An Approach for Realistically Simulating the Performance of Scientific Applications on High Performance Computing Systems

Ali Mohammed1, Ahmed Eleliemy1, Florina M. Ciorba1, Franziska Kasielke2 and Ioana Banicescu3

1Department of Mathematics and Computer Science, University of Basel, Switzerland, \\
2Institute of Software Methods for Product Virtualization, German Aerospace Center, Germany \\
3Department of Computer Science and Engineering, Mississippi State University, USA

October 16, 2019
Abstract

Scientific applications often contain large, computationally-intensive, and irregular parallel loops or tasks that exhibit stochastic characteristics. Applications may suffer from load imbalance during their execution on high-performance computing (HPC) systems due to such characteristics. Dynamic loop self-scheduling (DLS) techniques are instrumental in improving the performance of scientific applications on HPC systems via load balancing. Selecting a DLS technique that results in the best performance for different problems and system sizes requires a large number of exploratory experiments. A theoretical model that can be used to predict the scheduling technique that yields the best performance for a given problem and system has not yet been identified. Therefore, simulation is the most appropriate approach for conducting such exploratory experiments with reasonable costs. This work devises an approach to realistically simulate computationally-intensive scientific applications that employ DLS and execute on HPC systems. Several approaches to represent the application tasks (or loop iterations) are compared to establish their influence on the simulative application performance. A novel simulation strategy is introduced, which transforms a native application code into a simulative code. The native and simulative performance of two computationally-intensive scientific applications are compared to evaluate the realism of the proposed simulation approach. The comparison of the performance characteristics extracted from the native and simulative performance shows that the proposed simulation approach fully captured most of the performance characteristics of interest. This work shows and establishes the importance of simulations that realistically predict the performance of DLS techniques for different applications and system configurations.

keywords. High performance computing, Scientific applications, Self-scheduling, Dynamic load balancing, Modeling and Simulation, Modeling and simulation of HPC systems, HPC Benchmarking

1 Introduction

Scientific applications are complex, large, and contain irregular parallel loops (or tasks) that often exhibit stochastic behavior. The use of efficient loop
scheduling techniques, from fully static to fully dynamic, in computationally-intensive applications is crucial for improving their performance on high performance computing (HPC) systems often degraded by load imbalance. Dynamic loop self-scheduling (DLS) is an effective scheduling approach employed to improve computationally-intensive scientific applications performance via dynamic load balancing. The goal of using DLS is to optimize the performance of scientific applications in the presence of load imbalance caused by problem, algorithmic, and systemic characteristics. HPC systems become larger on the road to Exascale computing. Therefore, scheduling and load balancing become crucial as increasing the number of PEs leads to increase in load imbalance and, consequently, to loss in performance.

Scheduling and load balancing, from operating system level to HPC batch scheduling level, in addition to minimizing the management overhead, are among the most important challenges on the road to Exascale systems [1]. The static and dynamic loop self-scheduling (DLS) techniques play an essential role in improving the performance of scientific applications. These techniques balance the assignment and the execution of independent tasks or loop iterations across the available processing elements (PEs). Identifying the best scheduling strategy among the available DLS techniques for a given application requires intensive assessment and a large number of exploratory native experiments. This significant amount of experiments may not always be feasible or practical, due to their associated time and costs. Simulation mitigates such costs and, therefore, it has been shown to be more appropriate for studying and improving the performance of scientific applications [2]. An important source of uncertainty in the performance results obtained via simulation is the degree of trustworthiness in the simulation, understood as the close quantitative and qualitative agreement with the native measured performance. Attaining a high degree of trustworthiness eliminates such uncertainty for present and future more complex experiments.

Simulation allows the study of application performance in controlled and reproducible environments [2]. Realistic predictions based on trustworthy simulations can be used to design targeted native experiments with the ultimate goal of achieving optimized application performance. Realistically simulating application performance is, however, nontrivial. Several studies addressed the topic of application performance simulation for specific purposes, such as evaluating the performance of scheduling techniques under variable task execution times with a specific runtime system [3], or focusing on improving communications in large and distributed applications [4].
The present work gathers the authors’ in-depth expertise in simulating scientific applications’ performance to enable research studies on the effects and benefits of employing dynamic load balancing in computationally-intensive applications via self-scheduling. Several details of representing the application and the computing system characteristics in the simulation are presented and discussed, such as capturing the variability of native execution performance over multiple repetitions as well as calibrating and fine-tuning the simulated system representation for the execution of a specific application. The coupling between the application and the computing system representation has been shown to yield a very close agreement between the native and the simulative experimental results, and to achieve realistic simulative performance predictions [5].

The proposed realistic simulation approach is built upon three perspectives of comparison of the results of native and simulative experiments, which are also illustrated in Figure 1:

(1) native-to-simulative (or the past),
(2) native-to-simulative (or the present), and
(3) simulative-to-native.

Through the first perspective, the performance reported in the original publications, which introduced the most well-known, successful, and currently used DLS techniques from the past, is presently reproduced via simulation to verify the similarity in performance results between the current DLS techniques implementations and their original implementation [6].

In the second perspective, the performance of the present native scheduling experiments on HPC systems is compared against that of the simulative experiments. This comparison typically enables one to verify and justify the level of the agreement between the results of the native and the simulative experiments, and to answer the question of “How realistic are the simulations of applications performance on HPC systems?” [5].

In the third comparison perspective, different representations of the same application or of the computing system characteristics are used in different simulations. The simulative performance of the application obtained when employing different DLS technique is compared among different simulative experiments. Given that different simulations are expected to represent the same application and platform characteristics, this comparison allows a better assessment of the influence of application and/or system representation
Figure 1: Illustration of the comparison approach, illustrated over the pillars of science employed in this work for the verification of the DLS techniques: (1) Native experiments from the past original work from the literature are reproduced in present simulations to verify DLS techniques implementation. (2) Simulative and native results from experiments in the present are compared to verify the trustworthy simulation of application performance. (3) Different simulation approaches are compared to achieve close agreement in terms of simulation of application performance to that of the native performance.

The present work makes the following contributions: (1) An approach for simulating application performance with a high degree of trustworthiness while considering different sources of variability in application and computing system representations. (2) A novel simulation strategy of computationally-intensive applications by combining two interfaces of
SimGrid \cite{7} simulation toolkit (SMPI and MSG) to achieve fast and accurate performance simulation with minimal code changes to the native application. (3) A realistic simulation of the performance of two scientific applications with several dynamic load balancing techniques. The applications performance is analyzed based on native and simulative performance results. The performance comparison shows that simulations realistically captured key applications performance features. (4) An experimental verification and validation of the use of the different SimGrid interfaces for representing the application’s tasks characteristics to develop and test DLS techniques in the simulation.

The present work builds upon and extends own prior work \cite{5} \cite{6}, which focused on the experimental verification of DLS implementation via reproduction \cite{6} and the experimental verification of application’s performance simulation on HPC systems \cite{3}, respectively. In the present work, a new method to represent the computational effort in tasks is explored and tested (c.f. Section \ref{sec:4.1}). Methods to evaluate and represent variability in the system are also considered in the present work (c.f. Section \ref{sec:4.3}). An additional scientific application is also included herein (c.f. Section \ref{sec:5}). The performance of the two scientific applications is examined with four additional adaptive DLS techniques and four additional nonadaptive DLS techniques by employing an MPI-based load balancing library both, in native and simulative experiments (c.f. Section \ref{sec:4.2}). A novel strategy for simulating applications is also experimented in this work (c.f. Section \ref{sec:5.2}). A full version of this manuscript is under publication in the Future Generations Computer Systems Journal, “On The Road to Exascale II Special Issue: Advances in High Performance Computing and Simulations”.

The remainder of this manuscript is structured as follows. Section \ref{sec:2} presents the relevant background on dynamic load balancing via self-scheduling and the used simulation toolkit. Section \ref{sec:3} reviews recent related work and the various simulation approaches adopted therein. The proposed simulation approach is introduced and discussed in Section \ref{sec:4}. The design of the evaluation experiments, the practical steps of representing the scientific applications in simulation, the results of the native and simulative experimental results with various DLS techniques, as well as their comparisons are discussed in Section \ref{sec:5}. Section \ref{sec:6} presents conclusions and an outline of the work envisioned for the future.
2 Background

This section presents and organizes the relevant background of the present work in three dimensions. The first dimension covers the relevant information concerning dynamic load balancing via dynamic loop self-scheduling techniques, specifically, the selected DLS techniques of the present work. The second dimension discusses specific research efforts from the literature where DLS techniques enhanced the performance of various scientific applications. The last dimension introduces the simulation toolkit used in the present work.

Dynamic load balancing via dynamic loop self-scheduling. There are two main categories of loop scheduling techniques: static and dynamic. The essential difference between static and dynamic loop scheduling is the time when the scheduling decisions are taken. Static scheduling techniques, such as block, cyclic, and block-cyclic [8], divide and assign the loop iterations (or tasks) across the processing elements (PEs) before the application executes. The task division and assignment do not change during execution. In the present work, block scheduling is considered and is denoted as STATIC.

Dynamic loop self-scheduling (DLS) techniques divide and self-schedule the tasks during the execution of the application. As a result, DLS techniques balance the execution of the loop iterations at the cost of increased overhead compared to the static techniques. Self-scheduling differs from work sharing, another related scheduling approach, wherein tasks are assigned onto PEs in predetermined sizes and order [9]. Self-scheduling is also different from work stealing [10] in that PEs request work from a central work queue as opposed to distributed work queues. The former has the advantage of global scheduling information while the latter is more scalable at the cost of identifying overloaded PEs from which to steal work. DLS techniques consider independent tasks or loop iterations of applications [11, 12, 13, 14, 15, 16]. For dependent tasks, several loop transformations, such as loop peeling, loop fission, loop fusion, and loop unrolling can be used to eliminate loop dependencies [17]. DLS techniques can be categorized as nonadaptive and adaptive [18]. During the application execution, the nonadaptive techniques calculate the number of iterations comprising a chunk based on certain parameters that can be obtained prior to the application execution. The nonadaptive DLS techniques considered in this work include: modified fixed-size chunk [19] (mFSC), guided self-scheduling [13] (GSS), and factoring [14] (FAC).
mFSC [19] groups iterations into chunks at each scheduling round to avoid the large overhead of single loop iterations being assigned at a time. In mFSC, the chunk size is fixed and plays a critical role in determining the performance of this technique. mFSC assigns a chunk size that results in a number of chunks that is similar to that of FAC (explained below).

GSS [13] assigns chunks of decreasing sizes to reduce scheduling overhead and improve load balancing. Upon a work request, the remaining loop iterations are divided by the total number of PEs.

FAC [14] improves GSS by scheduling the loop iterations in batches of equal-sized chunks. The initial chunk size of GSS is usually larger than the size of the initial chunk using FAC. If more time-consuming loop iterations are at the beginning of the loop, FAC balances the execution better than GSS. The chunk calculation in FAC is based on probabilistic analyses to balance the load among the processes, depending on the prior knowledge of the mean μ and the standard deviation σ of the loop iterations execution times. Since loop characteristics are not known a priori and typical loop characteristics that can cover many probability distributions, a practical implementation of FAC was suggested [14] that assigns half of the remaining work in a batch. This work considers this practical implementation. Compared to STATIC and mFSC, GSS and FAC provide better trade-offs between load balancing and scheduling overhead.

The adaptive DLS techniques exploit, during execution, the latest information on the state of both the application and the system to predict the next sizes of the chunks of the iterations to be executed. In highly irregular environments, the adaptive DLS techniques balance the execution of the loop iterations significantly better than the nonadaptive techniques. However, the adaptive techniques may result in significant scheduling overhead compared to the nonadaptive techniques and are, therefore, recommended in cases characterized by highly imbalanced execution. The adaptive DLS techniques include adaptive weighted factoring [15] (AWF) and its variants [16] AWF-B, AWF-C, AWF-D, and AWF-E.

AWF [15] assigns a weight to each PE that represents its computing speed and adapts the relative PE weights during execution according to their performance. It is designed for time-stepping applications. Therefore, it measures the performance of PEs during previous time-steps and updates the PEs relative weights after each time-step to balance the load according to the computing system’s present state.

AWF-B [16] relieves the time-stepping requirement to learn the PE
weights. It learns the PE weights from their performance in previous batches instead of time-steps.

AWF-C [16] is similar to AWF-B, however, the PE weights are updated after the execution of each chunk, instead of batch.

AWF-D [16] is similar to AWF-B, where the scheduling overhead (time taken to assign a chunk of loop iterations) is taken into account in the weight calculation.

AWF-E [16] is similar to AWF-C, and takes into account also the scheduling overhead, similar to AWF-D.

DLS in scientific applications. The DLS techniques have been used in several studies to improve the performance of computationally-intensive scientific applications. They are mostly used at the process-level to balance the load between processes running on different PEs. For example, AWF [15] and FAC [14] were used to balance a load of a heat conduction application on an unstructured grid [20]. Nonadaptive and adaptive DLS techniques such as self-scheduling (SS) [11], GSS [13], FAC [14], AWF [15], and its variants, were used over the years to enhance applications, such as simulations of wave packet dynamics, automatic quadrature routines [16], N-Body simulations [21], solar map generation [22], an image denoising model, the simulation of a vector functional coefficient autoregressive (VFCAR) model for multivariate nonlinear time series [23], and a parallel spin-image algorithm from computer vision (PSIA) [24].

With the increase in processor core counts per compute node, advanced scheduling techniques, such as the class of self-scheduling mentioned earlier, are also needed at the thread-level. To this end, the GNU OpenMP runtime library was extended [25] (LaPeSD libGOMP) to support four additional DLS techniques, namely: fixed-size chunk (FSC), trapezoid self-scheduling TSS, FAC, and RANDOM (in terms of chunk sizes) besides the originally OpenMP scheduling techniques: STATIC, Dynamic, and Guided (equivalent to GSS [13]). The extended GNU runtime library that implements DLS was used to schedule loop iterations in computational benchmarks, such as the NAS parallel [27] and RODINIA [28] benchmark suites.

The selected simulation toolkit. SimGrid [7] is a scientific simulation framework for the study of the behavior of large-scale distributed computing systems. It is designed to support the simulation of distributed computing systems with a focus on performance analysis and evaluation.

1To be distinguished from the principle of receiver-initiated load balancing through self-scheduling.
systems, such as, the Grid, the Cloud, and peer-to-peer (P2P) systems. It provides application programming interfaces (APIs) to simulate various distributed computing systems. SimGrid (hereafter, SG) provides four different APIs for different simulation purposes. MetaSimGrid (hereafter, SG-MSG) and SimDag (hereafter, SG-SD) provide APIs for the simulation of computational problems expressed as independent tasks or task graphs, respectively.

The SimGrid-SMPI interface (hereafter, SG-SMPI) provides the functionality for the simulation of programs written using the message passing interface (MPI) and targets developers interested in the simulation and debugging of their parallel MPI codes.

The newly introduced SimGrid-S4U interface (hereafter, SG-S4U) currently supports most of the functionality of the SG-MSG interface with the purpose of also incorporating the functionality of the SG-SD interface over time.

The present work proposes a novel simulation approach of computationally-intensive applications by combining SG-SMPI and SG-MSG to achieve fast and accurate performance simulation with minimal code changes to the native application.

3 Related Work

Scheduling in simulation. The SG-MSG and SG-SD interfaces of SG were used to implement various DLS techniques. For instance, eight DLS techniques were implemented using the SG-MSG interface in the literature [29]: five nonadaptive, SS [11], FSC [12], GSS [13], FAC [14], and weighted factoring (WF) [30], and three adaptive techniques, adaptive weighted factoring (AWF-B, AWF-C) [16], and adaptive factoring (AF) [31].

The weak scalability of these DLS techniques was assessed in the presence of certain load imbalance sources (algorithmic and systemic). The flexibility, understood as the robustness against perturbations in the PE computing speed, of the same DLS techniques implemented using SG-MSG was also studied [32]. Moreover, the resilience, understood as the robustness against PE failure, of these DLS techniques on a heterogeneous computing system was studied using the SG-MSG interface [33].

Another research effort used the SG-MSG interface to reproduce certain experiments of DLS techniques [34]. Therein, a successful reproduction of the past DLS experiments was presented. The results were compared to experi-
ments from the past available in the literature to verify the implementation of the DLS techniques. A similar approach of verifying the implementation of certain DLS techniques via reproduction was proposed using the SG-SD interface [35].

The relation between batch and application level scheduling was studied in simulation [36], using Alea [37] for the batch level scheduling and SG-SD for the application level scheduling. The two simulators were connected and used together to simulate the execution of multiple applications with various scheduling techniques at the batch level and the application level. It was shown that a holistic solution resulted in a better performance than focusing on improving the performance at each level solely.

SG was also used for the study of file management in large distributed systems [38] to improve applications performance. The effect of variability in task execution times on the makespan of applications scheduled using StarPU [39] on heterogeneous CPU/GPU systems was also studied in simulation [3]. The results showed that the dynamic scheduling of StarPU improves the performance even with irregular tasks execution times.

Realistic simulation approaches. A combination of simulation and trace replay was used to guide the choice of the scheduling technique and the granularity of problem decomposition for a geophysics application to tune its performance [40]. SG-SMPI was used to generate a time independent trace (TiT), a special type of execution trace, of the application with the finest problem decomposition. This trace was then modified to represent different granularities of problem decomposition. Traces that represent different decompositions were replayed with different scheduling techniques to identify the decomposition granularity and scheduling technique combination that results in improved application performance. The scheduling techniques were extracted from the Charm++ runtime to be used in the simulation. However, the process of trace modification to represent different decomposition is complex, limits the number of explored decompositions, and may result in inaccurate simulation results.

The compiler-assisted native application source code transformation to a code skeleton suitable for structural simulation toolkit [41] (SST) was introduced [4]. Special pragmas need to be inserted in the source code to simulate computations as certain delays, eliminate large unnecessary memory allocations in simulation, and handle global variable correctly. This approach was focused on the simulation for the study of communications and network in large computing systems. Therefore, the variability of task execution times
was not considered explicitly.

StarPU [39] was ported to SG-MSG for the study of scheduling of tasks graphs on heterogeneous CPU/GPU systems. Tasks execution times were estimated based on the average execution time benchmarked by StarPU. Both average task execution time and generating pseudo-random numbers with the same average as task execution time were explored. However, depending on time measurements only may not be adequate for fine-grained tasks. In addition, porting the StarPU runtime to a simulator interface is challenging and requires significant effort.

The Monte-Carlo method [42] was used to improve the simulation of workloads in cloud computing [43]. To capture the variation in applications execution time in simulation, the variability in cloud computing systems was quantified and added to task execution times as a probability. The simulation was repeated 500 times, each with different seeds to obtain a similar effect of the dynamic native execution on the clouds. However, the variation in the application execution time has two components: (1) the variability in a task execution time due to application characteristics or system characteristics such as nonuniform memory access; (2) the variability that stems from the computing system resources being perturbed by operating system interference, other applications that share resources, or transient malfunctions. Considering both components of application performance variability is important for obtaining realistic simulation results.

In this work, a novel simulation approach is presented that considers the different factors that affect application performance. Guidelines are proposed in Section 4 on how to estimate the tasks execution times and the system characteristics. Fine tuning the system representation to closely reflect the system performance for the execution of a certain application is essential. Reducing the differences between native and simulative experiments by using the same scheduling library in both native and simulative experiments ensures the same scheduling behavior in both types of experiments. A novel simulation method that combines the use of two SimGrid interfaces, namely SG-SMPI and SG-MSG, is introduced in Section 5.2, which enables the simulation of application performance with minimal code changes.
4 Approach For Realistic Simulations

A realistic performance simulation means that conclusions drawn from the simulative performance results are close to those drawn from the native performance results. The close agreement between both conclusions does not necessarily mean a close agreement between native and simulative application execution times. For the study of dynamic load balancing and task self-scheduling, the performance of different scheduling techniques relative to others is expected to be preserved between native and simulative experiments. Preserving the expected behavior suffices to draw similar conclusions on the performance of DLS techniques between native and simulative experiments.

Figure 2: Illustration of the proposed generic approach for realistic simulations. Scientific application and computing system characteristics are abstracted for use in simulation. A single scheduling library is used which is called both by the native and simulative executions.

Preserving identical performance characteristics between native and sim-
ulation experiments is challenging due to the dynamic interactions between the three main components that affect the performance:

1. Application characteristics,
2. Dynamic load balancing, and
3. Computing system characteristics.

Figure 2 shows these three main performance components and summarizes the proposed simulation approach, where each component is independently represented and verified to achieve realistic simulations. The proposed approach is generic and can be adapted for the systematic and realistic simulation of other classes of applications, e.g., data-intensive or communication-intensive applications, load balanced using other classes of algorithms. The details of representing each component are provided next.

4.1 Representing applications for realistic simulations

Two important aspects need to be clear to enable the representation of an application in simulation via abstraction: (1) The main application flow, i.e., initializations, branches, and communications between its parallel processes/threads; (2) The computational effort associated with each scheduled task.

For simple applications with one or two large loops or parallel blocks of tasks that dominate its performance, inspecting the application code is sufficient to understand the program flow. If this is insufficient, tracing the application execution can reveal the main computation and communication blocks in the application. In addition, the SG-SMPI simulation produces a special type of text-based execution trace called time independent trace (TiT) [44]. The TiT contains a trace of the application execution as a series of computation and communication events, with their corresponding amounts specified in terms of floating-pointing operations (FLOP) and bytes, respectively. Therefore, the TiT can be used to understand the application flow and to represent the application in simulations.

To obtain the amount of work per task, time measurement of task execution time or the FLOP count can be used. The measurement of short task execution times can be a source of measurement inaccuracies as such measurements are affected by the measurement overhead which is known as
the probing effect. In addition, the execution time per task is not guaranteed to be constant between different executions of the same application. Instead of time measurements, the FLOP count per task can be measured using hardware counters, such as those exposed via the use of PAPI [45]. The FLOP count obtained with PAPI is used to represent the amount of work in each task in the simulation. The FLOP count per task is found to be a more accurate measurement to represent computational effort per task than time measurements as well as resulting in constant values across different application executions [5]. However, feeding the simulator the exact FLOP count per task might result in misrepresenting the dynamic behavior in native executions of tasks where their execution time varies among the different execution instances. To address this, a probability distribution is fitted to the measured tasks FLOP counts. The simulator then draws samples from this distribution to represent the task FLOP counts during simulation as shown in the upper part of Figure 2.

4.2 Implementing scheduling techniques for native and simulative experiments

A number of dynamic loop self-scheduling (DLS) techniques have been proposed between the late 1980s and early 2000s, and efficiently used in scientific applications [18]. Dynamic nonadaptive techniques have previously been verified [6] by reproduction of the original experiments that introduced them [14] using the experimental verification approach illustrated by step 1 in Figure 1. In this work, the range of studied DLS techniques is extended with four adaptive DLS techniques in addition to the nonadaptive ones. To ensure that the implementation of the adaptive techniques adheres to their specification, the DLB
\textit{tool} [23], a dynamic load balancing library developed by the authors of the adaptive techniques, is used in this work. To minimize the differences between native and simulative executions, the DLB
\textit{tool} load balancing library, is used to schedule the application tasks in native and simulative executions. Connecting the DLB
\textit{tool} to the simulation framework required minimal effort as detailed below in Section 5.2.
4.3 Representing native computing systems in simulation

Representing HPC systems in simulation involves representing different system components that contribute to the application performance in simulation. As previously investigated [5], the application and computing system representation cannot be seen as completely decoupled activities, i.e., representing a computing system must take into account the application characteristics as current simulators cannot simulate precisely all the complex characteristics of HPC systems to create a general, application-independent system representation. For the simulation of the performance of computationally-intensive applications with different DLS, two main components of systems need to be represented: (1) The PEs, their number, their computational speed; (2) The interconnection network between the PEs, the network bandwidth, the network latency, and the topology.

The PEs representation in simulation, needs to reflect the native configuration in terms of number of compute nodes and number of PEs per node. Communication links connect different PEs (cores and nodes) needs to reflect the native network topology, bandwidth and latency. Nominal values for the PE computing speeds, the network bandwidth, and the network latency are added in the simulated HPC representation to obtain an initial representation. The second step is to fine tune this initial representation to reflect the “real” HPC performance in executing a certain application. To this end, core speeds are estimated to obtain more accurate simulation results due to the fact that applications do not execute at the theoretical peak performance. The core speed is calculated by measuring the loop execution time in a sequential run to avoid any parallelization or communication overhead. The sum of the total number of FLOP in all iterations is divided by the measured loop execution time to estimate the core processing speed. This core speed is used in the simulated HPC representation to reflect the native core speed in processing the application tasks [5]. The above procedure is applicable for homogeneous and heterogeneous systems, where core speed estimation needs to be performed for each core type [46]. Similarly, a simple network benchmarking, such as a ping-pong test was used to estimate the real network links communication bandwidth and latency and insert these values in the simulation. Section 5.2 offers details about the actual steps required for the calibration procedure described above.

Quantifying system variability is essential for achieving realistic simu-
lations of parallel applications. However, it involves significant challenges
due to the variety of the factors that cause the variability, e.g., system
failures, operating system kernel interrupts, memory and network con-
tentions [47]. The present work models the effect of the system variabil-
ity on application performance by exploiting a backlog of application exe-
cution times [43]. Two factors called maximum perturbation level, PL_{max},
and minimum perturbation level, PL_{min}, are used to determine the upper
and the lower bounds of a uniform distribution, U, used to estimate the
perturbation level, PL, induced by the system. These factors are calculated
as in Equations [1] and [2], where E_i denotes the application execution time at
the i^{th} execution instance and \bar{E} is the average application execution time of
n execution instances.

\[
PL_{\text{max}} = \max_i \left(\frac{|E_i - \bar{E}|}{\bar{E}} \right)
\]

\[
PL_{\text{min}} = \min_i \left(\frac{|E_i - \bar{E}|}{\bar{E}} \right)
\]

The estimated PL is calculated as in Equation [3] and is used to disturb
the processor availability during simulation, i.e.:

\[
PL = U[PL_{\text{min}}, PL_{\text{max}}]
\]

whenever a chunk is scheduled on a certain processor, a sample PL from the
uniform distribution U is drawn. The value is then used to determine the
speed of the processor by multiplying the original speed with $(1 - P)$.

4.4 Steps for Realistic Simulations

To achieve realistic performance simulation, three factors that affect applica-
tion performance need to be well represented. In this section, we summarize
the steps of the proposed realistic simulation approach and different methods
to represent each factor.

Step 1 Application characteristics

(a) Program flow

- Study the application source code or
• Trace the execution of the application

(b) Computational effort per task
 • Collect time measurements for tasks of large granularity,
 • Measure the FLOP count per task (large- or fine-grain tasks), or
 • Use a FLOP probability distribution to capture variability in native executions

Step 2 Task scheduling

(a) Implement and verify scheduling techniques in the simulator or
(b) Use the native library to schedule tasks in simulation, similar to the native tasks

Step 3 Computing system characteristics

(a) PEs representation
 • Represent each PE in simulation to have full control on its behavior in simulation
 • Estimate core speed by dividing application execution time by the FLOP count of the application and
 • Cores that represent a single node should be connected to each other by simulated links that represent memory bandwidth and latency

(b) Interconnection network
 • Represent the network topology of the simulated system
 • Use a network model in simulation that captures the characteristics of the native interconnection fabrics (e.g., InfiniBand)
 • Use nominal network link bandwidth and latency values
 • Fine tune this representation by running network benchmarks and adjust bandwidth, latency, and other delays for large and small messages

(c) System variability
 • Model variations in applications execution time as independent and uniformly distributed random variables
• Draw samples from the uniform distribution to change the availability of system components during simulation

5 Experimental Evaluation and Results

To evaluate the usefulness and effectiveness of the proposed approach, an important number of native and simulative experiments is performed. These experiments have been designed as a factorial set of experiments which is described below and summarized in Table 1. In addition, details of creating the performance simulation using SG and its interfaces and how the approach proposed in Section 4 is applied to realistically simulate the performance of two scientific computationally-intensive applications are also provided. Subsequently, the native and simulative performance results are compared using the second and the third step of the comparison approach illustrated in Figure 1 and the results are discussed.

5.1 Design of native and simulative experiments

Applications. The first application considered in this work is the parallel spin-image algorithm (PSIA), a computationally-intensive application from computer vision [48]. The core computation of the sequential version of the algorithm (SIA) is the generation of the 2D spin-images. Figure 3 shows the process of generation of a spin-image for a 3D object. The PSIA exploits the fact that spin-images generations are independent of each other. The size of a single spin-image is small (200 bytes) and fits in the lower level (L1) cache. Therefore, the memory subsystem has no impact on the application performance, as data are always available for computation at the highest speed. The PSIA pseudocode is available online [49]. The amount of computations required to generate the spin-images is data-dependent and is not identical over all the spin-images generated from the same object. This introduces an algorithmic source of load imbalance among the parallel processes generating the spin-images. The performance of PSIA has previously been enhanced by using nonadaptive DLS techniques to balance the load between the parallel processes [24]. Using DLS improved the performance of the PSIA by a factor of 1.2 and 2 for homogeneous and heterogeneous computing systems.

The second application of interest is the computation of the Mandelbrot set [51] and the generation of its corresponding image. The application is
Table 1: Details used in the design of factorial experiments

Factors	Values	Properties
Applications		
PSIA	$N = 400000$ tasks	Low variability among tasks
Mandelbrot	$N = 262144$ tasks	High variability among tasks
Self-scheduling techniques		
STATIC	Static	
mFSC, GSS, FAC	Dynamic nonadaptive	
AWF-B, -C, -D, -E	Dynamic adaptive	
Computing system	miniHPC	16 Dual socket Intel E5 – 2640e4 nodes
		10 cores per socket
		64 GB DDRAM per node
		Nonblocking fat-tree topology
		Fabric: Intel OmniPath - 100 Gbps
Experimentation	Native	$P = 16, 32, 64, 128, 256$ PEs
	Simulative	$P = 16, 32, 64, 128, 256$ simulated PEs
		(1) Using $FLOP$ file with SG-SMPI+SG-MSG
		(2) Using $FLOP$ distribution with SG-SMPI+SG-MSG

Figure 3: Illustration of the spin-image calculation for a 3D object (from literature [50]). A flat sheet is rotated around each point of the 3D object to describe the object from this point view.

Parallelized such that the calculation of the value at every single pixel of a 2D image is a loop iteration, that is performed in parallel. The application computes the function $f_c(z) = z^4 + c$ instead of $f_c(z) = z^2 + c$ to increase the number of computations per task. The size of the generated image is 512×512 pixels resulting in 2^{18} parallel loop iterations. To increase the variability between tasks execution times, the calculation is focused on the center image, i.e., the seahorse valley, where the computation is intensive. Figure 4 shows the calculated image. Mandelbrot is often used to evaluate the performance of dynamic scheduling techniques due to the high variation between its loop iterations execution times.
Figure 4: Mandelbrot calculation at the seahorse valley for z^4. White points represent high computational load due to several iterations to reach convergence and black points represent negligible computations whereby saturation is reached in a few iterations.

Dynamic load balancing. The *DLB_tool* is an MPI-based dynamic load balancing library [23]. The *DLB_tool* has been used to balance the load of scientific applications, such as image denoising and the statistical analysis of vector nonlinear time [23]. The *DLB_tool* is used for the self-scheduling of the parallel tasks of PSIA and Mandelbrot both in native and simulative executions. The *DLB_tool* employs a master-worker execution model, where the master also acts as a worker when it is not serving worker requests. Workers request work from the master whenever they become idle, i.e., the self-scheduling work distribution. Upon receiving a work request, the master calculates a chunk size based on the used DLS technique. Then, the master sends the chunk size and the start index of the chunk to the requesting worker. The above process of work requests from workers and master assigns work to requesting workers repeats until the work is finished. The two applications of interest are scheduled using the *DLB_tool* with eight different loop scheduling techniques ranging from static to dynamic, nonadaptive and adaptive as shown in Table 1.

Computing system. The miniHPC [2] is a high performance computing cluster at the Department of Mathematics and Computer Science at the Uni-

2https://hpc.dmi.unibas.ch/HPC/miniHPC.html
versity of Basel, Switzerland, used for for research and teaching. For the experiments in this work, 16 dual-socket nodes are used, where each socket holds an Intel Broadwell CPU with 10 cores. The hardware characteristics of the miniHPC nodes are listed in Table 1. All nodes are connected via Intel Omni-Path interconnection fabric in a nonblocking two-level fat-tree topology. The network bandwidth is 100 Gbit/s and the communication latency is 100 ns.

5.2 Realistic simulations of scientific applications

Extracting the computational effort in an application. To obtain the computational effort per task of the applications of interest, the FLOP count approach described in Section 4 is used. The native application code is instrumented and the number of FLOP per task is counted using the PAPI performance API [45]. The application was executed sequentially on a single dedicated node in the FLOP counting experiment to avoid interference between cores on the hardware counters and ensure the correct count of FLOPs. The experiment was repeated 20 times for each application to ensure that the FLOP count is constant in all repetitions. The FLOP count can be also inferred from the application source code [6] in case of simple dense linear algebra kernels. The resulting FLOP count per task is written to a file that is read by the simulator to account for task execution times. Whenever inferring or counting FLOP per task is not possible, and tasks are of large granularity, the task execution time can be used instead of FLOP count, as the measurement overhead will not dominate the task execution time as it is the case for short tasks.

To simulate the dynamic behavior of the task execution times, a probability distribution is fitted to the measured FLOP count. To obtain this probability distribution, the linear piecewise approximation of the empirical cumulative density function (eCDF) is used [3]. The eCDF values are split over the y-axis into 100 linear segments (pieces). To draw a sample from this distribution, a segment is randomly selected, and a value is randomly selected along this linear segment. Figure 5 shows the results of approximating the measured FLOP counts of tasks both from PSIA and Mandelbrot using linear piecewise approximation of the eCDF using MATLAB [4]. To ensure that the simulator draws samples from the approximated distribution with a fast,
long period, and low serial correlation random engine, the random number
generator of the GNU Scientific Library\footnote{https://www.gnu.org/software/gsl/doc/html/index.html} (GSL) is used in the simulator to
generate good uniformly distributed random numbers to select among the
100 linear segments and a value from the segment with low overhead during
simulation.

![Empirical CDFs of PSIA FLOP](image1)
![Empirical CDFs of Mandelbrot FLOP](image2)

Figure 5: Empirical cumulative density function of the tasks FLOP counts
of PSIA and Mandelbrot. The distribution of the measure FLOP count is
shown in blue and the distribution of the FLOP counts drawn from the
linear piecewise approximation of the eCDF is shown in orange. The results
show that approximated distribution represents the empirical measure FLOP
counts of both applications closely.

The SMPI+MSG simulation approach.
A novel simulation approach is employed in this work. Two interfaces of the
SimGrid toolkit are leveraged to realistically simulate the application perfor-
mance with minimal effort. Algorithm 1 shows the changes needed in the
native application code to transform it into the simulative application code
using SG-SMPI+SG-MSG using the approach illustrated in Figure 2. Lines
in mint font color in Algorithm 1 show additions to simulate the application,
lines in grey font color show the lines that need to be uncommented to revert
to the native application code, and black lines denote unchanged code.

The SG-SMPI interface is used to execute the native application code. To
speedup the SG-SMPI simulation, the computational tasks in the application
Algorithm 1: Native code transformation into SMPI+MSG simulative code

```
#include <mpi.h>
#include "DLB_tool.h"
#include "msg.h" /* simulative only*/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &P);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/* Initialization */
/* results_data = malloc(N); native only*/
tasks = create_MSG_tasks(N); /* simulative only */
DLS_setup(MPI_COMM_WORLD, DLS_info);
DLS_startLoop (DLS_info, N, DLS_method);
t1 = MPI_Wtime();
while Not DLS_terminated do
  DLS_startChunk(DLS_info, start, size);
  /* Main application loop */
  /* Compute_tasks(start, size, data); native only */
  Execute_MSG_tasks(start, size); /* simulative only */
  DLS_endChunk(DLS_info);
DLS_endLoop(DLS_info);
t2 = MPI_Wtime();
print("Parallel execution time: %lf \n", t2 - t1);
/* Output or save results removed from simulation- native only */
...
MPI_Finalize();
```

are replaced with SG-MSG tasks. The amount of work per SG-MSG task is either read from a file or drawn from a probability distribution according to the experimented simulation type. Memory allocations of results and data in the native code are removed or commented in the simulation as they are not needed. This allows to reduce the memory footprint of the simulation and the simulation of a large number of ranks on a single compute node. No modifications are needed for the DLB_tool in this approach. The scheduling overhead of different techniques is accounted for by the SG-SMPI, whereas the tasks execution time is accounted for in simulation by the SG-MSG. The proposed approach results in a fast and accurate simulation of the
application with minimal modifications to the native application source code. Hundreds to thousands of MPI ranks can be simulated using a single core on a single compute node.

Computing system representation.
To represent the miniHPC in SimGrid, the system characteristics need to be entered in a specially formatted XML file denoted as **platform file**. Each core of a compute node of miniHPC is represent as a host in the **platform file**. Hosts that represent the cores of the same node are connected with links with high bandwidth and low latency to represent communication of cores of the same node through the memory. The bandwidth and the latency of these links are used as 500 \(Mbit/s \) and 15 \(us \), respectively to represent the memory access bandwidth and latency. Every 16 host represent a node of miniHPC. Another set of links are used to connect the hosts to represent network communication in a two-level fat-tree topology. The properties of these links represents the properties of the Intel Omni-Path interconnect used in miniHPC and their bandwidth and latency are set to 100 \(Gbit/s \) and 100 \(ns \), respectively.

To reflect the fact that network communications are nonblocking in the native miniHPC system, the **FATPIPE** is used to tell SimGrid that the communications on these links are nonblocking and is not shared, i.e., each host has all network bandwidth and shortest latency available all the time even in the case of all hosts are communicating at the same time. For the links that represent the memory communication, their sharing property is set to **SHARED** to represent possible delays that can occur if multiple cores are trying to access the memory at the same time.

To estimate the core speed, each application is executed sequentially on a single core to estimate the total execution time and avoid any scheduling or parallelization overhead in this measurement. The core speed is calculated as the total number of FLOP in all tasks of the application divided by the total application sequential execution time. Using the above approach, the core speed is found to be 0.95 \(GFLOP/s \) and 1.85 \(GFLOP/s \) for the execution of PSIA and Mandelbrot, respectively. This requires the creation of two **platform files** to represent the miniHPC in the execution of PSIA and Mandelbrot. This illustrates the strong coupling between application and system representation in simulation as discussed in Section 4.3.

SimGrid uses a flow-level network modeling approach that realistically approximates the behavior of TCP and InfiniBand (IB) networks specifically
tailored for HPC settings. This approach accurately models contention in such networks \cite{52} and accurately captures the network behavior for messages larger than 100\text{KB} on highly contended networks \cite{53}. The SimGrid network model can further be configured to precisely capture characteristics, such as the slow start of MPI messages, cross-traffic, and asynchronous send calls. To fine tune the network representation in the simulation to the native miniHPC system, the SG-based calibration procedure \cite{54} is used to calibrate the network model parameters in the representation of both platforms to better adjust the network bandwidth and latency in both platform files.

Using the approach introduced in earlier work \cite{55}, the representation of the computing system can be verified in a separation of the application representation by using the SG-SMPI interface. The SG-SMPI interface simulates the execution of native MPI codes on a simulated computing platform file. Both the native and simulative executions using SG-SMPI share the applications native code. The difference between the native execution and the simulative SG-SMPI-based execution is the computing system representation component. The representation of the computing system can be verified by comparing the native and SG-SMPI simulative performance results.

To quantify the effect of system variability, both applications, PSIA and Mandelbrot, were executed 20 times using STATIC on 256 PEs. For PSIA, \bar{E}, PL_{max}, and PL_{min} were 111.5792 seconds, 0.1539, and 0.0113, respectively. For Mandelbrot, \bar{E}, PL_{max}, and PL_{min} were 139.9814 seconds, 0.0088, and 0.0009, respectively. These results indicate a low system variability in miniHPC during the execution of both applications. This variation is not considered in the simulative experiments.

5.3 Experimental results

Figure 6 shows the native performance of both PSIA and Mandelbrot with eight static and dynamic (nonadaptive and adaptive) self-scheduling techniques. To measure application performance, the parallel loop execution time T_{par}^{loop} for both applications is reported.

Each native experiment is submitted for execution as a single job to the Slurm \cite{56} batch scheduler on dedicated miniHPC nodes. Slurm exclusively allocates nodes to each job. The nonblocking fat-tree network topology of miniHPC guarantees that nodes use the full bandwidth of the links, even if

\footnote{https://simgrid.org/doc/latest/Configuring_SimGrid.html#options-model-network}
Figure 6: **Native** performance of PSIA and Mandelbrot applications. STATIC degrades applications performance due to high load imbalance. Applications performance improves with FAC. Adaptive techniques improve the performance of PSIA; however, they degrade Mandelbrot performance and do not adapt correctly.
other applications are running on other nodes in the cluster. The application
codes are compiled with the Intel compiler v. 17.0.1 without any compiler op-
timizations to prevent compiler from changing the applications. Such changes
in application behavior would have undesired consequences in the fidelity of
the application representation in simulation. miniHPC runs the CentOS
Linux version 7 operation system.

Each native experiment is repeated 20 times to obtain performance results
with high confidence. The boxes represent the first and third quartiles, the
red line represents the median of the 20 measurements, and the whiskers
represent $1.5 \times$ the standard deviation of the results.

Two metrics are used to measure the load imbalance in both applications:
(1) the coefficient of variation (c.o.v.) of the processes finishing times \[13\]
and (2) max/mean of the processes finishing times.

The c.o.v. is calculated as the standard deviation of processes finishing
times divided by their mean and indicates load imbalance as the variation in
general between the processes finishing time. A high c.o.v. value represents
high load imbalance and a low value (near zero) represents a nearly perfectly
balanced load execution.

The max/mean is calculated as the maximum of processes finishing times
divided by their mean. Max/mean indicates how long the processes of an
application had to wait for the slowest process due to load imbalance. A
max/mean value of 1 represents a balanced load execution (lower bound),
and a higher value indicates that execution time is prolonged due to a process
that lags all the other processes at the end.

When all processes, except for one, have similar finishing times, the c.o.v.
is very low and hides the fact that the slowest process lags behind in exe-
cution, while the finishing time of this process is visible as a large value in
max/mean metric.

Inspecting the native applications results in Figure 6, one observes that
STATIC degraded the performance of both PSIA and Mandelbrot due to
load imbalance. The high value of c.o.v and max/mean in both applications
indicate the load imbalance with STATIC as shown in subfigures (c) and (d).
Although the value of c.o.v for GSS is lower than that of mFSC for PSIA,
one can see that the performance of GSS is worse than mFSC. Figure 6 (e)
does, however, that the value of max/mean for GSS is higher than that
of mFSC, which explains the large execution time in subfigure (a). This is
an example where the c.o.v. alone hides the load imbalance resulting from
a single process lagging the application execution as explained above. FAC
technique improves the performance of both applications and result in the lowest execution time and also load imbalance metrics.

The adaptive DLS techniques improve the performance of PSIA and result in low load imbalance metrics as well. However, for the Mandelbrot due to the high variability of its tasks execution times and short execution times, the adaptive techniques did not have enough time to estimate PE relative weights correctly and resulted in high execution time and high load imbalance metric values with high variability also.

Two application representation approaches are employed for the experiments using SG-SMPI+SG-MSG. The first approach is denoted as FLOP\(_{\text{file}}\) and is shown in Figure\[7\]. The FLOP per task was measured with PAPI counters and was written into a file with task id and FLOP count per task. This file is read by the simulator during the execution to account for the computational effort in each task. Inspecting the first simulative performance results (FLOP\(_{\text{file}}\)) in Figure\[7\] reveals that STATIC degrades the performance of applications due to load imbalance as can be inferred from the load imbalance metrics in sub-figures(c-f). However, for STATIC with PSIA, the c.o.v and max/mean values are smaller than that of mFSC and GSS. The GSS performance is worse than that of mFSC, even though it has lower c.o.v. compared to mFSC for PSIA. However, this is due to a single process lagging the execution of the PSIA as captured in sub-figure(e). The FAC technique results in improved performance for both applications. The c.o.v. and max/mean values with FAC in both applications is almost the minimum. The adaptive techniques AWF-C and AWF-E improve the performance of PSIA and result in low parallel loop execution time, c.o.v., and max/mean almost similar to the FAC (the minimum). AWF-B and AWF-D improve the performance of PSIA also, compared to mFSC and GSS. However, PSIA execution time with these techniques is slightly longer than the best (FAC, AWF-C, AWF-E). The performance of Mandelbrot with the adaptive techniques is degraded in general compared to STATIC and dynamic nonadaptive DLS techniques. This poor performance of Mandelbrot with adaptive techniques is due to the high load imbalance as indicated by the c.o.v. and max/mean metrics in sub-figures(d and f). The high variability and the rather short execution time of the Mandelbrot left no room for the adaptive techniques to learn the correct relative PE weights.

The second simulation approach is denoted as FLOP\(_{\text{dist}}\) and is shown in Figure\[8\]. The measured FLOP counts with PAPI is used to fit a probability distribution to the measured FLOP data as described in Section\[5.2\]
Figure 7: **Simulative** performance of PSIA and Mandelbrot applications with reading $FLOP_{file}$. STATIC results in imbalanced load execution for PSIA and Mandelbrot and degrades the performance. GSS results in poor PSIA performance due to a process lagging the execution. FAC improves the performance of both applications via a balanced load execution. Adaptive techniques result in enhanced PSIA performance and poor Mandelbrot performance.
Figure 8: **Simulative** performance of PSIA and Mandelbrot applications with *FLOP distribution*. STATIC, FAC, AWF-C, AWF-E results in the best PSIA performance. GSS degrades PSIA performance and mFSC results in high load imbalance. FAC achieves the best performance for both applications. Adaptive techniques degrade Mandelbrot performance.
above. In this case, the simulation is repeated 20 times similar to the native
execution with different seeds to capture the variability of the performance
of the native application. Inspecting the first simulative performance re-
sults (FLOP dist.) in Figure 8 reveals that applications performance with
STATIC is better than mFSC and GSS techniques, and almost similar to
the best performance achieved by FAC. This is assured by the low values
of the load imbalance metrics for both applications with STATIC. GSS de-
grades the PSIA performance due a process lags the application execution
time as indicated by a high max/mean value. mFSC also failed to balance
the load of PSIA as indicated by a high c.o.v. value and results in a long
parallel loop execution time. FAC results in the shortest parallel loop exe-
cution times, c.o.v. and max/mean values for both applications under test.
Adaptive techniques in general, and specifically AWF-C and AWF-E improve
the PSIA performance with balanced load execution and results in the short-
est execution time (similar to FAC). However, adaptive techniques failed to
adapt correctly to the high variability of tasks execution times of Mandelbrot,
due to its short execution time and resulted in poor performance.

5.3.1 Strong scaling results

In Figure 9, the strong scaling behavior of the PSIA and Mandelbrot
applications is shown for the native (subfigures (a) and (b)) and simulative
executions (subfigures (c) - (f)), respectively. Considering the native execu-
tions of PSIA, all DLS techniques scale very well. FAC and the adaptive
DLS techniques show a constant parallel cost, while the parallel cost in-
creases slightly with the increasing number of processing elements for mFSC
and STATIC. The largest slope is induced by the execution using the GSS
technique. By contrast, an almost constant parallel cost of the Mandelbrot
performance is obtained with mFSC, GSS, and FAC. The parallel cost of
using STATIC is also almost constant but higher than that of using mFSC,
GSS, and FAC. Using the adaptive DLS techniques results in poorer strong
scaling, characterized by at least one outlier per adaptive technique.

The strong scaling results for the first simulation approach, denoted as
FLOP file, are shown in Figure 9 (c)-(d) for the PSIA and Mandelbrot appli-
cations, respectively. While the parallel costs are almost equal to the parallel
costs of the native executions of PSIA, this is not the case for the Mandelbrot
application. The Mandelbrot simulations show almost constant parallel costs
for mFSC, GSS, FAC, and STATIC. These results are identical to those of
Figure 9: Strong scaling of native (subfigures (a) and (b)) and simulative (subfigures (c) - (f)) performance of PSIA and Mandelbrot applications. The simulative results are shown for the first simulation approach, FLOP_file, as well as, for the second one, FLOP_dist.
the native executions. Considering the adaptive DLS techniques, the parallel costs are not characterized by outliers as observed for the native executions. However, in contrast to the non-adaptive DLS techniques, the parallel cost increases with the number of processing elements.

Considering the simulative executions using the second simulation approach, denoted as \(FLOP\ dist\), a rather different strong scaling behavior is observed. For the PSIA application, the parallel costs are equal to the parallel costs of the native executions only for 256 processing elements. For a lower number of processing elements, the parallel costs are approximately half of those of the native executions. The parallel costs of the simulative executions of the Mandelbrot application are almost constant. Only using the adaptive DLS techniques results in a slight increase of the parallel costs with increasing number of processing elements.

5.4 Discussion

To evaluate how realistic the performed simulations are, the native and simulative performance of PSIA and Mandelbrot is analyzed in terms of \(T_{\text{loop}}^\text{par}\), c.o.v., and max/mean metrics. Realistic simulation results are expected to lead to a similar analysis and similar conclusions drawn from the analysis of the native results.

Table 2 summarizes seven performance features from the performance analysis of applications’ performance with various scheduling techniques performed above in Section 5.3. The comparison between the native and simulative performance analysis results shows that the simulations with \(FLOP\ file\) captured almost all the performance features that characterize the performance of the two applications under test. The simulator overestimated only the performance of AWF-B and AWF-D.

Both simulations predicted correctly that the FAC technique achieves a balanced load execution for both applications and improves performance. Simulations with the \(FLOP_dist\) approach failed to capture the load imbalance with STATIC in both applications. The performance with STATIC is significantly affected by the order of tasks or loop iterations assigned to each PE. As the order of tasks is not preserved by drawing random samples from FLOP distributions, the load imbalance with STATIC was dissolved between PEs as they are assigned different tasks in simulative execution from the native one. Interestingly, both simulations were able the most devious performance feature of high \(T_{\text{par}}^\text{loop}\), low c.o.v., and high max/mean values of GSS with PSIA. Both simulations did not capture the high variability of adaptive
Table 2: Native application performance features realistically captured by simulations

Performance features	SMPI+MSG FLOP file	SMPI+MSG FLOP_dist
Load imbalance with STATIC (PSIA, Mandelbrot)	Captured	Not captured
High c.o.v. with mFSC (PSIA)	Captured	Captured
Long t_{loop}, low c.o.v., and max/max with GSS (PSIA)	Captured	Captured
FAC best performance (PSIA, Mandelbrot)	Captured	Captured
Adaptive techniques high performance (PSIA)	Partially captured	Partially captured
Adaptive techniques poor performance (Mandelbrot)	Captured	Captured
Adaptive techniques high variability (Mandelbrot)	Not captured	Not captured

Strong scaling experiments

Performance features	SMPI+MSG FLOP file	SMPI+MSG FLOP_dist
mFSC and STATIC slight increase in parallel cost (PSIA)	Captured	Not captured
FAC and adaptive techniques constant parallel cost (PSIA)	Captured	Not captured
GSS poor scalability (PSIA)	Captured	Not captured
STATIC constant and high parallel cost (Mandelbrot)	Captured	Captured
mFSC, GSS, and FAC almost constant cost (Mandelbrot)	Captured	Captured
Adaptive techniques poor scaling and outliers (Mandelbrot)	Partially captured	Partially captured

techniques. The adaptive techniques depend on time measurements to estimate PE performance. If the granularity of the tasks is highly variable, and some task sizes are very fine, the time measurement of their execution will be inaccurate due to an overhead of the time measurement. The inaccurate time measurement leads to incorrect weight estimation and high variability between different native executions. This probing effect does not exist in the simulative execution and, therefore, was not fully captured. However, both simulations correctly predicted the high performance of adaptive techniques with PSIA and their low performance with Mandelbrot. The simulation with $FLOP_{\text{dist}}$ was able to capture the small variability in performance with various DLS techniques, which was not captured by reading the FLOP counts from a file in the first simulation.

6 Conclusion and Future Work

In this work, we show that it is possible to realistically simulate the performance of scientific applications on HPC systems. The approach proposed for this purpose considers various factors that affect the applications performance on HPC systems: application representation, scheduling, computing system representation, and systemic variations. The proposed realistic sim-
ulation approach has been exemplified on two computationally-intensive scientific applications. A set of guidelines are also introduced and discussed for how to represent applications and system characteristics. These guidelines help to achieve realistic simulations irrespective of the application type (e.g., communication- or computationally-intensive) and the simulation toolkit (e.g., Alea or GridSim [37]).

Based on the proposed approach, a novel simulation method is also introduced for the accurate and fast simulation of MPI-based applications. This method jointly employs SimGrid’s SMPI+MSG interfaces to simulate applications performance with minimal changes to the original application source code. We used this method to realistically simulate two computationally-intensive scientific applications using different scheduling techniques. The comparison of performance characteristics extracted from the native and simulative results shows that the proposed simulation approach captured very closely most of the performance characteristics of interest, such as strong scaling properties and load imbalance.

We believe that factors such as the application representation, scheduling, the computing system representation, and system variations, affect the realism of the simulations and deserve further investigation. Future work is planned to apply the proposed simulation approach to large and well-known performance benchmarks, such as the NAS suite, the SPEC suites, the RODINIA suite, and other scientific applications. The development of a tool to automatically transform the native application code into a simulative one is also envisioned in the future.

Acknowledgment

This work has been in part supported by the Swiss National Science Foundation in the context of the “Multi-level Scheduling in Large Scale High Performance Computers” (MLS) grant, number 169123 and by the Swiss Platform for Advanced Scientific Computing (PASC) project SPH-EXA: Optimizing Smooth Particle Hydrodynamics for Exascale Computing.
References

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick, Exascale computing study: Technology challenges in achieving exascale systems, Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep 15 (2008).

[2] L. Stanisic, S. Thibault, A. Legrand, B. Videau, J.-F. Méhaut, Faithful performance prediction of a dynamic task-based runtime system for heterogeneous multi-core architectures, Concurrency and Computation: Practice and Experience 27 (16) (2015) pp. 4075–4090.

[3] O. Beaumont, L. Eyraud-Dubois, Y. Gao, Influence of Tasks Duration Variability on Task-Based Runtime Schedulers (2018).

[4] J. J. Wilke, J. P. Kenny, S. Knight, S. Rumley, Compiler-assisted source-to-source skeletonization of application models for system simulation, in: R. Yokota, M. Weiland, D. Keyes, C. Trinitis (Eds.), High Performance Computing, Springer International Publishing, Cham, 2018, pp. 123–143.

[5] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, I. Banicescu, Experimental Verification and Analysis of Dynamic Loop Scheduling in Scientific Applications, in: Proceedings of the 17th International Symposium on Parallel and Distributed Computing, 2018, p. 8.

[6] A. Mohammed, A. Eleliemy, F. M. Ciorba, Performance Reproduction and Prediction of Selected Dynamic Loop Scheduling Experiments, in: Proceedings of the 2018 International Conference on High Performance Computing and Simulation, 2018, p. 8.

[7] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms, Parallel and Distributed Computing 74 (10) (2014) pp. 2899–2917.
[8] H. Li, S. Tandri, M. Stumm, K. C. Sevcik, Locality and Loop Scheduling on NUMA Multiprocessors, in: Proceedings of the International Conference on Parallel Processing, August 1993, pp. 140–147.

[9] R. D. Blumofe, C. E. Leiserson, Space-efficient Scheduling of Multithreaded Computations, SIAM Journal on Computing 27 (1) (1998) pp. 202–229.

[10] R. D. Blumofe, C. E. Leiserson, Scheduling Multithreaded Computations by Work Stealing, Journal of the ACM (JACM) 46 (5) (1999) pp. 720–748.

[11] T. Peiyi, Y. Pen-Chung, Processor Self-Scheduling for Multiple-Nested Parallel Loops, in: Proceedings of the International Conference on Parallel Processing, 1986, pp. pp. 528–535.

[12] C. P. Kruskal, A. Weiss, Allocating Independent Subtasks on Parallel Processors, IEEE Transactions on Software Engineering SE-11 (10) (1985) pp. 1001–1016.

[13] C. D. Polychronopoulos, D. J. Kuck, Guided Self-Scheduling: A Practical Scheduling Scheme for Parallel Supercomputers, IEEE Transactions on Computers 100 (12) (1987) pp. 1425–1439.

[14] S. Flynn Hummel, E. Schonberg, L. E. Flynn, Factoring: A method for scheduling parallel loops, Communications of the ACM 35 (8) (1992) pp. 90–101.

[15] I. Banicescu, V. Velusamy, J. Devaprasad, On the Scalability of Dynamic Scheduling Scientific Applications With Adaptive Weighted Factoring, Cluster Computing 6 (3) (2003) pp. 215–226.

[16] R. L. Cariño, I. Banicescu, Dynamic Load Balancing With Adaptive Factoring Methods in Scientific Applications, Journal of Supercomputing 44 (1) (2008) pp. 41–63.

[17] D. F. Bacon, S. L. Graham, O. J. Sharp, Compiler Transformations for High-performance Computing, ACM Computing Surveys 26 (4) (1994) pp. 345–420.
[18] I. Banicescu, R. L. Cariño, Addressing the Stochastic Nature of Scientific Computations via Dynamic Loop Scheduling, Electronic Transactions on Numerical Analysis 21 (2005) pp. 66–80.

[19] I. Banicescu, F. M. Ciorba, S. Srivastava, Scalable Computing: Theory and Practice, no. Chapter 22, John Wiley & Sons, Inc, 2013, Ch. Performance Optimization of Scientific Applications using an Autonomic Computing Approach, pp. 437–466.

[20] I. Banicescu, V. Velusamy, Load balancing highly irregular computations with the Adaptive Factoring, in: the 16th International Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2002, p. 195.

[21] I. Banicescu, S. F. Hummel, Balancing Processor Loads and Exploiting Data Locality in N-Body Simulations, in: Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis, December 1995, pp. 43–43.

[22] A. Boulmier, J. White, N. Abdennadher, Towards a Cloud Based Decision Support System for Solar Map Generation, in: IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2016, pp. 230–236.

[23] R. L. Cariño, I. Banicescu, A tool for a two-level dynamic load balancing strategy in scientific applications, Scalable Computing: Practice and Experience 8 (3) (2007).

[24] A. Eleliemy, A. Mohammed, F. M. Ciorba, Efficient Generation of Parallel Spin-images Using Dynamic Loop Scheduling, in: Proceedings of the 19th IEEE International Conference for High Performance Computing and Communications Workshops, 2017, pp. 34–41.

[25] F. M. Ciorba, C. Iwainsky, P. Buder, OpenMP Loop Scheduling Revisited: Making a Case for More Schedules, in: Proceedings of the 2018 International Workshop on OpenMP (iWomp 2018), 2018.

[26] T. H. Tzen, L. M. Ni, Trapezoid self-scheduling: A practical scheduling scheme for parallel compilers, IEEE Transactions on parallel and distributed systems 4 (1) (1993) pp. 87–98.
[27] D. H. Bailey, NAS Parallel Benchmarks, Encyclopedia of Parallel Computing (2011) pp. 1254–1259.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, K. Skadron, Rodinia: A Benchmark Suite for Heterogeneous Computing, in: IEEE International Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

[29] M. Balasubramanian, N. Sukhiuja, F. M. Ciorba, I. Banicescu, S. Srivastava, Towards the Scalability of Dynamic Loop Scheduling Techniques via Discrete Event Simulation, in: Proceedings of the International Parallel and Distributed Processing Symposium Workshops, May 2012, pp. 1343–1351.

[30] S. Flynn Hummel, J. Schmidt, R. Uma, J. Wein, Load-sharing in Heterogeneous Systems via Weighted Factoring, in: Proceedings of the Annual ACM Symposium on Parallel Algorithms and Architectures, 1996, pp. 318–328.

[31] I. Banicescu, Z. Liu, Adaptive Factoring: A Dynamic Scheduling Method Tuned to the Rate of Weight Changes, in: Proceedings of the High Performance Computing Symposium, 2000, pp. 122–129.

[32] N. Sukhiuja, I. Banicescu, S. Srivastava, F. M. Ciorba, Evaluating the Flexibility of Dynamic Loop Scheduling on Heterogeneous Systems in the Presence of Fluctuating Load Using SimGrid, in: Proceedings of the International Parallel and Distributed Processing Symposium Workshops, May 2013, pp. 1429–1438.

[33] N. Sukhiuja, I. Banicescu, F. M. Ciorba, Investigating the Resilience of Dynamic Loop Scheduling in Heterogeneous Computing Systems, in: Proceedings of the International Symposium on Parallel and Distributed Computing, June 2015, pp. 194–203.

[34] F. Hoffeins, F. M. Ciorba, I. Banicescu, Examining the Reproducibility of Using Dynamic Loop Scheduling Techniques in Scientific Applications, in: International Parallel and Distributed Processing Symposium Workshops, May 2017, pp. 1579–1587.
[35] A. Mohammed, A. Eleliemy, F. M. Ciorba, Towards the Reproduction of Selected Dynamic Loop Scheduling Experiments Using SimGrid-SimDag, Poster at IEEE International Conference on High Performance Computing and Communications (2017).

[36] A. Eleliemy, A. Mohammed, F. M. Ciorba, Exploring the Relation Between Two Levels of Scheduling Using a Novel Simulation Approach, in: Proceedings of 16th International Symposium on Parallel and Distributed Computing (ISDPC), 2017, p. 8.

[37] D. Klusáček, H. Rudová, Alea 2: Job Scheduling Simulator, in: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, 2010, p. 61.

[38] A. Chai, Realistic Simulation of the Execution of Applications Deployed on Large Distributed Systems With a Focus on Improving File Management, Ph.D. thesis, INSA de Lyon (France) (2019).

[39] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, Starpu: a unified platform for task scheduling on heterogeneous multicore architectures, Concurrency and Computation: Practice and Experience 23 (2) (2011) pp. 187–198.

[40] R. Keller Tesser, L. Mello Schnorr, A. Legrand, F. Dupros, P. Olivier Alexandre Navaux, Using simulation to evaluate and tune the performance of dynamic load balancing of an over-decomposed geophysics application, in: F. F. Rivera, T. F. Pena, J. C. Cabaleiro (Eds.), Euro-Par 2017: Parallel Processing, Springer International Publishing, Cham, 2017, pp. 192–205.

[41] A. F. Rodrigues, K. Bergman, D. P. Bunde, E. Cooper-Balis, K. B. Ferreira, K. S. Hemmert, B. Barrett, C. Versaggi, R. Hendry, B. Jacob, H. Kim, V. J. Leung, M. J. Levenhagen, M. Rasquilha, R. Riesen, P. Rosenfeld, M. d. C. Ruiz Varela, S. Yalamanchili, Improvements to the Structural Simulation Toolkit, Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2012).

[42] N. Metropolis, S. Ulam, The Monte Carlo Method, Journal of the American statistical association 44 (247) (1949) pp. 335–341.
[43] L. Bertot, S. Genaud, J. Gossa, Improving cloud simulation using the monte-carlo method, in: European Conference on Parallel Processing, Springer, 2018, pp. 404–416.

[44] F. Desprez, G. S. Markomanolis, F. Suter, Improving the accuracy and efficiency of time-independent trace replay, in: Proceedings of the International High Performance Computing, Networking, Storage and Analysis, November 2012, pp. 446–455.

[45] S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci, A Portable Programming Interface for Performance Evaluation on Modern Processors, International Journal of High Performance Computing Applications 14 (3) (2000) pp. 189–204.

[46] A. Mohammed, F. M. Ciorba, SiL: An Approach for Adjusting Applications to Heterogeneous Systems Under Perturbations, in: Proceedings of the International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2018) of the 24th International European Conference on Parallel and Distributed Computing (Euro-Par 2018), Turin, 2018.

[47] D. Skinner, W. Kramer, Understanding the causes of performance variability in hpc workloads, in: Proceedings of the International IEEE Workload Characterization Symposium, 2005, pp. 137–149.

[48] A. Eleliemy, M. Fayze, R. Mehmood, I. Katib, N. Aljohani, Loadbalancing on Parallel Heterogeneous Architectures: Spin-image Algorithm on CPU and MIC, in: Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, 2016, pp. 623–628.

[49] A. Mohammed, A. Eleliemy, F. M. Ciorba, F. Kasielke, I. Banicescu, Experimental Verification and Analysis of Dynamic Loop Scheduling in Scientific Applications, ArXiv e-prints\texttt{arXiv:1804.11115}.

[50] A. E. Johnson, Spin-Images: A Representation for 3-D Surface Matching, Ph.D. thesis, Robotics Institute, Carnegie Mellon University (August 1997).

[51] B. B. Mandelbrot, Fractal aspects of the iteration of $z \rightarrow \lambda z (1-z)$ for complex λ and z, Annals of the New York Academy of Sciences 357 (1) (1980) pp. 249–259.
[52] J. Vienne, Prédiction De Performances D’Applications de Calcul Haute Performance Sur Réseau Infiniband, Ph.D. thesis (2010).

[53] P. Velho, A. Legrand, Accuracy Study and Improvement of Network Simulation in the SimGrid Framework, in: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, 2009, p. 10.

[54] SimGrid, SimGrid Calibrations documentation, http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc/, [Online; accessed 17 April 2018] (2014).

[55] A. Mohammed, A. Eleliemy, F. M. Ciorba, A Methodology for Bridging the Native and Simulated Execution of Parallel Applications, Poster at ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis (2017).

[56] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple Linux Utility for Resource Management, in: Workshop on Job Scheduling Strategies for Parallel Processing, Springer, 2003, pp. 44–60.