Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator

Ahmed M.A El-Sayed, Wagdy G. El-Sayed and A.A.H. Abd El-Mowla

ABSTRACT: The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21]). In this paper, we study the existence of weak solutions for fractional differential equations of Riemann-Liouville and Caputo types. We depend on converting of the mentioned equations to the form of functional integral equations of Volterra-Stieltjes type in reflexive Banach spaces.

AMS Subject Classification: 35D30, 34A08, 26A42.
Keywords and Phrases: Weak solution; Mild solution; Weakly Riemann-Stieltjes integral; Function of bounded variation.

1. Introduction and preliminaries

Let E be a reflexive Banach space with norm $\| \cdot \|$ and dual E^*. Denote by $C[I, E]$ the Banach space of strongly continuous functions $x : I \to E$ with sup-norm. Fractional differential equations have received increasing attention due to its applications in physics, chemistry, materials, engineering, biology, finance [15, 16]. Fractional order derivatives have the memory property and can describe many phenomena that integer order derivatives cant characterize. Only a few papers consider fractional differential equations in reflexive Banach spaces with the weak topology [6, 7, 14, 22, 23].

Here we study the existence of weak solutions of the Volterra-Stieltjes integral equation

$$x(t) = p(t) + \int_0^t f(s, x(s)) \, ds \, g(t, s), \quad t \in I = [0, T],$$
in the reflexive Banach space E.

Let $\alpha \in (0, 1)$. As applications, we study the existence of weak solution for the differential equations of fractional order

$$\mathcal{R}D^\alpha x(t) = f(t, x(t)), \ t \in [0, T]$$

with the initial data

$$x(0) = 0,$$

where $\mathcal{R}D^\alpha x(.)$ is a Riemann-Liouville fractional derivative of the function $x : I = [0, T] \to E$.

Also we study the existence of mild solution for the initial value problem

$$\mathcal{C}D^\alpha x(t) = f(t, x(t)), \ t \in [0, T]$$

with the initial data

$$x(0) = x_0,$$

where $\mathcal{C}D^\alpha x(.)$ is a Caputo fractional derivative of the function $x : I : [0, T] \to E$.

Functional integral equations of Volterra-Stieltjes type have been studied in the space of continuous functions in many papers for example, (see [1-5] and [8]). For the properties of the Stieltjes integral (see Banas [1]).

Definition 1.1. The fractional (arbitrary) order integral of the function $f \in L_1$ of order $\alpha > 0$ is defined as [18, 21]

$$I^\alpha f(t) := \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) \, ds.$$

For the fractional-order derivative we have the following two definitions.

Definition 1.2. The Riemann-Liouville fractional-order derivative of $f(t)$ of order $\alpha \in (0, 1)$ is defined as ([18], [21])

$$\mathcal{R}D^\alpha_a f(t) = \frac{d}{dt} \int_a^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s) \, ds$$

or

$$\mathcal{R}D^\alpha_a f(t) = \frac{d}{dt} I^{1-\alpha}_a f(t).$$

Definition 1.3. The Caputo fractional-order derivative of $g(t)$ of order $\alpha \in (0, 1]$ of the absolutely continuous function $g(t)$ is defined as ([9])

$$\mathcal{C}D^\alpha_a g(t) = \int_a^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} \frac{d}{ds} g(s) \, ds$$

or

$$\mathcal{C}D^\alpha_a g(t) = I^{1-\alpha}_a \frac{d}{dt} g(t).$$
Now, we shall present some auxiliary results that will be needed in this work. Let E be a Banach space (need not be reflexive) and let $x : [a, b] \rightarrow E$, then

1- $x(.)$ is said to be weakly continuous (measurable) at $t_0 \in [a, b]$ if for every $\phi \in E^*$, $\phi(x(.))$ is continuous (measurable) at t_0.

2- A function $h : E \rightarrow E$ is said to be weakly sequentially continuous if h maps weakly convergent sequences in E to weakly convergent sequences in E.

If x is weakly continuous on I, then x is strongly measurable and hence weakly measurable (see [10] and [13]). It is evident that in reflexive Banach spaces, if x is weakly continuous function on $[a, b]$, then x is weakly Riemann integrable (see [13]).

Definition 1.4. Let $f : I \times E \rightarrow E$. Then $f(t, u)$ is said to be weakly-weakly continuous at (t_0, u_0) if given $\epsilon > 0$, $\phi \in E^*$ there exists $\delta > 0$ and a weakly open set U containing u_0 such that

$$|\phi(f(t, u) - f(t_0, u_0))| < \epsilon$$

whenever $|t - t_0| < \delta$ and $u \in U$.

Now, we have the following fixed point theorem, due to O’Regan, in the reflexive Banach space (see [19]) and some propositions which will be used in the sequel [13, 20].

Theorem 1.5. Let E be a Banach space and let Q be a nonempty, bounded, closed and convex subset of $C(I, E)$ and let $F : Q \rightarrow Q$ be a weakly sequentially continuous and assume that $FQ(t)$ is relatively weakly compact in E for each $t \in I$. Then, F has a fixed point in the set Q.

Proposition 1.6. A convex subset of a normed space E is closed if and only if it is weakly closed.

Proposition 1.7. A subset of a reflexive Banach space is weakly compact if and only if it is closed in the weak topology and bounded in the norm topology.

Proposition 1.8. Let E be a normed space with $y \in E$ and $y \neq 0$. Then there exists a $\phi \in E^*$ with $\parallel \phi \parallel = 1$ and $\parallel y \parallel = \phi(y)$.

2. Volterra-Stieltjes integral equation

In this section we prove the existence of weak solutions for the Volterra-Stieltjes integral equation

$$x(t) = p(t) + \int_0^t f(s, x(s)) \, ds, \quad t \in I = [0, T],$$

(2.5)
in the space $C[I, E]$. To facilitate our discussion, denote Λ by

$$\Lambda = \{(t, s) : 0 \leq s \leq t \leq T\}$$

and let $p : I \rightarrow E$, $f : I \times E \rightarrow E$ and $g : \Lambda \rightarrow R$ be functions such that:

(i) $p \in C[I, E]$.

(ii) The function f is weakly-weakly continuous.

(iii) There exists a constant M such that $\|f(t, x)\| \leq M$.

(iv) The function g is continuous on Λ.

(v) The function $s \rightarrow g(t, s)$ is of bounded variation on $[0, t]$ for each fixed $t \in I$.

(vi) For any $\epsilon > 0$ there exists $\delta > 0$ for all $t_1, t_2 \in I$ such that $t_1 < t_2$ and $t_2 - t_1 \leq \delta$ the following inequality holds

$$\sup_{0}^{t_1} [g(t_2, s) - g(t_1, s)] \leq \epsilon.$$

(vii) $g(t, 0) = 0$ for any $t \in I$.

Obviously we will assume that g satisfies assumptions (iv)-(vi). For our purposes we will only need the following lemmas.

Lemma 2.1. [5] The function $z \rightarrow \bigvee_{s=0}^{z} g(t, s)$ is continuous on $[0, t]$ for any fixed $t \in I$.

Lemma 2.2. [5] For an arbitrary fixed $0 < t_2 \in I$ and for any $\epsilon > 0$, there exists $\delta > 0$ such that if $t_1 \in I$, $t_1 < t_2$ and $t_2 - t_1 \leq \delta$ then

$$\bigvee_{s=t_1}^{t_2} g(t_2, s) \leq \epsilon.$$

Lemma 2.3. [5] The function $t \rightarrow \bigvee_{s=0}^{t} g(t, s)$ is continuous on I. Then there exists a finite positive constant K such that

$$K = \sup \{t \bigvee_{s=0}^{t} g(t, s) : t \in I\}.$$

Definition 2.4. By a weak solution to (2.5) we mean a function $x \in C[I, E]$ which satisfies the integral equation (2.5). This is equivalent to find $x \in C[I, E]$ with

$$\phi(x(t)) = \phi(p(t) + \int_{0}^{t} f(s, x(s)) \, ds, g(t, s)), \quad t \in I \ \forall \ \phi \in E^*.$$
Now we can prove the following theorem.

Theorem 2.5. Under the assumptions (i)-(vii), the Volterra-Stieltjes integral equation (2.5) has at least one weak solution \(x \in C[I, E] \).

Proof. Define the nonlinear Volterra-Stieltjes integral operator \(A \) by

\[
Ax(t) = p(t) + \int_0^t f(s, x(s)) \, ds \, g(t, s), \quad t \in I.
\]

For every \(x \in C[I, E] \), \(f(., x(\cdot)) \) is weakly continuous ([24]). To see this we equip \(E \) and \(I \times E \) with weak topology and note that \(t \mapsto (t, x(t)) \) is continuous as a mapping from \(I \) into \(I \times E \), then \(f(., x(\cdot)) \) is a composition of this mapping with \(f \) and thus for each weakly continuous \(x : I \to E \), \(f(., x(\cdot)) : I \to E \) is weakly continuous, means that \(\phi(f(., x(\cdot))) \) is continuous, for every \(\phi \in E^* \), \(g \) is of bounded variation. Hence \(f(., x(\cdot)) \) is weakly Riemann-Stieltjes integrable on \(I \) with respect to \(s \to g(t, s) \). Thus \(A \) makes sense.

For notational purposes \(\| x \|_0 = \sup_{t \in I} \| x(t) \| \).

Now, define the set \(Q \) by

\[
Q = \left\{ x \in C[I, E] : \| x \|_0 \leq M_0 \right\}.
\]

\[
\| x(t_2) - x(t_1) \| \leq \| p(t_2) - p(t_1) \| + MN(\epsilon) + M \int_{s=t_1}^{t_2} g(t_2, s).
\]

First notice that \(Q \) is convex and norm closed. Hence \(Q \) is weakly closed by Proposition 1.6.

Note that \(A \) is well defined, to see that, Let \(t_1, t_2 \in I \), \(t_2 > t_1 \), without loss of generality, assume \(Ax(t_2) - Ax(t_1) \neq 0 \).

\[
\| Ax(t_2) - Ax(t_1) \| = \phi(Ax(t_2) - Ax(t_1)) \leq \| p(t_2) - p(t_1) \| + \int_0^{t_2} \phi(f(s, x(s))) \, ds \, g(t_2, s) - \int_0^{t_1} \phi(f(s, x(s))) \, ds \, g(t_1, s)
\]

\[
\leq \| p(t_2) - p(t_1) \| + \int_0^{t_1} \phi(f(s, x(s))) \, ds \, g(t_2, s) + \int_{t_1}^{t_2} \phi(f(s, x(s))) \, ds \, g(t_2, s) - \int_0^{t_1} \phi(f(s, x(s))) \, ds \, g(t_1, s)
\]

\[
\leq \| p(t_2) - p(t_1) \| + \int_0^{t_1} \phi(f(s, x(s))) \, ds \left| g(t_2, s) - g(t_1, s) \right|
\]

\[
+ \int_{t_1}^{t_2} \phi(f(s, x(s))) \, ds \left| g(t_2, s) - g(t_1, s) \right|
\]
\[\leq \| p(t_2) - p(t_1) \| + \int_{t_1}^{t_2} |\phi(f(s, x(s)))| \, d_s \left[\int_{z=0}^{s} (g(t_2, z) - g(t_1, z)) \right] \]

\[\leq \| p(t_2) - p(t_1) \| + M \int_{t_1}^{t_2} \left[\int_{z=0}^{s} (g(t_2, z) - g(t_1, z)) \right] \]

\[\leq \| p(t_2) - p(t_1) \| + M \int_{t_1}^{t_2} \left[\int_{z=0}^{s} (g(t_2, z)) \right] \]

\[\leq \| p(t_2) - p(t_1) \| + M [N(\epsilon) + M \int_{s=t_1}^{t_2} g(t_2, s)] \]

where

\[N(\epsilon) = \sup \{ \int_{s=0}^{t_1} (g(t_2, s) - g(t_1, s)) : t_1, t_2 \in I, t_1 < t_2, t_2 - t_1 \leq \epsilon \}. \]

Hence

\[\| Ax(t_2) - Ax(t_1) \| \leq \| p(t_2) - p(t_1) \| + M N(\epsilon) + M \int_{s=t_1}^{t_2} g(t_2, s), \quad (2.6) \]

and so \(Ax \in C[I, E] \). We claim that \(A : Q \rightarrow Q \) is weakly sequentially continuous and \(A(Q) \) is weakly relatively compact. Once the claim is established, Theorem 1.5 guarantees the existence of a fixed point \(x \in C[I, E] \) of the operator \(A \) and the integral equation (2.5) has a solution \(x \in C[I, E] \).

To prove our claim, we start by showing that \(A : Q \rightarrow Q \). Take \(x \in Q \), note that the inequality (2.6) shows that \(AQ \) is norm continuous. Then by using Proposition 1.8
we get

\[\| Ax(t) \| = \phi(Ax(t)) \leq \| p(t) \| + \int_0^t | \phi(f(s, x(s))) \| \, d_s g(t, z) \]
\[\leq \| p(t) \| + M \int_0^t \, d_s g(t, z) \]
\[\leq \| p(t) \| + M \sup_{t \in I} \int_0^t g(t, s) \]
\[\leq \| p \|_0 + M \sup_{t \in I} \int_0^t g(t, s) \]
\[\leq \| p \|_0 + MK = M_0. \]

Then

\[\| Ax \|_0 = \sup_{t \in I} \| Ax(t) \| \leq M_0. \]

Hence, \(Ax \in Q \) and \(AQ \subset Q \) which prove that \(A : Q \to Q \), and \(AQ \) is bounded in \(C[I, E] \).

We need to prove now that \(A : Q \to Q \) is weakly sequentially continuous. Let \(\{x_n(t)\} \) be sequence in \(Q \) weakly convergent to \(x(t) \) in \(E \), since \(Q \) is closed we have \(x \in Q \). Fix \(t \in I \), since \(f \) satisfies (ii), then we have \(f(t, x_n(t)) \) converges weakly to \(f(t, x(t)) \). By the Lebesgue dominated convergence theorem (see assumption (iii)) for Pettis integral \(([12]) \), we have for each \(\phi \in E^* \), \(s \in I \)

\[\phi(\int_0^t f(s, x_n(s)) \, d_s g(t, s)) = \int_0^t \phi(f(s, x_n(s))) \, d_s g(t, s) \]
\[\to \int_0^t \phi(f(s, x(s))) \, d_s g(t, s), \forall \phi \in E^*, t \in I, \]

i.e. \(\phi(Ax_n(t)) \to \phi(Ax(t)) \), \(\forall t \in I \), \(Ax_n(t) \) converging weakly to \(Ax(t) \) in \(E \).

Thus, \(A \) is weakly sequentially continuous on \(Q \).

Next we show that \(AQ(t) \) is relatively weakly compact in \(E \).

Note that \(Q \) is nonempty, closed, convex and uniformly bounded subset of \(C[I, E] \) and \(AQ \) is bounded in norm. According to Propositions 1.6 and 1.7, \(AQ \) is relatively weakly compact in \(C[I, E] \) implies \(AQ(t) \) is relatively weakly compact in \(E \), for each \(t \in I \).

Since all conditions of Theorem 1.5 are satisfied, then the operator \(A \) has at least one fixed point \(x \in Q \) and the nonlinear Stieltjes integral equation (2.5) has at least one weak solution \(x \in C[I, E] \).
3. Volterra integral equation of fractional order

In this section we show that the Volterra integral equation of fractional order

\[x(t) = p(t) + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) \, ds, \quad t \in I \]

(3.7)

can be considered as a special case of the Volterra-Stieltjes integral equation (2.1), where the integral is in the sense of weakly Riemann.

First, consider, as previously, that the function \(g(t, s) = g : \Lambda \to R \). Moreover, we will assume that the function \(g \) satisfies the following condition

(vi') For \(t_1, t_2 \in I \), \(t_1 < t_2 \), the function \(s \to g(t_2, s) - g(t_1, s) \) is nonincreasing on \([0, t_1]\).

Now, we have the following lemmas which proved by Banaś et al. [5].

Lemma 3.1. Under assumptions (vi') and (vii), for any fixed \(s \in I \), the function \(t \to g(t, s) \) is nonincreasing on \([s, t]\).

Lemma 3.2. Under assumptions (iv), (vi') and (vii), the function \(g \) satisfies assumption (vi).

Consider the function \(g \) defined by

\[g(t, s) = \frac{t^\alpha - (t-s)^\alpha}{\Gamma(\alpha+1)}. \]

(3.8)

Now, we show that the function \(g \) satisfies assumptions (iv), (v), (vi') and (vii). Clearly that the function \(g \) satisfies assumptions (iv) and (vii). Also we get

\[d_s g(t, s) = \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} > 0 \]

for \(0 \leq s < t \). This implies that \(s \to g(t, s) \) is increasing on \([0, t]\) for any fixed \(t \in I \). Thus the function \(g \) satisfies assumption (v).

To show that \(g \) satisfies assumption (vi'), let us fix arbitrary \(t_1, t_2 \in [0, T], \) \(t_1 < t_2 \). Then we get

\[G(s) = g(t_2, s) - g(t_1, s) = \frac{t_2^\alpha - (t_2-s)^\alpha - (t_1-s)^\alpha}{\Gamma(\alpha+1)}, \]

define on \([0, t_1]\). Thus

\[G'(s) = \frac{(t_2-s)^{\alpha-1} - (t_1-s)^{\alpha-1}}{\Gamma(\alpha)} = \frac{1}{\Gamma(\alpha)} \left[\frac{1}{(t_2-s)^{1-\alpha}} - \frac{1}{(t_1-s)^{1-\alpha}} \right]. \]

Hence \(G'(s) < 0 \) for \(s \in [0, t_1] \). This means that \(g \) satisfies assumption (vi'). And the function \(g \) satisfies assumptions (iv)-(vii) in Theorem 2.5.

Hence, the equation (3.7) can be written in the form

\[x(t) = p(t) + \int_0^t f(s, x(s)) \, ds g(t, s). \]
And the equation (3.7) is a special case of the equation (2.5).

Now, we estimate the constants K, $N(\epsilon)$ used in our proof. To see this, since the function $s \to g(t, s)$ is nondecreasing on $[0, t]$ for any fixed $t \in I$. Then we have

$$\int_{s=0}^{t} g(t, s) = g(t, t) - g(t, 0) = g(t, t) = \frac{t^\alpha}{\Gamma(\alpha + 1)},$$

and

$$\int_{s=0}^{t_1} (g(t_2, s) - g(t_1, s)) = \sum_{i=1}^{n} \left[g(t_2, s) - g(t_1, s) \right] = \sum_{i=1}^{n} \left[g(t_2, s_i) - g(t_1, s) \right] - \left[g(t_2, s_i) - g(t_1, s_i) \right]
= g(t_1, t_1) - g(t_2, t_1)
= \frac{1}{\Gamma(\alpha + 1)} [t_1^\alpha - t_2^\alpha + (t_2 - t_1)^{\alpha}].$$

Thus

$$K = \sup \left\{ \int_{s=0}^{t} g(t, s) : t \in I \right\} = \frac{T^\alpha}{\Gamma(\alpha + 1)}$$

and

$$N(\epsilon) = \sup \left\{ \int_{s=0}^{t_1} (g(t_2, s) - g(t_1, s)) : t_1, t_2 \in I, \ t_1 < t_2, \ t_2 - t_1 \leq \epsilon \right\}
= \frac{1}{\Gamma(\alpha + 1)} [t_1^\alpha - t_2^\alpha + (t_2 - t_1)^{\alpha}].$$

Since

$$\int_{s=t_1}^{t_2} g(t_2, s) = g(t_2, t_2) - g(t_2, t_1)
= \frac{1}{\Gamma(\alpha + 1)} [t_2^\alpha - (t_2 - t_1)^{\alpha} - t_2^\alpha + (t_2 - t_1)^{\alpha}]
= \frac{(t_2 - t_1)^{\alpha}}{\Gamma(\alpha + 1)}.$$

Then

$$Q = \{ x \in C[I, E] : \|x\|_0 \leq M_0 \}
\| x(t_2) - x(t_1) \| \leq \| p(t_2) - p(t_1) \| + \frac{M}{\Gamma(\alpha + 1)} \| t_1^\alpha - t_2^\alpha + 2(t_2 - t_1)^{\alpha} \|.$$

Finally, we can formulate the following existence result concerning the fractional integral equation (3.7).

Theorem 3.3. Under the assumptions (i)-(iii), the fractional integral equation (3.7) has at least one weak solution $x \in C[I, E]$.
4. Fractional differential equations

In this section we establish existence results for the fractional differential equations (1.1)-(1.2) and (1.3)-(1.4) in the reflexive Banach space E.

4.1. Weak solution

Consider the integral equation

$$x(t) = \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) \, ds, \quad t \in I,$$

where the integral is in the sense of weakly Riemann.

Lemma 4.1. Let $\alpha \in (0, 1)$. A function x is a weak solution of the fractional integral equation (4.9) if and only if x is a solution of the problem (1.1)-(1.2).

Proof. Integrating (1.1)-(1.2) we obtain the integral equation (4.9). Operating by $R^{D_{R}^{\alpha}}$ on (4.9) we obtain the problem (1.1)-(1.2). So the equivalent between (1.1)-(1.2) and the integral equation (4.9) is proved and then the results follows from Theorem 3.3.

4.2. Mild solution

Consider now the problem (1.3)-(1.4). According to Definitions 1.1 and 1.3, it is suitable to rewrite the problem (1.3)-(1.4) in the integral equation

$$x(t) = x_{0} + \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s, x(s)) \, ds, \quad t \in I.$$

Definition 4.2. By the mild solution of the problem (1.3)-(1.4), we mean that the function $x \in C[I, E]$ which satisfies the corresponding integral equation of (1.3)-(1.4) which is (4.10).

Theorem 4.3. If (i)-(iii) are satisfied, then the problem (1.3)-(1.4) has at least one mild solution $x \in C[I, E]$.

It is often the case that the problem (1.3)-(1.4) does not have a differentiable solution yet does have a solution, in a mild sense.

References

[1] J. Banaś, *Some properties of Urysohn-Stieltjes integral operators*, Internat. J. Math. and Math. Sci. 21 (1998) 79-88.

[2] J. Banaś, K. Sadarangani, *Solvability of Volterra-Stieltjes operator-integral equations and their applications*, Comput. Math. Appl. 41 12 (2001) 1535-1544.
Weak solutions of fractional differential equations

[3] J. Banaś, J.C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput. Math. Appl. 49 (2005) 1565-1573.

[4] J. Banaś, D. O’Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling. 41 (2005) 335-344.

[5] J. Banaś, T. Zajęc, A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375 (2011) 375-387.

[6] M. Benchohra, F. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach spaces, Opuscula Mathematica 32 1 (2012) 31-40.

[7] M. Benchohra, J.R. Graef and F. Mostefai, Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces, Electron. J. Qual. Theory Differ. Equ. 54 (2010) 1-10.

[8] C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math. 14 (1970) 434-451.

[9] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J.R. Astr. Soc. 13 (1967) 529-539.

[10] N. Dunford, J.T. Schwartz, Linear Operators, Interscience, Wiley, New York 1958.

[11] A.M.A. El-Sayed, W.G. El-Sayed and A.A.H. Abd El-Mowla, Volterra-Stieltjes integral equation in reflexive Banach spaces, Electronic Journal of Mathematical Analysis and Applications 5 1 (2017) 287-293.

[12] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981) 81-86.

[13] E. Hille, R.S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. Providence, R. I. 1957.

[14] H.H.G. Hashem, Weak solutions of differential equations in Banach spaces, Journal of Fractional Calculus and Applications 3 1 (2012) 1-9.

[15] T. Margulies, Wave propagation in viscoelastic horns using a fractional calculus rheology model, The Journal of the Acoustical Society of America 114 2442 (2003), https://doi.org/10.1121/1.4779280.

[16] B. Mathieu, P. Melchior, A. Oustaloup and Ch. Ceyral, Fractional differentiation for edge detection, Fractional Signal Processing and Applications 83 (2003) 2285-2480.

[17] A.R. Mitchell, Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces (V. Lakshmikantham, ed.) (1978) 387-404.
[18] I. Podlubny, *Fractional Differential Equations*, Academic Press, New York 1999.

[19] D. O'Regan, *Fixed point theory for weakly sequentially continuous mapping*, Math. Comput. Modeling 27 (1998) 1-14.

[20] A. Szep, *Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces*, Studia Sci. Math. Hungar. 6 (1971) 197-203.

[21] S.G. Samko, A.A. Kilbas and O. Marichev, *Integral and Derivatives of Fractional Orders and Some of Their Applications*, Nauka i Teknika, Minsk 1987.

[22] H.A.H. Salem, A.M.A. El-Sayed, *Weak solution for fractional order integral equations in reflexive Banach spaces*, Math. Slovaca 55 (2005) 169-181.

[23] H.A.H. Salem, A.M.A. El-Sayed, *A note on the fractional calculus in Banach spaces*, Studia Sci. Math. Hungar. 42 2 (2005) 115-130.

[24] H.A.H. Salem, *Quadratic integral equations in reflexive Banach space*, Discuss. Math. Differ. Incl. Control Optim. 30 (2010) 61-69.

DOI: 10.7862/rf.2017.6

Ahmed M.A El-Sayed
email: amasayed@alexu.edu.eg
Faculty of Science
Alexandria University
Alexandria
EGYPT

Wagdy G. El-Sayed
email: wagdygoma@alexu.edu.eg
Faculty of Science
Alexandria University
Alexandria
EGYPT

A.A.H. Abd El-Mowla
email: aziza.abdelmwla@yahoo.com
Faculty of Science
Omar Al-Mukhtar University
Derna
LIBYA

Received 1.03.2017 Accepted 30.10.2017