Microparticles are small fragments of the plasma membrane generated after cell stimulation. We recently showed that Sonic hedgehog (Shh) is present in microparticles generated from activated/apoptotic human T lymphocytes and corrects endothelial injury through nitric oxide (NO) release. This study investigates whether microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in mice. Male Swiss mice were implanted with osmotic minipumps delivering angiotensin II (0.5 mg/kg/day) or NaCl (0.9%). Systolic blood pressure and heart rate were measured daily during 21 days. After 7 days of minipump implantation, mice received i.v. injections of microparticles (10 µg/ml) or i.p. Shh receptor antagonist cyclopamine (10 mg/kg/2 days) during one week. Angiotensin II induced a significant rise in systolic blood pressure without affecting heart rate. Microparticles reversed angiotensin II-induced hypertension, and cyclopamine prevented the effects of microparticles. Microparticles completely corrected the impairment of acetylcholine- and flow-induced relaxation in vessels from angiotensin II-infused mice. The improvement of endothelial function induced by microparticles was completely prevented by cyclopamine treatment. Moreover, microparticles alone did not modify NO and O2. - production in aorta, but significantly increased NO and reduced O2. - productions in aorta from angiotensin II-treated mice, and these effects were blocked by cyclopamine. Altogether, these results show that microparticles bearing Shh correct angiotensin II-induced hypertension and endothelial dysfunction in aorta through a mechanism associated with Shh-induced NO production and reduction of oxidative stress. These microparticles may represent a new therapeutic approach in cardiovascular diseases associated with decreased NO production.
URL de la notice http://okina.univ-angers.fr/publications/ua2972 [8]
DOI 10.1371/journal.pone.0072861 [9]

Liens
[1] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=3994
[2] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=1010
[3] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=708
[4] http://okina.univ-angers.fr/r.soleti/publications
[5] http://okina.univ-angers.fr/da.leo/publications
[6] http://okina.univ-angers.fr/c.martinez/publications
[7] http://okina.univ-angers.fr/r.andrian/publications
[8] http://okina.univ-angers.fr/publications/ua2972
[9] http://dx.doi.org/10.1371/journal.pone.0072861

Publié sur Okina (http://okina.univ-angers.fr)