THE AUTOMORPHISM GROUPS OF GROUPS OF ORDER p^2q

E. CAMPEDEL, A. CARANTI, AND I. DEL CORSO

Abstract. We record for reference a detailed description of the automorphism groups of the groups of order p^2q, where p and q are distinct primes.

1. Introduction

Let p, q be distinct primes. O. Hölder classified the groups of order p^2q [Höl93], and also the groups of square-free order [Höl95]. H. Dietrich and B. Eick [DE05] gave a detailed description of the structure of groups of cube-free order, which was complemented by S. Qiao and C.H. Li [QL11]. Groups of order p^3q were classified by A.E. Western [Wes99] and R. Laue [Lau82]. B. Eick [Eic17] has given an enumeration of the groups whose order factorises in at most 4 primes. B. Eick and T. Moede [EM18] have enumerated groups of order p^nq, for $n \leq 5$.

For a forthcoming paper of ours, we need a detailed description of the automorphism groups of the groups of order p^2q, where p and q are distinct primes. We have recorded these data for reference here.

2. The Groups

With current technology (i.e. Sylow’s theorem), describing the groups G of order p^2q, where p and q are distinct primes, is an easy exercise, which we now describe briefly, the basic point being that G has a normal Sylow subgroup.

If there are more than 1, and thus exactly q, Sylow p-subgroups, then $p \mid q - 1$.

- If the Sylow p-subgroups intersect pairwise trivially, counting p-elements show that then G has exactly one Sylow q-subgroup.
- If there are two distinct Sylow p-subgroups P_1, P_2 that intersect non-trivially in a subgroup N of order p, then $N \trianglelefteq G$, so that G has a subgroup R of order pq, which is normal in G, as $p < q$.

For the same reason, a Sylow q-subgroup of R is normal in R.

Date: 26 November 2019, 15:22 CET — Version 1.02.
2010 Mathematics Subject Classification. 20D45 20D99.
Key words and phrases. automorphisms, groups of small order.

The second author is members of INdAM—GNSAGA. The second author gratefully acknowledges support from the Department of Mathematics of the University of Trento.
and thus in G, so that G has a normal Sylow q-subgroup in this
case as well.

We introduce some notation.

- C_n: denotes a cyclic group of order n.
- \times and \rtimes: when they appear without subscripts, they denote the
 unique (up to isomorphism) non-direct, semidirect product that
 is possible in the given situation.
- $(C_p \times C_q) \rtimes_S C_q$: denotes a semidirect product where a generator
 of C_q acts as a non-identity scalar matrix.
- $(C_p \times C_q) \rtimes_{D0} C_q$: denotes a semidirect product where a generator
 of C_q acts as a diagonal, non-scalar matrix with no eigenvalue 1,
 and determinant different from 1.
- $(C_p \times C_q) \rtimes_{D1} C_q$: is the same as above, but the non-scalar matrix
 has determinant 1 (and thus still no eigenvalue 1).
- $(C_p \times C_q) \rtimes_C C_q$: denotes a semidirect product where a generator
 of C_q acts as a suitable power of a Singer cycle; note that the
 determinant of the matrix of a generator of C_q acting on $C_p \times C_q$
 is 1.
- $C_p^3 \rtimes_1 C_q$: denotes a semidirect product with trivial centre.
- $C_p^3 \rtimes_p C_q$: denotes a semidirect product with centre of order p.

Considering the possible actions on the normal Sylow subgroup of
another Sylow subgroup, we obtain the following table. The automor-
phism groups are determined in Section 4 on the basis of results
of G.L. Walls [Wal86], J.N.S. Bidwell, M.J. Curran and D.J. McCaughan
[BCM06], and M.J. Curran [Cur08], which we recall in Section 4.

Type	Conditions	G	Aut(G)	Explanation
1	$p \mid q - 1$	$C_p^2 \rtimes C_q$	$C_p \rtimes C_{p-1} \times C_{q-1}$	Cyclic groups
2	$p^2 \mid q - 1$	$C_p^2 \rtimes_C C_q$	$C_p \rtimes \text{Hol}(C_q)$	Subs. 4.5
3	$q \mid p - 1$	$C_p^2 \rtimes_1 C_q$	$\text{Hol}(C_p^2)$	Thm 3.4
4	$q \mid p - 1$	$C_p \rtimes C_p \rtimes C_q$	$\text{GL}(2, p) \times C_{q-1}$	Thm 3.1
5	$q \mid p - 1$	$C_p \times (C_p \rtimes C_q)$	$C_{p-1} \times \text{Hol}(C_p)$	Thms 3.1, 3.4
6	$2 < q \mid p - 1$	$(C_p \times C_p) \rtimes_S C_q$	$\text{Hol}(C_p \times C_p)$	Subs. 4.1, 4.2
7	$3 < q \mid p - 1$	$(C_p \times C_p) \rtimes_{D0} C_q$	$\text{Hol}(C_p) \times \text{Hol}(C_p)$	Subs. 4.1, 4.3
8	$2 < q \mid p - 1$	$(C_p \times C_p) \rtimes_{D1} C_q$	$C_2 \rtimes (\text{Hol}(C_p) \times \text{Hol}(C_p))$	Subs. 4.1, 4.3
9	$2 < q \mid p + 1$	$(C_p \times C_p) \rtimes_C C_q$	$(C_2 \times C_{p-1}) \rtimes (C_p \times C_p)$	Subs. 4.1, 4.3
10	$p \mid q - 1$	$C_p \times (C_p \rtimes C_q)$	$\text{Hol}(C_p) \times \text{Hol}(C_q)$	Subs. 4.6

2.1. Isomorphism. It is immediate to see that all types in this table
consist of exactly one isomorphism class of groups, with the exception
of type 8. If G is a group of this type, we can give it a canonical form by
choosing as generators first of all two eigenvectors with respect to dis-
tinct eigenvalues in the normal, elementary abelian Sylow p-subgroup
V. If ζ is a fixed element of order q in the multiplicative group of the
field with p elements, we can then choose as a third generator a suitable power a of a q-element, so that it has eigenvalues $\{\zeta, \zeta^s\}$ on V. The parameter $s \notin \{0, 1, -1\}$ determines G. If t is the inverse of s modulo p, then a^t has eigenvalues $\{\zeta^t, \zeta\}$ on V. It follows that the parameters s, t yield isomorphic groups, so that there are $(q - 3)/2$ isomorphism classes of groups here.

3. Automorphisms of (semi)direct products

We collect here the results we need of [BCM06, Wal86, Cur08]. We write (auto)morphisms as exponents.

Theorem 3.1 ([BCM06, Theorem 3.2]).

Let $G = H \times K$, where H, K have no common direct factors.

Then $\text{Aut}(G)$ can be described in the natural way via the set of matrices

$$\left\{ \begin{bmatrix} a & c \\ b & d \end{bmatrix} : a \in \text{Aut}(H), d \in \text{Aut}(K), \\
\quad b \in \text{Hom}(K, \mathbb{Z}(H)), c \in \text{Hom}(H, \mathbb{Z}(K)) \right\}.$$

Theorem 3.2. ([Cur08, Theorem 1])

Let $G = H \rtimes K$ be a semidirect product.

Then the subgroup of $\text{Aut}(G)$ consisting of the automorphisms that leave H invariant can be described in a natural way via the set of matrices

$$\left\{ \begin{bmatrix} a & 0 \\ b & d \end{bmatrix} : a \in \text{Aut}(H), d \in \text{Aut}(K), \\
\quad (h^k)^a = (h^a)^{k^d}, \text{ for } h \in H, k \in K, \\
\quad b : K \rightarrow H, (xy)^b = x^b(y^b)x^d, \text{ for } x, y \in K \right\}.$$

Remark 3.3. The condition

$$(h^k)^a = (h^a)^{k^d}$$

in Theorem 3.2 can be rewritten as

$$\iota(k)^a = a^{-1}\iota(k)a = \iota(k^d),$$

where

$$\iota : K \rightarrow \text{Aut}(H)$$

$$k \mapsto (h \mapsto h^k).$$

If $\text{Aut}(H)$ is abelian, we get $\iota(k) = \iota(k^d)$, that is, $[k, d] \in C_K(H)$. In particular, if $C_K(H) = 1$, then $d = 1$.

Theorem 3.4 ([Wal86, Theorem B], [Cur08, Example 1]).

Let $G = C_n \rtimes C_k$, with $Z(G) = 1$. Write $H = C_n$, $K = C_k$.
Then \(H = G' \) is characteristic in \(G \), and we have
\[
\text{Aut}(G) \cong \text{Hol}(C_n) = C_n \rtimes \text{Aut}(C_n).
\]

Remark 3.5. In the matrix terms of Theorem 3.2, Theorem 3.4 can be reformulated as
\[
\text{Aut}(G) = \left\{ \begin{bmatrix} a & 0 \\ b & 1 \end{bmatrix} : a \in \text{Aut}(H), b : K \to H \right\},
\]
\[
(xy)^b = x^b (y^b)^x, \text{ for } x, y \in K \}
\]
The \(b \)'s can be described in terms of the image \(b_0 \in H \) of a fixed generator of \(K \): see Subsection 4.1 for the details.

Theorem 3.6 ([Cur08, Theorem 3 and Example 1]).
Let \(G = C_n \rtimes C_k \), with \(Z(G) \) possibly non-trivial. Write \(H = C_n \), \(K = C_k \).
Assume \(H = G' \).
Then
\[
\text{Aut}(G) \cong H \rtimes (\text{Aut}(H) \times S),
\]
where
\[
S = \left\{ d \in \text{Aut}(K) : [k, d] = k^{-1} k^d \in C_K(H), \text{ for } k \in K \right\}.
\]
In matrix terms, Theorem 3.6 states that
\[
\text{Aut}(G) = \left\{ \begin{bmatrix} a & 0 \\ b & d \end{bmatrix} : a \in \text{Aut}(H), d \in \text{Aut}(K), \right. \]
\[
[k, d] = k^{-1} k^d \in C_K(H), \text{ for } k \in K, \]
\[
b : K \to H, (xy)^b = x^b (y^b)^x, \text{ for } x, y \in K \}
\]

4. **Automorphism groups**

We appeal to the results of Section 3 whose notation we employ.

4.1. **Describing \(b \).** We begin by collecting some facts that hold true for most cases.

Let us first consider the types 7, 8, 9, 10. Write
- \(C_q = \langle z \rangle \),
- \(Z \) for the linear map \(z \) induces on \(H = C_p \rtimes C_p \), and
- \(Y \) for the linear map induced by \(z^d \) on \(H \).

First note that for each \(b_0 \in H \) there exists a unique function \(b \) as in Theorem 3.2 such that \(z^b = b_0 \). In fact, one has for \(j = 1, \ldots, q - 1 \)
\[
(z^j)^b = b_0^{1 + Y + \cdots + Y^{j-1}}.
\]
In \(\text{End}(H) \) we have
\[
0 = Y^q - 1 = (Y - 1)(1 + Y + \cdots + Y^{q-1}).
\]
Now \(Y - 1 \) invertible, as \(Y \) has no eigenvalue 1, so that \(1 + Y + \cdots + Y^{q-1} = 0 \). It follows that
\[
(z^q)^b = 1 = b_0^1 + Y + \cdots + Y^{q-1},
\]
is also satisfied.

A similar argument holds

- for the types 4, 3, 2,
- for the subgroup \(C_p \rtimes C_q \) of type 6, and
- for the subgroup \(C_p \rtimes C_q \) of type 11.

In these cases \(Y \) is an automorphism of order coprime to \(r \) of a cyclic group \(C \) of order a power of a prime \(r \), so that \(Y - 1 \) is not nilpotent, and thus it is invertible, in \(\text{End}(C) \).

Note that conjugating
\[
\begin{bmatrix}
1 & 0 \\
b & 1
\end{bmatrix}
\]
by
\[
\begin{bmatrix}
a & 0 \\
0 & d
\end{bmatrix}
\]
we get
\[
\begin{bmatrix}
1 & 0 \\
d^{-1}ba & 1
\end{bmatrix},
\]
so that if \(d = 1 \) we have \(z^{ba} = b_0^a \), and thus the group
\[
\begin{bmatrix}
a & 0 \\
b & 1
\end{bmatrix}
\]
is a split extension of \(H \) by the group of the \(a \)'s.

4.1.1. *Between \(d \) and \(a \).* Suppose \(d : z \mapsto z^i \), with \(0 < i < q \) and \(\gcd(i, q) = 1 \). For \(h \in H \) we have
\[
h^{a-1}Za = hZ^i,
\]
and thus
\[
a^{-1}Za = Z^i. \quad (4.1)
\]

4.2. *Type 7,* \(G = (C_p \times C_p) \rtimes_{S} C_q \). In this case, since \(Z \) is scalar, we have \(Z = Z^i \), thus \(q \mid i - 1 \), that is, \(i = 1 \) and \(d \) is trivial. Since \(a \) is arbitrary, we obtain as the automorphism group the holomorph of \(C_p \times C_p \), that this the affine group in dimension 2 over \(\mathbb{F}_p \).
4.3. **Type 8 and 9**, $G = (C_p \times C_p) \rtimes_{D_0} C_q$ or $(C_p \times C_p) \rtimes_{D_1} C_q$. In this case

$$Z = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix},$$

with $\lambda \neq \mu$, $\lambda, \mu \neq 1$. Then (4.1) yields $\{\lambda, \mu\} = \{\lambda^i, \mu^i\}$. If $\lambda = \lambda^i$ and $\mu = \mu^i$, we obtain that $q \mid i - 1$, and thus $i = 1$ and $d = 1$. From (4.1) and Subsection 4.1, we obtain that a centralizes Z, and that the automorphism group contains

$$(C_{p-1} \times C_{p-1}) \rtimes (C_p \times C_p) = \text{Hol}(C_p) \times \text{Hol}(C_p), \quad (4.2)$$

with $C_{p-1} \times C_{p-1}$ acting by diagonal matrices on $C_p \times C_p$, a typical element being

$$\begin{bmatrix} T & 0 \\ b & 1 \end{bmatrix} \quad (4.3)$$

with T diagonal.

If $\lambda = \mu^i$ and $\mu = \lambda^i$, then $\lambda = \lambda^{i^2}$, so that $q \mid (i - 1)(i + 1)$. When $q \mid i - 1$ we get again $d = 1$, whereas when $q \mid i + 1$ we get $z^d = z^{-1}$ and $\lambda = \mu^{-1}$. Thus this case only occurs when $\det(Z) = 1$, that is, when G is of type 9. The inversion d can then be paired with

$$S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

to get $S^{-1}ZS = Z^{-1}$. In this case the automorphism group is the extension of the group (4.2) by the involution

$$\begin{bmatrix} S & 0 \\ 0 & d \end{bmatrix}, \quad (4.4)$$

which acts on (4.3) as

$$\begin{bmatrix} S & 0 \\ 0 & d \end{bmatrix}^{-1} \cdot \begin{bmatrix} T & 0 \\ b & 1 \end{bmatrix} \cdot \begin{bmatrix} S & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} STS & 0 \\ d^{-1}bS & 1 \end{bmatrix}.$$

Now

$$z^{d^{-1}bS} = (z^{-1})^{bS} = (z^{q-1})^{bS} = (b_0^{1+Y+\cdots+Y^{q-2}})^S = (b_0^{-Y^{q-1}})^S = b_0^{-Y^{-1}S},$$

where

$$-Y^{-1}S = \begin{bmatrix} 0 & -\lambda^{-1} \\ -\lambda & 0 \end{bmatrix}$$

is an involution, that acts by exchanging the two copies of Hol(C_p).
4.4. Type 10, $G = (C_p \times C_p) \rtimes_C C_q$. Note first that the order $q \neq 2$ of Z divides $p + 1$, so it does not divide $p - 1$. It follows that $Z \in \text{SL}(2, p)$, that is, $\det(Z) = 1$.

If $\lambda, \mu = \lambda^{-1}$ are the (distinct) eigenvalues of Z in the field \mathbb{F}_{p^2}, then $\{\lambda, \mu\} = \{\lambda^i, \mu^i\}$. If $\lambda = \lambda^i$ and $\mu = \mu^i$, we get once more $d = 1$. Thus in this case a lies in the centralizer of Z in $\text{Aut}(H) = \text{GL}(2, p)$

$$C_{\text{Aut}(H)}(Z) = \{u + vZ : u, v \in \mathbb{F}_p\},$$

which is cyclic, of order $p^2 - 1$.

If $\lambda = \mu^i$ and $\mu = \lambda^i$, then $\lambda = \lambda^2$, so that $q \mid (i - 1)(i + 1)$. When $q \mid i - 1$ we get again $d = 1$, whereas when $q \mid i + 1$ we get $z^d = z^{-1} = z^p$, as $p \equiv -1 \pmod{q}$.

In an appropriate basis of H we have

$$Z = \begin{bmatrix} 0 & 1 \\ -1 & t \end{bmatrix},$$

where $t = \lambda + \lambda^{-1} = \lambda + \lambda^p$.

The equation $\iota(z)^a = \iota(z^d)$ of Remark 3.3 has now become $Z^a = Z^{-1}$.

One solution a for this is

$$S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

as

$$S^{-1}ZS = \begin{bmatrix} t & -1 \\ 1 & 0 \end{bmatrix} = Z^{-1}.$$

All other solutions are obtained in the form $a = XC$, where $X \in C_{\text{Aut}(H)}(Z)$. So in this case $\text{Aut}(G)$ is the extension of the subgroup determined by $a = d = 1$, which is isomorphic to $C_p \times C_p$, acted upon by the subgroup determined by $b = 0$. The latter subgroup has a normal subgroup

$$C = \begin{bmatrix} C_{\text{Aut}(H)}(Z) & 0 \\ 0 & 1 \end{bmatrix},$$

which is cyclic, of order $p^2 - 1$ extended by the involution

$$D = \begin{bmatrix} S & 0 \\ 0 & d \end{bmatrix},$$

where $z^d = z^{-1} = z^p$. Now $C_{\text{Aut}(H)}(Z)$ is the multiplicative group of the field with p^2 elements; conjugation by S induces an automorphism group of order 2, which is then the Frobenius map. Thus $C_C(D) = C_{\text{Aut}(H)}(S)$ has order $p - 1$, and $g^S = g^p$ for $g \in C$.
4.5. **Type 2**, $G = C_{p^2} \rtimes_p C_q$. Here $C_{p^2} = \langle x \rangle$ induces on C_q a group of automorphisms of order p, and thus the centraliser $C_{\langle x \rangle}(C_q) = \langle x^p \rangle$ has order p.

As per Remark 3.3 here

$$S = \left\{ d \in \text{Aut}(C_{p^2}) : [x, d] \in C_{\langle x \rangle}(C_q) = \langle x^p \rangle \right\}.$$

is a group of order p, generated by the automorphism $x \mapsto x^{1+p}$. According to Theorem 3.6 we get that the automorphism group is isomorphic to

$$C_q \rtimes (C_{q-1} \rtimes C_p) \cong C_p \times \text{Hol}(C_q).$$

4.6. **Type 11**, $G = C_p \times (C_p \rtimes C_q)$. According to Theorem 3.1 and Theorem 3.4 we have that the automorphism group has the form

$$\begin{bmatrix} C_{p-1} & 0 \\ C_p & \text{Hol}(C_q) \end{bmatrix}.$$

To see the structure, let us consider the conjugate

$$\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \cdot \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix},$$

where $a \in \text{Aut}(C_p)$, $d \in \text{Aut}(C_p \rtimes C_q) \cong \text{Hol}(C_q)$, and $b \in \text{Hom}(C_p \rtimes C_q, C_p)$. The conjugate equals

$$\begin{bmatrix} 1 & 0 \\ d^{-1}ba & 1 \end{bmatrix}.$$

Since d acts trivially on the quotient $(C_p \rtimes C_q)/C_q$, we get that the automorphism group has structure

$$C_p \rtimes (C_{p-1} \times \text{Hol}(C_q)),$$

with C_{p-1} acting as $\text{Aut}(C_p)$ and $\text{Hol}(C_q)$ acting trivially, that is

$$\text{Hol}(C_p) \times \text{Hol}(C_q).$$

References

[BCM06] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, *Automorphisms of direct products of finite groups*, Arch. Math. (Basel) 86 (2006), no. 6, 481–489. MR 2241597

[Cur08] M. J. Curran, *Automorphisms of semidirect products*, Math. Proc. R. Ir. Acad. 108 (2008), no. 2, 205–210. MR 2475812

[DE05] Heiko Dietrich and Bettina Eick, *On the groups of cube-free order*, J. Algebra 292 (2005), no. 1, 122–137. MR 2166799

[Eic17] Bettina Eick, *Enumeration of groups whose order factorises in at most 4 primes*, arXiv e-prints (2017), arXiv:1702.02616

[EM18] Bettina Eick and Tobias Moede, *The enumeration of groups of order p^n for $n \leq 5$*, J. Algebra 507 (2018), 571–591. MR 3807061

[Hö93] Otto Hölder, *Die Gruppen der Ordnungen p^3, pq^2, pqr, p^4*, Math. Ann. 43 (1893), no. 2-3, 301–412. MR 1510814

[Hö95] ______, *Die Gruppen mit quadratfreier Ordnungszahl*, Gött. Nachr. (1895), 211–229, JFM 26.0162.01.
Reinhard Laue, *Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen*, Bayreuth. Math. Schr. (1982), no. 9, ii+304. MR 651224

Shouhong Qiao and Cai Heng Li, *The finite groups of cube-free order*, J. Algebra 334 (2011), 101–108. MR 2787655

Gary L. Walls, *Automorphism groups*, Amer. Math. Monthly 93 (1986), no. 6, 459–462. MR 843190

A. E. Western, *Groups of order p^3q*, Proc. Lond. Math. Soc. 30 (1898/99), 209–263. MR 1575465

(E. Campedel) Dipartimento di Matematica e Applicazioni, Edificio U5, Università degli Studi di Milano-Bicocca, via Roberto Cozzi, 55, 20126 Milano

E-mail address: e.campedel1@campus.unimib.it

(A. Caranti) Dipartimento di Matematica, Università degli Studi di Trento, via Sommarive 14, I-38123 Trento, Italy

E-mail address: andrea.caranti@unitn.it

URL: http://science.unitn.it/~caranti/

(I. Del Corso) Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy

E-mail address: delcorso@dm.unipi.it

URL: http://people.dm.unipi.it/delcorso/