Correlations among noninvasive right ventricular myocardial work indices and the main parameters of systolic and diastolic functions

Jian Wu, Xinyi Huang, Kunhui Huang, Qiumei Gao, Yuan Tian, Biqin Lin, Yiruo Tang, Xu Chen, Maolong Su

1Department of Ultrasonography, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
2School of Medicine, Xiamen University, Xiamen, China
3Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, China
4Department of Ultrasonography, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China

Correspondence
Maolong Su and Xu Chen, Department of Ultrasonography, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China. Email: sumaolong@xmu.edu.cn and chen.xu@163.com

Abstract
Background: Right ventricular (RV) myocardial work (RVMW) is the latest method used to assess RV function. To date, correlations among RVMW indices and RV systolic and diastolic functions have not been studied.

Methods: A total of 106 healthy volunteers (median age, 34 years; 46% male) were prospectively enrolled. RVMW indices were measured using the RV pressure–strain loop using specific software. The correlations among RVMW indices and other RV functions were analyzed.

Results: During the multivariate analysis, the RV global work index (RVGWI) was significantly correlated with RV global longitudinal strain (RV GLS) (p < .0001), pulmonary systolic artery pressure (PASP) (p < .0001), and tricuspid annular (TA) plane systolic excursion (TAPSE) (p = .036). RV global constructive work (RVGCW) was correlated with RV GLS (p < .0001) and PASP (p < .0001). RV global wasted work (RVGWW) was correlated with RV GLS (p = .008) and TA isovolumetric acceleration (TA IVA) (p = .008). RV global work efficiency (RVGWE) was correlated with RV GLS (p < .0001) and tissue Doppler (TD) RV myocardial performance index (TD RMPI) (p = .043).

Conclusion: RVMW indices showed good correlations with RV myocardial systolic function.

KEYWORDS echocardiography, myocardial work, right ventricular function

1 INTRODUCTION

Recently, the function of the right ventricle has received increasing attention from researchers and clinicians. Compared with the left ventricle, the right ventricle is more affected by afterload. The most frequently used methods to analyze right ventricular (RV) function are tricuspid annular (TA) plane systolic excursion (TAPSE), RV fractional area change (RV FAC), and myocardial tissue Doppler (TD) velocities (S'). However, these parameters do not consider RV afterload and are unable to accurately evaluate RV function. RV longitudinal strain, as an advanced and superior method of evaluating RV function, remains an afterload-dependent parameter.

RV myocardial work (RVMW) is a novel indicator used to quantitatively analyze RV function. RV global longitudinal strain (RV GLS), pulmonary artery pressures, and tricuspid and pulmonic valvular events. Therefore, RVMW can evaluate RV function more precisely than conventional two-dimensional (2D) parameters. We aimed to assess the correlations among RVMW indices and other main parameters of RV systolic and diastolic functions.
METHODS

2.1 Study population

A group of 143 healthy volunteers were prospectively recruited from May 2021 to July 2021. The inclusion criteria were as follows: age older than 18 years; body mass index < 30 kg/m²; normal physical examination results; normal electrocardiogram results; normal 2D echocardiography results; and absence of any cardiovascular or respiratory diseases. The Organizational Ethics Committee approved the protocol, and all participants provided informed consent before undergoing the examinations.

TABLE 1

Characteristics of the study population

Parameters	Total (n = 106)	Men (n = 49)	Women (n = 57)	p value*
Age (years)	34 (28, 44)	33 (29, 42)	34 (27, 47)	.744
BMI (kg/m²)	22.0 (20.0, 23.5)	22.5 (21.7, 24.4)	20.6 (19.1, 22.7)	<.0001
BSA (m²)	1.7 ± 0.2	1.8 ± 0.1	1.6 ± 0.1	<.0001
SBP (mmHg)	125 (115, 131)	130 (118, 132)	119 (106, 129)	.001
DBP (mmHg)	74 ± 10	75 ± 9	73 ± 10	.187
Heart rate (bpm)	68 ± 10	66 ± 10	70 ± 9	.026
PASP (mmHg)	21 (19, 24)	21 (19, 24)	22 (20, 24)	.321
PAMP (mmHg)	16 (14, 18)	15 (14, 18)	17 (15, 18)	.027
PADP (mmHg)	13 (12, 15)	12 (11, 14)	14 (13, 15)	.001
RVEDV	94 (85, 104)	104 (95, 117)	89 (77, 96)	<.0001
RVESV	39 (35, 47)	48 (42, 53)	36 (32, 39)	<.0001

Abbreviations: BMI, body mass index; BSA, body surface area; DBP, diastolic blood pressure; PADP, pulmonary artery diastolic pressure; PAMP, pulmonary artery mean pressure; PASP, systolic pulmonary artery pressure; RVEDV, right ventricular end-diastolic volume; RVESV, right ventricular end-systolic volume; SBP, systolic blood pressure.

*p value refers to gender differences.

FIGURE 1 Measurements of right ventricular myocardial work. (A) Calculating the mean gradient between the right ventricle and atrium by tracing the tricuspid regurgitation velocity-time integral. (B) Visualizing the pulmonic and tricuspid valve events from the parasternal short-axis views. (C) Evaluating right ventricular global longitudinal strain in a right ventricular focused apical four-chamber view. (D) Acquiring right ventricular myocardial work by the pressure-strain loop.
2.2 | Echocardiographic acquisition

Transthoracic echocardiography was performed using a Vivid E95 scanner (GE Vingmed Ultrasound, Norway) according to the recommended protocols. The 2D echocardiography images were acquired using an M5Sc probe, and the four-dimensional (4D) echocardiography RV images were acquired using a 4Vc probe. All electrocardiogram-triggered echocardiography images were obtained over three to five consecutive cardiac cycles during breath holding. Datasets were digitally stored and analyzed offline using EchoPAC v204 (GE Vingmed Ultrasound).

2.3 | Echocardiographic measurements

The RV volume and RV ejection fraction were obtained using a software package (4D Auto RVQ). The TAPSE, RV FAC, and RV index of the myocardial performance according to pulsed-wave Doppler (PD) and TD imaging (PD RV myocardial performance index [RMPI] and TD RMPI, respectively) and peak systolic velocity of the tricuspid annulus according to pulsed-wave TD imaging and color TD imaging (TA pulsed-wave TD S’ and TA color TD S’, respectively) were measured according to the current guidelines. TA isovolumetric acceleration (TA IVA) was measured by color TD imaging. In the RV-focused

Parameters	Total, mean ± SD or median (IQR)	Men, mean ± SD or median (IQR)	Women, mean ± SD or median (IQR)	p value
RVMW				
RVGWI (mmHg%)	286 (233, 337)	255 (215, 332)	291 (263, 341)	.018
RVGCW (mmHg%)	343 (282, 402)	316 (268, 387)	357 (308, 407)	.024
RVGWW (mmHg%)	20 (11, 31)	20 (12, 31)	20 (11, 32)	.927
RVGWE (%)	93 (89, 96)	93 (90, 96)	93 (89, 96)	.816
RV systolic and diastolic functions				
PD RMPI	0.27 ± 0.07	0.27 ± 0.07	0.27 ± 0.07	.999
TD RMPI	0.42 ± 0.06	0.44 ± 0.07	0.41 ± 0.06	.032
RV systolic function				
TAPSE (mm)	20 (18, 22)	20 (18, 22)	19 (18, 22)	.456
RV FAC (%)	46 (43, 50)	44 (41, 47)	48 (45, 52)	<.0001
3D RVEF (%)	58 (55, 59)	55 (54, 56)	59 (58, 60)	<.0001
TA PTD S’ (cm/s)	13 (12, 14)	13 (12, 14)	13 (12, 15)	.369
TA CTD S’ (cm/s)	10 (9, 11)	10 (9, 11)	10 (9, 11)	.479
TA IVA (cm/s²)	3.1 (2.6, 4.1)	3.1 (2.4, 4.1)	3.2 (2.7, 4.1)	.347
RV FWLS (%)	–23.4 (–26.0, –21.1)	–23.0 (–26.2, –20.8)	–23.5 (–26.1, –21.4)	.406
RV GLS (%)	–20.0 ± 2.5	–19.8 ± 2.5	–20.2 ± 2.4	.382
RV diastolic function	Tricuspid E wave (cm/s)	55 (48, 63)	52 (48, 64)	56 (49, 63)
Tricuspid A wave (cm/s)	35 (30, 42)	36 (30, 43)	35 (30, 41)	.616
Tricuspid E/A ratio	1.5 (1.3, 1.8)	1.4 (1.3, 1.7)	1.6 (1.3, 1.9)	.075
Tricuspid deceleration time (ms)	167 ± 26	166 ± 26	167 ± 26	.947
Tricuspid IVRT (ms)	51 (44, 58)	51 (44, 58)	51 (46, 59)	.405
TA E’ (cm/s)	14 (12, 17)	14 (11, 16)	14 (13, 18)	.061
TA A’ (cm/s)	13 (11, 15)	13 (11, 15)	13 (11, 16)	.676
TA E’ /A’ ratio	1.1 (0.9, 1.4)	1.1 (0.8, 1.3)	1.2 (0.9, 1.6)	.340
E’ / E ratio	4.0 ± 1.0	4.1 ± 1.0	3.9 ± 1.0	.290

Abbreviations: 3D, three-dimensional; A’, tricuspid lateral annular late diastolic velocity; CTD, color tissue Doppler; E’, tricuspid lateral annular early diastolic velocity; FAC, fractional area changes; FWLS, free wall longitudinal strain; GLS, global longitudinal strain; IQR, interquartile range; IVA, isovolumetric acceleration; IVRT, isovolumetric relaxation time; PD, pulsed-wave Doppler; PTD, pulsed-wave tissue Doppler; RMPI, right ventricular myocardial performance index; RV, right ventricular; RFWE, RV ejection fraction; RVGCIW, RV global constructive work; RVGWE, RV global work efficiency; RVGWI, RV global work index; RVGWW, RV global wasted work; RVMW, RV myocardial work; S’, tricuspid lateral annular peak systolic velocity; SD, standard deviation; TA, tricuspid annulus; TAPSE, tricuspid annular plane systolic excursion; TD, tissue Doppler.

*p value differences between genders.
apical four-chamber view, RVGLS was evaluated by tracing the RV free wall and interventricular septum. The tricuspid flow pattern with E and A wave velocities were obtained with the sample volume positioned at the tricuspid leaflet tips. The tricuspid deceleration time was defined as the time from the top point to the end point of the E wave. Isovolumetric relaxation time (IVRT) was measured at the tricuspid lateral annulus using pulsed-wave TD imaging. TA velocities according to TD imaging included early and late diastolic annular velocities (E₀ and A₀, respectively).

Pulmonary artery systolic pressure (PASP) was computed as follows: \(\text{PASP} = 4 \times [\text{tricuspid regurgitation (TR) velocity}]^2 + \text{mean right atrial (RA) pressure}. \) The mean RA pressure was estimated based on the diameter and collapsibility of the inferior vena cava. The mean RV–RA gradient was estimated by tracing the TR velocity-time integral (Figure 1A). The pulmonary artery mean pressure equals the mean RV–RA gradient plus the mean RA pressure. According to the theoretical formula, pulmonary artery diastolic pressure (PADP) was assessed as follows: \(\text{PADP} = 1.5 \times [\text{pulmonary artery mean pressure} – (\text{PASP}/3)]. \)

RVMW indices were analyzed using a software package (AFI) designed to assess left ventricular (LV) myocardial work (LVMW). The prognostic validation of LVMW has been performed during several studies. The tricuspid and pulmonic valve event timings were derived from direct visualization of the parasternal short-axis views (Figure 1B). Then, measurements of RVGLS, PASP, and PADP were synchronized by tricuspid and pulmonic valve event timings to produce a noninvasive RV pressure–strain loop (Figure 1A–D).

The RVMW acquired by the RV pressure–strain loop included the following four parameters:

1. RV global work index (RVGWI): the area of the RV pressure–strain loop, which presents the total RVMW during tricuspid valve closure and tricuspid valve opening.

TABLE 3	Univariate and multivariate analysis for RVGWI			
	Univariate analysis	Multivariate analysis		
	Coefficient	p value	Standardized β-Coefficient	p value
PASP (mmHg)	0.749	<.0001	0.691	<.0001
PADP (mmHg)	0.449	<.0001		
RV systolic and diastolic functions				
PD RMPI	−0.182	.611	0.143	.036
TD RMPI	−0.220	.024		
RV systolic function				
TAPSE (mm)	0.294	.002	0.143	.036
RV FAC (%)	0.082	.406	0.143	.036
3D RVEF (%)	0.101	.302	0.143	.036
TA PTD S' (cm/s)	0.234	.016	0.143	.036
TA CTD S' (cm/s)	0.283	.003	0.143	.036
TA IVA (cm/s²)	0.179	.067	0.143	.036
RV FWLS (%)	−0.321	.001	0.143	.036
RV GLS (%)	−0.395	<.0001	−0.361	<.0001
RV diastolic function				
Tricuspid E wave (cm/s)	0.167	.087	0.143	.036
Tricuspid A wave (cm/s)	0.100	.305	0.143	.036
Tricuspid E/A ratio	0.079	.424	0.143	.036
Tricuspid deceleration time (ms)	0.039	.692	0.143	.036
Tricuspid IVRT (ms)	−0.037	.705	0.143	.036
TA E' (cm/s)	0.195	.045	0.143	.036
TA A' (cm/s)	0.306	.001	0.143	.036
TA E'/A' ratio	0.037	.710	0.143	.036
E'/E ratio	−0.070	.477	0.143	.036

Abbreviations: 3D, three-dimensional; A₀, tricuspid lateral annular early diastolic velocity; CTD, color tissue Doppler; E₀, tricuspid lateral annular early diastolic velocity; FAC, fractional area change; FWLS, free wall longitudinal strain; GLS, global longitudinal strain; IQR, interquartile range; IVA, isovolumetric acceleration; IVRT, isovolumetric relaxation time; LVMW, left ventricular myocardial work; PA, pulmonary artery; PADP, pulmonary arterial diastolic pressure; PASP, pulmonary artery systolic pressure; PD, pulsed-wave Doppler; PTD, pulsed-wave tissue Doppler; RMPI, right ventricular index of myocardial performance; RV, right ventricular; RVEF, RV ejection fraction; RVGLCW, RV global constructive work; RVGWE, RV global work efficiency; RVGWI, RV global work index; RVGWW, RV global wasted work; RVMW, RV myocardial work; S₀, tricuspid lateral annular peak systolic velocity; SD, standard deviation; TA, tricuspid annular; TAPSE, tricuspid annular plane systolic excursion; TD, tissue Doppler.
2. RV global constructive work (RVGCW): constructive work during shortening in systole and lengthening during isovolumic relaxation.
3. RV global wasted work (RVGWW): waste work during lengthening in systole and shortening during isovolumic relaxation.
4. RV global work efficiency (RVGWE): RVGCW / (RVGCW + RVGWW).

2.4 | Statistical analysis

The normality of the variables was tested using the Kolmogorov–Smirnov test. Normally distributed variables are expressed as the mean ± SD, and those that were not normally distributed are represented as the median (first quartile, third quartile). Differences between sex groups were analyzed using the two-tailed independent Student’s t-test and Mann–Whitney U-test, as appropriate.

Univariate and multivariate linear regression analyzes were performed to examine the independent correlations among the RVMW indices and other RV echocardiographic parameters. Multicollinearity was tested by calculating the variance inflation factors in the multiple linear regression models. The collinear variables included the variables with the highest correlation coefficients.

The intra-observer and inter-observer variabilities of the RVMW were estimated for 20 random subjects using the Bland–Altman analysis. One observer analyzed the same echocardiographic images at two different times to evaluate intra-observer variability. Two independent blinded observers analyzed the echocardiographic images to assess inter-observer variability.

All data were analyzed using SPSS (version 26.0; SPSS Inc., IBM Corp). When \(p < .05 \), the difference between variables was considered significant.

3 | RESULTS

3.1 | Clinical characteristics

During the study, seven subjects were excluded from enrollment because of poor 2D echocardiography images or RV 4D
echocardiography images. A total of 30 subjects were excluded because the TR Doppler envelope could not be obtained or the TR Doppler envelopes were of poor quality. Therefore, the feasibility of the RVMW assessment was 74.1% in the study population. The clinical characteristics of the enrolled patients are summarized in Table 1.

3.2 Parameters of RV function

Table 2 summarizes the RVMW and RV systolic and diastolic function parameters of the enrolled population. The RVGWI and RVGCW were lower for men (255 mmHg [215, 332] vs. 291 mmHg [263, 341]; \(p = .018 \) and 316 mmHg [268, 387] vs. 357 mmHg [308, 407]; \(p = .024 \), respectively), whereas the RVGWW and RVGWE showed no significant differences between sexes.

3.3 Correlations among RVGWI and other parameters of RV function

The RVGWI showed good correlation with PASP (\(r = 0.749; p < .0001 \)), moderate correlations with PADP (\(r = 0.449; p < .0001 \)), TD RMPI (\(r = -0.220; p = .024 \)), TAPSE (\(r = 0.294; p = .002 \)), TA pulsed-wave TD S' (\(r = 0.234; p = .016 \)), TA color TD S' (\(r = 0.283; p = .003 \)), RV FWLS (\(r = -0.321; p = .001 \)), RV GLS (\(r = -0.395; p < .0001 \)), and TA A' (\(r = 0.306; p = .001 \)), and weak correlation with...
TA E’ (Table 3). The multivariate analysis showed that the RVGWI was significantly correlated with PASP (standardized \(\beta \)-coefficient = 0.691; \(p < .0001 \)), TAPSE (standardized \(\beta \)-coefficient = 0.143; \(p = .036 \)), and RV GLS (standardized \(\beta \)-coefficient = −0.361; \(p < .0001 \)) (Table 3 and Figure 2A–C).

3.4 Correlations among RVGWC and other parameters of RV function

The RVGWC showed good correlations with PASP (\(r = 0.810; p < .0001 \)) and PDA (\(r = 0.541; p < .0001 \)) and moderate correlations with TAPSE (\(r = 0.275; p = .004 \)), TA pulsed-wave TD S’ (\(r = 0.230; p = .018 \)), TA color TD S’ (\(r = 0.248; p = .010 \)), TA IVA (\(r = 0.288; p = .003 \)), RV FWLS (\(r = −0.308; p = .001 \)), RV GLS (\(r = −0.330; p = .001 \)), and TA A’ (\(r = 0.349; p < .0001 \)) (Table 4). The multivariate analysis showed that the RVGWI was significantly correlated with PDA (standardized \(\beta \)-coefficient = 0.14; \(p = .028 \)), PD RMPI (\(r = 0.297; p = .002 \)), TA IVA (\(r = 0.257; p = .008 \)), and RV GLS (\(r = 0.247; p = .011 \)) (Table 5). The multivariate analysis showed that the RVGWI was significantly correlated with TA IVA (standardized \(\beta \)-coefficient = 0.279; \(p = .008 \)) and RV

TABLE 5	Univariate and multivariate analysis for RVGWW			
	Univariate analysis	Multivariate analysis		
	Coefficient	\(p \) value	Standardized \(\beta \)-Coefficient	\(p \) value
PASP (mmHg)	0.191	.050	0.716	.001
PDA (mmHg)	0.214	.028	0.279	.008
TA E’ (cm/s)	−0.016	.686	0.279	.008
TA A’ (cm/s)	−0.007	.943	0.306	.008
Tricuspid E/A ratio	0.051	.606	0.306	.008
Tricuspid IVRT (ms)	0.113	.249	0.306	.008
Tricuspid E/A ratio	0.161	.099	0.306	.008
Tricuspid deceleration time (ms)	0.165	.090	0.306	.008
Tricuspid E/A ratio	0.054	.585	0.306	.008
Abbreviations: 3D, three-dimensional; A’, tricuspid lateral annular early diastolic velocity; CTD, color tissue Doppler; E’, tricuspid lateral annular late diastolic velocity; FAC, fractional area change; FWLS, free wall longitudinal strain; GLS, global longitudinal strain; IQR, interquartile range; IVA, isovolumetric acceleration; IVRT, isovolumetric relaxation time; PDA, pulsed-wave Doppler; PTD, pulsed-wave tissue Doppler; RMPI, right ventricular index of myocardial performance; RV, right ventricular; RVEF, RV ejection fraction; RVGWC, RV global constructive work; RVGWE, RV global work efficiency; RVGWI, RV global work index; RVGWW, RV global wasted work; RVMW, RV myocardial work; S’, tricuspid lateral annular peak systolic velocity; SD, standard deviation; TA, tricuspid annular; TAPSE, tricuspid annular plane systolic excursion; TD, tissue Doppler.				
Table 6: Univariate and multivariate analysis for RVGWE

	Univariate analysis	Multivariate analysis		
	Coefficient	p value	Standardized β-Coefficient	p value
PASP (mmHg)	0.099	.314	0.232	.043
PADP (mmHg)	0.028	.775		
PD RMPI	−0.262	.007		
TD RMPI	−0.234	.016	−0.232	.043
TAPSE (mm)	0.050	.612		
RV FAC (%)	−0.132	.179		
3D RVEF (%)	−0.035	.725		
TA PTD S' (cm/s)	0.062	.526		
TA CTD S' (cm/s)	0.137	.162		
TA IVA (cm/s²)	−0.054	.581		
RV FWLS (%)	−0.127	.193		
RV GLS (%)	−0.394	<.0001	−0.471	<.0001

GLS (standardized β-coefficient = 0.306; p = .008; Table 5 and Figure 2F,G).

3.6 | Correlations among RVGWE and other parameters of RV function

The RVGCW showed moderate correlations with PD RMPI (r = −0.62; p = .007), TD RMPI (r = −0.234; p = .016), RV GLS (r = −0.394; p < .0001), and tricuspid IVRT (r = −0.200; p = .040; Table 6). The multivariate analysis showed that the RVGWI was significantly correlated with RV GLS (standardized β-coefficient = −0.471; p < .0001; Table 6 and Figure 2H).

3.7 | Inter-observer and Intra-observer variabilities

The intra-observer and inter-observer variabilities of the RVMW parameters are summarized in Table 7, Figures 3 and 4. Good intra-observer reproducibility and inter-observer reproducibility were indicated.

4 | DISCUSSION

The RVMW, derived from the pressure-strain loop, was first introduced by Butcher et al. as a method to assess RV function. The study showed that RVMW indices were good parameters for comparing the RV function of the healthy control group and patients with reduced LV ejection fraction. All RVMW indices were significantly correlated...
with the RV GLS. Moreover, RVGCW was moderately correlated with the invasive RV stroke volume. Hence, because of the growing interest in RVMW, we aimed to assess the correlations among RVMW indices and other parameters of RV systolic and diastolic functions.

In our cohort, the RVGWI, RVGCW, RV FAC, and three-dimensional RV ejection fraction were significantly lower in men than in women. This may be evidence that women have more dynamic RV systolic function than men. The univariate analysis showed that both the RVGWI and RVGCW significantly increased according to the PASP and PADP. However, the multivariate analysis revealed that the RVGWI and RVGCW were not significantly correlated with the PADP.

The univariate analysis showed that both the RVGWI and RVGCW significantly increased according to the PASP and PADP. However, the multivariate analysis revealed that the RVGWI and RVGCW were not significantly correlated with the PADP.

The analysis showed that the RVGWW and RVGWE were not correlated with the PASP. Therefore, we speculated that the PASP only affects the RVGWI and RVGCW, and that the RVGWW and RVGWE do not change according to the PASP in the healthy population.

PD RMPI and TD RMPI are powerful and independent prognostic indicators used to analyze RV global systolic and diastolic functions.19–21 During our study, the univariate analysis showed that the PD RMPI was significantly associated with the RVGWW and RVGWE, and that the TD RMPI was significantly associated with the RVGWI and RVGWE, thus implying that higher values of PD RMPI and TD RMPI could be translated to lower RVGWI and higher

TABLE 7	Intra- and inter-observer variabilities of RV myocardial work indices					
	Bias	95% CI	ICC	Bias	95% CI	ICC
RVGWI (mmHg%)	−6.700	−53.2; 39.9	0.940	−4.500	−50.6; 41.6	0.920
RVGCW (mmHg%)	0.900	−53.8; 55.3	0.960	41.600	−19.9; 103	0.920
RVGWW (mmHg%)	0.400	−8.3; 9.1	0.920	0.700	−12.2; 13.6	0.940
RVGWE (%)	−0.200	−2.9; 2.6	0.860	−0.450	−3.1; 2.2	0.960

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; RV, right ventricular; RVGCW, RV global constructive work; RVGWE, RV global work efficiency; RVGWI, RV global work index; RVGWW, RV global wasted work.

FIGURE 3 The Bland–Altman analysis for examining intra-observer variability of right ventricular global work index (RVGWI), right ventricular global constructive work (RVGCW), right ventricular global wasted work (RVGWW), and right ventricular global work efficiency (RVGWE)
RVGWW, thereby leading to a lower RVGWE. However, only TD RMPI was significantly correlated with RVGWE in the multivariate analysis.

Regarding RV systolic function, both univariate and multivariate analyses revealed that RVMW indices were significantly correlated with RV GLS. As is well known, RV longitudinal strain, derived by speckle tracking echocardiography, is less load-dependent and angle-dependent than conventional RV function indices. As a reproducible and sensitive index that is widely used in clinical work and research, RVMW integrates RV GLS; however, other influences may reflect RV systolic function more sensitively and precisely than RV GLS. In general, the RVGWI and RVGWE could reflect RV positive mechanics and performance, similar to other parameters of RV systolic function. Our study demonstrated that the RVGWI and RVGCW were significantly correlated with RV FWLS, TAPSE, TA pulsed-wave TD S', and TA color TD S' in the univariate analysis. Moreover, the TA IVA is not affected by changes in preload and/or afterload and is a reliable indicator of changes in RV systolic function in clinical trials. During our study, both RVGCW and RVGWW were significantly correlated with the TA IVA in the univariate analysis, possibly implying that a higher TA IVA represents a higher value of the RV contribution and waste work.

Among RV diastolic functions, the univariate analysis showed that the RVMW indices correlated with the TA E' and A', the RVGCW correlated with the TA A', and the RVGWE correlated with the tricuspid IVRT. However, the multivariate analysis showed that RV diastolic function parameters were not significantly associated with RVMW indices. Based on our data, RVMW indices showed weak correlations with RV diastolic function parameters. This result may be because the RVMW is derived from the RV GLS, which mainly reflects RV systolic function. Another possible explanation is that the inclusion of healthy subjects resulted in a limited range of RV diastolic function values.

Our data support RVMW indices as reliable parameters of myocardial systolic performance. Notably, the data showed excellent agreement and repeatability when assessing the RVMW indices. As a noninvasive and convenient technique, the RVMW provides a scientific basis and further information for assessing the RV function. Butcher et al. demonstrated that the RVGWI, RVGCW, and RVGWE of patients with heart failure decreased, and that the RVGWW increased compared to a healthy control group. Additionally, because the RV myocardial work takes into account the pulmonary pressure, it will be an excellent indicator for evaluating the RV systolic function of patients with pulmonary hypertension. Moreover, for patients with arrhythmia, congenital heart disease, and cardiomyopathy (hypertrophic cardiomyopathy, dilated cardiomyopathy, myocardial amyloidosis, and others), the RVMW changes in varying degrees. Therefore, the
RVMW can be used for risk stratification of the aforementioned diseases and for the evaluation of treatment effects.

4.1 | Study limitations

Acquiring and quantifying RVMW datasets using a single-provider platform may affect the applicability of these reference values to data obtained from other provider platforms. Additionally, the commercial software required to measure the RVMW is specifically designed to measure the LVMI. The RV afterload may have been inaccurate because it was estimated by calculating the pulmonary pressure rather than by performing direct measurements. Therefore, the calculation of the RVMW is not as precise as that of the LVMIW because of the complicated and irregular RV anatomy and shape. The noninvasive RV pressure–strain loop may need to be validated by the invasively derived RV pressure–strain loop in the future. Moreover, for ethical reasons, cardiac magnetic resonance and right heart catheterization were not performed to verify the validity of the RVMW. Additionally, because the TR Doppler envelope may not be acquired, and because imaging of the TR Doppler envelope is obscure in some healthy subjects, selection bias might have occurred. Furthermore, although all subjects were asymptomatic during regular examinations, we cannot rule out the possibility of subclinical cardiovascular or respiratory diseases, especially in the elderly.

5 | CONCLUSIONS

This is the first comprehensive study to use echocardiography to evaluate the relationships among RVMW indices and other RV systolic and diastolic function parameters in a cohort of the healthy individuals. The results of this study show that all RVMW indices have good correlations with RV GLS. The RVMW indices may be reliable parameters of the myocardial systolic performance.

FUNDING INFORMATION

This study was supported by the Xiamen’s Key Project of Medical and Health Sciences (No. 3502Z20209147) and the Science and Technology Planning Project of Xiamen (No. 3502Z20214ZD2183 and grant No. 3502Z20214ZD1166).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jian Wu https://orcid.org/0000-0002-9639-6155

REFERENCES

1. Dandel M, Hetzer R. Echocardiographic assessment of the right ventricle: impact of the distinctly load dependency of its size, geometry, and performance. Int J Cardiol. 2016;221:1132-1142.
2. Crystal GJ, Pagel PS. Right ventricular perfusion: physiology and clinical implications. Anesthesiology. 2018;128(1):202-218.
3. Aloia E, Cameli M, D’Ascenzi F, Sciaccaluga C, Mondillo S. TAPSE: an old but useful tool in different diseases. Int J Cardiol. 2016;225:177-183.
4. Rudski LG, Lai WW, Afifalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685-713. quiz 86-8.
5. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39 e14.
6. Walker LA, Buttrick PM. The right ventricle: biologic insights and response to disease: updated. Curr Cardiol Rev. 2013;9(1):73-81.
7. Tadic M, Pieske-Kraigher E, Cuspidi C, et al. Right ventricular strain in heart failure: clinical perspective. Arch Cardiovasc Dis. 2017;110(10):562-571.
8. Butcher SC, Fortuni F, Montero-Cabezás JM, et al. Right ventricular myocardial work: proof-of-concept for non-invasive assessment of right ventricular function. Eur Heart J Cardiovasc Imaging. 2021;22(2):142-152.
9. Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
10. Badano LP, Kollas TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591-600.
11. Lytrivi ID, Lai WW, Ko HH, Nielsen JC, Parness IA, Srivastava S. Color Doppler tissue imaging for evaluation of right ventricular systolic function in patients with congenital heart disease. J Am Soc Echocardiogr. 2005;18(10):1099-1104.
12. Zimbarra Cabrita I, Ruisanchez C, Grapsa J, et al. Validation of the isovolumetric relaxation time for the estimation of pulmonary systolic arterial blood pressure in chronic pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2013;14(1):51-55.
13. Vazquez de Prada JA, Ruano J, Martin-Duran R, et al. Noninvasive determination of pulmonary arterial systolic pressure by continuous wave Doppler. Int J Cardiol. 1987;16(2):177-184.
14. Aduen JF, Castello R, Lozano MM, et al. An alternative echocardiographic method to estimate mean pulmonary artery pressure: diagnostic and clinical implications. J Am Soc Echocardiogr. 2009;22(7):814-819.
15. Russell K, Eriksen M, Aaberge L, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33(6):724-733.
16. Edwards NFA, Scalia GM, Shiono K, et al. Global myocardial work is superior to global longitudinal strain to predict significant coronary artery disease in patients with Normal left ventricular function and wall motion. J Am Soc Echocardiogr. 2019;32(8):947-957.
17. Hubert A, Le Rolle V, Leclercq C, et al. Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Cardiovasc Imaging. 2018;19(12):1372-1379.
18. Petersen SE, Aung N, Sanghvi MM, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK biobank population cohort. J Cardiovasc Magn Reson. 2017;19(1):18.
19. Chockalingam A, Gnanavelu G, Alagesan R, Subramaniam T. Myocardial performance index in evaluation of acute right ventricular myocardial infarction. *Echocardiography*. 2004;21(6):487-494.

20. Eidem BW, O’Leary PW, Tei C, et al. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. *Am J Cardiol*. 2000;86(6):654-658.

21. Hayabuchi Y, Homma Y, Kagami S. A novel index equivalent to the myocardial performance index for right ventricular functional assessment in children and adolescent patients. *Sci Rep*. 2019;9(1):19975.

22. Muraru D, Onciul S, Peluso D, et al. Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. *Circ Cardiovasc Imaging*. 2016;9(2):e003866.

23. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. *Circ Cardiovasc Imaging*. 2013;6(5):711-721.

24. Vitarelli A, Cortes Morichetti M, Capotosto L, et al. Utility of strain echocardiography at rest and after stress testing in arrhythmogenic right ventricular dysplasia. *Am J Cardiol*. 2013;111(9):1344-1350.

25. Alghamdi MH, Mertens L, Lee W, Yoo SJ, Grosse-Wortmann L. Longitudinal right ventricular function is a better predictor of right ventricular contribution to exercise performance than global or outflow tract ejection fraction in tetralogy of Fallot: a combined echocardiography and magnetic resonance study. *Eur Heart J Cardiovasc Imaging*. 2013;14(3):235-239.

26. Lisi M, Cameli M, Righini FM, et al. RV longitudinal deformation correlates with myocardial fibrosis in patients with end-stage heart failure. *JACC Cardiovasc Imaging*. 2015;8(5):514-522.

27. Vogel M, Schmidt MR, Kristiansen SB, et al. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model. *Circulation*. 2002;105(14):1693-1699.

28. Redington AN, Gray HH, Hodson ME, Rigby ML, Olderershaw PJ. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. *Br Heart J*. 1988;59(1):23-30.

29. Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. *Heart*. 2008;94(11):1510-1515.

How to cite this article: Wu J, Huang X, Huang K, et al. Correlations among noninvasive right ventricular myocardial work indices and the main parameters of systolic and diastolic functions. *J Clin Ultrasound*. 2022;50(7):873-884. doi:10.1002/jcu.23284