Molecular basis of natural tolerance to glyphosate in *Convolvulus arvensis*

Zhaojia Huang¹, Yan Liu², Chaohui Zhang³, Cuilan Jiang¹, Hongjuan Huang¹ & Shouhui Wei¹

Convolvulus arvensis is a troublesome weed that is naturally tolerant to glyphosate. This weed tolerates glyphosate at a rate 5.1 times higher than that of glyphosate-susceptible *Calystegia hederacea*. Glyphosate-treated *C. arvensis* plants accumulated less shikimic acid than *C. hederacea* plants. The overexpression of *EPSPS* genes from the two species in transgenic *Arabidopsis thaliana* resulted in similar glyphosate tolerance levels. qPCR of genomic DNA revealed that the *EPSPS* copy number in *C. arvensis* was approximately 2 times higher than that in *C. hederacea*. Moreover, glyphosate treatment caused a marked increase in *EPSPS* mRNA in *C. arvensis* compared to *C. hederacea*. GUS activity analysis showed that the promoter of *CaEPSPS* (*CaEPSPS*-P) highly improved GUS expression after glyphosate treatment, while no obvious differential GUS expression was observed in *ChEPSPS*-P transgenic *A. thaliana* in the presence or absence of glyphosate. Based on the obtained results, two coexisting mechanisms may explain the natural glyphosate tolerance in *C. arvensis*: (i) high *EPSPS* copy number and (ii) specific promoter-mediated overexpression of *EPSPS* after glyphosate treatment.

Glyphosate is a nonselective, foil-applied herbicide that has been used to manage annual, perennial, and biennial herbaceous species of grasses, sedges, and broadleaf weeds². It affects aromatic amino acid biosynthesis by inhibiting 5-enolpyruvyl-shikimate-3-phosphate synthase (*EPSPS*), a nuclear-encoded, plastid-localized enzyme in the shikimate pathway³. Glyphosate has become the most widely used herbicide in the world due to its advantage of broad-spectrum, low toxicity, and low soil residual activity⁴. However, the widespread and intensive use of glyphosate over years imposes selective pressure on weeds⁵,⁶. Since glyphosate resistance was first found in rigid ryegrass (*Lolium rigidum*)⁷ in Australia in 1996, 43 weed species with resistance to glyphosate have been detected⁸.

Mechanisms of glyphosate resistance are classified as target-site and non-target site. Target-site resistance is caused by mutations in *EPSPS* that decrease its binding affinity for glyphosate, or by *EPSPS* overexpression, which allows the plant to produce adequate *EPSPS* to maintain the synthesis of aromatic amino acids. Single amino acid substitutions in *EPSPS* at position 106 from proline to serine (*P106S*), alanine (*P106A*), threonine (*P106T*), or leucine (*P106L*) have been identified in *Eleusine indica*⁹,¹⁰, *Amaranthus palmeri*¹⁰,¹¹, *Amaranthus tuberculatus*¹², *Echinochloa crus-galli*¹³, and *Amaranthus tuberculatus*¹⁴. Additionally, a double amino acid substitution (*T102I + P106S*) in *E. indica*¹⁵,¹⁶ and *Bidens pilosa*¹⁷ in certain populations was found and reported to confer a higher glyphosate resistance level than that conferred by the single *P106S* mutation.

EPSPS overexpression through increased *EPSPS* copy number confers glyphosate resistance in *A. palmeri*¹⁸, *L. rigidum*¹⁹, *A. spinosus*²⁰, and *A. tuberculatus*²¹. For glyphosate-resistant *A. palmeri*, increased *EPSPS* copy number produces abundant enzymes to maintain the shikimate pathway²². Furthermore, *EPSPS* overexpression through elevated *EPSPS* transcript levels after glyphosate treatment is associated with glyphosate tolerance in *Diplotria chinensis*²³ and *Ophiopogon japonicus*²⁴.

Reduced glyphosate absorption, translocation²⁵,²⁶, and vascular sequestration²⁷ are the main non-target glyphosate resistance mechanisms. To protect the young meristematic tissue, resistant plants sequester glyphosate within the vacuoles of the leaves²⁸.²⁹. Maintaining glyphosate in vacuolar tissues by ABC transporters to avoid

¹Key Laboratory of Weed Science, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. ²Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570100, China. Correspondence and requests for materials should be addressed to H.H. (email: hjhuang@ippcaas.cn) or S.W. (email: shwei@ippcaas.cn)
damage was identified to be responsible for glyphosate resistance. Furthermore, studies have reported that chloroplast proteins played an important role in glyphosate resistance in *Conyza canadensis*.

Field bindweed (*Convolvulus arvensis*) is a perennial weed in the morning-glory family. It is considered one of the most troublesome weeds threatening wheat and cotton production in China. *C. arvensis* was the first weed reported to be naturally tolerant to glyphosate. Previous studies aimed at illuminating the glyphosate tolerance mechanism in *C. arvensis* have mainly focused on glyphosate absorption and translocation. However, there were no obvious differences in absorption and translocation. Until recently, the tolerance mechanism has not been fully understood. As *C. arvensis* is naturally tolerant to glyphosate, and a susceptible population in China was not obtained in our previous studies. Therefore, glyphosate-susceptible *Calystegia hederacea* was used as a control because *C. hederacea* belongs to the Convolvulaceae family and shares similar biological characteristics with *C. arvensis* in many aspects, such as perennial, vine climbing, and rapid growth. In this article, we investigated the mechanism of glyphosate tolerance in *C. arvensis* with physiological (shikimic acid accumulation) and molecular (EPSPS cloning, overexpression of EPSPS gene, and EPSPS gene expression pattern) approaches. We cloned the EPSPS genes of *C. hederacea* and *C. arvensis* and inserted the EPSPS gene into the common model plant *Arabidopsis thaliana*, which is an excellent tool for research in plant biology. We examined the glyphosate tolerance of EPSPS transgenic *A. thaliana*. We also compared the basal and glyphosate-induced mRNA levels of EPSPS from the two species.

Materials and Methods

Plant material and growth conditions. Seeds of *C. arvensis* and *C. hederacea* collected in Beijing, China were germinated in Petri dishes with moist filter paper in an illumination incubator (25 °C day/night temperature). Individual seedlings in the cotyledon growth stage were transplanted into pots (5 cm radius; 6 seedlings per pot) containing a 1:1 (V/V) peat: sand sterile potting mix. The plants were placed in a greenhouse with an average day/night temperature of 25/20 °C and a 12-h photoperiod under artificial illumination (300 μmol m⁻² s⁻¹). The plants were watered as needed.

Glyphosate dose–response assay. Plants at the 5–6 leaf stage were sprayed with glyphosate (Roundup Ultra, 41% glyphosate isopropylammonium, Monsanto, USA) at doses of 0, 250, 500, 1000, 2000, 4000 and 8000 g ha⁻¹ using a research track sprayer (3WPSH-500D), which delivered 450 L ha⁻¹ spray solution at 0.3 MPa. All treatments contained 3 replicate pots (6 plants per pot). Plants were assessed 14 days after treatment (DAT). All aboveground plant materials were cut and dried at 60 °C for 72 h. Dry weight was measured when constant weight was achieved. The experiment was arranged in a completely randomized design and was repeated two times with three replications each.

Shikimate accumulation in vivo assay. Plants at the 5–6 leaf stage sprayed with 1000 g ha⁻¹ glyphosate were harvested at 2, 4, 6, 8, 10 and 12 DAT, and foliar tissue samples were stored at –80 °C until further processed. Determination of shikimate accumulation in *C. hederacea* and *C. arvensis* tissue was conducted spectrophotometrically according to Chen. Shikimic acid was detected using a double-beam spectrophotometer at 380 nm. The determination of the shikimic acid concentration was based on a shikimate standard curve.

EPSPS gene cloning and sequence analysis. Leaves of *C. hederacea* and *C. arvensis* were sampled and ground to fine powders in liquid nitrogen, and the total RNA was extracted with the RNAprep Pure Plant Kit (Tiangen Biotech Co., Ltd., China) following the manufacturer's protocol. First-strand complementary DNA (cDNA) was amplified with random primers using EasyScript First-Strand cDNA Synthesis SuperMix (TransGen Biotech, China). The final cDNA was stored at –20 °C.

The primer pair EPSPS-cf and EPSPS-cr was designed from plant EPSPS gene sequences in NCBI. PCR was performed in a thermal cycler as follows: 5 min at 95 °C; 30 s at 95 °C; 30 s at 57 °C; 35 s at 72 °C (35 cycles); and 10 min at 72 °C. The amplified product was purified and cloned into the pMD19-T vector (Takara, Japan) for sequencing. The sequence obtained from the conserved region was used to design the 5'-end and the 3'-end primers. Fragments amplified by 5' and 3' RACE were purified, cloned into the pMD19-T vector and sequenced. Because of their high homology, ChEPSPS-f and ChEPSPS-r were designed to amplify the full-length EPSPS gene of *C. hederacea* according to that of *C. arvensis*. Sequence assembly and comparative analyses of the EPSPS genes from the two species were conducted using DNAMAN (Version 5.0).

The promoters of EPSPS from *C. hederacea* and *C. arvensis* were amplified with the gwEPS-1, gwEPS-2, and gwEPS-3 primers of the Universal Genome Walker Kit (Clontech, USA) following the manufacturer's protocol. The sequences of primers used in the present study are listed in Table 1. The prediction of cis-acting elements in the promoters was performed by using the software Plant-CARE.

Quantitative PCR (qPCR) analysis. The relative EPSPS copy number was estimated using genomic DNA. Total DNA from young leaves (100 mg) of the two species from three plants of each replicate was extracted using the New Plant Genome Extraction Kit (Tiangen Biotech Co., Ltd., China). After eluting in double-distilled water, the genomic DNA quality and concentration were determined spectrophotometrically, and the DNA samples were stored at –20 °C.

The EPSPS expression level was determined using mRNA extracted from plants after glyphosate treatments. Plants sprayed with 1000 g a.e. ha⁻¹ glyphosate at the 5–6 leaf stage were harvested at 0.5, 1, 2, 4, 6 and 8 DAT. The leaves (the uppermost three leaves, 100 mg) of the two species were sampled from three plants of each replicate and ground to a fine powder in liquid nitrogen, and the total RNA was extracted by using the RNAprep Pure Plant Kit (Tiangen, China) following the manufacturer's protocol. After elution of total RNA in double-distilled water,
DNase I was added to digest any contaminating DNA and then removed. The cDNA was amplified with random primers using the EasyScript First-Strand cDNA Synthesis SuperMix (TransGen Biotech, China). qPCR was performed in 96-well plates on the ABI 7500 real-time PCR system with the SYBR Green I Master Mix (Invitrogen, USA). To quantify the copy number and expression level of EPSPS, the housekeeping GAPDH gene was used as the internal control gene because the GAPDH gene did not vary across the samples based on our qPCR results (data not shown). The primer sequences used in this study are listed in Table 1. Melting curves were performed before each qPCR experiment to assess the specificity of the primers. The following two-step real-time PCR detection system was used: 15 s at 95 °C and 25 s at 62 °C. Relative gene copy number or expression level was obtained with the formula for fold induction, $2^{-\Delta\Delta CT}$.

Chimeric vector construction, plant transformation and overexpression of the EPSPS gene in *A. thaliana*. Total RNA was isolated, and cDNA was synthesized. The coding regions of EPSPS of *C. hederaceae* and *C. arvensis* were amplified using the EPSPS-1f and EPSPS-1r primer pair (Table 1), and the complete EPSPS gene was inserted into the pMD19-T. The vector was verified by sequencing and then digested using XbaI. The resulting product was cloned into the pBI121 vector, and the 3SS::EPSPS construct was obtained.

The expression vectors 3SS::CaEPS-P and 3SS::ChEPS-P were introduced into GV3101 Agrobacterium tumefaciens to infect *A. thaliana* by the floral-dipping method. T1 seeds were collected and grown under sterile conditions on media containing half-strength MS basal salt mixture, 1% sucrose and 40 mg L$^{-1}$ kanamycin. The surviving T1 seedlings showed a ratio of 3:1 KanR/KanS and were selected to produce T2 seeds. T2 lines containing the EPSPS gene were considered homozygous and used for further analysis. Three lines of each transgenic *A. thaliana* were used for glyphosate dose response analysis or GUS activity assay. Wild-type (WT) *A. thaliana* was used as a control.

To investigate the role of EPSPS in glyphosate, the seeds of transgenic EPSPS and WT *A. thaliana* were planted on plates containing half-strength MS salts and glyphosate (1.0 mM), respectively. The subsequent growth of these plants was assessed visually and photographed at 14 d after seeding.

Quantitative analysis of GUS activity. To further investigate the EPSPS expression pattern, the EPSPS promoters from the two species were amplified using specific primers (ChEPS-P · F × ChEPS-P · R and CaEPS-P · F × CaEPS-P · R) (Table 1). The sequencing-verified promoters were isolated from pMD19-T using HindIII/XbaI digestion and then inserted into the pBI121 vector to generate EPSPS-P::GUS. The recombinant vectors were then verified by restriction digest. Expression vectors of ChEPS-P · F::GUS and CaEPS-P · F::GUS were finally introduced into *A. thaliana*. The method of plant transformation was described as above.

The GUS activity assay in transgenic *A. thaliana* seedlings used the methods described by Huang42. The data represent the means ± SD of triplicate measurements.

Table 1. Primers used in this study.

Primer name	Primer sequence (5' to 3')	Purpose of the primers
EPSPS-ct	TGTTCTGAACACGCTTGGGCC	Amplify the core of EPSPS
EPSPS-cr	CACTGTGGCTCCACCTTCTT	Amplify the full length of ChEPSPS
EPSPS-5	GCCGCCAACGCTTAAAGCA	5' RACE
EPSPS-3	GCAGGAAAGCAGAAGTGGCC	3' RACE
ChEPS-P-1f	ATACCCACCCGAATCAGTAAGAGTT	Amplify the full length of ChEPSPS
gwEPS-1	CCTCTCAAGCTGGTCGCTGATGTCC	TAIL-PCR of the EPSPS promoter
gW-2	TGAAGAAAAACACAGAAGGAGAA	Amplify CaEPS-P
gW-3	CACAATCTCCTCGTGGCCATGAC	Amplify CaEPS-P
EPS-1f	TCCTAGAATGGGCCAATGAGCAACA	Amplify the full length of EPSPS
EPS-1r	CCAGGCCTCAATCCTGGGAACCTTG	Amplify CaEPS-P
CaEPS-Pf	TAAACCTTTAATGTAATTTT	Amplify CaEPS-P
CaEPS-Pr	GGTATTTTTTAAAAGAGGGGTTG	Amplify CaEPS-P
ChEPS-Pf	GGACTCCTAGCTAGTGGCA	Amplify ChEPSPS-P
ChEPS-Pr	GGTATTTTTGAAGAGGGGTG	Amplify ChEPSPS-P
Q-EPS-1f	GGTCCCTTACCCGTAACAC	qRT-PCR analysis of the EPSPS gene
Q-EPS-1r	GGGGAGGTCAGAATACAA	qRT-PCR analysis of the GAPDH gene
GAPDH-f	AATGGTGGCTTGCTCGGGCTCA	qRT-PCR analysis of the GAPDH gene
GAPDH-r	AGAACCTTCCACAGCCTTGCC	qRT-PCR analysis of the GAPDH gene

Table 1. Primers used in this study.
was inhibited, and the cotyledons turned yellow and died. In contrast, the CaEPSPS transgenic ChEPSPS significantly different at P
the means were compared using Student’s t-test or Tukey’s multiple range tests. Means with different letters are
using SigmaPlot software (version 12.0), and Tukey’s multiple range tests were used for comparison.
(Fig. 3b).
CaEPSPS-P
ment, which is involved in defence and stress responsiveness, located in
cis
 cis-acting elements, such as spl, ARE, and GATA motifs. Furthermore, there was a
sis
sequence analysis of
PlantCARE analysis of
by genome walking and designated as promoter regions (named
CaEPSPS-P and CaEPSPS-P, respectively). PlantCARE analysis of ChEPSPS-P showed that a TATA box at −40 to −36 and three CAAT boxes at −350 to −152 were included in the promoter. Furthermore, a putative cis-acting sp1 element was found within the pro-
moter sequence (Fig. 3b). Sequence analysis of CaEPSPS-P with PlantCARE showed the presence of common
core promoter elements, including a “TATA-box” (−40 to −36), six “CAAT-box” (−379 to −156) and many
cis-acting elements, such as spl, ARE, and GATA motifs. Furthermore, there was a cis-acting TC-rich repeat
element, which is involved in defence and stress responsiveness, located in CaEPSPS-P (Fig. 3b).
Response to glyphosate in transgenic A. thaliana. To investigate the role of CaEPSPS and ChEPSPS in response to glyphosate, three independent transgenic A. thaliana lines expressing either EPSPS gene and WT were assayed. Because the three CaEPSPS or ChEPSPS transgenic A. thaliana lines showed similar tolerance to glyphosate (data not shown), one line of CaEPSPS or ChEPSPS transgenic A. thaliana was selected for imaging. Based on Fig. 4, there was no obvious difference in plant growth among the WT, CaEPSPS and ChEPSPS transgenic A. thaliana in the absence of glyphosate. However, in the presence of glyphosate (1 mg L−1), the WT growth was inhibited, and the cotyledons turned yellow and died. In contrast, the CaEPSPS and ChEPSPS transgenic A.

Results
Whole-plant bioassay. The responses of C. hederacea and C. arvensis to glyphosate were different (Fig. 1).
At the glyphosate field rate (1000 g ha−1), the growth of C. hederacea was reduced by approximately 70%, whereas
the growth of C. arvensis was reduced by nearly 30%. The C. arvensis plants were not completely controlled
by a glyphosate rate of up to 4000 g ha−1. The GR50 values for C. hederacea and C. arvensis were 562.1 and
2,866.3 g ha−1, respectively, and the calculated tolerant index was 5.1.
Shikimic acid accumulation. Basal shikimate acid levels were similar (55.1–59.2 µg g−1 FW) for C. heder-
acea and C. arvensis in our study. Shikimic acid accumulation exceeded the initial levels of untreated plants after
glyphosate application (1000 g ha−1), and both species accumulated shikimate acid until 6 DAT. However, the
two species thereafter differed in shikimate accumulation at 6 DAT, accumulation decreased in
C. arvensis but fluctuated in C. hederacea (Fig. 2). Shikimic acid accumulation in C. hederacea (with a peak of 326.2 µg g−1 FW at
6 DAT) was 3.5 times higher than that in C. arvensis at 6 DAT.
Sequence analysis of EPSPS. Full-length EPSPS cDNAs were isolated from C. hederacea and C. arven-
sis (ChEPSPS, EU526078; CaEPSPS, EU698030) using specific primers. Sequence analysis revealed that both
ChEPSPS and CaEPSPS consisted of a 1,563 bp open reading frame (ORF) encoding a polypeptide of 520 amino
acids. The deduced amino acid sequences shared high similarity (identity was 97.31%). There are 14 different
mutations, such as those mainly found at positions 102 or 106 in EPSPS, which have previously been associated
with glyphosate resistance.
Fragments of 1,077 bp and 1,142 bp upstream of the ChEPSPS and CaEPSPS genes, respectively, were obtained
by genome walking and designated as promoter regions (named ChEPSPS-P and CaEPSPS-P, respectively).

\[Y = \frac{a}{1 + e^{-(X - GR_{50})/b}} \]

In this equation, \(a\) is the difference between the upper and lower response limits, \(GR_{50}\) is the glyphosate dose that results in a 50% growth reduction, and \(b\) is the slope of the curve around \(GR_{50}\). The estimates were obtained using SigmaPlot software (version 12.0), and Tukey’s multiple range tests were used for comparison.

Data from the EPSPS copy number analysis and other experiment results were subjected to ANOVA, and the
means were compared using Student’s t-test or Tukey’s multiple range tests. Means with different letters are
significantly different at \(P = 0.05\). All statistical analyses were performed using SPSS software (SPSS 17.0, SPSS
Institute Inc.).

Figure 1. Dose–response assay of C. hederacea and C. arvensis treated with different glyphosate doses. Dry
weight was expressed as a percentage of the untreated control. Each data point represents the mean ± SE of
twice-repeated experiments containing three replicates each, and vertical bars represent the standard error.
thaliana produced normal plants on Petri dishes and showed similar growth. Thus, the *CaEPSPS* and *ChEPSPS* genes similarly conferred the ability to withstand higher glyphosate treatments in transgenic *A. thaliana*. These results indicate that the amino acid differences in EPSPS were not the cause of glyphosate tolerance in *C. arvensis*.

Comparison of EPSPS gene copy number and expression level. As we found that the amino acid differences did not account for glyphosate tolerance in *C. arvensis*, the EPSPS gene copy number in both species was...
evaluated by qPCR using GAPDH as a normalization gene. The EPSPS copy number in the glyphosate-susceptible C. hederacea ranged from 0.64 to 0.75; however, the glyphosate-tolerant C. arvensis had higher relative EPSPS copy numbers, varying from 1.41 to 1.63 (Fig. 5), showing approximately 2 times higher copy number expression than that of C. hederacea. A higher EPSPS copy number indicated that C. arvensis could produce adequate EPSPS to bind glyphosate, thus conferring higher tolerance compared to C. hederacea.

To examine the expression level of the EPSPS transcript in C. arvensis and C. hederacea, we carried out qPCR analysis with template cDNA derived from plants induced by 1000 g ha\(^{-1}\) glyphosate for different times. As shown in Fig. 6, glyphosate treatment induced a remarkable and steady increase of EPSPS expression in C. arvensis from 0.5 to 1 DAT with nearly 12 times higher peak induction than that of the untreated control, and then the EPSPS transcript level declined. In comparison, glyphosate caused a longer but weaker induction of EPSPS in C. hederacea. The induction began at 0.5 DAT and declined at 2 DAT. The peak induction in C. hederacea was much lower than that in C. arvensis (Fig. 6).
GUS expression from the EPSPS promoter. As the expression levels of the EPSPS genes induced by glyphosate in *C. arvensis* and *C. hederacea* were obviously different (Fig. 6), we assumed that the specific promoter was likely associated with the differences in EPSPS expression. Hence, we fused the EPSPS promoters to the GUS gene and transformed the recombinant vectors into *A. thaliana* plants to further investigate the EPSPS expression regulatory mechanism. The GUS activity in three transgenic *A. thaliana* lines expressing *ChEPSPS-P* or *CaEPSPS-P* was examined at 0.5, 1, 2 and 4 days after glyphosate application. The results showed that there was no significant difference of the GUS activity in the *ChEPSPS-P* transgenic *A. thaliana* throughout the experiment. In contrast, the GUS activity of the *CaEPSPS-P* transgenic *A. thaliana* was induced at much higher levels by glyphosate from 0.5 to 1 days. The peak induction was detected at 1 day after glyphosate application (Fig. 7). These results indicated that some cis-elements likely exist in *CaEPSPS-P* that are induced by glyphosate and drive GUS overexpression. This result was consistent with our hypothesis that the overexpression of EPSPS after glyphosate treatment in *C. arvensis* was likely mediated by a specific EPSPS promoter.

Discussion

Several weeds, including *C. arvensis*, have been identified with different glyphosate tolerance levels. The recommended glyphosate field doses are commonly 900 to 1500 g ha⁻¹, although these doses vary according to the agronomic management and product marketing of the crops. Thus, *C. arvensis* (at GR₅₀ level) is tolerant to glyphosate at 1.9–3.2 times the field dose and 5.1 times the level of the glyphosate-susceptible *C. hederacea* (Fig. 1). To achieve the complete control of *C. arvensis*, at least double the GR₅₀ rate of glyphosate should be applied; however, this application rate will increase the selection pressure and accelerate the resistance evolution to glyphosate.

Glyphosate affects aromatic amino acid biosynthesis by inhibiting EPSPS, which is a critical enzyme in the shikimate pathway. Previous studies have employed shikimic acid accumulation as a parameter for discriminating glyphosate resistance. For example, the inhibition of EPSPS by glyphosate in susceptible weeds usually results in shikimic acid accumulation. Furthermore, glyphosate-tolerant or glyphosate-resistant weeds accumulate shikimate at much lower levels than susceptible plants. In our study, growth setback and eventual death were observed in *C. hederacea* owing to shikimic acid accumulation. This effect was due to the complete binding
of EPSPS by glyphosate in *C. hederacea*, resulting in the accumulation of shikimic acid, whereas EPSPS in *C. arvensis* was not fully inhibited and would still maintain the shikimic pathway, thus leading to normal growth with slight developmental anomalies, such as deformed leaves and shortened internodes. Shikimate accumulation assays indicated that the glyphosate targeting of EPSPS plays a critical role in glyphosate tolerance in *C. arvensis*. Therefore, EPSPS alteration (mutation or amplification) is likely the major mechanism underlying glyphosate tolerance in *C. arvensis*.

EPSPS point mutations have been well established as major mechanisms of glyphosate resistance. Some weeds displaying glyphosate resistance have a site mutation (particularly at the Pro106 codon) in the **EPSPS** gene. Recently, **E. indica** and **Bidens pilosa** with a double mutation reported as TIPS (Thr102-Ile + Pro106-Ser), have been found to have a high degree of glyphosate resistance. Three amino acid residues (Asp71-Met, Ala112-Ile, and Val201-Met) and a 91Glu deletion in **EPSPS** were reported to be associated with natural tolerance to glyphosate in three lilyturf species. In our study, six different amino acid substitutions were discovered in **EPSPS** in *C. arvensis*. To investigate the response of different **EPSPS** proteins to glyphosate, **EPSPS** genes were inserted into *A. thaliana*. Glyphosate response assays showed that the two transgenic *A. thaliana* shared similar glyphosate tolerance levels (Fig. 4). Therefore, target-site mutations are unlikely to account for glyphosate tolerance in *C. arvensis*.

To examine the possibility of **EPSPS** overexpression contributing to glyphosate tolerance in *C. arvensis*, both the basal and induced **EPSPS** mRNA levels were determined for the two species in this study. The **EPSPS** copy number for *C. arvensis* was 2 times higher than that of *C. hederacea* (Fig. 5). This result alone is not sufficient to explain the tolerance of *C. arvensis* at the whole plant level. However, the glyphosate-induced expression of the **EPSPS** gene in *C. arvensis* was highly enhanced after treatment compared to that in *C. hederacea* (Fig. 6). Multiple **EPSPS** copy numbers and/or increased expression of **EPSPS** have also been reported in other weed species, such as *D. chinensis*, *O. japonica*, *A. palmeri*, and *Conyza* species. Therefore, a higher **EPSPS** copy number together with increased **EPSPS** expression likely play an important role in glyphosate tolerance in *C. arvensis*.

Gene expression is mostly regulated by the promoter. Different promoter regions may have distinctive regulatory functions. In our study, there was a 77 bp extension in the **EPSPS** promoter of *C. arvensis*, which includes three CAAT-boxes. CAAT boxes are known to play important roles in enhancing the transcriptional level of the gene. Moreover, TC-rich repeats, which are involved in defence and stress responsiveness, are located in *CaEPSPS-P* (Fig. 3b). Thus, cis-elements, such as CAAT-boxes or TC-rich repeats, are likely induced by glyphosate treatment and improve the capacity to respond to glyphosate treatment via feedback regulation. In combination with **EPSPS** gene amplification, the **EPSPS** promoter containing specific cis-elements or increased transcription factor activity may increase **EPSPS** expression and confer glyphosate tolerance in *C. arvensis*. Further study will be necessary to detect the function of these cis-elements in the glyphosate feedback regulatory mechanism.

Conclusion We have demonstrated that *C. arvensis* is naturally tolerant to glyphosate at a much higher dose than glyphosate-susceptible *C. hederacea*. *C. arvensis* accumulated less shikimic acids when treated with glyphosate. The **EPSPS** of *C. arvensis* shares high similarity with that of *C. hederacea*, with six different conserved amino acids; however, the response to glyphosate in **EPSPS** transgenic *Arabidopsis* assays showed that these plants shared similar glyphosate tolerance levels. We also observed that the **EPSPS** copy number in *C. arvensis* was approximately 2 times higher than that of *C. hederacea*, and the **EPSPS** mRNA in *C. arvensis* could be highly induced by glyphosate. We conclude that the underlying basis for the glyphosate tolerance of *C. arvensis* is primarily due to high **EPSPS** gene copy numbers and specific promoter-mediated **EPSPS** overexpression after glyphosate treatment. This study could be of increased importance in weed management if the weeds share a similar glyphosate tolerance mechanism. Our future studies will focus on identifying the putative cis-elements of *CaEPSPS-P* in the glyphosate feedback regulatory mechanism.

References

1. Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. H. Perspectives on glyphosate resistance. *Wheat Technology** 111, 89–198 (1997).
2. Dinelli, G. et al. Physiological and molecular insight on the mechanisms of resistance to glyphosate in *Conyza canadensis* (L) Cronq. biotypes. *Pesticide Biochemistry and Physiology** 86, 30–41 (2006).
3. Steinrücken, H. C. & Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase. *Biochem Bioph Res Co* 94, 1207–1212 (1980).
4. Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. *Pest Manag Sci* 64, 319–325 (2008).
5. Nandula, V. K., Reddy, K. N., Duke, S. O. & Poston, D. H. Glyphosate-resistant weeds: current status and future outlook. *Outlooks on Pest Management** 16(4), 183–187 (2005).
6. Powles, S. B. & Christopher, P. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. *Wheat Technology** 20(2), 282–289 (2006).
7. Powles, S. B., Lorraine-Colwell, D. F., Dellow, J. J. & Preston, C. Evolved resistance to glyphosate in rigid ryegrass (*Lolium rigidum*) in Australia. *Wheat Science** 46, 604–607 (1998).
8. Heap I. The international survey of herbicide resistant weeds. Available on-line, www.weedsscience.com. Accessed Dec 20 (2018).
9. Baerson, S. R. et al. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. *Plant Physiol* 129, 1265–1275 (2002).
10. Wakelin, A. M. & Preston, C. A target-site mutation is present in a glyphosate-resistant *Lolium rigidum* population. *Agric. Biochem Biotechnol* 3, 327–3233 (2011).
11. Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J. & Mallory-Smith, C. A. Investigating the mechanisms of glyphosate resistance in *Lolium multiflorum*. Planta 226, 395–404 (2007).
12. Alarcón-Reverte, R. & Fischer, A. J. Resistance to glyphosate in junglerice (*Elechinocha colonia*) from California. *Wheat Science** 61(1), 48–54 (2013).
14. Bell, M. S., Hager, A. G. & Tranel, P. J. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Science 61, 460–468 (2013).
15. Nandula, V. K., Ray, J. D., Ribeiro, D. N., Pan, Z. & Reddy, K. N. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Science 61, 374–383 (2013).
16. Chen, J. et al. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Elymus indica). Planta 242(4), 859–68 (2015).
17. Yu, Q. et al. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Elymus indica conferring high-level glyphosate resistance. Plant Physiology 167(4), 1440–1447 (2015).
18. Ricardo, A.-delaC. et al. Target and non-target Site mechanisms developed by glyphosate-resistant Hairy beggarticks (Bidens pilosa L.) populations from Mexico. Frontiers in Plants Science 7, 1492 (2016).
19. Gaines, T. A. et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences of the United States of America 107(2), 1029–1034 (2010).
20. Salas, R. A. et al. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lotium perenne sp. multiflorum) from Arkansas. Pest Management Science 68(9), 1223–1230 (2012).
21. Nandula, V. K. et al. EPSPS amplification in glyphosate-resistant spiny amaranth (Amaranthus spinosus): a case of gene transfer via interspecific hybridization from glyphosate-resistant Palmer amaranth (Amaranthus palmeri). Pest Management Science 70(12), 1902 (2014).
22. Tranel, P. J., Riggins, C. W., Bell, M. S. & Hager, A. G. Herbicide resistances in Amaranthus tuberculatus: a call for new options. J Agric Food Chem 59, 5808–5812 (2011).
23. Lorentz, L. et al. Characterization of glyphosate resistance in Amaranthus tuberculatus populations. J Agric Food Chem 62, 8134–8142 (2014).
24. Yuen, C. I., Chaing, M. Y. & Chen, Y. M. Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinesis. Plant Science 163, 543–554 (2002).
25. Mao, C., Xie, H., Chen, S., Valverde, B. E. & Qiang, S. Multiple mechanism confers natural tolerance of three lilyturf species to glyphosate. Planta 243(2), 321–335 (2016).
26. Sammons, R. D. & Gaines, T. A. Glyphosate resistance: state of knowledge. Pest Manag. Sci. 70, 1367–1377 (2014).
27. Vila-Aiub, M. M. et al. Glyphosate resistance in perennial Sorgum halapense (Johsongrass), ended by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 68, 430–436 (2012).
28. Ge, X. et al. Vacular glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lotium spp.) from Australia, South America, and Europe: a 31P NMR investigation. J Agric Food Chem 60, 1243–1250 (2012).
29. Preston, C. & Wakelin, A. M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag Sci 64, 372–376 (2008).
30. Yu, Q., Abdallah, I., Han, H. P., Owen, M. & Powles, S. B. Distinct nontarget site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Loliun rigidum. Planta 230, 713–723 (2009).
31. Ge, X. et al. Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Manag Sci 67, 1215–1221 (2011).
32. Nol, N., Tsikou, D., Eid, M., Livieratos, I. C. & Giannopolitis, C. N. Shikimate leaf disc assay for early detection of glyphosate resistance in Cynara canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Research 52, 233–241 (2012).
33. González-Torralva, F., Brown, A. P. & Chivas, S. Comparative proteomic analysis of horseweed (Cynara canadensis) biotypes identifies candidate proteins for glyphosate resistance. Scientific Reports 7, 42565 (2017).
34. Huang, Z. F. et al. Molecular cloning and characterization of 5-enolpyruvylshikimate-3-phosphate synthase gene from Convolvulus arvensis L. Mol Biol Rep 41, 2077–2084 (2014).
35. DeGennaro, F. P. & Weller, S. C. Differential sensitivity of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Science 32, 472–476 (1984).
36. Westwood, J. H. & Weller, S. C. Absorption and translocation of glyphosate in tolerant and susceptible biotypes of field bindweed (Convolvulus arvensis L.). Weed Science 45(4), 658–663 (1997).
37. Westwood, J. H. & Weller, S. C. Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis). Weed Science 45(1), 2–11 (1997).
38. Zhang, M., Liu, Y., Zhang, C. X., Wei, S. H. & Huang, H. J. Glyphosate-tolerant mechanisms in field bindweed Convolvulus arvensis. Acta Phytophylacica Sinica, 38(6), 551–556 (in Chinese) (2011).
39. Meinke, D. W., Cherry, J. M., Dean, C., Rounseley, S. D. & Koornneef, M. Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 282, 662–668 (1998).
40. Chen, J. C., Huang, H. J., Wei, S. H., Zhang, C. X. & Huang, Z. F. Characterization of glyphosate-resistant goosegrass (Elymus indica) populations in China. Journal of Integrative Agriculture 14(5), 919–925 (2015).
41. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743 (1998).
42. Huang, Z. F. et al. Isolation and functional analysis of Convolvulus arvensis EPSPS promoter. Plant Molecular Biology Reporter 33, 1650–1658 (2015).
43. Boerboom, C. M., Wyse, D. L. & Somers, D. A. Mechanism of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus). Weed Science 38, 463–467 (1990).
44. Culpepper, A. S. Glyphosate-induced weed shifts. Weed Technol 20, 277–281 (2006).
45. Owen, M. D. K. & Zelaya, I. A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61, 301–311 (2005).
46. Westhoven, A. M. et al. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci 56, 685–691 (2008).
47. Yuan, C. I., Chen, Y. M. & Chaing, M. Y. Responses of Dicliptera chinesis to glyphosate. Plant Prot Bull Taiwan 43, 29–38 (2001).
48. Carvalho, L. B. et al. Pool of resistance mechanisms to glyphosate in Digitaria insularis. J. Agric. Food Chem. 60, 615–622 (2012).
49. Cross, R. et al. A Pro106 to Ala substitution is associated with resistance to glyphosate in annual bluegrass (Poa annua). Weed Sci 63, 613–622 (2015).
50. Nco, T. D., Krishnan, M., Boutsalis, P., Gill, G. & Preston, C. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virginia) populations in Australia. Pest Manag. Sci. 74, 1094–1100 (2018).
51. Singh, R. K. & Shaner, D. L. Rapid determination of glyphosate injury to plants and identification of glyphosate-tolerant plants. Weed Technol 12, 527–530 (1998).
52. Ribeiro, D. N. et al. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. Planta 239, 199–212 (2014).
53. Chandri, A. et al. Inheritance of evolved glyphosate resistance in a North Carolina Palmer amaranth (Amaranthus palmeri) biotype. Int J Agron. 2012(3) (2012).
54. Gaines, T. A. et al. Mechanism of resistance of evolved glyphosate resistant Palmer amaranth (Amaranthus palmeri). J Agric Food Chem 59, 5886–5889 (2011).
55. Dinelli, G. et al. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis. L. Cenq Bioteis Pest Biochem Physiol 86, 30–41 (2006).

56. Dinelli, G. et al. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48, 257–265 (2008).
57. Li, Y. et al. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZIP. Mol Biol Rep 39(8), 8559–8569 (2012).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31501659), National Key Research and Development Program of China (2018YFD0200602), the Key R&D program of Special Funds for Construction Corps (2018AA006), and Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture (KFJJ20180104).

Author Contributions
C.Z. and Z.H. designed the experiments; Z.H., H.H., C.J. and S.W. did the experiments; Z.H., L.J., Y.L. and S.W. analyzed data and wrote the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019