Changes in glacial lakes in the Poiqu River Basin in the central Himalayas

Pengcheng Su 1,2, Jingjing Liu 1,2, Yong Li 1,2, Wei Liu 1,2, Yang Wang 1, Chun Ma 1,2, Li Qimin 1,2

1. Key Laboratory of Mountain Hazards and Surface Process / Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, 610041, China
2. University of Chinese Academy of Sciences, Beijing, 100049, China

Abstract: The Poiqu River Basin is highly concentrated with glacial lakes in central Himalayas, where contains 162.2 km2 of ice and 19.9 km2 of glacial lakes. The remote sensing data over the last 40 years have been used to identify 147 glacial lakes have been identified in the basin and clearly revealed they at accelerating rates with the retreat of glaciers and the growth of glacial lakes at accelerating rates, in parallel to warming climate in the Himalayas. The Poiqu River is the boundary river between China and Nepal, which is located along the southern slope of the central Himalayas. The Poiqu River Basin is an area of concentration for glaciers and glacial lakes in the central Himalayas, where 147 glacial lakes were interpreted. Based on perennial remote sensing images, there are a total of 147 glacial lakes with lake area ranging from 0.0002 km2 to 5.5 km2, in total of 19.89 km2. Since 2004, the retreat rate of glacier has reached as high as 5.0 km2/a, while the growth rate of glacial lake has reached 0.24 km2/a. We take 5 typical lakes for case study and find the retreat of glacier area reaches 31.2%, at rate of 2.91 km2/a, while the glacial lake area has expanded by 166%, at rate of 0.17 km2/a. Since 2004, the retreat rate has reached as high as 5.0 km2/a, while the growth rate of lake has reached 0.24 km2/a. And we discuss temperature and precipitation, and the relationship between glacier retreat and glacial lake expansion. Moreover, we reconstruct the topography of the lake basin to calculate the water capacity and propose the water balance equation (WBE) to explore the lake evolution. Using WBE to the 5 lakes we calculate the water supplies in the last years and compare with the results of field surveys, in agreement within error of only -1.86% on average. The WBE also reveals that the water supplies to lake depend strongly on the altitude. Lakes on low altitude are supplied by glacier melting, and lakes on high altitude are supplied by snowmelts.
通过WBE的计算，发现冰湖的补给形式受到海拔的影响，呈现出低海拔冰湖，冰川融化供给为主，高海拔冰湖，积雪融化供给为主。The WBE is not only applicable for predicting future changes in glacial lakes under climate warming conditions but is also useful for assessing water resources from rivers in the central Himalayas.

Based on remote sensing images and digital elevation model (DEM) analysis, to calculate the variation of the area and water volume of changes in glaciers and glacial the lakes in the last years, are analyzed in detail, and a water balance equation (WBE) is proposed to account for the mechanism of lake growth. The WBE includes water supplies from rainfall runoff, ice and snow ablation, glacial retreat, and water losses due to infiltration and evaporation. As each water contribution item specifically depends on local weather and morphology, the WBE provides a direct link between glacier and glacial lake changes and climate changes under local conditions.

Operation of the WBE for five major glacial lakes in the Poiqu River Basin has revealed that water from glaciers and snow cover dominates the growth of lakes. Lakes are found to vary in different ways even with similar backgrounds, depending strongly on local weather and geomorphology conditions. The WBE is not only applicable for predicting future changes in glacial lakes under climate warming conditions but is also useful for assessing water resources from rivers in the central Himalayas.

Keywords: glacier; glacial lake; global warming; water balance; Poiqu River Basin; central Himalayas

1 Introduction

Worldwide glacial retreat due to global warming has led to great changes in alpine glacial lakes (IPCC, 2013; Mergili et al., 2013; Nie et al., 2014; Wang and Zhang, 2014; Prakash and Nagarajan, 2017). Apart from glaciers in the Arctic and Antarctic, accounting for 45.5% and
18.8% of the total, respectively, most glaciers are distributed in Asia, mainly in central, southeast and southwest Asia, accounting for 13.8% of the total (Mu et al., 2018). Most glaciers retreat at increasing rates (Solomina et al., 2016). In the mountains of the Andes, Caucasus, Altay, and the Canadian Arctic region, glaciers have reduced in thickness by 3.6-11 m, while in the mountains of Tianshan, Alaska, Svalbard, Alps, and the Pacific coast, glaciers have thinned by up to 30 m (Zhang et al., 2015; 2019). As the warming rate is much higher in Asian alpine areas, it is expected that approximately 36% of the ice will be lost by the end of this century (Kraaijenbrink et al., 2017). In particular in the central Himalayas, temperature increased at a rate of 0.3-0.4°C per ten years, nearly two times the global rate; and at present the glacial lake area increases by 40% at a rate of 0.28 km²/a, which is higher than the other regions in the Himalayas (Nie et al., 2017).

The glacier inventory indicates that the area of glaciers in the Tibetan Plateau has reduced by 9.5% (767 km²) in the last 40 years (Wang et al., 2012; Nie et al., 2017). The reduction rate higher in the south is much larger than that in the north of Tibetan Plateau (Wei et al., 2014), and the greatest changes in glacier area and length occur in the Himalayas (Yao et al., 2012). The retreat of glaciers in the Himalayas has led to the expansion and generation of existing glacial lakes and the generation of new lakes (Richardson and Reynolds, 2000; Komori, 2008; Bolch et al., 2008; Bajracharya et al., 2007; Yao, 2010; Shrestha and Aryal, 2011; Raj et al., 2013). Approximately 4950 lakes were identified in the Himalayas in 2015, mainly of which were located between altitudes of 4000 and 5700 m, with a total area of 455.3 ± 72.7 km², which has increased by approximately 14.1% since 1990 (Nie et al., 2017). In particular, in the central Chinese Himalayas, the glacial lake area has increased greatly, from 166.48 to 215.28 km², although the number of lakes has decreased from 1750 to 1680 in the last 40 years (Wang et al., 2012). This implies that the changes in glacial lakes are mainly due to the area expansion of existing lakes. Statistics show that the expansion accounts for 67% of the area increase, while the formation of a new glacial lake contributes only 33% (Wang et al., 2015). This expansion depends on the fact that most lakes are fed by melt water of glaciers. In fact, the lakes associated with glaciers increased by 122.1% in area during 1976-2010 in the central Himalayas, while lakes without melt water remained steady, increasing only 2.8% in area during the same period (Wang et
Thus, the increase in glacial lakes is associated with the retreat of glaciers. Glacial retreat appears most remarkably in the south central Himalayas (Nie et al., 2017), where the last 30 years have witnessed a glacier length reduction of approximately 48.2 m on average and area reduction at a rate of 0.57% (Yao et al., 2012). In the southern Himalayas lies the Koshi River, which has attracted great attention because glaciers have decreased by approximately 19% in area in the last 40 years (Shangguan et al., 2014; Xiang et al., 2018), and the melt rate has been accelerating in the last decade (Zhang et al., 2019). From 2000 to 2009, this glacial lake increased by 10% in area (0.7 km²/a) (Wang and Zhang, 2014). Moreover, the Poiqu River (Bhote Koshi River), a tributary of the Sun Koshi River, is a more active location for dramatic changes in glaciers and glacial lakes. Landsat data indicate that the annual retreat rate of glaciers in Poiqu Basin was approximately 0.54% between 1976-2010, and in 1986-2001, the area of glacier lakes increased up to 1.3% per year in 1986-2001 (Chen et al., 2007) and has been accelerating since 2000 (Xiang et al., 2014). Consequently, the glacial lake increased by 47% in area (0.37 km²/a) (Chen et al., 2007) in 1986-2001.

The retreat of glaciers and the growth of lakes are generally believed to be caused by rising temperatures and decreasing rainfall (Yao et al., 2012; Xiang et al., 2014; Mir et al., 2014). Records show that the temperature in the west Himalayas has increased by approximately 1.7°C in the last century, while the rainfall is decreasing (e.g., Bhutiyani et al., 2009; Mir et al., 2015a; 2015b). In particular, observations in the Tibetan Plateau indicate that there is a strong tendency of temperature rise at high elevations (Liu and Chen., 2000), and the rising rate increases with elevation, reaching its highest at approximately 4800 to 6200 m. (Qin et al., 2009), which is in the range of glacier development.

Although it is well acknowledged that glaciers and glacial lakes are sensitive indicators of climate change, most studies are merely taken at large spatial and temporal scales, and only a gross tendency is outlined for the changes (Chen et al., 2007; Wang and Zhang, 2014; Wang et al., 2015; Wang and Jiao, 2015; Xiang et al., 2018; Zhang et al., 2019); special cases are only concerned with lake breaks (Xu and Feng, 1988; Chen et al., 2007; Wang et al., 2018; Nie Y et al., 2018). In the present study, we use multisource images from the last 30 years to explore the lake variation in the Poiqu River Basin and provide a quantitative analysis of the water balance, which leads to a method for assessing glacial lake change under a warming climate and sheds new light.
on the mechanism of glacial lake evolution.

2 Study area Background of the Poiqu River Basin and Data sources

2.1 Background of the Poiqu River Basin

2.1.1 Geomorphology of the Poiqu River Basin Geomorphic and ecological background

Remote sensing data and field surveys indicate that the Poiqu River Basin is an area of concentration for glaciers and glacial lakes (Lambrecht et al., 2009). The Poiqu River (known as the Bhote Keshi River in Nepal) is the boundary river between China and Nepal, which is located along the southern slope of the central Himalayas, between the Himalayas and the Arun Mountains (Fig. 1). The river is 117.1 km and 2602 km², originating from the Mt. Shishapangma at 8027 m down to 1567 m at the outlet (什么地方). The upper stream is located in the Chinese territory, the length of the Poiqu River is 90 km.

Within the Chinese territory, the length of the Poiqu River is 90 km, and the basin area is 2.54x10⁶ km², dropping from a high of 5810 m at the source peak to a low of 1750 m, with an average relief of 41%. The section from Nyam County to Zhangmu port is approximately 25.27 km in length, the average elevation difference is 2010 m, and the average vertical drop is 79.5%.

According to the ZY 3 satellite image on August 28, 2019, the total ice area in the Poiqu River Basin is approximately 162.2 km², and the total glacial lake area is 19.9 km² (Fig. 1). Poiqu River is 117.1 km, with an area of 2601 km² (图 1), the source of high is 8027 m, the outlet is low 1567 m, the average elevation is 542 m, the area of the source to the outlet is 25.3 km, the total length is 1974 m, the average slope is 78.1%. Poiqu River from China into the river of Nepal, in the river of Nepal to the Kopi River (Koshi) River, and then into the Bay of Bengal. The upstream part of China境内, the middle downstream of the other part of China境内, is a typical glacial lake (Fig. 1).

Fig. 1 The Poiqu River Basin as a typical glacial lake in the central Himalayas

2.1.2 Geological background

Geologically, the Poiqu River Basin is located in the central Himalayan terrane (Zhang et al., 2015), which was formed by the Indian-Eurasian plate collision (Zheng et al., 2014). The
Himalayan orogenic belt has a crystalline basement complex anticline north wing (the anticline is located in Nepal). The whole basin runs through the northern Himalayan Tethyan sedimentary rock belt, high Himalayan, low Himalayan and other tectonic units, all of which are bounded by the South Tibet detachment fault (STDS) and the main central fault (MCT) (Fig. 2).

Fig. 2 Geological background of the Poiqu River Basin (Base map based on Pan, 2013)

The Sun Koshi River developed and cut through the MCT, and the Poiqu River has experienced many tectonic movements since the Pliocene; however, the difference in the local zone due to tectonic effects has been relatively reduced because of the large uplift of the plateau. The uplifted mountains continue to be eroded and denuded, while the relatively sloped gullies receive uneven amounts of loose accumulation. Under such a background, the Poiqu River is mainly characterized by alluvial and diluvial valleys, with widths of 20 m to 200 m. The riverbed twists and turns and develops multilevel terraces. To the south of Nyalam County, the valley bottom is narrow with steep walls, most of which are V-shaped and Y-shaped valleys. The longitudinal section of the riverbed is undulating, with multiple waterfalls and turbulence.

2.2.1 Climate background

The main Himalayas edge divides the Poiqu River into two climate zones: the northern zone, featured by Yalai village, is temperate and subhumid, with an average annual temperature (T_a) of 3.5°C and rainfall (R_a) of 1100 mm; the southern zone, featured by Zhangmu town, is in the subtropic monsoon climate, with T_a of 10~20°C, R_a of 2500~3000 mm, and frost-free period of 250 days, which is the area with the highest concentration of rainfall worldwide. Temperature and precipitation decreases from south to north with the rising altitude. Records in Nyalam between 1979-2016 indicate that the multi-year average temperature is 3.0°C, with the lowest (~3.2°C) in January and the highest (10.9°C) in June. The average annual precipitation is 656 mm (Chen et al., 2007). (这几行新补充的数据与前几行数据关系不明，区域没分清楚。)

随着海拔升高，气温和降水由南向北逐渐减少。根据该区域聂拉木气象站1979-2016年的数据显示，区域多年平均气温3.9°C，月最低平均气温-3.2°C，出现在一月，月最高平均气温出现在七月为10.9°C，年平均降水656 mm. According to weather records in Zhangmu, T_a is approximately 12°C, R_a has been 2820 mm in recent years, and more than 80% of rainfall
occurs between June and September (Chen et al., 2007). The Poiqu River Basin has 5 major tributary rivers larger than 100 km², i.e., Chongduipu, Keyapu, Ruijapu, Tongqu, and Dianchanggou, where floods occur frequently in rainy seasons. Rainstorms during the rainy season often cause floods in these rivers. Field surveys indicate that the average annual discharge in the Chongduipu tributary is 5.8 m³/s, and it is 31.7 m³/s in the Poiqu mainstream, with high seasonal fluctuations.

2.2 Data sources and processing method

2.2.1 Sources of image data Fig. 3 displays the 2016 daily temperature records in the study area. The average temperature is similar in Nylamu and Quxiang, where the positive temperature is concentrated between April and October, coincident with the rainy season.

Landform data are mainly from ALOS-12.5 m and ASTER-30 m elevation data, which are used for correcting remote sensing data and interpretation. Geological data come from geological maps of the Tibet Plateau. Remote sensing data come from the Landsat, GF-2, ZY-3, and UAV satellites, as listed in Table 1.

Table 1 Data sources and features for interpretation of glaciers and glacial lakes

2.2.2 Processing method of image data

Generally, we use the fusion method to integrate the multispectrum data of 4 m GF-2 and the full color data of 1 m GF-2 to create a base map for interpretation. In detail, for TM data, we use 742 band combinations and 432 combinations to highlight the colors of glaciers and glacial lakes; for the data from GF-2, we combine the 321 bands of true color and the standard 432 bands of false color images. Then, the ratios between different bands of the multispectrum data are used to create images at different gray levels (Shangguan et al., 2014; Mir, R. A. et al., 2014; Wang et al., 2014).

For glaciers, reflectivity is large for green light and small for intermediate infrared light. Thus, the gray images can be obtained by NDSI is employed to obtain the gray images, which is calculated as follows (Zhang et al., 2006):

\[\text{NDSI} = \frac{\text{float}(b_{\text{green}}) - \text{float}(b_{\text{SWIR}}))}{\text{float}(b_{\text{green}}) + \text{float}(b_{\text{SWIR}})} \]
where B_{44}^{NW} is the green band and B_{11}^{NW} is the intermediate infrared band. The index falls between -1 and 1, which can be further readjusted using ENVI software to provide the proper threshold. In this study, we set NDSI>0.35 as the threshold for glaciers.

For glacial lakes, reflectivity of blue light is large and it approaches zero for near infrared, so the gray images are obtained by the NDWI is used to create the gray images, which is calculated as follows (Zhang et al., 2006):

$$NDWI = \frac{p_G \cdot (Green) - p_{NIR} \cdot (NIR)}{p_G + p_{NIR} \cdot (Green) + p_{NIR}}$$

(2)

where $p_G \cdot (Green)$ and $p_{NIR} \cdot (NIR)$ are the reflectivity of green and near infrared light, respectively. Similar to the NDSI, we set NDWI > 0 for water, which can be used as a criterion to identify glacial lakes since there are no other water bodies in the study area.

2.2.3 Sources of meteorological data

As glaciers are sensitive to temperature, it is reasonable to consider the effects of weather on the changes in glaciers and glacial lakes. Unfortunately, weather stations are very sparse in the Himalayas, and no stations in the tributaries are under consideration; only records from nearby stations are accessible. Near the study area, we have three weather stations in Nylamu, Quxiang, and Zhangmu at altitudes of 3811 m, 3345 m, and 2305 m (Table 2). The Nylamu weather station was built before 1950, while the Nylamu weather station was built as late as in 2016 by research program. Due to these two stations are too new, so the annual, monthly and daily average temperatures and rainfall from data before 1970-2016 used in our study were from provided by the National Meteorological Science Data Center (http://data.cma.cn/).

| Table 2 Information about meteorological stations and meteorological data |

2.2.4 Processing method of meteorological data

The data from weather stations cannot be used directly to represent the lake temperature. All the lakes in study are distant to the stations and located in high-altitude regions with significant
differences of elevation. Data correction, especially the altitude correction, is necessary before we analyze the temperature variations (Liu et al., 2014). We mainly use one weather station as a basis for the study area. Therefore, we mainly deal with the altitude correction.

Combining the data from the three stations may comprehensively reflect the weather features of the study area. The key factor for interpolation is the gradient of temperature (R_T) varying with elevation. To obtain the R_T, we take the records of Nylamu and Zhangmu in 2016. The daily average temperature T_d is defined as follows:

$$R_T = \frac{(T_\text{N} - T_\text{Z})}{(Al_\text{N} - Al_\text{Z})}$$ \hspace{1cm} (3)

where T_N and T_Z are the daily average temperature in Nylamu and Zhangmu weather station, respectively, and Al_N and Al_Z are the altitudes of the two stations. Formulas (3) and (4) give the R_T of -6.1°C/km.

Then, the interpolated temperature for the target point can be obtained in the same way:

$$T_\text{H} = T_\text{N} - R_T\Delta H$$ \hspace{1cm} (4)

where the subscript H means the altitude of the target points (i.e., the tributary rivers or the glacial lakes) and 0 indicates the recorded values.

2.3 Overall distribution of glacial lakes in the Poiqu River Basin

The Poiqu River has 5 major tributary rivers larger than 100 km², i.e., Chongduipu, Keyapu, Rujiapu, Tongqu, and Dianchanggou. Rainstorms during the rainy season often cause floods in these rivers. Field surveys indicate that the average annual discharge in the Chongduipu tributary is 5.8 m³/s, and its 31.7 m³/s in the Poiqu mainstream, with high seasonal fluctuations.

Fig. 3. Monthly temperature and precipitation records in the study area

According to the ZY-3 satellite image on August 28, 2019, a total of 147 glacial lakes and related glaciers have been identified in the Poiqu River Basin (Fig. 1), with area ranging from 0.0002 km² to 5.5 km², in total of 119.89 km². There are 55 lakes in area. Among them, greater than 0.02 km² of the lake is 55, accounting for 55% of the total area, 19.24 km². For comparison, the lake number in 2001 was 49 and the total area was 19.24 km².
In the study area, glaciers and glacial lakes are identified based on remote sensing data and field surveys. The area of glacial lakes larger than 0.02 km² is calculated from the data of Chen et al. (2007). A total of 49 lakes with an area larger than 0.02 km² were identified, with a total area of 17.61 km². The area statistics or probability distribution curves can be placed here.

The lakes larger than 0.1 km² are mainly in the tributaries of Keyapu, Ruijiapu, and Chongduipu in upper Poiqu and in Zhangzangbu in middle Poiqu. More than half of the lake area is located in Chongduipu, approximately 9.51 km², and the second largest is Keyapu at approximately 5.44 km². These lakes account for 83% of the total area of glacial lakes (Table 3).

Table 3 Area distribution of glacial lakes in the Poiqu River Basin

The lakes are distributed between 4200 ~ 5800 m, concentrated in 5000 ~ 5800 m, coinciding with the range of maximal retreat of glaciers (Ji et al., 2020); and more than 84% glaciers are located between 4800 ~ 6200 m (Table 4). This fact suggests that the melt water from glaciers has supplied the lakes.

Table 4 Altitude distribution of glacial lakes in the Poiqu River Basin

There are moraine lakes, glacial erosion lakes, ice-surface lakes, and cirque lakes in the area, and moraine lakes take domination, accounting for 18.8 km² (Table 5).

Table 5 Types of glacial lakes in the Poiqu River Basin

The content in the following section is a simple data listing, no need to separate as a section, already included in the text. It is better to discuss with geological features.

3.3 Distribution of lake area

More补充哪类湖分布在哪种地貌背景下。

波曲河流域内冰碛物源丰富，地形复杂，有利于冰碛湖的形成和冰雪融水的储存（Li et al., 2014）。研究区内主要以冰碛湖、冰蚀湖、冰面湖、冰斗湖为主，其中冰碛湖数量最多面积最大，共有75个，总面积18.8 km²；冰面湖24个，冰斗湖19个。具体情况见Table 5。

3. Identification of glaciers and glacial lakes

3.1 Data sources and image processing

3.1.1 Data sources

Landform data are mainly from ALOS-12.5 m and ASTER-30 m elevation data, which are used...
for correcting remote sensing data and interpretation. Geological data come from geological maps of the Tibet Plateau. Remote sensing data come from the Landsat, GF-2, ZY-3, and UAV satellites, as listed in Tables 1 and 2.

Table 1 Data sources and features for interpretation of glaciers and glacial lakes

| 3.1.2 Image processing | Generally, we use the fusion method to integrate the multispectrum data of 4 m GF-2 and the full color data of 1 m GF-2 to create a base map for interpretation. In detail, for TM data, we use 742 band combinations and 432 combinations to highlight the colors of glaciers and glacial lakes; for the data from GF-2, we combine the 321 bands of true color and the standard 432 bands of false color images. Then, the ratios between different bands of the multispectrum data are used to create images at different gray levels (Shangguan et al., 2014; Mir, R.A., et al., 2014; Wang et al., 2012).

For glaciers, reflectivity is large for green light and small for intermediate infrared light. Thus, the NDSI is employed to obtain the gray images, which is calculated as follows (Zhang et al., 2006):

\[\text{NDSI} = \frac{\text{float}(b_{\text{Green}}) - \text{float}(b_{\text{SWIR}})}{\text{float}(b_{\text{Green}}) + \text{float}(b_{\text{SWIR}})} \] (1)

where \(b_{\text{Green}} \) is the green band and \(b_{\text{SWIR}} \) is the intermediate infrared band. The index falls between -1 and 1, which can be further readjusted using ENVI software to provide the proper threshold. In this study, we set NDSI>0.35 as the threshold for glaciers.

For glacial lakes, reflectivity of blue light is large and it approaches zero for near infrared, so the NDWI is used to create the gray images, which is calculated as follows (Zhang et al., 2006):

\[\text{NDWI} = \frac{p(\text{Green}) - p(\text{NIR})}{p(\text{Green}) + p(\text{NIR})} \] (2)

where \(p(\text{Green}) \) and \(p(\text{NIR}) \) are the reflectivities of green and near infrared light, respectively.

Similar to the NDSI, we set NDWI>0 for water, which can be used as a criterion to identify glacial lakes since there are no other water bodies in the study area.

3 Evolution of typical lakes

3.1 The 5 typical glacial lakes

In order to explore the detailed evolution processes of glacial lakes, we take case studies of five large (>0.3km²) glacial lakes, i.e., the Galonco Lake (5.50 km²), the Gangxico Lake (4.60 km²),...
These lakes are located in four major tributaries with high concentration of glacial lakes: Chongduipu (51 lakes), Keyapi (19 lakes), Rujiapi and Zhangzangpu (11 lakes) (Fig.3). And the Fig 1-26 show these lakes, the Cirenmaco, Gangxico and Longmugieco Lake; and their related "mother glaciers" that are associated with their generation and water supplies, including pictures in different years between 1977 and 2018. The area of glaciers and glacial lakes are calculated in each stage (Table 8). Distribution of glaciers and lakes are located in the Jirepu tributary supplied by the Jipuchong glacier on the southeastern slope of Mt. Shisha Pangma.

1) Chongduipu lies in the western part of middle Poiqu, with a long, lobate form and U-shaped channel, which flows from northwest to southeast. Chongduipu has four tributaries, and the largest glacial Lake Galongco is located in the Jirepu tributary and supplied by the Jipuchong glacier on the southeastern slope of Mt. Shisha Pangma.

2) Zhangzangbu joins Poiqu from the east in the middle reach in the form of broad branches and V-shaped channels, which deeply cut the valley and leaves flow marks of approximately 30 m. Glaciers are mainly distributed in the upper reaches, and Cirenmaco Lake is located in a tributary in the eastern source area.

3) Rujiapi is a tributary of Tongqu and thus a secondary tributary of Poiqu. Rujiapi lies in the eastern part of the upper reaches, forming long branches and U-shaped channels. It has a 90° turn near the mainstream, flowing from northeast to southwest, and the glacial lakes are concentrated in the southeast. Moreover, the Rujiapi tributary has four tributaries with distributions of glaciers and lakes.

4) Keyapu lies in the upper western part of Poiqu, near Chongduipu in the source area. Keyapu has broad branches and a U-shaped channel. Glaciers and glacial lakes are mainly distributed in the southeast.
Table 6 lists basic parameters of the tributaries, which are crucial for the formation and evolution of the lakes, and Table 7 lists parameters for the major lakes in the present state, based on interpretation of 2018 images, are listed in Table 7. The table 7 also lists the distance of the lake to its connected glacier, indicating that most lakes are nearly linked to the glacier and thus their changes are expected to be well correlated.

Table 6 Parameters of the 4 glacial lake tributaries

Table 7 Basic parameters for major glacial lakes in the Poiqu River Basin

3.2 The 5 typical glacial lakes and their glaciers of 4 major tributaries

Fig. 4-7 show pictures for the five major lakes and their connected glaciers (or the so-called "mother glaciers", because they are the sources of generation for the connected glacial lakes) in different years between 1977 and 2018. The area of glaciers and glacial lakes are calculated in each stage, as listed in Table 8.

For more details, we construct the annual variation in the lakes from the historical data. Fig. 8 shows the variation in Galongco Lake since 1977, which increased abruptly from 1.77 to 5.50 km² between 1977 and 2018.

Fig. 4 Comparison of area change between the Cirenmaco Lake and its connected glacier

Fig. 5 Comparison of area change between the Gangxico Lake and its connected glacier

Fig. 6 Comparison of area change between the Longmuqieco Lake and its connected glacier

Fig. 8 Variation in the area of Galongco Lake (1977-2019). (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image)

3.32 Change in lake area

The overall changes in the 5 typical glacial lakes and glaciers

We may trace the lake variations using Interpretations of the multisource images allow for detailed scrutiny of changes in the 5 typical glacial lakes and glaciers. In this way, we obtain the areas of the 5 typical glacial lakes and glaciers in recent decades. Fig. 7 shows the total area changes in of the 5 typical glacial lakes and related glaciers areas in Poiqu since 1977; where the dotted line means that the curve is inferred only because of the lack of data before 1999.
the possible uncertainty before 1999, the gross tendency of glacier loss and glacial lake growth is clear. The retreat of glacier area reaches 44.63% at rate of 2.8491 km²/a; accordingly, the glacial lake area has expanded by 1606%, at rate of 0.1987 km²/a. Since 2004, the retreat rate has reached as high as 7.310.35 km²/a, while the growth rate of lake has reached 0.48244 km²/a (in Table 98). These are comparable with the results in literatures. For example, from 1975 to 2010, glaciers decreased by 19% in area (Xiang et al., 2014), while glacial lake area increased by 83% (0.26 km²/a) from 1976-2010 (Wang et al., 2015). In 1986-2001, the glacial area increased by 47% (0.37 km²/a) (Chen et al., 2007).

For comparison, glacial lakes increased by 29.7% in the entire Chinese Koshi River (including Poiqu and six other tributary rivers) in 1976-2000 (Shrestha and Arval, 2011; Wang et al., 2012) at a rate of 1.6 km²/a. In the Koshi River, the glacier area has decreased by 19% (23.48 km²/a) (Shangguan et al., 2014; Xiang et al. 2018), and the glacial lake area has increased by 10.6% (Shangguan et al., 2014; Xiang et al., 2018). In 2000-2010, the glacial lake increased by 6% in area (0.72 km²/a) (Wang et al., 2015). This result means that Poiqu undergoes more dramatic changes in glaciers and glacial lakes. In particular, the Galongco and Gangxico Lakes have increased up to 500% and 107%, respectively, These two data are not consistent with the following area decreases in their connected glaciers by 10%. Specifically, lakes. Specifically, the lakes, have increased up to 30-54%, 24313%, 40640%, 20504%, and 25445% at rates of -0.0406 km²/a, 0.130.094 km²/a, 0.0213 km²/a, 0.0469 km²/a, and 0.0468 km²/a, respectively, from 1977 to 2018. For each lake, the retreat rate of glacier area reaches 43.6%, which is approximately 2.98 km²/a; accordingly, the glacial lake area has expanded by 169%, which is approximately 0.19 km²/a. Since 2004, the retreat rate has reached as high as 7.2 km²/a, while the growth rate of the lake has reached 0.44 km²/a (in Table 9). This finding is comparable to the results from the literature. For example, from 1975 to 2010, glaciers decreased by 19% in area (Xiang et al., 2014), while glacial lake area increased by 83% (approximately 0.26 km²/a) from 1976-2010 (Wang et al., 2015). In 1986-2001, the glacial area increased by 47% (approximately 0.37 km²/a) (Chen et al., 2007); the retreat-growth correlation is clearly shown in Table 40.9 and Fig. 408. Notably, there was a sudden decrease in area in 1981, simply because there was an outburst (Xu and Feng, 1988). Thus, historical anomalies in glacial lake areas may be caused by lake outbursts.
For comparison, glacial lakes increased by 29.7% in the entire Chinese Koshi River (including Poiqu and six other tributary rivers) in 1976-2000 (Shrestha and Aryal, 2011; Wang et al., 2012) at a rate of approximately 1.6 km\(^2\)/a. In the Koshi River, the glacier area has decreased by 19% (approximately 23.48 km\(^2\)/a) (Shangguan et al., 2014; Xiang et al., 2018), and the glacial lake area has increased by 10.6%. In 2000-2010, the glacial lake increased by 6% in area (approximately 6.072 km\(^2\)/a) (Wang et al., 2015). This result means that Poiqu undergoes more dramatic changes in glaciers and glacial lakes. In particular, the Galongco and Gangxico Lakes have increased up to 500% and 107%, respectively, following area decreases in their connected glaciers by 40%.

Table 8 Area changes in the 5 typical glacial lakes and their glaciers since 1977

Fig. 7 Area changes in the 5 typical glacial lakes and glaciers

The retreat-growth correlation can be seen more clearly from the large lakes mentioned above, as shown in Table 10 and Fig. 10. The gross tendency of glacial retreat and glacial lake growth is also remarkable here. Notably, there was a sudden decrease in area in 1981, simply because there was an outburst (Xu and Feng, 1988). Thus, historical anomalies in glacial lake areas may be caused by lake outbursts.

Table 9 Annual rates of change in the 5 typical glacial lakes and their glaciers

Fig. 8 Retreat of the 5 typical glaciers, growth of 5 typical glacial lakes and rates of change in the Poiqu River Basin

As an illustration, Fig 89 shows the variation in Galongco Lake since 1977, which increased abruptly from 1.2266 km\(^2\) to 5.50 km\(^2\) between 1977 and 2018. (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image.)

Fig. 89 Variation in the area of Galongco Lake (1977-2019). (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image)
The five major lakes, Cirenmaco Lake, Galongco Lake, Gangxico Lake, Jialongco Lake, and Longmuqieco Lake, have increased up to 30%, 74%, 40%, 200%, and 54% at rates of 0.01 km²/a, 0.13 km²/a, 0.07 km²/a, 0.02 km²/a, and 0.01 km²/a, respectively, from 1977 to 2018.

Corresponding to the decrease in glaciers, the variations in glacial lakes under consideration have presented three patterns in recent years:

1) Fluctuation in area, as in the case of the Cirenmaco and Jialongco Lake

Both lakes are located at relatively low altitudes (the Jialongco Lake is at 4382 m and Cirenmaco is at 4639 m), are sensitive to temperature and both experienced an outburst in this episode (in 1981 and 2002, respectively) and then increased steadily. Jialongco Lake even experienced a sudden rise during 2006 and 2008 (Fig. 10), when the local temperature reached its 50-year peak. Moreover, a field survey indicates that Jialongco has an overflow at 0.3 m³/s in the rainy season, meaning that the lake has reached its maximum and thus fluctuates, similar to ordinary lakes undergoing seasonal changes. This finding implies that small amounts of variation in glacial lakes do not mean that the related glaciers also vary by small amounts. Dramatic change in glaciers results in a great loss of water but does not necessarily increase the size of the connected lake.

2) Remarkable increase in area, as in the case of Galong Lake and Longmuqieco Lake

Historic remote sensing data (1954 ~ 2018) indicate that Galongco formed in the late 1960s as a result of a warming climate. Then, the lake increased steadily, with no marks of historic outburst and no overflow events based on recent UAV images. Indeed, the lake level is still 10 m below the front moraine bank, and it is only at 1 km downstream that the water flows from infiltration. Thus, the lake has had little loss of water and increases steadily. Despite no field survey data, the same case can be expected for Longmuqieco, which has similar altitude and water supply areas and connected glaciers.

3) Gentle increase in area, as in the case of the Gangxico Lake

The Gangxico Lake is supplied by the back glacier. As the glacier is small, the lake grows slowly. Moreover, the Gongxico Lake is hydraulically connected near the Gongco and Galongco...
Lake, and its water enters the Gongco Lake in the southern area through infiltration, while the water of Gongco infiltrates into Galongco (Fig. 1). As the Gongco Lake has remained steady in the last 50 years, the Gongxic Lake is also in a balanced state and shows a small tendency to increase.

These observations suggest that glacial lakes change in various patterns even under the same local conditions. Furthermore, little variation in glacial lake area does not necessarily mean that there are no changes in related glaciers. In this sense, glaciers are more sensitive to changes in weather or climate.

Fig. 11 Hydraulically connected glacial lakes (Galongco, Gangco, and Gangxico)

In the following section, we propose a procedure to calculate the water balance for typical glacial lakes, illustrating the weather effects on the changes in glaciers and glacial lakes in different ways.

3.43 Relation to Influences of temperature and precipitation on glaciers and glacial lakes

Based on the interpolation, the temperature in Poiqu rises at a rate of approximately 0.02°C/a between 1989 and 2018 in the Poiqu River Basin, accompanied by a rainfall rate of 0.76 mm/a between 1989 and 2018.

Fig. 12 shows the temperature series in the last forty years in contrast to the areas of the 5 lakes and the related glaciers and glacial lakes, indicating that the temperature is negatively and positively related to glaciers and glacial lakes. Fig. 13 shows the precipitation series in contrast to the areas of glaciers and glacial lakes, indicating that the tendency of precipitation is negatively associated with glaciers but positively associated with glacial lakes. In short, the growth of glacial lakes following the retreat of glaciers is governed by warming conditions.

Fig. 12 Changes in the areas of the 5 typical glacial lakes and their glaciers vs. temperature

Fig. 13 Changes in the area of the 5 typical glacial lakes and their glaciers vs. precipitation
The temperature in the Tibet plateau increased at a rate of approximately \(0.3-0.4^\circ\) per ten years, nearly two times the global rate. For the case of the present study, the lake area increases by approximately 40\% at a rate of 0.28 km\(^2\)/a, which is clearly higher than the other regions in the Himalayas (Nie et al., 2017).

3.2 Identification of glaciers and glacial lakes

Glaciers and glacial lakes present special shapes, colors, textures, and band combinations in the images. Fig. 4 displays the images with characteristic marks, and Table 2 lists the signs for identifying types of glaciers and glacial lakes. In practice, these elements are combined with morphology and DEM data to delineate the boundary of lakes or glaciers. Moreover, moraines, deposits, and colluvium are also identified by their marks and spectral features (Chen et al., 2007).

In particular, glaciers are located near mountain tops and limited to certain elevations. Glaciers usually have tongue-shaped fronts with flow lines, and the uppermost boundary coincides with the mountain edge, with ice cracks on the trailing edge, which are shown in black in the image. Glacial lakes occur below glaciers, usually elliptical or flat, with smooth boundaries (Bajracharya et al., 2007; Wang et al., 2014).

Fig. 4. Characteristics of glaciers and glacial lakes in the Poiqu River Basin

Table 2 Interpretation signs for glaciers and glacial lakes (Six pictures are from Google Earth images and two pictures are from GF-2 images. They are signed in the lower-right corner).

3.3 Results of interpretation

A total of 147 glacial lakes and related glaciers have been identified in the Poiqu River Basin, with a glacier area of 162.2 km\(^2\) and a glacial lake area of 19.9 km\(^2\). Table 3 lists the types and numbers of each lake. Most of these lakes are end moraine lakes.
Table 3: Types of glacial lakes in the Poiqu River Basin

These lakes have areas ranging between $1.66 \times 10^{-4} - 5.50 \text{ km}^2$, and 125 lakes are smaller than 0.1 km2. More than 60% of lakes are located at altitudes between 5000 - 5500 m. Lakes larger than 0.1 km2 are mainly in the tributaries of Keyapu, Rujiapu, and Chongduipu in upper Poiqu and in Zhangzangbu in middle Poiqu. As listed in Table 4, more than half of the lake area is located in Chonduipu, approximately 9.51 km2, and the second largest is Keyapu at approximately 5.44 km2. These lakes account for 83% of the total area of glacial lakes. The table also lists the distance of the lake to its connected glacier, indicating that most lakes are nearly linked to the glacier and thus their changes are expected to be well correlated.

Table 4: Typical glacial lakes in tributaries of the Poiqu River Basin

Fig. 5 provides detailed distribution of glacial lakes in 4 major tributaries of Poiqu: Chongduipu tributary (Fig. 5A), Zhangzangbu tributary (Fig. 5B), Keyapu tributary (Fig. 5C) and Rujiapu tributary (Fig. 5D), where we have relatively large glacial lakes for consideration, i.e., Galongco Lake (5.50 km2), Gangxico Lake (4.60 km2), Jialongco Lake (0.60 km2), Longmuqieco Lake (0.52 km2), and Cirenmaco Lake (0.33 km2). The features of the tributaries are as follows:

1) Chongduipu lies in the western part of middle Poiqu, with a long, lobate form and V-shaped channel, which flows from northwest to southeast. Chongduipu has four tributaries, and the largest glacial Lake Galongco is located in the Jirepu tributary and supplied by the Jipuchong glacier on the southeastern slope of Mt. Shisha Pangma.

2) Zhangzangbu joins Poiqu from the east in the middle reach in the form of broad branches and V-shaped channels, which deeply cut the valley and leave flow marks.

Fig. 5 Distribution of glaciers and glacial lakes in the major tributaries of the Poiqu River Basin

1) Chongduipu lies in the western part of middle Poiqu, with a long, lobate form and V-shaped channel, which flows from northwest to southeast. Chongduipu has four tributaries, and the largest glacial Lake Galongco is located in the Jirepu tributary and supplied by the Jipuchong glacier on the southeastern slope of Mt. Shisha Pangma.

2) Zhangzangbu joins Poiqu from the east in the middle reach in the form of broad branches and V-shaped channels, which deeply cut the valley and leave flow marks.
of approximately 30 m. Glaciers are mainly distributed in the upper reaches, and Ciremsuco Lake is located in a tributary in the eastern source area.

2) Rujiapu is a tributary of Tongqu and thus a secondary tributary of Poiqu. Rujiapu lies in the eastern part of the upper reaches, forming long branches and U-shaped channels. It has a 90°-turn near the mainstream, flowing from northeast to southeast, and the glacial lakes are concentrated in the southeast. Moreover, the Rujiapu tributary has four tributaries with distributions of glaciers and lakes.

4) Keyapu lies in the upper western part of Poiqu, near Chongdiupu in the source area. Keyapu has broad branches and a U-shaped channel. Glaciers and glacial lakes are mainly distributed in the southeast.

Table 5 lists basic parameters of the tributaries, which are crucial for the formation and evolution of the lakes, and parameters for the major lakes in the present state, based on interpretation of 2018 images, are listed in Table 6.

| Table 5 Parameters of the glacial lake tributaries |
| Table 6 Basic parameters for major glacial lakes in the Poiqu River Basin |

4. Changes in glaciers and glacial lakes

4.1 Variations in glaciers and glacial lakes

Interpretations of the multisource images allow for detailed scrutiny of changes in glaciers and glacial lakes. In this way, we obtain the areas of glaciers and glacial lakes in recent decades. Fig. 6 shows the total changes in glacier and glacial lake areas in Poiqu since 1977, where the dotted line means that the curve is inferred only because of the lack of data before 1999. Despite the possible uncertainty before 1999, the gross tendency of glacier loss and glacial lake growth is clear. The retreat rate of glacier area reaches 43.6%, which is approximately 2.98 km²/a; accordingly, the glacial lake area has expanded by 169%, which is approximately 0.19 km²/a. Since 2004, the retreat rate has reached as high as 7.2 km²/a, while the growth rate of the lake has reached 0.44 km²/a (in Table 7).

This finding is comparable to the results from the literature. For example, from...
1975 to 2010, glaciers decreased by 19% in area (Yang et al., 2014), while glacial lake area increased by 83% (approximately 0.26 km²/a) from 1975-2010 (Wang et al., 2015). In 1986-2001, the glacial area increased by 47% (approximately 0.37 km²/a) (Chen et al., 2002).

For comparison, glacial lakes increased by 29.7% in the entire Chinese Koshi River (including Poiqu and six other tributary rivers) in 1976-2000 (Shrestha and Aryal, 2011; Wang et al., 2015) at a rate of approximately 1.6 km²/a. In the Koshi River, the glacier area has decreased by 19% (approximately 22.48 km²/a) (Shangguan et al., 2014; Yang et al., 2015), and the glacial lake area has increased by 6.6%. In 2000-2010, the glacial lake increased by 6% in area (approximately 0.72 km²/a) (Wang et al., 2015). This result means that Poiqu undergoes more dramatic changes in glaciers and glacial lakes. In particular, the Galongco and Gangxico Lakes have increased up to 500% and 107%, respectively, following area decreases in their connected glaciers by 40%.

Table 7 Area variations and annual speeds of glaciers and glacial lakes in Poiqu river Basin since 1977

Fig. 6 Area variations in glaciers and glacial lakes in Poiqu

Table 8 Area variations in 5 typical glacial lakes and their glaciers since 1977

Figs. 7-10 show pictures for the five major lakes and their connected glaciers (or the so-called “mother glaciers”, because they are the sources of generation for the connected glacial lakes) in different years between 1977 and 2018. It is easy to calculate the area of glaciers and glacial lakes in each stage, as listed in Table 8. (The data sources for the images in different years are listed in Table 1 and 2.)

For more details, we construct the annual variation in the lakes from the historical data; Fig. 11 shows the variation in Galongo Lake since 1977, which increased abruptly from 1.77 to 5.50 km² between 1977 and 2018.
Fig. 7. Comparison of area change between Cirenmaco Lake and its connected glacier.

Fig. 8. Comparison of area change between Gangpuco Lake and its connected glacier.

Fig. 9. Comparison of area change between Ganxico Lake and its connected glacier.

Fig. 10. Comparison of area change between Longmuqieco Lake and its connected glacier.

Fig. 11. Variation in the area of Galongco Lake (1977–2019) (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image).

The retreat-growth correlation can be seen more clearly from the large lakes mentioned above, as shown in Table 9 and Fig. 12. The gross tendency of glacial retreat and glacial lake growth is also remarkable here. Notably, there was a sudden decrease in area in 1981, simply because there was an outburst (Yu and Feng, 1988). Thus, historical anomalies in glacial lake areas may be caused by lake outbursts.

Table 9. Annual rates of change in 5 typical glacial lakes and their glaciers.

Lake Name	Rate of Change (km²/a)
Cirenmaco Lake	0.01
Galongco Lake	0.13
Gangxico Lake	0.07
Jialongco Lake	0.02
Longmuqieco Lake	0.01

Fig. 12. Retreat of 5 typical glaciers, growth of 5 typical glacial lakes, and rates of change in the Poiqu River Basin.

The five major lakes, Cirenmaco Lake, Galongco Lake, Gangxico Lake, Jialongco Lake, and Longmuqieco Lake, have increased up to 30%, 74%, 40%, 200%, and 54% at rates of 0.01 km²/a, 0.13 km²/a, 0.07 km²/a, 0.02 km²/a, and 0.01 km²/a, respectively, from 1977 to 2018.

Corresponding to the decrease in glaciers, the variations in glacial lakes under consideration have presented three patterns in recent years:
1) Fluctuation in area, as in the case of Cirenmaco and Jialongco (Tables 8 and 9 and Fig. 12A).

Both lakes are located at relatively low altitudes (Jialongco is at 4306 m and Cirenmaco is at 4639 m), are sensitive to temperature and both experienced an outburst in this episode (in 1981 and 2002, respectively) and then increased steadily. Jialongco Lake even experienced a sudden rise during 2006 and 2008 (Fig. 13), when the local temperature reached its 50-year peak. Moreover, a field survey indicates that Jialongco has an overflow at 0.3 m³/s in the rainy season, meaning that the lake has reached its maximum and thus fluctuates, similar to ordinary lakes undergoing seasonal changes. This finding implies that small amounts of variation in glacial lakes do not mean that the related glaciers also vary by small amounts. Dramatic change in glaciers results in a great loss of water but does not necessarily increase the size of the connected lake.

Fig. 13 Rapid rise in Jialongco Lake due to glacial loss (2002-2009)

2) Remarkable increase in area, as in the case of Galong Lake and Longmuqieco Lake (Tables 8 and 9 and Fig. 12B).

Historic remote sensing data (1954 ~ 2018) indicate that Galongco formed in the late 1960s as a result of a warming climate. Then, the lake increased steadily, with no marks of historic outburst and no overflow events based on recent UAV images. Indeed, the lake level is still 10 m below the front moraine bank, and it is only at 1 km downstream that the water flows from infiltration. Thus, the lake has had little loss of water and increases steadily. Despite no field survey data, the same case can be expected for Longmuqieco, which has similar altitude and water supply areas and connected glaciers.

3) Gentle increase in area, as in the case of Gangaixo (Tables 8 and 9 and Fig. 12C).

Gangaixo is supplied by the back glacier. As the glacier is small, the lake grows slowly. Moreover, Gangaixo is hydraulically connected near Gongco and Galongco, and its water enters Gongco in the southern area through infiltration, while the water...
of Gongco infiltrates into Galongco (Fig. 14). As Gongco has remained steady in last 50 years, Gongxico is also in a balanced state and shows a small tendency to increase.

These observations suggest that glacial lakes change in various patterns even under the same local conditions. Furthermore, little variation in glacial lake area does not necessarily mean that there are no changes in related glaciers. In this sense, glaciers are more sensitive to changes in weather or climate.

Fig. 14 Hydraulically connected glacial lakes (Galongco, Gongco, and Gongxico)

4.2 Influences of temperature and precipitation

As glaciers are sensitive to temperature, it is reasonable to consider the effects of weather on the changes in glaciers and glacial lakes. Unfortunately, weather stations are very sparse in the Himalayas, and no stations in the tributaries are under consideration; only records from nearby stations are accessible. Near the study area, we have three weather stations in Nylamu, Quxiang, and Zhangmu at altitudes of 3900 m, 3300 m, and 2200 m, which not only represent the vertical variations in weather but also the variations from north to south. Chongpudui and Rujiapu are in the northeastern and northeastern areas of Nylamu, respectively, and both rivers are similar to the whole county in terms of weather conditions, so the temperature and precipitation for lakes (i.e., Galongco, Jialongco, and Longmuqieco) in these tributaries can be interpolated from the records in Nylamu. Similarly, the weather of the Zhangzangbu (for Cirenmaco Lake) River is interpolated from the records in Quxiang.

Combining the data from the three stations may comprehensively reflect the weather features of the study area. The key factor for interpolation is the gradient of temperature (R_T) and precipitation (R_P) varying with elevation. To obtain the R_T and R_P, we take the records of Nylamu and Zhangmu in 2016. The daily R_T is defined as follows:

$$R_T = \frac{(T_N - T_Z)}{(\Delta L_N - \Delta L_Z)}$$

(3)

where T_N and T_Z are the daily temperatures recorded in Nylamu and Zhangmu.
respectively, and Al and Al are the altitudes of the two stations. This gives an
R_T of -6.1°C/km. As precipitation in the study area is also governed by altitude,
R_P can be obtained in a similar way, i.e., the precipitation difference divided by
the altitude difference between the two stations, which gives a value of -10 mm/km.
The minus symbol means a decrease with altitude. Fig. 15 displays the interpolated
temperature and precipitation for the glacial lakes under consideration. Then, both
the interpolated temperature and precipitation for the target point can be obtained
in the same way:

$$T_h = T_0 - R_T \Delta H \quad \text{and} \quad P_h = P_0 - R_P \Delta H \quad (4)$$

where the subscript H means the altitude of the target points (i.e., the tributary
rivers or the glacial lakes) and 0 indicates the recorded values.

Fig. 15A. Interpolated cumulative temperature

Fig. 15B. Interpolated annual precipitation

Fig. 15 Interpolated temperatures and precipitation for the glacial lakes

Based on the interpolation, the temperature rises at a rate of approximately
0.02°C/a in Poiqu, accompanied by a rainfall rate of 0.76 mm/a between 1989 and 2018.

Fig. 16 shows the temperature series in the last forty years in contrast to the
areas of glaciers and glacial lakes, indicating that the temperature is negatively
and positively related to glaciers and glacial lakes. Fig. 17 shows the precipitation
series in contrast to the areas of glaciers and glacial lakes, indicating that the
tendency of precipitation is negatively associated with glaciers but positively
associated with glacial lakes. On the other hand, it is found that precipitation
is well correlated with temperature, with a correlation coefficient larger than 0.5.
In short, the growth of glacial lakes following the retreat of glaciers is governed
by warming conditions.

Fig. 16A Changes in the area of glaciers vs. temperature
Fig. 16B Changes in the area of glacial lakes vs. temperature

Fig. 16 Changes in the area of glaciers and glacial lakes vs. temperature in Poiqu

Fig. 17A Changes in the area of glaciers vs. precipitation

Fig. 17B Changes in the area of glacial lakes vs. precipitation in Poiqu

Despite the remarkable fluctuation in various episodes, the weather conditions present a gross tendency in parallel to the retreat of glaciers and growth of glacial lakes. In fact, the temperature in the Tibet plateau increased at a rate of approximately 0.3-0.4°C per ten years, nearly two times the global rate. For the case of the present study, the lake area increases by approximately 40% at a rate of 0.28 km²/a, which is clearly higher than the other regions in the Himalayas (Nie et al., 2017).

In the following section, we propose a procedure to calculate the water balance for typical glacial lakes, illustrating the weather effects on the changes in glaciers and glacial lakes in different ways.

5.4 Water balance for glacial lakes

5.13.4 Volume variation of...
changes in glacial lakes, it is necessary to find the changes in water volume in the lakes. Then, we must find the lake volume from the area. This procedure can be done using ArcGIS tools. First, we create the DEM of the lake bottom using images at the time the lake formed and the following periods. Meanwhile, we interpret the annual water level from a series of images, which record the evolution of the lake (cf. Fig. 11). In detail, we create irregular triangle nets (ITNs) under the control of contour lines and obtain the DEM since the formation of the lake. Then, the average elevation of the lake boundary (i.e., the water level) can be obtained for many years. Finally, we compare the DEM derived from the water level and the DEM before lake extension and obtain the variation in the water level with the water volume (Fig. 18). For example, Galungco has the following relationship between lake volume and area: $V_{lake} = 5.04^{1.22} \times 10^6 \text{ m}^3$, where A is the lake area (in units of km2).

![Fig. 18 Terrain reconstruction of GB Lake below the water level](image)

4 Water balance for glacial lakes

4.1 Calculation of glacial lake volume

Discussions above are focused on the changes in lake area; and it is still necessary to know the variation in water volume of the lake. For this the key point is to construct the lake basin topography using multiphase RS images. Generally, the water level represents a contour line for the lake, and lake boundaries in a period provide evidence for the variation of water level, which can be easily identified in RS images. The water contours can be used to correct the DEM data and create the topography of lake basin, and then the variation of volume can be estimated (Fig. 14).

The procedures are as follows: 1) Interpret the water level as the lake boundary; 2) Transform the water-level vector data to point data in ArcGIS, with high point density representing high accuracy; 3) Assign DEM data to the point data. Then the average of the point data is the altitude of water level (lake boundary). After these procedures, we may use the level data of multiple years to create Tin, and transform Tin to grid data to obtain the morphology model of lake above the minimum water level, which represents the topography of lake.

The lake volume is simply the integral of the boundary area $s(h)$ over the level difference between base (h_0) and surface (h_s):

$$V_{lake} = \int_{h_0}^{h_s} s(h) \, dh$$
\[V = \int_{h_1}^{h_2} s(h) dh \quad (5) \]

In practice, we may take a discrete form, i.e., \[V = \sum_i s_i \Delta h_i \] with \(\Delta h_i \) being the difference of altitude (water level) between two successive measurements of the lake.

Fig. 14 Terrain reconstruction of GB Lake below the water level

5.4.2 Water balance equation (WBE)

The observations above indicate that the expansion of glacial lakes is well related to the retreat of glaciers, which in turn relies on changes in temperature and precipitation (rainfall and snow) in recent years. Then, it is possible to propose the following water balance equation (WBE) for a glacial lake:

\[\Delta V = \Delta P + \Delta G - \Delta I - \Delta E \quad (65) \]

where \(V, P, G, I, \) and \(E \) are the water quantities of the glacial lake, the water supplies from precipitation (rainfall and snow), glacier loss and ice-snow melting, and water loss through infiltration and evaporation, respectively; \(\Delta \) represents the annual increment.

In detail, the items in WBE are closely related to weather and geomorphologic conditions and can only be determined empirically.

1) Water supplies from precipitation \((P_R, P_S) \)

This involves rainfall and snowfall. The water supply from rainfall \((P_R) \) is governed by the hydrological process in the valley. For a given valley, the runoff depends on the rainfall process (often featured by intensity \(R \) and quantity \(Q_R \)), the drainage area contributing to the lake \((S) \), and the geomorphologic factors such as slope \(\theta \), vegetation cover, and permeability \(K \). In general, this can be expressed as follows:

\[P_R = f (R, Q_R, S, \theta, K) \quad (66) \]

Water supplies from snowfall \((P_S) \) also depend on temperature \(T \), solar radiation \(I_R \), snow density \(\rho_S \), and snow permeability \(k \); in addition to the geomorphologic factors:

\[P_S = f (T, I_R, \rho_S, k, S, \theta, K) \quad (78) \]

Then, the water supplied from precipitation is as follows:

\[P = P_R + P_S \quad (89) \]

2) Water supplies from glaciers \((G) \)

The major controlling factors are temperature \(T \), solar radiation \(I_R \), glacier density \(\rho_G \), fracture
density \(\sigma \), and geomorphologic factors:

\[
G = f(T, I, \rho, \sigma, S, \theta, K)
\]

3) Water loss from infiltration \((I) \)

Infiltration mainly depends on the permeability of the materials constituting the lake, and in the present case, the materials are mainly moraines, which are generally poorly graded in terms of grain composition and have high porosity. Infiltration also occurs underground and depends on the substrate sediment of the valley channel downstream of the lake.

\[
I = f(K, GSD, J)
\]

where \(GSD \) describes the granular features of moraines and sediments (Li et al., 2013, 2017) in terms of grain size distribution, and \(J \) is the hydraulic slope between the water level and seepage points.

In addition, when the lake is "saturated", i.e., the capacity reaches the maximum due to the limitation of the local landform, the lake will not increase in area, and the water supplies exceeding the capacity will be lost through overflow. In such a case, the supply is balanced by the loss.

4) Water loss from evaporation \((E) \)

Theoretically, evaporation is controlled by temperature, solar radiation, lake area \(A \), wind speed \(v \), surface saturated vapor pressure \(p \), and turbulent energy \(e \) (Lu et al., 2017):

\[
E = f(T, I_R, v, p, e)
\]

However, for the present case, the effect due to evaporation is much smaller and is usually ignorable compared with the other contributing terms.

5.4.3 Practical operation of the balance equation

In practice, each item introduced in the WBE can be empirically estimated, especially in the present case, where we suffer from a severe lack of basic solar radiation and local weather data. In the following section, we provide a practical routine for the calculations.

1) Water supplies from rainfall and snow

In principle, the supply is equal to the runoff drainage to the lake, which is calculated using the standard hydrologic method for each rainfall event, depending on the temporal process and spatial distribution of the rainfall over the drainage area. However, for the case of glacial lakes, we have only annual area variation and weather data from nearby stations, and it is impossible to perform standard hydrograph calculations; instead, we reduce the calculation to the runoff of the slope (Gao et al., 2019):

\[
P_R = \alpha SR_a
\]

where \(P_R \) is the runoff and employed here as the water supply from rainfall, \(S \) is the drainage area.
contributing to the lake, \(R_e \) is the annual rainfall, and \(\alpha \) is the coefficient, depending on local conditions of the drainage slope, such as the material properties and vegetation cover, which is empirically determined as follows (Liang et al. 2018):

\[
\alpha = 0.065 + 0.0086\theta + 0.33 \text{ALs}
\]

where \(\theta \) is the slope angle, and ALs varies among arid, semiarid, semihumid, and humid areas. As the Poiqu River Basin is located in the semiarid area but has sufficient moisture content in air, ALs can be taken as the upper limit of 0.75. Then, \(\alpha \) is mainly governed by the slope gradient of the drainage area to the lake.

2) Melt water from ice and snow-melt

There have been various methods used in glacial hydrology (Braithwaite and Olesen, 1989). Physical models have incorporated many influencing factors, such as temperature and radiation intensity; thus, these models have high calculation accuracy. However, they do not apply to areas lacking a sufficient database, as in the case in the Himalayas. Instead, empirical methods are widely employed, among which the Degree-Day Model (DDM) is generally most used to calculate the melting of glaciers and snow cover (Kayastha et al., 2005; Zhang et al., 2006; Pradhananga et al., 2014). The DDM is practical, simple and well-accepted, considering the influence of the degree-day factor (DDF) and the normal accumulated temperature. Following the method, the melted thickness of the glacier (M) is determined by the production of DDF and the positive cumulative temperature in a certain period (PDD, in units of °C):

\[
M = DDF \times PDD
\]

where DDF is in units of mm·d·°C\(^{-1}\), and varies with elevation (Liu et al., 2014). PDD can be directly calculated from the daily temperature record, i.e., the cumulative temperature of the days with temperatures higher than 2°C. In fact, the PDD involves two components applied to the melt of snow cover and glaciers, PDD\(_S\) and PDD\(_G\). In other words, only the residual cumulative temperature PDD\(_G\) applies to glacial melting.

Then, the melt water quantity is the production of M and the glacier area (\(A_G \)):

\[
G = M \times A_G
\]

Similarly, this also applies to the water supply from snow cover melting. DDF is generally hard to obtain, but in Poiqu, we may make a reference to the results in the nearby area, 80 km away at Mt. Everest. According to previous studies, the DDF is 16.9 for the Kunbu glacier at an altitude of 5350 m (86°52′E, 27°59′N) (Kayastha et al., 2005), and the DDF is 8.21 for the Rongbu glacier at the same altitude (Liu et al., 2014). Then, we take the average value, 12.6, as the overall DDF for glaciers in Poiqu, and for individuals, we make some corrections depending on the slope orientations of the glaciers. For the west-oriented slope (e.g., Cirenmaco Lake), the melt is relatively more intense than the east-oriented slope (e.g., the Galongco and Gangxico Lakes); for the cases of Jialongco and Longemuqieco, the slopes are north-oriented, the sunshine is shielded, and the melt is relatively weak. Based on these results, we obtain a corrected DDF for each glacier.
According to studies on the snow cover of the Dokriani Glacier in the Indian Himalayas (Singh et al., 2000), the DDF for snow is approximately 30% less than that for glaciers. As this is geographically similar to the Poiqu area, a reduction rate of 30% can be used for determining the DDF of snow cover for the glaciers and glacial lakes under consideration, as listed in Table 410.

On the other hand, not all meltwater can reach the connected lake; some infiltrates into the bed through the crevasses. This creates a loss of water supplies from melt water, and a reduction coefficient, R_w, is considered when the water supplies are estimated (cf. Table 510).

3) Water loss through evaporation

The Poiqu River is located at high altitude, where the stored water is in a liquid state only in July and August. It is reasonable to assume that the evaporation is very weak in this area and can be ignored in the estimation of water balance. For this estimation, we take Gongco Lake as the reference. The lake is located in the tributary of Chongduipu, similar to Galongco and Gangxico, and at similar altitudes (5173, 5075 and 5218 m, respectively). However, it is distinctive in that the Gangco does not receive a water supply from glaciers; the major water supplies come from rainfall. Notably, Gongco has not increased in area, remaining at approximately 2.1 km2 in recent years. It is possible that the water supplies are balanced by the water losses due to infiltration and evaporation. Since Gongco receives seepage flow from Gangxico and simultaneously feeds Galongco through seepage, the supplies from rainfall can be considered balanced by evaporation. However, according to the estimation, water supplies from rainfall are generally very small compared with those from the meltwater of glaciers and snow cover. Therefore, evaporation is negligible in the Poiqu River.

4) Water loss through infiltration

Water loss due to infiltration is controlled by the permeability of the moraine bank of the lake and the sediment in the valley channel. As it is inaccessible to most glacial lake areas, we can only trace the marks of infiltration through remote sensing images (including UAV and Google Earth) (cf. the case of Galongco in Fig. 410).

For the permeability coefficient K, we conducted experiments on material samples from the moraines and sediments, and it was found that K (cm/s) is well related to the grain size distribution (GSD) of the loose granular materials:

$$K = 0.003D_{s1.5} - 29.46D_{2.5} - 0.0196 \quad (R^2=0.9892) \quad (4.17)$$

where D_s and μ are GSD parameters (Li et al., 2013; 2017), which can be directly obtained from the granulometric analysis of moraine and sediment samples for each lake. Then, the infiltration discharge can be calculated by Darcy’s law:

$$Q = KJA \quad (4.18)$$

where J is the hydraulic slope and A is the infiltration area. For a given valley, the water loss from infiltration is $I = QT$, with T as the effective time for infiltration, which is mainly the rainy season.
when the valley has flow water.

Discussions above suggest that the WBE can be simplified as

$$
\Delta V = \alpha S \bar{R} + R_{\text{GS}} \text{DDF} \cdot \text{PDDC} S + R_{\text{CG}} \text{DDF} \cdot \text{PDDC} A_g \text{KJAT}
$$

(19)

where α is a coefficient related to local topography (cf. Eq. 13). S is the drainage area of the lake. \bar{R} is the glacier area, and A_g is the glacier melt. R_{GS} and R_{CG} are coefficients related to local topography. Other symbols are referred to the equations above (e.g., Eq. 14-18). Finally, we tabulate the parameters for the WBE calculation (Table 10).

Table 10 - Parameters for the water balance calculation of glacial lakes

4.4 Cases Calculations calculations

4.4.1 An Exemplification of the Galongo Lake

Now, we apply the WBE to the five major lakes to see how the area has increased in recent decades. For this procedure, we first take glacial Lake Galonco in 2006 as an example to show the calculation process.

1) Geomorphologic background and related parameters

As mentioned above, the Galongo Lake is located in a small tributary of the Chongdui pu tributary, at an altitude of 5076 m, in an area 5.5 km², and the drainage area to the lake, including slopes around the lake, is 22.33 km². Two glaciers are directly connected to the lake in the northwestern and western parts of the upstream area, with a total area of 13.5 km² according to the GF-2 satellite images in 2018.

In 2006, the lake area was 3.93 km² and the glacier area was 43,061,437.7 km² (Fig. 4015). Based on the DEM, the angle of the draining slope is estimated to be 23.7° on average, and thus, the runoff coefficient is 0.56 according to Eq. 4313.

Following the background of the lake and glaciers, the DDFs for glaciers and snow cover are 12.6 and 8.3, respectively, and the reduction coefficients for glaciers and snow cover are 0.61 and
The weather conditions are interpolated from the records in Nylamu; the annual temperature and precipitation in 2006 are shown in Fig. 2. According to this interpolation.

Fig. 2. Temperature and precipitation of the Galongco Lake in 2006

Following the instruction above, the rainfall and snowfall in 2006 were 1.5 mm and 1545 mm, respectively, and the cumulative temperature was 282.3°C. Based on the DDM, the cumulative temperature for snow cover melt is 128.3°C, and thus the cumulative temperature for glacial melt is 153°C.

3) Infiltration

According to samples of moraine materials in the lake tributary, the GSD parameter μ is 0.03 and D_c is 11.2 mm, which yields a permeability coefficient K of 0.088 cm/s. According to Google Earth images, the infiltration area is approximately 8426 m^2, and the hydraulic slope is 0.13, which gives a discharge of infiltration of 0.96 m³/s. Considering that only July and August have positive temperatures higher than 2°C, infiltration only occurs in these months.

4) Water supplies and losses

Based on the parameters described above and using formulas (47)-(910), we obtain the water supplies and losses:

(i) the water supply from rainfall (P_R) is 1.75×10^6 m³;

(ii) the water supply from glacial melting (G) is 1.49×10^6 m³;

(iii) the water supply from snow melting (P_S) is 1.90×10^6 m³;

(iv) the water loss from infiltration (I) is 5.92×10^6 m³.

Therefore, the WBE provides a water supply of 4.25×10^6 m³ to the lake in 2006, which
accounts for the area increase of 0.33 km².

In the same way, we can calculate the water balance for other years. Notably, for some years, no data are available for glaciers or lakes (e.g., only three sets of data are available between 1988 and 2004); for these situations, we use an extrapolation method. Considering that the changes in glaciers and glacial lakes have steady near-linear tendencies in recent years, we can assume that both glaciers and glacial lakes in the years between 1988 and 2004 vary linearly, with the average rate determined by the slope of the line linking the points of 1988 and 2004. Thus, we can infer the area of glaciers and glacial lakes in those years. Specifically, for Galongco, the variation rate of glaciers between 2004 and 2018 is -0.36 (R²=0.8956), and the variation rate of glacial lakes is 0.15 (R²=0.8779), which provides a baseline for extrapolation in recent years.

Using the methods above, we obtain the water balance for Galomngco between 1988 and 2018, as listed in Table 12. The symbols in Table 11 are listed as follows:

- T_c: cumulative temperature;
- T_{cG}: cumulative temperature for glacial melting;
- T_{cS}: cumulative temperature for snow melting, which is $T_c - T_{cG}$;
- M: melt thickness of a glacier;
- W_G: water supply from glaciers;
- W_{snow}: water supply from snow cover; and
- W_{total}: total quantity of water supplies.

Table 11	Water balance for Galongco Lake between 1988 and 2018

4.2 Water balance for typical lakes

Similarly, we can perform balance calculations for other lakes, from which we obtain the variation in water quantity for the lakes since 1988 using the parameters listed in Table 6. Table 12 displays the comparison between the calculated water quantity and the measured observed quantity for the five selected typical lakes. One sees that the error between calculated and measured water volume of lakes are -19.7% -33.6% on average. Maximal error occurs at Gangxico Lake and smallest error occurs at Galongco Lake (计算平均误差最大，而 Galongco Lake (计算平均误差最小，仅 1.2%)。
Table 12.12 Comparison between the calculated water quantity and the observed quantity

The calculations generally agree with the observations, but it is noted that great discrepancy occurs in the case of the Jialongco Lake, the lowest lake among the five samples at an altitude of 4306 m, which experienced an outburst in 2002 and sudden rise during 2006 and 2008 due to dramatic changes in the connected glacier (cf. Fig. 13). As the WBE does not consider the glacial dynamics and dramatic changes in local conditions, the calculation cannot incorporate the sudden changes. This means that the WBE operation should be further improved to incorporate the water variations due to catastrophic processes.

However, the gross agreement between the calculation and observation does suggest that the WBE has provided a practical and functional framework for understanding the characteristics of changes in individual glacial lakes. Moreover, it provides a practical method for quantitatively assessing the growth of glacial lakes. In particular, the calculation reveals that the lakes in Poiqu have undergone different water supply balance proportions, which makes it possible to distinguish among the local conditions of the lakes.

The WBE not only provides a method to account for the water supplies to glacial lakes but also reveals differences between lakes. Although glaciers are sensitive to temperature, the lake grows in various ways depending on local conditions, especially altitude and basin circumstances. Table 13-13 lists the average fraction of water supplies from glaciers melting, snow melting, and rainfall over the calculation period. It is obvious that the supply form of glacial lake is affected by altitude. The lakes at relatively low elevations (i.e., below approximately ≈ 5000 m) are mainly supplied by glaciers melting, and lakes at high elevations, especially at 5100-5300 m, are mainly supplied by snowfall snow melting.

For all these lakes, the water supplies from rainfall are much smaller, even below 5%, and this can almost be ignored considering the accuracy of the estimation. This clearly reflects the altitude effect on glaciers. At low altitudes, the cumulative annual temperature is positive and directly melts the glaciers. At high altitudes, glaciers are covered by snow, and the positive temperature mainly acts on snow cover. Indeed, several years have shown near-zero cumulative temperatures for Gangxico Lake and Longmuqieco Lake, which results in a small fraction of glacial ablation (Fig. 17).

Table 43.13 Fractions of various water supplies to the lakes
Fig. 1 Water supplies to the lakes at different altitudes

Then, the WBE not only provides a method to account for the water supplies to glacial lakes but also reveals differences between lakes. Although glaciers are sensitive to temperature, the lake grows in various ways depending on local conditions, especially altitude and basin circumstances (e.g., morphology and moraine materials).

6.5 Discussions

Based on the present study, we can remark on some of the problems concerning changes in glaciers and glacial lakes under warming conditions.

1) Changes in glaciers and glacial lakes in Poiqu are at remarkably high levels compared with other regions in the Himalayas (Nie et al., 2017), this vividly illustrates the prediction that changes in temperature and precipitation have been recognized as effecting ice and snow melt and leading to serious consequences for both nature and society (Immerzeel et al., 2012; Immerzeel et al., 2013). Recently, the estimation of ice thickness distribution indicated that the present-day glacier area in highly mountainous Asia will decrease by half at an accelerating rate, approximately about one decade ahead of schedule, as suggested in previous studies (Farinotti et al., 2019). A detailed analysis in the present study proves that changes in glaciers and glacial lakes in Poiqu are at remarkably high levels compared with other regions in the Himalayas (Nie et al., 2017). In particular, although the glaciers are generally in their retreat phase, water supplies from glaciers are still dominant in the central Himalayas. However, it is also noted that the fluctuation of temperature and precipitation in local areas does not present a clear-cut tendency in parallel with the retreat of glaciers or growth of glacial lakes. Changes in individual glaciers and glacial lakes are dominated by local conditions but not global changes.

2) Mass balance for glaciers and ice caps is of great importance in Earth’s hydrological cycle and response to climate change (Aizen and Aizen, 1997; Haeberli et al., 1999; Valentina Radić and Hock, 2013; Lambrecht and Mayer, 2009; Huss, 2011; Huss and Hock, 2018). The results of this study provide a detailed scenario of water balance for individual lakes through operation of WBE for typical glacial lakes, revealing details in water supplies from precipitation, glaciers, and snow cover and water losses from infiltration. The WBE provides the mechanism for lake growth and agrees well with the observations and image interpretations, and the calculation for individual lakes has made up for the deficiencies in previous studies, which only gave an overall view of lake...
expansion at the regional scale (e.g., Nie et al., 2017). In addition, the WBE operation has also
found that glacial lakes under similar background conditions may vary in different ways,
depending on local elements at small scales, which would be inevitably neglected in studies at
large scales. The lake may remain at their greatest sizes (e.g., at the maximal area of extension)
even if the glaciers undergo dramatic changes.

3) Based on the changes in glacial lake area and DEM analysis, we abstracted the water change
in the lakes and proposed a WBE that governs the growth of the lake. As each item of the water
contribution in the WBE specifically depends on local weather and morphology, the balance
equation provides a direct link between glacier and glacial lake changes and climate changes
under local conditions. Furthermore, WBE operation is crucial to gain a better understanding of
water supplies for glacierized river basins. Near the study area—there are—many rivers
originating in the high Asian mountains, such as the rivers of Yarlong Zangbo (Brahmaputra),
Indus, Ganges, Nujiang (Salween) and Lancangjiang (Mekong), but the quantification of water
sources is usually highly uncertain because of a lack of understanding of the hydrological regimes
and runoff calculations (Winiger et al., 2005; Bookhagen and Burbank, 2010; Immerzeel and
Bierkens, 2012; Miller et al., 2012; Lutz et al., 2014; Hassan et al., 2017). The proposed WBE
calculation has revealed the variety of water supplies from glaciers, snow cover, and precipitation
for individual glacial lakes; thus, this calculation is expected to be applicable for estimating
glaciohydrologic processes in large glacierized rivers.

4) Admittedly, the WBE for glacial lakes is proposed here only at the annual scale, which makes
it difficult to be accurate when considering individual lakes during a given period. This is mainly
due to the lack of data and ignorance of specific water supply and loss processes. For example,
runoff should be calculated for the tributary watershed using records for individual rainfall events,
which strongly depend on the watershed conditions (i.e., conditions of slope, channel, vegetation,
and soils or sediments, especially moraines for the lakes) and the rainfall pattern. However, in the
study area, and even in the Himalayas, only annual (and usually incomplete) weather records are
available at several points, and it is only possible to provide a gross estimate of the runoff simply
by the production of rainfall and watershed area. Similarly, water quantities from other sources
can only be best accurately estimated for accuracy in terms of order of magnitude.

On the other hand, the WBE does not consider the dynamical processes of glaciers (Copland
et al., 2011; Dowdeswell et al., 1995), such as glacial surging, its hydrologic consequences or the possible dramatic changes in morphology, such as the collapse of lakes or other surface processes (e.g., icefalls, landslides, or debris flows due to earthquakes or extreme weather events), which may bring dramatic changes that overwhelm the steady, gentle changes that occur over tens or even hundreds of years. Therefore, the model cannot explain the sudden changes in glaciers and glacial lakes, as in the case of Jialongco. In addition, the parameters involved for these items are highly uncertain in practice, and systematic and detailed scrutinization is required to improve the accuracy of the operation.

2.6 Conclusion

We have explored the evolution of glacial lakes in the Poiqu River Basin in the central Himalayas based on multi-source RS images and UAV photos. A1) Based on the landform data from ALOS 12.5 m and ASTER 30 m elevation data, geological data from geological maps of the Tibet Plateau and remote sensing data from the Landsat, GE-2, ZY-3, and UAV satellites, a total of 147 glacial lakes and related glaciers have been identified in the area, which are Poiqu River Basin. The glacial lakes, distributed between 4200 ~ 5800m and concentrated in 5000 ~ 5800m, with base area ranging from 0.0002 km² to 5.5 km², in total of 19.89 km². In particular, we take five typical glacial lakes to trace the evolution in last 40 years and find

2) In order to explore the detailed evolution processes of glacial lakes, we take case studies of five typical glacial lakes (>0.3km²). This study employed multisource images and identified 147 glacial lakes in the Poiqu River Basin in the central Himalayas and explored the detailed changes in major glacial lakes. Tracing the evolutions of glaciers and glacial lakes in the study region over the last 40 years, we find that the glaciers have undergone increasing retreat and the retreat area of main glaciers is 119.4 km² at the rate of 2.91 km²/a. At the same time, we also find that the glacial lakes grew and expanded and the expansion area of main glacial lakes is 7.25 km² at the rate of 0.18 km²/a, while the glacial lakes grew and expanded. The major lakes have increased by up to 30% ~ 200% in area, at rates between 0.01 km²/a and 0.13 km²/a, which is proved to make the Poiqu River Basin an area of high levels of glacier and glacial lake changes in recent decades.

Temperature is negatively and positively related to glaciers and glacial lakes, and precipitation has the opposite effect.
Moreover, we construct the lake basin topography using multiphase RS images, and propose the water balance equation incorporating water supplies from precipitation, glaciers, and water loss from infiltration and evaporation. As each item of the water contribution specifically depends on local weather and morphology, the balance equation provides a direct link between glacier and glacial lake changes and climate changes under local conditions.

Operation of the WBE for the five glacial lakes has shown that individual lakes vary in different ways and receive water supplies from glaciers, snow cover, and precipitation in different fractions. WBE also reveals that water supplies depend on altitude. At low altitudes, temperature is more effective for glacier ablation, and lakes are mainly supplied by melted water from glaciers. At high altitudes, temperature acts more on snow cover, and melted snow becomes the major water supply to lakes. The difference between water supplies from glaciers and snow cover is as high as 50%, according to the present cases. This implies that it is insufficient to apply weather or climate conditions to individual glacial lakes at a large scale to determine climate effects on glacial lake changes. Moreover, we construct the lake basin topography using multiphase RS images, and propose the water balance equation (WBE) as each item of the water contribution specifically depends on local weather and morphology, the balance equation provides a direct link between glacier and glacial lake changes and climate changes under local conditions.

Detailed analysis of individual glacial lakes indicates that the lake grows in various patterns, as well as for different ways and receive water supplies from glaciers, snow cover, and precipitation in different fractions. We also reveal that water supplies depend on altitude. At low altitudes, temperature is more effective for glacier ablation, and lakes are mainly supplied by melted water from glaciers. At high altitudes, temperature acts more on snow cover, and melted snow becomes the major water supply to lakes. The difference between water supplies from glaciers and snow cover is as high as 50%, according to the present cases. This implies that it is insufficient to apply weather or climate conditions to individual glacial lakes at a large scale to determine climate effects on glacial lake changes. Moreover, we construct the lake basin topography using multiphase RS images, and propose the water balance equation incorporating water supplies from precipitation, glaciers, and water loss from infiltration and evaporation. As each item of the water contribution specifically depends on local weather and morphology, the balance equation provides a direct link between glacier and glacial lake changes and climate changes under local conditions.

At high altitudes, temperature acts more on snow cover, and melted snow becomes the major water supply to lakes. The difference between water supplies from glaciers and snow cover is as high as 50%, according to the present cases. This implies that it is insufficient to apply weather or climate conditions to individual glacial lakes at a large scale to determine climate effects on glacial lake changes.
depending on local conditions of weather and geomorphology, or even occasional dramatic events such as a lake outburst, icefall, or glacial surging. As these events are always inaccessible and usually cannot be identified from images, abnormalities in glacial lake growth may provide hints for those catastrophic occurrences. Meanwhile, small variations in lakes do not necessarily imply no changes in glaciers and lakes.

Based on the changes in glacial lake area and DEM analysis, we abstracted the water change in the lakes and proposed a WBE that governs the growth of the lake. As each item of the water contribution specifically depends on local weather and morphology, the balance equation provides a direct link between glacier and glacial lake changes and climate changes under local conditions.

Operation of the WBE for the five major glacial lakes in the tributaries of Poiqu River has shown that individual lakes vary in different ways and receive water supplies from glaciers, snow cover, and precipitation in different fractions. The results clearly reveal the altitude effect on changes in glaciers and glacial lakes. At low altitudes, temperature is more effective for glacier ablation, and lakes are mainly supplied by melted water from glaciers. At high altitudes, temperature acts more on snow cover, and melted snow becomes the major water supply to lakes. The difference between water supplies from glaciers and snow cover is as high as 50%, according to the present cases. This implies that it is insufficient to apply weather or climate conditions to individual glacial lakes at a large scale to determine climate effects on glacial lake changes.

Acknowledgements

This research is supported by the China Geological Survey projects (Grant No. DD20190637), National Natural Science Foundation of China (Grant No. 41877261, U19A2049), the China Geological Survey projects (Grant No. DD20190637), National Key Research and Development Plan of China (Grant No. 2017YFC1502502), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA23090202), the Strategic Program of the Institute of Mountain Hazards and Environment, CAS (Grant No. SDS-135-1701), West Young Scholars Program of the Chinese Academy of Sciences and the CAS Key Technology Talent Program.
References:

Aizen, V., and Aizen, E. Hydrological cycles on the north and south peripheries of mountain–glacial basins of central Asia. Hydrol. Process., 11, 451-469, https://doi.org/10.1002/ (SICl) 1099-1085 (199704) 11:5<451::AID-HYP448>3.0.CO;2-M, 1997.

Bajracharya, B., Shrestha, A. B., and Rajbhandari, L.: Glacial lake outburst floods in the Sagarmatha region - Hazard assessment using GIS and hydrodynamic modeling. Mt. Res. Dev., 27, 336-344, https://doi.org/10.2307/25164154, 2007.

Bhutiyani, M.R., Kale, V.S., and Pawar, N. J.: Climate change and the precipitation variations in the north-western Himalaya:1866–2006. Int J Climatol., 30, 535–548, https://doi.org/10.1002/joc.1920, 2009.

Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., and Bajracharya, S.: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazard., Earth Sys., 8, 1329-1340, https://doi.org/10.5194/nhess-8-1329-2008, 2008.

Bookhagen, B., and Burbank, D. W.: Towards a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, https://doi.org/10.1029/2009JF001426, 2010.

Braithwaite, R. J., and Olsen, O. B. (eds.): Calculation of glacier ablation from air temperature, West Greenland, Glacier Fluctuations and Climatic Change, 219–233 Dordrecht, Netherlands, https://doi.org/10.1007/978-94-015-7823-3 15, 1989.

Chen, X.Q., Cui, P., Li, Y., Yang, Z., Qi, Y. Q.: Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nvalam, Xizang (Tibet). Geomorphology., 88, 298-311, https://doi.org/10.1016/j.geomorph.2006.11.012, 2007.

Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong, Y. B., Owen, L.A., Bush, A., and Kump, U.: Expanded and Recently Increased Glacier Surging in the Karakoram. Arct. Antarct. Alp. Res., 43, 503-516, https://doi.org/10.1657/1928-4246-43.4.503-, 2011.

Dowdeswell, J. A., Hodgkins, R., Nuttall, A.-M., Hagen, J. O., and Hamilton, G. S.: Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys. Res. Lett., 22, 2909–2912, https://doi.org/10.1029/95GL02821, 1995.

Farinotti, D., Huss, M., Fuerst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimates for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168-173, https://doi.org/10.3929/ethz-b-000315707, 2019.

Gao, J.F., Yang, Z.H., Su, W.C., and Cao, Y.: Research Status and Prospect of Runoff Collection and Utilization in Karst Hillslope. Water Saving Irrigation., 104, 97-99, 2019. (in Chinese with English abstract)

Haeberli, W., Frauenfelder, R., Hoelzle, M., and Maisch, M.: On rates and acceleration trends of global glacier mass changes. Geogr. Ann., A., 81A, 585-591, https://doi.org/10.1111/1468-0459.00086, 1999.

Hassan, J., Kayastha, R. B., Shrestha, A., Bano, I., li, S.H., and Maggi, Z.: Predictions of future hydrological conditions and contribution of snow and ice melt in total discharge of Shigar River Basin in Central Karakoram, Pakistan. Sciences in Cold and Arid Regions 9, 511-524, https://doi.org/CNKI:SUN:HAQK.0.2017-06-002, 2017.
Liu, W.G., Xiao, C.D., Liu, J.S., Wang, J., Wang, H., Liu, J.F., Liu, N., Zhang, T., and Lin, X.: Study of the degree-day factors on the Rongbuk Glacier in the Mt. Qomolangma, Central Himalayas. J. Glaciol., 60, 1101-1110, http://dx.doi.org/10.7522/j.issn.1000-0240.2014.0132, 2014. (in Chinese with English abstract)
1729-1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Lu, M. M., Zhou, S. Q., and He, X.: A comparison of the formulas for estimation of the lake evaporation on the
Tibetan Plateau: taking Lake Nam Co as an example. J. Glaciology and Geocryology., 39, 281-291, 2017. (in
Chinese with English abstract)
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asia’s runoff due
to increasing glacier melt and precipitation. Nat. Clim. Change., 4, 587-592,
https://doi.org/10.1038/nclimate2237, 2014.
Mergili, M., Müller, J. P., and Schneider, J. F.: Spatial-temporal development of high mountain lakes in the
headwaters of the Amu Darya River (Central Asia). Glob. Planet. Chang., 107, 13–24,
https://doi.org/10.1016/j.gloplacha.2013.04.001, 2013.
Miller, J. D., Immerzeel, W. W., and Rees, G.: Climate Change Impacts on Glacier Hydrology and River Discharge
in the Hindu Kush-Himalay as A Synthesis of the Scientific Basis. Mt. Res. Dev., 32, 461-467,
https://doi.org/10.1659/MRD-JOURNAL-D-12-00027.1, 2012.
Mir, R. A., Jain, S. K., and Saraf, A. K.: Analysis of current trends in climatic parameters and its effect on discharge
of Satluj River basin, western Himalaya. Nat. Hazards., 79, 587-619,
https://doi.org/10.1007/s11069-015-1864-x, 2015.
Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.: Decline in snowfall in response to temperature in Satluj basin, western Himalaya. J. Earth Syst. Sci., 124, 365-382, https://doi.org/10.1007/s12040-015-0539-z, 2015.
Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.: Detection of Changes in Glacier Mass Balance Using
Satellite and Meteorological Data in Triungkhad Basin Located in Western Himalaya. J. Indian Soc. Remote., 42, 91-105, https://doi.org/10.1007/s12524-013-0303-2, 2014.
Nie, Y., Liu, Q., and Liu, S.: Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990-2010.
PLoSOne., 8, e83973, https://doi.org/10.1371/journal.pone.0083973, 2014.
Nie, Y., Liu, Q., Wang, J. D., Zhang, Y. L., Sheng, Y. W., and Liu, S. Y.: An inventory of historical glacial lake
outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis.
Geomorphology., 308, 91-106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Nie, Y., Sheng, Y. W., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A regional-scale assessment of Himalayan
glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ., 189, 1-13,
https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Pan, Guitang. (eds.): Tectonic Map and Instructions for the Tibet Plateau and Adjacent Areas, Geological
Publishing House, Beijing, China, 2013. (in Chinese)
Pradhananga, N. S., Kayastha, R. B., Bhatturai, B. C., Adhikari, T. R., Pradhan, S. C., Devkota, L. P., Shrestha, A. B.,
and Mool, P. K.: Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a
glacio-hydrological model. Ann. Glaciol., 55, 223-230, https://doi.org/10.3189/2014aog66a123, 2014.
Prakash, C. and Nagarajan, R.: Glacial Lake Inventory and Evolution in Northwestern Indian Himalaya. IEEE
J-Stars., 10, 5284-5294, https://doi.org/10.1109/JSTARS.2017.2767098, 2017.
Qin, J., Yang, K., Liang, S., and Guo, X.: The altitudinal dependence of recent rapid warming over the Tibetan
Plateau. Climatic Change., 97, 321-327, https://doi.org/10.1007/s10584-009-9733-9, 2009.
Raj, K. B. G., Kumar, V. K., and Remya, S. N., Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data. Geomat. Nat. Haz. Risk., 4, 241-253, https://doi.org/10.1080/19475705.2012.707153, 2013.

Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas. Quatern. Int., 65-6, 31-47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.

Shangguan, D. H., Liu, S. Y., Ding, Y. J., Wu, L. Z., Deng, W., Guo, W. Q., Wang, Y., Xu, J., Yao, X. J., Guo, Z. L., and Zhu, W. W.: Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Ann. Glaciol., 55, 61-68, https://doi.org/10.3189/2014AoG66A057, 2014.

Shrestha, A. B. and Arval, R.: Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Change. 111, S65-S77, https://doi.org/10.1007/s10113-010-0174-9, 2011.

Singh, P., Kumar, N., and Arora, M.: Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. J. Hydrol., 235, 1-11, https://doi.org/10.1016/S0022-1694(00)00249-3, 2000.

Solomina, O. N., Bradley, R. S., Jonelli, V., Geirsdóttir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier fluctuations during the past 2000 years. Quaternary Sci. Rev. 149, 61-90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.

Valentina Radić, and Hock, R.: Glaciers in the earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv Geophys, 35, 813-837, https://doi.org/10.1007/s10712-013-9262-y, 2013.

Wang, S. J. and Jiao, S. T.: Evolution and outburst risk analysis of moraine-dammed lakes in the central Chinese Himalaya. J. Earth Syst. Sci., 124, 567-576, https://doi.org/10.1007/s12040-015-0559-8, 2015.

Wang, S. J. and Zhang, T.: Spatially change detection of glacial lakes in the Koshi River Basin, the Central Himalaya. Environ. Earth Sci., 72, 4381-4391, https://doi.org/10.1007/s12665-014-3338-y, 2014.

Wang, W. C., Xiang, Y., Gao, Y., Lu, A. X., and Yao, T. D.: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydro. Process., 29, 859-874, https://doi.org/10.1002/hyp.10199, 2015.

Wei, J. F., Liu, S. Y., Guo, W. Q., Yao, X. J., Jiang, Z. L., and Han, Y. S.: Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya. Mt. Res. Dev., 32, 203-212, https://doi.org/10.1659/MRD-JOURNAL-D-11-00044.1, 2012.

Wang, W. C., Gao, Y., Anacona, P. I., Lei, Y. B., Xiang, Y., Zhang, G. Q., Li, S. H., and Lu, A. X.: Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas. Geomorphology., 306, 292-305, https://doi.org/10.1016/j.geomorph.2015.08.013, 2018.

Wei, J. F., Liu, S. Y., Guo, W. Q., Yao, X. J.: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol., 55, 213-222, https://doi.org/10.3189/2014AoG66A038, 2014.

Winiger, M., Gampert, M., and Yamout, H.: Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources. Hydro. Process., 19, 2329-2338, https://doi.org/10.1002/hyp.5887, 2005.

Xiang, Y., Gao, Y., and Yao, T. D.: Glacier change in the Poiqu River basin inferred from Landsat data from 1975 to
Xiang, Y., Yao, T.D., Gao, Y., Zhang, G.Q., Wang, W.C., and Tian, L.D., Retreat rates of debris-covered and debris-free glaciers in the Koshi River Basin, central Himalayas, from 1975 to 2010. Environ. Earth Sci., 77, 285, https://doi.org/10.1007/s12665-018-7457-8, 2018.

Xu, D.M. and Feng, Q.H.: Studies on catastrophes of glacial debris flow and glacial lake outburst flood in China. J. Glaciol. Geocryol., 10, 284-289, 1988. (in Chinese with English abstract)

Yao, T.D., Thompson, L., Yang, W., Yu, W.S., Gao, Y., Guo, X.J., Yang, X.X., Duan, K.Q., Zhao, H.B., Xu, B.Q., Pu, J.C., Lu, A.X., Xiang, Y., Kattel, D.B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang., 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.

Yao, T.D.: Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chinese Science Bulletin., 55, 2071-2071, https://doi.org/10.1007/s11434-010-4327-5, 2010. (in Chinese with English abstract)

Zhang, G.Q., Bolch, T., Allen, S., Linsbauer, A., Chen, W.F., and Wang, W.C.: Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964-2017. J. Glaciol., 65, 347-365, https://doi.org/10.1017/jog.2019.13, 2019.

Zang, G.Q., Yao, T. D., Xie, H. J., Wang, W. C., and Yang, W.: An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global Planet. Change., 131, 148-157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.

Zhang, Y., Liu, S. Y., and Ding, Y. J.: Spatial Variation of Degree-day Factors on the Observed Glaciers in Western China. Acta Geographica Sinica., 61, 89-98, https://doi.org/10.3321/j.issn:0375-5444.2006.01.009, 2006. (in Chinese with English abstract)

Zheng, Y., Zhang, J., Jiang, W., Jin, M., Xue, X., and Wang, M.: The rapid denudation events of the Himalayan orogenic belt in the Nyalam area since the Pliocene and its tectonic-climate coupling significance. J. Science Bulletin., 2014, 59(11): 987-998, 2014.
Increased Glacier Surging in the Karakoram. A hydrological study using GIS and hydrodynamic modeling—Mt. Res. Dev. 27: 326-344, https://doi.org/10.2307/25164154, 2007.

Bhutiyani, M.R., Kale, V.S., and Pawan, N. J.: Climate change and the precipitation variations in the north western Himalaya: 1866–2006. Int. J. Climatol. 30, 535–548, https://doi.org/10.1002/joc.1920, 2009.

Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., Bajracharya, S.: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazard. Earth Syst. 8, 1329-1340, https://doi.org/10.5194/nhess-8-1329-2008, 2008.

Bockhagen, B. and Burbank, D. W.: Towards a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 115, https://doi.org/10.1029/2009JF001426, 2010.

Braithwaite, R. J., and Olesen, O. B. (eds.): Calculation of glacier ablation from air temperature. West Greenland, Dordrecht, Netherlands, 1989.

Chen, X.Q., Cui, P. Li, Y., Yang, Z., Qi, Y.Q.: Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 88, 298-311, https://doi.org/10.1016/j.geomorph.2006.11.012, 2007.

Copland, L., Sylvestre, T., Bishop, M. P., Shrader, J. F., Seong, Y. B., Owen, L. A., Bush, A., and Kamp, U.: Expanded and Recently Increased Glacier Surging in the Karakoram. Arct. Antarct. Alp. Res., 43, 502-516, https://doi.org/10.1657/1938-2246-43.4.502, 2011.

Dowdeswell, J. A., Hodgkins, R., Nuttall, A. M., Hagen, J. O., and Hamilton, G. S.: Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys. Res. Lett. 22, 2000, 1995, https://doi.org/10.1029/95GL02821.

Farinotti, D., Huss, M., Fuerst, J. J., Landmann, F., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimates for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168-173, https://doi.org/10.1038/ngeo3707, 2019.

Gao, J.F., Yang, Z.H., Su, W.C., Cao, Y.: Research Status and Prospect of Runoff Collection and Utilization in Karst Hillslope. Water Saving Irrigation., 104, 97-99, 2019. (in Chinese with English abstract).

Haeberli, W., Frauenfelder, R., Hoelzle, M., Maish, M.: On rates and acceleration trends of global glacier mass changes. Geogr. Ann. A, 81A, 585-591, https://doi.org/10.1111/1468-0459.00086, 1999.

Hassan, J., Kayastha, R. B., Shrestha, A., Bano, I., li, S.H., and Magri, Z.: Predictions of future hydrological conditions and contribution of snow and ice melt in total discharge of Shigar River Basin in Central Karakoram, Pakistan. Sciences in Cold and Arid Regions 9, 511-524, https://doi.org/10.2307/25164154, 2007.

Hus, M.: Present and future contributions of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 47(W07511), https://doi.org/10.1029/2011WR010290, 2011.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss. Nat Clim Change., 8, 135–140, https://doi.org/10.1038/s41558-017-0040-x, 2018.

Immerzeel, W.W. and Bierkens, M. F. P.: Asia’s water balance. Nat. Geosci., 5, 841–842, https://doi.org/10.1038/ngeo1413, 2013.

Immerzeel, W.W., Pellicciotti, F., and Bierkens, M. F. P.: Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6, 742–745, https://doi.org/10.1038/Ngeo1896, 2013.

IPCC. 2013. Climate change 2013—the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, editors. Cambridge: Cambridge University Press.

Kayastha, R.B., Ageta, Y., Fujita, K., 2005. Use of positive degree–day–methods for calculating snow–and–ice melting and discharge in glacierized basins in the Langtang Valley, Central Nepal. Climate and Hydrology of Mountain Areas. 2005–7–

Komori, J.: Recent expansions of glacial lakes in the Bhutan Himalayas. Quatern. Int., 184, 177–186, https://doi.org/10.1016/j.quaint.2007.09.012, 2008.

Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature., 540, 257–260, https://doi.org/10.1038/nature21878, 2017.

Lambrecht, A. and Mayer, C.: Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J. Hydrol., 376, 353–361, https://doi.org/10.1016/j.jhydrol.2009.07.045, 2009.

Li, Y., Zhou, Y., Su, P., Kong, Y., and Liu, J.: A scaling distribution for grain composition of debris flow. Geomorphology., 192, 39–42, http://dx.doi.org/10.1016/j.geomorph.2013.03.015, 2013.

Li, Y., Huang, C.-M., Wang, B.-L., Tian, X.-F., and Liu, J.-J.: A unified expression for grain size distribution of soils. Geoderma., 288, 105–119, https://doi.org/10.1016/j.geoderma.2016.11.011, 2017.

Liang, S.M. and Yu, Z.Y.: Global Distribution Fields of Runoff Depths Calculated by Empirical Runoff Coefficient. Arid Zone Research., 35, 1–11, 2018. (in Chinese with English abstract)

Liu, W.C., Xiao, C.D., Liu, J.S., Wang, J., Wang, H., Liu, L.F., Liu, N., Zhang, T., and Lin, X.: Study of the degree–day factors on the Rongbuk Glacier in the Mt. Qomolangma, Central Himalayas. J. Glaciol. Geocryol., 36, 1101–1110, 2014. (in Chinese with English abstract)

Liu, X.D. and Chen, B.D.: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742, https://doi.org/10.1002/joc.1729; JOC5563; 3.0.CO;2-Y, 2000.

Lu, M.-M., Zhou, S.Q., and He, X.: A comparison of the formulas for estimation of the lake evaporation on the Tibetan Plateau: taking Lake Nam Co as an example. J. Glaciology and Geocryology., 39, 281–291, 2017. (in Chinese with English abstract)

Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., and Bierkens, M. F. P.: Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim Change., 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.

Mergili, M., Miller, J.P., and Schneider, J.F.: Spatial-temporal development of high mountain lakes in the headwaters of the Amu Darya River (Central Asia). Glob. Planet. Chang., 107, 13–24, https://doi.org/10.1016/j.gloplaheo.2013.04.001, 2013.
Miller, J. D., Immerzeel, W. W., and Reeve, G.: Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu–Kush Himalaya—as A Synthesis of the Scientific Basis. Mt. Res. Dev., 32, 461-467, https://doi.org/10.1659/MRD-JOURNAL-D-12-00027.1, 2012.

Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.: Detection of Changes in Glacier Mass Balance Using Satellite and Meteorological Data in Triungkhad Basin Located in Western Himalaya. J. Indian Soc. Remote., 42, 91-105, https://doi.org/10.1007/s12524-013-0202-2, 2014.

Mir, R. A., Jain, S. K., Saraf, A. K., and Goswami, A.: Decline in snowfall in response to temperature in Satluj basin, western Himalaya. J. Earth Syst. Sci., 124, 365-382, https://doi.org/10.1007/s12040-015-0539-z, 2015a.

Mir, R. A., Jain, S. K., and Saraf, A. K.: Analysis of current trends in climatic parameters and its effect on discharge of Satluj River basin, western Himalaya. Nat. Hazards, 70, 587-619, https://doi.org/10.1007/s11069-015-1864-x, 2015b.

Mu, J. X., Li, Z. Q., Zhang, H., and Liang, P.B.: The global glacierized area: current situation and recent change, based on the Randolph Glacier Inventory (RGI6.0) published in 2017. J. Glaciol. Geocryol., 40, 238-248, 2018. (in Chinese with English abstract)

Nie, Y., Liu, Q., Wang, J. D., Zhang, Y. L., Sheng, Y. W., and Liu, S. Y.: An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 308, 91-106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.

Nie, Y., Liu, Q., and Liu, S.: Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990-2010. PLoSOne., 8, e83973, https://doi.org/10.1371/journal.pone.0083973, 2014.

Nie, Y., Sheng, Y.W., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ., 189, 1-13, https://doi.org/10.1016/j.rse.2016.11.008, 2017.

Pan, Guantang (eds.): Tectonic Map and Instructions for the Tibet Plateau and Adjacent Areas. Geological Publishing House, Beijing, China, 2013. (in Chinese)

Pradhananga, N.S., Kayastha, R.B., Bhattarai, B.C., Adhikari, T.R., Pradhan, S.C., Devkota, L.P., Shrestha, A.B., and Mool, P. K.: Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model. Ann. Glaciol., 55, 223-230, https://doi.org/10.3189/2014aog66a123, 2014.

Prakash, C. and Nagarajan, R.: Glacial Lake Inventory and Evolution in Northwestern Indian Himalaya. IEEE J. Stars., 10, 528-5294, https://doi.org/10.1109/JSTARS.2017.2767098, 2017.

Qin, J., Yang, K., Liang, S., and Guo, X.: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change., 97, 321-327, https://doi.org/10.1007/s10584-009-9733-0, 2009.

Raj, K. B. G., Kumar, V. K., and Remya, S. N.: Remote sensing-based inventory of glacial lakes in Sikkim Himalaya: semi-automated approach using satellite data. Geomat. Nat. Haz. Risk., 4, 241-253, https://doi.org/10.1007/s12522-012-0152-3, 2013.

Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas. Quatern. Int., 65-6, 31-47, https://doi.org/10.1016/S1040-6182(09)00035-X, 2009.

Shangguan, D. H., Liu, S. Y., Ding, Y. J., Wu, L. Z., Deng, W., Guo, W. Q., Wang, Y., Xu, J., Yao, X. J., Guo, Z. L., and Zhu, W. W.: Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from
remote-sensing imagery. Ann. Glaciol., 55, 61-68, https://doi.org/10.3189/2014AoG66A057, 2014.

2 Shrestha, A. B., and Aryal, R.: Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Change. 111, S56-S77, https://doi.org/10.1007/s10113-010-0174-9, 2011.

3 Singh, P., Kumar, N., and Arora, M.: Degree-day factors for snow and ice for Debrani Glacier, Gulmat Himalayas. J. Hydrol., 235, 1-11, https://doi.org/10.1016/S0022-1694(00)00249-3, 2000.

4 Solomina, O. N., Bradley, R. S., Jomelli, V., Gisladottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Neoje, A., Nicoletti, K., oven, L. A., Putnam, A. E., Wanner, H., Wiles, G., and Yang, B.: Glacier changes during the past 2000 years. Quaternary Sci. Rev., 149, 61-90, https://doi.org/10.1016/j.quascirev.2016.04.008, 2016.

5 Valentina Radić, Hock, R.: Glaciers in the earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys., 35, 813-837, https://doi.org/10.1007/s10712-013-9262-9, 2013.

6 Wang, S. J., and Zhang, T.: Spatially change detection of glacial lakes in the Koshi River Basin, the Central Himalaya. Environ. Earth Sci., 72, 4381-4391, https://doi.org/10.1007/s12665-014-3338-y, 2014.

7 Wang, S. J., and Jiao, S. T.: Evolution and outburst risk analysis of moraine-dammed lakes in the central Chinese Himalaya. J. Earth Syst. Sci., 124, 567-576, https://doi.org/10.1007/s12040-015-0550-8, 2015.

8 Wang, W.C., Xiang, Y., Gao, Y., Lu, A.X., and Yao, T.D.: Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol. Process., 29, 859-874, https://doi.org/10.1002/hyp.10100, 2015.

9 Wang, X., Liu, K. Y., Gao, W.Q., Yao, X. J., Jiang, Z. L., and Han, Y.S.: Using Remote Sensing Data to Quantify Changes in Glacial Lakes in the Chinese Himalaya. Mt. Res. Dev., 32, 203-212, https://doi.org/10.1659/MRD JOURNAL-D-11-00044.1, 2012.

10 Wang, W.C., Gao, Y., Anaconda, P. I., Lei, Y.B., Xiang, Y., Zhang, G.Q., Li, S.H., and Lu, A.X.: Integrated hazard assessment of Cirenmaco-glacial lake in Zhangangbo valley, Central Himalayan. Geomorphology, 306, 292-305, https://doi.org/10.1016/j.geomorph.2015.08.013, 2015.

11 Wei,J., Liu S.Y., Gao,W.Q., Yao, X.J.: Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol., 55, 213-222, https://doi.org/10.3189/2014AoG66A038, 2014.

12 Winiger, M., Gempert, M., and Yamout, H.: Karakorum-Hindukush Western Himalaya: Assessing high-altitude water resources. Hydrol. Process., 19, 2329–2338, https://doi.org/10.1002/hyp.5887, 2005.

13 Xiang, Y., Gao, Y., and Yao, T.D.: Glacier change in the Poiqu River basin inferred from Landsat data from 1975 to 2010. Quatern. Int., 349, 392-401, https://doi.org/10.1016/j.quaint.2014.03.017, 2014.

14 Xiang, Y., Yao, T.D., Gao, Y., Zhang, G.Q., Wang, W.C., and Tan, I.D.: Retreat rates of debris-covered and debris-free glaciers in the Koshi River Basin, central Himalayas, from 1975 to 2010. Environ. Earth Sci., 77, 283, https://doi.org/10.1007/s12665-018-7457-8, 2018.

15 Xu, D.M., and Feng, Q.H.: Studies on catastrophes of glacial debris flow and glacial lake outburst flood in China. J. Glaciol. Geocryol., 10, 284-289, 1988, (in Chinese with English abstract).

16 Yao, T.D.: Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chinese Science Bulletin,.
Yao, T.D., Thompson, L., Yang, W., Yu, W.S., Guo, Y., Guo, X.J., Yang, X.X., Duan, K.Q., Zhao, H.B., Xu, B.Q., Pu, J.C., Lu, A.X., Xiang, Y., Kattel, D.B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang., 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.

Zhang, G.Q., Yao, T.D., Xie, H.J., Wang, W.C., and Yang, W.: An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global Planet. Change., 131, 148–157, https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.

Zhang, G.Q., Bolch, T., Allen, S., Linbauer, A., Chen, W.F., and Wang, W.C.: Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964–2017. J. Glaciol., 65, 347–365, https://doi.org/10.1017/jog.2019.13, 2019.

Zhao, Y., Liu, S.Y., and Ding, Y.J., Spatial Variation of Degree-day Factors on the Observed Glaciers in Western China. Acta Geographica Sinica, 61, 89–98, 2006. (in Chinese with English abstract)

Zheng Yong, Zhang Jinjiang, Wang Jiamin, Wang Xiaoxian, Wang Meng. The rapid denudation events of the Himalayan orogenic belt in the Nyalam area since the Pliocene and its tectonic-climate coupling significance[J]. Science Bulletin, 2014, 59(11): 987–998.
带格式的：缩进：左侧：0 厘米，首行缩进：0 字符
Fig. 1 The Poiqu River Basin in the central Himalayas

Fig. 1 Poiqu River Basin as a typical glacial lake in the central Himalayas
Fig. 2 Geological background of the Poiqu River Basin (Base map based on Pan, 2013)
Fig. 3 Distribution of glaciers and glacial lakes in the 4 major tributaries of the Poiqu River Basin

A. Chongduipu tributary
B. Zhangzangbu tributary
C. Ruijapu tributary
D. Keyapu tributary
Fig. 4 Comparison of area change between the Cirenmaco Lake and its connected glacier
Fig. 5 Comparison of area change between the Gangxico Lake and its connected glacier
Fig. 6 Comparison of area change between the Longmuqieco Lake and its connected glacier
Fig. 3. Monthly temperature and precipitation records in the study area

Fig. 7 Area changes in the 5 typical glacial lakes and glaciers
Fig. 8 Retreat of the 5 typical glaciers, growth of 5 typical glacial lakes and rates of change in the Poiqu River Basin

Fig. 9 Variation in the area of Galongco Lake (1977-2019) (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image)
Fig. 10 Rapid rise expansion in the area of Jialongco Lake due to glacial loss (2002-2009)

Fig. 11 Hydraulically connected glacial lakes (Galongo, Gangco, and Gangsico)
Fig. 12 Changes in the area of the 5 typical glacial lakes and their glaciers vs. temperature

Fig. 13 Changes in the area of the 5 typical glacial lakes and their glaciers vs. precipitation
Fig. 4. Characteristics of glaciers and glacial lakes in the Poiqu River Basin

A. Chongduipu tributary B. Zhangzangbu tributary

Note [WU]: 1. Delete dam; 2. All Terminal moraine改为End moraine; 3. Surface moraine改为Medial moraine
Fig. 5 Distribution of glaciers and glacial lakes in the major tributaries of the Poiqu River Basin

Fig. 6 Area variations in glaciers and glacial lakes in Poiqu
Fig. 7 Comparison of area change between Cirenmaco Lake and its connected glacier.
Fig. 8 Comparison of area change between Gangpuco Lake and its connected glacier.
Fig. 9 Comparison of area change between Gansico Lake and its connected glacier.
Fig. 10 Comparison of area change between Longmuqieco Lake and its connected glacier
Fig. 11. Variation in the area of Galongco Lake (1977-2019) (The left image is from Google Earth and the right image about the Galongco Lake is from UAV image)
Fig. 12: Retreat of 5 typical glaciers, growth of 5 typical glacial lakes and rates of change in the Poiqu River Basin
Fig. 13 Rapid rise in Jialongco Lake due to glacial loss (2002-2009)
Fig. 14 Hydraulically-connected glacial lakes (Galongo, Gangco, and Gangxico)
Fig. 14 Terrain reconstruction of GB Lake below the water level
Fig. 15A. Interpolated cumulative temperature

Fig. 15B. Interpolated annual precipitation

Fig. 15 Interpolated temperatures and precipitation for the glacial lakes
Fig. 16A Changes in the area of glaciers vs. temperature.

Fig. 16B Changes in the area of glacial lakes vs. temperature.

Fig. 16 Changes in the area of glaciers and glacial lakes vs. temperature in Poiqu.
Fig. 17A Changes in the area of glaciers vs. precipitation

Fig. 17B Changes in the area of glacial lakes vs. precipitation

Fig. 17 Changes in the area of glaciers and glacial lakes vs. precipitation in Poiqu
Fig. 18 Terrain reconstruction of GB Lake below the water level
Fig. 19.15 The Galongco Lake and the connected glaciers in 2006 (The image is from GF-02 image)
Fig. 20.16 Temperature and precipitation of the Galongco Lake in 2006
Fig. 17 Water supplies to the lakes at different altitudes
Table 1 Data sources and features for interpretation of glaciers and glacial lakes

Satellite	Spot number	Date	Sensors	Spectrum features	Spatial Resolution (m)
Landsat 3	L1A00310401897235AA01	1977-09-16	MSS	4 bands, from visible to near infrared	Multi-Spectral (30m)
Landsat 5	L51410401988030BKT00	1988-01-30	TM	7 bands, from visible to near infrared	Multi-Spectral (30m)
Landsat 7	L61410402003065PE00	2004-11-01	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (30m)
Landsat 7	L61410402003085PE00	2005-11-04	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
Landsat 7	L61410402006355SG00	2006-12-25	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
Landsat 7	L61410402007365SG00	2007-12-28	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (30m)
Landsat 7	L61410402008365SG00	2008-12-30	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (30m)
Landsat 7	L61410402009335SG00	2009-12-01	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
Landsat 7	L61410402012360PS00	2010-12-20	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
Landsat 7	L61410402013054PS00	2010-12-20	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
Landsat 7	L61410402013650PS00	2012-12-25	ETM	7 bands, from visible to intermediate infrared	Multi-Spectral (15m)
ASTER- GDEM	ASTGTM- N27E085/ N27E066/ N27E065/ N27E058	2000	ASTER	14 bands, 3 visible/ near infrared, 4 short-wave infrared, 3 thermal infrared band	Multi-Spectral (30m)
SPOT-5	S5G1A20104032303202VYZZMX	2010-04-23	HRG	5 bands, 1 Panchromatic, 1 short-wave infrared, 3 Multi-Spectral	Multi-Spectral (10m), Multi-Spectral (20m)
Landsat 8	LC81410402013333LGN00	2013-12-04	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
Landsat 8	LC81410402013333LGN00	2014-11-05	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
Landsat 8	LC81410402015344LGN00	2014-12-28	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
Landsat 8	LC81410402016363LGN00	2014-12-28	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
Landsat 8	LC81410402017333LGN00	2017-11-20	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
Landsat 8	LC81410402018112LGN00	2018-04-23	OLI	7 bands, from visible to intermediate infrared, 2 thermal infrared, Panchromatic, Cirrus	Multi-Spectral (30m), Multi-Spectral (10m), Cirrus, Thermal (10m), Panchromatic (15m)
GE-2	L1A0005337728GF2_PMS2-3537778	2018-10-10	MSS	4 bands, from visible to near infrared, Panchromatic	Panchromatic (1m), Multi-Spectral (1m)
GE-2	L1A002052275GF2_PMS2-352275	2018-01-22	MSS	4 bands, from visible to near infrared, Panchromatic	Panchromatic (2m), Multi-Spectral (2m)
GE-2	L1A002052360GF2_PMS2-352360	2018-01-22	MSS	4 bands, from visible to near infrared, Panchromatic	Panchromatic (2m), Multi-Spectral (2m)
GE-2	L1A002051133GF2_PMS2-351133	2018-01-22	MSS	4 bands, from visible to near infrared, Panchromatic	Panchromatic (2m), Multi-Spectral (2m)
GE-2	L1A002051138GF2_PMS2-351138	2018-01-22	MSS	4 bands, from visible to near infrared, Panchromatic	Panchromatic (2m), Multi-Spectral (2m)
UAV	SONY Alpha 7 III	2010-05-09	Visible light	Visible light	Visible light
ZY-3	52252040041104S051A	2000-01-11	TLC	4 bands, from visible to near infrared, Foreight, Backight, Panchromatic	Foreight, Backight (3.5m), Orthophoto (2.0m), Multi-Spectral (3.5m)
Landsat 3	L61410401977235AA01	1977-09-16	MSS	4 bands, from visible to near infrared	Multi-Spectral (60m)
Landsat 5	LT51410401988030BKT00	1988-01-30	TM	7 bands, from visible to near infrared	Multi-Spectral (30m)
Landsat 7	L61410402003065PS00	2004-11-01	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Landsat 7	L61410402003085PS00	2005-11-04	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Landsat 7	L61410402006355SG00	2006-12-25	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Landsat 7	L61410402007362SG00	2007-12-28	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Landsat 7	L61410402008365SG00	2008-12-30	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Landsat 7	L61410402009335SG00	2009-12-01	ETM	7 bands, from visible to intermediate infrared Micron Panchromatic	Multi-Spectral (30m)
Table 2 Information about meteorological stations and meteorological data

Weather station	Longitude E	Latitude N	Elevation (m)	Collection time	Related parameters
Nyalu	85°58'33"	28°09'27"	3811	1950-2020	Snowfall (PS), Rainfall (Q)
Quxiang	85°59'31"	28°05'34"	3345	2016-2020	Temperature (T), Solar radiation (BR), Wind speed
Zhangmu	85°58'32"	27°50'36"	2305	2016-2020	Snowfall (PS), Rainfall (Q)

Table 3 Area distribution of glacial lakes in the Poiqu River Basin
Table 4 Altitude distribution of glacial lakes in the Poiqu River Basin

Altitude range (m)	Number	Total area (km²)	Proportion of total number (%)	Proportion of total area (%)
< 4500 m	8	1.2	5.4	6
4500-5000	31	1.0	21.1	5.1
5000-5200	35	8.2	73.8	43.7
5200-5400	42	7.5	28.6	37.7
5400-5800	31	1.5	21.1	7.5

Table 2 Interpretation signs for glaciers and glacial lakes. (Six pictures are from Google Earth images and two pictures are from GF-2 images. They are signed in the lower right corner.)

Types	Moraine-lake	Ice-surface-lake	Cirque-lake	Glacial erosion-lake
Images				
Signs	Formed by pool, eroded by glaciers.	Occurring in the melted area of glacier covered by surface moraines.	Forming in the cirque, with steep rocky walls.	Having gentle bank with residual boulders.
Types	Valley glacier	Cirque glacier	Hanging glacier	Moraine
Images				
Located in low-lying gorges, with white or blue tone and irregular plane shapes, having thick front tongues. In chair-shaped hollow in the source slope, in moderate size between 1-10 km². Hanging isolatedly on slope near the peak, thin and small. Moraine is glacially formed accumulation of unconsolidated glacial debris (regolith and rock).

Table 3.5 Types of glacial lakes in the Poiqu River Basin

Types	Moraine lake	Glacier-eroded lake	Glacier-surface lake	Cirque lake
Numbers	75	29	24	19
Percentage	52%	19%	16%	13%
Area (km²)	18.845.2	0.364.2	0.480.40	0.2520

Table 6 Parameters of the 4 glacial lake tributaries

Tributaries	Area (km²)	Glacier number	Average slope	Elevation difference (m)	Moraine (km²)	Glacier area (km²)	Lake area (km²)
Chongduipu	372.77	55	23.7°	4277	64.1	68.66	10.44
Zhangzangbu	39.92	14	29.3°	2941	9.2	8.28	0.42
Rujiapu	354.89	13	21.9°	2636	7.1	27.33	1.63
Keyapu	163.96	25	18.7°	3807	29.2	27.5	5.87

Table 7 Basic parameters for major glacial lakes in the Poiqu River Basin

Major lakes	Tributaries	Water supply area (km²)	Connected glacier (km²)	Distance to glacier (km)	Water level altitude (m)
Galongco	Chongduipu	29.61	10.71	0.18	5076
Jialongco	Chongduipu	5.61	0.88	0	4382
Longmuqieco	Rujiapu	19.30	9.58	0	5342
Cirenmaco	Zhangzangbu	5.10	1.61	0.29	4639
Gangxico	Keyapu	15.91	3.38	0	5219
Table 4: Typical glacial lakes in tributaries of the Poiqu River Basin

Tributaries	Lakes	Types	Longitude (°E)	Latitude (°N)	Area (km²)	Altitude (m)	Distance to mother glacier (km)
Chongdui	Gaocuo	EM	85.8382	28.3233	5.5	5076	0.18
	Gaoqiu	ER	85.8603	28.3203	2.13	5483	without glacier
	Jalucuo	EM	85.8475	28.314	0.6	4382	0
	Danuocuo	ER	85.9228	28.1816	0.48	4372	without glacier
	Anonymous-1	EM	85.8407	28.2935	0.20	5092	0.4
	Anonymous-2	N	85.8407	28.2936	0.28	5000	without glacier
	Shuanxiao	EM	85.0059	28.1507	0.13	4507	1.5
	Anonymous-3	EM	85.0108	28.1386	0.4	4882	0
Dujinmau	Paqiuocuo	EM	86.1575	28.3035	0.6	5306	0
	Tumucuo	EM	86.1544	28.2953	0.12	5327	0
Dunhua	Taizhuocuo	EM	86.1032	28.2533	0.12	5208	0.4
Guanyu	Gangphucuo	N	86.1586	28.321	0.22	5530	0.5
Kanya	Longquocuo	N	85.0155	28.2595	0.25	5103	without glacier
	Gangphucuo	EM	85.8708	28.36	4.6	5219	0
	Anonymous-8	EM	85.0488	28.3141	0.31	5223	0.2
	Yingquocuo	EM	85.8007	28.3713	0.22	5225	without glacier
	Maluocuo	EM	85.0079	28.3234	0.15	5410	0.4
	Anonymous-9	EM	85.0304	28.3213	0.11	5310	0
	Chamaquocuo	EM	86.1021	28.3352	0.54	5420	0.3
Ruixia	Longquocuo	EM	86.2250	28.3668	0.52	5342	0
	Danuocuo	EM	86.1314	28.2944	0.21	5233	0.2
Zhangquang	Carenquocuo	EM	86.0664	28.067	0.33	4630	0.20

Note: EM—End moraine-dammed lake; ER—Glacial erosion lake; N—Glacial valley lake.

Table 5: Parameters of the glacial lake tributaries

Tributaries	Area (km²)	Glacier number	Average slope	Elevation difference (m)	Moraine area (km²)	Glacier area (km²)	Lake area (km²)
Chongdui	322.22	55	23.7	4227	64.1	64.66	10.14
Zhangquang	49.02	14	30.3	2944	9.5	8.28	0.43
Ruixia	354.89	13	21.9	2636	7.1	27.33	1.63
Kanya	163.06	25	44.7	3807	29.3	27.5	5.83
Table 6: Basic parameters for major glacial lakes in the Poiqu River Basin

Major lakes	Tributaries	Water-supply area (km²)	Connected glacier (km²)	Distance to glacier (km)	Water level altitude (m)
Galongco	Chongduipu	29.61	10.71	0.18	5076
Jialongco	Chongduipu	5.61	0.88	0	4382
Longmengco	Ruijapu	19.30	0.58	0	5442
Cirenmaco	Zhangzangbu	5.10	1.61	0.29	4639
Gangxico	Keyapu	15.01	3.38	0	5210

Table 7: Area variations and annual speeds of glaciers and glacial lakes in Poiqu river Basin since 1977

Year	Area (km²)	Annual speeds of change from 1977 to 2016 (km²/a)	Annual speeds of change from 2004 to 2016 (km²/a)		
1977	287.00	-0.12			
2004	270.40	6.38			
2008	236.70	7.82	-2.46	40.08	40.13
2010	190.40	8.00	-2.46	40.08	40.13
2015	172.40	8.41	-2.46	40.08	40.13
2016	150.90	8.38	-2.46	40.08	40.13
Table 8 Area changes in the 5 typical glacial lakes and their glaciers since 1977

Date	Cirenmaco	Galongco	Jialongco	Gangxico	Longmuqieco																		
	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)	Area of Glacier (km²)	Area of Glacier and Lake (km²)
------------	-----------	----------	-----------	----------	-------------																		
1977/9/16	25.82±0.58	0.57	171.54	1.66	61.36±0.15																		
1988/1/30	22.42±0.24	0.12	149.14	2.07	54.95±0.15																		
1999/6/5	20.42±0.04	0.19	147.84	2.98	51.28±0.20																		
2002/2/1	–		–	0.24	0.00±0.00																		
2004/1/11	22.22±0.22	0.23	147.24	3.50	49.20±0.31																		
2005/1/30	22.12±0.21	0.23	141.24	3.60	46.54±0.36																		
2006/1/25	22.12±0.21	0.23	453.13	3.93	44.64±0.46																		
2007/1/28	277.20±745.32	0.31	147.34	4.01	44.40±0.40																		
2008/1/30	21.72±0.17	0.32	137.14	4.78	42.24±0.23																		
2009/1/21	21.72±0.17	0.32	130.54	4.81	37.33±0.24																		
2010/1/20	21.42±0.14	0.33	129.84	4.95	36.83±0.48																		
2012/1/25	21.32±0.13	0.31	129.94	5.17	37.33±0.24																		
2013/1/20	20.72±0.02	0.31	119.04	5.18	37.33±0.24																		
2014/1/05	20.12±0.01	0.34	118.14	5.38	37.33±0.24																		
2015/1/20	17.52±0.28	0.32	101.51	5.43	36.43±0.44																		
2016/1/28	17.22±0.22	0.33	105.44	5.44	36.43±0.44																		
2017/1/29	17.82±0.28	0.33	103.14	5.45	34.32±0.42																		
2018/4/22	16.14±0.64	0.31	107.14	5.50	33.83±0.38																		
Table 9.9 Annual rates of change in 5 typical glacial lakes and their glaciers

Glacial lake	Annual speed of change 1997-2018 (km²)	Annual speed of change 2004-2018 (km²)		
	Area of Glacier	Area of Glacial lake	Area of Glacier	Area of Glacial lake
Cirenmacuo	-0.018	-0.006	-0.044	+0.006
Galongco	-0.167	+0.093	-0.286	+0.143
Jialongco	-0.018	+0.013	-0.029	+0.024
Gangxico	-0.066	+0.068	-0.110	+0.061
Longmuqieco	-0.015	+0.008	-0.035	+0.011

Table 10.10 Parameters for the water balance calculation of glacial lakes

Glaciers	Runoff coefficient	R_c for snow cover (R_{CS})	R_c for glacier (R_{CG})	DDF (snow) (DF_{S})	DDF (glacier) (DF_{G})	Drainage area to lake (km²) (S)
Cirenmaco	0.60	0.60	0.53	8.30	12.60	9.77
Galongco	0.56	0.56	0.50	8.30	12.60	22.33
Gangxico	0.54	0.54	0.47	8.30	12.60	19.1
Jialongco	0.61	0.61	0.56	6.70	9.60	5.76
Longmuqieco	1.00	1.00	1.00	7.40	11.60	19.47
Table 11.11 Water balance for Galongo Lake between 1988 and 2018

Year	Glacier area (km²)	Rainfall (mm)	Runoff (10⁶m³)	Tc (℃)	Tc (℃)	Mw (l/h/m²)	Wg (10⁶m³)	Snowfall (mm)	Tc (℃)	Wg (10⁶m³)	Ws (10⁶m³)	Infiltration (10⁷m³)						
1987	21.3	16.5	18.4	210.4	12.4	11.7	253.5	198.0	152.7	226.4	108.9	2018.9						
1988	21.0	15.1	17.7	233.4	0.0	0.0	300.0	214.1	276.0	277.7	414.4	404.5						
1989	20.6	3.4	3.9	204.0	0.0	0.0	308.0	240.6	275.4	283.4	434.7	424.2						
1990	20.3	0.0	0.0	252.8	10.1	9.1	203.0	194.3	152.8	16.3	948.8	433.1						
1991	19.6	3.4	3.9	214.5	8.4	5.5	203.0	164.4	12.8	5.4	287.4	444.0						
1992	19.3	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1993	19.2	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1994	19.1	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1995	18.2	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1996	18.1	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1997	17.7	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1998	17.4	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
1999	17.3	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
2000	16.6	2.6	2.6	412.1	65.1	58.4	309.0	217.3	21.7	0.0	601.4	435.8						
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
	16.3	15.9	15.5	14.7	14.1	15.4	14.7	13.2	13.1	13.0	12.7	14.0	12.0	11.8	10.2	10.5	10.3	10.7
	8.2	0.0	22.9	21.0	24.7	14.0	7.5	8.6	3.6	2.9	41.2	14.5	8.9	35.0	0.6	10.4	12.0	4.2
	10.3	0.0	28.6	26.3	30.9	17.5	9.4	10.8	4.5	3.6	51.5	18.1	11.1	43.8	0.8	13.0	15.0	5.3
	256.2	229.1	266.3	235.8	249.1	282.3	285.7	249.1	261.5	258.4	205.0	240.3	258.1	235.9	211.0	221.5	260.6	11964.8
	112.2	124.4	172.3	180.7	171.1	154.0	176.4	186.0	169.6	187.0	145.8	172.3	186.0	178.0	148.0	164.7	199.5	12579.2
	706.6	783.7	1097.9	1138.3	1077.9	970.5	1131.1	1171.2	1068.3	1177.8	918.8	1085.8	1171.7	1121.5	932.3	1037.6	1256.0	11361.9
	1151.8	1246.1	1548.1	1673.3	1476.7	1494.6	1633.3	1406.1	1399.5	1531.2	1166.9	1411.5	1406.1	1323.3	951.0	1037.6	1344.5	15699.5
	239.1	173.8	152.6	91.8	129.5	212.9	181.5	119.7	152.6	118.6	98.2	112.8	119.7	96.1	104.6	94.3	101.5	0.4
	144.0	104.7	91.9	59.2	72.1	68.0	63.0	71.9	57.9	71.9	59.2	91.8	72.1	57.9	63.0	56.8	61.1	625.8
	24.4	125.5	112.3	122.5	127.5	157.6	156.7	128.5	94.0	118.6	122.5	151.5	127.5	94.0	156.7	98.1	1.9	112.2
	1185.4	1634.8	1688.0	1569.9	1694.5	1700.4	1708.3	1765.5	1497.5	1569.9	1411.5	1708.3	1765.5	1497.5	1519.5	1180.2	1351.1	542.5
	525.3	562.2	581.9	591.8	561.6	611.4	562.2	591.8	611.4	591.8	611.4	562.2	591.8	611.4	562.2	591.8	611.4	591.8

Note: T_C – cumulative temperature; T_{GE} – cumulative temperature for glacial melting; T_{SE} – cumulative temperature for snow melting, which is T_{SE} – T_{GE}; M_G – melt thickness of a glacier; W_S – water supply from glaciers; W_{ICE} – water supply from snow cover; and W_{TOT} – total quantity of water supplies.

Table 42.12 Comparison between the calculated water quantity and the observed quantity

Lake name	Circumeco	Galungco	Gangxico	Idunco	Longmaico												
Year	MV	TV	ER	MV	TV	ER	MV	TV	ER	MV	TV	ER	MV	TV	ER		
1988	341.0	371.0	8.8	1964.8	22579.2	5.1	15631.9	16999.5	0.4	632.0	694.3	9.8	824.5	833.2	11.1		
1999	382.3	338.1	5.1	22618.8	21903.5	21.3	17241.4	16733.6	10.4	1306.0	1373.9	5.3	1708.0	1380.0			
2000	472.0	23488.1	17283.2	1890.9	1377.0												
2001	533.3	24336.7	17400.2	2042.2	1380.0												
2002	562.8	24879.6	17263.7	2184.3	1555.9												
2003	535.6	24798.5	17873.4	2226.4	1595.6												
Year	MV	TV	ER (%)														
------	----	----	--------	----	----	--------	----	----	--------	----	----	--------					
2004	727.4	563.2	-27.6	20827.7	26871.6	-61.4	20764.0	18062.2	-14.2	1194.3	1296.6	-8.9					
2005	734.4	600.9	-18.2	23760.3	28037.9	-14.0	26507.8	18175.3	-31.4	1241.6	2538.7	-104.5					
2006	735.6	662.0	-10.0	27210.8	29144.0	-6.4	27613.0	18373.3	-35.6	2613.6	2645.1	-1.2					
2007	741.0	752.5	1.6	27856.4	30252.6	-8.6	28066.8	18549.9	-33.9	3143.0	2807.3	10.7					
2008	1122.7	875.4	-26.5	34603.0	31454.8	9.1	29209.9	18233.8	-35.9	3511.8	2973.3	-18.0					
2009	1184.6	828.6	-20.1	32929.4	32340.3	-4.4	31937.5	18995.9	-39.5	3515.3	3107.5	11.7					
2010	1208.3	870.0	-19.0	36169.9	33217.7	8.2	33437.8	19380.4	40.0	3681.7	2533.6	-22.2					
2011	891.0	3415.5	-76.2	31804.4	4850.3	5.8	32685.3	19770.6	39.5	3509.7	1496.2	-1.4					
2012	1129.7	914.0	-19.1	38387.7	35719.0	6.8	33789.4	19985.9	39.5	3548.9	3608.1	-3.5					
2013	1146.0	941.5	-17.0	38387.7	35719.0	6.8	33789.4	19985.9	39.5	3548.9	3608.1	-3.5					
2014	1282.2	1009.2	-21.3	40154.2	36752.8	8.5	36299.7	19994.6	29.2	35656.4	3790.9	-1.5					
2015	1179.0	1033.5	-12.4	40661.9	37512.0	7.7	32982.4	20101.7	39.0	33640.1	3780.0	-6.3					
2016	1221.3	1037.7	-16.7	40722.0	37940.9	6.8	33127.0	20174.1	39.1	3553.3	3847.5	-8.3					
2017	1211.3	1040.3	-14.1	40807.9	38504.9	5.6	33165.4	20241.8	39.4	37230.3	3968.8	-7.1					
2018	1194.3	1093.8	-8.4	41259.9	38859.5	5.6	33287.3	20589.0	38.3	34244.1	41130.0	-19.5					
2019	1189.3	1093.8	-8.4	41259.9	38859.5	5.6	33287.3	20589.0	38.3	34244.1	41130.0	-19.5					

Illustration: MV: Measured Volume, TV: Theoretical Volume, ER: Error Rate
Table 42-13 Fractions of various water supplies to the lakes

Glacial lakes	Elevation (m)	Glacier (%)	Snow (%)	Rainfall (%)	Seepage Flow (%)
Jialongco	4382	82.3	11.1	5.7	78.5
Cirenmaco	4639	80.1	15.4	4.5	97.8
Galongco	5076	89.5	9.4	1.0	93.3
Gangxico	5219	25.0	73.3	1.6	0.0
Longmuqieco	5342	30.3	69.7	0.0	24.3