Meteor showers on Earth from sungrazing comets

A. Sekhar1,2* and D. J. Asher1

1Armagh Observatory, College Hill, Armagh BT61 9DG
2Queen’s University of Belfast, University Road, Belfast BT7 1NN
*E-mail: asw@arm.ac.uk, asekhar01@qub.ac.uk

Accepted: 2013 Oct 11; Received: 2013 Oct 3; In Original Form: 2013 Sep 20; Accepted by MNRAS Letters

1 INTRODUCTION

There have been various interesting observational records (Marsden 1967, 1989, 2005; Strom 2002; Sekanina & Chodas 2012) of extremely bright and spectacular sungrazing comets since historical times. Intuitively one would expect some of these to produce spectacular meteor showers (like those from many Jupiter family and Halley type comets). In case of such a shower when sungrazers are involved, there are two factors in favour of producing intense meteor phenomena. Firstly these comets pass very close to the sun ($q \sim 0.004 \sim 0.06$ au) which would enable more ices to sublime according to conventional understanding (Whipple 1950) and thereby eject more dust particles into similar orbits. Secondly some sungrazers are dynamically new comets (Bailey, Chambers & Hahn 1992), coming from the Oort-Öpik cloud into the inner solar system for the first time, suggesting a strong possibility for more volatiles in their composition (enhancing chances for strong outgassing).

Nevertheless we hardly observe any spectacular meteor activity on Earth due to these frequently observed sungrazing comets. This work presents a mathematical formalism of demonstrating the absence of any strong meteor shower from comet C/2012 S1 (ISON). During this analysis some parallels are drawn with the famous Newton’s comet C/1680 V1 due to the surprisingly similar orbital elements. The same technique is then applied to all the known sungrazing families.

2 EFFECT OF EJECTION VELOCITY ON METEOROIDS’ NODAL DISTANCES

We use the notation:

- a (semi-major axis), e (eccentricity), q (perihelion distance), i (inclination), ω (argument of pericentre), Ω (longitude of ascending node), ϖ (longitude of pericentre), E (eccentric anomaly), f (true anomaly), S, dv_r (radial component of meteoroid ejection acceleration/velocity), T, dv_t (transverse component = in-plane, orthogonal to radial), W, dv_n (normal component), n (mean motion), G (universal gravitational constant), M (mass of sun), t (time), r (heliocentric distance), r_a, r_d (heliocentric distance of ascending/descending node).

2.1 Conditions to favour meteor phenomena on Earth

Among the most critical parameters determining the feasibility of meteor showers on Earth are the ascending and descending nodal distances of meteoroid particles:
observations of various sungrazing families: equation (5) shows meteoroid stream’s nodal distances can approach 1 au.

Although confirming the presence of a meteor shower on Earth is: \[r_a \sim 1 \text{ au} \] or \[r_d \sim 1 \text{ au} \]. This implies

\[\omega = \cos^{-1}[(q(1 + e) - 1)/e] \] (3)

\[\omega = \cos^{-1}[(1 - q(1 + e))/e] \] (4)

From the compiled observations of sungrazers (Marsden & Williams 2008) one can constrain the range of \(e \) and \(q \). The condition \(e \sim 1 \) simplifies equations (3) and (4) to

\[\omega = \cos^{-1}[2q - 1] \] (5)

\[\omega = \cos^{-1}[1 - 2q] \] (6)

For the range \(q \sim [0.004 \text{ au}, 0.06 \text{ au}] \) which comes from observations of various sungrazing families: equation (5) shows \(r_a \sim 1 \text{ au} \) only if \(\omega \sim [152, 173], [187, 208] \); equation (6) shows \(r_d \sim 1 \text{ au} \) only if \(\omega \sim [7, 28], [332, 353] \). Each interval spans \(\sim 21^\circ \), and \(\omega \) in one of these four ranges is a necessary (but not sufficient) condition for high \(e \) sungrazers to undergo meteoroid intersection with Earth.

Although confirming the presence of a meteor shower on Earth would depend on other parameters like time of nodal crossing, Earth’s precise position in its orbit at that time and width of the dust trail, confirming the absence of significant meteor activity can be done using this necessary condition concerning the geometry of nodes.

2.2 Separating the effects due to three components of ejection velocity

Even if parent bodies’ nodal distances are quite far from Earth’s orbit, meteoroid ejection in different directions can change the nodal distances into \(r_a \pm dr_a \) and \(r_d \pm dr_d \) depending on the ejection velocity components. Therefore checking these parameters for realistic values of cometary ejection velocities can verify whether the meteoroid stream’s nodal distances can approach 1 au.

The mathematical technique underlying our analysis uses Lagrange’s planetary equations:

\[\frac{da}{dt} = \frac{2\sin f\sqrt{1-e^2}}{n\sqrt{1-e^2}}(S\cos f + \frac{a(1-e^2)T}{r}) \] (7)

\[\frac{de}{dt} = \frac{\sqrt{1-e^2}}{na}(S\sin f + T\cos E + \cos f) \] (8)

\[\frac{dv}{dt} = \frac{\sqrt{1-e^2}}{nae}[-S\cos f + T(1 + \frac{r}{a(1-e^2)})\sin f] + 2\frac{d\Omega}{dt}\sin\frac{i}{2} \] (9)

\[\frac{d\Omega}{dt} = \frac{Wr\sin(\omega + f)}{(na^2\sqrt{1-e^2}\sin i)} \] (10)

Equations (7) to (10) are taken from page 184, Roy (1978). Using the definition \(\varpi \equiv \Omega + \omega \) we have:

\[\frac{d\omega}{dt} = \frac{[-\cos f\sqrt{1-e^2}]}{nae}S + \frac{\sin f(1 + \frac{r}{a(1-e^2)})\sqrt{1-e^2}}{n}\frac{T}{na} \]

\[+ [(2\sin^2\frac{i}{2} - 1)\frac{r\sin(\omega + f)}{na^2\sqrt{1-e^2}\sin i}]W \] (11)

Equation (11) can be shown to be equivalent to the expression on page 57, Murray & Dermott (1999):

\[\frac{d\omega}{dt} = e^{-1}\sqrt{\mu^{-1}(1-e^2)}[-S\cos f + T\sin f(\frac{2 + e\cos f}{1 + e\cos f})] - \frac{d\Omega}{dt}\sin i \] (12)

(where \(\mu = GM \)), which confirms that our substitutions from the fundamental equations given by Roy (1978) yield the result.

Taking the differential of equation (1) and finding the expressions for the partial derivatives gives

\[dr_a = \frac{(1-e^2)}{1+e\cos \omega}[da + \frac{-2ae(1+e\cos \omega) - a\cos \omega(1-e^2)}{(1+e\cos \omega)^2}de] \]

\[+ \frac{ae(1-e^2)\sin \omega}{(1+e\cos \omega)^2}d\omega \] (13)

Similarly equation (2) leads to

\[dr_d = \frac{(1-e^2)}{1-e\cos \omega}[da + \frac{-2ae(1-e\cos \omega) + a\cos \omega(1-e^2)}{(1-e\cos \omega)^2}de] \]

\[+ \frac{-ae(1-e^2)\sin \omega}{(1-e\cos \omega)^2}d\omega \] (14)

Equations (13) and (14) require expressions for \(da, de \) and \(d\omega \). These orbital element changes can be related to the separate velocity components using (7), (8) and (11):

\[da = \frac{2}{n\sqrt{1-e^2}}\sin f\frac{dv_r}{dt} + \frac{2a\sqrt{(1-e^2)}}{nr}\frac{dv}{dt}[0]dv_n \] (15)

\[de = \frac{\sqrt{1-e^2}}{na}\sin f\frac{dv_r}{dt} + \frac{\sqrt{1-e^2}}{na}(\cos E + \cos f)\frac{dv}{dt}[0]dv_n \] (16)

\[d\omega = \frac{-\cos f\sqrt{1-e^2}}{nae}\frac{dv_r}{dt} + \frac{\sin f(1 + \frac{r}{a(1-e^2)})\sqrt{1-e^2}}{nae}\frac{dv}{dt}[0]dv_n \] (17)

Equations (15), (16), (17) followed by (13) or (14) express the changes in ascending and descending nodal distances as linear combinations of the separate radial, transverse and normal ejection velocity components at any given point in the orbit. Numerical checks confirmed these differential approximations to be good for the ranges in \(dv_r, dv_t, dv_n \), up to \(\pm 1 \text{ km s}^{-1} \) where we apply them.
3 C/2012 S1 (ISON) AND C/1680 V1 (NEWTON’S COMET)

Comet C/2012 S1 (ISON) is predicted to pass very close ($q \sim 0.012$ au) to the sun on 2013 November 28 (Samarasinha & Mueller 2013; Knight & Walsh 2013) and hence expected to be a spectacular sungrazer this year. ISON’s $\omega \sim 346^\circ$, close to Earth’s orbit. However, a value of $\Delta v_t = 1$ km s$^{-1}$, even at the most suitable f, still fails to bring the orbit to Earth intersection ($r_d + dr_d \sim 0.91$ au).

Ejection velocities well above 1 km s$^{-1}$ could bring the node close to Earth. Most well known meteor showers (from Jupiter family and Halley type comets) show prominent activity due to meteoroids with ejection velocities of the order of 10 m s$^{-1}$. This has been confirmed from numerous earlier works comparing the prediction and accurate observation of meteor outbursts (Asher, Bailey & Em’yanenko 1999; Brown & Arlt 2000; Ma & Williams 2001; Rendtel 2007; Sekhar & Asher 2013). Because q is much less for sungrazers compared to other types of comet, meteoroid ejection with higher speeds than a few tens of m s$^{-1}$ is definitely feasible, $e.g.$ ejection speeds approximately proportional to r^{-1} for small r (cf. Whipple 1951; Jones 1995; Ma, Williams & Chen 2002). However according to Whipple’s model, ejection velocities in the range of a few km s$^{-1}$ are unrealistic even for low q sungrazers.

Moreover the number of particles with diameters $\gtrsim 1$ mm, which produce visually spectacular showers, would be small and hence they will not lead to any intense activity. Also the evolution of particles of diameter significantly less than 1 mm with such high ejection velocities will be dominated by other forces (Nesvorný et al. 2011) such as radiation pressure and Poynting-Robertson (Burns, Lamy & Soter 1979). Hence studying the geom-
4 A. Sekhar and D. J. Asher

MARSDEN FAMILY VERSUS OTHER SUNGRAZING FAMILIES

A search among 1440 compiled orbits of sungrazers belonging to various known sungrazing families (Marsden & Williams 2008) showed that only 27 of these orbits have \(\omega \) in the favourable range mentioned in Section 2.1. Table 2. This is reasonable to assume that out of this small number of favourable parent bodies, a few of them might have fallen into the sun or got tidally fragmented (like the Kreutz family discussed in Biesecker et al. 2002) which thereby makes the number of possible candidates even smaller. Many of these sungrazers have very small sizes (Iseti at al. 2002).

Our calculations (using equations 1 and 2) confirm that \(r_a \) and \(r_d \) are significantly less than 1 au for all other sungrazing families. Thus only Marsden family comets have conditions favourable to produce meteoroids that can encounter Earth in present times (although comets from other families could have favourable conditions, in terms of the right combination of \(\omega \) and \(q \), to produce meteor phenomena during their distant past or future).

Marsden family members have \(r_d \in [0.16, 4.76] \) au. The range for the 27 most favourable members (cf. Table 2) is \(r_d \in [0.81, 4.63] \) au. Fig. 2(b) shows the change to \(r_d \) at all \(f \) due to each ejection velocity component; these plots are virtually identical for all Marsden family members. Fig. 2(b) shows that the transverse component \(d\nu_1 \) is most effective in changing the nodal distance so that it can come near 1 au. For values of \(f \) where \(d\nu_1 \) is ineffective, both \(d\nu_2 \) and \(d\nu_3 \) can be significant (Fig. 2(b)), although \(d\nu_3 \) is most effective near aphelion where normal meteoroid ejection is not expected.

Earlier works (Seargent 2002; Ohtsuka, Nakano & Yoshikawa 2003; Sekanina & Chodas 2005; Jenniskens 2006; Jenniskens, Duckworth & Grigsby 2012) have proposed that the Marsden family could be linked to the daytime Arietids (171 ARI, IAU-MDC). Our calculations show that Marsden family members typically need ejection velocities of at least a few hundred m s\(^{-1}\) so that \(r_d \in 1 \) au. The number of large meteoroids (diameters \(\geq 1 \) mm) having high ejection velocities of several hundred m s\(^{-1}\) (required to bring their nodes close to Earth’s orbit in this case) will be quite small (cf. discussion in section 3). This could be an explanation if the Zenithal Hourly Rate of visually observed Arietids is indeed low, at about 1–2 meteor/hour (Jenniskens et al. 2012).

Our analysis specifically shows that ejection speeds of some hundreds of m s\(^{-1}\) from most Marsden family sungrazers can produce meteoroids whose descending node is at 1 au. This accords with the proposed association with 171 ARI which has \(\omega \approx 20^\circ \) to \(30^\circ \), similar to the Marsden family (cf. equation 6). Long term evolution to induce a substantial \(\omega \) separation is not required. Various Marsden family members in the dataset we used had perihelion passages during 1996–2008, a range that can easily arise in the short term (even a single revolution). In the short term, the nodal distances \(r_d \) remain in the range resulting from the ejection velocities.

However orbital changes due e.g. to planetary perturbations would be substantial during long term evolution, over which different points in the \(\omega \) precession cycle may be reached. Previous works (Ohtsuka et al. 2003; Sekanina & Chodas 2005) have found that the Kracht group (\(\omega \approx 50^\circ \)) could be linked to the Marsden family and 171 ARI during their long term evolution. Sekanina & Chodas (2005) identified a possible connection between the Southern \(\delta \) Aquariids (005 SDA) which have \(\omega \approx 150^\circ \) (meteor shower at ascending node; equation 5) and the Marsden and Kracht groups.

The nominal orbital periods of most Marsden sungrazers are very high (\(\sim 10^3 \) to \(10^5 \) yr) because \(e \approx 1 \). Hence we have not

Table 2. Maximum nodal displacement of meteoroids due to individual components of ejection velocity

| Comet | \(d\nu_1 \) (km s\(^{-1}\)) | \(d\nu_2 \) (km s\(^{-1}\)) | \(d\nu_3 \) (km s\(^{-1}\)) | \(|d\nu_a|\times10^{-3}\) (au) | \(|d\nu_d|\times10^{-3}\) (au) |
|-----------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| C/2012 S1 | 0 | ±1 | 3.167 | 0.677 |
| | 0 | ±1 | 4.274 | 1.503 |
| | ±1 | 0 | 3.166 | 0.668 |
| C/1680 V1 | 0 | ±1 | 1.022 | 0.569 |
| | 0 | ±1 | 1.524 | 1.589 |
| | ±1 | 0 | 1.137 | 0.569 |

Table 3. Distribution of sungrazing families from Catalogue of Cometary Orbits 2008 (50 of 1490 sungrazing comets listed have not been linked to any specific families).

Family	Number of comets	Bodies favouring the range in \(\omega \) so that \(r_a \sim 1 \) au or \(r_d \sim 1 \) au
Kreutz	1277	0
Meyer	89	0
Marsden	32	27
Kracht 1	31	0
Kracht 2	4	0
Kracht 3	2	0
Anon 1	3	0
Anon 2	2	0
checked the orbital evolution of meteoroids for subsequent revolutions. At the upper end of this period range, long term future predictions for meteor showers from this family would even require a completely independent analysis including other effects due to perturbations from galactic tides or passing stars. The same limitation applies for the long term evolution of meteoroids from ISON perturbations from galactic tides or passing stars. The same limitations for meteor showers from this family would even require a completely independent analysis including other effects due to these additional effects will be questionable when orbital periods are very high (which applies to most sungrazers).

A similar analysis (as for ISON and Marsden family) was done on the orbits of other sungrazing families (mentioned in Table 3). Our calculations clearly show that no realistic ejection velocities in any direction can bring the nodes of meteoroids close to Earth’s orbit, \(r_a \pm dr_a \) and \(r_d \pm dr_d \) for all these cases (during present times) remaining small compared to 1 au.

5 CONCLUSION

The necessary (but not sufficient) condition to create meteor showers on Earth as an immediate result of particles ejected from high-e sungrazers is that their orbits lie in a favourable range in \(\omega \) thereby enabling the ascending or descending node to closely approach Earth’s orbit. The forthcoming sungrazing comet C/2012 S1 (ISON) has \(\omega \sim 346^\circ \). Although this is unusually (for sungrazers) very close to the ideal condition of \(r_d \sim 1 \) au, which would occur if \(\omega \sim 348^\circ \), the descending node nevertheless does not extend to the Earth’s orbit \((r_d \sim 0.76 \text{ au when } \omega \sim 346^\circ) \). Even quite high ejection velocities do not bring meteoroids to intersect the Earth’s orbit \((r_d + dr_d \sim 0.91 \text{ au for } 1 \text{ km s}^{-1}) \). This implies the absence of strong meteor activity from this comet.

Compiled observational records of sungrazers (Marsden & Williams 2008) reveal only Marsden family comets with \(\omega \) lying in this favourable range. The other sungrazing families have \(\omega \) far from this small range during present epochs and their nodes cannot reach near Earth. This explains why we hardly see any prominent meteor activity from the frequently observed sungrazers of different groups.

Surprisingly out of all observed sungrazing family members, none of them have their orbital elements such that small meteoroid ejection velocities \((\sim 1 - 100 \text{ m s}^{-1}) \) lead to meteor phenomena on Earth (even the Marsden family typically requiring some hundreds of m s\(^{-1}\)). It would be interesting to repeat these calculations for the sungrazers which are going to visit us in future and check whether any of them have an apt combination of orbital elements so as to become an exception from this general trend so far.

Furthermore, calculations along these lines can help for forecasting potential meteor showers on Venus especially because Venus is closer to the sun compared to Earth (see small nodal distances in Table 3 particularly C/2012 S1 having \(r_d \) close to the venusian semi-major axis of 0.72 au). Hence much smaller ejection velocities could induce sufficient nodal dispersion in meteoroids to reach near the orbit of Venus. This idea gives much scope for future work using similar techniques.

REFERENCES

Asher D. J., Bailey M. E., Emel’yanenko V. V., 1999, MNRAS, 304, L53
Bailey M. E., Chambers J. E., Hahn G., 1992, A&A, 257, 315
Biesecker D. A., Lamy P., Cyr O. C., Llebaria A., Howard R. A. 2002, Icarus, 157, 323
Brown P., Arlt R., 2000, MNRAS, 319, 419
Burns J. A., Lamy P. L., Soter S., 1979, Icarus, 40, 1
Enzian A., 1999, Space Science Reviews, 90, 131
Fitzsimmons A., Williams I. P., 1994, A&A, 289, 304
Giorgetti J. D., et al., 1996, BAAS, 28, 1158
Iseli M., Kuppers M., Benz W., Boschler P., 2002, Icarus 155, 350
Jenniskens P., 2006, Meteor Showers and their Parent Comets. Cambridge Univ. Press, Cambridge
Jenniskens P., Duckworth H., Grigsby B., 2012, WGN (J.IMO), 40, 98
Jones J., 1995, MNRAS, 275, 773
Knight M. M., Walsh K. J., 2013, ApJL, in press
Ma Y., Williams I. P., 2001, MNRAS, 325, 379
Ma Y., Williams I. P., Chen, W., 2002, MNRAS, 337, 1081
Marsden B. G., 1967, AJ, 72, 1170
Marsden B. G., 1989, AJ, 98, 2306
Marsden B. G., 2005, ARA&A, 43, 75
Marsden B. G., Williams G. V., 2008, Catalogue of Cometary Orbits, 17th ed. Minor Planet Center/Central Bureau for Astronomical Telegrams, Cambridge, MA
Murray C. D., Dermott S. F., 1999, Solar System Dynamics. Cambridge Univ. Press, Cambridge
Nesvorný D., Vokrouhlický D., Pokorný P., Janches D., 2011, ApJ, 743, 37
Ohtsuka K., Nakano S., Yoshikawa M., 2003, PASJ, 55, 321
Rendtel J., 2007, WGN (J. IMO), 35, 41
Roy A. E., 1978, Orbital Motion. Adam Hilger, Bristol
Samarasinha N.H., Mueller B. E. A., 2013, ApJL, 775, L10
Seargent D. A. J., 2002, MPEC 2002-E25
Sekanina Z., Chodas P. W., 2005, ApJL, 161, 551
Sekanina Z., Chodas P. W., 2012, ApJ, 757, 127
Sekhar A., Asher D. J., 2013, Meteorit. Planet. Sci., doi: 10.1111/maps.12117, in press
Strom R., 2002, A&A, 387, L17
Whipple F. L., 1950, ApJ, 111, 375
Whipple F. L., 1951, ApJ, 113, 464

ACKNOWLEDGEMENTS

We appreciate the referee’s thoughtful and helpful review. Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure.