EXAMPLES OF DE BRANGES-ROVNYAK SPACES GENERATED BY NONEXTREME FUNCTIONS

BARTOSZ ŁANUCHA, MARIA T. NOWAK

Abstract. We describe de Branges-Rovnyak spaces $\mathcal{H}(b_{a})$, $\alpha > 0$, where the function b_{a} is not extreme in the unit ball of H^{∞} on the unit disk \mathbb{D}, defined by the equality $b_{a}(z)/a_{\alpha}(z) = (1 - z)^{-\alpha}$, $z \in \mathbb{D}$, where a_{α} is the outer function such that $a_{\alpha}(0) > 0$ and $|a_{\alpha}|^{2} + |b_{a}|^{2} = 1$ a.e. on $\partial\mathbb{D}$.

1. Introduction

Let H^{2} denote the standard Hardy space in the open unit disk \mathbb{D} and let $T = \partial\mathbb{D}$. For $\chi \in L^{\infty}(T)$ let T_{χ} denote the bounded Toeplitz operator on H^{2}, that is, $T_{\chi}f = P_{\chi}(\chi f)$, where P_{χ} is the orthogonal projection of $L^{2}(T)$ onto H^{2}. In particular, $S = T_{\chi}$ is called the shift operator. We will denote by $M(\chi)$ the range of T_{χ} equipped with the range norm, that is, the norm that makes the operator T_{χ} a coisometry of H^{2} onto $M(\chi)$.

Given a function b in the unit ball of H^{∞}, the de Branges-Rovnyak space $\mathcal{H}(b)$ is the image of H^{2} under the operator $(I - T_{b}T_{b}^{*})^{1/2}$ with the corresponding range norm $\| \cdot \|_{b}$.

It is known that $\mathcal{H}(b)$ is a Hilbert space with reproducing kernel

$$k_{b}^{a}(z) = \frac{1 - b(w)b(z)}{1 - wz} \quad (z, w \in \mathbb{D}).$$

Here we are interested in the case when the function b is not an extreme point of the unit ball of H^{∞}. Then there exists an outer function $a \in H^{\infty}$ for which $|a|^{2} + |b|^{2} = 1$ a.e. on T. Moreover, if we suppose that $a(0) > 0$, then a is uniquely determined, and, following Sarason, we say that (b, a) is a pair. The function a is sometimes called the Pythagorean mate associated with b.

It is known that both $M(a)$ and $M(\overline{a})$ are contained contractively in $\mathcal{H}(b)$ (see [10] p. 25)). Moreover, if (b, a) is a corona pair, that is, $|a| + |b|$ is bounded away from 0 in \mathbb{D}, then $\mathcal{H}(b) = M(\overline{a})$ (see e.g. [10] p. 62)).

Let us recall that the Smirnov class \mathcal{N}^{+} consists of those holomorphic functions in \mathbb{D} that are quotients of functions in H^{∞} in which the denominators are outer functions. If (b, a) is a pair, then the quotient $\varphi = b/a$ is in \mathcal{N}^{+}, and conversely, for every nonzero function $\varphi \in \mathcal{N}^{+}$ there exists a unique pair (b, a) such that $\varphi = b/a$ ([11]).

Many properties of $\mathcal{H}(b)$ can be expressed in terms of the function $\varphi = b/a$ in the Smirnov class \mathcal{N}^{+}. It is worth noting here that if φ is rational, then the functions a and b in the representation of φ are also rational (see [11]) and in such a case (b, a) is called a rational pair. Recently spaces $\mathcal{H}(b^{r})$ for rational pairs have been studied in [11], [2] and [6]. In [2] the authors described also the spaces $\mathcal{H}(b^{r})$, where b is a rational outer function in the closed unit ball of H^{∞} and r is a positive number.

2010 Mathematics Subject Classification. 47B32, 30H10, 30H15.

Key words and phrases. Hardy space, de Branges-Rovnyak space, Smirnov class, rigid function.
Here we describe the Branges-Rovnyak spaces \(\mathcal{H}(b_\alpha) \), \(\alpha > 0 \), where \((b_\alpha, a_\alpha)\) is such a pair that
\[
\varphi(\alpha)(z) = \frac{b_\alpha(z)}{a_\alpha(z)} = \frac{1}{(1 - z)^\alpha}.
\]
(principal branch).

For a function \(\varphi \) that is holomorphic on \(\mathbb{D} \) we define \(T_\varphi \) to be the operator of multiplication by \(\varphi \) on the domain \(\mathcal{D}(T_\varphi) = \{ f \in H^2 : \varphi f \in H^2 \} \). It is well known that \(T_\varphi \) is bounded on \(H^2 \) if and only if \(\varphi \in H^\infty \). Moreover, it was proved in [11] that the domain \(\mathcal{D}(T_\varphi) \) is dense in \(H^2 \) if and only if \(\varphi \in \mathcal{N}^+ \). More precisely, if \(\varphi \) is a nonzero function in \(\mathcal{N}^+ \) with canonical representation \(\varphi = b/a \), then \(\mathcal{D}(T_\varphi) = aH^2 \). In this case \(T_\varphi \) has a unique, densely defined adjoint \(T_\varphi^* \). In what follows we denote \(T_\varphi = T_\varphi^* \) (see [11] p. 286) for more details. The next theorem says that the domain of \(T_\varphi \) coincides with the de Branges-Rovnyak space \(\mathcal{H}(b) \).

Theorem 1.1 ([11]). Let \((b, a)\) be a pair and let \(\varphi = b/a \). Then the domain of \(T_\varphi \) is \(\mathcal{H}(b) \) and for \(f \in \mathcal{H}(b) \),
\[
\|f\|^2 = \|f\|^2 + \|T_\varphi f\|^2.
\]

The next proposition was also proved in [11].

Proposition 1.2 ([11]). If \(\varphi \) is in \(\mathcal{N}^+ \), \(\psi \) is in \(H^\infty \), and \(f \) is in \(\mathcal{D}(T_\varphi) \), then
\[
T_\psi T_\varphi f = T_\varphi T_\psi f = T_{\varphi \psi} f.
\]

Corollary 1.3. Let \(\varphi_1, \varphi_2 \in \mathcal{N}^+ \) have canonical representations \(\varphi_i = b_i/a_i \), \(i = 1, 2 \). If \(\varphi_2/\varphi_1 \in H^\infty \), then \(\mathcal{H}(b_1) \subset \mathcal{H}(b_2) \).

Proof. Put \(\psi = \varphi_2/\varphi_1 \). It follows from Proposition [1.2] that \(\mathcal{D}(T_{\varphi_1}) \subset \mathcal{D}(T_{\varphi_1 \psi}) \), and so
\[
\mathcal{H}(b_1) \subset D(T_{\varphi_1}) \subset D(T_{\varphi_1 \psi}) = D(T_{\varphi_2}) = \mathcal{H}(b_2).
\]

In the proof of our main theorem we will use the following description of invertible Toeplitz operators with unimodular symbols.

Devinatz-Widom Theorem ([7], p. 250). Let \(\psi \in L^\infty(\partial \mathbb{D}) \) be such that \(|\psi| = 1 \) a.e. on \(\partial \mathbb{D} \).

The following are equivalent.

(a) \(T_\psi \) is invertible.

(b) \(\text{dist}(\psi, H^\infty) < 1 \) and \(\text{dist}(\overline{\psi}, H^\infty) < 1 \).

(c) There exists an outer function \(h \in H^\infty \) such that \(\|\psi - h\|_\infty < 1 \).

(d) There exist real valued bounded functions \(u, v \) and a constant \(c \in \mathbb{R} \) such that \(\psi = e^{i(u + v + c)} \) and \(\|u\|_\infty < \frac{\pi}{2} \), where \(\overline{v} \) denotes the conjugate function of \(v \).

We will need also the notion of a rigid function in \(H^1 \). A function in \(H^1 \) is called rigid if no other functions in \(H^1 \), except for positive scalar multiples of itself, have the same argument as almost everywhere on \(\partial \mathbb{D} \). As observed in [9], every rigid function is outer. It is known that the function \((1 - z)^\alpha\) is rigid if \(0 < \alpha \leq 1 \) and is not rigid if \(\alpha > 1 \) (see e.g. [4] Section 6.8).

The next theorem shows a close connection between kernels of Toeplitz operators and rigid functions in \(H^1 \) ([10] p. 70).

Theorem 1.4. If \(f \) is an outer function in \(H^2 \), then \(f^2 \) is rigid if and only if the operator \(T_{f^2} \) has a trivial kernel.

Moreover, for a pair \((b, a)\) the following sufficient condition for density of \(\mathcal{M}(a) \) in \(\mathcal{H}(b) \) is known ([10] p. 72), ([4] vol. 2, p. 496).

Theorem 1.5. If the function \(a^2 \) is rigid, then \(\mathcal{M}(a) \) is dense in \(\mathcal{H}(b) \).
2. The spaces $\mathcal{H}(b_\alpha)$, $\alpha > 0$

Recall that for $\alpha > 0$ we define the pair (b_α, a_α) by

$$\varphi_\alpha(z) = \frac{b_\alpha(z)}{a_\alpha(z)} = \frac{1}{(1-z)^\alpha}.$$

Consequently, the outer function a_α is given by

$$a_\alpha(z) = \exp \left\{ \frac{1}{4\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log \frac{|1 - e^{it}|^{2\alpha}}{1 + |1 - e^{it}|^{2\alpha}} dt \right\}. \quad (2.1)$$

Since both a_α and $(1-z)^\alpha$ are outer functions, the equality $(1-z)^\alpha b_\alpha(z) = a_\alpha(z)$ implies that b_α is also outer. Hence

$$b_\alpha(z) = a_\alpha(z) \varphi_\alpha(z) = \exp \left\{ \frac{1}{4\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log \frac{1}{1 + |1 - e^{it}|^{2\alpha}} dt \right\}. \quad (2.2)$$

This formula shows that $\log |b_\alpha(z)|$ is a function harmonic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. Moreover, $|b_\alpha(1)| = 1$. We now prove that actually $b_\alpha(1) = 1$. To this end, it is enough to note that $\arg b_\alpha(r) = 0$ for all $0 < r < 1$. Indeed,

$$\arg b_\alpha(r) = \frac{1}{4\pi} \int_0^{2\pi} \text{Im} \left(\frac{e^{it} + r}{e^{it} - r} \right) \log \frac{1}{1 + |1 - e^{it}|^{2\alpha}} dt$$

$$= -\frac{1}{4\pi} \int_{-\pi}^{\pi} \frac{2r}{|e^{it} - r|^2} \log \frac{1}{1 + |1 - e^{it}|^{2\alpha}} dt = 0,$$

because the integrand is an odd function.

The following proposition says for which α a nontangential limit at 1 of each function (and its derivatives up to a given order) from $\mathcal{H}(b_\alpha)$ exists.

Proposition 2.1. Let $n \in \mathbb{N}$. Every $f \in \mathcal{H}(b_\alpha)$ along with its derivatives up to order $n-1$ has a nontangential limit at the point 1 if and only if $\alpha > n-1/2$.

This is a consequence of Theorem 3.2 from [5] (see also [10] and [2]), which states that the following two conditions are equivalent:

(i) for every $f \in \mathcal{H}(b_\alpha)$ the functions $f(z), f'(z), \ldots, f^{(n-1)}(z)$ have finite limits as z tends nontangentially to 1;

(ii)

$$\int_0^{2\pi} \frac{\log |b_\alpha(e^{it})|}{|1 - e^{it}|^{2\alpha}} dt < +\infty.$$

Since

$$\log |b_\alpha(e^{it})|^2 = \log \frac{1}{1 + |1 - e^{it}|^{2\alpha}} = \log \left(1 - \frac{|1 - e^{it}|^{2\alpha}}{1 + |1 - e^{it}|^{2\alpha}} \right)$$

and $|\log (1-x)| \approx |x|$ for x sufficiently close to zero, we have

$$\log |b_\alpha(e^{it})| \approx \frac{|1 - e^{it}|^{2\alpha}}{1 + |1 - e^{it}|^{2\alpha}} \approx |1 - e^{it}|^{2\alpha}$$

whenever t is sufficiently close to 0 or 2π. This implies that

$$\int_0^{2\pi} \frac{\log |b_\alpha(e^{it})|}{|1 - e^{it}|^{2\alpha}} dt < \infty$$
if and only if

$$\int_0^{2\pi} \frac{1}{|1-e^{i t}|^{2n-2\alpha}} dt < \infty,$$

which holds only when \(\alpha > n - 1/2. \)

In particular, we see that every \(f \in \mathcal{H}(b_\alpha) \) has a nontangential limit at 1 if and only if \(\alpha > 1/2. \)

The next proposition is an immediate consequence of Corollary 1.3.

Proposition 2.2. For every \(0 < \alpha \leq \beta < \infty, \)

\(\mathcal{H}(b_\beta) \subset \mathcal{H}(b_\alpha). \)

Finally, we observe that

\[|b_\alpha(z)| \geq \sqrt{\frac{1}{1 + 4\alpha}}, \]

which implies that \((b_\alpha, a_\alpha)\) is a corona pair for \(\alpha > 0. \)

Corollary 2.3. For \(\alpha > 0, \)

\[M(a_\alpha) = M((1-z)^\alpha) \quad \text{and} \quad \mathcal{H}(b_\alpha) = M(p_\alpha) = M((1-z)^\alpha) \]

with equivalence of norms.

Proof. The equality of \(\mathcal{H}(b_\alpha) \) and \(M(p_\alpha) \) follows from the fact that \((b_\alpha, a_\alpha)\) is a corona pair, which in turn is a consequence of the fact that \(b_\alpha \) is bounded below. The latter implies that \(1/b_\alpha \in H^\infty \) and so \(T_{b_\alpha} \) and \(T_{p_\alpha} \) are invertible. Hence

\[M((1-z)^\alpha) = T_{b_\alpha} H^2 = T_{a_\alpha} H^2 \]

and

\[M((1-z)^\alpha) = T_{p_\alpha} H^2 = T_{a_\alpha} H^2. \]

Both \(M(a_\alpha) \) and \(M((1-z)^\alpha) \) are boundedly contained in \(H^2. \) Hence, the Closed Graph Theorem implies equivalence of their norms. Similarly, one obtains the equivalence of norms in \(M(p_\alpha) \) and \(M((1-z)^\alpha). \) \(\square \)

3. MAIN RESULTS

We start with the following.

Theorem 3.1. For any \(n \in \mathbb{N} \) and \(n - 1/2 < \alpha < n + 1/2 \) we have

\[M((1-z)^\alpha) = M((1-z)^\alpha) + \text{span}\{S^*(1-z)^\alpha, \ldots, S^n(1-z)^\alpha\}. \]

Proof. Let

\[Q(z) = \frac{1 - z}{1 - z}, \quad z \in \mathbb{D}. \]

Then \(Q \) has a continuous extension to \(\mathbb{D} \setminus \{1\} \) and

\[Q(e^{it}) = e^{(t-\pi)i}, \quad t \in (0, 2\pi), \]

which implies that

\[T_{Q^n} = (-1)^n S^n \quad \text{for} \ n \geq 1. \]

Moreover, we observe that for \(n - 1/2 < \alpha < n + 1/2, \ n \geq 1, \) we have

\[T_{Q^n} = T_{Q^{n-Q^n}} = (-1)^n T_{Q^{n-Q^n}} S^n. \]

Consequently,

\[T_{(1-z)^\alpha} = T_{(1-z)^{\alpha-Q^n}} = (-1)^n T_{(1-z)^{\alpha-Q^n}} T_{Q^{n-Q^n}} S^n. \]

(3.1)
Observe now that the operator $T_{Q^\alpha-n}$ is invertible. This is an immediate consequence of the Devinatz-Widom Theorem.

Let $f \in \mathcal{M}((1 - z)^\alpha)$ and $f = T_{(1-z)^\alpha}g$ for a function $g \in H^2$. Since $T_{Q^\alpha-n}$ is invertible, there exists $g_0 \in H^2$ such that $(-1)^n g = T_{Q^\alpha-n}g_0$. Hence, using (3.1), we obtain

$$f = T_{(1-z)^\alpha}g = (-1)^n T_{(1-z)^\alpha}T_{Q^\alpha-n}g_0 = (-1)^n T_{(1-z)^\alpha}S^nS^*g_0 + \sum_{k=0}^{n-1} \langle g_0, z^k \rangle z^k \left(1 + \sum_{k=0}^{n-1} \langle g_0, z^k \rangle T_{(1-z)^\alpha}T_{Q^\alpha-n}z^k\right).$$

Since for $0 \leq k \leq n - 1$,

$$(-1)^n T_{(1-z)^\alpha}T_{Q^\alpha-n}z^k = (-1)^n T_{Q^\alpha-n}S^k 1 = S^{*(n-k)}T_{(1-z)^\alpha}1 = S^{*(n-k)}(1 - z)^\alpha,$$

we get

$$f = (1 - z)^n S^n g_0 + \sum_{k=0}^{n-1} \langle g_0, z^k \rangle S^{*(n-k)}(1 - z)^\alpha \in \mathcal{M}((1 - z)^\alpha) + \text{span}\{ S^*(1 - z)^\alpha, \ldots, S^n(1 - z)^\alpha \}.$$

On the other hand, if

$$f = (1 - z)^\alpha h + \sum_{k=1}^{n} c_k S^k(1 - z)^\alpha, \quad h \in H^2,$$

then, by (3.1) and (3.2),

$$f = T_{(1-z)^\alpha}h + \sum_{k=0}^{n-1} c_{n-k} S^{*(n-k)}(1 - z)^\alpha = (-1)^n T_{(1-z)^\alpha}T_{Q^\alpha-n}S^n h + (-1)^n \sum_{k=0}^{n-1} c_{n-k} T_{(1-z)^\alpha}T_{Q^\alpha-n}z^k$$

$$= T_{(1-z)^\alpha} \left((-1)^n T_{Q^\alpha-n}S^n h + (-1)^n \sum_{k=0}^{n-1} c_{n-k} T_{Q^\alpha-n}z^k \right) \in \mathcal{M}((1 - z)^\alpha).$$

Now we prove our main result.

Theorem 3.2. Let $0 < \alpha < \infty$ and let (b_α, a_α) be a pair, with the functions b_α and a_α given by (2.2) and (2.1), respectively. Then

(i) for $0 < \alpha < 1/2,$

$$\mathcal{H}(b_\alpha) = \mathcal{M}(a_\alpha) = (1 - z)^\alpha H^2,$$

(ii) for $n - 1/2 < \alpha < n + 1/2$, $n = 1, 2, \ldots,$

$$\mathcal{H}(b_\alpha) = \mathcal{M}(a_\alpha) + \mathcal{P}_n = (1 - z)^\alpha H^2 + \mathcal{P}_n,$$

where \mathcal{P}_n is the set of all polynomials of degree at most $n - 1$,

\square
(iii) \[\mathcal{H}(b_{1/2}) = \overline{\mathcal{M}(a_{1/2})} = (1 - z)^{1/2} H^2, \]
where the closure is taken with respect to the \(\mathcal{H}(b_{1/2}) \)-norm,
(iv) for \(\alpha = n + 1/2, n = 1, 2, \ldots \),
\[\mathcal{H}(b_{\alpha}) = \overline{\mathcal{M}(a_{\alpha}) + A_{\alpha}}, \]
where the closure is taken with respect to the \(\mathcal{H}(b_{\alpha}) \)-norm and \(A_{\alpha} \) is the \(n \)-dimensional subspace of \(\mathcal{H}(b_{\alpha}) \) defined by
\[A_{\alpha} = \left\{ p_n \cdot P_+ \left((1 - z)\alpha (1 - z)^{1/2} \right) + P_+ \left(p_n P_+ \left((1 - z)\alpha (1 - z)^{1/2} \right) \right) : p_n \in \mathcal{P}_n \right\}, \]
where \(P_- = I - P_+ \).

Proof. (i) We know from Corollary 2.3 that for \(\alpha > 0 \),
\[\mathcal{H}(b_{\alpha}) = \mathcal{M}(\pi_{\alpha}) = \mathcal{M}(1 - z)^\alpha. \]
We first observe that for \(0 < \alpha < 1/2 \) the operator \(T_{(1 - z)^{\alpha} / (1 - z)^\alpha} \) is invertible. This follows from
\[\frac{(1 - e^{it})^\alpha}{(1 - e^{it})} = e^{i\alpha(t - \pi)}, \quad t \in (0, 2\pi), \]
and the Devinzatz-Widom Theorem.
Consequently,
\[\mathcal{M}(1 - z)^\alpha = T_{(1 - z)^{\alpha} / (1 - z)^\alpha} H^2 = T_{(1 - z)^{\alpha} / (1 - z)^\alpha} H^2 = (1 - z)^\alpha H^2. \]
(ii) Since \(\mathcal{H}(b_{\alpha}) \) contains \(\mathcal{M}(a_{\alpha}) = \mathcal{M}(1 - z)^\alpha \) and all polynomials (see e.g. [10, p. 25]), to prove (ii) it is enough to show that
\[\mathcal{H}(b_{\alpha}) \subset \mathcal{P}_n + \mathcal{M}(1 - z)^\alpha. \]

By Theorem 3.1 we have
\[\mathcal{H}(b_{\alpha}) = \mathcal{M}(1 - z)^\alpha = \mathcal{M}(1 - z)^\alpha + \text{span}\{ S^1(1 - z)^\alpha, \ldots, S^n(1 - z)^\alpha \}. \]
Therefore, we only need to show that
\[\text{span}\{ S^1(1 - z)^\alpha, \ldots, S^n(1 - z)^\alpha \} \subset \mathcal{P}_n + \mathcal{M}(1 - z)^\alpha. \]
Clearly,
\[S^1(1 - z)^\alpha = \frac{(1 - z)^\alpha - 1}{z} = \frac{(1 - z)^\alpha - (1 - z)^n + (1 - z)^n - 1}{z} \]
\[= S^1(1 - z)^n - (1 - z)^\alpha S^1(1 - z)^{n - \alpha} \in \mathcal{P}_n + \mathcal{M}(1 - z)^\alpha \]
\((1 - z)^{n - \alpha} \in H^2 \) since \(n - \alpha > -1/2 \). Now assume that for any \(1 \leq k < n \),
\[S^k(1 - z)^\alpha \in \mathcal{P}_n + \mathcal{M}(1 - z)^\alpha, \]
or, in other words,
\[S^k(1 - z)^\alpha = p_n + (1 - z)^\alpha h_k \text{ for some } p_n \in \mathcal{P}_n \text{ and } h_k \in H^2. \]
This completes the proof of (ii).

(iii) In view of Theorem 1.5, to prove (iii) it is enough to show that \(a_{1/2}^2 \) is a rigid function.

We actually prove that \(a_{\alpha}^2 \) is rigid for every \(0 < \alpha \leq 1/2 \).

To this end, we observe that for \(\alpha > 0 \),

\[
\frac{1}{\sqrt{1 + 4\alpha^2}}|1 - z|^\alpha \leq |a_{\alpha}(z)| \leq |1 - z|^\alpha, \quad z \in \mathbb{D}.
\]

This follows from (3.3) and the representation of the outer function

\[
(1 - z)^\alpha = \exp \left\{ \frac{\alpha}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |1 - e^{it}| dt \right\}.
\]

Thus we have

\[
\frac{|a_{\alpha}(z)|}{|1 - z|^\alpha} = \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-it}|^2} \log \frac{1}{\sqrt{1 + |1 - e^{it}|^2\alpha}} dt \right\}
\]

which implies inequalities (3.3).

Now we use a reasoning analogous to that in [10] (X–5). If \(a_{\alpha}^2 \) is not rigid for some \(0 < \alpha \leq 1/2 \), then by Theorem 1.4 there is a nonzero function \(g \) in the kernel of \(T_{a_{\alpha}} \). Then

\[
T_{\frac{1}{|1 - z|^{\alpha}}} \left(\frac{(1 - z)^\alpha g}{a_{\alpha}} \right) = P_+ \left(\frac{(1 - z)^\alpha g}{a_{\alpha}} \cdot \frac{\pi_a}{a_{\alpha}} \right) = T_{\frac{1}{|1 - z|^{\alpha}}} T_{\frac{1}{|1 - z|^{\alpha}}} g = 0,
\]

which means that \((1 - z)^\alpha g/a_{\alpha} \) is a nonzero function in the kernel of \(T_{(1 - z)^\alpha/(1 - z)^\alpha} \), contrary to the fact that \((1 - z)^\alpha g/a_{\alpha} \) is rigid for every \(0 < \alpha \leq 1/2 \) (see, e.g., [4] Section 6.8).

(iv) We know that for every \(\alpha > 0 \),

\[
\mathcal{H}(b_{\alpha}) = \mathcal{M}(\pi_{\alpha}) = \mathcal{M}(1 - z)^\alpha = T_{(1 - z)^\alpha}H^2
\]

and \(\mathcal{M}(a_{\alpha}) = \mathcal{M}((1 - z)^\alpha) \) is the image under \(T_{(1 - z)^\alpha} \) of the range of \(T_{(1 - z)^\alpha/(1 - z)^\alpha} \), that is,

\[
\mathcal{M}((1 - z)^\alpha) = T_{(1 - z)^\alpha} T_{(1 - z)^\alpha}H^2.
\]

It follows that the orthogonal complement of \(\mathcal{M}((1 - z)^\alpha) \) in the space \(\mathcal{M}(1 - z)^\alpha \) is the image under \(T_{(1 - z)^\alpha} \) of \(\ker T_{(1 - z)^\alpha/(1 - z)^\alpha} \).

We now observe that for \(\alpha = n + 1/2 \),

\[
\ker T_{\frac{1}{|1 - z|^{\alpha}}} = \ker T_{\frac{1}{(1 - z)^\alpha}} T_{\frac{1}{(1 - z)^\alpha}} = (1 - z)^{1/2}P_n,
\]

where \(P_n \) is the set of all polynomials of degree at most \(n - 1 \). Finally, note that if \(p_n \) is in \(P_n \), then

\[
T_{(1 - z)^\alpha} \left(\frac{(1 - z)^{1/2}p_n}{(1 - z)^{1/2}p_n} \right) = P_+ \left(\frac{(1 - z)^\alpha(1 - z)^{1/2}p_n}{p_n + P_+ \left(\frac{(1 - z)^\alpha(1 - z)^{1/2}p_n}{p_n} \right)} \right).
\]

Our claim follows.
The following corollary is just another statement of (ii) in Theorem 3.2.

Corollary 3.3. For any \(n \in \mathbb{N} \) and \(n - 1/2 < \alpha < n + 1/2 \) we have
\[
\mathcal{H}(b_\alpha) = \mathcal{M}(a_\alpha) + \mathcal{P}_n = \mathcal{M}(a_\alpha) + \text{span}\{T_{\mathbb{R}}^1, \ldots, T_{\mathbb{R}}^n z^{n-1}\}.
\]

Remark 3.4. We observe that since \(a_\alpha^2 \) is rigid for all \(0 < \alpha \leq 1/2 \), Theorem 1.6 implies that the space \(\mathcal{M}(a_\alpha) \) is dense in \(\mathcal{H}(b_\alpha) \) for all such \(\alpha \). However, for \(0 < \alpha < 1/2 \) we have \(\mathcal{M}(a_\alpha) = \mathcal{H}(b_\alpha) \), while \(\mathcal{M}(a_{1/2}) \not\subseteq \mathcal{H}(b_{1/2}) \). The latter follows from the fact that every \(h \in H^2 \) satisfies \(|h(z)| = o((1 - |z|)^{1/2}) \) as \(|z| \to 1^- \). Thus if \(f \in \mathcal{M}(a_{1/2}) \), then \(f(z) = (1 - z)^{1/2}h(z) \), \(h \in H^2 \), and
\[
|f(z)| = |1 - z|^{1/2}|h(z)| = \left(\frac{|1 - z|}{1 - |z|}\right)^{1/2} |h(z)|(1 - |z|)^{1/2}.
\]
This shows that the nontangential limit of \(f \) at 1 is 0. On the other hand, \(\mathcal{H}(b_{1/2}) \) contains nonzero constant functions, so \(\mathcal{M}(a_{1/2}) \) cannot be equal to \(\mathcal{H}(b_{1/2}) \).

Corollary 3.5. If \(n - 1/2 < \alpha < n + 1/2 \), \(n \in \mathbb{N} \), and \(f \in \mathcal{H}(b_\alpha) \), then there is a function \(h \) in \(H^2 \) such that
\[
f(z) = f(1) + f'(1)(z - 1) + \ldots + \frac{f^{(n-1)}(1)}{(n-1)!}(z - 1)^{n-1} + (1 - z)^\alpha h(z).
\]

Proof. It follows from Proposition 3.1 that \(f \) and its derivatives of order up to \(n - 1 \) have nontangential limits at 1, say \(f(1), f'(1), \ldots, f^{(n-1)}(1) \). By Theorem 3.2 (ii), \(f \) can be written as
\[
f(z) = p_n(z) + (1 - z)^\alpha h(z) = \sum_{k=0}^{n-1} a_k (z - 1)^k + (1 - z)^\alpha h(z), \quad h \in H^2.
\]
Since every \(h \) in \(H^2 \) satisfies
\[
|h^{(k)}(z)| \leq C_k (1 - |z|)^{k+\alpha},
\]
we find that
\[
a_k = \frac{p_n^{(k)}(1)}{k!} = \frac{f^{(k)}(1)}{k!} \quad \text{for } k = 0, 1, \ldots, n - 1.
\]

The next theorem describes the space \(\mathcal{H}(\hat{b}_\alpha) \) where \(\hat{b}_\alpha \) is an outer function from the unit ball of \(H^\infty \) whose Pythagorean mate is \(\left(\frac{1 - z}{2}\right)^\alpha \), \(\alpha > 0 \).

Theorem 3.6. For \(\alpha > 0 \) let \(\hat{a}_\alpha(z) = \left(\frac{1 - z}{2}\right)^\alpha \) and let \(\hat{b}_\alpha \) be the outer function such that \((\hat{b}_\alpha, \hat{a}_\alpha) \) is a pair. Then
\[
\mathcal{H}(\hat{b}_\alpha) = \mathcal{H}(b_\alpha).
\]

Proof. It is enough to show that \((\hat{b}_\alpha, \hat{a}_\alpha) \) is a corona pair. The function \(\hat{a}_\alpha \) is continuous on \(\overline{D} \) and vanishes only at 1. Since \(\hat{b}_\alpha(1) = \hat{a}_\alpha(1) = 1 \), there exist \(\delta > 0 \) such that \(|\hat{b}_\alpha(z)| > 1/2 \) on \(D_1 = \overline{D} \cap \{ z : |z - 1| < \delta \} \) and \(|\hat{a}_\alpha(z)| > 1/2 \) on \(D_2 = \overline{D} \cap \{ z : |z + 1| < \delta \} \). Then the continuous function \(|\hat{b}_\alpha|^2 + |\hat{a}_\alpha|^2 \) is positive on the compact set \(\overline{D} \setminus (D_1 \cup D_2) \), so it is bounded from below by a strictly positive number \(c > 0 \).

Remark 3.7. Since \(\frac{1 - z}{2} \) is the Pythagorean mate for \(\frac{1 + z}{2} \), we remark that it follows from [2] that for \(\alpha > 0 \),
\[
\mathcal{H}\left(\left(\frac{1 + z}{2}\right)^\alpha\right) = \mathcal{H}\left(\frac{1 - z}{2}\right) = c + (1 - z)H^2
\]
as sets.
Finally, we remark that if \(u \) is a finite Blaschke product and \(b_\alpha \) is given by (2.2), then
\[
H(ub_\alpha) = H(b_\alpha).
\]
Since every function in \(H(u) \) is holomorphic in \(\mathbb{D} \) (see, e.g. [4, Sec. 14.2]) and \(H(b_\alpha) \) is invariant under multiplication by functions holomorphic in \(\mathbb{D} \) (see, e.g. [10, (IV-6)]), (3.4) follows from the equality
\[
H(ub_\alpha) = H(u) + uH(b_\alpha).
\]

Question 3.8. Can one characterize all inner functions \(u \) for which equality (3.4) holds?

References

[1] C. Costara, T. Ransford, *Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?* J. Funct. Anal. 265 (2013), no. 12, 3204–3218.
[2] E. Fricain, A. Hartmann, W. T. Ross, *Concrete examples of \(H(b) \) spaces*, Comput. Methods Func. Theory 16 (2016), no 2, 287–306.
[3] E. Fricain, A. Hartmann, W. T. Ross, *Range spaces of co-analytic Toeplitz operators*, arXiv:1508.03001v1.
[4] E. Fricain, J. Mashreghi, *The theory of \(H(b) \) spaces. Vol.1*, Cambridge University Press, Cambridge, 2016.
[5] E. Fricain, J. Mashreghi, *Boundary behavior of functions in the de Branges-Rovnyak spaces*, Complex Anal. Oper. Theory 2 (2008), no. 1, 87–97.
[6] B. Łanucha, M. Nowak, *De Branges-Rovnyak spaces and generalized Dirichlet spaces*, Publ. Math. Debrecen 91(2017), 171–184.
[7] N. K. Nikolski, *Operators, functions and systems: an easy reading. Volume 1: Hardy, Hankel and Toeplitz*, translated from the French by Andreas Hartmann, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002.
[8] D. Sarason, *Doubly shift-invariant spaces in \(H^2 \)*, J. Operator Theory 16 (1986), 75–97.
[9] D. Sarason, *Kernels of Toeplitz operators*, Toeplitz operators and related topics (Santa Cruz, CA, 1992), 153–164, Oper. Theory Adv. Appl., 71, Birkhäuser, Basel, 1994.
[10] D. Sarason, *Sub-Hardy Hilbert spaces in the unit disc*, John Wiley and Sons Inc., New York, 1994.
[11] D. Sarason, *Unbounded Toeplitz operators*, Integral Equations Operator Theory 61 (2008), 281–298.

Bartosz Łanucha,
Institute of Mathematics,
Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1,
20-031 Lublin, Poland
E-mail address: bartosz.lanucha@poczta.umcs.lublin.pl

Maria T. Nowak,
Institute of Mathematics,
Maria Curie-Skłodowska University,
pl. M. Curie-Skłodowskiej 1,
20-031 Lublin, Poland
E-mail address: mt.nowak@poczta.umcs.lublin.pl