Determination of the stellar \((n, \gamma)\) cross section of \(^{40}\text{Ca}\) with accelerator mass spectrometry

I. Dillmann, C. Domingo-Pardo, M. Heil, and F. Käppeler

Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach 3640, D-76021 Karlsruhe

A. Wallner, O. Forstner, R. Golser, W. Kutschera, A. Priller, and P. Steier

Vienna Environmental Research Accelerator,
Fakultät für Physik,
Universität Wien, A-1090 Wien

A. Mengoni

International Atomic Energy Agency,
Wagramer Strasse 5, A-1400 Wien

R. Gallino

Dipartimento di Fisica Generale,
Università di Torino
Via P. Giuria 1, I-10125 Torino

M. Paul

Racah Institute of Physics, Hebrew University, IL-Jerusalem 91904

C. Vockenhuber

TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3

(Dated: July 1, 2009)
Abstract

The stellar \((n, \gamma)\) cross section of \(^{40}\text{Ca}\) at \(kT=25\) keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required in cases where direct off-line counting of the produced activity is compromised by the long half-life and/or missing \(\gamma\)-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasi-stellar neutron spectrum of \(kT=25\) keV produced by the \(^7\text{Li}(p, n)^7\text{Be}\) reaction. The subsequent AMS measurements have been carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly-magic \(^{40}\text{Ca}\) is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage and impacting thus on the eventual production of iron group elements. Due to its high abundance \(^{40}\text{Ca}\) can also play a secondary role as "neutron poison" for the \(s\) process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at \(kT=30\) keV a value of \(\langle \sigma \rangle_{30\text{keV}}=5.73\pm0.34\) mbarn.

PACS numbers: 25.40.Lw, 26.30.-k, 27.40.+z, 97.10.Cv

*Electronic address: iris.dillmann@ph.tum.de; Present address: Physik Department E12 and Excellence Cluster Universe, Technische Universität München, D-85748 Garching
†Present address: Gesellschaft für Schwerionenforschung, Darmstadt/ Germany
‡also at Centre for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia
I. INTRODUCTION

The doubly-magic 40Ca is mainly produced in explosive burning processes during supernova explosions. In contrast to the “normal” hydrostatic burning phases the respective explosive burning is only ignited for a few seconds when the supernova shock front passes through the outer layers. The main fuels for the explosive burning stages are the so-called “α nuclei” consisting of 4He clusters (12C, 16O, 20Ne, and 28Si). The ignition temperatures are between 1.9 GK (for carbon burning) up to 4 GK (for silicon burning). The time scales of neon and silicon burning depend only on the respective temperatures and not on the density since both are dominated by the photodisintegration reactions of 20Ne(γ, α) and 28Si(γ, α). Apart from its role in astrophysics, the (n, γ) cross section of 40Ca represents an important test for the applicability of the Hauser-Feshbach statistical model in the limit of low level densities.

A. Production of 40Ca

Woosley [1] showed already in 1973 that a superposition of explosive oxygen burning, complete silicon burning with α-rich freeze-out, and incomplete silicon burning offers good fits to the solar abundances in the mass region $28 < A < 62$.

In explosive oxygen burning a quasi-statistical equilibrium (QSE) in the mass range $A = 28 - 45$ is obtained at $T > 3.3$ GK [2, 3, 4]. This temperature is too low to achieve full nuclear statistical equilibrium (NSE) but in zones where the temperature exceeds 4 GK minor production of iron group elements can occur. The main burning products are the α nuclei 28Si, 32S, 36Ar, and 40Ca.

Explosive silicon burning occurs at $T > 4 - 5$ GK and can be subdivided into incomplete burning, complete burning with normal freeze-out, and complete burning with α-rich freeze-out. Complete Si burning is attained for $T > 5$ GK where full NSE is established and the iron group elements are produced. Complete Si burning with α-rich freeze-out occurs at low densities when the triple α-reaction is not fast enough to keep the helium abundance in equilibrium. Then traces of α nuclei remain which were not transformed into iron group elements.

Incomplete silicon burning occurs at peak temperatures of $T = 4 - 5$ GK when the tempura-
ture is not high enough for nuclear reactions to overcome the bottleneck at the proton-magic shell closure $Z=20$. The most abundant burning products are the same as for explosive oxygen burning, but partial leakage can produce iron group elements like ^{54}Fe and ^{56}Ni. Which of the three silicon burning scenarios actually takes place depends on the respective peak temperatures and densities during the passage of the supernova shock front.

B. Neutron poisons in massive stars

The neutrons for the s process produced in situ by the $^{13}\text{C}(\alpha, n)^{16}\text{O}$ and $^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}$ sources can be consumed by isotopes with high abundances A_i and/or large neutron capture cross sections. The most important “neutron poisons” are ^{16}O and ^{25}Mg, the products of the neutron source reactions. These isotopes reduce the available neutrons per ^{56}Fe seed and thus the s-process efficiency. Further neutron poisons are ^{17}O, ^{20}Ne, and ^{24}Mg. This list can also be extended to ^{40}Ca, since this doubly-magic isotope exhibits both, a rather high solar abundance which reflects the high abundance in the preceding generation of stars (see Table I), and one of the largest Maxwellian averaged cross sections among the 20 most abundant isotopes.

TABLE I: Isotopic A_i and solar abundances A_i (relative to $A_{\text{Si}}=10^6$) of the stable Ca isotopes.

Isotope	Isotopic abundance [%]	Solar abundance A_i
^{40}Ca	96.941 (156)	59200
^{42}Ca	0.647 (23)	395
^{43}Ca	0.135 (10)	82.5
^{44}Ca	2.086 (110)	1275
^{46}Ca	0.004 (3)	2.4
^{48}Ca	0.187 (21)	114
Σ_{Ca}	100	61068.9

For the reasons outlined above, an accurate knowledge of the neutron capture cross section
of 40Ca is of importance for the leakage through the $N=Z=20$ bottleneck and for the role as possible neutron poison. The previous recommended Maxwellian-averaged cross section (MACS) of $\langle \sigma \rangle_{30\text{keV}} = 6.7 \pm 0.7$ mb at $kT=30$ keV \cite{7} was taken directly from de L. Musgrove et al. \cite{8} and is essentially based on the respective resonance parameters measured below $E_n=300$ keV, with contributions from the total neutron cross section measurement of Singh et al. \cite{9}, both using the time-of-flight (TOF) method.

The remeasurement of the 40Ca$(n, \gamma)^{41}$Ca cross section with an independent method such as the activation technique plus following AMS could add confidence in these results. The very high sensitivity of the activation technique allows one to use very small samples so that neutron scattering corrections are completely negligible. A further advantage of the activation technique compared to the TOF method is that the direct capture component (DRC) is already included. In combination with accelerator mass spectrometry (AMS) this technique can be extended to hitherto inaccessible cases, where the product nuclei exhibit a long half-life and no γ-ray transitions (e.g. 41Ca, $t_{1/2} = 103000$ a \cite{10, 11}). Direct atom counting via AMS also avoids uncertainties associated with the γ-decay branching of the activation products.

In Sec. II we describe the experimental techniques of the activation with a stellar neutron source and the subsequent counting of the produced 41Ca with accelerator mass spectrometry. Sec. III shows the data analysis, and the results are presented in Sec. IV. The astrophysical conclusions of our results are given in Sec. V.

II. EXPERIMENTAL TECHNIQUE

A. Activation

The activation was carried out at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced with the $^7\text{Li}(p, n)^7\text{Be}$ source by bombarding 30 μm thick layers of metallic Li on a water-cooled Cu backing with protons of 1912 keV, 30 keV above the reaction threshold. The angle-integrated neutron spectrum imitates almost perfectly a Maxwell-Boltzmann distribution for $kT = 25.0 \pm 0.5$ keV with a maximum neutron energy of 106 keV \cite{12}. At this proton energy the neutrons are kinematically collimated in a forward cone with 120° opening angle. Neutron scattering through the Cu backing is negligible since the
transmission is about 98 % in the energy range of interest. To ensure homogeneous illumination of the entire surface, the proton beam with a DC current of ≈100 µA was wobbled across the Li target. Thus, the mean neutron intensity over the period of the activations was ≈1.0–1.6×10⁹ s⁻¹ at the position of the samples, which were placed in close geometry to the Li target. A ⁶Li-glass monitor at 1 m distance from the neutron target was used to record the time-dependence of the neutron yield in intervals of 1 min as the Li target degrades during the irradiation. In this way the proper correction of the number of nuclei which decayed during the activation can be attained. This correction is negligible for very long half-lives, e.g. for ⁴¹Ca, but becomes important for comparably short-lived isotopes and affects the determination of the ¹⁹⁸Au activity, since gold is used as the reference cross section for the neutron fluence determination.

A sample of calcium carbonate (152.6 mg CaCO₃, corresponding to 8.926×10²⁰ atoms ⁴⁰Ca) with natural isotopic abundance (96.941% ⁴⁰Ca [13], see Table II) was used in this measurement. The sample material was pressed into a thin pellet 8 mm in diameter, enclosed in 15 µm thick aluminium foil and sandwiched between two 30 µm thick gold foils of the same diameter. In this way the neutron fluence in our experimental neutron distribution can be determined relative to the well-known capture cross section of ¹⁹⁷Au [12]. During the activation the gold foils and the Li targets were changed three times, subdividing the experiment into four single activations (see Table III). The net irradiation time was ≈20 d, and the total neutron exposure was calculated using the activated gold foils to be 2.32×10¹⁵ neutrons.

TABLE II: Overview of the activation parameters. ”tₐ” is the irradiation time and “Φₜₒₜ” the total neutron exposure. For discussion of the uncertainties see Sec. [III.C]

Activation	tₐ [min]	Φₜₒₜ [×10¹⁴n]
ca-a	4075	2.542
ca-b	10078	7.085
ca-c	9909	9.606
ca-d	4123	4.008
Total	28185	23.242
B. AMS measurement

The number of ^{41}Ca nuclei produced in the neutron activation was measured offline applying the technique of accelerator mass spectrometry (AMS) at the VERA (Vienna Environmental Research Accelerator) facility. This facility is based on a 3-MV tandem accelerator equipped with a 40-sample caesium sputter source. Details on Ca measurements at VERA can be found in Refs. [14, 15]. The sample material was sputtered in the ion source and the nuclides are analyzed according to their mass and energy. Calcium fluoride (CaF$_2$) was chosen as proper sputter material. It was shown to provide sufficiently large negative currents when extracting CaF$_3^-$ ions, with the additional advantage that the production of the interfering isobar (KF$_3^-$) is strongly reduced [16, 17, 18].

After the neutron activation, the entire Ca-containing pellet (CaCO$_3$) was dissolved in nitric acid to ensure a uniform mixture of the irradiated sample material and, consequently, a cross-section value integrated over the full sample area is obtained. Several aliquots were used to prepare sputter targets by the following way: Under pH control, hydrofluoric acid (HF) was added to the solution and Ca precipitated as CaF$_2$, separated via centrifugation, and then dried to get CaF$_2$ powder. After mixing with Cu powder this material was pressed into the sample holders and inserted into the ion source. Overall, 17 sputter cathodes and a similar amount of identical but non-irradiated blank samples were prepared for the AMS measurements.

The ^{41}Ca content was determined during eight measurement series applying two different particle detection setups reducing thus systematic uncertainties. AMS measures isotope ratios by determining count rate of the rare isotope (^{41}Ca) relative to the ion current of a reference isotope (^{40}Ca). The procedure applied at VERA is the following: Negatively charged ions are mass separated and injected into a tandem accelerator which runs at typically 3 MV. At the terminal the particles have to pass a gas stripper canal where electrons are stripped off from the negative ions and parasitic molecular ions dissociated via collisions and Coulomb break-ups in the gas. The resulting positive ions are further accelerated. After the tandem accelerator the 4$^+$ charge state is selected: i.e. particles having energies of 13.5 MeV and the right mass over charge ratio (M/q) are further transported to the particle detection setup. The number of radionuclides is measured with an energy-sensitive detector, while the current of the stable ions is determined with Faraday cups. In case of Ca, fast switching
between stable isotopes and the radionuclide was applied at the injector magnet and both, 40Ca and 42Ca currents, were registered. The isotope ratios of the unknown samples were compared with ratios of 41Ca/40Ca reference materials 19. Blank samples, having negligible 41Ca concentrations, were used as controls for the quantification of the background level.

Two different detection setups were used for these measurements, both with the goal to separate efficiently possible interferences in the signal of the radioisotope 41Ca with the isobar 41K. The first uses the so-called delta TOF-setup $^{20, 21}$. Here, the time-of-flight is measured for particles which pass a thick but very homogeneous, passive absorber foil made of silicon nitride (Silson Ltd., UK). K and Ca can be discriminated due to their different energy loss in the absorber, which is reflected in a different velocity when leaving the foil. The second method utilizes a recent development at ETH Zurich/Paul Scherrer Institut (PSI) of a compact type of ionization chamber which provides a high resolution in the energy measurement 22. Particles enter this detector through a sufficiently thick silicon nitride entrance foil, and isobars, dispersed in energy by the loss in the foil, are discriminated with a segmented anode via a $\Delta E - E$ measurement.

For the measurement of the (n, γ) cross section we expected an isotope ratio 41Ca/Ca of $\approx 10^{-11}$, which is well above the machine background of 41Ca/Ca at VERA and the level of blank and calcium material used as target for neutron activation. Both setups have been proven to provide a sufficient isobar suppression for our samples.

III. DATA ANALYSIS AND RESULTS

A. Determination of the neutron flux

The measurement of the induced 198Au activity after the irradiation was performed with a high purity germanium (HPGe) detector with a well defined measuring position at a distance of 76 mm surrounded by 10 cm lead shielding. The absolute efficiency for the 411.8 keV γ-line of the decay into 198Hg was determined with a set of reference sources and yielded $\varepsilon_{\gamma} = 0.212\%$.

The total amount of activated 198Au nuclei, N_{198}, at the end of the irradiation can be deduced from the number of events $C(t_m)$ in the particular γ-ray line at 411.8 keV registered in the HPGe detector during the measuring time t_m 23. The factor t_w corresponds to the
waiting time between the end of the irradiation and the start of the activity measurement:

\[N_{198} = \frac{C(t_m)}{\varepsilon \gamma I \gamma_k \gamma \left(1 - e^{-\lambda t_m} \right)} e^{-\lambda t_w}. \]

(1)

\(I_\gamma \) accounts for the relative \(\gamma \) intensity per decay of the 411.8 keV transition \((I_\gamma = 95.58 \pm 0.12 \% \) \[24\]). For the measurement of the activated gold foils with the HPGe, the \(\gamma \)-ray self-absorption \(k_\gamma \) has to be considered \[23\]. This correction factor was 0.995 for all gold foils.

The number of activated sample atoms \(N_{act} \) is determined by

\[N_{act} = N_i \langle \sigma_{exp} \rangle (i) \Phi_{tot} f_b(i). \]

(2)

In this equation, \(\langle \sigma_{exp} \rangle (i) \) is the cross section in the experimental neutron spectrum and \(\Phi_{tot} \) the total neutron flux. The factor

\[f_b = \frac{\int_0^{t_a} \phi(t) e^{-\lambda(t_a-t)} dt}{\int_0^{t_a} \phi(t) dt} \]

(3)

accounts for the decay of activated nuclei during the irradiation time \(t_a \) as well as for variations in the neutron flux. This factor is calculated from the neutron flux history recorded throughout the irradiation with the \(^6 \text{Li} \) glass detector at 1 m distance from the target. The reference value for the experimental \(^{197}\text{Au} \) cross section in the quasi-stellar spectrum of the \(^7\text{Li}(p, n)^7\text{Be} \) source is \(\langle \sigma_{exp} \rangle (^{197}\text{Au})=586\pm8 \text{ mbarn} \) \[12\].

The time-integrated neutron flux \(\Phi_{tot} = \int \phi(t) dt \) seen by the sample (Table II) is determined by averaging the neutron fluxes of the two gold foils enclosing the respective sample:

\[\Phi_{tot} = \frac{N_{198}}{N_{197} \langle \sigma_{exp} \rangle (^{197}\text{Au}) f_b}. \]

(4)

B. Determination of the isotopic ratio via AMS

Accelerator mass spectrometry determines the ratio of a radioactive isotope relative to one stable isotope of the same element. This measurement is carried out relative to reference standards with well-known isotopic ratios. In our case we have determined the ratio of \(^{41}\text{Ca} \) versus \(^{40}\text{Ca} \), \(R = \frac{N_{41}}{N_{40}} \).

Fig. [I] shows the first and second energy loss signal from the ionization chamber measured with a blank sample and an irradiated sample with \(^{41}\text{Ca} \). The events from the quasi-stable isobar \(^{41}\text{K} \) and the radioisotope \(^{41}\text{Ca} \) can be clearly distinguished. With these settings, also
FIG. 1: (Color online) Top/Middle: First (ΔE1) and second (ΔE2) energy loss signal from the anodes in the ionization chamber. The events from 41Ca and its stable isobar 41K can be distinguished by comparing a blank and an irradiated sample with 41Ca. In the top panel events from 82Se appear at higher energy losses which have the same M/q as 41Ca. Bottom: Histogram illustrating the separation between 41K and 41Ca.

ions with the same M/q as 41Ca can reach the detector, like 82Se. However, as can be seen in the top part of Fig. 1, these events are well separated from the $A=41$ signals.

The AMS measurements were repeated eight times. In the first six measurements the deltaTOF technique was applied, and in the remaining two the compact ionization chamber (see section II.B). The isotope ratio $R = \frac{N_{^{41}}}{N_{^{40}}}$ from these measurements is $(1.34 \pm 0.07) \times 10^{-11}$. The uncertainty is due to the 5.2% error (1σ) from the AMS measurement.

One can determine the experimental cross section $\langle \sigma_{\text{exp}} \rangle$ for the 40Ca(n, γ) reaction for our experimental neutron spectrum with the known total neutron exposure $\Phi_{\text{tot}} = 2.324 \times 10^{15}$
from Table II and Eq. 2

\[\langle \sigma_{exp} \rangle^{(40)\text{Ca}} = \frac{N_{41}}{N_{40}} \frac{1}{\Phi_{\text{tot}} f_b}. \] (5)

Since \(\frac{N_{41}}{N_{40}} \) is the isotopic ratio \(R \), and the correction factor \(f_b \) for very long half-lives is equal to unity, this equation simplifies to

\[\langle \sigma_{exp} \rangle^{(40)\text{Ca}} = R \frac{1}{\Phi_{\text{tot}}}. \] (6)

From this equation we can deduce an experimental cross section of \(\langle \sigma_{exp} \rangle^{(40)\text{Ca}} = 5.77 \pm 0.34 \text{ mbarn} \) (uncertainty including the total uncertainty from Table III).

C. Error analysis

The experimental uncertainties are summarized in Table III. Since stellar neutron capture cross section measurements are often carried out relative to gold [7], the error of 1.4% [12] in the gold cross section cancels out in most astrophysical applications and was, therefore, not included in the present error analysis. An error of 2.0% was assumed to account for the uncertainty of the sample position (0.25 mm) relative to the gold foils during the activation that affects the neutron flux seen by the sample. The uncertainty of the HPGe efficiency calibration was derived from the accuracy of the calibration sources and of the calibration procedure. The uncertainty (1 \(\sigma \)) in the AMS measurements (5.2%) includes the statistical uncertainty, the reproducibility of the measurement and a systematic contribution from the measurement relative to reference materials (which is dominated by the uncertainty of the half-life of \(^{41}\text{Ca}\)). The total uncertainty of 5.9% is the combination of the uncertainties from the neutron flux measurement (2.9%) and the AMS measurement (5.2%).

IV. CROSS SECTIONS

A. Evaluated cross section libraries

The energy-dependent neutron cross sections from the evaluated cross section libraries JEFF-3.0A, JEFF-3.1, ENDF/B-VII.0, and JENDL-3.3 include experimental resonance parameters adopted from the compilations of Mughabghab [25, 26]. These parameters were determined in a TOF measurement by de L. Musgrove [8] in the energy range between 2.5
TABLE III: Uncertainties for 197Au and 40Ca.

Source of uncertainty	197Au	40Ca
Gold cross section	1.4a	–
Detector efficiency	2.0	–
Neutron flux	2.0	–
Sample mass	0.4	–
γ-ray intensity	0.1	–
Counting statistics	0.2	–
AMS uncertainty	–	5.2
Total uncertainty	**2.9**	**5.9b**

aNot included in the final uncertainty, see text.

bIncluding the 2.9% uncertainty from the flux measurement with the gold samples.

and 300 keV with contributions from the total neutron cross section measurement of Singh et al. 9. The quoted uncertainty for most resonance parameters from de L. Musgrove 8 is of the order of 10% and larger.

The unresolved resonance region above 296 keV is based on different statistical model calculations and thus differs from evaluation to evaluation. For example, in JENDL-3.3 this region originates from the code CASTHY 27 and was normalized to the Maxwellian average $\langle \sigma \rangle_{30\text{keV}} = 6.7$ mbarn given in 7. The data sets of JEFF-3.1 and ENDF/B-VII.0 are identical and use the recent nuclear model code TALYS 28, where the parameters have been adjusted to reproduce the existing experimental data. However, for the calculation of Maxwellian cross sections up to $kT=100$ keV the contribution from the unresolved resonance region has only little influence and we used an average of all four data sets.
B. Maxwellian averaged cross sections

In an astrophysical environment with temperature T interacting particles are quickly thermalized by collisions in the stellar plasma, and the neutron energy distribution can be described by a Maxwell-Boltzmann spectrum:

$$\Phi = \frac{dN}{dE_n} \sim \sqrt{E_n} \cdot e^{-E_n/kT}. \quad (7)$$

The experimental neutron spectrum of the $^7\text{Li}(p, n)^7\text{Be}$ reaction simulates the energy dependence of the flux $v \cdot \Phi \sim E_n \cdot e^{-E_n/kT}$ with $kT=25.0 \pm 0.5$ keV almost perfectly \[12\]. However, the cutoff at $E_n=106$ keV and small deviations from the shape of the ideal Maxwellian spectrum require a correction of the measured cross section $\langle \sigma_{\text{exp}} \rangle$ for obtaining a true Maxwellian average, $\langle \sigma \rangle_{25 \text{ keV}}$. This correction is determined by means of the energy-dependent cross sections from data libraries.

Before calculating a Maxwellian averaged cross section, we determine a ”normalization factor” NF which gives a direct comparison how good the agreement is between our measured cross sections $\langle \sigma_{\text{exp}} \rangle$ and the evaluated cross sections $\sigma(E)$ folded with the experimental neutron spectrum of the $^7\text{Li}(p, n)^7\text{Be}$ source \[12\], $\langle \sigma_{\text{eval}} \rangle=5.18$ mbarn. Our experimentally determined cross section is $\langle \sigma_{\text{exp}} \rangle=5.77$ mbarn, resulting in a normalization factor of $NF = \frac{\langle \sigma_{\text{exp}} \rangle}{\langle \sigma_{\text{eval}} \rangle} = 1.11$.

The respective cross section derived by folding the NON-SMOKER energy dependence \[29, 30\] with our experimental neutron distribution would be $\langle \sigma_{\text{NS}} \rangle=12.48$ mbarn, yielding a normalization factor of $NF=0.46$. The Hauser-Feshbach model cannot be applied below a given minimum energy of $kT\approx40$ keV ($T_9 \approx 0.48$ GK) \[30\] due to the low level density of the double-magic nucleus ^{40}Ca which causes an overestimation of cross sections. Such low level densities occur also for very neutron- or proton-rich isotopes close to the driplines, low mass nuclei, and at low energies.

Applying the normalization factor NF to the evaluated libraries affects also the corresponding thermal value and the strength of the individual resonances. However, since the uncertainty of the resonance parameters is, as mentioned above, 10% and larger, we decided to use this approach. As soon as more accurate resonance parameters become available for ^{40}Ca, this data should supersede our way of extrapolating Maxwellian cross sections via
The factor $2/\sqrt{\pi}$ comes from the normalization of the Maxwellian flux formula when using the most probable velocity instead of the mean thermal velocity. At $kT=30$ keV this yields $\langle \sigma \rangle_{30\text{keV}} = 5.73 \pm 0.34$ mbarn with our experimentally derived normalization factor $NF=1.11$.

We have also re-calculated the Maxwellian averaged cross sections using the resonance parameters given in ENDF/B-VII.0 [31] with the R-matrix analysis code SAMMY [32], yielding $\langle \sigma \rangle_{30\text{keV}} = 5.13$ mbarn at $kT=30$ keV. A calculation of the uncertainties was done independently by Monte Carlo sampling of the four most important resonance parameters which contribute with 85.3% to the Maxwellian average at $kT=30$ keV. Varying the resonances at $E_n=10.83, 20.43, 42.12,$ and 52.57 keV within their given uncertainties yielded $\langle \sigma \rangle_{30\text{keV}} = 5.04 \pm 0.30$ mbarn. Varying the neutron widths Γ_n of all resonances by 5% and the respective Gamma widths Γ_γ by 20% gives $\langle \sigma \rangle_{30\text{keV}} = 5.16 \pm 0.31$ mbarn, in perfect agreement with the SAMMY calculation.

In Table IV these values are compared to the previously recommended values from Bao et al. [7], which were adopted from Ref. [33] and originate directly from Ref. [8]. As can be seen in Table IV and also in the graphical comparison of the energy trends in Fig. 3 the differences between the values from [7, 8, 33] and the recalculated Maxwellian cross sections increase with increasing temperature.

C. Comparison with previous values

Table V compares in the upper part the extrapolated Maxwellian averaged cross sections at $kT=30$ keV from the evaluated library ENDF/B-VII.0 [31] (using data from de L. Musgrove [8] and Singh [9]), Barrett [34], and the Bao et al. compilation [7, 33] (taken directly from [8]) with our activation cross section. In the lower part of Table V the results from four Hauser-Feshbach predictions are given. Incidentally, the value of Woosley [35] agrees best with our experimental value of 5.73 ± 0.34 mbarn, but also the recalculated value from the resonance parameters $(\langle \sigma \rangle_{30\text{keV}} = 5.16 \pm 0.31$ mbarn) agrees within the uncertainties. The large discrepancies to recent NON-SMOKER [29, 30] and MOST [36, 37] results indicate in the present case the limited reliability of the statistical model in view of the low level
TABLE IV: Maxwellian averaged cross sections $\langle \sigma \rangle_{kT}$ (in mbarn) for 40Ca calculated with the energy dependencies from evaluated libraries (“This work”). The second column shows the previous recommended values [7, 33] based on the value from [8], in the third column the results calculated with resonance parameters in ENDF/B-VII.0 [31] are given.

kT [keV]	$\langle \sigma \rangle_{kT}$ [mbarn]	Ref. [7, 8, 33]	Ref. [31]
5	11.96	11.3	10.79
10	11.49	12.1	10.35
15	9.23	10.3	8.31
20	7.56	8.6	6.81
25	6.46	7.5	5.81
30	5.73 (34)	6.7 (7)	5.16 (31)
40	4.93	5.8	4.44
50	4.53	5.4	4.08
60	4.28	5.2	3.85
80	3.91	4.9	3.51
100	3.59	4.9	3.19

density in the double-magic nucleus 40Ca in this energy region.

D. Statistical model and direct capture calculations

Despite the fact that the Hauser-Feshbach model cannot (or only with large uncertainties) be applied below $kT \approx 40$ keV we have performed statistical model calculations using the code "HFSM" with standard optical model parameters from Moldauer [38, 39]. The level density is based on the Fermi gas theory with pairing and shell corrections. The parameters were fitted to reproduce the average level spacings of Mughabghab [25], e.g. for s waves $\langle D(l=0) \rangle = 45 \pm 4$ keV. The giant dipole resonance parameters for the calculation of the average radiative widths were $E = 20.14$ MeV with a width of 8.05 MeV and a peak
TABLE V: Comparison of Maxwellian averaged cross sections at \(kT = 30 \) keV from previous experiments and theoretical predictions. Theoretical values are given without error bars.

Reference	\(\langle \sigma \rangle_{30\text{keV}} \) [mbarn]	Ratio to this work
This work	5.73 (34)	–
ENDF/B-VII.0 [31]	5.16 (31)	0.90\(^{+0.11}_{-0.10}\)
Barrett [34]	10 (3)	1.75\(^{+0.67}_{-0.59}\)
Bao et al. [7, 8, 33]	6.7 (7)	1.17\(^{+0.20}_{-0.18}\)
Woosley [35]	5.8	1.01\(^{+0.06}_{-0.06}\)
NON-SMOKER [29]	13.0	2.27\(^{+0.14}_{-0.13}\)
MOST (2002) [36]	24.1	4.21\(^{+0.27}_{-0.24}\)
MOST (2005) [37]	13.9	2.43\(^{+0.15}_{-0.14}\)

 cross section of 58.3 mbarn. These values yield an average radiative width of \(\langle \Gamma_\gamma \rangle_s = 193 \) meV, which is a factor of \(\approx 8 \) lower than the 1.5\(\pm 0.9 \) eV from de L. Musgrove [8]. However, only with this value reasonable Maxwellian averaged cross sections can be obtained. This decrease is interesting since the large difference of almost one order of magnitude to the average \(p \)- and \(d \)-wave widths (\(\langle \Gamma_\gamma \rangle_p = 360\pm90 \) meV and \(\langle \Gamma_\gamma \rangle_d = 740\pm360 \) meV) discussed in Ref. [8] vanishes.

Additional calculations were performed with the data set of ENDF/B-VII.0 [31], based on the evaluation of Mughabghab [25, 26], and with the model code TALYS [28] for cross-checking. The results are consistent within a few percent for energies up to 10 keV, but differ by up to 20% for higher energies. TALYS calculations were repeated using a coupled channel code but this did not influence the neutron capture cross section. Thus the different energy dependencies from ENDF/B-VII.0 and TALYS originated only from the different optical model potentials used.

Direct radiative capture (DRC) calculations have been performed for \(s \)- and \(p \)-wave neutron transitions to several bound states in \(^{41}\text{Ca}\). Using the experimental thermal cross section of \(\sigma_{\text{th}} = 410\pm20 \) mbarn [26] and subtracting the contribution of 13.5 mbarn from the
tail of the s-wave resonances the estimated DRC cross section is 396.5 mbarn. The extrapolation from thermal energies to the keV region leads to very small DRC contributions of 0.4 mbarn and 5.4 µbarn for s- and p-wave neutrons at $kT=25$ keV, respectively.

The best estimate for the Maxwellian averaged cross sections in the keV region can thus be obtained directly from the resonance parameters given in [25, 26] normalized to the present results. For neutron energies below $E_n=100$ keV, Maxwellian cross sections are determined by single resonances, and the Hauser-Feshbach theory cannot be applied. The predicted Maxwellian averaged cross sections in Fig. 3 should therefore be taken with care and are only plotted for $kT>40$ keV.

![FIG. 2: (Color online) Energy-dependent cross sections $\sigma(E)$ for ^{40}Ca from the evaluated data library ENDF/B-VII.0 (black line) in comparison with the prediction from the Hauser-Feshbach models HFSM, NON-SMOKER (normalized by a factor of 0.462 to reproduce the experimental cross section), and TALYS. The red line in the lower part shows the DRC contribution from p wave neutrons.]

V. CONCLUSIONS

We have measured the $^{40}\text{Ca}(n, \gamma)$ cross section via the activation technique in a stellar neutron distribution and derived a Maxwellian averaged cross section of $\langle \sigma \rangle_{30\text{keV}}=5.73\pm0.34$ mbarn at $kT=30$ keV. This value is, within the error bars, in good agreement with the previously recommended value of 6.7 ± 0.7 mbarn [7, 33] taken directly
FIG. 3: (Color Online) Maxwellian averaged cross sections from this work compared with previously recommended values [7, 8, 33] and the values calculated from resonance parameters of ENDF/B-VII.0 [31] (Table IV). The error band corresponds to the 5.9% uncertainty of our present measurement. Also plotted are the results obtained from the HF calculations HFSM and Talys, and the normalized NON-SMOKER predictions.

from Ref. [8], and higher than the value calculated from the resonance parameters [31], \(\langle \sigma \rangle_{30\text{keV}} = 5.16 \pm 0.31 \text{mbarn}\). With this result, \(^{40}\text{Ca}\) still acts as a significant neutron poison in stellar environments, simply due to its high initial abundance. In the direct \(s\)-process flow \(^{40}\text{Ca}\) is bypassed by its quasi-stable isobar \(^{40}\text{K}\). In thermally pulsing low mass AGB stars \(^{40}\text{Ca}\) is therefore depleted by 13% in the \(s\) process. However, the further reaction flow via \(^{41}\text{Ca}\) can reach equilibrium. Accordingly, \((n, \gamma)\) reactions on \(^{40}\text{Ca}\) contribute to the overall \(s\)-process efficiency in the Ca to Cr region. This holds also for the \(s\) process in massive stars, since the role as a neutron poison is not affected by \((\gamma, n)\) reactions, even at the high temperatures during C shell burning.

Acknowledgments

We thank E.-P. Knaetsch, D. Roller and W. Seith for their help and support during the irradiations at the Van de Graaff accelerator. I.D. was supported by the Swiss National Science Foundation Grants 2024-067428.01 and 2000-105328. This work was supported by the Italian MIUR-PRIN 2006 Project "Final Phases of Stellar Evolution, Nucleosynthesis
in Supernovae, AGB stars, Planetary Nebulae”.

[1] S. Woosley, W. Arnett, and D. Clayton, Astrophys. J. Suppl. 26, 231 (1973).
[2] B. Meyer, T. Krishnan, and D. Clayton, Ap. J. 462, 825 (1996).
[3] B. Meyer, T. Krishnan, and D. Clayton, Ap. J. 498, 808 (1998).
[4] C. Freiburghaus, F. Rembges, T. Rauscher, E. Kolbe, F.-K. Thielemann, K.-L. Kratz, B. Pfeiffer, and J. Cowan, Ap. J. 516, 381 (1999).
[5] J. de Laeter, J. Böhlke, P. de Bievre, H. Hidaka, H. Peiser, K. Rosman, and P. Taylor, Pure Appl. Chem. 75, 683 (2003).
[6] E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 1997 (1989).
[7] Z. Bao, H. Beer, F. Käppeler, F. Voss, K. Wisshak, and T. Rauscher, At. Data Nucl. Data Tables 76, 70 (2000).
[8] A. d. L. Musgrove, B. Allen, J. Boldeman, D. Chan, and R. Macklin, Nucl. Phys. A 259, 365 (1976).
[9] U. Singh, H. Liou, J. Rainwater, G. hacken, and J. Garg, Phys. Rev. C 10, 2143 (1974).
[10] M. Paul, I. Ahmad, and W. Kutschera, Z. f. Phys. A 340, 249 (1991).
[11] W. Kutschera, I. Ahmad, and M. Paul, Radiocarbon 34, 436 (1992).
[12] W. Ratynski and F. Käppeler, Phys. Rev. C 37, 595 (1988).
[13] K. Rosman and P. Taylor, Pure Appl. Chem. 70, 217 (1998).
[14] A. Wallner, R. Golser, W. Kutschera, A. Priller, P. Steier, and C. Vockenhuber, Europ. Phys. J. 27, 337 (2006).
[15] A. Wallner, I. Dillmann, R. Golser, F. Käppeler, W. Kutschera, M. Paul, A. Priller, P. Steier, and C. Vockenhuber, Nucl. Instr. Meth. B 259, 677 (2007).
[16] D. Fink, R. Middleton, J. Klein, and P. Sharma, Nucl. Instr. Meth. B 47, 79 (1990).
[17] A. Urban, G. Korschinek, and E. Nolte, Workshop an Techniques in Accelerator Mass Spectrometry, eds. R. Hedges and E. Hall, Oxford, UK p. 108 (1986).
[18] P. Kubik, D. Elmore, and N. Conard, Radiocarbon 31, 324 (1989).
[19] K. Nishiizumi, M. Caffee, and D. DePaolo, Nucl. Instr. Meth. B 172, 399 (2000).
[20] C. Vockenhuber, R. Golser, W. Kutschera, A. Priller, P. Steier, K. Vorderwinkler, and A. Wallner, Nucl. Instr. Meth. B 240, 490 (2005).
[21] P. Steier, R. Golser, W. Kutschera, A. Priller, C. Vockenhuber, A. Wallner, and S. Winkler, Nucl. Instr. Meth. B 240, 445 (2005).

[22] M. Suter, S. Jacob, and H.-A. Synal, Nucl. Instr. Meth. B 172, 144 (2000).

[23] H. Beer and F. Käppeler, Phys. Rev. C 21, 534 (1980).

[24] Z. Chunmei, Nucl. Data Sheets 95, 59 (2002).

[25] S. Mughabghab, M. Divadeenam, and N. Holden, Neutron Cross Sections, BNL-325, 1st ed., 1 (1981).

[26] S. Mughabghab, Atlas of Neutron Resonances (5th ed.), Elsevier, ISBN 0-444-52035-X (2006).

[27] S. Igarasi and T. Fukahori, JAERI 1321 (1991).

[28] A. Koning, S. Hilaire, and M. Duijvestijn, TALYS version 0.56, unpublished (2004).

[29] T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

[30] T. Rauscher, HTML Interface to NON-SMOKER; Online: http://nucastro.org/nonsmoker (2009).

[31] M. Chadwick, P. Oblozinsky, M. Herman, N. Greene, R. McKnight, D. Smith, P. Young, R. MacFarlane, G. Hale, S. Frankle, et al., Nucl. Data Sheets 107, 2931 (2006).

[32] N. Larson, Updated users guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes equations, SAMMY computer code, Report ORNL/TM-9179/R7, Oak Ridge National Laboratory (2006).

[33] H. Beer, F. Voss, and R. Winters, Astrophys. J. Suppl. 80, 403 (1992).

[34] R. Barrett, B. Allen, M. Kenny, and A. d. L. Musgrove, Nucl. Phys. A 259, 365 (1976).

[35] S. Woosley, W. Fowler, J. Holmes, and B. Zimmerman, At. Data Nucl. Data Tables 22, 371 (1978).

[36] S. Goriely, Hauser-Feshbach rates for neutron capture reactions (version 09/12/02), http://www-astro.ulb.ac.be/Html/hfr.html (2002).

[37] S. Goriely, Hauser-Feshbach rates for neutron capture reactions (version 08/26/05), http://www-astro.ulb.ac.be/Html/hfr.html (2005).

[38] P. Moldauer, Nucl. Phys. 47, 65 (1963).

[39] P. Moldauer, Rev. Mod. Phys. 36, 1079 (1964).

[40] R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi, and M. Limongi, Astrophys. J. 497, 388 (1998).