The Effect of Deep Brain Stimulation Therapy on Fear-Related Capture of Attention in Parkinson’s Disease and Essential Tremor: A Comparison to Healthy Individuals

Corrie R Camalier1,2,*, Maureen McHugo1, David H Zald4 and Joseph S Neimat1
1Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
2Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), Bethesda, MD, USA
3Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
4Departments of Psychology, Psychiatry and Behavioral Sciences, Vanderbilt University Nashville, TN, USA

Abstract

In addition to motor symptoms, Parkinson’s disease (PD) involves significant non-motor sequelae, including disruptions in cognitive and emotional processing. Fear recognition appears to be affected both by the course of the disease and by a common interventional therapy, deep brain stimulation of the subthalamic nucleus (STN-DBS). Here, we examined if these effects extend to other aspects of emotional processing, such as attentional capture by negative emotional stimuli. Performance on an emotional attentional blink (EAB) paradigm, a common paradigm used to study emotional capture of attention, was examined in a cohort of individuals with PD, both on and off STN-DBS therapy (n=20). To contrast effects of healthy aging and other movement disorder and DBS targets, we also examined performance in a healthy elderly (n=20) and young (n=18) sample on the same task, and a sample diagnosed with Essential Tremor (ET) (n=18). All four groups showed a robust attentional capture of emotional stimuli, irrespective of aging processes, movement disorder diagnosis, or stimulation. PD patients on average had overall worse performance, but this decrement in performance was not related to the emotional capture of attention. PD patients exhibited a robust EAB, indicating that the ability of emotion to direct attention remains intact in PD. Congruent with other recent data, these findings suggest that fear recognition deficits in PD may instead reflect a highly specific problem in recognition, rather than a general deficit in emotional processing of fearful stimuli.

Keywords: Parkinson’s disease; Essential tremor; Deep brain stimulation; Emotional blink; Attention; DBS; STN; VIM

Introduction

Parkinson’s disease (PD) is a neurodegenerative movement disorder that also has significant and increasingly appreciated non-motor symptoms. For example, patients with PD exhibit deficits in the recognition of emotion, particularly in the recognition of fear and disgust [1-14]. The source and extent of these recognition deficits is unclear, as some early components of emotion processing appear spared [15-17]. It is also unclear to what degree a common neurosurgical therapy, deep brain stimulation of the subthalamic nucleus (STN-DBS), affects these emotional deficits. Some studies report impaired fear recognition to faces following STN-DBS [10,18-20], which suggests that emotion recognition is affected by stimulation of the affected motor structures in PD (possibly via degradation of the limbic loop of the basal ganglia [21]).

To bring new light to the understanding of the nature of these deficits, we turn to emotion’s ability to route attentional resources. In healthy individuals, highly emotional stimuli such as those conveying threat, “capture” attention. This capture of attention is commonly studied using the emotional attentional blink (EAB) paradigm [22]. In this, the presentation of a task-irrelevant, strongly emotional distractor image transiently impairs the ability to detect a target presented later. Given the evidence for fear-related emotion recognition deficits in PD, it seems reasonable to ask if emotional capture of attention is impaired in PD, and if therapeutic STN-DBS affect it the prediction is if key processes involved in emotion recognition and the EAB are shared, then one would expect a reduced EAB in PD relative to controls. By contrast, if aspects of emotion recognition and attentional capture rely on different processes, the EAB may be intact relative to controls. Furthermore, if STN-DBS were shown to affect the magnitude of the EAB, then it would suggest that emotion’s ability to capture attention and emotion recognition share common processing substrates. An intriguing alternative possibility to the hypothesis that emotion deficits are from degradation of the limbic loop in PD [21] is that the emotion deficits are instead tied to deficits in movement processing. Emotion is a powerful modulator of behavior, and emotional experience is often tied to the modulation of motor system function. In humans, highly emotional images, both appetitive and aversive, increase motor system excitability [23], and deficits in emotional processing in PD have been taken as evidence for the tight coupling of motor and emotional processing. Thus, a complementary aim of this study was to test whether motor disruptions due to other movement disorders and DBS stimulation of other motor regions will affect the EAB. Essential Tremor (ET) is a movement disorder characterized by tremor of the arms, hands, and other body parts during intentional movement. Supporting the suggestion that emotion and motor structures may be linked, ET patients may also exhibit subtle emotion impairments, such as mood dysregulation [24,25]. DBS of the ventral-intermediate nucleus (VIM-DBS), a motor nucleus of the thalamus, is used to improve symptoms

*Corresponding author: Corrie R. Camalier, Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), 49 Convent Dr., Room 1880, Bethesda, MD 20892-4415, USA, Tel: 615-322-5000; E-mail: camalier@gmail.com

Received January 31, 2018; Accepted February 23, 2018; Published February 27, 2018

Citation: Camalier CR, McHugo M, Zald DH, Neimat JS (2018) The Effect of Deep Brain Stimulation Therapy on Fear-Related Capture of Attention in Parkinson’s Disease and Essential Tremor: A Comparison to Healthy Individuals. J Neurol Disord 6: 377. doi:10.4172/2329-6895.1000377

Copyright: © 2018 Camalier CR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Subjects performed an EAB task in which they were instructed to monitor a rapid serial visual presentation (RSVP) stream of upright images for a rotated image. Either 2 or 8 images before the target image, a distractor image was presented that was either neutral (lamp) or fear-inducing (bear). At the end of the RSVP stream the reported the direction of the rotated target.
left and half were rotated 90 degrees to the right. Within the RSVP stream there were two types of non-target images: standard images - 256 upright landscape/architectural photos, and critical distractors - 40 images consisting of 2 categories (20 fear, 20 neutral). Fear pictures included animals bearing teeth in a threatening manner, humans brandishing weapons, and explosions. Neutral pictures included images of tables, lamps, and plants. Critical distractor images were taken from the International Affective Picture System [31], supplemented with images from publicly available online sources. Valence and arousal ratings were not obtained from individual subjects in this experiment due to time limitations, but these images have been used in previous EAB paradigms within the lab and generally induce a strong EAB.

Each session contained 120 trials; in half of these trials the critical distractor conveyed fear/threat and the other half were neutral. On each trial, a critical distractor appeared in the 4th, 6th, or 8th position in the RSVP stream. A rotating target appeared 200 or 800 ms (lag 2 or 8) following the critical distractor. The critical distractor and target rotation were fully counterbalanced within a session. At the end of the RSVP stream, subjects were asked to indicate by a no speeded key press or verbal response whether they detected a target rotated to the left, right or if a target was absent. Before the experimental session began, subjects completed at least 10 practice trials in which no critical distractor was presented. The task was programmed in E-Prime 1.2 (Psychology Software Tools, Pittsburgh, PA). For the STN- and VIM-DBS groups, each participant had two sessions within the same day: bilateral stimulation ON vs. OFF. Stimulation order was counterbalanced within each group, and at least 15 minutes could elapse after change of stimulation settings [32]. Images in the RSVP stream were presented every 100 ms and remained on screen for that time. However, during piloting, the initial cohort of PD STN-DBS patients (n=6) performed at chance (~50% accuracy) in the neutral control lag 8 condition (and all other conditions), indicating that the presentation duration was too fast for the patients to accurately see any of the targets. Consistent with adjustments made in other studies with patient populations [33], for the PD group only we increased presentation duration to 120 ms. This minor extension is necessary since the measure of interest was whether attention is differentially captured following an emotional stimulus and intact performance on the neutral condition at lag 8 was an important prerequisite. A separate 20 PD patients were recruited and run on this improved version.

The EAB measure and analysis

The EAB is a substantial decrement in detection accuracy when the rotated target is presented quickly after a threatening image (lag 2) relative to when the target is presented later in the stream (lag 8) or following a neutral image at any lag. To measure it, proportion of correctly detected target rotation is calculated for each emotion (fear/neutral) and lag (2/8) condition. To determine if the EAB is present in a given group, the comparison of interest is an emotion × lag interaction. As a secondary measure for comparing performance between groups, we calculated “blink amount” defined as the difference in accuracy between the lag 2 neutral and fear condition, also called “disengagement efficiency index” [34]. This measure provides an index of emotion induced capture of attention at a single point in time and does not depend on how performance recovers over time. For all analyses, we performed appropriate analyses of variance analyses (ANOVAs) with posthoc Tukey tests to examine group differences, if any. Stimulation order (ON/OFF DBS) was fully counterbalanced within and across groups, but as a control, we re-ran analyses with stimulation order as an additional factor and no effects changed. As a further additional control to examine habituation effects, we examined the emotion accuracy for the PD and VIM groups (who both ran two sessions), split by session half (first half of session vs. second half of session). Session half or any interaction with it was not significant; yielding further evidence that habituation was not a factor in the experiment. Statistical analysis was performed with SPSS (Armonk, NY), and criteria for significance was set such that α=0.05.

Results

Validation of the EAB in the elderly

To first establish the validity of the EAB paradigm in the healthy elderly, we compared performance between matched cohorts of healthy aged (HEC) and healthy young (HYC). (Figures 2A and 2B) show target detection performance for these groups and note that both groups exhibit a robust EAB: a substantial decrement in performance when the rotated target is presented quickly after a threatening image (lag 2) relative to when the target is presented later in the stream (lag 8) or following a neutral image at any lag. This similarity in performance validates this paradigm in the elderly. These effects were confirmed by a $2 \times 2 \times 2$ (emotion × lag × group) mixed within/between subjects ANOVA (emotion: F(1,36)=96.5, p<0.01, lag: F(1,36)=115.0, p<0.01, group: F(1,36)=0.63, p>0.05; no interaction terms reached significance except emotion × lag, F(1,36)=42.7, p<0.01), indicating a fear-based emotional blink of attention.

The EAB is unaffected by movement disorder diagnosis and DBS therapy

Figure 2C shows performance in the PD group both ON and OFF STN-DBS stimulation. An attentional blink was seen following the threat images; however, STN-DBS stimulation did not affect performance in any condition. These effects were confirmed by a $2 \times 2 \times 2 \times 2$ (emotion × lag × stimulation × stimulation order) mixed within/between subjects ANOVA (emotion: F(1,18)=20.7, p<0.01, lag: F(1,18)=44.2, p<0.01, stimulation: F(1,18)=0.04, p>0.05, order: F(1,18)=1.3, p>0.05, no interaction terms reached significance except emotion × lag, F(1,18)=36.4, p<0.01), indicating a fear-based emotional blink of attention. Figure 2D shows performance in the ET group both ON and OFF VIM-DBS stimulation. Like the PD group, they also showed a robust EAB that is unaffected by DBS therapy. These effects were confirmed by a $2 \times 2 \times 2 \times 2$ (emotion × lag × stimulation × stimulation order) mixed within/between subjects ANOVA (emotion: F(1,18)=20.7, p<0.01, lag: F(1,18)=44.2, p<0.01, stimulation: F(1,18)=0.04, p>0.05, order: F(1,18)=1.3, p>0.05, no interaction terms reached significance except emotion × lag, F(1,18)=36.4, p<0.01), indicating a fear-based emotional blink of attention.
was neither emotion nor lag specific and thus was unrelated to the
a slightly slower version of the task. This decrement in performance
blink, irrespective of aging processes or movement disorder diagnosis.
DBS. Contrary to expectations, all four groups showed an emotional
capturing and the presumably optimal state of the PD and ET groups, both in
the DBS-ON condition. This is visualized in Figure 3 as the mean of
each subject’s differences in accuracy between lag 2 neutral vs lag 2 emotions (the “blink amount”) for each sample. Overall blink amount significantly differed between groups, an effect driven by the difference between HYC and ET, but there was not a significant interaction of group and emotion, indicating that performance in the emotional condition did not differ between groups relative to the control condition (2 × 4 (emotion × group) mixed within/between subject ANOVA on blink amount (effect of emotion F(1,16)=85.1, p<0.01, group F(3,72)=3.4, p=0.02, no interaction, Tukey posthoc tests n.s. except for HYC vs. ET p=0.02). Thus, groups did not appear to differ in the amount of emotional attentional blink that these images induced, despite differences in movement disorder diagnosis, therapeutic state, and age.

Discussion
We examined whether individuals with PD show reduced threat-based emotional attentional blink consistent with reports of reduced fear recognition. Further, we examined the effect of therapeutic STN-DBS on attentional blink magnitude to understand the effects of neuroanatomically precise interventions on this measure. We also compared the existence and magnitude of the EAB in the healthy elderly, healthy young, and individuals with ET on and off therapeutic VIM-DBS. Contrary to expectations, all four groups showed an emotional blink, irrespective of aging processes or movement disorder diagnosis. PD patients, on average, had overall poorer performance, even with a slightly slower version of the task. This decrement in performance was neither emotion nor lag specific and thus was unrelated to the stimulus driven capture of attention but was instead probably due to
general cognitive slowing in this population [35]. These findings help constrain the range of features in affective processing that are altered in PD. Rather than a broad deficit in affective processing, PD may impact recognition of certain emotions in faces, voices and other mediums, but not the ability of emotional stimuli to capture attention. In considering this difference, it is useful to consider the involuntary, stimulus driven nature of the emotional attentional blink. The task does not require speeded movements (including eye movements), and EAB existence does not depend on goal directed attentional mechanisms. As such, our data are consistent with studies reporting normal early responses to emotional images in PD, such as the pupillary response and the early posterior negativity [12,15].

In addition to no differences in magnitude across groups, the magnitude of the EAB was unaffected by therapeutic DBS. Several reports suggest STN-DBS can affect emotional processing, such as emotional face recognition [10,18,19]. This dissociation between deficits in explicit fear recognition shown previously and intact performance in more implicit tasks such as the EAB shown in the present study suggest that the course of the disease and therapeutic condition may differentially affect some emotional processing pathways. Indeed, while STN-DBS therapy appears to have effects on some aspects of executive functions broadly defined, which include some measures of attention [36-39], there appear to be no DBS effects on an emotional image’s power to siphon attentional resources, consistent with the automatic stimulus-driven nature of this phenomenon. In ET patients, the EAB was also unaffected by therapeutic VIM-DBS. This group is an ideal population with which to compare PD performance, as they are both elderly movement disorder groups undergoing therapeutic stimulation of motor-related structures with similar neurosurgical processes used for implantation. The finding that neither STN- nor VIM-DBS affect the EAB suggests that while some aspects of emotion may be tightly linked to the motor system, modulating the motor system per se does not have an obligatory effect on the allocation of attention resources to threatening images; nor does therapeutic deep brain stimulation of the STN or VIM, or the neurosurgical process per se, produce untoward effects on these processes.

One important caveat to this study is that stimuli typically used for the EAB (threatening images of humans and animals), are different from those used for emotion recognition (often, but not exclusively, faces). In contrast to the results with emotional images [12], the EAB's measure of early processing, has been reported to be abnormal in response to faces in PD [16], which may suggest differences in the way that facial vs. other emotional stimuli are processed [40], again suggesting that the range of affective disturbance in PD may be restricted. Images used in this study were optimal to examine disease and stimulation effects on fear-based capture of attention, as faces are generally only weak emotional inducers of the EAB [41]. Nevertheless, the fact that we did not collect data regarding emotional faces limits our ability to determine what features more precisely allow the EAB to be preserved in PD patients. It would be an interesting extension to test recognition of emotional faces and the EAB in the same sample of patients to determine if EAB responses are truly dissociable from emotion recognition deficits. While our data make clear that EAB is generally intact in PD, evidence for dissociation would require examination of EABs in patients with demonstrable deficits in emotional recognition. In addition, it may be noted that the PD patients in this study were reasonably high functioning in that their mean current IQ was in the average range and we excluded cases where there was evidence of dementia after review of medical records and our own IQ testing. Thus, the results may not generalize to PD patients with severe cognitive deficits. However, given that the patients in the study had severe
enough symptoms to warrant STN-DBS, the level of PD symptoms was clearly substantial and representative of the common expression of PD. Critically the preservation of the EAB suggests that to the extent that either PD or STN-DBS are related to cognitive deficits, they are not interfering with the expression of the EAB.

Conclusion

In summary, this study shows that despite previous reports of deficits in fear recognition, PD patients still show a robust fear-based EAB. The inclusion of the EAB task to the growing literature examining emotional function in PD allows greater specificity in understanding the nature of emotional deficits, as it does not rely on nonemotionally processing components known to be affected by PD, such as eye movements. In addition, it suggests that stimulation of common neurological processing targets for DBS, such as the VIM and the STN, do not affect measures of fear impacting attentional resources.

Acknowledgments

We thank all of our patients and controls for their participation, Dr Sohee Park for useful discussions, and Alice Y. Wang and Lindsey G. McIntosh for assistance. We thank all of our patients and controls for their participation, Dr Sohee Park for useful discussions, and Alice Y. Wang and Lindsey G. McIntosh for assistance.

References

1. McIntosh LG, Mannava S, Camalar CR, Folley BS, Abritton A, et al. (2014) Emotion recognition in early Parkinson’s disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants. Front Aging Neurosci 6: 349.

2. Ariati A, Benuzzi F, Nichelli P (2008) Recognition of emotions from visual and prosodic cues in Parkinson’s disease. Neuror Sci 29: 219-227.

3. Dara C, Monetta L, Pell MD (2008) Vocal emotion processing in Parkinson’s disease: reduced sensitivity to negative emotions. Brain Res 1188: 100-111.

4. Alonso-Recio L, Martin-Plasencia P, Loeches-Alonso A, Serrano-Rodriguez R (2008) Recognition of emotions from visual and prosodic cues in early Parkinson’s disease patients. Parkinsonism Relat Disord 14: 301-305.

5. Clark US, Neargarder S, Cronin-Golomb A (2008) Specific impairments in the recognition of emotional facial expressions in Parkinson’s disease. Psychophysiology 46: 2300-2309.

6. Dujardin K, Blairly S, Defevre L, Duhem S, Noel Y, et al. (2004) Deficits in decoding emotional facial expressions in Parkinson’s disease. Neurology 42: 239-250.

7. Hillier A, Bevernsdorq DJ, Raymer AM, Williamson DJ, Heilman KM (2007) Abnormal emotional word ratings in Parkinson’s disease. Neurocase 13: 81-85.

8. Kawamura M, Kobayakawa M (2009) Emotional impairment in Parkinson’s disease. Parkinsonism Relat Disord 15: 1-8: S47-52.

9. Lima CF, Garrett C, Castro SL (2013) Not all sounds sound the same: Parkinson’s disease affects differently emotion processing in music and in speech prosody. J Clin Exp Neuropsychol 35: 373-392.

10. Peron J, Biseul I, Leray E, Vicente S, Le Jeune F, et al. (2010) Subthalamic nucleus stimulation affects fear and sadness recognition in Parkinson’s disease. Neuropsychology 24: 1-8.

11. van Tricht MJ, Smeding HM, Speelman JD, Schmand BA (2003) Emotion processing in Parkinson’s disease: dissociation between early neuronal processing and explicit ratings. Clin Neurophysiol 114: 94-102.

12. Wieser MJ, Klupp E, Weyers P, Pauli P, Weise D, et al. (2012) Reduced early visual emotion discrimination as an index of diminished emotion processing in Parkinson’s disease? - Evidence from event-related brain potentials. Cortex 48: 1207-1217.

13. Dietz J, Bradley MM, Jones J, Okun MS, Perlstein WM, et al. (2013) The late positive potential, emotion and apathy in Parkinson’s disease. Neuropsychologia 51: 960-966.

14. Peron J, Biseul I, Sauleau P, Haegelen C, Trebon P, Drapier D, et al. (2005) Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson’s disease. Neuropsychologia 43: 1054-1059.

15. Dujardin K, Blairly S, Defevre L, Kuyskowelak P, Hess U, et al. (2004) Subthalamic nucleus stimulation induces deficits in decoding emotional facial expressions in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75: 202-208.

16. Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76: 393-413.

17. McHugo M, Olunubi BO, Zald DH (2013) The emotional attentional blink: what we know so far. Front Hum Neurosci 7: 151.

18. Hajcak G, Molnar C, George MS, Bolger K, Koola J, et al. (2007) Emotion facilitates action: a transcranial magnetic stimulation study of motor cortex excitability during picture viewing. Psychophysiology 44: 91-97.

19. Chandran V, Patel PK (2012) Essential tremor: beyond the motor features. Parkinsonism Relat Disord 18: 407-413.

20. Auzou N, Foubert-Samier A, Dupuy S, Meissner WG (2014) Facial emotion recognition is inversely correlated with tremor severity in essential tremor. J Neurosci Transl 121: 347-351.

21. Smit M, Stowe R, Patel S, Rick C, Gray R, et al. (2010) Systematic Review of Levodopa Dose Equivalency Reporting in Parkinson’s Disease. Mov Disord 25: 2649-2653.

22. Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8 University of Florida, Gainesville, FL.

23. Camalar CR, Wang AY, McIntosh LG, Park S, Neimat JS (2017) Subthalamic nuclei deep brain stimulation affects distractor interference in auditory working memory. Neuropsychology 97: 66-71.

24. Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411: 305-309.

25. Olatunji BO, Geselski BG, Zald DH (2013) A selective impairment in attentional disengagement from erotica in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 35: 1977-1982.

26. Sawamoto N, Honda M, Hanakawa T, Fukuyama H, Shibasaki H (2002) Cognitive slowing in Parkinson’s disease: a behavioral evaluation independent of motor slowing. J Neurol Sci 21: 519-523.

27. Jahanshahi M, Aurdoin CM, Brown RG, Rothwell JC, Oresjo J, et al. (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73: 123-1234.

28. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the
subthalamic nucleus in Parkinson’s disease. Brain 123: 2091-2108.

38. Witt K, Daniels C, Reiff J, Krack P, Volkman J, et al. (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: A randomised, multicentre study. Lancet Neurol 7: 605-614.

39. Aron AR, Herz DM, Brown PB, Forstmann BU, Zaghloul KA (2016) Frontosubthalamic circuits for control of action and cognition. J Neurosci 36: 11489-11495.

40. Sabatinelli D, Fortune EE, Li Q, Siddiqui A, Krafft C, et al. (2011) Emotional perception: meta-analyses of face and natural scene processing. Neuroimage 54: 2524-2533.

41. Stein T, Zwickel J, Ritter J, Kitzmantel M, Schneider WX (2009) The effect of fearful faces on the attentional blink is task dependent. Psychon Bull Rev 16: 104-109.