Carbapenem Treatment and Outcomes Among Patients With Culture-Positive Complicated Intra-abdominal Infections in US Hospitals: A Retrospective Cohort Study

Marya D. Zilberberg, Brian H. Nathanson, Kristen Ditch, Kenneth Lawrence, Melanie Olesky, and Andrew F. Shorr

1EviMed Research Group, LLC, Goshen, Massachusetts, USA, 2OptiStatim, LLC, Longmeadow, Massachusetts, USA, 3Tetraphase Pharmaceuticals, Inc, Watertown, Massachusetts, USA, and 4Washington Hospital Center, Washington, DC, USA

Background. Carbapenems are a frequent first-line therapy in complicated intra-abdominal infections (cIAIs). We examined the microbiology, epidemiology, and outcomes among patients hospitalized in the United States with culture-positive cIAIs in the context of their exposure to empiric carbapenem treatment (ECT).

Methods. We performed a multicenter retrospective cohort study of Premier database of ~180 hospitals, 2013–2017. Using an International Classification of Diseases (ICD)-9/10-based algorithm, we identified all culture-positive adult patients hospitalized with cIAI and examined their microbiology, epidemiology, and outcomes.

Results. Among 4453 patients with cIAIs, 3771 (84.7%) had a gram-negative (GN) and 1782 (40.0%) a gram-positive organism; 1185 (26.6%) received ECT. Compared with those on non-ECT, patients on ECT were less frequently admitted from home (82.5% vs 86.0%) or emergently (76.0% vs 81.4%; P < .05 for each); E. coli were less frequent, whereas P. aeruginosa and Enterococcus spp. were more prevalent and resistance to third-generation cephalosporins (C3R; 10.1% vs 5.1%; P < .001) and carbapenems (CR; 3.6% vs 1.2%; P < .001) was more common. In adjusted analyses, ECT was associated with no rise in mortality, shorter postinfection length of stay (–0.59 days; 95% confidence interval [CI], –1.15 to –0.03), but higher postinfection costs ($3844; 95% CI, $1921 to $5767) and risk of Clostridiodes difficile (odds ratio, 2.15; 95% CI, 1.02 to 4.50).

Conclusions. Among patients hospitalized with cIAI, the majority were gram-negative. Despite a 10% prevalence of C3R, fully one-quarter of all empiric regimens contained a carbapenem. ECT was a marker for slightly lower postinfection length of stay, but higher costs and risk of hospital complications.

Keywords. intra-abdominal infection; carbapenems; ESBL; carbapenem-resistant; outcomes.
States hospitalized with cIAI in the context of their exposure to empiric treatment with a carbapenem (ECT).

METHODS

We performed a multicenter retrospective cohort study of hospitalized patients with International Classification of Diseases (ICD)-9-CM codes (or their ICD-10 equivalents after October 2015) indicating cIAI (the details of the algorithm are presented in the Supplementary Data) [18]. In addition, we required that there be evidence of antibiotic treatment that began on the day culture was obtained and was continued for at least 3 consecutive days, or until discharge [22–24].

Because this study used already existing fully de-identified data, it was exempt from institutional review board review under 45 CFR 46.101(b)4 [25].

Study Population

Patients were included if they were adults (aged ≥18 years) whose hospitalization of 2 days or longer included a diagnosis of cIAI. We required that an abdominal and/or blood culture drawn during or within 48 hours after laparotomy/laparoscopy be positive for a causative organism (list below), as well as evidence of antibiotic treatment on the day of surgery or index culture that continued for ≥3 consecutive days. Patients not meeting these criteria were excluded from the cohort. Additionally, we excluded patients with a concurrent urinary tract infection diagnosis at any time during the hospitalization in order to minimize the risk of source misattribution of positive blood cultures. Finally, we excluded patients transferred from another acute care facility, as our primary interest focused on the empiric treatment period.

Data Source

The data for the study were obtained from the Premier database, an electronic laboratory, pharmacy, and billing data repository, for the years 2013 through 2017. The database represents ~15% of all hospitalizations nationwide. For further description of the database, see the Supplementary Data.

Baseline Measures

cIAI was classified as community-onset (CO) if present on admission or if the index culture was obtained within the first 2 hospital days. CO cIAI was further classified as health care–associated (HCA) if 1 or more of the following risk factors was present: (1) prior hospitalization within 90 days of the index hospitalization, (2) hemodialysis, (3) admission from a long-term care facility, and (4) immune suppression. All other CO infections were defined as community-acquired (CA). All cIAIs occurring on or after hospital day 3 were considered hospital-onset (HO). In addition to infection classification, patient factors examined included history of exposure to antibiotics within 90 days before the index admission, exposure to antibiotics during the index hospitalization before the onset of cIAI if HO, demographic variables, and comorbid conditions. We computed the Charlson comorbidity score as a measure of the burden of chronic illness, whereas ICU admission, need for mechanical ventilation, presence of severe sepsis or septic shock, and use of dialysis and/or vaso-pressors at baseline (day of surgery/index culture) served as markers for acute disease severity. Organisms and their susceptibility markers were identified, and empiric antibiotic treatment was considered appropriate if the patient received a regimen that covered the corresponding organism within 2 days of the culture being obtained. The prevalence of carbapenem as empiric therapy in each institution was derived as a baseline hospital-level variable. We also explored hospital structural characteristics (eg, size, teaching status, urbanicity) and processes of care (eg, choices of antimicrobials), as they impacted patient outcomes.

Microbiology and Antimicrobial Treatment Variables and Definitions

Organisms of Interest

To be included, a patient had to grow out at least 1 qualifying organism in the abdominal fluid or blood, including any of the gram–negative organisms listed below. The first culture growing out one of the organisms of interest served as the index culture.

Gram-negative organisms of particular interest were Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Enterobacteriaceae. The Supplementary Data lists organisms included as Enterobacteriaceae.

The prevalence of the following frequent cIAI pathogens was also examined: Enterococcus spp., Staphylococcus aureus (including methicillin-resistant S. aureus [MRSA]), Bacteroides fragilis, and Candida spp. In addition, we noted if a polymicrobial infection was present.

Definitions of carbapenem resistance (CR), third-generation cephalosporin resistance (C3R), and inappropriate empiric therapy (IET) can be found in the Supplementary Data.

Outcomes

The primary outcome of interest was hospital mortality as it relates to ECT. Secondary outcomes included hospital length of stay (LOS; in days, total and post–infection onset for all and for survivors only), total costs and total post–infection onset costs, and 30-day readmission rates among survivors. We further explored several additional outcomes associated with ECT as compared with other regimens (non-ECT):

1. Development of Clostridioides difficile
 a. C. difficile (ICD-9-CM 008.45) not principal diagnosis or present on admission
 b. C. difficile included as secondary diagnosis
 c. C. difficile treatment (oral metronidazole OR oral vancomycin OR fidaxomicin) started on either:
i. Hospital day 3 or later, if index surgery/culture was on hospital day 1–2, or
ii. On day of surgery or later, if index surgery/culture was on hospital day 3 or later

2. Development of acute kidney injury (AKI) or AKI requiring dialysis (AKI-D), as identified by a previously published algorithm, on the day of index surgery/culture or later [26]
3. Clinical deterioration, defined as institution of vasopressors and/or mechanical ventilation (MV) within 3 days after the index surgery/culture if not present on index day
4. Treatment failure
 a. Recurrence of infection, defined as re-initiation of antimicrobial treatment with the same or broader-spectrum regimen after a treatment-free period of ≥3 days
 b. Treatment escalation, defined as addition of an antimicrobial or switch to a new antimicrobial with a broader spectrum of coverage within 7 days after the index surgery [27]
 c. Need for a repeat laparotomy/laparoscopy or percutaneous drainage within 7 days after the index surgery [27]

Statistical Analyses

All demographics, comorbidities, hospital characteristics and processes, and hospital outcomes were compared between the ECT and non-ECT groups using standard summary statistics. Continuous variables were reported as means with standard deviations and as medians with 25th and 75th percentiles (interquartile range). Differences between mean values were tested via the Student t test, whereas those between medians were examined using the Mann-Whitney U test. Categorical data were summarized as counts and frequencies, and the chi-square test or Fisher exact test for cell counts <4 was used to examine between-group differences. Inference tests with a P value <.05 were considered statistically significant.

We developed multilevel (hierarchical) mixed-effects logistic regression models with hospitals treated as random effects to examine the contribution of empiric carbapenem treatment to clinical deterioration, C. difficile development, AKI and AKI-D onset, mortality, and 30-day readmissions. A competing risk regression model (with mortality as the competing risk) was used to model treatment failure. The impact of empiric carbapenem treatment on costs (both total and post–infection onset) and hospital LOS (both total and post–infection onset) was examined using multilevel mixed-effects generalized linear models with a logarithmic link function and a gamma distribution (or a normal distribution for postinfection LOS, as some values equaled 0). In all models, we examined the covariates present from the start of hospitalization through the day of the onset of the index infection.

All statistical analyses were done with Stata/MP 15.1 for Windows (StataCorp, LLC, College Station, TX, USA).

RESULTS

Among 321,317 patients with cIAI, 4,453 (1.4%) were culture-positive, met all the inclusion criteria, and were analyzed in the cohort (Supplementary Figure 1). The most common reason for exclusion was the absence of a positive culture (81.1%).

A little over one-third of the cultures came from an abdominal source only (n = 1686), with an additional 545 (12.2%) from blood only, and another 2222 (49.9%) from both. Although the majority of all cIAIs had gram-negative (GN) organisms, a substantial minority had a gram-positive (GP) pathogen (40.0%), among which Enterococcus sp. was the most frequent (60.2%) (Table 1). A total of 4032 GN organisms were isolated from 3771 patients, with E. coli being the most common (56.7%), with a C3R prevalence of 4.9% and CR of 0.3%. Overall, C3R and CR prevalence was 7.6% and 2.2%, respectively, among all GN isolates, and A. baumannii was most likely to be C3R and CR (21.4% for each) (Table 1). Approximately one-third of the cohort suffered from polymicrobial infections (n = 1512), with the rest growing a single organism. Among those with a polymicrobial infection, 1100 (72.8%) were mixed GN and GP.

Approximately one-quarter (n = 1185) of all patients received antimicrobial regimens that included ECT. Patients on ECT did not differ from those on non-ECT with regard to age, gender distribution, or race (Table 2). Compared with those on non-ECT, patients on ECT were less likely to be admitted from home (82.5% vs 86.0%) and more likely to be admitted from a non–acute care facility (6.4% vs 5.0%), but also less likely to be admitted emergently (76.0% vs 81.4%; P < .05 for each) (Table 2). Additionally, ECT (1.8 ± 2.2) patients had a higher mean Charlson comorbidity score than non-ECT (1.6 ± 2.1) patients. ECT was more likely to be given in hospitals in the South in medium-sized (200–399 beds), nonacademic, and urban institutions than non-ECT. Similarly, by all measures of severity of acute illness, those in the ECT group were sicker than those in the non-ECT group (Table 2).

There were limited differences in organism distribution between the ECT and non-ECT groups (Table 3). E. coli were less likely, whereas P. aeruginosa and Enterococcus spp. were more likely to be isolated in the ECT group. Notably, both C3R (10.1% vs 5.1%; P < .001) and CR (3.6% vs 1.2%; P < .001) infections were more frequent in the ECT than in the non-ECT group. In other words, although a presumptive ESBL pathogen was observed more often in those prescribed ECT, the actual prevalence of ESBL organisms was low even among those treated with a carbapenem. On average, compared with those treated with non-ECT, patients on ECT developed their cIAI later in the hospitalization (5.5 ± 11.8 vs 3.2 ± 5.2 days; P < .001) and were more likely to have their infections classified as HCA or HO than CA (Table 3). Of the individual and combination regimens commonly used in cIAI, ertapenem was the most common in the ECT group (57.1%), and meropenem was the second most common...
(39.3%). In the non-ECT group, piperacillin-tazobactam was used in nearly three-quarters of all patients (72.6%). Among patients for whom appropriateness of the empiric regimen could be determined, there was no difference in exposure to IET between the ECT and non-ECT groups (Table 3).

All the examined unadjusted outcomes were worse in the group on ECT than non-ECT (Table 4). Adjusting for confounders known at the onset of cIAI, including demographics, hospital characteristics, and chronic and acute illness markers, worsening of some, though not all, of the outcomes persisted in association with receiving ECT (Table 5). Though hospital mortality, 30-day readmission, and AKI/AKI-D incidence were not increased in the ECT group compared with non-ECT, and though ECT was associated with significant independent excess in the total hospital LOS (0.96 days; 95% confidence interval [CI], 0.29 to 1.64), total hospital costs ($3897; 95% CI, $2001 to $5792), postinfection costs ($3844; 95% CI, $1921 to $5767), and in the risk of HO-CDI (odds ratio [OR], 2.14; 95% CI, 1.02 to 4.47), clinical deterioration (OR, 1.26; 95% CI, 1.04 to 1.52), and treatment failure (subhazard ratio, 1.62; 95% CI, 1.41 to 1.86), the postinfection LOS in the ECT group was shorter than in the non-ECT group (–0.61 days; 95% CI, –1.18 to –0.04).

In contrast, the postinfection LOS in the ECT group was statistically similar to the non-ECT group. Sensitivity analyses produced similar results (Supplementary Data). We did observe a modest excess in postinfection LOS in the ECT group relative to the non-ECT group (0.25 days; 95% CI, 0.03 to 0.48).

DISCUSSION

We demonstrate that among hospitalized patients with cIAI, only a small minority (1.4%) had a positive culture. The use of ECT, employed in over one-quarter of all patients, exceeded...
Table 2. Demographic, Clinical, and Hospital Characteristics Present at Hospital Admission Among Patients With ≥1 Gram-Negative Organism

Mean age (SD), y
Gender: male
Race
White
Black
Hispanic/other
Unknown
Admission source
Home
Clinic
Transfer from another non–acute health care facility
Other
Admission type
Emergency
Urgent
Elective
Trauma
Unknown
Elixhauser comorbidities
Congestive heart failure
Valvular disease
Pulmonary circulation disease
Peripheral vascular disease
Paralysis
Other neurological disorders
Chronic pulmonary disease
Diabetes without chronic complications
Diabetes with chronic complications
Hypothyroidity
Renal failure
Liver disease
Peptic ulcer disease with bleeding
AIDS
Lymphoma
Metastatic cancer
Solid tumor without metastasis
Rheumatoid arthritis/collagen vascular
Coagulopathy
Obesity
Weight loss
Fluid and electrolyte disorders
Chronic blood loss anemia
Deficiency anemia
Alcohol abuse
Drug abuse
Psychosis
Depression
Hypertension
Charlson comorbidity score
the prevalence of C3R by a factor of 3. Importantly, the organisms with the highest prevalence of C3R, where carbapenems may represent the treatment of choice (Enterobacter spp., A. baumannii), were an order of magnitude less common as causes of cIAI than those with the lowest rates of resistance (E. coli, K. pneumoniae). Despite this, the most common C3R pathogen was E. coli, accounting for nearly half of all C3R organisms. Importantly, although hospital mortality and 30-day readmission rates in the 2 groups were similar, ECT was associated with a reduction in the postinfection LOS. Higher postinfection costs were associated with ECT despite a modest reduction in postinfection LOS.

The dissociation between costs and LOS may be due to several factors. One possibility is that the higher raw mortality in the ECT group implies greater resource utilization without extension of life. Another potential explanation is a statistical anomaly known as Simpson’s paradox. This arises essentially because of potentially heterogeneous groups combined into a single mean value, as well as the presence of residual confounding. It would be useful to examine this issue in future research.

The discordance between the total and postinfection LOS between the 2 groups suggests that the overall prolongation of LOS in the ECT group occurred largely in the pre-infection period, possibly pointing to, along with prior exposure to antimicrobials and history of C3R, an increased probability of a resistant organism. In this way, LOS is a marker for ECT use, rather than its consequence. ECT was also linked with an increase in the risk of developing HO-CDI, as well as of clinical deterioration, and treatment failure relative to other empiric treatments, even after adjusting for many confounders known at cIAI onset. Together, these findings, along with the stably low prevalence of CR, suggest that opportunities exist for carbapenem-sparing strategies in cIAI. Shifting away from ECT in cIAI, therefore, could potentially reduce selection pressure for carbapenem resistance and limit rates of important, publicly reported complications such as CDI.

Carbapenems have been increasingly relied upon in cIAI for many years. However, the Surgical Infections Society (SIS) in 2017 updated its evidence-based guidelines for the treatment of cIAI [28]. At that time, the SIS indicated that carbapenems were not recommended as routine empiric agents. Carbapenems, though, were noted to serve a role in select “higher-risk” patients, namely those at risk for a resistant pathogen (HCA and HO cIAI) or those who exhibit severe signs of acute decompensation, such as the need for vasopressors and/or mechanical ventilation. Our data suggest that, on one level, practitioners appear to heed this advice. Specifically, we saw that ECT was administered more frequently than non-ECT to HCA- and HO-cIAI patients. We further observed that all markers of acute illness severity were higher in patients in the ECT group than those in the non-ECT group, thus comporting with the recommendations. Nonetheless, the majority of patients with ECT suffered from a CO-cIAI.

We further note that in the group receiving ECT, approximately one-third of the patients also received empiric piperacillin-tazobactam. This likely represents a switch during the transfer of care between teams in the emergency department, the ward, the operating room, and/or the ICU. Moreover, nearly three-quarters received piperacillin-tazobactam in the

| Abbreviations: ECF, extended care facility; ECT, empiric carbapenem treatment; IQR, interquartile range.

Table 2. Continued
Mean (SD)
Median (IQR)
Hospital characteristics
Census region
Northeast
South
West
No. of beds
<100
100–199
200–299
300–399
400–499
500+
Teaching
Urban

6 • OFID • Zilberberg et al
Table 3. Infection and Treatment Characteristics Among Patients With ≥1 Gram-Negative Organism

Culture source	ECT, No.	ECT, %	Non-ECT, No.	Non-ECT, %	P
Abdominal only	383	32.32%	1303	39.87%	
Both	646	54.51%	1576	48.23%	<.001
Blood only	156	13.16%	389	11.90%	

Organisms					
Gram-negative isolates					
Klebsiella pneumoniae	195	16.46%	579	17.72%	.326
Proteus mirabilis	33	2.78%	84	2.57%	.693
Escherichia coli	641	54.09%	1983	60.68%	<.001
Enterobacter cloacae	58	4.89%	169	5.17%	.711
Providencia spp.	2	0.17%	8	0.24%	1.000
Serratia marcescens	5	0.42%	19	0.58%	.521
Morganella morganii	12	1.01%	32	0.98%	.921
Enterobacter aerogenes	14	1.18%	46	1.41%	.563
Proteus spp.	5	0.42%	18	0.55%	.596
Citrobacter freundii	29	2.45%	69	2.11%	1.000
Klebsiella oxytoca	41	3.46%	112	3.43%	.958
Enterobacter other	8	0.68%	21	0.64%	.905
Citrobacter other	13	1.10%	51	1.56%	.251
Serratia other	3	0.25%	4	0.12%	.392
Klebsiella other	5	0.42%	4	0.12%	.062
Pseudomonas aeruginosa	130	10.97%	278	8.51%	.012
Acinetobacter baumannii	6	0.51%	8	0.24%	.168
Stenotrophomonas maltophilia	2	0.17%	8	0.24%	1.000
Other	22	1.86%	103	3.15%	.021
CR	43	3.63%	41	1.25%	<.001
C3R	120	10.13%	168	5.14%	<.001
Gram positive isolates					
Enterococcus spp.	346	29.20%	726	22.22%	<.001
Staphylococcus aureus	65	5.49%	176	5.39%	.897
Bacteroides spp.	39	3.29%	113	3.46%	.787
Candida spp.	41	3.46%	98	3.00%	.434

Infection characteristics					
Monomicrobial	772	66.15%	2169	66.37%	.774
Polymicrobial					
2 organisms	308	25.99%	810	24.79%	
3 or more organisms	105	8.86%	289	8.84%	
Gram-negative only	669	56.46%	2002	61.26%	
Both gram-negative and gram-positive	306	25.82%	794	24.30%	.006
Gram-positive only	210	17.72%	472	14.44%	
Community-onset cIAI	1028	86.75%	2976	91.06%	
Community-acquired	682	57.55%	2118	64.75%	<.001
Health care–associated	346	29.20%	860	26.32%	
Hospital-onset cIAI	157	13.25%	292	8.94%	

Time to cIAI					
Mean (SD)	5.5 (11.8)	3.2 (5.2)		<.001	
Median [IQR]	2 [1–6]	2 [1–3]		<.001	
Antibiotics within 90 d before admission	199	16.79%	414	12.67%	<.001
Antibiotics during index hospitalization before cIAI onset	672	56.71%	1738	53.18%	.037
CR organism within 90 d before admission	3	0.25%	4	0.12%	.392
C3R organism within 90 d before admission	11	0.93%	12	0.37%	.032
Illness severity measures at cIAI onset (by day 2 from index infection onset)					
ICU admission	635	53.59%	1167	35.71%	<.001
Mechanical ventilation	517	43.63%	913	27.94%	<.001
Vasopressors	510	43.04%	1076	32.93%	<.001
non-ECT group, despite the fact that the SIS guidelines also recommend reserving this drug for high-risk patients.

In part, the use of either of these broad agents reflects limitations in rapid diagnostic technologies that might help to alleviate uncertainty about initial empiric therapy. Although bedside rapid molecular testing is on the horizon, until it is widely available, appreciating local antibiograms and the interaction of the hospital's microbiology with the specific syndrome in question will remain critical for limiting the use of broad-spectrum coverage. Furthermore, predictive models, if validated, may prove a useful adjunct to stratifying the risk for resistance [29, 30].

The hospital mortality rate in our cohort did not differ from that reported by other authors, supporting the generalizability and face validity of our results. For example, Solomkin and coworkers examined the outcomes of cIAI treatment with tigecycline in a group of patients conducted using the Premier database between 2009 and 2012 [31]. In propensity score–matched groups, hospital mortality was between 10.2% and 11.1%, or similar to what we observed in the ECT group. One major difference between Solomkin’s study and ours is that we required patients to have a positive abdominal or blood culture, thus possibly selecting for sicker patients. In view of this, it is encouraging that we did not detect higher death rates in our cohort.

Our study builds on prior work and adds to the body of knowledge on the outcomes of cIAI in other ways. Although adjusting for factors present at the onset of cIAI eliminated differences in mortality and 30-day readmission, ECT was associated with greater total hospital LOS but a reduction in the postinfection LOS. At the same time, we estimated added postinfection costs of ~$3800. These observations with regard to the potential implications of ECT for resource use are novel and suggest that clinicians rightly target ECT to patients who...
have spent a longer time in the hospital and are more acutely ill, thus raising their risk for a resistant infection. We also examined novel yet important outcomes such as the risk of incident *Clostridioides difficile* and other complications that impact hospital course.

Though rare in both groups, CDI was strongly associated with ECT, occurring at more than double the rate seen with other regimens. This nexus between ECT and CDI is worrisome and may reflect the important impact of carbapenems on gastrointestinal flora. This finding contrasts with that of Metzger et al., who in a single-center cohort failed to find a connection in cIAI between CDI and any specific antimicrobial class [32]. This relationship requires further examination in future research.

Incident AKI, on the other hand, is somewhat more likely in ECT patients. Notably, the AKI prevalence in our cohort was high, with approximately one-third of all patients suffering this outcome. This is considerably higher than what has been described in other studies, though it is not inconsistent with the high degree of acute illness (vasopressor use in one-third of the population) [26]. Given that AKI, and particularly AKI-D, is an important determinant of hospital costs and mortality, future research will be essential to further understand these patterns.

Table 4. Unadjusted Hospitalization Outcomes Among Patients With ≥1 Gram-Negative Organism

Outcome	ECT n = 1185	%	Non-ECT n = 3268	%	P
Hospital mortality	124	10.46%	213	6.52%	<.001
30-d readmission	144	13.57%	316	10.34%	.004
Hospital costs total, $	Mean (SD)	56,406(91,778)	36,289 (50,414)	<.001	
	Median [IQR]	27,638 [14,495–61,440]	19,616 [11,373–39,361]	<.001	
Postinfection hospital costs, $	Mean (SD)	34,365 (61,421)	22,803 (41,127)	<.001	
	Median [IQR]	13,927 [5998–36,348]	9070 [3866–23,904]	<.001	
Postinfection LOS, d	Mean (SD)	13.2 (19.4)	9.4 (13.7)	<.001	
	Median [IQR]	8 [4–15]	6 [3–11]	<.001	

Table 5. Adjusted Association of ECT With Outcomes

Outcome	Measure	Point Estimate	95% Confidence Interval	P
Mortality	Odds ratio	1.11	0.83 to 1.48	.502
30-d readmission	Odds ratio	1.18	0.93 to 1.49	.167
Hospital costs (all)	Excess $	3897	2001 to 5792	<.001
Hospital costs (post–infection onset)	Excess $	3844	1921 to 5767	<.001
Total LOS	Excess days	0.96	0.29 to 1.64	.005
Post–infection onset LOS	Excess days	−0.59	−1.15 to −0.03	.039
Exploratory				
HO–CDI	Odds ratio	2.15	1.02 to 4.50	.044
AKI	Odds ratio	1.09	0.90 to 1.32	.389
Incident AKI	Odds ratio	1.07	0.85 to 1.34	.588
AKI-D	Odds ratio	1.39	0.88 to 2.21	.163
Incident AKI-D	Odds ratio	1.55	0.84 to 2.87	.162
Clinical deterioration	Odds ratio	1.26	1.04 to 1.52	.017
Treatment failure	Subhazard ratio	1.28	1.14 to 1.45	<.001

Abbreviations: AKI, acute kidney injury; AKI-D, AKI with dialysis; CDI, *Clostridioides difficile* infection; ECT, empiric carbapenem treatment; HO, hospital onset; IQR, interquartile range; LOS, length of stay; POA, present on admission.
studies need to examine potential modifiable risk factors for developing AKI in cIAI patients.

Two additional important end points are worth highlighting: the incidence of clinical deterioration and treatment failure. Though their frequency in our study is lower than in that by Solomkin et al., this is most likely due to a different population (theirs did not require a positive culture) and different definitions for these events [31]. Nevertheless, both are common in both groups.

Our study has a number of limitations. As a retrospective cohort study, it is susceptible to various types of bias, most notably selection bias. We attempted to minimize this by defining enrollment criteria prospectively, as well as by enrolling consecutive patients who met the selection criteria. Confounding is another threat to the validity of an observational study, particularly when evaluating treatment effectiveness. Similarly, in the case of any treatment exploration, there is also a possibility specifically of confounding by indication, where broader-spectrum treatment may be a marker of more severe disease. Though we adjusted for illness severity among many other covariates, residual confounding may still be present. For example, we lacked access to information regarding source control, an important determinant of outcomes in cIAI. This implies that the outcome estimates may not be wholly attributable to ECT. However, we minimized residual confounding by using severity of illness variables known at cIAI onset. We also did not stratify by infection source in this analysis. We omitted this, as the recent SIS guideline does not recommend including this as a determinant of risk [28]. Despite these shortcomings, our results may point to potential carbapenem overuse as an empiric regimen.

Misclassification is a possibility as well, particularly given that we relied on administrative coding to identify the cohort and some of the outcomes. We tried to minimize it by (a) using previously published algorithms and (b) erring on the side of specificity at the expense of sensitivity [18, 22–24, 26, 33]. Furthermore, when present, such misclassification would affect both groups equally, thus reducing any actual differences between the groups. Because we used a large multicenter database for our analyses, lack of generalizability is not a major concern. However, given that our cohort includes only culture-positive cIAI patients, the results may not generalize broadly to those cIAI patients who either were not sampled for a pathogen or did not grow one out.

In summary, we show that the prevalence rates of C3R, a surrogate for ESBL, and CR in culture-positive patients with cIAI are still relatively low in the United States. Nevertheless, ECT is used in one-quarter of all cIAI patients, with some associated adverse outcomes, including an increase in the risk of CDI, clinical deterioration, treatment failure, and excess costs. Although it remains difficult to attribute some of these end points specifically to carbapenem use rather than to other underlying factors not captured in the data, these are important associations that future studies should attempt to disentangle. In a broad sense, our findings point to potential opportunities for antimicrobial stewardship programs as a compliment to the care of cIAI patients, so as to address the appropriate use of broad-spectrum therapies.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

Financial support. This study was funded by a grant from Tetraphase Pharmaceuticals, Inc.

Potential conflicts of interest. K.D., K.L., and M.O. are employees of Tetraphase. All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Role of the sponsor. Although K.D., K.L., and M.O. are employees of the sponsor and participated in the study as co-investigators, the larger sponsor had no role in study design, data analysis or interpretation, or publication decisions.

Author contributions. M.D.Z., K.D., K.L., M.O., and A.F.S. contributed substantially to the study design, data interpretation, and writing of the manuscript. B.H.N. had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. He contributed substantially to the study design, data analysis, and writing of the manuscript. All coauthors have seen and agree with the contents of the manuscript. Guarantor: M.D.Z. takes responsibility for the content of the manuscript, including the data and analysis.

Prior presentation. The data have been presented in part at the Surgical Infections Society 2019 meeting.

References

1. Goodlet KJ, Nicolau DP, Nairor MD. Ceftolozane/tazobactam and ceftazidime/avibactam for the treatment of complicated intra-abdominal infections. Ther Clin Risk Manag 2016; 12:1811–26.

2. Imru T, Haridas M, Clardy JA, Malangoni MA. Mortality for intra-abdominal infection is associated with intrinsic risk factors rather than the source of infection. Surgery 2009; 146:654–61; discussion 661–2.

3. Bare M, Castells X, Garcia A, et al. Importance of appropriateness of empiric antibiotic therapy on clinical outcomes in intra-abdominal infections. Int J Technol Assess Health Care 2006; 22:42–8.

4. National Nosocomial Infections Surveillance (NNIS) system report. Am J Infect Control 2004; 32:470–485.

5. Obrist M, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrobial Agents Chemother 2004; 48:4606–10.

6. Micek ST, Kollef KE, Reichley RM, et al. Health care-associated pneumonia and community-acquired pneumonia: a single-center experience. Antimicrobial Agents Chemother 2007; 51:3568–73.

7. Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122:262–8.

8. Alvarez-Lerma F. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med 1996; 22:387–94.

9. Zilberberg MD, Shorr AF, Micek ST, et al. Antimicrobial therapy escalation and hospital mortality among patients with health-care-associated pneumonia: a single-center experience. Chest 2008; 134:963–8.

10. Dellinger RP, Levy MM, Carlet JM, et al; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and
18. Edelsberg J, Berger A, Schell S, et al. Economic consequences of failure of initial antibiotic therapy in gram-negative sepsis: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115:462–74.

19. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, et al. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 2003; 31:2742–51.

20. Harbarth S, Garbino J, Pugin J, et al. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 2003; 115:529–35.

21. Ferrer R, Artigas A, Suarez D, et al; Edusepsis Study Group. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 2009; 180:861–6.

22. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in multidrug-resistant Clostridium difficile-associated disease. Emerg Infect Dis 2016; 22:1959–66.

23. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med 2016; 11:21–6.

24. Rothberg MB, Pekow PS, Priya A, et al. Using highly detailed administrative data to predict pneumonia mortality. PLoS One 2014; 9:e87382.

25. Rothberg MB, Haessler S, Lagu T, et al. Outcomes of patients with healthcare-associated pneumonia: worse disease or sicker patients? Infect Control Hosp Epidemiol 2014; 35(Suppl 3):S17–5.

26. Zilberberg MD, Pekow PS, et al. Association of guideline-based antimicrobial therapy and outcomes in healthcare-associated pneumonia. J Antimicrob Chemother 2015; 70:1573–9.

27. US Department of Health and Human Services Office for Human Research Protections. Human subject regulations decision charts. Available at https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts/index.html. Accessed 19 July 2019.

28. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010; 50:133–64.

29. Mazuski JE, Tessler IM, May AK, et al. The Surgical Infection Society revised guidelines on the management of intra-abdominal infection. Surg Infect (Larchmt) 2017; 18:1–76.

30. Lee CH, Chu FY, Hsieh CC, et al. A simple scoring algorithm predicting extended-spectrum β-lactamase-producing enterobacteriaceae bacteremia: matters of frequent emergency department users. Medicine (Baltimore) 2017; 96:e6648.

31. Augustine MR, Testerman TL, Justo JA, et al. Clinical risk score for prediction of extended-spectrum β-lactamase-producing enterobacteriaceae in bloodstream isolates. Infect Control Hosp Epidemiol 2017; 38:266–72.

32. Solomkin J, Mullins CD, Quintana A, et al. Evaluation of tigecycline efficacy and post-discharge outcomes in a clinical practice population with complicated intra-abdominal infection: a propensity score-matched analysis. Surg Infect (Larchmt) 2017; 18:405–11.

33. Zilberberg MD, Kollef MH, Shorr AF. Secular trends in Clostridium difficile-associated diarrhea following treatment of polymicrobial surgical infections. Ann Surg 2010; 251:722–7.

34. Dubberke ER, Reske KA, McDonald LC, Fraser VJ. ICD-9 codes and surveillance for Clostridium difficile-associated disease. Emerg Infect Dis 2006; 12:1576–9.

Carbapenem treatment in cIAI • OFID • 11