Nuclear spin driven quantum relaxation in LiY\textsubscript{0.998}Ho\textsubscript{0.002}F\textsubscript{4}

R. Giraud1, W. Wernsdorfer1, A.M. Tkachuk2, D. Mailly3, and B. Barbara1

1 Laboratoire de Magnétisme Louis Néel, CNRS, BP166, 38042 Grenoble Cedex-09, France
2 All-Russia Scientific Center “S.I. Vavilov State Optical Institute”, 199034 St. Petersburg, Russia
3 Laboratoire de Photonique et de Nanostructures, CNRS, 196 Av. H. Ravera, 92220 Bagneux, France

(March 22, 2022)

Staircaselike hysteresis loops of the magnetization of a LiY\textsubscript{0.998}Ho\textsubscript{0.002}F\textsubscript{4} single crystal are observed at subkelvin temperatures and low field sweep rates. This behavior results from quantum dynamics at avoided level crossings of the energy spectrum of single Ho3+ ions in the presence of hyperfine interactions. Enhanced quantum relaxation in constant transverse fields allows the study of the relative magnitude of tunnel splittings. At faster sweep rates, nonequilibrated spin–phonon and spin–spin transitions, mediated by weak dipolar interactions, lead to magnetization oscillations and additional steps.

75.45.+j, 71.70.Jp, 76.30.Kg

The problem of quantum dynamics of a two-level system coupled to an environment (boson or fermion bath) is at the core of mesoscopic physics [1]. We show that the new field of “mesoscopic magnetism”, which studies the tunneling of large magnetic moments in the presence of phonons and spins, is not limited to molecular complexes and nanoparticles, but it can be extended to other systems such as rare-earth ions. After the first studies on large spin molecules Mn\textsubscript{12}-ac [2,3] and Fe\textsubscript{8} [4], the role of the spin bath on the tunnel mechanism was shown [5–9]. Among them, the holmium doped fluoride is a random, dipolar coupled system with an Ising ground state doublet (\textit{g}_{\text{eff}} \approx 13.3) [4], see also [7] and references therein) and a pure isotope \textit{I} = 7/2 nuclear spin. The magnetic properties of the Ising ferromagnet LiHoF\textsubscript{4} and spin glass LiY\textsubscript{0.833}Ho\textsubscript{0.167}F\textsubscript{4} have been studied by ac susceptibility [10]. In particular, enhanced quantum fluctuations, leading to a cross-over to a quantum spin glass, were evidenced in an applied transverse field [7].

In this letter, we investigate a single crystalline 0.2% holmium doped LiYF\textsubscript{4} at subkelvin temperatures. The isolated magnetic moments are weakly coupled by dipolar interactions (\textit{\mu}_0\textit{H}_{\text{dip}} \sim \text{few mT}) so that this very diluted insulator should exhibit a nearly single ion quantum behavior, in which we are interested in continuity with our studies on molecular magnets. The crystal has a tetragonal scheelite structure with a \textit{C}_{4h} space symmetry group (\textit{I}4/\textit{a}), and the point symmetry group at Ho3+ sites is \textit{S}_4, almost equivalent to \textit{D}_{2d} (for LiHoF\textsubscript{4}, unit cell parameters are \textit{a} = \textit{b} = 5.175 Å and \textit{c} = 10.74 Å [13]). Because of a very strong spin–orbit coupling, each magnetic ion of 165Ho is characterized by its \textit{J} = 8 ground state manifold (\textit{g}_J = 5/4), split by crystal field effects. These last give rise to a large uniaxial magnetic anisotropy, i.e., a high energy barrier hindering the magnetic moment reversal. However, we will see that quantum fluctuations due to significant transverse anisotropy terms drastically reduce this barrier. This effect was very much weaker in Mn\textsubscript{12}-ac (\approx 10% barrier reduction [8]). Using the |\textit{J}, \textit{M}| basis and \textit{D}_{2d} symmetry, the approximate Hamiltonian including hyperfine interaction writes

\begin{equation}
\textit{H} = \textit{H}_{\text{crystal field}} + \textit{H}_{\text{Zeeman}} + \textit{H}_{\text{hyperfine}}
\end{equation}

with

\begin{equation}
\textit{H}_{\text{crystal field}} = \alpha_0 \textit{B}_2^0 \textit{O}_2^0
\end{equation}
$$\beta J(B^3_4 O^4_0 + B^3_6 O^4_0) + \gamma J(B^0_6 O^0_6 + B^0_8 O^0_8),$$

$$H_{\text{Zeeman}} = -g_d \mu_B \vec{J} \cdot \vec{H}, \quad H_{\text{hyperfine}} = A_J \vec{J} \cdot \vec{I}.$$

The α_J, βJ, γ_J, and O^n_J are Stevens’ coefficients and equivalent operators. Exact diagonalization of the 136-dimensional Hamiltonian (1) was performed, using a set of crystal field parameters obtained by high-resolution optical spectroscopy: $B^3_4 = 273.9$ K, $B^3_6 = 97.7$ K, $B^0_6 = -6.5$ K, $B^1_4 = -1289.1$ K, $B^1_6 = -631.6$ K. A_J was taken as a fitting parameter of the measured resonances (see below). J mixing, Jahn-Teller effect and nuclear quadrupole interaction are assumed to be negligible. We first show the results with $A_J = 0$ in Fig. 4.

The eigenstates transform as one of the four irreducible representations $\Gamma_{1,2,3,4}$ of the S_4 point group. Significant transverse crystal field terms $B^4_4 O^4_4$ and $B^4_6 O^4_6$ mix free ion states, with $\Delta M = \pm 4$, so that eigenvectors are linear combinations either of $|\pm 7>, |\pm 3>, |\mp 1> and |\mp 5>$ for $\Gamma_{3,4}$; $|\pm 6>, |\pm 2>, |\mp 2>$ and $|\mp 6>$ for Γ_{2}; or $|\pm 8>, |\pm 4>, |0>, |\mp 4>$ and $|\mp 8>$ for Γ_{1}. In Fig. 4(a), the calculated low-lying states within the $5I_8$ multiplet show a Γ_{34} Ising ground state doublet noted as $|\pm 1>$, while the first excited state, a Γ_3 singlet, stands at ≈ 9.5 K above (direct measurements give $\approx 10 \pm 1$ K). Fig. 4(a) also shows how the expected large barrier $\sim 10^5$ K is shortcut by large tunneling gaps due to transverse crystal field terms (emphasized by shaded areas between singlets belonging to the same representation). A strong electronic level repulsion in the low-lying excited Γ_3 states is clearly shown in Fig. 4(b). This defines the energy barrier the magnetic moment has to overcome in order to reverse its polarization. At very low temperatures, the system should be equivalent to a two-level system with an energy barrier of ≈ 10 K. Actually, this picture is strongly modified when intraionic dipolar interactions are taken into account ($A_J \neq 0$). They lead to a more complex diagram in the electronic ground state, showing several level crossings for resonant values $H_n (-7 \leq n \leq 7)$ in Fig. 2. The transverse hyperfine contribution $\frac{1}{2} A_J (J_4 I_+-J_- I_4)$ induces some avoided level crossings between $|\psi^-_1 I_2> | |\psi^-_1 I_3>$, only when $\Delta I = |I_2-I_3|$ is an odd integer so that the two electronic low-lying states $|\psi^\pm>$ are coupled through nondegenerated excited electronic levels.

Magnetic measurements were made at $0.04 < T < 1$ K and for $\mu_0 H < 2$ T, with a micro-SQUID magnetometer allowing field sweep rates up to 1 T/s. The crystal is first saturated in a large positive field applied along the c-axis $\mu_0 H_{\text{sat}} \approx 0.3$ T, and then the field H_z is swept between $\pm H_{\text{sat}}$. At slow field sweep rates, an isothermal process occurs, leading to staircase-like hysteresis loops at $T \approx 200$ mK, as shown in Fig. 3. These well defined steps come from quantum relaxation at avoided level crossings. At $T = 50$ mK, the lowest energy level is mainly populated and magnetization steps are observed for $-1 \leq n \leq 3$. The ground and excited tunnel splittings at $H_z = 0$, being due to very small perturbations such as internal transverse fields, should be very similar. Therefore, quantum tunneling in zero field is mainly associated with the dynamics of the lowest avoided level crossing (the first excited crossing is at $\Delta E/k_B = g_{\text{eff}} \mu_B H_1/k_B \approx 205$ mK, assuming $g_{\text{eff}} \approx 13.3$). The amplitude of the next step, the resonance $n = 1$ at $\mu_0 H_1 = 23$ mT, is about ten times larger, suggesting a larger tunnel splitting Δ. Indeed, Fig. 2 shows that the hyperfine induced tunnel splitting of the third excited avoided level crossing is large enough to render the barrier transparent ($\Delta \approx 25$ mK). The relaxation time is thus simply given by thermal activation

FIG. 2. Splitting of the electronic ground state doublet by the hyperfine interaction ($A_J/k_B \approx 38.6$ mK; see below). The level crossings occur for resonant values of the longitudinal field $H_n (-7 \leq n \leq 7)$. Some are avoided level crossings and hyperfine levels repulsion is then induced by the electronic level repulsion in the excited states shown in Fig. 4(b).
\[\tau = \tau_0 \exp(2\Delta E/k_B T), \] with a long \(\tau_0 \) because spin–lattice relaxation time \(T_1 \) can be hours at very low temperatures and/or as a result of internal fields fluctuations.

In the same trend, the measured magnetization step ratio \(\Delta M(n = 1)/\Delta M(n = -1) \approx 25 \) at \(T = 50 \) mK is approximately equal to the Boltzmann ratio, which confirms that thermally activated quantum relaxation occurs at \(H_z \neq 0 \). The barrier, essentially transparent due to this large splitting, becomes again finite out of resonance.

![Graph of hysteresis loops for \(v = 0.55 \) mT/s and at different temperatures. Inset: derivative of the magnetization normalized to \(M_S \), \(dM/dH \), at \(T = 50 \) mK and for \(v = 0.55 \) mT/s.](image)

The quantum relaxation is strongly enhanced by a constant transverse field, as a result of an increase of the tunnel splittings (see Fig. 3). In zero longitudinal field, the small tunnel splittings rapidly increase and hysteresis vanishes. A saturation of the magnetization at \(M \approx 0 \) is observed in transverse fields larger than 100 mT, when the barrier is nearly transparent, and the small “overshoot” with an oscillation in \(M \) may be due to spin–phonon transitions. As expected for a large tunnel splitting, sensitivity to a small transverse field is very weak for the resonance \(n = -1 \). The inset in Fig. 3 shows \(dM/dH \) at \(T = 50 \) mK. The width of the resonant transitions is about \(\mu_0 \Delta H = 2 - 3 \) mT which is expected from dipolar broadening. Similarly to molecular magnets, quasi-static fields due to dipolar interactions lead to a distribution of internal fields whereas field fluctuations, essentially of \(F^- \) nuclear spins, give homogeneous level broadening.

A hysteresis loop measured at \(T = 50 \) mK for a much faster field sweep rate \((v = 0.3 \) T/s) is shown in Fig. 3(a). A succession of equally spaced large and weak magnetization steps occur at fields \(H_n \), with \(-14 \leq 2n \leq 14 \). The larger ones, with integer \(n \), are associated with several equally spaced level crossings and the smaller steps, with half integer \(n \), fall just in between when the levels are equally spaced (see Fig. 3). \(dM/dH \) is used to determine the \(H_n \) values plotted in Fig. 3(a) inset. From the slope, we accurately obtain \(\mu_0 H_n = n \times 23 \) mT. The electronic ground doublet is thus split by hyperfine interaction in eight doublets over an energy range of about 1.44 K. We deduce \(A_J/k_B \approx 38.62 \) mK, to be compared to \(A_J/k_B \approx 40.95 \) mK [14]. The observed hysteresis loops depend sensitively on sample thermalization, showing that the spin–phonon system is not at equilibrium with the cryostat, leading to a phonon bottleneck [21,22]. At a fast field sweep rate \(v \approx 0.3 \) T/s, the system enters such a regime at \(T \approx 1 \) K (moderate sample thermalization) showing hysteresis without any magnetization steps down to \(T \approx 600 \) mK. When the field is swept back and forth, a stationary regime occurs and hysteresis loops become nearly temperature-independent below a temperature \(T_c(v) \) depending on sample thermalization \((T_c \approx 200 \) mK for \(v = 0.3 \) T/s). Below \(T \approx 600 \) mK, a nearly adiabatic process occurs, due to a much longer spin–lattice relaxation time \(T_1 \). The spin system becomes more and more isolated from the phonon bath, and energy exchange between electronic and nuclear spins is only possible at fields \(H_n \). Equilibrium within the spin system is due to either quantum fluctuations at avoided level crossings (integer \(n \)) or to spin–phonon transitions and/or cross-spin relaxation, allowed by weak dipolar interactions, when energy levels are almost equally spaced (integer and half integer \(n \)) [22,23]. Spin–spin interactions allow two additional steps for \(n = 8 \) and \(n = 9 \), at fields with equally spaced levels but no level crossing (Fig. 3(b) inset). A small transverse applied field only increases the zero-field magnetization step, showing the weak effect of enhanced quantum fluctuations on hysteresis loops in this regime. Other resonances and small magnetization steps, dominated by cross-spin relaxation, are not affected by a small transverse field, if small enough \((\mu_0 H_T \lesssim 20 \) mT). If the field sweep is su-
denly stopped, the spin–phonon system exchanges energy with the cryostat and the magnetization relaxes toward the equilibrium curve.

The asymmetry of the envelope (not drawn) of the peaks in Fig. 5(b), showing that spins reverse mostly after field inversion, and the absence of constriction in the hysteresis loop near \(H_z = 0 \), confirm the existence of small barriers, mainly in zero field (tunneling).

In conclusion, we have shown that the quantum rotation of weakly coupled magnetic moments in LiYF\(_4\) can be driven and monitored by hyperfine couplings. At very low temperatures, when the field is slowly swept from negative to positive values, the coupled electronic and nuclear moments tunnels from \(|\psi_1^-, I_{z1} > \) to \(|\psi_1^+, I_{z2} > \). In a constant transverse field, the magnetization step, associated with incoherent tunneling at the avoided level crossing in zero field, increases very rapidly. It saturates when the barrier is completely transparent. Details of hysteresis loops are in excellent agreement with the level structure of the electronic ground state doublet split by hyperfine interaction in sixteen states. At faster field sweep rates, additional magnetization steps are observed and attributed to cross-spin relaxation and/or spin–phonon transitions in a phonon bottleneck regime. Very diluted Holmium doped LiYF\(_4\) thus is a model system to study tunneling of an electronic moment strongly coupled to its nuclear spin.

We are very grateful to I. Chiorescu, J.C. Vial, and A.K. Zvezdin for discussions and to M.F. Joubert and P. Lejay for on-going collaborations. This work has been supported by DRET, Rhône-Alpes, MASSDOTS ESPRIT, MolNanoMag TMR and AFIRST.

FIG. 5. (a): Hysteresis loops at \(T = 50 \) mK and for \(v = 0.3 \) T/s. Several magnetization steps are observed for resonant values of the applied field \(\mu_0 H_z \approx n \times 23 \) mT [see inset; \(H_n \) values are deduced from Fig. 3(b)]. (b): Derivative of the loop shown in (a) for a decreasing field. The two additional measured steps shown in the inset, for \(n = 8 \) and \(n = 9 \), are associated with cross-spin relaxation only.

[1] A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).
[2] B. Barbara et al., J. Magn. Magn. Mater. 140–144, 1825 (1995); A. Novak and R. Sessoli, in Quantum Tunneling of Magnetization, edited by L. Gunther and B. Barbara, NATO ASI, Ser. E, Vol. 301 (Kluwer, Dordrecht, 1995), p. 171.
[3] L. Thomas et al., Nature 383, 145 (1996); J.R. Friedman et al., Phys. Rev. Lett. 76, 3830 (1996).
[4] C. Sangregorio et al., Phys. Rev. Lett. 78, 4645 (1997); W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).
[5] N.V. Prokof‘ev and P.C.E. Stamp, J. Phys. Condens. Matter 5, L663 (1993); J. Low Temp. Phys. 104, 143 (1996); A. Garg, Phys. Rev. Lett. 74, 1458 (1995).
[6] N.V. Prokof‘ev and P.C.E. Stamp, Rep. Prog. Phys. 63, 669 (2000).
[7] W. Wernsdorfer et al., Phys. Rev. Lett. 84, 2965 (2000).
[8] B. Barbara et al., J. Magn. Magn. Mat. 200, 167 (1999).
[9] I. Tupitsyn and B. Barbara, in Molecules to Materials, edited by J.S. Miller and M. Drillon (Wiley VCH, Weinheim, 2000); cond-mat/0002180.
[10] I. Chiorescu et al., Phys. Rev. Lett. 84, 3454 (2000).
[11] Sh.N. Gifeisman et al., Opt. Spectrosc. (USSR) 44, 68 (1978); N.I. Agladze et al., Phys. Rev. Lett. 66, 477 (1991).
[12] N. Vernier, G. Bellessa, J. Magn. Magn. Mat. 177–181, 962 (1998).
[13] P.E. Hansen et al., Phys. Rev. B 12, 5315 (1975); P. Beauvillain et al., ibid. 18, 3360 (1978); P. Beauvillain, Ph.D. thesis, Université Paris-Sud, 1979.
[14] J. Magarino et al., Phys. Rev. B 13, 2805 (1976).
[15] G. Mennenga et al., J. Magn. Magn. Mater. 44, 59 (1984).
[16] D.H. Reich et al., Phys. Rev. B 42, 4631 (1990).
[17] W. Wu et al., Phys. Rev. Lett. 67, 2076 (1991).
[18] E.R. Thoma et al., J. Phys. Chem. 65, 1906 (1961).
[19] K.W.H. Stevens, Proc. Phys. Soc. (London) A65, 209 (1952).
[20] W. Wernsdorfer et al., Phys. Rev. Lett. 79, 4014 (1997).
[21] J.H. Van Vleck, Phys. Rev. 59, 724 (1941); A. Abragam and B. Bleaney, Electronic Paramagnetic Resonance of...
Transition Ions (Clarendon Press, Oxford, 1970); P.L. Scott and C.D. Jeffries, Phys. Rev. 127, 32 (1962).

[22] J.C. Verstelle and D.A. Curtis, Paramagnetic Relaxation, in Handbuch Der Physik, Magnetismus (Springer-Verlag, Berlin, 1968).

[23] N. Bloembergen et al., Phys. Rev. 114, 445 (1959); K.H. Hellwege et al., Z. Physik. 217, 373 (1968).