Antiepileptic properties of quinine: A systematic review

Reviewers
Primary Reviewer
Clifford Mwita ¹ M.D
Contact: cmwita@kilifi.kemri-wellcome.org

Secondary Reviewer
Leah Mwai ¹ B.Pharm, Dphil
Contact: lmwai@kilifi.kemri-wellcome.org

Tertiary Reviewer
Charles Newton¹ MBChB, MRCP, MD, FRCPCH
Contact: cnewton@kilifi.kemri-wellcome.org

¹ Kenya Medical Research Institute (KEMRI)/ Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), P. O. Box 230, 80108-Kilifi, Kenya. An affiliate centre of the Joanna Briggs Institute.

Review objective
The review objective is to synthesize the best available research evidence on the effects of quinine on seizures in adults or children who present with seizures or who develop seizures in the course of treatment.

Review question
Does quinine have antiepileptic properties?

Background
Quinine was originally used by Peruvians to treat fever. ¹ It was found to have specific antimalarial properties and has been in use for more than three centuries to treat severe malaria before the introduction of the artemisinins to malaria endemic areas. Quinine has antipyretic, analgesic and anti-inflammatory properties and has been used to treat arthritis, systemic lupus erythematosus (SLE) and nocturnal leg cramps.²⁻⁴ It is a stereoisomer of quinidine and although it has been used to treat ventricular arrhythmias⁵, its toxicity has limited its widespread use for this indication. Quinine causes cinchonism, which manifests as tinnitus, impaired hearing (particularly high-frequency hearing loss), blurred vision, headache, confusion, vertigo, dizziness and dysphoria.⁶⁻⁷ These neurological symptoms suggest that it has direct interaction with the nervous system.

Research in animal models suggests that quinine may have antiepileptic properties⁸⁻¹². Thus, Nassiri¹¹ found that quinine reduced seizure latency and duration and Gajda¹⁰ showed that it reduced expression of seizure discharges but did not influence basic electrocortical activity. Both Bikson⁸ and Bostanci⁹ found that quinine reduced epileptic activity but Bostanci further suggests that this may be a dose-dependent effect. This action is thought to be mediated through blockade of connexin 36, a gap junction channel.
expressed in mammalian neurons13. Gap junction coupling provides a second pathway, besides chemical synapses, contributing to seizure generation and propagation10,11. Quinine is thought to bind an intracellular receptor involved in mediating this action13, which is postulated to prevent seizure spread in abnormally synchronous neurons. However, the structure of the receptor and how it mediates this action is still unknown.

Other drugs used in the treatment of severe malaria, such as the artemisinins appear to have neuro-pathological effects mostly in the medulla and pons of animals14-18. This is known to be a dose dependent effect15 and furthermore, the neurotoxic effect is observed more in oil based derivatives, such as artether16. In vitro, artemisinin neurotoxicity does not manifest immediately upon exposure to the drugs however, the effect is inevitable19,20. Mefloquine has also been found to be neurotoxic in rats by causing degeneration of nuclei in the brainstem of these animals but the effect of both these drugs on seizures in animal models has not been fully investigated21.

In humans, the antiepileptic properties of quinine have not been systematically investigated. However, some of its derivatives have been known to cause seizures. Thus, chloroquine has been observed to cause seizures and is thought to reduce concentrations of the inhibitory neurotransmitter gamma aminobutyric acid (GABA) by inhibiting the enzyme glutamate dehydrogenase22-24 while mefloquine has been reported to cause convulsions even in patients without risk for seizures24-27. However, the exact mechanism for this effect remains unclear. The artemisinins are known to cause hearing loss, ataxia and tremors20 but not seizures.

Quinine is the mainstay of therapy in both South East Asia and Africa28 for falciparum malaria which affects the nervous system and is associated with acute seizures29. In children and adults, seizures are a feature of cerebral malaria, the most severe neurological complication of malaria30. On admission, more than 80% of children present with a history of seizures and in these more than 60% will have a recurrent episode31 with an increased risk for death and neurocognitive impairment32-34. More than half of these seizures are partial motor, 23% are subtle manifesting as hypoventilation, nystagmus, salivation and eye deviation and status epilepticus is common35. These subtle manifestations may go unnoticed with prolongation of seizures and this increases risk for neurological deficits36. In adults, only 20% present with seizures of which generalized tonic-clonic type is most common with status epilepticus being rare.37,38

If quinine has antiepileptic properties, it may reduce the neurological sequelae associated with acute seizures in severe malaria. These sequelae may be responsible for impairments in many children in malaria endemic areas and they have a huge socio-economic burden39. Given the high cost of the artemisinin derivatives and the availability of quinine, this information may help in the choice of antimalarial drugs in resource poor settings.

We plan to conduct a systematic review of the literature in order to synthesize the best available evidence on the antiepileptic properties of quinine. We will consider studies in which quinine was compared to other drugs for any one of its known indications i.e. malaria, SLE, nocturnal leg cramps, arthritis and ventricular arrhythmias and that examine the effect of quinine on seizures. The outcome of interest will be seizure prevalence, defined as the proportion of patients with seizures after administration of drug.

This systematic review therefore intends to summarize the effectiveness of quinine on seizures in humans. A search of the major databases including Pubmed, CINAHL, Cochrane database of systematic
reviews and the JBI database of systematic reviews has shown that there are no published or in progress systematic reviews on this topic.

Inclusion criteria

Types of participants
This review will consider studies that include adults or children or both with malaria (uncomplicated or severe) as defined by the WHO, systemic lupus erythematosus as defined by the American college of rheumatology criteria, arthritis, nocturnal leg cramps or ventricular arrhythmia who presented with seizures or who developed seizures in the course of treatment. There will be no age limitation.

Types of intervention
We will consider studies that evaluate quinine in comparison to other drugs used for malaria, arthritis, nocturnal leg cramps, arrhythmia and systemic lupus erythematosus.

Types of outcomes
The primary outcome of interest for this review is the proportion of subjects who have seizures after the administration of quinine, compared with those who were not given quinine.

Types of studies
This review will consider clinical human studies, randomized controlled trials; in the absence of RCTs other clinical research designs, such as non-randomized controlled trials and before and after studies, will be considered for inclusion to enable the identification of current best evidence regarding the potential antiepileptic effects of quinine.

Search strategy
The search strategy aims to find both published and unpublished studies from 1966-2010 that are in English. A three-step search strategy will be utilized in this review. An initial limited search of MEDLINE and CINAHL will be undertaken followed by analysis of the text words contained in the title and abstract, and of the index terms used to describe the article. A second search using all identified keywords and index terms will then be undertaken across all included databases. Thirdly, the reference list of all identified reports and articles will be searched for additional studies. The databases to be searched include:

a) PubMed
b) CINAHL
c) EMBASE
d) Cochrane CENTRAL
e) Web of Knowledge.

The search for unpublished studies will include:

a) BVS Virtual Library
b) Mednar
c) Proquest

Initial keywords to be used will be:
Malaria, nocturnal leg cramps, arthritis, systemic lupus erythematosus, arrhythmia
Quinine, cinchona alkaloids
Randomized controlled trial, controlled clinical trial, clinical trial, comparison, trial

Assessment of methodological quality
Quantitative papers selected for retrieval will be assessed by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) (Appendix I). Any disagreements that arise between the reviewers (CM and LM) will be resolved through discussion, or with a third reviewer (CN).

Data collection
Quantitative data will be extracted from papers included in the review using the standardized data extraction tool from JBI-MAStARI (Appendix II). The data extracted will include specific details about the interventions, populations, study methods and outcomes of significance to the review question and specific objectives.

Data synthesis
Quantitative papers will, where possible be pooled in statistical meta-analysis using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI). All results will be subject to double data entry. For each included trial, the proportion of patients with seizures in each trial arm will be compared. A Mantel-Haenszel odds ratio with 95% confidence intervals will then be calculated with statistical pooling of results. Heterogeneity will be assessed using the standard Chi-square. Where statistical pooling is not possible the findings will be presented in narrative form.

Conflicts of interest
There are no conflicts of interest.
References

1. Osujih M. Exploration of the frontiers of tradomedical practices: basis for development of alternative medical healthcare services in developing countries. J R Soc Health. 1993 Aug;113(4):190-4.
2. JF P. A post-graduate lecture on lupus erythematosus. Clin J. 1894;4:223.
3. Radcliffe-Crocker. Discussion on lupus erythematosus. Br J Dermatol. 1898;10:375.
4. Man-Son-Hing M, Wells G. Meta-analysis of efficacy of quinine for treatment of nocturnal leg cramps in elderly people. BMJ. 1995 Jan 7;310(6971):13-7.
5. Sheldon R, Duff H, Koshman ML. Antiarrhythmic activity of quinine in humans. Circulation. 1995 Nov 15;92(10):2944-50.
6. Bateman DN, Dyson EH. Quinine toxicity. Adverse Drug React Acute Poisoning Rev. 1986 Winter;5(4):215-33.
7. Padmaja UK, Adhikari P, Periera P. Experience with quinine in falciparum malaria. Indian J Med Sci. 1999 Apr;53(4):153-7.
8. Bikson M, Id Bihi R, Vreugdenhil M, Kohling R, Fox JE, Jefferys JG. Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro. Neuroscience. 2002;115(1):251-61.
9. Bostanci MO, Bagirici F. Anticonvulsive effects of quinine on penicillin-induced epileptiform activity: an in vivo study. Seizure. 2007 Mar;16(2):166-72.
10. Gajda Z, Szupera Z, Blazso G, Szente M. Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo. Epilepsia. 2005 Oct;46(10):1581-91.
11. Nassiri-Asl M, Zamansoltani F, Torabinejad B. Antiepileptic effects of quinine in the pentylentetrazole model of seizure. Seizure. 2009 Mar;18(2):129-32.
12. Nassiri-Asl M, Zamansoltani F, Zangivand AA. The inhibitory effect of trimethylamine on the anticonvulsant activities of quinine in the pentylentetrazole model in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2008 Aug 1;32(6):1496-500.
13. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10942-7.
14. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg. 1994 Sep;51(3):251-9.
15. Genovese RF, Newman DB, Brewer TG. Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav. 2000 Sep;67(1):37-44.
16. Nontprasert A, Nosten-Bertrand M, Puikaivatayakamee S, Vanijanonta S, Ries AP, White NJ. Assessment of the neurotoxicity of parenteral artesunate in mice. Trans R Soc Trop Med Hyg. 2002 Jan-Feb;96(1):99-101.
17. Schmuck G, Roehrdanz E, Haynes RK, Kahl R. Neurotoxic mode of action of artesinin. Antimicrob Agents Chemother. 2002 Mar;46(3):821-7.
18. Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, et al. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agents Chemother. 2006 Mar;50(3):1045-53.
22. Adamolekun B. Seizures associated with chloroquine therapy. Cent Afr J Med. 1992 Aug;38(8):350-2.
23. Luijckx GJ, De Krom MC, Takx-Kohlen BC. Does chloroquine cause seizures? Presentation of three new cases and a review of the literature. Seizure. 1992 Sep;1(3):183-5.
24. Schiemann R, Coulaud JP, Bouchaud O. Seizures after antimalarial medication in previously healthy persons. J Travel Med. 2000 May-Jun;7(3):155-6.
25. Bem JL, Kerr L, Stuerchler D. Mefloquine prophylaxis: an overview of spontaneous reports of severe psychiatric reactions and convulsions. J Trop Med Hyg. 1992 Jun;95(3):167-79.
26. Pous E, Gascon J, Obach J, Corachan M. Mefloquine-induced grand mal seizure during malaria chemoprophylaxis in a non-epileptic subject. Trans R Soc Trop Med Hyg. 1995 Jul-Aug;89(4):434.
27. Steffen R, Fuchs E, Schildknecht J, Naef U, Funk M, Schlagenhauf P, et al. Mefloquine compared with other malaria chemoprophylactic regimens in tourists visiting east Africa. Lancet. 1993 May 22;341(8856):1299-303.
28. WHO, editor. Pocket book of hospital care for children: guidelines for the management of common illnesses with limited resources; 2005.
29. Idro R, Gwer S, Kahindi M, Gatakaa H, Kazungu T, Ndiritu M, et al. The incidence, aetiology and outcome of acute seizures in children admitted to a rural Kenyan district hospital. BMC Pediatr. 2008;8:5.
30. Opoka RO, Bangirana P, Boivin MJ, John CC, Byarugaba J. Seizure activity and neurological sequelae in Ugandan children who have survived an episode of cerebral malaria. Afr Health Sci. 2009 Jun;9(2):75-81.
31. Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K. Seizures and status epilepticus in childhood cerebral malaria. QJM. 1996 Aug;89(8):591-7.
32. Waruiru CM, Newton CR, Forster D, New L, Winstanley P, Mwangi I, et al. Epileptic seizures and malaria in Kenyan children. Trans R Soc Trop Med Hyg. 1996 Mar-Apr;90(2):152-5.
33. van Hensbroek MB, Palmer A, Jaffar S, Schneider G, Kwiatkowski D. Residual neurologic sequelae after childhood cerebral malaria. J Pediatr. 1997 Jul;131(1 Pt 1):125-9.
34. Birbeck GL, Molyneux ME, Kaplan PW, Seydel KB, Chimalizeni YF, Kawaza K, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010 Dec;9(12):1173-81.
35. Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child. 2001 Mar;84(3):247-53.
36. Ogutu BR, Newton CR. Management of seizures in children with falciparum malaria. Trop Doct. 2004 Apr;34(2):71-5.
37. Warrell DA. Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol. 1997 Oct;91(7):875-84.
38. Kochar DK, Shubhakaran, Kumawat BL, Kochar SK, Halwai M, Makkar RK, et al. Cerebral malaria in Indian adults: a prospective study of 441 patients from Bikaner, north-west India. J Assoc Physicians India. 2002 Feb;50:234-41.
39. Idro R, Kakooza-Mwesige A, Balyejjussa S, Mirembe G, Mugasha C, Tugumisirize J, et al. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res Notes. 2010;3:104.
40. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271-7.
41. WJ K, editor. Arthritis and allied conditions: a textbook of rheumatology. 15th ed ed. Philadelphia: Lippincott Williams & Wilkins; 2004.
Appendix I - Appraisal instruments

MAStARI Appraisal instrument

Assessment for: Name of Assessment

Type: Primary
User: Default
Design: Randomised Control Tables / Psuedo-randomised Trial

Criteria	Yes	No	Unclear
1) Was the assignment to treatment groups truly random?			
2) Were participants blinded to treatment allocation?			
3) Was allocation to treatment groups concealed from the allocator?			
4) Were the outcomes of people who withdrew described and included in the analysis?			
5) Were those assessing outcomes blind to the treatment allocation?			
6) Were the control and treatment groups comparable at entry?			
7) Were groups treated identically other than for the named interventions?			
8) Were outcomes measured in the same way for all groups?			
9) Were outcomes measured in a reliable way?			
10) Was appropriate statistical analysis used?			

Include: Yes
Reason:

[Update] [Cancel]
Appendix II - Data extraction instruments

MASTARI data extraction instrument

Extraction Details	Extraction Name	Randomised Control Tables / Pseudo-randomised Trial	Study Information
Method			
Setting			
Participants			
# Participants	Group A:	Group B:	
Interventions	Interventions A:		
	Interventions B:		
Authors			
Conclusion			
Reviewers			
Comments			
Complete	No	Yes	Save Details