Alanine Scanning of Cucumber Mosaic Virus (CMV) 2B Protein Identifies Different Positions for Cell-To-Cell Movement and Gene Silencing Suppressor Activity

Katalin Nemes1,2, Ákos Gellért3, Ervin Balázs3, Katalin Salánki1,4*

1 Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary, 2Department of Plant Pathology, Corvinus University of Budapest, Budapest, Hungary, 3Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences Department of Applied Genomics, Martonvásár, Hungary, 4Agricultural Biotechnology Center, Gödöllő, Hungary

Abstract

The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa) to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA) overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA), and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RVH/70-72/AAA), which are not essential for suppressor activity.

Introduction

The genome of plant viruses is quite limited coding only a few genes. In consequence each gene has multiple functions. For example the genome of Cucumber mosaic virus (CMV) belonging to the Cucumovirus genus codes only five proteins and among them the smallest one is the 2b protein which has roles in symptom induction [1], virus movement and evasion of the defense mechanism mediated by salicylic acid [2] [3] and jasmonic acid [4]. The 2b protein could also suppress the antiviral RNA silencing; it was among the first viral proteins described as an RNA silencing suppressor [5].

RNA silencing mediated by short-interfering RNAs (siRNAs) is a potent antiviral defense mechanism, and many plant viruses encode viral suppressors of RNA silencing (VSRs), although there is great diversity in the mode of action [6]. 2b protein is unique among the known plant and animal VSRs because it directly interacts with both the RNA and protein components of the RNA silencing machinery [7]–[11]. The 2b protein of CMV and Tomato aspermy virus (TAV), which also belongs to the Cucumovirus genus binds duplex siRNA in vitro [8]–[10] and TAV 2b proteins form dimers as it was demonstrated previously by immunoblot analysis in infected plants [12]. The crystal structure of the N-terminal 69 amino acids of TAV 2b, which region has a highly conserved amino acid (aa) sequence among cucumoviral 2b proteins [13], forms a dsRNA binding domain folded into two long helices connected by a short linker [8] [14]. The siRNA binding has a similar mechanism as it was described in the case of Carnation Italian ringspot virus P19 [15]. The length of siRNA duplexes is measured by a pair of hook-like structures that depend on a Trp residue (Trp-50) of the C-terminal-helix, which, however, is not conserved in other cucumoviral 2b proteins [13] [14]. The 2b protein of CMV is active in vivo to suppress the RNA-dependent RNA polymerase 6 (RDR6) dependent RNA silencing that targets both the infecting CMV and the transgenes either in stable transgenic plants or delivered transiently by Agrobacterium tumefaciens coinfiltration in Nicotiana benthamiana [16]–[18]. 2b binds ARGOANTE1 (AGO1) [9] [7], which is an RNA ‘slicer’ enzyme known to be involved in plant antiviral RNA silencing [19] [20]. The interaction of CMV 2b and ARGOANTE4 (AGO4) from Arabidopsis has been demonstrated in vitro and in vivo by co-immunoprecipitation and bimolecular fluorescence complementation assays, which are consistent with the observed activity of CMV 2b to suppress the in vitro slicer activity of AGO4 [9] [10]. Intriguingly, although the positive-strand RNA genome of CMV replicates exclusively in the cytoplasm, 2b is predominantly localized to the nucleus by single
or double nuclear localization signals (NLSs) in subgroup II and I strains of CMV, respectively [21] [22].

The 2b proteins of different CMV strains and other cucumoviruses share a number of conserved amino acid sequence motives, suggesting important roles in protein functions. A number of these motives were identified previously and different functional domains were identified and characterized like nuclear localization signals (NLS), RNA binding domain (overlapping the NLSs), putative phosphorylation sites, as well as the N and C termini (involved in DNA binding) [23] [21] [24] [25]. Since systematic analysis of the 2b protein was not carried out previously, we analyzed the effect of mutations entirely along the 2b protein in the viral infection cycle.

Results

Construction the alanine scanning mutants of the 2b protein

Alanine scanning is simple and widely used technique determining the functional role of protein residues [26]. We intended to replace three consecutive amino acids of CMV 2b protein to alanine. Since the carboxy terminal region of the 2a protein overlaps with the amino terminal part of the 2b protein, first a STOP codon was introduced into the infectious clone of RNA2 into the 2a protein ORF just preceding the start codon of 2b protein. The resulting clone (Rs2-2a777 CMV) coded for a truncated 2a protein missing the 80 carboxy terminal aas and a full length 2b protein. The infectivity and the stability of the mutant transcript in the presence of the wild type RNA 1 and 3 was monitored on Nicotiana clevelandii plants by RT/PCR and nucleotide sequence determination for a six week period after infection. The mutation retained during this period, and no alteration of the symptom phenotype has been observed between Rs2-2a777 and the wild-type virus (WT: Rs2-2a777) (Fig. 1A, B). These results proved that the truncation of the carboxy terminal 80 amino acids of the 2a protein can be deleted without changing the infection phenotype on this host.

For construction the alanine scanning mutants we used the pRs2-2a777 clone. Altogether 37 mutants were constructed replacing the three consecutive aas of the 2b protein by alanine. Name of the constructs indicate the original amino acids and the position of the exchange in the 2b protein sequence (for example MEL/1-3/AAA, NVG/4-6/AAA, etc.).

In vivo characterization of 2b protein mutants

The wild-type (WT: Rs2-2a777) and mutated RNA2 in vitro transcripts were combined as appropriate with in vitro synthesized Rs-CMV RNAs 1 and 3 transcripts for inoculation of Nicotiana clevelandii and Chenopodium murale plants. The development of symptoms was monitored for thirty days period after the inoculation.

The majority of the mutant viruses caused similar symptoms as the original Rs-CMV on Nicotiana clevelandii (Fig. 2). In four cases symptoms were not emerged during the thirty days of the monitoring period (MEL/1-3/AAA, NVE/10-12/AAA, SPS/40-42/AAA, HRV/70-72/AAA), and in the case of four further constructs (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, LPF/55-57/AAA) the symptoms were much milder compared to the wild type virus (Rs2-2a777) (Fig. 2). Among these mutants in six cases the virion could be purified thirty days after the inoculation (NVE/10-12/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA, LPF/55-57/AAA) but the virus yield was significantly lower than in the case of the other mutants and the wild type virus (data not shown).

Eight days after inoculation the viral RNA was detectable (Fig. 3) in the non inoculated leaves of the infected plant at the great majority of the different constructs even if the viral RNA concentration was greatly reduced in two cases (SPS/40-42/AAA, LPF/55-57/AAA) and viral RNA was not detectable at four further mutants (MEL/1-3/AAA, NVE/10-12/AAA, QNR/31-33/AAA, HRV/70-72/AAA). Thirty days after inoculation the viral RNA was detectable at six mutants showing no or modulate symptoms, but the amount of the viral RNA was still significantly reduced.

The Northern analyses of these plants elucidate the low efficiency of virus purification of these mutants (Fig. 4). We could never detect the presence of MEL/1-3/AAA and HRV/70-72/AAA in non infected leaves during thirty days of the experiment in five independent experiments. The identity of all the mutants was confirmed by RT/PCR nucleotide sequence determination from the systematically infected leaves.

Eight days after inoculation the viral RNA was detectable (Fig. 3) in the non inoculated leaves of the infected plant at the great majority of the different constructs even if the viral RNA concentration was greatly reduced in two cases (SPS/40-42/AAA, LPF/55-57/AAA) and viral RNA was not detectable at four further mutants (MEL/1-3/AAA, NVE/10-12/AAA, QNR/31-33/AAA, HRV/70-72/AAA). Thirty days after inoculation the viral RNA was detectable at six mutants showing no or modulate symptoms, but the amount of the viral RNA was still significantly reduced. The Northern analyses of these plants elucidate the low efficiency of virus purification of these mutants (Fig. 4). We could never detect the presence of MEL/1-3/AAA and HRV/70-72/AAA in non infected leaves during thirty days of the experiment in five independent experiments. The identity of all the mutants was confirmed by RT/PCR nucleotide sequence determination from the systematically infected leaves.

The majority of the mutant viruses caused local lesions on Chenopodium murale as the wild-type virus (WT: Rs2-2a777) although the phenotype of the local lesions were diverse. In the case of mutant MEL/1-3/AAA and mutant HRV/70-72/AAA local lesions were not (Fig. 5).

Figure 1. Symptoms elicited 14 days after the inoculation on Nicotiana clevelandii plants by the Rs-CMV and mutated Rs2-2a777 CMV virus (A). Northern blot hybridization analysis of total RNAs extracted from non-inoculated leaves 6 weeks after inoculation (B). The radiolabeled probe was specific for Rs-CMV RNA3. Ethidium bromide-stained rRNA from the same volume of each sample is shown below each lane. doi:10.1371/journal.pone.0112095.g001
Since the primary function of the CMV 2b protein is the gene silencing suppressor activity, we have analyzed this in the case of the eight mutants bearing altered phenotype in the previous experiment using Agrobacterium-mediated transient assay. Binary vector expressing GFP reporter gene was agroinfiltrated into transgenic Nicotiana benthamiana (silenced for GFP expression) leaves together with the binary vector expressing the wild type 2b protein or the mutant ones (MEL/1-3/AAA, NVE/10-12/AAA, SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, LPF/55-57/AAA, RHV/70-72/AAA). The suppressor activities were monitored by visual observation of the GFP fluorescence and quantitatively by measuring the accumulation level of GFP RNA in the infiltrated leaves by qRT-PCR.

The visual observation revealed that at six out of the eight mutants the GFP fluorescence is greatly reduced (NVE/10-12/AAA, SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, LPF/55-57/AAA). In one case (MEL/1-3/AAA) the fluorescence is slightly weaker compared to the wild type 2b mutant and in the case of RHV/70-72/AAA the fluorescence is hardly affected (Fig. 6A).

GFP mRNA levels in the presence of the suppressors were determined by qRT-PCR. The level of the Nicotiana benthamiana EF1α transcript was used as a normalization control. The qRT-PCR study confirmed the visual observation, proving the extreme reduction of the fold of GFP RNA level in the case of the mutants SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA and LPF/55-57/AAA. In the case of NVE/10-12/AAA the reduction is about half of the expression of the wild type construct, while at the MEL/1-3/AAA and RHV/70-72/AAA mutants the reduction is substantially smaller. In these cases the constructs were still able to suppress efficiently the partial silencing of the GFP reporter gene, increasing the levels of the GFP-derived green fluorescence. In case of constructs NVE/10-12/AAA, SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA and LPF/55-57/AAA decreased levels of green fluorescence have proved the defense of gene silencing suppressor activity of the mutated 2b proteins (Fig. 6B).

Excluding the role of the 2b protein stability in the previous experiments, the accumulation of the eight two 2b mutants have been analyzed by western blot in the infiltrated patches. We added six histidine residues to the C terminus of the 2b protein (Rs2a777) to create Rs2a777His similarly to Du et al., 2014. Rs2a777 and Rs2a777His were transiently expressed in N. benthamiana by agroinfiltration. The visual observation and qRT-PCR showed that the fluorescence was at the same level in the case of Rs2a777 and Rs2a777His and the Western blot showed equivalent accumulation of green fluorescent protein suggested that the silencing suppressor activities are at the same level which is also coincident with a previous study [27] (data not shown).

Since the histidine tagging caused no reduction in the silencing suppressor activity of the 2b protein, we added histidine residues...
to the eight mutants bearing altered phenotypes. The histidine tagged mutants were transiently expressed in *N. benthamiana* by agroinfiltration. The accumulation of the mutant proteins were analyzed by western-blot (Fig. 7) indicating that the different GFP levels caused by the different suppressor activities not by the instability of the proteins. Taken together, all these data suggest that mutants NVE/10-12/AAA, SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA and LPF/55-57/AAA are less efficient inhibitors of local RNA-silencing than the wild-type 2b protein, while the suppressor affinity of the MEL/1-3/AAA and RHV/70-72/AAA mutants is hardly affected.

Analysis of the cell-to-cell movement of the symptom modulated mutants

Since the analysis of the gene silencing suppressor activity of the mutants with altered phenotype does not explain the symptom modulation in all cases, the cell-to-cell movement of the mutants was investigated. First RT-PCR was carried out from inoculated leaves of *Nicotiana clevelandii* 3 days after inoculation. All of the eight mutants could be detected 3 days after inoculation (Fig. 8).

In a former work of our group a recombinant RNA 3 molecule was constructed to follow the virus movement visually [28]. The CP was replaced with GFP gene and the movement protein of CMV was exchanged with the MP of *Cymbidium ringspot virus* (CMVcymMP). Local movement of this construct can be visualized by epifluorescence microscopy observing development of fluorescent foci in *Chenopodium* species. Using in vitro transcripts of pCMVcymMP-GFP, pRs1 and either of the eight mutants causing altered symptoms, *Chenopodium murale* plants were infected. Spreading of virus mutants NVE/10-12/AAA, SPS/40-42/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA and LPF/55-57/AAA was clearly visible under UV illumination epifluorescence microscopy and proved that GFP expression was not confined to the initially infected cells, and the
virus efficiently spread from the primary infected cell to the neighboring ones. On the plant leaves infected with mutant MEL/1-3/AAA and RHV/70-72/AAA, only numerous isolated infected cells were detected, so infection was restricted to the single infected cells even 3 days after inoculation (Fig. 9).

Discussion

In the present study the systematic analysis of the 2b protein of CMV has been carried out by the means of alanine-scanning mutagenesis. According to our results eight out of the 37 mutants has dramatic effect on the infectivity of CMV on Nicotiana clevelandii plants. As the 2b protein of CMV is a multifunctional protein, which is involved in nearly all steps of the virus infection cycle and also in suppression of the RNAi-mediated defense mechanism of plant, the majority of the defective mutants were damaged in the RNA silencing suppressor activity.

The RNA silencing composes the primary plant immune system against viruses. Antiviral RNA silencing is triggered by dsRNA replication intermediates or intramolecular fold-back structures within viral genomes [29,30]. These viral dsRNAs are mainly processed by Dicer-like protein 4 (DCL4) or its surrogate Dicer-like protein 2 (DCL2), to produce 21- or 22-nt virus-derived small RNAs (vsRNAs), respectively [31,32]. vsRNAs are subsequently recruited, mainly by AGO1 and AGO2, to direct PTGS of viral RNA as part of antiviral RISCs [33] [34] [7]. To counteract this defense mechanism, plant viruses produce different suppressors of RNA silencing (VSRs). The CMV 2b protein was one of the first VSRs shown to interact physically with AGO1, and this interaction leads to inhibition of AGO1 slicing activity in a RISC in vitro reconstituted assay [7]. 2b protein has been also shown to bind siRNA in vitro [9]. Expressing 2b protein prevents the spread of the systemic silencing signal in tissues and consequently the induction of silencing in target cells [35]. Binding of siRNA is
Figure 6. Suppression of RNA silencing in patch assays. A binary vector expressing the GFP reporter gene was agroinfiltred into Nicotiana benthamiana leaves, together with an empty binary vector or together with binary vectors expressing 2b protein and MEL/1-3/AAA, NVE/10-12/AAA, SPS/40-42/AAA, RHV/70-72/AAA, KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA and LPF/55-57/AAA 2b protein construct.
doi:10.1371/journal.pone.0112095.g006

Figure 7. Immunoblot analyses of accumulation His-tagged 2b protein mutants in agroinfiltrated patches. Detection of the fluorescence of GFP proteins on SDS-PAGE by illuminating the gel with UV lamp. A penta-his antibody was detection of His-tagged 2b proteins.
Coomassie staining was used to monitor the equivalence of protein loading and transfer.
doi:10.1371/journal.pone.0112095.g007

Figure 8. Detection of Rs-CMV and the eight mutants in inoculated leaves of Nicotiana clevelandii 3 days after inoculation. Samples were analyzed by RT-PCR using primers specific for RNA2 of CMV. M, DNA molecular size marker, 1000 bp and 1500 bp makers are indicated.
doi:10.1371/journal.pone.0112095.g008
of AGO binding [11].

According to recent results the suppressor activity is independent of nuclear localization [11]. The infection properties of the RRR/25-27/AAA mutant also confirm that the nuclear localization signal can be modified without altering the infection phenotype of the CMV. The active siRNA bound tetramer form was also detected neither symptoms were observed. MEL/1-3/AAA and RHV/70–72/AAA in patch assay were able to suppress efficiently local gene silencing is a result of the damaged structure of these mutants and not the absence of nuclear localization.

In the case of SPS/40-42/AAA which was also asymptomatic on Nicotiana clevelandii plant and showed reduced gene silencing suppressor activity in patch assay the mutations located in the putative phosphorylation site [21]. This phosphorylation site is conserved in all of the CMV isolates and previously described essential for nuclear accumulation and siRNAs binding to suppress PTGS [8] [9]. Both serines were found to be required for symptom induction [38]. This mutation is located in the forepart of the first α-helix. Most likely this mutation disrupts the integrity of the second α-helix and presumably silencing suppressor activity decreases due to the sake of the protein structure.

Beside binding siRNAs, 2b proteins could interact with different host proteins such as AGO1, AGO4 and catalase 3. These interactions lead to different levels of the viral pathogenicity and virulence. 2b protein also has been shown to be involved in local and systemic movement of the virus, although the role of it is poorly understood. A mutant of the subgroup II CMV strain Q which cannot express the 2b protein was unable to move systemically in cucumber and displayed decreased symptom induction on Nicotiana glutinosa and on Nicotiana tabacum, which results suggest the role of 2b protein in viral systemic movement [39] [40]. Deletion or interruption of the 2b ORF generally results in less efficient or altered local movement of CMV [40] [41], cucumovirus reassortants [41] and peanut stunt virus [42]. But in these cases the indirect role of 2b protein through RNAi suppression in the altered viral movement was not excluded. Binding of short RNAs correlates with RNA silencing suppression activity of the 2b protein [36]. In the case of two mutants (MEL/1–3/AAA and RHV/70–72/AAA) the gene silencing suppressor activity have not changed significantly through RNAi suppression in the altered viral movement was not excluded. Binding of short RNAs correlates with RNA silencing suppression activity of the 2b protein [36]. In the case of two mutants (MEL/1–3/AAA and RHV/70–72/AAA) the gene silencing suppressor activity have not changed significantly through RNAi suppression in the altered viral movement was not excluded. Binding of short RNAs correlates with RNA silencing suppression activity of the 2b protein [36]. In the case of two mutants (MEL/1–3/AAA and RHV/70–72/AAA) the gene silencing suppressor activity have not changed significantly through RNAi suppression in the altered viral movement was not excluded. Binding of short RNAs correlates with RNA silencing suppression activity of the 2b protein [36].
Chenopodium murale, we could detect GFP fluorescence only in a few single cells, so our analysis demonstrates that these sites are substantial for the local movement of the virus. These results directly prove that the 2b protein has a function in the viral cell-to-cell movement independently of the gene silencing suppressor activity. Both the aa region 1–3 and 70–72 are strictly conserved in subgroup I CMV isolates. At the subgroup II isolates the aa 1–3 is also conserved, but the 70–72 aa region is located in the nine aa long regions missing from these isolates. Previously the requirement of N-terminal 17 aa was demonstrated in symptom induction but the virus was not localized to single cells [1]. Regarding to the 2b protein structure the first three residues of the 2b protein are in the centre of the siRNA bound tetramer but these amino acid side chains did not take part in the leucine-zipper-like α-helix connections. These first two or three residues are missing from the X-ray structure of the homologous TAV 2b tetramer [14] because of their disordered nature. On the basis of structural considerations we can conclude that the first three amino acids of the 2b protein are involved in a cell-to-cell movement related biomolecular interaction (Fig. 10B). The same conclusion could be drawn in the case of the other movement-deficient construct RHV/70-72/AAA. However, the X-ray structure of this part of the 2b protein is unknown and only molecular modeling results are available from the C-terminal domain of the CMV 2b protein [37]. Structural observation derived from molecular dynamics (MD) simulation of this C-terminal domain shows that this short protein sequence part (70 to 72) is located in a small α-helix. The His71 side chain is in solvent exposed position, which can play a significant role in a protein-protein interaction in the mechanism of the cell-to-cell movement (Fig. 10B). This is the first report demonstrating that the CMV 2b protein has a direct role in the local virus movement independently of its gene silencing suppressor activity.

Materials and Methods

Plasmid constructions

Description of the Rs-CMV and the infectious transcripts (pRs1, pRs2, pRs3) has been published previously [43]. A STOP codon was introduced into pRs2 into the 2a protein ORF just preceding the start codon of the 2b protein by PCR directed mutagenesis (pRs2-2a777) using the following oligonucleotides: 5'-CGGGGTACCTTGCTGTTTGGTGTTTTTTGGGTTCC-3' (forward), 5'-TATGGAGCTCAACGTTGCAATGCAACGGAC-3' (reverse). Mutated nucleotides are in bold and the SacI restriction site is underlined.

Alanine scanning mutants of 2b protein were generated using the pRS2-2a777 clone by PCR directed mutagenesis. First the 2133–3052 fragment of this clone was subcloned into pGEM-T-easy vector and after mutagenesis and nucleotide sequence confirmation the 2133–3052 fragments of the proper clones were subcloned back to the pRs2-2a777. The sequences of primers used are detailed in Table S1. The restriction site (PstI) is underlined and the mutated nucleotides are written in bold.

Test plants and plant inoculation

Nicotiana clevelandii Gray and Chenopodium murale plants were mechanically inoculated with wild type and in vitro mutated RNA2 transcripts in the presence of wild type RNA1 and RNA3 transcripts when the plants were at four-to-five leaf stage. Plants were maintained under normal glasshouse conditions (with a cycle of 14 h of light (22°C) and 10 h of dark (18°C)).

Analysis of plants

Total RNA was extracted from 200 μg systemically infected leaves 4 and 8 days after inoculation [44]. Virus RNA accumulation was followed by Northern blot analysis. Approximately 100 ng total RNA was denatured with formaldehyde and separated in formamide-containing agarose gels and blotted onto nylon membranes [45]. Northern blot hybridization analysis was performed with random-primed 32P-labelled DNA fragments specific for the Rs-CMV RNA3 sequence.

RT-PCR/DNA sequence determination was performed to analyze the stability of the mutant viruses with the Qiagen OneStep RT-PCR kit according to the manufacturer’s instructions, using primers flanking of 2b coding region (forward 5'-GGTTGGCCTGTTTCTACGACCCGCA-3', reverse 5'-GGGAACCCGCTGTTTCTACGACCCGCA-3'). PCR products...
were purified by High Pure PCR product Purification Kit (Roche) prior nucleotide sequence determination.

Agrobacterium infiltration

Nicotiana benthamiana GFP transgenic line 16c way kindly provided by Dr. Dániel Silhavy. *Agrobacterium*-mediated transient expression on *Nicotiana benthamiana* leaves was conducted by pressure infiltration as described previously [46] [47]. *Agrobacterium* culture of GFP-expressing strain was adjusted to a final optical density at 600 nm (OD600) 0.4 and the strains expressing the various 2b mutants to 0.2.

GFP imaging

For visually detection of GFP fluorescence patches on leaves and with PAGE, a Blak-Ray B-100SP UV lamp (UVP) was used, and images were taken with Nikon D100 digital camera mounted with yellow lens (Hama HTMC filter).

For visually detection of GFP fluorescence of local movement Leica MZ10F stereomicroscope with GFP/RTF fluorescence was used.

Quantitative real-time RT-PCR

Fresh leaf tissues (30 mg) was ground in liquid N2 and extracted with SV Total RNA Isolation System (Promega). RNA concentration was measured by Nanodrop (Thermo, USA). Reverse transcription (RT) reaction was performed by ReverTra First Strand cDNA synthesis kit (Fermentas) according to the manufacturer’s instructions. All samples were run in triplicates. Primers 5’-AGTGGAGAAAGTTAGTTGAG-3’ (forward) and 5’-TGGATCTGGTATCTTGAAAAGC-3’ (reverse) were used for GFP mRNA analysis. The *Nicotiana benthamiana* EF1 mRNAs (GenBank accession number DQ921490) served as an internal control using primers 5’-AGTGGAGAAAGTTAGTTGAG-3’ (forward) and 5’-TGGATCTGGTATCTTGAAAAGC-3’ (reverse) as described in [49]. Samples were separated on 17% gels. Fluorescent proteins were detected by illuminating the gel with UV lamp (UV Products, Blak-Ray B-100SP).

Molecular modeling and graphics

The model structure of the full-length monomer CMV 2b protein was generated with I-TASSER [50] [51]. The model was built using the Rs-CMV 2b sequence. The NCBI/GenBank accession number is AJ517801. The main template was the X-ray structure of TAV 2b (PDB ID code: 2Z10) to create the alpha helical regions (aa 1–69). Structure of the F1-ATPase from spinach chloroplasts (PDB ID: 1FXO) and structure of the Glia cell missing (GCM) transcription factor (PDB ID: 1ODH) were used to thread the predicted structure of the CMV 2b C-terminal domain (aa 65–110). The siRNA bound biologically active tetramer form was used with the Schrodinger Suite [52] molecular modeling software package. The completed tetramer siRNA-ribonucleoprotein complex was refined with energy minimization to eliminate the steric conflicts between the protein and RNA atoms. Molecular graphics were prepared using VMD version 1.9.1 [53].

Supporting Information

Table S1 Oligonucleotides used for creating the alanine-scanning mutants.

Author Contributions

Conceived and designed the experiments: KN KS. Performed the experiments: KN KS AG. Analyzed the data: KN KS AG EB. Contributed reagents/materials/analysis tools: KS AG EB. Wrote the paper: KN KS AG EB.

References

1. Lewsey M, Sterrete M, Robertson FC, Ziebell H, Choi SH, et al. (2009) The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Mol Plant-Microbe Interact 6: 614-654.
2. Ji LH, Ding SW (2004) The suppressor of transgene RNA silencing encoded by *Cucumber mosaic virus* 2b protein inhibits Arabidopsis Argonaute 1 cleavage activity to counter plant defense. Genes Dev 20: 3255-3268.
3. Zhou T, Murphy AM, Lewsey MG, Westwood JH, Zhang HM, et al. (2014) Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of sialic acid-induced resistance and priming of sialic acid accumulation during infection. J Gen Virol 95(6): 1408-13. Ye J, Qu J, Zhang JF, Geng YF, Fang RX (2008) A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity. FEBS Lett 583(1): 101-6.
4. Lewsey MG, Murphy AM, Maclean D, Dalclaus N, Westwood JH, et al. (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 23(7): 835-45.
5. Jacquemond M (2012) Cucumber mosaic virus. Adv Virus Res 84: 439-504.
6. Coorja T, Pantaleo V, Burgán J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75: 35-71.
7. Zhang XR, Yuan YR, Pei Y, Lin SS, Tuschl T, et al. (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20: 3255-3268.
8. Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48: 1050-1060.
9. González I, Martínez L, Rakitina DV, Lewsey MG, Atencio FA, et al. (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant-Microbe Interact 23: 294–303.
10. Hamada S, Song X, Su L, Chen X, Fang R (2012) Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. Plant J 36: 104-115.
11. Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, et al. (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing.

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112095
15. Vargason JM, Szittya G, Burgyán J, Hall TM (2004) Size selective recognition of

12. Shi B, Ding S, Symons RH (1997) Two novel subgenomic RNAs derived from

31. Blevins T, Rajeswaran R, Shivaprasad VP, Beknazariants D, Si-Ammour A,

30. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, et al. (2009)

29. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for

18. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, et al. (2011) The 21-

16. Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing

17. Ye J, Qu J, Zhang JF, Geng YF, Fang RX (2008) A critical domain of the

14. Chen HY, Yang J, Lin G, Yuan YA (2006) Structural basis for RNA-silencing

13. Vargaon JM, Saiyta G, Burgyán J, Hall TM (2004) Size selective recognition of

35. Guo HS, Ding SW (1995) A novel naturally occurring hybrid gene

11. Zhang J, Wang Y (2008) Cucumber mosaic virus 2b protein by yeast two-hybrid screening. Mol Cells 9: 548–555.

20. Wang Y, Tzfira T, Gaba V, Citovsky V, Palukaitis P, et al. (2004) Functional

19. Ruben RE, Wu B, Wang Y, Li WX, Ding SW (2005) Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana. Plant Physiol 136(3): 1546–1553.

26. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-

24. Sueda K, Shimura H, Meguro A, Uchida T, Inaba JI, et al. (2010) The C-

22. Wang Y, Tzfira T, Gaba V, Citovsky V, Palukaitis P, et al. (2004) Functional

23. Williams TC, Silberbush MS, Lam TT, Chambers JA, Carrington JC, et al. (2011) The C-terminal

27. Du Z, Chen A, Chen W, Liao Q, Zhang H, et al. (2014) Nuclear-Cytoplasmic

26. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-

21. Lucy AP, Guo HS, Li WX, Ding SW (2000) Suppression of post-transcriptional

28. Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, et al. (2011) The 21-

32. Deleris A, Gallego-Bartolome J, Bao J, Kasczuk JD, Carrington JC, et al. (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313: 68–71.

33. Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, et al. (2002) Fertile pseudorecombinant ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14: 629–639.

34. Scholthof H, Alvarado VV, Vega-Arreguin JC, Ciomperlik J, Odokonyero D, et al. (2011) Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana. Plant Physiol 156(3): 1546–1553.

35. Guo HS, Ding SW (2002) A viral protein inhibits the long range signaling

36. Gonza`lez I, Rakitina D, Semashko M, Taliansky M, Pravens E, et al. (2012) RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA 18: 771–782.

37. Gelle`rt A, Rakitina D, Semashko M, Taliansky M, Pravens E, et al. (2012) The C-terminal domain of the 2b protein of Cucumber mosaic virus is stabilized by divalent metal ion coordination. J Mol Graph Model 38: 446–454.

38. Lewis MG, Gonzalez I, Kalmina NO, Palukaitis P, Castro T, et al. (2010) Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein. Plant Signal Behav 5(6): 705–8.

39. Ding SW, Li WX, Symons RH (1995) A novel naturally occurring hybrid gene

40. Soards AJ, Murphy AM, Palukaitis P, Carr JP (2002) Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Mol Plant-Microbe Interact 15: 647–653.

41. Shi BJ, Miller J, Symons RH, Palukaitis P (2003) The 2b protein of cucumoviruses has a role in promoting the cell-to-cell movement of pseudorecombinant viruses. Mol Plant-Microbe Interact 16: 261–267.

42. Netus O, Hirotsuka K, Kawai S, Hilla T, Ugaaki M, et al. (2008) Peanut stunt virus 2b cistron plays a role in viral local and systemic accumulation and virulence in Nicotiana benthamiana. Arch Virol 153: 1731–1733.

43. Dievki Z, Saliski K, Balazs E (2004) The Necrotic Pathotype of the Cucumber mosaic virus (CMV) Ns strain is solely determined by amino acid 461 of the 1a protein. Mol Plant-Microbe Interact 17: 837–843.

44. White JL, Kaiser JM (1989) A simple method for detection of viral satellite RNAs in small tissue samples. J Virol Met 23: 83–94.

45. Johansen LK, Carrington JC (2001) Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System. I. Plant Phys 126(3): 930–938.

46. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5): 945–955.

47. Qu J, Ye J, Fang RX (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81: 6690–6699.

48. Zaitsev B,o kladak J, Mamiatis T (1989) Molecular Cloning: a laboratory manual. 2nd ed Cold Spring Harbor Laboratory Press.

49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. 2nd ed Cold Spring Harbor Laboratory Press.

50. Johannsen LK, Carrington JC (2001) Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System I. Plant Phys 126(3): 930–938.

51. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for protein structure prediction. Bioinformatics 9: 40.

52. Schro¨dinger, LLC, Schro ¨dinger Suite, 101 SW Main Street, Suite 1300 Portland, OR 97204.