Anti-gout Potential of Malaysian Medicinal Plants

Fazleen I. Abu Bakar¹,², Mohd F. Abu Bakar¹,²*, Asmah Rahmat¹*, Norazlin Abdullah¹, Siti F. Sabran¹,² and Susi Endrini³

¹ Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Muar, Malaysia, ² Centre of Research for Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia, ³ Faculty of Medicine, YARSI University, Jakarta, Indonesia

Gout is a type of arthritis that causes painful inflammation in one or more joints. In gout, elevation of uric acid in the blood triggers the formation of crystals, causing joint pain. Malaysia is a mega-biodiversity country that is rich in medicinal plants species. Therefore, its flora might offer promising therapies for gout. This article aims to systematically review the anti-gout potential of Malaysian medicinal plants. Articles on gout published from 2000 to 2017 were identified using PubMed, Scopus, ScienceDirect, and Google Scholar with the following keyword search terms: “gout,” “medicinal plants,” “Malaysia,” “epidemiology,” “in vitro,” and “in vivo.” In this study, 85 plants were identified as possessing anti-gout activity. These plants had higher percentages of xanthine oxidase inhibitory activity (>85%); specifically, the Momordica charantia, Chrysanthemum indicum, Cinnamomum cassia, Kaempferia galanga, Artemisia vulgaris, and Morinda elliptica had the highest values, due to their diverse natural bioactive compounds, which include flavonoids, phenolics, tannin, coumarins, luteolin, and apigenin. This review summarizes the anti-gout potential of Malaysian medicinal plants but the mechanisms, active compounds, pharmacokinetics, bioavailability, and safety of the plants still remain to be elucidated.

Keywords: xanthine oxidase inhibition, anti-gout, phytochemical, Malaysian medicinal plants, in vitro, in vivo

BACKGROUND

Gout incidence has increased over the past 50 years, especially in developing countries (Kuo et al., 2015). Gout is a type of inflammatory arthritis triggered by interactions between monosodium urate (MSU) crystals and tissue (Dalbeth et al., 2014) during purine catabolism by the enzyme of xanthine oxidase (Nile et al., 2013). Xanthine oxidase catalyzes the oxidative hydroxylation of hypoxanthine to xanthine to uric acid, leading to painful inflammation (Nile and Khobragade, 2011). Uricase is an enzyme that further catalyzes the conversion of uric acid to the highly soluble allantoin that is excreted in the urine (Figure 1). Unfortunately, uricase is not a functional human enzyme and, as a result, humans can develop hyperuricemia (Gliozzi et al., 2016). Gout has also been reported to cause tophi, joint deformities, and kidney stones (Teh et al., 2014).

Hyperuricemia, a major etiological factor of gout, develops either due to overproduction caused by a metabolic disorder or due to under excretion of blood uric acid due to abnormal renal urate transport activity (Ichida et al., 2012). Kidney is the main regulator of serum uric acid levels where renal urate excretion is determined by the balance of the reabsorption and secretion of urate. Renal urate reabsorption is mainly mediated by two urate transporters—urate transporter
Hyperuricemia occurs when serum uric acid levels are >0.42 mmol/L (Stamp et al., 2007). Therefore, reducing uric acid is the main approach for the treatment of gout, with target levels of serum uric acid of less than 0.36 mmol/L (Falasca, 2006; Pillinger et al., 2007).

Several risk factors for the development of gout have been established, including hyperuricemia, age, genetic factors, dietary factors, alcohol consumption, metabolic syndrome, hypertension, obesity, diuretic use, cholesterol level, and chronic renal disease (Roddy and Doherty, 2010). Men are believed to have four- to nine-fold increased the risk of developing gout compared to women; however, once women reach menopause, they tend to develop gout, as the uricosuric action of estrogen is lost (Tausche et al., 2009). Genetics and race may also be important factors that contribute to the incidence of gout (Mohd et al., 2011).

Several drugs are approved for the treatment of gout, including colchicine, steroids, non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, indomethacin, and aspirin), cyclooxygenase 2 (COX-2) inhibitors (etoricoxib), and allopurinol. Although these agents are effective, they also cause side effects, such as skin allergies, fever, rash, renal dysfunction, aseptic meningitis, and hepatic dysfunction (Nguyen et al., 2004; Strazzullo and Puig, 2007). For example, allopurinol, which is the most commonly used xanthine oxidase inhibitor for gout (Pacher et al., 2006), causes nephrolithiasis, hypersensitivity reaction, Stevens-Johnson syndrome, renal toxicity, allergic reactions, and fatal liver necrosis, and increases the toxicity of 6-mercaptopurin (Kong et al., 2004; Wang et al., 2004).

Recently, treating disease using medicinal plants is gaining new interest (Unno et al., 2004) and research on medicinal plants has increased worldwide (Tapsell et al., 2006; Triggiani et al., 2006) due to fewer side effects and lower costs (Srivastava et al., 2012). Malaysia is a country that has more than 8,000 species of flowering plants and ~7,411 plant species have been identified in Sabah, Malaysia Borneo; in addition, 1,300 medicinal plant species have been documented in Peninsular, Malaysia (Kulip, 2003; Abdl Aziz et al., 2011). The aim of the present review is to provide comprehensive information on the potential of anti-gout Malaysian medicinal plants and review the scientific data, including the experimental methodologies, active compounds, and mechanisms of action against gout.

METHODS

PubMed, Scopus, ScienceDirect and Google Scholar databases were searched for publications from 2000 to 2017 with in vitro and in vivo data on Malaysian medicinal plants for gout. The search terms included the following: “gout,” “medicinal plants,” “in vivo,” “in vitro,” “epidemiology,” “Malaysia,” and “mechanisms.” Publications with available abstracts were also reviewed and ~99 publications, including journal articles and proceedings, were reviewed. Data from these studies were then summarized (Table 1: in vitro data; Table 2: in vivo data).

DISCUSSION

Medicinal plants contain many bioactive compounds and antioxidants that can be used as complementary or alternative medicines to treat gout. In fact, ~65–80% of people in developing countries use medicinal plants as remedies (World Health Organization, 2011). Plants are also important sources of medicines in the United States, where at least one plant-based ingredient is used in 25% of pharmaceutical prescriptions (Kumar and Azmi, 2014).

The xanthine oxidase inhibition assay is considered a gold standard to study the anti-gout potential of medicinal plants. Some plants and their phytochemicals are worthy of exploration as they can act as xanthine oxidase inhibitors. These compounds are also safe if an appropriate amount is taken and have few side effects (Rates, 2001; Abd Aziz et al., 2011). Previous studies have reported that five vegetables contain possible agents that can cause acute or chronic toxicities when consumed in large quantities or over a long period of time (Orech et al., 2005). Thus, it is very important for researchers to evaluate the toxicity of plants in in vitro and in vivo studies and clinical trials.

In this study, ~46 families of plants were identified and studied, both in vitro (n = 30) and in vivo (n = 24), for anti-gout activity (Tables 1, 2). Plants from the Asteraceae,
Scientific name	Family	Local name	Part/Solvent used	IC₅₀ (µg/ml)	Xanthine oxidase inhibition	Active compounds	Reference(s)
Acorus calamus	Araceae	Pokok jerangau	Rhizome/Methanol	89.2	55.10% at 100 µg/ml	NA	Nguyen et al., 2004
Adenanthera payonina	Leguminosae	Saga	Leaves/Methanol	NA	47.15% at 100 µg/ml	Cardiac glycosides	Apaya and Chichioco-Hern, 2011
Alpinia galanga	Zingiberaceae	Longkong	Rhizome/Ethanol	NA	57.99% at 100 µg/ml	NA	Yumita et al., 2013
Annona muricata	Annonaceae	Durian belanda	Leaves/Ethanol	>200	14.18% at 100 µg/ml	NA	Sunarni et al., 2015
Annona reticulata	Annonaceae	Lonang, Nona kapri	Leaves/Ethanol	171.73	47.38% at 100 µg/ml	NA	Sunarni et al., 2015
Annona squamosa	Annonaceae	Bueh nona	Leaves/Ethanol	>200	63.73% at 100 µg/ml	NA	Sunarni et al., 2015
Apium graveolens	Apiaceae	Saderi	Leaves/Ethanol	NA	73.89% at 100 µg/ml	NA	El-Rahman and Abd-Elhak, 2015
Artemisia vulgaris	Asteraceae	Baru cina	Leaves/Methanol	14.7	89.30% at 100 µg/ml	Flavonoids	Nguyen et al., 2004
Averrhoa carambola	Oxalidaceae	Belimbing manis	Leaves/Ethanol	NA	23.61% at 100 µg/ml	NA	Azmi et al., 2012
Barleria prionitis	Acanthaceae	Bunga landak	Folium/Ethanol	NA	1.73% at 100 µg/ml	NA	Yumita et al., 2013
Barringtonia racemosa	Lecythidaceae	Putat	Leaves/Methanol	NA	58.82% at 1,000 µg/ml	NA	Osman et al., 2016
Blumea balsamifera	Asteraceae	Pokok Sembung, capa, telinga kerbau	Leaves/Methanol	0.111	NA	Flavonoids	Nessa et al., 2010
Brassica oleracea	Brassicaceae	Kubis merah	Leaves/Water	230,150.00	80.90% at 100 µg/ml	NA	Nguyen et al., 2004
Butea monosperma	Fabaceae	Palasa	Roots/Methanol	5.0	75.00% at 100 µg/ml	Phenolic acids, anthocyanins	Al-Azzawie and Abd, 2015
Caesalpinia sappan	Caesalpinaceae	Sepang	Wood/Methanol	14.2	78.50% at 100 µg/ml	NA	Nia and Park, 2014
Calophyllum inophyllum	Calophyllaceae	Penaga laut	Leaves/Methanol	NA	25.63% at 100 µg/ml	Phenolic, tannins, flavonoids	Nguyen et al., 2004
Cantuta asiatica	Umbelliferae	Pegaga	Whole plant/Methanol	NA	27.20% at 100 µg/ml	NA	Nessa et al., 2010
Carica papaya	Caricaceae	Betik	Leaves/Ethanol	NA	41.00% at 100 µg/ml	NA	Kong et al., 2000
Cassia fistula	Fabaceae	kayu raja	Leaves/Methanol	NA	61.90% at 100 µg/ml	Alkaloid, tannins	Apaya and Chichioco-Hern, 2011
Chrysanthemum indicum	Asteraceae	Bunga kekwa	Flower/Methanol	22	95.00% at 100 µg/ml	Luteolin and apigenin	Kong et al., 2000

(Continued)
Scientific name	Family	Local name	Part/Solvent used	IC50 (µg/ml)	Xanthine oxidase inhibition	Active compounds	Reference(s)
Chrysanthemum sinense	Asteraceae	Teh bunga	Flower/Methanol	5.1	82.90% at 100 µg/ml	Caffeic acid, luteolin, eriodictyol	Nguyen et al., 2004
Cinnamomum cassia	Lauraceae	Kayu manis cina	Twig/Methanol	18	93.00% at 100 µg/ml	Eugenol	Kong et al., 2000; Nguyen et al., 2004
			Bark/Methanol	58	89.00% at 100 µg/ml		
				82.4	55.80% at 100 µg/ml		
Cinnamomum cinnamon	Lauraceae	Kayu manis	Leaves/Methanol	NA	44.34% at 100 µg/ml		Asultanee et al., 2014
Citrullus colocynthis	Cucurbitaceae	Tembikai	Seeds/water	NA	14.40% at 200 µg/ml		Bustanji et al., 2011
Citrus sinensis	Rutaceae	Oren	Fruit shell/Methanol	NA	51.00% at 100 µg/ml		Kong et al., 2000
Citrus reticulatus	Rutaceae	Belai gajah	Aerial part/Ethanol	10	NA		Tu et al., 2014
Cucurbita pepo	Cucurbitaceae	Lobu	Seeds/methanol	NA	27.33% at 100 µg/ml		Asultanee et al., 2014
Curcuma longa	Zingiberaceae	Kunyit	Whole plant/methanol	NA	28.31% at 100 µg/ml		Asultanee et al., 2014
Cymbopogon citratus	Poaceae	Serai makan	Stalks/Essential oil	NA	81.34% at ratio of volume concentration of essential oil per volume of solvent, 1:2		Mirghani et al., 2012
Cymbopogon nardus	Poaceae	Serai wang	Petiolum/Ethanol	NA	18.12% at 100 µg/ml		Yumita et al., 2013
			Rhizome/Methanol	52.9	79.40% at 100 µg/ml		Nguyen et al., 2004
Dimocarpus longan	Sapindaceae	Longan	Flower/Ethyl acetate	115.8	78.60% at 100 µg/ml	Proanthocyanidin A2, Azethonygeranin A	Sheu et al., 2016
			Peti-corpus/Ethyl acetate	118.9	79.20% at 50 µg/ml		
			Twigs/Ethyl acetate	125.3	79.20% at 50 µg/ml		
			Seeds/Ethyl acetate	262.5	78.90% at 50 µg/ml		
			Leaves/Ethyl acetate	331.1	42.10% at 100 µg/ml		
			Leaves/Ethanol	NA	46.88% at 100 µg/ml		Azmi et al., 2012
			Ripe fruit peel/Ethanol	13.41	13.41% at 100 µg/ml		
Erythrina indica	Fabaceae	Dedap batik	Bark/Methanol	52.75	NA	Phenolic	Sowndhararajan et al., 2012
Erythrina stricta	Fabaceae	Bunga dedap	Leaves/Chloroform fraction	21.20	NA	Phenolic and flavonoid	Uramnatheswari et al., 2009
Galynhiza uralensis	Fabaceae	Akar manis	Root/Methanol	44.90	64.40% at 100 µg/ml		
Hedychium diffusa	Rubiaceae	Rumpit lidaul	Aerial part/Methanol	54.9	64.40% at 100 µg/ml		Nguyen et al., 2004
Hibiscus sabdarifera	Malvacae	Assam susur	Calyx/Water	78.9	64.40% at 100 µg/ml		Nguyen et al., 2004
Justicia gendarussa	Acanthaceae	Daun rusa	Fokulum/Ethanol	82.9	64.40% at 100 µg/ml		Bustanji et al., 2011
Kaempfera galanga	Zingiberaceae	Oekur	Rhizome/Ethanol	53.4	64.40% at 100 µg/ml		Wuthyungsinh et al., 2016b
Kalanchoe pinnata	Cassulaceae	Setawar	Aerial part/Methanol	40.8	64.40% at 100 µg/ml		Yumita et al., 2013
Lantana camara	Verbenaceae	Bunga tahi ayam	Fokulum/Ethanol	40.8	64.40% at 100 µg/ml		Yumita et al., 2013
Manilkara zapota	Sapotaceae	Duku	Leaves/Ethanol	70.81	64.40% at 100 µg/ml		Nguyen et al., 2004

(Continued)
Scientific name	Family	Local name	Part/Solvent used	IC₅₀ (µg/ml)	Xanthine oxidase inhibition	Active compounds	Reference(s)	
Melaleuca leucadendra	Myrtaceae	Gelam, kaya putih	Peels/Ethanol	41.03% at 100 µg/ml	76.7	41.03% at 100 µg/ml	NA	Nguyen et al., 2004
			Seeds/Ethanol	11.81% at 100 µg/ml				
Mimosa pudica	Leguminosae	Semalu	Leaves/Methanol	62.36% at 100 µg/ml	NA		Flavonoids, phenolic	Nguyen et al., 2004; Apaya and Chichioco-Hern, 2011
			Aerial part/Methanol	65.50% at 100 µg/ml	52.7			
Momordica charantia	Cucurbitaceae	Pania	Pulp/Methanol	96.50% at 100 µg/ml	NA		Flavonoid, tannin, coumarins, glycoside	Kong et al., 2000; Alsultanee et al., 2014
			Seed/Methanol	45.00% at 100 µg/ml	76.7			
Morinda citrifolia	Rubiaceae	Mengkudu jantang/mengkudu besar/moni	Stem and fruit/Methanol	64.00% at 0.1 mg/ml	NA			Palu et al., 2009
			Leaves/Methanol	41.00% at 100 µg/ml	41.03% at 100 µg/ml			
Morinda elliptica	Rubiaceae	Mengkudu hutan/mengkudu tani ayam	Leaves/Methanol	82.57% at 100 µg/ml	NA			Jamal et al., 2014
			Aerial part/Methanol	28.63% at 100 µg/ml	41.03% at 100 µg/ml			
Olea europaea	Oleaceae	Zaitun	Leaves/Water	80.00% at 250 mg/ml	114,020.00		Oleuropein, apigenin, luteolin, caffeic acid	Al-Azzawie and Abd, 2015; Flemmig et al., 2011
			Leaves/Ethanol	60.00% at 50 µg/ml	42	60.00% at 50 µg/ml		
			Aerial part/Methanol	65.59% at 100 µg/ml	92.4	65.59% at 100 µg/ml		
Orthosiphon stamineus	Lamiaceae	Misai kucing	Leaves/Ethanol	82.57% at 100 µg/ml	NA			Nguyen et al., 2004; Hendrani et al., 2016
			Aerial part/Methanol	28.63% at 100 µg/ml	NA			
Papaver somniferum	Papaveraceae	Mahiota dewa	Leaves/Methanol	34.83% at 100 µg/ml	NA			Al-Sultanee et al., 2014; E-Rahman and Abd-Elhak, 2015
			Fruit/Water > 300	66.00% at 300 µg/ml	300	66.00% at 300 µg/ml		
Piper betle	Piperaceae	Sireh	Leaves/Ethanol	4-allyl-1,3-hydroxychavicol	16.7	4-allyl-1,3-hydroxychavicol	Murata et al., 2009	
			Root/Methanol	71.00% at 100 µg/ml	NA			Fadzureena et al., 2013
Portulaca oleracea	Portulacaceae	Gelang pasir	Leaves/Methanol	39.00% at 100 µg/ml	NA			Apaya and Chichioco-Hern, 2011
			Aerial part/Ethanol	39.00% at 100 µg/ml	16.7	39.00% at 100 µg/ml		
Senna alata	Fabaceae	Gedinggang	Leaves/Ethanol	71.00% at 100 µg/ml	NA			Fadzureena et al., 2013
			Pulp/Ethanol	21.40% at 100 µg/ml	NA			

(Continued)
Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae families have been studied extensively. *Momordica charantia*, from the Cucurbitaceae, had the highest in percentage of xanthine oxidase inhibitory activity of 96.5% at 100 µg/mL using 70% methanol extract (Alsultanee et al., 2014); the total phenolic content of this plant was 80.83 ± 0.30 mg gallic acid equivalent/100 g. Further phenolic compound analysis revealed the presence of phenolic compounds, including tannin, coumarin, flavonoid, and glycoside; among these, coumarin had the strongest inhibitory activity (97.29%) against xanthine oxidase (Alsultanee et al., 2014). Other studies have suggested that this activity is due to the presence of bioactive phenolic compounds, such as polyphenols, tocopherols, and alkaloids, in the pulp of the plant (Tan et al., 2008). However, other plants in this family, such as *Cucurbita pepo* and *Citrullus colocynthis*, have lower xanthine oxidase inhibition values of 27.33% at 100 µg/mL and 14.40% at 200 µg/mL, respectively (Bustanji et al., 2011; Alsultanee et al., 2014).

In the Zingiberaceae family, *Kaempferia galanga* had the highest xanthine oxidase inhibitory activity at 100 µg/mL (90.6%), followed by *Zingiber officinale* (81.56%), *Alpinia galanga* (57.99%), and *Curcuma longa* (28.31%) (Nguyen et al., 2004; Yumita et al., 2013; Alsultanee et al., 2014). Yumita et al. (2013) also studied *K. galanga* but the results were in contrast to other studies (28.86%). These contrary results could be due to the different localities (Vietnam and Indonesia), although both studies employed similar drying methods. Moderate total phenolic content was found in *Z. officinale*, with a value of 62.18 ± 0.65 mg gallic acid equivalent/100 g (Alsultanee et al., 2014).

Plants from the Asteraceae family include *Artemisia vulgaris*, *Blumea balsamifera*, *Chrysanthemum indicum*, and *Chrysanthemum sinense*, of which *C. indicum* exhibited 95% xanthine oxidase inhibitory activity at 100 µg/mL. The isolated flavonoid compounds from the flower of *C. indicum*, namely luteolin and apigenin, may act as xanthine oxidase inhibitors (Kong et al., 2000). Moreover, *C. sinense* also had higher xanthine oxidase inhibitory activity (82.90%) at 100 µg/mL with an IC₅₀ value of 5.1 µg/mL (Nguyen et al., 2004). Further isolation of the active compounds from the flower of *C. sinense* led to the identification of caffeic acid, luteolin, eriodictyol, and 1,5-di-O-cafeoylquinic acid, which, among them, luteolin displayed more potent inhibitory activity compared to the positive control allopurinol, with IC₅₀ values of 1.3 and 2.5 µM, respectively (Nguyen et al., 2004). *A. vulgaris* also exhibited higher xanthine oxidase inhibitory activity of 89.30% at 100 µg/mL (Nguyen et al., 2004).

Method of extraction is considered an important factor that affects xanthine oxidase inhibitory activity. The type of solvents used also contributes to differences in compounds extracted from the plants. El-Rahman and Abd–Elhak (2015) and Alsultanee et al. (2014) reported similar results on the ethanol and methanol extracts of *Petroselinum crispum*, with inhibition values of 82.57 and 28.63%, respectively. In contrast, Al-Azzawie and Abd (2015) reported that both the methanol and aqueous extracts of *Z. officinale* had similar xanthine oxidase inhibition percentages, with values of 81.56% and 87.97%, respectively. In addition, Azmi et al. (2012)
TABLE 2 | The medicinal plants which are considered to possess anti-gout activity based on in vivo studies.

Scientific name	Family	Local name	Part/solvent used	Dose of the extract	Experimental animal model	Main outcomes	References	
Allium ampeloprasum	Liliaceae	Bawang perai	Leaves/Water	5 g/kg body weight	Male albino hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly	El-Rahman and Abd-Elhak, 2015	
Allium cepa	Amaryllidaceae	Bawang merah	Edible portion/Water	5 g/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly after 14 days of treatment	Haidari et al., 2008	
Annona muricata	Annonaceae	Durian balanda	Leaves/Ethanol	75 mg/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate	All doses reduced serum uric acid levels of hyperuricemic rats by 63.98, 86.29, and 61.50%, respectively	Sunarni et al., 2015	
Annona reticulata	Annonaceae	Lonang, Nona kapit	Leaves/Methanol	75 mg/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate	Serum uric acid level in oxonate-induce rats reduced significantly	Sunarni et al., 2015	
Annona squamosa	Annonaceae	Buah nona	Leaves/Ethanol	75 mg/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate	Serum uric acid level in oxonate-induce rats reduced significantly	Sunarni et al., 2015	
Apium graveolens	Apioaceae	Sadel	Leaves/Ethanol	5 g/kg body weight	Male albino hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly	El-Rahman and Abd-Elhak, 2015	
Cinnamomum zeylanicum	Lauraceae	Kayu manis	Bark/Petroleum ether	500 mg/kg rat body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Produced the highest reduction (56%) in uric acid level in urine	Mohamed and A-Okbi, 2008	
Coocinia drandi	Cucurbitaceae	Timun padang, pepasan	Leaves/Methanol	200 mg/kg body weight oral per day	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Produced the reduction (47%) in uric acid level in urine	Mohamed and A-Okbi, 2008	
Dimocarpus longan	Sapindaceae	Longan	Flower, pucarp, seed, leaf, and twig/methanol	50, 75, and 100 mg/kg of body weight	Male ICR hyperuricemia mice induced by potassium oxonate	Plasma urate levels of hyperuricemic mice reduced significantly in dose-dependent manner	Shau et al., 2016	
Emblica officinalis	Euphobiaceae	Pokok melaka	Triphala powder, an Indian ayurvedic herbal formulation (mixture of dried and powdered fruits of the three plants in equal proportions)	1 g/kg body weight oral per day	Mono sodium urate crystal-induced inflammation in Swiss albino mice	Percentage inhibition of rat paw edema by alcohol and aqueous extracts was 75.44 and 82.14% at dose of 600 mg/kg at 3 h	Sabina and Rasool, 2008	
Epiphyllum oxypetalum	Cactaceae	Bakawali	Leaves/Ethanol and water	200, 400, 600 mg/kg body weight	Carrageenan induced adult rats of Albino Wistar strain paw edema	Carrageenan induced adult rats of Albino Wistar strain paw edema	Dandekar et al., 2015	
Erythrinastricta	Fabaceae	Bunga dedap	Leaves/Petroleum ether, chloroform, and ethyl acetate fractions	200 mg/kg body weight orally	Hyperuricemia Swiss albino mice induced by potassium oxonate	Plasma urate levels and elicit significant inhibitory actions on xanthine oxidase/xanthine dehydrogenase enzyme activities in the mouse liver	Raju et al., 2012	
Hibiscus sabdariffa	Malvaceae	Asam susur	Calyx/Water	1, 2, and 5% of H. sabdariffa extract	Male Sprague-Dawley hyperuricemia rats induced by oxonic acid	Extract significantly lowered uric acid by increasing uricase activity to promote uric acid excretion	Kuo et al., 2012	
Malayta indica	Malvaceae	Asam susur	Calyx/Ethanol extract, ethyl acetate fraction, and water fraction	40 and 80 mg/kg body weight	Male Wistar hyperuricemia rats induced by potassium oxonate	The extract showed a significant reduction in serum uric acid level and had uricosuric effect that increased the excretion of uric acid in urine significantly	Wahyuningsih et al., 2016a	
Scientific name	Family	Local name	Part/solvent used	Dose of the extract	Experimental animal model	Main outcomes	References	
-----------------	--------	------------	-------------------	---------------------	---------------------------	--------------	------------	
Jatropha curcas	Euphorbiaceae	Pokok jarak	Roots/Methanol	100 and 200 mg/kg orally	Carrageenan induced Swiss albino mice and the Water rat paw edema	There were dose-dependant significant reduction in carrageenan-induced rat paw edema at 100 and 200 mg/kg of extract	Mujumdar and Misar, 2004	
Leonurus sibiricus	Lamiales	Pokok padang	Leaves/Water	50, 100, and 200 mg/kg orally	Sprague-Dawley hyperuricemia rats induced by oteracil potassium	Extract reduced serum uric acid and creatinine levels of hyperuricemia rats and promote the excretion of uric acid of kidney	Yan et al., 2014	
Mangifera indica	Anacardiaceae	Mangga	Leaves/Ethanol	100 and 200 mg/kg body weight by oral per day for crude extract	Monosodium urate (MSU) crystal-induced gouty arthritis	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Extract significantly decreased ankle swelling in monosodium urate (MSU) crystal-induced gouty arthritis rats	Jiang et al., 2012
Orthosiphon stamineus	Lamiaceae	Misai kuding	Leaves/Methanol	0.5, 1, and 2 g/kg body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Extract reduced the serum urate level in hyperuricemic rats at hour 6 and showed a significant increase in urine volume and electrolytes excretion	Anafat et al., 2008	
Peperomia pellucida	Piperaceae	Ketumpangan air/sireh cina	Whole plant with flower/petroleum ether	1,000 mg/kg body weight oral per day	Carrageenan induced male Sprague-Dawley rats hind paw edema	Extract showed significant in magnitude of swelling 4 h following carrageenan administration	Mutie et al., 2010	
Petroselinum crispum	Apiaceae	Daun sup	Leaves/Water	5 g/kg body weight	Male albino hyperuricemia rats induced by potassium oxonate	Serum uric acid levels of hyperuricemic rats reduced significantly	El-Rahman and Abd-Elhak, 2015	
Phyllanthus emblica	Phyllanthaceae	Pokok Melaka	Fruit/Alcoholic and water	200 and 400 mg/kg of body weight	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Both extracts showed reduction in platelets counts, serum creatinine, uric acid, blood urea nitrogen and xanthine oxidase enzyme level	Saravaya et al., 2015	
Phyllanthus niruri	Phyllanthaceae	Dukung anak	Leaves/Methanol	50 mg/kg body weight oral per day	Male Sprague-Dawley hyperuricemia rats induced by potassium oxonate	Extract increased urinary uric acid excretion and exhibited a significant 76.84% inhibition of xanthine oxidase activity	Murugaiyah and Chan, 2009	
Piper nigrum	Piperaceae	Lada hitam	Piperine (active compounds)	30 mg/kg body weight oral per day	Monosodium urate crystal-induced inflammation in Swiss albino mice	Piperine decreased the paw diameter significantly in monosodium urate crystal-induced mice	Sabina et al., 2011	
Premna serratifolia	Lamiaceae	Buas-buas	Wood without bark/ethanol extract	300 mg/kg body weight orally per day for 14 days	Bacteria induced Water albino rats hind paw edema	Extract inhibited the rat paw edema by 69.32% after 21 days	Rajendran and Krishnakumar, 2010	
Synsepalum dulcificum	Sapotaceae	Buah ajaib	Fruit/Butanol	500–1,000 mg/kg body weight orally per day	Male ICR hyperuricemia mice induced by oxalic acid potassium salt	Extract lowered serum uric acid levels and activated hepatic xanthine oxidase	Shi et al., 2016	
Zingiber officinale	Zingiberaceae	Halia	Rhizome/Water	50 and 100 mg/kg of body weight	Hyperuricemia rats induced by potassium oxonate	Extract reduced the uric acid levels significantly in hyperuricemic rats after 14 days	Al-Azzawie and Abd, 2015	
Zingiber zerumbet	Zingiberaceae	Halia hu tan, Lempoyang	Rhizome/mixture of hexane and ethyl acetate	10 and 20 mg/kg of body weight	Carrageenan induced female Sprague-Dawley rats hind paw edema	10 and 20 mg/kg zerumbone exhibited significant maximum inhibition of 45.67 and 70.37%, respectively	Somchit et al., 2012	
reported that both methanol and ethanol had a higher capacity to extract xanthine oxidase inhibitors from all parts of plants; 25% of all plant extracts showed more than 50% inhibition using these two solvents compared to distilled water with only 20% of all plant extracts showing more than 50% xanthine oxidase inhibitory activity. In another study, methanol extract was found to be more active than hydroalcoholic and aqueous extracts (Nguyen et al., 2004; Umamaheswari et al., 2007). Even though methanol and ethanol extracts have higher rates of xanthine oxidase inhibitory activity, safety is the main concern of the pharmaceutical industry. Alcohol is a nervous system depressant that impairs the transmission of nerve signals, ultimately leading to respiratory suppression (Bailey and Bailey, 2000). Methanol is a highly poisonous solvent that can upset the acid-base balance of body (Azmi et al., 2012). Therefore, identifying a less toxic solvent is important.

Based on results of xanthine oxidase inhibitory activity analysis, the following plants showed more than 85% activity at 100 µg/mL: M. charantia (96.50%), C. indicum (95.00%), Cinnamomum cassia (93.00%), K. galanga (90.60%), A. vulgaris (89.30%), and Morinda elliptica (88.93%) (Kong et al., 2000; Nguyen et al., 2004; Alsultanee et al., 2014; Jamal et al., 2014). Of the other studied plants, three exhibited at least 80% activity, including C. sinensis (82.90%), Z. officinalis (81.56%), and B. balsamifera (80.90%) (Nguyen et al., 2004; Alsultanee et al., 2014; Jamal et al., 2014) at 100 µg/mL, while Olea europaea and Synsepalum dulcificum exhibited 80.00% activity at 250 mg/mL and 10 mg/mL, respectively (Al-Azzawie and Abd, 2015; Shi et al., 2016). IC50 values, the concentration at which half the xanthine oxidase activity is inhibited, were determined in a few studies. In this study, the lowest IC50 value was 0.111 µg/mL, indicating that B. balsamifera extract inhibited 50% of xanthine oxidase activity (Nessa et al., 2010).

A few studies further analyzed and isolated the bioactive compounds present in plants that exerted the highest xanthine oxidase inhibitory activity, allowing them to act as xanthine oxidase inhibitors by blocking the biosynthesis of uric acid from purine in the body (Unno et al., 2004). Please see the following examples: cardiac glycosides (Apaya and Chichioco-Hern, 2011), flavonoids (Nguyen et al., 2004; Roobakhsh et al., 2009; Umamaheswari et al., 2009; Nessa et al., 2010; Apaya and Chichioco-Hern, 2011; Yumita et al., 2013), phenolics (Umamaheswari et al., 2009; Apaya and Chichioco-Hern, 2011; Sowndhararajan et al., 2012; Alsultanee et al., 2014; Al-Azzawie and Abd, 2015), anthocyanins (Al-Azzawie and Abd, 2015), tannins (Apaya and Chichioco-Hern, 2011), alkaloids (Apaya and Chichioco-Hern, 2011), proanthocyanidin A2 (Sheu et al., 2016), acetylenic galanin A (Sheu et al., 2016), phalerin (Fariza et al., 2012), 4-allyl-1,3- hydroxycoumarin (Murata et al., 2009), kaempferol (Fadzureena et al., 2013), terpenoids Apaya and Chichioco-Hern, 2011, luteolin (Kong et al., 2000; Nguyen et al., 2004; Flemmig et al., 2011), apigenin (Kong et al., 2000; Flemmig et al., 2011), caffeic acid (Nguyen et al., 2004; Flemmig et al., 2011), eriodictyol (Nguyen et al., 2004), oleuropein (Flemmig et al., 2011), luteolin-7-O-d-glucoside (Flemmig et al., 2011), and scopoletin (Ding et al., 2005). Until now, these bioactive compounds have not been further analyzed or developed into anti-gout medications.

Hyperuricemia has been modeled in pre-clinical studies by blocking uricase enzyme with potassium oxonate (Umamaheswari et al., 2007; Haidari et al., 2008). Administration of potassium oxonate (250 mg/kg) results in marked increases in serum uric acid level in rats (Shi et al., 2016). Several in vivo studies have demonstrated a reduction of serum uric acid levels in hyperuricemic rats. For example, administration of aqueous and alcoholic extracts of Phyllanthus emblica (200 and 400 mg/kg) reduced reduced serum uric acid and xanthine oxidase enzyme levels in hyperuricemic rats while allopurinol was more potent in inhibiting xanthine oxidase enzyme (Sarvaiya et al., 2015). Similar results have also been reported by El-Rahman and Abd–Elhak (2015) for Allium ampeloprasum, Apium graveolens, and P. crispum using albino rats, where both extracts significantly reduced serum uric acid and lipid peroxidation and increased antioxidiant enzyme activity levels at a dose of 5 g/kg. Phytochemical screening of the extracts also revealed their major constituents, which include phenolic (polyphenols, tocopherols, and alkaloids), flavonoids, and saponins that may act as xanthine oxidase inhibitors (Fejes et al., 2000; Zhou and Yu, 2006; Sreeramulu and Ragunath, 2010).

Some of the active compounds were isolated from the medicinal plants for investigating the underlying mechanisms of hypouricemic actions in rat model. Zeng et al. (2017) studied the bioavailability of scopoletin or 6-methoxy-7-hydroxycoumarin, a major active coumarin isolated from the stems of Erycibe obtusifolia and its hypouricemic effects in vivo. In this study, they encapsulated scopoletin into Soluplus micelles (Soluplus-based scopoletin micelles, Sco-Ms) in order to improve its oral bioavailability. To study the pharmacokinetics and biodistribution in vivo, the rats were orally administered with scopoletin suspension, physical mixtures of scopoletin and Soluplus (Sco-PM) and Sco-Ms at dose of 100 mg/kg scopoletin. At predetermined time intervals (2, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min), the blood samples were collected for determining the plasma concentrations of scopoletin. Sco-Ms showed significantly higher maximum plasma concentration, Cmax of 14,674.796 ± 2,997.147 µg/L than scopoletin and Sco-PM at 10 min. Orally administered Sco-Ms was rapidly absorbed than Sco-PM and scopoletin, with a time to reach maximum plasma concentration, tmax of 0.167 h while the time taken for plasma concentration of Sco-Ms to reduce by 50% of its initial value, t1/2 was 0.468 h. Sco-Ms showed CL value (ability to clear drug from the bloodstream which usually by hepatic metabolism or renal excretion) of 28.703 ± 3.482 L.h−1.kg−1. Interestingly, Sco-Ms was found to have higher scopoletin concentration in liver than the scopoletin suspension which would be importance for the inhibition of hepatic xanthine oxidase activity. The hepatic and serum xanthine oxidase activity of hyperuricemic rats were investigated in order to determine the possible mechanism of the anti-hyperuricemic effect of Sco-MS. Based on the result obtained, the oral administration of Sco-Ms at dose of 300 mg/kg reduced the serum uric acid concentration to the normal level. In addition, Zhang et al. (2016) studied the biodistribution and hypouricemic efficacy of morin
(3,5,7,2′,4′-pentahydroxyflavone), a yellow pigment present in the plants from the Moraceae family. In this study, they tested a novel self-nanoemulsifying drug delivery system based on morin-phospholipid complex (MPC-SNEDDS) in vivo which improved the oral bioavailability of morin. After the administration of morin suspension, the concentration of morin in liver was markedly higher than other tissues (e.g., heart, spleen, lung, and kidney) at 0.5, 1, and 4 h. Moreover, the morin concentration in the liver at 0.5 h after orally administered with MPC-SNEDDS (1,096 µg/mg) was three-fold higher than morin suspension (252 µg/mg) and thus, MPC-SNEDDS possessed more potent inhibitory effect on hepatic xanthine oxidase activity than morin.

As expected, MPC-SNEDDS reduced serum uric acid level of hyperuricemic rats (145 µmol/l) to normal (45 µmol/l) at 6 h after oral administration. Hence, the hypouricemic effect of the active compounds (e.g., morin and scopoletin) may therefore be explained, at least in part, by a lowering of xanthine oxidase activity in rat liver.

Another possible mechanism to reduce plasma uric acid concentration is to inhibit the reabsorption of urate in renal tissue. In some studies, the mRNA and protein expression levels of the transporters responsible for urate reabsorption are examined in order to explore the underlying molecular mechanisms of uricosuric effects of active compounds or medicinal plants. For instance, mangiferin, an isolated compound from the leaves of Mangifera indica significantly decreased the mRNA and protein levels of URAT1 and GLUT9 in kidney of hyperuricemic rats, suggesting that it possessed the uricosuric action, which was associated to inhibiting reabsorption of urate (Yang et al., 2015). In other study, Dimocarpus longan Lour seed decreased GLUT9 protein level from the liver of the rat model (Hou et al., 2012). The ethanol extract of Ramulus mori, the branch of Morus alba possessed the uricosuric effects in hyperuricemic mice by down-regulating renal mURAT1 and mGLUT9 expression and up-regulating renal mOAT1 expression, which contributed to the enhancement of urate excretion and reduction of serum urate level as well as improved renal dysfunction in hyperuricemic rats by up-regulating renal expression of mOCT1, mOCT2, mOCTN1, and mOCTN2 (Shi et al., 2012). In cell culture model, stably hURAT1 transfected human epithelial kidney cell line was used by Zhang et al. (2017) to evaluate the ability of tigogenin (active metabolites of dioscin) in inhibiting 14C-uric acid uptake via hURAT1 and the result showed that this compound possessed significant inhibitory effect from 10 to 100 µM with a concentration-dependent manner and the uric acid permeability was significantly reduced to 60% at 100 µM.

The results of standard in vitro screening assays provided useful information to guide the next stage of investigation such as testing the plant extract in rodents. Administration of ethyl acetate fraction from a butanol extract of S. dulcificum resulted in 80% of xanthine oxidase inhibitory activity at 10 mg/mL; the effects of butanol extract from this fruit was similar to the results of an in vivo study using allopurinol (Shi et al., 2016). Al-Azzawie and Abd (2015) showed that the Z. officinale extract had the highest xanthine oxidase inhibition in vitro (87.97%) at 250 mg/mL; at both doses (100 and 250 mg/kg), ginger extract significantly reduced mean serum uric acid levels and inhibited xanthine oxidase activity in hyperuricemia rats.

Some studies have shown that different parts of the same plants can contribute differently to effects on uric acid levels. For example, methanol extracted from the D. longan flowers had a greater effect on lowering uric acid compared to the seeds due to the 10 phytochemicals in the flowers. Further analysis revealed that proanthocyanidin A2 and acetylgenarin have higher inhibitory activity against xanthine oxidase compared to allopurinol (Sheu et al., 2016). In addition, the ethanol extract from Hibiscus sabdariffa calyx, as well as ethyl acetate and water fractions, reduced uric acid levels in male Sprague-Dawley rats and Wistar rats, where the ethyl acetate fraction at a dose of 6.25 mg/kg demonstrated the best effect on uricosuric compared to water fraction and ethanol. Phytochemical screening of the ethanol extract of this plant also revealed the presence of flavonoid, saponin, polyphenol, and quinone (Wahyuningsih et al., 2016b). Monosodium urate crystal-induced inflammation in mice or rats is commonly used to study the anti-gout effect of plant extracts (Sabina and Rasool, 2008). Oral administration of triphala significantly reduced paw diameter at a dose of 1 g/kg body weight (Sabina and Rasool, 2008). Extracts from the M. indica leaf also significantly reduced ankle swelling in monosodium urate crystal-induced gout arthritis at a dose of 200 mg/kg across 8 h (Jiang et al., 2012).

In this study, we evaluated whether the doses used in in vitro and in vivo studies are physiologically relevant. In one study, administration of 250 mg/mL of Z. officinale extract resulted in high levels of xanthine oxidase inhibition (87.97%) in vitro, while 250 mg/kg exhibited 57.14% of xanthine oxidase inhibition and significantly reduced serum uric acid levels (Al-Azzawie and Abd, 2015). In another study, S. dulcificum extract administration suppressed xanthine oxidase activity in MSU-treated RAW264.7 macrophages at 500 µg/mL, while a 1000 mg/kg dose in vivo reduced uric acid levels in rats (Shi et al., 2016). Methanol extracts from Phyllanthus niruri resulted in 67.66% inhibition at 100 µg/mL in an in vitro study and caused significant inhibition (76.84%) of xanthine oxidase activity at a 50 mg/kg dose in vivo (Murugaiyah and Chan, 2009). The results from these studies were very similar results in inhibiting xanthine oxidase activity, suggesting that the doses used were physiologically relevant.

Allopurinol, common drug used for gout patients, is approved by the US FDA for doses up to 800 mg/day for the treatment of hyperuricemia and gout (Chao and Terkeltaub, 2009). One study reported that gout patients attained target serum uric acid levels of <360 mmol/L at 300 mg/day of allopurinol, and that this dose was increased up to 600 mg/day in some patients; favorable results were observed as the dose increased and it was well tolerated, such that the therapeutic goal was achieved in 92.5% of patients. These doses are therefore well tolerated in those with well-preserved renal function (RadakPerović and ZlatkovicŠvenda, 2013). However, febuxostat, a non-purine selective xanthine oxidase inhibitor, at a daily dose
of 80 mg or 120 mg was reported to be more effective than allopurinol (300 mg) in lowering serum urate levels (Becker et al., 2005).

Many plants used in in vivo studies, including Peperomia pellucida, Mangifera indica, Jatropha curcas, Epiphyllum oxypetalum, Zingiber zerumbet, Emblica officinalis, and Piper nigrum, have exhibited anti-inflammatory activities (Mujumdar and Misar, 2004; Mutee et al., 2010; Sabina et al., 2011; Somchit et al., 2012; Dandekar et al., 2015). In addition, zerombone, which is found in the rhizome of Zingiber zerumbet, may act as an anti-inflammatory agent similar to non-steroidal anti-inflammatory drugs (Somchit et al., 2012). It has been proposed that phenolic compounds, such as anthocyanins and quercetin, which are found abundantly in certain plants, can inhibit xanthine oxidase activity, as they are structurally related to xanthine (Mo et al., 2007). Additional studies must be conducted on the possible mechanisms of the anti-gout activity of these medicinal plants.

In addition, there are also human clinical trials performed in gout using plant based drugs. For instance, Prasongwatana et al. (2008) investigated the effects of roselle (H. sabdariffa) on urinary excretions of uric acid in human models with and without renal-stone history where they found the mean levels of uric acid clearance, uric acid excretion and fractional excretion of uric acid increased significantly after consuming H. sabdariffa tea and then decreased to baseline level (control) at the end of the washout period in both groups, suggesting its uricosuric effect provides a long-term benefit of hyperuricemia in gouty subjects. However, the chemical constituents responsible for the anti-gout effects in this plant yet to be fully elucidated. Furthermore, the same trend of results were observed in Orthosiphon stamineus tea where the consumption of this tea caused an increasing of uric acid excretion (Prengamone et al., 2001). It is well understood that the increase of uric acid excretion may result in urolithiasis (development of stones in the kidney due to supersaturation of the urine with stone-forming salts). As reviewed by Butterweck and Khan (2009), they gathered the information of few plants that have been studied for the management of urolithiasis such as H. sabdariffa, P. niruri, O. stamineus, Andrographis paniculata, Sambucus nigra, Solidago virgaurea, and Dolichos biflora. For instance, Nishiura et al. (2004) demonstrated that P. niruri extract reduced the uric acid level as well as normalized the urinary calcium levels in calcium stone forming patients. As mentioned above, many plants had been studied for the anti-urolithiasis rather than anti-gout activities. Furthermore, there is also a very limited number of clinical studies for the anti-gout activity as compared to in vitro and in vivo studies. To the best of our knowledge, there are no human studies on the anti-gout activity specifically to xanthine oxidase inhibitor mechanism. It is further suggested that pharmacologist and clinical investigators to conduct larger randomized clinical trials of longer duration in order to determine the efficacy of plant based drugs in the treatment of gout. The doses of the plant extract, method of extract preparation, and extraction solvent must also be taken into consideration.

CONCLUSION

This review summarized the potential of Malaysian medicinal plants treat gout based on research conducted over the last 17 years. Taking all results into consideration, M. charantia, C. indicum, C. cassia, K. galanga, A. vulgaris, and M. elliptica were found to have the highest xanthine oxidase inhibitory potential in vitro. This review suggests further research on the natural xanthine oxidase inhibitors, especially in in vitro studies, clinical studies, investigation of active compounds, safety of the plants as well as the pharmacokinetic and bioavailability studies, which remain to be elucidated.

AUTHOR CONTRIBUTIONS

FA: preparing and writing the manuscript; MA: initiate the process of the review paper; AR, NA, SS, SE: check and comment the manuscript.

ACKNOWLEDGMENTS

We would like to thank Universiti Tun Hussein Onn Malaysia (UTHM) for providing internal research grant (Vot No. U758; E15501; U673; U908) to fund this research.

REFERENCES

Abd Aziz, S. M., Low, C. N., Chai, L. C., Abd Razak, S. S. N., Selamat, J., Son, R., et al. (2011). Screening of selected Malaysian plants against several food borne pathogen bacteria. Int. Food Res. J. 18, 1141–1147.

Al-azzawie, H. F., and Abd, S. A. (2015). Effect of some plant extracts on serum uric acid levels and xanthine oxidase activity in vitro and in oxonate-induced hyperuricemic rats. Eur. J. Pharm. Med. Res. 2, 55–61.

Alsultanee, I. R., Ewadh, M. I., and Mohammed, M. F. (2014). Novel natural anti gout medicine extract from Momordica charanta. J. Nat. Sci. Res. 4, 16–23.

Apaya, K. L., and Chichico-Hern, C. L. (2011). Xanthine oxidase inhibition of selected Philippine medicinal plants. J. Med. Plant Res. 5, 289–292.

Arafat, O. M., Tham, S. Y., Sadikun, A., Zhari, L., Haughton, P. J., and Asmawi, M. Z. (2008). Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J. Ethnopharmacol. 118, 354–360. doi: 10.1016/j.jep.2008.04.015

Azmi, S. M. N., Jamal, P., and Amid, A. (2012). Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. Int. Food Res. J. 19, 159–165.

Bailey, P. S. Jr., and Bailey, C. A. (2000). Organic Chemistry: A Brief Survey of Concepts and Applications. New Jersey, NJ: Pearson Education International; Prentice-Hall Inc.

Becker, M. A., Schumacher Jr, H. R., Wortmann, R. L., MacDonald, P. A., Eustace, D., Palo, W. A., et al. (2005). Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N. Engl. J. Med. 353, 2450–2461. doi: 10.1056/NEJMoa050373
Bustanj, Y., Hudaib, M., Tawaha, K., Mohammad, M. K., Almasri, I., Hamed, M. K., Almasri, I., Hamed, M. K., and Offermanns, S., and Rosenthal, W. (2008). Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nat. Rev. Rheumatol. 4, 362–365. doi: 10.1038/nrrheum.2008.48

Nile, S. H., and Park, S. W. (2014). HPTLC analysis, antioxidant and antigout activities of extracts and flavonoids of the leaves of Jatropha curcas L. leaves. J. Appl. Sci. 19, 569–575. doi: 10.3923/ijp.2010.686.690

Nessa, F., Ismail, Z., and Mohamed, N. (2010). Xanthine oxidase inhibitory activity and its lignan constituents. J. Ethnopharmacol. 124, 123–129. doi: 10.1016/j.jep.2009.04.026

Mujeeb, A. F., Salihmi, S. M., Yam, M. F., Lim, C. P., Abdullah, G. Z., and Ameer, O. Z., et al. (2010). In vitro anti-inflammatory and in vitro antioxidant activities of Peperomia pellucida. Int. J. Pharmacol. 6, 686–690. doi: 10.3923/ijp.2010.686.690

Nessa, F., Ismail, Z., and Mohamed, N. (2010). Xanthine oxidase inhibitory activity of selected food extracts. Int. J. Pharmacal. Res. 30, 1414–1421. doi: 10.1248/bpb.27.1414

Nile, S. H., and Khobragade, C. N. (2011). In vitro anti-inflammatory and xanthine oxidase inhibitory activities of Tephrosia purpurea shoot extract. Nat. Prod. Commun. 6, 1437–1440.

Nile, S. H., Kumar, B., and Park, S. W. (2013). In vitro evaluation of selected benzoimidazole derivatives as an antioxidant and xanthine oxidase inhibitors. Chem. Biol. Drug Des. 82, 290–295. doi: 10.1111/cbdd.12141

Nile, S. H., and Park, S. W. (2014). HPTLC analysis, antioxidant and antigout activity of Indian plants. Iran. J. Pharm. Res. 13, 531.

Nishiura, J. L., Campos, A. H., Boim, M. A., Heilberg, I. P., and Schor, N. (2004). Phyllanthus niruri normalizes elevated urinary calcium levels in calcium stone forming (CSF) patients. Urol. Res. 32, 362–366. doi: 10.1007/s00248-004-0432-8

Offermanns, S., and Rosenthal, W. (2008). Encyclopedia of Molecular Pharmacology. New York, Springer.
Orech, F. O., Akenga, T., Ochora, J., Friis, H., and Aagaard-Hansen, J. (2005). Potential toxicity of some traditional leafy vegetables consumed in Nyangoma Division, Western Kenya. Afr. J. Food Agric. Nutr. Dev. 5, 1–13.

Osman, N. I., Sidik, N. J., Awal, A., Adam, N. A. M., and Rezali, N. I. (2016). In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gout arthritis. J. Inter. J. Ethnopharmacol. 5, 343–349. doi: 10.5455/ije.20160731025522

Pacher, P., Nivorozhkin, A., and Szabó, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58, 87–114. doi: 10.1124/pr.58.1.6

Palu, A., Deng, S., West, B., and Jensen, J. (2009). Xanthine oxidase inhibiting effects of noni (Morinda citrifolia) fruit juice. Phytother. Res. 23, 1790–1791.

Pillinger, M. H., Rosenthal, P., and Abeles, A. M. (2007). Hyperuricemia and gout: new insights into pathogenesis and treatment. Bull. NYU Hosp. Jt. Dis. 65, 215–215.

Prasongwatana, V., Woottisin, S., Srboonlue, P., and Kukongviriyapan, V. (2008). Ursicoric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. J. Ethnopharmacol. 117, 491–495. doi: 10.1016/j.jep.2008.02.036

Premgamoone, A., Srboonlue, P., Disatapornjaroen, W., Maskam, S., Sinsupsun, N., and Apinives, C. (2001). A long-term study on the efficacy of a herbal plant, Orthosiphon sonouri, and sodium potassium citrate in renal calculus treatment. Southeast Asia J. Trop. Med. Public Health. 32, 654–660.

Sri-Wahyuningsih, S., Sukandar, E. Y., and Sukrasno. (2016b). Zerumbone isolated from Zingiber zerumbet exhibits as a novel anti-hyperuricaemia agent. African J. Food Agric. Nutr. Dev. 12, 206–212.

Srimuang, S., and Wannarot, W. (2008). Anti-inflammatory activity of methanol extracts of Erythrina indica leaves and stem bark. Asian Pac. J. Trop. Biomed. 2, 1415–S1417. doi: 10.1016/S2221-1691(12)60428-6

Subhadradevi, V., and Ravi, T. K. (2007). Xanthine oxidase inhibitory activity of ethanol extract and fraction roselle calyx (Hibiscus sabdariffa Linn) on serum urate levels and decreases hepatic xanthine dehydrogenase/oxidase activities in rats. J. Ethnopharmacol. 109, 547–551. doi: 10.1016/j.jep.2006.08.020

Subhadradevi, V., and Ravi, T. K. (2007). Xanthine oxidase inhibitory activity of ethanol extract and fraction roselle calyx (Hibiscus sabdariffa Linn) on serum urate levels and decreases hepatic xanthine dehydrogenase/oxidase activities in rats. J. Ethnopharmacol. 109, 547–551. doi: 10.1016/j.jep.2006.08.020

Wahyuningsih, S., Sukandar, E. Y., and Sukrasno. (2016a). Antihyperuricemia activity of the ethanol extract of Roselle calyx and its fraction (Hibiscus sabdariffa Linn) on male wistar rats. Int. J. Pharm. Pharm. Sci. 8, 278–280.

World Health Organization (2011). The World Traditional Medicines Situation, in Traditional Medicines: Global Situation, Issues and Challenges. Geneva 3, 1–14.

Wahyuningsih, S., Sukandar, E. Y., and Sukrasno. (2016b). In vitro xanthine oxidase inhibitory activity of ethanol extract and fraction roselle calyx (Hibiscus sabdariffa Linn). Int. J. Pharma. Clin. Res. 9, 4–35.

Wang, Y., Zhu, J. X., Kong, L. D., Yang, C., Cheng, C. H. K., and Zhang, X. (2004). Administration of procyanidins from grape seeds reduces serum uric acid levels and decreases hepatic xanthine dehydrogenase/oxidase activities
in oxonate-treated mice. Basic Clin. Pharmacol. Toxicol. 94, 232–237. doi: 10.1111/bct.12492
Zhang, Y., Jin, L., Liu, J., Wang, W., Yu, H., Li, J., et al. (2017). Regulation mechanism of Dioscin on uric acid excretion. J. Ethnopharmacol. 214, 29–36. doi: 10.1016/j.jep.2017.12.004
Zhou, K., and Yu, L. (2006). Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. Food Sci. Technol. 39, 1155–1162. doi: 10.1016/j.jft.2005.07.015

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer MK and handling Editor declared their shared affiliation.

Copyright © 2018 Abu Bakar, Abu Bakar, Rahmat, Abdullah, Sabran and Endrini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.