The involvement of HLA-DRB1*, DQA1*, DQB1* and complement C4A Loci in diagnosing systemic lupus erythematosus among Tunisians

Khaled Ayed, MD; Yousr Gorgi, MD; Saloua Ayed-Jendoubi, FACP; Rafika Bardi, MD

Background: Genetic susceptibility to systemic lupus erythematosus (SLE) varies among populations. Few data exist on associations of HLA class II and class III alleles of the major histocompatibility complex (MHC) and susceptibility to SLE in Tunisians.

Patients and Methods: We compared HLA-DRB1*, DQA1, DQB1* and C4 allotypes in 62 Tunisian SLE patients and 100 matched controls. We also assessed the association of specific alleles with distinct autoantibody profiles in SLE patients.

Results: HLA-DRB1*0301, -DRB1*1501 and C4AQO alleles were increased in the SLE patients, while the frequencies of HLA-DRB1*04 and DQB1*03 were decreased. HLA-DQA1*0102 and DQA1*0501 were significantly increased in the SLE patients. HLA-DQB1*0201 and DQB1*0602 were more frequent in the SLE patients. C4AQ0 and C4B*Q0 were increased in frequency in the SLE patients compared to the controls, but only C4A null was significantly increased. Eleven of 17 SLE patients with the C4 null allele were HLA-DRB1*0301 positive. Three of 16 SLE patients with HLA-DRB1*1501 were associated with HLA-DQB1*0501 rather than DQB1*0602, as has been reported in European SLE patients.

Conclusions: The MHC class II alleles (DRB1, DQA1, DQB1) and C4 null associations noted in other ethnic groups are also found in Tunisians, suggesting shared susceptibility factors across ethnic lines in predisposition to SLE. In contrast to other ethnic groups, MHC class II alleles are not associated with the presence of specific autoantibodies in Tunisian SLE patients.

Key words: Systemic lupus erythematosus, major histocompatibility complex, HLA antigens, complement C4A, autoantibodies, Tunisia

Systemic lupus erythematosus (SLE) is a complex autoimmune disease of unknown aetiology with a high incidence among females, particularly during childbearing years.1,30 Susceptibility factors include environmental exposures such as UV light and drugs and, in genetically predisposed individuals, viral infections.2 The genes involved in SLE have not yet been identified with certainty, but most studies implicate genes within the major histocompatibility complex (MHC).3 There are multiple studies of the HLA-DR and DQ alleles in SLE patients in different ethnic populations. In white patients with SLE the most consistent findings have been increases in HLA-DR2, DR3 or in both. More recent studies using DNA typing have identified disease-associated haplotypes and have extended these initial associations to other racial and ethnic groups. The HLA-DR2 association with SLE is accounted for by the HLA-DRB1*1501-DQA1*0102-DQB1*0602 haplotype, which has been reported in Central European Caucasians,3 Chinese,4 Japanese,5 and African-Americans.6,7 The HLA-DR3 haplotype bearing HLA-DRB1*0301-DQA1*0501-DQB1*0201 was observed in Central and Western Europeans, and North Americans.7,9 However, in the majority of other ethnic groups studied, no MHC class II associations have been found.10-12 Isolated complement deficiencies also predispose to SLE. Thus, C4A null alleles or gene deletions have been associated with SLE in Caucasians13-15 South Africans,16 Japanese,5,25 Koreans7 and African-Americans.18 Linkage disequilibrium of HLA-DRB1*1501 and DRB1*0301 with specific DQA1, DQB1 and C4 genes has complicated determinations of which loci were more important in disease predisposition. To better address this, HLA associations must be examined in other ethnic groups where linkage disequilibrium among HLA-DR, DQ and C4 alleles may not be so strong. More recently, it has been determined that class II alleles show stronger associations with the presence of specific autoantibodies than with SLE itself. These autoantibody subsets are themselves associated with specific clinical manifestations. Therefore, genetic factors are likely to play a determining role in the appearance of SLE.9,14,19 Tunisians comprise a group of largely Arabic and Berber genetic admixture. It is impossible to distinguish between...
we assessed the association of specific alleles with distinct predisposition to SLE in this ethnic group. We examined autoantibody profiles in SLE patients and matched local controls. In addition, we assessed the association of specific alleles with distinct autoantibody profiles in SLE patients.

Patients and Methods

Sixty-two Tunisian patients with SLE (57 females [92%], 5 males [8%]) attending Charles Nicolle Hospital, Tunis, met four or more revised criteria of the American College of Rheumatology (ACR) for the classification of SLE.20 Healthy control subjects were 100 Tunisian individuals selected at random.

Peripheral blood was collected on EDTA. Genomic DNA was isolated using a previously published salting-out method or by phenol/chloroform extraction. HLA class II genes were typed and subtyped by a polymerase chain reaction/sequence-specific primer (PCR/SSP) method. Patients and controls were typed for HLA-DRB1, DQA1, and DQB1 alleles by PCR/SSP Dynal kits (Dynal, France) following the manufacturer recommendations. C4 allotyped and C4 null alleles were determined using carboxypeptidase and neuraminidase-treated plasma, run on agarose gel electrophoresis and subjected to immunofixation.27 Allotype assignment was carried out as recommended by the XI International Complement Genetics Workshop21 Anti-Ro (SS-A), La (SS-B), Sm and RNP antibodies were determined by Elisa assays (Sanofi-Pasteur, France). Anti-double-stranded (ds) DNA antibodies were determined by indirect immunofluorescence against Crithidia luciliae.

Frequencies of DRB1, DQA1 and DQB1 alleles in the 62 patients with SLE were compared with those in 100 healthy unrelated Tunisian controls. Relative risk (as calculated by Woolf29) and the statistical significance of the association between SLE and genetic markers were assessed by the chi-square test with Yates' correction. A corrected P value was calculated by multiplying the P value by the number of alleles at the respective locus. Linkage disequilibrium was tested by the method of Mittal.29

Discussion

SLE has a worldwide distribution, a predilection for young females and a heterogeneous clinical expression.22 HLA region genes have been implicated in susceptibility to the disease.24 In Caucasians, the association is mainly with DR3 (DRB1*0301) and DR2 (DRB1*1501) or both. However, in black Americans associations have been variously described with DR3, both DR2 and DR3 and DR7, though these have not been confirmed in other studies. The present study was conducted to determine the associations of MHC class II alleles and the prevalence of C4 deficiencies in a cohort of 62 patients with SLE. Our results confirm that SLE in Tunisians is associated with DRB1*0301 and its linked alleles (DQA1*0501-DQB1*0201 haplotype), through linkage disequilibrium. The C4 null phenotype (especially a C4A null allotype) was also significantly increased in SLE patients (due to linkage disequilibrium with DR3) as has been observed in other racial and ethnic groups.13,14 However, a disassociation of these two risk factors (DR3 and C4 null phenotype) has been variously described with DR3, both DR2 and DR3 and DR7, though these have not been confirmed in other studies. The present study was conducted to determine the associations of MHC class II alleles and the prevalence of C4 deficiencies in a cohort of 62 patients with SLE. Our results confirm that SLE in Tunisians is associated with DRB1*0301 and its linked alleles (DQA1*0501-DQB1*0201 haplotype), through linkage disequilibrium. The C4 null phenotype (especially a C4A null allotype) was also significantly increased in SLE patients (due to linkage disequilibrium with DR3) as has been observed in other racial and ethnic groups.13,14 However, a disassociation of these two risk factors (DR3 and C4 null phenotype) has been observed in Spanish and Mexican SLE patients.18,21 HLA-DRB1*1501 and its linked alleles (DQA1*0102-DQB1*0602) were also increased.

Apart from reaffirming the association of SLE to HLA-DR-DQ, our findings are consistent with the presence of an extended haplotype in Tunisian SLE patients. The finding that DRB1*1501 shows a strong allelic association to HLA-
Table 1. Frequency of HLA-DRB1 alleles in patients with systemic lupus erythematosus (SLE) and healthy controls.

DRB1*	SLE (n=62)	Controls (n=100)	Statistical comparison of phenotypes			
	Phenotype (%)	Allelic (%)	Phenotype (%)	Allelic (%)	P value*	Relative risk
O1	11.29	5.9	16	8.4	0.002	3.76
O301	50	29.3	23	12.3	0.04	0.4
O4	17.74	9.3	26	14	0.001	2.94
7	30.64	16.7	31	17	0.001	2.94
11	12.9	6.7	27	14.6	0.001	2.94
12	0	0	7	3.6	0.001	2.94
9	0	0	1	0.6	0.001	2.94
13	17.74	9.3	27	14.6	0.001	2.94
14	1.61	0.9	5	2.6	0.001	2.94
1501	32.25	17.7	13	6.8	0.001	2.94
16	4.83	2.5	2	1.11	0.001	2.94
8	4.83	2.5	5	2.6	0.001	2.94
10	4.83	2.5	2	1.11	0.001	2.94

* Corrected

Table 2. Frequency of HLA-DQA1 and DQB1 alleles in patients with systemic lupus erythematosus (SLE) and healthy controls.

DQA1*	SLE (n=62)	Controls (n=92)	Statistical comparison of phenotypes			
	Phenotype (%)	Allelic (%)	Phenotype (%)	Allelic (%)	P value*	Relative risk
0101	11.86	62	18.47	9.8	0.007	3.09
0102	45.16	25.94	22.82	12.2	0.007	3.09
0103	5.08	2.6	8.69	4.5	0.007	3.09
0104	1.7	0.9	3.26	1.7	0.007	3.09
0105	5.08	2.6	6.52	3.3	0.007	3.09
0201	28.81	15.7	31.52	17.24	0.007	3.09
0301	8.47	4.4	19.56	10.31	0.007	3.09
0302	—	—	2.17	1.09	0.007	3.09
0303	11.86	62	4.34	2.19	0.007	3.09
0401	1.7	0.9	3.26	1.7	0.007	3.09
0501	50.84	29.9	31.52	17.24	0.007	3.09
0505	13.56	7.1	27.17	14.65	0.007	3.09
0601	1.7	0.9	1.08	0.54	0.007	3.09
Blank	15.25	—	20.25	—	0.007	3.09

DQB1*	SLE (n=62)	Controls (n=92)	Statistical comparison of phenotypes			
	Phenotype (%)	Allelic (%)	Phenotype (%)	Allelic (%)	P value*	Relative risk
0201	46.77	27	17	8.9	0.003	4.3
0202	25.80	13.9	32	15.8	0.003	4.3
0301	20.96	11.1	38	21.3	0.003	4.3
0302	9.67	5	19	10	0.003	4.3
0303	11.29	5.9	5	2.6	0.003	4.3
0305	1.61	0.9	4	2.1	0.003	4.3
0402	3.22	1.7	8	4.1	0.003	4.3
0501	20.96	11.1	23	12.3	0.003	4.3
0502	9.67	5	6	3.1	0.003	4.3
0503	1.61	0.9	5	2.6	0.003	4.3
0601	3.22	1.7	6	3.1	0.003	4.3
0602	29.03	15.8	6	3.1	0.003	4.3
0603	1.61	0.9	5	2.6	0.003	4.3
0604	6.45	3.3	6	3.1	0.003	4.3
0609	—	—	6	3.1	0.003	4.3
Blank	8.06	4.1	14	—	0.003	4.3

* Corrected
Table 3. Frequency of HLA-DR, DQA, DQB haplotypes in patients with systemic lupus erythematosus (SLE) and healthy controls.

HLA haplotypes	SLE	Controls	Delta max	Corrected P value	Relative risk
	n	HF	n		
DRB1*1501-DQA1*0102-DQB1*0602	18	0.352	4	0.04	9.4
DRB1*0301-DQA1*0501-DQB1*0201	29	0.467	16	0.16	10.10
DRB1*1501-0301,DQA1*0102-0501, DQB1*0201-0602	6	0.096	2	0.02	1.8

HF=haplotype frequency

DQA1*0102-DQB1*0602 in SLE compared to controls suggests that the linkage is being selectively maintained in lupus. A similar increase was noted in African-American SLE patients.

Some of the observed associations of SLE with specific genetic markers in the MHC are likely due to founder effects, whereby the original SLE mutation arose on a chromosome carrying those markers, although the markers themselves are not responsible for causing the condition. Founder effects may explain the variety of HLA-DR alleles that appear to be linked to the disease in different populations. The association of DRB1*0301 with DQB1*0201, DQA1*0501 and DRB1*1501 with DQB1*0602, DQA1*0102 indicates the presence of at least two founders in this Tunisian population. The gene(s) controlling susceptibility to SLE may be one, or the combination of two or more of HLA DRB1*0301-DQA1*0501-DQB1*0201 or DRB1*1501-DQA1*0102-DQB1*0602 or an unidentified gene in strong linkage disequilibrium with the DRB1*0301 and DRB1*1501 haplotypes.

It now appears likely that partial deficiencies of C4, especially of the C4A isotype, are independent risk factors for SLE on linked MHC class II alleles. The basis for the association of the C4 null allotype with SLE is unclear. The C4A isotype is known to trans-acetylate with proteins more efficiently than C4B does. C4A is more efficient in its interaction with immune complexes and may be better able to participate in complement-mediated processing and clearance of immune complexes. Thus, patients deficient in C4A lack the isotype of C4, which may be most important in handing immune complexes. C4AQO is frequent in SLE in different ethnic groups irrespective of the HLA type, and seems to cross ethnic barriers.

However, recent studies indicate that the genetic basis for C4 AQO in SLE seems to be heterogeneous and linkage disequilibrium in Caucasians makes it difficult to assess the relative contribution of HLA and C4A*QO to disease susceptibility. Our data in this Tunisian population did not confirm the firmly established strong correlation between Ro(SSA)/La(SSB) autoantibodies and HLA DR/DQ haplotypes which have been found in SLE of Caucasian and African-American descent.

In conclusion, there is evidence from our results that genetic susceptibility to SLE among Tunisians appears similar to other ethnic lines. MHC class II alleles (DRB1, DQA1, DQB1) and C4 null associations that have been noted in other ethnic groups are also found in Tunisians, suggesting shared susceptibility factors across ethnic lines in predisposition to SLE.

References
1. Kuper BC, Faila S. Systemic lupus erythematosus: a multisystem autoimmune disorder. Nurs Clin North Am. 2000; 35 (1) : 253 – 265.
2. Steinberg AD. Concepts of pathogenesis of systemic lupus erythematosus. Clin Immunol. 1992;63(1):19 – 22.
3. Amett FC, Reveille SD. The genetics of lupus erythematosus. Rheum Dis Clin North Am. 1992; 18 : 865 – 892.
4. Lu L, Ding WZ, Fici D, Deulofeut R, Cheng HH, Cheu CC, Sung PK, Schur PH, Fraser PA. Molecular analysis of major histocompatibility complex alleles associated with systemic lupus erythematosus in Taiwan. Arthritis Rheum. 1997 Jul; 40(6):1138-1145.
5. Dong RP, Kimura A, Hashimoto H, Akizuki M, Nishimura Y, Saazuki T. Difference in HLA-linked genetic background between mixed connective tissue disease and systemic lupus erythematosus. Tissue Antigens. 1993;41 : 20 – 25.
6. Shur PH, Marcus-Bagley D, Awdeh Z, Lusis EJ, Alper CA. The effect of ethnicity on major histocompatibility complex complement alleles and extended haplotypes in patients with systemic lupus erythematosus. Arthritis Rheum. 1990;33: 985 – 992.
7. Reveille JD, Anderson KL, Schroenholzer RE, Acton RT, Barger BD. Restriction fragment length polymorphism analysis of HLA-DR, DQ, DP and C4 alleles in Caucasians with systemic lupus erythematosus. J Rheumatol. 1991;18:14 – 18.
8. Gladman DD, Urowitz MB, Darlington GA. Disease expression and class II HLA antigens in systemic lupus erythematosus. Lupus. 1999;8(6) : 446 – 470.
9. Reveille JD, Moulds JM, Ahn C. Friedman AW, Baetge B, Rosenman J, Straaton KV, Alarcon GS. Systemic lupus erythematosus in three ethnic groups: The effects of HLA class II, C4 and CR1 alleles, socioeconomic factors, and ethnicity at disease onset. LUMINA study group. Lupus in minority populations, nature versus nurture. Arthritis Rheum. 1998;41 (7) : 1161-1172.
10. Hnany JL, Shaw CK, Lee A, Lee TD, Chon YH, Kuo ML. HLA - DRB1 antigens in Taiwanese patients with Juvenile onset systemic lupus erythematosus. Rheumatol Int. 2001; 21 (3): 103 - 105.
11. Marintechev LM, Naumova El, Rashkov RK, Arnett FC. Leveille JD. HLA - class II alleles and autoantibodies in Bulgarians with systemic lupus erythematosus. Tissue Antigens. 1995:46 : 422 - 425.
12. Yaoz, Seeling HP, Dierfeld H, Ranz M, Harting K, Deicher H, Niewoyny Stieckel, Albert ED. HLA class II genes and antibodies against recombinant rNRP proteins in patients with systemic lupus erythematosus. SLE study group. Rheumatol Int. 1994;14 : 63 – 69.
13. Howard PF, Hochberg MC, Bias WB, Arnett FC Jr, Melehan RH. Relation between C4 null genes, HLA-D region antigens and genetic susceptibility to systemic lupus erythematosus in Caucasian and black Americans. Am J Med. 1986; 81 (2) : 187 – 193.
14. Davies EJ, Hillarby MC, Cooper RG, Hay EM, Green JR, Shah S, Bernstein RM, Holt PJ, Grennan DM. HLA - DQ, DR and complement C4 variants in systemic lupus erythematosus. Br J Rheumatol. 1993; 32 (10): 870-875.
15. Steinsson K, Jonsdottir S, Arson GL, Kristjansdottir H, Foodal R, Staffadottir J, Arnason A. A study of the association of HLA DR, DQ and complement C4 alleles with systemic lupus erythematosus in Iceland. Ann Rheum Dis. 1998; 57 (8): 503-505.
16. Rud Wabiz M, Tilly K, Gibson K, Pile K, Wordsworth P. HLA - Class II antigens associated with systemic lupus erythematosus in black south Africans. Ann Rheum Dis. 1995; 54 (8) : 678 - 680.
17. Hong GH, Kim HY, Takechi F, Nakano K, Yamada H, Matsuka K, Han H, Totsunaga K, Ito K, Park KS. Complement C4 and HLA-DR alleles with systemic lupus erythematosus in Koreans. J Rheumatol. 1994; 21 (3) : 442 – 447.
18. Reveille JD, Moulds JM, Arnett FC. Major histocompatibility complex class II and C4 alleles in Mexican Americans with systemic lupus erythematosus. Tissue Antigens. 1995; 45 (2) : 91 - 97.
19. Martin-Villa JM, Martinez - Losa L, Mouno - Pelayo MA, Castro-Panet MJ, Martinez-Quiles N, Alvarez M, de Juan MD, Gomez-Reino JL, Arnall-Villena A. Differential contribution of HLA-DR, DQ and TAP2 alleles to systemic lupus erythematosus susceptibility in Spanish patients : Role of Tap 2*01 alleles in Ro auto antibody production. Ann Rheum Dis. 1998; 57(4): 214 - 219.
20. Smith EL, Shmerling RH. The American College of Rheumatology criteria for the classification of systemic lupus erythematosus : Strengths, weaknesses, and opportunities for improvement. Lupus. 1999 ; 8 (8) : 586 - 595.
21. Sullivan KE, Kim NA, Goldman D, Petri MA. C4A deficiency due to a 2bp insertion is increased in patients with systemic lupus erythematosus. J Rheumatol. 1999; 26 (10): 2144 - 2147.
22. Granados J, Vargas-Alarcon G, Andrade F, Melin - Aldana H, Alcocer - Varela J, Alarcon-Segovia D. The role of HLA-DR alleles and complexotypes through the ethnic barrier in systemic lupus erythematosus in Mexicans. Lupus. 1995;5 (3):184 -189.
23. Naves M, Hajeer AH, Teeth L, Davies EJ, Ordi-Ros J, Perez-Pemón P, Villar del-Torres M, Thomson W, Worthington J, Offiler WE. Complement C4 null allele status confers risk for systemic lupus erythematosus in a Spanish population. Eur J Immunogenet. 1998; 25 (4) : 317 - 320.
24. Hartung K, Baur MP, Coldewey R, Major histocompatibility complex haplotypes and complement C4 alleles in systemic lupus erythematosus. J Clin Invest. 1992 : 90 ; 1346 – 1351.
25. Kameda S, Naito S, Tanaka K, Kajiyama K, Kunihiro K, Nishigori S, Jimi S, Yonase T. HLA antigens of patients with systemic lupus erythematosus in Japan. Tissue Antigens. 1982; 20 : 221-222.
26. So AXI, Fieiler AH, Warner CA, Isenberg DA, Batchelor JR, Waipart MJ, DNA polymorphism of major histocompatibility complex class II and class III genes in systemic lupus erythematosus. Tissue Antigens. 1990; 35 : 144 - 147.
27. Avey Kh, Gorgi YC, Bf and C4 polymorphism in Tunisians. Hum Hered. 1990; 40 : 363 - 367.
28. Wooff B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19 : 251-253.
29. Mittal KK. The HLA polymorphism and susceptibility to disease. Vox Sang. 1976; :31 ;161 -173.
30. Wallace D, Hohn BH. 1996 Dubois' Lupus Erythematosus. 5th ed. Philadelphia: Lea and Febiger; 1996.