Response outcomes gate the impact of expectations on perceptual decisions

Ainhoa Hermoso-Mendizabal¹ *, Alex Hyafil¹.² *, Pavel E. Rueda-Orozco³, Santiago Jaramillo⁴, David Robbe⁵ and Jaime de la Rocha¹

¹ IDIBAPS, Barcelona, Spain
² Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
³ Universidad Nacional Autónoma de México, México
⁴ University of Oregon, Oregon, USA
⁵ Institut de Neurobiologie de la Méditerranée, Marseille, France

*These authors contributed equally to this work

ABSTRACT

Perceptual decisions are not only determined by current sensory information but are also influenced by recent experience. Can the magnitude of history-dependent decision biases be flexibly modulated based on the outcome of previous decisions? We trained rats in several two-alternative forced choice auditory tasks, where the probability to repeat the previous stimulus category was varied in blocks of trials. All rats capitalized on the serial correlations of the stimulus sequence by consistently exploiting a transition bias: a tendency to repeat or alternate their previous response using an internal trial-by-trial estimate of the sequence repeating probability. Surprisingly, this bias was null in trials immediately following an error. The internal estimate however was not reset and it became effective again causing a bias after the next correct response. This ability to rapidly activate and inactivate the bias was captured by a non-linear generative model of rat behavior, whereby a reward-driven modulatory signal gated the use of the latent estimate of the environment statistics on the current decision. These results demonstrate that rats use behavioral outcomes to flexibly modulate how expectations derived from the recent history influence their decisions.

INTRODUCTION

Perceptual decisions in natural environments result from the processing of information over multiple temporal scales spanning from milliseconds to seconds, minutes and beyond. In the laboratory, perception is studied in trial-based experiments in which stimulus-response associations are repeated over many trials. Stimulus sequences are typically uncorrelated, meaning that the stimulus identity in each trial is randomly generated independently of previous stimuli and outcomes. Despite this, there is ample evidence that subjects decisions are influenced by expectations built from the recent history of stimuli, responses and outcomes. History effects on choice have been observed in humans (Abrahamyan et al., 2016; Akaishi et al., 2014; Braun et al., 2018; Cho et al., 2002; Fischer and Whitney, 2014; Fründ et al., 2014; Meyniel et al., 2016), non-human primates (Gold et al., 2008; Lueckmann et al., 2018; Purcell and Kiani, 2016) and rodents (Akrami et al., 2018; Busse et al., 2011; Hwang et al., 2017; Murakami and Mainen, 2015) and are present in free choice tasks (Lau and Glimcher, 2005; Sugrue et al., 2004), perceptual tasks (Fischer and Whitney, 2014; Fründ et al., 2014; Gold et al., 2008) and memory guided tasks (Akrami et al., 2018; Ashourian and Loewenstein, 2011; Papadimitriou et al., 2015).

bioRxiv preprint doi: https://doi.org/10.1101/433409; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Past stimuli have long been known to generate repulsive after-effects (Gibson and Radner, 1937; Thompson and Burr, 2009) and attraction biases (Akrami et al., 2018; Ashourian and Loewenstein, 2011; Cicchini and Kristjánsson, 2015; Fischer and Whitney, 2014; Fritsche et al., 2017; Hollingsworth, 1913; Papadimitriou et al., 2015; Hollingworth, 1910). While repulsive effects can be an adaptive strategy to detect novel stimulus (Gibson, 1937), contraction biases are adaptive in environments where stimulus statistics vary slowly such that the best predictor of new stimuli are past stimuli (Ashourian and Loewenstein, 2011; Fischer and Whitney, 2014; Kalm and Norris, 2018).

Categorical responses give rise to a different type of history biases: subjects tend to repeat previous choices that lead to positive feedback (or also in absence of feedback) (Akaishi et al., 2014; Braun et al., 2018), and avoid previous responses associated with negative feedback, a pattern known as win-stay lose-switch (Abrahamyan et al., 2016; Akrami et al., 2018; Braun et al., 2018; Fründ et al., 2014). Such behavior can rely on subjects tracking the value of the probability to obtain reward following each choice, an adaptive strategy when these probabilities vary slowly in time (Corrado et al., 2005; Lau and Glimcher, 2005).

More sophisticated sequential biases are derived from the estimation of transition probabilities between stimulus (Goldfarb et al., 2012; Kim et al., 2017; Meyniel et al., 2016; Tervo et al., 2014; Urai et al., 2018); or more generally between stimulus-outcome states (Abrahamyan et al., 2016; Nogueira et al., 2017). Such estimation require that subjects take into account patterns of consecutive trials (Goldfarb et al., 2012; Kim et al., 2017; Meyniel et al., 2016; Urai et al., 2018). Although transition biases can be adaptive to sequentially correlated stimulus-outcome series, classical psychophysical studies have repeatedly found them in two-alternative forced choice (2AFC) tasks with uncorrelated sequence designs (Cho et al., 2002; Kirby, 1976; Soetens et al., 1985; Sommer et al., 1999). In practice, the three types of history biases (stimulus-, response-, and transition-based) can coexist at the same time and can be difficult to disentangle (e.g. Jones et al., 2013).

Despite the ubiquity of history biases across species and modalities, fundamental questions remain open. Which sequential effects are caused by hard-wired properties of the neuronal circuitry and which are plastic and susceptible to adapt to the statistics of new environments? Which effects are homogeneous across subjects and which result from idiosyncratic strategies? To what extent can these biases be modulated based on internal brain states (confidence, exploration/exploitation, etc)? What are the dynamics of these modulations, i.e. can sequential effects be turned on and off in one single trial or modulation requires long blocks of trials with different statistics? Here we asked whether rats display the different forms of history biases, whether these biases can be adapted to different sequence statistics and be modulated by exploitative vs. explorative strategies. Long behavioral experiments yielding tens of thousands of trials per animal allowed us to tease apart different types of history biases (sensory-, response- and transition-based), their homogeneity across subjects and their generality across tasks. We found that all three types of history biases were present in rat behavior. Crucially, rats, like humans, accumulate evidence over previous choice transitions to predict the next rewarded response. Moreover, the impact of accumulated transition evidence onto subsequent choice increased adaptively when serial correlations were introduced in the stimulus sequence. Notably, this transition bias disappeared after an error, possibly reflecting a change to a more explorative mode. Finally, this ubiquitous behavior across animals could be readily captured by...
a non-linear dynamical model in which previous outcome acted as a gate for the impact of past transitions on future choices.

RESULTS

A reaction time auditory discrimination task promoting serial biases

To study how the recent history of stimuli, responses and outcomes influence perceptual choices, we trained rats in a novel two-alternative forced choice (2AFC) auditory discrimination task in which serial correlations were introduced in stimulus trial sequences (Fig. 1a-c). This design mimicked the temporal regularities of ecological environments and allowed us to probe the trial-by-trial expectations that animals formed about upcoming stimuli based on the changing statistics of the stimulus sequence. The serial correlations between trials were created using a two-state Markov chain (Fig. 1b) parameterized by the probability to repeat the previous stimulus category P_{rep} (the unconditioned probabilities for each of the two categories were equal). To investigate the development of history-dependent choice biases, we varied P_{rep} between two values across blocks of 200 trials: in Repeating blocks, the probability to repeat the previous stimulus category was $P_{rep} = 0.7$ whereas in Alternating blocks $P_{rep} = 0.2$ (Fig. 1c). By poking into the center port, rats triggered the presentation of the stimuli, which lasted until they freely withdrew from the port.

Each acoustic stimulus was a superposition of one high-frequency and one low-frequency amplitude-modulated tones and animals were rewarded for correctly discriminating the tone with the higher average amplitude. The discrimination difficulty of each stimulus, termed stimulus strength s, was randomly and independently determined in each trial, and set the relative amplitude of each tone (Fig. 1b,d). When stimulus strength s was null, i.e. contained no net evidence in favor of either alternative, the rewarded side was determined by the stimulus category sequence (Fig. 1b).

Across-trial dynamics of history-dependent choice biases

Animals in Group 1 (n=10 animals) completed an average of 508 trials per session (range 284 - 772 average trials), gathering an average of 56,242 trials in total per animal over a few months of experiment (range 15,911 - 81,654 trials). For each rat, psychometric curves showing the proportion of Right responses as a function of the stimulus evidence indicated that neither sensitivity nor fixed side bias varied with block type (Fig. 2a left). To estimate the impact of stimulus serial correlations, we also analyzed the repeating psychometric curves, showing the proportion of trials where the animals repeated the previous choice as a function of the sensory evidence in favor of the repeating choice. This analysis showed that all animals developed a block-dependent repeating bias b (Fig. 2a right, b left): after correct trials, b was positive (i.e. tendency to repeat) in the Repetitive Block, and negative (i.e. tendency to alternate) in the Alternating Block. The adjustment of b when switching between blocks occurred in less than 10 trials (Supplementary Fig. 1). Interestingly, the side bias, which was heterogeneous across animals, was similar across blocks for each animal (Fig. 2c left), showing that animals side preference was independent of the changes in repeating bias caused by block switching. Surprisingly, in trials following an error, b almost vanished in both block types (Fig. 2b-c right). Thus, after errors rats seemed unable to use previous history to guide their decision (e.g. in the
Repetitive block, after an incorrect Right, the Left response is more likely to be rewarded. In contrast, the side bias was analogous after correct and error trials (Supplementary Fig. 1b).

Rats used history information by tracking several trials over short windows into the past: the magnitude of the repeating bias b built up with the number of consecutive correct past repetitions or alternations n until it plateaued after $n = 5$-10 trials (Fig. 2e blue and red line). This plateau was greater after repetitive patterns rather than alternating patterns. Importantly however, irrespective of n, the repeating bias b vanished almost completely with a single incorrect response for all rats (Fig. 2e). To control that the vanishing was not caused by forgetting due to the 5s time-out imposed after errors, we trained a subset of rats using random time-out durations (range 1-5 s) and found that the bias extinction was maintained independently of time-out duration (Supplementary Fig.1c). The vanishing was only observed after errors and not after correct but unexpected responses, e.g. one alternation after several repetitions (Supplementary Fig. 2a). Accordingly, performance was higher for trials following a correct trial than for trials following an error, and it increased with n (Supplementary Fig. 3a-b). Moreover, the repeating bias increased performance when it was consistent with the block tendency and it decreased performance when it was inconsistent with it (Supplementary Fig.3c-d). The impact on performance was largest for low stimulus strength, when the sensory evidence was weak and animals relied more strongly in their a priori belief, and it vanished to zero as the stimulus strength increased and the classification became easier. Together, these observations suggest that rats update their beliefs about the environment in a trial-by-trial basis and that this update crucially relies on the outcome of the preceding trials: sequences of rewarded repetitions/alternations lead to stronger response prior, but one error was sufficient to make the animals abandon this prior.

A GLM analysis of integration of sensory evidence and recent history information

Having identified that rats used previous responses and outcomes to guide decisions, we aimed to identify the specific factors in trial history generating choice biases. These factors could be classified as: (1) sensory after-effects yielding a lower sensitivity to the stimuli that were recently presented; (2) a lateral bias that creates an attraction or repulsion towards the Left or Right side depending on previous responses; (3) a transition bias that creates an attraction towards repeating or alternating depending on the history of previous repetitions and alterations (i.e. a rule bias). Although only the transition bias is adaptive in the task, since it allows to flexibly adapt to both types of blocks, the three factors could in principle contribute to the repeating bias b described above. We thus used a generalized linear model (GLM) to estimate the impact onto current decisions of each event in recent history including stimuli, sides of response, transitions and outcomes in the last ten trials (Fig. 3; see Methods for details). Given the effect of error responses suppressing the use of previous history (Fig. 2b-d right), we fitted for each rat the weights of the GLM separately for trials following correct and error responses. A consistent pattern for the regressor weights emerged (Fig. 4 and Supplementary Fig. 4a). First, as expected, the current stimulus, and in particular the first acoustic frames in the stimulus, had a strong impact on decisions (Fig. 4a). Second, choices were biased away from the sides associated with previously presented stimuli. This repulsive bias was consistent with an after-effect caused by sensory adaptation in which a strong acoustic power at a given frequency would reduce the likelihood to perceive that frequency in subsequent trials (Fig. 4b). Third, the impact of Left or Right responses on future choices depended on their outcome following a win-stay-lose-switch pattern: while rats displayed a tendency to opt again for the side of
previously rewarded responses, sometimes called *reinforcers* (Lau & Glimcher 2005; Corrado et al 2005), they tended to opt away from previously non-rewarded responses (Fig. 4c). We termed this sequential effect the lateral bias.

Finally, the most influential history-dependent regressor in biasing choices were previous transitions T, meaning repetitions ($T=+1$) and alternations ($T=-1$) (Fig. 4d). Positive weighting of recent transitions implied that repetitions increased the transition bias γ_T (i.e. increased the tendency to repeat), while alternations had a negative impact on γ_T (i.e. increased the probability of alternating). We separated the effect of transitions between two consecutive correct responses ($T++$) and transitions between two responses where either the first ($T+-$), the second ($T--$) or both responses ($T-+$) were incorrect. While transitions between two correct responses $T++$ were strongly reinforced in subsequent trials, the transitions $T+-$, $T+-$ and $T--$ with at least one error barely influenced subsequent trials (Fig. 4d). In other words, rats lacked the adaptive behavior to use non-rewarded trials for re-evaluating the current probability of repetition vs alternation. After incorrect trials, consistently with previous analyses, the impact of $T++$ transitions completely vanished (Figure 4d, black points). Thus, following an error, rats behavior was completely blind to the history of previous repetitions and alternations, and was driven only by sensory information and lateral biases. The reset of the transition bias was not an idiosyncratic strategy followed by some of our animals but it was found in every animal we trained (Supplementary Fig. 5). In fact the magnitude of transition kernel was much more homogenous across animals than the lateral kernel (Supplementary Fig. 5). The reset effect was however not observed neither in the after-effect bias nor in the lateral bias that were not affected or moderately affected by errors, respectively (Fig. 4b-c). Thus, the bias reset following errors was specific to the transition term but extremely reliable across subjects.

The impact of the current sensory stimulus was an order of magnitude larger than the transition bias, which was itself an order of magnitude larger than lateral bias (Fig. 4e). The after-effect bias was the weakest determinant of behaviour. A modified analysis separating the effects of repetitions and alternations showed that they had largely symmetrical effects suggesting that animals summarized both types of transition into a single rule that could take positive or negative values (Supplementary Fig. 4d). Importantly, the weights were identical when computed separately in repetition and alternation blocks (Supplementary Fig. 6). This suggests that rats adopted a single strategy across all blocks, and the different repeating choice bias found in each block (Fig. 2b-e) simply reflected the different statistics of the stimulus sequence used in that block (Fig. 1c). Because the impact of transitions decayed in around 5 trials (Fig. 4d left), the strategy allowed animals to switch the sign of their repeating bias relatively fast when switching between blocks (Supplementary Fig. 1a) at the cost of suffering relatively large fluctuations in the repeating bias within each block. Model comparisons further confirmed that the full model fitted separately for trials following correct trials and errors provided a better fit to rats decisions than the full model fitted to all trials, or alternative models where the lateral and/or transition module were removed (Supplementary Fig. 4c). Importantly, the GLM with only lateral biases yielded an non-monotonic kernel for the Lateral responses, a result that could lead to spurious interpretations when the effect of previous transitions was not considered (Supplementary Fig. 4d).

To test the extent to which these findings depended on the task design, we trained a new group of rats (Group 2, $n=6$) in a different level discrimination 2AFC task in which noise stimuli had to be classified according to the intensity difference between the two lateral speakers...
(Pardo-Vazquez et al.; 2018). The stimulus sequence followed the same pattern as before with repeating and alternating blocks (Fig. 1b-c). Performing the same GLM analysis in this task yielded quantitatively similar results, including the reset of the transition bias after errors (Supplementary Fig. 7). Finally, we found that the presence of a transition bias and its reset after errors was not contingent on the presence of serial correlations in the stimulus sequence. A third group of rats (Group 3, n = 9) exposed to only an uncorrelated stimulus sequence, exhibited the same qualitative pattern for the impact of previous transitions, although with a smaller magnitude (Supplementary Fig. 8c). Once the sessions started containing serial correlations (Fig. 1b-c), the magnitude of the transition weights increased (Supplementary Fig. 8c) suggesting that the transition bias is an intrinsic behavior of the animals, but its magnitude can be adapted to the statistics of the environment. In total, these analyses show that the dependence on previous outcome of history-dependent biases is a general result across animals and across different tasks. It represents a novel non-linearity that cannot be captured by standard regression methods.

Transition evidence is blocked but not reset after an error

We then asked whether the system monitoring transitions (i) underwent a *complete reset* after error trials, meaning that the build-up of the transition bias γ_t started back from zero following errors (Fig. 5a), or whether, in contrast, (ii) information about previous transitions was maintained in memory at the bias reset and was later used to compute γ_t following new correct responses. The latter scenario, which we termed the *gating hypothesis* (Fig. 5b), was formulated by defining the accumulated transition evidence z_T, a variable that maintained an estimate of the transition probabilities and which, on trial by trial basis, was used or not (i.e. gated) to generate the transition bias γ_T. To test these two hypotheses, we quantified how the value of the bias γ_t in trial t could predict the bias at trial $t+1$, $t+2$ and further, depending on the outcome of each of these trials. When trial t was correct, the bias was passed on to $t+1$ with a discounting decay that mirrored the shape of the transition kernel in the GLM analysis (Figure 5c dark orange dots). The same discounting occurred going from $t+1$ to $t+2$ when trial $t+1$ was correct. By contrast, if t was incorrect, because of the bias reset after errors, the value of γ_t was not predictive of the decision at trial $t+1$, nor at trial $t+2$ if $t+1$ was also incorrect (Fig. 5e gray and black dots). Crucially though, the bias γ_t in trial t strongly influenced choices at trial $t+2$ if trial t was incorrect but trial $t+1$ was correct (Fig. 5c light orange dots). Its impact was significantly larger than zero for all rats ($p<10^{-6}$) and close in magnitude to the impact when both trials t and $t+1$ were correct. This rebound in choice predictability was even observed at $t+3$ after two incorrect responses followed by a correct one ($p<10^{-4}$). These results are consistent with the gating hypothesis (Fig. 5b) in which errors do not cause a reset of the accumulated transition evidence z_T but do cause a transient cut off in the influence of z_T on choice measured as a reset in γ_t. This influence became effective again once the animal made a new correct response giving rise to the measured correlation between the values of the bias before and after the reset (Fig. 5b gray vertical arrows). An equivalent analysis on the lateral bias γ_L showed that the bias transferred to the subsequent trials with a rapid decay, which was moderately affected by the outcome of the trials and showed no evidence of reset-and-rebound dynamics (Fig. 5d).

The rebound of the transition bias was observed more directly when we extended our GLM analysis by conditioning on the outcome of the last two trials, i.e. fitting separately for choices following a ‘++’, ‘+-’, ‘-+’ or ‘--’ sequence. When the last two trials were correct (++), the correct transitions T++ occurring in the last ten trials had a strong influence (Fig. 5e dark orange dots) whereas when the last trial was an error (+- or --) they had no influence (Fig. 5e gray and black
dots). The influence of T++ transitions was again strong, however, when the choice followed a -+ sequence (Fig. 5e light orange dots) confirming the ability of the animals to rapidly recover the history-dependent transition bias based on the outcome of the last trial.

A dynamical model of history-dependent outcome-gated biases

Having found that the transition bias underwent reset-and-rebound dynamics, we built a generative model that implemented the gating hypothesis. One latent variable in the model was the accumulated transition evidence \(z_T \), which was updated in each trial depending on whether the last choice was a repetition or an alternation and therefore maintained a running estimate of the transition statistics (Braun et al., 2018; Busse et al., 2011; Cho et al., 2002; Fründ et al., 2014) (Fig. 6a). A second modulatory variable \(c_T \) modulated the influence of the transition evidence onto the current decision by setting the transition bias equal to \(\gamma_T = c_T z_T \). Importantly \(c_T \) was updated after each trial only based on the trial's outcome. In addition to the transition bias, the model had also an accumulated lateral evidence \(z_L \) that directly resulted in a lateral bias (i.e. \(\gamma_L = z_L \)).

We fitted the model parameters to the series of choices made by each rat (Fig. 6b-g and Supplementary Fig. 9) and obtained results in agreement with our previous analyses: first, correct transitions (++) lead to a strong changes in the transition evidence \(z_T \), while the other transitions (+-,+-,-+) did not lead to any consistent pattern (Fig. 6d). Second, the update parameters for \(c_T \) corresponded to an almost complete reset after errors for at least 7 rats out of 10, and a very strong recovery after any correct trial (Fig. 6f). This effectively converted the variable \(c_T \) into a gating variable that was able to completely block the use of the transition accumulated evidence after a single error (Fig. 6g). By contrast, the leak of \(z_T \) was not significantly different after correct trials and after errors (p>0.6), providing further evidence that the reset transition bias after errors did not correspond to a loss of the accumulated evidence. Third, correct Right (Left) responses increased the lateral bias in favor of the Right (Left) response (Fig. 6c). Fourth, adding a modulatory variable \(c_L \) to the lateral module only had a marginal impact on model performance (Supplementary Fig. 10). Finally, model comparison concluded that this canonical dynamical model gave a better account than versions where either \(c_T \) or the lateral bias \(z_L \) were omitted, as well as of the GLM described in the previous section (Supplementary Fig. 11).

Generative model simulation versus experimental data

Finally we assessed the capacity of the compact dynamical model to account for the dynamics of the previously reported repeating bias \(b \) (Fig. 2d-e) by comparing model simulations to actual rat data. The model very closely reproduced the build-up dynamics of \(b \) in series of correct repetitions and alternations (Fig. 7a). Moreover, the model allowed to partition the value of \(b \) into the lateral and transition biases showing that, while the transition bias was perfectly symmetric in series of repetitions and alternations, the lateral bias behaved very differently: it only built up during series of repetitions, in which all the responses were on the same side, while it oscillated around zero in series of alternations, in which the contribution of each response was partially cancelled by the next one. Thus the dissection of the repeating bias into the lateral and transition biases explained the overall asymmetry found between the two blocks. Furthermore, the block asymmetry in the accumulation of the lateral bias also explained asymmetries in \(b \) found after correct unexpected responses (Supplementary Fig. 2). Model simulations also reproduced the reset of repeating bias when a series of correct repetitions/alternations was
interrupted by an error (Fig. 7b), and the subsequent rebound when the rat performed correctly again (Fig. 7c). Impressively, the model replicated the asymmetry in the magnitude of this rebound between the Repeating and Alternating blocks by summing (Fig. 7c top) or subtracting (Fig. 7c bottom), respectively, contributions of transition and lateral biases. Furthermore, the model provided a very good fit (Pearson’s r=0.96) to b for all possible sequences of 2-6 correct trials (Fig. 7d). In sum, by factorising the transition bias into accumulated transition evidence z_T and the modulatory signal c_n, the model captured the non-linear across-trial dynamics of history-dependent biases pointing towards possible modulatory circuit mechanisms that could implement this computation (see Discussion).

DISCUSSION

We employed a standard acoustic 2AFC task with rats to characterize how rats’ perceptual categorizations are affected by expectations derived from the history of past stimuli, choices and outcomes and how these expectations can be captured by a simple dynamical model. A thorough analysis of the behavior using tens of thousands of trials per animal isolated three different sequential effects. First, because in our task, the stimuli in each category varied strongly in magnitude, we could disentangle the impact of past physical stimuli from the stimulus category revealing a repulsive after-effect that lasted for at least ten trials (Fig. 3b). Although this after-effect resonates with the predominant response adaptation found in several stages of the auditory pathway, its time scale, spanning tens of seconds (Fig. 4b), exceeds the previously reported recovery period from adaptation (Asari and Zador, 2009; Natan et al., 2015). Second, we identified a sequential lateral effect that biased choices towards or away from the recently rewarded or unrewarded targets, respectively (Fig. 3c). This win-stay-lose-switch strategy has been extensively characterized both in humans (Abrahamyan et al., 2016; Braun et al., 2018; Fründ et al., 2014) and rodents (Akrami et al., 2018; Hwang et al., 2017). Finally, we identified the sequential transition bias, a form of rule bias that had been previously characterized only in human subject reaction times and neural responses (Cho et al., 2002; Kirby, 1976; Soetens et al., 1985; Sommer et al., 1999). This influence of previous repetitions and alternations reflected a single strategy used in both repetition and alternation blocks (Supplementary Fig. 6), smoothly adapting to changes in serial correlations (Jones et al., 2013). Our results differ however from previous reports in several important aspects. Error responses strongly impacted these transition biases in two ways: first, repetitions or alternations did not influence subsequent choices whenever one of the two trials composing it was unrewarded, meaning that the running estimate of the transition probabilities accumulated evidence only from repetitions and alternations of two rewarded trials. Second, the transition bias was absent after an error trial, i.e. animal responses temporarily ignored the recent history of rewarded repetitions and alternations. However, this reset did not imply the reset of the accumulated transition evidence, i.e. the tallie keeping track of the number of recent repetition vs. alternations, whose influence over behavior was restored as soon as the animal obtained a reward (Fig. 5c,e).

This sophisticated across-trial dynamics of the transition bias was found systematically in every animal suggesting that it may reflect the action of previously unknown fundamental cognitive processes. Indeed, the same bias dynamics were present when the environment did not contain serial correlations (Supplementary Fig. 8a), a situation in which the transition bias can only decrease categorization performance (Cho et al., 2002; Kirby, 1976; Soetens et al., 1985; Sommer et al., 1999), suggesting that it reflects a hard-wired brain program which perhaps is...
adaptive on a broader scale (Seriès and Seitz, 2013). However, the magnitude of the transition kernel gradually increased when animals trained using uncorrelated sequences were presented with correlated sequences (Supplementary Fig. 8). Likewise, the amplitude of the lateral bias (detrimental in our task) gradually decreased over sessions. Rats indeed were previously shown to suppress sequential biases when those can be turned up against them (Tervo et al., 2014). Thus, the transition bias can be adapted to the temporal structure of the environment, if not in nature, at least in magnitude (Abrahamyan et al., 2016) (Supplementary Fig. 3). The trial integration window over which animals estimated the repetition rate (~3-5 trials; Fig. 4d) was much shorter than block length (200 trials). This allowed to reverse the repetition bias rapidly after a block switch (Supplementary Fig. 1a) at the cost of a noisier estimate of the repetition rate (Gallistel et al., 2004; Nassar et al., 2010; Sutton and Barto, 1998). Such overestimation of the volatility suggest that, unlike humans, rats may be unable to adapt the kernel integration window to the environment (Behrens et al., 2007; Nassar et al., 2010), an hypothesis that would require further testing.

The presence of both first- and second-order serial biases (i.e. lateral and transition biases) (Jones et al., 2013; Meyniel et al., 2016; Wilder et al. 2010; Gökaydin et al., 2014) accounts for the asymmetry in the build-up of the repetition and alternation biases (Fig. 1c-e). Because the lateral bias generates a tendency to repeat previously rewarded responses, it contributes, together with the transition bias, to quantities like our repeating bias b (Fig. 7a). In series of correct repetitions, both transition and lateral bias add up and yield a strong tendency of the animals to repeat the last rewarded response (Fig. 7a top). In contrast, in alternating environments, the lateral bias does not build up and the negative repeating bias (tendency to switch) is solely given by the transition bias (Fig. 7a bottom). Moreover, our analysis provides indirect evidence that animals recapitulated previous repetitions and alternations into a single and symmetric transition bias and not into separate variables (Supplementary Fig. 4). A recent modeling study has proposed that estimating first and second-order rates is part of the same core computation the brain performs when analyzing binary sequences, which comes down to estimate the two independent transition probabilities $P(L_t|R_{t-1})$ and $P(R_t|L_{t-1})$ between consecutive trials $t -1$ and t (Meyniel et al., 2016). Our findings are at odds with this hypothesis because the dependence of both types of biases on response outcome was very different: whereas incorrect responses L^- tended to cause a negative switch effect (Fig. 4c), incorrect transitions (T^-, T^+, and $T^-\rightarrow$) had no effect (Fig. 4d). Furthermore, only the transition bias showed a reset-and-rebound dynamics caused by error responses (Fig. 5c-d). An alternative hypothesis, based on response evoked potential (ERP) findings, proposes that the lateral bias is generated by the processing of the response whereas the transition bias from the stimulus processing (Jones et al., 2013; Wilder et al., 2010). We have no evidence of this separation but the hypothesis makes a simple testable prediction: if the speakers were turned off during the experiment (i.e. remove the stimulus), only the lateral bias should remain.

Why does the transition bias reset after errors? An uncued change in stimulus-outcome contingencies, leading to an unexpected number of unrewarded choices, can trigger an abrupt behavioral change in rats, switching from the exploitation of a statistical model of the environment to an exploration mode in which they sample the environment in an unbiased way in order to build new beliefs (Karlsson et al., 2012). This suggests that our rats abandoned temporarily the exploitation of their internal model represented by their estimate of the transition probability, after experiencing a single unrewarded response, relying almost exclusively on sensory information. Exploitation of the transition model resumed after the subsequent correct
trial. Our reset-and-rebound dynamics of the transition bias could be therefore interpreted as fast switching off of the rule bias caused by an unexpected lack of reward. Possibly, while this bias is ignored it also cannot be updated, which would explain why only ++ transitions impacted subsequent choices (Fig. 4d). In human experiments where feedback is omitted, internal confidence may take the of modulating history biases. In agreement, two recent studies have found that, in the absence of feedback, the impact of a choice on the subsequent trial is weaker if confidence in that choice is low (Braun et al., 2018; Urai et al., 2017). In summary, despite the strong tendency of the brain to use previous experience to guide behavior, even when this strategy hinders performance, it is also equipped with a mechanism that can regulate in a fast and sensible manner its impact on current choices.

This modulation of the accumulated transition evidence by previous outcomes was captured by a novel generative dynamical model (Fig. 6a). This compact and biologically plausible model summarizes how latent variables are stored, updated depending on the last response and outcome, and influence each trial decision giving rise to the observed history biases. Parameter fitting revealed that lateral and transition bias updates correspond to reinforcement learning rules (Behrens et al., 2007) (Fig. 6a and b), that the modulatory signal allowed the transition variable to impact current decision only when previous trial was correct (Fig. 6c). As such the gating signal, growing larger as the number of consecutive correct trials grow, could reflect subjects’ weighted confidence in their internal model of the environment statistics. In this context, recent studies have shown that the noradrenergic system signals the reliability of the internal model and modulates how it informs animal choices (Tervo et al., 2014).

The success of our simple model in reproducing the higher order dependencies of the behavioral data (Fig. 7) provides fundamental support for how different brain areas interact to produce each of the (nuclear) cognitive elements at the basis of the seemingly complex history dependent choice biases. Future pharmacological and electrophysiological experiments under similar experimental conditions will be required to find causally involved brain regions and explore the underlying neural mechanisms at play.
FIGURES:

Figure 1. Auditory discrimination task and stimulus sequence statistics:

(a) Sketch of one trial of the task; cued by center port LED, rats poke in the center port to trigger the presentation of a mixture of two AM tones, each of which is associated with reward in the Left (L) or Right (R) port. Correct responses are rewarded with water and incorrect responses are punished with a light plus a 5 s time-out. (b-c) Serial correlations in the sequence of stimuli were introduced by setting the probability of repeating the previous stimulus category \(P_{rep} \) (top in b) in trial blocks named Repetitive Block and Alternating Block (c). The stimulus strength \(s_k \) was randomly drawn in each trial (bottom in b) to yield the stimulus evidence \(e_k \) that determined the distance to the categorization boundary, i.e. the discrimination difficulty of the stimulus (right in b). (d) The stimulus evidence \(e \) determined the distribution (top) from which the instantaneous evidence was drawn in each cycle of the sound envelope (see color match). An instantaneous evidence trace (middle) and the AM modulated tones that result (bottom) are shown for an example stimulus with \(e = -0.48 \) (asterisks in b and d).
Figure 2. Build up and reset dynamics of the Repeating Bias:

(a) Psychometric curves for an example animal showing the proportion of Right responses vs. stimulus evidence (left) or of Repeated responses vs. Repeating stimulus evidence (right) computed in the Repetitive (blue dots) or Alternating blocks (red dots; color code applies for all panels). This animal shows a block independent fixed side bias $B > 0$ towards the Right (left), and a block-dependent repeating bias b matching the tendency of each block. Curves show fits using a probit function. (b) Proportion of Repeated responses (median across $n=10$ animals) computed in trials following a correct (left) or an incorrect response (right). (c) Repeating bias b versus fixed side bias B in the two blocks after a correct (left) or an incorrect response (right). Each pair of connected dots represents one animal. (d) Left: Fits of the proportion of Repeated responses following trial sequences made of a different number of correct repetitions (blue gradient) or alternations (red gradient; see insets for color code). X^{*} and Y^{*} represent either Right or Left correct responses. E represents an error. Time in the sequences progresses from left to right. Right: same curves obtained when the sequence of correct repetitions is terminated by an error. (e) Repeating bias versus the sequence length of correct repetitions (left, blue) or alternations (right, red). Sequences terminated by an error are shown in black. Dark traces show median across animals while light traces show individual animals. Error bars show Std. Dev. (a) or first and third quartiles (b, e).
Figure 3. GLM assessing the impact of sensory evidence and recent history onto rats choices. (a), Exemplar series of recent history trials used to model rat decisions at current trial \(t \). The Stimulus series depicts the amplitude of each acoustic frame for the low (green bars) and high frequency tones (purple bars). The Response series shows the rat decisions (green for Left and purple for Right). The Transition series shows the relation of two consecutive responses (blue for Repeat, red for Alternation) and the Outcome series indicates whether the responses were rewarded (orange) or not (black). These series are combined to generate the regressors that are grouped into the Sensory (b), Lateral (c) and Transition (d) modules. (b), The weighted sum of the amplitude difference in each acoustic frame of the current trial provides the Stimulus evidence \(\gamma^S_t \). The weighted sum of the net stimulus evidence in each of the previous trials \(t-1, t-2, \text{etc} \) provides the After-effect bias \(\gamma^A_t \). (c), The Lateral module weights separately previous rewarded \(L^+ \) and unrewarded responses \(L^- \) that take the values -1 (Left), +1 (Right) or 0. The sum of these two series gives rise to the lateral bias \(\gamma^L_t \). (d), Transitions are considered separately depending on the outcome of the two trials in the transition: \(T^{++} \) (rewarded-rewarded), \(T^- \) (rewarded-error), \(T^+ \) (error-rewarded) and \(T^- \) (error-error) which take the values -1 (alternation), +1 (repetition) and 0. The weighted sum of transition regressors yields the Transition bias \(\gamma^T \) which is multiplied by the previous response \(r^-1 \) in order to be combined with variables providing Right vs Left evidence. (e), The sum \(\gamma^S_t + \gamma^A_t + \gamma^L_t + r^-1 \gamma^T \) is then passed through a sigmoid function to yield the trial-by-trial probability of selecting a Right response. For each rat, the weights were fitted to maximize the model’s probability to generate the actual animal choices.
Figure 4. Fitted weights quantifying the impact onto animals decisions of the different modules. Average coefficients (n=10 animals) obtained in the GLM when separately fitting the choices in trials after a correct (orange) and error response (black). (a) Frame-by-frame influence of the current stimulus onto rats decisions. (b) Influence of the sensory after-effect caused by the net sensory evidence of previous trials as a function of trial lag (i.e. number of trials back from current trial). (c) Influence of the response side (Left vs Right) from previously rewarded (L+, left panel) and unrewarded (L-, right panel) trials. (d) Influence of previous transitions (repetition vs. alternation) computed separately for T++ (a rewarded trial followed by a rewarded trial), T-+ (error-rewarded), T+- (rewarded-error) and T-- (error-error). (e) Normalized variance averaged over animals (see Methods) quantifies the overall relative impact of each module (current stimulus, sensory after-effect, lateral bias and transition bias) on the rats choices. (a-e) Error bars indicate first and third quartile.
Figure 5. Transition bias is reset after errors but accumulated transition evidence is maintained. (a-b) Schematics showing three example traces of the transition accumulated evidence z_T^t (top) and transition bias on current response γ_T^t (bottom) in two hypothetical scenarios. (a) Complete reset hypothesis: after an error at t, both variables reset $z_T^{t+1} = \gamma_T^{t+1} = 0$. Evidence z_T^{t+2} is then built-up de novo, implying that biases before (γ_T^t) and after (γ_T^{t+2}) the reset are uncorrelated (i.e. γ_T^t traces do not maintain the sorting). (b) Gating hypothesis: after an error, evidence z_T^{t+1} is maintained but it does not convert into a bias, leading to the reset $\gamma_T^{t+1} = 0$. After a correct response at $t+1$ the conversion is recovered and the value γ_T^{t+2} correlates with γ_T^t (i.e. γ_T^t traces maintain the sorting). (c) Transfer coefficient $\gamma_T^t \rightarrow \gamma_T^{t+k}$ versus trial lag k, quantifying the degree to which the transition bias at trial t affects the bias on subsequent trials, is calculated separately depending on the outcome of each trial (black lines show rewarded choices and colored lines error choices). While the transfer coefficient vanishes after errors (i.e. reset of the bias; black dots), a correct response following an error (orange) brings it close to the value obtained when there are no errors (red dots). This implies that the information about the value of the bias γ_T^t must be maintained when the bias is reset (i.e. gating hypothesis). (d) Same as in c but computed for lateral bias γ_L^t. (e) Average coefficients for transitions $T++$ ($n=10$ animals) obtained when the GLM is fitted separately depending on the outcome of last two trials (see inset; e.g. $-+$ represents that $t-2$ was incorrect and $t-1$ was correct). Error bars indicate the first and third quartiles.
Figure 6. Dynamic generative model of history-dependent perceptual decisions. (a) Architecture of the model. Decisions integrate the evidence from the sensory, lateral and transition modules. The Sensory module accumulates the instantaneous evidence of each stimulus frame of the current trial. The lateral module maintains a representation of the lateral bias z_L which is updated depending on the side and outcome of each trial response (weights Δ_L), and has an outcome-dependent leak λ_L. The transition module maintains the accumulated transition evidence z_T, is updated depending on the last transition (e.g. repetition ++, alternation +-, etc; weights Δ_T) and has an outcome-dependent leak λ_T. Evidence z_T is multiplied at each trial by the modulatory signal c_T, updated by the outcome of each response (weights Δ_C), to yield the transition bias $\gamma_T = z_T c_T$. The sum of sensory evidence and the lateral and transition biases determined the probability to choose either response at the current trial. Parameters were fitted to the choices of each rat separately. (b-e). Best-fitting values of the update parameters in the generative model (median across rats). (b) update of the lateral bias Δ_L depending on trial outcome (c) outcome-dependent leak of the lateral bias λ_L. (d) update of the transition bias Δ_T depending on outcome of the last two trials (++, +-, -, ++). (e) outcome-dependent leak of the transition bias λ_T. (f) outcome-dependent update of the transition gating signal Γ_C. A value of -1 correspond to an extinction of the confidence signal on the subsequent trial (i.e. a full blockade of the corresponding bias), while +1 correspond to full recovery of the bias (i.e. confidence equal to its maximum value of 1). (g) Example of the model dynamics across 25 trials switching from a repetition to an alternation block (model parameters were fitted to an example animal). Traces from top to bottom depict the stimulus evidence, lateral bias z_L, transition bias z_T, transition modulatory signal c_T and overall probability to choose a Right response. The inputs to the variables z_L, z_T and c_T are shown as a sequence of symbols on the corresponding trial axis: Left (green) vs. Right (purple) responses, repeating (blue) vs. alternating (red) transitions and rewarded (orange) vs. error (black) outcomes. Symbols shape represent different outcome combinations (see inset). Notice the reset of c_T after errors and the maintenance of z_T afterwards (asterisks).
Figure 7. Generative model simulation compared to experimental data:
Comparison between experimental data (dots) and model simulation (black curves) showing the Repeating bias b for different trial sequences. In the model, b was decomposed into the transition bias (blue curves) and lateral bias (green curves). (a) Similar to Fig 2e. Repeating bias b versus number n of correct repetitions (top) or alternations (bottom). (b) Similar to Fig 2e. Repeating bias after a repetitive (top) or alternating sequence (bottom) terminated by an error. (c) Repeating bias for sequences with an error E flanked by correct repetitions (top) or alternations (bottom). (d) Repeating bias for all sequences made of $n \leq 8$ repetitions (R) and alternations (A). Top panel shows correct sequences while bottom panel shows correct sequences terminated by an error. In all panels, data and model show median across $n=10$ rats. Error bars and shaded areas show first and third quartiles.
ONLINE METHODS

All experimental procedures were approved by the local ethics committee (Comité d’Experimentació Animal, Universitat de Barcelona, Spain, Ref 390/14).

Animal Subjects

Animals were male Long-Evans rats (n=25, 350-650g; Charles River), pair-housed during behavioral training and kept on stable conditions of temperature (23°C) and humidity (60%) with a constant light-dark cycle (12h:12h, experiments were conducted during the light phase). Rats had free access to food, but water was restricted to behavioral sessions. Free water during a limited period was provided on days with no experimental sessions.

Task description

The two tasks performed were auditory reaction-time two-alternative forced choice procedures: an LED on the center port indicated that the rat could start the trial by poking in (Fig. 1a). After a fixation period of 300 ms, an acoustic stimulus consisting in a superposition of two amplitude-modulated sounds (see details below) was presented. The rats had to discriminate the dominant sound and seek reward in the associated port. Animals could respond any time after stimulus onset. Withdrawal from the center port during the stimulus immediately stopped the stimulus. Correct responses were rewarded with a 24 µl drop of water and incorrect responses were punished with a bright light and a 5 s time-out. Trials in which the rat did not make a side poke response within 4 seconds after leaving the center port were considered invalid trials and were excluded from the analysis (on average, only 0.4% of the trials were invalid). Behavioral setup (Island Motion, NY) was controlled by a custom software developed in Matlab (Mathworks, Natick, MA), based on the open-source BControl framework (http://brodylab.princeton.edu/bcontrol). Rats performed an average of 694 trials per session (range: 335 - 1188), one session per day lasting 60-90 min, 6 days per week, during 9 months. Rats were trained using an automated training protocol that had several stages and lasted between 2 and 3 months (depending of the animal). The data presented in this study was taken from the period after training yielding an average of 56,506 valid trials per rat. A first group of ten rats were trained in the frequency discrimination version of the task (see below) in which the correlated sequence of trials was present from the training. A subset of three rats from this group were also trained in a random time-out version of the task where the duration of the after-error time-out was randomly chosen between 1, 3 or 5 s. A second group of n=9 rats were trained in the same frequency discrimination version of the task but starting with uncorrelated stimulus sequences and only after several weeks, introducing the correlated sequences used in the first group of animals. A third group of n=6 rats were trained in a level discrimination version of the task using the same correlated sequence than the first group.

Acoustic stimulus

In the two acoustic tasks used, the stimulus $S(t)$ in each trial was created by simultaneously playing two amplitude modulated (AM) sounds $s_R(t)$ and $s_L(t)$:

\[
S(t) = \left[1 + \sin(f_{AM}t + \phi) \right] \left[a_L(t) s_L(t) + a_R(t) s_R(t) \right]
\]

(1)
The AM frequency was $f_{AM}=20$ Hz and the phase delay $\varphi = 3\pi/2$ made the envelope zero at $t=0$. In the frequency discrimination task, $s_L(t)$ and $s_R(t)$ were pure tones with frequencies 6.5 kHz and 31 kHz, respectively, played simultaneously in the two speakers. In the level discrimination task (Supplementary Fig. 7) they were broadband noise played either from the Left or the Right speaker, respectively. The amplitudes of the sounds $s_L(t)$ and $s_R(t)$ were separately calibrated at 70 dB. Sounds were delivered through generic electromagnetic dynamic speakers (STAX, SRS-2170) located on each side of the chamber, and calibrated using a free-field microphone (Med Associates Inc, ANL-940-1).

Stimulus Sequence

The Markov chain generated the sequence of stimulus category $c_k=\{-1,1\}$, that determined whether the reward in the k-th trial was available in the Left or the Right port respectively (Fig. 1b top). The stimulus category set which of the two sounds $s_L(t)$ and $s_R(t)$ composing each stimulus was dominant, which ultimately determined the statistics of the sound amplitudes $a_L(t)$ and $a_R(t)$ (Eq. 1) as described below. In each trial, independently of c_k, the stimulus strength s_k was also randomly generated (Fig. 1b bottom). Stimulus strength defined the relative weights of the dominant and non-dominant sounds: for example, when $s_k=1$ only the dominant sound was played (i.e. easiest trials) whereas when $s_k=0$ the two sounds had on average the same amplitude (i.e. hardest trials). We used four possible values for $s=0$, 0.23, 0.48 and 1. The stimulus evidence was defined in each trial as the combination $e_k = c_k * s_k$. The value of e_k determined the p.d.f. from which the instantaneous evidence $x(t)$ was drawn in each frame t (i.e. in each 50 ms AM-envelope cycle; Fig. 1d top): when $e_k=\pm 1$ the p.d.f. was $f(x) = \delta(x \mp 1)$ (i.e. a Dirac delta p.d.f.) whereas when $e_k \in (-1,1)$, it was a stretched Beta distribution with support $[-1,1]$, mean equal to e_k and variance equal to 0.06 (Fig. 1d top). Finally, the amplitudes $a_L(t)$ and $a_R(t)$ of the two AM envelopes (Eq. 1) were obtained using $a_L(t)=[1+x(t)]/2$ and $a_R(t)=[1-x(t)]/2$ (see example in Fig. 1d). With this choice the sum of the two envelopes was constant in all frames $a_L(t)+a_R(t)=1$.

Psychometric curve analysis

We computed two types of psychometric curves for each animal, by pooling together trials across all sessions for each type of block and for each of the 7 different stimulus evidences ($e=0, \pm 0.23, \pm 0.48, \pm 1$). We calculated (1) the proportion of Right responses vs. stimulus evidence e (Fig. 1a left) and (2) the Proportion of Repeated responses as function of Repeating Stimulus Evidence (Fig. 1b), where positive or negative Repeating Stimulus Evidence denote trials in which the animals had evidence to repeat their previous choice (e.g. a Right stimulus with evidence $e = +0.23$ after a Left response implied a repeating stimulus evidence equal to -0.23). Both psychometric curves were separately fitted to a 2-parameter probit function (using Matlab function `nlinfit`):

$$f(x) = \frac{1}{2} \left(1 + erf \left(\frac{x+\alpha}{\beta}\right)\right)$$

(2)

The sensitivity β quantified the stimulus discrimination ability, while the bias α in the Proportion of Right responses captures the animal Fixed side preference for the Left or Right port, and the bias α in the Proportion of Repeated responses arose from the expectation generated by the history of recent choices, i.e. it showed the animal’s tendency to repeat or alternate their
previous choice. We termed these two biases the Fixed side bias B and the Repeating bias b, respectively. Within-subject error bars were estimated by one standard deviation of a non-parametric bootstrap ($n=1000$). Across-subject error bars, corresponded to the first and third quartiles.
REFERENCES

Abrahamyan, A., Silva, L.L., Dakin, S.C., Carandini, M., and Gardner, J.L. (2016). Adaptable history biases in human perceptual decisions. Proc. Natl. Acad. Sci. United States Am. 113, E3548–E3557.

Akaishi, R., Umeda, K., Nagase, A., and Sakai, K. (2014). Autonomous mechanism of internal choice estimate underlies decision inertia. Neuron 81, 195–206.

Akrami, A., Kopec, C.D., Diamond, M.E., and Brody, C.D. (2018). Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372.

Asari, H., and Zador, A.M. (2009). Long-lasting context dependence constrains neural encoding models in rodent auditory cortex. J. Neurophysiol. 102, 2638–2656.

Ashourian, P., and Loewenstein, Y. (2011). Bayesian inference underlies the contraction bias in delayed comparison tasks. PloS One 6, e19551.

Behrens, T.E.J., Woolrich, M.W., Walton, M.E., and Rushworth, M.F.S. (2007). Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221.

Braun, A., Urai, A.E., and Donner, T.H. (2018). Adaptive History Biases Result from Confidence-weighted Accumulation of Past Choices. J. Neurosci. Off. J. Soc. Neurosci.

Busse, L., Ayaz, A., Dhruv, N.T., Katzner, S., Saleem, A.B., Schöllvinck, M.L., Zaharia, A.D., and Carandini, M. (2011). The detection of visual contrast in the behaving mouse. J. Neurosci. Off. J. Soc. Neurosci. 31, 11351–11361.

Cho, R.Y., Nystrom, L.E., Brown, E.T., Jones, A.D., Braver, T.S., Holmes, P.J., and Cohen, J.D. (2002). Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. Cogn. Affect. & Behav. Neurosci. 2, 283–299.

Cicchini, G.M., and Kristjánsson, Á. (2015). Guest Editorial: On the Possibility of a Unifying Framework for Serial Dependencies. I-Perception 6.

Corrado, G.S., Sugrue, L.P., Sebastian Seung, H., and Newsome, W.T. (2005). Linear-Nonlinear-Poisson Models of Primate Choice Dynamics. J. Exp. Anal. Behav. 84, 581–617.

Fischer, J., and Whitney, D. (2014). Serial dependence in visual perception. Nat. Neurosci. 17, 738–743.

Fritsche, M., Mostert, P., and de Lange, F.P. (2017). Opposite Effects of Recent History on Perception and Decision. Curr. Biol. CB 27, 590–595.

Fründ, I., Wichmann, F.A., and Macke, J.H. (2014). Quantifying the effect of intertrial dependence on perceptual decisions. J. Vis. 14.

Gallistel, C.R., Fairhurst, S., and Balsam, P. (2004). The learning curve: implications of a quantitative analysis. Proc. Natl. Acad. Sci. United States Am. 101, 13124–13131.

Gibson, J.J. (1937). Adaptation, after-effect, and contrast in the perception of tilted lines. II.
Simultaneous contrast and the areal restriction of the after-effect. J. Exp. Psychol. 20.

Gibson, J.J., and Radner, M. (1937). Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J. Exp. Psychol. 20.

Gökaydin D., Navarro D. J ., Ma-Wyatt A., Perfors A. (2014). Humans use different statistics for sequence analysis depending on the task. Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (CogSci 2011), held in Boston, USA 20-32 July 2011 / L. Carlson, C. Hoelscher and T. Shipley (eds.): pp.543-548.

Gold, J.I., Law, C.-T., Connolly, P., and Bennur, S. (2008). The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J. Neurophysiol. 100, 2653–2668.

Goldfarb, S., Wong-Lin, K., Schwemmer, M., Leonard, N.E., and Holmes, P. (2012). Can post-error dynamics explain sequential reaction time patterns? Front. Psychol. 3, 213.

Hollingsworth, H.L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology and Scientific Methods 7, 461.

Hwang, E.J., Dahlen, J.E., Mukundan, M., and Komiyama, T. (2017). History-based action selection bias in posterior parietal cortex. Nat. Commun. 8, 1242.

Jones, M., Curran, T., Mozer, M.C., and Wilder, M.H. (2013). Sequential effects in response time reveal learning mechanisms and event representations. 120, 628–666.

Kalm, K., and Norris, D. (2018). Visual recency bias is explained by a mixture model of internal representations. J. Vis. 18, 1.

Karlsson, M.P., Tervo, D.G.R., and Karpova, A.Y. (2012). Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Sci. 338, 135–139.

Kim, T.D., Kabir, M., and Gold, J.I. (2017). Coupled Decision Processes Update and Maintain Saccadic Priors in a Dynamic Environment. J. Neurosci. Off. J. Soc. Neurosci. 37, 3632–3645.

Kirby, N.H. (1976). Sequential Effects in Two-Choice Reaction Time: Automatic Facilitation or Subjective Expectancy? J. Exp. Psychol. Hum. Percept. Perform. 2, 567–577.

Lau, B., and Glimcher, P.W. (2005). Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys. J. Exp. Anal. Behav. 84, 555–579.

Lueckmann, J.-M., Macke, J.H., and Nienborg, H. (2018). Can Serial Dependencies in Choices and Neural Activity Explain Choice Probabilities? J. Neurosci. Off. J. Soc. Neurosci. 38, 3495–3506.

Meyniel, F., Maheu, M., and Dehaene, S. (2016). Human Inferences about Sequences: A Minimal Transition Probability Model. PLoS Comput. Biol. 12, e1005260.

Murakami, M., and Mainen, Z.F. (2015). Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Curr. Opin. Neurobiol. 33, 40–46.

Nassar, M.R., Wilson, R.C., Heasly, B., and Gold, J.I. (2010). An approximately Bayesian
delta-rule model explains the dynamics of belief updating in a changing environment. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30, 12366–12378.

Natan, R.G., Briguglio, J.J., Mwilambwe-Tshilobo, L., Jones, S.I., Aizenberg, M., Goldberg, E.M., and Geffen, M.N. (2015). Complementary control of sensory adaptation by two types of cortical interneurons. ELife 4.

Nogueira, R., Abolafia, J.M., Drugowitsch, J., Balaguer-Ballester, E., Sanchez-Vives, M.V., and Moreno-Bote, R. (2017). Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nat. Commun. 8, 14823.

Papadimitriou, C., Ferdoash, A., and Snyder, L.H. (2015). Ghosts in the machine: memory interference from the previous trial. J. Neurophysiol. 113, 567–577.

Pardo-Vazquez, J. L., Castineiras, J., Valente, M., Costa, T. & Renart, A. (2018). Weber’s law is the result of exact temporal accumulation of evidence. BioRxiv, doi: 10.1101/333559.

Purcell, B.A., and Kiani, R. (2016). Neural Mechanisms of Post-error Adjustments of Decision Policy in Parietal Cortex. Neuron 89, 658–671.

Seriès, P., and Seitz, A.R. (2013). Learning what to expect (in visual perception). Front. Hum. Neurosci. 7, 668.

Soetens, E., Boer, L.C., and Hueting, J.E. (1985). Expectancy or automatic facilitation? Separating sequential effects in two-choice reaction time. J. Exp. Psychol. Hum. Percept. Perform. 11.

Sommer, W., Leuthold, H., and Soetens, E. (1999). Covert signs of expectancy in serial reaction time tasks revealed by event-related potentials. Percept. & Psychophys. 61, 342–353.

Sugrue, L.P., Corrado, G.S., and Newsome, W.T. (2004). Matching Behavior and the Representation of Value in the Parietal Cortex. Science 304, 1782–1787.

Sutton, R., and Barto, A. (1998). Reinforcement learning: An Introduction (MIT Press).

Tervo, D.G.R., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson, K., and Karpova, A.Y. (2014). Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell 159, 21–32.

Thompson, P., and Burr, D. (2009). Visual aftereffects. Curr. Biol. CB 19, R11–R14.

Urai, A.E., Braun, A., and Donner, T.H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8, 14637.

Urai, A.E., de Gee J. W., and Donner, T.H. (2018). Choice history biases subsequent evidence accumulation. BioRxiv, doi: 10.1101/251595.

Wilder, M.H., Jones, M., and Mozer, M.C. (2010). Sequential effects reflect parallel learning of multiple environmental regularities. Adv. Neural Inf. Process. Syst. - Proc. Conf. 2053–2061.