On the Involution Generators of the Mapping Class Group of a Punctured Surface

Tülin Altunöz, Mehmetcik Pamuk and Oğuz Yildiz

Abstract. Let $\text{Mod}(\Sigma_{g,p})$ denote the mapping class group of a connected orientable surface of genus g with p punctures. For $g \geq 14$ and even $p \geq 10$, we prove that $\text{Mod}(\Sigma_{g,p})$ can be generated by three involutions. For $g \geq 13$ and even $p \geq 9$, we prove that $\text{Mod}(\Sigma_{g,p})$ can be generated by four involutions. Moreover, for even $p \geq 4$ and $3 \leq g \leq 6$, $\text{Mod}(\Sigma_{g,p})$ can be generated by four involutions.

Mathematics Subject Classification. 57M07, 20F05, 20F38.

Keywords. Mapping class groups, punctured surfaces, involutions, generating sets.

1. Introduction

Let $\Sigma_{g,p}$ denote a connected orientable surface of genus g with p punctures; when $p = 0$ we write Σ_g. The mapping class group of $\Sigma_{g,p}$ is the group of isotopy classes of orientation-preserving homeomorphisms of $\Sigma_{g,p}$ preserving the set of punctures.

Here is a brief history of generating sets for $\text{Mod}(\Sigma_{g,p})$: Dehn [4] showed that $\text{Mod}(\Sigma_g)$ can be generated by $2g(g-1)$ Dehn twists. Later, Lickorish [14] gave a generating set consisting of $3g-1$ Dehn twists and Humphries [8] reduced the number of Dehn twist generators to $2g+1$. Humphries also proved that the number $2g+1$ is minimal for $g \geq 2$. Johnson [10] proved that the same set of Dehn twists also generates $\text{Mod}(\Sigma_{g,1})$. In the presence of multiple punctures, Gervais [7] proved that $\text{Mod}(\Sigma_{g,p})$ can be generated by $2g+p$ Dehn twists for $p \geq 1$.

If it is not required that the generators are Dehn twists, then it is possible to obtain smaller generating sets for $\text{Mod}(\Sigma_{g,p})$: for $g \geq 3$ and $p = 0$, Lu [15, Theorem 1.3] proved that $\text{Mod}(\Sigma_g)$ can be generated by three elements. For $g \geq 1$ and $p = 0$ or 1, a minimal (since the group is not abelian) generating set of two elements, a product of two Dehn twists and
a product of $2g$ Dehn twists, was first given by Wajnryb [21]. Korkmaz [12, Theorem 5] improved this result by showing that one of these two generators can be taken as a Dehn twist. He also showed that this group is generated by two elements of finite order [12, Theorem 14].

Generating the mapping class group by involutions, which is the main theme of this paper, was first considered by McCarthy and Papadopoulos [17]. They showed that $\text{Mod}(\Sigma_g)$ can be generated by infinitely many conjugates of a single involution for $g \geq 3$. In terms of generating by finitely many involutions, Luo [16] showed that any Dehn twist about a nonseparating simple closed curve can be written as a product of six involutions, which in turn implies that $\text{Mod}(\Sigma_g)$ can be generated by $12g + 6$ involutions. Brendle and Farb [3] obtained a generating set of six involutions for $g \geq 3$. Following their work, Kassabov [11] showed that $\text{Mod}(\Sigma_g)$ can be generated by four involutions if $g \geq 7$. Korkmaz [13] showed that $\text{Mod}(\Sigma_g)$ is generated by three involutions if $g \geq 8$ and four involutions if $g \geq 3$. Also, the third author improved his result showing that it is generated by three involutions if $g \geq 6$ [22]. For surfaces with multiple punctures, if $g \geq 3$, Kassabov obtained a generating set of involution elements where the number of generators depends on g and the parity of p (see [11, Theorem 1]). Later, Monden [18] removed the parity condition on p for $g = 7$ and $g = 5$. For $g \geq 1$ and $p \geq 2$, Monden [19] also gave a generating set for $\text{Mod}(\Sigma_{g,p})$ consisting of three elements. Recently, he [20] gave a minimal generating set for $\text{Mod}(\Sigma_{g,p})$ containing two elements for $g \geq 3$.

Note that any infinite group generated by two involutions must be isomorphic to the infinite dihedral group whose subgroups are either cyclic or dihedral. Since $\text{Mod}(\Sigma_{g,p})$ contains nonabelian free groups, it cannot be generated by two involutions. In this paper, we obtain the following result:

Theorem A. For every even integer $p \geq 10$ and $g \geq 14$, $\text{Mod}(\Sigma_{g,p})$ can be generated by three involutions. Moreover, for every even integer $p \geq 4$ and for $g = 3, 4, 5$ or 6, $\text{Mod}(\Sigma_{g,p})$ can be generated by four involutions.

At the end of the paper, we also show that Theorem A also holds for the cases $p = 2$ or $p = 3$. For surfaces with odd number of punctures, we have the following result:

Theorem B. For every odd integer $p \geq 9$ and $g \geq 13$, $\text{Mod}(\Sigma_{g,p})$ is generated by four involutions. Moreover, for every odd integer $p \geq 5$ and for $g = 3, 4, 5$ or 6, $\text{Mod}(\Sigma_{g,p})$ can be generated by five involutions.

The paper is organized as follows: in Sect. 2, we quickly provide the necessary background on mapping class groups. In Sect. 3, we first provide subsets of $\text{Mod}(\Sigma_{g,p})$, consisting of involutions, containing generators of $\text{Mod}_0(\Sigma_{g,p})$ (for definition, see Sect. 2). Then, using a well-known result from algebra we present proofs of Theorem A and Theorem B.

2. Background and Results on Mapping Class Groups

Let $\Sigma_{g,p}$ denote a connected orientable surface of genus g with p punctures specified by the set $P = \{z_1, z_2, \ldots, z_p\}$ of p distinguished points. If p is
zero then we omit it from the notation and write \(\Sigma_g \). The mapping class group \(\text{Mod}(\Sigma_{g,p}) \) of the surface \(\Sigma_{g,p} \) is defined to be the group of the isotopy classes of orientation-preserving self-diffeomorphisms of \(\Sigma_{g,p} \) which fix the set \(P \). Let \(\text{Mod}_0(\Sigma_{g,p}) \) denote the subgroup of \(\text{Mod}(\Sigma_{g,p}) \) consisting of elements which fix the set \(P \) pointwise. It is obvious that we have the following exact sequence:

\[
1 \longrightarrow \text{Mod}_0(\Sigma_{g,p}) \longrightarrow \text{Mod}(\Sigma_{g,p}) \longrightarrow \text{Sym}_p \longrightarrow 1,
\]

where \(\text{Sym}_p \) denotes the symmetric group on the set \(\{1, 2, \ldots, p\} \) and the last projection is given by the restriction of the isotopy class of a diffeomorphism to its action on the punctures.

Let \(\beta_{i,j} \) be an embedded arc that joins two punctures \(z_i \) and \(z_j \) and does not intersect \(\delta \) on \(\Sigma_{g,p} \). Let \(D_{i,j} \) denote a closed regular neighborhood of \(\beta_{i,j} \), which is a disk with two punctures. There exists a diffeomorphism \(H_{i,j} : D_{i,j} \rightarrow D_{i,j} \), which interchanges the punctures such that \(H_{i,j}^2 \) is equal to the right-handed Dehn twist about \(\partial D_{i,j} \) and is the identity on the complement of the interior of \(D_{i,j} \). Such a diffeomorphism is said to be the (right handed) half twist about \(\beta_{i,j} \). It can be extended to a diffeomorphism of \(\text{Mod}(\Sigma_{g,p}) \). Throughout the paper we do not distinguish a diffeomorphism from its isotopy class. For the composition of two diffeomorphisms, we use the functional notation; if \(f \) and \(g \) are two diffeomorphisms, then the composition \(fg \) means that \(g \) is applied first and then \(f \).

For a simple closed curve \(a \) on \(\Sigma_{g,p} \), following [1, 13], we denote the right-handed Dehn twist \(t_a \) about \(a \) by the corresponding capital letter \(A \). Let us also remind the following basic facts of Dehn twists that we use frequently throughout the paper: let \(a \) and \(b \) be simple closed curves on \(\Sigma_{g,p} \) and \(f \in \text{Mod}(\Sigma_{g,p}) \).

- If \(a \) and \(b \) are disjoint, then \(AB = BA \) (Commutativity).
- If \(f(a) = b \), then \(fAf^{-1} = B \) (Conjugation).

Let us finish this section by noting that we denote \(gf \) by \(f \) for any \(f, g \in \text{Mod}(\Sigma_{g,p}) \).

3. Involution Generators for \(\text{Mod}(\Sigma_{g,p}) \)

Let us start this section by recalling the following set of generators given by Korkmaz [13, Theorem 5].

Theorem 3.1. If \(g \geq 3 \), then the mapping class group \(\text{Mod}(\Sigma_g) \) can be generated by the four elements \(R, A_1A_2^{-1}, B_1B_2^{-1}, C_1C_2^{-1} \).

Let us also recall the following basic fact in group theory.

Lemma 3.2. Let \(G \) and \(K \) be groups. Suppose that the following short exact sequence holds:

\[
1 \longrightarrow N \xrightarrow{i} G \xrightarrow{\pi} K \longrightarrow 1.
\]

Then a subgroup \(\Gamma \) of \(G \) satisfies \(i(N) \subseteq \Gamma \) and \(\pi(\Gamma) = K \) if and only if \(\Gamma = G \).
In our case where $G = \text{Mod}(\Sigma_{g,p})$ and $N = \text{Mod}_0(\Sigma_{g,p})$, we have the following short exact sequence:

$$1 \longrightarrow \text{Mod}_0(\Sigma_{g,p}) \longrightarrow \text{Mod}(\Sigma_{g,p}) \longrightarrow \text{Sym}_p \longrightarrow 1.$$

Therefore, we obtain the following useful result which follows immediately from Lemma 3.2. If Γ is a subgroup of $\text{Mod}(\Sigma_{g,p})$ with $\text{Mod}_0(\Sigma_{g,p}) \subseteq \Gamma$ and $\pi(\Gamma) = \text{Sym}_p$, then $\Gamma = \text{Mod}(\Sigma_{g,p})$.

Throughout the paper, we consider the embeddings of $\Sigma_{g,p}$ into \mathbb{R}^3 in such a way that it is invariant under the rotations ρ_1 and ρ_2. Here, ρ_1 and ρ_2 are the rotations by π about the z-axis (see Figs. 1, 2). Note that $\text{Mod}(\Sigma_{g,p})$ contains the element $R = \rho_1 \rho_2$ which satisfies the following:

(i) $R(a_i) = a_{i+1}$, $R(b_i) = b_{i+1}$ for $i = 1, \ldots, g - 1$ and $R(b_g) = b_1$,
(ii) $R(c_i) = c_{i+1}$ for $i = 1, \ldots, g - 2$,
(iii) $R(z_1) = z_p$ and $R(z_i) = z_{i-1}$ for $i = 2, \ldots, p$.

We want to note here that, in the following lemmata, where we present generating sets for surfaces with even number of punctures, we mainly follow the proof of [13, Theorem 5]. We use them in the proof of Theorem A and then for surfaces with odd number of punctures we explain how our arguments are modified.

\textbf{Lemma 3.3.} For every even integer $g = 2k \geq 14$ and every even integer $p = 2b \geq 10$, the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements

$$\rho_1, \rho_2 \text{ and } \rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_{k-3} B_{k-1} A_k A_k^{-1} B_{k+1}^{-1} C_{k+4}^{-1}$$

contains the Dehn twists A_i, B_i and C_i for $i = 1, \ldots, g$.
Figure 2. The involutions ρ_1 and ρ_2 for $g = 2k + 1$ and $p = 2b$

Proof. Consider the models of $\Sigma_{g,p}$ depicted in Fig. 1. Let $F_1 := H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_{k-1}A_{k}A_{k+2}^{-1}B_{k+3}^{-1}C_{k+4}^{-1}$ and let Γ be the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements ρ_1, ρ_2 and $\rho_1 F_1$. One can see that $R = \rho_1 \rho_2$ and $F_1 = \rho_1 \rho_1 F_2$ are contained in Γ. Let F_2 be the element obtained by the conjugation of F_1 by R^{-3}. Since

$$R^{-3}(c_{k-3}, b_{k-1}, a_k, a_{k+2}, b_{k+3}, c_{k+4}) = (c_{k-6}, b_{k-4}, a_{k-3}, a_{k-1}, b_k, c_{k+1})$$

and

$$R^{-3}(z_{b-1}, z_b, z_{b+1}) = (z_{b+2}, z_{b+3}, z_{b+4}),$$

we have

$$F_2 = F_1^{R^{-3}} = H_{b+2,b+3}H_{b+4,b+3}^{-1}C_{k-6}B_{k-4}A_{k-3}A_{k-1}B_{k}^{-1}C_{k+1}^{-1} \in \Gamma.$$

Let F_3 be the element $F_1 F_2^{-1}$, that is $F_3 = H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}A_{k-1}B_{k}$ $A_{k+2}^{-1}B_{k+3}^{-1}C_{k+4}^{-1} \in \Gamma$.

Since we use repeatedly similar calculations in the remaining parts of the paper, let us provide some details here. It can be shown that the diffeomorphism $F_1 F_2^{-1}$ maps the curves $c_{k-3}, b_{k-1}, a_k, a_{k+2}, b_{k+3}, c_{k+4}$ to $c_{k-3}, a_{k-1}, b_k, a_{k+2}, b_{k+3}, c_{k+4}$, respectively. Also it follows from the composites of half twists $H_{b-1,b}H_{b+1,b}$ and $H_{b-4,b-3}H_{b-2,b-3}$ commute that we get

$$F_3 = F_1 F_2^{-1} = (F_1 F_2^{-1})(H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_{k-1}A_{k}A_{k+2}^{-1}B_{k+3}^{-1}C_{k+4}^{-1})(F_1 F_2^{-1})^{-1}$$

$$= H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}A_{k-1}B_{k}A_{k+2}^{-1}B_{k+3}^{-1}C_{k+4}^{-1}.$$
The subgroup Γ contains
\[F_4 = F_3^{R^{-3}} = H_{b+2,b+3}H_{b+4,b+3}^{-1}C_{k-6}A_{k-4}B_{k-3}A_{k-1}^{-1}B_k^{-1}C_{k+1}^{-1}. \]
One can verify that F_3F_4 sends the curves $c_{k-3}, a_{k-1}, b_k, a_{k+2}, b_{k+3}, c_{k+4}$ to the curves $b_{k-3}, a_{k-1}, b_k, a_{k+2}, b_{k+3}, c_{k+4}$, respectively. This implies that
\[F_5 = F_3^{-1}F_4 = H_{b-1,b}^{-1}B_{k-3}A_{k-1}B_kA_{k+2}^{-1}B_{k+3}^{-1}C_{k+4}^{-1} \in \Gamma. \]
Thus, we obtain $F_5F_3^{-1} = B_{k-3}C_{k-3}^{-1}$, which is contained in Γ. By conjugating this element with powers of R, we conclude that
\[B_iC_i^{-1} \in \Gamma \text{ for } i = 1, \ldots, g-1. \]
The subgroup Γ also contains $F_1F_3^{-1} = B_{k-1}A_kB_{k-1}^{-1}A_{k-1}^{-1}$. After conjugating with R^3 and considering the inverse, we have $A_{k+2}B_{k+3}A_{k+3}B_{k+2}^{-1} \in \Gamma$. This in turn implies that for $i = 1, \ldots, g-1$,
\[A_iB_{i+1}A_{i+1}^{-1}B_i^{-1} \in \Gamma. \]
We also have the following elements in Γ:
\[F_6 = F_1(A_{k+2}B_{k+3}A_{k+3}^{-1}B_{k+2}^{-1}) = H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_{k-1}A_kB_{k+2}A_{k+3}^{-1}C_{k+4}^{-1} \]
and
\[F_7 = F_6^{R^{-3}} = H_{b+2,b+3}H_{b+4,b+3}^{-1}C_{k-6}B_{k-4}A_{k-3}B_{k-1}^{-1}A_k^{-1}C_{k+1}^{-1}. \]
It can be checked that F_6F_7 maps $c_{k-3}, b_{k-1}, a_k, b_{k+2}, a_{k+3}, c_{k+4}$ to the curves $c_{k-3}, b_{k-1}, a_k, c_{k+1}, a_{k+3}, c_{k+4}$, respectively. Then we get
\[F_8 = F_6^{-1}F_7 = H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_{k-1}A_kC_{k+1}A_{k+1}^{-1}C_{k+4}^{-1} \in \Gamma. \]
Hence, we can conclude that $F_8^{-1}F_6 = C_{k+1}B_{k+2}^{-1} \in \Gamma$. Again conjugating with R implies that
\[C_iB_{i+1}^{-1} \in \Gamma, \text{ for all } i = 1, \ldots, g-1. \]
Furthermore, we can see that Γ contains
\[F_9 = (B_{k-3}C_{k-3}^{-1}F_3(C_{k+4}B_{k+5}^{-1})) = H_{b-1,b}H_{b+1,b}^{-1}B_kA_{k-1}B_kA_{k+2}^{-1}B_{k+3}^{-1}B_{k+5}^{-1}, \]
and
\[F_{10} = F_9^{R^{-3}} = H_{b+2,b+3}H_{b+4,b+3}^{-1}B_{k-6}A_{k-3}B_{k-3}A_{k-1}^{-1}B_k^{-1}B_{k+2}^{-1}. \]
It is easy to see that F_9F_{10} sends $b_{k-3}, a_{k-1}, b_k, a_{k+2}, b_{k+3}, b_{k+5}$ to $b_{k-3}, a_{k-1}, b_k, b_{k+2}, b_{k+3}, b_{k+5}$, respectively, so that
\[F_{11} = F_9^{-1}F_{10} = H_{b-1,b}H_{b+1,b}^{-1}B_kB_{k-3}A_{k-1}B_kB_{k+2}^{-1}B_{k+3}^{-1}B_{k+5}^{-1} \in \Gamma. \]
From this, we obtain $F_{11}^{-1}F_9^{-1} = B_{k+2}^{-1}A_{k+2}^{-1} \in \Gamma$. By the action of R, we can conclude that
\[A_iB_i^{-1} \in \Gamma \text{ for all } i = 1, \ldots, g. \]
The subgroup Γ contains
\[A_1A_2^{-1} = (A_1B_1^{-1})(B_1C_1^{-1})(C_1B_2^{-1})(B_2A_2^{-1}), \]
\[B_1B_2^{-1} = (B_1C_1^{-1})(C_1B_2^{-1}) \text{ and } \]
\[C_1C_2^{-1} = (C_1B_2^{-1})(B_2C_2^{-1}). \]
It follows from Theorem 3.1 that A_i, B_i, C_i all belong to the subgroup generated by $R, A_1A_2^{-1}, B_1B_2^{-1}$ and $C_1C_2^{-1}$, which completes the proof.

If g is odd and p is even, we have the following result:

Lemma 3.4. For every odd integer $g = 2k+1 \geq 15$ and even integer $p = 2b \geq 10$, the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements

$$\rho_1, \rho_2 \text{ and } \rho_1H_{b-1,b}\rho_1H_{b+1,b}^{-1}C_{k-3}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}C_{k+5}^{-1}$$

contains the Dehn twists A_i, B_i and C_i for $i = 1, \ldots, g$.

Proof. Consider the models for $\Sigma_{g,p}$ as shown in Fig. 2. Let Γ denote the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements ρ_1, ρ_2 and ρ_1G_1, where $G_1 = H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}C_{k+5}^{-1}$. The elements $R = \rho_1\rho_2$ and $G_1 = \rho_1\rho_1G_1$ belong to Γ. Let G_2 denote the conjugation of G_1 by R^{-3},

$$G_2 = G_1R^{-3} = H_{b+2,b+3}H_{b+4,b+3}^{-1}C_{k-6}B_kA_{k-2}A_{k-1}^{-1}B_{k-1}^{-1}C_{k+2}^{-1}.$$

It is easy to verify that

$$G_3 = G_1G_2^{-1} = H_{b-1,b}H_{b+1,b}^{-1}B_kA_{k+1}A_{k+2}^{-1}C_{k+5}^{-1}$$

is contained in Γ. Let

$$G_4 = G_3R^{-3} = H_{b+2,b+3}H_{b+4,b+3}^{-1}B_kA_{k-2}A_{k-1}^{-1}C_{k-1}^{-1}C_{k+2}^{-1}.$$

Thus, we get

$$G_5 = G_3G_4^{-1} = H_{b-1,b}H_{b+1,b}^{-1}B_kC_{k-1}A_{k+1}A_{k+2}^{-1}C_{k+5}^{-1},$$

which is contained in Γ. This implies that $G_3G_5^{-1} = B_kC_{k-1}^{-1} \in \Gamma$. By conjugating $B_kC_{k-1}^{-1}$ with powers of R, we see that

$$B_{i+1}C_{i-1}^{-1} \in \Gamma,$$

for all $i = 1, \ldots, g-1$. In particular, $C_{k+5}B_{k+6}^{-1} \in \Gamma$. Hence, Γ contains

$$G_6 = G_1(C_{k+5}B_{k+6}^{-1}) = H_{b-1,b}H_{b+1,b}^{-1}C_{k-3}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}B_{k+6}^{-1}.$$

Then, we see that

$$G_7 = G_6R^{-3} = H_{b+2,b+3}H_{b+4,b+3}^{-1}C_{k-6}B_kA_{k-2}A_{k-1}^{-1}B_{k+3}^{-1}B_{k+6}^{-1}$$

and

$$G_8 = G_6G_7 = H_{b-1,b}H_{b+1,b}^{-1}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}B_{k+6}^{-1}$$

are contained in Γ, which implies that Γ contains $G_6G_8^{-1} = C_{k-3}B_{k-3}^{-1}$. By the action of R, we see that

$$C_iB_{i-1}^{-1} \in \Gamma$$

for all $i = 1, \ldots, g-1$. Moreover, we get

$$G_9 = (B_{k-2}C_{k-3}^{-1})G_6 = H_{b-1,b}H_{b+1,b}^{-1}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}B_{k+6}^{-1} \in \Gamma,$$

$$G_{10} = G_9R^{-3} = H_{b+2,b+3}H_{b+4,b+3}^{-1}B_{k-5}B_kA_{k-2}A_{k-1}^{-1}B_{k-1}^{-1}B_{k+3}^{-1} \in \Gamma$$

and

$$G_{11} = G_9G_{10} = H_{b-1,b}H_{b+1,b}^{-1}A_{k-2}B_kA_{k+1}A_{k+2}^{-1}B_{k+3}^{-1}B_{k+6}^{-1} \in \Gamma.$$
From these, we have $G_9 G_{11}^{-1} = B_{k-2} A_{k-2}^{-1} \in \Gamma$ so that

$$B_i A_i^{-1} \in \Gamma,$$

for $i = 1, \ldots, g$, by the action of R. The remaining part of the proof can be completed as in the proof of Lemma 3.3.

In the following four lemmata, we give generating sets for smaller genera.

Lemma 3.5. For $g = 6$ and every even integer $p \geq 4$, the group generated by the elements

$$\rho_1, \rho_2, \rho_2 B_2 A_3 A_4^{-1} B_5^{-1} \text{ and } \rho_1 H_{b-1, b} H_{b+1, b}^{-1} C_3 C_4^{-1}$$

contains the Dehn twists A_i, B_i and C_i for $i = 1, \ldots, g$.

Proof. Consider the models for $\Sigma_{g,p}$ as shown in Fig. 1. Let Γ be the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements $\rho_1, \rho_2, \rho_2 F_1$ and $\rho_1 E_1$ where $F_1 = B_2 A_3 A_4^{-1} B_5^{-1}$ and $E_1 = H_{b-1, b} H_{b+1, b}^{-1} C_3 C_4^{-1}$. Then the elements $R = \rho_1 \rho_2, F_1 = \rho_2 \rho_2 F_1$ and $E_1 = \rho_1 \rho_1 E_1$ are contained in Γ.

The subgroup Γ contains the following elements:

$$F_2 = F_1^R = B_3 A_4 A_5^{-1} B_6^{-1},$$
$$F_3 = F_1 F_2 = B_2 B_3 A_4^{-1} A_5^{-1},$$
$$F_4 = F_3^R = B_3 B_4 A_5^{-1} A_6^{-1} \text{ and}$$
$$F_5 = F_3 F_4^{-1} = B_2 B_3 B_4^{-1} A_5^{-1}.$$

Hence, we get $F_5^{-1} F_3 = B_4 A_4^{-1} \in \Gamma$. By the action of R, for all $i = 1, \ldots, 6$, $A_i B_i^{-1} \in \Gamma$. Moreover, we have

$$F_6 = E_1 E_1 F_3 = H_{b-1, b} H_{b+1, b}^{-1} B_3 C_4^{-1} \in \Gamma \text{ and}$$
$$F_7 = E_1 E_1 F_1 = H_{b-1, b} H_{b+1, b}^{-1} C_3 B_5^{-1} \in \Gamma.$$

This implies that $F_6 E_1^{-1} = B_3 C_4^{-1} \in \Gamma$ and $F_7^{-1} E_1 = B_5 C_4^{-1} \in \Gamma$ and so $B_i C_i^{-1} \in \Gamma$ and $B_i B_{i+1} C_i^{-1} \in \Gamma$, for all $i = 1, \ldots, 5$, by conjugating these elements with powers of R. The proof can be completed as in the proof of Lemma 3.3.

Lemma 3.6. For $g = 5$ and every even integer $p \geq 4$, the group generated by the elements

$$\rho_1, \rho_2, \rho_1 H_{b-1, b} H_{b+1, b}^{-1} A_3 A_4^{-1} \text{ and } \rho_2 A_2 B_2 C_2 C_3^{-1} B_4^{-1} A_4^{-1}$$

contains the Dehn twists A_i, B_i and C_i for $i = 1, \ldots, g$.

Proof. Consider the models for $\Sigma_{5,p}$ as shown in Fig. 2. Let Γ denote the subgroup of $\text{Mod}(\Sigma_{5,p})$ generated by the elements $\rho_1, \rho_2, \rho_1 F_1$ and $\rho_2 E_1$ where $F_1 = H_{b-1, b} H_{b+1, b}^{-1} A_3 A_4^{-1}$ and $E_1 = A_2 B_2 C_2 C_3^{-1} B_4^{-1} A_4^{-1}$. Thus, $R = \rho_1 \rho_2, F_1 = \rho_1 \rho_1 F_1$ and $E_1 = \rho_2 \rho_2 E_1$ are in Γ.

One can obtain the following elements:

$$F_2 = F_1^{-1} = H_{b, b+1} H_{b+2, b+1}^{-1} A_2 A_3^{-1}.$$
\[F_3 = F_2^E_1 = H_{b,b+1}H_{b+2,b+1}^{-1}B_2A_3^{-1} \] and
\[F_4 = F_3^E_1 = H_{b,b+1}H_{b+2,b+1}^{-1}C_2A_3^{-1}, \]
which are contained in \(\Gamma \). Thus, we get that \(F_2F_3^{-1} = A_2B_2^{-1} \in \Gamma \) and \(F_3F_4^{-1} = B_2C_2^{-1} \in \Gamma \). By conjugating these elements with powers of \(R \), we see that
\[A_iB_i^{-1} \in \Gamma \text{ and } B_jC_j^{-1} \in \Gamma, \]
which also implies that \(A_iC_i^{-1} \in \Gamma \) for all \(i = 1, \ldots, 5 \) and \(j = 1, \ldots, 4 \).

Finally, it can be verified that
\[E_1(a_3, c_3) = (a_3, b_4) \]
so that the group \(\Gamma \) contains
\[(A_3C_3^{-1})E_1 = A_3B_4^{-1}. \]

Hence, \(A_iB_i^{-1} \in \Gamma \) for all \(i = 1, \ldots, 5 \) by the action of \(R \). The rest of the proof is similar to that of Lemma 3.3.

Lemma 3.7. For \(g = 4 \) and every even integer \(p \geq 4 \), the group generated by the elements
\[\rho_1, \rho_2, \rho_2B_1A_2A_3^{-1}B_4^{-1} \text{ and } \rho_1H_{b-1,b}H_{b+1,b}^{-1}C_2C_3^{-1} \]
contains the Dehn twists \(A_i, B_i \text{ and } C_i \) for \(i = 1, \ldots, g \).

Proof. Let us consider the models for \(\Sigma_{4,p} \) as shown in Fig. 1 and let \(\Gamma \) be the subgroup of \(\text{Mod}(\Sigma_{4,p}) \) generated by the elements \(\rho_1, \rho_2, \rho_2F_1 \) and \(\rho_1E_1 \) where \(F_1 = B_1A_2A_3^{-1}B_4^{-1} \) and \(E_1 = H_{b-1,b}H_{b+1,b}^{-1}C_2C_3^{-1} \). Thus, it is clear that \(R = \rho_1\rho_2, F_1 = \rho_2\rho_2F_1 \) and \(E_1 = \rho_1\rho_1E_1 \) belong to the subgroup \(\Gamma \). We have
\[F_2 = E_1^E_1F_1 = H_{b-1,b}H_{b+1,b}^{-1}C_2B_4^{-1} \in \Gamma. \]

Thus, \(\Gamma \) contains \(F_2^{-1}E_1 = B_4C_3^{-1} \) and \(\rho_1(B_4C_3^{-1}) = B_2C_2^{-1} \). By conjugating these elements with powers of \(R \), we get
\[B_{i+1}C_i^{-1} \in \Gamma \text{ and } B_iC_i^{-1} \in \Gamma \]
for all \(i = 1, 2, 3 \). One can also obtain that \(\Gamma \) contains the following elements:
\[F_3 = (C_1B_1^{-1})F_1 = C_1A_2A_3^{-1}B_4^{-1}, \]
\[F_4 = F_3^R(B_1C_1^{-1}) = C_2A_3A_4^{-1}B_1^{-1}(B_1C_1^{-1}) = C_2A_3A_4^{-1}C_1^{-1} \text{ and } \]
\[F_5 = F_3^F_3F_4 = C_1A_2A_3^{-1}A_4^{-1}. \]

Thus, we obtain that \(F_5F_3^{-1} = A_4B_4^{-1} \in \Gamma \). By the action of \(R \), \(A_iB_i^{-1} \in \Gamma \) for all \(i = 1, 2, 3, 4 \). The remaining part of the proof is very similar to that of Lemma 3.3.

Lemma 3.8. For \(g = 3 \) and every even \(p \geq 4 \), the group generated by the elements
\[\rho_1, \rho_2, \rho_1H_{b-1,b}H_{b+1,b}^{-1}A_2A_3^{-1} \text{ and } \rho_2A_1B_1C_1C_2^{-1}B_3^{-1}A_3^{-1} \]
contains the Dehn twists \(A_i, B_i \text{ and } C_i \) for \(i = 1, 2, 3 \).
Proof. Consider the models for $\Sigma_{3,p}$ as shown in Fig. 2. Let Γ be the subgroup of $\text{Mod}(\Sigma_{3,p})$ generated by the elements ρ_1, ρ_2, ρ_1F_1 and ρ_2E_1 where $F_1 = H_{b-1,b}^{-1}H_{b+1,b}^{-1}A_2A_3^{-1}$ and $E_1 = A_1B_1C_1C_2^{-1}B_3^{-1}A_3^{-1}$. Thus, the elements $R = \rho_1\rho_2$, $F_1 = \rho_1\rho_1F_1$ and $E_1 = \rho_2\rho_2E_1$ are contained in Γ. We get

$$F_2 = F_1^{R^{-1}} = H_{b,b}^{-1}H_{b+1,b}^{-1}A_1A_2^{-1} \in \Gamma,$$

$$F_3 = F_2^{E_1i} = H_{b,b}^{-1}H_{b+1,b}^{-1}B_1A_2^{-1} \in \Gamma$$

and

$$F_4 = F_3^{E_1i} = H_{b,b}^{-1}H_{b+1,b}^{-1}C_1A_2^{-1} \in \Gamma.$$

From these, Γ contains $F_2F_3^{-1} = A_1B_1^{-1}$ and $F_3F_4^{-1} = B_1C_1^{-1}$, which implies that $A_1C_1^{-1} \in \Gamma$. Hence,

$$A_iB_i^{-1} \in \Gamma, B_jC_j^{-1} \in \Gamma$$

for all $i = 1, 2, 3$ and $j = 1, 2$, by the action of R. We also have

$$(A_2C_2^{-1})E_1 = A_2B_3^{-1},$$

which is contained in Γ. This implies that

$$A_iB_{i+1}^{-1} \in \Gamma$$

for $i = 1, 2$ by the action of R. One can complete the proof as in the proof of Lemma 3.3. \qed

Remark 3.9. To see that our results in lemmata 3.3–3.8 work for surfaces with odd number of punctures, see Figures 3 and 5 in [2].

Now, in the remainder of the paper, let Γ be the subgroup of $\text{Mod}(\Sigma_{g,p})$ generated by the elements given explicitly in lemmata 3.3–3.8 with the conditions mentioned in these lemmata. The proof of the following lemma is similar to that of [2, Lemma 4.6]; nevertheless, we give a proof for the sake of completeness of the paper.

Lemma 3.10. The group $\text{Mod}_0(\Sigma_{g,p})$ is contained in the group Γ.

Proof. The group $\text{Mod}_0(\Sigma_{g,p})$ is generated by the Dehn twists A_i, B_i, C_j for $i = 1, \ldots, g$ and $j = 1, \ldots, g-1$ and also $E_{k,l}$ for some fixed k and $l = 1, 2, \ldots, p-1$. It follows from Γ contains A_i, B_i and C_j for all $i = 1, \ldots, g$ and $j = 1, \ldots, g-1$ by lemmata 3.3–3.8 that it is sufficient to prove that Γ contains the Dehn twists $E_{i,j}$ for some fixed i ($j = 1, 2, \ldots, p-1$). Let us first note that Γ contains A_g and $R = \rho_1\rho_2$. Consider the models for $\Sigma_{g,p}$ as shown in Figs. 1 and 2. By the fact that the diffeomorphism R maps a_g to $e_{1,p-1}$, we get

$$RA_gR^{-1} = E_{1,p-1} \in \Gamma.$$

The diffeomorphism $\phi_i = B_{i+1}^{-1}C_iB_i$ which maps each $e_{i,j}$ to $e_{i+1,j}$ for $j = 1, 2, \ldots, p-1$ (see Fig. 3). By the proof of [2, Lemma 4.5], the group Γ contains ϕ_{g}. Thus, we have

$$\phi_{g-1} \ldots \phi_2 \phi_1 E_{1,p-1} \phi_2 \phi_1^{-1} = E_{g,p-1} \in H.$$

Likewise, the diffeomorphism R sends $e_{g,p-1}$ to $e_{1,p-2}$. Then we obtain

$$RE_{g,p-1}R^{-1} = E_{1,p-2} \in \Gamma.$$
Figure 3. The curves $e_{i,j}$ and γ_i on the surface $\Sigma_{g,p}$

It follows from

$$\phi_{g-1} \ldots \phi_2 \phi_1 E_{1,p-2}(\phi_{g-1} \ldots \phi_2 \phi_1)^{-1} = E_{g,p-2} \in \Gamma$$

that

$$R(E_{g,p-2})R^{-1} = E_{1,p-3} \in \Gamma$$

Continuing in this way, we conclude that $E_{1,1}, E_{1,2}, \ldots, E_{1,p-1}$ belong to Γ, which completes the proof. \square

Proof of Theorem A. Consider the surface $\Sigma_{g,p}$ as in Figs. 1 and 2.

For $g = 2k \geq 14$ and $p = 2b \geq 10$: In this case, consider the surface $\Sigma_{g,p}$ as in Fig. 1. Since

$$\rho_1(c_{k-3}) = c_{k+4}, \rho_1(b_{k-1}) = b_{k+3} \text{ and } \rho_1(a_k) = a_{k+2},$$

we get

$$\rho_1 C_{k-3} \rho_1 = C_{k+4}, \rho_1 B_{k-1} \rho_1 = B_{k+3} \text{ and } \rho_1 A_k \rho_1 = A_{k+2}.$$

Also, since $\rho_1 H_{b-1,b} \rho_1 = H_{b+1, b}$, it is easy to see that $\rho_1 H_{b-1,b} H_{b+1, b}^{-1} C_{k-3}$ $B_{k-1} A_k A_{k+2} B_{k+3}^{-1} C_{k+4}^{-1}$ is an involution. Therefore, the generators of Γ given in Lemma 3.3 are involutions.

For $g = 2k + 1 \geq 13$ and $p = 2b \geq 10$: In this case, consider the surface $\Sigma_{g,p}$ as in Fig. 2. It follows from

$$\rho_1(c_{k-3}) = c_{k+5}, \rho_1(b_k) = b_{k+3} \text{ and } \rho_1(a_{k+1}) = a_{k+2},$$

we get

$$\rho_1 C_{k-3} \rho_1 = C_{k+5}, \rho_1 B_{k-1} \rho_1 = B_{k+3} \text{ and } \rho_1 A_k \rho_1 = A_{k+2}.$$

Also, since $\rho_1 H_{b-1,b} \rho_1 = H_{b+1, b}$, it is easy to see that $\rho_1 H_{b-1,b} H_{b+1, b}^{-1} C_{k-3}$ $B_{k-1} A_k A_{k+2} B_{k+3}^{-1} C_{k+4}^{-1}$ is an involution. Therefore, the generators of Γ given in Lemma 3.3 are involutions.
that we have

\[\rho_1 C_{k-3} \rho_1 = C_{k+5}, \rho_1 B_k \rho_1 = B_{k+3} \text{ and } \rho_1 A_{k+1} \rho_1 = A_{k+2}. \]

Also, by the fact that \(\rho_1 H_{b-1,b} \rho_1 = H_{b+1,b} \), it is easy to see that \(\rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_{k-3}^{-1} A_k A_{k+1}^{-1} B_{k+3}^{-1} C_{k+5}^{-1} \) is an involution. We conclude that the generators of \(\Gamma \) given in Lemma 3.4 are involutions.

For \(g = 3, 4, 5 \) or \(g = 6 \) and \(p = 2b \geq 4 \): it follows from

- \(\rho_2(b_2) = b_5, \rho_2(a_3) = a_4 \) and \(\rho_1(c_3) = c_4 \) if \(g = 6 \),
- \(\rho_1(a_3) = a_4, \rho_2(a_2) = a_4, \rho_2(b_2) = b_4 \) and \(\rho_2(c_2) = c_3 \) if \(g = 5 \),
- \(\rho_2(b_1) = b_4, \rho_2(a_2) = a_3 \) and \(\rho_1(c_2) = c_3 \) if \(g = 4 \),
- \(\rho_1(a_2) = a_3, \rho_2(a_1) = a_3, \rho_2(b_1) = b_3 \) and \(\rho_2(c_1) = c_2 \) if \(g = 3 \) and
- \(\rho_1 H_{b-1,b} \rho_1 = H_{b+1,b} \) if \(g = 3, 4, 5 \) or \(g = 6 \)

that the following elements:

- \(\rho_2 B_2 A_3 A_1^{-1} B_5^{-1} \) and \(\rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_3 C_4^{-1} \) if \(g = 6 \),
- \(\rho_1 H_{b-1,b} H_{b+1,b}^{-1} A_3 A_4^{-1} \) and \(\rho_2 A_2 B_2 C_2 C_3^{-1} B_4^{-1} A_4^{-1} \) if \(g = 5 \),
- \(\rho_2 B_1 A_2 A_3^{-1} B_4^{-1} \) and \(\rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_3^{-1} \) if \(g = 4 \) and
- \(\rho_1 H_{b-1,b} H_{b+1,b}^{-1} A_2 A_3^{-1} \) and \(\rho_2 A_1 B_1 C_1 C_2^{-1} B_3^{-1} A_3^{-1} \) if \(g = 3 \)

given in lemmata 3.5–3.8 are involutions.

Next, we show that \(\Gamma \) is equal to the mapping class group \(\text{Mod}(\Sigma_{g,p}) \). By Lemma 3.10, the group \(\text{Mod}_0(\Sigma_{g,p}) \) is contained in the group \(\Gamma \). Hence, by Lemma 3.2, we need to prove that \(\Gamma \) is mapped surjectively onto \(\text{Sym}_p \).

The element \(\rho_1 \rho_2 \in \Gamma \) has the image \((1,2,\ldots,p) \in \text{Sym}_p \).

As proven above, \(A_i, B_i \) and \(C_i \) belong to the subgroup \(\Gamma \). Thus, it can be easily observed that the composite of half twists \(H_{b-1,b} H_{b+1,b}^{-1} \) is contained in \(\Gamma \). Therefore, the group \(\Gamma \) also contains the following element:

\[
R^{b-2} \left(H_{b-1,b} H_{b+1,b}^{-1} \right) R^{2-b} = H_{1,2} H_{3,2}^{-1},
\]

which has the image \((1,2,3) \in \text{Sym}_p \). This completes the proof since \((1,2,\ldots,p)\) and \((1,2,3)\) generate the whole group \(\text{Sym}_p \) if \(p \) is even [9, Theorem B].

When the number of punctures is odd, we introduce an additional involution \(\rho_3 \) (depicted in Fig. 4) to our generating set. The main reason behind adding an extra involution is for generating the symmetric group \(\text{Sym}_p \). We want to point out that aside from generating \(\text{Sym}_p \), all of our proofs in the case of even number of punctures work for odd number of punctures. For \(\rho_1 \) and \(\rho_2 \), we distribute punctures as in Figures 3 and 5 in [2] (see also Remark 3.9).

Proof of Theorem B. For the first part of the proof, we show that

(i) For every even integer \(g = 2k \geq 14 \) and every odd integer \(p = 2b+1 \geq 9 \), the subgroup \(\text{Mod}_0(\Sigma_{g,p}) \) of \(\text{Mod}(\Sigma_{g,p}) \) is generated by

\[
\rho_1, \rho_2 \text{ and } \rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_{k-3} B_{k-1} A_k A_{k+1}^{-1} B_{k+3}^{-1} C_{k+4}^{-1}, \rho_3.
\]
(ii) For every odd integer $g = 2k + 1 \geq 15$ and odd integer $p = 2b + 1 \geq 9$, the subgroup Mod$_0(\Sigma_{g,p})$ of Mod$(\Sigma_{g,p})$ is generated by

$$\rho_1, \rho_2 \text{ and } \rho_1 H_{b-1,b} H_{b+1,b}^{-1} C_{k-3} B_k A_{k+1}^{-1} B_{k+2}^{-1} C_{k+5}^{-1}, \rho_3.$$

Note that, it is enough to prove that the subgroup generated by the elements above is mapped surjectively onto Sym_p. For this, consider the images of ρ_1, ρ_2 and ρ_3

$$(1, p - 1)(2, p - 2) \ldots (b, b + 1),$$

$$(1, p)(2, p - 1) \ldots (b, b + 2),$$

$$(2, p - 1)(3, p - 2) \ldots (b, b + 2).$$

This finishes the proof for the first part, since these elements generate Sym_p, see [18, Lemma 6]. For the second part of the theorem, note that adding ρ_3 to the corresponding generating set given in Theorem A, finishes the proof.

As a last observation, one can prove that Theorem A also holds for the cases $p = 2$ or $p = 3$. In these cases, the generating set of Γ can be chosen as

$$\{\rho_1, \rho_2, \rho_1 C_{k-3} B_{k-1} A_{k-1} B_{k+2}^{-1} C_{k+4}^{-1}\} \text{ if } g = 2k \geq 14,$$

$$\{\rho_1, \rho_2, \rho_1 C_{k-3} B_k A_{k+1}^{-1} B_{k+2}^{-1} C_{k+5}^{-1}\} \text{ if } g = 2k + 1 \geq 13,$$

$$\{\rho_1, \rho_2, \rho_2 B_2 A_3 A_4^{-1} B_5^{-1}, \rho_1 C_3 C_4^{-1}\} \text{ if } g = 6,$$

$$\{\rho_1, \rho_2, \rho_1 A_3 A_4^{-1}, \rho_2 A_2 B_2 C_3 C_4^{-1} B_4^{-1} A_4^{-1}\} \text{ if } g = 5,$$

$$\{\rho_1, \rho_2, \rho_2 B_1 A_2 A_3^{-1} B_4^{-1}, \rho_1 C_2 C_3^{-1}\} \text{ if } g = 4,$$

$$\{\rho_1, \rho_2, \rho_1 A_2 A_3^{-1}, \rho_2 A_1 B_1 C_1 C_2^{-1} B_3^{-1} A_3^{-1}\} \text{ if } g = 3.$$
It can be easily proven that Γ contains $\text{Mod}_0(\Sigma_{g,p})$ by the similar arguments in the proofs of lemmata 3.3–3.8. The element $\rho_1\rho_2 \in \Gamma$ has the image $(1,2,\ldots,p) \in \text{Sym}_p$. Hence, this element generates Sym_p for $p = 2$. If $p = 3$, we distribute the punctures as in [11, Figure 1]. Then ρ_1 has image $(1,3)$, which together with $(1,2,3)$ generate Sym_p. Therefore, the group Γ is mapped surjectively onto Sym_p for $p = 2,3$. One can conclude that the group Γ is equal to $\text{Mod}(\Sigma_{g,p})$.

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) [Grant number 120F118].

Author contributions The authors declare that all the research and writing in the manuscript has been done together.

Data Availability Not applicable for this article as no datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Ethical approval Not applicable.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Altunöz, T., Pamuk, M., Yildiz, O.: Generating the twist subgroup by involutions. J. Topol. Anal.
[2] Altunöz, T., Pamuk, M., Yildiz, O.: Generating the extended mapping class group by three involutions. Osaka J. Math.
[3] Brendle, T.E., Farb, B.: Every mapping class group is generated by 6 involutions. J. Algebra 278(1), 187–198 (2004)
[4] Dehn, M.: The group of mapping classes. In: Papers on Group Theory and Topology. Springer, Berlin (1987). (Translated from the German by J. Stillwell (Die Gruppe der Abbildungsklassen, Acta Math 69, (1938), 135–206)
[5] Du, X.: The extended mapping class group can be generated by two torsions. J. Knot Theory Ramif. 26, 11 (2017)
[6] Farb, B., Margalit, D.: A Primer on Mapping Class Groups, p. 49. Princeton, Princeton University Press (2011)

[7] Gervais, S.: A finite presentation of the mapping class group of a punctured surface. Topology 40(4), 703–725 (2001)

[8] Humphries, S.: Generators for the mapping class group. In: Topology of Low-Dimensional Manifolds, Proceedings of Second Sussex Conference, Chelwood Gate (1977), Lecture Notes in Math. 722, (2) (1979). Springer, pp. 44–47

[9] Isaacs, I.M., Zieschang, T.: Generating symmetric groups. Am. Math. Mon. 102(8), 734–739 (1995)

[10] Johnson, D.: The structure of the Torelli group I A finite set of generators for \(T \). Ann. Math. (2) 118(3), 423–442 (1983)

[11] Kassabov, M.: Generating mapping class groups by involutions. arXiv:math.GT/0311455, v1 (2003)

[12] Korkmaz, M.: Generating the surface mapping class group by two elements. Trans. Am. Math. Soc. 367(8), 3299–3310 (2005)

[13] Korkmaz, M.: Mapping class group is generated by three involutions. Math. Res. Lett. 27(4), 1095–1108 (2020)

[14] Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Philos. Soc. 60(4), 769–778 (1964)

[15] Lu, N.: On the mapping class groups of the closed orientable surfaces. Topol. Proc. 13, 293–324 (1988)

[16] Luo, F.: Torsion elements in the mapping class group of a surface. arXiv:math.GT/0004048, v1 (2000)

[17] McCarthy, J.D., Papadopoulos, A.: Involutions in surface mapping class groups. Enseign. Math. 33(2), 275–290 (1987)

[18] Monden, N.: Generating the mapping class group of a punctured surface by involutions. Tokyo J. Math. 34(2), 303–312 (2011)

[19] Monden, N.: The mapping class group of a punctured surface is generated by three elements. Hiroshima Math. J. 41(1), 1–9 (2011)

[20] Monden, N.: On minimal generating sets for the mapping class group of a punctured surface. arXiv:math.GT/2103.01525, v1 (2021)

[21] Wajnryb, B.: Mapping class group of a surface is generated by two elements. Topology 35(2), 377–383 (1996)

[22] Yıldız, O.: Generating mapping class group by three involutions. arXiv:math.GT/2002.09151, v1 (2020)

Tülin Altunöz
Faculty of Engineering
Başkent University
Ankara
Turkey

e-mail: tulinaltunoz@baskent.edu.tr
Mehmetcik Pamuk and Oğuz Yıldız
Department of Mathematics
Middle East Technical University
Ankara
Turkey
e-mail: mpamuk@metu.edu.tr

Oğuz Yıldız
e-mail: oguzyildiz16@gmail.com

Received: November 8, 2022.
Revised: May 15, 2023.
Accepted: May 22, 2023.