Helicobacter pylori specific immune response induced by conservative flagellin linear B-cell epitope

Wan-Sheng Ji, Jia-Lu Hu, Kai-Chun Wu, Jun-Wen Qiu, Zhe-Yi Han, Jie Ding, Dai-Ming Fan

Abstract

AIM: To testify the immunogenicity of a conservative B-cell linear epitope of *Helicobacter pylori* (H pylori) flagellin A.

METHODS: Different programs were used to analyze the secondary structure, molecular hydropathy, and surface accessibility of *H pylori* flagellin A. Linear B-cell epitopes were estimated based on the structural and physiochemical information. Analysis of residue divergence was proposed to screen a conservative linear epitope. The 29-peptide (Pep29mer) synthesized by chemical method, including the predicted conservative B-cell epitope and a known K^d^ compatible T-cell epitope, was proposed to screen a conservative linear epitope in flagellin A. Programmes including Gor IV, SAPS, SOSUI and PHD were used to analyze the secondary structure, molecular hydropathy, and surface accessibility.

RESULTS: Based on the analyses of divergent amino acid residue structures, and structural and physiochemical characteristics, it was strongly suggested that the short fragment NDSDGR was the core of a conservative linear epitope in flagellin A. Animals immunized by Pep29mer acquired efficient immune response. In detail, serum *H pylori*-specific IgG and IgG1 increased significantly in immunized group, while IgG2a only had an insignificant change. *H pylori*-specific antibodies were detected by ELISA.

CONCLUSION: The conservative short fragment NDSDGR is the core of a linear B-cell epitope of flagellin A.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: *Helicobacter pylori*, Flagellin A; B-cell epitope

Ji WS, Hu JL, Wu KC, Qiu JW, Han ZY, Ding J, Fan DM. *Helicobacter pylori* specific immune response induced by conservative flagellin linear B-cell epitope. World J Gastroenterol 2005; 11(23): 3528-3532 http://www.wjgnet.com/1007-9327/11/3528.asp

INTRODUCTION

Helicobacter pylori (*H pylori*), a spiral-shaped and microaerophilic Gram-negative bacterium is one of the most important etiologic agents of peptic ulcer, carcinoma, mucosa-associated lymphoid tissue lymphoma and other gastric diseases. Several potential virulence factors have been suggested to play a role in *H pylori* pathogenesis.

Flagellar motility conferred by 3-6 flagella that extend from one pole of the bacterium is related to the colonizing ability of *H pylori* and regarded as one of the major virulent factors. Flagellin A is the major molecule of flagellar filaments and responsible for bacterial motility in *H pylori*. According to the reported data, flagellin A is one of the major antigens to induce the production of IgG and IgA in serum. As one of the predominant antigens, it has different serotypes of flagellin antigen in many species, but no specific flagellar serotype has been discovered in *H pylori* so far. Therefore, much effort should be made to determine the immunological characteristics of *H pylori* flagellin A. This experiment was carried out to estimate and testify the linear epitopes of flagellin A in order to offer a new vaccine candidate against *H pylori*.

MATERIALS AND METHODS

Strains and sequences

H pylori strains were isolated from gastric biopsy specimens of Chinese outpatients with peptic ulcer or gastritis and testified by urease C14-breath test, Gram stain, and colony forming assay. All strains were preserved in -20 °C refrigerator.

Sequences *Hpxa* 1-6 were amplified from six Chinese clinical isolates. Other sequences were retrieved from GenBank. All sequences were compared to search the divergent amino acid residues.

Programs

Programs including Gor IV, SAPS, SOSUI and PHD were used to analyze the secondary structure (especially for β-turn), hydropathy and surface accessibility.

Design and animal immunization of synthetic Pep29mer

Pep29mer N’-GALNNRFQIKGVELSKNDSDG-RILVAIN-C’ (lot 10018763, Genemed Synthesis Inc., CA,
USA) was synthesized, which contains the proposed B-cell epitope of \textit{H. pylori} flagellin A (bold) and an accepted H 28 compatible T-cell epitope derived from hemaglutinin light chain HA2 of \textit{Virus influenza} (shaded) \cite{18}. Animals were divided into three groups (10 mice in each group): immunized, adjuvant control and nude mice control groups. The detailed strategy of inoculation is shown in Table 1. All mice were immunized subcutaneously at two sites in the abdomen. In immunized group, 6-week old female BALB/c mice were primed with 5 mg/L Pep29mer solution (lactified with complete Freund adjuvant), and then enhanced with 5 mg/L Pep29mer solution (lactified with incomplete Freund adjuvant) 2 wk later. In adjuvant control group, 6-wk old female BALB/c mice were inoculated with complete Freund adjuvant for priming, and incomplete Freund adjuvant 2 wk later for enhancement. In nude mice control group, 6-wk old female BALB/c nude mice were treated with the same procedure as in immunized group.

Grouping	Animal	Treatment
Immunized	BALB/c mice	Pep29mer 50 µg plus equal
		volume of adjuvant
Adjuvant control	BALB/c mice	Adjuvant only
Nude mice control	BALB/c nude mice	Pep29mer 50 µg plus equal
		volume of adjuvant

Preparation of \textit{H. pylori} antigen

\textit{H. pylori} strains were inoculated onto trypsin soy agar containing 70 g/L sheep blood and incubated microaerophilically at 37 °C for 2 wk. The colonies were washed and harvested with 0.1 mol/L phosphate buffered saline (PBS) and sonicated. The supernatant clear of cellular debris was collected by centrifugation. Concentration of \textit{H. pylori} lysates was determined by spectrophotometric measurement of \(A_{280} \) (UV2201, Shimadzu Corporation, Japan).

Preparation of mouse serum and gastrointestinal washing fluid

Exsanguination from caudal vein was performed on d 7, 21, 35 and 49, respectively, after priming inoculation. Serum was preserved at -70 °C with 500 mL/L glycerol till assay. Gastrointestinal washing fluid was collected as described by Elson \textit{et al} \cite{19}.

ELISA measurement of antibodies in serum and gastrointestinal fluid

\textit{H. pylori}–specific antibodies of serum and gastrointestinal fluid were detected by ELISA. Each well of microritter plates (Maxisorp, Nunc, Denmark) was coated with 100 µL \textit{H. pylori} lysate solution at the concentration of 12.5 g/L in 10 mmol/L PBS (pH 7.2) at 37 °C for 3 h and blocked by 50 g/L lipid-free milk PBS (pH 7.2) overnight at 4 °C. One hundred microliters of mouse serum was added to each well and incubated at 37 °C for 1 h at the dilution of 1:100. Horse radish peroxidase–labeled goats-anti mouse IgG1, IgG2, and IgA (cat. No. 1070-05,1080-05 and 1040-05, Southern Biotechnology Associates, Inc., USA) were added at the dilution of 126 000 and incubated at 37 °C for 1 h. Gastrointestinal washing fluid was diluted serially and 100 µL of it was added to each well to detect the titer of IgA. TMB kit (011228, Jingmei Biotech) was employed to show the results. Briefly, 50 µL of A and B solutions were added to each well for 5-30 min. The reaction was stopped by 50 µL C solution (1.2 mol/L sulfuric acid). Full cleansing using 1 g/L Tween-20 10 mmol/L PBS (PBST) was required before each step. Absorbance \((A_{450}) \) was measured by a plate reader (MRP-2100, Syntron, USA). Calibrator and controls were used in each test. Negative, positive control and mice sera were assayed in duplicate. The absorbance value was presented as mean±SD. The cut-off value was determined.

RESULTS

Structural and physiochemical characteristics

Figure 1 shows the structural and physiochemical characteristics of \textit{H. pylori} flagellin A. α-helices were located in both termini which formed the central tube of filaments, while β-sheets and irregular coils were mainly located in the central region of flagellin A which stretched out of the filament. As a hydrophobic molecule in general, three hydrophilic peaks were found in the central region of flagellin A (residues 211-230, 261-280, and 281-300, respectively). β-turns (residues NKNRGT and NDSDGR) were found in the first and second hydrophilic peaks. Residues KSNRRTG in the first peak and DIKKNNSDT in the second peak were exposed outside with high probability by analysis of surface accessibility. The segments of high surface accessibility overlapped the hydrophilic residues in the first and second peaks.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Structural and physiochemical characteristics of flagellin A. A: Sequence of antigen determinant region in the central part of flagellin A. Underlined: hydrophilic residues in the first and second peaks. Shaded: β-turn short fragment; Framed: residues accessible to molecular surface with high probability; B: secondary structure of flagellin A. Long bar: α-helices; short bar: β-sheets; other residues: irregular coils.}
\end{figure}

Analysis of amino acid divergence

Three characteristic divergent residues, 206 V→I, 227 R→Q and 294 K→N, were found by comparing 16 sequences of 120 amino acid residues (182-301) in central region of flagellin A. Among them, two divergent residues, 227 R→Q and 294 K→N, were in the first and third peaks, respectively. No divergent residues were found in the second hydrophilic peak (Table 2).
Specific antibodies in serum and gastrointestinal fluid

In ELISA, *H. pylori* specific IgG and IgA in mouse serum rose significantly three weeks after priming inoculation, whereas only slight change of *H. pylori* specific IgG was found in BALB/c mice (Figure 2). Measurement of antibody titer demonstrated that *H. pylori* specific IgG and IgA rose significantly within the dilution of 1:64-1:1024 (Figures 3A and B). In gastrointestinal washing fluid, *H. pylori* specific IgA was also detected which was significantly high in immunized group with effective titer between the dilution of 1:160-1:640 (Figure 3C).

DISCUSSION

A single small segment (sequence recognition) or a domain (conformation recognition) could act as an antigen (antigenic epitope). The epitope of the former is a consecutive sequence (linear) and generally bends with a typical non-ordered structure (turns and/or loops) and might serve as a strategy of synthetic vaccine. The influence of the physicochemical characteristics of amino acid residues on molecular secondary structure has been studied based on the statistical propensity\(^{[20,21]}\). The antigen determinant region can be determined by the analysis of molecular hydropathy with computer program\(^{[22]}\). In some reports, many short fragments predicted with hydropathy as epitopes are proved to be by immunological methods\(^{[23-27]}\). Surface accessibility is also related to antigenicity, but fewer experiments have predicted epitopes with this method. Forster et al\(^{[28]}\), have predicted three epitopes of *H. pylori* urease by surface accessibility analysis of computer-aided molecular modeling, but only one of them is proved to produce anti-holoenzyme specific antiserum. It seems that computer-aided method is limited in predicting antigenicity of flagellin A based on protein physiochemical characteristics. Van Regenmortel et al\(^{[29]}\), found that none of the scales, including hydropathy, surface access...
accessibility or segmental motility, gives a level of correct prediction higher than 50-60%. Therefore, integration of physicochemical and structural information is required to improve the reliability and accuracy of antigenic prediction. Alix et al[43], have summarized the known algorithms, and presented predictive estimation of protein linear epitopes (PEOPLE) algorithm to predict the linear consecutive antigenic epitopes, in which enough attention is paid to the secondary structure (mainly β-turns), hydrophilicity, surface accessibility and flexibility/motility.

Flagellins are genetically diverse and intraspecific free recombination of frequent incidence. In this experiment, to disclose the antigenicity of flagellin A, β-turns, molecular hydrophathy and surface accessibility were analyzed because these characteristics greatly influence the prediction of linear epitopes. Briefly, three hydrophilic peaks were found in the central region of flagellin A. In the first and second peaks, two short segments, NKSN9RTG and NDSGDGR, with typical β-turns were found. These two short segments were overlapped with residues that exposed outside the filaments. According to the composite index, the first and second peaks are more likely the proposed B-cell epitopes. Residues in these characteristics greatly influence the prediction of linear epitopes. Briefly, three hydrophilic peaks were found in the short segment KNDSDGRLVAAIN. According to the composite index, the first and second peaks overlapped with residues that exposed outside the filaments.

In animal model, efficient H pylori specific immune response was acquired in immunized group. In detail, H pylori-specific IgA and IgG1 rose significantly, while IgG2a only had a slight change. H pylori-specific IgA in gastrointestinal flushing fluid also had a significant change. Though more work is needed to determine the residues of this epitope, the initial results strongly suggest that there is a B-cell epitope in the short segment KNDSGDRILVAAIN.

In summary, based on the analyses of genetic divergence, molecular structure, and physicochemical characteristics, a conservative hydrophilic segment in flagellin A central region is found, which is in accordance with the quality of linear B-cell epitope. With the advantage of CFA/IFA, Pep29mer containing the predicted B-cell epitope can induce H pylori-specific immune response in animal model. The short segment KNDSGDRILVAAIN is proved to be the core of a linear B-cell epitope in H pylori flagellin A.

REFERENCES
1 Yokota SI, Amano KI, Shibata Y, Nakajima M, Suzuki M, Hayashi S, Fujii N, Yokochi T. Two distinct antigenic types of the polysaccharide chains of Helicobacter pylori lipopolysaccharides characterized by reactivity with sera from humans with natural infection. Infect Immun 2000; 68: 151-159
2 Monteiro MA, Chan KH, Rasko DA, Taylor DE, Zheng PY, Appelmelk BJ, Wirth HP, Yang M, Blaser MJ, Hynes SO, Moran AP, Perry MB. Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between b. pylori lipopolysaccharides and human gastric epithelial cell surface glycoform. J Biol Chem 1998; 273: 11533-11543
3 Yamaguchi H, Osaki T, Taguchi H, Hanawa T, Yamamoto T, Fukuda M, Kawakami H, Hirano H, Kamiya S. Growth inhibition of Helicobacter pylori by monoclonal antibody to heat-shock protein 60. Microbiol Immunol 1997; 41: 909-916
4 Aspinall GO, Monteiro MA, Shaver RT, Kurjanczyk LA, Penner JL. Lipopolysaccharides of Helicobacter pylori serogroups O:3 and O:6-structures of a class of lipopolysaccharides with reference to the location of oligomeric units of D-glycerol-alpha-D-manno-heptose residues. Eur J Biochem 1997; 248: 592-601
5 Yamaguchi H, Osaki T, Taguchi H, Hanawa T, Yamamoto T, Kamiya S. Induction and epitope analysis of Helicobacter pylori heat shock protein. J Gastroenterol 1996; 31 Suppl 9: 12-15
6 Kostynska M, Betts JD, Austin JW, Trust TJ. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacterial 1991; 173: 937-946
7 Josenhans C, Labigne A, Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacterial 1995; 177: 3010-3020
8 Mathsson A, Quinding-Järbrink M, Lönnroth H, Hamlet A, Ahsledt I, Svennerholm A. Antibody-secerting cells in the stomachs of symptomatic and asymptomatic Helicobacter pylori-infected subjects. Infect Immun 1998; 66: 2705-2712
9 Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, Aizawa SI. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mutat Microbiol 1999; 34: 767-779
10 Opazo P, Müller I, Rollán A, Valenzuela P, Yudelevich A, García-de la Guardia R, Urra S, Venegas A. Serological response to Helicobacter pylori recombinant antigens in Chilean infected patients with duodenal ulcer, non-ulcer dyspepsia and gastric cancer. APMIS 1999; 107: 1069-1078
11 Andritsu KA, Fox JG, Schauer DB, Marini RP, Li X, Yan L, Josenhans C, Suerbaum S. Infection of the ferret stomach by isogenic flagellar mutant strains of Helicobacter mustelae. Infect Immun 1997; 65: 1962-1966
12 Faule M, Cremer J, Zöller L. Humoral immune response against Helicobacter pylori as determined by immunoblot. Electrophoresis 1993; 14: 945-951
13 Germer J, Ryckmann B, Moro M, Hofmeister E, Barthold SW, Bockenstedt L, Persing DH. Quantitative detection of Borrelia burgdorferi with a microtiter-based competitive polymerase chain reaction assay. J Mol Diagn 1999; 4: 185-193
14 Kilger G, Griman PT. Differentiation of Salmonella phase 1 flagellar antigen types by restriction of the amplified flaC gene. J Clin Microbiol 1993; 31: 1108-1110
15 Dauca C, Zabrovskaia A, Griman PT. Fragmentation length polymorphism analysis of some flagelin genes of Salmonella enterica. J Clin Microbiol 1998; 36: 2835-2843
16 Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV, Butcher PD, Wren BW. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 2001; 11: 1706-1715
17 Wajanarogana S, Sonthayanon P, Wuthiekanun V, Panyim S, Simpson AJ, Tungpradabkul S. Stable marker on flagellin gene sequences related to arabinose non-assimilating pathogenic Burkholderia pseudomallei. Microbiol Immunol 1999; 43: 995-1001
18 Gelder C, Davenport M, Barnardo M, Bourne T, Lamb J, Askonas B, Hill A, Welsh K. Six unrelated HLA-DR-matched subjects with natural infection. Int Immunol 1999; 11: 211-222
19 Elson CO, Ealding W, Lefkowitz J. A lavage technique allowing repeated measurement of IgA antibody in mouse intestinal secretions. J Immunol Methods 1984; 67: 101-108
20 Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry 1974; 13: 222-225
21 Chou PY, Fasman GD. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calcul-
lated from proteins. *Biochemistry* 1974; **13**: 211-222

22 **Hopp TP**, Woods KR. A computer program for predicting protein antigenic determinants. *Mol Immunol* 1983; **20**: 483-489

23 **Wong C**, Waibel R, Sheets M, Mach JP, Finnern R. Human scFv antibody fragments specific for the epithelial tumour marker MUC-1, selected by phage display on living cells. *Cancer Immunol Immunother* 2001; **50**: 93-101

24 **Cancino-Diaz M**, Ayala-Narvaez H, Burgos-Vargas R, Selene Reyes-Lopez A, Tovar-Castillo L, Dominguez-Lopez L, Granados Arreola J, Jimenez-Zamudio L, Garcia-Latorre E. Recognition of B cells epitopes of the _Klebsiella pneumoniae_ GroEL-like protein by HLA-B27 positive subjects. *Microb Pathog* 2000; **28**: 211-220

25 **Biemesderfer D**, DeGray B, Aronson PS. Membrane topology of NHE3. Epitopes within the carboxyl-terminal hydrophilic domain are exoplasmic. *J Biol Chem* 1998; **273**: 12391-12396

26 **Elzaim HS**, Chopra AK, Peterson JW, Goodheart R, Heggers JP. Generation of neutralizing antipeptide antibodies to the enzymatic domain of *Pseudomonas aeruginosa* exotoxin A. *Infect Immun* 1998; **66**: 2170-2179

27 **Plagemann PG**. Complexity of the single linear neutralization epitope of the mouse arterivirus lactate dehydrogenase-elevating virus. *Virology* 2001; **290**: 11-20

28 **Forster MJ**, Rijpkema SG. Selection of putative immunogenic peptides by molecular modelling of the urease of _Helicobacter pylori_. *Dev Biol (Basel)* 2000; **103**: 75-79

29 **Van Regenmortel MH**, Pellequer JL. Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? *Pept Res* 1994; **7**: 224-228

30 **Alix AJ**. Predictive estimation of protein linear epitopes by using the program PEOPLE. *Vaccine* 1999; **18**: 311-314