ON WEIGHTED MEANS AND MN-CONVEX FUNCTIONS

İMDAT İŞCAN

ABSTRACT. In this paper, we give more general definitions of weighted means and MN-convex functions. Using these definitions, we also obtain some generalized results related to properties of MN-convex functions. The importance of this study is that the results of this paper can be reduced to different convexity classes by considering the special cases of M and N.

1. INTRODUCTION

The notions of convexity and concavity of a real-valued function of a real variable are well known [16]. The generalized condition of convexity, i.e. MN-convexity with respect to arbitrary means M and N, was proposed in 1933 by Aumann [2]. Recently many authors have dealt with these generalizations. In particular, Niculescu [15] compared MN-convexity with relative convexity. Andersen et al. [3] examined inequalities implied by MN-convexity. In [3], Anderson et al. studied certain generalizations of these notions for a positive-valued function of a positive variable as follows:

Definition 1. A function $M : (0, \infty) \times (0, \infty) \to (0, \infty)$ is called a Mean function if

(M1) $M(u, v) = M(v, u)$,
(M2) $M(u, u) = u$,
(M3) $u < M(u, v) < v$ whenever $u < v$,
(M4) $M(\lambda u, \lambda v) = \lambda M(u, v)$ for all $\lambda > 0$.

Example 1. For $u, v \in (0, \infty)$

$$M(u, v) = A(u, v) = A = \frac{u + v}{2}$$

is the Arithmetic Mean,

$$M(u, v) = G(u, v) = G = \sqrt{uv}$$

is the Geometric Mean,

$$M(u, v) = H(u, v) = H = A^{-1}(u^{-1}, v^{-1}) = \frac{2uv}{u + v}$$

is the Harmonic Mean,

$$M(u, v) = L(u, v) = L = \begin{cases} \frac{u-v}{\ln u-\ln v} & u \neq v \\ \frac{u}{u} & u = v \end{cases}$$
is the Logarithmic Mean,
\[M(u, v) = I(u, v) = I = \begin{cases} \frac{1}{e} \left(\frac{u^e}{v} \right)^{\frac{1}{e-1}} & u \neq v \\ u & u = v \end{cases} \]
is the Identric Mean,
\[M(u, v) = M_p(u, v) = M_p = \begin{cases} A^{1/p}(u^p, v^p) = \left(\frac{u^p + v^p}{2} \right)^{1/p} & p \in \mathbb{R} \setminus \{0\} \\ p = 0 \end{cases} \]
is the \(p \)-Power Mean. In particular, we have the following inequality
\[M_{-1} = H \leq M_0 = G \leq L \leq I \leq A = M_1. \]

Anderson et al. in \cite{1} developed a systematic study to the classical theory of continuous and midconvex functions, by replacing a given mean instead of the arithmetic mean.

Definition 2. Let \(M \) and \(N \) be two means defined on the intervals \(I \subset (0, \infty) \) and \(J \subset (0, \infty) \) respectively, a function \(f : I \rightarrow J \) is called \(MN \)-midpoint convex if it satisfies
\[f(M(u, v)) \leq N(f(u), f(v)) \]
for all \(u, v \in I \).

The concept of \(MN \)-convexity has been studied extensively in the literature from various points of view (see e.g. \cite{1, 2, 12, 15}),

Let \(A(u, v, \lambda) = \lambda u + (1 - \lambda)v \), \(G(u, v, \lambda) = u^\lambda v^{1-\lambda} \), \(H(u, v, \lambda) = uv/(\lambda u + (1 - \lambda)v) \) and \(M_p(u, v, \lambda) = (\lambda u^p + (1 - \lambda)v^p)^{1/p} \) be the weighted arithmetic, geometric, harmonic, power of order \(p \) means of two positive real numbers \(u \) and \(v \) with \(u \neq v \) for \(\lambda \in [0, 1] \), respectively. \(M_p(u, v, \lambda) \) is continuous and strictly increasing with respect to \(\lambda \in \mathbb{R} \) for fixed \(p \in \mathbb{R} \setminus \{0\} \) and \(a, b > 0 \) with \(a > b \). See \cite{9, 12, 13, 14, 15} for some kinds of convexity obtained by using weighted means.

The aims of this paper, a general definition of weighted means and a general definition of \(MN \)-convex functions via the weighted means is to give. In recent years, many studies have been done by considering the special cases of \(M \) and \(N \).

The importance of this study is that some properties of \(MN \)-convex functions and some related inequalities have been proven in general terms.

2. **Main Results**

Definition 3. A function \(M : (0, \infty) \times (0, \infty) \times [0, 1] \rightarrow (0, \infty) \) is called a weighted mean function if

(WM1) \(M(u, v, \lambda) = M(v, u, 1 - \lambda) \),
(WM2) \(M(u, v, \lambda) = u \),
(WM3) \(u < M(u, v, \lambda) < v \) whenever \(u < v \) and \(\lambda \in [0, 1] \),
(WM4) \(M(\alpha u, \alpha v, \lambda) = \alpha M(u, v, \lambda) \) for all \(\alpha > 0 \),
(WM5) \(\lambda \in [0, 1] \) be fixed. Then \(M(u, v, \lambda) \leq M(w, v, \lambda) \) whenever \(u \leq w \) and \(M(u, v, \lambda) \leq M(u, \omega, \lambda) \) whenever \(v \leq \omega \).
(WM6) \(u, v \in (0, \infty) \) be fixed and \(u \neq v \). Then \(M(u, v, \cdot) \) is a strictly monotone and continuous function on \([0, 1] \).
then the following identities hold: property (WM2), then we obtained the identity (2.1). By using similar method, if we take \(M(u, v, s), M(v, w, s), \lambda \) for all \(u, v, w \in (0, \infty) \) and \(s, \lambda \in [0, 1] \).

Remark 1. According to the above definition every weighted mean function is a mean function with \(\lambda = 1/2 \). Also, By (WM6) we can say that for each \(x \in [u, v] \subseteq (0, \infty) \) there exists a \(\lambda \in [0, 1] \) such that \(x = M(u, v, \lambda) \). Moreover;

i.) If \(M(u, v, .) \) is a strictly increasing, then \(M(u, v, 0) = u \) and \(M(u, v, 1) = v \) whenever \(u < v \) (i.e. \(M(u, v, \lambda) \) is in the positive direction)

ii.) If \(M(u, v, .) \) is a strictly decrasing, then \(M(u, v, 0) = v \) and \(M(u, v, 1) = x \) whenever \(u < v \) (i.e. \(M(u, v, \lambda) \) is in the negative direction) and \(M(u, v, .)([0, 1]) = \{ \min \{ u, v \}, \max \{ u, v \} \} \).

Remark 2. Throughout this paper, we will assume that different weighted means have the same direction unless otherwise stated.

Example 2.

\[
M(u, v, \lambda) = A(u, v, \lambda) = A_\lambda = (1 - \lambda)u + \lambda v
\]

is the Weighted Arithmetic Mean,

\[
M(u, v, \lambda) = G(u, v, \lambda) = G_\lambda = u^{1/\lambda}v^{1/\lambda}
\]

is the Weighted Geometric Mean,

\[
M(a, b, s, \lambda) = M_p(u, v, \lambda) = M_p,\lambda = \left\{ \begin{array}{ll}
A^{1/p}(u^p, v^p, \lambda) = \{(1 - \lambda)x^p + \lambda y^p)^{1/p} & p \in \mathbb{R}\setminus\{0\} \\
G(u, v, \lambda) = u^{1-\lambda}v^\lambda & p = 0
\end{array} \right.
\]

is the \(p \)-Power Mean. In particular, we have the following inequality

\[
M_{1,\lambda} = H_a \leq M_{0,\lambda} = G_\lambda \leq M_{1,\lambda} = A_\lambda \leq M_{p,\lambda}
\]

for all \(x, y \in (0, \infty), t \in [0, 1] \) and \(p \geq 1 \).

Proposition 1. If \(M : (0, \infty) \times (0, \infty) \times [0, 1] \to (0, \infty) \) is a weighted mean function, then the following identities hold:

\[
M(M(a, M(a, b, s), \lambda), M(b, M(a, b, s), \lambda), s) = M(a, b, s)
\]

(2.1)

\[
M(M(a, b, \lambda), M(b, a, \lambda), 1/2) = M(a, b, 1/2).
\]

(2.2)

Proof. If we take \(v = w = M(a, b, s) \), \(u = a \) and \(z = b \) in (WM7) and we use the property (WM2), then we obtained the identity (2.1). By using similar method, if we take \(u = w = a, v = z = b \) and \(s = 1/2 \) in (WM7) and we use the properties (WM1) and (WM2), then we obtained the identity (2.2).

Definition 4. Let \(M \) and \(N \) be two weighted means defined on the intervals \(I \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively, a function \(f : I \to J \) is called \(MN \)-convex (concave) if it satisfies

\[
f(M(u, v, \lambda)) \leq (\geq) N(f(u), f(v), \lambda)
\]

for all \(u, v \in I \) and \(\lambda \in [0, 1] \).
The condition (WM8) in Definition 3 shows us that the function $M(u,v,.)$ is both MM-convex and MM-concave on $[0,1]$ for fixed $u,v \in (0,\infty)$. It is easily seen that weighted means mentioned in the Example 2 hold the condition (WM8).

We note that by considering the special cases of M and N, we obtain several different convexity classes as AA-convexity (classical convexity), AG-convexity (log-convexity), GA-convexity, GG-convexity (geometrically convexity), HA-convexity (harmonically convexity), M_p-A-convexity (p-convexity), etc. For some convexity types, see ([9, 6, 14, 15]).

Definition 5. Let M and N be two weighted means defined on the intervals $[u,v] \subseteq (0,\infty)$ and $J \subseteq (0,\infty)$ respectively and $f:[u,v] \rightarrow J$ be a function. We say that f is symmetric with respect to $M(u,v,1/2)$, if it satisfies

$$f(M(u,v,\lambda)) = f(M(u,v,1-\lambda))$$

for all $\lambda \in [0,1]$.

Theorem 1. Let M and N be two weighted means defined on the intervals $[u,v] \subseteq (0,\infty)$ and $J \subseteq (0,\infty)$ respectively. If function $f:[u,v] \rightarrow J$ is MN-convex, then the function f is bounded.

Proof. Let $K = \max \{f(u), f(v)\}$. For any $z = M(u,v,\lambda)$ in the interval $[u,v]$, By using MN-convexity of f and (WM3) we have

$$f(z) \leq N(f(u),f(v),\lambda) \leq K.$$

the function f is also bounded from below. For any $z \in (u,v)$, there exists a $\lambda_0 \in (0,1)$ such that $z = M(u,v,\lambda_0)$, then by using MN-convexity of f and (2.2) we have

$$f(M(u,v,1/2)) = f(M(z,M(v,u,\lambda_0),1/2)) \leq N(f(z),f(M(v,u,\lambda_0)),1/2).$$

On the other hand, if $f(z) = f(M(v,u,\lambda_0))$, then $N(f(z),f(M(v,u,\lambda_0)),1/2) = f(z)$ and thus the function f is also bounded from below.

If $f(z) \neq f(M(v,u,\lambda_0))$, then there exists $\mu_0 \in (0,1)$ such that

$$N(f(z),f(M(v,u,\lambda_0)),1/2) = \mu_0 f(z) + (1-\mu_0) f(M(v,u,\lambda_0)).$$

By the inequality (2.3) and using K as the upper bound, we have

$$f(z) \geq \frac{1}{\lambda_0} [f(M(u,v,1/2)) - (1-\lambda_0) f(M(v,u,\lambda_0))]$$

$$\geq \frac{1}{\lambda_0} [f(M(u,v,1/2)) - (1-\lambda_0)K] = k.$$

Thus, we obtain $f(z) \geq \max \{k, f(u)\}$ for any $z \in [u,v]$. This completes the proof. \qed

Theorem 2. Let M and N be two weighted means defined on the intervals $I \subseteq (0,\infty)$ and $J \subseteq (0,\infty)$ respectively. If the functions $f,g:I \rightarrow J$ are MN-convex, then $N(f(\cdot),g(\cdot),1/2)$ is a MN-convex function.

Proof. Since f and g are MN-convex functions, we have

$$f(M(u,v,\lambda)) \leq N(f(u),f(v),\lambda)$$

and

$$g(M(u,v,\lambda)) \leq N(g(u),g(v),\lambda)$$.
for all \(x, y \in I \) and \(t \in [0, 1] \). Then by (WM5) and (WM7) we have
\[
N(f(.), g(.), 1/2)(M(u, v, \lambda)) = N(f(M(u, v, \lambda)), g(M(u, v, \lambda)), 1/2) \leq N(N(f(u), f(v), t), N(g(u), g(v), \lambda), 1/2) = N(N(f(.), g(.), 1/2)(u), N(f(.), g(.), 1/2)(v), \lambda).
\]
This completes the proof. \(\square \)

We can give the following results for different convexity classes by considering the special cases of \(M \) and \(N \).

Corollary 1. Let \(I, J \subseteq (0, \infty) \) and \(f, g : I \rightarrow J \).
\[i.) \] If \(f \) and \(g \) are convex functions, then \(A(f(.), g(.), 1/2) = (f + g)/2 \) is also convex function.
\[ii.) \] If \(f \) and \(g \) are \(GA \)-convex functions, then \(A(f(.), g(.), 1/2) = (f + g)/2 \) is also \(GA \)-convex function.
\[iii.) \] If \(f \) and \(g \) are harmonically convex functions, then \(A(f(.), g(.), 1/2) = (f + g)/2 \) is also harmonically convex function.
\[iv.) \] If \(f \) and \(g \) are \(p \)-convex functions, then \(A(f(.), g(.), 1/2) = (f + g)/2 \) is also \(p \)-convex function.
\[v.) \] If \(f \) and \(g \) are log-convex functions, then \(G(f(.), g(.), 1/2) = \sqrt{fg} \) is also log-convex function.
\[vi.) \] If \(f \) and \(g \) are \(GG \)-convex functions, then \(G(f(.), g(.), 1/2) = \sqrt{fg} \) is also \(GG \)-convex function.
\[vii.) \] If \(f \) and \(g \) are \(HG \)-convex functions, then \(G(f(.), g(.), 1/2) = \sqrt{fg} \) is also \(HG \)-convex function.
\[viii.) \] If \(f \) and \(g \) are \(AH \)-convex functions, then \(H(f(.), g(.), 1/2) = 2fg/(f + g) \) is also \(AH \)-convex function.

Remark 3. In Corollary 1 we gave results only for some convexity types. It is possible to increase the results by considering another special cases of \(M \) and \(N \).

Theorem 3. Let \(M \) and \(N \) be two weighted means defined on the intervals \(I \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively. If \(f : I \rightarrow J \) is a \(MN \)-convex function and \(\alpha > 0 \), then \(\alpha f \) is a \(MN \)-convex function.

Proof. By using \(MN \)-convexity of \(f \) and (WM4), we have
\[
\alpha f(M(u, v, \lambda)) \leq \alpha N(f(u), f(v), \lambda) \leq N(\alpha f(u), \alpha f(v), \lambda).
\]
This completes the proof. \(\square \)

Theorem 4. Let \(M, N \) and \(K \) be three weighted means defined on the intervals \(I \subseteq (0, \infty), J \subseteq (0, \infty) \) and \(L \subseteq (0, \infty) \) respectively. If \(f : I \rightarrow J \) is a \(MN \)-convex function and \(g : J \subseteq (0, \infty) \rightarrow L \) is nondecreasing and \(NK \)-convex function, then \(g \circ f \) is a \(MK \)-convex function.

Proof. By using \(MN \)-convexity of \(f \), we have
\[
f(M(u, v, \lambda)) \leq N(f(u), f(v), \lambda).
\]
Since \(g \) is \(NK \)-convex and nondecreasing function
\[
g(f(M(u, v, \lambda))) \leq g(N(f(u), f(v), t)) \leq K(g(f(u)), g(f(v)), \lambda).
\]
This completes the proof. \(\square \)
Theorem 5. Let \(M \) and \(N \) be two weighted means defined on the intervals \(I \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively. If the function \(f : I \to J \) is \(MN \)-convex, \(M \leq A \) and \(N \leq A \) (\(A \) is the weighted arithmetic mean), then \(f \) satisfies Lipschitz condition on any closed interval \([a, b] \) contained in the interior \(I^o \) of \(I \). Consequently, \(f \) is absolutely continuous on \([a, b] \) and continuous on \(I^o \).

Proof. Choose \(\varepsilon > 0 \) so that \(a - \varepsilon \) and \(b + \varepsilon \) belong to \(I \), and let \(m_1 \) and \(m_2 \) be the lower and upper bounds for \(f \) on \([a - \varepsilon, b + \varepsilon] \). If \(u \) and \(v \) are distinct points of \([a, b] \) and we choose a point \(z \) such that

\[
y = M(u, z, t), \quad t = \frac{|v - u|}{\varepsilon + |v - u|},
\]

then

\[
f(v) \leq N(f(u), f(z), \lambda) \leq A(f(u), f(z), \lambda) = f(u) + \lambda|f(z) - f(u)|
\]

\[
f(v) - f(u) \leq \lambda|f(z) - f(u)| \leq \lambda(m_2 - m_1) \leq K|v - u|
\]

where \(K = (m_2 - m_1)/\varepsilon \). Since this is true for any \(u, v \in [a, b] \), we conclude that \(|f(v) - f(u)| \leq K|v - u| \) as desired.

Next we recall that \(f \) is absolutely continuous on \([a, b] \) if, corresponding to any \(\varepsilon > 0 \), we can produce a \(\delta > 0 \) such that for any collection \(\{(a_i, b_i)\}_{i=1}^n \) of disjoint open subintervals of \([a, b] \) with \(\sum_{i=1}^n (b_i - a_i) < \delta \), \(\sum_{i=1}^n |f(b_i) - f(a_i)| < \varepsilon \). Clearly the choice \(\delta = \varepsilon/K \) meets this requirement.

Finally the continuity of \(f \) on \(I^o \) is a consequence of the arbitrariness. \(\Box \)

Theorem 6. Let \(M \) and \(N \) be two weighted means defined on the intervals \(I \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively. If function \(f_\lambda : I \to J \) be an arbitrary family of \(MN \)-convex function \(s \) and let \(f(u) = \sup_\lambda f_\lambda(u) \). If \(K = \{x \in I : f(x) < \infty\} \) is nonempty, then \(K \) is an interval and \(f \) is \(MN \)-convex function on \(K \).

Proof. Let \(t \in [0, 1] \) and \(u, v \in K \) be arbitrary. Then

\[
f(M(u, v, \lambda)) = \sup_\alpha f_\alpha(M(u, v, \lambda)) \leq \sup_\alpha (N(f_\alpha(u), f_\alpha(v), \lambda)) \leq N\left(\sup_\alpha f_\alpha(u), \sup_\alpha f_\alpha(v), \lambda\right) = N(f(u), f(v), \lambda) < \infty.
\]

This shows simultaneously that \(K \) is an interval, since it contains every point between any two of its points, and that \(f \) is \(MN \)-convex function on \(K \). This completes the proof of theorem. \(\Box \)

Theorem 7 (Hermite-Hadamard’s inequalities for \(MN \)-convex functions). Let \(M \) and \(N \) be two weighted means defined on the intervals \(I \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively. If function \(f : I \to J \) is \(MN \)-convex, then we have

\[
f(M(u, v, 1/2)) \leq \int_0^1 N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2) \, d\lambda \leq N(f(u), f(v), 1/2)
\]

for all \(u, v \in I \) with \(u < v \).
Proof. Since \(f : I \to \mathbb{R} \) is a \(MN \)-convex function, by using (2.2) we have
\[
f(M(u, v, 1/2)) = f(M(M(u, v, \lambda), M(u, v, 1 - \lambda), 1/2)) \\
\leq N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2)
\]
for all \(u, v \in I \) and \(\lambda \in [0, 1] \). Further, integrating for \(\lambda \in [0, 1] \), we have
\[
(2.5) \quad f(M(u, v, 1/2)) \leq \int_{0}^{1} N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2) \, d\lambda.
\]
Thus, we obtain the left-hand side of the inequality (2.4) from (2.5).

Secondly, By using \(MN \)-convexity of \(f \) and (WM5) with (2.2), we get
\[
N(f(M(u, v, \lambda)), f(M(u, v, 1 - \lambda)), 1/2) \\
\leq N(N(f(u), f(v), \lambda), N(f(u), f(v), 1 - \lambda), 1/2) \\
= N(f(u), f(v), 1/2).
\]
Integrating this inequality with respect to \(\lambda \) over \([0, 1]\), we obtain the right-hand side of the inequality (2.4). This completes the proof. □

We can give the following some results for different convexity classes by considering the special cases of \(M \) and \(N \). It is possible to increase the results by considering another special cases of \(M \) and \(N \).

Corollary 2. Let \(I, J \subseteq (0, \infty) \) and \(f : I \to J \).

i.) If \(f \) is convex function, then we have the following well-known celebrated Hermite-Hadamard’s inequalities for convex functions
\[
f(A(u, v, 1/2)) = f\left(\frac{u + v}{2}\right) \\
\leq \int_{0}^{1} A(f(A(u, v, \lambda)), f(A(u, v, 1 - \lambda)), 1/2) \, d\lambda \\
= \frac{1}{2(v - u)} \int_{u}^{v} f(x) + f(u + v - x) \, dx \\
= \frac{1}{v - u} \int_{u}^{v} f(x) \, dx \\
\leq A(f(u), f(v), 1/2) = \frac{f(u) + f(v)}{2}.
\]

ii.) If \(f \) is GA-convex function, then we have the following Hermite-Hadamard’s inequalities for GA-convex functions (see [7] Theorem 3.1. with \(s = 1 \))
\[
f(G(u, v, 1/2)) = f(\sqrt{uv}) \\
\leq \int_{0}^{1} A(f(G(u, v, \lambda)), f(G(u, v, 1 - \lambda)), 1/2) \, d\lambda \\
= \frac{1}{2(ln v - ln u)} \int_{u}^{v} f(x) + f\left(\frac{uv}{x}\right) \, dx \\
= \frac{1}{ln v - ln u} \int_{u}^{v} \frac{f(x)}{x} \, dx \\
\leq A(f(u), f(v), 1/2) = \frac{f(u) + f(v)}{2}.
\]
iii.) If f is harmonically convex function, then we have the following Hermite-Hadamard’s inequalities for harmonically-convex functions (see [6, 2.4. Theorem])

\[f(H(u,v,1/2)) = f \left(\frac{2uv}{u+v} \right) \]

\[\leq \int_0^1 A(f(H(u,v,\lambda)), f(H(u,v,1-\lambda)), 1/2) \, d\lambda \]

\[= \frac{uv}{2(v-u)} \int_u^v f(x) + f \left(\left[u^{-1} + v^{-1} - x^{-1}\right]^{-1} \right) \frac{dx}{x^2} \]

\[= \frac{uv}{v-u} \int_u^v \frac{f(x)}{x^2} \, dx \]

\[\leq A(f(u), f(v), 1/2) = \frac{f(u) + f(v)}{2}. \]

iv.) If f is p-convex function ($p \neq 0$), then we have the following Hermite-Hadamard’s inequalities for p-convex functions (see [9, Theorem 2])

\[f(M_p(u,v,1/2)) = f \left(\left[\frac{u^p + v^p}{2} \right]^{1/p} \right) \]

\[\leq \int_0^1 A(f(M_p(u,v,\lambda)), f(M_p(u,v,1-\lambda)), 1/2) \, d\lambda \]

\[= \frac{p}{2(v^p - u^p)} \int_u^v f(x) + f \left(\left[u^p + v^p - x^p\right]^{1/p} \right) \frac{dx}{x^{1-p}} \]

\[= \frac{p}{v^p - u^p} \int_u^v \frac{f(x)}{x^{1-p}} \, dx \]

\[\leq A(f(u), f(v), 1/2) = \frac{f(u) + f(v)}{2}. \]

v.) If f is log-convex function, then we have the following Hermite-Hadamard’s inequalities for log-convex functions (see [5, Theorem 2.1])

\[f(A(u,v,1/2)) = f \left(\frac{u + v}{2} \right) \]

\[\leq \int_0^1 G(f(A(u,v,\lambda)), f(A(u,v,1-\lambda)), 1/2) \, d\lambda \]

\[= \frac{1}{v-u} \int_u^v \sqrt{f(x)f(u+v-x)} dx \]

\[\leq G(f(u), f(v), 1/2) = \sqrt{f(u)f(v)}. \]

vi.) If f is GG-convex function, then we have the following Hermite-Hadamard’s inequalities for GG-convex functions (see [8, the inequality (7)])

\[f(G(u,v,1/2)) = f \left(\sqrt{uv} \right) \]

\[\leq \int_0^1 G(f(G(u,v,\lambda)), f(G(u,v,1-\lambda)), 1/2) \, d\lambda \]

\[= \frac{1}{\ln(v) - \ln(u)} \int_u^v \sqrt{f(x)f\left(\frac{uv}{x}\right)} \frac{dx}{x} \]

\[\leq G(f(u), f(v), 1/2) = \sqrt{f(u)f(v)}. \]
Corollary 3. Let \(I, J \subseteq (0, \infty) \) and \(f : I \to J \).

\[
\text{vii.) If } f \text{ is HG-convex function, then we have }
\]
\[
f (H(u, v, 1/2)) = f \left(\frac{2uv}{u+v} \right)
\leq \int_{0}^{1} G \left(f (H(u, v, \lambda)), f (H(u, v, 1-\lambda)), 1/2 \right) d\lambda
= \frac{uv}{v-u} \int_{u}^{v} f(x)f \left(\frac{[u^{-1} + v^{-1} - x^{-1}]^{-1}}{x^2} \right) dx
\leq G(f(u), f(v), 1/2) = \sqrt{f(u)f(v)}.
\]

\[
\text{viii.) If } f \text{ is AH-convex function, then we have }
\]
\[
f (A(u, v, 1/2)) = f \left(\frac{u+v}{2} \right)
\leq \int_{0}^{1} H \left(f (A(u, v, \lambda)), f (A(u, v, 1-\lambda)), 1/2 \right) d\lambda
= \frac{2}{v-u} \int_{u}^{v} \frac{f(x)f(u+v-x)}{f(x)+f(u+v-x)} dx
\leq A(f(u), f(v), 1/2) = \frac{f(u)+f(v)}{2}.
\]

Theorem 8. Let \(M \) and \(N \) be two weighted means defined on the intervals \([u, v] \subseteq (0, \infty) \) and \(J \subseteq (0, \infty) \) respectively. If function \(f : [u, v] \to J \) is MN-convex and symmetric with respect to \(M(u, v, 1/2) \), then we have

\[
f (M(u, v, 1/2)) \leq f(x) \leq N (f(u), f(v), 1/2)
\]

for all \(x \in I \).

Proof. Let \(x \in [u, v] \) be arbitrary point. Then there exists a \(\lambda \in [0, 1] \) such that \(x = M(u, v, \lambda) \). Since \(f : [u, v] \to J \) is a MN-convex function and symmetric with respect to \(M(u, v, 1/2) \), by using (2.2) we have

\[
f (M(u, v, 1/2)) = f (M (M(u, v, \lambda), M(u, v, 1-\lambda), 1/2))
\leq N (f (M(u, v, \lambda)), f (M(u, v, 1-\lambda)), 1/2)
= f(x).
\]

Thus, we obtain the left-hand side of the inequality (2.6). Secondly, By using MN-convexity of \(f \) and (WM5) with (2.2), we get

\[
f(x) = N (f (M(u, v, \lambda)), f (M(u, v, 1-\lambda)), 1/2)
\leq N (N(f(u), f(v), \lambda), N(f(u), f(v), 1-\lambda), 1/2)
= N (f(u), f(v), 1/2).
\]

This completes the proof. \(\square \)

We can give the following some results for different convexity classes by considering the special cases of \(M \) and \(N \). It is possible to increase the results by considering another special cases of \(M \) and \(N \).

Corollary 3. Let \(I, J \subseteq (0, \infty) \) and \(f : I \to J \).
i.) If \(f \) is a convex function and symmetric with respect to \((u + v)/2\), then we have the following inequalities for convex functions (see [4, Theorem 2]):

\[
\frac{f(u + v)}{2} \leq f(x) \leq \frac{f(u) + f(v)}{2}.
\]

ii.) If \(f \) is a GA-convex function and symmetric with respect to \(\sqrt{uv} \), then we have the following inequalities for convex functions (see [10, Theorem 2.9]):

\[
f(\sqrt{uv}) \leq f(x) \leq \frac{f(u) + f(v)}{2}.
\]

iii.) If \(f \) is a \(p \)-convex function and symmetric with respect to \(\left(\frac{u^p + v^p}{2}\right)^{1/p} \), then we have the following inequalities for convex functions (see [11, Theorem 2.2]):

\[
f\left(\frac{u^p + v^p}{2}\right)^{1/p} \leq f(x) \leq \frac{f(u) + f(v)}{2}.
\]

3. Conclusion

The aim of this article is to determine that a mean is called the weighted mean when it meets what conditions, and also is to give a general definition of MN-convex functions. The importance of this study is that some properties of MN-convex functions and some related inequalities have been proven in general terms via this general definition of MN-convex functions.

REFERENCES

[1] Aczél, J: A generalization of the notion of convex functions, Norske Vid. Selsk. Forhld., Trondhjem 19(24), 87–90 (1947).
[2] Aumann, G: Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelwerten, Bayer. Akad. Wiss.Math.-Natur. Kl. Abh., Math. Ann. 109, 405–413 (1933).
[3] Anderson, GD: Vamanamurthy, MK, Vuorinen M: Generalized convexity and inequalities. J. Math. Anal. Appl. 335, 1294–1308 (2007).
[4] Dragomir, SS: Symmetrized convexity and Hermite-Hadamard type inequalities, Journal of Mathematical Inequalities, 10 (4) (2016), 901–918.
[5] Dragomir, S.S. and Mond, B.: Integral inequalities of Hadamard type for log-convex functions, Demonstratio Mathematica, 31 (2) (1998), 354-364.
[6] Işcan, İ: Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat.43(6), 935–942 (2014).
[7] Işcan, İ: Hermite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, Vol. LXIX (2014) – Fasc. II, pp. 129–146.
[8] Işcan, İ: On Some New Hermite-Hadamard type inequalities for s-geometrically convex functions, International Journal of Mathematics and Mathematical Sciences, Volume 2014 (2014), Article ID 163901, 8 pages.
[9] Işcan, İ: Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences 4(3), 140–150 (2016).
[10] Işcan, İ: Symmetrized GA-convexity and Related Some Integral Inequalities, Filomat, 33 (13) (2019), 4121-4136.
[11] Işcan, İ: Symmetrized p-convexity and related some integral inequalities, TWMS J. App. and Eng. Math., (Accepted for publication).
[12] Matkowski, J: Convex functions with respect to a mean and a characterization of quasi-arithmetic means, Real Anal. Exchange 29, 229–246 (2003/2004).
[13] Mirković, TZ: New inequalities of Wirtinger type for convex and MN-convex functions, Facta Universitatis Ser. Math. Inform. 34(2), 165–173 (2019).
[14] Niculescu, CP: Convexity according to the geometric mean, Math. Inequal. Appl., 3(2), 155–167, (2000).
[15] Niculescu, CP: Convexity according to means, Math. Inequal. Appl. 6, 571–579 (2003).
[16] Roberts, AW, Varberg, DE: Convex Functions, Academic Press, New York (1973).

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.

Email address: imdat.iscan@giresun.edu.tr