Number of parity and the risk of non-Hodgkin lymphomas: a dose–response meta-analysis of observational studies

Peng Guo*, Guichuan Huang*, Lei Ren, Yu Chen and Quan Zhou

*Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China; bDepartment of Respiration, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China; cDepartment of Spinal Surgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China; dDepartment of Joint Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, China; eDepartment of Science and Education, The First People’s Hospital of Changde City, Changde, Hunan, China

ABSTRACT

Background: Epidemiological reports have shown that parity is associated with a risk of developing non-Hodgkin lymphomas (NHL). However, the findings have been inconsistent.

Methods: We searched the EMBASE and PubMed databases for eligible studies up to 10 March 2016. Category and generalized least square regression models were used to perform data analyses.

Results: In total, five cohort and seven case–control studies were identified. Categorical analyses indicated that parity number has little association with NHL and its subtypes. In dose–risk analyses, there were no relationships between parity and NHL risk (p for association = 0.064; n = 10). The summarized risk ratio (RR) was 0.97 (95% confidence interval (CI): 0.95–1.00; I² = 24.4%; P heterogeneity = 0.294; Power = 0.62) for each additional live birth. Similarly, for B-cell NHL, there was a null association between parity and NHL risk (p for association = 0.121; n = 5). The combined RR was 0.96 (95% CI = 0.90–1.03; I² = 63.7%; P heterogeneity = 0.026; Power = 0.71) for each additional live birth. For follicular NHL, there was still a non-significant association identified (p for association = 0.071; n = 4), the pooled RR was 1.00 (95% CI = 0.95–1.07; I² = 17.3%; P heterogeneity = 0.305; Power = 0.26) per additional live birth.

Conclusions: Our data identified little evidence suggesting that high parity is a protective factor against the development of NHL, including its B-cell and follicular subtypes.

Introduction

Non-Hodgkin lymphomas (NHL) are among the most common haematologic malignancies worldwide and have high-incidence rates in developed areas (the 10th highest in Europe and the UK) [1,2]. According to the most recent data from the International Agency for Research on Cancer (IARC), an estimated 385,700 new cases of NHL and 199,700 related deaths worldwide have occurred, corresponding to an incidence rate of 11.03 per 100,000 for men and 7.87 for women, with an upward trend [3].

In women, pregnancy involves dramatic alterations in oestrogen level, immune state and lifestyle, which may have a long-term influence on the prospective health of them [4–6]. Meanwhile, epidemiological studies [7] are increasingly focusing on whether reproductive factors among women may be related to a risk of developing NHL [5–8]. However, varying evidence has presented conflicting results. For example, in the California Teachers Study cohort, a 30% decreased risk of B-cell NHL associated with full-term pregnancies has been observed [8]. Similarly, a population-based cohort study in Taiwan has also found a protective role for each additional parity [9]. In contrast, though, data from the NIH-AARP Diet and Health Study Cohort have indicated null associations between NHL and parity in women [10]. In addition, an earlier systematic review [11] based on 7 studies has indicated a negative result. That review, however, did not include several relevant earlier studies [12–15], and the results were not based on a direct meta-analysis of the relationship between parity and NHL. Moreover, 2 additional large cohort studies have since been published [9,16].

Therefore, to further investigate the dose–risk relationships between parity and risk of NHL, we designed a systematic review and dose–response meta-analysis to summarize evidence from current individual studies.

Materials and methods

The meta-analysis methodology was designed following the Preferred Reporting Items for Systematic Reviews guidelines (PRISMA Checklists) for conducting meta-analyses of observational studies and reporting the results [17,18]. There were no ethical issues in...
obtaining the data derived from published articles for this meta-analysis [10].

Publication search

We performed a search of PubMed and EMBASE databases to identify relevant studies that contained information on the association between parity and NHL risk published up to 10 March 2016. The search was limited to studies carried out in humans, and the following key words and medical subject headings were used: (‘parity’ or ‘live birth’ or ‘pregnancy’ or ‘reproductive factor’ or ‘reproductive’ or ‘reproduction’) AND (‘non-Hodgkin lymphoma’ or ‘Hodgkin lymphoma’ or ‘Hodgkin’ or ‘lymphoma’ or ‘lymphoid neoplasms’ or ‘lymphadenoma’). In addition, we manually searched the reference lists of relevant articles, recent reviews and meta-analyses. No language restrictions were applied.

Eligibility criteria

The inclusion criteria for studies were: (1) cohort or case–control study design; (2) exposure of parity, and primary NHL as the outcome of interest; (3) reported risk ratio (RR) or odds ratio (OR) or hazard risk (HR) estimates and 95% confidence intervals (CI) for each category; and (4) at least three categories of parity number. Study selection was carried out independently by two reviewers (GP, HGC). Any disagreements were resolved by consensus or discussion with a third reviewer (ZQ).

Data collection

The following information was extracted from each study: author list, year of publication, study region, sample size (number of participants and cases), participants’ characteristics, range of follow-up studies, exposure ascertainment, multivariable-adjusted RR estimates with 95% CIs, and covariates adjusted in the variable analysis for data analysis. If multiple estimates were available, authors extracted the estimates that adjusted to the most covariates. Data extraction was conducted by one author (RL) and checked by a second reviewer (HGC). All disagreements were discussed and resolved by consensus.

Quality assessment

Quality assessment of observational studies was performed by using the Newcastle–Ottawa scale checklist [19]. Each included study was judged on the basis of three perspectives: the selection of study participants (four items), the comparability of studies based on the design or analysis (two items), and the evaluation of exposure in case–control studies or ascertained outcomes in cohort studies (three items). The checklist contained a total of nine items, and each item was awarded 1 point. A second reviewer (GP) also carefully checked the quality assessment.

Statistical analysis

We used Stata software (version 12.0; Stata Corp LP, TX, U.S.A.) to conduct statistical analyses. Two-sided tests were used, and p < 0.05 was regarded as statistically significant. For each study, RRs were applied to provide accurate estimates. Random-effects models were applied for data analysis [20].

Associations between the parity number and NHL risk were quantified by comparing the highest and lowest (the referent) categories. To use all of the exposure–disease information, including the intermediate categories, we performed a two-stage dose–response meta-analysis. For this procedure, we used the method described by Greenland [21,22] and Orsini [23,24]. Briefly, in the first stage, we modelled the parity number by using restricted cubic splines with a distribution of four knots at 5th, 35th, 65th, and 90th percentiles [25]. Next, three spline transformations were fitted in consideration of the correlation within each set of reported RRs [23]. In the second stage, we combined the 3 regression coefficients (4 knots minus 1) and variance matrices within each study by using multivariate extension method [16]. A p-value for the non-linear trend was calculated by testing the null hypothesis that the coefficient of the second spline was equal to zero. When non-linearity was not detected, we performed generalized linear meta-regressions [21]. For each of the included studies, we assigned the reported median or mean parity number of each category as the category parity number. When the highest category was open ended, we calculated its category number as the lower bound plus 1.5 times the width of the closest category [26]. The statistical power of the results was evaluated by the method of Hedges and Cafri [27,28].

Heterogeneity was estimated by using the Cochran Q test [29] and the I² statistic [30], which represents the proportion of total variation attributable to true between-study heterogeneity. I² values of 25, 50, and 75% are often used to classify low, moderate, and high heterogeneity, respectively [23]. A p-value <0.05 indicated statistical significance. Stratified analyses and meta-regression were conducted in consideration of the substantial effect of potentially significant covariates on between-study differences [30–32]. Sensitivity analysis was used to test the robustness of the results by omitting one study at a time [31,33]. Egger’s test was used to evaluate publication bias [34–36].

Results

Study identification and characteristics

The literature search process is displayed in a flow diagram in Figure 1. Briefly, using our search strategy, we initially scanned 6346 records. Then, after omitting
duplicate articles, 4316 articles remained. Upon reviewing titles and abstracts, we identified 28 studies for further retrieval. To obtain the final set of eligible studies, we completely read the full text of the remaining articles, ultimately selecting 12 reports that met eligibility criteria. No new studies were added in the data search. In addition, one study [13] provided data separately for men and women, so we treated the datasets as independent studies. Therefore, we included 13 datasets in the meta-analysis.

A description of characteristics is given in Table 1. All 13 datasets were published between 1997 and 2015, and cumulatively, they involved a total of 8307 cases and 3,624,662 participants. Five studies were cohort designs [8–10,14,16,37] whereas seven were case–controls [12–15,38–40]. In the cohort studies, sample sizes ranged from 134,074 [10] to 2,024,770 [16], and the number of cases varied from 91 [10] to 1,546 [16]. In case–control studies, cases ranged from 177 [14] to 1,240 [12], and subjects varied from 234 [34] to 6,237 [31]. Seven studies were conducted in the U.S.A. [8,10,14–16,37,39], four in Europe [12,13,38,40], and one in Asia [9]. Most studies [5,6,7,27,34,35] adjusted for important confounding factors, such as age, race, study design, location, subject sources, smoking and alcohol consumption. All studies yielded an average score of 6.2 in the quality assessment, and there was a good concordance between reviewers (Kappa test = 0.793; see Table 2).

Parity number and NHL risk

Nine studies encompassing 10 datasets [9,10,12,13,15,16,37–39] reported an association between parity and NHL risk. We first applied categorical data analysis. Comparing the highest and lowest parities, the pooled RR was 0.89 (95% CI = 0.79–1.01, \(p_{\text{for association}} = 0.064 \)), and low heterogeneity was observed (\(I^2 = 24.9\% \); \(p_{\text{heterogeneity}} = 0.215 \); Figure 2).

In a dose–response analysis, little evidence supported a non-linear association between the groups (\(p \) for the non-linearity test was 0.311; Figure 3). Using the linear regression model, a null association between parity number and NHL risk was found (\(p_{\text{for association}} = 0.083 \)). The combined RR of NHL for a one-parity increment was 0.97 (95% CI: 0.95–1.00; Power = 0.79) with moderate heterogeneity (\(I^2 = 57.8\% \); \(p_{\text{heterogeneity}} = 0.014 \)).

Parity number and B-cell NHL risk

Five studies [8,10,14,38,40] investigated the association between parity and risk of B-cell NHL. In a categorical data analysis, the combined RR for the highest vs. lowest categories of the parity number was 0.83 (95% CI = 0.57–1.21, \(p_{\text{for association}} = 0.338 \)), and moderate heterogeneity was found (\(I^2 = 61.8\% \); \(p_{\text{heterogeneity}} = 0.033 \); Figure 4).

In a dose–response analysis, little evidence supported a non-linear association between the groups (\(p \) for the non-linearity test was 0.275; Figure 5). Using the linear regression model, a null association was identified between the groups (\(p_{\text{for association}} = 0.121 \)). The linear regression model suggested that, compared with nulliparous subjects, the combined RR for an increase in parity of one live birth was 0.96 (95% CI: 0.90–1.03; Power = 0.71), and there was moderate heterogeneity (\(I^2 = 63.7\% \); \(p_{\text{heterogeneity}} = 0.026 \)).

Parity number and follicular NHL risk

Four studies [8,10,15,38] investigated the relationship of parity to follicular NHL risk. For the category analysis, the pooled RR of the highest numbers of total parity compared with those for the lowest category was 1.07 (95% CI = 0.76–1.50, \(p_{\text{for association}} = 0.702 \)), and there was no statistically significant heterogeneity observed among the studies (\(I^2 = 2.5\% \); \(p_{\text{heterogeneity}} = 0.380 \); Figure 6).

In a dose–response analysis, little evidence supported a non-linear association between the groups (\(p \) for the non-linearity test was 0.257). The linear regression model suggested that the association of parity with follicular NHL risk was still not statistically significant (\(p_{\text{for association}} = 0.071 \); Figure 7). As compared with null parity, the pooled RR for follicular NHL risk was 1.00 (95% CI: 0.95–1.07; Power = 0.26) per additional live birth, with moderate heterogeneity (\(I^2 = 17.3\% \); \(p_{\text{heterogeneity}} = 0.305 \)).
First author, publication year (reference), Country	Type	Study design	Cases and subjects/ (person-years)	Recruitment of time, age (year)	Number of parity	Effect estimates (95% CI)	Multi-adjusted factors	Multi-adjusted factors	NOS
Lee et al., 2008 [15], U.S.A.	NHL	Case–Control (Population based)	80/116 317/410 78/125 98/174	1988–1993, 21–74	Nulliparae 1–3	Reference	1.10 (0.81–1.50)	Race, marital status, years of education, lifetime average number of alcoholic drinks, lifetime number of sexual partners, obesity.	7
Frisch et al., 2006 [16], U.S.A., female	NHL	Cohort (Hospital based)	238/7010000 640/11530000 294/4480000 104/1450000	1968–1999, 15–44	1	Reference	1.10 (0.94–1.28)	Age, calendar period, marital status, age at birth of first child.	8
Frisch et al., 2006 [16], U.S.A., male	NHL	Cohort (Population based)	361/6320000 769/9660000 305/3600000	1968–1999, 15–64	1	Reference	0.96 (0.64–1.09)	Age, calendar period, marital status, age at birth of first child, registered homosexual partnership status.	8
Adami et al., 1997 [12], Swedish	NHL	Case–Control (Population based)	306/1450 557/2704 245/1421 90/457	1960–1990, 28–72	1	Reference	0.97 (0.82–1.14)	Age at diagnosis or enrolment and mutually for number of births and age at 1st birth.	7
Tavani et al., 1997 [13], Italy	NHL	Case–Control (Population based)	30/107 96/203 54/138 42/205	1983–1992, 17–79	1	Reference	1.40 (0.80–2.30)	Age, study centre	4
Cerhan et al., 2002 [37], U.S.A.	NHL	Cohort (Population based)	20/39706	1986–1998, 69.7 (mean)	Nulliparae 1–2	Reference	0.60 (0.33–1.10)	Marital status, farm residence, history of transfusion, diabetes, smoking, alcohol use, intake of red meat and fruit	6
Morton et al., 2009 [10], U.S.A.	NHL	Cohort (Population based)	53/102225 2873352 114185814 212341640	1996–2002, 42–50	Nulliparae 1	Reference	0.76 (0.48–1.20)	Age at baseline, race, education, menopausal status, use of oral contraceptives, calendar time	7
Mildon et al., 2010 [38], UK	NHL	Case–Control (Population based)	50/56 219/226 120/112	1998–2003, 16–69	Nulliparae 1–2	Reference	0.90 (0.60–1.40)	Age	5
Zhang et al., 2004 [39], U.S.A.	NHL	Case–Control (Population based)	71/72 78/79 161/174 96/118 180/258	1996–2000, 21–84	Nulliparae 1	Reference	1.10 (0.80–1.50)	Age, family history of non-Hodgkin's lymphoma, body mass index, menopausal status	6
Chen et al., 2015 [9], Taiwan	NHL	Cohort (Population based)	174/15124112 170/15683361	1978–2009, 30–55	1	Reference	1.0 (0.60–1.60)	Age at recruitment, parity, marital status, years of schooling, birth place	7
Costas et al., 2012 [40], European	B–NHL	Case–Control (Population based)	110/207 148/176 261/313 141/184	1998–2004, 60.6 (mean)	Nulliparae 1–3	Reference	0.77 (0.55–1.07)	Age, country, education	5
First author, publication year (reference), Country	Type	Study design	Cases and subjects/ (person-years)	Recruitment of time, age (year)	Number of parity	Effect estimates (95% CI)	Multi-adjusted factors	NOS	
--	------	--------------	-----------------------------------	-----------------------------	----------------	--------------------------	-----------------------	-----	
Nelson et al., 2001 [14], U.S.A. B–NHL	Case–Control (Population based)	24/28 17/23 42/35 36/29 58/62 43 112	1989–1992, 17–75 Nulliparae 1 2 3 ≥4	Oral contraceptive use, level of education, place of birth	Reference 1.14 (0.64–2.95) 1.77 (0.76–4.13) 1.83 (0.77–4.33) 1.51 (0.63–3.64)	6			
Mildon et al., 2010 [38], UK B–NHL	Case–Control (Population based)	26/56 82/226	1998–2003, 16–69 Nulliparae 1–2 ≥3	Age at baseline	Reference 1.20 (0.70–2.10) 1.77 (0.76–4.13) 1.83 (0.77–4.33) 1.51 (0.63–3.64)	5			
Morton et al., 2009 [10], U.S.A. B–NHL	Cohort (Population based)	10/105098 8/73285 29/185573 44/341171	1996–2002, 42–50 Nulliparae 1 2 ≥3	Age at baseline, race, education, menopausal status, use of oral contraceptives, calendar time	Reference 1.10 (0.70–1.70) 1.14 (0.45–2.90) 1.61 (0.78–3.29) 1.18 (0.59–2.35)	7			
Prescott et al., 2009 [8], U.S.A. B–NHL	Cohort (Population based)	29/266779 24/182735 37/351934 29/260357 32/242121	1995–1996, 33–92 Nulliparae 1 2 3	Age at menarche, full-term pregnancies, age at first pregnancy, first full-term pregnancy	Reference 0.97 (0.52–1.83) 0.74 (0.43–1.29) 0.70 (0.40–1.23) 0.74 (0.43–1.26)	6			
Lee et al., 2008 [15], U.S.A. FL	Case–Control (Population based)	20/116 104/410 22/125 26/714	1988–1993, 21–74 Nulliparae 1–3 4 ≥4	Race, marital status, years of education, lifetime average number of alcoholic drinks, lifetime number of sexual partners, obesity	Reference 1.40 (0.79–2.40) 0.89 (0.44–1.80) 0.77 (0.39–1.50)	7			
Morton et al., 2009 [10], U.S.A. FL	Cohort (Population based)	13/105109 7/173280 31/185562 54/341185 50/56 219/226 120/112	1996–2002, 42–50 Nulliparae 1 2 ≥3	Age at baseline, race, education, menopausal status, use of oral contraceptives, calendar time	Reference 0.77 (0.31–1.93) 1.35 (0.70–2.57) 1.28 (0.69–2.35)	7			
Mildon et al., 2010 [38], UK FL	Case–Control (Population based)	50/56 219/226 120/112	1998–2003, 16–69 Nulliparae 1–2 ≥3	Age at menarche	Reference 1.10 (0.80–1.50) 0.90 (0.60–1.40) 0.90 (0.60–1.40)	5			
Prescott et al., 2009 [8], U.S.A. FL	Cohort (Population based)	24/266779 17/182735 20/351934 24/260357 27/242121	1995–1996, 33–92 Nulliparae 1 2 3 ≥4	Age at menarche, full-term pregnancies, age at first pregnancy, first full-term pregnancy	Reference 0.82 (0.40–1.68) 0.67 (0.36–1.25) 0.79 (0.43–1.46) 0.87 (0.49–1.56)	6			

NHL = non-Hodgkin lymphoma; B–NHL = B-cell NHL; FL = Follicular NHL; CI = Confidence interval; NOS = Newcastle–Ottawa scale.
Study	Year	Representativeness of exposed cohort	Representativeness of unexposed cohort	Ascertainment of exposure	Outcome was not present at start	Important Factor	Additional factor	Outcome	Exposure Follow-up long enough for outcomes to occur	Adequacy of follow-up	Total score
Frisch	2006	1	1	1	1	1	0	1	1	1	8
Cerhan	2002	1	0	1	0	0	0	1	1	1	6
Morton	2009	1	0	1	1	1	0	1	1	1	7
Prescott	2009	1	0	1	1	1	0	1	1	1	6
Chen	2015	1	1	1	0	0	0	1	1	1	7

A. Cohort studies (n = 5)

Study	Year	Definition of cases	Representativeness of cases	Selection of controls	Definition of controls	Important Factor	Additional factor	Exposure	Asscertainment	Same method for subjects	Non-response rate	Total score
Lee	2008	1	1	1	1	0	1	0	1	1	1	7
Nelson	2001	1	1	1	1	0	0	1	1	1	1	6
Tavani	1997	0	1	0	1	1	0	0	1	0	1	4
Costas	2012	1	1	0	1	1	0	0	1	1	0	5
Adami	1997	1	1	1	1	1	1	1	1	1	0	7
Mildon	2010	1	1	0	0	1	1	0	1	1	0	5
Zhang	2004	1	1	1	1	1	0	0	1	1	0	6

*If the exposure data was obtained from prescription database or medical record, a point was assigned.
*If adjusted for age, a point was assigned.
*If adjusted for alcohol drinks and obesity, a point was assigned.
*If follow-up period is ≥6 years, a point was assigned.
*If the completeness of follow-up was 70% or more, a point was assigned.
Stratified and meta-regression analyses

To explore the potential source of statistical heterogeneity among the studies and to assess the stability of the results, two methods were used. For NHL RRs, data were stratified according to study design, location, type of subjects-based, quality score, exposure confirmation, and adjusted covariates (smoking and alcohol use). Table 3 presents the results of stratified analyses per additional live birth and NHL risk association. There were no substantial changes in the pooled RRs in each stratified analysis, and thus the association among them was stable. Moreover, the interaction test via meta-regression revealed no significant associations between subgroups \((p > 0.05) \). For B-cell and follicular NHL, we did not perform stratified analyses because of the

Figure 2. Forest plot of parity (highest vs. lowest) and NHL risk. Squares indicate study-specific RRs; horizontal lines indicate 95% CIs; diamond indicates the summary OR estimate with its 95% CI. CI: confidence interval; RR: risk ratios.

Figure 3. Analysis of the linear dose–response relationship between parity and NHL (RR). The solid and long dashed lines represent the linear estimated RR and its 95% CI (per one live birth increment).

Figure 4. Forest plot of parity (highest vs. lowest) and B-cell NHL risk. Squares indicate study-specific RRs; horizontal lines indicate 95% CIs; diamond indicates the summary RR estimate with its 95% CI. CI: confidence interval; RR: risk ratios.
tendency of limited samples to produce false positive results.

Sensitivity analyses

To further confirm the robustness of our results, we conducted several sensitivity analyses to test the influence of individual studies on the overall results. For NHL diseases, we applied a linear regression model to fit the association, re-evaluating summarized RRs of the remaining studies and omitting one single study at a time. After this analysis, the trends in the relationship of parity with the risk of developing NHL and its subtypes did not materially change. In addition, the range of the estimated effect did not exceed 0.1% (0.965–0.979), for NHL, B-cell and follicular NHL, respectively. Table 4 presents the results of sensitivity analyses.

Moreover, for NHL, the re-analysed RR estimate for each additional parity was 0.98 (95% CI = 0.96–1.00; $I^2 = 32.4\%$; $p_{\text{heterogeneity}} = 0.193$) after omission of the case–control designed studies [12,13,15,38].

Power analysis and publication bias

Power calculations were performed post hoc after all of the studies had been collected, by using the methodology described by Cafri et al. For the outcomes of NHL, B-cell and follicular NHL, a power of 79, 71, and 26 was determined to detect an RR = 0.78, 0.96 and 1.00 per additional live birth compared with null parity, respectively. The Egger’s test was used to assess publication bias. For NHL, no publication bias was observed among studies for the highest vs. lowest categories ($p_{\text{for bias}} = 0.761$) and per additional live birth ($p_{\text{for bias}} = 0.802$). For B-cell and follicular NHL, no evidence of publication bias was found via Egger’s test (data not shown).

Discussion

The current meta-analysis evaluated the potential association between parity number and NHL diseases based on five cohort and seven case–control studies with a pooled total of 8307 cases. Linear regression dose–response modelling revealed little evidence of a protective effect of parity on the risk of developing NHL, B-cell NHL and follicular NHL.

In our meta-analysis, for NHL, the findings of the current study were in line with those of most previous studies on this topic. For example, the results were similar to those reported in a systematic review [11] of three cohort and four case–control studies, although the detailed data of the meta-analysis have not been provided. Another pooled analysis [41] involving seven case–control studies also supports our findings. Further, the subgroup and sensitivity analyses showed consistent results, further supporting...
the conclusions. Larger samples yielded stronger results, owing to higher statistical power ($p = 0.79$) [31]. Although moderate heterogeneity was observed ($I^2 = 57.8\%; p = 0.014$), the test for interaction was not significant among subgroups. For B-cell NHL, we observed a non-significant reduced risk of B-cell NHL associated with parity per additional live birth (RR = 0.96, 95% CI = 0.90–1.03), which is in line with previous data [5,7,30,32,33], involving two large cohorts [5,7]. Sensitivity analysis showed robustness of the results, and we had 71% statistical power to detect a RR = 0.96 per additional live birth. For follicular NHL, the results should be treated with caution, owing to the limited number of original studies [5,7,27,30] that were included ($N = 4$), although sensitivity analysis showed stable results. More well-designed cohort studies are needed to confirm these findings.

A possible partial explanation for the null effect of parity on NHL risk is the diversity of the included studies, which may have influenced the real association. In epidemiological studies, adjusting for differences is crucial to the robustness of results, to avoid exaggeration or underestimation of risk estimates [16]. In the present meta-analysis, most study designs did not adequately control for important confounders, such as alcohol drinking [42], obesity [43] and education [4], although no statistically significant differences were observed in the subgroup analyses. Only one study considered the factor of family history of non-Hodgkin’s lymphoma. Unmeasured socioeconomic factors and lifestyles may also have contributed to heterogeneity, thus potentially affecting the results. Therefore, these residual confounding effects may have influenced the association between parity and NHL risk [4,16]. However, subject sources and selection of controls were not all community based. The study designs varied across all of the reviewed studies. Other variables such as geographic location and data collection methods may additionally have affected the association to some extent, although the related subgroup analyses yielded consistent directionality [28].

Several biological mechanisms may account for a possible link between parity and NHLs. With increasing parity, females have longer time exposure to high levels of varying oestrogen throughout their lives [9].

Table 3. Overall result and subgroup analyses of per one live birth on NHL risk.

	No. of reports	RR	95% CI	p for association	I^2, (%)	p for heterogeneity	p for heterogeneity
Overall studies	10	0.97	0.95–1.00	0.083	57.8	0.014	
Type of design							
Cohort	5	0.98	0.95–1.01	0.264	32.4	0.193	0.972
Case-control	5	0.95	0.91–1.00	0.031	57.5	0.070	
Geographic location							
U.S.A.	6	0.98	0.94–1.01	0.122	61.3	0.017	0.722
Europe	3	0.94	0.88–1.00	0.182	0.00	0.766	
Type of subjects							
Population	9	0.97	0.95–0.99	0.024	52.2	0.033	0.746
Hospital	1	0.98	0.87–1.10	0.853	0.00	0.000	
Exposure confirmation							
Self-reported	5	0.96	0.92–1.02	0.231	5.90	0.373	0.282
Direct-measurement	5	0.97	0.95–1.00	0.021	67.3	0.016	
Study quality							
NOS ≥ 7	5	0.98	0.96–1.01	0.063	37.6	0.155	0.529
NOS < 7	5	0.95	0.91–0.99	0.001	27.6	0.245	
Adjustment for education							
Yes	2	0.99	0.91–1.08	0.008	37.2	0.129	0.739
No	8	0.97	0.95–0.99	0.057	76.1	0.040	
Adjustment for smoking							
Yes	2	0.97	0.95–1.00	0.068	0.00	0.506	0.311
No	8	0.96	0.92–1.01	0.104	56.3	0.025	
Adjustment for obesity							
Yes	3	0.96	0.93–0.98	0.142	25.3	0.107	0.871
No	7	0.97	0.95–1.00	0.010	40.8	0.020	

CI = Confidence interval; RR = Risk ratio; NOS = Newcastle–Ottawa scale; RR = relative risk.

a p value for association.

b p value for heterogeneity within each subgroup.

c p value for heterogeneity between subgroups with meta-regression analysis.
Basic research has suggested that hormones can cyclically reverse cytokine profile expression; that is, the Th1 cytokine pattern is inhibited while Th2 is enhanced [5]. The cytokine imbalances may disrupt the differential expression of Th1 and Th2, because some cytokines play a key role in Th1 and Th2 expression [40]. Moreover, IL13 polymorphisms of the Th2 pathway have been found to increase the risk of lymphoma for AG/AA and CT/TT genotypes, OR = 2.6, 95% (CI 1.2–5.5) [44]. In addition, genetic variations causing a shift of the Th1/Th2 response may play a vital role in the pathogenesis of NHL [45]. Other studies, however, have suggested that oestrogen inhibits secretion of IL-6, which has been suggested to be a growth factor in lymphoma [6,46], and that excessive progesterone indirectly stimulates production of B-cell antibodies [47,48], which defend against intracellular pathogens and cancerous cells. Thus, there is a lack of biological explanations for the potential role of parity in NHL risk. We suspect that both harmful and protective factors play important roles in the course of NHL development, but the two counteracting mechanisms most probably cancel each other out. This effect may explain the apparent absence of an association.

Our meta-analysis has some strengths. First, we explored the dose-risk relationships by using different models, in contrast to all previous studies on this topic. Second, to the best of our knowledge, this is the first meta-analysis directly investigating the association between higher parity and NHL risk, and in particular, its two most common subtypes. Third, a comprehensive and detailed literature search along with the inclusion of more cohort studies made our results more reliable. Additionally, the dose-risk, sensitivity, stratified and power analyses yielded adequate findings, thus increasing the overall validity of our results.

Our study also has some limitations. First, a portion of the identified studies comprised case–control designs, and most of the information was based on self-reporting [33]. However, a recall bias could not be ruled out, although there was no general awareness of a potential relationship between parity and NHL diseases. Second, most of the studies [5,7,30,32] did not control for important confounding risk factors, such as virus, family history of NHL, and smoking [7]; our results should be accepted with a cautious understanding. Thus, more well-designed cohorts are needed to confirm our findings. Third, it has been reported that inconsistencies persist when parity is examined by NHL histologic subtypes [49]. However, only a limited number of published studies met the criteria for inclusion in this meta-analysis. The real relationship could not be adequately assessed because of an insufficient number of samples. Fourth, there were seven studies [5,7,27,31,32,34,35] from the U.S.A., four studies [28,29,30,33] from Europe, and only one study [6] from Asia. Most of the participants in the included studies were non-Asian, and thus the results of our meta-analysis may not be applicable to Asians [26,31]. The extrapolation of these data to Asian samples should be performed with caution. Finally, as in any meta-analysis, the possibility of publication bias is a concern. However, the results from this study did not provide evidence for such a bias.

Conclusions

In summary, this dose–response meta-analysis suggests that parity is not significantly associated with the risk of NHL, including B-cell and follicular NHL. More prospective well-controlled cohort studies are needed to fully elucidate these associations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Note on contributors

Peng Guo is a general surgery doctor and works in Renmin Hospital of Hubei University of Medicine. He has a master degree in Hubei University of Medicine. His main research contribution is his clinical practice in the hepatobiliary and pancreatic surgery. In addition, his interests are dose–response systematic review and meta-analysis in epidemiological research. He has collaborated in research projects in the field of dose–response methodology and participated in the

Table 4. Relative risk with 95% CI of number of parity at per one live birth in comparison with null parity by omitting each article in sensitivity analysis for NHL, B-cell NHL and follicular NHL.

Study for NHL	Per one live birth	RR	95%CI	p*	p**
Adami 1997 [12]	0.97	0.96–0.99	0.068	0.384	
Tavani 1997 [13]	0.97	0.96–1.00	0.114	0.400	
Cerhan 2002 [37]	0.97	0.95–1.00	0.041	0.367	
Zhang 2004 [39]	0.98	0.96–1.00	0.121	0.324	
Frisch 2006 female [16]	0.97	0.95–0.98	0.198	0.216	
Frisch 2006 male [16]	0.98	0.96–1.00	0.048	0.624	
Lee 2008 [15]	0.98	0.96–0.99	0.096	0.235	
Morton 2009 [10]	0.98	0.95–1.01	0.131	0.217	
Mildon 2010 [38]	0.97	0.95–0.99	0.115	0.521	
Chen 2015 [9]	0.98	0.96–1.00	0.043	0.165	
Case–Control [12,13,15,38,39]	0.98	0.96–1.00	0.193	0.753	

Study for B-cell NHL	Per one live birth	RR	95%CI	p*	p**
Nelson 2001 [14]	0.95	0.88–1.02	0.011	0.095	
Costas 2012 [40]	0.99	0.94–1.04	0.093	0.535	
Mildon 2010 [38]	0.95	0.88–1.02	0.024	0.145	
Morton 2009 [10]	0.96	0.89–1.04	0.039	0.103	
Prescott 2009 [8]	0.97	0.89–1.06	0.003	0.054	

Study for follicular NHL	Per one live birth	RR	95%CI	p*	p**
Mildon 2010 [38]	0.99	0.93–1.05	0.306	0.761	
Morton 2009 [10]	0.99	0.92–1.07	0.203	0.820	
Lee 2008 [15]	1.02	0.93–1.12	0.514	0.916	
Prescott 2009 [8]	1.03	0.96–1.10	0.170	0.113	

Note: NHL = non-Hodgkin lymphomas; RR = Relative risk; CI = Confidence interval.

*p values for heterogeneity test.

p values for non-linear test.
development of ‘Reporting Guideline for Dose-Response Meta-Analysis (Chinese Version)’.

Guo P, Xu C, Zhou Q, et al. Number of parity and the risk of non-Hodgkin’s lymphoma in women. J Clin Oncol. 2001;19(5):1381–1387.

Lee J, Bracci PM, Holly EA. Non-Hodgkin lymphoma in women: reproductive factors and exogenous hormone use. Am J Epidemiol. 2008;168(3):278–288.

Frisch M, Pedersen BV, Wohlfahrt J, et al. Reproductive patterns and non-Hodgkin lymphoma risk in Danish women and men. Eur J Epidemiol. 2006;21(9):673–679.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.

Xu C, Zeng XT, Liu TZ, et al. Fruits and vegetables intake and risk of bladder cancer: a PRISMA-compliant systematic review and dose-response meta-analysis of prospective cohort studies. Medicine. 2015;94(17):e759.

Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. 2011. Available from: www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10.

Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–1309.

Orsini N. Multivariate dose-response meta-analysis: an update on gIst. Nordic and Baltic Users Group meeting, Stockholm, Sweden, 2013. Available from: www.stata.com/meeting/nordic-and-baltic13/abstract.

Orsini N, Li R, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66–73.

Orsini N. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. 2011;11(1):1–29.

Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2005;6(1):40–57.

Guo P, Xu C, Zhou Q, et al. Number of parity and the risk of gallbladder cancer: a systematic review and dose-response meta-analysis of observational studies. Arch Gynecol Obstet. 2015;295(1):1087–1096.

Hedges LV, Pigott TD. The power of statistical tests in meta-analysis. Psychol Methods. 2001;6(3):203–217.

Cafri G, Kromrey JD, Brannick MT. A SAS macro for statistical power calculations in meta-analysis. Behav Res Methods. 2009;41(1):35–46.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.

Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557–560.

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from: www.cochrane-handbook.org.

Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29(12):1282–1297.

Zhou Q, Luo ML, Li H, et al. Coffee consumption and risk of endometrial cancer: a dose-response meta-analysis of prospective cohort studies. Sci Rep. 2015;5:13410.
Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315(7109):629–634.

Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–1101.

Peters JL, Sutton AJ, Jones DR, et al. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat Med. 2007;26(25):4544–4562.

Cerhan JR, Habermann TM, Vachon CM, et al. Menstrual and reproductive factors and risk of non-Hodgkin lymphoma: The Iowa Women’s Health Study (United States). Cancer Causes Control. 2002;13(2):131–136.

Mildon KH, Ansell P, Roman E, et al. Reproductive factors, menopausal hormone therapy, and risk of non-Hodgkin, diffuse large B-cell and follicular lymphomas: A UK case-control study. Cancer Causes Control. 2010;21(12):2079–2083.

Zhang Y, Holford TR, Leaderer B, et al. Menstrual and reproductive factors and risk of non-Hodgkin’s lymphoma among connecticut women. Am J Epidemiol. 2004;160(8):766–773.

Costas L, Casabonne D, Benavente Y, et al. Reproductive factors and lymphoid neoplasms in Europe: findings from the EpLymph case-control study. Cancer Causes Control 2012;23(1):195–206.

Kane EV, Roman E, Becker N, et al. Menstrual and reproductive factors, and hormonal contraception use: Associations with non-hodgkin lymphoma in a pooled analysis of interlymph case-control studies. Ann Oncol. 2012;23(9):2362–2374.

Schleip KC, Zarek SM. Alcohol intake, reproductive hormones, and menstrual cycle function: a prospective cohort study. Am J Clin Nutr. 2015;102(4):933–942.

Kelly JL, Fredericksen ZS, Liebow M, et al. The association between early life and adult body mass index and physical activity with risk of non-Hodgkin lymphoma: impact of gender. Ann Epidemiol. 2012;22(12):855–862.

Zhu G, Pan D, Zheng T, et al. Polymorphisms in Th1/Th2 cytokine genes, hormone replacement therapy, and risk of non-Hodgkin lymphoma. Front. Oncol. 2011;1(21):1–10.

Lan Q, Zheng T, Rothman N, et al. Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood. 2006;107(10):4101–4108.

Rachon D, Mysliwska J, Suchecka-Rachon K, et al. Effects of oestrogen deprivation on interleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J Endocrinol. 2002;172(2):387–395.

Yakimchuk K, Irvani M, Hasni MS, et al. Effect of ligand-activated estrogen receptor beta on lymphoma growth in vitro and in vivo. Leukemia. 2011;25(7):1103–1110.

Yakimchuk K, Hasni S, Guan J, et al. Lymphomas as estrogen-related diseases—possible target for estrogen receptor B agonist treatment. Hematol Oncol. 2013;31:262–263.

Suarez F, Lecuit M. Infection-associated non-Hodgkin lymphomas. Clin Microbiol Infect. 2015;21(11):991–997.