High hemoglobin A1c levels within the non-diabetic range are associated with the risk of all cancers

Atsushi Goto1,2, Mitsuhiko Noda1,3, Norie Sawada4, Masayuki Kato1, Akihisa Hidaka4, Tetsuya Mizoue5, Taichi Shimazu4, Taiki Yamaji4, Motoki Iwasaki4, Shizuka Sasazuki4, Manami Inoue4,6, Takashi Kadowaki7, Shoichiro Tsugane4 and for the JPHC Study Group8

1 Department of Diabetes Research, Diabetes Research Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
2 Department of Public Health, Tokyo Women’s Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
3 Department of Endocrinology and Diabetes, Saitama Medical University, 38 Moro-hongo, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
4 Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
5 Department of Epidemiology and Prevention, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
6 AXA Department of Health and Human Security, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
7 Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan

Previous studies have reported associations between diabetes and cancer risk. However, specific association of hemoglobin A1c (HbA1c) levels with cancer risk remains inconclusive. We followed 29,629 individuals (11,336 men; 18,293 women) aged 46–80 years who participated in the Japan Public Health Center-based prospective study who had HbA1c measurements available and were cancer-free at baseline. Cancer incidence was assessed by systemic surveys. We estimated hazard ratios (HRs) for cancer risk with adjustment for age sex, geographic area, body mass index, smoking status, physical activity, alcohol, coffee, vegetable and total energy consumption, and history of cardiovascular disease. After a median follow-up of 8.5 years, 1,955 individuals had developed cancer. Higher HbA1c levels within both the non-diabetic and diabetic ranges in individuals without known diabetes were associated with overall cancer risk. Compared with individuals without known diabetes and HbA1c levels of 5.0–5.4%, the HRs for all cancers were 1.27 (95% confidence interval, 1.07–1.52); 1.01 (0.90–1.14); 1.28 (1.09–1.49); and 1.43 (1.14–1.80) for individuals without known diabetes and HbA1c levels <5.0%, 5.5–5.9%, 6.0–6.4%, and ≥6.5%, respectively, and 1.23 (1.02–1.47) for individuals with known diabetes. The lowest HbA1c group had the highest risk of liver cancer, and HbA1c levels were linearly associated with the risk of all cancers after excluding liver cancer (P for linear trend, 0.004). In conclusion, our findings corroborate the notion that glycemic control in individuals with high HbA1c levels may be important not only to prevent diabetes but also to prevent cancer.

Epidemiologic evidence suggests that diabetes is associated with an increased risk of cancer.1,2 In 2010, the American Diabetes Association and the American Cancer Society jointly published a consensus report on the relationship between diabetes and cancer.3 The Japan Diabetes Society (JDS) and the Japanese Cancer Association (JCA) have also recently published a consensus report on the relationship between diabetes and cancer.4 Key words: hemoglobin A1c, hyperglycemia, diabetes mellitus, cancer incidence

Abbreviations: BMI: body mass index; CI: confidence interval; HbA1c: hemoglobin A1c; HR: hazard ratio; ICD-O-3: International Classification of Diseases for Oncology, Third Edition; JCS: Japanese Cancer Association; JDS: Japan Diabetes Society; JPHC: Japan Public Health Center–based prospective study; P<linear: p values for linear trend; P<quadratic: p values for quadratic trend; PHC: public health center.

†Members listed in appendix

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Grant sponsor: Ministry of Health, Labour and Welfare of Japan; Grant number: Research on Health Services H10-074; Medical Frontier Strategy Research; H13-008; Clinical Research for Evidence-based Medicine H14-008 and H15-006; Comprehensive Research on Life-Style Related Diseases including Cardiovascular Diseases and Diabetes Mellitus H16-019, H17-019, H18-028, H19-016, and H25-016; Grants-in-Aid for Cancer Research and for the Third Term Comprehensive Control Research for Cancer

DOI: 10.1002/ijc.29917

History: Received 16 Aug 2015; Accepted 26 Oct 2015; Online 6 Nov 2015

Correspondence to: Mitsuhiko Noda, Department of Endocrinology and Diabetes, Saitama Medical University, 38 Moro-hongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan. Tel.: +81 49 276 1204, Fax: +81 49 294 9752, E-mail: noda_m@saitama-med.ac.jp
reviewed the existing literature on these diseases and published the JDS/JCA joint committee report on diabetes and cancer. Both reports suggest several underlying mechanisms for the relationship between diabetes and cancer risk, such as hyperglycemia itself, promoting DNA damage through oxidative stress caused by an increased mitochondrial glucose oxidation. Insulin resistance, hyperinsulinemia, elevated levels of free insulin-like growth factor, and chronic inflammation associated with diabetes may also explain the positive association between diabetes and cancer risk.

If hyperglycemia contributes to cancer incidence, glycemic markers are likely correlated with cancer risk in a dose-dependent manner. Previous studies have reported an association between high blood glucose levels and cancer. However, the potential association between blood glucose levels and specific cancer sites remains inconclusive. Moreover, the use of blood glucose level as a marker of cancer risk is limited by high intra-individual variability. Alternatively, hemoglobin A1c (HbA1c) level is a reliable glycemic marker as it reflects the 2-month average blood glucose level and exhibits less variability. Therefore, investigating the potential association of HbA1c with cancer risk may provide further insight into the relationship between diabetes and cancer. However, there is little evidence of an association between HbA1c levels and cancer risk, particularly in Asians. Most previous studies were relatively small and reported inconsistent results or no significant findings, possibly stemming from insufficient statistical power. Importantly, obesity is an established risk factor for several cancer sites, including the pancreas, colorectum, and post-menopausal breast. Because body fat is strongly associated with HbA1c levels, investigating the potential association of HbA1c with cancer risk in a population such as Asians among whom obesity is uncommon may provide greater insight, particularly for cancers that are associated with obesity. However, to the best of our knowledge, no prospective studies have investigated the association of HbA1c levels with overall cancer risk or risk of major cancer sites in an Asian population. One study in Japan evaluated the association between HbA1c and gastric cancer risk in Japan, but the study population was likely too small to evaluate potential association with overall cancer risk or risk at specific cancer sites.

Therefore, we conducted a large-scale, population-based, prospective study to determine whether an association exists between HbA1c levels and cancer risk in a general Japanese population free of cancer at baseline.

What’s new?

Diabetes and cancer share a positive association, yet the relationship between cancer risk and the most reliable blood glucose marker, hemoglobin A1c (HbA1c), remains unclear. This large-scale prospective study with strictly standardized HbA1c values in a Japanese population, which was cancer-free at baseline, shows that elevated HbA1c levels are significantly associated with risk for all reported cancer sites in both sexes, independent of potential confounding factors. The findings support the idea that glycemic control is key to cancer prevention in both diabetic and nondiabetic individuals with high HbA1c levels.

Materials and Methods

Study population

The Japan Public Health Center-based prospective Study (JPHC Study) was initiated in 1990 (cohort I) and 1993–1994 (cohort II). All subjects were Japanese individuals from 11 public health center (PHC) areas and were aged 40–59 years in 1990 (cohort I) and 40–69 years in 1993 (cohort II), at the time of their first survey. The JPHC Study has been described in detail previously. The JPHC diabetes study, which involved HbA1c measurements and a questionnaire concerning diabetes and lifestyle, was conducted among JPHC Study participants in all PHCs areas except Osaka during routine health check-ups (the first survey was administered in 1998–2000 and the second survey in 2003–2005). Thus, data from the Osaka PHC area were excluded. Another PHC area in Tokyo was excluded because data on cancer incidence were unavailable. Thus, data on the JPHC diabetes study subjects from nine PHC areas who participated in either survey (cohort I: 4 areas; cohort II: 5 areas) were analyzed. Of 35,181 total participants, 1,037 with a history of cancer and 4,515 for whom anthropometric or laboratory data were unavailable were excluded; thus, 29,629 participants were included in the final analysis. All participants provided written informed consent prior to participation in the JPHC diabetes study, and the study was approved by the institutional review boards of the National Cancer Center, Japan, and the National Center for Global Health and Medicine, Japan.

Laboratory assays

HbA1c was measured using high-performance liquid chromatography or immunochromatographic assays as described elsewhere. In brief, blood samples were collected for HbA1c measurement during the JPHC diabetes study (the first survey conducted from 1998 to 2000 and the second survey conducted from 2003 to 2005). HbA1c values were assayed using high-performance liquid chromatography or immunochromatographic assays in each public health center laboratory. For calibration, standard samples approved by the Japan Diabetes Society were provided to each laboratory before the surveys, and HbA1c values were strictly calibrated to minimize interlaboratory variation. The overall intra-assay coefficients of variation for HbA1c ranged from 0.0 to 3.4%, and the maximal interassay coefficients of variation ranged from 2.2% to 2.8%. HbA1c values were converted to National Glycohemoglobin Standardization Program values.
participated in both surveys of the JPHC diabetes study before the censoring events (~35% of the study population), the average HbA1c level was used for analyses to capture long-term exposure. Sensitivity analyses using the time-dependent Cox model to update the HbA1c levels or using the average HbA1c levels weighted by the time intervals between measurements resulted in similar estimates.

Questionnaire survey
Participants completed a self-administered questionnaire at the JPHC Study 5-year and/or 10-year followup that included questions about previously diagnosed medical conditions, medications, and lifestyle factors, including alcohol intake, physical activity, dietary intake, and smoking. Data from the JPHC Study questionnaire administered upon entry into the JPHC diabetes study were used in our analyses, with the exception of data from participants in cohort I who only participated in the second survey. These participants did not complete a JPHC Study questionnaire upon entry into the JPHC diabetes study, and therefore, data from a questionnaire 5 years prior to entry were used in the analysis. Details on the validation of the questionnaire have been described elsewhere. In brief, the correlation coefficient estimates for comparison of the questionnaire results with dietary records were: alcohol intake, 0.77 for men and 0.55 for women; vegetable intake, 0.38 for men and 0.44 for women; and coffee intake, 0.59 for men and 0.51 for women. Regarding total physical activity, the correlation coefficients between the estimates from the questionnaire and a 4-day, 24-hr physical activity record were 0.53 for men and 0.35 for women. Weight and height were measured during the health check-ups conducted during the JPHC diabetes study. Body mass index (BMI) was calculated in kg/m².

Followup
Participants were followed from the time of entry into the JPHC diabetes study until December 31, 2008. Residence status, including survival, was confirmed through the residential registry. In Japan, residency and death registration are required by law, and the registries are considered complete, and thus, accurate. Cancer occurrence was documented through active notifications from the major hospitals in the study areas and data linkage with population-based cancer registries. Death certificates were also used as a supplementary information source. The site and histological features of each cancer case were coded according to the International Classification of Diseases for Oncology, Third Edition (ICD-O-3). For the registry system used, 7.7% of the cases only had information available from death certificates. For analysis, the earliest date of diagnosis was considered for cases with multiple primary cancers occurring at different times.

Statistical analysis
We analyzed data from 29,629 participants aged 46–80 years upon their entry into the JPHC diabetes study. Each participant contributed person-years from the time of entry into the JPHC diabetes study until the censoring event: first cancer event, death, change in residence, loss to follow-up, or December 31, 2008. If individuals participated in both surveys, the time of entry for the first survey was regarded as the starting point. Baseline characteristics were calculated for 6 groups: individuals without known diabetes and HbA1c levels <5.0% (<31 mmol/mol), 5.0–5.4% (32–36 mmol/mol), 5.5–5.9% (37–41 mmol/mol), 6.0–6.4% (42–47 mmol/mol), and ≥6.5% (≥48 mmol/mol), and individuals with diagnosed diabetes. Participants were defined as having “known diabetes” if they self-reported “diabetes” or “treatment for diabetes” in the JPHC diabetes study questionnaire. Following conventional practice, the HbA1c category of 5.0%–5.5% was used as the reference category. Cox proportional hazards models were used to examine the cancer risk in each group, and the hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated. In Model 1, data were adjusted for age, sex, and PHC area. In Model 2, further adjustments were made for BMI (continuous), smoking status (never smoked, past smoker, or current smoker), sports and physical activity (≥1 day/week, other), alcohol consumption (non-current drinker, occasional drinker, or current drinker in quartiles of ethanol intake in g/week), energy-adjusted vegetable intake (quartiles), total energy intake (quartiles), coffee consumption (almost never, 1–2 cups/week, 3–6 cups/week, 1 cup/day, 2–3 cups/day, or ≥4 cups/day), and history of cardiovascular disease (coronary heart disease or stroke). Further analyses were conducted excluding cancer cases with an early diagnosis (<3 years of follow-up). The physical activity questionnaires administered at the JPHC Study 5- and 10-year follow-up time points differed slightly. Therefore, separate estimates for those who completed questionnaires in the second and third surveys were calculated. Because there was no apparent difference in estimates between these groups, pooled results were computed using a fixed-effects model with inverse variance weighting. For participants without known diabetes, 2-sided P values for linear trends (Plinear) were computed by assigning a mean HbA1c value to each category and including the variables as continuous variables in the models. Two-sided P values for quadratic trends (Pquadratic) were computed by also including a quadratic term in each linear trend model. The scaled Schoenfeld residuals indicated that the proportional hazards assumption had been met. The threshold for significance was set at P < 0.05. Analyses were performed using Stata version 13.1 (StatCorp, College Station, TX, USA).

Results
During 226,077 person-years of follow-up (median follow-up: 8.5 years) on 29,629 subjects (11,336 men, 18,293 women), cancer was newly diagnosed in 1,955 individuals (1,139 men, 816 women; incidence rate, overall: 8.6 per 1,000 person-years, men: 13.7, women: 5.7): stomach cancer (ICD-O-3 topology code: C16), 282 cases (incidence rate: 1.2 per 1,000
Table 1. Baseline characteristics according to HbA1c level and diabetes status (N = 29,629).

HbA1c levels in participants without known diabetes	Characteristic	Participants with known diabetes	Participants with known diabetes
HbA1c < 5.0% (≤31 mmol/mol)	n = 2,070	64.3	45.5
HbA1c 5.0–5.5% (32–36 mmol/mol)	n = 8,314		
HbA1c 5.5–6.0% (37–41 mmol/mol)	n = 12,636		
HbA1c 6.0–6.5% (42–47 mmol/mol)	n = 3,711		
HbA1c ≥ 6.5% (≥48 mmol/mol)	n = 1,037		
Mean HbA1c (%)	4.8 ± 0.2		
Age (years)	61.7 ± 8.1		
BMI (kg/m²)	23.4 ± 3.1		
Diabetes treatment (%)	NA		
Oral hypoglycemic agents only (%)	NA		
Insulin (%)	NA		
Current smoking (%)	14.2		
Past smoking (%)	10.6		
Sports and physical activity ≥ 1 day(s)/week (%)	34.6		
Current alcohol consumption (%)	35.8		
Ethanol consumption (%)	244 (82–404)		
Vegetable intake (%)	192 (127–281)		
Total energy intake (kcal/day)	1,873 (1,497–2,409)		
Coffee consumption (%)	34.5		

Data are presented as mean ± standard deviation or median (interquartile range).
Abbreviations: BMI, body mass index; NA, not applicable.
1Baseline characteristics were compared among groups using linear regression analysis for continuous variables and logistic regression analysis for categorical variables. Adjustment for age was performed with the exception of HbA1c.
2Adjusted for age.
3Alcohol consumption at least once per week.
4Energy-adjusted vegetable intake using the residual method.
HbA1c ≤5.0% (<31 mmol/mol)	HbA1c 5.0–5.5% (32–36 mmol/mol)	HbA1c 5.5–6.0% (37–41 mmol/mol)	HbA1c 6.0–6.5% (42–47 mmol/mol)	HbA1c ≥6.5% (≥48 mmol/mol)	P for linear trend	P for quadratic trend	Participants with known diabetes
n = 2,070	n = 8,314	n = 12,636	n = 3,711	n = 1,037			n = 1,861
Person-years	16,932	67,322	94,608	26,280	7,352		13,584
All cancers	No. of events	166	515	748	278	93	155
	Incidence rate	9.8	7.6	7.9	10.6	12.6	11.4
Model 1		1.27 (1.06–1.52)	1.00	1.03 (0.91–1.15)	1.30 (1.11–1.52)	1.50 (1.19–1.88)	0.008
Model 2		1.27 (1.07–1.52)	1.00	1.01 (0.90–1.14)	1.28 (1.09–1.49)	1.43 (1.14–1.80)	0.028
Model 2 +	Excluding early diagnosis						
	cases (≤3 years)						
All cancers excluding liver cancer	No. of events	147	492	724	273	89	144
	Incidence rate	8.7	7.3	7.7	10.4	12.1	10.6
Model 1		1.18 (0.98–1.42)	1.00	1.04 (0.93–1.17)	1.33 (1.14–1.56)	1.51 (1.20–1.91)	0.001
Model 2		1.18 (0.98–1.42)	1.00	1.03 (0.91–1.10)	1.31 (1.12–1.54)	1.45 (1.15–1.83)	0.004
Stomach cancer	No. of events	22	78	114	39	11	18
	Incidence rate	1.3	1.2	1.2	1.5	1.5	1.3
Model 1		1.11 (0.69–1.80)	1.00	0.99 (0.73–1.33)	1.15 (0.77–1.74)	1.09 (0.59–2.06)	0.92
Model 2		1.09 (0.68–1.77)	1.00	0.96 (0.71–1.29)	1.08 (0.72–1.63)	0.94 (0.49–1.77)	0.72
Colorectal cancer	No. of events	19	83	111	53	18	21
	Incidence rate	1.1	1.2	1.2	2.0	2.4	1.5
Model 1		0.94 (0.57–1.57)	1.00	0.96 (0.72–1.28)	1.57 (1.10–2.26)	1.76 (1.05–2.97)	0.003
Model 2		0.95 (0.57–1.58)	1.00	0.95 (0.71–1.27)	1.51 (1.05–2.17)	1.70 (1.001–2.88)	0.009
Colon cancer	No. of events	14	61	78	38	14	16
	Incidence rate	0.8	0.9	0.8	1.4	1.9	1.2
Model 1		0.93 (0.52–1.68)	1.00	0.92 (0.65–1.30)	1.31 (1.05–2.48)	2.02 (1.12–3.67)	0.006
Model 2		0.95 (0.52–1.71)	1.00	0.91 (0.64–1.29)	1.55 (1.01–2.40)	1.93 (1.05–3.53)	0.013

Tumor Markers and Signatures
Table 2. Cancer incidence according to HbA1c level and diabetes status in total participants (Continued)

	HbA1c levels in participants without known diabetes					
	HbA1c <5.0% (≤31 mmol/mol)	HbA1c 5.0–5.5%	HbA1c 5.5–6.0%	HbA1c 6.0–6.5%		
	(32–36 mmol/mol)	(37–41 mmol/mol)	(42–47 mmol/mol)	(≥48 mmol/mol)		
	P for linear trend	P for quadratic	Participants			
		trend	with known			
			diabetes			
Rectal cancer	No. of events					
	5	22	33	15	4	5
	Incidence rate¹					
	0.3	0.3	0.3	0.6	0.5	0.4
	Model 1					
	1.01 (0.37–2.78)	1.00	1.04 (0.60–1.79)	1.51 (0.78–2.95)	1.19 (0.40–3.53)	0.25 0.86 0.94
	Model 2					
	0.99 (0.36–2.73)	1.00	1.04 (0.60–1.80)	1.42 (0.72–2.79)	1.16 (0.38–3.52)	0.31 0.84 0.97
Liver cancer	No. of events					
	19	23	23	6	4	11
	Incidence rate¹					
	1.1	0.3	0.2	0.2	0.5	0.8
	Model 1					
	3.28 (1.77–6.07)	1.00	0.74 (0.41–1.32)	0.70 (0.28–1.72)	1.31 (0.45–3.85)	0.013 < 0.001 1.89
	Model 2					
	3.30 (1.77–6.13)	1.00	0.72 (0.40–1.28)	0.63 (0.25–1.55)	1.12 (0.38–3.33)	0.006 < 0.001 1.69
Pancreatic cancer	No. of events					
	11	16	34	13	6	10
	Incidence rate¹					
	0.6	0.2	0.4	0.5	0.8	0.7
	Model 1					
	2.61 (1.19–5.73)	1.00	1.69 (0.92–3.10)	2.27 (0.99–5.20)	4.29 (1.47–12.49)	0.064 0.22 2.79
	Model 2					
	2.69 (1.22–5.92)	1.00	1.70 (0.92–3.12)	2.29 (0.99–5.28)	4.40 (1.49–13.0)	0.053 0.21 2.84
Lung cancer	No. of events					
	27	86	121	41	9	21
	Incidence rate¹					
	1.21 (0.78–1.88)	1.00	0.99 (0.75–1.32)	1.14 (0.76–1.71)	0.93 (0.46–1.89)	0.69 0.90 0.99
	Model 2					
	1.17 (0.76–1.82)	1.00	0.97 (0.73–1.29)	1.13 (0.75–1.69)	0.90 (0.44–1.84)	0.61 0.93 1.07

Data are presented as hazard ratios (95% confidence intervals) unless otherwise indicated.

¹Crude incidence rate per 1,000 person-years.

Model 1 was adjusted for age, sex, and public health center area.

Model 2 was further adjusted for body mass index (continuous), smoking status (never smoked, past smoker, or current smoker), sports and physical activity (≥1 day/week or other), alcohol consumption (non-current drinker, occasional drinker, or current drinker in quartiles of ethanol intake in g/week), energy-adjusted vegetable intake (quartiles), total energy intake (quartiles), coffee consumption (almost never, 1–2 cups/week, 3–6 cups/week, 1 cup/day, 2–3 cups/day, or ≥4 cups/day), and history of cardiovascular disease (coronary heart disease or stroke).
HbA1c levels in participants without known diabetes	HbA1c <5.0% (≤31 mmol/mol)	HbA1c 5.0–5.5% (32–36 mmol/mol)	HbA1c 5.5–6.0% (37–41 mmol/mol)	HbA1c 6.0–6.5% (42–47 mmol/mol)	HbA1c ≥6.5% (≥48 mmol/mol)	P for linear trend	P for quadratic trend	Participants with known diabetes
n = 894	n = 3,038	n = 4,418	n = 1,492	n = 510	n = 984			
Person-years	6,968	23,638	31,686	10,282	3,449	6,923		
All cancers	No. of events	113	281	407	171	60	107	
Incidence rate1	16.2	11.9	12.8	16.6	17.4	15.5		
Model 1	1.43 (1.15–1.79)	1.00	1.09 (0.94–1.28)	1.43 (1.17–1.75)	1.53 (1.15–2.03)	0.021	0.073	1.27 (1.01–1.59)
Model 2	1.42 (1.14–1.77)	1.00	1.07 (0.92–1.26)	1.39 (1.14–1.70)	1.43 (1.07–1.91)	0.063	0.080	1.25 (0.997–1.58)
Model 2 + excluding early diagnosis cases (≤3 years)	1.31 (0.99–1.72)	1.00	1.09 (0.90–1.32)	1.50 (1.17–1.93)	1.11 (0.74–1.66)	0.27	0.85	1.35 (1.02–1.79)
All cancers excluding liver cancer	No. of events	100	268	392	167	57	100	
Incidence rate1	14.4	11.3	12.4	16.2	16.5	14.4		
Model 1	1.33 (1.05–1.68)	1.00	1.10 (0.94–1.29)	1.47 (1.20–1.80)	1.54 (1.14–2.06)	0.006	0.28	1.24 (0.98–1.57)
Model 2	1.31 (1.04–1.66)	1.00	1.08 (0.93–1.27)	1.43 (1.16–1.75)	1.45 (1.07–1.95)	0.019	0.29	1.24 (0.98–1.57)
Stomach cancer	No. of events	17	45	67	29	7	12	
Incidence rate1	2.4	1.9	2.8	2.0	2.0	1.7		
Model 1	1.27 (0.72–2.22)	1.00	1.10 (0.74–1.63)	1.54 (0.92–2.58)	1.11 (0.50–2.47)	0.63	0.93	0.92 (0.48–1.77)
Model 2	1.22 (0.69–2.14)	1.00	1.08 (0.73–1.60)	1.44 (0.86–2.42)	0.93 (0.41–2.09)	0.97	0.72	0.81 (0.42–1.57)
Colorectal cancer	No. of events	12	37	51	24	12	14	
Incidence rate1	1.7	1.6	1.6	2.3	3.5	2.0		
Model 1	1.39 (0.69–2.81)	1.00	1.00 (0.65–1.53)	1.49 (0.89–2.51)	1.95 (0.99–3.82)	0.027	0.26	1.21 (0.64–2.26)
Model 2	1.33 (0.66–2.70)	1.00	1.00 (0.65–1.53)	1.45 (0.86–2.46)	1.85 (0.93–3.70)	0.043	0.30	1.19 (0.63–2.24)
Liver cancer	No. of events	13	13	15	4	3	7	
Incidence rate1	1.9	0.6	0.5	0.4	0.9	1.0		
Model 1	3.73 (1.72–8.08)	1.00	0.93 (0.44–1.96)	0.87 (0.28–2.69)	1.61 (0.45–5.70)	0.11	0.002	1.78 (0.65–4.86)
Model 2	3.96 (1.80–8.73)	1.00	0.93 (0.44–1.96)	0.79 (0.25–2.46)	1.29 (0.36–4.70)	0.074	0.002	1.74 (0.63–4.85)
Table 3. Cancer incidence according to HbA1c level and diabetes status in men (Continued)

HbA1c level	Participants with known diabetes	Participants with non-known diabetes	P for linear trend	P for quadratic trend
<5.0%	22	76	3.2	3.2
5.0–5.5%	90	35	2.8	2.8
5.5–6.0%	10	10	3.4	3.4
6.0–6.5%	10	10	2.9	2.9
6.5%	10	10	2.9	2.9

Data are presented as hazard ratios (95% confidence intervals) unless otherwise indicated.

- **Prostate cancer**
 - No. of events: 22, 76, 90, 35, 10, 21
 - Incidence rate: 3.2, 3.2, 2.8, 3.4, 2.9, 2.9
 - Model 1: 1.07 (0.66–1.72) to 1.08 (0.67–1.75)
 - Model 2: 1.08 (0.67–1.75) to 1.08 (0.67–1.75)

For individuals without known diabetes, those with higher HbA1c levels (within both the non-diabetic and diabetic ranges) had a higher risk of all cancers than those with HbA1c levels of 5.0 to 5.4% (Table 2). Low HbA1c levels (<5.0%) were associated with an increased risk of all cancers (Model 2; $P_{\text{quadratic}} = 0.021$). When cancer cases with an early diagnosis (<3 years of follow-up) were excluded, the association for HbA1c levels ≥6.5% and <5.0% was weakened.

In men, similar patterns of association between HbA1c levels and the risk of all cancers were observed (Table 3). HbA1c levels were not associated with the risk of overall (Table 3), organ-localized, or advanced prostate cancer (data not shown). Women with HbA1c ≥6.5% had higher risks of all cancers and breast cancer (Table 4; Model 2). Further adjustment for menopausal status produced similar findings (data not shown).

Discussion

This study demonstrated that higher HbA1c levels within both the diabetic (≥6.5%) and non-diabetic (6.0–6.4%) ranges were independently associated with the risk of all cancers. Higher HbA1c levels within the non-diabetic range were...
Table 4. Cancer incidence according to HbA1c level and diabetes status in women

HbA1c levels in participants without known diabetes	HbA1c levels in participants with known diabetes							
HbA1c <5.0% (≤31 mmol/mol)	HbA1c 5.0–5.5% (32–36 mmol/mol)	HbA1c 5.5–6.0% (37–41 mmol/mol)	HbA1c 6.0–6.5% (42–47 mmol/mol)	HbA1c ≥6.5% (≥48 mmol/mol)	P for linear trend	P for quadratic trend	Participants with known diabetes	
n = 1,176	n = 5,276	n = 8,218	n = 2,219	n = 527			n = 877	
Person-years	9,964	43,686	62,922	15,997	3,903	6,661		
All cancers	53	234	340	108	33	48		
Incidence rate¹	5.3	5.4	5.4	6.8	8.5	7.2		
Model 1	1.05 (0.78–1.42)	1.00	0.96 (0.81–1.14)	1.16 (0.91–1.48)	1.53 (1.05–2.22)	0.12	0.14	1.23 (0.9–1.68)
Model 2	1.06 (0.79–1.44)	1.00	0.94 (0.79–1.12)	1.14 (0.89–1.46)	1.50 (1.02–2.18)	0.20	0.12	1.23 (0.89–1.68)
Model 2 excluding early diagnosis cases (≤3 years)	0.87 (0.60–1.28)	1.00	0.86 (0.70–1.06)	1.03 (0.76–1.40)	1.24 (0.76–2.02)	0.60	0.40	1.29 (0.89–1.87)
All cancers excluding liver cancer	47	224	332	106	32	44		
Incidence rate¹	4.7	5.1	5.3	6.6	8.2	6.6		
Model 1	0.97 (0.71–1.34)	1.00	0.98 (0.82–1.17)	1.20 (0.93–1.53)	1.55 (1.06–2.26)	0.051	0.29	1.18 (0.85–1.63)
Model 2	0.99 (0.72–1.36)	1.00	0.97 (0.81–1.15)	1.18 (0.92–1.51)	1.53 (1.04–2.25)	0.080	0.25	1.19 (0.86–1.65)
Stomach cancer	5	33	47	10	4	6		
Incidence rate¹	0.5	0.8	0.7	0.6	1.0	0.9		
Model 1	0.82 (0.32–2.11)	1.00	0.83 (0.53–1.32)	0.65 (0.31–1.36)	1.17 (0.41–3.33)	0.65	0.49	1.07 (0.44–2.62)
Model 2	0.84 (0.32–2.17)	1.00	0.82 (0.52–1.29)	0.62 (0.30–1.31)	1.06 (0.37–3.06)	0.53	0.48	1.06 (0.43–2.62)
Colorectal cancer	7	46	60	29	6	7		
Incidence rate¹	0.7	1.1	1.0	1.8	1.5	1.1		
Model 1	0.66 (0.30–1.47)	1.00	0.92 (0.61–1.38)	1.78 (1.05–3.01)	1.59 (0.68–3.75)	0.048	0.91	0.96 (0.43–2.14)
Model 2	0.68 (0.30–1.51)	1.00	0.92 (0.61–1.38)	1.68 (0.99–2.88)	1.56 (0.65–3.72)	0.076	0.97	1.02 (0.46–2.29)
Liver cancer	6	10	8	2	1	4		
Incidence rate¹	0.6	0.2	0.1	0.1	0.3	0.6		
Model 1	2.78 (0.98–7.91)	1.00	0.53 (0.21–1.36)	0.51 (0.11–2.35)	1.80 (0.20–16.4)	0.0498	0.0448	2.30 (0.67–7.87)
Model 2	2.75 (0.96–7.91)	1.00	0.46 (0.18–1.18)	0.43 (0.09–2.02)	1.67 (0.18–15.7)	0.030	0.054	1.88 (0.54–6.57)
Table 4. Cancer incidence according to HbA1c level and diabetes status in women (Continued)

HbA1c levels in participants without known diabetes	Participants with known diabetes						
HbA1c <5.0% (<31 mmol/mol)	No. of events	Incidence rate¹	P for linear trend	P for quadratic trend			
HbA1c 5.0–5.5% (32–36 mmol/mol)	7	0.7	0.7	0.9	0.9	2.0	0.8
HbA1c 5.5–6.0% (37–41 mmol/mol)	29	1.00	1.33 (0.83–2.14)	0.034	0.93	1.18 (0.45–3.07)	
HbA1c 6.0–6.5% (42–47 mmol/mol)	59	1.37 (0.70–2.69)	1.37 (0.70–2.69)	3.28 (1.41–7.63)	0.034	0.39	
HbA1c ≥6.5% (≥48 mmol/mol)	14	2.0	2.83 (1.20–6.68)	0.10	0.43		
	8	1.09 (0.42–2.86)					

Data are presented as hazard ratios (95% confidence intervals) unless otherwise indicated.

¹Crude incidence rate per 1,000 person-years.

Model 1 was adjusted for age and public health center area.

Model 2 was further adjusted for body mass index (continuous), smoking status (never smoked, past smoker, or current smoker), sports and physical activity (>1 day/week, other), alcohol consumption (non-current drinker, occasional drinker, or current drinker in quartiles of ethanol intake in g/week), energy-adjusted vegetable intake (quartiles), total energy intake (quartiles), coffee consumption (almost never, 1–2 cups/week, 3–6 cups/week, 1 cup per day, 2–3 cups/day, or ≥4 cups/day), and a history of cardiovascular disease (coronary heart disease or stroke).
suggests a possible positive association between HbA1c and colorectal cancer; however, the risk for individuals with HbA1c levels in the non-diabetic range was unclear. Thus, our significant findings corroborate the notion that hyperglycemia within the non-diabetic range is associated with an increased risk of colorectal cancer.

The lowest and highest HbA1c categories were also associated with an increased risk of pancreatic cancer. The observed association of the highest HbA1c category with pancreatic cancer risk is consistent with earlier studies showing a strong diabetes–pancreatic cancer risk linkage. However, it is uncertain why low HbA1c levels were associated with an increased risk of pancreatic cancer. Low HbA1c levels may be a general marker of poor health. Alternatively, because the CIs were very wide, the observed increased risk could be a chance finding. In contrast to earlier studies in Japan showing no association between diabetes and breast cancer risk, we observed an increased breast cancer risk for individuals in the highest HbA1c category. Of note, individuals with HbA1c levels <5.0% had a significantly increased risk of liver cancer. Low HbA1c levels may be due to low blood glucose levels or abnormal red blood cell turnover. As an impaired hepatic function can lead to reduced red cell turnover through hypersplenism, such patients have lower HbA1c levels relative to their blood glucose levels. This mechanism may partially explain the relationship between low HbA1c levels and liver cancer. In Japan, up to 70% of liver cancer cases are associated with hepatitis C virus infection; however, among the sub-sample of study participants who had data on hepatitis C antibody detection (~30% of participants), a similar pattern of association was found regardless of infection status, indicating that hepatitis C infection may not explain this association between HbA1c level and liver cancer. The previously mentioned New Zealand study reported no association between HbA1c levels and liver cancer risk, possibly because of the small number of liver cancer cases in their cohort. Although a previous study in Japan reported a positive association between HbA1c levels and gastric cancer risk, we did not observe such an association. Because our population had a high prevalence of *Helicobacter pylori* (~90% of the JPHC participants) and most individuals were already at high risk of developing gastric cancer, hyperglycemia may have only had a limited impact on the development of gastric cancer in our study population.

This study’s strengths include its population-based prospective cohort design, large sample size, large number of cancer cases, low rate of lost to follow-up, use of standardized HbA1c values, and use of systematic surveys of cancer incidence. Nevertheless, several limitations merit consideration. First, residual confounding may explain some of the observed associations, because individuals with high HbA1c levels within the non-diabetic range tend to have various characteristics that are established risk factors for both hyperglycemia and cancer. For example, we adjusted for self-reported smoking status, but the misclassification of smoking status may have resulted in incomplete control for smoking as a confounding factor. Moreover, information on abdominal obesity was lacking, which may have resulted in incomplete adjustment for adiposity. Second, because of the small numbers of cases, we could not evaluate associations of HbA1c levels with cancers at sites such as the esophagus, kidneys, and uterus; or sex-specific associations for pancreatic and lung cancer. Finally, HbA1c levels and diabetes status may have changed during follow-up. However, if HbA1c levels during follow-up had been available for all participants, the association between HbA1c and cancer risk may have been stronger.

In conclusion, higher HbA1c levels within both non-diabetic and diabetic ranges in Japanese individuals without known diabetes are associated with the risk of all cancers. Since randomized controlled trials have demonstrated that lifestyle changes in people with prediabetes could decrease the risk of type 2 diabetes, strategies to prevent type 2 diabetes through lifestyle changes have been widely implemented. Our findings suggest that these efforts may also contribute to reduce the incidence of cancer, providing additional strong support for policy makers to implement such diabetes prevention programs.

Acknowledgements

The authors thank all the staff members in each study area for their cooperation and technical assistance to conduct the survey and follow-up. The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit the results.

APPENDIX

JPHC Study Group Members

The JPHC Study Group: S. Tsugane (principal investigator), S. Sasazuki, M. Iwasaki, N. Sawada, T. Shimazu, T. Yamaji, and T. Hanaoka, National Cancer Center, Tokyo; J. Ogata, S. Baba, T. Mannami, A. Okayama, and Y. Kokubo, National Cerebral and Cardiovascular Center, Osaka; K. Miyakawa, F. Saito, A. Koizumi, Y. Sano, I. Hashimoto, T. Ikuta, Y. Tanaba, H. Sato, and Y. Roppongi, Iwate Prefectural Ninohe Public Health Center, Iwate; Y. Miyajima, N. Suzuki, S. Nagasawa, Y. Furusugi, N. Nagai, Y. Ito, and S. Komatsu, Akita Prefectural Yokote Public Health Center, Akita; H. Sanada, Y. Hatayama, F. Kobayashi, H. Uchino, Y. Shirai, T. Kondo, R. Sasaki, Y. Watanabe, Y. Miyagawa, Y. Kobayashi, M. Machida, K. Kobayashi, and M. Tsukada, Nagano Prefectural Saku Public Health Center, Nagano; Y. Kishimoto, E. Takara, T. Fukuyama, M. Kinjo, M. Irie, and H. Sakiyama, Okinawa Prefectural Chubu Public Health Center, Okinawa; K. Imoto, H. Yazawa, T. Seo, A. Seiko, F. Ito, F. Shoji, and R. Saito, Katsushika Public Health Center, Tokyo; A. Murata, K. Minato, K. Motegi, T. Fujieda, and S. Yamato, Ibaraki Prefectural Mito Public Health Center, Ibaraki; K. Matsui, T. Abe, M. Katagiri, M. Suzuki, and K. Matsu, Niigata Prefectural Kashiwazaki and Nagaoka Public Health Center, Niigata; M. Doi, A. Terao,
Y. Ishikawa, and T. Tagami, Kochi Prefectural Chuo-
higashi Public Health Center, Kochi; H. Sueta, H. Doi, M.
Urata, N. Okamoto, F. Ide, and H. Goto, Nagasaki Prefec-
tural Kamigorito Public Health Center, Nagasaki; S.
Sakiyama, N. Onga, H. Takaesu, M. Uehara, and T. Naka-
sone, Okinawa Prefectural Miyako Public Health Center,
Okinawa; F. Horii, I. Asano, H. Yamaguchi, K. Aoki, S.
Maruyama, M. Ichii, and M. Takano, Osaka Prefectural
Suita Public Health Center, Osaka; Y. Tsubono, Tohoku
University, Miyagi; K. Suzuki, Research Institute for Brain
and Blood Vessels Akita, Akita; Y. Honda, K. Yamagishi,
S. Sakurai, and N. Tsuchiya, University of Tsukuba, Ibar-
aki; M. Kabuto, National Institute for Environmental Stud-
ies, Ibaraki; M. Yamaguchi, Y. Matsumura, S. Sasaki, and
S. Watanabe, National Institute of Health and Nutrition,
Tokyo; M. Akabane, Tokyo University of Agriculture,
Tokyo; T. Kadowski and M. Inoue, The University of
Tokyo, Tokyo; M. Noda and T. Mizoue, National Center for
Global Health and Medicine, Tokyo; Y. Kawaguchi, Tokyo
Medical and Dental University, Tokyo; Y. Takashima and
Y. Yoshida, Kyorin University, Tokyo; K. Nakamura, Niigata
University, Niigata; S. Matsushima and S. Natsukawa,
Saku General Hospital, Nagano; H. Shimizu, Sakihai
Institute, Gifu; H. Sugimura, Hamamatsu University
School of Medicine, Shizuoka; S. Tominaga, Aichi Cancer
Center, Aichi; N. Hamajima, Nagoya University, Aichi; H.
Iso and T. Sobue, Osaka University, Osaka; M. Iida, W.
Aji, and A. Ioka, Osaka Medical Center for Cancer and
Cardiovascular Disease, Osaka; S. Sato, Chiba Prefectural
Institute of Public Health, Chiba; E. Maruyama, Kobe Uni-
versity, Hyogo; M. Konishi, K. Okada, and I. Saito, Ehime
University, Ehime; N. Yasuda, Kochi University, Kochi; S.
Kono, Kyushu University, Fukuoka; S. Akiba, Kagoshima
University, Kagoshima.

References
1. Inoue M, Iwasaki M, Otani T, et al. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 2006;166:1871–7.
2. Sasazuki S, Charvat H, Hara A, et al. Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan. Cancer Sci 2013;104:1499–507.
3. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010;33:1674–85.
4. Kasuga M, Ueki K, Tajima N, et al. Report of the Japan Diabetes Society/Japanese Cancer Association Joint Committee on Diabetes and Cancer. Cancer Sci 2013;104:965–76.
5. Jee SH, Orrh H, Sull JW, et al. Fasting serum glucose level and cancer risk in Korean men and women. Jama 2005;293:194–202.
6. Stocks T, Rapp K, Borge T, et al. Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of risk prospective cohorts. PLoS Med 2009;6:e1000201.
7. Selvin E, Crainiceanu CM, Brancati FL, et al. Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch Intern Med 2007;167:1545–51.
8. Lin J, Ridker PM, Pradhan A, et al. Hemoglobin A1c concentrations and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 2005;14:3010–2.
9. Wei EK, Ma J, Pollak MN, et al. Cpeptide, insulin-like growth factor binding protein 1, glycylated hemoglobin, and the risk of distal colono-
rectal adenoma in women. Cancer Epidemiol Biomarkers Prev 2006;15:750–5.
10. Platz EA, Hankinson SE, Rifai N, et al. Glycosyla-
ted hemoglobin and risk of colorectal cancer and adenoma (United States). Cancer Causes Control 1999;10:379–86.
11. Rinaldi S, Rohrmann S, Jenab M, et al. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2008;17:3108–15.
12. Tagger N, Jeffreys M, Brewer N, et al. Associa-
tion between glycosylated hemoglobin and cancer risk: a New Zealand linkage study. Ann Oncol 2007;18:1414–9.
13. WCRF. World Cancer Research Fund. Food, nutrition, physical activity and the prevention of cancer: a global perspective (2nd edn.). World Cancer Research Fund/American Institute for Cancer Research, Washington, DC, USA2007.
14. Goto M, Morita A, Goto A, et al. Reduction in adiposity, beta-cell function, insulin sensitivity, and cardiovascular risk factors: a prospective study among Japanese with obesity. PLoS One 2013;8:e57964.
15. Ikeda F, Doi Y, Yonemoto K, et al. Hyperglycemia increases risk of gastric cancer posed by Hel-
icobacter pylori infection: a population-based cohort study. Gastroenterology 2009;136:1234–41.
16. Tsugane S, Sawada N. The JPHC Study: design and some findings on the typical Japanese diet. Jpn J Clin Oncol 2014;44:777–82.
17. Noda M, Kato M, Takahashi Y, et al. Fasting plasma glucose and 5-year incidence of diabetes in the JPHC diabetes study—suggestion for the threshold for impaired fasting glucose among Japanese. Endocr J 2010;57:629–37.
18. Goto A, Noda M, Matsushima Y, et al. Hemoglobin A1c levels and the risk of cardiovascular dis-
ease in people without known diabetes: a population-based cohort study. In: Japan. Medi-
cine (Baltimore) 2015;94:785.
19. Kashiwagi A, Kasuga M, Araki E, et al. Interna-
tional clinical harmonization of glycated hemo-
globin in Japan: From Japan Diabetes Society to Japan Diabetes Invest 2012;3:39–40.
20. Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet 2010;375:481–9.
21. Riddle MC, Ambresin EW, et al. Epidemiologic relationships between A1C and all-cause mortal-
ity during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care 2010;33:983–90.
22. Zoungas S, Chalmers J, Ninomiya T, et al. Asso-
ciation between glycosylated hemoglobin and cancer: a consensus report. Diabetes and cancer: a global perspective (2nd edn.). World Health Organization, 2000. vii, 138, 1741–1753 (2016).
23. Ikeda F, Doi Y, Yonemoto K, et al. Hyperglycemia increases risk of gastric cancer posed by Hel-
icobacter pylori infection: a population-based cohort study. Gastroenterology 2009;136:1234–41.
24. Goto M, Morita A, Goto A, et al. Reduction in adiposity, beta-cell function, insulin sensitivity, and cardiovascular risk factors: a prospective study among Japanese with obesity. PLoS One 2013;8:e57964.
25. Marugame T, Yamamoto S, Yoshimi I, et al. Pat-
terns of alcohol drinking and all-cause mortality: results from a large-scale population-based cohort study in Japan. Ann J Epidemiol 2007;165:1039–46.
26. Inoue M, Kurahashi N, Iwasaki M, et al. Effect of diet, physical activity level, and cigarette smoking on the risk of liver cancer: cohort analysis by hepatitis virus infection status. Cancer Epidemiol Biomarkers Prev 2009;18:1746–53.
27. Inoue M, Iso H, Yamamoto S, et al. Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study). Ann Epidemiol 2008;18:522–30.
28. World Health Organization. International classification of diseases for oncology, 3rd ed. Geneva: World Health Organization, 2000. vii, 240 p.
29. Selvin E, Steffles MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 2010;362:800–11.
30. Grambsch PM, Therneau TM. Proportional haz-
ard tests and diagnostics based on weighted residualsm. Biometrika 1994;81:515–26.
31. Kurahashi N, Iwasaki M, Sasazuki S, et al. Asso-
ciation of body mass index and height with risk of prostate cancer among middle-aged Japanese men. Br J Cancer 2006;94:4740–2.
subsequent colorectal risk. Cancer Epidemiol Biomarkers Prev 2003; 12:412–8.
34. de Beer JC, Liebenberg L. Does cancer risk increase with HbA1c, independent of diabetes? Br J Cancer 2014; 110:2361–8.
35. Aggarwal V, Schneider AL, Selvin E. Low hemoglobin A1c in nondiabetic adults: an elevated risk state? Diabetes Care 2012; 35:2055–60.
36. Molinaro RJ. Targeting HbA1c: standardization and clinical laboratory measurement. MLO Med Lab Obs 2008; 40:16–9.
37. Trenti T, Cristiani A, Cioni G, et al. Fructosamine and glycated hemoglobin as indices of glycemic control in patients with liver cirrhosis. Ric Clin Lab 1990; 20:261–7.
38. Christman AL, Lazo M, Clark JM, et al. Low glycated hemoglobin and liver disease in the U.S. population. Diabetes Care 2011; 34:2548–50.
39. Sasazuki S, Inoue M, Iwasaki M, Otani et al. Effect of Helicobacter pylori infection combined with CagA and pepsinogen status on gastric cancer development among Japanese men and women: a nested case-control study. Cancer Epidemiol Biomarkers Prev 2006; 15:1341–7.
40. Hidaka A, Sasazuki S, Goto A, et al. Plasma insulin, C-peptide and blood glucose and the risk of gastric cancer: the Japan Public Health Center-based prospective study. Int J Cancer 2015; 136:1402–10.
41. Knowler WC, Barrett-Connor E, Fowler SE, et al., Diabetes Prevention Program Research G. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346:393–403.
42. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344:1343–50.
43. Kosaka K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract 2005; 67:152–62.
44. Saito T, Watanabe M, Nishida J, et al., Zensharen Study for Prevention of Lifestyle Diseases G. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: A Randomized Controlled Trial. Arch Intern Med 2011; 171:1352–60.
45. Centers for Disease Control and Prevention. National Diabetes Prevention Program, vol. 2015, 2015.