Unsafe “crossover-use” of chloramphenicol in Uganda: importance of a One Health approach in antimicrobial resistance policy and regulatory action

Kayley D. McCubbin1,2 · John W. Ramatowski1,2 · Esther Buregyeya3 · Eleanor Hutchinson1 · Harparkash Kaur1 · Anthony K. Mbonye3 · Ana L. P. Mateus2 · Sian E. Clarke1

Received: 22 December 2020 / Revised: 2 February 2021 / Accepted: 16 February 2021 / Published online: 19 March 2021
© The Author(s) 2021. This article is published with open access

Abstract
Since the introduction of antibiotics into mainstream health care, resistance to these drugs has become a widespread issue that continues to increase worldwide. Policy decisions to mitigate the development of antimicrobial resistance are hampered by the current lack of surveillance data on antibiotic product availability and use in low-income countries. This study collected data on the antibiotics stocked in human (42) and veterinary (21) drug shops in five sub-counties in Luwero district of Uganda. Focus group discussions with drug shop vendors were also employed to explore antibiotic use practices in the community. Focus group participants reported that farmers used human-intended antibiotics for their livestock, and community members obtain animal-intended antibiotics for their own personal human use. Specifically, chloramphenicol products licensed for human use were being administered to Ugandan poultry. Human consumption of chloramphenicol residues through local animal products represents a serious public health concern. By limiting the health sector scope of antimicrobial resistance research to either human or animal antibiotic use, results can falsely inform policy and intervention strategies. Therefore, a One Health approach is required to understand the wider impact of community antibiotic use and improve overall effectiveness of intervention policy and regulatory action.

Description
Chloramphenicol is a phenicol class antibiotic with a narrow margin of safety used in small animal and human medicine [1]. Human oral bioavailability of crystalline chloramphenicol and chloramphenicol palmitate is approximately 80% [2], with rapid absorption and extensive distribution [3, 4]. Many countries have banned its use in livestock because human consumption of animal products containing chloramphenicol residues can cause idiosyncratic aplastic (non-regenerative) anemia [1, 5], which while uncommon, can be fatal due to its irreversible nature [1, 4–6]. Moreover, the adverse drug reaction is not dose-dependent and no safe consumption level has been established [4]. Additionally, chloramphenicol is considered to have potential carcinogenic effects [6]. Given these safety concerns, chloramphenicol is seldom used in humans and “reserved for severe, life-threatening infections for which other antibiotics are not available” [4].

In Uganda, National Clinical Guidelines reserve human oral chloramphenicol for use in hospitals while ear and ophthalmic preparations are permitted in primary healthcare facilities, including level II health centers [7, 8]. Enforcing antibiotic use (ABU) guidelines is difficult as Uganda’s formal healthcare sector is supplemented by private drug shops [9]. Drug shops provide crucial healthcare services in many low- and middle-income countries (LMICs) where drug shop vendors (DSVs) act as informal healthcare providers, advising patients on drug choice and dosing instructions [9–12]. Community-based drug shops often provide a more reliable drug stock than higher-level healthcare facilities, with convenient locations, lower costs, and short waiting times [11]. Thus, drug shops
represents an important source of antibiotics for many communities.

Although regulations prohibit Ugandan drug shops from selling antibiotics for human use without a prescription [13], this practice is widespread and seen in other LMICs [9–11, 14–16]. In contrast, veterinary drug shops can legally sell antibiotics over-the-counter which are used by farmers without veterinary consultation [17]. There is no formal chloramphenicol use ban in Ugandan livestock through The National Drug Policy and Authority Act, Section 64 (NDA, 2016), which regulates and restricts the use of classified drugs for agricultural purposes. However, the NDA does not permit veterinary drug shops to sell chloramphenicol for livestock use (Lwero district veterinary representative, personal communication). Nevertheless, our study provides evidence that livestock chloramphenicol use is common in Uganda and these activities should be investigated further.

A mixed qualitative and quantitative study conducted in Ugandan human and veterinary drug shops described human-intended chloramphenicol products being administered to livestock. This was discovered during a larger study investigating antibiotic availability and DSV views regarding treatment efficacy and antimicrobial resistance (AMR). All participation was voluntary and followed full informed consent and assurance of data confidentiality. Structured questionnaires including a complete antibiotic inventory were conducted with DSVs in 21 veterinary drug shops and 42 human drug shops, during May–June 2018. Three human DSVs declined participation due to concerns around reporting antibiotic sales. Six focus group discussions (FGDs) were held; two FGDs with veterinary DSVs and four with human DSVs.

No chloramphenicol was found in the antibiotic inventories of all 21 veterinary drug shops surveyed, indicating successful enforcement of restrictions chloramphenicol sales through veterinary drug shops. Chloramphenicol formulations (oral, ear, and ophthalmic preparations) were found in 71.4% (30/42) of the human drug shops. While sector-specific antibiotic inventory lists are critical for understanding availability, these should not be considered strictly independent concerning ABU. It became evident during FGDs that off-label chloramphenicol use in livestock with human-licensed formulations was occurring. This was part of a wider phenomenon we term off-label “crossover-use”, in which human-intended antibiotic products were purchased from human drug shops for animal use, and similarly, veterinary antibiotic formulations were purchased for human use. Strikingly, descriptions of off-label crossover-use were frequently unprompted and depicted in all six FGDs as a widespread community practice. Use of chloramphenicol from human drug shops in poultry was described as exceedingly common, where “chloramphenicol is now known as poultry capsules” (FGD III, Human DSVs), with commonly reported indications being fever and cough.

“...they will tell you that antibiotics meant for chicken don’t work and the human antibiotics tends to work on chicken more effectively” – FGD I, Human DSVs

Chloramphenicol crossover-use could be partially economically driven. Chloramphenicol sold in human drug shops provides a cheaper alternative to purchasing large packets of veterinary antibiotic formulations, in addition to more convenient sizes for small-scale farmers. In our inventory data, it cost 100 to 200 UGX (0.02 to 0.04 GBP\(^1\)) per 250 mg chloramphenicol tablet. Comparatively, veterinary antibiotics were sold in 100 g packets and cost between 10,000 and 30,000 UGX (2.00 to 6.00 GBP), depending on the drug. If farmers are unaware of adverse health effects caused by chloramphenicol residue consumption, they may consider human-intended formulations as a viable and cost-effective alternative.

“One of the challenges is that one I have told you that veterinary drugs have no small packages and there are very many small scale farmers... our farmers are not commercial farmers, they are subsistence small scale farmers yet we do not have many of the vet drugs in such small packages.” – FGD II, Veterinary DSVs

Additionally, professional medical advice is not always accessible in sub-Saharan Africa, including Uganda, where veterinary services are fragmented [17]. Therefore, farmers are more likely to seek out alternative medical advice. Geographical access also represents a potential barrier to appropriate ABU. In our experience, human drug shops were much more abundant in rural regions; therefore, more accessible than their veterinary counterparts.

If chloramphenicol crossover-use is as rampant as FGDs described, the development of chloramphenicol resistance in poultry may have occurred. High levels of chloramphenicol-resistant _Escherichia coli_ isolates were reported in Ugandan broiler chickens in 2010 (41% in Lira District, 42% in Kampala) [18]. Moreover, there is potential for cross-resistance development between chloramphenicol, florfenicol, linezolid, lefamulin, and tiamulin, important antibiotics in human and veterinary medicine, due to similar mechanism of action [19, 20]. However, the relationship between ABU and cross-resistance through alteration of similar binding sites is not straightforward [19], and cross-resistance between these antibiotics is rarely reported [20, 21]. However, florfenicol, linezolid, lefamulin, or tiamulin were not found in any human or veterinary drug

---

\(^1\) Conversion rate of 1.00UGX = 0.0002 GBP, December 2020
Unsafe “crossover-use” of chloramphenicol in Uganda: importance of a One Health approach in…

This could limit effectiveness. Enforcement aimed to address antibiotic misuse have a described. Likewise, if policy formulation, regulation, and the full spectrum of community ABU would not be required. Therefore, to be successful, enforcement capacity must be increased, both in regard to antibiotic sales and compliance to antibiotic withdrawal periods in livestock.

It is clear that the described findings represent a gap between policy intention and effective outcome, where a One Health approach is required. While inappropriate ABU contributes to AMR, without immediate action, this finding could lead to the continuation of additional adverse health consequences arising from antibiotic misuse.

© 2021 The Author(s)

... I think it would be our role as both human and veterinary system to guide our clients before we sell the drugs to them, more so the human drugs would only be sold on prescription only but this open system of ours is the one causing problems where people come in as they wish, buy drugs and take.” – FGD II, Veterinary DSVs

Clearly, ABU is not limited to the intended species or sector, which poses a challenge for enforcement. Additionally, while chloramphenicol sales are banned specifically in veterinary drug shops, and along with all antibiotics in human drug shops, unrestricted chloramphenicol availability represents a gap in enforcement. Increasing knowledge regarding crossover-use implications may in part mitigate the issue; however, some enforcement will likely be required. Therefore, to be successful, enforcement capacity must be increased, both in regard to antibiotic sales and compliance to antibiotic withdrawal periods in livestock.

It is clear that the described findings represent a gap between policy intention and effective outcome, where a One Health approach is required. While inappropriate ABU contributes to AMR, without immediate action, this finding could lead to the continuation of additional adverse health consequences arising from antibiotic misuse.

© 2021 The Author(s)
Acknowledgements Special thanks to all those who participated in data collection, and translation from the Ugandan partner institution of Makerere University, including R. Tenywa, J. Kitimbo, and D. Akatuhurira. As well as all of sub-county council offices, District Health Inspectors and local Village Health Team Members who assisted with this research. The Luwero District Health office provided essential resources for the research, including local permissions, drug shop information documents and sub-county contacts.

Compliance with ethical standards

Conflict of interest The authors declares no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Papich MG. Chloramphenicol. In: Papich MG, editor. Saunders Handbook of Veterinary Drugs. 4th ed. St. Louis: Elsevier; 2016.
2. Ambrose PJ. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet. 1984;9:222–38.
3. National Center for Biotechnology Information [Internet]. PubChem Compound Summary for CID 5959, Chloramphenicol; c2004 [cited 2021 Jan 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chloramphenicol
4. The United States Pharmacopoeial Convention [Internet]. Chloramphenicol; c2007 [cited 2021 Jan 19]. Available from: https://cdn.ymaws.com/www.aavpt.org/resource/resmgr/Imported/chloramphenicol.pdf.
5. Boothe DM [Internet]. Merck Veterinary Manual: Phenicols; c2018 [cited 2021 Jan 21]. Available from: https://www.merckvetmanual.com/pharmacology/antibacterial-agents/phenicols
6. National Toxicology Program [Internet]. Report on Carcinogens, Fourteenth Edition: Chloramphenicol; c2016 [cited 2021 Jan 19]. Available from: http://ntp.niehs.nih.gov/ntp/roc/content/profiles/chloramphenicol.pdf
7. Ugandan Ministry of Health. Uganda Clinical Guidelines 2016: National guidelines for management of common conditions. Kampala: Ministry of Health Uganda; 2016.
8. Mukonzo JK, Namuwenge PM, Okure G, Mwesige B, Namusisi OK, Mukanga D. Over-the-counter suboptimal dispensing of antibiotics in Uganda. J Diagn Res. 2013;6:303–10.
9. Mayora C, Kitatu FE, Kandala NB, Ekirapa-Kiracho E, Peterson SS, Wamami H. Private retail drug shops: what they are, how they operate, and implications for health care delivery in rural Uganda. BMC Health Serv Res. 2018;18:532–44.
10. Jacqueline N, Sarah N, Micheal B, Samantha K, Norman M, Adriane K. Antibiotic use, knowledge and behaviour at a Ugandan University. Int J Infect Control. 2011;7:11–8.
11. Chandler CI, Hall-Clifford R, Asaph T, Pascal M, Clarke S, Mbonye AK. Introducing malaria rapid diagnostic tests at registered drug shops in Uganda: Limitations of diagnostic testing in the reality of diagnosis. Soc Sci Med. 2011;72:937–44.
12. Goodman C, Brieger W, Unwin A, Mills A, Meek S, Greer G. Medicine sellers and malaria treatment in sub-Saharan Africa: what do they do and how can their practice be improved? Am J Trop Med. 2007;77:203–18.
13. National Drug Authority [Internet]. National Drug Policy and Authority Act; c2016 [cited 2021 Jan 21]. Available from: https://www.nda.or.ug/ndpa-act-regulations/
14. Biswas M, Roy MN, Manik MIN Hossain MS, Tapu SMTA, Moniruzzaman M, et al. Self medicated antibiotics in Bangladesh: a cross-sectional health survey conducted in the Rajshahi City. BMC Public Health [Internet]. 2014 [cited 2021 Jan 21];14:[about 7 p.]. Available from: http://www.biomedcentral.com/1471-2458/14/847
15. Alumran A, Hou XY, Hurst C. Assessing the overuse of antibiotics in children in Saudi Arabia: validation of the parental perception on antibiotics scale (PAPA scale). Health Qual Life Outcomes [Internet]. 2013 [cited 2021 Jan 21];11:[about 8 p.]. Available from: https://doi.org/10.1186/1477-7525-11-39
16. Hutchinson E, Hutchison C, Lal S, Hansen K, Kayendeke M, Nabiry C, et al. Introducing rapid tests for malaria into the retail sector; what are the unintended consequences? BMJ Global Health 2017 [Internet]. 2016 [cited 2021 Jan 20];2:[about 11 p.]. Available from: https://gh.bmj.com/content/2/1/e000067
17. Saajjakambwe P, Bahizzi G, Setumba C, Kisaka SMB, Vudriko P, Atuhere C, et al. Milk Hygiene in rural southwestern Uganda: Prevalence of mastitis and antimicrobial resistance profiles of bacterial contaminants of milk and milk products. Veterinary Medicine International [Internet]. 2017 [cited 2021 Jan 20]; Article ID 8710758:[about 6 p.]. Available from: https://doi.org/10.1155/2017/8710758
18. Majalja S, Francis O, Sarah WG, Lubowa M, Vudriko P, Nakamya FM. Antibiotic susceptibility profiles of fecal Escherichia coli isolates from Dip-litter broiler chickens in Northern and Central Uganda. Vet Res. 2010;3:75–80.
19. Long KS, Vester B. Resistance to Linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 2012;56:603–12.
20. Veve MP, Wagner JL, Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacotherapy 2018;38:935–46.
21. Doern CD, Park KY, Gallegos M, Alsbaugh D, Burnham CA. Investigation of linezolid resistance in Staphylococci and Enterococci. J Clin Microbiol. 2016;54:1289–94.
22. Sasanya JJ, Okeng JWO, Ejobi F, Maganwa I. Use of sulfonamide residues in commercial eggs. Afr Health Sci. 2005;5(Mar):33–9.
23. Adebowale OO, Adeyemo OK, Awoyomi O, Dada R, Adebowale O. Antibiotic use and practices in commercial poultry laying hens in Ogun State Nigeria. Rev Elev Med Vet Pays Trop 2016;69(Jul):41–5.
24. Omeiza GK, Kabir J, Mamman M, Ibrahim H, Fagbamila JO. Response of Nigerian farmers to a questionnaire on chloramphenicol application in commercial layers. Vet Ital. 2012;48:87–93.