First Report of Complete Sequence of a \(\text{bla}_{\text{NDM}-13} \)-Harboring Plasmid from an \textit{Escherichia coli} ST5138 Clinical Isolate

Jingnan Lv\(^1\), Xiuqin Qi\(^1\), Dan Zhang\(^1\), Zhou Zheng\(^1\), Yuehui Chen\(^1\), Yinjuan Guo\(^1\), Shanshan Wang\(^1\), Liang Chen\(^1\), Barry N. Kreiswirth\(^2\), Yi-Wei Tang\(^3\), Zengqiang Chen\(^1\), Longhua Hu\(^1\), Liangxing Wang\(^5\) and Fangyou Yu\(^1\)

\(^{1}\)Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, \(^{2}\)Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA, \(^{3}\)Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA, \(^{4}\)Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China, \(^{5}\)Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Since the first report of \(\text{bla}_{\text{NDM-1}} \), 16 \(\text{bla}_{\text{NDM}} \) variants have been identified among Gram-negative bacteria worldwide. Recently, a novel \(\text{bla}_{\text{NDM-13}} \) variant, \(\text{bla}_{\text{NDM-13}} \), was identified in the chromosome of an ST101 \textit{Escherichia coli} isolate from Nepal. Here we first reported plasmid-mediated \(\text{bla}_{\text{NDM-13}} \) in a carbapenem-resistant \textit{E. coli} ST5138 clinical isolate associated with hospital-acquired urinary tract infection from China. \(\text{bla}_{\text{NDM-13}} \) and \(\text{bla}_{\text{SHV-12}} \) coexisted on the a \(\sim \)54 Kb self-transferable plasmid. Compared with NDM-1, NDM-13, NDM-3, and NDM-4 had two amino acid substitutions (D95N and M154L), one amino acid substitution (D95N) and one amino acid substitutions (M154L), respectively. Complete plasmid sequencing showed that \(\text{bla}_{\text{NDM-13}} \)-harboring plasmid (pNDM13-DC33) was highly similar to the \(\text{bla}_{\text{NDM-1}} \)-harboring IncX3 plasmid pNDM-HN380, a common \(\text{bla}_{\text{NDM}} \)-harboring vector circulating in China. In accordance with the structure of pNDM-HN380, pNDM13-DC33 consists of a 33-kb backbone encoding plasmid replication (\(\text{repB} \)), stability partitioning, and transfer (\(\text{tra}, \text{trb}, \text{and} \text{pil} \)) functions, and a 21-kb antimicrobial resistance region with high GC content between \(\text{umuD} \) and \(\text{mpr} \) genes. In conclusion, the present study is the first report of a plasmid-encoded \(\text{bla}_{\text{NDM-13}} \) and the complete sequence of a \(\text{bla}_{\text{NDM-13}} \)-harboring plasmid (pNDM13-DC33). \(\text{bla}_{\text{NDM-13}} \) maybe originate from \(\text{bla}_{\text{NDM-1}} \) located on a pNDM-HN380-like plasmid by sequential mutations.

Keywords: \textit{Escherichia coli}, \(\text{bla}_{\text{NDM-13}} \), plasmid

INTRODUCTION

Enterobacteriaceae, particularly \textit{Escherichia coli} and \textit{Klebsiella pneumoniae}, are common pathogens causing nosocomial infections. Carbapenems are the choice for the treatment of infections caused by multi-drug resistant Enterobacteriaceae, especially extended-spectrum β-lactamase (ESBL)- and/or plasmid-mediated AmpC (pAmpC)-producing organisms (Tzouvelekis et al., 2012). The emergence of carbapenem-resistant \textit{K. pneumonia} and \textit{E. coli} producing...
carbapenemases (KPCs) and metallo-β-lactamases (MBLs) have become a major global health problem due to the limited number of effective antibiotic options to treat the infections caused by these multi-drug resistant Enterobacteriaceae (Tzouvelekis et al., 2012). In 2009, a novel MBL, named New Delhi metallo-β-lactamase-1 (NDM-1), was identified in a K. pneumoniae isolate from a Swedish patient who had returned from India with a urinary tract infection (Yong et al., 2009). Since then, NDM-1-producing Gram-negative isolates have emerged worldwide. NDM-1 was primarily identified in Enterobacteriaceae, especially in E. coli and K. pneumoniae, from the Indian subcontinent, Balkan states, the Arabian peninsula, and North Africa (Nordmann and Poirel, 2014). In China, NDM-1 was initially identified in 4 clonally unrelated Acinetobacter baumannii isolates in 2011 (Chen et al., 2011). Subsequently, this clinically important enzyme has spread among many species of Enterobacteriaceae in China (Hu et al., 2013; Liu et al., 2013; Zhang et al., 2013).

Since the first report of NDM-1, 16 NDM variants have been identified among Gram-negative bacteria worldwide (http://www.ncbi.nlm.nih.gov/pathogens/submit_beta_lactamase/). Recently, a novel NDM variant, NDM-13, was reported in a urinary tract infection isolate from a Swedish patient who had returned from India (Peleg et al., 2005). Subsequently, this NDM-13 variant was identified among GRAM-negative bacteria worldwide (http://www.eucarinas.com/). The NDM-13 gene, interestingly, was found to locate within the chromosome of an E. coli ST101 isolate. The aim of the present study was to investigate whether blaNDM-13 was located on the plasmids of clinically isolated Enterobacteriaceae. We first found plasmid-mediated blaNDM-13 and completely sequenced a blaNDM-13-harboring plasmid for the first time from a carbapenem-resistant E. coli ST5138 clinical isolate associated with hospital-acquired urinary tract infection in China.

MATERIALS AND METHODS

Bacterial Strain

From Mar, 2014 to Oct, 2014, a total of 87 carbapenem-resistant Enterobacteriaceae (CRE) isolates causing clinical infections isolated from various specimens of patients at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, east China, were investigated for carbapenemase genes. The isolates were identified as E. coli by an automated microbiology analyzer (bioMérieux, Marcy l’Etoile, France) in accordance with the manufacturer’s instructions.

Antimicrobial Susceptibility Testing

Gram-negative susceptibility (GNS) card on the Vitek system (bioMérieux, Marcy l’Etoile, France) was performed initially for antimicrobial susceptibility testing. Disk diffusion method was used for further confirmation and antimicrobial susceptibility results were interpreted according to the criteria recommended by Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2014). The E-test method was used for the determination of minimum inhibitory concentrations (MICs) of imipenem and meropenem for the E. coli isolate and its transconjugant. E. coli ATCC 25922 was used as control strain for antimicrobial susceptibility testing.

Detection of Carbapenemases and Extended-Spectrum β-Lactamases (ESBLs)

The modified Hodge test (MHT) was further performed on a Mueller-Hinton agar plate with ertapenem as substrate for the detection of carbapenemases as described previously (CLSI, 2014). MBLs were determined using a double-disc synergy test (Peleg et al., 2005). ESBLs were tested using the CLSI-recommended confirmatory double disk combination test (CLSI, 2014).

Detection of Resistance Genes

The carbapenemase genes responsible for carbapenem resistance, including blaKPC, blaGES, blaSPM, blaMDM, blaVIM, blaSPM, and blaNDM, were detected using PCR and DNA sequencing as described previously (Queenan and Bush, 2007; Nordmann et al., 2011). ESBLs genes were detected in accordance with the method described previously (Andrade et al., 2010). PCR products were analyzed by electrophoresis in 1% agarose gels and were sequenced on both strands.

Transferability of Plasmids with Carbapenem Resistance

In order to determine whether carbapenem resistance was transferable in E. coli DC33 strain, filter mating conjugation was performed using E. coli 600 as the recipient as previously described (Wang et al., 2004). Plasmid DNA of E. coli DC33 strain was extracted with the QIAPlasmid Midi kit (Hilden, Germany) according to the manufacturer’s instructions. The plasmid extracts were transferred into E. coli DH5α by using chemical transformation and transformants were selected on Luria-Bertani agar plates containing imipenem (0.5 μg/ml).

Multi-Locus Sequence Typing (MLST)

Multi-Locus Sequence Typing (MLST) was performed on E. coli DC33 using amplification of internal fragments of the seven housekeeping genes including adk, fumC, gyrB, icd, mdh, purA, and recA of E. coli according to MLST website (http://mlst.warwick.ac.uk/MLST/DBs/Ecoli).

Determination of blaNDM-13 Location

The total bacterial DNA of E. coli DC33 was first prepared in agarose plugs, digested with S1 nuclease and further separated by pulsed-field gel electrophoresis (PFGE), as described previously (Chen et al., 2011). Then, the DNA bands were transferred horizontally to a nylon membrane (Millipore). A digoxigenin-labeled blaNDM-13 probe was used to hybridize with DNA bands and a nitro-blue tetrazolium/5-bromo-4-chloro-3-indolylphosphate color detection kit (Roche Applied Sciences) was applied to detect hybridization signals.

Sequencing a blaNDM-13-Harboring Plasmid from the Transconjugant of E. Coli DC33 Strain

In order to completely characterize the plasmid from the transconjugant of E. coli DC33 (designated as pNDM13-DC33), pNDM13-DC33 was isolated, purified, and sequenced using the Illumina MiSeq platform. The sequencing reads were de novo
assembled, gaps between contigs were closed, open reading frames (ORFs) were predicted, and annotations were performed as described previously (Chen et al., 2013).

RESULTS AND DISCUSSION

Carbapenemases and ESBLs Production and Detection of Resistance Genes

Among 87 CRE isolates, 7 were positive for blaNDM. After sequencing, *E. coli* strain DC33 was found to harbor blaNDM-13. *E. coli* strain DC33 was isolated from a urine culture of a 64-year-old male hospitalized for prostatic hyperplasia in July, 2014. After hospitalized, the patient had the symptom of urinary tract infection. Subsequently, many white cells were found in urine sample under microscope. *E. coli* strain DC33 was isolated when the patient was hospitalized on day 8. *E. coli* DC33 was weakly positive for the MHT assay, but β-lactamase activity was inhibited by EDTA, indicating that *E. coli* DC33 produced a MBL. *E. coli* DC33 was also positive for CLSI-recommended confirmatory double disk combination test for detecting ESBLs. The results of detection of ESBL genes using PCR showed that *E. coli* DC33 was also positive for blaSHV while was negative for other resistance genes tested. After DNA sequencing, *bla*SHV was found to be located on the chromosome (Zhang et al., 2013). As ST5138 was a single-locus variant of ST617, we speculate that *E. coli* DC33 harboring *bla*NDM-13 is genetically related to *E. coli* ST 167 isolates carrying *bla*NDM-1 found in our previous study (Zhang et al., 2013). Recently, a Chinese study found an increasing prevalence of *E. coli* ST167 clinical isolates carrying both *bla*NDM-1 and *bla*NDM-5 on the conjugative IncX3 plasmid in various parts of China (Huang et al., 2016). Therefore, increasing emergence of *bla*NDM variants among *E. coli* ST167 and ST167 variants clinical isolates should be of concern. Up to now, *bla*NDM-13 was only reported in Nepal (Shrestha et al., 2015). The present study is the second report of this novel *bla*NDM variant.

Antimicrobial Susceptibility Testing

Escherichia coli DC33 exhibited resistance to all antimicrobials tested except tigecycline determined initially by Gram-negative susceptibility (GNS) card on the Vitek system (Table 1), including ampicillin, ampicillin/sulbactam, amikacin, aztreonam, cefotetan, ceftazidime, ceftriaxone, cefepime, cefuroxim, ertapenem, gentamicin, imipenem, levofloxacin, nitrofurantoin, piperacillin/tazobactam, tobramycin, and trimethoprim/sulfamethoxazole, The *E. coli* IOMTU558 carrying *bla*NDM-13 located on the chromosome from Nepal was highly resistant to all β lactams tested including ampicillin, ampicillin/sulbactam, cefepime, cefoselis, cefotaxime, cefoxitin, cefpirome, ceftazidime, ceftriaxone, cefadroxil, doripenem, imipenem, meropenem, and moxalactam (Shrestha et al., 2015). The *E. coli* IOMTU558 was also resistant to other antibiotics including ciprofloxacin, gentamicin, kanamycin, levofloxacin, and tobramycin, but susceptible to amikacin, colistin, fosfomycin, and minocycline (Shrestha et al., 2015). Tigecycline MICs for *E. coli* DC33 and *E. coli* IOMTU558 were 0.05 and 2 μg/ml (Shrestha et al., 2015). The antimicrobial susceptibility pattern of *E. coli* DC33 was further confirmed by disk diffusion method. The resistance of *E. coli* DC33 to imipenem and meropenem was further corroborated by E-test method.

MLST

MLST result showed *E. coli* DC33 belonged to ST5138, a single locus variant of ST617. Although ST5138 has been deposited in *E. coli* MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli), no study about *E. coli* ST5138 isolate is published. In our previous study, coexistence of *bla*NDM-1 and *bla*CMY-42 was found among *E. coli* ST167 clinical isolates in our hospital (Shrestha et al., 2015).}

Table 1: MIC values of antimicrobials for *E. coli* DC33 carrying *bla*NDM-13 and its transconjugant.

Antimicrobials	DC33	DC33-EC600	EC600
Ampicillin	≥32	≥32	16
Ampicillin/Sulbactam	≥32	≥32	4
Piperacillin/Tazobactam	≥128	≥128	≤4
Cefotetan	≥64	≥64	≤4
Ceftazidime	≥64	≥64	≤4
Ceftriaxone	≥64	≥64	≤4
Ceferpine	≥64	16	≤1
Aztreonam	≥64	≥64	≤1
Ertapenem	≥8	≥8	≤0.5
Imipenem	≥16	≥16	≤1
Amikacin	≥64	≤2	≤2
Gentamicin	≥16	≤1	≤1
Tobramycin	≥16	≤1	≤1
Ciprofloxacin	≥4	2	≤0.25
Levofloxacin	≥8	4	≤0.5
Nitrofurantoin	64	64	≤16
Trimethoprim/Sulfamethoxazole	≥320	≤20	≤20
Tigecycline	0.05	0.05	0.05

Location of *bla*NDM-13 Gene and Transferability of Plasmids Carrying *bla*NDM-13

S1-PFGE result showed that a ~54-Kb plasmid was found in *E. coli* DC33 (Figure 1). Subsequently, *bla*NDM-13 gene was found to be located on this plasmid, not on chromosome, which was confirmed by Southern-blot (Figure 1). The *bla*NDM-13-harboring plasmid of *E. coli* DC33, designated as pNDM13-DC33, was successfully transferred into recipient *E. coli* 600 by filter mating conjugation. The antimicrobial resistance patterns of *E. coli* DC33 and its transconjugant were shown in Table 1. Shrestha et al found that *bla*NDM-13 was located within the chromosome (Shrestha et al., 2015). However, *bla*NDM-13 was first confirmed to be located on the plasmid in the present study.

Complete Sequence of pNDM13-DC33

Plasmid pNDM13-DC33 is 54.035-bp in length, with an average GC content of 49.03% (Figure 2). BLASTn analysis showed that...
pNDM13-DC33 is similar to pNDM-HN380, an IncX3-type plasmid carrying \(\text{bla}_{\text{NDM-1}} \) among Enterobacteriaceae isolates in China (Ho et al., 2012), with 100% query coverage and >99.9% nucleotide identity (with 8 single nucleotide polymorphisms, SNPs). In China, IncX3-type plasmids carrying \(\text{bla}_{\text{NDM}} \) variants have been widely found among \(E. \ coli \) clinical isolates with different clones including ST648, ST156, ST131, ST167, and ST3835 clones (Feng Y. et al., 2015; Huang et al., 2016; Wang et al., 2016; Yang et al., 2016). Notably, these similar plasmids have been identified in several hospitals from different geographic regions in China (Wang et al., 2014; Feng J. et al., 2015; Qu et al., 2015), suggesting that pNDM-HN380-like plasmids are common NDM vectors that likely contribute significantly to the dissemination of \(\text{bla}_{\text{NDM}} \) variants in China.

In accordance with the structure of pNDM-HN380, pNDM13-DC33 consists of a 33-kb backbone encoding plasmid replication (\(\text{repB} \)), stability partitioning, and transfer (\(\text{tra}, \text{trb}, \text{and} \text{pil} \)) functions, and a 21-kb antimicrobial resistance region with comparatively high GC content between \(\text{umuD} \) and \(\text{mpr} \) genes, suggesting that these two regions were likely acquired and genetically distinct. The resistance region of pNDM13-DC33, containing 16 ORFs sequentially organized as \(\text{IS26, bla}_{\text{SHV-12, ygbI, ygbF, IS26, insE, groL, cutA1, dsbc, }\Delta \text{trpF, ble}_{\text{MBL, bla}_{\text{NDM-13}, }\Delta \text{ISaba125, IS5, }\Delta \text{ISaba125,} \text{and Tn3 }\text{tnpA}, \) was nearly identical to that of pNDM-HN380, but with the exception that they carry different \(\text{bla}_{\text{NDM}} \) variants (pNDM13-DC33 with \(\text{bla}_{\text{NDM-13}} \) and pNDM-HN380 with \(\text{bla}_{\text{NDM-1}} \) (Figure 2). Of note, compared with NDM-1, NDM-13, NDM-3, and NDM-4 had two amino acid substitutions (D95N and M154L), one amino acid substitution (D95N), and one amino acid substitutions (M154L), respectively (Table 2). Although NDM-13 (with two substitutions including the D95N and M154L relative to NDM-1) did not show increased hydrolytic activity against carbapenems, cephalosporins, and penicillins, it increased the affinity of NDM-13 for cefotaxime and affected the catalytic activity of the enzyme against cefotaxime (Shrestha et al., 2015). Our finding that \(\text{bla}_{\text{NDM-13}} \)-harboring pNDM13-DC33 closely resembles \(\text{bla}_{\text{NDM-1}} \)-harboring pNDM-HN380 provides evidence that novel \(\text{bla}_{\text{NDM}} \) variants emerge by sequential mutations of a pNDM-HN380-like plasmid carrying \(\text{bla}_{\text{NDM-1}} \).
In conclusion, the present study is the first report of a plasmid-encoded \(\text{bla}_{\text{NDM-13}} \) and the complete sequence of a \(\text{bla}_{\text{NDM-13}} \)-harboring plasmid (pNDM13-DC33). \(\text{bla}_{\text{NDM-13}} \) maybe originate from \(\text{bla}_{\text{NDM-1}} \) located on a pNDM-HN380-like plasmid by sequential mutations. The emergence of novel plasmid-mediated \(\text{bla}_{\text{NDM}} \) variants, originating through the mutations in \(\text{bla}_{\text{NDM}} \) from an epidemic plasmid, poses a concern that NDM variants with different \(\beta \)-lactamases hydrolytic activity will evolve.

Nucleotide Sequence Accession Number

The complete nucleotide sequences of plasmid pNDM13-DC33 has been deposited as GenBank accession no. KX094555.

ETHICAL APPROVAL

The Ethics Committee of the first Affiliated Hospital of Wenzhou Medical University exempted this study from review because the present study focused on bacteria.

AUTHOR CONTRIBUTIONS

JL, XQ, DZ, ZZ, YC, YG, and SW isolated bacteria and performed the laboratory measurements. FY and LW made substantial contributions to conception and design. LC, YT, and BK revised the manuscript critically for important intellectual content. LC, YT, and BK revised the manuscript. All authors read and approved the final manuscript.

FUNDING

This work was supported in part by National Institutes of Health (NIH) Grant R01AI090155 (to BK) and R21AI117338 (to LC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

ACKNOWLEDGMENTS

We thank Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents to FY.

TABLE 2 | Nucleotide and amino acid differences between NDM enzymes.

NDM variants*	Non-synonymous substitution	Amino acid substitution
NDM-1	-	-
NDM-2	C82G	P28A
NDM-3	G283A	D95N
NDM-4	A460C	M154L
NDM-5	G262T, A460C	V88L, M154L
NDM-6	G698T	A233V
NDM-7	G388A, A460C	D130N, M154L
NDM-8	A389G, A460C	D130G, M154L
NDM-9	G454A	E152K
NDM-10	G94A, G107A, G205A, G220A, G598C	R32S, G36D, G69S, A74T, G200R
NDM-11	A460G	M154V
NDM-12	A460C, G665A	M154L, G222D
NDM-13	G283A, A460C	D96N, M154L
NDM-14	A389G	D130G
NDM-15	A460C, G698T	M154L, A233V
NDM-16	G262C, A460C, G698T	V88L, M154L, A233V

*Nucleotide and amino acid positions (in comparison to NDM-1) of nonsynonymous substitutions were listed. Amino acid abbreviations follow the standard single letter code.

REFERENCES

Andrade, L. N., Minarini, L. A., Pitondo-Silva, A., Climaco, E. C., Palazzo, I. C., Medeiros, M. L., et al. (2010). Determinants of \(\beta \)-lactam resistance in meningitis-causing Enterobacteriaceae in Brazil. Can. J. Microbiol. 56, 399–407. doi: 10.1139/W10-020

Carvalho-Assef, A. P., Pereira, P. S., Albano, R. M., Berião, G. C., Tavares, C. P., Chagas, T. P., et al. (2014). Detection of NDM-1, CTX-M-15, and qnrB4-producing Enterobacter hormaechei isolates in Brazil. Antimicrob. Agents Chemother. 58, 2475–2476. doi: 10.1128/AAC.02804-13

Chen, L., Chavda, K. D., Fraimow, H. S., Mediavilla, J. R., Melano, R. G., Jacobs, M. R., et al. (2013). Complete nucleotide sequences of \(\text{bla}_{\text{KPC-1}} \)- and \(\text{bla}_{\text{KPC-3}} \)-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob. Agents Chemother. 57, 269–276. doi: 10.1128/AAC.01648-12

Chen, Y., Zhou, Z., Jiang, Y., and Yu, Y. (2011). Emergence of NDM-1-producing Acinetobacter baumannii in China. J. Antimicrob. Chemother. 66, 1255–1259. doi: 10.1093/jac/dkr082

CLSI (2014). Performance Standards for Antimicrobial Susceptibility Testing, 24th Informational Supplement (M100-S24). Wayne, IL: Clinical and Laboratory Standards Institute.

Feng, J., Qiu, Y., Yin, Z., Chen, W., Yang, H., Yang, W., et al. (2015). Coexistence of a novel KPC-2-encoding MDR plasmid and an NDM-1-encoding pNDM-HN380-like plasmid in a clinical isolate of Citrobacter.
Feng, Y., Yang, P., Xie, Y., Wang, X., McNally, A., and Zong, Z. (2015). Escherichia coli of sequence type 3835 carrying blanDM-1, blaCTX-M-15, blaCMY-42 and blanIM-12. Sci. Rep. 5:12275. doi: 10.1038/srep12275

Ho, P. L., Li, Z., Lo, W. U., Cheung, Y. Y., Lin, C. H., Sham, P. C., et al. (2012). Identification and characterization of a novel incompatibility group X3 plasmid carrying blanDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg. Microbes Infect. 1, e9. doi: 10.1038/emi.2012.37

Hu, L., Zhong, Q., Tu, J., Xu, Y., Qin, Z., Parsons, C., et al. (2013). Emergence of blanDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagn. Microbiol. Infect. Dis. 75, 373–376. doi: 10.1016/j.diagmicrobio.2013.01.006

Huang, T. W., Chen, T. L., Chen, Y. T., Lauderdale, T. L., Liao, T. L., Lee, Y. T., et al. (2013). Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS ONE 8:e62774. doi: 10.1371/journal.pone.0062774

Huang, Y., Yu, X., Xie, M., Wang, X., Liao, K., Xue, W., et al. (2016). Widespread dissemination of carbapenem-resistant Escherichia coli sequence type 167 strains harboring blanDM-5 in clinical settings in China. Antimicrob. Agents Chemother. 60, 4364–4368. doi: 10.1128/AAC.00859-16

Liu, Z., Li, W., Wang, J., Pan, J., Sun, S., Yu, Y., et al. (2013). Identification and characterization of the first Escherichia coli strain carrying NDM-1 gene in China. PLoS ONE 8:e66666. doi: 10.1371/journal.pone.0066666

Nordmann, P., and Poirel, L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 20, 821–830. doi: 10.1111/1469-0691.12179

Nordmann, P., Poirel, L., Carrère, A., Toleman, M. A., and Walsh, T. R. (2011). How to detect NDM-1 producers. J. Clin. Microbiol. 49, 718–721. doi: 10.1128/JCM.01773-10

Peleg, A. Y., Franklin, C., Bell, J. M., and Spelman, D. W. (2005). Dissemination of the metallo-β-lactamate gene blanDM-4 among gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis. 41, 1549–1556. doi: 10.1086/497831

Queenan, A. M., and Bush, K. (2007). Carbapenemases: the versatile β-Lactamases. Clin. Microbiol. Rev. 20, 440–458. doi: 10.1128/CMR.00001-07

Qu, H., Wang, X., Ni, Y., Liu, J., Tan, R., Huang, J., et al. (2015). NDM-1 producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blanDM-1. Int. J. Infect. Dis. 34, 8–13. doi: 10.1016/j.ijid.2015.02.020

Shrestha, B., Tada, T., Miyoshi-Akiyama, T., Shimada, K., Ohara, H., Kirikae, T., et al. (2015). Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother. 59, 5847–5850. doi: 10.1128/AAC.00332-15

Stoesser, N., Giess, A., Batty, E. M., Sheppard, A. E., Walker, A. S., Wilson, D. J., et al. (2014). Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob. Agents Chemother. 58, 7347–7357. doi: 10.1128/AAC.03900-14

Tzouvelekis, L. S., Markogiannakis, A., Psychogiou, M., Tassios, P. T., and Daikos, G. L. (2012). Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25, 682–707. doi: 10.1128/CMR.05035-11

Villa, L., Poirel, L., Nordmann, P., Carta, C., and Carattoli, A. (2012). Complete sequencing of an IncH plasmid carrying the blanDM-1, blaCTX-M-15 and qnrB1 genes. J. Antimicrob. Chemother. 67, 1645–1650. doi: 10.1093/jac/dks114

Wang, L. H., Liu, P. P., Wei, D. D., Liu, Y., Wan, L. G., Xiang, T. X., et al. (2016). Clinical isolates of uropathogenic Escherichia coli ST131 producing NDM-7 metallo-β-lactamase in China. Int. J. Antimicrob. Agents. 48, 41–45. doi: 10.1016/j.ijantimicag.2016.03.009

Wang, M., Sahm, D. F., Jacoby, G. A., and Hooper, D. C. (2004). Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob. Agents Chemother. 48, 1295–1299. doi: 10.1128/AAC.48.4.1295-1299.2004

Wang, X., Xu, X., Li, Z., Chen, H., Wang, Q., Yang, P., et al. (2014). An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb. Drug Resist. 20, 144–149. doi: 10.1089/mdr.2013.0100

Yang, R. S., Feng, Y., Li, Y. Y., Duan, J. H., Chen, J., Fang, L. X., et al. (2016). Emergence of NDM-5 and MCR-1-Producing Escherichia coli Clone ST648 and ST156 from A single muscovy duck (Cairina moschata). Antimicrob. Agents Chemother. 60, 1469–1471. doi: 10.1128/AAC.00819-16

Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, J., et al. (2009). Characterization of a new Metallo-β-Lactamase gene, blanDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53, 3046–3054. doi: 10.1128/AAC.00774-09

Zhang, X., Lou, D., Xu, Y., Shang, Y., Li, D., Huang, X., et al. (2013). First identification of coexistence of blanDM-1 and blanCMY-42 among Escherichia coli ST167 clinical isolates. BMC Microbiol. 13:282. doi: 10.1186/1471-2180-13-282

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Lv, Qi, Zhang, Zheng, Chen, Guo, Wang, Chen, Kreiswirth, Tang, Chen, Hu, Wang and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction is permitted and the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.