Efficacy and Safety of Palbociclib and Fulvestrant in Japanese Patients With ER+/HER2– Advanced/Metastatic Breast Cancer

HIROHITO SEKI1, TAKASHI SAKURAI1, YUKA MAEDA1, NAOHIKO OKI1, MINA AOYAMA1, RYOU YAMAGUCHI1, TOSHIKI TOKUDAI, TAKUJI KABURAGI1, TAKEHIRO OKUMURAI1, TSUYOSHI KARAHASHI1, KENICHIRO NAKAJIMA1, KAORI HIGETA2 and KEN SHIMIZU3

Divisions of 1Surgery, 2Pharmacy and 3Pathology, Saitama Medical Center, Saitama, Japan

Abstract. Background/Aim: Published data have shown that palbociclib-fulvestrant can significantly improve the progression-free survival (PFS) of estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2–) metastatic breast cancer patients, but not of Japanese patients. We conducted this retrospective study to verify the efficacy and safety of palbociclib-fulvestrant in Japanese patients. Patients and Methods: ER+/HER2– metastatic breast cancer patients treated with fulvestrant (n=39) or palbociclib-fulvestrant (n=31) at the Saitama Medical Center from July 2012 to November 2018 were evaluated. Results: Overall response rates (ORRs) were 2.6% (fulvestrant) and 41.9% (palbociclib-fulvestrant) (p<0.001), and clinical benefit rates (CBRs) were 23.1% and 61.3% (p=0.002), respectively. The palbociclib-fulvestrant group had significantly higher CBR and PFS (hazard ratio(HR):0.272, 95% confidence interval(95CI):0.128-0.574 for PFS). Grade 3/4 neutropenia occurred in 80.6% of the palbociclib-fulvestrant group, while febrile neutropenia was not detected. Conclusion: Japanese ER+/HER2– metastatic breast cancer patients tolerated palbociclib-fulvestrant, with significantly improved clinical outcomes.

Endocrine therapy for estrogen receptor/human epidermal growth factor receptor 2 (ER+/HER2–) tumours has greatly contributed to reduce early breast cancer recurrence (1). However, some patients relapse during, or following the completion of adjuvant therapy, and metastatic breast cancer (MBC) treatment remains a significant clinical issue.

Tamoxifen or aromatase inhibitors are the standard of care for ER+ MBC (2-4). Fulvestrant is a selective ER down-regulator, with superior efficacy to aromatase inhibitors for ER+ MBC (5, 6), however, endocrine monotherapy has often offered limited clinical benefit (7, 8).

Targeting the molecular components of the cell cycle to interfere with cell-cycle progression is a logical strategy for cancer treatment. Cyclin-dependent kinases (CDK) 4 and 6 promote cell-cycle progression. Palbociclib selectively inhibits CDK4 and CDK6, which ultimately inhibits DNA synthesis (9, 10). Palbociclib is an approved novel molecular targeting drug for hormone receptor-positive/HER2– advanced or MBC combined with endocrine therapy (11). The phase 2 PALOMA-1 trial has demonstrated the efficacy and safety of palbociclib as first-line therapy combined with letrozole in patients with ER+/HER2– MBC (12). Patients treated with palbociclib-letrozole had significantly longer median progression-free survival (PFS) compared to those treated with letrozole (13). In the phase 3 PALOMA-3 trial, palbociclib-fulvestrant significantly improved PFS in patients with hormone receptor-positive/HER2– MBC who were resistant to endocrine therapy (14-17). Although neutropenia was the most frequent adverse event with palbociclib, the incidence of febrile neutropenia was very low.

A subgroup analysis of Japanese patients in the PALOMA-3 study (18) reported that palbociclib-fulvestrant had no significant effect on PFS compared to placebo-fulvestrant. In addition, the study showed that there was no significant difference in adverse events between the overall population and Japanese patients, except for a higher rate of neutropenia in Japanese patients receiving palbociclib.

Therefore, we conducted a retrospective study to verify the efficacy and safety of palbociclib-fulvestrant in Japanese patients.

Patients and Methods

ER+/HER2– advanced or MBC patients treated with fulvestrant (n=39) or palbociclib-fulvestrant (n=31) at the Saitama Medical Center from July 2012 to November 2018 were included. All patients
provided informed consent for treatment. This retrospective study was approved by the Institutional Review Board of the Saitama Medical Center (IRB no. 19-2), in accordance with the Declaration of Helsinki and its amendments (19). Fulvestrant (500 mg, intramuscular) was administered on days 1 and 15 (cycle 1), then every 28 days starting from day 1 of cycle 1. Palbociclib, (125 mg/day, oral) was administered on days 1-21, followed by 7 days off treatment for every 28-day cycle. Premenopausal and perimenopausal women received subcutaneous injections of an LHRH agonist. The therapeutic effects were evaluated by RECIST guidelines (version 1.1) (20).

Efficacy. The long stable disease rate was 20.5% (fulvestrant) compared to 22.6% (palbociclib-fulvestrant). The clinicopathological factors (Table I).

Dose interruption/reduction of palbociclib was defined as follows: i) for grade 3 neutropenia or thrombocytopenia, palbociclib was interrupted until recovery to grade ≤2 and then continued at the same dose, ii) for grade 3 neutropenia with fever, palbociclib was interrupted until recovery to grade ≤2 and then resumed with one dose-level reduction, iii) for grade 4 neutropenia or thrombocytopenia, palbociclib was interrupted until recovery to grade ≤2 and then resumed with one dose-level reduction. Two dose-level reductions in palbociclib were permitted. No dose reductions in fulvestrant were allowed. Laboratory tests were performed every 2 weeks during the first two cycles and on day 1 of subsequent cycles. The severity of adverse events was recorded and graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE v4.0) (21).

Statistical analysis. Statistical analysis was performed using SPSS 23.0 (SPSS Inc., Chicago, IL, USA). Clinicopathological variables were compared using Fisher’s exact and chi-squared tests. The Mann-Whitney test for categorical variables was used for age analysis. PFS was estimated by Kaplan–Meier with 95% confidence intervals (CIs). A log-rank test was used to compare PFS between groups. Hazard Ratios (HR) were estimated from the Cox proportional hazards regression models. Values of p<0.05 were considered significant.

Results

Patients’ characteristics. Patients from both groups had a median age of 64 years and all had HER2− disease. In the fulvestrant group, 92.3% were postmenopausal compared to 77.4% of the palbociclib-fulvestrant group. In the fulvestrant group, i) 79.5% were ER+ and progesterone receptor (PgR)+ compared to 87.1% in the palbociclib-fulvestrant group, ii) 56.4% had visceral disease compared to 48.4% in the palbociclib-fulvestrant group, and iii) 18.0% had bone disease only compared to 22.6% in the palbociclib-fulvestrant group. The median disease-free intervals (DFIs) were 25.4 months (fulvestrant) and 22.2 months (palbociclib-fulvestrant). There was no significant difference in the clinicopathological factors (Table I).

Adverse events. The most common adverse events in the palbociclib/fulvestrant group were leukopenia, neutropenia, anaemia, and fatigue (Table IV). More frequent hematological adverse events occurred in the palbociclib/fulvestrant group. No group experienced febrile neutropenia. The most common non-hematological adverse events were fatigue (41.9% in palbociclib–fulvestrant versus 5.2% in fulvestrant). Two patients experienced fever without neutropenia in the palbociclib-fulvestrant group. The only >grade 3 non-hematological adverse event was liver dysfunction (5.1%), which occurred in the fulvestrant group. There were no serious adverse events in either group.

Discussion

ER+/HER2− MBC treatment has remarkably changed over the past few decades. Aromatase inhibitors have shown effectiveness compared to tamoxifen in postmenopausal women with MBC (3,4). Subsequently, the selective ER
down-regulator, fulvestrant, has been found to be significantly better PFS compared to aromatase inhibitors for postmenopausal women with ER+HER2– MBC (6). Endocrine therapy has been a standard treatment strategy for ER+/HER2– MBC patients without a critical condition (22). Interestingly, endocrine therapy combined with a CDK4/6 inhibitor can significantly improve PFS compared to endocrine monotherapy, thus it has become a standard of treatment for ER+/HER2– MBC (13-15, 17, 23-25).

In a phase 3 trial, palbociclib-fulvestrant did not improve PFS in Japanese patients with ER+/HER2– MBC. The frequency of grade 3/4 neutropenia was higher in Japanese patients than the overall population (18). Therefore, it was necessary to verify the efficacy and safety of palbociclib-fulvestrant for Japanese patients with ER+/HER2– MBC.

The palbociclib-fulvestrant group had significantly better ORR and CBR compared to the fulvestrant group. In the palbociclib-fulvestrant group of the PALOMA-3 trial, the ORRs were 21% in the overall population and 18.5% in the Japanese subgroup, and the CBRs were 66.3% in the overall population and 74.1% in the Japanese subgroup (18). The CBR in this study was like the trial, but the current study had

Table I. Patients’ characteristics.
Fulvestrant alone (n=39)
Fulvestrant-fulvestrant (n=31)
Age (years)
Median (range)
<70 years
≥70 years
Menopausal status
Premenopausal
Postmenopausal
BMI
<25
≥25
ECOG performance status
0
1
Pathological subtype
IDC
ILC
Unknown
Hormone-Receptor status
ER-positive and PR positive
ER-positive and PR negative
Unknown
Ki-67
<40%
≥40%
Unknown
Nuclear grade
1 or 2
3
Unknown
Disease stage at initial diagnosis
I
II
III
IV
Unknown
Metastatic site
Visceral
Nonvisceral
Bone only
a better ORR. However, there were fewer patients with visceral metastasis than in the PALOMA-3 trial (48% and 63%, respectively). Our result indicated better clinical response with palbociclib-fulvestrant than fulvestrant for Japanese patients with ER+/HER2– MBC (18).

We observed higher CBRs: i) in patients aged <70 years, ii) with BMI ≥25, iii) PgR positivity, iv) stage I-III at initial diagnosis, v) DFI 24 months or longer, vi) ≤1 previous line of endocrine therapy, vii) ≤1 previous line of chemotherapy, viii) no sensitivity to prior endocrine therapy, ix) two or more metastatic sites, and x) visceral metastasis in the palbociclib-fulvestrant group.

It has been previously shown that there was significantly improved median PFS with palbociclib-fulvestrant versus fulvestrant in the <65-year old subgroup and 65-74-year old subgroup, but no significant improvement in the ≥75-year old subgroup (23). Our study also reports that there is no significant difference in CBR between fulvestrant and palbociclib-fulvestrant in the ≥70-year old subgroup, suggesting that fulvestrant provides a sufficient benefit for elderly patients.

CBR in the palbociclib-fulvestrant group was significantly better compared to the fulvestrant group in patients with a BMI of ≥25. A previous study has demonstrated that obesity is a risk factor for postmenopausal ER+ breast cancer (26). In fact, the efficacy of endocrine therapy for ER+ postmenopausal MBC is significantly worse for patients with a BMI of ≥25 than for those with a BMI <25 kg/m² (27). Although no direct evidence exists for the relationship between the efficacy of CDK4/6 inhibitor and obesity, endocrine therapy alone is less effective for obese patients, which may explain the improved CBR when combined endocrine therapy and palbociclib is administered.

Table II. Comparison of overall response rate in the fulvestrant alone and palbociclib-fulvestrant groups.

Response	Fulvestrant alone (n=39)	Palbociclib-fulvestrant (n=31)	p-Value
CR	0	1	
PR	1	12	
LSD	8	7	
SD	4	2	
PD	26	9	
RR	2.6%	41.9%	<0.001
CBR	23.1%	61.3%	0.002

CR: Complete response; PR: partial response; LSD: long stable disease; SD: stable disease; PD: partial response; RR: response rate; CBR: clinical benefit rate.

Figure 1. Kaplan–Meier curve for PFS in patients with ER+/HER2–MBC. Cox’s proportional hazard ratio (95% CI): 0.272 (range: 0.128–0.574). PFS: Progression-free survival; ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; MBC: metastatic breast cancer; CI: confidence interval.
In a previous report, although the median PFS of the palbociclib-fulvestrant group was significantly longer for elderly patients with mild metastatic disease. Our results suggest that the most appropriate cases for treatment with palbociclib-fulvestrant are: i) aged <70, ii) obese, iii) PgR positive, iv) with DFI >24 months, v) early-line treatment with resistance to prior endocrine therapy, and vi) multiple metastases, including visceral metastasis. Endocrine monotherapy can have sufficient clinical benefit for elderly patients with mild metastatic disease.

In a previous report, although the median PFS of the palbociclib-fulvestrant group was significantly longer than for the fulvestrant-alone group, we observed better CBR in the palbociclib-fulvestrant group in patients with extensive metastatic disease.

CBR: Clinical benefit rate; OR: odds ratio; CI: confidence interval; BMI: body mass index; PgR: progesterone receptor.

Table III. Correlation between CBR and clinicopathological factors in fulvestrant alone and palbociclib-fulvestrant treated patients.

	Fulvestrant alone (%)	Palbociclib-fulvestrant (%)	OR (95%CI)	p-Value
Age				
<70	16.7	63.2	2.656 (2.248-3.266)	0.002
≥70	44.4	58.3	1.375 (0.507-3.729)	0.67
Menopausal status				
Pre/Peri	0	85.7	-	0.033
Post	25	54.2	1.737 (1.010-2.985)	0.03
BMI ≥24	26.1	55.6	1.813 (0.950-3.139)	0.105
BMI >24	10	69.2	6.923 (1.041-46.027)	0.01
PgR				
Negative	16.7	0	-	1
Positive	22.6	70.4	2.786 (1.434-5.412)	<0.001
Disease stage at initial diagnosis				
I-II	23.3	59.1	2.054 (1.088-3.877)	0.011
IV	22.2	66.7	2.800 (0.789-9.940)	0.153
Disease-free interval (month)				
≥24	8.3	50	3.750 (0.635-22.142)	0.109
>24	30	69.2	1.912 (0.975-3.749)	0.038
Previous lines of endocrine therapy in the context of metastatic disease				
0 or 1	21.1	60	1.771 (1.048-2.993)	0.01
≥2	100	62.5	-	1
Previous lines of chemo therapy in the context of metastatic disease				
0 or 1	21.1	61.5	2.250 (1.243-4.073)	0.002
≥2	100	60	-	1
Prior Sensitivity to endocrine therapy				
No	22.6	60	1.592 (0.941-2.692)	0.049
Yes	33.3	58.3	2.000 (0.482-8.306)	0.62
No. of Metastatic sites				
1	25	54.5	1.765 (0.778-4.002)	0.224
≥2	21.7	65	2.592 (1.183-5.677)	0.006
Metastatic site				
Viceral	22.7	73.3	2.590 (1.217-5.516)	0.006
Non-viceral	23.5	50	1.857 (0.780-4.422)	0.157
Bone only	28.6	71.4	2.500 (0.708-8.827)	0.286

	N	%
Dose discontinuation	0	0
Dose interruption	18	58.1
Dose reduction (Total)	22	71
1 dose-level reduction	16	51.6
2 dose-level reduction	6	19.4
Course for dose reduction		
1 dose-level reduction	2 (1-5)	
Median (minimum-max)	3 (2-5)	
compared to the fulvestrant group in the entire population. Japanese patients in both groups had no significant difference in PFS (18). In our study, the median PFS was significantly improved in the palbociclib-fulvestrant group. Our result suggests a possibly significant improvement in the prognosis of Japanese patients receiving palbociclib-fulvestrant.

Japanese and other Asian patients have lower baseline neutrophil counts compared to non-Asian patients (18). This may explain the higher rate of neutropenia in Japanese patients treated with palbociclib. This higher incidence was not related to a higher palbociclib exposure, lower body weight, lower body surface area/BMI, or older age. The rate of grade 4 neutropenia in the palbociclib-fulvestrant group was 16.1%. This is similar to the PALOMA-3 trial, that reported 26% grade 4 neutropenia in Japanese patients receiving palbociclib, which was higher compared to the overall population (9%) (18). Neutropenia caused by palbociclib should not be viewed or managed the same way as neutropenia caused by chemotherapy. A previous study has reported that bone marrow suppression due to palbociclib is not associated with apoptosis, DNA damage response, or cell senescence in vitro (28). Patients treated with palbociclib recover human bone marrow mononuclear cell counts on day 9 following administration; however, this is not observed in patients treated with cytotoxic chemotherapeutic agents. Possibly, bone marrow suppression from palbociclib may not affect prognosis (29). These results suggest that neutropenia due to palbociclib is an unlikely cause of febrile neutropenia if dose reduction is performed early, and the feasibility of palbociclib in Japanese breast cancer patients is equal to the entire population.

This study had certain limitations. This is a single-institution retrospective study with a limited sample size and a short observation period. However, this study indicated a possibility that palbociclib-fulvestrant is effective and well tolerated in Japanese patients with ER+/HER2– MBC. Further studies are required to evaluate long-term prognosis with more cases of this particular patient population.

Conflicts of Interest

The Authors report no conflicts of interest related to this study.

Authors’ Contribution

Drafting of the manuscript was done by HS and TS. Literature search and analysis were done by HS, TT, TK, TO, TK; KN. Data extraction was done by HS, YM, NO, MA, RY, KH, KS. Manuscript editing was done by HS.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1 (EBCTCG) EBCTCG: Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 365(9472): 1687-1717, 2005. PMID: 15894097. DOI: 10.1016/S0140-6736(05)66544-0
2 Klijn JG, Blamey RW, Boccardo F, Tominaga T, Duchateau L and Sylvester R: Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHR agonist alone in premenopausal advanced breast cancer: A meta-analysis of four randomized trials. J Clin Oncol 19(2): 343-353, 2001. PMID: 11208825. DOI: 10.1200/JCO.2001.19.2.343
3 Xu HB, Liu YJ and Li L: Aromatase inhibitor versus tamoxifen in postmenopausal woman with advanced breast cancer: A literature-based meta-analysis. Clin Breast Cancer 11(4): 246-251, 2011. PMID: 21737354.DOI: 10.1016/j.clbc.2011.06.003
4 Mauri D, Pavlidis N, Polyzos NP and Ioannidis JP: Survival with aromatase inhibitors and inactivators versus tamoxifen standard hormonal therapy in advanced breast cancer: Meta-analysis. J Natl Cancer Inst 98(18): 1285-1291, 2006. PMID: 16985247. DOI: 10.1093/jnci/djj357
5 Ellis MJ, Llombart-Cussac A, Feltd D, Dewar JA, Jasiowka M, Hewson N, Rukazenkov Y and Robertson JF: Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: Overall survival analysis from the phase ii first study. J Clin Oncol 33(32): 3781-3787, 2015. PMID: 26371134. DOI: 10.1200/JCO.2015.61.5831
6 Robertson JFR, Bondarenko IM, Trishkina E, Dvorkin M, Panasci L, Manikhas A, Shparyk Y, Cardona-Huerta S, Cheung KL, Philos-Salas MJ, Ruiz-Borrego M, Shao Z, Noguchi S, Rowbottom J, Stuart M, Grinsted LM, Fazal M and Ellis MJ: Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (falcon): An international, randomised, double-blind, phase 3 trial. Lancet 388(10063): 2997-3005, 2016. PMID: 27908454. DOI: 10.1016/S0140-6736(16)32389-3
Seki et al: Palbociclib-Fulvestrant Treatment of ER+HER2-Advanced/Metastatic Breast Cancer

7 Baselga J, Campone M, Piccart M, Burris HA, 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KJ, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lembold D and Hortobagyi GN: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6): 520-529, 2012. PMID: 22419876. DOI: 10.1056/NEJMoa1109653

8 Klijn JG, Beex LV, Mauriac L, van Zijl JA, Veyret C, Wildiers J, Jassem J, Piccart M, Burghouts B, Beccquart D, Sneynaev C, Mignolet F and Duchateau L: Combined treatment with buserelin and tamoxifen in premenopausal metastatic breast cancer: A randomized study. J Natl Cancer Inst 92(11): 903-911, 2000. PMID: 10841825. DOI: 10.1093/jnci/92.11.903

9 Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK and Toogood PL: Specific inhibition of cyclin-dependent kinase 4/6 by pd0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11): 1427-1438, 2004. PMID: 15542782.

10 Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Thomczak E, Nowell P, Deprimo SE, Sadis S, Eck S, Schuster SJ, Diehl JA and Wasiak MA: Mantle cell lymphoma cells express predominantly cyclin d1a isoform and are highly sensitive to selective inhibition of cdk4 kinase activity. Blood 108(5): 1744-1750, 2006. PMID: 16690963. DOI: 10.1182/blood-2006-04-016634

11 DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, Lewis D, Langer M, Goodman N, Domchek S, Gogineni K, Rosen M, Fox K and O’Dwyer P: Cdk 4/6 inhibitor palbociclib (pd0332991) in rb+ advanced breast cancer: Phase ii activity, safety, and predictive biomarker assessment. Clin Cancer Res 21(5): 995-1001, 2015. PMID: 25501126. DOI: 10.1158/1078-0432.CCR-14-2258

12 Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, Shparyk Y, Thummala AR, Voytko NL, Fowst C, Huang X, Kim ST, Dieras V, Patel R, Pinter T, Schmidt M, Shparyk Y, Langer M, Goodman N, Domchek S, Gogineni K, Rosen M, Fox K, O’Dwyer P, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D and Verweij J: New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1). Eur J Cancer 45(2): 228-247, 2009. DOI: 10.1016/j.ejca.2008.10.026

13 Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walsho JM, Moulder S, Gauthier E, Lu DR, Randolph S, Dieras V and Slamon DJ: Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20): 1925-1936, 2016. PMID: 27959613. DOI: 10.1056/NEJMoa1607303

14 Turner NC, Ro J, Andre F, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Huang Bartlett C, Zhang K, Giorgetti C, Randolph S, Koehler M and Cristofanilli M: Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(3): 209-219, 2015. PMID: 26030518. DOI: 10.1056/NEJMoa1505270

15 Loibl S, Turner NC, Ro J, Cristofanilli M, Iwata H, Im SA, Masuda N, Loi S, Andre F, Harbeck N, Verma S, Folkerd E, Puyana Theall K, Hoffman J, Zhang K, Bartlett CH and Dowsett M: Palbociclib combined with fulvestrant in premenopausal women with advanced breast cancer and prior progression on endocrine therapy: Paloma-3 results. Oncologist 22(9): 1028-1038, 2017. PMID: 28652278. DOI: 10.1634/theoncologist.2017-0072

16 Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, Iwata H, Harbeck N, Zhang K, Theall KP, Jiang Y, Bartlett CH, Koehler M and Slamon D: Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, her2-negative metastatic breast cancer that progressed on previous endocrine therapy (paloma-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17(4): 425-439, 2016. PMID: 26947331. DOI: 10.1016/S1470-224X(15)00613-0

17 Turner NC, Slamon DJ, Ro J, Bondarenko I, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, Iwata H, Harbeck N, Loibl S, Andre F, Puyana Theall K, Huang X, Gioretti C, Huang Bartlett C and Cristofanilli M: Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med 379(20): 1926-1936, 2018. PMID: 30435905. DOI: 10.1056/NEJMoa1810527

18 Masuda N, Inoue K, Nakamura R, Rai Y, Mukai H, Ohno S, Hara F, Mor Y, Hashigaki S, Muramatsu Y, Nagasawa T, Umeayama Y, Huang X and Iwata H: Palbociclib in combination with fulvestrant in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: Paloma-3 subgroup analysis of japanese patients. Int J Clin Oncol 24(3): 262-273, 2019. PMID: 30392115. DOI: 10.1007/s10147-018-1359-3

19 World Medical A: World medical association declaration of helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 79(4): 373-374, 2001. PMID:11357217.

20 Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D and Verweij J: New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1). Eur J Cancer 45(2): 228-247, 2009. DOI: 10.1016/j.ejca.2008.10.026

21 US Department of Health and Human Services UFeDa CfDEaR, Center for Biologics Evaluation and Research. Guidance for industry: Clinical trial endpoints for the approval of cancer drugs and biogics. FDA, Maryland {'http://www.fda.gov/downloads/Drugs/Guidance/Guidances/ucm071590.pdf'}.

22 Hortobagyi GN: Treatment of breast cancer. N Engl J Med 339(14): 974-984, 1998. PMID: 9753714. DOI: 10.1056/NEJM199810013391407

23 Rugo HS, Turner NC, Finn RS, Joy AA, Verma S, Harbeck N, Masuda N, Im SA, Huang X, Kim S, Sun W, Iyer S, Schnell P, Bartlett CH and Johnston S: Palbociclib plus endocrine therapy in older women with hr+/her2- advanced breast cancer: A pooled analysis of randomised paloma clinical studies. Eur J Cancer 101: 123-133, 2018. PMID: 30053671. DOI: 10.1016/j.ejca.2018.05.017

24 Turner NC, Finn RS, Martin M, Im SA, DeMichele A, Ettl J, Dieras V, Moulder S, Lipatov O, Colleoni M, Cristofanilli M, Lu DR, Mori A, Giorgetti C, Iyer S, Bartlett CH and Gelmon KA: Clinical considerations of the role of palbociclib in the management of advanced breast cancer patients with and without visceral metastases. Ann Oncol 29(3): 669-680, 2018. PMID: 29342248. DOI: 10.1093/annonc/mdx797
25 Verma S, Bartlett CH, Schnell P, DeMichele AM, Loi S, Ro J, Colleoni M, Iwata H, Harbeck N, Cristofanilli M, Zhang K, Thiele A, Turner NC and Rugo HS: Palbociclib in combination with fulvestrant in women with hormone receptor-positive/her2-negative advanced metastatic breast cancer: Detailed safety analysis from a multicenter, randomized, placebo-controlled, phase iii study (paloma-3). Oncologist 21(10): 1165-1175, 2016. PMID: 27368881. DOI: 10.1634/theoncologist.2016-0097

26 Munsell MF, Sprague BL, Berry DA, Chisholm G and Trentham-Dietz A: Body mass index and breast cancer risk according to postmenopausal estrogen-progesterin use and hormone receptor status. Epidemiol Rev 36: 114-136, 2014. PMID: 24375928. DOI: 10.1093/epirev/mxt010

27 Gevorgyan A, Bregni G, Galli G, Ganzinelli M, Martinetti A, Lo Vullo S, Mariani L, Festinese F, Sottotetti E, de Braud F and Di Cosimo S: Body mass index and clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer. Tumori 102(4): e11-14, 2016. PMID: 27174629. DOI: 10.5301/tj.5000515

28 Hu W, Sung T, Jessen BA, Thibault S, Finkelstein MB, Khan NK and Sacaan AI: Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies. Clin Cancer Res 22(8): 2000-2008, 2016. DOI: 10.1158/1078-0432.CCR-15-1421

29 Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang JJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD and Wilner KD: Pharmacokinetics/genotype associations for major cytochrome p450 enzymes in native and first- and third-generation japanese populations: Comparison with korean, chinese, and caucasian populations. Clin Pharmacol Ther 84(3): 347-361, 2008. PMID: 18231117. DOI: 10.1038/sj.clpt.6100482

Received July 22, 2019
Revised August 11, 2019
Accepted August 21, 2019