Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures

Vincent Y. F. Tan, Student Member, IEEE, Animashree Anandkumar, Member, IEEE, Alan S. Willsky, Fellow, IEEE.

Abstract—The problem of learning tree-structured Gaussian graphical models from independent and identically distributed (i.i.d.) samples is considered. The influence of the tree structure and the parameters of the Gaussian distribution on the learning rate as the number of samples increases is discussed. Specifically, the error exponent corresponding to the event that the estimated tree structure differs from the actual unknown tree structure of the distribution is analyzed. Finding the error exponent reduces to a least-squares problem in the very noisy learning regime. In this regime, it is shown that the extremal tree structure that minimizes the error exponent is the star for any fixed set of correlation coefficients on the edges of the tree. If the magnitudes of all the correlation coefficients are less than 0.63, it is also shown that the tree structure that maximizes the error exponent is the Markov chain. In other words, the star and the chain graphs represent the hardest and the easiest structures to learn in the class of tree-structured Gaussian graphical models. This result can also be intuitively explained by correlation decay: pairs of nodes which are far apart, in terms of graph distance, are unlikely to be mistaken as edges by the maximum-likelihood estimator in the asymptotic regime.

Index Terms—Structure learning, Gaussian graphical models, Gauss-Markov random fields, Large deviations, Error exponents, Tree distributions, Euclidean information theory.

I. INTRODUCTION

Learning of structure and interdependencies of a large collection of random variables from a set of data samples is an important task in signal and image analysis and many other scientific domains (see examples in [1]–[4] and references therein). This task is extremely challenging when the dimensionality of the data is large compared to the number of samples. Furthermore, structure learning of multivariate distributions is also complicated as it is imperative to find the right balance between data fidelity and overfitting the data to the model. This problem is circumvented when we limit the distributions to the set of Markov tree distributions, which have a fixed number of parameters and are tractable for learning [3] and statistical inference [1], [4].

The problem of maximum-likelihood (ML) learning of a Markov tree distribution from i.i.d. samples has an elegant solution, proposed by Chow and Liu in [5]. The ML tree structure is given by the maximum-weight spanning tree (MWST) with empirical mutual information quantities as the edge weights. Furthermore, the ML algorithm is consistent [6], which implies that the error probability in learning the tree structure decays to zero with the number of samples available for learning.

While consistency is an important qualitative property, there is substantial motivation for additional and more quantitative characterization of performance. One such measure, which we investigate in this theoretical paper is the rate of decay of the error probability, i.e., the probability that the ML estimate of the edge set differs from the true edge set. When the error probability decays exponentially, the learning rate is usually referred to as the error exponent, which provides a careful measure of performance of the learning algorithm since a larger rate implies a faster decay of the error probability.

We answer three fundamental questions in this paper. (i) Can we characterize the error exponent for structure learning by the ML algorithm for tree-structured Gaussian graphical models (also called Gauss-Markov random fields)? (ii) How do the structure and parameters of the model influence the error exponent? (iii) What are extremal tree distributions for learning, i.e., the distributions that maximize and minimize the error exponents? We believe that our intuitively appealing answers to these important questions provide key insights for learning tree-structured Gaussian graphical models from data, and thus, for modeling high-dimensional data using parameterized tree-structured distributions.

A. Summary of Main Results

We derive the error exponent as the optimal value of the objective function of a non-convex optimization problem, which can only be solved numerically (Theorem 2). To gain better insights into when errors occur, we approximate the error exponent with a closed-form expression that can be interpreted as the signal-to-noise ratio (SNR) for structure learning (Theorem 3), thus showing how the parameters of the true model affect learning. Furthermore, we show that due to correlation decay, pairs of nodes which are far apart, in terms of their graph distance, are unlikely to be mistaken as edges by the ML estimator. This is not only an intuitive result, but also results in a significant reduction in the computational complexity to find the exponent – from $O(d^{d-2})$ for exhaustive search and $O(d^3)$ for discrete tree models [7] to $O(d)$ for Gaussians (Proposition 4), where d is the number of nodes.

We then analyze extremal tree structures for learning, given a fixed set of correlation coefficients on the edges of the tree.
Our main result is the following: The star graph minimizes the error exponent and if the absolute value of all the correlation coefficients of the variables along the edges is less than 0.63, then the Markov chain also maximizes the error exponent (Theorem 8). Therefore, the extremal tree structures in terms of the diameter are also extremal trees for learning Gaussian tree distributions. This agrees with the intuition that the amount of correlation decay increases with the tree diameter, and that correlation decay helps the ML estimator to better distinguish the edges from the non-neighbor pairs. Lastly, we analyze how changing the size of the tree influences the magnitude of the error exponent (Propositions 11 and 12).

B. Related Work

There is a substantial body of work on approximate learning of graphical models (also known as Markov random fields) from data e.g. [8–11]. The authors of these papers use various score-based approaches [8], the maximum entropy principle [9] or ℓ_1 regularization [10, 11] as approximate structure learning techniques. Consistency guarantees in terms of the number of samples, the number of variables and the maximum neighborhood size are provided. Information-theoretic limits [12] for learning graphical models have also been derived. In [13], bounds on the error rate for learning the structure of Bayesian networks were provided but in contrast to our work, these bounds are not asymptotically tight (cf. Theorem 2). Furthermore, the analysis in [13] is tied to the Bayesian Information Criterion. The focus of our paper is the analysis of the Chow-Liu [5] algorithm as an exact learning technique for estimating the tree structure and comparing error rates amongst different graphical models. In a recent paper [14], the authors concluded that if the graphical model possesses long range correlations, then it is difficult to learn. In this paper, we in fact identify the extremal structures and distributions in terms of error exponents for structure learning. The area of study in statistics known as covariance selection [13, 16] also has connections with structure learning in Gaussian graphical models. Covariance selection involves estimating the non-zero elements in the inverse covariance matrix and providing consistency guarantees of the estimate in some norm, e.g. the Frobenius norm in [17].

We previously analyzed the error exponent for learning discrete tree distributions in [7]. We proved that for every discrete spanning tree model, the error exponent for learning is strictly positive, which implies that the error probability decays exponentially fast. In this paper, we extend these results to Gaussian tree models and derive new results which are both explicit and intuitive by exploiting the properties of Gaussians. The results we obtain in Sections III and IV are analogous to the results in [7] obtained for discrete distributions, although the proof techniques are different. Sections V and VI contain new results thanks to simplifications which hold for Gaussians but which do not hold for discrete distributions.

C. Paper Outline

This paper is organized as follows: In Section II we state the problem precisely and provide necessary preliminaries on learning Gaussian tree models. In Section III we derive an expression for the so-called crossover rate of two pairs of nodes. We then relate the set of crossover rates to the error exponent for learning the tree structure. In Section IV we leverage on ideas from Euclidean information theory [18] to state conditions that allow accurate approximations of the error exponent. We demonstrate in Section VII how to reduce the computational complexity for calculating the exponent. In Section VIII we identify extremal structures that maximize and minimize the error exponent. Numerical results are presented in Section IX and we conclude the discussion in Section X.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Basics of Undirected Gaussian Graphical Models

Undirected graphical models or Markov random fields\footnote{In this paper, we use the terms “graphical models” and “Markov random fields” interchangeably.} (MRFs) are probability distributions that factorize according to given undirected graphs [3]. In this paper, we focus solely on spanning trees (i.e., undirected, acyclic, connected graphs). A d-dimensional random vector $x = [x_1, \ldots, x_d]^T \in \mathbb{R}^d$ is said to be Markov on a spanning tree $T_p = (\mathcal{V}, \mathcal{E}_p)$ with vertex (or set) $\mathcal{V} = \{1, \ldots, d\}$ and edge set $\mathcal{E}_p \subset \binom{\mathcal{V}}{2}$ if its distribution $p(x)$ satisfies the (local) Markov property:

$$p(x_i|x_{\mathcal{V}(i)}) = p(x_i|x_{\mathcal{nb}(i)}),$$

where $\mathcal{nb}(i) := \{j \in \mathcal{V} : (i, j) \in \mathcal{E}_p\}$ denotes the set of neighbors of node i. We also denote the set of spanning trees with d nodes as \mathcal{T}^d, thus $T_p \in \mathcal{T}^d$. Since p is Markov on the tree T_p, its probability density function (pdf) factorizes according to T_p into node marginals $\{p_i : i \in \mathcal{V}\}$ and pairwise marginals $\{p_{ij} : (i, j) \in \mathcal{E}_p\}$ in the following specific way [3] given the edge set \mathcal{E}_p:

$$p(x) = \prod_{i \in \mathcal{V}} p_i(x_i) \prod_{(i,j) \in \mathcal{E}_p} \frac{p_{ij}(x_i, x_j)}{p_i(x_i)p_j(x_j)}. \quad (1)$$

We assume that p_i, in addition to being Markov on the spanning tree $T_p = (\mathcal{V}, \mathcal{E}_p)$, is a Gaussian graphical model or Gaussian-Markov random field (GMRF) with known zero mean\footnote{2Our results also extend to the scenario where the mean of the Gaussian is unknown and has to be estimated from the samples.} and unknown positive definite covariance matrix $\Sigma \succ 0$. Thus, $p(x)$ can be written as

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} x^T \Sigma^{-1} x \right). \quad (2)$$

We also use the notation $p(x) = \mathcal{N}(x; 0, \Sigma)$ as a shorthand for Σ. For Gaussian graphical models, it is known that the fill-pattern of the inverse covariance matrix Σ^{-1} encodes the structure of $p(x)$ [3], i.e., $\Sigma^{-1}(i,j) = 0$ if and only if (iff) $(i,j) \notin \mathcal{E}_p$.

We denote the set of pdfs on \mathbb{R}^d by $\mathcal{P}(\mathbb{R}^d)$, the set of Gaussian pdfs on \mathbb{R}^d by $\mathcal{P}_G(\mathbb{R}^d)$ and the set of Gaussian graphical models which factorize according to some tree in \mathcal{T}^d as $\mathcal{P}_{GMRF}(\mathbb{R}^d, \mathcal{T}^d)$. For learning the structure of $p(x)$ (or equivalently the fill-pattern of Σ^{-1}), we are provided with a set of d-dimensional samples $x^n := [x_1, \ldots, x_n]$ drawn from p, where $x_k := [x_{k,1}, \ldots, x_{k,d}]^T \in \mathbb{R}^d$.\footnote{1In this paper, we use the terms “graphical models” and “Markov random fields” interchangeably.}
B. ML Estimation of Gaussian Tree Models

In this subsection, we review the Chow-Liu ML learning algorithm [5] for estimating the structure of p given samples x^n. Denoting $D(p_1 || p_2) := E_{p_1} \log (p_1/p_2)$ as the Kullback-Leibler (KL) divergence [19] between p_1 and p_2, the ML estimate of the structure $\mathcal{E}_{CL}(x^n)$ is given by the optimization problem:

$$\mathcal{E}_{CL}(x^n) := \arg\min_{\hat{p} \in P_N(\mathbb{R}^d, T^d)} D(\hat{p} || q),$$

where $\hat{p}(x) := \mathcal{N}(x; 0, \hat{\Sigma})$ and $\hat{\Sigma} := 1/n \sum_{k=1}^n x_k x_k^T$ is the empirical covariance matrix. Given \hat{p}, and exploiting the fact that q in (3) factorizes according to a tree as in (1), Chow and Liu [5] showed that the optimization for the optimal edge set differs from the conventional one in [19].

where $\hat{\rho}_{e} = \hat{\rho}_{ij} := \hat{\Sigma}(i, j)/\Sigma(i, i) \Sigma(j, j))^{1/2}$. Note that in (4), the estimated edge set $\mathcal{E}_{CL}(x^n)$ depends on n and, specifically, on the samples in x^n and we make this dependence explicit. We assume that T_p is a spanning tree because with probability 1, the resulting optimization problem in (4) produces a spanning tree as all the mutual information quantities in (3) will be non-zero. If T_p were allowed to be a proper forest (a tree that is not connected), the estimation of \mathcal{E}_{p} will be inconsistent because the learned edge set will be different from the true edge set.

C. Problem Statement

We now state our problem formally. Given a set of i.i.d. samples x^n drawn from an unknown Gaussian tree model p with edge set \mathcal{E}_p, we define the error event that the set of edges is estimated incorrectly as

$$A_n := \{x^n : \mathcal{E}_{CL}(x^n) \neq \mathcal{E}_p\},$$

where $\mathcal{E}_{CL}(x^n)$ is the edge set of the Chow-Liu ML estimator in (3). In this paper, we are interested to compute and subsequently study the error exponent K_p, or the rate that the error probability of the event A_n with respect to the true model p decays with the number of samples n. K_p is defined as

$$K_p := \lim_{n \to \infty} -\frac{1}{n} \log P(A_n),$$

assuming the limit exists and where P is the product probability measure with respect to the true model p. We prove that the limit in (7) exists in Section III (Corollary 3). The value of K_p for different tree models p provides an indication of the relative ease of estimating such models. Note that both the parameters and structure of the model influence the magnitude of K_p.

III. DERIVING THE ERROR EXPONENT

A. Crossover Rates for Mutual Information Quantities

To compute K_p, consider first two pairs of nodes $e, e' \in \binom{V}{2}$ such that $I(p_e) > I(p_{e'})$. We now derive a large-deviation principle (LDP) for the crossover event of empirical mutual information quantities

$$C_{e, e'} := \{x^n : I(\hat{p}_e) \leq I(\hat{p}_{e'})\}. \tag{8}$$

This is an important event for the computation of K_p because if two pairs of nodes (or node pairs) e and e' happen to crossover, this may lead to the event A_n, occurring (see the next subsection). We define $J_{e, e'} = J_{e, e'}(p_{e'})$, the crossover rate of empirical mutual information quantities, as

$$J_{e, e'} := \lim_{n \to \infty} -\frac{1}{n} \log P(C_{e, e'}). \tag{9}$$

Here we remark that the following analysis does not depend on whether e and e' share a node. If e and e' do share a node, we say they are an adjacent pair of nodes. Otherwise, we say e and e' are disjoint. We also reserve the symbol m to denote the total number of distinct nodes in e and e'. Hence, $m = 3$ if e and e' are adjacent and $m = 4$ if e and e' are disjoint.

Theorem 1: (LDP for Crossover of Empirical MI) For two node pairs $e, e' \in \binom{V}{2}$ with pdf $p_{e, e'} \in P_N(\mathbb{R}^m)$ (for $m = 3$ or $m = 4$), the crossover rate for empirical mutual information quantities is

$$J_{e, e'} = \inf_{q \in P_N(\mathbb{R}^m)} \left\{ D(q \| p_{e, e'} : I(q_e) = I(q_{e'}) \right\}. \tag{10}$$

The crossover rate $J_{e, e'} > 0$ iff the correlation coefficients of $p_{e, e'}$ satisfy $|p_{e}| \neq |p_{e'}|$. Proof: (Sketch) This is an application of Sanov’s Theorem [20, Ch. 3], and the contraction principle [21, Ch. 3] in large deviations theory, together with the maximum entropy principle [19, Ch. 12]. We remark that the proof is different from the corresponding result in [7]. See Appendix A. Theorem 1 says that in order to compute the crossover rate $J_{e, e'}$, we can restrict our attention to a problem that involves only an optimization over Gaussians, which is a finite-dimensional optimization problem.

B. Error Exponent for Structure Learning

We now relate the set of crossover rates $\{J_{e, e'}\}$ over all the node pairs e, e' to the error exponent K_p, defined in (7). The primary idea behind this computation is the following: We consider a fixed non-edge $e' \in \mathcal{E}_p$ in the true tree T_p which may be erroneously selected during learning process. Because
of the global tree constraint, this non-edge \(e' \) must replace some edge along its unique path in the original model. We only need to consider a single such crossover event because \(K_p \) will be larger if there are multiple crossovers (see formal proof in [7]). Finally, we identify the crossover event that has the minimum rate. See Fig. 1 for an illustration of this intuition.

Theorem 2 (Exponent as a Crossover Event [7]): The error exponent for structure learning of tree-structured Gaussian graphical models, defined in [7], is given as

\[
K_p = \min_{e' \in \mathcal{E}_p} \min_{e \notin \mathcal{E}_p: e \in \text{Path}(e' \setminus \mathcal{E}_p)} J_{e,e'},
\]

where \(\text{Path}(e' \setminus \mathcal{E}_p) \subset \mathcal{E}_p \) is the unique path joining the nodes in \(e' \) in the original tree \(T_p = (\mathcal{V}, \mathcal{E}_p) \).

This theorem implies that the dominant error tree [7], which is the asymptotically most-likely estimated error tree under the error event \(A_n \), differs from the true tree \(T_p \) in exactly one edge. Note that in order to compute the crossover exponent \(K_p \) in (11), we need to compute at most \(\text{diam}(T_p)((d-1)(d-2)/2 \) crossover rates, where \(\text{diam}(T_p) \) is the diameter of \(T_p \). Thus, this is a significant reduction in the complexity of computing \(K_p \) as compared to performing an exhaustive search over all possible error events which requires a total of \(O(d^{2d-2}) \) computations [22] (equal to the number of spanning trees with \(d \) nodes).

In addition, from the result in Theorem 2 we can derive conditions to ensure that \(K_p > 0 \) and hence for the error probability to decay exponentially.

Corollary 3 (Condition for Positive Error Exponent): The error probability \(\mathbb{P}(A_n) \) decays exponentially, i.e., \(K_p > 0 \) iff \(\Sigma \) has full rank and \(T_p \) is not a forest (as was assumed in Section I).

Proof: See Appendix B for the proof.

The above result provides necessary and sufficient conditions for the error exponent \(K_p \) to be positive, which implies exponential decay of the error probability in \(n \), the number of samples. Our goal now is to analyze the influence of structure and parameters of the Gaussian distribution \(p \) on the magnitude of the error exponent \(K_p \). Such an exercise requires a closed-form expression for \(K_p \), which in turn, requires a closed-form expression for the crossover rate \(J_{e,e'} \). However, the crossover rate, despite having an exact expression in (10), can only be found numerically, since the optimization is non-convex (due to the highly nonlinear equality constraint \(I(q_e) = I(q_{e'}) \)). Hence, we provide an approximation to the crossover rate in the next section which is tight in the so-called very noisy learning regime.

IV. **Euclidean Approximations**

In this section, we use an approximation that only considers parameters of Gaussian tree models that are “hard” for learning. There are three reasons for doing this. Firstly, we expect parameters which result in easy problems to have large error exponents and so the structures can be learned accurately from a moderate number of samples. Hard problems thus lend much more insight into when and how errors occur. Secondly, it allows us to approximate the intractable problem in (10) with an intuitive, closed-form expression. Finally, such an approximation allows us to compare the relative ease of learning various tree structures in the subsequent sections.

Our analysis is based on Euclidean information theory [18], which we exploit to approximate the crossover rate \(J_{e,e'} \) and the error exponent \(K_p \), defined in (9) and (7) respectively. The key idea is to impose suitable “noisy” conditions on \(p_{e,e'} \) (the joint pdf on node pairs \(e \) and \(e' \)) so as to enable us to relax the non-convex optimization problem in (10) to a convex program.

Definition 1 (\(\epsilon \)-Very Noisy Condition): The joint pdf \(p_{e,e'} \) on node pairs \(e \) and \(e' \) is said to satisfy the \(\epsilon \)-very noisy condition if the correlation coefficients on \(e \) and \(e' \) satisfy \(\|p_{e} - p_{e'}\| < \epsilon \).

By continuity of the mutual information in the correlation coefficient, given any fixed \(\epsilon \) and \(p_e \), there exists a \(\delta = \delta(\epsilon, p_e) > 0 \) such that \(|I(p_e) - I(p_{e'})| < \delta \), which means that if \(\epsilon \) is small, it is difficult to distinguish which node pair \(e \) or \(e' \) has the larger mutual information given the samples \(x^n \). Therefore the ordering of the empirical mutual information quantities \(I(\hat{p}_e) \) and \(I(\hat{p}_{e'}) \) may be incorrect. Thus, if \(\epsilon \) is small, we are in the very noisy learning regime, where learning is difficult.

To perform our analysis, we recall from Verdu [23] Sec. IV-E that we can bound the KL-divergence between two zero-mean Gaussians with covariance matrices \(\Sigma_{e,e'} + \Delta_{e,e'} \) and \(\Sigma_{e,e'} \) as

\[
D(\mathcal{N}(0, \Sigma_{e,e'} + \Delta_{e,e'}))||\mathcal{N}(0, \Sigma_{e,e'})) \leq \frac{\|\Sigma_{e,e'}^{-1/2} \Delta_{e,e'} \Sigma_{e,e'}^{-1/2}\|^2_F}{4},
\]

where \(\|M\|_F \) is the Frobenius norm of the matrix \(M \). Furthermore, the inequality in (12) is tight when the perturbation matrix \(\Delta_{e,e'} \) is small. More precisely, as the ratio of the singular values \(\sigma_{\max}(\Delta_{e,e'}) / \sigma_{\min}(\Sigma_{e,e'}) \) tends to zero, the inequality in (12) becomes tight. To convexify the problem, we also perform a linearization of the nonlinear constraint set in (10) around the unperturbed covariance matrix \(\Sigma_{e,e'} \). This involves taking the derivative of the mutual information with respect to the covariance matrix in the Taylor expansion. We denote this derivative as \(\nabla_{\Sigma_{e,e'}} I(\Sigma_{e,e'}) \) where \(I(\Sigma_{e,e'}) = I(\mathcal{N}(0, \Sigma_{e,e'})) \) is the mutual information between the two random variables of the Gaussian joint pdf \(p_e = \mathcal{N}(0, \Sigma_{e,e'}) \). We now define the linearized constraint set of (10) as the affine subspace

\[
L_{\Delta}(p_{e,e'}) := \{ \Delta_{e,e'} \in \mathbb{R}^{m \times m} : I(\Sigma_{e,e'}) = I(\mathcal{N}(0, \Sigma_{e,e'})) = I(\Sigma_{e,e'}) + (\nabla_{\Sigma_{e,e'}} I(\Sigma_{e,e'}), \Delta_{e,e'}) \},
\]

where \(\Delta_{e,e'} \in \mathbb{R}^{2 \times 2} \) is the sub-matrix of \(\Delta_{e,e'} \in \mathbb{R}^{m \times m} \) that corresponds to the covariance matrix of the node pair \(e \). We also define the approximate crossover rate of \(e \) and \(e' \) as the minimization of the quadratic in (12) over the affine subspace \(L_{\Delta}(p_{e,e'}) \) defined in (13):

\[
\tilde{J}_{e,e'} := \min_{\Delta_{e,e'} \in L_{\Delta}(p_{e,e'})} \frac{1}{4} \|\Sigma_{e,e'}^{-1/2} \Delta_{e,e'} \Sigma_{e,e'}^{-1/2}\|^2_F.
\]

Eqn. (14) is a convexified version of the original optimization in (10). This problem is not only much easier to solve, but also provides key insights as to when and how errors occur when learning the structure. We now define an additional
information-theoretic quantity before stating the Euclidean approximation.

Definition 2 (Information Density): Given a pairwise joint pdf \(p_{i,j} \) with marginals \(p_i \) and \(p_j \), the information density denoted by \(s_{i,j} : \mathbb{R}^2 \to \mathbb{R} \), is defined as

\[
s_{i,j}(x_i, x_j) := \log \frac{p_{i,j}(x_i, x_j)}{p_i(x_i)p_j(x_j)}. \tag{15}
\]

Hence, for each pair of variables \(x_i \) and \(x_j \), its associated information density \(s_{i,j} \) is a random variable whose expectation is the mutual information of \(x_i \) and \(x_j \), i.e., \(\mathbb{E}[s_{i,j}] = I(p_{i,j}) \).

Theorem 4 (Euclidean Approx. of Crossover Rate): The approximate crossover rate for the empirical mutual information quantities, defined in (14), is given by

\[
\tilde{J}_{e,e'} = \frac{(\mathbb{E}[s_{e'} - s_e])^2}{2\text{Var}(s_{e'} - s_e)} = \frac{(I(p_{e'}) - I(p_e))^2}{2\text{Var}(s_{e'} - s_e)}. \tag{16}
\]

In addition, the approximate error exponent corresponding to \(\tilde{J}_{e,e'} \) in (14) is given by

\[
\tilde{K}_p = \min_{e' \in \mathcal{E}_p} \min_{e \in \text{Path}(e'; \mathcal{E}_p)} \tilde{J}_{e,e'}. \tag{17}
\]

Proof: The proof involves solving the least squares problem in (14). See Appendix [Appendix].

We have obtained a closed-form expression for the approximate crossover rate \(\tilde{J}_{e,e'} \) in (16). It is proportional to the square of the difference between the mutual information quantities. This corresponds to our intuition – that if \(I(p_e) \) and \(I(p_{e'}) \) are relatively well separated (\(I(p_e) \gg I(p_{e'}) \)) then the rate \(\tilde{J}_{e,e'} \) is large. In addition, the SNR is also weighted by the inverse variance of the difference of the information densities \(s_{e'} - s_e \). If the variance is large, then we are uncertain about the estimate \(I(p_e) - I(p_{e'}) \), thereby reducing the rate. Theorem [Theorem] illustrates how parameters of Gaussian tree models affect the crossover rate. In the sequel, we limit our analysis to the very noisy regime where the above expressions apply.

V. SIMPLIFICATION OF THE ERROR EXPONENT

In this section, we exploit the properties of the approximate crossover rate in (16) to significantly reduce the complexity in finding the error exponent \(\tilde{K}_p \) to \(O(d) \). As a motivating example, consider the Markov chain in Fig. 2. From our analysis to this point, it appears that, when computing the approximate error exponent \(\tilde{K}_p \) in (17), we have to consider all possible replacements between the non-edges (1, 4), (1, 3) and (2, 4) and the true edges along the unique paths connecting these non-edges. For example, (1, 3) might be mistaken as a true edge, replacing either (1, 2) or (2, 3).

We will prove that, in fact, to compute \(\tilde{K}_p \) we can ignore the possibility that longest non-edge (1, 4) is mistaken as a true edge, thus reducing the number of computations for the approximate crossover rate \(\tilde{J}_{e,e'} \). The key to this result is the exploitation of correlation decay, i.e., the decrease in the absolute value of the correlation coefficient between two nodes as the distance (the number of edges along the path between two nodes) between them increases. This follows from the Markov property:

\[
\rho_{e'} = \prod_{e \in \text{Path}(e'; \mathcal{E}_p)} \rho_e, \quad \forall e' \notin \mathcal{E}_p. \tag{18}
\]

For example, in Fig. 2 \(|\rho_{1,4}| \leq \min\{|\rho_{1,3}|, |\rho_{2,4}|\} \) and because of this, the following lemma implies that (1, 4) is less likely to be mistaken as a true edge than (1, 3) or (2, 4).

It is easy to verify that the crossover rate \(\tilde{J}_{e,e'} \) in (16) depends only on the correlation coefficients \(\rho_e \) and \(\rho_{e'} \) and not the variances \(\sigma_e^2 \). Thus, without loss of generality, we assume...
that all random variables have unit variance (which is still unknown to the learner) and to make the dependence clear, we now write $J_{e,e'} = J(p_e, p_{e'})$. Finally define $p_{\text{crit}} := 0.63055$.

Lemma 5 (Monotonicity of $\tilde{J}(p_e, p_{e'})$): $\tilde{J}(p_e, p_{e'})$, derived in (16), has the following properties:

(a) $\tilde{J}(p_e, p_{e'})$ is an even function of both p_e and $p_{e'}$.

(b) $\tilde{J}(p_e, p_{e'})$ is monotonically decreasing in $|p_e|$ for fixed $p_e \in (-1, 1)$.

(c) Assuming that $|p_{e1}| < p_{\text{crit}}$, then $\tilde{J}(p_{e1}, p_{e1}, p_{e2})$ is monotonically increasing in $|p_{e1}|$ for fixed p_{e2}.

(d) Assuming that $|p_e| < p_{\text{crit}}$, then $\tilde{J}(p_e, p_{e'})$ is monotonically increasing in $|p_e|$ for fixed $p_{e'}$.

See Fig. 3 for an illustration of the properties of $\tilde{J}(p_e, p_{e'})$.

Proof: (Sketch) Statement (a) follows from (16). We prove (b) by showing that $\partial \tilde{J}(p_e, p_{e'}) / \partial |p_e| \leq 0$ for all $|p_e| \leq |p_e|$. Statements (c) and (d) follow similarly. See Appendix 3 for the details.

Our intuition about correlation decay is substantiated by Lemma 5(b), which implies that for the example in Fig. 2 $\hat{J}(p_{2,3}, p_{1,3}) \leq \hat{J}(p_{2,3}, p_{1,4})$, since $|p_{1,4}| \leq |p_{1,3}|$ due to Markov property on the chain. Therefore, $\hat{J}(p_{2,3}, p_{1,4})$ can be ignored in the minimization to find \tilde{K}_p. Interestingly while Lemma 5(b) is a statement about correlation decay, Lemma 5(c) states that the absolute strengths of the correlation coefficients also influence the magnitude of the crossover rate.

From Lemma 5(b) and the above motivating example in Fig. 2, finding the approximate error exponent \tilde{K}_p now reduces to finding the minimum crossover rate only over triangles $((1, 2, 3)$ and $(2, 3, 4))$ in the tree as shown in Fig. 2, i.e., we only need to consider $J(p_{e1}, p_{e'})$ for adjacent edges.

Corollary 6 (Computation of \tilde{K}_p): Under the very noisy learning regime, the error exponent \tilde{K}_p is

$$\tilde{K}_p = \min_{e_i, e_j \in \mathcal{E}_p, e_i \sim e_j} \hat{J}(p_{e_i}, p_{e_j}),$$

where $e_i \sim e_j$ means that the edges e_i and e_j are adjacent and the weights are defined as

$$W(p_{e_i}, p_{e_j}) := \min \left\{ \tilde{J}(p_{e_i}, p_{e_j}, p_{e_2}), \tilde{J}(p_{e_2}, p_{e_i}, p_{e_j}) \right\}.$$

If we carry out the computations in (19) independently, the complexity is $O(d \log_{\text{max}})$, where \log_{max} is the maximum degree of the nodes in the tree graph. Hence, in the worst case, the complexity is $O(d^2)$, instead of $O(d^3)$ if (17) is used. We can, in fact, reduce the number of computations to $O(d)$.

Proposition 7 (Complexity in computing \tilde{K}_p): The approximate error exponent \tilde{K}_p, derived in (17), can be computed in linear time $(d-1)$ operations as

$$\tilde{K}_p = \min_{e \in \mathcal{E}_p} \hat{J}(p_e, p_e, p_{e'}),$$

where the maximum correlation coefficient on the edges adjacent to $e \in \mathcal{E}_p$ is defined as

$$p^*_e := \max\{|p_e| : e \in \mathcal{E}_p, \hat{e} \sim e\}.$$

Proof: By Lemma 5(b) and the definition of p^*_e, we obtain the smallest crossover rate associated to edge e. We obtain the approximate error exponent \tilde{K}_p by minimizing over all edges $e \in \mathcal{E}_p$ in (21).

Recall that $\text{diam}(T_p)$ is the diameter of T_p. The computation of \tilde{K}_p is reduced significantly from $O(\text{diam}(T_p)^2)$ in (11) to $O(d)$. Thus, there is a further reduction in the complexity to estimate the error exponent K_p as compared to exhaustive search which requires $O(d^d-2)$ computations. This simplification only holds for Gaussians under the very noisy regime.

VI. Extremal Structures for Learning

In this section, we study the influence of graph structure on the approximate error exponent K_p using the concept of correlation decay and the properties of the crossover rate $J_{e,e'}$ in Lemma 5. We have already discussed the connection between the error exponent and correlation decay. We also proved that non-neighbor node pairs which have shorter distances are more likely to be mistaken as edges by the ML estimator. Hence, we expect that a tree T_p which contains non-edges with shorter distances to be “harder” to learn (i.e., has a smaller error exponent \tilde{K}_p) as compared to a tree which contains non-edges with longer distances. In subsequent subsections, we formalize this intuition in terms of the diameter of the tree $\text{diam}(T_p)$, and show that the extremal trees, in terms of their diameter, are also extremal trees for learning. We also analyze the effect of changing the size of the tree on the error exponent.

From the Markov property in (18), we see that for a Gaussian tree distribution, the set of correlation coefficients fixed on the edges of the tree, along with the structure T_p, are sufficient statistics and they completely characterize p. Note that this parameterization neatly decouples the structure from the correlations. We use this fact to study the influence of changing the structure T_p while keeping the set of correlations on the edges fixed \tilde{K}_p. Before doing so, we provide a review of some basic graph theory.

A. Basic Notions in Graph Theory

Definition 3 (Extremal Trees in terms of Diameter): Assume that $d > 3$. Define the extremal trees with d nodes in terms of the tree diameter $\text{diam} : T_d \to \{2, \ldots, d - 1\}$ as

$$T_{\text{max}}(d) := \arg \max \text{diam}(T), \ T_{\text{min}}(d) := \arg \min \text{diam}(T), \ T \in T_d.$$

Then it is clear that the two extremal structures, the *chain* (where there is a simple path passing through all nodes and edges exactly once) and the *star* (where there is one central node) have the largest and smallest diameters respectively, i.e., $T_{\text{max}}(d) = T_{\text{chain}}(d)$, and $T_{\text{min}}(d) = T_{\text{star}}(d)$.

Definition 4 (Line Graph): The line graph $L(G)$ of a graph G, denoted by $H = L(G)$, is one in which, roughly speaking, the vertices and edges of G are interchanged. More precisely, H is the undirected graph whose vertices are the edges of G and there is an edge between any two vertices in the line graph if the corresponding edges in G have a common node, i.e., are adjacent. See Fig. 4 for a graph G and its associated line graph H.

Remark: Although the set of correlation coefficients on the edges is fixed, the elements in this set can be arranged in different ways on the edges of the tree. We formalize this concept in (24).
problems for the best and worst distributions for learning are given by
\begin{align}
 p_{\text{max}, \rho} &:= \arg\max_{\rho \in \mathcal{P}_N(\mathbb{R}^d, T^d; \rho)} \bar{K}_p, \\
 p_{\text{min}, \rho} &:= \arg\min_{\rho \in \mathcal{P}_N(\mathbb{R}^d, T^d; \rho)} \bar{K}_p.
\end{align}

Thus, $p_{\text{max}, \rho}$ (resp. $p_{\text{min}, \rho}$) corresponds to the Gaussian tree model which has the largest (resp. smallest) approximate error exponent.

C. Reformulation as Optimization over Line Graphs

Since the number of permutations π and number of spanning trees are prohibitively large, finding the optimal distributions cannot be done through a brute-force search unless d is small. Our main idea in this section is to use the notion of line graphs to simplify the problems in (25) and (26). In subsequent sections, we identify the extremal tree structures before identifying the precise best and worst distributions.

Recall that the approximate error exponent \bar{K}_p can be expressed in terms of the weights $W(\rho_{e_i}, \rho_{e_j})$ between two adjacent edges e_i, e_j as in (19). Therefore, we can write the extremal distribution in (25) as
\begin{equation}
 p_{\text{max}, \rho} = \arg\max_{\rho \in \mathcal{P}_N(\mathbb{R}^d, T^d; \rho)} \min_{e_i, e_j} W(\rho_{e_i}, \rho_{e_j}).
\end{equation}

Note that in (27), E_p is the edge set of a weighted graph whose edge weights are given by ρ. Since the weight is between two edges, it is more convenient to consider line graphs defined in Section VI-A.

We now transform the intractable optimization problem in (27) over the set of trees to an optimization problem over all the set of line graphs:
\begin{equation}
 p_{\text{max}, \rho} = \arg\max_{\rho \in \mathcal{P}_N(\mathbb{R}^d, T^d; \rho)} \min_{(i, j) \in E_p} W(\rho_{e_i}, \rho_{e_j}),
\end{equation}

and $W(\rho_{e_i}, \rho_{e_j})$ can be considered as an edge weight between nodes i and j in a weighted line graph H. Equivalently, (26) can also be written as in (28) but with the argmax replaced by an argmin.

D. Main Results: Best and Worst Tree Structures

In order to solve (28), we need to characterize the set of line graphs of spanning trees $\mathcal{L}(T^d) = \{ \mathcal{L}(T) : T \in T^d \}$. This has been studied before [23, Theorem 8.5], but the set $\mathcal{L}(T^d)$ is nonetheless still very complicated. Hence, solving (28) directly is intractable. Instead, our strategy now is to identify the structures corresponding to the optimal distributions, $p_{\text{max}, \rho}$ and $p_{\text{min}, \rho}$ by exploiting the monotonicity of $\tilde{f}(\rho_{e}, \rho'_{e})$ given in Lemma 5.

Theorem 8 (Extremal Tree Structures): The tree structure that minimizes the approximate error exponent \tilde{K}_p in (26) is given by
\begin{equation}
 T_{\text{min}, \rho} = T_{\text{star}}(d),
\end{equation}

for all feasible correlation coefficient vectors ρ with $\rho_i \neq 0$ for every $i \in V$ and the Markov property in (13).

We do not allow any of the correlation coefficient to be zero because otherwise, this would result in T_p being a forest.

None of the elements in Σ are allowed to be zero because $\rho_i \neq 0$ for every $i \in V$ and the Markov property in (13).
ρ_{crit} = 0.63055), then the tree structure that maximizes the approximate error exponent \(\tilde{K}_p \) in (25) is given by
\[
T_{p_{\text{max}, \rho}} = T_{\text{chain}}(d),
\]
(30)

Proof: (Idea) The assertion that \(T_{p_{\text{min}, \rho}} = T_{\text{star}}(d) \) follows from the fact that all the crossover rates for the star graph are the minimum possible, hence \(\tilde{K}_{\text{star}} \leq \tilde{K}_p \). See Appendix [3] for the details.

See Fig. [5] This theorem agrees with our intuition: for the star graph, the nodes are strongly correlated (since its diameter is the smallest) while in the chain, there are many weakly correlated pairs of nodes for the same set of correlation coefficients on the edges thanks to correlation decay. Hence, it is hardest to learn the star while it is easiest to learn the chain. It is interesting to observe that Theorem [8] implies that the extremal tree structures \(T_{p_{\text{max}, \rho}} \) and \(T_{p_{\text{min}, \rho}} \) are independent of the correlation coefficients \(\rho \) (if \(|\rho| < \rho_{\text{crit}} \) in the case of the star). Indeed, the experiments in Section [11-2] also suggest that Theorem [8] may likely be true for larger ranges of problems (without the constraint that \(|\rho| < \rho_{\text{crit}} \)) but this remains open.

The results in (29) and (30) do not yet provide the complete solution to \(p_{\text{max}, \rho} \) and \(p_{\text{min}, \rho} \) defined in (25) and (26), since there are many possible pdfs in \(P_N(\mathbb{R}^d, T^d; \rho) \) corresponding to a fixed tree because we can rearrange the correlation coefficients along the edges of the tree in multiple ways. The only exception is if \(T_p \) is known to be a star then there is only one pdf in \(P_N(\mathbb{R}^d, T^d; \rho) \), and we formally state the result below.

Corollary 9 (Most Difficult Distribution to Learn): The Gaussian \(p_{\min, \rho}(x) = \mathcal{N}(x; 0, \Sigma_{\min, \rho}) \) defined in (26), corresponding to the most difficult distribution to learn for fixed \(\rho \), has the covariance matrix whose upper triangular elements are given as \(\Sigma_{\min, \rho}(i, j) = \rho_{ij} \) if \(i = 1, j \neq 1 \) and \(\Sigma_{\min, \rho}(i, j) = \rho_{ij} \) otherwise. Moreover, if \(|\rho_1| \geq \ldots \geq |\rho_{d-1}| \) and \(|\rho_1| < \rho_{\text{crit}} = 0.63055 \), then \(\tilde{K}_p \) corresponding to the star graph can be written explicitly as a minimization over only two crossover rates:
\[
\tilde{K}_{p_{\text{min}, \rho}} = \min \{ \tilde{J}(\rho_1, \rho_1 \rho_2), \tilde{J}(\rho_{d-1}, \rho_{d-1} \rho_1) \}.
\]
Proof: The first assertion follows from the Markov property [15] and Theorem [8]. The next result follows from Lemma [5](c) which implies that \(\tilde{J}(\rho_{d-1}, \rho_{d-1} \rho_1) \leq \tilde{J}(\rho_1, \rho_{k \rho_1}) \) for all \(2 \leq k \leq d-1 \).

In other words, \(p_{\min, \rho} \) is a star Gaussian graphical model with correlation coefficients \(\rho_i \) on its edges. This result can also be explained by correlation decay. In a star graph, since the distances between non-edges are small, the estimator in (3) is more likely to mistake a non-edge with a true edge. It is often useful in applications to compute the minimum error exponent for a fixed vector of correlations \(\rho \) as it provides a lower bound of the decay rate of \(\mathbb{P}(A_n) \) for any tree distribution with parameter vector \(\rho \). Interestingly, we also have a result for the easiest tree distribution to learn.

Corollary 10 (Easiest Distribution to Learn): Assume that \(\rho_{\text{crit}} > |\rho_1| \geq |\rho_2| \geq \ldots \geq |\rho_{d-1}| \). Then, the Gaussian \(p_{\max, \rho}(x) = \mathcal{N}(x; 0, \Sigma_{\max, \rho}) \) defined in (25), corresponding to the easiest distribution to learn for fixed \(\rho \), has the covariance matrix whose upper triangular elements are \(\Sigma_{\max, \rho}(i, j+1) = \rho_i \) for all \(i = 1, \ldots, d-1 \) and \(\Sigma_{\max, \rho}(i, j) = \prod_{k=i}^{j-1} \rho_k \) for all \(j > i \).

Proof: The first assertion follows from the proof of Theorem [8] in Appendix [3] and the second assertion from the Markov property in [13].

In other words, in the regime where \(|\rho_1| < \rho_{\text{crit}} \), \(p_{\max, \rho} \) is a Markov chain Gaussian graphical model with correlation coefficients arranged in increasing (or decreasing) order on its edges. We now provide some intuition for why this is so. If a particular correlation coefficient \(\rho_i \) (such that \(|\rho| < \rho_{\text{crit}} \)) is fixed, then the edge weight \(W(\rho_1, \rho_j) \), defined in (21), is maximized when \(|\rho_j| = |\rho_1| \). Otherwise, if \(|\rho_1| < |\rho_j| \), the event that the non-edge with correlation \(\rho_i \rho_j \) replaces the edge with correlation \(\rho_i \) (and hence results in an error) has a higher likelihood than if equality holds. Thus, correlations \(\rho_i \) and \(\rho_j \) that are close in terms of their absolute values should be placed closer to one another (in terms of graph distance) for the approximate error exponent to be maximized. See Fig. [6]
Formally, we start with a \(d \)-variate Gaussian \(p \in \mathcal{P}_N(\mathbb{R}^d, T^d; \rho) \) and consider a \(d' \)-variate pdf \(p' \in \mathcal{P}_N(\mathbb{R}^{d'}; T^d \cup \rho') \), obtained by marginalizing \(p \) over a subset of variables and \(T_{p'} \) is the tree associated to the distribution \(p' \). Hence \(d' < d \) and \(\rho' \) is a subvector of \(\rho \). See Fig. 7. In our formulation, the only available observations are those sampled from the smaller Gaussian graphical model \(p' \).

Proposition 11 (Error Exponent of Smaller Trees): The approximate error exponent for learning \(p' \) is at least that of \(p \), i.e., \(\tilde{K}_{p'} \geq K_p \).

Proof: Reducing the number of adjacent edges to a fixed edge \((i, k) \in \mathcal{E}_p \) as in Fig. 7 (where \(k \in \text{nbhd}(i) \setminus \{j\} \)) ensures that the maximum correlation coefficient \(\rho_{e,1}^* \), defined in (22), does not increase. By Lemma 8(b) and (17), the approximate error exponent \(\tilde{K}_p \) does not decrease.

Thus, lower-dimensional models are easier to learn if the set of correlation coefficients is fixed and the tree constraint remains satisfied. This is a consequence of the fact that there are fewer crossover error events that contribute to the error exponent \(K_p \).

We now consider the “dual” problem of adding a new edge to an existing tree model, which results in a larger tree. We are now provided with the affirmative in Proposition 11.

Proposition 12 (Error Exponent of Larger Trees): Assume that \(|\rho_{e,new}| < |\rho_e| \forall e \in \mathcal{E}_p \). Then,

(a) The difference \(\tilde{K}_p - \tilde{K}_{p'} \) is maximized when the new edge is added to \(e^{\star}_{\max} \) given by (31) as a leaf.

(b) The difference \(\tilde{K}_p - \tilde{K}_{p''} \) is maximized when the new edge is added to \(e^{\star}_{\max} \) given by (32) as a leaf.

Proof: The vertex given by (31) is the best vertex to attach the new edge by Lemma 5(b).

This result implies that if we receive data dimensions sequentially, we have a straightforward rule in (31) for identifying larger trees such that the exponent decreases as little as possible at each step.

VII. Numerical Experiments

We now perform experiments with the following two objectives. Firstly, we study the accuracy of the Euclidean approximations (Theorem 4) to identify regimes in which the approximate crossover rate \(J_{e,c'} \) is close to the true crossover rate \(J_{e,c'} \). Secondly, by performing simulations we study how various tree structures (e.g. chains and stars) influence the error exponents (Theorem 8).

A. Comparison Between True and Approximate Rates

In Fig. 8, we plot the true and approximate crossover rates (given in (10) and (14) respectively) for a 4-node symmetric star graph, whose structure is shown in Fig. 9. The zero-mean Gaussian graphical model has a covariance matrix \(\Sigma \) such that \(\Sigma^{-1} \) is parameterized by \(\gamma \in (0, 1/\sqrt{3}) \) in the following way: \(\Sigma^{-1}(i, j) = 1 \) for all \(i, j \), \(\Sigma^{-1}(1, j) = \Sigma^{-1}(j, 1) = \gamma \) for all \(j = 2, 3, 4 \) and \(\Sigma^{-1}(i, j) = 0 \) otherwise. By increasing \(\gamma \), we increase the difference of the mutual information quantities on the edges \(e \) and non-edges \(e' \). We see from Fig. 8 that both rates increase as the difference \(I(p_e) - I(p_{e'}) \) increases. This is in line with our intuition because if \(p_{e,c'} \) is such that \(I(p_e) - I(p_{e'}) \) is large, the crossover rate is also large. We also observe that if \(I(p_e) - I(p_{e'}) \) is small, the true and approximate rates are close. This is also in line with the assumptions of Theorem 3. When the difference between the mutual information quantities increases, the true and approximate rates separate from each other.

*Note that \(T_{p'} \) still needs to satisfy the tree constraint so that the variables that are marginalized out are not arbitrary (but must be variables that form the first part of a node elimination order \(\mathbf{B} \)). For example, we are not allowed to marginalize out the central node of a star graph since the resulting graph would not be a tree. However, we can marginalize out any of the other nodes. In effect, we can only marginalize out nodes with degree either 1 or 2.

*This small example has sufficient illustrative power because as we have seen, errors occur locally and only involve triangles.
B. Comparison of Error Exponents Between Trees

In Fig. 10 we simulate error probabilities by drawing i.i.d. samples from three $d = 10$ node tree graphs – a chain, a star and a hybrid between a chain and a star as shown in Fig. 9. We then used the samples to learn the structure via the Chow-Liu procedure [5] by solving the MWST in (4). The $d - 1 = 9$ correlation coefficients were chosen to be equally spaced in the interval $[0, 1, 0.9]$ and they were randomly placed on the edges of the three tree graphs. We observe from Fig. 10 that for fixed n, the star and chain have the highest and lowest error probabilities $P(A_n)$ respectively. The simulated error exponents given by $\{-n^{-1} \log P(A_n)\}_{n \in \mathbb{N}}$ also converge to their true values as $n \to \infty$. The exponent associated to the star is higher than that of the chain, which is corroborated by Theorem 8 even though the theorem only applies in the very-noisy case (and for $|\rho| < 0.63055$ in the case of the chain). From this experiment, the claim also seems to be true even though the setup is not very-noisy. We also observe that the error exponent of the hybrid is between that of the star and the chain.

VIII. Conclusion

Using the theory of large deviations, we have obtained the error exponent associated with learning the structure of a Gaussian tree model. Our analysis in this theoretical paper also answers the fundamental questions as to which set of parameters and which structures result in high and low error exponents. We conclude that Markov chains (resp. stars) are the easiest (resp. hardest) structures to learn as they maximize (resp. minimize) the error exponent. Indeed, our numerical experiments on a variety of Gaussian graphical models validate the theory presented. We believe the intuitive results presented in this paper will lend useful insights for modeling high-dimensional data using tree distributions.

Acknowledgments

The authors would like to acknowledge Profs. Lang Tong, Lihong Zheng and Sujay Sanghavi for extensive discussions. The authors would also like to acknowledge the anonymous reviewer who found an error in the original manuscript that led to the revised development leading to Theorem 8.
constants \(\{\theta_{i,j} : (i,j) \in \mathcal{Y}\}\) are chosen such that \(q_{e,e'}^{*} \in B_{\mathcal{Y}}(\hat{\eta}_{e,e'})\) given in (34).

From Lemma 13 we conclude that the optimal \(q_{e,e'}^{*}\) in (35) is a Gaussian. Thus, we can restrict our search for the optimal distribution to a search over Gaussians, which are parameterized by means and covariances. The crossover event for mutual information defined in (3) is \(C_{e,e'} = \{\hat{\rho}_{e}^{2} \geq \hat{\rho}_{e}'^{2}\}\), since in the Gaussian case, the mutual information is a monotonic function of the square of the correlation coefficient (cf. Eqn. (5)). Thus it suffices to consider \(\{\hat{\rho}_{e}^{2} \geq \hat{\rho}_{e}'^{2}\}\) instead of the event involving the mutual information quantities. Let \(e = (i,j), e' = (k,l)\) and \(\eta_{e,e'}, \eta_{i,j}, \eta_{i,j}, \eta_{k,l}, \eta_{k,l}\) be the moments of \(p_{e,e'}\), where \(\eta_{ij} := \mathbb{E}[x_{i}x_{j}]\) is the covariance of \(x_{i}\) and \(x_{j}\), and \(\eta_{i} := \mathbb{E}[x_{i}^{2}]\) is the variance of \(x_{i}\) (and similarly for the other moments). Now apply the contraction principle [21] Ch. 3) to the continuous map \(h : \mathcal{M}_{\mathcal{Y}} \to \mathbb{R}\), given by the difference between the square of the correlation coefficients

\[
h(\eta_{e,e'}) := \frac{\eta_{i}^{2}}{\eta_{i,j}} - \frac{\eta_{i,j}^{2}}{\eta_{i,k,l}},
\]

Following the same argument as in [7] Theorem 2], the equality case dominates \(C_{e,e'}\), i.e., the event \(\{\hat{\rho}_{e}^{2} = \hat{\rho}_{e}'^{2}\}\) dominates \(\{\hat{\rho}_{e}^{2} \geq \hat{\rho}_{e}'^{2}\}\). Thus, by considering the set \(\{\eta_{e,e'} : h(\eta_{e,e'}) = 0\}\), the rate corresponding to \(C_{e,e'}\) can be written as

\[
J_{e,e'} = \inf_{\eta_{e,e'} \in \mathcal{M}_{\mathcal{Y}}} \left\{ g(\eta_{e,e'}) : \frac{\eta_{i}^{2}}{\eta_{i,j}} = \frac{\eta_{i,j}^{2}}{\eta_{i,k,l}} \right\},
\]

where the function \(g : \mathcal{M}_{\mathcal{Y}} \subset \mathbb{R}^{6} \to [0, \infty)\) is defined as

\[
g(\eta_{e,e'}) := \inf_{\eta_{e,e'} \in B_{\mathcal{Y}}(\hat{\eta}_{e,e'})} D(q_{e,e'} || p_{e,e'}),
\]

and the set \(B_{\mathcal{Y}}(\hat{\eta}_{e,e'})\) is defined in (36). Combining expressions in (37) and (38) and the fact that the optimal solution \(q_{e,e'}^{*}\) is Gaussian yields \(J_{e,e'}\) as given in the statement of the theorem (cf. Eqn. (29)).

The second assertion in the theorem follows from the fact that since \(p_{e,e}\) satisfies \(I(p_{e}) \neq I(p_{e})\), we have \(|\rho_{e}| \neq |\rho_{e}'|\) since \(I(p_{e})\) is a monotonic function in \(|\rho_{e}|\). Therefore, \(q_{e',e'}^{*} \neq p_{e,e}^{*}\) on a set whose (Lebesgue) measure \(\nu\) is strictly positive. Since \(D(q_{e,e'}^{*} || p_{e,e'}) = 0\) if and only if \(q_{e,e'}^{*} = p_{e,e}'\) almost everywhere-[\(\nu\], this implies that \(D(q_{e,e'}^{*} || p_{e,e'}) > 0\) [19] Theorem 8.6.1].

\section*{Appendix B}

\section*{Proof of Corollary 3}

Proof: (\(\Rightarrow\)) Assume that \(K_{p} > 0\). Suppose, to the contrary, that either (i) \(T_{p}\) is a forest or (ii) rank(\(\Sigma\)) < \(d\) and \(T_{p}\) is not a forest. In (i), structure estimation of \(p\) will be inconsistent (as described in Section II-B), which implies that \(K_{p} = 0\), a contradiction. In (ii), since \(p\) is a spanning tree, there exists an edge \(\tilde{e} \in E_{p}\) such that the correlation coefficient \(\rho_{\tilde{e}} = \pm 1\) (otherwise \(\Sigma\) would be full rank). In this case, referring to Fig. 11 and assuming that \(|\rho_{e}| \in (0, 1),\) the correlation on the non-edge \(e'\) satisfies \(|\rho_{e'}| = |\rho_{e'}| = |\rho_{e}|\), which implies that \(I(p_{e}) = I(p_{e'})\). Thus, there is no unique maximizer in (4) with the empiricals \(\tilde{p}_{e}\), replaced by \(p_{e}\). As a result, ML for structure learning via [4] is inconsistent hence \(K_{p} = 0\), a contradiction.

(\(\Leftarrow\)) Suppose both \(\Sigma \succ 0\) and \(T_{p}\) not a forest, i.e., \(T_{p}\) is a spanning tree. Assume, to the contrary, that \(K_{p} = 0\). Then from (7), \(I(p_{e}) = I(p_{e'})\) for some \(e' \notin E_{p}\) and some \(e \in \partial E_{p}(e', E_{p})\). This implies that \(|\rho_{e}| = |\rho_{e'}|\). Let \(e' = (i_{0}, i_{M})\) be a non-edge and let the unique path from node \(i_{0}\) to node \(i_{M}\) be \((i_{0}, i_{1}, \ldots, i_{M})\) for some \(M \geq 2\). See Fig. 12. Then, \(|\rho_{e'}| = |\rho_{i_{0},i_{1}}| \cdots |\rho_{i_{0},i_{1}}| |\rho_{i_{1},i_{2}}| \cdots |\rho_{i_{M-1},i_{M}}|\). Suppose, without loss of generality, that edge \(e = (i_{0}, i_{1})\) is such that \(|\rho_{e'}| = |\rho_{e'}|\) holds, then we can cancel \(|\rho_{e'}|\) and \(|\rho_{i_{1},i_{2}}|\) on both sides to give \(|\rho_{i_{1},i_{2}}| |\rho_{i_{2},i_{3}}| \cdots |\rho_{i_{M-1},i_{M}}| = 1\). Cancelling \(|\rho_{e'}|\) is legitimate because we assumed that \(|\rho_{e'}| \neq 0\) for all \(e' \in \mathcal{Y} \cap \mathcal{Y}\), because \(p\) is a spanning tree. Since each correlation coefficient has magnitude not exceeding 1, this means that each correlation coefficient has magnitude 1, i.e., \(|\rho_{i_{1},i_{2}}| = \cdots = |\rho_{i_{M-1},i_{M}}| = 1\). Since the correlation coefficients equal to \(\pm 1\), the submatrix of the covariance matrix \(\Sigma\) containing these correlation coefficients is not positive definite. Therefore by Sylvester’s condition, the covariance matrix \(\Sigma \nsucc 0\), a contradiction. Hence, \(K_{p} > 0\).

\section*{Appendix C}

\section*{Proof of Theorem 4}

Proof: We first assume that \(e\) and \(e'\) do not share a node. The approximation of the KL-divergence for Gaussians can be written as in (12). We now linearize the constraint set \(L_{\Delta}(p_{e,e'})\) as defined in (13). Given a positive definite covariance matrix \(\Sigma_{e} \in \mathbb{R}^{2x2}\), to simplify the notation, let \(I(\Sigma_{e}) = I(N(\kappa; \mathbf{0}, \Sigma_{e}))\) be the mutual information of the two random variables with covariance matrix \(\Sigma_{e}\). We now perform a first-order Taylor expansion of the mutual information around \(\Sigma_{e}\). This can be expressed as

\[
I(\Sigma_{e} + \Delta_{e}) = I(\Sigma_{e}) + \text{Tr} \left(\nabla_{\Sigma} I(\Sigma_{e})^{T} \Delta_{e} \right) + o(\Delta_{e}).
\]

Recall that the Taylor expansion of \(\log\det(\mathbf{B})\) is
\[
\log\det(\mathbf{A}) = \log\det(\mathbf{B}) + (\mathbf{A} - \mathbf{B} \mathbf{B}^{-1}) \odot \|\mathbf{A} - \mathbf{B}\|_{F},
\]
with the notation \((\mathbf{A} - \mathbf{B} \mathbf{B}^{-1}) = \text{Tr}((\mathbf{A} - \mathbf{B})\mathbf{B}^{-1})\). Using this result we can conclude that the gradient of \(I\) with respect to \(\Sigma_{e}\) in the above expansion (39) can be simplified to give

\[
I(\Sigma_{e} + \Delta_{e}) = I(\Sigma_{e}) + \text{Tr} \left(\nabla_{\Sigma} I(\Sigma_{e})^{T} \Delta_{e} \right) + o(\Delta_{e}).
\]
the matrix
\[\nabla \Sigma_c I(\Sigma_c) = -\frac{1}{2} \begin{pmatrix} 0 & [\Sigma_c^{-1}]_{od} \\ [\Sigma_c^{-1}]_{od} & 0 \end{pmatrix}, \]
(40)
where \([A]_{od}\) is the (unique) off-diagonal element of the 2 x 2 symmetric matrix \(A\). By applying the same expansion to \(I(\Sigma_c + \Delta_c)\), we can express the linearized constraint as
\[\langle M, \Delta \rangle = \text{Tr}(M^2 \Delta) = I(\Sigma_c) - I(\Sigma_c), \]
(41)
where the symmetric matrix \(M = M(\Sigma_c,e)\) is defined in the following fashion: \(M(i,j) = \frac{1}{2}[\Sigma_c^{-1}]_{od}\) if \((i,j) = e\), \(M(i,j) = -\frac{1}{2}[\Sigma_c^{-1}]_{od}\) if \((i,j) = e'\) and \(M(i,j) = 0\) otherwise.

Thus, the problem reduces to minimizing (over \(\Delta\)) the approximate objective in (42) subject to the linearized constraints in (41). This is a least-squares problem. By using the matrix derivative identities \(\nabla_{\Delta} \text{Tr}(M\Delta) = M\) and \(\nabla_{\Delta} \text{Tr}(\Sigma^{-1}\Delta) = 2\Sigma^{-1}\Delta\Sigma^{-1}\), we can solve for the optimizer \(\Delta^*\) yielding:
\[\Delta^* = \frac{I(\Sigma_c) - I(\Sigma_c)}{\text{Tr}(M^2)} \Sigma M \Sigma. \]
Substituting the expression for \(\Delta^*\) into (42) yields
\[\tilde{J}_{e,e'} = \frac{(I(\Sigma_c) - I(\Sigma_c'))}{4 \text{Tr}(M^2)} = \frac{(I(\rho_e) - I(\rho_{e'}))}{4 \text{Tr}(M^2)}. \]
Comparing (43) to our desired result (16), we observe that problem now reduces to showing that \(\text{Tr}(\Sigma^2) = \frac{1}{2}\text{Var}(s_e - s_{e'})\). To this end, we note that for Gaussians, the information density is \(s_e(x_i, x_j) = -\frac{1}{2} \log(1 - \rho_{e^2}) - [\Sigma_c^{-1}]_{od} x_i x_j\). Since the first term is a constant, it suffices to compute \(\text{Var}(\Sigma_{c_{od}} x_i x_j - [\Sigma_c^{-1}]_{od} x_k x_l)\). Now, we define the matrices
\[C_1 := \begin{pmatrix} 0 & 1/2 \\ 0 & 0 \end{pmatrix}, \quad C_2 := \begin{pmatrix} C & 0 \\ 0 & C \end{pmatrix}, \quad C_3 := \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \]
and use the following identity for the normal identity \((x_i, x_j, x_k, x_l) \sim N(0, \Sigma)\):
\[
\text{Cov}(a x_i, b x_j) = 2ab \cdot \text{Tr}(C_1 \Sigma C_2 \Sigma), \quad \forall a, b \in \mathbb{R},
\]
and the definition of \(\text{M}\) to obtain \(\text{Var}(s_e - s_{e'}) = 2\text{Tr}(\Sigma^2)\). This completes the proof for the case when \(e\) and \(e'\) do not share a node. The proof for the case when \(e\) and \(e'\) share a node proceeds along exactly the same lines with a slight modification of the matrix \(M\).

\section*{APPENDIX D \ PROOF OF LEMMA \ref{lem:edge_crossover}}

\textbf{Proof:} Denoting the correlation coefficient on edge \(e\) and non-edge \(e'\) as \(\rho_e\) and \(\rho_{e'}\) respectively, the approximate crossover rate can be expressed as
\[\tilde{J}(\rho_e, \rho_{e'}) = \frac{A(\rho_e^2, \rho_{e'}^2)}{B(\rho_e^2, \rho_{e'}^2)} \]
(44)
where the numerator and the denominator are defined as
\[A(\rho_e^2, \rho_{e'}^2) := \frac{1}{2} \log \left(\frac{1 - \rho_{e'}^2}{1 - \rho_e^2} \right)^2, \]
\[B(\rho_e^2, \rho_{e'}^2) := 2(\rho_e^2 + \rho_{e'}^2) + 2\left(\frac{\rho_e^2 + \rho_{e'}^2}{(1 - \rho_e^2)^2} - \frac{2\rho_e^2}{(1 - \rho_e^2)(1 - \rho_{e'}^2)} \right). \]
The evenness result follows from \(A\) and \(B\) because \(\tilde{J}(\rho_e, \rho_{e'})\) is, in fact a function of \((\rho_e^2, \rho_{e'})\). To simplify the notation, we make the following substitutions: \(x := \rho_{e'}\) and \(y := \rho_e\). Now we apply the quotient rule to (44). Defining \(\mathcal{R} := \{(x, y) \in \mathbb{R}^2 : y \in (0, 1), x \in (0, y)\}\), it suffices to show that
\[C(x, y) := B(x, y) \frac{\partial A(x, y)}{\partial x} - A(x, y) \frac{\partial B(x, y)}{\partial x} \leq 0, \]
for all \((x, y) \in \mathcal{R}\). Upon simplification, we have
\[C(x, y) = \frac{\log \left(\frac{1-x}{1-y} \right)}{2(1-y)^2(1-x)^3}, \]
where \(C_1(x, y) := y^2x - 6xy - 1 - 2y + 3y^2\) and \(C_2(x, y) := 2x^2y - 6x^2 - 2x^2 - 2y^2x + 14xy^2 - 2y^2\). Since \(x < y\), the logs in \(C(x, y)\) are positive, i.e., \(\log \left(\frac{1-x}{1-y} \right) > 0\), so it suffices to show that
\[\log \left(\frac{1-x}{1-y} \right) C_1(x, y) + C_2(x, y) \leq 0 \]
for all \((x, y) \in \mathcal{R}\). By using the inequality \(\log(1+t) \leq t\) for all \(t > -1\), it again suffices to show that
\[C_3(x, y) := (y - x)C_1(x, y) + (1 - y)C_2(x, y) \leq 0. \]
Now upon simplification, \(C_3(x, y) = 3y^2x - 19y^2x - 3y^2 + 5y^3 + 3y^2x^2 + 14xy^2 + 3z + 8xy - 6x^2\), and this polynomial is equal to zero in \(\mathcal{R}\) (the closure of \(\mathcal{R}\)) iff \(x = y\). At all other points in \(\mathcal{R}\), \(C_3(x, y) < 0\). Thus, the derivative of \(\tilde{J}(\rho_e, \rho_{e'})\) with respect to \(\rho_{e'}\) is indeed strictly negative on \(\mathcal{R}\). Keeping \(\rho_e\) fixed, the function \(\tilde{J}(\rho_e, \rho_{e'})\) is monotonically decreasing in \(\rho_{e'}\), and hence \(|\rho_{e'}|\). Statements (c) and (d) follow along exactly the same lines and are omitted for brevity.

\section*{APPENDIX E \ PROOFS OF THEOREM \ref{thm:stat} AND COROLLARY \ref{cor:stat}}

\textbf{Proof:} Proof of \(T_{\text{min}}(d) = T_{\text{stat}}(d)\): Sort the correlation coefficients in decreasing order of magnitude and relabel the edges such that \(|\rho_{e_1}| \geq \ldots \geq |\rho_{e_{d-1}}|\). Then, from Lemma \ref{lem:edge_crossover}b), the set of crossover rates for the star graph is given by \(\{J(\rho_{e_1}, \rho_{e_{i+1}})\} \cup \{J(\rho_{e_2}, \rho_{e_{i+1}}) : i = 2, \ldots, d - 1\}\). For edge \(e_1\), the correlation coefficient \(\rho_{e_1}\) is the largest correlation coefficient (and hence results in the smallest rate). For all other edges \(\{e_i : i \geq 2\}\), the correlation coefficient \(\rho_{e_1}\) is the largest possible correlation coefficient (and hence results in the smallest rate). Since each member in the set of crossovers is the minimum possible, the minimum of these crossover rates is also the minimum possible among all tree graphs.

Before we prove part (b), we present some properties of the edge weights \(W(\rho_{e_1}, \rho_{e_2})\), defined in (20).

\textbf{Lemma 14 (Properties of Edge Weights):} Assume that all the correlation coefficients are bounded above by \(\rho_{\text{crit}}\), i.e., \(|\rho_{e_i}| \leq \rho_{\text{crit}}\). Then \(W(\rho_{e_1}, \rho_{e_2})\) satisfies the following properties:
(a) The weights are symmetric, i.e., \(W(\rho_{e_1}, \rho_{e_2}) = W(\rho_{e_2}, \rho_{e_1})\).
(b) \(W(\rho_{e_1}, \rho_{e_2}) = \tilde{J}(\min\{|\rho_{e_1}|, |\rho_{e_2}|\}, \rho_{e_{i+1}})\), where \(\tilde{J}\) is the approximate crossover rate given in (44).
(c) If \(|\rho_{e_1}| \geq |\rho_{e_2}| \geq |\rho_{e_k}|\), then
\[W(\rho_{e_1}, \rho_{e_k}) \leq \min\{W(\rho_{e_1}, \rho_{e_2}), W(\rho_{e_2}, \rho_{e_k})\}. \]
(45)
To prove (49), note that any edge \(\rho_{i,j} \) in decreasing order on the nodes (see Fig. 13) is the line graph \(H^* = \mathcal{L}(T) \) is shown in the left and right figures respectively. In this case \(H \setminus H^* = \{ (1,2), (2,3), (3,4) \} \) and \(H^* \setminus H = \{ (1,4), (2,5), (4,6), (3,6) \} \). Equ. (49) holds because from (46), \(\rho_{i,j} \leq W(\rho_{i,j}, \rho_{i,j+1}) \) for \(i = 1 \) and \(j = i \). Then \(\min_{i \in \mathcal{I}} a_i \leq \min_{i \in \mathcal{I}} b_i \).

References

[1] J. Pearl, *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*, San Francisco, CA: Morgan Kaufmann, 2nd edition, 1988.

[2] D. Geiger and D. Heckerman, “Learning Gaussian networks,” in *Uncertainty in Artificial Intelligence (UAI)*, 1994.

[3] S. Lauritzen, *Graphical Models*, Oxford University Press, USA, 1996.

[4] M. J. Wainwright and M. I. Jordan, *Graphical Models, Exponential Families, and Variational Inference*, vol. 1 of Foundations and Trends in Machine Learning, Now Publishers Inc, 2008.

[5] C. K. Chow and C. N. Liu, “Approximating discrete probability distributions with dependence trees,” *IEEE Trans. on Inf. Theory*, vol. 14, no. 3, pp. 462–467, May 1968.

[6] C. K. Chow and T. Wagner, “Consistency of an estimate of tree-dependent probability distributions,” *IEEE Trans. on Inf. Theory*, vol. 19, no. 3, pp. 369 – 371, May 1973.

[7] V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S. Wilsky, “A Large-Deviations Analysis for the Maximum Likelihood Learning of Tree Structures,” in *Proc. of IEEE Intl. Symp. on Inf. Theory*, Seoul, July 2009, submitted to Trans. on Info. Theory. Available at http://arxiv.org/abs/0905.0940.

[8] D. M. Chickering, “Learning equivalence classes of Bayesian network structures,” *Journal of Machine Learning Research*, vol. 2, pp. 445–498, 2002.

[9] M. Dukic, S. J. Phillips, and R. E. Schapire, “Performance guarantees for regularized maximum entropy density estimation,” in *Conference on Learning Theory (COLT)*, 2004.

[10] N. Meinshausen and P. Bühlmann, “High dimensional graphs and variable selection with the Lasso,” *Annals of Statistics*, vol. 34, no. 3, pp. 1436–1462, 2006.

[11] M. J. Wainwright, P. Ravikumar, and J. D. Lafferty, “High-dimensional graphical model selection using \(l_1 \)-regularized logistic regression,” in *Neural Information Processing Systems (NIPS)*, 2006, MIT Press.

[12] N. Santhanam and M. J. Wainwright, “Information-theoretic limits of selecting binary graphical models in high dimensions,” in *Proc. of IEEE Intl. Symp. on Inf. Theory*, Toronto, Canada, July 2008.

[13] O. Zak, S. Margel, and E. Domany, “On the number of samples needed to learn the correct structure of a Bayesian network,” in *Uncertainty in Artificial Intelligence (UAI)*, 2006.
14. A. Montanari and J. A. Pereira, “Which graphical models are difficult to learn?” in Neural Information Processing Systems (NIPS). 2009, MIT Press.

15. A. Dempster, “Covariance selection,” Biometrics, vol. 28, pp. 157–175, 1972.

16. A. d’Aspremont, O. Banerjee, and L. El Ghaoui, “First-order methods for sparse covariance selection,” SIAM Journal on Matrix Analysis and its Applications, vol. 30, no. 1, pp. 56–66, Feb 2008.

17. A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu, “Sparse permutation invariant covariance estimation,” Electron. J. Statist., vol. 2, pp. 494–515, 2008.

18. S. Borade and L. Zheng, “Euclidean Information Theory,” in Allerton Conference, 2007.

19. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-Interscience, 2nd edition, 2006.

20. J.-D. Deuschel and D. W. Stroock, Large Deviations, American Mathematical Society, Dec 2000.

21. F. Den Hollander, Large Deviations (Fields Institute Monographs), American Mathematical Society, Feb 2000.

22. D. B. West, Introduction to Graph Theory, Prentice Hall, 2nd edition, 2000.

23. S. Verdu, “Spectral efficiency in the wideband regime,” IEEE Trans. on Inf. Theory, vol. 48, no. 6, Jun 2002.

24. F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1972.

25. S. Shen, “Large deviation for the empirical correlation coefficient of two Gaussian random variables,” Acta Mathematica Scientia, vol. 27, no. 4, pp. 821–828, Oct 2007.

26. M. Fazel, H. Hindi, and S. P. Boyd, “Log-det heuristic for matrix rank minimization with applications with applications to Hankel and Euclidean distance metrics,” in American Control Conference, 2003.