Electromagnetic Wave Absorption Properties of Barium Ferrite/Reduced Graphene Oxide Nanocomposites

M. Moslehi Niasara,b, M. J. Molaeia,b, A. Aghaeia

aMaterials and Energy Research Center, Karaj, Iran
bFaculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

\textbf{P A P E R I N F O}

\textbf{A B S T R A C T}

Reduced graphene oxide (rGO) and M-type hexagonal ferrites such as BaFe\textsubscript{12}O\textsubscript{19} have attracted great attention as electromagnetic (EM) wave absorbing materials in recent years. In this research, different weight percents of BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposites were incorporated into the microwave absorbing layers and their EM wave absorption was investigated. Barium ferrite was synthesized through the co-precipitation method. Graphene oxide (GO) was synthesized through the modified Hummers’ method. The synthesized GO was reduced to rGO nanosheets using a reducing agent. The synthesized barium ferrite and rGO were then mechanically milled to form BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposite. The chemical bondings, phase analysis, magnetic properties, particle morphology, and EM wave absorbing properties were investigated using FTIR, XRD, Vibration Sample Magnetometer (VSM), FESEM, and Vector Network Analyzer (VNA), respectively. The saturation magnetization (M\textsubscript{s}) and the coercivity (H\textsubscript{c}) of the synthesized BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposite were 31 emu/g and 1.5 kOe, respectively. The EM absorption properties in the X-band (8.2-12.4 GHz) showed that the maximum reflection loss (RL) of -7.39 dB could be obtained for the nanocomposite containing only 10 wt. % of BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposite in a resin matrix with a thickness of 2 mm.

\textbf{doi: 10.5829/ije.2021.34.06c.14}

\textbf{1. INTRODUCTION}

In recent years, electronic devices and wireless communications which act in the range of microwave frequency or X-band (8-12 GHz) are widely developed [1]. With the development of electronic devices, electromagnetic interference (EMI) has become a serious concern. Furthermore, the improvements in the technology of radar detection have increased the demand for microwave absorbing layers [2]. The microwave absorbing materials should be able to attenuate and dissipate the microwave energy through dielectric loss and magnetic loss mechanisms [1]. An ideal absorbing material should possess a broad absorption frequency, strong absorption capability, and lightweight [3]. The basic design criteria for the absorbing materials are impedance matching characteristics and attenuation capability [4, 5]. Generally, weak attenuation leads to a low reflection loss. Furthermore, weak impedance matching results in an increased reflection from the surface [5].

Most of the microwave absorbing materials have consisted of dielectric loss components such as conducting polymers or carbon material and magnetic loss materials such as nickel, cobalt, and ferrite [6]. Hexagonal ferrites with the chemical formula of MFe\textsubscript{12}O\textsubscript{19} (M= Ba, Pb, and Sr) are the widely used hard magnetic materials in different applications [7]. Barium ferrite (BaFe\textsubscript{12}O\textsubscript{19}) as a hard magnetic material with enhanced saturation magnetization (M\textsubscript{s}) and high coercivity (H\textsubscript{c}) has received wide applications [8-17]. Barium ferrite has EM wave absorption properties as well [18]. However, due to the low dielectric loss and high density, the EM absorbing applications of hexagonal ferrites are restricted. In order to enhance the EM absorbing properties of hexagonal ferrites, versatile...
dielectric loss fillers such as carbon nanotubes (CNTs) and graphene have been applied together with these ferrites [19]. Carbon-based materials such as CNTs, porous carbon, carbon spheres, graphene, and rGO have superior electromagnetic wave reflection loss efficiency. The rGO with a high dielectric loss is a great candidate for use in EM wave absorber materials [20]. Graphene, a monolayer sheet of carbon atoms in the form of a hexagonal two-dimensional structure with sp² hybridization, has attracted extensive attention due to its mechanical, electrical, and thermal properties. Graphene-based materials provide application potential in the fields of biomedical, supercapacitors, energy, catalysts, batteries, and EM wave absorption [21–23]. The graphene absorption properties can be enhanced if are used with other appropriate EM absorbing materials [24]. The graphene can act as a dielectric loss EM wave absorption material with an absorption performance better than CNTs [25]. The residual groups and defects on the rGO nanosheets introduce groups’ electronic dipole relaxation and defect polarization relaxation. The rGO nanosheets have higher microwave absorption in comparison to CNT or graphite. The rGO nanosheets can also be a better microwave absorbing material compared to high-quality graphene [3]. However, graphene cannot be used as an appropriate microwave absorption material since it has a high dielectric loss while misses to have a high magnetic loss. In order to overcome this shortage, magnetic materials can be incorporated into graphene [26]. There have been some efforts to incorporate magnetic materials into rGO for enhancement of EM wave absorption properties including rGO/Fe₃O₄ [27], rGO/α-Fe₂O₃ [28], rGO/γ-Fe₂O₃ [29], rGO/MnFe₂O₄ [30], rGO/ZnFe₂O₄ [26], rGO/CoFe₂O₄ [31], rGO/Co₃O₄ [32], rGO/nitrogen-doped cobalt/cobalt oxide/carbon [33], rGO/Co₃O₄ [34], rGO/ferroferric oxide–carbon [35], rGO/hybrid C@CoFe nanoparticles [36].

While different magnetic materials have been used to enhance the microwave absorption properties of the rGO, barium ferrite as an effective microwave absorbing magnetic material, with different weight percentages has not been used together with rGO to enhance the microwave absorption. Therefore, in this research, different weight percents of BaFe₁₂O₁₉/rGO nanocomposites were incorporated into a microwave absorbing layer, and their EM wave absorption properties were investigated. The barium ferrite was synthesized through the co-precipitation method while rGO nanosheets were synthesized by reduction of graphene oxide with hydrazine hydrate.

2. EXPERIMENTAL PROCEDURE

2.1. Materials

Graphite powder (purity 99.3%), hydrochloric acid (HCl, 10%), sulfuric acid (H₂SO₄, 98%), sodium nitrate (NaNO₃), potassium permanganate (KMnO₄), hydrogen peroxide (H₂O₂, 30%), ferric chloride (FeCl₃·6H₂O), barium chloride (BaCl₂·2H₂O), sodium hydroxide (NaOH), cetyltrimethyl ammonium bromide (C₅H₁₲BrN), and hydrazine hydrate (NH₂NH₂·H₂O, 98%) were purchased from Merck. The epoxy (viscosity=1.75 MPa·s and density =1150 kg/m³ at room temperature) and the hardener (viscosity=1.1 MPa·s and density=1000 kg/m³ at room temperature) were also purchased from Shell company. All materials were reagent grade and were used without any further purification process.

2.2. Synthesis of Barium Ferrite

For the production of barium ferrite nanoparticles, FeCl₃·6H₂O and BaCl₂·2H₂O were added to 50 mL deionized water in a manner to reach to Fe:Ba molar ratio of 10. The cetyltrimethyl ammonium bromide (CTAB) surfactant was added (10 ppm) to decrease the agglomeration of the precipitates. The solution was stirred for 30 min. Then sodium hydroxide (5 M) solution added dropwise in 1 h to reach the pH of 11. During the addition of the sodium hydroxide, the ferrite precursors precipitate. The precipitates then were collected and washed using a 4000 rpm centrifuge and dried at 100 °C overnight. The dried precursors (reddish solids) were calcined at 1150 °C for 2 h in air.

2.3. Synthesis of rGO

Synthesis of rGO was conducted through chemical reduction of GO. The GO was synthesized by a modified Hummers’ method [23]. Briefly, graphite (1 g) and NaNO₃ (2 g) were added into a flask containing H₂SO₄ (80 mL) and after stirring for 1 h, the mixture was transferred to an ice bath. Then KMnO₄ (3 g) was added to the flask under vigorous stirring. Subsequently, after continuous stirring for 48 h at room temperature, deionized water (400 mL) and H₂O₂ (15 mL) were added to the flask. The precipitate was washed with HCl (10%) and then with water to reach to pH of almost 7. The precipitate was dried at 80°C in an oven overnight. Part of the resultant GO (0.4 g) was dissolved in deionized water (50 mL) using an ultrasonic bath. The GO was reduced to rGO with the aid of hydrazine hydrate (0.5 mL) under stirring for 1 h. The resultant rGO was collected and washed with deionized water for several times using an 11000 rpm centrifuge.

2.4. Characterization Techniques

Phase analysis was done using a Siemens model D500 XRD machine with a ball to powder mass ratio of 7:1.
machine. The XRD patterns were obtained with a step size of 0.02 degrees using Cu-K$_\alpha$ radiation. The analysis was completed with the help of X'pert software. Scherrer’s equation [37] was used to calculate the mean crystallite size of the phases. Fourier-transform infrared spectroscopy (FTIR) analysis was performed on a PerkinElmer spectrometer (400-4000 cm$^{-1}$). The particle morphology was studied by a field emission scanning electron microscope (MIRA3TESCAN-XMU). Magnetic hysteresis loops of the samples were obtained by a vibrating sample magnetometer (VSM, Meghnatis Daghig Kavir) at room temperature. The magnetization at the maximum applied field of 1.5 kOe was considered as the saturation magnetization. The EM wave absorption properties of the synthesized nanocomposites were measured by a vector network analyzer device (VNA, HP Network Analyzer, USA, model 8720) in the frequency range of 8.2-12.4 GHz at room temperature. For VNA measurements, the samples were prepared with different weight ratios of barium ferrite/rGO nanocomposites to the epoxy resin by the aid of slow mechanical agitation. The samples were prepared in similar thicknesses. The contents and thicknesses of the samples are listed in Table 1.

3. RESULTS AND DISCUSSIONS

Figure 1 shows the XRD patterns of the synthesized GO and barium ferrite/rGO nanocomposite. As can be seen in Figure 1, A sharp diffraction peak at 20=12$^\circ$ is detected in the pattern (a) which reveals the formation of GO. The pattern (b) merely consists of barium ferrite peaks, which implies that the milling of rGO and barium ferrite phases does not result in chemical reactions and the formation of new phases [37]. The electronic structure of the graphene nanosheets is modified by the lattice defects and attached functional groups. The defects and functional groups are scattering centers that alter the electrical properties. The reduction of GO to rGO removes the bonded oxygen-containing functional groups and also atomic-scale lattice defects. Furthermore, the reduction process recovers the conjugated network of the graphitic lattice. These change in the structure of the graphene sheets recovers the conductivity of the graphene [38]. The mechanism of the formation of barium ferrite is based on two competing processes: indirectly via crystalline intermediates and directly from the amorphous precursors. However, the direct formation of barium ferrite happens at lower temperatures because of its lower activation energy compared to the indirect route which possesses higher activation energy [39].

Figure 2 displays the FTIR spectrum of the BaFe$_{12}$O$_{19}$/rGO nanocomposite. The peaks that are observed at 590 cm$^{-1}$, 545 cm$^{-1}$, and 442 cm$^{-1}$ could be assigned to the Fe-O stretching vibrations [40]. The hydroxyl and carboxyl groups of the GO are absent on the FTIR spectrum of the synthesized nanocomposite. The peaks at 2914 cm$^{-1}$, 2842 cm$^{-1}$, and 1570 cm$^{-1}$ due to C-H stretching and C=C stretching is evidence of the restoration of the graphitic structure [19].

FESEM images of the rGO nanosheets and BaFe$_{12}$O$_{19}$/rGO nanocomposite are shown in Figure 3. As can be seen in Figure 3(a), the lamellar structure has been conserved even after the chemical reduction of the GO.

Samples	Barium ferrite/rGO content in the samples (wt%)	Epoxy resin content in the samples (wt%)	Thickness
I	10%	90%	2mm
II	20%	80%	2mm

TABLE 1. weight ratios of ferrite/rGO to epoxy resin in the samples alongside sample thicknesses

Figure 1. XRD patterns of the a) synthesized GO and b) BaFe$_{12}$O$_{19}$/rGO nanocomposite

Figure 2. FTIR spectrum of BaFe$_{12}$O$_{19}$/rGO nanocomposite
The imaginary parts of permittivity (ε′ and ε″) also change. Figure 10 shows the relative complex permittivity which consists of real and imaginary parts, the real part (ε′) shows the loss capability of the EM wave energy. The real and imaginary parts of permittivity (ε′ and ε″) also show energy storage and energy attenuation, respectively [30]. The values of ε′ and ε″ for the sample (I) are high due to high conductivity. The chemical reduction of the graphene oxide results in an increase in the electrical conductivity and also dipolar induction. In fact, the relative complex permittivity is a measure of the polarizability [19]. The dielectric properties of the materials depend on ionic, electronic, space charge, interfacial, and orientational polarization. The sample with a higher content of rGO has enhanced conductivity and increased space charge polarization. The sample (II) included more interfaces between rGO and barium ferrite nanoparticles that lead to more virtual charge accumulation at the interfaces. This results in interfacial polarization charges at the interface between phases with different dielectric constants. Therefore, the increased ε′ value is due to intrinsic dielectric properties and the increased ε″ value is due to enhanced space charge and interfacial polarization [41]. It is not advantageous for materials to have high values of permittivity since it may result in strong reflection and reduced absorption. On the other hand, for microwave absorbing properties low real part of permittivity and enhanced conductivity are desirable [42].

It can be seen in Figure 5(b) that the μ′ values show a slight increase by increasing the BaFe_{12}O_{19}/rGO content in the nanocomposites while μ″ values of the nanocomposite samples are almost unchanged. These data mean that the magnetic loss performance of the samples is nearly unchanged while the ability of the storage of the magnetic energy for the nanocomposites improves by increasing the BaFe_{12}O_{19}/rGO content.

The dielectric loss tangent (tanδ = ε″/ε′) and the magnetic loss tangent (tanδ = μ″/μ′) variations of the synthesized nanocomposites in the measured frequency range are calculated and plotted in Figure 6. It can be seen in Figure 6(a) that tanδ values BaFe_{12}O_{19}/rGO/epoxy nanocomposites of the sample (II) are higher than that of the sample (I). The higher values of tanδ in the sample with higher rGO content might be due to a) increased polarization as a result of surface functional groups which lead to higher dielectric loss and b) the role of rGO in contracting more conductive paths that result in higher dielectric loss [41]. As can be seen in Figure 6(b) both samples have nearly the same tanδ curve that shows both samples have almost identical magnetic loss properties. Part of the dielectric loss is due to the conductivity loss and polarization loss. The electronic polarization and ionic polarization are significant in higher ranges of frequency (10^3–10^6 GHz) and are not considered for the current investigated frequency range [43]. The higher number of interfaces that exist between different phases in the sample with higher nanocomposite...
content, as well as charge transfer that can happen through BaFe\(_{12}\)O\(_{19}\) nanoparticles and rGO interfaces, are responsible for the higher dielectric loss for sample II. These free carriers vibrate with stimuli of EM wave and cause electric polarization in the rGO [41].

A preferable tan\(\delta\) does not necessarily result in high absorption properties. There is another important criterion that should be satisfied for reaching a high microwave absorption efficiency. The characteristic impedance of the layer that is expected to absorb microwaves, should be equal or close to that of free space which is 377 \(\Omega\)sq\(^{-1}\). Under the impedance matching condition, the absorbing material will have zero-reflection of the incident EM wave at the front surface. For characteristic impedance matching, the complex permeability and complex permittivity should not differ greatly since in the case of large difference, the wave will reflect strongly at the surface of the absorbing material [44].

The reflection loss (RL) can be calculated by the following equation [20]:

\[
RL(\text{dB}) = 20 \log \left| \frac{Z_{\text{in}} - Z_0}{Z_{\text{in}} + Z_0} \right|
\] (1)

where \(Z_0\) is the impedance of air and \(Z_{\text{in}}\) is the input impedance at the interface between the absorber and air. This parameter is related to the EM parameters of the absorber material as follow [20]:

\[
Z_{\text{in}} = Z_0 \left(\frac{\mu_r}{\varepsilon_r} \right)^{\frac{1}{2}} \tanh \left\{ j \left(\frac{2\pi\varepsilon_r}{c} \right) \left(\mu_r, \varepsilon_r \right)^{\frac{1}{2}} t \right\}
\] (2)

in which \(\mu_r\) is complex permeability and \(\varepsilon_r\) is complex permittivity. The parameter \(c\) is the velocity of light in free space, \(t\) is the thickness of the absorbing sample, and \(f\) is the frequency.

In order to reach enhanced absorption, the incidence of the EM wave on the materials should be without front-end reflection and the EM wave should also be attenuated strongly during propagation in the material. The condition of impedance matching \((Z_{\text{in}}/Z_0 = 1)\) requires equal values of relative permittivity and permeability [45]. The calculated reflection loss of the BaFe\(_{12}\)O\(_{19}\)/rGO/epoxy nanocomposites with barium ferrite/rGO contents to epoxy weight ratios of 10% and 20% with the sample thicknesses of 2 mm, in the range of 8.2-12.4 GHz, is shown in Figure 7. The curves indicate that the maximum RL for the sample with
barium BaFe\textsubscript{12}O\textsubscript{19}/rGO content to epoxy of 20 wt\% (sample II) reaches 3.93 dB at 9.5 GHz. Furthermore, the RL of the sample with BaFe\textsubscript{12}O\textsubscript{19}/rGO content to epoxy of 10 wt\% (sample I) reaches 7.39 dB at 9.5 GHz. It can be concluded from Figure 6 and RL data that the maximum absorption occurs at the frequency range in which tanδ\textsubscript{µ} is higher than tanδ\textsubscript{ε}[45]. Table 2 summarizes microwave absorption of graphene-containing nanocomposites with different filling percents and thicknesses. The data in Table 2 shows that the BaFe\textsubscript{12}O\textsubscript{19}/rGO/epoxy resin nanocomposite synthesized in this research, shows better microwave absorption in low filling percent and thickness, compared to some other GO- and rGO-containing nanocomposites. Figure 8 shows input impedance (Z\textsubscript{in}) for the nanocomposite samples with respect to frequency. The blue curve reveals the conditions where the best impedance matching occurs. Impedance matching occurs when Z\textsubscript{in}/Z\textsubscript{0}=1. It can be seen in Figure 8 that the impedance matching in sample II is lower than that of sample I. This caused sample I to display better absorption performance rather than the other sample in all frequency ranges.

4. CONCLUSION

In this research, different contents of BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposites were incorporated into epoxy resin and the microwave absorption properties of the absorbing layers were investigated. Microstructural studies revealed a fine distribution of barium ferrite nanoparticles on the surface of rGO nanosheets forms through the coprecipitation method. The synthesized BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposite was found to possess suitable magnetic properties (M\textsubscript{s}=33 emu/g and H\textsubscript{c}=2.1 kOe) to be used in EM wave absorption applications. The results of EM wave absorption measurements showed that the RL values of the BaFe\textsubscript{12}O\textsubscript{19}/rGO/epoxy nanocomposite are strongly influenced by their absorber material ratio in the sample. The sample with barium ferrite/rGO content of 10 wt\% in the resin epoxy exhibits a maximum RL of 7.39 dB at 9.54 GHz. The results show that BaFe\textsubscript{12}O\textsubscript{19}/rGO nanocomposite is promising for the application in microwave absorbing layers.

5. ACKNOWLEDGMENT

The authors would like to acknowledge Materials and Energy Research Center, Shahrood University of Technology, and Iranian Nanotechnology Initiative Council for the financial support of present research.
6. REFERENCES

1. Widanarto, W., Khaeriyad, S., Ghoshal, S.K., Kurniawan, C., Effeni, M. and Cahyanto, W.T., "Selective microwave absorption in nd3+ substituted barium ferrite composites", Journal of Rare Earths, Vol. 37, No. 12, (2019), 1320-1325, doi: 10.1016/j.jre.2019.01.008

2. Liu, C., Zhang, Y., Tang, Y., Wang, Z., Ma, N. and Du, P., "The tunable magnetic and microwave absorption properties of the Nb2+-Ni2+ co-doped m-type barium ferrite", Journal of Materials Chemistry C, Vol. 5, No. 14, (2017), 3461-3472, doi: 10.1039/C7TC00393E

3. Li, Y., Yu, M., Yang, P. and Fu, J., "Enhanced microwave absorption property of Fe nanoparticles encapsulated within reduced graphene oxide with different thicknesses", Industrial & Engineering Chemistry Research, Vol. 56, No. 31, (2017), 8872-8879, doi: 10.1021/acs.iecr.7b01732

4. Lv, H. J., G. Liang, X., Zhang, H. and Du, Y., "A novel rod-like MnO@Fe loading on graphene giving excellent electromagnetic absorption properties", Journal of Materials Chemistry C, Vol. 3, No. 19, (2015), 5056-5064, doi: 10.1039/C5TC00525F

5. Zhang, X., J., G. Liu, W., Zhang, X., Gao, Q., Li, Y. and Du, Y., "A novel co/o/tio 2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption", Journal of Materials Chemistry C, Vol. 4, No. 9, (2016), 1860-1870, doi: 10.1039/C6TC02483J

6. Wang, C., Han, X., Xu, P., Zhang, X., Du, Y., Hu, S., Wang, J. and Wang, X., "The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material", Applied Physics Letters, Vol. 98, No. 7, (2011), 072906, doi: 10.1063/1.3555436

7. Singhal, S., Garg, A. and Chandra, K., "Evolution of the magnetic properties during the thermal treatment of nanosize bamf11o19 (m= Fe, Co, Ni and Al) obtained through aerosol route", Journal of Magnetism and Magnetic Materials, Vol. 285, No. 1-2, (2005), 193-198, doi: 10.1016/j.jmmm.2004.07.039

8. Molaei, M., Ataie, A. and Raygan, S., "Synthesis of barium hexaferrite/iron oxides magnetic nano-composites via high energy ball milling and subsequent heat treatment", in International Journal of Modern Physics: Conference Series, World Scientific, Vol. 5, (2012), 519-526, doi: 10.1142/9789814350245

9. Molaei, M., Ataie, A. and Raygan, S., "Synthesis of magnetic nano-composite by partial reduction of barium hexaferrite via high-energy ball milling", in Key Engineering Materials, Trans Tech Publ. Vol. 434, (2010), 354-356, doi: 10.4028/www.scientific.net/KEM.434-435.354

10. Molaei, M., Ataie, A., Raygan, S., Picken, S. and Tichelaar, F., "Investigation on the effects of milling atmosphere on synthesis of barium ferrite/magnetic nano-composite", Journal of Superconductivity and Novel Magnetism, Vol. 25, No. 2, (2012), 519-524, doi: 10.1007/s10948-011-1322-2

11. Molaei, M., Ataie, A., Raygan, S. and Picken, S., "Role of intensive milling in the processing of barium ferrite/magnetic nano-composites via partial reduction of barium ferrite", Materials Characterization, Vol. 101, (2015), 78-82, doi: 10.1016/j.matchar.2015.01.006

12. Molaei, M., Ataie, A., Raygan, S., Picken, S. and Tichelaar, F., "The effect of heat treatment and re-calcination on magnetic properties of bafe12o19/Fe3O4 nano-composite", Ceramics International, Vol. 38, No. 4, (2012), 3155-3159, doi: 10.1016/j.ceramint.2011.12.018

13. Molaei, M., Ataie, A., Raygan, S., Picken, S., Mendes, E. and Tichelaar, F., "Synthesis and characterization of bafe12o19/Fe3O4 and bafe12o19/Fe2O3 magnetic nano-composites", Powder Technology, Vol. 221, (2012), 292-295, doi: 10.1016/j.powtec.2012.01.015

14. Molaei, M., Ataie, A., Raygan, S., Rahimipour, M., Picken, S., Tichelaar, F., Legarra, E. and Plazzolla, F., "Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment", Materials Characterization, Vol. 63, (2012), 83-89, doi: 10.1016/j.matchar.2011.11.004

15. Molaei, M., Ataie, A., Raygan, S. and Picken, S., "Exchange bias in barium ferrite/magnetic nanocomposites", Applied Physics A, Vol. 123, No. 6, (2017), 437.

16. Molaei, M., Ataie, A., Raygan, S. and Picken, S., "The effect of different carbon reducing agents in synthesizing barium ferrite/magnetic nanocomposites", Materials Chemistry and Physics, Vol. 219, No. 1, (2018), doi: 10.1016/j.matchemphys.2018.07.027

17. Zhang, Y., Chuyang L., Kangsen P., Yufan C., Gang F. and Yujing Z., "Synthesis of magnetic Zr2+-Ni2+ ions gradient-substituted barium ferrite." Ceramics International, Vol. 46, No. 16, (2020), 25808-25816, doi: 10.1016/j.ceramint.2020.07.062

18. Molaei, M. and Rahimipour, M., "Magnetic reflection loss of magnetic/dielectric nanocomposites of bafe12o19/TiOx"," Materials Chemistry and Physics, Vol. 167, (2015), 145-151, doi: 10.1016/j.matchemphys.2015.10.022

19. Verma, M., Singh, A.P., Sambyal, P., Singh, B.P., Dhawan, S. and Choudhary, V., "Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding", Physical Chemistry Chemical Physics, Vol. 17, No. 3, (2015), 1610-1618, doi: 10.1039/C4CP04284K

20. Su, Z., Tan, L., Tao, J., Zhang, C., Yang, R. and Wen, F., "Enhanced microwave absorption properties of ferronanocrystals decorating reduced graphene oxide", Physica Status Solidi (b), (2018), 1700553, doi: 10.1002/pssb.201700553

21. Badeei, E., P. Sangpour, M. Bagheri, and M. Pauzouki. "Graphene oxide antibacterial sheets: Synthesis and characterization (research note)." International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 12, (2014), 1803-1808, doi: 10.5829/idosi.ije.2014.27.12c.01

22. Allahyari, E. and M. Asgari. "Vibration Behavior of Nanocomposite Plate Reinforced by Pristine and Defective Graphene Sheets; An Analytical Approach. " International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 7 (2018), 1095-1102, doi: 10.5829/ijae.2018.31.07a.13

23. Asemaneh, H. R., Laleh Rajabi, Farzad Dabirian, Neda Rostami, Ali Ashraf Derakhshian, and Reza Davarnejad. "Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption." International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 6, (2020), 1048-1053, doi: 10.5829/ijae.2020.33.06c.01

24. Durmus, Z., Durmus, A. and Kavas, H., "Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material", Materials Characterization, Vol. 100, No. 3, (2015), 1201-1213, doi: 10.1016/j.matchar.2014.08.036-7

25. Meng, F., Wang, H., Huang, F., Guo, Y., Wang, Z., Hui, D. and Zhou, Z., "Graphene-based microwave absorbing composites: A review and prospective", Composites Part B: Engineering, Vol. 137, (2018), 260-277, doi: 10.1016/j.compositesb.2017.11.023

26. Yang, Z., Wan, Y., Xiong, G., Li, D., Li, Q., Ma, C., Guo, R. and Luo, H., "Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties", Materials Research Bulletin, Vol. 61, (2015), 292-297, doi: 10.1016/j.materresbull.2014.10.004

27. Song, W.-L., Guan, X.-T., Fan, L.-Z., Cao, W.-Q., Zhao, Q.-L., Wang, C.-Y. and Cao, M.-S., "Tuning broadband microwave
absorption via highly conductive Fe3O4/graphene heterostructural nanofillers", Materials Research Bulletin, Vol. 72, (2015), 316–323, doi: 10.1016/j.materresbull.2015.07.028
28. Chen, D., Wang, G.-S., He, S., Liu, J., Guo, L. and Cao, M.-S., "Controllable fabrication of mono-dispersed rgo–hematite nanocomposites and their enhanced wave absorption properties", Journal of Materials Chemistry A, Vol. 1, No. 19, (2013), 5996-6003, doi: 10.1039/C3TA10664K
29. Jaiswal, R., Agrawal, R., Kumar, R., Kumar, R., Mukhopadhyay, K. and Prasad, N.E., "Enhanced microwave absorbing performance of polyamine-functionalized reduced graphene oxide/γ-Fe3O4/epoxy nanocomposite", Soft Matter, Vol. 16, No. 28, (2020), 6643-6653, doi: 10.1039/D0SM00266F
30. Zhang, X.-J., Wang, G.-S., Cao, W.-Q., Wei, Y.-Z., Liang, J.-F., Guo, L. and Cao, M.-S., "Enhanced microwave absorption property of reduced graphene oxide (rGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride", ACS Applied Materials & Interfaces, Vol. 6, No. 10, (2014), 7471-7478, doi: 10.1021/am508062g
31. Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q. and Sun, X., "One-pot hydrothermal synthesis of rGO/CoFe2O4 composite and its excellent microwave absorption properties", Materials Letters, Vol. 114, (2014), 52-55, doi: 10.1016/j.matlet.2013.09.113
32. Liu, P., Huang, Y., Wang, L., Zong, M. and Zhang, W., "Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties", Materials Letters, Vol. 107, (2013), 166-169, doi: 10.1016/j.matlet.2013.05.136
33. Shu, R., Wu, Y., Zhang, J., Wan, Z. and Li, X., "Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption", Composites Part B: Engineering, (2020), 108027, doi: 10.1016/j.compositesb.2020.108027
34. Guo, X., Bai, Z., Zhao, B., Zhang, R. and Chen, J., "Tailoring microwave-absorption properties of CoNiY Alloy/rGO nanocomposites with tunable atomic ratio", Journal of Electronic Materials, Vol. 46, No. 4, (2017), 2164-2171, doi: 10.1007/s11664-016-5152-7
35. Shu, R., Wu, Y., Li, W., Zhang, J., Liu, Y., Shi, J. and Zheng, M., "Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption", Composites Science and Technology, (2020), 108240, doi: 10.1016/j.compscitech.2020.108240
36. Li, J., Yang, S., Jiao, P., Peng, Q., Yin, W., Yuan, Y., Lu, H., He, X. and Li, Y., "Three-dimensional macroassembly of hybrid c@cofeparticles/reduced graphene oxide nanosheets towards multifunctional foam", Carbon, Vol. 157, (2020), 427-436, doi: 10.1016/j.carbon.2019.10.074
37. Hakimi, M., Alimard, P. and Yousefi, M., "Green synthesis of reduced graphene oxide/Si2CuMgFe28O46 nanocomposite with tunable magnetic properties", Ceramics International, Vol. 40, No. 8, (2014), 11957-11961, doi: 10.1016/j.ceramint.2014.04.032
38. Pei, S. and Cheng, H.-M., "The reduction of graphene oxide", Carbon, Vol. 50, No. 9, (2012), 3210-3228, doi: 10.1016/j.carbon.2011.11.021
39. Lisjak, D. and Drofenik, M., "The mechanism of the low-temperature formation of barium hexaferrite", Journal of the European Ceramic Society, Vol. 27, No. 16, (2007), 4515-4520, doi: 10.1016/j.jeurceramsoc.2007.02.202
40. Ohlan, A., Singh, K., Chandra, A. and Dhawan, S.K., "Microwave absorption behavior of core-shell structured poly (3, 4-ethylenedioxy thiophene)–barium ferrite nanocomposites", ACS Applied Materials & Interfaces, Vol. 2, No. 3, (2010), 927-933, doi: 10.1021/am900893d
41. Zhao, C., Shen, M., Li, Z., Sun, R., Xie, A. and Liu, X., "Green synthesis and enhanced microwave absorption property of reduced graphene oxide-SrFe12O19 nanocomposites", Journal of Alloys and Compounds, Vol. 689, (2016), 1037-1043, doi: 10.1016/j.jallcom.2016.08.078
42. Wang, L., Huang, Y., Li, C., Chen, J. and Sun, X., "A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber", Physical Chemistry Chemical Physics, Vol. 17, No. 3, (2015), 2228-2234, doi: 10.1039/C4CP04745A
43. Zhou, C., Geng, S., Xu, X., Wang, T., Zhang, L., Tian, X., Yang, F., Yang, H. and Li, Y., "Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption", Carbon, Vol. 108, (2016), 234-241, doi: 10.1016/j.carbon.2016.07.015
44. Qiang, R., Du, Y., Wang, Y., Wang, N., Tian, C., Ma, J., Xu, P. and Han, X., "Rational design of yolk-shell c@e microspheres for the effective enhancement in microwave absorption", Carbon, Vol. 98, (2016), 599-606, doi: 10.1016/j.carbon.2015.11.054
45. Narang, S.B., Pubby, K. and Singh, C., "Thickness and composition tailoring of k-and ka-band microwave absorption of BaCo4TixFe12−2xO19 ferrites", Journal of Electronic Materials, Vol. 46, No. 2, (2017), 718-728, doi: 10.1007/s11664-016-5059-3
46. Mohamadi, M., Kowsari, E., Yousefzadeh, M., Chinnappan, A. and Ramakrishna, S., "Highly-efficient microwave absorptivity in reduced graphene oxide modified withpta@imidazolium based dicationic ionic liquid and fluorine atom", Composites Science and Technology, Vol. 188, (2020), 107960, doi: 10.1016/j.compscitech.2019.107960
47. Fan, Q., Zhang, L., Xing, H., Wang, H. and Ji, X., "Microwave absorption and infrared stealth performance of reduced graphene oxide–wrapped al flake", Journal of Materials Science: Materials in Electronics, Vol. 31, No. 4, (2020), 3005-3016, doi: 10.1007/s11012-019-09284-2
چکیده

فریت‌های هگزاگونال نوع M به همراه با جذب بالای امواج الکترومغناطیسی (EM) است. در این تحقیق خواص جذب امواج الکترومغناطیسی درصد‌های وزنی مختلف از نانوکامپوزیت BaFe12O19/rGO در لایه جاذب کرویو مورد استفاده بررسی قرار گرفت. هگزاگرایت باریم با استفاده از روش همرسوبی سنتز شد. اکسید گرافن (GO) با استفاده از روش هامرز سنتز شد. اکسید گرافن با استفاده از روش هامر سنتز شد. اکسید گرافن احیاء و به همراه هگزاگرایت باریم تحت آسیاکاری مکانیکی قرار گرفت. پیونددهای شیمیایی، قویترین خواص مغناطیسی، مورفولوژی ذرات و خواص جذب ماکروفوری به ترتیب با استفاده از طیف سنجی تبدیل فوریه مادون قرمز، پراش اشعه ایکس، مغناطش سنج نمونه مرتضی شیمیایی، نانوزرات هگزاگرایت و اتلاف انعکاسی برابر داد که نانوزرات هگزاگرایت باریم با مویقتی روی نانوکامپوزیت BaFe12O19/rGO از جذب امواج ماکروفوری به مقداری در 15 kOe و 31 emu/g تا 39 dB در باره X نشان داد.