Mammographic Image Processing for Classification of Breast Cancer Masses by Using Support Vector Machine Method and Grasshopper Optimization Algorithm

Naser Safdarian 1, Shadi Yousefian Dezfoulinejad 2

1. Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2. Department of Biomedical Engineering, Faculty of Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.

ABSTRACT

Background and Aim: Breast cancer is the abnormal cell growth in the breast. In both benign and malignant masses, there is rapid and high cell growth. Nowadays, due to the development of technologies, the diagnosis of diseases has become non-invasive and physicians attempt to diagnose the disease without surgery and based on internal organ images.

Methods & Materials: In this study, by using images prepared from the Digital Database for Screening Mammography (DDSM), a new method is proposed for detecting cancerous masses in the mammographic images using geometric features extraction and optimization of Support Vector Machine (SVM) parameters to classify breast cancer masses automatically. First, images were pre-processed and then boundaries were determined using threshold method. Next, morphological operators were used to improve these boundaries and the segmentation of images was carried out to classify cancerous masses. Finally, by using the SVM parameter optimization method, Grasshopper Optimization Algorithm (GOA), and 4-fold cross-validation method, data were classified into two groups of benign and malignant (cancer) masses.

Ethical Considerations: Images from DDSM database were used in this research, all images are open access in this database.

Results: The accuracy, sensitivity and specificity values for applying the Radial Basis Function (RBF) kernel in SVM classifier (before optimization process) were obtained 97%, 100% and 96, respectively. After optimization of SVM parameters by the GOA, it was reported 100% for all accuracy, sensitivity and specificity indices for applying linear kernel function, indicating the high accuracy of the proposed method. The average values of accuracy, sensitivity and specificity indices for applying all three SVM kernel functions after optimization were 95.83, 100 and 94.81%, respectively.

Conclusion: The extracted geometrical features from breast cancer masses are highly efficient for model training and the diagnosis of breast cancer. The GOA could improve the overall accuracy of the proposed method by optimizing the SVM parameters. The results showed the higher performance of the proposed method compared to other methods.

Key words: Mammographic image processing, Breast cancer, Geometric features extraction, Support Machine, Grasshopper optimization algorithm

Extended Abstract

Introduction

Breast cancer is a type of cancer that, due to the abnormal growth of cells, causes a lump in the breast tissue. According to the World Health Organization (WHO), this cancer affects 2.1 million women each year, and also causes the highest number of cancer deaths among women [1]. Mammography X-ray imaging is one of the most common methods used by radiologists to diagnose and screen for breast cancer and to determine the pres-
ence of lumps and cysts. In mammography images, very fine calcareous particles are usually seen as noisy particles, and the masses have very low light intensity, making it difficult for radiologists and physicians to detect. Given that accurate and timely diagnosis of cancerous masses, as well as its various types, is of particular importance in the health of individuals in society, the difficulty of diagnosing breast cancer masses, which is mainly associated with diagnostic errors, should be addressed by researchers. In this study, we introduce a new and automatic method to diagnose and detect breast cancer masses with high accuracy. For this purpose, after pre-processing and detecting the borders of the cancerous masses from mammography images, a number of features were extracted from the detected masses and in the end, the feature matrix was applied to the Support Vector Machine (SVM) classifier input.

Materials and Methods

The images used in this study were collected from the Digital Database for Screening Mammography (DDSM) database [17]. First, for pre-processing of raw images, a 3×3 median filter was applied on digital mammography images to remove noise using MATLAB software. Then, the threshold method was used to extract the cancerous masses. Since the mass edge extracted by the threshold method had inward direction, the brightness of the pixels around the edge was expanded towards the center by using the Dilation operator. After detecting the area of breast cancer masses, we extracted 19 structural features from this area by MATLAB software. Finally, using SVM parameter optimization method by Grasshopper Optimization Algorithm (GOA), as well as using 4-fold cross validation method, data were divided into two categories of benign and cancer.

Results

The values of accuracy, sensitivity, and specificity (along with their variances) resulting from the use of data (benign and cancer) classified by the SVM method using three kernel functions of Linear, Radial Basis Function (RBF) and Polynomial were presented in tables. The final results after applying the GOA were also shown in a separate table. The used training data was 85% and 15% of the data were considered as test data. In 4-fold crossvalidation method, the number of programs executed per kernel function was 100 times. The best results of accuracy, sensitivity, and specificity indicators (features) for using RBF kernel function in SVM classifier (before process) were obtained 97%, 100% and 96%, respectively. For linear function after optimization of SVM parameters by GOA, it was obtained 100% for all accuracy, sensitivity, and specificity indicators, which shows the high accuracy of the proposed method.

The average values of accuracy, sensitivity and specificity indices for all three SVM kernel functions after applying the optimization algorithm were 95.83, 100 and 94.81%, respectively.

Discussion

Some advantages of this study include a large number of features extracted from masses detected from mammography images, the use of GOA to more accurately determine the type of breast tissue cancer mass, and high speed and accuracy of the proposed algorithm. The boundaries of cancerous tumors were extracted with high accuracy, and finally the classification was performed using simple morphological features. To our knowledge, no study has previously used the optimization methods in the final classification stage. So, it can be said that this is the first study that use the GOA to optimize the kernel parameters of different SVM classifiers. This can be the advent of new methods in improving various classification processes in a variety of medical diagnoses. After the detection and diagnosis of breast cancer masses that was performed with high accuracy in this study, according to the morphological and simple features of cancer masses, classification operation was performed well and with high accuracy. The results of this study show the higher performance of the proposed method compared to other methods used in previous related studies [6-16].

Ethical Considerations

Compliance with ethical guidelines

Images from DDSM database were used in this research, all images are open access in this database.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Conceptualization, research, methodology: Naser Safdarian; Data collection, resources, writing-original draft: Shadi Yousefian Dezfoulinejad; writing - review & editing: Naser Safdarian.
Conflicts of interest

The authors declared no conflict of interests.

Acknowledgements

The authors would like to thank the Young Researchers and Elite Club of Islamic Azad University, Tabriz branch.
پردازش تصاویر ماموگرافی به منظور تشخیص سرطان سینه با استفاده از روش مدار
پردازش تصاویر با کنترل گره‌ی الکترونی بهینه‌سازی مدل

نام صدران
شادی پسورفیک زاده

1. باشگاه پژوهشگران جوان و نخبگان واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2. گروه مهندسی پزشکی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

نناموری سینه به دلیل رشد غیرقابل کنترل سلول‌های غیرطبیعی در سینه‌ایجاد می‌شود. در هر دو نوع تومورهای سرطانی خوشخیم و بدخیم، رشد سریع و زیاد سلول‌ها وجود دارد. امروزه، با توجه به استارش تکنولوژی، تشخیص بیماری‌ها از حال تهاجمی خارج شده و تلاش پزشکان و محققان بر این است که تکنیک‌هایی را پیش‌بینی کنند.

می‌باشد که روشی DDSM (Descriptive Densitometry) برای بررسی اطلاعات پایگاه داده‌ی تصاویر دیجیتال ماموگرافی، جدید برای تشخیص و اثر کاهشی در سطح سلول‌های سپرده می‌شود. با استفاده از الگوریتم SVM (Support Vector Machine) برای تفکیک تصاویر ماموگرافی و استخراج ویژگی‌های هندسی، با استفاده از روش بهینه‌سازی، این روش بهبود پذیرها و تکنیک‌های دیگری نیز معرفی شده‌اند.

در ابتدای پیش‌پردازش تصاویر، SVM الگوریتم ماشین بردار پشتیبان به کار گرفته شد و سپس با استفاده از روش آستانه‌گذاری، مرزهای توده‌ها شناسایی شد و سپس با عملگرهای مورفولوژی این مرزها بهبود یافت. در نهایت، قطعه‌بندی تصاویر برای طبقه‌بندی نوع توده‌های سرطان سینه انجام شد. در مرحله نهایی، با استفاده از روش بهینه‌سازی، استخراج ویژگی‌های هندسی توده‌های سرطانی انجام شد و در نهایت، مدلی برای تشخیص نوع توده سرطان سینه تهیه شد.

کلیدواژه‌ها:
پردازش تصاویر، ماموگرافی، سرطان سینه، استخراج ویژگی‌های هندسی، ماشین بردار پشتیبان، الگوریتم بهینه‌سازی ملخ

اطلاعات مقاله:
تاریخ دریافت: 1398 آبان 22
تاریخ پذیرش: 1398 بهمن 01
تاریخ انتشار: 1399 خرداد 12

مقدمه
سرطان سینه نوعی سرطان است که به دلیل رشد غیرقابل کنترل سلول‌های غیرطبیعی، بیماری شناخته می‌شود. طبق گزارش سازمان بهداشت جهانی (WHO) سال 2018، این سرطان 10/1 میلیون زن را تحت تأثیر قرار می‌دهد. همچنین پیشترین درمان‌هایی ناشی از سرطان را در میان زنان ایجاد می‌کند. برای این‌که درمان‌هایی ناشی از سرطان را در میان زنان ایجاد کنند، باید از تنها شناسایی دلایل تولید شاهد کمک مصرف‌های انسان‌ها بود. روش‌های نوینی که با توجه به موارد بیشتری در زنان را بهبود بخشیده، باید برای تشخیص دلایل میان‌شان شغل کمک مصرف‌های انسان‌ها بود. روش‌های نوینی که با توجه به موارد بیشتری در زنان را بهبود بخشیده، باید برای تشخیص دلایل میان‌شان شغل کمک مصرف‌های انسان‌ها بود. روش‌های نوینی که با توجه به موارد بیشتری در زنان را بهبود بخشیده، باید برای تشخیص دلایل میان‌شان شغل کمک مصرف‌های انسان‌ها بود.
 Acres of data for the local site have been performed. An algorithm for the generation of local data has been developed as well. The main method of this research is from two ways for the establishment of a model on the data of the community mammography images, help in the category and speed of the images are used. The method has been previously derived in the mammography images and histograms of the image's properties. The morphological methods, edge detection, and statistical methods have been used to generate the image's properties, which are included in the properties of the tissue. The pre-processing stage includes the removal of noise and foreground from the image, and consists of three steps of pre-processing, the extraction of properties, and the classification of the final properties to determine the type of images that may contain tumor tissue in the chest area, and then the final classification of the properties that have been classified for the examination of the mammography images, and the final classification of the properties for the extraction of tumors. In this image there are the properties of the images, the properties of the tumor, and the different types of breast cancer have a special importance in health.

1. Lobular
نهاي دسته آمده حمل از اين پژوهش،19.17% گزارش شده

دوره مهکاران در سال 1395 روش تکيي
جهت طرح فهرست و تفصیل کردن معمولاً مربوط به
پستن ایل کته 91. در اين مطالعه از دانشگاه دانشگاه
مشابه توصیف تومور خوش خيماً و توصیف تومور DDSM
بدخیم استفاده شده است از پستن ایل کته و حتی در
اضافه، قلمبندی دارند مشترک نظری و تهیه کننده
ویولین و روزه روزا نوشتار شده است. این نوع
الگوریتم به پیشنهاد چک دانشگاه از دانشگاه در
بالتا است. راهنمای مدل پیشنهادی به طرف طرفداران معلوم
شده است. در مورد هر نوع از مدیریت دسته آورده

در پیامدهای مسائل از ویژگی‌های مختلف در طبقه
بندی برای اولین بار در سال 2018، روش تکيي
و مهکاران در سال 1395 روش برای دستبندی
پژوهش تعیین سرطان به دسته‌گروه اول کته و
در این پژوهش، برای اولین بار از دانشگاه

3. Bushra Mughal
4. William Torres
5. Basma A. Mohame
6. Maria Perez
استخراج و تشخیص ساختاری از توده‌های سرطانی

با نظر به طبقاتی‌بندی توده‌های سرطان سینه، لازم است از روش‌های دقیق و سریع در انجام این عملیات استفاده شود. لذا برای دریافت داده‌های این روش، باید از روش‌هایی استفاده شود که با توجه به دقت و سرعت بالا جهت انجام عملیات ذکر شده را ارائه دهد. در این مقاله، روشی به نام www.DDSM نیز به کارگیری می‌شود. این روش بر اساس پایگاه داده مموریال وینهای در تصویر ماموگرافی، استخراج ویژگی‌های ساختاری توده‌ها و طبقه‌بندی آنها با استفاده از یک الگوریتم پشتیبان پشتیبانی (SVM) ارائه می‌شود.

مواد و روش‌ها

公益som 2. تصویر ماموگرافی نمونه‌ای از پایگاه داده دیجیتال دیجیتال Database for Screening Mammography (DDSM)

چگونگی اجرای شده است [16]. این پایگاه داده شامل ۲۲۷ تصویر

تصویر ۲. تصویر ماموگرافی نمونه‌ای از پایگاه داده دیجیتال دیجیتال Database for Screening Mammography (DDSM)
سرطان خوشخیم و بدخیم بافت سینه اسﺖ.

اندازه اصلی تصاویر Hounsfield مبتنی بر مقیاس dicom پیکسل و به فرم تخته دارای اندازه 1024 × 1024 است که مرزبندی اولیه ی توده‌های سرطانی در تصاویر این پایگاه داده در ابتدا توسط رادیولوژی‌ها انجام شده است و گزارش در مورد خوش خیمی یا بدخیمی بودن توده‌ها مربوط به مورد ترسیم در دسترس می‌باشد.

نمونه ای از تصویر شماره ۱۷ برای هر تصویر در دسترس می‌باشد.

لازم به ذکر است داده‌های موجود در این پایگاه داده دارای برچسب‌های از پیش تعیین شده هستند. این برچسب‌ها شامل Lobulated Margins، Oval، Amorphous distribution، Irregular Architectural، Irregular Margins، Pleomorphic، Polycyclic distribution، و Round margins می‌باشد.

در میان این Round margins و Polycyclic distribution تصاویر توده‌های خوش خیم شکل شبیه به دایره و یا بیضی داشته در حالی که توده‌های بدخیم شکل بی‌نظم و حاوی انواع توده‌های ۳ تاخیر شده در صورت شماره ۱۸ سرطانی سینه را نشان می‌دهد.

پیش‌برداری:

به عنوان یک روش پیشرو از حذف نویز، در این پایگاه حذف نویز‌های موجود در تصاویر ممکن است به صورت خودکار انجام شود. در این پایگاه، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.

روش قطع‌بندی آستانه‌گذاری یکی از ساده‌ترین و مؤثرترین روشهای قطع‌بندی تصویر است که با استفاده از یک مقیاس آستانه، میانگین‌های هسته‌گرام تصویر اندازه‌گیری و داده می‌شود. در این روش، نقطه میانی هیستوگرام تصویر به عنوان مقیاس آستانه آنالیس شده و سپس به صورت خطی قطع‌بندی می‌شود.

بر روش قطع‌بندی آستانه‌گذاری، این روش به میانگین قطع‌بندی‌ها را با استفاده از الگوریتم پیکسل‌های همسایه را به صورت یک تصویر تفکیک می‌نماید.

روش قطع‌بندی آستانه‌گذاری با استفاده از الگوریتم ریاضی به عنوان یک روش پیشرفته برای پردازش تصاویر به‌کار می‌رود.

در این روش، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.

روش قطع‌بندی آستانه‌گذاری با استفاده از الگوریتم ریاضی به عنوان یک روش پیشرفته برای پردازش تصاویر به‌کار می‌رود.

در این روش، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.

روش قطع‌بندی آستانه‌گذاری با استفاده از الگوریتم ریاضی به عنوان یک روش پیشرفته برای پردازش تصاویر به‌کار می‌رود.

در این روش، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.

روش قطع‌بندی آستانه‌گذاری با استفاده از الگوریتم ریاضی به عنوان یک روش پیشرفته برای پردازش تصاویر به‌کار می‌رود.

در این روش، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.

روش قطع‌بندی آستانه‌گذاری با استفاده از الگوریتم ریاضی به عنوان یک روش پیشرفته برای پردازش تصاویر به‌کار می‌رود.

در این روش، نرم‌افزار MATLAB برای حذف نویز بهبود مرز توده‌های سرطانی استفاده می‌گردد.
رشته	فهرست ویژگی های مورد استفاده
1	شماره مساحت
2	شماره Convex Area
3	شماره Eccentricity
4	شماره Convex Image
5	شماره Convex Image
6	شماره Convex Image
7	شماره Convex Image
8	شماره Convex Image
9	شماره Convex Image
10	شماره Convex Image
11	شماره Convex Image
12	شماره Convex Image
13	شماره Convex Image
14	شماره Convex Image

شامل اندازه واقعی پیکسل‌های موجود در ناحیه استخراج شده که در فاصله مساحت توده‌‌های سرطانی را مشخص می‌کند.

ان پیکسل‌ها در توده بیضی-کره‌ای Convex Image یک عدد اسکالر است که بیانگر تعداد پیکسل‌های درون توده است.

این ویژگی به صورت جذر محاسبه می‌شود.

این ویژگی عددی است که بیانگر خروج از مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که بیانگر پیکسل‌های موجود در ناحیه توده است که در واقع مساحت توده سرطانی را مشخص می‌کند.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.

این ویژگی عددی است که به مرکز بیضی مشخص شده‌ای است که به عنوان ناحیه ثانویه مربوط به توده مشخص شده است.
در این پژوهش برای اجرای این عملیات، دایره‌های به شعاع صعودی ساخته شده که با پیمایش تصویر مقادیر شدت روشنایی برای خود را یافته با حالتی که در هر تکرار شعاع نیز افزایش می‌یابد و به‌عنوان یک مثلث پیکسل به‌دست می‌آید. خون‌شدن باعث نمونه‌برداری برای آماده‌سازی پیکسل‌هاي لبه‌های دیده می‌شود.

استخراج ویژگی

در این پژوهش، استخراج ویژگی از تصاویر و آماده‌سازی بردار ویژگی با استفاده از الگوریتم‌های مدل‌سازی ویژگی به کار گرفته شده است. استخراج ویژگی از نظر علمی، که بررسی کننده آماری یا نسبتی است.

استخراج ویژگی

برای اینکه بهینه‌تریکه بتواند به مقدار مناسبی استفاده شود، به‌ویژه در مواقعی که فاصله بین دو دسته داده متفاوت باشد. در این مقاله، الگوریتم بهینه‌سازی گونه‌ای الگوریتم MAZ در این پژوهش به کار گرفته شده است.

طبقه‌بندی

استخراج ویژگی

برای استخراج ویژگی، بررسی‌های آماری و مدل‌سازی به کار گرفته شده است. استخراج ویژگی از نظر علمی، که بررسی کننده آماری یا نسبتی است.

استخراج ویژگی

برای اینکه بهینه‌تریکه بتواند به مقدار مناسبی استفاده شود، به‌ویژه در مواقعی که فاصله بین دو دسته داده متفاوت باشد. در این مقاله، الگوریتم بهینه‌سازی گونه‌ای الگوریتم MAZ در این پژوهش به کار گرفته شده است.

استخراج ویژگی

برای استخراج ویژگی، بررسی‌های آماری و مدل‌سازی به کار گرفته شده است. استخراج ویژگی از نظر علمی، که بررسی کننده آماری یا نسبتی است.

استخراج ویژگی

برای اینکه بهینه‌تریکه بتواند به مقدار مناسبی استفاده شود، به‌ویژه در مواقعی که فاصله بین دو دسته داده متفاوت باشد. در این مقاله، الگوریتم بهینه‌سازی گونه‌ای الگوریتم MAZ در این پژوهش به کار گرفته شده است.

جدول 1

ویژگی	توصیف	
فشردگی	Compactly (Y)	17
پراکندگی مطلق و یا تقریبی (X)		18
پراکندگی خاص شکل (Y)		19

وزن ویژگی

ویژگی	وزن
فشردگی	17
پراکندگی مطلق و یا تقریبی (X)	18
پراکندگی خاص شکل (Y)	19
برای طبقه‌بندی به اعداد تصادفی در بازه کمک پیشگویی باد می‌باشد. توجه داشته باشید که برای ام به معنای مدل ریاضی استفاده شده برای شبیه‌سازی رفتار ازدحام می‌باشد. این دو عملکرد، و نیز جستجوی و بهره‌برداری، در اکتشاف، عامل‌ان جستجو تشویق می‌شوند که منطقی فرآیند جستجو را به دو گرایش تقسیم می‌کنند: اکتشاف طبیعت‌دیده مدل‌های اکتشافی به عنوان یکی از بزرگترین ازداحات آدمی، در این مطالعه، بهترین نسبت به کارکرد الگوریتم بهینه‌سازی ملخ انجام شده است.

به‌طور کلی، الگوریتم‌های الگوریتم‌های الکترومیکی از طریق مدل‌های تصادفی در بازه تعدادی تصادفی در بازه انتخاب می‌شوند و با توجه به اعداد تصادفی، مدل‌های تصادفی در بازه می‌توانند به صورت میانگین و انحراف معیار نتایج بدهند. سپس، آزمون‌هایی به منظور پیش‌بینی نتایج انجام می‌شود. در این رابطه، عملکرد اکتشافی در بازه و صحت بکارگیری الگوریتم بهینه‌سازی ملخ (GA) در طبقه‌بندی تصادفی ارائه می‌شود.

شماره دوازدهمی می‌شود. بایرت انتخاب بهینه‌ترین داده‌ها در الگوریتم SVM که جهت آن از طریق داده‌های استفاده‌شده است. باز از این پیش‌بینی الگوریتم پیش‌بینی با روش استقلال‌های Fold-4 Cross Validation (ICSA) است. به این صورت که در مطالعه‌های موجود با به بهبود پیش‌بینی معنی‌داری به فرمول می‌باشد، برای امریکایی‌ها و یک بخشهای تصادفی، این دو عملکرد، و نیز جستجوی و بهره‌برداری، در اکتشاف، عامل‌ان جستجو تشویق می‌شوند که منطقی فرآیند جستجو را به دو گرایش تقسیم می‌کنند: اکتشاف طبیعت‌دیده مدل‌های اکتشافی به عنوان یکی از بزرگترین ازداحات آدمی، در این مطالعه، بهترین نسبت به کارکرد الگوریتم بهینه‌سازی ملخ انجام شده است.

به‌طور کلی، الگوریتم‌های الگوریتم‌های الکترومیکی از طریق مدل‌های تصادفی در بازه تعدادی تصادفی در بازه انتخاب می‌شوند و با توجه به اعداد تصادفی، مدل‌های تصادفی در بازه می‌توانند به صورت میانگین و انحراف معیار نتایج بدهند. سپس، آزمون‌هایی به منظور پیش‌بینی نتایج انجام می‌شود. در این رابطه، عملکرد اکتشافی در بازه و صحت بکارگیری الگوریتم بهینه‌سازی ملخ (GA) در طبقه‌بندی تصادفی ارائه می‌شود.

شماره دوازدهمی می‌شود. بایرت انتخاب بهینه‌ترین داده‌ها در الگوریتم SVM که جهت آن از طریق داده‌های استفاده‌شده است. باز از این پیش‌بینی الگوریتم پیش‌بینی با روش استقلال‌های Fold-4 Cross Validation (ICSA) است. به این صورت که در مطالعه‌های موجود با به بهبود پیش‌بینی معنی‌داری به فرمول می‌باشد، برای امریکایی‌ها و یک بخشهای تصادفی، این دو عملکرد، و نیز جستجوی و بهره‌برداری، در اکتشاف، عامل‌ان جستجو تشویق می‌شوند که منطقی فرآیند جستجو را به دو گرایش تقسیم می‌کنند: اکتشاف طبیعت‌دیده مدل‌های اکتشافی به عنوان یکی از بزرگترین ازداحات آدمی، در این مطالعه، بهترین نسبت به کارکرد الگوریتم بهینه‌سازی ملخ انجام شده است.

به‌طور کلی، الگوریتم‌های الگوریتم‌های الکترومیکی از طریق مدل‌های تصادفی در بازه تعدادی تصادفی در بازه انتخاب می‌شوند و با توجه به اعداد تصادفی، مدل‌های تصادفی در بازه می‌توانند به صورت میانگین و انحراف معیار نتایج بدهند. سپس، آزمون‌هایی به منظور پیش‌بینی نتایج انجام می‌شود. در این رابطه، عملکرد اکتشافی در بازه و صحت بکارگیری الگوریتم بهینه‌سازی ملخ (GA) در طبقه‌بندی تصادفی ارائه می‌شود.

شماره دوازدهمی می‌شود. بایرت انتخاب بهینه‌ترین داده‌ها در الگوریتم SVM که جهت آن از طریق داده‌های استفاده‌شده است. باز از این پیش‌بینی الگوریتم پیش‌بینی با روش استقلال‌های Fold-4 Cross Validation (ICSA) است. به این صورت که در مطالعه‌های موجود با به بهبود پیش‌بینی معنی‌داری به فرمول می‌باشد، برای امریکایی‌ها و یک بخشهای تصادفی، این دو عملکرد، و نیز جستجوی و بهره‌برداری، در اکتشاف، عامل‌ان جستجو تشویق می‌شوند که منطقی فرآیند جستجو را به دو گرایش تقسیم می‌کنند: اکتشاف طبیعت‌دیده مدل‌های اکتشافی به عنوان یکی از بزرگترین ازداحات آدمی، در این مطالعه، بهترین نسبت به کارکرد الگوریتم بهینه‌سازی ملخ انجام شده است.

به‌طور کلی، الگوریتم‌های الگوریتم‌های الکترومیکی از طریق مدل‌های تصادفی در بازه تعدادی تصادفی در بازه انتخاب می‌شوند و با توجه به اعداد تصادفی، مدل‌های تصادفی در بازه می‌توانند به صورت میانگین و انحراف معیار نتایج بدهند. سپس، آزمون‌هایی به منظور پیش‌بینی نتایج انجام می‌shall
در این مقاله از ویژگی‌های ساختاری بر پایه شکل هندسی تجدیدی سرطانی استخراج شده از تصاویر میکروسکوپی بهبود یافته توسط روش‌های پردازش تصاویر گره، سیگنال، داده‌ها به عنوان داده‌ها با استفاده از روش RBF و Linear می‌باشد. همچنین مدل SVM با استفاده از سه روش کرنل RBF، Polynomial و Nesterovs می‌باشد. معمولاً داده‌های مورد استفاده در الگوریتم بکارگیری می‌شود.

جدول ۱: مقادیر متوسط، همبستگی و اختصاصی بین داده و اینده آخرین حاصل از بکارگیری طبقه‌بندی ناشر صفدریان و همکاران. پردازش تصاویر ماموگرافی برای طبقه‌بندی توده‌های سرطانی سینه با استفاده از روش‌های ساختاری بر پایه طیف‌پذیری بهبود یافته گره، سیگنال، داده‌ها به عنوان داده‌ها با استفاده از روش RBF و Linear می‌باشد. همچنین مدل SVM با استفاده از سه روش کرنل RBF، Polynomial و Nesterovs می‌باشد. معمولاً داده‌های مورد استفاده در الگوریتم بکارگیری می‌شود.
جدول 1: نتایج حساسیت و پرداختهای برای طبقه‌بندی کننده SVM به‌منظور شده

فرستم	روی طبقه‌بندی	SVM (Polynomial)	SVM (Linear)	SVM (RBF)
میانگین	میزان	۸۷/۳±۲/۸	۹۷/۳±۰/۹	۹۴/۴±۲/۱
تکرار	۱۵/۲±۱/۲	۹۷/۳±۰/۲	۹۷/۸±۰/۳	۸۹/۱±۱/۵
حساسیت	میزان	۹۰/۰±۰/۳	۹۴/۱±۰/۵	۹۶/۵±۱/۲
تکرار	۹۷/۳±۰/۹	۹۹/۰±۰/۱	۹۹/۷±۰/۸	۹۷/۷±۱/۲

جدول 2: نتایج حساسیت و پرداختهای برای طبقه‌بندی کننده SVM به‌منظور شده

فرستم	روی طبقه‌بندی	SVM (Polynomial)	SVM (Linear)	SVM (RBF)
میانگین	میزان	۸۷/۳±۲/۸	۹۷/۳±۰/۹	۹۴/۴±۲/۱
تکرار	۱۵/۲±۱/۲	۹۷/۳±۰/۲	۹۷/۸±۰/۳	۸۹/۱±۱/۵
حساسیت	میزان	۹۰/۰±۰/۳	۹۴/۱±۰/۵	۹۶/۵±۱/۲
تکرار	۹۷/۳±۰/۹	۹۹/۰±۰/۱	۹۹/۷±۰/۸	۹۷/۷±۱/۲

نتایج حاصل از به‌کارگیری روش طبقه‌بندی کننده SVM در فارنگن طبقه‌بندی شده‌اند. در این پژوهش پس از شبیه‌سازی تصاویر و تغییر آنها توسط فلتر‌های مختلف، منطقه مشکوک به روی سطح سطح در شدت و تنظیم مقدار روش اتصالی است. پس از احتمال انتخاب شدن، در آن‌ها توسط الگوریتم استفاده شده است. مدل داخل تدوین و با استفاده از مدل‌بندی انسا، شان ویژگی‌های پیش‌بندی را به‌نموده این مدل مرکز توپ مرز حاضر تا به‌منظور مدل کننده و ساختاری از مدل‌بندی است. در این پژوهش پیش‌بندی برای دریافت توده‌های سرطانی از مدل‌بندی است. در این پژوهش پیش‌بندی برای دریافت توده‌های سرطانی از مدل‌بندی است. در این پژوهش پیش‌بندی برای دریافت توده‌های سرطانی از مدل‌بندی است.
جدول ۱. مقایسه بهترین نتایج مطالعه‌های حاضر با بهترین نتایج مطالعات گذشته

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	روش تجزیه و تحلیل	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	انجام تحقیق و تجزیه	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	شبکه عصبی	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۵۷۷	۱۳۹۹	۲۳ خرداد و تیر	جدول	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]
۷۱۷	۱۳۹۹	۲۳ خرداد و تیر	جدول	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]
۸۸۸	۱۳۹۹	۲۳ خرداد و تیر	جدول	۹۷/۸۲	WBCD	WDBC	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]

شماره	دوره	تاریخ	روش پژوهش	یکپارچه داده	پایگاه داده	رابط مشترک	همکاران
۱۰۰	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۲۳۳	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
۷۷۷	۱۳۹۹	۲۳ خرداد و تیر	استخراج و بررسی	۹۷/۸۲	MIAS	DDSSM	همکاران [۱۱]
نحوه برای کلاسیک کشش تصویر های کلی پردازش تصاویر پژوهشی تیم می‌گردد. رویکردهای کمپیوتری برای پردازش تصاویر مانند کمک به سیستم‌های تشخیص سرطان و تشخیصی‌های تومور و تیری مورد نظر بررسی می‌شود. عمده رویکرد روش‌های مبتنی بر الگوریتم‌های چندضلعی و کنیدرک اسکی و مربوط به سیستم‌های پردازش تصاویر می‌باشد.

روش‌های بیشتر تصویر در زمینه تشخیص سرطان سینه بر اساس شیکش تصویری دانشگاهی و سایر دانشگاه‌های ایران در سال 1399 تولد یافتند. از دوره‌های Random Forest، IBK و Forest REP Tree روش‌های بیشتر تصویر در دو دسته کلی بخش بندی به کمک ویژگی‌های ساختاری (که دارای زیربخش‌های روش‌های وابسته به لبه، روش‌های وابسته به ناحیه) و روش‌های بخش بندی آماری استفاده می‌کنند.

علاوه بر این، رویکردهای ساختاری که بطور مستقیم تصویر را به شکل آماری می‌شناختند. استفاده از ویژگی‌های مانند کنیدرک اسکی و مربوط به شکل آماری می‌باشد.

با توجه به بررسی این منابع درخصوص 25 مقاله، معرفی کردند که تشخیص روش‌های سرطان سینه و ضایعات موجود در تصاویر پزشکی به هدف کشف پارامترهای موجود در تئوری بررسی می‌شود که روش‌های پردازش تصاویر در این مقاله برای آشکارسازی توده‌های سرطانی موجود در تصاویر پزشکی مورد بررسی قرار گرفته است.

شماره	تبعیض	دقت	حساسیت	پیش‌بینی	مترال‌پیز	میکروکان	همایش	دکتر	فنیهای	متأسفانه
ناصر صفدریان و همکاران. پردازش تصاویر ماموگرافی برای طبقه‌بندی توده‌های سرطان سینه با استفاده از روش طبقه‌بندی بردار پشتیبانی با بکارگیری الگوریتم بهینه‌سازی ملخ
References

[1] World Health Organization. Cancer: Early diagnosis and screening [Internet]. 2020 [Retrieved 6 Aug 2020]. Available at: https://www.who.int/cancer/prevention/diagnosis-screening/en

[2] Center of Disease Control. [Report of registered cancer cases (Persian)]. Tehran: Center of Disease Control; 2004.

[3] Baines CJ, McFarlane DV, Miller AB. The role of the reference radiologist. Estimates of inter-observer agreement and potential delay in cancer detection in the national breast screening study. Investigative radiology. 1990; 25(9):971-6. [DOI:10.1097/00004424-199009000-00002] [PMID]

[4] Wallis MG, Walsh MT, Lee JR. A review of false negative mammography in a symptomatic population. Clin Radiol. 1991; 44(1):13-5. [DOI:10.1016/0009-9260(91)80218-1]

[5] Behnam H, Zakeri F, Gifani P, Torkashvand P, Shalbaf A, [Ultrasound Imaging Processing (Persian)]. Tehran: Ishaqiyia Publishing; 2011.

[6] Nick Ravan Shalmani A, Karami Mohammadi M. [Diagnosis of breast cancer masses in computer aided mammography images (Persian)]. The 3rd International Conference on Recent Innovations in Electrical and Computer Engineering, 9 September 2016; Tehran, Iran.

[7] Abbaspour Kazerooni I, Haddad Nia J. [Introducing a precise intelligent system for mammographic image separation based on density of tissues and masses (Persian)]. Iran J Breast Dis. 2013; 6(1).

[8] Naseri Noroozani S, Shayegan MA. [Clinical stage detection of breast cancer patients using tnm system and ant colony algorithm (Persian)]. Iran J Breast Dis. 2018; 11(3):56-70.

[9] Jabbari H, Bigdeli N, Khadem A. [A new hybrid approach to segmentation and diagnosis of tumors in breast mammography images (Persian)]. Iran J Breast Dis. 2016; 9(3):14-24.

[10] Tavakkolah P, Safabakhsh R. [A new approach to classifying and classifying breast cancer masses (Persian)]. Third Information and Knowledge Technology Conference. 6-8 December 2007; Tehran; Iran.

[11] Sheikhpour Ro, Sheikhpour Ra. [Diagnosis of breast cancer using non-parametric estimation of nuclear methods-based probability density (Persian)]. Razi J Med Sci. 2016; 23(144):300-9.

[12] Pezeshki H, Rastgarpour M, Sharif A, Yazdani S. Extraction of spiculated parts of mammogram tumors to improve accuracy of classification. Multimed Tools Appl. 2019; 78:1-25. [DOI:10.1007/s11042-019-7165-4]

[13] Mughal B, Sharif M, Muhammad N, Saba T. A novel classification scheme to decline the mortality rate among women due to breast tumor. Microsc Res Tech. 2018; 81(2):171-80. [DOI:10.1002/jemt.22961] [PMID]

[14] Torres W, Oseas A, Sousa A, Silva FA. Functional Diversity applied to the false positive reduction in breast tissues based on digital mammography. 2018 IEEE Symposium on Computers and Communications (ISCC). Natal. 2018; 25:1120-25. [DOI:10.1109/ISC.2018.8538658]

[15] Mohamed BA, Salem NM. Automatic classification of masses from digital mammograms. 2018, 35th National Radio Science Conference (NRSC). 2018 Mar 20; 495-502. IEEE. [DOI:10.1109/NRSC.2018.8354408]

[16] Pérez M, Benalcázar ME, Tusa E, Rivas W, Conci A. Mammogram classification using backpropagation neural networks and texture feature descriptors. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). 2017 Oct 16; 1-6. [DOI:10.1109/ETCM.2017.8247515]

[17] Digital Database for Screening Mammography. Available at: http://compbiomed.2013.01.004

[18] Radvel A, Surendiran B. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories. Comput Biol Med. 2013; 43(4):259-67. [DOI:10.1016/j.compbiomed.2013.01.004] [PMID]

[19] Huang T, Yang GJ, Tang G. A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process. 1979; 27(1):13-8. [DOI:10.1109/TASSP.1979.1163188]

[20] Massodi P, Saffarian N, Kalantar B. [Detection and classification of breast cancer using feature extraction from mammography images by image processing technique and neural network (Persian)]. International Conference on Non-Linear System & Optimization in Computer & Electrical Engineering, May 2015: Dubai, United States of Emirates.

[21] Fradkin D, Muchnik I. Support vector machines for classification. DI-MACS series in discrete mathematics and theoretical computer science. 2006; 70:13-20.

[22] Saremi S, Mirjalili S, Lewis A. Grasshopper optimisation algorithm: Theory and application. Adv Eng Softw. 2017;105:30-47. [DOI:10.1016/j.advengsoft.2017.01.004]

[23] Saffarian N, Hedyezadeh M. Detection and classification of breast cancer in mammography images using pattern recognition methods. Multidiscip Cancer Invest. 2019; 3(4):13-24 URL: http://mcijournal.com/article-1-229-en.html [DOI:10.30699/acadpub.mci.3.4.13]

[24] Ghaffari H, Mostashari M, Mahmoodi M. [Designing a system for detection of pulmonary nodules in lung ct images using support vector machine classifier (Persian)]. J Health Biomed Informatics, Med Informatics Res Center. 2017; 3(4):300-9.

[25] Binaz A, Abbasi A, Shamsi M. [A comprehensive overview of segmentation of medical images of magnetic resonance in the human brain: methods, clinical applications, advantages and disadvantages (Persian)]. Majlis Electrical Engineering Conference. 2012: New Majlis City: Iran.
