Relevancy or Diversity?
Recommendation Strategy Based on the Degree of Multi-Context Use of News Feed Users

Wei Wang, Tianjin University of Finance and Economics, China
Shiyong Zheng, School of Business, Guilin University of Electronic Technology, Guilin, China & Management School of Hainan University, Haikou, China & College of Digital Economics, Nanning University, Nanning, China*
Rizwan Ali, Wuhan Technology and Business University, China
Jiaying Li, Guilin University of Electronic Technology, China

ABSTRACT

Reading information in news feed apps has become a kind of popular content consumption in recent years. However, there are contradictory conclusions about the recommendation strategies. Although some previous research has studied the algorithms to improve the accuracy of the combined of relevancy and diversity strategies, how to compromise them according to user attitude and behavior from individual level is limited. This study aims to solve the dilemma at a theoretical level, and the authors find that the degree of multi-context use is a key boundary. Specifically, 1) the location-based recommendation method may lose effectiveness when the degree of a multi-context is high. 2) The users who prefer to use news feed systems in various contexts in their daily life are more likely to read diverse information. The authors suppose that with the increase of the degree of multi-context use, the location-based recommendation may trigger users perceived privacy threat, which will reduce their satisfaction and participation intention.

KEYWORDS

Context-Aware Recommendation System, Degree of Multi-Context Use, News Feed, Participation Intention, Recommendation Methods, Satisfaction

INTRODUCTION

A recommendation system (RS) is an online information service system that suggests appropriate items to users (Kulkarni and Rodd 2020). Generally, RSs employ personalization to improve the effectiveness and efficiency of recommendations. They have been widely used in current online platforms of multiple areas, such as e-commerce (e.g., Amazon), entertainment (e.g., YouTube), and social media (e.g., Weibo)(Liu and Du 2020). In the recommendation process, scholars mainly
focus on developing algorithms to learn users’ preferences and then to find relevant items to users (Kulkarni and Rodd 2020, Zhang and Song 2021). Especially with the development of artificial intelligence (e.g., deep learning techniques), enhanced information retrieval and users’ preferences learning have made RS more effective, so that it can provide more relevant items to users (Zhang et al. 2017, Niu et al. 2018). Therefore, content-diversity is developed to solve this problem (Hou, Pan and Liu 2018, Wu et al. 2020, Szpektor, Maarek and Pelleg 2013). The trade-off between interest-relevancy and content-diversity has also become a classical problem in which attracted many scholars have studied (Javed et al. 2021, Niu et al. 2018, Hou et al. 2018, Panteli and Boutsinas 2021, Smyth and Mcclave 2001, Bag, Ghadge and Tiwari 2019).

With the continuous development of the mobile network, many RSs have integrated mobile techniques with the traditional recommendation methods to improve recommendation effectiveness based on spatial contexts (Wedel and Kannan 2016). And the new system is called the location-based context-aware RS (CARS) (Savage et al. 2012). News feed apps in China, such as Toutiao and Baidu News Feed have all adopted the new system to enhance their service. As for studies on location-based CARS, the context-relevancy method is obviously mostly concerned. It refers to utilizing contexts to improve the quality of the RS, which involves context acquisition, integration, modeling, reasoning, and dissemination (Suhaim and Berri 2021, Nawara and Kashef 2021, Gao et al. 2019, Sojahrood and Taleai 2021). Among them, context integration has attracted much attention from scholars.

Although algorithms that contain contextual information have been developed to meet users’ contextual demands (Setiowati, Adji and Ardiyanto 2018), it is contended that users tend to avoid location-congruent contents because of the privacy concern, sometimes, which may reduce user satisfaction (Kulkarni and Rodd 2020, Mou, Cui and Kurcz 2020). However, few studies have investigated when context-relevancy will cause negative consequences and validate the role of privacy concern. This question is necessary to be explored because CARS can improve user satisfaction by identifying the condition of users’ perception of privacy threat before applying the privacy protection mechanism (Cheng et al. 2017). In addition, given that the privacy threat may be caused by the overpersonalization and oversensitivity of context-relevancy (Bradbury, Jhumka and Leeke 2018), the content-diversity method may also be a potential solution to the privacy issue, which was nonetheless less discussed before (Chen et al. 2021).

Given that it is a comprehensive recommendation process involving multiple recommendation methods, this research tries to integrate three main recommendation methods into the research framework, including interest-relevancy, content-diversity, and context-relevancy. Moreover, it tries to explore the following research questions: (1) What are the general usage patterns of CARS users? (2) What are the impacts of the recommendation methods on user satisfaction and participation? (3) On what condition do the relevancy methods excel or vice versa?

In order to address these questions, the authors chose Baidu News Feed, one of the most popular mobile news apps in China, as the case for further investigation. The researchers collected the through questionnaire surveys and with the help of the structural equation model, and found that: (1) Interest-relevancy and context-relevancy have significantly positive effects on satisfaction, while content-diversity has a marginally negative effect on satisfaction and participation. (2) the degree of multi-context use is a key boundary moderating the relationship between context-relevancy and satisfaction and the relationship between content-diversity and satisfaction. These findings indicate that, if CARS constantly records the changes of users’ locations or scenarios and provides relevant location-congruent contents, users’ perceived threat to privacy will increase and their satisfaction and participation will decrease. In addition, this negative effect will be strengthened when the degree of multi-context use increases. However, the users who prefer to use news feed systems in various contexts in their daily life are more likely to read diverse information.
This study may contribute to the understanding of the role of users’ contextual use habits for compromising the recommendation methods, and gives an idea to solve the trajectory privacy problem in CARS, which is a concern worldwide.

RESEARCH BACKGROUND

Baidu News Feed

Baidu News Feed, which is also called Baidu Mobile, was first introduced in 2016 and has quickly become a key news feed app since then. It is reported that the monthly active users (MAU) of Baidu Mobile have reached 607 million by September 2021\(^1\). Baidu Mobile is a kind of context-aware recommendation system (CARS) that can provide users with news, articles, photos, and other contents via mobile devices.

Several differences occur between mobile phone-based news feed and traditional personal computer-based media. Firstly, compared with traditional news portal sites, mobile news feed systems can provide different information continuously as users refresh the page. Secondly, traditional news feed mainly adopts a mass personalization system that provides users with customized information based on the average taste of all the users(Wedel and Kannan 2016). However, a mobile news feed can combine mass personalization with individual-level personalization, so that each user can receive personally customized information matching their own tastes and geographical locations(Xu et al. 2015). Thirdly, Baidu News Feed has social functions by which users can like, forward, comment, and reply to the contents and comments. These user participation indexes are important to evaluate the effectiveness of personalization(Iftikhar and Khan 2020). Thus, Baidu News Feed can learn user preferences, adapt the information to users, and evaluate the effectiveness of personalization.

RECOMMENDATION METHODS OF LOCATION-BASED CONTEXT-AWARE SYSTEMS

CARS is a multidimensional (i.e., user, item, and context) system and hence brings a challenge to learn and predict users’ preferences(Suhaim and Berri 2021). The existing studies on CARS mainly concentrate on methods and strategies to improve recommendation accuracy (Kulkarni and Rodd 2020, Morgan, Paun and Ntarmos 2020, Colomo-Palacios et al. 2017, Nawara and Kashef 2021). In general, three CARS methods are mainly discussed in previous research: Interest-relevancy, context-relevancy and content-diversity (Jain, Singh and Dhar 2020, Wu et al. 2020, Werneck et al. 2021).

Interest-Relevancy. This recommendation method refers that RSs can predict users’ interests and push relevant contents by processing and analyzing users’ browsing data or search histories(Figueiredo et al. 2013). This approach has been proven effective in traditional CARS. For instance, Amazon provide items by tracing and analyzing consumers’ online shopping histories(Yun et al. 2018), which improves the sales of product(Bleier and Eisenbeiss 2015). To suggest interest-relevant content to users, three techniques and models are conventionally used: Content-based filtering(Pimenidis, Polatidis and Mouratidis 2018, Liao and Sundar 2021), collaborative filtering (CF) (Sharma, Mitra and Chakraborty 2020, Gai and Klesse 2019) and hybrid approach (Sharma et al. 2020, Ansari, Li and Zhang 2018). Content-based filtering methods recommend similar kind of items to a user based on the past actions of the user. However, collaborative filtering methods recommend items to a new user based on items preferred by other users with similar preferences in the past (Sharma, Mitra and Chakraborty 2020).
Although the performance of RS has been enhanced due to the algorithms, it fails to improve users’ satisfaction for its neglect of users’ preference changes over time (Kotkov, Veijalainen and Wang 2020). Therefore, the content-diversity method is introduced to solve the issue. (Kotkov et al. 2020).

Content-Diversity. Content-diversity refers to the degree to which information is different from each other (Nguyen et al. 2014). At present, three kinds of ideas are normally discussed to balance the trade-off between relevancy and diversity in existing literature (Baghi et al. 2021). Firstly, some scholars focused on the criteria aspect and proposed to change the single evaluation criteria to bi-criteria optimization (e.g., MOOP framework and NSGA-II) or multi-objective problem (Baghi et al. 2021, Cheng et al. 2017, Cui et al. 2017). Secondly, algorithms are developed to learn users’ preferences first. Various adjustments will be made later (Lee and Lee 2015, Premchaiswadi et al. 2013, Niu et al. 2018, Hou et al. 2018, Jain et al. 2020). Thirdly, many efforts have been made into the collaborative approach (Panteli and Boutsinas 2021, Bag et al. 2019, Lee and Lee 2015).

In addition to the abovementioned strategies, other recommendation models include contextual factors to increase diversity and are also proven to achieve better effectiveness (Wang et al. 2019, Anelli et al. 2017, Lathia et al. 2010, Dahroug et al. 2019).

Context-Relevancy. Context-relevancy method refers to recommending contents to users based on the situations in which they are (Morgan et al. 2020). The contexts include environment-based context (e.g., location, time, weather) and user-based context (e.g., activities, mood) (Suhaim and Berri 2021, Jin et al. 2019). In this study, the authors will utilize the spatial dimension of the context. CARS such as Baidu News Feed can take advantage of geographical techniques to deliver “the right message to the right people at the right time in the right place” (Morgan et al. 2020, Bao et al. 2015). Currently, relevant studies and techniques are centered around five research areas: Context acquisition, integration, modeling, reasoning and dissemination to improve the service quality of RSs (Suhaim and Berri 2021, Nawara and Kashef 2021, Kumar, Jerbi and O’Mahony 2021).

RESEARCH GAP

Recommendation accuracy and sensitivity have been improved by geographical and contextual integration techniques (Suhaim and Berri 2021, Jin et al. 2019). However, it is found that users are probably dislike location-congruent contents because of the privacy concern (Kulkarni and Rodd 2020, Pan et al. 2022). Few studies have investigated when context-relevancy loses effectiveness and how to solve this issue. Besides, considering accuracy as a proxy of satisfaction is probably not effective to evaluate the service quality, sometimes (Kulkarni and Rodd 2020).

In order to fill these research gaps and given that it is a comprehensive recommendation process involving multiple recommendation methods, the authors have proposed a comprehensive framework to explore the influence of different recommendation methods on user satisfaction and participation directly.

RESEARCH MODEL AND HYPOTHESES DEVELOPMENT

Drawing on Sharma et al.’s framework (Item-User-Action). (Sharma et al. 2020), the authors will investigate the impacts of recommendation methods on user satisfaction from the item perspective. Furthermore, they will also examine user participation from the action perspective. The authors will also introduce the degree of multi-context use into the research model to examine the boundary of the effects of the recommendation methods. The research model is shown in Figure 1.
User Satisfaction

Based on Expectation-confirmation Theory (ECT), consumers’ satisfaction towards a product or service means it has met their initial expectations (Tam, Santos and Oliveira 2020). Many researchers have discussed about the antecedent factors leading to satisfaction in transportation service (Fu, Zhang and Chan 2018), online shopping (Wahab and Khong 2019), and online corporation Web site (Eveleth, Baker-Eveleth and Stone 2015), but discussions on news feed are limited. When users read contents...
in news feeds, they generally have utilitarian and hedonic motives. On the one hand, they expect their utilitarian value needs to be met (e.g., enriching knowledge by reading). On the other hand, users also expect their hedonic value demands can be met by reading the topics (e.g., sport, film, pet, and food) that can bring pleasure to their lives (Hasan, Jha and Liu 2018). In order to satisfy these motives and expectations of users, Baidu Mobile needs to learn users’ interests as accurately as possible and provide relevant contents. When Baidu Mobile suggests an item to users, it can collect data on users’ liking, which indicates they are satisfied with the item. Users ignoring the content that is irrelevant to their interest indicates their dissatisfaction with the recommendation (Eveleth et al. 2015).

INTEREST-RELEVANCY

Previous studies have proven that interest-relevant information would enhance user satisfaction and interaction (Filieri and McLeay 2013, Kim et al. 2017, Murthi and Sarkar 2003, Chen and Tseng 2011, Belém et al. 2016). Zhang et al. (Zhang et al. 2018) argued that, if brand followers perceive a high level of relevancy between a brand microblog and themselves, they would be more likely to develop positive attitudes towards the brand. Similarly, Filieri and McLeay (2013) affirmed a positive relationship between information relevancy and travelers’ adoption of information from online review sites. Kim et al. (2017) proved that the relevancy of tourism information in social media is positively associated with the cognitive and affective site images of tourists. Tucker (Tucker 2013) verified that the advertisements targeting at an individual’s interests were effective on Facebook. In news feed context, users consume information services. Information service should satisfy the demand of interest (Fu et al. 2018). Users have initial or stable preference, and the relevant information is able to match their interest, thereby promote satisfaction. Thus, the authors hypothesize the following:

Hypothesis 1 (H1): Interest-relevancy is positively associated with user satisfaction.

CONTEXT-RELEVANCY

The context in CARS refers to the environment in which the interaction between users and applications takes place (Suhaim and Berri 2021) and location is one of the most important contexts paid a lot of attentions (Hu et al. 2021). Many lines of evidence have indicated that context-relevant content may promote user satisfaction in CARS. Ghose et al. (Ghose, Goldfarb and Han 2013) validated that the messages of the store that are located in close proximity to a user’s home are more likely to be
read. Users may prefer the restaurants recommendation related to their tourist destinations (Renjith, Sreekumar and Jathavedan 2020, Kulkarni and Rodd 2020, Kolahkaj et al. 2020). Some scholars have also found that users tend to have stronger relationships with their local friends in social networks (Valverde-Rebaza et al. 2018, Bao et al. 2015). Therefore, location-based recommendation is more likely to adapt users’ changing requirements and expectations in different places, which may also have a positive effect on satisfaction (Meyners et al. 2017). Therefore, the authors assume that a high level of context-relevant information will easily satisfy users by meeting their demands in a certain context. Thus, the authors suggest the following:

Hypothesis 2 (H2): Context-relevancy is positively associated with user satisfaction.

CONTENT-DIVERSITY

Although numerous studies have discussed and verified the effectiveness of content-diversity through regarding the indicators (e.g., click-through rate) as proxies of user satisfaction to CARS, studies from a psychological perspective by testing user satisfaction directly are relatively limited (Kulkarni and Rodd 2020).

Overpersonalization was not effective as it might narrow the contents over time (Nguyen et al. 2014, McSherry 2002, Zeng et al. 2010). Based on the motive theory and ECT, it is reasonable to infer that reading a mass of homogeneous contents in Baidu Mobile may cause boredom in users and promote their variety-seeking motivations, which may lead to their expectations of diverse content (Eveleth et al. 2015). Diverse content will broaden users’ horizon, help them find new interests and meet their expectations, thereby accelerating their satisfaction (Kotkov et al. 2020). For example, it is proved that recommendation users consume more content-diverse movies or music than non-recommendation users in the long run (Anderson et al. 2020, Nguyen et al. 2014). Therefore, the authors hypothesize the following:

Hypothesis 3 (H3): Content-diversity is positively associated with user satisfaction.

THE MODERATING ROLE OF THE DEGREE OF MULTI-CONTEXT USE

The degree of multi-context of app use in this study refers to the number of contexts (or scenes and activities) in which a user is usually engaged when they use CARS like news feed in daily life (Suhaim and Berri 2021, Nawara and Kashef 2021, Carlarne 2011, Dey 2001). For example, a user who is used to reading news feed during commuting, work break, meals and before sleep has a higher multi-context degree than a user who only does it at meals. The users with a higher degree of multi-context tend to obtain information across different places and time (Zhang, Chow and Li 2014). As Table 1 shows, although existing literature includes a number of works on recommendation strategies, the consideration of consumer browsing habit of the degree of multi-context use is limited.

In addition to the expectations of accuracy and diversity of recommendations, privacy is also a concern due to users’ fear for the leak of their personal data, especially personal trajectory during the use of mobile news feeds apps (Kulkarni and Rodd 2020). Thus, there are two trade-offs among the expectations (Panteli and Boutsinas 2021): One is relevancy-seeking and variety-seeking; the other is spatial relevancy-seeking and privacy. However, an important question has not been well answered: How does CARS compromise on users’ expectations for a better recommendation? That is, on which condition should CARS consider interest-relevancy, context-relevancy or content-diversity more to improve users’ satisfaction? This paper considers that the degree of multi-context use may be a factor moderating the effects of the recommendation methods on users’ satisfaction. To be more specific, first, interest-relevant contents may achieve the expectation that users’ interest will be met. Then,
users may be satisfied. However, interest-relevancy strategy could narrow consumers’ interest over time and various places, which means that this strategy may lose effectiveness for satisfaction as the degree of multi-context use rises (Kotkov et al. 2020). Second, users also have the need for safety for RS. Some consumers have strong privacy security awareness in their mobile device uses. If the system always provides them accurate information matched the locations as their shifts of various places, they may have higher perceived privacy leaks of trajectory (Bradbury et al. 2018), which will reduce their satisfaction. Therefore, the negative effect of the context-relevancy method on user satisfaction might be strengthened with the rise of the degree of multi-context use. Third, content-diversity may not bring overpersonalization, information cocoons and privacy problems (Nguyen et al. 2014). In addition, users’ preferences can change with time and context, which may lead to user’s variety-seeking behavior (Kotkov et al. 2020). Therefore, content-diversity strategy may meet user’s variety-seeking demand could not trigger user privacy concern, and further improve their satisfaction for the high degree of multi-context users. Thus, the authors hypothesize the following:

Hypothesis 4 (H4): The degree of multi-context weakens the relationship between interest-relevancy and user satisfaction.

Hypothesis 5 (H5): The degree of multi-context weakens the relationship between context-relevancy and user satisfaction.

Hypothesis 6 (H6): The degree of multi-context strengthens the relationship between content-diversity and user satisfaction.

USERS PARTICIPATION INTENTION IN NEWS FEEDS

CARS such as Baidu News Feed is not only a content-oriented application but also one of the most popular communication tools for many people because of the interaction functions. It is mentioned that user participation refers to the activities users perform during system development (Barki and Hartwick 1994). By this definition, social media studies have identified two types of participation behaviors, namely content contribution and user participation. Content contribution refers to users’ original creation generated by users, such as articles, videos, photos, and other initiative content forms. User participation refers to the social interaction among users online (Xu and Li 2015). However, lurking is also an important form of participation to be considered. Certain scholars elucidated that there exist numerous passive members who read and browse the information but rarely post messages (or comments) or communicate with others (Preece, Nonnecke and Andrews 2004). Shao and Guosong (Shao and Guosong 2009) regarded this type of behavior as a content assumption. In this study, the authors focus on user participation in Baidu News Feed. In addition to entertainment and communication, users also focus on information acquisition (Hall-Phillips et al. 2016).

Some researchers have studied the relationship between participation and satisfaction. They have found that greater consumer participation would bring more satisfaction and trust (Dabholkar and Sheng 2012, Li et al. 2018). Besides, Khan (Khan 2017) studied the motivation of user participation on YouTube. Zhang et al. (Zhang et al. 2018) investigated the factors that affect participation and brand loyalty on microblogs. However, satisfaction (attitude) may also influence participation (behavior). Chan and Chan (Chan and Chan 2010) found that wheelchair users’ satisfaction could improve their intention of community participation. In news feed context, the motive of a user to “like”, “comment” the contents or interact with other users is that the contents meet their demands and interest. Users will ignore the information that does not satisfy their preferences. Therefore, satisfaction will promote participation in news feed systems. Thus, the authors hypothesize the following:

Hypothesis 7 (H7): Satisfaction has a positive influence on user participation intention.
METHODOLOGY

Questionnaire Design

The authors used the questionnaires to collect the sample data. Since the original questionnaires were written in English, so the authors invited three Ph.D students from the Department of Marketing and Information System who were proficient both in English and Chinese to translate the original version into Chinese and then back-translated it into English (Lu and Chen 2021, Xu et al. 2022). Next, the authors invited three professors from the Department of Information System to discuss the questionnaire with the research team. They also invited the professors to compare the translated version with the original version after the suggestions were applied to ensure the consistency between the two versions. Then, an offline pilot survey was conducted with 50 students from a public university in China in order to evaluate the effectiveness of the questionnaires (Akram et al. 2021). Finally, the questionnaires were refined based on the participants’ feedback and suggestions.

DATA COLLECTION

The authors posted the questionnaires on Wenjuanxing, a famous and professional questionnaire distribution platform in China. The link to the questionnaires was shared on mainstream social media in China (e.g., Weibo, WeChat, and QQ). Data collection took place from December 30th, 2021 to January 25th, 2022.

A question that “which mobile news app is the one you use most recently” was asked first (Akram et al. 2021, Lu and Chen 2021). Then these participants were instructed to answer the other questions based on their recent reading experience of this app. It should be noted that to attract participants and increase the response rate, RMB 20 was paid to those who completed the survey.

The authors eventually obtained 985 questionnaires in total, of which 512 were valid. (In the data analyzing process, the authors excluded from the dataset the participants who had not reported that Baidu Mobile was the news application they had used most recently, on account of potential confounding factors. The researchers also excluded the participants whose app use experience was less than one month, on account of their unstable reading habits and behaviors, which might have biased their results (Akram et al. 2021)). The demographic characteristics of the samples (Table 2) were consistent with the results of the Baidu’s report (360 doc)2.

MEASURES

The authors adopted the the measurement items of the constructs in their research model from extant literature. Table 3 and 4 list the measurements of these constructs. The authors introduced slight modifications to ensure that their validity and fit the context of this study. Except for the demographic variables and information on the app use, they measured all constructs on a seven-point Likert scale from 1 as “strongly disagree” to 7 as “strongly agree”. The degree of multi-context of the app use in this study refers to the number of contexts (or activities) in which a user is usually engaged when they read news feed in daily life (Suhaim and Berri 2021, Nawara and Kashef 2021, Carlarne 2011, Dey 2001). Therefore, in this study, the authors focused on the user’s daily routines to study the degree of multi-context, which is consistent with the previous studies (Jin et al. 2019, Porter et al. 2010). The authors accumulated the contexts where the users choose to use the app (Table 4) in their questionnaires to measure the degree of multi-context use. If the candidate \(i \) chooses the context \(J_j \), then the authors obtain the following,
Table 2. Demographic characteristics of the samples

Variable	Value	n	%
Gender	Female	246	48.0
	Male	266	52.0
Age	<18	6	1.2
	18–24	141	27.5
	25–34	226	44.2
	35–44	104	20.3
	45–54	28	5.4
	>55	7	1.4
Education level	Middle school	3	0.6
	High school	48	9.4
	Junior college	180	35.2
	Bachelor	174	34.0
	Master	91	17.8
	PhD	16	3.1
Job	Student	190	37.2
	General staff	156	30.4
	Manager	42	8.3
	Self-employed	105	20.6
	Retiree	14	2.5
	Others	5	1.0
Income (CNY) per month	<2000	82	16.1
	2000–3000	133	25.9
	3001–5000	150	29.2
	5000–8000	106	20.8
	8000–12000	26	5.1
	>12000	15	2.9
Mobile phone system	Android	323	63.1
	IOS	170	33.2
	Others	19	3.7
Experience of using news feeds app	1–3 months	31	6.0
	3–6 months	62	12.1
	6–9 months	106	20.7
	9–12 months	174	34.0
	12–18 months	80	15.6
	18 months	59	11.5

continued on following page
\[I_{j}^{i}(x) = \begin{cases} 1 & \text{if the candidate } i \text{ choose the context } J_{j}, \\ 0 & \text{otherwise.} \end{cases} \]

(1)

where \(J_{j} \) presents the context \(j \). Thus, the measure of the degree of multi-context of a candidate can be estimated by Equation (2):

\[M_{\text{multi-context}}^{i} = \sum_{j=1}^{n} I_{j}^{i}(x) \]

(2)

In this paper, the authors take \(n=9 \) (Table 4). The contexts considered in this study are referenced from previous studies and the suggestions from Baidu experts (Jin et al. 2019, Porter et al. 2010, Wilson 2012).

DATA ANALYSIS AND RESULTS

Data analysis tools including SPSS 22 and AMOS 22.0 were applied for statistical analysis.

MEASUREMENT MODEL

First, confirmatory factor analysis was employed to examine the validity of the model variables. It was found that all the fit indices were acceptable and met the threshold value, as follows: \(\chi^2=167.760, \chi^2/df = 1.864<3.00, \text{SRMR}=0.038<0.05, \text{RMSEA}=0.021<0.05, \text{CFI} = 0.986>0.90, \text{TLI}=0.965>0.90. \) These values are within the required limits and demonstrate the satisfactory fit of the measurement model with the data.

Then, the authors further employed composite reliability and Cronbach’s alpha to examine the reliability of the instruments. Table 5 shows that Cronbach’s alpha values are all in the range of 0.902–0.988, thereby satisfying the minimum requirement of 0.70. All the CR results are shown in Table 6, with each exceeding 0.847. Based on the results, all the measurements are reliable in this study (Akram et al. 2021).

Factor loadings and AVE are evaluated with confirmatory factor analysis to test the convergent and discriminant validity. The authors initially tested the convergent validity of the constructs meeting the Fornell and Larcker’s criteria (1981). Table 6 shows that all AVE values fall in the range of 0.735–0.816, which are above the minimum criterion of 0.50 (Akram et al. 2021). Therefore, the convergent validity of our measurement instrument is verified. The values of square roots of AVE are
compared with the correlations between paired constructs to check the discriminant validity. Table 7 shows that all the square roots of AVE are more significant than the inter-construct correlations, thereby demonstrating the discriminant validity.

Table 3. List of the measures of research constructs

Variable	Item	Description	Source
Interest-relevancy (IR)	IR1	The information from this mobile news app is consistent with my values.	(Shen et al. 2010)
	IR2	The information from this mobile news app is consistent with my preferences.	
Context-relevancy (CR)	CR1	This mobile news app provides relevant information to match the changes of my location in a timely manner.	(Xu and Chow 2016)
	CR2	The information from this mobile news app is based on my spatial preferences.	
Content-diversity (CD)	CD1	This mobile news app can provide different contents on one topic.	(Ziegler et al. 2005)
	CD2	This mobile news app can provide information on rich topics.	
	CD3	This mobile news app can help me discover new interests.	
	CD4	This mobile news app can help me discover new places or activities.	
Satisfaction (SA)	SA1	I am satisfied with the reading experience of this mobile news app.	(Shokouhyar, Shokoohyar and Safari 2020)
	SA2	I am satisfied with the interaction experience of this mobile news app.	
	SA3	I am satisfied with the information quality of this mobile news app.	
Participation Intention (PI)	PI1	I will read the information from this mobile news app carefully.	(Zhang et al. 2018)
	PI2	I will forward information from this mobile news app.	
	PI3	I will assign likes to the information from this mobile news app.	
	PI4	I will comment on the information on this mobile news app with my friends.	

Table 4. Contexts of Baidu Mobile use in daily life

Variable	Item	n	%
Contexts of Baidu Mobile use in daily life.	Commuting (In transport).	224	43.8
	Work break.	241	47.1
	During work.	197	38.5
	Before meals.	171	33.4
	At meals.	305	59.6
	After meals.	250	48.8
	After getting up.	106	20.7
	Before sleep.	270	52.7
	Walking on the road.	73	14.3
The structural equation model and hypotheses are tested in this section. First, all the structural model fit indices indicated a good fit between the data and the model ($\chi^2=163.872$, $\chi^2/df = 1.707<3.00$).

Table 5. Reliability analysis of overall factors

Construct	Number of questions	Cronbach’s alpha
Interest-relevancy (IR)	2	0.951
Context-relevancy (CR)	2	0.913
Content-diversity (CD)	4	0.959
Satisfaction (SA)	3	0.902
Participation Intention (PI)	4	0.988

Table 6. Outer loading on overall factors

Construct	Item	Factor loading	CR1	AVE2
Interest-relevancy (IR)	IR1	.861	.847	.735
	IR2	.854		
Context-relevancy (CR)	CR1	.896	.878	.782
	CR2	.873		
Content-diversity (CD)	CD1	.905	.940	.794
	CD2	.899		
	CD3	.886		
	CD4	.874		
Satisfaction (SA)	SA1	.884	.930	.816
	SA2	.884		
	SA3	.787		
Participation Intention (PI)	PI1	.898	.929	.765
	PI2	.898		
	PI3	.852		
	PI4	.849		

Notes: 1) = composite reliability, 2) = average variance extracted

Table 7. Analysis of discriminant validity

Construct	Mean	SD	1	2	3	4	5
Interest-relevancy (IR)	5.152	1.019	.857				
Context-relevancy (CR)	5.642	.985	.607**	.884			
Content-diversity (CD)	4.785	.996	.589**	.612**	.891		
Satisfaction (SA)	5.898	1.143	.638**	.502**	-.564**	.903	
Participation Intention (PI)	5.046	.897	.717**	.609**	-.634**	.721***	.875

STRUCTURAL EQUATION MODEL AND RESULTS

The structural equation model and hypotheses are tested in this section. First, all the structural model fit indices indicated a good fit between the data and the model ($\chi^2=163.872$, $\chi^2/df = 1.707<3.00$,}
SRMR=0.041<0.05, RMSEA=0.037<0.05, CFI=0.936>0.90, TLI=0.928>0.90 (Hu and Bentler 1999).

Table 8 and Figure 2 summarize the results of the authors’ hypotheses. The standardized parameter estimates reveal that user satisfaction is significantly affected by interest-relevancy (β=0.562, t=5.601, p<0.001), context-relevancy (β=0.686, t=3.299, p=0.001). Thus, hypotheses H1 and H2 are supported. Content-diversity has a marginally negative effect on user satisfaction (β=-0.201, t=-1.649, p=0.098). The moderating effect of the degree of multi-context use between content-diversity and satisfaction is positive and significant (β=1.186, t=3.098, p=0.002). The moderating effect of the degree of multi-context on the relationship between context-relevancy and user satisfaction is negative and significant (β=-0.921, t=-2.620, p=0.009). However, the authors could not find a significant moderating effect of the degree of multi-context on the relationship between interest-relevancy and user satisfaction (β=-0.129, t=-0.576 p=0.571). Finally, satisfaction has a positive and significant influence on participation (β=.891, t=10.142 p<0.001).

Considering the data collection using a self-reported survey, the authors assessed the common method bias (CMB) before testing the structural model. The authors also tested Harman’s one-factor test according to previous research (Podsakoff et al. 2003). The exploratory factor analysis (EFA) results show that not a single factor accounts for a large portion of the variance; the most prominent factor explains 34.92% of the variance in the data, which is below the recommended threshold of 50% (Podsakoff et al. 2003). Thus, common method bias is not an issue in this study.

Table 8. Results of the structural model analyses

Path	Path Coefficient	p-Value	t-Value	Hypothesis
H1: IR→SA	.562	.000	5.601	Supported
H2: CR→SA	.686	.001	3.299	Supported
H3: CD→SA	-.201	.098	-1.649	Not supported
H4: IR × The degree of multi-context use→SA	-.128	.571	-0.576	Not supported
H5: CR × The degree of multi-context use→SA	-.921	.009	-2.620	Supported
H6: CD × The degree of multi-context use→SA	1.186	.002	3.098	Supported
H7: SA→PI	.891	.000	10.142	Supported

Figure 2. Path coefficients of the research model
CONCLUSIONS
Discussion of Findings

This research has examined the relationship between the recommendation methods and user satisfaction and participation using Baidu News Feed as the case. Generally, the findings corroborate that the relevancy recommendation methods are positively associated with user satisfaction. This finding is consistent with the prior research on the brand community in microblogs (Kim et al. 2017, Zhang et al. 2018) and recommendation algorithms (Szpektor et al. 2013, Wang et al. 2019). The authors validate that context-relevancy also positively influences user satisfaction, which supports the viewpoint that the popular recommendation method based on users’ geographical location is an effective approach to attract users’ attention and promote their activity in news feeds (Morgan et al. 2020, Ketelaar et al. 2017, Rahimi, Far and Wang 2021). However, the authors did not find strong evidence that content-diversity has a positive effect on user participation, in this research. This result is inconsistent with previous findings that diversity has a positive effect on the recommendation quality (Anderson et al. 2020, Nguyen et al. 2014). One possible reason is that the positive effect may only appear with overpersonalization. Otherwise, users generally prefer the contents relevant to their interests and contexts, however it is subject to further examination.

The most interesting finding in this study is that while there is a dilemma between the three recommendations, the degree of multiple-context can provide a good trade-off. The results verify that the degree of multi-context weakens the relationship between context-relevancy and user satisfaction, which means that, if the system provides the location-based information continuously as the degree of multi-context rises, users will probably perceive privacy threat and not prefer the location-congruent contents. This supports the existence of users’ privacy concern in using news feeds across different scenarios (Kulkarni and Rodd 2020). However, this study proves that the degree of multi-context will strengthen the relationship between content-diversity and user satisfaction and participation. Therefore, it might be argued that the user with a high degree of multi-context will read diverse contents, when in various contexts. The finding is aligned with previous research that users’ preferences can also change with the spatial context (Kotkov et al. 2020) and suggests that the content-diversity method is probably a solution to the privacy issue. In conclusion, these findings indicate that, there is a dark side of context-relevancy when the degree of multi-context is high, which goes contrary to the previous viewpoint that the more users’ locations and the contents are consistent, the better (Ketelaar et al. 2017, Suhaim and Berri 2021). Besides, content-diversity may be a method to ameliorate this negative effect when the degree of multi-context if the user is high.

THEORETICAL IMPLICATIONS

This research makes three theoretical contributions to the studies on the recommendation strategies. Firstly, this study has solved the trade-off issues among the recommendation methods. It is well known that there is a trade-off between content-relevancy and content-diversity due to overpersonalization. This paper reveals there is also a trade-off between context-relevancy and content-diversity. Specifically, most existing studies hold that location-based recommendation is better compared with non-personalization (Ketelaar et al. 2017, Suhaim and Berri 2021). Nevertheless, some evidences indicate users may also avoid context-relevant, especially location-congruent contents, sometimes, which means location-based recommendation is not always effective (Kulkarni and Rodd 2020). However, the discussions on the reasons behind these inconsistent conclusions are limited. In this study, the authors found that the degree of multi-context use is a key boundary moderating the effect of spatial context-relevancy and content-diversity on user satisfaction. To be more specific, when the degree of multi-context use is low, the location-congruent content may meet users’ contextual demands. Instead, when the degree is high, spatial context-relevancy may be a negative effect on user satisfaction, because the oversensitivity of location tracking may increase users’ privacy concern.
and reduce their satisfaction with CARS (Kulkarni and Rodd 2020). Therefore, the content-diversity method involving irrelevant contents may be better on such an occasion.

Secondly, this study may contribute to the context integration strategies of CARS. Previous studies on the context integration strategies normally look at algorithms (e.g., pre-filtering and post-filtering) and aim at answering when to incorporate the context data into the recommendation process for a certain recommendation list (Kulkarni and Rodd 2020). Instead of examining the issue from the technical perspective, in this research the authors adopted a comprehensive perspective and the item-user-action framework to explore how to incorporate the context-relevancy method into the traditional recommendation methods (i.e., interest-relevancy and content-diversity) based on the users’ using habits of CARS. The authors argue that the CARS may consider the degree of multi-contextual application use as a factor to compromise and integrate the three recommendation methods to improve the overall user satisfaction and participation.

Thirdly, this study may contribute to the research on the recommendation evaluation of CARS. Compared with previous studies on CARS considering accuracy as the proxy of user satisfaction (Suhaim and Berri 2021), in this research, the authors examined user satisfaction directly and considered user participation as an indicator to assess users’ behavioral intention (Hu, Zhang and Luo 2016, Jung and Sundar 2016). Nowadays, most CARS such as Baidu Mobile are bidirectional systems that can provide users with content and receive their feedback (e.g., “like”, “comment”) (Johnson, Saldaña and Kaye 2021). The participatory feedback can not only reflect users’ attitudes and evaluation of the content provided by CARS, but also enhance their stickiness to the system (Johnson et al. 2021).

PRACTICAL IMPLICATIONS

The study offers two important implications for the practitioners. First, this research promotes practitioners’ understanding of the strategies for the trade-off between context-relevancy and users’ privacy concerns. Prior researchers argued that users may dislike the contextual-related contents, especially the location-congruent contents when they perceive privacy threats (Kulkarni and Rodd 2020). In this paper, the authors chose Baidu News Feed as the case study and investigated when users would be aware of the privacy leak of the context-relevancy method and how to solve it. In the authors’ view, if Baidu News Feed can provide the real-time location-congruent content for users in various scenarios sensitively, the sensitivity and accuracy of RS response may enhance users’ perception of location privacy leak and reduce their satisfaction and participation (Johnson et al. 2021). The research findings verified these ideas. In addition, the study also suggests that the RS should incorporate diversified content to improve users’ user satisfaction and participation. The study may also provide a theoretical basis for the optimization of the contextual recommendation algorithms for developers.

Second, this research suggests that practitioners pay more attention to privacy issues in location-based CARS. With the enactment of the General Data Protection Regulation (GDPR) in the European Union, western scholars have paid much attention to privacy issues (Mohammed and Tejay 2017, Goddard 2017). The enactment of Information Security Technology—Personal Information Security Specification in China, it is indicated that privacy problem has also become more and more important in China (Wang Han and Munir 2018, Wu et al. 2022). Western developers and researchers have proposed some techniques (e.g., cryptographic approaches and federated learning) to protect users’ private data (Chen et al. 2021, McMahan et al. 2017, Yakoubov et al. 2014). However, users privacy concern may be in conflict with their demands for location-congruent information, which is an issue that should be addressed (Suhaim and Berri 2021). This study mainly focused on how to utilize users’ location change information properly in order to reduce their perceived privacy threat from a user psychological perspective, and provided as solution taking the degree of multi-context use into consideration. Thus, this research may contribute to how CARS can be enhanced in service quality.
LIMITATIONS AND FUTURE RESEARCH

This study has several limitations and certain directions for future research. Firstly, the results might have limited generalizability because the data were from one app Baidu News Feed only. Thus, the authors can extend this study to other news feed applications (e.g., Weibo) in future research. Indeed, Baidu News Feed is an informational app but Weibo is a relational app that focuses more on interaction, which may obtain different results. Secondly, the survey data may have certain limitations in terms of the representativeness of the samples. Therefore, future research can also attempt to use secondary data and method of mathematical modeling to capture and identify the users’ characteristics and preferences and validate the findings of this study or explore other boundaries. Thirdly, the survey data were based on the research subjects’ perceived preferences. Conducting it with revealed preferences may enhance the validity of the results, which is worthy of an examination in the future.

ACKNOWLEDGMENT

Funding

This research was supported by the following funds:

- China Postdoctoral Science Foundation: A study on the mechanism of physician engagement behaviour in online medical communities from the perspective of network effects (No. 2022M710038).
- Guangxi Science and Technology Base and Talent Special Project: Research on the incentive mechanism of user information sharing in live e-commerce - based on social capital perspective (No., 2020AC19034).
- 2021 Guangxi 14th Five-Year Education Science Planning Key Special Project: Research on the influence of learning communities on users’ online learning behavior in the information technology environment (No., 2021A033).
- 2021 Guangxi 14th Five-Year Education Science Planning Key Special Project: Research on the influence of short video sharing on Chinese cultural identity of international students in China - taking Jieyin as an example (No., 2021ZJY1607).
- 2022 Innovation Project of Guangxi Graduate Education: Research on Cultivating Innovation and Practical Ability of Postgraduates in Local Universities in Guangxi. (No., JGY2022122).
- Guangxi undergraduate teaching reform project in 2022: research on the construction of thinking and government in marketing courses under the online and offline mixed teaching mode. (No., 2022JGB180).

CONFLICT OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ETHICS STATEMENT

This study has been approved by the Institutional Review Board committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. All participants who completed the survey signed a consent form prior to participating in the study.
REFERENCES

Akram, U., Junaid, M., Zafar, A. U., Li, Z., & Fan, M. (2021). Online purchase intention in Chinese social commerce platforms: Being emotional or rational? *Journal of Retailing and Consumer Services*, 63, 63. doi:10.1016/j.jretconser.2021.102669

Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., & Lalmas, M. 2020. Algorithmic effects on the diversity of consumption on spotify. *Proceedings of The Web Conference* 2020, 2155-2165. doi:10.1145/3366423.3380281

Anelli, V. W., Bellini, V., Di Noia, T., La Bruna, W., Tomeo, P., & Di Sciascio, E. 2017. An analysis on time-and session-aware diversification in recommender systems. *Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization*, 270-274. doi:10.1145/3079628.3079703

Ansari, A., Li, Y., & Zhang, J. Z. (2018). Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach. *Marketing Science*, 37(6), 37. doi:10.1287/mksc.2018.1113

Bag, S., Ghadge, A., & Tiwari, M. K. (2019). An integrated recommender system for improved accuracy and aggregate diversity. *Computers & Industrial Engineering*, 130, 187–197. doi:10.1016/j.cie.2019.02.028

Baghi, V., Seyed Motehayeri, S. M., Moeini, A., & Abedian, R. 2021. Improving ranking function and diversification in interactive recommendation systems based on deep reinforcement learning. 2021 26th International Computer Conference, Computer Society of Iran (CSICC), 1-7. doi:10.1109/CSICC52343.2021.9420615

Bao, J., Zheng, Y., Wilkie, D., & Mokbel, M. (2015). Recommendations in location-based social networks: A survey. *GeoInformatica*, 19(3), 525–565. doi:10.1007/s10707-014-0220-8

Barki, H., & Hartwick, J. (1994). Measuring user participation, user involvement, and user attitude. *Management Information Systems Quarterly*, 18(1), 59–82. doi:10.2307/249610

Belém, F. M., Batista, C. S., Santos, R. L., Almeida, J. M., & Gonçalves, M. A. (2016). Beyond relevance: Explicitly promoting novelty and diversity in tag recommendation. *ACM Transactions on Intelligent Systems and Technology*, 7(3), 1–34. doi:10.1145/2801130

Bleier, A., & Eisenbeiss, M. (2015). Personalized Online Advertising Effectiveness: The Interplay of What, When, and Where. *Marketing Science*, 34(5), 669–688. doi:10.1287/mksc.2015.0930

Bradbury, M., Jhumka, A., & Leeke, M. (2018). Hybrid online protocols for source location privacy in wireless sensor networks. *Journal of Parallel and Distributed Computing*, 115, 67–81. doi:10.1016/j.jpdc.2018.01.006

Carlarne, J. (2011). Multi-context engaged learning and ethnographic fieldwork: Some notes from the middle of the edge. *International Journal of Social Research Methodology*, 14(2), 135–152. doi:10.1080/13645579.2011.992134

Chan, S. C., & Chan, A. P. (2010). User satisfaction, community participation and quality of life among Chinese wheelchair users with spinal cord injury: A preliminary study. *Occupational Therapy International*, 14(3), 123–143. doi:10.1002/oti.228 PMID:17624872

Chen, C. C., & Tseng, Y.-D. (2011). Quality evaluation of product reviews using an information quality framework. *Decision Support Systems*, 50(4), 755–766. doi:10.1016/j.dss.2010.08.023

Chen, J., Liu, L., Chen, R., Peng, W., & Huang, X. (2021). SecRec: A Privacy-Preserving Method for the Context-Aware Recommendation System. *IEEE Transactions on Dependable and Secure Computing*, 1–1. doi:10.1109/TDSC.2021.3085562

Cheng, P., Wang, S., Ma, J., Sun, J., & Xiong, H. 2017. Learning to Recommend Accurate and Diverse Items. *Proceedings of the 26th International Conference on World Wide Web*, 183-192. doi:10.1145/3038912.3052585

Colomo-Palacios, R., García-Peñalvo, F. J., Stantchev, V., & Misra, S. (2017). Towards a social and context-aware mobile recommendation system for tourism. *Pervasive and Mobile Computing*, 38, 505–515. doi:10.1016/j.pmcj.2016.03.001

Cui, L., Ou, P., Fu, X., Wen, Z., & Lu, N. (2017). A novel multi-objective evolutionary algorithm for recommendation systems. *Journal of Parallel and Distributed Computing*, 103, 53–63. doi:10.1016/j.jpdc.2016.10.014
Dabholkar, P. A., & Sheng, X. (2012). Consumer participation in using online recommendation agents: Effects on satisfaction, trust, and purchase intentions. *Service Industries Journal, 32*(9), 1433–1449. doi:10.1080/02642069.2011.624596

Dahroug, A., Vlachidis, A., Liapis, A., Bikakis, A., López-Nores, M., Sacco, O., & Pazos-Arias, J. J. (2019). Using dates as contextual information for personalised cultural heritage experiences. *Journal of Information Science, 47*(1), 82–100. doi:10.1177/0165551519871823

Dey, A. K. (2001). Understanding and using context. *Personal and Ubiquitous Computing, 5*(1), 4–7. doi:10.1007/s007790170019

Eveleth, D. M., Baker-Eveleth, L. J., & Stone, R. W. (2015). Potential applicants’ expectation-confirmation and intentions. *Computers in Human Behavior, 44*, 183–190. doi:10.1016/j.chb.2014.11.025

Figueiredo, F., Pinto, H., Belém, F., Almeida, J., Gonçalves, M., Fernandes, D., & Moura, E. (2013). Assessing the quality of textual features in social media. *Information Processing & Management, 49*(1), 222–247. doi:10.1016/j.ipm.2012.03.003

Filieri, R., & Mcleay, F. (2013). E-WOM and Accommodation: An Analysis of the Factors That Influence Travelers’ Adoption of Information from Online Reviews. *Journal of Travel Research, 53*(1), 44–57. doi:10.1177/0047287513481274

Fu, X., Zhang, J., & Chan, F. T. (2018). Determinants of loyalty to public transit: A model integrating Satisfaction-Loyalty Theory and Expectation-Confirmation Theory. *Transportation Research Part A, Policy and Practice, 113*, 476–490. doi:10.1016/j.tra.2018.05.012

Gai, P. J., & Klesse, A. K. (2019). Making Recommendations More Effective Through Framings: Impacts of User-Versus Item-Based Framings on Recommendation Click-Throughs. *Journal of Marketing, 83*(6), 61–75. doi:10.1177/0022242919873901

Gao, L., Li, Y., Li, R., Zhu, Z., Gu, X., & Habimana, O. 2019. ST-RNet: A Time-aware Point-of-interest Recommendation Method based on Neural Network. *2019 International Joint Conference on Neural Networks (IJCNN)*, 1-8. doi:10.1109/IJCNN.2019.8852377

Ghose, A., Goldfarb, A., & Han, S. P. (2013). How is the mobile Internet different? Search costs and local activities. *Information Systems Research, 24*(3), 613–631. doi:10.1287/isre.1120.0453

Goddard, M. (2017). The EU General Data Protection Regulation (GDPR): European regulation that has a global impact. *International Journal of Market Research, 59*(6), 703–705. doi:10.2501/IJMR-2017-050

Hall-Phillips, A., Park, J., Chung, T.-L., Anaza, N. A., & Rathod, S. R. (2016). I (heart) social ventures: Identification and social media engagement. *Journal of Business Research, 69*(2), 484–491. doi:10.1016/j.jbusres.2015.05.005

Hasan, M. R., Jha, A. K., & Liu, Y. (2018). Excessive use of online video streaming services: Impact of recommender system use, psychological factors, and motives. *Computers in Human Behavior, 80*, 220–228. doi:10.1016/j.chb.2017.11.020

Hou, L., Pan, X., & Liu, K. (2018). Balancing the popularity bias of object similarities for personalised recommendation. *The European Physical Journal B, 91*(3), 91. doi:10.1140/epjb/e2018-80374-8

Hu, C., Mao, J., Tian, M., Wei, Y., Guo, L., & Wang, Z. (2021). Distance matters: Investigating how geographic proximity to ENGOs triggers green innovation of heavy-polluting firms in China. *Journal of Environmental Management, 279*, 11542. doi:10.1016/j.jenvman.2020.11542 PMID:33162234

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling, 6*(1), 1–55. doi:10.1080/10705519909540118

Hu, M., Zhang, M., & Luo, N. (2016). Understanding participation on video sharing communities: The role of self-construal and community interactivity. *Computers in Human Behavior, 62*, 105–115. doi:10.1016/j.chb.2016.03.077

Ifikhar, R., & Khan, M. S. (2020). Social Media Big Data Analytics for Demand Forecasting. *Journal of Global Information Management, 28*(1), 103–120. doi:10.4018/JGIM.2020010106
Jain, A., Singh, P. K., & Dhar, J. (2020). Multi-objective item evaluation for diverse as well as novel item recommendations. *Expert Systems with Applications, 139*, 139. doi:10.1016/j.eswa.2019.112857

Javed, U., K. Shaukat, I. A. Hameed, F. Iqbal, T. Mahboob Alam & S. Luo (2021) A Review of Content-Based and Context-Based Recommendation Systems. *International Journal of Emerging Technologies in Learning, 16*.

Jin, Y., Htun, N. N., Tintarev, N., & Verbert, K. (2019). ContextPlay. *Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization*, 294-302. doi:10.1145/3320435.3320445

Johnson, T. J., Saldaña, M., & Kaye, B. K. (2021). A galaxy of apps: Mobile app reliance and the indirect influence on political participation through political discussion and trust. *Mobile Media & Communication*.

Jung, E. H., & Sundar, S. S. (2016). Senior citizens on Facebook: How do they interact and why? *Computers in Human Behavior, 61*, 27–35. doi:10.1016/j.chb.2016.02.080

Ketelaar, P. E., Bernritter, S. F., van’t Riet, J., Hühn, A. E., van Woudenberg, T. J., Müller, B. C., & Janssen, L. (2017). Disentangling location-based advertising: The effects of location congruency and medium type on consumers’ ad attention and brand choice. *International Journal of Advertising, 36*(2), 356–367. doi:10.1080/02650487.2015.1093810

Khan, M. L. (2017). Social media engagement: What motivates user participation and consumption on YouTube? *Computers in Human Behavior, 66*, 236–247. doi:10.1016/j.chb.2016.09.024

Kim, S. E., Lee, K. Y., Shin, S. I., & Yang, S. B. (2017). Effects of tourism information quality in social media on destination image formation: The case of Sina Weibo. *Information & Management, 54*(6), 687–702. doi:10.1016/j.im.2017.02.009

Kolahkaj, M., Harounabadi, A., Nikravanshalmani, A., & Chinipardaz, R. (2020). A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining. *Electronic Commerce Research and Applications, 42*, 100978. doi:10.1016/j.elerap.2020.100978

Kotkov, D., Veijalainen, J., & Wang, S. (2020). How does serendipity affect diversity in recommender systems? A serendipity-oriented greedy algorithm. *Computing, 102*(2), 393–411. doi:10.1007/s00607-018-0687-5

Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. *Computer Science Review, 37*, 37. doi:10.1016/j.cosrev.2020.100255

Kumar, G., Jerbi, H., & O’Mahony, M. P. (2021). A sequence-based and context modelling framework for recommendation. *Expert Systems with Applications, 175*, 175. doi:10.1016/j.eswa.2021.114665

Lathia, N., Hailes, S., Capra, L., & Amatriain, X. 2010. Temporal diversity in recommender systems. *Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval*, 210-217.

Lee, K., & Lee, K. (2015). Escaping your comfort zone: A graph-based recommender system for finding novel recommendations among relevant items. *Expert Systems with Applications, 42*(10), 4851–4858. doi:10.1016/j.eswa.2014.07.024

Li, C., Jiang, S., Li, N., & Zhang, Q. (2018). Influence of social participation on life satisfaction and depression among Chinese elderly: Social support as a mediator. *Journal of Community Psychology, 46*(3), 345–355. doi:10.1002/jcop.21944

Liao, M., & Sundar, S. S. (2021). When E-Commerce Personalization Systems Show and Tell: Investigating the Relative Persuasive Appeal of Content-Based versus Collaborative Filtering. *Journal of Advertising, 1–16*.

Liu, Y., & Du, R. (2020). Examining the Effect of Reviewer Socioeconomic Status Disclosure on Customers’ Purchase Intention. *Journal of Global Information Management, 28*(3), 17–35. doi:10.4018/JGIM.2020070102

Lu, B., & Chen, Z. (2021). Live streaming commerce and consumers’ purchase intention: An uncertainty reduction perspective. *Information & Management, 58*(7), 103509. doi:10.1016/j.im.2021.103509

McMahan, Moore, Ramage, Hampson & Arcas. (2017). Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics* (pp. 1273-1282). PMLR.

McSherry, D. 2002. Diversity-conscious retrieval. In *European Conference on Case-Based Reasoning* (pp. 219-233). Springer. doi:10.1007/3-540-46119-1_17
Meyners, J., Barrot, C., Becker, J. U., & Goldenberg, J. (2017). The Role of Mere Closeness: How Geographic Proximity Affects Social Influence. *Journal of Marketing*, 81(5), 49–66. doi:10.1509/jm.16.0057

Mohammed, Z. A., & Tejay, G. P. (2017). Examining privacy concerns and e-commerce adoption in developing countries: The impact of culture in shaping individuals’ perceptions toward technology. *Computers & Security*, 67, 254–265. doi:10.1016/j.cose.2017.03.001

Morgan, C., Paun, I., & Ntarmos, N. 2020. Exploring Contextual Paradigms in Context-Aware Recommendations. *2020 IEEE International Conference on Big Data (Big Data)*, 3079-3084. doi:10.1109/BigData50022.2020.9377964

Mou, J., Cui, Y., & Kurcz, K. (2020). Trust, Risk and Alternative Website Quality in B-Buyer Acceptance of Cross-Border E-Commerce. *Journal of Global Information Management*, 28(1), 167–188. doi:10.4018/JGIM.2020010109

Murthi, B., & Sarkar, S. (2003). The role of the management sciences in research on personalization. *Management Science*, 49(10), 1344–1362. doi:10.1287/mnsc.49.10.1344.17313

Nawara, D., & Kashef, R. (2021). Context-Aware Recommendation Systems in The IoT Environment (IoT-CARS) – A Comprehensive Overview. *IEEE Access: Practical Innovations, Open Solutions*, 9, 1–1. doi:10.1109/ACCESS.2021.3122098

Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014). Exploring the filter bubble: the effect of using recommender systems on content diversity. *Proceedings of the 23rd international conference on World wide web*, 677-686. doi:10.1145/2566486.2568012

Niu, K., Jiao, H., Xu, X., Cheng, C., & Wang, C. (2018). A Novel Learning Approach to Improve Mobile Application Recommendation Diversity. *2018 IEEE International Conference on Data Mining Workshops (ICDMW)*, 1300-1307. doi:10.1109/ICDMW.2018.00185

Pan, B., Guo, H., You, X., & Xu, L. (2022). Privacy Rating of Mobile Applications Based on Crowdsourcing and Machine Learning. *Journal of Global Information Management*, 30(3), 1–15. doi:10.4018/JGIM.20220701.0a5

Panteli, A., & Boutsinas, B. (2021). Improvement of similarity–diversity trade-off in recommender systems based on a facility location model. *Neural Computing & Applications*. Advance online publication. doi:10.1007/s00521-020-05613-z

Pimenidis, E., Polatidis, N., & Mouratidis, H. (2018). Mobile recommender systems: Identifying the major concepts. *Journal of Information Science*, 45(3), 387–397. doi:10.1177/0165551518792213

Podsakoff, P. M., Mackenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. *The Journal of Applied Psychology*, 88(5), 879–903. doi:10.1037/0021-9010.88.5.879 PMID:14516251

Porter, G., Hampshire, K., Abane, A., Robson, E., Munthali, A., Marshi, M., & Tanle, A. (2010). Moving young lives: Mobility, immobility and inter-generational tensions in urban Africa. *Geoforum*, 41(5), 796–804. doi:10.1016/j.geoforum.2010.05.001

Preece, J., Nonnecke, B., & Andrews, D. (2004). The top five reasons for lurking: Improving community experiences for everyone. *Computers in Human Behavior*, 20(2), 201–223. doi:10.1016/j.chb.2003.10.015

Premchaiswadi, W., Poompuang, P., Jongswat, N., & Premchaiswadi, N. (2013). Enhancing diversity-accuracy technique on user-based top-n recommendation algorithms. In *2013 IEEE 37th Annual Computer Software and Applications Conference Workshops* (pp. 403-408). IEEE. doi:10.1109/COMPSACW.2013.68

Rahimi, S. M., Far, B., & Wang, X. (2021). Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers. *GeoInformatica*, 1–28.

Renjith, S., Sreekumar, A., & Jathavedan, M. (2020). An extensive study on the evolution of context-aware personalized travel recommender systems. *Information Processing & Management*, 57(1), 102078. doi:10.1016/j.ipm.2019.102078

Savage, N. S., Baranski, M., Chavez, N. E., & Höllerer, T. (2012). I’m feeling loco: A location based context aware recommendation system. In *Advances in Location-Based Services* (pp. 37–54). Springer. doi:10.1007/978-3-642-24198-7_3
Setiowati, S., Adji, T. B., & Ardiyanto, I. (2018). Context-based awareness in location recommendation system to enhance recommendation quality: A review. In 2018 International Conference on Information and Communications Technology (ICOIACT) (pp. 90-95). IEEE. doi:10.1109/ICOIACT.2018.8350671

Shao, G. (2009). Understanding the appeal of user-generated media: A uses and gratification perspective. Internet Research Electronic Networking Applications & Policy, 19(1), 7–25. doi:10.1108/10662240910927795

Sharma, S. C. M., Mitra, A., & Chakraborty, D. (2020). Concepts of Recommendation System from the Perspective of Machine Learning. Recommender System with Machine Learning and Artificial Intelligence. doi:10.1002/9781119711582.ch4

Shen, Y. C., Huang, C. Y., Chu, C. H., & Liao, H. C. (2010). Virtual Community Loyalty. International Journal of Electronic Commerce, 15(1), 49–74. doi:10.2753/JEC1086-4415150102

Shokouhyar, S., Shokoohyar, S., & Safari, S. (2020). Research on the influence of after-sales service quality factors on customer satisfaction. Journal of Retailing and Consumer Services, 56, 102139. doi:10.1016/j.jretconser.2020.102139

Smyth, B., & Mcclave, P. (2001). Similarity vs. Diversity. Springer Berlin Heidelberg. doi:10.1007/3-540-44593-5_25

Sohajrood, Z. B., & Taleai, M. (2021). A POI group recommendation method in location-based social networks based on user influence. Expert Systems with Applications, 171, 114593. doi:10.1016/j.eswa.2021.114593

Shiyong Zheng, Mingyue Wu & Junyun Liao (2022) The impact of destination live streaming on viewers' travel intention, Current Issues in Tourism, DOI: 10.1080/13683500.2022.2117594

Suhaime, A. B., & Berri, J. (2021). Context-Aware Recommender Systems for Social Networks: Review, Challenges and Opportunities. IEEE Access: Practical Innovations, Open Solutions, 9, 57440–57463. doi:10.1109/ACCESS.2021.3072165

Szpektor, I., Maarek, Y., & Pelleg, D. (2013). When relevance is not enough: Promoting diversity and freshness in personalized question recommendation. Proceedings of the 22nd international conference on World Wide Web, 1249-1260. doi:10.1145/2488388.2488497

Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Information Systems Frontiers, 22(1), 243–257. doi:10.1007/s10796-018-9864-5

Tucker, C. E. (2013). Social Networks, Personalized Advertising, and Privacy Controls. JMR, Journal of Marketing Research, 50(5), 546–562. doi:10.1177/002224371305000501

Tuncdogan, A., Acar, O. A., & Stam, D. (2017). Individual differences as antecedents of leader behavior: Towards an understanding of multi-level outcomes. The Leadership Quarterly, 28(1), 40–64. doi:10.1016/j.leaqua.2016.10.011

Valverde-Rebaza, J. C., Roche, M., Poncelet, P., & de Andrade Lopes, A. (2018). The role of location and social strength for friendship prediction in location-based social networks. Information Processing & Management, 54(4), 475–489. doi:10.1016/j.ipm.2018.02.004

Wahab, S. N., & Khong, W. L. (2019). Multiple linear regression modelling of parcels’ distribution design factors and online shopping customer satisfaction. International Journal of Modelling in Operations Management, 7(2), 95–110. doi:10.1504/IMOM.2019.100145

Wang, Z., Shi, S., Du, H., & Wang, S. (2019). Collaborative Filtering Algorithm Based on Improved Similarity Calculation. 2019 15th International Conference on Computational Intelligence and Security (CIS), 156-160. doi:10.1109/CIS.2019.00041

Wang Han, S., & Munir, A. B. (2018). Information Security Technology-Personal Information Security Specification: China’s Version of the GDPR. Eur. Data Prot. L. Rev., 4(4), 535–541. doi:10.21552/edpl/2018/4/19

Wedel, M., & Kannan, P. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121. doi:10.1509/jm.15.0413
Werneck, H., Silva, N., Viana, M., Pereira, A. C. M., Mourão, F., & Rocha, L. (2021). Points of Interest recommendations: Methods, evaluation, and future directions. *Information Systems, 101*, 101. doi:10.1016/j.is.2021.101789

Wilson, M. W. (2012). Location-based services, conspicuous mobility, and the location-aware future. *Geoforum, 43*(6), 43. doi:10.1016/j.geoforum.2012.03.014

Wu, S., Kou, H., Lv, C., Huang, W., Qi, L., Wang, H., & Lin, Y. (2020). Service Recommendation with High Accuracy and Diversity. *Wireless Communications and Mobile Computing, 2020*, 1–10. doi:10.1155/2020/8822992

Wu, W., Shi, K., Wu, C.-H., & Liu, J. (2022). Research on the Impact of Information Security Certification and Concealment on Financial Performance. *Journal of Global Information Management, 30*(3), 1–16. doi:10.4018/JGIM.20220701.oa2

Wu, Z., Zang, C., Wu, C.-H., Deng, Z., Shao, X., & Liu, W. (2021). Improving Customer Value Index and Consumption Forecasts Using a Weighted RFM Model and Machine Learning Algorithms. *Journal of Global Information Management, 30*, 1–23.

Xu, B., & Li, D. (2015). An empirical study of the motivations for content contribution and community participation in Wikipedia. *Information & Management, 52*(3), 275–286. doi:10.1016/j.im.2014.12.003

Xu, W., & Chow, C. Y. (2016). A Location- and Diversity-aware News Feed System for Mobile Users. *IEEE Transactions on Services Computing, 9*(6), 1–1. doi:10.1109/TSC.2015.2436396

Xu, W., Chow, C.-Y., Yiu, M. L., Li, Q., & Poon, C. K. (2015). MobiFeed: A location-aware news feed framework for moving users. *GeoInformatica, 19*(3), 633–669. doi:10.1007/s10707-014-0223-5

Xu, Y., Jiang, W., Li, Y., & Guo, J. (2022). The Influences of Live Streaming Affordance in Cross-Border E-Commerce Platforms. *Journal of Global Information Management, 30*, 1–24.

Yakoubov, S., Gadepally, V., Schear, N., Shen, E., & Yerukhimovich, A. (2014). A survey of cryptographic approaches to securing big-data analytics in the cloud. In *2014 IEEE High Performance Extreme Computing Conference (HPEC)*. IEEE.

Yun, Y., Hooshyar, D., Jo, J., & Lim, H. (2018). Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review. *Journal of Information Science, 44*(3), 331–344. doi:10.1177/0165551517692955

Zeng, W., Shang, M.-S., Zhang, Q.-M., Lü, L., & Zhou, T. (2010). Can dissimilar users contribute to accuracy and diversity of personalized recommendation? *International Journal of Modern Physics C, 21*(10), 1217–1227. doi:10.1142/S0129183110015786

Zhang, K. Z., Barnes, S. J., Zhao, S. J., & Zhang, H. (2018). Can consumers be persuaded on brand microblogs? An empirical study. *Information & Management, 55*(1), 1–15. doi:10.1016/j.im.2017.03.005

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. *ACM Computing Surveys, 52*, 1–38. doi:10.1145/3158369

Zhang, X., & Song, Y. (2021). Research on the Realization of Travel Recommendations for Different Users Through Deep Learning Under Global Information Management. *Journal of Global Information Management, 30*, 1–16. doi:10.4018/JGIM.300815

ENDNOTES

1 https://www.163.com/dy/article/GP18E6FD0519U3I5.html

2 http://www.360doc.com/content/17/0928/15/14853527_690861468.shtml
Wei Wang is an assistant professor at School of Business, Tianjin University of Finance and Economics. She got Ph.D. of Marketing, at School of Economics and Management, Wuhan University. Her research interest is network marketing and information system.

Shiyong Zheng is an Associate professor at School of Business, Guilin University of Electronic Technology. His research interest is network marketing and information system.

Rizwan Ali is an assistant professor of marketing at School of Electronic Commerce, Wuhan Technology and Business University. He obtained Ph.D. degree at Economics and Management School, Wuhan University in 2018. His research interest is brand relationship and word of mouth. His work has appeared in Computers in Human Behaviors.