Coronavirus Disease 2019 in Recipient of Allogeneic Hematopoietic Stem Cell Transplantation: Life-threatening Features Within the Early Post-engraftment Phase

Chiara Oltolini1, Anna Guidetti2,9, Marco Ripa1,8, Barbara Castiglioni1, Chiara Tassin Din1, Sara Mastaglio3, Diana Canetti1, Giacomo Monti4, Andrea Andolina1, Chiara Molinar6, Antonella Polonato6, Andrea Mastrangelo1,8, Marica Ferrante7,8, Marco Lanzillotta1,8, Paolo Scarpellini1, Antonella Castagna1,8, Paolo Corradini2,9, Fabio Ciceri1,8

Correspondence: Chiara Oltolini (e-mail: ciceri.fabio@hsr.it).

China reported a novel coronavirus, phylogenetically related to severe acute respiratory syndrome coronavirus (SARS-CoV), as the causative agent of an outbreak of pneumonia of unknown etiology in Wuhan. World Health Organization declared Coronavirus disease 2019 (COVID-19) a global pandemic; nowadays, 4,864,881 cases were reported worldwide, 228,006 in Italy with a 14% mortality rate.1 Retrospective studies on Chinese patients with pneumonia highlighted that cardiovascular diseases, older age, high C-reactive protein (CRP), interleukin-6 and ferritin, low lymphocytes and secondary infections were predictive of death.2,3 COVID-19 features in immunocompromised hematological patients are emerging, but data on allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients are still scanty (Table 1).4-8 Jin et al reported a case of pneumonia in a male with chronic lymphocytic leukemia successfully treated with chemotherapy, corticosteroids and α-interferon.4 Zhang et al described another-one in a myeloma patient with favorable outcome after corticosteroids, arbidol and tocilizumab.5 COVID-19 in an allo-HSCT recipient, developed 7-months after transplant while on maintenance cyclosporine, was firstly published by Huang et al. Despite achieving negative SARS-2-CoV with lopinavir/ritonavir, corticosteroid and immunoglobulins, the patient died with persistently low lymphocytes (T-cell < 300/µL, CD4 < 100/µL) and secondary infection.6 Malard et al reported 25 cases in hematological patients including 2 recipients of allo-HSCT. At a median follow-up of 29-day since symptoms onset, 52% of patients developed acute respiratory distress syndrome (ARDS) and 36% died.7 The first case series on 6 allo-HSCT recipients, who developed COVID-19 at a median time of 41-months after HSCT, did not report deaths, suggesting that an immunosuppressed status /56 patients with chronic graft-vs-host disease (c-GVHD) may be protective against hyper-inflammation of severe disease (unpublished data).

We described a case of severe low respiratory tract infection (LRTI) by SARS-2-CoV in a 64-year-old man with non-Hodgkin lymphoma, which arose on 21-day after allo-HSCT from matched-unrelated donor, whose pre-engraftment phase was uneventful. At hospital admission, 3 days after previous discharge, he was febrile and piperacillin/tazobactam was introduced. Laboratory tests revealed WBC 3490/µL (neutrophils 2000/µL), platelets 189/µL, CRP 13mg/dl, lactic dehydrogenase 710U/L, normal renal and hepatic functions. The nasopharyngeal swab was negative for community acquired respiratory viruses (CARV), while PCR for SARS-2-CoV resulted positive on 26-day after HSCT with CT scan revealing mild pneumonia (Fig. 1A). The same day lopinavir/ritonavir and hydroxychloroquine were introduced, discontinuing piperacillin/tazobactam. At this time, the patient was in good condition [Modified Early Warning Score (MEWS) 2 points]. Laboratory tests showed CRP 1mg/dl, lactic dehydrogenase 591U/L, bilirubin 1mg/dl, ferritin 5310ng/ml, pro-calcitonin 0.1ng/ml, D-dimer 0.83ng/ml, WBC 1720/µL (neutrophils 800/µL, monocytes 200/µL, lymphocyte 600/µL, CD4 35/µL, CD8 304/µL, CD190/µL). On 33-day, because of major pharmacological interactions, lopinavir/ritonavir was...
replaced with azithromycin and cyclosporine with mycophenolate, detecting cyclosporine serum values ≥200 ng/mL until 43-day. On 36-day clinical condition worsened (MEWS 3 points), inflammatory markers increased (ferritin 5342 pg/mL, lactate dehydrogenase 836 U/L, D-dimer 0.71 ng/mL) and CT scan showed worsening bilateral infiltrates (Fig. 1B). Therefore, he received a single 6 mg/kg dose of tocilizumab and started methylprednisolone 0.5 mg/kg obtaining fever resolution. COVID-19 rapid immune-chromatographic test for determination of antibodies in whole blood was performed revealing the absence of both IgG and IgM. The patient required a progressive increase of oxygen supply, starting non-invasive ventilation on 41-day (MEWS 3 points). The same day, laboratory tests showed bilirubin 3.3 mg/dL, lactate dehydrogenase 1651 U/L and haptoglobin 0 mg/dL. Because of suspected endothelial activation, probably driven by both thrombotic microangiopathy and pulmonary hyper-inflammation, an off-label administration of intravenous defibrotide 6.25 mg/kg q6h was started and methylprednisolone was increased to 1 mg/kg achieving a decrease of lactate dehydrogenase and stabilization of bilirubinemia and respiratory failure without major and minor bleedings. Since hospital admission, the patient received primary antimicrobial prophylaxis with acyclovir, letomivir, atovaquone and isavuconazole. On 45-day, SARS-2-CoV PCR was still positive, so azithromycin and hydroxychloroquine were discontinued. The clinical course was complicated on 54-day by blood culture negative septic shock (MEWS 8 points), requiring transfer to Intensive Care Unit for invasive mechanical ventilation, inotropic support (adrenaline, noradrenaline) and empiric antibiotic therapy (meropenem, daptomycin); the same day debridement was discontinued and isavuconazole. On 45-day, SARS-2-CoV PCR was still positive CT scan negative septic shock and requirement of moderate mechanical ventilation (bilirubin 3 mg/dL, lactic dehydrogenase 880 U/L). After Ethical Committee approval, on 57-day, the patient received remdesivir 100 mg q24h for compassionate use. Despite a prompt resolution of septic shock and requirement of moderate mechanical ventilation support for extensive bilateral pneumonia (Fig. 1C), a consciousness impairment and hepatic failure have taken over in the next days. Thrombotic micro-angiopathy, GVHD and viral
infections have been addressed in differential diagnosis, but none was deemed likely for absence, respectively, of schistocytes and renal impairment, gut and skin involvement and viral reactivations (Cytomegalovirus, Herpes-virus 6 and Adenovirus). On 64-day a sharply increase of bilirubinemia up to 17mg/dl required interruption of both remdesivir and letermovir in suspicion of drug-induced liver injury. Radiological findings on 66-day showed moderate increase of ground-glass opacities (Fig. 1D). The same day high plasmatic concentration of isavuconazole (10mg/L) was detected, so the drug was withdrawn, being partially responsible for liver damage. On 74-day, bronco-alveolar lavage was performed excluding secondary infections (CARV, Cytomegalovirus, Pneumocystis, aspergillosis, bacteria) with SARS-2-CoV persistently positive, being the only causative pathogen. Bilirubinemia decreased slightly to 13mg/dl and isavuconazole plasmatic concentration was still 4mg/L. On 75-day, galactomannan on bronco-alveolar lavage was repeated resulting positive (from <0.5 to 3.3). Despite maximal medical and resuscitation support, the patient died on 78-day.

Several efforts are ongoing to address COVID-19 clinical features and therapeutic options in solid organ transplant (SOT) and HSCT recipients.

An Italian experience on renal transplant recipients reported a mortality rate of 25% (5/20) despite 95%, 55%, and 30% of patients received HIV protease-inhibitors, dexamethasone and tocilizumab, respectively. The Spanish observation on 18 SOT recipients [kidney (44.4%), liver (33.3%), heart (22.2%)], who developed COVID-19 at a median interval since transplantation of 9.3 years, reported a fatality rate of 27.8%. Another Italian report showed a high-mortality in long-term liver transplant recipients (>10 years): 3% (3/111) acquired pneumonia and all died. Conversely, 7.5% (3/40) of short-term liver transplant recipients (<2 years) experienced an uneventful course of disease. Interestingly, only 10% of long-term liver transplant recipients
had a full immunosuppressive therapy (IST) and a higher proportion of them displayed risk factors for COVID-19 mortality, such as hypertension, cardiovascular disease, chronic renal failure, older age.11

In allo-HSCT setting, it is plausible that acquiring COVID-19 in late post-engraftment phase, after achieving a good T and B-cell immune-recovery, may not affect the outcome. Probably IST in the context of c-GVHD could prevent the transition from pro-inflammatory towards anti-inflammatory wound-healing macrophages reaction, which usually promote the typical lung tissue damage of ARDS. In our report, since a therapeutic serum level has been maintained until 43-day, we would exclude any role of cyclosporine withdrawal with the hyper-inflammatory rate observed starting from 36-day. For allo-HSCT recipients, we assume that pre-engraftment and early post-engraftment phases are the timeframe at higher risk for fatal outcome due to severe lymphopenia and high risk of progression to LRTI by CARV.12

Our case suggests, also, an atypical radiological evolution of SARS-2-CoV pneumonia in HSCT recipients, persisting for over 6-weeks since presentation of a predominately crazy-paving ground-glass opacities pattern without evolution in the consolidation phase.13

This finding may be due to the onset of pneumonia within 30-day after allo-HSCT with anti-thymocyte globulin as part of conditioning regimen, which justifies the absence of acquired immunity determining a persistent viral replication in low respiratory tract, probably resulting in a prolonged virus-induced cytopathic effect. Considering the pivotal role of IL-6 cascade resulting in a cytokine-realized syndrome and of endothelium damage resulting in a pro-coagulative status, the administration of both tocilizumab and defibrotide could at least have contained the inflammatory lung tissue damage. Allo-HSCT setting exposes the recipient in pre-engraftment and early post-engraftment phase to a profound degree of immunosuppression that prevents him from containing virus spread resulting in a severe clinical course and high risk of mortality, due also to the absence of an effective antiviral therapy. The use of convalescent plasma should be evaluated in immunocompromised hosts to replace impaired antibody response.

In conclusion, we report the first case of SARS-2-CoV pneumonia in early post-engraftment phase of allo-HSCT. Facing a complicated clinical course, despite the administration of almost all available therapeutic options except for convalescent plasma against SARS-2-CoV, including the experimental agent remdesivir, we have not succeeded in containing viral replication resulting in patient’s death, which was also ultimately due to breakthrough invasive aspergillosis. In the context of a global pandemic, our experience confirms the role of screening allo-HSCT candidates for SARS-2-CoV infection, as recently stated by European Bone Marrow Transplantation society.14 For those who test positive, a careful transplant planning delaying the procedure is critical to both limit the risk of progression to severe LRTI in pre-engraftment phase and ensure an optimal care of hematological malignancy.

References
1. Ministero della Salute (IT). Available at: http://www.salute.gov.it/portale/home.html. Accessed May 21, 2020.
2. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
3. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China, Intensive Care Med. 2020;46:846–848.
4. Jin XH, Zheng KJ, Pan KH, et al. COVID-19 in a patient with chronic lymphocytic leukemia. Lancet Haematol. 2020;7:e351–e352.
5. Zhang X, Song K, Tong F, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4:307–1310.
6. Huang J, Lin H, Wu Y, et al. COVID-19 in post-transplant patients: report of two cases. Am J Transplant. 2020;20:1879–1881.
7. Malard F, Genthon A, Brisset E, et al. COVID-19 outcome in patients with hematological disease. Bone Marrow Transplant. 2020 May 6. [Epub ahead of print].
8. Li W, Wang D, Guo J, et al. COVID-19 in persons with chronic myeloid leukemia. Leukemia. 2020;24:1799–1804.
9. Alberici F, Delbarba E, Manenti C, et al. Management of patients on dialysis and with kidney transplantation during the SARS-CoV-2 (COVID-19) pandemic in Brescia, Italy. Kidney Int Rep. 2020;5:580–585.
10. Fernández-Ruiz M, Andrés A, Loinaz C, et al. COVID-19 in solid organ transplant recipients: a single-center case series from Spain. Am J Transplant. 2020;20:1849–1858.
11. Bhouri S, Rossi RE, Citterio D, et al. COVID-19 in long-term liver transplant patients: preliminary experience from an Italian transplant centre in Lombardy. Lancet Gastroenterol Hepatol. 2020;5:532–533.
12. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus and coronavirus. Clin Infect Dis. 2013; 56:258–266.
13. Shi H, Han X, Jiang N, et al. Radiological findings of 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425–434.