Alcohol consumption on pancreatic diseases

Marta Herreros-Villanueva, Elizabeth Hijona, Jesus Maria Bañales, Angel Cosme, Luis Bujanda

Abstract

Although the association between alcohol and pancreatic diseases has been recognized for a long time, the impact of alcohol consumption on pancreatitis and pancreatic cancer (PC) remains poorly defined. Nowadays there is not consensus about the epidemiology and the beverage type, dose and duration of alcohol consumption causing these diseases. The objective of this study was to review the epidemiology described in the literature for pancreatic diseases as a consequence of alcoholic behavior trying to understand the association between dose, type and frequency of alcohol consumption and risk of pancreatitis and PC. The majority of the studies conclude that high alcohol intake was associated with a higher risk of pancreatitis (around 2.5%-3% between heavy drinkers and 1.3% between non drinkers). About 70% of pancreatitis are due to chronic heavy alcohol consumption. Although this incidence rate differs between countries, it is clear that the risk of developing pancreatitis increases with increasing doses of alcohol and the average of alcohol consumption vary since 80 to 150 g/d for 10-15 years. With regard to PC, the role of alcohol consumption remains less clear, and low to moderate alcohol consumption do not appear to be associated with PC risk, and only chronic heavy drinking increase the risk compared with lightly drinkers. In a population of 10%-15% of heavy drinkers, 2%-5% of all PC cases could be attributed to alcohol consumption. However, as only a minority (less than 10% for pancreatitis and 5% for PC) of heavily drinkers develops these pancreatic diseases, there are other predisposing factors besides alcohol involved. Genetic variability and environmental exposures such as smoking and diet modify the risk and should be considered for further investigations.

INTRODUCTION

Alcohol causes different diseases and they are considered an important medical and social burden on society. Alcohol has been identified as a leading risk factor for death and disability globally, accounting for 3.8% of death and 4.6% of disability adjusted life years lost in 2004[1].

Pancreas is one of the most important organs adversely affected by alcohol consumption. An association between alcohol abuse and pancreatic injury was reported by Friedrich[2] as early as 1878. Friedrich recognized an
association of alcohol abuse with chronic pancreatic injury.

Since Friedrich’s initial observation, many studies have confirmed that excessive alcohol intake is associated with pancreatic damage. Nowadays it is widely recognized that pancreatic injury due to alcohol consumption ranges from isolated episodes of acute pancreatitis (AP) to chronic manifestations that with time could move to pancreatic cancer (PC). However, there is not a consensus in the epidemiology and it is no clear how different drinks or dose of alcohol affect to the development of pancreatic diseases and finally, how drinking trigger pancreatic injury only in a minority of alcoholics.

Here, we review different studies and meta-analysis that have been published in the last years relating alcohol and pancreatic diseases as AP, chronic pancreatitis (CP) and PC. We summarize the effects of alcohol consumption in these diseases and at the end we present the possible mechanisms that have been proposed as a cause of this pancreatic pathogenesis.

Alcohol consumption measures

The incidence and prevalence of alcoholic pancreatic diseases are difficult to ascertain with precision, in part because of the variable considerations of drinking behavior and alcohol intakes measures.

Most of the studies in cohorts measures alcohol intake from wine, beer, and spirits separately. The final value of the daily alcohol intake is expressed in grams for each beverage based on the frequency of consumption, the alcohol content of the beverage, and the average quantity consumed. The United States Department of Agriculture established that alcoholic beverages are 12.8 g for 335 mL of alcohol for a bottle of beer (12-oz, 5% alcohol), 11.0 g for 118 mL (4-oz, 12% alcohol) glass of wine, and 14.0 g for 44 mL (1.5 oz, 40% alcohol) of 80-proof liquor. The definition of a “standard drink” differs between countries in United States it is 14 to 15 g, in Great Britain is 8 g and 19.75 g of alcohol in Japan. In addition to the amount to alcohol in one drink, the cut points to define “moderate” and “heavy” drinking also vary. In general, and to simplify a “standard drink” can be considered equal to 10 g of alcohol. A glass of wine, beer or half a glass of liquor would equivalent a beverage. For example in United States the standards are as following: moderate drinking is for women less than 2 drinks per day and less than 3 drinks for men; Heavy drinking is more than 7 drinks per week or 3 per occasion and more than 14 drinks per week or 4 per occasion; Binge drinkers is 4 or more drinks in a row for women and more than 5 for men.

PANCREATITIS

Alcoholic pancreatitis is a potentially fatal illness that may be short term (i.e., acute) or long term (i.e., chronic). The relationship between acute and CP is complex. Symptoms are shared by acute and CP and include abdominal pain and interference with normal pancreatic functions. Although the prevalence of alcoholic pancreatitis in the population is unknown, clinicians usually agree that both acute and chronic alcoholic pancreatitis are responsible for a significant amount of illness and death in the world. However, the proportion of cases of pancreatitis attributed to alcohol varies widely among countries and even among different studies in the same country.

There are not universally accepted criteria to assign alcohol as an etiology of patient’s pancreatitis but experts defines that varying from consumption of over 50 to 80 g (4-7 drinks/d) with or without a minimum drinking duration. An international consensus defined alcoholic CP based on typical clinical history, threshold alcohol consumption (80 g or more of alcohol for a few years in males and less in females) and morphological evidence of CP on imaging studies or histology.

Besides the alcohol intake, other list of etiologies have been described as factors that could increase the risk for pancreatitis as gallstones, cystic fibrosis, hyperlipidemia, hyperparathyroidism, pancreas divisum or traumas, infections, genetic factors and autoimmune disease.

There is only a few numbers of epidemiological studies on the quantitative aspects of risk estimations for pancreatitis in relation to alcohol. In 2004, Corrao et al conducted a meta-analysis of case-control and cohort studies published between 1966 and 1995 that assessed the association between alcohol consumption and CP. Then, Irving et al in a review and meta-analysis published in 2009 analyzed studies published between 1980 and 2008 and assessed the association between alcohol consumption and the risk of pancreatitis. They concluded that the threshold between alcohol consumption and pancreatitis is 4 drinks daily.

However, about 70% of pancreatitis cases are believed to be attributable to chronic, heavy alcohol consumption but this percentage differs between countries. Autopsies done on alcohol abusers have shown that up to 75% of them present CP. On another hand, as less than 10% of consumers of alcohol in excess develop CP, other factors modify ethanol toxicity in vivo.

ACUTE PANCREATITIS

Historically it has been well-known that the risk of developing AP increases with increasing doses of alcohol and with the duration of alcohol abuse, although epidemiological studies have shown that only a minority of heavy drinkers develop evident pancreatitis episodes. This correlation shows again that besides of alcohol effects, additional factors are involved in AP develop.

Alcohol is the second most common cause of AC after gallstones. The clinical features at the time of initial presentation are abdominal pain, jaundice, distal common bile duct obstruction and exocrine or endocrine insufficiency. Generally, the onset of alcoholic pancreatitis occurs in the 4th decade of males with an average of alcohol consumption around 150 g/d for a period of
alcohol per day). The incidence rates of CP and the proportion of cases attributed directly to alcohol etiology differ based on geographic distribution (see Table 1).

In United States alcohol etiology accounts around 50%-55% depending on the study. Layer et al. published a study with patients obtained since 1976 to 1982 and they found that 56% were heavy drinkers (> 50 g/d) and present alcoholic etiology. Coté et al. published their results from a multicenter study (2000-2006) in 2010 concluding that alcohol contributes to CP in 45% of the patients. In 2011, Yadav et al. published a population-based study with patients from Mayo Clinic in Olmsted County, MN concluding that 51% presented alcoholic CP. In these studies patients with alcohol consumption of > 50 g/d were defined as alcoholic CP.

In general this percentage is lower than Europeans series[23,28] or other regions[39] (67%-89%) but similar to those from Japan[56].

In European series there is some variability between countries. For example in Italy the described percentage was 43%-79%[6,37], Germany 78%[9], Denmark 44%[24], Czech Republic 60%[35] and Switzerland 71%[44].

The series published in Mexico show 68%[32] of patients with alcoholic etiology, while alcohol is the responsible factor in 90%[32] of patients in Brazil, 80%[43] in South Africa and 33%[42] in India.

Taken together the data presented above, independently of the region it has been shown that 50% or more of AP or CP are associated with alcohol consumption.

Besides of the geographic distribution, CP due to alcohol consumption could be different based on the race but not on the sex. Lowenfels et al. determined that at equal levels of consumption the rates of alcoholic pancreatitis are similar for males and females although patients with alcoholic pancreatitis are more likely males. This is due to the overrepresentation of males among patients with alcoholic pancreatitis, showing a higher prevalence of alcohol consumption than sex-based differences in susceptibility.

Also, regardless to the race it was initially described by Lowenfels et al. and then confirmed by other authors[44-46] that blacks have two to three folds higher rates of alcoholic pancreatitis. Other authors have described that polymorphisms associated to specific populations and races are associated with functional differences in alcohol metabolizing enzymes leading to variation in pancreas damage[47].

However, detailed reasons for geographic or racial differences in susceptibility to alcoholic pancreatitis are still unknown and most likely are because differences in alcohol intake influenced by habits and genetic susceptibility. Further investigations are needed to confirm that or look in detail for cofactors associated to alcohol consumption.

Based on alcohol consumption, Kristiansen et al. estimated that the risk of any pancreatitis among non-drinkers (abstainers) is 1.33% while it is among 2.5% (1.6% acute and 1.6% chronic) in heavy drinkers (> 35 drinks/wk or > 5 drinks/d). Lowenfels et al. concluded that the risk of pancreatitis among heavy drinkers (> 5

| Table 1 Alcoholic pancreatitis epidemiology in the different countries |
|-----------------|-----------------|-----------------|
| Ref. | Country | Alcoholic etiology |
| Layer et al.[23]| United States | 56% |
| Coté et al.[31] | United States | 45% |
| Yadav et al.[56]| United States | 51% |
| Lin et al.[33] | Japan | 56% |
| Cavallini et al.[34]| Italy | 43% |
| Frulloni et al.[35]| Italy | 79% |
| Lankisch et al.[36]| Germany | 78% |
| Notigaard et al.[37]| Denmark | 44% |
| Dite et al.[38]| Czech Republic | 60% |
| Ammann et al.[39]| Switzerland | 71% |
| Robles-Diaz et al.[40]| Mexico | 68% |
| Dani et al.[41]| Brazil | 90% |
| Marks et al.[42]| South Africa | 80% |
| Balakrishnan et al.[43]| India | 33% |

10-15 years[23]. Initially patients present acute abdominal pain, elevated serum levels of pancreatic enzymes and evidence of pancreatic damage in imaging studies.

These acute toxic effects of alcohol on the pancreas are considered AP but the progression of acute episodes (potentially reversible) leads to chronic disease with irreversible changes in the pancreas.

Traditionally, AP has been classed as fundamentally different from CP as the first one is characterized by restoration of normal pancreatic histology after full clinical recovery[24]. However, acute, recurrent acute and CP are now regarded as a disease continuum[24]. For this reason, the majority of the epidemiologic studies of alcoholic pancreatitis are referred to CP.

There is no data in the literature showing whether the heavy alcohol intake (> 80 g/d) in abstainers or moderately drinkers is a risk factor for AP. Also it is unknown whether this risk would be the same for all alcoholic beverages (wine, beer or spirits).

CHRONIC PANCREATITIS

CP is an inflammatory disorder of the pancreas typically associated with heavy alcohol consumption. Clinical features of CP consist of abdominal pain, recurrent attacks of clinical AP, and exocrine and/or endocrine insufficiency[37].

Alcohol is the most common cause for CP[23]. Clinical and experimental studies analyzing alcoholic CP development have concluded that alcoholic pancreatitis begins as a acute process that progresses to chronic irreversible pancreatic damage as a consequence of repeated acute attacks[25,26].

The overall survival in patients with alcoholic pancreatitis is significantly lower compared with the background population, but most of the patients die from causes unrelated to pancreatitis[25,34].

Dufour et al.[40] concluded that CP development is proportional to the dose and duration of alcohol consumption (minimum, 6-12 years of approximately 80 g of alcohol per day).
drinks/d) is about 2%–3%.

Also, some studies have been made to evaluate whether the type of beverage (beer, wine or spirits) or the frequency of drinking (daily, almost daily, weekly or monthly) is associate with the risk of pancreatitis. This study concluded that consumption (> 14 drinks/wk) of beer but not wine or spirits increase the risk of pancreatitis. However this analysis was limited by the number of cases at high levels of consumption. These authors did not find an independent association between the frequency of consumption and risk. In addition some experimental studies carried out in animals conclude that prolonged ethanol feeding does not induce CP although causes little histological changes and variation in pancreatic enzymes.

Although it has been well established that pancreatic inflammation appears to increase the risk of PC and it could be that alcoholic pancreatitis could leads also to PC, future epidemiological studies are needed to analyze this correlation in population.

Some studies have indicated that CP can result in type 2 diabetes, and with a time (up to 20 years) 2%-4% of these pancreatitis cases will develop PC. Also, long-standing type 2 diabetes is a risk factor for PC.

Even in heavy alcoholics, CP and alcoholic cirrhosis seldom occur together in the same patient, despite a few contradictory reports. The mechanisms or factors determining this dichotomy of some alcoholics developing pancreatitis and others developing liver cirrhosis have not been adequately explained. Whether this can be explained by the quantity, duration, and pattern of drinking, or by other cofactors, tobacco smoking, genetic predispositions or dietary factors is debatable.

Veena et al showed that a longer duration of use and bigger amounts of alcohol consumption are necessary before cirrhosis disease compared with CP.

PANCREATIC CANCER

Looking at the risk factors of PC, cigarette smoking represent one of the most important contributing lifestyle risk factor accounting around 20% of the patients. Other factors include CP, diabetes, *Helicobacter pylori* infection, obesity, family history of PC and also heavy alcohol consumption.

While the association between alcohol abuse and pancreatitis is well established the association between alcohol consumption and PC is less clear and remains controversial.

Historical studies in different cohorts have shown that patients with CP have an increased risk of PC; the excess risk was observed in men and women.

Epidemiological data on alcohol and PC are difficult to interpret due to several reasons as: the small sample size (and limited power to detect a possible weak effect of a rare exposure), variability in dose and time of alcohol exposure and other causes influencing (genetic or environmental).

Since 2009 three pooled data analysis and one meta-analysis have been performed. The first pooled study published in 2009 was adjusted for age, smoking status, diabetes, weight, food intake and time of exposure. The control group was no drinkers (0 g ethanol/d). The authors showed a moderate effect of heavy drinking (> 30 g ethanol/d or approximately more than 2-3 alcoholic beverages/d) in women but not in men although the difference in the results by gender was not statistically significant. No associations were observed for the different types of beverage (beer, wine or liquor).

This finding is consistent with a modest increase in risk of PC for alcohol intakes of at least 30 g/d.

The second pooled analysis performed using PanScan study. Analysis was adjusted for age, study, race, smoking status, diabetes and body mass index. The control group was a very light drinkers (> 0-4.99 g ethanol/d) for the total alcohol intake and non-drinkers (0 ethanol/d) for the beverage type group. The author concluded that heavily consumption of alcohol from liquor (> 45 g ethanol/d) was associated with PC in men but not in women and not in men and women combined.

The third pooled analysis included a big number of PC cases. Analysis was adjusted for age, sex, race, area, smoking status, education, body mass index and diabetes. The study concluded that heavy drinkers (> 9 drinks/d) have a moderately increased risk of PC compared with lightly drinkers (< 1 drink/d).

The meta-analysis of alcohol consumption and PC includes 21 case-control studies and 11 cohort studies published since 2009. The results obtained indicate that heavy drinkers (> 3 drinks/d) but not moderate or low drinkers, have an increased risk of PC. This result is valid for both men and women.

In summary, these analysis and meta-analysis suggest that heavy drinkers (>30-40 g ethanol/day or > 3 drinks/d) can result in an increased risk of PC. The authors conclude that in a population of 10%-15% of heavy drinkers, 2%-5% of all PC cases could be attributed to alcohol consumption.

Most of the data published in the literature indicate that alcohol drinking at the levels typically consumed by the general population is probably not a risk factor for PC, however heavy alcohol drinking may be related to PC risk. As an extreme case, Gupta et al conclude that men binge drinkers (> 5 drinks/episode or > 70g ethanol/episode) leads to a 3.5-fold increased risk of PC and this risk is higher with the numbers of drinks per binge episode. This effect is greater in current smokers than in former or never smokers.

In contrast, most previous epidemiological studies could not demonstrate an excess risk for PC associated with moderate alcohol intake. Velema et al did not find sufficient evidence for a causal relationship. Ye et al concluded that the excess risk for PC among alcoholics was small, and may be totally attributable to a mix of causes, for example also increased by smoking.

Some of these studies demonstrated no significant
elevation in risk of PC was observed among alcohol consumers less than 55 years old; however, no similar elevation in risk was observed among those 55 or more years old[66].

In conclusion, there is several difficulties to evaluate the association between alcohol and PC and in epidemiological studies the small sample size has probably contributed to the problem of limited power to detect a possible weak effect of a rare exposure (i.e., chronic heavy alcohol drinking). Also causes like exposure measurement error, limited number of cases under study and competing causes have made difficult study the potential effects of alcohol consumption on the risk of PC[77].

Compared with the general population, alcoholic drinkers without alcoholic CP or alcoholic liver cirrhosis have a modest 40% excess risk to develop PC. Even patients diagnosed with alcoholic CP or liver cirrhosis, have only two folds risk for PC. In addition, it has been shown that non-alcoholic CP patients have a markedly greater excess risk for PC, and this risk is higher than that among alcoholic CP patients[66]. These data suggest that in some circumstances, pancreatitis may be an early manifestation of an as yet undiagnosed PC. Also Kudo et al[69] concluded that alcohol drinking was not significant risk factor for developing PC in CP patients. So far, no studies have demonstrated that alcoholic pancreatitis leads to an increased risk of PC compared with non-alcoholic pancreatitis.

Taking these data together, although the role of alcohol consumption in PC remains unclear, it appears that low to moderate alcohol consumption is not associated with PC risk, but chronic heavy drinking (and perhaps prolonged binging, although available data are confusing) may increase risk of PC[68,69,70,71]. Heavy alcohol consumption may increase PC risk by potentiating the effects of other risk factors such as tobacco smoking, poor nutrition, and inflammatory pathways related to CP, but also may have independent genetic and epigenetic effects.

Overall alcohol intake is only one dimension of drinking behavior. Other considerations such as spacing of drinking occasions, quantity of alcohol consumed, type of alcoholic beverages, ways in which beverages are mixed and commodities consumed in conjunction with alcoholic beverages as salt[60], coffee or tobacco or food[64] are important of pancreatic disease and were described many years ago.

POTENTIAL MECHANISMS OF ALCOHOL CONSUMPTION AND PANCREATIC DISEASES

Over the last decades there have been numerous efforts to elucidate the mechanisms by which alcohol damages the pancreas.

The injurious effects of ethanol on the pancreas are mediated through different mechanisms[71] as (1) sensitization of acinar cells to cholecystokinin (CCK) inducing premature activation of zymogens[72]; (2) potentiation of the effect of CCK on the activation of transcription factors, nuclear factor-kB and activating protein-1[73,74]; (3) generation of toxic metabolites such as acetaldehyde and fatty acid ethyl esters; (4) sensitization of the pancreas to the toxic effects of coxsackievirus B3[75]; and (5) activation of pancreatic stellate cells by acetaldehyde and oxidative stress and subsequent increased production of collagen and other matrix proteins[76].

Chronic alcohol exposure leads to impaired exocytosis mediated by acetaldehyde-induced microtubular dysfunction and apical cytoskeleton reorganization in acinar cells, with a subsequent accumulation of intracellular enzymes[77]. In addition, alcohol decreases the stability of zymogen and lysosomal membranes and enhances acinar cell sensitivity to CCK further increasing susceptibility to pathological enzyme activation[78,79]. Some theories also show that physiologically ethanol leads to the formation of protein secretory plugs that obstruct pancreatic ducts, span of the sphincter of Oddi or decreased tone of the sphincter causing reflux[80,82].

Ethanol and its major metabolite, acetaldehyde, are classified by the International Agency for Research on Cancer as group I carcinogens[80].

Alcohol metabolism depends on enzymes that transform ethanol. Genes for these modifying enzymes have specific polymorphisms that differ between subjects and races leading to differences in susceptibility to alcohol effects and alcohol dependence[47].

Although the liver is the major ethanol-metabolizing organ in the body, the pancreas can metabolize alcohol both via oxidative and non-oxidative pathways.

The oxidative pathway is catalyzed by the enzyme alcohol dehydrogenase (ADH) and the cytochrome P450 and produces the metabolite acetaldehyde. Finally, the oxidative alcohol metabolism results in the generation of oxygen species (ROS)[80] and a depletion of the ROS scavenger glutathione[80]. The increased ROS production (which damage DNA and proteins) and a reduction of proteins that eliminate this ROS (glutathione and enzymes related) lead to oxidant stress and resultant damage in tissue. This stress could be responsible for induce alcoholic pancreatitis as has been demonstrated by several models[85-88].

But in pancreas, the non-oxidative pathways may be more important than oxidative metabolism, generating fatty acid ethyl esters (FAEE) by fatty acid ethyl ester synthases (FAEE synthases)[80]. It has been shown that pancreas exhibits higher FAEE synthase activity than liver[80] and FAEEs accumulation have been observed in human and rat pancreas after alcohol intake[89,90].

The products of alcohol oxidation (acetaldehyde and ROS) and of non-oxidative metabolism have been reported to cause acinar cell injury. Acetaldehyde cause morphological changes in rat and dog’s pancreas and it has been showed that inhibits CCK-simulated cinar cell secretion[91]. Also, several studies have demonstrated that alcohol intake causes oxidant stress within the pan-
creases\cite{86-88} which may play a role in the alcohol-induced destabilization of zymogen granules and lysosomes. In addition, alcohol oxidation contributes to acinar damage altering the intracellular redox state (a reduced NAD/NADH ratio and increased lactate/pyruvate ratio). Other results obtained in isolated mouse pancreatic acinar cells suggest that FAEEs leads to mitochondrial damage, loss of ATP and rise in cytosolic free calcium, which leads to acinar cell toxicity\cite{89}. Other authors have shown that acute application of ethanol at clinically relevant concentrations (1-50 nmol/L) of isolated acinar cells resulted in calcium influx due to the production of oxidative metabolites of alcohol\cite{90}. Together, these data show that the role of alcohol metabolites in acinar cell damage could be due to aberrant calcium signals\cite{91}. FAEEs can elevate Calcium greater that ethanol alone. In addition, FAEEs and their products, fatty acids induces necrosis in acinar cells and this process could be avoided by calcium chela-

These physiological changes lead to the pathobiology found in alcoholic pancreatitis including acute and chronic inflammation, elimination of parenchymal cells of the pancreas by a deregulation of apoptosis/necrosis and/or modification in cell proliferation\cite{92}. The hypothesis called “necrosis-fibrosis sequence” shows these pathologica-

But the fact that only a minority of heavily drinkers develops pancreatitis or PC indicates that other susceptibility factors as lipid tolerance, smoking or hereditary factors play an important role. In the last decades, genetic susceptibility has been considered between the factors that contribute mainly to the development to alcoholic pancreatic diseases.

One study showed an association between a polymorphism of the gene for one FAEE synthase enzymes, carboxylester lipase and risk of developing alcoholic pancreatitis\cite{93}. In addition, the G191R variant in the anionic trypsinogen gene PRSS2, has been shown to result in a form of trypsin that is easily degraded, is more infrequent in alcoholic pancreatitis patients compared with healthy controls\cite{94}.

Other studies have demonstrated that mutation N34S in SPINK1 gene is found in 5%-5.8% of patients with pancreatitis compared with 1% in healthy controls\cite{95,96}. But still the functional consequences of this mutation are unknown.

One of the enzymes that have been also related to alcoholism and drug dependence for decades is ADH. Li et al\cite{97} performed a recent meta-analyses and confirmed strong associations of the ADH1B and ALDH2 genes with alcoholism and alcohol-related medical diseases\cite{98}. Recently, Celorio et al\cite{99} demonstrated that some specific polymorphism in the genes TH, ADH1B increase the risk to develop diseases a consequence of excessive consumption of alcohol.

Although it is clear that alcohol consumption is genetically influenced, but characterized by incomplete penetrance, phenocopies, heterogeneity, and polygenic inheritance.

In conclusion, nowadays it appears clear that alcohol consumption is the first or second most common cause of pancreatitis. Based on the different epidemiology studies published in the literature the percentage of pancreatitis cases attributable to alcohol abuse vary since 30% to 90% between countries. A statistical association has been shown with a threshold of ≥ 5 drinks per day with a dose of alcohol ≥ 50 g/d.

But despite that excessive alcohol consumption is primarily responsible for most cases of pancreatitis, alcohol intake alone is not sufficient to lead to this disease, as less than 10% of heavily drinkers develop pancreatitis.

Regarding to PC, the role of alcohol consumption remains less clear, and low to moderate alcohol consumption do not appear to be associated with PC risk, but only chronic heavy drinking increase the risk compared with lightly drinkers.

Genetic variability and environmental exposures such as smoking and diet could act synergistically with regard to pancreatitis and PC and should be considered for further investigations. Probably heavy alcohol consumption may increase pancreatic disease risk most likely potentiating the effects of these other risk factors, but also may have independent genetic and epigenetic effects.

REFERENCES

1 World Health Organization. Global Health Risks. Mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization, 2009

2 Friedreich N. Disease of the pancreas. Cyclopaedia of the Practice of Medicine. New York: William Wood, 1878

3 National Institute of Alcohol Abuse and Alcoholism. The physicians’ guide to helping patient with alcohol problems. Washington DC: Government Printing Office, 1995

4 Kloner RA, Rezkalla SH. To drink or not to drink? That is the question. Circulation 2007; 116: 1306-1317 [PMID: 17846344 DOI: 10.1161/CIRCULATIONAHA.106.678375]

5 Kerr WC, Greenfield TK, Tujague J, Brown SE. A drink is a drink? Variation in the amount of alcohol contained in beer, wine and spirits drinks in a US methodological sample. Alcohol Clin Exp Res 2005; 29: 2015-2021 [PMID: 16340459 DOI: 10.1097/01.acl.0000187569.92804.bd]

6 Cavallini G, Frulloni L, Pedersoli P, Talamini G, Bovo P, Bassi C, Di Francesco V, Vaona B, Falconi M, Sartori N, Angelini G, Brunori MP, Filippini M. Long-term follow-up of patients with chronic pancreatitis in Italy. Scand J Gastroenterol 1998; 33: 880-889 [PMID: 9754738 DOI: 10.1080/003655298501751677]

7 Layer P, Yamamoto H, Kalthoff L, Clain JE, Bakken LJ, Di-Magno EP. The different courses of early- and late-onset idiopathic and alcoholic chronic pancreatitis. Gastroenterology 1994; 107: 1481-1487 [PMID: 7926511]

8 Ammann RW, Muelhaupt B. Progression of alcoholic acute to chronic pancreatitis. Gut 1994; 35: 552-556 [PMID: 8174996 DOI: 10.1136/gut.35.4.552]

9 Lankisch PG, Assmus C, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic diseases in Lüneburg County. A
of alcohol in cancer. Cancer Res 1979; 39: 2830-2833 [PMID: 376125]

71 Mechanisms of alcoholic pancreatitis. Proceedings of a conference. Chicago, Illinois, USA, November 2002. Pancreas 2003; 27: 283-357 [PMID: 14576687]

72 Lerch MM, Gorelick FS. Early trypsinogen activation in acute pancreatitis. Med Clin North Am 2000; 84: 549-563, viii [PMID: 10872413]

73 Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD. NF-kappaB activation in pancreatic acinar cells. Gastroenterology 1989; 97: 752-760 [PMID: 2721633 DOI: 10.1016/0016-5077(89)90601-5]

74 Gokcey M, Lugea A, Shabsheer M, Cheng H, Hong PP, Jung YL, Deng QC, French BA, Lungo W, French SW, Tsukamoto H, Pandol SJ. A rat model reproducing key pathological responses of alcoholic chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2008; 294: G68-G79 [PMID: 17884979 DOI: 10.1152/ajpgi.00006.2007]

75 Jerrells TR, Vidjak D, Strachota JM. Alcoholic pancreatitis: mechanisms of viral infections as cofactors in the development of acute and chronic pancreatitis and fibrosis. J Leukoc Biol 2001; 81: 430-439 [PMID: 11819980 DOI: 10.1128/JLB.0804222]

76 Apet MV, Pirola RC, Wilson JS. Battle-scarrred pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. J Gastroenterol Hepatol 2006; 21 Suppl 3: S97-S101 [PMID: 16958684 DOI: 10.1111/j.1440-1746.2005.00587.x]

77 Vonlaufen A, Apet MV, Imhof BA, Frossard JL. The role of inflammatory and parenchymal cells in acute pancreatitis. J Pathol 2007; 213: 239-248 [PMID: 17893879 DOI: 10.1002/path.2231]

78 Haber PS, Wilson JS, Apet MV, Korsten MA, Pirola RC. Chronic ethanol consumption increases the fragility of rat pancreatic zymogen granules. Gut 1994; 35: 1474-1478 [PMID: 7525419 DOI: 10.1136/gut.35.10.1474]

79 Gorelick FS. Alcohol and zymogen activation in the pancreatic acinar cell. Pancreas 2003; 27: 305-310 [PMID: 14576492 DOI: 10.1097/00003958-200310000-00006]

80 Guy O, Robles-Diaz G, Adrich Z, Sahel J, Sarles H. Protein content of precipitates present in pancreatic juice of alcoholic subjects and patients with chronic calcifying pancreatitis. Gastroenterology 1983; 84: 102-107 [PMID: 6401181]

81 Singh M, Simek H. Ethanol and the pancreas. Current status. Gastroenterology 1990; 98: 1051-1062 [PMID: 2179029 DOI: 10.1016/S0016-5077(90)90336-W]

82 Pfeffer RB, Stasior O, Hinton JW. The clinical picture of the sequential development of acute hemorrhagic pancreatitis in the dog. Surg Forum 1957; 8: 248-251 [PMID: 13529599]

83 Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Leitao MF, Leimgruber RM, Geokas MC. Irreversible inhibition by acetaldehyde of cholecystokinin-induced amylase secretion from isolated rat pancreatic acini. Biochem Pharmacol 1985; 34: 2859-2863 [PMID: 2411269 DOI: 10.1016/0006-2952(85)90007-3]

84 Criddle DN, Ratary MG, Neoptolemos JP, Tepikin AV, Petersen OH, Sutton R. Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid metabolites. Prog Clin Biol Res 2004; 101: 2185-2190 [PMID: 15247419 DOI: 10.1073/pnas.0403431101]

85 Del Castillo-Vaquero A, Salido GM, Gonzalez A. Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int J Exp Pathol 2010; 91: 11-14-124 [PMID: 2002856 DOI: 10.1111/j.1365-2613.2009.0969.1]

86 Thrower EC, Gorelick FS, Husain SZ. Molecular and cellular mechanisms of pancreatic injury. Curr Opin Gastroenterol 2010; 26: 484-489 [PMID: 20651589 DOI: 10.1097/MOG.0b013e32833d119e]

87 Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptor and loss of ATP synthesis. Gastroenterology 2006; 130: 781-793 [PMID: 16530519 DOI: 10.1053/j.gastro.2005.12.031]

88 Oruc N, Whitcomb DC. Theories, mechanisms, and models of alcoholic chronic pancreatitis. Gastroenterol Clin North Am 2004; 33: 733-750, v-vi [PMID: 15528015]

89 Miyasaka K, Ohta M, Takano S, Hayashi H, Higuchi S, Maruyama K, Tando Y, Nakamura T, Takata Y, Funakoshi A. Carboxylester lipase gene polymorphism as a risk of alcohol-induced pancreatitis. Pancreas 2005; 30: e87-e91 [PMID: 15841033 DOI: 10.1097/01.mpaa.0000160960.21580.ml]

90 Witt H, Sahin-Töth M, Landt O, Chen JM, Kähne T, Drenth JP, Kukor Z, Szepessy E, Halangk W, Dahm S, Rohde K, Schulz HU, Le Maréchal C, Akar N, Ammann RW, Truninger K, Bargetzi M, Bhatia E, Castellani C, Cavestro GM, Cermyn M, Destro-Bisol G, Spedini G, Eiberg H, Jansen JB, Koudova M, Rausova E, Macek M, Malats N, Real FX,
Menzel HJ, Moral P, Galavotti R, Pignatti PF, Rickards O, Spicak J, Zarnescu NO, Böck W, Gress TM, Friess H, Ockenga J, Schmidt H, Pfützer R, Lühr M, Simon P, Weiss FU, Lerch MM, Teich N, Keim V, Berg T, Wiedenmann B, Luck W, Groneberg DA, Becker M, Keil T, Kage A, Bernardoa J, Braun M, Güldner C, Halangk J, Rosendahl J, Witt U, Treiber M, Nickel R, Fürec C. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 2006; 38: 668-673 [PMID: 16699518 DOI: 10.1038/ng1797]

Witt H, Luck W, Becker M, Böhmig M, Kage A, Truninger K, Ammann RW, O'Reilly D, Kingsnorth A, Schulz HU, Halangk W, Kielstein V, Knowfel WT, Teich N, Keim V. Mutation in the SPINK1 trypsin inhibitor gene, alcohol use, and chronic pancreatitis. JAMA 2001; 285: 2716-2717 [PMID: 11386926 DOI: 10.1001/jama.285.21.2716-a]

Diaconu BL, Ciobanu L, Mocan T, Pfützer RH, Scafaru MP, Acalovschi M, Singer MV, Schneider A. Investigation of the SPINK1 N34S mutation in Romanian patients with alcoholic chronic pancreatitis. A clinical analysis based on the criteria of the M-ANNHEIM classification. J Gastrointestin Liver Dis 2009; 18: 143-150 [PMID: 19565042]

Li D, Zhao H, Gelernter J. Further clarification of the contribution of the ADH1C gene to vulnerability of alcoholism and selected liver diseases. Hum Genet 2012; 131: 1361-1374 [PMID: 22476623]

Li D, Zhao H, Gelernter J. Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol Psychiatry 2011; 70: 504-512 [PMID: 21497796 DOI: 10.1016/j.biopsych.2011.02.024]

Celorrio D, Bujanda L, Caso C, Landabaso M, Oria JC, Ogado J, de Pancorbo MM. A comparison of Val81Met and other polymorphisms of alcohol metabolising genes in patients and controls in Northern Spain. Alcohol 2012; 46: 427-431 [PMID: 22560290]

P- Reviewer Gukovskaya AS S- Editor Gou SX L- Editor A E- Editor Zhang DN