Vacancy-ordered Double Perovskites A_2BX_6 ($A = \text{Cs, Pt, Pd, Te, Sn, X = I}$): An Emerging Class of Thermoelectric Materials

Preeti Bhumla,∗ Manjari Jain, Sajjan Sheoran, and Saswata Bhattacharya∗

Department of Physics, Indian Institute of Technology Delhi, New Delhi, India

E-mail: preeti.bhumla@physics.iitd.ac.in[PB]; saswata@physics.iitd.ac.in[SB]

Phone: +91-11-2659 1359
Abstract

Vacancy-ordered double perovskites (A_2BX_6), being one of the environmentally friendly and stable alternatives to lead halide perovskites, have garnered considerable research attention in the scientific community. However, their thermal transport has not been explored much despite their potential applications. Here, we explore A_2BX_6 ($A = \text{Cs, Pd, Te, Sn}, X = \text{I}$) as potential thermoelectric materials using state-of-the-art first-principles methodologies, viz., density functional theory (DFT) combined with many-body perturbation theory (G_0W_0) and spin-orbit coupling (SOC). The phonon dispersion plots and Poisson’s and Pugh’s ratios show the dynamical and mechanical stability of this class of perovskites. The absence of polyhedral connectivity in vacancy-ordered perovskites gives rise to additional degrees of freedom leading to lattice anharmonicity. The presence of anharmonic lattice dynamics leads to strong electron-phonon coupling, which is well captured by Fröhlich mesoscopic model to investigate the interaction of longitudinal optical phonon modes with the carriers that strongly influence the carrier mobility. The lattice anharmonicity is further studied using $ab\ initio$ molecular dynamics simulations and electron localization function. The maximum anharmonicity is observed in Cs_2PtI_6, followed by Cs_2PdI_6, Cs_2TeI_6 and Cs_2SnI_6. Also, the computed average thermoelectric figure of merit (zT) for Cs_2PtI_6, Cs_2PdI_6, Cs_2TeI_6 and Cs_2SnI_6 are 0.88, 0.85, 0.95 and 0.78, respectively, which reveals their promising renewable energy applications.

Graphical TOC Entry
Sustainable and renewable energy sources have become a long-standing aim in fulfilling the shortage of energy globally. Apart from solar energy, waste heat energy converted into electrical energy is a prominent source of renewable energy. To utilize this waste heat effectively, we need efficient thermoelectric materials. Advantageously, the thermoelectric generators are durable, robust, scalable, and compact and do not contain any moving parts. Note that, to have the maximum thermoelectric figure of merit (zT, see below), the material must have a large Seebeck coefficient (α), along with high electrical conductivity (σ) and a low thermal conductivity (κ).

$$zT = \frac{\alpha^2 \sigma T}{\kappa}$$

However, the strong coupling between these parameters with a trade-off relationship is challenging to achieve a high zT in a single system.

Halide-based perovskites have unveiled a paradigm shift in the quest for high-performance materials. This can be attributed to their compositional and structural diversity that enables a wide array of functional properties. More recently, halide perovskites have attracted attention for thermoelectric energy conversion due to their unique structural features and lattice dynamics. Yang et al. reported an ultralow thermal conductivity of 0.5 Wm$^{-1}$K$^{-1}$ in halide perovskite nanowires composed of CsPbI$_3$, CsPbBr$_3$ and CsSnI$_3$. Most of the reported thermoelectric materials, such as SnSe, PbTe, Cu$_2$Se, and BiCuSeO, have low intrinsic lattice thermal conductivity, similar in magnitude to that observed in halide perovskites. This exceptionally low thermal conductivity of halide perovskites, in conjunction with their high carrier mobility, makes them promising for thermoelectric investigations. However, unfortunately, these alluring materials suffer from lead toxicity and long-term instability. These drawbacks have motivated the scientific community to explore alternative perovskite compositions and structures.

One alternative class of materials is the inorganic lead-free double perovskites with the general formula A_2BX_6, commonly known as vacancy-ordered double perovskites. This defect-variant of halide perovskite is derived by doubling the ABX_3 unit cell along all three crystallographic axes.
and removing every alternate B-site cation, as illustrated in Figure 1. These perovskites provide new opportunities for non-toxic and stable replacements of Pb and Sn. Lately, vacancy-ordered double perovskites have been explored in thermoelectrics owing to their ultralow lattice thermal conductivity, which is attributed to their highly anharmonic lattice dynamics.\(^{14,16,31}\)

![Figure 1: Schematic of the relationship between ABX \(_3\) perovskite and A\(_2\)BX\(_6\) (vacancy-ordered) double perovskite.](image)

Motivated by this idea, in this Letter, we have studied the vacancy-ordered double perovskites A\(_2\)BX\(_6\) (A = Cs, B = Pt, Pd, Te, Sn, X = I) using state-of-the-art first-principles based methodologies under the framework of density functional theory (DFT) with suitable exchange-correlation (\(\epsilon_{xc}\)) functionals combined with many-body perturbative approaches (G\(_0\)W\(_0\)) and spin-orbit coupling (SOC). First, we have examined the structural, mechanical and thermodynamic stability of these materials. After that, we have studied the thermoelectric properties, where we find reasonably high \(zT\) values, calculated as a function of temperature \((T)\). Interestingly, we have observed the presence of anharmonic effects, which are quantified by computing both the harmonic and anharmonic energy contribution as a function of temperature in these vacancy-ordered double perovskites. In order to explore further, we have examined the stability and anharmonicity by computing the phonon bandstructures and electron localization function (ELF). The ELF further confirms the presence of anharmonicity in this class of systems. As a consequence, we find that the study of electron-phonon interaction is important. The electron-phonon interaction is well captured by calculating Fröhlich mesoscopic model\(^{32–34}\) to investigate the interaction of longitudinal optical phonon modes with the carriers that strongly influence the carrier mobility.
Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites have a face-centered cubic crystal structure with the space group $Fm\bar{3}m$ (no. 225). Each of the Cs atoms residing between the [BI$_6$] octahedra is surrounded by 12 I atoms. Moreover, each [BI$_6$] octahedra is located such that B atoms are at the corners and face-centered positions. The Cs atoms are situated at the 8c Wyckoff positions and (0.25, 0.25, 0.25) coordinates, B atoms at 4a Wyckoff positions and (0, 0, 0) coordinates, and I atoms at 24e Wyckoff positions and (x, 0, 0) coordinates, where the value of x is around 0.20. The optimized lattice parameters are listed in Table S1 of Supporting Information (SI).

Firstly, we have examined the stability of material as it is an essential factor in achieving a high-performance device applications. In order to predict the structural stability of the vacancy-ordered double perovskites, we have calculated the Goldschmidt tolerance factor (t) and octahedral factor (μ). Recently, a new tolerance factor (τ), proposed by Bartel et al. is also computed and compared for all the considered perovskites (see details in Sec. II in SI). The calculated values show that these perovskites are stable in cubic structures at room temperatures. Besides structural stability, we have also calculated the thermodynamic and mechanical stabilities. For thermodynamic stability, we have calculated the decomposition energy (ΔH_D) as per the following equation:

$$\Delta H_D = E(Cs_2B_1I_6) - 2E(CsI) - E(B_1I_4)$$

where $E(Cs_2B_1I_6)$, $E(CsI)$ and $E(B_1I_4)$ are respectively the total DFT energies of Cs$_2$B$_1$I$_6$, CsI and B$_1$I$_4$. ΔH_D is calculated for all Cs$_2$B$_1$I$_6$ perovskites using Perdew-Burke-Ernzerhof (PBE) and Heyd–Scuseria–Ernzerhof (HSE06) ϵ_{xc} functionals. The values of ΔH_D are negative, indicating the thermodynamic stability of these perovskites. ΔH_D for all the considered perovskites are given in Sec. III of SI.

For the large-scale commercialization of a material, it is important to determine its mechanical properties. This leads to the calculation of elastic constants of the materials by using the finite strain theory. For cubic symmetry, three independent elastic constants viz., C_{11}, C_{12} and C_{44} are...
sufficient to explain the mechanical stability and related properties of the crystal. The corresponding mechanical stability criterion42,43 is given as follows:

\begin{equation}
C_{11} > 0, \ C_{44} > 0, \ C_{11} - C_{12} > 0, \ C_{11} + 2C_{12} > 0
\end{equation}

Using these elastic constants, we can calculate the bulk and shear moduli of all the perovskites. The Voigt bulk (B_V) and shear (G_V) moduli, Reuss bulk (B_R) and shear (G_R) moduli are calculated using the following relations:

\begin{align*}
B_V &= B_R = \frac{(C_{11} + 2C_{12})}{3} \\
G_V &= \frac{(C_{11} - C_{12} + 3C_{44})}{5} \\
G_R &= \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}
\end{align*}

According to Voigt-Reuss-Hill approximations44, Young’s modulus (E) and Poisson’s ratio (ν) are obtained as:

\begin{align*}
B &= \frac{B_V + B_R}{2}, \quad G = \frac{G_V + G_R}{2} \\
E &= \frac{9BG}{3B + G} \\
\nu &= \frac{3B - 2G}{3B + G}
\end{align*}

The calculated elastic constants and moduli are given in Table 1. As we can see, the elastic constants satisfy the stability criteria, indicating the mechanical stability of these vacancy-ordered double perovskites. The fragility of these perovskites is studied in terms of Pugh’s and Poisson’s ratios. Pugh’s ratio (B/G) is the ratio between bulk modulus and shear modulus and is used to identify the ductile materials. If the ratio is found to be greater (or lower) than 1.75, the material is ductile (or brittle) (see Table 1 below). The calculated values of Pugh’s ratio show that the studied vacancy-ordered double perovskites are ductile. Similarly, Poisson’s ratio (ν) can also distinguish
between ductile and brittle materials. For \(\nu \), the limiting value is 0.26. This is consistent with Pugh’s ratio. Also, we have calculated the elastic anisotropy \((A) \) of these materials, given by the equation:

\[
A = \frac{2C_{44}}{C_{11} - C_{12}}
\]

(10)

where \(A \) represents the elastic anisotropy coefficient. The value of \(A \) is equal to 1 for an isotropic crystal. The deviation from this value measures the degree of elastic anisotropy possessed by the crystal. According to the calculated values, all the considered double perovskites are anisotropic in nature.

Table 1: Calculated elastic constants \(C_{ij} \) (GPa), Bulk modulus \(B \) (GPa), Shear modulus \(G \) (GPa), Young’s modulus \(E \), Pugh’s ratio \(B/G \), Poisson’s ratio \(\nu \) and elastic anisotropy \(A \) of vacancy-ordered double perovskites.

Compounds	\(C_{11} \)	\(C_{12} \)	\(C_{44} \)	\(B \)	\(G \)	\(E \)	\(B/G \)	\(\nu \)	\(A \)
Cs\(_2\)PtI\(_6\)	9.58	4.51	3.93	6.20	3.30	8.40	1.88	0.27	1.55
Cs\(_2\)PdI\(_6\)	16.64	8.98	7.36	11.53	5.66	11.39	2.04	0.29	1.92
Cs\(_2\)TeI\(_6\)	20.30	10.55	8.70	13.80	6.90	17.74	2.00	0.29	1.78
Cs\(_2\)SnI\(_6\)	14.36	8.20	6.65	10.25	4.88	12.63	2.10	0.29	2.16

After studying the stability, we have calculated the electronic band gaps (with and without SOC) of the vacancy-ordered double perovskites. Since simple local/semi-local \(\epsilon_{xc} \) functionals (viz. LDA, GGA) are unable to predict the band gaps correctly due to their incapability of capturing the electron’s self-interaction error, we have employed HSE06 \(\epsilon_{xc} \) and many-body perturbation theory \((G_0W_0) \) to calculate the band gaps more accurately. The band gaps of Cs\(_2\)PtI\(_6\), Cs\(_2\)PdI\(_6\), Cs\(_2\)TeI\(_6\) and Cs\(_2\)SnI\(_6\) are 1.35, 1.43, 1.49 and 1.23 eV, respectively. All these perovskites have band gaps in visible region, which expands their scope for energy-harvesting applications. The values of band gaps agree well with the experimental values and are listed in Table 2. Also, the bandstructures, projected density of states (pDOS) and \(k \)-grid convergence data are provided for all perovskites in Sec. IV-VI of SI.

Next, we have calculated the thermoelectric properties of the perovskites using the BoltzTrap
Table 2: Band gaps of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites using different ε_{xc} functionals.

Compounds	PBE	PBE+SOC	HSE06	HSE06+SOC	G_0W_0@PBE	G_0W_0@PBE+SOC	G_0W_0@HSE06+SOC
Cs$_2$PtI$_6$	0.36	0.29	1.07	0.96	1.55	1.3545	-
Cs$_2$PdI$_6$	0.06	0.02	0.62	0.51	0.79	0.59	1.4346
Cs$_2$TeI$_6$	1.14	0.91	1.70	1.4947	2.25	2.12	-
Cs$_2$SnI$_6$	0.09	0.06	0.84	0.70	1.43	1.2313	-

Code48. Figure 2 (a-d) show the Seebeck coefficient (α) as a function of chemical potential (μ) for Cs$_2$BI$_6$ perovskites. α measures the induced thermoelectric voltage (ΔV) in response to a temperature difference (ΔT) across the material, as measured by the Seebeck effect and is given as $\alpha = \Delta V/\Delta T$. From the plot, we can see that at $\mu = 0$, the value of α is positive for Cs$_2$PtI$_6$ and Cs$_2$TeI$_6$ at various temperatures, indicating that these perovskites are p-type semiconductors. The maximum values of α for Cs$_2$PtI$_6$ and Cs$_2$TeI$_6$ are 710 and 190 μV/K, respectively, at 300 K. On the other hand, α is negative for Cs$_2$PdI$_6$ and Cs$_2$SnI$_6$, which indicates the n-type character in these perovskites49. For Cs$_2$PtI$_6$ and Cs$_2$TeI$_6$, the maximum values of α are 148 and 290 μV/K, respectively, at 300 K. Also, we have observed that the value of α decreases with an increase in temperature for all the considered Cs$_2$BI$_6$ perovskites. Subsequently, to calculate the efficiency of material to convert heat into electrical energy, we have calculated the zT as a function of temperature for the vacancy-ordered double perovskites. Figure 2 (e-h) show the zT values at different temperatures for Cs$_2$BI$_6$ perovskites. The computed average zT for Cs$_2$PtI$_6$, Cs$_2$PdI$_6$, Cs$_2$TeI$_6$ and Cs$_2$SnI$_6$ are 0.88, 0.85, 0.95 and 0.78, respectively, which make them promising for thermoelectric applications.

Low thermal conductivity is desirable for efficient thermoelectric materials, which in turn depends on lattice dynamics50,51. Lattice dynamics play a pivotal role in governing materials properties such as thermal conductivity52, ionic and electronic transport53, optical emission54, ferroelectricity55 and superconductivity56. Deviation from harmonic vibrational potential results in high amplitude anharmonic vibrations that introduce vibrational disorder in the system. This results in
significant phonon-phonon scattering, which leads to low thermal conductivities and better thermoelectric performance57–59. To examine this deviation at high temperatures, we have calculated the harmonic (U_h) as well as anharmonic energy (U_{ah}) in vacancy-ordered double perovskites. U_h is calculated under harmonic approximation for all perovskites. To quantify U_{ah} in Cs$_2$BI$_6$ vacancy-ordered double perovskites, we have performed \textit{ab}MD calculations at different temperatures using Nose-Hoover thermostat60. This data is then fed to a post-processing python package pyHMA61, which determines the anharmonic energy (for details, see Sec. VII). Figure 3 (a-d) show the variation of U_{ah} with temperature. As the temperature increases, we observe a deviation from harmonic potential leading to lattice anharmonicity.

The intimate connection between anharmonic lattice dynamics and functional properties motivates a fundamental understanding of anharmonicity in this class of materials. To further assess anharmonicity in our system, we have first examined the dynamical stability by plotting the phonon dispersion band structures of all Cs$_2$BI$_6$ perovskites using density functional perturbation theory (DFPT), as shown in Figure 4 (upper panel). For vacancy-ordered double perovskites, the structural
symmetry confirms 108 phonon modes as they contain 36 atoms per unit cell. Out of these 108 phonon modes, there are 3 acoustic modes, while the remaining modes are optical, characterized as low and high-frequency phonons, respectively. The absence of negative frequencies confirms the dynamical stability of these perovskites. After examining the phonon modes, we try to explore the interaction between atoms of these perovskites. The spatial distribution of the electron density around atom gives the measure of phonon anharmonicity. Therefore, we have computed the ELF to study materials bonding and anharmonicity (see Figure 4 (e-h)). The localization of electrons is estimated by a dimensionless ELF probability density ranging between 0 and 1. As we can see in Figure 4, I draws more charge because of its higher electronegativity in comparison to B atoms. Nevertheless, there is significant charge sharing among B-I bonds due to the small electronegativity difference, indicating the possibility of covalent bonding. On the other hand, no charge is shared between Cs and B/I atoms. However, physical interaction between Cs and [BI₆] octahedra results in nonspherical electron density around Cs and I atoms, which explains the origin of the phonon anharmonicity. This in turn increases the phonon scattering followed by suppression of the value of $\kappa^{58,59}$.

Anharmonic lattice dynamics give rise to stronger electron-phonon coupling in the material as electrons interact with lattice vibrations via the formation of polarons62,63. To study these electron-phonon interactions, we have calculated the electron-phonon coupling strength using Fröhlich’s polaron model34. The dimensionless Fröhlich electron-phonon coupling parameter (α) measures
The electron-phonon coupling strength of the material and is given as:

$$\alpha = \frac{1}{4\pi\varepsilon_0} \frac{1}{2} \left(\frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_{\text{static}}} \right) \frac{e^2}{\hbar \omega_{\text{LO}}} \left(\frac{2m^* \omega_{\text{LO}}}{\hbar} \right)^{1/2}$$

(11)

The α depends on the material-specific properties, viz., optical (ε_∞) and static ($\varepsilon_{\text{static}}$) dielectric constants, permittivity of free space (ε_0), the effective carrier mass (m^*) (for calculation of effective mass, see Sec. VIII in SI), and a characteristic longitudinal phonon angular frequency (ω_{LO}). For a system having multiple phonon branches, an average LO frequency is calculated by considering all the infrared active optical phonon branches and taking a spectral average of them. The values of α for Cs$_2$Bi$_6$ perovskites are listed in Table 3 and follow the order: Cs$_2$PtI$_6$ > Cs$_2$PdI$_6$ > Cs$_2$TeI$_6$ > Cs$_2$SnI$_6$. The ELF and strong electron-phonon coupling validate the presence of anharmonicity in our considered perovskites. Also, the heavy atoms present in the system act as phonon rattlers and help suppress the lattice thermal conductivity effectively. This leads to their effective utilization in
high-performance thermoelectric device applications.

Table 3: Calculated polaron parameters for Cs$_2$BI$_6$ perovskites.

Compounds	w_{LO}	ε_e	ε_∞	m_e^*	α_e
Cs$_2$PtI$_6$	1.74	3.41	4.55	0.49	2.24
Cs$_2$PdI$_6$	1.62	2.80	3.30	0.47	1.81
Cs$_2$TeI$_6$	4.26	3.59	5.55	0.40	1.73
Cs$_2$SnI$_6$	3.52	2.67	3.46	0.33	1.50

In summary, we have carried out an exhaustive study to investigate the structural, elastic and thermoelectric properties of A$_2$BX$_6$ (A = Cs, B = Pt, Pd, Te, Sn, X = I) vacancy-ordered perovskites under the framework of density functional theory. The Pugh’s and Poisson’s ratios (determined using Voigt-Reuss-Hill average approximation) show the ductile nature of the perovskites. Also, the negative formation energies and phonon band structures confirm the stability of these perovskites. The band gaps calculated using different ε_{xc} functionals appear in visible region, which is advantageous for energy-harvesting properties. After that, we have calculated the Seebeck coefficient as a function of chemical potential. The zT values for Cs$_2$PtI$_6$, Cs$_2$PdI$_6$, Cs$_2$TeI$_6$ and Cs$_2$SnI$_6$ are 0.88, 0.85, 0.95 and 0.78, respectively, which show that these perovskites are promising for thermoelectric applications. To examine the role of anharmonicity in these materials, we have plotted the ELF for these perovskites, which indicates the presence of lattice anharmonicity. Subsequently, we have calculated the harmonic and anharmonic energy in this class of materials. As a result of anharmonicity, these compounds have strong electron-phonon coupling and the strength of this coupling is quantified using Fröhlich’s polaron model. The phonon-phonon scattering owing to the presence of anharmonicity and heavy atoms acting as phonon rattlers results in low thermal conductivity and better thermoelectric properties.
Computational Methods

All the DFT calculations have been performed using the Vienna \textit{ab initio} simulation package (VASP)65,66. The ion-electron interactions in all the elemental constituents are described using the projector augmented wave (PAW)67,68 method as implemented in VASP. The structural optimization is performed using generalized gradient approximation (PBE) and optB86 ε_{xc} functional, relaxing all ions until Hellmann-Feynman forces are less than 0.001 eV/Å. The cutoff energy of 600 eV is used for the plane wave basis set such that the total energy calculations are converged within 10^{-5} eV. The Γ-centered $4 \times 4 \times 4$ k-grids are used to sample the Brillouin zones. The band gaps are calculated using hybrid ε_{xc} functional (HSE06) and many-body perturbation theory. Note that the single-shot GW ($G_0W_0$69,70) calculations have been performed on top of the orbitals obtained from PBE+SOC/HSE06+SOC ε_{xc} functional [$G_0W_0@PBE+SOC/HSE06+SOC$]. The number of bands is set to four times the number of occupied bands. The polarizability calculations are performed on a grid of 50 frequency points. The effective mass is calculated by SUMO71 using a parabolic fitting of the band edges. The phonon calculations are performed for $2 \times 2 \times 2$ supercells using the PHONOPY package72,73. The BoltzTrap Code, based on Boltzmann transport theory is used to evaluate thermoelectric properties. The self-consistent process described by Hellwarth is used to calculate the electron-phonon coupling strength33. Static dielectric constants are calculated using density functional perturbation theory (DFPT) with a denser k-grid ($6 \times 6 \times 6$). To calculate the anharmonic energy, we have carried out \textit{ab initio} molecular dynamics (aiMD) simulation employing Nose-Hoover thermostat and pyHMA package.

Acknowledgement

P.B. acknowledges UGC, India, for the senior research fellowship [grant no. 1392/(CSIR-UGC NET JUNE 2018)]. M.J. acknowledges CSIR, India, for the senior research fellowship [Grant No. 09/086(1344)/2018-EMR-I]. S.S. acknowledges CSIR, India, for the senior research fellowship [grant no. 09/086(1432)/2019-EMR-I]. S.B. acknowledges financial support from SERB under a
core research grant (Grant No. CRG/2019/000647) to set up his High Performance Computing (HPC) facility “Veena” at IIT Delhi for computational resources.

Supporting Information Available

See supplementary material for the details of optimized lattice parameters, Goldschmidt tolerance factor (t), octahedral factor (μ) and new tolerance factor (τ), decomposition energy (ΔH_D), band-structures, projected density of states (pDOS) of Cs$_2$BI$_6$ perovskites, k-grid convergence, effective mass of Cs$_2$BI$_6$ perovskites and anharmonic energy of Cs$_2$BI$_6$ vacancy-ordered perovskites.

References

(1) Ajia, I. A.; Edwards, P. R.; Pak, Y.; Belekov, E.; Roldan, M. A.; Wei, N.; Liu, Z.; Martin, R. W.; Roqan, I. S. Generated carrier dynamics in V-pit-enhanced InGaN/GaN light-emitting diode. *ACS Photonics* 2017, 5, 820–826.

(2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. *Journal of the american chemical society* 2009, 131, 6050–6051.

(3) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. *Nature* 2013, 499, 316–319.

(4) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. *Science* 2014, 345, 542–546.

(5) Tan, G.; Zhao, L.-D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. *Chemical reviews* 2016, 116, 12123–12149.
(6) Jing, Z.; Wang, H.; Feng, X.; Xiao, B.; Ding, Y.; Wu, K.; Cheng, Y. Superior thermoelectric performance of ordered double transition metal MXenes: Cr$_2$TiC$_2$T$_2$ (T=OH or-F). *The Journal of Physical Chemistry Letters* 2019, 10, 5721–5728.

(7) Mukhopadhyay, S.; Reinecke, T. L. Lone-pair electron-driven thermoelectrics at room temperature. *The Journal of Physical Chemistry Letters* 2019, 10, 4117–4122.

(8) Goldsmid, H. J., et al. *Introduction to thermoelectricity*; Springer, 2010; Vol. 121.

(9) Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. *Advanced materials* 2017, 29, 1605884.

(10) Xie, H.; Su, X.; Bailey, T. P.; Zhang, C.; Liu, W.; Uher, C.; Tang, X.; Kanatzidis, M. G. Anomalously large Seebeck coefficient of CuFeS$_2$ derives from large asymmetry in the energy dependence of carrier relaxation time. *Chemistry of Materials* 2020, 32, 2639–2646.

(11) Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. *Advanced Materials* 2019, 31, 1803230.

(12) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. *Inorganic chemistry* 2013, 52, 9019–9038.

(13) Maughan, A. E.; Ganose, A. M.; Bordelon, M. M.; Miller, E. M.; Scanlon, D. O.; Neilson, J. R. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs$_2$SnI$_6$ and Cs$_2$TeI$_6$. *Journal of the American Chemical Society* 2016, 138, 8453–8464.

(14) Acharyya, P.; Ghosh, T.; Pal, K.; Kundu, K.; Singh Rana, K.; Pandey, J.; Soni, A.; Waghmare, U. V.; Biswas, K. Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs$_2$PbI$_2$Cl$_2$: localized anharmonic vibrations and dynamic octahedral distortions. *Journal of the American Chemical Society* 2020, 142, 15595–15603.
(15) Lee, W.; Li, H.; Wong, A. B.; Zhang, D.; Lai, M.; Yu, Y.; Kong, Q.; Lin, E.; Urban, J. J.; Grossman, J. C. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proceedings of the National Academy of Sciences 2017, 114, 8693–8697.

(16) Xie, H.; Hao, S.; Bao, J.; Slade, T. J.; Snyder, G. J.; Wolverton, C.; Kanatzidis, M. G. All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity. Journal of the American Chemical Society 2020, 142, 9553–9563.

(17) Haque, M. A.; Kee, S.; Villalva, D. R.; Ong, W.-L.; Baran, D. Halide perovskites: thermal transport and prospects for thermoelectricity. Advanced Science 2020, 7, 1903389.

(18) Jin, H.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P.-C.; Yang, C.; Li, N.; Liu, Z.; He, J. H.; Zhu, T. et al. Hybrid organic–inorganic thermoelectric materials and devices. Angewandte Chemie International Edition 2019, 58, 15206–15226.

(19) Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. nature 2014, 508, 373–377.

(20) Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

(21) Fu, J.; Su, X.; Xie, H.; Yan, Y.; Liu, W.; You, Y.; Cheng, X.; Uher, C.; Tang, X. Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. Nano Energy 2018, 44, 53–62.

(22) Biswas, K.; He, J.; Blum, I. D.; Wu, C.-I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.
(23) Pei, Y.; May, A. F.; Snyder, G. J. Self-tuning the carrier concentration of PbTe/Ag\textsubscript{2}Te composites with excess Ag for high thermoelectric performance. *Advanced Energy Materials* 2011, *1*, 291–296.

(24) Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. *Nature* 2011, *473*, 66–69.

(25) Yang, Y.; Taggart, D. K.; Cheng, M. H.; Hemminger, J. C.; Penner, R. M. High-throughput measurement of the Seebeck coefficient and the electrical conductivity of lithographically patterned polycrystalline PbTe nanowires. *The Journal of Physical Chemistry Letters* 2010, *1*, 3004–3011.

(26) Bailey, T. P.; Hui, S.; Xie, H.; Olvera, A.; Poudre, P. F.; Tang, X.; Uher, C. Enhanced ZT and attempts to chemically stabilize Cu\textsubscript{2}Se via Sn doping. *Journal of Materials Chemistry A* 2016, *4*, 17225–17235.

(27) Li, Z.; Xiao, C.; Fan, S.; Deng, Y.; Zhang, W.; Ye, B.; Xie, Y. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. *Journal of the American Chemical Society* 2015, *137*, 6587–6593.

(28) Yang, D.; Su, X.; Yan, Y.; Hu, T.; Xie, H.; He, J.; Uher, C.; Kanatzidis, M. G.; Tang, X. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxysalogenide Bi\textsubscript{1−x}Pb\textsubscript{x}CuSeO. *Chemistry of Materials* 2016, *28*, 4628–4640.

(29) Qian, X.; Gu, X.; Yang, R. Lattice thermal conductivity of organic-inorganic hybrid perovskite CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3}. *Applied Physics Letters* 2016, *108*, 063902.

(30) Saxena, M.; Roy, P.; Acharya, M.; Bose, I.; Tanwar, K.; Maiti, T. Enhanced thermoelectric figure-of-merit in environmentally benign Ba\textsubscript{x}Sr\textsubscript{2−x}TiCoO\textsubscript{6} double perovskites. *Applied Physics Letters* 2016, *109*, 263903.
(31) Klarbring, J.; Hellman, O.; Abrikosov, I. A.; Simak, S. I. Anharmonicity and ultralow thermal conductivity in lead-free halide double perovskites. *Physical Review Letters* 2020, 125, 045701.

(32) Feynman, R. P.; Hellwarth, R. W.; Iddings, C. K.; Platzman, P. M. Mobility of slow electrons in a polar crystal. *Physical Review* 1962, 127, 1004.

(33) Frost, J. M. Calculating polaron mobility in halide perovskites. *Physical Review B* 2017, 96, 195202.

(34) Fröhlich, H. Electrons in lattice fields. *Advances in Physics* 1954, 3, 325–361.

(35) Goldschmidt, V. M. Die gesetze der krystallochemie. *Naturwissenschaften* 1926, 14, 477–485.

(36) Travis, W.; Glover, E.; Bronstein, H.; Scanlon, D.; Palgrave, R. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. *Chemical Science* 2016, 7, 4548–4556.

(37) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. *Science advances* 2019, 5, eaav0693.

(38) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865–3868.

(39) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. *The Journal of chemical physics* 2003, 118, 8207–8215.

(40) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. *The Journal of chemical physics* 2006, 125, 224106.
(41) Murnaghan, F. D. Finite deformations of an elastic solid. *American Journal of Mathematics* 1937, 59, 235–260.

(42) Hart, G. L.; Beckstein, O.; Klepeis, J.; Pankratov, O. First-principles elastic constants and electronic structure of \(\alpha \)-Pt\(_2\)Si and PtSi. 2001,

(43) Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. *Physical review B* 2014, 90, 224104.

(44) Voigt, W. Lehrbuch der Kristallphysik, 1910. *Leipzig etrived, Nov 2016*, 29.

(45) Yang, S.; Wang, L.; Zhao, S.; Liu, A.; Zhou, Y.; Han, Q.; Yu, F.; Gao, L.; Zhang, C.; Ma, T. Novel lead-free material Cs\(_2\)PtI\(_6\) with narrow bandgap and ultra-stability for its photovoltaic application. *ACS Applied Materials & Interfaces* 2020, 12, 44700–44709.

(46) Zhou, L.; Liao, J.-F.; Huang, Z.-G.; Wang, X.-D.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. All-inorganic lead-free Cs\(_2\)PdX\(_6\) (X= Br, I) perovskite nanocrystals with single unit cell thickness and high stability. *ACS Energy Letters* 2018, 3, 2613–2619.

(47) Peresh, E. Y.; Zubaka, O.; Sidei, V.; Barchii, I.; Kun, S.; Kun, A. Preparation, stability regions, and properties of M2TeI\(_6\) (M= Rb, Cs, Tl) crystals. *Inorganic materials* 2002, 38, 859–863.

(48) Madsen, G. K.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. *Computer Physics Communications* 2006, 175, 67–71.

(49) Bhui, A.; Ghosh, T.; Pal, K.; Singh Rana, K.; Kundu, K.; Soni, A.; Biswas, K. Intrinsically Low Thermal Conductivity in the n-Type Vacancy-Ordered Double Perovskite Cs\(_2\)SnI\(_6\): Octahedral Rotation and Anharmonic Rattling. *Chemistry of Materials* 2022, 34, 3301–3310.

(50) Graff, A.; Amouyal, Y. Reduced thermal conductivity in niobium-doped calcium-manganate compounds for thermoelectric applications. *Applied Physics Letters* 2014, 105, 181906.
(51) Chen, W.; Li, J. Origin of the low thermal conductivity of the thermoelectric material β-Zn$_4$Sb$_3$: An ab initio theoretical study. *Applied Physics Letters* **2011**, *98*, 241901.

(52) Dugdale, J.; MacDonald, D. Lattice thermal conductivity. *Physical Review* **1955**, *98*, 1751.

(53) Muy, S.; Bachman, J. C.; Giordano, L.; Chang, H.-H.; Abernathy, D. L.; Bansal, D.; Delaire, O.; Hori, S.; Kanno, R.; Maglia, F. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. *Energy & Environmental Science* **2018**, *11*, 850–859.

(54) Vibronic spectra and lattice dynamics of Cs$_2$MnF$_6$ and A$_{12}$MIVF$_6$: MnF$_2$$^{6-}$, author=Chodos, SL and Black, AM and Flint, CD, journal=The Journal of Chemical Physics, volume=65, number=11, pages=4816–4824, year=1976, publisher=American Institute of Physics.

(55) Lee, C.; Yang, W.; Parr, R. Phys. Rev. B: Condens. Matter Mater. Phys. **1988**,.

(56) Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of superconductivity. *Physical review* **1957**, *108*, 1175.

(57) Jana, M. K.; Biswas, K. Crystalline solids with intrinsically low lattice thermal conductivity for thermoelectric energy conversion. *ACS Energy Letters* **2018**, *3*, 1315–1324.

(58) Katsnelson, M. Lattice dynamics: Anharmonic effects. *Encyclopedia of Condensed Matter Physics (Elsevier, Amsterdam etc., 2005), ed. by GF Bassani, GL Liedl, and P. Wyder* **2005**, 77.

(59) Paul, S.; Karak, S.; Mathew, A.; Ram, A.; Saha, S. Electron-phonon and phonon-phonon anharmonic interactions in 2H-MoX$_2$ (X= S, Te): A comprehensive resonant Raman study. *Physical Review B* **2021**, *104*, 075418.

(60) Evans, D. J.; Holian, B. L. The nose–hoover thermostat. *The Journal of chemical physics* **1985**, *83*, 4069–4074.
(61) Moustafa, S. G.; Purohit, A.; Schultz, A. J.; Kofke, D. A. pyHMA: A VASP post-processor for precise measurement of crystalline anharmonic properties using harmonically mapped averaging. *Computer Physics Communications* **2021**, *258*, 107554.

(62) Wang, W.; Sun, J.; Li, B.; He, J. Dynamical instability, strong anharmonicity and electron-phonon coupling in KOs$_2$O$_6$: First-principles calculations. *AIP Advances* **2017**, *7*, 095221.

(63) Leveillee, J.; Volonakis, G.; Giustino, F. Phonon-limited mobility and electron–phonon coupling in lead-free halide double perovskites. *The Journal of Physical Chemistry Letters* **2021**, *12*, 4474–4482.

(64) Hellwarth, R. W.; Biaggio, I. Mobility of an electron in a multimode polar lattice. *Physical Review B* **1999**, *60*, 299.

(65) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. *Physical review B* **1993**, *47*, 558.

(66) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical review B* **1996**, *54*, 11169.

(67) Blöchl, P. E. Projector augmented-wave method. *Physical review B* **1994**, *50*, 17953.

(68) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical review B* **1999**, *59*, 1758.

(69) Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. *Physical Review* **1965**, *139*, A796.

(70) Hybertsen, M. S.; Louie, S. G. First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. *Physical review letters* **1985**, *55*, 1418.

(71) Ganose, A. M.; Jackson, A. J.; Scanlon, D. O. sumo: Command-line tools for plotting and analysis of periodic* ab initio* calculations. *Journal of Open Source Software* **2018**, *3*, 717.
(72) Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl$_2$-type SiO$_2$ at high pressures. *Physical Review B* **2008**, *78*, 134106.

(73) Togo, A.; Tanaka, I. First principles phonon calculations in materials science. *Scripta Materialia* **2015**, *108*, 1–5.
Vacancy-ordered Double Perovskites A_2BX_6 ($\text{A} = \text{Cs}, \text{B} = \text{Pt, Pd, Te, Sn}, \text{X} = \text{I}$): An Emerging Class of Thermoelectric Materials

Preeti Bhumla,* Manjari Jain, Sajjan Sheoran, and Saswata Bhattacharya*

Department of Physics, Indian Institute of Technology Delhi, New Delhi, India

E-mail: preeti.bhumla@physics.iitd.ac.in[PB]; saswata@physics.iitd.ac.in[SB]

Phone: +91-11-2659 1359. Fax: +91-11-2658 2037
Supplemental Material

I. Lattice parameters of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

II. Goldschmidt tolerance factor (t), octahedral factor (μ) and new tolerance factor (τ) of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

III. Decomposition energy (ΔH_D) of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

IV. Bandstructures of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

V. Projected density of states (pDOS) of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

VI. k-grid convergence in Cs$_2$TeI$_6$ vacancy-ordered double perovskite

VII. Calculation of harmonic (U_h) and anharmonic energy (U_{ah}) in Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

VIII. Effective mass calculation of Cs$_2$PtI$_6$ vacancy-ordered double perovskite
I. Lattice parameters of Cs_2BI_6 (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

Table S1: Calculated lattice parameters (Å) of Cs_2BI_6 (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites using different ϵ_{xc} functionals.

Compounds	Expt.	PBE	PBE-vdW	optB86-vdW
Cs_2PtI_6	11.37	11.74	11.47	11.29
Cs_2PdI_6	11.33	11.67	11.42	11.23
Cs_2TeI_6	11.70	12.06	11.87	11.65
Cs_2SnI_6	11.65	12.00	11.82	11.57

Table S1 shows the lattice parameters of vacancy-ordered double perovskites calculated using PBE and optB86 ϵ_{xc} functionals along with van der Waals (vdW) forces. The optB86-vdW ϵ_{xc} functional reproduces the lattice parameters of considered vacancy-ordered double perovskites close to experimental ones.
II. Goldschmidt tolerance factor (t), octahedral factor (μ) and new tolerance factor (τ) of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

Goldschmidt tolerance factor (t) and octahedral factor (μ) are given as:

$$ t = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)} $$
$$ \mu = \frac{r_B}{r_X} $$

(1)

where r_A, r_B, and r_X are the Shannon ionic radii1 for A$^+$, B$^{4+}$ and X$^-$ ions, respectively. For stable cubic perovskites, the ranges of t and μ are $0.8 \leq t \leq 1.0$ and $0.29 \leq \mu \leq 0.55$. The calculated values in Table S2 show that the considered perovskites are stable in cubic structures at room temperatures.

Recently, Bartel et al. have reported a new tolerance factor (τ)2 to predict the stability of a perovskite, which is given as:

$$ \tau = \frac{r_X}{r_B} - n_A \left(n_A - \frac{r_A/r_B}{\ln(r_A/r_B)} \right) $$

(2)

where n_A is the oxidation state of A, r_i is the ionic radius of ion i, $r_A < r_B$ by definition and $\tau < 4.18$ indicates perovskite (92% accuracy). Since the range of τ is calculated for ABX$_3$ and A$_2$BB$'$X$_6$ double perovskites, this may deviate for vacancy-ordered double perovskites (due to defects).
Table S2: Goldschmidt tolerance factor (t), octahedral factor (μ) and new tolerance factor (τ) of vacancy-ordered double perovskites

Compounds	t	μ	τ
Cs$_2$PtI$_6$	0.28	1.00	5.25
Cs$_2$PdI$_6$	0.28	1.01	5.31
Cs$_2$TeI$_6$	0.44	0.91	4.19
Cs$_2$SnI$_6$	0.31	0.99	4.90

III. Decomposition energy (ΔH_D) of Cs$_2$BI$_6$ ($B = $ Pt, Pd, Te, Sn) vacancy-ordered double perovskites

Reactions for decomposition of Cs$_2$BI$_6$ vacancy-ordered double perovskites:

 Cs$_2$PtI$_6$ \rightarrow 2CsI + PtI$_4$
 Cs$_2$PdI$_6$ \rightarrow CsI$_3$ + PdI$_2$ + CsI
 Cs$_2$TeI$_6$ \rightarrow 2CsI + TeI$_4$
 Cs$_2$SnI$_6$ \rightarrow 2CsI + SnI$_4$

The values of ΔH_D are listed in Table S3. The negative values confirm the thermodynamic stability of these vacancy-ordered double perovskites (see Figure S1).

Table S3: ΔH_D of Cs$_2$BI$_6$ perovskites using PBE and HSE06 ϵ_{xc} functionals

Compounds	ΔH_D (eV/atom) (PBE)	ΔH_D (eV/atom) (HSE06)
Cs$_2$PtI$_6$	-0.60	-0.74
Cs$_2$PdI$_6$	-0.02	-0.13
Cs$_2$TeI$_6$	-1.07	-1.14
Cs$_2$SnI$_6$	-0.34	-0.42
Figure S1: ΔH_D of (a) Cs$_2$PtI$_6$ (b) Cs$_2$PdI$_6$ (c) Cs$_2$TeI$_6$ and (d) Cs$_2$SnI$_6$ vacancy-ordered double perovskites.

IV. Bandstructures of Cs$_2$BI$_6$ ($B = \text{Pt, Pd, Te, Sn}$) vacancy-ordered double perovskites

Figure S2: Bandstructures of (a) Cs$_2$PtI$_6$ (b) Cs$_2$PdI$_6$ (c) Cs$_2$TeI$_6$ and (d) Cs$_2$SnI$_6$ vacancy-ordered double perovskites, calculated using HSE06+SOC ϵ_{xc} functional.

The bandstructures for Cs$_2$PtI$_6$, Cs$_2$PdI$_6$, Cs$_2$TeI$_6$ and Cs$_2$SnI$_6$ are calculated using HSE06+SOC ϵ_{xc} functional (see Figure S2) and the band gaps of these perovskites are 0.96, 0.79, 2.25 and 1.43 eV, respectively.
V. Projected density of states (pDOS) of Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

Figure S3: Projected density of states (pDOS) of (a) Cs$_2$PtI$_6$ (b) Cs$_2$PdI$_6$ (c) Cs$_2$TeI$_6$ and (d) Cs$_2$SnI$_6$ vacancy-ordered double perovskites, calculated using HSE06+SOC ϵ_{xc} functional.

Figure S3 shows the pDOS of all four vacancy-ordered double perovskites. The valence band maxima (VBM) of these perovskites are mostly dominated by I-p orbitals while conduction band minima (CBm) are contributed by I-p orbitals along with Pt-d, Pd-d, Te-p and Sn-s orbitals in Cs$_2$PtI$_6$, Cs$_2$PdI$_6$, Cs$_2$TeI$_6$ and Cs$_2$SnI$_6$, respectively. Also, the VBM is composed of Pt-d, Pd-d and Te-s orbitals in Cs$_2$PtI$_6$, Cs$_2$PdI$_6$ and Cs$_2$TeI$_6$, respectively. The CBm is also composed of Pt-d, Pd-d, Te-p and Sn-p orbitals in Cs$_2$PtI$_6$, Cs$_2$PdI$_6$, Cs$_2$TeI$_6$ and Cs$_2$SnI$_6$, respectively. There is a strong hybridization of Te-p and I-p orbitals in Cs$_2$TeI$_6$ and Sn-s and I-p orbitals in Cs$_2$SnI$_6$.

S7
VI. k-grid convergence in Cs_2TeI_6 vacancy-ordered double perovskite

Figure S4: Imaginary (Im(ε)) and real (Re(ε)) part of dielectric function for Cs_2TeI_6 vacancy-ordered double perovskite using PBE ϵ_{xc} functional.

Fig. S4 (a) and (b) show the variation of imaginary (Im(ε)) and real part (Re(ε)) of dielectric function for Cs_2TeI_6 vacancy-ordered double perovskite. On increasing k-grid, no shift is observed in first peak position of Im(ε) part of dielectric function. Hence, $4 \times 4 \times 4$ k-grid is sufficient to compute quasi particle (G_0W_0) band gap.
VII. Calculation of harmonic (U_h) and anharmonic energies (U_{ah}) in Cs$_2$BI$_6$ (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites

Harmonic energy (U_h) is calculated as per the following equation:

$$U_h = \sum_i \frac{h\nu_i}{2} + \sum_i k_B T \ln\left[1 - \exp\left(\frac{h\nu_i}{k_B T}\right)\right]$$

(3)

where k_B, h, and T are respectively the Boltzmann constant, Planck constant, and temperature. ν_i represent frequencies of vibration which we get from vibration calculation in VASP.

To calculate the anharmonic energy, we have performed aiMD calculations at 250 K, 500 K, 750 K, 1000 K, 1250 K, 1500 K, 1750 K and 2000 K temperatures using Nose-Hoover thermostat with time and time-step being 8 ps and 1 fs, respectively. This data is then supplied to a post-processing python package pyHMA,3 which determines the anharmonic energy according to the relation:

$$U_{ah} = \langle U + \frac{1}{2} \mathbf{F} \cdot \Delta \mathbf{r} \rangle - U_{lat}$$

(4)

where the \mathbf{F} vector represents the forces on all atoms, and $\Delta \mathbf{r}$ are the displacements of each atom from its lattice (equilibrium) site. The pyHMA package reads MD data from output file (vasprun.xml) to compute anharmonic energy. The package can be downloaded from the development version on GitHub.
VIII. Effective mass calculation of Cs\(_2\)PtI\(_6\) vacancy-ordered double perovskite

Calculation of effective masses using SUMO package.

Electron effective masses:

\[m_e : 0.491 \mid \text{band 284} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.50, 0.50] \, (L) \]

\[m_e : 0.489 \mid \text{band 284} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.00, 0.50] \, (X) \]

\[m_e : 0.491 \mid \text{band 285} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.50, 0.50] \, (L) \]

\[m_e : 0.489 \mid \text{band 285} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.00, 0.50] \, (X) \]

\[m_e : 0.491 \mid \text{band 286} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.50, 0.50] \, (L) \]

\[m_e : 0.489 \mid \text{band 286} \mid [0.00, 0.00, 0.00] \, (\Gamma) \rightarrow [0.50, 0.00, 0.50] \, (X) \]

To calculate the average electron mass at \(\Gamma \)-point, we have taken the average of masses along \(\Gamma \rightarrow L \) and \(\Gamma \rightarrow X \) directions.

Average effective electron mass = 0.49 \(m_0 \)
References

(1) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography* 1976, 32, 751–767.

(2) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. *Science advances* 2019, 5, eaav0693.

(3) Moustafa, S. G.; Purohit, A.; Schultz, A. J.; Kofke, D. A. pyHMA: A VASP post-processor for precise measurement of crystalline anharmonic properties using harmonically mapped averaging. *Computer Physics Communications* 2021, 258, 107554.