Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory

Hooman Moradpour1* and Ines. G. Salako2,3,4†

1Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran
2African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg, 7945, South Africa
3Institut de Mathématiques et de Sciences Physiques (IMSP), Université de Porto-Novo, 01 BP 613 Porto-Novo, Bénin
4Département de Physique, Université d’Agriculture de Kétou, BP 13 Kétou, Bénin

The restrictions on the Rastall theory due to apply the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

I. INTRODUCTION

For the first time, Jacobson could use thermodynamics to derive the Einstein field equations1. The Bekenstein entropy is the backbone of the Jacobson’s approach confirming that the Einstein theory corresponds with the Bekenstein entropy1. Generalization of his approach to $f(R)$ gravity shows that the terms other than the Einstein tensor in the gravitational field equations produce entropy and therefore modify the Bekenstein limit of the horizon entropy2. In fact, such terms and thus their corresponding entropy production terms are the signals of the non-equilibrium thermodynamic aspects of spacetime2.

In order to study the mutual relation between gravity and thermodynamics, we need a proper energy definition, and it seems that the generalization of the Misner-Sharp mass in various theories is a suitable candidate for this aim3–10. It is also shown that, in various gravitational theory, if the gravitational field equations are considered as the first law of thermodynamics, then we can find an expression for the horizon entropy in the spherically symmetric static spacetimes7–10. This approach is used to investigate the mutual relation between the gravitational field equations and the system thermodynamic properties, such as entropy etc., in various gravitational theories11–23. In all of the above mentioned attempts11–23, authors have only studied theories in which geometry and matter fields are coupled to each other in a minimal way, and therefore, the energy-momentum conservation law is met in their studies. In fact, in their studies, the system lagrangian is equal to the sum of the its constitutes lagrangian including the geometry and the matter fields.

Rastall24 and curvature-matter coupling25–29 theories are two gravitational theories in which geometry and matter fields are coupled to each other in a non-minimal way. In these theories, the lagrangian of a gravitational system is not only a simple sum of the geometry and the matter fields lagrangians29, 31. For these theories, the energy-momentum conservation law is not always valid, and in fact, the divergence of the energy-momentum tensor is proportional with the derivative of Ricciscalar. This mutual relation between the divergence of the energy-momentum tensor and Ricciscalar is the backbone of the Rastall theory allowing a flux of energy between the energy-momentum source and the geometry. The Rastall hypothesis also modifies the Einstein field equations, a result that increases the hopes to describe the current phase of the universe expansion31. From classical point of view, the Rastall’s theory may be supported by the matter production process in the cosmos32–35. The mutual relation between the Rastall cosmology and thermodynamics has recently been studied36. More studies on this theory can also be found in Refs.37–51.

Here, we are interested in studying the mutual relation between the thermodynamics first law and the Rastall field equations. In fact, we want to study the effects of the Rastall hypothesis on the thermodynamic properties of

* h.moradpour@riaam.ac.ir
† inessalako@gmail.com
the spherically symmetric static spacetimes. In order to achieve this goal, generalizing the Misner-Sharp mass of the spherically symmetric static spacetimes to Rastall theory, we find an expression for the horizon entropy of the spherically symmetric static spacetimes. We also compare the thermodynamic quantities of system, including energy, entropy and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system. The \(G = \hbar = c = 1 \) units are considered in this paper.

The paper is organized as follows. In the next section, after referring to the Rastall theory and the Newtonian limit constraints on this theory parameters, we use the unified first law of thermodynamics together with the zero-zero component of the Rastall field equations to find the Misner-Sharp mass confined to an event horizon of the static spherically symmetric spacetimes. Thereinafter, in the third section, recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we find an expression for the horizon entropy. The comparison of the obtained thermodynamic quantities with their counterparts in the Einstein general relativity is also addressed in this section. The last section is devoted to concluding remarks.

II. RASTALL FIELD EQUATIONS AND THE MISNER-SHARP MASS

For the Rastall’s original field equations, we have \[24\]

\[T_{\mu\nu} = \lambda R_{\mu\nu} , \]

which finally leads to

\[G_{\mu\nu} + \kappa \lambda g_{\mu\nu} \Gamma = \kappa T_{\mu\nu} , \]

where \(\lambda \) and \(\kappa \) are the Rastall’s parameter and Rastall’s gravitational coupling constant, respectively. As Rastall has been shown \[24\], this equation leads to \(R(4\kappa\lambda - 1) = T \), indicating that, since \(T \) is not always zero, the \(\kappa \lambda = \frac{1}{4} \) case is not allowed in this theory. Besides, it is also shown that if we use the Newtonian limit and define the Rastall dimensionless parameter \(\gamma = \kappa \lambda \), then for the Rastall gravitational coupling constant \((\kappa) \) and the Rastall original parameter \((\lambda) \) we have

\[\kappa = \frac{4\gamma - 1}{6\gamma - 1} 8\pi, \quad \lambda = \frac{\gamma(6\gamma - 1)}{(4\gamma - 1)8\pi} , \]

indicating that the Einstein result \((\kappa = 8\pi) \) is obtainable in the appropriate limit \(\lambda = 0 \) which is parallel to the \(\gamma = 0 \) limit \[51\]. It is useful to mention here that as this equation shows, since the Rastall gravitational coupling constant diverges at \(\gamma = \frac{1}{4} \), the \(\gamma = \frac{1}{4} \) case is not also allowed. Finally, the Rastall’s field equations can be written as \[51\]

\[G_{\mu\nu} + \gamma g_{\mu\nu} R = \frac{4\gamma - 1}{6\gamma - 1} 8\pi T_{\mu\nu} , \]

which leads to \(R(6\gamma - 1) = 8\pi T \) meaning that, in agreement with \[8\], the \(\gamma = \kappa \lambda = \frac{1}{6} \) case is not allowed in this theory. Moreover, as it is obvious from \[8\], \(\lambda \) diverges at \(\gamma = \frac{1}{4} \), and thus, the \(\gamma = \frac{1}{4} \) case is not also allowed. Therefore, Newtonian limit indicates that, in fact, both the \(\gamma = \frac{1}{4} \) and \(\gamma = \frac{1}{6} \) cases are not allowed. In order to study the mutual relation between the first law of thermodynamics and the Rastall field equations, we need to generalize the Misner-Sharp energy in this theory \[8,9\]. It is worthwhile mentioning that one can either use the conserved charge method or the unified first law of thermodynamics in order to find the Misner-Sharp mass in a gravitational theory \[8,9\]. Here, since we are interested in having a fully thermodynamic analysis, we use the unified first law of thermodynamics to obtain an expression for the Misner-Sharp mass. Consider a spherically symmetric static spacetime, with a horizon located at \(r_h \), described by

\[ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2 . \]

(5)

and filling by a source of \(T_{\mu\nu} \), the work density and energy supply vector are defined as

\[W = \frac{f_{ab}T_{ab}}{2} \quad \text{and} \quad \Psi_a = T^b_a \partial_b r + W \partial_a r , \]

(6)

respectively. In the above equations, \(d\Omega^2 \) is the line element on the two-dimensional sphere with radius \(r \), and \(h_{ab} \) is metric on the two-dimensional hypersurface of \((t, r) \). In order to generalize the Misner-Sharp mass definition to the
Rastall theory, we follow the approach of [6], and assume that the unified first law of thermodynamics (UFL) is valid meaning that

\[dE \equiv A\Psi_a dx^a + WdV, \]

in which \(x^a \) denotes the coordinate on a two-dimensional hypersurface of metric \(h_{ab} \), and \(A \) is the area of the system boundary and therefore \(A = 4\pi r^2 \). It is straightforward to show that

\[dE = \rho (4\pi r^2) dr. \]

Using the zero-zero component of Eq. (4) in rewriting this equation, we obtain

\[dE = \frac{6\gamma - 1}{2(4\gamma - 1)}[(1 - 2\gamma)(1 - \frac{d(rf(r))}{dr}) + \gamma \frac{d(r^2f'(r))}{dr}]dr, \]

which finally leads to

\[E = \frac{(6\gamma - 1)r}{2(4\gamma - 1)}[(1 - 2\gamma) - f(r)) + \gamma rf'(r)], \]

where \(t \) denotes derivative with respect to \(r \), for the energy confined to the radius \(r \). In obtaining this result, we used \(rf'(r) = \frac{d(rf(r))}{dr} - f(r) \). For a black hole with an event horizon located at \(r_h \), since \(f(r_h) = 0 \), we find

\[E = \frac{6\gamma - 1}{2(4\gamma - 1)}[(1 - 2\gamma)r_h + \gamma r_h^2 f'(r_h)]. \]

In fact, it is the Misner-Sharp mass content confined to the mentioned horizon in the Rastall framework. The above equation can also be written as \(E = E_0(1 + \Gamma) \), where

\[E_0 = \frac{r_h}{2}, \]

\[\Gamma = \frac{\gamma}{4\gamma - 1}[(6\gamma - 1)r_h f'(r_h) + 4(1 - 3\gamma)]. \]

It is also worthwhile mentioning that, in the \(\gamma \to 0 \) limit, we have \(\tilde{E} \equiv E_0\Gamma \to 0 \) leading to \(E \to E_0 \) which is nothing but the Misner-Sharp mass content of the Einstein theory [3], meaning that, as expected, the Einstein result is recovered in the appropriate limit of \(\gamma \to 0 \). The \(E_0\Gamma \) term comes from the Rastall original hypothesis (1) that admits a mutual energy exchange between spacetime and energy-momentum source supporting the geometry. A hypothesis which leads to coupling the geometry and matter fields to each other in a non-minimal way and thus, leads to the covariantly non-conservation of Rastall gravity. As two examples, calculations for the value of \(\Gamma \) in the Schwarzschild and de-Sitter spacetimes lead to

\[f(r) = 1 - \frac{2m}{r} \rightarrow r_h = 2m \Rightarrow \Gamma_{sch} = \frac{3\gamma(1 - 2\gamma)}{4\gamma - 1}, \]

\[f(r) = 1 - \frac{\Lambda r^2}{r} \rightarrow r_h = \frac{1}{\sqrt{\Lambda}} \Rightarrow \Gamma_{deS} = -6\gamma, \]

respectively. Finally, it is worthwhile mentioning that, in order to have positive energy, we should have \(\Gamma \geq -1 \) leading to the \(r_h f'(r_h) \leq \frac{1 + 4\gamma(3\gamma - 2)}{\gamma(6\gamma - 1)} \) condition for the Rastall dimensionless parameter.

III. HORIZON ENTROPY

Here, following the approach of Ref. [7], we recast the one-one component of the Rastall field equations to the form of the first law of thermodynamics and use the result of previous section to get the horizon entropy. The one-one component of (4) yields

\[G_1^1 + \gamma R = \frac{4\gamma - 1}{6\gamma - 1} 8\pi T_1^1, \]
where \(T^1_1 \equiv P(r) \) is the radial pressure of the energy-momentum source \(\tilde{S} \), and therefore, it finally takes the form

\[
P(r) = \frac{6 \gamma - 1}{(4 \gamma - 1) 8 \pi} \left(\frac{1}{r^2} \right) \left[r f'(r) - 1 + f(r) \right] - \frac{\gamma}{r^2} \left[r^2 f''(r) + 4 r f'(r) - 2 + 2 f(r) \right],
\]

(15)

Here, prime \((\prime)\) denotes the derivative with respect to radius \((r)\). On the event horizon, \(f(r_h) = 0 \) and therefore,

\[
P(r_h) = \frac{6 \gamma - 1}{(4 \gamma - 1) 8 \pi} \left(\frac{1}{r_h^2} \right) [r_h f'(r_h) - 1] - \frac{\gamma}{r_h^2} \left[r_h^2 f''(r_h) + 4 r_h f'(r_h) - 2 \right].
\]

(16)

Multiplying this equation by \(dV = 4 \pi r_h^2 dr_h \), one gets

\[
P(r_h) dV = \frac{6 \gamma - 1}{4 \gamma - 1} \frac{f'(r_h)}{4 \pi} d \left(\frac{A}{4} \right) - \frac{6 \gamma - 1}{2(4 \gamma - 1)} dr_h \left[1 + \gamma (r_h^2 f''(r_h) + 4 r_h f'(r_h) - 2) \right],
\]

(17)

where \(A = 4 \pi r_h^2 \). For the second term of the RHS of this equation we reach

\[
\frac{6 \gamma - 1}{2(4 \gamma - 1)} \left[1 + \gamma (r_h^2 f''(r_h) + 4 r_h f'(r_h) - 2) \right] dr_h = \frac{6 \gamma - 1}{2(4 \gamma - 1)} \left[(1 - 2 \gamma) dr_h + \gamma d(r_h^2 f'(r_h)) + 2 r_h f'(r_h) dr_h \right].
\]

(18)

Now, bearing the \(f(r_h) = 0 \) condition in mind, since \(r_h f'(r_h) = \left(\frac{d [f(r_h)]}{dE} \right)_{r=r_h} \), one can simplify the RHS of the recent equation and take integral from that to get (11). Therefore, Eq. (17) can be written as follow

\[
P(r_h) dV = \frac{6 \gamma - 1}{4 \gamma - 1} \frac{f'(r_h)}{4 \pi} d \left(\frac{A}{4} \right) - dE.
\]

(19)

Since \(T = f'(r_h)/4 \pi \) is the horizon temperature, comparing this equation with the first law of thermodynamics \((PdV =TdS - dE)\) \(\tilde{S} \), one gets \(dS = \frac{6 \gamma - 1}{4 \gamma - 1} d \left(\frac{A}{4} \right) \) which finally leads to

\[
S = \left(1 + \frac{2 \gamma}{4 \gamma - 1} \right) S_0,
\]

(20)

where \(S_0 = \frac{A}{4} \) is the Bekenstein entropy, for the horizon entropy. It is now obvious that, in the \(\gamma \to 0 \) limit, we have \(\tilde{S} \equiv \frac{2 \pi r_h}{r_h^2} S_0 \to 0 \), and thus the Einstein result (the Bekenstein entropy) is recovered. Indeed, as authors have been shown in Refs. \(2, 7, 11 \), terms other than the Einstein tensor in modified gravities modify the Bekenstein limit of the system entropy in agreement with our result \((\tilde{S}) \). In addition, since entropy is a positive quantity, the Rastall dimensionless parameter should meet either \(\gamma < \frac{1}{6} \) or \(\gamma > \frac{1}{4} \). Here, the energy-momentum conservation law is not valid and therefore, the energy and entropy terms differ from those of the Einstein theory \(\tilde{S} \). In order to have a better view about our results, we compare our results with those of the Einstein theory \(\tilde{E} \). Bearing the \(\tilde{S} \) and \(\tilde{E} \) definitions in mind, one can rewrite Eq. (19) as

\[
P(r_h) dV = T dS_0 - dE_0 + (T d\tilde{S} - d\tilde{E}).
\]

(21)

\(T dS_0 - dE_0 \equiv dW_0 \) is the amount of work done during apply the hypothetical displacement \(dr_h \) to the horizon in the Einstein framework \(\tilde{E} \). Therefore, if we decompose the work term \((P(r_h) dV)\) as \(P(r_h) dV = d\tilde{W} + dW_0 \), then we reach

\[
d\tilde{W} \equiv P(r_h) dV - dW_0 = T d\tilde{S} - d\tilde{E},
\]

(22)

which denotes the additional work done in the Rastall theory in comparison with the Einstein theory. Finally, it is also useful to mention here that, as a desired result, in the absence of the Rastall term \((\lambda = \gamma = 0)\), we have \(d\tilde{S} = d\tilde{E} = d\tilde{W} = 0 \) meaning that the Einstein result is recovered \(\tilde{E} \).

IV. CONCLUDING REMARKS

We saw that the Rastall theory of either \(\gamma = \frac{1}{6} \) or \(\gamma = \frac{1}{4} \) is not allowed due to the fact that the Newtonian limit should be satisfied by the Rastall theory. Additionally, we used the unified first law of thermodynamics as well as the zero-zero component of the Rastall field equations to generalize the Misner-Sharp mass of the static spherically symmetric spacetimes to the Rastall theory.
Moreover, bearing the obtained Misner-Sharp mass in mind, we started from the one-one component of the Rastall field equations, and rewrote it as the first law of thermodynamics which helped us in finding an expression for the horizon entropy in this theory. Our study shows that the term other than the Einstein tensor in the gravitational field equations, the Rastall term ($\gamma g_{\mu\nu}R$), modifies the Bekenstein limit. We also compared the obtained thermodynamic quantities, including entropy, energy and work, with their counterparts in the Einstein case to have a better view about the obtained quantities. As we saw, in the $\gamma = \lambda = 0$ limit, the results of the Einstein theory are obtainable.

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

We are so grateful to the respected referee for valuable comments and hints. The work of H. Moradpour has been supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM) under research project No.1/4165-5. Ines. G. Salako thanks African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg, 7945, South Africa for partial support.

[1] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[2] C. Eling, R. Guedens, T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006).
[3] C. M. Misner, D. H. Sharp, Phys. Rev. B 136, 571 (1964).
[4] H. Maeda, Phys. Rev. D 73, 104004 (2006).
[5] H. Maeda, M. Nozawa, Phys. Rev. D 77, 064031 (2008).
[6] R. G. Cai, L. M. Cao, Y. P. Hu, N. Ohta, Phys. Rev. D 80, 104016 (2009).
[7] A. Paranjape, S. Sarkar, T. Padmanabhan, Phys. Rev. D 74, 104015 (2006).
[8] T. Padmanabhan, Rept. Prog. Phys. 73, 046901 (2010).
[9] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010).
[10] T. Padmanabhan, Phys. Rev. D 81, 124040 (2010).
[11] M. Akbar, R. G. Cai, Phys. Lett. B 648, 243 (2007).
[12] M. Akbar, R. G. Cai, Phys. Lett. B 635, 7 (2006).
[13] M. Akbar, R. G. Cai, Phys. Rev. D 75, 084003 (2007).
[14] R. G. Cai, L. M. Cao, Phys. Rev. D 75, 064008 (2007).
[15] R. G. Cai, L. M. Cao, Nucl. Phys. B 785, 135 (2007).
[16] A. Sheykhi, B. Wang, R. G. Cai, Nucl. Phys. B 779, 1 (2007).
[17] A. Sheykhi, B. Wang, R. G. Cai, Phys. Rev. D 76, 023515 (2007).
[18] A. Sheykhi, J. Cosmol. Astropart. Phys. 05, 019 (2009).
[19] A. Sheykhi, Eur. Phys. J. C 69, 265 (2010).
[20] A. Sheykhi, Class. Quantum. Gravit. 27, 025007 (2010).
[21] R. G. Cai, N. Ohta, Phys. Rev. D 81, 084061 (2010).
[22] A. Sheykhi, Phys. Rev. D 87, 024022 (2013).
[23] A. Sheykhi, M. H. Dehghani, R. Dehghani, Gen. Relativ. Gravit. 46, 1679 (2014).
[24] P. Rastall, Phys. Rev. D 6, 3357 (1972).
[25] S. Nojiri, S. D. Odintsov, Phys. Lett. B 599, 137 (2004).
[26] G. Allemandi, A. Borowiec, M. Francaviglia, S. D. Odintsov, Phys. Rev. D 72, 063505 (2005).
[27] T. Koivisto, Class. Quant. Grav. 23, 4289 (2006).
[28] O. Bertolami, C. G. Boehmer, T. Harko, F. S. N. Lobo, Phys. Rev. D 75, 104016 (2007).
[29] T. Harko, F. S. N. Lobo, Galaxies, 2, 410 (2014).
[30] L. L. Smalley, Il Nuovo Cimento B, 80, 1, 42 (1984).
[31] C. E. M. Batista, M. H. Daouda, J. C. Fabris, O. F. Piattella, D. C. Rodrigues, Phys. Rev. D 85, 084008 (2012).
[32] G. W. Gibbons, S. W. Hawking, Phys. Rev. D 15, 2738 (1977).
[33] L. Parker, Phys. Rev. D 3, 346 (1971); D 3, 2546 (1971).
[34] L. H. Ford, Phys. Rev. D 35, 2955 (1987).
[35] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
[36] H. Moradpour, Phys. Lett. B 757, 187 (2016).
[37] A. M. Oliveira, H. E. S. Velten, J. C. Fabris, L. Casarini, Phys. Rev. D 92, 044020 (2015).
[38] C. E. M. Batista, J. C. Fabris, O. F. Piattella, A. M. Velasquez-Toribio, Eur. Phys. J. C 73, 2425 (2013)
[39] J. C. Fabris, O. F. Piattella, D. C. Rodrigues, M. H. Daouda, arXiv:1403.5669v1
[40] T. R. P. Caramês, M. H. Daouda, J. C. Fabris, A. M. Oliveira, O. F. Piattella, V. Strokov, Eur. Phys. J. C 74, 3145 (2014)
[41] T. Carams, J. C. Fabris, O. F. Piattella, V. Strokov, M. H. Daouda, A. M. Oliveira, arXiv:1503.04882v1
[42] J. C. Fabris, O. F. Piattella, D. C. Rodrigues, C. E. M. Batista, M. H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)
[43] J. P. Campos, J. C. Fabris, R. Perez, O. F. Piattella, H. Velten, Eur. Phys. J. C 73, 2357 (2013)
[44] J. C. Fabris, M. H. Daouda, O. F. Piattella, Phys. Lett. B 711, 232 (2012)
[45] J. C. Fabris, arXiv:1208.4649v1
[46] I. G. Salako, A. Jawad, Astrophys. Space. Sci. 46, 359 (2015)
[47] G. F. Silva, O. F. Piattella, J. C. Fabris, L. Casarini, T. O. Barbosa, Gravitation and Cosmology, 19, 156 (2013)
[48] M. Capone, V. F. Cardone, M. L. Ruggiero, Journal of Physics: Conference Series, 222, 012012 (2010).
[49] Ph. Brax, C. van de Bruck, A. Davis, arXiv:0706.1024 (2007).
[50] E. R. Bezerra de Mello, J. C. Fabris, B. Hartmann, Class. Quantum Grav. 32, 085009 (2015).
[51] H. Moradpour, N. Sadeghnezhad, arXiv:1606.00846