On iterative reconstruction in the nonlinearized polarization tomography

R G Novikov

CNRS (UMR 7641), Centre de Mathématique Appliquées, Ecole Polytechnique, 91128 Palaiseau, France

E-mail: novikov@cmapx.polytechnique.fr

Received 5 May 2009, in final form 10 September 2009
Published 29 October 2009

Abstract

We give a uniqueness theorem and a reconstruction algorithm for the nonlinearized problem of finding the dielectric anisotropy \(f \) of the medium from non-overdetermined polarization tomography data. We assume that the medium has uniform background parameters and that the anisotropic (dielectric permeability) perturbation is described by symmetric and sufficiently small matrix function \(f \). On a pure mathematical level, this paper contributes to the theory of non-Abelian Radon transforms and to iterative methods of inverse scattering.

1. Introduction

We consider the system

\[
\theta \partial_x \eta = \pi_\theta f(x) \eta, \quad x \in \mathbb{R}^3, \quad \theta \in S^2, \tag{1.1}
\]

where

\[
\theta \partial_x = \sum_{j=1}^{3} \theta_j \frac{\partial}{\partial x_j}, \tag{1.2}
\]

\(\eta \) at fixed \(\theta \) is a function on \(\mathbb{R}^3 \) with values in \(Z_\theta \), \(Z_\theta = \{ z \in \mathbb{C}^3 : z\theta = 0 \} \), \(\pi_\theta \) is the orthogonal projector on \(Z_\theta \).

\(f \) is a sufficiently regular function on \(\mathbb{R}^3 \) with values in \(\mathcal{M}_{3,3} \) (that is in \(3 \times 3 \) complex matrices) with sufficient decay at infinity,

In (1.1), the unit vector \(\theta \) is considered as a spectral parameter.
System (1.1) arises in the electromagnetic polarization tomography and is a system of differential equations for the polarization vector function \(\eta \) in a medium with zero conductivity, unit magnetic permeability and appropriately small anisotropic perturbation of some uniform dielectric permeability. This anisotropic perturbation of the dielectric permeability tensor corresponds to the matrix function \(f \) of (1.1). In addition, by some physical arguments, \(f \) must be skew-Hermition, \(f_{ij} = -\bar{f}_{ji} \). For more information on physics of the electromagnetic polarization tomography see [Sh1, NS, Sh3] and references therein (and, in particular, [KO] and [A]).

Let
\[
\omega \in \mathbb{S}^2, \quad \theta \in \mathbb{S}^1_\omega, \quad \theta^\perp = \omega \times \theta, \quad \mu_1 = \eta \omega, \quad \mu_2 = \eta \theta^\perp \quad \text{for} \quad \eta \in \mathbb{Z}_\theta,
\]
where
\[
\mathbb{S}^1_\omega = \{ \theta \in \mathbb{S}^2 : \theta \omega = 0 \}, \quad \times \text{ denotes the vector product, } Z_\theta \text{ is defined by (1.4).}
\]
From (1.1)–(1.9) it follows that
\[
\theta \partial_x \mu = F(x, \theta, \omega) \mu, \quad x \in \mathbb{R}^3, \quad \theta \in \mathbb{S}^1_\omega,
\]
\[
F(x, \theta, \omega) = \left(\begin{array}{cc} \omega f(x) \omega & \omega f(x) \theta^\perp \\ \theta^\perp f(x) \omega & \theta^\perp f(x) \theta^\perp \end{array} \right), \quad \xi f(x) \xi = \sum_{1 \leq i,j \leq 3} f_{ij}(x) \xi_i \xi_j,
\]
where \(\mu \) is related with \(\eta \) of (1.1) by (1.8) and is a \(\mathbb{C}^2 \)-valued function on \(\mathbb{R}^3 \) for fixed \(\omega \) and \(\theta \).

We consider also (1.10) for \(\mu \) taking its values in \(\mathcal{M}_{2,2} \) (that is in \(2 \times 2 \) complex matrices). Let \(\mu^+ \) denote the solution of (1.10) such that
\[
\lim_{s \to -\infty} \mu^+(x + s \theta, \theta, \omega) = Id \quad \text{for} \quad x \in \mathbb{R}^3,
\]
where \(Id \) is the \(2 \times 2 \) identity matrix. Let
\[
S(x, \theta, \omega) = \lim_{s \to +\infty} \mu^+(x + s \theta, \theta, \omega), \quad (x, \theta) \in \Gamma_\omega,
\]
where
\[
\Gamma_\omega = \{ (x, \theta) : x \in X_\theta, \theta \in \mathbb{S}^1_\omega \}, \quad \omega \in \mathbb{S}^2, \quad X_\theta = \text{Re} Z_\theta, \quad \theta \in \mathbb{S}^2,
\]
where \(\mathbb{S}^1_\omega \) is defined by (1.9), \(Z_\theta \) is defined by (1.4). In addition, \(\mu^+ \) and \(S \) are well defined due to (1.5).

Note that
\[
\Gamma_\omega \subset T\mathbb{S}^2, \quad \omega \in \mathbb{S}^2,
\]
where
\[
T\mathbb{S}^{d-1} = \{ (x, \theta) : x \in \mathbb{R}^d, \theta \in \mathbb{S}^{d-1}, \theta \omega = 0 \}.
\]
In addition, we interpret \(T\mathbb{S}^{d-1} \) as the set of all rays in \(\mathbb{R}^d \). As a ray \(\gamma \) we understand a straight line with fixed orientation. If \(\gamma = (x, \theta) \in T\mathbb{S}^{d-1} \), then \(\gamma = \{ y \in \mathbb{R}^d : y = x + s \theta, s \in \mathbb{R} \} \) (modulo orientation) and \(\theta \) gives the orientation of \(\gamma \). Note also that
\[
\Gamma_\omega \approx \mathbb{R}^2 \times \mathbb{S}^1, \quad (1.16a)
\]
or, more precisely,

\[(x, \theta) \in \Gamma_\omega \Leftrightarrow x = \xi_1 \theta^1 + \xi_2 \omega, \quad \xi = (\xi_1, \xi_2) \in \mathbb{R}^2, \quad \theta \in S^1_\omega \approx S^1, \quad (1.16b)\]

where \(\omega \in S^2, \theta^1 = \omega \times \theta\). In addition, we consider \((\xi, \theta) \in \mathbb{R}^2 \times S^1\) as coordinates on \(\Gamma_\omega\).

One can see that \(S\) of (1.12) is a matrix function on

\[\Sigma = \{(\gamma, \omega) : \gamma \in \Gamma_\omega, \omega \in S^2\} = \{(\gamma, \omega) : \gamma = (x, \theta) \in T S^2, \omega \in S^1_\theta\}, \quad (1.17)\]

where \(S^1_\theta\) is defined as in (1.9). On the other hand, one can show that

\[S(x, \theta, \omega)\] uniquely determines \(S(x, \theta, \cdot)\) on \(S^1_\theta\) and,

\[(1.18)\]

as a corollary, \(S\) can be considered as a matrix-function on \(T S^2\).

The matrix function \(S\) can be considered as a non-Abelian ray transform of \(f\). See [MZ, V, Sh2, N, FU, E, M, DP, P] and references therein for some other non-Abelian ray transforms.

In the present work, we say that \(S\) of (1.11)–(1.13) is the polarization ray transform of \(f\).

Using the terminology of the scattering theory one can also say that \(S\) is the ‘scattering’ matrix for system (1.10).

The basic problem of the polarization tomography in the framework of the model described by (1.1) and (1.10) consists in finding \(f\) on \(\mathbb{R}^3\) from \(S\) on \(\Lambda\), where \(\Lambda\) is some appropriate subset of \(\Sigma\) of (1.17). It is especially natural to consider this problem for the case when \(\dim \Lambda = 3\).

From results of [NS], it follows that there is a non-uniqueness in this problem if \(f\) is not symmetric even if \(S\) is given on \(\Lambda = \Sigma\). Results of [NS] also imply a local uniqueness theorem (up to a natural obstruction if \(f\) is not symmetric) for the case when \(S\) is given on \(\Sigma\) (or on \(T S^2\) in the sense of (1.18)).

In the present work, we consider the following inverse problem for equations (1.1) and (1.10).

Problem 1.1. Find symmetric \(f, f_{ij} = f_{ji}\), from \(S\) on \(\Lambda\) (or from partial information about \(S\) on \(\Lambda\)), where

\[\Lambda = \{(\gamma, \omega) : \gamma \in \Gamma_\omega, \omega \in \{\omega^1, \ldots, \omega^k\}\}, \quad (1.19)\]

where \(\omega^1, \ldots, \omega^k\) are some fixed points of \(S^2\).

One can see that problem 1.1 is a version of the aforementioned basic problem of the polarization tomography with \(\dim \Lambda = 3\); see definitions (1.13), (1.17) and (1.19).

The main results of the present work consist in a uniqueness theorem and a reconstruction algorithm for nonlinearized problem 1.1 with sufficiently small \(f\), where only the element \(S_{11}\) of \(S = (S_{ij})\) on \(\Lambda\) is used as the data and where

\[k = 6, \quad \omega^1 = e_1, \quad \omega^2 = e_2, \quad \omega^3 = e_3, \quad \omega^4 = (e_1 + e_2)/\sqrt{2}, \quad \omega^5 = (e_1 + e_3)/\sqrt{2}, \quad \omega^6 = (e_2 + e_3)/\sqrt{2}, \quad (1.20)\]

where \(e_1, e_2, e_3\) is the basis in \(\mathbb{R}^3\). See sections 2, 3 and, in particular, theorem 3.1.

One can see that this reconstruction is non-overdetermined: we reconstruct six functions \(f_{ij}, 1 \leq i \leq j \leq 3\), on \(\mathbb{R}^3\) from six functions \(S_{11}(\cdot, \omega), \omega \in \{\omega^1, \ldots, \omega^6\}\), of three variables.

Our reconstruction is iterative and its first approximation more or less coincides with the linearized polarization tomography reconstruction of section 5.1 of [Sh1]. In addition, we give estimates on the reconstruction error \(f - f^*\) for the approximation \(f^n\) with number \(n \in \mathbb{N}\); see theorem 3.1. To our knowledge even \(f - f^1\) was not estimated rigorously in the literature.
The main results of the present work are presented in detail in sections 2 and 3. Some possible development of the present work and some open questions are mentioned in section 6.

2. Reconstruction algorithm

Consider the classical ray transform I defined by the formula

$$I f(\gamma) = \int_{\gamma} f(x + s\theta) \, ds, \quad \gamma = (x,\theta) \in T\mathbb{S}^{d-1},$$

(2.1)

for any complex-valued sufficiently regular function f on \mathbb{R}^d with sufficient decay at infinity, where $T\mathbb{S}^{d-1}$ is defined by (1.15) and where $d = 2$ or $d = 3$.

We use the following Radon-type inversion formula for I in dimension $d = 2$:

$$f(x) = \frac{1}{4\pi} \int_{\mathbb{S}^1} h(s,\theta) \, ds, \quad h(s,\theta) = \frac{d}{ds} h(s,\theta),$$

(2.2)

where $g(s,\theta) = I f(s\theta,\theta), x = (x_1, x_2) \in \mathbb{R}^2, \theta = (\theta_1, \theta_2) \in \mathbb{S}^1, \theta_1 = (-\theta_2, \theta_1), s \in \mathbb{R}, \, ds$ is the standard element of arc length on \mathbb{S}^1.

We use the following slice-by-slice reconstruction of f on \mathbb{R}^3 from $g = I f$ on Γ_ω of (1.13) for fixed $\omega \in \mathbb{S}^2$:

$$g \mid_{T\mathbb{S}^1(Y)} \rightarrow f \mid_Y$$

(2.3a)

for each two-dimensional plane Y of the form

$$Y = X(\mathbb{S}^1_\omega) + y, \quad y \in X^\perp(\mathbb{S}^1_\omega),$$

(2.3b)

where \mathbb{S}^1_ω is defined by (1.9), $X(\mathbb{S}^1_\omega)$ is the linear span of \mathbb{S}^1_ω in \mathbb{R}^3, $X^\perp(\mathbb{S}^1_\omega)$ is the orthogonal complement of $X(\mathbb{S}^1_\omega)$ in \mathbb{R}^3, $T\mathbb{S}^1(Y)$ is the set of all oriented straight lines lying in Y. In addition,

$$\Gamma_\omega = \bigcup_{\gamma \in X^\perp(\mathbb{S}^1_\omega)} T\mathbb{S}^1(X(\mathbb{S}^1_\omega) + y).$$

(2.4)

Consider the three-dimensional transverse ray transformation J defined by the formula (see section 5.1 of [Sh1])

$$J f(\gamma,\omega) = I (\omega f \omega)(\gamma) = \int_{\gamma} \omega(\gamma) f(x + s\theta) \omega(\gamma) ds, \quad (\gamma,\omega) \in \Sigma, \quad \gamma = (x,\theta),$$

(2.5)

for any $\mathcal{M}_{3,3}$-valued sufficiently regular function f on \mathbb{R}^3 with sufficient decay at infinity, where $\omega f \omega$ is defined as in (1.10), Σ is defined by (1.17).

We use the following reconstruction of symmetric f on \mathbb{R}^3 from $J f$ on Λ of (1.19) for $\omega^1, \ldots, \omega^\mu$ given by (1.20):

$$f_{jj} = I^{\omega^j}_{\omega^j} g_{\omega^j}, \quad j = 1, 2, 3,$$

$$f_{12} = I^{\omega^1}_{\omega^2} g_{\omega^2} - \frac{1}{2} (f_{11} + f_{22}),$$

$$f_{13} = I^{\omega^1}_{\omega^3} g_{\omega^3} - \frac{1}{2} (f_{11} + f_{33}),$$

$$f_{23} = I^{\omega^2}_{\omega^3} g_{\omega^3} - \frac{1}{2} (f_{22} + f_{33}),$$

(2.6)

where $g_{\omega^j} = J f \mid_{\Gamma_\omega}$ and $I^{\omega^j}_{\omega^j}$ denotes the slice-by-slice reconstruction via inversion formulae (2.2) and (2.3) for I from data on Γ_ω.

4
Now we are ready to present our iterative reconstruction of sufficiently small, symmetric and compactly supported \(f \) from the element \(S_{11} \) of \(S = (S_{ij}) \) on \(\Lambda \), where \(S \) is defined by (1.12), \(\Lambda \) is defined by (1.19) and (1.20).

Thus, in addition to (1.5), we assume that

\[
\begin{align*}
&f \text{ is symmetric, } \quad f_{ij} = f_{ji}, \\
&f(x) \equiv 0 \quad \text{for } |x| \geq r_0, \quad (2.7) \\
&f \text{ is sufficiently small.}
\end{align*}
\]

Let

\[
\begin{align*}
\Delta^0 &= (S_{11} - 1)|_{\Lambda}, \\
\quad f^1 &= \chi J^{-1}_\Lambda \Delta^0,
\end{align*}
\]

where \(J_\Lambda^{-1} \) denotes the reconstruction via inversion formulae (2.6) for \(J \) from data on \(\Lambda \), \(\chi \) denotes the multiplication by smooth \(\chi \) such that

\[
\begin{align*}
\chi(x) &\equiv 1 \quad \text{for } |x| \leq r_0, \\
\chi(x) &\equiv 0 \quad \text{for } |x| \geq r_1,
\end{align*}
\]

where \(r_0 \) is the number of (2.7), \(r_1 > r_0 \).

In our iterative reconstruction, \(f^1 \) is the first approximation to \(f \).

From the approximation \(f^n \) with number \(n \), the approximation \(f^{n+1} \) with number \(n+1 \) is constructed as follows:

(1) we find the element \(\mu^+_1 \) of \(\mu^+ = (\mu^+_{ij}) \) on

\[
V = \{(x, \theta, \omega) : x \in \mathbb{R}^3, \theta \in S^1_{\omega}, \omega \in \{\omega^1, \ldots, \omega^6\}\},
\]

where \(\mu^+ \) satisfies (1.10) and (1.11) with \(f^n \) in place of \(f \) in (1.10);

(2) we find

\[
S^+_1(x, \theta, \omega) = \lim_{s \to +\infty} \mu^+_1(x + s\theta, \theta, \omega), \quad (x, \theta, \omega) \in \Lambda,
\]

(2.12)

\[
\Delta^e = (S_{11} - S^+_1)|_{\Lambda};
\]

(2.13)

(3) finally, we find

\[
f^{n+1} = \chi(f^n + J^{-1}_\Lambda \Delta^e),
\]

(2.14)

where \(J_\Lambda^{-1} \) and \(\chi \) are the same as in (2.9).

Note that in (2.9) and (2.14) we do not assume that \(\Delta^0, \Delta^e \) are in the range of \(J \). However, \(J_\Lambda^{-1} g \) is well defined on the basis of (2.6) for any

\[
g = (g_{\omega^1}, \ldots, g_{\omega^6}), \quad \text{where}
\]

\[
g_{\omega^i} \text{ is a complex-valued sufficiently regular function on } \Gamma_{\omega^i} \text{ with sufficient decay at infinity (see (1.16)) for each } i \in \{1, \ldots, 6\}.
\]

(2.15)
3. Convergence

We consider
\[\hat{L}^{\infty, \sigma} (\mathbb{R}^3) = \{ u : \hat{u} \in L^{\infty} (\mathbb{R}^3), \| u \|_{L^{\infty, \sigma} (\mathbb{R}^3)} < +\infty \}, \quad \sigma \geq 0, \]
where
\[\hat{u} (p) = \left(\frac{1}{2\pi} \right)^3 \int_{\mathbb{R}^3} e^{ip \cdot x} u(x) \, dx, \quad p \in \mathbb{R}^3, \]
\[\| u \|_{L^{\infty, \sigma} (\mathbb{R}^3)} = \| \hat{u} \|_{L^{\infty, \sigma} (\mathbb{R}^3)}, \]
\[\| \hat{u} \|_{L^{\infty, \sigma} (\mathbb{R}^3)} = ess \sup_{p \in \mathbb{R}^3} (1 + |p|)^\sigma |\hat{u}(p)|. \]

We consider
\[\hat{C}^{\alpha, \sigma} (\mathbb{R}^3) = \{ u : \hat{u} \in C^{[\alpha]} (\mathbb{R}^3), \| u \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} < +\infty \}, \quad \alpha \geq 0, \quad \sigma \geq 0, \]
where \(\hat{u} \) is defined by (3.2), \(C^{[\alpha]} \) denotes \([\alpha]\)-times continuously differentiable functions, \([\alpha]\) is the integer part of \(\alpha \),
\[\| u \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} = \| \hat{u} \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)}, \]
\[\| \hat{u} \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} = \sup_{|J| \leq [\alpha], p \in \mathbb{R}^3} (1 + |p|)^\sigma |\partial^J \hat{u}(p)| \text{ for } \alpha = [\alpha], \]
\[\| \hat{u} \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} = \max(N_1, N_2) \text{ for } \alpha > [\alpha], \]
\[N_1 = \| \hat{u} \|_{\hat{C}^{[\alpha]+1, \sigma} (\mathbb{R}^3)}, \]
\[N_2 = \sup_{|J| = [\alpha], p \in \mathbb{R}^3, p' \in \mathbb{R}^3, |p - p'| \leq 1} (1 + |p'|)^\sigma \frac{|\partial^J \hat{u}(p') - \partial^J \hat{u}(p)|}{|p - p'|^{\alpha-[\alpha]}}. \]

where
\[\partial^J \hat{u}(p) = \frac{\partial^{J_1} \hat{u}(p)}{\partial p_1^{j_1} \partial p_2^{j_2} \partial p_3^{j_3}}, \quad J = (J_1, J_2, J_3) \in (\mathbb{N} \cup 0)^3, \quad |J| = J_1 + J_2 + J_3. \]

In addition, in (3.1)–(3.8) we assume that \(u, \hat{u} \) are \(\mathcal{M}_{n_1, n_2} \)-valued functions, in general, where \(\mathcal{M}_{n_1, n_2} \) is the space of \(n_1 \times n_2 \) matrices with complex elements,
\[|M| = \max_{1 \leq i \leq n_1, 1 \leq j \leq n_2} |M_{ij}| \text{ for } M \in \mathcal{M}_{n_1, n_2}. \]

In addition, in the present work we always have that \(1 \leq n_1 \leq 3, 1 \leq n_2 \leq 3 \).

Lemma 3.1. Let \(u \in \hat{L}^{\infty, \sigma} (\mathbb{R}^3) \), \(v \in \hat{C}^{\alpha, \sigma} (\mathbb{R}^3) \), where \(\alpha \geq 0, \sigma > 3 \). In addition, in general, we assume that \(u \) is \(\mathcal{M}_{n_1, n_2} \)-valued and \(v \) is \(\mathcal{M}_{m_1, m_2} \)-valued, where \(m_2 = n_1 \) or/and \(m_2 = n_1 \) (and where \(1 \leq n_1, n_2, m_1, m_2 \leq 3 \)). Let
\[\text{either } w = uv \text{ for } m_2 = n_1, \]
\[\text{or } w = vu \text{ for } n_2 = m_1. \]

Then for each of the \(w \) of (3.10) the following estimate holds:
\[w \in \hat{C}^{\alpha, \sigma} (\mathbb{R}^3), \]
\[\| w \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} \leq \lambda_1 (\alpha, \sigma) \| v \|_{\hat{C}^{\alpha, \sigma} (\mathbb{R}^3)} \| u \|_{L^{\infty, \sigma} (\mathbb{R}^3)} \]
(3.11)
for some positive $\lambda_1 = \lambda_1(\alpha, \sigma)$.

Lemma 3.1 is proved in section 4.

We consider

$$\hat{L}^{\infty, \sigma}(\Lambda) = \{ g : \hat{g} \in L^\infty(\Lambda), \| g \|_{\hat{L}^{\infty, \sigma}(\Lambda)} < +\infty \}, \quad \sigma \geq 0,$$

(3.12)

where g is complex valued, Λ is defined by (1.19) with $\omega^1, \ldots, \omega^k$ given by (1.20),

$$g = (g_{\omega^1}, \ldots, g_{\omega^k}), \quad \hat{g} = (\hat{g}_{\omega^1}, \ldots, \hat{g}_{\omega^k}),$$

$$\hat{g}_{\omega^i}(p, \theta) = \left(\frac{1}{2\pi}\right)^2 \int_{x_0} e^{i\pi s} g_{\omega^i}(x, \theta) \, dx, \quad (p, \theta) \in \Gamma_{\omega^i}, \quad i = 1, \ldots, k,$$

(3.13)

$$\| \hat{g} \|_{L^{\infty, \sigma}(\Lambda)} = \| \hat{g} \|_{L^{\infty, \sigma}(\Lambda)},$$

$$\| \hat{g} \|_{L^{\infty, \sigma}(\Lambda)} = \max \text{ ess sup}_{i \in \{1, \ldots, k\}} (1 + |p|)^{\sigma} |\hat{g}_{\omega^i}(p, \theta)|,$$

(3.14)

where Γ_{ω^i} and X_0 are defined according to (1.13). Actually, in (3.12) we consider $L^{\infty}(\Lambda)$ as

$$L^{\infty}(\Lambda) = L^{\infty}(\Gamma_{\omega^1}) \oplus \cdots \oplus L^{\infty}(\Gamma_{\omega^k}).$$

(3.15)

We assume that

f is a $\mathcal{M}_{3,3}$ valued function on \mathbb{R}^3,

$f \in \hat{L}^{\infty, \sigma}(\mathbb{R}^3)$ for some $\sigma > 3$,

f is symmetric, $f_{ij} = f_{ji}$,

(3.16)

$$f(x) \equiv 0 \quad \text{for} \quad |x| \geq r_0,$$

$$\chi$$ is a nonnegative real-valued function on \mathbb{R}^3,

$$\chi \in C^m(\mathbb{R}^3) \quad \text{for some} \quad m \in \mathbb{N}, \quad m \geq \sigma,$$

$$\chi(x) \geq \chi(y) \quad \text{if} \quad |y| \geq |x|,$$

(3.17)

$$\chi(x) \equiv 1 \quad \text{for} \quad |x| \leq r_0,$$

$$\chi(x) \equiv 0 \quad \text{for} \quad |x| \geq r_1,$$

where r_0, r_1 are some fixed real numbers, $r_0 < r_1$. Properties (3.16) and (3.17) imply, in particular, that

$$\chi f = f,$$

$$\chi \in \hat{C}^{\alpha, \sigma}(\mathbb{R}^3) \quad \text{for any} \quad \alpha \geq 0.$$

(3.18)

Theorem 3.1. Let f and χ satisfy (3.16) and (3.17). Let

$$\| f \|_{L^{\infty, \sigma}(\mathbb{R}^3)} \leq \varepsilon \leq \varepsilon_0(\alpha, \sigma, \rho),$$

$$\| \chi \|_{\hat{C}^{\alpha, \sigma}(\mathbb{R}^3)} \leq \rho$$

(3.19)

for some $\alpha \in [0, 1]$, $\rho > 0$, $\varepsilon_0 > 0$, where $\varepsilon_0 = \varepsilon_0(\alpha, \sigma, \rho)$ is sufficiently small. Let S be the polarization ray transform of f (see section 1 and, in particular, formulae (1.11) and (1.12)).
Let \(\Lambda \) be defined by (1.19) and (1.20). Then the element \(S_{ij} \) of \(S = (S_{ij}) \) on \(\Lambda \) uniquely determines \(f \) by the iterative reconstruction algorithm of section 2; in addition,

\[
f^n \to f \quad \text{in} \quad \hat{L}^{\infty,\sigma}(\mathbb{R}^3) \quad \text{as} \quad n \to +\infty,
\]

\[
\| f - f^n \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq a(\alpha, \sigma, \rho)(b(\alpha, \sigma, \rho))^{\alpha-1} \varepsilon^{\alpha+1},
\]

for some \(a \) and \(b \), where \(f^n, n \in \mathbb{N} \), are defined by (2.9) and (2.14).

Theorem 3.1 follows from lemma 3.1, properties (3.18) and propositions 3.1–3.3.

Proposition 3.1. Let

\[
g \in \hat{L}^{\infty,\sigma}(\Lambda) \quad \text{for some} \quad \sigma > 3,
\]

where \(g \) is complex valued (and \(\Lambda \) is defined by (2.19) and (2.20)). Let \(J_{\Lambda}^{-1} \) be defined as in (2.8) and (2.9). Then

\[
J_{\Lambda}^{-1} g \in \hat{L}^{\infty,\sigma}(\mathbb{R}^3),
\]

\[
\| J_{\Lambda}^{-1} g \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq \lambda_2 \| g \|_{\hat{L}^{\infty,\sigma}(\Lambda)}
\]

for some positive \(\lambda_2 \). In addition, if \(g = J f \), where \(f \) satisfies (3.16), then \(g \) satisfies (3.21) and

\[
J_{\Lambda}^{-1} g = f.
\]

Proposition 3.1 is proved in section 4.

Proposition 3.2. Let the assumptions of theorem 3.1 be fulfilled. Let \(\delta_0 J f \) on \(\Lambda \) and \(\delta_1 f \) on \(\mathbb{R}^3 \) be defined by the formulae

\[
\Delta^0 = J f + \delta_0 J f \quad \text{on} \quad \Lambda, \tag{3.24}
\]

\[
J_{\Lambda}^{-1} \Delta^0 = f + \delta_1 f \quad \text{on} \quad \mathbb{R}^3, \tag{3.25}
\]

where \(\Delta^0, J_{\Lambda}^{-1} \Delta^0 \) are defined as in (2.8) and (2.9). Then

\[
\delta_0 J f \in \hat{L}^{\infty,\sigma}(\Lambda),
\]

\[
\| \delta_0 J f \|_{\hat{L}^{\infty,\sigma}(\Lambda)} \leq \lambda_3(\alpha, \sigma, \rho) \varepsilon^2, \tag{3.26}
\]

\[
\delta_1 f \in \hat{L}^{\infty,\sigma}(\mathbb{R}^3),
\]

\[
\| \delta_1 f \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq \lambda_2 \lambda_3(\alpha, \sigma, \rho) \varepsilon^2, \tag{3.27}
\]

for some positive \(\lambda_3 = \lambda_3(\alpha, \sigma, \rho) \).

Proposition 3.2 is proved in section 4.

Proposition 3.3. Let

\[
f^n = \chi(f + \delta^n f), \tag{3.28}
\]

where \(f, \chi \) satisfy (3.16) and (3.17),

\[
\delta^n f \in \hat{L}^{\infty,\sigma}(\mathbb{R}^3),
\]

\[
\| f \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq \varepsilon \leq \varepsilon_1(\alpha, \sigma, \rho),
\]

\[
\| f + \delta^n f \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq \varepsilon \leq \varepsilon_1(\alpha, \sigma, \rho),
\]

\[
\| \chi \|_{\hat{L}^{\infty,\sigma}(\mathbb{R}^3)} \leq \rho \tag{3.29}
\]

8
for some $\alpha \in [0, 1]$, $\rho > 0$, $\varepsilon_1 > 0$, where $\varepsilon_1 = \varepsilon_1(\alpha, \sigma, \rho)$ is sufficiently small. Let f^{n+1} be constructed from S_{11} (for f) and f^n as described in section 2. Then

$$f^{n+1} = \chi(f + \delta^{n+1}f), \quad (3.30)$$

where

$$\delta^{n+1}f \in \dot{L}^{\infty, \alpha}(\mathbb{R}^3),$$

$$\|\delta^{n+1}f\|_{L^{\infty, \alpha}(\mathbb{R}^3)} \leq \lambda_4(\alpha, \sigma, \rho)\varepsilon\|\delta^n f\|_{L^{\infty, \alpha}(\mathbb{R}^3)} \quad (3.31)$$

for some positive $\lambda_4 = \lambda_4(\alpha, \sigma, \rho)$.

Proposition 3.3 is proved in section 5.

To obtain theorem 3.1, we assume that ε_0 of (3.19) and ε_1 of (3.29) are so small that

$$\varepsilon_0 + \lambda_2\lambda_3\varepsilon_0^2 \leq \varepsilon_1, \quad \lambda_4 \leq 1, \quad \lambda_4(1 + \lambda_2\lambda_3\varepsilon_0) \leq b, \quad b \varepsilon_0 < 1, \quad (3.32)$$

for some $b = b(\alpha, \sigma, \rho)$, where $\lambda_2, \lambda_3, \lambda_4, \varepsilon_1$ are the constants of propositions 3.1, 3.2, 3.3. Under these assumptions, theorem 3.1 follows directly from propositions 3.2, 3.3 and lemma 3.1. In addition, we use proposition 3.3 with ε given as $\varepsilon + \lambda_2\lambda_3\varepsilon^2$ in terms of ε of theorem 3.1.

4. Proofs of lemma 3.1 and propositions 3.1 and 3.2

Let

$$L^{\infty, \sigma}(\mathbb{R}^3) = \{\tilde{u} \in L^\infty(\mathbb{R}^3) : \|\tilde{u}\|_{L^{\infty, \sigma}(\mathbb{R}^3)} < +\infty\}, \quad \sigma \geq 0, \quad (4.1)$$

where $\|\cdot\|_{L^{\infty, \sigma}(\mathbb{R}^3)}$ is defined as in (3.3),

$$C^{\alpha, \sigma}(\mathbb{R}^3) = \{\tilde{u} \in C^{[\alpha]}(\mathbb{R}^3) : \|\tilde{u}\|_{C^{\alpha, \sigma}(\mathbb{R}^3)} < +\infty\}, \quad \alpha \geq 0, \quad \sigma \geq 0, \quad (4.2)$$

where $C^{[\alpha]}$ and $\|\cdot\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}$ are defined as in (3.4) and (3.6), and (3.7),

$$L^{\infty, \sigma}(\Lambda) = \{\tilde{u} \in L^\infty(\Lambda) : \|\tilde{u}\|_{L^{\infty, \sigma}(\Lambda)} < +\infty\}, \quad \sigma \geq 0, \quad (4.3)$$

where $\|\cdot\|_{L^{\infty, \sigma}(\Lambda)}$ is defined as in (3.14). In addition, we assume that \tilde{u} of (4.1) and (4.2) is matrix valued (of some fixed size), in general, and \tilde{g} of (4.3) is complex valued.

Proof of lemma 3.1. We use, in particular, that

$$\hat{u}_1 \hat{u}_2 = \hat{u}_1 \ast \hat{u}_2,$$

$$\hat{u}_1 \ast \hat{u}_2(p) = \int_{\mathbb{R}^3} \hat{u}_1(p - p')\hat{u}_2(p') \, dp', \quad p \in \mathbb{R}^3, \quad (4.4)$$

where u_1, u_2 are test functions on \mathbb{R}^3, \hat{u} is defined by (3.2). In addition, u_1, u_2 are matrix valued, in general, where the matrix product is defined in the standard way.

By the assumptions of lemma 3.1 we have that

$$\hat{u} \in L^{\infty, \sigma}(\mathbb{R}^3), \quad \hat{v} \in C^{\alpha, \sigma}(\mathbb{R}^3). \quad (4.5)$$

Formulae (3.11) follow from (4.4) and (4.5), where we use, in particular, that

$$\int_{\mathbb{R}^3} \frac{dp'}{(1 + |p - p'|)^{\sigma}(1 + |p'|)^{\sigma}} \leq \frac{c_1(\sigma)}{(1 + |p|)^{\sigma}} \quad \text{for } \sigma > 3, \quad (4.6)$$

for some positive $c_1 = c_1(\sigma)$.

Lemma 3.1 is proved.
Proof of proposition 3.1. We use that $I^{-1}_ω g_ω$ of (2.3) and (2.6) can also be defined as

$$I^{-1}_ω g_ω = u_ω,$$

where

$$(4π)^{-1} (\hat{g}_ω(p, \theta) + \hat{g}_ω(p, -\theta)) = \hat{u}_ω(p), \quad p \in X_θ, \quad \theta \in S^1_ω,$$

(4.7)

where $u_ω$ and $\hat{u}_ω$ are related by (3.2), $g_ω$ and $\hat{g}_ω$ are related as in (3.13). Indeed, (4.7) means that

$$(2π)^{-3} \int_{X_θ} e^{ip_1 x} g^{sym}_ω(x, \theta) \, dx = (2π)^{-3} \int_{R^3} e^{ip_1 x} u_ω(x) \, dx,$$

(4.8)

where

$$g^{sym}_ω(x, \theta) = \frac{1}{2} (g_ω(x, \theta) + g(x, -\theta)), \quad (x, \theta) \in \Gamma_ω.$$

(4.9)

Representing p in (4.8) as

$$p = p_1 \theta + p_2 ω,$$

(4.10a)

and representing x on the left-hand side of (4.8) as

$$x = \xi_1 \theta + \xi_2 ω,$$

(4.10b)

and integrating (4.8) with $e^{-ip_2 \xi_2}$, one can see that $u_ω$ of (4.7) is the function such that

$$(2π)^{-2} \int_{R^3} e^{ip_1 \theta + x} u_ω(x) \delta(ωx - \xi_2') \, dx, \quad p_1 \in R \setminus 0, \quad \xi_2' \in R.$$

(4.11)

It remains to note that it is actually well known that the determination of $u_ω|Y$ from $g_ω|TS^1(Y)$ via (4.9) and (4.11) is equivalent to such a determination on the basis of (2.3), where $y = \xi_2'ω$.

Formulae (4.7) imply that

$$\hat{u}_ω \in L^{∞,σ}(R^3),$$

$$\|\hat{u}_ω\|_{L^{∞,σ}(R^3)} \leq (4π)^{-1} \|\hat{g}_ω\|_{L^{∞,σ}(Γ_ω)},$$

(4.12)

if $\hat{g}_ω \in L^{∞,σ}(Γ_ω)$,

where $L^{∞,σ}(Γ_ω)$ is considered as $L^{∞,σ}(Λ)$ (see (4.3)) for the case when $Λ$ is reduced to the single $Γ_ω$.

Proposition 3.1 follows from (2.6) and (4.12).

Proof of proposition 3.2. We consider $I_θ$, $D_θ$ defined by

$$I_θ u(x) = \int_{R} u(x + sθ) \, ds, \quad x \in X_θ, \quad θ \in S^2,$$

(4.13)

$$D_θ u(x) = \int_{0}^{+∞} u(x + sθ) \, ds, \quad x \in R^3, \quad θ \in S^2,$$

(4.14)

where u is a matrix-valued test function on R^3, $X_θ$ is as defined in (1.13).

We use that

$$μ^+(\cdot, θ, ω) = Id + D_θ(F(\cdot, θ, ω)μ^+(\cdot, θ, ω)) \quad \text{on} \quad R^3,$$

(4.15)
\[S(\cdot, \theta, \omega) = I_d + I_\theta^* F(\cdot, \theta, \omega) \mu^*(\cdot, \theta, \omega) \quad \text{on} \quad X_\theta, \]

(4.16)

where \(\mu^*, F, S \) are as defined in section 1 (see (1.10), (1.11) and (1.12)), \(\theta \in \mathbb{S}^1_\omega, \omega \in \mathbb{S}^2 \). In addition, (4.15) is an integral equation for \(\mu^* \), (4.16) is a formula for \(S \).

Lemma 4.1. Let \(u \in \hat{C}^{0,\sigma}(\mathbb{R}^3) \) for some \(\sigma > 3 \). Then

\[
I_\theta u \in \hat{C}^{0,\sigma}(X_\theta),
\]

\[
\| I_\theta u \|_{\hat{C}^{0,\sigma}(X_\theta)} \leqslant 2\pi \| u \|_{\hat{C}^{0,\sigma}(\mathbb{R}^3)}, \quad \theta \in \mathbb{S}^2,
\]

(4.17)

where

\[
\hat{C}^{0,\sigma}(X_\theta) = \{ g : \hat{g} \in C(X_\theta), \| g \|_{\hat{C}^{0,\sigma}(X_\theta)} < +\infty \},
\]

(4.18)

\[
\hat{g}(p) = \left(\frac{1}{2\pi} \right)^2 \int_{X_\theta} e^{ipx} g(x) \, dx, \quad p \in X_\theta,
\]

(4.19)

\[
\| g \|_{\hat{C}^{0,\sigma}(X_\theta)} = \| \hat{g} \|_{C^\sigma(X_\theta)},
\]

\[
\| \hat{g} \|_{C^\sigma(X_\theta)} = \sup_{p \in X_\theta} (1 + |p|)^{\sigma} |\hat{g}(p)|.
\]

(4.20)

Lemma 4.1 follows from the formula

\[
(2\pi)^{-1} \hat{g} = \hat{u}|_{X_\theta} \quad \text{for} \quad g = I_\theta u
\]

(4.21)

and definitions (3.2)–(3.6) and (4.18)–(4.20).

Lemma 4.2. Let

\[
v(x, \theta, \omega) = \begin{pmatrix} \omega u(x) \omega & \omega u(x) \theta^\perp \\ \theta^\perp u(x) \omega & \theta^\perp u(x) \theta^\perp \end{pmatrix},
\]

(4.22)

where \(u \) is a \(\mathcal{M}_{3,3} \)-valued function on \(\mathbb{R}^3 \), \(x \in \mathbb{R}^3, \omega, \theta, \theta^\perp \) are vectors of (1.7). Then

\[
\| v(\cdot, \theta, \omega) \|_{L^{\infty}(\mathbb{R}^3)} \leqslant c_2 \| u \|_{L^{\infty}(\mathbb{R}^3)} \quad \text{for} \quad u \in \hat{L}^{\infty,\sigma}(\mathbb{R}^3), \quad \sigma \geqslant 0,
\]

(4.23)

\[
\| v(\cdot, \theta, \omega) \|_{\hat{C}^{0,\sigma}(\mathbb{R}^3)} \leqslant c_2 \| u \|_{\hat{C}^{0,\sigma}(\mathbb{R}^3)} \quad \text{for} \quad u \in \hat{C}^{0,\sigma}(\mathbb{R}^3), \quad \sigma \geqslant 0,
\]

(4.24)

where \(c_2 \) is some positive constant.

Lemma 4.2 follows from definitions (4.22), (3.1)–(3.8).

Lemma 4.3. Let \(u \in \hat{C}^{1,\alpha,\sigma}(\mathbb{R}^3) \) for some \(\alpha \in [0, 1], \sigma > 3 \). Let \(v \in \hat{C}^{1,\alpha,\sigma}(\mathbb{R}^3) \). Then

\[
\| v D_{\theta^\perp} u \|_{\hat{C}^{0,\sigma}(\mathbb{R}^3)} \leqslant c_3(\alpha, \sigma) \| v \|_{\hat{C}^{1,\alpha,\sigma}(\mathbb{R}^3)} \| u \|_{\hat{C}^{1,\alpha,\sigma}(\mathbb{R}^3)}, \quad \theta \in \mathbb{S}^2,
\]

(4.25)

for some positive \(c_3 = c_3(\alpha, \sigma) \).

In **lemma 4.3**, \(u, v \) are matrix valued, in general, where the matrix product is defined in the standard way.

Proof of lemma 4.3. We use that

\[
D_{\theta^\perp} u(x) = G^*_\theta u(x) = \int_{\mathbb{R}^3} G^*_\theta(x - y) u(y) \, dy,
\]

(4.26)

\[
G^*_\theta(x) = \delta(\omega x) \delta(\theta^\perp x) h(\theta x),
\]

where \(\delta \) is the Dirac delta function.
where $\omega, \theta, \theta^\perp$ are related as in (1.7), δ is the Dirac function,
\[
h(s) = 1 \quad \text{for} \quad s > 0,
\]
\[
h(s) = 0 \quad \text{for} \quad s \leq 0.
\]
Further in this proof we assume for simplicity that
\[
\theta = e_1, \quad \theta^\perp = e_2, \quad \omega = e_3,
\]
where e_1, e_2, e_3 is the basis in \mathbb{R}^3.

We use that
\[
\bar{u}_1 \ast \bar{u}_2 = (2\pi)^3 \bar{u}_1 \bar{u}_2,
\]
where u_1, u_2 are the same as in (4.4).

We use also that, under assumptions (4.28),
\[
\hat{G}_3'(p) = (2\pi)^{-3} \int_{\mathbb{R}^3} e^{i p \cdot x} \delta(x_3) \delta(x_2) h(x_1) \, dx = (2\pi)^{-2} \frac{1}{2\pi} \int_{\mathbb{R}} e^{i p_1 x_1} h(x_1) \, dx_1
\]
\[
= (2\pi)^{-1} \left(\frac{1}{p_1 + i0} \right) = (2\pi)^{-1} \frac{i}{p_1 + i0}, \quad p \in \mathbb{R}^3.
\]

Due to (4.26)–(4.30), we have that
\[
\tilde{\tilde{D}_0} \hat{u}(p) = \frac{i \hat{u}(p)}{p_1 + i0}, \quad p \in \mathbb{R}^3.
\]

Due to (4.4) and (4.31), we have that
\[
\tilde{\tilde{v}} \tilde{\tilde{D}_0} \hat{u}(p) = \int_{\mathbb{R}^3} \tilde{v}(p - p') \frac{i \hat{u}(p')}{p_1 + i0} \, dp', \quad p \in \mathbb{R}^3.
\]

To prove lemma 4.3, it is sufficient to prove that
\[
|\tilde{\tilde{v}} \tilde{\tilde{D}_0} \hat{u}(p)| \leq c_{3,1}(\alpha, \sigma) \|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})},
\]
\[
\left| \frac{\partial \tilde{\tilde{v}} \tilde{\tilde{D}_0} \hat{u}(p)}{\partial p_j} \right| \leq c_{3,2}(\alpha, \sigma) \|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})},
\]
for $p \in \mathbb{R}^3, j = 1, 2, 3$ and some positive $c_{3,1}, c_{3,2}$.

Proceeding from (4.32) we have that
\[
\tilde{\tilde{v}} \tilde{\tilde{D}_0} \hat{u}(p) = \left(\int_{|p_1| < 1} + \int_{|p_1| \geq 1} \right) \tilde{v}(p - p') \frac{i \hat{u}(p')}{p_1 + i0} \, dp' = A(p) + B(p),
\]
\[
A(p) = \pi \int_{p_1 = 0}^{p_1 = 1} \tilde{v}(p - p') \hat{u}(p') \, dp' + \text{p.v.} \int_{|p_1| < 1} \tilde{v}(p - p') \frac{i \hat{u}(p')}{p_1} \, dp' = A_1(p) + A_2(p),
\]
\[
A_1(p) \leq \pi \int_{p_1 = 0}^{p_1 = 1} \frac{\|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})}}{(1 + |p - p'|)^\alpha (1 + |p'|)^\alpha} \, dp' \leq c_{3,1,1}(\sigma) \|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})} (1 + |p|)^{-\sigma},
\]
\[
A_2(p) \leq \text{Const}(\sigma) \int_{|p_1| < 1} \left(\int_{p_1 = 0}^{p_1 = 1} \frac{\|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})}}{(1 + |p - p'|)^\alpha (1 + |p'|)^\alpha} \, dp' \right) \frac{|p_1|^\alpha}{|p_1|^\alpha} \, dp_1
\]
\[
\leq c_{3,1,2}(\alpha, \sigma) \|\hat{u}\|_{C^{\alpha,\sigma}(\mathbb{R})} \|\hat{v}\|_{C^{\alpha,\sigma}(\mathbb{R})} (1 + |p|)^{-\sigma}.
\]
\[
B(p) \leq \int_{|p| \geq 1} \frac{\|\hat{\nu}\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}}{(1 + |p - p'|)^{\sigma}} \frac{\|\hat{\nu}\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}}{(1 + |p'|)^{\sigma}} \, dp' \leq c_1(\sigma)\|\hat{\nu}\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}\|\hat{\nu}\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}(1 + |p|)^{-\sigma},
\]

(4.38)

where \(p \in \mathbb{R}^3 \), \(c_{1,1}, c_{1,2} \) are some positive constants, \(c_1 \) is the constant of (4.6).

Estimate (4.33a) follows from (4.34)–(4.38). Estimate (4.33b) follows from (4.34)–(4.38) with \(\hat{v}(p) \) replaced by \(\partial \hat{v}(p)/\partial p_j \).

Lemma 4.3 is proved.

We continue the proof of proposition 3.2

Using (4.15), the property that

\[
F(\cdot, \theta, \omega) = \chi F(\cdot, \theta, \omega),
\]

(4.39)

where \(\chi \) is the function of (3.16) and (3.17), and lemmas 3.1, 4.3 we obtain that

\[
\mu^\ast(\cdot, \theta, \omega) = I d + \sum_{j=1}^{+\infty} D_{-\theta} w_j (\cdot, \theta, \omega),
\]

(4.40)

\[
w_j (\cdot, \theta, \omega) = F(\cdot, \theta, \omega) D_{-\theta} \ldots F(\cdot, \theta, \omega) D_{-\theta} F(\cdot, \theta, \omega),
\]

\[
F(\cdot, \theta, \omega) \mu^\ast(\cdot, \theta, \omega) = F(\cdot, \theta, \omega) + \sum_{j=1}^{+\infty} w_{j+1} (\cdot, \theta, \omega),
\]

(4.41)

where

\[
\|w_j (\cdot, \theta, \omega)\|_{C^{\alpha, \sigma}(\mathbb{R}^3)} \leq (c_3(\alpha, \sigma)\|F(\cdot, \theta, \omega)\|_{C^{\alpha, \sigma}(\mathbb{R}^3)})^{1/\epsilon} \|F(\cdot, \theta, \omega)\|_{C^{\alpha, \sigma}(\mathbb{R}^3)}^{1/\epsilon} \leq q_1(q_2)^{1/\epsilon} \epsilon/\epsilon,
\]

(4.42)

where

\[
q_1 = \lambda_1(\alpha, \sigma) c_2 \|\chi\|_{C^{\alpha, \sigma}(\mathbb{R}^3)},
\]

\[
q_2 = \lambda_1(1 + \alpha, \sigma) c_2 c_3(\alpha, \sigma) \|\chi\|_{C^{\alpha, \sigma}(\mathbb{R}^3)},
\]

(4.43)

and \(\lambda_1, c_2, c_3, \epsilon \) are the numbers of lemmas 3.1, 4.2, 4.3 and theorem 3.1

Due to (4.41)–(4.43), we have that

\[
\|F(\cdot, \theta, \omega)\|_{C^{\alpha, \sigma}(\mathbb{R}^3)} \leq q_1 \epsilon\sum_{j=1}^{+\infty} (q_2 \epsilon)^j = \frac{q_1 q_2 \epsilon^2}{1 - q_2 \epsilon},
\]

(4.44)

under the condition that \(q_2 \epsilon < 1 \).

Due to (4.16) and (4.44) and lemma 4.1, we have that

\[
\|S(\cdot, \theta, \omega) - I d - I_0 F(\cdot, \theta, \omega)\|_{C^{\alpha, \sigma}(X_0)} \leq \frac{2\pi q_1 q_2 \epsilon^2}{1 - q_2 \epsilon},
\]

(4.45)

and, in particular,

\[
\|S_{11}(\cdot, \theta, \omega) - I_0 \varphi(\omega)\|_{C^{\alpha, \sigma}(X_0)} \leq \frac{2\pi q_1 q_2 \epsilon^2}{1 - q_2 \epsilon}.
\]

(4.46)

To obtain (3.26) we use (4.46) and (4.43) and the following estimate:

\[
\|\chi\|_{C^{\alpha, \sigma}(\mathbb{R}^3)} \leq c_4(\alpha, \sigma)\|\chi\|_{C^{\alpha, \sigma}(\mathbb{R}^3)},
\]

(4.47)
where c_4 is an appropriate positive constant. In addition, it is assumed that ε_0 of theorem 3.1
is so small that
\begin{equation}
q_2 \varepsilon_0 \leq 1/2. \tag{4.48}
\end{equation}
As a result, proceeding from (4.46) we obtain (3.24) and (3.26).
Finally, (3.27) follows from (3.24)–(3.26) and proposition 3.1
Proposition 3.2 is proved.

5. Proof of proposition 3.3

We will use that in the construction of f^{n+1} from f^n and S_{11} the steps given by (2.13) and (2.14) can be rewritten as
\begin{equation}
f^{n+1} = \chi J^{-1}_\Lambda (S_{11} - 1 - T^n_{11}), \tag{5.1}
\end{equation}
where T^n_{11} is the element of $T^n = (T^n_j)$, where
\begin{equation}
T^n(x, \theta, \omega) = \lim_{s \to +\infty} U^n(x + s\theta, \theta, \omega), \quad (x, \theta, \omega) \in \Lambda, \tag{5.2}
\end{equation}
\begin{equation}
\theta \partial_\xi U^n(x, \theta, \omega) = F^n(x, \theta, \omega)(\mu^n(x, \theta, \omega) - Id), \tag{5.3}
\end{equation}
where F^n and μ^n are defined as F and μ^* of (1.10) and (1.11) with f^n in place of f. V is
defined by (2.11).
Indeed, (5.2) and (5.3) and the definition of μ^n imply that
\begin{equation}
U^n(x, \theta, \omega) = \mu^n(x, \theta, \omega) - Id - D_{\theta} F^n(x, \theta, \omega), \quad (x, \theta, \omega) \in V, \tag{5.4}
\end{equation}
\begin{equation}
T^n_{11}(x, \theta, \omega) = S^n_{11}(x, \theta, \omega) - 1 - I_0 f^n(x) \omega, \quad (x, \theta, \omega) \in \Lambda, \tag{5.5}
\end{equation}
where I_0 and D_θ are defined by (4.13) and (4.14). Using (5.5) and (2.5) one can see that (5.1) is
equivalent to
\begin{equation}
f^{n+1} = \chi J^{-1}_\Lambda (S_{11} - S^n_{11} + J f^n). \tag{5.6}
\end{equation}
Using that $J^{-1}_\Lambda f^n = f^n$ (this is completely similar to (3.23)), one can see that f^{n+1} of (5.1) and (5.6) coincides with f^{n+1} of (2.14).
Thus, it is sufficient to prove proposition 3.3, where (2.14) is written as (5.1).
In this proof, in addition to T^n and U^n, we consider also T and U (defined in a completely
similar way with T^n, U^n):
\begin{equation}
T(x, \theta, \omega) = \lim_{s \to +\infty} U(x + s\theta, \theta, \omega), \quad (x, \theta, \omega) \in \Lambda, \tag{5.7}
\end{equation}
\begin{equation}
\theta \partial_\xi U(x, \theta, \omega) = F(x, \theta, \omega)(\mu^*(x, \theta, \omega) - Id), \tag{5.8}
\end{equation}
In addition, (in a completely similar way with (5.4) and (5.5)) we have that
\begin{equation}
U(x, \theta, \omega) = \mu^*(x, \theta, \omega) - Id - D_{\theta} F(x, \theta, \omega), \quad (x, \theta, \omega) \in V, \tag{5.9}
\end{equation}
\begin{equation}
T_{11}(x, \theta, \omega) = S_{11}(x, \theta, \omega) - 1 - I_0 f^n(x) \omega, \quad (x, \theta, \omega) \in \Lambda. \tag{5.10}
\end{equation}
One can see that
\[f_{n+1}^{(5.1)} = \chi J_{\lambda}^{-1}(S_{11} - 1 - T_{11}) + \chi J_{\lambda}^{-1}(T_{11} - T_{11}^n) \overset{\text{(2.5), (5.10)}}{=} \chi(f + \delta_{n+1} f), \]
where
\[\delta_{n+1} f = J_{\lambda}^{-1}(T_{11} - T_{11}^n). \]
(5.12)

Thus, to complete the proof of proposition 3.3 it is sufficient to obtain an appropriate estimate on \(T_{11} - T_{11}^n \) (estimate (5.31)).

Let
\[\delta_n T_{11} = T_{11}^n - T_{11}, \]
(5.13)
\[\delta_n F = F^n - F, \]
(5.14)
\[\delta_n \mu^+ = \mu^{n+} - \mu^+. \]
(5.15)

Using the definitions of \(T^n \) and \(T \) one can see that \(\delta_n T_{11} \) is the element of \(\delta_n T = (\delta_n T_{ij}) \), where
\[\delta_n T_{ij} = I_{\theta}(F^n(\cdot, \theta, \omega)(\mu^{n+}(\cdot, \theta, \omega) - I d) - F(\cdot, \theta, \omega)(\mu^+(\cdot, \theta, \omega) - I d)), \]
(5.16)
where \(I_{\theta} \) is defined by (4.13). In addition, using (5.14) and (5.15) formula (5.16) can be rewritten as
\[\delta_n T = I_{\theta}(\delta_n F(\cdot, \theta, \omega)(\mu^+(\cdot, \theta, \omega) - I d) + F^n(\cdot, \theta, \omega)\delta_n \mu^+(\cdot, \theta, \omega)). \]
(5.17)

The following estimates hold:
\[\| \delta_n F(\cdot, \theta, \omega)(\mu^+(\cdot, \theta, \omega) - I d) \|_{C_{\alpha, \sigma}(\mathbb{R}^3)} \leq \lambda_1(\alpha, \sigma)c_2 \left(\frac{q_1q_3\varepsilon}{1 - q_2\varepsilon} \right) \| \delta^n f \|_{L_{\infty, \sigma}(\mathbb{R}^3)}, \]
(5.18)
\[\| F^n(\cdot, \theta, \omega)\delta_n \mu^+(\cdot, \theta, \omega) \|_{C_{\alpha, \sigma}(\mathbb{R}^3)} \leq \frac{q_1q_2\varepsilon\| \delta^n f \|_{L_{\infty, \sigma}(\mathbb{R}^3)}}{(1 - q_2\varepsilon)^2}, \]
(5.19)
under the condition that \(q_2\varepsilon < 1 \), where \(q_1, q_2 \) are given by (4.43),
\[q_3 = c_3(\alpha, \sigma)\| \chi \|_{L_{\infty, \sigma}(\mathbb{R}^3)}, \]
(5.20)
\(\varepsilon \) is the number of (3.29), \(\lambda_1, c_2, c_3 \) are the numbers of lemmas 3.1, 4.2, 4.3, \(\theta \in S^1_{\omega}, \omega \in S^2 \).

Proof of (5.18). Using (3.28) and (4.39) and the definitions of \(F, F^n, \delta^n F \) we have that
\[\delta^n F(x, \theta, \omega) = \chi(x) \left(\frac{\omega\delta^n f(x)\omega}{\theta + \delta^n f(x)\theta^+} \right), \]
(5.21)
\(x \in \mathbb{R}^3, \theta \in S^1_{\omega}, \omega \in S^2 \).

Using (4.40) and (4.42) and lemma 4.3 we obtain that
\[\| \chi(\mu^+(\cdot, \theta, \omega) - I d) \|_{C_{\alpha, \sigma}(\mathbb{R}^3)} \leq q_1q_3\varepsilon \sum_{j=1}^{\infty} (q_2\varepsilon)^{j-1} = \frac{q_1q_3\varepsilon}{1 - q_2\varepsilon} \]
(5.22)
under the condition that \(q_2\varepsilon < 1 \).
Estimate (5.18) follows from (5.21) and (5.22), and lemmas 3.1 and 4.2.

Proof of (5.19). Using (4.40) for \(\mu^+ \) and for \(\mu^n \) we have that

\[
F^n(\cdot, \theta, \omega) \mu^+(\cdot, \theta, \omega) = F^n(\cdot, \theta, \omega) \sum_{j=1}^{\infty} D_{-q} \delta^n w_j(\cdot, \theta, \omega),
\]

(5.23)

where \(w^n_j \) is defined as \(w^j \) of (4.40), but with \(F^n \) in place of \(F \). In addition, one can see that

\[
\delta^n w_1(\cdot, \theta, \omega) = \delta^n F(\cdot, \theta, \omega),
\]

(5.24)

In addition, using (5.21) and (5.24), lemma 4.3, estimate (4.42) for \(w^n_j \) and lemma 3.1 we have that

\[
\|\delta^n w_{j+1}(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} \lessgtr c_3(\alpha, \sigma) \|\delta^n F(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} q_1 q_2^{\ell/j} \epsilon^j + c_3(\alpha, \sigma) \|F(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} \|\delta^n w_j(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)}
\]

\[
\lessgtr q_1 q_2^{\ell/j} \|\delta^n f\|_{L_{\infty,\sigma}(\mathbb{R}^1)} + q_2 \epsilon \|\delta^n w_j(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)},
\]

\[
\|\delta^n w_1(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} \lessgtr q_1 \|\delta^n f\|_{L_{\infty,\sigma}(\mathbb{R}^1)}.
\]

(5.25)

Using (5.25) we obtain that

\[
\|\delta^n w_j(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} \leq q_1 \|\delta^n f\|_{L_{\infty,\sigma}(\mathbb{R}^1)} Z_j,
\]

(5.26)

\[
Z_{j+1} = (q_2 \epsilon)^j + q_2 \epsilon Z_j, \quad Z_1 = 1.
\]

In addition, one can see that

\[
Z_j = f(q_2 \epsilon)^{j-1}, \quad j \in \mathbb{N}.
\]

(5.27)

Estimate (5.19) follows from (5.23), (5.26) and (5.27), lemmas 3.1 and 4.3, and the formula

\[
\sum_{j=1}^{\infty} j r^{j-1} = \frac{1}{(1 - r)^2}, \quad 0 < r < 1.
\]

(5.28)

Using (5.12), (5.18), (5.19) and lemma 4.1 we obtain that

\[
\|\delta^n T(\cdot, \theta, \omega)\|_{C^{\alpha,\sigma}(\mathbb{R}^1)} \leq \left(\frac{\lambda_1 c_2 q_1 q_3}{1 - q_2 \epsilon} + \frac{q_1 q_2}{(1 - q_2 \epsilon)^2} \right) \epsilon \|\delta^n f\|_{L_{\infty,\sigma}(\mathbb{R}^1)}, \quad \theta \in \mathbb{S}^1_{\omega}, \quad \omega \in \mathbb{S}^2.
\]

(5.29)

Proceeding from (5.29) and assuming that \(\epsilon_1 \) of (3.29) is so small that

\[
q_2 \epsilon_1 \leq 1/2,
\]

(5.30)

we obtain that

\[
\|\delta^n T\|_{L_{\infty,\sigma}(\mathbb{R}^1)} \leq (2\lambda_1 c_2 q_1 q_3 + 4q_1 q_2) \epsilon \|\delta^n f\|_{L_{\infty,\sigma}(\mathbb{R}^1)},
\]

(5.31)

where \(q_1, q_2, q_3, \lambda_1, c_2 \) are the same as in (5.18) and (5.19).

Finally, (3.31) follows from (5.12), (5.31), (4.47) and proposition 3.1 Proposition 3.3 is proved.
6. Final remarks

Remark 6.1. The main results of the present work admit straightforward generalizations for the case when the normal vectors $\omega^1, \ldots, \omega^6$ are chosen free in such a way that the linear map
\[\Omega : \mathcal{M}^{sym}_{3,3} \rightarrow \mathbb{C}^6 \]
is invertible, where
\[\mathcal{M}^{sym}_{3,3} = \{ f \in \mathcal{M}^{3,3} : f_{ij} = f_{ji}, 1 \leq i, j \leq 3 \}, \]
\[\Omega f = (\omega^1 f \omega^1, \ldots, \omega^6 f \omega^6). \]

Remark 6.2. In a subsequent paper, we plan to generalize the iterative approach of the present work to the case of the polarization tomography with limited phase measurements, see, for example, [HL, Sh3] for more information on this problem. Actually, in the framework of the model described by (1.1) the polarization tomography with limited phase measurements is reduced to the inverse problem for (1.10) with $f = (1/2) \text{tr} (\pi_\theta f \pi_\theta) I d$ in place of f. In this inverse problem, we do not plan to restrict the ‘scattering’ matrix S to its element S_{11} only (in contrast to results of the present work).

Remark 6.3. It remains unclear whether a version of the Riemann–Hilbert problem method of [MZ, N] can be used for solving problem 1.1, instead of the iterative approach of the present work. The reason is that the dependence of $F(x, \theta, \omega)$ on the spectral parameter θ (and, more precisely, the quadratic dependence on θ of the element $F_{22}(x, \theta, \omega) = \theta^+ f(x) \theta^-$) in (1.10) is not appropriate, in general, for direct applications of the Riemann–Hilbert problem method of [MZ, N].

Remark 6.4. On the other hand (with respect to remark 6.3), if f is skew symmetric, $f_{ij} = -f_{ji}$, then $F_{22} \equiv 0$ and the dependence of $F(x, \theta, \omega)$ on θ is appropriate for direct applications of the aforementioned Riemann–Hilbert problem method to the inverse problem for equations (1.1) and (1.10). We remind that some results on the polarization tomography with skew symmetric f, including examples of transparent f, were given in [NS]. However, the Riemann–Hilbert problem method was not yet used in these studies.

References

[A] Aben H K 1979 Integrated Photoelasticity (New York: McGraw-Hill)
[DP] Dunajski M and Plansangkate P 2007 Topology and energy of time dependent unitons Proc. R. Soc. A 463 945–59
[E] Eskin G 2004 On non-Abelian Radon transform Russ. J. Math. Phys. 11 391–408
[FU] Finch D and Uhlmann G 2001 The x-ray transform for a non-Abelian connection in two dimensions Inverse Problems 17 695–701
[HL] Hammer H B and Lionheart W R 2005 Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography J. Opt. Soc. Am. 22 250–5
[KO] Kravtsov Yu A and Orlow Yu I 1980 Geometric Optics of Inhomogeneous Media (Moscow: Nauka) (in Russian)
[M] Mason L J 2006 Global anti-self dual Yang–Mills fields in split signature and their scattering J. Reine Angew. Math. 597 105–33
[MZ] Manakov S V and Zakharov V E 1981 Three-dimensional model of relativistic-invariant field theory, integrable by inverse scattering transform Lett. Math. Phys. 5 247–53
[N] Novikov R G 2002 On determination of a gauge field on R^3 from its non-Abelian Radon transform along oriented straight lines J. Inst. Math. Jussieu 1 559–629
[NS] Novikov R G and Sharafutdinov V A 2007 On the problem of polarization tomography: 1 Inverse Problems 23 1229–57
[P] Paternain G P 2008 Transparent connections over negatively curved surfaces arXiv:0809.4360v3
[Sh1] Sharafutdinov V A 1994 Integral Geometry of Tensor Fields (Utrecht: VSP)
[Sh2] Sharafutdinov V A 2000 On an inverse problem of determining a connection on a vector bundle J. Inverse Ill-Posed Problems 8 51–88
[Sh3] Sharafutdinov V A 2008 The problem of polarization tomography: II Inverse Problems 24 035010
[V] Vertgeim L B 1992 Integral geometry with a matrix weight, and a nonlinear problem of recovering matrices Sov. Math. Dokl. 44 132–5