Prospective, Longitudinal Study to Evaluate the Clinical Utility of a Predictive Algorithm to Detect Opioid Use Disorder in Chronic Pain Patients

Katrina Lewis¹, Chee Lee², John Blanchard², Svetlana Kantorovich², Brian Meshkin² and Ashley Brenton²

¹Benefis Health System, Great Falls, MT, USA
²Proove Biosciences, Irvine, CA, USA

Abstract

A prospective, longitudinal study was conducted to determine the clinical utility of an algorithm-based precision medicine profile designed to assess risk associated with opioid use disorder in 5,315 patients in a clinical setting. Ninety percent of all clinicians surveyed reported some benefit to their patient care, with the most utilization for changing the prescribed opioid and the most significant benefits from discontinuing opioids. Patients who received profile-guided care reported on average a 42% reduction in pain, and almost 40% of patients had >50% reduction in pain.

Keywords: Chronic pain; Precision medicine; Personalized medicine; Opioids; Pain management; Opioid use disorder

Introduction

The World Health Organization estimates that up to 22% of patients in primary care clinics suffer from chronic pain [1] and in the United States, chronic pain affects 11% of adults [2]. Since the 1990s, spurred by several studies that reported that opioids pose little addiction harm and pressured to not undertreat pain in patients, physicians have gradually adopted opioids as the mainstay of chronic pain management [3]. The Centers for Disease Control and Prevention (CDC) reports that opioid prescriptions increased by 300% in recent years while data from the RADARS (Researched Abuse, Diversion and Addiction-Related Surveillance) System programs show that opioid prescriptions increased from 47 million per quarter in 2006 to 60 million per quarter in 2011 and stayed so until 2013 [4,5]. From 2002 to 2011, an estimated 25 million Americans used opioids for non-medical purposes [6].

Opioid-related abuse and deaths have also escalated with prescription numbers. From 2004 to 2011, opioid abuse related emergency medical cases almost tripled, with 420,040 emergency department visits in 2011 [7]. In 2013, about 1.9 million people abused or were dependent on prescription opioid pain medication [8]. Opioid-related overdose deaths tripled between 2000 and 2014 in the United States, with more than 165,000 deaths in the period and about 28,000 deaths in 2014 [9,10]. Between 2004 and 2011, rates of drug diversion, opioid abuse, and opioid use among college students all at least doubled. Opioid abuse costs the economy between $53 - $72 billion annually [11].

These statistics reflect the conundrum in which physicians find themselves, particularly those in the United States. Physicians need to alleviate pain in patients while avoiding opioid abuse. Surveys of primary care physicians reveal that most felt stress from the risk of opioid abuse and addiction in their patients; younger physicians were particularly distressed and lacked confidence in making opioid-related decisions [12]. Notably, about half of the physicians felt they lacked adequate training in prescribing opioids. In another survey, authors found that while most physicians support using clinical tests and regulations to curb opioid abuse, only one-third of them believed that such interventions would work [13]. More education and training in opioid-related interventions were especially welcomed [14].

Opioid use disorder (OUD) is the diagnostic term for chronic opioid abuse and dependence, which includes using opioids for longer than intended, an increased tolerance to opioids, having an uncontrollable craving for opioids and using opioids despite detrimental effects to one's physical, emotional, and social well-being. To prevent OUD, physicians are advised to check for and monitor opioid risk in patients. A variety of tools are available. Patient self-reported questionnaires like the Opioid Risk Tool (ORT), and Screener and Opioid Assessment for Patients with Pain-Revised (SOAPP®-R) use family, social and medical history to evaluate the risk of aberrant opioid behavior and addiction [15,16]. Although easy to use, these subjective questionnaires pose variable reliability [17]. Regardless of how accurate patients answer the questions, physicians still have only a 50% chance of predicting the development of OUD [18]. For more objective information, physicians can run random urine drug tests (UDT) to monitor medication metabolites in urine, or query the database of the Prescription Drug Monitoring Program (PDMP) for drug prescription records [19]. Although there is no conclusive evidence that such checks and interventions reduce opioid-related deaths, a drop in opioid prescriptions, abuse and deaths have been observed [5].

In view of the high burden of OUD on healthcare and the economy, tools that help physicians assess opioid risks are greatly needed. The profile is a patent-protected algorithm that evaluates a patient’s risk for OUD based on a panel of SNP genotypes and phenotypic factors selected from the ORT [20-22]. Several studies of pain patients demonstrate that the profile identifies those at high risk of OUD with greater accuracy, sensitivity and specificity than either the ORT or SOAPP®-R [20-22]. In this study, we further evaluate the clinical utility and actionability of the profile through examination of how physicians...
Physicians who requested a profile assessment for their patients were given questionnaires for their patients’ baseline and follow-up study visits to document their actions, decisions, and perceptions regarding the utility of the precision medicine tests. Baseline visits were conducted when physicians received their patients’ profile results. A follow-up visit occurred approximately one month later. During both the baseline and follow-up visits, physicians completed the questionnaires, which consisted of a 12-item checklist of actions or decisions that the physician might have made using profile guidance (Supplementary Table 2). Physicians could also describe any other decisions not listed. The questionnaire queried the physicians for any dosage or medication selection changes they made for the patients and their patients’ response to medication, and evaluated the degree to which the profile benefitted both clinical decision making and patient care on a 5-point scale: 1 = no benefit; 5 = significant benefit.

To assess patient outcomes, patients were asked approximately one month after receiving guided decisions from their physicians to assess their pain levels before and after receiving care using the pain numerical rating scale (NRS). The NRS ranges from 0-10, where 0 is “no pain,” and is “agonizing” pain. NRS scores of 7-10 correspond to severe pain, 4-6 to moderate pain and 1-3 to mild pain [10,23].

The profile algorithm

A profile score and its associated OUD risk stratification were calculated for each subject. The profile algorithm is a patent-protected, validated measure of opioid use disorder risk [20-22]. In short, it combines phenotypic and genotypic information to calculate a risk score that correlates to low-, moderate- or high-risk stratifications of opioid use disorder risk [20-22]. A profile score of 1-11 is associated with low risk, 12-23 with moderate risk, and ≥24 with high risk. The genetic markers used in the algorithm include 11 different single nucleotide polymorphisms (SNPs) that have been implicated in opioid abuse, misuse, dependence, or addiction (Table 1). This approach, which focuses on validated genetic variants, as opposed to comprehensive next-generation sequencing, is the preferred approach of many in the field [24]. The phenotypic factors tested include an age of 16-45 years [25,26], personal history of alcohol abuse, personal history of illegal drug abuse, personal history of prescription drug abuse [27-30], and personal history of other mental health diseases including attention deficit disorder, obsessive compulsive disorder [31], bipolar disorder [32], and schizophrenia [33]. The algorithm is 42% genetic information and 58% phenotypic information [20-22].

Protein Name	Gene	SNP	Associated Neuro-Psychiatric Disorders
Catechol-O-Methyltransferase	COMT	rs4680	Alcohol and Drug Abuse [39,40]
			Anxiety [41]
			Depression [42]
Dopamine Beta-Hydroxylase	DBH	rs1611115	Cocaine Addiction [43,44]
Dopamine D1 Receptor	DRD1	rs4532	ADHD
			Schizophrenia [45]
			Depression [46]
			Heroin Addiction [47]

Citation: Lewis K. Lee C, Blanchard J, Kantorovich S, Meshkin B. et al. (2017) Prospective, Longitudinal Study to Evaluate the Clinical Utility of a Predictive Algorithm to Detect Opioid Use Disorder in Chronic Pain Patients. J Addict Res Ther 8: 329. doi:10.4172/2155-6105.1000329
Ankyrin Repeat and Kinase Domain Containing 1/Dopamine Receptor D2 | ANKK1/DRD2 | rs1800497 | Alcohol and Cocaine Dependence [48]
Dopamine D4 Receptor | DRD4 | rs3758653 | Anxiety [49,50]
Dopamine Transporter SLC6A3 | COMT | rs27072 | Methamphetamine Addiction [51]
Gamma Aminobutyric Acid Receptor A, gamma2 subunit | GABRG2 | rs211014 | Alcohol Abuse [52]
Dopamine D4 Receptor | DRD4 | rs3758653 | Anxiety [49,50]
Methylenetetrahydrofolate Reductase | MTHFR | rs1801133 | Bipolar Disorder Depression [55]
Serotonin Receptor 2A | HTR2A | rs7997012 | Drug Abuse [58]

Table 1: PROOVE opioid risk test panel markers.

Statistical methods

For each patient, an aggregate rating of the benefit of the profile was calculated, as there was no difference in the mean or distribution of scores across visits. Chi-squared test was used to assess any differences in sex and if physicians used the profile to guide decisions. The Student's t-test was used to assess any differences in age and if physicians used the profile to guide decisions. The Wilcoxon rank-sums test was used to assess the difference in physicians' average ratings by those who used the profile to guide decisions. Ordinal logistic regression was used to test for associations between profile-predicted risk of opioid abuse and ratings, and between ratings and specific decisions, adjusting for possible confounders: age, sex, race, and clinic specialty. The Wilcoxon signed rank sums test for paired data was used to test for significant differences in before and after pain NRS scores. All tests were two-sided, and p ≤ 0.05 was considered significant. Statistical analysis was performed with R Statistical Software version 3.2.3.

Results

Study population

A total of 5,315 patients were assessed in the study (Table 2). There was no sex bias and patient ages were normally distributed around a mean age of 57 years old.

Specialty	Total Patients	Low (%)	Moderate (%)	High (%)
Pain Medicine/Physical Medicine and Rehabilitation/Anesthesiology	2822	47.8	47.7	4.5
Family Medicine/Primary Care/Internal Medicine	2066	48.5	46.7	4.8
Orthopedic Surgery	396	66.7	32.1	1.3
Neurology/Psychiatry	31	19.4	61.3	19.4

Table 2: Opioid risk categories of patients from 76 clinics assessed by the profile, clinics were grouped according to specialties. Orthopedic surgery had the greatest proportion of patients in the low risk category, while neurology/psychiatry had the highest proportion in the high risk category.
Opioid risk category distribution of patients by specialty

Among the four categories of clinics, patients in Orthopedic Surgery had primarily low-risk profile test results (66.7%), while over 50% of the patients from the other three categories of clinics, including pain medicine, primary care and neurology, had moderate- to high-risk results.

Profile use by physicians

Physicians rated the benefit of the profile for clinical decision-making and patient care during the baseline and follow up study visits.

Specialty	Total Patients	Rating Distribution (%)	Mean Rating
Pain Medicine/Physical Medicine and Rehabilitation/Anesthesiology	2822	11.3 8.2 16.7 36.5 27.3	3.6
Family/Primary Care/Internal Medicine	2066	9.4 20 27.8 19.6 23.2	3.3
Orthopedic Surgery	396	2.5 2.5 21.5 34.1 39.4	4.1
Neurology/Psychiatry	31	0 0 0 3.2 96.8	5

Table 3: Benefit ratings of the profile tool by physicians, physicians from 76 clinics used the profile and rated its benefit for clinical decision making and patient care on a scale of 1-5 (1=no benefit; 5=significant benefit), clinics were grouped according to specialties, the mean benefit rating differed by specialty, with significant differences in reported benefit between the 4 groups of practices, at least 90% of physicians thought the profile provided some benefit, with 27% indicating they felt the test provided significant benefit.

Action/Decision	n=5,315 patients	Adjusted model: age*sex*race *specialty				
	Count "Yes"	Percent "Yes"	Avg. Rating Yes/No	OR	P-value	
No changes were implemented (i.e., not guided)	3,242	61	3.1/3.9	0.31	7.34 × 10⁻¹⁰⁷	***
Confidence in medical regimen	1,852	71.4	4.0/3.7	2	1.81 × 10⁻¹⁵	***
Discontinued opioids	78	3	4.4/3.9	3.6	1.17 × 10⁻⁶	***
Changed opioid or dosage	455	17.5	4.2/3.9	1.66	1.39 × 10⁻⁶	***
Advised another provider	66	2.5	4.0/3.9	2.15	3.16 × 10⁻³	***
Initiated opioid	40	1.5	4.3/3.9	2.13	0.019	*
Changed urine toxicology test frequency	28	1.1	4.3/3.9	2.14	0.059	Trending
Spent more time with patient	1,769	68.1	4.0/3.9	1.01	0.92	

Table 4: Benefit of profile-specific guidance in clinical management, any answer of “yes” on survey questions indicated that the physician used the profile to guide decisions, overall, physicians who made any decision rated the benefit of the profile higher than physicians who did not report any guidance, odds ratios (OR) are proportional odds that may be interpreted as the average odds comparing consecutive ratings (i.e., the overall average of the odds of having a rating of 5 versus 4, 4 versus 3 and etc.), an OR<1 indicates that the decision correlated with decreased ratings, the OR of 0.31 for physicians who made no changes indicates that physicians who used the profile to guide decisions rated the profile to be on average 3.2 times higher (1/0.31) than physicians who made no changes, significance levels are indicated as *p ≤ 0.05, **p ≤ 0.001 and trending” =p ≤ 0.10.

The mean benefit ratings of the profile were dependent on 3 variables: clinic specialty, profile risk stratification results, and whether profile results were used to guide clinical decisions (Table S1). An average benefit rating (referred to as rating from here on) was calculated across both visits in order to have one rating per patient. There were no significant differences between the ratings of each follow-up visit. Physicians rated the benefit of the profile an average of 3.5 on a scale of 1-5 (1: no benefit; 5: significant benefit; Table 3), with 90% of physicians reporting that the test provided some benefit, and 27% reporting significant benefit.
the benefit of profile more favourably (p=1.37×10−5); and physicians rated the profile as more beneficial by 0.8 points when used for making specific clinical actions or decisions (p=1.93×10−93; Figure 1). In particular, the benefit of the profile to patient care was greater if physicians discontinued or initiated an opioid prescription, made a change to an opioid prescription or dosage, advised another provider to make changes in the patient's prescriptions, and/or used the results to verify and document their medical regimen with more confidence (Table 4). After adjusting for any confounding due to age, sex, race, and clinic specialties, physicians who implemented profile guidance still rated the profile to be on average 3.2 times more beneficial for patient care than physicians who did not follow profile guidance (Table 4).

Figure 1: Benefit to clinical care as a function of guidance, physicians who used the profile to make guided clinical decisions indicated greater benefit to their patient's clinical improvement (mean rating ± std. dev): Not guided, 3.1 ± 1.4, n=2,720; Guided 3.9± 0.9, n=2,395, specifically, physicians who used the test rated it 0.8 points higher for patient benefit (p=1.93 × 10−93).

Patient outcomes after receiving profile-guided decisions

Overall, patients improved significantly after receiving guided care from their physicians. Patients' pain NRS before profile-guided care was 6.7 (on a scale of 0–10, where 0 was “no pain” and 10 was “agonizing” pain), compared to 3.9 after receiving care—a 42% reduction of pain (n=1,134, p=5.27×10−152). Almost 40% of patients had >50% reduction, and 91% reported at least some reduction of pain. Additionally, 13% of patients reported 100%, or complete reduction of pain. Whereas, no patients reported higher pain, and only 8.6% reported no change in pain (Figure 2).

Discussion

The prevalence of OUD in primary care ranges from 3% - 26%, and physicians prescribing opioids are under stringent scrutiny from federal and state regulations [24,32,34]. Although strict policies are meant to curb opioid abuse, they inadvertently place huge stress on physicians who thread the fine line between treating chronic pain and preventing opioid abuse. Guidelines for opioid prescribing for chronic pain management recommend physicians evaluate the patients for opioid risk factors. The profile is a patent-protected tool that predicts patient risk of OUD based on a combination of genetic and phenotypic information. Compared to other tests based exclusively on self-report, the profile can better identify and stratify opioid use disorder in patients. Previous studies 20–22 have demonstrated that the profile identifies those at risk of OUD with high sensitivity (>95%) and specificity (>90%). Furthermore, previous studies have found that the profile performs with Receiver Operating Characteristic (ROC) Area under the Curve (AUC) measurements ranging from 0.75-0.97, which demonstrates that the profile correctly identifies those at risk of OUD between 75% and 97% of the time [20–22]. This is in contrast with published studies describing the specificity of the SOAPP®-R 52%, [35] and the sensitivities of the SOAPP ranging from 72% to 80% [35,36] and the ORT 45% [36]. The published AUC of the SOAPP-R ranges from 0.67-0.76, [37] which are lower than the AUC of the profile, in all cases except one.

Analyzing rating patterns sheds light on how physicians use and appreciate the profile. In this study, 90% of physicians agreed that the profile benefited their practice, with 27% reporting a significant benefit to patient care. Physicians rated the benefit of the profile an average of 3.5 on a 1–5 point scale (“5” indicates that physicians received significant benefits from using profile). Physicians rated the benefit of the profile more favorably for high-risk patients. While it may be intuitive that the result would be most useful for taking action in high-risk cases, we found that the specialty of the clinic makes a difference in the utility of the profile. The trend towards higher benefit in high-risk cases was driven by physicians specializing in pain medicine and those in primary care. For orthopedic surgeons, though not significant, the trend towards higher benefit of the test for treatment decision support leaned towards the low-risk test result. This may be because orthopedic surgeons, unlike pain management physicians, are using the profile as a screening test for surgical cases. Pain management clinics, on the other hand, may be more focused on making differential opioid utilization decisions based on high-risk cases.

Furthermore, physicians reported the profile as more beneficial to patient care-0.8 points higher on a 5-point scale-when they used the tool to guide a treatment decision. The clinical actions that attracted most physicians to report the benefit (raising benefit score by 0.5 points or more) were discontinuing opioids, changing frequency of urine toxicology tests, and changing the opioid selection or dosage. These results demonstrate the benefit of using the profile over other methods used to predict aberrant behavior to opioids.
In both the baseline and follow-up visits, between 23%-34% of physicians felt that the profile facilitated confidence in their medical regimen. Physicians who responded so tended to rate profile more favourably. Although these responses are not direct clinical effects, they indicate that the nebulous nature of prescribing opioids based on self-report can benefit from a more objective, documented assessment. Moreover, a physician's confidence in their prescribing or diagnostic practices can strongly affect doctor-patient interactions. If and how opioid therapy works for a patient depends on a myriad of factors, and one factor in the success of opioid therapy-particularly in terms of avoiding aberrant opioid behaviors-hinges on effective and honest communication between physicians and patients. CDC guidelines recommend physicians discuss opioid risks and benefits in transparent and realistic terms with patients [19]. Other practitioners encourage physicians to win patients' cooperation through empathy and establishing trust [38,39]. Higher confidence and spending more time with patients would help physicians make better opioid prescribing decisions through the establishment of stronger doctor-patient relationships.

Pain is a huge burden on healthcare. In 2010, pain direct and indirect costs exceeded $560-635 billion than those of injury, cardiovascular disease and respiratory (Gaskin, 2012). Incorporation of the profile in physician decisions to guide treatment of pain can have immense impact on healthcare costs. Along with establishing improved provider-patient relationships, profile-guided treatment resulted in improved patient outcomes through decreased pain. Patients whose physician used the profile to guide treatment experienced an average pain decrease of 2.8 points on the NRS, equivalent to an average decrease from moderately-high to low pain levels.

Conclusion

A patent-protected opioid risk assessment profile combining known genetic risk factors with proven phenotypic risk factors, is beneficial and relevant for physicians in clinics. Physicians rated the profile favorably, with 90% stating the profile was beneficial to clinical decision-making and patient care, and 27% of them indicating that the profile resulted in significant improvements in their patients’ status. The actions ranked most highly by physicians included: making decisions regarding opioid prescriptions and increasing confidence in opioid prescribing--resulting in improved patient-physician relationships. Most importantly, patients whose physicians used the profile to guide treatment experienced a reduction in overall pain. The results of this study demonstrate the clinical utility of the profile in a naturalistic, multi-specialty setting.

Acknowledgement

The authors would like to acknowledge Yao Hua Law, Ph.D. for drafting the manuscript. The authors also gratefully acknowledge all patients and physicians who agreed to take part in the study, without whose participation and cooperation this work would not have been possible.

Disclosure and Conflicts of Interest

This study was sponsored by Proove Biosciences Inc.: KL is a member of the Proove Biosciences Medical Advisory Board. JB is a former employee of Proove Biosciences. CL, SK, BM and AB are employees of Proove Biosciences.

References

1. Gureje O, Von Korff M, Simon GE, Gater R (1998) Persistent pain and well-being: A World health organization study in primary care. JAMA 280: 147-151.
2. Nahin RL (2015) Estimates of pain prevalence and severity in adults: United States, 2012. J Pain 16: 769-780.
3. Wilkerson RG, Kim HK, Windsor TA, Mareiniss DP (2016) The opioid epidemic in the United States. Emerg Med Clin North Am 34: e1-1e23.
4. Centers for disease control and prevention (CDC) (2013) Vital signs: Overdoses of prescription opioid pain relievers and other drugs among women-United States, 1999-2010. MMWR Morb Mortal Wkly Rep 62: 537-542.
5. Dart RC, Severtson SG, Bucher-Bartelson B (2015) Trends in opioid analgesic abuse and mortality in the United States. N Engl J Med 372: 1573-1574.
6. Merikangas KR, McClair VL (2012) Epidemiology of substance use disorders. Hum Genet 131: 779-789.
7. Authors Crane EH (2013) Highlights of the 2011 drug abuse warning network (DAWN) Findings on drug-related emergency department visits. Highlights of the 2011 drug abuse warning network (DAWN) Findings on drug-related emergency department visits.
8. Administration SAAaMHS (2014) Results from the 2013 national survey on drug use and health: Summary of national findings.
9. Karp DN, Wolff CS, Wiebe DJ, Branas CC, Carr BG, et al. (2016) Reassessing the stroke belt: Using small area spatial statistics to identify clusters of high stroke mortality in the United States. Stroke 47: 1939-1942.
10. Rudd RA, Aleshire N, Zibb ell JE, Gladden RM (2016) Increases in drug and opioid overdose deaths-United States, 2000-2014. MMWR Morb Mortal Wkly Rep 64: 1378-1382.
11. Hansen RN, Oster G, Edelberg J, Woody GE, Sullivan SD (2011) Economic costs of nonmedical use of prescription opioids. Clin J. Pain 27: 194-202.
12. Jamison RN, Soehnkan A, Scanlan E, Matthews M, Ross EL (2014) Beliefs and attitudes about opioid prescribing and chronic pain management: Survey of primary care providers. J Opioid Manag 10: 375-382.
13. Hwang CS, Turner LW, Kraszewski SP, Kolodny A, Alexander GC (2016) Primary care physicians’ knowledge and attitudes regarding prescription opioid abuse and diversion. Clin J Pain 32.
14. Kennedy-Hendricks ABS, McGinty EE, Bachhuber MA, Niederdeppe J, Gollust SE, et al. (2016) Primary care physicians’ perspectives on the prescription opioid epidemic. Drug Alcohol Depend 165: 61-70.
15. Webster LR (2005) Predicting aberrant behaviors in opioid-treated patients: Preliminary validation of the opioid risk tool. Pain Med 6: 432-442.
16. Butler SF, Fernandez K, Benoit C, Budman SH, Jamison RN (2008) Validation of the revised Screener and Opioid Assessment for Patients with Pain (SOAPP-R). J Pain 9: 360-372.
17. Arthur JA, Edwards T, Wielitich-Flemming J, Reddy S, Bruera E, et al. (2016) Aberrant opioid use and urine drug testing in outpatient palliative care. J Palliat Med 19: 778-782.
18. Bronstein K, Passik S, Munitz L, Leider H (2011) Can clinicians accurately predict which patients are misusing their medications? Pain 12: 3.
19. Dowell D, Haegerich TM, Chou R (2016) CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA 315: 1624-1645.
20. Brenton A, Richeimer S, Sharma M, Lee C, Kantorovich S, Blanchard J et al. (2017) Observational study to calculate addictive risk to opioids: A validation study of a predictive algorithm that detects opioid use disorder. Pharmgencnomics Pers Med 10: 187-195.
21. Farah, R; et al. (2017) Evaluation of a Predictive Algorithm that Detects Aberrant Use of Opioids in an Addiction Treatment Centre. J Addict Res Ther 8.
22. Sharma M, et al. (2017) Observational study to calculate addictive risk to opioids: A validation study of a predictive algorithm to evaluate opioid use disorder in a primary care setting. Health Services research and managerial epidemiology in press.

23. McCaffery M, Beebe A (1993) Pain: Clinical manual for nursing practice.

24. Fleming MF, Balousek SL, Klessig CL, Mundt MP, Brown DD (2007) Substance use disorders in a primary care sample receiving daily opioid therapy. J Pain 8: 573-582.

25. Cleland CM, Rosenblum A, Fong C, Maxwell C (2011) Age differences in heroin and prescription opioid abuse among enrollos into opioid treatment programs. Subst Abuse Treat Prev Policy 6: 11.

26. Sproule B, Brands B, Li S, Catz-Biro I (2009) Changing patterns in opioid addiction: characterizing users of oxycodone and other opioids. Can Fam Physician 55: 68-69, 69.

27. Brown RL, Rounds LA (1995) Joint screening questionnaires for alcohol and other drug abuse: criterion validity in a primary care practice. Wis Med J 94: 135-140.

28. Compton WM, Volkow ND (2006) Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend 83 Suppl 1: S4-7.

29. Manchikanti L, Giordano J, Boswell MV, Fellows B, Manchukonda R, et al. (2007) Psychological factors as predictors of opioid abuse and illicit drug use in chronic pain patients. J Opioid Manag 3: 89-100.

30. Brooner RK, King VL, Kidorf M, Schmidt CW, Bigelow GE (1997) Psychological factors as predictors of opioid abuse and illicit drug use in chronic pain patients. Arch Gen Psychiatry 54: 71-80.

31. Tobin DG, Andrews R, Becker WC (2016) Prescribing opioids in primary care: Safely starting, monitoring, and stopping. Clin J Med 83: 207-215.

32. Boscario JA, Rukstalis M, Hoffman SN, Han JJ, Erlich FM, et al. (2010) Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction 105: 1776-1782.

33. Kern AM, Akerman SC, Nordstrom BR (2014) Opiate dependence in a treatment cohort. J Dual Diagn 10: 52-57.

34. Banta-Green CJ, Merrill JO, Doyle SR, Boudreau DM, Calsyn DA (2009) Opioid use behaviors, mental health and pain-Development of a typology of chronic pain patients. Drug Alcohol Depend 104: 34-42.

35. Butler SF, Budman SH, Fernandez KC, Fanciulli GJ, Jamison RN (2009) Cross-validation of a screener to predict opioid misuse in chronic pain patients (SOAPP-R). J Addict Med 3: 66-73.

36. Moore TM, Jones T, Browder JH, Daffron S, et al. (2009) A comparison of common screening methods for predicting aberrant drug-related behavior among patients receiving opioids for chronic pain management. Pain Med 10: 1426-1433.

37. Finkelman MD, Kilich RJ, Butler SF, Jackson WC, Friedman FD, et al. (2016) An investigation of completion times on the screener and opioid assessment for patients with pain - revised (SOAPP-R). J Pain Res 9: 1163-1171.

38. Gallagher RM (2006) Empathy: A timeless skill for the pain medicine toolbox. Pain Med 7: 213-214.

39. Chen JT, Fagan MJ, Diaz JA, Reinert SE (2007) Is treating chronic pain torture? Internal medicine residents’ experience with patients with chronic non-malignant pain. Teach. Learn. Med 19: 101-105.

40. Tassin JP (2008) Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse. Biochem Pharmac 75: 85-97.

41. Ijugurnauth SK, Chen CK, Barnes MR, Li T, Lin SK, et al. (2011) A COMT gene haplotype associated with methamphetamine abuse. Pharmacogenet Genomics 21: 731-740.

42. Levan O (2015) Overlapping dopaminergic pathway genetic susceptibility to heroin and cocaine addictions in African Americans. Ann Hum Genet 79: 188-198.

43. Vereczkei A, Demetrarcics Z, Szekely A, Sarkozy P, Antal P, et al. (2013) Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One 8: e66592.

44. Lohoff FW (2008) Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 33: 3078-3084.

45. Ittiwut R (2011) Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet 156B: 651-660.

46. Baumann CL, Klauke B, Weber H, Domshke K, Zwanzer P, et al. (2013) The interaction of early life experiences with COMT val158met affects anxiety sensitivity. Genes Brain Behav 12: 821-829.

47. Stein MB, Fallin MD, Schork NJ, Gelernter J (2005) COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology 30: 2092-2102.

48. Illi A (2010) Catechol-O-methyltransferase val108/158met genotype, major depressive disorder and response to selective serotonin reuptake inhibitors in major depressive disorder. Psychiatry Res 176: 85-87.

49. Schosser A (2012) The impact of COMT gene polymorphisms on suicidality in treatment resistant major depressive disorder-A European multicenter study. Eur Neuropsychopharmacol 22: 259-266.

50. Brouse G (2010) Could the inter-individual variability in cocaine-induced psychotic effects influence the development of cocaine addiction? Towards a new pharmacogenetic approach to addictions. Med Hypotheses 75: 600-604.

51. Fernandez-Castillo N (2010) Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatr Genet 20: 317-320.

52. Ji N (2011) Dopamine beta-hydroxylase gene associates with stroop color-word task performance in Han Chinese children with attention deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 156B: 730-736.

53. Kalayasiri R, Verachai V, Gelernter J, Mutirangura A, Malison RT (2014) Clinical features of methamphetamine-induced paranoia and preliminary genetic association with DBH-1021C→T in a Thai treatment cohort. Addiction 109: 965-976.

54. Cubells JF, Sun X, Li W, Bonsall RW, McGrath JA, et al. (2011) Linkage analysis of plasma dopamine 1b-hydroxylase activity in families of patients with schizophrenia. Hum Genet 130: 635-643.

55. Nyman ES (2011) Interaction of early environment, gender and genes of monoamine neurotransmission in the aetiology of depression in a large population-based Finnish birth cohort. BMJ Open 1: e000087.

56. Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P (2009) Genetics of dopamine receptors and drug addiction: A comprehensive review. Behav Pharmacol 20: 1-17.

57. Noble EP (2003) D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet 118b: 125-125.

58. Lawford BR (2000) The D(2) dopamine receptor A(1) allele and opioid dependence: Association with heroin use and response to methadone treatment. Am J Med Genet 96: 592-598.

59. Cao BJ, Rodgers RJ (1997) Dopamine D4 receptor and anxiety: behavioural profiles of clozapine, L-745,870 and L-741,742 in the mouse plus-maze. Eur J Pharmacol 335: 117-125.

60. Navarro JR, Luna G, Garcia F, Pedraza C (2003) Effects of L-741,741, a selective dopamine receptor antagonist, on anxiety tested in the elevated plus-maze in mice. Methods Find Exp Clin Pharmacol 25: 45-47.

61. Kotler M, Cohen H, Segman R, Gritsenko I, Nemnov L, et al. (1997) Excess dopamine D4 receptor antagonist, on anxiety tested in the elevated plus-maze in mice. Methods Find Exp Clin Pharmacol 25: 117-125.

62. Li T (1997) Association analysis of the dopamine D4 exon III VNTR and heroin abuse in Chinese subjects. Molecular Psychiatry 2: 413-416.

63. Shao C (2006) Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese. Psychopharmacology (Berl) 186: 185-190.
64. Gross NB, Duncker PC, Marshall JF (2011) Striatal dopamine D1 and D2 receptors: Widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity. Synapse 65: 1144-1155.

65. Han DH, Bolo N, Daniels MA, Lyoo IK, Min KJ, et al. (2008) Craving for alcohol and food during treatment for alcohol dependence: Modulation by T allele of 1519T>C GABAAalpha6. Alcohol Clin Exp Res 32: 1593-1599.

66. Li D (2014) Association of gamma-aminobutyric acid A receptor alpha2 gene (GABRA2) with alcohol use disorder. Neuropsychopharmacology 39: 907-918.

67. Carlsson WA, Beguin C, Knoll AT, Cohen BM (2009) Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacology & therapeutics 123: 334-343.

68. Jones JD, Comer SD, Kranzler HR (2015) The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res 39: 391-402.

69. Peerbooms OL (2011) Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain Behav Immun 25: 1530-1543.

70. Hu CY (2015) Methylene tetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: An updated meta-analysis. J Neural Transm (Vienna) 122: 307-320.

71. Woodcock EA, Lundahl LH, Burmeister M, Greenwald MK (2015) Functional mu opioid receptor polymorphism (OPRM1 A(118)G) associated with heroin use outcomes in Caucasian males: A pilot study. Am J Addict 24: 329-335.

72. Haerian BS1, Haerian MS (2013) OPRM1 rs1799971 polymorphism and opioid dependence: Evidence from a meta-analysis. Pharmacogenomics 14: 813-824.

73. Carpenter PJ (2013) Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. Eur Neuropsychopharmacol 23: 448-457.

74. Schwantes-An TH (2016) Association of the OPRM1 variant rs1799971 (A118G) with non-specific liability to substance dependence in a collaborative de novo meta-analysis of European-ancestry cohorts. Behav Genet 46: 151-169.

75. Enoch MA (2014) Genetic influences on response to alcohol and response to pharmacotherapies for alcoholism. Pharmacol Biochem Behav 123: 17-24.

76. Reyes-Gibby CC, Yuan C, Wang J, Yeung SC, Shete S (2015) Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: Alcohol, smoking and opioid addiction. BMC Syst Biol 9: 25.

77. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29: 252-265.

78. Lauschke VM, Ingelman-Sundberg M (2016) Requirements for comprehensive pharmacogenetic genotyping platforms. Pharmacogenomics 17: 917-924.

79. Khazaal Y, Gex-Fabry M, Nallet A, Weber B, Favre S, et al. (2013) Affective temperaments in alcohol and opiate addictions. Psychiatr Q 84: 429-438.

80. Daigre C (2013) Attention deficit hyperactivity disorder in cocaine-dependent adults: A psychiatric comorbidity analysis. Am J Addict 22: 466-473.

81. Fontenelle LF, Oostermeijer S, Harrison BJ, Pantelis C, Yucel M (2011) Obsessive-compulsive disorder, impulse control disorders and drug addiction: Common features and potential treatment nts. Drugs 71: 827-840.

82. Burke JD, Burke KC, Rae DS (1994) Increased rates of drug abuse and dependence after onset of mood or anxiety disorders in adolescence. Hosp Community Psychiatry 45: 451-455.

83. Edlund MJ, Steffick D, Hudson T, Harris KM, Sullivan MD (2007) Risk factors for clinically recognized opioid abuse and dependence among veterans using opioids for chronic non-cancer pain. Pain 129: 355-362.

84. Institute of medicine committee on advancing pain research, C. a. E. (2011) The national academies collection: Reports funded by national institutes of health, in relieving pain in America: A blueprint for transforming prevention, care, education, and research. National Academies Press (US).