Charge transfer mechanisms in multistructured photoelectrodes for perovskite solar cells

M F Vildanova, A B Nikolskaia, S S Kozlov and O I Shevaleevskiy

Solar Photovoltaic Department, Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow, 119334, Russia

mvildanova@sky.chph.ras.ru

Abstract. Here we introduce the research studies of perovskite solar cells with multistructured photoelectrodes based on very wide bandgap nanocrystalline materials. A series of solar cells with the device architecture FTO/c-TiO$_2$/ZrO$_2$(HfO$_3$/CH$_3$NH$_3$PbI$_3$/Spiro-MeO-TAD/Au was fabricated and characterized. The results obtained demonstrate a successful possibility of PV application of the nanostructured oxide materials with bandgap values exceeding 5 eV. We propose a mechanism, which describes charge carrier transport at the interface of perovskite/multistructured photoelectrode.

1. Introduction

Nanostructured materials are widely used in next generation photovoltaic devices including organic-inorganic metal halide perovskite solar cells (PSCs), which are suitable for mass production technologies. A key component of the PSC is a thin film nanostructured photoelectrode, which in general based on titanium dioxide (TiO$_2$) with a band gap (E_g) of 3.0-3.2 eV. The applicability of photoelectrodes based on very wide bandgap materials with E_g > 5 eV has always been controversial, because the charge carrier transport deteriorates with the increase of E_g. However, very wide bandgap nanostructured systems were shown to be efficient for solar cell application [1-2].

Several configurations for PSCs have been reported in literature. One of them includes very wide bandgap mesoporous scaffold. The pioneer study reported by the group of H. Snaith introduces Al$_2$O$_3$ scaffold, replacing traditional TiO$_2$ electron transport layer [3]. Later PV application of different insulating materials was investigated, including zirconia (ZrO$_2$) nanostructured films with E_g ~5.6 eV [4]. Recently, we have studied charge transfer kinetics in ZrO$_2$-based PSCs and showed that such materials could be successfully used as photoelectrodes in PSCs [5].

Yet another cell architecture represents a multiple layered electron transport system, including thin TiO$_2$ and ZrO$_2$ layers [6]. Incorporation of an additional thin layer of a wide bandgap oxide in the mesoporous structure is reported to be advantageous. It was shown that large dielectric constant of ZrO$_2$ removes Coulomb attraction between charge carriers and facilitates ambipolar transport by effective charge screening [7]. The both mentioned above solutions demonstrate improvement in the PV performance of PSCs compared to the state-of-the-art TiO$_2$ mesoporous layers (m-TiO$_2$).

In the frames of this study we also introduce hafnium dioxide (HfO$_2$)-based nanostructures with E_g exceeding 5.6 eV, which present interest for fabrication of efficient photoelectrodes for PSCs. Among the metal oxides from groups IV and V HfO$_2$ attracts considerable attention, adopting the similar structure with ZrO$_2$. Thus, we prepared and investigated ZrO$_2$- and HfO$_2$-based nanostructured thin
films, which were used for fabrication of the multistructured photoelectrodes for PSCs with the device architecture of glass/FTO/c-TiO$_2$/MO$_2$/CH$_3$NH$_3$PbI$_3$/Spiro-MeO-TAD/Au (where $M = Zr$, Hf; c-TiO$_2$ is ~20 nm TiO$_2$ compact layer).

2. Experimental

2.1. Fabrication of PSCs with multistructured nanocrystalline photoelectrodes

Two series of PSCs with multilayered structures and the device architecture denoted as FTO/c-TiO$_2$/MO$_2$/CH$_3$NH$_3$PbI$_3$/Spiro-MeO-TAD/Au (where $M = Zr$, Hf) were fabricated. The fabrication of PSCs was carried out under ambient conditions (RH ~50%), following the previously developed technology [8]. ZrO$_2$ and HfO$_2$ nanoparticles were obtained by hydrothermal treatment of co-precipitated zirconium and hafnium hydroxides from solutions of the corresponding metal salts [5]. Thick pastes from MO$_2$ nanopowders were prepared in organic solvent following the method suitable for TiO$_2$ [9]. The pastes were dissolved in ethanol in mass ratio 1:5 and spin-coated onto thin c-TiO$_2$ layer with subsequent annealing at 500°C for 30 min. Perovskite layer CH$_3$NH$_3$PbI$_3$ was formed on MO$_2$ using a conventional one-step deposition method [10].

2.2. Characterization of multistructured layers and PSCs

Film morphology of the multistructured photoelectrodes was investigated using a dual-beam scanning electron microscope (SEM) Helios NanoLab 660 (FEI, USA). The topography of the photoelectrode surface was measured via atomic force microscopy (AFM) using a scanning probe microscope NTEGRA Prima (NT-MDT, Russia). Absorption characteristics were calculated from diffuse reflectance spectra of MO$_2$ nanopowders recorded using Shimadzu UV-3600 spectrophotometer (Shimadzu, Japan) with an ISR-3100 integrating sphere in the wavelength range of 300-1200 nm. The current density-voltage ($J-V$) curves were measured using the SCS-4200 Semiconductor Characterization System (Keithley, USA) under standard AM1.5G illumination conditions (1000 W/m2) using Abet 10500 Solar Simulator (Abet Technologies, USA). The incident photon-to-current conversion efficiency (IPCE) spectra were recorded using QEX10 Solar Cell Quantum Efficiency Measurement System (PV Measurements, USA) in the range of 300-900 nm.

3. Results and Discussion

3.1. UV-vis absorption spectroscopy

Figure 1 shows a function of optical absorption coefficient (α) for MO$_2$ nanopowders. As the nanopowders are highly light scattering materials, their absorption characteristics were calculated from the diffuse reflectance spectra applying Kubelka-Munk theory [11].

![Figure 1. $(\alpha h\nu)^n$ vs. photon energy for ZrO$_2$ and HfO$_2$ nanopowders and their bandgap values calculated.](image)

The E_g values for MO$_2$ were estimated according to Tauc’s law [12] by extrapolation of the linear segments of $(\alpha h\nu)^n$ plot (where $n = 2$ for direct and $n = \frac{1}{2}$ for indirect bandgap) to the photon energy...
axis. Monoclinic modification of ZrO$_2$ was found to have two direct band transitions [5] with the values of 5.26 and 5.53 eV. HfO$_2$ absorption region fits to the characteristics of an indirect bandgap [13] with the value of 5.56 eV.

3.2. Scanning electron microscopy (SEM)

Surface morphologies of multistructured photoelectrodes, consisting of thin c-TiO$_2$ layer coated with MO$_2$ mesoporous layers were studied by means of SEM.

![Figure 2. Surface SEM images of ZrO$_2$ (a) and HfO$_2$ (b) layers deposited onto c-TiO$_2$ layer.](image)

Figure 2a shows SEM image of the ZrO$_2$ thin layer deposited on c-TiO$_2$ layer. The agglomeration of sphere-like crystallites is observed. The average particle size ranges from 30 to 40 nm. The layer surface looks to be irregular. Such a suitable surface morphology is essential for high PV performance, compared to planar PSCs containing single c-TiO$_2$. In this case ZrO$_2$ eliminates pinholes, normally occurring in thin c-TiO$_2$ layers. As a result, it plays a role of a blocking layer, which avoids the undesired charge transport to the contact. Moreover, the observed agglomeration of ZrO$_2$ nanoparticles leads to better light scattering, thus increasing the charge carrier diffuse length.

HfO$_2$ was found to show similar surface morphology (see Figure 2b). However, the layer is even less uniform, compared to ZrO$_2$. The average particle size in HfO$_2$ layer is about 30 nm. Nanoparticles demonstrate less agglomeration and the distribution is more dispersed with weaker interparticle necking.

3.3. Atomic force microscopy (AFM)

Surface configuration of multistructured photoelectrodes was studied by means of AFM. Figure 3 shows the current mapping in the mesoporous TiO$_2$ (a), ZrO$_2$ (b) and HfO$_2$ (c) layers deposited onto c-TiO$_2$/FTO.

FTO has large grains, so the layer has high surface roughness. It shows high conductivity with electrical current values reaching 30 nA under 4 V bias. c-TiO$_2$ layer is extremely thin, so it doesn’t smooth the surface roughness. Its conductivity is reasonably lower, compared to FTO. However, due to pinholes in the layer there are some regions with higher current flow (up to 25 nA). Regular mesoporous TiO$_2$ layer, which is used as a photoelectrode in the state-of-the-art PSCs (Figure 3a) has low conductivity, but it shows a uniform distribution over the surface. The highest current value is 350 pA.

On the contrary, ZrO$_2$ nanoparticles form an irregular layer, as shown in Figure 2a. Deposited on the surface with high roughness, it fills the cavities, leaving some areas of the surface uncovered. Thus, in Figure 3b we see the local regions with the increased current (red spots with the values up to
25 nA), associated with c-TiO₂ uncovered with ZrO₂. Despite the insulating nature of ZrO₂, the highest current flow was obtained through the multistructured c-TiO₂/ZrO₂ layer.

As for HfO₂ (Figure 3c), it demonstrates similar behavior with ZrO₂. Due to the specific distribution of the particles over the surface, its conductive regions are spread more dispersed with lower current flow, not exceeding 18 nA.

Figure 3. AFM micrographs of the current mapping in TiO₂ (a) ZrO₂ (b) and HfO₂ (c) layers deposited onto c-TiO₂/FTO.

3.4. Photovoltaic properties

The J-V curves and IPCE spectra of the fabricated devices with the architecture of glass/FTO/c-TiO₂/MO₂/CH₃NH₃PbI₃/Spiro-MeO-TAD/Au are shown in Figure 4. Photovoltaic parameters of the solar cells are listed in Table 1.

Figure 4. J-V curves (a) and IPCE spectra (b) for the champion PSC devices based on multistructured ZrO₂, HfO₂ photoelectrodes and conventional mesoporous TiO₂ photoelectrodes.

State-of-the-art devices with bare TiO₂ photoelectrodes show the average power conversion efficiency (PCE) of 12.64% with short circuit current density (J_{SC}), open circuit voltage (V_{OC}) and fill factor (FF) reaching 19.05 mA/cm², 0.99 V and 0.67, respectively. With the substitution of m-TiO₂ layer with a wide bandgap mesoporous structure MO₂ we observe the improvement of PV performance, compared to state-of-the-art devices. The major difference is in the V_{OC} values, which is attributed to the difference in the conduction band (CB) positions of TiO₂ and MO₂. However, with incorporation of the wide bandgap materials a slight drop in J_{SC} is found, which can be explained by the insulating nature of MO₂. According to the band structure, there should be no charge separation
between \(\text{MO}_2/\text{CH}_3\text{NH}_3\text{PbI}_3 \). Thus, the electrons are accumulated at the interface with the following transport via c-TiO\(_2\), being in the direct contact with perovskite, while MO\(_2\) layer is deposited irregularly on the surface.

The highest device performance was shown by the PSCs with c-TiO\(_2\)/ZrO\(_2\) electron transporting layers. An average PCE is 13.30\%, \(J_{SC} \), \(V_{OC} \) and \(FF \) are 17.96 mA/cm\(^2\), 1.06 V and 0.70, respectively. PV parameters increased up to 10\% with the use of multistructured photoelectrodes, while the champion device’s efficiency reached 14.02\% compared to 12.81\% for state-of-the-art PSCs show poorer PV performance (up to 10.97\%) due to lower \(J_{SC} \) values. In this case ZrO\(_2\) may be more advantageous in the way of its light scattering properties. As the IPCE is related to \(J_{SC} \), the higher values of ZrO\(_2\)-based PSCs, compared to HfO\(_2\)-based ones (see Figure 4b), correspond to the improved \(J_{SC} \).

Table 1. PV parameters of PSCs with conventional mesoporous TiO\(_2\) photoelectrodes and multistructured photoelectrodes based on ZrO\(_2\) and HfO\(_2\).

	\(J_{SC} \), mA/cm\(^2\)	\(V_{OC} \), V	\(FF \), a.u.	PCE, %
TiO\(_2\)	19.05 ± 0.17	0.99 ± 0.007	0.67 ± 0.01	12.64 ± 0.26
ZrO\(_2\)	17.96 ± 0.28	1.06 ± 0.008	0.70 ± 0.04	13.30 ± 0.99
HfO\(_2\)	14.25 ± 0.92	1.06 ± 0.003	0.70 ± 0.02	10.49 ± 0.96

3.5. Charge transfer mechanism

The major difference between the cells energy band structure (see Figure 5) compared to the state-of-the-art PSCs concerns the different charge transport mechanisms at the perovskite/photoelectrode interface for MO\(_2\) and TiO\(_2\) electrodes.

Figure 5. Architectures of the PSCs with multistructured photoelectrodes with their band energy diagram, compared to the state-of-the-art TiO\(_2\)-based PSCs. Here M = Zr, Hf.

The CB edge of both ZrO\(_2\) and HfO\(_2\) is located much higher on the energy diagram, compared to the CB edge of perovskite, which makes the electron transfer from perovskite to the photoelectrode impossible in terms of the classical charge transfer mechanism. On the other hand, electron hopping through the states localized within the bandgap as a proposed charge transfer mechanism was discussed in our previous work [14]. However, it has a minor impact on the total charge transport in the photoelectrodes. Electron transport through CB of c-TiO\(_2\) is a dominating process. Its efficiency is
increased due to insertion of the wide bandgap material, which acts both as a scaffold and charge collection layer at the interface with ambipolar perovskite.

Poorer PV performance observed in HfO$_2$-based PSCs in comparison with ZrO$_2$-based devices is more likely attributed to the insufficient layer morphology and less favorable positions of the electronic states in HfO$_2$ forbidden zone.

4. Conclusions
In this paper we have demonstrated that very wide bandgap nanostructured oxide materials, like ZrO$_2$ and HfO$_2$, with E_g exceeding 5 eV, can be successfully used for PV application for constructing multistructured electron transporting photoelectrodes. These oxides were used for fabrication of PSCs and HfO$_2$ with the device architecture of glass/FTO/c-TiO$_2$/MO$_x$/CH$_3$NH$_3$PbI$_3$/Spiro-MeO-TAD/Au (M = Zr, Hf). The incorporation of mesoporous MO$_x$ layer led to the improvement of PV performance up to 10%. The increase in the V_{oc} is explained by the difference in CB positions of TiO$_2$ and MO$_x$ and the light scattering properties of MO$_x$ in the multilayered system results in the sufficient J_{sc}. Despite the insulating nature of MO$_x$, very wide band-gap materials play an important role in the efficient electron transport in PSCs. Here we have proposed the mechanism, describing charge carrier transfer at the interface of perovskite/multistructured photoelectrode. It has been shown that an irregular layer of a very wide bandgap material formed on the c-TiO$_2$ surface acts both as a scaffold and charge collection layer at the interface, resulting in the improved PV performance.

Acknowledgements
This work was supported by the Russian Science Foundation under grant No. 20-69-47124.

References
[1] Ranjitha S, LavanyaDhevi R, Hariharan V, Anbarasan P M, Priya R S and Sridharan M 2018 Int. J. Adv. Sci. Eng. 5(2) 948
[2] Ball J M, Lee M M, Hey A and Snaith H J 2013 Energ. Environ. Sci. 6(6) 1739
[3] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 634
[4] Bi D, Moon S J, Häggman L, Boschloo G, Yang L, Johansson E M, Nazeeruddin M K, Gratzel M and Hagfeldt A 2013 RSC Adv. 3(41) 18762
[5] Larina L L, Alexeeva O V, Almjasheva O V, Gusanov V V, Kozlov S S, Nikolskaia A B, Vildanova M F and Shevaleevskiy O I 2019 Nanosyst. Phys. Chem. Math. 10(1) 70
[6] Mejia Escobar M A, Pathak S, Liu J, Snaith H J and Jaramillo F 2017 ACS Appl. Mater. Interfaces 9(3) 2342
[7] Juárez-Pérez E J, Sanchez R S, Badia L, Garcia-Belmonte G, Kang Y S, Mora-Sero I and Bisquert J 2014 J. Phys. Chem. Lett. 5(13) 2390
[8] Shevaleevskiy O I, Nikolskaia A B, Vildanova M F, Kozlov S S, Alexeeva O V, Vishnev A A and Larina L L 2018 Russ J. Phys. Chem. B 12(4) 663
[9] Ito S, Chen P, Comte P, Nazeeruddin M K, Liska P, Péchy P and Grätzel M 2007 Prog. Photovoltaics: Res. Appl. 15(7) 603
[10] Park N G 2016 Nano Converg. 3(1) 15
[11] Kubelka P 1948 J. Opt. Soc. Am. 38 448
[12] Tauc J, Grigorovici R and Vancu A 1966 Phys. St. Sol. 15 627
[13] Martinez F L, Toleano-Luque M, Gandía J J, Carabé J, Bohne W, Röhrich J, Sturb E and Mártil I 2007 J. Phys. D Appl. Phys. 40(17) 5256
[14] Vildanova M F, Nikolskaia A B, Kozlov S S, Karyagina O K, Larina L L, Shevaleevskiy O I, Almjasheva O V and Gusanov V V 2019 Dokl. Phys. Chem. 484(2) 36