Antioxidant System Response and cDNA-SCoT Marker Profiling in *Phoenix dactylifera* L. Plant under Salinity Stress

**Fahad Al-Qurainy, Salim Khan, Mohammad Nadeem, Mohamed Tarroum, and Abdel-Rhman Z. Gaafar**

*Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia*

Correspondence should be addressed to Salim Khan; Salimkhan17@yahoo.co.in

Received 29 November 2016; Revised 23 April 2017; Accepted 2 May 2017; Published 18 June 2017

Academic Editor: Ferenc Olasz

Copyright © 2017 Fahad Al-Qurainy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many *Phoenix dactylifera* (date palm) cultivars are grown in the arid and semiarid regions of the world, including Saudi Arabia. *P. dactylifera* is highly tolerant to salinity stress. To investigate the response of Khalas cultivar of *P. dactylifera*, two-month-old plants were treated with sodium chloride (50, 100, and 150 mM NaCl) for three months. Our result showed that proline content was higher in all treated plants compared to control plants. Thiobarbituric acid reactive substances (TBARS) were increased at 100 and 150 mM NaCl treatments; however, the result was found nonsignificant between control and plants treated at 50 mM NaCl.

Similarly, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were 0.805 and 0.722 U/mg protein/min, respectively, and were greater at 100 and 150 mM NaCl treatments compared to the control plants. Total chlorophyll content and fresh weight of shoots and roots decreased substantially with the increase of salinity. A cDNA start codon-targeted (cDNA-SCoT) marker showed a variation in different gene expressions profiling between treated and untreated plants under various NaCl concentrations.

1. Introduction

In recent decades, soil salinity has become a global agricultural constraint [1, 2]. Salinity is increasing on Arabic land, and more than 50% would be salinized by the year 2050, if suitable corrections are not made [3]. Furthermore, the salinized areas are increasing every year at a rate of 10% for different reasons including poor cultural practices, irrigation with saline water, weathering of native rocks, high surface evaporation, and low precipitation [4, 5]. Salt stress causes average yield losses of more than 50% in major crops in agriculture-based countries [6]. Reactive oxygen species (ROS) are produced in plant cells under salinity stress [7], which can damage the cells. It also affects many metabolic and physical processes of the plant, and as a result, the growth is hampered [8]. A high salinity stress causes osmotic and ionic stresses in the plant cells, which lead to several physiological and morphological modifications [9].

*Phoenix dactylifera* (date palm) is the main horticultural fruit tree in many arid and semiarid countries in the Middle East, North Africa, and Central America [10]. *P. dactylifera* can survive under extreme abiotic stresses, including conditions of drought, high temperature, and relatively high soil salinity levels [11–14]. The salinity stress affected the large area of arid and semiarid regions of agricultural field [15] and has impacted more losses in *P. dactylifera* and other crop species [16].

The antioxidant enzyme activities such as catalase (CAT) and superoxide dismutase (SOD) increase under salinity stress for scavenging regenerated ROS to protect the cell from damage [17, 18]. The enzyme SOD is found in various compartments of the cell and catalyzes the superoxide radicals (O$_2^-$) to H$_2$O$_2$ and O$_2$ [19]. The H$_2$O$_2$ is removed from the cell by peroxidases and catalase [19–22].

The proline, an osmoprotectant, is produced under abiotic and biotic stresses [23] in plants. Heat and cold treatments can result in a significant increase in proline level in
the leaves and roots of *P. dactylifera* [14]. The changes occurred in SOD and chlorophyll a/b-binding protein under salt stress in *P. dactylifera* [24]. Thiobarbituric acid reactive substances (TBARS), which are produced in the plant cells, act as a potential indicator of damage under induction of stresses [25]. An increase in TBARS content under salinity stress can cause damage to membranes and also to particular cell tissues [26–28]. Usually, osmotic or salt stress induces TBARS accumulation [29]. TBARS accumulation in cowpea leaves under salinity stress depends on exposure time [30]. However, a reduction in TBARS level under salinity stress is poorly reported in the literature [31].

Different methods have been developed for the gene expression study in plants or animals such as cDNA microarray, cDNA-SSR, cDNA-AFLP, serial analysis of gene expression (SAGE), suppression subtractive hybridization (SSH), representational difference analysis (RDA), and mRNA differential display (DD) [32–42]. All these markers have advantages and disadvantages based on the reproducibility of the results, available resources, technical expertise, and cost of development.

A cDNA start codon-targeted (cDNA-SCoT) marker has been used for the study of gene expression in *Saccharum offi-
cinarum*, *Mangifera indica*, *Phoenix dactylifera*, and *Dendro-
bium officinale* [43–46]. However, this marker has also been used for the assessment of genetic diversity in various plant species [47–50]. A high degree of variability has been found among the germplasms of *P. dactylifera* under salinity and drought stresses [51]. Knowledge of molecular mechanisms under salinity and drought conditions in *P. dactylifera* is limited [52–57]. In the present study, we performed experiments on the Khalas cultivar of *P. dactylifera* to determine the antioxidant system response and gene expression profiling under salinity stress.

2. Materials and Methods

A pot experiment was conducted in a growth chamber for salinity stress treatments in four replicates. The pots were filled with a mixture of sand and peat moss (3:1). The healthy seeds of *P. dactylifera* were surface sterilized with sodium hypochlorite solution (4.0% available chlorine) for 10 min and washed thoroughly four times with distilled water. The seeds were sown in plastic pots and watered at regular interval to maintain moisture for better germination. Salinity stress treatments were given to the two-month-old plants of Khalas cultivar of *P. dactylifera* for three months. Three concentrations of NaCl as low (T-50, 50 mM), intermediate (T-100, 100 mM), and high (T-150, 150 mM) were used to treat the plants. Each concentration of salt solution (100 ml) was given to each pot after two-week time intervals. 100 ml of 1/4 strength MS solution was added to each pot after two-week time intervals. The pots were maintained in the growth chamber at 26-27°C, photoperiod 16 h per day, and relative humidity of 72%. The salt-treated and untreated plants were harvested after three months. Biochemical and molecular parameters were subsequently taken to study the antioxidant system response of *P. dac-
tylifera* under salinity stress.

2.1. Biomass and Morphological Traits. Fresh leaf and root weight and shoot and root length were measured after three months of salinity treatment. Each treatment was compared to control plants for the evaluation of their salt stress responses.

2.2. Proline Estimation. The proline was estimated using the method developed by Hanson et al. [58]. Fresh leaves (0.5 g) were ground in 10 ml of aqueous sulphosalicylic acid (3%). The mixture was centrifuged for 15 min at 9000 × g. The supernatant (2 ml) from the above step was taken and mixed with an equal volume of acid ninhydrin (1.25 g ninhydrin in 30 ml acetic acid and 20 ml of 6 N H3PO4) and acetic acid. The mixture was placed for 1 h in boiling water for incubation. After incubation, the mixture was taken out from the boiling water and immediately placed in an ice bath. 4 ml of toluene was added in the mixture (4 ml) after taking it from the ice water bath. The mixture was vortexed, and chromatophore-containing toluene was separated from the aqueous phase. The absorbance was taken at 520 nm (Model UB-1800, Shimadzu, Japan) to determine proline content.

2.3. Total Chlorophyll. Total chlorophyll was estimated according to the Arnon method [59]. The leaves were separated and washed with DDW; 0.1 g of chopped leaves was placed in the test tubes for each treatment, and 10 ml of DMPO was added to each test tube. The tubes were kept in an oven at 65°C. After 120 minutes, the tubes were taken out and the absorbance of the solution was recorded immediately at 663 nm and 645 nm on a UV–vis spectrophotometer (Model UB-1800, Shimadzu, Japan). The pigment concentration was calculated in μg/ml for treated and untreated samples.

2.4. Superoxide Dismutase (SOD). The activity of superoxide dismutase (EC 1.15.1.1) was measured according to the method developed by Dhindsa et al. [60]. A fresh sample (0.05 g) was homogenized in 2 ml of extraction mixture containing phosphate buffer (0.5 M, pH 7.3), 0.3 mM-EDTA, 1% Triton × 100 (w/v), and 1% PVP (w/v). The mixture was cen-
trifuged for 10 min at 4°C at 10,000 × g. The supernatant was taken after centrifugation for the assay of SOD activity. The assay mixture, consisting of 1.5 ml reaction buffer, 0.2 ml of methionine, 0.1 ml of each (1 M-NaCO3, 2.25 mM-NBT solution, 3 mM-EDTA, riboflavin, and enzyme extract), and 1 ml of DDW, was incubated under the light. The blank mixture containing all substances was kept in the dark. Absorbance of samples along with the blank mixture was read at 560 nm using the UV–vis spectrophotometer (Model UB-1800, Shimadzu, Japan). A 50% reduction in color was considered as one enzyme unit (EU). The activity of SOD was calculated in EU (mg⁻¹ protein min⁻¹).

2.5. Catalase (CAT). The activity of catalase (EC 1.11.1.6) was determined in the leaves using the method of Aebi [61]. 0.5 g of fresh leaf samples was ground in extraction buffer (5 ml) containing phosphate buffer (0.5 M, pH 7.3), 0.3 mM-EDTA, and 0.3 mM-H2O2. The mixture was cen-
trifuged for 20 min at 10,000 × g at 4°C. The reaction was carried out in 2 ml of reaction mixture (0.1 ml, 3 mM-
EDTA, 0.1 ml of enzyme extract, and 0.1 ml of 3 mM-
H₂O₂ for 5 min. CAT activity was estimated at 240 nm
using the UV-vis spectrophotometer with the help of
extinction coefficient (R) 0.036 mM⁻¹cm⁻¹ and expressed
in EU (mg⁻¹ protein min⁻¹).

2.6. Thiobarbituric Acid Reactive Substances (TBARS).
TBARS content was determined in the leaves using the
method developed by Cakmak and Horst [62] with minor
modification. The fresh leaf samples (0.5 g) were ground in
5 ml of 0.1% (w/v) trichloroacetic acid (TCA). The centrifu-
gation was performed for 5 min at 12,000 xg for supernatant
collection. The supernatant was taken from the above step,
and 1 ml of it was added to 4 ml of 0.5% (w/v) TBA in 20%
(w/v) TCA. The mixture was placed for 30 min at 90°C in
water bath, and thereafter, the reaction was terminated in
an ice bath. The centrifugation was performed for 5 min at
10,000 xg for supernatant collection. The absorbance of the
supernatant was read at 532 and 600 nm wavelengths on a
spectrophotometer (Model UB-1800, Shimadzu, Japan).
The TBARS content was calculated using the following
formula:

$$\text{TBARS (nmol g}^{-1} \text{fw)} = \frac{(A_{532} - A_{600}) \times V \times 1000}{155 \times (\text{extinction coefficient}) \times W}$$

where $A_{532}$ = absorbance at 532 nm, $A_{600}$ = absorbance at
600 nm, V = extraction volume, and W = fresh weight of tissue.

2.7. RNA Extraction for cDNA-SCoT Marker Profiling. Total
RNA was isolated from the control and salinity-stressed
plants using the RNeasy plant mini kit (Qiagen) according to
the instructions given in the manual. The quantity and
quality were measured using the spectrophotometer (Nano-
drop 8000, Thermo Scientific). High quality of cDNA was
prepared using the QuantiTect Reverse Transcription Kit
(Qiagen). The PCR reaction was performed in a total volume
of 25 µl using the SCoT primers (Table 1) for the study of
expression profiling. These primers were selected from the
literature of monocot plant species [63]. The PCR lead (GE
Healthcare, UK) was used for PCR amplification. The cDNA
was diluted in RNase-free water to working concentration
50 ng for PCR amplification with SCoT primer (20 picomole
per reaction). PCR was performed in an AB Veriti 96-well
thermal cycler. The cycling profile was 94°C for 3 min, 45
cycles at 94°C for 1 min, 44.5°C for 30 s, 72°C for 1 min, and
a cycle of 72°C for 5 min. The amplified products were
resolved on 1.3% TBE agarose gel.

2.8. Statistical Analysis. The data recorded in all experiments
were statistically analyzed by using IBM SPSS STATISTICS
19. Data from each parameter was subjected to a one-way
analysis of variance (ANOVA); the post hoc comparison
for the observation was assumed by Duncan’s test. The data
shown are the averages of four replicates and were statisti-
cally significant at the $p < 0.05$ level.

### Table 1: List of SCoT primer sequences used in the PCR reaction.

| S.N. | Primer code | Primer sequence (5′-3′) |
|------|-------------|-------------------------|
| 1    | SCoT-1      | AACAATGCTACCACCA       |
| 2    | SCoT-2      | AACAATGCTACCACCC       |
| 3    | SCoT-3      | AACAATGCTACCACCG       |
| 4    | SCoT-4      | AACAATGCTACCACCT       |
| 5    | SCoT-5      | AACAATGCTACCACGC       |
| 6    | SCoT-6      | AACAATGCTACCACGG       |
| 7    | SCoT-7      | AACAATGCTACCACGT       |
| 8    | SCoT-8      | AACAATGCTACCACGA       |
| 9    | SCoT-9      | AACAATGCTACCACGC       |
| 10   | SCoT-10     | AAGCAATGCTACCACCA      |
| 11   | SCoT-11     | GCACAAATGCTACCACCC     |
| 12   | SCoT-12     | CATGCTACCACCGC         |
| 13   | SCoT-13     | ACCATGCTACCACCC        |
| 14   | SCoT-14     | CATGCTACCACCCG         |
| 15   | SCoT-15     | ACCATGCTACCACCCG       |
| 16   | SCoT-16     | CATTGCTACCACCGCG      |
| 17   | SCoT-17     | CATTGCTACCACCGCG      |
| 18   | SCoT-18     | CATTGCTACCACCGCCT     |

3. Results and Discussion

Free radicals, or ROS, are produced in plant cells under stress
conditions and may react with pigments, lipids, proteins or
nucleic acids which leads to membrane damage, lipid peroxi-
dation, and inactivation of enzymes, thus affecting the cell
viability [64, 65]. Plant gene expression analysis is very
important in agriculture under biotic and abiotic stresses as
it promotes genetic improvement of other crops for their
yield and quality traits.

Fresh weight of shoot and root of P. dactylifera decreased
significantly as the salinity increased (Figures 1 and 2). High
salinity stress caused more reduction in the weight of shoot
and root (1.392 and 1.160 g) as compared to control plants
(2.697 and 2.201 g), respectively. Alkhateeb et al. [66] per-
formed experiments on P. dactylifera under salinity stress
and found that growth declined with increasing salinity
stress. Excess salinity affects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the shoot
ects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the shoot
ects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the shoot
ects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the shoot
ects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the shoot
ects plants severely due to water
stress, membrane disorganization, nutritional disorders, ion
toxicity, and the expansion and reduction of cell division
[67, 68]. The root length was more affected than the shoot
length (Figure 3). The more reduction in the root length
(26 cm) was observed significantly at 150 mM NaCl when
compared to control plants (35.33 cm). The shoot length
was less affected under salinity stress, and a nonsignificant
variation was found among treated as well as control plants
(Figures 4 and 5). There was no e
fect of salinity observed
on the shoot length up to 50 mM NaCl, and the plant grew
more than the
elltive effect. Total chloro-
phyll content decreased significantly in all treated P.
dactylifera plants as the salinity increased. A low chlorophyll content (27.241 μg/ml) was observed in plants treated at high salinity stress (Figure 6) compared to control plants (47.873 μg/ml). Similarly, chlorophyll a and b decreased under salinity stress in a date palm [70].

Catalase activity increased significantly in the leaves of date palm plants under 100 and 150 mM NaCl treatments, and it was 0.481 and 0.805 U/mg protein/min, respectively (Figure 7). However, a very low CAT activity (0.087 U/mg protein/min) was observed at 50 mM NaCl nonsignificantly compared to control plants. CAT activity induced at an
application of 100 mM NaCl in wild *Lycopersicon pennellii* [71]. SOD activity increased under 100 mM NaCl and 150 mM NaCl treatments compared to nontreated plants (Figure 8). A very low SOD activity of 0.138 U/mg protein/min was found in plants treated at 50 mM NaCl. A high SOD enzyme activity of 0.667 and 0.722 U/mg protein/min was found significantly at 100 mM NaCl and 150 mM NaCl treatments compared to the control plants, where SOD activity only reached 0.1 U/mg protein/min. Our results were consistent with earlier findings for *P. dactylifera* where catalase and peroxidase activities increased under salinity treatments [70]. The CAT and SOD activities also increased in *P. dactylifera* Hillawi cv [72] under salinity stress. The activities of CAT and SOD were enhanced at 100 mM NaCl in wild *Lycopersicon pennellii* [71]. The responses of SOD and CAT were high under salinity stress (120 and 240 mM NaCl) in the leaves of two-week-old seedlings of barley, and it was found significant [73]. An increase in antioxidant enzymes under stressful conditions plays an important role to overcome the oxidative stress and often correlates to the type and magnitude of the stress [65].

The proline accumulation varies in different plant species and their organs under salinity stress. The proline content increased significantly in the leaves of all treated plants of *P. dactylifera* as the salinity increased (Figure 9). More accumulation of proline (2106.20 and 2632.99 µg/g FW) was observed significantly under 100 and 150 mM NaCl treatments compared to control plants. Our findings related to proline accumulation were consistent with the results of Abdulwahid [72], who performed experiments on *P. dactylifera* under salinity stress. The proline was over accumulated in the roots and leaves of a date palm plant under abscisic acid, drought, and extreme temperatures and was remarkably high when leaves were exposed to suboptimum salinity and temperatures stresses [13]. The cultivars of *Phaseolus vulgaris* (Canario 60 and Pinto Villa) accumulated high proline content in leaves and shoots under 150 mM NaCl [74]. A high accumulation of proline was found under salinity stress in mulberry [75], green gram [76], *Jerusalem artichoke* [77], and canola [78]. The production of proline under stress conditions play an important role to protect the plant cells as it
acts as soluble nitrogen sink, a signal of senescence, an osmoregulator, and an indicator of plant resistance [79].

TBARS level increased in *P. dactylifera* plants under salinity stress as compared to control plants. A high content of TBARS (11.151 nM/g FW) was found in plants treated at 100 mM NaCl (Figure 10), and thereafter, a reduction was observed. However, result was found to be nonsignificant between control and plants treated at 50 mM NaCl. The plant species such as *Solanum nigrum* [80], *Artemisia annua* [81], *Glycyrrhiza uralensis* Fisch [82], and *Gypsophila aucheri* Boiss [83] showed increased TBARS content under salinity stress.

We used cDNA-SCoT marker for the comparison of treated and untreated plants under salinity stress as the antioxidant system response and biomass of *P. dactylifera* were changed at various concentrations of NaCl stress which could be possible due to the expression of different genes. A single primer cDNA-SCoT technique has been applied to study gene expression in different plant species [43–45, 83–85]. The oligo-dT-anchored cDNA-SCoT was used in *M. indica* to study gene expression under abiotic stresses [44]. In our study, a different banding pattern was produced between treated and untreated plants using the cDNA-SCoT marker which indicated the expression of different genes under NaCl stress (Figures 11, 12, and 13). Different amplicons of size (1200, 950, 800, 780, and 300 bp) were produced in treated plants whereas were absent in control plants (Figure 11). The amplicon of size 950 bp was produced at 50
and 100 mM NaCl, whereas absent at 150 mM NaCl. Similarly, the amplicon size of 750 bp was produced at 100 mM NaCl and absent at 50 and 150 mM NaCl. The size of 1200 bp amplicon was produced in all treated plants, whereas 900 and 500 bp were produced in control as well as in plants treated at 50 mM NaCl (Figure 12). The size of amplicons 500 and 350 bp were produced in control as well as in plants treated at 100 mM NaCl whereas absent in plants treated at 150 mM NaCl (Figure 13). Similarly, the amplicon of size 340 bp was produced in plants treated at 150 mM NaCl (Figure 13). Thus, different NaCl concentrations impacted the expression profile of various genes which led to change in plant growth, biomass, and antioxidant system response. The cold resistance-related genes have been studied in sugarcane under cold stress using the cDNA-SCoT technique [84]. The differentially expressed genes in sugarcane, induced by Leifsonia xyli subsp. xyli, was studied using the cDNA-SCoT technique [85]. Wu et al. [43] used the cDNA-SCoT technique on sugarcane for the differential expression of gibberellin-induced genes for stalk elongation, which represented the upregulation and downregulation of genes.

Thus, based on the above results, *P. dactylifera* can be used by plant researchers to uncover the salt tolerant genes and their application in a plant-breeding program.

**Conflicts of Interest**

The authors declare that they have no competing interests.

**Acknowledgments**

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH) and King Abdul Aziz City for Science and Technology, Kingdom of Saudi Arabia, Award no. 11-BIO1943-02.

**References**

[1] P. Rengasamy, “World salinization with emphasis on Australia,” *Journal of Experimental Botany*, vol. 57, no. 5, pp. 1017–1023, 2006.

[2] R. Munns and M. Tester, “Mechanisms of salinity tolerance,” *Annual Review of Plant Biology*, vol. 59, pp. 651–681, 2008.

[3] M. Ashraf, “Biotechnological approach of improving plant salt tolerance using antioxidants as markers,” *Biotechnology Advances*, vol. 27, no. 1, pp. 84–93, 2009.

[4] K. K. Tanji, “Nature and extent of agricultural salinity,” in *Agricultural Salinity Assessment and Management*, K. K. Tanji, Ed., pp. 1–17, American Society of Civil Engineers, New York, 1990.

[5] I. Szabolcs, “Soil salinization,” in *Handbook of Plant Crop Stress*, M. Pessarakli, Ed., pp. 3–11, Marcel Dekker, New York, 1994.

[6] E. A. Bray, J. Bailey-Serres, and E. Weretilnyk, “Responses to abiotic stresses,” in *Biochemistry and Molecular Biology of Plants*, B. B. Buchanan, W. Gruissem, R. L. Jones and M. d. Rockville, Eds., pp. 1158–1203, American Society of Plant Biologists, USA, 2000.

[7] N. S. Stanisavljevic, D. B. Nikolić, Z. S. Jovanovic, J. T. Samardžic, S. R. Radovic, and V. R. Maksimovic, “Antioxidative enzymes in the response of buckwheat (*Fagopyrum esculentum* Moench) to complete submergence,” *Archives of Biological Sciences*, vol. 63, no. 2, pp. 399–405, 2011.

[8] D. Di Baccio, F. Navari-Izzo, and R. Izzo, “Seawater irrigation: antioxidant defence responses in leaves and roots of a sunflower (*Helianthus annuus* L.) ecotype,” *Journal of Plant Physiology*, vol. 161, no. 11, pp. 1359–1366, 2004.

[9] A. Jampeetong and H. Brix, “Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of *Salvinia natans*,” *Aquatic Botany*, vol. 91, no. 3, pp. 181–186, 2009.

[10] Food and Agriculture Organization of the United Nations, *2005 Worldwide Dates Production Statistics*, Food and Agriculture Organization of the United Nations, Rome, 2006.
[11] J. R. Furr and W. W. Armstrong, "Water and salinity problems of Abadan Island date gardens," Annual Date Growers’ Institute Report, vol. 52, pp. 14–17, 1975.

[12] A. Zaid and P. F. De Wet, "Climatic requirements of date palm," in Date Palm Cultivation, Food and Agriculture Organization Plant Production and Protection Paper No.156, A. Zaid, Ed., pp. 57–72, Food and Agriculture Organization of the United Nations, Rome, 2002.

[13] M. W. Yaish, "Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance," Antonie van Leeuwenhoek, vol. 107, no. 6, pp. 1519–1532, 2015.

[14] M. G. Pitman and A. Läuchli, "Global impact of salinity and agricultural ecosystems," in Salinity: Environment-Plants-Molecules, A. Läuchli and U. Lüttge, Eds., pp. 3–20, Springer Netherlands, Dordrecht: Kluwer, 2002.

[15] P. Cookson and A. Lepiece, "Could date palm ever disappear from the Batinah Salination of a coastal plainthe Sultanate of Oman," in Water in the Arabian Peninsula: Problems and Policies, K. A. Mahdi, Ed., pp. 221–235, Ithaca Press, Garnet Publishing Ltd., Reading, 2001.

[16] N. Jabeen and R. Ahmad, "The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan," Journal of the Science of Food and Agriculture, vol. 93, no. 7, pp. 1699–1705, 2013.

[17] S. Gao, C. Ouyang, S. Wang, Y. Xu, L. Tang, and F. Chen, "Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings," Plant, Soil and Environment, vol. 54, no. 9, pp. 374–381, 2008.

[18] J. G. Scandalios, "Oxygen stress and superoxide dismutase," Plant Physiology, vol. 101, no. 1, pp. 712–726, 1993.

[19] Y. Kono and I. Fridovich, "Inhibition and reactivation of Mn-catalase," The Journal of Biological Chemistry, vol. 258, no. 22, pp. 13646–13468, 1983.

[20] L. D. Gara, M. C. Pinto, and F. Tommasi, "The antioxidant systems of Helianthus annuus L. from the Batinah Salination of a coastal plain in the Sultanate of Oman," in Water in the Arabian Peninsula: Problems and Policies, K. A. Mahdi, Ed., pp. 221–235, Ithaca Press, Garnet Publishing Ltd., Reading, 2001.

[21] M. W. Yaish, I. Antony, and B. R. Glick, "Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance," Antonie van Leeuwenhoek, vol. 107, no. 6, pp. 1519–1532, 2015.

[22] P. Cookson and A. Lepiece, "Could date palm ever disappear from the Batinah Salination of a coastal plainthe Sultanate of Oman," in Water in the Arabian Peninsula: Problems and Policies, K. A. Mahdi, Ed., pp. 221–235, Ithaca Press, Garnet Publishing Ltd., Reading, 2001.

[23] N. Jabeen and R. Ahmad, "The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan," Journal of the Science of Food and Agriculture, vol. 93, no. 7, pp. 1699–1705, 2013.

[24] S. Gao, C. Ouyang, S. Wang, Y. Xu, L. Tang, and F. Chen, "Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings," Plant, Soil and Environment, vol. 54, no. 9, pp. 374–381, 2008.

[25] J. G. Scandalios, "Oxygen stress and superoxide dismutase," Plant Physiology, vol. 101, no. 1, pp. 712–726, 1993.

[26] Y. Kono and I. Fridovich, "Inhibition and reactivation of Mn-catalase," The Journal of Biological Chemistry, vol. 258, no. 22, pp. 13646–13468, 1983.

[27] A. D. Azevedo-Neto, J. T. Prisco, J. Eneas-Filho, J. V. Rolim Medeiros, and E. Gomes-Filho, "Antioxidant enzymes from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance," Journal of Agricultural and Food Chemistry, vol. 62, no. 10, pp. 1114–1122, 2005.

[28] T. Gechev, I. Gadjev, F. Van Breusegem et al., "Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes," Cellular and Molecular Life Sciences, vol. 59, no. 4, pp. 708–714, 2002.

[29] N. Charparzadeh, M. L. D’Amico, R. A. Khavari-Nejad, R. Izzo, and F. Navari-Izzo, "Antioxidative responses of Calendula officinalis under salinity conditions," Plant Physiology and Biochemistry, vol. 42, no. 9, pp. 695–701, 2004.

[30] F. R. Cavalcanti, I. T. A. Oliveira, A. S. Martins-Miranda, R. A. Viegas, and J. A. G. Silveira, "Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves," New Phytologist, vol. 163, no. 3, pp. 563–571, 2004.

[31] A. D. Azevedo-Neto, J. T. Prisco, J. Eneas-Filho, J. V. Rolim Medeiros, and E. Gomes-Filho, "Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants," Journal of Plant Physiology, vol. 162, no. 10, pp. 1114–1122, 2005.

[32] Y. Xu, F. Yang, X. Tian, W. Zhang, X. Wang, and G. Ma, "Different patterns of transcriptomic response to high temperature between diploid and tetraploid Dioscorea zingiberensis CH.," African Journal of Biotechnology, vol. 10, no. 44, pp. 8847–8854, 2011.

[33] M. G. Zamharir, M. Mardi, S. M. Alavi et al., "Identification of genes differentially expressed during interaction of Mexican lime tree infected with Candidatus Phytoplasma aurantifolia," BMC Microbiology, vol. 11, no. 1, pp. 2–9, 2011.

[34] A. Hillmann, E. Dunne, and D. Kenny, "cDNA amplification by SMART-PCR and suppression subtractive hybridization (SSH)-PCR," Methods in Molecular Biology, vol. 496, pp. 223–243, 2008.

[35] A. W. Wei, S. F. Lee, C. Robin, and D. G. Heckel, "Identification of candidate genes for fenvalerate resistance in Helicoverpa armigera using cDNA-AFLP," Insect Molecular Biology, vol. 17, no. 4, pp. 351–360, 2008.

[36] M. Polesani, F. Desario, A. Ferrarini et al., "CDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola," BMC Genomics, vol. 9, no. 1, pp. 142–151, 2008.

[37] C. Nettuwakul, P. Pondongkam, A. Thongpan, and S. Peyachoknagul, "Detection of photoperiod responsive Gene in KDML 105 Rice (Oryza sativa L.) by using cDNA-SRAP technique," Kasetsart Journal (Natural Science), vol. 41, no. 4, pp. 651–659, 2007.

[38] P. Liang, J. D. Meade, and A. B. Pardee, "A protocol for differential display of mRNA expression using either fluorescent or radioactive labeling," Nature Protocols, vol. 2, no. 3, pp. 457–470, 2007.

[39] X. Huang, Y. Li, Q. Niu, and K. Q. Zhang, "Suppression subtractive hybridization (SSH) and its modifications in microbiological research (version a)," Applied Microbiology and Biotechnology, vol. 76, no. 4, pp. 753–760, 2007.

[40] S. Blackshaw, B. S. Croix, K. Polyak, J. B. Kim, and L. Cai, "Serial analysis of gene expression (SAGE): experimental method and data analysis," Current Protocols in Human Genetics, John Wiley & Sons, Inc., Maryland, 2007, Chapter 11, Unit 11.7.
P. Satya, M. Karan, S. Jana et al., L. D. Bowler, C. Luo, X. H. He, H. Chen, S. J. Ou, and M. P. Gao, V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler, A. A. Al-Ameri, F. Al-Qurainy, A. Z. Gaafar, S. Khan, and A. A. Rizkalla, A. M. Badr-Elden, and A. A. Nower, S. F. El-Sharabasy, W. H. Wanas, and A. Y. Al-Kerdany, S. Elshibli, A. A. Al-Qurainy, A. Z. Gaafar, S. Khan, and M. Nadeem, "Male specific gene expression in dioecious Phoenix dactylifera (Date palm) tree at flowering stage," Pakistan Journal of Botany, vol. 48, no. 1, pp. 131–135, 2016.

D. B. Li, Y. H. Gao, and J. P. Si, "ScOT differential expression of cold resistance related genes in Dendrobium officinale under low temperature stress," Zhongguo Zhong Yao Za Zhi = China Journal of Chinese Materia Medica, vol. 38, no. 4, pp. 511–515, 2013.

F. Al-Qurainy, S. Khan, M. Nadeem, and M. Tarroum, "ScOT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars," Pakistan Journal of Botany, vol. 47, no. 2, pp. 637–643, 2015.

P. Bhattacharyya, S. Kumaria, S. Kumar, and P. Tandon, "Start codon targeted (ScOT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species," Gene, vol. 529, no. 1, pp. 29–39, 2015.

P. Satya, M. Karan, S. Jana et al., "Start codon targeted (ScOT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species," Meta Gene, vol. 3, pp. 62–70, 2015.

C. Luo, X. H. He, H. Chen, S. J. Ou, and M. P. Gao, "Analysis of diversity and relationships among mango cultivars using start codon targeted (ScOT) markers," Biochemical Systematics and Ecology, vol. 38, no. 6, pp. 1176–1184, 2010.

S. Elshibli, Genetic Diversity and Adaptation of Date Palm (Phoenix dactylifera L.), [Ph.D. Thesis], University of Helsinki, Helsinki, Finland, 2009.

A. A. Rizkalla, A. M. Badr-Elden, and A. A. Nowar, "Protoplast isolation, salt stress and callus formation of two date palm genotypes," Journal of Applied Sciences Research, vol. 3, no. 10, pp. 1186–1194, 2007.

R. S. S. Darwesh and A. A. El-Banna, "Role of potassium and salinity effects on growth and chemical compositions of date palm plantlets," Arab Universities Journal of Agricultural Sciences, vol. 19, no. 1, pp. 233–244, 2011.

S. F. El-Sharabasy, W. H. Wanas, and A. Y. Al-Kerdany, "Date palm cultivars in vitro screening to drought tolerance using isozymes," Arab Journal of Biotechnology, vol. 1, pp. 263–272, 2008.

S. Gomez-Vidal, J. Salinas, M. Tenia, and L. V. Lopez-Llorca, "Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi," Electrophoresis, vol. 30, no. 17, pp. 2996–3005, 2009.
[72] A. H. Abdulwahid, “Investigation of the effect of salt stress on the antioxidant enzyme activities on leaves of date palm (Phoenix dactylifera) seedling,” Advances in Agriculture & Botanics-International Journal of the Bioflux Society, vol. 1, no. 4, pp. 94–102, 2012.

[73] A. T. Unal, L. Y. Aktas, and A. Guven, “Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages,” Bulgarian Journal of Agricultural Science, vol. 20, no. 4, pp. 883–887, 2014.

[74] J. F. Jimenez-Bremont, A. Becerra-Flora, E. Hernández-Lucero, M. Rodriguez-Kessler, J. A. Acosta-Gallegos, and J. G. Ramírez-Pimentel, “Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine,” Biologia Plantarum, vol. 50, no. 4, pp. 763–766, 2006.

[75] G. K. Surabhi, A. M. Reddy, G. J. Kumari, and C. Sudhakar, “Modulations in key enzymes of nitrogen metabolism in two high yielding genotypes of mulberry (Morus alba L.) with differential sensitivity to salt stress,” Environmental and Experimental Botany, vol. 64, no. 2, pp. 171–179, 2008.

[76] N. Misra and A. K. Gupta, “Effect of salt stress on proline metabolism in two high yielding genotypes of green gram,” Plant Science, vol. 169, no. 2, pp. 331–339, 2005.

[77] Z. Huang, L. Zhao, D. Chen, M. Liang, Z. Liu, and H. Shao, “Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets,” PloS One, vol. 8, no. 4, article e62085, 2013.

[78] X. Xue, A. Liu, and X. J. Hua, “Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus,” Biochemistry and Molecular Biology Report, vol. 42, no. 1, pp. 28–34, 2009.

[79] S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel, and A. Ahmad, “Role of proline under changing environments - a review,” Plant Signaling Behavior, vol. 7, no. 11, pp. 1456–1466, 2012.

[80] S. B. Abdallah, B. Aung, L. Amyot et al., “Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum,” Acta Physiologica Plantarum, vol. 38, no. 3, pp. 1–13, 2016.

[81] M. I. Qureshi, M. Israr, M. Z. Abdin, and M. Ibqal, “Responses of Artemisia annua L. to lead and salt-induced oxidative stress,” Environmental and Experimental Botany, vol. 53, no. 2, pp. 185–193, 2005.

[82] Y. Pan, L. J. Wu, and Z. L. Yu, “Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch.),” Journal of Plant Growth Regulation, vol. 49, no. 2–3, pp. 157–165, 2006.

[83] A. H. S. Esen, R. Özgür, B. Uzilday, Z. Ö. Tanyolaç, and A. Dinc, “The response of the xerophytic plant Gypsophila aucheri to salt and drought stresses: the role of the antioxidant defence system,” Turkish Journal of Botany, vol. 36, no. 6, pp. 697–706, 2012.

[84] X. L. Chen, Y. R. Li, L. T. Yang et al., “cDNA-SCOT differential display of cold resistance related genes in sugar cane under low temperature stress,” Biotechnology Bulletin, vol. 8, pp. 120–124, 2010.

[85] M. H. Chen, B. Q. Zhang, X. P. Song et al., “cDNASCoT analysis of differentially expressed genes in sugarcane induced by Leifsonia xyli subsp. Xyli,” Acta Agronomica Sinica, vol. 39, no. 9, pp. 1119–1126, 2013.