Some Characterizations of Bloch Functions

Guanghua He

College of International Finance and Trade, Zhejiang Yuexiu University of Foreign Languages, Shaoxing 312000, Zhejiang, China

Received 4 September 2017; Accepted (in revised version) 24 January 2018

Abstract. We define Bloch-type functions of $C^1(D)$ on the unit disk of complex plane C and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator C_ϕ acting between two Bloch-type spaces. These obtained results generalize the corresponding known ones to the setting of $C^1(D)$.

Key Words: Bloch space, majorant, composition operator.

AMS Subject Classifications: 11K70, 32A70

1 Introduction

Let $D = \{ z \in \mathbb{C} : |z| < 1 \}$ be the unit disk of the complex plane \mathbb{C}, and $\mathcal{C}^1(D)$ be the set of all complex-valued functions having continuous partial derivatives on D. For $\alpha > 0$, a function $f \in \mathcal{C}^1(D)$ is called α-Bloch if

$$\|f\|_\alpha = \sup_{z \in D} (1 - |z|^2)^\alpha (|f_z(z)| + |f_\bar{z}(z)|) < \infty.$$

It is readily seen that the set of all α-Bloch functions on D is a Banach space \mathcal{B}_α with the norm $\|f\|_{\mathcal{B}_\alpha} = |f(0)| + \|f\|_\alpha$.

Let $\omega : [0, +\infty) \to [0, +\infty)$ be an increasing function with $\omega(0) = 0$, we say that ω is a majorant if $\omega(t)/t$ is non-increasing for $t > 0$ (cf. [4]). Following [5], given a majorant ω and $\alpha > 0$, the ω-α-Bloch space $\mathcal{B}_{\omega,\alpha}$ consists of all functions $f \in \mathcal{C}^1(D)$ such that

$$\|f\|_{\omega,\alpha} = \sup_{z \in D} \omega((1 - |z|^2)^\alpha) (|f_z(z)| + |f_\bar{z}(z)|) < \infty$$

and the little ω-α-Bloch space $\mathcal{B}_{\omega,0}$ consists of the functions $f \in \mathcal{B}_{\omega,\alpha}$ such that

$$\lim_{|z| \to 1^-} \omega((1 - |z|^2)^\alpha) (|f_z(z)| + |f_\bar{z}(z)|) = 0.$$

*Corresponding author. Email address: hegh2003@126.com (G. H. He)
For $0 < \alpha \leq 1$, the weighted hyperbolic metric ds_α of D, introduced in [1] is defined as
\[ds_\alpha^2 = \frac{|dz|^2}{(1-|z|^2)^{2\alpha}}. \]

Suppose that $\gamma(t)$ ($0 \leq t \leq 1$) is a continuous and piecewise smooth curve in D. Then the length of $\gamma(t)$ with respect to the weighted hyperbolic metric ds_α is equal to
\[L_{h_\alpha}(\gamma) = \int_{\gamma} ds_\alpha = \int_0^1 \frac{|\gamma'(t)|}{(1-|\gamma(t)|^2)^\alpha} dt. \]

Consequently, the associated distance between z and w in D is
\[h_\alpha(z, w) = \inf\{ L_{h_\alpha}(\gamma) : \gamma(0) = z, \gamma(1) = w \}, \]
where γ is a continuous and piecewise smooth curve in D. Note that $h_1 (\alpha = 1)$ is the hyperbolic distance on D.

Let $s, t \geq 0$ and f be a continuous function in D. If there exists a constant C such that
\[(1-|z|^2)^s(1-|w|^2)^t|f(z) - f(w)| \leq C|z-w| \quad (\text{resp.} \quad \leq Ch_\alpha(z, w)), \]
for any $z, w \in D$, then we say that f is a weighted Euclidian (resp. hyperbolic) Lipschitz function of indices (s, t). In particular, when $s = t = 0$, we say that f is a Euclidian (resp. hyperbolic) Lipschitz function (cf. [12]).

In the theory of function spaces, the relationship between Bloch spaces and (weighted) Lipschitz functions has attracted much attention. For instance, in 1986, Holland and Walsh [7] established a classical criterion for analytic Bloch space in the unit disc D in terms of weighted Euclidian Lipschitz functions of indices $(\frac{1}{2}, \frac{1}{2})$. Ren and Tu [13] extended the criterion to the Bloch space in the unit ball of \mathbb{C}^n, Li and Wulan [8], Zhao [15] characterized holomorphic α-Bloch space in terms of
\[(1-|z|^2)^{\beta}(1-|w|^2)^{\alpha-\beta}|f(z) - f(w)|/|z-w|. \]

In [16, 17], Zhu investigated the relationship between Bloch spaces and Bergman Lipschitz functions and proved that a holomorphic function belongs to Bloch space if and only if it is Bergman Lipschitz. For the related results of harmonic functions, we refer to [2, 3, 5, 6, 12, 14] and the references therein.

Motivated by the known results mentioned above, we consider the corresponding problems in the setting of $\mathcal{C}^1(D)$ in this paper. In Section 2, we collect some known results that will be needed in the sequel. The main results and their proofs are presented in Sections 3 and 4.

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A \asymp B$ means that there is a positive constant C such that $B/C \leq A \leq CB$.
2 Several lemmas

In this section, we introduce some notations and recall some known results that we need later.

For each $a \in D$, the Möbius transformation $\varphi_a : D \to D$ is defined by

$$\varphi_a = \frac{a-z}{1-\overline{a}z}, \quad z \in D.$$

If $a, z \in D$ and $r \in (0,1)$, we define the pseudo-hyperbolic disk with center a and radius r as

$$E(a, r) = \{ z \in D : \rho(a, z) = |\varphi_a(z)| < r \}.$$

A straightforward calculation shows that $E(a, r)$ is a Euclidean disk with center at

$$\left(\frac{1-|a|^2}{2} \right) a \quad \text{and the radius} \quad \frac{1-|a|^2}{1-|a|^2 r^2}.$$

The following lemma is proved in [17].

Lemma 2.1. Let $r \in (0,1)$, $w \in E(a, r)$. Then we have

$$(1-|a|^2) \asymp (1-|w|^2) \asymp |1-\overline{a}w|.$$

The following lemma is useful for us.

Lemma 2.2 (see [5]). Let $\omega(t)$ be a majorant and $s \in (0,1)$, $v \in (1,\infty)$. Then for $t \in (0,\infty)$,

$$\omega(st) \geq s\omega(t), \quad \omega(vt) \leq v\omega(t).$$

As applications of Lemmas 2.1 and 2.2, we have

Lemma 2.3. Let $r \in (0,1)$, $w \in E(a, r)$ and $\omega(t)$ be a majorant. Then

$$\omega((1-|a|^2)) \asymp \omega((1-|w|^2)).$$

3 Bloch functions

Let f be a harmonic Bloch mapping in the unit disc D. In [3], Colonna proved that the Bloch constant B_f of f equals to its Bloch semi-norm, i.e.,

$$B_f = \sup_{z,w \in D, z \neq w} \frac{|f(z) - f(w)|}{h_1(z,w)} = \sup_{z \in D} (1-|z|^2)(|f_z(z)| + |f_z(z)|),$$

where h_1 is the hyperbolic distance in D.

In this section, we first characterize the space B^a in terms of weighted hyperbolic Lipschitz condition and generalize Colonna’s result to the setting of $c^1(D)$.

Theorem 3.1. Let \(f \in C^1(\mathcal{D}) \) and \(0 < a \leq 1 \). Then \(f \in \mathcal{B}^a \) if and only if there is a constant \(C > 0 \) such that
\[
|f(z) - f(w)| \leq Ch_a(z,w), \quad z, w \in \mathcal{D}.
\]
Moreover, we have
\[
\|f\|_a = \sup_{z, w \in \mathcal{D}, z \neq w} \frac{|f(z) - f(w)|}{h_a(z,w)}
\]
for all \(f \in \mathcal{B}^a \).

Proof. We first prove the sufficiency. For any \(z, w \in \mathcal{D} \), from the definition of \(h_a(z,w) \), we assume that \(\gamma(s) \) is the geodesic between \(z \) and \(w \) (parametrized by arc-length) with respect to \(h_a \). Since \(h_a(\gamma(0), \gamma(s)) = s \), we have
\[
|f(z) - f(w)| \leq Cs.
\]
Dividing both sides by \(s \) and then letting \(s \to 0 \) in the above inequality gives
\[
(|f_z(z)| + |f_z(w)|)|\gamma'(0)| \leq C.
\]
From the minimal length property of geodesics,
\[
h_a(\gamma(0), \gamma(s)) = \int_0^s \frac{|\gamma'(t)|}{(1 - |\gamma(t)|^2)^{a/2}} dt = s, \quad 0 < s < \epsilon,
\]
we obtain that
\[
\lim_{s \to 0} \frac{1}{s} \int_0^s \frac{|\gamma'(t)|}{(1 - |\gamma(t)|^2)^{a/2}} dt = \frac{|\gamma'(0)|}{(1 - |\gamma(0)|^2)^{a/2}} = 1.
\]
It follows that \((1 - |z|^2)^a (|f_z(z)| + |f_z(w)|) \leq C \) and hence \(f \in \mathcal{B}^a \) with
\[
(1 - |z|^2)^a (|f_z(z)| + |f_z(w)|) : z \in \mathcal{D} \} \leq \sup \left\{ \frac{|f(z) - f(w)|}{h_a(z,w)} : z \neq w \right\}.
\]
For the conversely, we assume that \(f \in \mathcal{B}^a \). Let \(z, w \in \mathcal{D} \) and \(\gamma(t) (0 \leq t \leq 1) \) be a smooth curve from \(z \) to \(w \). Then
\[
|f(z) - f(w)| = \left| \int_0^1 \frac{df}{dt}(\gamma(t)) dt \right|
\leq \int_0^1 (|f_z(\gamma(t))| + |f_z(\gamma(t))|)|\gamma'(t)|dt
\leq \|f\|_a \int_0^1 \frac{|\gamma'(t)|}{(1 - |\gamma(t)|^2)^a} dt
\leq \|f\|_a h_a(\gamma(t)).
\]
Taking the infimum over all piecewise continuous curves connecting \(z \) and \(w \), we conclude that
\[
|f(z) - f(w)| \leq \|f\|_a h_a(z,w)
\]
for all \(z, w \in \mathcal{D} \). This completes the proof. \(\square \)
In the following, we characterize the spaces $B_{\alpha,\omega}^0$, $B_{\alpha,\omega}^1$ in terms of Euclidean weighted Lipschitz functions.

Theorem 3.2. Let $r \in (0,1)$, $f \in C^1(D)$. Then $f \in B_{\alpha,\omega}^0$ if and only if

$$K = \sup_{w \in E(z,r), z \neq w} \omega((1-|z|^2)^a) \frac{|f(z) - f(w)|}{|z-w|} < \infty.$$

Proof. Sufficiency. Let $f \in C^1(D)$. For $z \in D$, we have

$$\sup_{w \in E(z,r), z \neq w} \frac{|f(z) - f(w)|}{|z-w|} \leq \frac{K}{\omega((1-|z|^2)^a)}.$$

By letting $w \to z$, we obtain that

$$|f_z(z)| + |f_z(z)| \leq \frac{K}{\omega((1-|z|^2)^a)},$$

from which we see that $f \in B_{\alpha,\omega}^0$.

Conversely, let $f \in B_{\alpha,\omega}^0$ and for any $w \in E(z,r), z \neq w$,

$$|f(z) - f(w)| = \left| \int_0^1 \frac{df}{ds}(sz + (1-s)w)ds \right|$$

$$
\leq |z-w| \int_0^1 \left(\left| \frac{\partial f}{\partial s}(sz + (1-s)w) \right| + \left| \frac{\partial f}{\partial w}(sz + (1-s)w) \right| \right)ds
$$

$$
\leq C |z-w| \|f\|_{\omega,a} \int_0^1 \frac{ds}{\omega((1-|sz + (1-s)w|^2)^a)}
$$

$$
\leq \frac{C |z-w|}{\omega((1-|z|^2)^a)},
$$

where the last inequality follows from Lemma 2.3. Thus,

$$\sup_{w \in E(z,r), z \neq w} \omega((1-|z|^2)^a) \frac{|f(z) - f(w)|}{|z-w|} < \infty.$$

The proof of Theorem 3.2 is completed. \qed

A similar result is true for the little Bloch-type spaces.

Theorem 3.3. Let $r \in (0,1)$, $f \in B_{\alpha,\omega}^1$. Then $f \in B_{\alpha,\omega,0}^1$ if and only if

$$\lim_{|z| \to 1} \sup_{w \in E(z,r), z \neq w} \omega((1-|z|^2)^a) \frac{|f(z) - f(w)|}{|z-w|} = 0.$$

The proof is almost the same as the one of Theorem 3.2 in [13]. Thus we omit it here.

Remark 3.1. When $\omega(t) = t$, Li and Wulan [8] obtained the analogues of Theorems 3.2 and 3.3 for holomorphic Bloch space on the unit ball of \mathbb{C}^n.

4 Composition operators

Let ϕ be a holomorphic self-mapping of \mathbb{D}. The composition operator C_ϕ, induced by ϕ is defined by $C_\phi(f) = f \circ \phi$ for $f \in \mathcal{O}(\mathbb{D})$. During the past few years, composition operators have been studied extensively on spaces of holomorphic functions on various domains in \mathbb{C} and \mathbb{C}^n, see e.g., [9, 10, 18]. In this section, we discuss the boundedness of composition operators between Bloch spaces of \mathbb{C}.

Theorem 4.1. Let $\alpha, \beta > 0$ and ϕ be a holomorphic self-mapping of \mathbb{D}. Then $C_\phi : B^\alpha \to B^\beta$ is bounded if and only if

$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^\beta |\phi'(z)|}{(1 - |\phi(z)|^2)^\alpha} < \infty.$$ \hspace{1cm} (4.1)

Proof. First suppose that

$$L = \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^\beta |\phi'(z)|}{(1 - |\phi(z)|^2)^\alpha}.$$

For $f \in B^\alpha$ and $z \in \mathbb{D}$, we have

$$(1 - |z|^2)^\beta (|C_\phi(f)_z| + |C_\phi(f)_\overline{z}|) = (1 - |z|^2)^\beta (|(|f \circ \phi)_z(z)| + |(f \circ \phi)_\overline{z}(z)|)$$

$$= (1 - |z|^2)^\beta |\phi'(z)|(|f_z(\phi(z))| + |f_{\overline{z}}(\phi(z))|)$$

$$\leq L(1 - |\phi(z)|^2)^\alpha (|f_z(\phi(z))| + |f_{\overline{z}}(\phi(z))|)$$

$$\leq C \|f\|_\alpha$$

and

$$|f(\phi(0))| \leq C \|f\|_\alpha.$$

Hence $C_\phi : B^\alpha \to B^\beta$ is bounded.

For the converse, assume that $C_\phi : B^\alpha \to B^\beta$ is a bounded operator with

$$\|C_\phi(f)\|_\beta \leq C \|f\|_\alpha$$

for all $f \in B^\alpha$. Fix a point $z_0 \in \mathbb{D}$ and let $w = \phi(z_0)$. If $\alpha \neq 1$, consider the function $f_w(z) = (1 - wz)^{1-\alpha} - 1$. Then it is easy to check that $f_w \in B^\alpha$. The boundedness of C_ϕ implies that

$$\frac{(1 - |z|^2)^\beta |\phi'(z)|}{|1 - \overline{w}\phi(z)|^\alpha} \leq C.$$

In particular, take $z = z_0$, we get

$$\frac{(1 - |z_0|^2)^\beta |\phi'(z_0)|}{(1 - |\phi(z_0)|^2)^\alpha} \leq C.$$

Since z_0 is arbitrary, the result follows.

If $\alpha = 1$, we only need to consider the function $f_w(z) = \ln(1/(1 - \overline{w}z))$. Following a discussion similar to the above, it can be proved that (1) holds. The proof of Theorem 4.1 is completed. \hfill \square
Recall that the classical Schwarz-Pick Lemma in the unit disk gives that for a holomorphic self-mapping ϕ of D, $(1 - |z|^2)|\phi'(z)| \leq 1 - |\phi(z)|^2$ holds for all $z \in D$. As an application of this result, it is easy to derive the following corollary.

Corollary 4.1. Let ϕ be a holomorphic self-mapping of D. Then $C_\phi : B^1 \to B^1$ is bounded.

References

[1] P. Bourgrade and O. Croissant, Heat kernel expansion for a family of stochastic volatility models: δ-geometry, Comput. Res. Reposi., (2005), 31–46.
[2] S. Chen and X. Wang, On harmonic Bloch spaces in the unit ball of C^n, Bull. Aust. Math. Soc., 84 (2011), 67–78.
[3] F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J., 38 (1989), 829–840.
[4] K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 178 (1997), 143–167.
[5] X. Fu and B. Lu, Some characterizations of harmonic Bloch and Besov spaces, Czech Math. J., 66 (2016), 417–430.
[6] X. Fu and J. Zhang, Bloch-type space on the upper half plane, Bull Korean Math Soc., 54 (2017), 1337–1346.
[7] F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA, Math. Ann., 273 (1986), 317–335.
[8] S. Li and H. Wulan, Characterizations of α-Bloch spaces on the unit ball, J. Math. Anal. Appl., 337 (2008), 880–887.
[9] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math., 33 (2003), 191–215.
[10] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679–2687.
[11] M. Nowak, Bloch space and Möbius invariant Besov spaces on the unit ball of C^n, Complex Variables Theory Appl., 44 (2001), 1–12.
[12] G. Ren and U. Kähler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc., 48 (2005), 743–755.
[13] G. Ren and C. Tu, Bloch spaces in the unit ball of C^n, Proc. Amer. Math. Soc., 133 (2005), 719–726.
[14] R. Yoneda, The harmonic Bloch and Besov spaces by an oscillation, Proc. Edinburgh Math. Soc., 45 (2002), 229–239.
[15] R. Zhao, A characterization of Bloch-type spaces on the unit ball of C^n, J. Math. Anal. Appl., 330 (2007), 291–297.
[16] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math., 23 (1993), 1143–1177.
[17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.
[18] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.