Synthesis of High-Molecular-Weight Branched Polyethylene Using a Hybrid “Sandwich” Pyridine-Imine Ni(II) Catalyst

You Ge1,2‡, Qi Cai1‡, Yuyin Wang3, Jiangang Gao1*, Yue Chi3* and Shengyu Dai1,2†

1School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China, 2Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, China, 3Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, China

Most pyridine-imine Ni(II) and Pd(II) catalysts tend to yield low-molecular-weight polyethylene and ethylene-based copolymers in olefin insertion polymerization, as the unilateral axial steric structure of such complexes often cannot provide effective shielding of the metal center. In this study, we synthesized a series of hybrid “semi-sandwich” and “sandwich” type pyridine-imine Ni(II) complexes by incorporating diarylmethyl or dibenzosuberyl groups onto 8-aryl-naphthyl motif. The as-prepared Ni(II) complexes afforded highly branched polyethylene with high molecular weights (level of 10^5 g/mol), and moderate activities (level of 10^5 g/(molh)) in ethylene polymerization. Most interestingly, compared to “semi-sandwich” Ni(II) complexes bearing (2-diarylmethyl-8-aryl)naphthyl units, the “full-sandwich” counterpart containing (2-dibenzosuberyl-8-aryl)naphthyl motif was able to produce higher-molecular-weight polyethylene with higher branching density. In addition, the effect of remote non-conjugated electronic substituents in diarylmethyl groups of the Ni(II) system was also observed in ethylene polymerization.

Keywords: hybrid “sandwich”, Ni(II) and Pd(II) catalysts, highly branched, high-molecular-weight, pyridine-imine

INTRODUCTION

As known, the [N, N] bidentate α-dimine Ni(II) and Pd(II) complexes bearing double-sided axial steric structures represent a mainstream catalytic system, which tend to yield high-molecular-weight polyethylene and ethylene-polar monomer copolymers. (Dai et al., 2016a; Gong et al., 2019a; Guo et al., 2018; Meinhard et al., 2007; Rhinehart et al., 2013; Dai et al., 2015; Xia et al., 2020; Zhao et al., 2021; Wang et al., 2020a; Zhang et al., 2013; Gong et al., 2019b; Liao et al., 2019; Zhong et al., 2017a; Zhong et al., 2017b; Zhong et al., 2019; Abedini et al., 2021; Kanai et al., 2019; Zhang et al., 2020; Ma et al., 2021; Li et al., 2021a; Allen et al., 2015). In contrast, pyridine-imine Ni(II) and Pd(II) catalysts often give rise to low-molecular-weight oligomers because the only unilateral axial steric hindrance rising from the imine motif hardly shields the metal well in most cases. (Dai et al., 2016b). Consequently, strategies that are effective in suppressing the chain transfer to bring forth high-molecular-weight products in α-dimine systems are often not applicable to the pyridine-imine systems. For example, by using the bulky diarylmethyl anilines, the α-dimine Ni(II) and Pd(II) catalysts can generate high-molecular-weight and even ultra-high-molecular-weight polyethylenes. (Rhinehart et al., 2013; Dai et al., 2015; Zhao et al., 2021; Gong et al., 2019b). However, the pyridine-imine system derived from same diarylmethyl anilines provides only
CHART 1 | Modifications of pyridine-imine Ni(II) and Pd(II) catalysts (A–E), and our current work (F).

SCHEME 1 | Synthesis of “semi-sandwich” and “sandwich” type pyridine-imine Ni(II) (Ni1–Ni5) and Pd(II) (Pd5) complexes.
branched ethylene oligomers. (Chen et al., 2018; Li et al., 2021b; Yan et al., 2021; Wang et al., 2020b; Guo et al., 2019). In fact, since Laine et al. reported that the first example of pyridine-imine nickel-catalyzed ethylene polymerization yielded low-molecular-weight branched polyethylene, (Laine et al., 1999), many attempts, including the steric tuning of the o-aryl substituents, modifying the pyridine backbone and adjusting ligand electronic effect have been made to improve this situation, but no visible improvement was achieved (Chart 1A). (Bianchini et al., 2010; Laine et al., 2000; Meneghetti et al., 1999; Huang et al., 2016; Sun et al., 2015a; Huang et al., 2015; Sun et al., 2015b; Yue et al., 2014; Sun et al., 2012; Chen et al., 2016) Recently, we simultaneously integrated 8-aryl-naphthyl and dibenzhydryl substituents into the pyridine-imine system, making the resultant complexes able to effectively suppress chain transfer in the ethylene polymerization, thus yielding high molecular weight polyethylene (M<sub>n</sub> well above 100 kg/mol) (Chart 1B). (Dai et al., 2016b) More recently, the dibenzosuberyl groups were also employed in the pyridine-imine system to enhance the polyethylene molecular weight (M<sub>n</sub> up to 124 kg/mol) via a rotation-restricted strategy (Chart 1C). (Peng et al., 2021; Li and Dai, 2021) In contrast, the pyridine-imine consisting of N-terphenyl structure failed to retard chain transfer, thus only hyperbranched ethylene oligomers and ethylene-methyl acrylate (MA) co-oligomers can be obtained (Chart 1D). (Fan et al., 2021; Yan et al., 2022; Fan et al., 2022) In addition, the effectiveness of a single dibenzosuberyl group in unsymmetrical iminopyridyl Ni(II) and Pd(II) catalysts in retarding the chain transfer was also demonstrated (Chart 1E). (Ge et al., 2021) In this study, the dibenzosuberyl and 8-aryl-naphthyl units are integrated into the pyridine-imine nickel catalyst at the same time and the resulting hybrid “sandwich” catalyst is capable of catalyzing ethylene polymerization to yield highly branched polyethylene with high molecular weights (Chart 1F).

RESULTS AND DISCUSSION

Synthesis and Characterization of Pyridine-Imine Nickel and Palladium Complexes

Ligands L1-L5 were synthesized according to the previous reports. (Li and Dai, 2021). Treating these ligands with 1.0 equiv. of [NiBr<sub>2</sub>(DME)] (DME = Dimethoxyethane) in dichloromethane at ambient temperature yielded Ni(II)
| Entry | Precat | T/°C | Yield/g | Act. b | $M_n$ (10^5)c | $M_w/M_n$e | Bd d | Tm/(°C)* |
|-------|--------|------|---------|--------|----------------|--------------|-------|----------|
| 1     | Ni1    | 30   | 0.24    | 2.4    | 13.71          | 1.24         | 68    | 28       |
| 2     | Ni1    | 50   | 0.32    | 3.2    | 14.20          | 1.30         | 71    | 21       |
| 3     | Ni1    | 70   | 0.29    | 2.9    | 15.81          | 3.29         | 75    | 10       |
| 4     | Ni2    | 30   | 0.27    | 2.7    | 15.39          | 2.31         | 74    | 20       |
| 5     | Ni2    | 50   | 0.31    | 3.1    | 13.99          | 1.29         | 75    | 17       |
| 6     | Ni2    | 70   | 0.29    | 2.9    | 13.93          | 1.59         | 79    | 8        |
| 7     | Ni3    | 30   | 0.32    | 3.2    | 17.13          | 1.38         | 59    | 53       |
| 8     | Ni3    | 50   | 0.31    | 3.1    | 17.22          | 1.54         | 61    | 48       |
| 9     | Ni3    | 70   | 0.34    | 3.4    | 12.86          | 1.23         | 68    | 29       |
| 10    | Ni4    | 30   | 0.36    | 3.6    | 13.62          | 1.32         | 69    | 29       |
| 11    | Ni4    | 50   | 0.38    | 3.8    | 14.00          | 1.60         | 72    | 23       |
| 12    | Ni4    | 70   | 0.34    | 3.4    | 20.22          | 0.85         | 87    | -4       |
| 13    | Ni5    | 30   | 0.36    | 3.6    | 19.76          | 1.61         | 88    | -6       |
| 14    | Ni5    | 50   | 0.36    | 3.6    | 19.72          | 1.61         | 90    | -6       |
| 15    | Ni5    | 70   | 0.32    | 3.2    | 19.72          | 1.61         | 90    | -6       |
| 16    | Pd5    | 30   | trace   | -      | -              | -            | -     | -        |
| 17    | Ni1    | 30   | 0.12    | 1.2    | 10.21          | 1.43         | -     | -        |
| 18    | Ni1    | 30   | 0.03    | 0.3    | 7.52           | 1.56         | -     | -        |

Conditions: Ni(II) complexes (2 μmol) or Pd(II) complex (10 μmol), 200 eq. Et₂AlCl, 1 ml of CH₂Cl₂, 20 ml toluene, polymerization time (30 min), 6 atm. aActivity (Act.) = 10^5 g/(mol·h). b Determined by GPC in 1,2,4-trichlorobenzene at 150 °C vs polystyrene standards. c $M_n$ = branches per 1,000 carbons, determined by $^1$H NMR spectroscopy, $B = 1,000 \times 2(I_{CH3})/3(I_{CH2+CH} + I_{CH3})$. d Determined by differential scanning calorimetry (DSC), broad peak.

**FIGURE 3** | Comparisons on yield (A), molecular weight (B), and branching density (C) of polyethylene yielded with catalysts Ni1-Ni5 at 30–70°C.

**FIGURE 4** | DSC (A) and GPC (B) of the branched polyethylene obtained by using Ni1 at 50°C (Table 1, entry 2).
complexes Ni1-Ni5 in excellent yields (81–94%) (Scheme 1). The purity and identity of Ni1-Ni5 were examined by elemental analysis and MALDI-TOF MS (Supplementary Figures S3–7). Similarly, the Pd(II) complex Pd5 was synthesized by exposing the ligand L5 to [PdClMe(COD)] (COD = 1, 5-cyclooctadiene) in dichloromethane at ambient temperature (Scheme 1). The obtained Pd(II) complex was verified by 1H and 13C NMR (Supplementary Figures S1, 2), ESI-MS (Supplementary Figure S8), and elemental analysis. The single crystal Pd5 was obtained by layering its CH2Cl2 solution with diethyl ether at ambient temperature (Figure 1).

The complex Pd5 displays an approximate planar square geometry at the Pd(II) center, and the 4-methylphenyl group and phenyl ring of dibenzosuberyl substituent lie nearly parallel to the five-membered chelate ring and effectively block the axial coordination site of the Pd(II) complex, which is responsible for the retardation of the undesired chain transfer. Here, we also provide the buried volume diagram of Pd5 complex analyzed by SambVca 2.0 program (Figure 2). (Falivene et al., 2015) As expected, the complex Pd5 possessed crowded environment around the palladium center with the percent buried volume of 51.0%. This type of bulky substituents helps to suppress chain transfer during polymerization to obtain high molecular weight polymers. (Deng et al., 1997; Talarico et al., 2004).

**Ethylene Polymerization**

Upon in-situ activation with 200 equivalents of Et2AlCl, all the Ni(II) complexes exhibited moderate activities (level of 10^5 g mol⁻¹ h⁻¹) and yielded high molecular weight (level of 100 kg/mol) polyethylene with high branching densities (57-90/1000 C) and low melting points (-6–53°C) in ethylene polymerization (Table 1; Figures 3, 4). The polymerization activities of these Ni(II) complexes remained almost unchanged with the increase of temperature (Figure 3A). As the ethylene pressure decreased (from 6 to 3 atm and 1 atm), both the polymerization activity and the molecular weight of the resulting polyethylene declined, and the decrease in polymerization activity is more pronounced (Table 1, entries 1 vs 17-18). Similar to the reported nickel-catalyzed ethylene polymerization systems (Zhang et al., 2013), chain termination is mainly based on the pathway of synergistic transfer of polymer chains to monomers. Amidst these five nickel complexes, Ni4 containing electron withdrawing fluorine and Ni5 composed of dibenzosuberyl substituent exhibited relatively higher catalytic activity than the others. Probably, a weaker interaction between metal and fluorinated aryl group for Ni4 and the stronger catalyst thermal stability originating from the proper aryl orientation for Ni5 may contribute to the better catalytic activities. As opposed to the fact that the pyridine-imine catalysts usually generate low-molecular-weight polyethylene or copolymers in ethylene (co) polymerization due to the unilateral axial steric structure of the pyridine-imine ligand, all these Ni(II) complexes in our case yielded polyethylene with high molecular weight (level of 100 kg/mol), one or two orders of magnitude higher than those obtained in most reported pyridine-imine systems (Figure 5). (Laine et al., 1999; Meneghetti et al., 1999; Laine et al., 2000; Bianchini et al., 2010; Sun et al., 2012; Yue et al., 2014; Sun et al., 2015a; Sun et al., 2015b; Huang et al., 2015; Chen et al., 2016; Huang et al., 2016; Guo et al., 2019; Wang et al., 2020b; Fan et al., 2021; Li and Dai, 2021; Peng et al., 2021; Yan et al., 2022) This is mainly attributed...
to the synergistic effect of 8-arylnaphthyl and diarylmethyl groups, which form a sandwich-like structure that can effectively retard chain transfer during polymerization. In particular, Ni\textsuperscript{5} is capable of generating the highest molecular weight of polyethylene among these catalysts (Figure 2B). An explanation is that the ring structure in the dibenzosuberyl substituent that drives the aryl group closer to the axial position of the metal center. This allows the conversion of the catalyst structure from a semi-sandwich to a full-sandwich structure (Figure 1). It is worth noting that Ni\textsuperscript{3} also produced higher molecular weight polyethylene than other catalysts of the same type (Ni\textsuperscript{1}, Ni\textsuperscript{2}, and Ni\textsuperscript{4}). This may be due to the interaction of methoxy with the co-catalyst (Et\textsubscript{2}AlCl) to form a greater axial steric hindrance, which can more effectively retard the chain transfer during polymerization process (Scheme 2). Among them, methyl branches and long chain branches account for the majority of all the branches. This indicates that Ni\textsuperscript{5} with a sandwich structure is capable of generating polyethylene with randomly branches distribution in which methyl and long chain branching dominate, further demonstrating its strong chain walking ability. Further comparison with the \textsuperscript{13}C NMR analysis of the polyethylene yielded with Ni\textsuperscript{1} and Ni\textsuperscript{3} at 70°C, the hybrid “sandwich” structure of Ni\textsuperscript{5} facilitates access to a higher percentage of long chain branching (Supplementary Table S1, Supplementary Figure S12).

CONCLUSION

In summary, a series of “semi-sandwich” and “sandwich” type pyridine-imine Ni(II) complexes bearing diarylmethyl or dibenzosuberyl groups and 8-arylnaphthyl substituent were synthesized and characterized. The Ni(II) complexes exhibited moderate activities (level of 10\textsuperscript{5} g/(mol h)) and generated highly

FIGURE 7 | Detailed analysis of \textsuperscript{13}C NMR spectrum of branched polyethylene obtained by using Ni\textsuperscript{5} at 70°C (Table 1, entry 15). Assignments are numbered according to ref. 49-51. Branches are labeled as xBy, where y is the branch length and x is the carbon, starting from the methyl end with 1. The methine groups for the different branch lengths are labeled with brBy.
branched (57-90/1000 C) polyethylene with high molecular weights (level of 10^5 g/mol) in ethylene polymerization. Moreover, the “full-sandwich” Ni(II) complex containing 8-arylnaphthyl and dibenzosuberyl substituents yielded higher molecular weight polyethylene with higher branching density than those from “semi-sandwich” Ni(II) complexes bearing 8-arylnaphthyl and diarylmethyl groups. In addition, the remote non-conjugated electronic substituents in diarylmethyl groups of the Ni(II) system also have an effect on the ethylene polymerization.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

SD: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Resources, Validation, Supervision, Writing—original draft, Writing—review and editing. YC: Resources, Validation, Supervision, Writing—review and editing. JG: Resources, Validation, Supervision, Writing—review and editing. YW: Investigation. QC: Formal analysis, Investigation, Methodology. YG: Formal analysis, Investigation, Methodology.

FUNDING

This work was supported by Natural Science Foundation of Anhui Province (2108085Y06), Anhui Provincial Key Laboratory Open Project Foundation (LCECSC-01), and Jilin Province Science and Technology Department Project (No. 20210101070JC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.886888/full#supplementary-material

REFERENCES

Abedini, A., Jamjah, R., and Arabi, H. (2021). Parallel Reactions in Polymerization of Ethylene/methyl Methacrylate by Late-Transition-Metal Catalysts (α-Diimine Nickel). Iran. Polym. J. 30, 843–848. doi:10.1007/s13726-021-00936-7
Allen, K. E., Campos, J., Daugulis, O., and Brookhart, M. (2015). Living Polymerization of Ethylene and Copolymerization of Ethylene/Methyl Acrylate Using “Sandwich” Diamine Palladium Catalysts. ACS Catal. 5, 456–464. doi:10.1021/cs5016029
Bianchini, C., Giambastiani, G., Luconi, L., and Meli, A. (2010). Olefin Oligomerization, Homopolymerization and Copolymerization by Late Transition Metals Supported by (imino)pyridine Ligands. Coord. Chem. Rev. 254, 431–455. doi:10.1016/j.ccr.2009.07.013
Chen, X.-L., Gao, J., Liao, H., Gao, H.-Y., and Wu, Q. (2018). Synthesis, Characterization, and Catalytic Ethylene Oligomerization of Pyridine-Imine Palladium Complexes. Chin. J. Polym. Sci. 36, 176–184. doi:10.1007/s10118-018-2052-8
Chen, Z., Allen, K. E., White, P. S., Daugulis, O., and Brookhart, M. (2016). Synthesis of Branched Polyethylene with “Half-Sandwich” Pyridine-Imine Nickel Complexes. Organometallics 35, 1756–1760. doi:10.1021/acs.organomet.6b00165
Cotts, P. M., Guan, Z., McCord, E., and McLain, S. (2000). Novel Branching Topology in Polyethylene as Revealed by Light Scattering and 13C NMR. Macromolecules 33, 6945–6952. doi:10.1021/ma000926r
Dai, S., Sui, X., and Chen, C. (2015). Highly Robust Palladium(II) α-Diimine Catalysts for Slow-Chain-Walking Polymerization of Ethylene and Copolymerization with Methyl Acrylate. Angew. Chem. 127, 10086–10091. doi:10.1002/ange.201503708
Dai, S., Sui, X., and Chen, C. (2016). Synthesis of High Molecular Weight Polyethylene Using Iminopyridyl Nickel Catalysts. Chem. Commun. 52, 9113–9116. doi:10.1039/c6cc00457a
Dai, S., Zhou, S., Zhang, W., and Chen, C. (2016). Systematic Investigations of Ligand Steric Effects on α-Diimine Palladium Catalyzed Olefin Polymerization and Copolymerization. Macromolecules 49, 8855–8862. doi:10.1021/acs.macromol.6b02104
Deng, L., Woo, T. K., Cavallo, L., Margl, P. M., and Ziegler, T. (1997). The Role of Bulky Substituents in Brookhart-type Ni(II) Diamine Catalyzed Olefin...
diimine)Nickel(II) Catalysts. *Organometallics* 32, 5136–5143. doi:10.1021/om400704h
Zhang, Y., Wang, C., Mecking, S., and Jian, Z. (2020). Ultrahigh Branching of Main-Chain-Functionalized Polyethylenes by Inverted Insertion Selectivity. *Angew. Chem. Int. Ed.* 59, 14296–14302. doi:10.1002/anie.202004763
Zhao, Y., Li, S., Fan, W., and Dai, S. (2021). Reversion of the Chain Walking Ability of α-dimine Nickel and Palladium Catalysts with Bulky Diarylmethyl Substituents. *J. Organomet. Chem.* 932, 121649. doi:10.1016/j.jorganchem.2020.121649
Zhong, L., Du, C., Liao, G., Liao, H., Zheng, H., Wu, Q., et al. (2019). Effects of Backbone Substituent and Intra-ligand Hydrogen Bonding Interaction on Ethylene Polymerizations with α-dimine Nickel Catalysts. *J. Catal.* 375, 113–123. doi:10.1016/j.jcat.2019.05.026
Zhong, L., Li, G., Liang, G., Gao, H., and Wu, Q. (2017). Enhancing Thermal Stability and Living Fashion in α-Diimine-Nickel-Catalyzed (Co) polymerization of Ethylene and Polar Monomer by Increasing the Steric Bulk of Ligand Backbone. *Macromolecules* 50, 2675–2682. doi:10.1021/acs.macromol.7b00121
Zhong, S., Tan, Y., Zhong, L., Gao, J., Liao, H., Jiang, L., et al. (2017). Precision Synthesis of Ethylene and Polar Monomer Copolymers by Palladium-Catalyzed Living Coordination Copolymerization. *Macromolecules* 50, 5661–5669. doi:10.1021/acs.macromol.7b01132

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ge, Cai, Wang, Gao, Chi and Dai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.