Diversity and Damage Assessment of Snail in Cultivated Crops of Neelabut Bagh Azad Jammu and Kashmir (Pakistan)

Abu ul hassan faiz
Women University of Azad Jammu and Kashmir, Bagh, AJK, Pakistan, sabulhussan@gmail.com

Lariab Zahra Faiz
Women University of Azad Jammu and Kashmir, Bagh, AJK, Pakistan

Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm

Part of the Agricultural Economics Commons

Recommended Citation
faiz, A. h., & Faiz, L. Z. (2020). Diversity and Damage Assessment of Snail in Cultivated Crops of Neelabut Bagh Azad Jammu and Kashmir (Pakistan), Journal of Bioresource Management, 7 (4). DOI: 10.35691/JBM.0202.0157

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
DIVERSITY AND DAMAGE ASSESSMENT OF SNAIL IN CULTIVATED CROPS OF NEELABUT BAGH AZAD JAMMU AND KASHMIR (PAKISTAN)

ABU UL HASSAN FAIZ*, AND LARIAB ZAHRA FAIZ1

1Women University of Azad Jammu and Kashmir, Bagh, AJK, Pakistan

*Corresponding author: sabulhussan@gmail.com

ABSTRACT

The present study was conducted to study diversity and damage assessment of snails in cultivated crops and ornamental plants. The study revealed two types of snail species Macrochlamys indica and Indoplanorbis exustus in the study area. The sampled plots of tomato, Karam, Palak, Dhania, Maize, Fresh beans, Sunflowers, Aloe Vera, Loki, Pumpkin, Bitter guard, Kheera, Kachmach, Hund were taken. The study revealed that at Neelabut, when 39 plants of Fresh beans were examined out of them 18 were found damaged and the damage percentage was 46%, 38 plants of sunflowers were examined and 17 (45%) were found damaged, 85 plants of tomato were examined and 11 (12.94%) were found damaged, 82 plants of Karam were examined and 12 (15%) were found damaged, 62 plants of Palak were examined and 16 (25%) were found damaged, 51 plants of maize were examined and 15 (29%) were found damaged. The snail is pest in the study area and measures should be taken to manage them through ecofriendly programs.

Key words: Snail, diversity, crops, pest.

INTRODUCTION

Snails are found at an altitude of up to 1830 meters and preferred habitats are chalk and limestone fields, grapevine gardens bushes, and moist parks with daily temperatures but not heavy rains or direct sunlight. Snails are also largely deficient in the food supply in deciduous and mixed forests in coniferous forests. They prefer to live on alkaline, calcareous soils. An open and semi-open-area species is Helix pomatia. Some snails inhabit anthropogenic sites such as urban parks, orchards, cemeteries, garbage heap communities, and various sections of wastelands, in addition to natural and woodland edge areas, riparian woods, and meadows in river valleys and around bodies of water (Stepczak, 1976).

Snails are the micro-arthropods environmental and prey indicators and are important for the functioning of the ecosystem (Coleman et al., 2007). Snails in some parts of the world are agricultural pests, human health pests, and cause significant declines in biodiversity (Yeung and Hayes, 2018). Crop pests control field crops, fruits, cereals, ornamental plants, maize, roots, and leaves in agriculture (El-Okda, 1981). A lot of studies on invertebrates are present in Azad Jammu and Kashmir such as diversity of invertebrate (Hassan et al., 2018, Faiz et al., 2019) but the present study was carried out to determine the population density and damage assessment of land snail.

MATERIAL AND METHODS

Study Area

The Dhirkot subdivision is situated in the southwest of the Bagh District, a town in the Bagh District, Azad Kashmir, Pakistan. It is 25 km away from Kohala, 63 km away from Muzaffarabad, and 132 km away from Islamabad. Having latitudes
north of 34.0357° or 34° 2' 8.5' and longitudes east of 73.5798 ° or 73 ° 34 '47.2. The Dhirkot subdivision is located at an elevation of 1629 meters (5344 ft.). The weather of this region is a subtropical moist and moderately humid, by extreme rainfall in July (95.5 mm) and August (89.0 mm respectively. Due to its position at high altitudes, the weather remains good in summer. June and July are the hottest months, with average temperatures of 25 °C and 24 °C correspondingly. The high temperature often increases to 29 °C. January and February are the coldest months, and average temperature is 5.4°C.

Surveyed Sites

The sample plots of crops, ornamental plants and wild vegetation at sites Narwal, Dhirkot, and Neelabut were selected. The snail was sampled by visual encounter method and for damage assessment one plot on each site were selected. The damage assessment of snail was done by following formula:

\[
\text{Damage assessment} = \left(\frac{\text{infested plants}}{\text{Total plants}} \right) \times 100
\]

RESULTS AND DISCUSSION

The study documents two types of snail *Macrochlamys Indica* and *Indoplanorbis exustus* in three study sites. Snail damage assessment in ornamental plants, *Aloe arbadensian*, *Tagetes*, *Cestrum nocturnum*, *Viola oderata* is given in Table 1.

The damage in vegetables tomato (*Solanum lycopersicum*), Karam (*Brassica erucra*), Palak (*Spinacia oleracea*) and Dhania (*Coriandrum sativum*) though a total number of 60 plants were examined among them 17 were found damaged and 43 undamaged (Table 2).

Name of Plants	Botanical Name	TNP	D plants	UD Plants	% age
Aloe Vera	Aloe arbadensian	10	5	5	50%
Marie gold	Tagetes	24	3	21	12.5%
Raat ki rani	Cestrum nocturnum	13	1	12	8%
Gul e Banafsha	Viola oderata	8	6	2	75%
Total		**55**	**15**	**40**	**27.3%**
Aloe Vera	Aloe Barbadensian	22	5	17	23%
Marie gold	Tagetes	20	3	17	15%
Raat ki rani	Cestrum nocturnum	10	6	4	60%
Gul e Banafsha	Viola oderata	8	6	2	75%
Total		**60**	**20**	**40**	**33.3%**
Aloe Vera	Aloe Barbadensian	14	2	12	14%
Marie gold	Tagetes	23	8	15	35%
Raat ki rani	Cestrum nocturnum	10	6	4	60%
Gul e Banafsha	Viola oderata	6	2	4	33%
Total		**53**	**18**	**35**	**34.0%**

TNP (Total number of plants) *D* (Damaged plants) *UD* (Undamaged plants)
Table 2: Damage assessment in vegetable crops

Plants	Botanical Name	TNP	D Plants	UD plants	% age
Tomato	Solanum lycopersicum	19	3	16	15%
Karam	Brassica eruca	18	5	13	27%
Palak	Spinacia oleracea	13	7	6	53%
Dhania	Coriandrum sativum	10	2	8	20%
Total		60	17	43	28.3%

Plants	Botanical Name	TNP	D Plants	UD plants	% age
Tomato	Solanum lycopersicum	12	0	12	87%
Karam	Brassica eruca	10	2	8	20%
Palak	Spinacia oleracea	8	3	5	37%
Dhania	Coriandrum sativum	10	0	10	0%
Total		40	05	35	12.5%

Plants	Botanical Name	TNP	D Plants	UD plants	% age
Tomato	Solanum lycopersicum	25	4	21	84%
Karam	Brassica eruca	15	2	13	13%
Palak	Spinacia oleracea	10	1	9	10%
Dhania	Coriandrum sativum	15	3	12	20%
Total		65	10	55	15.4%

Note: TNP (Total number of plants) D (Damaged plants) UD (Undamaged plants)

Table 3: Damage assessment in fodder crops

Name of Plants	Botanical Name	TNP	D plants	UD plants	% age
Maize	Zea mays	12	1	11	8%
Fresh Bean	Phaseolus vulgaris	10	3	7	30%
Sun Flower	Helianthus	8	6	2	75%
Musturd	Brassica nigra	5	0	5	0%
Total		35	10	25	28.6%

Name of Plants	Botanical Name	TNP	D plants	UD plants	% age
Maize	Zea mays	10	3	7	30%
Fresh Bean	Phaseolus vulgaris	2	2	0	100%
Sun Flower	Helianthus	2	1	1	50%
Musturd	Brassica nigra	6	2	4	33%
Total		20	8	12	40%

Name of Plants	Botanical Name	TNP	D plants	UD plants	% age
Maize	Zea mays	7	5	2	71%
Fresh Bean	Phaseolus vulgaris	9	6	3	66%
Sun Flower	Helianthus	8	4	4	50%
Musturd	Brassica nigra	4	2	2	50%
Total		28	17	11	60.7%

Note: TNP (Total number of plants) D (Damaged plants) UD (Undamaged plants)
Table 4: Damage assessment in fruit

Name of Plants	Botanical Name	TNP	D plants	UD plants	% age
Pumpkin	*Cucurbita maxima*	10	2	8	20%
Loki	*Bottle guard*	14	8	6	57%
Bitter guard	*Momrdica Charantia*	10	4	6	40%
Kheera	*Cucumussativus*	11	6	5	54%
Total		45	20	25	**44.4%**
Pumpkin	*Cucurbita maxima*	12	4	8	33%
Loki	*Bottle guard*	23	7	16	30%
Bitter guard	*Momrdica Charantia*	12	8	4	66%
Kheera	*Cucumussativus*	6	4	2	66%
Total		53	23	30	**43.4%**

TNP (Total number of plants) D (Damaged plants) UD (Undamaged plants)

The damage in Maize (*Zea mays*), Fresh beans (*Phaseolus vulgaris*), Sunflower (*Helianthus*) and Mustard (*Brassica nigra*), though a total number of 163 plants were examined among them 61 were found damaged total percentage of damaged plants were 37.42% (Table 3). Though a total number of 247 plants (Wines) were examined among them 100 were found damaged total percentage of damaged plants were 40.48% (Table 4).

DISCUSSION

Our study reports two type of snail exist in the study area and similar type of reports exist in Indian Kashmir (Allaie et al., 2019). Type one is horn type snail (*Macrochlamys Indica*), (*Indoplanorbis exustus*). The distribution of these two species has been reported by (Allaie et al., 2019) in central Kashmir at Srinagar. The study site NeelaBut is at distance of 40 km from Srinagar. The present study describe the pest nature of snail of vegetable crops, ornamental plants and coniferous forest while the pest nature of snail have been described by a number of studies (Jagtap et al., 2000).

Our study reports pest nature of snail in *Cucurbita maxima, Bottle guard, Momrdica Charantia, Cucumus sativus* whereas similar reports of damage to vegetable have been reported by various authors (Kaur et al., 2014). Our study reports pest nature of snail in ornamental plants, *Aloe arbadensian, Tagetes, Cestrum nocturnum, Viola oderata* whereas similar reports of damage to ornamental plant nurseries, fodder crops have been reported by (Shilpa et al., 2012) in his PH.D research work.

Our study reports pest nature of snail in fodder crops *Zea mays, Phaseolus vulgaris, Helianthus, Brassica nigra* whereas similar reports of damage to ornamental plant nurseries, fodder crops have been reported by (Shilpa et al., 2012) in his PH.D research work. Our results indicate that nature and extent of damage goes increase with increase in population density of snail and among two species of snail the horn type of snail (*Macrochlamys Indica*), is dominant over the species.
(Indoplanorbis exustus). The horn type of snail (Macrochlamys Indica) prefer shady areas with moist places while the (Indoplanorbis exustus) prefer drier habitat sunny areas. Both two species are found to exist in some study sites but in co-existence sites only (Indoplanorbis exustus) was dominant and found in abundance while the horn type of snail (Macrochlamys Indica) was too much less in numbers in such areas.

CONCLUSION

The present study is base line study that provide diversity and damage caused by snail in Azad Jammu and Kashmir. The present study documents, damage caused by snail which is unnoticed and need attention to control by ecofriendly method.

REFERENCES

Coleman RA, Ramchunder SJ, Moody AJ, Foggo A (2007). An enzyme in snail saliva induces herbivore-resistance in a marine alga. Funct Ecol., 21(1): 101-106.

Faiz AH, Faiz LZ, Khan FM (2018). Biodiversity of insects in some areas of District Rawalakot, Azad Jammu and Kashmir (Pakistan). J Biores Manag., 5(2): 8-15.

Hassan MU, Bagaturov MF, Tariq G, Faiz LZ (2019). Diversity of Moths in some selected areas of district Bagh, Azad Jammu & Kashmir (Pakistan). J Biores Manag., 6(1): 3.

El-Okda MK (1981). Locomotion activity and infestation abundance of certain terrestrial mollusca in fruit orchard, Alexandria province, ARE. Proceedings of 4th Arab Pesticides Conference, Tanta University, Egypt, 2: 279-28.

Allaie IM, Shahardar RA, Prasad A, Shahana RT, Wani ZA (2019). Prevalence of snails in central Kashmir, India. J. Entomol. Zool., 7(3): 1018-1020.

Jagtap AB (2000). Snails and slugs problem of crops and their integrated management. In: Upadhyay R K, Mulerje K G and Dubey D P (ed) IPM system in Agriculture. Key Animal Pests. Published by Aditya Book Pvt. Ltd., New Delhi, India.7: Pp 309-22.

Kaur Navjot, Harjit Kaur. (2014). The nature and extent of damage by the brown slug, filicaulis alte ferussac, to some vegetable crops in Barnala and Sangrur districts, Punjab. Int j adv., pp: 771-781.

Shilpa P (2012) "Snail and slug biodiversity, damage inflicted in ornamental plant nurseries, adjoining vegetable/fodder crop fields and their management." PhD diss., Punjab Agricultural University, Ludhiana.

Stępczak K. (1976). Distribution, abundance and protection of the Roman snail (Helix pomatia) in Poland. Wyd. Nauk. UAM, Poznań, Ser. Zool., 3: 1-68.

Yeung NW, Bustamente KM, Sischo DR, Hayes HA (2018). Rediscovery of Newcombia canaliculata (Baldwin 1895) (Gastropoda: Achatinellidae) and Laminella venusta (Mighels, 1845) (Gastropoda: Amastridae). Bishop Mus Occ Pap., 123:31-36.