A Cytoplasmic New Catalytic Subunit of Calcineurin in Trypanosoma cruzi and Its Molecular and Functional Characterization

Patricio R. Orrego, Héctor Olivares, Esteban M. Cordero, Albert Bressan, Mauro Cortez, Hernán Sagua, Ivan Neira, Jorge González, José Franco da Silveira, Nobuko Yoshida, Jorge E. Araya

1 Department of Medical Technology, University of Antofagasta, Antofagasta, Chile, 2 Biomedical Department, University of Antofagasta, Antofagasta, Chile, 3 Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil, 4 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil

Abstract

Parasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects. Thus, new chemotherapeutic targets are much sought after. Among T. cruzi components involved in key processes such as parasite proliferation and host cell invasion, Ca\(^{2+}\)-dependent molecules play an important role. Calcineurin (CaN) is one such molecule. In this study, we cloned a new isoform of the gene coding for CL strain catalytic subunit CaNA (TcCaNA2) and characterized it molecularly and functionally. There is one copy of the TcCaNA2 gene per haploid genome. It is constitutively transcribed in all T. cruzi developmental forms and is localized predominantly in the cytosol. In the parasite, TcCaNA2 is associated with CaNB. The recombinant protein TcCaNA2 has phosphatase activity that is enhanced by Mn\(^{2+}\)/Ni\(^{2+}\). The participation of TcCaNA2 in target cell invasion by metacyclic trypanostigotes was also demonstrated. Metacyclic forms with reduced TcCaNA2 expression following treatment with morpholino antisense oligonucleotides targeted to TcCaNA2 invaded HeLa cells at a lower rate than control parasites treated with morpholino sense oligonucleotides. Similarly, the decreased expression of TcCaNA2 following treatment with antisense morpholino oligonucleotides partially affected the replication of epimastigotes, although to a lesser extent than the decrease in expression following treatment with calcineurin inhibitors. Our findings suggest that the calcineurin activities of TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations (the cytoplasm and the nucleus, respectively), may play a critical role at different stages of T. cruzi development, the former in host cell invasion and the latter in parasite multiplication.

Introduction

Chagas disease, whose etiological agent is Trypanosoma cruzi, is a neglected tropical parasitic infection. An estimated 10 million people are infected worldwide, predominantly in Latin America, where it is endemic, and more than 25 million people are at risk of acquiring the disease [1]. The two chemical therapeutic agents used to treat the disease (Nifurtimox and Benznidazole) may cause side effects, and parasitological cure is not achieved in all cases [2,3]. Identification of key factors in the life cycle of the parasite that could be targets for new chemotherapeutic strategies is therefore very important.

In the life cycle of T. cruzi, epimastigote forms replicate in the insect vector and then differentiate into metacyclic trypanostigotes, which are infective to the mammalian host. Cell invasion by metacyclic forms is crucial for the establishment of T. cruzi infection. Inside host cells, the parasite replicates as amastigotes, which subsequently transform into trypomastigotes. When the host cell ruptures, these are released to the circulation. There is evidence that Ca\(^{2+}\)-dependent events are implicated in various processes that are critical for the maintenance of the T. cruzi life cycle. It has been shown that the Ca\(^{2+}\) chelator EGTA decreases epimastigote multiplication and that intracellular Ca\(^{2+}\)-concentration increases about six-fold during differentiation of epimastigotes into metacyclic trypanostigotes, an event that is blocked by calmodulin inhibitors [4]. Induction of Ca\(^{2+}\) signaling in insect-stage and bloodstream trypanostigotes is an important requirement for target cell invasion [5,6]. Further, it has been suggested that the Ca\(^{2+}\) signal induced in metacyclic forms is associated with the activation of a protein tyrosine kinase [7]. Protein kinases and phosphatases, which control the phosphorylation state of tyrosine, serine and threonine residues, play a pivotal role in cell signal regulation and integration in all living organisms, including trypanosomatids [8,9]. T. cruzi protein phosphatase 2A (PP2A), for instance, has been implicated in the
Author Summary

Chagas disease is a neglected tropical parasitic infection. An estimated 10 million people are infected worldwide and more than 25 million people are at risk of acquiring the disease. The therapeutic agents used to treat the disease may not be effective in all cases and also produce considerable side effects. Therefore, it is important to identify the key factors in the life cycle of the parasite that could be targets for new chemotherapeutic strategies. This paper provides evidence that a new cytoplasmic catalytic subunit of *T. cruzi* calcineurin (TcCaNA2) may play a critical role in host cell invasion by metacyclic trypomastigotes. Metacyclic forms with reduced TcCaNA2 expression following treatment with antisense morpholino oligonucleotides had significantly decreased capacity to invade HeLa cells. Epimastigote proliferation was inhibited to some extent by treatment with an antisense morpholino oligonucleotide targeted to TcCaNA2, but to a lesser degree than by calcineurin inhibitors (CSA, FK506 and INCA-6). The structural differences between TcCaNA2 and its human ortholog CaNA were analyzed to determine the potential of this newly identified calcineurin subunit as a chemotherapeutic target.

transformation of trypomastigotes into amastigotes [10]. In this scenario, a homolog of mammalian calcineurin has emerged as an important factor for *T. cruzi* infection.

In cells of different tissues, the Ca\(^{2+}\)-dependent phosphatase calcineurin, also known as PP2B or CaN, is involved in a number of different signaling pathways. An evolutionarily conserved protein in all eukaryotes, it appears to be ubiquitously expressed [11,12,13]. It is heterodimeric and consists of calcineurin A (CaNA), the catalytic subunit, and calcineurin B (CaNB), the Ca\(^{2+}\)-binding subunit [12]. In *T. cruzi* clone CL Brener, Moreno et al. [14] identified a protein homologous to CaNA, which is predominantly localized in the nucleus and, unlike its mammalian counterpart, has a catalytic domain and a CaNB-binding domain but lacks the binding domain to calmodulin and the autoinhibitory domain (AID). A protein phosphatase with the same characteristics was also detected in *T. cruzi* CL and G strains, and the sequence of its regulatory subunit (TcCaNB) was determined, revealing the presence of three Ca\(^{2+}\)-binding domains, known as EF-hand motifs [15]. Treatment of CL strain metacyclic or tissue culture trypomastigotes with CaN inhibitors, such as cyclosporin and cypermethrin, or with antisense phosphorothioate oligonucleotides directed to TcCaNB was shown to inhibit parasite entry into host cells [15]. Whether TcCaN plays other biological functions essential for *T. cruzi* development had not been investigated prior to the present study. We addressed this question and found that TcCaN is also involved in parasite multiplication. In addition, we identified a new isoform of TcCaNA, TcCaNA2 (HM854297), which is localized in the cytoplasm and is implicated in a number of important events, including trypomastigote entry into target cells.

Materials and Methods

Ethics statement

All animal handling protocols were performed according to the “Guide for the Care and Use of Laboratory Animals” from the National Institutes of Health, USA [16] and approved by the Institutional Ethics Committee at the Faculty of Health Sciences, University of Autoñafaga, Chile (CEIC REV/200) under FONDECYT-Chile grant number 1051045.

Parasite and cell invasion assay

T. cruzi CL strain [17], used throughout this study, was maintained cyclically in Balb/c mice and in axenic liver infusion tryptose (LIT) medium containing 5.0 g liver infusion tryptose, 5.0 g NaCl, 4.0 g KCl, 8.0 g Na\(_2\)HPO\(_4\), 2.0 g glucose and 10.0 mg hemin per liter and supplemented with 5% fetal bovine serum. Epimastigote forms were grown at 28°C in LIT medium, and Grace’s medium was used to obtain cultures enriched in metacyclic trypomastigotes forms, which were purified by chromatography using a diethylaminoethyl (DEAE) cellulose column (Sigma Chemical Co), as described by Teixeira et al. [18]. Cell invasion assays were performed as described by Ramirez et al. [19]. Briefly, 2×10\(^5\) HeLa cells were cultured in 4-well Lab-Tek Chamber Slides (Nunc, Thermo Scientific). After adhesion and growth at 37°C in a humidified 5% CO\(_2\) atmosphere, the cells were incubated with 1×10\(^6\) metacyclic trypomastigotes (MT) previously treated or not with different calcineurin inhibitors. After 3 h incubation, the cells were washed with PBS and fixed with methanol followed by Giemsa staining. The number of intracellular parasites was counted in 100 cells. Assays were conducted in triplicate. The viability of MT was evaluated by Trypan blue exclusion and by parasite migration assay through gastric mucin layer. Briefly, polycarbonate transwell filters (3 mm pores, 6.5 mm diameter, Costar) were coated with 50 µL of a preparation containing 10 mg/ml gastric mucin. *T. cruzi* metacyclic trypomastigotes, in 600 µL PBS were added to the bottom of 24-well plates (1×10\(^6\) parasites/well) and incubated for 1 h at 37°C. Thereafter, the mucin-coated transwell filters were placed onto parasite-containing wells, and 100 µL PBS were added to the filter chamber. After 1 h of incubation at 37°C, 10 µL were collected from the filter chamber for determination of parasite number and the volume in this chamber was corrected by adding 10 µL PBS [20].

Parasite proliferation inhibition assay

Epimastigotes maintained in LIT medium were used for proliferation assays. Parasites in growth phase were incubated with different concentrations of calcineurin inhibitor cyclosporin A (CSA). Untreated or treated parasites with ethanol were used as controls. Assays were performed with three different cultures, each containing 5×10\(^7\) epimastigotes per sample in a volume of 1 mL of LIT medium. Parasite cultures were analyzed daily for one week by taking samples to measure the number of parasites using a Neubauer hemocytometer, and the viability of epimastigotes was determined under light microscopy using Trypan blue exclusion and CFDA-SE assays [21]. Results were expressed as mean ± standard error of three independent experiments. Similarly, epimastigotes were incubated with different concentrations of calcineurin inhibitors [CSA, tacrolimus (FK-506), INCA-6 and kaempferol (Kmp)] at 0, 10, 20 and 40 µM. Crystal violet was used as a positive control because of its trypanocidal effect. Assays were performed in triplicate in 96-well microplates containing 5×10\(^7\) epimastigotes per well in 200 µL of LIT medium. After 72 h incubation, the number of parasites was counted as described above. Untreated epimastigote cultures were used as a negative control. Results were expressed as a percentage of proliferation (number of cells) in the control group.

Isolation of nucleic acids, Southern and Northern blot hybridizations and separation of chromosomal bands

Isolation of genomic DNA and total RNA from *T. cruzi* CL strain, Southern and Northern blot hybridizations and separation of chromosomal bands by pulse-field gel electrophoresis were performed as described previously [10].
Cloning of *T. cruzi* CaNA2 and CaNB genes

To clone the CaNA2 gene of *T. cruzi* CL strain, sense and antisense primers were designed based on the sequence of the genome of *C. Brenner clone available in GenBank [http://www.ncbi.nlm.nih.gov] under accession number XM_816360.1. Sense primer 5'-ATG GAG AGG C-3' and antisense primer 5'-TCA TTT TGC TCG TCT-3' were used. After amplification of the TcCaNA2 gene by RT-PCR with 1–20 ng of *T. cruzi* cDNA synthesized using poly A+ mRNA (using oligo d'T) obtained from epimastigotes, PCR products were analyzed by agarose gel electrophoresis. The amplification product was cloned in the vector pCR 2.1-TOPO (TOPO Cloning Vector Kit for sequencing, Invitrogen by Life Technologies) according to the manufacturer’s instructions. The CaNB gene was amplified by RT-PCR using a pair of primers: sense 5'-CGG AAT TCC TAA ATG GAG AGG GGG T-3' and antisense 5'-CGG AAT TCA TGG CCG AGG GGG T-3'. Sequences were analyzed using DNASTAR and GeneDoc software and National Center for Biotechnology Information (NCBI) programs [http://www.ncbi.nlm.nih.gov].

Expression and purification of recombinant proteins TcCaNA2 and TcCaNB

The coding sequences of TcCaNA2 and TcCaNB genes were subcloned into the expression vector pGEX-17T (GE Healthcare) in-frame with glutathione S-transferase (GST) gene. After sequencing the construct to check that the open reading frame was in the correct orientation, expression of the recombinant protein was induced in *E. coli* BL21 (DE3) after addition of 1 mM isopropyl thio-β-D-galactoside (IPTG). The recombinant protein was purified by the cleared lysate method using glutathione-Sepharose 4B (Amersham Biosciences). After washing with PBS pH 7.3, the proteins of interest were eluted with 200 mM Tris-HCl pH 8.0, 40 mM reduced glutathione, 150 mM NaCl, 5 mM DTT and 0.1% Triton X-100. Analysis of the purified protein was carried out by SDS-PAGE on 10% gels stained with Coomassie blue. Additionally, the coding sequence of TcCaNA2 was cloned in-frame into the expression vector pET-SUMO (Champion pET Expression System, Invitrogen by Life Technologies). The recombinant protein was expressed in *E. coli* BL21 (DE3) after induction with IPTG, and the protein (6×His-SUMO-TcCaNA2) was purified from cleared lysates by affinity chromatography on Ni-NTA agarose (Invitrogen by Life Technologies). After elution in the presence of imidazole (SIGMA), the purity of the protein was determined as above.

Determination of enzymatic activity of TcCaN and TcCaNA2

To measure TcCaN activity, parasites were washed three times with TBS (150 mM NaCl, 20 mM Tris, pH 7.2) and then lysed in lysis buffer (50 mM Tris pH 7.5, 1 mM DTT, 100 μM EDTA, 100 μM EGTA, 0.2% NP-40) and centrifuged at 100,000 g for 45 min at 4°C. The high-speed post-lysate supernatants were used to evaluate calcineurin-type phosphatase activity with a Calcinu

eneration and purification of antibodies

Two protocols were developed to generate antibodies. First, BALB/c mice and/or New Zealand white rabbits (after obtaining pre-immune serum) were immunized with GST-TcCaNA2 and GST-TcCaNB recombinant proteins. Each animal received 4 doses of 10 μg antigen plus 0.5 mg Al(OH)3 as adjuvant at 7-day intervals. After the last immunization dose, blood was obtained by cardiac puncture. The polyclonal antisera were divided into aliquots and stored at −20°C in the presence of 0.1% sodium azide as preservative. Monospecific polyclonal antibodies against the TcCaNA2 isoform were raised in New Zealand white rabbits by immunization with the synthetic peptides 246-264 (CGSRDNYTPSAGPSYGSK-amide) and 206-224 (Ac-ILKN-HIDLIHRFREMPPRSRC-amide) conjugated to KLH (Keyhole limpet hemocyanin) or ovalbumin using MBS (N-Maleimidobenzoyl-N-hydroxysuccinimide ester). The monospecific antibodies were purified by affinity chromatography using the peptide 246-264, which is only present in the TcCaNA2 isoform, as ligand.

Far-Western blot analysis

To evaluate the interaction between TcCaNA2 and TcCaNB, a Far-Western blotting was performed as described by Wu et al. [29] using the recombinant proteins TcCaNB (tagged with GST) and TcCaNB (tagged with 6×His). BSA and the unrelated fusion protein 6×His-SUMO-CAT were used as negative controls. One microgram each of BSA, CAT and 6×His-SUMO-TcCaNA2 (target protein) were resolved in 10% SDS-PAGE and transferred onto PVDF membranes, which were then incubated with decreasing concentrations of guanidine-HCl (6, 3, 1, 0.1, and 0 M) to denature and renature the target protein. The membrane was then blocked with PBS containing 0.5% Tween 20 and 5% skim milk and incubated with 10 μg of the bait protein GST-TcCaNB. A rabbit polyclonal antibody directed to GST-TcCaNB and an anti-rabbit IgG antibody conjugated to horseradish peroxidase (Sigma-Aldrich) were used to detect TcCaNA2-TcCaNB interaction. The immunocomplexes were revealed using diaminobenzidine (DAB) as substrate.

Western blot for detection of TcCaNA2 in parasite extracts

Epimastigotes (1×10^7) were lysed in Laemmli buffer (62.5 mM Tris-HCl pH 6.8, 25% glycerol, 2% SDS, 0.01% bromophenol blue) and exposed to different concentrations of urea (0, 2, 4 and 6 M) overnight at 4°C to stabilize the solutions, which were then separated on 10% SDS-PAGE gels, electrotransferred to a PVDF membrane (Amersham Hybond-P) and visualized by Western blot.

Antisense oligonucleotides (AS-ONs, morpholino type) directed to TcCaNA2

The antisense oligonucleotide (AS-ON) used was 5'-GAG AAT ATG CTG TAG ACA AGA TTA TAT-3', and the AS-ON control was a standard unrelated oligonucleotide: 5'-CCT GTT ACC TGA GTT ACA ATT ATT-3'. The assays were performed in the presence of antisense oligonucleotides directed to TcCaNA2 (third generation morpholino, Gene Tools, LLC), and the effects were evaluated as described above for the assays used to detect
inhibition of cell proliferation and invasion. Each AS-ON was added at a concentration of 10 μM with 6 μM of morpholino oligos” protocol.

Determination of the subcellular distribution of TcCaNA2

Epimastigotes in exponential growth phase (CL strain) were centrifuged at 6,000 × g for 5 min, washed twice in PBS pH 7.2 and then resuspended at 2 × 10⁶ parasites/mL. Parasites were decanted on poly-L-lysine-treated cover slips and fixed in PBS containing 4% paraformaldehyde. Next they were permeabilized with PBS-0.5% Triton X-100 for 5 min at room temperature and blocked with a solution of 2% glycine, 2% BSA, 5% FCS and 50 mM NH₄Cl in PBS pH 7.2. The cover slips were then incubated with the primary antibodies, washed three times for 5 min in PBS pH 7.2 and incubated with the secondary antibodies (anti-mouse Alexa Fluor 488 and anti-rabbit Alexa Fluor 568). The samples were visualized with a reflected light microscope (Carl Zeiss, model Axiosvert 10), photographed and analyzed using QCapture Pro 6.

Statistical analysis

Statistical analysis was carried out with GraphPad Prism v. 5.0 (GraphPad Software, Inc., San Diego, CA). Values of p<0.05 were considered significant.

Results

Effect of CaN inhibitors on T. cruzi proliferation

It has previously been shown that the treatment of CL strain metacyclic trypanosomatites or tissue culture-derived trypanosomatites with calcineurin inhibitors CsA or cypermethrin resulted in strong inhibition (62–64%) of parasite entry into HeLa cells [15]. To determine the role of TcCaN in parasite growth, epimastigotes were incubated in the absence or presence of varying concentrations of the calcineurin inhibitor CsA. Starting on the day CsA was added, parasite density was measured daily for one week, and it was observed that parasite growth was inhibited by CsA. At 20 μM and 40 μM, CsA inhibited parasite growth completely whereas at 10 μM inhibition was partial (Figure 1A). Epimastigotes treated with CsA for 24 h remained viable and were indistinguishable from the control untreated parasites (morphology and motility), although their growth was impaired. Loss of viability was observed when epimastigotes were treated with CsA for 48 h or longer (data not shown). Other calcineurin inhibitors, such as FK-506 and INCA-6, were also tested, with similar results (Figure 1B). Among the inhibitors tested, CsA and FK-506 were more effective than INCA-6 to inhibit parasite proliferation. No inhibition was observed after treatment with kaempferol (Figure 1B). These data indicate that TcCaNA2 plays an important role at different stages in T. cruzi development.

Isolation and characterization of the gene encoding a new catalytic subunit of T. cruzi CaN (TcCaNA2)

The nucleotide sequence corresponding to a gene coding for the catalytic subunit of the CL strain CaN, which is distinct from that previously reported [13] and was therefore called TcCaNA2, was obtained by RT-PCR amplification using primers based on a genomic sequence of clone CL Brener and deposited in GenBank under accession number HM854297. In silico analysis using BLASTp showed 44% identity between TcCaNA2 and CL strain TcCaNA (accession number EU195113), described by Araya et al. [15], and between TcCaNA2 and the catalytic subunit A (CaA-like: accession number AJ878872), described by Moreno et al. [14] for CL Brener clone.

The TcCaNA2 nucleotide sequence showed an open reading frame (ORF) of 1179 bp, which codes for a polypeptide of 392 amino acids with an estimated molecular mass of 44.5 kDa. The deduced amino acid sequence of TcCaNA2 possesses the domain that interacts with CaNB, but the calmodulin-binding domain and AID are absent (Figure 2A). The conserved GDXHG, GDXVDRG and GNHE (phosphoesterase) motifs, which are characteristic of serine-threonine protein phosphatases, are present (Figure 2A). A strong homology between TcCaNA2 and CaNA from other species was found: 44% identity with Homo sapiens and 45% with Drosophila melanogaster and Neurospora crassa. Among trypanosomatids, TcCaNA2 showed 46% and 67% identity with CaNA from Leishmania major and Trypanosoma brucei, respectively.

The neighbor-joining cladogram revealed two major clusters, one of which contains CaNA from three trypanosomatids: T. brucei TREU927 (XP_822888.1), Leishmania infantum (XP_001469789.1) and T. cruzi (TcCaNA2-CL, HM854297). This shows the ancestral relation of these organisms and the closer relationship between the two Trypanosoma species (Figure 2B); the CaNA gene of T. cruzi is the most conserved among the species analyzed. The second cluster included Schizosaccharomyces pombe 972 h- (NP_596178.1), D. melanogaster (Q27889.2) and the alpha isoform of H. sapiens (EX061231.3), showing an evolutionary variation among species (Figure 2B).

Genomic organization and transcription of TcCaNA2

A BLASTn search [http://www.genedb.org; Gish, W. (1996–2006); http://blast.wustl.edu] retrieved the 21178 bp contig B328, which contains one copy of the TcCaNA2 gene; a query in the kinetoplastid genome database [2012 The EuPathDB Project Team; http://tritrypdb.org/tritrypdb/] showed that the TcCaNA2 gene is located on chromosome TcChr37P, which belongs to the non-Esmeraldo haplotype of CL Brener clone. However, no sequence similarity was found within chromosome TcChr37S from Esmeraldo haplotype (data not shown).

Southern blot analysis of CL strain genomic DNA showed a simple pattern of hybridization with a probe derived from TcCaNA2 gene, with two internal BamH1 restriction sites (Figure 3A). The same probe revealed only one chromosomal band (chromosomal band XX = 3.27 Mb) in clone CL-Brener and CL strain chromosomes resolved in pulsed field gel electrophoresis (Figure 3B). This hybridization profile suggests that a single copy of TcCaNA2 gene is present, although the presence of two co-migrating chromosomal bands cannot be ruled out. Northern blot hybridizations showed a transcript of approximately 1.5 kb in all developmental stages of the parasite (Figure 3C), indicating that the transcription of TcCaNA2 is constitutive. Densitometric analysis on the same autoradiogram hybridized with a tubulin-derived probe confirmed equal loading of the samples (data not shown). Similarly, using a pair of primers flanking the ORF of the TcCaNA2 gene, an RT-PCR on cDNA freshly synthesized from parasite mRNA revealed amplification in all developmental forms (Figure 3D), confirming what was observed in the Northern blot (Figure 3C). Correspondingly, TcCaNA2 protein was also detected in all developmental stages (TCT, MT, A and E), being the protein levels slightly greater in MT and TCT, as demonstrated by immunoblotting (Figure 3D).

Enzymatic activity of TcCaNA2 and the effect of metal ions

The activity of the purified recombinant TcCaNA2 was determined after its purity and specific recognition by polyclonal monospecific anti-TcCaNA2 antibody had been confirmed.
Recombinant TcCaNA2 was incubated in the absence or presence of 1 mM CaCl₂, MgCl₂, MnCl₂ or NiCl₂, and the reaction using p-NPP as substrate proceeded for 15 min at 30°C. Absorbance reading at 405 nm revealed higher TcCaNA2 activity in the presence of Mn²⁺ or Ni²⁺, indicating that these metal ions are more effective cofactors than Ca²⁺ or Mg²⁺ (Figure 4A). Our data showing that the recombinant TcCaNA2 is activated by Mn²⁺/Ni²⁺ (Figure 4A) are compatible with the report suggesting that enzyme activation by Mn²⁺/Ni²⁺ is mainly mediated via the catalytic domain, if it is assumed that the non-catalytic domains of subunit A negatively regulate the activity of calcineurin by acting as intra-molecular inhibitors [24]. As TcCaNA2 interacts with TcCaNB in vivo, the activity of TcCaNA2 combined with TcCaNB was measured, by adding 1 µg of each protein recombinant. TcCaNA2 activity did not depend on its association with TcCaNB (Figure 4B). Taking into account that the specific activity is expressed as nmol per min per µg protein, the reduced activity of TcCaNA2, when combined with TcCaNB, is only apparent and is due to the presence of 2 µg protein. Activity of TcCaNA2/TcCaNB was significantly inhibited by EGTA (Figure 4B).

Interaction between recombinant TcCaNA2 and TcCaNB proteins and the effect of urea on dissociation of native TcCaNA2/TcCaNB

To confirm the molecular interaction between TcCaNA2 and TcCaNB, we performed a Far-Western blot assay as described by Wu et al. [23]. The recombinant proteins GST-TcCaNB and 6×His-SUMO-TcCaNA2 were used as bait and target, respectively. As negative controls, BSA and the unrelated fusion protein 6×His-SUMO-CAT were used. Binding of GST-TcCaNB to 6×His-SUMO-TcCaNA2 was shown using the mouse polyclonal anti-TcCaNB antibody and anti-IgG tagged with horseradish peroxidase. As shown in Figure 5A, TcCaNB interacts with TcCaNA. We ascertained that anti-TcCaNB antibody specifically reacts with TcCaNB and does not recognize 6×His-SUMO-TcCaNA2 (Figure 5B). In addition, to show that native TcCaNA2 and TcCaNB are associated in the parasites, we performed an assay to detect the dissociation of the two subunits. Total extracts from epimastigotes (1×10⁷) were exposed to different concentrations of urea at 4°C, subjected to SDS-PAGE, and electroblotted onto PVDF, and TcCaNA2 was revealed using anti-TcCaNA2 antibody and peroxidase-conjugated IgG, followed by ECL. In the absence of urea, a band of approximately 63.5 kDa was detected (Figure 5C) that is compatible with the size of TcCaNA2/TcCaNB assuming that the molecular mass of TcCaNA2 is 44.5 kDa and that of TcCaNB 19 kDa, as determined by Western blot using antibodies specific to these subunits (Figure 5D). After treatment of parasite extracts with urea, there was a change in this profile. A component of about 45 kDa appeared as a weak band in the sample treated with 2 M of urea, had its intensity increased with 4 M of urea and was the sole band detected by anti-TcCaNA2 antibody (Figure 5C). We inferred from this observation that TcCaNA2 and TcCaNB are closely associated in T. cruzi.

Cytosolic localization of TcCaNA2 in T. cruzi and CaN activity in high-speed cytosolic extracts

It has been shown by Moreno et al. [14] in clone CL Brener that CaN is present predominantly in the parasite nucleus. We examined the cellular distribution of TcCaNA2 in epimastigotes of CL strain. To this end, parasites were fixed in paraformaldehyde, permeabilized with 0.5% Triton X-100, incubated with specific antibodies to TcCaNA2 and then processed for immunofluorescence. Figure 6A shows that TcCaNA2 has a predominantly cytoplasmic localization, with a diffuse and/or slightly speckled pattern. To show that CaN activity was detectable in the parasite cytosol, we performed in vitro assays with high-speed cytosolic
Figure 2. Comparison of TcCaNA2 amino acid sequence with catalytic subunits from different species. A) Alignment of T. cruzi CL strain TcCaNA2 (HM854297) with CaNA from Trypanosoma brucei TREU927 (TbXP_822888.1), Leishmania infantum (LiXP_001469789.1), Schizosaccharomycses pombe 972 h (SpNP_596178.1), Drosophila melanogaster (DmQ27889.2) and the alpha isoform of Homo sapiens (HsEAX06123.1). Genbank accession numbers are in parentheses. Conserved residues are in black (100% conservation), dark gray (>75% conservation) and light gray (>50% conservation); no shading denotes residues with <50% conservation. The peptide sequence 243-VSGGSGSDYYTPSAGPSYGS-262 is marked with a line within the box. B) Phylogenetic tree inferred from the amino acid alignments of TcCaNA2-CL with other CaNAs. Phylogenetic analysis was performed with MEGA4 software [71]. Evolutionary history was analyzed using the Neighbor-Joining method [72] with 1000 bootstrap replicates [73]. Evolutionary distances were calculated using the Poisson correction method [74] and are in units of number of amino acid substitutions.

doi:10.1371/journal.pntd.0002676.g002
extracts from metacyclic trypomastigotes and epimastigotes depleted of phosphates and nucleotides. The cytosolic extracts were assayed in the presence or absence of EGTA to determine the contribution of calcium-dependent activity (CaN/PP2B) to total phosphatase activity (PP1, PP2A, PP2B, and PP2C). In both parasite forms CaN activity was detected in the cytosol, amounting to 34.6% and 40.0% of the total phosphatase activity in metacyclic forms and epimastigotes, respectively. Figure 6B shows the result on CaN activity in cytosol of epimastigotes.

Inhibition of *T. cruzi* proliferation and host cell invasion by antisense TcCaNA2 oligonucleotides

We had previously found that CaN is implicated in host cell invasion [15]. To determine if TcCaNA2 was involved in that
Figure 4. Effect of metal ions on the phosphatase activity of rTcCaNA2 and TcCaNA2/TcCaNB. A) Catalytic activity was evaluated in the presence of the divalent cations at 1 mM, using 80 mM p-NPP as substrate and 1 µg rTcCaNA2. All data are presented as means ± standard error of the mean (SEM) of triplicates. Statistical significance was determined by Tukey’s Multiple Comparison Test (*p<0.05, **p=0.0015) in relation to the activity without metal ions. The results are representative of two independent experiments performed in triplicate. B) Catalytic activity of TcCaNA2 was evaluated as in A in the presence of rTcCaNB and/or EGTA. Statistical significance was determined by Tukey’s Multiple Comparison Test.
Test ($p<0.05$). *$p<0.05$ in relation to the activity with only rTcCaNA2 and **$p<0.05$ in relation to activity of rTcCaNA2/rTcCaNB heterodimer. The results are representative of two independent experiments performed in triplicate.

doi:10.1371/journal.pntd.0002676.g004

Figure 5. Interaction between TcCaNA2 and TcCaNB and the effect of urea on the dissociation of native TcCaNA2/TcCaNB. A) Far-Western blotting was used to detect interaction between recombinant TcCaNA2 and TcCaNB proteins. BSA (66.5 kDa) and the recombinant proteins 6 × His-SUMO-CAT (39.0 kDa) and 6 × His-SUMO-TcCaNA2 (55.7 kDa) were subjected to SDS-PAGE and electroblotted onto a PVDF membrane. Proteins were denatured and renatured and subsequently incubated with purified GST-TcCaNB (45.0 kDa) protein. The arrow indicates the position of 6 × His-SUMO-TcCaNA2 (55.7 kDa). B) GST-TcCaNB and 6 × His-SUMO-TcCaNA2 proteins were subjected to SDS-PAGE and electroblotted onto a PVDF membrane, which was then incubated with the anti-GST-TcCaNB antibodies to ascertain specific recognition of TcCaNB. The arrow indicates the position of GST-TcCaNB. C) Total protein extracts from epimastigotes (1×10^7) were treated at 4°C with urea at the indicated concentrations, subjected to SDS-PAGE and electroblotted onto PVDF membrane, which was reacted with anti-TcCaNA2 monospecific polyclonal antibody. D) Immunoblotting of total protein extracts of T. cruzi epimastigotes treated with 4 M urea using monospecific polyclonal antisera directed toward TcCaNA2 (rabbit) and TcCaNB (mouse).

doi:10.1371/journal.pntd.0002676.g005
process, we performed an inhibition assay using third-generation AS-ONs (morpholino oligonucleotides) associated with the Endo-Porter carrier (Gene Tools). This strategy has been used successfully in many studies [15,25–28]. Metacyclic trypomastigotes (4 × 10^7) were incubated with 10 μM of sense or antisense morpholino oligonucleotides directed to TcCaNA2 for 24 h and then incubated with HeLa cells for 3 h to analyze their invasive capacity. After washing with PBS, cells were fixed and stained with Giemsa, and the number of intracellular parasites was counted. Parasites treated with antisense TcCaNA2 oligonucleotides showed a significant decrease in invasivity (70%) while no inhibitory effect of sense oligonucleotides on parasite infectivity was observed (Figure 7A). The decrease in TcCaNA2 expression in parasites treated with antisense oligonucleotide but not with their sense counterparts was ascertained by immunoblotting using anti-TcCaNA2 antibodies, 45% according to densitometric analysis (Figure 7A, lower panel).

To demonstrate that the reduced cell invasion capacity of metacyclic forms treated with antisense oligonucleotides was not due to diminished parasite viability, we performed an additional assay that consisted of determining the parasite’s capacity to migrate through a polycarbonate transwell filter coated with gastric mucin. Viable parasites cross the gastric mucin-coated filter propelled by ATP-driven flagellar movement [20]. Metacyclic forms were treated as above with 10 μM of sense or antisense morpholino oligonucleotides directed to TcCaNA2 with Endo-Porter or with the carrier alone. After 16 h at 28°C, the parasites were used in a parasite migration assay through a mucin layer and in a cell invasion assay. Gastric mucin-coated transwell filters were placed onto the wells of 24-well plates containing metacyclic forms in PBS (10^7/mL), and 100 μL PBS were added to the filter chamber. After 1 h at 37°C, 10 μL were collected from the filter chamber to determine the number of parasites. We found that a comparable number of parasites had crossed the gastric mucin-coated filter regardless of

Figure 6. Cellular localization of T. cruzi TcCaNA2. A) Epimastigotes were fixed and incubated with mouse polyclonal antibodies raised against recombinant TcCaNA2 or with rabbit polyclonal monospecific antibodies (immunopurified by affinity with the peptide 246–264) and then incubated with the secondary antibody Alexa Fluor 488 goat anti-mouse IgG or the secondary antibody Alexa Fluor 568 goat anti-rabbit IgG, respectively. Control refers to the reaction with the secondary antibodies only. B) Phosphatase activity in cytosolic extracts was determined in a population of 1 × 10^7 epimastigotes in assay buffer with or without EGTA, Mn^{2+} and Ca^{2+} in accordance with the manufacturer’s instructions (Calcineurin Cellular Activity Assay Kit, Colorimetric, Calbiochem). Data are represented as means ± SD, the results are representative of three independent experiments.
doi:10.1371/journal.pntd.0002676.g006
whether they had been pretreated with sense or antisense oligonucleotides and Endo-Porter or with Endo-Porter alone (Figure S1), similar results were observed by Trypan blue exclusion. Although all parasites exhibited high motility, only those treated with antisense oligonucleotide and Endo-Porter had their capacity to invade HeLa cells diminished (by about 75%). Untreated parasites or those treated with sense oligonucleotides and Endo-Porter or with Endo-Porter alone did not show a reduction in their ability to invade these cells.

As epimastigote proliferation was reduced by CaN inhibitors (Figure 1), we examined the contribution of TcCaNA2 in the process using the antisense strategy as above. Epimastigotes in exponential growth phase were treated or not with sense oligonucleotides and Endo-Porter or with Endo-Porter alone (Figure S1), similar results were observed by Trypan blue exclusion. Although all parasites exhibited high motility, only those treated with antisense oligonucleotide and Endo-Porter had their capacity to invade HeLa cells diminished (by about 75%). Untreated parasites or those treated with sense oligonucleotides and Endo-Porter or with Endo-Porter alone did not show a reduction in their ability to invade these cells.

As epimastigote proliferation was reduced by CaN inhibitors (Figure 1), we examined the contribution of TcCaNA2 in the process using the antisense strategy as above. Epimastigotes in exponential growth phase were treated or not with sense or antisense oligonucleotides against TcCaNA2 for 72 h. Parasites treated with antisense TcCaNA2 oligonucleotides showed a slight decrease in their proliferative capacity (Figure 7B). The decrease in TcCaNA2 expression in epimastigotes treated with antisense oligonucleotides but not with their sense counterparts was ascertained by immunoblotting using anti-TcCaNA2 antibodies, 55% according to densitometric analysis. As shown in Figure 7B (lower panel), there was a marked decrease in TcCaNA2 expression when epimastigotes were treated with antisense oligonucleotides. If TcCaNA2 played a critical role in epimastigote replication, such a decrease would have had a greater effect on proliferation.

Discussion

T. cruzi calcineurin (TcCaN) has been shown to play a role in host cell invasion [15]. Recently, Kulkarni et al. [29] demonstrated that parasites exposed to cyclophilin-trialysin exhibit enhanced binding to and invasion of host cells, leading to higher infectivity via calcineurin activation. In this study we found that TcCaN is also implicated in the process of epimastigote replication.
Furthermore, existing knowledge about Ca²⁺-dependent phosphatase TcCaNA was further enhanced by characterization of the gene coding for a new isoform of TcCaNA, the catalytic subunit A, which exerts its activity through its association with the Ca²⁺-binding regulatory subunit B (CaNB).

Unlike the CaNA homologous protein described by Moreno et al. [14], which is predominantly localized in the parasite nucleus, TcCaNA2 is cytoplasmic. TcCaNA2 contains two functional domains: a catalytic domain homologous to the protein phosphatase TcCaNA2 is cytoplasmic. TcCaNA2 contains two functional histidine (H) in the G₃₈ motif, which is “conventional” in eukaryotic PPP, tyrosine (Y) being susceptible to okadaic acid, a characteristic of phosphatases PP1 and PP2A [38]. Together with the configuration of the invariant PPP motifs in TcCaNA-like, which adjusts to the configuration, DXXH(XXX), GXXDG, -GNYD, -GNYH [14], the differences between TcCaNA-like and TcCaNA2 in the hydrophobic profiles of the domain that interacts with TcCaNB suggest that these two calcineurin-type protein phosphatases may play distinct functional roles (data not shown). This is supported by their different subcellular localization. Multiple sequence alignment of TcCaNA2 with catalytic subunits of calcineurin from other organisms, revealed a 20 residues long stretch that is found only in T. cruzi. These genes were also associated in orphan nuclear receptors, and the other associated with calpain-type cysteine proteases (data not shown).

Between one third and one half of all enzymes described to date must associate with metals to perform their function [39]. In the case of calcineurin, which belongs to the hydrolase class (EC Number 3.1.3.16) and whose systematic name is phosphoprotein phosphohydrolase, Fe²⁺ and Zn²⁺ have been described as cofactors in its active site [40–42]. Our results showed that, under the conditions assayed, the recombinant TcCaNA2 is activated by Mn²⁺ and Ni²⁺, with no substantial activation by Mg²⁺ or Ca²⁺. By sequentially removing the non-catalytic domains of CaNA, such as the calmodulin binding domain and autoinhibitory domain, Liu et al. [24] observed increases in phosphatase activity, clearly demonstrating that non-catalytic domains negatively regulate the activity of the enzyme and act as intra-molecular inhibitors. This sequential domain deletion favors CaNA activation by Mn²⁺/Ni²⁺ but not by Mg²⁺, suggesting that enzyme activation by Mn²⁺/Ni²⁺ is mainly mediated via the catalytic domain [24]. Our finding that TcCaNA2 lacks the calmodulin-binding domain and the auto-inhibitory domain is consistent with its activation by Mn²⁺/Ni²⁺.

Assays using the recombinant TcCaNA2 showed that the enzyme can function when dissociated from the regulatory subunit TcCaNB. However, it should be borne in mind that inside the parasite TcCaNA2 is bound to the Ca²⁺-binding regulatory subunit TcCaNB (Figure 5) and that the enzyme is activated during T. cruzi invasion of host cells, a process associated with an increase in cytosolic Ca²⁺ concentration. Because of the presence of a highly hydrophobic CaNB domain, which is located between the catalytic and the calmodulin-binding domains, CaNA and CaNB subunits form a heterodimer [43]. This interaction can only be dissociated by strong denaturing agents such as urea at 6 M [44]. We found that 6 M urea dissociates TcCaNA2 from TcCaNB.

Calcineurin contributes in a variety of cellular signaling events and activation processes [45]. In eukaryotic pathogens, it has been associated in the regulation of specific steps of the cell cycle; in intracellular Trypanosoma gondii, the loss of host cell potassium, activates a phospholipase C that, in turn, causes an increase in cytoplasmic [Ca²⁺] causing the parasite output from host cell, by the activation of at least two signaling pathways: the protein kinase and calcineurin [46]. Similarly, in T. cruzi, entry into the host cell is a process dependent [Ca²⁺], recent studies show that calcineurin, specifically, the regulatory subunit CaNB is present in this parasite (TcCaNB) and is involved in the process of invasion of target cells. Treatment of parasites with anti-enzyme phosphophorothioate oligonucleotides directed to TcCaNA, which reduced the expression of TcCaNA and affected TcCaNA activity, resulted in ~50% inhibition of HeLa cell entry by MT or TCT [15].

Kumar et al. [47], show that CsA inhibits the intraerythrocytic replication of P. falciparum and that both, Cyp19A and Cyp19B, are potent effectors of CsA-mediated inhibition of recombinant P. falciparum CaNA in vitro. Cyp19-resistant parasites, isolated from erythrocytic cultures, contained mutations in the CaNA and CaNB subunits and in Cyp19A and Cyp19B. Using Geldanamycin (GA), an inhibitor of plasmodial Hsp90 [48,49], they also show that parasite Hsp90 is associated with CaN, strongly suggesting that Hsp90 regulates CaNA folding and hence regulates all cellular events that require the phosphatase activity of calcineurin, so the antimarial activities of CsA and GA would be synergistic.

Pottenza et al., [50], studied cDNA clones encoding cyclophilin isoforms in epimastigotes of T. cruzi. These genes were also detected in amastigotes and trypomastigotes. Four cyclophilin A-binding proteins were isolated in epimastigote extracts, which were identified by mass spectrometry as TcCyP19, TcCyP22, TcCyP28 and TcCyP40, these cyclophilins of T. cruzi would be of importance to the mechanism of action of CsA. In the present study, CsA and others calcineurin inhibitors, inhibit the invasion and proliferation processes.

On the other hand, calcineurin is involved in the morphogenesis and virulence of multiple pathogenic fungi: in Candida spp., calcineurin participates in antifungal drug resistance/tolerance, survival in serum, and virulence [51–54]; in Paracoccidioides brasiliensis, calcineurin plays a role in morphogenesis [55]; and in Aspergillus fumigatus, calcineurin regulates morphogenesis and thereby pathogenesis [56]. In addition, calcineurin is essential for growth at elevated temperatures in the human fungal pathogen Cryptococcus neoformans [57]. Studies conducted in the protozoan parasite Leishmania major suggest that Ca²⁺ influx and activation of calcineurin signaling is required for parasite differentiation and adaptation to cellular stress encountered (elevated temperatures) during infection of the mammalian host [50]. In this study, the
disruption of calcineurin function, achieved by deletion of the gene encoding the CnB subunit, had no effect on promastigote growth at 27 °C or the development of infectious metacyclic promastigotes in stationary-phase cultures. However, disruption of calcineurin function was associated with a marked increase in the sensitivity of promastigotes to elevated temperature and perturbations in membrane lipid composition. In our study, the temperature changes do not affect the infective form (MT) in motility or viability, both ATP-dependent processes [20], as demonstrated by the parasite migration assay through gastric mucin layer. The decrease of the invasive capacity of metacyclic forms, treated and not treated with antisense oligonucleotides at 28 °C, was not due to diminished viability, because the parasites that were incubated at 37 °C crossed through a polycarbonate transwell filter coated with gastric mucin, demonstrating that are not affected by the temperature stress. TcCaNA2 is expressed in all T. cruzi developmental forms (Figure 3D). In metacytic trypomastigotes, the decrease in TcCaNA2 expression brought about by the use of a TcCaNA2-targeted anti-sense strategy resulted in reduced capacity to invade host cells. In previous studies, the anti-sense approach directed to inhibit TcCaNB, the regulatory subunit with EF-Hands Ca2+-linking motifs, rendered metacytic forms as well as tissue culture-derived trypomastigotes less infective toward target cells [15]. It was also demonstrated that T. cruzi protein dephosphorylation by TcCaN is in fact associated with a decrease in parasite internalization assuming that treatment of metacytic forms with TcCaN inhibitor CsA, which diminishes the phosphorylation levels of serine/threonine residues of high-molecular-weight proteins, inhibits host cell invasion [15]. An expansion of the serine/threonine phosphatase family and a low proportion of tyrosine phosphatases have been found in T. cruzi compared with other eukaryotic genomes [32].

Another role of TcCaN is its involvement in parasite multiplication. TcCaN inhibitor CsA affected epimastigote multiplication, confirming the data reported by Buá et al. [59]. CsA probably binds to the cytosolic protein cyclophilin (CyP), forming a complex that, through its association with the invariant regulatory subunit TcCaNB, would inhibit TcCaN in a manner similar to that of its mammalian counterpart [60]. Members of the CyP family identified in T. cruzi, called peptidyl-prolyl cis/trans isomerasases, have their activity inhibited by CsA and its analogs [59], and the affinity of CyP for CsA has been documented [61]. It appears that the involvement of TcCaNA2 in epimastigote proliferation is partial, as judged by the weak inhibitory effect on epimastigote replication following treatment with antisense oligonucleotides against TcCaNA2. It is possible therefore that the major contribution to epimastigote replication comes from TcCaNA bound to TcCaNB rather than from TcCaNA2/CaNB.

Assuming that T. cruzi expresses TcCaNA and TcCaNA2, both of which can associate with TcCaNB, one interesting possibility is that the two isoforms are engaged in distinct events during the parasite life cycle. TcCaNA2/TcCaNB present in T. cruzi cytosol would be predominately activated in the infective trypomastigote forms, leading to dephosphorylation of serine/threonine residues of proteins implicated in cell invasion. In favor of this view is the fact that a partial decrease in TcCaNA2 expression resulted in a significant reduction in metacytic trypomastigote internalization, a short process involving signaling events in the cytosol, whereas TcCaNA/TcCaNB may be activated in replicative epimastigote forms to promote parasite proliferation, which implicates transcription in the nucleus [62]. In addition to being inhibited by CsA, epimastigote multiplication is inhibited by FK506 and INCA-6, which are also CnA inhibitors. In a mechanism similar to that associated with CsA, FK506 exerts its inhibitory effect by forming a drug-immunophilin complex with CnA [63], whereas the mechanism of action of INCA-6 is linked to blocking of the substrate recognition site by a covalent union to CnA, inhibiting dephosphorylation of nuclear factor of activated T cells (NFAT) and interrupting the formation of the CnA-NFAT complex [64]. Similarly, kaempferol, binds directly to the catalytic site in CnA interacting with Leu 312 [65]. Our results showed no inhibition in proliferation and cell invasion in parasites treated with kaempferol. These findings are consistent with the absence of Leu 312 in TcCaNA2 (Figures 1B and 2A).

The mechanism involving phosphorylation/dephosphorylation events that play an important role in cell cycle progression, may operate in T. cruzi epimastigotes. It is of note that T. cruzi TcCaN-like protein has been detected predominantly in the nucleus of this parasite [14]. TcCaNA2/CaNB and TcCaNA/CaNB, which have distinct cellular localizations, may play a critical role at different stages of T. cruzi development.

Many authors suggest calcineurin as a potential chemotherapeutic target against pathogenic; fungi, helminths and protozoa [46,47,66-70]. Our revision strongly supports that TcCaNA2 is a good candidate for chemotherapeutic target given the differences with its human counterpart. In fact, the T. cruzi calcineurin does not possess the calmodulin binding domain and the autoinhibitory domain which are present in the human enzyme. Besides this, TcCaNA2 presents a 20 amino acids long stretch (243-VSGGSGDYYTPSAGPSYGS-262) in the catalytic domain that is absent in the human calcineurin and is conserved in all trypanosomatids with minimal differences. Also, comparative sequence analysis shows only 44% of identity between human calcineurin and TcCaNA. Taking into account that TcCaNA2 differs considerably in its primary structure from human CnA and that it may play a key role in host cell invasion by T. cruzi, it should be considered a potential target for chemotherapy intervention in Chagas disease.

Supporting Information

Figure S1 Effect of morpholino antisense oligonucleotides on migration of T. cruzi metacyclic forms through gastric mucin. Parasites, previously maintained for 16 h in PBS at 28°C with morpholino sense or antisense oligo plus endoporter or with endoporter alone, and the non treated controls were added to the bottom of 24-well plates. Then polycarbonate transwell filters coated with gastric mucin were placed onto parasite-containing wells. After 1 h incubation at 37°C, samples from the filter chamber were collected and the numbers of parasites counted. Results were expressed as mean ± standard deviations of the three independent experiments performed in triplicate. (TIFF)

Author Contributions

Conceived and designed the experiments: PRO JEA HO EMC. Performed the experiments: PRO JEA AB MC IN. Analyzed the data: PRO JEA JG JFoS NY HS. Contributed reagents/materials/analysis tools: JEA PRO NY MC JFoS. Wrote the paper: PRO JEA NY.

References

1. WHO. (2013) Chagas disease (American trypanosomiasis) Fact sheet N° 340.
2. Coura JR, de Castro SL. (2002) A critical review of Chagas disease chemoterapy. Mem Inst Oswaldo Cruz 97: 3-24.
3. Araya JE, Neira I, da Silva S, Mostaza RA, Manque P, et al. (2003) Diterpenoids from *Acanthospermum umbelliferum* active on *Trypanosoma cruzi*. Mem Inst Oswaldo Cruz 98: 413–418.

4. Lammel EM, Barbieri MA, Winklevosy SE, Bertini F, Isola EL. (1996) *Trypanosoma cruzi* involvement of intracellular calcium in multiplication and differentiation. Exp Parasitol 83: 240–249.

5. Docampo R, Moreno SNJ. (1996) The role of Ca2+ in the process of cell invasion by intracellular parasites. Parasitol Today 12: 61–65.

6. Yoshida N. (2000) Molecular basis of mammalian cell invasion by *Trypanosoma cruzi*. An Acad Bras Cienc 72: 87–111.

7. Favorato SJ, Doria MT, Yoshida N. (1998) *Trypanosoma cruzi* 157 kDa protein tyrosine phosphorylation is associated with host cell invasion. Exp Parasitol 89: 180–192.

8. Cohen P. (1992) Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Pol 48: 921–933.

9. Soor B. (2010) Trypanosomatid protein phosphatases. Mol Biochem Parasitol 173: 53–63.

10. González JA, Cornejo A, Santos MR, Cordero EM, Gutiérrez B, et al. (2008) A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite *Trypanosoma cruzi*. Biochem J 374: 647–656.

11. Klee CB, Crouch TH, Krinks MH. (1979) Calcineurin: a calcium- and phospholipid-dependent protein phosphatase of neuronal synaptosomes. J Biol Chem 254: 11053–11059.

12. Rusnak F, Mertz P. (2000) Calcineurin: from structure to function. Physiol Rev 80: 280–320.

13. Aramburu J, Rao A, Klee CB. (2000) Calcineurin: a calcium- and phospholipid-dependent protein phosphatase of neuronal synaptosomes. J Biol Chem 275: 225–232.

14. Moreno VR, Aguero F, Sañchez DO. (2007) The Calcineurin A homologue from *Trypanosoma cruzi* lacks two important regulatory domains. Acta Trop 101: 80–89.

15. Araya JE, Cornejo A, Orrego PR, Cordero EM, Gutiérrez B, et al. (2008) Calcineurin B of the human protozoan parasite *Trypanosoma cruzi* is involved in host cell invasion. Microbes Infect 10: 892–900.

16. National Research Council (U.S.). Committee for the Update of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academy Press (U.S.). (2011) Guide for the care and use of laboratory animals. Washington, D.C.: National Academies Press. xxv, 220 pp.

17. Brenner Z, Chiaie E. (1967) Morphological variations observed in different strains of *Trypanosoma cruzi*. Rev Inst Med Trop Sao Paulo 19: 229–234.

18. Teixeira MMM, Yoshida N. (1986) Stage-specific surface antigens of trypanosomatids of *Trypanosoma cruzi* identified by monoclonal antibodies. Mol Biochem Parasitol 10: 271–292.

19. Ramírez MI, Ruiz RC, Araya JE, da Silveira JF, Yoshida N. (1999) Involvement of the stage-specific 82-kilodalton adhesion molecule of *Trypanosoma cruzi* in the process of cell invasion. Infect Immun 61: 3636–3641.

20. Martins RM, Covarrubias C, Rejas RG, Silber AM, Yoshida N. (2009) Use of L-proline and ATP production by *Trypanosoma cruzi* metacyclic trypomastigotes in host cell invasion. Infect Immun 261: 3636–3641.

21. Luong AB. (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243: 147–154.

22. Sagi JD, Frenkel DA, Wesselsborg S, Waldb RT, Bierer BE. (1996) Convergent evolution of calcineurin phosphatase activity in an autoinhibitory domain. Biochem J 320: 879–894.

23. Wu Y, Li Q, Chen XZ. (2007) Detecting protein-protein interactions by Far western blotting. Nat Protoc 2: 3278–3284.

24. J K, Huang C, Yi Y, Fu DY, et al. (2005) Non-catalytic domains of subunit A negatively regulate the activity of calcineurin. Biochim Biophys Acta 215: 21–26.

25. Garver TD, Kincaid RL, Conn RA, Billingsley ML. (1999) Redution of calcineurin activity in brain by antiisense oligonucleotides leads to persistent phosphorylation of tau protein at Thr181 and Thr231. Mol Pharmacol 55: 632–641.

26. Malaga S, Yoshida N. (2001) Targeted reduction in expression of *Trypanosoma cruzi* cyclophilin gene ggr90 increases parasitc infectivity. Infect Immunity 75: 355–359.

27. Okamura M, Fang J, Salto ML, Singer RS, Docampo R, et al. (2005) A lipid-modified phospholipid-specific phosphodiesterase C (TriP-PLC) is involved in differentiation of trypanosomatids to amastigotes of *Trypanosoma cruzi*. Biol Chem 280: 16265–16265.

28. Muñoz C, Pérez M, Orrego PR, Osorio L, Gutierrez B, et al. (2012) A protein phosphatase 1 gamma (PPP1g) of the human protozoan parasite *Toxoplasma gondii* is involved in proliferation and cell attachment to the host cell. Int J Parasitol 42: 715–727.

29. Kulkarni MM, Karaflova A, Kamysz W, Schenkman S, Pelle R, et al. (2013) Secreted trypanosome cyclophilin inactives hibernic acid, insect defense peptides and induces parasite calcineurin activation and infectivity. J Biol Chem 298: 8772–8784.

30. Koonin EV. (1994) Conserved sequence pattern in a wide variety of proteostasies. Protein Sci 3: 336–352.

31. Zhuo S, Clements JC, Hakes DJ, Barford D, Dixon JE. (1993) Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. J Biol Chem 268: 17734–17741.
61. Potenza M, Galat A, Minning TA, Ruiz AM, Duran R, et al. (2006) Analysis of the *Trypanosoma cruzi* cyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology 132: 867–882.

62. Dossin FDM, Schrenkman S. (2005) Actively transcribing RNA polymerase II concentrates on spliced leader genes in the nucleus of *Trypanosoma cruzi*. Eukaryot Cell 4: 960–970.

63. Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, et al. (1996) The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol 80: S40–S45.

64. Roehrl MH, Kang S, Aramburu J, Wagner G, Rao A, et al. (2004) Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proc Natl Acad Sci USA 101: 7534–7539.

65. Jayaraman G, Sivakumar A, Panneerselvam T, Hemalatha S, Emmanuel JS. (2010) A comparative study on the potentials of calcineurin inhibitors by Docking. Drug Invention Today 2: 411–414.

66. Khattab A, Pica-Mattoccia L, Wenger K, Cioli D, Klinkert MQ. (1999) Assay of Schistosoma mansoni calcineurin phosphatase activity and assessment of its role in parasite survival. Mol Biochem Parasitol 99: 269–273.

67. Baba Y, Hirakawa N, Tanohira N, Sodeoka M. (2003) Structure-based design of a highly selective catalytic site-directed inhibitor of Ser/Thr protein phosphatase 2B (calcineurin). J Am Chem Soc. 125: 9740–9749.

68. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5: 418–430.

69. Chen YL, Kombaowski I, Cardenas M, Heitman J. (2010) On the roles of calcineurin in fungal growth and pathogenesis. Curr Fungal Infect Rep 4: 244–255.

70. Shapiro RS, Robbins N, Cowen LE. (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75: 215–267.

71. Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

72. Saitou N, Nei M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

73. Felsenstein J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

74. Zuckerkandl E, Pauling L. (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ editors. Evolving Genes and Proteins, Academic Press, New York, pp. 97–166.