LETTER

Optimizing read disturb phenomenon with new read scheme by partial-boosting channel in 3-D NAND Flash memories

Sangmin Ahn¹,a) and Hyungcheol Shin¹

Abstract In 3D NAND Flash, new read operation scheme is proposed to optimize read disturb in unselected strings. During read operation, the two types of read disturb occur, which are soft programming and HCI-induced read disturb. These are caused by repetitive Fowler-Nordheim (F-N) stress and boosting channel potential difference, respectively. In this letter, we show optimization of two read disturb phenomena through technology computer-aided design (TCAD) simulation with partial-boosting channel potential. Furthermore, the various conditions that affect channel potential in read operation are investigated. These results will be basis of the practical 3D NAND read operation analysis.

key words: 3D NAND Flash, new read scheme, read disturb, hot carrier injection, partial boosting channel, optimization
Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

The non-volatile memory market has grown significantly due to demand for massive amounts of data storage. In particular, NAND Flash memory is widely used as a non-volatile memory in the market. For low bit cost and high density, NAND Flash memory has been scaling down continuously. However, Reliability issue and increased process cost make it difficult. Therefore, structure with the 3-D vertical channel and stacked Word-lines (WLs) was applied to the NAND Flash memory and the number of string/BL is increased [1, 2, 3, 4, 5]. This structure caused phenomenon different from soft programming such as hot-carrier injection (HCI) induced read disturb in unselected strings [6,7].

In conventional read operation, soft programming occurs by repeated F-N stress in unselected WLs of selected string [8]. In addition, it has been reported that HCI-induced read disturb occurs by boosting channel potential difference in unselected string. To be more specific, in unselected strings, select gates are turned off to prevent unwanted sensing and soft programming (see Fig. 2(b) ‘Conventional 1’) but it's boosting channel potential occurs large electric field between selected WL and unselected WL when verify voltage is applied. The large electric field causes band-to-band tunneling (BTBT), where electron-hole pairs are generated. Some electrons are accelerated in the spacer region and become hot carriers, which makes a large shift of threshold voltage (V_{th}) in two neighbor WLs [9,10]. Many efforts have been made to solve this HCI-induced read disturb [6, 11, 12]. For example, drain select line (DSL) and source select line (SSL) are turned on for long time with high voltage to make lower channel potential difference than conventional read operation (see Fig. 2(b) ‘Conventional 2’). However, this scheme induces new problem such as more severe soft programming [13,14]. For this reason, ‘Conventional 3’ was recently proposed to improve read/write performance and soft programming, but there is no specific physical analysis [15]. Therefore, we performed physical-based TCAD device simulation and proposed new read schemes based on ‘Conventional 3’ [16]. Then, we analyzed the factors affecting the channel potential and show applicability of ‘Proposed’ in various conditions to optimize read disturb.

2. Device structure for TCAD simulation

Fig. 1. Schematic cross section of p-BiCS structure used in the TCAD simulation.

¹Inter-University Semiconductor Research Center (ISRC) and School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-747, Korea

a)khutkd02@snu.ac.kr

DOI: 10.1587/exlex.18.20210299
Received July 14, 2021
Accepted August 25, 2021
Publicized September 08, 2021

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers
Fig. 1 shows the schematic cross section of pipe-shaped bit cost scalable (p-BiCS) device structure [17,18,19]. A NAND string has three DSL/SSL, two dummy WLS and 48 cells. For the sake of simplicity in simulation, the monocrystalline channel is assumed. Table I summarizes device parameter values used in TCAD simulation. The meaning of parameters is as follows: \(r_f \) is the filler oxide radius, \(t_ox, t_{si}/t_{ox}, t_{si}/t_{ox} \) are thickness of silicon channel, tunnel oxide/silicon nitride/oxide in order, and \(L_WL \) is cell gate length, \(L_SP \) is spacer length, and \(N_D^{BL, SL} \) and \(N_D^{ch} \) are the donor doping concentrations of the bit line, source line, and channel body, respectively. \(n_{CNT} \) and \(p_{CNT} \) are electron, hole nitride trap charge density [20].

To simulate the worst case of HCI-induced read disturb, all WLS are erased (\(V_i = -1.1V \)) and only select WL is programmed to PV7 (\(V_i = 4.5V \)) and the verify voltage is 0V to selected WL (\(V_{\text{verify}} = 0V \)), which makes maximum electric field between selected WL and neighbor cells in unselected strings.

Parameter	Value
\(r_f \)	15 nm
\(t_ox \)	10 nm
\(L_{亏/透/透} \)	5/5.6 nm
\(L_WL = L_{SP} \)	28 nm
\(N_D^{BL} \)	\(5 \times 10^{10} \) cm\(^{-3} \)
\(N_D^{SL} \)	\(1 \times 10^{11} \) cm\(^{-3} \)
\(n_{CNT} = p_{CNT} \)	\(5 \times 10^{15} \) cm\(^{-3} \)

3. New read scheme in unselected strings

![Diagram](image)

Fig. 2. (a) Common bias in unselected string and only DSL/SSL bias is different. (b) Conventional 1: DSL/SSL are turned off and Conventional 2: DSL/SSL are fully turned on, Conventional 3: DSL/SSL are turned on slightly at unselected WL rising edge and Proposed: delayed pulse of ‘Conventional 3’.

Fig. 2 shows read operation schemes in unselected string. The BL and SL are biased to pre-charged voltage (\(V_{\text{pre}} = 0.5V \)) and ground, respectively. The read pass voltage (\(V_{\text{pass}} = 6.5V \)) is applied to unselected WLS. As previously mentioned, ‘Conventional 1–3’ have been proposed to improve read disturb. In this letter, the triangular pulse (Constant slope: 6.5 V/\(\mu \)s) is used to ‘Conventional 3’ and ‘Proposed’. As \(V_{\text{peak}} \) increases, the time of DSL/SSL pulse also increased. First, We will compare ‘Conventional 1–3’, then show how it differs from ‘Proposed’.

4. Results and Discussion

4.1 Effects of read operation schemes
To figure out the effect of schemes, we check the channel potential, electron density, electric field and current density of HCI at t = 3μs when maximum HCI-induce read disturb occurred. Fig. 3(a) shows channel potential with ‘Conventional 1~3’ (assume selected WL is in the middle). In ‘Conventional 3’, V_{peak} changes in order to observe the extent to which the channel potential decreases. First, for read operation with ‘Conventional 1’, the channel potential is fully boosted by read pass voltage and this scheme causes unwanted HCI-induced read disturb. Second, the channel potential by ‘Conventional 2’ is low and potential difference is also decreased. Even if the higher voltage is applied, the channel potential does not decrease anymore (so-called ‘saturation state’). Third, in read operation with ‘Conventional 3’, the channel potential decrease starts to occur when the V_{peak} is over 0.5V (because V_{th} of 3 DSL/SSL is 0.5V) and then, when V_{peak} is over 3.7V, the channel potential becomes ‘saturation state’.

Fig. 3(b)~(d) show electron density, electric field and current density of HCI with ‘Conventional 1~3’, respectively. In particular, Fig. 3(b) shows the reason why the channel potential decreases when DSL/SSL are turned on. The electrons from high doped SL and BL are injected and the higher the V_{peak}, the more amount of electrons remain in the channel. In ‘Conventional 3’, the channel potential is partially boosted and channel boosting level can be chosen by adjusting V_{peak}, and at the same time, electric field and current density of HCI should be considered as shown in Fig. 3(c) and (d).

Based on this ‘Conventional 3’ analysis, we proposed a new read scheme ‘Proposed’ and this pulse is delayed pulse of ‘Conventional 3’ by t_{delay}. Fig. 4 shows the effect of ‘Proposed’. Although same V_{peak} pulse was used, as the t_{delay} increases, channel injected electrons are increased the channel potential decreases and as shown in Fig. 4(a) and (b). Additionally, maximum electric field and current density of HCI are also decreased as shown in Fig. 4(c) and (d).

Through the results of Fig. 3 and 4, ‘Proposed’ is more effective than ‘Conventional 3’ in reducing the channel potential and HCI-induced read disturb because DSL/SSL starts to turn on when the unselected WLs bias is higher. Instead of applying a high voltage to the DSL/SSL, it is possible to optimize the channel potential by adjusting the delay time.
4-2 Investigation of channel potential

Fig. 5 shows channel potential depending on select WL location with ‘Proposed’. All conditions are the same as in Fig. 4, except that the select WL is close to the SL side. We can explain this tendency through electron density that is the reason for the decrease of channel potential. From the selected WL, channel volume of the BL side is larger than that on the SL side, and more electrons are required to decrease the channel potential. As a result, the channel potential on the BL side decreased less than when the select WL was near in the middle. On the contrary, SL side channel potential is further decreased. This result shows that selected WL location should be considered for read disturb optimization.

In this letter, the same pulse is applied to DSL and SSL in all read schemes. However, the channel potential of BL side and SL side can be controlled independently by applying ‘Proposed’. In Fig. 6, the DSL/SSL are applied to same $V_{peak} = 2V$ and $t_{delay,SSL} = 0.1\mu s$ and fixed, then $t_{delay,DSL}$ changes 0.15μs, 0.2μs and 0.25μs. The SL side channel potential is same in each pulse and only BL side channel potential is changed by $t_{delay,DSL}$. It means that we can handle channel potential both side independently and control soft programming and HCI for optimization. This read scheme can be applied considering Fig. 5, but only tendency was explained simply in here.

As previously mentioned, the WL layer stack is increasing for low bit cost and high density, which affect channel potential when DSL/SSL are turned on. For this reason, we show WL layer dependency in Fig. 7. As the WL layer increases, the channel potential decreases less because the volume of the channel to be filled with electrons increases. However, one thing to consider when we see this figure is that all WLs are erased except for selected WL. In practical 3D NAND operation, all WLs are programmed randomly and injection of electrons is difficult in low V_{pass}. For this reason, the difference of channel potential in Fig. 7 is not significant, but we can check tendency of channel potential depending on the number of WL layer. In practical 3D NAND operation, channel potential changes according to various conditions such as random cell pattern, and the soft programming and HCI will be affected [26, 27, 28, 29, 30]. Therefore, more research is needed to reduce read disturb, and we laid the groundwork in this study.

5. Conclusion

In this letter, we investigated various read schemes to optimize two different read disturb phenomena in 3D NAND Flash memories. Based on results, we proposed new read scheme with partial-boosting channel in unselected string. It is observed that channel potential and current
density of HCI can be optimized by adjusting the delay time and peak voltage of DSL/SSL pulse. Then, some factors that affect channel potential are investigated and the applicability of DSL/SSL pulse was also presented. These results will be basis of the practical 3D NAND read operation analysis.

Fig. 7 The channel potential depending on the number of WL layer with same read scheme.

References

[1] Y. Kim et al.: “Three-dimensional NAND flash architecture design based on single-crystalline stacked array,” IEEE Trans. Electron Devices 59 (2012) 35 (DOI: 10.1109/TED.2011.2170841).
[2] J. Jang et al.: “Vertical cell array using TCAT (terabit cell array transistor) technology for ultra high density NAND flash memory,” in Proc. Symp. VLSI Technol. (2009) 192.
[3] J.-G. Yun et al.: “Single-crystalline Si stacked array (STAR) NAND Flash memory,” IEEE Trans. Electron Devices 58 (2011) 1006 (DOI: 10.1109/TED.2011.2107557).
[4] Wonjoo Kim et al.: “Multi-layered Vertical Gate NAND Flash overcoming stacking limit for terabit density storage,” Symposium on VLSI Technology (2009) 188.
[5] A. Hubert et al.: “A stacked SONOS technology, up to 4 levels and 6nm crystalline nanowires, with Gate-All-Around or independent gates (q-Flash), suitable for full 3D integration,” IEEE International Electron Devices Meeting (2009) 1 (DOI: 10.1109/IEDM.2009.5424260).
[6] B.-I. Choe, J.-K. Lee, B.-G. Park, and J.-H. Lee: “Suppression of read disturb fail caused by boosting hot carrier injection effect for 3-D stack NAND flash memories,” IEEE Electron Device Lett. 35 (2014) 42 (DOI: 10.1109/LED.2013.2288991).
[7] H. Wang et al.: “A New Read-Disturb Failure Mechanism Caused by Boosting Hot-Carrier Injection Effect in MLC NAND Flash Memory,” 2009 IEEE International Memory Workshop (2009) 1 (DOI: 10.1109/IMW.2009.5090574).
[8] J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, P. Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, and H. E. Maes: “A new quantitative model to predict SILC-related disturb characteristics in flash EEPROM devices,” inIEDM Tech. Dig. (1996) 343 (DOI:10.1109/IEDM.1996.553599).
[9] M. Kang and Y. Kim: “Natural local self-boosting effect in 3D NAND flash memory,” IEEE Electron Device Lett. 38 (2017) 1236 (DOI:10.1109/LED.2017.2736541).
[10] D. Son, J. Park and H. Shin: “Investigation and Compact Modeling of Hot-Carrier Injection for Read Disturbance in 3-D NAND Flash Memory,” inIEEE Transactions on Electron Devices 67 (2020) 2778 (DOI:10.1109/TED.2020.2993772).
[11] Y. Zhang, L. Jin, D. Jiang, X. Zou, H. Liu, and Z. Huo: "A novel read scheme for read disturbance suppression in 3D NAND flash memory," IEEE Electron Device Lett. 38 (2017) 1669 (DOI: 10.1109/LED.2017.2765078).
[12] D. W. Kwon et al.: “Analysis on new read disturbance induced by hot carrier injections in 3-D channel-stacked NAND flash memory,” IEEE Trans. Electron Devices 66 (2019) 3326 (DOI:10.1109/TED.2019.2920127).
[13] M. Kang, K.-T. Park, Y. Song, S. Hwang, B. Y. Choi, Y. Song, Y.-T. Lee, and C. Kim: “Improving read disturb characteristics by self boosting read scheme for multilevel NAND flash memories,” Jpn. J. Appl. Phys. 48 (2009) 04C062-1 (DOI: 10.1143/JJAP.48.04C062).
[14] M. Kang, K.-T. Park, Y. Song, Y. Lim, K.-D. Suh, and H. Shin: “Improving read disturb characteristics by using double common source line and dummy switch architecture in multi level cell NAND flash memory with low power consumption,” Jpn. J. Appl. Phys. 50 (2011) 04D003-1 (DOI: 10.7567/JJAP.50.04D003).
[15] J. W. Park et al.: “30.1 A 176-Layered 512GB 3b/Cell 3D NAND Flash with 10.8Gb/mm2 Density with a Peripheral Circuit Under Cell Array Architecture,” 2021 IEEE International Solid-State Circuits Conference (2021) 422 (DOI: 10.1109/ISSCC42613.2021.9365809).
[16] Sentaurus Device User Guide, Synopsys, Mountain View, CA, USA, 2015.
[17] R. Katsumata et al.: “Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices,” Symposium on VLSI Technology (2009) 136.
[18] R. Delhoubstre et al.: “First demonstration of monocrystalline silicon macaroni channel for 3-D NAND memory devices,” IEEE Symposium on VLSI Technology (2018) 203 (DOI: 10.1109/VLSIT.2018.8510635).
[19] H. Jo, J. Kim, M. Kim, and H. Shin: “Extraction of mobility in 3-D NAND flash memory with poly-Si based macaroni structure,” IEEE EDMT 2020 1 (DOI: 10.1109/EDMT47692.2020.9117961).
[20] A. Padovani, A. Arreghini, L. Vandelili, L. Larcher, G. Van den bosch, P. Pavan, and J. V. Houtd: “A comprehensive understanding of the erase of TANOS memories through charge separation experiments and simulations,” IEEE Trans. Electron Devices 58 (2011) 3147 (DOI: 10.1109/TED.2011.2159722).
[21] E. O. Kane: “Theory of tunneling,” J. Appl. Phys. 32 (1961) 83 (DOI: 10.1063/1.1735965).
[22] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuevers: “A new recombination model for device simulation including tunneling,” IEEE Trans. Electron Devices 39 (1992) 331 (DOI: 10.1109/16.121690).
[23] W. N. Grant: “Electron and hole ionization rates in epitaxial silicon at high electric fields,” Solid-State Electron. 16 (1996) 1189 (DOI:10.1016/0038-1101(73)90147-0).
[24] K. Hasnatt et al.: “A pseudo-lucky electron model for simulation of electron gate current in submicron NMSOFET’s,” IEEE Trans. Electron Devices 43 (1996) 1264 (DOI: 10.1109/16.506778).
[25] S. Tam, P.-K. Ko, and C. Hu: “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Trans. Electron Devices ED-31 (1984) 1116 (DOI: 10.1109/TED.1984.21674).
[26] Y. Kim and M. Kang: “Down-Coupling Phenomenon of Floating Channel in 3D NAND Flash Memory,” in IEEE Electron Device Letters 37 (2016) 1566 (DOI: 10.1109/LED.2016.2619003).
[27] Ham, I. et al.: “Analysis of Natural Local Self-Boosting Effect according to the Number of Layers in 3D NAND Flash Memory,” IEEE (2019) 201.
[28] Choi, B. et al.: “Effect of charge trap layer thickness on the charge spreading behavior within a few seconds in 3D charge trap flash memory,” Semiconductor Science and Technology 33 (2018) 10LT01 (DOI: 10.1088/1361-6641/aade29).
[29] Jeong, Y. et al.: “Optimal dummy word line condition to suppress hot
carrier injection phenomenon due to the natural local self-boosting effect in 3D NAND flash memory," Japanese Journal of Applied Physics 59 (2020) SGGB17 (DOI: 10.35848/1347-4065/ab6b77).

[30] Han, S. et al.: "Study on Natural Local Self Boosting of Down Coupling Phenomenon According to the Number of Word Line in 3D NAND Flash Memory," IEIE (2019) 205.