SOME APPLICATIONS OF THE MIRROR THEOREM FOR TORIC STACKS

TOM COATES, ALESSIO CORTI, HIROSHI IRRITANI, AND HSIAN-HUA TSENG

Abstract. We use the mirror theorem for toric Deligne–Mumford stacks, proved recently by the authors and by Cheong–Ciocan-Fontanine–Kim, to compute genus-zero Gromov–Witten invariants of a number of toric orbifolds and gerbes. We prove a mirror theorem for a class of complete intersections in toric Deligne–Mumford stacks, and use this to compute genus-zero Gromov–Witten invariants of an orbifold hypersurface.

1. Introduction

Given a symplectic orbifold or Deligne–Mumford stack X, one might want to calculate the Gromov–Witten invariants of X:

$$\langle a_1 \psi^{k_1}, \ldots, a_n \psi^{k_n} \rangle^X_{g,n,d}$$

where a_1, \ldots, a_n are classes in the Chen–Ruan orbifold cohomology of X and k_1, \ldots, k_n are non-negative integers. Gromov–Witten invariants carry information about the enumerative geometry of X: roughly speaking they count the number of orbifold curves in X, of genus g and degree d, that pass through certain cycles (recorded by the classes a_i) and satisfy certain constraints on their complex structure. Computing Gromov–Witten invariants is in general hard, but one can often compute genus-zero Gromov–Witten invariants using mirror symmetry. A mirror theorem for toric Deligne–Mumford stacks was proved recently by the authors [9] and, independently, by Cheong–Ciocan-Fontanine–Kim [7]. In what follows we give various applications of this mirror theorem. We compute genus-zero Gromov–Witten invariants of a number of toric Deligne–Mumford stacks; prove a mirror theorem (Corollary 23) for certain complete intersections in toric Deligne–Mumford stacks; and use this to compute genus-zero Gromov–Witten invariants of an orbifold hypersurface. Along the way we make a technical point that may be useful elsewhere: showing that one can apply Coates–Givental/Tseng-style hypergeometric modifications to I-functions, rather than just to J-functions (Theorem 21).

This paper is written with two purposes in mind. It provides a reasonably self-contained guide that should help the reader to apply our mirror theorems to new examples. It also increases the number of explicit, non-trivial calculations of orbifold Gromov–Witten invariants in the literature. Orbifold Gromov–Witten theory is fraught with technical subtleties, and we hope that our calculations will be useful for others, as test examples for more sophisticated theories. The examples also demonstrate a practical advantage of our mirror theorems over existing methods [10] [29] [19], in that they often allow the direct determination of genus-zero Gromov–Witten invariants with insertions from twisted sectors, without needing to resort to the WDVV equation or reconstruction theorems [20] [27].

Let X be an algebraic Deligne–Mumford stack equipped with the action of a (possibly-trivial) torus \mathbb{T}. Suppose that X is sufficiently nice that one can define \mathbb{T}-equivariant Gromov–Witten
invariants; this is the case, for example, if \(\mathcal{X} \) is smooth as a stack and the coarse moduli space \(X \) of \(\mathcal{X} \) is semi-projective (projective over affine). Let \(H^*_{\mathcal{X}, \mathbb{T}}(\mathcal{X}) \) denote the \(\mathbb{T} \)-equivariant Chen–Ruan cohomology of \(\mathcal{X} \) (see §2.2). Let \(\Lambda \) denote the Novikov ring of \(\mathcal{X} \); this is a completion of the group ring of \(\mathbb{C}[H_2(\mathcal{X}; \mathbb{Z})] \). Following Givental [17], Tseng has defined a symplectic structure on:

\[
\mathcal{H} := H^*_{\mathcal{X}, \mathbb{T}}(\mathcal{X}) \otimes \Lambda \otimes \mathbb{C}(z^{-1})
\]

and a Lagrangian submanifold \(\mathcal{L} \) of \(\mathcal{H} \) that encodes all genus-zero Gromov–Witten invariants of \(\mathcal{X} \) [28]. We will not give a precise definition of \(\mathcal{L} \) in this paper, referring the reader to [9] §2 for a detailed discussion. For us, what will be important is that \(\mathcal{L} \) determines and is determined by Givental’s \(J \)-function:

\[
J_{\mathcal{X}}(t, z) = z + t + \sum_{d \in \mathbb{H}_2(\mathcal{X}; \mathbb{Z})} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{Q^d}{n!} \langle t, t, \ldots, t, \phi_\alpha \psi^k \rangle_{0,n+1,d} \phi^\alpha z^{-k-1}
\]

where \(t \in H^*_{\mathcal{X}, \mathbb{T}}(\mathcal{X}) \); \(z \) is a formal variable; \(Q^d \) is the representative of \(d \) in the Novikov ring \(\Lambda \); the correlator denotes a Gromov–Witten invariant, exactly as in [9] §2; and \{\phi_\alpha\}, \{\phi^\alpha\} denote bases for \(H^*_{\mathcal{X}, \mathbb{T}}(\mathcal{X}) \) which are dual with respect to the pairing on Chen–Ruan cohomology. The submanifold \(\mathcal{L} \) determines the \(J \)-function because \(J_{\mathcal{X}}(t, -z) \) is the unique point on \(\mathcal{L} \) of the form \(-z + t + O(z^{-1}) \), where \(O(z^{-1}) \) is a power series in \(z^{-1} \). The \(J \)-function determines \(\mathcal{L} \) because it determines all genus-zero Gromov–Witten invariants of \(\mathcal{X} \) with descendant insertions at one or fewer marked points; it thus determines all genus-zero invariants with descendant insertions at two marked points via [15] Proposition 2.1, and determines all other genus-zero invariants via the Topological Recursion Relations [28] §2.5.7. To determine the genus-zero Gromov–Witten invariants of \(\mathcal{X} \), therefore, it suffices to determine the \(J \)-function \(J_{\mathcal{X}}(t, z) \). In §3 and §5 below we use mirror theorems to determine the \(J \)-function of a number of Deligne–Mumford stacks \(\mathcal{X} \).

The reader may be interested in the quantum orbifold cohomology ring of \(\mathcal{X} \). Recovering quantum cohomology from the \(J \)-function is straightforward: general theory implies that \(J_{\mathcal{X}}(t, z) \) satisfies a system of differential equations:

\[
z \frac{\partial}{\partial t^\alpha} \frac{\partial}{\partial t^\beta} J_{\mathcal{X}}(t, z) = \sum_\gamma c_{\alpha \beta}^\gamma(t) \frac{\partial}{\partial t^\gamma} J_{\mathcal{X}}(t, z)
\]

where \(t = \sum_\alpha t^\alpha \phi_\alpha \) and the coefficients \(c_{\alpha \beta}^\gamma(t) \) are the structure constants of the orbifold quantum product [5][2][18]. Thus:

\[
z \frac{\partial}{\partial t^\alpha} \frac{\partial}{\partial t^\beta} J_{\mathcal{X}}(t, z) = \phi_\alpha \ast_t \phi_\beta + O(z^{-1})
\]

where \(\ast_t \) denotes the big orbifold quantum product with parameter \(t \in H^*_{\mathcal{X}, \mathbb{T}}(\mathcal{X}) \).

Acknowledgments. We thank Ionut Ciocan-Fontanine for useful discussions. T.C. was supported in part by a Royal Society University Research Fellowship, ERC Starting Investigator Grant number 240123, and the Leverhulme Trust. A.C. was supported in part by EPSRC grants EP/E022162/1 and EP/I008128/1. H.I. was supported in part by EPSRC grant EP/E022162/1 and JSPS Grant-in-Aid for Scientific Research (C) 25400069. H.-H.T. was supported in part by a Simons Foundation Collaboration Grant.
2. The Mirror Theorem for Toric Deligne–Mumford Stacks

We assume that the reader is familiar with toric Deligne–Mumford stacks. A quick summary of the relevant material can be found in [9, §3]; the theory is developed in detail in [3, 21, 22, 14, 23].

2.1. Stacky Fans. A toric Deligne–Mumford stack is defined by a stacky fan $\Sigma = (N, \Sigma, \rho)$, where N is a finitely generated abelian group, $\Sigma \subset N_\mathbb{Q} = N \otimes \mathbb{Q}$ is a rational simplicial fan, and $\rho: \mathbb{Z}^n \to N$ is a homomorphism with finite cokernel such that the images of the standard basis vectors in \mathbb{Z}^n under the composition $\mathbb{Z}^n \xrightarrow{\rho} N \xrightarrow{\bar{\rho}} N_\mathbb{Q}$ generate the 1-dimensional cones of Σ. Let $\mathbb{L} \subset \mathbb{Z}^n$ be the kernel of ρ. The exact sequence

$$0 \longrightarrow \mathbb{L} \longrightarrow \mathbb{Z}^n \xrightarrow{\rho} N$$

is called the fan sequence. Let $\rho_i \in N$ denote the image under ρ of the ith standard basis vector in \mathbb{Z}^n. Let $\rho^\vee: (\mathbb{Z}^*)^n \to \mathbb{L}^\vee$ be the Gale dual [3] of ρ. There is an exact sequence

$$0 \longrightarrow N^* \longrightarrow (\mathbb{Z}^*)^n \xrightarrow{\rho^\vee} \mathbb{L}^\vee$$

called the divisor sequence. The toric Deligne–Mumford stack associated to the stacky fan Σ admits a canonical action of the torus $\mathbb{T} := N \otimes \mathbb{C}^\times$.

2.2. Chen–Ruan Cohomology. Let \mathcal{X} denote the toric Deligne–Mumford stack defined by the stacky fan $\Sigma = (N, \Sigma, \rho)$. Let N_{tor} denote the torsion subgroup of N, let $\overline{N} := N/N_{\text{tor}}$, and let $\mathcal{X} \in \overline{N}$ denote the image of $c \in N$ under the canonical projection $N \to \overline{N}$. The box of Σ is:

$$\text{Box}(\Sigma) := \left\{ b \in N : \exists \sigma \in \Sigma \text{ such that } \bar{b} = \sum_{i: \rho_i \in \sigma} a_i \bar{\rho}_i \text{ for some } a_i \text{ with } 0 \leq a_i < 1 \right\}$$

Components of the inertia stack $I\mathcal{X}$ are indexed by elements of $\text{Box}(\Sigma)$, and we write $I\mathcal{X}_b$ for the component of inertia corresponding to $b \in \text{Box}$.

The \mathbb{T}-equivariant Chen–Ruan orbifold cohomology [6, 26] of \mathcal{X} is:

$$H^*_\text{CR, T}(\mathcal{X}) := H^*_T(I\mathcal{X})$$

with a grading and product defined as follows. Let $R_T := \text{Sym}_c^\bullet(N^* \otimes \mathbb{C}) = H^2_T(\text{pt})$, noting that elements of $H^{2k}(\text{pt})$ are taken to have degree k. As an R_T-module, we have:

$$H^*_\text{CR, T}(\mathcal{X}) \cong \left\{ \chi - \sum_{i=1}^n \chi(\rho_i) y^{\bar{\rho}_i} : \chi \in N^* \otimes \mathbb{C} \cong H^2_T(\text{pt}) \right\}$$

(2)

This is a graded ring with respect to the Chen–Ruan orbifold cup product [3, 24, 26]; here if $b \in N$ is such that $\bar{b} = \sum_{i: \rho_i \in \sigma} m_i \bar{\rho}_i$, where σ is the minimal cone in containing \bar{b}, then y^b has degree $\sum_{i: \rho_i \in \sigma} m_i$. The degree of y^b is known as the age of b. For $b \in \text{Box}(\Sigma)$, the unit class supported on the component $I\mathcal{X}_b$ of the inertia stack corresponds under (2) to y^b. The fact that $I\mathcal{X}_b = \mathcal{X}$ gives a canonical inclusion $H^*_\mathcal{X}(\mathcal{X}; \mathbb{C}) \subset H^*_\text{CR, T}(\mathcal{X})$, and the class $u_i \in H^2_\mathcal{X}(\mathcal{X})$ given by the \mathbb{T}-equivariant Poincaré-dual to the ith toric divisor in \mathcal{X} corresponds under (2) to $y^{\bar{\rho}_i}$.
2.3. Extended Stacky Fans. Let $\Sigma = (N, \Sigma, \rho)$ be a stacky fan, write $N_\Sigma := \{ c \in N : \bar{c} \in |\Sigma| \}$, and let S be a finite set equipped with a map $S \to N_\Sigma$. We label the finite set S by $\{1, \ldots, m\}$, where $m = |S|$, and write $s_j \in N$ for the image of the jth element of S. The S-extended stacky fan is (N, Σ, ρ^S) where $\rho^S : \mathbb{Z}^{n+m} \to N$ is defined by:

$$\rho^S(e_i) = \begin{cases} \rho_i & 1 \leq i \leq n \\ s_{i-n} & n < i \leq n + m \end{cases}$$

and e_i denotes the ith standard basis vector for \mathbb{Z}^n. This gives an S-extended fan sequence

$$0 \longrightarrow \mathbb{L}^S \longrightarrow \mathbb{Z}^{n+m} \xrightarrow{\rho^S} N$$

and, by Gale duality, an S-extended divisor sequence:

$$0 \longrightarrow N^* \longrightarrow (\mathbb{Z}^*)^{n+m} \xrightarrow{\rho^{S\vee}} \mathbb{L}^{S\vee}$$

The toric Deligne–Mumford stacks associated to the stacky fan (N, Σ, ρ) and the S-extended stacky fan (N, Σ, ρ^S) are canonically isomorphic [23].

2.4. Extended Degrees for Toric Stacks. Consider an S-extended stacky fan Σ as in §2.3 and let X be the corresponding toric Deligne–Mumford stack. The inclusion $\mathbb{Z}^n \to \mathbb{Z}^{n+m}$ of the first n factors induces an exact sequence:

$$0 \longrightarrow \mathbb{L} \longrightarrow \mathbb{L}^S \longrightarrow \mathbb{Z}^m$$

This splits over \mathbb{Q}, via the map $\mu : \mathbb{Q}^m \to \mathbb{L}^S \otimes \mathbb{Q}$ that sends the jth standard basis vector to

$$e_{j+n} - \sum_{i : \bar{\rho}_i \in \sigma(j)} s_{ij} e_i \in \mathbb{L}^S \otimes \mathbb{Q} \subset \mathbb{Q}^{n+m}$$

where $\sigma(j)$ is the minimal cone containing \bar{s}_j and the positive numbers s_{ij} are determined by

$$\sum_{i : \bar{\rho}_i \in \sigma(j)} s_{ij} \bar{\rho}_i = \bar{s}_j.$$

Thus we obtain an isomorphism:

$$\mathbb{L}^S \otimes \mathbb{Q} \cong (\mathbb{L} \otimes \mathbb{Q}) \oplus \mathbb{Q}^m \quad (3)$$

Recall that $\text{Pic}(X) \cong \mathbb{L}^Y$, and hence that the Mori cone $\text{NE}(X)$ is a subset of $\mathbb{L} \otimes \mathbb{R}$. The S-extended Mori cone is the subset of $\mathbb{L}^S \otimes \mathbb{R}$ given by:

$$\text{NE}^S(X) = \text{NE}(X) \times (\mathbb{R}_{\geq 0})^m \quad \text{via (3)}.$$

The S-extended Mori cone can be thought of as the cone spanned by the “extended degrees” of certain orbifold stable maps $f : C \to \mathcal{X}$: see [9, §4].

Notation 1. We denote the fractional part of x by $\langle x \rangle$.

Definition 2. Recall that $\mathbb{L}^S \subset \mathbb{Z}^{n+m}$, where $m = |S|$. For a cone $\sigma \in \Sigma$, denote by $\Lambda^S_{\sigma} \subset \mathbb{L}^S \otimes \mathbb{Q}$ the subset consisting of elements

$$\lambda = \sum_{i=1}^{n+m} \lambda_i e_i$$

such that $\lambda_{n+j} \in \mathbb{Z}$, $1 \leq j \leq m$, and $\lambda_i \in \mathbb{Z}$ if $\bar{\rho}_i \notin \sigma$ and $i \leq n$. Set $\Lambda^S := \bigcup_{\sigma \in \Sigma} \Lambda^S_{\sigma}$.

Definition 3. The reduction function is
\[v^S : \Lambda^S \rightarrow \text{Box}(\Sigma) \]
\[\lambda \mapsto \sum_{i=1}^{n} [\lambda_i] \rho_i + \sum_{j=1}^{m} [\lambda_{n+j}] s_j \]
The reduction function takes values in $\text{Box}(\Sigma)$: for $\lambda \in \Lambda^S_\sigma$ we have $v^S(\lambda) = \sum_{i=1}^{n} (\lambda_i) \rho_i \in \sigma$. Note that $v^S(\lambda)_i = \langle -\lambda_i \rangle$.

Definition 4. For a box element $b \in \text{Box}(\Sigma)$, we set:
\[\Lambda^S_b := \{ \lambda \in \Lambda^S : v^S(\lambda) = b \} \]
and define:
\[\Lambda E^S := \Lambda^S \cap \text{NE}^S(\mathcal{X}) \quad \quad \quad \Lambda E^S_b := \Lambda^S_b \cap \text{NE}^S(\mathcal{X}) \]

Notation 5. Recall that Q^d denotes the representative of $d \in H_2(X; \mathbb{Z})$ in the Novikov ring Λ. Given $\lambda \in \Lambda E^S$ write $\lambda = (d, k)$ via (3), so that $d \in \text{NE}(\mathcal{X}) \cap H_2(X, \mathbb{Z})$ and $k \in (\mathbb{Z}_{\geq 0})^m$. We set:
\[\bar{Q}^\lambda = Q^d x^k = Q^d x_1^{k_1} \cdots x_m^{k_m} \in \Lambda[x_1, \ldots, x_m] \]

2.5. Mirror Theorem. Once again, consider an S-extended stacky fan Σ as in $\S 2.3$. Let \mathcal{X} be the corresponding toric Deligne–Mumford stack.

Definition 6. The S-extended \mathbb{T}-equivariant I-function of \mathcal{X} is:
\[I^S(t, x, z) := z e^{\sum_{i=1}^{n} u_i t_i/z} \sum_{b \in \text{Box}(\Sigma)} \sum_{\lambda \in \Lambda E^S_b} \bar{Q}^\lambda e^{M \left(\prod_{i=1}^{n+m} \frac{\prod_{a=\langle \lambda_i \rangle, a \leq \langle u_i + az \rangle}}{\prod_{a=\langle \lambda_i \rangle, a \leq \langle u_i \rangle}} \right)} y^b \]
Here:
- $t = (t_1, \ldots, t_n)$ are variables, and $e^M := \prod_{i=1}^{n} e^{(u_i, d) u_i}$.
- $x = (x_1, \ldots, x_m)$ are variables: see Notation 5.
- for each $\lambda \in \Lambda E^S_b$, we write λ_i for the ith component of λ as an element of \mathbb{Q}^{n+m}; in particular $\langle \lambda_i \rangle = 0$ for $n < i \leq n + m$.
- For $1 \leq i \leq n$, u_i is the \mathbb{T}-equivariant Poincaré dual to the ith toric divisor: see Section 2.2. For $n < i \leq n + m$, u_i is defined to be zero.
- y^b is the unit class supported on the component of inertia $I\mathcal{X}(\Sigma)_b$ associated to $b \in \text{Box}(\Sigma)$: see Section 2.2.

The I-function $I^S(t, x, z)$ is a formal power series in Q, x, t with coefficients in $H^*_{CR, \mathbb{T}}(\mathcal{X})((z^{-1}))$.

Theorem 7 (The mirror theorem for toric Deligne–Mumford stacks $[9, 7]$). Let $\Sigma = (N, \Sigma, \rho)$ be a stacky fan, and let \mathcal{X} be the corresponding toric Deligne–Mumford stack. Let S be a finite set equipped with a map to N_Σ. Suppose that \mathcal{X} is smooth and that the coarse moduli space of \mathcal{X} is semi-projective (projective over affine). Then $I^S(t, x, -z) \in \mathcal{L}$.

Remark 8. The statement that $I^S(t, x, -z) \in \mathcal{L}$ has a precise meaning in formal geometry: see $\S 2.3$ and Theorem 31 in [9]. The reader may want to work with a slightly vague but more intuitive interpretation of this statement: that $I^S(t, x, -z) \in \mathcal{L}$ for all values of the parameters t and x. No confusion should result, and the statements that we make are valid in the above, precise sense.
Remark 9. In the work of Cheong–Ciocan–Fontanine–Kim [7], a toric orbifold \mathcal{X} is represented by a triple (V, T, θ) where T is a torus, V is a representation of T, and θ is a a character of T such that V has no strictly θ-semistable points. The toric orbifold \mathcal{X} is the stack quotient $[V//_{\theta}T]$. In this language, S-extending the stacky fan Σ corresponds to changing the GIT presentation (V, T, θ) of \mathcal{X}. Thus Theorem 7 with non-trivial S-extension (not just Theorem 7 with $S = \emptyset$) can be obtained from [7] by considering an appropriate GIT presentation of \mathcal{X}.

2.6. Condition \dagger and Condition $S\dagger$. Recall that the J-function (1) is characterized by the fact that $J_\mathcal{X}(t, -z)$ is the unique point on L of the form $-z + t + O(z^{-1})$. Let Σ be a stacky fan and let S be a finite set equipped with a map $\kappa: S \to \Box(S)$. Label the elements of S by $\{1, \ldots, m\}$, where $m = |S|$, and let $b_j = \kappa(j)$. We say that the S-extended stacky fan Σ satisfies condition $S\dagger$ if and only if

$$I^S(t, x, -z) = -z + t + \sum_{j=1}^{m} x_j y^{b_j} + O(z^{-1})$$

If condition $S\dagger$ holds then $J_\mathcal{X}(\tau, z) = I^S(t, x, z)$ where $\tau = t + \sum_{j=1}^{m} x_j y^{b_j}$. We say that a stacky fan Σ satisfies condition \dagger if and only if it satisfies condition $S\dagger$ with $S = \emptyset$.

Condition \dagger is equivalent to the statement: for all $b \in \Box(S)$ and all non-zero $\lambda \in \Lambda E^\sigma_b$ we have

$$-K_\mathcal{X} \cdot \lambda + \text{age}(b) + \# \{ i \mid \lambda_i < 0 \text{ and } \lambda_i \in \mathbb{Z} \} \geq 2.$$

This is not automatically satisfied for Fano stacks or even Fano orbifolds: see [3,7]. The surface \mathbb{P}_2 is nonsingular and weak Fano and it does not satisfy condition \dagger.

Lemma 10 (A simple criterion for condition \dagger to hold). Let $\Sigma = (N, \Sigma, \rho)$ be a stacky fan, and let \mathcal{X} be the corresponding toric Deligne–Mumford stack. Suppose that \mathcal{X} is smooth and has semiprojective coarse moduli space. If \mathcal{X} is Fano and has canonical singularities, that is, if $\text{age}(b) \geq 1$ for all non-zero elements $b \in \Box(S)$, then \mathcal{X} satisfies condition \dagger.

Proof. The key observation is that if \mathcal{X} is a toric stack and $\lambda \in \Lambda E^\sigma_b$ is the class of a compact curve, then there are at least two toric divisors $D_i \subset \mathcal{X}$ such that $\lambda \cdot D_i > 0$. Set:

$$N_\lambda = \# \{ i \mid \lambda_i < 0 \text{ and } \lambda_i \in \mathbb{Z} \}$$

The quantity $\text{ord} \lambda := -K_\mathcal{X} \cdot \lambda + \text{age}(b) + N_\lambda$ is an integer. If $N_\lambda \geq 1$ then, since \mathcal{X} is Fano, $-K_\mathcal{X} \cdot \lambda > 0$ and $\text{ord} \lambda \geq 2$. If $N_\lambda = 0$ and $\text{age}(b) \geq 1$, the same argument applies. Otherwise $b = 0$, and then $\lambda_i \in \mathbb{Z}$ for all i, and all $\lambda_i \geq 0$. By the key observation, at least two of the λ_i are strictly positive and we are done.

Remark 11. Note that the criterion in Lemma 10 is far from best possible: the more positive the anticanonical class is, the worse the singularities are allowed to be.

3. Applying the Mirror Theorem

3.1. Example 1: B_{13}. This is the toric Deligne–Mumford stack \mathcal{X} associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where $N = \frac{1}{3}\mathbb{Z}/\mathbb{Z}$, $\Sigma = \{0\}$, and $\rho: (0) \to N$ is the zero map. We have $\Box(S) = \{0, \frac{1}{3}, \frac{2}{3}\}$. We consider the S-extended I-function where $S = \Box(S)$ and $S \to N_\Sigma$ is the canonical inclusion. The S-extended fan map is:

$$\rho^S = \left(0, \frac{1}{3}, \frac{2}{3}\right) : \mathbb{Z}^3 \to N$$
so that $\mathbb{L}_Q^S = \mathbb{Q}^3$ and \mathbb{L}_Q^S is the lattice of vectors:

$$\begin{pmatrix} k_0 \\ k_1 \\ k_2 \end{pmatrix} \in \mathbb{Z}^3 \text{ such that } k_1 + 2k_2 \equiv 0 \text{ mod } 3$$

The S-extended Mori cone is the positive octant. We have $\Lambda^S = \mathbb{Z}^3$, and the reduction function is

$$v^S: \begin{pmatrix} k_0 \\ k_1 \\ k_2 \end{pmatrix} \mapsto \left\langle \frac{k_1}{3} + \frac{2k_2}{3} \right\rangle.$$

The S-extended I-function is:

$$I^S(x, z) = z \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{x_{k_0} x_{1}^{k_1} x_{2}^{k_2}}{x_{k_0+k_1+k_2}! k_1! k_2!} \frac{1}{(\frac{k_1}{3} + \frac{2k_2}{3})!}.$$

This is homogeneous of degree 1 if we set $\deg x_0 = \deg x_1 = \deg x_2 = \deg z = 1$. Since:

$$I^S(x, z) = z + x_0 1_0 + x_1 1_{\frac{1}{3}} + x_2 1_{\frac{2}{3}} + O(z^{-1})$$

condition S^S holds, and Theorem 7 implies that:

$$J^S(\lambda; x_0 1_0 + x_1 1_{\frac{1}{3}} + x_2 1_{\frac{2}{3}}, z) = I^S(x, z).$$

3.2. Example 2: $\frac{1}{3}(1, 1)$. This is the toric Deligne–Mumford stack \mathcal{X} associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where:

$$\rho = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} : \mathbb{Z}^2 \to N = \mathbb{Z}^2 + \frac{1}{3}(1, 1)\mathbb{Z}.$$

and Σ is the positive quadrant in N_Q. We have $\text{Box}(\Sigma) = \{0, \frac{1}{3}(1, 1), \frac{2}{3}(1, 1)\}$; to streamline the notation we will identify $\text{Box}(\Sigma)$ with the set $\{0, \frac{1}{3}, \frac{2}{3}\}$ via the map κ that sends x to $x(1, 1)$. We consider the S-extended I-function where $S = \{0, \frac{1}{3}\}$ and S maps to N^S via κ. The S-extended fan map is:

$$\rho^S = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{3} \end{pmatrix} : \mathbb{Z}^{2+2} \to N$$

so that $\mathbb{L}_Q^S \cong \mathbb{Q}^2$ is identified as a subset of \mathbb{Q}^{2+2} via the inclusion:

$$\begin{pmatrix} k_0 \\ k_1 \end{pmatrix} \mapsto \begin{pmatrix} 0 & -\frac{2}{3} \\ 0 & -\frac{1}{3} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} k_0 \\ k_1 \end{pmatrix}$$

The S-extended Mori cone is the positive quadrant. We see that $\Lambda^S \subset \mathbb{L}_Q^S$ is the lattice of vectors:

$$\begin{pmatrix} k_0 \\ k_1 \end{pmatrix} \text{ such that } k_0, k_1 \in \mathbb{Z}$$

and that the reduction function is:

$$v^S: \begin{pmatrix} k_0 \\ k_1 \end{pmatrix} \mapsto \left\langle \frac{k_1}{3} \right\rangle.$$
The S-extended I-function is:

$$I^S(t, x, z) = ze^{(u_1t_1 + u_2t_2)/z} \sum_{k_0=0}^{\infty} \sum_{k_1=0}^{\infty} \frac{x_0^{k_0} x_1^{k_1}}{z^{k_0+k_1} k_0! k_1!} \prod_{\langle b \rangle = (-\frac{k_1}{3})} (u_1 + bz)(u_2 + bz).$$

This is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = 0$, $\deg x_0 = \deg z = 1$, and $\deg x_1 = \frac{1}{3}$. Theorem 7 gives that $I^S(x, -z) \in L^X$, and we have:

$$I^S(t, x, z) = z + t_1u_1 + t_2u_2 + x_01_0 + x_11\frac{1}{3} + O(z^{-1}).$$

Thus condition S-$\#$ holds, and we obtain an expression for the J-function of X:

$$J^X(t_1u_1 + t_2u_2 + x_01_0 + x_11\frac{1}{3}, z) = I^S(t, x, z).$$

3.3. Example 3: $\mathbb{P}(1, 1, 3)$. This is the toric Deligne–Mumford stack X associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where:

$$\rho = \begin{pmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & -\frac{1}{3} \end{pmatrix} : \mathbb{Z}^3 \to N = \mathbb{Z}^2 + \frac{1}{3}(1, 1)\mathbb{Z}.$$ and Σ is the complete fan in $N_\mathbb{Q} \cong \mathbb{Q}^2$ with rays given by the columns of ρ. We identify $Box(\Sigma) = \{0, \frac{1}{3}(1, 1), \frac{2}{3}(1, 1)\}$ with the set $\{0, \frac{1}{3}, \frac{2}{3}\}$ via the map κ that sends x to $x(1, 1)$. We consider the S-extended I-function where $S = \{0, \frac{1}{3}\}$ and S maps to N_Σ via κ. The S-extended fan map is:

$$\rho^S = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix} : \mathbb{Z}^{3+2} \to N$$

so that $\mathbb{L}^S_\mathbb{Q} \cong \mathbb{Q}^3$ is identified as a subset of \mathbb{Q}^{3+2} via the inclusion:

$$\begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{3} & 0 & -\frac{1}{3} \\ \frac{2}{3} & 0 & -\frac{2}{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix}.$$

The S-extended Mori cone is the positive octant. We see that $\Lambda^S \subset \mathbb{L}^S_\mathbb{Q}$ is the lattice of vectors:

$$\begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix}$$

such that $l, k_0, k_1 \in \mathbb{Z}$

and that the reduction function is:

$$v^S : \begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix} \mapsto \left\langle -\frac{l}{3} + \frac{k_1}{3} \right\rangle.$$
Let us identify the Novikov ring Λ with $\mathbb{C}[Q]$ via the map that sends $d \in H_2(X; \mathbb{Z})$ to $Q^{f_4 c_1 (O)}$. The S-extended I-function is:

$$I^S(t, x, z) = z e^{(u_1 t_1 + u_2 t_2 + u_3 t_3)/z} \times \sum_{l=0}^{\infty} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{Q^{t_0 x_0^k_0 x_1^k_1 e^{(t_1 t_2 + 3 t_3) t_l}}}{z^{k_0 + k_1} k_0 ! k_1 !} \prod_{b \leq \frac{1}{2} - \frac{k_1}{3}} (u_1 + b z) (u_2 + b z) \prod_{b \leq \frac{1}{2} - \frac{k_1}{3}} (u_1 + b z) (u_2 + b z) \prod_{0 < b \leq 1} (u_3 + b z).$$

This is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = \deg t_3 = 0$, $\deg x_0 = \deg z = 1$, $\deg x_1 = \frac{1}{3}$, and $\deg Q = \frac{1}{3}$. Theorem 7 gives that $I^S(x, t, -z) \in \mathcal{L}$, and we have:

$$I^S(t, x, z) = z + t_1 u_1 + t_2 u_2 + t_3 u_3 + x_0 1_0 + x_1 1_\frac{1}{3} + O(z^{-1})$$

Thus condition $S_{\frac{1}{3}}$ holds, and we obtain an expression for the J-function of \mathcal{X}:

$$J_\mathcal{X}(z + t_1 u_1 + t_2 u_2 + t_3 u_3 + x_0 1_0 + x_1 1_\frac{1}{3}, z) = I^S(t, x, z)$$

Remark 12. Condition $\frac{1}{3}$ holds for any weighted projective space, but condition $S_{\frac{1}{3}}$ fails in general. Indeed we chose $S = \{0, \frac{1}{3}\}$ here rather than $S = \text{Box}(\Sigma) = \{0, \frac{1}{3}, \frac{2}{3}\}$ because with the latter choice condition $S_{\frac{1}{3}}$ fails and we do not obtain a closed form expression for $J_\mathcal{X}$. This is what we meant in [9] Remark 34.

Remark 13. The non-equivariant limit of our S-extended I-function, in the notation of [10], is:

$$z e^{(t_1 + t_2 + 3 t_3) P / z} \sum_{l=0}^{\infty} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{Q^{t_0 x_0^k_0 x_1^k_1 e^{(t_1 + t_2 + 3 t_3) t_l}}}{z^{k_0 + k_1} k_0 ! k_1 !} \prod_{b \leq \frac{1}{2} - \frac{k_1}{3}} (P + b z)^2 \prod_{b \leq \frac{1}{2} - \frac{k_1}{3}} (P + b z)^2 \prod_{0 < b \leq 1} (3 P + b z).$$

Theorem 7 implies that this lies on the Lagrangian submanifold \mathcal{L}^{non} for the non-equivariant Gromov–Witten theory of \mathcal{X} and, since (4) takes the form

$$z + (t_1 + t_2 + 3 t_3) P + x_0 1_0 + x_1 1_\frac{1}{3} + O(z^{-1})$$

we see that this determines the non-equivariant J-function $J_\mathcal{X}(t, x, z)$ for $t = t_1 P + x_0 1_0 + x_1 1_\frac{1}{3}$. Theorem 7 thus determines the orbifold quantum product \ast, for t as above, in a straightforward way. This improves on the results of [10], which determine $J_\mathcal{X}(t, x, z)$ for t in the small quantum cohomology locus $H^2(\mathcal{X}) \subset H^*_{\text{CR}}(\mathcal{X})$ and thus determine the small quantum orbifold cohomology ring of \mathcal{X}.

Remark 14. To determine the full big quantum orbifold cohomology ring of \mathcal{X} (equivariant or non-equivariant) from Theorem 7 is more involved. One needs to take $S = \{0, \frac{1}{3}, \frac{2}{3}\}$, so in particular condition $S_{\frac{1}{3}}$ fails, and then compute the big J-function $J_\mathcal{X}(t, z)$ by Birkhoff factorization, as in [3, 8] below. We do not know a closed-form expression for the structure constants.

Remark 15. Note that:

$$I^S_{\mathbb{P}(1, 1, 3)}(0, x, z)|_{Q=0} = I^S_{\mathbb{P}(1, 1, 3)}(0, x, z)$$

and that, as discussed in Remark 13, $I^S(0, 0, z)$ essentially coincides, after taking the non-equivariant limit and changing notation for degrees (replacing d by $\frac{4}{3}$), with the small I-function of $\mathbb{P}(1, 1, 3)$ as written in [10].
3.4. Example 4: $\mathbb{P}(2, 2)$. This is the toric Deligne–Mumford stack \mathcal{X} associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where
\[
\rho = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} : \mathbb{Z}^2 \to N = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}).
\]
and Σ is the fan in $N_{\mathbb{Q}} \cong \mathbb{Q}$ with rays given by -1 and 1. We identify $\text{Box}(\Sigma) = \{(0, 0), (0, 1)\}$ with the set $\{0, \frac{1}{2}\}$ via the map κ that sends 0 to $(0, 0)$ and $\frac{1}{2}$ to $(0, 1)$. We consider the S-extended I-function where $S = \{(0, 0), (0, 1), (-1, 1), (1, 0)\}$ and $S \to N_\Sigma$ is the canonical inclusion. The S-extended fan map is:
\[
\rho^S = \begin{pmatrix} -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix} : \mathbb{Z}^{2+4} \to N
\]
so that $\mathbb{L}_\mathbb{Q}^S \cong \mathbb{Q}^5$ is identified as a subset of \mathbb{Q}^{2+4} via the inclusion:
\[
\begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix}
\]
The S-extended Mori cone is the positive orthant. We see that $\Lambda^S \subset \mathbb{L}_\mathbb{Q}^S$ is the lattice of vectors:
\[
\begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix}
\]
such that $l, k_0, k_1, k_2, k_3 \in \mathbb{Z}$
and that the reduction function is:
\[
v^S: \begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix} \mapsto \frac{l + k_1 + k_2 + k_3}{2}
\]
Let us identify the Novikov ring Λ with $\mathbb{C}[Q]$ via the map that sends $d \in H_2(X; \mathbb{Z})$ to $Q^{\int d e_1(\mathcal{O}(2))}$. The S-extended I-function is:
\[
I^S(t, x, z) = z e^{(u_1 t_1 + u_2 t_2)/z} \times \sum_{(l, k_0, k_1, k_2, k_3) \in \mathbb{N}^5} \frac{Q^l x_0^{k_0} x_1^{k_1} x_2^{k_2} x_3^{k_3} e^{(t_1 + t_2)/t_2}}{z^{k_0 + k_1 + k_2 + k_3}} \prod_{b \leq 0} (u_1 + bz) \prod_{b \leq 0} (u_2 + bz) \prod_{b \leq 0} (u_3 + bz) \frac{1}{z^{l + k_1 + k_2 + k_3}}
\]
This is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = \deg x_2 = \deg x_3 = 0$, $\deg x_0 = \deg x_1 = \deg z = 1$, and $\deg Q = 2$. Theorem [7] gives that $I^S(x, t, -z) \in \mathcal{L}$, and straightforward calculation gives:
\[
I^S(t, x, z) = z 1_0 + \tau(x, t) + O(z^{-1})
\]}
The reduction function is:
\[
\tau(t, x) = x_0 \mathbf{1}_0 + (t_1 + \frac{1}{2} \log(1 - x_2^2)) u_1 \mathbf{1}_0 + (t_2 + \frac{1}{2} \log(1 - x_3^2)) u_2 \mathbf{1}_0 \\
+ x_1 \mathbf{1}_\frac{1}{2} + \frac{1}{2} \log \left(\frac{1 + x_2}{1 - x_2} \right) u_1 \mathbf{1}_\frac{1}{2} + \frac{1}{2} \log \left(\frac{1 + x_3}{1 - x_3} \right) u_2 \mathbf{1}_\frac{1}{2}
\]

Thus \(J_X(\tau, x, z) = I^S(t, x, z) \). We can invert the mirror map \((x, t) \mapsto \tau(x, t)\) in closed form: if \(\tau(x, t) = a_0 \mathbf{1}_0 + a_1 u_1 \mathbf{1}_0 + a_2 u_2 \mathbf{1}_0 + b_0 \mathbf{1}_\frac{1}{2} + b_1 u_1 \mathbf{1}_\frac{1}{2} + b_2 u_2 \mathbf{1}_\frac{1}{2} \), then:

\[
\begin{align*}
 x_0 &= a_0 & x_1 &= b_0 & x_2 &= \tanh b_1 \\
 x_3 &= \tanh b_2 & t_1 &= a_1 - \log \text{sech} b_1 & t_2 &= a_2 - \log \text{sech} b_2
\end{align*}
\]

This gives a closed-form expression for the \(J \)-function \(J_X(\tau, z) \).

Remark 16. It is instructive to consider the specialisations of \(I^S(t, x, z) \) to \(Q = x_2 = x_3 = 0 \) and to \(x_0 = x_1 = x_2 = x_3 = 0 \). Note that \(\mathbb{P}(2, 2) \) satisfies condition \(\sharp \) but not condition \(S-\sharp \).

3.5. **Example 5:** \(\mathbb{P}^1 \times B_{\mu_2} \). This is the toric Deligne–Mumford stack \(\mathcal{X} \) associated to the stacky fan \(\Sigma = (N, \Sigma, \rho) \), where:

\[
\rho = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} : \mathbb{Z}^2 \to N = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}).
\]

and \(\Sigma \) is the fan in \(N_Q \cong \mathbb{Q}^5 \) with rays given by \(-1 \) and \(1 \). We identify \(\text{Box}(\Sigma) = \{(0, 0), (0, 1)\} \) with the set \(\{0, \frac{1}{2}\} \) via the map \(\kappa \) that sends \(0 \) to \((0, 0) \) and \(\frac{1}{2} \) to \((0, 1) \). We consider the \(S \)-extended \(I \)-function where \(S = \{(0, 0), (0, 1), (-1, 1), (1, 1)\} \) and \(S \to N_\Sigma \) is the canonical inclusion. The \(S \)-extended fan map is:

\[
\rho^S = \begin{pmatrix} -1 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} : \mathbb{Z}^{2+4} \to N
\]

so that \(\mathbb{L}_Q^S \cong \mathbb{Q}^{5} \) is identified as a subset of \(\mathbb{Q}^{2+4} \) via the inclusion:

\[
\begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix}
\]

The \(S \)-extended Mori cone is the positive orthant. We see that \(\Lambda^S \subseteq \mathbb{L}_Q^S \) is the lattice of vectors:

\[
\begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix} \quad \text{such that } l, k_0, k_1, k_2, k_3 \in \mathbb{Z}
\]

and that the reduction function is:

\[
v^S : \begin{pmatrix} l \\ k_0 \\ k_1 \\ k_2 \\ k_3 \end{pmatrix} \mapsto \left\langle \frac{k_1 + k_2 + k_3}{2} \right\rangle.
\]
Let us identify the Novikov ring \(\Lambda \) with \(\mathbb{C}[Q] \) via the map that sends \(d \in H_2(X; \mathbb{Z}) \) to \(Q_d e_1(C|_{pt}(1)) \). The \(S \)-extended \(I \)-function is:

\[
I^S(t, x, z) = ze^{(u_1t_1 + u_2t_2)/z} \times \sum_{(l, k_0, \ldots, k_3) \in \mathbb{N}^4} \frac{Q_{l, x_0}^{k_0} x_1^{k_1} x_2^{k_2} x_3^{k_3} e^{(t_1 + t_2)l}}{z^{k_0 + k_1 + k_2 + k_3} k_0! k_1! k_2! k_3!} \prod_{b \leq 0} (u_1 + bz) \prod_{b \leq 1 - k_2} (u_1 + bz) \prod_{b \leq 1 - k_3} (u_2 + bz) \frac{1}{\Gamma(k_1 + k_2 + k_3)}
\]

Except for the difference in reduction function, this coincides with the \(S \)-extended \(I \)-function for \(\mathbb{P}(2, 2) \) in [3.6]. Once again, Theorem 7 gives that \(I^S(x, t, -z) \in \mathcal{L} \), and:

\[
I^S(t, x, z) = z \delta_0 + \tau(x, t) + O(z^{-1})
\]

with \(\tau(x, t) \) as in (5). Thus \(J \mathcal{X}(\tau(t, x), z) = I^S(t, x, z) \). Inverting the mirror map (6) gives a closed-form expression for the \(J \)-function \(J \mathcal{X}(\tau, z) \).

3.6. **Example 6:** \(\mathbb{P}_{2, 2} \). This is the unique Deligne–Mumford stack with coarse moduli space equal to \(\mathbb{P}^1 \), isotropy group \(\mu_2 \) at \(0 \in \mathbb{P}^1 \), isotropy group \(\mu_2 \) at \(\infty \in \mathbb{P}^1 \), and no other non-trivial isotropy groups. It is the toric Deligne–Mumford stack \(\mathcal{X} \) associated to the stacky fan \(\Sigma = (\Sigma, \rho) \), where:

\[
\rho = (-1 1) : \mathbb{Z}^2 \rightarrow N = \mathbb{Z} + \frac{1}{2} \mathbb{Z}.
\]

and \(\Sigma \) is the fan in \(N_\mathbb{Q} \cong \mathbb{Q} \) with rays given by \(-1\) and \(1\). We identify \(\text{Box}(\Sigma) \) with the set \(\{(0, 0), (\frac{1}{2}, 0), (0, \frac{1}{2})\} \) via the map \(\rho \). We consider the \(S \)-extended \(I \)-function where \(S = \text{Box}(\Sigma) \) and \(S \rightarrow N_\Sigma \) is the canonical inclusion. The \(S \)-extended fan map is:

\[
\rho^S = (-1 1 0 -\frac{1}{2} \frac{1}{2}) : \mathbb{Z}^{2+3} \rightarrow N
\]

so that \(\mathbb{L}^S_\mathbb{Q} \cong \mathbb{Q}^4 \) is identified as a subset of \(\mathbb{Q}^{2+3} \) via the inclusion:

\[
\begin{pmatrix}
 l \\
 k_0 \\
 k_1 \\
 k_2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
 l \\
 k_0 \\
 k_1 \\
 k_2
\end{pmatrix}
\]

The \(S \)-extended Mori cone is the positive orthant. We see that \(\Lambda^S \subset \mathbb{L}^S_\mathbb{Q} \) is the subset (not sublattice) of vectors:

\[
\begin{pmatrix}
 l \\
 k_0 \\
 k_1 \\
 k_2
\end{pmatrix}
\]

such that \(l, k_0, k_1, k_2 \in \mathbb{Z} \) and at least one of \(l - k_1, l - k_2 \) is even

and that the reduction function is:

\[
v^S : \begin{pmatrix}
 l \\
 k_0 \\
 k_1 \\
 k_2
\end{pmatrix}
\rightarrow
\langle \frac{k_1 - l}{2} \rangle, \langle \frac{k_2 - l}{2} \rangle \rangle.
\]
Let us identify the Novikov ring Λ with $\mathbb{C}[Q]$ via the map that sends $d \in H_2(X; \mathbb{Z})$ to $Q^d c_1(\mathcal{O}_X(1))$. The S-extended I-function is:

$$I^S(t, x, z) = z e^{(u_1 t_1 + u_2 t_2)/z} \times \sum_{(l, k_0, k_1, k_2) \in \Lambda^S} \frac{Q^l x_0^{k_0} x_1^{k_1} x_2^{k_2} e^{(t_1 + t_2)l}}{z^{k_0 + k_1 + k_2}} \prod_{b \leq 0} \left(\frac{t}{b} \right)^{l_1} \left(u_1 + bz \right) \prod_{b \leq 0} \left(\frac{t}{b} \right)^{l_2} \left(u_2 + bz \right) \prod_{b \leq l} \left(\frac{t}{b} \right)^{l_1} \left(x_1 + bz \right) \prod_{b \leq l} \left(\frac{t}{b} \right)^{l_2} \left(x_2 + bz \right)$$

This is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = 0$, $\deg x_0 = \deg Q = \deg z = 1$, and $\deg x_1 = \deg x_2 = \frac{1}{2}$. Theorem 7 gives that $I^S(x, t, -z) \in \mathcal{L}$, and since:

$$I^S(x, t, z) = z \mathbf{1}_{(0,0)} + t_1 u_1 \mathbf{1}_{(0,0)} + t_2 u_2 \mathbf{1}_{(0,0)} + x_0 \mathbf{1}_{(0,0)} + x_1 \mathbf{1}_{(\frac{1}{2},0)} + x_2 \mathbf{1}_{(0,\frac{1}{2})} + O(z^{-1})$$

we conclude that:

$$J^S(t_1 u_1 \mathbf{1}_{(0,0)} + t_2 u_2 \mathbf{1}_{(0,0)} + x_0 \mathbf{1}_{(0,0)} + x_1 \mathbf{1}_{(\frac{1}{2},0)} + x_2 \mathbf{1}_{(0,\frac{1}{2})}, z) = I^S(x, t, z)$$

3.7. Example 7: a toric surface. We have already seen examples (in §3.6 and §3.5) where condition S fails. We now give the simplest example of a Fano toric stack such that condition \neq fails. Consider the toric Deligne–Mumford stack \mathcal{X} associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where:

$$\rho = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & -2 \end{pmatrix} : \mathbb{Z}^2 \to N = \mathbb{Z}^2$$

and Σ is the complete fan in $N_Q \cong \mathbb{Q}^2$ with rays given by the columns of ρ. We identify $\text{Box}(\Sigma) = \{(0,0), (0,-1)\}$ with the set $\{0, \frac{1}{2}\}$ via the map κ that sends x to $(0, -2x)$. We identify $\mathbb{L}_Q \cong \mathbb{Q}^2$ as a subset of \mathbb{Q}^4 via the inclusion:

$$\begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 3 & 2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} l_1 \\ l_2 \end{pmatrix}$$

The Mori cone $\text{NE}(\mathcal{X})$ is the cone of vectors

$$\begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \in \mathbb{R}^2 \quad \text{such that } l_1 \geq 0 \text{ and } 3l_1 + 2l_2 \geq 0.$$

We see that $\mathcal{X}^\circ \subset \mathbb{L}_Q$ is the lattice of vectors:

$$\begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \in \text{NE} \mathcal{X} \quad \text{such that } l_1 \in \mathbb{Z} \text{ and } l_2 \in \frac{1}{2} \mathbb{Z}$$

and that the reduction function is:

$$v^S : \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \mapsto \langle -l_2 \rangle$$
Let us write the element of the Novikov ring corresponding to \((l_1, l_2) \in \Lambda^\varnothing\) as \(Q^{(l_1, l_2)}\). The \(I\)-function (that is, the \(S\)-extended \(I\)-function with \(S = \varnothing\)) is:
\[
I(t, x, z) = ze^{(u_1t_1 + u_2t_2 + u_3t_3 + u_4t_4)/z} \times \sum_{(l_1, l_2) \in \mathbb{Z} \times \frac{1}{2} \mathbb{Z}; \ l_1 \geq 0, 3l_1 + 2l_2 \geq 0} \frac{Q^{(l_1, l_2)}(t_1 + 3t_2 + t_3) t_1 e^{(2t_2 + 4t_4)l_2} - 1_{(-l_2)}}{l_1 (u_1 + bz) (u_3 + bz) \prod_{0 < b \leq l_1} (b + z) \prod_{0 < b \leq 3l_1 + 2l_2} (u_2 + bz) \prod_{b \leq l_2} (u_4 + bz)}
\]
This is homogeneous of degree 1 if we set \(\deg t_1 = \deg t_2 = \deg t_3 = \deg t_4 = 0\), \(\deg z = 1\), and \(\deg Q^{(l_1, l_2)} = 5l_1 + 3l_2\). We therefore have:
\[
I(t, x, z) = z1_0 + t_1 u_1 1_0 + t_2 u_2 1_0 + t_3 u_3 1_0 + t_4 u_4 1_0 - \frac{1}{2} Q(1, -\frac{1}{2}) e^{t_1 + t_3 + t_4 - \frac{3}{2} t_1} 1_2 + O(z^{-1})
\]
and condition \(\mathbb{Q}\) fails.

Remark 17. The coarse moduli space \(X\) of \(\mathcal{X}\) is the ruled surface \(\mathbb{P}_3\). Let \(A\) and \(B\) denote the natural divisors on \(\mathbb{P}_3\), with \(A\) the fibre and \(B\) the negative section. Then \(\mathcal{X}\) can be interpreted as the moduli stack of square roots of \(B\) [4 §2][1 Appendix B]. The stack \(\mathcal{X}\) contains a substack \(\{x_4 = 0\}\) supported on \(B\) and isomorphic to \(\mathbb{P}(2, 2)\). In this context it is natural to identify the integral Chow group \(\text{CH}(\mathcal{X}, \mathbb{Z})\) with the subring of \(\text{CH}^\bullet(\mathcal{X}, \mathbb{Q})\) multiplicatively generated by \(A\) and \(B/2\); the cycle class of \(\mathbb{P}(2, 2) \subset \mathcal{X}\) is \(B/2\). This gives an interpretation of the degrees \((l_1, l_2)\) occurring in the definition of \(I(t, x, z)\).

3.8. Example 8: \(\mathbb{P}^2\). There is a well-known closed formula [16] for the small \(J\)-function of \(\mathcal{X} = \mathbb{P}^2\), that is, for the \(J\)-function \(J_{\mathcal{X}}(t, z)\) with \(t \in H^2(\mathcal{X})\). We now show how to use an \(S\)-extended \(I\)-function to obtain arbitrarily many terms of the Taylor expansion of the big \(J\)-function of \(\mathcal{X}\), that is, of the \(J\)-function \(J_{\mathcal{X}}(t, z)\) with \(t \in H^\bullet(\mathcal{X})\). We use the Birkhoff factorization procedure described in [12 §8]. We will compute the non-equivariant version of the \(J\)-function, as the equivariant calculation is significantly more involved.

The variety \(\mathcal{X}\) is the toric Deligne–Mumford stack associated to the stacky fan \(\Sigma = (N, \Sigma, \rho)\), where:
\[
\rho = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} : \mathbb{Z}^3 \to N = \mathbb{Z}^2
\]
and \(\Sigma\) is the complete fan in \(N_\mathbb{Q} \cong \mathbb{Q}^2\) with rays given by the columns of \(\rho\). We have \(\text{Box}(\Sigma) = \{0\}\). Consider the \(S\)-extended \(I\)-function where \(S = \{(0, 0), (0, -1)\}\) and the map \(S \to N_\Sigma\) is the canonical inclusion. The \(S\)-extended fan map is:
\[
\rho^S = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 \end{pmatrix} : \mathbb{Z}^{3+2} \to N
\]
so that \(\mathbb{L}_\mathbb{Q} \cong \mathbb{Q}^3\) is identified as a subset of \(\mathbb{Q}^{3+2}\) via the inclusion:
\[
\begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix}
\]
The S-extended Mori cone is the positive octant. We see that $\Lambda^S \subset \mathbb{L}_Q^S$ is the lattice of vectors:

$$\begin{pmatrix} l \\ k_0 \\ k_1 \end{pmatrix}$$

such that $l, k_0, k_1 \in \mathbb{Z}$

The reduction function ν^S is trivial. Let $P \in H^2(\mathcal{X})$ denote the first Chern class of $\mathcal{O}(1)$, and identify the Novikov ring Λ with $\mathbb{C}[Q]$ via the map that sends $d \in H_2(\mathcal{X}; \mathbb{Z})$ to $Q^{\deg P}$. The non-equivariant limit of the S-extended I-function is:

$$I^S_{\text{non}}(t, x, z) = z e^{(t_1 + t_2 + t_3) P/2 + \sum_{(l, k_0, k_1) \in \mathbb{N}^3} Q^l x_0^{k_0} x_1^{k_1} e^{(t_1 + t_2 + t_3) l} \frac{z^{k_0 + k_1} k_0! k_1!}{\prod_{b \leq l - k_1} (P + b z)^2 \prod_{0 < b \leq l} (P + b z)} 1}$$

This takes values in the non-equivariant cohomology ring $H^\bullet(\mathcal{X}; \mathbb{C}) = \mathbb{C}[P]/(P^3)$. It is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = \deg t_3 = 0$, $\deg x_0 = \deg z = 1$, $\deg x_1 = -1$, and $\deg Q = 3$. Note that, unlike the other examples in this paper, in this case the I-function contains arbitrarily large positive powers of z; this reflects the fact that some of the variables have negative degree.

We have:

$$I^S_{\text{non}}(t, x, z) = z + x_0 + (t_1 + t_2 + t_3) P + x_1 P^2 + \frac{1}{2} x_0^2 x_1^2 P^2 + \frac{1}{2} x_0 x_1^3 P^2 + O(z^{-1}) + O(x_1^3)$$

The non-equivariant version of the mirror theorem for toric Deligne–Mumford stacks [9, Corollary 32] gives that $I^S(x, t, -z) \in \mathcal{L}^{\text{non}}$, where \mathcal{L}^{non} is Givental’s Lagrangian cone for non-equivariant Gromov-Witten theory (see e.g. [8, §3]). Set $t_2 = t_3 = 0$. Condition S^z holds modulo x_1^2, so:

$$J_\mathcal{X}(x_0 + t_1 P + x_1 P^2, z) + O(x_1^3) = I^S_{\text{non}}(t, x, z) + O(x_1^3)$$

The following elements lie in $T_{I^S_{\text{non}}(t, x, z)} \mathcal{L}^{\text{non}}$:

$$\frac{\partial I^S_{\text{non}}}{\partial x_0} = e^{P t_1/z} e^{x_0/z} \left(1 + O(z^{-3}) + O(x_1) \right)$$

$$\frac{\partial I^S_{\text{non}}}{\partial t_1} = e^{P t_1/z} e^{x_0/z} \left(1 + O(z^{-3}) + O(x_1) \right)$$

$$\frac{\partial I^S_{\text{non}}}{\partial x_1} = e^{P t_1/z} e^{x_0/z} \left(P^2 + \frac{Q e^{t_1}}{z} - \frac{Q e^{t_1}}{z^2} P + O(z^{-3}) + O(x_1) \right)$$

We have that:

$$I^S_{\text{non}}(t, x, z) = e^{P t_1/z} e^{x_0/z} \left(z + x_1 P^2 + \frac{x_1^2}{2} P^2 + O(x_1^3) + O(z^{-1}) \right)$$

and general properties of \mathcal{L}^{non} guarantee [18] [9, Appendix B] that:

$$I^S_{\text{non}}(t, x, -z) + C_0(t, x, z) z \frac{\partial I^S_{\text{non}}}{\partial x_0}(t, x, -z)$$

$$+ C_1(t, x, z) z \frac{\partial I^S_{\text{non}}}{\partial t_1}(t, x, -z) + C_2(t, x, z) z \frac{\partial I^S_{\text{non}}}{\partial x_1}(t, x, -z) \in \mathcal{L}^{\text{non}}$$

for any C_0, C_1, C_2 depending polynomially on z. But:

$$I^S_{\text{non}}(t, x, z) - \frac{1}{2} x_1^2 \frac{\partial I^S_{\text{non}}}{\partial x_1} = e^{P t_1/z} e^{x_0/z} \left(z + x_1 P^2 - \frac{1}{2} x_1^2 Q e^{t_1} + O(x_1^3) + O(z^{-1}) \right)$$

$$= z + x_0 - \frac{1}{2} x_1^2 Q e^{t_1} + t_1 P + x_1 P^2 + O(z^{-1})$$
and thus:
\[J_X(\tau, z) + O(x_1^3) = I_{\text{non}}^S(t, x, z) - \frac{1}{2}x_1^2 z \frac{\partial I_{\text{non}}^S}{\partial x_1} + O(x_1^3) \]
where:
\[\tau(x_0, t_1, x_1) = (x_0 - \frac{1}{2}x_1^2 Q e^{t_1}) 1 + t_1 P + x_1 P^2 \]
Inverting the mirror map \((x_0, t_1, x_1) \mapsto \tau\) gives a closed-form expression for the big \(J\)-function \(J_X(a_0 + a_1 P + a_2 P^2, z)\) to order 2 in \(a_2\). One can repeat this procedure to compute the big \(J\)-function \(J_X(a_0 + a_1 P + a_2 P^2, z)\) to arbitrarily high order in \(a_2\).

4. Twisted \(J\)-Functions

Let \(X\) be the toric Deligne–Mumford stack defined by an \(S\)-extended stacky fan \(\Sigma\), as in \[2.3\]. Suppose that \(X\) is smooth and the coarse moduli space of \(X\) is semi-projective. Let \(\varepsilon_1, \ldots, \varepsilon_r \in (\mathbb{L}^S)^\vee\). The canonical inclusion \(i: \mathbb{L} \to \mathbb{L}^S\) induces \(i^*: (\mathbb{L}^S)^\vee \to \mathbb{L}^\vee = \text{Pic}(X)\), and so the classes \(\varepsilon_1, \ldots, \varepsilon_r\) define line bundles \(\mathcal{E}_1, \ldots, \mathcal{E}_r\) over \(X\) via \(i^*\). Let \(\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_r\), and let \(c\) denote the invertible multiplicative characteristic class
\[c(-) = \exp\left(\sum_{k=0}^{\infty} s_k \text{ch}_k(-) \right) \]
where \(s_0, s_1, \ldots\) are parameters. We consider the Gromov–Witten theory of \(X\) twisted, in the sense of \[12, 28, 8\]. by the vector bundle \(\mathcal{E}\) and the characteristic class \(c\). Let \(\mathcal{L}^\text{tw}\) denote Givental’s Lagrangian cone for \((c, \mathcal{E})\)-twisted Gromov–Witten theory, as in \[8, \S3\].

Let \(D_i \in H^2(X; \mathbb{C})\), denote the (non-equivariant) class Poincaré dual to the \(i\)th toric divisor for \(1 \leq i \leq n\), and the zero class for \(n < i \leq n + |S|\). Let \(E_j \in H^2(X; \mathbb{C})\), \(1 \leq j \leq r\), denote the (non-equivariant) first Chern class of \(E_j\). Let \(\mathcal{L}^\text{non}\) denote Givental’s Lagrangian cone for the non-equivariant Gromov–Witten theory of \(X\), as in \[8, \S3\], and let \(I_{\text{non}}^S(t, x, z)\) denote the non-equivariant limit of the \(S\)-extended \(\mathbb{T}\)-equivariant \(I\)-function \(I^S(t, x, z)\).

Notation 18. Given parameters \(s_0, s_1, \ldots\) as above, write \(s(x) := \sum_{k=0}^{\infty} s_k x^k / k!\).

Definition 19 (c.f. \[8, \S4\]). Given \(b \in \text{Box}(\Sigma)\) and \(\lambda \in \Lambda E^S_b\), define the modification factor:
\[M_{\lambda, b}(z) := \prod_{j=1}^{r} \prod_{\alpha: a(\alpha) = (\varepsilon_j, \lambda)} \exp \left(s(E_j + az) \right) \]

Definition 20. The \(S\)-extended \((c, \mathcal{E})\)-twisted \(I\)-function of \(X\) is:
\[I_{c, \mathcal{E}}^S(t, x, z) = \sum_{b \in \text{Box}(\Sigma)} \sum_{\lambda \in \Lambda E^S_b} \tilde{Q}^\lambda I_{\lambda, b}(z) M_{\lambda, b}(z) y^b \]
where \(I_{\text{non}}^S(t, x, z) = \sum_{b \in \text{Box}(\Sigma)} \sum_{\lambda \in \Lambda E^S_b} \tilde{Q}^\lambda I_{\lambda, b}(z) y^b\).

Theorem 21. With hypotheses and notation as above, we have that \(I_{c, \mathcal{E}}^S(t, x, z) \in \mathcal{L}^\text{tw}\).

Proof. Recall from the proof of Theorem 4.8 in \[8\] that:
\[G_y(x, z) := \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{B_m(y)}{m!} x^l z^{m-1} \]
satisfies:

\[
G_y(x, z) = G_0(x + yz, z) \\
G_0(x + z, z) = G_0(x, z) + s(x)
\]

Here \(B_m(y)\) is the \(m\)th Bernoulli polynomial, and \(s_{-1}\) is defined to be zero. Thus:

\[
M_{\lambda, b}(-z) = \prod_{j=1}^{r} \exp \left(\sum_{a: (a) = (\varepsilon_j, \lambda)} s(E_j - az) - \sum_{a: (a) = (\varepsilon_j, \lambda) \leq 0} s(E_j - az) \right)
\]

\[
= \prod_{j=1}^{r} \exp \left(G_0(E_j + (-\varepsilon_j \cdot \lambda)z, z) - G_0(E_j - (\varepsilon_j \cdot \lambda)z, z) \right)
\]

\[
= \prod_{j=1}^{r} \exp \left(G_{\langle -\varepsilon_j, \lambda \rangle}(E_j, z) - G_0(E_j - (\varepsilon_j \cdot \lambda)z, z) \right)
\]

where for the last two equalities we used (7).

Let \(b \in \text{Box}(\Sigma)\), and let \(f(b, j) \in [0, 1)\) be the rational number such that if \((x, g) \in I\mathcal{X}_b\), then \(g\) acts on the fiber of \(\mathcal{E}_j\) over \(x \in \mathcal{X}\) by multiplication by \(\exp\left(2\pi \sqrt{-1}f(b, j)\right)\). If \(\tilde{b} = \sum_{i: \tilde{b}_i \in \sigma} m_i \tilde{b}_i\), where \(\sigma \in \Sigma\) is the minimal cone containing \(\tilde{b}\), then:

\[
f(b, j) = \langle \sum_{i: \tilde{b}_i \in \sigma} m_i \varepsilon_j(e_i) \rangle
\]

Note that if \(\lambda \in \Lambda E^S_b\) then \(f(b, j) = (-\varepsilon_j \cdot \lambda)\). Tseng has proven [28] that the operators:

\[
\Delta_j := \bigoplus_{b \in \text{Box}(\Sigma)} \exp \left(G_{f(b, j)}(E_j; z) \right)
\]

and \(\Delta := \prod_{j=1}^{r} \Delta_j\) satisfy \(\Delta(\mathcal{L}^{\text{non}}) = \mathcal{L}^{\text{tw}}\); the direct sum in the definition of \(\Delta_j\) here reflects the decomposition \(H^{*\bullet}(\mathcal{X}; \mathbb{C}) = \bigoplus_{b \in \text{Box}(\Sigma)} H^{*-\text{age}(b)}(I\mathcal{X}_b; \mathbb{C})\). To show that \(I^S_{c, z}(t, x, -z)\) lies in \(\mathcal{L}^{\text{tw}}\), therefore, it suffices to show that:

\[
\sum_{b \in \text{Box}(\Sigma)} \sum_{\lambda \in \Lambda E^S_b} \tilde{Q}^\lambda I_{\lambda, b} \prod_{j=1}^{r} \exp \left(-G_0(E_j - (\varepsilon_j \cdot \lambda)z, z) \right) y^b
\]

lies in the cone \(\mathcal{L}^{\text{non}}\) for the untwisted theory. But (8) is:

\[
\prod_{j=1}^{r} \exp \left(-G_0(-z \nabla_{\varepsilon_j}, z) \right) I^S_{\text{non}}(t, x, -z)
\]

where \(\nabla_{\varepsilon_j}\) is the linear differential operator in \(Q\) and \(x_1, \ldots, x_m\) defined by \(\nabla_{\varepsilon_j}(\tilde{Q}^\lambda) = (\varepsilon_j \cdot \lambda)\tilde{Q}^\lambda\), and we know by the non-equivariant version of the mirror theorem for toric Deligne–Mumford stacks [9 Corollary 32], [7] that \(I^S_{\text{non}}(t, x, -z) \in \mathcal{L}^{\text{non}}\). Arguing as in the proof of [8 Theorem 4.8] now shows that:

\[
\prod_{j=1}^{r} \exp \left(-G_0(-z \nabla_{\varepsilon_j}, z) \right) I^S_{\text{non}}(t, x, -z) \in \mathcal{L}^{\text{non}}
\]

as required. □
Remark 22. Theorem 21 roughly speaking, states that a certain hypergeometric modification of the untwisted J-function I_{non}^S lies on the twisted cone \mathcal{L}^tw. The proof of Theorem 21 is essentially the same as the proof of Theorem 4.8 in [8], where we showed that a hypergeometric modification of the untwisted J-function J_X lies on \mathcal{L}^tw. The essential properties of the J-function J_X used there are that $J_X(t, -z) \in \mathcal{L}^\text{non}$ (which holds by definition) and the Divisor Equation [10, Lemma 4.7(3)]. The essential properties of the J-function I_{non}^S used here are that $I_{\text{non}}^S(x, t, -z) \in \mathcal{L}^\text{non}$ (our mirror theorem) and that $\nabla_{\varepsilon} I_{\text{non}}^S(t, x, z) = (E_j + (\varepsilon_j \cdot \lambda)z) I_{\text{non}}^S(x, t, z)$. This latter property, which is a version of the Divisor Equation for the J-function, allows us to replace (8) by (9).

Corollary 23. Let \mathcal{X} and \mathcal{E} be as above. Consider the action of S^1 on the total space of \mathcal{E} which covers the trivial action on \mathcal{X} and scales the fibers of \mathcal{E}. Let e denote the S^1-equivariant Euler class, with μ the equivariant parameter, and let:

$$I_{e, \mathcal{E}}^S(t, x, z) := z \varepsilon \sum_{i=1}^n D_i t^i / z \times \sum_{b \in \Box(\Sigma)} \sum_{\lambda \in \Lambda E_b^\text{tw}} \tilde{Q}^\lambda e^{\lambda t} \left(\prod_{i=1}^{n+m} \prod_{(a) = (\lambda_i), a \leq \lambda_i} (D_i + az) \right) \left(\prod_{j=1}^r \prod_{(a) = (\varepsilon_j, \lambda), a \leq \varepsilon_j, \lambda} (\mu + E_j + az) \right) y^b$$

Let \mathcal{L}^tw denote Givental’s Lagrangian cone for (e, \mathcal{E})-twisted Gromov–Witten theory, as in [8, §3]. Then $I_{e, \mathcal{E}}^S(t, x, -z) \in \mathcal{L}^\text{tw}$.

Proof. The characteristic class e is invertible over the field of fractions $\mathbb{C}(\mu)$ of $H_{S^1}^*(\text{pt})$, so we may apply Theorem 21.

Remark 24. One can regard the characteristic class e in Corollary 23 as the total Chern class with parameter μ.

Remark 25. As we will see in [5] and as we saw in [8, §5], if the line bundles $\mathcal{E}_1, \ldots, \mathcal{E}_r$ satisfy appropriate positivity hypotheses then the non-equivariant limit $\mu \to 0$ of Corollary 23 gives a mirror theorem for the complete intersection \mathcal{Y} defined by generic sections of $\mathcal{E}_1, \ldots, \mathcal{E}_r$. Cheong–Ciocan-Fontanine–Kim also prove such a mirror theorem [7], but in their setting it comes for free, without needing to apply Tseng’s Quantum Lefschetz theorem. Their approach applies to a quite general class of GIT quotients, and the complete intersection \mathcal{Y} can always be expressed as such a GIT quotient.

Remark 26. With a little extra effort — modifying the formal setup in [8] to include equivariant parameters — one could prove the T-equivariant analogs of Theorem 21 and Corollary 23 in exactly the same way. We omit this here, however, as we know of no applications of these results. In current applications one either treats toric complete intersections by taking $c = e$, in which case the T-action on the ambient space is irrelevant as it does not preserve the complete intersection, or one treats non-compact geometries by taking $c = e^{-1}$ to be the S^1-equivariant inverse Euler class. The latter case can be treated directly using Theorem 7 as the total space of \mathcal{E} is itself a toric Deligne–Mumford stack.

5. A Mirror Theorem for Toric Complete Intersection Stacks

We now describe how, under appropriate hypotheses on the vector bundle \mathcal{E} and the toric Deligne–Mumford stack \mathcal{X}, Corollary 23 gives a mirror theorem for the complete intersection stack \mathcal{Y} cut out by a generic section of \mathcal{E}. Suppose that the vector bundle \mathcal{E} is convex. This is very restrictive assumption: it in particular implies that \mathcal{E} is the pull-back of a vector bundle on the coarse moduli
Suppose also that condition S-$\#$ holds for \mathcal{X}, or at least that it does not fail too badly: we need
\begin{equation}
I_{S,\mathcal{E}}^{S}(t, x, z) = F(t, x)z + G(t, x) + O(z^{-1})
\end{equation}
where F is an invertible scalar-valued function and the mirror map:
\[
\tau(t, x) = \frac{G(t, x)}{F(t, x)}
\]
is invertible, so that we can solve for t and x in terms of τ. Then Corollary 23 determines the unique point
\[
\frac{I_{S,\mathcal{E}}^{S}(t, x, -z)}{F(t, x)}
\]
on L^{tw} of the form $-z + \tau + O(z^{-1})$: this is $J_{\mathcal{E}}^{S}(\tau, -z)$ where $J_{\mathcal{E}}^{S}$ is the twisted J-function defined in \[8\] §3. Our convexity assumption guarantees that the twisted J-function admits a non-equivariant limit $J_{\mathcal{X},\mathcal{Y}}^{S}(\tau, z)$, and functoriality for the virtual fundamental class \[25, 13\] implies that:
\[
e(\mathcal{E})J_{\mathcal{X},\mathcal{Y}}^{S}(\tau, z) = i_{\ast}J_{\mathcal{Y}}^{S}(i^{\ast}\tau, z)
\]
where i_{\ast}, i^{\ast} are the push-forward and pull-back maps on Chen–Ruan cohomology induced by the inclusion $i : \mathcal{Y} \to \mathcal{X}$. Thus Corollary 23 determines that part of $J_{\mathcal{Y}}$ involving classes pulled back from the ambient space \mathcal{X}. This is a mirror theorem for the toric complete intersection stack \mathcal{Y}.

Remark 27. In general the (e, \mathcal{E})-twisted I-function will not satisfy (10), but one can still obtain the (e, \mathcal{E})-twisted J-function by Birkhoff factorization as in \[3.8\]. Provided that the bundle \mathcal{E} is convex, this allows the computation of genus-zero Gromov–Witten invariants of \mathcal{Y}.

Remark 28. If \mathcal{E} is not convex then the relationship between (e, \mathcal{E})-twisted Gromov–Witten invariants of \mathcal{X} and Gromov–Witten invariants of \mathcal{Y} is not well understood \[11\]. This merits further investigation.

5.1. Example 9: a sextic hypersurface in $\mathbb{P}(1, 1, 1, 3, 3)$.
Let the orbifold \mathcal{Y} be a smooth sextic hypersurface in $\mathcal{X} = \mathbb{P}(1, 1, 1, 3, 3)$; this is a Fano 3-fold with canonical singularities. The ambient space \mathcal{X} is the toric Deligne–Mumford stack associated to the stacky fan $\Sigma = (N, \Sigma, \rho)$, where:
\[
\rho = \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
-3 & 0 & 0 & 1 & 0 \\
-3 & 0 & 0 & 0 & 1
\end{pmatrix} : \mathbb{Z}^{5} \to N = \mathbb{Z}^{4}
\]
and Σ is the complete fan in $N_{\mathbb{Q}} \cong \mathbb{Q}^{4}$ with rays given by the columns $\rho_{1}, \ldots, \rho_{5}$ of ρ. We identify $\text{Box}(\Sigma)$ with the set $\{0, \frac{1}{3}, \frac{2}{3}\}$ via the map $\kappa : x \mapsto x(\rho_{1} + \rho_{2} + \rho_{3})$. Consider the S-extended I-function where $S = \{0, \frac{1}{3}\}$ and $S \to N_{\mathbb{Z}}$ is the map κ. The S-extended fan map is:
\[
\rho^{S} = \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
-3 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix} : \mathbb{Z}^{5+2} \to N
so that $\mathbb{L}_Q^S \cong \mathbb{Q}^3$ is identified as a subset of \mathbb{Q}^{5+2} via the inclusion:

$$
\begin{pmatrix}
 l \\
 k_0 \\
 k_1
\end{pmatrix}
\mapsto
\begin{pmatrix}
 \frac{1}{3} & 0 & -\frac{1}{3} \\
 \frac{2}{3} & 0 & -\frac{1}{3} \\
 1 & 0 & 0 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 l \\
 k_0 \\
 k_1
\end{pmatrix}
$$

The S-extended Mori cone is the positive octant. We see that $\Lambda^S \subset \mathbb{L}_Q^S$ is the sublattice of vectors:

$$
\begin{pmatrix}
 l \\
 k_0 \\
 k_1
\end{pmatrix}
\quad \text{such that } l, k_0, k_1 \in \mathbb{Z}
$$

and that the reduction function is:

$$
v^S:
\begin{pmatrix}
 l \\
 k_0 \\
 k_1
\end{pmatrix}
\mapsto \langle \frac{k_1 - l}{3} \rangle
$$

Let $P \in H^2(X; \mathbb{Q})$ denote the (non-equivariant) first Chern class of $\mathcal{O}_X(1)$, and identify the Novikov ring Λ with $\mathbb{C}[\mathbb{Q}]$ via the map that sends $d \in H_2(X; \mathbb{Z})$ to $Q^{d \cdot 3P}$. With notation as in $[3]$ we have $D_1 = D_2 = D_3 = P$, $D_4 = D_5 = 3P$, and so the non-equivariant limit of the S-extended I-function is:

$$
I^S_{\text{non}}(t, x, z) = z e^{(t_1 + t_2 + t_3 + 3t_4 + 3t_5) P/z} \times \sum_{(l, k_0, k_1) \in \mathbb{N}^3} Q^l x_0^{k_0} x_1^{k_1} e^{(t_1 + t_2 + t_3 + 3t_4 + 3t_5) / 2} \frac{\prod_{b = 0}^{l} \langle \frac{l - b}{3} \rangle (P + bz)^3}{\prod_{b = 0}^{l} \langle \frac{l - b}{3} \rangle (P + bz)^3 \prod_{1 \leq b \leq l} (3P + bz)^2} 1^{\langle \frac{k_1 - l}{3} \rangle}
$$

Let $\mathcal{E} \to X$ be the line bundle corresponding to the element $\varepsilon \in (\mathbb{L}_Q^S)^\vee$ given by:

$$
\varepsilon:
\begin{pmatrix}
 l \\
 k_0 \\
 k_1
\end{pmatrix}
\mapsto 2l
$$

so that $\mathcal{E} = \mathcal{O}(6)$. The S-extended (e, \mathcal{E})-twisted I-function of X is:

$$
I^S_{\varepsilon, \mathcal{E}}(t, x, z) = z e^{(t_1 + t_2 + t_3 + 3t_4 + 3t_5) P/z} \times \sum_{(l, k_0, k_1) \in \mathbb{N}^3} Q^l x_0^{k_0} x_1^{k_1} e^{(t_1 + t_2 + t_3 + 3t_4 + 3t_5) / 2} \frac{\prod_{b = 0}^{l} \langle \frac{l - b}{3} \rangle (P + bz)^3}{\prod_{b = 0}^{l} \langle \frac{l - b}{3} \rangle (P + bz)^3 \prod_{1 \leq b \leq l} (3P + bz)^2} 1^{\langle \frac{k_1 - l}{3} \rangle}
$$

This is homogeneous of degree 1 if we set $\deg t_1 = \deg t_2 = \deg t_3 = \deg t_4 = \deg t_5 = 0$, $\deg z = \deg Q = \deg x_0 = \deg \mu = 1$, and $\deg x_1 = 0$. We therefore have:

$$
I^S_{\varepsilon, \mathcal{E}}(t, x, z) = z + (t_1 + t_2 + t_3 + 3t_4 + 3t_5) P + x_0 1_0 + f(x_1) 1_3 + O(z^{-1})
$$
where:

\[
f(x) = \sum_{m=0}^{\infty} (-1)^m \frac{x^{3m+1}}{(3m+1)!} \frac{\Gamma(m + \frac{1}{3})^3}{\Gamma(\frac{1}{3})^3}
\]

Let \(g\) denote the power series inverse to \(f\), so that \(g(x) = x + \frac{x^4}{648} + \cdots\), and set:

\[
t_i = \begin{cases}
\tau & \text{if } i = 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
x_i = \begin{cases}
\xi_0 & \text{if } i = 0 \\
g(\xi_1) & \text{if } i = 1
\end{cases}
\]

Then:

\[
J_{e,\mathcal{E}}(\tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}}) = I_{e,\mathcal{E}}^S(t, x, z) = z + \tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}} + O(z^{-1})
\]

and Corollary 23 implies that:

\[
J_{e,\mathcal{E}}(\tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}}, z) = I_{e,\mathcal{E}}^S(t, x, z)
\]

where \(J_{e,\mathcal{E}}(t, z)\) is the \((e, \mathcal{E})\)-twisted \(J\)-function discussed above. The line bundle \(\mathcal{E}\) is convex, and the zero locus \(\mathcal{Y}\) of a generic section of \(\mathcal{E}\) is a sextic hypersurface in \(\mathcal{X}\). Let \(i_*, i^*\) denote the push-forward and pull-back maps on Chen–Ruan cohomology induced by the inclusion \(i : \mathcal{Y} \rightarrow \mathcal{X}\). In this case \(i^*\) surjects onto the integer-graded part of \(H^*_{\text{CR}}(\mathcal{Y})\); let \(P, 1_0, 1_{\frac{1}{3}}, 1_{\frac{1}{4}}\) in \(H^*_{\text{CR}}(\mathcal{Y})\) denote the pullbacks of the corresponding classes from \(\mathcal{X}\). We conclude that:

\[
i_* J_\mathcal{Y} (\tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}}, z) =
\]

\[
z e^{\tau P/z} \sum_{(l,k_0,k_1)\in\mathbb{N}^3} \sum_{k_1 \equiv l \mod 3} Q^l \xi_0^{k_0} g(\xi_1)^{k_1} e^{\tau l} \prod_{b=0}^{l} \langle b \rangle = \langle \frac{i-k_1}{3} \rangle (P + bz)^3 \prod_{1 \leq b \leq l} (6P + bz)^3 \prod_{0 \leq b < 2l} (3P + bz)^2 \frac{1}{\langle \frac{i-k_1}{3} \rangle}
\]

Since \(i_*\) is injective on the integer-graded part of \(H^*_{\text{CR}}(\mathcal{Y})\), this determines \(J_\mathcal{Y}(\tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}}, z)\).

For example, the coefficient of \(1_0\) in \(J_\mathcal{Y}(\tau P + \xi_0 1_0 + \xi_1 1_{\frac{1}{3}}, z)\) is:

\[
\sum_{l=0}^{\infty} \sum_{k_0=0}^{\infty} \sum_{\substack{k_1 \geq 1 \leq d \leq l \mod 3 \atop k_1 \equiv l \mod 3}} Q^l \xi_0^{k_0} g(\xi_1)^{k_1} e^{\tau l} \frac{1}{z^{k_0+k_1} k_1! (\frac{i-k_1}{3})!} (\frac{2l}{l})^2
\]

This is the so-called quantum period of \(\mathcal{Y}\).

REFERENCES

[1] D. Abramovich, T. Graber, A. Vistoli, *Gromov–Witten theory of Deligne–Mumford stacks*, Amer. J. Math. 130 (2008), no. 5, 1337–1398.

[2] S. Barannikov, *Quantum periods. I. Semi-infinite variations of Hodge structures*, Internat. Math. Res. Notices 2001, no. 23, 1243–1264.

[3] L. Borisov, L. Chen, G. Smith, *The orbifold Chow ring of toric Deligne–Mumford stacks*, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215.

[4] C. Cadman, *Using stacks to impose tangency conditions on curves*, Amer. J. Math. 129 (2007), no. 2, 405–427.

[5] W. Chen, Y. Ruan, *Orbifold Gromov–Witten theory*, In: “Orbifolds in mathematics and physics (Madison, WI, 2001)”, 25–85, Contem. Math. 310, Amer. Math. Soc., 2002.

[6] W. Chen, Y. Ruan, *A new cohomology theory for orbifolds*, Comm. Math. Phys. 248 (2004), no. 1, 1–31.

[7] D. Cheong, I. Ciocan-Fontanine, B. Kim, *Orbifold Quasimap Theory*, in preparation.

[8] T. Coates, A. Corti, H. Iritani, H.-H. Tseng, *Computing genus-zero twisted Gromov–Witten invariants*, Duke Math. J., 147 (2009), no. 3, 377–438.
[9] T. Coates, A. Corti, H. Iritani, H.-H. Tseng, *A Mirror Theorem for Toric Stacks*, arXiv:1310.4163 [math.AG]
[10] T. Coates, A. Corti, Y.-P. Lee, H.-H. Tseng, *The Quantum Orbifold Cohomology of Weighted Projective Space*, Acta Math. 202 (2009), no. 2, 139–193.
[11] T. Coates, A. Gholampour, H. Iritani, Y. Jiang, P. Johnson, C. Manolache, *The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces*, Math. Res. Lett. 19 (2012), no. 5, 997–1005.
[12] T. Coates, A. Givental, *Quantum Riemann–Roch, Lefschetz and Serre*, Ann. of Math. (2) 165 (2007), no. 1, 15–53.
[13] D. Cox, S. Katz, Y.-P. Lee, *Virtual fundamental classes of zero loci*, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), 157–166, Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001.
[14] B. Fantechi, E. Mann, F. Nironi, *Smooth toric Deligne-Mumford stacks*, J. Reine Angew. Math. 648 (2010), p.201–244.
[15] A. Gholampour, H.-H. Tseng, *On computations of genus zero two-point descendant Gromov-Witten invariants*, arXiv:1207.6071 [math.AG]
[16] A. Givental, *Homological geometry and mirror symmetry*, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zrich, 1994), 472–480, Birkhuser, Basel, 1995.
[17] A. Givental, *Gromov–Witten invariants and quantization of quadratic Hamiltonians*, Mosc. Math. J. 1(2001), no. 4, 551–568.
[18] A. Givental, *Symplectic geometry of Frobenius structures*, In: “Frobenius manifolds”, 91–112, Math., E36, Vieweg, Wiesbaden, 2004.
[19] E. Gonzalez, C. T. Woodward, *Quantum cohomology and toric minimal model programs*, arXiv:1207.3253 [math.AG]
[20] H. Iritani, *Quantum D-modules and generalized mirror transformations*, Topology 47 (2008), no. 4, 225–276.
[21] I. Iwanari, *The category of toric stack*, Compos. Math. 145 (2009), no. 3, p.718–746.
[22] I. Iwanari, *Logarithmic geometry, minimal free resolutions and toric algebraic stacks*, Publ. Res. Inst. Math. Sci. 45 (2009), no. 4, p.1095–1140.
[23] Y. Jiang, *The orbifold cohomology of simplicial toric stack bundles*, Illinois J. Math., 52, No. 2 (2008), 493–514.
[24] Y. Jiang, H.-H. Tseng, *Note on orbifold Chow rings of semi-projective toric Deligne–Mumford stacks*, Comm. Anal. Geom. 16 (2008), no. 1, 231–250.
[25] B. Kim, A. Kresch, T. Pantev, *Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee J.* Pure Appl. Algebra 179 (2003), no. 1-2, 127–136.
[26] C.-C. M. Liu, *Localization in Gromov–Witten Theory and Orbifold Gromov–Witten Theory*, In: “Handbook of Moduli”, Volume II, 353–425, Adv. Lect. Math., (ALM) 25, International Press and Higher Education Press, 2013.
[27] M. Rose, *A reconstruction theorem for genus zero Gromov-Witten invariants of stacks*, Amer. J. Math. 130 (2008), no. 5, 1427–1443.
[28] H.-H. Tseng, *Orbifold quantum Riemann–Roch, Lefschetz, and Serre*, Geometry and Topology 14 (2010) 1–81.
[29] C. T. Woodward, *Quantum Kirwan morphism and Gromov–Witten invariants of quotients*, arXiv:1204.1765 [math.AG]
DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, 180 QUEEN’S GATE, LONDON SW7 2AZ, UNITED KINGDOM

E-mail address: t.coates@imperial.ac.uk

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, 180 QUEEN’S GATE, LONDON SW7 2AZ, UNITED KINGDOM

E-mail address: a.corti@imperial.ac.uk

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY, KITASHIRAKAWA-OIWAKE-CHO, SAKYO-KU, KYOTO, 606-8502, JAPAN

E-mail address: iritani@math.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 100 MATH TOWER, 231 WEST 18TH AVE., COLUMBUS, OH 43210, USA

E-mail address: hhtseng@math.ohio-state.edu