Isolation and Characterization of Melanin Producing Pseudomonas stutzeri Strain UIS2 in the Presence of L-tyrosine and Survey of Biological Properties of Its Melanin

Sahar Eskandari1, Zahra Etemadifar1*

1. Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran

10.30699/ijmm.14.1.70

ABSTRACT

Background: Melanin is a negative charge hydrophobic complex pigment. Melanin is produced naturally in bacteria to protect them against UV, free radicals and environmental stresses. Pigment production in bacteria has more advantages than other biosources due to its rapid growth, higher efficiency and easier extraction. The aim of this study was the isolation, biochemical and molecular identification the melanin pigment producing bacterium in the presence of L-tyrosine and the evaluation of the pigment biological properties.

Materials & Methods: The soil sample was collected from the University of Isfahan Park, and cultured in nutrient agar medium containing L-tyrosine. The colony with brown halo was isolated and identified using phenotypic and molecular methods. The bacterial growth and melanin production were evaluated by spectrophotometry at 600 and 400 nm, respectively. The melanin pigment was extracted by increasing the acidity of the broth culture supernatant. The melanin production yield, antioxidant activity and sun protection factor (SPF) of melanin were determined.

Results: Pseudomonas stutzeri strain UIS2 capable to grow in nutrient agar and melanin production, was isolated and registered in NCBI GenBank with accession no. MGS19615. The maximum melanin production was obtained 600 mg l⁻¹ by isolated strain. The antioxidant property of melanin in DPPH test was determined as 74.9% and its SPF was 49.05 U/mL.

Conclusion: The melanin pigment from the isolated Pseudomonas showed high SPF and high antioxidant activity against ROS stresses. So, it can be suggested as a suitable candidate for application in cosmetic, pharmaceutical, and environmental decontaminant.

Keywords: Antioxidant, SPF, Melanin pigment, Pseudomonas stutzeri

Introduction

Melanin is a negative charge hydrophobic complex pigment that is a substance made of small particles virtually insoluble in the environment and is usually used for its color, protective or other characteristics. Pigments are of particular importance in many industries, including the food and pharmaceutical industries (1). The importance of microbial pigments has been emphasized in a variety of applications including cosmetics, food, pharmaceuticals and textiles, and they also have cytotoxic, antioxidant, antimicrobial, anti-cancer, anti-tumor, and anti-combustion activities (3-5). It is also known as a potent antioxidant, antivirus, and antibiotic, in addition to being able to protect organisms against toxic free radicals, protect...
against pathogenic bacteria, and regulate heat. Melanin can be produced in bacteria by chemical synthesis methods based on tyrosine oxidation and enzyme catalysis. One of the problems with the use of melanin extracted by microorganisms is the presence of impurities of toxic secondary metabolites that cannot be used in medicine and food. Other problems include insolubility in water and solubility in organic materials. Melanin is classified into three forms: eumelanin, pheomelanin, and neuromelanin (7, 4).

Melanin producing bacteria include some species of Aeromonas, Streptomyces, Bacillus, Vibrio, and Alteromonas (3, 11-13). Melanin produced from the bacteria Azotobacter chroococcum and Burkholderia cenocepacia has strong antioxidant properties and therefore they can protect themselves against environmental free radicals (14).

Water-soluble brown pigment pheomelanin can be synthesized by Pseudomonas species including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Pseudomonas putida using a tyrosinase mechanism within 24 to 48 hours (5, 16, 17).

In this study, the bacterium Pseudomonas stutzeri UIS2 was isolated to produce melanin in the presence of L-tyrosine. This is the first report of a P. stutzeri bacterium that produces high levels of melanin only in the presence of L-tyrosine. Melanin pigment extraction and its structure have been studied using spectroscopic analysis methods and its protective properties against sunlight and its antioxidant inhibition have been determined.

Materials and Methods

To separate the melanin producing bacteria from the soil sample, 1 g of each sample was added to 10 mL of 8.5% normal saline buffer in a 50 mL flask, and was shaken (60 rpm) for 30 min at 37°C (18). Initial identification was done by gram staining, morphological and biochemical tests (21–19). Melanin production during bacterial growth was monitored by spectrophotometer at 400 and 600 nm in comparison with melanin standard (7). KOH test was used to confirm the staining. Biochemical tests were used to identify the isolates initially.

After extraction of the isolated strain gene by boiling cell mass grown in Loria-Brittany broth culture, molecular identification using primers 1492R 5′-CGTTACCTTGTTACGACTT-3′ and 27F-YM 3′-AGAGTTGCT-3AG-AGAGTTGCT-5′. 16S rRNA gene fragment amplification with about 1500 open pairs was performed by PCR and amplified fragment sequencing. Sequence of the above product was blasted in NCBI and MEGA-6 software was used to draw the phylogenetic tree. To do this, the homologous strain sequences were first extracted from the NCBI site and then sequenced by the Muscle program in MEGA-6 software (7).

The melanin pigment was then extracted and then purified. To determine the potency of a sunscreen with a sun protection factor (SPF). To determine the extracted SPF of melanin as a sunscreen metabolite, it was first dissolved in a specific concentration in ethanol and then its UV absorption from a wavelength of 290 to 320 nm at a distance of 5 nm was measured by spectrophotometer and calculated by the following equation (24):

\[
SPF = CF \times \sum_{\lambda = 290}^{320} E \times \lambda \times (Abs(\lambda))
\]

The free radical scavenging activity of the pigment extract of Melanin bacterium was measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) using modified Brand-Williams et al. method. Ascorbic acid was used as standard composition and tested in three replications. The percent inhibition of DPPH compound was calculated using the following equation (4):

\[
DPPH\text{ inhibition}(\%) = \frac{(control\text{ absorbance} - test\text{ absorbance}) \times 100}{control\text{ absorbance}}
\]

Results

Among the grown bacteria, gram-negative bacillus, strain 2 UIS, was isolated from soil samples of Isfahan University Park with the ability to produce melanin on the L-tyrosine-containing medium. The formation of a brown or black area around the isolated colonies in the culture meioThe biochemical properties of this bacterium were able to grow at acidity of 8.5 and at optimum temperature of 35°C under aerobic condition, catalase and oxidase positive conditions, indole, MR, VP and negative H2S, negative gelatinase, positive citrate intake, casein hydrolysis and positive. The bacterial colonies were pink on MacConkey agar, yellow on nutrient agar, and brown on tyrosine agar.

The gel image corresponding to the PCR strain isolated in Figure 2 shows the product of 1500 matched pairs against the DNA marker. The sequences obtained from the PCR product after blast in NCBI showed 99.92% similarity with P. stutzeri (accession number AB680324.1). The isolated strain of melanin pigment generator was accessed at NCBI GenBank National Biotechnology Information Center under accession number MG519615. The phylogenetic tree was constructed by multiple sequences with evolutionary intervals by software. Tree topology was analyzed by bootstrap analysis of 100 datasets using MEGA6.1 software (Figure 3). Its phylogenetic tree also shows the close phylogenetic relationship of the sequenced strain with P. stutzeri.
Melanin pigment was produced in the resting phase of bacterial growth after 70 h with the appearance of black pigment in broth medium. Generally, melanin produced by this bacterium was about 600 mg/L. Melanin purity was observed by observing the absorbance peak at 210 nm (Figure 4).

DPPH inhibition was obtained by measuring absorbance at 516 nm at about 75% and close to standard ascorbic acid (78%) as shown in Figure 5.

The results of UV absorption at different wavelengths and SPF calculation are presented in Table 1. The SPF of melanin obtained from P. stutzeri UIS2 strain was found to be 49.05 as the inhibitor of ultraviolet radiation.

Figure 1. P. stutzeri bacterium after 24 h in a 2 g / L L-tyrosine agar medium incubated at 30°C in degrading L-tyrosine and primary melanin production.

Figure 2. PCR image of 16S rRNA gene of some isolated melanin producing strains: (1) UIS19 strain, (2) UIS2 strain, and (3) 1kb marker DNA.

Figure 3. Phylogenetic tree of the melanin-producing UIS2 strain isolated (MG519615 Pseudomonas accession number isolate in the box marked whose 16S rRNA sequence was 99.92% similar to that of P. stutzeri bacterium accession number AB660324.1).
Table 1. Optical Adsorption Results of Melanin Isolated *P. stutzeri* UIS2 Strain by Melanin Dissolution in Methanol for Determination of SPF

λ (nm)	Abs	EE.I	EE.I × Abs
290	0.686	0.015	0.01029
295	0.672	0.0817	0.0549024
300	0.648	0.2874	0.1862352
305	0.831	0.3278	0.2724018
310	0.794	0.1864	0.1480016
315	0.642	0.0839	0.0538638
320	0.632	0.018	0.011376

Discussion

Pseudomonas stutzeri is a gram-negative bacillus with flagella and grows under aerobic conditions on medium containing starch and maltose and is unable to degrade arginine and glycogen. Its difference with other Pseudomonas strains is that they do not produce fluorescence pigment and are very similar to those of *Pseudomonas alcaligenes*, and *Pseudomonas putida*. This bacterium is difficult to isolate because of limited nutrient requirements for growth and is well grown in medium containing low ammonium nitrate and incubation temperature of 37°C.

The new colonial form of this bacterium differs from that of other Pseudomonas spp. The colonies are dry, hard, wrinkled and branched, but it is easy to remove from the surface of the solid medium and changes in shape and color after some time. For this bacterium, a
very wide growth temperature range between 4 and 45 °C has been reported (26).

Melanization has important roles such as protecting and adapting to various physiological and chemical stressors such as temperature, radiation, humidity, and toxicity by various contaminants in microorganisms (33).

Maximum melanin production in isolated UIS2 strain Pseudomonas was about 600 mg/L, which is 3.6 times higher than that of Streptomyces bikiniensis with 166 mg/L melanin in culture medium containing yeast and peptone extracts. In Yarrowia lipolytica yeast the production of melanin is about 160 mg/L, and Klebsiella GSK mediated by tyrosine is reported at about 130 mg/L (34). On the other hand, HMGM-7 strain of Pseudomonas stutzeri produces about 6.7 g/L of melanin under optimum conditions (20), which is higher than the native isolate in this study due to the optimization performed.

The sun protection factor of the strain isolated in this study was 40.05 which is very good compared to the synthetic and natural ingredients used in cosmetics. It is also worth noting that the production of melanin as a solar UV blocker using non-pathogenic environmental bacteria in the presence of L-tyrosine is much faster and with higher production rates than metabolites produced by algae and cyanobacteria.

Conclusion

Pseudomonas stutzeri was isolated as a melanin producing bacterium in this study, which was able to grow in a simple medium (nutrient agar) containing L-tyrosine and melanin synthesis. The biological properties of the isolated melanin strain have been determined for use in industry. Melanin pigment of this strain showed high antioxidant activity against ultraviolet radiation and oxidative stress ROS. Isolated melanin can be used in cosmetics, pharmaceuticals, agriculture, and environmental contaminants. Its antioxidant properties can inhibit DNA damage and other biological compounds. In addition, melanin is used as a skin protection agent in creams and cosmetics.

Acknowledgement

The authors would like to thank the research assistant of the University of Isfahan for the financial support of this research which was a part a doctoral thesis.

Conflict of Interest

Authors declared no conflict of interests.
چکیده

زمینه و اهداف: رنگ‌دانه‌های ملانین ساختار پیچیده‌ای دارای ابعادی بسیار کوچک و پر ارتباط با بیماری‌های یکی از منابعی است که با اکسیدات‌های کلرید آبی و رنگ‌دانه‌های مستقر، هوا به همراه با رنگدانه‌های قهوه‌ای و رنگدانه‌های کمیاء، به شکل درون‌کاتی، در پراکنده‌سازی و فعالیت رنگ‌دانه‌های ملانین اثر می‌گذارد. نتایج آزمایش‌های مختلف نشان داده است که رنگ‌دانه‌های ملانین برای براندازی قالب‌های کلرید آبی، رنگ‌دانه‌های قهوه‌ای و رنگ‌دانه‌های کمیاء می‌توانند تأثیر مثبتی داشته باشند.

مواد و روش‌ها: دانه‌های شیمیایی ملانین از دانه‌های سیاه، قهوه‌ای و سبز تهیه شده‌ند که با استفاده از روش‌های متفاوتی، به شیوه‌های مختلفی ساخته شدند. در این بخش، روند تهیه دانه‌های ملانین مورد بررسی قرار گرفت.

نتیجه‌گیری: رنگ‌دانه‌های ملانین به عنوان محصولات مفیدی و از لحاظ مایع و وسیع استفاده در دانه‌های سیاه، قهوه‌ای و سبز می‌توانند به عنوان محصولات اقتصادی و نوآورانه در زمینه پزشکی و بهبود دهنده محیط زیست در نظر گرفته شوند.

کلیدواژه‌ها: رنگ‌دانه ملانین، سیاه‌پوشی، پژوهشگران

اطلاعات مقاله

تاریخچه مقاله

دریافت: 1398/11/18
پذیرش: 1398/12/06
انتشار آنالیز: 1398/10/04

مقدمه

رنگ‌دانه‌های ماده‌ای است که از ذرات کوچک تشکیل شده و در محیط کاربردی عملاً نامحلول است و به‌دلیل خاصیت رنگی، محافظتی با سایر خواص آن استفاده می‌شود. رنگ‌دانه‌ها از اهمیت ویژه‌ای در بسیاری از صنایع از جمله صنایع غذایی و دارویی برخوردارند. با توجه به ارتباط منجر به دسته‌بندی سالمات منفی و محیط زیست، روند توسعه برای استفاده از رنگ‌دانه‌های میکروبی، برای مصارف منجمد، محصولات ایمن و تحت تاکید قرار گرفته است. بنابراین، رنگ‌دانه‌های میکروبی که با دلیل توانایی تولید رنگ‌دانه‌های ملانین در حضور تیروزین و بررسی خصوصیات بیولوژیک ملانین آن، گزینه‌ای برتر برای ایمنی‌پذیری و کاهش بیماری‌های مرتبط است.
مطالعه باکتری دانه ملانین استخراج و ساختار آن با استفاده از تولید

که قابل استفاده در دارو و غذا نمی شود. ملانین با ضعف حلولیت و حرکت (فرایند خورشید و مهار آنتی-

شومان، اکسیداسیون و کاتالیز آنزیم تولید کرد.

میکروگریمیها و وجود ناخالصی های ملانین، مشکلاتی که در جداسازی آن از منابع طبیعی و حلولیتی ضعیف

مانند هگراز، کلوفر، امپ استنت، انتول، و مناول سلول سپری شده از این روش تولید

میکروگریمیها از زمینه‌های امیدوارکننده و نظیر مصرف مشترک، نمی شود.

(10).

باکتری‌های تولید کننده ملانین شامل برخی از گونه‌های

میکروگریمیها و پوسپسیامیکا

با استفاده از روش‌های مورفولوژیکی و پوسپسیامیکا

با استفاده از Radyakال Hawks (14).

جانس سوس مسحی (13-11) ملانین تولید شده از باکتری‌های اتروپلاکتکر کروپتیک و پوسپسیامیکا خاص و داشت و به بیشتر دلیل این باکتری‌ها می‌توانند در

راه‌یابی آزاد محیطی از خود محافل مشترک (14)

باکتری‌های آزادی اتروپلاکتکر است.

که در آن از اکسیژن استفاده می‌شود. به‌هم‌گونه‌ی جنس سوس مسحی (13-11) ملانین تولید شده از

با استفاده از Radyakال Hawks (14).

جانس سوس مسحی (13-11) ملانین تولید شده از باکتری‌های اتروپلاکتکر کروپتیک و پوسپسیامیکا خاص و داشت و به بیشتر دلیل این باکتری‌ها می‌توانند در

راه‌یابی آزاد محیطی از خود محافل مشترک (14)

باکتری‌های آزادی اتروپلاکتکر است.

که در آن از اکسیژن استفاده می‌شود. به‌هم‌گونه‌ی جنس سوس مسحی (13-11) ملانین تولید شده از
روسب ملانین با محلول استوک-متانول به نسبت 1:1 دوباره تشکیل داده شد. سپس در طول 45 دقیقه ملایس و شرایط تاریکی خشک، در خلال UV و UV-C، جذب می‌گیرد. DMSO سه نانومتری استاندارد استفاده شد. ۲۰۰ میلی‌لیتر از محلول استون خاتمه‌دار خواندند. سپس دو محیط کشت فوق، وزن رسوب نهایی ملانین برحسب میلی‌گرم بر حجم محیط اولیه نمایش داده شده است.

(77)

به منظور تعیین بیانات و روند‌ها با استفاده از روش اصلاح شده برند مالین، نانوزن رنگ‌دانه در شرایط کشت فوق، وزن رسوب نهایی ملانین برحسب میلی‌گرم بر حجم محیط اولیه نمایش داده شده است.

(۴۴)

در این مطالعه، استخراج رنگ‌دانه به صورت رنگ‌دانه و رنگ‌دانه بکر در محیط کشت با توجه به فشار و فرکانس رنگ‌دانه، بیان و شناسایی مولکولی انجام شد. سپس در ظرف کشت، به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظرف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظرف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد. سپس در ظروف کشت به مدت ۴۸ ساعت، با استفاده از محلول استون، ملانین استخراج شد.
نتایج

جذاسازی و غربالگری

از میان باکتری‌های رشد بافت، باکتری میله‌ای گرم منفی بنام سویه UIS2 از تومه‌ها امکان می‌پذیرد تولید ملانین بر روی محفظ کشت تولید اکثریت آگار خاکی آل- تیروزین سودومانس. شکل: ۱. تشکیل منطقه قهوه‌ای با سباه در اطراف کلنی‌های جدا شده در محیط کشت نشانه‌های سنتز ملانین بوده است (شکل ۱).

ویژگی‌های مورفولوژیکی و بیوشیمیایی

سویه UIS2 باکتری میله‌ای گرم منفی در این مطالعه بهعنوان سویهای با توانایی تولید ملانین توسط آنزیم تیروزیناز جذاسازی شده و در محیط کشت های سویه UIS2 سودومانس آگار به‌خوبی رشد فیت‌های است. از مشخصات King’s B آگار و بیوشیمیایی باکتری‌های اولیه رشده در سپیدیت ۸.۵ درجه سانتی‌گراد در شرایط ولایی، کاتالاز و اکسیداز مثبت ۳۵ درجه سلسیوس، در شرایط هواتی، هیپرولیز و نشسته H_{2}S مثبت، یانولیز، و VP, MR منفی، زلانینز منفی، مصرف سلولز مثبت، هیدرولیز کاربنیک و نشاسته مثبت بوده است. برگه

شکل ۱. پترن‌های رنگ‌آمیزی سویه UIS به رنگ صورتی بر روی مکانیکی آگار، به رنگ زرد روان تولید اکثریت آگار دیده شد.

شکل ۲. تصویر زل PCR 16S rRNA باکتری سویه‌های جذاسازی شده مولد ملانین: (1) سویه UIS19، (2) سویه UIS2 و (3) S. mutans. 1kb DNA مارکر.
نتایج PCR تغییر و رسم درخت

توصیف عجیب به PCR محصول 1500 زوج باری را در مقاله مارکر DNA نشان داده است. توالی حاصل از محصول PCR پس از بلاست در NCBI شیب شد. سه توالی (شرهه دسترسی (شماره دسترسی AB680324.1) نشان داد. سه توالی (شرهه دسترسی MG519615 در مرکز ملی اطلاعات NCBI GenBank بیوتکولوژیک توسط ترجمه متعدد مولکول واکنش کلی توسط نرم افزار ساخته شد. درخت فیلوژنیک توسط ترجمه متعدد ۱۰۰ مجموعه داده با نرم‌افزار MEGA6.۱ بررسی شد (شکل ۳). درخت فیلوژنیک آن نیز اکثر نقاط از درخت فیلوژنیک سویه توانایی دارد داشته باشد را با باکتری سودوموناس استوتزری مشابه می‌دهد.

*IV. استخراج رنگدانه قهوهای سبز و آنالیز اسپکتروفتومتری UV

برای پیش‌بینی رنگدانه قهوهای سبز در محوطه کشت برای پذیرش کردن شد. هر ۱۰۰ میلی‌گرم به نظر بود. این مطالعه از این باکتری حذف شد. به‌طور کلی بیش از ۱۰۰ تولید مطالعات این باکتری حذف شد. میزان مetus ملالین با مشاهده پیک در طول لج ۱۲۰ تا نمونه مشاهده شد. (شکل ۴).

اندازه‌گیری فعالیت آنتی اکسیدانی با روش DPPH

میزان محاسبه DPPH با اندازه‌گیری جذب در طول موج ۵۱۶ نانومتر به میزان حدود ۷۵% و از به‌طور مایل به استاندارد آسکوربیک اسید (۸۸%) به دست آمد که در شکل ۵ نشان داده است. تغییر مقدار محافظت از فیتوکمپلوژیک (SPF) نتایج جذب UV در طول موج‌های مختلف و محاسبه SPF ملالین حاصل از سودوموناس استوتزری سویه UIIS به عنوان مصالح کننده از اشعه فرابنفش معادل ۵۰/۹ به دست آمد.

نتایج جذب UV در طول موج‌های مختلف و محاسبه SPF ملالین حاصل از سودوموناس استوتزری سویه UIIS به عنوان مصالح کننده از اشعه فرابنفش معادل ۵۰/۹ به دست آمد.

نتایج تغییر و رسم درخت

نتایج تغییر و رسم درخت
پسیدونوس استوتزری (Pseudomonas stutzeri) یکی از باکتری‌های مصرف‌کننده ملانین است که می‌تواند ملانین را از مخلوط مواد آنتی‌اکسیدان‌های موجود در محیط کشت جدا کند. این باکتری به دلیل ویژگی اصلی خود که می‌تواند ملانین را جدا کند، برای تحقیقاتی که به مطالعه فعالیت‌های آنتی‌اکسیدانی و همچنین اثرات منفی ملانین در محیط زیست مربوط می‌شود، به طور بسیار مفید است.

جدول ۳. نتایج جذب نوری ملانین سویه جیا شده ۲۰۰ میلی‌گرم Pseudomonas stutzeri UIS2 به روش انحلال ملانین در متانول برای تعیین SPF

λ (nm)	Abs	EE.I	EE.I × Abs
290	0.0145	0.015	0.00127
295	0.0271	0.027	0.00076
300	0.0441	0.047	0.00213
305	0.0831	0.087	0.0072
310	0.0940	0.098	0.00942
315	0.0462	0.049	0.00233
320	0.632	0.636	0.3978

بحث

برنگ باکتری Pseudomonas stutzeri به دلیل ویژگی‌های خاصی که در مجموع به این مطالعه از نمونه‌های مختلف داشته‌ایم این باکتری به عنوان یکی از بهترین اسپلرها در محیط‌های اکسیدانی است. یکی از ویژگی‌های اصلی P. stutzeri UIS2 در مطالعه مصرف‌کننده ملانین است که در محیط‌هایی با وجود وجود ملانین، می‌تواند این ملانین را جدا کند و به‌عنوان یکی از بهترین اسپلرها در محیط‌های اکسیدانی به‌شمار می‌رود.

شکل 5. نمودار طول موج جذب نوری ملانین استاندارد (B1) و ملانین خالص (C1) UIS2 سویه UV با استفاده از سپکتروفتهای آنتی‌اکسیدانی (SPF).

شکل 4. نمودار طول موج جذب نوری ملانین استاندارد (B1) و ملانین خالص (C1) UIS2 سویه UV با استفاده از سپکتروفتهای آنتی‌اکسیدانی (SPF).

شکل 3. نمودار طول موج جذب نوری ملانین استاندارد (B1) و ملانین خالص (C1) UIS2 سویه UV با استفاده از سپکتروفتهای آنتی‌اکسیدانی (SPF).

شکل 2. نمودار طول موج جذب نوری ملانین استاندارد (B1) و ملانین خالص (C1) UIS2 سویه UV با استفاده از سپکتروفتهای آنتی‌اکسیدانی (SPF).

شکل 1. نمودار طول موج جذب نوری ملانین استاندارد (B1) و ملانین خالص (C1) UIS2 سویه UV با استفاده از سپکتروفتهای آنتی‌اکسیدانی (SPF).
لوژیکی جدای شده که قادر به رشد در محیط ساده (نوترینت عنوان یک ماده دست آمده است که در مقایسه با مواد سنتزی و طبیعی) در مقایسه که با توجه به پهنی سازی انگشتر در مقایسه با سویه جداسازی شده بومی در این ژوه در میزان میزان بالاتری است.

ماده تولید شده از فارگی/اپسیلوزوس بریجری 201 (Aspergillus bridgeri ICF-201) در کرب یک ماده هواست (Klebsiella sp. GSK) GSK از طرف، سویه 7 سودوموناس استورئی در شرایط بهینه حدود 500 گرم به 40 تولید ماده میکولس (22) که با توجه به پهنه سازی انگشتر در مقایسه با سویه جداسازی شده بومی در این ژوه در میزان میزان بالاتری است.

سویه میزان میزان بالاتری است که با توجه به پهنه سازی انگشتر در مقایسه با سویه جداسازی شده بومی در این ژوه در میزان میزان بالاتری است.

مقاله میکروب شناسی پزشکی ایران، سال 16 هفتم 1385 مجله میکروب شناسی پزشکی ایران، سال 16 هفتم 1385
Toward the Production of Natural Melanin

1. Tarangini K. Studies on pigment production by microorganisms using raw materials of agro-industrial origin: National Institute of Technology Rourkela; 2014.

2. Pombeiro-Sponchiado SR, Sousa GS, Andrade JC, Lisboa HF, Gonçalves R. Production of melanin pigment by fungi and its biotechnological applications. Melanin2017. p. 31. DOI:10.5772/67375

3. Kurian N, Bhat SG. Bacterial melanins. Microbial Bioproducts. 2014;1:97-110.

4. Zamanian SN, Etemadifar Z. Radical scavenging of pigments from novel strains of Dietzia schimae and Microbacterium esteraromaticum. Progress in Biological Sciences. 2017;6(2):159-70.

5. Zerrad A, Anissi J, Ghanam J, Sendide K, El Hassouni M. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. Journal of Biotechnology. 2013;29(10):1737-50. DOI:10.1007/s11274-013-1352-y [PMID]

6. Deshmukh KR, Pethe AS. Extraction and analysis of melanin pigment produced by Clostridium tertium isolated from water sample of saline belt in west Vidardha region. International Journal of Science and Research. 2016;5(8):812-4.

7. Gomila M, Pena A, Mulet M, Lalucat J, Garcia-Valdes E. Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology. 2015;6:214. DOI:10.3389/fmicb.2015.00214 [PMID] [PMCID]

8. Le Na NT, Hoa PT, Thang ND. Natural melanin as a potential biomaterial for elimination of heavy metals and bacteria from aqueous solution. VNU Journal of Science: Natural Sciences and Technology. 2016;32(1).

9. Huang S, Pan Y, Gan D, Ouyang X, Tang S, Eknunwe SI, et al. Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research. 2011;20(4):475-81. DOI:10.1007/s00044-010-9341-2

10. Mason HS. The chemistry of melanin III. Mechanism of the oxidation of dihydroyphenylalanine by tyrosinase. Journal of Biological Chemistry. 1948;172(1):83-99.
19. Drewnowska JM, Zambrycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from Northeastern Poland. PLoS One. 2015;10(4):e0125428. [DOI:10.1371/journal.pone.0125428] [PMID] [PMCID]

20. Ganesh Kumar C, Sahu N, Narender Reddy G, Prasad RB, Nagesh N, Kamal A. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis. Letters in Applied Microbiology. 2013;57(4):295-302. [DOI:10.1111/lam.12111] [PMID] [PMCID]

21. Gholami M, Etemadifar Z. Isolation and characterization of a novel strain of genus Dietzia capable of multiple extreme resistance. Microbiology. 2015;84(3):389-97. [DOI:10.1134/S0026261715030054]

22. Kumar CG, Mongolla P, Pombala S, Kamle A, Joseph J. Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Letters in Applied Microbiology. 2011;53(3):350-8. [DOI:10.1111/j.1472-765X.2011.03116.x] [PMID]

23. Peix A, Berge O, Rivas R, Abril A, Velazquez E. Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. International Journal of Systematic and Evolutionary Microbiology. 2005;55(3):1107-12. [DOI:10.1099/ijs.0.63445-0] [PMID] [PMCID]

24. Kaplan C. High SPF sunscreen formulations. Google Patents; 2000.

25. Kim SJ, Park SY, Lee J, Chang M, Chung Y, Lee T-K. Biochemical compositions and biological activities of extracts from 3 species of Korean pine needles. Journal of Food and Nutrition Research. 2017;5(1):31-6.

26. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Review. 2006;70(2):510-47. [DOI:10.1128/MMBR.00047-05] [PMID] [PMCID]

27. Kurian N, Nair H, Bhat S. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise 305). International Journal of Current Biotechnology. 2014;2(5):6-11.

28. Cordero RJ, Vij R, Casadevall A. Microbial melamins for radioprotection and bioremediation. Microbial Biotechnology. 2017;10(5):1186-90. [DOI:10.1111/1751-7915.12807] [PMID] [PMCID]

29. Hoa PT, Thuy LB, Thang ND. Natural melanin as a potential biomaterial for elimination of heavy metals and bacteria from aqueous solution. VNU Journal of Science: Natural Sciences and Technology. 2017;32(1S).

30. Dastager S, Li W-J, Dayanand A, Tang S-K, Tian X-P, Zhi X, et al. Separation, identification and analysis of pigment (melanin) production in Streptomyces. African Journal of Biotechnology. 2006;5(8):1131-4.