Distribution of soil macrofauna across different habitats in the Eastern European Alps

Julia Seeber, Michael Steinwandter, Erich Tasser, Elia Guariano, Thomas Peham, Johannes Rüdisser, Birgit C. Schlick-Steiner, Florian M. Steiner, Ulrike Tappeiner & Erwin Meyer

Macro-invertebrates are important components of soil ecosystems as they provide a wide range of crucial functions and ecosystem services. Knowledge on their distribution in mountain soils is scarce despite the importance of such soils for people living in mountain regions as well as downstream. The present dataset contains records on soil macro-invertebrates belonging to nineteen taxa listed at class or order level and earthworms listed at species level from 22 different habitat types characteristic for the Eastern European Alps. Data were collected over a period of more than 30 years (1987–2020) following a standard protocol. We compiled 1572 single records from 241 unique sampling sites, providing default site parameters (GPS coordinates, habitat type, type of management, elevation, exposition, inclination, bedrock, soil type following WRB classification). Such data are important to analyse global trends and macroecological patterns and to set a basis for tracking long-term changes in macrofauna composition. In addition, this dataset will add to the still sparse knowledge on the occurrence and abundance of alpine soil fauna taxa.

Background & Summary

Soil macro-invertebrates are animals which inhabit different soil layers, including litter and soil surface, and which are visible to the naked eye, with a body length of >1 cm and a body width >2 mm1. Taxonomically, they are heterogeneous and predominantly belong to the phyla Mollusca, Annelida, and Arthropoda. Their effect on the soil ecosystem is indispensable, they physically alter the soil matrix by creating burrows which increases aeration and drainage, they promote litter decomposition, and by interacting with microorganisms, they contribute to nutrient cycling2. Macro-invertebrates living in the soil are mainly detritivores and predators, they can be classified into various functional guilds based on their feeding habits3, and are as such parts of extremely complex soil food webs4.

Soil invertebrates closely interact with their environment, mostly due to the physical closeness. They thus strongly depend on suitable soil conditions2 and many soil invertebrates react sensitively to pH value, soil organic matter content, and soil texture, while others, more euryoecious species, tolerate a wide range of soil conditions. Due to the direct link between plant communities and soil properties, habitat types may exhibit very different conditions for soil animals and may thus harbour disparate soil macrofauna communities5–8. Mountain soils as found in the Eastern European Alps are different from soils in the lowlands and in the valley bottoms9. They are shallow, often acidic (on silicious bedrock), and contain a high amount of coarse grain (coarse sand and stones) as well as soil organic matter due to limitations of biological activity caused by low temperatures and a short growing season10. These characteristics become more prominent with increasing elevation11. The specific features of mountain soils and the increasing shortening of the growing season with increasing elevation call for adaptations in the physiology, phenology, and behaviour of soil invertebrates12. Densities of soil macro-invertebrates thus decrease with increasing elevation. Many species reach their upper limit of distribution close to the Alpine treeline or soon after13. Data on macrofauna composition and distribution in mountain soils is, however, scarce. The availability of more data would be important to enable reliable investigation of global trends and macroecological patterns and to set a basis for tracing alterations in macrofauna composition.
on the long run. Here, we present a dataset containing abundance data of various soil macro-invertebrate groups from 22 different natural to artificial habitat types characteristic for the Eastern European Alps.

Methods

Study areas. All study areas are located in the Eastern European Alps (Fig. 1), with the exception of one study site in the Western Alps (Furka, Canton of Uri, Switzerland) and one study site in the southern outskirts of the Alps (Pomarolo, Trentino, Italy). Elevation ranges from 200 to 2800 m above sea level (a.s.l.). The study sites comprise a huge variety of habitat types widely distributed in the Alps, ranging from differently managed grasslands (pastures, extensively used hay meadows, intensively used hay meadows), arable land, permanent cultures (vineyards, apple orchards), and wetlands (riparian forests, moors) to different kinds of forests (deciduous forests, coniferous forests, and shrubland).

The study areas include four Long-Term Ecological Research (LTER) sites: LTER_EU_CH_023 - Alpine Research Station Furka, ALPFOR, Switzerland; LTER_EU_IT_097 - Val Mazia/Matschertal, Italy; LTER_EU_AT_015 - Tyrolean Alps - Stubai, Austria; and LTER_EU_AT_018 - Tyrolean Alps - Obergurgl, Austria.

Fieldwork. Even though the sampling period spans more than 30 years (1987–2020), soil macrofauna samples were taken using more or less the same method throughout with slight adaptations only. A soil fauna sampler was driven into the soil (10 to 15 cm deep, depending on soil depth and stones, especially at high alpine sites), the obtained soil sample was put into a linen bag, labelled, and transported to the soil laboratory as soon as possible, but within two days maximum. Depending on the habitat type, vegetation was cut to 1 cm from the surface, and in forests, the litter was removed. The size of the soil fauna sample depended on the sampling site; the commonly used size was 706.9 cm2 (sampler of \varnothing 30 cm) but was sometimes reduced to 176.7 cm2 (sampler of \varnothing 15 cm), mainly for (high) alpine sites due to the destructiveness of soil sampling. From 2015 onwards, sampling predominantly was done using a soil fauna sampler of 400 cm2 (20×20 cm). At the soil laboratory, invertebrates were extracted by heat in a modified Kempson apparatus for 10–14 days (depending on soil water content and clay content) until complete desiccation. As collection fluid, picric acid was used in earlier years, but from around 2001 onwards non-toxic ethylene glycol or propylene glycol was mostly used. After extraction, soil animals were rinsed with tap water in a sieve (100 µm mesh size) and transferred to 75% ethanol until further processing. Whenever possible, the dry soil was returned to its place of origin to minimise the impacts of the destructive
Table 1. Dataset overview listing the single soil macro-invertebrate samplings with their associated publications and published datasets on the data repository PANGAEA.

Rows	Region	Publication	Dataset	
1–71	Nature Reserve Rheindelta, Vorarlberg, AT	Meyer, A. & Steinberger, K.H. Die Spinnenfauna des Naturschutzgebietes Rheindelta (Vorarlberg, Österreich) (Arachnida: Araneae). Berichte des naturwissenschaftlichen-medizinischen Vereins Innsbruck 82, 195–215 (1995)		
72–108	South Tyrol & Trentino, IT	Kopeszki, H. & Meyer, E. Artenzusammensetzung und Abundanz von Collembolen in Waldböden der Provinzen Bozen und Trient (Italien). Berichte des naturwissenschaftlichen-medizinischen Vereins Innsbruck 83, 221–237 (1996)		
109–183	Brixen im Thale, Tyrol, AT	Geißler, C., Mätzler, A., Bou-Vinalis, A., Meyer, E. & Tusche, M. Soil characterstics and colonization by earthworms (Lumbricidae) on pastures and hay meadows in the Brixen im Thale valley (Kitzbühel Alps, Tyrol). Die Bodenkultur 65(1), 39–51 (2014)		
184–249	Stubai Valley, Tyrol, AT	Kossler, W. Die Makrofauna in Almböden unter Berücksichtigung der Landnutzung und des Gesteinsuntergrundes im Bereich der Kärntnertal oberhalb von Neustift im Stubatal (1.860–2.170 m NN). Diplom Thesis, pp. 71, University of Innsbruck, Austria (2001).		
250–308	Stubai Valley, Tyrol, AT	Neyer, A. Abundanz und Biomasse der Makrofauna in alpinen Böden im Bereich der Kärntnertal oberhalb von Neustift im Stubatal (2.170–2.600 m ü. M.). Diploma Thesis, pp. 133, University of Innsbruck, Austria (2001).		
309–542	Vorarlberg, AT	Meyer, E. & Steinberger, K.H. Über die Bodenfauna in Wäldern Vorarlbergs (Österreich) – Bestand und Auswirkungen von Gesteinsmelaplakkationen. Verhandlungen der Gesellschaft für Ökologie 23, 149–164 (1994)		
543–682	South Tyrol, IT	Peham, T. & Meyer, E. Kommentierte Artenlisten ausgewählter Bodentiergruppen aus der Erhebung des SoiDiv-Projektes in Südtirol. Gredleriana 14, 227–262 (2014)		
683–714	South Tyrol, IT	Rottensteiner, M. Bodenmakrofauna auf Ackerflächen in Südtirol. Master Thesis, pp. 103, University of Innsbruck, Austria (2020).		
715–786	Stubai Valley, Tyrol, AT	Steinwandner, M., Rief, A., Scher, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 https://doi.org/10.1016/j.eusbio.2018.03.006 (2018)		
787–842	Stubai Valley, Tyrol, AT	Steinwandner, M., Schlick-Steiner, B. C., Seebacher, G. U. H., Steiner, F. M. & Seeber, J. Effects of Alpine land-use changes: Soil macrofauna community revisited. Ecol. Evol. 7, 5389–5399 https://doi.org/10.1002/eece.3043 (2017)		
843–862	Martelltal, South Tyrol, IT	Schwembacher, A. Arthropoden im Hochgebirge - eine Untersuchung der epigäischen Fauna im hinteren Martelltal. Master Thesis, pp. 137, University of Innsbruck, Austria (2015).		
863–880	Stubai Valley & Oberurgl, both Tyrol, AT	Seebacher, J. Abundanz und Biomasse der Makrofauna auf Ackerflächen in Südtirol. Gredleriana 14, 227–262 (2014)		
881–912	Kaltern/Caldaro, South Tyrol, IT	Steinwandner, M. et al. Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/Caldaro (South Tyrol, Italy). Gredleriana 18, 17–26 (2018)	Steinwandter et al.	41
913–1056	LTSER Matz Valley, South Tyrol, IT	Damisch, K., Steinwandner, M., Tappeiner, U. & Seeber, J. Soil macroinvertebrate distribution along a subalpine land use transect. Mt Res Dev 40, https://doi.org/10.1659/MRD-JOURNAL-D-19-00057.1 (2020)	Damisch et al.	43
1057–1164	LTSER Matz Valley, South Tyrol, IT	Seebacher, J. & Steinwandter, M. – unpublished		
1165–1191	LTSER Matz Valley, South Tyrol, IT	Schneider, E., Steinwandner, M. & Seeber, J. A comparison of Alpine soil macroinvertebrate communities from European alps and Swiss pine forests in the LTSER area "Val Mazza/Matschertal", South Tyrol. Gredleriana 19, 217–226 https://doi.org/10.5281/zenodo.3565374 (2019)	Schneider et al.	45
1192–1245	Central European Alps	Seebacher, J. et al. Soil invertebrate abundance, diversity, and community composition across steep high elevation snowmed gradients in the European Alps. Arct. Antarct. Alp. Res. 53, 288–299 https://doi.org/10.1002/1530-0349.0.2021.1982665 (2021)	Seebacher et al.	47
1246–1527	South Tyrol, IT	Guariento, E. et al. Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro-Invertebrate Communities Differently. Agronomy 10, 767 https://doi.org/10.3390/agronomy10060767 (2020)		
1528–1573	Oberurgl, Tyrol, AT	Enderle, E. et al. Suitability of different taxonomic resolutions in environmental monitoring: case study soil macrofauna along an alpine transect. (in preparation).		

Table 1. Dataset overview listing the single soil macro-invertebrate samplings with their associated publications and published datasets on the data repository PANGAEA.

Sampling (especially at higher elevations). Voucher specimens are deposited at the University of Innsbruck or at Eurac Research.

At each sampling site, default site parameters were recorded (GPS coordinates, habitat type, type of management, elevation, exposition, inclination, bedrock, soil type following WRB classification). In earlier field studies (before 2000), the GPS coordinates were taken just once in the centre of the bigger sampling area. The exact position of these sites was reconstructed as accurately as possible, but unfortunately, not all were retrievable due to the sudden passing of the main investigator Erwin Meyer.

Identification of soil macro-invertebrates. The animals were determined to class or order level and in case of earthworms (Lumbricidae) to species level under a dissecting microscope. The identification of Lumbricidae followed Christian and Zicsi (1999) and Czusdi and Zicsi (2003), that of all other taxa Schaefer (2009) and Klausnitzer (2011). Individuals were counted and densities (ind. m⁻²) were calculated.

Taxonomic sufficiency, the concept of identifying organisms at a satisfactorily level for the study in question, has been widely discussed. Identifying soil macro-invertebrates to a higher taxonomic resolution is time-consuming and needs taxonomic expertise for many different groups. Therefore, a low taxonomic resolution has been the norm in soil ecological and zoological research for a long time and it has been shown to be sufficient to identify general patterns for entire communities or individual taxa. Commonly used biodiversity indices such as the QBS index or the IBQS index work with low taxonomic resolution. However, for specific research questions, for example for modelling food webs, a higher taxonomic resolution is necessary.
As in the 80s and 90s such high taxonomic resolution was still the exception, we had to stick to the low taxonomic resolution to create a uniform dataset, but for samples taken after 2000, data in high taxonomic resolution (e.g. diplopods on family or even species level, Coleoptera and Diptera larvae on family level) is available upon request or already accessible on the digital data library PANGAEA® (see Table 1).

Data Records
We uploaded the dataset “A 30-years collection of soil macro-invertebrate abundance data from the European Alps” to PANGAEA® Data Publisher, from where it can be downloaded as tab-delimited text (.csv) or as original Microsoft® Excel file (.xlsx). The dataset comprises abundance data of four taxa on class level (Chilopoda, Symphyla, Pauropoda, Diplopoda), fifteen taxa on order or suborder level (Gastropoda, Araneae, etc.), and hundreds of species level taxa. The data is split into six different elevation zones: 1.1 < 200 m, 1.2 200-200 m, 1.3 200-1600 m, 1.4 1600-2300 m, 1.5 > 2300 m, and 2-5). For each zone, data is further split into different habitat types (e.g., alpine meadows, forests, agroforestry systems). Each dataset contains information on density, group richness, and Shannon Diversity Index (SHDI) for each sample location. The data is presented in Table 2 and Figure 2.

Figure 2. Diversity changes in soil macro-invertebrates with elevation. Post-hoc pair-wise comparisons were performed using Bonferroni tests. Values with different letters indicate significant difference between the means at significance level $p < 0.05$. SHDI… Shannon Diversity Index.

Table 2. Descriptive density and diversity of soil macro-invertebrates in different habitat types with information about their mean elevation distribution. SHDI… Shannon Diversity Index.

Habitat type	Elevation [m a.s.l.]	Samples [n]	Density [ind. m$^{-2}$]	Groups [n]	SHDI					
			\bar{x}	s.d.	\bar{x}	s.d.	\bar{x}	s.d.	\bar{x}	s.d.
1 Alpine grasslands	2254	179	1193.1	337.4	8.2	0.8	5.6	0.4		
1.1 Dwarf shrub communities, limestone	2492	28	1061.0	470.2	9.4	1.4	7.2	1.2		
1.2 Natural alpine grassland, limestone	2440	67	1024.8	937.9	7.8	2.9	5.1	2.2		
1.3 Dwarf shrub communities, silicate	2134	37	1648.3	1417.8	9.0	3.5	5.8	2.2		
1.4 Natural alpine grassland, silicate	1950	47	1038.2	1033.5	6.7	3.0	4.3	1.8		
2 Forests	1083	368	4618.5	1139.0	12.0	0.9	6.0	0.5		
2.1 Knee timber	1934	10	2291.8	1285.4	9.8	3.0	4.6	1.3		
2.2 Sub-alpine coniferous forest	1940	36	4214.9	3839.5	11.1	4.2	5.7	1.5		
2.3 Montane spruce-fire forest	1149	231	3240.1	4463.8	11.1	3.0	6.0	2.1		
2.4 Pine forest	751	14	6124.7	4140.7	13.4	2.6	6.4	2.5		
2.5 Mixed forest	862	41	3112.5	2042.0	14.5	1.6	9.0	1.3		
2.6 Thermophiles oak forest	550	12	10250.1	4344.0	15.1	1.4	5.2	1.1		
2.7 Wet forest	400	24	3095.9	3221.3	9.4	2.3	4.9	2.2		
3 Agroforestry systems	1250	125	1862.7	152.6	9.6	0.6	6.4	0.2		
3.1 Larch meadow	1719	53	1725.8	1374.5	9.5	2.3	6.2	1.9		
3.2 Orchard meadow	781	72	1415.9	388.8	7.4	0.4	4.6	0.2		
4 Extensively used agricultural areas	1221	524	1717.7	1152.2	5.9	2.9	3.9	2.0		
4.1 Rough meadow, alpine pastures	2128	311	3444.0	1717.7	15.1	1.4	5.2	1.1		
4.2 Xeric grassland	1321	72	1060.8	941.9	6.7	2.4	4.2	1.7		
4.3 Semi-rough meadow	1034	105	1897.9	91.7	2.7	6.2	1.9			
4.4 Moors/wet meadow	400	36	1751.1	1862.6	7.8	1.9	4.0	1.6		
5 Intensively used agricultural areas	738	566	1231.2	1878.4	7.6	0.9	4.6	0.3		
5.1 Fodder meadow	974	156	2293.7	2288.1	8.6	2.8	5.1	1.7		
5.2 Arboreal farmland	994	42	697.1	779.9	5.4	1.5	3.3	1.4		
5.3 Fruit plantation	608	106	2078.9	3013.1	8.7	3.1	5.3	1.8		
5.4 Vineyard	376	62	2441.1	4166.3	7.8	4.1	4.6	2.2		
6 Green space in settlements	348	10	5797.5	4921.4	10.7	2.8	4.4	1.8		
Mean (all)	**1253**	**1572**	**2076.9**	**2904.7**	**8.6**	**3.6**	**5.2**	**2.2**		

As in the 80s and 90s such high taxonomic resolution was still the exception, we had to stick to the low taxonomic resolution to create a uniform dataset, but for samples taken after 2000, data in high taxonomic resolution (e.g. diplopods on family or even species level, Coleoptera and Diptera larvae on family level) is available upon request or already accessible on the digital data library PANGAEA® (see Table 1).
Pseudoscorpiones, Opiliones, Isopoda, Protura, Diptera, Thysanoptera, Dermaptera, Homoptera, Heteroptera, Coleoptera, Lepidoptera larvae, Diptera larvae), and seventeen earthworm species, with 1572 single records from 241 unique sampling sites. Also included are data on site characteristics (GPS coordinates, description of the location, habitat type, type of management, elevation, exposition, inclination, bedrock, soil type).

Technical Validation

Quality assurance during the field and laboratory work was provided by Erwin Meyer, Michael Steinwandter and Julia Seebert by overseeing field sampling and reviewing the final data tables. All data entries were meticulously checked for any incongruencies and spelling mistakes by the authors JS, MS, and ET before upload to PANGAEA® Data Publisher, where it was then reviewed by a data curator before assigning a DOI. Taxonomic nomenclature follows Fauna Europaea32.

Data content.

For a first overview of the data, two biodiversity indicators were calculated: a) group richness (number of taxa on class, order or suborder level per single record), and b) Shannon diversity index (SHDI)33. The statistical analyses were carried out with IBM SPSS Statistics 27.

The samples contained in the dataset reveal clear trends. A decrease in diversity of soil macro-invertebrates with an increase in elevation is evident (Fig. 2). On average, individual densities decrease by more than 60% in the high montane/subalpine belt (sites above 1600 m) compared to lower sites. Group richness decreases steadily with elevation, while the Shannon Diversity Index (SHDI) decreases significantly only after the transition from the subalpine to the alpine belt (sites above 2300 m).

The distribution and diversity of soil macro-invertebrates is also strongly influenced by habitat type and land use. Our data show that on one hand natural alpine grasslands are in general less diverse than habitats in lower elevation (Table 2), with the limitation that except for earthworms, no data on species level are included. Forests, on the other hand, are the most diverse habitats in terms of individual density, group richness, and SHDI. Within forests, the high-elevation types (knee timber) and wet forests show below-average group richness and SHDI, while thermophilic deciduous forests of the colline belt show particular above-average group richness. Agricultural use in all forms leads to a decrease in individual density, group richness and SHDI, whereby agroforestry systems are more diverse regarding group richness and SHDI than all other agricultural systems. Agricultural habitat types on special sites (xeric grassland, moors/wet meadow) and at higher elevations (alpine pastures), and especially arable farmland, are less diverse. The very high density of individuals and richness of groups in green spaces in settlements is also remarkable.

The soil macrofauna data and associated environmental data also allow analyses of the effects of topographic factors, management, and soil indicators on soil macro-invertebrates. In addition, the data collection over a period of 34 years (1987–2020) enables an analysis of diversity changes over time, even though this might be limited due to heterogeneous distribution of samples within habitat types over time (Table 3). For forests, intensively and extensively used agricultural areas, sampling data are available over the entire period. For alpine habitats, data are available since 1995 (over 3 time periods). For settlements and agroforestry systems, however, no statements can be made due to missing time series.

Code availability

No custom code has been used to generate or process this dataset.

Received: 1 June 2022; Accepted: 23 September 2022; Published online: 18 October 2022

References

1. Wurst, S., Sonnemann, I. & Zaller, J. G. Soil Macro-Invertebrates: Their Impact on Plants and Associated Aboveground Communities in Temperate Regions. in Aboveground-Belowground Community Ecology. Ecological Studies 234 (eds. Ohgushi, T., Wurst, S. & Johnson, S. N.) 175–200 (Springer International Publishing, 2018).
2. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. *PNAS* **111**, 5266–5270 (2014).
3. Potapov, A. M. *et al.* Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. *Biol. Rev.* **97**, 1057–1117 (2022).
4. Potapov, A., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. *Bioll. Rev.* **94**, 37–59 (2019).
5. Voroney, R. P. & Heck, R. J. *The Soil Habitat. Soil Microbiology, Ecology and Biochemistry* (Elsevier Inc., 2015).
6. Wardle, D. A. The influence of biotic interactions on soil biodiversity. *Ecol. Lett.* **9**, 870–886 (2006).

Table 3. Distribution of soil fauna samples over time (1987–2020).

	1985–1995	> 1995–2005	> 2005–2015	> 2015–2020	Sum
Alpine grasslands	0	94	55	30	179
Forests	262	8	44	54	368
Agroforestry systems	0	8	0	117	125
Extensively used agricultural areas	36	23	183	282	524
Intensively used agricultural areas	11	0	120	235	366
Green space in settlement	0	0	10	0	10
Sum	309	133	412	718	1572
7. De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 376 (2021).
8. Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
9. Geitner, C. et al. Soil and Land Use in the Alps—Challenges and Examples of Soil-Survey and Soil-Data Use to Support Sustainable Development. In Soil Mapping and Process Modelling for Sustainable Land Use Management 221–292 (Elsevier, 2017).
10. FAO. Understanding Mountain Soils: A contribution from mountain areas to the International Year of Soils 2015. (2015).
11. Pragt, N. et al. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 150, 107951 (2020).
12. Somme, L. Adaptations of terrestrial arthropods to the alpine environment. Biol. Rev. 64, 367–407 (1989).
13. Meyer, E. & Thaler, K. Animal Diversity at High Altitudes in the Austrian Central Alps. In Arctic and Alpine Biodiversity (eds. Chapin, F. S. & Korner, C.) (Springer Berlin Heidelberg, 1999).
14. Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).
15. Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 3–30 (1963).
16. Tasser, E., Ruffini, F. V. & Tappeiner, U. An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landsc. Ecol. 24, 611–628 (2009).
17. European Environment Agency (EEA). European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (2018).
18. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106 (2015).
19. Christian, E. & Zieci, A. A synoptic key to the earthworms of Austria (Oligochaeta: Lumbricidae). Die Bodenkultur 50, 121–131 (1999).
20. Czusdi, C. & Zicsi, A. Earthworms of Hungary (Annelida, Oligochaeta, Lumbricidae). (Hungarian Natural History Museum, 2003).
21. Schafer, M. Benthner – Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt. (Quelle & Meyer Verlag, 2009).
22. Klausnitzer, B. Exkursionsfauna von Deutschland. (Springer Berlin Heidelberg, 2011).
23. Ellis, D. Taxonomic sufficiency in pollution assessment. Mar. Pollut. Bull. 16, 459 (1985).
24. Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid ensembles. Acta Oecol. 30, 46–53 (2006).
25. Steinwandter, M., Schlick-Steiner, B. C., Seeber, G. U. H., Steiner, F. M. & Seeber, J. Effects of Alpine land-use changes: Soil macrofauna community revisited. Ecol. Evol. 7, 5389–5399 (2017).
26. de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).
27. Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).
28. Pik, A. J., Oliver, I. & Beattie, A. J. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Austral. Ecol. 24, 555–562 (1999).
29. Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 105, 323–333 (2005).
30. Ruiz, N. et al. IBQs: A synthetic index of soil quality based on soil macro-invertebrate communities. Soil Biol. Biochem. 43, 2032–2045 (2011).
31. Seeber, J. et al. A 30-years collection of data on soil macro-invertebrate abundance data from the European Alps. PANGAEA https://doi.org/10.1594/PANGAEA.944405 (2022).
32. de Jong, Y. et al. Fauna Europaea - All European animal species on the web. Biodivers. Data J. 2 (2014).
33. Shannon, C. E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423 (1948).
34. Steinberger, K.-H. & Meyer, E. The Spider Fauna of the Nature Reserve Rheindelta (Vorarlberg, Western Austria) (Arachnida: Araneae). Ber. nat.-med. Verein Innsbruck 82, 195–215 (1995).
35. Kopeszki, H. & Meyer, E. Species Composition and Abundance of Collomella in Forest Soils in the Provinces of Bozen and Trient (Italy). Ber. nat.-med. Verein Innsbruck 83, 221–237 (1996).
36. Geitner, C., Mätzler, A., Bou-Vinals, A., Meyer, E. & Tusch, M. Soil characteristics and colonization by earthworms (Lumbricidae) on pastures and hay meadows in the Brixenbach Valley (Kitzbühel Alps, Tyrol). Die Bodenkultur 65, 39–51 (2014).
37. Meyer, E. & Steinberger, K.-H. Über die Bodenfauna in Wäldern Vorarlbergs (Österreich) Bestand und Auswirkungen von Gesteinsemnahmepflaktionen. Verhandlungen der Gesellschaft für Ökologie 23, 149–164 (1994).
38. Peham, T. & Meyer, E. Kommentierte Artenlisten ausgewählter Bodentiergruppen aus der Erhebung des SoilDiv-Projektes in Südtirol. Gredleriana 14, 227–262 (2014).
39. Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).
40. Steinwandter, M. et al. Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/ Caldaro (South Tyrol, Italy). Gredleriana 18, 17–26 (2018).
41. Steinwandter, M. et al. Raw data from: Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/ Caldaro (South Tyrol, Italy). PANGAEA https://doi.org/10.1594/PANGAEA.900652 (2019).
42. Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Soil Macroinvertebrate Distribution along a Subalpine Land Use Transect. Mt. Res. Dev. 40, R1–R10 (2020).
43. Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Abundance data from soil macro-invertebrates along a subalpine land-use transect. PANGAEA https://doi.org/10.1594/PANGAEA.918958 (2020).
44. Schneider, E., Steinwandter, M. & Seeber, J. A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschental”, South Tyrol. Gredleriana 19, 217–228 (2019).
45. Schneider, E., Steinwandter, M. & Seeber, J. Raw data from: A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschental”, South Tyrol. PANGAEA https://doi.org/10.1594/ PANGAEA.910666 (2020).
46. Seeber, J. et al. Soil invertebrate abundance, diversity, and community composition across steep high elevation snowmelt gradients in the European Alps. Arct. Antarct. Alp. Res. 53, 288–299 (2021).
47. Seeber, J. et al. Abundance data from soil macro- and mesofauna of alpine snowbeds in the European Alps (summer 2017). PANGAEA https://doi.org/10.1594/PANGAEA.935737 (2021).
48. Guariento, E. et al. Management intensification of hay meadows and fruit orchards alters soil macro-invertebrate communities differently. Agronomy 10, 767 (2020).

Acknowledgements
We thank all the students and trainees of Erwin Meyer and the #AlpSoil_Lab and lab technician Regina Medgyesý who helped with the field and lab work. The authors thank the Department of Innovation, Research, and University of the Autonomous Province of Bozen/Bolzano for covering the open access publication costs.
Author contributions
J.S.: collected data, wrote manuscript. M.S.: collected data, prepared data tables, wrote manuscript. E.T.: collected data, prepared data tables and figures, wrote manuscript. E.G.: collected data, reviewed first draft. T.P.: collected data, reviewed first draft. J.R.: collected data, reviewed first draft. B.S.S.: collected data, reviewed first draft. F.S.: collected data, reviewed first draft. U.T.: collected data, reviewed first draft. E.M.: collected data.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence
and requests for materials should be addressed to J.S.

Reprints and permissions information
is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022