Influence of Planting Method and Geometry on Growth and Yield of Menthol Mint (Mentha arvensis L.)

M.G. Nithin*, Md. Farooq, T.N. Pushpa, D. Srikantaprasad and I.B. Biradar

Kittur Rani Channamma College of Horticulture, Arabhavi-591 218, Karnataka, India

*Corresponding author

ABSTRACT

Field study was conducted to study the effect of planting method and geometry on growth and yield of menthol mint during 2017 at Kittur Rani Channamma College of Horticulture, Arabhavi, Karnataka. Among the different treatment combinations studied, raised bed method of planting with 60 × 30 cm spacing (P2S3) recorded maximum plant height and number of branches. Fresh herbage yield (g/plant) was maximum with raised bed method of planting with 60 × 30 cm spacing (P2S3) whereas fresh herbage yield (kg/plot, t/ha) was maximum with raised bed method of planting with 45 × 30 cm spacing (P2S1).

Keywords

Menthol mint, Raised bed, Spacing, Plant height, Number of branches, Fresh herbage yield

Introduction

Mentha genus belonging to family Lamiaceae is a major source of essential oils widely used in combating cold, as an ingredient in cough drops, dentifrices, cosmetics, mouth washes, scenting of tobacco products and flavoring of beverage foods. Major Mentha genus include menthol mint (Mentha arvensis), spear mint (Mentha spicata), bergamot mint (Mentha citrata), pepper mint (Mentha piperita) and scoth mint (Mentha cardiaca) mainly grown for their aroma isolates like menthol, carvon, linalylacetate and linalool (George, 1994). Menthol oil is a rich source of menthol (75-80%) and considered as an outstanding stomachic, stimulant, antispasmodic and carminative (Kahkashan et al., 2016). The cooling effect of menthol is exploited in making certain cosmetic products like lipsticks, face creams, hair lotions and shaving creams.

In pharmaceutical industry, they are utilized in tooth pastes, mouth fresheners, aerosols and as ingredient in products such as shoe polish (George, 1994). Besides, natural menthol is preferred in food and flavor industry. Synthetic menthol has also come in market but its volumes are meagre due to high cost of production.

Although India entered the global market for commercial production and export of mint
during 1980’s. Today it is a leading producer of this crop in world having 0.30 million ha area with annual production of 38,000 metric tonnes of essential oil with average productivity of around 120 kilograms per hectare (Anon., 2015) which meets 75 per cent of international requirement of mint oil and stands as a world leader in production of mint with around 80 per cent of global supply of mint oil, followed by China and Japan, each producing around 10 per cent (Misra et al., 2000).

In India, Uttar Pradesh is the largest mentha producing state in the country contributing 80 to 90 per cent of total production followed by Punjab, Haryana, Bihar and Himachal Pradesh (Karvy, 2011). In Karnataka, Mints are being grown in very limited area as these crops are uncommon to the growers due to lack of knowledge on scientific cultivation, processing and marketing.

Materials and Methods

A field experiment was conducted on “Studies on planting method and geometry in menthol mint” during Kharif season in 2017-18.

The details of the materials used and methods adopted during the course of investigation are presented below.

The experiment was laid out in split plot design with twelve treatments and three replications. The gross plot size was 4.8 × 3.6 m (17.28 m²).

Stolon’s of uniform thickness and standard size of 7.0 to 10.0 cm in length having 2-3 nodes treated with 0.3 per cent COC for 5-10 minutes before planting were used. Growth parameters were recorded at 30, 45, 60, 90 and 120 days after planting. Whereas yield (g/plant, kg/plot and t/ha) parameters were observed at harvest (120 DAP).

Results and Discussion

Growth parameters

Among the different planting methods at harvest, those plants planted on raised bed (P₂) recorded higher plant height (67.16 cm) whereas minimum plant height (64.34 cm) was noticed with ridges and furrow method of planting (P₃) (Table 1).

At same time number of branches was also significantly influenced by planting methods where the maximum number of branches (24.99) was recorded with raised bed and minimum number of branches at harvest (22.41) was recorded with ridges and furrow method of planting (Table 2). The increase in the growth attributes may be due to the favorable condition in raised bed during kharif season which will be free from water logging and ensure good soil aeration. This result is in contrary with the findings of Saini et al., (2001) where flatbed method of planting was superior in terms of growth attributes.

Among different spacing followed those plants planted at wider row spacing of 60 × 30 cm (S₃) were found to be tallest (68.28 cm) at harvest compared to the spacing of 45 × 45 cm (S₂) (63.02 cm).

The increased plant height in wider row spacing of 60 × 30 cm might be due to lesser competition between plants at lower plant densities for nutrients, water, light etc. Similar trends were observed by Kothari et al., (1996) and Saini et al.,(2001) in Mentha arvensis, Chinnabai (1991) in Mentha viridis, Shalaby et al., (1997) in Echinoceapurpurea, Lakshmipathaiah (1998) in babchi (Table 1). Maximum number of branches per plant (25.64) was noticed in wider spacing S₃ (60×30 cm) at harvest, while less number of branches per plant (22.20) was recorded in closer spacing S₁ (45 ×45 cm) at harvest.
Table 1 Effect of planting method and spacing on plant height in menthol mint at 30, 45 and 60 DAP

Treatments	30 DAP	45 DAP	60 DAP												
	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean
P1	18.20	19.27	15.60	16.27	**17.33**	33.96	34.13	35.81	34.43	**34.58**	44.95	40.75	46.92	42.62	**43.81**
P2	17.07	17.67	16.60	17.00	**17.08**	35.32	32.43	36.71	34.76	**34.80**	45.17	41.19	47.62	43.62	**44.40**
P3	17.87	16.67	17.33	16.93	**17.20**	33.62	31.53	35.18	32.65	**33.24**	41.52	38.71	43.53	40.33	**41.02**
Mean	17.71	17.87	16.51	16.73		34.30	32.69	35.90	33.94		43.88	40.21	46.02	42.19	

For comparison of mean

Planting method (P)	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %
P1 Flatbed method	0.578	NS	0.65	2.58		
P2 Raised bed method of planting	0.691	NS	0.76	2.27		
P3 Ridges and furrow method of planting	1.18	NS	1.32	NS		
S at same level of P	1.19	NS	1.32	NS		
S at same or different level of P						

Table 1 continued

Effect of planting method and spacing on plant height in menthol mint at 90 DAP and at harvest.

Treatments	90 DAP	At harvest								
	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean
P1	63.15	62.03	64.80	62.59	**63.14**	66.14	62.86	67.29	64.03	**65.08**
P2	64.53	62.57	66.44	63.01	**64.13**	67.41	64.26	70.91	66.08	**67.16**
P3	62.20	60.91	63.47	61.20	**61.94**	65.25	61.94	66.64	63.56	**64.34**
Mean	63.29	61.83	64.90	62.26		66.26	63.02	68.28	64.55	

For comparison of mean

Planting method (P)	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %
P1 Flatbed method	0.34	1.35	0.42	1.65
P2 Raised bed method of planting	0.76	2.27	0.61	1.81
P3 Ridges and furrow method of planting	1.14	3.58	1.01	3.02
S at same or different level of P	1.32	3.93	1.05	3.14
Table 2: Effect of planting method and spacing on number of branches in menthol mint at 30, 45 and 60 DAP.

Treatments	30 DAP	45 DAP	60 DAP												
	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean
P1	2.60	2.27	2.87	2.53	2.56	5.80	5.03	7.10	6.00	5.98	10.09	8.44	11.46	9.26	9.81
P2	2.93	2.33	2.20	2.13	2.39	6.00	5.13	7.80	6.50	6.35	10.80	8.48	12.49	9.49	10.31
P3	2.23	2.40	2.37	2.53	2.38	5.53	4.73	6.67	5.73	5.66	10.21	7.94	11.28	9.34	9.69
Mean	2.58	2.33	2.48	2.39	2.57	4.96	4.75	5.79	5.32	5.64	10.36	8.28	11.74	9.36	10.09

For comparison of mean

	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %
Planting method (P)	0.12	NS	0.07	0.28	0.11	0.46
Row spacing (S)	0.13	NS	0.07	0.22	0.08	0.26
S at same level of P	0.23	NS	0.13	NS	0.17	0.53
S at same or different level of P	0.23	NS	0.12	NS	0.15	0.45

P1 = Flat bed method
P2 = Raised bed method of planting
P3 = Ridges and furrow method of planting
S1 = 45 × 30 cm
S2 = 45 × 45 cm
S3 = 60 × 30 cm
S4 = 60 × 45 cm

Table 2 continued:
Effect of planting method and spacing on number of branches in menthol mint at 90 DAP and at harvest.

Treatments	90 DAP	At harvest								
	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean
P1	22.33	18.13	23.67	19.43	20.89	24.27	22.33	25.60	23.63	23.95
P2	23.40	18.47	24.20	20.20	21.56	25.43	23.27	26.87	24.40	24.99
P3	22.73	18.03	22.93	19.57	20.81	22.47	21.00	24.47	21.70	22.41
Mean	22.82	18.32	23.6	19.73	20.93	24.05	22.20	25.64	23.24	

For comparison of mean

	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %
Planting method (P)	0.13	0.51	0.23	0.90
Row spacing (S)	0.11	0.32	0.20	0.60
S at same level of P	0.21	NS	0.38	NS
S at same or different level of P	0.19	NS	0.35	NS

P1 = Flat bed method
P2 = Raised bed method of planting
P3 = Ridges and furrow method of planting
S1 = 45 × 30 cm
S2 = 45 × 45 cm
S3 = 60 × 30 cm
S4 = 60 × 45 cm

1280
Table.3 Effect of planting method and spacing on fresh herbage yield in menthol mint at harvest

Treatments	g/plant				Kg/plot			t/ha		
	S1	S2	S3	S4	Mean	S1	S2	S3	S4	Mean
P1	400.45	355.82	443.87	380.72	395.21	27.98	14.23	22.19	9.64	18.51
P2	403.66	359.51	460.08	388.71	402.99	28.25	14.38	23.00	9.68	18.82
P3	396.70	351.25	440.61	373.89	390.61	27.76	14.05	22.02	9.34	18.29
Mean	400.27	355.52	448.18	381.10	395.61	27.99	14.22	22.40	9.55	18.43

For comparison of mean

	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %	S.Em ±	CD @ 5 %
Planting method (P)	1.65	6.48	0.07	0.29	0.06	0.25
Row spacing (S)	1.48	4.41	0.08	0.24	0.07	0.21
S at same level of P	2.77	NS	0.14	NS	0.12	NS
S at same or different level of P	2.57	NS	0.14	NS	0.12	NS

P1 = Flatbed method
P2 = Raised bed method of planting
P3 = Ridges and furrow method of planting
S1 = 45 × 30 cm
S2 = 45 × 45 cm
S3 = 60 × 30 cm
S4 = 60 × 45 cm
The increase in number of branches at wider row spacing could be attributed to the availability of more spatial area for spreading between rows of crop. Similar trends were observed by Chinnabbai (1991) in *Mentha viridis*, Balyan et al., (1987) in * Ocimum americanum*, Lakshmipathaiah (1998) in babchi, Singh (2000) in *Phyllanthus amarus* (Table 2).

The interaction of planting method and spacing had significant effect on plant height at 90 DAP and at harvest. Maximum plant height 66.44 and 70.91 cm were noticed with crops grown on raised bed method of planting with spacing 60 × 30 cm (P2S3). These increase in plant height might be due to better soil aeration, free from water logging and less competition between the plants (Table 1).

Interaction of planting method and spacing differed significantly with number of branches at 60 DAP with maximum number of branches (12.49) recorded in crops grown on raised bed method of planting with 60 × 30 cm spacing (P2S3).

These increase in number of branches might be due to increase in plant height at interaction of raised bed with spacing 60 × 30 cm (Table 2).

Yield parameters

Menthol mint planted on raised bed method of planting (P2) was significantly superior in terms of fresh herbage yield (402.99 g/plant, 18.82 kg/plot and 16.33 t/ha), while minimum fresh herbage yield (390.61 g/plant, 18.29 kg/plot and 15.86 t/ha) was recorded in ridge and furrow method of planting. The increase in fresh herb yield in raised bed method might be due to increase in leaf area which resulted in production of more number of photosynthates resulting in better plant growth in terms of plant height, spread, and branches. These findings are in contrary to Saini et al., (2001) where flatbed method of planting was superior in terms of yield attributes. Menthol mint planted at 60 × 30 cm (S3) was significantly superior in terms of fresh herbage yield (448.18 g/plant), while minimum fresh herbage yield (355.52 g/plant), was recorded in 45 × 45 cm (S2).

The higher fresh herbage yield per plant at wider spacing might be due to increase in leaf area which resulted in production of more number of photosynthates. Similar results were obtained earlier by Pushpalatha et al., (2003) in makoi and Subodhini et al., (2005) in *Centella asiatica*. Menthol mint planted in 45 × 30 cm was significantly superior in terms of fresh herbage yield (27.99 kg/plot and 24.28 t/ha), while minimum fresh herbage yield (9.55 kg/plot and 8.28 t/ha) was recorded in 60 × 45 cm. The increase in yield (kg/plot, t/ha) at 45 × 30 cm spacing might be due to increase in plant population per unit area.

These results are in conformity with Sarma et al., (1975) in *Mentha arvensis*, Raman and Vasudevan (1976) in *Mentha citrata*, Yadav et al., (1985), Kassahun et al., (2011) and Vinod and Meenu (2011) in *Mentha piperita*, Umesh et al., (1990) in clocimum (Table 3).

References

Anonymous, 2015, Current data and market activity. *Multi Commodity Exchange Limited*.

Balyan, S. S., Pal, S., Sharma, S., Singh, S. N. and Sobti, S. N., 1987, Effect of spacing, nitrogen and phosphorus on the growth and yield of two *Ocimum* species. * Indian Perfumer*, 31(1): 89-96.

Chinnabbai, J., 1991, Effect of row spacing and nitrogen level on growth and herbage yield of mint (*Mentha viridis* L.). M.Sc. Thesis, Univ. Agri. Sci. Hyderabad.

George, C. K., 1994, Export of mint oils from India and world trade. * Indian Perfumer*, 38(3): 76-81.

Kahkashan, P., Najat, B., Iram, S. and Iffat, S., 2016, Influence of soil type on the growth parameters, essential oil yield and biochemical contents of *Mentha arvensis* L. *J. of essential oil bearing plants.*, 19 (1) 76-81.
Karvy. (2011) Mentha Oil Seasonal Report. Accessed www.karvycomtrade.com.

Kassahun, B. M., Jaime, A., Silva, T. A. and Mekonnen, S. A., 2011, Agronomic characters, leaf and essential oil yield of pepper mint (Mentha piperita L.) as influenced by harvesting age and row spacing. *Med. Arom. Sci. Biotech.*, 5(1): 49-53.

Kothari, S. K., Singh, V. P. and Singh, U. B., 1996. The effect of row spacing and nitrogen on growth and oil yield composition of Japanese mint. *J. Med. Arom. Plant Sci.*, 18(1): 17-21.

Lakshmipathaiah, O. R., 1998, Standardization of cultural practices in babchi (Psoralea corylifolia). MSc. (Hort.) Thesis, Uni. Agric. Sci., Bangalore (India).

Misra, P. N., Hasan, S. A. and Kumar, S., 2000, Cultivation of aromatic plants in India. Lucknow, India. *Central Institute of Medicinal and Aromatic Plants.*, 331.

Pushpalatha, A. S., Sreeramu, B. S. and Farooqi, A. A., 2003, Influence of spacing, nitrogen, Phosphorous and potassium on growth, herbage yield and nutrient uptake in makoi (Solanum nigrum). *Proc. of the Nation. Sem.*, On New Perspective in Spices, Medicinal and Aromatic Crops, Goa, November 27-29, Pp. 225-229.

Raman, K. R. and Vasudevan, P., 1976, Effect of time of planting and spacing on yield of herbage and oil of Mentha arvensis L. *Annu. Report*, TNAU., 21-24.

Saini, S. S., Jagmohan, K. and Gill, B. S., 2001, Effect of planting methods and row spacing on the growth and yield of Japanese mint (Mentha arvensis L.). *Indian Perfumer.*, 46(4): 361-364.

Sarma, J. S., Bains, D. S. and Gill, G. S., 1975, Response of row spacing and N, P levels on herb and oil yield of Mentha arvensis L. *Indian Perfumer*, 19(1): 5-8.

Shalaby, A. S., Elgengaihi-se., Agina, E. A., El-khayat, A. S. and Hendawy, S. F., 1997, Growth and yield of Echinacea purpurea L. as influenced by planting density and fertilization. *J. Herb. Spic. Medi. Plnts.*, 5(1): 69-76.

Singh, V. P., 2000, Standardization of cultural practices in Phyllanthus amarus. *M.Sc. (Hort.) Thesis*, Uni. Agric. Sci., Bangalore (India).

Subodhini, C., Tuse, B. P., Madhuri, S. and Mahatale, Y. V., 2005, Effect of organic manure and spacing on growth and yield of Centella asiatica. *Annal. Pl. Physiol.*, 19(2): 243-244.

Umesh K., Bojappa, K. M., Farooqi, A. A. and Suresh, N. S., 1990, Influence of plant density on growth and yield of clocimum (Ocimum gratissium L.). *Indian Perfumer*, 34(3): 173-175.

Vinod, K. and Meenu, S., 2011, Effect of transplanting time, spacing and fertilization on herbage and oil yield of Mentha piperita L. *Int. J. Farm Sci.*, 1(2): 68-74.

Yadav, R. L., Mohan R., Ram, M., Naqvi, A. A. and Singh, D. V., 1985, Response of Mentha piperita L. to nitrogen and row spacing in semi-arid central U. P. *J. of Agric. Sci.*, 55: 59-60.

How to cite this article:

Nithin, M.G., Md. Farooq, T.N. Pushpa, D. Srikantaprasad and Biradar, I.B. 2018. Influence of Planting Method and Geometry on Growth and Yield of Menthol Mint (Mentha arvensis L.). *Int.J.Curr.Microbiol.App.Sci.* 7(09): 1277-1283. doi: https://doi.org/10.20546/ijcemas.2018.709.152