Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes

Keisuke Aratsu, Rika Takeya, Brian R. Pauw, Martin J. Hollamby, Yuichi Kitamoto, Nobutaka Shimizu, Hideaki Takagi, Rie Haruki, Shin-ichi Adachi & Shiki Yagai

Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette.
T he hierarchical self-assembly of macromolecular building blocks into hierarchical nanoarchitectures through the formation of oligomeric complexes is a strategy essential to living systems. As small conformational changes in the complexes may severely affect the outcome of such hierarchical processes, biological molecular systems behave dynamically: they operate in conditions far from equilibrium and optimize component structures and functions according to environment. This is true of not only the protein ensembles but also relatively simple one-dimensional assemblies of proteins, i.e., biological supramolecular polymers. For example, two structurally related polypeptides of α- and β-tubulin monomer subunits complementarily form α-β heterodimer complexes through hydrophobic and electrostatic interactions. These heterodimers then assemble one-dimensionally into microtubules. GTP hydrolysis within the tubulin heterodimer induces a small conformational change, triggering catastrophic microtubule disassembly. We envisaged that the incorporation of a molecular recognition process to reorganize polymerizable complexes of an artificial supramolecular polymer could generate smart macromolecular systems whose assembly and disassembly are controlled by the conformation of the complexes. As synthetic polymers have evolved into functional materials with precise molecular sequences by controlling the kinetic reaction rates, we considered that the incorporation of a molecular recognition process to the self-assembly of functional macroscopic systems could generate smarter dynamic macromolecular systems whose assembly and disassembly are controlled by the conformation of the complexes.

Results

Self-aggregation of 2. The absorption maximum of monomeric 2 possessing the ester linkage in CHCl3 is hypsochromically shifted by 23 nm compared to 1, reflecting the reduced electron density of its naphthalene core (Supplementary Fig. 12). Although a 1H NMR study of 2 in CDCl3 indicated that its hydrogen-bonding capability was almost identical to 1, atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of self-assembled 2 in methylecyclohexane (MCH) exhibited only indistinct linear fibrils (Fig. 1 and Supplementary Figs. 13–16). A temperature-dependent absorption spectral analysis of 2 in MCH showed a hypsochromic shift of the major absorption band upon cooling, while a bathochromic shift was observed for 1 (Supplementary Fig. 17). The temperature-dependence of the degree of aggregation could be fitted with a nucleation–elongation model. A van’t Hoff analysis of data collected at different concentrations provided an elongation enthalpy (∆H° = −58 kJ mol⁻¹) that is smaller than that of 1 (∆H° = −72 kJ mol⁻¹) as well as an elongation entropy (∆S° = −92 J mol⁻¹ K⁻¹) for 2, ∆S° = −139 J mol⁻¹ K⁻¹ for 1 (Supplementary Fig. 18 and Supplementary Table 1). The very different spectroscopic and microscopic outcomes obtained upon introducing the ester group suggest that the lower electron density of the naphthalene core of 2 and/or dipole repulsion between the ester groups hamper the idiosyncratic stacking responsible for the formation of curved rosette aggregates.

Kinetic coassembly. Molecules of 1 and 2 co-assembled into amorphous coaggregates when a 1:1 molar mixture of their monomers in MCH was cooled. Upon cooling a 1:1 mixture of 1 and 2 (hereafter denoted as 1/2) with a total concentration (cT) of 100 μM from 80 to 20 °C at a rate of 1 °C min⁻¹, the absorption spectrum of the mixture broadened considerably (Fig. 2a and Supplementary Fig. 19). The increased absorption observed in the red-shifted region (450–500 nm) is characteristic of an electronic interaction between naphthalene chromophores. Due to the aggregation-induced suppression of bond rotation in the excited state, the mixture gradually became emissive in the yellow-green region upon cooling (Fig. 2b). The cooling curve obtained by plotting the absorption at 470 nm as a function of temperature confirmed the coassembly of 1 and 2: the onset of the spectral change of the mixture began at a higher temperature (~68 °C; blue dots in Fig. 2c) than that predicted by simulation that assumed a low-temperature self-sorting (56 °C; black dots in Fig. 2c). The experimental curve was fitted using the nucleation–elongation model, and the values of ∆H° (~55 kJ mol⁻¹) and ∆S° (~88 J mol⁻¹ K⁻¹) were estimated by a van’t Hoff analysis of the data collected at different concentrations (Supplementary Fig. 20). The ∆H° value is smaller than those of 1 (~72 kJ mol⁻¹) and 2 (~58 kJ mol⁻¹), suggesting that the coassembly did not exhibit any enthalpic advantage (Supplementary Table 1). Dynamic light scattering (DLS) measurements of the freshly cooled mixture showed an average hydrodynamic diameter (Dₜₐ = 15 nm) far smaller than observed for toroids of 1 and linear fibrils of 2 (Fig. 2d). In line with these observations, only amorphous coaggregates were observed in AFM and TEM images of the as-cooled fresh solution.
spin-coated onto appropriate substrates (Fig. 2f, h and Supplementary Fig. 21).

Autonomous supramolecular copolymerization. Isothermal supramolecular copolymerization of 1 and 2 occurs from the amorphous coaggregated state described above. The absorption spectra of the mixture gradually became vibronic over the course of several days at 20 °C, indicating a more uniform electronic interaction between the chromophores (Fig. 2a). A 50% attenuation of the emission was also observed (Fig. 2b) with a similar kinetic constant to that of the absorption spectral change (k_{abs} = 0.095 h^{-1}; k_{em} = 0.101 h^{-1}), suggesting a degree of charge transfer from electron-rich 1 to electron-poor 2 (Supplementary Fig. 22). These spectroscopic changes were accompanied by a gradual increase in aggregate size that reached an equilibrium value (D_{H} = 190 nm) after 60 h (Fig. 2e). When aliquots of the solution at different equilibration times were spin-coated onto highly oriented pyrolytic graphite (HOPG), the resulting AFM images demonstrated time-dependent growth of the helicoidal structures (Fig. 2j–q and Supplementary Figs. 23 and 24). High-resolution imaging revealed an outer helicoidal diameter of approximately 23 nm and pitch of approximately 5.7 nm (Fig. 2g, i). The outer diameter is slightly larger than for toroids formed by 1 (20 nm), perhaps due to the flattening of the helicoids by edge-on adsorption onto the HOPG substrate. These results suggest that the topological extension from a toroidal to a helicoidal fiber was achieved37–40 without synthetic extension of the aromatic core as we have done so previously21,22.

Given that much slower supramolecular copolymerization kinetics were observed upon increasing c (Supplementary Fig. 22), we inferred that the initially formed amorphous coaggregates are off-pathway products in the formation of the helicoids38–40. A time-dependent infrared (IR) analysis of the copolymerization revealed a remarkable shift for the two carbonyl vibrations of the hydrogen-bonded barbituric acids of 1 and 2 (Fig. 3a, b). Hence, it can be concluded that the two monomer subunits kinetically coassemble by hydrogen-bonding to form various rosette complexes, and continuously dissociate and reassemble with rearrangement of the hydrogen bonds until the enthalpy gain of
the system is maximized through the electrostatic interaction between 1 and 2. The ideal monomer arrangement to maximize the enthalpy gain is integrative self-sorting into the alternating hydrogen-bonded rosette. These resulting complexes then stack with a rotational offset of ~60° to optimize the interaction between alternating 1 and 2 subunits within the complex (Fig. 1e).

Although the kinetic stability of the initially formed amorphous coaggregates is sufficiently low for their autonomous copolymerization to occur at 20 °C, this process could be further accelerated by the addition of a third component to the initial monomer mixture. Previously, we showed that 1 and its regioisomer 3 (Fig. 3c) narcissistically self-sort from kinetically formed amorphous coaggregates into toroidal and cylindrical...
Fig. 3 IR analysis and modulations of supramolecular copolymerization. a IR spectra of toroids of 1 (red), linear fibrils of 2 (green), and a series of spectra showing the time-dependent spectral change of 1/2 (c1 = 500 µM) from amorphous coaggregates (blue) to helicoids (purple). b Plots of the position of the maxima of the C = O stretching vibrations as a function of time (h). The colors and shapes of the symbols correspond to those in a. c Chemical structure of 3. d Plots of the change in the normalized absorption at 470 nm for 1/2/3 (blue; c3 = 150 µM) and 1/2 (purple; c1 = 100 µM) at 20 °C after cooling. e Qualitative energy landscapes of the 1/2 and 1/2/3 systems. f AFM image of 1/2/3 after 24 h of aging. Scale bar, 100 nm.
supramolecular polymers, respectively. This narcissistic self-sorting is due to the very different molecular conformations of these regiosomers; the naphthalene ring introduced on the short axis of 3 is sterically too demanding to allow the formation of intrinsically curved rosette stacks. We thus expected that the incorporation of this sterically demanding molecule could suppress the kinetic assembly of the various rosette complexes (Fig. 3e).

Upon cooling a 1:1:1 ternary mixture of 1–3 (1/2/3; $c_1 = 150 \mu M$), only amorphous coaggregates were initially observed by AFM, with no trace of individual self-assemblies (Supplementary Fig. 25). An AFM image obtained after 1 day already showed not only the formation of helicoids of 1 and 2, but also that of cylindrical fibers of 3, suggesting the concerted progression of integrative and narcissistic self-sorting through dynamic molecular recognition (Fig. 3f). The kinetics of this ternary self-sorting process ($k_{obs} = 0.148 \text{ h}^{-1}$) were indeed much faster than that of the binary process ($k_{obs} = 0.095 \text{ h}^{-1}$; Fig. 3d). Similar control of kinetic effects through molecular recognition has been observed in other thermodynamic self-sorting systems.

SAXS analysis of the supramolecular copolymerization. The growth of the helicoidal supramolecular copolymers of 1 and 2 was studied by in situ small-angle X-ray scattering (SAXS) measurements. Figure 4a shows the time-dependent SAXS profiles of a concentrated 1:1 mixture ($c_1 = 500 \mu M$) of 1 and 2 measured after cooling. The scattered intensity, $I(Q)$ is plotted as a function of the scattering vector, Q. During the initial stages ($0-2.5 \text{ h}$), the profiles correspond to small (<10 nm) size-disperse scatterers, with no visible oscillatory features. The observed increase in $I(Q)$ at low Q ($0.1-2 \text{ nm}^{-1}$), which is particularly apparent after 2.5 h, suggests the association of these early aggregates into larger objects and may indicate an onset of supramolecular copolymerization. From 5 h onward, a non-periodic oscillatory feature at $Q = 0.3-1 \text{ nm}^{-1}$ can be observed. Such features also appear in SAXS profiles arising from toroids of 1 and helicoids of previously reported pnp (Supplementary Figs. 26 and 27). As such, their presence here indicates the presence of supramolecular copolymers in solution. However, in comparison to that for pnp, here the SAXS from the helicoids of 1/2 exhibits an additional sharp scattering peak at $Q = 1.15 \text{ nm}^{-1}$ ($d = 5.5 \text{ nm}$), which notably increases in intensity over time (inset in Fig. 4a and Supplementary Fig. 28). This peak is likely to correspond to the helicoidal pitch (p) of the fibers as shown in Fig. 4g, which was estimated from AFM images to be ~5.7 nm (Fig. 2i).

To verify the above assignment of the SAXS features, the scattering of a model helicoid was simulated using the SPONGE, a materials science-oriented scattering pattern calculator (Supplementary Methods). SPONGE allows the simulation of a scattering pattern from any three-dimensional solid and permits the inclusion of realistic characteristics such as polydispersity and structural dynamics. By systematically varying individual structural parameters, including p (Fig. 4b, g), the center-to-center distance (D; Fig. 4c, g), the persistence length (n) defined by the turn number (Fig. 4d), and the dynamical coil motion (spring motion; Fig. 4e), their effects on the scattering pattern have been identified. In Fig. 4a, we compare the experimental data with the closest simulation result obtained using $p = 5.5 \text{ nm}$, a number-weighted gaussian size dispersity of 5%, $D = 16 \text{ nm}$, a persistence length of 14 turns (160 nm) and, consistent with our previous work, an ellipsoidal wire cross-section of $6.0 \times 3.6 \text{ nm}^2$ (flattened in the pitch direction). The overall shape of the simulation matches well with the experimental SAXS. Discrepancies in absolute intensity, particularly at mid-to-high Q, can be explained by (i) the unaccounted presence of an incoherent background in the experimental SAXS, and (ii) contrast effects (the simulations assume a two-phase sharp-contrast solvent-structure, whereas the helicoidal structures have a more complex internal electron-density structure).

The more apparent pitch peak in the experimental SAXS profile of the helicoids of 1/2 compared to that of the previously reported unimolecular helicoids of pnp is indicative of greater stiffness in the former. A reduction in stiffness would lead to increased widening in the x and y directions as well as increased motion in the z-direction (spring motion; Fig. 4e). In SAXS analysis, such motion manifests as a reduced persistence length (n; Fig. 4d) of the fixed, uniform structure and will cause a sharp pitch peak to initially broaden and eventually become unobservable. Several reasons might account for a different stiffness: the elongation of the unimolecular helicoids of pnp was achieved by cooling, because the elongation process began at a high temperature in which the alkyl chains are in a molten state. This process is very different from that of the helicoids of 1/2, for which the elongation proceeds at 20°C. At this lower temperature, the alkyl chains can assume more extended conformations and may be interdigitated between loops (Fig. 4h). In fact, p increased upon heating of the solution ($\Delta p = 0.5 \text{ nm}$, 20 \rightarrow 50°C) perhaps due to an enhanced molten state of the alkyl chains (Fig. 4f).

Distinct component of the monomer subunits. Different supramolecular topologies of the homopolymers of 1 and 2 indicate that these monomer subunits may contribute differently to the formation of the helicoidal structure. To study this point, we examined the yield of helicoids at different mixing ratios of 1 and 2 while keeping c_1 constant at 100 μM. AFM analyses of the unequimolar mixtures after equilibration qualitatively demonstrated that helicoids are formed almost exclusively when an excess of 1 is used, whereas fewer were formed when 2 is present in excess (Fig. 5a, b and Supplementary Fig. 29). More quantitative data was obtained using SAXS. A plot of the relative intensity of the helicoidal pitch peak ($Q = 1.15 \text{ nm}^{-1}$) as a function of the 1:2 ratio showed that the intensity of this peak is considerably stronger for a 6:4 mixture (67% relative to the equimolar mixture) than for a 4:6 mixture (17% relative to the equimolar mixture; Fig. 5c, d). The same trend was observed for the relative absorption intensity at 470 nm, which is diagnostic of the electrostatic interaction between 1 and 2 (Supplementary Fig. 30). These results demonstrate that 1 is the structure-directing monomer subunit in the helicoidal supramolecular copolymerization, as it can form curved aggregates with itself, while 2 is an auxiliary monomer subunit that enhances the rosette–rosette interaction via its interaction with 1. The decreased helicoid yield when 2 is in excess can be attributed to the increased probability of unfavorable self-stacking between 2 moieties.

The distinctly different contributions of 1 and 2 to the formation of helicoidal structures were further highlighted by experiments using chiral monomers. For that purpose, we synthesized the chiral subunits 1S and 2S (Fig. 5e and Supplementary Figs. 2 and 3), albeit that well-defined assemblies were not obtained from individual pure solutions of 1S and 2S (Supplementary Figs. 31 and 32). The sterically demanding chiral chains probably hamper the ordered stacking of their rosettes, as inferred from the observed quick precipitation upon cooling. We therefore investigated mixed systems of chiral and achiral monomers while keeping c_1 constant at 500 μM. As the curvature-forming monomer 1 is essential for the formation of helicoids, a 1:1 mixture of 1S/2 only afforded linear fibers (Supplementary Fig. 33). Even the combination of 1 and 1S in a 1:1:2 mixture of 1S/1/2 did not produce helicoidal structures,
although amorphous coaggregates were afforded kinetically (Supplementary Fig. 34).

In contrast, the incorporation of chiral subunit 2S into the system was found to promote the formation of chiral helicoids. Circular dichroism (CD) measurements demonstrated the time-dependent emergence of a Cotton effect for a 1:1 mixture of 1/2S after cooling; the mixture equilibrated after 2 h and afforded short coils (Supplementary Fig. 35). The Cotton effect observed for 1/2S was entirely dissimilar to that of a 1:1 mixture of 2/2S, suggesting that the chiral substituents of 2S also control chiral packing of 1 through the alternative stacking of the monomers (Supplementary Fig. 36). Interestingly, when a fraction of 2S was
replaced with achiral 2, the Cotton effect of the resulting 1/2/2S at equilibrium became more intense as the fraction of 2 was increased, and reached a maximum at a ratio of 2:1:1 (Fig. 5f, g). The intensity of the Cotton effect of this ternary mixture was twice that of the 1/2S binary mixture, despite the reduced content of the chiral monomer 2S (i.e., 125 µM in 1/2S vs. 250 µM in 1/2S)45. This optimum ternary mixture afforded elongated helicoidal fiber whose morphology was apparently the same as that of 1/2 (Fig. 5b). Although the helicity of the 1/2S helicoids could not be identified due to their tightly folded structure, this negative Cotton effect strongly suggests the counter clockwise (CCW) rotation of rosettes that leads to M-type helicoids (Fig. 5i). The strong correlation between the Cotton effect and helicoidal structure corroborates our previous hypothesis that unidirectional rotation in the rosette stacking leads to the helicoidal growth of a series of supramolecular polymers20.

Catastrophic transition. Although the reversibility of monomer binding is one of the major advantages of supramolecular polymers, the dissociation (depolymerization) process is not typically afforded much attention. In the solution state, most supramolecular polymers begin to depolymerize isodesmically upon heating, even if they are polymerized via a nucleation–elongation mechanism46. In this context, the thermal behavior of the present helicoids is unique as they abruptly transform into amorphous coaggregates upon heating due to the presence of kinetic coaggregates. Figure 6a shows the dissociation of the amorphous coaggregates and the helicoids of a 1:1 mixture of 1/2 (c1 = 100 µM) as monitored by UV–vis spectroscopy. The cooling and heating curves of the amorphous coaggregates (i and ii, respectively) exhibit a small thermal hysteresis, which originates from the progress of the competing supramolecular copolymerization process after cooling (iii). In sharp contrast, the heating curve of the helicoids exhibits a plateau up to 40 °C (iv), above which it gradually changes and completely overlaps with the cooling curve (i) without thermal hysteresis. When we switched the heating procedure to cooling at 55 °C, the subsequent second cooling curve was identical to the first (i), demonstrating the complete dissociation of the helicoids at ~50 °C (Supplementary Fig. 37). The aforementioned chiral 2:1:1 ternary mixture of 1/2S also displayed a similar thermal response in the CD measurements: the Cotton effect was abruptly attenuated at ~40 °C and entirely eliminated at 55 °C (Fig. 6b).

In the plateau region (20–45 °C), DLS measurements showed only a moderate reduction in Dh (200 nm → 157 nm; Fig. 6c). The Dh abruptly decreases from 157 nm at 45 °C to 12 nm at 50 °C, and further to a reported 0.7 nm at 65 °C, indicating a complete dissociation to the monomeric state. The first abrupt decrease probably corresponds to the helicoids transitioning into amorphous coaggregates. This assertion was further supported by AFM and SAXS measurements (Fig. 6d, e and Supplementary Fig. 38).

The phase transition from helicoids to amorphous coaggregates suggests that the Gibbs free energy changes (ΔG°) of the helicoids (ΔG°hel) and the amorphous coaggregates (ΔG°am) should intersect as the temperature is increased, due to the increasing contribution of entropy47. We therefore attempted to estimate the critical temperature (Tc) at which ΔG°am = ΔG°hel (Fig. 6f). The ΔG° values of the two species were estimated from temperature-dependent absorption measurements at different c1. To observe the direct thermal dissociation of the helicoids into monomers, we diluted the solution to c1 = 10 µM, by which the onset of aggregation is expected to be sufficiently lower than the Tc. By this dilution, a sigmoidal dissociation of helicoids into monomers was observed with the onset of aggregation at 33 °C, suggesting dissociation via an isodesmic mechanism (Fig. 6g). A van’t Hoff analysis of the isodesmic curve gave ΔH° = −96 kJ mol−1 and ΔS° = −218 J mol−1 K−1 (Supplementary Fig. 39 and Supplementary Table 1). As described above, we obtained cooperative cooling curves for the amorphous coaggregates, from which we estimated values of ΔH° = −57 kJ mol−1 and ΔS° = −93 J mol−1 K−1 using van’t Hoff analysis. The larger negative entropy change of the helicoids clearly reflects the eventual conversion of the diverse rosette complexes into one alternating configuration (1:2:1:2:1:2). This large entropic penalty could be compensated by the enthalpy change of −96 kJ mol−1 in the helicoidal organization, i.e., the interaction between loops as well as the electrostatic interaction between 1 and 2. From these ΔH° and ΔS° values, the Tc at which ΔG°am = ΔG°hel was calculated to be 42 °C (Fig. 6f). This value can be rationalized by the observations that the helicoidal copolymerization proceeded when the temperature was kept at 35 °C during the cooling process, and the transition to the amorphous coaggregates proceeded when the temperature was kept at 45 °C during the heating process (c1 = 100 µM; Fig. 6h).

Accordingly, the relative thermodynamic stability of the two species switches at ~40 °C, and the two processes are in equilibrium. Above 50 °C, however, the helicoid cannot form due to the entropic contribution, and therefore the heating curve coincided with the cooling curve.

Discussion

Based on our hierarchical system for the construction of topological supramolecular polymers using hydrogen-bonded rosette complexes, we have presented a supramolecular copolymerization of two structurally near-identical monomer subunits. Due to the small structural difference between the two monomers, they kinetically coassemble to form various hydrogen-bonded complexes that associate in a disorderly manner into amorphous coaggregates. The weak electrostatic interactions between the two electronically complementary monomers drive the integration of the various complexes into one specific configuration through hydrogen bond rearrangement, which results in their supramolecular copolymerization into helicoidal superstructures. Notably, when homogeneous solutions of each of the monomers are prepared, one monomer predominantly forms thermodynamically stable toroidal assemblies, whereas the other can only afford ill-defined aggregates. In this context, we have successfully achieved the topological extension of toroidal to helicoidal architectures via supramolecular copolymerization. Although the helicoidal structures have a clear enthalpic advantage over amorphous coaggregates, the large entropic penalties associated with the
alternating molecular arrays at both the hydrogen-bonded complex level and the hierarchical stacking level led to catastrophic transition behavior. All of these unique outcomes further highlight the advantages of designing supramolecular polymers in a hierarchical manner, which has rarely been achieved in artificial supramolecular polymers, but is common in their natural counterparts. As demonstrated in this study, the hierarchical approach enables the integration of a molecular recognition process to preorganize the supramolecular building blocks, which is distinctly different from a supramolecular polymerization directly

Fig. 5 Distinct contributions of the different monomers. a, b AFM images of 1/2 (6:4; a) and 1/2 (4:6; b) at c1 = 100 µM. The samples were prepared by spin-coating onto a HOPG substrate after 3 days of aging. Scale bars, 100 nm. c Normalized SAXS profiles at Q = 1.06 nm⁻¹ of mixtures of various ratios of 1 and 2. Ratios: 1/2 (10:0; red), (8:2; dark orange), (6:4; orange), (5:5; blue), (4:6; light green), (2:8; green), and (0:10; dark green). d Plots of ΔI estimated from SAXS profiles as a function of the molecular excess. e Molecular structures of 1S and 2S as well as schematic representations of their tertiary mixtures. f CD spectra of 1/2/2S (2:1:1; c1 = 500 µM) measured at 90 °C (black), immediately after cooling (blue), and after 9 days of aging (purple). g Plots of the intensity of the CD spectra at 408 nm immediately after cooling (blue) and after aging until reaching equilibrium (purple) as a function of the ratio of 2S relative to the total amount of 2 derivatives; the concentration of 1 (250 µM) and the c2 (500 µM) were kept constant. h AFM image of the helicoids of 1/2/2S (2:1:1; c1 = 500 µM) after 7 days of aging. Scale bar, 100 nm. i Proposed mechanism for the elongation of the unidirectional helicoidal fiber.
driven by host-guest systems. We are currently exploring further complex nanosystems featuring not only structural but also functional biomimicry, and the result of these studies will be reported in due course.

Materials. Compound 1S, 2, and 2S were synthesized according to the section of synthesis and characterization data in Supplementary materials. 1 and 3 were synthesized according to our previous report[23]. All starting materials and reagents were purchased from commercial suppliers and used without further purification. Air sensitive reactions were conducted under nitrogen atmosphere using dry solvents.

Atomic force microscopy (AFM). AFM images were acquired under ambient conditions using Multimode 8 Nanoscope V microscope (Bruker Instruments) in peak force tapping (Scanasyt) mode. Silicon cantilevers (SCANASYT-AIR) with a spring constant of 0.4 N/m and frequency of 70 kHz (nominal value, Bruker, Japan) were used. Samples were prepared by spin-coating assembly solutions onto freshly cleaved HOPG.

Small angle X-ray scattering (SAXS). SAXS experiments were performed at BL-10C of the Photon Factory of the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan[48]. Sample solutions were placed into 1.25-mm path length cells (20-µm thickness quartz glass windows surrounded by stainless steel), and the temperature was fixed at 293 K. X-ray with a wavelength of 1.5 Å and a sample-detector distance of 1029 mm (calibrated with silver behenate) resulted in a detectable Q range in the order of 0.1–5.9 nm⁻¹. Sixty frames were collected with.

Fig. 6 Catastrophic transition. a, b Plots of absorbance at 470 nm (a) and CD intensity at 408 nm (b) as a function of temperature for 1/2 (1:1; $c_1 = 100$ µM) and 1/2/2S (2:1:1; $c_1 = 500$ µM) in the first cooling process (i; blue), in the heating process immediately after cooling (ii; orange), in the aging process (iii; purple), and in the heating process after aging (iv; red). Heating and cooling rate is 1 °C min⁻¹. c Temperature-dependent DLS profiles of the helicoids of 1/2 (1:1; $c_1 = 100$ µM) from 25 to 70 °C. d, e AFM images of 1/2 (1:1; $c_1 = 100$ µM) samples prepared by spin-coating at 45 °C (d) and 50 °C (e). Scale bars, 300 nm and 50 nm (inset). f Phase diagram estimated from $\Delta G = \Delta H - T \Delta S$. g Plots of the spectral changes of the absorbance at 470 nm as a function of the temperature for 1/2 (1:1; $c_1 = 10$ µM) during the heating (v; red) and cooling (vi; blue) processes. h Blue and purple dots: plots of absorbance at 470 nm as a function of temperature for the equilibrated 1/2 (1:1; $c_1 = 100$ µM, helicoid) in the heating process (red) and subsequent aging at 45 °C (10 h). Red and orange dots: plots of absorbance at 470 nm as a function of temperature for the equilibrated 1/2 (1:1; $c_1 = 100$ µM, amorphous coaggregate) in the first cooling process (blue) and subsequent aging process at 35 °C (10 h). Red and orange dots: plots of absorbance at 470 nm as a function of temperature for the equilibrated 1/2 (1:1; $c_1 = 100$ µM, helicoid) in the heating process (red) and subsequent aging at 45 °C (10 h).
each exposure time of 10 s. Because no radiation damage was observed, the col-
lected data were averaged to yield a total integration time of 600 s. The 2D scattering
data (detector: DECTRIS PILATUS3 2M) were radially averaged to yield 1D
scattering intensity data \(|I(Q)\) vs. \(Q\). These data were then normalized using water
as a reference, and the following subtraction of the background (quartz glass
windows and solvent) gave absolute scattering intensity \(I(Q)\) in \(\text{cm}^{-1}\). All data
reduction was performed using the software package Sánge\(\text{r}^{9}\). In temperature-
dependent SAXS experiments, the temperature of sample solution was controlled
using a HC302-LN190 (Insect Inc.). Sample solutions were placed in quartz
capillaries (2 mm in diameter and 10 \(\mu\)m in wall thickness), and the top of the
capillary was sealed with resin to avoid evaporation of the solvent at higher tem-
perature. SAXS data were collected using X-ray with a wavelength of 1 A.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Materials. Additional data related to this paper may be requested
from the corresponding authors.

Received: 15 December 2019; Accepted: 9 March 2020;
Published online: 01 April 2020

References
1. Pieters, B. J. G. E., van Eldijk, M. B., Nolte, R. J. M. & Meicinovic, J. Natural
supramolecular protein assemblies. Chem. Soc. Rev. 45, 24–39 (2016).
2. Wei, G., Xi, W., Nussinov, R. & Ma, B. Protein ensembles: How does nature
harness thermodynamic fluctuations for life? The diverse functional roles
of conformational ensembles in the cell. Chem. Rev. 116, 6516–6551 (2016).
3. Durham, A. C. H. & Klug, A. Polymerization of tobacco mosaic virus protein
from bacteria to humans. J. Am. Chem. Soc. 53, 1138–11545 (1999).
4. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid
from bacteria to humans. J. Am. Chem. Soc. 125, 4831–4835 (2003).
5. Buey, R. M., Díaz, J. F. & Andreu, J. M. The nucleotide switch of tubulin and
regioisomerism. Angew. Chem. Int. Ed. 55, 8980–8983 (2016).
6. Hollamby, M. J. et al. Simultaneous SAXS and SANS analysis for the detection
of toroidal supramolecular polymers composed of noncovalent
supramacrocyties in solution. Angew. Chem. Int. Ed. 55, 8980–8983 (2016).
7. Aratu, K. et al. Self-sorting roguestromers through the hierarchical
organization of hydrogen-bonded rosettes. Chem. Commun. 52, 8211–8214
(2016).
8. Aratu, K. & Yagai, S. Self-sorting of rosette-forming naphthalene barbiturates
introducing the solvent-assisted helices. ChemPlusChem 84, 619–622 (2019).
9. Yokota, T. et al. One-shot preparation of topologically chimeric nanofibers
via a gradient supramolecular copolymerization. Nat. Commun. 10, 4578
(2019).
10. Taylor, P. N. & Anderson, H. L. Cooperative self-assembly of double-strand
concatenated porphyrin ladders. J. Am. Chem. Soc. 121, 11358–11354 (1999).
11. M. A. & Isaacs, L. Self-sorting: the exception or the rule? J. Am. Chem. Soc.
125, 4831–4835 (2003).
12. Safont-Sempere, M. M., Fernández, G. & Würthner, F. Self-sorting
phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814
(2011).
13. Chakraborty, S., Kar, H., Sikder, A. & Ghosh, S. Steric play for alternating
donor–acceptor co-assembly and cooperative supramolecular polymerization.
Chem. Sci. 8, 1045–1045 (2017).
14. Hirao, T., Kudo, H., Amimoto, T. & Haino, T. Sequence-controlled
supramolecular terpolymerization directed by specific molecular recognitions.
Nat. Commun. 8, 634 (2017).
15. Ogoshi, T. et al. Ring shape-dependent self-sorting of pillar[n]arenes
assembled on a surface. Chem. Commun. 1, 92 (2018).
16. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block
copolyomers by kinetically controlled co-self-assembly of planar and core-
twisted perylene bismides. Nat. Commun. 6, 7009 (2015).
17. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W.
Probing the solvent-assisted nucleation pathway in chemical self-assembly.
Science 313, 80–83 (2006).
18. Smulders, M. M. J. et al. How to distinguish isoeddsic from cooperative
supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).
19. Shen, B. et al. Autonomous helical propagation of active toroids with
mechanical action. Nat. Commun. 10, 1080 (2019).
20. Korevaa, P. A. et al. Pathway complexity in supramolecular polymerization.
Nature 481, 492–496 (2012).
21. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living
supramolecular polymerization realized through a biomimetic approach. Nat.
Chem. 6, 188–195 (2014).
22. Ogi, S., Stepanenko, V., Thein, J. & Würthner, F. Impact of alkyl spacer length
on aggregation pathways in kinetically controlled supramolecular
polymerization. J. Am. Chem. Soc. 138, 670–678 (2016).
23. Jiang, W. & Schalley, C. A. Molecular recognition and self-assembly special
feature: integrative self-sorting is a programming language for high level self-
assembly. Prog. Natl Acad. Sci. USA 106, 10425–10429 (2009).
24. He, Z., Jiang, W. & Schalley, C. A. Integrative self-sorting: a versatile strategy
for the construction of complex supramolecular architecture. Chem. Soc. Rev.
44, 779–789 (2015).
25. Ogi, S., Fukushima, T., Sue, M. L., Takeuchi, M. & Sugiyasu, K. Kinetic control over
pathway complexity in supramolecular polymerization through modulating
the energy landscape by rational molecular design. Angew. Chem. Int. Ed.
53, 14363–14367 (2014).
26. Kowher, P. H. J. & Mehl, G. H. Hierarchical organisation in shape-
amphiphilic liquid crystals. J. Mater. Chem. 19, 1564–1579 (2009).
27. Ajayaghosh, A., Varghese, R., George, S. J. & Vijayakumar, C. Transcription and
amplification of molecular chirality to oppositely biased supramolecular π
helices. Angew. Chem. Int. Ed. 45, 1141–1144 (2006).
28. de Gref, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109,
5687–5754 (2009).
29. Tokoro, H. et al. Theoretical prediction of a charge-transfer phase transition.
Sci. Rep. 8, 63 (2018).
30. Shimizu, N. et al. BL-10C, the small-angle X-ray scattering beamline at the
Photon Factory. AIP Conf. Proc. 2054, 060041 (2019).
31. Igarashi, N. et al. Upgrai of the small angle X-ray scattering beamlines at the
Photon Factory. J. Phys. 272, 012026 (2011).

Acknowledgements
This work was supported by KAKENHI grant no. 26102010 and a Grant-in-Aid
for Scientific Research on Innovative Areas “n-Figuation” (grant no. 26102001)
from the Japanese Ministry of Education, Culture, Sports, Science, and Technology
(MEXT). This work was performed with the approval of the Photon Factory Program
Advisory Committee (proposal no. 2016G550). S.Y. acknowledges
financial support from the

Funding
This project has received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie grant
agreement No. 665804.

Conflict of interest
The authors declare no conflict of interest.

Acknowledgements
This work was supported by KAKENHI grant no. 26102010 and a Grant-in-Aid for
Scientific Research on Innovative Areas “n-Figuration” (grant no. 26102001) from
the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
This work was performed with the approval of the Photon Factory Program Advisory
Committee (proposal no. 2016G550). S.Y. acknowledges financial support from the
Murata Science Foundation. K.A. thanks the JSPS for a research fellowship (17K05220).
We thank Dr. Tomonari Ohba for assisting with TEM measurements.
Author contributions
S.Y. and K.A. designed the project. K.A. synthesized 1–3, and performed most of the experimental works except for 1S and 2S. R.T. synthesized 1S and 2S, and carried out the experimental works of them. N.S., H.T., R.H., and S.-i.A. collected the SAXS data. M.J.H. and B.R.P. simulated the SAXS data and wrote SAXS section of the paper. S.Y. and K.A. prepared the overall paper including figures. All authors including Y.K. have contributed by commenting on the paper. The overall project was directed by S.Y.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15422-6.

Correspondence and requests for materials should be addressed to B.R.P., M.J.H. or S.Y.

Peer review information Nature Communications thanks Luis Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020