PERFECTNESS OF KIRILLOV–RESHETIKHIN CRYSTALS FOR NONEXCEPTIONAL TYPES

GHISLAIN FOURIER, MASATO OKADO, AND ANNE SCHILLING

Abstract. For nonexceptional types, we prove a conjecture of Hatayama et al. about the prefectness of Kirillov–Reshetikhin crystals.

1. Introduction

Kirillov–Reshetikhin (KR) crystals $B^{r,s}$ are finite affine crystals corresponding to finite-dimensional $U'_q(g)$-modules [3, 4], where g is an affine Kac–Moody algebra. Recently, a lot of progress has been made regarding these crystals which appear in mathematical physics and the path realization of affine highest weight crystals [12]. In [19, 20] it was shown that the KR crystals exist and in [5] combinatorial realizations for these crystals were provided for all nonexceptional types. In this paper, we prove a conjecture of Hatayama et al. [7, Conjecture 2.1] about the perfectness of KR crystals.

Conjecture 1.1. [7, Conjecture 2.1] The Kirillov-Reshetikhin crystal $B^{r,s}$ is perfect if and only if $\frac{s}{c_r}$ is an integer with c_r as in Table 1. If $B^{r,s}$ is perfect, its level is $\frac{s}{c_r}$.

In [13], this conjecture was proven for type $A_n^{(1)}$, for $B_{1,s}$ for nonexceptional types (except for type $C_n^{(1)}$), for $B_{n-1,s}$, B_n, s of type $D_n^{(1)}$, and B_n, s for types $C_n^{(1)}$ and $D_{n+1}^{(2)}$. When the highest weight is given by the highest root, level-1 perfect crystals were constructed in [1]. For $1 \leq r \leq n-2$ for type $D_n^{(1)}$, $1 \leq r \leq n-1$ for type $B_n^{(1)}$, and $1 \leq r \leq n$ for type $A_{2n-1}^{(2)}$, the conjecture was proved in [21]. The case $G_2^{(1)}$ and $r = 1$ was treated in [23] and the case $D_4^{(3)}$ and $r = 1$ was treated in [15]. Naito and Sagaki [17] showed that the conjecture holds for twisted algebras, if it is true for the untwisted simply-laced cases.

In this paper we prove Conjecture 1.1 in general for nonexceptional types.

Theorem 1.2. If g is of nonexceptional type, Conjecture 1.1 is true.

The paper is organized as follows. In Section 2 we give basic notation and the definition of perfectness in Definition 2.1. In Section 3 we review the realizations of the KR crystals of nonexceptional types as recently provided in [5]. Section 4 is reserved for the proof of Theorem 1.2 and an explicit description of the minimal elements $B_{min}^{r,c_r,s}$ of the perfect crystals. Several examples for KR crystals of type $C_3^{(1)}$ are given in Section 5.

Date: November 2008.
2. Definitions and perfectness

We follow the notation of [11, 5]. Let \mathcal{B} be a $U_q'(\mathfrak{g})$-crystal [14]. Denote by α_i and Λ_i for $i \in I$ the simple roots and fundamental weights and by c the canonical central element associated to \mathfrak{g}, where I is the index set of the Dynkin diagram of \mathfrak{g} (see Table 2). Let $P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i$ be the weight lattice of \mathfrak{g} and P^+ the set of dominant weights. For a positive integer ℓ, the set of level-ℓ weights is

$$
P_\ell^+ = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \},
$$

where $\text{lev}(\Lambda) := \Lambda(c)$. The set of level-0 weights is denoted by P_0.

We denote by $f_i, e_i : \mathcal{B} \rightarrow \mathcal{B} \cup \{ \emptyset \}$ for $i \in I$ the Kashiwara operators and by $\text{wt} : \mathcal{B} \rightarrow P$ the weight function on the crystal. For $b \in \mathcal{B}$ we define $\varepsilon_i(b) = \max \{ k \mid e_i^k(b) \neq \emptyset \}$, $\varphi_i(b) = \max \{ k \mid f_i^k(b) \neq \emptyset \}$, and

$$
\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i.
$$

Next we define perfect crystals, see for example [10].

Definition 2.1. For a positive integer $\ell > 0$, a crystal \mathcal{B} is called perfect crystal of level ℓ, if the following conditions are satisfied:

1. \mathcal{B} is isomorphic to the crystal graph of a finite-dimensional $U_q'(\mathfrak{g})$-module.
2. $\mathcal{B} \otimes \mathcal{B}$ is connected.
3. There exists a $\lambda \in P_0$, such that $\text{wt}(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and there is a unique element in \mathcal{B} of classical weight λ.
4. $\forall b \in \mathcal{B}, \ \text{lev}(\varepsilon(b)) \geq \ell$.

(c_1, \ldots, c_n)	$A_n^{(1)}$	$(1, \ldots, 1)$
$B_n^{(1)}$	$(1, \ldots, 1, 2)$	
$C_n^{(1)}$	$(2, \ldots, 2, 1)$	
$D_n^{(1)}$	$(1, \ldots, 1)$	
$A_{2n-1}^{(2)}$	$(1, \ldots, 1)$	
$A_{2n}^{(2)}$	$(1, \ldots, 1)$	
E_{n+1}	$(1, \ldots, 1)$	

Table 1. List of c_r
Table 2. Dynkin diagrams

(5) \(\forall \Lambda \in P_\ell^+, \) there exist unique elements \(b_\Lambda, b^\Lambda \in B, \) such that
\[
\varepsilon(b_\Lambda) = \Lambda = \phi(b^\Lambda).
\]

We denote by \(B_{\text{min}} \) the set of minimal elements in \(B, \) namely
\[
B_{\text{min}} = \{ b \in B \mid \text{lev}(\varepsilon(b)) = \ell \}.
\]

Note that condition (5) of Definition 2.1 ensures that \(\varepsilon, \phi : B_{\text{min}} \to P_\ell^+ \) are bijections. They induce an automorphism \(\tau = \varepsilon \circ \phi^{-1} \) on \(P_\ell^+. \)

In [21, 5] \(\pm \)-diagrams were introduced, which describe the branching \(X_n \to X_{n-1} \)
where \(X_n = B_n, C_n, D_n. \) A \(\pm \)-diagram \(P \) of shape \(\Lambda/\lambda \) is a sequence of partitions \(\lambda \subseteq \mu \subseteq \Lambda \) such that \(\Lambda/\mu \) and \(\mu/\lambda \) are horizontal strips (i.e. every column contains at most one box). We depict this \(\pm \)-diagram by the skew tableau of shape \(\Lambda/\lambda \) in which the cells of \(\mu/\lambda \) are filled with the symbol \(+ \) and those of \(\Lambda/\mu \) are filled with the symbol \(- \). There are further type specific rules which can be found in [5, Section 3.2]. There exists a bijection \(\Phi \) between \(\pm \)-diagrams and \(X_{n-1} \)-highest weight vectors.

3. Realization of KR-crystals

Throughout the paper we use the realization of \(B^{r,s} \) as given in [5, 20, 21]. In this section we briefly recall the main constructions.

3.1. KR crystals of type \(A_n^{(1)} \). Let \(\Lambda = \ell_0\Lambda_0 + \ell_1\Lambda_1 + \cdots + \ell_n\Lambda_n \) be a dominant weight. Then the level is given by
\[
\text{lev}(\Lambda) = \ell_0 + \cdots + \ell_n.
\]
A combinatorial description of $B^{r,s}$ of type $A_{n}^{(1)}$ was provided by Shimozono [22]. As a $\{1,2,\ldots,n\}$-crystal

$$B^{r,s} \cong B(s\Lambda_{r}).$$

The Dynkin diagram of $A_{n}^{(1)}$ has a cyclic automorphism $\sigma(i) = i + 1 \pmod{n + 1}$ which extends to the crystal in form of the promotion operator. The action of the affine crystal operators f_{0} and e_{0} is given by

$$f_{0} = \sigma^{-1} \circ f_{1} \circ \sigma \quad \text{and} \quad e_{0} = \sigma^{-1} \circ e_{1} \circ \sigma.$$

3.2. KR crystals of type $D_{n}^{(1)}$, $B_{n}^{(1)}$, $A_{2n-1}^{(2)}$. Let $\Lambda = \ell_{0}\Lambda_{0} + \ell_{1}\Lambda_{1} + \cdots + \ell_{n}\Lambda_{n}$ be a dominant weight. Then the level is given by

$$\text{lev}(\Lambda) = \ell_{0} + \ell_{1} + 2\ell_{2} + 2\ell_{3} + \cdots + 2\ell_{n-2} + \ell_{n-1} + \ell_{n} \quad \text{for type } D_{n}^{(1)}$$

$$\text{lev}(\Lambda) = \ell_{0} + \ell_{1} + 2\ell_{2} + 2\ell_{3} + \cdots + 2\ell_{n-2} + \ell_{n-1} + \ell_{n} \quad \text{for type } B_{n}^{(1)}$$

$$\text{lev}(\Lambda) = \ell_{0} + \ell_{1} + 2\ell_{2} + 2\ell_{3} + \cdots + 2\ell_{n-2} + \ell_{n-1} + 2\ell_{n} \quad \text{for type } A_{2n-1}^{(2)}.$$

We have the following realization of $B^{r,s}$. Let $X_{n} = D_{n}, B_{n}, C_{n}$ be the classical subalgebra for $D_{n}^{(1)}$, $B_{n}^{(1)}, A_{2n-1}^{(2)}$, respectively.

Definition 3.1. Let $1 \leq r \leq n - 2$ for type $D_{n}^{(1)}$, $1 \leq r \leq n - 1$ for type $B_{n}^{(1)}$, and $1 \leq r \leq n$ for type $A_{2n-1}^{(2)}$. Then $B^{r,s}$ is defined as follows. As an X_{n}-crystal

(3.1)

$$B^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda),$$

where the sum runs over all dominant weights Λ that can be obtained from $s\Lambda_{r}$ by the removal of vertical dominoes. The affine crystal operators e_{0} and f_{0} are defined as

(3.2)

$$f_{0} = \sigma \circ f_{1} \circ \sigma \quad \text{and} \quad e_{0} = \sigma \circ e_{1} \circ \sigma,$$

where σ is the crystal automorphism defined in [21, Definition 4.2].

Definition 3.2. Let $B_{n}^{(s)}_{A_{2n-1}^{(2)}}$ be the $A_{2n-1}^{(2)}$-KR crystal. Then $B^{r,s}$ of type $B_{n}^{(1)}$ is defined through the unique injective map $S : B^{r,s} \to B_{n}^{(s)}_{A_{2n-1}^{(2)}}$ such that

$$S(e_{i}b) = e_{i}^{m_{i}}S(b), \quad S(f_{i}b) = f_{i}^{m_{i}}S(b) \quad \text{for } i \in I,$$

where $(m_{i})_{0 \leq i \leq n} = (2,2,\ldots,2,1)$.

In addition, the \pm-diagrams of $A_{2n-1}^{(2)}$ that occur in the image are precisely those which can be obtained by doubling a \pm-diagram of $B^{r,s}$ (see [5, Lemma 3.5]). S induces an embedding of dominant weights of $B_{n}^{(1)}$ into dominant weights of $A_{2n-1}^{(2)}$, namely $S(\Lambda) = m_{i}\Lambda_{i}$. It is easy to see that for any $\Lambda \in P^{+}$ we have $\text{lev}(S(\Lambda)) = 2\text{lev}(\Lambda)$.

For the definition of $B^{r,s}$ and $B^{r-1,s}$ of type $D_{n}^{(1)}$, see for example [5, Section 6.2].
3.3. **KR crystal of type** $C_n^{(1)}$. The level of a dominant $C_n^{(1)}$ weight $\Lambda = \ell_0\Lambda_0 + \cdots + \ell_n\Lambda_n$ is given by

$$\text{lev}(\Lambda) = \ell_0 + \cdots + \ell_n.$$

We use the realization of $B^{r,s}$ as the fixed point set of the automorphism σ [21 Definition 4.2] (see Definition 3.1) inside $B_{A_{2n+1}^{(2)}}^{r,s}$ of [5] Theorem 5.7.

Definition 3.3. For $1 \leq r < n$, the KR crystal $B^{r,s}$ of type $C_n^{(1)}$ is defined to be the fixed point set under σ inside $B_{A_{2n+1}^{(2)}}^{r,s}$ with the operators

$$e_i = \begin{cases} e_0e_1 & \text{for } i = 0, \\ e_{i+1} & \text{for } 1 \leq i \leq n, \end{cases}$$

where the Kashiwara operators on the right act in $B_{A_{2n+1}^{(2)}}^{r,s}$. Under the crystal embedding $S : B^{r,s} \rightarrow B_{A_{2n+1}^{(2)}}^{r,s}$ we have

$$\Lambda_i \mapsto \begin{cases} \Lambda_0 + \Lambda_1 & \text{for } i = 0, \\ \Lambda_{i+1} & \text{for } 1 \leq i \leq n. \end{cases}$$

Under the embedding S, the level of $\Lambda \in P^+$ doubles, that is $\text{lev}(S(\Lambda)) = 2\text{lev}(\Lambda)$. For $B^{r,s}$ of type $C_n^{(1)}$ we refer to [5] Section 6.1.

3.4. **KR crystals of type** $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$. Let $\Lambda = \ell_0\Lambda_0 + \ell_1\Lambda_1 + \cdots + \ell_n\Lambda_n$ be a dominant weight. The level is given by

$$\text{lev}(\Lambda) = \ell_0 + 2\ell_1 + 2\ell_2 + \cdots + 2\ell_{n-2} + 2\ell_{n-1} + 2\ell_n$$

for type $A_{2n}^{(2)}$

$$\text{lev}(\Lambda) = \ell_0 + 2\ell_1 + 2\ell_2 + \cdots + 2\ell_{n-2} + 2\ell_{n-1} + \ell_n$$

for type $D_{n+1}^{(2)}$.

Define positive integers m_i for $i \in I$ as follows:

$$m_0, m_1, \ldots, m_{n-1}, m_n = \begin{cases} (1, 2, \ldots, 2, 2) & \text{for } A_{2n}^{(2)}, \\ (1, 2, \ldots, 2, 1) & \text{for } D_{n+1}^{(2)}. \end{cases}$$

Then $B^{r,s}$ can be realized as follows.

Definition 3.4. For $1 \leq r \leq n$ for $g = A_{2n}^{(2)}$, $1 \leq r < n$ for $g = D_{n+1}^{(2)}$ and $s \geq 1$, there exists a unique injective map $S : B_{6}^{r,s} \rightarrow B_{C_{n+1}^{(2)}}^{r,2s}$ such that

$$S(e_i b) = e_i^{m_i} S(b), \quad S(f_i b) = f_i^{m_i} S(b)$$

for $i \in I$.

The \pm-diagrams of $C_n^{(1)}$ that occur in the image of S are precisely those which can be obtained by doubling a \pm-diagram of $B^{r,s}$ (see [5] Lemma 3.5). S induces an embedding of dominant weights for $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$ into dominant weights of type $C_n^{(1)}$, with $S(\Lambda_i) = m_i\Lambda_i$. This map preserves the level of a weight, that is $\text{lev}(S(\Lambda)) = \text{lev}(\Lambda)$.

For the case $r = n$ of type $D_{n+1}^{(2)}$ we refer to [5] Definition 6.2.
For type $A_n^{(1)}$, perfectness of $B^{r,s}$ was proven in \cite{13}. For all other types, in the case that $\frac{\alpha}{\tau}$ is an integer, we need to show that the 5 defining conditions in Definition 2.1 are satisfied:

1. This was recently shown in \cite{20}.
2. This follows from \cite{6} Corollary 6.1 under \cite{6} Assumption 1. Assumption 1 is satisfied except for type $A_n^{(2)}$. The regularity of $B^{r,s}$ is ensured by (1). The existence of an automorphism σ was proven in \cite{6} Section 7, and the unique element $u \in B^{r,s}$ such that $\varepsilon(u) = s\Lambda_0$ and $\varphi(u) = s\Lambda_\nu$ (where $\nu = 1$ for r odd for types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$; $\nu = r$ for $A_n^{(1)}$, and $\nu = 0$ otherwise) is given by the classically highest weight element in the component $B(0)$ for $\nu = 0$, $B(s\Lambda_1)$ for $\nu = 1$, and $B(s\Lambda_r)$ for $\nu = r$. Note that $\Lambda_0 = \tau(\Lambda_\nu)$, where $\tau = \varepsilon \circ \varphi^{-1}$. For type $A_n^{(2)}$, perfectness follows from \cite{17}.
3. The statement is true for $\lambda = s(\Lambda_r - \Lambda_s(c)\Lambda_0)$, which follows from the decomposition formulas \cite{2} \cite{8} \cite{9} \cite{18}.

Conditions (4) and (5) will be shown in the following subsections using case by case considerations: Section 4.1 for type $A_n^{(1)}$, Sections 4.2, 4.3, and 4.4 for types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$, Sections 4.5 and 4.6 for type $C_n^{(1)}$, Section 4.7 for type $A_n^{(2)}$, and Sections 4.8 and 4.9 for type $D_n^{(2)}$.

When $\frac{\alpha}{\tau}$ is not an integer, we show in the subsequent sections that the minimum of the level of $\varepsilon(b)$ is the smallest integer exceeding $\frac{\alpha}{\tau}$, and provide examples that contradict condition (5) of Definition 2.1 for each crystal, thereby proving that $B^{r,s}$ is not perfect. In the case that $\frac{\alpha}{\tau}$ is an integer, we provide an explicit construction of the minimal elements of $B^{r,s}$.

4.1. Type $A_n^{(1)}$. It was already proven in \cite{13} that $B^{r,s}$ is perfect. We give below its associated automorphism τ and minimal elements. τ on P is defined by

$$\tau\left(\sum_{i=0}^{n} k_i \Lambda_i\right) = \sum_{i=0}^{n} k_i \Lambda_{i-r \mod n+1}.$$

Recall that $B^{r,s}$ is identified with the set of semistandard tableaux of $r \times s$ rectangular shape over the alphabet $\{1, 2, \ldots, n+1\}$. For $b \in B^{r,s}$ let $x_{ij} = x_{ij}(b)$ denote the number of letters j in the i-th row of b for $1 \leq i \leq r, 1 \leq j \leq n+1$. Set $r' = n + 1 - r$, then

$$x_{ij} = 0 \quad \text{unless} \quad i \leq j \leq i + r'.$$

Let $\Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i$ be in P^+_s, that is, $\ell_0, \ell_1, \ldots, \ell_n \in \mathbb{Z}_{\geq 0}, \sum_{i=0}^{n} \ell_i = s$. Then $x_{ij}(b)$ of the minimal element b such that $\varepsilon(b) = \Lambda$ is given by

$$x_{ij} = \ell_0 + \sum_{\alpha = i}^{r-1} \ell_{\alpha + r'},$$

$$x_{ij} = \ell_{j-i} \quad (i < j < i + r'),$$

$$x_{ij} = \sum_{\alpha = 0}^{i-1} \ell_{\alpha + r'}$$

for $1 \leq i \leq r$.

4.2. Types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$. Conditions (4) and (5) of Definition 2.1 for $1 \leq r \leq n - 2$ for type $D_n^{(1)}$, $1 \leq r \leq n - 1$ for type $B_n^{(1)}$, and $1 \leq r \leq n$ for type $A_{2n-1}^{(2)}$ were shown in [21, Section 6]. We briefly review the construction of the minimal elements here since they are important in the construction of the minimal elements for type $C_n^{(1)}$.

To a given fundamental weight Λ_k we may associate the following \pm-diagram

\[
\begin{array}{c}
\emptyset \quad \text{if } r \text{ is even and } k = 0 \\
\pm \quad \text{if } r \text{ is even and } k = 1 \\
\pm \quad \text{if } r \text{ is odd and } k = 0 \\
\pm \quad \text{if } r \text{ is odd and } k = 1 \\
k+1 \begin{cases}
\pm \quad \text{if } k \not\equiv r \mod 2 \text{ and } 2 \leq k \leq r
\end{cases}
\end{array}
\]

This map can be extended to any dominant weight $\Lambda = \ell_0 \Lambda_0 + \cdots + \ell_n \Lambda_n$ by concatenating the columns of the \pm-diagrams of each piece.
To every fundamental weight Λ_k we also associate a string of operators f_i with $i \in \{2, 3, \ldots, n\}$ as follows. Let $T(\Lambda_k)$ be the tableau assigned to Λ_k as

$$
T(\Lambda_k) = \begin{cases}
 u & \text{if } r \text{ is even and } k = 0 \\
 1 & \text{if } r \text{ is even and } k = 1 \\
 1 & \text{if } r \text{ is odd and } k = 0 \\
 k & \text{if } r \text{ is odd and } k = 1 \\
 2 & \text{if } 2 \leq k \leq r \text{ and } k \not\equiv r \mod 2 \\
 1 & \text{if } 2 \leq k \leq r \text{ and } k \equiv r \mod 2 \\
 \vdots & \vdots \\
 1 & k \\
 n & \pi \\
 0 & \text{previous case with } n \leftrightarrow \pi \\
 r & \text{for } k = n - 1 \text{ for type } D_n^{(1)} \\
 r & \text{for } k = n \text{ for type } B_n^{(1)}
\end{cases}
$$

Then $f(\Lambda_k)$ for $0 \leq k \leq n$ is defined such that $T(\Lambda_k) = f(\Lambda_k)\Phi(\text{diagram}(\Lambda_k))$, where Φ is the bijection between \pm-diagrams and X_{n-1}-highest weight elements (see [21 5]). Note that in fact $f(\Lambda_0) = f(\Lambda_1) = 1$.

The minimal element b in $B_{\sigma'}^{r,s}$ that satisfies $\varepsilon(b) = \Lambda$ can now be constructed as follows

$$
b = f(\Lambda_n)^{r_n} \cdots f(\Lambda_2)^{r_2}\Phi(\text{diagram}(\Lambda)).$$

From the condition that $\text{wt}(b) = \varphi(b) - \varepsilon(b)$ it is not hard to see that $\varphi(b) = \varepsilon(b)$ for $b \in B_{\sigma'}^{r,s}$ and r even. For r odd, we have $\varphi(b) = \sigma \circ \sigma' \circ \varepsilon(b)$ for $b \in B_{\min}^{r,s}$, where σ is the Dynkin diagram automorphism interchanging nodes 0 and 1, σ' is
the Dynkin diagram automorphism interchanging nodes 2 and 3 for type $D_3^{(1)}$, and σ' is the identity for type $B_2^{(1)}$ and $A_2^{(2)}$. Hence, for $\Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i \in P^+$, we have

$$\tau(\Lambda) = \begin{cases}
\Lambda & \text{if } r \text{ is even}, \\
\ell_0 \Lambda_1 + \ell_1 \Lambda_0 + \sum_{i=2}^{n} \ell_i \Lambda_i & \text{if } r \text{ is odd}, \\
\ell_0 \Lambda_1 + \ell_1 \Lambda_0 + \sum_{i=2}^{n} \ell_i \Lambda_i + \ell_{n-1} \Lambda_n + \ell_n \Lambda_{n-1} & \text{if } r \text{ is odd, type } D_n^{(1)}.
\end{cases}$$

4.3. Type $D_n^{(1)}$ for $r = n - 1, n$. The cases when $r = n, n - 1$ for type $D_n^{(1)}$ were treated in [3]. We will give the minimal elements below. Since B_n and B_{n-1} are related via the Dynkin diagram automorphism interchanging Λ_n and Λ_{n-1}, we only deal with B_n. As a D_n-crystal it is isomorphic to $B(s \Lambda_n)$. There is a description of an element in terms of semistandard tableau of $n \times s$ rectangular shape with letters from the alphabet $A = \{1, 2, \ldots, n, \pi, \ldots, \}$ with partial order

$$1 < 2 < \cdots < n - 1 < \frac{n}{n} < \frac{n-1}{n} < \cdots < \frac{1}{n}.$$

Moreover, each column does not contain both k and \overline{k}. Let c_i be the ith column. Then the number of barred letters in c_i is even, and the action of $c_i f_i (i = 1, \ldots, n)$ is calculated through that of $c_i \circ \cdots \circ c_1$ of $B(\Lambda_n)$. With this realization the minimal element b_Λ such that $v(b_\Lambda) = \Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i$ ($\ell_i \in \mathbb{Z}_{\geq 0}, \text{lev}(\Lambda) = s$) is given as follows. Let $x_{ij} (1 \leq i \leq n, j \in A)$ be the number of j in the ith row. $x_{ij} = 0$ unless $i \leq j \leq n - i + 1$. The other x_{ij} of b_Λ is given by

$$x_{11} = \ell_0 + \ell_2 + \ell_3 + \cdots + \ell_{n-2} + \begin{cases}
\ell_{n-1} & \text{for } n \text{ even}, \\
\ell_n & \text{for } n \text{ odd},
\end{cases}$$

$$x_{ij} = \ell_{j-1} (2 \leq j \leq n - 1), \quad (x_{1n}, x_{n\overline{n}}) = \begin{cases}
(0, \ell_n) & \text{for } n \text{ even}, \\
(\ell_{n-1}, 0) & \text{for } n \text{ odd},
\end{cases}$$

if $2 \leq i \leq n - 1$,

$$x_{ii} = \ell_0 + \ell_2 + \ell_3 + \cdots + \ell_{n-i}, \quad x_{ij} = \ell_{j-i} (i + 1 \leq j \leq n - 1),$$

$$(x_{in}, x_{\overline{n}i}) = \begin{cases}
(\ell_{n-i} + \ell_{n-i+1}, 0) & n - i \text{ even}, \\
(0, \ell_{n-i} + \ell_{n-i+1}) & n - i \text{ odd},
\end{cases}$$

$$x_{i\overline{j}} = \ell_{2n+1-i-j} (n - i + 3 \leq j \leq n - 1), \quad x_{i\overline{n-i+2}} = \begin{cases}
\ell_{n-1} & n \text{ even}, \\
\ell_n & n \text{ odd},
\end{cases}$$

$$x_{i\overline{n-i+1}} = \ell_{n-i+1} + \ell_{n-i+2} + \cdots + \ell_{n-2} + \begin{cases}
\ell_n & n \text{ even}, \\
\ell_{n-1} & n \text{ odd},
\end{cases}$$

and

$$x_{nn} = \ell_0, \quad x_{n\overline{n}} = 0, \quad x_{n\overline{j}} = \ell_{n+1-j} (3 \leq j \leq n - 1),$$

$$x_{n\overline{1}} = \begin{cases}
\ell_{n-1} & n \text{ even}, \\
\ell_n & n \text{ odd},
\end{cases} \quad x_{n\overline{1}} = \ell_1 + \ell_2 + \cdots + \ell_{n-2} + \begin{cases}
\ell_n & n \text{ even}, \\
\ell_{n-1} & n \text{ odd}.\n\end{cases}$$
The automorphism \(\tau \) is given by
\[
\tau \left(\sum_{i=0}^{n} \ell_i \Lambda_i \right) = \ell_0 \Lambda_{n-1} + \ell_1 \Lambda_n + \sum_{i=2}^{n-2} \ell_i \Lambda_{n-i} + \begin{cases}
\ell_{n-1} \Lambda_0 + \ell_n \Lambda_1 & n \text{ even}, \\
\ell_{n-1} \Lambda_1 + \ell_n \Lambda_0 & n \text{ odd}.
\end{cases}
\]

4.4. Type \(B_n^{(1)} \) for \(r = n \). In this section we consider the perfectness of \(B_n^{r,s} \) of type \(B_n^{(1)} \).

Proposition 4.1. We have
\[
\min \{ \text{lev}(\varepsilon(b)) \mid b \in B_n^{2s+1} \} \geq s + 1,
\]
\[
\min \{ \text{lev}(\varepsilon(b)) \mid b \in B_n^{2s} \} \geq s.
\]

Proof. Suppose, there exists an element \(b \in B_n^{2s+1} \) with \(\text{lev}(\varepsilon(b)) = p < s + 1 \). Since \(B_n^{2s+1} \) is embedded into \(B_n^{2s+1,1} \) by Definition 3.2, this would yield an element \(\tilde{b} \in B_n^{2s+1} \) with \(\text{lev}(\tilde{b}) < 2s + 1 \). But this is not possible, since \(B_n^{2s+1,1} \) is a perfect crystal of level \(2s + 1 \).

Suppose there exists an element \(b \in B_n^{2s} \) with \(\text{lev}(\varepsilon(b)) = p < s \). By the same argument one obtains a contradiction to the level of \(B_n^{2s} \).

Hence to show that \(B_n^{2s+1} \) is not perfect, it is enough to provide two elements \(b_1, b_2 \in B_n^{2s+1,1} \) which are in the realization of \(B^{r,s} \) under \(S \) and satisfy \(\varepsilon(b_1) = \varepsilon(b_2) = \lambda \), where \(\text{lev}(\lambda) = 2s + 2 \).

Proposition 4.2. Define the following elements \(b_1, b_2 \in B_n^{2s+1,1} \): For \(n \) odd, let \(P_1 \) be the \(\pm \)-diagram corresponding to one column of height \(n \) with a \(+ \), and \(2s \) columns of height \(1 \) with \(- \) signs, and \(P_2 \) the analogous \(\pm \)-diagram but with a \(- \) in the column of height \(n \). Set \(\tilde{a} = (n(n-1)^2n(n-2)^2(n-1)^2n \ldots 2^2 \ldots (n-1)^2n) \) and
\[
b_1 = f_{\tilde{a}}(\Phi(P_1)) \quad \text{and} \quad b_2 = f_{\tilde{a}}(\Phi(P_2)).
\]

For \(n \) even, replace the columns of height \(1 \) with columns of height \(2 \) and fill them with \(\pm \)-pairs. Then \(b_1, b_2 \in S(B_n^{2s+1}) \) and \(\varepsilon(b_1) = \varepsilon(b_2) = 2s \Lambda_1 + \Lambda_n \), which is of level \(2s + 2 \).

Proof. It is clear from the construction that the \(\pm \)-diagrams corresponding to \(b_1 \) and \(b_2 \) can be obtained by doubling a \(B_n^{(1)} \) \(\pm \)-diagram (see [3] Lemma 3,5)). Hence \(\Phi(P_1), \Phi(P_2) \in S(B_n^{2s+1}) \). The sequence \(\tilde{a} \) can be obtained by doubling a type \(B_n^{(1)} \) sequence using \((m_1, m_2, \ldots, m_n) = (2, \ldots, 2, 1) \), so by Definition 3.2 \(b_1 \) and \(b_2 \) are in the image of the embedding \(S \) that realizes \(B_n^{2s+1} \). The claim that \(\varepsilon(b_1) = \varepsilon(b_2) = 2s \Lambda_1 + \Lambda_n \) can be checked explicitly.

Corollary 4.3. The KR crystal \(B_n^{2s+1} \) of type \(B_n^{(1)} \) is not perfect.

Proof. This follows directly from Proposition 4.2 using the embedding \(S \) of Definition 3.2.

Proposition 4.4. There exists a bijection, induced by \(\varepsilon \), from \(B_n^{2s} \) to \(P_s^+ \). Hence \(B_n^{2s} \) is perfect of level \(s \).
Proof. Let S be the embedding from Definition 3.2. Then we have an induced embedding of dominant weights Λ of $B_n^{(1)}$ into dominant weights of $A_{2n-1}^{(2)}$ via the map S, that sends $\Lambda_i \mapsto m_i\Lambda_i$.

In [21, Section 6] (see Section 4.2) the minimal elements for $A_{2n-1}^{(2)}$ were constructed by giving a \pm-diagram and a sequence from the $\{2, \ldots, n\}$-highest weight to the minimal element. Since $(m_0, \ldots, m_{n-1}, m_n) = (2, \ldots, 2, 1)$ and columns of height n in $B_n^{(1)}$ for type $A_{2n-1}^{(2)}$ are doubled, it is clear from the construction that the \pm-diagrams corresponding to weights $S(\Lambda)$ are in the image of S of \pm-diagrams for $B_n^{(1)}$ (see [5, Lemma 3.5]). Also, since under S all weights Λ_i for $1 \leq i < n$ are doubled, it follows that the sequences are “doubled” using the m_i. Hence a minimal element of $B_r^{n,2s}$ of level s is in one-to-one correspondence with those minimal elements in $B_r^{n,2s} A_{2n-1}^{(2)}$ that can be obtained from doubling a \pm-diagram of $B_r^{n,2s}$. This implies that ε defines a bijection between $B_{\min}^{n,2s}$ and P_s^+. □

The automorphism τ of the perfect KR crystal $B^{n,2s}$ is given by

$$\tau(\sum_{i=0}^n \ell_i\Lambda_i) = \begin{cases} \sum_{i=0}^n \ell_i\Lambda_i & \text{if } n \text{ is even}, \\ \ell_0\Lambda_1 + \ell_1\Lambda_0 + \sum_{i=2}^n \ell_i\Lambda_i & \text{if } n \text{ is odd}. \end{cases}$$

4.5. Type $C_n^{(1)}$. In this section we consider $B^{r,s}$ of type $C_n^{(1)}$ for $r < n$.

Proposition 4.5. Let $r < n$. Then

$$\min\{\ell(\varepsilon(b)) \mid b \in B^{r,2s+1}\} \geq s + 1,$$

$$\min\{\ell(\varepsilon(b)) \mid b \in B^{r,2s}\} \geq s.$$

Proof. By Definition 3.3 the crystal $B^{r,s}$ is realized inside $B_r^{r,s} A_{2n+1}^{(2)}$. The proof is similar to the proof of Proposition 4.1 for type $B_n^{(1)}$. □

Hence to show that $B_r^{r,2s+1}$ is not perfect, it is suffices to give two elements $b_1, b_2 \in B_r^{r,2s+1} A_{2n+1}^{(2)}$ that are fixed points under σ with $\varepsilon(b_1) = \varepsilon(b_2) = \Lambda$, where $\ell(\Lambda) = 2s + 2$.

Proposition 4.6. Let $b_1, b_2 \in B_r^{r,2s+1}$, where b_1 consists of s columns of the form read from bottom to top $(1,2,\ldots,r)$, s columns of the form $(r, r-1, \ldots, 1)$, and a column $(r+1, \ldots, 2)$. In b_2 the last column is replaced by $(r+2, 2r+2)$ if $2r + 2 \leq n$ and $(r+2, \ldots, n, \pi, \ldots, \bar{\pi})$ of height n otherwise. Then

$$\varepsilon(b_1) = \varepsilon(b_2) = \begin{cases} s\Lambda_r + \Lambda_{r+1} & \text{if } r > 1, \\ s(\Lambda_0 + \Lambda_1) + \Lambda_2 & \text{if } r = 1, \end{cases}$$

which is of level $2s + 2$.

Proof. The claim is easy to check explicitly. □

Corollary 4.7. The KR crystal $B_r^{n,2s+1}$ of type $C_n^{(1)}$ is not perfect.

Proof. The $\{2, \ldots, n\}$-highest weight elements in the same component as b_1 and b_2 of Proposition 4.6 correspond to \pm-diagrams that are invariant under σ. Hence, by Definition 3.3 b_1 and b_2 are fixed points under σ. Combining this result with Proposition 4.5 proves that $B_r^{r,2s+1}$ is not perfect. □
Proposition 4.8. There exists a bijection, induced by ε, from B^r_{min} to P^+_s. Hence B^r_{min} is perfect of level s.

Proof. By Definition 3.3 $B^{r,s}$ of type $C_n^{(1)}$ is realized inside $B^{r,s}_{A_{2n+1}^{(2)}}$ as the fixed points under σ. Under the embedding S, it is clear that a dominant weight $\Lambda = \ell_0\Lambda_0 + \ell_1\Lambda_1 + \cdots + \ell_{n+1}\Lambda_{n+1}$ of type $A_{2n+1}^{(2)}$ is in the image if and only if $\ell_0 = \ell_1$. Hence it is clear from the construction of the minimal elements for $A_{2n+1}^{(2)}$ as described in Section 4.2 that the minimal elements corresponding to Λ with $\ell_0 = \ell_1$ are invariant under σ. By [21, Theorem 6.1] there is a bijection between all dominant weights Λ of type $A_{2n+1}^{(2)}$ with $\ell_0 = \ell_1$ and $\text{lev}(\Lambda) = 2s$ and minimal elements in $B^{r,2s}_{A_{2n+1}^{(2)}}$ that are invariant under σ. Hence using S, there is a bijection between dominant weights in P^+_s of type $C_n^{(1)}$ and B^r_{min}. \hfill \blacksquare

The automorphism τ of the perfect KR crystal $B^{r,2s}$ is given by the identity.

4.6. Type $C_n^{(1)}$ for $r = n$. This case is treated in [13]. For the minimal elements, we follow the construction in Section 4.2. To every fundamental weight Λ_k we associate a column tableau $T(\Lambda_k)$ of height n whose entries are $k+1, k+2, \ldots, n, \overline{n}, \ldots, \overline{n-k+1}$ (1, 2, \ldots, n for $k = 0$) reading from bottom to top. Let $f(\Lambda_k)$ be defined such that $T(\Lambda_k) = f(\Lambda_k)b_1$, where b_k is the highest weight tableau in $B(k\Lambda_n)$. Then the minimal element b in $B^{n,s}$ such that $\varepsilon(b) = \Lambda = \sum_{i=0}^{n} \ell_i\Lambda_i \in P^+_s$ is constructed as

$$b = f(\Lambda_n)^{\ell_n} \cdots f(\Lambda_1)^{\ell_1} b_s.$$

The automorphism τ is given by

$$\tau \left(\sum_{i=0}^{n} \ell_i\Lambda_i \right) = \sum_{i=0}^{n} \ell_i\Lambda_{n-i}.$$

4.7. Type $A_{2n}^{(2)}$. For type $A_{2n}^{(2)}$ one may use the result of Naito and Sagaki [17, Theorem 2.4.1] which states that under their [17, Assumption 2.3.1] (which requires that $B^{r,s}$ for $A_{2n+1}^{(2)}$ is perfect) all $B^{r,s}$ for $A_{2n}^{(2)}$ are perfect. Here we provide a description of the minimal elements via the embedding S into $B^{r,2s}_{C_n^{(1)}}$.

Proposition 4.9. The minimal elements of $B^{r,s}$ of level s are precisely those that correspond to doubled \pm-diagrams in $B^{r,2s}_{C_n^{(1)}}$.

Proof. In Proposition 4.8 a description of the minimal elements of $B^{r,2s}_{C_n^{(1)}}$ is given. We have the realization of $B^{r,s}$ via the map S from Definition 3.3. In the same way as in the proof of Proposition 4.8 one can show, that the minimal elements of $B^{r,2s}_{C_n^{(1)}}$ that correspond to doubled dominant weights are precisely those in the realization of $B^{r,s}$, hence ε defines a bijection between B^r_{min} and P^+_s. \hfill \blacksquare

The automorphism τ is given by the identity.

4.8. Type $D_{n+1}^{(2)}$ for $r < n$.

Proposition 4.10. Let $r < n$. There exists a bijection B^r_{min} to P^+_s, defined by ε. Hence B^r_{min} is perfect.

Proof. This proof is analogous to the proof of Proposition 4.9. \hfill \blacksquare
The automorphism \(\tau \) is given by the identity.

4.9. Type \(D_{n+1}^{(2)} \) for \(r = n \). This case is already treated in [13], which we summarize below. As a \(B_n \)-crystal it is isomorphic to \(B(s\Lambda_n) \). There is a description of its elements in terms of semistandard tableaux of \(n \times s \) rectangular shape with letters from the alphabet \(A = \{ 1 < 2 < \cdots < n < \pi < \cdots < \tau \} \). Moreover, each column does not contain both \(k \) and \(k \). Let \(c_i \) be the \(i \)th column, then the action of \(e_i, f_i \) \((i = 1, \ldots, n) \) is calculated through that of \(c_s \otimes \cdots \otimes c_1 \) of \(B(\Lambda_n)^{\otimes s} \). With this realization the minimal element \(b_{\Lambda} \) such that \(\varepsilon(b_{\Lambda}) = \Lambda = \sum_{i=0}^{n} \ell_i \Lambda_i \in P_s^+ \) is given as follows. Let \(x_{ij} \) \((1 \leq i \leq n, j \in A) \) be the number of \(j \) in the \(i \)th row. Note that \(x_{ij} = 0 \) unless \(i \leq j \leq n-i+1 \). The table \((x_{ij})\) of \(b_{\Lambda} \) is then given by \(x_{ii} = \ell_0 + \cdots + \ell_{n-i} \) \((1 \leq i \leq n) \), \(x_{ij} = \ell_{i-j} \) \((i+1 \leq j \leq n) \), \(x_{ij} = \ell_j + \cdots + \ell_n \) \((n-i+1 \leq j \leq n) \). The automorphism \(\tau \) is given by

\[
\tau\left(\sum_{i=0}^{n} \ell_i \Lambda_i \right) = \sum_{i=0}^{n} \ell_i \Lambda_{n-i}.
\]

5. Examples for type \(C_3^{(1)} \)

In this section we present the affine crystal structure for \(B^{2,2} \) and \(B^{2,1} \) of type \(C_3^{(1)} \). We also list all minimal elements for \(B^{2,3} \) of type \(C_3^{(1)} \) to illustrate that \(\varepsilon \) is not a bijection and hence \(B^{2,3} \) is not perfect.

5.1. KR crystal \(B^{2,2} \). The KR crystal \(B^{2,2} \) has three classical components

\[
B^{2,2} \cong B(2\Lambda_2) \oplus B(2\Lambda_1) \oplus B(0).
\]

The unique element in \(B(0) \) is denoted by \(u \). Since \(f_0 \) commutes with \(f_2, f_3 \) and the classical \(C_3 \)-crystal structure is explicitly known by [16], it suffices to determine \(f_0 \) on each \(\{2,3\} \)-component. All \(\{2,3\} \)-highest weight crystal elements are given in Table 3 together with the action of \(f_0 \).

The bijection \(\varepsilon : B^{2,2}_{\min} \to P_1^+ \) is given by

\(b \)	\(\varepsilon(b) \)
\(u \)	\(\Lambda_0 \)
\(1 \ 1 \)	\(\Lambda_1 \)
\(2 \ 1 \)	\(\Lambda_2 \)
\(3 \ 2 \)	\(\Lambda_3 \)
\(2 \ 3 \)	

5.2. KR crystal \(B^{2,1} \). The KR crystal graph for \(B^{2,1} \) of type \(C_3^{(1)} \) is given in Figure 4. It has only one classical component

\[
B^{2,1} \cong B(\Lambda_2).
\]
Figure 1. $B^{2,1}$ of type $C_3^{(1)}$

$B^{2,1}$ is not perfect, since ε is not a bijection from minimal elements to level 1 dominant weights:

b	$\varepsilon(b)$
2/1	Λ_0
2/2	Λ_1
2/3	Λ_2
3/3	Λ_3
Table 3. Action of f_0 on $\{2,3\}$-highest weight elements in $B^{2,2}$ of type $C_3^{(1)}$
5.3. **KR crystal** $B^{2,3}$. The KR crystal $B^{2,3}$ of type $C_4^{(1)}$ is also not perfect. The map ε from the minimal elements to level 2 dominant weights is given below:

b	$\varepsilon(b)$
2	$2\Lambda_0$
1	$\Lambda_0 + \Lambda_1$
2	$\Lambda_0 + \Lambda_2$
$1\ 1\ 1$	$\Lambda_0 + \Lambda_3$
$2\ 2\ 1$	$2\Lambda_1$
$2\ 1\ 1\ 1$	$\Lambda_1 + \Lambda_2$
3	$\Lambda_1 + \Lambda_3$
$3\ 2\ 1$	$2\Lambda_2$
$2\ 3\ 1\ 1$	$\Lambda_2 + \Lambda_3$
$2\ 1\ 2\ 1$	$2\Lambda_3$

Under the embedding $S : B^{2,3} \rightarrow B^{2,3}_{A_7^{(2)}}$ of Definition 3.3 we have

$$S \left(\begin{array}{c} 2 \\ 2 \ 2 \ 1 \end{array} \right) = \begin{array}{c} 2 \\ 2 \ 2 \ 1 \ 1 \ 3 \ 2 \ 1 \end{array} = b_1 \quad \text{and} \quad S \left(\begin{array}{c} 3 \\ 3 \ 1 \ 3 \ 1 \end{array} \right) = \begin{array}{c} 3 \\ 2 \ 4 \ 1 \ 1 \ 4 \ 2 \end{array} = b_2$$

which are precisely the two elements b_1, b_2 of Proposition 4.6 such that $\varepsilon(b_1) = \varepsilon(b_2) = \Lambda_2 + \Lambda_3$ in type $A_7^{(2)}$.

References

[1] G. Benkart, I. Frenkel, S-J. Kang, and H. Lee, *Level 1 perfect crystals and path realizations of basic representations at $q = 0$*, Int. Math. Res. Not. 2006, Art. ID 10312, 28 pp.

[2] V. Chari, *On the fermionic formula and the Kirillov-Reshetikhin conjecture*, Internat. Math. Res. Notices 12 (2001) 629–654.

[3] V. Chari, A. Pressley, *Quantum affine algebras and their representations*, in Representations of groups, CMS Conf. Proc. 16, Amer. Math. Soc., Providence, RI (1995) 59–78.

[4] V. Chari, A. Pressley, *Twisted quantum affine algebras*, Comm. Math. Phys. 196 (1998) 461–476.

[5] G. Fourier, M. Okado, A. Schilling, *Kirillov-Reshetikhin crystals of non-exceptional type*, preprint arXiv:0810.5007v1 [math.RT]

[6] G. Fourier, A. Schilling, M. Shimozono, *Demarkure structure inside Kirillov-Reshetikhin crystals*, J. Algebra 309 (2007) 386–404.
[7] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crystals and fermionic formulae, MathPhys Odyssey 2001, 205–272, Prog. Math. Phys. 23, Birkhäuser Boston, Boston, MA, 2002.

[8] D. Hernandez, The Kirillov-Reshetikhin conjecture and solution of T-systems, J. Reine Angew. Math. 596 (2006) 63–87.

[9] D. Hernandez, Kirillov-Reshetikhin conjecture: The general case, preprint [arXiv:0704.2838].

[10] J. Hong, S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002. xviii+307 pp.

[11] V. G. Kac, “Infinite Dimensional Lie Algebras,” 3rd ed., Cambridge Univ. Press, Cambridge, UK, 1990.

[12] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex models, Int. J. Mod. Phys. A 7 (suppl. 1A) (1992), 449–484.

[13] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992) 499–607.

[14] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

[15] M. Kashiwara, K. C. Misra, M. Okado, D. Yamada, Perfect crystals for $U_q(D_4^{(3)})$, J. Alg. 317 (2007) 392–423.

[16] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Alg. 165 (1994) 295–345.

[17] S. Naito, D. Sagaki, Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras, Comm. Math. Phys. 263 (2006), no. 3, 749–787.

[18] H. Nakajima, t-analogues of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003) 259–274.

[19] M. Okado, Existence of crystal bases for Kirillov-Reshetikhin modules of type D, Publ. RIMS 43 (2007) 977–1004.

[20] M. Okado, A. Schilling, Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Representation Theory 12 (2008) 186–207.

[21] A. Schilling, Combinatorial structure of Kirillov-Reshetikhin crystals of type $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$, J. Algebra 319 (2008) 2928–2962.

[22] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151–187.

[23] S. Yamane, Perfect crystals of $U_q(G_A^{(1)})$, J. Algebra 210 (1998), no. 2, 440–486.

Mathematisches Institut der Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
E-mail address: gfourier@mi.uni-koeln.de

Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
E-mail address: okado@sigmath.es.osaka-u.ac.jp

Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.
E-mail address: anne@math.ucdavis.edu
URL: http://www.math.ucdavis.edu/~anne