Anatomical Sites (Takasaki’s Segmentation) Predicts the Recurrence-free Survival of Hepatocellular Carcinoma

Wei Qin (qw9911022@hotmail.com)
Third Affiliated Hospital of Sun Yat-Sen University

Beiyuan Hu
Huashan Hospital Fudan University

Huan Tian
Sun Yat-Sen Memorial Hospital

Cuicui Xiao
Third Affiliated Hospital of Sun Yat-Sen University

Huanxian Luo
Third Affiliated Hospital of Sun Yat-Sen University

Yang Yang
Third Affiliated Hospital of Sun Yat-Sen University

Research article

Keywords: hepatocellular carcinoma, recurrence-free survival, Takasaki’s segmentation

Posted Date: January 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-146711/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Until now, several classification staging system and treatment algorithm for hepatocellular carcinoma (HCC) has been presented. However, anatomical location is not taken into account in these staging systems. The aim of this study is to investigate whether anatomical sites could predict the postoperative recurrence of HCC patients.

Methods: 294 HCC patients were enrolled in this retrospective study. A novel score classification based on anatomical sites was established by a Cox regression model and validated in the internal validation cohort.

Results: HCC patients were stratified according to the novel score classification into three groups (score 0, score 1-3 and score 4-6). The predictive accuracy of the novel recurrence score for HCC patients as determined by the area under the receiver operating characteristic curves (AUCs) at 1, 3, and 5 years (AUCs 0.703, 0.706, and 0.605) was greater than the other representative classification systems. These findings were supported by the internal validation cohort. For patients with BCLC 0 and A stage, our data demonstrated that there was no significant difference of RFS between patients with score 0 and liver transplantation recipients. Additionally, we introduced this novel classification system to guide anatomical liver resection for centrally located liver tumors.

Conclusion: The novel score classification may provide a reliable and objective model to predict the recurrence-free survival (RFS) of HCC after hepatic resection.

Background

Hepatocellular carcinoma (HCC) is the fifth most prevalent malignancy worldwide, with approximately 750,000 new cases diagnosed annually [1]. In the worldwide, about 78% of HCC patients are correlated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection [2]. Due to heterogeneity of the patient population and low utilization of HCC screening, only 10–37% of patients are candidates for surgical resection at initial HCC diagnosis [3–5]. Approximately 70% of patients with HCC develop recurrence, generally in the hepatic remnant, within 5 years after curative resection [6]. Although many previous studies have reported that the recurrence is associated with tumor biological characteristics, such as large tumor size, multiple tumors, poor differentiation, macro- and microvascular invasion, satellite lesions, liver conditions and sex difference [6–8], little is known about the impact of tumor location on HCC recurrence after hepatic resection (HR).

According to the Glissonean pedicle classification as described by Takasaki, the hepatoduodenal ligament forms the main trunk of the tree of the Glissonean pedicle, which expands into two branches (the right and left primary branches) at the hepatic hilum. The right branch is subdivided into two secondary branches, whereas the left branch continues as a transverse portion with a secondary branch. In all, the blood supply of the liver is derived from the three secondary branches of the Glissonean pedicle, and each branch contributes to one liver segment. Consequently, the liver can be separated into three
segments (a left, a middle and a right), and the caudate, is supplied directly from the primary branch [9]. This Glissonean pedicle approach has made different types of hepatectomy possible including not only hemihepatectomy but also small anatomical hepatectomies, such as sectionectomy and Couinaud’s segmentectomy in a cirrhotic liver [10]. However, the rate of recurrence of HCC patients who underwent anatomical resection within 5 years reached at 55–66% [11, 12]. The impact of HCC tumor location on recurrence after HR is still poorly understood. As far as we know, only one retrospectively study has been indicated that in HCC patients with multifocal tumors meeting the Milan criteria, tumors located in the same hepatic section (Couinaud’s segmentation) may lead to better long-term survival and lower HCC recurrence rates than tumors in different sections after HR [13].

To further investigate the impact of tumor location (Takasaki classification), we exclusively established a novel classification system to predict recurrence-free survival (RFS) of HCC patients. Additionally, we introduced this novel classification system to guide anatomical liver resection for centrally located liver tumors.

Methods

Staging systems

Several systems have been proposed for staging HCC, including Barcelona Clinic Liver Cancer (BCLC), Hong Kong Liver Cancer (HKLC), and American Joint Committee on Cancer (AJCC, TNM 8th) staging systems. More strikingly, studies suggest that the BCLC system can predict prognosis more accurately for Caucasian HCC patients than Asian ones, while the converse is true of the HKLC staging system [14-16]. According to BCLC staging system, BCLC Stage 0, single nodular < 2 cm, BCLC Stage A, single nodular or 2-3 tumors with a maximum diameter < 3 cm, BCLC Stage B, multinodular, BCLC Stage C, any tumor with radiologically evident and/or histologically proven portal invasion [17].

Patients and study design

In our study, we retrospectively analyzed 241 patients without any preoperative treatment who underwent resection of HCC with curative intent from the Third Affiliated Hospital of Sun Yat-sen University between January 2007 and January 2017. 53 HCC patients with BCLC 0 and A stage were received liver transplantation (LT) at the Third Affiliated Hospital of Sun Yat-sen University during a period from May 2012 to August 2016. The diagnosis of HCC was confirmed by pathological examination in all cases. This study was approved by the Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University, and conducted in accordance with the Declaration of Helsinki.

Patient selection and operative indications

The choice of surgical treatment was dependent on comprehensive assessment of preoperative imaging studies, intraoperative ultrasonography, and tumor characteristics, remnant liver volume and underlying liver condition. To determine the size, nodule number, and location of tumor, and its relationship with
adjacent vital liver vasculature, all patients were examined by routine preoperative assessment, including abdominal ultrasonography, high-resolution, contrast-enhanced computed tomography (CT) and/or magnetic resonance imaging (MRI). Only patients with BCLC 0 and A to C were included. The patients with or without cirrhosis whose the remnant liver volume evaluated by CT or MRI >50% or >30% were considered for liver resection [18, 19]. Liver functional reserve was assessed by the Child-Pugh classification and liver function tests. Live resection was indicated only for patients with compensated liver function (Child–Pugh grade A or B). Routine preoperative assessment also included chest radiograph, electrocardiogram, renal function tests, whole blood count, and coagulation profile.

HCC patients who underwent LT were included in this study. Patients were received preoperative imaging examination, liver function test, and routine preoperative assessment before LT.

Surgical procedure for hepatectomy

Hepatectomy was carried out via a bilateral subcostal incision with a midline extension or a J-shaped incision in the right upper abdomen. Intraoperative ultrasonography was performed routinely to locate tumors, assess resectability of the tumors, and detect lesions not apparent on preoperative radiology. To reduce ischemia-reperfusion injury to the remnant liver, selective hepatic inflow occlusion was performed intermittently [20]. Once it was difficult to isolate the right/left portal pedicle en bloc, Pringle’s maneuver was recommended. Finally, the dissection surface was scrutinized for bleeding or bile leakage before closing the abdominal wall.

Surgical procedure for LT and immunosuppressants

All patients were received piggyback LT. The immunosuppression regimen was consisted of anti-interleukin-2 (basiliximab) induction therapy and tacrolimus/ sirolimus-based therapy in combination with mycophenolate mofetil.

Data collection

Clinicopathologic variables including sex, age at resection, Child-Pugh grading and preoperative α-fetoprotein (AFP) level were collected. Liver cirrhosis was confirmed by histopathologic examination. Tumor pathologic, surgical and perioperative data including tumor size, tumor nodule number, presence of microscopic vascular invasion, tumor differentiation, duration of surgery, intraoperative blood loss, presence of intraoperative blood transfusion and operative complications were also collected. HCC located in multiple segments (Multiple-HCC) was defined as tumor located in two or more Takasaki’s segments, whatever the tumor nodule number was. The multiple-HCC tumor size was calculated as the maximum size of each individual tumor.

Follow-up studies

RFS was defined as the time from the day of operation to the date when recurrence was first diagnosed or last follow-up. Physical examination, liver function tests, serum AFP, ultrasonography, chest X-ray, and CT
and/or MRI were performed once every 3 months for the first 2 years and then twice a year thereafter. The treatment of choice for HCC recurrence was dependent on the number and location of the recurrent tumors, and the liver condition, including repeat hepatectomy, LT, radiofrequency ablation (RFA), and transcatheter arterial chemoembolization (TACE).

Statistical analysis

All statistical analyses were performed with the IBM SPSS 19.0 statistical software (SPSS, Armonk, USA). Continuous variables were presented as mean ± standard deviation (SD). Categorical variables were compared using the χ^2 test. RFS was estimated by Kaplan-Meier analysis. To establish the novel score, the regression coefficients (B-values) of the Cox regression model were multiplied by 2 and rounded to the nearest unit to obtain simple point numbers in this study. To further evaluate the discriminative ability of this novel score in predicting RFS of HCC patients with CLLTs, the area under the receiver operating characteristic curves (AUCs) of this novel score was compared with that of the other representative classification systems. $P < 0.05$ was considered statistically significant.

Results

Clinicopathologic characteristics and perioperative data

Clinicopathologic baseline data of 241 patients underwent liver resection were illustrated in Table 1. According to Takasaki’s segmentation, there were 64 patients with HCC located in the left segment (L-HCC), 28 patients with HCC located in the middle segment (M-HCC), 58 patients with HCC located in the right segment (R-HCC), 1 patient with HCC located in caudate area and 60 multiple-HCC patients in the training cohort (Supplementary Table S1). In the internal validation cohort, there were 4 L-HCC, 12 M-HCC, 10 R-HCC, 1 patient with HCC located in caudate area and 3 multiple-HCC patients.
Table 1
Clinical characteristics of 241 HCC patients underwent hepatectomy

Variables	Training cohort (n = 211)	Internal validation cohort (n = 30)
Age (years)	50.0 ± 11.4	50.0 ± 13.1
Gender, M: F	200:11	26:4
HBsAg		
Positive	203(96.2%)	28(93.3%)
Negative	8(3.8%)	2(6.7%)
AFP (ng/ml)	380.4 ± 519.4	326.3 ± 455.2
Platelet count (10^9/L)	175.3 ± 78.8	202.3 ± 86.6
Prothrombin time (s)	13.6 ± 1.3	13.5 ± 1.3
Total bilirubin (µmol/L)	17.6 ± 13.2	14.7 ± 9.4
Albumin (g/L)	39.8 ± 4.4	39.6 ± 4.8
Alanine aminotransferase (U/L)	48.6 ± 42.7	48.9 ± 28.7
Child-Pugh score		
A	210(99.5%)	28(93.3%)
B	1(0.5%)	2(6.7%)

AFP, alpha-fetoprotein; HCC, hepatocellular carcinoma

Perioperative outcomes of HCC patients in the training cohort were shown in Supplementary Table S2. Our data showed that the multiple segments-HCC group had a larger tumor size than the simple segments-HCC group (P = 0.002). Compared with the single segment-HCC group, the multiple segments-HCC group exhibited significantly more tumor nodules (P < 0.001). Furthermore, the multiple segments-HCC group had a longer operation time compared with the simple segments-HCC group (P = 0.017). Perioperative morbidity was categorized according to Clavien classification. Three patients died in the hospital because of postoperative acute hepatic failure, and peptic ulcer bleeding, resulting in a perioperative mortality rate of 1.4%. Otherwise, the other parameters, including capsulation formation, differentiation grade, microvascular invasion, liver cirrhosis, BCLC stage, blood loss, blood transfusion, surgical margin, overall complications, and in-hospital mortality were comparable between the two groups.

A novel score model based on tumor location
At the time of censor of this study, there were 150 (150/211, 71.1%) patients with recurrence of HCC in the training cohort. With regards to the site of recurrence, intrahepatic recurrence was the most common site and occurred in 136 patients (136/150, 90.7%). Extrahepatic recurrence was diagnosed in 14 patients (14/150, 9.3%). The 1-, 3-, and 5-y overall recurrence rates were 38.9%, 63.0% and 83.4%, respectively. According the subtype analysis, a significant decrease in RFS rates was observed for patients with M-HCC compared with the patients with L-HCC, R-HCC and Multiple-HCC, especially 2 years after operative intervention. Kaplan-Meier estimates of the 1-, 3-, and 5-y RFS rates for M-HCC group were 80.9%, 66.8% and 53.2%, respectively. However, the recurrence rates of patients with L-HCC, R-HCC and Multiple-HCC exhibited no significant difference (Supplementary Figure S1 and Table S3).

On univariate analysis, preoperative AFP level, tumor size, differentiation grade, microvascular invasion, and tumor location were independent prognostic factors of RFS. On multivariate analysis, only tumor size, differentiation grade, microvascular invasion, and tumor location showed an independent significant relationship to a poorer RFS rate (Supplementary Table S4).

Next, we built the risk score, based on the regression coefficients weighted by the Cox model (Table 2). The risk score was calculated as follows: score = Tumor size (<5cm=0; ≥5cm=2) + Differentiation grade (−= 0; += 2) + MVI (− = 0; += 1) + Tumor location (single segment=0; multiple segments=1).

The novel score predicts RFS of HCC patients

As was shown in Fig. 1A, there was no significant difference among score 1, score 2 and score 3 in RFS. Furthermore, the media RFS of score 4, score 5 and score 6 were 17.5 months, 10.0 and 3.4 months, respectively. Accordingly, 211 HCC patients were classified into score 0, score 1-3, and score 4-6 groups. The median RFS of the HCC patients with score 0, score 1-3, and score 4-6 was 102.2 months (95% CI, 90.9–113.5 months), 60.1 months (95% CI, 49.7–70.5 months) and 14.5 months (95% CI, 6.8–22.2 months), respectively (Fig.1B). Consistently, performance of this novel score in RFS prediction was verified in the internal validation (Fig.1C).

Subsequently, we compared the accuracy of this novel score with that of the current commonly used staging systems, such as BCLC, HKLC, and TNM staging systems. Our data indicated that the AUCs of the novel score at 1, 3, and 5 years were 0.703, 0.706, and 0.605, respectively, and were greater than those of the other three staging systems for HCC (Fig.2A, 2B and 2C). In the internal validation cohort, the AUCs of our novel score at 1, 3, and 5 years were 0.715, 0.748, and 0.801, respectively (Fig.2D, 2E and 2F). Collectively, compared with the other three staging systems, the novel score had a better predictive value in predicting RFS.

The novel score contributes to treatment strategy selection of patients with BCLC 0 and A stage

Nowadays, the BCLC system is widely used for prognosis prediction and treatment strategy selection [21, 22]. According to this criteria, RFA, HR and liver transplantation are recommended for early stage tumors (Stage 0 and Stage A). Herein, we investigated clinical value of the novel score classification in HCC. We
stratified HCC patients with BCLC 0 and A stage according to this novel score, and further compared the RFS of patients underwent liver resection with liver transplantation recipients (HCC-LT). Clinicopathologic baseline data of HCC patients with BCLC 0 and A stage were illustrated in Supplementary Table S5.

Here, 64 HCC patients with BCLC 0 and A stage were classified as score 0, 13 as score 1, 28 as score 2, 17 as score 3, 3 as score 4, 1 as score 5. The media RFS of score 0, score 1, score 2, score 3, score 4 and score 5 group was 109.9 months (95% CI, 99.8–120.0 months), 74.7 months (95% CI, 51.0–98.5 months), 58.8 months (95% CI, 38.4–79.3 months), 43.7 months (95% CI, 24.4–63.0 months), 4.8 months (95% CI, 1.9–7.8 months), and 23.8 months, respectively (Supplementary Figure. S2A). Our data showed that there was no significant difference of RFS between patients with score 0 and liver transplantation recipients. The median RFS of patients with score 0 was better than the patients with score 1-3 and score 4-5 (108.1 months vs. 62.8 months, 108.1 months vs. 11.8 months, \(P < 0.05 \)) (Supplementary Figure. S2B).

Subgroup analysis: the novel score predicts RFS of patients with CLLTs

According to Takasaki’s segmentation, the central part of the liver is equivalent to a part of left segment and a middle segment± the caudate. Among 53 patients with CLLTs, there were 38 patients with HCC located in the single segment and 15 patients with HCC located in the multiple segments. There were no significant differences between the single segment group and the multiple segments group in clinical variables (Supplementary Table S6). Here, we further evaluated the predictive value of the novel scoring system in predicting RFS of HCC patients with CLLTs.

According to the risk score, 23 CLLTs were classified as score 0, 10 as score 1, 9 as score 2, 6 as score 3, 3 as score 4, 2 as score 5. The median RFS of the patients with score 0 and score 1, was 82.7 months (95% CI, 64.0–101.4 months), and 62.1 months (95% CI, 43.2–81.1 months), respectively. More strikingly, the media RFS of score 2, score 3, score 4 and score 5 group was 39.9 months (95% CI, 14.1–65.7 months), 48.1 months (95% CI, 26.8–69.3 months), 7.8 months (95% CI, 4.3–11.2 months), and 16.1 months (95% CI, 0.8–31.3 months), respectively (Fig.1D). The median RFS of score 0-1 and score 1 was 72.7 months (95% CI, 61.9–83.5 months) and 53.0 months (95% CI, 42.2–63.7 months), respectively (Fig.1E).

The predictive accuracy of the novel score in patients with CLLTs

We further investigated the accuracy of the novel system in predicting RFS of HCC patients with CLLTs. A recent study from China proposed a classification system of CLLTs (SCU-CLLTs), which divides CLLTs into four subtypes based on anatomical location between lesions and hepatic principal vascular structures as well as the involvement of resected segments [20]. However, there is no significant difference in RFS among the four subtypes [23]. Here, in our study, we also compared the predictive value of the novel score system with that of SCU-CLLTs classification system in predicting RFS of HCC patients with CLLTs. More strikingly, we found that the AUCs of the novel score system at 1, 3, and 5 years were 0.637, 0.646, and 0.618, respectively, and were greater than the other representative classification systems (Fig.2G, H, I). Altogether, our findings demonstrated that the novel score system was a reliable
classification system of HCC patients with CLLTs, and had a better predictive value for RFS compared to the representative classification systems.

Discussion

Currently, many staging systems have been developed to classify patients with HCC. However, these classification systems for HCC (BCLC, HKLC and TNM) do not take account of tumor location. Herein, we constructed a novel score comprising tumor size, tumor location, MVI and differentiation grade, and this score allowed for a more accurate prognostic prediction for RFS of HCC patients who underwent liver resection.

Some previous studies found that the patients with multiple tumors located in the same lobe had higher RFS rates than patients with tumors located in different lobes after HR [24, 25]. Consistently, Lv et al [13] indicated that in HCC patients with multifocal tumors meeting the Milan criteria, tumors located in the same hepatic section (Couinaud’s segmentation) may lead to better long-term survival and lower HCC recurrence rates than tumors in different sections after HR. What is noteworthy in this study is that, first, the authors did not account for the role of the anatomical sites in patients with tumors outside the Milan criteria; second, this study failed to clarify the impact of the combination of anatomical sites and tumor biological characteristics on HCC recurrence after curative resection and third, this study did not introduce a recurrence score system based on tumor location to guide anatomical liver resection.

In the present study, we first validated the effect of tumor location (Takasaki’s segmentation) on HCC recurrence, and demonstrated that HCC patients with located in single segment had significantly better RFS than patients with tumors located in multiple segments after HR. Furthermore, our data demonstrated that middle segment exhibited lower RFS rate compare with the left, right and multiple segments. Notably, in this study, about 40% patients with tumors located in multiple segments had not less than 2 nodules, which may partly explain the high recurrence rates in patients with tumors located in multiple segments and support the notion that tumor number is correlated strongly with recurrence. Further studies indicated that tumor located in multiple segments is an independent risk factor for recurrence of HCC patients after curative resection. Another possible explanation for these findings is that tumors are located in different hepatic segments fed by the different segmental portal pedicle, leading to more extensive intrahepatic spread.

Additionally, the classification system performed well in stratifying patients with BCLC 0 and A stage and CLLTs relative to the RFS, which may provide prognostic data that are useful in the selection of surgical treatment. According to the guidelines of EASL and AASLD, recommended treatments for BCLC B/C stage patients including TACE and targeted therapy, but not HR. In the present study, we first validated the HCC patients who underwent liver resection were successfully classified into three groups according to this novel score. These findings might support the notion that BCLC B/C stage patients with low score are recommended as HR. In addition, this novel score may help to stratify BCLC 0 and A stage HCC patients. As for BCLC 0 and A stage patients with high score, liver transplantation could be recommended.
To date, only Qin et al. attempted to investigate the relationship between tumor location (Couinaud’s segmentation) and the extent of resection, and further demonstrated that a classification system of SCU-CLLTs, which divided CLLTs into four subtypes by focusing on the involvement of resected segments and the anatomical location of lesions relative to the principal hepatic vascular structures, helps clinicians in defining the extent of resection, providing a risk assessment and predicting prognosis [20, 23]. However, in this classification system, mesohepatectomy (MH) is not recommended as the surgical therapy for patients with type and type, which may partly explain why there is no significant difference in RFS among the four subtypes. Furthermore, the classification system does not take account of parameters such as the distance from the tumors to important structures and tumor size. Here, our novel score, based on tumor location (Takasaki’s segmentation) and tumor biology characteristics, may contribute to an increased predictive accuracy due to that the recurrence of HCC with CLLTs depends on the contribution and interaction of tumor biology characteristics and tumor location.

Clinically, anatomical resection using Takasaki’s Glissonean pedicle transection method is widely performed for two decades in hepatocellular carcinoma (HCC) [16]. The Glissonean pedicle approach has provided in-depth knowledge of the surgical anatomy of the liver and has made different types of hepatectomy. Notably, in this study, we validated the impact of tumor location (Takasaki’s segmentation) on HCC recurrence, and sought to introduce a recurrence score system based on tumor location (Takasaki’s segmentation) to guide anatomical liver resection using Takasaki’s Glissonean pedicle transection method. Three subtypes of CLLTs were presented as following: tumors arising from the liver parenchyma of Couinaud’s segment and/or ± I with score 0–1 were classified as type A lesions. These lesions required anatomical resection of the middle segment ± the caudate. Tumors arising from the liver parenchyma of Couinaud’s segment with score 0–1 were classified as type B lesions. These lesions required anatomical resection of Couinaud’s segment. Lesions arising from multiple segments, and tumors located within CLLTs with score > 1 were classified as type C. For patients with type C, Glissonean pedicle transection method for mesohepatectomy is performed conventionally to achieve curative resection. As was shown in Supplementary Table S7, this novel classification system of CLLTs may help to define the extent of resection, provide a prognostic assessment, and guide the precision hepatectomy for CLLTs. Furthermore, this classification system took account of tumor biology characteristics, such as preoperative AFP level, tumor size, differentiation grade, microvascular invasion.

In line with the previous findings [20, 26], our data demonstrated that there were no differences in the perioperative death and postoperative complications of patients with CLLTs who underwent MH or extended left/right hepatectomy. These findings led us to conclude that the improvements in surgical techniques, low central venous pressure maintenance and the application of surgical energy platform allow mesohepatectomy to be a safe and feasible choice for patients with CLLTs.

The main limitation of our study is that our classification system of HCC patients came from a single institution in China where hepatitis B is prevalent. The classification system is needed to further verify in other centers. Furthermore, the present study is a small-scale retrospective study, limited by the inherent defects of the analysis.
Conclusion

In this study, we developed and validated a novel score classification for predicting the RFS of the Asian patients who received HR for HCC in this study. The combination of anatomical sites (Takasaki’s segmentation) and tumor biological characteristics can provide an accurate individualized estimation of recurrence, and may help to select patients with a less favorable prognosis for adjuvant or alternative therapies. Furthermore, our findings highlighted the value of tumor location (Takasaki’s segmentation) in the assessment of precision hepatectomy for CLLTs.

Abbreviations

HCC: hepatocellular carcinoma; RFS: recurrence-free survival; AUCs: area under the receiver operating characteristic curves; CLLTs: centrally located liver tumors; HBV: hepatitis B virus; HCV: hepatitis C virus; HR: hepatic resection; LT: liver transplantation; CT: computed tomography; MRI: magnetic resonance imaging; AFP: α-fetoprotein; RFA: radiofrequency ablation; TACE: transcatheter arterial chemoembolization; HRs: hazard ratios; CIs: confidence intervals; BCLC: Barcelona Clinic Liver Cancer; HKLC: HongKong Liver Cancer; AJCC: American Joint Committee on Cancer; MH: mesohepatectomy; MVI: microvascular invasion;

Declarations

Ethical approval and consent to participate

This study was approved by the Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University.

Consent for publication

Not Applicable.

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Competing interests

All authors declare no conflict of interest for this article.

Funding

China Postdoctoral Science Foundation (2017M611459). The funding body had no role in the design of the study and collection, analysis, and interpretation of the data, preparation, review, or approval of the manuscript, and decision to submit the manuscript for publication.
Authors’ Contribution

All authors critically revised the manuscript, approved the final version to be published, and agree to be accountable for all aspects of the work. Concept and design of the study: WQ, YY. Administrative support: WQ, YY. Data collection and acquisition: WQ, HT and HXL. Data analysis: BYH, and HT. Manuscript preparation: WQ, BYH, HT and YY.

Acknowledgments

Not Applicable.

References

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014, CA. Cancer J. Clin 2014; 64(1): 9-29.
2. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006; 45(4): 529-38.
3. Fan ST, Lo CM, Liu CL, Lam CM, Yuen WK, Yeung C, et al. Hepatectomy for hepatocellular carcinoma: Toward zero hospital deaths. Ann Surg. 1999; 229(3): 322-30.
4. Colella G, Bottelli R, De Carlis L, Sansalone CV, Rondinara GF, Alberti A, et al. Hepatocellular carcinoma: Comparison between liver transplantation, resective surgery, ethanol injection, and chemoembolization. Transpl Int. 1998; 11(Suppl 1): S193-6.
5. Fong Y, Sun RL, Jarnagin W, Blumgart LH. An analysis of 412 cases of hepatocellular carcinoma at a Western center. Ann Surg. 1999; 229(6): 790-9.
6. Zhang H, Han J, Xing H, Li ZL, Schwartz ME, Zhou YH, et al. Sex difference in recurrence and survival after liver resection for hepatocellular carcinoma: A multicenter study. 2019; 165(3): 516-24.
7. Regimbeau JM, Kianmanesh R, Farges O, Dondero F, Sauvanet A, Belghiti J. Extent of liver resection influences the outcome in patients with cirrhosis and small hepatocellular carcinoma. Surgery. 2002; 131(3): 311-7.
8. Qin W, Wang L, Hu B, Leng S, Tian H, Luo H, et al. A novel score predicts HBV-related hepatocellular carcinoma recurrence after hepatectomy: a retrospective multicenter study. J Gastrointest Surg. 2019; 23(5): 922-32.
9. Takasaki K. Glissonean pedicle transection method for hepatic resection: a new concept of liver segmentation. J Hepatobiliary Pancreat Surg. 1998; 5(3): 286-91.
10. Yamamoto M, Katagiri S, Ariizumi S, Kotera Y, Takahashi Y. Glissonean pedicle transection method for liver surgery (with video). J Hepatobiliary Pancreat Sci. 2012; 19(1): 3-8.
11. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014; 63(5): 844-55.
12. Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005; 242(2): 252-9.

13. Lv T, Jiang L, Yan L, Yang J, Li B, Wen T, et al. Multiple tumors located in the same section are associated with better outcomes after hepatic resection for HCC Patients Meeting the Milan Criteria. J Gastrointest Surg. 2015; 19(12): 2207-14.

14. P Kolly, H Reeves, B Sangro, Knöpfli M, Candinas D, Dufour JF. Assessment of the Hong Kong Liver Cancer staging system in Europe. Liver Int. 2016; 36(3): 911-7.

15. Yan X, Fu X, Cai C, Zi X, Yao H, Qiu Y. Validation of models in patients with hepatocellular carcinoma: comparison of Hong Kong Liver Cancer with Barcelona Clinic Liver Cancer staging system in a Chinese cohort. Eur J Gastroenterol Hepatol. 2015; 27(10): 1180-6.

16. Yang T, Zhang J, Lu JH, Yang LQ, Yang GS, Wu MC, et al. A new staging system for resectable hepatocellular carcinoma: comparison with six existing staging systems in a large Chinese cohort. J Cancer Res Clin Oncol. 2011; 137(5): 739-50.

17. Bruijx J, Sherman M. American Association for the Study of Liver Diseases, Management of hepatocellular carcinoma: an update. Hepatology. 2011; 53(3): 1020-

18. Kishi Y, Abdalla EK, Chun YS, Zorzi D, Madoff DC, Wallace MJ, et al. Three hundred and one consecutive extended right hepatectomies: evaluation of outcome based on systematic liver volumetry. Ann Surg. 2009; 250(4): 540-8.

19. Chen XP, Qiu FZ, Lau WY, Zhang BX, Chen YF, Zhang WG, et al. Mesohepatectomy for hepatocellular carcinoma: a study of 256 patients. Int J Colorectal Dis. 2008; 23(5): 543-6.

20. Qiu J, Wu H, Bai Y, Xu Y, Zhou J, Yuan H, et al. Mesohepatectomy for centrally located liver tumours. Br J Surg. 2013; 100(12): 1620-6.

21. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012; 379 (9822):1245-55.

22. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008; 100(10): 698-711.

23. Qiu J, Chen S, Wu H, Dou CY. The prognostic value of a classification system for centrally located liver tumors in the setting of hepatocellular carcinoma after Surg Oncol. 2016; 25(4): 441-7.

24. Feng K, Yan J, Li X, Xia F, Ma K, Wang S, et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol. 2012; 57(4): 794-802.

25. Jiang L, Liao A, Wen T, Yan L, Li B, Yang J, et al. Living donor liver transplantation or resection for Child-Pugh A hepatocellular carcinoma patients with multiple nodules meeting the Milan criteria. Transpl Int.2014; 27(6): 562-9.

26. Yang LY, Chang RM, Lau WY, Ou DP, Wu W, Zeng ZJ. Mesohepatectomy for centrally located large hepatocellular carcinoma: Indications, techniques, and outcomes. Surgery. 2014; 156(5): 1177-87.
Figures

Figure 1

Kaplan–Meier estimated RFS curves by the novel score based on Takasaki’s segmentation and tumor pathological characteristics. (A) The prognostic significance of the single-point scores for RFS in 211 HCC patients in training cohort. (B-C) Patients were divided into three groups (0 point, 1-3 point and 4-6 point) based on favorable median RFS in the Kaplan–Meier curves. The prognostic significance of the three subgroups for RFS in the training cohort (B) and the internal validation cohort (C). (D) The prognostic significance of the single-point scores for RFS in 53 patients with CLLTs. (E) Patients with centrally located liver tumors were divided into two groups (0-1 point, ≥1 point) based on favorable median RFS in the Kaplan–Meier curves.
Figure 2

The predictive accuracy of the novel score in HCC patients. The AUCs of the novel score and the representative classification systems (BCLC, TNM and HKLC) in predicting RFS of HCC patients at 1 years (A, D), 3 years (B, E) and 5 years (C, F) in the training cohort and the validation cohort. The AUCs of the novel score and the representative classification systems (BCLC, TNM, HKLC and SCU-CLLTs) in predicting RFS of HCC patients with CLLTs at 1 years (G), 3 years (H) and 5 years (I).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterial.docx