Cluster Assembled Silicon-Lithium Nanostructures: A Nanowire Confined Inside a Carbon Nanotube

Walter Orellana1, Ricardo Pino-Rios2, Osvaldo Yañez3,4, Alejandro Vásquez-Espinal5, Francesca Peccati6, Julia Contreras-García7, Carlos Cardenas8,9 and William Tiznado5*

1Departmento de Ciencias Físicas, Universidad Andres Bello, Santiago, Chile, 2Laboratorio de Química Teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile, 3Center of New Drugs for Hypertension (CENDHy), Santiago, Chile, 4Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile, 5Departamento de Ciencias Químicas, Computational and Theoretical Chemistry Group, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile, 6Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain, 7Sorbonne Universités, UPMC and CNRS, Laboratoire de Chimie Théorique (LCT), 75005, Paris, France, 8Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile, 9Centro para el Desarrollo de la Nanociencias y Nanotecnologia, CEDENNA, Avenida Ecuador, Santiago, Chile

We computationally explore an alternative to stabilize one-dimensional (1D) silicon-lithium nanowires (NWs). The Li_{12}Si_{9} Zintl phase exhibits the NW 1∞[Li_{6}Si_{5}], combined with Y-shaped Si_{4} structures. Interestingly, this NW could be assembled from the stacking of the Li_{6}Si_{5} aromatic cluster. The 1_{∞}[Li_{6}Si_{5}]@CNT nanocomposite has been investigated with density functional theory (DFT), including molecular dynamics simulations and electronic structure calculations. We found that van der Waals interaction between Li’s and CNT’s walls is relevant for stabilizing this hybrid nanocomposite. This work suggests that nanostructured confinement (within CNTs) may be an alternative to stabilize this free NW, cleaning its properties regarding Li_{12}Si_{9} solid phase, i.e., metallic character, concerning the perturbation provided by their environment in the Li_{12}Si_{7} compound.

Keywords: nanowire, density functional theory, silicon-lithium clusters, carbon nanotube, metallic character

INTRODUCTION

The insertion of inorganic materials into single-walled carbon nanotubes (SWCNTs), hereinafter identified simply as CNT, enables the encapsulation of extreme nanowires (NWs) with diameters comparable to a unit cell of the parent material (Green, 1998; Sloan et al., 2002; Spencer et al., 2014). Although NWs of similar diameter can be produced using several templates, such as zeolites (Derouane, 1998), mesoporous phases (Alba-Simionesco et al., 2006; Ke et al., 2009), and metal-organic framework (MOF) (Lu et al., 2012) type materials, CNTs present many advantages as templates; they are atomically smooth, electron transparent, readily available, and can be filled by bulk infiltration to create milligram quantities of encapsulated nanowires, at least on a laboratory scale. Thus, encapsulated NW-CNT are scientifically interesting not only on their own but also as precursors to a wide range of other extreme nanowire materials.

In 2016, Ivanov et al. published a theoretical prediction of helix-shaped lithium-phosphorus nanowires encapsulated into single-walled carbon nanotubes (LiP@CNTs) (Ivanov et al., 2016). Note that helix-shaped Li_{n}P_{n} clusters (n = 5–9) had previously been reported as global minimum structures (Ivanov et al., 2012). Some solid phases consist of structural motifs like atomic clusters, i.e., in Zintl phases. This connection brings consistency to the use of models based on...
stable clusters to generate NWs inside nanotubes, as proposed in Ivanov’s work (Ivanov et al., 2012). The study of these clusters inside CNTs can provide relevant information about these hybrid materials, for example, about their viability (stability analysis), their structural characteristics (geometry analysis), their physical and chemical properties (analysis of their electronic structure).

Due to its excellent energy storage capacity, Si has been extensively studied experimentally as a negative electrode material for Li-ion batteries (Gao et al., 2001; Ryu et al., 2004; Li et al., 2006, Li et al., 2008, Li et al., 2009; Obrovac et al., 2007; Song et al., 2014; Shin et al., 2020). Hence, Si lithifies at high temperature (415°C) in a LiCl-KCl melt, identifying potential plateaus evidencing the crystalline phases Li12Si7, Li7Si3, Li13Si4, and Li22Si5 (Wen and Huggins, 1981). In particular, the binary (non-paramagnetic) Zintl-type Li12Si7 silicide contains semi-infinite sandwich-like $[\text{Li}_6\text{Si}_5]^\infty$ linear chains, consisting of Si5 pentagons intercalated with Li atoms (see Scheme 1). Note that the unit cell of the Zintl Li12Si7 phase has been rationalized (Nesper, 1990; Chevrier et al., 2010; Köster et al., 2011; Kuhn et al., 2011a, Kuhn et al., 2011b) as $(\text{Li}_6^6[\text{Si}_5^6])_2^2 (\text{Li}_{12}^{10^+}[\text{Si}_4^{10^-}]_{10^+}^{10^-})_2$ with two well-defined silicon moieties: planar Si5 rings and the Y-shaped Si4 moiety. Such a structural pattern is justified by assigning 26 electrons (20 from 6Si + 6 from 6Li) to the Si5 ring, favoring Hückel’s aromaticity (Hückel, 1930, Hückel, 1931a; Hückel, 1931b; Zhao et al., 2017). This aromatic character is supported by experimental evidence of an upfield shift (to -17.2 ppm) of Li (at the center of the Li6 fragment in Scheme 1) in the corresponding magic angle NMR (MAS) spectrum (Kuhn et al., 2011b; Köster et al., 2011). It is noteworthy that the Si4$^{6^-}$ structural motif is also present in the ternary compound Li4MgSi6 (Nesper et al., 1986a). On the other hand, at the cluster level, our group has identified that the global minimum (GM) of the Li6Si5 cluster, consists of an aromatic Si5$^{6^-}$ pentagon surrounded by 6 Li$^+$ counterions (Tiznado et al., 2009; Perez-Peralta et al., 2011; Contreras et al., 2013; Vásquez-Espinal et al., 2018). More recently, we have identified the GM structures of the oligomers (Li6Si5)$_2$ and (Li6Si5)$_3$ (Yañez et al., 2019b, Manrique-de-la-Cuba et al., 2021), which also consist of aromatic Si5 rings surrounded by Li’s (see Scheme 1). However, the stacking of Li6Si5 units does not tend to form the nanowire identified in Li12Si7, suggesting that Li12$^{10^+}$[Si4$^{10^-}$] component (with the Y-shaped Si4 moiety) contributes decisively to the stabilization of this NW. In mentioned cluster studies, explorations of the potential energy surface have been performed by hybrid methods, including genetic algorithms (Yañez et al., 2019b, Yañez et al., 2020).

To build new class of materials with desirable properties, using atomic clusters instead of atoms as building blocks, is a remarkable possibility. However, it requires that atomic clusters must retain their identity when assembled, as Khanna and Jena first outlined when they coined the word “cluster-assembled materials” (CAMs) (Khanna and Jena, 1992). These authors argued that the clusters’ coupling would have a unique effect on both the assembled material’s electronic structure and mechanical properties, which is not possible when the assembly blocks are atoms (Khanna and Jena, 1995; Jena et al., 1996; Jena and Khanna, 1996; Claridge et al., 2009; Jena and Sun, 2018). For a more detailed and timely overview of advances in the assembly of materials from clusters, please refer to the following reviews: (Chakraborty and Pradeep, 2017; Jena and Sun, 2018; Pinkard et al., 2018; Zheng et al., 2019; Doud et al., 2020).

Given the above background, here we evaluated, in silico, the stability of the isolated $[\text{Li}_6\text{Si}_5]^\infty$ NW, as well as its electronic properties. In addition, we studied the hybrid material consisting of the NW confined in a CNT. The latter focused on identifying alternative ways to stabilize this conformation and to evaluate the effect of this association on NW electronic properties. Our density functional theory (DFT) calculations demonstrate that Li-Si@CNTs hybrid systems have excellent stability and thus have potential for experimental realization.

![Scheme 1](image-url)
FIGURE 1 (A) Top-and side-views of optimized structures of Li$_7$Si$_5^+$ inside both [16]cyclacene and [17]cyclacene at PBE0/def2-TZVP level. (B) Li$_7$Si$_5^+$ and [n] cyclacene interaction energy (E_{int}), number of hexagonal rings and diameter (in Å) of the [n]cyclacene.

FIGURE 2 Stability of the 1_{∞} Li$_6$Si$_5$ isolated model (Li$_6$Si$_5$-NW) obtained from periodic DFT calculations: (A) Energy as a function of the distance between Li$_6$Si$_5$ units, (B) top and side views of the equilibrium geometry, (C) electronic density distribution for the isosurface at 0.05 e/Å3.
COMPUTATIONAL METHODS

In the finite models (clusters), geometry optimizations and frequency calculations were performed at the PBE0 (Adamo and Barone, 1999)/Def2TZVP (Weigend and Ahlrichs, 2005) level with the Gaussian 16 program (M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., 2016).

For the solid-state study, we performed first-principles calculations based on DFT (Sham and Kohn, 1966; Kohn et al., 1996) as implemented in the Vienna Ab Initio Simulation Package (VASP) (Kresse and Furthmüller, 1996). The exchange-correlation energies were calculated at PBE-D3 level (Ernzerhof and Perdew, 1998; Grimme et al., 2010). Plane-wave basis set with a kinetic energy cutoff of 400 eV, and the projector augmented-wave method for the core-valence interaction was employed (Blöchl et al., 1994). The \(\frac{1}{\infty} \) \([\text{Li}_6\text{Si}_5] \) NWs were simulated in a large unit cell with volume (20 \(\times \) 20 \(\times \) \(z_0 \)) Å\(^3\), considering periodic boundary conditions along the NW direction, where \(z_0 \) is the periodicity. Within this supercell, the lateral distance between NW images is set to 15 Å. We use a (1 \(\times \) 1 \(\times \) 10) Monkhorst-Pack k-point mesh (Monkhorst and Pack, 1976). We also study finite (\(\text{Li}_6\text{Si}_5 \))\(_4\) structures in the free space, also inside both an armchair and a zigzag single-walled carbon nanotube (SWCNTs). We consider armchair CNTs with chiral indexes (8,8), (9,9), and (10,10), which have diameters of 10.93, 12.27, and 13.63 Å, and zigzag CNTs with chiral indexes (14,0), (15,0), and (16,0) which have diameters of 11.04, 11.80, and 12.59 Å, respectively. For (\(\text{Li}_6\text{Si}_5 \))\(_4@\)CNT simulation, (22 \(\times \) 22 \(\times \) \(z_0 \)) Å\(^3\) volume was used, where \(z_0 \) is the periodicity chosen for the CNTs. All studied structures were allowed to freely relax without any constraint until forces on each atom were smaller than 25 meV/Å. To gain insights on the stability of the NW models in the free space and inside the SWCNTs, we performed Born-Oppenheimer ab initio molecular dynamics (BO-AIMD) simulations within the NVT ensemble at different temperatures, over a total simulation time of 10 ps, considering a time step of 1 fs.

RESULTS AND DISCUSSION

Finite Model Tests to Estimate the Optimal Width of SWNTs

The first question that arises is which is the optimal SWCNT width to favor the \(\frac{1}{\infty} \) \([\text{Li}_6\text{Si}_5] \) NW grown? This is a relevant question, considering that the electronic structure of group 1 elements, such as Li, is particularly sensitive to confinement.
To get an idea of the nanotube widths to be considered in our study, we first performed a finite model analysis. This model consists of \([n]\)cycloacenes \((n = 13–20)\) in their optimal structure (at the PBE0/Def2TZVP level), covering the diameter range from 10.2 to 15.6 Å. Then the Li\(_7\)Si\(_5^+\) cluster was placed, centering it on emulating the growth pattern towards the nanowire (see Scheme 1). We choose the star-shaped D\(_{5h}\)-Li\(_7\)Si\(_5^+\) cluster as a suitable model for projecting the nanowire inside the CNT due to its high symmetry and its analogy in electronic structure with the Li\(_6\)Si\(_5^+\) unit. In this study, we have kept the \([n]\)cycloacene structure rigid, allowing only the optimization of the Li\(_7\)Si\(_5^+\) structure (at the PBE0/Def2TZVP level).

In the case of small \([n]\)cycloacenes \((n = 13–15)\), Li\(_7\)Si\(_5^+\) cluster undergoes noticeable changes in the optimization process due to the confinement effects. In contrast, when \([n]\)cycloacenes with \(n = 16–20\) are used, the Li\(_7\)Si\(_5^+\) cluster maintains its structure at the end of the optimization process, leading to the best interaction energy, \(E_{\text{int}} = E (\text{Li}_7\text{Si}_5^+\text{at}\text{[n]}\text{cycloacene}) - (E (\text{Li}_7\text{Si}_5)^+ + E (\text{[n]}\text{cycloacene}))\), with \([16]\) cycloacene \((-70.1 \text{ kcal mol}^{-1}\text{ at PBE0/Def2TZVP level})\). Since this

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure5}
\caption{Energy as a function of time for molecular dynamic simulations at 500 K for the finite Li\(_6\)Si\(_5\) structure (f-Li\(_6\)Si\(_5\)). The right images show top and side views of a snapshot taken at 10,000 fs.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6}
\caption{Interaction energy as a function of the nanotube diameters for the finite Li\(_6\)Si\(_5\) structures inside armchair CNTs with chiral indexes (8,8), (9,9), and (10,10) and zigzag CNTs with chiral indexes (14,0), (15,0), and (16,0).}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7}
\caption{f-Li\(_6\)Si\(_5\)@NTC optimized structure, for zigzag CNTs with chiral indexes (15,0), with NCI surfaces \((s = 0.3, \text{ color range: } -0.03 \text{ to } 0.03 \text{ a.u.})\). Geometries and electron density were taken from solid state computations.}
\end{figure}
analysis is only a reference for estimating the most suitable nanotube diameters to explore in the periodic calculations, we have not included basis set superposition error (BSSE) corrections. The most stable structures, as well as the E_{int}, are shown in Figure 1. The structures for the other complexes are shown in Supplementary Figure S1 and their Cartesian coordinates in Supplementary Table S1. These results guided us to use CNTs with diameters in the range of 11–14 Å in next steps of our research.

Insights on the stability of free $^{+}\left[\text{Li}_{6}\text{Si}_{5}\right]$ NW.

We first studied the stability of periodically repeated Li$_6$Si$_5$ units (Li$_6$Si$_5$-NW), which are stacked along the z direction, forming a one-dimensional structure, as shown in Figure 2. We found a stable structure with an equilibrium distance between Si$_5$ rings of 4.04 Å which is the periodicity of the Li$_6$Si$_5$ unit cell. In the equilibrium geometry, the distance between Li atoms of the border is 3.33 Å while the distance with respect to the center one is 2.83 Å. The Si-Si distance between neighboring atoms is 2.37 Å, very close to the ones in Li$_6$Si$_5$ monomer (between 2.30 and 2.35 Å). Our computations show a metallic character (see Figure 3). Note that the bandgaps of Li$_{12}$Si$_7$ was reported from conductivity-temperature experimental measurements and found to be 0.6 eV (Nesper et al., 1986b).

The stability of the Li$_6$Si$_5$-NW was also verified by BO-AIMD simulations at 300 K and 500K, during a simulation time of 10 ps. The simulation was performed by considering four Li$_6$Si$_5$ units in the periodic unit cell, as shown in Figure 4. We observe that at 500 K the Si$_5$Li$_6$ NW preserves its stability, showing energy fluctuations of around 2 eV. Supporting information contains short movies extracted from the BO-AIMD simulations.

Stability of the Li$_6$Si$_5$-NW Inside the CNTs

Next, we studied a finite Li$_6$Si$_5$ structure (f-Li$_6$Si$_5$) in the free space and encapsulated it inside both armchair and zigzag carbon nanotubes (f-Li$_6$Si$_5$@CNT). For the f-Li$_6$Si$_5$ structure, we consider four Si$_5$ rings surrounded by five Li$_6$ moieties. BO-AIMD simulations provide insights on the stability of the f-Li$_6$Si$_5$ system in the free space at 300 K and 500 K. We find that at 300 K, the f-Li$_6$Si$_5$ structure preserves its stability. Still, at 500 K, it tends to form Si-Si bonds between adjacent Si rings without losing its one-dimensional array, as shown in Figure 5. However, it is important to note that this model does not have the exact stoichiometry of NW because, to maintain symmetry, an extra Li$_6$ unit group is added, i.e., [(Li$_6$)$_5$(Si$_5$)$_4$].

To study the f-Li$_6$Si$_5$ structure inside the CNTs, we consider three armchair CNTs with chiral indexes of (8,8), (9,9), and (10,10), and three zigzag CNTs with chiral indexes of (14,0), (15,0), and (16,0). With this choice, we seek to find the CNT size that best accommodates the Li$_6$Si$_5$-NW inside. Note that we selected these CNTs according to our preliminary findings from the Li$_3$Si$_3$@[n]cyclacene model, suggesting diameters between 12 and 15 Å. The CNTs were simulated with periodic boundary conditions along its axis with a periodicity of $z_0 = 30$ Å.

![Band structure calculations of the infinite Li$_6$Si$_5$-NW inside the zigzag carbon nanotubes, (A) the isolated (15,0) CNT, and (B) the Li$_6$Si$_5$-NW@CNT system. The dashed line indicates the Fermi energy.](image)
The latter allows a vacuum region for the encapsulated f-Li\textsubscript{6}Si\textsubscript{5} structure of 14 Å, allowing the atomic movement inside the CNT. Next, we calculate the \(E_{\text{int}} \) between encapsulated f-Li\textsubscript{6}Si\textsubscript{5} and the CNTs by the equation:

\[
E_{\text{int}} = E_{\text{tot}}(f-Li_6Si_5@CNT) - E_{\text{tot}}(f-Li_6Si_5) - E_{\text{tot}}(CNT),
\]

where \(E_{\text{tot}}(f-Li_6Si_5) \) and \(E_{\text{tot}}(CNT) \) are the total energies of the isolated f-Li\textsubscript{6}Si\textsubscript{5} and the CNT, respectively, and \(E_{\text{tot}}(f-Li_6Si_5@CNT) \) is the total energy of f-Li\textsubscript{6}Si\textsubscript{5} unit inside the CNT. Our results for the \(E_{\text{int}} \) are shown in Figure 6. The armchair (9,9) and the zigzag (15,0) CNTs of 12.3 and 11.8 Å in diameter, respectively, exhibit the more stabilizing \(E_{\text{int}} \), being the best candidates to accommodate the f-Li\textsubscript{6}Si\textsubscript{5} inside. In addition, the f-Li\textsubscript{6}Si\textsubscript{5} is better stabilized inside the zigzag (15,0) CNT than inside the armchair (9,9) CNT by 0.9 eV. Noteworthy, the larger-diameter CNTs are energetically less favorable to encapsulate the f-Li\textsubscript{6}Si\textsubscript{5} as shown in Figure 6, in agreement with the Li\textsubscript{7}Si\textsubscript{5}-NW@CNT unit cell, where the distance between the Si\textsubscript{5} rings increases by 0.23 Å. However, this mismatch is relatively small and should not affect the electronic properties of the system. For the isolated CNT we find a small bandgap of 0.02 eV as shown in Figure 8A, which is in good agreement with the measured value of 0.029 ± 0.004 eV (Ouyang et al., 2001). Whereas the Li\textsubscript{6}Si\textsubscript{5}-NW@CNT system exhibits metallic properties as shown Figure 8B, suggesting that the Li\textsubscript{6}Si\textsubscript{5}-NW would preserve its electronic properties inside the CNT as can be compared with Figure 3.

Finally, we study the stability of the f-Li\textsubscript{6}Si\textsubscript{5} structure inside both zigzag (15,0) and armchair (9,9) CNTs by performing BO-AIMD simulations. Figure 9A shows the equilibrium geometry of the f-Si\textsubscript{5}Li\textsubscript{6} structure inside the (15,0) CNT. We find that the structure remains almost unchanged with respect to f-Si\textsubscript{5}Li\textsubscript{6} in the free space, showing that the CNT would have a small influence in the Li\textsubscript{6}Si\textsubscript{5} NW stability. We only note a small displacement of the Li ions at the extreme of the f-Li\textsubscript{6}Si\textsubscript{5} structure which move toward the CNT wall. The integrity of the f-Li\textsubscript{6}Si\textsubscript{5} structure inside the (15,0) and (9,9) CNTs was investigated by BO-AIMD simulations at 300 K. We find that the f-Si\textsubscript{5}Li\textsubscript{6} structure preserves its stability where the Li ions move around the Si\textsubscript{5} ring without detaching. Similar results are found for the f-Li\textsubscript{6}Si\textsubscript{5} structure inside the armchair (9,9) CNT, indicating that the formation and stability of the Li\textsubscript{6}Si\textsubscript{5} NW inside the CNTs is independent of its chirality. This result suggests that Li\textsubscript{6}Si\textsubscript{5}-NW are likely to form inside CNTs in a compact form, which would allow efficient storage of Li ions into CNTs mediated by Si\textsubscript{5} rings. Supplementary Figure S2 shows the variation of the total energy for the BO-AIMD simulation of f-Li\textsubscript{6}Si\textsubscript{5} inside the (15,0) and (9,9) CNTs at 300 K. We observe energy fluctuation of around 5 eV in both CNTs, preserving the stability of the f-Li\textsubscript{6}Si\textsubscript{5} structure.

CONCLUSION

Using periodic DFT calculations and Born-Oppenheimer *ab initio* molecular dynamic simulations, we have shown that Li\textsubscript{6}Si\textsubscript{5} units can be stacked one above the other, forming a one-dimensional structure linked together by Coulomb interactions. This study complements previous findings, where we...
demonstrated that \(\text{Li}_6\text{Si}_5 \), \((\text{Li}_6\text{Si}_5)_2\), and \((\text{Li}_6\text{Si}_5)_3\) lowest energy structures contain one, two, and three \(\text{Si}_5^6 \) aromatic rings stabilized by Li\(^+\) counterions. Additionally, the \(\text{Li}_6\text{Si}_5 \) nanowire was identified in the Zintl \(\text{Li}_6\text{Si}_5 \) compound but coexisting with Y-shaped \(\text{Si}_4 \) moieties. In this case, we support the stability of the isolated Si-Li-nanowire—additionally, the relaxed structure (at room temperature) exhibits metallic characteristics.

We also found that finite \((\text{Li}_6\text{Si}_5)_n\) systems are stable inside both armchair and zigzag carbon nanotubes of around 12 Å in diameter, preserving its stability at room temperature, supporting the viable formation of \(\text{Li}_6\text{Si}_5\)-NW inside the CNTs. Interestingly, the \(\text{Li}_6\text{Si}_5\)-NW@CNTs hybrid nanocomposite maintains the metallic character. Finally, in the \(\text{Li}_6\text{Si}_5\)-NW, the \(\text{Li}_6\text{Si}_5 \) units are connected by strong electrostatic interactions (\(\text{Si}_5^6 \); aromatic pentagons intercalated with the \(\text{Li}_6^+ \) moiety) in agreement with the Zintl ion concept. In the \([\text{Li}_6\text{Si}_5\text{-NW}]@\text{CNTs}\), NCI predicts that \(\text{Li}_6\text{Si}_5\)-NW interacts with the CNT walls by van der Waals interactions Frisch et al., 2016.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

REFERENCES

Adamo, C., and Barone, V. (1999). Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. *J. Chem. Phys.* 110, 6158–6170. doi:10.1063/1.478522

Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., et al. (2006). Effects of Confinement on Freezing and Melting. *J. Phys. Condens. Matter* 18, R15–R68. doi:10.1088/0953-8984/18/6/r01

Bleck, P. E., Jepsen, O., and Andersen, O. K. (1994). Improved Tetrahedron Method for Brillouin-Zone Integrations. *Phys. Rev. B* 49, 16223–16233. doi:10.1103/physrevb.49.16223

Chakraborty, I., and Pradeep, T. (2017). Atomically Precise Clusters of noble Metals: Emerging Link between Atoms and Nanoparticles. *Chem. Rev.* 117, 8208–8271. doi:10.1021/acs.chemrev.6b00769

Chevrier, V. L., Zwaninger, J. W., and Dahn, J. R. (2010). First Principles Study of Li-Si Crystalline Phases: Charge Transfer, Electronic Structure, and Lattice Vibrations. *J. Alloys Compd.* 496, 25–36. doi:10.1016/j.jallcom.2010.01.142

Claridge, S. A., Castleman, A. W., Jr, Khanna, S. N., Murray, C. B., Sen, A., and Weiss, P. S. (2009). Cluster-assembled Materials. *ACS Nano* 3, 244–255. doi:10.1021/nn800820e

Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, B., Piquemal, J.-P., Beratan, D. N., et al. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. *J. Chem. Theor. Comput.* 7, 625–632. doi:10.1021/0ct00464a

Deraeve, E. G. (1998). Zeolites as Solid solvents. *Paper Presented at the International Symposium “Organic Chemistry and Catalysis” on the Occasion of the 65th Birthday of Prof. H. Van Bekkum*, Delft, Netherlands, 2-3 October 1997. *J. Mol. Catal. A: Chem.* 134, 29–45. doi:10.1016/S1381-1169(98)00021-1

Doud, E. A., Voicodin, A., Hochuli, T. J., Champsaur, A. M., Nuckolls, C., and Roy, X. (2020). Superatoms in Materials Science. *Nat. Rev. Mater.* 5, 371–387. doi:10.1038/s41578-019-0175-3

Ernzerhof, M., and Perdew, J. P. (1998). Generalized Gradient Approximation to the Angle- and System-Averaged Exchange Hole. *J. Chem. Phys.* 109, 3313–3320. doi:10.1063/1.476928

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scallmani, G., Robb, M. A., Cheeseman, J. R., et al. (2016). Gaussian 16, Inc. Rev. B.01. (Wallingford CT: Gaussian).

Gao, B., Sinha, S., Fleming, L., and Zhou, O. (2001). Alloy Formation in Nanostructured Silicon. *Adv. Mater.* 13, 816–819. doi:10.1002/1521-4095(200106)13:11<816::AID-ADMA816>3.0.CO;2-p

Green, M. H. (1998). The Opening and Filling of Single Walled Carbon Nanotubes (SWTs). *Chem. Commun.* (3), 347–348. doi:10.1039/a707632k

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 132, 154104. doi:10.1063/1.3382344

Hückel, E. (1931a). Quantentheoretische Beiträge Zum Benzolproblem. *Z. Physik* 72, 310–337. doi:10.1007/BF01341953

Hückel, E. (1931b). Quantentheoretische Beiträge Zum Benzolproblem. *Z. Physik* 70, 204–286. doi:10.1007/BF01339530

Hückel, E. (1930). Zur Quantentheorie der Doppelbindung. *Z. Physik* 60, 423–456. doi:10.1007/BF01341254

Ivanov, A. S., Morris, A. J., Bozhenko, K. V., Pickard, C. J., and Boldyrev, A. I. (2012). Inorganic Double-Helix Structures of Unusually Simple Lithium-Phosphorus Species. *Angew. Chem. Int. Ed.* 51, 8330–8333. doi:10.1002/anie.201201843

Jena, P., and Khanna, S. N. (1996). Stability and Electronic Structure of Cluster Assembled Materials. *Msf* 222, 245–26. doi:10.4028/www.scientific.net/MSF.232.245

Jena, P., and Sun, Q. (2018). Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. *Chem. Rev.* 118, 5755–5870. doi:10.1021/acs.chemrev.7b00524

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

We thank the financial support of National Agency for Research and Development (ANID) through ECOSI70045, FONDECYT projects 1211128 (W.T.), 1181121 (C.C.), and 1170480 (W.O.). FONDECYT Postdoctorado 3180119 (R.-P.-R.), ANID/PIA ACT192144 (O.Y.). Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) of the Universidad de Chile. Computational resources for periodic DFT calculations and BO-AIMD simulations were provided by Fenix HCP of the Universidad Andres Bello. C.C. acknowledges Center for the Development of Nanoscience and Nanotechnology CEDENNA AFB180001.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.767421/full#supplementary-material
