A nationwide genomic study of clinical *Klebsiella pneumoniae* in Norway 2001–15: introduction and spread of ESBLs facilitated by clonal groups CG15 and CG307

Aasmund Fostervold1,2*, Marit A. K. Hetland1,3, Ragna Bakksjø1, Eva Bernhoff1, Kathryn E. Holt4,5, Ørjan Samuelsen6,7, Gunnar Skov Simonsen8,9, Arnfinn Sundsfjord6,8, Kelly L. Wyres4 and Iren Høyland Löhr1,2 on behalf of The Norwegian Study Group on *Klebsiella pneumoniae†*

1Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway; 2Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; 3Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway; 4Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia; 5Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK; 6Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway; 7Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; 8Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; 9Department of Microbiology and Infection Control, University Hospital of North-Norway, Tromsø, Norway

*Corresponding author. E-mail: aasmund.fostervold@sus.no
†Members are listed in the Acknowledgements section.

Received 15 July 2021; accepted 12 November 2021

Objectives: To use the nationwide Norwegian surveillance programme on resistant microbes in humans (NORM) to address longitudinal changes in the population structure of *Klebsiella pneumoniae* isolates from 2001–15, focusing on the emergence and dissemination of ESBL-producing *K. pneumoniae* in Norway.

Methods: Among blood (n = 6124) and urinary tract (n = 5496) surveillance isolates from 2001–15, we used Illumina technology to whole genome sequence 201 ESBL-producing isolates from blood (n = 130) and urine (n = 71), and 667 non-ESBL isolates from blood. Complete genomes for four isolates were resolved with Oxford Nanopore sequencing.

Results: In a highly diverse collection, *Klebsiella variicola* ssp. *variicola* caused 24.5% of *Klebsiella pneumoniae* species complex (KpSC) bacteraemias. ESBL production was limited to *K. pneumoniae sensu stricto* (98.5%). A diverse ESBL population of 57 clonal groups (CGs) were dominated by MDR CG307 (17%), CG15 (12%), CG70 (6%), CG258 (5%) and CG45 (5%) carrying *blaCTX-M-15*. Yersiniabactin was significantly more common in ESBL-positive (37.8%) compared with non-ESBL *K. pneumoniae sensu stricto* isolates (12.7%), indicating convergence of virulence and resistance determinants. Moreover, we found a significantly lower prevalence of yersiniabactin (3.0%, 37.8% and 17.3%), IncFIB (58.7%, 87.9% and 79.4%) and IncFII plasmid replicons (40.5%, 82.8% and 54.2%) in *K. variicola* ssp. *variicola* compared with ESBL- and non-ESBL *K. pneumoniae sensu stricto* isolates, respectively.

Conclusions: The increase in Norwegian ESBL-producing KpSC during 2010–15 was driven by CG307 and CG15 carrying *blaCTX-M-15*. *K. variicola* ssp. *variicola* was a frequent cause of invasive KpSC infection, but rarely carried ESBLs.

Introduction

Klebsiella pneumoniae is an important human pathogen and acknowledged as a key host for the spread of antimicrobial resistance (AMR). The global spread of MDR *K. pneumoniae* is closely linked to the spread of extended-spectrum β-lactamases (ESBLs) and carbapenemases. This has been facilitated by successful clonal lineages or clonal groups (CGs) such as CG258, CG15 and CG307, and horizontal gene transfer (HGT), fuelled by antibiotic selection.

While *K. pneumoniae* typically causes severe infections in vulnerable hospitalized patients, some hypervirulent (HV) clones cause community acquired invasive infections, often in healthy...
individuals.10 HV clones cluster in CG23, CG65 and CG86, and harbour capsular loci K1 or K2, siderophores and other virulence factors supporting colonization, tissue invasion and immune evasion.10,12 High-risk \textit{K. pneumoniae} clones, categorized as either MDR or HV, rarely display both traits.12 However, in recent years, convergence of the two traits has been reported.13 \textit{K. pneumoniae} is a highly diverse species, and the term \textit{K. pneumoniae} species complex (KpSC) has been introduced to encompass seven closely related taxa,14 of which \textit{K. pneumoniae} sensu stricto, Klebsiella variicola and Klebsiella quasipneumoniae are the most frequently reported in human clinical samples.15,16

Most molecular epidemiological studies of KpSC have focused on outbreaks or isolates with particular characteristics such as AMR or virulence, most often with a cross-sectional study design. Thus, there is a need for longitudinal studies, including both resistant and susceptible isolates, to improve our understanding of the population dynamics in clinical KpSC isolates.

In this study, we used the Norwegian surveillance programme on resistant microbes (NORM) from 2001–15. The aim of this study was to address the longitudinal dynamics of KpSC clinical isolates, dominant CGs and their associations with clinically important AMR and virulence determinants, with a particular focus on the emergence and dissemination of ESBLs.

Material and methods

Bacterial isolates

NORM monitors AMR in Klebsiella spp. isolated from blood and urine isolates. Antimicrobial susceptibility testing is performed and interpreted according to EUCAST guidelines and breakpoints.17 Isolates with reduced susceptibility to cefotaxime and/or ceftazidime are verified as ESBL carriers with phenotypic ESBL testing.18 Isolates are stored locally at -80°C at the participating laboratories.18

All putative ESBL-producing KpSC blood ($n=149$) and urine isolates ($n=91$) from 2001–15 registered in the NORM database were included in the study. For comparison, a subset of non-ESBL blood culture isolates ($n=815$) were included. As the number of isolates per year increased during the study period, we took measures to achieve similar sized sample sets for each year. Consecutive isolates were selected from each laboratory for each year according to the following key: 2001, all isolates; 2005, every 2 of 10; 2010, every 250 or 2 of 100; 2015, every 2 of 250 or 2 of 300 bp.

Isolates registered as either \textit{K. pneumoniae} or Klebsiella spp. were included. Species identification was confirmed by MALDI-TOF MS (MBT Compass Library DB-6903, Bruker Daltonik), and subsequently by whole genome sequencing. Only KpSC isolates were included for further analyses. Species identification was confirmed by MALDI-TOF MS (MBT Compass Library DB-6903, Bruker Daltonik), and subsequently by whole genome sequencing. Only KpSC isolates were included for further analyses.

Whole genome sequencing

DNA was extracted using the MagNApure 96 system (Roche Applied Science, Manheim, Germany) and sequencing libraries were prepared using Nextera XT DNA Library preparation protocol (Illumina, San Diego, CA, USA). Paired-end reads (2×150, 2×250 or 2×300 bp) were generated for all isolates using Illumina MiSeq with v3 chemistry. For isolates where only FASTQ files were received, sequencing was performed on an Illumina HiSeq 2500 at Eurosins Genomics (Eurosins Genomics Europe, Konstanz, Germany) generating 2×125 bp paired-end reads.

To achieve closed genomes, selected isolates were also long-read sequenced. DNA was extracted manually using the Beckman Coulter Life Science GenFind V3 kit (C34881) according to the supplemental protocol. ‘DNA extraction from Bacteria using GenFind v3’ (Beckman Coulter, Brea, CA, USA). DNA libraries were prepared using the 1D Ligation sequencing kit (SQK-LSK108) and the Native barcoding kit (EXP-NBD103) [Oxford Nanopore Technologies (ONT), Oxford, UK] according to the ONT protocol ‘native barcoding genomic DNA’ or ‘genomic DNA by ligation’ without shearing to maximize the sequencing read length. Finally, libraries were loaded onto an R9.4.1 MinION flow cell (FLO-MIN106) or a R9.4.1 Flongle flow cell (FLO-FLG001) and sequenced on an ONT MinION Mk1B device (MIN-101B).

In silico analysis

Short-read sequences were trimmed based on quality and adapter content with TrimGalore v0.6.4,20 and de novo assembly was performed with Unicycler v0.4.8,21 which uses SPAdes v3.13.122 for assembly and Plon v1.2323 for polishing. Kleborate v2.0.424 was used to identify species and determine multilocus sequence type (ST), virulence loci and AMR genes (CARD database v3.0.825) from assembled genomes. Kaptive26 was used to identify capsule (K) biosynthesis loci reporting calls with confidence level ‘Good’ or higher. Putative ESBL carriers with no definite ESBL gene had their read sets investigated using SRST2 v2.0.227 with CARD database v3.0.8, as some reads may have been discarded in the assembly process. Only ESBL gene matches with 100% sequence coverage and identity were included in further analyses. Plasmid replicons were identified with SRST2 v2.0.0 using the Plasmidfinder database version 2021-01-13.28

A core chromosomal single-nucleotide polymorphism (SNP) alignment of the verified ESBL and non-ESBL genomes was generated to assess their relatedness. The short-reads were mapped to the chromosome of the ST23 reference genome NTUH-K2044 (NC_01273.1) with the RedDog V1beta.1129 pipeline, using Bowtie2 v2.3.4.30 for read mapping and SAMtools v1.9.131 for SNP calling. RedDog was used with default parameters as described previously,13 except for the read depth threshold which was set to ≥ 8 (default ≥ 10) to include all genomes. A maximum likelihood (ML) phylogeny was inferred from the resulting alignment (868 genomes, 867 815 SNPs) using FastTree v2.1.10 (gamma distribution of rate heterogeneity among sites).32

CGs were defined by patristic distances. This method was chosen as it has previously been used to cluster CGs in KpSC13 and a distance threshold of 0.04 was used as it grouped STs that have previously been identified as belonging to clinically distinct CGs. The CGs dominated by ST14 and ST340 were denoted CG15 and CG258, as these names are more commonly used.2,13

Long-read sequences were base called and de-multiplexed high-accuracy mode using Guppy Basecalling Software v3.2.434 followed by quality filtering with Filtlong v0.2.0.35 To resolve the complete genome sequence of these isolates, hybrid assembly with the corresponding short-read genomes using Unicycler v0.4.8 was performed. The completed genomes were subsequently annotated with the NCBI Prokaryotic Annotation Pipeline v5.136 using default parameters.

To assess the clonal relatedness of the ST307 genomes, an alignment was generated with RedDog, using the hybrid-assembled closed ST307 genome (Genbank accession CP073627) as the mapping reference. The resulting alignment with 391 variant sites was screened for recombination events using Gubbins v2.3.437 with convergence method ‘weighted Robinson-Foulds’. This alignment was passed to RAxML v8.2.1038 to infer ML phylogeny. The best-scoring ML tree was chosen from five independent
runs with the GTR+ nucleotide substitution model, followed by a rapid bootstrap analysis (100 replicates) to estimate branch support.

Data availability

The 868 KpSC short-read and four long-read sequence files have been deposited in the European Nucleotide Archive under BioProject PRJEB27256 (Table S1). The four hybrid-assembled completed genomes have been deposited in GenBank (Table S1) under accession numbers CP073791-CP073796, CP073627-CP073629, CP073783-CP073787 and CP073788-CP073790.

Definitions

MDR was defined as phenotypic resistance to agents in three antimicrobial classes.\(^4\) HV was defined as either (a) the presence of \(rmpA \) or \(rmpA2 \); and/or (b) the presence of aerobactin (\(iuc \)) and salmochelin (\(iro \)).\(^3\) ESBL isolates were defined as either having known ESBL genes (i.e. \(\text{bla}_{	ext{CTX-M}}, \text{bla}_{	ext{SHV-2}}, \text{bla}_{	ext{SHV-12}}, \text{bla}_{	ext{SHV-18}} \) and \(\text{bla}_{	ext{SHV-24}} \)), or in absence of known ESBL genes, a confirmed ESBL phenotype. Isolates with plasmid-mediated AmpC genes only or carbapenemase-encoding genes (regardless of ESBL gene presence) were excluded from further analysis.

Data handling and statistical analysis

Data analysis and statistics were done using R version 4.0.2 (2020–06-22).\(^4\)\(^0\) Distribution differences were calculated with Fisher exact test for multiple testing when necessary. \(P < 0.05 \) was considered statistically significant.

Ethics

The study was approved by the Regional Committee for Medical and Health Research Ethics (Reference: 2017/1185–3).

Results

We received 954/1055 (90.4%) of requested isolates, of which 223 putative ESBL-producing isolates (blood, \(n = 144 \); urine, \(n = 79 \)) and 667 non-ESBL blood isolates were confirmed as KpSC by MALDI-TOF MS and WGS (Figure S1). Known ESBL genes were detected in 192/223 (86%) putative ESBL isolates. ESBL phenotype was confirmed in nine additional isolates, resulting in an ESBL group consisting of 201 isolates (blood, \(n = 130 \); urine, \(n = 71 \)). Six isolates with carbapenemase genes and one isolate with a plasmid-mediated AmpC gene only were excluded (Figure S2). The dataset can be explored at https://microreact.org/project/4dBcaZsZmKoAzvatzPaGds.

Phylogenetic diversity in ESBL and non-ESBL KpSC populations

The species distributions in the ESBL and non-ESBL groups were different (\(P < 0.0001 \)) (Table 1). The ESBL group consisted of 98.5% \(K. \) pneumoniae sensu stricto. In contrast, the non-ESBL group isolates comprised \(K. \) pneumoniae sensu stricto (69.1%), \(K. \) variicola ssp. variicola (24.5%), \(K. \) quasipneumoniae ssp. similipneumoniae (3.3%) and \(K. \) quasipneumoniae ssp. quasipneumoniae (3.1%). \(K. \) variicola ssp. tropica, \(K. \) africana or \(K. \) quasivaricola were not detected (Table 1, Figure 1).

The 868 KpSC isolates were phylogenetically highly diverse with a total of 413 different STs assigned to 261 CGs (Table S1). The Simpson’s diversity indices for STs were 0.95 for the ESBL group and 0.99 for the non-ESBL group, respectively.

Among the 667 non-ESBL blood culture isolates there were 377 STs assigned to 246 CGs (mean number of isolates per CG 3.53, range 1–34). CG307 was the most prevalent (16.9%, \(n = 34 \); ST307) followed by CG15 (12.4%, \(n = 15 \); comprising ST14, ST15 and ST627), CG70 (6.5%, \(n = 13 \); ST70), CG258 (5.0%, \(n = 10 \); ST11, ST340 and ST437) and CG45 (5.0%, \(n = 10 \); ST45 and ST2954). The remaining CGs represented <5% of ESBL isolates each (Figure 1).

Among the 868 KpSC isolates 344 CGs (88.5%) were detected (<5% of ESBL isolates each (Figure1).

The first occurrence in this study of an ESBL-producing isolate was the globally successful ESBL CG15 in 2003 in a urine specimen. Between 2009 and 2012 it was the most prevalent CG among our blood culture samples. From 2012, the increase in ESBLs was associated with the emergence of CG307. Urine isolates exhibited greater diversity of CGs compared with blood, but all prevalent urine CGs were also represented in blood cultures isolates, albeit several in low numbers (Figure 2). There were no apparent CG trends in the non-ESBL group.

Temporal trends

Table 1. ESBL and non-ESBL groups: species distribution, clonal groups (CGs), and sequence types (STs) numbers

Species identification	ESBL isolates	Non-ESBL isolates	\(P \) value\(^a\)
\(K. \) pneumoniae sensu stricto	198 (98.5)	54/70	1.0000
\(K. \) variicola ssp. variicola	1 (0.5)	1/1	1.0000
\(K. \) quasipneumoniae ssp. similipneumoniae	2 (1.0)	2/2	1.0000
\(K. \) quasipneumoniae ssp. quasipneumoniae	–	–	1.0000
\(K. \) pneumoniae species complex	201	57/73	1.0000

\(^a\)Fisher exact test for difference in species distributions between groups.
CG307 was first observed in 2012 in two of the six NORM surveillance regions, and was present in five regions by 2014 (Figure 3a), representing 44.4% of blood ESBL isolates and 34.6% of urine ESBL isolates in 2015. CG70, CG258 and CG45 emerged in the same period, but did not expand to the same degree. Chromosomal SNPs, temporal and geographical distribution of the most prevalent CGs are shown in Table S2. A core genome phylogenetic analysis of CG307 indicated unrelated occurrences of isolates in 2012–13, while isolates from 2014–15 seem to represent two clonal expansions (red and blue boxes in Figure 3b). This is supported by the Bayesian phylodynamic analysis of global CG307 (including 30 of the genomes reported here), adapted from Wyres et al., showing that the most recent common ancestor for the two proposed clonal expansions dates back to 2009 (Figure S3).

Antimicrobial resistance: phenotype and genotype

All ESBL group isolates had an ESBL phenotype, whereas five isolates had no detectable ESBL genotype. Overall, $bla_{CTX-M-15}$ was the most prevalent genotype ($n = 146$; 72.6%), and was more dominant in high prevalence CGs (93.5%) compared with other CGs (55%, $P < 0.001$). The remaining ESBL genotypes comprised bla_{TEM-3} ($n = 2$; 2.0%) and variants of bla_{CTX-M} ($n = 22$; 10.9%) and bla_{SHV} ($n = 22$; 10.9%) (Figure 4 and Table S3). Reduced susceptibility to meropenem was found in two ESBL isolates (CG258) and one non-ESBL isolate (CG515), all without carbapenemase genes.

Prevalent AMR determinants are shown in Figure 4 and Table S3. Note, $armA$ ($n = 1$) and $rmtG$ ($n = 1$) encoding 16S-rRNA methylases were rare, while $aac(6')-Ib-cr$, which may reduce susceptibility to both aminoglycosides and quinolones was found in 48.3% ($n = 97$) of the ESBL isolates. Interestingly, $aac(6')-Ib-cr$ was frequently found along with other determinants, in particular in 82.5% ($n = 66$) and 84.0% ($n = 68$) of isolates carrying $aac(3)-Ia$ and $qnrB1$, respectively. Colistin resistance determinants were rare. Three ESBL isolates carried $mcr-9.1$ ($n = 2$) or a truncated chromosomal $mgrB$ gene ($n = 1$) of these only the isolate with truncated $mgrB$ showed an elevated MIC of 16 mg/L for colistin.

Phenotypic MDR was frequent in the ESBL group, (70.1%, $n = 141$) compared with the non-ESBL group (0.3%, $n = 2$), ($P < 0.001$). Notably, 83.0% ($n = 117$) of MDR ESBL isolates were carrying $bla_{CTX-M-15}$. Only 11.2% ($n = 18$) of ESBL isolates
were susceptible to all three of gentamicin, ciprofloxacin and trimethoprim/sulfamethoxazole.

Diversity in capsule loci and virulence determinants

Capsule loci (KLs) were identified in 73.6% (n = 148, 38 KLs) of the ESBL isolates and 54.3% (n = 362, 87 KLs) of the non-ESBL isolates. KL102 (13.4%, n = 27) was the most prevalent KL among the ESBL isolates, mainly associated with CG307 (n = 25). The HV-associated KL1 and KL2 were rare, being detected in 5.5% of ESBL (KL2, n = 11) and 3.7% of non-ESBL (KL1, n = 11; KL2, n = 14) isolates, respectively (Table S4).

Eighteen isolates (2.1%), all *K. pneumoniae sensu stricto*, met the HV definition, of which 7 of 15 non-ESBL HV isolates belonged to CG23 (Table S5). However, hypervirulence was found in three ESBL isolates. Long-read sequencing of one CG133 (ST420) (Genbank accession CP073783-CP073787) ESBL isolate showed *blaCTX-M-15* to be situated on an IncFII plasmid without any of the virulence loci, while the remaining two ST15 isolates (Genbank accession CP034045-CP034052 and CP034053-CP034057) have previously been reported by Lam et al. to carry virulence genes and *blaCTX-M-15* situated on the same plasmid.

The distribution of virulence determinants is shown in Figure 4, Table S3 and Table S5. Yersiniabactin was the most prevalent acquired siderophore in *K. pneumoniae sensu stricto* isolates, and more dominant in ESBL isolates (37.8%, n = 75) compared with non-ESBL isolates (17.3%, n = 80) (P < 0.001). Notably, among *K. pneumoniae sensu stricto* non-ESBL isolates, there was higher prevalence of yersiniabactin in CGs that were also found in the ESBL group compared with other CGs (29.4% and 11.0% respectively, P < 0.0009). Only 5/163 (3.1%) non-ESBL *K. variicola* spp. *variicola* had yersiniabactin. While no ESBL isolates had the genotoxin colibactin, it was present in 11 non-ESBL isolates (CG23, n = 7; CG133, n = 2; CG417; CG643).

Plasmid replicon patterns in ESBL and non-ESBL KpSC populations

Fifteen plasmid replicon families were identified in the ESBL group. IncFIB (87.9%, n = 176) and IncFII (82.8%, n = 164) were the most common. In the non-ESBL group, fourteen plasmid replicon families were identified dominated by IncFIB (72.0%, n = 480), IncFII (48.7%, n = 325), IncFIA (15.0%, n = 100), and IncR (14.5%, n = 97). Twelve plasmid replicon families were found in both groups (Table S6).

Interestingly, IncFIB and IncFII were more abundant in *K. pneumoniae sensu stricto* in the ESBL group compared with the non-ESBL group (P < 0.001 and P < 0.001, respectively). Additionally, in the non-ESBL group IncFIB and IncFII were significantly more common in *K. pneumoniae sensu stricto* compared with the other species (P < 0.001 and P < 0.03, respectively, Table 2).

Discussion

We have used the nationwide Norwegian AMR surveillance framework to perform a population structure analysis of all ESBL-producing KpSC blood and urine isolates as well as a representative collection of non-EBSL blood isolates from
2001–15 for comparison. The combined use of WGS and national registry data allowed the analysis of temporal and geographical trends in the species distribution, phylogeny, AMR and virulence determinant content in KpSC clinical isolates during a period when ESBL-producing Enterobacterales gained a foothold in Norway.

Firstly, we noted a significant difference in species distribution between the ESBL and non-ESBL group. While the ESBL group was essentially dominated by *K. pneumoniae sensu stricto*, *K. variicola ssp. variicola* accounted for 24.5% of the non-ESBL group. This is in line with findings in ESBL-producing or MDR KpSC strain collections from the USA and the British Isles, dominated by *K. pneumoniae sensu stricto*. Two studies (Sweden 2007–09, single centre and Japan 2014–17, two centre) of consecutive blood KpSC isolates, both with low prevalence of ESBL, showed similar species distributions compared with our results.

As gastrointestinal colonization is considered the primary source of the majority of KpSC bloodstream infections, we expect that the observed proportion of *K. variicola ssp. variicola* among blood isolates reflects the ratio of gut colonization in the patient population. This is supported by a recent Norwegian study where 16.3% of 2975 healthy adults had KpSC in faecal screening samples, of which 28% were *K. variicola ssp. variicola*. While *K. pneumoniae sensu stricto* is the predominant KpSC species reported in other gut carriage studies, carriage rates in the range of 10%–20% of *K. variicola* have been shown for intensive care patients and pregnant women in low-income countries. As a frequent gut resident, one could expect *K. variicola ssp. variicola* to acquire ESBL-encoding plasmids and genes in vivo. To our
knowledge there are no experimental studies supporting any mechanisms explaining the low abundance of ESBL in K. variicola spp. variicola compared with K. pneumoniae sensu stricto.

ESBL rates increased in clinical KpSC isolates during the study period, from 0% in 2001 to 3.1% in 2015. Our temporal data show an increasing predominance of blaCTX-M-15 accompanied by an increasing co-resistance to other clinical important antibiotics. An overall increase in ESBL and MDR rates in clinical isolates of KpSC was observed in other European countries in the same period.

AMR determinants, as well as phenotypic resistance against gentamicin, ciprofloxacin and trimethoprim-sulfamethoxazole, were rare among non-ESBL isolates in our study. This observation strongly suggests that the overall increase in Norwegian MDR KpSC is driven by the expansion of ESBL-producing K. pneumoniae sensu stricto, in particular blaCTX-M-15 carrying CGs, such as CG15 and CG307.

Our KpSC strain collection is characterized by a large clonal diversity, both in the ESBL and non-ESBL groups, throughout the study period. The most striking shift in the temporal data, in addition to increasing ESBL rates, is the introduction and subsequent spread of CG307 since 2012. The CG307 phylogenetic analyses based on our dataset reveal nationwide expansion of this clone.

Table 2. Distribution of prevalent replicon types in Klebsiella pneumoniae sensu stricto and K. variicola ssp. variicola

Replicon type	(A) K. pneumoniae sensu stricto (n = 198)	(B) K. pneumoniae sensu stricto (n = 461)	(C) K. variicola ssp. variicola (n = 163)	P valuea
Col	63.1% (125)	63.3% (292)	47.9% (78)	NS
IncFIA	6.1% (12)	14.3% (66)	17.8% (29)	0.004
IncFIB	87.9% (174)	79.4% (366)	58.3% (95)	0.001
IncFII	82.8% (164)	54.2% (250)	40.5% (66)	0.001
IncR	18.2% (36)	14.1% (65)	12.3% (20)	NS

aFisher exact test with Benjamini & Hochberg correction for multiple testing. NS, not significant.
which seems to be closely related to international isolates as previously shown by Wyres et al.\(^6\) Notably, we have not observed non-ESBL CG307. In contrast, clinical isolates of CG15, a frequent carrier of ESBLs, were also present without ESBLs.

The observed clonal diversity within the ESBL group and the increasing abundance of CG307 and CG15, is in line with results reported by Moradigaravand et al.\(^4\) in the British isles (2001–11) and Long et al.\(^42\) in the USA (2011–15). In contrast to their findings, CG258 was less frequently detected in our study. CG307 is still playing an important role in the dissemination of ESBL KpSC in Norway, as confirmed by WGS of blood culture ESBL isolates reported to NORM in 2019, where CG307 (29.2%) remains the dominant CG.\(^18\) While the prevalence of carbapenemase-producing KpSC in Norway is still low,\(^18\) the establishment of ESBL CG307 is a cause for concern, as this clone has proved to be a well-prepared host for carbapenemase genes in other settings.\(^7\)

Our results suggest that HV KpSC, including CG23 and CG86, are rare in clinical isolates in Norway. This is also in line with the recent population structure analysis of Norwegian KpSC faecal carrier isolates.\(^5\)\(^7\) Yersinibactin, usually transferred by integrative conjugative elements (ICEs),\(^69\) is the most prevalent virulence-associated gene, mainly found in K. pneumoniae sensu stricto isolates. Notably, we observed a significantly higher prevalence of yersinibactin in ESBL (37.8%) compared with non-ESBL (17.3%) K. pneumoniae sensu stricto isolates, in contrast to previously published results.\(^19\) Other virulence determinants were uncommon and played no dominant role in the examined KpSC population. Convergence of ESBL and hypervirulence were found in only three isolates.

Our data demonstrate that the replicon families IncFIB and IncFII, frequently associated with ESBL genes,\(^50\) were common both in ESBL-carrying (87.9% and 82.8%) and non-ESBL-carrying (79.7% and 54.2%) K. pneumoniae sensu stricto isolates. These replicons were also present in K. variicola ssp. variicola (58.3% and 40.5%), but were significantly less prevalent compared with non-ESBL K. pneumoniae sensu stricto.

Importantly, our data support the notion that there seems to be a higher propensity for certain K. pneumoniae sensu stricto clonal groups to acquire mobile genetic elements, represented by ESBL-encoding plasmids and yersinibactin-linked ICEs, compared with K. variicola ssp. variicola. This is concordant with Wyres et al.\(^13\) showing some KpSC clones to be generally better at acquiring genetic material via horizontal gene transfer than others. These observations need further investigation, including experimental studies on the underlying mechanisms.

The strengths of this study lie in the use of the comprehensive unselected national surveillance data collected over a 15 year period, encompassing the introduction of ESBLs, and the use of WGS to gain detailed insight into genomic epidemiological features. As we opted for temporal and geographical diversity, we have not done a randomized selection of non-ESBL isolates, which may have introduced a bias in estimating the prevalence of significant CGs or genetic determinants in recent years. The lack of urine ESBL isolates in the periods 2004–08 and 2010–11 may also conceal the early appearance of significant CGs.

In conclusion, the increase of ESBLs and clinically relevant co-resistance in K. pneumoniae sensu stricto in Norway during the study period is closely linked to blαCTX-M-15-carrying CGs, where CG307 and CG15 have played key roles. Yersinibactin and ESBL-encoding mobile genetic elements are uncommon in clinical isolates of K. variicola ssp. variicola compared with K. pneumoniae sensu stricto. Susceptible K. variicola ssp. variicola, however, is a significant pathogen causing one out of every four cases of KpSC bacteraemia in Norway.

Acknowledgements

We thank The Norwegian Surveillance Program on Resistant Microbes (NORM) for making data available for this study and the participants in The Norwegian Study Group on Klebsiella pneumoniae for providing isolates.

Members of the Norwegian Study Group on Klebsiella pneumoniae

Støle Tofeland, Paul Christoffer Lindemann, Nina Handal, Åshild Marvik Rødland, Aleksandra Jakovlev, Sandra Åshheim, Karianne Wiger Gammelsrud, Rolf Arne Sandnes, Einar Tollaksen Weme, Angela Kümmel, Einar Nilsen, Belinda Langnes Lindstad, Anne C. Hollekim, Reidar Hjetland, Anne R. Oseid, Liv Jorunn Hafne.

Funding

This work was supported by the Western Norway Regional Health Authority (fellowship numbers 912037 to I.H.L. and 912119 to A.F., and grant number 912050 to I.H.L.).

Transparency declarations

None to declare.

Author contributions

Conceived the study: A.F., Ø.S., A.S., G.S.S., I.H.L.; whole genome sequencing: R.B. and E.B.; data analysis: A.F. and M.A.K.H.; manuscript: A.F. and M.A.K.H. All authors contributed to data interpretation, read and commented on the manuscript. Study group members provided isolates and commented on the final manuscript.

Supplementary data

Figures S1 to S3 and Tables S1 to S6 are available as Supplementary data at JAC Online.

References

1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11: 589–603.
2. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41: 252–75.
3. Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18: 318–27.
4. Maji-Bakar AJ, Srinivasan A, Corey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert consensus report. Lancet Infect Dis 2018; 18: 318–27.
proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268–81.
5 Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbial 2016; 24: 944–56.
6 Wyres KL, Hawkey J, Hetland MAK et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother 2019; 74: 577–81.
7 Villa L, Feudi C, Fortini D et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 2017; 3: e000110.
8 David S, Cohen V, Reuter S et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci USA 2020; 117: 25043–54.
9 Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013; 13: 1057–98.
10 Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 2019; 32: e000119–11.
11 Lam MMC, Wyres KL, Duchêne S et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9: 2703.
12 Biakou-Davenet S, Criscuolo A, Ailoud F et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2020; 20: 1812–20.
13 Wyres KL, Wick RR, Judd LM et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet 2019; 15: e1008114.
14 Rodrigues C, Passet V, Rakotondrasoa A et al. Description of Klebsiella africanaensis sp. nov., Klebsiella varicola subsp. tropicalensis subsp. nov. and Klebsiella varicola subsp. varicola subsp. nov. Res Microbiol 2019; 170: 165–70.
15 Rodrigues C, Passet V, Rakotondrasoa A et al. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and Related Phylogroups by MALDI-TOF Mass Spectrometry. Front Microbiol 2018; 9: 3000.
16 Maatallah M, Vading M, Kabir MH et al. Klebsiella varicola is a frequent cause of bloodstream infection in the stocking area, and associated with higher mortality compared to K. pneumoniae. PLoS One 2014; 9: e1113539.
17 EUCAST. Clinical breakpoints – breakpoints and guidance. https://www.eucast.org/clinical_breakpoints/.
18 NORM/NORM-VET 2019. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. 2020. https://www.vetinst.no.
19 Tofteland S, Haldorsen B, Dahl KH et al. Effects of phenotype and genotype on methods for detection of extended-spectrum β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol 2007; 45: 209–15.
20 Krueger F. TrimGalore. https://github.com/FelixKrueger/TrimGalore.
21 Wick RR, Judd LM, Gorrie C et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595.
22 Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455–77.
23 Walker BJ, Abeel T, Shea T et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9: e112963.
24 Lam MMC, Wick RR, Watts SC et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12: 4188.
25 Alcock BP, Raphenya AR, Lau TYT et al. CARD 2020: antibiotic resistance surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48: D517–25.
26 Wyres KL, Wick RR, Gorrie C et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2: e000102.
27 Inouye M, Conway TC, Zobel J et al. Short read sequence typing (SRST): multi-locus sequence types from short reads. BMC Genomics 2012; 13: 338.
28 Carattoli A, Zankari E, García-Fernández A et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895–903.
29 Holt K, RedDog. https://github.com/katholt/redog.
30 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357–9.
31 Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–9.
32 Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5: e9490.
33 Valente-Cabral J, Silva MM, Cerdeira L et al. Detection and Whole-Genome Analysis of a High-Risk Clone of Klebsiella pneumoniae ST340/CG258 Producing CTX-M-15 in a Companion Animal. Microb Drug Resist 2020; 26: 611–5.
34 Guppy. https://community.nanoporetech.com.
35 Wick RR. Filtlong. https://github.com/rrwick/Filtlong.
36 Tatusova T, DiCuccio M, Badretdin A et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44: 6614–24.
37 Croucher NJ, Page AJ, Connor TR et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43: e15.
38 Starnakakis A. RAkHL version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312–3.
39 Huynh BT, Passet V, Rakotondrasoa A et al. Klebsiella pneumoniae carriage in low-income countries: antimicrobial resistance, genomic diversity and risk factors. Gut Microbes 2020; 11: 1287–99.
40 R Foundation for Statistical Computing. R: A language and environment for statistical computing. 2020. https://www.r-project.org/
41 Lam MMC, Wyres KL, Wick RR et al. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J Antimicrob Chemother 2019; 74: 1218–22.
42 Long SV, Olsen RJ, Edgar TN et al. Population genomic analysis of 1,777 extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of Clonal Group 307. MBio 2017; 8: e00489-17.
43 Maragkaravadan D, Martin V, Peacock SJ et al. Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. MBio 2017; 8: e01976-16.
44 Imai K, Ishibashi N, Kodana M et al. Clinical characteristics in blood stream infections caused by Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae: a comparative study. Japan, 2014–2017. BMC Infect Dis 2019; 19: 946.
45 Gorrie CL, Mireta M, Wick RR et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017; 65: 208–15.
46 Martin RM, Cao J, Brisse S et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere 2016; 1:e00261-16.
47 Raffelsberger N, Hetland MAK, Svendsen K et al. Gastrointestinal carriage of Klebsiella pneumoniae in a general adult population: a cross-sectional study of risk factors and bacterial genomic diversity. Gut Microbes 2021; 13: 1939599.
48 ECDC. Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2017. https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2015.
49 Lam MMC, Wick RR, Wyres KL et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4: e000196.
50 Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013; 303: 298–304.