Title:

Ge N-Channel MOSFETs with ZrO$_2$ Dielectric Achieving the Improved Mobility

Authors, institutional addresses, and email addresses:

LuLu Chou is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. Her email is 1341768788@qq.com.

Yan Liu is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. Her email is xdliuyan@xidian.edu.cn.

Yang Xu is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. His email is xusf1993@163.com.

Yue Peng is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. Her email is ypeng@xidian.edu.cn.

Huan Liu is with the Zhijiang Lab, Hangzhou, China. His email is liuh@zhejianglab.com.

Genquan Han is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. His email is gqhan@xidian.edu.cn, and he is the corresponding author of this paper.

Yue Hao is with the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China. His email is yhao@xidian.edu.cn.
Ge N-Channel MOSFETs with ZrO₂ Dielectric Achieving the Improved Mobility

Lulu Chou¹, Yan Liu¹, Yang Xu¹, Yue Peng¹, Huan Liu², Genquan Han¹, and Yue Hao¹

Abstract

High mobility Ge nMOSFETs with ZrO₂ gate dielectric are demonstrated and compared against transistors with Al₂O₃/ZrO₂, ZrO₂, and O₃/ZrO₂ gate dielectrics. The Al₂O₃/ZrO₂ provides for dramatically enhanced-effective electron mobility (μ_{eff}), boosting transistor drive current. Ge nMOSFETs with the Al₂O₃/ZrO₂ gate insulator achieve a 50% μ_{eff} improvement as compared to the Si universal mobility at an inversion charge density (Q_{inv}) of 5 × 10^{12} cm^{-2}. An Al₂O₃ interfacial layer leads to a boost in μ_{eff} but increases capacitance equivalent thickness (CET). Utilizing O₃ oxidation of Ge surface, Al₂O₃-free Ge nMOSFETs having a CET of 1.1 nm obtains a peak μ_{eff} of 682 cm²/Vs, which is higher than that of the Si universal mobility at the similar Q_{inv}.

Keywords: Germanium, ZrO₂, MOSFET, CMOS, Mobility

Background

GERMANIUM (Ge) has exhibited the advantages of higher carrier mobility and lower processing temperature compared with the Si devices. These make Ge to be an alternative for the applications of ultrascaled CMOS logic devices and thin-film transistors (TFTs) as top-layer in three-dimensional integrated circuits[1-3]. In the past few years, great efforts focused on surface passivation, gate dielectric, and channel engineering for Ge p-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) have contributed to the significant improvement of electrical performance for the devices.

But for Ge n-channel MOSFETs, the low effective carrier mobility (μ_{eff}) strongly limits the performance of the transistors. Various surface passivation techniques including Si passivation [1], plasma post oxidation [4], and InAlP passivation [5], and several high-k dielectrics including HfO₂, ZrO₂ [6-8], Y₂O₃ [9], and La₂O₃ [10] have been explored in Ge nMOSFETs to boost the electron μ_{eff}. It was demonstrated that ZrO₂ dielectric integrated with Ge channel can provide a robust interface due to that a GeOₓ interfacial layer can react and intermix with the ZrO₂ layer [7]. A decent hole μ_{eff} has been reported in Ge p-channel transistors [6-8], while there is still a lot of room for improvement in electron μ_{eff} for their counterparts.

In this work, Ge nMOSFETs with ZrO₂ gate dielectric are fabricated to achieve the improved μ_{eff} over Si in the entire range of the inversion charge density (Q_{inv}). Ge transistors obtain a 50% improvement in electron μ_{eff} compared to the Si universal mobility at a medium Q_{inv} of 5.0 × 10^{12} cm².

Methods

The key process steps for fabricating Ge nMOSFETs on 4-inch p-Ge(001) wafers with a resistivity of 0.136 ~ 0.182 Ω·cm are shown in Fig. 1(a). The source/drain (S/D) regions were implanted with the phosphorous ion at a dose of 1×10^{15} cm⁻² and an energy of 30 keV followed by the dopant activation at 600°C. After the pre-gate cleaning, Ge wafers were loaded into an atomic layer deposition chamber for the formation of the gate dielectric layer(s): Al₂O₃/O₃ oxidation/ZrO₂, ZrO₂, or O₃ oxidation/ZrO₂ for wafers A, B, or C, respectively. For wafer A, 0.9 nm Al₂O₃ was used to protect the channel surface during O₃ oxidation. O₃ oxidation was carried out at 300°C for 15 minutes for both wafer A and C. For all the wafers, the thickness of ZrO₂ was ~ 3.3 nm. Subsequently TiN(100nm) gate metal was deposited via physical reactive sputtering, and lithography patterning and reactive ion etching were used to form the gate electrode. After that, a 25-nm thick Ni layer was deposited in S/D regions. Finally, the post metallization annealing (PMA) at 350°C was carried out to form the Ni germanidation and improve the interface quality. Schematic and microscope image of the fabricated transistor are shown in Figs. 1(b) and (c), respectively.

Figs. 2(a) and (b) show the high-resolution

¹ Corresponding author: gqhan@xidian.edu.cn
² State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China.
transmission electron microscope (HRTEM) images of the gate stacks on wafer A and B, respectively. The unified thickness of the $\text{Al}_2\text{O}_3/\text{GeO}_x$ interfacial layer (IL) for wafer A is ~ 1.2 nm indicating the $0.2-0.3$ nm GeO$_x$. For the device on wafer B, an ultrathin GeO$_x$ IL was experimentally demonstrated [7].

Results and Discussion

The measured capacitance (C) and the leakage current (J) characteristics for Ge MOS capacitors on wafer A, B, and C are measured and shown in Fig. 3(a) and (b), respectively. The capacitance equivalent thickness (CET) of the devices on wafer A, B, and C are extracted to be 2.1, 0.9, and 1.1 nm, respectively. Assuming the GeO$_x$ IL provides an extra equivalent oxide thickness (EOT) of ~ 0.2 nm for wafer A and C by comparing wafer B and C, the 3.3 nm ZrO$_2$ contributes an EOT of ~ 0.9 nm with $κ$ value of ~ 14.3.

The GeO$_x$/Al$_2$O$_3$ IL for wafer A and GeO$_x$ IL for wafer C produce the EOT of 1.2 and 0.3 nm, respectively. The CET of the devices can be further reduced by decreasing the IL thickness or improving the interface quality, and enhancing the permittivity of ZrO$_2$ with some surface passivation, e.g. NH$_3$/H$_2$ plasma treatment [6].

Fig. 3(c) compares J vs. CET characteristics for the Ge nMOSFETs in this work against values for other reported Ge devices [5,11-15].

Fig. 4(a) shows measured drain current (I_D) and source current (I_S) vs. gate voltage (V_G) curves of Ge nMOSFETs from wafer A, B, and C. All transistors have a gate length L_G of 4 μm and a gate width W of 100 μm. The point subthreshold swing (SS), defined as $dV_G/d(\log I_D)$, as a function of I_D curves for the transistors in Fig. 4(a) are calculated and shown in Fig. 4(b). It is clarified that the transistor on wafer A exhibits the degraded I_D leakage floor and SS compared to the devices on wafer B and C. This should be attributed to the fact that the device with the Al$_2$O$_3$ inserted layer has a higher density of interface traps (D_{it}) within the bandgap of the Ge channel in comparison with the wafer B and C.

Fig. 4(c) shows the measured output characteristics i.e. I_D-V_G curves for various values of gate overdrive [V_G-V_{TH}] of the devices demonstrating that the Ge transistor on wafer A achieves significantly improved drive current compared to the devices on wafer B and C. Here, V_{TH} is defined as V_G corresponding to an I_D of 10^{-7} A/μm. The boosted I_D for transistors on wafer A is attributed to the higher $μ_{eff}$. The Al$_2$O$_3$ layer has not led to the degradation of D_{it} performance near the conduction band of the Ge channel.

Fig. 5(a) shows the total resistance R_{tot} as a function of L_G for the Ge nMOSFETs with ZrO$_2$ dielectric with an L_G ranging from 2 μm to 10 μm. The values of R_{tot} are extracted at a gate overdrive of 0.6V and a V_D of 0.05 V. The S/D resistance R_{SD} of the transistors is extracted to be ~ 13.5 kΩ-μm, utilizing the fitted lines intersecting at the y-axis. The channel resistance R_{CH} values of the devices are obtained by the slope of the fitted lines, i.e. $ΔR_{tot}/ΔL_G$, which can be used for calculating the $μ_{eff}$ characteristics of Ge nMOSFETs. Fig. 5(b) shows the inversion gate capacitance C_{inv} as a function of V_G curves for the Ge nMOSFETs. The device on wafer B achieves the highest C_{inv} due to its smaller physical thickness. To evaluate the interface quality, interface-trap densities D_{it} were extracted utilizing Hill’s method [16].

It is known that the calculated values correspond to the midgap D_{it}. The device with Al$_2$O$_3$ IL on wafer A has a higher midgap D_{it} compared to the devices on wafer B and C. This is consistent with the results in Fig. 3(a) and Fig. 4(a), and the higher midgap D_{it} gives rise to a larger depletion capacitance dispersion in wafer A causing a higher leakage current of I_{BS} in comparison with the other two wafers. Note the wafer A should have the lower D_{it} near the conduction bandgap due to its higher $μ_{eff}$ over wafer B and C.

It is well known that $μ_{eff}$ is the bottleneck for high drive current and transconductance in Ge nMOSFETs. Here, $μ_{eff}$ can be calculated by

$$μ_{eff} = 1/W[Q_{inv}(ΔR_{tot}/ΔL_G)]$$

where $ΔR_{tot}/ΔL_G$ is the slope of the R_{tot} vs. L_G as shown in Fig. 5(a). Q_{inv} can be obtained by integrating the measured C_{inv} vs. V_G curves. In Fig. 6, we compare the $μ_{eff}$ vs. Q_{inv} of the Ge nMOSFETs on wafer A, B, and C with those reported previously in [17-21]. The extracted peak $μ_{eff}$ values of the transistors on wafer A and C are 795 and 682 $\text{cm}^2/\text{V} \cdot \text{s}$, respectively, and that of Ge nMOSFETs on wafer B is 433 $\text{cm}^2/\text{V} \cdot \text{s}$. Ge nMOSFETs with Al$_2O_3$ IL achieve a significantly improved $μ_{eff}$ in comparison with the transistors on wafer B or C, the devices in [17-21] in a high field, and Si universal mobility in the entire Q_{inv} range. At a Q_{inv} of $5 \times 10^{12} \text{ cm}^2$, a 50% $μ_{eff}$ enhancement is achieved in devices on wafer A as compared to the Si universal mobility. This demonstrates that by protecting the channel surface using Al$_2$O$_3$, a high-quality interface between gate insulator and Ge is realized to boost the mobility characteristics. $μ_{eff}$ in transistors on wafer C is higher than the Si universal at a Q_{inv} of $2.5 \times 10^{12} \text{ cm}^2$, although it rapidly decays with the increase of Q_{inv} range. This indicates that the used O$_3$ oxidation before ZrO$_2$ deposition does not lead to enough flat channel.
surface to effectively suppress the surface roughness scattering of the carrier at high Q_{inv}. Optimizing the O$_2$ oxidation process or reducing the Al$_2$O$_3$ IL thickness can make the Ge transistor achieve a reduced CET while maintaining a higher μ_{eff} at the high Q_{inv}.

Conclusions

The impacts of gate dielectric structure and morphology on Ge nMOSFET electrical characteristics are investigated. An Al$_2$O$_3$/ZrO$_2$ gate dielectric provides for significantly improved μ_{eff} as compared to the Si universal mobility. μ_{eff} can be improved by inserting an Al$_2$O$_3$ layer between the ZrO$_2$ and Ge channel, which however inevitably leads to a larger CET. Al$_2$O$_3$-free Ge nMOSFETs with O$_2$ oxidation of the Ge surface prior to ZrO$_2$ deposition achieve a peak μ_{eff} of 682 cm2/V·s which is higher than that of Si at the similar Q_{inv}.

Abbreviations

Ge: Germanium; ZrO$_2$: zirconium dioxide; Al$_2$O$_3$: aluminum oxide; O$_2$: Ozone; Si: silicon; PMA: post metal annealing; PDA: post deposition annealing; IL: interfacial layer; TiN: Titanium nitride; MOSFETs: Metal-oxide-semiconductor field-effect transistors; ALD: Atomic layer deposition; HF: Hydrofluoric acid; μ_{eff}: effective carrier mobility; PPO: Plasma post oxidation; SS: Subthreshold swing; CET: capacitive equivalent thickness; EOT: equivalent oxide thickness; Qinv: inversion charge density; HREM: High resolution transmission electron microscope; Ni: Nickel; GeO$_x$: Germanium oxide; I$_{DS}$: drain current; V_{GS}: gate voltage; V_{TH}: threshold voltage.

Acknowledgments

Not applicable.

Funding

The authors acknowledge support from the National Key Research and Development Project (Grant No. 2018YFB2200500 and 2018YFB2202800) and the National Natural Science Foundation of China (Grant No. 62025402, 91964202, 61534004, 61874081, 62021004, and 62004149).

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

LLC carried out the experiments and drafted the manuscript. HL and YP provided the discussion on the results. GQH and YL supported the study and helped to revise the manuscript. YH provided constructive advice in the drafting. All the authors read and approved the final manuscript.

Author’s information

1. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, People’s Republic of China.

2. Zhejiang Lab, Hanzhou, China.

Availability of Data and Materials

The datasets supporting the conclusions of this article are included in the article.

References

1. H. Arimura, D. Cott, G. Boccardi, R. Loo, K. Wostyn, S. Brus, E. Capogreco, A. Opheeeck, L. Witters, T. Coard, S. Suhard, D. van Dorp, K. Kenis, L.-A. Ragnarsson, J. Mard, F. Holsteins, V. De Heyn, D. Mocuta, N. Collaert, and N. Horiguchi (2019) A record Q_{inv}/SSμ_{eff} and PBTI reliability in Si-passivated Ge nFinFETs by improved gate stack surface preparation. In VLSI Tech. Dig: T92 – T93.

2. Y.-S. Li, C.-Y. Wu, C.-Y. Liao, W.-H. Huang, J.-M. Shieh, C.-H. Chou, K.-C. Chuang, J.-D. Luo, W.-S. Li, and H.-C. Cheng (2018) High-Performance Germanium Thin-Film Transistors With Single-Crystal Like Channel via Continuous-Wave Laser Crystalization. IEEE Electron Device Lett 39: 1864 – 1867.

3. C.-C. Yang, J.-M. Shieh, T.-Y. Hsieh, W.-H. Huang, H.-H. Wang, C.-H. Shen, T.-T. Wu, C.-Y. Chen, K.-S. Chang-Liao, J.-H. Shiu, M.-C. Wu, and F.-L. Yang (2014) V_{TH} adjustable self-aligned embedded source/drain SiGe nanowire FETs and dopant-free NVMs for 3D sequentially integrated circuit. In IEDM Tech. Dig: 410 – 413.

4. R. Zhang, J. C. Lin, X. Yu, M. Takenaka, and S. Takagi (2014) Impact of plasma Postoxidation temperature on the electrical properties of Al$_2$O$_3$/GeO$_x$/Ge pMOSFETs and nMOSFETs. IEEE Trans Electron Devices 61:416 – 422.

5. X. Gong, Q. Zhou, M. H. S. Owen, X. Xu, D. Lei, S.-H. Chen, G. Tsai, C.-C. Cheng, Y.-R. Lin, C.-H. Wu, C.-H. Ko, and Y.-C. Yeo (2014) InAlP-Capped (100) Ge nFETs with 1.06 nm EOT: Achieving record high peak mobility and first integration on 300 mm Si substrate. In IEDM Tech. Dig: 9.4.1 - 9.4.4.

6. C.-M. Lin, H.-C. Chang, Y.-T. Chen, I.-H. Wong, H.-S. Lan, S.-J. Luo, J.-Y. Lin, Y.-J. Tseng, C. W. Liu, C. Hu, and F.-L. Yang (2012) Interfacial layer-free ZrO$_2$ on Ge with 0.39-nm EOT, $k_{ox} \sim 2 \times 10^{-2}$ A/cm2 gate leakage, $SS = 85$ mV/dec, $I_{ON}/I_{OFF} = 10^{10}$, and high strain response. In IEDM Tech. Dig: 23.2.1 - 23.1.4.

7. H. Liu, G. Han, Y. Xu, Y. Liu, T.-J. King, Liu, and Y. Hao (2019) High-Mobility Ge pMOSFETs with Crystalline ZrO$_2$ Dielectric. IEEE Electron Device Lett 40: 371 – 374.

8. H. Liu, G. Han, J. Zhou, Y. Liu, and Y. Hao (2021) High-Mobility Germanium-on-Insulator P-Channel FinFETs. Sci. China Inf Sci 64: 149402:1 – 149402:2.

9. T. Nishimura, C. H. Lee, Y. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Tortumi (2011) High-electron-mobility Ge n-channel metal–oxide–semiconductor field-effect transistors with high-pressure oxidized Y$_2$O$_5$. Appl. Phys. Express 4: 064201-1 - 064201-3.

10. W. B. Chen, C. H. Cheng, C. W. Lin, P. C. Chen, and Albert Chin (2011) High-field mobility metal-gate/high-k Ge n-MOSFETs with small equivalent-oxide-thickness. Solid-State Electron 55: 64 - 67.

11. Y. Kamata, K. Ikeda, Y. Kamimuta, and T. Tsuchiya (2010) High-k/η-MOSFETs with strontium germainde interlayer for EOT scalable CMOS application. In VLSI Tech. Dig: 211 – 212.

12. C.-C. Li, K.-S. Chang-Liao, L.-J. Liu, T.-M. Lee, C.-H. Fu, T.-C. Chen, J.-W. Cheng, C.-C. Lu, and T.-K. Wang (2014) Improved electrical characteristics of Ge mos devices with high oxidation state in HfGeO$_x$ interfacial layer formed by in situ desorption. IEEE Electron Device Lett 35: 509 – 511.

13. C.-C. Li, K.-S. Chang-Liao, W.-F. Chi, M.-C. Li, T.-C. Chen, T.-H. Su, Y.-W. Chang, C.-C. Tsai, L.-J. Liu, C.-H. Fu, and C.-C. Lu (2016) Improved Electrical Characteristics of Ge PMOSFETs With ZrO$_2$/HfO$_2$ Stack Gate Dielectric. IEEE Electron Device Letter 37: 12 – 15.

14. R. Zhang, P. C. Huang, J. C. Lin, N. Taoka, M. Takenaka, and S. Takagi (2013) High-mobility Ge p- and n-MOSFETs with 0.7-nm EOT using HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stacks fabricated by plasma postoxidation. IEEE Trans Electron Devices 60: 927 – 934.

15. W. Bai, N. Lu, J. Liu, A. Rammrez, D. L. Kwong, D. Wristers, A. Ritenour, L. Lee, and D. Antoniadis (2003) Ge MOS Characteristics with CVD HfO$_2$ Gate Dielectric and TaN Gate Electrode. In VLSI Tech. Dig: 121 - 122.

16. W. A. Hill and C. C. Coleman (1980) A single-frequency approximation for interface-state density determination. Solid-State Electron 23: 987 – 993.

17. W. Chang, H. Ota, and T. Maeda (2016) Gate-First High-Performance Germanium nMOSFET and pMOSFET Using Low Thermal Budget Ion Implantation After Germanidation Technique. IEEE Electron Device Lett 37: 253 – 256.

18. R. Zhang, N. Taoka, Po-Chin Huang, M. Takenaka, and S. Takagi (2011) 1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeO$_x$/Ge MOS interfaces fabricated by plasma post oxidation. In IEDM Tech. Dig: 28.3.1 - 28.3.4.
19 R. Zhang, P. Huang, J. Lin, M. Takenaka, and S. Takagi (2012) Physical mechanism determining Ge p- and n-MOSFETs mobility in high Ns region and mobility improvement by atomically flat GeOx/Ge interfaces. In IEDM Tech. Dig: 16.1.1 - 16.1.4.

20 C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi (2009) Record-high electron mobility in Ge n-MOSFETs exceeding Si universality. In IEDM Tech. Dig: 19.2.1 - 19.2.4.

21 B. Liu, X. Gong, R. Cheng, P. Guo, Q. Zhou, M. H. S. Owen, C. Guo, L. Wang, W. Wang, Y. Yang, Y-C. Yeo, C.-T. Wan, S.-H. Chen, C.-C. Cheng, Y.-R. Lin, C.-H. Wu, C.-H. Ko, and C. H. Wann (2013) High performance Ge CMOS with novel InAlP-passivated channels for future sub-10 nm technology node applications. In IEDM Tech. Dig: 26.7.1 - 26.7.3.

Figure title and legend section:

Fig. 1 (a) Key process steps for fabricating Ge nMOSFETs. (b) Cross-sectional schematic and (c) microscope image of the fabricated devices.

Fig. 2 HRTEM images of (a)TiN/ZrO2/Al2O3/GeOy/Ge, (b)TiN/ZrO2/GeOy/Ge stacks for the devices on wafer A and B, respectively.

Fig. 3 (a) Measured C as a function of voltage V characteristics for Ge pMOS capacitors on wafer A, B, and C. (b) The J vs. V curves for the devices. (c) Benchmarking of J (extracted at VFB ± 1 V) of the Ge MOS capacitors in this work against data obtained for similar bias conditions from the literature.

Fig. 4 (a) Measured I0 and I0 vs. VGS curves of Ge nMOSFETs on wafer A, B, and C. (b) Point SS as a function of I0 for the transistors. (c) I0-V0 characteristics show that the Ge nMOSFET on wafer A has a higher drive current compared to the devices on wafer B and C.

Fig. 5 (a) RSD vs. L0 curves for Ge nMOSFETs on wafer A, B, and C. The fitted line intersecting at the y-axis and the slope of linear fit lines are utilized to extract the RSD and RCH, respectively. (b) Cinv vs. V0 curves for Ge nMOSFETs measured at a frequency of 50 kHz.

Fig. 6 µeff for the Ge nMOSFETs in this work vs. previously published results for unstrained Ge transistors. The devices on wafer A show the improved µeff than the Si universal mobility in the entire range of Qinv.