Turning an Aptamer into a Light-Switch Probe with a Single Bioconjugation

Thakshila M. Wickramaratne and Valerie C. Pierre

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States

Supporting Information

ABSTRACT: We describe a method for transforming a structure-switching aptamer into a luminescent light-switch probe via a single conjugation. The methodology is demonstrated using a known aptamer for Hg\(^{2+}\) as a case study. This approach utilizes a lanthanide-based metallointercalator, Eu-DOTA-Phen, whose luminescence is quenched almost entirely and selectively by purines, but not at all by pyrimidines. This complex, therefore, does not luminesce while intercalated in dsDNA, but it is bright red when conjugated to a ssDNA that is terminated by several pyrimidines. In its design, the light-switch probe incorporates a structure-switching aptamer partially hybridized to its complementary strand. The lanthanide complex is conjugated to either strand via a stable amide bond. Binding of the analyte by the structure-switching aptamer releases the complementary strand. This release precludes intercalation of the intercalator in dsDNA, which switches on its luminescence. The resulting probe turns on 21-fold upon binding to its analyte. Moreover, the structure switching aptamer is highly selective, and the long luminescence lifetime of the probe readily enables time-gating experiments for removal of the background autofluorescence of the sample.

INTRODUCTION

Aptamers, single-stranded oligonucleotides that bind with high affinity and high selectivity to a selected target such as a protein, a small molecule, or a metal ion, are increasingly used in therapeutics, diagnosis, and detection. Luminescent analogs have been prevalent for the latter two applications due to the widespread use of the technique. Indeed, significant work has already been published on the design of fluorescent aptamer-based probes, most commonly and successfully with approaches involving molecular beacons\(^{2–5}\) and aptamer-based G-quadruplex systems.\(^{6–9}\) Unfortunately, this technology requires multiple, often difficult, bioconjugation steps and it remains ill-adapted to multiplex detection and applications in complex aqueous or biological media. The first limitation with regard to synthesis can, in theory, be met with the use of light-switch DNA intercalators, molecules whose quantum yields vary greatly upon intercalation between base pairs. However, intercalators have so far only been used in “label-free” approaches, which consist of simply mixing the intercalators with the aptamer. In each case, most of the dyes are intercalated both in the absence and in the presence of the analyte. Consequently, the responses observed were small and also turn-off.\(^{10–19}\) The other two limitations, multiplex detection and detection in a complex aqueous sample, could in theory be resolved with a lanthanide-based probe.\(^{20}\) The narrow emission bands and long luminescence lifetimes of lanthanide complexes make them uniquely suited for multiplex detection and quantitative analysis in complex media via time-gated measurements. Herein we report such a light-switch lanthanide-based aptamer probe, with substantial turn-on and a long luminescence lifetime in the millisecond range. Its synthesis, unlike that of most aptamer-based probes,\(^{2–5}\) requires only one bioconjugation. In comparison, other systems need an individual conjugation for both the fluorophore and the quencher. The application of this methodology can readily be expanded to other substrates and for multiplex detection. The key to multiplex detection is simply to ensure that each aptamer probe for each analyte has a unique reporter strand sequence and makes use of a distinct lanthanide ion such as terbium, europium, thulium, dysprosium, or samarium. Since the emission spectra of lanthanide ions mostly do not overlap, they can be readily used for multiplex detection. Multiplex detection with lanthanide ions has been extensively reported by our group and others.\(^{21–24}\)

In terms of design, we postulated that the first of the aforementioned three limitations, the number of bioconjugation steps, could be resolved via a single conjugation of a light-switch DNA intercalator to a structure-switching aptamer. Structure-switching aptamers change their structure upon binding to their cognate target, most often via the release of a shorter complementary strand.\(^{25,26}\) Judicious conjugation of an intercalating dye to either strand of such an aptamer/complement duplex ensures that the dye is completely intercalated only in the absence of the analyte, but is not...
intercalated in the presence of the analyte (Figure 1). If the intercalating dye itself is a light-switch, then the aptamer probe

![Figure 1. Proposed mode of action of aptamer light-switch, Eu-AptaSwitch (1). In the absence of Hg$^{2+}$, the EuIII complex intercalates in dsDNA. Photoelectron transfer from the purines to the phenanthridine antenna quenches the luminescence of EuIII. Binding of Hg$^{2+}$ by the aptamer releases the short complementary strand, thereby preventing intercalation of the EuIII complex and turning on its luminescence.

A further advantage of using lanthanides is that luminescent when not intercalated (i.e., in the presence of response to intercalation is reversed: it is not luminescent when intercalated, would thus turn-off in the absence of the analyte they would intercalate and be luminescent; whereas in the presence of the analyte they would not intercalate and not luminesce. Since turn-off probes are generally preferred for practical applications, this design excludes the use of common light-switch intercalators such as dpzp-based ruthenium27 or osmium complexes,28 platinum complexes,29,30 or organo-intercalators such as ethidium bromide.31 Instead, we postulated that the desired response could be achieved with lanthanide complexes whose luminescence is nearly completely quenched upon intercalation in double-stranded DNA (dsDNA). Our complex works as a turn-on probe because its response to intercalation is reversed: it is not luminescent when intercalated (i.e., in the absence of the analyte) but is luminescent when not intercalated (i.e., in the presence of the analyte). A further advantage of using lanthanides is that they also solve the other two limitations mentioned above of current molecular beacons. The long luminescence lifetimes of lanthanide complexes, typically in the millisecond range for EuIII and TbIII, enable facile time-gating experiments whereby the background autofluorescence of the sample is removed. Lanthanides have multiple emission bands which are also narrow. These narrow emission bands with limited overlap further enable simultaneous detection of multiple analytes in the same sample. If bands which do not overlap at all are chosen, multiple probes with different lanthanides can be used simultaneously in the same medium to test several analytes.

This design thus requires a lanthanide complex not only capable of intercalating in dsDNA, but whose luminescence is substantially affected by the oligonucleotide. Our group21,32,33 and Parker’s$^{34-37}$ have previously demonstrated that the luminescence of phenanthridine-based terbium and europium complexes can be nearly completely quenched upon intercalation in dsDNA. This effect, which is likely the result of photoelectron transfer from stacked purines to the excited state of the chromophore, was the basis behind the recent design of our probe for GTP and ATP detection.21,33 Importantly, although both purines efficiently quench the lanthanide-centered emission of this complex, neither of the two pyrimidines does. Our probe, Eu-AptaSwitch (1), was thus constructed by conjugating the phenanthridine-based lanthanide complex to the DNA strand of the structure-switching aptamer that is mostly composed of thymidines and cytidines (Figure 2). The shorter complementary strand is thus primarily composed of adenosines and guanosines. The probe was designed to function as follows (Figure 1). In the absence of the analyte, i.e., when the phenanthridine is intercalated in the dsDNA, the probe is in the off mode. Photoelectron transfer (PeT) from the stacked purine bases quenches the lanthanide luminescence. Binding of the analyte by the aptamer releases the short complementary strand. At this point, intercalation and quenching of the phenanthridine by purines are no longer possible. Therefore, the luminescence of the lanthanide complex turns on.

A note on the stability of the metal complex used for detection and diagnosis. The probe Eu-AptaSwitch (1) incorporates a macrocyclic polyaminocarboxylate ligand which renders the complex both thermodynamically stable and kinetically inert. Lanthanide complexes used for biological and medical applications must be stable and inert so as to minimize the risk of trans-metallation with Ca$^{2+}$ and trans-ligation of the lanthanide with endogenous ligands such as phosphates.38 Although more difficult to synthesize than their linear analogs, macrocyclic DOTA-type chelates, such as the one used in this study, are more appropriate for detection of analytes in biological or environmental aqueous systems due to their kinetic inertness. Furthermore, the overall positively charged lanthanide complexes of DOTA tetraamide (DOTA$^{3-}$) ligands are kinetically more inert than DOTA analogues as a result of the decreased basicity of the nitrogen atoms.39

As a proof of principle, we applied our concept to a structure-switching aptamer previously reported for Hg$^{2+}$. This aptamer makes use of the ability of thymidines to coordinate Hg$^{2+}$ in a T-Hg$^{2+}$-T fashion. Therefore, the lanthanide complex was conjugated to the thymidine-rich strand that binds Hg$^{2+}$ as opposed to its shorter complementary strand. Note that in order to further increase the turn-on response of the probe, some of the purine bases in the mercury-binding strand reported by Lu40 were replaced by pyrimidines (third and fifth positions, A to C and G to C, respectively). We anticipate that this design can be applied to any structure-switching aptamer, regardless of how the aptamer binds its analyte.

■ RESULTS AND DISCUSSION

The molecular probe Eu-AptaSwitch (1) was synthesized according to Scheme 1 from three advanced intermediates:
DO2A′Bu (2),41 the phenanthridine acetamide arm (3),33 and the bridging arm (5). The syntheses of the former two were previously reported in the literature. Coupling of the phenanthridine arm (3) to DO2A′Bu (2) followed by that of the bridging arm (5), yielded the fully protected ligand (6). Treatment under acidic conditions deprotected the acids and the amine simultaneously, thereby yielding the free ligand which was metalated with EuIII under slightly basic aqueous conditions. Note that as for any DOTA-type complex, long reaction times are needed to ensure full complexation of the lanthanide by the macrocycle.42 Advantageously, the stability of the resulting amine-terminated complex enables subsequent conjugation to any molecule containing a carboxylate. For our intended application, the complex was reacted with the DADE-terminated aptamer oligonucleotide while on solid support. DADE (decanoic acid diester) is a commercially available preactivated carboxyl linker that enables facile conjugation to the EuIII-complex all the while being long enough for the phenanthridine to intercalate in the dsDNA (Figure 2).

Cleavage of the bioconjugate from its solid support, followed by deprotection of the bases and purification by reverse phase high pressure liquid chromatography (RP-HPLC), yielded the EuIII ssDNA conjugate (9) that was annealed with the short complementary strand to yield the luminescent probe Eu-AptaSwitch (1). Notably, bioconjugation was only possible with a lanthanide complex containing an amine and a DNA terminated with an activated carboxylic acid. Our multiple attempts at reversing the functional groups, that is, to conjugate a Eu complex with a pendant acid or activated acid to an amine-terminated oligonucleotide, were all unsuccessful, regardless of the coupling agent used. This also highlights the difficulty of conjugating metal complexes to DNA.2−4,43−54 The synthesis described above should be applicable to the conjugation of other types of metal complexes to DNA for therapeutic and diagnostic purposes.

The time-gated emission profile of the probe in the absence and presence of its analyte is shown in Figure 3. As expected, annealing the Eu-ssDNA (9) conjugate with the complementary strand quenches most of the metal-centered luminescence; the luminescence of the annealed Eu-AptaSwitch (1) is only 4% that of the ssDNA conjugate (9). This result is consistent with intercalation of the phenanthridine in the dsDNA; resulting photoelectron transfer from the purine bases to the antenna quenches the lanthanide-based emission. Importantly, the luminescence of EuIII is fully recovered upon addition of Hg2+. This observation is in agreement with binding of Hg2+ by its structure-switching aptamer concomitant with release of the complementary strand such that the phenanthridine can no longer intercalate in dsDNA. Since PeT from purine bases to the antenna is no longer possible, luminescence of EuIII is recovered. This design enables not only a complete recovery of the lanthanide emission, but also a substantial 21-fold turn-on which is comparable to that of other light-switch probes. Support for our proposed mechanism of action comes from three observations. First, the luminescence of the unconjugated Eu complex (8) is identical to that of the Eu-ssDNA conjugate.
apparent in the presence of 10 equiv of Hg$^{2+}$. Although Eu
(Figure 4). The characteristic luminescence of the probe is only
eye upon illumination with a standard portable UV-lamp
for a spectrophotometer. Moreover, the probe detects its
technology to the detection of other analytes without the need
switch response thus bodes well for future application of this
technology to the detection of other analytes without the need
for a spectrophotometer. Moreover, the probe detects its
presence of low concentration of mercury is shown in the inset.
The very long lifetime characteristic of Eu$^{3+}$-centered
luminescence, a requirement for time-gating experiments, is
ideally suited for titrations in complex aqueous media. Note
that, as for Lu’s probe,40 the titration curve of Eu-AptaSwitch
can be fitted with a Hill coefficient of 2, suggesting a
cooperative binding of Hg$^{2+}$ to the aptamer.

Importantly, conjugating the Eu complex to the aptamer
does not change its affinity for Hg$^{2+}$, nor its selectivity over
competing divalent metal. The selectivity of the probe toward
the alkali earth and transition metals Mg$^{2+}$, Ca$^{2+}$, Zn$^{2+}$, Cd$^{2+}$,
Mn$^{2+}$, Co$^{2+}$, Pb$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ is shown in Figure 6. The
probe does not turn on upon addition of an excess of each
competing metal ions. Importantly, the presence of these metal
ions also does not influence the response of the probe toward
Hg$^{2+}$. The light-switch probe (1) remains highly selective, as
was the original probe reported by Lu and co-workers. The fact
that the metallointercalator does not influence the response of
the aptamer bodes well for other applications.

A distinct advantage of lanthanides in the design of probes is
their very long luminescence lifetime, in the millisecond range,
that is uniquely suited for applications in complex aqueous
media. With such long lifetimes, the background autofluorescence of the sample can be readily removed with time-gating experiments allowing for more accurate measurements at low
turn-on. Indeed, as can be seen in Figure 7, the Eu-AptaSwitch
probe is also efficient in Human serum. A lower turn-on is
observed for a given concentration of Hg$^{2+}$ in serum as
compared to phosphate-buffered saline. This difference could be
due to partial quenching of the lanthanide emission by serum protein and/or to binding of Hg$^{2+}$ by serum proteins,
which decreases the concentration of Hg$^{2+}$ available to the
probe.

Figure 3. Time-gated emission profiles of Eu-DNA conjugate (9)
(solid line), Eu-AptaSwitch (1) (dotted line), Eu-AptaSwitch-
Hg$^{2+}$(dashed line). Experimental conditions: [Eu-DNA conjugate] =
[Eu-AptaSwitch] = 20 μM, [Hg$^{2+}$] = 250 μM, PBS buffer, pH = 7.0, T
= 20 °C, time-delay = 0.1 ms, slit widths = 20 nm, excitation at
271 nm.

(9); they both have the same excitation and emission profiles
and the same quantum yield. Second, the luminescence of the
probe after addition of Hg$^{2+}$ is also identical to that of the Eu-
sDNA conjugate (9, same excitation and emission profiles, and
same quantum yield). Last, heating the probe past its melting
point in the absence of Hg$^{2+}$, which also liberates the Eu-
complex by unfolding the DNA, also turns the Eu luminescence
back on. The combination of these three observations strongly
supports our proposed mechanism.

Notably, such a turn-on is readily observable with the naked
eye upon illumination with a standard portable UV-lamp (Figure 4). The characteristic luminescence of the probe is only

Figure 4. Luminescence of Eu-AptaSwitch (1) upon excitation with a
portable UV lamp in the absence (a) and presence (b) of 10 equiv of
Hg$^{2+}$. Experimental conditions: PBS, pH 7.0, rt, λexcitation = 254 nm.

Figure 5. Time-gated luminescence of Eu-AptaSwitch (1) with
increasing concentration of Hg$^{2+}$. Experimental conditions: [Eu-
AptaSwitch] = 20 μM, PBS buffer, pH = 7.0, T = 20 °C, time-delay =
0.1 ms, slit widths = 20 nm, excitation at 271 nm, emission integrated
from 450 to 750 nm, error bars represent SD, n = 3. Inset: data points
at low concentrations of Hg$^{2+}$.
CONCLUSION

In conclusion, a novel approach to the design of luminescent aptamer probes that makes use of a light-switch lanthanide intercalator is reported. Compared to beacon-type approaches, this approach only requires a single conjugation, and therefore enables a more facile synthesis. As opposed to the label-free approaches that also employ DNA intercalators, our approach yields not only a turn-on response but also a substantially greater response. Moreover, the structure switching aptamer ensures the selectivity of the probe, while the long luminescence lifetime and the narrow emission bands of lanthanide metals are expected to facilitate multiplex detection in a single, complex aqueous sample.
Di-tert-butyl 2,2′-(4-((2-(tert-butoxycarbonyl)amino)ethyl)amino)-2-oxoethyl)-10-(2-oxo-2-((phenanthridin-6-ylmethyl)amino)-2-oxoethyl)-10-(2-oxo-2-((phenanthridin-6-ylmethyl)amino)ethyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (6). Di-tert-butyl 2,2′-(4-((2-oxo-2-((phenanthridin-6-ylmethyl)amino)ethyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetate (6). The resulting oil was washed with cold CH3OH (8 mL) and concentrated HCl (0.1 mL). The mixture was then heated at 65 °C for 5 h. The mixture was decanted and the reactants were rinsed with water. The supernatant was then allowed to cool to room temperature and the solvents were removed under reduced pressure yielding the protected ligand 6 as a yellow oil which was used immediately in the next step.

Conjugates were desalted by passing through NAP-5 columns and the eluent was concentrated. Capillary HPLC-MS (ESI)−calc for \([C_{48}H_{66}EuN_8O_{6}Na]^{+}\): \(m/z\) 871.0502, found: 871.0534.

Eu-DNA Conjugate (9). Eu-DO2A-Phen-Amine (8, 2 mg, 5 μmol) was dissolved in phosphate buffer saline (80 μL) at pH 7. After stirring for 5 min, the amine was added to the protected aptamer (50 nmol) on beads in DMF (20 μL). The reaction mixture was mixed slowly for 15 h. The supernatant was decanted and the beads were rinsed with mQ water (2 × 1 mL), CH3OH (2 × 1 mL), and CH3CN (2 × 1 mL). The beads were dried under reduced pressure for 15 min and 30% NH3 (aq) (750 μL) was added. The mixture was then heated at 65 °C for 5 h. The mixture was decanted and the beads were rinsed with water. The combined supernatants were concentrated under reduced pressure. The DNA conjugate was purified by high performance liquid chromatography (HPLC) using a Zorbax 300SB-C8 9.4 × 250 mm, 5 μm Agilent Technologies) column. Solvents were eluted at a flow rate of 2.5 mL/min with a gradient of 12%−14% acetonitrile in 15 mM ammonium acetate over 35 min and 90% over 2 min. Conjugates were desalted by passing through NAP-5 columns and the eluent was concentrated.

Eu-AptaSwitch (1). Eu-DNA conjugate (9) was heated with a molar equivalent of the complementary strand (100 μM) in PBS buffer (pH 7.0) at 95 °C for 15 min and allowed to cool to room temperature over 15 h.

ASSOCIATED CONTENT

Supporting Information

1H NMR spectrum of the ligand DO2A-Phen-Amine (7) and the complex [EuDO2A-Phen-Amine]− (8), HPLC-ESI−MS spectrum of Eu-DNA Conjugate (9). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Tel: (+1) 612 625 0921. E-mail: pierre@umn.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (CAREER 1151665) and by the NIH Clinical and Translational Science Institute at the University of Minnesota (8UL1TR000114). The Masonic Cancer Center Mass Spectrometry Facility, a University of Minnesota shared resource was supported by NIH grant P30CA77598. We thank Brock Matter (Masonic Cancer Center Mass Spectrometry Facility) for his help with developing the liquid chromatography mass spectrometry methodology.

Bioconjugate Chemistry

Article
ABBREVIATIONS

DNA, deoxyribonucleic acid; dsDNA, double-stranded DNA; ssDNA, single-stranded DNA; GTP, guanosine triphosphate; ATP, adenosine triphosphate; UTP, uridine triphosphate; CTP, cytosine triphosphate; PeT, photoelectron transfer; DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; SD, standard deviation; NMR, nuclear magnetic resonance; HRMS, high resolution mass spectrometry; ESI, electrospray ionization; HPLC, high pressure liquid chromatography; DMF, dimethylformamide; UV-vis, ultraviolet-visible light; PBS, phosphate-buffered saline

REFERENCES

(1) Liu, J. W., Cao, Z. H., and Lu, Y. (2009) Functional nucleic acid sensors. *Chem. Rev.* 109, 1948–1998.

(2) Stojanovic, M. N., de Prada, P., and Landry, D. W. (2000) Fluorescent sensors based on aptamer self-assembly. *J. Am. Chem. Soc.* 122, 11547–11548.

(3) Stojanovic, M. N., de Prada, P., and Landry, D. W. (2001) Aptamer-based folding fluorescent sensor for cocaine. *J. Am. Chem. Soc.* 123, 4928–4931.

(4) Hamaguchi, N., Ellington, A., and Stanton, M. (2001) Aptamer beacons for the direct detection of proteins. *Anal. Biochem.* 294, 126–131.

(5) Merino, E. J., and Weeks, K. M. (2003) Fluorogenic resolution of ligand binding by a nucleic acid aptamer. *J. Am. Chem. Soc.* 125, 12370–12371.

(6) Li, T., Dong, S. J., and Wang, E. (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. *J. Am. Chem. Soc.* 132, 13156–13157.

(7) Qin, H., Ren, J., Wang, J., Luaedtke, N. W., and Wang, E. (2010) G-quadruplex-modulated fluorescence detection of potassium in the presence of a 3500-fold excess of sodium ions. *Anal. Chem.* 82, 8356–8360.

(8) Lv, L., Gao, Z., Wang, J., and Wang, E. (2012) G-quadruplex as signal transducer for biorecognition events. *Curr. Pharm. Des.* 18, 2076–2095.

(9) He, H.-Z., Pui-Yan, Ma. V., Leung, K.-H., Shiu-Hin Chan, D., Yang, H., Cheng, Z., Leung, C.-H., and Ma, D.-L. (2012) A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP. *Anal. Chem.* 84, 13578–13584.

(10) Jiang, Y., Fang, X., and Bai, C. (2004) Signaling aptamer/protein binding by a molecular light switch complex. *Anal. Chem.* 76, 5230–5235.

(11) Wang, J., Jiang, Y., Zhou, C., and Fang, X. (2005) Aptamer-based ATP assay using a luminescent light switching complex. *Anal. Chem.* 77, 3542–3546.

(12) Zhou, C. S., Jiang, Y. X., Hou, S., Ma, B. C., Fang, X. H., and Li, M. L. (2006) Detection of oncogene protein-platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. *Anal. Bioanal. Chem.* 384, 1175–1180.

(13) Babu, E., Singaravelival, S., Manojkumar, P., Krishnasamy, S., Kumar, G. G., and Rajagopal, S. (2013) Aptamer-based label-free detection of PDGF using ruthenium(II) complex as luminescent probe. *Anal. Bioanal. Chem.* 405, 6891–6895.

(14) Li, B., Wei, H., and Dong, S. (2007) Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. *Chem. Commun.* 73–75.

(15) Choi, M. S., Yoon, M., Baeg, J. O., and Kim, J. (2009) Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex. *Chem. Commun.*, 7419–7421.

(16) Pan, L., Huang, Y., Wen, C. C., and Zhao, S. L. (2013) Label-free fluorescence probe based on structure-switching aptamer for the detection of interferon gamma. *Analyst* 138, 6811–6816.

(17) Luo, Y., Wu, P., Hu, J., He, S., Hou, X., and Xu, K. (2012) An oligonucleotide-based label-free fluorescent sensor: highly sensitive and selective detection of Hg2+ in aqueous samples. *Anal. Methods* 4, 1310–1314.

(18) Chiang, C. K., Huang, C. C., Liu, C. W., and Chang, H. T. (2008) Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. *Anal. Chem.* 80, 3716–3721.

(19) Kong, L., Xu, J., Xu, Y. Y., Xiang, Y., Yuan, R., and Chai, Y. Q. (2013) A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye. * Biosens. Bioelectron.* 42, 193–197.

(20) Thibon, A., and Pierre, V. C. (2009) Principles of responsive lanthanide-based luminescent probes for cellular imaging. *Anal. Bioanal. Chem.* 394, 107–120.

(21) Weitz, E. A., Chang, J. Y., Rosenfield, A. H., Doan, P., and Pierre, V. C. (2013) Molecular recognition and the basis for selective time-gated luminescent detection of ATP and GTP. *Chem. Sci.* 4, 4052–4060.

(22) Plush, S. E., and Gunnlaugsson, T. (2008) Solution studies of trivalent lanthanide luminescent anion sensors: towards ratiometric sensing using an internal reference channel. *Dalton Trans.*, 3801–3804.

(23) Law, G.-L., Pal, R., Palsson, L. O., Parker, D., and Wong, K.-L. (2009) Responsive and reactive terbium complexes with an azaxanthone sensitiser and one naphthyl group: applications in ratiometric oxygen sensing in vitro and in regioselective cell killing. *Chem. Commun.*, 7321–7323.

(24) Smith, D. G., McMahon, B. K., Pal, R., and Parker, D. (2012) Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes. *Chem. Commun.*, 8520–8522.

(25) Nutriu, R., and Li, Y. (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. *Chem.—Eur. J.* 10, 1868–1876.

(26) Nutriu, R., and Li, Y. (2003) Structure-switching signaling aptamers. *J. Am. Chem. Soc.* 125, 4771–4778.

(27) Friedman, A. E., Chambron, J. C., Sauvage, J. P., Turro, N. J., and Barton, J. K. (1990) Molecular “light switch” for DNA: [Ru(bpy)3(dppz)2]+. *J. Am. Chem. Soc.* 112, 4960–4962.

(28) Holmlin, R. E., Yao, J. A., and Barton, J. K. (1999) Dipryridophenazine complexes of Os(II) as red-emitting DNA probes: synthesis, characterization, and photophysical properties. *Inorg. Chem.* 38, 174–189.

(29) Chan, D. S.-H., Lee, H.-M., Che, C.-M., Leung, C.-H., and Ma, D.-L. (2009) A selective oligonucleotide-based luminescent switch-on probe for the detection of nanomolar mercury(II) ion in aqueous solution. *Chem. Commun.*, 7479–7481.

(30) Liu, H.-K., and Sadler, P. J. (2011) Metal complexes as DNA intercalators. *Acc. Chem. Res.* 44, 349–359.

(31) Larsen, R. W., Jasuja, R., Hetzler, R. K., Muraoka, P. T., Andrada, V. G., and Jameson, D. M. (1996) Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. *Biophys. J.* 70, 443–452.

(32) Smolensky, E. D., Peterson, K. L., Weitz, E. A., Lewandowski, C., and Pierre, V. C. (2013) Magnetoluminescent light switches - dual modality in DNA detection. *J. Am. Chem. Soc.* 135, 8966–8972.

(33) Weitz, E. A., Chang, J. Y., Rosenfield, A. H., and Pierre, V. C. (2012) A selective luminescent sensor for the time-gated detection of ATP. *J. Am. Chem. Soc.* 134, 16099–16102.

(34) Bobba, G., Bretonniere, Y., Frias, J. C., and Parker, D. (2003) Enantiomeric lanthanide complexes incorporating a tetrazatrithiophene-lensitizer and three naphthyl groups: exciton coupling, intramolecular energy transfer, efficient singlet oxygen formation and perturbation by DNA binding. *Org. Biomol. Chem.* 1, 1870–1872.

(35) Bobba, G., Dickins, R. S., Kean, S. D., Mathieu, C. E., Parker, D., Peacock, R. D., Siligardi, G., Smith, M. J., Gareth Williams, J. A., and Geraldes, C. F. G. C. (2001) Chiroptical, ESMS and NMR spectroscopic study of the interaction of enantiomeric lanthanide complexes with selected self-complementary dodecamer oligonucleotides. *J. Chem. Soc., Perkin Trans. 2*, 1729–1737.
(36) Bobba, G., Frias, J. C., and Parker, D. (2002) Highly emissive, nine-coordinate enantiopure lanthanide complexes incorporating tetrazatiphenylenes as probes for DNA. Chem. Commun., 890–891.

(37) Bobba, G., Kean, S. D., Parker, D., Beeby, A., and Baker, G. (2001) DNA binding studies of cationic lanthanide complexes bearing a phenanthridinium group. J. Chem. Soc., Perkin Trans. 2, 1738–1741.

(38) Cacheris, W. P., Quay, S. C., and Rocklage, S. M. (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn. Res. Imaging 8, 467–481.

(39) Herman, P., Kotek, J., Kubicek, V., and Lukes, I. (2008) Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans., 3027–3047.

(40) Wang, Z., Heon Lee, J., and Lu, Y. (2008) Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun., 6005–6007.

(41) Kovacs, Z., and Sherry, A. D. (1997) pH-controlled selective protection of polyaza macrocycles. Synthesis 1997, 759–763.

(42) Moreau, J., Guillon, E., Pierrard, J. C., Rimbault, J., Port, M., and Aplincourt, M. (2004) Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DOTA) - characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chem. — Eur. J. 10, 5218–5232.

(43) Magda, D., Wright, M., Crofts, S., Lin, A., and Sessler, J. L. (1997) Metal complex conjugates of antisense DNA which display ribozyme-like activity. J. Am. Chem. Soc. 119, 6947–6948.

(44) Holmen, R. E., Dandliker, P. J., and Barton, J. K. (1999) Synthesis of metallointercalator-DNA conjugates on a solid support. Bioconjugate Chem. 10, 1122–1130.

(45) Gaballah, S. T., Kerr, C. E., Eaton, B. E., and Netzel, T. L. (2002) Synthesis of S-(2,2′-bipyridinyl and 2,2′-bipyridinediiumyl)-2′-deoxyuridine nucleosides: precursors to metallo-DNA conjugates. Nucleosides Nucleotides Nucleic Acids 21, 547–560.

(46) Hara, K., Kitamura, M., and Inoue, H. (2004) Synthesis and hybridization studies on oligonucleotide-metal complex conjugates. Nucleic Acids Symp. Ser., 217–218.

(47) Ibara, T., Kitamura, Y., Okada, K., Tazaki, M., and Jyo, A. (2005) Asymmetric cooperativity in tandem hybridization of the DNA conjugates bearing chiral metal complexes. Nucleic Acids Symp. Ser., 229–230.

(48) Graf, N., Goritz, M., and Kramer, R. (2006) A metal-ion-releasing probe for DNA detection by catalytic signal amplification. Angew. Chem., Int. Ed. Engl. 45, 4013–4015.

(49) Kitamura, Y., Ibara, T., Tsujimura, Y., Osawa, Y., and Jyo, A. (2006) Colorimetric allele analysis based on the DNA-directed cooperative formation of luminous lanthanide complexes. Nucleic Acids Symp. Ser., 105–106.

(50) Dubey, I. Y., Dubey, L. V., Piletska, E. V., and Piletsky, S. A. (2007) Metal complexes of 1,4,7-triazacyclononane and their oligonucleotide conjugates as chemical nucleases. Ukrainska Bioorgan.-Ika Acta 5, 11–19.

(51) Andersen, C. S., Yan, H., and Gothelf, K. V. (2008) Bridging one helical turn in double-stranded DNA by templated dimerization of molecular rods. Angew. Chem., Int. Ed. Engl. 47, 5569–5572.

(52) Ghosh, S., Pignot-Paintrand, L., Dumy, P., and Defrancq, E. (2009) Design and synthesis of novel hybrid metal complex-DNA conjugates: key building blocks for multmetallic linear DNA nanoarrays. Org. Biomol. Chem. 7, 2729–2737.

(53) Ibara, T., Kitamura, Y., Tsujimura, Y., and Jyo, A. (2011) DNA analysis based on the local structural disruption to the duplexes carrying a luminous lanthanide complex. Anal. Sci. 27, 585–590.

(54) Hurtado, R. R., Harney, A. S., Heffern, M. C., Holbrook, R. J., Holmgren, R. A., and Meade, T. J. (2012) Specific inhibition of the transcription factor Ci by a cobalt(III) Schiff base-DNA conjugate. Mol. Pharmaceutics 9, 325–333.