INTRODUCTION

_Baryscapus_ Förster, as recognized by Graham (1991), is a large genus of Eulophidae Tetrastichinae (Hymenoptera Chalcidoidea) currently containing 128 species described with a cosmopolitan distribution, usually primary endoparasitoids of the eggs, larvae or pupae of Diptera, Hymenoptera or Lepidoptera (Noyes, 2020). All species develop endophagously and, in larger hosts, gregariously (Askew and Shaw, 2005).

Adults of _B. silvestrii_, described as a new species by Viggiani and Bernardo in 2006, were found for the first time in 2000 as gregarious specimens, emerged from puparia of _Bactrocera oleae_ (Rossi) (Diptera Tephritidae) reperited in olive previously campionate in un oliveto sperimentale ubicato in località Mirto Croisia, Cosenza.

Materials and Methods

Investigations on the olive fruit fly population dynamics were conducted from the beginning of July to the end of October 2019 in an olive grove located in Mirto Croisia, Cosenza province.

In order to obtain _B. oleae_ adults needed for subsequent experimental tests, the 132 puparia altogether intercepted during the whole investigation were stored in Petri dishes (60 mm diameter), in standard laboratory conditions (24±1°C, 60±10% RH and L:D 13:11). From two of these puparia, 29 adults (7 ♂♂ and 22 ♀♀) of a chalcidid wasp (Hymenoptera) emerged on September, 15. The specimens were examined with the Optech SL stereomicroscope and subjected to a taxonomic determination process, using at the end the description and illustrations by Viggiani and Bernardo for _B. silvestrii_ (Viggiani et al., 2006). The same wasps were then placed in a labelled microtube with 90% ethanol and deposited in the collection of the CREA Research Centre for Olive, Fruit and Citrus Crops, Rende (Cosenza).
RESULTS AND DISCUSSION

The taxonomic determination process led to classifying the wasps emerged from the two _B. oleae_ puparia, as specimens of _B. silvestrii_. The identification of the species was confirmed by Dr. Bernardo (Italian National Research Council, Institute for Sustainable Plant Protection, Portici, NA) who analysed some male and female specimens using comparative procedures with known material according to classic morphological methods and molecular protocols (COI, 28S).

The olive fruit fly is the most important carpophagous species and the major key pest in the most olive growing area of the Mediterranean Basin, where it has been responsible for losses of up to 80% of the oil value and 100% of some table olive productions (Daane & Johnson, 2010). In the same olive growing area, most indigenous parasitoids found attacking _B. oleae_ are generalist ectoparasitoid chalcidoids, such as _Eurytoma martellii_ Domenichini (Eurytomidae), _Pnigallo mediterraneus_ Ferrière & Delucchi (Eulophidae), _Cyrtotyphlatipes_ (Rondani) (Pteromalidae) and _Eupelmus urozonus_ Dalman (Eupelmidae), the latter believed to be a group of species often with hyperparasitoid behavior (Neuenschwander et al., 1986; Daane et al., 2015).

_Psyttalia concolor_ (Szépligeti) (Ichneumonoidea Braconidae), known endoparasitoid long studied as a possible biological control agent of the tephritid, without however obtaining a concrete and lasting success, is present in many circum-mediterranean olive growing areas, but only in Sicily it reaches significant rates of parasitisation, even in absolute values, both on cultivated and wild olive trees (Caleca et al., 2015).

_B. silvestrii_ parasitizes only the puparia and develops as a primary endoparasitoid with endophagous and gregarious behaviour (Figg. 1-3). The species, able to parasitize and complete its development on the puparia of all ages, has good characteristics to be considered an adequate biological control agent of the olive fruit fly (Sasso et al., 2020).

The discovery of _B. silvestrii_ in Calabria, regardless of a parasitisation rate of _B. oleae_, preliminarily estimated at 1.5% (2 puparia out of 132), bodes well for its progressive settlement in the olive growing areas of Central and Southern Italy.

Although to date it has not been possible to highlight high parasitisation rates for the olive fly, the discovery of _B. silvestrii_ also in Calabria has an undoubted ecological significance and deserves further investigation, both in order to identify other likely alternative hosts to the olive fruit fly and as regards the estimation of its role as a limiting factor in the populations of _B. oleae_.

Figg. 1-3. _Baryscapus silvestrii_ (Mirto Crosia, Cosenza, Calabria, September 2019, photos P. Rizzo). 1: exit holes and young pupae on two puparia of _Bactrocera oleae_; 2: adult ♀ in lateral view; 3: adult ♂ in dorsal view.
ACKNOWLEDGEMENTS

We want to thank Prof. Gennaro Viggiani (University of Naples Federico II) and Dr. Umberto Bernardo (Italian National Research Council, Institute for Sustainable Plant Protection, Portici, NA) for the authoritative confirmation of the taxonomic determination of the specimens collected, and for their kind collaboration. We also wish to thank Dr. Bruno Bagnoli (University of Tuscia) for his valuable advice.

REFERENCES

ASKEW R.R., SHAW M.R., 2005 - Observations on the biology of Baryscapus (Hymenoptera, Eulophidae, Tetrastichinae) with description of a new koinobiont hyperparasitoid with delayed development. Acta Societatis Zoologicae Bohemicae, 69: 11-14.

BERNARDO U., GUERRIERI E., 2011 - Controllo eco-sostenibile della mosca dell’olivo: recenti acquisizioni. Acta Italus Hortus, 1: 349-352.

CALECA V., GIACALONE C., MALTESE M., TORTORICI F., 2016 - Contenimento naturale di Bactrocera oleae (Rossi): clima o parassitoidi? Confronto tra Western Cape (Sud Africa) e Sicilia. Atti Accademia Nazionale Italiana di Entomologia, 64: 99-105.

DAANE K., JOHNSON M., 2010 - Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annual Review of Entomology, 55: 155-169.

DAANE K.M., WANG X., NIETO D.J., PICKETT C.H., HOELMER K.A., BLANCHET A., JOHNSON M.W., 2015 - Classic biological control of olive fruit fly in California, USA: release and recovery of introduced parasitoids. BioControl, 60: 317-330.

GIACALONE C., MALTESE M., CALECA V., 2011 - Parassitizzazione di Bactrocera oleae su olivo cultivato e selvatico in Sicilia e nel western cape (Sud Africa). Atti del XXIII Congresso Nazionale Italiano di Entomologia. Genova, 13-16 giugno 2011: 338.

GRAHAM M.W.R. DEV., 1991 - A reclassification of the European Tetrastichinae (Hymenoptera, Eulophidae): revision of the remaining genera. Memoirs of the American Entomological Institute, 49: 1-322.

NEUENSCHWANDER P., MICHELAKIS S., KAPATOS E., 1986 - Tephritidae. Dacus oleae (Gmel.), pp. 115-159. In: ARAMBOURG Y. (ed), Traité d’Entomologie oleicole. Conseil Olieicole International, Madrid.

NOYES J.S., 2020 - Universal Chalcidoidea Database. World Wide Web electronic publication. http://www.nhm.ac.uk/chalcidoids (accessed 2020).

SASSO R., QUALITIERI L., RUSSO E., NUGNES F., GEBIOLA M., BERNARDO U., 2020 - The establishment of a rearing technique for the fruit fly parasitoid Baryscapus silvestrii increases knowledge of biological, ecological and behavioural traits. BioControl, 65: 47-57.

VIGGIANI G., BERNARDO U., SASSO R., 2006 - Description of Baryscapus silvestrii, n. sp. (Hymenoptera, Eulophidae), a new gregarious parasitoid of the olive fly Bactrocera oleae (Gmelin) (Diptera, Tephritidae) in southern Italy. Bollettino del Laboratorio di Entomologia agraria Filippo Silvestri, 61: 63-70.
