exp \left[-\frac{1}{\varepsilon} \left(V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right] dq}$$

(11)

It follows that

$$\hat{\rho}_\infty(q) = \int_{\mathbb{R}^d} \rho_\infty(q, p) dp = \frac{\exp \left[-\frac{1}{\varepsilon} \left(V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right]}{\int_{\mathbb{R}^d} \exp \left[-\frac{1}{\varepsilon} \left(V(q) + \psi \ast \rho_\infty(q) - \psi \ast \rho_\infty(0) \right) \right] dq}.$$

Note that $\hat{\rho}_\infty$ is the stationary measure of the McKean-Vlasov SDE

$$dX(t) = -\nabla V(Q(t)) dt - \nabla \psi \ast \mu_t(X(t)) dt + \sqrt{2\varepsilon} dW(t), \quad (12)$$

where μ_t is the law of $X(t)$. The forward Kolmogorov equation associated to the McKean-Vlasov SDE is given by

$$\partial_t \mu_t = \text{div}[\mu_t(\nabla V + \nabla \psi \ast \mu_t)] + \varepsilon \Delta \mu_t. \quad (13)$$

Thus, the following statements hold true:

Proposition 2. For any $\varepsilon > 0$, there exists an invariant probability.

This is a consequence of Proposition 3.1 in [Tug14b].

Theorem 2. If both V and ψ are symmetric, there exists a symmetric invariant probability.

This is a consequence of Theorem 4.5 in [HT10a].
Proposition 3. Here, $d = 1$. We assume that the interacting potential ψ is quadratic: $\psi(x) := \frac{\alpha}{2} x^2$. Let a_0 be a critical point of V such that

$$\alpha > 2 \sup_{x \neq a_0} \frac{V(a_0) - V(x)}{(a_0 - x)^2}. \quad (14)$$

Thus, for all $\delta \in]0; 1[$, there exists $\varepsilon_0 > 0$ such that for all $\varepsilon \leq \varepsilon_0$, Diffusion (3) admits an invariant probability ρ_∞ satisfying

$$\left| \int \int q \rho_\infty(q,p) dqd\rho - a_0 + \frac{V^{(3)}(a_0)}{4V''(a_0)(\alpha + V''(a_0))} \varepsilon \right| \leq \delta \varepsilon .$$

This is a consequence of Proposition 1.2 in [Tug14a].

Theorem 3. Here, $d = 1$. We assume that

$$V(x) = -\frac{|V''(0)|}{2} x^2 + \sum_{p=2}^q \frac{|V^{(2p)}(0)|}{(2p)!} x^{2p} \text{ with } \deg(V) =: 2q. \quad (15)$$

And, $\psi(x) := \frac{\alpha}{2} x^2$.

Thus, there exists a $\varepsilon_c > 0$ such that:

- For all $\varepsilon \geq \varepsilon_c$, Diffusion (3) admits a unique invariant probability, which is symmetric.

- For all $\varepsilon < \varepsilon_c$, Diffusion (3) admits exactly three invariant probabilities.

Moreover, ε_c is the unique solution of the equation

$$\int_{\mathbb{R}^+} \left(4y^2 - \frac{1}{2\alpha} \right) e^{(-|V''(0)|-\alpha)4y^2 - \sum_{p=2}^q \frac{2x^{p-1} |V^{(2p)}(0)|}{(2p)!} 2^{2p} y^{2p}} dy = 0. \quad (16)$$

This is a consequence of Theorem 2.1 in [Tug14a].

Proposition 4. Here, $d = 1$. We assume that ψ is quadratic: $\psi(x) := \frac{\alpha}{2} x^2$. Thus, for any $\alpha \geq 0$, there exists a critical value $\varepsilon_0(\alpha)$ such that Diffusion (3) admits a unique invariant probability provided that $\varepsilon > \varepsilon_0(\alpha)$.

8
This is a consequence of Proposition 2.4 in [Tug14a].

Theorem 4. Let \(a_0\) be a point where \(V\) admits a local minimum such that

\[
V(x) + F(x - a_0) > V(a_0) \quad \text{for all} \quad x \neq a_0. \tag{17}
\]

Then, for all \(\kappa > 0\) small enough, there exists \(\varepsilon_0 > 0\) such that \(\forall \varepsilon \in]0; \varepsilon_0[\), the diffusion (3) admits a stationary measure \(\rho_\infty\) satisfying

\[
\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} ||q - a_0||^{2n} \rho_\infty(q,p) dq dp \leq \kappa^{2n}.
\]

This is a consequence of Theorem 2.3 in [Tug14b].

More generally, all the results in [HT10a, HT10b, HT12, McK66, McK67, Tug10, Tug11, Tug14a, Tug14b] hold.

Acknowledgements

(M.H.D) The work of this paper has started when both the authors participated in the workshop “Analytic approaches to scaling limits for random system” held in the Hausdorff Research Institute for Mathematics (HIM) in January 2015. M.H. D would like to thank the HIM for supporting his stay at the HIM.

(J.T.) I would like to thank Andr Schlichting who invited me to the workshop where I have met M.H. Duong. Velika hvala Marini za sve. Également, un très grand merci à Manue, à Sandra et à Virginie pour tout.

References

[BD95] F. Bouchut and J. Dolbeault On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. *Differential and Integral Equations*, 8(3):487 514, 1995.

[BGM10] F. Bolley and A. Guillin and F. Marieu Trend to equilibrium and particle approximation for a weakly self-consistent Vlasov-Fokker-Planck equation. *ESAIM: Mathematical Modelling and Numerical Analysis*, 44:867–884, 2010.
[Deg86] Degond, P. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. *Ann. Sci. École Norm. Sup.*, 4: 519–542, 1986.

[Dre87] K. Dressler Stationary solutions of the Vlasov-Fokker-Planck equation. *Math. Meth. Appl. Sci.*, 9:169–176, 2010.

[Duo15] M. H. Duong Long time behaviour and particle approximation of a generalized Vlasov dynamic. *Submitted*, 2015. http://arxiv.org/abs/1501.02914.

[DPZ13] M. H. Duong and M. A. Peletier and J. Zimmer GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles. *Nonlinearity*, 26: 2951–2971, 2013.

[DPZ14] M. H. Duong and M. A. Peletier and J. Zimmer Conservative-dissipative approximation schemes for a generalized Kramers equation. *Math. Methods Appl. Sci.*, 37(16):2517–2540, 2014.

[HT10a] S. Herrmann and J. Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes. *Stochastic Process. Appl.*, 120(7):1215–1246, 2010.

[HT10b] S. Herrmann and J. Tugaut: Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit. *Electron. J. Probab.*, 15:2087–2116, 2010.

[HT12] S. Herrmann and J. Tugaut: Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit. *ESAIM Probability and statistics*, 2012.

[Kra40] Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. *Physica*, 7(4):284–304, 1940.

[McK66] H. P. McKean, Jr. A class of Markov processes associated with nonlinear parabolic equations. *Proc. Nat. Acad. Sci. U.S.A.*, 56:1907–1911, 1966.

[McK67] H. P. McKean, Jr. Propagation of chaos for a class of nonlinear parabolic equations. In *Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967)*, pages 41–57. Air Force Office Sci. Res., Arlington, Va., 1967.
[NPT84] H. Neunzert and Pulvirenti, M. and Triolo, L. On the Vlasov-Fokker-Planck equation. *Math. Meth. Appl. Sci.*, 6:525–538, 1984.

[Tug10] J. Tugaut. *Processus autostabilisants dans un paysage multi-puits.* available on http://tel.archives-ouvertes.fr/tel-00573044/fr/ PhD thesis, Université Henri Poincaré, Nancy, 2010.

[Tug11] J. Tugaut. McKean-Vlasov diffusions: from the asynchronization to the synchronization. *Comptes Rendus Mathématiques*, Volume 349, Issues 17–18, pp. 983–986, 2011.

[Tug14a] J. Tugaut. Phase transitions of McKean-Vlasov processes in double-wells landscape. *Stochastics 86 (2014), no. 2, 257–284*

[Tug14b] J. Tugaut. Self-stabilizing processes in multi-wells landscape in \mathbb{R}^d - Invariant probabilities. *J. Theoret. Probab. 27 (2014), no. 1, 57–79*