Evaluation of tomato (Solanum lycopersicum L.) genotypes for growth, yield and quality traits at different planting density

Erra Ranjith Kumar and Vijay Bahadur

Abstract
An experiment on Tomato Genotypes at different planting density was conducted during January to May 2020 in Research Field, Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj during January to May, 2020. An experiment on Tomato Genotypes at different planting density was conducted during January to May 2020 in Research Field, Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (U.P.) India. The results of the present investigation, regarding the evaluation of four genotypes i.e. (AVTO – 1706, AVTO – 1707, Arka Samrat and Pusa Ruby) of tomato in four planting densities i.e. (0.2, 0.3, 0.4 and 0.5 m) for plant growth, yield and quality of Tomato, have been discussed and interpreted in the light of previous research work done in India and abroad. The experiment was conducted in 4x4 Factorial Randomized block design with 4 Genotypes of Tomato obtained from different sources, were each genotype replicated thrice in different planting densities. From the present experimental findings it is found that the genotype G4 (Pusa Ruby) followed by G3 (Arka Samrat) and planting density D3 (0.5 m) followed by D2 (0.4 m) was found suitable in terms of growth, quality and yield per plant. In terms of yield/plot and per hectare, planting density D1 (0.2 m) was best due to more number of plants per plot and per hectare area. In terms of economics maximum gross, net return and cost benefit ratio was recorded in genotype G3 (Pusa Ruby) and minimum in G1 (AVTO - 1706).

Keywords: tomato, genotypes, planting density, growth and yield

Introduction
Tomato (Solanum lycopersicum L.) Wettst., (2n = 2x = 24) is one of the most popular and widely grown vegetable crops of the world next to potato. The genus Solanum consists of annual or short lived perennial herbaceous, typical day neutral plant and warm season crops. Tomato is reasonably susceptible to frost as well as high temperature but it is grown in a variety of climatic conditions. Tomato production is affected with various factors like insects, diseases, low yields, crop failures, heat complexes and salinity that need systematic breeding effort. Considering the importance of tomato as a potential vegetable both as domestic consumption as well as export market, it is important to increase its productivity along with desirable attributes through genetic manipulation (Iregna Tasisa et al., 2011). In this context it is necessary to identify plant characters or traits important to the development programme. The present research is conducted to assess the genotypes for growth, yield and quality components with different planting densities. Yield is a complex character controlled by a large number of contributing characters and their interactions. A study of genotypes with planting density between different growth and yield characters provides an idea of association that could be effectively exploited to formulate selection strategies for improving yield components. It would be desirable to consider the relative magnitude of association of various characters with yield, therefore proper understanding of the genotypes in different planting density helps in identifying the best genotypes with best suited density for benefiting the farmers.

Materials and Methods
The present Experiment was conducted in 4x4 Factorial Randomized Block Design (FRBD), with four genotypes i.e. (AVTO – 1706, AVTO – 1707, Arka Samrat and Pusa Ruby) of tomato in four planting densities i.e. (0.2, 0.3, 0.4 and 0.5 m) total 16 treatments, replicated thrice with, in the Research field, Department of Horticulture, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj during January to May, 2020.
Climatic condition in the experimental site
The area of Prayagraj district comes under subtropical belt in the south east of Uttar Pradesh, which experience extremely hot summer and fairly cold winter. The maximum temperature of the location reaches up to 46 °C-48 °C and seldom falls as low as 4 °C-5 °C. The relative humidity ranges between 20 to 94%. The average rainfall in this area is around 1013.4 mm annually. However, occasional precipitation is also not uncommon during winter months.

Results and Discussion
The present investigation entitled “Evaluation of Tomato (Solanum lycopersicum L.) Genotypes for growth, yield and quality traits at different planting density” was carried out during January to May, 2020 in Research Field, Department of Horticulture, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (U.P.) India. The results of the present investigation, regarding the evaluation of genotypes of Tomato for for growth, yield and quality parameters in different planting densities, have been discussed and interpreted in the light of previous research work done in India and abroad.

The results of the experiment are summarized below.

A. Growth Parameters
The data on growth parameters are given in table 1 it is clear from the table that all the treatment differed significantly for all growth parameters. Significantly maximum Plant height 60.15, was noticed in the interaction effect of D4G1(0.5 m x Pusa Ruby), followed by D4G4 (0.4 m x Pusa Ruby) with 55.90 cm, whereas minimum plant height 43.21 cm, was recorded in, D6G2 (0.2 m x AVTO - 1707). Similarly in for Number of branch maximum 12.90 branch, was recorded in D6G4 (0.5 m x Pusa Ruby), followed by D6G3 (0.5 m x Arka Samrat) with 11.44 branch, whereas minimum number of branch 8.12, was observed in, D2G1 (0.2 m x AVTO - 1706). Maximum plant height and Number of branches in wider spacing is may be due to the availability of more space for plant growth, better light distribution and utilization pattern due to wider spacing. Significantly increase plant height with increased plant spacing previously also reported by Singh et al. (2005) and Bhattacharai et al. (2015) in Tomato.

In earliness parameter i.e. Days to first flowering significantly, minimum days for first flowering 45.32 days, was recorded in interaction effect D6G3 (0.5 m x Arka Samrat), followed by D6G1 (0.5 m x AVTO - 1706) with 45.42 days, whereas maximum days for first flowering 58.51 days, was observed in, D4G1 (0.2 m x Pusa ruby). Similarly in days to 50% flowering, minimum 50.43 days, was noticed in interaction effect D6G3 (0.5 m x Arka Samrat), followed by D6G1 (0.5 m x AVTO - 1706) with 51.60 days, whereas maximum 63.64 days, was observed in, D6G4 (0.2 m x Pusa ruby).

The early flowering in wider spacing is may be attributed to better light distribution and utilization pattern due to wider spacing Ambroszczyk et al. (2008) and availability of more nutrients per unit area Jiang et al. (2013) in Tomato. In early fruit picking for minimum days for first fruit picking 65.46 days, was recorded in interaction effect D6G1 (0.5 m x Arka Samrat), followed by D6G2 (0.5 m x AVTO - 1706) with 67.01 days, whereas maximum 80.50 days, was observed in, D6G2 (0.2 m x Pusa ruby). The early fruit picking in wider spacing is may be attributed to better light distribution and utilization pattern due to wider spacing Ambroszczyk et al. (2008) and availability of more nutrients per unit area Jiang et al. (2013) in Tomato.

Yield Parameters
The data on growth parameters are given in table 2 and 3 it is clear from the table that all the treatment differed significantly for all yield parameters. Significantly maximum polar diameter 5.57 cm, was recorded in interaction effect D4G1 (0.5 m x Pusa ruby), followed by D4G1 (0.4 m x Pusa ruby) with 5.42 cm, whereas minimum diameter 4.22 cm, was observed in, D6G1 (0.2 m x Arka Samrat). Similarly in maximum radial diameter 5.99 cm, was recorded in interaction effect D6G1 (0.5 m x Pusa ruby), followed by D6G3 (0.4 m x Pusa ruby) with 5.87 cm, whereas minimum radial diameter 4.62 cm, was observed in, D6G1 (0.2 m x Arka Samrat) and in terms of fruit girth, maximum 14.50 cm, was recorded in interaction effect D6G1 (0.5 m x Pusa ruby), followed by D6G2 (0.4 m x Pusa ruby) with 13.59 cm, whereas minimum fruit girth 10.62 cm, was observed in, D2G1 (0.2 m x AVTO - 1707). Maximum polar, radial diameter and fruit girth in wider spacing, is might be attributed to the genetic makeup of varieties that primarily dictate the characters and do not influenced by the environment. Similar results were obtained by Dasgan and Abak (2003) in bell peppers and Bhahadur and Singh (2005) in Tomato.

Interaction effect shows that statistically significant variation for average fruit weight, maximum fruit weight 82.06 g, was recorded in interaction effect D4G1 (0.5 m x Pusa ruby), followed by D4G4 (0.4 m x Pusa ruby) with 76.83 g, whereas minimum fruit weight 57.05 g, was observed in, D6G1 (0.2 m x AVTO - 1706). The similar findings of increase average fruit weight and yield per plant with wider spacing was reported by Biradar et al. (2014) in capsicum, Harish and Patil (2011) and Sharma et al. (2011) in tomato.

In terms of number of fruits, maximum significant number of fruits per cluster 5.51 fruits, was noticed in interaction effect, D4G1 (0.5 m x Pusa ruby), followed by D4G4 (0.4 m x Pusa Ruby) with 5.08 fruit, whereas minimum 3.38 fruits, was recorded in interaction effect D2G1 (0.2 m x AVTO - 1706). This might be due to more photosynthesis as it produces more plant height and more fruit setting at wider spacing. Similar findings have been reported by Mantur and Patil (2008) with 5.08 fruit, whereas minimum 3.38 fruits, was recorded in interaction effect D2G1 (0.2 m x AVTO - 1706). The similar findings of increase average fruit weight and yield per plant with wider spacing was reported by Biradar et al. (2014) in capsicum, Harish and Patil (2011) and Sharma et al. (2011) in tomato.

In fruit yield/plant maximum significant yield 2.10 kg, was noticed in interaction effect D6G1 (0.5 m x Pusa ruby), followed by D6G4 (0.4 m x Pusa Ruby) with 1.90 kg, whereas minimum 1.01 kg, was recorded in, D6G1 (0.2 m x AVTO - 1706). Similarly in yield per plot maximum 90.20 kg, was noticed in interaction effect D4G1 (0.2 m x Pusa Ruby), followed by D6G4 (0.2 m x Arka Samrat) with 65.45 kg, whereas minimum yield per plot 30.14 kg, was observed in, D6G1 (0.5 m x AVTO - 1706). Similar trends in yield per hectare was noticed with
maximum yield 95.83 ton, was noticed in interaction effect, D1G4 (0.2 m x Pusa ruby), followed by D1G3 (0.2 m x Arka Samrat) with 69.53 ton, whereas minimum yield per hectare 32.02 ton, was observed in, D4G1 (0.5 m x AVTO - 1706). This might be due to wider plant spacing found effective in utilization of land, nutrients and sunlight that has resulted in good quality of fruits and yield. The results are in conformity with findings of Dasgan and Abak (2003) [6] in sweet pepper and Mantur and Patil (2008) [11], Campillo et al. (2012) [5], Klaring and Krumbein (2013) [9] and Kumari et al. (2015) [10] in Tomato.

B. Economics (Benefit: cost ratio)
The data on Economics (Benefit: cost ratio) are given in table 4. It is clear from the table that all the treatment differed significantly for all in gross, net return and benefit: cost ratio. In terms of Gross Return maximum Rs. 766640.00, Net Return Rs. 647430.00 and Cost Benefit Ratio 6.49 was recorded in Interaction effect G4D1 (Pusa Ruby) Followed by G3D1 (Arka Samrat) with Gross Return Rs. 5566240.00, Net Return Rs. 434530.00 and Cost Benefit Ratio 4.57 and minimum Gross Return Rs. 256160.00, Net Return Rs. 132450.00 and Cost Benefit Ratio 2.07 was recorded in G1D4 (AVTO - 1706).

Table 1: Plant Height, Number of primary branches, days to first flowering, days to 50% flowering and polar diameter of different genotypes of Tomato in different planting density

Genotypes	Plant height 120 DAS	Number of branches 120 DAS	Days to first flowering	Days to 50% flowering
	Planting density			
D1	D2	D3	D4	
G1	43.81	45.73	46.17	48.74
G2	43.21	43.47	44.42	47.44
G3	44.86	46.92	48.84	50.92
G4	50.62	52.53	55.90	60.15
Mean D	45.62	47.16	48.83	51.81
Factors	F-Test	SE(d)	C.D.	
Factor(G)	S	0.273	0.561	
Factor(D)	S	0.273	0.561	
Factor(G X D)	S	0.547	1.122	

Genotypes	Planting density			
D1	D2	D3	D4	
G1	8.50	8.12	8.48	9.66
G2	8.48	9.01	9.27	10.29
G3	9.28	10.11	10.72	11.44
G4	9.86	10.85	11.35	12.90
Mean D	9.03	9.52	9.95	11.07
Factors	F-Test	SE(d)	C.D.	
Factor(G)	S	0.086	0.176	
Factor(D)	S	0.086	0.176	
Factor(G X D)	S	0.172	0.352	

Genotypes	Planting density			
D1	D2	D3	D4	
G1	49.61	48.29	47.11	45.42
G2	55.35	53.92	52.27	50.42
G3	50.58	49.44	47.79	45.32
G4	58.51	56.94	55.53	53.41
Mean D	53.51	52.14	50.67	48.64
Factors	F-Test	SE(d)	C.D.	
Factor(G)	S	0.665	1.365	
Factor(D)	S	0.665	1.365	
Factor(G X D)	S	1.330	N/A	

Genotypes	Planting density			
D1	D2	D3	D4	
G1	57.02	54.87	53.22	51.60
G2	61.81	60.09	58.31	56.37
G3	56.23	54.92	53.01	50.43
G4	63.64	62.58	61.31	58.55
Mean D	59.67	58.11	56.46	54.23
Factors	F-Test	SE(d)	C.D.	
Factor(G)	S	0.668	1.370	
Factor(D)	S	0.668	1.370	
Factor(G X D)	NS	1.335	N/A	
Table 2: Polar diameter, Radial diameter, Fruit girth, avg. fruit weight, number of fruits/cluster and number of fruits/plant of different genotypes of Tomato in different planting density

Genotypes	Days to first fruit picking	Mean G	Planting density		
	D1	D2	D3	D4	
G1	75.25	72.29	69.37	67.01	70.98
G2	79.47	76.57	73.79	71.40	75.30
G3	72.77	71.14	68.66	65.46	69.50
G4	80.50	78.46	76.02	73.41	77.35
Mean D	76.99	74.61	72.22	69.32	

Factors	F-Test	SE(d)	C.D.
Factor(G)	S	0.667	1.369
Factor(D)	S	0.667	1.369
Factor(G X D)	NS	1.334	N/A

Genotypes	Polar diameter (cm)	Mean G	Planting density		
	D1	D2	D3	D4	
G1	5.01	5.17	5.22	5.36	5.19
G2	4.99	5.14	5.23	5.24	5.15
G3	4.22	4.43	4.56	4.88	4.52
G4	5.11	5.13	5.42	5.57	5.30
Mean D	4.83	4.96	5.10	5.26	

Factors	F-Test	SE(d)	C.D.
Factor(G)	S	0.058	0.120
Factor(D)	S	0.058	0.120
Factor(G X D)	NS	0.117	N/A

Genotypes	Radial diameter (cm)	Mean G	Planting density		
	D1	D2	D3	D4	
G1	5.33	5.41	5.59	5.75	5.52
G2	5.12	5.18	5.37	5.48	5.28
G3	4.62	4.06	4.98	5.16	4.95
G4	5.26	5.30	5.87	5.99	5.65
Mean D	5.08	5.28	5.45	5.59	

Factors	F-Test	SE(d)	C.D.
Factor(G)	S	0.075	0.154
Factor(D)	S	0.075	0.154
Factor(G X D)	NS	0.150	N/A

Genotypes	Fruit girth (cm)	Mean G	Planting density		
	D1	D2	D3	D4	
G1	11.97	12.17	12.47	13.33	12.48
G2	10.62	11.63	12.10	12.61	11.74
G3	11.08	11.10	11.62	12.27	11.51
G4	12.22	12.71	13.59	14.50	13.25
Mean D	11.47	11.90	12.44	13.17	

Factors	F-Test	SE(d)	C.D.
Factor(G)	S	0.122	0.251
Factor(D)	S	0.122	0.251
Factor(G X D)	S	0.244	0.502

Genotypes	Avg. fruit weight (g)	Mean G	Planting density		
	D1	D2	D3	D4	
G1	57.05	59.74	63.88	67.53	62.05
G2	57.34	61.99	66.41	71.40	64.28
G3	59.97	64.02	68.87	74.57	66.85
G4	69.01	72.72	76.83	82.06	75.15
Mean D	60.84	64.61	68.99	73.89	

Factors	F-Test	SE(d)	C.D.
Factor(G)	S	0.199	0.409
Factor(D)	S	0.199	0.409
Factor(G X D)	S	0.399	0.818
Table 3: Yield/plot (kg), yield/plot and Yield/ha of different genotypes of Tomato in different planting density

Genotypes	Planting density	Mean G					
	D1	D2	D3	D4	D2	D3	D4
G1	1.01	1.14	1.20	1.30	1.19		
G2	1.06	1.18	1.20	1.50	1.25		
G3	1.19	1.31	1.40	1.60	1.39		
G4	1.64	1.68	1.90	2.10	1.85		
Mean D	1.22	1.32	1.40	1.65			

Factors
- F-Test SE(d) C.D.
- Factor(G) S 0.022 0.045
- Factor(D) S 0.022 0.045
- Factor(G X D) S 0.044 0.090

Table 4: Total soluble solid, Ascorbic acid and benefit cost ratio of different genotypes of Tomato in different planting density

Genotypes	Total Soluble Solids (°Brix)	Planting density	Mean G				
	D1	D2	D3	D4	D2	D3	D4
G1	4.73	4.54	4.84	5.06	4.79		
G2	5.26	5.24	5.31	5.44	5.31		
G3	5.91	5.51	5.78	5.87	5.76		
G4	4.16	4.16	4.22	4.32	4.21		
Mean D	5.01	4.86	5.03	5.17			

Factors
- F-Test SE(d) C.D.
- Factor(G) S 0.103 0.212
- Factor(D) S 0.103 0.212
- Factor(G X D) NS 0.206 N/A

Table 5: Ascorbic acid (mg/100g) of different genotypes of Tomato in different planting density

Genotypes	Ascorbic acid (mg/100g)	Planting density	Mean G				
	D1	D2	D3	D4	D2	D3	D4
G1	20.19	21.59	22.86	21.48	21.53		
G2	20.34	21.57	22.52	24.07	22.12		
G3	23.74	24.59	24.64	25.71	24.67		
G4	24.14	25.87	24.91	26.22	25.28		
Mean D	22.10	23.40	23.73	24.37			

Factors
- F-Test SE(d) C.D.
- Factor(G) S 1.215 2.482
- Factor(D) S 1.215 2.482
- Factor(G X D) NS 2.430 N/A

Table 6: Yield/ha (tonnes) of different genotypes of Tomato in different planting density

Genotypes	Yield/ha (tonnes)	Planting density	Mean G				
	D1	D2	D3	D4	D2	D3	D4
G1	59.02	42.39	37.48	32.02	42.72		
G2	61.93	43.87	52.08	35.06	48.23		
G3	69.53	48.71	43.13	37.63	49.75		
G4	95.83	62.47	57.12	50.95	66.59		
Mean D	71.57	49.36	47.45	38.91			

Factors
- F-Test SE(d) C.D.
- Factor(G) S 0.771 1.583
- Factor(D) S 0.771 1.583
- Factor(G X D) S 1.543 3.166
Conclusion
From the present experimental findings it is concluded that the genotype G1 (Pusa Ruby) followed by G3 (Arka Samrat) and planting density D4 (0.5 m) followed by D3 (0.4 m) was found suitable in terms of growth, quality and yield per plant. In terms of yield/plot and per hectare, planting density D1 (0.2 m) was best due to more number of plants per plot and per hectare area. In terms of economics maximum gross, net return and cost benefit ratio was recorded in genotype G1 (Pusa Ruby) and minimum in G1 (AVTO - 1706).

References
1. Ambroszczyk A, Cebula S, Sekara A. The effect of plant pruning on the light conditions and vegetative development of eggplant (Solanum melongena L.) in greenhouse cultivation. Vegetable Crops Research Bulletin 2008;68:57-70.
2. Bahadur A, Singh KP. Optimization of spacing and drip irrigation scheduling in indeterminate tomato (Lycopersicon esculentum Mill.). Indian journal of Agricultural Sciences 2005;75(9):563-565.
3. Biradar MS, Patil AA, Mantur SM, Mannikeri IM. Influence of growing environment and planting geometry on yield and yield attributes of capsicum (Capsicum annuum L.var. grossum Sendt.) genotypes. Karnataka Journal of Agriculture Science 2014;27(2):202-207.
4. Bhattarai P, Kaushik RA, Ameta KD, Jain HK, Kaushik MK, Sharma FL. Effect of plant geometry and fertigation on growth and yield of cherry tomato (Solanum lycopersicon var. cerasiforme) under zero energy polyhouse conditions. Indian Journal of Horticulture 2015;72(2):297-301.
5. Campillo C, Fortes R, Prieto MH. Solar radiation effect on crop production, Prof. Elisha B. Babatunde (Ed.), ISBN: 978-953-51-0384-4, In Tech, Available from: http://www.intechopen.com/ books/solar-radiation/solar-radiation-effect-on-crop-production 2012.
6. Dasgan HY, Abak K. Effects of plant density and number of shoots on yield and fruit characteristics of peppers grown in glasshouses. Turkey Journal of Agriculture 2003;27(3):29-35.
7. Harish S, Patil BNK. Investigations on growing condition, spacing and calcium sprays on seed yield, quality and storability of tomato (Solanum lycopersicum L.) seeds. M.Sc. Thesis, UAS, Dharwad 2011.
8. Jiang W, Wang K, Wu Q, Dong S, Liu P, Zhang J. Effects of narrow plant spacing on root distribution and physiological nitrogen use efficiency in summer maize. The Crop journal 2013;1(1):77-83.
9. Krumbein A, Behera TK. The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. Journal of Agronomy and Crop Science 2013;199(5):351-359.
10. Kumari A, Joshi PK, Mohsin M, Arya MC, Ahmed Z. Studies on effect of spacing and nitrogen on false flax (Camelina sativa cv. Calena) under Central-Western Himalayas of India. The Bioscan 2015;10(3):1321-1326.
11. Mantur SM, Patil SR. Influence of spacing and pruning on yield of tomato grown under shade house. Karnataka Journal of Agricultural Science 2008;21(1):97-98.
12. Meena OP, Bahadur V. Assessment of genetic variability, heritability and genetic advance among tomato (Lycopersicum esculentum L.) germplasm. The Bioscan 2014;9(4):1619-1623.
13. Muhammad A, Singh A. Intra- row spacing and pruning effect on fresh tomato yield in Sudan Savanna of Nigeria. Journal of Plant Science 2007;2(2):153-161.
14. Rajendra BN, Patil SR, Swamy KM, Anasubai GH. Impact of different spacing on growth and yield of indeterminate tomato grown under shade house. The Asian Journal of Horticulture 2013;8(1):377-378.
15. Sharma A, Kaushik RA, Sarolia DK, Sharma RP. Response of cultivars, plant geometry and methods of fertilizer application on parthenocarpic cucumber (Cucumis sativus L.) under zero energy polyhouse condition during rainy season. Vegetable Science 2011;37(2):184-186.
16. Singh AK, Gupta MJ, Srivastava R, Behera TK. Effect of NPK levels on growth and yield of tomato hybrids under multi-span polyhouse. Indian Journal of Horticulture 2005;62(1):91-93.