The dispersion relation of GWs in vacuum, GWs propagate at the speed of light and obey the dispersion relation of gravitons. According to general relativity, the time of writing. Nonetheless, no conclusive evidence of lensed gravitational waves has been found using this method. These methods are capable of extracting the graviton mass from unlensed GW signals. On the other hand, lensed GW signals are expected to be detected in the future. To thoroughly understand the nature of GWs in different astrophysical scenarios, developing a test of the dispersion of lensed GWs becomes increasingly pressing. Moreover, since the amplitude of lensed GWs shows more variations across the frequency than the amplitude and phase of unlensed waves, the wave-form morphology of lensed dispersive GWs may depend on the graviton mass more sensitively than the unlensed GWs. Besides, the amplification introduced by lensing may contribute to an improved measurement accuracy of the graviton mass compared to the unlensed case. Furthermore, the dispersion relation of GWs corresponding to the massive graviton also changes the time delay of waves of different frequencies in different directions, leading to additional features of the resultant lensing pattern. These considerations prompt us to explore measuring the graviton mass from lensed GW signals. Measuring the graviton mass by lensing also makes relevant tests more complete in at least two ways. First, lensing involves the strength of gravity intermediately between the near and far strengths of gravity intermediately between the near and far.
II. LENSING PATTERN OF GRAVITATIONAL WAVES WITH DISPERSION

A. Assumptions and approximations

This work makes a few assumptions:

A.1 Following [39, 42, 47], we assume perfect screening of gravity due to the mass of graviton [57]. In other words, general-relativistic limits are recovered at a length scale shorter than the Compton wavelength of the graviton. This assumption implies that we will ignore the effects on the dynamics of binary black hole mergers due to the graviton mass. In the context of lensing, this assumption implies that at a sufficiently far distance r the Newtonian gravitational potential due to a black hole (point-mass lens) of mass M is given by $-\frac{M}{r}$.

A.2 We focus only on the effects on GW lensing due to the graviton mass. Other consequences of lensing, such as modifications on polarization [40] and phase shift [45, 46], will be omitted. These are acceptable approximations because including these effects will include more contrasting features to graviton-mass approximations because including these effects will shift [45, 46], will be omitted. These are acceptable approximations because including these effects will shift [45, 46],

B. Method

If gravitons have mass, phenomenologically, the dispersion relation of GWs will be altered to [47]

$$\omega^2 = k^2 + m_g^2,$$

(1)

where m_g is the mass of graviton. If $m_g \ll k$, the propagation speed of dispersive GWs that obey this dispersion relation can be approximated by the following equation:

$$v_g(f) \approx 1 - \frac{1}{8\pi^2} \frac{m_g^2}{f^2}.$$ (2)

When propagating in a flat space-time, the dispersive GWs obeying Eq. (1) will acquire a dephasing due to the difference in propagation speeds among different frequencies [47],

$$\Psi_{\text{disp}}(f; m_g) = -\frac{\pi D_0}{\lambda_g} \frac{1}{(1 + z)f},$$ (3)

where $\lambda_g = 1/m_g$ is Compton’s wavelength of the graviton, D_0 is the propagation distance from the source to the detector and z is the redshift of the source binary. Thus, in the frequency domain, the waveform of unlensed dispersive GWs is

$$\tilde{h}_{\text{disp}}(f) = \tilde{h}(f) e^{i\Psi_{\text{disp}}(f)},$$ (4)

where $\tilde{h}(f)$ is the original (unlensed) GR waveform (see, e.g., [3, 25, 55] for GR waveform approximants).

When encountering a massive compact object, such as an intermediate-mass black hole, GWs will be lensed. The lensing effect is characterized by the amplification function (or transmission factor) [32, 59], F, which is the ratio of lensed-wave amplitude to unlensed-wave amplitude,

$$\tilde{h}_L(f) = F(f)\tilde{h}(f),$$ (5)

where $\tilde{h}_L(f)$ is the lensed waveform and $\tilde{h}(f)$ is the unlensed waveform. Given a lensing geometry, $F(f)$ can be computed by [52, 61, 63]

$$F(f; \bar{\delta}_s) = \frac{D_L D_S}{D_{LS}} \frac{c_s^2}{c_0} \frac{(1 + z_L)}{f} \frac{i}{v_g} \times \int d^2 \bar{\theta}_L \exp \left[2\pi i f t_d(\bar{\theta}_L, \bar{\theta}_s) \right],$$ (6)

where v_g is GW propagation speed; $D_L, D_S,$ and D_{LS} are, respectively, the lens-to-observer distance, the source-to-observer distance, and the source-to-lens distance; z_L is the redshift of lens; $\bar{\theta}_s$ is the displacement from optical axis to the source on source plane; $\bar{\theta}_L$ is the displacement from optical axis to lens on lens plane; and t_d is the time delay between the lensed ray and unlensed ray,

$$t_d(\bar{\theta}, \bar{\theta}_s) = \frac{(1 + z_L)}{v_g} \left[\frac{D_L D_S}{2D_{LS}} |\bar{\theta}_s - \bar{\theta}_l|^2 - \psi(\bar{\theta}_s) \right],$$ (7)

where $\psi(\bar{\theta}_s)$ is the lensing potential. Overall, t_d also depends on v_g, $\bar{\theta}_s$, and lens $\bar{\theta}_L$, and ξ_0 is a length scale.

We note that the amplification function Eq. (6) depends on $\frac{L}{v_g}$ as a whole. Thus, the amplification function

1 Alternatively, this equation can be interpreted as a definition of the massive graviton which leads to the dispersion of gravitational perturbations. In this work, we refer "the mass of graviton" to m_g defined by Eq. (1).
of GWs of the massive graviton is just that of GWs without dispersion with the following replacement:

\[f \rightarrow \beta(f) f, \]

where

\[\beta(f) = \frac{c}{v_g(f)} \approx 1 + \frac{1}{2} \frac{m_g^2}{f^2}. \]

From Eq. (9), we expect that the modifications to the lensing pattern due to the dispersion relation Eq. (1) are manifest for \(m_g \geq 10^{-14}\text{eV} \), corresponding to the energy scale of \(hf \) at \(f = 10\text{Hz} \).

As a proof of principle, in this work we focus on the case of a point-mass lens, such as a black hole. For a point-mass lens, the amplification function can be analytically evaluated as \[F(f; M_{\text{len}}, y, m_g) \]

\[= \exp \left(\frac{\pi}{4} w \beta \right) \left(\frac{w}{2} \beta \right)^{\frac{1}{2}} \Gamma \left(1 - i \frac{w}{2} \beta \right) \nonumber \]

\[\times F_1 \left(i \frac{w}{2} \beta, 1; i \frac{w}{2} \beta y^2 \right), \]

where \(M_{\text{len}} \) is the redshifted mass of the lens, \(y \) is the impact parameter of lensing, \(\Gamma \) is the (complex) Gamma function, \(F_1 \) is confluent hypergeometric function, and \(w = 8\pi M_{\text{len}} f \) is the dimensionless frequency. The resulting lensed waveform of GWs corresponding to the massive gravitons can be written as

\[\tilde{h}_L(f; m_g) = F(f; M_{\text{len}}, y, m_g) \tilde{h}(f)e^{i \varphi_{\text{disp}}(f)}. \]

Note that, according to Eq. (2), GWs of different frequencies travel at different speeds. The only constant achromatic speed is the speed of light. Therefore, the effects described by Eq. (11) are not degenerate with a constant change of propagation speed of GWs. Thus, the effects of the massive gravitons can be distinguished upon gravitational-wave detection.

Fig. 1 plots the \(F(f) \) corresponding to the lensing by an intermediate-mass black hole of redshifted lens mass \(M_{\text{len}} \) of 400 \(M_\odot \) and \(y = 0.9 \) for \(m_g = 0 \) (solid blue), \(m_g = 10^{-14}\text{eV} \) (dashed red) and \(m_g = 10^{-22}\text{eV} \) (dotted green) as a function of \(f \). For \(m_g = 10^{-14}\text{eV} \), we find that the modifications of the amplification function is manifest for the low-frequency regime \(f \leq 10^2\text{Hz} \), in which \(\beta \) changes significantly with \(m_g \). As GW frequency increases, the changes of the amplification function due to the alternative dispersion become increasingly less manifest because the ultralativistic limit \(E \approx p \) has been attained. For \(m_g = 10^{-22}\text{eV} \), over \(f \in [10, 10^3]\text{Hz} \), the modifications due to the graviton mass are not visible, as expected because \(|\beta(f) - 1| \sim 10^{-15} \ll 1 \) for \(m_g = 10^{-22}\text{eV} \).

Eq. (11) suggests that GW lensing may help to improve the measurement of \(m_g \) in at least three ways.

R.1 Lensing changes the waveform morphology of the signal. Specifically, because of the modulation by the amplification function [Fig. 1], the amplitude and phase of lensed GWs show more variations across the frequencies than the unlensed GWs. This beating pattern may make the waveform morphology of lensed dispersive GWs depend on the graviton mass more sensitively than unlensed waves.

R.2 Lensing increases the signal-to-noise ratio (SNR).

R.3 The graviton mass modifies the amplification function, making the waveform morphology of lensed dispersive GWs depend on the graviton mass even more sensitively.

However, judging from Fig. 1 for \(m_g \) close to the existing constraints of the graviton mass \(\sim 10^{-22}\text{eV} \) \[8, 15, 20\], the changes of the amplification function due to \(m_g \) are not significant. Therefore, R.3 is unlikely to contribute to any significant improvement. In what follows, we focus on investigating the roles of R.1 and R.2.

As a first step, we compare the similarity of the waveform of both lensed and unlensed dispersive GWs of a given \(m_g \) to the dispersive waves of other \(m_g \). In general, the similarity between two waveforms, \(\tilde{h}_1(f) \) and \(\tilde{h}_2(f) \), can be gauged by the match between \(\tilde{h}_1 \) and \(\tilde{h}_2 \),
defined as
\[M = \frac{\langle \hat{h}_1 | \hat{h}_2 \rangle}{\sqrt{\langle \hat{h}_1 | \hat{h}_1 \rangle \langle \hat{h}_2 | \hat{h}_2 \rangle}}, \tag{12} \]
where the braket notation denotes the noise-weighted inner product \[^3\].

\[\langle \hat{h}_1 | \hat{h}_2 \rangle = 4 \Re \int_0^{+\infty} df \frac{\hat{h}_1(f) \hat{h}_2^*(f)}{S_n(f)}, \tag{13} \]
and \(S_n(f) \) is the one-sided power-spectral density of the detector. Throughout this work, we assume GW signals are detected by the Advanced LIGO and Virgo detectors operating at their design sensitivity \[^1\][^2\]. To investigate how sensitive lensed dispersive GWs depend on \(m_g \), we chose
\[\hat{h}_1(f) = \hat{h}_L(f; m_g = m_g^{\text{inj}}), \]
\[\hat{h}_2(f) = \hat{h}_L(f; m_g), \tag{14} \]
where \(m_g^{\text{inj}} \) is a given value of \(m_g \) and \(\hat{h}_L \) is the lensed waveform defined by Eq. (11) and Eq. (10). Using this waveform, we have defined a match as a function of \(m_g \) for lensed dispersive GWs. Similarly, we can define a match for unlensed dispersive GWs by replacing \(h_L(f; m_g = m_g^{\text{inj}}) \) to \(h(f; m_g = m_g^{\text{inj}}) \) and \(h_L(f; m_g) \) to \(h(f; m_g) \), where \(h(f; m_g) \) is defined by Eq. (4). As \(\sqrt{\langle \hat{h}_1 | \hat{h}_1 \rangle} \) and \(\sqrt{\langle \hat{h}_2 | \hat{h}_2 \rangle} \) are, respectively, the SNRs of \(\hat{h}_1 \) and \(\hat{h}_2 \), \(M \) does not depend on the SNR of the waveform considered. Alternatively, \(M \) can be viewed as a normalized inner product between the two waveforms, and its magnitude is always smaller than 1. If \(\hat{h}_1 \) and \(\hat{h}_2 \) have more similarity, \(M \) is closer to unity. In particular, if \(\hat{h}_1(f) \propto \hat{h}_2(f) \), meaning that \(\hat{h}_1 \) and \(\hat{h}_2 \) have the same morphology, \(M = 1 \).

For the explicit calculations of \(M \), we consider:

\begin{itemize}
 \item U.1 an unlensed waveform due to a GW150914-like source binary black hole \[^7\] at a luminosity distance of 400 Mpc, whose SNR is 46,
 \item L.1 a lensed waveform of the unlensed waveform by an IMBH of reshifted mass of 400\(M_\odot \) and impact parameter \(y = 0.9 \), whose SNR is 57.
\end{itemize}

This mass of lens is chosen because IMBHs of similar masses are hoped to be discovered by GW lensing \[^4\]. This value of \(y \) is chosen because IMBH lensing is more likely to occur at a larger \(y \) (see the subsequent discussion of the prior of \(y \)). The existing constraints on \(m_g \) by GW detection \[^10\][^13][^20\] suggest that we can probe the existence of massive gravitons of \(\sim 10^{-22} \) eV via GW detection. Thus, we consider \(m_g^{\text{inj}} = 10^{-22} \) eV.

\[\text{FIG. 2. The match, a function gauging the similarity between waveforms, of lensed GWs and unlensed GWs as a function of the graviton mass. In particular, we compare the similarity between lensed dispersive GWs of \(m_g = 10^{-22} \) eV to unlensed dispersive GWs of other \(m_g \) (solid blue) and the similarity between unlensed dispersive GWs of \(m_g = 10^{-22} \) eV to unlensed dispersive GWs of other \(m_g \). The match of lensed dispersive GWs shows a narrower peak, suggesting that the waveform morphology of lensed dispersive GWs vary more sensitively with \(m_g \). As we shall see, this character of lensed GWs can lead to a better measurement accuracy of \(m_g \) over unlensed GWs.} \]

\[^2\] Note that, throughout this work, SNR is defined with respect to the Advanced LIGO and Virgo detectors at the design sensitivity.
III. PARAMETER ESTIMATION

A. Mock signals

To further investigate how lensing modifications of waveform morphology and SNR may help to improve the measurement of m_g, we analyze a mock signal of $L.1$ and $U.1$ that is injected into simulated Gaussian noises assuming the design sensitivity of the Advanced LIGO and Virgo detectors. We also inject $L.2$ a lensed signal which is identical to $L.1$ except the source binary is at 500 Mpc.

The luminosity distance of the source binary of $L.2$ is increased so that the SNR of $L.2$ is the same as that of $U.1$. On the other hand, it is estimated that the Advanced LIGO and Virgo detectors will detect 0.05 IMBH-lensed events per year (or 1 IMBH-lensed event per ~20 years) [43]. At its design sensitivity, the Advanced LIGO and Virgo are expected to detect ≤ 360 unlensed events per year [22]. Thus, a more fair comparison will be with the posterior of m_g combined across $20 \times 360 \sim 7000$ unlensed signals. In practice, the combined measurement accuracy of m_g will be dominated by the signal with the best measurement accuracy, which depends on the SNR of the signal [65]. Thus, we first simulated a population of ~7000 binary black-hole mergers according to [19], each of which has an SNR of ≥ 10, approximately the minimum SNR for an event to be detectable by the Advanced LIGO and Virgo detectors [18, 20, 48]. Then, we inject the fourth signal, which is $P.1$ the unlensed signal that has the largest SNR (130) among the simulated 7000 unlensed events.

We represent the measurement of m_g combined across these 7000 simulated signals by the posterior of m_g of $P.1$.

B. Bayesian inference

We denote parameters describing the source binary by $\hat{\theta}_{BBH}$ and parameters describing lensing by $\hat{\theta}_{lens} = (M_{lens}, y)$. By Bayes’ theorem, the posterior of m_g, $\hat{\theta}_{lens}$ and $\hat{\theta}_{BBH}$ is given by

$$p(\hat{\theta}_{BBH}, \hat{\theta}_{lens}, m_g | \hat{d}, H, I) \propto p_{BBH}(\hat{\theta}_{BBH} | H, I) p_{lens}(\hat{\theta}_{lens} | H, I) \rho(m_g | H, I)$$

$$\times p(\hat{d} | \hat{\theta}_{BBH}, \hat{\theta}_{lens}, m_g, H, I),$$

where $p_{BBH}(\hat{\theta}_{BBH} | H, I)$, $p_{lens}(\hat{\theta}_{lens} | H, I)$ and $\rho(m_g | H, I)$ are, respectively, the prior of $\hat{\theta}_{BBH}$, $\hat{\theta}_{lens}$ and m_g, given the hypothesis H that GWs may exhibit dispersion relation due to the massive gravitons and background information I, such as that the signal is lensed, the amplification function [Eq. (10)] and lensing geometry etc. Since $\hat{\theta}_{BBH}$, $\hat{\theta}_{lens}$ and m_g should be independent, we have assumed that their priors are factorized. $p(\hat{d} | \hat{\theta}_{BBH}, \hat{\theta}_{lens}, m_g, H, I)$ is the likelihood that a binary black hole of $\hat{\theta}_{BBH}$ and lens of $\hat{\theta}_{lens}$ will generate detected strain data \hat{d},

$$p(\hat{d} | m_g, \hat{\theta}_{lens}, \hat{\theta}_{BBH}, \hat{\theta}, H, I) \propto \exp \left(-\frac{1}{2} \langle \tilde{n}(f) | \tilde{n}(f) \rangle \right)$$,

$$\tilde{n}(f) = \hat{h}_D(f; m_g, \hat{\theta}_{lens}, \hat{\theta}_{BBH}) \sim \hat{d}_D,$$

(17)

where $\hat{h}_D(m_g, \hat{\theta}_{lens}, and \hat{\theta}_{BBH})$ is the frequency-domain responses corresponding to detector D by the waveform equation Eq. (11).

Following [43], we place a uniform prior for M_{lens}. For y, we place a prior which is uniform for $y^2 \in (0,1)$ instead of y. For m_g, we place a prior which is uniform for $\log_{10} m_g \in [-26, -20]$, covering the magnitude of the most updated constraints on m_g [20] by GWs and for us to explore tighter constraints. At last, the marginalized posterior of m_g can be obtained by marginalizing Eq. (16) over $\hat{\theta}_{BBH}$ and $\hat{\theta}_{lens}$.

$$p(m_g | \hat{d}, H, I) = \int d\hat{\theta}_{BBH} \int d\hat{\theta}_{lens} p(\hat{\theta}_{BBH}, \hat{\theta}_{lens}, m_g | \hat{d}, H, I).$$

(18)

C. Mock signals of $m_g = 0$

We first analyze $U.1$, $L.1$, $L.2$ and $P.1$ that are generated by assuming $m_g = 0$. The frequency-domain strains of $U.1$ and $P.1$ are generated using the IMRPhenomPv2 template [31, 53], a phenomenological waveform template calibrated against numerical-relativity simulations, using the LALSimulation library [43]. The simulated unlensed signals contain the inspiral, merger, and ringdown phase. We then map $U.1$ into $L.1$ by multiplying the frequency-domain waveform of $U.1$ by the amplification function Eq. (6). $L.2$ is also generated according to these procedures. When inferring $L.1$ and $L.2$, we use the waveform model of Eq. (11) with the dephasing due to the massive gravitons included and infer m_g along with $\hat{\theta}_{BBH}$ and $\hat{\theta}_{lens}$. For $U.1$ and $P.1$, we infer with the waveform model with $F(f; m_g)$ in Eq. (11) set to be 1 for all frequencies and M_{lens} and y are removed from inference.

The diagonal of Fig. 3 shows the posterior of redshifted lens mass M_{lens}, y and $\log m_g$ obtained from $L.1$. The off-diagonal plots show the two-dimensional posterior distributions among the variables. The green vertical lines mark the injected values. The red vertical line marks the 3σ interval of the marginalized posterior of $\log_{10} m_g$ from $m_g = 10^{-26}$eV. From Fig. 3, we find that the posterior of $\log_{10} m_g$ has no support for $\log_{10} m_g > -23.2$ because our measurement of GWs rules out the possibility of an excessive large m_g. From the posterior of M_{lens} and y, we conclude that we can accurately estimate
FIG. 3. The corner plot shows the marginalized posterior of the redshifted lens mass M_{len}, y and $\log m_g$ and their correlations, although we also infer the parameters of the source binary together as free parameters. The posteriors are estimated from a mock lensed signal due to a GW150914-like binary lensed by a black hole of redshifted mass M_{len} of 400M_{\odot} at $y = 0.9$. The green lines denote the injected values for M_{len} and y. The red line on the marginalized posterior of $\log_{10} m_g$ denotes the 3σ confidence interval (CI) from the lower limit of the prior of $\log_{10} m_g$. We conclude that we can bound the graviton mass while accurately measuring the lensing-related parameters.

the lensing-related parameters while testing the graviton mass with lensing. Moreover, judging from Fig. 3 there are no strong correlations between the lensing-related parameters and m_g.

We now compare the constraints on m_g obtained from different nondispersive GW signals. Fig. 4 shows the posterior of $\log_{10} m_g$ of $L.1$ (solid blue line), its unlensed counterpart $U.1$ (dashed red line), $L.2$ (dashed dotted black line) and $P.1$ (dashed dotted green). We notice that all posteriors are in step-function shape because the measurement rules out large values for m_g, which would produce discernible effects on the waveform. All posteriors correspond to a similar 3σ confidence interval (CI), ranging from 3.3×10^{-24} eV to 1.3×10^{-23} eV. In particular, $L.1$ yields a constraint (3σ CI) on m_g of 5.5×10^{-24} eV, slightly better than the constraint on m_g by $U.1$ corresponding to 1.3×10^{-23} eV. At the same SNR, we find that the 3σ CI of $L.2$ is 1.3×10^{-23} eV, almost the same as that of $U.1$. Even with large SNR, $P.1$ yields a constraint on m_g of $\sim 3.3 \times 10^{-24}$ eV, slightly better than the constraint by all the other signals. These results conclude that lensing and increasing the SNR do not significantly improve the constraints.

D. Mock signals of $m_g = 10^{-22}$ eV

On the other hand, we find that lensing can help to improve the measurement of m_g from dispersive GWs. Fig. 5 shows the posterior of $\log_{10} m_g$ obtained from $U.1$ (dashed red line), $L.1$ (solid blue line), $L.2$ (dot-dot-dashed line) and $P.1$ (dot-dashed green line) that are generated by assuming $m_g = 10^{-22}$ eV (solid vertical black line). The shaded region illustrates the 3σ CI of the posterior of $L.1$. The embed figure shows the zoomed-in comparison of the posterior of $L.1$ and $P.1$. We notice that, at the same SNR, lensing still improves the measurement accuracy of m_g over its unlensed counterpart. The posterior of $L.2$ shows more support for m_g close to the injected m_g than $U.1$, indicating that the posterior of $L.2$ is more accurate than that of $U.1$. This is because lensing modulates the amplitude and phase of GWs, so that lensed GWs depend on m_g more sensitively, increasing the detectability of dispersive GWs, as indicated by Fig. 2. The posterior of $L.1$ and $P.1$ peaks
FIG. 5. The marginalized posterior of \(m_g \) obtained from L.1 (solid blue), U.1 (dashed red), L.2 (dashed-dotted-dotted black line) and P.1 (dashed-dotted green). The embedded figure shows the zoomed-in comparison of the posterior of L.1 and U.1. The shaped region denotes the 3\(\sigma \) confidence interval of the posterior obtained from the lensed signal. For all signals, we assume \(m_g = 10^{-22} \text{eV} \) (vertical line in black). The lensing geometry is the same as that considered in Section III C. By comparing the posterior of L.2 and U.1, we find that, even at the same SNR lensing modifications of waveform morphology contribute to improving measurement accuracy of \(m_g \).

at a \(m_g \) closer to the injected \(m_g \) because of larger SNR. Nevertheless, L.1 still leads to significant improvement of the measurement accuracy of \(m_g \) to an extent comparable to P.1. From the results of Fig. 5, we find that both the lensing modifications of waveform morphology and amplification can contribute to the improved measurement accuracy of the graviton mass.

IV. CONCLUSIONS

This paper studies the lensing pattern by a point-mass lens of GWs with an isotropic dispersion relation due to the massive gravitons. Although the graviton mass close to the existing constraints leads to no significant effects on the lensing amplification, we find that lensing modifies the waveform morphology of dispersive GWs, making the morphology changes more sensitively with the graviton mass, which helps to improve the measurement of the graviton mass. The improvement can also be further enhanced by the increase of signal-to-noise ratio due to lensing. By detecting a lensed gravitational-wave signal, we can measure the graviton mass with an accuracy comparable with the combined measurement across \(O(10^3) \) unlensed signals. Our work lays the foundation for measuring the graviton mass in the era of detectable lensed GWs, making the existing analyses that focus primarily on unlensed signals more complete.

Other than the improvement of measurement accuracy of the graviton mass, our method enjoys several advantages. First, compared to other proposed methods of testing the speed of GWs by observing lensing \cite{27, 33}, our approach requires no observation of the electromagnetic counterpart(s) of a given event. Therefore, our method is more stand-alone and is easier to be performed. Second, our method is independent of the nature of the source binaries. Although in this paper, we focused on GWs generated by binary black holes, our method can be straightforwardly applied to other types of coalescence, such as binary neutron star coalescence \cite{50}. This flexibility greatly extends the scope of graviton-mass measurement. Lastly, our method makes the test of graviton mass more complete. While the far-field propagation of GWs \cite{12, 47} and near-field behavior of black holes \cite{24} have been proposed to constrain the mass of graviton, our test bridges the intermediate region between these two tests. Along with other tests of general relativity via observing the lensing of GWs (such as \cite{33}), our test demonstrates the strong potential to understand the nature of space-time via observing gravitational-wave lensing.

In this work, we ignore the effects of (i) the change of polarization of GWs due to lensing \cite{10}; (ii) the change of the behavior of the source compact binary due to massive graviton, as is the case in \cite{8, 15}; and (iii) the change of the gravitational field around the lens by the graviton mass. Also, our study focusing on the case of point-mass lens. These ignored effects and the lensing of dispersive GWs of other lens types remain fully explored. If we include these effects in our measurement, the accuracy can be further enhanced.

In the future, we plan to extend our studies to other types of lenses, which may help further improve the measurement accuracy. Our study has thus far focused on the point-mass lens, such as intermediate-mass black holes, which leads to microlensing. In reality, it may be very rare for gravitational waves to be lensed by an intermediate-mass black hole of \(\sim 400 M_\odot \). Moreover, the population properties and lensing rates of intermediate-mass black holes are uncertain. On the other hand, strong lensing due to different types of lenses, such as galaxies or galaxy clusters \cite{50}, are expected to be more common, roughly 1 per \(\sim 600 \) unlensed events at the design sensitivity of LIGO and Virgo \cite{41}. Upon strong lensing, a GW signal may split into multiple images whose properties, such as image position and the arrival time differences, may depend on the graviton mass even more sensitively than the diffraction pattern considered in this work \cite{24, 30}. To extend our test to strong lensing, we need to study the strong lensing of dispersive GWs by lenses with structures, such as galactic lenses, singular isothermal sphere, and other possible extended mass distribution \cite{64}. We would also like to investigate the performance of our test for the detection by proposed space-based detectors, such as the Laser Interferometer Space Antenna \cite{58}, which are capable of exquisite phase measurement and much better constraints. Therefore, in the future, we can measure the graviton mass with
unparalleled accuracy by observing lensed gravitational-wave signals.

ACKNOWLEDGEMENTS

The authors are indebted to valuable discussion among the lensing working group of LIGO. A.K.-W.C. would like to acknowledge Patrick C.K. Cheong, Srashiti Goyal and Shasvath Kapadia for stimulating discussions, Jose Maria Ezquiaga Bravo, Mark H.Y. Cheung, Otto A. Hanuksela, Alvin K.Y. Li and Ignacio Magana for their comments on the manuscript and relevant presentations and Robin S.H. Yuen for his advice about computer programming. A.K.-W.C. was supported by the Hong Kong Scholarship for Excellence Scheme (HKSES). The work described in this paper was partially supported by grants from the Research Grants Council of the Hong Kong (Project No. CUHK 24304317 and CUHK 14306218), The Croucher Foundation of Hong Kong, and the Research Committee of the Chinese University of Hong Kong. This manuscript carries a report number of KCL-PH-TH 2021/41 and LIGO Document number of P2100192-v2.

This research has made use of data, software and/or web tools obtained from the GW Open Science Center (https://www.gwopenscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

[1] https://dcc.ligo.org/LIGO-P1200087-v42/public
[2] https://dcc.ligo.org/LIGO-T2000012/public
[3] P. Ajith, M. Hannam, S. Hussa, Y. Chen, B. Brügmann, N. Dorband, F. Müller, D. Ohme, D. Pollney, C. Reisswig, L. Santamaría, and J. Seiler. Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins. Phys. Rev. Lett., 106:241101, Jun 2011.
[4] B. P. Abbott et al. Binary black hole mergers in the first advanced ligo observing run. Phys. Rev. X, 6:041015, Oct 2016.
[5] B. P. Abbott et al. Gw151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116:241103, Jun 2016.
[6] B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016.
[7] B. P. Abbott et al. Properties of the Binary Black Hole Merger GW150914. prl, 116(24):241102, June 2016.
[8] B. P. Abbott et al. Tests of general relativity with gw150914. Phys. Rev. Lett., 116:221101, May 2016.
[9] B. P. Abbott et al. Gw170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett., 118:221101, Jun 2017.
[10] B. P. Abbott et al. Gw170608: Observation of a 19-solar-mass binary black hole coalescence. The Astrophysical Journal Letters, 851(2):L35, 2017.
[11] B. P. Abbott et al. Gw170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett., 119:141101, Oct 2017.
[12] B. P. Abbott et al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119:161101, Feb 2017.
[13] B. P. Abbott et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel., 21:3, 2018. [Living Rev. Rel.19,1(2016)].
[14] B. P. Abbott et al. Gwte-1: A gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs. Phys. Rev. X, 9:031040, Sep 2019.
[15] B. P. Abbott et al. Tests of general relativity with the binary black hole signals from the ligo-virgo catalog gwte-1. Phys. Rev. D, 100:104036, Nov 2019.
[16] B. P. Abbott et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. arXiv e-prints, page arXiv:2004.08342, April 2020.
[17] B. P. Abbott et al. GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. The Astrophysical Journal, 896(2):L44, Jun 2020.
[18] B. P. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv e-prints, page arXiv:2010.14527, October 2020.
[19] B. P. Abbott et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. arXiv e-prints, page arXiv:2010.14533, October 2020.
[20] B. P. Abbott et al. Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog. arXiv e-prints, page arXiv:2010.14529, October 2020.
[21] B. P. Abbott et al. Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo’s third observing run. arXiv e-prints, page arXiv:2105.06384, May 2021.
[22] Vishal Baibhav, Emanuele Berti, Davide Gerosa, Michela Mapelli, Nicola Giacobbo, Yann Bouffanais, and Ugo N. Di Carlo. Gravitational-wave detection rates for compact binaries formed in isolation: Ligo/virgo o3 and beyond. Phys. Rev. D, 100:064060, Sep 2019.
[23] Tessa Baker and Mark Trodden. Multimessenger time delays from lensed gravitational waves. Phys. Rev. D, 95:063512, Mar 2017.
[24] Haugan Mark P Bontz, Robert J. A diffraction limit on the gravitational lens effect. Astrophysics and Space Science, August 1981.
[25] Alessandra Buonanno, Bala R. Iyer, Evan Ochsner, Yi Pan, and B. S. Sathyaprakash. Comparison of post-newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys. Rev. D, 80:084043, Oct 2009.
X.-L. Fan, K. Liao, M. Biesiada, A. Piorkowska-Kurpas, P. Schneider, J. Ehlers, E.E. Falco.
Gravitational Lenses.

S. Deguchi and W. D. Watson. Diffraction in Gravitational Lensing.

Shaoqi Hou, Xi-Long Fan, and Zong-Hong Zhu. Gravitational Lensing.

D. Hansen, N. Yunes, and K. Yagi. Projected constraints on Lorentz-violating gravity with gravitational waves.

Otto A. Hannuksela, K. Haris, Ajit Kumar Mehta, and Parameswaran Ajith. Testing the nature of gravitational-wave polarizations using strongly lensed signals.

Emma E. Flanagan and Scott A. Hughes. Measuring gravitational waves from binary black hole coalescences. i. signal to noise for inspiral, merger, and ringdown.

Srashti Goyal, K. Haris, Ajit Kumar Mehta, and Parameswaran Ajith. Testing the nature of gravitational-wave polarizations using strongly lensed signals.

Srashti Goyal and Shavath Kapadia. private communication, May 2021.

O. A. Hannuksela, K. Haris, K. K. Y. Ng, S. Kumar, A. K. Mehta, D. Keitel, T. G. F. Li, and P. Ajith. Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black Hole Events. apj, 874(1):L2, March 2019.

Otto A. Hannuksela, Thomas E. Collett, Mesut C. Alis, and Tjonnie G. F. Li. Localizing merging black holes with gravitational lenses through gravitational wave lensing.

D. Hansen, N. Yunes, and K. Yagi. Projected constraints on Lorentz-violating gravity with gravitational waves.

Shaoqi Hou, Xi-Long Fan, and Zong-Hong Zhu. Gravitational lensing of gravitational waves: Rotation of polarization plane.

Tjonne G. F. Li Ken K. Y. Ng, Kaze W. K. Wong and Tom Broadhurst. Precise ligo lensing rate predictions for binary black holes.

D. Keppel and P. Ajith. Constraining the mass of the graviton using coalescing black-hole binaries.

Kwan-Hang Lai, Otto A. Hannuksela, Antonio Herrera-Martín, Jose M. Diego, Tom Broadhurst, and Tjonne G. F. Li. Discovering intermediate-mass black hole lenses through gravitational wave lensing.

LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite. free software (GPL), 2018.

Jose María Ezquiaga, Daniel E. Holz, Wayne Hu, Macarena Lagos, and Robert M. Wald. Phase effects from strong gravitational lensing of gravitational waves. arXiv e-prints, page arXiv:2008.12814, August 2020.

Jose María Ezquiaga and Miguel Zumalacárregui. Gravitational wave lensing beyond general relativity: birefringence, echoes and shadows. arXiv e-prints, page arXiv:2009.12187, September 2020.

S. Mirshekari, N. Yunes, and C. M. Will. Constraining Lorentz-violating, modified dispersion relations with gravitational waves. Phys. Rev. D, 85(2):024041, January 2012.

C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity curves. Classical and Quantum Gravity, 32:015014, Jan 2015.

Suvodip Mukherjee, Tom Broadhurst, Jose M. Diego, Joseph Silk, and George F. Smoot. Inferring the lensing rate of LIGO-Virgo sources from the stochastic gravitational wave background. mnras, 501(2):2451–2466, February 2021.

Suvodip Mukherjee, Benjamin D. Wandelt, and Joseph Silk. Multimessenger tests of gravity with weakly lensed gravitational waves. Phys. Rev. D, 101(10):103509, May 2020.

Suvodip Mukherjee, Benjamin D. Wandelt, and Joseph Silk. Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys. mnras, 494(2):1956–1970, May 2020.

Takahiro T. Nakamura and Shuji Deguchi. Wave optics in gravitational lensing. Progress of Theoretical Physics Supplement, 133:137–153, 1999.

Hans C. Ohanian. On the focusing of gravitational radiation. International Journal of Theoretical Physics, June 1974.

G. Pagano, O. A. Hannuksela, and T. G. F. Li. LENSINGGW: a PYTHON package for lensing of gravitational waves. aap, 643:A167, November 2020.

Yi Pan, Alessandra Buonanno, Andrea Taracchini, Lawrence E. Kidder, Abdul H. Mroué, Harald P. Pfeiffer, Mark A. Scheel, and Béla Szilágyi. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D, 89:084006, Apr 2014.

Peter T. H. Pang, Otto A. Hannuksela, Tim Dietrich, Giulia Pagano, and Ian W. Harry. Lensed or not lensed: determining lensing magnifications for binary neutron star mergers from a single detection. mnras, 495(4):3740–3750, May 2020.

Scott Perkins and Nicolaï Yunes. Probing screening and the graviton mass with gravitational waves. Classical and Quantum Gravity, 36(5):055013, March 2019.

Travis Robson, Neil J Cornish, and Chang Liug. The construction and use of lisa sensitivity curves. Classical and Quantum Gravity, 36(10):105011, 2019.

P. Schneider. Introduction to Gravitational Lensing and Cosmology, pages 1–89. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Graham P. Smith, Christopher Berry, Matteo Bianconi, Will M. Farr, Mathilde Jauzac, Richard Massey, Johan Richard, Andrew Robertson, Keren Sharon, Alberto Vecchio, and et al. Strong-lensing of gravitational waves by galaxy clusters. Proceedings of the International Astronomical Union, 13(S338):98–102, 2017.
[61] R. Takahashi. Arrival Time Differences between Gravitational Waves and Electromagnetic Signals due to Gravitational Lensing. *Astrophys. J.*, 835:103, January 2017.

[62] Ryuichi Takahashi and Takashi Nakamura. Wave Effects in the Gravitational Lensing of Gravitational Waves from Chirping Binaries. *Astrophys. J.*, 595(2):1039–1051, October 2003.

[63] Ryuichi Takahashi and Takashi Nakamura. Wave effects in the gravitational lensing of gravitational waves from chirping binaries. *The Astrophysical Journal*, 595(2):1039, 2003.

[64] Slava G. Turyshev and Viktor T. Toth. Gravitational lensing by an extended mass distribution. *arXiv e-prints*, page arXiv:2106.06696, June 2021.

[65] Clifford M. Will. Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. *Phys. Rev. D*, 57:2061–2068, Feb 1998.