RANK, RANKL, and OPG in Dentigerous Cyst, Odontogenic Keratocyst, and Ameloblastoma: A Meta-Analysis

Igor Felipe Pereira Lima, Felipe Rodrigues de Matos, Italo de Macedo Bernardino, Ingrede Tatiane Serafim Santana, Walbert de Andrade Vicira, Cauane Blumenberg, Walter Luiz Siqueira, Luiz Renato Ítalo de Macedo Bernardino, Cauane Blumenberg, Walter Luiz Siqueira, Luiz Renato Ítalo de Macedo Bernardino

The aim of this study was to assess and compare RANK, RANKL, and OPG immunoexpression in dentigerous cyst, odontogenic keratocyst, and ameloblastoma. The protocol was registered in PROSPERO (CRD42018105543). Seven databases (Embase, Lilacs, LVIVO, PubMed, Scopus, ScELO, and Web of Science) were the primary search sources and two databases (Open Grey and Open Thesis) partially captured the "grey literature". Only cross sectional studies were included. The JBI Checklist assessed the risk of bias. A meta-analysis with random effects model estimated the values from the OPG and RANKL ratio reported by the individual studies and respective 95% confidence intervals. The heterogeneity among studies was assessed with I2 statistics. Only nine studies met the inclusion criteria and were considered in the analyses. The studies were published from 2008 to 2018. Two studies presented low risk of bias, while seven studies presented moderate risk. The meta-analysis showed the highest OPG>RANKL ratio for dentigerous cyst (ES=43.3%; 95% CI=14.3-74.8) and odontogenic keratocyst (ES=36.8%; 95% CI=18.8-56.7). In contrast, the highest OPG<RANKL ratio was found for ameloblastoma (ES=73.4%; 95% CI=55.4-88.4) and it was higher in the stromal region compared to the odontogenic epithelial region. The results may explain the aggressive potential of ameloblastoma from the higher OPG>RANKL ratio in this tumor, while it was lower for dentigerous cyst and odontogenic keratocyst.

Introduction

Odontogenic cysts and tumors constitute one of the most important lesion groups of the oral and maxillofacial complex (1). Odontogenic tumors are rare and manifest from various clinical features, as well as different histopathological presentations of the epithelium and odontogenic ectomesenchyme (2). On the other hand, cysts originate from Malassez epithelial rests remaining from the dental blade or the reduced enamel epithelium (3). One of the most significant biological events in the pathogenesis of these lesions is osteoclastic cell activation, which results in bone resorption (4).

The balance between bone formation and resorption is required for bone homeostasis, so the tissue may fully function (5,6). Hence, the unbalance of this system has been associated with several bone neoplasias (7). Among the regulating factors of bone resorption, the system that stands out the most is composed by the receptor activator triad of nuclear factor kappa B (RANK), nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG) (8). The RANK works as a signaling receptor of RANKL, while the latter is expressed in the osteoblastic cells of the periodontal ligament (9), binding to RANK and activating osteoclasts to promote bone resorption (10). On the other hand, OPG inhibits the osteoclastogenic process, blocking the RANKL and RANK binding (11).

A tumor may invade bone tissue and affect the balance between resorption and apposition (12). Several studies (4,12-14) have been focused on investigating the correlation of the immunologic expression of RANK, RANKL, and OPG to the development of odontogenic cysts and tumors. However, the scientific literature is still controversial regarding the expression of such proteins in the development of these lesions. Therefore, this study aimed to assess and compare, through a systematic review of the literature, the immunoeexpression of RANK, RANKL, and OPG on dentigerous cyst, odontogenic keratocyst, and ameloblastoma, in order to verify whether the odontogenic keratocyst is more similar to the neoplastic or the cystic profile. The authors tested the following hypothesis: the odontogenic keratocyst will be more similar to the cystic profile.

Material and Methods

Protocol and Registration

This systematic review was performed according to the list of PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols) recommendations.
(15) and the Cochrane guidelines (16). The systematic review protocol was registered in the PROSPERO database under no. CRD42018105543.

Study Design and Eligibility Criteria

This study was a systematic review that aimed to answer the following guiding question: "Is the profile of the RANKL/OPG ratio in the odontogenic keratocyst, assessed by the immunoexpression of RANK, RANKL, and OPG, more similar to the neoplastic or the cystic profile?".

The studies included assessed the expression of the osteoclastogenic factors RANK, RANKL, and OPG in ameloblastoma, dentigerous cyst, and non-syndromic odontogenic keratocyst by immunohistochemistry, without restrictions of year, language, or publication status (In Press).

The following were excluded: 1) Studies involving inflammatory odontogenic cysts; 2) Studies not related to the topic; 3) Review studies, case reports, letters to the editor or editorials, congress abstracts, personal opinions, and books and/or book chapters; 4) Studies with high risk of bias.

Sources of Information and Search

The Embase, Latin-American and Caribbean Health Sciences Literature (LILACS), LIVIVO, PubMed (including MedLine), Scielo, Scopus, and Web of Science databases were the primary study sources. OpenThesis and OpenGrey partially captured the "grey literature". A manual search was also performed through a systematized analysis of the references of the eligible articles. All steps aimed to minimize selection and publication biases.

The MeSH (Medical Subject Headings), DeCS (Health Sciences Descriptors), and Emtree (Embase Subject Headings) resources were used to select the search descriptors. The Boolean operators "AND" and "OR" enhanced the research strategy through several combinations (Table 1). The bibliographic research was performed in March 2019. The results obtained were exported to the EndNote Web™ software (Thomson Reuters, Toronto, Canada), in which duplicates were removed. The remaining results were exported to Microsoft Word™ 2010 (Microsoft™ Ltd, Redmond, WA, USA), in which the remaining duplicates were manually removed.

Study Selection

The studies were selected in three different phases. In the first phase, as a calibration exercise, the reviewers discussed the eligibility criteria and applied them to a sample of 20% of the studies retrieved, so to determine inter-examiner agreement. After achieving a proper level of agreement (Kappa ≥ 0.81), two eligibility reviewers [IFPL and FRM] performed a methodical analysis of the titles of the studies, independently. The reviewers were not blind to the names of authors and journals. Titles not related to the topic were eliminated in this phase. In phase 2, the reviewers [IFPL and FRM] did also analyze the abstracts systematically. Studies not related to the topic, review studies, case reports, letters to the editor or editorials, congress abstracts, personal opinions, and books and/or book chapters were excluded. The studies related to the topic, but without abstracts available were fully analyzed in the third phase.

In this phase, the full texts of preliminary eligible studies were analyzed to verify whether they fulfilled the eligibility criteria. When there was no agreement in the assessment, a third reviewer [LRP] was consulted to make a final decision. The studies rejected were registered separately, explaining the reasons for exclusion.

Process of Data Collection and Extraction

After the selection, the studies were analyzed and two reviewers [IFPL and FRM] extracted their data for use in JBI Systematic Reviews Checklist for Analytical Cross Sectional Studies (17). Two authors [IFPL and FRM] assessed each domain independently and systematically regarding their potential risk of bias, as recommended by the PRISMA-P (15). The reviewers solved any disagreement through discussions, and when both reviewers disagreed, they consulted a third one [LRP] for a final decision.

Risk of Individual Bias of the Studies

The risk of bias of the studies selected was assessed by the Joanna Briggs Institute Critical Appraisal Tools for use in JBI Systematic Reviews Checklist for Analytical Cross Sectional Studies (17). Two authors [IFPL and FRM] assessed each domain independently and systematically regarding their potential risk of bias, as recommended by the PRISMA-P (15). The reviewers solved any disagreement through discussions, and when both reviewers disagreed, they consulted a third one [LRP] for a final decision.

The risk of bias was ranked as High when the study reached up to 49% of "yes" score, Moderate when the study reached from 50% to 69% of "yes" score, and Low when the study reached over 70% of "yes" score.

Summary Measures and Syntheses of Results

A meta-analysis using random effects estimated the pooled values calculated by the ratio between OPG and
Databases	Search strategies (March, 2019)	Results
PubMed	("Odontogenic Tumors"[MeSH Terms] OR "Odontogenic Tumors"[All Fields] OR "Odontogenic Tumor"[All Fields] OR "Dental Tissue Neoplasms"[All Fields] OR "Odontogenic Cysts"[MeSH Terms] OR "Odontogenic Cysts"[All Fields] OR "Cyst, Odontogenic"[All Fields] AND "RANK Ligand"[MeSH Terms] OR "RANK Ligand"[All Fields] OR "Osteoclast Differentiation Factor"[All Fields] OR "RANKL Protein"[All Fields] OR "Osteoprotegerin"[MeSH Terms] OR "Osteoprotegerin"[All Fields] OR "OPG"[All Fields] OR "Osteoclastogenesis Inhibitory Factor"[All Fields] OR "RANKL"[All Fields]) AND "RANK Ligand AND (instance:"regional") AND (db:"LILACS"))	46
LILACS	(Odontogenic Tumors AND RANK) AND (instance:"regional") AND (db:"LILACS")	8
Embase	("odontogenic tumors"/exp OR 'odontogenic tumors' OR 'odontogenic tumor'/exp OR 'odontogenic tumor' OR 'dental tissue neoplasms' OR 'odontogenic cysts'/exp OR 'odontogenic cysts' OR 'odontogenic cysts'/exp OR 'cyst, odontogenic') AND (rank ligand'/exp OR 'rANK ligAND' OR 'osteoclast differentiation factor'/exp OR 'osteoclast differentiation factor' OR 'rank protein' OR 'osteoprotegerin'/exp OR 'osteoprotegerin' OR 'opg' OR 'osteoclastogenesis inhibitory factor'/exp OR 'osteoclastogenesis inhibitory factor' OR 'rANKl'/exp OR 'rANKl')	50
Scopus	("Odontogenic Tumors" OR "Dental Tissue Neoplasms" OR "Odontogenic Cysts") AND ("RANK Ligand" OR "Osteoclast Differentiation Factor" OR "RANKL Protein" OR "Osteoprotegerin" OR "OPG" OR "Osteoclastogenesis Inhibitory Factor" OR "RANKL")	49
LIVIVO	("Odontogenic Tumors" OR "Odontogenic Cyst" OR "Dental Tissue Neoplasms") AND ("RANK Ligand" OR "RANKL Protein" OR "Osteoprotegerin" OR "OPG")	34
Web Of Science	("Odontogenic Tumors" OR "Dental Tissue Neoplasms" OR "Odontogenic Cysts" OR "Cyst, Odontogenic") AND ("RANK Ligand" OR "Osteoclast Differentiation Factor" OR "RANKL Protein" OR "Osteoprotegerin" OR "OPG" OR "Osteoclastogenesis Inhibitory Factor" OR "RANKL")	12
OpenGrey	"Odontogenic Tumors" OR "Odontogenic Cysts"	1
OpenThesis	"Odontogenic Tumors" OR "Odontogenic Cyst"	25
Total		245
Braz Dent J 32(1) 2021

Expression of RANK, RANKL and OPG

RANKL, which were reported as percentages along with the respective 95% confidence intervals and DerSimonian and Laird weights (16,18). The random model was used to minimize the heterogeneity effect between the studies (16,18). The variance of crude estimates was stabilized using the Freeman-Tukey double arcsine transformation (19). The heterogeneity among studies was assessed with I2 statistics and classified as follows: low (I2<25%), moderate (I2=50%), and high (I2>75%) (20). The analyses were performed according to three different OPG and RANKL ratios (OPG>RANKL, OPG<RANKL, and OPG=RANKL), and according to two tissues (epithelium, and stroma). All estimates were assessed regarding the type of lesion. The analyses were performed with the Stata, version 15.1 (Stata Corp., College Station, USA).

Results

Study Selection

The first selection phase resulted in 245 studies distributed in nine electronic databases. After removing duplicates, 120 studies remained for the analysis of titles and abstracts. Then, after reading the titles, 15 studies continued to the analysis of abstracts. After analyzing the abstracts, only 11 studies were considered eligible for the full text reading. The references of the 11 studies were carefully assessed to check for studies retrieved through the main search strategy, but none was found. From the 11 studies included in this phase, two were removed for the following reasons: 1) use of Polymerase Chain Reaction (PCR) for the analysis; and 2) diagnostic study. Therefore, nine studies continued to the qualitative analysis of results. Figure 1 reproduces the process of search, identification, inclusion, and exclusion of articles.

Study Characteristics

Table 2 shows a summary of the main characteristics of the studies. Most part of the studies (five) (13,14,21-23) were performed in Brazil, while the other four studies were conducted in Mexico (24), Turkey (4), Greece (25), and Malaysia (26). The analysis of the nine studies resulted in a total sample of 285 specimens. From the nine studies analyzed, only three (14,22,23) mentioned the ethical criteria involved. As for specimen fixation, five studies (13,14,21,23,25) used 10% formaldehyde and four studies (4,22,24,26) did not mention the means of fixation. All studies (4,13,14,21-26) used immunohistochemistry as the diagnostic method.

Four studies (13,14,22,23) used anti-OPG (N-20; Santa Cruz Biotechnology) and anti-RANKL (N-19; Santa Cruz Biotechnology) primary polyclonal antibodies from rabbits, while two studies (21,25) used anti-OPG (H-249, sc1383, Santa Cruz Biotechnology) and anti-RANKL (FL-327, sc9073, Santa Cruz Biotechnology) primary polyclonal antibodies from rabbits. One study (24) used anti-OPG (clone ab7430 Abcam laboratories), anti-RANK (clone 64C1385 Abcam laboratories), and anti-RANKL (clone 12A668 Abcam laboratories) antibodies. One study (26) used primary antibodies from mice for RANK (AB13918 - Abcam Inc. Cambridge) and RANKL (AB45093 - Abcam Inc. Cambridge), and primary antibodies from rabbits for OPG (AB9986 - Abcam Inc. Cambridge). Moreover, five studies (13,14,22,23,26) used the central lesion of giant cells as positive control. For negative control, all studies (4,13,14,21-26) replaced the primary antibody.

Risk of Bias of Studies

Table 3 shows information regarding the risk of bias and individual quality of the studies included in this systematic review. According to the analysis of the JBI Critical Appraisal Checklist for Analytical Cross Sectional Studies (17), two studies (24,25) presented low risk of bias, while seven studies (4,13,14,21-23,26) presented moderate risk.

Individual Results of Studies

From the nine studies included in this systematic review, six (4,21,13,23,24,26) assessed the immunoreexpression of RANK and RANKL, while all studies (4,13,14,21-26) assessed...
Table 2. Summary of the main characteristics of the eligible studies for qualitative analysis

Author and year	Country	Sample (n)	Cysts and tumors assessed	Ethics committee	Specimen fixation	Diagnostic method
da Silva et al. (21)	Brazil	40	OK, AB, and DC	Yes	10% formaldehyde	Immunohistochemistry
Tekkesin et al (4)	Turkey	40	OK and AB	*	*	Immunohistochemistry
de Moraes et al. (13)	Brazil	20	DC	*	10% formaldehyde	Immunohistochemistry
Nonaka et al. (22)	Brazil	22	OK	Yes	*	Immunohistochemistry
de Moraes et al. (23)	Brazil	20	DC	*	10% formaldehyde	Immunohistochemistry
de Matos et al. (14)	Brazil	58	OK, DC, and AB	Yes	10% formaldehyde	Immunohistochemistry
Iakovou et al. (25)	Greece	29	AB	*	10% formaldehyde	Immunohistochemistry
Siar et al. (26)	Malaysia	15	AB	No	*	Immunohistochemistry
Brito-Mendoza et al. (24)	Mexico	41	OK and DC	*	*	Immunohistochemistry

*Data not informed by the authors; AB=ameloblastoma; DC=dentigerous cyst; OK=odontogenic keratocyst.

Table 3. Risk of bias assessed by the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies.

Authors	Q.1	Q.2	Q.3	Q.4	Q.5	Q.6	Q.7	Q.8	%yes/risk
da Silva et al. (21)	√	--	√	--	--	--	√	√	62.5% (Moderate)
Tekkesin et al (4)	√	√	--	√	--	--	√	√	62.5% (Moderate)
de Moraes et al. (13)	√	√	--	√	--	--	√	√	62.5% (Moderate)
Nonaka et al. (22)	√	--	√	--	√	--	√	√	62.5% (Moderate)
de Moraes et al. (23)	√	--	√	--	√	--	√	√	62.5% (Moderate)
de Matos et al. (14)	√	--	√	--	√	--	√	√	62.5% (Moderate)
Iakovou et al. (24)	√	√	--	√	--	√	√	√	75.0% (Low)
Siar et al. (25)	√	√	--	√	--	√	√	√	62.5% (Moderate)
Brito-Mendoza et al. (24)	√	√	--	√	--	√	√	√	75.0% (Low)

Q.1) Were the criteria for inclusion in the sample clearly defined?; Q.2) Were the study subjects and the setting described in detail?; Q.3) Was the exposure measured in a valid and reliable way?; Q.4) Were objective and standard criteria used for measuring the condition?; Q.5) Were confounding factors identified?; Q.6) Were strategies to deal with confounding factors stated?; Q.7) Were the outcomes measured in a valid and reliable way?; Q.8) Was appropriate statistical analysis used?

Discussion

Odontogenic cysts and tumors are lesions of the oral cavity with the potential to affect the balance of the bone resorption and apposition system (12). However, the scientific literature is still controversial regarding the expression of RANK, RANKL, and OPG in the development of such lesions.

The dentigerous cyst is one of the most common odontogenic cysts of the oral and maxillofacial complex.
Figure 2. Forest plot showing pooled estimates for the OPG>RANKL ratio according to tissue and type of legion, considering an effect size (ES) of 95%.

Figure 3. Forest plot showing pooled estimates for the OPG<RANKL ratio according to tissue and type of legion, considering an effect size (ES) of 95%.

Figure 4. Forest plot showing pooled estimates for the OPG=RANKL ratio according to tissue and type of legion, considering an effect size (ES) of 95%.
Although it is asymptomatic and rarely aggressive, in some cases it may cause significant bone expansion and teeth dislocation (27). On the other hand, the ameloblastoma and the odontogenic keratocyst present a more invasive biological behavior with a potential destructive growth (28). Hence, several studies (4,13,14,21) have been focused on investigating the correlation of the immunologic expression of the osteoclastogenic factors RANK, RANKL, and OPG in the development of such pathologies. The present study proposed to verify whether the profile of the odontogenic keratocyst is more similar to a cystic or neoplastic lesion, which excluded inflammatory cysts from the analysis. It is worth noting that this study extracted only the results from non-syndromic odontogenic keratocysts, considering that other variables may affect the expression of RANK, RANKL, and OPG in the syndromic odontogenic keratocyst.

Immunohistochemistry is a diagnostic method that uses antibodies as specific reagents for detecting antigens in tissue and cell cut-offs, and it is often used for diagnosing neoplasias (29). This type of technique depends on the means of specimen fixation (30), for which 10% formaldehyde is mostly recommended (31). All the eligible studies in the present systematic review performed the immunohistochemistry technique for analyzing the expression of RANK, RANKL, and OPG, agreeing the recommendations of the scientific literature. However, only five studies (13,14,21,23,25) reported specimen fixation in 10% formaldehyde (Table 2).

DNA amplification reactions, as in PCR, are one of the most important molecular biology techniques today (32). Despite this, it is a high-cost method, which involves extraction of genetic material and need experienced professionals to avoid errors inherent to the sensitivity of the technique, such as failure in amplification (33). As a consequence, several laboratories find it difficult to apply it in their routine (34). Based on this, we only included studies that used immunohistochemistry to evaluate the immunoexpression of RANK, RANKL and OPG, because, despite being a technique with less precision than PCR, it is widely used in laboratories.

Most studies (13,14,21-23,25) used polyclonal antibodies to perform the immunohistochemical reaction. Polyclonal antibodies have low specificity, as they bind to different epitopes, increasing the chances of promoting a cross reaction and, consequently, generating unspecific markings (35). The widespread use of polyclonal antibodies in studies the present systematic review may have occurred due to their low cost, when compared to monoclonal antibodies. Therefore, we believe - and strongly suggest - that monoclonal antibodies should be chosen for immunohistochemical reactions, whenever possible.

The RANK is a member of the tumor necrosis factor (TNF) receptor family (36) that works as a signaling receptor of RANKL, while the latter is expressed in the osteoblastic cells of the periodontal ligament (9), binding to RANK and activating osteoclasts to promote bone resorption (10). Thus, the RANKL, which is a protein that also belongs to the TNF family, works by regulating osteoclastic activity (37). Confirming such affirmation, six studies (4,13,21,23,24,26) of the present systematic review

Table 4. Immunoexpression of RANK, RANKL, and OPG

Authors	RANK	RANKL	OPG						
	OK	AB	DC	OK	AB	DC	OK	AB	DC
da Silva et al. (21)	100% (S)								
Tekkesin et al (4)	100% (S)	100% (S)	--	100% (S)	100% (S)	--	100% (S)	--	100% (S)
de Moraes et al. (13)	--	--	100% (S)	--	--	100% (S)	--	--	100% (S)
Nonaka et al. (22)	--	--	--	100% (S)	100% (S)	--	--	100% (S)	100% (O)
de Moraes et al. (23)	--	--	100% (S)	--	--	100% (S)	--	--	100% (S)
de Matos et al. (14)	--	--	--	100% (S)					
Iakovou et al. (25)	--	--	--	100%*	--	--	100%*	--	--
Siar et al. (26)	--	100% (S)	--	--	0% (S)	--	--	0% (S)	--
Brito-Mendoza et al. (24)	100% (S)								

AB=ameloblastoma; DC=dentigerous cyst; OE=odontogenic epithelium; OK=odontogenic keratocyst; S=stroma; *=the authors did not present the results divided by stroma and odontogenic epithelium.
assessed the immunoexpression of RANK in dentigerous cyst, odontogenic keratocyst, and ameloblastoma, and all of them presented positive expression of RANK in both the odontogenic epithelium and stroma, reinforcing the action of this protein in the osteolytic process (Table 4).

The immunoexpression of RANKL was assessed in all the studies included in this systematic review. From the nine studies included, eight (4,13,14,21–25) presented positive expression of RANKL in dentigerous cyst, odontogenic keratocyst, and ameloblastoma in both the odontogenic epithelium and stroma. This result corroborates the findings of the study by Qian and Zuang (38), which assessed 24 ameloblastoma specimens and verified that RANKL was the key factor for the development of osteolastogenesis. However, in the present systematic review, only one study (26) did not present positive expression of RANKL for ameloblastoma, which is incompatible with the biological behavior of this pathology (Table 4). Ameloblastomas are known to be aggressive and locally invasive/destructive tumors. In some cases, bone expansion is so significant that radical resection is the only form of treatment (38). The referred authors of the study (26) suggest that the expression of RANKL may be absent because either the sample studied was a group of indolent tumors or the undergoing dynamic process was associated with bone remodeling induced by the tumor.

The OPG is a receptor of the TNF family and it is secreted by a number of cell types, including osteoblasts (39). This protein works by inhibiting the osteoclastogenic process, thus blocking the RANKL and RANK binding (11). Hence, studies (40,41) have been developed aiming to investigate its potential as a therapeutic agent for bone diseases. All the studies included in the present systematic review assessed the immunoeexpression of OPG, and immunoreactivity was not positive in only two of them (4,26), whereas both verified OPG in the ameloblastoma (Table 4).

Studies (14,25) have shown that assessing the ratio of immunoeexpression of RANKL and OPG is particularly important, considering it may indicate the biological activity and the osteolytic potential of the odontogenic cyst or tumor. From the nine studies included in this systematic review, five (13,14,21,22,25) assessed such ratio. Thus, the highest OPG>RANKL ratio was found for odontogenic keratocyst and dentigerous cyst. These findings agree with the biological behavior of the odontogenic keratocyst and the dentigerous cyst, considering these are lesions with lower bone resorption ability than ameloblastoma, which is a very aggressive tumor (42). It is known that RANKL binds to RANK in the surface of osteoclast precursors, recruiting and activating the tumor necrosis factor receptor–associated factor–6 (TRAF–6). Thus, the TRAF–6 stimulates the activation of the nuclear factor-kB (NF-kB) through the interaction of p62 and the atypical protein kinase C (aPKC), which triggers the transcription of osteoclastogenic genes (43). The NF-kB signaling is essential for osteoclastogenesis (44). Thus, the OPG inhibits the osteoclastogenic events by not allowing the binding of RANKL to RANK and preventing the entire activation cascade of NF-kB from being activated (45). Confirming such findings, authors (12) verified a similar ratio with higher prevalence of OPG than RANKL in the calcifying odontogenic cyst, reinforcing the proposal of the cystic nature of the odontogenic keratocyst. Such ratio may suggest that OPG may be involved in other different biological processes of bone remodeling (22).

However, the pathogenesis of the odontogenic keratocyst is still uncertain (46). The Sonic Hedgehog (Shh) activation has been indicated as one of the main mechanisms involved in the progression of this pathology (47). In normal cells, the Patched (PTCH) transmembrane receptor hinders Shh activation (46). However, in neoplastic cells, the Shh protein binds to the PTCH1 receptor, activating the Smoothened (Smo) transmembrane protein and inducing cell proliferation from the expression of Glioma cytoplasmic proteins (Gli–1 and Gli–2) (48). Consequently, the NF-kB is activated, which is a signaling pathway that participates directly in the osteolytic process (44). It is known that PTCH1 works as an inhibitor of Smo in the absence of the Shh ligand. A study (49) featuring the treatment of cerebral ischemia in rats using polydatin verified an overexpression of PTCH1 and a reduction of NF-kB, which may explain indirectly the OPG>RANKL ratio found in the odontogenic keratocyst, considering that the lower NF-kB activation implies in lower expression of RANKL and, consequently, lower osteolytic potential.

In contrast, the OPG<RANKL ratio was higher for ameloblastoma, considering the stromal region is significantly larger. The results agree with the ameloblastoma activity, considering the stromal region participates actively in the invasion and proliferation of tumor cells (50). A study (51) performed with the immunohistochemical marker for detecting myofibroblasts and anti-α-actin smooth muscle antibody (α-SMA) verified that from the 15 cases of solid ameloblastomas examined, only one did not express α-SMA, indicating a high myofibroblast activity in the development of ameloblastomas. Such aggressiveness from the stroma may be explained by the potential changes in the components of the mitogen-activated protein kinase (MAPK), especially in the BRAF gene, which may be activated by the fibroblast growth factor (FGF) (52). The expression of FGF in ameloblastomas, especially FGF1, FGF2, and FGF3, are important for the positive MAPK regulation (53). The MAPK activation allows the phosphorylation of Raf, MEK, and ERK proteins, inducing cell proliferation (54).

Moreover, a recent study (55) suggested that the...
transforming growth factor-β (TGF-β) e interleukin-1α (IL-1α) têm a capacidade de induzir a expressão de RANKL em estromal fibroblastos de ameloblastomas. A regulação positiva de RANKL é associada a uma regulação negativa de OPG, o que causa o sistema a trabalhar em favor de osteoclastogênese (43). O maior expressão de RANKL permite que se ligue a RANK e consequentemente a ação de NF-κB ativa, que é um mecanismo central de fator de transcrição para o osteoclastogênese potencial de tumores (44). Reinforcing these findings, authors (56) verificaram uma maior expressão imunohistológica de RANKL em relação ao OPG em osteosarcoma, o que sugere que este fenômeno ocorre em osteoclastogênese, que é um tumor semelhante a ameloblastoma, e que seu comportamento agressivo e destrutivo são consequência da expressão de RANKL. De forma semelhante, Sambandam et al. (57) estudaram uma amostra de carcinoma de células escamosas e verificaram um comportamento mais agressivo e osteolítico. Ainda assim, a maioria dos estudos apresentou risco moderado. A metanálise mostrou a maior proporção OPG < RANKL para cisto dentígero (ES=43,3%; IC95%=14,3–74,6%) e ceratocisto odontogênico (ES=26,8%; IC95%=18,8–56,7%). Por outro lado, a maior proporção OPG < RANKL foi encontrada para ameloblastoma (ES=73,4%; IC95%=55,4–88,4%) e foi maior na região estromal em comparação com a região epitelial odontogênica. Os resultados podem explicar o potencial agressivo do ameloblastoma, devido a uma maior proporção OPG < RANKL no nesse tumor, enquanto tal proporção foi menor no cisto dentígero e no ceratocisto odontogênico.

Resumo

O objetivo deste estudo foi avaliar e comparar a imunohistocquência de RANK, RANKL e OPG em cisto dentígero, ceratocisto odontogênico e ameloblastoma. O protocolo foi registrado no PROSPERO (CRD [Oculto]). Sete bancos de dados (Embase, Lilacs, LIVIVO, PubMed, Scopus, SciELO e Web of Science) foram as principais fontes de pesquisa e duas bases de dados (Open Grey e Open Thesis) capturaram parcialmente a “literatura cinza”. Apenas estudos transversais foram incluídos. A ferramenta JBI avaliou o risco de viés. Uma metanálise com modelo de efeitos aleatórios estimou os valores da razão OPG e RANKL relatados pelos estudos individuais e seus respectivos intervalos de confiança de 95%. A heterogeneidade entre os estudos foi avaliada por meio do teste I². Apenas nove estudos preencheram os critérios de inclusão e foram considerados nas análises. Os estudos foram publicados entre 2008 e 2018. Dois estudos apresentaram baixo risco de viés, enquanto sete estudos apresentaram risco moderado. A meta-análise mostrou que a maior proporção OPG < RANKL para cisto dentígero (ES=43,3%; IC95%=14,3–74,6%) e ceratocisto odontogênico (ES=26,8%; IC95%=18,8–56,7%). Por outro lado, a maior proporção OPG < RANKL foi encontrada para ameloblastoma (ES=73,4%; IC95%=55,4–88,4%) e foi maior na região estromal em comparação com a região epitelial odontogênica. Os resultados podem explicar o potencial agressivo do ameloblastoma devido a uma maior proporção OPG < RANKL nesse tumor, enquanto tal proporção foi menor no cisto dentígero e no ceratocisto odontogênico.

Referências

1. Kouhsoltani M, Abdolhosseinzadeh M, Bahramian A, Vakili Saatloo M, Dabbaghhi Tabriz F, Pourlak T. A. A Comparative Study of Macrophage Density in Odontogenic Cysts and Tumors with Diverse Clinical Behavior. J Dent 2018;19:150–154.
2. Philipsen HP, Reichart PA. Classification of odontogenic tumors. A historical review. J Oral Pathol Med 2006;35:525–529.
3. Hunte WI, Moore JK, Main DM. Differences in in vitro growth of epithelium from inflammatory and developmental odontogenic cysts. Br J Oral Maxillofac Surg 1990;28:85–88.
4. Tekkesin MS, Mutlu S, Olgac V. The Role of RANK/RANKL/OPG Signalling Pathways in osteoclastogenesis in odontogenic keratocysts, radicular cysts, and ameloblastomas. Head Neck Pathol 2011;5:248–253.
5. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3:S131–139.
6. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008;473:139–146.
7. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer 2001;92:460–470.
8. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increases in compressed periodontal ligament cells from root resorption. J Dent Res 2006;85:751–756.
9. Ogasa wara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, et al. In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res 2004;39:42–49.
10. Stejskal D, Bartek J, Pastorková R, Ruzicka V, Oral I, Horalik D. Osteoprotegerin, RANK, RANKL. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001;145:61–64.
11. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20:345–357.
12. Andrade FR, Sousa DP, Mendonça EF, Silva TA, Lara VS, Batista AC. Expression of bone resorption regulators (RANK, RANKL, and OPG) in odontogenic tumors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:548–555.
13. de Moraes M, de Lucena HF, de Azevedo PR, Queiroz LM, Costa Ade L. Comparative immunohistochencial expression of RANK, RANKL and OPG in radicular and dentigerous cysts. Arch Oral Biol 2011;56:1256–1263.
14. de Matos FR, de Moraes M, das Neves Silva EB, Galvão HC, de Almeida Freitas R. Immunohistochemical detection of receptor activator nuclear factor κb ligand and osteoprotegerin in odontogenic cysts and tumors. J Oral Maxillofac Surg 2013;71:1886–1892.
15. Muher D, Shameer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
16. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated in March 2011]. The Cochrane
Expression of RANK, RANKL, and OPG.