Male Age and *Wolbachia* Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary

J. Dylan Shropshire,* Emily Hamant,* Brandon S. Cooper*

*Division of Biological Sciences, University of Montana, Missoula, Montana, USA

ABSTRACT Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic *Wolbachia* bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by *Wolbachia*-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. *Wolbachia*-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives *Wolbachia* to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on *Wolbachia* prevalence. Here, we investigate if *Wolbachia* densities and/or CI gene (*cif*) expression covary with CI-strength variation and explore covariates of age-dependent *Wolbachia*-density variation in two classic CI systems. *wRi* CI strength decreases slowly with *Drosophila simulans* male age (6%/day), but *wMel* CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of *Drosophila melanogaster* adult emergence. *Wolbachia* densities and *cif* expression in testes decrease as *wRi*-infected males age, but both surprisingly increase as *wMel*-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts *wMel* density), or host immune expression covary with age-dependent *wMel* densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, *Wolbachia* densities, *cif* expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to *Wolbachia* prevalence.

IMPORTANCE *Wolbachia* bacteria are the most common animal-associated endosymbionts due in large part to their manipulation of host reproduction. Many *Wolbachia* cause cytoplasmic incompatibility (CI) that kills uninfected host eggs. Infected eggs are protected from CI, favoring *Wolbachia* spread in natural systems and in transinfected mosquito populations where vector-control groups use strong CI to maintain pathogen-blocking *Wolbachia* at high frequencies for biocontrol of arboviruses. CI strength varies considerably in nature and declines as males age for unknown reasons. Here, we determine that CI strength weakens at different rates with age in two model symbioses. *Wolbachia* density and CI gene expression covary with *wRi*-induced CI strength in *Drosophila simulans*, but neither explain rapidly declining *wMel*-induced CI in aging *D. melanogaster* males. Patterns of host immune gene expression suggest a candidate mechanism behind age-dependent *wMel* densities. These findings inform how age-dependent CI may contribute to *Wolbachia* prevalence in natural systems and potentially in transinfected systems.

KEYWORDS aging, *Drosophila*, immunity, symbiosis, *wMel*, *wRi*
viability when aposymbiotic females mate with symbiont-bearing males (Fig. 1A) (2). Females harboring a closely related symbiont are compatible with CI-causing symbiotic males of the same strain, providing symbiont-bearing females a relative advantage that encourages symbiont spread to high frequencies in host populations (3–8). Divergent Cardinium (9), Rickettsiella (10), Mesenet (11), and Wolbachia (12) endosymbionts cause CI. Wolbachia are the most common, infecting 40 to 65% of arthropod species (13, 14). Wolbachia cause CI in at least 10 arthropod orders (2), and pervasive CI directly contributes to Wolbachia spread and its status as one of the most common endosymbionts in nature.

Within host populations, Wolbachia frequencies are governed by their effects on host fitness (15–20), maternal transmission efficiency (21–23), and CI strength (percent embryonic death) (3, 5). CI strength varies from very weak to very strong and produces relatively low and high infection frequencies, respectively. For example, wYak in Drosophila yakuba causes weak CI (~15%) and tends to occur at intermediate and often variable frequencies (~40 to 88%) in West Africa (22, 24). Conversely, wRi in D. simulans causes strong CI (~90%) and occurs at high and stable frequencies (e.g., ~93% globally) (4, 25–27). In D. melanogaster, wMel CI strength is relatively weak (28–30), contributing to considerably differing infection frequencies on multiple continents (31–35). In contrast, wMel usually causes complete CI (no eggs hatch) in transinfected Aedes aegypti mosquitoes (36–39). Vector-control groups use strong CI induced by wMel and other variants (e.g., wAlbB and wPip) to either suppress mosquito populations through the release of infected males (40–45) or to drive pathogen-blocking Wolbachia to high and stable frequencies to inhibit pathogen spread (36, 46–49).

Despite CI’s importance for explaining Wolbachia prevalence in natural systems and reducing human disease transmission in transinfected mosquito systems, the mechanistic basis of CI-strength variation remains unresolved. Two hypotheses are plausible. First, the bacterial-density model predicts that CI is strong when bacterial density is high (Fig. 1B) (50). Indeed, Wolbachia densities positively covary with CI strength across Drosophila-Wolbachia associations (51, 52) and variable CI within strains (37, 38, 53–59). Second, the CI-gene-expression hypothesis predicts that higher CI-gene expression contributes to stronger CI (Fig. 1B) (60). In Drosophila, two genes (cifA and cifB) associated with Wolbachia’s bacteriophage WO contribute to CI when expressed in testes (60–64), and one gene (cifA) rescues CI when expressed in ovaries (63–65). CI strength covaries with transgenic cif expression in D. melanogaster (60, 64), and natural cif expression covaries with CI strength in Habrobracon ectoparasitoid wasps (66). Bacterial density may explain CI strength via cif expression but may not perfectly align with CI strength since Wolbachia variably express cif across conditions that impact CI strength (60). Thus, the bacterial-density and cif-expression hypotheses are not mutually exclusive. It remains unknown if cif expression is responsible for CI-strength variation and if it covaries with Wolbachia density in natural Drosophila-Wolbachia associations.

If symbiont density is a crucial factor governing CI strength, what governs the change in density? There are several plausible drivers of Wolbachia-density variation. First, phage WO is a temperate phage capable of cell lysis in some Wolbachia strains.
Lytic phages form particles that burst through the bacterial cell membrane, killing the bacterial host. The phage density model proposes that as phage densities increase, *Wolbachia* densities decrease (Fig. 1B) (53). Temperature-induced phage lysis covaries with lower *Wolbachia* densities and CI strength in some parasitoid wasps (53, 66), though it is unknown if phage lysis influences *Wolbachia* densities in any other systems. Second, wMel *Wolbachia* have a unique ampliconic gene region composed of eight genes termed “Octomom” (71-75). Octomom copy number varies among wMelCS and wMelPop *Wolbachia* between host generations and positively covaries with *Wolbachia* densities on CI have not been investigated. Third, theory predicts that selection favors the evolution of host suppressors (6), as observed for male killing (76-79). Indeed, CI strength varies considerably across host backgrounds (24, 29, 39, 80-82), supporting a role for host genotype in CI-strength variation. The genetic underpinnings and mechanistic consequences of host suppression remain unknown, but two models have been proposed (2). The defensive model suggests that host CI targets diverge to prevent interaction with cif products, and the offensive model suggests that host products directly interfere with *Wolbachia* density or the proper expression of cif products (e.g., through immune regulation) (Fig. 1B). Only a taxon-restricted gene of *Nasonia* wasps and host transcriptional activity in *Drosophila* have been functionally determined to contribute to *Wolbachia*-density variation (83, 84); thus, considerable work is necessary to uncover host determinants of variation in *Wolbachia* density. Since *Wolbachia* densities significantly contribute to several phenotypes (54, 85), investigation of the causes of *Wolbachia*-density variation is sorely needed.

CI strength within *Wolbachia*-host systems covaries with several factors, including temperature (29, 37, 38, 53, 66), male mating rate (86, 87), male development time (88), rearing density (88), nutrition (89), paternal grandmother age (30), and male age (3, 18, 27, 29, 86). Male age does not always influence CI strength (90-92), but wMel-infected *D. melanogaster* (29), wRi-infected *D. simulans* (3, 18, 27), and other *Wolbachia*-infected hosts tend to cause weaker CI as males age (91, 93-95). CI seems to decline more slowly for wRi (3, 18, 27) than for wMel (3, 18, 27, 29), though the precise rates of CI-strength decline have not been estimated. While several factors might contribute to age-dependent CI strength, the mechanistic underpinnings of this phenotype remain unknown.

Here, we investigate rates of CI decline with male age and its mechanistic underpinnings in two classic *Wolbachia* CI systems, wRi and wMel (25, 28, 32). These *Wolbachia* bacteria diverged up to 6 million years ago and have unique cif repertoires (60, 63). We demonstrate that relative to wRi, wMel-induced CI strength declines more than three times faster, disappearing in a matter of days. We provide the first direct test of the cif-expression hypothesis in either system and the highest-resolution investigation of *Wolbachia*-density variation across ages to date. Our results suggest that *Wolbachia* density and cif expression in full-testes extracts cannot explain age-dependent CI-strength relationships across *Wolbachia*-host associations and motivate future work to investigate how host immunity could contribute to age-dependent *Wolbachia* densities. We discuss how these data inform our understanding of the causes of CI-strength variation, *Wolbachia*-density variation, and the consequences for *Wolbachia* prevalence in nature.

RESULTS

How much does CI strength vary with age? CI manifests as embryonic lethality (Fig. 1A). As such, we measured CI strength as the percentage of embryos that hatch from a mating pair’s clutch of offspring; high compatibility corresponds with high hatching. Our experiments used males of different ages to test the impact of male age on CI strength. Here, we defined age as days since eclosion, where males paired with females the day they eclosed were considered 0 days old. For wMel, we measured CI strength daily across the first 3 days of male age (Fig. 2A) and separately every 2 days.

(66-70).
across the first 8 days of male age (Fig. 2B). This design enabled us to determine the rate of CI decline and the ages where males no longer cause significant CI. Crossing uninfected D. melanogaster females and males yielded high levels of compatibility (Fig. 2A; 95% confidence interval of the mean = 74 to 93%). Young 0-day-old wMel-infected males induced strong CI when mated with uninfected females (95% interval = 9 to 27%). wMel-infected females significantly rescued CI caused by infected 0-day-old males (95% interval = 87 to 92%, \(P = 1.74E-12 \)). Crosses using older 1- (95% interval = 31 to 51%), 2- (95% interval = 53 to 73%), and 3-day-old (95% interval = 69 to 83%)
infected males trended toward progressively weaker CI (Fig. 2A). Average wMel CI strength decreased daily by 19.3%—22.8% from 0- to 1-day-old males, 21.8% from 1- to 2-day-old males, and 13.4% from 2- to 3-day-old males. Crosses between uninfected females and 3-day-old males (95% interval = 69 to 83%) did not cause significant CI, with egg hatch similar to the compatible uninfected (95% interval = 74 to 93%; \(P = 0.35 \)) and rescue (95% interval = 87 to 92%; \(P = 0.19 \)) crosses. These data highlight the rapid decline of wMel CI strength with \(D. \) melanogaster male age.

In the experiment that includes older males (Fig. 2B), the uninfected cross also yielded high compatibility (95% interval = 72 to 88%). The 0-day-old infected males caused strong CI when crossed with uninfected females (95% interval = 8 to 15%), and infected females significantly rescued 0-day-old CI (95% interval = 83 to 91%; \(P = 2.51 \times 10^{-12} \)). Compatibility increased as males aged, where 2-day-old (95% interval = 59 to 73%) males caused significant CI and 4- (95% interval = 66 to 83%), 6- (95% interval = 76 to 92%), and 8-day-old (95% interval = 77 to 91%) infected males did not significantly inhibit egg hatch relative to the compatible uninfected cross (\(P = 1 \) in all cases) (Fig. 2B). Average wMel CI strength decreased by approximately 19.3% each day as \(D. \) melanogaster males aged, but this rate of decrease slowed each day, such that CI was no longer statistically detectable once males were 3 days old.

Next, we assessed age-dependent CI in \(wRi \)-infected \(D. \) simulans (Fig. 2C). As expected, uninfected \(D. \) simulans females and males were compatible (95% interval = 74 to 94%). Young 0-day-old \(wRi \)-infected males caused strong CI when mated with uninfected females (95% interval = 0 to 1%), and infected females significantly rescued 0-day-old CI (95% interval = 59 to 84%; \(P = 1.83 \times 10^{-10} \)). Older 4- (95% interval = 21 to 39%), 8- (95% interval = 54 to 64%), and 12-day-old (95% interval = 64 to 82%) infected males induced progressively weaker CI as males aged. Average \(wRi \) CI strength decreased by about 6.0% per day—29.1% (7.3%/day) from 0-day-old to 4-day-old males, 29.0% (7.3%/day) from 4-day-old to 8-day-old males, and 14.0% (3.5%/day) from 8-day-old to 12-day-old males. These data support a strong effect of \(wRi \) CI strength on male age, but the daily decrease is more than three times slower than what we observed for wMel CI strength decline as \(D. \) melanogaster males age.

What causes CI strength to vary with age? The bacterial-density and CI-gene-expression hypotheses are both proposed to explain CI-strength variation. These hypotheses predict that \(Wolbachia \) density and/or \(cif \) expression positively covary with CI strength. To elucidate the causes of declining CI strength with male age, we tested both hypotheses in the context of rapidly declining wMel CI strength and more slowly declining \(wRi \) CI strength.

Bacterial density differentially covaries with age between species. We tested the bacterial density hypothesis by dissecting testes from siblings of flies used in our CI assays described above, extracting DNA, and measuring the relative abundance of a single-copy \(Wolbachia \) gene (ftsZ) relative to a single-copy ultraconserved element (UCE) (96) of Drosophila via quantitative PCR (qPCR). We selected a random infected sample from the 0-day-old age group as the reference for all fold change analyses within each experiment. We report all qPCR data as fold change relative to this control. Surprisingly, 0-day-old \(D. \) melanogaster testes had low wMel density (Fig. 3A; 95% interval = 0.53- to 1.01-fold change), and older 2- (95% interval = 0.92 to 1.11), 4- (95% interval = 0.96 to 1.72), 6- (95% interval = 1.17 to 1.49), and 8-day-old (95% interval = 1.19 to 1.51) infected testes had progressively higher wMel densities (Fig. 3A). wMel densities were significantly different among age groups according to a Kruskal-Wallis test (Fig. 3A; \(P = 1.1E-03 \)). To test for a correlation between wMel densities and CI strength, we performed Pearson (\(r_p \)) and Spearman (\(r_s \)) correlations on the relationship between wMel fold change against median hatch rates from the associated age groups. wMel densities were significantly positively correlated with increasing compatibility (Table S3; \(r_p = 0.75, P = 5.5E-06 \); \(r_s = 0.77, P = 2.3E-06 \)). wMel densities also covaried with age (Fig. S1A; \(P = 0.02 \)) and correlated with increasing compatibility (Table S3; \(r_p = 0.64, P = 7.7E-04 \); \(r_s = 0.64, P = 7.4E-04 \)) in the younger 0-, 1-, 2-, and 3-
day-old *D. melanogaster* age group. This result was contrary to our prediction that higher *wMel* densities would be correlated with stronger CI and lower compatibility.

Next, we tested the bacterial density model in *wRi*-infected *D. simulans*. In contrast to *wMel*, *wRi*-infected 0-day-old (*95% interval = 0.82 to 1.36*) *D. simulans* testes had the highest *wRi* densities, and they consistently decreased in 4- (*95% interval = 0.41 to 0.83*), 8- (*95% interval = 0.41 to 0.83*), and 12-day-old (*95% interval = 0.24 to 0.40*) testes (Fig. 3B). *wRi* densities were significantly different among *D. simulans* age groups (*P = 3.9E-04*) and were significantly negatively correlated with increasing compatibility (*Table S3; r_p = 0.84, P = 2.4E-07; r_s = 0.89, P = 6.9E-09*).

In conclusion, these data fail to support the bacterial density hypothesis for age-dependent CI-strength variation in *wMel*-infected *D. melanogaster* but support the hypothesis in *wRi*-infected *D. simulans*. Thus, *Wolbachia* densities from full-testis extracts cannot explain age-dependent CI across *Wolbachia*-host associations.

cif expression varies with age, but the direction differs between strains. cif expression is hypothesized to control CI-strength variation within *Wolbachia*-host associations (2, 60). cif loci are classified into five different phylogenetic clades called “types” (60, 97–99). *wMel* has a single pair of type I cif’s, and *wRi* has two identical pairs closely related to the *wMel* copy plus a divergent type 2 pair (60). We investigated three questions regarding cif expression. First, does cif expression change relative to the host as males age? We expected that cif expression per host cell would be the key determinant of CI-strength variation. To test this, we used reverse transcriptase quantitative PCR (RT-qPCR) to measure the transcript abundance of cifA and cifB and compared their expression to \(\beta \) spectrin (\(\beta \)spec), a *Drosophila* membrane protein with invariant expression with age (see Materials and Methods for details). Second, does cif expression decrease relative to *Wolbachia* as males age? Since *wMel* densities increase with male age, *wMel* would need to express cif_{wMel[T1]} at lower levels in older males to allow cif_{wMel[T1]} to decrease relative to the host. Finally, does cifA expression change relative to cifB as males age? Evidence of differential localization of cif loci that covaries with age might indicate more complex determinants of age-dependent CI based on the relative abundance of these products.

We started by investigating these questions in *wMel*-infected *D. melanogaster*. Contrary to our first prediction, the relative expression of cifA_{wMel[T1]} to *D. melanogaster* \(\beta \)spec was lowest in 0-day-old infected males (*95% = 1.1 to 1.6*) and consistently increased in 2- (*95% interval = 1.5 to 3.2*), 4- (*95% interval = 1.9 to 2.3*), 6- (*95% interval = 2.1 to 2.8*), and 8-day-old (*95% interval = 0.9 to 3.8*) testes (Fig. 4A). The relative
expression of cifAwMel[T1] to bspec significantly varied across male age (P = 8.4E-03) and was significantly positively correlated with increasing compatibility (Table S3; r_p = 0.8, P = 4.0E-07; r_s = 0.42, P = 3.7E-02). Relative expression of cifAwRi[T1] to wRi ftsZ did not significantly covary with age (Fig. S2E; P = 0.3) but was significantly correlated with increasing compatibility (Table S3; r_p = -0.42, P = 3.7E-02; r_s = -0.46, P = 2.2E-02). In summary, cifAwMel[T1] expression decreased relative to a Wolbachia housekeeping gene.
with age, consistent with prior reports that wMel expression of cifA*wMel(T1) and cifB*wMel(T1) decrease as males age (60). However, since cif*wMel(T1) expression did not decrease relative to the host with age, we conclude that the decrease in cif*wMel(T1) expression per Wolbachia is insufficient to overcome the increase in cif*wMel(T1) expression caused by increased wMel density in full-testes extracts.

Finally, we tested if the relative expression of cifA*wMel(T1) to cifB*wMel(T1) varied with age. Intriguingly, cifA/B*wMel(T1) relative expression did not significantly covary with age (Fig. 4C;
\(P = 0.09 \)) but was positively correlated with decreasing CI strength (Table S3;
\(r_p = -0.61, P = 1.3E-03; r_s = -0.46, P = 0.021 \)). In summary, these data suggest that cif*wMel(T1) expression per wMel decreases as males age, that cifA*wMel(T1) expression decreases marginally faster than cifB*wMel(T1), and that overall cif*wMel(T1) expression increases relative to the host as males age and CI strength decreases. This is the first report that CI strength is decoupled from Wolbachia densities and cif expression in testes.

Next, we investigated the cif-expression hypotheses in wRi. We predicted that cif*wRi(T1) and/or cif*wRi(T2) expression would decrease relative to host expression. Since wRi density decreased with age, cif expression per wRi would not need to change to accomplish this shift in relative expression. As predicted, relative expression of cifA*wRi(T1) to D. simulans \(\beta_{sp} \) was highest in infected 0-day-old (95% interval = 0.7 to 1.7) testes and declined in 4- (95% interval = 0.1 to 0.4), 8- (95% interval = 0.3 to 0.7), and 12-day-old (95% interval = 0.2 to 0.3) testes (Fig. 4D). Relative expression of cifA*wRi(T1) to D. simulans \(\beta_{sp} \) significantly covaried with age (\(P = 1.2E-03 \)) and was significantly correlated with decreasing CI strength (Table S3;
\(r_p = -0.76; r_s = -0.88 \)). Similarly, relative expression of cifB*wRi(T1) (Fig. S3A;
\(P = 2.3E-03, \) cifA*wRi(T2) (Fig. S3C;
\(P = 1.9E-03, \)) and cifB*wRi(T2) (Fig. S3E;
\(P = 1.2E-03 \)) to D. simulans \(\beta_{sp} \) also decreased with age, and each was significantly correlated with decreasing CI strength (Table S3). These results support the cif-expression hypothesis for age-dependent CI in wRi.

As with wMel-infected D. melanogaster testes, relative expression of cifA*wRi(T2) to wRi ftSZ significantly covaried with male age (Fig. 4E;
\(P = 4.1E-02 \)) and was significantly correlated with decreasing CI strength (Table S3;
\(r_p = -0.47, P = 0.032; r_s = -0.47, P = 0.033 \)). However, 0- (95% interval = 0.9 to 1.2), 4- (95% interval = 0.9 to 1.2), and 8-day-old (95% interval = 0.8 to 1.2) testes had similar expression patterns, suggesting that expression in 12-day-old (95% interval = 0.5 to 0.9) testes drove this significant difference, though Dunn’s test was unable to identify significantly different pairs (Fig. 4E). Conversely, cifB*wRi(T1) (Fig. S3B;
\(P = 0.6, \) cifA*wRi(T2) (Fig. S3D;
\(P = 0.2, \)) and cifB*wRi(T2) (Fig. S3F;
\(P = 0.2 \)) expression relative to wRi ftSZ did not vary with age or decreasing CI strength (Table S3).

Finally, as with wMel, we investigated the relationship between cifA and cifB expression in wRi across age and found similar results, where cifA*wRi(T1) expression relative to cifB*wRi(T1) expression did not significantly vary with male age (Fig. 4F;
\(P = 0.2 \)) but did significantly correlate with increasing compatibility (Table S3;
\(r_p = -0.44, P = 0.045; r_s = -0.46, P = 0.035 \)). Relative expression of cifA*wRi(T1) to cifA*wRi(T2) expression did not covary with age (Fig. S3G;
\(P = 0.6 \)) or increasing compatibility (Table S3;
\(r_p = 0.01, P = 0.96; r_s = -0.05, P = 0.84 \)). Analysis of raw \(C_q \) values supported decreasing cifA*wRi(T1) (Fig. S3H;
\(P = 1.0E-03, \) cifB*wRi(T1) (Fig. S3I;
\(P = 8.1E-04, \) cifA*wRi(T2) (Fig. S3J;
\(P = 1.8E-03, \)) and cifB*wRi(T2) (Fig. S3K;
\(P = 1.7E-03 \)) expression with male age; D. simulans \(\beta_{sp} \) \(C_q \) did not vary with age (Fig. S3L;
\(P = 0.6, \)) and wRi ftSZ \(C_q \) significantly increased with age (Fig. S3M;
\(P = 8.9E-04 \)). In summary, cif*wRi expression significantly decreased with age in wRi testes, cifA*wRi(T1) expression decreased marginally faster than cifB*wRi(T1) expression, and there was a small decrease in cifA*wRi(T1) expression relative to wRi, but other cif*wRi loci do not follow similar trends.

In conclusion, we found that wMel cif expression did not explain age-dependent CI-strength variation. More specifically, wMel’s expression of cif genes decreased with age (60), relative wMel and wRi cifA-to-cifB expression varied marginally with age, and cif expression dynamics varied considerably across male age and differed between wMel- and wRi-infected hosts.

What causes Wolbachia density to vary with age? We found that Wolbachia densities from full-testes extracts significantly increased with male age in wMel-infected
D. melanogaster and significantly decreased with male age in wRi-infected D. simulans. The causes of age-dependent Wolbachia-density variation have not been explored. We tested three hypotheses. Namely, that phage lytic activity, Octomom copy number, or host immune expression may govern age-dependent Wolbachia densities.

Phage density does not covary with age-dependent Wolbachia density. The phage density hypothesis predicts that Wolbachia density negatively covaries with phage lytic activity (53). Since phage lysis corresponds with increased phage copy number (53, 66), we tested the phage density model by measuring the relative abundance of phage to WolbachiaftsZ using qPCR. wMel and wRi each harbor a unique set of phage haplotypes; wMel has two phages (WOMeIA and WOMeIB), and wRi has four (WORiA to -C, WORiB is duplicated) (100). At least one of wMel’s phages is capable of particle production, but it is unknown if wRi’s phages yield viral particles (70). We monitored WOMeIA and WOMeIB of wMel simultaneously using primers that target homologs present in a single copy in each phage. Conversely, we monitored WORiA, WORiB, and WORiC separately since shared homologs are too diverged to make suitable qPCR primers that match multiple phage haplotypes.

First, we evaluated the phage density model for wMel. We predicted the relative abundance of WOMeIA/B to decrease with D. melanogaster male age since wMel density increases with age. However, there was no change in WOMeIA/B abundance relative to wMelftsZ as males aged (Fig. 5A; P = 0.3), while WOMeIA/B abundance relative to
D. melanogaster UCE increased similar to wMel density (Fig. S4A; \(P = 3.0E-04\)). Relative phage abundance was not significantly correlated with increasing compatibility (Table S3; \(r_p = -0.065, P = 0.75; r_s = 0.17, P = 0.39\)). Similarly, WOMeIA/B significantly varied with age relative to UCE (Fig. S4B; \(P = 0.049\)) but not wMel \(ftsZ\) (Fig. S4C; \(P = 0.15\)) in the 0-, 1-, 2-, and 3-day-old age experiment.

Next, we predicted that WORi phage abundance would increase with decreasing wRi densities across *D. simulans* male age if governed by the phage density model. As with wMel in *D. melanogaster*, relative WORiB to wRi \(ftsZ\) abundance did not significantly covary with male age (Fig. 5B; \(P = 0.053\)) or correlate with increasing compatibility (Table S3; \(r_p = 0.032, P = 0.88; r_s = 0.12, P = 0.58\)). Relative WORiB to *D. simulans* UCE abundance increased with age, similar to wRi density (Fig. S4D; \(P = 4.4E-04\)). Comparably, WORiA (Fig. S4E; \(P = 0.3\)) and WORiC (Fig. S4F; \(P = 0.4\)) abundance relative to wRi did not vary with male age. These data suggest that phage WO is unrelated to age-dependent *Wolbachia*-density variation in wMel and wRi.

Octomom does not vary with age-dependent wMel density. Only very closely related wMel variants encode all eight Octomom genes (e.g., wMel, wMelCS, wMelPop). The relative abundance of Octomom to *Wolbachia* genes positively covaries with wMelCS and wMelPop density (71–75), commonly changing between host generations. A pair of repeat regions flank the Octomom genes and are hypothesized to be involved in Octomom amplification. In wMel, the 3′ repeat region has a transposon insertion that likely prevents Octomom amplification (71). As such, we predicted that Octomom copy number would be invariable with age. We tested if Octomom copy number variation correlated with age-dependent wMel density variation using qPCR. Indeed, the relative abundance of an Octomom gene (WD0509) to wMel \(ftsZ\) did not covary with male age (Fig. 5C; \(P = 0.53\) or correlate with increasing compatibility (Table S3; \(r_p = -0.19, P = 0.36; r_s = 0.1, P = 0.61\)). Similar results were observed in 0-, 1-, 2-, and 3-day-old wMel-infected males (Fig. S1B; Table S3). We conclude that Octomom copy number is unrelated to the age-dependent increase in wMel densities.

Relish expression is positively correlated with age-dependent wMel, but not wRi, densities. Theory predicts that natural selection favors the evolution of host genes that suppress CI (6). Manipulation of *Wolbachia* densities is one mechanism that may drive CI suppression (2). Since the immune system is designed to control bacterial loads, we investigated the role of the host immune system in *Wolbachia*-density variation across male age. The immune deficiency (Imd) pathway is broadly involved in defense against Gram-negative bacteria such as *Wolbachia* (101). Bacteria activate the Imd pathway by interacting with peptidoglycan (PG) recognition proteins, which start a signal cascade that results in the expression of the NF-κB transcription factor Relish (Rel). Relish then activates antimicrobial peptide production. *Wolbachia* lacks the full suite of genes needed to synthesize PG (102–104) but can express the PG precursor lipid II, which is sufficient to activate the Imd pathway (104, 105).

We predicted that *D. melanogaster* Relish expression and wMel density would be correlated if the Imd pathway was involved in wMel density regulation. Indeed, relative expression of Relish to \(\beta\)spec significantly varied among age groups (\(P = 6.1E-4\)). However, relative expression of Relish to \(\beta\)spec was lowest in 0-day-old (95% interval = 0.9 to 1.1) infected testes and consistently increased in 2- (95% interval = 1.1 to 1.8), 4- (95% interval = 1.3 to 1.7), 6- (95% interval = 1.9 to 2.3), and 8-day-old (95% interval = 1.5 to 3.9) testes (Fig. 5D). Relish expression was significantly positively correlated with wMel density within testes samples (Fig. 5E; \(r_p = 0.77, P = 2.5E-06; r_s = 0.87, P = 1.4E-06\)). In summary, wMel density was strongly correlated with increasing Relish expression, directly contrary to our prediction.

Conversely, relative expression of *D. simulans* Relish to \(\beta\)spec did not significantly covary with age (Fig. 5F; \(P = 0.7\)) but remained positively correlated with the relative expression of wRi \(ftsZ\) to \(\beta\)spec within testes samples according to Pearson, but not Spearman, analyses (Fig. 5G; \(r_p = 0.55, P = 0.012; r_s = 0.13, P = 0.59\)). In summary, Relish expression is positively correlated with age-dependent wMel densities in *D. melanogaster*,
but less so in wRi-infected *D. simulans*, supporting a role for the Imd pathway in the regulation of at least wMel density variation. However, more work is necessary to determine if the correlation between age-dependent immune expression and *Wolbachia* density in testes are causatively associated.

DISCUSSION

Within *Wolbachia*-host systems, several factors influence CI strength (29, 30, 37, 38, 53, 66, 86–89), but male age can be particularly impactful (3, 18, 27, 29). Our results determine how fast and investigate why CI strength declines as males age. First, we estimate that CI strength decreases rapidly for wMel-infected *D. melanogaster* (19%/day), becoming statistically insignificant when males reach 3 days old. In contrast, wRi causes intense CI that declines more slowly (6%/day), resulting in statistically significant CI through at least the first 12 days of *D. simulans* male life. Second, *Wolbachia* densities and *cif* expression from full-testes extracts increase in wMel-infected *D. melanogaster* and decrease in wRi-infected *D. simulans* as males age and CI weakens. These results indicate that bacterial density and CI gene expression in full-testes extracts cannot fully account for age-dependent CI strength across host-*Wolbachia* associations. Third, while WO phage activity and Octomom copy number cannot explain *Wolbachia*-density variation, *D. melanogaster* immune expression covaries with wMel densities, suggesting the host immune system may contribute to age-dependent *Wolbachia* density in *D. melanogaster*, but much less so in *D. simulans*. Notably, the transcript-based data (e.g., *cif* and Relish) described here are subject to the caveat that mRNA levels may not correlate perfectly with protein expression or activity. Future proteomics analyses will be needed to confirm that these trends hold at the protein level. We discuss how our discoveries inform the basis of age-dependent CI-strength variation, how multiple mechanistic underpinnings may govern age-dependent *Wolbachia* densities, and how age-dependent CI may contribute to *Wolbachia* frequency variation observed in nature.

Wolbachia density and CI-gene expression in full-testes extracts do not fully explain age-dependent CI-strength variation. Despite support that CI strength is linked to *Wolbachia* density and *cif* expression across and within systems (37, 38, 51–54, 60, 66), our observations add to a growing body of literature suggesting *Wolbachia* densities in adult testes (30, 88) and, for the first time, *cif* expression, are insufficient to explain CI-strength variation broadly. We discuss three hypotheses to explain the disconnect between *Wolbachia* density and *cif* expression in full-testes extracts and CI strength with male age. Note, however, that these results may also be explained by a decoupling of *cif* transcription and protein translation, which will require future proteomics analyses to investigate.

First, the localization and density of *Wolbachia* and *cif* products within specific cells in testes may more accurately predict CI strength. Indeed, the proportion of infected spermatocyte cysts covaries with CI strength in natural and transinfected combinations of CI-inducing *Wolbachia* and *D. melanogaster*, *D. simulans*, *D. yakuba*, *D. teissieri*, and *D. santomea* (51, 52). Intriguingly, two wRi-infected *D. simulans* strains whose *Wolbachia* cause variable CI did not have different *Wolbachia* densities according to qPCR, but the number of infected sperm cysts varied with CI between strains (106). Thus, *Wolbachia* densities in full-testes extracts may not reflect the cyst infection frequency, but it is unknown how generalizable this discrepancy is across or within *Wolbachia*-host associations with variable CI strengths. It seems plausible that while wMel densities increase in the testes as males age, the proportion of infected spermatocytes could decrease. Notably, since wMel infections increase drastically as males age, a considerable shift in localization and density dynamics would be necessary. Microscopy assays will be required to test if *Wolbachia* and *cif* localization explains wMel age-dependent CI-strength variation.

Second, age-dependent CI may be governed by developmental constraints of CI susceptibility. For instance, the paternal grandmother age effect, where *Wolbachia*-infected sons of older virgin females cause stronger CI than sons of younger females, covaries with *Wolbachia* densities in embryos but not in adult males (30). Intriguingly,
temperature-sensitive Cl-strength variation in Cardinium-infected Encarsia wasps is also decoupled from symbiont densities, but Cl strongly correlates with pupal development time (107, 108). Cardinium Cl effectors likely have more time to interact with host targets at critical stages of pupal development when slowed by cool temperatures, despite lower Cardinium density (107, 108). These studies suggest that sperm are modified in spermatogenesis before adult eclosion and that variation in symbiont densities during early development can contribute to Cl-strength variation. If modified sperm are primarily produced during pupal or larval development, younger adult males would have a higher proportion of Cl-modified sperm in their seminal vesicle than older males since older males continue to produce sperm as adults. Intriguingly, remating seems to weaken Cl (86, 87), supporting this hypothesis. However, since Cl strength decreases faster in D. melanogaster than in D. simulans, this hypothesis predicts that adult D. simulans sperm production is slower and/or Cl modification occurs for an extended time. Functional work is necessary to determine if Cl modification is developmentally restricted.

Finally, age-dependent Cl may be related to the availability of Cl-effector targets with male age and not the abundance of cif products. Indeed, the number of genes transcribed by D. melanogaster increases from 7,000 in embryos to over 12,000 in adult males, and nearly a third of genes are not expressed until the 3rd larval instar (109). As adult males age, the number of transcribed genes continues to vary, though less so than during metamorphosis (109). These data support the possibility that host targets of Cl may vary in abundance as males age. However, since transgenic cif expression can significantly enhance Cl strength above wild-type levels (60), there are circumstances when natural cif expression is not high enough to saturate all targets. It is unknown if similar experimental approaches can strengthen age-dependent Cl. More work will be necessary to determine the host genes that modify Cl and how those factors vary in expression relative to Cl strength.

Age-dependent bacterial density covaries with immune expression, not phage or Octomom. We report a strong relationship between male age and Wolbachia densities that differ between systems; densities decrease in wRi-infected D. simulans and increase in wMel-infected D. melanogaster. Reports of age-dependent variation in Wolbachia densities across age in different tissues and sexes are common (51, 71, 90, 91, 110–112), but the basis of this variation remains unexplored. We investigated the cause(s) of this variation for the first time. We predicted that genes that covary with age-dependent densities might be causatively linked, although additional experiments will be necessary to confirm this. First, we tested whether phage or Octomom covary with age-dependent Wolbachia densities. Despite prior reports that phage WO of Nasonia and Habrobracon Wolbachia can regulate temperature-dependent Wolbachia densities (53, 66) and that Octomom copy number correlates with wMelCS and wMelPop densities (72, 73), we found that neither covaries with age-dependent Wolbachia densities in testes.

Next, we asked whether host immune gene expression correlates with age-dependent Wolbachia densities. We report that Relish expression, which activates antimicrobial peptide (AMP) production in the Imd pathway (101), strongly correlates with wMel densities and is highest when wMel densities are high. This result was surprising since we predicted that immune expression would hinder Wolbachia proliferation if it were correlated. Conversely, Relish does not vary with D. simulans male age and is only very weakly correlated with wRi densities. It is plausible that the correlation between Relish expression and wMel density represents a spurious and noncausative association. Additionally, Relish transcription does not necessarily equate to increased Relish activity and AMP production since endoproteolytic cleavage is necessary to activate the Relish protein (113), but future analysis of AMP expression will elucidate this. However, this correlation may represent a causative link between age-dependent wMel densities and immune expression. We propose two nonexclusive hypotheses to explain this relationship.

First, wMel rapidly proliferates as males age, elicit an immune response proportional to their infection density, but evade the effects of immune activation. Wolbachia
synthesize lipid II (102–104), which is sufficient to activate the Imd pathway (104, 105), and increase AMP gene expression when transinfection into novel host backgrounds occurs (114–117), suggesting that Wolbachia can trigger Imd activity. However, Relish and AMP expression do not vary with Wolbachia infection state (118–124) or density (84, 121) in natural Wolbachia-host associations. It has been proposed that Wolbachia evade the host immune system by residing in host-derived membranes or bacterio-cyte-like cells (125, 126). Thus, the correlation between Relish expression and wMel density may indicate that wMel triggers the immune system but evades the immune response, preventing its densities from decreasing. Notably, since this hypothesis assumes that wMel densities increase independently of Imd expression, it does not explain why wMel densities increase with age or why age-dependent wMel and wRi densities differ.

Second, age-dependent Imd expression increases independently of Wolbachia but impacts Wolbachia densities. Aging in D. melanogaster is associated with increased expression of AMPs, Relish, and other immune genes (127–133). Counterintuitively, age also covaries with increased gut microbial loads and Imd activation in D. melanogaster (127–129, 134–136). Why gut bacterial loads increase with D. melanogaster age and immune expression remains unknown. However, age-dependent immune expression may damage the epithelium, lead to dysbiosis through differential effects on gut microbial members, alter gut tissue renewal and differentiation, and/or cause cellular inflammation (101, 137). In other words, the positive correlation between Relish expression and wMel density may be caused by off-target effects of immune expression on the cellular environment. To our knowledge, we report the first case where endosymbiont densities increase with age-dependent immune expression, suggesting that the cause(s) of age-dependent bacterial proliferation may apply to more than gut microbes. Functional assays, such as Relish knockdowns, will be necessary to causatively link male age-dependent Wolbachia densities and immune expression.

Age-dependent CI strength could contribute to Wolbachia frequency variation in nature. We can consider our estimates of age-dependent CI strength in the context of an idealized discrete-generation model of Wolbachia frequency dynamics first proposed by Hoffmann et al. (3). This model incorporates imperfect maternal transmission (μ), Wolbachia effects on host fitness (F), and the proportion of embryos that hatch in a CI cross relative to compatible crosses (H) (3). Across all experiments, CI strength ($s_n = 1 - H$) progressively decreases as males age (Table S2); wMel CI strength decreases quickly (day 0 $s_0 = 0.860$; day 8 $s_8 = −0.007$), and wRi CI strength decreases relatively slowly (day 0 $s_0 = 0.991$; day 8 $s_8 = 0.244$). Small negative values of s_n indicate that the CI cross has a slightly higher egg hatch than the compatible crosses.

wRi occurs globally at high and relatively stable infection frequencies, consistent with generally strong CI (4, 26), while wMel varies in frequency on several continents. In eastern Australia, wMel frequencies range from 90% in the tropical north to 30% in the temperate south (34). While transmission rate variation contributes significantly to clinal wMel frequencies, mathematical modeling suggests clinal differences in CI strength are also likely to contribute (34, 152). For example, CI must be essentially non-existent ($s_n < 0.05$) to explain relatively low wMel frequencies observed in temperate Australia, assuming little imperfect transmission ($\mu = 0.01$ to 0.026) (138). Conversely, with $\mu = 0.026$ and similarly low-to-nonexistent CI ($s_n \leq 0.055$), large and positive wMel effects on host fitness ($F = 1.3$) are required to explain higher wMel frequencies observed in the tropics. Explaining higher tropical frequencies becomes easier with stronger CI ($s_n > 0.05$) or more reliable wMel maternal transmission ($\mu < 0.026$) (34).

So, what is wMel CI strength in nature? Field-collected males from near the middle of the Australian cline to the northern tropics cause very weak ($s_n \sim 0.05$) to no CI (138). These and other data from the middle of the cline (29) led Kriesner et al. (34) to conjecture that the plausible range of s_n in subtropical/tropical Australian populations is $s_n = 0$ to 0.05 but <0.1. In our study, only 6- ($s_6 = −0.006$) and 8-day-old ($s_8 = −0.007$) wMel-infected males exhibited CI weaker than $s_n = 0.1$, suggesting that field-collected males causing little or no CI (138) are older than 4 days. Interactions among
male age, temperature, remating, and other factors likely contribute to weaker CI in younger males (29, 37, 38, 53, 66, 86, 87). Future analyses to disentangle the contributions of male age and other factors to CI-strength variation are sorely needed. These estimates, along with estimates of *Wolbachia* transmission rate variation across genetic and abiotic contexts (22), are ultimately required to better understand *Wolbachia* frequency variation in host populations (7, 22, 24, 34, 139).

Conclusions. Our results highlight that *Wolbachia* densities and cif expression from full-testes extracts are insufficient to explain age-dependent CI strength. While age-dependent CI strength in wRi aligns with the bacterial density and CI gene expression hypotheses without the need to consider other factors, wMel CI strength cannot be explained by either of these hypotheses. We propose that localization, development, and/or host genetic variation contribute to this relationship. Moreover, wMel densities increase, and wRi densities decrease, as their respective hosts age. Neither phage WO nor Octomom explain age-dependent *Wolbachia* density, but variation in these systems covaries with the expression of the immune gene Relish. This represents the first report that the host immune system may contribute to variation in *Wolbachia* density in a natural *Wolbachia*-host association. This work motivates an extensive analysis of *Wolbachia* and cif expression in the context of localization and development and a thorough investigation of the relationship between host genes and *Wolbachia* density and CI phenotypes. Finally, incorporating the age dependency of CI into future modeling efforts may help improve our ability to explain temporally and spatially variable *Wolbachia* infection frequencies, as incorporating temperature effects on wMel-like *Wolbachia* transmission has (22, 24, 140). Ultimately, this will help explain *Wolbachia*’s status as the most prevalent endosymbiont in nature.

MATERIALS AND METHODS

Fly lines. All fly lines used in this study are listed in Table S4. Uninfected flies were derived via tetracycline treatment in prior studies (16, 60). Tetracycline cleared lines were used in experiments over a year after treatment, mitigating the effects of antibiotics on mitochondria (141). We regularly confirmed infection status by using PCR to amplify the *Wolbachia* surface protein (wsp). An arthropod-specific 28S rDNA was amplified in a separate reaction and served as a control for DNA quality and PCR inhibitors (24, 142). The y w D. melanogaster line was confirmed to be wMel infected, as opposed to wMelCS, using 55-WD1310 primers (143). DNA was extracted for infection checks using a squish buffer protocol. Briefly, flies were homogenized in 50 μl squish buffer per fly (100 ml 1 M Tris-HCl, 0.0372 g EDTA, 0.1461 g NaCl, 90 mL H2O, 150 μL proteinase K, incubated at 65°C for 45 min, incubated at 94°C for 4 min, and centrifuged for 2 min, and the supernatant was used immediately for PCR.

Fly care and maintenance. Flies were reared in vials with 10 mL of food made of cornmeal (32.6%), dry corn syrup (32%), malt extract (20.6%), inactive yeast (7.8%), soy flour (4.5%), and agar (2.6%). Fly stocks were maintained at 23°C between experiments. Flies used for virgin collections were reared at 25°C, virgin flies were stored at 25°C, and experiments were performed at 25°C. Flies were always kept on a 12:12 light:dark cycle. Flies were anesthetized using CO2 for virgin collections and dissections. During hatch-rate assays, flies were mouth aspirated between vials.

Hatch-rate assays. CI manifests as embryonic death. We measured CI as the percentage of embryos that failed to hatch into larvae. Flies used in hatch rates were derived from vials where flies were given ~24 h to lay to control for rearing density (88). In the morning, virgin 6- to 8-day-old females were added individually to vials containing a small ice cream spoon filled with fly food. Spoon fly food was prepared as described above, but with blue food coloring added, 0.1 g extra agar per 100 mL of food, and fresh yeast smeared on top. After 4 to 5 h of acclimation, a single virgin male was added to each vial. The age of virgin males varied by experiment and cross. Paternal grandmother age was not controlled, but paternal grandmothers were nonvirgin when setting up vials for fathers. Since *Wolbachia* densities associated with older paternal grandmothers are reduced upon mating (30), we do not expect variation in paternal grandmother *Wolbachia* densities across experiments or conditions. Vials with paired flies were incubated overnight at 25°C. Flies were then aspirated into new vials with a fresh spoon. Vials were incubated for another 24 h before flies were removed via aspirating. Embryos were counted on spoons immediately after flies were removed. After 48 h, the number of remaining unhatched eggs were counted. The percentage of embryos that hatched was then calculated.

Relative abundance assays. Siblings from hatch-rate assays were collected for DNA extractions. Virgin males were anesthetized, and testes were dissected in chilled phosphate-buffered saline (PBS). Five pairs of testes were placed into a single 1.5-mL Eppendorf tube and stored at –80°C until processing. All tissue was collected the day after the hatch-rate setup. Tissue was homogenized using a pestle, and the DNeasy blood and tissue kit (Qiagen) was used to extract and purify DNA.

qPCR was used to measure the relative abundance of host, *Wolbachia*, phage WO, and Octomom DNA. Samples were tested in triplicate using Powerup SYBR green master mix (Applied Biosystems),
which contains a ROX passive reference dye. Primers were designed using Primer3 v2.3.7 in Geneious Prime (144). Host primers target an ultraconserved element (UCE), Mist, identified previously (96). Phage genes were also identified from prior work (100). Primers for wMel’s phages target both WOMelA (WD0288) and WOMelB (WD0634), while those for wRi are unique to a single phage haplotype. WORiA, WORiB, and WORiC were measured with wRi_012460, wRi_005590/wRi_010250, and wRi_006880 primers, respectively. Only wMel has all eight Octomom genes (WD0507 to WD0514) (71). We measured the wMel Octomom copy number using primers targeting WD0509. Primer sequences and PCR conditions are listed in Table S5. The fold difference was calculated as $2^{-\Delta CT}$ for each comparison. A random sample in the youngest age group was selected as the reference.

Gene expression assays. Siblings from hatch-rate assays were collected for RNA extractions. Virgin males were anesthetized, and testes were dissected in chilled RNase-free PBS. Then, 15 pairs of testes were placed into a single 2-ml tube with 200 µL of TRIzol and four 3-mm glass beads. Tissue was kept on ice between dissections. Samples were then homogenized using a TissueLyser II (Qiagen) at 25 Hz for 2 min, centrifuged, and stored at −80°C until processing. All tissue was collected the day after the hatch-rate setup.

Samples were thawed, 200 µL of additional TRIzol was added, and tissue was further homogenized using a TissueLyser II at 25 Hz for 2 min. RNA was extracted using the Direct-Zol RNA miniprep kit (Zymo Research) following the manufacturer’s recommendations, but with an extra wash step. On-column DNase treatment was not performed. Instead, the “rigorous” treatment protocol from the DNA-free kit (Ambion) was used to degrade DNA in RNA samples. Samples were confirmed DNA-free using PCR and gel electrophoresis for an arthropod-specific 28S rDNA (24, 142). The Qubit RNA HS assay kit (Invitrogen) was used to measure the RNA concentration. Samples within an experiment were diluted to the same concentration. RNA was converted to cDNA using SuperScript IV VILO master mix (Applied Biosystems). All samples were tested in triplicate.

Primers for expression included the host reference, Wollochia reference, cif, and host immune genes. Primers to *Drosophila* genes for qRT-PCR were selected from FlyPrimerBank (145). Since *Drosophila* expression patterns change with age (109), a host gene that is invariable with male age was selected to act as a reference gene for relative expression analyses. We selected an invariable gene using the *Drosophila* Gene Expression Tool (DGET) to retrieve modENCODE gene expression data for ribosome and cytoskeletal genes (146). DGET reports expression as reads per kilobase of transcript, per million mapped reads (RPKM), and included data for adult males 1, 5, and 30 days after eclosion. β-spec (1 day = 81 RPKM, 5 day = 80, 30 day = 79) was selected because it is largely invariable across age. Our results confirm invariable expression across male age (Fig. S2E and S3L). D. melanogaster and D. simulans are identical across βspec primer binding sequences. All other primers were designed using Primer3 in Geneious Prime (144) and are listed in Table S5. The fold difference was calculated as $2^{-\Delta CT}$ for each comparison. A random sample in the youngest age group was selected as the reference.

Statistical analyses. All statistics were performed in R (147). Hatch-rate, relative-abundance, and expression assays were analyzed using a Kruskal-Wallis test followed by Dunn’s test with corrections for multiple comparisons. Kruskal-Wallis and Dunn’S P values are reported in Table S1. Correlations between hatch rate and expression or relative abundance measures were performed using Pearson and Spearman correlations in ggpubr (148). Correlation statistics are reported in Table S3. The 95% confidence intervals were calculated using the classic MeanCI function in DescTools (149). The 95% bias-corrected and accelerated (BCa) intervals were calculated using boot.ci in boot (150). Samples with fewer than 10 embryos laid were excluded from hatch-rate analyses. Samples with a C, standard deviation exceeding 0.4 between triplicate measures were excluded from qPCR and qRT-PCR analyses. Figures were created using ggplot2 (151), and figure aesthetics were edited in Affinity Designer v1.8 (Serif Europe, Nottingham, UK).

Data availability. All data are made publicly available in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

DATA SET S1. XLSX file, 0.1 MB.

FIG S1. TIF file, 0.1 MB.

FIG S2. TIF file, 0.4 MB.

FIG S3. TIF file, 0.9 MB.

FIG S4. TIF file, 0.5 MB.

TABLE S1. XLSX file, 0.02 MB.

TABLE S2. XLSX file, 0.01 MB.

TABLE S3. XLSX file, 0.01 MB.

TABLE S4. XLSX file, 0.01 MB.

TABLE S5. XLSX file, 0.01 MB.

ACKNOWLEDGMENTS

We thank Michael Turelli for helpful feedback on our experimental design. We also thank Will Conner for help identifying phage gene targets for qPCR, Mike Hague for
support with BCa estimates of \hat{H}, Kelley Van Vaerenbergh and John Statz for review of earlier versions of the manuscript, and Tim Wheeler for assisting in the laboratory. Seth Bordenstein provided comments on a preprint.

This work was supported by National Institutes of Health R35 GM124701 to B.S.C. and National Science Foundation Postdoctoral Research Fellowship DBI-2010210 to J.D.S. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Institutes of Health or the National Science Foundation.

REFERENCES

1. Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. 2021. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29:879–893. https://doi.org/10.1016/j.chom.2021.03.006.

2. Shropshire JD, Leigh B, Bordenstein SR. 2020. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? Elife 9: e61989. https://doi.org/10.7554/eLife.61989.

3. Hoffmann A, Turelli M, Harshman L. 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933–948. https://doi.org/10.1093/genetics/126.4.933.

4. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9:e1003607. https://doi.org/10.1371/journal.ppat.1003607.

5. Hoffmann A, Turelli M. 1997. Cytoplasmic incompatibility in insects, p 42–80. In O’Neill SL, Hoffmann AA, Werren JH (ed), Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, UK.

6. Turelli M. 1994. Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb09922.x.

7. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

8. Narita S, Shimajiri Y, Nomura M. 2009. Strong cytoplasmic incompatibility and high vertical transmission rate can explain the high frequencies of Wolbachia infection in Japanese populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

9. Hoffmann A, Turelli M. 1994. Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb09922.x.

10. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

11. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

12. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

13. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

14. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

15. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

16. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

17. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

18. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

19. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.

20. Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Hoffmann AA, Simmons GM. 2018. Wolbachia infection frequency cline in natural populations of Colias erate poliographe (Lepidoptera: Pieridae). Bull Entomol Res 99:385–391. https://doi.org/10.1017/S0007160X1700154X.
and the possible role of reproductive dormancy. Evolution 70:979–997.

35. Webster CL, Waldron FM, Robertson S, Cresworn D, Ferrari G, Quintana JF, Brouqui J-M, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akori J, Haddrill PR, Obbard DJ. 2015. The discovery, distribution, and evolution of viruses associated with *Drosophila melanogaster*. PLoS Biol 13: e1002210. https://doi.org/10.1371/journal.pbio.1002210.

36. Hoffmann AA, Montgomery BL, Popovicj J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodoi C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL. 2011. Successful establishment of *Wolbachia* in Aedes populations to suppress dengue transmission. Nature 476: 454–457. https://doi.org/10.1038/nature10356.

37. Ross PA, Axford JK, Yang Q, Stanton KM, Ritchie SA, Richardson KM, Hoffmann AA. 2020. Heatwaves cause fluctuations in *wMel* Wolbachia densities and frequencies in *Aedes aegypti*. PLoS Negl Trop Dis 14: e0007958. https://doi.org/10.1371/journal.pntd.0007958.

38. Ross PA, Ritchie SA, Axford JK, Hoffmann AA. 2019. Loss of cytoplasmic incompatibility in *Wolbachia*-infected *Aedes aegypti* under field conditions. PLoS Negl Trop Dis 13:e0007357. https://doi.org/10.1371/journal.pntd.0007357.

39. Walker T, John PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McEniman CJ, Leong YS, Dong Y, Axford J, Krioser P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA. 2011. The *wMel* Wolbachia strain blocks dengue and invades caged *Aedes* populations. Nature 476:450–453. https://doi.org/10.1038/nature10355.

40. Dobson SL, Fox CW, Jiggins FM. 2002. The effect of *Wolbachia*-induced cytoplasmic incompatibility on host population size in natural and manipulated populations. Proc Biol Sci 269:437–445. https://doi.org/10.1098/rspb.2001.1876.

41. Lee RS, Gilles JR, Hendrich J, Vreugdenhil J, Bourzis K. 2015. Back to the future: the sterile insect technique against mosquito disease vectors.Curr Opin Insect Sci 10:156–162. https://doi.org/10.1016/j.cois.2015.05.011.

42. Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P, Sassu F, Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, Bourtzis K. 2003. Cytoplasmic incompatibility and sperm cyst infection in different *Drosophila*–*Wolbachia* associations. Genetics 164:545–552. https://doi.org/10.1093/genetics/164.4.545.

43. Ross PA, Axford JK, Hoffmann AA. 2019. Temperature affects the tripartite interactions between bacteriophage WO, *Wolbachia*, and cytoplasmic incompatibility. PLoS One 6:e29106. https://doi.org/10.1371/journal.pone.0029106.

44. Foo J-H, Hoffmann AA, Ross PA. 2019. Cross-generational effects of heat stress on *fitness* and *Wolbachia* density in *Aedes aegypti* mosquitoes. Trop Med Infect Dis 4:13. https://doi.org/10.3934/tmied.2021001.

45. Jia F-X, Yang M-S, Yang W-J, Wang J-J. 2009. Influence of continuous high temperature conditions on *Wolbachia* infection frequency and the fitness of *Liposcelis rufa* (Psocoptera: Liposcelididae). Environ Entomol 38:1365–1372. https://doi.org/10.1603/022.038.0503.

46. Binnington KC, Hoffmann AA. 1989. *Wolbachia*-like organisms and cytoplasmic incompatibility in *Drosophila simulans*. J Invertbr Pathol 54:344–352. https://doi.org/10.1016/0022-2011(89)90118-3.

47. Bresac C, Rousset F. 1993. The reproductive incompatibility system in *Drosophila simulans*: DAPI-staining analysis of the *Wolbachia* symbionts in sperm cysts. *J Invertebr Pathol* 61:226–230. https://doi.org/10.1006/jipa.1993.1044.

48. Clark ME, Veneti Z, Bourzis K, Carr TL. 2002. The distribution and proliferation of the intracellular bacteria *Wolbachia* during spermatogenesis in *Drosophila*. *Mech Dev* 111:79–87. https://doi.org/10.1016/S0925-4773(01)00594-9.

49. Karr TL, Yang W, Feder ME. 1998. Overcoming cytoplasmic incompatibility in *Drosophila*. Proc Biol Sci 265:391–395. https://doi.org/10.1098/rspb.1998.0307.

50. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JL, Shropshire JD, Layton EM, Funkhouser-Jones LJ, Beckmann J, Bordenstein SR. 2017. Prophage WO genes recapitulate and enhance *Wolbachia*-induced cytoplasmic incompatibility. *Nature* 543:243–247. https://doi.org/10.1038/nature21391.

51. Clark ME, Veneti Z, Bourzis K, Carr TL. 2002. The distribution and proliferation of the intracellular bacteria *Wolbachia* during spermatogenesis in *Drosophila*. *Mech Dev* 111:79–87. https://doi.org/10.1016/S0925-4773(01)00594-9.

52. Beckmann J, Fumagalli V, Whelan P, Hall CR, Sheahan W, Dobson KL, Eldawdah C, Torey D, Bordenstein SR. 2011. Sterile male production of male *Wolbachia*-infected *Aedes aegypti* mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol 38:482–492. https://doi.org/10.1038/nbt.20471-x.

53. Zheng X, Zhang D, Li Y, Wu Y, Liang X, Liang Y, Pan X, Hu Q, Sun Q, Wang X, Wei Y, Zhu J, Qian W, Yan Z, Parker AG, Gilles JR, Bourzis K, Bouyer J, Tang M, Zheng B, Yu L, Liu J, Zhuang J, Hu Z, Zhang M, Gong J-T, Hong Y-F, Zhang L, Lin L, Ou H, Wu Z, Wu B, Batton LA, Hoffmann AA, Xi Z. 2019. Incompatible and sterile insect techniques combined eliminate male *Wolbachia* mosquitoes. Nature 572:56–61. https://doi.org/10.1038/s41586-019-1407-9.

54. O’Neill SL. 2018. The use of *Wolbachia* by the World Mosquito Program to interrupt transmission of *Aedes* transmitted viruses. Adv Exp Med Biol 1062:355–360. https://doi.org/10.1007/987-1-87271-1_24.

55. O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzel K, Iturbe-Ormaetxe I, Dong Y, Kenny N, Patent CJ, Ritchie SA, Brown-Kenyon J, Stanford D, Wittmeier N, Jewell NP, Tanamas SK, Anders KL, Simmons CP, 2018. Scaled deployment of *Wolbachia* to protect the community from dengue and other *Aedes* transmitted arboviruses. Gates Open Res 2:36. https://doi.org/10.12688/gatesopenres.12844.2.

56. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, Supriyati E, Wardana DS, Meitika Y, Ernisa I, Nurhayati I, Prabowo E, Andari B, Green BR, Hodgson L, Cutterch Z, Rancés E, Ryan PA, O’Neill SL, Dufaut SM, Jewell NP, Anders KL, Simmons CP, AWED Study Group. 2021. Efficacy of *Wolbachia*-infected mosquito deployment for the control of dengue. N Engl J Med 384:2177–2186. https://doi.org/10.1056/NEJMoa2032043.
87. De Crespigny FEC, Pitt TD, Wieden N. 2006. Increased male mating rate in Drosophila melanogaster in the mosquito Culex pipiens. J Ultrastruct Res 63:79–85. https://doi.org/10.1016/S0022-5320(78)80046-X.

88. Yamada R, Floate KD, Riegler M, O'Neill S, Weidner N. 2007. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177:801–808. https://doi.org/10.1534/genetics.106.068486.

89. Clancy DJ, Hoffmann AA. 1998. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Ent Exp Appl 86(1):13–24. https://doi.org/10.1007/BF01754819.1998.00261.6.

90. Duron O, Fort P, Weill M. 2007. Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes. Heredity 98:368–374. https://doi.org/10.1038/sj.hdy.6800948.

91. Noda K, Koizumi Y, Zhang Q, Deng K. 2001. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31:727–737. https://doi.org/10.1016/S0096-1745(00)00180-6.

92. Kittayapong P, Mongkalagoon P, Baival M, O'Neill SL. 2002. Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-infected Aedes albopictus. Heredity 88:270–274. https://doi.org/10.1038/sj.hdy.6800039.

93. Calvitti M, Mariní F, Desiderio A, Puggioli A, Moretti R. 2015. Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool. PLoS One 10:e0121813. https://doi.org/10.1371/journal.pone.0121813.

94. Jamnongkul W, Kittayapong P, Baisley KJ, O'Neill SL. 2000. Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 37:53–57. https://doi.org/10.1603/0022-2585.37.1.53.

95. Reynolds KT, Thompson NJ, Hoffmann AA. 2003. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain pop corn in Drosophila melanogaster. Genetics 164:1027–1034. https://doi.org/10.1093 genetics/164.3.1027.

96. Kern AD, Barbash DA, Chang Mell J, Hupalo D, Jensen A. 2015. Highly constrained intergenic Wolbachia ultraconserved elements are candidate ncRNAs. Genome Biol Evol 7:689–698. https://doi.org/10.1093/gbe/evv011.

97. Lindsey J, Rice DW, Bordenstein SR, Bongers AW, Bordenstein SR, Newton ILG. 2018. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prokaryote WO of Wolbachia. Genome Biol Evol 10:434–451. https://doi.org/10.1093/gbe/eyv012.

98. Bing-X, Zhao D-S, Sun J-T, Zhang K-J, Hong X-Y. 2020. Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its “Jekyll and Hyde” mode of infection pattern. Genome Biol Evol 12:e4283. https://doi.org/10.1093/gbe/evaa006.

99. Martinez J, Klasson L, Welsh J, Jiggins FM. 2020. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol 38:2–15. https://doi.org/10.1093/molbev/msaa209.

100. Bordenstein SR, Bordenstein SR, Newton ILG. 2016. Eukaryotic association module in prokaryote WO genomes of Wolbachia. Nat Commun 7:13155. https://doi.org/10.1038/ncomms13155.

101. Myllymäki H, Valanne S, Rämet M. 2014. The Drosophila Imd signaling pathway. J Immunol 192:3455–3462. https://doi.org/10.4049/jimmunol.1303309.

102. Hotopf JCD, Lin M, Madrupu R, Crabtree J, Angiuoli SV, Eisen J, Shadadi R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouzami H, Zhang C, Niu H, Wang L, Ohashi N, Zhang L, Fields W, Bracken B, Liu Y, Sundaram J, Daughtery SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, Zafar N, Zhou L, Benahmed F, Forørberger H, Halpin R, Mulligan S, Robinson J, White O, Rikihisa Y, Tettelin H. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Pathog 2:e121818. https://doi.org/10.1371/journal.ppat.0020121.

103. Vollmer J, Schierer A, Schneider T, Jülicher K, Johnston KL, Taylor MJ, Sahli H-G, Hoerauf A, Pfr. K. 2013. Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and flarial nematodes. Int J Med Microbiol 303:140–149. https://doi.org/10.1016/j.ijmm.2013.01.002.

104. Wülsies M, Meier K, Schierer A, Josten M, Otten CF, Klockner A, Henrichreiche B, Vollmer W, Hoerauf A, Pfr. K. 2017. AmiD is a novel peptidoglycan ami- dase in Wolbachia endosymbionts of Drosophila melanogaster. Front Cell Infect Microbiol 7:353. https://doi.org/10.3389/fcimb.2017.00353.

105. Stenbak CR, Ryu J-H, Leulier F, Pili-Floury S, Parquet C, Hervé M, Chaput A, Vollmer W, Hoerauf A, Pfarr K. 2017. AmiD is a novel peptidoglycan ami- dase in Wolbachia. Front Cell Infect Microbiol 7:353. https://doi.org/10.3389/fcimb.2017.00353.

106. Stenbak CR, Ryu J-H, Leulier F, Pili-Floury S, Parquet C, Hervé M, Chaput A, Vollmer W, Hoerauf A, Pfarr K. 2017. AmiD is a novel peptidoglycan ami- dase in Wolbachia. Front Cell Infect Microbiol 7:353. https://doi.org/10.3389/fcimb.2017.00353.

107. Stenbak CR, Ryu J-H, Leulier F, Pili-Floury S, Parquet C, Hervé M, Chaput A, Vollmer W, Hoerauf A, Pfarr K. 2017. AmiD is a novel peptidoglycan ami- dase in Wolbachia. Front Cell Infect Microbiol 7:353. https://doi.org/10.3389/fcimb.2017.00353.
development provides insights into cytoplasmic incompatibility. Front Microbiol 11:606399. https://doi.org/10.3389/fmicb.2020.606399.

108. Doremus MR, Kelly SE, Hunter MS. 2019. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 15:e1008022. https://doi.org/10.1371/journal.ppat.1008022.

109. Gravelle BR, Brooks AN, Carlson JW, Duff MO, Landolino JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattuzzo NR, Miller D, Stur illegible, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammond A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hskins RA, Kaufman TC, Oliver B, Celniker SE. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479. https://doi.org/10.1038/nature09715.

110. Kaur R, Martinez J, Rota-Stabelli O, Higgins FM, Miller WI. 2020. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila melanogaster. Mol Ecol 29:479–473. https://doi.org/10.1111/mec.15462.

111. Torlotsa P, Charlat S, Labbe P, Dehecq J-S, Barre H, Weill M. 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS One 5:e9770. https://doi.org/10.1371/journal.pone.0009700.

112. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

113. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolino JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattuzzo NR, Miller D, Stur illegible, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammond A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hskins RA, Kaufman TC, Oliver B, Celniker SE. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479. https://doi.org/10.1038/nature09715.

114. Kaur R, Martinez J, Rota-Stabelli O, Higgins FM, Miller WI. 2020. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila melanogaster. Mol Ecol 29:479–473. https://doi.org/10.1111/mec.15462.

115. Torlotsa P, Charlat S, Labbe P, Dehecq J-S, Barre H, Weill M. 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS One 5:e9770. https://doi.org/10.1371/journal.pone.0009700.

116. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hskins RA, Kaufman TC, Oliver B, Celniker SE. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479. https://doi.org/10.1038/nature09715.

117. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolino JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattuzzo NR, Miller D, Stur illegible, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammond A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hskins RA, Kaufman TC, Oliver B, Celniker SE. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479. https://doi.org/10.1038/nature09715.

118. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

119. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolino JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattuzzo NR, Miller D, Stur illegible, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammond A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hskins RA, Kaufman TC, Oliver B, Celniker SE. 2011. The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479. https://doi.org/10.1038/nature09715.

120. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

121. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

122. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

123. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.

124. Lindsey ARI, Bhattacharya T, Hardy RW, Newton ILG. 2021. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrast effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 17:e1009376. https://doi.org/10.1371/journal.ppat.1009376.
147. R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

148. Kassambara A. 2020. ggpubr: “ggplot2” based publication ready plots. https://CRAN.R-project.org/package=ggpubr.

149. Signorell A. 2021. Tools for descriptive statistics [R package DescTools version 0.99.41]. Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=DescTools.

150. Canty A, Ripley BD. 2021. boot: bootstrap R (S-Plus) functions. https://cran.rstudio.com/web/packages/boot/index.html.

151. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York, NY.

152. Hague M, Shropshire JD, Caldwell CN, Statz JP, Stanek KA, Conner WR, Cooper BS. Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr Biol, in press.