NiCo$_2$O$_4$ Nano-/Microstructures as High-Performance Biosensors: A Review

Rajesh Kumar

Rajesh Kumar, rk.ash2k7@gmail.com

Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur 144205, Punjab, India

HIGHLIGHTS

- Various synthetic methods for the synthesis of NiCo$_2$O$_4$ nano-/microstructures in bare, doped, and composite/hybrid forms are reviewed.

- Currents status and development prospects of NiCo$_2$O$_4$ nano-/microstructure-based electrochemical biosensors for bioanalytes such as glucose, urea, and H$_2$O$_2$, along with condition governing the electrochemical biosensor parameters, are summarized.

- Also provide an insight into the key challenges and future perspectives about point-of-care monitoring of bioanalytes using NiCo$_2$O$_4$ nano-/microstructure-based biosensors.

ABSTRACT Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo$_2$O$_4$ mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo$_2$O$_4$ materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo$_2$O$_4$ nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo$_2$O$_4$ as compared to corresponding individual metal oxides, viz. NiO and Co$_3$O$_4$, is attributed to the close intrinsic-state redox couples of Ni$^{3+}$/Ni$^{2+}$ (0.58 V/0.49 V) and Co$^{3+}$/Co$^{2+}$ (0.53 V/0.51 V). Biosensing performance of NiCo$_2$O$_4$ is also significantly improved by making the composites of NiCo$_2$O$_4$ with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co$_3$O$_4$, SnO$_2$, MnO$_2$; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo$_2$O$_4$ are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.

KEYWORDS Nano-/micro-structured; Spinel NiCo$_2$O$_4$; Synthetic methods; Modified electrodes; Electrochemical biosensors
1 Introduction

Recently, spinel single-phase binary metal oxides containing two metal cations such as manganese cobaltate (MnCo$_2$O$_4$) [1], zinc cobaltate (ZnCo$_2$O$_4$) [2, 3], nickel ferrite (NiFe$_2$O$_4$) [4], copper manganate (CuMn$_2$O$_4$) [5], cobalt cobaltate (CuCo$_2$O$_4$) [6], cobalt manganate (CoMn$_2$O$_4$) [7], nickel cobaltate (NiCo$_2$O$_4$) [8] have attracted widespread attention from researchers worldwide due to their invariably better electrochemical properties as compared to individual metal oxides or a mixture of metal oxides. The excellent electrochemical performances of these single-phase binary metal oxides are attributed to the synergetic effects of properties of the individual metal oxide components [9]. Among various single-phase binary metal oxides, Ni$_2$O$_3$ is considered to be the best one as it possesses at least two times higher electronic conductivity as compared to corresponding individual metal oxides, viz. NiO and Co$_2$O$_3$ along with intrinsic-state redox couples of Ni$^{3+}$/Ni$^{2+}$ (0.58 V/0.49 V) and Co$^{3+}$/Co$^{2+}$ (0.53 V/0.51 V) [10–12]. Other key features are the exhibition of variable but sufficiently stable oxidation states by Ni (Ni$^{2+}$, Ni$^{3+}$) and Co (Co$^{2+}$, Co$^{3+}$, Co$^{4+}$) and very high conductivity of 500 S cm$^{-1}$ [13, 14].

Many transition metals, rare earth metals, non-metal-doped NiCo$_2$O$_4$, and conjugated polymer-modified NiCo$_2$O$_4$ materials have been reported in the literature with versatile applications. N- and P-doped NiCo$_2$O$_4$ with oxygen vacancies have been explored for electrochemical performance for supercapacitors, electro-catalyst for O$_2$ and H$_2$ evolution reaction [15–18], and anodic material for lithium-ion batteries [19]. Lin et al. [20] explored S-doped NiCo$_2$O$_4$ nanosheet arrays as the efficient and bifunctional electrode for overall water-splitting reactions. Compared with non-metal-doped NiCo$_2$O$_4$, transition metal and rare earth metal-doped NiCo$_2$O$_4$ are considered superior due to the latter’s excellent electrical conductivity. Zn- and Fe-doped NiCo$_2$O$_4$ showed electrocatalytic properties for oxygen evolution reactions and remarkable capacitive properties in asymmetric supercapacitors [21–23]. Ma et al. [24] synthesized highly porous hierarchical spinel Mn-doped NiCo$_2$O$_4$ nanosheets for high-performance anodes in lithium-ion batteries. Xia et al. [25] used Au–NiCo$_2$O$_4$ nanomaterials supported on 3D hierarchical porous graphene-like material as electro-catalyst for oxygen evolution reaction. Among the rare earth metal oxides, CeO$_2$ is reported to be an excellent dopant for NiCo$_2$O$_4$ nanomaterials [26, 27]. Carbonaceous and polymer composite/hybrid NiCo$_2$O$_4$ nano-/microstructures are also found suitable for their potential applications in supercapacitors [28], fuel cells [29], Li-ion batteries [30], electro-catalyst for oxygen reduction reaction and oxygen evolution reaction [31], photo-detector [32], optoelectronic devices [33], perovskite solar cells [34], gas sensors [35–37] and biosensors [38, 39].

Facile, low-cost and eco-friendly synthetic methods lead to varieties of low dimensional nano-/micro-structured morphologies with excellent porosity and specifically large surface area, opportunities to synthesize composite/hybrid and ease of electrode fabrications for end-user applications. Spinel NiCo$_2$O$_4$ is a p-type semiconductor in which Ni occupies octahedral sites while Co is distributed in both octahedral and tetrahedral sites [13] (Fig. 1a, b). It shows a face-centered cubic arrangement and belongs to Fd3m space group with lattice constant $a_0 = 8.269$ Å [40].

Electrochemical sensing through miniaturized sensors based on nano-/micro-structured materials has taken over the conventional, expensive, laborious sensing techniques like lateral flow immunoassay, liquid chromatography, capillary electrophoresis, enzyme-linked immunosorbent assay, chemiluminescence, sequential injection analysis, gas chromatography–mass spectrometry and fluorescent methods [43–48]. Electrochemical biosensors can be categorized into amperometric and potentiometric sensors [49]. The amperometric biosensing involves a change in current response due to electrochemical redox reactions of the analytes when a potential is applied between the working and reference electrodes while the potentiometric biosensing makes use of ion-selective electrodes to transduce the biological reactions into a measurable electrical signal [43, 50].

Among the main classes of biosensors, the non-enzymatic biosensor is considered to be better, faster, and more convenient as compared to an enzymatic biosensor that involves complicated and multi-step enzyme immobilization processes and high specificity of the enzymes. Also, due to pH and temperature sensitiveness, the enzyme-based biosensors are highly unstable as enzymes undergo denaturation leading to biological inactivity beyond physiological conditions [51–53]. Nanomaterials not only provide high-density catalytic sites for the electro-oxidation or electro-reduction in the biomarkers but also provide large surface area for adsorption of biomarkers and facilitate an appropriate path for electron transport for electrochemical activity [54–56]. Since the
crucial part in electrochemical biosensors is the modified electrode, much attention has been devoted to modulate the electrocatalytic behavior of the NiCo$_2$O$_4$ as electron mediator by engineering its composition, structure, specific surface area, and redox properties.

To date, many reviews have been reported for the applications of NiCo$_2$O$_4$ nano-/micro-structured materials including Li-ion batteries [10], supercapacitors [11, 57], fuel cells [58], and electro-catalyst for oxygen reduction, oxygen and hydrogen evolution reactions [59, 60]. The applications of the NiCo$_2$O$_4$-based non-enzymatic biosensors are aimed not only at the extension of the spectrum of target bioanalytes but also at the improvement in the biosensor performance in terms of sensitivity, selectivity, detection limits, long-term stability as well as reusability. Many new synthetic strategies and techniques have been developed for the fabrication of NiCo$_2$O$_4$-based non-enzymatic biosensors, but they are rarely summarized. Hence, it is an appropriate time to go through the periodical progress of NiCo$_2$O$_4$-based non-enzymatic biosensors. This review covers the crystal structure of the spinel NiCo$_2$O$_4$, various synthetic strategies employed for the synthesis of nano-/micro-structured NiCo$_2$O$_4$, electrochemical biosensing toward biomarkers such as glucose, H$_2$O$_2$, and urea, through the fabrication of modified electrodes. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo$_2$O$_4$ are also reviewed.

2 General Biosensing Mechanism

Two types of strategies are generally involved in the electrochemical biosensing of biomarkers, i.e., enzyme based and enzyme-free [61, 62]. An enzymatic biosensor operates on three main components which include sensitive recognition element, signal transducer element, and data evaluation component [63–66]. Enzymes, antibodies, and nucleic acid are generally used as recognition components. Glucose oxidase and glucose dehydrogenase for glucose [67, 68], horseradish peroxidase for H$_2$O$_2$ [69], urease for urea [70], laccase and polyphenol oxidase for rutin [71], tryptophan oxidase for tryptophan [72], etc. act as sensitive recognition elements. The function of the signal transducer is to convert chemical changes into detectable and readable electronic signals which are finally transferred to the data evaluation component. Recent developments in the field of nanotechnology and nanoscience reveal the excellent efficiencies of the nanostructured materials as artificial bioreceptors. Biosensors based on nanostructured materials as artificial bioreceptors are used for early detection and diagnosis of diseases through the estimation of the levels of biomarkers [73–75]. The signal transducer behavior of the nanomaterials mainly depends upon the electrochemical redox properties, surface-to-volume ratio, crystal structure and phase, morphology, and the presence of some other conducting matrices along with the nanostructured materials [76–78]. In contrast,
in enzyme-free biosensors, nanostructured materials are used as signal transducers as well as sensitive recognition elements.

Electrochemical biosensors are mainly based on the output electrical signals changes incurred from either the oxidation or the reduction of the target bioanalyte on the surface of the transducer (Fig. 2) [79–81]. These redox reactions are catalyzed by signal transducer enzymes and nanostructured materials in enzyme-based and enzyme-free biosensors, respectively. The strength of the electrical signals is significantly affected by the concentrations of target bioanalytes, temperature, pH, and the presence of the interfering species [82–85].

3 Synthesis of Nano-/Micro-Structured NiCo$_2$O$_4$

3.1 Hydrothermal/Solvothermal Method

Hydrothermal synthesis involves heterogeneous reactions in an aqueous medium within a temperature range of 100–200 °C and high pressure. To achieve these conditions, the reaction is usually carried out in Teflon-lined sealed steel autoclaves. Alkali metal hydroxide or NH$_3$ is added to convert the precursor metal salts into their respective hydroxides at basic pH conditions [86, 87]. An initial nucleation phase is followed by the directed crystal growth along appropriate crystal planes. The morphology, surface, and the structural features of the materials synthesized through hydrothermal method depend upon the conditions like temperature, pH of the solution, concentration of the precursor, nature of the solvent, and the presence of the templates [88]. NiCo$_2$O$_4$ nano-/microstructures of various shapes and morphologies have been prepared hydrothermally. Nano-/micro-structured NiCo$_2$O$_4$ of morphologies such as urchin shaped [89], coral-like [90], core–ring-structured nanoplatelets [91], porous coral-like nanospheres [36], hollow nanospheres [92], nanospheres [93], urchin-like spheres [94], mesoporous nanoparticles [95], mesoporous nanoneedles [96, 97], 3D network-like mesoporous nanostructures [98], 3D hierarchical tremella-like, flower-like, urchin-like and pine needle-like [99], nanoflakes [100], nanowalls [101], etc. are reported.

Ni and Co precursor salt solutions with molar atomic ratio of 1:2 are taken during hydrothermal growth since Ni and...
Co atoms are present in the 1:2 atomic ratio. Liu et al. [94] used 1 mmol Ni(NO₃)₂·6H₂O and 2 mmol Co(NO₃)₂·6H₂O solution to prepare urchin-like NiCo₂O₄ spheres. Yang et al. [102] mixed 1 mmol of Ni(CH₃COO)₂·4H₂O and 2 mmol of Co(CH₃COO)₂·4H₂O for the preparation of NiCo₂O₄ nanospheres. Yu et al. [96] used 0.5 mmol Ni(NO₃)₂·6H₂O, 1 mmol Co(NO₃)₂·6H₂O for the synthesis of NiCo₂O₄ mesoporous nanoneedles. Zhu et al. [98] mixed 0.225 mmol of Ni(CH₃COO)₂·4H₂O and 0.45 mmol of Co(CH₃COO)₂·4H₂O for the synthesis of 3-D network-like mesoporous nanostructures. For the initial formation of binary metal hydroxides or metal carbonate hydroxides, reagents like NH₃, urea, NaOH, NH₄HCO₃, NH₄F, hexamethylenetetramine (HMTA) [103], diethylene glycol (DEG), cetyltrimethylammonium bromide (CTAB) [104], sodium dodecyl sulfate (SDS) [105], poly(diallyldimethylammonium chloride) (PDDA) [106], glycine [107], methyl glycerate [108], and ethylene glycol are added in the reaction mixture. The combination of some polar solvents such as ethanol, ethanol, propanol, ethylene glycol, and acetone along with water has also been found to facilitate the morphological characteristics [109]. Water:polar solvent ratio also significantly affects the growth mechanism. In Fig. 3a–d, different morphologies for the NiCo₂O₄ nanostructures are shown for water:ethanol ratios 1:0, 3:1, 1:1, and 1:3. More porous, denser, and thinner sheets were formed for the synthesized 3D flower-like NiCo₂O₄ nanostructures as the composition of ethanol was increased.

In the hydrothermal growth, the temperature is also a key factor in controlling the morphology of the nanostructures. Urchin- and sheaf-like NiCo₂O₄ nanostructures were synthesized by Umeshbabu et al. [104] using CTAB as a surfactant under hydrothermal conditions at 120 °C and 200 °C temperatures, respectively. Different morphologies were attributed to different degrees of crystal splitting and anisotropic crystal growth at different growth temperatures [110]. Further, the temperature also affects the magnitude of the van der Waals forces, hydrogen bonding, hydrophobic attraction, crystal field attraction, and intrinsic crystal contraction which subsequently control the Ostwald ripening process [111, 112].

![Fig. 3](image-url) FESEM image of NiCo₂O₄ samples using water: ethanol ratios a 1:0, b 3:1, c 1:1, and d 1:3. Reproduced with permission from Ref. [109]. Copyright © 2017 Elsevier B.V.
Nayak et al. [89] mixed Ni(NO$_3$)$_2$·6H$_2$O and Co(NO$_3$)$_2$·6H$_2$O salts in a 1:2 atomic ratio along with urea which produced OH$^-$ ions in the reaction mixture according to Eqs. 1–3.

\[
\text{CO(NH}_2\text{)}_2 + \text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{CO}_2 \quad (1)
\]

\[
\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4\text{OH} \quad (2)
\]

\[
\text{NH}_4\text{OH} \rightarrow \text{NH}_4^+ + \text{OH}^- \quad (3)
\]

Ni$^{2+}$ and Co$^{2+}$ on reaction with these OH$^-$ ions formed Ni–Co bimetallic hydroxide [NiCo$_2$(OH)$_6$] which were finally converted into NiCo$_2$O$_4$ nanoneedles after crystal growth and calcinations. However, according to some reports, in the presence of urea, metal carbonate hydroxides are initially formed instead of bimetallic hydroxides (Eqs. 4–7) [113].

\[
\text{CO}_2 + \text{OH}^- \rightarrow \text{HCO}_3^- \rightarrow \text{H}^+ + \text{CO}_3^{2-} \quad (4)
\]

\[
2\text{Ni}^{2+} + \text{CO}_3^{2-} + 2\text{OH}^- \rightarrow \text{Ni}_2(\text{CO}_3)(\text{OH})_2 \quad (5)
\]

\[
2\text{Co}^{3+} + \text{CO}_3^{2-} + 2\text{OH}^- \rightarrow \text{Co}_2(\text{CO}_3)(\text{OH})_2 \quad (6)
\]

Even ethanol as the solvent can also initiate the formation of metal carbonate hydroxides. Two-dimensional porous NiCo$_2$O$_4$ nanodisks were synthesized by a low-temperature hydrothermal method by Jain et al. [114] (Eqs. 8, 9). Figure 4 proposes the initial formation of Ni$_2$(CO$_3$)(OH)$_2$ and Co$_2$(CO$_3$)(OH)$_2$. Subsequent hydrothermal treatment in basic medium followed by calcination at 500 °C formed two-dimensional porous NiCo$_2$O$_4$ nanodisks.

\[
\text{C}_2\text{H}_5\text{OH} + 3\text{H}_2\text{O} \rightarrow 2\text{CO}_2 + 6\text{H}_2 \quad (8)
\]

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow 2\text{H}^+ + \text{CO}_3^{2-} \quad (9)
\]

The nature of alkali source, capping agent, and other additives significantly affects the morphology of the NiCo$_2$O$_4$ nanostructures. Wang et al. [99] reported tremella-like NiCo$_2$O$_4$ nanostructures in the presence of HMTA, which transformed into flower-like nanostructures when NH$_4$F was also added along with HMTA. However, when HMTA was replaced with urea, urchin-like and pine needle-like NiCo$_2$O$_4$ nanostructures were formed, respectively, in the absence and presence of NH$_4$F additive [99]. HMTA is hydrolyzed to produce NH$_3$ which finally produces OH$^-$ ions as stated earlier in this section (Eq. 10).

\[
(\text{CH}_2)_6\text{N}_4 + 6\text{H}_2\text{O} \rightarrow 4\text{NH}_3 + 6\text{HCHO} \quad (10)
\]

\[
\text{Ni}_2(\text{CO}_3)(\text{OH})_2 + 2\text{Co}_2(\text{CO}_3)(\text{OH})_2 + \text{O}_2 \rightarrow 2\text{NiCo}_2\text{O}_4 + 3\text{CO}_2 + 3\text{H}_2\text{O} \quad (7)
\]

Fig. 4 Schematic diagram for the synthesis of two-dimensional porous nanodisks of NiCo$_2$O$_4$. Reproduced with permission from Ref. [114], Copyright © 2018 Elsevier B.V.
It was suggested that the F⁻ ions released from NH₄F stimulate the initially formed nanosheets and nanoneedles to produce more active sites to further activate nucleation, more mass loading of active material per unit area, firm binding between the active material, and hence more crystal growth [115–117]. The possible set of reactions elaborating the role of F⁻ ions released from NH₄F is shown as follows [118] (Eqs. 11–13).

\[
\begin{align*}
\text{(11)} & \quad \text{Co}^{2+} + \text{Ni}^{2+} + 2\text{F}^- \rightarrow \text{CoF}^+ + \text{NiF}^+ \\
\text{(12)} & \quad \text{CoF}^+ + \text{NiF}^+ + \text{OH}^- \rightarrow \text{CoF(OH)}^- + \text{NiF(OH)}^- \\
\text{(13)} & \quad 4\text{CoF(OH)}^- + 2\text{NiF(OH)}^- + \text{O}_2 \xrightarrow{\text{Annealing}} 2\text{NiCo}_2\text{O}_4 + 6\text{HF}
\end{align*}
\]

Further, different concentrations of the NH₄F also stimulated the initially formed nanostructures to acquire more versatile morphologies. For 3, 9, and 12 mmol concentrations of NH₄F, various morphologies of the NiCo₂O₄ nanostructures are shown in Fig. 5. With an increase in concentration from 3 to 9 mmol, aggregation of the neighboring nanosheets occurred. Further increase in concentration to 12 mmol, rhombus-shaped architectures were formed [117].

Deng et al. [119] prepared novel urchin-like peapoded NiCo₂O₄@C nanostructures as a bifunctional catalyst for the water-splitting reaction. A three-phase process was proposed which included the initial hydrothermal synthesis of nanoneedles self-assembled microsphere followed by coating with polymerized glucose as green carbon source onto NiCo₂O₄ microsphere. The final stage was the calcination.

Fig. 5 FESEM images representing the effect of concentration of NH₄F on the morphologies of NiCo₂O₄ nanostructures: a–c 3 mmol NH₄F; d–f 9 mmol NH₄F; g–i 12 mmol NH₄F. Reproduced with permission from Ref. [117]. Copyright © 2014 Elsevier Ltd.
of the coated NiCo$_2$O$_4$ microsphere under N$_2$ atmosphere to give urchin-like peapoded NiCo$_2$O$_4$@C. The fabrication process of urchin-like peapoded NiCo$_2$O$_4$@C is pictorially demonstrated in Fig. 6.

Still another way of engineering the morphology, porosity, and growth of the crystals along the particular oriented crystal planes of the nanomaterials, is the use of non-aqueous solvents. The modified method is named as solvothermal instead of hydrothermal. Solvents with different solubilities and polarities can significantly affect the degree of supersaturation, the diffusion rates of the chemical species to the surface of the growing crystals, the interfacial surface energy, etc. [120, 121]. Fu et al. [122] synthesized 1D porous NiCo$_2$O$_4$ microrods (using metal acetate salts) (Fig. 7a) and microspheres (using metal nitrate salts) (Fig. 7b) in aqueous and isopropanol media, respectively, under similar conditions of temperature and reaction time. In 1:1 ethanol:water medium, spindle-like hierarchical architectures composed

![Fig. 6 Schematic diagram of the process of urchin-like peapoded NiCo$_2$O$_4$@C. Reproduced with permission from Ref. [119], Copyright © 2017 Elsevier B.V.](image)

![Fig. 7 FESEM images of NiCo$_2$O$_4$ architectures prepared solvothermally using different solvents a water, b isopropanol, c 1:1 ethanol: water, d pure ethanol, and e diethylene glycol. Reproduced with permission from Ref. [122]. Copyright © 2017 American Chemical Society](image)
of closely packed microplates aligned along one direction with sizes of 3–5 μm were formed (Fig. 7c). In pure ethanol microspheres composed of nanosheets, interweave together with an average diameter of 8 μm were formed (Fig. 7d). However, in diethylene glycol, irregular aggregates with sheet-like structures were synthesized (Fig. 7e).

Wang et al. [123] in an interesting stepwise hydrothermal growth synthesized layers of NiCo$_2$O$_4$ nanosheets on the surface of NiCo$_2$O$_4$ nanocones precursor to give highly ordered 3D hierarchical NiCo$_2$O$_4$@NiCo$_2$O$_4$ core–shell nanocone arrays on nickel foams (Fig. 8). Different morphologies were engineered by controlling the reaction time and the temperature during stepwise hydrothermal growth. Further, NiCo$_2$O$_4$ nanocones arrays on Ni foam were synthesized in the absence of HMTA while the NiCo$_2$O$_4$ nanosheets growth on NiCo$_2$O$_4$ nanocones was guided by the presence of HMTA.

3.2 Templated Solution Growth Method

The morphology, size, shape, and surface area of nanostructures can be designed through template-based synthesis to produce nanostructures with controlled physical, chemical, electrical, and electronic properties essential in notable applications and are also quite different from those of the bulk materials. Generally, three stages, viz., template preparation, directed synthesis of the desired material using the template, and the template removal, are described in the overall growth process of nanostructures [124]. The chemical nature, structure, concentration, and growth temperature are some of the important environmental factors affecting the growth of nanomaterials. Template-based methodologies are reported in the literature which govern the synthesis of NiCo$_2$O$_4$ nanomaterials with versatile morphologies including nanospheres, hollow spheres, nanocages, hollow submicron spheres, hollow irregular octahedra-like cages, flower-like nanostructure, microspheres with highly ordered mesoporous structures, nanowires, etc. With the development of new methods for synthesizing mesoporous binary NiCo$_2$O$_4$ metal oxides, the combination of template method with other methods such as hydrothermal/solvothermal, sol–gel has been widely used. In one such study, Ren et al. [125] prepared mesoporous NiCo$_2$O$_4$ microspheres using a mesoporous silica (KIT-6) template. The KIT-6 template was added into the metal nitrate precursor solution prepared in ethanol. The schematic illustration of the formation of mesoporous NiCo$_2$O$_4$ microspheres is shown in Fig. 9a. The high porosity of the synthesized mesospheres was ascertained by FESEM and TEM images (Fig. 9b, c). The template was finally removed by etching with 2 M NaOH solution [125].

Yuan et al. [126] utilized silica spheres as hard templates prepared by the modified Stöber method [127], for
the synthesis of hierarchical mesoporous hollow NiCo$_2$O$_4$ submicron spheres with uniform size and mesoporous textual property. These submicron spheres were composed of ultrathin nanosheets with a thickness of a few nanometers. The NaOH solution was used for the in situ removal of silica spheres. Dopamine—a biomolecule containing amine functional groups is capable of self-polymerize under alkaline conditions. It forms a layer of the polydopamine which attracts various metal ions including Co$^{2+}$ and Ni$^{2+}$ cations due to strong electrostatic interactions.

Fig. 9 a Schematic illustration of the formation of mesoporous NiCo$_2$O$_4$ microspheres, b high-magnification FESEM image, and c TEM image of the mesoporous NiCo$_2$O$_4$ microspheres. Reproduced with permission from Ref. [125]. Copyright © Authors

Fig. 10 Schematic illustration of the synthesis of dopamine-free and dopamine-NiCo$_2$O$_4$ nanostructures. Reproduced with permission from Ref. [128]. Copyright © 2016 American Chemical Society
Further, the alkalinity of the medium results in the formation of –OH–Ni–OH–Co–OH– complex networks. This property has been explored for the synthesis of NiCo$_2$O$_4$ nanostructures by Veeramani et al. [128]. FESEM images shown in Fig. 10 are demonstrating the effect of dopamine on the morphology of the NiCo$_2$O$_4$ nanostructures. Flower-like dopamine derived NiCo$_2$O$_4$ nanostructures were formed.

In another significant strategy, Xiong et al. [129] used mollusk shell-based macroporous carbon material (MSBPC), as a template to grow NiCo$_2$O$_4$ nanowires hydrothermally (Fig. 11a, b). The MSBPC was obtained from mollusc shells.
by removing calcium carbonate crystal and other biomacromolecules by acid treatment and carbonization. It was observed that there was uniform and dense growth of the NiCo$_2$O$_4$ nanowires on the inner walls of MSBPC channels. The average length of the NiCo$_2$O$_4$ nanowires was about 1.5 µm. Li et al. [130] reported the synthesis of composite C@NiCo$_2$O$_4$ hollow microspheres via a two-step strategy of hard template-induced hydrothermal synthesis followed by calcination. SiO$_2$@RF (resorcinol–formaldehyde resin, RF) sphere was used as a hard template, whereas HMTA was used as precipitant. The template SiO$_2$@RF was synthesized via a one-pot sol–gel process under alkaline condition using an alcohol–water mixed solvent [131]. The SiO$_2$ core was removed by treating the prepared material with 2 M NaOH at room temperature for 12 h. The SiO$_2$@RF template was having a core–shell structure with an average diameter of 350 nm (Fig. 11c). The NiCo$_2$O$_4$ nanoflakes were grown and assembled on the carbon surface of the SiO$_2$@RF spheres (Fig. 11d). Recently, novel micron-sized NiCo$_2$O$_4$ pompon was prepared by templated growth using polyvinylpyrrolidone (PVP) non-ionic polymer and cationic surfactant CTAB as co-template [132]. Columbic and coordinative forces between template, co-template, and the metal ions help to form a stable “hairball” structure which finally was converted into a micron-sized pompon-like product on annealing (Fig. 11e). In contrast, in the absence of co-template CTAB, mesoporous NiCo$_2$O$_4$ hollow submicron spheres with a uniform diameter of 400–500 nm were obtained through a soft template method assisted by PVP (Fig. 11f). Further, in the absence of even PVP, solid submicron spheres were obtained [133].

Qi et al. [131] also used RF microspheres as templates for the synthesis of NiCo$_2$O$_4$ hollow microspheres with tunable shell numbers and shell thickness. The shell numbers were controlled by adjusting the solvent ratio (DI water: ethylene glycol) and heating ramp rate, whereas the shell thickness and porosity were controlled by adjusting the metal ion concentrations (Fig. 12). For total molar concentrations of Ni$^{2+}$ and Co$^{2+}$ of 0.05 and 0.1 M, thin and thick shells, respectively, were formed. NiCo$_2$O$_4$ hollow microspheres with double and triple shells were formed at a heating ramp rate of 2 and 5 °C min$^{-1}$, respectively, in EG as a solvent. With the increase in the ramp rate, the increased temperature gradient of the infused RF microspheres along the radial direction favors the separation of adjacent NiCo$_2$O$_4$ layers and the infused RF cores, thereby transforming double shell to triple shells [134]. Furthermore, EG prevents the formation of the metal aqua ions, and thus, the penetration of the metal ions into RF microspheres is accelerated which is essential for the formation of multi-shell NiCo$_2$O$_4$ hollow microspheres [135, 136]. Additionally, the final calcination process also results in some adhesion force in the outward direction and the contraction force by decomposition of the inner core which segregates the outer NiCo$_2$O$_4$ shell and the inner infused RF [131].

In addition to templates of organic origin, inorganic metal oxides have also been reported as template materials for the synthesis of NiCo$_2$O$_4$ nano-/microarchitectures [137]. Lv

Fig. 12 Pictorial representation for the formation of NiCo$_2$O$_4$ hollow microspheres with tunable numbers and shell thickness. Reproduced with permission from Ref. [131]. Copyright © 2016 Elsevier B.V.
et al. [138] synthesized hollow NiCo$_2$O$_4$ octahedral nanocages via a Cu$_2$O-templated strategy in combination with a coordination reaction. Uniform Cu$_2$O octahedral crystals were prepared by reducing a copper-citrate complex solution with ascorbic acid in the presence of PVP. Initially, amorphous (NiCo$_x$)O(OH) was deposited onto the Cu$_2$O octahedral crystals through a precipitation method. Cu$_2$O octahedral crystals were etched according to a “coordinating etching and precipitating” (CEP) using Na$_2$S$_2$O$_3$ as coordinating etchant [139] (Eqs. 14, 15). After that, the product was annealed at 400 °C for 2 h to get the hollow NiCo$_2$O$_4$ nanocages. In a similar study, Huang et al. [140] reported the synthesis of highly porous NiCo$_2$O$_4$ hollow nanospheres through a polycrystalline Cu$_2$O-templated route based on “coordinating etching and precipitating” process. The excellent electron transfer capability, large specific surface area, and intrinsic redox couples of Ni$^{2+}$/Ni$^{3+}$ and Co$^{2+}$/Co$^{3+}$ ions, and superior electrocatalytic activity of NiCo$_2$O$_4$ hollow nanospheres were explored for glucose sensing by cyclic voltammetry and electrochemical impedance spectroscopy. NiCo$_2$O$_4$ hollow nanosphere-modified glassy carbon electrode (GCE) exhibited a high sensitivity of 1917 μA mM$^{-1}$ cm$^{-2}$, linear dynamic ranges of 0.01–0.30 mM and 0.30–2.24 mM, and very low detection limit of 0.6 μM (S/N = 3). Solid CuO octahedral is also reported as template materials for the synthesis of hollow octahedra-like NiCo$_2$O$_4$ cages. However, CuO templates can be simply removed by dissolving with a diluted NH$_4$OH solution [141].

$$\text{Cu}_2\text{O} + \text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{Cu}_2\text{(S}_2\text{O}_3) + 2\text{OH}^-$$ \hspace{1cm} (14)

$$\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \leftrightarrow \text{HS}_2\text{O}_3^- + \text{OH}^-$$ \hspace{1cm} (15)

Yang et al. [142] reported NiCo$_2$O$_4$ hollow nanorods prepared by the sacrificial template-accelerated acid hydrolysis of ZnO (Eq. 16).

$$\text{ZnO} + 2\text{H}^+ \rightarrow \text{Zn}^{2+} + \text{H}_2\text{O}.$$ \hspace{1cm} (16)

3.3 Sol–gel Method

The sol–gel process represents the chemical conversion of the liquid “sol” to the network “gel” phase, subsequently post-treatment into solid metal oxides with microcrystalline ultrafine particles. It is superior to other methods because it can better control the texture and surface properties of synthesized nanomaterials. The sol–gel method for the synthesis of nanomaterials is affected by numerous factors including pH, temperature, nature of solvent, growth time, agitations time, presence of capping agents, template, etc. With the consideration of these factors and potential applications, many protocols have been used to design materials of different sizes and features, including nano-, micro-, meso-, and macro-materials. To get excellent porosity and conductivity for potential electrochemical applications, the addition of polymers stuffs such as PVP [143], organic solvents/additives like propionic acid [144], citric acid [145, 146], N,N-dimethylformamide (DMF) [147], and epoxides like propylene oxide [148, 149], during the post-annealing process is suggested. Significantly the additive/metal ion molar ratio is very important in controlling the pore size and pore volume. Traditional use of SiO$_2$ is avoided as its addition decreases the conductivity and limits the connection of the film with conducting substrate in thin film forms of NiCo$_2$O$_4$ [143]. In a typical sol–gel method, the NiCo$_2$O$_4$ spinel oxide was prepared by mixing appropriate amounts of metal salt precursors along with citric acid. The resulting solution was magnetically stirred at 80 °C for 2 h to get a gelatinous matrix. Finally, the matrix was calcined at 550 °C for 5 h to get the desired product [146]. Citric acid was also used as a chelating ligand for the synthesis of highly porous coral-like crystalline NiCo$_2$O$_4$ nanoparticles with submicron sizes via a facile sol–gel method in H$_2$O-DMF mixture as solvent [147]. Liu et al. prepared nanoporous NiCo$_2$O$_4$ thin films deposited on ITO glass. The precursor solutions for NiCo$_2$O$_4$ nanospheres were prepared via a sol–gel method in glacial acetic acid and ethanol as solvents, and ethylene glycol and CTAB were used as a viscosity modifier template, respectively [150]. Thus, the sol–gel process is a proven and important method for preparing NiCo$_2$O$_4$ nanoparticles.

3.4 Co-precipitation Method

Better stoichiometric control and high purity of the metal oxide nanomaterials can be easily achieved through the coprecipitation method which involves simultaneous precipitation from a homogeneous solution of two or more cations. Simultaneous occurrence of nucleation, growth, coarsening, Ostwald ripening, and aggregation dramatically affect the size, morphology, and properties of the metal oxide
nanoparticles. The technique has been applied for the synthesis of NiCo$_2$O$_4$ nanomaterials. NiCo$_2$O$_4$ hexagonal nanostructures were prepared by Bhagwan et al. [151] using Ni and Co chlorides and 6 M KOH as the precipitating agent. The schematic illustration for the formation of NiCo$_2$O$_4$ hexagonal is shown in Fig. 13a. It was suggested that the strong alkaline environment in the growth solution caused nickel and cobalt ions to precipitate and nucleate together, forming nickel–cobalt hydroxide which was subsequently converted into NiCo$_2$O$_4$ hexagonal after calcination at 300 °C. Liang et al. [152] reported hierarchical NiCo$_2$O$_4$ nanosheets@halloysite nanotubes (Fig. 13b). The initial formation of NiCo-precursor@halloysite nanotubes was assisted by HMTA and dehydrated citric acid trisodium salt.

A stepwise co-precipitation template free method was designed by Chen et al. [153] for the synthesis of hierarchical urchin-like NiCo$_2$O$_4$ hollow nanospheres. Urea-assisted mesoporous urchin-like NiCo$_2$O$_4$ nanostructures were prepared by Jadhav et al. [154] by an easy, viable, and cost-effective co-precipitation method. Yu et al. [155] explored the structure-stabilizing properties of PVP, which can bind the metal ions through electrostatic interaction with the –N and/or C=O functional groups, for the formation of Ni–Co precursor particles with tetragonal prism-like shapes by a modified coprecipitation method. The yolk–shell Ni–Co oxide nanoprisms with a highly porous interior core structure consisting of numerous polycrystalline primary particles were obtained finally after annealing. Other stabilizing and precipitating agents like ethylene glycol (EG) [156], urea [157], NaOH, NH$_4$OH, NH$_4$HCO$_3$, H$_2$C$_2$O$_4$ [158, 159] and NaHCO$_3$ [153] are reported in the literature. Organic stabilizers such as EG are supposed to form a protective layer around the particle surface through interactions with hydroxy groups preventing the aggregation. Moreover, EG also acts as a bidentate chelating ligand for solvated metal ions [160]. Another important factor that controls the morphology, shape, and size of the nanoparticles is the pH of the reaction medium during

Fig. 13 a Schematic representation for the synthesis of hexagonal NiCo$_2$O$_4$ nanosheets, Reproduced with permission from Ref. [151]. Copyright © 2019 Elsevier Ltd. and b hierarchical NiCo$_2$O$_4$ nanosheets@halloysite nanotubes via co-precipitation method. Reproduced with permission from Ref. [152]. Copyright © 2014 American Chemical Society
coprecipitation. Wan et al. [159] observed the change in morphology of the NiCo2O4 precursors from the cubic to the fibrous along the axial direction. The fibrous morphology was maintained at a still higher pH value of 8.4; however, the aspect ratio was increased (Fig. 14a–d). A dynamic equilibrium was suggested to exist between metal ammoniated complexes and the coprecipitation of Ni2+ and Co2+ as their oxalates.

The post-annealing temperature is also an important factor for controlling the morphology of the NiCo2O4 spinel structures. The homogeneous dark blue-colored suspension which was obtained by mixing the metal nitrates and NaOH solution was initially evaporated under rotation and reduced pressure conditions by a cost-effective rotary evaporation method. Hexagonal column-like mesoporous loose architectures and hexagonal dense blocks were obtained at 200 and 400 °C calcination temperatures, respectively (Fig. 15) [161].

3.5 Electro-Deposition

Electro-deposition is considered a very useful, versatile, and flexible tool for the deposition of dendritic hierarchical structures, thin and thick films, nanosheet, nanofoil, nanotubes, nanowires, and many well-ordered transition metal oxides on conducting surfaces. Potentiostatic, galvanostatic, and pulse plating are the three main techniques employed for electro-deposition [162, 163]. The basic principle of electro-deposition involves three steps, viz. preparation of a metal ions precursor solution, co-electro-deposition, and final thermal decomposition [164]. Recently, this technique has also been used for the preparation of NiCo2O4 spinel structures for various applications, including supercapacitors, anode materials for Li-ion batteries, gas sensors, biosensors, etc. Wu et al. [165] deposited nanostructured cauliflower-like NiCo2O4 film through galvanostatic electro-deposition combined with annealing treatment (Fig. 16). Galvanostatic
electro-deposition was performed using a three-electrode compartment comprising a stainless steel disk as a working electrode. An Ag/AgCl saturated with KCl and a platinum plate were used as the reference and counter electrodes, respectively. Hydroxide-SiO₂ template transformed nano-flakes to cauliflower-like NiCo₂O₄ nanoparticles. Under cathodic potential, the generated OH⁻ ions catalyzed the sol–gel process for the formation of SiO₂. The generated OH⁻ ions facilitated the formation of Ni(OH)₂ and Co(OH)₂.

Heat treatment of the deposited at 250 °C in air for 2 h converts the metal hydroxides into NiCo₂O₄ films.

Wang et al. [166] reported the electro-deposition of the nickel/cobalt/zinc ternary alloy layer on ultrafine nickel wire. Removal of the zinc by dealloying with NaOH solution followed by oxidation at the atmospheric environment resulted in mesoporous NiCo₂O₄ film on the surface of ultrafine nickel wire. Zhao et al. [167] grew NiCo₂O₄ nanosheet networks on carbon cloth through a simple cathodic
The electro-deposition process followed by post-annealing at 300 °C in an air atmosphere for 120 min. The average mass loadings for NiCo$_2$O$_4$ nanosheet networks grown on carbon cloth at different electro-deposition times 200, 400, and 600 s were 0.4, 0.6, and 0.9 mg cm$^{-2}$, respectively. The NO$_3^-$ ions from the metal salts were reduced to NO$_2^-$ and NH$_4^+$ ions at the cathode. This reduction also resulted in the formation of OH$^-$ ions which combined with the Ni$^{2+}$ and Co$^{2+}$ to form amorphous binary metal hydroxide NiCo$_2$(OH)$_6$ nanosheet networks [168]. Post-annealing transforms the NiCo$_2$(OH)$_6$ into NiCo$_2$O$_4$ nanosheet networks [57, 169] (Eqs. 17–20).

$$\text{NO}_3^- + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{NO}_2^- + 2\text{OH}^- \quad (17)$$

$$\text{NO}_2^- + 6\text{H}_2\text{O} + 6\text{e}^- \rightarrow \text{NH}_4^+ + 8\text{OH}^- \quad (18)$$

$$\text{Ni}^{2+} + 2\text{Co}^{2+} + 6\text{OH}^- \rightarrow \text{NiCo}_2(\text{OH})_6 \quad (19)$$

$$\text{NiCo}_2(\text{OH})_6 + \frac{1}{2}\text{O}_2 \rightarrow \text{NiCo}_2\text{O}_4 + 3\text{H}_2\text{O} \quad (20)$$

The dissolution of the ions decreases near the electrode due to the formation of the OH$^-$ ions and an increase in pH near the electrode is observed. Since the solubility constants of Ni(OH)$_2$ (8.2 × 10$^{-16}$) and Co(OH)$_{2/3}$ (2.5 × 10$^{-16}$) are very low and comparable, their simultaneous precipitations occur which finally gives NiCo$_2$(OH)$_6$ [170, 171]. Rama-doss et al. [169] electrodeposited highly porous and binder-free 3D flower-like NiCo$_2$O$_4$/Ni nanocomposites on Ni wire and explored their supercapacitor applications (Fig. 17a). The high porosity of the nanostructures was attributed to the presence of H$_2$ bubbles produced by hydrogen evolution reaction during electro-deposition. Furthermore, H$_2$ bubbles also acted as a template for the construction of a 3D flower-like NiCo$_2$O$_4$/Ni with dendritic walls on the Ni wire. Nanoforest hierarchical composites Co$_3$O$_4$@NiCo$_2$O$_4$ nanowire arrays were synthesized by Zhang et al. [172]. Co$_3$O$_4$ nanowires were initially grown on Ni foam through a facile hydrothermal method. After that, NiCo$_2$O$_4$ was electrochemically deposited in the Co$_3$O$_4$ nanowires to avoid the conventional aggregation (Fig. 17b). Mirzaee et al. [173] proposed a two-step method involving initial electrodeposition followed by thermal treatment at 300 °C with a ramping rate of 1 °C min$^{-1}$ to form flower-like arrays of NiCo$_2$O$_4$ on electrochemically reduced graphene oxide.

![Fig. 17](image_url)
which itself was deposited on nickel–nickel oxide foam.

In addition to these, NiCo$_2$O$_4$ architectures of versatile morphologies have been electrochemically deposited on a variety of conducting surfaces. Some of these include honeycomb-shaped NiCo$_2$O$_4$ on carbon cloth [174], ultrathin NiCo$_2$O$_4$ nanosheets on three-dimensional interwoven nitrogen-doped carbon nanotubes [175], ultrathin porous NiCo$_2$O$_4$ nanosheet arrays on flexible carbon fabric, 3D vertically aligned carbon nanotubes/NiCo$_2$O$_4$ core/shell structures [176], hybrid composite Ni(OH)$_2$@NiCo$_2$O$_4$ on carbon fiber paper [177], 3D hierarchical NiCo$_2$O$_4$@MnO$_2$ hybrid nanomaterial on stainless steel mesh [178], freestanding bowl-like NiCo$_2$O$_4$ on carbon fiber paper [179], network-like holey NiCo$_2$O$_4$ nanosheet arrays on Ni foam [180], NiCo$_2$O$_4$@carbon nanofibers [181], and many more.

3.6 Combustion Method

Combustion synthesis, also referred to as self-propagating high-temperature synthesis is one of the most versatile, convinced, convenient, cost-effective, and fast method for the synthesis of nanomaterials. It involves a thermally induced redox reaction between precursor salt as oxidizers and an organic fuel [182–184]. Glucose, fructose, tartaric acid, sucrose, glycine, citric acid, hydrazine, urea, and oxalic acid are generally used as organic fuels. However, if metal oxalate or acetate salts are used, the combustion process can be directly conducted in the absence of fuel [185]. Byproduct gases like CO$_2$, H$_2$O, N$_2$, oxides of N (NO$_x$) and S (SO$_x$), etc. are evolved during the combustion process [186]. The release of these gases promotes the expansion of the product and rapid fall in temperature after the reaction ceases. This provides a solid product with a high degree of porosity and good dispersibility [187]. As compared to solid-state combustion, liquid phase combustion synthesis has proved to be the most suitable one as oxidizers and fuel are well dissolved in aqueous or alcoholic solutions [188]. Ni(NO$_3$)$_2$·6H$_2$O, Co(NO$_3$)$_2$·6H$_2$O (in 1:2 molar ratio) as oxidizers and tartaric acid as fuel were dissolved in acidified 2-methoxy ethanol solution. The resulting solution was combusted at 250 °C for 1 h to prepare NiCo$_2$O$_4$ nanoparticles [189]. Sucrose assisted combustion of the Ni and Co nitrates also resulted in NiCo$_2$O$_4$ nanoparticles when the combustion process was carried out at 350 °C for 6 h [190]. The oxalate precursors were directly decomposed into NiCo$_2$O$_4$ powders by heating in an air ambient atmosphere at 320 °C for 10 h [185]. Citric acid assisted combustion at 400 °C for 4 h resulted in highly porous NiCo$_2$O$_4$ nanomaterials [191]. Urea-assisted combustion was processed at 400 °C for 2 h in ethyl acetate as a solvent [192]. In each case, a viscous gel is obtained initially by heating the reaction solution at low temperature followed by auto-ignition resulting in the formation of highly fluffy mass which is finally calcined at high temperature. Direct calcination of the metal nitrate salts in the presence of alkalis without any fuel has also been reported for the synthesis of the NiCo$_2$O$_4$ nanorods [41].

Though it is a fast and low-cost method for the synthesis of NiCo$_2$O$_4$ powders, it suffers from some major drawbacks including less control over morphological uniformity and particle size, the simultaneous formation of a variety of crystalline phases, the formation of highly agglomerated structures, complex and uncertain growth mechanism, and critically very low possibilities of formation of a versatile and wide range of morphological structures as those of in hydrothermal and other solution methods.

3.7 Electro-Spinning Method

Many electrospun carbonaceous materials such as carbon nanofibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, etc. prepared from oxidation and carbonization of polymers like PVP, PAN, PVA have been used as templates for the growth and deposition of NiCo$_2$O$_4$ nanostructures with versatile morphologies. In one synthetic way, there is simultaneous growth of NiCo$_2$O$_4$ nanostructures and electro-spinning of template material [193, 194]. In another strategy, NiCo$_2$O$_4$ nanostructures are grown through other synthetic methods like hydrothermal, sol–gel, coprecipitation, etc. on pre-electrospun carbonaceous templates [39].

Electro-spinning setup comprises a high-voltage system, spinneret, and collector which results in the formation of continuous nanofibers with diameters ranging from nanometer to micrometer [195–197]. The deposition of NiCo$_2$O$_4$ nanostructures on these carbonaceous materials not only improves the electrical and electronic properties but also enhances the thermal, mechanical and chemical stabilities which are the important prerequisite characteristics for the biosensing and other applications. The composition of the precursor solution, presence of additives like templates and
capping agents, modification in the electro-spinning setup, post-annealing, electrospun voltage are some of the major factors which control the thickness, porosity, and morphology of the deposited NiCo$_2$O$_4$ films. Lai et al. [198] through electro-spinning, co-deposition, redox deposition fabricated NiCo$_2$O$_4$-doped carbon nanofiber@MnO$_2$ nanosheet and nanorod hybrid membranes. Busacca et al. [199] prepared NiCo$_2$O$_4$/carbon nanofibers composites and investigated their oxygen evolution reaction in alkaline electrolyte. Metal acetate salt precursor in a molar ratio 1:2 was mixed in PAN (as carbon source) and DMF. The electrospun layer was thermally oxidized at 270 °C in air for 30 min followed by subsequent carbonization at 900 °C for 1 h under a helium gas flow. Li et al. [193] fabricated porous one-dimensional NiCo$_2$O$_4$ nanostructures via a single-spinneret electro-spinning method. Stoichiometric amounts of Ni and Co nitrates were homogeneously mixed in a solution prepared by dissolving PVP in ethanol and N,N-dimethylformamide. Metallic precursor concentration: PVP (M: PVP) ratio was significant in determining the morphologies of the electro-spun one-dimensional NiCo$_2$O$_4$ nanostructures. For 0.44:1, 0.61:1, and 0.87:1 M: PVP ratios, NiCo$_2$O$_4$ nanofibers, nanotubes, and nanobelts were formed. The versatility in morphologies was attributed to the fast water evaporation and burning off of PVP during annealing. Guan et al. [194] synthesized spinel NiCo$_2$O$_4$ nanofibers with diameters of 50–100 nm through electro-spinning of the PVA/cobalt acetate/nickel acetate composite precursor followed by annealing at high temperatures ranging from 400 to 800 °C. Liu et al. [39] demonstrated the surfactant-assisted hydrothermal uniform growth NiCo$_2$O$_4$ nanoneedle on electrospun carbon nanofiber (ECF) and explored their glucose sensing properties non-enzymatically. ECF film was prepared through initial electro-spinning and subsequent oxidation and carbonization of PAN (Fig. 18a–c). Xu et al. [200] instead of PAN used PVP as a carbon source to produce NiCo$_2$O$_4$ nanotubes. These nanotubes were used as scaffolds for hydrothermal growth of MnO$_2$ nanosheets for the additional improvement in electronic conductivity and electrochemical activity for supercapacitor applications (Fig. 18d–f). Copolymers like poly (acrylonitrile-co-methylhydrogen itaconate) [201] and biobased polymer composites such as PAN/lignin [202] are also reported in the literature for the formation of flexible carbon nanofibers. The hollow carbon nanofibers were used as a template for the hydrothermal growth of NiCo$_2$O$_4$ with uniform dandelion-like morphology consisting of densely grown nanoneedle (Fig. 18g, h) [203]. The above discussion thus reveals that the proper combination and the composition of the polymers can result in the formation of carbonaceous materials with versatile structural features with high surface area necessary for potential applications.

3.8 Microwave-Assisted Method

Microwaves are the electromagnetic radiations having a frequency range between 300 MHz and 300 GHz and a wavelength range of 1 m–1 mm. Microwave-assisted synthesis of nano-/microstructures is superior to the conventional methods described above because it requires a very short reaction duration, is energy efficiency, cost-effectiveness, and gives an excellent yield of highly porous materials. Microwaves result in volumetric heating as they can penetrate throughout the volume of reactants [204]. This volumetric heating is caused by various types of polarization in the medium, including electron polarization, atomic polarization, directional polarization, and space charge polarization [205]. To obtain better morphological results, microwave-assisted synthesis of nanomaterials is usually combined with other synthetic methods such as sol–gel, co-precipitation, and hydro/solvothermal, etc. Recently, the improvement in the hydrothermal method in harmony with microwave assistance has been studied to synthesize NiCo$_2$O$_4$ nano-/microstructures. Other ways of engineering the structural aspects of the NiCo$_2$O$_4$ are the use of a template, capping agents, organic solvents, ionic solvents, and addition of other growth additives. The microwave-assisted hydrothermal method was applied by Zhang et al. [206] to prepare NiCo$_2$O$_4$ double-shelled hollow spheres with an outer and inner shell thickness of ~20 and ~70 nm, respectively. A mixture of isopropanol and glycerol was used to prepare a reaction solution (Fig. 19a). Glycerol molecules were supposed to form a self-assembled quasi-emulsions in isopropanol that serve as a soft template for the growth of Ni–Co double hydroxides. In the absence of glycerol, solid microspheres with diameters of ~1 µm were formed, demonstrating the templated role of glycerol in the synthesis of a double-shelled hollow nanostructure (Fig. 19b–d). In the presence of microwaves, the reaction mixture is heated due to dielectric loss, which significantly accelerates the reaction kinetics. Additionally, the presence of microwaves improves uniformity in terms of dispersion and size distributions.
Shanmugavani et al. [207] analyzed the effect of reaction times on the morphology of the NiCo$_2$O$_4$/NiO nanocomposites. The reaction was carried out in the presence of oxalic acid at an operating frequency of 2.45 GHz and 800 W output power. It was proposed that the initially formed nanoparticles are converted into bundled-like structures as the reaction time was increased. Recently, Sun et al. [103] reported novel porous nanoscale NiO/NiCo$_2$O$_4$ heterostructure through two-stage calcination of nickel–cobalt bimetallic hydroxide precursors (NiCo precursors) which were
initially synthesized using a microwave-assisted hydrothermal method in the presence of HMTA and NH₄F. Notably, F⁻ ions were supposed to act as functional template agents. Prolonged irradiation significantly affects the morphology of NiCo₂O₄ materials. When the irradiation time was increased from 5 to 40 min, the incompletely self-assembled and non-uniform 2D nanosheets are converted into more optimized and thickened 3D frameworks with large open spaces (Fig. 20a–i).

Nakate et al. [208] prepared nanocrystalline NiCo₂O₄ nanoplates in the surfactant-free environment using metal chloride salts precursors through microwave irradiation. Gu et al. [209] reported 3D nanosphere-like NiCo₂O₄ nanostructure composed of intertwined 2D ultrathin mesoporous nanosheets having large specific surface area 146.5 m² g⁻¹. The reaction solution was exposed to microwaves (power 560 W) for 6 min. Su et al. [210] reported highly crystalline NiCo₂O₄ supported on carbon black via a simple, one-step intermittent microwave heating method avoiding the calcination process. However, in a contrary study, Tao et al. [211] analyzed the effect of post-annealing temperature on the morphologies of the NiCo₂O₄. Ni–Co double hydroxide was initially prepared through a microwave-assisted method using a terbutanol solution (98%). Flower-shaped morphology of the Ni–Co double hydroxide was completely converted into unique coral-like morphology on calcination. As the post-annealing temperature was increased from 400 to 700 °C, individual ultrathin nanosheets shrink to smaller nano-sized crystal grains which finally self-assembled to form coral-like NiCo₂O₄ architectures.

For greener perspectives, ionic solvents like [1-butyl-3-methylimidazolium][BF₄] (Bmim)[BF₄], [Bmim] FeCl₄, [Bmim]Cl [212], and non-ionic glucose-based polymeric surfactant, β-C₁₀Alkyl Poly Glucoside [213] are also reported in the literature for the synthesis of NiCo₂O₄ architectures with versatile morphologies.
3.9 Spray Pyrolysis Method

In spray pyrolysis technique, an aerosol of various precursor components is prepared in suitable solvent and is sprayed on the substrate. After that, sequential evaporation of the solvent from the surface of the substrate, heating to precipitate out the solute, high-temperature annealing, formation of microporous particles, and finally, sintering of solid particles is carried out [214]. NiCo$_2$O$_4$ nanostructures with morphologies hollow nanosphere [215], hollow microspheres [216], dried plum-like particles [217], yolk–shell microspheres [218], nanoaggregates [219], thin films with uniform particle distribution size 20–30 nm [220], etc. are reported (Fig. 21a–e).

Similar to the electro-spinning method, carbonaceous materials such as reduced graphene oxide, carbon nanotubes, carbon nanofibers are also mixed in the precursor solution to improve the electrochemical properties of NiCo$_2$O$_4$. Park et al. [221] synthesized three-dimensional macroporous multi-walled carbon nanotubes microspheres densely loaded with NiCo$_2$O$_4$ hollow nanospheres via spray pyrolysis process. The schematic illustration depicting the formation mechanism is shown in Fig. 22a. The polystyrene nanobeads added in the solution improved the structural uniformity and the dispersion of CNT microspheres. The similarity in the atomic radii of the Ni and Co ions resulted in the Kirkendall diffusion into the outer surface of the where they were oxidized to form NiCo$_2$O$_4$ (Fig. 22b).
4 Biosensor Applications of Nano-/Micro-structured NiCo$_2$O$_4$

4.1 Glucose Biosensors

Non-enzymatic glucose sensing is considered to be a better, fast, and convenient way as compared to the enzymatic method since the later is a complicated and multi-step process involving immobilization of enzyme bioreceptor such as glucose oxidase, glucose dehydrogenase, and quinoprotein glucose dehydrogenase onto the electrode surface [51, 52]. Furthermore, maintaining the enzyme stability under non-physiological conditions of observations is another major issue related to enzymatic glucose biosensing. Most of the biosensing measurements are based on cyclic voltammetry (CV) and amperometric analysis. Better biosensing behavior and electrochemical activity using NiCo$_2$O$_4$ nano-/microstructure-modified electrodes are adjudged by broader redox peaks with larger area coverage in the CV curves. Since the spinel NiCo$_2$O$_4$ comprises binary intrinsic-state redox couples of Ni$^{3+}$/Ni$^{2+}$ (0.58 V/0.49 V) and Co$^{3+}$/Co$^{2+}$ (0.53 V/0.51 V), only a pair of redox peaks in the CV curves is generally observed due to almost similar redox potential values for NiO and Co$_3$O$_4$ [142, 222, 223]. In alkaline medium, NiCo$_2$O$_4$ is oxidized to Ni and Co perhydroxides which finally convert glucose into gluconolactone (Eqs. 21–26) [224].

\[
\begin{align*}
\text{NiCO}_2\text{O}_4 + \text{OH}^- + \text{H}_2\text{O} &\leftrightarrow \text{NiOOH} + 2\text{CoOOH} + e^- \\
\text{CoOOH} + \text{OH}^- &\rightarrow \text{Co}_2\text{O}_3 + \text{H}_2\text{O} + e^- \\
\text{NiOOH} + \text{Glucose} &\rightarrow \text{Ni(OH)}_2 + \text{Gluconolactone} \\
\text{CoOOH} + \text{Glucose} &\rightarrow \text{Co(OH)}_2 + \text{Gluconolactone}
\end{align*}
\]

Fig. 21 Morphologies of various NiCo$_2$O$_4$ nanostructures a hollow nanosphere. Reproduced with permission from Ref. [215]. Copyright © 2017 The Korean Society of Industrial and Engineering Chemistry, Published by Elsevier B.V. b hollow microspheres. Reproduced with permission from Ref. [216]. Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. c yolk–shell microspheres. Reproduced with permission from Ref. [218]. Copyright © 2017 Elsevier Ltd. d nanoaggregates. Reproduced with permission from Ref. [219]. Copyright © 2015 Elsevier Inc. and e thin films with uniform particle distribution size 20–30 nm. Reproduced with permission from Ref. [220]. Copyright © 2016 Elsevier Ltd.
Since the rates of oxidation of Ni$^{2+}$ and Co$^{2+}$ ions on the electrode surface during anodic scan determine the rate of sensing of glucose, NiCo$_2$O$_4$ nano-/microstructures with versatile morphologies having large specific surface area, permeability, and most importantly short electron and ion diffusion pathways are synthesized. Ni$^{3+}$ and Co$^{3+}$ ions are reduced back to Ni$^{2+}$ and Co$^{2+}$ ions by the electrons lost by the oxidation of glucose to gluconolactone. According to Hussain et al. [225], H$_2$O$_2$ is formed as one of the products along with gluconolactone if the electrochemical sensing is performed in the presence of oxygen. Glucose undergoes a spontaneous reaction with water and O$_2$ to form gluconolactone which is further oxidized into gluconic acid (Eqs. 27, 28). In a slightly basic medium (pH = 7.4), gluconic acid ionizes to gluconate ions which act as mobile charge carriers on the surface of the NiCo$_2$O$_4$ nanostructures producing a strong electrical signal (Eq. 29). Elakkiya et al. [226] reported highly porous flower-like NiCo$_2$O$_4$ nanostructures synthesized via a facile hydrothermal method for excellent electrocatalytic activity in alkaline electrolyte for the oxidation of glucose and lactic acid.

\[\text{Ni}^{2+} + \text{Co}^{2+} \rightarrow \text{Ni}^{3+} + \text{Co}^{3+} + 2e^- \]
(25)

Glucose(C$_6$H$_{12}$O$_6$) \rightarrow Gluconolactone(C$_6$H$_{10}$O$_6$) + 2H$^+$ + 2e$^-$
(26)

Fig. 22 Formation mechanism of 3D macroporous multi-walled carbon nanotubes microspheres densely loaded with NiCo$_2$O$_4$ hollow nanospheres. Reproduced with permission from Ref. [221]. Copyright © 2017 Elsevier Ltd.
The binary spinel NiCo$_2$O$_4$ architecture exhibits better intrinsic electronic conductivity as compared to pure NiO and Co$_3$O$_4$ which is attributed to the doping of Ni$^{3+}$ ions in the octahedral sites of the Co$_3$O$_4$ crystal lattice which accelerates the electron hopping process [227]. Huang et al. [140] compared the electron transfer resistance (R_{et}) through electrochemical impedance spectroscopy for GCE modified with NiCo$_2$O$_4$, NiO, and Co$_3$O$_4$. Nyquist plots for all the modified GCE consisted of two portions; an inclined line at low frequencies and a semicircular portion at high frequencies. However, the lowest R_{et} of NiCo$_2$O$_4$/GCE was an indication of the enhanced conductivity for NiCo$_2$O$_4$ (Fig. 23a). Broader redox peaks NiCo$_2$O$_4$/GCE as compared to NiO/GCE and Co$_3$O$_4$/GCE confirmed the better biosensing behavior of the NiCo$_2$O$_4$ as compared to Co$_3$O$_4$ and NiO (Fig. 23b).

Spinel NiCo$_2$O$_4$ hollow nanocages were prepared by using Co-based zeolite imidazole frameworks (ZIF-67) as a template and precursor by Feng et al. [228]. Morphological characterization revealed that the thickness of the cage shell was about 30 nm. The outer surface of the nanocages was covered with small nanosheets. A wide linear dynamic range 0.18 μM–5.1 mM, high sensitivity 1306 μA mM$^{-1}$ cm$^{-2}$, a fast response time of 1 s, and limit of detection 27 nM were observed for NiCo$_2$O$_4$ hollow nanocage-based modified GCE.

NiCo$_2$O$_4$ nanoplates interconnected through MoS$_2$ nanosheets performed excellent electrocatalytic behavior toward glucose. NiCo$_2$O$_4$ nanoplates and MoS$_2$ nanosheets illustrated a significant synergic effect. Though not an active catalyst for the oxidation of glucose, the highly active edge of vein-like MoS$_2$ nanosheets inhibited the agglomeration of NiCo$_2$O$_4$ nanoplates and formed long conducting chains which provide an alternative pathway with lower electrical resistance [229] (Fig. 24a, b). The fabricated glucose biosensor exhibited a high sensitivity of 1748.58 μA mM$^{-1}$ cm$^{-2}$ and a very low detection limit of 0.152 μM. MoS$_2$ nanosheets have also been reported

\[
\begin{align*}
\text{Glucose} & \quad \text{Glucoselactone} \\
\text{Gluconolactone} & \quad \text{Gluconic acid} \\
\text{Gluconic acid} & \quad \text{Gluconate ion}
\end{align*}
\]
as support material for the fabrication of NiCo₂O₄/MoS₂ nanocomposites through a simple ionothermal method in deep eutectic solvent (choline chloride (ChCl)-urea mixture) [230]. Deep eutectic solvents consist of simple eutectic-based ionic liquids prepared by eutectic mixing of ChCl and some hydrogen bond donors like acids, amides, alcohols, etc. [231]. These solvents have excellent thermal stability, high surface tensions, negligible vapor pressure, and most importantly biodegradability [232–236]. The NiCo₂O₄-MoS₂/chitosan/GCE-modified electrode was used as an electrochemical sensor for glucose in red wine and honey [230].

Analysis of non-enzymatic glucose sensing properties of NiCo₂O₄ nanosheets showed linear response with respect to the change in glucose concentration varying from 5 to 65 μM. The high sensitivity of 6.69 μA μM⁻¹ cm⁻² with a LOD value of 0.38 μM and liquid of quantification of 1.27 μM was observed. During CV measurements, scan rates increased the oxidation and reduction peak currents as well as peak-to-peak separations [224]. The electrochemical kinetics of the NiCo₂O₄ hollow nanorods grown on stainless steel via a sacrificial template showed similar trends during glucose sensing in 0.1 M NaOH solution with scan rates ranging from 5 to 100 mV s⁻¹ (Fig. 25a). Amperometric studies revealed a steady-state current optimization within 2 s of glucose addition. Calculated sensitivity, linear detection range, and detection limit were 1685.1 μA mM⁻¹ cm⁻², 0.0003–1.0 mM, and 0.16 μM (S/N = 3), respectively (Fig. 25b) [142]. Cui et al. [237] prepared rectangular flake-like mesoporous NiCo₂O₄ via a facile hydrothermal method and observed glucose

![Nyquist plots of NiCo₂O₄, Co₃O₄, and NiO-modified GCE in 0.1 M NaOH. CV curves for NiCo₂O₄, Co₃O₄, and NiO-modified GCE in 0.2 M NaOH without glucose. Reproduced with permission from Ref. [140]. Copyright © 2016 Elsevier B.V.](image1)

![Electrocatalytic activities of MoS₂-NiCo₂O₄/GCE in 0.1 M NaOH at a scan rate of 50 mV s⁻¹. Amperometric response curves for MoS₂-NiCo₂O₄/GCE. Reproduced with permission from Ref. [229]. Copyright © 2017 Elsevier B.V.](image2)
biosensing sensitivity of 662.31 µA mM⁻¹ cm⁻² and very low detection limit of 0.3 nM at S/N = 3. The other optimized operational parameters were: 0.2 M KOH, +0.5 V applied potential and 1.0 mg mL⁻¹ loading of meso-NiCo₂O₄ in the suspensions. Dry rod-like NiCo₂O₄ synthesized through a facile hydrothermal reaction followed by subsequently microwave treatment. The non-enzymatic glucose sensor fabricated using these rod-like features showed a high sensitivity of 431.29 µA mM⁻¹ cm⁻² [238].

The microwave treatment completely removed the water and made the material highly porous for exhibiting excellent biosensing applications. One-dimensional porous NiCo₂O₄ nanowires array grown on nickel foam (NiCo₂O₄ NWs/NF) via a facile hydrothermal method exhibit highly efficient glucose sensitivity of 5916 µA mM⁻¹ cm⁻², a detection limit of 1 µM–3.987 mM and LOD of 0.94 µM (S/N = 3) [239]. As conducting substrate, nickel foam not only provides the large electrochemically active surface area due to three-dimensional interconnected features, but also directs the growth of one-dimensional NiCo₂O₄ porous nanowires [240]. Besides, the one-dimensional porous NiCo₂O₄ nanowires array provided sufficient transport channels for ions and abundant active sites for redox reactions. Carbon cloth has also been used as a potential conducting surface for the growth of porous NiCo₂O₄ nanowires. As fabricated enzyme-free NiCo₂O₄ porous nanowire arrays supported on carbon cloth-based electrode for glucose sensing exhibited a linear dynamic range of 1 µM–0.63 mM, the sensitivity of 4.12 mA mM⁻¹ cm⁻², and low detection limit of 0.5 µM [241].

One of the main disadvantages of using bare NiCo₂O₄ is its poor electrical conductivity. However, this limitation can be overcome by forming its composite/hybrid materials. It has been reported that the electrical conductivity and hence the electrochemical biosensing performance of NiCo₂O₄ can be improved by making its composites with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co₃O₄, SnO₂, MnO₂; and metals like Au, Pd, etc. Among these, the carbonaceous materials are considered to be potential candidates as compared to others due to their excellent electrical conductivities, good mechanical strength, thermal and chemical stabilities, and resistance to oxidation–reduction reactions. Besides, these carbonaceous materials provide a large specific surface area for better adsorption of analytes, which ultimately results in very high sensitivity and very low detection limits.

The two-dimensional one-atom-thick layered structure of graphene has been extensively used for making composites with NiCo₂O₄ due to its high specific surface area of 2670 m² g⁻¹ and excellent conductivity [242, 243]. Studies have revealed a higher specific surface area for the NiCo₂O₄/reduced graphene oxide composites as compared to bare NiCo₂O₄ nanoparticles (Fig. 26a) [244]. Even the pore width was less in the case of NiCo₂O₄/reduced graphene oxide composites. Various glucose-sensing scans are given in Fig. 26b–d. The enhanced redox peak current density for NiCo₂O₄/reduced graphene oxide composites as
compared to pure NiCo2O4 was attributed to the lesser extent of aggregation of graphene sheets due to the interception of the NiCo2O4 nanoparticles on graphene surface causing weakening of π–π interaction between individual graphene sheets, faster diffusion rates and electron transfer between the glucose molecules and the electrode surface [245].

Ma et al. [246] developed NiCo2O4 nanowrinkles/reduced graphene oxide hybrid-based modified GCE for non-enzymatic glucose detection at the physiological level. As far as the concentration of the glucose is concerned, the oxidation potential of glucose decreased while oxidation peak current increased proportionally to a greater extent for NiCo2O4 nanowrinkles/reduced graphene oxide hybrid-based modified GCE as compared to single component Co3O4, NiO and bare NiCo2O4 at a scan rate of 100 mV s−1 in 0.1 M NaOH (Fig. 27a–d). The results confirmed the crucial role of reduced graphene oxide in improving the electrocatalytic biosensing performance of the NiCo2O4 spinel for different concentrations of glucose.

In addition to two-dimensional graphene, Wu et al. [245] reported the synthesis of three-dimensional graphene foam (3DGF) through a chemical vapor deposition technique. The 3DGF provides additional stability and large porous surface as well as high conductivity to the hierarchical NiCo2O4 composites. NiCo2O4 hierarchical nanoneedles were deposited onto the surface of 3DGF via a hydrothermal method. The synergism between hierarchical NiCo2O4 nanoneedles and 3DGF exhibited a high sensitivity of 2524 μA mM−1 cm−2 and a limit of detection 0.38 μM (S/N = 3). Further, as fabricated electrode showed excellent selectivity for glucose even in the presence of interfering compounds like dopamine, ascorbic acid, lactose, d-Fructose, and urea as negligible current responses were observed on their additions as compared to glucose. NiCo2O4

Fig. 26 a Adsorption–desorption hysteresis loop, specific surface area (SSA), average pore width, and total pore volume of the synthesized pure NiCo2O4 and NiCo2O4/graphene nanohybrids. b CV for NiCo2O4/graphene hybrid-modified electrode. c Effect of scan rates scan rate for the solution with 0.1 mM glucose in 0.1 M NaOH. d Linear sweep voltammetric curves for glucose in the concentration of 0–0.14 mM and calibration plot (Inset). Reproduced with permission from Ref. [244]. Copyright © 2016 Elsevier B.V.
nanospheres/reduced graphene oxide composite prepared by a template-based method using the Cu$_2$O/GO template achieved a high sensitivity of 2082.57 μA mM$^{-1}$ cm$^{-2}$, the detection range of 0.04–1.28 mM, and low detection limit of 0.7 μM [137]. Ni et al. [247] reported a reduced graphene oxide supported NiCo$_2$O$_4$ nanorods composite prepared via an ionothermal method using deep eutectic solvents. The modified GCE exhibited superior electrocatalytic biosensing of glucose with a wide double-linear range from 1 μM to 25 mM and a very low detection limit of 0.35 μM (S/N = 3). The presence of a large number of small interconnected nanoparticles on the surface of the NiCo$_2$O$_4$ nanorods provided the dense electrocatalytic active site in coordination with reduced graphene oxide which provided large surface area and excellent electrical conductivity (Fig. 28a).

Another way of preventing the aggregation of graphene sheets, which reduces the specific surface area and inhibits the fast mass transfer, is the nitrogen doping. This nitrogen doping is not only supposed to facilitates the charge transfers between adjacent carbon atoms but also suppresses the electrons and holes recombination necessary for better electrical conductivity and electrocatalytic oxidation of glucose [248, 249]. Detailed characterization revealed that in the course of hydrothermal reactions, the graphene was reduced to nitrogen-doped reduced graphene oxide when glycine acted as a source of nitrogen. Further, the nitrogen-doped reduced graphene was self-assembled into hydrogels with interconnected 3D porous network structure resulted from an increased extent of π–π stacking interactions. This 3D form provides a sufficiently large surface area and active sites for the better adsorption of the analyte species. To ascertain this, Lu et al. [38] explored the interactions of flower-like NiCo$_2$O$_4$ and 3D nitrogen-doped holey graphene hydrogel (NHGH)-modified GCE for electrochemical biosensing of glucose (Fig. 28b).
Similar to graphene, carbon nanofibers also possess excellent dimensional, thermal and chemical stability as well as good electrical conductivity. Recently, these fibers have attracted wide attention and have been widely explored in fields such as electrochemical cells, catalysis, adsorption, structure enhancement, biosensors, gas sensors, and nanodevices [250, 251]. Among various synthetic methods, electro-spinning is considered to be the most suitable low-cost and simple method for synthesizing carbon nanofibers [252, 253]. Liu et al. [39] explored the glucose-sensing behavior of NiCo$_2$O$_4$ nanoneedle-decorated electrospun carbon nanofiber nanohybrids. Faster electrocatalytic oxidation of glucose was reported for nanohybrids as compared to bare NiCo$_2$O$_4$ nanoneedle and electrospun carbon nanofiber-modified GCEs. The fact was supported by a large increase in the anode peak current and a positive shift in the anode peak potential.

Novel metals such as Au, Ag, and Pd, have also been used to prepare NiCo$_2$O$_4$ composites to improve the biosensing capabilities. Recently, dealloying has been used as a convenient method for preparing nanoporous metals with a 3D bicontinuous structure, which is characterized by open nanopores with adjustable sizes [254–256]. These 3D nanoporous metals act as conductive surfaces for the deposition of biosensors electrocatalytic materials such as NiCo$_2$O$_4$ since they provide high conductivity and large surface area. Disposable needle-type hybrid electrode comprising a stainless steel core modified with a 3D nanoporous Au/NiCo$_2$O$_4$ nanowall hybrid structure-modified electrochemical non-enzymatic glucose sensor showed a linear response of 0.01–21 mM glucose, high

![Diagram](image)

Fig. 28 a Proposed mechanism of glucose sensing using NiCo$_2$O$_4$ nanorods/rGO/Nafion composite-modified GCE. Reproduced with permission from Ref. [247]. Copyright © 2018 Elsevier Ltd. b Schematic presentation of the synthesis of the NHGH/NiCo$_2$O$_4$ electro-catalyst for non-enzymatic glucose sensing. Reproduced with permission from Ref. [38]. Copyright © 2019 Elsevier B.V.
sensitivity of 0.3871 μA μM⁻¹ cm⁻², detection limit of 1 μM within a response time of < 1 s [257]. Naik et al. [258] compared the bare NiCo₂O₄/Ni foam, NiCo₂O₄–Ag/Ni foam and NiCo₂O₄–Au/Ni foam nanosheets electrodes. The calculated sensitivity for pure NiCo₂O₄, NiCo₂O₄–Ag, and NiCo₂O₄–Au nanosheets electrodes in the linear range 5–45 μM and 45–465 μM were 20.8, 29.86, and 44.86 μA μM⁻¹ cm⁻² and 6.2, 11.5, and 13.96 μA μM⁻¹ cm⁻², respectively. The respective limits of detection were 9.33, 5.82, and 2.64 μM. DFT studies confirmed strong binding between Au and NiCo₂O₄ as compared to Ag. Further, the binding energy of glucose was more for the NiCo₂O₄–Au surface compared to the NiCo₂O₄–Ag surface. The enhanced density of states near the Fermi level improved the conductivity of the NiCo₂O₄–Au nanosheet than NiCo₂O₄–Ag that caused superior glucose sensing performance. In a similar type of report, the sensitivities for pure NiCo₂O₄ and NiCo₂O₄–Pd nanosheets electrodes in the linear range 5–90 μM and 70–450 μM were 27.5 and 40.03 μA μM⁻¹ cm⁻² and 8.53 and 8.23 μA μM⁻¹ cm⁻², respectively [259].

Similar to metals, conducting polymers also possess the electronic, electrical, and optical properties, easy synthesis, excellent mechanical stabilities and most importantly the low toxicity and biodegradability, the issues which are generally associated with metals. Moreover, the noble metals are easily poisoned by some intermediates produced during the oxidation of glucose. Among various conducting polymers, polyaniline and polypyrrole have gained much attention due to their superior thermal and oxidative stabilities [260, 261]. Constructing a core–shell nanostructure comprising conductive polymer coating as the outer walls of metal oxides is the most important strategy for enhancing the conductivities [262]. NiCo₂O₄@PANI nanoparticles with an average particle size 25 nm shortened the ion transport pathway and the modified GCE exhibited a sensitivity of 4.55 mA mM⁻¹ cm⁻², a detection limit of 0.3833 μM and linear dynamic range of 0.0150–4.7350 mM (Fig. 29a, b).
Numerous studies have been conducted to verify the selectivity of the NiCo2O4-based modified sensors as ascorbic acid, dopamine, and uric acid coexist along with

\[\text{NiOOH} \rightarrow \text{NiOO}^+ + \text{e}^- \]

\[\text{NiCo}_2\text{O}_4 \rightarrow \text{NiCo}_2\text{O}_4^+ + \text{e}^- \]

The introduction of n-type semiconductors stuffs like SnO2 in p-type NiCo2O4 semiconductors results in the formations of n–p junctions that facilitate the photo-induced electrochemical changes by altering the bandgap energies. Cai et al. [118] observed a prompt photocurrent reduction with the addition of the 100 µL–20 mM glucose solutions into the electrolyte solution. It was proposed that under sunlight stimulation, electron–hole (e−–h+) pairs are generated by the excitation of the electrons from the valence band of the n-type SnO2 semiconductor after the absorption of light of suitable energy (more than bandgap energy). The OH− of the solid electrolyte trap these h+ holes and form OH radicals (Eq. 30). The OH− radicals are then transferred to the counter electrode to oxidize NiCo2O4 to NiOOH and CoOOH (Eq. 31). However, in the presence of glucose, positively charged h+ causes oxidation of glucose to gluconolactone. The electrons released during the oxidation process are transferred back to the valence band, so the photocurrent is decreased.

\[\text{OH}^- + \text{h}^+ \rightarrow \text{OH}^- \]

\[\text{NiCo}_2\text{O}_4 + \text{OH}^- + \text{H}_2\text{O} \rightarrow \text{NiOOH} + \text{CoOOH} \]

Chen et al. [271] synthesized bionics-inspired streptococcus-like mixed oxide NiCo2O4 coated on needle-like MnO2 architectures. Initially, MnO2 nanowires were synthesized via a quick precipitation method, while NiCo2O4 were grown on pre-synthesized MnO2 nanowires via a facile hydrothermal method. MnO2 nanowires prevented the agglomeration of NiCo2O4 by acting as nucleation sites and electrocatalytic centers for the uniform growth of NiCo2O4. The synergism between NiCo2O4 and MnO2 was explored for the non-enzymatic electrochemical sensing of glucose. NiCo2O4–MnO2/GCE exhibited high sensitivity, wide concentration ranges, very low detection limit, and long-term stability as compared to NiCo2O4/GCE and MnO2/GCE.

The PANI core–shell provided more effective electrical contact between redox-active centers and the electrolyte resulting in good contact and small diffusion distances for electron transports which subsequently improved the sensor activity. NiCo2O4@Ppy nanowires grown on Ni foam were synthesized via hydrothermal growth and oxidant-induced polymerization process (Fig. 29c–e). The fabricated glucose sensor showed high sensitivity 3059 µA mM−1 cm−2, low detection limit 0.22 µM, and wide linear dynamic range 0.001–20 mM. The excellent electrocatalytic behavior was attributed to the synergism due to bimetallic oxide, the significant role of Ppy in transmitting charges among electrode material due to its excellent conductivity, non-collapsing and non-agglomeration of the NiCo2O4 due to Ppy coating, and absence of any adhesive or conductive agent during electrode fabrication [264].

NiCo2O4 nano-/microstructures combined with smarter nano-architectured metal oxides (Co3O4, SnO2, NiO, and MnO2, etc.) have many synergistic multifunctional properties of nanostructured components including dense and easily accessible electroactive sites, altered bandgap energies, faster charge transfer processes, and reduced internal resistance. The p-type semiconductor nanostructured NiCo2O4 [32], Co3O4 [265], and n-type materials SnO2 [266] and MnO2 [267] have the bandgap energies of 2.1, 2.2, 3.6, and 1.3 eV, respectively. Due to slightly different bandgap energies, the semiconductor metal oxides introduce in situ impurity bands in NiCo2O4 which increase the electron conductivity to extract excellent electrocatalytic efficiencies [268]. Chen et al. [269] reported porous Co3O4 nanosheets synthesized via a simple hydrothermal method. The Co3O4 nanosheets provided the growth sites for the hydrothermal synthesis of NiCo2O4 nanorods. At the optimized conditions, porous Co3O4–NiCo2O4 nanosheet-modified GCE exhibited a preeminent sensitivity of 1463.13 µA mM−1 cm−2, a low detection limit of 0.112 µM and linear dynamic range 0.001–2.1 mM with excellent selectivity and reproducibility. The amperometric current–time plot showed a successive increase in current with the concentration of glucose (1 µM–6.1 mM) at an applied voltage of +0.55 V using porous Co3O4–NiCo2O4 nanosheet-modified GCE. The current–concentration calibration plot displayed two linear portions with concentration ranges 1 µM–2.1 mM and 2.1–6.1 mM. Further, the incorporation of graphene into Co3O4/NiCo2O4 double-shelled nanocages was explored by Xue et al. [270]. The Co3O4/NiCo2O4 double-shelled nanocages were prepared by using zeolite imidazole frameworks-67 as a template. The amperometric studies revealed a sensitivity of 0.196 mA mM−1 cm−2 with detection limit 0.744 µM in linearized concentration range 0.01–3.52 mM, whereas, in linearized concentrations range of 0.01–3.52 mM, the sensitivity was 0.304 mA mM−1 cm−2 with detection limit 0.384 µM.

The synergistic sensitivity of the NiCo2O4-based modified sensors as SnO2 in p-type NiCo2O4 semiconductors results in the formations of n–p junctions that facilitate the photo-induced electrochemical changes by altering the bandgap energies. Cai et al. [118] observed a prompt photocurrent reduction with the addition of the 100 µL–20 mM glucose solutions into the electrolyte solution. It was proposed that under sunlight stimulation, electron–hole (e−–h+) pairs are generated by the excitation of the electrons from the valence band of the n-type SnO2 semiconductor after the absorption of light of suitable energy (more than bandgap energy). The OH− of the solid electrolyte trap these h+ holes and form OH radicals (Eq. 30). The OH− radicals are then transferred to the counter electrode to oxidize NiCo2O4 to NiOOH and CoOOH (Eq. 31). However, in the presence of glucose, positively charged h+ causes oxidation of glucose to gluconolactone. The electrons released during the oxidation process are transferred back to the valence band, so the photocurrent is decreased.

\[\text{OH}^- + \text{h}^+ \rightarrow \text{OH}^- \]

\[\text{NiCo}_2\text{O}_4 + \text{OH}^- + \text{H}_2\text{O} \rightarrow \text{NiOOH} + \text{CoOOH} \]

Chen et al. [271] synthesized bionics-inspired streptococcus-like mixed oxide NiCo2O4 coated on needle-like MnO2 architectures. Initially, MnO2 nanowires were synthesized via a quick precipitation method, while NiCo2O4 were grown on pre-synthesized MnO2 nanowires via a facile hydrothermal method. MnO2 nanowires prevented the agglomeration of NiCo2O4 by acting as nucleation sites and electrocatalytic centers for the uniform growth of NiCo2O4. The synergism between NiCo2O4 and MnO2 was explored for the non-enzymatic electrochemical sensing of glucose. NiCo2O4–MnO2/GCE exhibited high sensitivity, wide concentration ranges, very low detection limit, and long-term stability as compared to NiCo2O4/GCE and MnO2/GCE.

Numerous studies have been conducted to verify the selectivity of the NiCo2O4-based modified sensors as ascorbic acid, dopamine, and uric acid coexist along with
glucose in human blood serum [272]. Therefore, for practical applications, these components should not affect the amperometric parameters and the positive results have been reported [230, 237, 238, 241, 247, 272, 273]. Additionally, reproducibility and stability of the modified NiCo2O4-based electrodes have been analyzed. The results have shown acceptable reproducibility with a very low relative standard deviations in many studies [123, 142, 161, 193, 199, 200, 227, 274]. The electrochemical sensing parameters such as sensitivity, linear dynamic range, and detection limits for various NiCo2O4-based modified electrodes toward glucose are compared in Table 1.

In addition to electrochemical sensing of glucose using NiCo2O4 nano-/microstructure-modified electrodes, colorimetric sensing has also been reported by Huang et al. [274]. They explored the peroxidase-like activity of the hierarchical NiCo2O4 hollow sphere which was directly dependent on the concentration of H2O2 produced by the oxidation of glucose to gluconic acid in the presence of glucose oxidase (Gox). Hence, a colorimetric method for the detection of glucose can be designed using NiCo2O4. The higher the concentration of the glucose, the more was the production of H2O2 and hence the greater was the oxidation of the 3,3,5,5-tetramethylbenzidine (TMB) to oxidized TMB. Absorbance at $\lambda_{\text{max}} = 652$ nm for oxidized TMB was increased linearly with the concentration of glucose. The linear range was observed between 0.1 and 4.5 mM with a low detection limit of 5.31 μM (Fig. 30a, b). The corresponding reaction mechanism is shown in Fig. 30c. Intrinsic peroxidase and oxidase-like activities of the NiCo2O4 architectures were also confirmed by Su et al. [275] by analyzing the electron spin resonance spectra for the oxidation of TMB by NiCo2O4 mesoporous spheres. The oxidation was accompanied without the production of 1O2 and OH radicals. Additionally,
these peroxidase-like activities were feasible even over a broad temperature range.

4.2 H$_2$O$_2$ Biosensors

H$_2$O$_2$ is the most important byproduct produced from some enzyme-catalyzed biochemical reactions. In addition to its importance as a regulator of immune cell activation, vascular remodeling, and stomatal closure during metabolic processes, it also has pharmaceutical, clinical, environmental, textile, and food manufacturing applications [278]. Further, the concentration of H$_2$O$_2$ in urine is a direct indicator of the whole-body oxidative stress which is the common cause of renal failure, arteriosclerosis, myalgic encephalomyelitis, Parkinson’s disease, diabetes mellitus, cancer and cardiovascular diseases [279]. Similar to glucose, the literature reports enzymatic as well as non-enzymatic biosensors for the detection of H$_2$O$_2$. Horseradish peroxidase and heme protein-based enzymatic biosensor are the most researched H$_2$O$_2$ biosensor due to their high sensitivity, selectivity, and biodegradability. In recent years, non-enzymatic/enzyme-less H$_2$O$_2$ biosensors based on metal oxides have become a new class of biosensors due to fast, low-cost, and easy-to-fabrication processes [280].

In this section of the review, some non-enzymatic H$_2$O$_2$ biosensors based on NiCo$_2$O$_4$ spinel nano-/microstructures are discussed. The current–time amperometric H$_2$O$_2$ biosensing using modified Co$_3$O$_4$/NiCo$_2$O$_4$ nanosheets/GCE at an applied potential of -0.35 V exhibited high sensitivity and low limit of detection of 303.42 μA mM$^{-1}$ cm$^{-2}$ and 0.596 μM, respectively [269]. The Co$^{3+}$ ions of Co$_3$O$_4$ were supposed to play an important role in the sensing of H$_2$O$_2$.

Fig. 30 a Effect of glucose concentrations on absorption. b Linearized calibration curve. c Proposed mechanism for colorimetric detection of glucose using the hierarchical NiCo$_2$O$_4$ hollow sphere. Reproduced with permission from Ref. [274], Copyright © 2017 by the authors; licensee MDPI, Basel, Switzerland
In alkaline medium, Co$^{3+}$ ions reduce H$_2$O$_2$ to H$_2$O (Eq. 32) [281].

$$2\text{Co}^{3+} + \text{H}_2\text{O}_2 + 2\text{OH}^- \rightarrow 2\text{H}_2\text{O} + \text{O}_2 + 2\text{Co}^{2+} \tag{32}$$

The electro-reduction in H$_2$O$_2$ by NiCo$_2$O$_4$ spinel-based electrodes occurs according to Eqs. 33–36 [95, 282, 283].

$$\text{M}^{2+} + \text{H}_2\text{O}_2 \quad \text{Adsorption} \quad \text{M}^{2+} \quad \text{ads} \quad \text{O} \quad \text{O} \quad \text{ads} \quad \text{M}^{2+} \tag{33}$$

$$\text{M}^{2+} \quad \text{ads} \quad \text{O} \quad \text{O} \quad \text{ads} \quad \text{M}^{2+} \quad \text{e}^- \text{transfer} \quad \text{M}^{3+} \quad \text{ads} \quad \text{O} \quad \text{O} \quad \text{ads} \quad \text{M}^{3+} \tag{34}$$

$$\text{M}^{3+} \quad \text{ads} \quad \text{O} \quad \text{O} \quad \text{ads} \quad \text{M}^{3+} \quad \text{Homolytic cleavage} \quad 2\text{M}^{3+} + 2\text{OH}^- \quad \text{Desorption} \tag{35}$$

$$2\text{M}^{3+} + 2\text{e}^- \rightarrow 2\text{M}^{2+} \tag{36}$$

Since H$_2$O$_2$ is reduced to H$_2$O (O$^{2-}$ ions) or OH$^-$ ions as opposed to oxidation of glucose to gluconolactone, it was found that the current response during electrochemical sensing of H$_2$O$_2$ was reduced. Similar trends have been reported by other sensor materials such as ZnFe$_2$O$_4$/reduced graphene oxide [284], nickel phosphide (Ni$_2$P) nanosheets array on titanium mesh [285], cobalt nitride (Co$_3$N) nanowire array on Ti mesh [286], nanoporous carbon nanofibers/Pt nanoparticles [287], Ag decorated hierarchical Sn$_3$O$_4$ [288] and many more for the electrochemical sensing of H$_2$O$_2$ amperometrically.

Xue et al. [290] grew ZnO nanowires on Ni foam via a galvanostatic electro-deposition technique. After that, the Ni foam-supported ZnO nanowires and Co$_3$O$_4$/NiCo$_2$O$_4$ double-shelled nanocages were prepared by coprecipitation and annealing processes. The ZnO/Co$_3$O$_4$/NiCo$_2$O$_4$/Ni foam-based electrochemical H$_2$O$_2$ sensor exhibited a high sensitivity of 388 μA mM$^{-1}$ cm$^{-2}$, the low detection limit of 0.163 μM, and a dynamic linear range concentration of 0.2 μM–2.4 mM with a fast response time of 5 s. The fast and high response was attributed to the fast electron transport and short electrical pathway provided by ZnO nanowires. Additionally, Co$_3$O$_4$/NiCo$_2$O$_4$ double-shelled nanocages provided sufficient mesopores and large specific surface area for improved H$_2$O$_2$ sensing [290]. Sakhthivel et al. [291] compared the electrochemical kinetics of modified NiCo$_2$O$_4$/GCE, NiCo$_2$S$_4$/GCE, and NiCoSe$_2$/GCE toward H$_2$O$_2$. The modified NiCoSe$_2$/GCE showed better electrochemical behavior of the NiCo$_2$O$_4$ toward H$_2$O$_2$ are the pH and the concentration of the H$_2$O$_2$ in the medium. At a scan rate of 10 mV s$^{-1}$, H$_2$O$_2$ electro-reduction and electro-oxidation were observed for 0.4 M H$_2$O$_2$ in 3.0 M and 0.75 M H$_2$O$_2$ in 3.0 M KOH, respectively. Equation 37 represents the overall electro-oxidation of H$_2$O$_2$ in an alkaline medium.

$$\text{H}_2\text{O}_2 + 2\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 2\text{e}^- \tag{37}$$

The electrons lost during the oxidation of H$_2$O$_2$ reduce the trivalent cations (Co$^{3+}$ and Ni$^{3+}$) ions to their divalent states.

Xiao et al. [289] reported that NiCo$_2$O$_4$ mixed oxide-based electrodes in the alkaline medium can cause electro-reduction as well as electro-oxidation toward H$_2$O$_2$. The extraordinary variety of inter-convertible oxidation states of Co and Ni in spinel NiCo$_2$O$_4$ is the key factor for its oxidizing and reducing nature. High valence Co$^{3+}$ and Ni$^{3+}$ ions of NiCo$_2$O$_4$ can be reduced to lower +2 oxidation states, i.e., into Co$^{2+}$ and Ni$^{2+}$ ions. Similarly, lower +2 oxidation states can also be oxidized to higher valencies including Co$^{4+}$, Co$^{3+}$, and Ni$^{3+}$ ions. Other factors which decide the electro-reduction and electro-oxidation behavior of the NiCo$_2$O$_4$ and NiCoSe$_2$ GCE toward H$_2$O$_2$. The modified NiCoSe$_2$/GCE showed better electrochemical
sensing behavior for H₂O₂ than modified NiCo₂O₄/GCE and NiCo₂S₄/GCE. The greater electrocatalytic efficiency of modified NiCoSe₂/GCE was attributed to the large electrochemically active surface area for hydrothermally synthesized NiCoSe₂.

4.3 Urea Biosensors

Urea (carbamide or carbonyl diamide) is one of the main end products of protein metabolism in humans and animals. Urea is exclusively formed in the liver, and is transported by the bloodstream to the kidneys for excretion in the human body. The normal level of urea in human blood serum is 2.5–7.5 mM [292–295]. Amount of urea above or below the permissible level in the serum results in chronic renal and hepatic failure, gastrointestinal bleeding, and nephritic syndrome [296]. Similar to other metabolically important biomolecules, the literature reports enzymatic as well as non-enzymatic biosensors for the selective and highly sensitive urea sensors. Enzyme-based urea biosensors explore the use of urease enzyme which facilitates the hydrolysis of urea into ammonium (NH₄⁺) and bicarbonate (HCO₃⁻) ions (Eq. 38) [297].

\[
\text{NH}_2\text{CONH}_2 + 3\text{H}_2\text{O} \xrightarrow{\text{Urea}} 2\text{NH}_4^+ + \text{HCO}_3^- + \text{OH}^- \tag{38}
\]

However, in this section, some non-enzymatic-modified urea sensor electrodes based on spinel NiCo₂O₄ nano-/microstructures are reviewed. Research has proved that urea can be electrochemically oxidized by NiCo₂O₄ nano-/microstructures (Eqs. 39–41).

\[
6\text{M}^2+ + 18\text{OH}^- \rightarrow 6\text{MOOH} + 6\text{H}_2\text{O} + 6\text{e}^- \tag{39}
\]

\[
6\text{MOOH} + \text{CO(NH)}_2 + 2\text{OH}^- \rightarrow 6\text{M(OH)}_2 + \text{CO}_3^{2-} + \text{N}_2 \tag{40}
\]

The overall reaction can be written as:

\[
6\text{M}^2+ + \text{CO(NH)}_2 + 20\text{OH}^- \rightarrow 6\text{M(OH)}_2 + 6\text{H}_2\text{O} + \text{CO}_3^{2-} + \text{N}_2 + 6\text{e}^- \tag{41}
\]

Recently, Amin et al. [298] explored the urea sensing behavior of NiCo₂O₄ nanoneedle-modified GCE which showed high sensitivity with a linear response concentration range of 0.01–5 mM and low detection limit of 1.0 µM. It was proposed that initially Ni²⁺ ions are oxidized to Ni³⁺ ions to form NiOOH in an alkaline medium which is reduced back to give Ni(OH)₂ at the time of urea electro-oxidation [299]. Mesoporous spinel NiCo₂O₄ nanostructures prepared via facile chemical deposition method showed higher catalytic activities, lower overpotential, and more tolerance toward urea electro-oxidation as compared to Co₃O₄ [227]. NiCo₂O₄/3D graphene/ITO exhibited high sensitivity of 166 µA mM⁻¹ cm⁻², a linear range of 0.06–0.30 mM, and a low detection limit of 5.0 µM with a very small response time of 1 s through non-enzymatic detection method [300]. Further, a higher oxidation peak for NiCo₂O₄/3D graphene in the CV as compared to NiCo₂O₄/CNT-modified electrode confirmed the superiority of 3D graphene as a matrix material for electrode fabrication. The higher oxidation current potential was attributed to the highly porous nature and excellent conductivity of the interconnected 3D graphene matrix [301]. Since oxidation of urea is in alkaline medium, higher electrocatalytic oxidation of urea is recorded at higher pH conditions. However, beyond an optimum pH the electro-oxidation decreases due to blockage of the active sites by OH⁻ ions [302].

4.4 Electrochemical Determination of Some Other Bioanalytes

Some other bioanalytes such as rutin, trypsin, ascorbic acid, dopamine, uric acid, and tryptophan have also been electrochemically analyzed using nano-/micro-structured hybrid NiCo₂O₄-modified electrodes. Rutin, a flavonoid substance, is used as anti-bacterial, anti-viral, antiproliferative, antioxidants, antagonists, and anti-inflammatory. It also controls the blood pressure and vascular fragility including hereditary hemorrhagic telangiectasia, haemangiomas, vitamin C deficiency, etc. [303, 304]. Cui et al. [305] reported the fabrication of GCE modified with mesoporous NiCo₂O₄-decorated reduced graphene oxide for the electrochemical sensing of rutin using differential pulse voltammetric (DPV) technique. Flake-like NiCo₂O₄ sheets anchored on the wrinkled reduced graphene oxide sheets through electrostatic interaction prevented the self-agglomerations. The wide linear range of 0.1–150 µM and a low detection limit of 0.01 µM were observed along with excellent anti-interference capabilities. The strong synergism between reduced graphene sheets...
and mesoporous NiCo$_2$O$_4$ resulted in increased redox peak current and decreased potential difference. During electro-oxidation, rutin is converted into 3',4'-diquinone with the release of two H$^+$ ions and two electrons (Eq. 42) [306, 307].

$$\text{HO-CH_3} + 2 \text{M}^{2+} \rightarrow \text{O} + 2 \text{H}^+ + 2 \text{e}^-$$

(42)

Trypsin, a serine protease secreted from the pancreas, has also been widely studied recently as it used for identifying and determining the amino acid sequence in protein and peptide, particularly at the C-terminus and as a specific biomarker for diseases like chronic cystic fibrosis, chronic pancreatitis, cancer, and many pathological changes [308, 309]. Lin et al. [310] reported a large and prompt rise in electrochemical signal in the presence of trypsin by NiCo$_2$O$_4$-poly(amidoamine)/peptide@g-C$_3$N$_4$ nanocomposite-modified GCE. Wide linear ranges were 1–1200, 0.6–900, 0.9–1000, and 0.9–1000 μM, while the correspond-

Table 2: Electrochemical sensing parameters for various NiCo$_2$O$_4$-based modified electrodes toward some bioanalytes

Sensor material	Analyte	Sensitivity (μA mM$^{-1}$ cm$^{-2}$)	LDR (mM)	LOD (μM)	Refs.
3D nitrogen-doped holey graphene/NiCo$_2$O$_4$ nanoflowers	H$_2$O$_2$	–	0.001–0.510	0.136	[38]
Co$_3$O$_4$–NiCo$_2$O$_4$ nanosheets	H$_2$O$_2$	303.42	0.02–1.1	0.596	[269]
ZnO/Co$_3$O$_4$/NiCo$_2$O$_4$/Ni foam	H$_2$O$_2$	388.0	0.0002–2.4	0.163	[290]
NiCo$_2$O$_4$ nanoneedles	Urea	0.01–5	1.0	298	
Nickel/cobalt oxide-decorated 3D graphene nanocomposite	Urea	166.0	0.06–0.30	5.0	[300]
Mesoporous NiCo$_2$O$_4$/rGO	Rutin	–	0.1–150	0.01	[305]
NiCo$_2$O$_4$ nanosheets/g-C$_3$N$_4$ nanocomposite	Trypsina	–	10^{-10}–10^{-4}	10^{-10}	[310]
NiCo$_2$O$_4$/nano-ZSM-5 nanocomposite	Ascorbic acid	–	1–1200	0.8	[311]
NiCo$_2$O$_4$/nano-ZSM-5 nanocomposite	Dopamine	–	0.6–900	0.5	[311]
NiCo$_2$O$_4$/nano-ZSM-5 nanocomposite	Uric acid	–	0.9–1000	0.7	[311]
NiCo$_2$O$_4$/nano-ZSM-5 nanocomposite	Tryptophan	–	0.9–1000	0.7	[311]

aUnits in mg mL$^{-1}$

Electrochemical sensing of ascorbic acid, dopamine, uric acid, and tryptophan using NiCo$_2$O$_4$/Nano-ZSM-5 nanocomposite-modified GCE. Detailed comparison from Tables 1 and 2 indicates that the morphology of the NiCo$_2$O$_4$ nano-/microstructures and the presence of any other component along with NiCo$_2$O$_4$ significantly affect the biosensing efficiency. Comparative analysis revealed better electrochemical sensing of glucose by one-dimensional nanofibres and nanorods and two-dimensional nanosheets like morphologies of NiCo$_2$O$_4$ than
other morphologies. Doped and composites/hybrid NiCo2O4 nano-/microstructures exhibit superior sensing parameters that bare NiCo2O4. In particular, graphenic nanomaterials due to their excellent conductivity and large surface area significantly elevate the I–V characteristics to many folds. These materials also accelerate the rate of heterogeneous electron transfer, i.e., the transfer of electrons from/to electrode to/from bioanalyte molecules [312].

5 Conclusion

Herein, various strategies for the synthesis of spinel NiCo2O4 nano-/microstructures with versatile morphologies and their subsequent use for the development of biosensors for efficient non-enzymatic sensing and detection of biomolecules such as glucose, H2O2 and urea are comprehensively reviewed. As compared to NiO and Co3O4, the NiCo2O4 nanomaterials showed better electrochemical sensing as adjudged by broader redox peaks with larger area coverage in the CV curves. The biosensing efficiency of the NiCo2O4 nano-/microstructures can be improved by engineering the morphology, specific surface area, porosity, doping and by making composite/hybrids with various carbonaceous materials, conducting polymers, metal oxides, non-metals and metals. These materials not only improve the mechanical, thermal, and chemical stability but also modulate the bandgap energies, electronic and ionic conductivities, dispersion behavior, avoid aggregation of the NiCo2O4 nanomaterials and provide short electron and ion diffusion pathways. All these factors contribute to better electrocatalytic behavior with excellent sensitivity, selectivity, and long-term stability of the spinel NiCo2O4 nano-/microstructure-based biosensors. It is hoped that this review will provide basic ideas as well as new insights for future research and progress in this field.

6 Challenges and Future Perspectives

Despite extensive research in this area, many issues that impede the practical application of NiCo2O4 nano-/microstructures need to be addressed for further improvement. Some of these issues have been identified herein.

Structural features of the NiCo2O4 nanomaterials are controlled by factors like temperature, pH of the reaction solution, precursor concentration, solvent nature and quantity, presence of the growth directing agents and templates, etc. It is, therefore, one of the major challenges to design large-scale and low-cost morphology controlled synthesis of the NiCo2O4 nanomaterials for next-generation biosensors.

Rational combination of NiCo2O4 nano-/microstructures with other hybrid materials or conductive substrates to designing NiCo2O4 composite/hybrids is found to improve the intrinsic characteristics like low electronic conductivity and wide bandgap and hence the biosensing behavior of NiCo2O4. However, still, more in-depth understanding is required to correlate the synergism between the components of the composite/hybrid materials.

Cost-effectiveness, easy to manufacture, recyclability, sensor disposal, and biocompatibility of NiCo2O4 nano-/microstructure-based biosensors are other issues that need to be addressed and solved. The high cost of electrochemical work stations restricts the practical applications of these sensors. In this regard, portable and wearable sensing devices will be promising. The toxicity issues of the NiCo2O4 nano-/microstructures and other components are very rarely discussed in the literature. Future research thus should also focus on studying this important issue.

The biosensing behavior of the NiCo2O4 nano-/microstructure-based sensors is affected by factors like working temperature, pH of the medium, scan rates, and applied potential. The optimization of these parameters is rarely addressed. Studying the specificity of NiCo2O4-based sensors from competitive assays requires an appropriate protocol because it is reported that the sensor can detect glucose, H2O2, urea, trypsin, etc.

Due to complex structures of the biomolecules, the interface and mechanistic studies at the surface of the nanomaterials are still undefined. The redox transformation of the molecules during electrocatalytic biosensing is also a debatable issue. Therefore, future work should focus on elucidating the interaction mechanism between nanomaterials and biomolecules on the electrode surface, to fabricate a new generation of biosensors.

Acknowledgements The author would like to acknowledge the support of the Principal, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur, Punjab, India (144205).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licences, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. C. Shenghai, S. Liping, K. Fanhao, H. Lihua, Z. Hui, Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts as anode for rechargeable Zn-air batteries. J. Power Sources 430, 25–31 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029

2. H. Hou, H. Shao, X. Zhang, G. Liu, S. Hussain, G. Qiao, RGO-loaded flower-like ZnCo2O4 nanohybrid as counter electrode for dye-sensitized solar cells. Mater. Lett. 225, 5–8 (2018). https://doi.org/10.1016/j.matlet.2018.04.103

3. R. Shi, Y. Zhang, Z. Wang, Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation. J. Alloys Compd. 810, 151879 (2019). https://doi.org/10.1016/j.jallcom.2019.151879

4. Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci. Mater. Electron. 27, 1031–1043 (2016). https://doi.org/10.1007/s10854-015-3848-8

5. L. Li, G. Jiang, J. Ma, CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater. Res. Bull. 104, 53–59 (2018). https://doi.org/10.1016/j.materresbull.2018.03.051

6. P. Li, W. Sun, Q. Yu, P. Yang, J. Qiao, Z. Wang, D. Rooney, K. Sun, An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li–O2 batteries. Solid State Ion. 289, 17–22 (2016). https://doi.org/10.1016/j.ssi.2016.02.014

7. Y. Jin, L. Wang, Q. Jiang, X. Du, C. Ji, X. He, Morphology controllable synthesis of CoMn2O4 structures by adjusting the area concentration: from microflowers to microspheres. Mater. Lett. 168, 166–170 (2016). https://doi.org/10.1016/j.matlet.2016.01.077

8. F. Du, X. Zuo, Q. Yang, B. Yang, G. Li et al., The stabilization of NiCo2O4 nanobelts used for catalyzing triiodides in dye-sensitized solar cells by the presence of RGO sheets. Sol. Energy Mater. Sol. Cells 149, 9–14 (2016). https://doi.org/10.1016/j.solmat.2015.11.025

9. L. Manjakkal, D. Szwagierczak, R. Dahitya, Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog. Mater. Sci. 109, 100635 (2020). https://doi.org/10.1016/j.pmatsci.2019.100635

10. X. Han, X. Gui, T.F. Yi, Y. Li, C. Yue, Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr. Opin. Solid State Mater. Sci. 22, 109–126 (2018). https://doi.org/10.1016/j.cossms.2018.05.005

11. Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 31, 54–78 (2019). https://doi.org/10.1016/j.jenechem.2018.05.010

12. Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as pseudocapacitors and photoelectrochemicals. J. Mater. Chem. B 22, 21647–21653 (2012). https://doi.org/10.1039/c2jm34705a

13. R.R. Owings, G.J. Exarhos, C.F. Windisch, P.H. Holloway, J.G. Wen, Process enhanced polaron conductivity of infrared transparent nickel–cobalt oxide. Thin Solid Films 483, 175–184 (2005). https://doi.org/10.1016/j.tsf.2005.01.011

14. X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Two-dimensional spinel structured cobased materials for high performance supercapacitors: a critical review. Chem. Eng. J. 387, 124081 (2020). https://doi.org/10.1016/j.cej.2020.124081

15. K. Choi, I.K. Moon, J. Oh, An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapacitors and hydrogen electrocatalysis. J. Mater. Chem. A 7, 1468–1478 (2019). https://doi.org/10.1039/c8ta07210h

16. Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li, W. Xu, R. Wu, Multi-functional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 11, 45546–45553 (2019). https://doi.org/10.1021/acsami.9b13580

17. W. Chu, Z. Shi, Y. Hou, D. Ma, X. Bai, Y. Gao, N. Yang, Tri-functional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12, 2763–2772 (2020). https://doi.org/10.1021/acsami.9b13182

18. X. Hu, M. Huang, X. Meng, X. Ju, Fabrication of uniform urchin-like N-doped NiCo2O4@C hollow nanostructures for high performance supercapacitors. RSC Adv. 9, 42110–42119 (2019). https://doi.org/10.1039/c9ra07678f

19. J. Zhang, Y. Chen, R. Chu, H. Jiang, Y. Zeng, Y. Zhang, N.M. Huang, H. Guo, Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J. Alloys Compd. 787, 1051–1062 (2019). https://doi.org/10.1016/j.jallcom.2018.12.275

20. J.H. Lin, Y.T. Yan, T.X. Yu, C.Q. Qu, J. Li, J. Cao, J.C. Feng, J.L. Qi, S doped NiCo2O4 nanosheet arrays by Ar plasma: an efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 560, 34–39 (2020). https://doi.org/10.1016/j.jcis.2019.10.056

21. M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Self-assembly of three-dimensional zinc-doped NiCo2O4 as efficient electrocatalysts for oxygen evolution reaction. Chem. A Eur. J. 24, 13002–13008 (2018). https://doi.org/10.1002/chem.201802325

22. K.L. Yan, X. Shang, Z. Li, B. Dong, X. Li et al., Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient
electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. 416, 371–378 (2017). https://doi.org/10.1016/j.apsusc.2017.04.204

23. L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of novel dandelion-like Fe-doped NiCoO$_2$ microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. J. Power Sources 327, 135–144 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.054

24. J. Ma, E. Guo, L. Yin, Porous hierarchical spinel Mn-doped NiCo$_2$O$_4$ nanosheet architectures as high-performance anodes for lithium-ion batteries and electrochemical reaction mechanism. J. Mater. Sci. Mater. Electron. 30, 8555–8567 (2019). https://doi.org/10.1007/s10854-019-11716-5

25. W.Y. Xia, N. Li, Q.Y. Li, K.H. Ye, C.W. Xu, Au–NiCo$_2$O$_4$ supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci. Rep. 6, 23398 (2016). https://doi.org/10.1038/srep23398

26. C. Wei, X. Zheng, R. Li, X. Wang, Z. Xiao, L. Wang, Mesoporous hybrid NiCoO$_2$/CeO$_2$ hierarchical hollow spheres for enhanced supercapacitors. ChemistrySelect 4, 11149–11155 (2019). https://doi.org/10.1002/slct.201902778

27. C. Wei, R. Zhang, X. Zheng, Q. Qu, Q. Chen, C. Cui, G. Li, D. Zhang, Hierarchical porous NiCo$_2$O$_4$/CeO$_2$ hybrid materials for high performance supercapacitors. Inorg. Chem. Front. 5, 3126–3134 (2018). https://doi.org/10.1039/c8q10101b

28. S.K. Shinde, M.B. Jalak, G.S. Ghodake, N.C. Maile, H.M. Yadav et al., Flower-like NiCoO$_2$/NiCo$_2$S$_4$ electrodes on Ni mesh for higher supercapacitor applications. Ceram. Int. 45, 17192–17203 (2019). https://doi.org/10.1016/j.ceramint.2019.05.274

29. B. Ge, K. Li, Z. Fu, L. Pu, X. Zhang, Z. Liu, K. Huang, The performance of nanourchin-like NiCo$_2$O$_4$ modified activated carbon as air cathode for microbial fuel cell. J. Power Sources 303, 325–332 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.003

30. W. Yang, X. Song, C. Gu, D. Liu, J. Liu, J. Huang, A high-capacity NiCo$_2$O$_4$@reduced graphene oxide nanocomposite Li-ion battery anode. J. Alloys Compd. 741, 223–230 (2018). https://doi.org/10.1016/j.jallcom.2018.01.097

31. Y.Q. Zhang, M. Li, B. Hua, Y. Wang, Y.F. Sun, J.L. Luo, A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrolyte catalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B Environ. 236, 413–419 (2018). https://doi.org/10.1016/j.apcatb.2018.05.047

32. L. Hu, L. Wu, M. Liao, X. Fang, High-performance NiCo$_2$O$_4$ nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater. 23, 1988–1992 (2011). https://doi.org/10.1002/adma.201004109

33. M. Silambarasan, P.S. Ramesh, D. Geetha, Spinel NiCo$_2$O$_4$ nanostructures: synthesis, morphological, optical and electrochemical properties, in Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, vol. 189, ed. by J. Ebebaz (Springer, Cham, 2017), pp. 219–231. https://doi.org/10.1007/978-3-319-44890-9_21

34. A. Bashir, S. Shukla, R. Bashir, R. Patidar, A. Bruno, D. Gupta, M.S. Satti, Z. Akhter, Low temperature, solution processed spinel NiCo$_2$O$_4$ nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells. Sol. Energy 196, 367–378 (2020). https://doi.org/10.1016/j.solener.2019.12.031

35. H. Zhang, Y. Chen, RGO loaded porous NiCo$_2$O$_4$ nanoplates as alcohol gas sensors. Nanosci. Nanotechnol. Lett. 9, 374–379 (2017). https://doi.org/10.1166/mnl.2017.2341

36. B. Zhang, F. Xu, Q. Zhou, S. Zhang, T. Thomas, M. Yang, Porous coral-like NiCo$_2$O$_4$ nanospheres with promising xylene gas sensing properties. Sens. Actuators B Chem. 261, 203–209 (2018). https://doi.org/10.1016/j.snb.2018.01.125

37. N. Joshi, L.F. Da Silva, H. Jadhav, J.C. M’Peko, B.B. Millan Torres, K. Aguir, V.R. Mastelaro, O.N. Oliveira, One-step approach for preparing ozone gas sensors based on hierarchical NiCo$_2$O$_4$ structures. RSC Adv. 6, 92655–92662 (2016). https://doi.org/10.1039/c6ra18384k

38. Z. Lu, L. Wu, J. Zhang, W. Dai, G. Mo, J. Ye, Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo$_2$O$_4$ nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C 102, 708–717 (2019). https://doi.org/10.1016/j.msec.2019.04.072

39. L. Liu, Z. Wang, J. Yang, G. Liu, J. Li, L. Guo, S. Chen, Q. Guo, NiCo$_2$O$_4$ nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 258, 920–928 (2018). https://doi.org/10.1016/j.snb.2017.11.118

40. B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo$_2$O$_4$ superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3, 10336–10344 (2015). https://doi.org/10.1039/c5ta01229e

41. Y. Zhu, X. Pu, W. Song, Z. Wu, Z. Zhou et al., High capacity NiCo$_2$O$_4$ nanorods as electrode materials for supercapacitor. J. Alloys Compd. 617, 988–993 (2014). https://doi.org/10.1016/j.jallcom.2014.08.064

42. J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo$_2$O$_4$ mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 981–988 (2013). https://doi.org/10.1021/am3026294

43. R. Batool, A. Rhouati, M.H. Nawaz, A. Hayat, J.L. Marty, A review of the construction of nano-hybrids for electrochemical biosensing of glucose. Biosensors 9(1), 46 (2019). https://doi.org/10.3390/bios9010046

44. P. Mehrotra, Biosensors and their applications—a review. J. Oral Biol. Craniofac. Res. 6, 153–159 (2016). https://doi.org/10.3390/jobcr.2015.12.002

45. H. Lu, S. Zhang, L. Guo, W. Li, Applications of graphene-based composite hydrogels: a review. RSC Adv. 7, 51008–51020 (2017). https://doi.org/10.1039/c7ra09634h

46. R. Bhadoria, H.S. Chaudhary, Recent advances of biosensors in biomedical sciences. Int. J. Drug Deliv. 3, 571 (2011). https://doi.org/10.3389/fbioe.2016.00011

© The authors
47. J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16, 75 (2018). https://doi.org/10.1186/s12951-018-0400-z

48. S. Yin, Z. Jin, T. Miyake, Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosens. Bioelectron. 141, 111471 (2019). https://doi.org/10.1016/jbiosbio.2019.111471

49. B.S. Dakshayini, K.R. Reddy, A. Mishra, N.P. Shetti, S.J. Malode, S. Basu, S. Naveen, A.V. Raghu, Role of conducting polymer and metal oxide-based hybrids for applications in amperometric sensors and biosensors. Microchem. J. 147, 7–24 (2019). https://doi.org/10.1016/j.microc.2019.02.061

50. N.P. Shetti, S.J. Malode, D. Ilager, K. Raghava Reddy, S.S. Shukla, T.M. Aminabhavi, A novel electrochemical sensor for detection of mofolate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 31, 1040–1049 (2019). https://doi.org/10.1002elan.201800775

51. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1

52. S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556, 46–57 (2006). https://doi.org/10.1016/j.aca.2005.05.080

53. X. Hui, X. Xuan, J. Kim, J.Y. Park, A highly flexible and selective dopamine sensor based on Pt–Au nanoparticle-modified laser-induced graphene. Electrochem. Acta 328, 135066 (2019). https://doi.org/10.1016/j.electacta.2019.135066

54. R. Ahmad, N. Tripathy, M.S. Ahn, K.S. Bhat, T. Mahmoudi et al., Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 7, 5715 (2017). https://doi.org/10.1038/s41598-017-06064-8

55. R.J. Chung, A.N. Wang, Q.L. Liao, K.Y. Chuang, Non-enzymatic glucose sensor composed of carbon-coated nano-zinc oxide. Nanomaterials 7(2), 36 (2017). https://doi.org/10.3390/nano7020036

56. N.P. Shetti, S.J. Malode, D.S. Nayak, R.R. Naik, G.T. Kuchinad, K.R. Reddy, S.S. Shukla, T.M. Aminabhavi, Hetero nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem. J. 155, 104727 (2020). https://doi.org/10.1016/j.microc.2020.104727

57. C. Wang, E. Zhou, W. He, X. Deng, J. Huang et al., NiCoO$_2$-based supercapacitor nanomaterials. Nanomaterials 7(2), 41 (2017). https://doi.org/10.3390/nano7020041

58. J.P. Cheng, W.D. Wang, X.C. Wang, F. Liu, Recent research of core–shell structured composites with NiCoO$_2$ as scaffolds for electrochemical capacitors. Chem. Eng. J. 393, 124747 (2020). https://doi.org/10.1016/jcej.2020.124747

59. H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11, 601–625 (2016). https://doi.org/10.1016/j.nantod.2016.09.001

60. S.S. Tong, X.J. Wang, Q.C. Li, X.J. Han, Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chin. J. Anal. Chem. 44, 1447–1457 (2016). https://doi.org/10.1016/S1872-2040(16)60958-1

61. N.P. Shetti, D.S. Nayak, S.J. Malode, R.R. Kakarla, S.S. Shukla, T.M. Aminabhavi, Sensors based on ruthenium-doped TiO$_2$ nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mfenamic acid. Anal. Chim. Acta 1051, 58–72 (2019). https://doi.org/10.1016/j.aca.2018.11.041

62. S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni, K.R. Reddy, S.S. Shukla, Y.S. Saji, T.M. Aminabhavi, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J. Electrochem. Soc. 166, B3072 (2019). https://doi.org/10.1149/2.0131909jes

63. C. Sabu, T.K. Henna, V.R. Raphey, K.P. Nivitha, K. Pramod, Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 141, 111201 (2019). https://doi.org/10.1016/j.bios.2019.03.034

64. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO$_2$ nanoparticles for applications in electrochemical energy storage and water treatment. Electrochem. Acta 317, 416–426 (2019). https://doi.org/10.1016/j.electacta.2019.06.010

65. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in metal-doped TiO$_2$, non-metal-doped/codoped TiO$_2$ and TiO$_2$ nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energy 45, 7764–7778 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.241

66. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO$_2$ nanostructured photocatalysts for visible-light driven hydrogen production, CO$_2$ reduction and air purification. Int. J. Hydrogen Energy 44, 13022–13039 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.164

67. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013). https://doi.org/10.1039/c2ra22351a

68. D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/j.aca.2018.05.051

69. A. Jing, G. Liang, H. Shi, Y. Yuan, Q. Zhan, W. Feng, Three-dimensional holey-graphene architectures for highly sensitive enzymatic electrochemical determination of hydrogen peroxide. J. Nanosci. Nanotechnol. 19, 7404–7409 (2019). https://doi.org/10.1166/jnn.2019.16613

70. J.C. Chou, C.Y. Wu, Y.H. Liao, C.H. Lai, S.J. Yan, Y.X. Wu, S.H. Lin, Enzymatic urea sensor based on graphene oxide/titanium dioxide films modified by urease-magnetic beads. IEEE Trans. Nanotechnol. 18, 336–344 (2019). https://doi.org/10.1109/TNANO.2019.2907225
94. Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo et al., Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrolytacasts for oxygen reduction reaction. Int. J. Hydrogen Energy 38, 6657–6662 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.092

95. R. Ding, L. Qi, M. Jia, H. Wang, Simple hydrothermal synthesis of mesoporous spinel NiCo2O4 nanoparticles and their catalytic behavior in CH3OH electro-oxidation and H2O2 electro-reduction. Catal. Sci. Technol. 3, 3207–3215 (2013). https://doi.org/10.1039/c3cy00590a

96. M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015). https://doi.org/10.1016/j.electacta.2014.10.156

97. Y. Liu, X. Chi, Q. Han, Y. Du, J. Yang, Y. Liu, Vertically self-standing C@NiCo2O4 nanoneedles as effective binder-free cathodes for rechargeable Na–O2 batteries. J. Alloys Compd. 772, 693–702 (2019). https://doi.org/10.1016/j.jallcom.2018.09.121

98. Y. Zhu, Z. Wu, M. Jing, W. Song, H. Hou, X. Yang, Q. Chen, X. Ji, 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim. Acta 149, 144–151 (2014). https://doi.org/10.1016/j.electacta.2014.10.064

99. J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu, S. Zhao, S. Hussain, Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv. 6, 70077–70084 (2016). https://doi.org/10.1039/c6ra14242g

100. Q. Zheng, X. Zhang, Y. Shen, Fabrication of free-standing NiCo2O4 nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries. Mater. Res. Bull. 63, 211–215 (2015). https://doi.org/10.1016/j.materresbull.2014.12.024

101. W. Jiang, F. Hu, S. Yao, Z. Sun, X. Wu, Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Mater. Res. Bull. 93, 303–309 (2017). https://doi.org/10.1016/j.materresbull.2017.05.036

102. X. Yang, X. Yu, Q. Yang, D. Zhao, K. Zhang et al., Controllable synthesis and magnetic properties of hydrothermally synthesized NiCo2O4 nano-spheres. Ceram. Int. 43, 8585–8589 (2017). https://doi.org/10.1016/j.ceramint.2017.03.121

103. S. Sun, X. Jin, B. Cong, X. Zhou, W. Hong, G. Chen, Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. J. Catal. 379, 1–9 (2019). https://doi.org/10.1016/j.jcat.2019.09.010

104. E. Umeshbabu, G. Rajeshkanna, G.R. Rao, Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int. J. Hydrogen Energy 39, 15627–15638 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.168

105. W. Zhang, W. Xin, T. Hu, Q. Gong, T. Gao, G. Zhou, One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials. Ceram. Int. 45, 8406–8413 (2019). https://doi.org/10.1016/j.ceramint.2019.01.149

106. J. Shen, X. Li, N. Li, M. Ye, Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties. Electrochim. Acta 141, 126–133 (2014). https://doi.org/10.1016/j.electacta.2014.07.063

107. A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces. 6, 14827–14835 (2014). https://doi.org/10.1021/am5036913

108. L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-template formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868–1872 (2015). https://doi.org/10.1002/anie.201409776

109. H. Xin, Z. Xu, Y. Liu, W. Li, Z. Hu, 3D flower-like NiCo2O4 electrode material prepared by a modified solvothermal method for supercapacitor. J. Alloys Compd. 711, 670–676 (2017). https://doi.org/10.1016/j.jallcom.2017.03.208

110. J. Tang, A. Paul Alivisatos, Crystal splitting in the growth of Bi2Se3, Nano Lett. 6, 2701–2706 (2006). https://doi.org/10.1021/nl0615930

111. G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 50, 826–859 (2011). https://doi.org/10.1002/anie.201000235

112. S.K. Meher, P. Justin, G. Ranga-Rao, Nanoscale morphology dependent pseudocapacitance of NiO: influence of intercalating anions during synthesis. Nanoscale 3, 683–692 (2011). https://doi.org/10.1039/c0nr00555j

113. Z.Q. Liu, K. Xiao, Q.Z. Xu, N. Li, Y.Z. Su, H.J. Wang, S. Chen, Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 3, 4372–4380 (2013). https://doi.org/10.1039/c3ra23084h

114. A. Jain, B.J. Paul, S. Kim, V.K. Jain, J. Kim, A.K. Rai, Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. J. Alloys Compd. 772, 72–79 (2019). https://doi.org/10.1016/j.jallcom.2018.09.051

115. Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014). https://doi.org/10.1016/j.nanoen.2014.05.014

116. Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. Nanoscale 5, 9812–9820 (2013). https://doi.org/10.1039/c3nr02972g

117. D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang et al., Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for
118. B. Cai, W. Miao, Z. Ye, J. Huang, Facile fabrication of all-solid-state SnO2/ NiCo2O4 biosensor for self-powered glucose detection. Appl. Phys. A Mater. Sci. Process. 122, 806 (2016). https://doi.org/10.1007/s00339-016-0263-9

119. J. Deng, H. Zhang, Y. Zhang, P. Luo, L. Liu, Y. Wang, Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. J. Power Sources 372, 46–53 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.062

120. J. Yang, C. Li, Z. Quan, D. Kong, X. Zhang, P. Yang, J. Lin, One-step aqueous solvothermal synthesis of In2O3 nanocrystals. Cryst. Growth Des. 8, 695–699 (2008). https://doi.org/10.1021/cg070340x

121. S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar still. J. Environ. Chem. Eng. B (2017). https://doi.org/10.1021/acsjoece.2017.02.004

122. F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K.Y. Chan, M. Shao, Hierarchical NiCo2O4 micro- and nano-structures with tunable morphologies as anode materials for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 16194–16201 (2017). https://doi.org/10.1021/acsami.7b02175

123. X. Wang, Y. Fang, B. Shi, F. Huang, F. Rong, R. Que, Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 344, 311–319 (2018). https://doi.org/10.1016/j.cej.2018.03.061

124. Y. Liu, J. Goehl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013). https://doi.org/10.1039/c2cs35369e

125. Q. Ren, G. Wu, W. Xing, J. Han, P. Li et al., Highly ordered mesoporous NiCo2O4 as a high performance anode material for Li-ion batteries. Front. Chem. 7, 521 (2019). https://doi.org/10.3389/fchem.2019.00521

126. C. Yuan, J. Li, L. Hou, J. Lin, G. Pang, L. Zhang, L. Lian, X. Zhang, Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Adv. 3, 18573–18578 (2013). https://doi.org/10.1039/c3ra42828a

127. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90027-5

128. V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, Flower-like nickel–cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain. Chem. Eng. 4, 5013–5020 (2016). https://doi.org/10.1021/acssuschemeng.6b01391

129. W. Xiong, Y. Gao, X. Wu, X. Hu, D. Lan et al., Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416–19423 (2014). https://doi.org/10.1021/am5055228

130. W. Li, F. Yang, Z. Hu, Y. Liu, Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor. J. Alloys Compd. 749, 305–312 (2018). https://doi.org/10.1016/j.jallcom.2018.03.046

131. X. Qi, W. Zheng, G. He, T. Tian, N. Du, L. Wang, NiCo2O4 hollow microspheres with tunable numbers and thickness of shell for supercapacitors. Chem. Eng. J. 309, 426–434 (2017). https://doi.org/10.1016/j.cej.2016.10.060

132. C. Li, X.Y. Gao, S.D. Li, Y. Zhao, K. Gao, Novel micron-sized NiCo2O4 pompon directed by a co-template method as capacitor electrode. Mater. Lett. 244, 74–77 (2019). https://doi.org/10.1016/j.matlet.2019.02.048

133. Y. Zhu, J. Wang, Z. Wu, M. Jing, H. Hou, X. Jia, X. Ji, An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J. Power Sources 287, 307–315 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.053

134. P. Xu, R. Yu, H. Ren, L. Zong, J. Chen, X. Xing, Hierarchical nanoscale multi-shell Au/Co3O4 hollow spheres. Chem. Sci. 5, 4221–4226 (2014). https://doi.org/10.1039/c4sc01882f

135. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin et al., Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52, 6417–6420 (2013). https://doi.org/10.1002/anie.201301622

136. X. Zeng, J. Yang, L. Shi, L. Li, M. Gao, Synthesis of multishelled ZnO hollow microspheres and their improved photocatalytic activity. Nanoscale Res. Lett. 9, 468 (2014). https://doi.org/10.1186/1556-276X-9-468

137. B. Wang, Y. Cao, Y. Chen, X. Lai, J. Peng, J. Tu, X. Li, Rapid synthesis of rGO conjugated hierarchical NiCo2O4 hollow mesoporous nanospheres with enhanced glucose sensitivity. Nanotechnology 28, 025501 (2017). https://doi.org/10.1088/0957-4484/28/2/025501

138. X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148–4154 (2015). https://doi.org/10.1039/c4dt03803g

139. J. Nai, Y. Tian, X. Guan, L. Guo, Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 135, 16082–16091 (2013). https://doi.org/10.1021/ja402751r

140. W. Huang, Y. Cao, Y. Chen, J. Peng, X. Lai, J. Tu, Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Appl. Surf. Sci. 396, 804–811 (2017). https://doi.org/10.1016/j.apsusc.2016.11.034

141. X. Hou, S. Xue, M. Liu, X. Shang, Y. Fu, D. He, Hollow irregular octahedra-like NiCo2O4 cages composed of mesoporous nanosheets as a superior anode material for lithium-ion batteries. Chem. Eng. J. 350, 29–36 (2018). https://doi.org/10.1016/j.cej.2018.05.164
142. J. Yang, M. Cho, Y. Lee, Synthesis of hierarchical NiCo₂O₄ hollow nanorods via sacrificial-template accelerated hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 75, 15–22 (2016). https://doi.org/10.1016/j.bios.2015.08.008

143. H. Behzad, F.E. Ghodsi, PVP-assisted enhancement in ion storage performance of sol–gel derived nano-structured NiCo₂O₄ thin films as battery-type electrode. Mater. Res. Bull. 99, 336–342 (2018). https://doi.org/10.1016/j.materresbull.2017.11.031

144. M. El Baydi, S.K. Tiwari, R.N. Singh, J.L. Rehspringer, P. Chartier, J.F. Koenig, G. Poillerat, High specific surface area nickel mixed oxide powders LaNiO₃ (Perovskite) and NiCo₂O₄ (Spinel) via sol–gel type routes for oxygen electrocatalysis in alkaline media. J. Solid State Chem. 116, 157–169 (1995). https://doi.org/10.1006/jssc.1995.1197

145. B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, A promising NiCo₂O₄ protective coating for metallic interconnects of solid oxide fuel cells. J. Power Sources 195, 7375–7379 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.031

146. L. Merabet, K. Rida, N. Boukmouche, Sol–gel synthesis, characterization, and supercapacitor applications of MCo₂O₄ (M= Ni, Mn, Cu, Zn) cobaltite spinels. Ceram. Int. 44, 11265–11273 (2018). https://doi.org/10.1016/j.ceramint.2018.03.171

147. Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo₂O₄ crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011). https://doi.org/10.1016/j.electacta.2011.06.101

148. T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). https://doi.org/10.1002/adma.200902175

149. M.C. Liu, C. Lu, X.M. Li, L. Bin Kong, Y.C. Luo, L. Kang, X. Li, F.C. Walsh, A sol–gel process for the synthesis of NiCo₂O₄ having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159, A1262 (2012). https://doi.org/10.1149/2.057208jes

150. Y. Liu, N. Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo₂O₄ thin films on ITO glass as high-performance supercapacitor electrodes. Ceram. Int. 42, 11411–11416 (2016). https://doi.org/10.1016/j.ceramint.2016.04.071

151. J. Bhagwan, G. Nagaraju, B. Ramulu, S.C. Sekhar, J.S. Yu, Rapid synthesis of hexagonal NiCo₂O₄ nanostuctures for high-performance asymmetric supercapacitors. Electrochim. Acta 299, 509–517 (2019). https://doi.org/10.1016/j.electacta.2018.12.174

152. J. Liang, Z. Fan, S. Chen, S. Ding, G. Yang, Hierarchical NiCo₂O₄ nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem. Mater. 26, 4354–4360 (2014). https://doi.org/10.1021/cm500786a

153. F. Chen, W. Zhang, F. Cheng, Z. Yang, X. Fan, M. Huang, Stepwise co-precipitation to the synthesis of urchin-like NiCo₂O₄ hollow nanospheres as high performance anode material. J. Appl. Electrochem. 48, 1095–1104 (2018). https://doi.org/10.1007/s10800-018-1213-3

154. H.S. Jadhav, R.S. Kalubarme, C.N. Park, J. Kim, C.J. Park, Facile and cost effective synthesis of mesoporous spinel NiCo₂O₄ as an anode for high lithium storage capacity. Nanoscale 6, 10071–10076 (2014). https://doi.org/10.1039/c4nr02183e

155. L. Yu, B. Guan, W. Xiao, X.W. Lou, Formation of yolk-shelled Ni–Co mixed oxide nanostructures with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv. Energy Mater. 5, 1500981 (2015). https://doi.org/10.1002/aenm.201500981

156. C. Wang, X. Zhang, D. Zhang, C. Yao, Y. Ma, Facile and low-cost fabrication of nanostructured NiCo₂O₄ spinel with high specific capacitance and excellent cycle stability. Electrochim. Acta 63, 220–227 (2012). https://doi.org/10.1016/j.electacta.2011.12.090

157. H.S. Jadhav, R.S. Kalubarme, J.W. Roh, K.N. Jung, K.H. Shin, C.N. Park, C.J. Park, Facile and cost effective synthesized mesoporous spinel NiCo₂O₄ as catalyst for non-aqueous lithium-oxygen batteries. J. Electrochem. Soc. 161, A2188 (2014). https://doi.org/10.1149/2.077144jes

158. H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong et al., Designed formation of NiCo₂O₄ with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 296, 719–729 (2019). https://doi.org/10.1016/j.electacta.2018.11.103

159. Y. Wan, J. Chen, J. Zhan, Y. Ma, Facile synthesis of mesoporous NiCo₂O₄ fibers with enhanced photocatalytic performance for the degradation of methyl red under visible light irradiation. J. Environ. Chem. Eng. 6, 6079–6087 (2018). https://doi.org/10.1016/j.jece.2018.09.023

160. K.T. Jeng, C.C. Chien, N.Y. Hsu, S.C. Yen, S. Du Chiou, S.H. Lin, W.M. Huang, Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J. Power Sources 160, 97–104 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.057

161. B. Zhang, J. Zhu, H. Liu, P. Shi, W. Wu, F. Wang, Y. Liu, Rapid synthesis of hexagonal mesoporous structured NiCo₂O₄ via rotary evaporation for high performance supercapacitors. Ceram. Int. 44, 8695–8699 (2018). https://doi.org/10.1016/j.ceramint.2018.01.204

162. A. Karatulu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, in Emerging Applications of Nanoparticles and Architecture Nano-structures, ed. by A. Barhoum, A.S.H. Makhlouf (Elsevier, Amsterdam, 2018), pp. 1–28. https://doi.org/10.1016/B978-0-323-51254-1.00001-4

163. M.T. Crespo, A review of electrodeposition methods for the preparation of alpha-radiation sources. Appl. Radiat. Isot. 70, 210–215 (2012). https://doi.org/10.1016/j.apradiso.2011.09.010

164. M. Musiani, Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim.
Acta 45, 3397–3402 (2000). https://doi.org/10.1016/S0013-4686(00)00438-2

165. L.K. Wu, J. Xia, H.Z. Cao, Y.P. Tang, G.Y. Hou, G.Q. Zheng, Highly active and durable cauliflower-like NiCo2O4 film for oxygen evolution with electrodeposited SiO2 as template. Int. J. Hydrogen Energy 42, 10813–10825 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.076

166. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultranine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345, 31–38 (2018). https://doi.org/10.1016/j.cej.2018.03.147

167. N. Zhao, H. Fan, M. Zhang, J. Ma, W. Zhang et al., Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim. Acta 321, 134681 (2019). https://doi.org/10.1016/j.electacta.2019.134681

168. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994

169. A. Ramadoss, K.N. Kang, H.J. Ahn, S.T. Ryu, J.H. Jang, Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J. Mater. Chem. A 4, 4718–4727 (2016). https://doi.org/10.1039/c5ta0781d

170. J. Xiao, S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv. 1, 588–595 (2011). https://doi.org/10.1039/c1ra00342a

171. B. Ash, R.K. Paramguru, B.K. Mishra, Electrode reactions during electrolytic preparation of nickel hydroxide. Electrochem. Commun. 12, 48–51 (2010). https://doi.org/10.1016/j.electcom.2009.10.033

172. G. Zhang, T. Wang, X. Yu, H. Zhang, H. Duan, B. Lu, Nano-forest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2, 586–594 (2013). https://doi.org/10.1016/j.nanoen.2013.07.008

173. M. Mirzaee, C. Dehghanian, Synthesis of flower-like NiCo2O4 via chronopotentiometric technique and its application as electrode materials for high-performance supercapacitors. Mater. Today Energy 10, 68–80 (2018). https://doi.org/10.1016/j.mtener.2018.08.011

174. Y. An, Z. Hu, B. Guo, N. An, Y. Zhang, Z. Li, Y. Yang, H. Wu, Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density. RSC Adv. 6, 37562–37573 (2016). https://doi.org/10.1039/c6ra04788b

175. J. Wu, P. Guo, R. Mi, X. Liu, H. Zhang et al., Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J. Mater. Chem. A 3, 15331–15338 (2015). https://doi.org/10.1039/c5ta02719e

176. W.W. Liu, C.X. Lu, K. Liang, B.K. Tay, A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure. Part. Part. Syst. Charact. 31, 1151–1157 (2014). https://doi.org/10.1002/ppsc.201400030

177. L. Huang, D. Chen, Y. Ding, Z.L. Wang, Z. Zeng, M. Liu, Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 11159–11162 (2013). https://doi.org/10.1021/ami403367u

178. Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27, 627–637 (2016). https://doi.org/10.1016/j.nanoen.2016.08.013

179. J. Wang, R. Zhan, Y. Fu, H.Y. Yu, C. Jiang et al., Design and synthesis of hierarchical, freestanding bowl-like NiCo2O4 as cathode for long-life Li–O2 batteries. Mater. Today Energy 5, 214–221 (2017). https://doi.org/10.1016/j.mtener.2017.07.002

180. W. Wang, Z. Li, A. Meng, Q. Li, Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors. J. Solid State Electrochem. 23, 635–644 (2019). https://doi.org/10.1007/s1008-018-4149-y

181. J. Zhang, R. Chu, Y. Chen, H. Jiang, Y. Zhang, N.M. Huang, H. Guo, Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries. Nanotechnology 29, 125401 (2018). https://doi.org/10.1088/1361-6528/aaa94e

182. P. Dinka, A. Mukasyan, Novel approaches to solution–combustion synthesis of nanomaterials. Int. J Self Propag. High Temp. Synth. 16, 23–35 (2007). https://doi.org/10.3103/S10613862070100049

183. K.V. Manukyan, Combustion and materials synthesis. Int. J Self Propag. High Temp. Synth. 26, 143–144 (2017). https://doi.org/10.3103/S1061386217030025

184. J. Xu, Q. Chen, X. Liu, H. Baoquan, Q. Qian, The combustion synthesis of nanoscale ceria-doped calcia solid solution. Adv. Mater. Res. 610–613, 547–550 (2012). https://doi.org/10.4028/www.scientific.net/AMR.610-613.547

185. R. Alcântara, M. Jaraba, P. Lavela, J.L. Tirado, NiCo2O4 nanocomposites: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847–2848 (2002). https://doi.org/10.1021/cm025556v

186. S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008). https://doi.org/10.1016/j.cosms.2008.12.002

187. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

188. J.C. Toniolo, A.S. Takimi, C.P. Bergmann, Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 45, 672–676 (2010). https://doi.org/10.1016/j.materresbull.2010.03.001

© The authors

https://doi.org/10.1007/s40820-020-00462-w
189. I.T. Papadas, A. Ioakeimidis, G.S. Armatas, S.A. Choulis, Low-temperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv. Sci. 5, 1701029 (2018). https://doi.org/10.1002/advs.201701029

190. T. Huang, B. Liu, P. Yang, Z. Qiu, Z. Hu, Facilely synthesized NiCo2O4 nanoparticles as electrode material for supercapacitors. Int. J. Electrochem. Sci. 13, 6144 (2018). https://doi.org/10.20964/2018.06.60

191. A.N. Naveen, S. Selladurai, Novel synthesis of highly porous spinel cobaltite (NiCo2O4) electrode material for supercapacitor applications. AIP Conf. Proc. 1591, 246 (2014). https://doi.org/10.1063/1.4872560

192. V. Shamugavalli, K. Vishista, Low-cost synthesis of cubic spinel structured high efficient NiCo2O4/polyaniline nanocomposite for supercapacitor application. Mater. Res. Express 6, 45021 (2019). https://doi.org/10.1088/2053-1591/aae8ee

193. L. Li, S. Peng, Y. Cheah, P. Teh, J. Wang, G. Wee, Y. Ko, C. Wong, M. Srinivasan, Electrosprun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A: Eur. J. 19, 5892–5898 (2013). https://doi.org/10.1002/chem.201204153

194. H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State Commun. 131, 107–109 (2004). https://doi.org/10.1016/j.ssc.2004.04.035

195. G. Sun, L. Sun, H. Xie, J. Liu, Electrospinning of nanofibers for energy applications. Nanomaterials 6(7), E129 (2016). https://doi.org/10.3390/nano6070129

196. Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Recent advances in energy materials by electrospinning. Renew. Sustain. Energy Rev. 81, 1825–1858 (2018). https://doi.org/10.1016/j.rser.2017.05.281

197. Z. Dong, S.J. Kennedy, Y. Wu, Electrospinning materials for energy-related applications and devices. J. Power Sources 196, 4886–4904 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.090

198. F. Lai, Y.E. Miao, Y. Huang, T.S. Chung, T. Liu, Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. J. Phys. Chem. C 119, 13442–13450 (2015). https://doi.org/10.1021/acs.jpcc.5b02739

199. C. Busacca, S.C. Zignani, A. Di Blasi, O. Di Blasi, M. Lo Faro, V. Antonucci, A.S. Ariò, Electrosprun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. Int. J. Hydrogen Energy 44, 20987–20996 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.214

200. K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical MnO2 nanosheets on electrosprun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors. J. Alloys Compd. 678, 120–125 (2016). https://doi.org/10.1016/j.jallcom.2016.03.255

201. J. Sun, W. Wang, D. Yu, NiCo2O4 nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors. J. Electron. Mater. 48, 3833–3843 (2019). https://doi.org/10.1007/s11664-019-07135-4

202. D. Lei, X.D. Li, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, NiCo2O4 nanostucture-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer (Guildf) 132, 31–40 (2017). https://doi.org/10.1016/j.polymer.2017.10.051

203. G.M. Tomboc, H. Kim, Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: an efficient electrode towards high energy density supercapacitor. Electrochim. Acta 318, 392–404 (2019). https://doi.org/10.1016/j.electacta.2019.06.112

204. A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanocomposites for gas sensing application: a review. Sens. Actuators B: Chem. 237, 749–775 (2016). https://doi.org/10.1016/j.snb.2016.06.114

205. L.Y. Meng, B. Wang, M.G. Ma, K.L. Lin, The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016). https://doi.org/10.1016/j.mtchem.2016.11.003

206. X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano-Micro Lett. 10, 13 (2018). https://doi.org/10.1007/s40820-017-0164-2

207. A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim. Acta 189, 283–294 (2016). https://doi.org/10.1016/j.electacta.2015.12.043

208. U.T. Nakate, S.N. Kale, Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and electrical, magnetic properties. Mater. Today: Proc. 3(6), 1992–1998 (2016). https://doi.org/10.1016/j.matpr.2016.04.101

209. L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, D. Xiao, Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electrocatalytic oxidation of methanol. J. Power Sources 261, 317–323 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.098

210. Y.Z. Su, Q.Z. Xu, Q.S. Zhong, S.T. Shi, C.J. Zhang, C.W. Xu, NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. J. Alloys Compd. 617, 115–119 (2014). https://doi.org/10.1016/j.jallcom.2014.07.195

211. Y. Tao, L. Ruiyi, L. Zaijun, F. Yinjun, A facile and scalable strategy for synthesis of size-tunable NiCo2O4 with nanocoral-like architecture for high-performance. Electrochim. Acta 134, 384–392 (2014). https://doi.org/10.1016/j.electacta.2014.03.168

212. Y. Zhu, X. Ji, R. Yin, Z. Hu, Z. Wu, Y. Liu, Nanorod-assembled NiCo2O4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors. RSC Adv. 7, 11123–11128 (2017). https://doi.org/10.1039/c7ra00067g
213. N.S. Chaubal, V.Y. Joshi, Nonionic polymeric surfactant template for mesoporous NiCo2O4 Formation. J. Porous Mater. 18, 177–183 (2011). https://doi.org/10.1007/s10934-010-9368-2

214. T.V. Gavrilović, D.J. Jovanović, M.D. Dramićanin, Chapter 2—synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions. Nanomater. Green Energy 1, 55–81 (2018). https://doi.org/10.1016/B978-0-12-813731-4.00002-3

215. M. Kundu, G. Karunakaran, E. Kolesnev, V.E. Sergeeva, S. Kumari, M.V. Gorshenkov, D. Kuznetsov, Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors. J. Ind. Eng. Chem. 59, 90–98 (2018). https://doi.org/10.1016/j.jiec.2017.10.010

216. Y. Ma, Z. Yu, M. Liu, C. Song, X. Huang, M. Moliere, G. Song, H. Liao, Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors. Ceram. Int. 45, 10722–10732 (2019). https://doi.org/10.1016/j.ceramint.2019.02.145

217. T. Li, X. Li, Z. Wang, H. Guo, Y. Li, A novel NiCo2O4 anode morphology for lithium-ion batteries. J. Mater. Chem. A 3, 11970–11975 (2015). https://doi.org/10.1039/c5ta01928a

218. J. Leng, Z. Wang, X. Li, H. Guo, T. Li, H. Liang, Self-templated formation of hierarchical NiCo2O4 yolk–shell microspheres with enhanced electrochemical properties. Electrochim. Acta 244, 154–161 (2017). https://doi.org/10.1016/j.electacta.2017.05.109

219. D.P. Lapham, J.L. Lapham, The porosity of NiCo2O4 films and powders by three common preparation techniques. Microporous Mesoporous Mater. 223, 35–45 (2016). https://doi.org/10.1016/j.micromeso.2015.10.025

220. R.J. Deokate, R.S. Kalubarme, C.J. Park, C.D. Lokhande, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim. Acta 224, 378–385 (2017). https://doi.org/10.1016/j.electacta.2016.12.034

221. G.D. Park, J.K. Lee, Y.C. Kang, Three-dimensional macroporous CNTs microspheres highly loaded with NiCo2O4 hollow nanospheres showing excellent lithium-ion storage performances. Carbon 128, 191–200 (2018). https://doi.org/10.1016/j.carbon.2017.11.088

222. R.A. Soomro, Z.H. Ibuproto, Sirajuddin, M.I. Abro, M. Willander, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B: Chem. 209, 966–974 (2015). https://doi.org/10.1016/j.snb.2014.12.050

223. E. Zhang, Y. Xie, S. Ci, J. Jia, Z. Wen, Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 81, 46–53 (2016). https://doi.org/10.1016/j.bios.2016.02.027

224. K.K. Naik, S. Kumar, C.S. Rout, Electrodeposited spinel NiCo2O4 nanosheet arrays for glucose sensing application. RSC Adv. 5, 74585–74591 (2015). https://doi.org/10.1039/c5ra13833g

225. M. Hussain, Z.H. Ibuproto, M.A. Abbasi, X. Liu, O. Nur, M. Willander, Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. Sensors 14, 5415–5425 (2014). https://doi.org/10.3390/s140305415

226. R. Elakkiya, G. Maduraiaveeran, A three-dimensional nickel–cobalt oxide nanomaterial as an enzyme-mimetic electrocatalyst for the glucose and lactic acid oxidation reaction. New J. Chem. 43, 14756–14762 (2019). https://doi.org/10.1039/c9nj01291e

227. R. Ding, L. Qi, M. Jia, H. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6, 1369–1376 (2014). https://doi.org/10.1039/c3nr05359h

228. Y. Feng, D. Xiang, Y. Qiu, L. Li, Y. Li, K. Wu, L. Zhu, MOF-derived spinel NiCo2O4 hollow nanocages for the construction of non-enzymatic electrochemical glucose sensor. Electroanalysis 32(3), 571–580 (2020). https://doi.org/10.1002/elan.201900558

229. S. Wang, S. Zhang, M. Liu, H. Song, J. Gao, Y. Qian, MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sens. Actuators B: Chem. 254, 1101–1109 (2018). https://doi.org/10.1016/j.snb.2017.08.011

230. H. Zhao, J. Xu, Q. Sheng, J. Zheng, W. Cao, T. Yue, NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey. J. Electrochem. Soc. 166, H404 (2019). https://doi.org/10.1149/2.014190jes

231. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambryrajah, Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 9, 70–71 (2003). https://doi.org/10.1039/b210714g

232. M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Greener media in chemical synthesis and processing. Angew. Chem. Int. Ed. 45, 3904–3908 (2006). https://doi.org/10.1002/anie.200504285

233. A.P. Abbott, K. El-Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys. Chem. Chem. Phys. 11, 4269–4277 (2009). https://doi.org/10.1039/b817881j

234. F.H. Aidoudi, P.J. Byrne, P.K. Allan, S.J. Teat, P. Lightfoot, R.E. Morris, Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxy-fluorides. Dalton Trans. 40, 4324–4331 (2011). https://doi.org/10.1039/c0dt01765e

235. L. Wei, Y.J. Fan, N. Tian, Z.Y. Zhou, X.Q. Zhao, B.W. Mao, S.G. Sun, Electrochemically shape-controlled synthesis in deep eutectic solvents—a new route to prepare Pt
nanocrystals enclosed by high-index facets with high catalytic activity. J. Phys. Chem. C 116, 2040–2044 (2012). https://doi.org/10.1021/jp209743h

237. S. Cui, J. Zhang, Y. Ding, S. Gu, P. Hu, Z. Hu, Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci. China Mater. 60, 766–776 (2017). https://doi.org/10.1007/s40843-017-0972-9

238. F.C. Sun, J.T. Zhang, H. Ren, S.T. Wang, Y. Zhou, J. Zhang, “Dry” NiCo2O4 nanorods for electrochemical non-enzymatic glucose sensing. Chin. J. Chem. Phys. 31, 799 (2018). https://doi.org/10.1063/1674-0068/31/cjcp1804061

239. Q. Guo, W. Zeng, Y. Li, Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam. Mater. Lett. 256, 126603 (2019). https://doi.org/10.1016/j.matlet.2019.126603

240. P. Arul, S.A. John, Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim. Acta 306, 254–263 (2019). https://doi.org/10.1016/j.electacta.2019.03.117

241. X. Luo, M. Huang, D. He, M. Wang, Y. Zhang, P. Jiang, Porous NiCo2O4 nanoray-integrated binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection. Analyst 143, 2546–2554 (2018). https://doi.org/10.1039/c8an00668g

242. D. Zhang, J. Tong, B. Xia, Q. Xue, Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens. Actuators B: Chem. 203, 263–270 (2014). https://doi.org/10.1016/j.snb.2014.06.116

243. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B: Chem. 197, 66–72 (2014). https://doi.org/10.1016/j.snb.2014.02.078

244. T.H. Ko, S. Radhakrishnan, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, A green and scalable dry synthesis of NiCo2O4/graphene nanohybrids for high-performance supercapacitor and enzymeless glucose biosensor applications. J. Alloys Compd. 696, 193–200 (2017). https://doi.org/10.1016/j.jallcom.2016.11.234

245. M. Wu, S. Meng, Q. Wang, W. Si, W. Huang, X. Dong, Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl. Mater. Interfaces 7, 21089–21094 (2015). https://doi.org/10.1021/acsami.5b06299

246. G. Ma, M. Yang, C. Li, H. Tan, L. Deng, S. Xie, F. Xu, L. Wang, Y. Song, Preparation of spinel nickel–cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level. Electrochim. Acta 220, 545–553 (2016). https://doi.org/10.1016/j.electacta.2016.10.163

247. Y. Ni, J. Xu, H. Liu, S. Shao, Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic amperometric sensing of glucose. Talanta 185, 335–343 (2018). https://doi.org/10.1016/j.talanta.2018.03.097

248. F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013). https://doi.org/10.1021/ja404851s

249. Y. Liu, K. Yan, O.K. Okoth, J. Zhang, A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol detection. Biosens. Bioelectron. 74, 1016–1021 (2015). https://doi.org/10.1016/j.bios.2015.07.067

250. L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014). https://doi.org/10.3390/ma7053919

251. W. Lu, T. He, B. Xu, X. He, H. Adidharma, M. Radosz, K. Gasm, M. Fan, Progress in catalytic synthesis of advanced carbon nanofibers. J. Mater. Chem. A 5, 13863–13881 (2017). https://doi.org/10.1039/c7ta02007d

252. D.W. Kim, C.H. Kim, C.M. Yang, S. Ahn, Y.H. Kim et al., Deriving structural perfection in the structure of polycyclonitrile based electroposun carbon nanofiber. Carbon 147, 612–615 (2019). https://doi.org/10.1016/j.carbon.2019.02.066

253. M. Naebe, T. Lin, X. Wang, Carbon nanotubes reinforced electroposun polymer nanofibres, in Nanofibres, ed. by A. Kumar (Intech, Croatia, 2010), pp. 309–328. https://doi.org/10.5772/8160

254. T. Fujita, Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality. Sci. Technol. Adv. Mater. 18, 724–740 (2017). https://doi.org/10.1080/146869667.2017.1377047

255. T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92, 251902 (2008). https://doi.org/10.1063/1.2948902

256. X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang, Y.B. Liu, Q. Jiang, Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013). https://doi.org/10.1038/ncomms2169

257. W. Li, H. Qi, B. Wang, Q. Wang, S. Wei, X. Zhang, Y. Wang, L. Zhang, X. Cui, Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microacta 185, 124 (2018). https://doi.org/10.1007/s00604-017-2663-8

258. K.K. Naik, A. Gangan, B. Chakraborty, C.S. Rout, Superior non-enzymatic glucose sensing properties of Ag–Au–NiCo2O4 nanosheets with insight from electronic structure simulations. Analyst 143, 571–579 (2018). https://doi.org/10.1039/c7an01354j

259. K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak, C.S. Rout, Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4–Pd nanoshets: experimental and DFT investigations. ACS Appl. Mater. Interfaces 9, 23894–23903 (2017). https://doi.org/10.1021/acsami.7b02217
260. G. Cakmak, Z. Kütükayvuz, S. Kütükayvuz, Conductive copolymers of polyaniline, poly(3,4-ethylenedioxythiophene) and poly(dimethylsiloxane). Synth. Met. 151, 10–18 (2005). https://doi.org/10.1016/j.synthmet.2005.02.019

261. A.S. Hammad, H. Noyb, M.F. Elkady, A.H. El-Shazly, In-situ polymerization of polyaniline/poly(3,4-ethylenedioxythiophene) copolymer using different techniques, in IOP Conference Series: Materials Science and Engineering, vol. 290 (2018), p. 012001. https://doi.org/10.1088/1757-899X/290/1/012001

262. J.M. Jeong, B.G. Choi, S.C. Lee, K.G. Lee, S.J. Chang et al., Hierarchical hollow spheres of Fe3O4@polyaniline for lithium ion battery anodes. Adv. Mater. 25, 6250–6255 (2013). https://doi.org/10.1002/adma.201302710

263. Z. Yu, H. Li, X. Zhang, N. Liu, W. Tan, X. Zhang, L. Zhang, Facile synthesis of NiCo2O4@Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens. Bioelectron. 75, 161–165 (2016). https://doi.org/10.1016/j.bios.2015.08.024

264. X. Duan, K. Liu, Y. Xu, M. Yuan, T. Gao, J. Wang, Non-enzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate. Sens. Actuators B: Chem. 292, 121–128 (2019). https://doi.org/10.1016/j.snb.2019.04.107

265. A.B. Vennela, D. Mangalaraj, N. Muthukumaramsy, S. Agilan, K.V. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol–gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14, 3535–3552 (2019). https://doi.org/10.20964/2019.04.40

266. O. Mounkachi, E. Salmani, M. Lakhal, H. Ez-Zahraouy, M. Hamedoun, M. Benaisa, A. Kara, A. Ennaoui, A. Benyoussef, Band-gap engineering of SnO2. Sol. Energy Mater. Sol. Cells 148, 34–38 (2016). https://doi.org/10.1016/j.solmat.2015.09.062

267. E. Cockayne, L. Li, First-principles DFT + U studies of the atomic, electronic, and magnetic structure of α-MnO2 (cryptomelane). Chem. Phys. Lett. 544, 53–58 (2012). https://doi.org/10.1016/j.cplett.2012.06.061

268. M.C. Liu, L. Bin Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl. Mater. Interfaces 4, 4631–4636 (2012). https://doi.org/10.1021/am301010u

269. D. Chen, D. Pang, S. Zhang, H. Song, W. Zhu, J. Zhu, Synergistic coupling of NiCo2O4 nanorods onto porous Co3O4 nanosheet surface for tri-functional glucose, hydrogen-peroxide sensors and supercapacitor. Electrochem. Acta 330, 135326 (2020). https://doi.org/10.1016/j.electacta.2019.135326

270. B. Xue, K. Li, L. Feng, J. Lu, L. Zhang, Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochem. Acta 239, 36–44 (2017). https://doi.org/10.1016/j.electacta.2017.04.005

271. D. Chen, S. Wang, M. Liu, J. Gao, H. Song, S. Zhang, Bionics-inspired strong coupling of streptococcus-like NiCo2O4 to needle-like MnO2 for enhanced electrocatalytic determination of glucose. J. Electrochem. Soc. 166, B1653 (2019). https://doi.org/10.1149/2.1291915jes

272. Y. Su, B. Luo, J.Z. Zhang, Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing. Anal. Chem. 88, 1617–1624 (2016). https://doi.org/10.1021/ac503396

273. Z. Qin, Q. Cheng, Y. Lu, J. Li, Facile synthesis of hierarchically mesoporous NiCo2O4 nanowires for sensitive nonenzymatic glucose detection. Appl. Phys. A Mater. Sci. Process. 123, 492 (2017). https://doi.org/10.1007/s00339-017-1108-x

274. W. Huang, T. Lin, Y. Cao, X. Lai, J. Peng, J. Tu, Hierarchical NiCo2O4 hollow sphere as a peroxidase mimetic for colorimetric detection of H2O2 and glucose. Sensors 17, 217 (2017). https://doi.org/10.1007/s17010217

275. L. Su, W. Dong, C. Wu, Y. Gong, Y. Zhang, L. Li, G. Mao, S. Feng, The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal. Chim. Acta 951, 124–132 (2017). https://doi.org/10.1016/j.aca.2016.11.035

276. M. Saraf, K. Natarajan, S.M. Mobin, Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. New J. Chem. 41, 9299–9313 (2017). https://doi.org/10.1039/c7nj01519d

277. H. Yin, T. Zhan, D. Qin, X. He, Q. Nie, J. Gong, Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor. Inorg. Nano Met. Chem. 47, 1560–1567 (2017). https://doi.org/10.1080/24701556.2017.1357610

278. W. Chen, S. Cai, Q.Q. Ren, W. Wen, Y. Di Zhao, Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137, 49–58 (2012). https://doi.org/10.1039/c1an15738h

279. K. Dhara, D.R. Mahapatra, Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review. J. Mater. Sci. 54, 12319–12357 (2019). https://doi.org/10.1007/s10853-019-03750-y

280. R. Zhang, W. Chen, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron. 89, 249–268 (2017). https://doi.org/10.1016/j.bios.2016.01.080

281. P. Kannan, T. Maiyilagan, A. Pandikumar, L. Guo, P. Veerakumar, P. Rameshkumar, Highly sensitive enzyme-free amperometric sensing of hydrogen peroxide in real samples based on Co3O4 nanocolumn structures. Anal. Methods 11, 2292–2302 (2019). https://doi.org/10.1039/c9ay00230h

282. R. Ding, L. Qi, M. Jia, H. Wang, Porous NiCo2O4 nanospheres as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O2 reduction reaction. Electrochem. Acta 113, 290–301 (2013). https://doi.org/10.1016/j.electacta.2013.09.053

283. Y. Wang, K. Cheng, D. Cao, F. Yang, P. Yan, W. Zhang, G. Wang, Preparation of NiCo2O4 nanosheet arrays and its high catalytic performance for H2O2 electroreduction. Fuel Cells 15, 298–305 (2015). https://doi.org/10.1002/fuce.201300299
284. L. Ning, X. Guan, J. Ma, M. Wang, X. Fan, G. Zhang, F. Zhang, W. Peng, Y. Li, A highly sensitive nonenzymatic \(\text{H}_2\text{O}_2 \) sensor based on platinum, \(\text{ZnFe}_2\text{O}_4 \) functionalized reduced graphene oxide. J. Alloys Compd. 738, 317–322 (2018). https://doi.org/10.1016/j.jallcom.2017.12.161

285. X. Xiong, C. You, X. Cao, L. Pang, R. Kong, X. Sun, \(\text{Ni}_3\text{P} \) nanosheets array as a novel electrochemical catalyst electrode for non-enzymatic \(\text{H}_2\text{O}_2 \) sensing. Electrochim. Acta 253, 517–521 (2017). https://doi.org/10.1016/j.electacta.2017.09.104

286. F. Xie, X. Cao, F. Qu, A.M. Asiri, X. Sun, Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and \(\text{H}_2\text{O}_2 \) detection. Sens. Actuators B: Chem. 255, 1254–1261 (2018). https://doi.org/10.1016/j.snb.2017.08.098

287. Y. Li, M. Zhang, X. Zhang, G. Xie, Z. Su, G. Wei, Nanoporous carbon nanofibers decorated with platinum nanoparticles for non-enzymatic electrochemical sensing of \(\text{H}_2\text{O}_2 \). Nanomaterials 5, 1891–1905 (2015). https://doi.org/10.3390/nano5041891

288. L. Tian, K. Xia, W. Hu, X. Zhong, Y. Chen et al., A wide linear range and stable \(\text{H}_2\text{O}_2 \) electrochemical sensor based on Ag decorated hierarchical \(\text{SnO}_2 \). Electrochim. Acta 231, 190–199 (2017). https://doi.org/10.1016/j.electacta.2017.02.052

289. X. Xiao, F. Yang, K. Cheng, X. Wang, J. Yin, K. Ye, G. Wang, D. Cao, \(\text{NiCo}_2\text{O}_4 \) nanostructures with various morphologies as the high-performance electrocatalysts for \(\text{H}_2\text{O}_2 \) electroreduction and electrooxidation. J. Electroanal. Chem. 729, 103–108 (2014). https://doi.org/10.1016/j.jelechem.2014.07.010

290. B. Xue, K. Li, S. Gu, L. Zhang, J. Lu, Ni foam-supported \(\text{ZnO} \) nanowires and \(\text{Co}_3\text{O}_4/\text{NiCo}_2\text{O}_4 \) double-shelled nanocages for efficient hydrogen peroxide detection. Sens. Actuators B: Chem. 262, 828–836 (2018). https://doi.org/10.1016/j.snb.2018.02.091

291. M. Saktivel, R. Sukanya, S.M. Chen, K. Pandi, K.C. Ho, Synthesis and characterization of bimetallic nickel–cobalt chalcogenides (\(\text{NiCo}_2\text{S}_2 \), \(\text{NiCo}_2\text{Se}_2 \), and \(\text{NiCo}_2\text{O}_4 \)) for non-enzymatic hydrogen peroxide sensor and energy storage: electrochemical properties dependence on the metal-to-chalcogen composition. Renew. Energy 138, 139–151 (2019). https://doi.org/10.1016/j.renene.2019.01.079

292. R.L. King, G.G. Botte, Hydrogen production via urea electrolysis using a gel electrolyte. J. Power Sources 196 (5), 2773–2778 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.006

293. W.M. Omymen, J.R. Roger, B.Z. Jugović, M.M. Gvozdenović, B.N. Grgr, Photo-assisted electrochemical oxidation of the urea onto \(\text{TiO}_2 \)-nanotubes modified by hematite. J. Saudi Chem. Soc. 21(8), 990–997 (2017). https://doi.org/10.1016/j.jscs.2017.05.010

294. J. Kim, W.J.K. Choi, J. Choi, M.R. Hoffmann, H. Park, Electrolysis of urea and urine for solar hydrogen. Catal. Today 199, 2–7 (2013). https://doi.org/10.1016/j.cattod.2012.02.009

295. B.K. Boggs, R.L. King, G.G. Botte, Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 32, 4859–4861 (2009). https://doi.org/10.1039/b905974a

296. A.A. Ibrahim, R. Ahmad, A. Umar, M.S. Al-Assiri, A.E. Al-Salami, R. Kumar, S.G. Ansari, S. Baskoutas, Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea. Biosens. Bioelectron. 98, 254–260 (2017). https://doi.org/10.1016/j.bios.2017.06.015

297. G. Dhawan, G. Sumana, B.D. Malhotra, Recent developments in urea biosensors. Biochem. Eng. J. 44, 42–52 (2009). https://doi.org/10.1016/j.bej.2008.07.004

298. S. Amin, A. Tahira, A. Solangi, V. Beni, J.R. Morante et al., A practical non-enzymatic urea sensor based on \(\text{NiCo}_2\text{O}_4 \) nanoneedles. RSC Adv. 9, 14443–14451 (2019). https://doi.org/10.1039/c9ra0909d

299. N. Senthilkumar, G. Gnanu kumar, A. Manthiram, 3D hierarchical core–shell nanstructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv. Energy Mater. 8(6), 1702207 (2018). https://doi.org/10.1002/aenm.201702207

300. N.S. Nguyen, G. Das, H.H. Yoon, Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 77, 372–377 (2016). https://doi.org/10.1016/j.bios.2015.09.046

301. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1, 534–551 (2012). https://doi.org/10.1016/j.nanoen.2012.05.001

302. V. Vedharathinam, G.G. Botte, Understanding the electrocatalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim. Acta 81, 292–300 (2012). https://doi.org/10.1016/j.electacta.2012.07.007

303. H.N. Sit, J. Jalil, A.Y. Asmadi, Y. Kamisah, Roles of rutin in cardiac remodeling. J. Funct. Foods 64, 103606 (2020). https://doi.org/10.1016/j.jff.2019.103606

304. M.L. Yola, C. Göde, N. Atar, Determination of rutin by \(\text{CoFe}_2\text{O}_4 \) nanoparticles ionic liquid nanocomposite as a voltammetric sensor. J. Mol. Liq. 246, 350–353 (2017). https://doi.org/10.1016/j.molliq.2017.09.072

305. S. Cui, L. Li, Y. Ding, J. Zhang, H. Yang, Y. Wang, Mesoporous \(\text{NiCo}_2\text{O}_4 \)-decorated reduced graphene oxide as a novel platform for electrochemical determination of rutin. Talanta 164, 291–299 (2017). https://doi.org/10.1016/j.talanta.2016.10.109

306. K.H.G. Freitas, O. Fatibello-Filho, I.L. de Mattos, Square-wave voltammetric determination of rutin in pharmaceutical formulations using a carbon composite electrode modified with copper (II) phosphate immobilized in polyester resin. Braz J. Pharm. Sci. 48, 2175–9790 (2012). https://doi.org/10.1590/S1984-82502012000400007

307. J. Kang, X. Lu, H. Zeng, H. Liu, B. Lu, Investigation on the electrochemistry of rutin and its analytical application. Anal. Lett. 35, 677–686 (2002). https://doi.org/10.1081/AL-120003169

308. P. Miao, T. Liu, X. Li, L. Ning, J. Yin, K. Han, Highly sensitive, label-free colorimetric assay of trypsin using silver...
nanoparticles. Biosens. Bioelectron. 49, 20–24 (2013). https://doi.org/10.1016/j.bios.2013.04.038

309. X. Lin, Z. Zhu, C. Zhao, S. Li, Q. Liu, A. Liu, L. Lin, X. Lin, Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sens. Actuators B: Chem. 284, 346–353 (2019). https://doi.org/10.1016/j.snb.2018.12.109

310. Y. Lin, R. Shen, N. Liu, H. Yi, H. Dai, J. Lin, A highly sensitive peptide-based biosensor using NiCo$_2$O$_4$ nanosheets and g-C$_3$N$_4$ nanocomposite to construct amplified strategy for trypsin detection. Anal. Chim. Acta 1035, 175–183 (2018). https://doi.org/10.1016/j.aca.2018.06.040

311. B. Kaur, B. Satpati, R. Srivastava, Synthesis of NiCo$_2$O$_4$/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. New J. Chem. 39, 1115–1124 (2015). https://doi.org/10.1039/c4nj01360c

312. T. Tite, E.A. Chiticaru, J.S. Burns, M. Ioniţă, Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J. Nanobiotechnol. 17, 101 (2019). https://doi.org/10.1186/s12951-019-0535-6