Prevalence and intensity of intestinal schistosomiasis among the adult population, and water and sanitation conditions: a community-based cross-section study at Muleba District

Monica Shabani
Muhimbili University of Health and Allied Sciences

Abdallah Zacharia (naayz@ymail.com)
Muhimbili University of Health and Allied Sciences
https://orcid.org/0000-0001-9380-6158

Vivian Mushi
Muhimbili University of Health and Allied Sciences
https://orcid.org/0000-0001-9732-3057

Mary Joseph
Muhimbili University of Health and Allied Sciences

Clemence Kinabo
Muhimbili University of Health and Allied Sciences

Twilumba Makene
Muhimbili University of Health and Allied Sciences

Research Article

Keywords: Intestinal schistosomiasis, Schistosoma mansoni, water, sanitation, Muleba

DOI: https://doi.org/10.21203/rs.3.rs-344751/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Intestinal schistosomiasis is one of the serious public health problems in all age groups and can lead to considerable morbidity and mortality especially to communities with an inadequate supply of safe water and sanitation services.

Objective

This study was conducted to establish the current burden of intestinal schistosomiasis among adults in the Muleba District and assessment of water and sanitation conditions that might influence the transmission of intestinal schistosomiasis.

Methods

A community-based cross-sectional study was conducted between July and August 2020. A total of 328 stool samples were collected and processed using formal-ether concentration and Kato-Katz methods. Water and sanitation data were collected using a questionnaire interview conducted among participants. Participants were randomly selected from four villages. Data were analyzed by using Statistical Package for the Social Sciences software version 23.

Results

Thirty six participants (11%) were infected with *Schistosoma mansoni*. The prevalence was higher among the residents of households using water from improved sources, houses without sanitation facilities, and participants who do not use sanitation facilities. We found a significantly increased risk of *S. mansoni* infection among participants in households without toilet facilities compared with those in households with VIP (OR = 4.10, p = 0.001).

Conclusion

The prevalence of intestinal schistosomiasis infection among the adult population in Muleba indicates a moderate risk of transmission. Type of toilet facility is a significant factor in the perpetuation of *Schistosoma mansoni* transmission.

Introduction

Intestinal schistosomiasis is one of the neglected parasitic diseases that cause significant morbidity and mortality in the tropical and subtropical regions of Africa, Asia, and Latin America. Several species of *Schistosoma* including *Schistosoma mansoni* (*S.mansoni*), *S. japonicum*, *S. intercalatum*, and *S. mekongi* are responsible for causing intestinal schistosomiasis in different settings. However, *S.mansoni* accounts for more cases of intestinal schistosomiasis compared to the rest of the intestinal *Schistosoma* species [1]. Globally, 54 million people are
infected with *S.mansoni* and 393 million people are at risk of acquiring intestinal schistosomiasis caused by *S.mansoni* [2].

Pre and school-aged children and adults with occupations such as fishing, farming, and irrigation involving contact with infested water are considered at higher risk of acquiring the infection. However, school-aged children carriers the highest burden of the infection and contribute significantly to the transmission of intestinal schistosomiasis [3]. Chronic intestinal schistosomiasis among the vulnerable population is associated with stunting growth in children, cognitive dysfunction in children, and hepatosplenic diseases including splenomegaly, hepatomegaly [4, 5]. The transmission of intestinal schistosomiasis is associated with several factors such as inadequate water supply, poor environmental sanitation, unhygienic practices, and low socioeconomic status in poor and rural communities [6–8].

Intestinal schistosomiasis caused by *S.mansoni* is endemic in Tanzania with uneven distribution [9]. Prevalence and intensity of *S.mansoni* in Tanzania range from 40–100% in different regions and in communities where farming and fishing are the main sources of income, exposure of adults in infested water becomes inevitable and hence influences the high prevalence of intestinal schistosomiasis in adults compared to school children [9–11]. The global control of intestinal schistosomiasis has been focused on the school-aged children through the use of praziquantel while other vulnerable populations that serve as the reservoir of infection are left out [12].

The previous studies conducted along the Lake Victoria basin found that in Muleba district there was higher prevalence of intestinal schistosomiasis among adult population compared to the school aged children [13, 14]. Evidence indicates that there is ongoing transmission of intestinal schistosomiasis among the adult population [13]. Hence, there is a need to establish the burden of intestinal schistosomiasis among the adult population and associated risk factors. Therefore, this study was conducted to establish the current burden of intestinal schistosomiasis among adults in Muleba District and assessment of water and sanitation conditions that might influence the transmission of intestinal schistosomiasis. The findings will provide information on the current infection status among adults and its association with water and sanitation that will help in the planning of control strategies.

Methods

Description of the study area

Muleba district is among the six districts of the Kagera Region in Tanzania. The district is bordered to the north by the Bukoba Urban and Bukoba Rural districts, to the south by the Biharamulo District, to the east by Lake Victoria and to the west by the Ngara and Karagwe districts. The 2012 Tanzania population and housing census reported a total population of 540,310 (267,858 males and 272,452 females) across an area of 3,518 km² in Muleba district [15]. The residents of the Muleba district practice diverse economic activities, key among them being; farming, fishing, livestock rearing and mining. The climatic conditions of Muleba district are warm and mostly cloudy. Over the course of the years, its temperature varies between 17 °C and 26°C that favour the survival of intermediate snail host (*Biomphalaria*). Muleba district was selected because of the history of the high prevalence of intestinal schistosomiasis and inadequate level of water, sanitation and hygiene which favour transmission of intestinal schistosomiasis [13].

Study design and population
A quantitative cross-section study was conducted from July to August 2020. This sub-study was a part of a large project that aimed to assess the magnitude of geohelminths and associated factors among the adult population in the Muleba District. The study population was adults, both males, and females in the Muleba District.

Sample size determination and sampling procedure

The sample size for this study was calculated from a formula which is given by Creswell [16]. The sample size for this study was 383 adults from 383 households. The study participants were sampled through a three-stage cluster sampling technique. The first stage involved a simple random selection of one endemic district whereby the Muleba district was selected. The second stage involved the selection of representative rural wards whereby out of the 11 endemic rural wards, 3 rural wards (Ikuza, Mazinga, and Nyakabango) were randomly selected. The third stage involved the selection of representative villages from the selected rural wards. From each rural ward, 2 villages were selected by simple random sampling whereby Chakazimbwe and Kasenyi villages were selected from Ikuza ward, Kimoyomoyo and Mulumo villages were selected from Mazinga ward, and Msalala and Nyakabango villages from Nyakabango ward. The households in each village were selected randomly, and in each selected household, only one member was randomly chosen to participate in this study.

Sample collection and laboratory analysis

Prior to stool collection, study participants were oriented on the stool collection procedures. Then plastic containers with applicator sticks were labeled with identification numbers and distributed to study participants for them to provide 5g of a fresh stool sample. Stool samples were then collected and immediately fixed with 10% formalin to preserve the eggs of *S. mansoni* and taken to the parasitology laboratory at the Muhimbili University of Health and Allied Sciences for examination. To determine the prevalence and intensity of *S. mansoni*, the samples were processed and examined for the presence or absence of eggs/ova. Stool samples were processed using formol-ether concentration (FEC) techniques and the positive samples were quantified by Kato-Katz (KK) technique as described in the World Health Organization (WHO) bench aids for the diagnosis of parasitic diseases [17]. Examination for the presence of *S. mansoni* eggs/ova were done using Olympus CX 31 microscope.

Questionnaire survey

A structured questionnaire developed in English and then translated to Kiswahili was administered to all adults included in this study by well-trained interviewer. The questionnaire aimed to collect data on the socio demographic characteristics, water, sanitation and hygiene practices of the study participants.

Inclusion and exclusion criteria

The inclusion criteria included all adults residing in the Muleba district and who agreed to participate in this study by signing the informed consent. Adults who were sick from schistosomiasis during stool collection, adults who used anthelminthic (praziquantel) within one month before the commencement of data collection, and who refused to sign informed consent were excluded from the study.

Ethical consideration

Ethical clearance was obtained from Institutional Review Board of Muhimbili University of Health and Allied Sciences (IRB#: MUHAS-REC-06-2020-309) before commencement of the study. Permission to conduct the study in Muleba District was requested from the local authorities. Participants were informed about the objectives, procedures, potential risks and benefits of the study as well as individuals' right to withdraw from participation at any time during the study without negative consequences. Also, a written informed consent was sought from
respondents after giving them sufficient information. The participants who were found positive for *S.mansoni* were referred to the nearby health facilities for appropriate treatment.

Data analysis

The data was entered and analyzed using Statistical Package for Social Sciences version 22. All categorical variables were summarized to obtain the frequency and proportions. The prevalence of *S.mansoni* was calculated according to sex, age groups, village of residence and occupations. The intensity of *S.mansoni* was reported as the arithmetic mean of eggs per gram (EPG) and then categorized based on WHO classifications for *S.mansoni*: (0) negative, (1–99) light infection, (100–399) moderate infection, (> 400) heavy infection [18]. The binary logistic regression test was done to determine the association between independent variables (sociodemographic characteristics, water and sanitation variables) and dependent variable (prevalence of *S. Manson* infection). P-value less than 0.05 were considered statistically significant.

Results

Socio-demographic characteristics of study participant

A total of 328 adults (response rate of 85.6%) from 383 selected households in the six selected villages consented to provide stool samples for intestinal schistosomiasis examination and participation in interviews. The participants' average age was 31.7 (± 8.6) years with the higher percentage (66.8%) fall under the young adults (18–35 years) group. Most of the participants were male (61.3%), fishermen (36.6%), and attained primary school education level (61%) (Table 1). Selected villages were either in the islands or located along the shore of Lake Victoria.
Table 1
Socio-demographic characteristics of study participants as summarized by villages

Characteristic	Chakazimbwe n (%)	Kasenyi n (%)	Kimoyomoyo n (%)	Msalala n (%)	Mulumo n (%)	Nyakabango n (%)	Total n (%)
Gender							
Male	38 (70.4)	27 (49.1%)	32 (58.2)	39 (72.2)	38 (69.1)	201 (61.3)	
Female	16 (29.6)	28 (50.9)	23 (41.8)	15 (27.8)	17 (30.9)	127 (38.7)	
Age group							
18–35	35 (64.8)	42 (76.4)	38 (69.1)	41 (75.9)	28 (50.9)	219 (66.8)	
36–55	19 (35.2)	13 (23.6)	17 (30.9)	13 (24.1)	27 (49.1)	109 (33.2)	
Education							
Primary and below	36 (66.7)	34 (61.8)	32 (58.2)	33 (60.0)	33 (61.1)	33 (60.0)	201 (61.3)
Secondary & above	18 (33.3)	21 (38.1)	23 (41.8)	22 (40.0)	21 (38.9)	22 (40.0)	127 (38.7)
Occupation							
Farmers	17 (31.5)	18 (32.7)	24 (43.6)	34 (61.8)	6 (11.1)	21 (38.2)	120 (36.6)
Businessman	2 (3.7)	1 (1.8)	7 (12.7)	5 (9.1)	1 (1.9)	2 (3.6)	18 (5.5)
Fisherman	25 (46.3)	30 (54.5)	20 (36.4)	14 (25.5)	32 (59.3)	26 (47.3)	147 (44.8)
Casual Labourers	10 (18.5)	6 (10.9)	4 (7.3)	2 (3.6)	15 (27.8)	6 (10.9)	43 (13.1)

Water and sanitation condition of study communities

The majority of the participants (75%) have reported always have water available, with more than half of participants (59.1%) using unimproved water sources (unprotected dug wells, unprotected springs, and surface water). Also, the majority (83.5%) reported spending less than 30 minutes from their households to the water sources, queue for water collection, and return to their households. Of 328 households surveyed, 293 (89.3%) had toilet facilities. However, only (72.9%) were using the toilets (Table 2).
Table 2
Water and sanitation condition of study communities as summarized by villages

Characteristic	Chakazimbwe n (%)	Kasenyi n (%)	Kimoyomoyo n (%)	Msalala n (%)	Mulumo n (%)	Nyakabango n (%)	Total n (%)
Water availability							
Always	41 (75.9)	42 (76.4)	38 (69.1)	40 (72.7)	41 (75.9)	44 (80.0)	246 (75.0)
Rarely	13 (24.1)	13 (23.6)	17 (30.9)	15 (27.3)	13 (24.1)	11 (20.0)	82 (25.0)
Source of water							
Unimproved	34 (63.0)	29 (52.7)	37 (67.3)	26 (47.3)	33 (61.1)	35 (63.6)	194 (59.1)
Improved	20 (37.0)	26 (47.3)	18 (32.7)	29 (52.7)	21 (38.9)	20 (36.4)	134 (40.9)
Time to fetch water							
Less than 30 minutes	46 (85.2)	48 (87.3)	45 (81.8)	49 (89.1)	44 (81.5)	42 (76.4)	274 (83.5)
More than 30 minutes	8 (14.8)	7 (12.7)	10 (18.2)	6 (10.9)	10 (18.5)	13 (23.6)	54 (16.5)
Type of toilet							
Pit latrine	43 (79.6)	51 (92.7)	47 (85.5)	50 (90.9)	38 (70.4)	52 (94.5)	281 (85.7)
VIP	6 (11.1)	0 (0.0)	0 (0.0)	0 (0.0)	6 (11.1)	0 (0.0)	12 (3.6)
No toilet	5 (9.3)	4 (7.3)	8 (14.5)	5 (9.1)	10 (18.5)	3 (5.5)	35 (10.7)
Toilet use							
Yes	38 (70.4)	44 (80.0)	41 (74.5)	36 (65.5)	42 (77.8)	38 (69.1)	239 (72.9)
No	16 (29.6)	11 (20.0)	14 (25.5)	19 (34.5)	12 (22.2)	17 (30.9)	89 (27.1)

VIP – Ventilated Improved Pit Latrine

Schistosomiasis prevalence, intensity and associated factors

The overall prevalence of intestinal schistosomiasis (Schistosoma mansoni) was 11% as determined by FEC method. The prevalence was higher among participants from households without toilets, with rare availability of water and takes more than 30 minutes to fetch water. Also, the prevalence was higher in participants from households fetching water from improved sources and not using toilets (Table 3).
Characteristic	Prevalence by FEC technique	Binary logistic regression		
	Tested	Positive (%)	Odd ratio (95% CI)	p-value
Gender				
Male	201	22 (10.9)	Ref	
Female	127	14 (11.0)	1.01 (0.50–2.05)	0.980
Age group				
18–35	219	23 (10.5)	Ref	
36–55	109	13 (11.9)	1.15 (0.56–2.38)	0.690
Education				
Primary and less	201	25 (12.4)	Ref	
Secondary and above	127	11 (8.6)	0.67 (0.32–1.41)	0.290
Occupation				
Farmers	120	12 (10.0)	Ref	
Businessmen	18	3 (16.7)	1.80 (0.46–7.12)	0.400
Fisherman	147	16 (10.9)	1.10 (0.50–2.42)	0.810
Casual labourers	43	5 (11.6)	1.18 (0.39–3.58)	0.770
Village				
Nyakabango	55	3 (5.5)	Ref	
Chakazimbwe	54	3 (5.6)	1.02 (0.20–5.29)	0.980
Kasenyi	56	9 (16.4)	3.39 (0.87–13.29)	0.080
Kimoyomono	55	7 (12.7)	2.53 (0.62–10.34)	0.200
Msalala	55	5 (9.1)	1.73 (0.39–7.64)	0.470
Mulumo	54	9 (16.7)	3.47 (0.88–13.39)	0.070
Water availability				
Always	246	25 (10.2)	Ref	
Rarely	82	11 (13.4)	1.43 (0.60–3.40)	0.420
Source of water				
Unimproved	194	18 (9.3)	Ref	
Improved	134	18 (13.4)	1.52 (0.76–3.04)	0.240

FEC = formal-ether concentration technique and KK = kato-katz technique
Based on KK results of the FEC positive samples, the geometrical mean intensity of infection was 20.6 (95% CI: 15.5–29.7) EPG of stool. Only one participant had the heavy intensity of infection. The participant with a heavy intensity of infection reported that water is always available at his household but it’s from an unimproved source. Also, reported to live in households with toilet facility but not using it (Table 3). Participants from households without toilet facilities had four times higher risk of *S. mansoni* infection compared to participants from households with VIP toilet facilities (OR = 4.10, p = 0.001) (Table 3).

Discussion

Globally, schistosomiasis control solely based on the provision of praziquantel PC to school-aged children (SAC). SAC are targeted because they are considered as a group at higher risk of schistosomiasis infection [19]. Despite, more than 15 years of praziquantel distribution to the vulnerable population who are known to be the source of schistosomiasis transmission to the communities still, there is ongoing transmission even to the adult population which indicates the disease is still a public health problem in Kagera region (where Muleba district is located) [20]. The findings of our study are in line with the results of the previous study conducted more than five years ago, suggesting consistent *Schistosoma mansoni* transmission in Muleba [20]. The recorded prevalence indicates that the populations in the studied areas are at moderate risk of acquiring intestinal schistosomiasis [19]. The prevalence of *S. mansoni* infection among the adult population could be attributed to occupational exposure to schistosomiasis transmission risk factors. Many adult people in the studied areas were farmers and fisherman at high risk of schistosomiasis infection as they are at a higher chance of being exposed to contaminated water and poor sanitation condition. The majority of infected participants had a light intensity of infection. The light intensity of infection indicates a low burden (morbidity and mortality) of infection [19].

Provision of PC was observed to reduce the rate of schistosomiasis prevalence in the short term and does not protect against subsequent infection (reinfection) especially in intestinal schistosomiasis [19, 21]. Therefore, relying
on PC and ignoring other control measures such as water, sanitation, health education, and snail control was found not sufficient to interrupt schistosomiasis transmission. Unimproved water sources and sanitation facilities are important factors contributing to the persistent transmission of intestinal schistosomiasis [7]. Water availability and access in the six villages is not a problem, but the majorities are taking water from unimproved sources. However, our findings show that there is no association between the water source and the prevalence of intestinal schistosomiasis. A similar result was reported in a study conducted in Kenya [22]. Prevalence of intestinal schistosomiasis is higher among participants in areas with difficult access to water (rare availability of water and using more than 30 minutes to fetch water) (Table 3). The higher prevalence could be because many people with difficult access to water tend to do most of the water-related chores nearby water sources to reduce the water fetching workload (reduce the number of trips to carry water and carry water only for drinking and cooking). Among water-related chores that could result in fecal contamination of water sources and expose people to contaminated water include washing of soiled clothes, open defecation (contaminate water source through fecal washing during rain/flooding), and hygienic bathing [8]. Surprisingly, we noted the higher prevalence of *S. mansoni* infections among participants from households using water from improved sources. However, this is possible as the transmission does not occur within the house rather than outside. Therefore, people may get infected during their socio-economic activities outside of their homes [8].

We found the type of toilet facility to be a significant factor for the transmission of intestinal schistosomiasis. Participants from houses without toilet facilities had a significantly higher prevalence of intestinal schistosomiasis compared to those from households with toilet facilities. In contrast to the findings recorded in Kenya [22], our results showed that the prevalence of intestinal schistosomiasis is significantly associated with the household's type of toilet facility (Table 3). Despite availability of toilet facilities in most of visited households (pit latrines and VIP), majority of interviewed adults participants responded that they do not use toilets. Most of the non-toilet users preferred the use of bushes (open defecation). A study conducted in India reported that the main reasons why people do not use toilets are a preference to open defection, lack of privacy (feel shy), and use of sanitation facility (toilet) was considered inconvenient [23]. It was showed elsewhere that possibility of open defection in farming communities is high due to lack of sanitation facilities in the farms [22]. Results from stool examination showed a slightly higher prevalence of *S. mansoni* among participants who do not use toilets compared to those using toilets for defecation. It could be because most people practicing open defection preferred to do it in bushes surrounding water sources as these areas offer both privacy and water for hygienic bathing [8]. Defecating nearby water bodies and hygienic bathing in water bodies may contaminate the water with feaces contain *Schistosomes* eggs resulting in the perpetuation of schistosome transmission.

Conclusion

The results of this study show that the adult population in Muleba had a higher prevalence of *S. mansoni* and continue to act as a reservoir of the infection. More than 75% of *Schistosoma* infected participants are farmers and fishermen, indicating occupational exposure. Therefore, adults and occupationally exposed populations have to be considered for inclusion in intervention campaigns. The majority of water sources in the studied areas are unimproved ones. Most of the surveyed households have improved sanitation facilities. Participants from the few houses without sanitation facilities bear the higher burden of the disease. Despite, the high coverage of sanitation facilities, people do not prefer to use them. The prevalence of infection is higher among non-toilet users. It gives an alert for a call on behavioral change intervention.
Declarations

Acknowledgement

The authors wish to thank Dr. Uzia Mohammed, Mr. Constantine Pius, Ms Anna Reese and Mr. Yohana Ngalaba for their support. Special thanks go to Ward and Village leaders.

Conflict of Interest Statement

None

Funding Sources

None

Availability of data

The data used to support the findings of this study are available from the corresponding author upon request.

Author Contributions

Conceptualization: Monica Shabani. Data curation: Monica Shabani, Abdallah Zacharia, Vivian Mushi, Mary Joseph, Clemence Kinabo, Twilumba Makene. Formal analysis: Abdallah Zacharia, Vivian Mushi. Methodology: Monica Shabani, Abdallah Zacharia, Vivian Mushi. Writing – original draft: Abdallah Zacharia, Vivian Mushi, Mary Joseph, Clemence Kinabo, Twilumba Makene, Monica Shabani.

References

1. World Health Organization. Schistosomiasis 2020. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed October 28, 2020).
2. WHO. Schistosomiasis epidemiology 2020. https://www.who.int/schistosomiasis/epidemiology/table/en/ (accessed December 24, 2020).
3. Hotez PJ, Kamath A. Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 2009;3:2–11. doi:10.1371/journal.pntd.0000412.
4. Coulibaly G, Ouattara M, Dongo K, Hürlimann E. Epidemiology of intestinal parasite infections in three departments of south-central Côte d’Ivoire before the implementation of a. Parasite Epidemiol Control 2018;3:63–76. doi:10.1016/j.parepi.2018.02.003.
5. Mueller A, Fuss A, Ziegler U, Kaatano GM, Mazigo HD. Intestinal schistosomiasis of Ijinga Island, north-western Tanzania: Prevalence, intensity of infection, hepatosplenic morbidities and their associated factors. BMC Infect Dis 2019;19:832. doi:10.1186/s12879-019-4451-z.
6. Hajissa K, Muhajir AEMA, Eshag HA, Alfadel A, Nahied E, Dahab R, et al. Prevalence of schistosomiasis and associated risk factors among school children in Um-Asher Area, Khartoum, Sudan. BMC Res Notes 2018;11:779. doi:10.1186/s13104-018-3871-y.
7. Grimes JET, Croll D, Harrison WE, Utzinger J, Freeman MC, Templeton MR. The Relationship between Water, Sanitation and Schistosomiasis: A Systematic Review and Meta-analysis. PLoS Negl Trop Dis 2014;8:e3296. doi:10.1371/journal.pntd.0003296.
8. Grimes JE, Croll D, Harrison WE, Utzinger J, Freeman MC, Templeton MR. The roles of water, sanitation and hygiene in reducing schistosomiasis: A review. Parasites and Vectors 2015;8:1–16. doi:10.1186/s13071-015-0766-9.

9. Mazigo H, Nuwaha F, Kinung’hi S, Morona D, Pinot de Moira A, Wilson S, et al. Epidemiology and control of human schistosomiasis in Tanzania. Parasit Vectors 2012;5.

10. Brooker S, Clements ACA. Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales. Int J Parasitol 2009;39:591–7. doi:10.1016/j.ijpara.2008.10.014.

11. Bakuza JS, Denwood MJ, Nkwengulila G, Mable BK. Estimating the prevalence and intensity of Schistosoma mansoni infection among rural communities in Western Tanzania: The influence of sampling strategy and statistical approach 2017. doi:10.1371/journal.pntd.0005937.

12. Chaula SA, Tarimo DS. Impact of praziquantel mass drug administration campaign on prevalence and intensity of schistosoma haemamtobium among schoolchildren in Bahi district, Tanzania. Tanzan J Health Res 2014;16. doi:10.4314/thrb.v16i1.1.

13. Siza JE, Kaatano GM, Chai J, Eom KS, Rim H, Yong T, et al. Prevalence of schistosomes and soil-transmitted helminths and morbidity associated with schistosomiasis among adult population in Lake Victoria basin, Tanzania. Korean J Parasitol 2015;53:525–33.

14. Siza JE, Kaatano GM, Chai J, Eom KS, Rim H, Yong T, et al. Prevalence of schistosomes and soil-transmitted helminths among school children in Lake Victoria basin, Tanzania. Korean J Parasitol 2015;53:515–24.

15. National Bureau of Statistics. 2012 population and housing census: Population distribution by administrative areas. Dar Es Salaam, Tanzania: 2013.

16. Creswell JW. Research Design: Qualitative, Quantitative and Mixed Method Approaches. SAGE Publ 2007. doi:10.4135/9781849208956.

17. WHO | Bench Aids for the diagnosis of intestinal parasites n.d.

18. WHO. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. Geneva - Switzerland: 2002.

19. WHO. Preventive chemotherapy in human helminthiasis: coordinated use of anthelmintic drugs in control interventions: a manual for health professionals and programme managers. Geneva: WHO press; 2006.

20. Imperial Collage. Successful mass drug administration across Tanzania 2007. https://www.imperial.ac.uk/news/83321/successful-mass-drug-administration-across-tanzania/ (accessed November 25, 2020).

21. Zacharia A, Mushi V, Makene T. A systematic review and meta-analysis on the rate of human schistosomiasis reinfection. PLoS One 2020;1–17. doi:10.1371/journal.pone.0243224.

22. Gichuki PM, Kepha S, Mulewa D, Masaku J, Kwoba C, MBUGUA G, et al. Association between Schistosoma mansoni infection and access to improved water and sanitation facilities in Mwea, Kirinyaga County, Kenya. BMC Infect Dis 2019;19:1–14.

23. Barnard S, Routray P, Majorin F, Peletz R, Boisson S, Sinha A, et al. Impact of Indian total sanitation campaign on latrine coverage and use: A cross-sectional study in Orissa three years following programme implementation. PLoS One 2013;8. doi:10.1371/journal.pone.0071438.