Hypertensive Patient Compliance with Pharmacist Intervention: A Systematic Review

Abdullah M. Alshahrani¹*, Marzoq S. Al-Nasser¹, Saif T. Alhawashi², Saad Alqahtani³, Ali A. Alqahtani³ and Saad S. Alqahtani²*

¹Pharmaceutical Care Service, Armed Force Hospital Southern Region, Saudi Arabia.
²Pharmacy Services Department, Security Forces Hospital Program, Riyadh, Saudi Arabia.
³General Directorate of Medical Services, Jeddah Medical Center, Saudi Arabia.
⁴Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i39B32182
Editors:
(1) Dr. Rafik Karaman, Al-Quds University, Palestine.
(2) Christina Voycheva, Medical University of Sofia, Bulgaria. (2) Qayssar J. Fadheel, University of kufa, Iraq.
Reviewers:
(1) Christina Voycheva, Medical University of Sofia, Bulgaria. (2) Qayssar J. Fadheel, University of kufa, Iraq.
Complete Peer review History: https://www.sdiarticle4.com/review-history/71895

Received 24 May 2021
Accepted 28 July 2021
Published 31 July 2021

ABSTRACT

Background: Pharmacists and physicians can work together to improve patient compliance especially for the management of hypertension. Medication adherence leads to advance health and reduces hospitalizations (morbidity), death (mortality) and healthcare costs.

Objectives: Involvement of pharmacist in treatment intervention can result in improved understanding about hypertension and it can increase medication adherence to antihypertensive therapy which ultimately advance overall quality of life.

Study design and methods: A comprehensive research study was conducted using two eminent databases i.e. PUBMED and EMBASE. The research articles from 1996 to 2015 were analyzed. All the selected articles were about pharmacist intervention, hypertensive patient compliance and hypertension medication adherence.

Results: Some studies show no control in BP; however, there was significant difference in the systolic and diastolic BP pre and post pharmacist intervention (Systolic from 158.1±14.4 to 143.8 ± 10.7, Diastolic from 100.6 ±11.5 to 89.8 ± 9.7). Conversely, in some studies BP was controlled in about 29.9% of control group and in 63% of the intervention group.

*Corresponding author: E-mail: Abdullah2thyb2pharm@gmail.com, sosalqahtani@jazanu.edu.sa, scisp2@aliyun.com;
Conclusion: Results showed many methods can improve medication adherence and blood pressure including counseling patients in person, collaboration between pharmacists and physicians, and using technology like telecommunication to intensify patients counseling. Pharmacist intervention can significantly increase disease-related knowledge, blood pressure control and medication adherence in patients with hypertension.

Keywords: Pharmacist; Hypertension; Counseling.

1. INTRODUCTION

Hypertension is a non-communicable chronic disease frequently asymptomatic or sometimes with minor symptoms [1]. When there is no obvious underlying cause of hypertension it can be classified as essential hypertension, secondary hypertension, Cushing syndrome and malignant hypertension [2].

Hypertension disease is the major risk factor for cardiovascular disease and affects approximately 20% of adults in North America [3]. Hypertension is defined as blood pressure at 140/90 mmHg or greater. In the United States, 29% of the population, 85.4 million individuals have been diagnosed with hypertension [4].

Hypertension is a well-known risk factor for many chronic diseases including cardiovascular, metabolic and kidney diseases and a leading risk factor for mortality due to these complications [5].

Due to poor medication adherence and compliance to current therapeutic guidelines, hypertension is poorly managed [6].

Pharmacists can play an important role in helping patients with hypertension to manage their condition. Helping as a partner and instructor, pharmacists can provide medication therapy management services and can educate patients about Hypertension [7].

Pathophysiologically, hypertension can be stated in terms of systolic blood pressure, which replicates the blood pressure when the heart is contracted (systole), and diastolic blood pressure, which replicates the blood pressure during relaxation (diastole). Hypertension can be diagnosed when whichever systolic pressure, diastolic pressure, or both are elevated.

New guidelines issued by the National Committee on Prevention, Detection, Evaluation, and Treatment of Blood Pressure (JNC 7) encourage health providers to help those who have uncontrolled blood pressure. Moreover, guidelines have been issued by American Diabetes Association (ADA) and World Health Organization-International Society of Hypertension (WHO-ISH) that emphasize the need to control blood pressure [9]. Complications, such as renal failure [10], myocardial infarction, heart failure and stroke, can occur as a result of uncontrolled hypertension. [11]

A study was conducted where the pharmacist and the physician worked together to improve patient compliance especially for patients diagnosed with hypertension and showed that there was a significant improvement from baselines of the mean BP [12-14].

Furthermore, medication adherence leads to improved health and reduced hospitalizations (morbidity), death (mortality), and the healthcare costs. Addressing factors that positively affect medications adherence for hypertension patients is very important to reduce the burden of hypertension disease and other diseases that may be caused by hypertension such as chronic kidney diseases [15].

2. METHOD

2.1 Information Sources

A comprehensive research study has been conducted by using two databases; PUBMED and EMBASE (1996-2015). Search terms that had been used in PUBMED were “pharmacist intervention” and “hypertensive patient compliance” and using MeSH terms to do the advanced research for each term and then combined them by using AND coin to include the two terms in the research. After that, searching on EMBASE was performed by using “hypertension medication adherence” and to narrow the research, it was joined to pharmacist intervention and the language that has been used was the English for both databases.

2.2 Inclusion Criteria

The inclusion criteria are hypertensive patients with other comorbidities, including cardiovascular
diseases, kidney diseases or diabetes mellitus. Pharmacist intervention was defined as counseling the patients in person or using technology (telecommunications, emails, etc.). Blood pressure is the primary outcome.

2.3 Data Collection & Study Selection

The abstracts with titles were reviewed to determine if the article met predetermined inclusion criteria (see Fig. 1). Some of them were eliminated if they did not include an intervention where the pharmacist interacted with patients to improve high blood pressure and medication adherence/compliance as outcomes.

Chart 1: Searching strategy:
- MeSH Hypertension patient
- MeSH Pharmacist intervention
- MeSH hypertension patient compliance
- Text word: hypertension medication adherence
- Text word: pharmacist intervention

- Process for Eligible Articles

Fig. 1. Process for Eligible Articles

3. RESULTS & DISCUSSION

3.1 Study Selection

Based on the eligibility criteria and removing the duplicate citations a total of 60 articles were found (see Fig. 1). Then, titles and abstracts were examined and 17 were selected for full text review. There were 10 articles that showed a statistical significant in reducing the blood pressure. Six articles were identified that mentioned a significant improvement in medication adherence. Finally, a one article showed both a statistically significant improvement in blood pressure and medication adherence.

3.2 Study Characteristics & Results of Individual Studies

Table 1 provides a summary of 17 studies that met the eligible criteria that mentioned above. These studies differ from one another according to the sample size, sample population, study design, duration, studies sites, and intervention and control groups description. Sample size in 17 studies ranged from forty to five hundred and eighty-four patients. The length of duration was from one month and eleven days to thirty-six months. Regarding to the sites, places of studies, there were six international studies. Randomized control trials were the most common study design [8,9,3,18,21]. Other study designs included case control study [2], quasi-experimental study with a control group [10], prospective and controlled design [19], non-randomized cross-over design [7,20], nonrandomized retrospective comparison [17]. All studies focused on adult patients who are over 55 years.

Table 2 shows the medications adherence and blood pressure levels in all studies at the baselines and at the end of each study. There are fluctuations and wide range of mean baselines of blood pressure and medications adherence according to various study design. For most of them, to detect medication adherence, qualitative methods like interviewers or self reported surveys were used to determine whether the patient was more adherent to pharmacist and physician instructions for medications adherence. Physical measuring blood pressure as a directly to detect blood pressure included in [8,3,17,19]. However, indirect methods like self-report using a questionnaire or Morisky method to detect the medication adherence along with measuring blood pressure was also used [21].
Table 1. Studies meeting inclusion criteria

Study(Y)	Patients (n)	Sample population	Duration	Setting	interventions	Study design	Type of control	Ref.
Aguwa et. al. (2007)	40	Hypertensive patients	10 months	Nigeria Community Pharmacy	Implementing a pharmaceutical care program	Non-randomized, single site, and crossover design	Patients served as their own control	[16]
Bodgen et. al. (1998)	95	Patients failed to meet JNC-V criteria	6-months	Queen Emma Clinics, Hawaii.	Physician and pharmacist as team working together	Single blind Randomized control trial	Standard medical Care	[17]
Carter BL et. al. (2009)	402	Patients of community-based medical offices	6-months	Davenport, Des Moines, Mason city, Sioux city, and Waterloo, Iowa	Recommendations came from pharmacists to physicians, and nurses measured the BP within 24-H with monitoring	Prospective, cluster randomized, controlled clinical trial.	Uncontrolled hypertension patients receiving usual care	[18]
Chabot, I. et. al. (2003)	100	Patients visit community pharmacy	9-months	Quebec city	By using PRECEDE-PROCEED model, computerized-aid tool used by the pharmacists	Case control study	Performed usual care	[19]
Criswell T. J., et. al. (2010)	584	Uncontrolled primary hypertension	6 and 9 months respectively	12 university affiliated-primary care clinics	Intensified hypertension management and drug counseling by pharmacist	Randomized controlled trials	Usual care	[20]
Fikri-benbrahim N., et. al. (2012)	176	Patients visit community pharmacy	20 weeks	Jean and Granada in Spain	Patient education about hypertension, home BP monitoring, and referral to physician if it necessary	A quasi-experimental study with a control group	Standard Care	[10]
Study Reference	Patients Description	Follow-up Duration	Setting/control	Interventions	Study Design	Control Group		
---------------------------------	--	-------------------	-----------------	---	--------------	---		
Gum TH., et. al. (2015)	Patients have uncontrolled BP, patients with diabetes or chronic kidney disease	24 months	15 states USA	pharmacist-patient encouraging: medication history, assessment of patient knowledge of medication, contraindication, and adherence	Prospective, cluster, randomized study	Usual care [21]		
Graco JA., et. al. 2002	Hypertensive patients with a previous using antihypertensive medications at least for 6 months(rural Portuguese population)	6 months	Private pharmacy, rural Portuguese population	Monthly appointment with the pharmacist for management.	Randomized control study	Receiving the usual care [12]		
Hunt JS., et. al. (2008)	Patients with hypertension and having uncontrolled blood pressure	12 months	“Providence Primary Care Research Network in Oregon”	Pharmacist-Physician collaborative model and Network-approved collaborative hypertension management guidelines	Prospective, single blind, randomized, controlled trial	Usual care [22]		
Kuhummer R., et. al. (2015)	Public emergency department	2 months	Restinga district, Porto, Alegre, Southern Brazil	Structured individual counseling session by the pharmacist	Randomized control trial	Just receive a written information about the disease [23]		
Study	Sample Size	Hypertension Information	Follow-up Duration	Primary Care Setting	Interfering Care	Study Design	Type of Care	
---	-------------	--------------------------	--------------------	----------------------	------------------	--------------	--------------	
Morgado M., et. al. (2011)	197	Hypertensive patients	12 months	University teaching hospital of Cova da Beira Hospital center, Portugal	Quarterly follow-up by the pharmacist during a 9 months long	Randomized control trial	No pharmaceutical care	
Neto PR., et. al. (2011)	194	Hypertensive or diabetic patients	36 months	Public health care in Sao Paolo, Brazil	Receiving the pharmaceutical care from the clinical pharmacist	Prospective, randomized control trial	Receiving usual care from medical and nurse staff	
O’Neill JL., et. al. (2014)	126	Patient poorly controlled hypertension	1 month and 11 days	Large Midwestern Veterans Affairs (VA) medical center, USA	Patients get benefits from clinical pharmacy specialist instead of physician	Non-randomized, retrospective comparison	Patients get management from the physician	
Ramanath K., et. al. (2012)	52	Inpatients and out patients dept. and they were diagnosed over 6 months	7 months	Adichunchanagiri Hospital and Research Center, B G Nagara, India	Patients get counselling, leaflets information(PILS), and frequent telephone reminding	Randomized, prospective and interventional study	Patients did not get counselling and PILS at the baselines and in the first follow-up	
Robison JD., et. al. (2010)	376	Patients visit 18 chain community pharmacy	Over 12-months	Tampa, Florida, region, USA	Hypertension pharmaceutical care (PC) guidelines that had been developed by college of pharmacy, University of Florida	Prospective, and controlled design	Usual Care (UC)	
Saleem F., et. al. (2015)	412	Patients with medical diagnosis of hypertension in previous 6 months	3 months	2 cardiac Units of two hospitals, UK	Patients get educational through hospital pharmacists	Non-randomized control trial	Usual care	
Svarstad BL., et. al. (2013) 576 Patients with hypertension in community pharmacies 27 months (Dec 2006-Feb 2009) Five Wisconsin cities USA Implementing 6-month intervention by the schedule visit, brief medication questionnaire, and novel toolkits to patients by pharmacists and give feedback to them and to physicians Cluster randomized trial Patients received information only

Study (Year)	Mean ± SD baseline medication adherence	Intervention mean ± SD change in medication adherence	Control mean ± SD change medication adherence	Statistical significance	References
Aguwa et. al. (2007)	Sys: 158.1 ± 14.4 Dia.: 100.6 ± 11.5	Sys: 143.8 ± 10.7	No control	Significant reduction in both systolic and diastolic BP; pharmaceutical p care program can give a beneficial effect to the patients	[7]
Bodgen et. al. (1998)	Intervention: Sys: 155 (42), Dia.: 96 (8) Control: Sys: 156 (18), Dia.: 95 (10)	Sys: Declined 23 ± 22 Dia.: Declined 14 ± 11	Sys: Declined 11 ± 23 Dia.: Declined 3 ± 11	Patient failed to get benefits from standard care and they could get the benefits from physician-pharmacist team	[30]
Carter BL et. al. (2009)	Intervention: Sys: 153.6 (12.8), Dia.: 87.4 (11.9), Control: Sys: 150.6 (14.1), Dia.: 83.6 (12.3)	Sys: Declined 132.9 (15.5), Dia.: 77.7 (11.2)	Sys: Declined 143.8 (20.5), Dia.: Declined 79.1 (14.3)	BP was controlled for about 29.9% of control group, and 63% of intervention group	[31]

Table 2. Medication adherence of studies meeting inclusion criteria
Study	Intervention: Sys:	Dia.:	Control: Sys:	Dia.:	High income: Sys:	Dia.:	A significant results showed a reduction in both systolic and diastolic BP and especially to the high income patients
Chabot, I. et. al. (1998)	141, Dia.: 78		139, Dia.: 78		Declined -7.8; 133.2, Dia.: Declined -6.5; 71.5		
Criswell T. J., et. al. (2010)	153.3±11.9, Dia.: 86.5±11.9, Control: Sys: 150.5 ± 12.9 Dia.: 84.1±12				Sys: Declined 129.7±14.2, Dia.: Declined 76.6±10.7	Sys: Declined 150.5±12.9, Dia.: Declined 78.9±13.4	Social support and self-efficacy improved at the end of the pharmacist intervention
Fikri-benbrahim N., et. al. (2012)	140.5±16.1, Dia.: 78.4±9.1, Control: Sys: 139.5±15.1 Dia.: 79.6±9.2				Sys: Declined -6.8; 133.7±13.7, Dia.: Declined -2.1; 76.3±8.9	Sys: Declined -2.1; 137.4±8.9, Dia.: NOT declined and (not significant), 0.1; 79.7± 6.2	A protocol-based community pharmacist intervention was significantly reduced the DBP and SPD in combination with HBPM
Gum TH., et. al. (2015)	148(14.4), Dia.: 85(12), Control: Sys: 149.8(15.2), Dia.: 83.6(12.8)	Not found			Not found	Not found	There is a significant improvement to the BP by PPCM and by involving the pharmacist in intervention arm that have affected for decreasing the doses and removing medications
Graco JA., et. al. 2002	151.68(23.16), Dia.: 85.66(13.16), Control: Sys: 147.71(15.98), Dia.: 83.9(9.19)				Sys: Declined 128.54(15.06), Dia.: Declined 73.32(8.2)	Sys: Declined 142.9(20.42), Dia.: Declined 78.59(8.55)	Pharmaceutical care program are played an important role for decreasing the BP by a significant results
Name and Year	Intervention	BPMeasurements	Conclusion				
---------------	--------------	----------------	------------				
Hunt JS., et. al. (2008)	Intervention: Sys: 173(15), Dia.: 90(14), Control: Sys: 174(15), Dia.: 92(14)	Sys: Declined 137(17), Dia.: Declined 75(9)	Collaborative primary care-pharmacist management was significantly better to improve PB without difference in QoL or satisfaction				
Kuhmmer R., et. al. (2015)	Inclusion criteria: Sys: over 160mmHg, and Dia.: over 100	Not found	Pharmaceutical care intervention has a feasible and effective to increase medication adherence in hospitals and community pharmacy				
Morgado M., et. al. (2011)	Intervention: Sys: 141.6(16.3), Dia.: 85.2(10.2), Control: Sys: 141.9(16.8), Dia.: 86.4(11.7)	Sys: Declined 134(16), Dia.: Declined 82.2(8.7)	Pharmacist can improve the adherence to the medication for controlling BP				
Neto PR., et. al. (2011)	Intervention: Sys: 156.7(21.8), Dia.: 106.6(17.7), Control: Sys: 155.9(20.8), Dia.: 108.7(16.9)	Sys: Declined 133.7, Dia.: Declined 91.6	In a better clinical measurements, the pharmaceutical care program could significantly reduced the risk of cardiovascular scores in elderly patients				
O’Neill JL., et. al. (2014)	CPS Sys: 149(12), Dia.: 78(12), Physician: Sys: 145(9), Dia.: 78(11)	Clinical pharmacy specialists: Sys: Declined 135(14), Dia.: Declined 72(11)	Patients who received CPS had a great improvement in the both systolic and diastolic BP compared to those receiving physician-directed RNCM				
Authors	Year	Study Type	Baseline Measures	Follow-Up Measures	Findings		
-----------------------	------------	-----------------------------	-------------------	--------------------	---		
Ramanath K., et. al.	2012	Intervention	Sys: 147.54(20.45), Dia.: 86.62(11.35), Control: Sys: 138.85(16.03), Dia.: 81.12(7.16)	Sys: Declined 128.27(6.35), Dia.: Declined 77.73(3.63)	The pharmacist showed in this study has a positive impact on patients counseling which led to medication adherence improvement		
Robison JD., et. al.	2010	Pharmaceutical Care, PC	Sys: 151.5(14), Dia.: 82.4(13.2), Usual Care UC: Sys: 151.5(14.9), Dia.: 87.4(9.9)	PC: Sys: Declined - 9.9: 141.6(2), Dia.: Declined -2.9: 79.5(1.3)	Community pharmacists could positively affect patients adherence within 6-months and improve PB		
Saleem F., et. al.	2015	Intervention	Sys: 144.5(17.2), Dia.: 90.5(10.2), Control: Sys: 144.1(16.5), Dia.: 90.9(11.1)	Sys: Declined 137.5(17.2), Dia.: Declined 84.6(9.9)	Pharmacist can increase medication knowledge, medication adherence in hypertensive medication		
Svarstad BL., et. al.	2013	Intervention; TEAM	Sys: 151.2(15.2), Dia.: 92(10.1), Control: Sys: 153.1(16.6), Dia.: 92.9(10)	Sys: Declined 137.46(16.16), Dia.: Declined 82.69(11.69)	Team Education and Adherence Monitoring involving community chain pharmacists led to a significant and sustained improvement in SBP		
4. CONCLUSION

According to the results, pharmacists had a positive impact on medication adherence and hypertension measurements as an outcome. However, results showed many methods can improve medication adherence and blood pressure including, counseling patients in person, collaboration between pharmacists and physicians, and using technology like telecommunication to intensify patients counseling. However, additional research is needed to develop standards for guidelines and interventions that assist patients with hypertension who have trouble with medication adherence.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The authors are thankful to Dr. Britney Smalls for her support and guidance during the study. Authors are also grateful to Joanna Doucette for the help during analysis.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Lawes CM, Hoorn SV, Rodgers A. International Society of Hypertension (2008) Global burden of blood pressure related disease, Lancet. 2001;371:1513-1515.
2. Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the united states, 1988-2000. JAMA. 2003;290(2):199-206.
3. Chabot I, Moisan J, Gregoire JP, Milot A. Pharmacist intervention program for control of hypertension. Ann Pharmacother. 2003;37(9):1186-1193.
4. Carter BL, Ardery G, Dawson JD, et al. Physician and pharmacist collaboration to improve blood pressure control. Arch Intern Med. 2009;169(21):1996-2002.
5. Evans CD, Watson E, Eurich DT, et al. Diabetes and cardiovascular disease interventions by community pharmacists: A systematic review. Ann Pharmacother. 2011;45(5):615-628.
6. Carter BL. Implementing the new guidelines for hypertension: JNC 7, ADA, WHO-ISH. J Manag Care Pharm. 2004;10(5 Suppl A):S18-25.
7. Williams JLS, Walker RJ, Smalls BL, Campbell JA, Egede LE. Effective interventions to improve medication adherence in type 2 diabetes: a systematic review. Diabetes management (London, England), 2014;4(1):29-48. DOI: 10.2217/dmt.13.62.
8. Aguwa CN, Ukwue CV, Ekwunife OI. Effect of pharmaceutical care programme on blood pressure and quality of life in a Nigerian pharmacy. Pharm World Sci. 2008;30(1):107-110. DOI: 10.1007/s11096-007-9151-x.
9. Bogden PE, Abbott RD, Williamson P, Onopa J, Koontz LM. Comparing standard care with a physician and pharmacist team approach for uncontrolled hypertension. Journal of General Internal Medicine. 1998;13(11):740-745.
10. Criswell TJ, Weber CA, Xu Y, Carter BL. Effect of self-efficacy and social support on adherence to antihypertensive drugs. Pharmacotherapy. 2010;30(5):432-441.
11. Fikri-Benbrahim N, Faus MJ, Martinez-Martinez F, Alsina DG, Sabater-Hernandez D. Effect of a pharmacist intervention in spanish community pharmacies on blood pressure control in hypertensive patients. American Journal of Health-System Pharmacy. 2012;69(15):1311-1318.
12. Gums TH, Uribe L, Vander Weg MW, James P, Coffey C, Carter BL. Pharmacist intervention for blood pressure control: Medication intensification and adherence. J Am Soc Hypertens. 2015;9(7):569-578. DOI: 10.1016/j.jash.2015.05.005.
13. Garcia JA, Cabrita J. Evaluation of a pharmaceutical care program for hypertensive patients in rural portugal. J Am Pharm Assoc (Wash). 2002;42(6):858-864.
14. Hunt JS, Siemienczuk J, Pape G, et al. A randomized controlled trial of team-based care: Impact of physician-pharmacist collaboration on uncontrolled hypertension. J Gen Intern Med. 2008;23(12):1966-1972. DOI: 10.1007/s11606-008-0791-x.
15. Kuhmmer R, Lima KM, Ribeiro RA, et al. Effectiveness of pharmaceutical care at discharge in the emergency department: study protocol of a randomized controlled trial. Trials. 2015;16:60-015-0579-3. DOI: 10.1186/s13006-015-0579-3

16. Morgado M, Rolo S, Castelo-Branco M. Pharmacist intervention program to enhance hypertension control: A randomised controlled trial. Int J Clin Pharm. 2011;33(1):132-140. DOI: 10.1007/s11096-010-9474-x

17. Neto PR, Marusic S, de Lyra Junior DP, et al. Effect of a 36-month pharmaceutical care program on the coronary heart disease risk in elderly diabetic and hypertensive patients. J Pharm Pharm Sci. 2011;14(2):249-263.

18. O'Neill JL, Cunningham TL, Wiitala WL, Bartley EP. Collaborative hypertension case management by registered nurses and clinical pharmacy specialists within the patient aligned care teams (PACT) model. J Gen Intern Med. 2014;29 Suppl 2:S675-81. DOI: 10.1007/s11606-014-2774-4

19. Ramanath K, Balaji D, Nagakishore C, Kumar SM, Bhanuprakash M. A study on impact of clinical pharmacist interventions on medication adherence and quality of life in rural hypertensive patients. J Young Pharm. 2012;4(2):95-100. DOI: 10.4103/0975-1483.96623

20. Robinson JD, Segal R, Lopez LM, Doty RE. Impact of a Pharmaceutical care intervention on blood pressure control in a chain pharmacy practice. Ann Pharmacother. 2010;44(1):88-96. DOI: 10.1345/aph.1L289

21. Saleem F, Hassali MA, Shafie AA, et al. Pharmacist intervention in improving hypertension-related knowledge, treatment medication adherence and health-related quality of life: A non-clinical randomized controlled trial. Health Expect. 2015;18(5):1270-1281. DOI: 10.1111/hex.12101

22. Svarstad BL, Kotchen JM, Shireman TI, et al. Improving refill adherence and hypertension control in black patients: Wisconsin TEAM trial. J Am Pharm Assoc (2003). 2013;53(5):520-529. DOI: 10.1331/JAPHa.2013.12246

23. Tedesco MA, Di Salvo G, Caputo S (2001) Educational level and hypertension: how socioeconomic differences condition health care. J Hum Hypertens 15: 727-731

24. Demiao AR, Otgontuya D, de Courten M, Bygbjerg C, Enkhtuya P. Hypertension and hypertension-related disease in Mongolia; findings of a national knowledge, attitudes and practices study. BMC Public Health 2013;13:1471-2458.

25. Houle SKD, Tsuyuki RT, Campbell NRC. The Canadian Hypertension Education Program (CHEP) 2011 guidelines for pharmacists. Can Pharm J. 2011;144:295–304

26. Houle SKD, Tsuyuki RT, Campbell NRC. The Canadian Hypertension Education Program (CHEP) 2011 guidelines for pharmacists. Can Pharm J. 2011;144:295–304.

27. Hill MN, Houston Miller N, DeGeest S, on behalf of the American Society of Hypertension Writing Group Adherence and persistence with taking medication to control high blood pressure. J Am Soc Hypertens. 2011;5(1):56–63

28. Tan Ching Siang, Mohamed Azmi Hassali and Neoh Chin Fen. The Role of Pharmacist in Managing Hypertension in the Community: Findings from a Community Based Study. Indian Journal of Pharmaceutical Education and Research, 2019; 53(3):553-561

29. Mc Lean W, Sparrow L, Stann D. Experience with an adherence assessment form. Can Pharm J. 2011;144:40–43.

30. Carter BL, Foppe van Mil JW. Comparative effectiveness research: evaluating pharmacist interventions and strategies to improve medication adherence. Am J Hypertens. 2010;23(9):949–55

31. Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC), guidelines for the management of arterial hypertension. Eur Heart J. 2007;28:1462-536.

32. Daskalopoulou SS, Khan NA, Quinn RR. The 2012 Canadian hypertension education program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk and therapy. Can J Cardiol 2012;28:270-87.

33. Zannad, F., McMurray, J.JV., Krum, H. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364:11-21.

34. Lim, SS, Vos, T, Flaxman, AD. A comparative risk assessment of burden of disease and injury attributable to 67 risk
factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.

35. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348:1309-1321

36. Zannad F, McMurray JJ, Drexler H, et al. Rationale and design of the Eplerenone in Mild Patients Hospitalization And Survival Study in Heart Failure (EMPHASIS-HF). Eur J Heart Fail 2010;12:617-622

37. Boccanelli A, Mureddu GF, Cacciatore G, et al. Anti-remodelling effect of canrenone in patients with mild chronic heart failure (AREA IN-CHF study): final results. Eur J Heart Fail 2009;11:68-76

38. Iraqi W, Rossignol P, Angioi M, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 2009;119:2471-2479

39. Jugdutt BI. Matrix metalloproteinases as markers of adverse remodeling after myocardial infarction. J Card Fail. 2006;12:73–76.

40. Radovan J, Vaclav P, Petr W, Jan C, Michal A, Richard P, Martina P. Changes of collagen metabolism predict the left ventricular remodeling after myocardial infarction. Mol Cell Biochem. 2006;293:71–78.

41. Cerisano G, Pucci PD, Sulla A, Tommasi M, Raspanti S, Santoro GM, Antonucci D. Relation between plasma brain natriuretic peptide, serum indexes of collagen type I turnover, and left ventricular remodeling after reperfused acute myocardial infarction. Am J Cardiol. 2007;99: 651–656.

© 2021 Alshahrani et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.