ARTIFICIAL INTELLIGENCE IN UPPER GI ENDOSCOPY
Tokat M, van Tilburg L, Koch AD, Spaander MCW

Disclaimer:
Accepted, unedited article not yet assigned to an issue. The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to the content.

Copyright:
This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.

© The Author(s). Published by S. Karger AG, Basel
ARTIFICIAL INTELLIGENCE IN UPPER GI ENDOSCOPY

Review Article

Meltem Tokat*, Laurelle van Tilburg*, Arjun D. Koch1, Manon C.W. Spaander1

*Shared first authorship
1Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands

Short Title: Artificial Intelligence in upper GI

Corresponding Author:
Prof. dr. M.C.W. Spaander
Department of Gastroenterology and Hepatology
Erasmus University Medical Center
Doctor Molewaterplein 40
3015GD, Rotterdam, the Netherlands
Tel: +31107035643
E-mail: v.spaander@erasusmc.nl

Number of Tables: 5
Number of Figures: 3
Word count: 3462 words

Keywords: artificial intelligence, deep learning, esophageal cancer, gastric cancer, endoscopy
Abstract

Background: Over the past decade, several artificial intelligence (AI) systems are developed to assist in endoscopic assessment of (pre)cancerous lesions of the gastrointestinal tract. In this review, we aimed to provide an overview of the possible indications of AI technology in upper gastrointestinal endoscopy, and hypothesize about potential challenges for its use in clinical practice.

Summary: Application of AI in upper gastrointestinal endoscopy has been investigated for several indications: (1) detection, characterization, and delineation of esophageal and gastric cancer and their premalignant conditions, (2) prediction of tumor invasion, and (3) detection of Helicobacter pylori. AI systems show promising results with an accuracy up to 99% for the detection of superficial and advanced upper gastrointestinal cancers. AI outperformed trainee and experienced endoscopists for the detection of esophageal lesions and atrophic gastritis. For gastric cancer, AI outperformed mid-level and trainee, but not expert endoscopists.

Key Messages: Application of AI in upper endoscopy may improve early diagnosis of esophageal and gastric cancer and may enable endoscopists to better identify patients eligible for endoscopic resection. The benefit of AI on the quality of upper endoscopy still needs to be demonstrated, while prospective trials are needed to confirm accuracy and feasibility during real-time daily endoscopy.
Introduction
Accurate endoscopic detection of esophageal and gastric cancers and their premalignant conditions, such as Barrett neoplasia, gastric atrophy, and intestinal metaplasia, is essential for the detection of these cancers at an early stage [1-4]. The challenge of endoscopic procedures lies in the real-time interpretation of endoscopic imagery, which is complex and sensitive to human error. Current endoscopic cancer screening and surveillance strategies encounter several pitfalls, including inter-observer variability in the detection of lesions, time consuming biopsy protocols, and biopsy sampling error [1,5,6]. Especially subtle and early (pre)malignant lesions in the esophagus and stomach can easily be missed by endoscopists (Fig. 1). Artificial intelligence (AI) technology has the potential to overcome these obstacles. AI models have been introduced as a tool to aid in endoscopic detection, characterization and delineation of premalignant and malignant lesions of the upper gastrointestinal (GI) tract [7-11]. Over the past decade, several AI systems have been developed to assist endoscopists in the detection and staging of lesions in the upper GI tract. In this review, we aimed to provide an overview of the possible indications of AI systems in upper GI endoscopy (shown in Fig. 2) and hypothesize about potential challenges for its use in clinical practice.
1. Principles of AI

Artificial intelligence refers to a machine-based intelligence which mimics human cognitive functions, such as learning and decision making. Machine learning (ML) is a form of AI consisting of a teaching algorithm to recognize data patterns and utilize data to predict new data. In order to predict outcomes, a ML algorithm needs to be exposed to different example data sets. Deep learning (DL) is an advanced ML method, which uses layers of artificial neural networks to hierarchically structure data and extract features without human aid. Similar to the human brain, DL methods approach tasks by analyzing the information from different concepts before assigning them to a specific class. Different from conventional ML algorithms that need human intervention to correct errors, DL has the ability to learn from its mistakes. This self-learning ability of DL technology makes it possible to increase its performance as exposure to data increases.

The most widely known DL method in endoscopy is based on convolutional neural network (CNN) and consists of a neural network architecture which is mainly used for image recognition and classification. To achieve sufficient diagnostic accuracy, a DL system needs to be trained and validated with large amounts of labelled data during different steps (shown in Fig. 3). First, the algorithm is subjected to a large dataset of mostly non-endoscopic labelled images. These labelled images are often obtained from open access databases, such as ImageNet [12]. Second, the algorithm needs to be trained and validated with a dataset of labelled endoscopic images. Last, when performance is sufficient, the algorithm needs to be tested. Computer-aided detection (CAD) systems in GI endoscopy are ML methods specifically developed to assist endoscopists to improve accurate detection and staging of pathology, including early stages of disease, and selection of optimal biopsy sites.
2. Esophagus

2.1 Neoplasia in Barrett’s esophagus

The incidence of esophageal adenocarcinoma (EAC) is rapidly increasing in Western society [13,14]. Barrett’s esophagus (BE) is a precancerous condition, which may progress to EAC [15]. Therefore, guidelines recommend endoscopic surveillance of BE in order to diagnose neoplastic progression in early stages. Endoscopic assessment of the esophagus with high-definition (HD) white light endoscopy (WLE) is advised to optimize the detection of dysplastic Barrett mucosa [1,2]. Chromoendoscopy can be utilized to aid in detection of lesions, however, additional value to WLE has not been proven [16]. Given the low progression rate among BE patients, which is estimated at 0.5% per year, the majority of gastroenterologists never encounter dysplasia and therefore may be less familiar with the mucosal changes associated with presence of neoplasia [17]. Visible neoplastic lesions, including early EAC, may remain undetected, especially when endoscopic surveillance is performed by endoscopists with limited experience in the recognition of early neoplastic lesions [18,19]. Low grade dysplasia may present itself with very subtle mucosal changes and is therefore easily missed [6]. To increase the diagnostic yield of dysplasia, guidelines recommend to take four-quadrant biopsies at each 2 cm interval of the Barrett segment, known as the Seattle protocol [20]. Combined with WLE, it is estimated that up to 90% of high grade dysplasia (HGD) and EAC cases are detected [21]. Nevertheless, adherence to this protocol is poor as it is a time-consuming procedure, especially in patients with a long-segment BE [22].

2.1.1. AI in the detection of Barrett neoplasia

Several ML methods were developed to aid in diagnosis of BE neoplasia (Table 1). The majority of papers evaluated diagnostic performance of CNN algorithms in WLE images [7,10,23-27]. Hashimoto et al. (2020) developed an algorithm based on CNN technology to aid in the detection of Barrett neoplasia by image annotation of areas suspect for neoplasia [23]. The pretrained algorithm was trained with 916 images of BE patients with HGD and early EAC. The CNN then analysed 225 images of dysplastic BE and 233 of non-dysplastic Barrett’s esophagus (NDBE) images with 95% accuracy. The ARGOS consortium performed several studies with AI algorithms to aid in the detection, characterization and delineation of BE neoplasia and to improve the selection of biopsy sites [7,24,26,28]. De Groof et al. (2019) developed an AI model based on prospectively collected WLE images for the detection and delineation of BE neoplasia with a sensitivity, specificity and accuracy of 95%, 85% and 92%, respectively [7]. Application of CAD in detection of Barrett neoplasia is also being explored in NBI images and videos [23,27,28]. Struyvenberg et al. (2020) developed a CAD system using 30,021 NBI video frames (average video consisted of 250 fragments obtained during 10 seconds of video) and detected BE neoplasia with accuracy of 83% [28].

Recently, the first prospective studies during live endoscopic procedures were performed by de Groof et al. (2020) [25] and Ebigbo et al. (2020) [10]. De Groof et al. trained their CAD model with 1,704 high-resolution images of 669 patients with histologically confirmed Barrett neoplasia or NDBE [26]. Algorithm performance was externally validated with separate datasets, each containing 80 images which were also scored for the presence of dysplasia by 53 general endoscopists. The CAD system classified images as dysplastic or non-dysplastic with 90% sensitivity, 88% specificity and 89% accuracy. The AI model outperformed the endoscopists in detection of early Barrett neoplasia in another dataset containing 80 images, as the sensitivity, specificity and accuracy of the CAD system and endoscopists was respectively 93% vs 72%, 83% vs 74% and 88% vs 73% [26]. The CAD model was tested during real-time endoscopy with an accuracy of 90% [25]. Ebigbo et al. (2019) developed a CAD-DL system based on 148 HD-WLE and NBI images of 33 early EAC and 41 NDBE areas in one database and 100 HD-WLE images of 17 early EAC and 22 NDBE areas in a second database [27]. Based on the images in these two datasets, the AI model reached a 92-97% sensitivity and 88-100% specificity for WLE images and 94% sensitivity and 80% specificity for NBI images. Afterwards, the developed CNN-CAD algorithm was tested during real-time daily endoscopy in 14 patients with BE neoplasia with an accuracy of 89.9% [10]. The majority of previous mentioned studies showed high accuracy of AI models in the detection of BE neoplasia. Main limitations of these studies were the retrospective design and small sample size.
2.2 Esophageal squamous cell carcinoma

Squamous cell carcinoma remains the predominant histologic type of esophageal cancer (EC), which accounts for 80% of the cases worldwide [29,30]. The incidence rates of esophageal squamous cell carcinoma (ESCC) vary strongly among geographic regions, with highest rates in Eastern Asia [29]. Most ESCC are detected in advanced stages and therefore associated with a poor five-year survival rate of merely 20% [31]. The prognosis of early ESCC is considerably better, since the risk of lymph node and distant metastasis is associated with tumor invasion depth [32]. Additional lugol’s iodine staining or WLE and NBI can be used to increase the detection of subtle esophageal lesions [33,34]. The combination of magnification and NBI during endoscopy (ME-NBI) allows visualization of the microvasculature of the esophageal epithelium, which can be classified according to the intrapapillary capillary loop (IPCL) classification [35]. This classification can help to differentiate dysplasia from non-dysplasia in daily clinical practice [36].

2.2.1. AI in the detection of ESCC

Most studies that investigated AI for the early detection of ESCC derive from Asian countries [29,37-43]. AI models based on CNN during WLE are mostly investigated to detect squamous dysplasia and early ESCC (shown in Table 2) [37-41]. Horie et al. (2019) developed a CNN-CAD system for the detection of EC (both ESCC and EAC; 8,428 images for system development and 1,118 images for validation) [9]. This study showed that CNN-CAD can correctly detect EC cases, including both superficial and advanced cancers with a sensitivity of 98%. Furthermore, the CNN-CAD system was accurately able to detect small cancerous lesions <10mm that can be easily missed, even by experienced endoscopists. Shimamoto et al. (2020) compared the use of DL during WLE and during NBI for the accurate detection of the invasion depth in ESCC. The accuracy was higher in WLE than in ME-NBI (98.7% vs 89.2%) [41]. Ohmori et al. (2019) showed that their AI system had a high sensitivity for the detection of ESCC using non-ME NBI and high accuracy for the differentiation of ESCC from non-cancerous lesions [37].

Endoscopic screening and detection of ESCC remains challenging, partly because it is liable to the inter-observer variability between endoscopists [35]. Early stage ESCC are difficult to detect, especially for trainee endoscopists (sensitivity of NBI for ESCC detection in trainee versus expert endoscopists: 53% vs 100%) [44]. Several studies compared diagnostic parameters of developed AI models to endoscopists [37-42,45]. Cai et al. (2019) developed a DNN-CAD system based on WLE (2,428 images from 746 patients for training, 187 images from 52 patients for validation) which was compared to three groups of endoscopists (seniors with >15 years of experience, mid-levels with 5-15 years of experience and juniors with <5 years of experience) [38]. Sensitivity of AI for detection of ESCC appeared to be higher, even for the experienced endoscopists. AI system versus senior, mid-level and junior endoscopists was 97.8% vs 86.3%, 78.6% and 61.9%, respectively. Zhao et al. (2019) developed a CAD model based on ME-NBI to investigate automated classification of ICPLs [42]. The mean diagnostic accuracy of the CAD system was higher than that of mid-level and junior endoscopists for the detection of malignant esophageal lesions (p<0.001). Fukuda and colleagues (2020) divided the diagnostic process into two parts: detection (identify suspicious lesions) and characterization (differentiate cancer from no cancer). The developed CNN-DL system had a better diagnostic performance than the expert endoscopists [45]. Major limitations of these studies included the small sample size of images used for both training [38,42] and validation [37,38,42,45]. Furthermore, the samples of participating endoscopists with different levels of endoscopic experience were relatively small, ranging from four to 15 endoscopists per sub-group.

2.2.2. AI in prediction of invasion depth of ESCC

The tumor invasion depth is an important prognostic factor in ESCC [46]. Accurate endoscopic detection of the invasion depth is essential for decision making between endoscopic resection or proceed to esophagectomy with lymphadectomy [47]. To optimize endoscopic prediction of invasion depth, the role of AI was studied [39-41]. Shimamoto et al. (2020) developed an AI system on WLE and NBI images from endoscopic videos to estimate the invasion depth, which was compared to experienced endoscopists (7 to 25 years of experience) [41]. The AI model outperformed the endoscopists in both non-ME and ME-NBI with a sensitivity, specificity and accuracy of AI versus endoscopists using ME-NBI of 71%, 95% and 89% versus 42%, 97% and 84%, respectively. Tokai and colleagues (2020) developed an AI model to predict the ESCC invasion depth on 1,751 images, which was validated on 291 images. The diagnostic accuracy of the AI model outperformed 12 out of 13 endoscopists [40].
3. Stomach

3.1. Gastric precancerous lesions and early gastric cancer

Helicobacter pylori (HP) infection can cause chronic atrophic gastritis (CAG) and gastric intestinal metaplasia (GIM), which are both precancerous conditions associated with increased risk of gastric cancer (GC) development [3,48]. GC is often diagnosed in an advanced stage with an estimated 5-year survival rate of 20% [30]. Endoscopic surveillance is offered to patients with CAG and GIM to detect GC in an early stage, as detection of early gastric cancer (EGC) improves survival [3]. Current surveillance strategies consist of adequate inspection of the gastric mucosa and standardized random biopsy sampling according to the Sydney protocol for topographic mapping [3]. Guidelines recommend use of HD-chromoendoscopy in gastric cancer surveillance, as it improves optical diagnosis of precancerous lesions and EGC [3,49-51]. Treatment strategy is determined by invasion depth, which is an important prognostic factor in EGC [3,30]. In early cases, diagnosis of EGC can be difficult as features can be subtle and EGC is easily missed in presence of other pathology such as gastritis. AI models may improve diagnostic accuracy by locating areas suspect for cancer and aid the endoscopist in detection and staging of gastric pathology.

3.1.1 Al in the detection of EGC

The application of AI for the detection of EGC has been investigated in WLE images [52-57] and optic chromoendoscopy images (Table 3) [8,58-63]. Li et al. (2020) developed a CNN model on 386 images of benign lesions, 1,702 images of EGC for model development, 171 images of non-cancerous lesions and 170 EGC images to test the models’ performance [8]. The AI model had a diagnostic accuracy of 91% versus 87% when used by experts and 70 to 74% for non-expert endoscopists. Horiuchi et al. tested a CAD system to detect EGC using 174 NBI videos that contained 87 cancerous lesions [58]. The CAD system was trained with 2,570 images containing cancerous and non-cancerous gastric lesions. The performance of the CAD system was benchmarked against 11 endoscopists with experience in NBI and showed varying results. Only two endoscopists were outperformed by the CAD system. Similar results were found in the study of Ikenoyama et al. (2021), that assessed the application of AI in detecting gastric cancer with both WLE and NBI [55].

3.1.2. Al in prediction of invasion depth of EGC

Few research groups have developed CAD systems to assess the invasion depth of EGC [52,56,61]. Nagao et al. (2020) developed a CNN-CAD system by using 16,557 images of 1,084 GC cases that underwent endoscopic resection or radical surgery, to study if invasion depth of EGC can be determined [61]. Prediction of invasion depth was analyzed in both WLE and NBI modality. The CAD system predicted invasion depth with sensitivity of 84% and 75%, specificity of 99% and 100% and accuracy of 94% and 94% during WLE and NBI images, respectively. Yoon et al. (2019) analyzed 11,539 images of both GC (T1a and T1b) and non-EGC and predicted invasion depth with an AUC of 0.85 [52]. However, in case of undifferentiated histology, the accuracy of the AI model was significantly lower. Despite the high performance of the CAD systems, only images were used to train and calculate performance of the algorithm, video analysis has yet to be tested.

3.1.3. Al in detection of gastric precancerous lesions and HP infection

Recent AI systems to enhance endoscopic detection of gastric precancerous lesions and HP are shown in Table 4 [11,64-71]. In two studies, AI models were compared to endoscopists with different levels of experience in detection of CAG [11,64]. Zhang et al. (2020) designed a CNN model to detect CAG by using 5,470 antrum images of 1,699 patients [64]. Images were classified as mild, moderate and severe CAG. CAG was histologically confirmed in 3,042 images. The performance of the CNN model was compared to three expert endoscopists. The model outperformed the endoscopists with a sensitivity, specificity and accuracy of respectively 95%, 94% and 94%. Highest detection rate was seen in severe CAG, with an accuracy of 99%. Guimarães et al. (2020) showed similar results and reported a 93% accuracy for the detection of CAG in WLE images of the proximal stomach [11]. Yan and colleagues (2020) developed a CNN-CAD model for the detection of GIM with ME-NBI [71]. The AI model reported a diagnostic accuracy of 89% with an accuracy of 84% for expert endoscopists with 10 years of endoscopic experience ($p=0.42$).

Zheng et al. (2019) developed a CAD system to determine HP infection status, based on endoscopic images, 15,484 gastric images of 1,959 patients of which 1,157 with a HP infection [66].
This study aimed to investigate whether the AI model could accurately diagnose HP infection during endoscopy without the need for biopsies. The CNN system showed a high performance with an accuracy of 92%. Nakashima et al. (2018) used a DL model to diagnose HP infection with the use of WLE and blue light imaging (BLI) [68]. The research group conducted a single-center prospective study with 222 participants of which 105 had a confirmed HP infection. The DL model had an AUC of 0.96 with BLI. However, with WLE images the AUC of the AI model decreased to 0.66.
Conclusion and potential challenges of implementing AI upper endoscopy into clinical practice

In this review, we have shown that AI systems have been applied in upper GI endoscopy for several indications: (1) detection, characterization, and delineation of esophageal and gastric cancer and their premalignant conditions, (2) prediction of tumor invasion, and (3) diagnosis of a Helicobacter pylori infection. The current status of AI models for each indication in upper GI endoscopy is shown in table 5. So far, all AI studies in upper GI endoscopy have shown promising results with high performance for accurate detection and staging of (pre)malignant lesions in both esophagus and stomach. The benefit, especially on the quality of endoscopy by the use of AI in upper GI, however, still needs to be demonstrated, and may differ between endoscopists based on their skills and experience.

Use of AI in upper GI endoscopy may be of additional value for clinical practice for different reasons. AI have the potential to provide real-time assistance by red flagging cancers that remained undetected by endoscopists and may improve the yield of biopsies by indicating the optimal biopsy sites during live endoscopic procedures. More accurate prediction of tumor invasion of early-stage cancers may improve the selection of patients eligible for endoscopic resection and may prevent unnecessary invasive surgery. And more accurate endoscopic diagnosis of HP infection and gastric precancerous lesions by AI models may replace gastric biopsies.

To date, most AI models in upper GI endoscopy are developed in an ideal setting with high-quality imagery. This setting does not always reflect real-life, where a good visualisation of the mucosa is dependent on the experience and skills of the endoscopists, which is essential for optimal performance of AI. Although several studies compared AI models to endoscopists, studies reporting on the diagnostic performance of AI models for each experience level of endoscopists are scarce. Outcome of these studies will better illuminate for which indication AI may be of additional value in relation to endoscopist’s own experience and skills. For example, in gastric cancer AI outperformed mid-level and trainee, but not expert endoscopists. Besides studies linking the performance of AI models to endoscopists with different levels of experience, studies that investigate AI during real-time upper GI endoscopy are still very scarce. To date, no AI systems have been validated in large groups of patients during live endoscopic procedures. Large prospective trials are awaited for to validate the additional value and confirm the clinical significance of AI models during real-life endoscopy.

In conclusion, AI models in upper GI endoscopy showed high diagnostic performance for the detection, characterization and delineation of upper GI lesions. In addition, AI shows promising results in the prediction of the tumor invasion depth and diagnosis of HP. The benefit of AI correlated to endoscopist skills and experience need to be further addressed, while prospective studies are needed to confirm its accuracy and feasibility during real-time daily endoscopy.
Statements
Acknowledgement (optional)
Not applicable

Conflict of Interest Statement
MT has no conflict of interest to declare
LT received research support from DrFalk Pharma
ADK received research support from DrFalk Pharma and consultancy fees from ERBE Elektromedizin and Pentax Medical
MCWS received research support from Medtronics, Boston Scientific, Norgine, Informed, Sentinel and Sysmex

Funding Sources
No funding

Author Contributions
MCVS was invited for this review and made, with MT, the conception and design; MT and LT jointly acted as first authors of this work, screened articles for inclusion in this review, interpreted data and drafted the manuscript. ADK co-authored the manuscript. All authors critically edited, read, and approved the final manuscript.
References

1. Weusten B, Bisschops R, Coron E, Dinis-Ribeiro M, Dumonceau J-M, Esteban J-M, Hassan C, Pech O, Repici A, Bergman J: Endoscopic management of barrett’s esophagus: European society of gastrointestinal endoscopy (esge) position statement. 2017

2. Qumseya B, Sultan S, Bain P, Jamil L, Jacobson B, Anandasabapathy S, Agrawal D, Buxbaum JL, Fishman DS, Gurudu SR: Asge guideline on screening and surveillance of barrett’s esophagus. Gastrointestinal endoscopy 2019;90:335-359. e332.

3. Pimentel-Nunes P, Libanio D, Marcos-Pinto R, Areia M, Leja M, Esposito G, Garrido M, Kikustde I, Megraud F, Matysiak-Budnik T, Annibale B, Dumonceau JM, Barros R, Flejou JF, Carneiro F, van Hoof JE, Kuipers EJ, Dinis-Ribeiro M: Management of epithelial precancerous conditions and lesions in the stomach (maps ii): European society of gastrointestinal endoscopy (esge), european helicobacter and microbiota study group (ehmsg), european society of pathology (esp), and sociedade portuguesa de endoscopia digestiva (sped) guideline update 2019. Endoscopy 2019;51:365-388.

4. Lordick F, Mariette C, Haustermans K, Obeermannova R, Arnold D, Committee EG: Oesophageal cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:v50-v57.

5. Kerkhof M, Van Dekken H, Steyerberg EW, Meijer GA, Mulder AH, De Bruinie A, Driessen A, Ten Kate FJ, Kusters JG, Kuipers EJ: Grading of dysplasia in barrett’s oesophagus: Substantial interobserver variation between general and gastrointestinal pathologists. Histopathology 2007;50:920-927.

6. Curvers WL, ten Kate FJ, Krishnadath KK, Visser M, Elzer B, Baak LC, Bohmer C, Mallant-Hent RC, van Oijen A, Naber AH, Scholten P, Busch OR, Blauwgehegs HG, Meijer GA, Bergman JJ: Low-grade dysplasia in barrett’s oesophagus: Overdiagnosed and underestimated. Am J Gastroenterol 2010;105:1523-1530.

7. de Groof J, van der Sommen F, van der Putten J, Struynenberg MR, Zinger S, Curvers WL, Pech O, Meining A, Neuhaus H, Bisschops R, Schoon EJ, de With PH, Bergman JJ: The argos project: The development of a computer-aided detection system to improve detection of barrett’s neoplasia on white light endoscopy. United European Gastroenterol Rep 2019;7:538-547.

8. Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, Yang X, Li J, Chen M, Jin C, Chen C, Yu C: Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020;23:126-132.

9. Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, Ishihara S, Kumagai Y, Fujishiro M, Maetani I, Fujisaki J, Tada T: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 2019;89:25-35.

10. Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza Jr LA, Papa J, Palm C, Messmann H: Real-time use of artificial intelligence in the evaluation of cancer in barrett’s oesophagus: A systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2010;22:669-678.

11. Guimaraes P, Keller A, Fehlmann T, Lammert F, Casper M: Deep-learning based detection of gastric precancerous conditions. Gut 2020;69:4-6.

12. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L: Imagenet: A large-scale hierarchical image database: 2009 IEEE conference on computer vision and pattern recognition, leee, 2009, pp 248-255.

13. Steevens J, Botterweck AA, Dirx MJ, van den Brandt PA, Schouten LJ: Trends in incidence of oesophageal and stomach cancer subtypes in europe. Eur J Gastroenterol Hepatol 2010;22:669-678.

14. Cook MB, Chow WH, Devesa SS: Oesophageal cancer incidence in the united states by race, sex, and histologic type, 1977-2005. Br J Cancer 2009;101:855-859.

15. Duits LC, van der Wel MJ, Cotton CC, Phoa KN, Ten Kate FJW, Seldenrijk CA, Offerhaus GJA, Visser M, Meijer SL, Mallant-Hent RC, Krishnadath KK, Prouw RE, Tijssen JGP, Shaheen NJ, Bergman J: Patients with barrett’s esophagus and confirmed persistent low-grade dysplasia are at increased risk for progression to neoplasia. Gastroenterology 2017;152:993-1001 e1001.

16. Ngamruengphong S, Sharma VK, Das A: Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in barrett’s esophagus: A meta-analysis. Gastrointestinal endoscopy 2009;69:1021-1028.

17. Yousef F, Cardwell C, Cantwell MM, Galway K, Johnston BT, Murray L: The incidence of esophageal cancer and high-grade dysplasia in barrett’s esophagus: A systematic review and meta-analysis. American journal of epidemiology 2008;168:237-249.

18. Noordzij IC, van de Ende MCMVL, Curvers WL, van Lijnschoten G, Huysentruyt CJ, Schoon EJ: Dysplasia in random biopsies from barrett’s surveillance is an important marker for more severe pathology. Digestive Diseases and Sciences 2020:1-8.
Schölvinck DW, Van Der Meulen K, Bergman JJ, Weusten BLAM: Detection of lesions in dysplastic Barrett’s esophagus by community and expert endoscopists. Endoscopy 2017;49:113-120.

Speerchler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ, American Gastroenterological A: American gastroenterological association technical review on the management of Barrett's esophagus. Gastroenterology 2011;140:e18-52; quiz e13.

Konda VJA, Ross AS, Ferguson MK, Hart JA, Lin S, Naylor K, Noffsinger A, Posner MC, Dye C, Cislo B: Is the risk of concomitant invasive esophageal cancer in high-grade dysplasia in Barrett’s esophagus overestimated? Clinical Gastroenterology and Hepatology 2008;6:159-164.

Roumans CAM, van der Bogt RD, Steyerberg EW, Lansdorp-Vogelaar I, Sharma P, Spaander MCW, Bruno MJ: Adherence to recommendations of Barrett's esophagus surveillance guidelines: A systematic review and meta-analysis. Endoscopy 2020;52:17-28.

Hashimoto R, Requa J, Dao T, Ninh A, Tran E, Mai D, Lugo M, El-Hage Chehade N, Chang KJ, Karnes WE, Samarasena JB: Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest Endosc 2020;91:1264-1271 e1261.

de Groof AJ, Struyvenberg MR, Fockens KN, van der Putten J, van der Sommen F, Boers TG, Zinger S, Bisschops R, de With PH, Pouw RE, Curvers WL, Schoon EJ, Bergman JJ: Computer-aided detection of early neoplastic lesions in Barrett's esophagus. Endoscopy 2016;48:617-624.

de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, Zinger S, Pouw RE, Coron E, Baldaque-Silva F, Pech O, Weusten BL, Bergman JJ, de With PH, Schoon EJ: Computer-aided detection of early neoplastic lesions in Barrett's esophagus. Endoscopy 2018;50:134-135.

de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F, Fockens KN, Curvers WL, Zinger S, Pouw RE, Coron E, Baldaque-Silva F, Pech O, Weusten BL, Bergman JJ, de With PH, Schoon EJ: Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest Endosc 2020;91:1242-1250.

Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I: Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 2019;68:1143-1145.

Henry MA, Lerco MM, Naresse LE, Crema E, Rodrigues MA: Outcome of superficial squamous cell carcinoma of the esophagus: A clinicopathological study. Acta Cir Bras 2013;28:373-378.

Lu P, Gu J, Zhang N, Sun Y, Wang J: Risk factors for precancerous lesions of esophageal squamous cell carcinoma in high-risk areas of rural China: A population-based screening study. Medicine (Baltimore) 2020;99:e21426.

Gruner M, Denis A, Masliah C, Amil M, Metivier-Cesbron E, Luet D, Kaasis M, Corone E, Le Rhun M, Leclere S: Narrow-band imaging versus lugol chromoendoscopy for esophageal squamous cell cancer screening in normal endoscopic practice: Randomized controlled trial. Endoscopy 2020

Inoue H, Honda T, Nagai K, Kawano T, Yoshino K, Takeshita K, Endo M: Ultra-high magnification endoscopic observation of carcinoma in situ of the esophagus. Digestive Endoscopy 1997;9:16-18.

Inoue H, Kaga M, Ikeda H, Sato C, Sato H, Minami H, Santi EG, Hayee B, Eleftheriadis N: Magnification endoscopy in esophageal squamous cell carcinoma: A review of the intrapapillary capillary loop classification. Ann Gastroenterol 2015;28:41-48.
Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Yoshimizu S, Horiuchi Y, Ishiyama A, Yoshio T, Tsuchida T, Takeuchi Y: Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Digestive Endoscopy 2021;33:141-150.

Zhu Y, Wang Q-C, Xu M-D, Zhang Z, Cheng J, Zhong Y-S, Zhang Y-Q, Chen W-F, Yao L-Q, Zhou P-H: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointestinal endoscopy 2019;89:806-815. e801.

Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018;21:653-660.

Horiuchi Y, Hirasawa T, Ishizuka N, Tokai Y, Namikawa K, Yoshimizu S, Ishiyama A, Yoshio T, Tsuchida T, Fujisaki J, Tada T: Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos). Gastrointest Endosc 2020;92:856-865 e851.

Kanesaka T, Lee TC, Uedo N, Lin KP, Chen HZ, Lee JY, Wang HP, Chang HT: Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc 2018;87:1339-1344.

Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, Matsumoto K, Ueda K, Matsumoto K, Hojo M: Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. Journal of Gastroenterology and Hepatology 2021;36:482-489.

Nagao S, Tsuji Y, Sakaguchi Y, Takahashi Y, Minatsuki C, Niimi K, Yamashita H, Yamamichi N, Seto Y, Tada T: Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: Efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging. Gastrointestinal Endoscopy 2020;92:866-873. e861.

Miyaki R, Yoshida S, Tanaka S, Kominami Y, Sanomura Y, Matsuo T, Oka S, Raytchev B, Tamaki T, Koide T: Quantitative identification of mucosal gastric cancer under magnifying endoscopy with flexible spectral imaging color enhancement. Journal of Gastroenterology and Hepatology 2013;28:841-847.

Zheng W, Zhang X, Kim JJ, Zhu X, Ye G, Ye B, Wang J, Luo S, Bi J, Yu T, Liu J, Hu W, Si J: Computerized diagnosis of helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy 2004;36:601-608.

Huang CR, Sheu BS, Chung PC, Yang HB: Computerized diagnosis of helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy 2004;36:601-608.

Zhang Y, Li F, Yuan F, Zhang K, Huo L, Dong Z, Lang Y, Zhang Y, Wang M, Gao Z, Qin Z, Shen L: Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Dig Liver Dis 2020;52:566-572.

Huang CR, Sheu BS, Chung PC, Yang HB: Computerized diagnosis of helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy 2004;36:601-608.

Zheng W, Zhang X, Kim JJ, Zhu X, Ye G, Ye B, Wang J, Luo S, Li J, Yu T, Liu J, Hu W, Si J: High accuracy of convolutional neural network for evaluation of helicobacter pylori infection based on endoscopic images: Preliminary experience. Clin Transl Gastroenterol 2019;10:e00109.

Shichijo S, Endo Y, Aoyama K, Takeuchi Y, Ozawa T, Kakiyama H, Matsuo K, Fujishiro M, Ishihara S, Ishihara R, Tada T: Application of convolutional neural networks for evaluating helicobacter pylori infection status on the basis of endoscopic images. Scand J Gastroenterol 2019;54:158-163.

Nakashima H, Kawahira H, Kawachi H, Sakaki N: Artificial intelligence diagnosis of helicobacter pylori infection using blue laser imaging-bright and linked color imaging: A single-center prospective study. Ann Gastroenterol 2018;31:462-468.

Itoh T, Kawahira H, Nakashima H, Yata N: Deep learning analyzes helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc Int Open 2018;6:E139-E144.

Yasuda T, Hiroyasu T, Hiwa S, Okada Y, Hayashi S, Nakahara Y, Yasuda Y, Omatsu T, Obora A, Kojima T, Ichikawa H, Yagi N: Potential of automatic diagnosis system with linked color imaging for diagnosis of helicobacter pylori infection. Dig Endosc 2020;32:373-381.

Yan T, Wong PK, Choi IC, Yong CM, Yu HH: Intelligent diagnosis of gastric intestinal metaplasia based on convolutional neural network and limited number of endoscopic images. Computers in Biology and Medicine 2020;126:104026.
Figure legends

Fig 1. Endoscopic images of subtle early esophageal and gastric (pre)malignant lesions of which detection rates can be increased with assistance of AI. The (pre)malignant lesions are marked with a red rectangle. A) Early BE neoplasia with white light imaging (WLE). B) The same lesion as A) with magnified endoscopy and narrow band imaging (ME-NBI). C) and D) ESCC with WLE and ME-NBI. E) and F) EGC with WLE and ME-NBI. G) and H) GIM located at the angulus in the stomach with WLE and NBI.

Abbreviations: AI = artificial intelligence, BE = Barrett’s esophagus; EGC = early gastric cancer; ESCC = esophageal squamous cell carcinoma; GI = gastrointestinal; GIM = gastric intestinal metaplasia; ME = magnified endoscopy; NBI = narrow band imaging; WLE = white light endoscopy.

Fig 2. Application of AI in upper GI endoscopy - topics that are addressed in this review.

Abbreviations: AI = artificial intelligence; BE = Barrett’s esophagus; CAG = chronic atrophic gastritis; EGC = early gastric cancer; ESCC = esophageal squamous cell carcinoma; GI = gastrointestinal; GIM = gastric intestinal metaplasia; HP = Helicobacter Pylori.

Fig 3. Visual steps in the development of an AI model: pretraining, training, validation and testing.

Abbreviations: AI = Artificial Intelligence.
- Detection of early ESCC
- Prediction of invasion depth

- Detection and delineation of BE neoplasia
- Selection of biopsy site

- Detection of EGC
- Prediction of invasion depth

- Detection of gastric precancerous lesions
 - GIM and HP
 - CAG
Pretraining

Purpose: to learn the model discriminative basic features

Dataset of labelled (non-)endoscopic images

Training

Purpose: (re)development of the model

Dataset 1

Validation

Purpose: fine-tuning of the model

Preferably in a different dataset

Testing

Purpose: to evaluate performance of the model

Preferably in a different dataset
Authors (year)	Country	Study design	Aim	Modality	AI model	Endoscopists	Sens %	Spec %	Accuracy %	Experience (in years)	Sens %	Spec %	Accuracy %
Ebigbo et al. (2020) [10]	Germany	Pro	Detection of BE neoplasia during live endoscopy	WLE			84	100	90	x	x	x	x
de Groof et al. (2020) [26]	Netherlands	Retro	Detection of BE neoplasia	WLE		Seniors >5; Juniors <3; Fellows; Novices	77	79	73	77; 76; 76; 73	75	78	66
de Groof et al. (2020) [25]	Netherlands	Pro	Detection and delineation of BE neoplasia and selection of optimal biopsy site during live endoscopy	WLE			91	89	90	x	x	x	x
Hashimoto et al. (2020) [23]	USA	Retro	Detection and image annotation of BE neoplasia	WLE/ME-NBI			96	94	95	x	x	x	x
Ebigbo et al. (2019) [27]	Germany	Retro	Detection of BE neoplasia	WLE NBI			94-97	88-100	80	x	x	x	x
de Groof et al. (2019) [7]	Netherlands	Pro data collection	Detection and delineation of BE neoplasia	WLE			95	85	92	x	x	x	x
van der Sommen et al. (2016) [24]	Netherlands	Retro	Detection and delineation of BE neoplasia	WLE		Experts*	95-100	73-93	x	x	95	99	x

Abbreviations: AI = Artificial Intelligence; BE = Barrett’s esophagus; ME = magnified endoscopy; NBI = narrow band imaging; NDBE = non-dysplastic Barrett’s esophagus; Pro = prospective; Retro = retrospective; Sens = sensitivity; Spec = specificity; USA = United States of America; WLE = white light endoscopy

*Years of experience (of subgroups) of endoscopists unknown

x = not reported
Table 2: Application of AI in the detection of ESCC and prediction of invasion depth.

Authors (year)	Country	Study design	Aim	Modality	AI model	Endoscopists	Experience (in years)	Sens %	Spec %	Accuracy %				
Guo et al. (2020) [43]	India	Retro	Detection of ESCC	NBI images videos	ME-NBI/BLI	x	x	x	x					
Ohmori et al. (2020) [37]	Japan	Retro	Detection of ESCC and Differentiation ESCC vs no cancer	WLE	ME-NBI/BLI	90	98	76	81	8-24	87	67	75	
Fukuda et al. (2020) [45]	Japan	Retro	Detection of ESCC and differentiation ESCC vs no cancer	NBI/BLI		91	51	63	8	4	79	70	76	
Tokai et al. (2020) [40]	Japan	Retro	Detection of ESCC and prediction of invasion depth	WLE		84	73	81	Unknown	79	62	74		
Shimamoto et al. (2020) [41]	Japan	Retro	Prediction of invasion depth of ESCC	WLE	ME-NBI/BLI	87	71	50	99	89	7-25	45	97	85
Cai et al. (2019) [38]	China	Retro	Detection of ESCC	WLE		98	85	91	>15	86	91	89	84	82
Zhao et al. (2019) [42]	China	Retro	Feasibility of automated IPCLs classification	ME-NBI		87	84	89	>15	91	79	84	71	76
Nakagawa et al. (2019) [39]	Japan	Retro	Prediction of invasion depth of ESCC	WLE		90	96	90	9-23	89	88	90		

Abbreviations: AI = Artificial Intelligence; BLI = blue light imaging; NBI = narrow band imaging; ESCC = esophageal squamous cell carcinoma; IPCL = intrapapillary capillary loop; Retro = retrospective; ME = magnified endoscopy; Sens = sensitivity; Spec = specificity; WLE = white light endoscopy

x = not reported
Table 3. Application of AI in the detection of EGC and prediction of invasion depth.

Authors (year)	Country	Study design	Aim	Modality	AI model	Sens %	Spec %	Accuracy %	Experience (in years/number of EGDs)	Endoscopists	Sens %	Spec %	Accuracy %
Ikenoyama et al. (2021) [55]	Japan	Retro	Detection of EGC	WLE/NBI	58	87	x	Mean 18.6 Mean 8.2	37 27 97 97	x			
Ueyama et al. (2020) [60]	Japan	Retro	Detection of EGC	ME-NBI	98	100	99	x x x x					
Horiuchi et al. (2020) [58]	Japan	Retro	Detection of EGC	ME-NBI	87 95	83 71	85 85	>10 5-10	54-94 68-85 62-95 89-99 58-92 78-88	x x x x x			
Nagao et al. (2020) [61]	Japan	Retro	Prediction of invasion depth of EGC	WLE NBI	84 75	99 100	94 94	x x x x					
Li et al. (2020) [8]	China	Retro	Detection of EGC	ME-NBI	91	91	91	>10 3	78-81 74-78 62-73 87 70-74				
Cho et al. (2019) [54]	China	Retro	Detection of EGC	WLE	28 50	88 91	75 76	Mean 6.7	69-93 87-100 82-98				
Wu et al. (2019) [53]	Japan	Retro	Detection of EGC	WLE	94	91	93	Expert* Senior Trainee	94 90 87 89 90 87	81			
Yoon et al. (2019) [52]	Korea	Retro	Detection of EGC	WLE	91 79	98 78	AUC 0.98 AUC 0.85	x x x x					
Zhu et al. (2019) [56]	USA	Retro	Prediction of invasion depth of EGC	WLE	76 96	89	>5000 EGDs 2000-5000 EGDs	87 63 70 62 77 66					
Hirasawa et al. (2018) [57]	Japan	Retro	Detection of EGC	WLE	92	x	92	x x x x					
Kanesaka et al. (2018) [59]	Taiwan	Retro	Detection and delineation of EGC	ME-NBI	97	95	96	x x x x					
Miyaki et al. (2013, 2015) [62,63]	Japan	Retro	Detection of EGC	FICE	85	87	86	x x x x					

Abbreviations: AI = Artificial Intelligence; AUC = area under the curve; BLI = blue light imaging; EC = esophageal cancer; EGC = early gastric cancer; FICE = flexible spectral imaging color enhancement; ME = magnified endoscopy; NBI = narrow band imaging; USA= United States of America; Retro = retrospective; Sens = sensitivity; Spec = specificity; WLE = white light endoscopy

*Years of experience of subgroups of endoscopists unknown
x = not reported
Table 4. Application of AI in the detection of gastric precancerous lesions and HP.

Authors (year)	Country	Study design	Aim	Modality	AI model	Sens %	Spec %	Accuracy %	Experience (in years/number of EGDs)	Endoscopists	Sens %	Spec %	Accuracy %
Zhang et al. (2020)	China	Retro	Detection of CAG	WLE	95	94	94		Experts*	88-92 60-62	90-91	58-60	89-92 59-61
Guimaraes et al. (2020)	Germany	Retro	Detection of CAG	WLE	100	88	93		>1500 EGDs 64 96 <1500 EGDs 79	81			
Yan et al. (2020)	China	Retro	Detection of GIM	(ME-)NBI	92	86	89		10 87	84			
Yasuda et al. (2020)	Japan	Retro	Detection of HP infection	NBI	90	86	88		Expert* Endoscopist 93 90 91 90	91			
Zheng et al. (2019)	China	Retro	Detection of HP infection	WLE	92	99	94		Senior resident 93 90 83 87	87			
Shichijo et al. (2019)	Japan	Retro	Detection of HP infection	WLE	x	x	80		x x x x	x x x x x			
Nakashima et al. (2018)	Japan	Pro data collection	Detection of HP infection	WLE NBI	67	60 83-87	AUC 0.66	x x x x x	x x x x x				
Itoh et al. (2018)	Japan	Retro	Detection of HP infection	WLE	87	87	AUC 0.96	x x x x x	Experts* Trainee x x x x x x	74-81 65-73			
Huang et al. (2004)	Taiwan	Retro	Detection gastric precancerous lesions and HP infection	WLE	85	91	85	Experts* Trainee x x	74-81 65-73				

Abbreviations: AI = Artificial Intelligence; AUC = area under the curve; CAG = chronic atrophic gastritis; EGD = esophagogastroduodenoscopy; GIM = gastric intestinal metaplasia; HGD = high-grade dysplasia; HP = Helicobacter Pylori; LGD = low-grade dysplasia; NBI = narrow band imaging; Pro = prospective; Retro = retrospective; Sens = sensitivity; Spec = specificity; WLE = white light endoscopy. *Years of experience of subgroups of endoscopists unknown x = not reported
Table 5. Current status of (development of) AI system per upper GI indication.

Indications for AI in upper GI endoscopy	Current status of AI systems
BE neoplasia	- Algorithms are trained and validated with a dataset of labelled endoscopic images
- Prospective studies during live endoscopic procedures have been performed in small groups of patients
Next step: Validation of AI algorithms in large groups of patients during live endoscopic procedures. Assess AI performance when used by endoscopists with different levels of experience |
| Detection, characterization and delineation of BE neoplasia
Selection of biopsy site
ESCC
Detection of early ESCC
Prediction of invasion depth
EGC
Detection of EGC
Prediction of invasion depth
Gastric precancerous lesions
GIM and HP infection
CAG |
| **ESCC** | - Algorithms are trained and validated with a dataset of labelled endoscopic images
- Retrospective studies with high quality images or videos have been performed
Next step: prospective data collection of images and videos |
| Detection of early ESCC
Prediction of invasion depth |
| **EGC** | - Algorithms are trained and validated with a dataset of labelled endoscopic images
- Retrospective studies with high quality images or videos
Next step: Prospective data collection of images and videos |
| Detection of EGC
Prediction of invasion depth |
| **Gastric precancerous lesions** | - Algorithms are trained and validated with a dataset of labelled endoscopic images
- Prospective data collection with high quality images
Next step: Prospective studies during live endoscopic procedures |
| GIM and HP infection
CAG |

Abbreviations: AI = artificial intelligence; BE = Barrett’s esophagus; CAG = chronic atrophic gastritis; EGC = early gastric cancer; ESCC = esophageal squamous cell carcinoma; GI = gastrointestinal; GIM = gastric intestinal metaplasia; HP = Helicobacter pylori.