Protective Effect of Panduratin A on Cisplatin-Induced Apoptosis of Human Renal Proximal Tubular Cells and Acute Kidney Injury in Mice

Penjai Thongnuanjan, a,b Sirima Soodvilai, c Somsak Fongsupa, d Napason Chabang, e Pornpun Vivithanaporn, f Patoomratana Tuchinda, g and Sunhapas Soodvilai* a,b,g

a Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University; Ratchathewi, Bangkok 10400, Thailand: b Research Center of Transport Protein for Medical Innovation, Department of Physiology, Mahidol University; Ratchathewi, Bangkok 10400, Thailand: c Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University; Pathumthani 12000, Thailand: d Department of Medical Technology, Faculty of Allied Health Science, Thammasat University Rangsit Campus; Pathumthani 12121, Thailand: e School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University; Ratchathewi, Bangkok 10400, Thailand: f Research Center of Transport Protein for Medical Innovation, Department of Physiology, Mahidol University; Ratchathewi, Bangkok 10400, Thailand: g Excellent Center for Drug Discovery, Mahidol University; Ratchathewi, Bangkok 10400, Thailand.

Received January 12, 2021; accepted March 25, 2021

Background: Cisplatin is an effective chemotherapy but its main side effect, acute kidney injury, limits its use. Panduratin A, a bioactive compound extracted from Boesenbergia rotunda, shows several biological activities such as anti-oxidative effects. The present study investigated the nephroprotective effect of panduratin A on cisplatin-induced renal injury. Methods: We investigated the effect of panduratin A on the toxicity of cisplatin in both mice and human renal cell cultures using RPTEC/TERT1 cells. Results: The results demonstrated that panduratin A ameliorates cisplatin-induced renal toxicity in both mice and RPTEC/TERT1 cells by reducing apoptosis. Mice treated with a single intraperitoneal (i.p.) injection of cisplatin (20 mg/kg body weight (BW)) exhibited renal tubule injury and impaired kidney function as shown by histological examination and increased serum creatinine. Co-administration of panduratin A (50 mg/kg BW) orally improved kidney function and ameliorated renal tubule injury of cisplatin by inhibiting activation of extracellular signal-regulated kinase (ERK)1/2 and caspase 3. In human renal proximal tubular cells, cisplatin induced cell apoptosis by activating pro-apoptotic proteins (ERK1/2 and caspase 3), and reducing the anti-apoptotic protein (Bcl-2). These effects were significantly ameliorated by co-treatment with panduratin A. Interestingly, panduratin A did not alter intracellular accumulation of cisplatin. It did not alter the anti-cancer efficacy of cisplatin in either human colon or non-small cell lung cancer cell lines. Conclusions: The present study highlights panduratin A has a potential protective effect on cisplatin’s nephrotoxicity.

Key words chemotherapy; acute kidney injury; panduratin A; human renal proximal tubule; anti-apoptosis

INTRODUCTION

Nephrotoxicity induced by drugs is a major problem in the clinical setting because the use of nephrotoxic drugs is often unavoidable. Nephrotoxicity can be defined by renal injuries including glomerular damage and tubular injury leading to impairment of renal function. 19) Common drugs associated with the kidney injury are anti-inflammatories, antibiotics, and chemotherapeutic agents, such as cisplatin. 2–4) Cisplatin is a broad-spectrum, high potency chemotherapeutic drug. 5) However, approximately one out of three patients receiving cisplatin treatment suffers from nephrotoxicity 6–7) and electrolyte imbalance. 8,9) Cisplatin-induced nephrotoxicity is characterized by proximal tubule injury, vascular injury and inflammation. 10) Accumulation of cisplatin in renal cells induces multiple pathways that promote cell death. Reactive oxygen species (ROS) has been identified as a key mediator in cisplatin nephrotoxicity. 10,11) Additionally, ROS induces nephrotoxicity via activation of mitogen-activated protein kinases (MAPKs). 10,12,13) Several studies have reported that cisplatin itself can directly stimulate extracellular signal-regulated kinase (ERK)1/2 (a member of MAPKs) both in vitro and in vivo. 14,15) Certain phytochemicals ameliorate cisplatin-induced nephrotoxicity by inhibiting ROS accumulation and apoptosis. 16–18) Although nephroprotective effects of these phytochemicals have been reported in preclinical studies, there is still no approved drugs from phytochemicals for cisplatin’s nephrotoxicity (see detail in review). 19) Current clinical practice only provides supportive treatments to recover renal function. 20) Therefore, it is still important to search for effective agents to prevent or treat cisplatin-induced nephrotoxicity. Panduratin A is an interesting phytochemical. It is a cyclohexanyl chalcone isolated from Boesenbergia rotunda, a plant used in traditional medicine and food. 21) Panduratin A has been shown to prevent or treat oxidative stress, inflammation and metabolic disease. 22,23)

Injury of renal proximal tubules caused by cisplatin is mediated, at least in part, via increased oxidative stress and inflammation. 11) Therefore, we investigated the effect of panduratin A on the toxicity of cisplatin in both animals and cell cultures using RPTEC/TERT1 cells. We also tested whether co-treatment with panduratin A affects cisplatin’s anti-cancer activity in human cancer cell lines.
MATERIALS AND METHODS

Chemicals Thiazolyl blue tetrazolium bromide (MTT), 2′,7′-dichlorofluorescin diacetate (DCFH-DA), cisplatin and compound C (AMP-activated protein kinase (AMPK) inhibitor) were purchased from Sigma-Aldrich (MO, U.S.A.). 3′H-1-Methyl-4-phenylpyridinium (3′H-MPP+) was purchased from PerkinElmer, Inc. (Bangkok, Thailand). Annexin V-fluorescein isothiocyanate (FITC) apoptosis detection kit was purchased from BD Biosciences (CA, U.S.A.). Primary antibodies for p-ERK1/2 (Cat. No. 9102S), ERK1/2 (Cat. No. 9411S), Bcl-2 (Cat. No. 2872T), caspase-3 (Cat. No. 9662S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Cat. No. 2118S), p-AMPKα (Cat. No. 2531S), AMPKα (Cat. No. 5832S), Bax (Cat. No. 5023) and β-actin (Cat. No. 4970T) antibodies were obtained from Cell Signaling (MA, U.S.A.). Briefly, RPTEC/TERT1 cells were detached by 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA). The cell suspensions were collected supernatants were kept at −80°C until renal function was determined by DCFH-DA assay. RPTEC/TERT1 cells were detached by 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA). The cell suspensions were collected and radioactive levels were determined by DCFH-DA assay. RPTEC/TERT1 cells were washed with warm transport buffer and further incubated for 20 min. The cell monolayers were incubated with 3′H-MPP+ (10 nM) followed by washing with ice-cold transport buffer. The samples were collected and radioactive activity of 3′H-MPP+ was measured using liquid scintillation counter.

Assessment of Intracellular ROS Accumulation ROS levels were determined by DCFH-DA assay. RPTEC/TERT1 cells were incubated with 10 μM DCFH-DA and incubated for 30 min at 37°C. Next, DCFH-DA dye was removed and cells were washed with phosphate buffered saline (PBS). Intracellular ROS level was measured at wavelengths of 485 and 530 nm for excitation and emission, respectively. Intracellular ROS accumulation is reported as a percentage of fluorescent intensity relative to control cells.

Platinum Accumulation Analysis Accumulated platinum was measured in both digested RPTEC/TERT1 cells and mouse kidneys by UNICAM 989 QZ AA spectrometer (Geleen, Netherlands). Ten microliter of 1% triton X-100 and 400 μL of 1% nitric acid were added to each 100 μL sample. Samples were then incubated for at least 1 h. Prior to platinum detection, each sample was diluted 10:1 with 1% nitric acid. The platinum concentration was calculated using linear regression of a platinum standard curve prepared using 2.5 mg/mL of cisplatin-diluted in 1% nitric acid. The platinum was calculated as ng/cell number or ng/kidney weight.

3′H-MPP+ Uptake Assay Uptake of 3′H-MPP+ into RPTEC/TERT1 cells was determined using our previous method.²⁵ Briefly, cells were washed with warm transport buffer and further incubated for 20 min. The cell monolayers were incubated with 3′H-MPP+ (10 nM) followed by washing with ice-cold transport buffer. The samples were collected and radioactive activity of 3′H-MPP+ was measured using liquid scintillation counter.

Western Blotting Analysis Protein expressions were processed according to our previous study.²⁶ Extracted proteins from mouse kidney and RPTEC/TERT1 cells were centrifuged at 12000 rpm for 20 min at 4°C. Equal amounts of proteins isolated from cells and tissue were denatured and separated by 10–12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Samples were transferred onto nitrocellulose membranes followed by 1 h non-specific protein blocking using nonfat dry milk (5%). The membranes were incubated with primary antibody for 24 h and were then incubated with secondary antibody for 1 h. The intensity of protein expression was detected using chemiluminescent HRP substrate and quantified by ImageJ software.
Statistical Analysis Data are expressed as mean ± standard deviation (S.D.). Data were analyzed by one-way ANOVA using Tukey’s post-hoc tests (GraphPad Prism 8.0). A significance is considered when p value is less than 0.05.

RESULTS

Panduratin A Ameliorates Cisplatin-Induced Acute Kidney Injury We investigated the effect of panduratin A on kidney injury caused by cisplatin in mice. We first observed the general toxicity by measuring body weight change in mice following treatment with normal saline, panduratin A
(50 mg/kg BW), cisplatin (20 mg/kg BW), and both cisplatin (20 mg/kg BW) and panduratin A (50 mg/kg BW). A significant decreased body weight in the cisplatin-treated mice was found. The body weight loss was mitigated by co-treatment with panduratin A (Fig. 1A). Compared with the control, kidney function which was measured by serum creatinine level showed that mice-treated panduratin A alone did not alter serum creatinine level; whereas the cisplatin-treated mice had significantly increased serum creatinine levels, indicating impaired kidney function. The serum creatinine level in co-administration of panduratin A was significantly decreased compared with cisplatin-treated mice (Fig. 1B). In addition, the accumulation of platinum in kidney tissue was not significantly different in mice treated with cisplatin alone compared with mice co-treated with cisplatin and panduratin A (Fig. 1C). These data indicate that panduratin A did not affect cisplatin content in renal tissue. The kidneys obtained from mice treated with vehicle or panduratin A alone showed no marked pathological changes. However, cisplatin-treated mice showed more tubular damage compared with vehicle-treated mice as shown by increase in degeneration and desquamation, formation of luminal casts, mononuclear cell infiltration, karyomegaly, inter-tubular haemorrhagia, and dilation. These pathological changes were significantly attenuated by co-administration of panduratin A (Fig. 2A, Table 1). The expression levels of NGAL (a nephrotoxicity biomarker), and ERK1/2 and cleaved caspase 3 (pro-apoptotic proteins) were determined. Our study showed that mice treated with cisplatin significantly increased expression of NGAL, p-ERK1/2, and cleaved caspase 3 compared with vehicle-treated mice. Co-treatment with panduratin A significantly reduced these proteins induced by cisplatin treatment (Fig. 2B).

Panduratin A Prevents Cisplatin-Induced Cytotoxicity in Human Renal Proximal Tubular Cells by Inhibiting Apoptotic Signaling Pathways Cisplatin (50 µM) significantly decreased viability of RPTEC/TERT1 cells following 72h incubation. Interestingly, co-treatment with panduratin A (1 and 5 µM) significantly increased cell viability (Fig. 3A).

Table 1. Effect of Panduratin A on Cisplatin-Induced Renal Tubular Damage

Group	Tubular necrosis	Tubular degeneration & desquamation	Luminal casts formation	Karyomegaly	Mononuclear cell infiltration	Inter-tubular haemorrhagia	Tubular dilation
Control	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.25 ± 0.43	0.00 ± 0.00	0.50 ± 0.50
Panduratin A	0.20 ± 0.40	0.80 ± 0.40	0.00 ± 0.00	0.00 ± 0.00	0.20 ± 0.40	0.40 ± 0.40	0.60 ± 0.49
Cisplatin	0.40 ± 0.49	1.40 ± 0.49*	2.00 ± 0.89*	1.20 ± 0.40*	1.40 ± 0.49*	1.40 ± 0.49*	1.80 ± 0.75*
Cisplatin + Panduratin A	0.20 ± 0.40	0.20 ± 0.40*	0.20 ± 0.40*	0.00 ± 0.00*	0.00 ± 0.00	0.00 ± 0.00*	1.00 ± 0.63*

Data are shown as mean ± S.D. from 5 animals; *p < 0.01 vs. control group and #p < 0.01 vs. cisplatin group.

![Figure 3](image-url)
Panduratin A’s protective effect against cytotoxicity of cisplatin was confirmed by measurement of cell apoptosis. As expected, exposure of the cells to 50 µM cisplatin for 48 h significantly increased apoptosis of RPTEC/TERT1 cells. This effect was attenuated by panduratin A (Fig. 3B). We examined whether the effect of panduratin A on cisplatin’s toxicity required activation of AMPK. As shown in Fig. 3C, protein expression of p-AMPK, an active form of AMPK, was increased by panduratin A whereas it was decreased by cisplatin. In addition, the protective effect of panduratin A under AMPK inhibition was determined. Interestingly, incubation of the cells with 10 µM compound C, an inhibitor of AMPK, did not attenuate the protective effect of panduratin A on cell viability (Fig. 3D). These results indicate that the protective effect of panduratin A might be mediated by AMPK-independent mechanisms. We next examined the effect of panduratin A on certain proteins involved in cell apoptosis induced by cisplatin. As shown in Fig. 4, cisplatin significantly increased pro-apoptotic proteins p-ERK1/2 and cleaved caspase 3. Cisplatin decreased expression of anti-apoptotic protein Bcl-2. Co-treatment with panduratin A reversed the expression of these proteins. Since ROS is a major factor involved in renal cell apoptosis induced by cisplatin, we determined the effect of panduratin A on ROS accumulation due to cisplatin. Cisplatin significantly increased intracellular levels of ROS. Interestingly, panduratin A significantly reduced cisplatin-induced ROS accumulation.

Panduratin A Does Not Affect Cellular Accumulation of Cisplatin OCT2 mediates cisplatin transport into the human renal proximal tubular cells. To examine the possibility of panduratin A reducing cisplatin accumulation, we measured the transport function of OCT2. The results showed that incubation of cells with 5 µM panduratin A for 10 min and 24 h had no effect on cellular accumulation of [3H]-1-methyl-4-phenylniridinium ([3H]-MPP+), a substrate of OCT2. Next, the effect of panduratin A on cisplatin cellular accumulation was confirmed. Panduratin A had no significant effect on platinum accumulation in the human renal cells (Fig. 5).

The Protective Effect of Panduratin A Does Not Affect the Anti-cancer Activity of Cisplatin Panduratin A’s effect on cisplatin’s toxicity in cancer cell lines was determined. Viability of HCT116 and A549 cells which are colon and lung cancer cell lines, respectively, was significantly reduced 72 h after treatment with cisplatin (50 µM). Co-treatment with panduratin A (5 µM) did not attenuate the cytotoxicity of cisplatin. Interestingly, panduratin A by itself also reduced the

Fig. 4. Effect of Panduratin A on Expression of Signaling Proteins Involved in Apoptosis (A–C) and ROS Accumulation Due to Cisplatin (D)

Cells were incubated for 24 h with vehicle, panduratin A (5 µM), N-acetylcysteine (NAC; 1 mM), cisplatin (50 µM), and cisplatin (50 µM) combined with panduratin A (5 µM) or NAC (1 mM). Data are reported as means ± S.D. (n = 3); *p < 0.05 compared with vehicle-treated cells and #p < 0.05 compared with cisplatin-treated cells.
viability of these cells (Fig. 6).

DISCUSSION

The present study reveals that panduratin A reduces cisplatin nephrotoxicity without impairing cisplatin’s anti-cancer activity in colon and non-small cell lung cancer cell lines. We showed that co-treatment with panduratin A attenuates acute kidney injury in mice caused by cisplatin. Although the present study shows the protective effect on cisplatin-induced kidney injury, the primary target of panduratin A is not identified. Panduratin A could activate AMPK in renal proximal tubular cells (Fig. 3) and other cell types. It seems unlikely that the protective effect of panduratin A requires activation of AMPK as evidence showed that inhibition of AMPK using chemical inhibitor did not alter the protective effect of panduratin A.

Panduratin A improved renal function as shown by reduced serum creatinine. Cisplatin-impaired renal function is correlated with renal tubule injury such as degeneration, luminal cast formation, haemorrhagia, and dilation. The renal tubule injury results correlated well with our data showing the induction of NGAL expression in kidney tissue of mice treated with cisplatin. In addition, this evidence is supported by the previous study showing NGAL is markedly expressed in renal tubules following acute kidney injury induced by cisplatin. Interestingly, co-treatment of the mice with panduratin A attenuated cisplatin-induced renal tubule injury. The histological analysis showed that cisplatin increased mononuclear cell infiltration and this effect was abolished by panduratin A. These results imply that panduratin A, which is previously shown an anti-inflammatory, might attenuate the inflammatory effect of cisplatin in renal tissue. MAPK activation could induce cell death. Our results showed that cisplatin stimulated activation of ERK1/2 and caspase 3. Expressions of these proteins were attenuated by panduratin A.

Multiple pathways contributing to cisplatin-induced nephrotoxicity (including apoptosis, oxidative stress, and inflammation) have been reported. We used RPTEC/TERT1 cell line to identify mechanisms of panduratin A ameliorating toxicity caused by cisplatin in human renal proximal tubular cells. RPTEC/TERT1 cells have been suggested as a renal cell model for xenobiotic-induced toxicities. Panduratin A exhibits a protective effect in respect of cisplatin cytotoxicity as shown by a decrease in RPTEC/TERT1 cell apoptosis. The mechanisms of cisplatin’s toxicity in renal proximal tubular cells are complex. ERK1/2 and caspase 3 activation and Bcl-2 depletion have been implicated in renal cell apoptosis due to
cisplatin. Consistent with previous studies, the present study showed that cisplatin increases expression of p-ERK1/2 and cleaved caspase 3 and decreases Bcl-2 expression. Our results indicate that panduratin A suppresses cisplatin-induced apoptotic signaling proteins, p-ERK1/2 and cleaved caspase 3, and maintains anti-apoptotic protein, Bcl-2. In addition to activation of ERK1/2 and caspase 3, increased intracellular ROS accumulation is a key factor in renal cell apoptosis due to cisplatin. A previous study reported that panduratin A protects against oxidative damage in hepatocytes by reducing intracellular ROS formation caused by reactive intermediates. The decrease in ROS accumulation following treatment with panduratin A could be mediated by either inhibition of ROS production or increase in ROS scavenging reaction. We reported that panduratin A increased glutathione level, an ROS scavenging molecule, which might reduce ROS accumulation in renal tissue (see supplementary materials). However, we do not rule out other mechanisms are involved in ROS reduction. Our results revealed that panduratin A reduces intracellular ROS accumulation, which contributes to panduratin A’s protective effect. Intracellular level of cisplatin is the primary factor affecting the severity of cisplatin-induced toxicity. Renal transporters such as OCT2, copper transporters and multidrug and toxin extrusion transporter-1 (MATE1) have been reported to contribute to cisplatin transport. However, transport of cisplatin into the renal proximal tubular cells is primarily mediated by OCT2. Inhibition of OCTs has been shown to attenuate cisplatin-induced renal toxicity both in cultured renal cells and animals. Panduratin A exhibits renoprotective effects via the inhibition of renal cell apoptosis. If panduratin A also inhibited cancer cell apoptosis, it would reduce the chemotherapy efficacy. We therefore tested whether panduratin A reduces cisplatin’s anti-cancer activity. Significantly, co-treatment with panduratin A does not alter the anti-cancer activity of cisplatin in either colon or non-small lung cell cancer cells. Moreover, panduratin A itself is toxic to both cancer cell lines. The results indicate that panduratin A’s effect is selective, affecting normal renal cells and cancer cells differently. Although panduratin A might be a good agent for preventing of cisplatin-induced nephrotoxicity, the information concerning the pharmacological effects of panduratin A under clinically relevant in xenograft model should be investigated in the future.

CONCLUSION

Our present study demonstrated that panduratin A provides a marked protective effect on cisplatin’s nephrotoxicity by reducing oxidative stress and inhibiting ERK1/2 and caspase 3 activations. The protective effect of panduratin A did not alter the anti-cancer activity of cisplatin in cancer cells. Even though blocking some injurious events may only have partial renoprotective effects, panduratin A might be a good candidate agent to alleviate cisplatin’s nephrotoxicity because it reduces toxicity of cisplatin via multiple mechanisms.

Acknowledgments This study was supported by the International Research Network (IRN), Thailand Research Funds (Grant No. IRN5804PHD02 to Penjai Thongmuangjan), Thailand Science Research and Innovation (Grant No. RSA62800802 to Sunhapsa Soodvilai), and The Central Instrument Facility (CIF), Faculty of Science, Mahidol, University.

Author Contributions Pe. T. and Su. S. conceived the studies and planned the experimental design. Pe. T., Si. S., S. F., N. C., and Su. S. performed the experiments analyzed the data. Pe. T., Pa. T., and Su. S. interpreted the data. Pe. T. and Su. S. wrote manuscript. Su. S. edited and proved the final manuscript.

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials.

REFERENCES

1) Sánchez-González PD, Lopez-Hernandez EJ, Lopez-Novoa JM, Morales AI. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol., 41, 803–821 (2011).

2) Eras J, Perazella MA. NSAIDs and the kidney revisited: are selective cyclooxygenase-2 inhibitors safe? Am. J. Med. Sci., 321, 181–190 (2001).

3) Ozkan G, Ulusoy S, Orem A, Alkanat M, Mungan S, Yulug E, Yucelen FB. How does colistin-induced nephropathy develop and can it be treated? Antimicrob. Agents Chemother., 57, 3463–3469 (2013).

4) Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int., 73, 994–1007 (2008).

5) Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol., 740, 364–378 (2014).

6) Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer, 34, 1522–1534 (1998).

7) Tsang RC, Ky-Min FA, Jia HJ. Cisplatin overdoes: toxicities and management. Drug Saf., 32, 1109–1122 (2009).

8) Aydinoz S, Uzun G, Cermik H, Atasoyu EM, Yildiz S, Karagoz B, Evrenkaya R. Effects of different doses of hyperbaric oxygen on cisplatin-induced nephrotoxicity. Ren. Fail., 29, 257–263 (2007).

9) Hatakeyama S, Shida Y, Yamaguchi H. Risk factors for severe hyperkalemia related to cisplatin: a retrospective case-control study. Biol. Pharm. Bull., 42, 1891–1897 (2019).

10) Ma ZN, Liu Z, Wang Z, Ren S, Tang S, Wang YP, Xiao SY, Chen C, Li W. Supplementation of American ginseng berry extract mitigated cisplatin-evoked nephrotoxicity by suppressing ROS-mediated activation of MAPK and NF-κB signaling pathways. Food Chem. Toxicol., 110, 62–73 (2017).

11) Marullo R, Werner F, Degiayareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLOS ONE, 8, e81162 (2013).

12) Cassidy H, Radford R, Slyn J, O’Connell S, Slattery C, Ryan MP, McMorrow T. The role of MAPK in drug-induced kidney injury. J. Signal Transduct., 2012, 463617 (2012).

13) Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J. NAPDH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Lab. Invest., 98, 63–78 (2018).

14) Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor,
15) Kim YK, Kim HJ, Kwon CH, Kim JH, Woo JS, Jung JS, Kim JM. Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells. J. Appl. Toxicol., 25, 374–382 (2005).

16) Okur ME, Ayla S, Karadag AE, Ciccek Polat D, Demirci S, Seckin I. Opuntia ficus indica fruits ameliorate cisplatin-induced nephrotoxicity in mice. Biol. Pharm. Bull., 43, 831–838 (2020).

17) Soodvilai S, Meetam P, Siangjong L, Chokchaisiri R, Suksamrarn A, Soodvilai S. Germacrone reduces cisplatin-induced toxicity of renal proximal tubular cells via inhibition of organic cation transporter. Biol. Pharm. Bull., 34, 1693–1698 (2020).

18) Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J. Pharm. Pharmacol., 64, 872–881 (2012).

19) Ojha S, Venkataraman B, Kurdi A, Mahgoub E, Sadek B, Rajesh M. Plant-derived agents for counteracting cisplatin-induced nephrotoxicity. Oxid. Med. Cell. Longev., 2016, 4320374 (2016).

20) Özkoç A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int., 2014, 967826 (2014).

21) Eng-Chong T, Yeon-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, Gen-Teck F, Khalid N, Abd Rahman N, Karsani SA, Othman S, Othman R, Yusof R. Boesenbergia rotunda: from ethnopharmacology to drug discovery. Evid. Based Complement. Alternat. Med., 2012, 473637 (2012).

22) Chahyadi A, Hartati R, Wiraustisna KR, Elfahmi. Boesenbergia pandurata Roxb., an Indonesian medicinal plant: phytochemistry, biological activity, plant biotechnology. Int. J. Mol. Sci., 13, 13–37 (2014).

23) Kim D-Y, Kim M-S, Sa B-K, Kim M-B, Hwang J-K. Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. Int. J. Mol. Sci., 13, 994–1005 (2012).

24) Tuchinda P, Keuttrakul V, Claeson P, Pongrayoon U, Sematong T, Santisuk T, Taylor WC. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry, 59, 169–173 (2002).

25) Wongwan T, Kittayaruskul S, Asavapanumas N, Chatsudhipong V, Soodvilai S. Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells. Pflugers Arch., 469, 1471–1481 (2017).

26) Thongnuanjan P, Soodvilai S, Chatsudhipong V, Soodvilai S. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways. J. Toxicol. Sci., 41, 339–346 (2016).

27) Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab. Res., 31, 971–997 (1999).

28) Ciarimboli G, Deuster D, Kneif A, Speirling M, Heitkamp M, Jedmir B, Pavensdai H, Lanver-Kaminsky K, am Zehnhoff-Dianese A, Schinkel AH, Koepsell H, Jürgens H, Schlatter E. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol., 176, 1169–1180 (2010).

29) Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther., 86, 396–402 (2009).

30) Kim D, Lee MS, Jo K, Lee KE, Hwang JK. Therapeutic potential of panduratin A, LKB1-dependent AMP-activated protein kinase stimulator, with activation of PPARα/δ for the treatment of obesity. Diabetes Obes. Metab., 13, 584–593 (2011).

31) Kim MS, Pyun HB, Hwang JK. Panduratin A, an activator of PPAR-α/δ, suppresses the development of oxazolone-induced atopic dermatitis-like symptoms in hairless mice. Life Sci., 100, 45–54 (2014).

32) Lai SL, Mustafa MR, Wong PF. Panduratin A induces protective autophagy in melanoma via the AMPK and mTOR pathway. Phytochemistry, 42, 144–151 (2018).

33) Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am. J. Nephrol., 24, 307–315 (2004).

34) Kim H, Kim MB, Kim C, Hwang JK. Inhibitory effects of panduratin A on periodontitis-induced inflammation and osteoclastogenesis through inhibition of MAPK pathways in vitro. J. Microbiol. Biotechnol., 28, 193–198 (2018).

35) Yun J-M, Kwon H, Hwang J-K. In vitro anti-inflammatory activity of panduratin A isolated from kaempferia pandurata in RAW264.7 cells. Planta Med., 69, 1102–1108 (2003).

36) Aschauer L, Carta G, Vogelsang N, Schlatter E, Jennings P. Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol. In Vitro, 30 (1 Pt. A), 95–105 (2015).

37) Ma FY, Liu J, Nikolaic-Paterson DJ. The role of stress-activated protein kinase signaling in renal pathophysiology. Braz. J. Med. Biol. Res., 42, 29–37 (2009).

38) Nowak G. Protein kinase C-α and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na transport, and cisplatin-induced apoptosis in renal cells. J. Biol. Chem., 277, 43377–43388 (2002).

39) Oh GS, Kim HJ, Choi JH, Shen A, Choe SK, Karna A, Lee SH, Jo JH, Yang SH, Kwak TH, Lee CH, Park R, So HS. Pharmacological activation of NQO1 increases NAD+ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int., 85, 547–560 (2014).

40) Sohn JH, Han K-L, Lee S-H, Hwang J-K. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol. Pharm. Bull., 28, 1083–1086 (2005).

41) Harrach S, Ciarimboli G. Role of transporters in the distribution of platinum-based drugs. Front. Pharmacol., 6, 85 (2015).

42) Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, Sai Y, Miyamoto K. Protecting cisplatin-induced nephrotoxicity with cevimeline does not affect antitumor activity. Biol. Pharm. Bull., 33, 1867–1871 (2010).