Severe Community-Acquired Pneumonia due to *Acinetobacter baumannii* in North America: Case Report and Review of the Literature

David P. Serota,1 Mary Elizabeth Sexton,1 Colleen S. Kraft,1,2 and Federico Palacio1

1Division of Infectious Diseases, Department of Medicine, and 2Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia

*Acinetobacter baumannii* is a rare but emerging cause of fulminating community-acquired pneumonia (CAP-AB). We describe a patient from a rural area who developed acute respiratory distress syndrome and septic shock. We describe risk factors and characteristics of this syndrome and review published cases of CAP-AB from North America.

**Keywords.** *Acinetobacter baumannii*; community-acquired pneumonia

**CASE PRESENTATION**

A 41-year-old man with severe alcohol use disorder was admitted to a hospital in Alabama in January with 2 days of productive cough, shortness of breath, and fever. He presented with septic shock, hypoxemic respiratory failure, and bilateral pulmonary infiltrates (Figure 1). Laboratory results were notable for neutropenia (absolute neutrophil count 450 cells/mcL), thrombocytopenia (58 000 cells/mcL), and acute kidney injury (creatinine 1.9 mg/dl). He had a history of alcohol use disorder with prior alcohol withdrawal seizures. His level of recent alcohol consumption was unknown, but he did not have evidence of alcohol withdrawal during the hospitalization. He lived with his father in rural Alabama and was unemployed. He smoked approximately 5 cigarettes per day and did not use illicit drugs. He had no travel outside the eastern United States, no recent health care exposures, and no sick contacts.

He was started on vancomycin, piperacillin-tazobactam, levofloxacin, and oseltamivir. Hypoxemia progressed rapidly, and within the first 24 hours of hospitalization he was intubated with high ventilatory support requirements (FiO₂ of 100% and positive-end expiratory pressure of 18 cm of water) despite paralysis with cisatracurium. Blood cultures from admission grew Gram-negative bacilli in both sets in the aerobic bottles after 12 hours of incubation. The organism was identified as *Acinetobacter baumannii* by matrix-assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF). Drug resistance testing, performed by an automated biochemical testing system (MicroScan Walkaway, Beckman Coulter, Inc. Brea, CA), showed sensitivity to all antimicrobials tested, including ceftazidine, levofloxacin, ampicillin-sulbactam, and meropenem.

The patient was transferred to our institution for initiation of venovenous extracorporeal membrane oxygenation (ECMO). On arrival, he required norepinephrine and vasopressin for blood pressure support, and antimicrobials were changed to intravenous meropenem and levofloxacin. Bronchoalveolar lavage showed many Gram-negative coccobacilli on Gram stain with growth of *A. baumannii* in culture with similar sensitivity to the previously obtained blood cultures. Antimicrobials were changed to intravenous ampicillin-sulbactam and levofloxacin, and he completed a 14-day course of therapy. His ECMO was discontinued after 9 days of therapy. He continued to require ventilatory support, necessitating tracheostomy, and was transferred to a subacute rehabilitation facility with eventual recovery.

**DISCUSSION**

*Acinetobacter baumannii* is an aerobic, oxidase-negative non-fermenting Gram-negative coccobacillus most often associated
with hospital-acquired infections, particularly ventilator-associated pneumonia (VAP). Hospital-acquired *A. baumannii* is associated with extended length of hospital stay and high mortality [1]. However, during the last 25 years, there has been a growing body of literature describing severe community-acquired pneumonia due to *A. baumannii* (CAP-AB) in patients without health care exposure or classic risk factors for this organism [2]. The majority of these cases come from Northern Australia and Asia, including Thailand, China, Taiwan, and are more common in tropical and subtropical areas during the summer months. Throat and skin carriage of *Acinetobacter* has been identified in areas of endemicity, and soil, livestock, and other animals have also been shown to serve as community reservoirs for *Acinetobacter* [3]. Based on pulse-field gel electrophoresis analyses, community-acquired isolates represent a distinct lineage from health care–associated *Acinetobacter* infections and often do not harbor the same resistance mechanisms [3]. Although less drug-resistant than hospital-acquired *A. baumannii* bacteremia, community-acquired infection has been associated with increased mortality (odds ratio, 5.72; 95% confidence interval, 1.02–32.00) [4].

Epidemiologic studies have linked the syndrome of severe CAP-AB with alcohol use disorder and recent alcohol binges prior to symptom onset [5]. Animal studies have shown that alcohol has wide-ranging effects on the innate immune system in relation to pulmonary *Acinetobacter* infection [6–8]. Gandhi et al. compared ethanol-exposed mice with unexposed mice after pulmonary inoculation of *Acinetobacter* [6]. They showed that ethanol-exposed mice demonstrated decreased neutrophil-mediated phagocytosis, increased lung inflammation, and higher mortality. Asplund et al. similarly showed decreased alveolar macrophage phagocytosis of *Acinetobacter* in the presence of alcohol [7]. Other significant risk factors include tobacco use, chronic pulmonary disease, and diabetes mellitus [2]. Onset of symptoms is typically rapid, with fulminant disease developing over 48–72 hours. Bilateral infiltrates, ARDS,

---

**Table 1. Summary of North American Cases of Community-Acquired Pneumonia due to *Acinetobacter baumannii***

| Year (Reference) | Location | Age | Sex | Risk Factors | Mech. Vent. | Site of Positive Cultures | Final Antibiotics Used | Outcome |
|------------------|----------|-----|-----|--------------|------------|--------------------------|------------------------|---------|
| 1959 [10]        | Chicago, IL | 50 M | None | No           | Blood and sputum | Chloramphenicol and oxytetracycline | Survived |
| 1968 [11]        | Chapel Hill, NC | 49 M | Alcohol | No | Blood and lung tissue (autopsy) | Penicillin G | Died |
| 1973 [12]        | Baltimore, MD | 69 M | CKD | Yes | Tracheal aspirate and pleural fluid | Tetracycline | Died |
| 1976 [13]        | Houston, TX | 50 M | Alcohol, tobacco | Yes | Blood and tracheal aspirate | Gentamicin and carbenicillin | Survived |
| 1977 [14]        | Philadelphia, PA | 33 F | Alcohol, tobacco | No | Sputum | Gentamicin and cephalothin | Died |
| 1979 [15]        | Dallas, TX | 58 M | Alcohol, asthma | ? | Blood | Cindamycin and gentamicin | Died |
| 1981 [16]        | Hartford, CT | 41 M | Alcohol, pancreatitis, hepatitis | Yes | Blood and tracheal aspirate | Penicillin, gentamicin, and carbenicillin | Survived |
| 1987 [17]        | San Antonio, TX | 56 M | Pneumoconiosis | Yes | Blood and sputum | Penicillin G | Died |
| 1993 [18]        | Chicago, IL | 54 F | Tobacco | Yes | Sputum | Gentamicin and cindamycin | Died |
| 1999 [19]        | Tampa, FL | 80 M | None | No | BAL | Trimethoprim-sulfamethoxazole | Survived |
| 2017 Atlanta, GA | 41 M | Alcohol | Yes | Blood and BAL | Ampicillin-sulbactam and levofloxacin | Survived |

Abbreviations: ?, unreported data; BAL, bronchoalveolar lavage; CKD, chronic kidney disease; F, female; M, male.

---

**Box 1. Characteristics Of The Cap-Ab Syndrome**

- Rapid onset of symptoms with fulminant disease
- Alcohol use disorder, especially binge episode
- Leukopenia
- Middle-aged men
- Tobacco use
- Right > left lung infiltrates
- Warm moist environments
leukopenia, and bacteremia are all common. A right-lung pre-
dominance has been noted, which likely implicates an element of 
aspiration to the pathogenesis of this condition [9]. Taking 
to account characteristics from multiple series, a distinct clin-
cal syndrome of CAP-AB emerges (Box 1).
To date, 19 cases of CAP-AB have been reported in North 
America (Table 1). While most cases of CAP-AB in Southeast 
Asia and Australia have been reported since the late 1990s, most 
North American cases were published between 1959 and 1981, 
with the most recent report from 1999 [10–19]. Overall, these 
North American cases conform to the typical presentation of 
the “CAP-AB syndrome” described outside of North America. 
Most patients were middle-aged (median age, 54 years), male 
(15/19), and reported a history of alcohol use (10/19). All but 
two patients presented with a rapid-onset of illness with ≤3 days 
of symptoms and fulminant disease. Eleven of 15 patients with 
reported information on respiratory support required mecha-
nical ventilation. Our patient was the only case with the use of 
ECMO for cardiopulmonary support. Mortality was high 
(42%), although many of the cases occurred prior to the advent 
of modern diagnostic and therapeutic advances, which is exem-
plified by the frequent use of aminoglycosides as definitive ther-
apy (13/19 cases).
It is possible that CAP-AB in North America occurs more 
frequently but is underreported because identification of 
Acinetobacter is not noteworthy outside of the community-ac-
cquired context. It is also possible that climate plays a role in 
identification of only a small number of cases in the north-
ern hemisphere, as the majority of cases have been identified in 
tropical locations [2]. Studies have demonstrated that even 
health care–associated cases may have some seasonal variation. 
For example, when surveillance data on Acinetobacter infec-
tions were collected at Yale–New Haven Hospital from 1990– 
1992, the incidence during the summer months was more than 
double the incidence during the remainder of the year [20]. The 
fact that our patient became critically ill during the winter is 
therefore unusual, although multiple cities in Alabama docu-
mented record high average temperatures throughout the year 
of this patient’s illness [21]. The etiology of this association of 
cases with warmer temperatures remains unknown and is a 
potential area for further study, especially as it suggests that 
climate change could ultimately influence disease prevalence.

CONCLUSION
This case is a representative example of the CAP-AB syn-
drome in a patient in the Southeast United States in 2017. 
While much focus is appropriately directed toward multid-
rug-resistant nosocomial Acinetobacter infections, we pres-
ent this case to raise awareness of the presence of CAP-AB 
and document its contemporary existence outside of its typ-
ical area of endemicity. Previous reported cases in North 
America have been sporadic and infrequent since the 1950s,